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Abstract

In the thesis robust routing design problems in resilient networks are considered. In the

first part computational complexity of such problems are discussed. The following cases are

considered:

• path protection and path restoration

• failure-dependent and failure-independent restoration

• cases with and without stub-release

• single-link failures and multiple-link failures (shared risk link group)

• non-bifurcated (unsplittable) flows and bifurcated flows

For each of the related optimization cases a mixed-integer (in the non-bifurcated cases) or

linear programming formulation (in all bifurcated cases) is presented, and their computa-

tional complexity is investigated. For the NP-hard cases original NP-hardness proofs are

provided, while for the polynomial cases compact linear programming formulations (which

prove the polynomiality in the question) are discussed. Moreover, pricing problems related

to each of the considered NP-hard problems are discussed.

The second part of the thesis deals with various routing strategies in networks where the

uncertainty issues are modeled using the polyhedral model. In such networks two extrema

are possible. The simplest in terms of implementation, and simultaneously the least effective

strategy, is the robust stable routing. On the other hand, the most effective strategy, i.e.,

the dynamic routing, is virtually impossible to implement in real world networks. Therefore,

the major aim of this part of the thesis is to present novel routing strategies that merge the

simplicity of the robust stable routing with the efficiency of the dynamic routing.
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Chapter 1

Introduction

In core wide-area transport networks already single network elements (such as transmission

facilities or switching nodes) carry large amounts of traffic. This makes such networks vul-

nerable to failures, in particular to cable cuts, so that appropriate recovery mechanisms have

to be used to avoid major traffic losses. For example, in DWDM optical transport networks,

a transmission facility has capacity up to the order of TB/s and, if unprotected, its failure

can cause enormous losses of traffic before restoration actions are taken. This was the rea-

son to devote the first part of the thesis to the complexity of resilient network optimization

problems.

In fact, transport networks are best protected through the restoration mechanisms of the

transport layer so that the transport operators (carriers) can fully control the resiliency of

their networks and use the most efficient means in terms of restoration time and consumption

of extra protection capacity of transmission facilities. Moreover, the carriers do know what

failures can be expected (as for example failures of certain conduits) and can effectively cope

with them, also at the network planning stage. Another factor here is that having reliable IP

links (protected in the transport layer), IP network operators can concentrate on providing

resilience to the failures occurring in the IP layer, e.g., node breakdowns, and do not bother

about the failures in the transport layer. Note that failures in the transport layer, if not

protected, are often seen at the IP layer as complicated multiple IP link failures on which

the operators have no direct control.

One of the most common mechanisms for securing transport communication networks

against failures is path protection (PP). In optical networks the mechanisms of this kind

protect end-to-end lambda paths. An example is the 1+1 hot-standby protection mechanism

in which a primary (working) path is assigned a dedicated disjoint protection (backup) path

which carries the same signal and therefore assures the end-to-end transmission whenever

the primary path fails. The 1+1 mechanism is efficient in terms of restoration time, but

costly in terms of extra (protection) capacity. The protection capacity is not shared between

different primary paths in different failure situations and therefore must be at least equal
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to the working capacity. Some of its variants (as n : m protection and path diversity) can

alleviate the issue of high protection capacity cost, but only to a limited extent.

Because of that, active mechanisms called path restoration (PR) can be considered in-

stead. Although PR can be complex in terms of implementation and can have longer restora-

tion times than PP, they are among the most efficient mechanisms as far as the extra link

capacity required for path flow protection is concerned. The idea of a PR mechanism is as fol-

lows. The traffic demand (a set of lambda paths in the case of an optical transport network)

between a pair of nodes is realized using several different network paths to route the connec-

tions (i.e., path flows, either non-bifurcated or bifurcated) in the normal (failure-free) state.

When a failure occurs, the affected primary connections are restored using backup connec-

tions (again, by means of either non-bifurcated or bifurcated path flows) along the surviving

routes. In any failure state the total capacity of the temporarily established backup flows

and the primary flows that survive is equal to the requested volume of the traffic demand.

The backup flows can be established using the separate protection (backup) capacity of

the links so that the protection link capacity is separated from the working link capacity used

by primary flows that traverse a given link. In effect, the working and protection link capacity

form two separate pools of resources, so the backup flows do not use the working capacity

released on links as a by-product of a failure. It is said that backup flows do not exploit the

phenomenon of stub-release. Another possibility is when backup flows are allowed to use also

the working capacity that is released by the failed primary connections on surviving links,

so that the backup flows can exploit stub-release. This in fact leads to the usage of links’

capacity as a common pool of resources. In both cases it is important that backup capacity

is shared between restoration flows established in different failure states for different traffic

demands, so the path restoration is not the dedicated hot-standby protection.

The restoration of primary flows can be either failure-independent or failure-dependent.

In the first case the path flows have to be restored in exactly the same way whatever is the

reason of their failure. In the second case, the backup flows used to restore a given primary

flow can be different in different failure situations.

In general, the complexity of optimization problems corresponding to a restoration mech-

anism can depend on the assumed failure scenario, in particular whether the failure scenario

contains only a set of single element (link) failures or a set of failures consisting of multiple

elements’ failures; multiple failures are often referred to as shared risk resource (link) groups.

In the first part the following thesis is verified.

Most of resilient multi-commodity flow network optimization problems are

NP-hard, even when flows are allowed to be bifurcated.
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To this aim, complexity of various variants of the multi-commodity flow network opti-

mization problems related to the above described PP and PR mechanisms is studied. All

the considered problems proved to be either NP-hard or polynomial, and all of them are

NP-hard for multiple failures. This fact is not commonly recognized, especially when bi-

furcated (fractional) flows are admitted. Depending on the problem either NP-hardness or

polynomiality proof is given. Some of the results discussed in this thesis can be found in the

literature, while others are results of the present thesis.

The complexity issues of resilient network design have been considered by several authors,

see [20,34,47,51,55,59,65]. In fact, the previous results do not directly discuss the complexity

of the basic optimization problems but are rather devoted to the complexity of the so called

pricing problem required for column generation (see [1]) in the related non-compact linear

formulations of the basic problems (see [51]). These results are important (they will be used

while discussing efficient ways of dealing with the considered problems), still they do not

decide on the complexity of the basic problems which is the main subject of the first part of

the thesis.

Other authors were studying similar problems with only slightly different settings, like

[4, 5], where the authors were considering one single failure only, or they were trying to

provide good quality lower bounds for the problems considered in the thesis, like in [10].

It is worth noticing that the complexity results for multi-commodity flow optimization

problems related to design of resilient networks are important as they help to develop proper

algorithms used in network design tools based on contemporary linear/integer programming

solvers such as CPLEX or XPRESS.

The second part of the thesis is devoted to the polyhedral traffic demand matrix uncer-

tainty model. The reason was that modern telecommunication networks carry traffic gener-

ated by a variety of different applications, and provide services to a large number of users.

This makes prediction of traffic patterns difficult. Moreover, the customers’ mobility makes

a traffic demand matrix change in short periods of time. All those factors do not allow for

considering only one traffic demand matrix. Instead they encourage us to work on traffic

demand matrix uncertainty models.

Some such models were proposed in the past. The first approach consists in building a

traffic matrix based on the worst case for each traffic component. Routing is then computed

based on this matrix. While this approach is simple, it can provide expensive solutions,

because in fact it does not allow non-coincident traffic components to share resources.
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The second approach is based on probabilistic modeling of traffic variations. After speci-

fying such a model, one may look for routing that optimizes a probabilistic criterion: through-

put expectation, average delays, blocking probability, etc. The solution obtained in this way

is good on average, but can be very bad in some cases. Moreover, it requires knowledge of

probability models, and they are usually difficult to obtain. This kind of approach is gen-

erally called stochastic programming, and was used for example in [44, 57], where a finite

number of traffic scenarios with a known probability are considered.

A different general approach called robust optimization (see [42]) takes into account a

finite number of possible situations. In this case a solution that supports all situations is

of interest. In the networking context, a routing scheme is to be determined such that each

traffic matrix belonging to a given finite set of traffic matrices can be carried in the network.

Another robust model was proposed in [27] (and independently in [23]). It assumes that

the outgoing traffic of each node is bounded (limitations on the incoming traffic can also be

considered). Then the traffic matrix can be any matrix satisfying this kind of constraints.

This uncertainty model is called the hose model. Several network design problems based on

this model have received a considerable attention in the literature (see [18] and references

therein).

A different model is considered in [13] where the authors assume that not all nodes

can generate the maximum amount of traffic simultaneously. In fact this model, and the

hose model presented above, are special cases of a more general polyhedral model considered

in [6–9]. The model assumes that each possible traffic matrix belongs to a polytopeD. In [9] a

polynomial time algorithm is proposed to compute a routing scheme that solves this problem.

The routing is robust and stable (robust because it is compatible with all matrices, and stable

because it does not change when the matrix changes — it is matrix-independent). Although

the model was defined for traffic matrices belonging to a polytope, it can also successfully

deal with problems assuming that traffic matrices belong to a union of polytopes.

A different approach to deal with uncertainty consists in allowing a network to change

routing in a dynamic way, when there is a considerable change in terms of a traffic matrix.

This problem was intensively studied in the context of circuit-switched networks. Different

rules can be applied to connect calls depending on the current situation, e.g., alternate

dynamic routing, sequential routing, trunk reservation (see [3] and references therein). While

this kind of routing has many benefits, it is generally difficult to implement, and it is also

not optimal because the rules that are used are fixed in advance. However, it can be used

as a reference point (lower bound) to evaluate approaches presented earlier. Lately it has

been proven that the optimal cost of a network based on robust stable routing (fractional or

integral) may be a factor of Ω(log n) larger than the cost required when using dynamic routing
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[30]. For a more detailed discussion of different approaches to the problem of uncertainty

proposed in the past, readers can consult a recent survey that can be found in [18]. What is

more, other works related to traffic uncertainty can be found in [2,17,25,26,45,49,53,54,63].

In [9] the following question was raised: given an uncertainty traffic demand polytope D,

is it theoretically easy to compute a fully dynamic routing (routing scheme that depends on

the current traffic matrix)? Recently, it was proved in [19] that this problem is in general

difficult: it is co-NP-hard to decide whether a given network with known capacities is capable

of carrying each traffic matrix t ∈ D, when routing is dynamic. Moreover, it is clearly difficult

to implement this kind of routing for technical reasons.

Therefore, it is worth considering something between robust stable routing and fully

dynamic routing. Instead of computing a robust solution, it is possible to partition the

traffic demand polytope into some subsets, and compute a robust routing for each of them.

This class of problems was considered in [6]. In the second part of the thesis, algorithms

solving problems introduced in [6] are presented.

In the sequel of this thesis it is assumed that a direction of a hyperplane dividing the

traffic demand polytope is known, but its position is subject to optimization. For example

an amount of traffic generated between a pair of nodes (like in the experiments presented

in Chapter 10), or an amount of traffic generated by a specific node can be considered as

a direction of the hyperplane. In such a situation a position of a threshold that triggers

changes in routing is optimized. In other words, two routings are specified, the first is used

when the amount of traffic, which was set as a direction of the hyperplane, is smaller than

the threshold, otherwise the second routing is used. Another possibility is to consider time

as a direction of the hyperplane. In this case time is represented by an additional dimension

of the uncertainty set, and the moment when routing should be changed is optimized.

The major problem with this kind of approaches is that a routing can significantly differ

between subsets, and implementing those changes can result in serious traffic losses (due to

instability). So it is also worth considering something that will make the routing changes

less abrupt. Therefore, in the second part the following thesis is verified.

There exist routing mechanisms that are decentralized and simple in imple-

mentation, and are capable of dealing with traffic demands described using a

polyhedral approach.

To this aim, a novel routing mechanism, called volume oriented routing (and its polyno-

mially solvable modifications: simplified volume oriented routing and general volume oriented

routing), is presented in the thesis. It takes advantage of the simplicity of robust stable rout-

ing and the efficiency of dynamic routing. Moreover, it does not involve abrupt changes in

network flows.
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The whole thesis is divided into two parts. The first part deals with the complexity of

resilient network optimization problems, while the second part is devoted to the polyhedral

traffic demand matrix uncertainty model.

The first part of the thesis is organized as follows. In Chapter 2 notation is introduced.

After that, in Chapter 3 optimization models related to path protection (hot-standby, HS,

and path diversity, PD) are discussed. With HS, i.e., 1+1 protection, each demand is realized

by means of a single working path which is protected by a dedicated single path. PD can be

considered as a generalization of HS. It protects traffic against failing network components

by over-provisioning, i.e., by routing more traffic than specified by the demand value in the

failure-less state, and ensuring that at least the requested volume survives in each failure

state in the considered failure scenario without rerouting any flow.

In Chapters 4 and 5, analogous models related to various variants of path restoration

mechanisms are considered. Path restoration (PR) are active mechanisms in the sense that

they restore the working flows affected by a failure. Certainly, for achieving that, extra

protection capacity is required as compared to capacity supporting normal state only. Still,

the amount of extra capacity is typically much smaller for PR than for PP because, as a rule,

with PR protection capacity is shared by different demands and different failure situations.

The computational complexity of all the introduced models is discussed by summarizing

known facts and presenting novel results. The first part of the thesis ends with concluding

remarks in Chapter 6.

The second part of the thesis is organized as follows. Chapter 7 begins with Section 7.1,

where a notation and formulations of three basic models is presented, i.e., robust routing,

no-sharing routing, and dynamic routing. Robust routing assumes that traffic matrices are

always routed in the same way regardless of their locations in the traffic demand polytope.

No-sharing routing is a special case of robust routing which assumes that capacities cannot

be shared between different demands. The last model, namely dynamic routing, let each

traffic matrix from the traffic demand polytope be routed in a different way. It is shown

which of these problems are polynomial, and how they can be successfully approached. In

Section 7.2, models that were used to create test cases are presented, while in Section 7.3

the basic models are enhanced by introducing two versions of partitioning of the traffic

demand polytope: capacities have to be reserved once for the whole traffic demand polytope,

or capacities can be rereserved each time the routing changes. In the thesis special features

of these partitioning problems and algorithm that solve them are presented.

In Chapter 8, different algorithms solving the presented problems are discussed. In Section

8.1 the first partitioning problem is discussed. Its complexity is considered, and some of its

special features are outlined. Moreover, an algorithm that can solve it is presented. Another

6



(faster) algorithm is presented in Section 8.2. However, it can be applied only to a subset

of basic problems presented in a special way. The whole Section 8.3 is devoted to dynamic

routing. It is shown when partitioning is useful for this problem, and how it can be solved. The

major interest is given to a special polynomial case of the problem, i.e., the traffic demand

polytope is defined as a convex hull of a given set of traffic matrices. Finally, Section 8.4

consists of implementation details that accelerate the presented algorithms. It deals with all

the problems presented before, and contains enhancements that do not change the theoretical

complexity of the presented algorithms but can accelerate actual implementations.

In Chapter 9, volume oriented strategies are presented. First, in Section 9.1, unrestricted

volume oriented routing is discussed. This novel routing mechanism involves a division of a

traffic demand polytope. However, in this case, only a part of flow that exceeds a threshold

is routed using a different set of paths. The complexity of this approach is NP-hard in

general. However, it encompasses some special cases that are polynomial even when more

that one hyperplane is taken into account. Those special cases, namely simplified volume

oriented routing and general volume oriented routing, are presented in Sections 9.2 and 9.3,

respectively.

Numerical results showing applicability of the algorithms are presented in Chapter 10.

Congestions obtained for the considered basic models are compared first. Secondly, results

showing possible gains while applying different partitioning strategies are provided. Finally,

efficiency of volume oriented strategies is discussed. Numerical results are followed by con-

clusions and suggestions of further research in Chapter 11.

Some of the results discussed in the first part of the thesis have been presented at the

5th Polish-German Teletraffic Symposium (PGTS), Berlin, Germany, in September 2008 [72],

and subsequently in European Transactions on Telecommunications in 2009 [73]. While other

results were presented in Networks: an International Journal in 2010 [64]. Finally, some

results were presented at International Symposium on Combinatorial Optimization (ISCO),

Hammamet, Tunisia in March 2010 [70], and published in IEEE Communications Letters

also in 2010 [71].

The results concerning the partitioning strategies discussed in the thesis were first pre-

sented by the author at the 16th Polish Teletraffic Symposium, Łódź, Poland, in Septem-

ber 2009 [67], and at GLOBECOM, Honolulu, USA, in December 2009 [68]. They are also

covered in an article, written by the author and Walid Ben-Ameur, published in Interna-

tional Transactions in Operational Research [11]. The results concerning the volume oriented

strategies were presented at the 14th International Telecommunications Network Strategy

and Planning Symposium, Warsaw, Poland, in September 2010 [69].
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Part I

Complexity Issues
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Chapter 2

Notation

The considered network is modeled as a directed graph G = (V ,A) composed of set V

of nodes and set A of links (directed arcs). Set D represents directed end-to-end (traffic)

demands. The number of all demands, |D|, will be denoted by D. The source and target

nodes of demand d ∈ D are denoted by ud and wd, respectively. The volume of demand

d ∈ D is given by hd. The demand volumes are realized by means of path flows assigned

to (directed) paths form u to w. The cost of realizing one unit of demand on link a ∈ A is

denoted by ξa. Each link a ∈ A has its working (primary, basic) capacity, denoted by y′a,

used for realizing flows in the normal operating state (i.e., working or primary flows), and

the protection or backup capacity y′′a used for restoration of failed primary flows by means of

backup or restoration flows. Both y′a and y
′′
a , a ∈ A will be variables subject to optimization.

In the cases when it is not necessary to distinguish between the working and protection

capacity, variables ya will be used to denote the total capacity of link a ∈ A.

Notice that bounds on the capacity variables are not considered. Adding those bounds

cannot simplify the considered problems, thus NP-hard problems will remain NP-hard

after the modification. However, it is possible that some cases that were in P can become

NP-hard when the bound are added.

The family of all failure states (called a failure scenario) considered in a particular design

problem is denoted by S where each failure state s ∈ S (also called a failure situation or

simply a failure) is identified by the set of failing links, so s ⊂ A. Family S is assumed to

include the failure-less state O (formally equal to the empty subset of the set A) in which

all links are operational (state O is sometimes called the normal state). It is assumed that

links fail totally. The set Sa = {s ∈ S : a /∈ s} will denote the set of all states s ∈ S in

which link a ∈ A is available. A failure scenario is called a single-link failure scenario if it

admits only states s consisting of singletons (not necessarily all) plus the normal state O.

Otherwise, a scenario is called multiple-link failure scenario.

Node failures are not explicitly considered in this thesis. In fact, they do not add difficulty

to the considered problems as they can be modeled as single-link failures through a suitable
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transformation of the network graph (see Section 4.6.1 in [55] and Section 9.3 in [51]).

The set of all candidate paths (in general, these are not all possible paths) that can be

used for carrying flows is denoted by P =
⋃

d∈D Pd, where Pd is the set of candidate paths

for demand d ∈ D. It is assumed that the paths are elementary (do not contain loops) so,

for each demand d ∈ D, set Pd is a subset of the set of all elementary paths from ud to wd,

and each path p ∈ P can be identified with the set of the links it traverses, hence p ⊆ A.

Further, Sp = {s ∈ S : p ∩ s = ∅}, (Sp ⊆ S) denotes the set of all states s ∈ S in which

path p ∈ P is available, and S̄p = S\Sp is the set of all states s ∈ S in which path p ∈ P

fails. The subset of paths in Pd that survive in state s ∈ S is denoted by Psd , and the subset

of paths in Pd that contain link a ∈ A by Pad.

For a given candidate path p ∈ Pd assigned to demand d ∈ D, the set of all candidate

backup paths that can be used for protecting path p is denoted by Qp. Certainly, Qp ⊆ Pd

and s ∈ Sq for all s ∈ S̄p, i.e., paths p and q never fail simultaneously (and therefore are

called failure-disjoint). In this context, path p ∈ P is called the primary path (or working

path) and all paths from Qp are called its backup paths (or protection or restoration paths).

The set of all candidate failure-disjoint primary/backup path-pairs r = (p, q) for demand

d ∈ D will be denoted by Td, Td = {r = (p, q) : p ∈ Pd, q ∈ Qp}. For each link a ∈ A, and

demand d ∈ D, the set of all pairs r = (p, q) ∈ Td such that a ∈ p will be denoted by T ′ad,

and the set of all pairs r = (p, q) ∈ Td such that a ∈ q – by T ′′ad.

For the failure-dependent restoration still another path structures will be needed. The

set Wd, defined for each d ∈ D, contains predefined candidate sequences r = (p, qs : s ∈ S̄p)

of paths from ud to wd with the property that path qs works in state s ∈ S̄p (i.e., when the

primary path p fails). Then, W ′ad is the set of all sequences r = (p, qs : s ∈ S̄p) ∈ Td such

that a ∈ p, and W ′′ads is the set of sequences r = (p, qs : s ∈ S̄p) ∈ Td such that a ∈ qs for

s ∈ S̄p.

Depending on a particular optimization problem, the following flow variables will be used:

xp – flow of demand d ∈ D allocated to path p ∈ Pd, xad – flow of demand d ∈ D allocated

to link a ∈ A, xdr – flow of demand d ∈ D allocated to pair r = (p, q) ∈ Td or flow of demand

d ∈ D allocated to sequence r = (p, qs : s ∈ S̄p) ∈ Wd.

Notice that in the thesis both links and demand are directed. Still, the majority of proofs

to be presented can be easily transformed to cover undirected cases. However, there exist

cases when the transformation is impossible to achieve, e.g., in a proof of Section 4.1.3 2Div-

Path problem is used, which is NP-hard for directed cases but remains in P for undirected

cases.

11



Chapter 3

Path Protection Problems

Path protection (PP) mechanisms are passive in the sense that no flows are restored, and

hence the flows surviving in any of the considered failure states must be sufficient to realize

the demands. In this chapter the basic hot-standby PP mechanism (HS), and its extension

called path diversity (PD) are presented. In both cases we do not have to consider protection

capacity on the links but rather talk about redundant working capacity.

3.1 HS: Hot-Standby

With HS, i.e., 1+1 protection, each demand d ∈ D is realized by means of a single working

path p which is protected by a dedicated single path q, r = (p, q) ∈ Td. The two paths are

failure-disjoint, i.e., they never fail together (of course for the assumed failure scenario S).

Both paths are assigned flow hd which consumes hd units of capacity on each link along path

p, and also hd units along path q, so if there is a link a ∈ A belonging to both paths then

the amount of capacity consumed on this link by the considered demand is equal to 2hd.

The design problem corresponding to HS (referred to as problem HS) can be formulated as

the following MIP (mixed-integer programming) problem.

Problem HS

minimize F (y) =
∑

a∈A

ξaya, (3.1a)

∑

r∈Td

xdr = 1, d ∈ D, (3.1b)

∑

d∈D

hd(
∑

r∈T ′
ad

xdr +
∑

r∈T ′′
ad

xdr) ¬ ya, a ∈ A, (3.1c)

xdr ∈ {0, 1}, d ∈ D, r ∈ Td. (3.1d)

Observe that the use of binary flow variables xdr forces any feasible solution of problem

(3.1) to be non-bifurcated (unsplittable) because for each demand d ∈ D it assigns the
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whole demand volume hd to the pair r = (p, q) ∈ Td for which xdr is equal to 1 (by (3.1b)

there is only one such pair). Moreover, due to (3.1c), ya ­ 0 for all a ∈ A. In fact, the

above formulation yields a binary (i.e., non-bifurcated) optimal vertex solution even if the

integrality condition in (3.1d) is relaxed to 0 ¬ xdr ¬ 1, i.e., when the linear relaxation

is considered instead of the MIP formulation (3.1). In other words, in any optimal vertex

solution (x⋆, y⋆) of the linear relaxation, for each demand d ∈ D there is exactly one path-pair

r ∈ Td with x⋆dr = 1, and for the rest of such pairs x
⋆
dr = 0.

Note that the linear relaxation of (3.1) is not compact because the number of variables

xdr is in general exponential (as the number of path-pairs r = (p, q) is exponential). Hence,

to take into account all possible variables we have to use the column generation (path-pair

generation in this case) method of LP (see [43, 48]), based on solving the so called pricing

problem. For the considered problem the pricing problem consists in finding, separately for

each demand d ∈ D, a shortest pair r = (p, q) of failure-disjoint paths, i.e., a pair minimizing

its primal cost
∑

a∈p ξa +
∑

a∈q ξa. Observe that in this particular case, finding such shortest

path-pairs directly resolves the problem (3.1) (see [51]).

When dealing with a single-link failure scenario, finding a shortest pair of failure-disjoint

paths for a given demand d ∈ D (and hence solving problem HS (3.1)) can be done in

polynomial time using the Suurballe algorithm [60] or its modification given in [14]. In fact,

this problem is equivalent to the single-commodity min-cost-flow problem with flow value 2

and link capacities 1, see [1].

For the general case of multiple-link failures, however, the problem (3.1) is NP-hard

since, as shown in [34], even a simpler problem of finding just any pair of failure-disjoint

paths can be reduced from the proven NP-complete problem Set Splitting (see p. 221

in [29]).

3.2 PD: Path Diversity

The main disadvantage of HS is that it requires at least twice the capacity of an unprotected

network. Therefore, better PP mechanisms in terms of capacity efficiency are of interest. One

such mechanism, probably most economical among PP mechanisms in terms of capacity, is

called path diversity (PD). PD protects traffic against failing network components by over-

provisioning, i.e., by routing more traffic than specified by the demand value in the failure-

less state O, and ensuring that at least the volume hd survives in each failure state in the

considered failure scenario without rerouting any flow. The concept of PD has been studied

in the literature under different names, for example diversification [21] and demand-wise

shared protection [40, 41,66].

Each path p ∈ Pd is assigned a flow variable denoted by xp that expresses a part of the
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required demand volume hd to be carried on path p. Thus, the quantity
∑

p∈Pa xp is the load

of link a (a ∈ A) expressed in the flow units. For a given flow vector x = (xp : p ∈ P) and

with the non-negative cost of carrying one flow unit on link a ∈ A denoted by ξa (ξa ­ 0),

we can express the cost of using link a as ξa(
∑

p∈Pa xp), and the overall cost of the network

by F (x) =
∑

a ξa(
∑

p∈Pa xp). The problem studied in this section, Path Diversity De-

sign (abbreviated by PD), is as follows.

Problem PD

minimize F (x) =
∑

a∈A

ξa(
∑

p∈Pa

xp), (3.2a)

∑

p∈Ps
d

xp ­ hd, d ∈ D, s ∈ S, (3.2b)

x ­ 0. (3.2c)

Problem PD was studied by Koster et al. [41], Wessäly et al. [66], Orlowski and Pióro [51],

and in a slightly different setting by Dahl and Stoer [21]. Observe that formulation (3.2)

specifies a linear programming problem, and as such can be effectively treated by LP solvers

but only when the predefined sets of candidate paths Pd, d ∈ D, are of reasonable size.

Since in general the proper sets of candidate paths are not known in advance, formally all

possible (elementary) paths in the network have to be considered. Consequently, formulation

(3.2) is not compact since in general the number of all elementary paths in a graph increase

exponentially with the number of nodes. Thus, to solve problem (3.2), column generation has

to be used (see for example [1]) to achieve the proper sets of candidate paths that contain

all paths required in an optimal solution.

