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Abstract 
Wireless multi-hop ad hoc and sensor networks provide a promising solution to ensure 

ubiquitous connectivity for the Future Internet. Good network connectivity requires designing 
a reliable Medium Access Control (MAC) protocol, which is a challenging task in the ad hoc 
and sensor environments. The broadcast and shared nature of the wireless channel renders the 
bandwidth resources limited and expose the transmissions to relatively high collisions and 
loss rates. The necessity to provide guaranteed Quality of Service (QoS) to the upper layers 
triggered the design of conflict-free MAC protocols. The TDMA synchronization constraint is 
basically behind the rush of MAC protocol design based on a fixed frame size. This design 
shows inflexibility towards network variations and creates a network dimensioning issue that 
leads to a famine risk in case the network is under-dimensioned, and to a waste of resources, 
otherwise. Moreover, the alternative dynamic protocols provide more adaptive solutions to 
network topology variations at the expense of a fair access to the channel. Alongside with the 
efficient channel usage and the fair medium access, reducing the energy consumption 
represents another challenge for ad hoc and sensor networks. Solutions like node activity 
scheduling tend to increase the network lifetime while fulfilling the application requirements 
in terms of throughput and delay, for instance. 

Our contributions, named OSTR and S-OSTR, address the shortcomings of the medium 
access control protocol design in the challenging environment of wireless multi-hop ad hoc 
and sensor networks, respectively.  

For OSTR the idea consists in adopting a dynamic TDMA frame size that increases slot-
by-slot according to the nodes arrival/departure to/from the network, and aiming to achieve a 
minimum frame size. For this end, OSTR couples three major attributes: (1) performing slot-
by-slot frame size increase, (2) providing a spatial reuse scheme that favors the reuse of the 
same slot if possible, (3) and ensuring an on-demand frame size increase only according to the 
node requirements in terms of throughput.  To tackle different frame sizes co-existence in the 
network, OSTR brings a cooperative solution that consists in fixing an appointment, a date 
when the frame size in the network is increased. 

Concerning S-OSTR, it is an amendment of OSTR for wireless sensor networks. It brings 
the idea of a dynamic active period, since it deploys a dynamic frame size that is built slot-by-
slot according to nodes arrival to the network. S-OSTR enforces the slot-by-slot frame size 
increase by a node activity scheduling to prolong the inactivity period in the network, and 
hence prolong the overall network lifetime for wireless sensor networks.  

Our contributions are both based on the new dynamic TDMA frame size increase that 
consists in increasing the frame size slot-by-slot aiming to achieve a shorter frame size, and 
hence improve the channel utilization, and reduce the energy consumption. The performance 
analysis of OSTR and S-OSTR shows that they present good potentials to support QoS 
requirements, to provide energy-efficiency, to ensure fair medium access, to accommodate 
network topology changes and finally, to enhance robustness against scalability. The impact of 
this new TDMA frame size increase technique on the medium access control protocol 
performance is highlighted through multiple simulations of OSTR and S-OSTR. Multiple 
comparative studies are also handled to point out the effectiveness of this new technique and 
the soundness of our contributions. 

 

Key words: ad hoc networks, TDMA, dynamic, sensor networks, energy-efficient, fairness. 
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Résumé 
 
Les réseaux sans fil multi-sauts ad hoc et les réseaux de capteurs présentent une solution 

prometteuse pour assurer une connectivité quasi-permanente dans l'Internet du Futur. Cette 
connectivité, néanmoins, nécessite la conception d'un protocole d'accès au canal radio fiable, 
ce qui défi les caractéristiques hostiles et instables des réseaux ad hoc et des réseaux de 
capteurs. Cet environnement, en effet, est caractérisé par la rareté des ressources radio 
disponibles, la perte de la bande passante due aux collisions et aux interférences. La nécessité 
de garantir une meilleure qualité de service aux couches applicatives a promu la conception 
des protocoles MAC basés sur la technique  d'accès TDMA. Essayant de contourner la 
contrainte d’une fine synchronisation horloge imposée par ce type de protocoles, les 
recherches se sont orientées vers une conception de protocoles MAC basés sur la technique 
TDMA dont la taille de la trame est fixe.  

 
Cependant, cette conception présente deux principaux inconvénients: d'une part elle 

procure une inflexibilité quant à la variation de la topologie du réseau suite aux mouvements 
des nœuds. D'une autre part, elle soulève un problème de dimensionnement : si la taille de la 
trame est surdimensionnée par rapport au nombre de nœuds présents dans le réseau, des slots 
non alloués apparaissent induisant la perte de la bande passante. Toutefois, si la taille de la 
trame est sous-dimensionnée, un risque de famine surgit. Les protocoles MAC basés sur la 
technique TDMA à taille de trame dynamique présentent une alternative, qui réussit à 
augmenter le débit au détriment d’une non-équité entre les nœuds dans le réseau. Outre 
l'utilisation optimale et équitable de la bande passante disponible, la réduction de la 
consommation d'énergie constitue un autre défi majeur pour les réseaux ad hoc et les réseaux 
de capteurs.  

 
Dans ce travail, deux contributions nommées OSTR et S-OSTR, sont conçues pour 

améliorer le débit, l'équité et la réduction de la consommation d'énergie dans l'environnement 
des réseaux ad hoc et des réseaux de capteurs. 

 
L'idée motrice d'OSTR consiste à augmenter la taille de la trame TDMA dynamiquement 

de manière à aboutir à une taille de trame réduite. Dans ce but, OSTR met en place une 
augmentation à la demande de la taille de la trame. Cette augmentation est établie slot par 
slot. OSTR se base sur une réutilisation spatiale des times slots ; i.e. un même slot peut être 
utilisé au même moment par plusieurs nœuds dans le réseau. Afin de prévenir les collisions 
dues à la coexistence de plusieurs tailles de trames au même temps dans le réseau, OSTR 
déploie une solution coopérative qui consiste à fixer un rendez-vous au moment duquel la 
taille de la trame est augmentée simultanément par tous les nœuds dans le réseau. 

 
S-OSTR constitue une adaptation du protocole OSTR à l'environnement des réseaux de 

capteurs. S-OSTR vise à augmenter la durée de vie du réseau. Il déploie ainsi une période 
d'activité dynamique qui consiste en une trame TDMA augmentant slot-par-slot. S-OSTR 
effectue également un ordonnancement des activités des nœuds afin de prolonger la période 
d'inactivité, et par suite prolonger la durée de vie du réseau.  

 
Nos deux contributions se basent sur une nouvelle technique d'augmentation dynamique de 

la taille de la trame TDMA qui consiste à augmenter la taille slot-par-slot. Cette technique 
permet d'atteindre une taille réduite, et par conséquent d’améliorer l'utilisation de la bande 
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passante et de minimiser la consommation de l'énergie dans le réseau. 
L'analyse des performances d'OSTR et de S-OSTR souligne leurs potentiels pour s'adapter 

aux exigences des applications en termes de QoS, pour assurer un accès équitable au canal 
radio, pour réduire la consommation de l'énergie et pour s'adapter aux différents changements 
de la topologie du réseau.  

 
Mots clés : Réseaux Ad hoc, réseaux de capteurs, TDMA, équité, dynamique, réduction de 

l’énergie 
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Chapter 1 
 
 
Introduction 
 
 

 

 
The current trend in wireless communications is towards a global connectivity “Anytime, 

Anywhere; with Anything, and with Anyone”. This tendency is known as the “internet of 
things” that aims to integrate the existing communication systems with the evolving Internet 
to enable communications between physical and virtual “things”. This trend has arisen from 
the wireless revolution supported by the advances in wireless networking, the greater 
standardization of communication protocols, and the miniaturization of computing devices 
with higher capabilities and lower cost. This expansion will change the Internet perception, 
and create new vision of the information society. In the Internet of future, ubiquity is a 
mandatory requirement to achieve the “all-in-one” communication system. 

Ubiquitous communications could not exist without integration with the legacy 
communication systems that were born since the early 90s when the digital second generation 
was launched. A decade after, the Global System for Mobile communications (GSM) 
triggered the wireless communication expansion that has grown from the 2,5G to the third 
generation (3G) to enable, in the near future, the fourth generation (4G) that allows the 
integration of heterogeneous Radio Access Networks (RAN) into a single platform capable of 
supporting inter-RAN roaming; while not interrupting active communications. The WIFI 
plays a crucial role in this new generation, since it provides high achievable bit rates for a 
reduced infrastructure cost.  

The obvious trend as an all-in-one architecture for the internet of future will result in a 
more flexible architecture but a more complex management. First, the huge amounts of 
collected, exchanged, processed and stored data will explode. The management of all these 
data will require more and more energy to consume. Novel energy-efficient mechanisms to 
transmit, and process data will, therefore, be needed to ensure a better data management. 
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Moreover, wireless devices involving smart phones, laptops, tiny sensors, and the 
miniaturized silicon chips are intended to be self-organized, ultra low power, and even 
capable of auto-harvesting the energy they need. From this perspective, ad hoc 
communications are one of the key technologies required to fulfill the achievements of the 
internet of things.  

Wireless ad hoc networks are by definition created on-the-fly to achieve a specific 
purpose; they operate in a distributed way without relying on existing infrastructure. In the 
early 1970’s, ad hoc networks were first designed for battlefield communications. The great 
amount of research work done insofar has led to the integration of ad hoc networks for 
applications in daily life. Communicating in an ad hoc fashion brings interesting solutions to 
guarantee ubiquitous connectivity for the Internet of future; it is exploited in creating smart 
and self-aware environments. It also provides potentially endless opportunities in a diverse 
number of applications. Ad hoc communications are useful for Intelligent Transportation 
Systems (ITS), where a network of sensors set up throughout the vehicle can interact with 
other vehicles and infrastructure around to provide more accurate feedback about the traffic 
conditions, and the presence or not of danger on the road [1]. Wireless ad hoc 
communications are also used in eco-system monitoring. A set of devices are deployed to 
monitor the heat, or the water flows into catchment areas, to provide early warning systems 
for flood prone regions or earthquake prone areas [2]. The growth of nanotechnologies and 
short range communication systems such as IEEE 802.15.4 [3] the basis of Zigbee [4], has 
given rise to health care applications, where a set of sensors is used for pulse or diabetes 
monitoring, and for old people assistance as well.  

Depending on the device characteristics in terms of power transmission range, the 
processing capacity, the battery capacity, and so on, ad hoc communications way gives rise to 
two major networks: wireless ad hoc networks and wireless sensor networks. Despite their 
commonalities, each network needs to bypass specific constraints and to fulfill different 
application requirements. Ad hoc networks are mainly applied in wide range areas. For 
instance, they ensure connectivity in student campus, and help providing internet connection 
in emergency cases where no infrastructure is available. Wireless sensor networks, instead, 
are characterized by a strong interaction with the environment, and hence are more suited for 
applications like indoor/outdoor monitoring, interactive museums, sensing for transportation 
applications, etc.  

Despite the enormous amounts of research on both wireless ad hoc and sensor networks, 
Medium Access Control (MAC) design consists one of the challenging research topics that 
still require insights to ensure a smooth and reliable involvement of these networks in the 
Internet of future.  

 

1.1. Problem Statement 
The medium access control layer plays an important role to ensure consistent and reliable 

system operation. It coordinates the channel access among different devices in the network. 
While for traditional wireless systems this task is monitored by a base station (e.g. in GSM) or 
an access point (e.g. WiFi), it should be held in a completely distributed way in wireless ad 
hoc and sensor networks. Additional challenges are introduced by the ad hoc communication 
fashion and require special handling by the medium access layer: (1) robustness against the 
inherent wireless environment, (2) the scarcity of available resources, (3) the resource sharing 
between different devices in a distributed way, (4) the energy-efficient management of 
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battery-limited devices, (5) the potential need for an accurate time synchronization required 
for channel access coordination. In this thesis, we consider mainly three important properties 
in the MAC protocol design for wireless ad hoc and sensor networks:  

- Optimal resource management: It consists in achieving rates close to the fundamental 
capacity limits of the channel [5] , 

- Fair resource management: all users should receive equal bandwidth,  

- Energy-efficient resource management: Since most wireless devices are battery-
powered, MAC protocol that consumes relatively little energy are of interest. 

For this end, we first consider the environment of ad hoc networks and focus on the 
optimization of resource sharing in a distributed and fair manner. Afterwards, we investigate 
the network lifetime prolonging in wireless sensor environment through the design of a more 
energy efficient channel access technique in the MAC layer.  

 

1.1.1. Optimization of Resource Management 

Bandwidth exploitation efficiency in wireless ad hoc networks is fundamental in order to 
make the whole system appealing for QoS support. Better the resource exploitation is, better 
is the QoS provided by the overall network. The resource management optimization can be 
incurred at different levels of the OSI stack. In this thesis, we focus on possible improvements 
of channel utilization at the MAC layer. 

The medium access protocol design for wireless ad hoc networks need to take into account 
the broadcast nature of the radio channel. It needs therefore, to minimize collisions and 
provide a good strategy to tackle the interference effect due to the hidden and exposed 
terminal problems. These problems are peculiar to the wireless environment and are closely 
related to the transmission signal power of the devices. The hidden and exposed terminal 
problems lead to collisions and an underutilization of the channel resources. The main 
difficulty in the medium access protocol design resides in the distributed coordination of 
nodes such that a tradeoff between the control packets overhead and the resources allocated to 
real data transmission is necessary. In addition, efficient bandwidth exploitation needs to be 
fair among different end users so that no one is penalized while others are monopolizing the 
available resources. How to design a medium access protocol that tends to an optimal and fair 
resource sharing in a completely distributed manner, while ensuring low control overhead is a 
crucial issue to alleviate. 

Despite the wide deployment of IEEE 802.11 Distributed Coordination Function (DCF) 
[6], its random channel access scheme suffers from short term and flow unfairness [7]. It has 
been shown in [8] that the standard still has multiple limitations that prevent it from a better 
resource management. It presents bad performance in multi-hop environment and cannot 
support high traffic load. Thanks to its natural guaranteed channel access, the Time Division 
Multiple Access (TDMA) [9] technique has seduced the research community for MAC 
protocol design. The idea behind TDMA channel access is to reserve a guaranteed period for 
each device in the network, during which it accesses the channel without contending with 
other competing nodes. Despite the accurate clock synchronization required for TDMA 
channel access deployment, TDMA-based MAC protocol design has gained a lot of attention. 
The IEEE 802.11s Mesh Deterministic Access [10] is the fruit of the standardization effort to 
optimize the channel utilization. The bandwidth is a periodic time frame split in a fixed 
number of time slots. Each device reserves a number of time slots during which it accesses the 
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channel in a conflict-free manner. Despite the improvements provided by the new IEEE 
amendments, the channel access still relies solely on the carrier sensing scheme, and therefore 
still suffers from collisions. Also, the TDMA channel access gives rise to a critical issue to 
face which consists of the optimal network dimensioning. In other terms, this issue consists 
on pre-configuring the TDMA frame size according to the number of nodes in the network. 
However, wireless ad hoc networks are a collection of devices that can dynamically self-
organize, and are in perpetual movement; i.e. some nodes can join the network, while others 
can dispose after the frame size has been configured. This dimensioning problem, lead to two 
important issues that need to be tackled by the MAC protocol: the famine risk that occurs 
when the frame size is under-dimensioned, and the underutilization of the available resources 
that takes place when the frame size is over-dimensioned.   

In this thesis, we are trying to bring effective solution to overcome the TDMA frame size 
dimensioning issue. Before describing the building blocks of our solution, we will describe in 
more detail the main MAC protocol design challenges for wireless multi-hop ad hoc 
networks. We will then, analyze the dimensioning problem faced while using TDMA channel 
access based on fixed frame size. For this end, we will review the masterpiece works that 
have been proposed in this field to derive their limitations. 

 

1.1.2. Energy Efficiency 

The energy conservation is a critical part of the future internet of things that necessitates a 
tradeoff between the power constraint in one side; and the significant increase of energy 
consumption in another side. The tons of data exchanged, processed and stored will explode 
the energy consumption unless new mechanisms are developed to address energy 
conservation [1]. The Internet of Things will contribute to the greening of communications 
based on different attributes: (1) New energy efficient applications need to be established such 
as power grid, connected electric vehicles, energy efficient buildings, etc, (2) the area of 
nano-electronics and semiconductor, sensor technology need more investigations to provide 
low power devices, and(3) reliable energy efficient communication protocols need to be 
addressed to ensure energy conservation. 

In this thesis, we will focus on the development of energy efficient medium access control 
protocol for wireless sensor networks since these networks have more energy constraints than 
wireless ad hoc networks. A sensor is generally a tiny device equipped with a battery as sole 
power supply. The battery often has limited power budget. Moreover, once deployed, a sensor 
is barely changed when it disposes because it may be deployed in hostile or unpractical 
environment (e.g. minefields). In addition, depending on the applications, a sensor network 
should fulfill a long lifetime ranging from several months to several years [2]. Therefore the 
crucial question consists on: “how to minimize the energy consumption such that network 
lifetime is prolonged?” 

Increasing the lifetime of a sensor network can be the result of the use of an energy-
efficient routing strategy; it can be the result of improving the MAC access mechanism by 
reducing the energy consumed in processing control packet overhead, and minimizing the 
cause of energy waste at the MAC level. Our work is centered on energy efficient solution at 
the medium access layer where several techniques to conserve power consumption are 
proposed. Among these techniques, node activity scheduling has succeeded to spare energy 
thanks to the alternation between a sleep state when sensors turn off their radio and go to 
sleep, and a wake up state when sensors are communicating. TDMA schemes are also 
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considered as a promising solution to provide energy efficient access schemes for wireless 
sensor networks. With a TDMA access scheme, a node turns on its radio only during its slot; 
therefore the energy consumption is restricted to the minimum required for 
transmission/receiving data. The TDMA access scheme, however, has the main drawback of 
fixed frame length that has to be specified beforehand and may be problematic.  

In this thesis, we will propose a more reliable energy-efficient solution to take profit from 
the advantages of the TDMA access scheme, while reducing its flip side. We will first 
describe the philosophy of the node activity scheduling approach, and then we will analyze 
the capability of TDMA schemes to provide more energy efficient solution.  

 

1.2. Contributions of the Thesis 
Wireless ad hoc and sensor networks provide a promising solution for the future internet of 

things. These networks gained their interest by their flexibility and adaptability to different 
scenarios. Also, they consist one of the key technologies to provide cost-effective and energy-
efficient solutions. 

Despite the enormous amount of research on wireless ad hoc networks and more recently 
on wireless sensor networks, many technical design performance issues are preventing its 
widespread deployment. For instance, ad hoc and sensor networks are still unable to provide 
quality of service (QoS) comparable to that achieved by wire line or infrastructure-based 
networks. Innovative and effective solutions are, therefore, needed to improve the QoS of 
these networks. The Medium Access Control layer design in wireless networks, more 
precisely ad hoc and sensor networks has a major role in increasing the overall system 
performance. In this thesis, we tackle the medium access control protocol design from 
different aspects: (1) optimizing the resources distribution and utilization, (2) providing an 
energy efficient solution, (3) and addressing flexibility and adaptability to network variations. 

This thesis starts investigating the given research area by providing a description of key 
challenges that need to be addressed while designing a MAC protocol for wireless ad hoc and 
sensor networks. The thesis presents, then, a review on the masterpiece works achieved to 
address the defined challenges. We show that the standardization efforts of IEEE 802.11 still 
perform poorly in multi-hop environment and highly loaded networks. On the other hand, our 
work focus on alternative solutions to carrier sensing, mainly Time Division Multiple Access 
based ones. We show that TDMA wireless multi-hop networks still perform poorly because of 
the inflexibility of their frame size design. On the other hand, this drift between the achieved 
performance and the optimal ones can be justified by the dilemma of frame size 
dimensioning: an over-dimensioned frame size with respect to the number of users in the 
network infers an underutilization of the available resources; while an under-dimensioned 
frame size yields to a famine risk. Achieving an optimal frame size, in this context, is NP 
complete. For instance, [11] shows that an optimal TDMA schedule is equivalent to a k-hop 
coloring problem which is NP hard. We investigate then, a distributed and dynamic solution 
to provide a solution that tends to the optimum. In particular, we highlight the limited 
scientific research efforts that have addressed a dynamic frame size concept for wireless ad 
hoc and sensor networks. We argue that a dynamic frame size coupled with an appropriate 
distributed slot allocation scheme can drastically increase the overall system performance. 
More precisely, the thesis contributes to the research problem by developing a new frame size 
increase technique that achieves four main objectives:  

1. An adaptive solution to different use-cases in both ad hoc and sensor networks, 
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2. A frame size increase is performed with respect to the number of nodes in the 
network, 

3. A slower frame size increase is ensured in order to achieve a shorter frame size. 
The shorter the frame size is, the higher is the channel utilization, 

4. And an energy-efficient solution exploiting the shorter frame size achieved. 

The new investigated technique increases the frame size slot by slot, only if needed. This 
new technique is the basis of the two main contributions of the present work: 

OSTR: OSTR is a distributed and dynamic TDMA-based medium access control protocol 
for wireless ad hoc networks designed to increase the global throughput and per-node fairness 
by achieving a shorter overall frame size. OSTR answers to the limitations of fixed frame size 
based protocols by providing a flexible and adaptive frame size increase. The basic idea of 
OSTR is to couple three major attributes to provide a shorter frame size: (1) performing a 
slot-by-slot frame size increase, (2) providing a spatial reuse scheme, (3) and an on-demand 
frame size increase. To tackle different frame sizes co-existence in the network, OSTR brings 
cooperative solution that consists in fixing an appointment, a date when the frame size in the 
network is increased. 

Sensor-OSTR: Sensor OSTR is a new energy efficient MAC protocol for wireless 
sensor networks. S-OSTR organizes the channel access in a totally distributed way such that 
energy is optimally consumed. S-OSTR brings the idea of a dynamic active period, since it 
deploys a dynamic frame size that is built slot-by-slot according to nodes arrival to the 
network. S-OSTR enforces the slot-by-slot frame size increase by a node activity scheduling 
to prolong the inactivity period in the network, and hence prolong the overall network 
lifetime.  

 

1.3. Organization of the Thesis 
The outline of the thesis is as follows. In this chapter the importance of the medium access 

protocol design for the Internet of future was discussed. This will be further enlightened in 
Chapter 2 through which more insight is given on the challenges that need to be addressed 
while designing a MAC protocol for wireless ad hoc and sensor networks. Also a review of 
the masterpiece researches achieved in improving MAC layer performance in wireless ad hoc 
networks  are presented including a comprehensive understanding of the limitations of a 
frozen frame size for TDMA-based MAC protocols, and an explicit enlightening of the 
promising potentials of the dynamic frame size, instead. Chapter 3 presents the OSTR 
medium access control protocol for wireless ad hoc networks that reflects the potentials of the 
slot-by-slot frame size increase in improving the fairness and the throughput in the network. A 
proof-of-concept implementation and a comparative study with the standard IEEE 802.11 
DCF and E-ASAP [12] are provided as well. Chapter 4 provides the amendment of OSTR to 
wireless sensor networks resulting in the S-OSTR protocol. A general overview about node 
activity scheduling and energy-efficient MAC protocols for wireless sensor networks is given 
with a special emphasis on the different medium access design contributions yielding to 
network lifetime prolonging. Potentials of the slot-by-slot frame size increase technique 
brought by OSTR, to provide energy efficient solution are highlighted. Technical description 
of the S-OSTR protocol is later presented. Chapter 4 ends with an evaluation of S-OSTR 
performance using extensive simulations and comparative study with SERENA [13]. The last 
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chapter concludes the thesis by summarizing the main contributions and results, and 
discussing the future perspectives and research directives. 
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2.1. Introduction 

 
Ad hoc networks have been a challenging area of research during the recent past. They have 

specific limitations and characteristics such as resource scarcity, node mobility, lack of central 
coordinator, and inherent broadcast nature; that complicate the research studies in this field. An 
efficient and reliable Medium Access Control (MAC) protocol is important to enable a 
successful operation of wireless multi-hop ad hoc networks, and to ensure better QoS to the 
upper layers.  

The design of an efficient and reliable MAC protocol for multi-hop communications in an 
ad hoc environment is a challenging task. An efficient MAC protocol should consider the 
inherent characteristics of such environment, and also provide QoS support mechanism 
required by the upper layers. The common use of random channel access mainly deployed in 
the widespread IEEE 802.11 [6] products, still suffers from several drawbacks because it is 
prone to collisions and interference effect and it is unable to fairly share the resources. 
Although alternative protocols, mainly based on Time Division Multiple Access techniques 
(TDMA) are proposed, so far the design of an efficient MAC protocol for multi-hop ad hoc 
networks still lacks insights in the adaptability to network topology variations, scalability, 
efficient bandwidth usage, and fairness.  

Accordingly, an efficient MAC protocol design needs to address all the aspects that may 
affect its performance such as node mobility, distributed environment, and lack of available 
resources. By adopting a TDMA-based channel access technique, the interference effect in 
nodes’ neighborhood is reduced and the network throughput is increased as well, because of 
the guaranteed channel access offered by the TDMA scheme. In a multi-hop ad hoc network, 
where nodes are prone to mobility and where the density varies from one network region to 
another, a frozen TDMA frame size leads to a bandwidth wastage and unfairness issue. With 
improvements on this level, the MAC protocol converges to an optimal resource management, 
and to better topology variation adaptability.  

In this chapter, we will survey the works that have been done in the field of MAC protocol 
design for wireless multi-hop ad hoc networks. Mind, of course, that we cannot review the 
complete body of that work in detail. We will rather focus on the researches that are more 
relevant to our work. In Section 2.2, we highlight the main MAC protocol design challenges 
and propose a new classification of the existing MAC protocols in this research field. We give 
a brief description of contention oriented schemes in Section 2.3, with a focus on the standard 
IEEE 802.11 in both DCF and EDCA modes.  In Section 2.4, we overview the main conflict 
free TDMA-based MAC protocols. We give a particular attention to the standardization effort 
limitations to address multi-hop communication in ad hoc networks. We also, point out the 
importance of dynamic frame size to address the topology changes, the fairness problem and 
the optimal channel utilization.  

