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Chapter 1

General Introduction

1.1 Introduction

Nowadays, numerical simulation plays an important role in solving complex practical

problems in engineering and science, which are often described using ordinary/partial

differential equations (ODEs/PDEs) and are often difficult to solve by analytical methods.

In the numerical procedure, the physical problem is transformed into a discrete form

of mathematical description and then the resulting algebraic equations derived from the

ODEs/PDEs are solved using a computer code. Domain discretization is a key technique in

this procedure, which divides a continuum domain into a finite number of components. The

choice of the domain discretization type determines the way of numerical representation

of the physical phenomenon.

Among all simulation techniques, the Finite Element Method (FEM) is well established

and represents the most widespread numerical method for simulation of multi-physical

problems in modern engineering. In the FEM, a finite number of discrete elements are used

for subdivision of the continuum. The grid nodes and the elements connectivities constitute

a computational frame for the numerical simulation. This mesh allows to perform a local

approximation of the solution on each element independently using shape functions which

makes ODEs/PDEs easy to solve and therefore increases the robustness of the method.

Currently, an increasing number of practical engineering problems related to solids and

structures are solved using well developed commercial FEM softwares.

As a prerequisite of the FEM, the predefined mesh also can present some shortcomings and

often restricts the use of the FEM in certain problems. Firstly, although mesh generators

have known numerous advances during the last recent decades, the procedure of obtaining

a "good" mesh is still time consuming and not always fully automatic. Especially for

problems involving complex geometries, the procedure of construction of a "good" mesh is

typically much more time-consuming than the FE simulation itself [1].

1
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Furthermore, the shapes of the finite elements are expected to be as ideal as possible,

to insure the approximation accuracy. But in highly nonlinear problems involving large

deformation, such as extrusion, forging, casting or crash, the mesh distortion arise. A FE

mesh of a poor-quality may cause severe loss of accuracy or even the complete failure

of computation. Remeshing techniques are commonly used to overcome this difficulty,

unfortunately remeshing procedures remain time-consuming and still being tedious in most

of three-dimensional industrial problems. Moreover, it is well known that the classical

FEM is not suitable to simulate crack propagation with arbitrary and complex paths

which normally do not coincide with the original element edges. For the naturally discrete

systems such as the interaction of stars in astrophysics, the movement of millions of atoms,

the FE simulation is also not suitable.

To avoid the aforementioned problems, several meshless methods have been developed since

the late seventies. In these alternative methods, only particles (or nodes) are generated

and scattered to represent the structure shape and special continuous weighting functions

(kernels) are defined in a compact support domain at each point [2–4]. The nodes do not

need to be connected to form any kind of explicitly defined elements for the simulation.

Therefore, time-consuming mesh generation and element distortion problems in grid-based

methods may not arise. The nodal connectivity is generated as part of the computation and

can change with time, so it can easily deal with the problems of large deformation [5, 6].

Most of meshless methods have been originally introduced originally for crack propagation

and problems of blast [7, 8]

1.2 Meshless methods

Due to their flexibility and the non-use of classical mesh, meshless (meshfree) methods

have attracted many researchers. Numerous meshless methods have been proposed in the

last few decades. Based on the form of PDEs used in the computation process, meshless

methods can be classified into three distinct groups:

• Methods based on strong formulation

To approximate the strong-form of PDEs using meshless methods, the PDEs are

usually discretized at points by some forms of collocation, such as the Smoothed

Particle Hydrodynamics (SPH) method [9, 10], the Finite Points Method [11] and

the Meshfree Collocation Method [12]. The PDEs of strong-form are discretized
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straightforwardly without the need of the variational formulation, and hence no

numerical integration is required. The resulting discretized equations are simple and

fast to implement, and the methods are truly meshfree. However, they are often

unstable and less accurate, especially for the case of non-uniform nodal distribution

or the case of irregular computation domains.

• Methods based on weak formulation

In the weak-form-based method, the PDEs of a problem are first converted into

integral equations, thus the field variables require only half order continuity than

those using the strong formulation. Integral operation can regularize the solution

and make meshless methods based on weak formulation more stable and accurate.

Although very accurate in solving numerous different engineering problems, this type

of meshless method is known to not be "truly" meshfree, since they still require a

background cells (FE mesh) for the integral operation of the weak forms.

This family of meshless methods is still under an active investigation from researchers

since the early 1990s. Typically it includes the Diffuse Element Method (DEM) [13]

generated by Moving Least Squares (MLS) methods [14], the Element Free Galerkin

(EFG) method [7, 15, 16] based on DEM, the Radial Point Interpolation Method

(RPIM) [17] and the Reproducing Kernel Particle Method (RKPM) [18] by im-

proving the SPH approximation to satisfy consistency requirements using correction

functions.

To overcome the drawback of necessitating an integration background mesh, the

local weak-form methods using the local Petrov-Galerkin weak-form were proposed

by Atluri and his colleagues [19], called also Meshless Local Petrov-Galerkin (MLPG)

method. Some other typical local weak-form method are Method of Finite Spheres

(MFS) [20] developed using the MLPG principle and the hp-cloud method [21]. One

has to notice that when the meshless local weak-form methods employ delta function

as the weight function they become meshless strong-form methods.

• Methods based on weak-strong formulations

This family of methods was firstly developed by GR Liu and Gu [22]. In this approach,

both strong-form and local weak-form are used to discretize the same set of PDEs,

but different groups of points that carry different types of equations/conditions.
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The strong formulation is used for all the internal nodes and the nodes on the

essential boundaries. The local weak form is used only for nodes near the boundaries

with derivative boundary conditions which are difficult to handle by collocation

method. Less background cells are used for the integration compared to the weak-

form methods which makes this method more stable and efficient.

1.3 SPH method and its applications

Smoothed Particle Hydrodynamics (SPH) method is one of earliest meshless methods,

which was invented for the modeling of astrophysical problems [9,10]. In the SPH method,

the system state is represented by a finite number of discrete particles and each particle

possesses a set of field variables such as mass, position, displacement, momentum, tem-

perature, etc. The particle can be a discrete physical object like a star or a part of the

continuum problem domain like the volume or the area.

SPH method is a truly particle method which uses only the particles distribution as a

computational basis for the field variable approximation without any kind of background

mesh. This makes the method well-adapted for the treatment of problems involving very

large deformations.

The SPH particles are not only used as interpolation points, but also represent material

properties and move accordingly to the internal and external forces. Therefore, the time

history of all the field variables at a material particle can be easily tracked and obtained

which can be described as Lagrangian nature.

SPH method is based on a strong formulation of the governing equations which are directly

discretized. However the weak form operation is also adopted to replace the derivative of a

filed with a numerical integral representation of the state variables by the use of smoothing

(weight/shape) functions [23]. Indeed, the integral formulation reduces the requirement on

the consistency order of the approximated field function, therefore the smoothing function

will allow obtaining a higher accuracy of solution.

The "truly" meshless particles, Lagrangian and strong-form-based SPH method is easy for

programming and numerical implementation. It has drawn a lot of attention of the scientific

community to improve its stability and accuracy, which will be detailed in Chapter 2.

Furthermore, it has been applied into a wide range of problems.

In 1977, Lucy [9], Gingold and Monaghan [10] firstly create the so-called Smoothed Particle
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Hydrodynamics (SPH) method, to solve astrophysical problems in three-dimensional open

space. In such problems, the real physical system is always discrete and the SPH method

consolidates astrophysical particles into a quasi-continuum media. The collective movement

of these discrete particles at a large scale is similar to a fluid or a gas flow. Hence, the

equations of the classical Newtonian hydrodynamics governing the fluid flow are adopted

in the SPH method to describe the particle movement. Nowadays, the SPH method is

being widely used in the astrophysics, such as formation of galaxies [24], single or multiple

detonations in white dwarfs [25] and even the evolution of the universe [26].

The original SPH method was based on probabilistic principle and statistical techniques.

The algorithm did not conserve linear and angular momentum. However, they could give

reasonably good results for many astrophysical phenomena. The nature of the non-conservation

of linear and angular momentum in the original SPH algorithm was studied by Gingold and

Monaghan [27] using different kernels to reproduce known densities. They proposed new

kernel estimates to ensure the conservation of both energy and momentum on the basis

of the even smoothing function. Hu and Adams [28] also invented an angular-momentum

conservative SPH algorithm using viscous force for incompressible viscous flows, which

was initially based on empirical findings and then was improved by a more theoretical

derivation.

Few years later the SPH method was modified, to be a deterministic meshfree particle

method which directly treats the governing system of nonlinear equations based on physical

laws. In the last three decades, the SPH method has been widely extended to solve

continuum mechanics problems.

Computational Fluid Dynamics became quickly the most active application field of the

SPH method, although it was invented and still used for astrophysical problems. A parallel

pore-scale numerical model based on SPH was proposed for the simulation of quasi-

incompressible two-dimensional flow through porous media [29]. Experimental work and

SPH simulations were performed for the study of the gravity current traveling down a

ramp in a rank with a layer of fresh water above a layer of salty water [30], numerical

results show a good agreement with the experience data. In 1995, Monagan and Kocharyan

[31] extended the general SPH formulation to deal with two phase flow of a dusty gas.

Then Cleary [32] developed the SPH method to describe accurately the conductive and

convective heat transfer for a sequence of idealized benchmark problems. Several unsteady

heat conduction problems governed by second-order derivatives were investigated using a
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Corrective Smoothed Particle Method (CSPM) [33]. Colagrossi and Landrini [34] treated

two-dimensional interfacial flows for low density ratios, like dam-break problem. Alia and

Souli [35] used the Eulerian multi-material formulation to simulate high pressure wave

propagation in the air explosion.

Since its creation, the SPH method did not use any kind of mesh, which makes the method

particularly suitable for the simulation of large deformation, and it continuously attracts

attention in computational solid mechanics. For instance, plane strain forging process

was simulated using constant Corrected Smoothed Particles Hydrodynamics (CSPH) [36],

in which the metals were regarded as non-Newtonian fluids. High pressure die casting

simulations were carried out using 3D SPH program [37]. Gray et al. [38] successfully

investigated the linear and nonlinear oscillations of a plate using an artificial stress which

aimed to remove the tensile instability.

An important application area is the hyper velocity impact (HVI), since shock waves

propagate through the colliding bodies which behave like fluids [39]. The oblique impact and

fracture of multilayered panels by tungsten cubes has been simulated by SPH [40]. The SPH

method including different formula to describe the artificial viscosity was studied in the

hyper velocity impact of metallic projectiles on thin metallic plates [41]. Benz and Asphaug

[42] demonstrated the capabilities of the SPH model by examining the propagation of cracks

in a simple tensile rod.

The SPH method is also widely used for the modeling of explosion phenomena. Swegle

and Attaway [43] have studied the feasibility of the SPH method used for the analysis

of various types of underwater explosion problems involving fluid-structure and shock-

structure interactions. SPH was applied also for the simulation of high explosions which

consist in a detonation and a dispersion process [44].

More details on the various applications of the SPH method and its developments can be

found in the following papers [45–49] and the books [50,51].

1.4 Motivations and outline of the thesis

1.4.1 Motivations

SPH method is one of the earliest meshless method and was initially used for the in-

vestigation of astrophysical phenomenon. It possesses the special features of meshfree,

Lagrangian and particle nature, and hence it is expected to solve the problems involving
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large deformation. Nowadays, the SPH method has been modified and its accuracy and

stability are highly improved. The focus of its various applications has been transferred

to Computational Fluid Dynamics by discretizing the Navier-Stokers equations. Such

application includes incompressible flows with solid boundaries [29], free surface flows [52],

and heat transfer and mass flow [32], etc.

Under extreme loading conditions, such as hyper-velocity impact, explosion and metal

forming, solids are subjected to large deformations and they behave almost like fluids. The

conventional SPH method for fluid dynamics can be used in computational solid mechanics

by incorporating treatment of material strength. Many researchers have investigated impact

and explosion using SPH method, such as Taylor bar impacting on a solid wall [53], bird

strike impacting on an aircraft wing [54], projectile impact and penetration [55], extrusion

and forging processes [56]. In these investigations, the hydrostatic pressure is generally

calculated as a function of density changed by an "equation of state", and the deviatoric

shear stress is typically purely viscous and depends on the fluid models.

The classical SPH method has been developed and successfully applied in structural

mechanics as well as in the modeling of forming processes, in metal cutting and in impact

on a fuel tank using only 3D continuum approach [41, 57], However modeling shell-like

structures using a 3D continuum approach is very time-consuming, because several particles

need to be placed in the thickness direction. It has been shown [57] that a minimum of three

particles through the plate thickness is needed to ensure a good quality of results. Hence,

simple and time-saving meshless shell formulation with a single layer of particles on the

mid-plane has attracted numbers of researchers. For instance, Krysl and Belytschko [58]

combined the Kirchhoff plate theory with EFG method for solving structural problems

involving plates, in which a congruent background cells are necessary to integrate the

global weak forms. Li et al. [59] adopted RKPM to simulate large deformation of thin

shell structures using the window function to construct highly smoothed shape functions.

The MLPG method is successfully used for solving Mindlin shells by using a local weak

form [60].

The research investigation presented in the present thesis concerns the development of the

SPH method for the elastodynamic nonlinear analysis of shell structures, including isotropic

and composite multilayered structures. This goal can be reached by deriving the discretized

governing equations of solid with SPH particles, as well as the shell concept for describing

the structure kinematics. In this novel algorithm called Shell-based SPH method, only the
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shell mid-surface is dicretized by a unique layer of SPH particles to represent the behavior of

the entire shell continuum. The kinematics concept is described using the Reissner-Mindlin

theory for isotropic shell or First-Order Shear Deformation Theory (FSDT) for laminated

structures which takes into account the transverse shear stress. The plane stress condition

is assumed in the plane tangent to the mid-surface. Instead of the equation of state used

in the conventional SPH method for solid, material constitutive models is adopted to link

the stresses and strains tensors.