Path generation issues for problem (3.2) are discussed in [51]. Path generation is known

to be polynomial for the case when the failure scenario S contains only single-link failures,

i.e., when S is composed of singletons: S ⊆ {{a} : a ∈ A}. In fact, path generation for

problem (3.2) remains polynomial even if single-node failures on top of single-link failures

are also considered. However, in the case of a general multiple-link failure scenario, path

generation for PD becomes NP-hard [50].

Due to the linearity of the objective function, problem (3.2) decomposes into |D| in-

dependent sub-problems, one for each demand d ∈ D. Without loss of generality in each

such sub-problem hd = h can be assumed. Then, using notations P = Pd, Ps = Psd and

ξp =
∑

a∈p ξa, the decomposed problem for each particular demand d ∈ D is of the following

form.
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Figure 3.1: Two, three, and four failure-disjoint shortest paths.

Problem PDD (special case of PD)

minimize F (x) =
∑

p∈P

ξpxp, (3.3a)

∑

p∈Ps
xp ­ h, s ∈ S, (3.3b)

x ­ 0. (3.3c)

Example To illustrate problem PD consider the network depicted in Figure 3.1a with a

single demand of volume h from node u to node w. For the failure scenario consisting of

single failures of all links the optimal solution consists of three flows equal to xp = h2 assigned

to each of the three link-disjoint shortest paths depicted in Figure 3.1c. The cost F (x) of

this solution is 6h. Note that the feasible solution that assigns flow xp = h to each of the two

disjoint shortest paths of Figure 3.1b has the cost F (x) = 7h, and the feasible solution that

assigns flow xp = h3 to each of the four disjoint paths of Figure 3.1d has the cost F (x) =
19
3
h,
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Figure 3.2: Simplified network with multiple-link failures.

and hence both of them are not optimal.

The character of the optimal solution changes when multiple-link failures are admitted.

Consider the four node network (being a subnetwork of the network from Figure 3.1a) with

failure scenario S = {s1, s2, s3, s4} as shown in Figure 3.2a. The (unique) optimal solution

uses non-disjoint paths, as illustrated in Figure 3.2b. All the three path flows are still equal

to each other (they are equal to h). Clearly, the cost of this solution is 15h. �

In fact, for any scenario S consisting of single-link failures, S ⊆ {{a} : a ∈ A} (in S not

necessarily all links are subject to failure), problem PDD can be expressed in the compact

node-link LP formulation, and hence solved in polynomial time taking (indirectly) into ac-

count all possible candidate paths (see [51]).

Problem PDD (compact formulation)

minimize F (x) =
∑

a∈A

ξaxa, (3.4a)

∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = 0, v ∈ V \ {u,w}, (3.4b)

∑

a∈δ+(u)

xa −
∑

a∈δ−(u)

xa = X, (3.4c)

X − xa ­ h, {a} ∈ S, (3.4d)

x ­ 0. (3.4e)

Above, each variable xa denotes the flow realizing the considered demand (between nodes

u,w ∈ V) on link a ∈ A, X is the total flow realized for the demand, and δ+(v) and δ−(v)

are the sets of all links, respectively, outgoing from and incoming to node v ∈ V.

Moreover, for the particular failure scenario consisting of single failures of all links

(S = {{a} : a ∈ A}) there always exists an optimal solution of PDD that uses only a

set of k link-disjoint paths, so that the character of the solution exhibited in the first part of
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Example 3.2 is general (see [15]). The optimal solution assigns equal flows xp = h
k−1
to each

of these paths (note that xp = Xk ). Knowing this, it is possible to use the following iterative

algorithm to resolve PDD for the scenario that assumes single failures of every link:

Step 0: Set k = 1 and C(k) = +∞.

Step 1: Find a minimum-cost set P (k+1) of k+1 link-disjoint paths. If the set does not

exist go to Step 3, otherwise denote the total cost of the paths by C(k + 1) =
∑

p∈P (k+1) ξp.

Step 2: If C(k + 1) · (k − 1) < C(k) · k set k = k + 1 and go to Step 1.

Step 3: Assign flow equal to h
k−1
to each path from P (k).

The algorithm is effective. Its core (Step 1) consists of finding a minimum-cost set P (k+1)

of k+1 link-disjoint paths for the consecutive values of k so essentially it is an application of

the Suurballe approach [60] (see its modification in [14]) which finds a shortest set of (k+1)

disjoint paths from the previously found shortest set of k disjoint paths. Consequently, set

P (k + 1) is determined by finding a shortest “interlacing” path for set P (k). Such a path

can be computed using the original Suurballe algorithm or by any shortest path algorithm

admitting negative link weights in a graph with no negative cycles. However, a more efficient

way is to use the transformation of [24] (before finding a consecutive interlacing path) to

assure nonnegative link weights and then apply the classical Dijkstra algorithm to find the

interlacing path. Using the transformation, and the fact that there cannot be more than |E|

link-disjoint paths, the overall complexity of the algorithm becomes O(|A|2 log(2+|A|/|V|) |V|)

[62, Chapter 8].

The above result on using disjoint paths (and the resulting algorithm) can be extended

to the case when not all links are subject to (single) failures, i.e., when S ( {{a} : a ∈ A}.

Then there always exists an optimal solution with flows equal to h
k−1
assigned to a set of k

failure-disjoint paths, i.e., to a set of paths {p1, p2, . . . , pk} from u to w such that each pair

(pi, pj) (1 ¬ i < j ¬ k) has no common failing link (i.e., a ∈ pi ∩ pj ⇒ a ∈ A \ S). Such a

solution can be found by the above algorithm applied to the network modified for each k by

replacing each non-failing link a (a ∈ A \ S) by a set of k parallel links (with the same unit

cost equal to ξa) that are subject to failure. Certainly, the parallel links are shrunk to the

original link upon completion of the algorithm. Note that this solution has to be compared

with the best possible solution that uses only one non-failing path (provided such a path

exists). Still, the version of Path Diversity Design admitting multiple-link failures and

using all possible elementary paths is NP-hard.

Proposition 3.2.1. Path Diversity Design is NP-hard when multiple failures are ad-
mitted.
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Figure 3.3: Network N resulting from graph G.

The proposition can be proved using a reduction of the fractional graph coloring problem

(referred to as Fractional Coloring) to Path Diversity Design. The reduction and

the fractional graph coloring problem itself are presented below.

3.2.1 NP-hardness proof

Fractional graph coloring problem

Consider a graph G with the set of vertices W . Any non-empty subset of vertices e ⊆ W is

called an independent set of graph G if no two vertices in e are connected by an edge. Let E

be the family of all independent sets of graph G and let z = (ze ­ 0 : e ∈ E) be a vector of

(weight) variables associated with those independent sets. Finally, let Ev = {e ∈ E : v ∈ e}

be the family of all independent sets containing a given vertex v ∈ W. A (non-compact) LP

formulation of Fractional Coloring is as follows.

Problem FGC (fractional graph coloring)

minimize F (z) =
∑

e∈E

ze, (3.5a)

∑

e∈Ev
ze ­ 1, v ∈ W, (3.5b)

z ­ 0. (3.5c)

Any optimal solution z⋆ of problem FGC determines the fractional chromatic number

χf (G) which is equal to f(z⋆). Fractional Coloring is known to beNP-hard (its decision

version is NP-complete); see [31, 46].

NP-hardness proof

Consider an undirected graph G with the setW = {v1, v2, . . . , vN} of N vertices. Let E be the

family of all independent sets of G. The resulting instance of Fractional Coloring (i.e.,

of problem FGC (3.5)) will be denoted by FCG.
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The instance PDDG of Path Diversity Design (i.e., of problem PDD (3.3)) corre-

sponding to FCG is modeled by means of a directed network N = (V ,A) depicted in Figure

3.3. The set of nodes V = {v0, v1, . . . , vN} consists of N +1 elements: all vertices from graph

G plus the additional node v0. The set of links A = {t1, t2, . . . , tN , b1, b2, . . . , bN} is composed

of 2 · N elements. For each n = 1, 2, . . . , N , links tn (top link number n) and bn (bottom

link number n) connect nodes vn−1 and vn. The unit cost ξa of each link is equal to 1. The

(single) demand is defined from node v0 to node vN , with the requested demand volume

equal to 1. The set P of paths consists of all elementary paths from node v0 to node vN in

network N . The set S of failure states consists of N states, S = {s1, s2, . . . , sN}. Each state

sn ∈ S encompasses simultaneous failures of the bottom link bn, and of every top link tm

such that in graph G vertices vn and vm are linked by an edge: sn = {bn} ∪ {tm : vm and

vn are adjacent in G}. For example, thick links in Figure 3.3 represent the links that fail in

state sn under assumption that vertex vn in graph G is adjacent to vertex v2 and to vertex

vn−1, and to no other vertices.

Lemma 3.2.2. The optimal objective (3.5a) of FCG is equal to K (i.e., χf (G) = K) if and
only if the optimal objective (3.3a) of PDDG is equal to N ·K.

Proof. Each feasible solution z = (ze : e ∈ E) of FCG can be identified with its support
I = {e ∈ E : ze > 0} and the vector z = (ze : e ∈ I) of positive weights assigned to the
independent sets from the support. Analogously, each feasible solution x = (xp : p ∈ P) of
PDDG can be identified with its support Q = {p ∈ P : xp > 0} and the vector x = (xp : p ∈
Q) of positive flows assigned to the paths from the support. The subfamily of all independent
sets from I containing a given vertex v ∈ W will be denoted by Iv, and the set of all paths
from Q surviving in a given state s ∈ S by Qs. It will be demonstrated that each feasible
solution I, z = (ze : e ∈ I) of FCG corresponds to a feasible solution Q, x = (xp : p ∈ Q) of
PDDG such that N · f(z) = F (x), and vice versa.
Let I, z = (ze : e ∈ I) be a given feasible solution of FCG. The corresponding feasible

solution of PDDG consists of a set Q = {p(e) : e ∈ I} ⊆ P of paths with the flow assignment
defined as xp(e) = ze, e ∈ I. For each n (1 ¬ n ¬ N), path p(e) uses the top link tn, if vn ∈ e;
otherwise, it uses the bottom link bn. In effect, since sn = {bn}∪{tm : vm and vn are adjacent
in G} and p(e) = {tn : vn ∈ e}∪{bm : vm /∈ e}, it can be observed that Qsn = {p(e) : e ∈ Ivn}
and therefore for each sn ∈ S we have

∑

p∈Qsn xp =
∑

e∈Ivn xp(e) =
∑

e∈Ivn ze ­ 1, so the
inequalities (3.3b) hold. As every path p in P has the unit cost ξp = N , the total cost F (x)
given by (3.3a) is equal to N · f(z).
Conversely, each feasible solution Q, x = (xp : p ∈ Q) of PG defines a feasible solution

I = {e(p) : p ∈ Q} ⊆ E , z = (ze(p) : p ∈ Q) of CG, where ze(p) = xp, p ∈ Q. Each set
e(p) ∈ I is defined by the condition: vertex vn belongs to e(p) if and only if path p survives
in failure state sn. Each e(p) is an independent set since if vn, vm ∈ e(p) and vn and vm
are adjacent in G then path p cannot survive in both states sn and sm because link tn
fails in state sm and link bn fails in state sn. Moreover, Ivn = {e(p) : p ∈ Qsn} and hence
∑

e∈Ivn ze =
∑

e(p)∈Qsn ze(p) =
∑

p∈Qsn xp ­ 1, so the inequalities (3.5b) are fulfilled. Certainly,
N · f(z) = F (x).
The above construction shows that instances FCG and PDDG represent essentially the

same optimization problem. Thus, K = χf (G) if and only if N ·K is the optimal objective
function value of PDDG.
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3.2.2 Non-bifurcated PD

Certainly, LP formulation (3.2) of problem PD is bifurcated as it does not pose any restric-

tions on assigning path flows xp except (3.2b). A non-bifurcated version of PD would require

that each path in p ∈ Pd can carry either flow equal to 0 or to hd. This variant of PD can

be easily formulated as a MIP using binary flow variables.

The non-bifurcated version of PD is polynomial in the case of single failures because its

optimal solution is equivalent to a corresponding solution of HS, i.e., it consists of a pair of

failure disjoint paths. To see this assume (without loss of generality) that there is only one

demand in a network, and replace all non-failing links with a pair of failing, parallel ones. In

this way an equivalent problem in which all links can fail is obtained. Secondly, the capacities

allocated to links resulting from a solution to PD (optimal or not) are reduced, so that they

do not exceed hd on any link. Now it is possible to observe that the capacity of the minimal

cut in the resulting network is at least equal to 2hd (otherwise, all paths of the PD solution

would traverse the same failing link). Then we can exclude from the network, one by one,

links that do not belong to any of the 2hd-capacity cuts. The resulting network consists only

of links that belong to 2hd-capacity cuts and are of capacity hd. In such a network the only

way to route 2hd of flow is to allocate it to two arc-disjoint paths. Notice that according

to the max-flow min-cut theorem (see [1]) such paths can always be found in the resulting

network.

For multiple failures the non-bifurcated version of PD is NP-hard by the following re-

duction from the NP-complete problem Vertex Cover (see [37]). Consider problem V CG

of finding the minimal vertex cover in graph G = (V ,A) that consists of |V| vertices and |A|

edges. The corresponding instance PD, denoted by PDG, is specified by a network composed

of two nodes u and w connected by |V| parallel links. Each link in PDG corresponds to one

node in V CG. There is only one demand (between nodes u and w), and the failure scenario

consists of |A| failure states. Each of the states corresponds to a link (denoted by a) in

V CG and it affects all links in PDG that correspond to nodes which are not adjacent to the

considered link a in V CG. Problems PDG and V CG are equivalent, as each feasible solution

to PDG can be transformed to a feasible solution V CG with the same cost, and vice versa.

The transformation applies to all feasible solutions to both problems.

3.2.3 Path generation

Recall that the path generation method (called column generation in the general LP context)

is a way to generate paths outside the current set of candidate paths P that can possibly

improve the solution obtained for the given P , or to find out that such paths do not exist.
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By the general separation theorem (see for example [32]), NP-hardness of Path Diver-

sity Design implies difficulty (non-polynomiality) of path generation for the non-compact

formulation PDD (3.3) (and hence for the more general formulations PD (3.2)). In the case

of PDD, however, it is easy to show that path generation is in fact NP-hard itself. NP-

hardness of path generation for PDD (3.3) follows directly from the hardness of column

generation for problem FGC (3.5). The problem dual to FGC is as follows.

Dual to problem FGC

maximize W (π) =
∑

v∈W

πv, (3.6a)

∑

v∈e

πv ¬ 1, e ∈ E , (3.6b)

π ­ 0. (3.6c)

Note that variable πv corresponds to (3.5b). Hence, to generate a new column for the

current optimal dual solution π⋆ = (π⋆v : v ∈ W), i.e., a new independent set e to be added

to the current set E , we have to solve the problem of finding an independent set in graph G

maximizing the sum
∑

v∈e π
⋆
v (this problem is NP-hard as it contains the problem of finding

a maximal independent set in a graph, see [29]). If the resulting maximum for solution e is

greater than 1 then the new independent set e is added to E . Clearly, generating new paths

for problem PDD (3.3) is equivalent to generating new columns for FGC (3.5), and hence

the former problem must be NP-hard as well.

As explained in [51], path generation for problem PD (3.2) is based on the following

pricing problem PP/PD, solved separately for each demand d ∈ D. PP/PD consists of finding

a path p between the end nodes ud and wd of demand d ∈ D minimizing the generalized

path length.

〈p〉 =
∑

a∈p

ξa +
∑

s∈S̄p

λsd
⋆. (3.7a)

In the above expression, λsd
⋆ denotes the optimal value of the dual variable corresponding to

inequality (3.2b) while S̄p stands for the set of all failure states s ∈ S that affect path p (p

is assumed to be elementary and is identified with the set of links it traverses). Note that

λsd
⋆ ­ 0 so it is clear that 〈p〉 ­ 0. If the resulting 〈p〉 is strictly less than the generalized

lengths of all paths in the current candidate set P then p is added to P . If for at least one

demand d ∈ D such a path has been added, the resulting (extended by one or more paths)

problem PD is resolved, and the pricing problems are reentered.

PP/PD is polynomial for single-link failure scenarios (when links are subject to failures,

but only one link can fail at a time), and NP-hard for scenarios admitting states with
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simultaneous failures of several links (see [51, Section 3]). In the single-link failure case, the

pricing problem can be easily solved by means of any classical shortest path algorithm (as for

example the Dijkstra algorithm [22]) for link weights given by wa = ξa+γa, where γa = λ
{a}
d

⋆

if {a} ∈ S, and γa = 0, otherwise. As shown before PP/PD is NP-hard for multiple-link

failures. In fact, it is NP-hard already for double-link failures, S = {{a, a′} ∈ A ×A : a 6=

a′}, as demonstrated in [20] for a simpler problem called the minimum-color shortest path

problem (assuming ξa = 0, a ∈ A in (3.7)).

For a multiple-link failure scenario the pricing problem can be formulated as a MIP

(mixed-integer program), see problem (14) in [51], and resolved as such by a MIP solver.

Still, according to computational experience described in [56,59], such a direct MIP approach

is not efficient because the MIP model of the pricing problem does not solve well and fails to

deliver solutions in a reasonable time already for networks of very moderate size (10 nodes,

say).
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Figure 3.4: Transformation of the PD pricing problem to Shortest Path Problem with
Resource Constraints.

Alternatively, the pricing problem can be converted into an instance of the Shortest

Path Problem with Resource Constraints (SPPRC) [36]. For a given instance of

the pricing problem, the corresponding instance of SPPRC is constructed as in Figure 3.4.

The network of the original problem is represented as a cloud in the figure. Each link in this

graph has the primal cost equal to ξa, as in the pricing problem. For the SPPRC problem

instance we introduce |S| resources (corresponding to the failure states), and assume that

link a ∈ A consumes one unit of resource s ∈ S if a fails in s, and nothing otherwise. The

original network is extended by |S| additional nodes and 2 · |S| links denoted by as and

bs, s ∈ S, as shown in Figure 3.4.

Links as have the primal cost ξas = 0; these links consume a large amount M ­ |A|

of resource s and none of all other resources. Links bs have the primal cost ξbs = λsd
⋆ and

do not consume any resources. Let w′d denote the rightmost node as depicted in Figure 3.4.

The objective of the resulting instance of SPPRC is to find a shortest path (with respect to

the primal link costs) from ud to w′d in the transformed network, satisfying the constraint
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forbidding the path to consume more than M units of any resource on any link. This leads

to a routing path with the cost as defined by (3.7): the contribution of the path to the first

sum comes from the cloud, and the resource constraints of links as make sure that if a path

uses state s somewhere in the cloud, link bs must be used, which adds the value of λsd
⋆ to

the path length. Using this transformation, it is possible to solve the pricing problem using

algorithms developed for SPPRC, for example based on dynamic programming (see [36]).

A general label-setting SPPRC algorithm was used for the pricing problem related to an-

other resilient design problem (state-independent restoration without stub-release) in [59].

However, as discussed in [56], it turns out that using general label-setting SPPRC algo-

rithms for the pricing problems of PD considered in this thesis is not effective either (as

the MIP approach). Fortunately, such label-setting algorithms can be improved and made

work efficiently for practical communication networks instances. The way how to do it for

PD is described in [56], where also numerical examples supporting the above observations

are discussed.
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Chapter 4

Path Restoration Problems with
Failure-Independent Restoration

Path restoration (PR) are active mechanisms in the sense that they restore the working flows

affected by a failure. Certainly, for achieving that, extra protection capacity is required as

compared to capacity supporting normal state only. Still, the amount of extra capacity is

typically much smaller for PR than for PP because, as a rule, with PR protection capacity

is shared by different demands and different failure situations.

In this chapter it is assumed that failed flows are restored in a failure-independent fashion,

i.e., the restoration flow pattern is always the same, and does not depend on the particular

failure state that affects a given primary flow. The failure-dependent case is discussed in

Chapter 5.

PR mechanisms are considered assuming two cases of capacity use, i.e., with and without

stub-release. In the former case, the capacity on surviving parts (stubs) of a failing path can

be reused for backup flows. In the latter case, it is reserved exclusively for the primary flows,

and cannot be reused in case of any failure.

4.1 FI-nSR: no Stub-Release

First the case without stub-release (nSR) will be considered, i.e., when surviving but unused

working capacity cannot be reused for backup flows in failure situations. Notice that nSR is

typical for transport layers, e.g., for optical or SONET networks. The generic form of the

core optimization problem considered in this section (FI-nSR) is denoted by P and is as

follows.
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Problem FI-nSR

minimize F (y) =
∑

a∈A

ξa(y′a + y
′′
a), (4.1a)

∑

r∈Td

xdr = 1, d ∈ D, (4.1b)

∑

d∈D

∑

r∈T ′
ad

hdxdr ¬ y
′
a, a ∈ A, (4.1c)

∑

d∈D

∑

r∈R′′
eds

hdxdr ¬ y
′′
a , a ∈ A, s ∈ Sa \ {O}, (4.1d)

y′′a ­ 0, a ∈ A, (4.1e)

xdr ­ 0, d ∈ D, r ∈ Td. (4.1f)

Problem P consists in minimizing the cost of primary and protection capacities installed

on the links subject to a number of constraints. Constraint (4.1b) assures that all demand

volumes are realized (xdr is a fraction of hd allocated to pair r = (p, q) ∈ Td) while (4.1c)

states that in the normal state the load of link a ∈ A cannot exceed its primary capacity.

The flow summation on the left-hand side of (4.1d) is taken over all path-pairs whose backup

path contains the considered link a and whose primary path fails in the considered failure

state s. Clearly, problem (4.1) assumes that the pool of protection capacity y′′a , a ∈ A, is

shared by the demands in different situations. Note that, y′ ­ 0 for all a ∈ A dur to (4.1c).

In the balance of this section NP-hardness of different variants of problem (4.1) will be

examined. The variants are distinguished according to the following four criteria:

• Criterion 1. (a) Non-bifurcated flow (IP): xdr ∈ {0, 1}, d ∈ D, r ∈ Td. (b) Bifurcated

flow (LP): xdr ∈ R+, d ∈ D, r ∈ Td.

• Criterion 2. (a) Predefined lists of path-pairs: Td are given in advance. (b) All possible

elementary path-pairs in Td.

• Criterion 3. (a) Single link failure scenario: |s| = 1, s ∈ S\O. (b) Arbitrary link failure

scenario (failures of more than one link at a time are admitted): |s| ­ 1, s ∈ S \ O.

• Criterion 4. (a) Single demand: D = 1. (b) Multiple demands: D ­ 1.

4.1.1 Complexity overview

As indicated in Criterion 1, by IP the version of problem P that is characterized by binary flow

variables (non-bifurcated flows) is denoted, and by LP—its bifurcated counterpart (linear

relaxation of IP) with continuous flows.

First observe that the variant specified by Criterion 1b (LP) and Criterion 2a (predefined

path-pairs lists) is always polynomial, no matter what Criteria 3 and 4 are. This is because
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Table 4.1: Complexity overview (NPH: NP-hard, P : polynomial)

single failures multiple failures

LP, all paths NPH1 NPH2

D = 1
IP, predefined paths P3 NPH4

LP, all paths NPH5 NPH5

D > 1
IP, predefined paths NPH6 NPH5

in this case formulation (4.1) becomes a compact linear programming problem, and as such

can be solved in time which grows polynomially with the size of the problem (see [39]). On

the other hand, when LP with all possible (elementary) path-pairs is considered (variant

1b, 2b) then formulation (4.1) becomes non-compact as the number of path-pairs grows

exponentially with the size of the graph. As demonstrated later in this section, this variant

is NP-hard, no matter what Criteria 3 and 4 are.

The second observation concerns variants assuming Criterion 1a (IP). For the IP case

the complexity is already determined by 2a, no matter what variants of Criteria 3 and 4 are

considered. When variant 2a is NP-hard, variant 2b is also (automatically) NP-hard. The

case when variant 1a can be solved in polynomial time is a bit more tricky. This is in fact

variant 1a, 3a, 4a, namely: |s| = 1, for all s ∈ S \ O, D = {d} and xdr ∈ {0, 1}, r ∈ Td.

Consider Criterion 2a, i.e., that Td are given in advance. Then the optimal solution can be

found in polynomial time by examining all pairs in Td, and selecting the shortest one. Now

consider the second variant (2b). In this case the problem is just to find a shortest pair of

disjoint paths in the network, and allocate the whole demand volume hd to this pair. This

can be efficiently solved using Suurballe algorithm [60]. Hence, both variants 2a and 2b can

be solved in polynomial time.

Thus, although according to Criteria 1-4 there are 16 variants of problem (4.1), because

of the above remarks, this number can be reduced to 8. These 8 variants are summarized in

Table 4.1, where Criterion 2b is assumed for LP, and Criterion 2a is assumed for IP.

When Criterion 1b is assumed instead of 1a so the flow bifurcation is admitted, i.e.,

vector x = (xdr : d ∈ D, r = (p, q) ∈ Td) is continuous, then a demand can be routed on

many different primary/backup path-pairs simultaneously. How different the IP and the LP

versions of the problem are can be seen in Figure 4.1 depicting the network consisting of

1proved in this section
2derived from the proof presented in this section
3proved by Suurballe, see [60]
4proved by Hu, see [34]
5because D = 1 is NP-hard
6modification of the main proof presented in this section
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Figure 4.1: Network of two nodes and N+1 links.

two nodes u and w, N + 1 links a1, a2, . . . , aN+1, and one demand d between u and w with

hd = 1. Suppose that ξan = 1, for n = 1, 2, . . . , N + 1. Clearly, any optimal solution of the

IP version consists (by definition) of just one primary/backup path-pair, and must cost 2

units. On the contrary, an optimal solution of the LP version uses N different primary paths

protected by one common backup path. Such a solution is for example obtained by assigning

flow xdr = 1
N
to each of the N path-pairs (pn, q), for n = 1, 2, . . . , N , where pn = {an} and

q = {aN+1}. Hence, y′an =
1
N
, y′′an = 0, for n = 1, 2, . . . , N and y

′′
aN+1
= 1
N
, y′aN+1 = 0, and the

backup capacity of link aN+1 is shared among the different backup paths in different failure

states (each of these failure states affects exactly one link). The cost of this solution is 1+ 1
N
,

i.e., almost 50% cheaper than the non-bifurcated solution.

Later in this section it is proved that the 1a, 3a (IP, single failures) variant of problem

(4.1) is NP-hard. Moreover, the fact that any approximation of the problem better than a
4
3
-approximation is NP-hard is also proved.

Proceed now to the case with multiple demands and with the single failure scenario

(3a, 4b). The NP-hardness of the LP case (variant 1b, 3a, 4b) is directly implied by the

NP-hardness of the case with only one demand (Criteria 1b, 3a, 4a), since when something

is difficult for the single demand case it has to be difficult also for multiple demands. As

far as the IP version is concerned (1a, 3a, 4b), it is impossible to follow the same way of

reasoning, because the single demand case can be solved in polynomial time. In fact, the

version admitting multiple demands is NP-hard. In order to prove this it is possible to

use a simple construction presented in this section, and reduce the Partition problem to

the considered variant of problem P. However, since this construction gives weak results

concerning the complexity of the problem’s approximations, the main proof of this section
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will be extended to cover the IP variant of the problem admitting multiple demands (variant

1a, 3a, 4b).