 

2.2. MAC issues and protocol classification for multi-hop ad hoc 
networks 

 
Like in all shared-medium networks, the medium access control protocol has an important 

role for the successful operation of the network. Some of the fundamental tasks of the MAC 
protocol are to coordinate the radio resource access between the nodes in the network and to 
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reduce the collisions from interfering nodes [47]. The inherent nature of wireless multi-hop ad 
hoc environment introduces additional challenging tasks that should be taken into account 
while designing a MAC protocol for multi-hop ad hoc networks.  

First, the MAC protocol should be distributed because no central coordinator is present in 
ad hoc networks and nodes need to self organize themselves to enable communications.  

Moreover, the MAC protocol should be dynamic in order to take into considerations the 
dynamic nature of wireless ad hoc networks, and to adapt to topology variations. Thus, the 
system performance will not be significantly affected by node’s mobility. 

In addition, the design of a MAC protocol should consider the broadcast nature of the radio 
channel. A good MAC protocol should therefore, minimize collision and interference effect 
due to the hidden and exposed terminal problems.  

In wireless networks, nodes share a common broadcast radio channel. As the radio 
spectrum is limited, the available bandwidth to share is also limited. Thus, a good MAC 
protocol for wireless ad hoc networks should be efficient so that the scarce resources are 
optimally utilized. Consequently, the MAC protocol should be designed such that the 
bandwidth consumption incurred by control message exchange is as less as possible. 

Besides, radio devices should be energy efficient especially when deployed for specific 
applications such as data gathering, and monitoring. A good MAC layer design can 
implement mechanisms to address the energy efficiency issue. 

Finally, an important attribute for MAC protocol design is the per-node fairness. Although 
fairness can hardly be defined [17], we understand that nodes need to be “treated” fairly with 
respect to the bandwidth allocation. In other terms, the unfairness consists on enabling some 
nodes a frequent channel access on dispense of other nodes. The latter can barely acquire the 
channel, resulting in higher latency, and higher packet loss ratio. 

Some other attributes include shorter latency, reliable source to destination links, and 
scalability. In this work the focus is on the network throughput efficiency, per-node fairness, 
accommodation to network topology variations, and energy efficiency. In the sequel, we 
highlight some of the main issues in MAC protocol design for wireless multi-hop ad hoc 
networks. 

 

2.2.1. MAC protocol design challenges 

 
The medium access control sub-layer has an important impact on the system performance. 

The MAC protocol should coordinate the channel access among contending nodes in a 
dynamic and distributed way. Therefore, its design is a challenging task. In the following, the 
major challenges that a MAC protocol needs to face in the wireless multi-hop environment are 
explained.  

 
a) Varying topology and channel 

The wireless medium is a challenging environment mainly because of its broadcast nature 
and the inability to detect collisions in such context. The wireless medium is prone to multi-
path propagation, fast fading, and path loss. This yields to a higher bit error rate (BER), and to 
burst errors because of the bit correlation [11]. Unlike wire line networks, radio links are more 
frequently broken due to nodes movement and topology variations. This side effect is 
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accentuated in wireless ad hoc network due to the absence of a central coordination. 
Therefore, distributed mechanisms based on frequent exchange of control packets such as 
HELLO packets, and RTS/CTS packets, are needed at the MAC layer to cope with channel 
and topology varying effects.  

 

 

Figure 1: Illustration of the hidden terminal problem 

 
b) Hidden terminal problem 

In a wireless environment, the transmission signal power decay with the distance. We 
distinguish, then, two kinds of neighbors (with reference to node A in Fig.1): those capable of 
decoding the received signal from node A like node B; and those that receive the signal but 
consider it as noise, since they are unable to decode it, as it is the case for node C. Beyond this 
observation, the definition of transmission range and interference range arise. The 
transmission range of node A, is defined as the maximum reached distance, denoted by r(A),  
over which the signal over noise ratio allows correct reception of a message sent by node A. 
The interference range instead is defined as the area in which nodes perceive the channel as 
busy due to node’s A transmission, but may not be able to decode the message. In the 
example depicted in Fig.1, and with reference to node A, node B is a one-hop neighbor of 
node A, since it is within the transmission range of node A. However, node C is a two-hop 
neighbor of node A, and is within the interference range of node A. The hidden and exposed 
terminal problems are a direct consequence of the concept of transmission and interference 
range in wireless networks. 

A hidden terminal is a node within the transmission range of the receiver node, and out of 
the transmission range of the sender node. In Fig.1, node B is in the transmission range of 
node A. However, node C is not aware of the presence of node A, since it is not in the 
transmission range of node A. Hence, when node B transmits a packet to node B, node C 
perceives the channel as free and starts a transmission to node B. Such a transmission 
provokes a collision at node B, and both packets are lost.  

BA C

r(A) = transmission range 

of node A



MAC Protocol Design for Multi-hop Wireless Ad hoc and Sensor Networks 

 

24 

 

The hidden terminal problem significantly degrades the carrier sensing based MAC 
protocols. One of the main solutions provided to tackle this issue is the use of a handshake 
mechanism such the RTS/CTS mechanism deployed in the standard IEEE 802.11 [6]. 

c) Exposed terminal problem 

 

 
Figure 2: Illustration of the exposed terminal problem 

An exposed terminal is a node within the transmission range of the sender but out of the 
range of the receiver. Considering the example illustrated in Fig.2 with node C transmitting to 
node D. Node C is in the transmission range of node A but out of the range of node B, so it is 
exposed. Due to the carrier sensing, node C is unable to transmit to node D even though the 
two exchanges (node A to node B, and node C to node D) can co exist simultaneously without 
collisions at the respective receivers. Consider now, that node D initiates a transmission to 
node C. Since node C perceives the channel as busy, it is blocked and cannot acknowledge 
node D’s transmission. The latter makes several retrials until it aborts and discards the 
packets. 

The exposed terminal problem leads to an underutilization of the channel which is a 
critical issue in an environment where the resources are scarce. 

 

d) Fairness 

In wireless communications, fairness is a critical issue to face. It is a direct consequence of 
the inherent characteristic of the wireless medium where limited resource should be shared 
between multiple nodes. [43] highlights the complexity of defining the concept of fairness in 
wireless networks. It is shown that offering the same channel access opportunities for the 
nodes in the network does not guarantee a fair system behavior, since the channel quality of 
each node may affects its channel access; and therefore, the medium access protocol is 
perceived as unfair from its point of view. In wireless communication networks, the fairness 
is generally measured according to one of the three following indexes: Gini index [45], the 
Min-max index [46], and the Jain fairness index [44]. In our work, we measure the amount of 
allocated resources based on the Jain fairness index defined in [44]. Suppose a system that 
allocates bandwidth to n contending nodes. If the Jain fairness index is equal to 1, the protocol 
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is 100% fair. In this thesis, the fairness is computed based on the number of nodes in the 
network using the throughput of each node as a computational metric.  

 

 
Figure 3: A classification of MAC protocols for multi-hop ad hoc networks 

 

2.2.2. MAC protocol classification 

 
From the literature, two major families of MAC protocols for wireless ad hoc networks are: 

1. The contention-based protocols, 

2. The contention-free protocols. 

The former group needs to acquire the channel access before the transmission of each 
frame. ALOHA [84], CSMA [19], MACAW [20], FAMA [21], and IEEE 802.11 [6] are some 
examples of MAC protocols within this group. The IEEE 802.11 gained wide adoption thanks 
to its simplicity, robustness and flexibility. It is based on the Carrier Sense Multiple Access 
with Collision Avoidance (CSMA/CA) [3].  

On the other hand, Contention-free MAC protocols rather reserve the channel for a certain 
amount of time and ensure, therefore, conflict-free packet exchange. Basically, these protocols 
proceed in two steps: a random channel access to gain the reservation, followed by a scheduled 
transmission of data packets.  

Among conflict-free MAC protocols we distinguish the basic channel access techniques: 
Time Division Multiple Access (TDMA) where the frequency band is the same for all nodes in 
the network and the time is slotted. 

Frequency Division Multiple Access (FDMA) where the multiple users simultaneously 
access the channel by using different frequency bands. 

Code Division Multiple Access (CDMA) where the multiple channel access is achieved 
based on predefined signature sequences called codes. These codes are used to modulate the 
transmitted signal and hence minimize interference with contending nodes. 
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In this work, we focus on the TDMA-based solutions. In the literature, multiple 
classifications of TDMA-based MAC protocols have been proposed. For instance, [11] 
proposes to classify the conflict-free MAC protocols into node allocation-based and link 
allocation-based protocols. To our knowledge, the dynamicity of the frame in TDMA-based 
protocols has known little attention in wireless multi-hop environment. Though, we argue that 
a dynamic resource handling is necessary to optimally use the scarce resources in ad hoc 
networks. We also, believe that a dynamic frame size has a major impact on the MAC protocol 
performance. Consequently, we propose to classify TDMA-like MAC protocols for ad hoc 
networks based on the frame size characteristic; i.e. static or dynamic. As depicted in Fig.3, 
two groups rise: (1) fixed frame size-based MAC protocols, and (2) dynamic frame size-based 
protocols. Examples of the former group are TRAMA [5], FAMA [21], CATA [17], FPRP 
[14], CROMA [8] and USAP [16]. The philosophy of these protocols is to firstly contend to 
acquire a dedicated resource, and then to initiate a conflict-free packets exchange using the 
reserved resources. This group of protocols can, by its turn, be split into two sub-groups 
according to whether the mini-slot concept is used or not. In one side, the reservation process is 
performed in the slot itself using mini-slots concept; i.e. a slot is split into multiple mini-slots, 
some of them are used to allow nodes contend for one of the mini-slots where DATA are 
transmitted. In other side, however, the contention is performed in a dedicated part of the 
frame and is not overlapped with the resources reserved for data exchanging. Examples of 
dynamic frame size-based protocols are USAP-MA [15] and E-ASAP [12]. The idea of a 
dynamic frame size is to build the frame step by step following the number of nodes in the 
network. By adjusting the frame size, the frame is adaptive to network topology variations. The 
MAC protocol is, therefore, more efficient and flexible, since it converges to a better use of the 
channel resources.  

 

2.3. Contention-based MAC protocols 

 
Contention-based MAC protocols are one of the most popular classes of MAC protocols for 

wireless ad hoc networks. These protocols are mainly based on some mechanisms such as 
packet-sensing [21] that characterizes ALOHA-like protocols, and carrier sensing based on 
which a node is able to know whether the channel is idle or not. In [11] it is mentioned that 
carrier sensing protocols are more present in today’s MAC protocol design. Hereafter, we 
detail some of the contention-based MAC protocols based on the carrier-sensing scheme. 

  

2.3.1. Carrier Sense Multiple Access (CSMA) 

 
The Carrier Sense Multiple Access (CSMA) is an improvement of the basic ALOHA [18] 

access scheme.  CSMA is based on the principle of listen before talk. When a node has a 
packet ready to be transmitted, it has first to sense the channel. If the channel is perceived as 
busy, i.e. another transmission is already ongoing; the node delays its transmission. A node 
can proceed with the transmission only if the channel is idle. With CSMA, two or more nodes 
can attempt to transmit at the same time, and collisions might occur. After a transmission 
failure, a node may try to transmit once again. CSMA is shown to have good performance 
when the number of contending nodes is not very large. Nevertheless, its performance suffers 
from the hidden terminal problem and thus considerably degrades when the number of nodes 
is high [22]. 
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2.3.2. IEEE 802.11 in DCF and EDCA modes 

 
The IEEE 802.11 [6] has known a tremendous deployment during the last decade. The 

IEEE 802.11 media access is based on the Carrier Sense Multiple Access with Collision 
Avoidance (CSMA/CA) mechanism. With the IEEE 802.11, a node first senses the channel. If 
the channel is free, it waits for a Distributed Inter-Frame Spacing (DIFS) time period. If the 
channel remains free, the node transmits a packet. In case the channel is perceived busy, the 
transmitting node delays its transmission until the channel becomes free. At that time, the 
node chooses a random back off value from the range [0; CW [, and waits for the chosen back 
off value of idle slots before attempting to transmit again. The CW has a minimum value of 
CWmin (minimum Contention Window) chosen by the node for the first transmission attempt. 
A collision occurs when two or more nodes have the same remaining back off values. 
Therefore, they will access the channel at the same time and collide. To handle the collision 
issue, the IEEE 802.11 standard uses a binary exponential back off scheme. This scheme is 
used such that after each transmission failure, the CW value is doubled and hence the node 
has a larger range of back off values [0; CW [. This process is repeated each time a collision 
occurs. The CW value is doubled up to a maximum value of CWmax = 2n x CWmin, where n is 
the number of the failed transmission attempts, and is reset to the minimum value after each 
successful transmission. 

To avoid the hidden terminal problem, the IEEE 802.11 uses a handshake of a Request To 
Send and a Clear To Send (RTS/CTS) before the transmission of the DATA/ACK packets. 
Before sending a DATA packet, the sender requests for the channel by sending an RTS. If 
successfully received, the receiver node responds with a CTS packet, after Short Inter-Frame 
Space (SIFS) period of time. Upon the reception of the CTS, the sender node waits for SIFS, 
and then starts the DATA transmission. Each correctly received packet is acknowledged by an 
ACK control packet. 

In addition to the RTS/CTS handshake, the IEEE 802.11 implements the virtual carrier 
sensing (Fig.4).  RTS, CTS and DATA packets include a duration field that is initialized to 
the duration of the sequence. Any other node that hears the RTS or the CTS sets its Network 
Allocation Vector (NAV) to one. This indicates that the channel will remain busy for the 
whole duration of the sequence. 

  

 
Figure 4: RTS/CTS handshake and NAV setting in IEEE 802.11 in DCF mode 

 
The performance of the standard IEEE 802.11 has been largely studied by the scientific 

community. [23], for instance, gives an analysis of the IEEE 802.11 Distributed Coordination 
Function (DCF) in saturation cases in a fully connected network; while the effect of the 
hidden terminal problem has been studied in [24]. 
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The IEEE 802.11 was designed for single hop networks. Although it can support ad hoc 
communications, [47] shows that it is not intended to support multi-hop wireless 
communication. This limitation has been raised in [25], too. It is claimed that the random 
access scheme deployed in the standard still suffers from the hidden terminal problem. Also, 
[48] points out the limitation of the back-off algorithm deployed in the IEEE 802.11 in DCF 
mode, since it leads to a short-term unfairness, while a short term-fairness is required by real 
time traffic to reduce the delay.   

To support Quality of Service (QoS), a new coordination function has been introduced in 
the IEEE 802.11e [32, 33]. The idea behind is to provide priorities to support different kinds 
of traffic. The new coordination function is called the Enhanced Distributed Channel Access 
(EDCA). It manages eight traffic queues; each of them is dedicated for a specified Access 
Categories (four Best Effort categories, Background, Video, and Voice). Each queue is 
characterized by a dedicated CWmin, CWmax and the Arbitration IFS Number (AIFSN). The 
latter is used to compute the AIFS that replaces the SIFS (used in IEEE 802.11 in DFC mode). 
With EDCA, nodes contend for Transmission Opportunities (TXOPs), where a TXOP is a 
period of time defined by duration and an offset. The duration of a TXOP depends on the 
access category. To ensure fairness, a TXOP limit is introduced. A node is able to transmit 
frames as long as it does not exceed the TXOP limit. Thus, EDCA provides fair channel 
access among the different traffic categories. 

Nevertheless, the introduction of quality of Service consideration in the IEEE 802.11e with 
the EDCA function shows limitations [36]: 

1. The EDCA is intended to work in a fully distributed way, leading to inevitable 
collisions due to node contention.  

2. The EDCA has been designed for single hop communication. A node can access the 
channel only if the latter is idle. When the number of nodes is high, the contention 
increases yielding to more unsuccessful transmissions. The contention window size 
increases and the EDCA is, therefore, less efficient.  

3. The EDCA does not consider any node cooperation. Hence, a node in the edge of a 
wireless network, detects the medium as idle more often than a node located in the 
core of the network. Therefore, with the absence of cooperation between nodes, an 
edge node risks to congest its neighbors.  

4. The EDCA suffers from the exposed terminal problem that leads to a waste of 
bandwidth due to unnecessary retransmissions.  

 

2.3.3. Multiple Access Collision Avoidance-By Invitation (MACA-BI)  

 
The Multiple Access Collision Avoidance By Invitation is a receiver-initiated protocol. It 

is designed mainly to tackle the additional delay and control packet overhead introduced in 
the sender-initiated protocols. With MACA/BI, the receiver requests the sender to initiate a 
data transmission. Thus, the handshake of RTS/CTS deployed in the sender-initiated protocols 
is replaced by a Ready-To-Receive (RTR) packet, reducing this way the number of exchanged 
control packets. 

In the receiver-oriented protocols, the transmitter is unable to initiate a transmission unless 
it is polled by the receiver. MACA/BI implements a traffic prediction algorithm in the 
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receiver so that the latter can predict when data should be requested from the sender. [54] 
proposes and algorithm based on the packet queue length and data arrival rate at the sender. It 
is shown that MACA/BI protocol has good performance in case the traffic patterns are 
predictable; otherwise, its performance degrades to that of MACA [53]. 

Similar to MACA/BI, the Receiver Initiated Busy Tone Multiple Access (RI-BTMA) [56] 
specifies that only destination node is allowed to transmit the busy tone, and hence the 
number of exposed nodes is reduced [55]. Nevertheless, this technique is still prone to 
collisions, since the destination node needs to decode the frame header in order to identify the 
destination address. 

 

2.3.4. Power Aware Medium Access with Signaling (PAMAS)  

 

In order to enhance the carrier sensing protocol performance, some researchers have 
introduced multi-channel protocol. The Power Aware Medium Access with Signaling 
(PAMAS) [57] is one of these protocols. Like IEEE 802.11, PAMAS makes use of a 
handshake of RTS/CTS to bypass the hidden terminal problem. The novelty of PAMAS is to 
perform the RTS/CTS exchange in a dedicated channel, called signaling channel; while 
DATA exchange is performed in a separate channel. Upon a data packet receipt, the packet 
destination node sends a busy tone over the signaling channel. While listening to the busy 
tone, neighboring nodes deduce that the DATA channel is busy and delay their transmissions. 
In [58], the authors highlighted that the radio transceiver turn-around time may affect the 
performance of PAMAS and further insights considering this item are needed. 

 

2.3.5. Multi Channel CSMA MAC Protocol 

The basic idea behind the Multi Channel CSMA MAC Protocol is to divide the available 
bandwidth over N different channels using either the FDMA or the CDMA techniques. The 
multi channel CSMA MAC protocol favors the use of the same channel last used by a node; 
i.e. a sender uses the last channel it has used in case the latter is found free. Otherwise, the 
sender chooses another channel randomly. In case no free channels are available, the sender 
performs a back-off mechanism and delays its transmission. [58] highlights the ability of the 
multi channel CSMA MAC protocol to support high traffic load even with insufficient 
number of channels comparing to the number of nodes. Nevertheless, the protocol shows 
lower performance at lower traffic load and with a small number of nodes mainly because idle 
channels appear leading to the underutilization of the available resources. 

 

2.3.6. Carrier Sense Multiple Access with Collision Notification 
(CSMA/CN) 

A more recent work aiming to enhance the carrier sensing protocol performance is 
presented in [59]. The new protocol is called Carrier Sense Multiple Access with Collision 
Notification (CSMA/CN). The principle of this protocol is inspired from the CSMA/CD 
protocol. With CSMA/CN, each node is equipped with two antennas: one for normal 
transmission and the other is used to capture the notification. While receiving the packet, the 
receiver performs a cross-layering between the MAC layer and the physical layer to detect the 
collision. When the collision is detected, it sends a notification to the sender. Upon the 
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notification receipt, the sender aborts its transmission, leaving this way, the channel free for 
another node in its vicinity. 

2.4. Contention-free TDMA-based MAC protocols 

 
In order to improve the MAC layer performance, some protocols focus on eliminating the 

random access nature of contention-based MAC protocols by proposing a contention-free 
approach. The contention-free MAC protocols appear then as a promising alternative to 
contention-based protocols, since they eliminate the hidden terminal problem and provide 
guaranteed channel access. In particular, TDMA has shown good performance [40], since it 
reserves for each node a guaranteed period of time to access the channel. In the most basic 
TDMA scheme, the channel resources are divided into frames each of them is composed of 
time slots. The number of time slots corresponds to the number of nodes in the network. Under 
the assumption that all nodes have always a packet to transmit, the pure TDMA scheme is 
optimal in terms of throughput for fully connected networks [11]. In multi-hop environment, 
two challenging problems are to be tackled while applying TDMA access technique: the node 
synchronization and slot assignment. 

TDMA-based protocols require a strict synchronization among nodes in the network in 
order to capture the beginning of each time frame, and to avoid collisions due to time slots 
overlapping. In a distributed multi-hop environment like the wireless ad hoc networks, this task 
is hard to achieve and can be expensive in terms of additional control overhead. Node 
synchronization in wireless ad hoc networks is a relevant research topic that is beyond the 
scope of our work. We refer the readers to some surveys for more details about the node 
synchronization mechanisms in a distributed environment [49], [50], [51], and [52]. 
Consequently, in the present work, as well as for the detailed TDMA-based masterpiece works, 
we assume that nodes ‘clocks are perfectly synchronized. 

Concerning the slot assignment issue, the spatial reuse appears as an interesting solution to 
increase the performance of an adapted TDMA scheme. Consequently, the problem of 
optimizing the slot assignment, e.g. minimizing the TDMA frame size, rose. Most of the 
TDMA scheduling policies are NP-complete [41, 42]. For instance, [11] shows that an optimal 
TDMA schedule is equivalent to a k-hop coloring problem which is NP hard. Consequently, 
sub-optimal and decentralized solutions have been investigated to cope with slot assignment 
issue. 

We believe that the frame size has a major impact on the performance of TDMA-like MAC 
protocols. We propose, then, to classify MAC protocols for wireless multi-hop ad hoc into (1) 
fixed frame size-based and (2) dynamic frame size-based MAC protocols. 

 

2.4.1. Fixed frame size-based MAC protocols 

 
Fixed TDMA frame size-based MAC protocols are the most popular class among the 

TDMA-based MAC protocols for wireless multi-hop ad hoc networks. As mentioned above, 
this observation is a direct consequence from the complexity of achieving strict 
synchronization in a distributed and inherent environment such ad hoc multi-hop networks. In 
the sequel, we will survey the most relevant works based on fixed TDMA frame size in 
wireless ad hoc networks. 
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a) Standardization Activities: IEEE 802.11s Mesh Deterministic Access 

 

 
Figure 5: Frame structure in the IEEE 802.11s MDA 

The IEEE 802.11s [37] community has developed new amendment to enhance the EDCA 
performances and enable multi-hop communication within a wireless mesh network. 
Originally designed for wireless mesh networks, this amendment can be used in ad hoc 
networks. The IEEE 802.11s aims to connect multiple wireless mesh networks in an ad hoc 
fashion, such that the different Mesh Points are no longer wired, but can communicate with 
each other wirelessly.  The TDMA capabilities have seduced the IEEE 802.11s community; 
thus, in addition to the default medium access scheme; i.e. the EDCA function, an optional 
MAC scheme called Mesh Deterministic Access (MDA) has been defined. 

The MDA works in two different modes: a random access mode where nodes contend in 
advance for a Transmission Opportunity (TXOP) also referred as MDAOP, and a scheduled 
access mode where DATA packets are transmitted. It is to mention that the random channel 
access is the default medium access mode in IEEE 802.11s MDA. 

Fig.5 depicts the frame structure of the IEEE 802.11s MDA. The frame is defined as the 
time interval between two consecutive Delivery Traffic Indication Message (DTIM) beacons. 
A frame in the IEEE 802.11s MDA is divided into a fixed number of time slots of 32µs each. 
A node equipped with the mesh deterministic access contends to reserve an MDAOP. The 
reservation process is as follow: 

1. The node intending to reserve a transmission opportunity uses CSMA/CA and back 
off to send a so called action frame; i.e. control frame, including an MDAOP Setup 
request Information Element (IE). The latter specifies:  

 The duration, in terms of number of time slots, of the MDAOP,  

 The offset of an MDAOP defined as MDAOP starting point with regard to the 
beginning of the frame, 

 And the periodicity indicating the number of sub-intervals reserved during the 
DTIM interval; i.e. a periodicity set to 0 indicates a single reservation that will 
not be repeated [36].  

 This MDAOP is advertised, and all MDA-capable neighbors hearing this advertisement 
are required to not initiate a new transmission during this MDAOP [60]. 

2. The node receiving the MDAOP Setup request accepts or declines the request. In case 
the requested MDAOP does not interfere with the MDAOPs the receiver node is 
aware of, the request packet is accepted; otherwise it is declined.  

3. Once the MDAOP is accepted, the receiver as well as the requesting node broadcast 
the new MDAOP setup within their neighborhood.  

MDAOP
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4. The receiver and the requesting node also broadcast an interfering report times (the 
TX-RX times reports of the one-hop neighbors) in order to spread the MDAOP 
reservation within the two-hop neighborhood. According to [60], the interfering 
reports are sent during Mesh DTIM periods so that MDA-capable nodes may receive 
this report.  

[34] and [35] studied the performance of the IEEE 802.11s MDA in different scenarios. It 
is shown that the amendment overcomes the hidden terminal problem as well as the exposed 
terminal problem thanks to the deployed reservation scheme based on the two-hop 
neighborhood knowledge. Moreover, the protocol presents higher probability of successful 
transmission than the EDCA MAC protocol, thanks to its scheduled channel access. 
Nevertheless, the IEEE 802.11s MDA suffers from some limitations. 

The main limitation is that the MDA remains an optional channel access technique that is 
not deployed in all the nodes. Therefore, MDA non capable nodes are concurrent to MDA 
capable nodes. The standard specifies that an MDAOP owner accesses the channel 
immediately; while all other devices perform back off mechanism. However, we argue that 
the reservation mechanism deployed in the IEEE 802.11s is impacted by non-MDA capable 
nodes. With the IEEE 802.11s MDA, an MDA capable node has no way to prevent a non-
MDA node from accessing the channel [36]. On the other hand, non-MDA capable nodes are 
not aware of the MDAOP schedules. Therefore, an MDAOP owner may find the channel busy 
during its reserved MDAOP due to a non-MDA capable ongoing transmission.  In this case, 
the MDAOP owner needs to defer its transmission until the channel becomes free.  