Nevertheless, the stability and accuracy of the SPH method for solids are affected severely

by the inherent drawbacks of the conventional SPH method. Many treatment methods have

been proposed in last two decades and will be thoroughly discussed and an appropriate

technique is selected in service for the shell-based SPH method.

1.4.2 Outline of the thesis

The PhD thesis manuscript is organized into five chapters:

• Chapter 1 presents a general introduction including a literature overview of the SPH

method. An outline of the thesis manuscript is given at the end of this chapter.

• In Chapter 2, the principles of SPH method are detailed, together with its inherent

drawbacks. After handling these problems, the SPH strong formulation using the

Total Lagrangian (TL) approach for solids is established.

• Then, the extension of the SPH method involving only one layer of particles for the

modeling of shell structures is developed in Chapter 3.

• In Chapter 4, the constitutive material laws applied for multilayered composite

structures are presented, these structures are then, modeled by the shell-based SPH

method by combining the first-order shear deformation theory.

• In Chapter 5 is presented the modeling of low velocity impact on laminated composite

shells by rigid projectiles. The contact force between the laminate and impactor is

pre-determined thanks to the Hertzian contact law. Tsai-Wu failure criterion and

maximum stress criterion are used to determine the damage initiation of matrix

crack and fiber fracture.

Through Chapters 2-5, are exposed numerous applications including isotropic and
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composite shell structures under dynamic loading, to demonstrate the feasibility of

the proposed shell-based SPH method.

• The concluding remarks and outlooks are drawn.





Chapter 2

SPH formulation for 2D solids

In this chapter, an efficient SPH formulation adapted for geometrically linear and nonlinear

analysis of two-dimensional solids is developed. Firstly, fundamental solid mechanics is

recalled. Then the classical SPH approach for a field variable and its derivatives using

a smoothing function are detailed, as well as some variants of SPH formulations for

discretizing the balance equations of continuum. Two intrinsic drawbacks of the classical

SPH method involving the consistency and stability are illustrated and many handling

methods are proposed to alleviate these problems. Finally a strategy combing the Correc-

tive Smoothed Particle Method (CSPM), the Total Lagrangian (TL) formulation based on

the use of artificial viscosity, is employed in the present investigation. The performance of

the proposed SPH method will be demonstrated by solving a variety of numerical examples

using an Explicit Dynamics scheme for the time integration of the PDEs. Comparison of

the obtained results with the one from literature and FE simulation using ABAQUS c©

(Explicit/Standard) code will show the efficiency of the proposed SPH method.

2.1 Brief recall of basic continuum mechanics relations

The aim of this section is to briefly recall some basic fundamentals of solid mechanics which

will be used later in the following chapters.

2.1.1 Kinematics

At time t = 0, the continuum is regarded as an assembly of material particles and occupies

an initial configuration C0 with a volume V0 enclosed by a surface S0 as indicated in Figure

2.1. After deformation, at time t, these points transform to another configuration C which

has a volume V and a surface S. During this transformation (Figure 2.1), a point P0 in C0

moves from its initial position X to the current position P referenced with final position

11
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vector x. The motion of the particle P0 can be expressed as,

x = x(X, t) (2.1)

Figure 2.1: Kinematics of a continuum body

In the deformation process, the difference between the initial and the current positions

constitute the displacement field u,

u = x−X (2.2)

A key quantity in finite deformation analysis is the deformation gradient tensor F, which

is involved in all equations relating quantities before and after deformation. F is said to be

a two-point second order tensor defined by

F =
∂x

∂X
= I + L (2.3)

with I unit tensor and L =
∂u

∂X
the displacement gradient tensor. The determinant of the

deformation gradient J = det(F) is known as the volume ratio or Jacobian determinant,

i.e. V = J(X, t) V0.

The Green-Lagrangian strain tensor E associated with the initial configuration can be

obtained using

2E = FTF− I = LT + L + LT L (2.4)

The strain tensor described in the current configuration is known as Euler-Almansi strain

tensor ε, which can be obtained from E thanks to the use of F
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ε = F−T EF−1 (2.5)

Following the engineering notation, the second order strain tensor ε can be written in a

vector form as

εT = {ε11 ε22 ε33 2ε12 2ε23 2ε31} (2.6)

2.1.2 Constitutive relations

In the scope of elastic deformation, the generalized Hooke’s law is often adopted to give

the relationship between the stress and the strain components. For an isotropic material,

it is given as,

σij =
E

1 + ν

(
εij +

ν

1− 2ν
εkkδij

)
(2.7)

where E is the Young’s modulus, ν the Poisson’s ratio, δij the Kronecker symbol and εkk

is the shorthand notation of the strain tensor trace.

If the structure thickness in direction 3 is very small compared to the two other dimensions

1, 2, the stresses in direction 3 are assumed to vanish, yielding to the so-called plane stress

condition. Thus, the stress-strain relationship changes to be
σ11

σ22

σ12

 =
E

1− ν2


1 ν 0

ν 1 0

0 0 (1− ν)/2




ε11

ε22

2ε12

 (2.8)

Another case is the plane strain condition, which occurs when the thickness in direction 3

is very large compared to the other dimensions 1, 2. In this situation, the stain components

in direction 3 are zero, which allows the following relationship
σ11

σ22

σ12

 =
E

(1 + ν)(1− 2ν)


1− ν ν 0

ν 1− ν 0

0 0 (1− 2ν)/2




ε11

ε22

2ε12

 (2.9)

2.1.3 Principle of mass conservation

During the process of deformation and motion, there are neither mass sources nor mass

sinks, so that total mass of the body is a conserved quantity, i.e. M = M0. Considering

the mass is distributed continuously in the region Ω, then the local (pointwise) mass dm
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can be measured by the mass density ρ and the volume dV it occupies, i.e. dM = ρdV .

The conservation of mass in the global (integral) form can be expressed as

M0 =

∫
Ω0

ρ0(X)dV0 = M =

∫
Ω
ρ(x, t)dV (2.10)

or in the rate form as
dM

dt
=

d

dt

∫
Ω
ρ(x, t)dV = 0 (2.11)

in which dV0 and dV are the standard infinitesimal volumes defined in the reference and

current configurations, respectively.

Since the relation dV = JdV0, we can get the local form of the mass conservation equation

at each point,

ρ0(X) = J(X, t)ρ(x, t) or ρ̇(x, t) = −ρ(x, t) divv(x, t) (2.12)

Therefore the continuity condition in the spatial description can be written as

∂ρ(x, t)

∂t
= −div [ρ(x, t)v(x, t)] (2.13)

where the over-dot notation signifies the material time derivative and div() is the divergence

operator with respect to the spatial coordinates.

2.1.4 Principle of conservation of linear momentum

In dynamics, the equilibrium is stated as the rate of the linear momentum to be equal to

the resultant force F of all actions on a solid in movement. The resultant force F includes

the traction t = t(x, t,n) acting on the boundary surface and the body force b = b(x, t), as

illstrated in Figure 2.2. The unit vector n is the outward normal to an infinitesimal surface

dS on the region boundary ∂Ω. The global form of balance equation of linear momentum

can be given in the spatial description as

d

dt

∫
Ω
ρv dV = F =

∫
∂Ω
t dS +

∫
Ω
b dV (2.14)

By virtue of Cauchy’s stress theorem t = t(x, t) = σ(x, t)n and by using divergence

theorem which converts the surface integral into a volume integral, we find that∫
∂Ω
tdS =

∫
∂Ω
σndS =

∫
Ω
divσ(x, t)dV (2.15)
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Figure 2.2: Continuum of forces acting on the current configuration.

Substituting this result into the equation of conservation of linear momentum, one can get∫
Ω
ρ v̇ dV =

∫
Ω

(divσ + b) dV (2.16)

or the local form

ρ v̇ = divσ + b (2.17)

where the material time derivative of v is

v̇ =
∂v

∂t
+ (gradv) v (2.18)

In the material description, the linear momentum conservation equation may be written

in the local form

ρ0 V̇ = DivP + b0 (2.19)

in which P = J σ F−T is the first Piola-Kirchhoff stress tensor and b0 = Jb is the body

force per unit initial volume. Note that Div() is the divergence operator with respect to

the material coordinates.

2.1.5 Principle of conservation of angular momentum

The rate of the angular momentum about any fixed point x0 is equal to the resultant

moment M about that point. We define a position vector r from the material point x to

the fixed point x0 (r = x − x0). So the conservation equation of angular momentum can

be described in the global form using the Equation (2.14)

d

dt

∫
Ω
r × ρv dV = r × F =

∫
∂Ω
r × t dS +

∫
Ω
r × b dV (2.20)
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Since t = t(x, t) = σ(x, t)n, we have∫
∂Ω
r × t dS =

∫
∂Ω
r × σn dS =

∫
Ω

(r × divσ + E : σT ) dV (2.21)

where E is third-order alternating (permutation) tensor.

Rearranging terms in Equation (2.20) to take into account the translational equilibrium

Equation (2.19) and noting that the resulting equation is valid for any enclosed region of

the body gives,

E : σT =


σ32 − σ23

σ13 − σ31

σ21 − σ12

 = 0 (2.22)

which clearly implies the symmetry of the Cauchy stress tensor σ. That means when

and only when the Cauchy stress tensor is symmetric, the angular momentum quality is

conserved.

2.1.6 Principle of conservation of energy

The balance of mechanical energy states that the rate of change of the kinetic energy K(t)

is equal to the balance between the internal power Pint(t) and external power Pext(t). The

global form of conservation of energy can be written as

d

dt
K(t) = Pext(t)− Pint(t) (2.23)

with

Pext(t) =

∫
∂Ω
t · v dS +

∫
Ω
b · v dV (2.24)

K(t) =
1

2

∫
Ω
ρ v · v dV (2.25)

and

Pint(t) =

∫
Ω
σ : 5v dV (2.26)

where 5() notation means the gradient operator.
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2.2 SPH foundation

2.2.1 Approximation of a field variable

In the SPH method, the continuum is discretized into a finite number of particles which

possess a set of physical properties. The field variables at each particle such as displacement,

density, velocity and stresses, can be approximated using the corresponding quantities of

the neighboring particles. The basis of the SPH method is built on the principle that a

variable u = u(x) at a point with a position vector x can be exactly reproduced by the

use of the Dirac delta function δ,

u(x) =

∫
Ω
u(x′) δ(x− x′) dΩx′ (2.27)

in which the delta function is defined by

δ(x− x′) =

 1, x = x′

0, x 6= x′
(2.28)

However, the Dirac delta function is impossible to be used in its current form for either

interpolation or a collocation process, because it is not smooth, continuous and differen-

tiable. To remedy this pathology, a so-called smoothing (or kernel) function W (x− x′, h)

is designed to keep the delta function property and used to replace the delta function itself.

The parameter h is noted as smoothing length which defines the influence or support area

of the smoothing functionW . Therefore, the identical equation (2.27) becomes to a integral

representation form

u(x) ≈
∫

Ω
u(x′) W (x− x′, h) dΩx′ (2.29)

In the following text, the notation ≈ is replaced by = if there is no confusion taken place.

With the aid of the quantities of all particles in the compact support domain (see Fig-

ure 2.3), the continuous integral representation (kernel representation/estimate) of the

field u(x) can be converted into a discretized form of summation (particle representa-

tion/estimate), given by

ui = u(xi) =

Nj∑
j=1

u(xj) W (xi − xj , h) Vj =

Nj∑
j=1

uj Wij Vj (2.30)

with i the point where the field variable is approximated and j is the neighboring point

in the support domain of i. Nj and Vj are the total number and the volume of point j

respectively.
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Figure 2.3: Modeling of a 2D structure using the SPH discretization.

2.2.2 Smoothing function

In view of the above deriving process of a field variable, the smoothing function represents a

significant ingredient of the SPH method. The smoothing (kernel) function determines the

interaction of two neighboring points, confines the size of the support domain of a particle

rather than the whole region and hence improves the computational efficiency. It also can

influence the accuracy and stability property of the SPH simulation [61]. Therefore, the

choice of an appropriate smoothing function is critical to build an efficient and accurate

SPH approximation of the problem solution. Generally, it is required for the smoothing

function, to satisfy several conditions [50].

At first the smoothing function should have a compact support, which implies that W = 0

when |x−x′| ≥ λh with a constant λ specifying the non-zero region of W . The smoothing

function has to satisfy also the normalization condition∫
Ω
W (x− x′, h) dΩx′ = 1 (2.31)

so that it can ensure the zero-th order consistency of the integral representation of a field

variable. The third condition is the Dirac delta function property

lim
h→0

W (x− x′, h) = δ(x− x′) (2.32)
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which allows the approximated value approaches the function value when smoothing length

tends to zero (x′ → x).

In addition to the above conditions, the smoothing function should also be positive (phys-

ical meaning), even and monotonically decreasing away from the origin, which signify that

particles of same distance give the same effects and further particle has smaller influence

on the particle under consideration.

There exist numerous smoothing functions proposed in the literature, such as the bell-

shaped function by Lucy in his original paper [9], the Gaussian function by Gingold and

Monaghan [10], the cubic B-spline function Monaghan and Lattanzio [62] and some higher

order functions by Morris [61].