As far as the multiple failure variant 1b, 3b, 4a is concerned, its complexity can be

deduced from [34] where it is proved that finding any pair of failure-disjoint paths when

multiple failures are admitted is NP-hard. As each feasible solution to the problem consists

of assigning the demand volume to one or more of such pairs, it is clear that finding any of

them cannot be completed in polynomial time.

4.1.2 NP-hardness proof (many demands, IP)

Consider the variant of problem P assuming Criteria 1a, 2a, 3a, and 4b, i.e., IP, limited

lists of path-pairs, single failures, and many demands. The NP-hardness of this case can

be demonstrated using a reduction of the Partition problem to the considered problem.

Partition was proved to be NP-hard in [29].

Consider a given sequence H = (h1, h2, . . . , hD) of positive integer numbers. Denote by
∑

D̂ the sum
∑

d∈D̂ hd defined for any subset D̂ of the set of indices D = {1, 2, . . . , D}.

Problem Partition consists in answering the question whether there is a partition (split)

of the set D into two subsets D′ and D′′ (D′∪D′′ = D,D′∩D′′ = ∅), such that
∑

D′ is equal

to
∑

D′′. Partition (D′,D′′) will be called a valid partition.

Consider an instance PAH of Partition for a given sequence H. The corresponding

instance FIH of problem (4.1) is specified by means of a network that consists of only two

nodes, u and w, connected by three parallel links A = {a1, a2, a3} (see Figure 4.1 with

N = 3). The unit capacity costs are all equal to 1, ξa = 1 for a ∈ A. The set of demands

is defined as D = {1, 2, . . . , D}, and each demand d ∈ D has its source in node u and its

sink in node w, its volume is given by hd. Also, the (single) failure of each of the three links

is included into the considered failure scenario, so the scenario contains the normal state O

and the three failure states corresponding to the three links. Let H =
∑

D.

Proposition 4.1.1. The optimal objective of FIH is 32H if and only if PAH forms a valid
partition.

Proof. It will be first proved that the optimal objective F ⋆ of FIH is not less than 32H.
Indeed, it must be that y′a1 + y

′
a2
+ y′a3 ­ H (because the total demand volume to be realized

from u to w is equal to H), and that y′′a2 + y
′′
a3
­ y′a1 , y

′′
a1
+ y′′a3 ­ y

′
a2
and y′′a1 + y

′′
a2
­ y′a3

(because when link a fails then its primary capacity y′a must be restored on the protection
capacity of the two remaining links). Summing up the last three inequalities and using the
first inequality we get 2·(y′′a1+y

′′
a2
+y′′a3) ­ y

′
a1
+y′a2+y

′
a3
­ H, and hence y′′a1+y

′′
a2
+y′′a3 ­

1
2
H.

Thus, F ⋆ ­ 3
2
H.

Next, it will be shown that a valid partition (D′,D′′) yields an optimal solution of FIH.
Such a solution is obtained by assigning the path-pair r′ = (p′, q) to all demands from D′, and
the path-pair r′′ = (p′′, q) to all demands from D′′, where the primary path p′ is composed
of link a1, the primary path p′′ is composed of link a2, and the common backup path q is
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composed of link a3. Then y′a1 = y
′
a2
= y′′a3 =

1
2
, y′a3 = y

′′
a1
= y′′a2 = 0, and the resulting

objective F (y) is 3
2
H, thus optimal.

Finally, it will be proved that any optimal solution of FIH defines a valid partition of D.
Let y′a, y

′′
a , a ∈ A be such an optimal solution. Introducing the notation ya = y

′
a + y

′′
a , a ∈ A

it is possible to write that ya1 + ya2 + ya3 =
3
2
H (because the solution is optimal and hence

F (y) = 3
2
H) and ya2 + ya3 ­ H, ya1 + ya3 ­ H and ya1 + ya2 ­ H (because when link a fails

then the total demand volume must be carried on the remaining links). The only solution
y = (ya1 , ya2 , ya3) fulfilling these conditions is ya1 = ya2 = ya3 =

1
2
H. Now consider any fixed

link a. Jointly, the primary capacity y′a and the backup capacity y
′′
a of this link carry exactly

1
2

∑

d∈D hd of flow. Define D′ = {d ∈ D : ∃ r = (p, q) ∈ Td, xdr = 1 ∧ (a ∈ p ∨ a ∈ q)} and
D′′ = D \ D′. Then, clearly,

∑

D′ = 1
2
H and hence (D′,D′′) is a valid partition of D.

4.1.3 NP-hardness proof (one demand, LP)

Now consider the linear relaxation of problem P (i.e., problem (4.1)) admitting all possible

path-pairs, with the full single link failure scenario (i.e., all links can fail, one at a time), and

with only one demand (D = 1). Below, it is proved that this variant (i.e., variant 1b, 2b,

3a, 4a) is also NP-hard by reducing the 2Div-Path problem to it. 2Div-Path has been

proved to be NP-hard in [28].

Consider a directed graph and two pairs of its vertices (u1, w1) and (u2, w2). Assume that

all four vertices are different. Problem 2Div-Path consists in answering a question whether

there exist two arc-disjoint directed paths, one from u1 to w1, and the second from u2 to w2,

in a given graph. Notice that the problem cannot be solved using an appropriately modified

Suurballe algorithm [60], since the algorithm cannot assure that in the two resulting paths

u1 will be connected to w1 and not to w2. Moreover, notice that the problem is solvable in

polynomial time in undirected graphs [58]. Thus, the proof cannot be applied to undirected

cases.

Consider an instance 2DG of 2Div-Path for a given graph G = (V ,A) and u1, u2, w1, w2 ∈

V . The corresponding instance of problem (4.1) is denoted by FIG, and is modeled by means

of a directed network G ′ = (V ′,A′) depicted in Figure 4.2. The network consists of 8 + |V|

nodes and 13+|A| links. The original graph G forms a subgraph of network G ′ and is depicted

as a “cloud” in the figure. In the following proof only seven specific links will be used, denoted

by aa, ab, ac, ad, ae, af , ag, and six specific nodes, denoted by u,w, u1, u2, w1, w2. Most of the

unit capacity costs ξa are set to 0, and only ξac = ξad = ξae = 1. There is only one demand

d from node u to node w, and hd = 1.

Proposition 4.1.2. The optimal objective of FIG is less or equal to 32 if and only if the
answer to 2DG is YES.

Proof. Consider 2DG and suppose that the two disjoint paths from the question exist. Denote
these paths by u1 → w1 and u2 → w2. Now construct a solution to FIG with the objective
function value equal to 3

2
by routing the demand using two primary/backup path-pairs.

Each of these pairs carries flow x = 1
2
. The first primary flow traverses links aa, ac, and
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Figure 4.2: Network N resulting from graph G.

af , while its corresponding backup flow is routed through links ab, ad, path u1 → w1, and
link ag. The second primary flow travels through links ab, ae, path u2 → w2, and link ag;
its corresponding backup flow passes links aa, ad, path u1 → w1, and link af . Notice that
each primary/backup flow pair is arc-disjoint. Moreover, the two primary paths are also arc-
disjoint, and both backup flows use link ad. Therefore, they can share the backup capacity
y′′ad on it. Thus, we have to reserve

1
2
of primary capacity on links ac and ae, and 12 of backup

capacity on link ad. It means that the objective of the corresponding solution of FIG is
3
2
. Observe that this solution would not be feasible, if u1 → w1 and u2 → w2 were not
arc-disjoint.
Now assume that 2DG has no solution, i.e., it is impossible to route two flows, the first

from u1 to w1 and the second from u2 to w2, using arc-disjoint paths. Then, several cases
can occur, including the existence of two other arc-disjoint paths: one from u1 to w2, and
one and from u2 to w1. Below it is proved that in all such cases the objective of FIG cannot
be smaller than 2.
Define three sets of links, namely A = {aa, ab}, B = {ac, ad, ae}, and C = {af , ag}. Notice

that each of these sets cuts the network, so removing any of them results in a situation when
a path between nodes u and w does not exist. Moreover, the links in the sets are directed
in the way making it impossible to traverse more than one link from any of these sets using
only one path. Therefore, each path from Pd has to pass exactly one link from each of the
sets A,B, C.
Divide (all possible) paths in Pd into groups with respect to the links they traverse. In

effect, distinguish |A| · |B| · |C| = 12 different groups; out of them only 6 are not empty. For
instance, there is no path that traverses links aa, ac, and ag. The available groups are shown
in Table 4.2. For each of the groups calculate all possible groups of backup paths (certainly, a
primary path and its backup path have to be arc-disjoint). The possible backup path groups
are also shown in the table. Each group is identified by an appropriate triple. For instance,
a group of paths that traverse links aa, ac and af is denoted by a− c− f .
Notice that any simple non-bifurcated solution of FIG that uses just one primary/backup

path-pair has the objective function equal to 2, as both the primary and the backup path have
to traverse one link from set B, and ξa = 1 only if a ∈ B. Moreover, it is impossible to reduce
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Table 4.2: Possible primary/backup path groups when FG has no solution

Primary paths Backup paths

a− c− f b− d− g or b− e− g

a− d− f none

a− d− g b− e− f

b− e− f a− d− g

b− e− g a− c− f

b− d− f none

b− d− g a− c− f

Table 4.3: Arc-disjoint primary path group pairs and their possible backup path groups

Primary path 1 Primary path 2 Backup path 1 Backup path 2

a− c− f b− e− g b− d− g or b− e− g a− c− f

a− c− f b− d− g b− d− g or b− e− g a− c− f

a− d− g b− e− f b− e− f a− d− g

the cost corresponding to the reserved primary capacity. Therefore, in order to improve
the solution, it is inevitable to find a way to reduce the cost corresponding to the reserved
backup capacity. It can be done by analyzing all possible arc-disjoint pairs of primary paths,
as backup capacity can be shared only by backup flows that belong to primary/backup path-
pairs whose primary flows cannot fail simultaneously. In the considered case (single failures)
this means that the primary paths have to be arc-disjoint. All possible arc-disjoint primary
paths, together with all possible backup paths protecting them, are shown in Table 4.3.
It is clearly visible in the table that when 2DG has no solution it is impossible to find

two arc-disjoint primary/backup path-pairs in such a way that the primary paths of these
pairs are also arc-disjoint, and their backup paths traverse the same link a ∈ B. Therefore,
when 2DG has no solution (or its solution is not known) the cost of FIG cannot be lower
than 2.

4.1.4 Complexity of approximation schemes

From the proof of Proposition 4.1.2 it is possible to draw conclusions concerning complexity

of various approximation schemes that solve the 1b, 3a, 4a variant (LP, single failures, one

demand) of problem P. When a solution to an instance 2DG of 2Div-Path exists (and

can be found), the objective of a solution to the corresponding instance FIG is not greater

than 3
2
. On the other hand, when a solution to 2DG is not known, solutions to FIG cannot

use such a path-pair. Therefore, the corresponding objectives must be equal at least to 2.

Thus, since there is no way to solve 2Div-Path in polynomial time, any approximation to
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the considered variant of P better than a 4
3
-approximation has to be NP-hard. Note that

the same reasoning can be applied also to the 1b, 3a, 4b variant (LP, single failures, many

demands).

From the proof of Proposition 4.1.1 (IP, single failures, many demands) it is also possible

to draw some conclusions concerning complexity of approximation schemes. Suppose that

the answer to the considered instance of the Partition problem (PAH) is NO. In such a

case, the quality of a solution to the corresponding instance FIH depends on how precise

we can approximate a solution to PAH. Note that Partition is equivalent to a special case

of the Subset Sum problem, for which Kellerer et al. in [38] presented a fully polynomial

approximation scheme that solves it within accuracy ε in time O(min{n · 1
ε
, n+ 1

ε2
log(1

ε
)}).

Therefore, it is impossible to conclude from the proof of Proposition 4.1.1 that problem P

in the considered variant cannot be approximated within a given accuracy ε in polynomial

time. That is why, it is worth to show how to modify the proof of Proposition 4.1.2 to cover

the version of the problem considered in Proposition 4.1.1.

The modification is simple. Consider set D of demands instead of just one demand d.

Consider a special case when demands from the set D can be divided into two subsets D′

and D′′, such that
∑

d∈D′ hd =
∑

d∈D′′ hd. Without loss of generality we can assume that
∑

d∈D hd = 1. Now treat the set D as one demand that can be split into halves. Note that

in the proof of Proposition 4.1.2 one demand is equally split into two flows. Therefore, it is

possible to apply the reasoning from that proof also to the case considered in Proposition

4.1.1. That is why, all polynomial approximations to the 1a, 3a, 4b variant (IP, single failures,

many demands) of problem P also cannot be better than a 4
3
-approximation.

For variants 3b (multiple failures) of P, the problem is straightforward, as it was proved

in [34] that finding a pair of failure-disjoint paths, when multiple failures occur, is NP-hard.

Therefore, finding any feasible solution to the considered problem is NP-hard. That is why,

all approximation schemes that give any guarantee concerning the quality of a solution have

to be NP-hard. That concerns both LP and IP variants.

The results concerning the complexity of approximation schemes that solve different vari-

ants of the problem P are presented in Table 4.4.

4.1.5 Path generation

The pricing problem for the bifurcated FI-nSR (denoted by Price-FI-nSR) consists in

finding, for each demand d ∈ D, a pair of failure-disjoint paths r = (p, q) from ud to wd
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Table 4.4: Overview of the complexity of approximation schemes

single failures multiple failures

LP, all paths < 4
3
-approximation is NPH any approximation is NPH

D = 1
IP, predefined paths P any approximation is NPH

LP, all paths < 4
3
-approximation is NPH any approximation is NPH

D > 1
IP, predefined paths < 4

3
-approximation is NPH any approximation is NPH

minimizing the quantity (see also [51])

〈r〉 =
∑

a∈p

ξa +
∑

a∈q

(
∑

s∈S̄p

πsa
⋆) (4.2a)

where πsa
⋆ are the optimal dual variables corresponding to constraints (4.1d). Notice that in

(4.2a) the link metrics for calculating the length of the primary path p ∈ Pd are equal to

the true unit link costs ξa, while the link metrics for calculating the length of the backup

path q ∈ Qp are given by the dual cost
∑

s∈S̄p π
s
a
⋆. Because the bifurcated version of FI-

nSR is NP-hard for all failure scenarios, its pricing problem cannot be polynomial. In fact

Price-FI-nSR is NP-hard, as demonstrated (for the single link failure case) in [59] by

reduction from 3-Sat (see [29]). Although the pricing problem Price-FI-nSR is NP-hard,

FI-nSR can in practice be effectively solved even for large networks by path-pair generation,

as discussed for instance in [56].

4.2 FI-SR: Stub-Release

The case considered in this section assumes failure independent flow restoration using stub-

release (SR), i.e., when surviving but unused working capacity can be reused for backup

flows in failure situations.

The use of SR is typical for traffic layers in communication networks, for example for the

MPLS sub-layer in IP networks. The non-bifurcated problem for FI-SR assumes that for each

d ∈ D, its entire demand volume is allocated to a single primary path, and in each failure

state that affects the selected primary path, the flow is moved to another, failure-independent

single restoration path.
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Problem FI-SR

minimize F (y) =
∑

a∈A

ξaya, (4.3a)

∑

r∈Td

xr = 1, d ∈ D, (4.3b)

∑

d∈D

hd(
∑

r∈T ′
ad
∧s∈Sp

xr +
∑

r∈T ′′
ad
∧s∈S̄p

xr) ¬ ya, a ∈ A, s ∈ Sa, (4.3c)

xdr ∈ {0, 1}, d ∈ D, r ∈ Td, (4.3d)

ya ­ 0, a ∈ A. (4.3e)

4.2.1 Complexity overview

The complexity of FI-SR with respect to criteria presented in Section 4.1 is identical to the

complexity of FI-nSR. This fact will be proved in the two following sections. An overview of

the complexity can be seen in Table 4.1.

4.2.2 Bifurcated flows

The bifurcated version of FI-SR is obtained in the same way as for FI-nSR, leading to a linear

relaxation of (4.3), admitting as before, for every d ∈ D, several non-zero primary flows and

several backup flows protecting each primary flow. This version is also NP-hard. To prove

that, a construction proving NP-hardness of FI-nSR can be used. It is possible because

in fact stub-release cannot be effectively used when only state-independent restoration is

allowed, single failures of all links are admitted, and one demand is under consideration.

Lemma 4.2.1. Stub-release cannot be effectively used in the presented scenario.

Proof. Consider two flows denoted by α and β consisting of their primary and backup paths
denoted by αp, βp, αb, and βb. Assume now that stub-release is effectively used, and the path
αb uses, through stub-release, the capacity released by the path βp. Note that the path αb
cannot use the capacity released by the path αp, as they have to be failure disjoint.
Because of the state-independent restoration assumption, the path βp has to fail each

time the path αp fails, as it has been assumed that (single) failures of all links occur. In
this case, the path βp has to consist of at least all the links of the path αp. Since only one
demand is considered, flows α and β origin and terminate in the same nodes. Therefore, in
order to fulfill the previous observations, the paths αp and βp have to be the same.
Because of the state-independent restoration, the paths αp and αb have to be disjoint. It

means that also the path αb and the path βp have to be disjoint, as the paths αp and βp are
the same.
On the other hand, when the path αb is supposed to use the capacity released by the

path βp those paths cannot be disjoint. That leads to a contradiction, because they cannot
be disjoint and not disjoint simultaneously. Therefore, stub-release cannot be effectively used
in the considered scenario.
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This fact allows to use the same construction as in Section 4.1 in order to prove the

NP-hardness of the stub-release case.

4.2.3 Non-bifurcated flows

The difficulty of this problem is similar to the difficulty of FI-nSR. For scenarios with multiple

failures, the problem is NP-hard already for one demand, as finding a pair of failure disjoint

paths is difficult. In the case of multiple demands, problem Partition can be reduced to

the considered problem, as demonstrated for FI-nSR in Section 4.1. When only one demand

is considered, and only single failures are admitted the problem, as FI-nSR, can be solved

in polynomial time. However, this time it is impossible to use the Suurballe algorithm [60]

directly, as it is not able to take the stub-release into account. Therefore, another polynomial

algorithm is needed. It will be described in this section.

The considered problem (i.e., FI-SR with one demand, single failures, and non-bifurcated

flows), denoted by Failure-Disjoint Paths, is a generalization of the Shortest Path

problem and the 2 Arc-Disjoint Path problem. In fact polynomial time algorithm solving

those two problems (e.g., Dijkstra’s algorithm [22] solving Shortest Path, and Suurballe’s

algorithm [60] solving 2 Arc-Disjoint Path) are used as subroutines in the presented

approach solving Failure-Disjoint Paths.

Assume two kinds of arcs: perfectly reliable arcs that do not fail, and unreliable arcs that

do fail. Suppose that the two paths can share only the reliable arcs, so a pair of failure-disjoint

paths is considered. The Minimum Cost Flow problem can cover the notion of reliability

by setting capacities of reliable arcs to infinity and capacities of other arcs to 1. However, in

this section under consideration is the problem of finding a shortest pair of failure-disjoint

paths, where the cost of any reliable arc that is used by both paths is counted only once and

not twice like in the Minimum Cost Flow context.

Consider a graph presented in Figure 4.3 with arc costs as depicted in the picture and

reliable arcs denoted by thick arrows. Assume that u is the source, and w is the sink. The

optimal solution to 2 Arc-Disjoint Path has the cost equal to 11, and consists of paths

(u, v1, w) and (u, v3, w).

After adding the notion of reliability, an optimal solution of Minimum Cost Flow is

given by sending two units of flow through paths (u, v1, v3, w) and (u, v3, w). The cost is then

equal to 10. Finally, the optimal solution to Failure-Disjoint Paths costs 8 and consists

of paths (u, v1, w) and (u, v1, v3, w).

If all arcs are reliable then Failure-Disjoint Paths is equivalent to Shortest Path.

On the other hand, if the graph does not contain reliable arcs then the it is equivalent to 2

Arc-Disjoint Path. Thus Failure-Disjoint Paths can be seen as a generalization of
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those two problems.

Moreover, by the max-flow min-cut theorem, it is easy to see that the problem is equiva-

lent to computing a minimum cost set of arcs inducing a graph containing at least one path

from u to w when there are no failures, and also one path for any failure of an unreliable

arc.

Lemma 4.2.2. There exists an optimal solution to Failure-Disjoint Paths not contain-
ing directed cycles.

Proof. If the solution contains a directed cycle, then a flow on this cycle can be decreased,
and some arcs of the cycle can be eliminated. This does not decrease the total flow carried
from u to w, and does not increase the cost. By repeating this operation a solution without
directed cycles is obtained.

Now assume that the paths share L (reliable) arcs. Two ordered collections L = (a1, a2, . . . , aL)

and L′ = (a′1, a
′
2, . . . , a

′
L) are introduced. They define the order of the shared arcs from the

point of view of the first and the second path, respectively.

Lemma 4.2.3. There exists an optimal solution to Failure-Disjoint Paths where L =
L′.

Proof. Observe that if L 6= L′ then the solution contains directed cycles. According to
Lemma 4.2.2 there is at least one optimal solution without directed cycles, thus at least one
with L = L′

From Corollary 4.2.3 we can deduce that there exists an optimal solution containing a

sequence L of reliable arcs shared by both paths, and traversed in the same order. Notice

that if L = ∅ then the solution is simply a pair of arc-disjoint paths. These arcs are connected

with each other, and with u and w, by pairs of arc-disjoint paths. Such an optimal solution

can be obtained using the following algorithm.

First, compute a shortest pair of arc-disjoint paths from each vertex i to each vertex j

where i is either u or a sink of any reliable arc, and j is either w or a source of any reliable

36



u

v1

v3

w

3 v2

5

8

1
12

11

Figure 4.4: Modified graph corresponding to the graph of Figure 4.3.

arc. Next, eliminate all unreliable arcs from the graph. Then, for each computed pair of

arc-disjoint paths from the first phase, one arc from the source of the pair to the sink of the

pair is added to the graph. The costs ξa of those additional arcs are equal to the computed

costs of the corresponding pairs of arc-disjoint paths. The resulting graph is called a modified

graph.

Consider again the graph of Figure 4.3. A corresponding modified graph is depicted in

Figure 4.4. Reliable arcs remained unchanged, while all unreliable arcs have been replaced

by arcs that correspond to shortest pairs of arc-disjoint paths. For instance, an arc (u, v3)

corresponds to paths (u, v1, v3) and (u, v3), and its cost is equal to a cost of the pair it

represents. Notice that there are no pairs of arc-disjoint paths from or to vertex v2. Therefore,

this vertex is isolated in the modified graph.

In the resulting modified graph, which consists of pairs of arc-disjoint paths (represented

by newly added arcs) and of reliable arcs a shortest path is computed. In the considered

example the shortest path is (u, v1, w), and it costs 8.

Consider a set L = (a1, a2, . . . , aL) (reliable arcs set) consisting of reliable arcs selected

by the shortest path algorithm in the previous phase of the algorithm, and a collection of sets

Ah (path pairs sets), where h ∈ H = {{u, a1}, {a1, a2}, . . . , {aL−1, aL}, {aL, w}}, consisting

of arcs that form pairs of arc-disjoint paths computed earlier and also selected in the previous

phase of the algorithm, e.g., a set A{u,a1} consists of arcs that form the pair of arc-disjoint

paths between u and the source of a1, set A{a1,a2} connects the sink of a1 to the source of

a2, while set A{aL,w} connects the sink of aL to w. In the example a reliable arc set is L =

{(u, v1)}, and two path pair sets areA{u,(u,v1)} = ∅ andA{(u,v1),w} = {(v1, w), (v1, v3), (v3, w)}.

Now consider a graph G = (V ,A′), where A′ =
⋃

h∈HAh ∪ L. Define a cost of this graph

as
∑

a∈A′ ξa. In the example A′ = {(u, v1), (v1, w), (v1, v3), (v3, w)}, and a cost of G is 8.
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Lemma 4.2.4. The cost of G is a lower bound for the cost of the optimal solution of
Failure-Disjoint Paths.

Proof. According to Corollary 4.2.3 there exists an optimal solution that consists of either a
pair of arc-disjoint paths from u to w or a set of reliable arcs connected by pairs of arc-disjoint
paths. Such a solution cannot be cheaper than the cost of the graph G.

Lemma 4.2.5. G contains a pair of failure-disjoint paths from u to w.

Proof. Transform the graph G to a graph T by adding parallel arcs to those in L. The
graph G consists of the collection L = {a1, a2, . . . , aL} of shared arcs connected by pairs
of arc-disjoint paths (sets Ah). Therefore, we know that in T the value of the minimum
cuts between u and the source of a1, between the sink of ai and the source of ai+1, where
i = 1, 2, . . . , L − 1, and between the sink of aL and w is not less than 2 (remember that
pairs of arc-disjoint paths between those pairs of vertices exist in T ). Moreover, the value
of the minimum cut in T between the source of ai and the sink of ai, where i = 1, 2, . . . , L,
is also not less than 2 (all arcs in L are reliable, so they are doubled in T ). Therefore, it is
obvious that the minimum cut in T between u and w cannot be smaller than 2. Using the
max-flow min-cut theorem it is possible to conclude that the maximum flow in T from u to
w cannot be smaller than 2. Since each unit of flow flowing through the network corresponds
to a path, we get two paths from u to w. Moreover, only reliable arcs can be utilized by both
paths, because only those arcs were doubled during the transformation. Therefore, a pair of
failure-disjoint paths in G from u to w has to exist.

Consider the graph T defined in the proof of the previous lemma. Recall that T is

obtained from G by doubling the arcs of L, where G and L are given by the previous phase

of the algorithm. By computing a shortest pair of arc-disjoint paths in T , a feasible solution

of Failure-Disjoint Paths is obtained. The resulting pair of paths cannot cost more than

the graph G itself, because it cannot use any arc that is not in G. Therefore, according to

Corollary 4.2.4, this solution is necessarily an optimal solution of Failure-Disjoint Paths.

Proposition 4.2.6. Failure-Disjoint Paths can be solved in polynomial time.

Proof. The problem can be solved using the presented algorithm. It requires, in the first
phase, the computation of shortest pairs of arc-disjoint paths between a polynomial number
of pairs of vertices. Then, a shortest path is computed to get G (and also T ). Finally, a
shortest pair of arc-disjoint paths in G is computed which gives us the wanted optimal pair
of failure-disjoint paths in G. Notice, that the last phase is needed only if some arcs have 0
costs.

In the first phase of the algorithm, in the worst case, pairs of arc-disjoint paths are

computed between all possible pairs of nodes. Then a shortest path is computed once in the

second phase. The last phase consists in computing a shortest pair of arc-disjoint paths once.

Thus the overall complexity of the algorithm is determined by the complexity of the first

phase which is O(|V| · |A| · log(1+|A|/|V|) |V|), i.e., |V| times the complexity of the algorithm

presented in [61] to compute pairs of arc-disjoint paths from one source to all other vertices

in a graph.
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4.2.4 Generalizations for non-bifurcated flows

Failure-Disjoint Paths can be extended in many ways. This section contains a few of

its interesting generalizations.