In addition, the MDA mechanism induces additional delays, and implies repetitive 
reservations for the same node. In fact, one of the specifications of the MDA is that MDAOP 
duration cannot be extended. Thus, in case the MDAOP owner defers its transmission, the 
MDAOP duration is shortened, and the node needs to reserve another MDAOP according to 
its traffic rate. 

To prevent the MDA capable nodes from monopolizing the channel, the IEEE 802.11s 
MDA defines an MDA Access Fraction (MAF) limit. The MAF is the ratio of the total 
duration of the MDAOP a node is involved in (its own MDAOP, the MDAOP of its one-hop 
and two-hop neighbors) in a frame to the duration of the frame [37, 38]. We argue that the 
MAF presents a limitation to the adaptability of the MAC protocol to high loaded networks. 

With the IEEE 802.11s MDA, the density (defined as the number of maximum one-hop 
neighbors) is restricted by the MAF ratio limit. When a node sends a request to reserve an 
MDAOP, it first verifies that the requested MDAOP does not exceed the MAF of all its 
neighbors. Also, the same check is made from the request receiver side. In case one of the 
checks fails, the request is rejected and the new node cannot join the network. Thus, the MAF 
ratio limit restricts the density of the network. 

Finally, the IEEE 802.11s MDA mechanism is also constrained by the fixed frame size. 
Suppose a network composed of nodes such that the number of non-MDA capable nodes 
surpasses that of MDA capable nodes. Consequently, only few portions of the frame are 
reserved for scheduled access. Instead, the portion of the frame available for best-effort 
wireless access is important and thus, the MAC layer remains fundamentally random access 
based scheme. Consider now, a network where only MDA capable nodes exist. In high traffic 
loads and with an important number of nodes, the MDA frame size cannot provide sufficient 
scheduled resources to all nodes in the network. In the other hand, when only few nodes exist, 
the bandwidth is wasted due to the underutilization of the available resources. 
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b) MAC protocols based on the mini-slot concept 

 
i. Five-Phase Reservation Protocol (FPRP) 

 
FPRP [14] is one of the most important works that has introduced the random access 

reservation for mobile ad hoc networks. FPRP proposes a five phase handshaking mechanism. 
It divides the frame into two sub-frames: the Reservation sub-frame (RF) for slot reservation, 
and the Information sub-frame (IF) for data transmission. RF is composed of M Reservation 
Slots (RS). Each RS corresponds to the time needed to perform M reservation cycles. The latter 
consists of five phase handshaking performed to compete for a slot in the IF sub-frame.  

 The first phase is intended to allow the nodes to request for reservations. It is called 
the Reservation Request (RR) phase. 

 Based on a random access, collisions are likely to occur during the first phase. 
FPRP specifies that nodes report these collisions during the second phase, known as 
the Collision Report (CR) phase.  

 The third phase is the Reservation Confirmation (RC) phase, where node 
reservations are confirmed.  

 The fourth phase, called the Reservation Acknowledgment (RA) is indented to 
spread the reservation confirmation within the two-hop neighborhood. During the 
RA, each node that hears a reservation confirmation, acknowledges by sending a 
RA packet. This way, the reservation confirmation is known by the two-hop 
neighbors.  

 Finally, FPRP performs the packing and eliminating (P/E) phase. 

In terms of graph coloring, [11] shows that FPRP and RAND (random) [26] require almost 
the same number of colors for different topologies. This gives the FPRP protocol the flexibility 
to adapt to network variations. Nevertheless with FPRP, a node has no guarantee to own a slot 
in every time frame due to the random access nature of the protocol.  

ii . Collision-free Receiver-Oriented MAC (CROMA) 
 

 
Figure 6: Frame structure of CROMA 

A receiver oriented MAC protocol for ad hoc networks (CROMA) is presented in [27]. 
CROMA is based on a reservation mechanism combined with a polling scheme. For each 
reserved slot, the receiver node of a communication link plays the role of a base station and 
polls several senders among its neighbors. The frame structure defined by CROMA is depicted 
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in Fig.6. A frame is divided into a predefined number of equal time slots. Each time slot is 
composed of three mini-slots: 

1. REQ-mini-slot (Request): used by the requesting node to send a request to the 
intended receiver,  

2. RTR-mini-slot (Ready-to-Receive):  used (1) to acknowledge a sender request in 
case the requested slot is available, (2) to acknowledge previous data transmission, 
and (3) to perform polling among the senders having succeeded a reservation. 

3. DATA-mini-slot: this mini-slot is used by the sender that has been polled in the 
preceding RTR-mini-slot, to transmit its DATA packet. 

CROMA is able to reach higher throughput than IEEE 802.11 in DCF mode [27]. However, 
the polling scheme introduced by CROMA may be penalizing, since a successful reservation 
does not imply an immediate DATA transmission. Instead, the sender node needs to wait to be 
polled by the intended receiver which adds additional delays.  

 

iii.  Collision Avoidance Time Allocation (CATA) 
 
 

 
Figure 7: Frame structure of CATA [11] 

Following the same philosophy of dividing a slot into multiple mini-slots, [28] proposes the 
Collision Avoidance Time Allocation (CATA). In CATA, a distributed reservation combined 
with a handshake mechanism is deployed to reserve time slots. Like CROMA, the frame length 
in CATA is fixed to a predefined number of time slots; each of them is divided into 5 mini-
slots as it is depicted in Fig.7.  

To handle the hidden terminal problem, CATA specifies that each node receiving data in a 
given time slot, sends a Slot Reservation (SR) during the first Control Mini Slot (CMS1). To 
block any broadcast or multicast reservation while a unicast transmission is ongoing, both the 
sender and the receiver send a Not-To-Send (NTS) packet during the fourth control mini slot 
(CMS4). CATA deploys a reservation scheme in order to avoid packet collisions. The 
reservation scheme is the following: 

1. The sender node senses the channel during the first control mini slot (CMS1),  
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2. In case the channel is perceived clear during the CMS1, the sender sends an RTS 
during the second control mini slot (CMS2), and listens to the channel during the 
third CMS.  

3. In case the reservation succeeds, the sender receives a Clear To Send during CMS3. 

4. In case of a broadcast or multicast RTS, the sender detects the failure of the 
reservation if an NTS is received during the CMS4. 

Unlike CROMA that needs a new algorithm to support flooding, CATA has the advantage 
to establish unicast, multicast, and broadcast communications.  

iv. On-demand Dynamic Slot Assignment (ODSA) and Distributed Packet Reservation 
Multiple Access (DPRMA) 

In the same family of MAC protocols for ad hoc networks based on splitting each single 
slot into multiple mini slots, the On-demand and Dynamic Slot Assignment (ODSA) [39] and 
the Distributed Packet Reservation Access (DPRMA) [29] are proposed. ODSA assigns the 
time slots based on information of the two-hop neighborhood. It also deploys an on-demand 
slot reservation which renders it more flexible and adaptive to application requirements and 
network load. Nevertheless, [39] points out that the frame size in ODSA is predefined to a 
number of time slots sufficient enough to cover the overall network. Thus, ODSA does take 
advantage from the on-demand reservation only in case all the time slots are reserved; 
otherwise, bandwidth is wasted due to unused time slots.  

The Distributed Packet Reservation Multiple Access (DPRMA) introduces quality of 
service by mixing voice and data traffic. It attributes higher priority to voice calls.  The channel 
is slotted and each time slot is divided, then into (m+1) mini-slots.  With DPRMA, contention 
is made with handshake of RTS/CTS during the mini slot 0. Two cases are to be considered: 

1. Nodes handling voice traffic start the contention with a probability 1, while data 
traffic nodes start the contention with a probability p lower than 1. 

2. If a node wins the contention in slot 0, it starts data transmission during the 
remaining mini slots. In case of voice traffic, the slot is reserved for several frames; 
otherwise nodes handling data traffic use the selected time slot only once; i.e. in 
one frame cycle.  

 

2.4.2. Dynamic frame size-based MAC protocols 

 
a) Unifying Slot Assignment Protocol Multiple-Access (USAP-MA) 

 
Dynamic frame size concept offers a topology-adaptive solution.  

In [15], Young introduced a new dynamic TDMA channel access technique, called USAP-
MA (Unifying Slot Assignment Protocol Multiple-Access) to ensure effective channel 
utilization.  USAP-MA is an extension of the USAP protocol [16] which is part of the fixed 
frame sized MAC protocols for multi-hop ad hoc networks. 
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Figure 8: Cycle and TDMA frame structure for USAP 

 
The Unifying Slot Assignment Protocol defines a cycle as a set of N frames; each of them 

is composed of M time slots as it is depicted in Fig.8. In USAP, N and M are fixed numbers. 
The first slot of each frame is dedicated to one particular node in the network. Thus, only N 
nodes can communicate with each other based on USAP MAC protocol.  Each node sends one 
control packet called Net Manager Operational Packet (NMOP) per cycle; i.e. N frames. An 
NMOP is used to exchange TDMA schedules in the two-hop neighborhood. It incurs the 
following information: 

 STi(s): sets to 1 in case node I sends packet in slot s, 

 SRi(s): sets to 1 in case node I receives packets in slot s, 

 NTi(s): sets to 1 in case one of node I neighbors transmits data in slot s. 

With USAP, a new node joining the network should first sense the channel for a whole 
cycle in order to collect the NMOPs transmitted by its neighbors. Once the slot assignment 
schedule is recognized by the new node, it assigns to itself one free slot. Finally, the new node 
announces its selection to its neighbors by transmitting an NMOP control packet. 

In USAP, the couple (N, M) should be configured in advance and needs to be large enough 
to consider the case where the network has a maximum number of nodes. Despite its 
simplicity, USAP suffers from lower channel utilization due to the over-dimensioned cycle; 
yielding to unassigned slot appearance. 

To alleviate the low channel usage of USAP, Young proposes the USAP Multiple Access 
[15] as an extension of USAP. USAP-MA is distinguished by three main features: 

1. Dynamic frame length: Unlike USAP, the frame length in USAP-MA is dynamic. 
Each node sets the frame length according to the number of nodes in its vicinity. 
Hence, the frame length adapts to network density; i.e. if the number of nodes 
surrounding a node N is small, node N can set a short frame size. This way, the 
number of unassigned slots decreases.  

2. The frame length is a power of 2: The frame size in USAP-MA is set as a power of 
two. This feature ensures collision free packet transmission between nodes having 
different frame sizes.  
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3. The slot poaching: USAP-MA follows the same slot assignment procedure as the 
USAP protocol; i.e. a node first, listens to the channel for a whole cycle to collect 
the NMOP of its neighbors. Second, the node chooses a free slot based on the slot 
assignment schedule in its contention area. Finally, the node broadcasts its 
selection. While USAP protocol defines a large frame size to consider a maximum 
number of nodes, USAP-MA tends to shorten the frame size instead. With USAP-
MA, nodes are continuously looking for unassigned slots in the frame. If a node N 
assigned slot x detects a free slot y with y<x, it releases the slot x and assigns to 
itself the slot y. This technique is called the slot poaching. When all the slots in the 
latter half of the frame become unassigned, the frame is halved. 

Despite its adaptability to topology variations, [12] argues that USAP-MA still suffers 
from low channel utilization, since it resorts to doubling the frame size in case no unassigned 
slot is found. This way, free slots appear at the end of the frame leading to bandwidth wastage. 

 
b) Extended-Adaptive Slot Assignment Protocol (E-ASAP) 

 
The same technique of setting the frame size as a power of two is adopted in [30] and 

further enhanced in [31]. Kanzaki et .al propose the Extended Adaptive Slot Assignment 
Protocol (E-ASAP). In E-ASAP, the first slot of each frame is reserved for new incoming 
node request. The E-ASAP protocol is a topology-based MAC protocol, since it assigns slots 
based on the two-hop neighborhood information. The slot assignment in E-ASAP follows a 
three-way handshake mechanism: 

1. First, the new node broadcasts a Request (REQ) packet to its one-hop neighbors 
during the first slot of the frame,  

2. The neighbors that receive the REQ packet switch from the TRANSFER mode to 
the CONTROL mode, and respond by sending information (INF) packets during 
their own assigned slots.  

3. Based on the slot assignment schedule collected from the received INF packets, 
the new node first sets its frame size to 4 time slots, the minimum frame size 
defined in the E-ASAP protocol. Then, the node passes through three different 
procedures to select an appropriate time slot: 

a) Getting an Unassigned slot (GU): The frame size is set to the minimum 
frame size defined in the E-ASAP; i.e. 4 time slots. If there is at least one 
free slot in the frame with the current frame size, apart from the first slot 
which is reserved to new incoming nodes, the node assigns to itself that 
slot.  

b) Releasing Multiple Assigned (RMA) slots: in case the new node does not 
find a free slot with the current frame size, the node checks whether one of 
its neighbors is assigned multiple slots. If it is the case, it releases one of 
these slots and assigns it to itself. 

c) Doubling the Frame size (DF): in case the new node fails to find a free slot 
by the GU and the RMA procedures, it doubles the frame size. Doubling 
the frame size consists of three main steps: (1) the frame size is first 
doubled, (2) the nodes assigned slots with the current frame size, are copied 
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to the second half of the new sized frame, (3) Finally, the GU and the RMA 
are applied to select a free slot. 

In [12], it is shown that E-ASAP succeeds to achieve better channel utilization in 
comparison with USAP and USAP-MA. Nevertheless, we argue that E-ASAP still suffers 
from two major limitations: 

First, the slot assignment scheme in E-ASAP assumes that an assigned slot is always a 
used slot, which is not usually the case. Thus, a node may have multiple assigned slots 
regardless its effective bandwidth consumption, leading to bandwidth wastage. 

In addition, the frame size set as a power of 2 results in an unfairness issue which impacts 
the MAC layer performance. 

Notice that a detailed analysis of the E-ASAP performance is provided in Section 3.4.1 of 
Chapter 3. 

 
 
 

2.5. Conclusion 

 
Wireless Ad hoc networks constitute one of the key technologies for next generation 

wireless networks. The medium access protocol has a major impact on the network 
performance. In this chapter, we have presented insights on the main characteristics of an 
efficient medium access control protocol for wireless ad hoc networks. We also presented 
masterpiece works that can be found in the literature. From this chapter and the bibliographic 
study, some main conclusions can be drawn: 

MAC protocols for wireless multi-hop networks are mainly divided into two families: 
contention-based and contention-free MAC protocols. For the former group, nodes contend to 
acquire the channel for each packet transmission; while for the latter group the channel is 
reserved for a certain period of time. 

We have highlighted the limitations of the contention-based MAC protocols to achieve 
higher throughput because of their random channel access. We pointed out that the 
widespread IEEE 802.11 DCF is not suitable for multi-hop communications, and shows lower 
performance at high input loads due to its back off mechanism. 

To support quality of service (QoS), TDMA based conflict-free schemes have seduced the 
research community because of their ability to provide guaranteed channel access. 

We have proposed a classification of the TDMA-based MAC protocols based on the frame 
size characteristic; i.e. static or dynamic.  

The fixed frame sized MAC protocols follow the same reservation scheme: a random 
channel access phase followed by a scheduled channel access. The former is used to contend 
for a time slot selection, while the latter is dedicated for DATA packet exchange. We have 
shown that fixed frame size MAC protocols have the important drawback of wasting 
bandwidth due to the use of mini-slot for control management, or by over-dimensioning the 
frame size such that unassigned slots might appear. Also, we pointed out the famine risk 
encountered with fixed frame size MAC protocol by analyzing the IEEE 802.11s mesh 
deterministic access for multi-hop ad hoc networks. 
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Dynamic frame size based protocols appear then as a promising solution to ensure efficient 
channel utilization and better quality of service. Nevertheless, to our knowledge, there is a 
small amount of research that has been proposed to support a dynamic frame size. Two major 
proposals in the literature have been studied in this chapter: USAP-MA and E-ASAP. They 
have the drawback of either wasting bandwidth due to unassigned slots appearance, or 
attributing slots regardless the effective traffic rate of the nodes, or presenting a per-node 
unfairness problem.  

We believe that there is still room for improvements over the design of a reliable and 
efficient MAC protocol for wireless ad hoc networks that takes full advantage of the 
flexibility of a dynamic frame size to provide better channel utilization and increase the 
fairness between the nodes. We are confident that a suitable dynamic frame size design can 
tackle the unassigned slot appearance, and guarantee better per-node fairness. 

In the next chapter, we will present our proposal that consists of a new TDMA-based 
channel access technique that aims to increase the channel utilization by keeping the frame 
size as lower as possible. 

This new TDMA-based technique is the basis of a new TDMA-based MAC protocol for 
wireless multi-hop ad hoc networks called the One shot Slot TDMA-based Reservation 
(OSTR) MAC protocol . In chapter 3, we will first provide a detailed description of our 
proposal. In order to evaluate the OSTR performance in terms of channel utilization and per-
node fairness, a comparison study will be held between the IEEE 802.11 in DCF mode and 
the OSTR protocol. In a second step, we will study the behavior of the new frame size 
increase technique introduced by OSTR with the frame size increase technique incurred by 
the E-ASAP protocol. The choice of the E-ASAP protocol is based on the bibliographic study 
held in this chapter. This study has highlighted that E-ASAP has the most interesting 
performance in terms of channel utilization among the dynamic frame size-based MAC 
protocols.   
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Introduction 
Efficient bandwidth exploitation is fundamental in order to increase the overall system 

performance especially in a hostile environment where channel resources are scarce, such as 
wireless ad hoc environment. In order to enhance bandwidth exploitation in multi-hop ad hoc 
networks, a good MAC protocol design needs to accomplish three main objectives: optimally 
use the scarce resources, fairly share the available bandwidth between contending nodes, and 
smoothly adapt to varying network topologies.  

In order to accomplish these objectives, different amendments to the existing MAC 
protocols for ad hoc networks need to be brought in. As explained in Chapter 2, the heir of 
contention-based MAC protocols; i.e. IEEE 802.11 may not be the optimal choice to support 
multi-hop communication. As opposite to contention-based schemes, conflict-free with 
reservation mechanism are favored, since they enhance bandwidth exploitation by 
coordinating a guaranteed channel access. To further increase throughput, spatial reuse 
schemes have taken lots of attention. Finally, the necessity to address varying topologies gives 
rise to dynamic and network density adaptive MAC protocols. 

In the previous chapter, we underlined the capabilities of TDMA-based MAC solutions to 
ensure conflict-free channel access. It has also been shown that fixed frame size-based 
techniques may not be the appropriate choice to optimally exploit the bandwidth. 

In this chapter, we turn to the dynamic frame size-based family of protocols to propose a 
new adaptive solution to multi-hop wireless ad hoc networks. To bypass the necessity of a 
trade-off between the predefined frame size and the network density, we adopt a dynamic 
frame size. To further improve bandwidth exploitation, we focus on maintaining the frame 
size as low as possible. Finally, to further favor throughput, we exploit the capabilities of a 
spatial reuse scheme. Our proposition is called OSTR (One shot Slot TDMA-based 
reservation) MAC protocol. 

Four master motivations are behind the OSTR design. First, a TDMA-based protocol can 
provide a better channel utilization if the frame size is maintained as low as possible. Second, 
the inherent ad hoc environment and node movement are better managed with a dynamic 
solution. Third, per-node fairness can be enhanced if the MAC protocol design respects node 
requirements. Finally, the energy efficiency can be achieved thanks to a shorter frame size. 

OSTR introduces then, a new TDMA-based channel access technique that aims to increase 
the channel utilization and the energy efficiency by keeping the frame size as low as possible. 
It is based on a slot-by-slot reservation technique. The frame is dynamic and is built slot-by-
slot according to node arrival/departure to/from the network. 

In the following, we will present the detailed description of our proposal. In Section 3.3, 
the robustness of OSTR in high loaded environment is highlighted via a set of simulations 
comparing OSTR with the IEEE 802.11 DCF. The good performance of OSTR in terms of 
fairness and network throughput in multi-hop scenario are also shown. The effectiveness of 
the slot-by-slot frame size increase technique brought by OSTR is handled via analytical and 
experimental comparative studies between our proposal and the E-ASAP protocol [12]. 
Finally, the chapter is concluded by a discussion about the pros and cons of each TDMA 
frame size increase technique; i.e. the slot-by-slot frame size increase, and setting the frame 
size as a power of two. The energy efficient capabilities of the OSTR protocol are tackled in 
chapter 4.  

Most of the results of this chapter have been presented by the author in [69, 88]. 
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3.2 OSTR Protocol 
 

3.2.1 OSTR: Protocol Overview 

OSTR is a medium access protocol for mobile ad hoc networks that schedules 
transmissions in a slotted environment. It is a dynamic and distributed protocol that operates 
on a single-frequency channel. 

The time is organized in frames; each of them is composed of two sub-frames: a 
CONTROL sub-frame, where channel access follows a CSMA/CA access scheme, and a 
DATA sub-frame, where channel access is scheduled. The CONTROL sub-frame is intended 
to allow new incoming node requests and to resolve slot conflicts. During DATA sub-frame, 
each node sends DATA packets and some specific control packets (Frame Change, REPLY) 
in its reserved slot. 

OSTR is topology-based, where two-hop neighborhood information monitor the slot 
assignment. It is also reservation-based, since a reservation mechanism is deployed to assign 
slots to nodes in the network. The bandwidth consumption is enhanced thanks to ; (1) a spatial 
reuse of resources favoring slot re-utilization in order to keep the frame size as low as 
possible, (2) an on-demand slot assignments, i.e., slots are allocated only if needed with 
respect to node requirements, (3) the appointment mechanism, to deal with frame 
synchronization issue described in Section 3.2.4.c.  

 

3.2.2. OSTR protocol: Frame Structure and Packets Format 
 

a) Frame Structure 

OSTR divides time into frames that are, in turn, divided into two sub-frames: Control sub-
frame which length is the same for all OSTR frames and DATA sub-frame composed of L 
equal time slots. The value L changes according to the number of nodes in the network.  

 

 
Figure 9: OSTR frame structure 

During control sub-frame nodes follow a CSMA/CA [3] contention scheme to get channel 
access. This sub-frame is intended for exchanging control information to allow new arriving 
nodes to request a slot reservation in order to join the network, or to announce a conflict, etc. 
During DATA sub-frame, each active node accesses the channel during its reserved slot to 
send data packets. These data packets are of fixed length, fragmentation and reassembly are 
done by higher layers. 
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b) Packets Format  

This section describes the different packet formats and the MAC header of the data 
packets. All MAC fields are also defined. Their significance will be detailed later in the 
protocol description. 

 
Common Parts 

The control packet formats and the MAC header of the data packets are depicted in Fig.10. 
Generic information, e.g. protocol version, is given in the frame control field (fc). The field 
fcs (frame check sequence) contains a CRC (cyclic redundancy code) computed on all the 
fields of the MAC header and on the frame body. Src.ad and Dest.ad give the MAC addresses 
of the packet source and the packet destination respectively. The field Src.slt contains the 
packet source’s assigned slot.  

Tcur field gives the current frame size of the packet source; i.e. if a control packet is sent 
during frame j, Tcur includes frame j size.  

Length field denotes the length in bytes of the packet. The Type field is 3 bits in length and 
indicates the type of the packet in process. There are six packet types defined in OSTR 
protocol and represented in Table 1. 

 

HELLO Control Packet   

In OSTR, a HELLO packet has two functions: tracking topology changes and updating 
neighborhood information. A HELLO packet is sent periodically, with interval set to 2 
seconds. HELLO packets are only sent during contention-based sub-frame. That is, nodes 
periodically perform a CSMA/CA access scheme to transmit HELLO packets.    

Apart from common fields, a HELLO packet includes a neighbor update list. The neighbor 
update list contains one-hop neighbors’ MAC addresses (Nei.ad) and their assigned slots 
(Nei.slot). 

 

REQ Control Packet   

In OSTR, a REQ packet is generated each time a node needs to reserve a slot. It is sent 
during Control sub-frame, and consequently the Src.slot field is set to 0. The Req.slot field 
indicates the requested slot number. The field qs is used to indicate the required quality of 
service of the requesting node. This field could be used in future versions of the protocol. 

 

REPLY Control Packet  

In OSTR, a REPLY is used to respond to a node REQ. It has the same structure as a REQ 
packet. The fields Src.slot and req.slot indicate the REPLY source assigned slot and the 
reserved slot for the destination node, respectively. 

In OSTR, only nodes with assigned slots have to send REPLY packets in order to avoid 
irrelevant slot assignment information. Indeed, a new node may be neighbor to another node 
that still waits for a DATA slot; thus the slot assignment maintained by that node is 
inconsistent. Because slot assignment is crucial for the correctness of OSTR, it is specified 
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that only nodes that have already been assigned a DATA slot are allowed to confirm 
reservation and thus send REPLY packets. 

FC Control Packet 

An FC (Frame Change) packet has two functions, as detailed in section IV: disseminate a 
frame size change among all nodes and track the new sized frame start point.  

In OSTR, an FC packet is generated each time a change in the current frame size occurs. 
When the frame size is modified, information about the new frame size and the new sized 
frame start point must be communicated within the whole network. These information are 
recorded respectively in Tnext field and Appoint field.  

The Appoint field is set to an integer value denoting “the number of frames to wait for 
before starting a frame with the new size”. The Appoint value is first initialized by the node 
announcing the frame size change and then it is decremented frame by frame. That is, 
consider an FC packet first sent during frame j and including an Appoint value of 3. As long 
as the frame j is not ended, all FC packets sent during frame j include 3 in Appoint field. 
Nodes that should transmit the packet during frame j+1 , decrement the Appoint value. This 
process continues until Appoint value reaches 0. More details about appointment setting are 
given in section 3.2.4.c.   

In OSTR, only FC packets must be rebroadcasted among all nodes in the network. Thus, 
Dest.ad field is set to broadcast address. 

ERR Control packet 

In OSTR, an ERR is generated to indicate a conflict. To enable all nodes in the conflict 
area be aware of the conflict, the Dest.ad field of an ERR packet is set to the broadcast 
address. The conf.slot and the conf.ad fields in an ERR packet are used to deal with collisions. 
If a conflict is detected, conf.slot field includes the conflicting slot; i.e. the slot during which 
the collision has occurred. To solve the conflict, the node that has detected the conflict, 
specifies which from the conflicting nodes will lose its assigned slot and puts its MAC 
address in the conf.ad field. 