In the present work, we adopt the most frequently used cubic B-spline function, in which

the constant λ = 2

W (xi − xj , h) = αd ×



2

3
− s2 +

1

2
s3 if 0 ≤ s < 1

1

6
(2− s)3 if 1 ≤ s < 2

0 if s ≥ 2

(2.33)

where αd is a scaling factor to assure the normalization condition and takes 1/h, 15/7πh2

and 3/2πh3 in one-, two- and three-dimensional space respectively. s = rij/h and rij =

|xi −xj | is the distance between the points i and j. This smoothing function is plotted in

Figure 2.4 together with its first-order and second-order derivatives.

Figure 2.4: Kernel function used in two-dimensional space.
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2.2.3 Approximation of field derivatives

To obtain the approximation form of the derivatives of a field variable, one can directly

replace the filed variable u(x) in the Equation (2.29) with its gradient ∇u(x)

∇u(x) =

∫
Ω
∇u(x′) W (x− x′, h) dΩx′ (2.34)

By virtue of integration by parts and the divergence theorem, we can obtain

∇u(x) =

∫
Ω
∇u(x′) W (x− x′, h) dΩx′

=

∫
Ω
∇[u(x′) W (x− x′, h)] dΩx′ −

∫
Ω
u(x′) ∇W (x− x′, h) dΩx′

=

∫
∂Ω
u(x′) W (x− x′, h)n dSx′ −

∫
Ω
u(x′) ∇W (x− x′, h) dΩx′

(2.35)

where n is the unit vector normal to the element surface dS.

If the point x is enough far away from the boundary, the support domain of its smoothing

function is entirely interior of the region Ω. Hence the smoothing function vanishes at

the boundaries of the support domain due to its compact support character. The above

function can be rewritten as,

∇u(x) = −
∫

Ω
u(x′) ∇W (x− x′, h) dΩx′ (2.36)

Noting that this formulation is not satisfied when the point is near or located at the

boundary because of the truncation of the compact support domain by the boundary.

The corresponding discrete approximation form using the neighboring particles, is

∇ui = −
Nj∑
j=1

uj ∇jW (xi − xj , h) Vj =

Nj∑
j=1

uj ∇Wij Vj (2.37)

where ∇Wij is a simplified form of ∇iW (xi−xj , h) and ∇iW (xi−xj , h) =
xi−xj
|xi−xj |

∂W
∂r (xi−

xj , h) = −∇jW (xi − xj , h).

2.3 SPH discretization of the equilibrium equations of solids

In solid mechanics, the equations governing the conservation of mass and linear momentum

mentioned in Section 1 can be discretized using the SPH method, leading for each particle

i to
dρi
dt

= −ρi divvi = −ρi
Nj∑
j=1

vj ∇Wij Vj (2.38)
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dvi
dt

=
1

ρi
divσi =

1

ρi

Nj∑
j=1

σj ∇Wij Vj (2.39)

Considering the even property of the smoothing function, its gradients should be odd and

we have
Nj∑
j=1

∇Wij Vj = 0 (2.40)

Multiplying above equation with ρi vi and adding to the right hand side (RHS) of Equation

(2.38), we can get a popular antisymmetrized form [63] for the mass conservation equation

dρi
dt

= −ρi
Nj∑
j=1

vji ∇Wij Vj (2.41)

where vji = vj − vi is the difference of velocity vector between two neighboring particles

j and i. This approximation form of mass conservation equation is preferred because the

density change is forced to be zero if rigid motion occurs.

For the momentum conservation equation, there exist another widespread symmetrized

expression given by [38,51]

dvi
dt

=

Nj∑
j=1

(
σi
ρ2
i

+
σj
ρ2
j

)
∇Wij ρjVj (2.42)

This form will ensure that the force acting on particle i from particle j is of the same

magnitude as the force applied on particle j from the particle i, but the two forces are

acting in opposite directions. In other words, it satisfies the Newton’s law.

2.4 Inconsistency problems and corrective techniques

In the FE method, the degree of consistency can be characterized by the order of the poly-

nomial that can be exactly reproduced by the approximation using the shape functions. The

same concept can be used in the SPH method. In fact, the standard SPH approximation

is not even of 0-th completeness, i.e. constant field and linear gradient can not be exactly

reproduced. This is mainly due to the following reasons:

• At first, the inconsistency results from the edge effect. The smoothing function is

required to meet the normalization condition,
∫

Ω
W dΩ = 1, i.e. the approximation

can produce constant field. This is true for the interior particles far away from the

boundaries. However, for the particles located on the boundaries or nearby, the
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support domain is truncated by the boundary, so that the integral of W in the

insufficient support domain is less than 1. For instance, in 1D geometry, the integral

of the smoothing function is equal to 1/2 on the two end points. The error of 50% is

obnoxious.

For the approximation of the gradients, truncated support domain of the nearby

boundary particles also leads the surface integral of the devariates of smoothing

function (first term of RHS of Equation (2.35)) not to vanish. Therefore, Equation

(2.37) is not always satisfied for constant field function.

• The second reason is the discrepancy between the kernel and particles approximation

[50]. When the integral on a domain is discretized into the summation over the

neighboring particles, the trapezoidal rule is used. The variant smoothing function

in a dicretized domain is replaced by a constant value on the centroid. Furthermore,

the total volume of the particles in the neighboring region in general is not the same

as the one of the compact support domain, which can produce numerical errors, not

to mention the irregularly distributed particles. The same observation can be done

for the gradient approximation.

Many researchers proposed different methods to restore the consistency of the SPH approx-

imation. The anti-symmetrized [63] and symmetrized forms [38] of the gradient approxi-

mation are detailed in the previous section. Libersky and Petschek [64] introduced ghost

particles to reflect a symmetrical surface boundary condition. Randles and Libersky [65]

proposed a normalization formulation for density and the divergence of the stress tensor.

Liu et al. gave a general approach to rebuild the smoothing function for restoring par-

ticle consistency through reproducing kernel particle method (RKPM) [18, 51, 66]. The

reproducing kernel function was developed by multiplying a correction function with the

so-called window function (same as the SPH kernel function). Generally, the correction

function is expressed by a linear combination of polynomial basis functions. This method

can reproduce n-th order polynomials with n-th order correction function by expanding the

Taylor series for the function in the integral transformation. However, the resulting shape

function do not satisfy the Kronecker delta property and can not exactly match the real

value at sample points, therefore essential boundary conditions cannot be directly enforced

[66]. Special care must be taken because the resultant shape function maybe negative, not

symmetric and not monotonically decreasing as the particle distance increases [51].
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Some other techniques can restore high order consistency such as Moving Least Square

Particle Hydrodynamics (MLSPH) proposed by Dilts [67,68], Modified SPH (MSPH) and

Symmetric SPH (SSPH) proposed by Zhang and Batra [69, 70]. To avoid non-singularity

problem, a number of particles should be included in the support domain of the kernel

function. The number is required to br no less than the linearly independent monomials

used for construction of approximation basis. Like RKPM, Kronecker delta property don’t

be guaranteed in MLSPH and SSPH.

Chen et al. [33, 71] developed a Corrective Smoothed Particle Method (CSPM) by com-

bining the kernel estimates with the Taylor series expansion. They proved that the general

problem of particle deficiency was resolved using this algorithm and derivatives of any order

could be reproduced, which is essential for the time-dependent boundary value problems.

Moreover, it could be suitable for modeling any unsteady boundary value problem with

the Dirichlet and/or von Neumann types of boundary conditions

In the following developments, the CSPM will be adopted in this work.

1. Performing Taylor series expansion of a variable u(x) at point i with coordinates

xi = (xi1, xi2, xi3), gives

u = ui + ui,α(xα − xiα) +
1

2
ui,αβ(xα − xiα)(xβ − xiβ) + ... α, β = 1, 2, 3 (2.43)

where ui,α = ∂u
∂xα

∣∣∣
x=xi

, ui,αβ = ∂u
∂xα∂xβ

∣∣∣
x=xi

and summation is implied on repeated

indices α and β.

2. By multiplying both sides of (2.43) by the kernel function W (xi − x, h) and inte-

grating the resulted equation over the domain Ω, yields to∫
Ω
uW dΩ = ui

∫
Ω
W dΩ + ui,α

∫
Ω

(xα − xiα)W dΩ

+
1

2
ui,αβ

∫
Ω

(xα − xiα)(xβ − xiβ)W dΩ + ...
(2.44)

3. By neglecting all the derivative terms, a corrective version of the kernel approxima-

tions is then generated

ui =

∫
Ω uW (xi − x, h) dΩ∫
Ω W (xi − x, h) dΩ

(2.45)

and corresponding particle approximation formulation

ui =

∑Nj
j=1 uj Wij Vj∑Nj
j=1Wij Vj

(2.46)
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4. Repeat the above procedure by replacing W with Wγ = ∂W
∂xγ

and neglecting second-

order derivatives and higher, which gives

ui,α

∫
Ω

(xα − xiα)Wγ dΩ =

∫
Ω

(u− ui)Wγ dΩ (2.47)

5. The particle approximation of first-order derivatives converted from the above equa-

tion are written in a concise notation form as

∇ui =

 Nj∑
j=1

(xj − xi)⊗∇Wij Vj

−1
Nj∑
j=1

(uj − ui) ∇Wij Vj (2.48)

6. Using a similar approach, the generalized particle approximation can be derived for

any higher-order derivatives.

To explain the efficiency of this corrected version for fist-order derivatives, let consider the

function f = 1
2

(
∂x
∂x + ∂y

∂y

)
for which the value is unity everywhere. Approximations of this

function in a 2D rectangle domain by the classical SPH method and the CSPM are then

performed. The distribution of this function is depicted in the Figure 2.5. The values at the

corners obtained using the classical SPH method is only 0.43, which represents an awful

error of 63%. In the right hand side of Figure 2.5 is represented the solution obtained using

the CSPM. This results shows clearly a big improvement in the approximation thanks to

the CSPM and the function value is equal to 1 at all particles.

Figure 2.5: Comparison of the performance between the classical SPH method (left) and the CSPM

(right).

2.5 Artificial viscosity

The artificial viscosity was firstly introduced into the inviscid Euler equations in fluid

dynamics in order to treat the shock wave discontinuities [72]. This strong numerical

instability can be solved by transferring kinetic energy into heat energy across the shock
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wave front, which can be represented by viscous dissipation. Therefore, a dissipative term,

called artificial viscosity is introduced into the momentum equations.

The term of the artificial viscosity was firstly used by Monaghan and Gingold [73] into the

SPH method to simulate the shock. It is given by

Πij =


−αΠcij φij + βΠ φ2

ij

ρij
vij · xij < 0

0 vij · xij ≥ 0

(2.49)

where

φij =
hijvij · xij

|xij |2 + 0.01h2
ij

, hij =
hi + hj

2
, vij = vi − vj , xij = xi − xj (2.50)

ρij =
ρi + ρj

2
, cij =

ci + cj
2

(2.51)

In the above equations, αΠ and βΠ are constant coefficients relative to bulk viscosity and

von Neumann-Richtmyer artificial viscosity; c is the sound velocity in the material; the term

0.01h2
ij is introduced to prevent the singularities when two particles become too close.

The values of αΠ and βΠ were typically chosen to be 1 and 2 [45]. αΠ = βΠ = 2.5 was

proposed for the modeling of solids [5]. In the present investigation, αΠ = 0.2 and βΠ = 0.4

were tested to be the best combination for isotropic elastic materials. An exception is done

for the last application in this chapter (sandwich beam), where the used pair of coefficients

are αΠ = 2.5 and βΠ = 0.6.

The artificial viscosity provides viscous forces associated to the linear momentum Equation

(2.42), thus the numerical instability will be attenuated. The viscous forces are implemented

in the normal direction and hence the discretized equilibrium equation is given by

dvi
dt

=

Nj∑
j=1

(
σi
ρ2
i

+
σj
ρ2
j

−Πij

)
∇Wij ρjVj (2.52)

2.6 Extension of the SPH method using the Total Lagrangian

Formulation

If the standard SPH method is adopted for the modeling of continua in solid mechanics,

using the Updated Lagrangian Formulation (ULF) expressed into the current deformed

configuration, it is often accompanied by an artificial unstable motion of particles, which

arises when the structure is under tensile stress state [43]. This phenomenon is known as

tensile instability and can result in particles clumping. Indeed, this instability often occurs
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when the product of the stress state and the second derivative of the smoothing function

is positive [43].

Different approaches have been proposed to control the tensile instability. For instance,

the Conservative Smoothing Approach (CSA) introduced by Swegle et al. in 1994 [74] was

designed to add stabilizing dissipation into the velocity difference rule. It introduces a

smoothing operators in 1D given by

vi = vi + αcs

(
1

2
(vi−1 + vi+1)− vi

)
0 < αcs ≤ 0.5 (2.53)

Balsara [75] also proposed in 1995, a similar spatial filter in three dimensions which was

improved later by Randles and Libersky [65] in 1996, which states

vi = vi + αcs

(∑
j 6=i vjWijAj∑
j 6=iWijAj

− vi

)
(2.54)

This technique is attractive because of its simplicity and time saving. Adams and Wicke [76]

showed that if the corrected velocities can be stored and used in subsequent time steps, the

viscosity effect may become stronger. They studied a variation of the viscosity when αcs

changes between 0 and 1, and they noticed that the stability increased as αcs gets closer

to 1.

Herein we carry out a numerical application using a 2D cantilever plate to study the

influence of the parameter αcs. The left edge of the plate is clamped and the right free

end is subjected to a transverse load F = 1750N as shown in Figure 2.6. The geometrial

and material data of the plate are as follows : L = 100mm, t = 10mm, width 1mm,

E = 210GPa, ν = 0.3, ρ = 7800kg/m3. The total simulation time is 10ms. Different

values of αcs are used and the evolution of the displacement of point C are depicted in

Figure 2.6.