Pair of failure-disjoint paths with cost depending on flow

Consider a natural generalization of the problem defined, and studied, earlier, where cost

depends on flow. If an arc a is reliable, i.e., a ∈ A/S, then ξa(0) = 0, ξa(1) = ξ1a and

ξa(2) = ξ2a. In other words, if a is used by one path, then we have to pay ξ
1
a, and if both

paths use a, we should pay ξ2a. Assume that ξ
2
a ­ ξ

1
a. The unreliable arcs cannot be used

by more than one path, so only ξ1a has to be defined for a ∈ S. The objective function is
∑

a∈A ξa(fa).

Now, it is easy to see that this problem can be solved using the algorithm presented

earlier. It is enough to use ξ1a while computing shortest pairs of arc-disjoint paths in the

first phase, and ξ2a for reliable arcs while computing the shortest path in the modified graph.

Since the correctness proof of the algorithm remains the same, details are skipped.

A general minimum cost flow problem

Consider a generalization of Failure-Disjoint Paths, denoted by General F-D Paths,

which is as follows.

General failure-disjoint path problem

minimize F (f) =
∑

a∈A

ξa(fa), (4.4a)

∑

a∈δ+(i)

fa −
∑

a∈δ−(i)

fa = 0, i ∈ V\{u,w}, (4.4b)

∑

a∈δ+(u)

fa −
∑

a∈δ−(u)

fa = k, (4.4c)

fa ∈ {0, 1, . . . , ca}. a ∈ A (4.4d)

Problem (4.4) has to satisfy Kirchhoff’s law (4.4b, 4.4c), but k units of flow, instead of

just 2, have to leave u. Constraint (4.4d) assures that not more than ca paths utilize an arc

a. Notice that constants ca can be consider as capacities of arc, and a directed graph with

capacities is called a network. Finally, costs of arcs are functions of fa.

Notice that constraints (4.4d) can be directly integrated in the objective function by

defining ξa(fa) in a suitable way, i.e., by setting ξa(fa) = ∞ if fa /∈ {0, 1, . . . , ca}. However,

it is kept for sake of clearness.

The objective function considered here is quite general. It is generally neither convex nor

concave. Readers can refer to, for example, [1] for work on convex flow problems and to,
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Figure 4.5: Sample instance of Infinite Capacities F-D Paths.

for example, [33] for results related to concave flows. It will be shown that General F-D

Paths is NP-hard by proving the NP-hardness of one of its interesting special cases.

Infinite capacities

Consider the problem where all arcs can be either reliable (can accommodate an infinite

number of paths) or unreliable (can accommodate only one path). It means that ca = 1, for

a ∈ S, and ca ­ k, otherwise. Assume that ξa(fa) is constant and equal to ξa when fa > 0,

for all a ∈ A, still ξa(0) = 0. Denote the problem as Infinite Capacities F-D Paths.

Consider a universe U and a family H of subsets of U . A cover is a subfamily C ⊆ H

of sets whose union is U . In the Set Cover decision problem, the input is a universe U , a

family H and an integer C. The question is whether there is a cover of size C or less.

Consider an instance of Set Cover denoted by SCU . A corresponding instance of In-

finite Capacities F-D Paths, denoted by ICU , is a network consisting of a source u,

a sink w, |H| vertices of a first group and |U| vertices of a second group. Each vertex of

the first group, denoted by n′h, corresponds to one element h from the family H, while each

vertex of the second group, denoted by n′′g , corresponds to one element g from the universe

U . The source u is connected to all vertices of the first group using reliable arcs of cost 1. A

vertex n′h from the first group is connected, using an unreliable arc of zero cost, to a vertex

n′′g from the second group, if g ∈ h. Finally, each vertex of the second group is connected

to w using an unreliable arc of zero cost. In this network |U| paths from u to w are to be

found. A sample instance of ICU can be seen in Figure 4.5.

It is now quite simple to see that a cover of size C exists for SCU if and only if problem

ICU has a solution whose cost is less than or equal to C. Since the reduction is polynomial,

40



so Infinite Capacities F-D Paths is NP-hard.

Proposition 4.2.7. General F-D Paths is NP-hard.

Note that Infinite Capacities F-D Paths is a special case of General F-D Paths,

thus both are NP-hard. Moreover, Set Cover is NP-hard even when the maximum size of

elements in H is 3. It means that General F-D Paths is NP-hard even when capacities

of arcs do not exceed 3.

Limited number of reliable arcs

Assume that the number of reliable arcs (reliable arcs can accommodate an infinite number

of paths) is fixed and is not a part of the input. Moreover, ξa(fa) is constant and equal to ξa,

if fa > 0. Still ξa(0) = 0, for all a ∈ A. In such a situation the problem is in P , because it can

be solved in polynomial time by enumerating all possibilities, i.e., solving Minimum Cost

Flow for all possible vectors x = (xa1 , xa2 , . . . , xaN ), where N is the number of reliable arcs

and xan = {0, 1}. For each vector x the network is modified as follows. If xa = 1 then ca = k

and ξa is reduced to 0. If xa = 0 then arc a is deleted from the graph. After solvingMinimum

Cost Flow in such a network, the result is increased by
∑N
i=1 ξaixai , which is the cost of

using (if xa = 1) reliable arcs. The solution with the smallest modified cost is the optimal

solution of the considered version of General F-D Paths.

In fact, the problem is still polynomial even if the cost function is general, and the number

of arcs that can carry more than one unit of flow is limited. Indeed, if the value of the flow

on these N arcs is considered, the total number of possibilities is less than (k + 1)N which

is polynomial if N is constant.

Acyclic graphs

Assume that the number of paths k is given, and is not a part of the input. The cost function

is the most general one: F (f) =
∑

a∈A ξa(fa). Notice that this function is generally neither

convex nor concave. In such a situation General F-D Paths is polynomial for acyclic

graphs. It will be proved now.

Assume that N is acyclic, and at least k units of flow can be carried from u to w. If the

last is not possible, then General F-D Paths does not have a solution.

Sort A in topological order starting from u and ending at w. This sorted sequence will be

denoted by V ′ = (v1, v2, . . . , v|V ′|). Note that v1 = u, v|V ′| = w and V ′ ⊆ V (the sequence does

not have to contain all the vertices of the network). Define a state as a sorted (according to

the topological order V ′) multiset of k verticesM = (n1, n2, . . . , nk). A number of occurrences

of a vertex v in a multiset M is denoted by |Mv|. Note that
∑

v∈M |Mv| = k. Each state
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M points to an associated optimal solution that routes k paths from u to vertices in M

satisfying the capacity constraints of the considered problem.

Now divide all possible states into |V ′| groups (V ′ is the topological order mentioned

before) in a way that a stateM belongs to a group Gi, 1 ¬ i ¬ |V ′|, if vi ∈M and vj /∈M,

for all j > i (vi, vj ∈ V ′). Call a stateM′ (M′ ∈ Gj) a predecessor of a stateM (M∈ Gi) if:

• j < i,

• |M′vl| ­ |Mvl|, for all l < i,

• if |M′vl| > |Mvl| then an arc (vl, vi) exists, and c(vl,vi) ­ |M
′
vl
| − |Mvl|, for all l < i.

It is possible to build a state graph that consists of a set of vertices representing states and

a set of arcs representing predeceasing relations, i.e., there is an arc fromM′ toM, ifM′ is

a predecessor ofM. The cost of this arc is given by ξ(M′,M) =
∑

v∈M′,(v,vi)∈A ξ(v,vi)(|M
′
v| −

|Mv|). Given an optimal solution of state M′, ξ(M′,M) represents the additional cost that

is incurred by extending this solution, i.e., by sending |M′v| − |Mv| units of flow on arc

(v, vi) ∈ A, for each v ∈ V. Notice that the state graph does not contain directed cycles.

Going back to the example in Figure 4.3 where k = 2. The vertices are already sorted

there topologically from left to right, i.e., V ′ = (u, v1, v2, v3, w). The corresponding state

graph can be seen in Figure 4.6. One can see that state (v2, v2) does not have any predecessor.

This simply means that it is not possible to have 2 paths from u to v2 satisfying capacity

constraints. Moreover, states depicted in grey are irrelevant from the point of view of the

algorithm, as there is no path connecting them to a state (w,w, . . . , w). Therefore, for sake

of clearness of the figure, all arcs entering those irrelevant states are also gray, and their

costs are not depicted.

Consider now an optimal solution F⋆ of state M ∈ Gi, where i > 1. Remember that

this solution is a set of k paths such that the number of paths ending at v ∈ M is exactly

|Mv|. By considering predecessors v of vi, for all |Mvi| paths reaching vi and increasing by

one values of corresponding |Mv|, we get a new stateM′ that is a predecessor of a stateM.

Moreover, a feasible solution of this state is obtained. The cost of this solution is equal to

the cost of F⋆ minus
∑

v∈M′,(v,vi)∈A ξ(v,vi)(|M
′
v| − |Mv|). This feasible solution should also

be optimal for stateM′, since otherwise it is possible to build another solution ofM with a

cost less than the cost of F⋆. Said another way, the cost of an optimal solution ofM can be

computed by examining optimal costs of the predecessors ofM. Consequently, an optimal

solution of the problem can be obtained by computing a shortest path from state (u, . . . , u)

to state (w, . . . , w).

In the example the shortest path is ((u, u), (v1, v1), (v1, v3), (w,w)). It costs 8, thus it is

optimal.
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Figure 4.6: State graph.

Proposition 4.2.8. If the number of paths k is fixed then General F-D Paths in acyclic
graphs is in P.

Proof. This version of General F-D Paths can be solved using any shortest path algo-
rithm in acyclic graphs. The number of possible states is O(|V|k), and the maximum number
of arcs of the state graph is O(|V|2k). Therefore, the overall complexity of the algorithm is
O(|V|2k).

A similar dynamic programming approach for a minimum concave cost network flow

problem in acyclic uncapacitated networks was proposed in [16].

Large capacities

Consider General F-D Paths, where ca ­ k2 and ξa(fa) = ξa, for all a ∈ A, still ξa(0) = 0.

In such a case the algorithm solving FI-SR presented earlier in this section can be used. This

fact will be proved now.

Take any solution to the considered General F-D Paths, and a network N = (V ′,A′)

induced by fa variables of the solution and capacities equal to those variables. Now decrease

the capacities in the way that ca = 1 if fa < k, and ca = 2 if fa = k. This modified network

will be refereed to as N ′.

Lemma 4.2.9. Two units of flow can be carried from u to w in N ′.
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Proof. Using the max-flow min-cut theorem it is possible to deduce that in N the minimum
cut has to consist of at least one arc of capacity k or at least two arcs of any capacity. As all
arcs of capacity k are transformed to arcs of capacity 2 in N ′, the minimum cut in N ′ cannot
be smaller than 2. It means that the maximum flow also cannot be smaller than 2.

Lemma 4.2.10. There exists an optimal solution to the considered problem that consists of
two sets of paths P and P ′, such that |P| = ⌈k

2
⌉, |P ′| = ⌊k

2
⌋, and paths from the same set

are identical.

Proof. Consider any optimal solution to the problem, and its correspondingN ′ network. The
cost of this network (

∑

a∈A′ ξa) is equal to the cost of the considered solution. From Lemma
4.2.9 we know that in N ′ there exists a pair of paths that can share arcs of capacity k only.
By putting ⌈k

2
⌉− 1 additional paths identical to the first path, and ⌊k

2
⌋− 1 additional paths

identical to the second, a new solution is obtained. The solution is feasible, as all capacity
constraints are satisfied. Moreover, it cannot be more expensive than the previous solution,
thus it is also optimal.

The shortest pair of failure-disjoint set of paths mentioned in Lemma 4.2.10 can be

obtained by running the algorithm for Failure-Disjoint Paths in a graph where an arc

a belongs to S, if xa < k.

Proposition 4.2.11. General F-D Paths is in P, if ca ­ k2 and ξa(fa) = ξa (ξa(0) = 0),
for all a ∈ A.

Proof. An optimal solution to this problem can be obtained by having ⌈k
2
⌉ identical paths

to the first path returned by the algorithm for Failure-Disjoint Paths and ⌊k
2
⌋ identical

paths to the second path returned by the algorithm. The procedure is polynomial, thus the
problem is in P .

4.2.5 Path generation

For each demand d ∈ D, the pricing problem Price-FI-SR for the bifurcated version of

FI-SR consists in finding a pair of failure-disjoint paths r = (p, q) from ud to wd minimizing

〈r〉 =
∑

a∈p

(
∑

s∈Sp

πsa
⋆) +

∑

a∈q

(
∑

s∈S̄p

πsa
⋆) (4.5a)

where optimal dual variables πsa
⋆ correspond to (4.3c). As discussed in [51], already minimiz-

ing the first sum under a single link failure scenario is NP-hard; hence, solving the whole

problem Price-FI-SR is NP-hard.
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Chapter 5

Path Restoration Problems with
Failure-Dependent Restoration

In this chapter failure-dependent path restoration (FD) is considered. This means that the

backup routing of a demand depends on the particular failure state.

5.1 FD-nSR: no Stub-Release

In the case without stub-release (nSR), the non-compact MIP formulation of the non-

bifurcated version of the FD-nSR problem is as follows.

Problem FD-nSR

minimize F (y) =
∑

a∈A

ξa(y′a + y
′′
a), (5.1a)

∑

r∈Wd

xdr = 1, d ∈ D, (5.1b)

∑

d∈D

hd
∑

r∈W ′
ad

xdr ¬ y
′
a, a ∈ A, (5.1c)

∑

d∈D

hd
∑

r∈W ′′
ads
∧s∈S̄p

xdr ¬ y
′′
a , a ∈ A, s ∈ Sa \ {O}, (5.1d)

xdr ∈ {0, 1}, d ∈ D, r ∈ Wd, (5.1e)

y′′a ­ 0, a ∈ A. (5.1f)

As explained in Chapter 2, the setWd, defined for each d ∈ D, contains sequences r = (p, qs :

s ∈ S̄p) of paths from ud to wd with the property that path qs works in state s ∈ S̄p. These

sequences are predefined. Therefore, the set W ′ad of all sequences r = (p, qs : s ∈ S̄p) such

that a ∈ p, and the set W ′′ads of all sequences r = (p, qs : s ∈ S̄p) such that a ∈ qs for s ∈ S̄p

are known in advance and are used in constraints (5.1c) and (5.1d), respectively, to compute

the load of the links in different states. Due to (5.1b), in an optimal solution for each d ∈ D
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there is exactly one r ∈ Wd with xdr = 1, and this particular sequence is used to realize the

demand d in the non-bifurcated manner. Note that, due to (5.1c), y′a ­ 0 for all a ∈ A.

The non-bifurcated FD-nSR problem can be solved in polynomial time only when single

links failures are admitted, and only one demand is considered. In such a case the reasoning

of Section 3.2 can be used (showing that HS is a solution to non-bifurcated PD in the single

link failure case), so any obtained solution can be transformed to another valid solution

of the same or smaller cost that consists of two failure-disjoint paths. The only difference

between PD and FD-nSR in this case is that in the latter case link capacities are reduced

either to hd or to 2hd (due to the fact that backup flows can share capacity) before the actual

procedure is invoked. Notice that the same reduction is performed for the former case in the

first step of the algorithm.

In the case of multiple failures the problem becomes NP-hard, as Vertex Cover (see

Section 3.2) can be reduced to it. Also in this case it is possible to directly follow consider-

ations presented for PD. In fact, for the network used in those considerations, problems PD

and FD-nSR are equivalent.

When more than one demand is admitted the problem also becomes NP-hard. In this

case ideas presented for FI-nSR (Section 4.1) can be utilized, and an appropriate reduction

from Partition can be used. The proof uses a network that consists of two nodes and three

parallel directed links. In this network each possible simple path consists of only one link.

Therefore, there is no difference between FI-nSR and FD-nSR, as each path can fail only in

one failure state (single link failures are only considered).

Again, the bifurcated version of FD-nSR is obtained by relaxing the binary flow variables.

In the bifurcated version the demand volume hd, for each demand d ∈ D, can be realized on

several working paths, and each resulting primary flow can be protected by failure-dependent

sets of several backup paths. The bifurcated version of FD-nSR is of polynomial complexity

for single link failure scenarios, as a compact formulation can be easily written down in the

node-link notation (see (3.4)). For multiple failures, however, problem FD-nSR is NP-hard

itself. It will be demonstrated in this section.

Proposition 5.1.1. FD-nSR is NP-hard when multiple failures are admitted.

The proof uses essentially the same construction of network N as the proof of Proposition

3.2.1 given in Section 3.2. The only modifications are as follows.

• One additional node w and one additional directed link (w, v0) are introduced into

network N .

• Link (w, v0) is assigned the unit capacity cost equal to 1 (ξ(w,v0) = 1), and the rest of

the links t1, t2, . . . , tN , b1, b2, . . . , bN are assigned zero unit capacity costs (ξtn = ξbn =
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0, n = 1, 2, . . . , N).

• The considered demand starts in node w and terminates in node vN .

Consider an undirected graph G with the set W = {v1, v2, . . . , vN} of N vertices. Let E

be the family of all independent sets of G. The resulting instance of Fractional Color-

ing (i.e., of problem FGC (3.5)) will be denoted by FCG.

The instance FDG of problem FD-nSR (5.1) corresponding to FCG is modeled by means

of the resulting modified directed network N = (V ,A) and the single demand from node

w to node vN with volume equal to 1. In fact, in this special case problem FD-nSR can be

equivalently transformed to the following LP.

Problem FDM (special case of FD-nSR)

minimize G(x) = max
s∈S
{1−

∑

p∈Ps
xp}, (5.2a)

∑

p∈P

xp = 1, (5.2b)

xp ­ 0, p ∈ P. (5.2c)

Observe that objective (5.2a) minimizes, over all failure states s ∈ S, the maximum

amount of the total flow failing in state s since this is the actual cost of protection capacity

(the cost of primary capacity is always equal to 1). Certainly, for network N the objective

(5.1a) of problem FD-nSR and the objective (5.2a) of problem FDM are related by the

equality F (y) = 1 + G(x). In the sequel assume that FDG is an instance of problem (5.2)

rather than (5.1).

Lemma 5.1.2. The fractional chromatic number χf (G) of graph G is equal to K if and only
if the cost of an optimal solution of problem FDG is equal to 1− 1

K
.

Proof. Let Q, x = (xp : p ∈ Q) be an optimal solution of the instance PDDG of problem
PDD (3.3). Due to Lemma 3.2.2, F (x) is equal to N · K. Because F (x) =

∑

p∈Q ξpxp =
N ·
∑

p∈Q xp (recall that all paths p ∈ P have, by construction, the unit cost ξp equal to N),
we have

∑

p∈Q xp = K. Putting x′p =
xp
K
, p ∈ Q, we obtain a feasible solution of FDG with

G(x′) = maxs∈S{1−
∑

p∈Qs x
′
p} = 1−mins∈S{

∑

p∈Qs
xp
K
} = 1− 1

K
mins∈S{

∑

p∈Qs xp} = 1−
1
K
.

The last equality follows from the fact that mins∈S{
∑

p∈Qs xp} = 1, because in any optimal
solution of PDDG one of the constraints (3.3b) must be active. Thus, 1 − 1

K
is an upper

bound for the minimum cost of FDG.
Conversely, suppose that Q, x′ = (x′p : p ∈ Q) is an optimal solution of FDG with

G(x′) < 1 − 1
K
. Then

∑

p∈Qs x
′
p >

1
K
, for all s ∈ S, and hence

∑

p∈Qs xp > 1, s ∈ S, where
xp = K · x′p, p ∈ Q. This means that x is a feasible solution of PDDG with F (x) = N ·K,
where K = χf (G). Thus, due to Lemma 3.2.2, the solution x is optimal. This, however, is a
contradiction because, again, a solution for which all constraints (3.3b) are not active cannot
be optimal. Thus, 1 − 1

K
is also the lower bound for FDG, so 1 − 1

K
is in fact the optimal

objective value for this problem.
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As PD, FD-nSR is NP-hard already in the single-demand version.

Path generation

Path generation (and the pricing problem Price-FD-nSR), for a given demand d ∈

D, for the bifurcated version of FD-nSR consists first of all in finding the shortest path,

separately for each situation s ∈ S \ {O}, with respect to the optimal dual variables πsa
corresponding to constraints (5.1d). Then, denoting the length of each such shortest path

by λsd
⋆, we look for the shortest primary path p from ud to wd minimizing

∑

a∈p

ξa +
∑

s∈S̄p

λsd
⋆. (5.3a)

Thus, the pricing problem Price-FD-nSR for FD-nSR is essentially the same as the pricing

problem for PD, and therefore is polynomial for single link failures (as observed by several

authors [50, 65]), and NP-hard for multiple failures.

5.2 FD-SR: Stub-Release

The final case assumes failure dependent (FD) flow restoration using stub-release (SR). The

corresponding non-bifurcated problem FD-SR is as follows.

Problem FD-SR

minimize F (y) =
∑

a∈A

ξaya, (5.4a)

∑

r∈Wd

xdr = 1, d ∈ D, (5.4b)

∑

d∈D

hd(
∑

r∈W ′
ad
∧s∈Sp

xdr +
∑

r∈W ′′
ads
∧s∈S̄p

xdr) ¬ ya, a ∈ A, s ∈ Sa (5.4c)

xdr ∈ {0, 1}, d ∈ D, r ∈ Wd, (5.4d)

ya ­ 0, a ∈ A. (5.4e)

For the case of multiple failures and many demands, NP-hardness of FD-SR can be

proved using the construction presented in Section 5.1 for FD-nSR . The reason is that

in both constructions all possible paths consist of only one link, and in effect stub-release

cannot be used, as the only link that can be released in a particular situation fails.

The one demand and single failure case is polynomial, still a little bit more complicated.

It can be proved by showing that any feasible solution to this case of FD-SR can be trans-

formed to a solution of FI-SR of the same or lower cost. Follow the considerations for PD,

and employ a modified version of the algorithm presented in Section 3.2 showing equivalence
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of PD and HS for the non-bifurcated single-link failure case. Having a solution to FD-SR

add parallel links to those that do not fail, and are present in the solution. Then, reduce the

capacity of the used links to hd, and exclude from the resulting network the links that do

not belong to any of the 2hd-cuts (one by one). Finally, erase those added links that have

not been erased in the previous phase, and whose counterparts are also still in the network.

The resulting network cannot be more expensive than the original solution to FD-SR. More-

over, it is equivalent to a solution to FI-SR. Observe that the optimal solution to FI-SR can

be found in polynomial time. The bifurcated relaxation (with continuous flow variables) of

FD-SR is most likely NP-hard. Still, the conjecture has not been proved so far.

Path generation

For each demand d ∈ D, the pricing problem Price-FD-SR for the bifurcated version

of FD-SR consists essentially in finding a primary path p from ud to wd minimizing

〈p〉 =
∑

a∈p

(
∑

s∈Sp

πsa
⋆) +

∑

s∈S̄p

λsd
⋆ (5.5a)

where quantities πsa
⋆ are optimal dual variables corresponding to constraints (5.4c), and λsd

⋆

are the lengths of the shortest paths for situations s ∈ S \ {O}, calculated according to

the optimal dual variables πsa
⋆ (as in problem Price-FD-nSR, see the previous section). It

is demonstrated in [47] (by reduction from the Hamiltonian path problem [29]) and in [50]

(by reduction from the max-cut problem [29]) that Price-FD-SR is NP-hard already for

single-link failures (see also [51]).

49



Chapter 6

Conclusions

In the first part of the thesis the problem of designing survivable transport networks was

considered. Two methods (mechanisms) of providing survivability of transport connections

against either single or multiple failures of links were examined: protecting connections with

dedicated standby connections, i.e., path protection, and restoring failed connections using

protection capacity of links, i.e., path restoration. A number of constraints that might arise

in practice was considered: first, that all connections between any pair of nodes must use

the same network path, i.e., non-bifurcated routing; next, that each connection must be

restored along the same path independently of which failure occurs, i.e., failure-independent

restoration; and finally, that the capacity of links occupied by failed connections can be used

for restoration, i.e., stub-release-based restoration.

For each combination of the design constraints and the resilience methods the resulting

network design problem was analyzed. It was shown how to formulate each of those opti-

mization problems as either a linear or a mixed-integer programming multi-commodity flow

problem; the mixed-integer formulations arise in the situations when the non-bifurcated rout-

ing of demands is required. In most of the cases the resulting formulation is a non-compact

link-path formulation; a compact, node-link formulation is used only in two cases of the

bifurcated routing: in the design of path protection with diverse paths and in the design of

failure-dependent path restoration routing without stub-release-based restoration.

Analyzing the complexity of the problems, it is justified to conclude (see Table 6.1)

that the majority of problems appear to be NP-hard; only for single failures when only

one demand is considered all problems are polynomial. For multiple failures actually all the

problems are NP-hard. For single failures the only problems that are not NP-hard are the

design of path protection in the case of the non-bifurcated routing and the design of failure-

dependent path restoration without stub-release in the case of the bifurcated routing. The

former problem can be solved with shortest path algorithms, while the latter, being one of

few problems featuring a compact linear programming formulation, by linear programming

methods.
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Table 6.1: General overview of complexity

single failures (SF) multiple failures (MF)

non-bifurcated non-bifurcated
bifurcated

D = 1 D > 1
bifurcated

D = 1 D > 1

HS - P - - NPH -

PD P P - NPH NPH -

FI-nSR NPH P NPH NPH NPH NPH

FI-SR NPH P NPH NPH NPH NPH

FD-nSR P P NPH NPH NPH NPH

FD-SR ? P NPH ? NPH NPH

All other design problems in the case of the bifurcated routing of demands are NP-hard,

and therefore they cannot have a compact formulation. Still, when the problem is NP-hard

then its non-compact LP formulation (in the link-path notation) exists. Certainly, when using

such non-compact LP formulations, for exact solutions an appropriate candidate path lists

Pd, d ∈ D (or path-pair lists Td, d ∈ D, or path-sequences listsWd, d ∈ D) are needed in order

to achieve the true optimum of the problem. As such lists are not known in advance they

have to be generated using column generation. This, as already known, is in general NP-

hard as it involves NP-hard pricing problems. Nevertheless, according to the experience, the

use of non-compact LP formulations together with column generation is the only practically

effective general method that yields (in vast majority of cases) optimal solutions to the

considered NP-hard resilient network design problems. This issue is discussed below using

the results of [56].

In fact, all the NP-hard pricing problems described in the previous chapters of the

thesis can be formulated as mixed-integer programming (MIP) problems (such formulations

are discussed in [51], see also [56, 59]) and solved by a MIP solver in the column generation

process. It turns out, however, that this approach is in general not efficient because of

excessive time spent in a MIP solver.

Alternatively, the pricing problems (which are in fact complicated shortest path problems

with tricky constraints and multiple link metrics) can be solved using methods for Short-

est Path Problem with Resource Constraints (SPPRC) [36]. A general SPPRC

algorithm was used for FI-nSR in [59]. Still, as discussed in [56], it turns out that using

general label-setting SPPRC algorithms for the considered pricing problems is not effective

either. Fortunately, such label-setting algorithms can be properly adjusted. The way how to

do it for FI-nSR and FD-SR is described in [56], where numerical examples illustrating the

above observations are also given.
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The lists of optimal paths obtained for the bifurcated versions of the considered opti-

mization problems can then be used for solving their non-bifurcated counterparts by means

of MIP solvers to maximally limit the number of binary variables used in the branch-and-

bound process. Certainly, this would be an approximate approach as the optimal paths for

the bifurcated problems do not necessarily contain all optimal paths for the non-bifurcated

case. To solve the problems exactly, it would actually be required to use branch-and-bound

schemes combined with pricing of variables.