 

Table 1: Packet types in OSTR 

Type field value Packet Type 

000 HELLO 

001 REQ 

010 REPLY 

011 ERR 

100 FC 

101 DATA 
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Figure 10: OSTR packets format 

 

3.2.3. OSTR from an example 

Before going into more detail in the protocol description, let us illustrate the main feature 
of OSTR, i.e. increasing the frame size slot by slot. 

This feature is illustrated in Fig.11, which depicts a 4 node network {A, B, C, D} 
performing with a frame sized of 4 time slots (including slot 0 for CONTROL sub-frame). 
Nodes A, B, C and D are assigned slots 1, 2, 3 and 1 respectively. Node N wants to join the 
network. It first, senses the channel to collect information about its two-hop neighborhood. 
This is enabled thanks to the OSTR neighbor detection mechanism. This mechanism specifies 
that each node sends periodically a HELLO packet in the CONTROL sub-frame. A HELLO 
packet incurs the node unique identifier, the node assigned slot, and the node frame size for 
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the HELLO sender itself and for all its one-hop neighbors as well. Hence, after listening to 
HELLO packets sent by node D and C, the new arriving node N recognizes: 

 That the current frame size in the network is set to 4 time slots (including slot 0 for  
CONTROL sub-frame),  

 That slots 1 and 3 are used by its one-hop neighbors (D and C),  

 That slot 2 is used by its two-hop neighbor (node B).  

Consequently, no free slots are available with the current frame size for node N. The latter 
applies, therefore, for slot number 4. Mind that in this Section we are interested in the slot by 
slot frame size increase feature brought by the OSTR protocol. All the OSTR mechanisms are 
detailed further in the following Sections. 

In a given frame j and in the CONTROL sub-frame (slot 0), node N initiates the 
reservation process, and sends a REQ packet to its one-hop neighbor assigned the lowest data 
slot: node D. In the same frame j, the latter sends REPLY packet during its corresponding slot 
(slot 1) to confirm node N reservation. Since node N applies for slot number 4 leading to the 
frame size increase in the network, node D generates an FC packet to flood in the network. 
Node D specifies an appointment after two time frames to switch to a frame sized of 5 time 
slots. The appointment value is computed based on the OSTR appointment mechanism 
explained further in this Chapter. Here, we give an intuitive explanation of the chosen value 
of 2 time frames.  

During slot 1 of frame j+1 , the FC packet is broadcasted and is then received by node N 
and C that are now aware of the switching time to the new frame size. Node C then, 
rebroadcasts the packet during its assigned slot 3. In frame j+2 , node B broadcasts the FC 
packet which reaches node A. Hence, by the end of frame j+2 , all nodes in the network are 
aware of both the new frame size: 5 time slots, and the switching time to the new sized frame. 
Also, by the end of frame j+2  two time frames has been elapsed since the flooding start 
performed by node D. Therefore, frame (j+3 ) includes 5 time slots. During frame (j+3) node 
N joins the network and starts transmitting DATA packets during its assigned slot: slot 
number 4. 
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Figure 11: OSTR behavior illustration upon a frame size increase 

 

3.2.4. OSTR: Protocol Description 

 

OSTR introduces a new TDMA-based access technique that consists in increasing the frame 
size slot-by-slot, if needed. To do so, OSTR deploys three main mechanisms: 

1. Neighbor detection 

2. Slot reservation mechanism 

3. Flooding and appointment mechanisms 

 

a) Neighbor detection and topology maintenance 

OSTR is designed to work in a completely distributed manner. It addresses varying 
topologies by a periodic exchange of HELLO packets. HELLO packets contain the assignment 
information of the sender and its one-hop neighbors. They are broadcasted in the contention-
based sub-frame and restricted to one-hop neighbors. Upon receiving a HELLO packet, the 
latter update their neighborhood information and discard the packet. The HELLO packet 
exchange also enables new incoming nodes to populate their neighborhood table based on 
which they select an appropriate time slot. 
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The HELLO sending period mainly depends on topology changes and on the application 
scenarios. In wireless sensor network scenario where node velocity is too low, a large HELLO 
sending period is more suitable. Whereas in vehicular network scenario, nodes move more 
frequently thus a smaller HELLO period is necessary to track topology changes. In this work 
we consider a periodic exchange of HELLO packets every 2s, according to the HELLO 
packet mechanism described in OLSR [85]. 

b) Slot reservation mechanism 

A new incoming node senses the channel to collect information about the slot distribution in 
its contention area. In case the sensing period ends without receiving packets, the new node 
starts a frame and assigns to itself the first DATA slot of the frame. Otherwise, the node 
receives HELLO packets periodically sent by its neighbors. Thus, a local view is now available 
for the new node making it possible to properly choose a time slot. 

 

Time slot selection: OSTR aims to achieve better channel utilization by diminishing the 
overall frame size in the network. Accordingly, a simple slot selection algorithm is adopted 
and is depicted in Fig.12.The algorithm verifies three main characteristics: simple, depends 
only on two hop neighborhood information and favors the slot re-utilization if possible. 

For the sake of clarity, an exemplification of time slot selection algorithm is given in 
Fig.13. A network composed of 3 nodes performing channel access in a frame sized of 4 time 
slots is depicted in Fig.13 (slot 0 is reserved for control information sent). The slot 
distribution in the frame is represented by a letter/number where the letter and number 
represent node identifier and its corresponding assigned slot number, respectively. In this 
example, nodes A, B, and C are assigned slots 1, 2 and 3, respectively.  

A node D first joins the network. After populating its neighborhood table with information 
collected in HELLO packets, node D runs OSTR slot selection algorithm. In the first step of 
the algorithm, node D finds a FREE slot (slot 1); therefore, it chooses the slot 1 and exits. 
Afterwards, node N joins the network. It populates the Neighborhood table and runs slot 
selection algorithm. All slots in the frame are occupied by one-hop and two-hop neighbors of 
node N. Therefore, node N switches to step 2 of slot selection algorithm and applies for slot 4 
leading to the frame size increase. 

 

1. With a frame size of K DATA time slots, if there is at least one 
FREE slot, select the one with the lowest number, otherwise go 
to step 2; 

2. Select the slot (K+1) and exit. 
Figure 12: OSTR slot selection algorithm 



MAC Protocol Design for Multi-hop Wireless Ad hoc and Sensor Networks 

 

49 

 

 
Figure 13: Illustration of the OSTR slot selection algorithm 

 
Request (REQ) transmission and REPLY generation: Once the slot is chosen, the new 

node selects among its one hop neighbors the one which has been assigned the lowest slot 
number as REQ destination node, and reserves the intended slot by sending a REQ during the 
CONTROL sub-frame of the current frame. As the REQ packet is sent during the contention-
based control sub-frame, a collision between the REQ packet and other packets is not 
negligible. That’s why; OSTR specifies that the requesting node launches a timer upon the 
REQ packet transmission. This timer is stopped upon the reception of the REPLY packet. In 
case no REPLY packet is received, the requesting node initiates a new reservation attempt. 
This process continues until either a REPLY packet is received, or the maximum attempts 
number is reached. Notice that the latter can be configured according to the application 
requirements (e.g. the application tolerated delay). 

Upon the reception of a REQ packet, the behavior of REQ destination node differs on 
whether the frame size has to be increased or not. In fact, in case the sender has found a free 
slot without increasing the frame size, the REQ destination sends a REPLY during its 
assigned slot in the same current frame. Otherwise, the sender reserves a slot leading to the 
frame size increase. In this case, REQ destination node first sends a REPLY to confirm the 
new node reservation. Then, it sets an appointment based on the OSTR appointment 
mechanism described later in Section 3.2.4.c. Finally, it generates an Frame Change (FC) 
packet and broadcasts it.  

 

REPLY listening and Transmission decision: A requesting node that has sent a REQ 
during CONTROL sub-frame of frame j listens to the DATA sub-frame of frame j. If the end 
of the frame j is achieved without receiving a REPLY, the requesting node restarts a new 
reservation phase. In case a REPLY is received during DATA sub-frame of frame j, two cases 
are considered:  
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1. The frame size does not increase. In this case, a free slot in the current frame is 
reserved for the requesting node without increasing the frame size; i.e. Tcur and Tnext 
fields in REPLY packet incur the same frame size. Thus, the requesting node starts 
DATA transmission immediately in the following frame; i.e. (j+1).  

2. The frame size increases; i.e., no free slot is available for the requesting node with the 
current frame size. Thus, the REPLY packet includes a Tnext value superior to Tcur. 
Consequently, the requesting node has to wait for an FC packet to get the appointment 
time and delays DATA transmission till this time is reached. It is to mention, that a 
REPLY packet has to be sent in the current frame, in order to confirm the requesting 
node reservation so that the latter won't attempt a new reservation in the following 
frame. 

 

Reception of an FC: Upon the reception of an FC packet, nodes copy the appointment 
value and decrement it frame by frame. If appointment value = 0, then each node changes its 
frame length to the new frame size. Apart from the new arriving node that is not assigned a 
time slot yet, all nodes receiving an FC packet generate on their turn an FC packet and 
broadcast it in their assigned slots.  

 

 

Figure 14: Illustration of the frame synchronization problem 

 

c) Flooding and Appointment mechanisms  

 

i. Frame synchronization: Problem Statement 
In this section, the focus is on the OSTR frame size evolution. For more clarity, a simple 

case study is depicted in Fig.14 where a network of 6 nodes is represented. A pair 
(letter/number) represents one node in the network, where the letter denotes the node 
identifier and the number stands for the node corresponding slot. Assuming a frame size of 4 
time slots (including slot 0 dedicated to CONTROL sub-frame), node N joins the network and 
selects slot 4 according to the OSTR slot selection algorithm. The frame size is then increased 
from 4 to 5 time slots. We assume that node D has sent REPLY packet during frame j.  In the 
same frame, node C sends a packet with frame size equals to 5 time slots. The new frame size 
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then reaches node B. Therefore, by the end of frame j, the network is divided into two parts: 
the left side composed of nodes {A, E} with frame length of 4 time slots, and the right side 
composed of nodes {B, C, D, N} with a frame sized of 5 time slots. In Fig.14, the frame size 
evolution is depicted for nodes E, A and B. Due to the frame size increase, frame j+2  starting 
point is moved. Thus, the absolute slot positions are modified and collisions occur resulting in 
a frame synchronization problem. 

To handle frame synchronization problem, OSTR specifies that the increase of the frame 
size should be communicated among all nodes in the network, and the new sized frame is 
adopted simultaneously. This is reduced in resolving two issues: (1) how to disseminate the 
frame size change in the whole network, and (2) when nodes in the network should start the 
frame with the new size. Two mechanisms are defined in OSTR to deal with these issues: A 
flooding mechanism to disseminate information in the network and an appointment 
mechanism to set the starting point of the new sized frame. 

 
ii . Flooding mechanism in OSTR 

Flooding a network is the simplest way to disseminate information in ad hoc networks. 
Flooding algorithm starts with a source node broadcasting a packet to all its one-hop 
neighbors. Each of these neighbors rebroadcasts the packet on its turn only if the packet is 
received for the first time. This process continues till all nodes in the network receive the 
packet.  

Flooding is performed in the OSTR protocol to disseminate the frame change information 
within the network. It is performed with respect to the following: 

1. It is performed only if a change (increase or decrease) in the frame size occurs. 

2. It restricts to Frame Change (FC) packets. 

3. It is performed during contention-free sub-frame; i.e., if node n sends REPLY packet      
during frame j, it generates the corresponding FC packet and sends it during its 
assigned slot in frame (j+1). All nodes enabling the FC packet forwarding transmit the 
packet during their own assigned slots. This choice is justified by two arguments: (1) 
avoiding additional delays in one hand, and (2) FC packets delivery guarantee in other 
hand. Indeed, in contention-based sub-frame, nodes perform back off mechanism 
leading to additional delays. Also, collisions might occur in CONTROL sub-frame 
leading to irrelevant information sending. Thus, OSTR specifies that FC packets are 
sent during contention-free sub-frame.  

4. It is initiated by the node with the lowest assigned slot number among the one-hop 
neighbors of the arriving node. The reasons of this choice are twofold: first, 
minimizing flooding delay in OSTR. Indeed, when flooding is initiated by the node 
with the smallest slot number, the corresponding neighbors forward the packet during 
the same frame minimizing this way, the overall flooding delay. Second, this choice 
guarantees the sender’s uniqueness and consequently avoids broadcast storm problem 
[61]. 

iii . Appointment mechanism in OSTR 
The key idea of the OSTR appointment mechanism consists on estimating the flooding 

completion time based on network characteristics. The mechanism enables to fix a date in the 
future expressed in terms of number of time frames to wait for, before switching to the new 
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sized frame. The main feature of the OSTR appointment mechanism is reduced to answering 
the following question: After how many time frames should nodes start the new sized frame? 

For the sake of clarity, an illustration of the OSTR appointment mechanism is shown in 
Fig.15. In this example, the frame size in the example is fixed to 5 time slots, where slot 0 is 
reserved for new incoming node requests. At t1, the frame size increases. Therefore, node n 
performs three tasks: 

1. Fixing an appointment for the new sized frame start (Action 1); 

2. Generating an FC packet to disseminate the frame size change and the appointment in 
the whole network (Action 2), 

3. Tracking the frames until the appointment time is reached. At this time all nodes in the 
network start a frame sized of 6 time slots. 

These tasks are performed in the given order. While the second task is ensured by OSTR 
flooding mechanism; the first task is performed by the so called: Appointment Mechanism. 

The OSTR appointment mechanism is evaluated with respect to the following assumptions: 

 The network remains almost static while running the flooding process. 

 If a node is joining the network and meanwhile a flooding process is running, the new 
node request is treated only when the flooding process ends. 

 Nodes form a connected graph G (V, E) with V vertices and E edges representing 
nodes and links in the network, respectively. A connected graph is a graph in which a 
path always exists between any random pair of vertices. 

 The diameter D, defined as the longest shortest path in the network, is predefined. 

 New arriving nodes join the network one by one such that the network is extended 
while the diameter remains inferior or equal to D. 

According to [62] the flooding time in connected static networks equals the network (or 
graph) diameter. The appointment time is calculated in terms of number of frames to wait for, 
before starting the new sized frame.  

Let n be a random node from the network initiating the OSTR flooding process, and i its 
corresponding assigned slot in a frame sized of N time slots. Since slot 0 is reserved for 
CONTROL sub-frame, i verifies . The OSTR protocol is based on a two-hop 
interference model; i.e. all nodes in the two-hop neighborhood of node n are concurrent. 
Therefore, the slot assignment in OSTR is made such that all nodes in the two-hop 
neighborhood of node n are allocated different slots. Consequently, with the OSTR protocol, a 
time slot is reused only at a distance of three-hops away from another node detaining the same 
slot. For instance, only a node that is three-hop away from node n, can be assigned slot i. 

In the sequel, we compute an upper bound for the flooding completion time in terms of 
number of time frames (sized of the current frame size) to wait for, before switching to the new 
sized frame. 

 
Purpose: How many time frames are needed to complete the flooding within the whole network 
starting from an arbitrary node n assigned slot i?  

 
Knowing that the OSTR slot distribution in the network verifies the following Rule: 

 
Rule 1: Each random slot i in the frame is used mod (3). 

 11  Ni
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Therefore, the overall flooding time is reduced to the flooding time necessary to 
disseminate information from node n to the nodes that are three-hop away from node n.  

 

 

Figure 15: Frame size evolution in the OSTR protocol based on the appointment mechanism 

 
Recall that i verifies , three cases are to be considered: 

1. Case 1:  
As the first slot is assigned to node n which initiates the flooding process, all node n one-

hop neighbors are assigned slots which numbers are greater than 1. Suppose node n launches 
the flooding process during frame j, all its one-hop neighbors will receive the packet and 
forward it during frame j. Hence, the FC packets reach node n two-hop neighbors in one time 
frame. In order to reach node n three-hop neighbors, another frame is needed enabling the two-
hop neighbors to forward the packet by their turn. Therefore, flooding the packet from node n 
to its three-hop neighbors needs 2 time frames.  

2. Case 2:  
In this case, all node n one-hop neighbors cannot forward the packet in frame j. Thus, by the 

end of frame j, only its one-hop neighbors maintain the forwarded packet. Therefore, the latter 
proceed to the forwarding process during frame (j+1). Another frame (j+2) is needed to enable 
packets reach node n three-hop neighbors. Thus, 3 time frames are needed in this case. 

3. Case 3:   
In this case, the set of node n one-hop neighbors is divided into two groups: neighbors 

which slot numbers are superior to i, and neighbors which slot numbers are inferior to i. The 
former group follows the same reasoning as case 1; while for the latter group the same 
reasoning as in case 2 is applicable. Therefore, 2 time frames are needed and in other hand the 
flooding needs 3 time frames. Adopting 2 time frames is problematic because this time period 
is not sufficient enough to reach all node n three-hop neighbors. Consequently, 3 time frames 
are needed. 

A 3-hop cycle needs then, at most 3 time frames to disseminate information to all nodes in 
the 3-hop neighborhood. With reference to [62], the overall flooding time in a static network 
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equals the diameter of the network denoted by D. Therefore, it suffices to know how many 3-
hop cycles D incurs to deduce the time frame number for the overall network flooding. Hence, 
the flooding completion time denoted by Tf verifies (1). 

 (1) 

It is to mention that a node can acquire the network diameter based on information from the 
routing layer. For instance, based on table-driven routing protocols, e.g. [63], a node maintains 
a routing table, in which routes to all nodes in the network are continuously updated. Thus, 
according to the maximum number of hops in its routing table a node can estimate the network 
diameter. 

 

3.3. Performance Evaluation with Comparison to IEEE 802.11 
DCF 

  

In the previous Sections, we presented the architecture and detailed the design of the 
OSTR protocol. Even though OSTR is a TDMA-based MAC protocol, we chose to hold a 
first evaluation of the OSTR performance in terms of throughput and fairness with 
comparison to the standard IEEE 802.11 in mode DCF.  

3.3.1. Simulation environment and Setup 

 

In order to evaluate the OSTR protocol, we had to implement it in OMNET++ simulator 
[64]. As we are interested in studying the MAC layer, we chose the mobility framework [65] 
provided by OMNET++ community to simulate physical and MAC layers. The developed 
module is an entire MAC layer implementation including all features described in Section 3.2.  

To study the performance of OSTR in a multi-hop environment, we faced the issue of 
choosing an appropriate network topology. Some typical networks are considered in the 
literature like the grid network supported in [54], or random generated topologies [14, 66]. In 
our work, we consider two different topologies: a very simple multi-hop topology referred as 
squares topology and used in the literature to evaluate MAC protocols in ad hoc networks, e.g., 
[21]. We also consider a random generated topology.  

All the nodes are placed in 1000x1000 meters area, and are assumed to be static. The 
measurements are performed based on User Datagram Protocol (UDP) traffic. UDP traffic is 
sent at Constant Bit Rate (CBR). The channel has a physical data rate of 2 Mbps. The squares 
topology is depicted in Fig.16, where 8 nodes form a regular topology and 4 flows are running 
in parallel: A-B-C-D, A-F-C-H, D-G-B-E, and H-G-F-E. While for the random topology, 30 
nodes randomly set in the considered area form a multi-hop network including 10 end-to-end 
connections established between 10 random pairs of nodes. The diameters of the squares and 
random topologies are 3 hops, and 7 hops, respectively. 

 

3
3
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Figure 16: A simple multi-hop topology: the squares topology 

 
The evaluation is based on the following metrics:  Aggregate throughput: defined as the average number of bits successfully received by 
all nodes in the network per second. The Input load is defined as the average number of 
bits transmitted by source nodes in the network per second.  Fairness index: we use the fairness index defined in [44]. If all entities get the same 
amount of resources, then the fairness index is 1 and the system is 100% fair. In our case, 
we consider that entities are nodes in the network and the metric used to calculate the 
fairness is their throughput. 

 

3.3.2. Simulation Results 
 

In this section, we focus on the intrinsic behavior of the OSTR protocol, i.e., the frame size 
evolution, and the flooding and appointment mechanisms enabled in OSTR. There is initially 
one node (node B) assigned slot 1; then the other nodes appear one by one until the eight (resp. 
thirty) nodes are present in the squares (resp. random) network.  

a) Frame size evolution 

 
Since DATA transmission starts at t = 10s (resp. t = 80s) for the squares (resp. random) 

topology, we are particularly interested in the first 10 seconds (resp. 80 seconds) of the 
simulation. For the sake of clarity and because node B is the only node that does not have to 
apply for a slot, the frame size evolution from node B perspective is depicted in Fig.17 and 
Fig.18 for the squares, and random topologies, respectively. 

The shape in scale in Fig.17 reflects the slot by slot frame size increase. In the squares 
topology, the frame size has changed 5 times starting from 2 time slots till a frame sized of 7 
time slots. While for the random topology (Fig.18), the frame size has increased slot by slot 
from 2 time slots to 8 time slots. This result is justified by the slot reuse scheme deployed in 
the OSTR protocol. In fact, to highlight this feature, we plot the slot reuse for an example of a 
random topology composed of 30 nodes with a network diameter equal to 7 hops. We notice 
from Fig.19, that all slots are used which highlights the effectiveness of the slot-by-slot frame 
size increase to efficiently share the available resources among nodes in the network. Also, 
we notice that slots 1 and 4 are reused by 12 nodes in the network; while slots 2, 3, and 5 are 
reused by 15 nodes. Slot 6 is used by 2 nodes; while slot 7 is used by one node. This result 
points out the effectiveness of the slot assignment algorithm that favors the reuse of the slot 
three-hops away if possible, leading to a short overall frame size equal to 8 time slots 
(including slot 0 for CONTROL sub-frame) for a network composed of 30 nodes. 
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Figure 17: Frame size evolution for node B in the squares topology 

 
 
 
 
 
 
 
 
 
 

 
Figure 18: Frame size evolution for node B in the random topology 
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Figure 19: Slot Reuse example with OSTR in the random topology 

 
 
b) Setting Delay 

 
A setting delay (SD) metric is introduced to evaluate the correctness of the OSTR flooding 

and appointment mechanisms. It is the time elapsed between the new node’s REQ packet 
generation and the new node’s first DATA packet transmission. Intuitively, the SD is longer 
when the appointment and flooding mechanisms are performed, i.e., the frame size increases. 
For instance, nodes D and H have joined the network without inducing a frame size increase 
with a maximum setting delay of 0,0421523s. This value is smaller than the minimum setting 
delay value (0,048729s) of the set of nodes that have led to the frame size increase.  

With reference to Section 3.2.4.c.iii, the flooding completion time is at most equal to

. Moreover, OSTR specifies that the flooding mechanism is initiated in the frame 

that follows the frame in which the REQ packet was sent. Consequently, the setting delay 
verifies (2). 

                          (2) 

In our case, the network diameter equals 3 hops (resp. 7 hops) for the squares (resp. 
random) topology. Therefore the theoretic value of the setting delay expressed in terms of 
number of slots verifies (3), (resp. (4)) for the squares (resp. random) topology: 

  (3) 
Where current_frame_size in {2, 3, 4, 5, 6} and slot_duration is a constant.    
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  (4) 
Where current_frame_size in {2, 3, 4, 5, 6, 7} and slot_duration is a constant.  

The theoretic and the simulated setting delay are depicted in Fig.20 for both topologies. The 
setting delay linearly increases with the current frame size. It almost equals the theoretic value 
for the squares topology, while it remains below the theoretic bound for the random topology. 
This result goes hand in hand with the analytical result of (3), and (4). 

 

 

Figure 20: Setting Delay (SD) Vs. Current frame size 

c) Aggregate Throughput 

Fig.21 shows the aggregate throughput according to input load for the squares and random 
topologies. We notice that OSTR protocol has higher throughput than 802.11 DCF in 
saturation cases. 802.11 saturates at a throughput of 500 Kbps and 400 Kbps in the squares and 
random topologies, respectively; While, OSTR achieves a throughput around 900 Kbps for the 
squares topology and a throughput of 700 Kbps for the random topology. 

The performance of 802.11 DCF is impacted by the exposed terminal problem in case of 
high input load. Contrarily, the specific reservation scheme implemented in OSTR handles the 
hidden/exposed terminal problems in one side. In other side, OSTR minimizes collisions 
thanks to its spatial reuse scheme.  

The throughput gain with respect to 802.11 DCF is plotted in Fig.22 for both topologies. 
The input load is set to 1500 Kbps. The flows are chosen such that the number of active nodes 
in the network increases with the number of flows. We intend by active node each node that is 
involved in a flow and consequently should send and/or receive packets. With few active 
nodes, we notice a negative gain for the squares topology and a gain of 10% for the random 
topology. When 100% of nodes are active, the gain increases and achieves 66% (resp. 80%) 
for the squares topology (resp. random topology). This result is expected as for a small number 
of active nodes 802.11 DCF experiences less collisions and small backoff windows. 
Meanwhile, OSTR cannot fully take advantage from its slot re-utilization scheme. However, 

  duration slot size frame current SD _ _ _ 10    
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when the number of active nodes increases, the gain significantly increases and reaches 80%. 
Indeed, the increase of active nodes leads to more contention. Thus, 802.11 throughput 
decreases. At this level, OSTR takes advantage from the spatial reuse to schedule the channel 
access among the contending nodes. 

 

Figure 21: Aggregate throughput in function of the Input load 

 
Figure 22: Throughput gain with respect to IEEE 802.11 DCF (%) 

d) Fairness 

 
The fairness index of OSTR and 802.11 DCF in function of the input load is depicted in 

Fig.23. With a lower network density (8 nodes in the squares topology) OSTR and 802.11 
DCF show comparable fairness index values (0.92 for OSTR and 0.94 for 802.11). However, 
with a higher network density (30 in the random topology) OSTR succeeds to provide a higher 
fairness (0.94) than 802.11 DCF (0.87). This is mainly due to the OSTR scheduling scheme 
that ensures the channel access for all nodes in each frame cycle. Contrarily to OSTR, with a 
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high density and a high input load, some 802.11 nodes suffer from starvation due to exposed 
terminal problem leading to short term unfairness. 

 

Figure 23: Fairness Index vs. Input load 

 
 

3.4. Performance Evaluation with Comparison to E-ASAP 
 

Based on a dynamic frame size increase, the OSTR protocol introduces a new TDMA-based 
channel access technique that consists in increasing the frame size slot by slot. The OSTR 
protocol performance has been evaluated with comparison to the standard IEEE 802.11 DCF. 
OSTR achieves higher channel utilization and ensures fair channel access comparing to IEEE 
802.11 DCF. 