Figure 2.6: Clamped plate under transverse load.

From Figure 2.7, we can remark for small values of αcs (0 and 0.01) the solution diverges at

the beginning of the computation. More the value of αcs is increased, better the stability
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Figure 2.7: Evolution of the plate deflection at point C, in function of time.

of the solution is. However higher values lead to a quicker reduction of the deflection

magnitude due to a strong dissipation of the kinematic energy (Figure 2.7).

Another approach has been proposed initially by Monaghan [77] which consists in the

use of artificial repulsive forces, unfortunately good results can be obtained only when

the discretization is sufficiently fine [77]. A unified stability analysis of meshless methods

with Eulerian and Lagrangian kernels has been discussed in details by Belytschko et al. in

2000 [78]. The authors showed that the tensile instability, which is inherent in the use of

the Eulerian kernel in the spatial coordinates, does not exhibit when Lagrangian kernels

are used [78].

In the present investigation the Total Lagrangian SPH Formulation is adopted and the

governing elastodynamic equations are reformulated by the TL SPH using a Lagrangian

kernel. In this case, the initial geometry of the structure is regarded as the reference

configuration and therefore the kernel function is computed just once at the first step

and stored. The cumbersome nearest neighboring particles search operation in each time

step is no longer needed. The density used in the momentum conservation equation is the

initial density, therefore it is not necessary to update the density using Equation (2.41).

Time-saving in this formulation compared to the classical Eulerian SPH formulation is

remarkable.
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Firstly, the deformation gradient tensor is approximated by

F =
∂x

∂X
=

Nj∑
j=1

(xj − xi) ∇0W0ij V0j (2.55)

where ∇0W0 is the gradient of the Lagrangian kernel function W0 with respect to the

material coordinates.

Then the Green Lagrangian strain is calculated by E =
1

2
(L + LT + LTL) and the

displacement gradient tensor L is estimated by TL SPH formulation

L =
∂U

∂X
=

Nj∑
j=1

(Uj −Ui) ∇0W0ij V0j (2.56)

The Euler-Almansi strains can be obtained thanks to the GL strain and the deformation

gradient tensors, and hence the work conjugated Cauchy stress is determined based on the

generalized Hooke’s law.

To transform the equilibrium equation written in the current configuration into the initial

configuration, the Cauchy stress and viscous forces need to be pulled back through the

deformation gradient

P = JσF−T ; Pv = JΠF−T (2.57)

The final discretized equilibrium equation is expressed with the respect to the initial

configuration

dvi
dt

=

Nj∑
j=1

(
Pi
ρ2

0i

+
Pj
ρ2

0j

− Pvij

)
∇0W0ij ρ0jV0j (2.58)

2.7 Time step and time integration

The present study focuses on the prediction of the deformation fields (displacement, ve-

locity, acceleration) and internal values (strains, stresses) in a structure. Explicit time

integration scheme is widely employed because the nonlinearities are overcomed straight-

forwardly since no iterations are required at each time step.

A viscously damped dynamical system can be expressed as the following generalized PDE

formulation

MÜ + CU̇ = R = Fext − Fint (2.59)

where M and C represents the mass and damping matrices; R is the residual force vector

between the external force vector Fext and internal force vector Fint.



2.7. TIME STEP AND TIME INTEGRATION 29

For a particle i, (Fext)i = bi Vi where b is the body force per unit volume. The internal

force vector (Fint)i is the product of the mass matrix with the RHS of the Equation (2.58).

Rayleigh damping model (also called proportional damping) defined as C = αCM + βCK,

is used in this investigation which has been extensively used to reduce the undesirable

vibration in an oscillatory system [79]. The stiffness proportional term βCK is insignificant

for low-frequency applications and this model can reduce to a single mass proportional

term [80].

The total simulation duration Tt is assumed to be divided in Nt equal time-steps ∆T . The

initial conditions are assumed to be given by

U(T = 0) = U0 and U̇(T = 0) = U̇0 (2.60)

Central difference method is based on the Taylor’s series expansion of Un+1 and Un−1

about Un = U(T = Tn) at current time step n.
Un+1 = Un + ∆T U̇n +

∆T 2

2
Ün +

∆T 3

6

...
U
n

+ ...

Un−1 = Un −∆T U̇n +
∆T 2

2
Ün − ∆T 3

6

...
U
n

+ ...

(2.61)

Calculating the velocity U̇ and acceleration Ü by only taking into account the first three

terms of the RHS of Equation (2.61), and substituting the results into the Equation (2.59),

an explicit time integration form of the displacement champ is generated

Un+1 =
4

2 + αC∆T
Un +

αC∆T − 2

2 + αC∆T
Un−1 +

2∆T 2

2 + αC∆T
Ün (2.62)

Repeated application of the above equation gives us the response time history of the

displacement field. Note that in order to compute the U1, both U0 and U−1 are required.

The last term U−1 can be obtained from the Equation (2.61) by neglecting the third-order

and higher derivatives at T = 0

U−1 = U0 −∆T U̇0 +
∆T 2

2
Ü0 (2.63)

where the acceleration Ü0 can be computed from the Equation (2.59) with the initial

conditions and internal/external forces.

The use of the central difference method leads to a system of uncoupled linear equations

and only vector operations are performed thanks to the use of a diagonal mass matrix.

This leads to less CPU-time requirement per time step, compared to the implicit methods.
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However, the explicit methods are well-known to be conditionally stable. For most prob-

lems, the time step is given by the Courant limit, in which the smallest amount of time

necessary for a sound wave to cross the particle distance rij [81],

∆T = Ct∆Tcrit = Ct ·min(rij/c) (2.64)

where c is the sound speed in the material and generally equal to
√
E/ρ. The factor

Ct = 0.8 is sufficient for moderately nonlinear problems and 0.8 or smaller value has to be

used for highly nonlinear problems.

2.8 Numerical applications

In this section, geometrically linear and nonlinear analysis of several numerical applications

are presented and the obtained results are compared with reference analytical solutions and

FE results obtained using ABAQUS c© commercial software. The quadratic term LTL in

the GL strain tensor is ignored in the geometrically linear analysis.

All applications hereinbelow involve thin-walled structures in which three-dimensional

(3D) solid problems can be degraded to two-dimensional (2D) problems and plane stress

assumption is taken into account. Note that, in the 2D continuum SPH formulations, the

factor αd is chosen to be 15/7πh2 and the region occupied by a particle is described by the

area A rather than the volume V . A default is made for all examples that the thickness

always follows the z-direction and 2D problem are described in the xz-plane.

2.8.1 Geometrically linear analysis

2.8.1.1 Deflection of cantilever beam with tip load

The first application studied here is a cantilever beam made of a steel material with the

properties E = 210GPa and ν = 0.3. The geometrical dimensions of the structure are

shown in Figure 2.8, where the length L = 100mm, the width b = 1mm and the beam

thickness t = 10mm. The beam is clamped at one edge and supports a concentrated load

F at the other edge. The load is applied gradually following a quadratic evolution (see

Figure 2.9), starting from 0 to reach its maximum value 1750N at time T1 = 1.5ms.

Then the load is maintained constant until the end of simulation Ttotal = 3ms. The static

reference solution obtained using linear analysis of beam deflection WC has been reported

by Timoshenko [82], and corresponds to Wanalytical =
FL3

3EI
+

6FL

5GA
= 33.59mm.
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Figure 2.8: Cantilever beam with tip load Figure 2.9: Applied load evolution in time

Firstly we propose to investigate the influence of the smoothing length on the accuracy

of the result obtained using the present 2D-continuum SPH model. As reported in the

literature [50, 51], the smoothing length h is a key parameter in the SPH method and

has a great influence upon the general solution. The idea hereby is to conduct a sensitivity

analysis of the smoothing length h in order to find its optimal value that has a less influence

on the solution while keeping a reasonable computational time. The smoothing length h is

directly related to the pair of particles diameters di and dj

hij = λh
di + dj

2
(2.65)

where λh is a coefficient which is often suggested to be [0.8, 1.5] [83].

We discretize the beam uniformly using 100 × 10 particles of a uniform diameter d =

1mm. The present 2D-continuum SPH model is based on an explicit dynamic resolution

scheme, therefore in order to reach the permanent deflection corresponding to the static

solution, one has to include damping for energy dissipation. For this application we applied

a damping using αC = 6 and βC = 0. Different ratios h/d from 0.8 to 2.0 were used and

the corresponding non-dimensional WC/Wanalytical values are depicted in Figure 2.10. As

we can observe, when h/d gets far away from the value 1 the quality of the predicted

solution deteriorates rapidly. However the predicted end-deflection becomes very close to

the analytical solution when h/d approches 0.95. Therefore, the smoothing length of 0.95d

is adopted as a default value for the remaining applications in this chapter. In this case,

each interior particle possess 8 neighboring points in its support domain for a regular

particles distribution. This is found to be slightly different from what is reported in some

commercial softwares such as LS-DYNA c© which suggests h/d = [1.05, 1.3] [85].

In the following we carried out a sensitivity analysis of the particles discretization. Different
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Figure 2.10: Influcence of the smoothing

length

Figure 2.11: Influence of particles discretiza-

tion

uniform discretizations have been used, starting from 2 particles through the thickness until

20 particles. For every case, the solutionWC/Wanalytical is selected and the evolution of the

end-deflection versus number of particles is depicted in Figure 2.11. As one can observe,

the predicted SPH end-deflection converges to the analytical solution as the number of

particles increases. When the number of particles is over 10, the error between the end-

deflection obtained using the proposed 2D continuum SPH model and the analytical value

is less than 6.6%, which is acceptable.

In above investigation, the artificial viscosity coefficients are fixed as αΠ = 0.2, βΠ = 0.4,

where this combination has been shown to be suitable for most applications. Thus, this

couple of parameters is adopted for the remaing cases of isotropic materials.

The appropriately defined artificial viscosity can efficiently prevent the unphysical oscil-

lations, that occur during the numerical analysis of shock wave. In order to illustrate the

viscosity influence on the solution, we conducted a study by varying the two coefficients

(αΠ, βΠ) from 0.02 to 0.4. In Figure 2.12 are shown four configurations obtained using

different couples of values. We can remark that stability is affected severely when the

coefficients are small, and the more the values increase better is the stability of the solution.

Different calculations have been carried out, and the authors found that αΠ = 0.04,

βΠ = 0.08 are the minimum values which allow achieving a first stable solution.

Figure 2.13 shows the distribution of transverse shear stress σxz through the thickness at

x = 50mm, this is obtained using different discretizations of particles from 2 to 10 particles

on the thickness. The predicted shear stress σxz is compared with the analytical well-
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Figure 2.12: Deformed configurations with different viscosity

known solution, which is quadratic in thickness for the case of elastic isotropic materials

σanalyticalxz =
F

2I

(
t2

4
− (z − t

2
)2

)
.

One can observe that the present 2D-continuum SPH model can predict the shear stress

accurately even with only two particles in the thickness with an error of approximately

29.6%. When three particles are used, this error drops to 10.9% and for only four particles

the error is less than 1.4%. As we can see from Figure 2.13, the predicted shear stress

distribution obtained using 10 particles is very close to the analytical solution of a quadratic

shape.

Figure 2.13: Shear stress distribution through the thickness at x = 50mm.
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2.8.1.2 Cook’s membrane

The second application deals with the well known Cook’s membrane problem [86], which is

depicted in Figure 2.14(a) where geometrical dimensions are given. The tapered structure

is clamped on its left edge and subjected to a uniformly distributed total shear load of

1kN on the opposite free edge.

(a) Schematic representation model (b) Numerical discretization

Figure 2.14: Cook’s membrane

As shown in Figure 2.14(b), a lager rectangle domain including the whole geometry of the

structure is first discretized using a uniform particles distribution with a gap of 1mm. The

particles which are located inside the geometry domain of the structure are considered as

SPH particles and are used for the modeling of the Cook’s membrane deformation.

In Figure 2.15 are given the initial and deformed configurations of the Cook’s membrane.

Compared with the reference vertical deflection [86] of the middle point C at the right free

edge 23.81mm, the result obtained using the 2D-continuum SPH model is 24.99mm which

is in good agreement with the reference solution, with an error less than 4.9%.

2.8.2 Geometrically nonlinear analysis

2.8.2.1 Large deflection of a cantilevered beam

The cantilever beam studied in the first application (Example 2.8.1.1) with its dimensions

given in Figure 2.6 is considered again by taking into account the geometrically nonlinear

behavior. The end load is applied gradually on the right free edge, starting from 0 to 17.5kN

(FL2/EI is ranged from 0 to 10). In the present application, the structure is discretized
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(a) Initial configuration (b) Deformed configuration

Figure 2.15: Configurations of Cook’s membrane

uniformly using 100 particles along the length and 10 particle through the thickness.

A nonlinear analysis is carried out using a loading control strategy while the deflection of

the beam free edge centroid C is stored. The obtained results are summarized in Table 2.1

and a comparison is made with respect to the reference solution given by Timoshenko [82].

We can observe that the results obtained by the proposed 2D-continuum SPH model are

in good agreement with the reference solution. We also remark that the error decreases

as the deflection increases (load increases), which indicates a good stability and efficiency

of the proposed SPH model in the modeling of large displacements and large rotations of

structure.

For comparing the computation time consumed for the dynamic analysis of the clamped

beam by the present SPH model and ABAQUS c© FE model, a FE model using ABAQUS c©

explicit dynamics scheme with the same number of CPS4R elements is solved. The maximal

force 17.5kN is considered and the loading process is referred to 2.9. In contrast to 13s

CPU-time expended by the ABAQUS c© model, the proposed SPH model is more fast

and only consumes 0.546s. The deflection of the free edge centroid is 84.0mm solved by

ABAQUS c© explicit dynamics scheme, which includes an higher error than the presented

SPH model. The deformed configurations of the clamped beam obtained these two models

are presented in Figure 2.16.