The research field presented in the first part of the thesis still contains some interesting

problems to solve. The computational complexity of FD-SR with bifurcated flows has been

proved neither for the single failure case nor for the multiple failure case. What is more,

NP-hardness of FI-nSR and FI-SR with bifurcated flows has been proved by reducing the

2Div-Path problem to it. Notice that 2Div-Path is NP-hard only in directed graphs.

Thus, the complexity of both FI-nSR and FI-SR in undirected graphs remains unknown.

Finally, the field contains the enormous number of different special cases and generalizations

that can change the complexity of base problems.
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Part II

Polyhedral model
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Chapter 7

Notation and problem formulations

Consider a directed graph G = (V ,A), where V is a set of nodes and A is a set of arcs. The

graph represents a backbone, and the arcs depict the unidirectional transmission links. For

each arc a ∈ A an installed capacity ca ∈ IR+ and a routing cost ξa ∈ IR+ for one unit of

traffic are given.

Let t = (tij)i,j∈V be a vector of IR|V|(|V|−1) that specifies values of traffic demands (or

capacity requirements) between pairs of nodes of V . This vector will be called a traffic

matrix. Note that the size of t can be smaller when it is assumed that tij = 0, for given

i, j ∈ V, and for all t ∈ D. To clarify the notation a demand between nodes i and j is called

“demand ij”, and its value is denoted by tij. The traffic matrix is supposed to be variable,

and can be any point of a traffic demand polytope D. D is generally defined by some linear

constraints involving the variables tij, for i, j ∈ V . However, it can be also defined by a set

of traffic matrices (in this case D is a convex hull of those matrices) or by an oracle.

To express routing problems as mathematical programs the following notation is intro-

duced.

P(i, j) : finite set of acyclic paths of G from i to j (i, j ∈ V).

xijp : proportion of a traffic demand from i to j (i, j ∈ V) carried through a path p ∈ P(i, j).

Note that 0 ¬ xijp ¬ 1. For a current traffic matrix t ∈ D, the traffic carried through

p is then given by tij · xijp . To fulfill the stability property, the variable x
ij
p does not

directly depend on the current traffic matrix.

xija : proportion of traffic from i to j flowing through an arc a ∈ A.

fa : maximum amount of traffic carried on an arc a ∈ A. It depends on the polytope D and

the routing pattern. The variable fa can also be considered as the minimum capacity

that has to be reserved on an arc a to satisfy all the constraints. A vector f is called

a reservation vector.

F (D) : routing cost.
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7.1 Basic problems

In this section basic routing problems are presented. They will be later enhanced by intro-

ducing the partitioning of a traffic demand polytope.

7.1.1 Robust routing

The problem of computing the minimum cost robust stable routing of an uncertainty domain

D, denoted by Robust Routing (RR), can be formulated as in (7.1).

Problem RR

minimize FRR(D) =
∑

a∈A

ξafa, (7.1a)

∑

p∈P(i,j)

xijp ­ 1, ∀i, j ∈ V, (7.1b)

∑

p∈P(i,j),p∋a

xijp ¬ x
ij
a , ∀i, j ∈ V, ∀a ∈ A, (7.1c)

∑

i,j∈V

xija tij ¬ fa, ∀a ∈ A, ∀t ∈ D, (7.1d)

fa ¬ ca, ∀a ∈ A, (7.1e)

xijp ­ 0, ∀p ∈ P(i, j), ∀i, j ∈ V. (7.1f)

The objective is to minimize the total routing cost. Inequalities (7.1b) express the fact

that traffic demands between every pair of nodes may be split among many paths. Every

variable xija is defined by (7.1c). For a given traffic matrix t, a traffic on an arc a is given

by the left-hand side of (7.1d). Thus, the capacity fa that should be reserved on an arc

a must be higher than the traffic carried in all the situations. In other words, inequalities

(7.1d) must be valid for each traffic matrix t in the polytope D. Inequality (7.1e) indicates

that fa is lower than the capacity of an arc a. Non-negativeness of xijp is forced by (7.1f).

This leads to non-negativeness of xija , due to (7.1c), and consequently non-negativeness of fa,

due to (7.1d). Note that the variables xija can be eliminated from the formulation. However,

according to initial experiments eliminating them from the implementation does not improve

running times of algorithms presented in the following sections. Therefore, they are kept for

the sake of clarity and simplicity.

Presented in this way, Robust Routing seems to be difficult. First, the number of

paths P(i, j) can be very high. Second, inequalities (7.1d) are non-linear. Finally, they have

to be satisfied for each traffic matrix in D, and D is generally an infinite set.

Fortunately, the problem was proved to be easily solvable using an algorithm based

on constraint generation (see [8, 9]). Considering the current solution of the relaxation of

Robust Routing (only a finite set of traffic matrices is taken into account instead of the
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full D), we only have to check wether there is an arc a and a traffic matrix t ∈ D such that

(7.1d) is violated for them. This can be easily done by the following linear program:

max
t∈D

∑

i∈V

∑

j∈V\{i}

xija tij.

If the maximum is larger than fa the violated inequality is added.

Routing paths can also be generated in an iterative way by solving a shortest path

problem for each pair (i, j), where i, j ∈ V , and link weights are given by the values of

appropriate dual variables of (7.1c). If there exists a path whose reduced cost is negative it

has to be added to an appropriate P(i, j).

Another way of solving Robust Routing, based on duality, was proposed in [2]. The

dual of the maximization problem above should be written, and the optimum must be always

lower than fa. A similar approach was also used in a previous work [12]. Instead of generating

constraints, a compact formulation follows from duality, but the number of variables of

the problem increases significantly. Moreover, the approach assumes that a traffic demand

polytope is given by a set of inequalities, while the approach presented in [8, 9] is more

general, and can also deal with polytopes described by their extreme points or by an oracle.

Note that it is possible to use other cost functions for this problem. For instance it is

possible to minimize the congestion. In such a situation the cost function has to be replaced

by FRR(D) = z, where z is a variable denoting the congestion. Moreover, constraint (7.1e)

has to be replaced with fa ¬ z · ca. Although the presented algorithms were tested using

both cost functions (routing cost and congestion, see Chapter 10) the rest of the models will

be presented only for the former one (routing cost).

Notice that the problem difficulty does not change, if either traffic demands or network

links are not oriented. It is easy to solve Robust Routing using similar techniques even if

either demands or links are undirected.

7.1.2 No sharing routing

Another set of problems emerges when harsher rules on reservation of capacities are imposed,

and different demands are forbidden from sharing resources. The core problem of this set is

denoted as No Sharing (NS), and is formulated as follows.
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Problem NS

minimize FNS(D) =
∑

a∈A

ξafa, (7.2a)

∑

p∈P(i,j)

xijp ­ 1, ∀i, j ∈ V, (7.2b)

∑

p∈P(i,j),p∋a

xijp ¬ x
ij
a , ∀i, j ∈ V, ∀a ∈ A, (7.2c)

xija tij ¬ f
ij
a , ∀i, j ∈ V, ∀a ∈ A, ∀t ∈ D, (7.2d)

∑

i,j∈V

f ija ¬ fa, ∀a ∈ A, (7.2e)

fa ¬ ca, ∀a ∈ A, (7.2f)

xijp ­ 0, ∀p ∈ P(i, j), ∀i, j ∈ V. (7.2g)

In the formulation variables f ija denote an amount of capacity reserved on an arc a by traffic

generated between nodes i and j. In fact, they [like xija — here and in (7.1)] are obsolete

and can be eliminated from the formulation. However, they are kept for the sake of clarity

and simplicity. Formulation (7.2) is obtained from (7.1) by substituting (7.2d) and (7.2e) for

(7.1d).

Constraint (7.2d) results in f ija = maxt∈D x
ij
a tij. However, maxt∈D x

ij
a tij = x

ij
a maxt∈D tij.

Denoting maxt∈D tij as tmaxij , we can write that f
ij
a = x

ij
a t
max
ij .

Therefore, the basic No Sharing is equivalent to reserving tmaxij of flow for each relation

(i, j), i, j ∈ V . Therefore, it is easily solvable by means of an appropriate linear program

facilitated by a path generation mechanism. However, it gets more complicated when D is

allowed to be partitioned (see Section 7.3).

7.1.3 Dynamic routing

The problem consists in providing routing schemes (possibly different) for all traffic matrices

from a traffic demand polytope. In order to formulate the following variables are introduced.

xij,tp : proportion of a traffic demand from i to j (i, j ∈ V) for a traffic matrix t carried

through a path p ∈ P(i, j).

xij,ta : proportion of traffic from i to j for a traffic matrix t on an arc a ∈ A.

The core problem of this set is denoted as Dynamic Routing (DR), and can be formu-

lated as follows.

57



Problem DR

minimize FDR(D) =
∑

a∈A

ξafa, (7.3a)

∑

p∈P(i,j)

xij,tp ­ 1, ∀i, j ∈ V, ∀t ∈ D, (7.3b)

∑

p∈P(i,j),p∋a

xij,tp ¬ x
ij,t
a , ∀i, j ∈ V, ∀a ∈ A, ∀t ∈ D, (7.3c)

∑

i,j∈V

xij,ta tij ¬ fa, ∀a ∈ A, ∀t ∈ D, (7.3d)

fa ¬ ca, ∀a ∈ A, (7.3e)

xij,tp ­ 0, ∀p ∈ P(i, j), ∀i, j ∈ V, ∀t ∈ D. (7.3f)

Formulation (7.3) is similar to (7.1). However, it replaces each constraint of (7.1) involving

variables xijp or x
ij
a with an infinite (in general) number of constraints involving variables x

ij,t
p

and xij,ta .

Although all the traffic matrices t ∈ D are present in the formulation it is enough

to consider only extreme points of D in order to solve the problem. Having the optimal

routings for all the extreme points it is possible to compute optimal routings for all t ∈ D by

calculating appropriate convex combinations of the optimal routings for the extreme points.

The obvious fact is that the problem is solvable in polynomial time if D is defined as a

convex hull of a given finite set of traffic matrices. But this is not the only special case when

the problem is simple.

Proposition 7.1.1. Dynamic Routing can be solved in polynomial time when D is defined
by its facets, and the number of demands is less than a known constant K.

Proof. In such a case the number of extreme points of D is limited by O(nK), where n is the
number of facets, because each extreme point can be explicitly defined by a set of K facets.
Note that K is here also the dimension of the traffic demand polytope D. The number of
possible different sets of K facets is

(

n
K

)

, which is obviously smaller than nK . Therefore, it
is possible to express the problem as a linear program with a polynomially limited number
of variables and constraints.

The problem is co-NP-hard when the number of demands is unlimited [19]. The com-

plexity of the case when the number of demands is limited by K, and the traffic demand

polytope is defined by an oracle is still an open question.

7.2 Test cases

In this section two different ways of describing a traffic demand polytope in practice are

presented. Both of them were used to evaluate the novel routing strategies described in the

thesis.
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7.2.1 Hose model

In [27] a hose model was presented. It assumes that the outgoing traffic of each node is

limited, i.e.,
∑

j∈V tij ¬ Ai, for each i ∈ V , where Ai is an upper bound for outgoing traffic

from a node i. Moreover, limitations on the incoming traffic can also be considered. In such

a case,
∑

i∈V tij ¬ Bj, for each j ∈ V , where Bj is an upper bound for incoming traffic to a

node j. The traffic matrix then can be any matrix satisfying this kind of constraints. A poly-

tope satisfying those constraints is called a hose model polytope, and is formally described

as follows.

Hose model polytope

∑

j∈V

tij ¬ Ai, ∀i ∈ V, (7.4a)

∑

i∈V

tij ¬ Bj, ∀j ∈ V, (7.4b)

tij ­ 0, ∀i, j ∈ V. (7.4c)

In addition it is possible to assume that both the maximum and minimum traffic between

each pair of nodes are also constrained, i.e., tminij ¬ tij ¬ t
max
ij . the obtained polytope is called

a general hose model polytope, and is formally described as follows.

General hose model polytope

∑

j∈V

tij ¬ Ai, ∀i ∈ V, ∀t ∈ D, (7.5a)

∑

i∈V

tij ¬ Bj, ∀j ∈ V, ∀t ∈ D, (7.5b)

tij ­ t
min
ij , ∀i, j ∈ V, ∀t ∈ D, (7.5c)

tij ¬ t
max
ij , ∀i, j ∈ V, ∀t ∈ D. (7.5d)

Note that not all nodes in a network have to generate traffic. Assume that some nodes

are transit nodes, and are neither source nor sink nodes of any demand. They are called then

non-active nodes, while the rest are called active nodes.

7.2.2 B-S model

In [13] Bertsimas and Sim presented a traffic demand model in which each demand can

assume only either its minimum value tminij or its maximum value t
max
ij , and the number of

demands that assume their maximum values cannot be greater than k. The model can be

modified in a way that all possible traffic demand matrices considered in the original model
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are treated as extreme points of D in a new model. A polytope satisfying those constraints

is called B-S model polytope in this thesis, and is formally described as follows.

B-S model polytope

∑

i,j∈V

tij − t
min
ij

tmaxij − t
min
ij

¬ k, ∀t ∈ D, (7.6a)

tij ­ t
min
ij , ∀i, j ∈ V, ∀t ∈ D, (7.6b)

tij ¬ t
max
ij , ∀i, j ∈ V, ∀t ∈ D. (7.6c)

Notice that, like in a hose model case, the number of extreme points of this traffic demand

polytope is exponential. Moreover, also in this case we can talk about active and non-active

nodes. For the sake of simplicity assume that if a node is active, then it generates traffic to

all other active nodes.

7.3 Partitioning strategies

Assume that a traffic demand polytope D and a normal vector α that defines a direction of

a hyperplane α · t = β (β is subject to optimization) are given. Note that βmin ¬ β ¬ βmax,

where βmin = mint∈D α · t and βmax = maxt∈D α · t. Having D and α it is possible to partition

D into two subsets L(D, β) = D∩{t : α · t ¬ β} and R(D, β) = D∩{t : α · t ­ β}, called the

left hand side polytope (LHSP) and the right hand side polytope (RHSP), respectively. Then,

we can consider a robust routing for each of them. Said another way, instead of having only

one routing scheme, we will have two schemes: if the current traffic matrix belongs to the

first (second) subset it uses the first (second) routing scheme.

Depending on restrictions imposed on the reservation vectors two different strategies can

be considered. The reservation vectors on opposite sides of the hyperplane can either be

required to be identical, or allowed to differ. The former case models a situation when a user

is an owner of a network, and his or her task is to minimize the usage of resources. The latter

corresponds to a situation when a user rents capacities from other operators, and he or she

cannot renegotiate those renting agreements after each change in the routing.

7.3.1 The reservation vectors can be different

The problem is denoted byDifferent Reservation, and forRobust Routing (DR/RR)

is formulated as follows.

Problem DR/RR

F ∗DR/RR(D) = min
β
FDR/RR(D, β),
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where the cost function is defined as:

FDR/RR(D, β) = max{FRR(L(D, β)), FRR(R(D, β))}.

The task is to find such a value of β which ensures that the maximum of costs of Robust

Routing for LHSP and for RHSP is minimal. Unfortunately, as it is shown in the example

below, the function FDR/RR(D, β) as a function of β is not continuous.

Example Consider a network depicted in Figure 7.1 with c(s,b) = 9, c(s,e) = 4 and ξ(s,c) = 1

(an arc from node i to node j is denoted by (i, j)). Other capacities are infinite, and other

routing costs are set to zero. The traffic demand polytope D is a convex hull of five traffic

matrices: (3, 0, 3)t, (0, 3, 3)t, (0, 9, 1)t, (3, 6, 1)t and (3, 9, 0)t, where (x, y, z)t denotes a traffic

matrix characterized as follows: tsa = x, tsb = y and tsc = z. The hyperplane is characterized

as tsa + tsb = β.

In the considered network the value of the optimal solution is 0, and is obtained for

β = 9. If such a hyperplane is used then for LHSP both demands sa and sb can be routed

through (s, b), and the demand sc can utilize a path {(s, e), (e, c)}. For RHSP the route for

the demand sa changes to a path {(s, e), (e, a)}, but still the demand sc can utilize the same

path {(s, e), (e, c)} as for LHSP, because tsa + tsc for RHSP is smaller or equal to c(s,e). The

cost of the solution is 0, because the expensive arc (s, c) is used neither for LHSP nor for

RHSP.

However, when β = 9+ γ (γ > 0) the optimal solution is 2 regardless of the actual value

of γ. Even a small γ prevents the demand sa from using the path {(s, b), (b, a)} for LHSP,

and forces it to use an arc (s, e) (note that a matrix (γ, 9, 1− γ/3)t belongs to LHSP, so the

whole demand sa has to use an arc (s, e)). As a sum tsa + tsc can be as big as 6 in LHSP,

the demand sc cannot only utilize the inexpensive path {(s, e), (e, c)}, and has to also utilize

the direct expensive path (s, c). �

Another issue is that obtained results (routings and the hyperplane) have to be imple-

mented in actual network equipment, and these devices can only work with finite precision

numbers. Taking this into account, and recalling that FDR/RR(D, β) is non-continuous it was

decided that β can only assume values of a finite precision, i.e., only values of form n · γ are

considered, where n ∈ Z and γ is the precision.

When the finite precision of β is assumed,Different Reservation forRobust Rout-

ing can be optimally solved using a polynomial algorithm presented in [6]. Knowing that

FRR(L(D, β)) is a non-decreasing function of β, and FRR(R(D, β)) is a non-increasing func-

tion of β we can find, using a binary search, β⋆ such that FDR/RR(D, β⋆) is minimized. Notice

that the binary search should depend in a logarithmic way on γ. Obviously β⋆ is a solution

to Different Reservation.
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Figure 7.1: Network exposing non-continuity of the cost function.

In order to formulate Different Reservation for No Sharing, FNS have to be

substituted for FRR. Note that this variant can be solved using the same algorithm, because

FNS(L(D, β)) [like FRR(L(D, β))] is also a non-decreasing function of β, and FNS(R(D, β))

is a non-increasing function of β.

The problem can be also formulated, and solved, in a similar way forDynamic Routing.

It is co-NP-hard in general but remains in P for some special cases, e.g., when D is defined

as a convex hull of a given set of traffic matrices. Dynamic routing partitioning is discussed

in details in Section 8.3.

Although FDR/RR(D, β) is non-continuous in general, there exist special cases when it is

continuous, e.g., when capacities are infinite, and a constraints (7.1e) is eliminated from the

appropriate formulation. Before proving that, a new notation and some lemmas have to be

introduced.

The Hausdorff distance between two polytopes D1 and D2 is defined as follows.

d(D1, D2) = max( sup
t1∈D1

inf
t2∈D2
||t1 − t2||, sup

t1∈D2

inf
t2∈D1
||t1 − t2||)

where the norm ||t1 − t2|| =
∑

i,j∈V |t
1
ij − t

2
ij|. Note that, since D1 and D2 are compact, the

distance can be also presented in the following way:

d(D1, D2) = max(max
t1∈D1

min
t2∈D2
||t1 − t2||, max

t1∈D2
min
t2∈D1
||t1 − t2||).

In addition define the polytope Dβ = D ∩ {t ­ 0 : α · t = β}. Remember also that βmin <

β < βmax.

Lemma 7.3.1. For each bounded polytope D the condition lim
β1→β2

d(L(D, β1), L(D, β2)) = 0

holds.
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Proof. Assume that β1 < β2 (an analogous proof can be given for β1 > β2), so L(D, β1) ⊆
L(D, β2) and:

d(L(D, β1), L(D, β2)) = max
t2∈L(D,β2)

min
t1∈L(D,β1)

||t1 − t2||.

For given D, β1, and t2 ∈ L(D, β2) define t(t2, β1) ∈ L(D, β1), such that ||t(t2, β1) − t2|| is
minimized. Note that D is compact, and thus, according to Weierstrass’ theorem, t(t2, β1)
exists.
Assume now that the lemma is false. It means that there exists t2 ∈ L(D, β2) and ε > 0

such that for each β1 ∈]βmin, β2] the norm ||t(t2, β1) − t2|| ­ ε. Moreover, as D is compact
and the norm is continuous, there exists β⋆ ∈]βmin, β2], such that ||t(t2, β⋆)− t2|| = ε. Take a
segment joining t(t2, β⋆) and t2. The segment belongs to D, because D is convex. Now take
t1 in the middle of the segment, and set β1 to β

⋆+β2

2
. Obviously ||t1 − t2|| = ε

2
. Moreover, t1

belongs to L(D, β1), thus ||t(t2, β1)− t2|| ¬ ε
2
. Therefore, the contradiction is reached, as ε

was not the value of the minimum norm.

Lemma 7.3.2. When capacities are infinite FRR(L(D, β)) is continuous in variable β.

Proof. From the formal point of view the proposition states that if capacities are infinite
then:

lim
β′→β
FRR(L(D, β′)) = FRR(L(D, β)). (7.7a)

Assume that a solution toRobust Routing for L(D, β) is given, and values of fa correspond
to this solution. If we assume that β′ ­ β then the considered traffic demand polytope, i.e.,
L(D, β), is extended to L(D, β′). In such a situation some of fa may have to be increased in
order to route new traffic matrices. As capacities are unlimited, it is possible to route those
new matrices using the routing corresponding to L(D, β). It is obvious that any routing
(consisting of loopless paths) cannot cost more than

∑

a∈A ξa for each unit of routed flow.
Therefore, it is possible to write that:

FRR(L(D, β)) ¬ FRR(L(D, β′)) ¬ FRR(L(D, β)) +
∑

a∈A

ξa · d(L(D, β′), L(D, β)).

Knowing from Lemma 7.3.1 that limβ′→β d(L(D, β′), L(D, β)) = 0 it is justified to conclude
that (7.7) is true.

Obviously the same fact can be proved for FRR(R(D, β)). Now it is possible to prove the

following proposition.

Proposition 7.3.3. When capacities are infinite FDR/RR(D, β) is continuous in variable β.

Proof. FDR/RR(D, β) for β is just a maximum of two continuous functions, so it also has to
be continuous.

7.3.2 The reservation vectors are identical

Assume that the reservation vectors corresponding to the two uncertainty subsets (LHSP

and RHSP) should be the same. The problem will be called Identical Reservation (for

Robust Routing or No Sharing). Note that Identical Reservation for Dynamic

Routing is meaningless, because partitioning in such conditions does not have any effect.
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A version that corresponds to Robust Routing (IR/RR) can be formulated as follows.

Problem IR/RR

F ∗IR/RR(D) = min
β
F IR/RR(D, β),

where the cost function is defined as follows.

minimize F IR/RR(D, β) =
∑

a∈A

ξafa, (7.8a)

∑

p∈P(i,j)

xijp ­ 1, ∀i, j ∈ V, (7.8b)

∑

p∈P(i,j),p∋a

xijp ¬ x
ij
a , ∀i, j ∈ V, ∀a ∈ A, (7.8c)

∑

i,j∈V

xija tij ¬ fa, ∀a ∈ A, ∀t ∈ L(D, β), (7.8d)

∑

p∈P(i,j)

xijp ­ 1, ∀i, j ∈ V, (7.8e)

∑

p∈P(i,j),p∋a

xijp ¬ x
ij
a , ∀i, j ∈ V, ∀a ∈ A, (7.8f)

∑

i,j∈V

xija tij ¬ fa, ∀a ∈ A, ∀t ∈ R(D, β), (7.8g)

fa ¬ ca, ∀a ∈ A, (7.8h)

xijp , x
ij
p ­ 0, ∀p ∈ P(i, j), ∀i, j ∈ V. (7.8i)

Formulation (7.8) is an extended version of (7.1). The number of variables and constraints is

almost doubled in order to describe two independent routings on both sides of the hyperplane

(non-overlined variables correspond to LHSP, and overlined variables correspond to RHSP).

As the reservation vectors on both sides of the hyperplane have to be identical it is possible

to describe them using only one set of variables, namely fa, where a ∈ A. Inequalities (7.8d)

and (7.8g) assure that both routings can be realized using the reserved capacities.

Notice that the considered problem, with β fixed, can be solved in polynomial time using

the way described in [9], because both constraints and paths can be easily generated in

polynomial time.

While dealing with the Identical Reservation version for No Sharing (IR/NS)

constraints (7.8d) and (7.8g) have to be replaced with:

xija tij ¬ f
ij
a ∀i, j ∈ V, ∀a ∈ A, ∀t ∈ L(D, β), (7.9a)

xija tij ¬ f
ij
a ∀i, j ∈ V, ∀a ∈ A, ∀t ∈ R(D, β), (7.9b)
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and the following two sets of constraints have to be added.

∑

i,j∈V

f ija ¬ fa ∀a ∈ A, (7.10a)

∑

i,j∈V

f ija ¬ fa ∀a ∈ A. (7.10b)

Moreover, the cost function has to be replaced with F IR/NS(D, β) =
∑

a∈A ξafa. Notice that

when considering Identical Reservation for No Sharing, if β is fixed, the resulting

optimization problem is identical to Dynamic Routing with demand set given as the

convex hull of two demand matrices.

F IR/RR(D, β), like FDR/RR(D, β), is non-continuous in β (in order to prove this it is

possible to use the same example as in Section 7.3.1). Therefore, also in this case it was

decided that β can only assume values of finite precision, i.e., only values of form n · γ are

considered, where n ∈ Z and γ is the precision.
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Chapter 8

Algorithms

In this chapter algorithms solving the previously presented partitioning problems are dis-

cussed. In Section 8.1 an algorithm solving Identical Reservation is presented. Another

(faster) algorithm is described in Section 8.2. However, it can be applied only to Identical

Reservation for No Sharing when a polytope is defined as a convex hull of a given set of

traffic matrices. The whole Section 8.3 is devoted to Dynamic Routing. Finally, Section

8.4 consists of implementation details that accelerate the presented algorithms.

8.1 Double binary search algorithm

In this section an algorithm that solves Identical Reservation is presented. It can suc-

cessfully deal with both viable versions of the problem (Robust Routing and No Shar-

ing) but for the sake of simplicity it concentrates only on the former one. As mentioned

earlier Identical Reservation for Dynamic Routing is meaningless.

Computational complexity

The computational complexity of this problem still remains an open question. However,

some results dealing with the complexity of its approximation schemes have been already

published.

In [6] a polynomial time 2-approximation algorithm for Identical Reservation for

Robust Routing was presented. The algorithm works as follows. Let β⋆ be the optimal

solution to Different Reservation, f ⋆ the optimal reservation vector used for L(D, β⋆)

and f ⋆ the optimal reservation vector used for R(D, β⋆). One can obviously build a new

reservation vector defined by the componentwise maximum of f ⋆ and f ⋆. This vector will

allow to carry traffic for each t ∈ D (keep the routing schemes obtained when Different

Reservation is solved). It is clear that the cost of this new vector is less than twice the

cost of the optimal solution to Identical Reservation.
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The algorithm is polynomial as it requires to solve Different Reservation (this prob-

lem is polynomial, see Section 7.3.1) and perform some simple (of polynomial complexity)

operations while building the reservation vector.