Another dynamic frame size increase technique is introduced in the literature [12]. It 
consists in setting the frame size as a power of two. This technique is deployed in the E-ASAP 
protocol. In [12], it is shown that the E-ASAP protocol succeeds to achieve higher channel 
utilization in comparison with USAP and USAP-MA. However, we argue that setting the 
frame size as a power of two yields to an unfairness problem. 

To highlight the effectiveness of our protocol, we propose a comparative study between the 
two dynamic techniques for the frame size increase, i.e. increasing the frame size slot-by-slot 
introduced by the OSTR protocol, and setting the frame size as a power of two deployed in the 
E-ASAP protocol. For this end, a brief description of the E-ASAP protocol is first presented.  

 

3.4.1. E-ASAP Protocol 

 

To our knowledge, few are the research works that have investigated the potentials of a 
dynamic TDMA frame size in the context of wireless multi-hop networks. E-ASAP [12], has 
introduced the dynamic TDMA frame size increase that consists in setting the frame size as a 
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power of two. This frame size increase technique has been applied to wireless vehicular 
networks in [67]. In this Section we propose to deeply analyze the E-ASAP protocol. 

 

a) E-ASAP: Protocol Description 

 
E-ASAP is a dynamic and distributed MAC protocol for wireless ad hoc networks. It is 

based on a TDMA scheduling technique to reduce packet collisions and minimize interference 
effects. Time slots are then assigned such that nodes in the same contention area are allocated 
different slots. A contention area is defined for each node as the set of nodes that can cause 
collisions. It is assumed that the contention area is the set of nodes within the two-hop 
neighborhood. 

The particularity of the E-ASAP protocol consists in setting the frame length as a power of 
two with a minimum frame size of 4 time slots. The first slot of each frame is reserved for new 
node requests, i.e. no DATA packet transmission is ensured during that slot. In E-ASAP, nodes 
switch between two different modes: a TRANSFER mode and a CONTROL mode. A node in 
a TRANSFER mode only sends DATA packets, while in the CONTROL mode the DATA 
packet transmission is interrupted to enable control packet sending, instead. When a node joins 
the network, it first senses the channel to determine the beginning of the frame size, i.e. the 1st 
slot position. A 3-way handshake is then performed to assign a slot to the new arriving node. It 
is ensured via the exchange of request (REQ), information (INF) and suggestion (SUG) 
packets between the new node and its one-hop neighbors. Once the time slot is selected, new 
node neighbors send an update (UPD) packet. 

b) E-ASAP: Slot Assignment 

The E-ASAP protocol is a topology-based MAC protocol since it assigns slots based on the 
two-hop neighborhood information. Also, E-ASAP is designed to work in a distributed 
manner. It enables then a three-way handshake for slot assignment. A new incoming node first 
senses the channel to collect DATA packets. Since E-ASAP data packet header includes the 
frame size and the current data slot number, the new node is able to be synchronized with other 
nodes in the network, i.e. the new node determines the time period for the first time slot of the 
frame. Once the node is synchronized with other nodes in the network, it triggers a 3-way 
handshake mechanism in order to select an appropriate time slot. The 3-way handshake 
mechanism is ensured via the exchange of REQ, INF and SUG packets. 

Three-way handshake: For time slot selection, the slot assignment information in the two-
hop neighborhood is required. Hence, the new node transmits a REQ packet to its one-hop 
neighbors during the first slot of the frame. Nodes that have received the REQ packet switch to 
the CONTROL mode and send an INF packet during their own assigned slots. An INF packet 
contains the frame size and the slot assignment of both the sender and the sender neighbors. 
Based on the INF packets, the new node first sets its frame size to 4 time slots, the minimum 
frame size in the E-ASAP protocol, and passes through three different procedures to select a 
time slot: Getting an Unassigned slot (GU), Releasing Multiple Assigned slots (RMU), and 
Doubling the Frame size (DF). These procedures are detailed later on. Once the new node 
selects an appropriate slot, it sends a SUG packet to its neighbors. Upon the receipt of the SUG 
packet, the latter update their slot assignment information and generate a UPD packet so that 
the updated information spread to the two-hop neighborhood. Afterwards, new node neighbors 
switch back to the TRANSFER mode and resume their DATA packet transmission. 
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Slot assignment procedures in E-ASAP: E-ASAP defines three procedures for slot 
assignment: Getting an Unsigned slot (GU), Releasing Multiple Assigned slots (RMA), and 
Doubling the Frame size (DF). 

a) Getting an Unsigned slot: The new node first sets its frame size to the minimum frame 
size in E-ASAP, i.e. 4 time slots. Then, it searches for at least one free slot with the 
current frame size. If free slots are found, the new node assigns to itself one of them 
except the first slot which is reserved for new incoming node. 

b) RMA: In case the new node does not find at least one free slot with the current frame 
size, it checks whether one of its neighbors is assigned multiple slots with the current 
frame. In case such node is found, the new node releases one assigned slot to that 
neighbor and assigns it to itself. 

c) DF: In case no free slots are available and no neighbor is assigned multiple slots, the 
node doubles the frame size. Doubling the frame size modifies the neighborhood slot 
assignment scheme. Indeed, DF process consists of three main steps: 1) doubling the 
frame size. 2) Copying the nodes that are assigned slots with the current frame size, to 
the later part of the new sized frame. 3) Applying the GU and the RMA to select a free 
slot. This process is repeated until a free slot is allocated to the new node. 

For the sake of clarity, an example is depicted in Fig.24 to illustrate the E-ASAP slot 
assignment procedures. Fig.24.a shows a network composed of three nodes: A, B, and C 
assigned slots 1, 2, and 3, respectively. First, node D joins the network as it is depicted in Fig. 
24.b. As no free slots are available with the current frame size (4 time slots), node D deploys 
the RMA procedure. This procedure fails since no neighbor is assigned multiple slots. DF is 
then executed. While doubling the frame, nodes A, B and C are assigned additional slots with 
respect to (5). In (5), New_slot_Nb, slot_Nb, and Fr_Size denote the additional slot number, the 
number of the slot already assigned to the node, and the current frame size of the node; i.e. 
before doubling the frame size. Therefore, nodes A, B, and C are assigned the pairs of slots {1, 
5}, {2, 6}, and {3, 7}, respectively. Since slot 0 is reserved for new node requests, a free slot 
appears in the frame sized of 8 time slots. Hence, following the GU procedure, node D is 
assigned the slot number 4. In Fig.24.c another node E joins the network. As GU procedure 
fails, node E applies the RMA procedure. Within its neighborhood, three nodes maintain 
multiple slots. Node E then, releases one slot (e.g. slot 5) from node A and assigns it to itself. 

 

 

Figure 24:  Slot assignment procedures in the E-ASAP protocol. 
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New_slot_Nb = slot_Nb + Fr_Size     (5) 

  

3.4.2. Analytical Analysis between OSTR and E-ASAP 

 

In order to compare the performance of the OSTR and the E-ASAP protocols, we first 
analyze the frame size evolution in function of the number of competing nodes, from which we 
deduce the channel utilization and fairness expressions. These analytical results are then 
enforced by a set of simulations performed in two different scenarios: (i) a fully connected 
network, and (ii) a multi-hop network. 

 
a) Frame Size Evolution 

In our study, the following assumptions are considered: 

 Nodes form a fully connected network, 

 The CONTROL sub-frame for both protocols consists of the first slot of the frame, 

 Slots are of equal sizes 

Let N be the number of nodes in a fully connected network. As the frame size in the OSTR 
protocol is increased slot by slot such that nodes in the same neighborhood are assigned 
different slots, the total number of slots needed is N. Therefore, the frame size of the OSTR 
protocol is (N+1) as we consider an additional slot for the CONTROL sub-frame. 

In E-ASAP, the frame size is set as a power of 2. According to the slot assignment 
procedures defined in E-ASAP, a node is always assigned at most 2 time slots. Accordingly, 
the frame size of E-ASAP is given by (6).  

        (6) 

b) Channel Utilization 

We define the channel utilization as the ratio of the number of assigned slots to the frame 
size in the overall network. The channel utilization for OSTR is given by (7), while that of E-
ASAP is given by (8).  

 

      (7) 
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Fig.25 depicts the channel utilization evolution according to the number of competing nodes 
in a fully connected network. Three main features are observed: 

First, the channel utilization for both OSTR and E-ASAP protocols increases when the 
number of nodes in the network increases. This feature is explained by the TDMA-based 
channel access scheme deployed in both protocols. Indeed, unlike contention-based MAC 
protocols, TDMA channel access technique avoids collisions and ensures a guaranteed access 
for each node. The time division multiple accesses are combined with a reservation procedure 
in both OSTR and E-ASAP so that all nodes in the network are assigned at least one time slot. 
This way, the node number increase induces a higher number of assigned slots leading to 
higher channel utilization. 

Second, the channel utilization curve of OSTR presents a continuous behavior while that of 
E-ASAP shows break points. This is closely related to the frame size increase for both OSTR 
and E-ASAP. We have plotted the frame size (in terms of number of slots) evolution for both 
protocols in Fig.26. Since the OSTR protocol assigns slots one by one, the frame size linearly 
increases. While for the E-ASAP protocol, the frame size increase is performed only when the 
GU and the RMA procedures fail. These cases correspond to a number of nodes that is set as a 
power of 2. Apart from the break points, the E-ASAP frame size remains unchanged which 
justifies the overall shape in scale of the E-ASAP frame size evolution. 

Third, the E-ASAP channel utilization is periodic and is slightly better than the OSTR 
channel utilization. The E-ASAP protocol design specifies that a node is assigned two time 
slots each time the frame size is doubled, while OSTR only assigns one time slot to every node 
in the network. This leads to an increase of the channel utilization for the E-ASAP protocol 
when the frame size is doubled, since all nodes apart from the newly arriving node will be 
assigned two time slots. Afterwards, the RMA procedure is applied to assign a slot to the new 
arriving node while the frame size remains unchanged. This maintains the same channel 
utilization as long as there is nodes allocated multiple slots. Meanwhile, the OSTR channel 
utilization slowly increases according to the slot-by-slot frame size increase. The two protocols 
show the same performance in terms of channel utilization when all nodes with E-ASAP are 
assigned only one time slot, the same as in the OSTR protocol. With reference to (7) and (8), 
OSTR and E-ASAP protocols achieve the same channel utilization when the number of nodes 

is equal to  where x is a nonzero integer.  

These results are enforced by a set of simulations performed with OMNET++. We have 
considered a fully connected network with a number of nodes rising from 5 to 50 nodes. In 
Fig.27, the global aggregate throughput defined as the average number of successfully received 
bits per second, is plotted. The E-ASAP protocol achieves higher throughput than OSTR and 
performs similarly to the OSTR protocol when the nodes number is 30 (1850 Kbps). This goes 
hand in hand with the theoretical results explained above.  
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Figure 25:  Channel utilization for OSTR and E-ASAP in function of competing nodes 

 

 

 

 

 

 

 

 
Figure 26: Frame size evolution for both OSTR and E-ASAP according to the number of competing nodes 
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Figure 27: Global aggregate throughput for OSTR and E-ASAP according to the number of nodes in the network 

 
c) Fairness 

 
We have analyzed the frame size evolution of the OSTR and E-ASAP protocols and shown 

how it affects the channel utilization ratio of both protocols. We argue that the DF procedure 
deployed in the E-ASAP protocol is a two-edge sword. In fact, it allows achieving higher 
channel utilization with comparison to the OSTR protocol, since it assigns additional slots to 
the nodes when the frame size is increased (i.e. doubled). However, it yields to severe 
unfairness problem, since some nodes may have only one time slot while others are assigned 
two time slots. To deeply analyze the fairness issue, we have plotted the fairness index 
according to the number of competing nodes for both OSTR and E-ASAP protocols in Fig.28. 
Recall that we have considered the same fairness index definition previously presented in 
Section 3.3.1. 

In Fig.28, the two fairness index curves join when the number of nodes is equal to  
where x is a nonzero integer. For this number of nodes, both OSTR and E-ASAP protocols 
assign only one time slot for all nodes in the network, and hence they both ensure per-node 
fairness (fairness index =1). Even though E-ASAP is fair for specific node numbers, the 
fairness index oscillates between the maximum value of 1 and a minimum value. This 
oscillation is due to the variation of the number of slots assigned to the nodes. In fact, the 
network join decision in E-ASAP is performed by the new arriving nodes; i.e. the number of 
assigned slots depends on the new arriving node decision. For the sake of clarity, let consider a 
simple example of a node n assigned the slot number 1 in a frame sized of 4 time slots 
(including slot 0 for CONTROL sub-frame). Suppose that a new node joins the network and 
doubles the frame size. Node n is now assigned 2 time slots (slot 1 and slot 5). As long as new 
arriving nodes join the network, node n will be dislocated one time slot. When the frame size is 
doubled, it is assigned two time slots once again. This process is periodically repeated leading 
to an oscillation of the fairness index. 
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Figure 28: Fairness index for OSTR and E-ASAP according to the number of competing nodes 

 

3.4.3. Simulation Results in a Multi-hop Environment 

 
a) Simulation environment 

 
For the purpose of performance comparison between the E-ASAP and the OSTR protocols, 

we have also considered the two multi-hop scenarios described in Section 3.3.1. We consider a 
saturation case, and set the user data rate at the MAC layer equal to 1500 Kbps. In these set of 
simulations, we consider different user data flows established between random pairs of nodes 
in both topologies. The number of flows varies from 2 to 4 for the squares topology, and from 
2 to 10 for the random topology. Each simulation result is the average of 10 simulation runs, 
each with different set of end-to-end flows. The evaluation is based on the network throughput 
metric. We recall that the network throughput is defined as the total delivered data per second; 
i.e. the total successfully received bits by the flow destinations per second. 

 

b) Simulations results 

Fig.29. depicts the network throughput according to varying number of flows in the squares 
topology for the OSTR and the E-ASAP protocols. With a small number of flows (2 flows) the 
OSTR protocol slightly outperforms the E-ASAP protocol. When the number of flows 
increases and is set to 3, the network throughput achieved by the OSTR protocol significantly 
increases and largely outperforms that of the E-ASAP protocol. The network throughput 
reached by OSTR is almost 300 Kbps higher than that of E-ASAP. Even if the network 
throughput decreases when 4 flows are running in parallel, OSTR still outperforms the E-
ASAP protocol. The slot distribution for both protocols is analyzed to justify this result. For 
the sake of clarity, we consider one typical scenario for each number of flows. These scenarios 
are depicted in Fig.30. The slot distribution achieved by the OSTR and the E-ASAP protocols 
is also presented in Fig.30, where each pair (letter/number) denotes the node identifier and its 
corresponding assigned slot. We notice that OSTR reaches a frame sized of 7 time slots 
(including the slot 0 for CONTROL sub-frame), while E-ASAP achieves a frame sized of 8 
time slots. 
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2 flows:  In this case, only three nodes are active: the source nodes (nodes D and H) and the 
common intermediate node (node G). Hence, for OSTR (resp. E-ASAP) slots 2, 4, and 6 (resp. 
slots 3, 5, and 7) are used, while the other slots in the frame remain empty. The network 
bandwidth is not fully utilized due to free slot appearance. Nevertheless, the OSTR takes 
advantage of its shorter frame size (7 for OSTR comparing to 8 for E-ASAP) and then nodes 
send data packets more frequently than with the E-ASAP protocol; yielding to a higher 
network throughput comparing to the E-ASAP protocol. 

3 flows: Three flows are now considered. In this case, 5 slots (slots 1, 2, 3, 4, and 6) are 
fully used in OSTR. Thus, OSTR looses only one time slot (slot 5). Similar to OSTR, E-ASAP 
also fully uses 5 slots (slots 1, 2, 3, 5, and 7), but it looses an additional slot comparing to 
OSTR (slots 4 and 6). The bandwidth wastage with E-ASAP is more important than that of 
OSTR (1/4 for E-ASAP compared to 1/7 for OSTR) leading to a lower overall network 
throughput. 

4 flows: In the last scenario, the flows are set such that all nodes in the network are 
involved. Thanks to its spatial reuse scheme, the OSTR achieves higher network throughput 
than E-ASAP. In fact, as node E is neither a source node nor an intermediate node it does not 
use its assigned slot (slot 4 for both OSTR and E-ASAP). A free slot then is likely to appear in 
the frame, unless slot 4 is used by another node in the network. Thanks to the OSTR spatial 
reuse scheme that favors slot reutilization, node H is assigned slot 4 yielding to a fully resource 
exploitation. Contrarily, the E-ASAP performs another technique that consists on releasing 
multiple assigned slots. Hence, slot 4 is only assigned to node E and E-ASAP suffers from 
bandwidth wastage due to free slot appearance. 

In this simple case of study, we highlight two important features of the OSTR protocol: (1) 
in light traffic case, the OSTR protocol takes advantage from its shorter frame size to achieve 
higher network throughput. (2) In heavy traffic case, the slot reutilization scheme deployed in 
OSTR prevents free slot appearance and ensures a fully resource utilization. 

The simulation results for the 30 node random topology are depicted in Fig.31. For the 
random topology, both protocols achieve a frame sized of 8 time slots. With little number of 
flows, the OSTR protocol achieves slightly higher network throughput than E-ASAP. 
Otherwise, the performance of both protocols is similar. In fact, apart from one single node 
that is assigned 2 time slots with E-ASAP, all nodes are assigned one time slot, the same as 
with the OSTR protocol. Reaching the same frame size, and assigning almost one time slot for 
each node, results to the same performance for both protocols. This result comes hand in hand 
with the theoretical analysis presented above. In fact, with a network density equal to 30 nodes, 
the OSTR protocol frame size reaches that of the E-ASAP protocol (8 time slots). Meanwhile, 
E-ASAP releases multiple assigned slots while maintaining the frame size unchanged.  
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Figure 29: Network throughput according to the number of flows in the squares topology. 

 

 

 

 

 

 

 

 

 

Figure 30: Case of study and the corresponding slot distribution achieved by OSTR and E-ASAP 
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Figure 31:  Network throughput of OSTR and E-ASAP in function of the number of flows in the random topology 

c) Conclusion 

To sum up, we have performed a comparison study between the OSTR protocol and the E-
ASAP protocol based on an analytical study enforced by a set of simulations performed in a 
fully connected network. Following this comparative analysis, we argue that the E-ASAP 
behavior depends on the number of competing nodes in the network. 

1 If the number of nodes in the network is different from  where x is a nonzero 
integer, the E-ASAP protocol shows better channel utilization than the OSTR protocol, 
since the number of assigned slots is increased while the frame size remains unchanged. 
However, the high channel utilization achieved comes at the expense of an unfair channel 
access between nodes. Indeed, the number of assigned slots in the E-ASAP protocol 
depends on the new node decision; thus, the number of assigned slots for a single node 
continuously oscillates between 1 time slot and 2 time slots regarding the new node 
arrivals. This feature has two major consequences: (1) an unfair share of bandwidth 
between nodes, and (2) a channel utilization fluctuation depending on the new node 
decision, which might affect the performance of higher layers. 

2 If the number of nodes in the network is equal to  where x is a nonzero integer, the 
E-ASAP protocol shows similar performance as the OSTR protocol. Both protocols have 
the same frame size while assigning only one time slot for each single node in the 
network. This ensures per-node fairness in one hand and similar channel utilization in 
other hand. 

 

3.4.4. Discussion: OSTR Vs. E-ASAP 

 

In this section, we point out the similarities and the differences between the E-ASAP and 
the OSTR protocols. Table 3-2 summarizes the main differences between the OSTR and the E-
ASAP protocol characteristics.  
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a) Similarities 

E-ASAP and OSTR assume the node clocks are perfectly synchronized. An external 
synchronization mechanism (e.g. [68]) is supposed to be used to ensure clock drifts 
synchronization. 

E-ASAP as well as OSTR uses TDMA access technique to schedule the channel access 
between contending nodes. Although [12] does not specify how a new node accesses the 
first time slot of a frame, E-ASAP and OSTR both entail a contention-based and a 
contention-free scheme. In contention-based, new nodes perform a random access to the 
channel; while in contention-free period the resource access is scheduled.  

Both E-ASAP and OSTR are topology-based MAC protocols. Two-hop neighborhood 
information is required to ensure slot assignment. 

Both protocols tackle the fixed frame size inflexibility. They are based on a dynamic frame 
size to handle topology variations and node movement. 

b) Differences 

 Frame evolution: Although they make use of a dynamic frame size, the E-ASAP and 
the OSTR protocols present a different frame evolution. The frame length in E-ASAP 
is set as a power of 2 with a minimum frame size of 4 time slots; whereas OSTR builds 
the frame slot by slot, and hence the overall frame length in the network is increased 
one by one. 

 Frame synchronization resolution: Two different approaches are defined in the E-
ASAP and the OSTR protocols to deal with the frame synchronization problem. Unlike 
E-ASAP, the OSTR protocol separates the frame size evolution from the frame 
synchronization problem. Thereby, the frame size is increased only with respect to the 
network topology variation, while new mechanisms are defined to cope with frame 
synchronization problem. Contrarily, in E-ASAP the frame size evolution is topology-
independent, and restricts the frame size to a power of two. Despite its robustness to 
minimize collisions due to frame synchronization issue, this solution comes to the 
detriment of node requirements and upper layer specifications in terms of QoS 
considerations. 

 Traffic overhead: The periodic HELLO exchange and the FC packet broadcast add 
additional traffic overhead to OSTR comparing to E-ASAP, which may contribute to 
bandwidth wastage. However, HELLO packet exchange allows better track to topology 
variations. In another hand, the OSTR protocol deploys HELLO packet such that 
established communications are not interrupted each time a new node joins the 
network. Unlike OSTR, E-ASAP protocol performs the slot assignment on the expense 
of the running communications. Indeed, upon the reception of a REQ a node switch to 
the CONTROL mode, where no DATA packet should be sent. Besides, in E-ASAP a 
new node needs to listen to exchanged DATA packets to be synchronized to the 
network, while for the OSTR protocol the new node needs to listen to HELLO packets 
only. This feature is useful since it avoids network blocking situation. In case no DATA 
traffic is transmitted, E-ASAP does offer no other means to let the new node join the 
network resulting in a network blocking situation. 

 Admission decision: Another major difference between the OSTR and the E-ASAP 
protocols is the new node admission to the network. Both protocols entail the use of a 
handshake between the new node and its neighbors for neighborhood discovery and 
time slot selection. The handshake mechanism yields to the selection of an appropriate 
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time slot for the new arriving node. This achievement is slightly different from the E-
ASAP and the OSTR protocols. In effect, while the E-ASAP protocol gives right to the 
new node to modify the slot assignment of its neighbors, if necessary (in case RMA 
and/or DF procedures are used); the slot allocation decision is network-based in OSTR. 
Indeed, with OSTR a new node has to wait for a REPLY packet from the REQ 
destination node before joining the network. Also, the OSTR slot selection algorithm 
does not affect the network slots assignment. Contrarily, the E-ASAP slot assignment 
scheme infers additional slots allocation and already assigned slots release in case the 
DF and RMA procedures are used, respectively. Hence, the amount of allocated 
resources varies regarding the willingness of new arriving nodes. This feature reflects 
the E-ASAP protocol vulnerability towards providing guaranteed QoS. 

 Throughput and Fairness: Based on analytical and experimental studies, we pointed 
out that E-ASAP behaves differently according to the number of competing nodes in 
the network. Accordingly, the throughput achieved by E-ASAP outperforms that of 
OSTR in a fully connected network, where the number of nodes is not a power of two. 
However, with respect to this network conditions, the E-ASAP protocol is unable to 
ensure per-node fairness. The OSTR and the E-ASAP protocols present similar 
performance in terms of network throughput and fairness when the number of nodes is 
a power of two in a fully connected scenario. Hence, reaching a shorter frame size is 
consequent less in such scenario. However, the shorter frame size has a significant 
effect on the network throughput in a multi-hop scenario with light traffic. We 
highlighted the effectiveness of the slot reuse scheme and the slot-by-slot technique 
deployed in the OSTR protocol to increase the resource exploitation. 

Table 2: Comparison between OSTR and E-ASAP main characteristics 

 OSTR E-ASAP 

Clock 
synchronization 

Not 
supported 

Not supported 

Frame Dynamic Dynamic 

Frame 
evolution 

Slot-by-slot Set as a power of 2 

Frame 
synchronization 
resolution 

Appointment 
mechanism 

+ 

Flooding 
mechanism 

Setting the frame as a power of 2 

Admission 
decision 

Network-
based 

According to new node willingness 

Channel 
utilization 

Independent 
from the 
network 
density 

Depends on the network density 

Fairness Fair Fair only when the network density is 
equal to , where x is a nonzero 
integer. 
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3.5. Conclusion 

  

In this chapter, a new MAC protocol, called OSTR has been proposed for wireless ad hoc 
networks. OSTR is a topology-based protocol operating in a slotted environment. It combines a 
random channel access for control packet transmission with a scheduled channel access for 
DATA packet exchange. The significance of OSTR is threefold. First, OSTR ensures an 
efficient spatial reuse of resources, since it favors slot re-utilization in order to keep the frame 
size as low as possible. Second, OSTR works in a completely distributed manner and adapts to 
topology changes. Third, OSTR introduces the slot-by-slot dynamic frame size increase 
inferring a shorter achieved frame size.    

The comparative study between OSTR and IEEE 802.11 DCF shows that OSTR handles 
saturation cases. It outperforms 802.11 DCF at high input loads thanks to its scheduling 
scheme.    

In order to point out the effectiveness of the new slot-by-slot frame size increase, a second 
comparative study with the frame size increase technique deployed in E-ASAP was handled. 
For this end, we have given a detailed analysis of the E-ASAP protocol. The E-ASAP 
description lacks of insights in how the slots are assigned when the frame size is doubled [12]. 
In this chapter, we have therefore proposed a formulization of the E-ASAP slot assignment in 
case the frame size is doubled.  

Through analytical analysis combined with simulation results, we pointed out the main 
benefits brought by the OSTR protocol features.  

First, it is shown that OSTR can reach high network throughput in a multi-hop environment 
under different traffic loads. Under light traffic, the OSTR takes advantage of its shorter frame 
size to achieve higher network throughput. While under heavy traffic, the OSTR spatial reuse 
scheme ensures fully resource utilization. Also, OSTR ensures per-node fairness regardless the 
number of competing nodes in the network.  