We can also observe from Figure 2.16 that the obtained deformed structures using the
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Table 2.1: Comparison of the end-beam deflection WC (mm)

F (kN) FL2/EI Analytical SPH model Error (%)

0 0 0 0 —

0.4375 0.25 8.3 8.9 7.35

0.875 0.5 16.2 17.4 7.41

1.3125 0.75 23.5 25.2 7.19

1.75 1 30.2 32.1 6.29

3.5 2 49.4 51.7 4.55

5.25 3 60.3 62.5 3.62

7 4 67.0 69.0 2.99

8.75 5 71.4 73.3 2.63

10.5 6 74.4 76.3 2.57

12.25 7 76.7 78.6 2.45

14 8 78.5 80.4 2.39

15.75 9 79.9 81.8 2.43

17.5 10 81.1 83.1 2.42

(a) Present SPH model (b) FE model (ABAQUS)

Figure 2.16: Final deformed configurations under maximal load (SPH vs. FEM)

proposed 2D-continuum SPH model 2.16(a) is of a very close shape to the one obtained

using the FE method 2.16(b).
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2.8.2.2 Roll up of a clamped beam

In this example, a clamped beam strip under a bending moment is studied. The geometrical

dimensions of the structure are shown in Figure 2.17, where the length L = 100mm, the

width b = 5mm and the beam thickness t = 5mm. This strip is made of an aluminum

material with the properties ρ = 2700kg/m3, E = 73.4GPa and ν = 0.3.

(a) Idealized beam with end-moment

(b) Equivalent studied beam model

Figure 2.17: Geometry and loading of a clamped beam strip

In order to carry out the nonlinear analysis of the structure given in Figure 2.17(a), the

idealized moment acting at the free edge of the beam can be generated using a couple of

follower forces applied normal to the free edge AB and are maintained normal to the edge

AB during all simulation process, showed in Figure 2.17(b).

The analytical solution of the curvature κ at the end central point C is given by Euler

formula [87] κ = M/EI. For the chosen properties, the value of the bending moment which

transforms the beam into a full-circle shape is M = Ft = 2πEI/L = 76.46π kN ·mm thus

the correspondent force F = 15.29π kN .

The structure is discretized using 200 × 10 particles of diameter 0.5mm. The load F

is applied incrementally using the parameter λ such as F = M/t = λ πEI/L, where

λ = {0.1, 0.2, ..., 2}. For comparison purpose, a first trial analysis using the CPS4R 2D

solid element of ABAQUS c© has been conducted, unfortunately the simulations failed to

achieve the maximal rotation of 2π. Therefore an alternative FE analysis was conducted

on the same structure using 200×10 S4R shell elements of ABAQUS c© through an implicit

static scheme. The FE result will be taken as a reference solution to evaluate the quality

of the SPH model.
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Figure 2.18: Comparison of load-displacement of

the strip (SPH vs. FE)

Figure 2.19: Deformed configuration of the strip

(SPH solution)

Figure 2.18 shows the load-displacement paths at point C, where one can remark the highly

nonlinear behavior exhibits by the structure. As we can observe the solution obtained using

the present SPH model matches perfectly the FE solution obtained using ABAQUS c© code.

The analysis of the overall loading path shows that the error of the present SPH model is

less than 1% compared to the FE solution, and this is true even for very large rotations

up to 2π.

Comparison of the vertical displacements at point C obtained for the maximal load corre-

sponding to λ = 2, gives 0.055mm for the present SPH model and −0.006mm from the FE

model. This means the straight beam is transformed closely to a circle. The final deformed

strip shape is drawn in Figure 2.19 where the proposed 2D continuum SPH model is capable

of representing the nonlinear behavior of the structure even involving large rotation.

2.8.2.3 Post-buckling analysis of shallow arch

In the present application, we investigate the nonlinear buckling behavior of a thin shallow

arch subjected to a central pinching force. The two ends of the arch are pinned as shown

in Figure 2.20. The geometrical data are given as follows (Figure 2.20): R = 200mm,

L = 100mm, t = 5mm and width b = 1mm. The arch is made of steel with a Young’s

modulus of E = 210GPa and a Poisson ratio corresponding to ν = 0.3.

The arch is discretized using 425 particles along the circumference and 10 particles in the

radial direction. For comparison purpose, the same structure is analyzed using 425 × 10

CPS4R 2D solid elements of ABAQUS c©. The FE results will constitute a reference solution



2.8. NUMERICAL APPLICATIONS 39

for the validation of the SPH results. The nonlinear analysis is conducted using the explicit

dynamics scheme.

Figure 2.20: Pinned-pinned shallow arch Figure 2.21: Comparison of load-displacement

path at the central point

In this problem, the loading control technique failed to pass through the first limit point

where the stiffness matrix becomes singular. To achieve the global response of the arch

under these conditions, a displacement control technique [88] of the central top point of

the arch is carried out with a maximal displacement corresponding to WC = 64mm which

is imposed incrementally.

In Figure 2.21 are plotted the load-displacement curves obtained using both ABAQUS c©

code and the proposed SPH model. The critical buckling load predicted by the present

2D continuum SPH model corresponds to FSPHcr = 1205.3N with a deflection of WSPH
C =

15.5mm, while the reference critical buckling load of FE is FABAcr = 1261.8N for the same

deflection. As we can see from Figure 2.21, the proposed SPH model allows obtaining a

very good solution with an error less than 4.5% when compared to the FE solution. This

solution represents a very good approximation for a thin structure (t/R = 0.025). We can

observe from Figure 2.21 that the present SPH model can achieve a good accuracy even

in the post-buckling phase, where the second bifurcation point is captured also accurately

without difficulties.

The deformed arch shapes corresponding to the maximal displacement (WC = 64mm) are

shown in Figure 2.22. As one can remark, the two deformed structures are of approximately

the same shape, which indicates the accuracy of the present SPH model.
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(a) Present SPH model

(b) FE model (ABAQUS)

Figure 2.22: Comparison of deformed configurations of the arch at maximal displacement

2.8.2.4 Post-buckling analysis of a deep arch

Herein, we investigate the buckling behavior of a thin structure made of an deep arch shape

and subjected to a central pinching force. The arch is clamped at its two ends as shown in

Figure 2.23. Similar planar circular arches with different boundary conditions have been

studied by Yau [89], Wriggers and Simo [90].

The arch is made of steel with a Young’s modulus of E = 210GPa and a Poisson ratio

corresponding to ν = 0.3. The geometrical characteristics of the structure are as follows

(see Figure 2.23): R = 100mm, t = 5mm, b = 1mm and φ = 215◦.

Figure 2.23: Clamped-clamped deep arch Figure 2.24: Velocity control factor
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Due to the symmetry, only one half of the arch is modeled and discretized with 387 × 10

particles of diameter 0.5mm. For comparison purpose, the same structure is analyzed using

a FE model of ABAQUS c© which will constitute a reference solution for the validation of the

SPH results. The FE model consists of the same number of CPS4R 2D elements using the

explicit dynamic analysis. Similar as the precedent application, the displacement control

strategy for the central top point of the arch is employed to overcome the first buckling

limit point.

For the numerical resolution, the velocity control curve given in Figure 2.24 is used. At

the first stage a linear velocity is imposed, starting from 0 to reach a maximal velocity of

27.78m/s. Then the velocity is maintained constant during 8ms to achieve the required

displacement. The last stage is a deceleration using the same slope as in the first stage.

In order to avoid oscillations due to the deceleration, the solution is evaluated 5ms after

vanishing the velocity at 10ms. Damping forces are introduced by means of C = 6M, to

allow obtaining the quasi-static solution.

Figure 2.25: Load-Displacement curve at the

central point of the arch

Figure 2.26: Predicted loading history

(WC = 250mm)

Resulted load-displacement curves are depicted in Figure 2.25. The critical buckling load

predicted using the present SPH model is Fcr = 1761.7N with a deflection corresponding to

WC = 75mm, while the reference critical buckling load Fcr = 1893.41N is obtained for the

same deflection using FE model. A first comparison of the buckling load values, shows that

the proposed SPH model gives a good solution with an error less than 7%, which constitutes

a very good approximation when considering a very thin structure (t/R = 0.05). We can

observe from Figure 2.25 that the present SPH model can achieve a good accuracy even in
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the post-buckling region, where the second limit point is captured also accurately.

In Figure 2.26 is presented the loading history of the arch until achieving a total displace-

ment of 250mm. It shows the nonlinear character of the loading path that is needed if one

wants to use the classical loading control procedure.

The final deformed configurations (WC = 250mm) obtained using the present SPH model

and the FE method are shown in Figure 2.27, as we can remark the two deformed structures

are of the same shape, which indicates the efficiency of the present SPH model.

(a) Present SPH model (b) FE model (ABAQUS)

Figure 2.27: Deformed configurations of the deep arch at maximal displacement

2.8.2.5 Delamination of a sandwich beam

In the last application, nonlinear analysis of a sandwich beam is carried out using the

proposed SPH model. The studied beam is depicted in Figure 2.28, in which the loads are

imposed on the upper face points A and B which located at a distance of 60mm from the

two ends.

Figure 2.28: Four points bending test on a sandwich beam

The left-bottom end of the lower sheet layer is simply fixed while the other end is simply

supported and can freely move through the longitudinal direction. The overall span of the

beam is 200mm and its width is b = 1mm. Top and bottom faces are made of an isotropic
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aluminum with Ef = 73.4GPa, νf = 0.32 and thickness of tf = 1mm. The core is a

polymer with elastic constant Ec = 0.16931GPa, νc = 0 and the thickness is tc = 8mm.

The material densities are ρf = 2700kg/m3 and ρc = 468kg/m3 respectively. A similar

test using FE method can be found in the Kemmochi [91].

Figure 2.29: Force-displacement curve at point A

The beam is discretized using a uniform distribution of particles with a gap of 0.5mm,

allowing the use of 2 particles in the faces, 16 particles in the core, while the overall span

of the beam uses 400 particles.

The displacement control procedure is adopted and the prescribed displacement W =

65mm was applied on the points A and B simultaneously. The displacement is applied

gradually starting from 0 until reaching its maximal value of 65mm during T1 = 3ms as

described in Figure 2.9, then the displacement is maintained constant during 4ms until

the end of computation.

For comparison purpose, a FE model is built using ABAQUS c© implicit software, and two

different meshes are analyzed. The first FE model (A1) uses the same discretization as the

SPH model, i.e. a mesh of 2− 16− 2 CPS4R four-node elements is used to discretize the

beam thickness. In the second FE model (A2) a refinement is used for the faces with 4

elements instead of 2 previously.

In the present application, several analyses have been conducted to study the influence of

the viscosity parameters, and it has been found that setting the constants αΠ to 2.5 and

βΠ to 0.6 is a good compromise between stability and calculation efficiency.

The load-displacement response of the beam under the load obtained using the present
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Figure 2.30: Deformed configuration of the sandwich beam

SPH model together with the solutions obtained using ABAQUS c© implicit software are

given in Figure 2.29. We can observe the linear behavior of the solution at the beginning

of loading up to 20mm of deflection, where all three solutions are the same.

As we can see from Figure 2.30, after 20mm of deflection, a local buckling (wrinkling)

appears at the vicinity of the load, this phenomenon continue amplifying while the load

increases, involving the emergence of ears in the beam area located between the two forces.

These wrinkles are accompanied locally with big alternating values of the stresses along

the length direction (σzz, σxz) which will cause the peeling of the faces from the core and

therefore initiating the delamination.

From Figure 2.29, we can see that the beam behaves nonlinearly at 20mm of deflection,

which corresponds to the wrinkling initiation. From 20mm until 60mm the nonlinear

response of the structure given by models A1 and A2 is correctly predicted by the present

SPH model with a small overestimation of the load. We can also observe that the solution

obtained using the proposed SPH model with only 2 particles in the faces is closer to the

FE solution obtained using the fine mesh A2.

A quantitatively comparison between the in-plane stress distributions obtained using the

SPH model and the FE method is given in Figure 2.31. As one can see, the predicted
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Figure 2.31: Stress distribution on the top face of the sandwich beam

longitudinal stress σxx variation is very close to the one obtained using the FE model.

In this application, we can observe also that the transverse stress σzz is not neglectable

compared to the longitudinal stress. We can remark that maximal values of the predicted

transverse stress using the present SPH model are higher than the one obtained using the

FE model. This can be explained by the fact that the FE model uses a reduced integration

element with only one quadrature point at the centroid. This type of integration scheme is

well-known to be not suitable for the stress estimation. An observation of the shear stress

distribution (Figure 2.31), shows that the SPH solution is in a good agreement with the

FE prediction obtained using ABAQUS c© software. This demonstrates the robustness of

the SPH model for the transverse stress prediction and therefore may constitute a good

tool for the delamination prediction.
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2.9 Conclusion

In this Chapter an efficient continuum SPH method for the analysis of 2D solids is pre-

sented. In the present model we adopted the constitutive material relations to link naturally

the stresses and strains, which is original and differs from the classical SPH approaches

commonly based using the state equation to determine the hydrostatic pressure. The

boundary deficiency of the classical SPH method was eliminated by the use of the Correc-

tive Smoothed Particle Method. Therefore, it is now easy to impose directly the prescribed

displacements values on the boundaries, without the need of the so-called "virtual" or

"ghost" particles as often used in the classical SPH method. The Total Lagrangian approach

was investigated to alleviate the so-called tensile instability problem, allowing at the same

tim avoiding the updating procedure of the neighboring particles search and therefore

reducing CPU usage. The resulting 2D continuum SPH model is fast and efficient tool for

the geometrically linear and nonlinear analysis of thin or thick structures.