Algorithm

Consider a simpler problem that consists in answering the question: does there exist

a feasible solution to Identical Reservation of cost smaller than or equal to a given

value? This simplified problem will be refereed to as Identical Reservation Limit. Ob-

viously, knowing the way of solving Identical Reservation Limit it is possible to solve

Identical Reservation relatively fast using a binary search.

First upper and lower bounds for the cost F IR/RR(D, β), denoted by Fmin and Fmax

respectively, have to be known. The simplest lower bound Fmin is 0, while the simplest upper

bound is equal to the value of the solution to Robust Routing or No Sharing depending

on the actual version of the considered problem. Obviously those bounds can be upgraded

(see Section 8.4.1).

The question arises how to solve Identical Reservation Limit. In this section an

algorithm that can do this for both Robust Routing and No Sharing is presented.

Although its complexity is not polynomial, it performs well, and can solve even medium size

problems (see the numerical results in Chapter 10). The key ideas of the approach can be

seen in Algorithm 8.1.

Algorithm 8.1 Identical Reservation Limit(Flim)

β2 = βmax
while β2 > βmin do
β1 = findMax(β2, Flim)
if β1 = β2 then
return YES
else
β2 = β1
end if
end while
return NO

The algorithm returns YES, if a solution to Identical Reservation that costs no more

than Flim exists. Otherwise, it returns NO. It uses constants βmin and βmax that define an

interval of possible values of β, and the function findMax. The basic idea of the method is

to constantly shrink the interval of possible positions of the hyperplane. At the beginning

the hyperplane can be anywhere in [βmin, βmax]. It means that it is impossible to judge if

any t ∈ D has to belong either to LHSP or to RHSP (assume that the interval is sufficiently

large, and D ⊆ {t : α · t ­ βmin} ∩ {t : α · t ¬ βmax}). Then, in the loop, the interval of

possible positions of the hyperplane is limited. More precisely, the set of matrices that have
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to belong to RHSP is extended.

Having RHSP defined for a particular loop it is possible, using findMax method, to

calculate the maximum size of LHSP which satisfies the cost limit. If the whole polytope

D can be divided between LHSP and RHSP the problem has been solved. If some matrices

cannot be added to LHSP for a given RHSP, it means that they have to belong to RHSP.

They are added to RHSP by changing the value of β2, and the loop is repeated.

Consider now a new problem that will facilitate explanation of findMax method. Assume

that values β1 and β2 are given. The problem, denoted by Two Known Planes, consists

in finding the optimal routing when LHSP is defined as L(D, β1) and RHSP is defined

as R(D, β2). Note that β1 and β2 are constant so the problem can be easily solved using

techniques presented in [8, 9], and briefly described in Chapter 7.

The method findMax returns the maximum value of β1 that letsTwo Known Planes be

solved for a given β2 and within a given cost limit Flim. If such a value does not exist it

returns −∞. Note that β1 is a variable subject to optimization and β2 is constant. In such

a situation the objective function of Two Known Planes is non-decreasing in β1, as it is

impossible to decrease a cost of a solution by adding new traffic matrices to the problem.

Therefore, the method can use (and it does) a binary search. A pseudo-code for findMax

can be seen in Algorithm 8.2.

Algorithm 8.2 findMax(β2, Flim)

β1 = βmin
β′1 = β2
while β′1 − β1 > γ do
βmid =

β1+β′1
2

if Two Known Planes(βmid, β2) ¬ Flim then
β1 = βmid
else
β′1 = βmid
end if
end while
return β′1

Unfortunately, the overall complexity of the whole algorithm is not polynomial. The

reason is that the value β1 found by findMax method can be very close to β2. In fact a

difference between β2 and β1 can be as small as γ. It means that in the worst case the main

loop of the algorithm has to be repeated m = ⌈βmax−βmin
γ
⌉ times. Apparently, the value of m

cannot be expressed as a polynomial function of the size of data. In Figure 8.1 an example

network that suffers from this drawback is depicted.

Example Assume that a polytope D is a convex hull of only two traffic matrices. Both
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Figure 8.1: Network exposing non-polynomiality of the algorithm.

matrices consist of four demands. The first is as follows: tab = 0.1, tcd = 0.9, tef = 900,

tgh = 100, while the second is: tab = 0.9, tcd = 0.1, tef = 100, tgh = 900.

Capacities of all arcs but two are unlimited. Only arcs (e, f) and (g, h) have their ca-

pacities (c(e,f) and c(g,h), respectively) set to 900. For the majority of arcs, routing costs are

set to 0, and only ξ(a,b) = ξ(c,d) = 1. Finally, it is assumed that the hyperplane is defined as

tab = β.

The optimal solution to this instance of Robust Routing is 1.8, because demands ab

and cd have to use expensive (direct) paths. They cannot utilize cheap ({(a, e), (e, f), (f, b)}

and {(c, g), (g, h), (h, d)}) routes, because arcs (e, f) and (g, h) are fully occupied by demands

ef and gh. On the other hand, the optimal solution to Identical Reservation is only

1.0, as D can be divided using the hyperplane tab = 0.5, and different routings on both sides

of it can be used. In such a situation the demand ab has to occupy the arc (a, b) only when

tab ¬ 0.5, and the demand cd has to occupy the arc (c, d) only when tcd ¬ 0.5. Note that,

this instance of the problem has the infinite number of different optimal solutions that can

be obtained for all β ∈ [100
999
, 899
999
].

Assume that the presented algorithm is used, existence of a solution of cost 1.0 has been

verified, and now a feasible solution of cost 1.0− ǫ is of interest. Unluckily, in the considered

network a solution to Two Known Planes, when 100
999
¬ β1 ¬ β2 ¬

899
999
, is 1.0−(β2−β1). It

means that in order to use the algorithm to verify if a feasible solution of cost 1.0− ǫ exists,

Two Known Planes has to be solved almost ǫ−1 times, because for β2 ∈ [100999 + ǫ,
899
999
] the

value of β1, resulting from Two Known Planes, will be equal to β2 − ǫ. Note that in the

worst case ǫ = γ, where γ is the precision for β defined in Section 7.3. �
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8.2 Limited number of extreme points (No sharing)

In Section 8.1 an algorithm that solves Identical Reservation for both Robust Rout-

ing and No Sharing (Identical Reservation for Dynamic Routing is meaningless)

was presented. In this section a special feature of No Sharing is used, and an algorithm

that can solve this version of Identical Reservation in polynomial time when D is a

convex hull of a given set of traffic matrices is presented. Note that the algorithm cannot be

used for Robust Routing version of Identical Reservation.

Assume that a polytope D and hyperplanes α · t = β1 and α · t = β2 (β1 < β2) are given,

and a middle polytope Dmid = R(D, β1) ∩ L(D, β2) is not empty but does not contain any

extreme points of D. Define left and right polytoperight polytopes as Dleft = L(D, β1) and

Dright = R(D, β2), respectively. Note that Dleft ∪Dmid ∪Dright = D.

Lemma 8.2.1. For any β ∈]β1, β2[ all points t ∈ Dβ can be expressed as t = λt′+(1−λ)t′′,
where λ = β2−β

β2−β1
, t′ ∈ Dβ1 and t

′′ ∈ Dβ2.

Proof. Take any point t ∈ Dβ. As it belongs toD, it can be expressed as a convex combination
of extreme points of D. Dmid does not contain any extreme points of D, so all of them have
to belong either to Dleft or to Dright. It means that a convex combination of only those
extreme points that belong to Dleft can be calculated, and a point in Dleft (together with its
weight) can be obtained. The same operation can be performed on Dright. The considered
matrix t will be a convex combination of those two points. Obviously, those two points
can be connected by a line that is contained in D. What is more, this line also contains
one point from Dβ1 (denoted by tβ1) and one point from Dβ2 (denoted by tβ2). Certainly,
t = λtβ1 + (1− λ)tβ2 , and we can take t

′ = tβ1 and t
′′ = tβ2 .

It is possible to think about β2 as a variable, and write the following lemma.

Lemma 8.2.2. For any β ∈]β1, β2[ all points t ∈ Dmid ∩ {t : α · t ¬ β} can be expressed as
t = λt′ + (1− λ)t′′, where λ = β2−β

β2−β1
, t′ ∈ Dβ1 and t

′′ ∈ Dmid ∩ {t : α · t ¬ β2}.

Proof. Take any point t ∈ Dmid ∩ {t : α · t ¬ β}. Note that t ∈ Dβ′ , where β1 ¬ β′ ¬ β.
Now take β′2 = β1 +

β′−β1
β−β1
(β2 − β1). Obviously, β1 ¬ β′2 ¬ β2, so there are no extreme points

of D between Dβ1 and Dβ′2 . What is more, for those β
′ and β′2 the fraction

β′2−β
′

β′2−β1
is equal

to λ defined in the lemma. Therefore, it is possible to use Lemma 8.2.1, and construct each
matrix t ∈ Dmid ∩ {t : α · t ¬ β} from matrices t′ ∈ Dβ1 and t

′′ ∈ Dmid ∩ {t : α · t ¬ β2},
using the formula t = λt′ + (1− λ)t′′.

Note that Dleft = L(D, β1) and Dleft ⊂ L(D, β2). Therefore, the previous lemma can be

extended to also cover points that belong to Dleft.

Corollary 8.2.3. For any β ∈]β1, β2[ all points t ∈ L(D, β) can be expressed as t = λt′ +
(1− λ)t′′, where λ = β2−β

β2−β1
, t′ ∈ L(D, β1) and t′′ ∈ L(D, β2).

Obviously, it works also in the opposite direction.

Corollary 8.2.4. For any β ∈]β1, β2[ all points t ∈ R(D, β) can be expressed as t = λt′ +
(1− λ)t′′, where λ = β2−β

β2−β1
, t′ ∈ R(D, β1) and t′′ ∈ R(D, β2).
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Both Corollaries 8.2.3 and 8.2.4 can be rewritten taking into account tmaxij . Notice that

max
t∈A
tij is denoted by tmaxij (A).

Corollary 8.2.5. For any β ∈]β1, β2[ maximum values of tmaxij = t
max
ij (L(D, β)) satisfies an

inequality:
tmaxij ¬ λt

max
ij
′ + (1− λ)tmaxij

′′,

where λ = β2−β
β2−β1
, tmaxij

′ = tmaxij (L(D, β1)) and t
max
ij
′′ = tmaxij (L(D, β2)). Moreover, maximum

values of tmaxij = t
max
ij (R(D, β)) satisfies an inequality:

tmaxij ¬ λt
max
ij
′ + (1− λ)tmaxij

′′
,

where λ = β2−β
β2−β1
, tmaxij

′ = tmaxij (R(D, β1)) and t
max
ij
′′ = tmaxij (R(D, β2)).

Assume now that the optimal solutions of Identical Reservation (for No Sharing)

for given β1 and β2 are provided, and a solution for β ∈]β1, β2[ is of interest. Variables of

the solution for β will be denoted as described in Chapter 7. Variables of the solution for

β1 will be additionally followed by a prime, e.g., f ′a or x
ij
p
′, while those corresponding to the

solution for β2 will be followed by a double prime, e.g., f ′′a .

Construct now a routing to the solution for β in the following way.

xijp = (λx
ij
p

′
tmaxij

′ + (1− λ)xijp
′′
tmaxij

′′)/tmaxij , (8.1a)

xijp = (λxijp
′
tmaxij

′ + (1− λ)xijp
′′
tmaxij

′′)/tmaxij . (8.1b)

Lemma 8.2.6. The routing constructed using (8.1) is feasible, i.e., it satisfies (7.8b) and
(7.8e).

Proof. Focus on the first equality. Use the first inequality from Corollary 8.2.5, substitute
u for λtmaxij

′, and substitute v for (1 − λ)tmaxij
′′. Summing the obtained inequalities for all

p ∈ P(i, j) the following formula is obtained.

∑

p∈P(i,j)

xijp ­
u

u+ v

∑

p∈P(i,j)

xijp
′
+
v

u+ v

∑

p∈P(i,j)

xijp
′′
.

Variables xijp
′ and xijp

′′ satisfy (7.8b), so xijp also has to satisfy it. Similar proof can be used

to show that xijp satisfy (7.8e).

Knowing that the routing expressed by (8.1) is feasible, and using (7.9) and (7.8c) in

order to substitute f ija for
∑

p∋a
xijp tij the following corollary is obtained.

Corollary 8.2.7. If a routing of a solution for β satisfies (8.1) then f ija ¬ λf
ij
a
′+(1−λ)f ija

′′

and f ija ¬ λf
ij
a

′
+ (1− λ)f ija

′′
, for all a ∈ A and i, j ∈ V.

Note that, according to (7.8), the cost function F IR(D, β) depends only on fa. What

is more, according to (7.10), fa depends on f ija only. Therefore, from Corollary 8.2.7 the

following can be deduced.
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Corollary 8.2.8. Function F IR/NS(D, β) is convex in [β1, β2], if Dmid = R(D, β1)∩L(D, β2)
does not contain extreme points of D.

Returning to the algorithm, it is simple to calculate a list of increasing values of β that

describes all hyperplanes which contain extreme points of D (note that the polytope is a

convex hull of a given set of traffic matrices). Define the list as B = {β1, β2, . . . , βn} such that

βi < βi+1, for i = 1, 2, . . . , n− 1, and each extreme point of D belongs to
⋃n
i=1Dβi . Knowing

from Corollary 8.2.8 that function F IR/NS(D, β) is convex in [βi, βi+1], for i = 1, 2, . . . , n−1,

it is possible to calculate optimal F ⋆IR/NS[βi,βi+1]
(D), for i = 1, 2, . . . , n − 1, using any known

algorithm that can find the minimum of a convex function in polynomial time (e.g., golden

ratio or Fibonacci search). Obviously, optimal F ⋆IR/NS[βmin,βmax]
(D) = mini=1,2,...,n−1 F

⋆IR/NS
[βi,βi+1]

(D).

Therefore, the following proposition can be written.

Proposition 8.2.9. Identical Reservation for No Sharing can be solved in polynomial
time if the traffic demand polytope is given by a set of its extreme points.

8.3 Partitioning and dynamic routing

In this section Different Reservation for Dynamic Routing is considered. The prob-

lem can be solved by means of the method of Section 7.3.1. It is co-NP-hard in general

but belongs to P when D is defined as a convex hull of a given set of traffic matrices.

The former fact can be concluded from the proof presented in [19] showing that Dynamic

Routing alone is co-NP-hard. The latter fact will be proved in this section. But first some

lemmas have to be discussed.

Consider a traffic demand polytope D divided by a hyperplane α · t = β into a right hand

side polytope (RHSP), defined as R(D, β), and a left hand side polytope (LHSP), defined

as L(D, β). A strict combination of some points t ∈ T is defined as
∑

t∈T
λtt, where

∑

t∈T
λt = 1

and λt > 0 for all t ∈ T .

Lemma 8.3.1. If a traffic matrix tr can be expressed as a strict convex combination of
more than three affinely independent points of D it can be also expressed as a strict convex
combination of exactly three affinely independent points of D.

Proof. Assume that tr is a strict convex combination of K affinely independent points from
D.

tr =
K
∑

k=1

λkt
k.

It can be transformed into:

tr = λ1t1 + λ2t2 +M
K
∑

k=3

λkt
k

M
,

where:

M =
K
∑

k=3

λk.
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This is obviously a strict convex combination of three affinely independent points belong-
ing to D.

Obviously the same lemma can be proved for a strict convex combination of more than

W affinely independent points, where W ­ 3. However, for the purpose of this section, the

proof for W = 3 is essential.

Lemma 8.3.2. If a traffic matrix tr ∈ D belonging to the hyperplane α · tr = β has to be
expressed as a strict convex combination of three affinely independent points ta, tb, tc ∈ D
then tr is an extreme point of neither LHSP nor RHSP.

Proof. First notice that at least one of the points has to belong to LHSP, and at least one has
to belong to RHSP (points on the hyperplane belong to both LHSP and RHSP). Assume
that ta is in RHSP, and both tb and tc are in LHSP. Note that if all three points belong
to LHSP they also have to belong to RHSP (they have to be on the hyperplane). In such
a situation tr cannot be an extreme point of LHSP, because it is a convex combination of
points belonging to LHSP. The same claim holds for RHSP.
Define D1 as a convex hull of ta, tb, and tc. Then tr ∈ D2 = D1 ∩ {t : α · t = β}. D2 can

be also expressed as a convex hull of its two extreme points (first — an intersection of a line
connecting ta to tb and the hyperplane, second — an intersection of a line connecting ta to
tc and the hyperplane). tr cannot be any of these extreme points so it is an extreme point
of neither RHSP nor LHSP.

Now the main claims of this section can be presented.

Corollary 8.3.3. Each extreme point of either LHSP or RHSP belonging to the hyperplane
α ·t = β has to be either an extreme point of D or a strict convex combination of one extreme
point of D belonging to LHSP and one extreme point of D belonging to RHSP.

Proof. Combining Lemma 8.3.2 and Lemma 8.3.1 it is possible to conclude that any point
that has to be a strict convex combination of more than two affinely independent points of
D is an extreme point of either LHSP or RHSP. It means that the only way to obtain an
extreme point of either RHSP or LHSP is to take either an extreme point of D or a strict
convex combination of two extreme points of D. Obviously those two points cannot belong
to the same half-space defined by the hyperplane. Therefore, one of them has to belong to
RHSP, and the other has to belong to LHSP.

The corollary implies that the number of extreme points of both LHSP and RHSP is

limited by O(n2), where n is the number of extreme points of D. Therefore, the following

corollary can be written.

Corollary 8.3.4. Different Reservation for Dynamic Routing, for given β, can be
solved in polynomial time if the traffic demand polytope D is defined as a convex hull of a
given set of traffic matrices.

Proof. The problem can be expressed in form of a linear program with a polynomially limited
number of variables and constraints.

Finally, the following proposition can be written.
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Proposition 8.3.5. Different Reservation for Dynamic Routing can be solved in
polynomial time if the traffic demand polytope D is defined as a convex hull of a given set of
traffic matrices.

Proof. Knowing from Corollary 8.3.4 that Different Reservation for Dynamic Rout-
ing, for given β, can be solved in polynomial time, and that FDR(L(D, β1)) ¬ FDR(L(D, β2)),
when β1 < β2, it is possible to conclude that the polynomial time algorithm of Section 7.3.1
based on a binary search can be used in order to solve Different Reservation for Dy-
namic Routing with β as a variable if the traffic demand polytope D is defined as a convex
hull of a given set of traffic matrices.

8.4 Implementation details

In this section some enhancements to the presented algorithms are presented. They are not

crucial from the point of view of the theoretical complexity of the algorithms. However, they

significantly reduce running times of the implementations.

8.4.1 Cost bounds

In Section 8.1 it was assumed that Fmin = 0 and Fmax is equal to a cost of either Robust

Routing or No Sharing solution, depending on the version of the problem. Note that

those bounds can be easily upgraded.

Consider the lower bound first. Obviously, Fmin = 0 is valid. However, a better lower

bound for a cost of a Identical Reservation solution is a cost of a Different Reser-

vation solution. The bound can be relatively easy obtained using the method of Section

7.3.1.

As far as the upper bound is concerned there are at least two different approaches that

result in a bound of higher quality than the current upper bound. The straightforward one

requires to solve Identical Reservation for any β ∈]βmin, βmax[. Although the objective

function F IR(D, β), for β ∈ [βmin, βmax], does not have to be concave, it reaches its maximum

for both βmin and βmax.

The second approach takes advantage of a fact that a solution to Different Reser-

vation provides a 2-approximation to Identical Reservation (see Section 8.1). In the

implementation a method that hybridizes those two approaches has been used. First the

optimal value of β⋆ for Different Reservation was found, and then Identical Reser-

vation was solved for this particular value of β⋆.

8.4.2 Golden ratio

In the algorithm of Section 8.2 the golden ratio search is used. This method finds the ex-

tremum of an unimodal function. The basic idea of the method is to evaluate values of
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(a,w(a)) (b,w(b))

(c,w(c)) (d,w(d))

(e,e')

(a,f(a)) (b,f(b))

Figure 8.2: Evaluation of the lower bound of a convex function.

a considered function at endpoints of a considered interval (denoted by a and b) and for

two values of β inside the interval (denoted by c and d). Assume that a < c < d < b. If

F (c) < F (d) it is possible, in the next step, to consider an interval [a, d[ only. Otherwise, an

interval ]c, b] should be considered.

In Corollary 8.2.8 it is stated that F IR/NS(D, β) is convex in β, and it does not imply its

unimodality (the function can be constant). Luckily, a fact if the function is unimodal can be

verified in the first step of the golden ratio search, i.e., if results of the first four evaluations

of the function are equal to each other the function is constant.

What is more, the lower bound of the function can be calculated each time it is evaluated

for the four values of β. To simplify the notation use F (β) instead of F IR/NS(D, β). Having

points (a, F (a)), (c, F (c)), (d, F (d)), (b, F (b)) (see Figure 8.2) it is possible to define points

(e, e′), (a, f(a)) and (b, f(b)). Point (e, e′) is an intersection of two lines: first containing

points (a, F (a)) and (c, F (c)), second containing points (d, F (d)) and (b, F (b)). Values f(a)

and f(b) are evaluations of a linear function f(β) containing points (c, F (c)) and (d, F (d)),

for β = a and β = b, respectively. If the considered function is convex, and this is the case

with F IR/NS(D, β), min(e′, f(a), f(b)) is the lower bound for it.

Note that in the algorithm of Section 8.2 we look for all local minima of the cost function,

and select the smallest one. In order to accelerate the procedure the following enhancement

can be applied. If a lower bound for a local minimum in a considered interval is greater than

a value of one of local minima, which has been already found, the consider interval should

be abandoned, and the next interval should be considered instead.

Another enhancement is tightly connected to the previous one. The procedure can be

additionally accelerated, if the true optimum is found as soon as possible. Having the true
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optimum, and using the previously presented enhancement it is possible to perform less steps

of the golden ratio search. In other words, the order in which intervals are considered matters.

As in the numerical experiments used polytopes consisted of small number of extreme points,

any sophisticated way of ordering the intervals was not applied. Therefore, it still remains

an open question, how to arrange the intervals in order to accelerate the algorithm.

8.4.3 Column and constraint generation

The algorithms presented in Sections 8.1 and 8.2 consist of steps (subproblems) in which

simpler variants of the considered problems are solved. Those subproblems can be solved

independently. However, as they are usually strongly related to each other, information

obtained during solving one of them should be used in order to facilitate solving another

similar subproblem.

While solving the subproblems a column generation is used in order to obtain a set of

promising paths. Consider two instances of Identical Reservation. They are identical as

far as: network topology, demand polytope, and characteristics of arcs are concerned. The

only difference between those two instances is a position of the hyperplane that divides a

demand polytope into LHSP and RHSP. In such a situation it is highly probable that sets of

promising paths obtained for those instances will be similar (or even identical). Therefore, in

the implementation all paths obtained in the process of a column generation are collected,

and used as a starting point for all successive subproblems.

Another piece of information obtained during solving the subproblems is a set of vital

extreme points of the demand polytope. In this case a slightly different strategy is applied,

and not all obtained extreme points are stored. The reason is that not all of them are true

extreme points of D, because some of them can be created by the hyperplane, and are

extreme points of both LHSP and RHSP but not D. Those extreme points are obsolete

when the hyperplane changes its position, because they are either a convex combination of

two extreme points of D or a convex combination of an extreme point of D and an extreme

point of either the new LHSP or the new RHSP. Therefore, only extreme points that are not

on the hyperplane should be stored.
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Chapter 9

Volume oriented strategies

The major problem with the partitioning approaches presented in the previous chapters is

that a routing can significantly differ between subsets, and implementing those changes can

result in serious traffic fluctuations. Therefore, it is worth considering something that will

make the routing changes less abrupt. Another drawback of the partitioning strategies is their

centralized nature. They require a central node that has complete and up-to-date knowledge

about all demands in a network. Moreover, this central node has to immediately inform

all other nodes about routings they are supposed to execute. Those two disadvantages are

addressed in this chapter by introducing a novel routing paradigm called the volume oriented

strategy.

First, in Section 9.1, unrestricted volume oriented routing is discussed. The complexity

of this approach is NP-hard in general. However, it encompasses some special cases that

are polynomial even when more that one hyperplane is taken into account. Those special

cases, namely simplified volume oriented routing and general volume oriented routing, are

presented in Sections 9.2 and 9.3, respectively.

9.1 Volume oriented routing

The first strategy, denoted by VO Routing, is an extension of Robust Routing in

which demands can be routed differently depending on their actual volumes. In this case

the solution consists of two different routings for each demand, and a set of thresholds. If a

volume of a demand is smaller than a corresponding threshold the whole demand is routed

using the first routing. If the volume is greater than the threshold a part of the demand

equal to the threshold is sent using the first routing, while the rest of the demand uses the

second routing. Note that the approach can be considered as a modification of Identical

Reservation presented in previous sections. Instead of changing the routing for the whole

demand after reaching the threshold only the amount of traffic exceeding the threshold is

routed differently.
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9.1.1 Notation

In order to formulate the problem the notation presented in Chapter 7 has to be extended

by the following variables.

hij : threshold for a demand ij.

t′ij : volume of a demand ij corresponding to a traffic demand matrix t that has to be

routed using the first routing scheme.

t′′ij : volume of a demand ij corresponding to a traffic demand matrix t that has to be

routed using the second routing scheme.

xijp : routing scheme used by a demand ij to route the volume exceeding hij (second routing

scheme).

xija : proportion of the volume exceeding hij flowing through an arc a.

9.1.2 Problem formulation

The problem of computing the minimum cost volume oriented routing of an uncertainty

domain D, denoted by VO Routing (VO), can be formulated as follows.

Problem VO

minimize F V O(D) =
∑

a∈A

ξafa, (9.1a)

∑

p∈P(i,j)

xijp ­ 1, ∀i, j ∈ V, (9.1b)

∑

p∈P(i,j)

xijp ­ 1, ∀i, j ∈ V, (9.1c)

∑

p∈P(i,j),p∋a

xijp ¬ x
ij
a , ∀i, j ∈ V, ∀a ∈ A, (9.1d)

∑

p∈P(i,j),p∋a

xijp ¬ x
ij
a , ∀i, j ∈ V, ∀a ∈ A, (9.1e)

min(tij, hij) = t′ij, ∀i, j ∈ V, ∀t ∈ D, (9.1f)

max(tij − hij, 0) = t′′ij, ∀i, j ∈ V, ∀t ∈ D, (9.1g)
∑

i,j∈V

(xija t
′
ij + x

ij
a t′′ij) ¬ fa, ∀a ∈ A, ∀t ∈ D, (9.1h)

fa ¬ ca, ∀a ∈ A, (9.1i)

hij ­ 0, ∀i, j ∈ V, (9.1j)

xijp , x
ij
p ­ 0, ∀p ∈ P(i, j), ∀i, j ∈ V. (9.1k)
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In Problem (9.1) two different routings are considered for each demand (one used for

the volume below the threshold and one used for the volume above the thresholds). There-

fore, inequalities (7.1b) and (7.1c) have to be doubled into (9.1b), (9.1c) and (9.1d), (9.1e),

respectively. The overall routing is expressed using (9.1f-9.1h). The equation (9.1f) defines

the volume that has to be routed using the first routing scheme (variables xijp and x
ij
a ), the

equation (9.1g) defines the volume that has to be routed using the second routing scheme

(variables xijp and xija ), while (9.1h) makes those volumes be sent with appropriate routings.