Second, the flooding and appointment mechanisms deployed in OSTR have the advantage 
to separate the frame size evolution from the frame synchronization problem. The frame size 
increase depends only on network topology and node requirements.  

Finally, thanks to its slot reservation mechanism, the new node admission decision is 
network-based in OSTR. This feature is of high interest to provide guaranteed QoS and 
security considerations.  

In the two previous chapters, the focus was on the MAC protocol design for multi-hop ad 
hoc environment. Two fold objectives of a MAC protocol in this context consist in optimizing 
the shared available resources utilization, and improving the per-node fairness. It is shown 
that OSTR accomplishes these two main objectives thanks to the slower frame size increase 
leading to a shorter achieved frame size and to the TDMA scheduling policy favoring the 
spatial reuse.    

These two features are particularly attractive since they contribute to significant energy 
savings. Shorter the frame size achieved in a slotted environment is, shorter is the active 
period during which nodes are communicating and hence higher is the energy spared. Beyond 
this observation, we point out the potential of OSTR to tackle the energy efficiency. The 
OSTR protocol appears then as a promising solution to reduce energy consumption. 
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In the next chapter, the focus is on the energy efficient characteristic of the OSTR protocol. 
We will show the OSTR ability to adapt to a slightly different wireless multi-hop 
environment, where the energy consumption is of primary concern. The OSTR features are 
therefore adapted to the sensor network environment to give rise to a new MAC protocol for 
wireless multi-hop sensor network, called Sensor OSTR (S-OSTR).  
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4.1. Introduction 
The Medium Access Control (MAC) protocol plays a significant role to enhance overall 

wireless network performance. It organizes the channel access among nodes in the network 
and schedules the resources share between them. As stated in the previous chapters, four 
objectives of MAC layer are: consider the broadcast nature of the wireless medium, minimize 
the interference effect, reduce collisions, and provide energy efficient mechanisms.  

Ideally, a good MAC protocol design needs to fulfill a maximum number of these 
objectives. In practice, industrials and consumers favor one feature over another according to 
the application needs and the network utilization. Indeed, while efficient channel utilization 
and fair channel access are of a primary concern in wireless ad hoc networks, an energy-
efficient MAC protocol is instead required for wireless sensor networks. 

A wireless sensor network consists of sensor nodes spread over a specific area to monitor 
real world phenomena such as temperature, humidity, light, sound and so on; or to collect 
body measurements (e.g. pulse) as for health care applications. Wireless sensor networks 
mainly differ from wireless ad hoc networks by their low power capacities, and limited 
coverage and communication range. They are, indeed, composed of battery-powered tiny 
devices. Wireless sensor networks are energy-constrained, since they need to fulfill a long 
lifetime rising from several days to several months depending on the application; while sensor 
batteries are power-limited. Also, sensor nodes are deployed such that a node can hardly be 
changed when it is disposed, and in general they cannot be replaced or recharged when they 
dispose.  

In [2], a comparison between the cost of data transmission, data sensing and data 
processing in terms of energy consumption has been held. It is shown, that data transmission 
is more expensive in terms of consumed energy; while data processing, in contrary, requires 
insignificant energy with respect to that consumed for data transmission. Depending on the 
sensor types [2], data sensing may consume an amount of energy comparable or greater than 
data transmission. In other cases, the energy consumption by data sensing is negligible with 
respect to data processing. Beyond this observation, MAC protocol should have desirable 
features in the context of wireless sensor networks. It should implement an appropriate 
mechanism to minimize retransmissions due to interference and collisions. A node activity 
scheduling is also interesting in order to coordinate the sleeping, sensing and transmitting 
activities such that the data transmission and sensing are performed only if needed.  

Through its deployed features, the OSTR MAC protocol [64] detailed in the previous 
chapter is capable of supporting the sensor network requirements in terms of energy 
efficiency. The major motivation behind, is to take advantage of the shorter frame size 
achieved by OSTR to reduce the active period. Moreover, thanks to its TDMA-based channel 
access scheme the OSTR is able to reduce the energy consumption to the required energy for 
transmitting and/or receiving. Finally, OSTR tackles interference effect and collisions thanks 
to the TDMA conflict-free channel access inferring a significant spare of energy.  
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In this chapter, a new amendment of the OSTR protocol, called Sensor OSTR (S-OSTR) 
to appeal wireless sensor network is presented. We first, survey the most common works 
related to the design of energy-efficient MAC protocol for wireless sensor networks in 
Section 4.2. Our motivations to accommodate the OSTR protocol to sensor networks are 
explained in Section 4.3. We give, in Section 4.4, a detailed description of the amendment S-
OSTR; while we highlight, if necessary, the main differences with respect to OSTR and the 
modifications brought by S-OSTR. Several simulations have been carried out in order to 
validate the effectiveness of S-OSTR in terms of energy efficiency and bandwidth 
exploitation. Performance evaluations of S-OSTR are held in Section 4.5; while a 
comparative study between S-OSTR and a two-hop coloring algorithm deployed in SERENA 
[13] is presented in Section 4.6. Section 4.7 concludes this chapter. 

Most of the results of this chapter have been presented by the author in [89]. 

 

4.2. MAC Protocol Design for Wireless Sensor Networks 
 

An energy-efficient MAC protocol is of primary concern in wireless sensor networks. Such 
networks, indeed, are energy-constrained, since they need to fulfill a long lifetime; while 
sensor batteries are power-limited. How to reduce the energy consumption is, then, a critical 
issue to face in wireless sensor networks. In such networks, the energy is consumed 
depending on the sensor radio state. The energy is also consumed in processing, transmitting 
and receiving data. However, extra energies are wasted, since they are required for the only 
purpose of ensuring the correctness of the MAC protocol, while they are useless from the 
application point of view.  

In this Section, we first investigate the major causes of energy waste. Secondly, we survey 
the major research works most related to the design of an energy-efficient MAC protocol for 
wireless sensor networks. 

 

4.2.1. Energy Consumption 
 

A sensor node can be in one of the following four states: 

 Transmit: the sensor is transmitting a packet with a transmission power   Ptransmit.  Receive: the sensor is receiving a packet with Preceive.  Idle: the sensor radio is turned on, while packets are neither transmitted nor received. 
The sensor stays idle and monitors the medium with a power Pidle.  Sleep: the sensor radio is turned off, thus no communication is possible. The power 
used is Psleep. 
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The power consumption values depend on the underlying hardware technology deployed 
in the sensor. Table 3 depicts the reference values of power consumption for the IEEE 
802.15.4. It is to mention, that the sleep state, is the state where the less energy at all is 
consumed. 

Table 3: Examples of power consumption in different states 

State IEEE 802.15.4 

Transmit 0.1404 (Watt) 

Receive 0.1404 (Watt) 

Idle - 

Sleep 0.18 ) 

 

4.2.2. Causes of energy waste 
 

In wireless sensor networks, the energy consumed while processing, transmitting and 
receiving data is mandatory to serve the application requirements. Nevertheless, additional 
energies are consumed for the only purpose to ensure the correctness of the MAC protocol, 
while they are useless from the application point of view. These additional causes of energy 
consumption are classified in [70] in five major types:  

1. Collision: A Collision occurs when two packets arrive to a receiver at the same 
time. All collided packets are discarded and are then retransmitted which increases 
the energy consumption. 

2. Overhearing: overhearing describes the situation where a node is listening to 
packets that are not destined to it, and hence are useless for it. 

3. Control packet overhead: each single packet transmission requires energy. Hence, 
the more the control packets are, the higher the energy consumption is. An 
appropriate MAC protocol should then minimize the usage of control packets.  

4. Idle listening: consists in monitoring the channel in order to detect possible traffic 
transmission. 

5. Over emitting: over emitting occurs when a node transmits a packet while the 
destination node is not ready, leading to the waste of the packet. 

A good strategy to save more energy in wireless sensor networks should, therefore:  

1. Minimize the waste of energy due to the causes described above,  

2. And, prolong the periods during which nodes are in the sleep state, since it is the 
less energy consumed state.  

Node activity scheduling is an energy efficient strategy that combines these two attributes. 
It consists of an alternate between sleep and active states while ensuring network and 
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application functionalities [70]. In the sequel, we propose a brief description of some MAC 
protocols based on the node activity scheduling strategy, while highlighting the pros and cons 
of each of them. 

4.2.3. Node activity scheduling 
 

 

 

Figure 32: Classification of node activity strategies 

 

The main idea behind the node activity scheduling is to take advantage from the less 
energy consumption when the node is in the sleep state. Accordingly, an alternate between an 
active period and a sleep period is adopted. However, no communication is possible when the 
sensor nodes are in sleep state. An accurate activity schedule is therefore compulsory to 
ensure consistent communication while alternating the active and inactive (sleep) periods. 
Fig.32 presents a classification of the node activity scheduling strategies. We distinguish two 
main groups: (1) medium access-independent solutions, and (2) medium access-dependant 
solutions. The latter can be divided into three major families: (1) contention-based MAC 
protocols, (2) TDMA-based MAC protocols, and (3) hybrid MAC protocols. 

 

a) Solutions independent from the medium access 

The idea behind solutions independent from the medium access is to cover the network by 
a number of nodes higher than the optimal needed number. These nodes are then grouped in a 
number of sets such that each set can ensure all network functionalities. To spare energy, the 
sets are activated one by one; i.e. when nodes belonging to a set are active all other nodes are 
in sleep state in order to save their energy. 
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In the literature, medium access independent proposals mainly focus on how to divide the 
networks into optimal sets of nodes. In [71], for instance, the nodes are grouped into disjoint 
sets that are activated separately. Higher the number of sets is, higher is the spared energy. 
Thus, the major objective of this proposal consists of the maximization of the number of 
disjoint sets which is shown to be NP-hard. Moreover, the solution does not consider the real 
energy consumption of nodes; they consider a uniform energy consumption model for all 
nodes belonging to the same set. 

Unlike [71], the network is divided into non disjoint sets in [73]. It is shown that network 
lifetime is enhanced when some nodes are involved in different sets. 

[72] presents a distributed solution that selects a connected dominating set of nodes; i.e. 
each node either belongs to this subset or is one neighbor of a node in this subset. Each node 
is assigned a priority based on its residual energy. A node activity scheduling policy is 
proposed based on the attributed priority. The policy specifies that a node can turn to sleep 
state if and only if: 

 The dominating set that it belongs to is connected, 

 All its neighbors have at least one neighbor in the dominating set, 

 All nodes belonging to the dominating set have higher priority.  

   

b) Solutions dependant on the medium access 
The idea behind the solutions dependant on the medium access is to implement a low duty 

cycle for power management; i.e. a node is allowed to enter the SLEEP state whenever it is 
neither on the transmit state nor on the receive state. These solutions are, in general, classified 
into three classes: contention-based, TDMA-based, and hybrid protocols. In the following, we 
will survey the most common protocols from each class. 

 

i. Contention-based MAC protocols for wireless sensor networks 
Based on a carrier sensing mechanism combined with RTS/CTS exchange before the 

transmission of each unicast packet, Ye et al [74] introduce Sensor MAC, an energy efficient 
MAC protocol designed for wireless sensor networks. S-MAC splits the channel access in two 
parts: (1) a listen period, where nodes exchange sync packets and specific control packets 
used for collision avoidance the same way the RTS/CTS handshake is used in IEEE 802.11. 
(2) The remaining period, is reserved for actual DATA transmission. With S-MAC, each node 
runs a random distributed algorithm to establish its sleep/active schedule. This schedule is, 
then, spread in the neighborhood via sync packets. This way, nodes coordinate their 
schedules. Nodes detaining the same schedule form a virtual cluster. In case a node is 
involved in two non-overlapping schedules, it follows both of them. 

S-MAC introduces three main components to decrease the waste of energy: (1) periodic 
listen and sleep, (2) collision and overhearing avoidance, and (3) message passing. The 
former allows nodes to periodically switch from a sleep period to an active period. When a 
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communication is initiated between node peer, all nodes in the immediate neighborhood go to 
sleep, reducing then the energy consumption due to idle listening. Like IEEE 802.11, 
RTS/CTS as well as virtual and physical carrier sensing are used to avoid collisions. The last 
component of S-MAC is the message passing. It consists on dividing long messages into 
small ones that will be sent in a burst. RTS/CTS are performed before the transmission of 
each burst, while an ACK from the receiver is acquired for each message fragment. This 
technique achieves energy savings by reducing the control overhead. 

The S-MAC protocol outperforms the standard IEEE 802.11 in terms of energy savings 
thanks to its periodic sleep-listen cycle. It is well adapted to varying topology and ensures 
scalability due to its carrier sensing scheme. Nevertheless, S-MAC presents two main 
shortcomings. First, schedules are broadcasted and a node belonging to two schedules has to 
follow both schedules leading to a waste of energy. Second, the parameters of the protocol; 
i.e. active and sleep periods are constant and predefined beforehand. They remain unchanged 
after network deployment. This static listen and sleep periods make the S-MAC protocol 
inefficient under variable traffic load and inadaptable to network topology variations.  

[75] Proposes Timeout-MAC (T-MAC), an enhancement of S-MAC to better perform 
under variable traffic load. Instead of fixed predefined listen period, an adaptive active period 
is used in T-MAC. Dynamic Sensor-MAC (DSMAC) [76] is another variation of S-MAC 
aiming to decrease the latency for delay-sensitive applications. Delay in S-MAC mainly 
occurs due to unsynchronized wake-up and sleep periods between the sender and the receiver. 
In the receiver side, average one-hop latency is evaluated. In case this value is high, the 
receiver shortens its sleep period and announces it to its neighbors. Upon the sleep period 
decrement receipt, the sender doubles its duty cycle in case it maintains packets destined to 
the considered receiver. It is shown in [2] that DSMAC presents reduced latency with 
comparison to S-MAC. 

 

ii . Scheduled-based MAC protocols for wireless sensor networks 
Scheduled-based MAC protocols for wireless sensor networks mainly use the TDMA 

channel access scheme. TDMA gives a natural advantage regarding the energy efficiency, 
since the transmissions are scheduled and collisions are avoided leading to energy savings. 
Some probabilistic algorithms assigning slots to nodes exist like [77], where a slot is chosen 
in a random fashion and is used only if it is not allocated to another node in the same two-hop 
neighborhood. 

[78] introduces Traffic-Adaptive Medium Access (TRAMA) protocol for wireless sensor 
networks based on a deterministic slot assignment algorithm. TRAMA performs according to 
three algorithms: (1) a neighboring protocol to gather two-hop neighborhood information, (2) 
a schedule exchange protocol to determine each node schedule, and (3) an adaptive election 
algorithm to select the transmitter and the receiver for each time slot. TRAMA holds a 
priority scheme for slots scheduling. A node chooses the slots for which it has the highest 
priority among all its neighbors in the contention area. The considered node is denoted by the 
winner node. It provides the receiver for each single slot. TRAMA increases the bandwidth 
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utilization thanks to its schedule scheme in one side, and its adaptability to traffic patterns in 
another side. Nevertheless, it presents two major limitations: the complexity of its slot 
assignment algorithm, and the waste of energy due to an important amount of control packets. 

As an improvement of TRAMA, [79] proposes the Flow Aware Medium Access 
(FLAMA) protocol. FLAMA proposes a simple slot assignment algorithm based only on local 
information. However, FLAMA was designed for gathering application based on tree 
topology, making it a non generic medium access control protocol. 

 

iii . Hybrid MAC protocols for wireless sensor networks 
 

One of the most interesting works among this class is Zebra MAC (Z-MAC) [80]. The 
main motivation of Z-MAC is to perform a CSMA-based access scheme when contention is 
low, and to switch to a TDMA-based access scheme in higher contention level. In an initial 
setup phase, nodes exchange pings in order to gather information about the two-hop 
neighborhood. This information is an input to a scalable and distributed slot scheduling 
algorithm DRAND [81]. DRAND ensures a collision-free slot assignment, since slots are 
attributed such that nodes in the same two-hop neighborhood have different time slots. Z-
MAC aims to increase bandwidth utilization by switching the protocol behavior between 
CSMA and TDMA according to the contention level [82]. Accordingly, two operating modes 
are defined: LCL (Lower Contention Level) and HCL (Higher Contention Level). All nodes 
operate in LCL, unless they receive an explicit contention notification from a two-hop 
neighbor. In the LCL mode, contention access is performed to get any time slot access; while 
in the HCL mode only nodes assigned slots called owners, and their one-hop neighbors are 
allowed to contend for these slots. In both modes, contention window size is adjusted such 
that owners always have higher priority to an early channel access compared with non-owner 
nodes.  

From the energy point of view, the active period in Z-MAC is reduced to spare more 
energy. Z-MAC specifies that nodes should be awake during the whole active period. This 
contributes to additional waste of energy, since a node should only be awake when it is in 
transmit or receive state. Based on this observation, [13] proposes the SchEduling RoutEr 
Nodes Activity (SERENA) protocol. SERENA performs according to two levels. First, a 
distributed and localized two-hop coloring algorithm is run to attribute one color, later 
mapped on time slot, to each single node in the network. Second, additional slots are assigned 
adaptively to nodes traffic requirements. This task is accomplished via the SERENA slot 
assignment algorithm.  
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4.2.4. Conclusion 
 

To sum up, a good strategy for saving more energy should combine the following 
attributes: 

 Minimize collisions and interference effect via transmission schedule,  

 Coordinate the activity periods of the nodes; i.e. a node is awake only during its own 
slots, where it is in the transmit state, and during the slots assigned to its one-hop 
neighbors, where it is in the receive state,  

 Reduce the active period. 

Based on these observations, we propose a new MAC protocol for wireless sensor 
networks called Sensor One shot Slot TDMA-based Reservation-based (S-OSTR) MAC 
protocol. S-OSTR is an accommodation of the OSTR protocol designed for wireless ad hoc 
networks, to the wireless sensor environment. It aims to take advantage from the dynamic and 
shorter frame size achieved by the OSTR protocol. S-OSTR prolongs the network lifetime 
based on three major features: (1) scheduling the transmissions based on a TDMA channel 
access scheme. (2) Providing a dynamic active period according to the network topologies 
and nodes arrival and /or departure to / from the network. (3) Coordinating the active and 
sleep periods for each single node such that a node is awake only during its own slot and the 
slots assigned to its one-hop neighbors. S-OSTR investigates the energy efficiency thanks to 
the aforementioned features. The first feature provides a transmission scheduling scheme that 
avoids the energy waste due to collisions; while the second feature adapts the active period 
according to the network density while ensuring an overall active period as small as possible. 
Finally, S-OSTR allows nodes to sleep during the active period so that energy waste due to 
idle listening is significantly reduced. One major advantage of S-OSTR consists of its quick 
adaptability to network changes and its quick recover from slot conflict situations.  

In the following, a brief recall of the OSTR protocol for wireless ad hoc networks is first 
presented. Our motivations to accommodate the OSTR MAC protocol for wireless ad hoc 
networks to the wireless sensor environment are then tackled. Finally, the S-OSTR MAC 
protocol specifications are detailed. 

 

4.3.  S-OSTR Motivations 

4.3.1. The OSTR MAC protocol for ad hoc networks 
In our previous work, the focus was on increasing bandwidth consumption and ensuring 

per node fairness based on a new scheduling technique for medium access. The One shot Slot 
TDMA-based Reservation (OSTR) protocol has been introduced. The major goal of OSTR is 
to increase the channel utilization based on three main features: (1) first, it favors slot reuse 
and takes advantage from spatial reutilization. (2) Second, it performs an on-demand slot 
assignment; i.e. slots are assigned only if needed. This way, OSTR avoids bandwidth wastage 
due to free slot appearance in the frame. (3) Third, OSTR tackles the frame synchronization 
problem by introducing a novel mechanism called appointment mechanism combined with 
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simple flooding mechanism. Hence, collisions caused by unsynchronized frame start points 
are considerably decreased while a lower frame size is achieved.  

OSTR introduces a new TDMA-based scheduling technique that consists in increasing the 
frame size slot by slot, if needed. It deploys three main mechanisms: (1) neighbor detection, 
(2) Slot reservation mechanism, and (3) flooding and appointment mechanisms. OSTR is 
designed to work in a completely distributed manner. It addresses varying topologies by a 
periodic exchange of HELLO packets. HELLO packets exchange also enables new incoming 
nodes to discover their two-hop neighborhood. Upon HELLO packet receipt, a new arriving 
node populates its neighborhood table and selects an appropriate time slot following the 
OSTR slot reservation mechanism. This mechanism favors slot re-utilization. Thus, if the new 
node finds at least one free slot within a frame sized of K time slots, it chooses the time slot 
with the lowest number. Otherwise, it is constrained to increase the frame size and selects 
then the slot number (K+1). In case the frame size locally increases, the slots indexes change 
according to the new frame start point. Thus, the absolute slot positions in the overall network 
are modified and collisions occur resulting in a frame synchronization problem. To handle 
this problem, OSTR specifies that the frame size increase should be communicated among all 
nodes in the network, and the new frame size is adopted simultaneously. This is accomplished 
via two mechanisms: (1) a flooding mechanism that ensures the transmission of the frame size 
increase within the whole network, and (2) an appointment mechanism that sets a date when 
all nodes switch to the new frame size. 

Multiple sets of simulations were run to evaluate OSTR performance compared with IEEE 
802.11 distributed coordinated function (DCF). It is shown that OSTR achieves higher 
throughput than IEEE 802.11 (DCF) in saturation cases thanks to its spatial reuse. It also 
ensures higher fairness thanks to its schedule scheme that guarantees the channel access for 
all nodes in each frame cycle. 

The OSTR MAC protocol appears as a promising solution for wireless multi-hop ad hoc 
networks. It presents the following advantages: 

 Channel utilization is increased, since OSTR achieves a shorter frame size thanks to 
the OSTR slot reuse scheme in one hand, and to the slot-by-slot frame size increase in 
another hand,  

 Contention-due collisions are eliminated with OSTR, since it uses a TDMA channel 
access scheme that guarantees channel access to each node, 

 Interference is significantly reduced as OSTR attributes slots such that nodes in the 
same two-hop neighborhood have different time slots,  

 OSTR is a per-node fair MAC protocol, since each node is assigned one time slot per 
frame cycle,  

 Adaptability to network changes and topology variations are held by the OSTR 
protocol, since it deploys a periodic control packet exchange,  

 The flooding mechanism combined with the appointment mechanism tackles the 
frame synchronization problem, while maintaining a fair slot distribution among all 
nodes in the network. 
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4.3.2.  From ad hoc environment to sensor environment 
 

One of the major advantages of the OSTR protocol is that it achieves a shorter frame size. 
This feature is typically attractive because it contributes to significant energy savings. This 
motivates us to accommodate the OSTR protocol to wireless multi-hop sensor networks 
where reducing energy consumption is of a primary concern. Recall that wireless sensor 
networks consist of a self-organized set of nodes, where each node has one or more sensors 
characterized by low-power radio, and limited power. In wireless sensor networks, a 
dispensed sensor can hardly be changed or recharged. Prolonging network lifetime is then a 
critical issue. In Section 4.2, we have shown that scheduling node activity is one of the energy 
savings methods for wireless sensor networks. It consists on switching between sleeping and 
active periods in order to minimize energy consumption. The shorter the active period is the 
less energy is consumed. Based on this concept, the OSTR MAC protocol appears as a good 
candidate to efficiently schedule the channel access while reducing the energy consumption. 
Three major sources of energy waste are identified: collision, control packet overhead, and 
idle listening. In order to deeply explain our motivations to accommodate the OSTR protocol 
to wireless sensor networks, we highlight the solutions offered by the OSTR protocol to deal 
with the aforementioned causes of energy waste.  

 Collision / over emitting: Collision occurs when two or more packets are received 
simultaneously by the same node. Packet reception is then inconsistent and 
consequently a retransmission (over emitting) is needed leading to more energy 
consumption. Thanks to its time division multiple accesses combined with spatial slot 
reuse, the OSTR protocol provides a collision-free data transmission. 

 Control packet overhead: One of the main drawbacks of scheduled-based MAC 
protocols is the use of complex control mechanism (neighborhood discovery, clock 
synchronization, and so on). However, the fewer control packets are the more energy 
is spared. Apart from HELLO packets periodically sent, the OSTR protocol mainly 
uses a REQ/REPLY handshake for new arriving nodes. These handshakes are mainly 
deployed in the setup phase. Also, sensors generally have a periodic activity 
depending on the application requirements. That is, sensors may stay in idle state for a 
long period and start data transmission upon events detection. Consequently, HELLO 
period exchange of the OSTR protocol can be adjusted to minimize the energy while 
ensuring the application functionalities. The last type of control packet in the OSTR 
protocol is the Frame Change (FC) packet used to tackle different frame size co-
existence in the network. Notice that sensor network applications are based, in general, 
on periodic activities repeated every polling cycle time. The polling cycle period is 
static and is the same for all nodes. Beyond this observation, the frame 
synchronization problem is gracefully handled, and consequently FC packets are no 
longer used in the context of sensor networks. A detailed proof of this feature is given 
in Section 4.4.4.  

 Idle listening: With the OSTR protocol, idle listening is only performed by the new 
incoming nodes in order to gather two-hop neighborhood information. Otherwise, 
nodes are scheduled such that every node is active to either transmit or receive data, 
i.e. during its own assigned slot and during the slots assigned to its one-hop neighbors, 
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respectively. Accordingly, the OSTR protocol does not suffer from severe waste of 
energy due to idle listening. 

As stated above, the OSTR protocol design can be easily accommodated to wireless sensor 
environment without additional cost. It takes advantage from its TDMA scheduling scheme 
and its slot-by-slot reservation technique. The former component provides contention-free 
data transmission, while the latter component yields to a shorter frame size, thus a reduced 
duty cycle ratio. 

In the sequel, we detail the functionalities and the specifications of the Sensor One shot 
Slot TDMA-based Reservation-based (S-OSTR) MAC protocol. 

 

4.4. Sensor OSTR  
 

The Sensor One-shot Slot TDMA-based Reservation MAC protocol (S-OSTR) is an 
accommodation of the OSTR MAC protocol to wireless sensor environment. The main goal 
of S-OSTR is to minimize the energy consumption by reducing the duty cycle. The basic idea 
behind S-OSTR is to enable the nodes spare energy by alternating between an active period 
and an inactive period, while taking advantage from the shorter frame size achieved by the 
OSTR protocol. The longer the inactive (sleep) period is, the more energy is spared. Based on 
this observation, and since the OSTR protocol achieves a shorter frame size, the active period 
of S-OSTR is set to be equal to one OSTR frame cycle.  