Several numerical applications involving solids and structures undergoing large transforma-

tions (displacements and rotations) have been successfully carried out using the proposed

2D continuum SPH model. The explicit dynamic scheme was used for time integration

allowing a fast resolution algorithm even for highly nonlinear problems. The obtained

results were compared to the reference solutions taken from the literature as well as

with some numerical reference solutions of the FE using ABAQUS c© commercial software.

Through the numerical applications, the present 2D continuum SPH model appears to be

fast and precise and therefore very suitable for the study of thin two-dimensional structures

undergoing large transformations. The authors believe that the present 2D continuum

SPH model can provide an alternative way for the analysis of the geometrically nonlinear

structures.



Chapter 3

SPH formulation for isotropic shell

structures

This chapter will present the generalization procedure of the 2D SPH for the modeling

of shell structures. The Mindlin-Reissner shell theory suitable for thin/thick structures

is chosen for describing the shell kinematics. Only the mid-surface of the structure is

discretized using only one layer of particles to represent the behavior of the whole shell

structure. The strong-form of the governing equilibrium equations of shell structures are

discretized thanks to the Total Lagrangian SPH formulation and solved using the Explicit

Dynamics time integration scheme. The treatment of large rotations of very thin shells

is carried out using the vectorial parameterization of Rodrigues and also by using the

quaternion representation. Finally, several numerical applications are settled using the

proposed Shell-based SPH method to prove its capabilities.

3.1 Overview of shell modeling using meshless methods

In structural modeling, it is well known that one of the most efficient models is the "shell

theory". A shell structure is a three dimensional continuum which is bounded by two

curved surfaces, where the distance between the surfaces is small in comparison with

other remaining dimensions. A plate may be regarded as a special limiting case of a shell

structure that has no curvatures. Due to their efficient load-carrying capabilities, shell-

like structures are undoubtedly the most widely used structural components in modern

engineering regions like roofs, cars, tanks, space vehicles, ship hulls, aircraft fuselages, etc.

As mentioned in [92], modeling these structures with continuum elements would require a

minimum of about five elements through the thickness and leads to extremely expensive

computations. Furthermore, modeling thin-walled structures with continuum elements

often causes elements with high aspect ratios, which would degrade the conditioning of the

47
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equations and the accuracy of the solution. Vignjevic et al. [57] performed 3D simulations

of hypervelocity impact on fuel tanks using the SPH method and revealed that a minimum

of three particles is necessary to be used through the thickness to ensure a good quality

of results. Li et al. [6] presented a 3D reproducing kernel particle method (RKPM) for

large deformation analysis of thin shell structures and 2 or at most 3 particles were placed

through the thickness direction to capture the gradient field in thickness.

Therefore, it becomes clear that there is a need for the development of a simple and efficient

shell-based SPH method, by discretizing the mid-surface of the shell structure with only

one particle through the thickness. To achieve this goal, two types of shell theories are

widely used for the modeling of shell structures. One of them, called Kirchhoff-Love shell

theory, which does not admit any transverse shear. The approximation functions requires to

ensure C1 continuity. The other one, called Mindlin-Reissner shell theory, which takes into

account of the transverse shear and requires only C0 continuous approximation functions

which is generally easy to satisfy.

Experimental results [92] show that the behavior of thin shells (t/L ≤ 1/20) can be

predicted accurately using the Kirchhoff-Love assumptions. But for thicker shells, the

Mindlin-Reissner assumptions are more accurate because transverse shear effects become

important. Thick shell theory can also be used for thin shells because in this case the

transverse shears would approximately vanish.

Since the last twenty years, many meshless methods have been developed for applications

involving shell structures by incorporating the above shell theories. The early work can be

found in [7]. The EFG method has been applied into thin plates [16] and shells [58] based on

Kirchhoff theory and background quadrilateral elements were necessary for the Gaussian

numerical integration. The adopted Moving Least-Squares(MLS) approximations generally

do not have the Kronecker-delta property which lead to an awkward essential boundary

conditions, so that an additional Lagrange multiplier technique was introduced. Noguchi et

al. [93] extended the original EFG method for the simulation of Mindlin shells and spatial

structures. The Meshless Local Petrov-Galerkin (MLPG) method had been used for solving

the bending problem of a thin plate based on the Kirchhoff plate theory [94] and numerical

analysis of Mindlin shell [60].

First extension of SPH method for shell analysis was utilized for dynamic response analysis

of shell structures under impact [95]. As mentioned in [96], MLS shape functions are

not interpolation functions, but approximation functions. They do not verify Kronecker’s
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property which makes it difficult to apply the essential boundary conditions. Moreover the

shape function maybe negative which may bring unphysical effect.

The Corrective Smoothed Particle Method (CSPM) [33,71] satisfy the zero and first order

consistency conditions completely, which is essential for the Dirichlet and/or von Neumann

types of boundary conditions. To our knowledge, this method has been not applied for shell

analysis with Mindlin-Reissner theory.

3.2 Kinematics of shell structures using SPH discretization

The Reissner-Mindlin theory is adopted to establish an adaptive SPH formulation for

shell structures. According to this theory, the shell structure behavior can be represented

by using only one layer of particles at the mid-surface (see Figure 3.1). Each particle

is endowed with five degrees of freedom : three translations uL = {u, v, w}T and two

rotations θL = {θ, ϕ}T expressed in the local framework tangent to the shell mid-surface.

Passing through a particle, the straight transverse fiber normal to the mid-surface remains

straight but not necessarily perpendicular to the mid-surface after deformation. This fiber

is called as pseudo-normal vector generally indicated as n, especially noted as n0 in the

initial configuration.

Figure 3.1: Discretization of a shell mid-surface using SPH particles

As for the shell structure of a uniform thickness of t shown in 3.1, considering any material

point q located at a distance ζ from the shell mid-surface, the position vector x = xq can
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be expressed as,

x(ξ, η, ζ) = xp(ξ, η) + ζn(ξ, η) (3.1)

where xp is the position vector of point p which is the perpendicular foot of the fiber

on the mid-surface, ξ = (ξ, η, ζ) is the position vector described in the initial curvilinear

coordinates. The displacement vector u = uq of point q can be calculated by

u(ξ, η, ζ) = up(ξ, η) + ζ∆n(ξ, η) (3.2)

where ∆n = n− n0.

Using the Equation (3.1), the particle spacing vector dx can be expressed in terms of dξ ,

dx = Fdξ (3.3)

where F is the deformation gradient tensor relative to initial and current position of the

material point q . It is given by

F = {a1ζ ,a2ζ ,a3ζ} (3.4)

in which a1ζ and a2ζ are the covariant basis vectors (see Figure 3.2) calculated from
a1ζ = xp,ξ + ζn,ξ

a2ζ = xp,η + ζn,η

a3ζ = n

(3.5)

Figure 3.2: Position vectors and covariant basis in the deformed configuration

A local current curvilinear system for the point at the mid-surface (ζ = 0) can be described

by an orthogonal matrixQ = [t1; t2;n3]. The unit vector normal n3 to the current covariant
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basis a1 = a1ζ(ζ = 0) and a2 = a2ζ(ζ = 0) can be computed by

n3 =
a1 × a2

|a1 × a2|
(3.6)

Therefore, the transformation orthogonal matrix from the global Cartesian framework to

the local current coordinates is calculated following the book of Batoz and Dhatt [97]

Q =


β +

1

1 + β
n2

3y − 1

1 + β
n3xn3y n3x

− 1

1 + β
n3xn3y β +

1

1 + β
n2

3x n3y

−n3x −n3y n3z

 (3.7)

where β = n3 ·k and k is the unit vector along the global z-axis. Particularly in the initial

configuration, the transformation matrix is marked as Q0. Especially when 1 + β = 0, in

other word n3 = −k,

Q =


1 0 0

0 −1 0

0 0 −1

 (3.8)

Then the Green-Lagrangian (GL) strain tensor E expressed in the initial curvilinear coor-

dinate framework

E =
1

2
(L + LT + LTL) (3.9)

where L is the displacement gradient tensor herein can be obtained by

L =
∂u

∂ξ
=


up,ξ + ζ∆nx,ξ up,η + ζ∆nx,η ∆nx

vp,ξ + ζ∆ny,ξ vp,η + ζ∆ny,η ∆ny

wp,ξ + ζ∆nz,ξ wp,η + ζ∆nz,η ∆nz

 (3.10)

In order to calculate the Euler strain tensor ε directly in the current curvilinear coordinate

system, one has to define the following tensor

G = F−1 Q0 (3.11)

hence we obtain

ε = QGT E GQT (3.12)

For the study of shell structures, it is often convenient to separate the GL strain components

into three physical contributions : constant membrane strains Em, linear bending strains

ζEb and constant shear strains Es. In the present investigation, thickness stretching is



52 CHAPTER 3. SPH FORMULATION FOR ISOTROPIC SHELL STRUCTURES

not considered, therefore the remaining non-zero strains are the in-plane and the shearing

strain components.

The constant membrane strain components can be expressed in function of the displace-

ments by

Em =


Em11

Em22

2Em12


=


up,ξ +

(
u2
p,ξ + v2

p,ξ + w2
p,ξ

)
/2

vp,η +
(
u2
p,η + v2

p,η + w2
p,η

)
/2

up,η + vp,ξ + up,ξ up,η + vp,ξ vp,η + wp,ξ wp,η


(3.13)

The GL curvature components of Eb are

Eb =


Eb11

Eb22

2Eb12


=


∆nx,ξ + up,ξ ∆nx,ξ + vp,ξ ∆ny,ξ + wp,ξ ∆nz,ξ

∆ny,η + up,η ∆nx,η + vp,η ∆ny,η + wp,η ∆nz,η

∆nx,η + ∆ny,ξ + up,ξ ∆nx,η + up,η ∆nx,ξ + vp,ξ ∆ny,η + vp,η ∆ny,ξ + wp,ξ ∆nz,η + wp,η ∆nz,ξ


(3.14)

According to the Reissner-Mindlin shell theory, the transverse shear strain components are

constant through the thickness, they are given by

Es =

 2Es13

2Es23


=

 ∆nx + wp,ξ + up,ξ ∆nx + vp,ξ ∆ny + wp,ξ ∆nz

∆ny + wp,η + up,η ∆nx + vp,η ∆ny + wp,η ∆nz


(3.15)

Consequently, the Euler strain ε can also be separated into three parts : membrane strain

εm, bending strain ζ εb and transverse shearing one γ. Thanks to the engineering notation,

the strain is stated as

ε = εm + ζ εb + γ (3.16)
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3.3 Constitutive relations and dynamic equilibrium equations

Based on the plane stress assumption built up in the current curvilinear basis, the mem-

brane stress σm, the bending stress σb and the transverse shear stress σs can be calculated

using the elastic constitutive relationship

σm = Hεm

σb = ζHεb

σs = kGγ

, H =
E

1− ν2


1 ν 0

ν 1 0

0 0 (1− ν)/2

 (3.17)

where G = E/2(1 + ν) is the tangent shear modulus. A constant k has been added here

to account for the fact that the shear stresses are not constant across the section. A value

of k = 5/6 is exact for a rectangular, homogeneous section and corresponds to a parabolic

shear stress distribution [97,98]. Integrating these stress components through the thickness,

one can get the resultant membrane force N , bending moment M and shear force T .

N =

∫ t/2

−t/2
σmdζ = tHεm

M =

∫ t/2

−t/2
σbdζ =

t3

12
Hεb

T =

∫ t/2

−t/2
σsdζ = tkGγ

(3.18)

The classical equilibrium equations for the shell-like structure, subjected to an external

load bL = {bξ, bη, bζ}T , can be expressed in a strong form using the previous generalized

forces N , M and T 

ρm ü = Nξξ,ξ +Nξη,η + bξ

ρm v̈ = Nξη,ξ +Nηη,η + bη

ρm ẅ = Tξζ,ξ + Tηζ,η + bζ

ρb θ̈ = −Mξη,ξ −Mηη,η + Tηζ

ρb ϕ̈ = Mξξ,ξ +Mξη,η − Tξζ

(3.19)

in which

ρm =

∫ t/2

−t/2
ρdζ = tρ and ρb =

∫ t/2

−t/2
tρdζ =

t3

12
ρ (3.20)

The balance equations can be described in a simple matrix form ρmüL = divLNL + bL

ρbθ̈L = divLML + TL
(3.21)
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where

NL =


Nξξ Nξη Tξζ

Nξη Nηη Tηζ

Tξζ Tηζ 0

 , ML =


−Mξη −Mηη 0

Mxx Mξη 0

0 0 0

 and TL =


Tηζ

−Tξζ
0

 .

(3.22)

3.4 SPH implementation for shell structures

As mentioned in Chapter 2, in the Total Lagrangian SPH method, the search procedure

for the neighboring particles and the determination of the kernel function W0(ξ, η) are

performed in the initial coordinate system. Then the derivatives of the kernel function

with respect to the local basis ∂W0/∂ξ = (∂W0/∂ξ, ∂W0/∂η, ∂W0/∂ζ ≡ 0) are calculated.

Directly substituting the (3.4), (3.5), (3.13)-(3.15) into the Total Lagrangian SPH formula-

tions, we can obtain the deformation gradient tensor F, GL strain tensor E. Therefore, the

Eulerian strain tensor ε and the generalized force vectors N , M and T can be evaluated

using the (3.18).