Note that, Problems (9.1) and (7.1) are equivalent when hij = 0, for all i, j ∈ V.

9.1.3 Computational complexity

Unfortunately a decision version of the problem is co-NP-complete, so it is impossible to

verify in polynomial time if a given solution is feasible. It will be proved in this section by

reducing Subset Sum to the problem of verifying if a given solution is feasible. But first

some lemmas will be proved.

Assume that a collection of numbers is given. Subset Sum consists in answering the

question: is there a subset of those numbers whose sum is equal to a given limit. Subset

Sum is NP-complete and can be considered as a special case of the knapsack problem. [37]

Consider a collection of integer numbers H = {l1, l2, . . . , lN} and an integer limit L ­ 1.

The instance of Subset Sum is denoted by SSH.

An instance V OH of VO Routing corresponding to SSL is modeled by means of a graph

presented in Figure 9.1. Capacities of all links but one are unlimited. Only the capacity of

a link u is limited, and is equal to ǫ · (L − 0.5), where ǫ is a sufficiently small number,

i.e., 0 < ǫ < 0.5. Routing costs are set to 0 (in fact those values are irrelevant, because

the feasibility of a solution is being verified, and not its actual cost). The traffic demand

polytope D describes possible volumes of N different demands sti, where i = 1, 2, . . . , N ,

each corresponding to one number from H. The inequalities describing D are as follows.

tsti ¬ li, ∀i ∈ {1, 2, . . . , N}, (9.2a)
N
∑

i=1

tsti ¬ L. (9.2b)

The following solution is considered. The thresholds hsti , for each demand sti, where i =

1, 2, . . . , N , are set to li · (1− ǫ). The first routing scheme (the one used for the volume below

the threshold) for each demand uses link d, while the second routing scheme for each demand

uses link u.

Let β = (βij)i,j∈V , where βij = 1 or βij = −1 be any vector. Define Dβ as follows:

Dβ = D∩{t : ∀i,j∈Vβij(tij −hij) ¬ 0}. It is clear that D =
⋃

β∈{−1,1}|V|(|V|−1) Dβ. The solution
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Figure 9.1: Graph proving that a decision version of VO Routing is co-NP-complete.

considered above is not feasible if and only if there exists at least one β ∈ {−1, 1}|V|(|V|−1)

and a matrix t ∈ Dβ for which the routing is not feasible. Given any β ∈ {−1, 1}|V|(|V|−1),

the function max(tij − hij, 0)) can be replaced by tij − hij if βij = −1, or by 0 if βij = 1,

while function min(tij, hij) is equal to tij when βij = 1, and to hij in the other case. In

other words, constraint (9.1h) is linear in t, and it has the same form for all matrices of Dβ.

Consequently, the existence of a matrix t ∈ Dβ for which the solution above is not feasible

is equivalent to the existence of an extreme point of Dβ for which the same holds. To check

feasibility, it is then possible to consider only extreme points of the family of polytopes Dβ

where β ∈ {−1, 1}|V|(|V|−1). This observation will be useful since the extreme points of Dβ

have a very simple structure.

Lemma 9.1.1. The given solution to V OH is feasible if and only if the answer to SSH is
NO.

Proof. Suppose that the answer to SSH is YES. Then the traffic demand polytopeD contains
at least one extreme point such that ∀i=1,2,...,N tsti ∈ {0, li}, and

∑N
i=1 tsti = L. Such an

extreme point requires ǫ ·L of capacity at the link u, which is 0.5 · ǫ more than the available
capacity. Therefore, the given solution to V OH is not feasible.
Now assume that the solution is unfeasible. It will be proved that in such a case the answer

to SSH is YES. There exists a traffic demand matrix t ∈ D and a routing corresponding to
this matrix such that together they require more than ǫ · (L− 0.5) of capacity on the link u.
According to the observation above, the feasibility has to be only checked for the extreme
points of the family of polytopes Dβ. Each Dβ is described by sets of constraints but only
one of those constraints contains more than one variable. Therefore, for each extreme point
of any Dβ, an equation tsti = {li, li · (1 − ǫ), 0} can be not satisfied only for one tsti , where
i = 1, 2, . . . , N . Note that li · (1− ǫ) is the value of the threshold for a demand sti.
Assume that tst1 = l1 · (1− ǫ). Note that in this case tst1 = hst1 so the whole tst1 is routed

using the link d. The rest of the available demands’ volume, i.e., at most L− l1 · (1− ǫ) [as
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a result of (9.2b)], has to be routed in such a way that it will use more than ǫ · (L− 0.5) of
the capacity of the link u. But maxtsti∈[0,li]

tsti−hsti
tsti

= ǫ, for i = 1, 2, . . . , N . Therefore, the
remaining volume cannot use more than ǫ · (L− l1 + ǫ · l1) of the capacity of the link u, and
it is less than ǫ · (L− 0.5), because it was assumed that l1 is an integral number and ǫ < 0.5.
Knowing that ∀i=1,2,...,N tsti 6= li · (1 − ǫ), it is possible to conclude that for any extreme

point of any Dβ for which the routing solution is not feasible, an equation tsti = {li, 0} has to
be satisfied for at least all but one tsti . Assume that the equation is not satisfied for i = N .
Then constraint (9.2b) is necessarily saturated. In other terms, we haveM+ tstN = L, where
M is the sum of volumes of the other demands. Notice that this implies that tstN is integer.
The demands other than tstN consume at most ǫ · (L− tstN ) of the capacity of the link u, so
at least ǫ · (tstN − 0.5) has to be consumed by the demand stN . Using (9.2a) and knowing
that hstN = lN · (1 − ǫ) it is possible to write that (tstN − hstN ) ­ ǫ · (tstN − 0.5). In other
words, we have lN ­ tstN ­ lN −

0.5·ǫ
1−ǫ
. The facts that tstN is integer and

0.5·ǫ
1−ǫ
< 1 imply that

tstN = lN . It means that the answer to SSH is YES.
To finish the proof consider the case where tsti = {li, 0} is satisfied for each traffic

component. If the constraint (9.2b) is saturated, then the answer to SSH is still YES. Suppose
that

∑

i tsti < L. Since all tsti are integer in this case (either equal to 0 or li), the previous
inequality becomes

∑

i tsti ¬ L− 1. Then the traffic sent on the link u is less than ǫ · (L− 1).
However, the routing solution is not feasible implying that this traffic is more than ǫ·(L−0.5).
It is clearly a contradiction. Said another way, the answer to SSH is always YES whenever
the proposed solution to V OH is not feasible.

Proposition 9.1.2. A decision version of VO Routing is co-NP-complete.

Proof. The feasibility problem is in co-NP since a certificate of a negative response is given
by any matrix that cannot be routed according to the proposed thresholds and routing
schemes. It is easy to check whether a given matrix can be routing according to some given
routing schemes. The reduction proposed in Lemma 9.1.1 ends the proof.

As VO Routing is difficult, it will not be easy to solve it for real world networks

in satisfying time. Fortunately, one of its special cases presented in the following section

is polynomial. Moreover, according to Chapter 10, the special case (and its modification

presented in Section 9.3) is very efficient.

9.2 Simplified volume oriented routing

Simplified volume oriented routing is a special case of VO Routing. In the latter case po-

sitions of the thresholds are subject to optimization, while in the former case those positions

are set to the minimum values of the corresponding demands’ volumes. The change makes

the problem polynomial. On the other hand, the strategy is not efficient when there are not

dominated traffic demand matrices in D that contain zero components.

9.2.1 Notation

In order to formulate the simplified volume oriented routing problem an additional set of

constants is introduced.
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tminij : defined as t
min
ij = mint∈D tij.

9.2.2 Problem formulation

The problem of computing the minimum cost simplified volume oriented routing of an un-

certainty domain D, denoted by SVO Routing (SVO), can be formulated as in (9.3).

Problem SVO

minimize F SV O(D) =
∑

a∈A

ξafa, (9.3a)

∑

p∈P(i,j)

xijp ­ 1, ∀i, j ∈ V, (9.3b)

∑

p∈P(i,j)

xijp ­ 1, ∀i, j ∈ V, (9.3c)

∑

p∈P(i,j),p∋a

xijp ¬ x
ij
a , ∀i, j ∈ V, ∀a ∈ A, (9.3d)

∑

p∈P(i,j),p∋a

xijp ¬ x
ij
a , ∀i, j ∈ V, ∀a ∈ A, (9.3e)

tminij = t
′
ij, ∀i, j ∈ V, ∀t ∈ D, (9.3f)

tij − t
min
ij = t

′′
ij, ∀i, j ∈ V, ∀t ∈ D, (9.3g)

∑

i,j∈V

(xija t
′
ij + x

ij
a t′′ij) ¬ fa, ∀a ∈ A, ∀t ∈ D, (9.3h)

fa ¬ ca, ∀a ∈ A, (9.3i)

xijp , x
ij
p ­ 0, ∀p ∈ P(i, j), ∀i, j ∈ V. (9.3j)

The formulation (9.3) modifies (9.1) by simplifying definitions of t′ij and t
′′
ij, i.e., it replaces

(9.1f) with (9.3f), and (9.1g) with (9.3g). Moreover, as threshold variables hij are not used,

inequalities (9.1j) are obsolete in (9.3). Notice that, if tminij = 0, for all i, j ∈ V , then SVO

Routing is equivalent to Robust Routing.

9.2.3 Computational complexity

The problem is polynomial, and can be easily solved using techniques presented in Chapter

7, i.e., using an algorithm based on constraint generation (see [8, 9]), and generating paths

in an iterative way.

9.3 General volume oriented routing

General volume oriented routing can be seen as an extension of SVO Routing, with mod-

ified (more general) division of demands between routings. In fact, it is a generalization of
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SVO Routing, so it cannot be less efficient. On the other hand, it is more complicated to

implement.

9.3.1 Notation

In order to formulate the problem an additional set of constants has to be introduced.

tmaxij : defined as t
max
ij = maxt∈D tij.

9.3.2 Problem formulation

The formulation of the problem of computing the minimum cost general volume oriented

routing of an uncertainty domain D, denoted by GVO Routing (GVO), is alike the formu-

lation of SVO Routing, thus alike the formulation of VO Routing. The only differences

are in definitions of t′ij and t
′′
ij, i.e., constraint (9.3f-9.3g) are replaced by (9.4f-9.4g).

Problem GVO

minimize FGV O(D) =
∑

a∈A

ξafa, (9.4a)

∑

p∈P(i,j)

xijp ­ 1, ∀i, j ∈ V, (9.4b)

∑

p∈P(i,j)

xijp ­ 1, ∀i, j ∈ V, (9.4c)

∑

p∈P(i,j),p∋a

xijp ¬ x
ij
a , ∀i, j ∈ V, ∀a ∈ A, (9.4d)

∑

p∈P(i,j),p∋a

xijp ¬ x
ij
a , ∀i, j ∈ V, ∀a ∈ A, (9.4e)

αijtij + βij = t′ij, ∀i, j ∈ V, ∀t ∈ D, (9.4f)

(1− αij)tij − βij = t′′ij, ∀i, j ∈ V, ∀t ∈ D, (9.4g)
∑

i,j∈V

(xija t
′
ij + x

ij
a t′′ij) ¬ fa, ∀a ∈ A, ∀t ∈ D, (9.4h)

fa ¬ ca, ∀a ∈ A, (9.4i)

xijp , x
ij
p ­ 0, ∀p ∈ P(i, j), ∀i, j ∈ V. (9.4j)

Where vectors α and β are given, and satisfy the following set of constraints.

αijt
min
ij + βij ­ 0, ∀i, j ∈ V, (9.5a)

(1− αij)tminij − βij ­ 0, ∀i, j ∈ V, (9.5b)

αijt
max
ij + βij ­ 0, ∀i, j ∈ V, (9.5c)

(1− αij)tmaxij − βij ­ 0, ∀i, j ∈ V. (9.5d)
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It is obvious that SVO Routing is a special case of GVO Routing, where αij = 0

and βij = tminij , for each i, j ∈ V. An interesting observation is that for each D there exists

a simple way to obtain an optimal pair of vectors α and β.

Proposition 9.3.1. For a given D vectors α and β defined in (9.6) yield an optimal solution,
i.e., there are no cheaper solutions to GVO Routing for a given D and any other α and
β.

αij =
−tminij
tmaxij − t

min
ij

, ∀i, j ∈ V, (9.6a)

βij =
tmaxij t

min
ij

tmaxij − t
min
ij

, ∀i, j ∈ V. (9.6b)

Proof. Consider a capacity consumed by only one demand ij. The constraints defining the
used capacity on a link a for GVO Routing can be combined into:

xija (αijtij + βij) + x
ij
a [(1− αij)tij − βij],

and for α and β defined as (9.6) into:

zija t
min
ij

tmaxij − tij
tmaxij − t

min
ij

+ zija tmaxij
tij − t

min
ij

tmaxij − t
min
ij

.

For the sake of clearness, in the latter case, zija was substituted for x
ij
a and z

ij
a for xija .

Assume that the routing for GVO Routing (with α and β denoted by α′ and β′)is known
and expressed using vectors x and x. In order to obtain the same results for all t ∈ D and
suggested α and β take:

zija = (α
′
ij +
β′ij
tminij
)xija + (1− α

′
ij −
β′ij
tminij
)xija ,

zija = (α′ij +
β′ij
tmaxij
)xija + (1− α

′
ij −
β′ij
tmaxij
)xija .

It is an easy exercise to check that the obtained loads on each link will be exactly like
for GVO Routing. Moreover, the routing is feasible, because both zija and z

ij
a are convex

combinations of xija and x
ij
a , for a ∈ A and i, j ∈ V . Note that 0 ¬ α′ij +

β′
ij

tmin
ij

¬ 1, and

0 ¬ α′ij +
β′
ij

tmax
ij

¬ 1, for all i, j ∈ V, because of (9.5).

The proof contains an observation that will be interesting in the following section of the

thesis, and now will be stated as a corollary.

Corollary 9.3.2. Each solution to GVO Routing can be transformed to another solution
to GVO Routing with the vectors α and β defined like in (9.6). The solution will be of the
same cost, and it will require the same amount of capacity at each link.

9.3.3 Computational complexity

Alike SVO Routing, GVO Routing is polynomial, and can be easily solved using tech-

niques presented in Section 7, i.e., using an algorithm based on constraint generation (see

[8, 9]), and generating paths in an iterative way.
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Chapter 10

Numerical results

In this chapter numerical results are presented. They show applicability of the algorithms

and strategies presented in the second part of the thesis. The algorithms were implemented

using Visual C++ and tested on a one core Intel 2.4 GHz CPU with 3.25 GB RAM using a

linear programming solver CPLEX 11.0 [35].

10.1 Test cases

Example cases were built using real world networks available in SNDlib [52]. The following

topologies were used: atlanta, france, and cost266. All were tested using two different set of

active nodes Vact, and three to five different traffic demand polytopes defined for each of the

set. The first polytope for each set satisfied restrictions of the hose model presented in [23],

and described in Section 7.2.1. The sets of active nodes, and the bounds for incoming and

outgoing traffic, were chosen at random. In the first part of the experiments standard hose

model polytopes were used, while in the second part a general hose model was considered.

In the latter case the minimum traffic between a pair of node i and j, where i, j ∈ Vact,

was set to min(Ai,Bj)
2·|Vact|

, while the maximum traffic was set to min(Ai,Bj)
2
, where Ai and Bj are

defined as in Section 7.2.1. The last two polytopes were built using the B-S polytope model

presented in Section 7.2.2. The bounds were set at random, while k was set to 10% or 20%

of its maximum value, i.e., 0.1 or 0.2 times |Vact| · (|Vact| − 1), depending on the test case.

Note that B-S model polytopes were used only in the second part of the experiments. The

resulting test cases can be seen in Table 10.1. It consists of six columns.

# : identification number of a test case.

topology : name of the topology in SNDLib.

V : number of nodes in a network.

A : number of undirected links in a network.
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dim. D : dimension of a traffic demand polytope, i.e., |Vact| · (|Vact| − 1).

variant : way a traffic demand polytope was created, hose — full hose model polytope, 3

pts. (10 pts.) — convex hull of three (ten) random extreme points of a full hose model

polytope, B-S 10% (20%) — B-S polytope model with k = max(1, ⌊K · |Vact| · (|Vact| −

1)⌋), where K = 0.1(0.2).

Note that neither the full hose model polytopes nor the B-S model polytopes were consid-

ered for cost266 topology. The reason is that the complexity of those polytopes is enormous,

and it was impossible to solve the simplest Robust Routing (without any partitioning)

for them in reasonable time. Note that in the thesis the hose models with bounds on both

incoming and outgoing traffic for each active node are considered (in [8, 9] only bounds on

outgoing traffic were considered). The number of extreme points of those polytopes was also

the reason not to consider them for Dynamic Routing.

10.2 Partitioning strategies

In the first phase of the experiments the partitioning strategies (Different Reserva-

tion and Identical Reservation for Robust Routing, No Sharing, and Dynamic

Routing) are considered. First the congestion for different traffic demand polytopes and

different basic problems (Robust Routing, No Sharing and Dynamic Routing) is

computed. Note that in this phase the polytopes are not partitioned in any way. The results

are presented in Table 10.2. It consists of nine columns. The first six are identical to the

columns in Table 10.1. The following three columns present the congestion for each test case

and each basic problem. Note that the congestion is scaled in such a way that z = 1.0 is

obtained for Robust Routing and the traffic demand polytope that is a convex hull of

three extreme points of the full hose polytope. Therefore, they are comparable only within a

single configuration, and not between different configurations (a configuration is character-

ized by the same network and the same number of demands). Also notice that in this part

of the experiments B-S model polytopes were not considered. What is more, considered hose

model polytopes are standard, and not general like in the case of volume oriented strategies

presented in the next part of the experiments.

As expected, and clearly shown in Table 10.2, implementing No Sharing results in the

greatest congestion, while an implementation of Dynamic Routing is the least expensive.

An interesting observation is that the difference between the congestions for Robust Rout-

ing and No Sharing increases with the complexity of a traffic demand polytope. On the

other hand, the difference between Robust Routing and Dynamic Routing does not
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Table 10.1: Test cases

# topology |V| |A| dim. D variant

1 3 pts.

2 10 pts.

3 12 hose

4 B-S 10%

5 atlanta 15 44 B-S 20%

6 3 pts.

7 10 pts.

8 30 hose

9 B-S 10%

10 B-S 20%

11 3 pts.

12 10 pts.

13 20 hose

14 B-S 10%

15 france 25 90 B-S 20%

16 3 pts.

17 10 pts.

18 56 hose

19 B-S 10%

20 B-S 20%

21 90 3 pts.

22 cost266 37 114 10 pts.

23 156 3 pts.

24 10 pts.
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Table 10.2: Congestion

network congestion z

# topology |V| |A| dim. D variant Robust No sharing Dynamic

1 3 pts. 1.00 1.48 0.87

2 12 10 pts. 1.06 1.48 0.87

3 atlanta 15 44 hose 1.06 1.48 -

6 3 pts. 1.00 1.56 0.97

7 30 10 pts. 1.20 2.54 1.20

8 hose 1.20 2.66 -

11 3 pts. 1.00 1.80 0.96

12 20 10 pts. 1.05 2.38 1.05

13 france 25 90 hose 1.05 2.51 -

16 3 pts. 1.00 2.20 1.00

17 56 10 pts. 1.20 3.86 1.20

18 hose 1.98 3.91 -

21 90 3 pts. 1.00 1.92 1.00

22 cost266 37 114 10 pts. 1.43 3.97 1.43

23 156 3 pts. 1.00 2.38 1.00

24 10 pts. 1.10 4.57 1.10

seem to be significant. The observations justify introducing the partitioning of the traffic de-

mand polytope for No Sharing, and questions the significance of introducing partitioning

for Robust Routing (results for Dynamic Routing are a lower bound for Identical

Reservation for Robust Routing).

Although the partitioning can be meaningless for Robust Routing when minimizing

the congestion, it is profitable when minimizing routing cost (see further experiments in

Table 10.3), especially when appropriate conditions occur, i.e., networks are congested.

Having the congestion the efficiency of different partitioning strategies was tested. More-

over, running times of algorithms capable of solving the considered problems were also

checked. In this phase routing costs were used as cost functions.

In order to compare the strategies on equal terms the traffic demand polytopes were

scaled in such a way that the congestion z for each of them would be 1.1 if those scaled

polytopes had been used in the previous phase of the experiments. For instance, for the

france network with 56 demands while solving different partitioning problems for Robust
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Routing all traffic matrices from the traffic demand polytope which is a full hose model

polytope (test case #18) are multiplied by 1.1
1.98
, while all traffic matrices from the traffic

demand polytope which is a convex hull of 10 extreme points of the full hose polytope (test

case #17) are multiplied by 1.1
1.20
. For the same test cases andNo Sharing the traffic demand

polytope is even more diminished, and all the traffic matrices are multiplied by 1.1
3.91
and 1.1

3.86
,

respectively.

In order to handle the insolvability of the test cases (they are built in such a way that

all networks are congested) additional uncapacitated arcs are introduced between all pairs

of active nodes. Routing costs of these additional arcs are set in such a way that it is

approximately twenty times more expensive to use them than paths consisting of arcs in the

original network. Those arcs can be considered as possibilities to rent capacity from other

operators or as links set up using different, and more expensive, technology, e.g., radio links

or satellite links. Note that, those additional expensive links are not included in Table 10.1

(column V).

For each topology and each polytope up to five different directions α of the hyperplane

were used. The presented result correspond to the most profitable direction of the hyperplane.

In Table 10.3 the first part of the results is presented. The first column (#) contains

identification numbers of test cases, and is the same as in Table 10.1. The following five

columns present results obtained for five different variants of the problem, i.e., Identical

Reservation and Different Reservation both for Robust Routing and No Shar-

ing, and Different Reservation for Dynamic Routing. Assume that u is a cost of

an optimal solution to one of the basic problems without any partitioning, and v is a cost

of an optimal solution to the same problem with partitioning (either Identical Reserva-

tion or Different Reservation). In the table gains are presented. They are understood

as u−v
u
· 100%.

Another table, namely Table 10.4, presents running times of the presented algorithms

that solve various partitioning problems. Its construction is similar to the construction of

Table 10.3.

All versions of Different Reservation were solved by means of the method of Section

7.3.1. Identical Reservation for Robust Routing was solved using the double binary

search algorithm of Section 8.1, while Identical Reservation forNo Sharing was solved

using both the double binary search method and the algorithm of Section 8.2. That is why

the execution times for this version of the problem are presented as: a/b, where a is time

used by the double binary search algorithm, and b is time used by the algorithm of Section

8.2. Note that the algorithm of Section 8.2 cannot be used for the hose model polytopes.
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Table 10.3: Efficiency of the partitioning algorithms—gain [%]

Robust No sharing Dynamic

# Different Identical Different Identical Different

1 9.7 5.6 48.3 44.3 1.3

2 23.6 15.9 52.4 44.8 0.8

3 19.4 15.9 47.0 44.8 -

6 15.4 12.8 50.0 46.0 6.2

7 10.4 0.8 52.5 47.2 8.6

8 4.6 2.2 - 2.5 29.2 27.4 -

11 11.5 7.9 52.0 45.7 3.2

12 2.8 1.1 43.1 40.3 1.5

13 3.8 0.4 41.5 40.0 -

16 15.5 12.7 50.3 46.3 8.2

17 15.3 8.2 41.3 39.2 7.3

18 0.0 0.0 31.2 30.2 -

21 10.8 5.4 54.8 47.7 4.7

22 1.1 0.2-0.7 54.5 51.2 2.1

23 7.5 1.1 66.6 61.1 7.5

24 2.9 0.0-2.9 53.4 49.5 4.2

The 9000-second time limit has been hit three times. Identical Reservation for Ro-

bust Routing has not been solved to optimality for the test cases #8, #22, and #24. In

those cases, the gains are presented as: a− b, where a is the gain for the best solution found,

and b is the upper bound. In other words, the optimal gain belongs to [a, b]. Note that time

limits were not used for Dynamic Routing.

Notice that the gain for No Sharing is significant, while the gain for Dynamic Rout-

ing is rather small. The reason is that No Sharing in its nature is very restrictive, and

any mechanism that can relax its resource reservation rules is of great importance. On the

other hand, Dynamic Routing is very flexible. Therefore, there is no place for significant

improvements.

As shown in Table 10.3, Different Reservation almost always outperforms Identi-

cal Reservation. The only case when these two strategies provide similar results is test

case #18 for Robust Routing (gain for both is 0). In other cases the difference in gains

seems to be stable, and it oscillates near 5%.
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Table 10.4: Running times of the partitioning algorithms [s]

Robust No sharing Dynamic

# Different Identical Different Identical Different

1 0.4 5.1 0.3 0.5 / 0.2 1.3

2 0.5 7.0 0.3 0.6 / 0.3 19.4

3 0.6 8.9 0.4 0.7 -

6 1.3 20.4 0.8 2.8 / 1.0 6.2

7 6.2 302.8 0.8 3.4 / 1.5 45.6

8 31.8 9000.0 1.5 3.6 -

11 4.3 31.1 1.4 4.0 / 2.0 5.3

12 9.8 180.4 2.9 5.6 / 3.7 26.0

13 19.3 1132.9 1.7 2.8 -

16 13.3 111.6 10.2 17.8 / 8.6 26.7

17 98.1 2873.3 9.3 17.2 / 11.0 983.0

18 3016.4 3016.4 10.2 18.8 -

21 46.1 354.0 13.7 64.4 / 45.3 106.4

22 517.7 9000.0 39.5 127.7 / 79.5 6808.9

23 148.3 1771.1 37.3 124.7 / 132.0 669.1

24 4024.3 9000.0 137.4 594.7 / 350.7 12019.3

It is also worth to notice that the running times of the double binary search algorithm

presented in Section 8.1 are not significantly larger than the running times of the polynomial

algorithm of Section 8.2 (see Table 10.4, Identical Reservation for No Sharing). It

justifies the claim that the double binary search algorithm, although non-polynomial, is

practical, and can be applied even to medium size networks.

10.3 Volume oriented strategies

In the second part of the experiments volume oriented strategies are considered, i.e, SVO

Routing and GVO Routing. Notice that VO Routing was not tested because of its

complexity.

An evaluation strategy used in this section is similar to the one used for the partitioning

strategies. First, the polytopes were scaled in such a way that the congestion, using Ro-

bust Routing, obtained for the most loaded link was 110%. Then, in order to handle the
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insolvability of the test cases additional uncapacitated arcs between all pairs of active nodes

were introduced. Routing costs of these additional arcs were set in such a way that it was

approximately twenty times more expensive to use them than paths consisting of arcs in the

original network.

In this part of the experiments all test cases were used (including B-S polytope model).

As far as the hose model is concerned, the general hose model was considered. The reason is

that both SVO Routing and GVO Routing require lower bounds on demands’ volumes

in order to work appropriately.

The result of this part of the experiments are presented in Table 10.5. It consists of nine

columns. The first contains identification numbers of test cases, while the rest show execution

times and costs for the following cases.

Robust : strategy described in Section 7.1.1. It is the simplest routing strategy and an

upper bound on costs of all other strategies.