S-OSTR behaves similarly to the OSTR protocol when a node joins the network. The 
major difference with the OSTR protocol is that the flooding and appointment mechanisms 
are no longer needed, since the alternate between active and inactive periods in sensor 
networks eliminates collisions due to the coexistence of different frame sizes in the network. 

 

4.4.1. Network and application assumptions 
 

 

Figure 33: The active and inactive (sleep) periods in one polling cycle 

In this section we summarize our assumptions about sensor networks and applications. We 
expect a network composed of a large number of sensors organized in an ad hoc fashion. We 
assume the communications are between nodes peers rather than to a single sink or base 
station. 

Inactive periodactive period Inactive periodactive period
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The running application enforces an alternate between an inactive period and an active 
period where some events are detected and information have, then, to be transmitted. This 
assumption is justifiable, since applications in wireless sensor networks such as monitoring 
and surveillance are characterized by a long period of inactivity until something is detected. 
Like the standard 802.15.4 [3], the active and inactive periods are assumed to form a polling 
cycle as it is depicted in Fig33. The polling cycle duration is enforced by the application and 
is then the same for all sensors in the network. The time is, therefore, divided in polling cycle 
periods. For a coherent work of the network, sensors are required to be perfectly synchronized 
in order to wake up in the beginning of each polling cycle at the same time. Clock 
synchronization in wireless environment, and in particular in sensor networks is a critical 
issue to face. However, it is beyond the scope of our work. [50] and [51] give detailed surveys 
on time synchronization techniques.  

We also assume that each node has only one slot per frame and that there is only one frame 
cycle per one active period, i.e. one frame cycle per one polling cycle. 

 

4.4.2.  S-OSTR: Frame structure and packets formats 
 

a) Frame Structure 

 

 

Figure 34: Frame structure of the S-OSTR MAC protocol 

In S-OSTR, time is divided in periodic polling cycles. As stated above, the duration of a 
polling cycle is fixed and defined by the application running on top of the S-OSTR protocol. 
As it is depicted in Fig.34, each polling cycle is composed of two periods of time: an active 
period where DATA packets are transmitted and an inactive (sleep) period where all sensors 
turn off their radio to save energy. Intuitively, the longer the inactivity period is the more 
energy-efficient is the MAC protocol. Hence, S-OSTR uses a dynamic active period that can 
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adapt to network topology changes and traffic patterns. The active period then consists on one 
OSTR frame cycle. Like OSTR protocol, the frame is divided into two parts: a CONTROL 
sub-frame where the channel access is contention-based and a DATA sub-frame where the 
channel access is scheduled-based. The CONTROL sub-frame is intended for new incoming 
nodes to access the network and for control packet exchange, while in the DATA sub-frame 
each active sensor sends a DATA packet during its assigned time slot. Mind, that we are 
mainly interested in the channel access method and its capabilities to provide energy-efficient 
solution, rather than providing a solution to assign multiple slots according to nodes traffic 
rate. Therefore, we make the assumption that each node only reserves one time slot per frame. 
This claim can be relaxed in future version of the protocol to make it adaptive to the sensors 
traffic requirements.  

 

b) Packets formats 
In this section, the S-OSTR packet formats are presented. S-OSTR deploys the same 

control packets as the OSTR protocol apart from the Frame Change (FC) packet. Unlike 
OSTR, the S-OSTR protocol for wireless sensor networks does not suffer from a frame 
synchronization problem making the deployment of the FC packets useless. More details of 
how S-OSTR gracefully handles the frame synchronization problem without the need of FC 
packets are given in Section 4.4.4. 

HELLO Control Packet 

Similar to OSTR, HELLO packet exchange is maintained in S-OSTR to track the topology 
changes in one hand and to update neighborhood information in another hand. HELLO 
packets are only sent during the CONTROL sub-frame. Unlike OSTR protocol, the HELLO 
sending period is longer than that defined for OSTR protocol. This is justified by two main 
reasons: first, wireless sensor networks are generally dedicated to a single application. Hence, 
in many scenarios a setup phase where all nodes are deployed precede the run of the 
application. Consequently, topology changes are not so frequent and are more likely to occur 
when a node is out of battery. Thus a large update period seems to be sufficient for such 
networks. Second, as stated in Section 4.4.1 a delay-tolerate application is assumed in this 
work. Hence, a long HELLO packet exchange period goes hand in hand with the long idle 
period tolerated by the application layer. 

Each node in S-OSTR holds the following information: 

 The node identifier 

 Its assigned slot 

 Its frame size 

 A list of its one-hop neighbors, including for each of them 

o The one-hop identifier 

o The one-hop neighbor time slot 

o The one-hop neighbor frame size 
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 A list of its two-hop neighbors, including for each of them 

o The two-hop neighbor identifier, 

o The two-hop neighbor assigned slot, 

o The two-hop neighbor frame size. 

 

REQ and REPLY Control Packets 

In S-OSTR, a REQ packet is sent during the CONTROL sub-frame by a new arriving node 
willing to reserve a time slot. As a response, one of the new node one-hop neighbors already 
assigned a time slot answers by sending a REPLY packet.  

CONF Control Packet 

In OSTR, a CONF is generated to indicate a conflict. The CONF is a broadcast packet in 
order to enable all nodes in the conflict area be aware of the conflict. A node that detects the 
conflict specifies which from the conflicting nodes will lose its assigned slot. It then, includes 
in the CONF packet the time slot number where the conflict occurred, and the MAC address 
of one of the conflicting nodes. Upon the CONF packet receipt, the latter abandons the current 
slot reservation process and starts a new one in the next polling cycle.  

 

4.4.3.  S-OSTR: Protocol description 
 
a) Periodic Listen and Sleep 

The S-OSTR MAC protocol aims to save energy by reducing the active period in the 
polling cycle. It takes advantage from the shorter frame size achieved by the slot by slot frame 
size increase first defined in OSTR [69]. The TDMA channel access technique deployed in S-
OSTR gives a natural advantage of energy conservation because of the periodicity of a 
TDMA frame enabling nodes to have a reduced duty cycle.  

Besides, the S-OSTR MAC protocol uses an alternate between a dynamic active period 
and a dynamic sleep period in one polling cycle. When the dynamic active period relative to 
one sensor comes to the end, it turns off its radio and enters the sleep period. To provide 
energy-efficiency, S-OSTR also allows nodes to sleep during their dynamic active periods. In 
fact, a node should be awake to transmit/ receive packets or to monitor the channel. In S-
OSTR, the nodes monitor the channel during the CONTROL sub-frame of the active period 
each HELLO period of time. This monitoring is necessary for the sensors to update their 
neighborhood information. Since S-OSTR specifications make use of a long HELLO sending 
period, the energy consumed in monitoring is limited. Second, nodes should be awake for data 
transmission and reception. Moreover, due to the broadcast nature of wireless channel a node 
can only communicate with its one-hop neighbors. Accordingly, S-OSTR specifies that a 
node should be awake during its assigned slot for data packets transmission and during the 
slots assigned to its one-hop neighbors. This task is easily deployed without additional cost, 
thanks to the periodic neighbor detection mechanism used in S-OSTR. This mechanism is 
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based on a periodic exchange of HELLO packets including the slot assignment of the sender 
and its one-hop neighbors. Based on the HELLO packet exchange, each node is able to 
populate its neighborhood table based on which, each S-OSTR node schedules its sleep and 
wake up periods. For the sake of clarity, a simple sleep/wake up schedule with S-OSTR is 
analyzed. In Fig.35, a simple connected network is plotted; while in the Fig.36 the sleep and 
wake up schedule for each node is represented. This example, points out the ability of S-
OSTR to handle multiple frame size co-existence in the same neighborhood. 

 

Figure 35: Example of a wireless multi-hop network 

 

 

 

Figure 36: Exemplification of the active and sleep period coordination in S-OSTR 

In the sequel, we assume a polling cycle where nodes should monitors the CONTROL sub-
frame to gather HELLO packets. 

Let N1 (N) be the set of one-hop neighbors of node N. Let Tpc and Tf denote the Polling 
Cycle period and the frame period (Tf is expressed in terms of number of time slots), 
respectively. Finally, let Tsleep denote the sleep period of node N. 
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According to the S-OSTR sleep/awake procedure, node N is awake during its own 
assigned slot and during the slots assigned to its one-hop neighbors, i.e. ( | N1 (N)| +1) time 
slots. We assume that in the considered polling cycle, nodes should be awake during the 
CONTROL sub-frame to monitor the channel. This CONTROL sub-frame is assumed to be 
equal to one time slot. Accordingly, the total number of slots during which node N is awake is 
given by (1). 

(| N1 (N)| +2)  (1) 

Therefore, the sleep period, in terms of number of time slots, of node N is given by (2). 

 

Tsleep = Tpc - (| N
1 (N)| +2)    (2) 

 

We recall that Tpc is enforced by the application. It is fixed and constant for all nodes in the 
network. Considering Esleep the energy spent in Sleep state, the energy savings relative to node 
N is given by (3): 

             Es= (Tsleep/ Tpc ) = (1- (| N1 (N)| +2)/ Tpc ) x Esleep           (3) 

 

The last item in the above equation is the duty cycle of the node in S-OSTR. 

In this Section, the focus was on the S-OSTR node activity; i.e. sleep and wake up, 
scheduling. It is shown that in addition to the shorter frame size achieved inferring a shorter 
active period in the polling cycle, S-OSTR enhances the energy savings thanks to the local 
node activity scheduling; i.e. nodes are only awake during their assigned slot and the slots 
assigned to their one-hop neighbors. Recall that S-OSTR is an accommodation of the 
proposed OSTR protocol to wireless multi-hop sensor networks. OSTR consists of three main 
mechanisms: (1) Neighborhood detection, (2) Slot reservation mechanism, and (3) Flooding 
and appointment mechanism. The latter mechanism is deployed to tackle the frame 
synchronization problem. In the following, we prove how S-OSTR does not suffer from this 
issue and consequently the flooding and appointment mechanism are useless for S-OSTR. 
Thus, the S-OSTR MAC protocol restricts to two mechanisms: (1) Neighbor detection, and 
(2) Slot reservation mechanism. 

 

b) Neighbor Detection 

Like OSTR protocol, S-OSTR is designed to work in a completely distributed manner. It 
addresses varying topology changes by a periodic exchange of HELLO packets. HELLO 
packets are broadcasted by a node to its one-hop neighbors and are never forwarded. They are 
transmitted during the CONTROL sub-frame in a contention-based fashion. A HELLO packet 
includes the following information: 
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 The sender identifier 

 The sender assigned slot number 

 The sender frame size 

 A list of the sender’s one-hop neighbors including for each of them: 

o Its identifier 

o Its assigned slot number 

o Its frame size 

Including a list of the one-hop neighbors in the HELLO packets is required to have slot 
assignment information in the two-hop neighborhood. Hence, upon a HELLO packet receipt, 
a node updates its neighborhood information and discards the packet. Unlike OSTR protocol, 
S-OSTR specifies a long HELLO period with respect to the application assumptions 
presented in Section 4.4.1. Besides, extending the HELLO period exchange yields to the 
traffic overhead reduce. Consequently, S-OSTR reduces the energy waste due to control 
packets transmission. The HELLO packet exchange also enables new incoming nodes to 
populate their neighborhood table based on which they select an appropriate time slot. 

 

c) Slot Reservation Mechanism 

i. Sensing period and neighborhood information gathering 
 

A new incoming node senses the channel to gather information about the slot distribution 
in its contention area. In the OSTR protocol, the node senses the channel for at least two time 
frames. In the S-OSTR MAC protocol the channel sensing slightly differs from that in the 
OSTR protocol, since it should consider energy constraints in one hand and the wake up and 
sleep alternate of sensors in another hand. Indeed, the time in S-OSTR is organized in polling 
cycles divided by their own in sleep and active periods. The latter is the mandatory part of the 
polling cycle and is composed of a CONTROL part where control packets including HELLO 
packets are sent, and a DATA part dedicated to DATA packet transmission. As HELLO 
packets receipt suffices to enable a new arriving node to gather information about the slot 
distribution and the frame sizes in its two-hop neighborhood, listening to the whole frame is 
useless and energy-inefficient. Hence, in S-OSTR the sensing period is made of multiple 
wakes up periods. The node wakes up at the beginning of each polling cycle, and monitors the 
channel only during the CONTROL sub-frame. Then, it sleeps until the next polling cycle. As 
channel access during CONTROL sub-frame is contention-based, packets collisions are likely 
to occur, yielding to inaccurate two-hop neighborhood information. Consequently, S-OSTR 
specifies that the sensing period should be longer than one polling cycle. After the sensing 
period, the new node maintains information about the slot distribution and the frame sizes in 
its contention area enabling it to properly choose a time slot. 
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1. Select the maximum frame size, denoted by K, among the frame sizes of one-
hop neighbors; 

2. If there is at least one FREE time slot within the frame sized of K time slot, 
select the one with the lowest number, otherwise go to step 3; 

3. Select the slot (K+1) and exit.  
Figure 37:  S-OSTR slot selection algorithm 

ii . Time slot selection 
 

Based on its two-hop neighborhood information, the new node selects a time slot following 
the S-OSTR slot selection algorithm depicted in Fig.37. The S-OSTR slot selection algorithm 
slightly differs from that defined in OSTR. The major characteristic of increasing the frame 
size slot-by-slot is maintained. However, when OSTR ensures a common frame size in the 
whole network, S-OSTR tolerates the co-existence of many frame sizes in the network. Thus, 
with the OSTR protocol the slot is chosen regarding one common size of the frame. However, 
with S-OSTR a node may have multiple frame sizes in its two-hop neighborhood. We have 
then slightly modified the OSTR slot selection algorithm to consider multiple frame sizes in 
the same contention area of a new node. The new node then, first selects the maximum frame 
size denoted by K among all the frame sizes in its two-hop neighborhood. If at least one time 
slot is free among this maximum frame size, then the new node chooses the slot with the 
lowest number. Otherwise, it chooses the slot number (K+1). A slot is considered a free slot 
for a node N if it is assigned to any node in node N two-hop neighborhood. 

 

iii . REQ transmission and REPLY listening 
 

Once the slot is chosen, the new node selects among its one-hop neighbors the one which 
is assigned the lowest slot number to be the REQ destination. Then, it sends a REQ packet 
during the CONTROL sub-frame to request for the intended slot reservation. The REQ 
destination node checks if the chosen slot may cause a conflict. If it is not the case, it sends a 
REPLY packet during its assigned time slot to confirm the new node slot reservation. 

Similar to the OSTR protocol, the REQ destination is set to be the one-hop neighbor 
allocated the lowest slot number. We recall that this choice enables the OSTR protocol to 
decrease the flooding delay since the flooding mechanism is initiated by the REQ destination 
node. In S-OSTR instead, this choice enables the new node to know during which time slots it 
should wake up to receive the REPLY packet. 
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iv. REPLY listening and Transmission decision 
 

A requesting node that has sent a REQ packet during the CONTROL sub-frame of frame j, 
listens to the slot of the REQ destination node in the same frame j. In case no REPLY packet 
is received, the new node restarts a new reservation phase. Otherwise, the node updates its 
frame size in case the slot selection algorithm yields to the frame size increase and starts 
DATA transmission in the next polling cycle (j+1). S-OSTR also specifies that the new 
incoming node sends a HELLO packet in the polling cycle during which it joins the network 
(j+1, in case it has correctly received the REPLY during frame j). This specification 
contributes to the save of energy because it avoids the hidden terminal situation in case the 
new node joins the network such that two of its one-hop neighbors are hidden from each 
other. More details about this issue are given in the next section. 

 

4.4.4.  S-OSTR: handling the frame synchronization problem and the 
hidden terminal problem 

 

a) Handling the frame synchronization problem in S-OSTR 

 

 

Figure 38: Handling the frame synchronization issue in S-SOTR 

In the sequel, the frame size evolution in the S-OSTR MAC protocol is analyzed. For the 
sake of clarity, we consider the network example depicted in Fig.38. The considered network 
is composed of 6 nodes; each of them is represented by a pair (letter/number). The letter refers 
to the node identifier, while the number denotes the slot assigned to the node. We consider an 
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initial slot distribution that allocates slot 1 to nodes A and D, slot 2 to node B and slot 3 to 
nodes C and E. The frame size equals then 4 times slots (including the slot 0 dedicated to the 
CONTROL sub-frame). When node N joins the network, it checks the slot distribution in its 
two-hop neighborhood. As no FREE slots are available in the current frame size of 4 time 
slots, node N requests a reservation for slot number 4 from node D. We assume that node D 
confirms the reservation and sends a REPLY packet during the polling cycle Ti. Therefore, 
nodes C and N are aware of the new frame size, i.e. 5 time slots, during the same polling cycle 
Ti. These nodes, then, update their information and change their frame size from 4 time slots 
to 5 time slots. We assume that node N starts transmitting in the next polling cycle, i.e. (T i+1) 
and hence its one-hop neighbors will adopt the new frame size also in the polling cycle T i+1. 
This assumption will be justified in the following. 

The reason behind the frame synchronization problem is the dependency between the slots 
indexes and the frame start point. In case the frame size locally increases, the frame start point 
is locally translated and consequently the slot indexes are mixed up and collisions occur. With 
S-OSTR this problem is gracefully alleviated thanks to two main features:  

1) The restriction of the active period to one frame cycle,  

2) Nodes synchronization due to the enforced uniform polling cycle.  

In fact, the constant predefined polling cycle provides a global synchronization to the 
overall network. Consequently, all sensors wake up at the beginning of a new polling cycle, 
i.e. at the same time. Since the polling cycle begins with the active period that consists of one 
frame cycle, whatever the frame sizes are in the network the start point of all of them is 
synchronized with the beginning of the polling cycle. This first component of S-OSTR is 
necessary but not sufficient to avoid frame synchronization-due collisions. Indeed, if a 
multiple frame cycles were allowed in the active period, the same frame synchronization issue 
as with the OSTR protocol is faced. Hence, it is mandatory to avoid a multiple time frames in 
one polling cycle. This justifies our assumption given in Section 4.4.1 stating that there must 
be only one frame cycle in an active period, i.e. in one polling cycle.  

To sum up, the S-OSTR MAC protocol handles the frame synchronization problem thanks 
to two main features: first, a global synchronization within the overall network is ensured by 
the constant predefined polling cycle enforced by the application layer. Second, the 
uniqueness of the frame cycle in one active period, i.e. in one polling cycle, forces the sensors 
to start a new frame simultaneously.  

 

 

 

 

 

 

 



MAC Protocol Design for Multi-hop Wireless Ad hoc and Sensor Networks 

 

96 

 

 

b) S-OSTR: Handling the hidden terminal problem  

 

 

Figure 39: Handling the hidden terminal problem in S-OSTR 

The design of S-OSTR should consider the minimization of the energy waste due to the 
over emitting, the control overhead, collisions and idle listening. We have shown till now, 
how can S-OSTR minimize the traffic overhead, collisions and idle listening. In Fig.39, a 
hidden terminal problem is illustrated. For the sake of clarity, we consider the same network 
described in Fig.38. We added one-hop neighbor to node B, so that the initial frame size is 5 
time slots. When node N joins the network, it follows the slot selection procedure defined in 
S-OSTR, and requests the slot number 5 from node D. The latter sends a REPLY to confirm 
node D reservation. As node F is hidden from node D, it cannot update its frame size from 5 
to 6 time slots. In the figure, the frame size evolution from nodes D, C and F points of view is 
depicted. Suppose that node N joins the network upon the receipt of the REPLY packet, i.e. 
let Ti the polling cycle during which the REPLY packet is received by node N, node N joins 
then the network during Ti. In this case, node N transmits its DATA packets while node F is 
sleeping. This leads to packets loss and inconsistent communications. Since S-OSTR specifies 
that sensors turn off their radio and sleep when the frame cycle ends, node F will never hear 
the information about the frame size increase in its neighborhood unless it hears a HELLO 
packet. The idea then, is to tolerate additional delay for the new node application and to delay 
the new node transmission till the next polling cycle. However, node F needs to update its 
frame size before entering the sleep period, that’s why S-OSTR specifies that each new 
incoming node sends a HELLO packet even if the HELLO sending period is not ended. 
Suppose a new node has received the REPLY packet during the polling cycle Ti, it has to send 
a HELLO packet during the next polling cycle Ti+1, before sending its data packet during its 
own assigned slot. 
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4.4.5.  Slot conflict resolution in the S-OSTR protocol 
 

In S-OSTR a conflict of slot assignment occurs in two cases:  

1. When a new node connects to two or more nodes to which the same slot is assigned 
or, 

2.  When a node moves such that it enters the contention area of another node 
assigned the same slot number.  

 

In the former case, while joining the network, a new node populates its neighborhood table 
based on which it selects an appropriate time slot to reserve. While checking its neighborhood 
table, the new node verifies whether two of its one-hop neighbors have the same assigned slot. 
If it is the case, the node delays its reservation, and sends a conflict (CONF) packet including 
the number of the slot causing the conflict. The CONF is destined to the node with the highest 
MAC address. Notice that this choice is totally arbitrary and can be changed according to the 
application requirements. Upon the receipt of the CONF packet, the conflicting node releases 
its slot and enters a new reservation phase in the next polling cycle. Meanwhile, the new node 
that has detected the conflict increases its contention window size and contends for the 
channel access to enter the reservation phase once again.  

In the second case, the periodic HELLO packet exchange allows both conflicting node to 
update their neighborhood table. While checking this table, they both detect the conflict 
between their own assigned slot and the slot attributed to one of their neighbors. 
Consequently, S-OSTR specifies that the one with highest MAC address releases its slot and 
enters a new reservation phase. 

 

4.5.  S-OSTR: Performances Evaluation  
 

Table 4: Parameters used for simulations 

 Simulation parameter Value 
Configuration Number of nodes 50-100-150 

Bandwidth 2 Mbps 
Transmission range 250 m 
Interference range 500 m 

Energy Battery capacity 25mAh 
Battery Transmit 153 mA 
Battery Receive 200 mA 
Battery Sleep 0.85 mA 

Traffic Number of flows 20 
Input load 32 Kbps 
Packet size (MAC level) 512 bytes 

Frame Number of slots dynamic 
Slot size 0.005 s 
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Polling cycle Size (Number of slots) 50 

 

Simulations have been performed for different wireless networks. Table 4 lists the different 
simulation parameters. We consider a multi-hop environment with random generated 
topologies where the number of nodes varies from 50 nodes to 150 nodes. User traffic 
consists of 20 flows, with randomly chosen sources and destinations. Simulation results are 
averaged over 10 simulation runs. 

In order to study the energy efficiency of the S-OSTR protocol, we have included the 
battery package in the simulation [83]. This package is a part of the mobility framework 
project [65]. It implements simple energy consumption model. All nodes in the network have 
the same battery capacity initialized to 25mAh. The battery left is then recalculated each time 
the radio state has changed from one state to another. We consider three different radio states: 
the RX state where the battery is consumed is 200mA, the TX state that consumes 172mA and 
the SLEEP state that consumes the less amount of battery (0,85mA). 

 

4.5.1.  S-OSTR: intrinsic characteristic evaluation 
 

a) Network lifetime 

In this Section, we analyze the energy efficiency aspects of S-SOTR. We quantify the 
network lifetime as well as the amount of user data delivered for different networks where the 
number of nodes rises from 50 to 150 nodes. 

Fig.40 shows the evolution of network lifetime achieved with S-OSTR as the medium 
access control protocol, with the number of nodes. The network lifetime is defined as the time 
until the first sensor is out of battery. Fig. 40 shows that the network lifetime decreases with 
the number of nodes in the network. This result was expected. Indeed, the network lifetime 
computation for these simulations is split in two main phases:  

1) The first 150s of the simulation are reserved for node entries in the network. In this phase 
of the simulation, REQ/REPLY exchange is performed to enable new nodes join the 
network. HELLO packets exchange is also enabled to update neighborhood information. 

2) The second phase starts at 150s and lasts until the end of the simulation. During this 
phase, user data is sent between random source destination peers. Also, the HELLO 
mechanism is still performed to track network topology changes and to update 
neighborhood information.  

The increase of the number of nodes yields to an increase of the traffic overhead, i.e. the 
number of REQ/REPLY enabling nodes join the network, and the number of HELLO packets 
performed to update neighborhood information as well. Thus, more energy is spent due to the 
increase of the traffic overhead leading to the decrease of network lifetime according to the 
number of nodes in the network. 
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Nevertheless, we notice that network lifetime decrease is not significant. When the number 
of nodes is doubled (from 50 nodes to 100 nodes) the network lifetime is decreased by about 
1.78%. It is decreased by 1.92% when the number of nodes rises from 50 nodes to 150 nodes. 
This observation shows the robustness of S-OSTR protocol to network scalability thanks to its 
node activity scheduling. Indeed, the extra-energy consumed due to the number of nodes 
increase is balanced by the node activity scheduling deployed by the S-OSTR protocol. The 
latter specifies that a node is active only during its assigned slot and the slots assigned to its 
one-hop neighbors. Consequently, the overall number of nodes in the network has less 
influence on the network lifetime than, the network density defined as the number of 
neighbors in the two-hop neighborhood.  

In Fig. 41, the average user data delivered is plotted for different number of nodes in the 
network. The amount of user data delivered decreases with the number of nodes. This result is 
coherent with the decrease of network lifetime depicted in Fig.41. Indeed, when the network 
lifetime decreases, the nodes have less energy, and thus send less number of packets.  

 

b) Slot reuse 

One of the important features brought by S-OSTR is the spatial reuse scheme. The S-
OSTR protocol deploys a slot assignment mechanism that favors the reutilization of a slot if 
possible. To highlight the spatial reuse feature, we consider a network of 150 nodes, achieving 
a frame size equal to 21 slots (including slot 0 dedicated to the CONTROL sub-frame). The 
other simulation parameters remain the same as in Table 4. 