To construct the discretized linear and angular momentum conservation equations by the

Total Lagrangian SPH formulations, the Equation (3.21) needs to be firstly rewritten in

the global coordinate system,  ρm0Ü = DIVN0 + b0

ρb0Θ̈ = DIVM0 + T0

(3.23)

where
N0 = JQTNLQGT

M0 = JQTMLQGT

T0 = JQTTL

b0 = JQTbL

(3.24)

and

ρm0 =

∫ t/2

−t/2
ρ0dζ = tρ0 , ρb0 =

∫ t/2

−t/2
tρ0dζ =

t3

12
ρ0 (3.25)

Therefore the discretized form for particle i is

Üi =

Nj∑
j=1

(
N0i

ρ2
m0i

+
N0j

ρ2
m0j

)
∇0W0ij ρm0jA0j +

b0i

ρm0i
(3.26)

Θ̈i =

Nj∑
j=1

(
M0i

ρ2
b0i

+
M0j

ρ2
b0j

)
∇0W0ij ρb0jA0j +

T0i

ρb0i
(3.27)
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Noting that the original artificial viscosity is composed for the continuum mechanics, it

has to be reconstituted for the shell modeling. The new viscosity is established for each

particle link i − j and can be separated into two parts : membrane and shearing viscous

forces [83]. The in-plane part is given by

Svij =
−αΠcij φij + βΠ φ2

ij

ρmij


1 0 0

0 1 0

0 0 0

 φij < 0 (3.28)

and the transversal part is

Tvij =
−γΠcij ψij

ρmij


0 0 1

0 0 1

1 1 0

 ψij < 0 (3.29)

where
φij =

hij [(vxi − vxj)(xi − xj) + (vyi − vyj)(yi − yj)]
|xij |2 + 0.01h2

ij

ψij =
hij(vzi − vzj)(zi − zj)
|xij |2 + 0.01h2

ij

(3.30)

and γΠ is selected to be 0.1.

Then the viscous force acting from particle j on the particle i can be expressed with the

respect to the global basis,

Nvij = JiQT
i (Svij + Tvij)QiGT

i (3.31)

Finally, the the linea rdynamic equilibrium equation Equation (3.26) including the artificial

viscosity takes the following form

Üi =

Nj∑
j=1

(
N0i

ρ2
m0i

+
N0j

ρ2
m0j

− Nvij

)
∇0W0ij ρm0jA0j +

b0i

ρm0i
(3.32)

3.5 Treatment of large rotations of shells using the SPHmethod

One of the central issue in the development of nonlinear shell-based SPH algorithm is

the treatment of 3D finite rotations. Normally, finite rotations are represented through an

orthogonal tensor R which is an element of the SO(3) rotation group. It can be described

by a rotation vector Θ thanks to the Rodrigues formula [97,99],

R(Θ) = exp[Θ̂] = cos ΘI3 +
sin Θ

Θ
Θ̂ +

1− cos Θ

Θ2
Θ⊗Θ (3.33)
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where Θ is the norm of the rotation vector; I3 is the identity matrix in three-dimension; Θ̂ is

the skew-symmetric matrix associated with the rotation vector Θ defined by Θ̂ = Θ× I3.

This parameterization does not lead to a global acceptable solution, suffering from ill-

conditioning problem when Θ is in the neighborhood of 2π [100].

Another popular rotation representation namely quaternion parameters {q0, q} [87, 100]

are defined

q0 = cos
Θ

2
, q =

Θ

Θ
sin

Θ

2
(3.34)

The rotation tensor R (3.33) is expressed in terms of {q0, q} as

R = (2q2
0 − 1)I3 + 2q0q × I3 + 2q ⊗ q (3.35)

The update procedure of the quaternions and the rotation matrix is established on the

base of the rotation increment vector ∆Θ which is obtained by integrating the angular

accelerations (3.27) on time. The quaternion parametrization associated with the increment

of rotations is computed

{q∆
0 , q

∆} = {cos
∆Θ

2
,

∆Θ

∆Θ
sin

∆Θ

2
} (3.36)

If the quaternions {qn−1
0 , qn−1} at the last time step n−1 has been known, the quaternions

{qn0 , qn} at the current time step n can be updated from

{qn0 , qn} = {qn−1
0 q∆

0 − qn−1q∆, qn−1
0 q∆ + q∆

0 q
n−1 + q∆ × qn−1} (3.37)

Therefore, the rotation matrix Rn at the next step can be renewed using the Equation

(3.35). The pseudo-normal vector n is updated using the novel rotation matrix

nn = Rnn0 (3.38)

In order to limit the irregular behavior of the pseudo-normal vectors of particles located

on the shell edges, each normal needs to be regularized by a special filter [75].

n′i = ni + αn

(∑Nj
j=1njW0ijA0j∑Nj
j=1W0ijA0j

− ni
)

(3.39)

where n′ is the regularized pseudo-normal vector and αn is a filter, where it has been shown

that 0.01 is a suitable value.

As a summary, Figure 3.3 shows the flow chart of calculation procedure using the proposed

shell-based SPH model.
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Figure 3.3: Flow chart of the present shell-based SPH method

3.6 Numerical applications

In this section, several numerical applications will be investigated using the present shell-

based SPH formulation together with the explicit dynamics time integration scheme. The

capabilities and efficiency will be shown by comparing the obtained results with the

reference values taken from the literature and the solution of well-knowsn FE softwares

LS-DYNA c© using its SPH module and ABAQUS c© finite element code.

3.6.1 Large deflection of cantilever beam under transverse loads

This application deals with the geometrically nonlinear analysis of a clamped beam made

of steel as shown in Figure 3.4. The geometric and the material properties are as follows :

beam length L = 100mm, width/thickness b = t = 10mm, Young’s modulus E = 210GPa,

Poisson’s ratio ν = 0.3, density ρ = 7800kg/m3. The beam left side is clamped while a set

of transversal load increments are applied on the right free end starting from 0 to 175kN

(to satisfy the loading factor PL2/EI ranging from 0 to 10).

The beam mid-surface is discretized using only one layer of 50 × 5 particles in the shell-

based SPH method, where intermediate deformed configurations are shown in Figure 3.4.

The final deflection obtained using the present SPH method is of 80.09mm, which is very

close to the analytical solution of Timoshenko [82] with an error of only 1.25%.
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Figure 3.4: Initial and deformed configurations of the clamped beam

Table 3.1: Comparison of the SPH results with Timoshenko reference solution [82]

P (kN) PL2/EI Analytical(mm) SPH model(mm) Error (%)

0 0 0 0 —

4.375 0.25 8.3 8.1 -2.41

8.75 0.5 16.2 15.94 -1.6

13.125 0.75 23.5 23.33 -0.72

17.5 1 30.2 30.1 -0.33

35 2 49.4 50.22 1.66

52.5 3 60.3 61.37 1.77

70 4 67.0 67.59 0.88

87.5 5 71.4 71.41 0.01

105 6 74.4 74.03 -0.5

122.5 7 76.7 76.01 -0.9

140 8 78.5 77.6 -1.15

157.5 9 79.9 78.94 -1.2

175 10 81.1 80.09 -1.25
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The results of plate end deflection obtained using the present Shell-based SPH formulation

are listed in Table 3.1 and compared to the analytical solution of Timoshenko [82].

As we can remark that the maximal error of the present SPH solution is less than 2.5%,

even if with a coarse discretization of only one layer of 50×5 particles. The load-deflection

curve is also depicted in Figure 3.5, which shows the nonlinear character of the beam

undergoing very large displacement 80% of its length. We can observe that the obtained

loading path is in very good agreement with the analytical solution of Timoshenko.

Figure 3.5: Comparison of load-displacement curve (Present SPH model vs. Analytical solution)

In order to evaluate the efficiency and the accuracy of the proposed shell-based SPH

method, the same structure has been modeled using the classical continuum SPH available

in LS-DYNA c© code [85]. The analysis is conducted using the Explicit Dynamics scheme

for the numerical resolution in both methods (LS-DYNA c© and the present shell-based

SPH), and the total time is fixed to 5ms while the load is increased linearly until reaching

its maximum value of 175kN . Different SPH continuum models exist in LS-DYNA c© and

the one which has been used is based on the TLF (Form 7).

In order to achieve the quasi-static solution, a mass damping has been included as C = 4M.

Three discretizations of the beam in three dimensions are used in LS-DYNA c© correspond-

ing to : 50× 5× 5, 80× 8× 8, 100× 10× 10. A summary of the computation time for all

models using a personal computer with a CPU of 2.5Ghz and a RAM of 6Gb is listed in

Table 3.2.

From Table 3.2, we can observe that the proposed shell-based SPH method is more efficient

in computing time when compared to the classical continuum SPH model. The evolution



60 CHAPTER 3. SPH FORMULATION FOR ISOTROPIC SHELL STRUCTURES

Table 3.2: Comparison of CPU time for analysis of the beam (Present SPH vs. Continuum SPH)

Model
Present SPH model LS-DYNA c©

50× 5 50× 5× 5 80× 8× 8 100× 10× 10

CPU time (s) 21 55 425 1131

of the deflection at the right end central point are depicted in Figure 3.6, where we can

remark that convergence of the classical continuum SPH is very slow compared to the

proposed SPH method.

Figure 3.6: Evolution of the deflection over time at the right end section

As we can observe, the maximal deflections obtained using the classical 3D SPH models

of LS-DYNA c© correspond to : 52.96mm, 67.15mm and 68.12mm respectively, which are

far from the analytical reference value given by Timoshenko 81.1mm, with the errors of

34.7%, 17.2% and 16%. The present comparison shows that the proposed SPH method

is more accurate than the classical 3D SPH method. Figure 3.7 shows comparison of the

final deformed shape of the structure obtained by the classical continuum SPH models

of LS-DYNA c© and the one-layer particles at the mid-surface using the shell-based SPH

method.

3.6.2 Roll-up of a clamped plate

This benchmark represents a clamped plate under a bending moment applied at its free

end. The analytical solution is given by the classical Euler formula [101] κ = M/EI,

where κ is curvature and M is the bending moment. The plate geometrical and material
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Figure 3.7: Comparison of deformed configurations of the beam at maximum load(present SPH

vs. LS-DYNA c©)

properties are as follows : length L = 10cm, width/thickness b = t = 1cm, Young’s

modulus E = 1200N/cm2, Poisson’s ratio ν = 0. For the chosen properties, the values of the

bending moment which transforms the plate into a full-circle shape isM = 2πEI/L = 20π

.

The plate has been discretized using only one layer of 50 × 5 particles in the Shell-based

SPH method, where intermediate deformed configurations are shown in Figure 3.8. For

comparison purpose, the same plate has been modeled using ABAQUS c© code with a FE

mesh of 50× 5 S4R shell elements.

Figure 3.8: Initial and intermediate configurations.using the present SPH method

The results of beam free end verticalW and horizontal U displacements obtained using the

present shell-based SPH formulation are depicted in Figure 3.9 and compared to the FE
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Figure 3.9: Comparison of load-displacement curve (Present SPH vs. FEM)

solution of ABAQUS c©. As we can observe, the loading path obtained using the present SPH

method shows the very nonlinear behavior of the solution due to the very large rotation

up to 2π. The predicted solution using the developed Shell-based SPH formulation is very

close to the FE loading path predicted using ABAQUS c© code, even if we use a coarse

discretization of one layer of 50 × 5 particles. This demonstrates the capability and the

efficiency of the present method compared to the FEM and we can clearly say that the

proposed Shell-based SPH method can represent a promising alternative to the classical

FEM.

3.6.3 Large deformation of a square plate under uniform load

This application concerns a square plate subjected to a uniform transverse pressure with

various boundary conditions. The geometry of the structure is shown in Figure 3.10(a) with

the following material properties : Young’s modulus E = 53779.1MPa, Poisson’s ratio

ν = 0.3 and material density of 1600kg/m3. The plate supports a uniformly distributed

load of intensity q0 as shown in Figure 3.10(a).

Two types of boundary conditions denoted by SS1 and SS3 are considered :

• SS1 : u = w = θy = 0 for edges parallel to x-axis

v = w = θx = 0 for edges parallel to y-axis

• SS3 : u = v = w = 0 for all edges
Due to symmetry of the problem, only a quarter of the plate was modeled using a uniform

discretization of 21×21 SPH particles. The loading control technique was employed to solve

the nonlinear deflection problem and the total distributed load was applied gradually fol-
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(a) Schematic representation model (b) Numerical model

Figure 3.10: Geometry of the square plate under a uniform load

lowing the formula : q0 = PE(h/a)4,where the loading factor P was increased linearly from

0 to 200 according to the following values {6.25, 12.5, 25, 50, 75, 100, 125, 150, 175, 200}.

The nonlinear analysis was carried out using the explicit dynamics scheme with a total

time of 10 ms.The deflection wC at the central point C of the plate is analyzed as a

non-dimensional form of w = wC/t for both two cases. Figure 3.11 shows the normalized

deflection variation in function of the loading factor P , where we can observe the good

quality of the predicted results using the present shell-based SPH model when compared

to the reference solution [102]. The second case(SS3) presents more restrained edges than in

SS1, consequently the produced deflection is lower. A first analysis of the SS1 configuration

shows that the maximum error of the present model is about 2.24% at the maximal applied

load. While in the second configuration (SS3), the error is increased to 9.27% compared to

the reference solution. This increase of error in the second configuration can be explained

by the presence of more membrane effects because all edges are pinned in 3 directions, and

hence more particles will be needed to capture local variations of curvatures in the plate

especially close to the plate edges.

From Figure 3.11, one can also remark that the plate behavior starts linearly for low

applied loads (P < 12.5 ) where pure bending behavior applies, in this branch of the curve

the predicted solution of the present shell-based SPH model is identical to the reference

solution [102]. As the load increases, the nonlinearities involved became more important,

which implies that the bending-stretching coupling effects turns to be more pronounced.