SVO Routing : strategy presented in Section 9.2.

GVO Routing : strategy presented in Section 9.3.

It is clearly seen that both volume oriented strategies are efficient, and they outperform a

corresponding partitioning strategy, i.e., Identical Reservation for Robust Routing.

However, they take advantage of a special structure of traffic demand polytopes (lack of

non-dominated traffic demand matrices with zero components), and they cannot outperform

the partitioning strategies in general test cases. It is also worth to notice that GVO Rout-

ing provides better results than SVO Routing only in five cases, and only in two of them

(#6 and #17) the difference is not negligible.

What is more, computational times are also very good. They prove that the volume

oriented strategies can be successfully implemented in medium size networks. The 9000

second time limit was hit only three times (twice for #18 and once for #20), and in all those

cases feasible solutions to the problem had been first obtained (that is a reason why the

results are presented using a sign ¬).
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Table 10.5: Efficiency and running times of the volume oriented strategies

Robust SVO Routing GVO Routing

# cost time[s] cost gain[%] time[s] cost gain[%] time[s]

1 723.0 0.1 717.5 0.8 0.4 717.5 0.8 0.2

2 447.5 0.2 332.0 25.8 0.4 332.0 25.8 0.3

3 442.3 0.3 380.3 14.0 0.5 380.3 14.0 0.5

4 361.1 0.1 287.9 20.3 0.2 287.9 20.3 0.2

5 343.0 0.2 291.8 14.9 0.3 291.8 14.9 0.5

6 410.7 0.6 395.2 3.8 0.7 393.5 4.2 0.9

7 448.8 0.7 420.5 6.3 1.6 420.4 6.3 2.5

8 443.5 3.1 402.2 9.3 7.0 402.1 9.3 9.9

9 625.7 1.0 350.6 44.0 6.1 350.6 44.0 10.5

10 506.1 1.4 448.0 11.5 11.0 448.0 11.5 25.9

11 332.4 0.6 317.8 4.4 0.7 317.8 4.4 0.8

12 353.6 0.8 324.1 8.3 0.8 324.1 8.3 1.6

13 357.0 1.6 328.9 7.9 1.9 328.9 7.9 3.0

14 394.5 1.4 371.5 5.8 2.7 371.5 5.8 4.3

15 483.6 1.7 477.9 1.2 4.9 477.9 1.2 8.8

16 652.3 3.6 619.6 5.0 3.7 619.3 5.0 3.4

17 695.4 8.6 574.2 17.4 22.7 565.1 18.7 37.3

18 649.2 495.0 525.4 19.1 1336.4 525.4 19.1 3401.0

19 854.5 33.2 802.8 6.1 177.4 802.8 6.1 765.1

20 518.7 11.5 516.3 0.0 605.7 ¬516.3 ­0.0 7200.0
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Chapter 11

Conclusions

In the thesis two different partitioning strategies were presented, i.e., Identical Reser-

vation and Different Reservation. They were applied to three different basic models,

i.e., Robust Routing, No Sharing, and Dynamic Routing. Moreover, three different

volume oriented strategies were presented, i.e., VO Routing, SVO Routing, and GVO

Routing. They were applied to one basic model, i.e., Robust Routing.

The computational complexity of different combinations of these basic models, partition-

ing strategies, and volume oriented strategies were discussed, e.g., a special case of Dynamic

Routing was presented, which is polynomial even when Different Reservation is con-

sidered for it.

For the partitioning problems two algorithms were proposed: the double binary search

algorithm that solves Identical Reservation, and another (polynomial time) algorithm

that solves Identical Reservation for No Sharing when the traffic demand polytope

is given by a set of its extreme points. The presented algorithms (and a method that solves

Different Reservation introduced earlier in the literature) were thoroughly tested, and

proved to be applicable to networks of practical sizes. Differences in network utilization’s

efficiency of the three basic problems were shown. What is more, possible gains that result

from the implementation of different partitioning strategies were also presented.

In the thesis the direction of the hyperplane used for partitioning is assumed to be known

(not subject to optimization), and in the experiments hyperplanes of a particular form were

used, i.e., traffic between a given pair of nodes is a hyperplane’s direction. But, in general,

it is possible to use any hyperplane’s direction, even one that is not directly connected to

traffic, e.g., time.

The presented algorithms can be easily extended to solve a problem when the traffic

demand polytope is divided by many hyperplanes of the same direction. However, a more

general problem that consists in providing an optimal set of hyperplanes of unknown direc-

tions still remains a challenge.

As far as the volume oriented strategies are concerned, it was shown in the thesis that
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the problem of providing an optimal solution satisfying VO Routing is difficult in general.

However, a way to cope with this difficulty was also presented, i.e., SVO Routing andGVO

Routing were introduced, which are polynomially solvable modifications of VO Routing.

It was shown that SVO Routing cannot outperform GVO Routing as far as cost is

concerned, but on the other hand, it can be implemented easier. Moreover, those strategies

can be equally effective when some special polytopes are considered, e.g., B-S polytope

model. Finally, numerical results proving the applicability and efficiency of the introduced

volume oriented approaches were presented.

In the thesis different strategies that were to merge the efficiency of the dynamic routing

with the simplicity of the robust stable routing were presented. Although the obtained results

are satisfactory, there is still a lot of space for improvements. The only theoretical bound for

the efficiency of novel strategies to be proposed is the efficiency of the dynamic routing. The

bound has not been reached by any solution that is solvable in polynomial time. Thus, the

research field is by no mean exhausted.
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design. Networks, 50(1):50–54, 2007.

[20] D. Coudert, P. Datta, S. Perennes, H. Rivano, and M-E. Voge. Shared risk resource

group complexity and approximability issues. Parallel Processing Letters, 17(2):169–

184, 2007.

[21] G. Dahl and M. Stoer. A cutting plane algorithm for multicommodity survivable network

design problems. INFORMS Journal on Computing, 10(1):1–11, 1998.

[22] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathe-

matik, 1(1):269–271, 1959.

[23] N.G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K.K. Ramakrishnan, and J.E. Van Der

Merwe. A flexible model for resource management in virtual private networks. In

Proceedings of the ACM SIGCOMM, 1999.

[24] J. Edmonds and R.M. Karp. Theoretical improvements in algorithmic efficiency for

network flow problems. Journal of the ACM, 19(2):248–264, 1972.

[25] A. Feldmann, A.C. Gilbert, P. Huang, and W. Willinger. Dynamics of IP traffic: A

study of the role of variability and the impact of control. In Proceedings of the ACM

SIGCOMM, 1999.

[26] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and F. True. Deriving

traffic demands for operational IP networks: Methodology and experience. IEEE/ACM

Transactions on Networking, 9(3):265–279, 2001.

[27] J.A. Fingerhut, S. Suri, and J.S. Turner. Designing least-cost nonblocking broadband

networks. Journal of Algorithms, 24(2):287–309, 1997.

100



[28] S. Fortune, J.E. Hopcroft, and J.C. Wyllie. The directed subgraph homeomorphism

problem. Technical report, Cornell University, 1978.

[29] M.R. Garey and D.S. Johnson. Computers and Intractability : A Guide to the Theory

of NP-Completeness (Series of Books in the Mathematical Sciences). W. H. Freeman,

1979.

[30] N. Goyal, N. Olver, and F.B. Shepherd. Dynamic vs. oblivious routing in network

design. In Proceedings of the European Symposia on Algorithms, 2009.

[31] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences

in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

[32] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial

Optimization. Springer Verlag, 1988.

[33] G.M. Guisewite and P.M. Pardalos. Minimum concave-cost network flow problems:

applications, complexity, and algorithms. Annals of Operations Research, 25(1-4):75–

100, 1990.

[34] J.Q. Hu. Diverse routing in optical mesh networks. IEEE Transactions on Communi-

cations, 51(3):489–494, 2003.

[35] ILOG. CPLEX 11.0 User’s Manual. ILOG, 2007.

[36] S. Irnich and G. Desaulniers. Shortest path problems with resource constraints. In

G. Desaulniers, J. Desrosier, and M.M. Solomon, editors, Column Generation, pages

33–65. Springer, 2005.

[37] R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller and J.W.

Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum Press,

1972.

101



[38] H. Kellerer, R. Mansini, U. Pferschy, and M.G. Speranza. An efficient fully polynomial

approximation scheme for the subset-sum problem. Journal of Computer and System

Sciences, 66(2):349–370, 2003.

[39] L.G. Khachiyan. A polynomial algorithm for linear programming. Soviet Mathematics

Doklady, 244(5):191–194, 1979.

[40] A.M.C.A. Koster and A. Zymolka. Demand-wise shared protection and multiple failures.

In Proceedings of the International Network Optimization Conference, 2007.
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Appendix A

Résumé de thèse

Dans les grands réseaux de transport, certains éléments du réseau peuvent être responsables

du traitement d’importants volumes de trafic. Cela rend ces réseaux vulnérables aux pannes

telles que les coupures de câbles. Des mécanismes appropriés pour le recouvrement du trafic

doivent être mis en œuvre pour éviter les ruptures de service. Une des meilleures techniques

pour protéger les réseaux de transport consiste à prévoir des mécanismes de restauration

au niveau de la couche transport elle-même afin que chaque opérateur de transport puisse

sécuriser son propre réseau et offrir un service de transport fiable aux autres acteurs tels

que les opérateurs IP. D’autres mécanismes de protection pourront alors être déployés aux

niveaux supérieurs sans interférences avec la restauration au niveau transport.

Outre les pannes pouvant touchers ses composantes, un réseau doit aussi faire face à

l’incertitude de la matrice de trafic qu’on chercher à acheminer dans le réseau. Cette incer-

titude est une conséquence de la multiplication des applications et services faisant appel au

réseau. La mobilité des usagers ainsi que les pannes touchant le réseau contribuent également

à cette incertitude.

La thèse se découpe donc en deux parties. Dans la première partie, nous nous intéressons

à la complexité des différents mécanismes de sécurisation des réseaux. Dans la seconde par-

tie, nous nous intéressons à l’incertitude de la matrice de trafic et notamment au modèle

polyédral.
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A.1 Première partie: Complexité

L’un des mécanismes les plus courants pour la sécurisation des réseaux de transport est la

protection de chemin (path protection, PP). Un exemple est le mécanisme de protection 1+1,

appelé Hot Standby (HS) dans lequel on définit un chemin primaire utilisé en temps normal

et un chemin secondaire disjoint du chemin primaire et portant le même signal. Lorsque le

chemin primaire tombe en panne, on reçoit les données à travers le chemin secondaire. Le

mécanisme 1+1 est efficace en termes de temps de restauration, mais coûteux en termes

de capacités. En effet, les capacités de protection ne sont pas partagées entre les différents

chemins primaires et doivent donc être au moins égales aux capacités utilisées en temps

normal. Certaines variantes de la protection de chemin (comme la protection n : m et la

diversité des chemins) peuvent réduire le coût de la protection d’une manière limitée.

Pour réduire les coûts d’une manière plus sensible, des mécanismes actifs de restauration

de chemins (PR) sont envisagés. Bien que PR est assez complexe à mettre en œuvre et

peut ralentir les temps de restauration, il permet de mutualiser les ressources et de réduire

les coûts. La technique PR consiste à prévoir des chemins de routage utilisés en régime

normal (absence de pannes) et d’autres qui sont utilisés en cas de panne. Lorsqu’une panne

se produit, les connexions qui utilisaient des chemins affectés par la panne sont reroutés sur

des chemins valides. On considère plusieurs variantes de PR:

• Les capacités utilisées pour la sécurisation peuvent provenir des capacités libérées par

les chemins qui étaient utilisés en régime nominal et qui ne le sont plus à cause d’une

panne donnée. On est alors dans le cas dit avec Stub-Release (SR).

• Les capacités utilisées pour la protection sont disjointes de celles utilisées en régime

normal. On est alors dans le cas sans Stub-Release (nSR).

Dans les deux cas, une optimisation fine est nécessaire pour mutualiser les ressources au
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mieux en tenant compte des possibilités techniques offertes pour chaque variante. Dans les

deux cas, il est important que la capacité de protection soit partagée entre les flux restaurés

suite à des pannes différentes.

La protection peut:

• Soit dépendre de la panne (failure-dependent, FD). Les chemins de routage utilisés

pour restaurer un flux primaire donné peuvent alors être différents en cas de pannes

différentes.

• Soit être complètement indépendante de la panne (failure-independant, FI). C’est-à-

dire qu’il faut définir des chemins de routage qui soient valides quelle que soit la panne

qui touche les chemins utilisés en régime normal.

Dans la première partie de la thèse, nous analysons la complexité de différents mécanismes

de sécurisation des réseaux. La complexité des problèmes d’optimisation sous-jacents dépend

également des scénarios de panne considérés. Dans certains cas, on considère uniquement des

pannes simples et non-simultanées de quelques éléments du réseau. Dans d’autres cas, on

peut avoir des pannes multiples où plusieurs composantes du réseau sont en panne. Le fait

de considérer des pannes multiples rend les problèmes d’optimisation plus difficiles.

Il est important de connâitre la complexité des problèmes d’optimisation liés à la con-

ception des réseaux résilients. En effet, connâitre cette complexité aide à choisir les bonnes

méthodes de résolution pour ces problèmes

Notre principale contribution dans ce cadre est le résultat suivant.

La plupart des problèmes de réseaux résilients sontNP-difficiles, même lorsque

l’on autorise la bifurcation des flux.

Les problèmes considérés sont en réalité des variantes des problèmes de multi-flots liés

aux mécanismes PP et PR. Nous avons établis que tous les problèmes sont NP-difficiles

lorsque des pannes multiples peuvent se produire simultanément, même lorsqu’on autorise
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de partager une demande de trafic sur plusieurs chemins (routage fractionnaire). Les preuves

de complexité sont non-triviales et sont présentées dans le manuscrit.

Dans la littérature, plusieurs auteurs se sont intéressés à la complexité des problèmes

de conception de réseaux résilients. En réalité, la plupart de ces résultats ne traitent pas

de la complexité des problèmes d’optimisation de base, mais sont plutôt consacrés à la

complexité du problème dit de pricing, requis pour la génération de colonnes dans l’écriture

en formulation chemins du modèle linéaire correspondant. Malgré l’importance pratique de

ces résultats, ils ne permettent pas en général d’établir la complexité des problèmes de base,

à laquelle est dédiée la première partie de la thèse.

Dans la littérature on retrouve également l’étude du cas d’une seule panne et le calcul

de bornes inférieures de bonne qualité pour notre problème.

Le premier problème que nous analysons est la protection de chemin (path protection,

PP). Il s’agit de mécanismes passifs dans le sens où aucun flux n’est restauré, et donc le flux

résiduel dans un état de panne doit être suffisant pour satisfaire les demandes. Dans la thèse,

nous présentons le mécanisme de hot-standby PP (HS), ainsi que son extension appelée path

diversity (PD). Avec HS, c’est à dire la protection 1+1, chaque demande est envoyée sur un

seul chemin protégé par un chemin unique dédié. Les deux chemins sont disjoints en termes

de pannes, c’est-à-dire que les deux chemins ne sont jamais en panne simultanément.

L’inconvénient majeur de HS est qu’il nécessite au moins deux fois la capacité d’un réseau

non protégé. Par conséquent, on s’intéresse à de meilleurs mécanismes de PP moins gour-

mands en capacités. Un des mécanisme de PP qui est sans doute parmi les plus économiques

en terme de capacité est la diversité des chemin: path diversity (PD). PD protège le trafic

contre des pannes de composants du réseau, par sur-dimensionnement, c’est-à-dire en achem-

inant plus de trafic que spécifié par la valeur de la demande dans l’état normal, et en veillant

à ce que au moins la quantité prévue de volume survive dans chaque scénario de défaillance,
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sans reroutage. Le concept de la PD a été étudié dans la littérature sous des noms différents,

on retrouve par exemple les termes de diversification et de protection partagée en fonction

de la demande. La complexité des problèmes de HS-PP et PD est étudiée dans le début de

la première partie.

La suite de la première partie est consacrée à l’étude de la complexité de la restauration de

chemin (PR). Il s’agit de mécanismes actifs, dans le sens où ils restaurent le fonctionnement

des flux détruits par une panne. Certes, pour garantir une bonne restauration, des capacités

de protection supplémentaires sont nécessaires par rapport à un réseau conçu uniquement

pour fonctionner sans panne. Mais le coût des capacités supplémentaires est généralement

beaucoup plus faible pour PR que pour les PP, puisque, par définition, les capacités de pro-

tection PR sont partagées par différentes demandes et pour des pannes différentes. Dans un

premier temps, nous supposons que les flux défaillants sont restaurés de façon indépendante

de la panne (FI). Le cas de la restauration dépendant des pannes (FD) est traité dans un

deuxième temps.

Les mécanismes PR sont étudiés sous deux hypothèses différentes: avec ou sans stub-

release. Avec Stub-Release (SR), la capacité sur les parties survivantes (stubs) d’un chemin

de routage qui a été coupé par une panne peut être réutilisée pour la sécurisation. Sans

stub-release (nSR), cette capacité est exclusivement réservée pour le routage en absence de

panne, et ne peuvent pas être réutilisés en cas de défaillance. Notez que nSR est typique pour

les couches de transport, par exemple, pour les réseaux optiques, ou les réseaux SONET.

Selon les paramètres considérés, on obtient ainsi quatre problèmes différents de restau-

ration de chemins, à savoir: FI-nSR, FI-SR, FD-nSR, et FD-SR. La variante non-bifurquée

(mono-routage) du problème de FI-SR, suppose que chaque demande est routée sur un seul

chemin en absence de panne. A chaque panne affectant le chemin primaire choisi, la demande
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est déplacée vers un autre chemin, sans fractionnement de la demande. La complexité algo-

rithmique de tous ces cas est discutée dans la thèse. On retrouve également des résultats sur

la NP-complétude de différentes variantes du problème FI-nSR.

Les différentes variantes ont été étudiées. Nous proposons des formulations en pro-

grammes linéaires, ou en programmes linéaires à variables mixtes (MIP). Dans la plupart des

cas, la formulation est une formulation non-compacte du type arc-chemin. La formulation

compacte sommet-arc est utilisée uniquement dans deux cas de routage bifurqué à savoir:

PP-PD (protection de chemin avec diversité), et la FI-nSR PR (restauration de chemin

indépendante des pannes sans stub-release).

Certains des résultats de cette première partie de la thèse ont été présentés au Polish-

German Teletraffic Symposium (PGTS), Berlin, Allemand, en Septembre 2008, et par la

suite dans European Transactions on Telecommunications en 2009 et le journal Networks

en 2010. Enfin, certains résultats ont été présentés au Colloque International Symposium

on Combinatorial Optimization (ISCO), Hammamet, Tunisie en Mars 2010, et publiés dans

IEEE Communications Letters en 2010.

A.2 Deuxième partie: Modèle polyédral

Dans la deuxième partie de la thèse, nous nous intéressons à un autre type d’incertitude:

l’incertitude de la demande de trafic. Nous nous focalisons sur le modèle polyédral.

Les réseaux de télécommunication modernes doivent acheminer du trafic généré par une

variété d’applications différentes, et fournir des services à un grand nombre d’utilisateurs.

Cela rend difficile la prédiction du trafic. En outre, l’introduction de nouveaux services et la

mobilité des clients rendent la tâche encore plus difficile.

Certains modèles ont été proposés dans le passé pour faire face à l’incertitude du trafic.

La première approche consiste à construire une matrice de trafic fondée sur le pire cas pour
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chaque composante du trafic. Le routage est alors calculé sur la base de cette matrice. Cette

approche a l’avantage d’être simple, mais elle peut fournir des solutions onéreuses. En effet,

elle n’autorise pas le partage des ressources par des composantes de trafic qui n’atteignent

pas le pire cas simultanément.

La deuxième approche est basée sur une modélisation probabiliste des variations de trafic.

Après avoir spécifié un modèle probabiliste pour la prévision du trafic, on peut chercher

le routage qui optimise un certain critère probabiliste: le débit moyen, le retard moyen, la

probabilité de blocage, etc. La solution obtenue de cette manière est bonne en moyenne, mais

peut être très mauvaise dans certains cas. En outre, cette méthode nécessite la connaissance

des modèles de probabilité, qui sont généralement difficiles à obtenir. Ce type d’approche

est généralement appelé programmation stochastique. Une approche classique différente,

l’optimisation robuste, prend en compte un nombre fini de situations possibles. Dans ce cas,

on cherche une solution qui prend en charge toutes les situations envisagées. Dans le contexte

des réseaux, il s’agit alors de déterminer un schéma de routage, de telle sorte que chacune

des matrices de trafic appartenant à un ensemble fini donné de matrices de trafic peut être

satisfaite par le réseau. Un autre modèle robuste suppose que le trafic sortant de chaque

nœud est borné (la limitation sur le trafic entrant peut également être prise en compte).

La matrice de trafic peut être alors n’importe quelle matrice satisfaisant ces contraintes. Ce

modèle avec incertitude est appelé hose model. Plusieurs problèmes de conception de réseau

basé sur ce modèle ont reçu une attention considérable dans la littérature.

Certains auteurs proposent un modèle différent, en supposant que tous les nœuds ne

peuvent pas produire la quantité maximale de trafic simultanément. En fait, ce modèle, ainsi

que le hose model présenté ci-dessus, sont des cas particuliers d’un modèle polyédral plus

général. Le modèle suppose que chaque matrice de trafic possible appartient à un polytope.

Dans la littérature un algorithme en temps polynomial a été proposé pour calculer un plan de
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routage qui résout ce problème. Le routage est robuste et stable (robuste, car il est compatible

avec toutes les matrices, et stable, car il ne change pas lorsque des changements de matrice

se produisent). Bien que le modèle ait été défini pour les matrices de trafic appartenant à un

polytope, il peut également traiter avec succès les problèmes avec des matrices appartenant

à une union de polytopes.

Une approche différente face à l’incertitude consiste à permettre à un réseau de changer de

routage de façon dynamique, quand il y a un changement significatif en termes de matrice de

trafic. Ce problème a été intensément étudié dans le cadre des réseaux commutés. Des règles

différentes peuvent être appliquées pour connecter des appels en fonction de la situation

actuelle, comme par exemple, le routage dynamique alternatif, le routage séquentiel, etc.

Bien que ce type de routage présente de nombreux avantages, il est généralement difficile à

mettre en œuvre. De plus il n’est pas optimal car les règles utilisées sont fixées à l’avance.

Cependant, il peut être utilisé comme point de référence (borne inférieure) pour évaluer les

approches présentées plus tôt. Dernièrement, il a été prouvé que le coût optimal d’un réseau

fondé sur les modèles de routage robustes et stables (fractionnel ou intégral) peut être un

facteur de (log n) plus grand que le coût requis pour utiliser le routage dynamique.

Dans le passé, la question suivante a été posée: étant donné un polytope de demande de

trafic avec incertitude, est-il en théorie facile de calculer un routage complètement dynamique

(système de routage qui dépend du trafic de la matrice courante)? Récemment, il a été

prouvé que ce problème est en général difficile: il est co-NP-difficile de décider si un réseau

donné avec des capacités connue est capable de transporter chaque matrice de trafic dans le

polytope, lorsque le routage est dynamique. En outre, pour des raisons techniques, il est très

difficile de mettre en œuvre ce type de routage. Par conséquent, il est intéressant de considérer

un intermédiaire entre le routage stable et robuste et le routage entièrement dynamique. Au

lieu de calculer une solution robuste, il est possible de partitionner le polytope de la demande
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de trafic en plusieurs sous-ensembles, et de calculer un routage robuste pour chacun d’eux.

On peut par exemple faire ce partitionnement à l’aide d’un hyperplan. On suppose que la

direction d’un hyperplan divisant le polytope des matrices de trafic est connue, mais sa

position est sujette à optimisation. Par exemple, une quantité de trafic généré entre une

paire de nœuds, ou une quantité de trafic généré par un nœud spécifique peuvent être pris

comme une direction de l’hyperplan. Dans une telle situation, une position d’un seuil qui

déclenche des changements dans le routage est optimisée. En d’autres termes, deux stratégies

de routage sont spécifiées, la première est utilisée si le volume du trafic, qui a été défini comme

une direction de l’hyperplan, est inférieur au seuil, sinon la seconde stratégie de routage est

utilisée. Une autre possibilité est de considérer le temps comme une direction de l’hyperplan.

Dans ce cas, le temps est représenté par une dimension supplémentaire de l’ensemble de

l’incertitude, et le moment où le routage doit être changé est optimisé.

En plus du routage robuste stable et le routage dynamique, nous étudions également le

routage sans partage. Dans ce mode de routage, les ressources sont réservées par demandes

et aucune mutualisation entre les demandes de trafic n’est tolérée.

Parmi les différents modes de routage et les différents problèmes sous-jacents, nous avons

identifié lesquels de ces problèmes étaient polynomiaux, et comment ils peuvent être résolus

avec succès.

Nous distinguons par exemple le cas où les capacités sont réservées une seule fois pour

l’ensemble du polytope de trafic (i.e., même si le routage change, les capacités réservées ne

changent pas). Nous étudions également le cas où les capacités peuvent être re-réservées à

chaque modification de routage. Toutes les variantes sont étudiées et comparées.

Le problème majeur avec ce type d’approche est que les routages peuvent différer con-

sidérablement entre les sous-ensembles obtenus en partitionnant le polytope, et la mise en

œuvre de ces changements peut alors entrâiner des pertes graves de trafic (en raison de
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l’instabilité). Il est donc nécessaire de trouver une stratégie rendant les changements de

routage moins abrupts. Pour cela, dans la deuxième partie, la thèse suivante est vérifiée.

Il existe des mécanismes de routage qui sont décentralisés et dont la mise en

œuvre est simple capables de faire face à la demande de trafic polyédrale.

Nous proposons un nouveau mécanisme de routage, appelé routage guidé par le volume

(et ses variantes polynomiales: routage guidé par volume simplifié et routage guidé par

volume généralisé). Ce mécanisme est l’une de nos contributions majeures. Il tire parti de

la simplicité du routage stable robuste et de l’efficacité du routage dynamique. En outre, il

n’implique pas de changements brusques des flux dans le réseau.

Ce nouveau mécanisme de routage implique une division d’un polytope de la demande de

trafic. Toutefois, dans ce cas, seule une partie du débit qui dépasse un seuil est acheminé à

l’aide d’un ensemble de chemins différents. Trouver une stratégie optimale est généralement

NP-difficile. Cependant, nous montrons qu’une autre variante du routage guidé par le vol-

ume peut être traitée en temps polynomial. Nous proposons également une généralisation

du routage guidé par le volume qui est aussi facile à calculer.

L’ensemble des modes de routage et toutes les variantes ont été implémentés. Les résultats

numériques montrent l’applicabilité des algorithmes.

Les résultats concernant les stratégies de partitionnement étudiées dans la thèse ont

d’abord été présentées par l’auteur lors du 6th Polish Teletraffic Symposium, Łódź, Pologne,

en Septembre 2009, puis à IEEE Global Communications Conference (GLOBECOM), Hon-

olulu, États-Unis, en décembre 2009. Ils sont également publiés dans un article dans le journal

International Transactions in Operational Research. Les résultats concernant les stratégies

guidées par volume ont été présentées lors du 14th International Telecommunications Net-

work Strategy and Planning Symposium, Varsovie, Pologne, en Septembre 2010.
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