Fig.42 provides the slot reuse achieved with S-OSTR for this configuration. It provides the 
distribution of shared slots among the nodes in the network. We first notice, that all slots are 
used, and there is no empty slot. This reflects the slot-by-slot increase of the frame according 
to nodes arrival in the network. Thus, the bandwidth is efficiently consumed with S-OSTR. In 
this configuration, the distribution of shared slots among the nodes in the network is as 
follow: 5 slots are shared by 7 nodes, 3 slots are reused by 8 nodes, 30 (5+6+9+10) nodes 
share 2 slots, and 31 nodes reuse one slot. This spatial reuse brought by the slot assignment 
mechanism of S-OSTR justifies the shorter frame size achieved by the protocol (21 slots for 
150 nodes) and results in efficient channel utilization. 
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Figure 40: Network lifetime with S-OSTR 

 

 

 

 

Figure 41: Average user data delivered with S-OSTR 
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Figure 42: Slot reuse with S-OSTR protocol. 

 

4.5.2. S-OSTR evaluation with comparison with SERENA 
 

 In this Section, we will compare the performance of the Sensor OSTR protocol with 
SERENA [13]. 

 

a) Simulation assumptions 

SERENA is based on two algorithms: 

1) A two-hop coloring algorithm that assigns a color to each node. The color is 
mapped then to a slot attributed to the node, and during which it transmits user 
data. Each color is unique in a two-hop neighborhood area, and it is used three-hop 
away. 

2) SERENA protocol assigns at least one time slot per node. It enables a slot 
assignment algorithm to assign additional slots to nodes according to their traffic 
and the number of colors they can see in their two-hop neighborhood. 

In this Section, we focus on comparing the performance of the coloring algorithm of 
SERENA and the S-OSTR protocol, i.e. in the simulated runs, SERENA only assigns one 
color to each node. 

Another important feature to consider is that SERENA needs to wait for the coloring of all 
nodes in the network before user data transmission is performed. It supposes a set of nodes 
existing at the same time and forming a connected network, which is not the case of S-OSTR 
that enables new node entries one by one until a set of nodes is reached (for the sake of 
simulations). For fair comparison sake, we compare SERENA coloring algorithm with a 
special version of S-OSTR denoted by: S-OSTR without HELLO mechanism.  
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First, S-OSTR is running with HELLO mechanism turned on in order to enable the nodes 
join the network until the intended number of nodes is reached. We refer to this phase as the 
network setting phase. It is to mention that the energy consumed during network setting is not 
taken into account. Once the network setting phase is over, nodes disable the HELLO 
mechanism and run the S-OSTR without HELLO mechanism version. This is justified by the 
fact that SERENA assumes no network topology changes after the nodes have been assigned 
their corresponding colors. Consequently, nodes deploying S-OSTR without HELLO 
mechanism turn off their radio, and enter the SLEEP state during the CONTROL sub-frame.  

 

b) S-OSTR: with and without HELLO mechanism 

Before investigating the comparison study between S-OSTR and SERENA, we first 
highlight the impact of disabling the Hello mechanism on the S-OSTR performance.  

 

 

Figure 43: Impact of the HELLO mechanism on network lifetime with S-OSTR 

 

In Fig.43, we plotted the network lifetime reached by both S-OSTR versions (with and 
without Hello mechanism) for different number of nodes rising from 50 nodes to 150 nodes. 
The results in Fig.43 show that disabling the Hello mechanism increases the network lifetime 
whatever the number of nodes in the network is. For instance, network lifetime increases from 
502s to 517s, from 493s to 502s, and from 492s to 499s for 50, 100, and 150 nodes, 
respectively. This result is expected. Indeed, disabling the Hello mechanism implies: 

 The reduction of traffic overhead that leads to the spare of transmission and reception 
energy spent in exchanging and processing the HELLO packets, 

 The spare of energy dissipated in over-hearing during the CONTROL sub-frame. 

Consequently, less energy is dissipated leading to an overall network lifetime increase. 
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c) Network lifetime and user data delivered 

 

In Fig.44, we plotted the achieved network lifetime for both versions of S-OSTR (enabling 
and disabling the Hello mechanism) and for SERENA for a number of nodes in the network 
rising from 50 nodes to 150 nodes. 

The results in Fig.44, highlight the capacity of S-OSTR to achieve higher network lifetime 
comparing to SERENA even though the HELLO mechanism is enabled. In Fig.45, the 
network lifetime gain achieved with S-OSTR in both modes, i.e. with and without Hello 
mechanism relativelly to that achieved  with SERENA is plotted. For 50 nodes, S-OSTR 
disabling the Hello mechanism increases the network lifetime by around 6%, while S-OSTR 
enabling the Hello mechanism reaches a gain around 3%. Eventhough the number of nodes 
increases, S-OSTR still outperforms SERENA and reaches a gain around 4% when disabling 
the Hello mechanism, and a gain of 2% when enabling the Hello mechanism, for a number of 
nodes equal to 100 nodes. 

In Fig.46, the amount of user data delivered with S-OSTR and SERENA is plotted. The 
results go hand in hand with the network lifetime achieved with both protocols. In fact, nodes 
deploying the S-OSTR protocol save more energy. Consequently, more packets are sent 
yielding to higher user data delivered comparing to SERENA. 

 

 

 

 

 

Figure 44: Network lifetime comparison between S-OSTR (with and without Hello mechanism) and SERENA 
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Figure 45: Network lifetime gain relatively to SERENA (%) 

 

 

 

Figure 46: Amount of user data delivered with S-OSTR and SERENA 

 

d) Distribution of node energy consumption 

 

In this Section, the distribution of energy consumption is analyzed. Fig.47, Fig.48 and, 
Fig.49 represent the rate of time spent in TX (Transmit), RX (Receive), and SLEEP states, for 
S-OSTR protocol and SERENA protocol, respectively. 
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Fig.47 and Fig.48 show that with S-OSTR, nodes spend less time in TX and RX states 
comparing to SERENA for different number of nodes. Consequently, S-OSTR spare more 
energy comparing to SERENA since it increases the amount of time spent in SLEEP state 
(The state consuming the least energy). This is highlighted in Fig.49 and Fig.50 where the 
amount of simulation time spent in SLEEP state is plotted for both S-OSTR and SERENA. 
This is an important benefit brought by S-OSTR justified by two features: 

1) First, S-OSTR achieves a shorter frame size thanks to its slot reuse scheme. The 
shorter the frame size is the longer the inactive period is. Thus, with S-OSTR nodes 
are able to turn off their radio for a longer period of time. In Fig.51, we plotted the 
average overall frame size in the network. The frame size reached with S-OSTR is 
shorter than that achieved with SERENA for a number of nodes equal to 150 nodes 
(22 assigned slots for S-OSTR comparing to 25 assigned slots for SERENA).  

2) Second, with S-OSTR the shorter frame size achieved is combined with a more 
reliable node activity scheduling scheme to favor the SLEEP state. In fact, for a 
number of nodes equal to 100, the S-OSTR achieves an average frame size equal to 22 
slots, compared to 20 slots for SERENA. Nevertheless, nodes with S-OSTR sleep 
longer than nodes deploying SERENA (21% of simulation time for S-OSTR 
comparing to 19% for SERENA, for 100 nodes). This is justified by the fact that S-
OSTR enables nodes to turn off their radio according to the node activity in the 
neighborhood.  

 

 

Figure 47: Percentage of time spent in TX State for S-OSTR and SERENA 
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Figure 48: Rate of time spent in RX State for S-OSTR and SERENA 

 

 

 

Figure 49: Rate of time spent in SLEEP State for S-OSTR and SERENA 
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Figure 50: Energy consumption comparison between S-OSTR and SERENA 

 

 

 

Figure 51: Average network frame size in function of number of nodes for both S-OSTR and SERENA 

 

 

4.6.  Conclusion 
 

The energy is of primary interest in wireless sensor networks. In this chapter, we first 
highlighted the main causes of waste of energy. We showed that a good MAC protocol design 
for wireless sensor networks should not only coordinate the channel access between the 
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nodes, but also save more energy. We showed that using a random access scheme as for 
contention-based MAC protocols, node energy is not optimally used because of collisions and 
interferences due to the random access scheme. Moreover, we showed that TDMA-based 
MAC protocols have a natural advantage thanks to their scheduled access minimizing the 
interference effect. We highlighted also the effectiveness of a node activity scheduling to 
spare energy.  

A good strategy for saving more energy should combine: (1) the minimization of collisions 
and interference effects, (2) a reliable node activity scheduling, and (3) prolonging the 
inactive period time where sensors are in SLEEP state. 

Beyond the theoretical analysis, we provided a solution that consists in accommodating the 
One shot Slot TDMA-based Reservation (OSTR) MAC protocol first designed for wireless ad 
hoc networks, to the wireless sensor environment. The proposed protocol is called Sensor 
OSTR (S-OSTR). S-OSTR brings the idea of a dynamic active period that quickly 
accommodates to network changes and ensures a shorter frame size, i.e. shorter active period. 
With S-OSTR, nodes are able to sleep during the active period. Each node is, indeed, active 
only during each own slot and the slots of its one-hop neighbors improving this way, the 
overall network lifetime. Moreover, with S-OSTR collisions and interferences are 
significantly reduced by combining the scheduled channel access with an appropriate node 
activity scheduling. S-OSTR organizes in a totally distributed way the channel access such 
that energy is optimally consumed.   

In this chapter, we also presented the main results obtained by simulating S-OSTR. We 
have implemented S-OSTR in OMNET++ network simulator. We evaluated our proposal 
against the two-hop coloring algorithm deployed in SERENA protocol. 

We have showed the importance of the spatial reuse scheme incurred in the S-OSTR 
protocol. We highlighted the impact of the Hello mechanism deployed to track topology 
changes on the node energy savings. Simulation results have shown the benefits brought by S-
OSTR:  

 The network lifetime is improved compared to the two-hop coloring algorithm. 

 The user data delivered is increased proportionally to the network lifetime. 

 The robustness against network scalability is improved thanks to the spatial reuse 
scheme and the slot-by-slot frame size increase. 
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Chapter 5 
 
 
Conclusions and Perspectives 
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The future networks are going straightforward toward the internet of future characterized 
by connectivity “Anytime, Anywhere, with Anyone and Anything”. This trend will give rise to 
new business and commercial opportunities to create innovative real time services, handle 
incidents and environmental degradation (e.g. disaster, global warming, pollution, and so on), 
enhance achievements in health care applications (old people assistance, diabetes and pulse 
monitoring, etc.), integrate the new green lifestyle (efficient energy consumption by vehicles, 
smart energy metering in buildings, etc.). These achievements, of course, could not exist 
without ensuring a good integration and interoperability with the legacy heterogeneous 
communication networks and involving ad hoc communication way enabling connectivity 
between billions of things. In this perspective, wireless ad hoc and sensor networks are a 
promising approach to provide the foreseen ubiquitous connectivity. Wireless ad hoc 
networks, indeed, provide seamless last mile internet access; while wireless sensor networks 
give cost-effective low power device monitoring and network data collecting.   

Despite the enormous amounts of research on wireless multi-hop ad hoc and sensor 
networks, there are still many potential challenging research topics to investigate for a 
consistent deployment in the Internet of future, whereas medium access control design is one 
of them. In this thesis, we investigate the medium access protocol design with respect to the 
main requirements of future networks: 

 Accommodation to network variations and mobility, a crucial feature mandatory to 
ensure anywhere and anytime connectivity,  

 Efficient channel utilization: the billions of things involved in the future internet are 
faced to the scarcity of the available resources. Efficient and smart bandwidth 
exploitation is therefore an important issue to investigate.  

 Fairness channel usage: the vision of the internet of future is to ensure communication 
between human things and objects things inferring a persistent need to access the 
channel. An unfair channel access favors some things to another which is even against 
the philosophy of ubiquitous connectivity with everything,  

 Energy efficiency: The involvement of all kind of things in the internet of future 
requires significant amount of energy that needs to be efficiently used in order to 
respect the tendency towards a green solutions, and diminish the impact of wireless 
communication infrastructure on the environment.  

In the following Section, we provide an overview of the accomplishments of this thesis 
while in Section 5.2 we discuss directions for future works. 

 

 

5.1.  Conclusions 
 

Wireless multi-hop ad hoc and sensor networks provide a promising solution to ensure 
ubiquitous connectivity for the future internet. Obviously, good network connectivity requires 
a reliable medium access control protocol design which is a challenging task in the ad hoc and 
sensor environments. The broadcast and shared nature of the wireless channel renders the 
bandwidth resources limited and expose the transmissions to relatively high collisions and 
loss rates. Traditional IEEE 802.11 DCF based on carrier sense multiple access presents lower 
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channel utilization under heavy load and suffers from short term unfairness. These limitations 
give rise to more appropriate MAC protocols to the hostile environment of ad hoc networks. 
The necessity to provide guaranteed QoS to the upper layers triggered the design of conflict-
free MAC protocols. The TDMA synchronization constraint is basically behind the rush of 
MAC protocol design based on a fixed frame size. This design shows inflexibility towards 
network variations and results on network dimensioning issue that leads to a famine risk in 
case the network is under-dimensioned, and to a waste of resources, otherwise.  Moreover, the 
alternative dynamic protocols provide more adaptive solutions to network topology variations 
on dispense of a fairness access to the channel. Alongside with the efficient channel usage and 
the fairness medium access, reduce the energy consumption represents another challenge for 
ad hoc and sensor networks. Solutions like node activity scheduling tend to increase the 
network lifetime while respecting the application requirements. 

In this thesis, we have presented our investigations toward giving solutions to the 
aforementioned research directions. We have highlighted the limitations of the contention-
based MAC protocol, especially the standard IEEE 802.11 in both DCF and EDCA modes, to 
provide efficient and fair channel access. We have also, proposed a novel classification of the 
contention-free MAC protocol based on the TDMA frame characteristic. Two families rose: 
static-frame size, and dynamic frame size-based MAC protocols. It has been found that 
despite their flexibility and higher performance with comparison to carrier sensing schemes, 
fixed-frame size-based MAC solutions suffer from bandwidth wastage mainly due to free slot 
appearance. This limitation combined with the lack of research effort in investigating the 
dynamic frame size-based schemes, gives us a hint to go further in this directive.  

We have proposed a new TDMA based dynamic frame size-based MAC protocol for 
wireless multi-hop ad hoc networks. The idea of OSTR is to adopt a dynamic frame size that 
increases slot-by-slot, only if needed. OSTR consists in three mechanisms: 

1. A neighbor detection and topology tracking mechanism that consists in sending 
HELLO packets periodically. This mechanism gives OSTR enough flexibility to adapt 
to different application scenarios, and to handle node movement in future versions.  

2. A slot reservation mechanism that reserves a time slot for each active node in the 
network and performs a spatial reuse to keep the frame size as low as possible. The 
reservation scheme combined with a spatial reuse makes the OSTR protocol a good 
candidate to guarantee better QoS while ensuring an efficient and fair channel access 
thanks to the slot-by-slot frame size increase technique.  

3. A flooding and appointment mechanisms that are deployed to tackle the so called 
frame synchronization issue resulting from the coexistence of different frame sizes in 
the same network. The appointment technique has the advantage to not impact the 
existing slots schedules. 

We have implemented the OSTR protocol in OMNET++. We have validated OSTR with 
two comparative studies. First, the throughput gain resulted from the natural advantage of the 
TDMA schedule has been highlighted while comparing OSTR with the standard IEEE 802.11 
in DCF mode. It has been shown that OSTR is more appropriate to high loaded networks 
thanks to its scheduled access and spatial reuse schemes. Second, we have proved the 
effectiveness of the dynamic slot-by-slot frame size increase technique via a comparison 
study with the power of 2 frame size increase technique proposed by Kanzaki et .al [12]. For 
this end, we have proposed a formalization of the frame size increase technique. Moreover, 
we have pointed out the capacity of OSTR to provide fair channel access and more secure 
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solution at the MAC layer thanks to its reservation mechanism inferring a network-based 
admission decision for new incoming nodes. 

The second contribution of this thesis covers the MAC protocol design in multi-hop 
wireless sensor networks. At first glance, the contribution looks relatively different from the 
previously discussed one since we change the overall context from ad hoc environment to 
sensor environment. However the two contributions are closely related in the sense that 
energy-efficiency is an important issue in any communication system and especially in 
wireless networks where users need to be equipped with power-limited batteries. Also, a 
sensor network differs from ad hoc networks by their low capacities, and limited coverage and 
communication range. They need to face the same MAC protocol design issues as for ad hoc 
networks with particular insights on how to reduce the energy consumption so that the 
network lifetime is prolonged. 

We designed Sensor OSTR to maximize the network lifetime in wireless sensor networks. 
This proposal brings the idea of dynamic active period that adapts to network density and 
leads to an overall shorter frame size inferring a shorter active period for the sensors. S-OSTR 
consists of two mechanisms:  

1. A neighbor detection mechanism that gives the S-OSTR protocol the potential to 
accommodate the dynamic topology changes due to the movement of nodes.  

2. A slot reservation mechanism that brings a guaranteed channel access for each 
sensor while reducing the overall activity period leading to efficient energy 
consumption.  

To design S-OSTR, we have first highlighted the main causes of energy waste, and have 
pointed out the major application requirements in sensor environment. In a second step, we 
have broken down the natural potentials brought by the OSTR protocol design to provide a 
good strategy for saving energy. Thus, the feasibility of such protocol design is proven. 
Afterwards, we have detailed the new S-OSTR protocol where its capacity to gracefully 
tackle the frame synchronization issue has been enlightened.  

We have verified the performance of S-OSTR using extensive simulations and a 
comparative study with a two-hop coloring algorithm. We have firstly, focused on the impact 
of neighbor detection and update mechanism on the waste of energy. The simulations have 
shown that the periodic HELLO mechanism has less impact on network lifetime. One of the 
most interesting results is the ability of S-OSTR to prolong the time spent in the sleep state, 
the state consuming the less energy at all. This is a direct consequence of the energy-
efficiency brought by combining an accurate time slot schedule and a shorter achieved overall 
frame size. The comparative simulations between S-OSTR and SERENA have highlighted the 
importance of the reservation scheme brought by S-OSTR. The reservation mechanism leads 
to a more accurate slots distribution according to the nodes position in the network and nodes 
arrival to the network. In addition to its ability to prolong network lifetime, we have 
highlighted the major role played by the slot-by-slot frame size increase combined with the 
spatial reuse scheme to enhance the S-OSTR robustness against scalability.  

In this thesis we have submitted two main contributions that affect many aspects of 
wireless networks, in particular wireless ad hoc and sensor networks. We have given hints in 
the medium access control protocol design in these two challenging environments. We mainly 
contribute two novel MAC protocols: OSTR for wireless ad hoc networks and S-OSTR for 
wireless sensor networks. Both are based on a new slot-by-slot frame size increase technique. 
This technique presents good potentials to support QoS requirements, to provide energy-
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efficiency, to ensure fair medium access, to accommodate network topology changes and 
finally, to enhance robustness against scalability. We have used OMNET++ simulations to 
study the performance of both OSTR and S-OSTR. Our two proposals are from now on 
available to be used as a separate MAC layer in the simulator. For the sake of performance 
comparison, we have also investigated the development of the E-ASAP protocol in the 
OMNET++ simulator. 

We are confident that our work has contributed in the research efforts provided in the 
medium access protocol design for wireless ad hoc and sensor networks. We have paid 
attention to the importance of a dynamic TDMA-based solution that has not been largely 
investigated in the recent years. We had faith on the capacity that can be brought by such 
dynamic frame evolution, and this thesis consolidates our beliefs by enlightening the 
potentials carried by OSTR and S-OSTR protocols; which make them good candidates to 
integrate the Internet of future. Although our work, have brought solutions to a wide range of 
issues (frame synchronization issue, hidden terminal problem, slot reservation scheme, spatial 
reuse scheme, energy efficiency, node activity scheduling, distributed environment, etc.), it 
leaves ample room for improvements and gives hints to innovative future directives. In the 
next Section, we end this thesis by discussing some future enhancements to our work and 
providing new ideas to further investigate.  

 

5.2. Future Works 
 

OSTR slot release: In the current version of OSTR we have focused on the frame size 
increase, and have investigated the frame synchronization issue. An important enhancement to 
our work is to implement the slot release procedure. One of the eventual solutions for the slot 
release with OSTR is inspired from the appointment mechanism. Indeed, the critical aspect to 
face is that a slot that is no longer locally occupied can be assigned to other node three-hops 
away. This feature is a direct consequence from the spatial reuse scheme deployed in OSTR. 
Beyond this observation, two mandatory conditions are required to initiate a slot release 
procedure in OSTR. First, the slot should be the last slot in the frame; i.e. in a frame sized of 4 
time slots including slot 0 for CONTROL sub-frame, the slot to release should be the slot 
number 3. Second, the slot must no longer be used in the whole network. Consequently, the 
idea of applying the appointment mechanism rises. One solution could be the following: a 
node that will release its slot in the near future sets an appointment on which the frame size 
could be decreased by one. It broadcasts therefore, a control message to ask whether the 
released slot is used elsewhere in the network. In case at least one node is still assigned the 
considered slot, it broadcasts an ACK. A node that has received both the requesting control 
message, and later the ACK message, will only consider the information in the ACK message. 
The frame size in OSTR could be decreased only if no ACK is received until the appointment 
time is reached, which infers that the released slot is no longer used in the network and hence 
it could be released. Specifying that the slot to be released should be the one with the highest 
number facilitates the problem of frame size decrease in OSTR. However, what if the slot to 
be released is not the last slot? Would it be wise to change the slot numbers of nodes assigned 
a number of slots higher than the one to be released; i.e. suppose a frame size of 6 time slots, 
and that slot number 2 is to be released. Is it sensible to reconfigure the slots schedule such 
that nodes assigned slots 3, 4 and 5 will be assigned slots number 2, 3 and 4 in order to free 
the last slot in the frame? Obviously, this slot reconfiguration is not costless in terms of 
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number of control messages exchanged, bandwidth consumed and latency. This solution 
needs to be more investigated. The easiest solution may be to specify a maximum frame size 
when reached, all slots are released and the frame is constructed from the beginning. 
Although its simplicity, this solution raises many questions to consider: How would the 
maximum frame size to reach be configured? What is the impact of releasing all the slots on 
the current running user flows? In distributed environments, slots management is not an easy 
task and designing an appropriate time slot release for OSTR still needs more investigations. 

Traffic-aware OSTR/S-OSTR: One of the traditional proposals related to MAC protocol 
design for ad hoc and sensor environment consists of the design of a MAC protocol that 
assigns a number of slots to each node proportionally to its traffic rate. It is worth noting that 
the considered approach has small impact on the slots release since it is jointly deployed with 
a fixed frame size; while the task is much more complicated when the frame size is dynamic. 
To our knowledge, none of the existing dynamic frame-size based MAC protocol for ad hoc 
and sensor networks have proposed a multi-slot assignment. It is to mention, that assigning 
multiple assigned slot in E-ASAP [12] is a way to tackle the frame synchronization issue. In 
order to more adapt to node traffic requirements, we are currently working on a traffic-aware 
version of OSTR/S-OSTR. We have drawn the list of impacts of multiple slots assignment per 
node on the OSTR protocol design. First, a multi-slot assignment will result on multiple 
flooding and appointment mechanisms running more frequently which may affect the overall 
system performance. Also, the OSTR slot assignment algorithm should be adapted. Currently, 
OSTR specifies that if one free slot is found in the current frame size, the frame size remains 
the same. This condition is no longer valid when a node requires more than one free slot. It 
should be modified, instead, to the following: if a node finds exactly the number of required 
free slots in the current frame, there is no need of increasing the frame size. What is the 
probability that this condition is fulfilled? Finally, the multi-slot assignment may impact the 
per-node fairness. How to deal with greedy nodes, in order to ensure per-node fairness in the 
network? These limitations of traffic-aware OSTR solutions need to be deeply explored. 

Spatial reuse flip side in sensor networks: Our work is based on the two-hop interference 
model; one of the most important assumptions in wireless ad hoc and sensor networks.  Recall 
that the two-hop interference model is that the transmission power of node n decays with the 
distance, and it is assumed to not interfere with the transmission of a node that is located 
three-hops away. Based on this assumption, a time slot is reused three hops away. However, 
real implementations have called into question the reliability of this model [86]. The spatial 
reuse is shown to cause interference; i.e. two three hops away nodes assigned the same slot 
suffer from mutual interference. One of the proposed solution (e.g. solution adopted by 
SERENA [13]) to this issue is to expand the interference model to three hops; i.e. a slot is 
unique for a node n, its one hop-neighbors, its two-hops neighbors and its three-hop 
neighbors. Another interesting solution that can be adapted to the OSTR/S-OSTR protocol is 
to use variable slot length. The idea behind is that we deduce the appropriate slot length based 
on the interference level which is proportional to the reuse of the slot. The more a slot is 
reused the higher the interference level is, and thus the longer should be the length of that slot. 
Indeed, the longer the slot size is the more a node is able to manipulate interference; i.e. 
varying the packet length, delaying or advancing its transmission time in the slot, etc. We 
think that the field of slot assignment based on the interference level has not been fully 
explored yet, and there is a room for future enhancements to develop more realistic slot 
assignment techniques. 

Channel-aware OSTR/S-OSTR: In wireless ad hoc and sensor networks the channel is 
generally supposed invariant, which is not really the case. The channel, indeed, is time 
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varying. Consequently, the channel quality is different from one slot to another. Also for the 
same slot, the channel quality varies from one frame to another. Under the assumption that the 
channel does not vary, the current version of OSTR specifies that a node assigned a slot keeps 
this slot until it finishes its data transmission. A more realistic solution is to consider the 
channel time variation, and to allow a node to renew its slot reservation at each time frame 
based on the channel quality perceived in the previous frame. This could be formulized in a 
Multi Armed bandit (MAB) problem [87]. The MAB aims to improve the spectrum 
utilization; it is a formulization of the gambler dilemma in casino: a gambler is faced K slot 
machines and he has to choose which arm to pull at each time step so as to maximize his 
overall gain at the end of N plays. In the case of slotted environment, OSTR considers a 
model where the available bandwidth is divided into equal time slots. At each frame iteration, 
one node needs to decide autonomously via local information, which time slot to use during 
the next frame. This decision is based on the rewards obtained with the previous choices. The 
reward is a metric arbitrary defined according to the application requirements (e.g. delay, 
SINR, and so on). How to set a distributed slot assignment based on the MAB approach is 
still an open issue. We believe that considering the channel time variation is of high interest to 
better serve the application requirements. The MAB opens new horizons to investigate and to 
innovate in this field of research. 
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