Therefore, the stiffness of the plate increases and the deflection augments slowly in contrast

with the classical one predicted by the linear theory.
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Figure 3.11: Load-deflection curves of the square plate

3.6.4 Post-buckling of the Euler column

The application herein considers the popular benchmark of Euler column buckling where

an analytical solution is available which will be used to evaluate the performance of the

present shell-based SPH model. The geometrical data of the Euler column are : column

length L = 200mm, column width b = 10mm and column thickness t = 5mm (Figure

3.12(a)). The column is made of an elastic material with a Young’s modulus E = 210GPa,

a Poisson’s ratio ν = 0.3 and a density ρ = 7800kg/m3. The boundary conditions of the

present structure, corresponds to a built-in column where both translational and rotational

degrees are restrained (see Figure 3.12(a)).

Under a large enough compressive axial loading (in the x-direction), this ideal straight

column will buckle when a small transverse perturbation force is applied at the central point

of the column in z-direction (see Figure 3.12(a)). This elastic buckling (Euler buckling)

phenomenon is a famous instability problem in classical elasticity. The critical buckling

load for this problem was firstly derived by Euler [103] PExactcr = 4π2EI/L2 = 21.59kN .

For clarity reasons, in what follows, all numerical values obtained for critical buckling loads

will be normalized using the Euler exact buckling value (P cr = Pcr/P
Exact
cr ), therefore the

normalized exact critical load will be PExactcr = 1.

For symmetry reason, only one-half of the column was modeled, using a uniform 51 × 5

particles distribution (see Figure 3.12(b)). A displacement control technique was applied

during a total simulation time of 30ms to reach a maximum axial displacement of ux =
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(a) Schematic representation model (b) Numerical model

Figure 3.12: Built-in Euler column buckling

−150mm on the loaded edge of the column. A small perturbation load of Pz = 5N is applied

initially at the central pointof the column in the transversal z-direction; this perturbation

force is decreased gradually in time until it vanished at the end of calculation. The numerical

resolution of the nonlinear resulting problem is done using the explicit dynamics scheme

without considering the self-contact effect. The same half-column was also analyzed by the

FEM, where a uniform shell mesh of 50 × 5 S4R elements were used in ABAQUS c© and

the Static Implicit scheme is employed for the nonlinear resolution. The FEM solution was

considered as a reference for the evaluation of the post-buckling response of the proposed

shell-based SPH model. Because the shell FE models are sensitive to the mesh density and

in order to perform an objective comparison, the Bernoulli exact nonlinear beam theory

was also derived and used for the present application in order to assess the performance of

the proposed shell-based SPH model. The numerical results regarding the variation of the

normalized axial compression load in function of the transversal deflection of the central

point of the column are reported in Figure 8.

The normalized critical buckling load predicted using the present shell-based SPH model

is PExactcr = 0.901, while the corresponding normalized buckling load obtained by the S4R

shell element of ABAQUS c© is PFEMcr = 1.072. The exact beam theory gave a normalized

critical buckling value PBeamcr = 0.945. From Figure 3.13, we can observe that the nonlinear

post-buckling response of the column has been predicted accurately by the present shell-

based SPH model, where the overall SPH solution is closer to the exact beam theory than

the shell FEM solution. A summary of the predicted normalized critical values with their
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Figure 3.13: Evolution of the normalized axial load in function of the mid column transversal

displacement

corresponding errors with respect to the analytical solution are given in Table 3.3.

Table 3.3: Summary of the principal results of the built-in Euler column

Exact Beam theory Shell FEM Shell SPH

Normalized Critical load 1.000 0.945 1.072 0.901

Error (%) — -5.51 7.23 -9.91

As we can observe from Table 1, the present shell-based SPH model underestimates the

critical buckling load with a small error of 9.91%. As expected the exact beam theory

predicts the solution with good accuracy with 5.51% error. The amount of error of the

shell-based SPH model is reasonable since it presents an error of the same range as the one

of FEM solution (7.23%). The amount of error depends on the density of particles used.

Several numerical tests using different finer discretizations showed that this error decreases

when particle density increase.

A generalized analysis of the post-buckling response of the Euler built-in column is given in

Figure 3.14, where three deformed configurations are shown at three different times (Axial

displacement ux are −30, −90, −150mm respectively). As we can see from Figure 3.14

the kinematics of deformed column is captured accurately by the present shell-based SPH

model. We can observe also the highly nonlinear character of the post-buckling solution

which has been predicted appropriately even with the presence of very large rotations (see

Figure 3.14).
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Figure 3.14: Three different deformed configurations of the Euler column using the present SPH

model

The good quality of results obtained through this application, proves that the present

shell-based SPH model can be used as a real alternative to the FEM for the nonlinear

post-buckling analysis of shell structure.

3.6.5 Nonlinear analysis of a clamped circular arch

The example of a deep circular arch shell structure is shown in the Figure 3.15 of which

two ends are fully clamped and the load F is applied on the middle point of the arch. It

has geometry (see Figure 3.15) with the following parameters R = 100mm, b = 20mm,

t = 5mm and φ = 215◦. The material of the arch is assumed to be steel with Young’s

modulus E = 210GPa, Poisson’s rate ν = 0.3 and density ρ = 7800kg/m3. An example of

the clamped-clamped deep arch in 2D was investigated by Wriggers and Simo [90] using

beam elements.

For the present application, the full arch is modeled using a uniform discretization of 95×5

SPH particles. The nonlinear analysis was conducted using the Explicit Dynamics scheme

with a total simulation time corresponding to 10ms. As in the previous application, the

displacement control technique was applied at the centroid line of the arch where a maximal

displacement ofW = 250mm was targeted. The displacement under the loading points was

increased quadratically during the first 5ms, and then its maximal was maintained constant

until the end of simulation in order to reach the quasi-static solution.

In order to assess the validation of the present SPH model, the same structure was modeled
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Figure 3.15: Geometry of the deep arch

using ABAQUS c© Standard code to achieve a reference solution. A mesh of 94 × 5 S4R

shell elements were used to model the arch.

Figure 3.16 presents the evolution of the load in function of the transversal displacementW

at the centroid of the deep arch, where a load parameter λ = PR2/EI is used. The present

shell-based SPH modelpredictedthe first limit point with a load parameter of λSPHcr = 9.243

, while the reference solution of Wriggers and Simo [90] indicated λReferencecr = 9.729 and

the one obtained using ABAQUS c© was λABAQUScr = 10.160. The displacement at the

central line of the archobtained using the present SPH model was WSPH
cr = 73mm, while

the reference solution of Wriggers and Simo [90] gave WReference
cr = 72.13mm, and the one

using ABAQUS c© was WABAQUS
cr = 72.5mm.

The principal obtained results with their corresponding errors with respect to reference

solutions are summarized in Table 3.4.

Table 3.4: Summary of the principal results of the arch

Wriggers and Simo ABAQUS Present Shell SPH

Critical load parameter λ 9.729 10.160 9.243

Error (%) — 4.43 -5.00

As we can observe from Table 3.4, the critical buckling load is estimated with 5% which is

of the same amount of error as the FEM using ABAQUS 4.43%. Again, this result proves
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Figure 3.16: Comparison of the load-displacement at the centroid of the arch

that the present shell-based SPH method has a great potential compared to the FEM when

dealing the post-buckling analysis of shell structures.

Figure 3.17: Different deformed configurations of the arch : (a) Limit point SPH (b) Limit point

ABAQUS (c) Maximal displacement SPH (d) Maximal displacement ABAQUS

Figure 3.17 shows the deformed configurations of the deep arch obtained using the present
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SPH model and the one of ABAQUS, at two different times : first limit point time and

maximal displacement time. As one can observe, the deformed configurations captured at

the same time are of very close shape. Figure 15-c shows a very large deformation of the arch

performed by the shell-based SPH model, which indicates its capability of handling large

transformations of shell-like structures using only one layer of particles in the mid-surface

contrarily to the commonly used continuum based SPH model found in the literature or

available in commercial softwares.

3.6.6 Nonlinear Analysis of a Plate Buckling

Herein we deal with a rectangular plate buckling using a geometrically nonlinear analysis.

This interest of this example is the existence of an analytical solution which will allow

evaluating precisely the efficiency of the Shell-based SPH method. The studied plate is

simply supported on its four edges and submitted to an equal uniform compression load

P on two opposite edges b as shown in Figure 3.18. Due to the problem symmetry, only

a quarter of the plate is modeled and discretized using only one layer of 25× 25 particles

through the plate mid-surface.

Figure 3.18: Geometry and Material characteristics of the plate

The analytic solution of the critical buckling load can be retrieved in [104], it is given

by : Pcr = π2Et2/3a2(1 − ν2) which corresponds numerically to Pcr = 78.96N/mm. The

geometrically nonlinear analysis is carried out using the plate edge displacement control

method. Therefore different horizontal edge displacements are applied until a maximal load

P = 100N/mm is achieved. In order to compare the shell-based SPH solution to the FEM

result, the plate is modeled using ABAQUS c© code with 25 × 25 S4R shell elements. The

central plate load-displacement curve is then extracted and a comparison is made between
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the different solutions as shown in Figure 3.19.

Figure 3.19: Load-Deflection curve at the central plate

As we can observe from Figure 3.19, the Shell-based SPH solution is in a very good

agreement with FEM solution, at the first loading phase up to the buckling load value. After

buckling emergence the obtained nonlinear loading path slightly underestimates (error of

6.25%) the FE solution of ABAQUS c© code. The critical buckling load obtained using the

geometrically nonlinear analysis based on SPH shell formulation is PSPHcr = 75.5N/mm,

with a small error of 4.38% with respect to the analytical solution. This critical buckling

load is very close to the one obtained using ABAQUS c© code. Figure 3.20 shows the final

deformed configuration obtained using our in-house developed code using the Shell-based

SPH method, this final configuration is very close to the one obtained using FEM with

ABAQUS c© code.

Figure 3.20: Comparison of the deformed plate configurationsfor P = 100N/mm (Present SPH vs.

FEM)
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3.6.7 Geometrically Nonlinear Analysis of a cylindrical roof

The second application investigates the post-buckling analysis of a hinged cylindrical roof

subjected to a central pinching load as shown in Figure 3.21. This benchmark has interested

many researchers due to the presence of snapping behavior [105]. Owing to the tangential

global stiffness matrix singularity near the limit point, the classical load controlled method

is not suitable in the present case. The displacement control method [88] is adopted for

this application to achieve a complete equilibrium loading path.

Figure 3.21: Hinged cylindrical roof (geometry and material data)

Due to symmetry, only a quarter of the roof is modeled using only one layer of 21 × 21

particles in the Shell-based SPH method. In our simulation the displacement WC at the

central point C, is controlled starting from 0mm to 30mm, which grows linearly until 100%

in a total time of 3ms .

The load-displacement curve obtained using the Shell-based SPH explicit dynamics method

is given in Figure 3.22 and compared to the reference solution by Klinkel [105]. As we can

observe from Figure 3.22, the shell-based SPH loading path solution is in a very good

agreement with the reference solution with an error globally less than 2.5% during all

loading path and even in the post-buckling phase. The critical displacement value obtained

using shell-based SPH method is WC = 10.5mm, which is only 1.78% error compared to

the reference value of Klinkel [105].

We depicted in Figure 3.23(a), the deformed configuration at the vicinity of the limit point

obtained using the Shell-based SPH method. This deformed configuration is identical to

the one obtained by the FEM using S4R shell elements of ABAQUS c© Explicit code, as
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Figure 3.22: Curve of Load-Displacement at point C

indicated in Figure 3.23(b).

(a) Present SPH Explicit Dynamics (b) ABAQUS c© Explicit Dynamics

Figure 3.23: Deformed configuration at the vicinity of the limit point (WC = 10.5mm )

3.6.8 Snap-through of a shallow spherical shell

This application deals with the snap-through nonlinear analysis of a shallow spherical shell,

presented in Figure 3.24(a). The radius of the spherical segment is 2540mm, thickness=99.45mm

and a = 784.9mm. The segment is made of aluminum with material properties E =

68.95GPa, ν = 0.3 and ρ = 2700kg/m3. The shell structure is hinged at all edges and a

concentrated load P is applied at its centroid C. This example has been investigated by

Leicester et al. [106] and Bucalem and Bathe [107] due to the large displacement nature of

the structure.

For symmetry reason, only a quarter of the structure was modeled using a uniform 21×21

SPH particles (see Figure 3.24(b)). The nonlinear analysis was conducted using the Explicit

Dynamics scheme with a total simulation time corresponding to 25ms. Due to the presence

of a limit point of the structure response, the displacement control technique was applied
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(a) Schematic representation model (b) Numerical model

Figure 3.24: Geometry and material data of the shallow shell

at point C where a maximal displacement ofW = 300mm was targeted. In order to reduce

the loading oscillations, the displacement of point C was increased quadratically during

the first 10ms, and then the maximal value of displacement was maintained constant until

the end of simulation in order to reach the quasi-static solution.

The load displacement response of the structure obtained using the present shell-based

SPH model is depicted in Figure 3.25, where a load parameter λ = PR2/Eat3 is used. As

a first remark, we can observe the nonlinear character of the solution with the presence

of a limit point corresponding to a predicted buckling load parameter of λSPHcr = 6.043,

while the reference solution of Leicester et al. [106] indicated λLeicestercr = 6.216 and the

one given by Bucalem and Bathe [107] λBucalemcr = 5.917.

Figure 3.25: Comparison of the load-displacement at the centroid of the shallow shell

A comparison of the displacement at point C, at the same time when the critical buckling
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started, showed that the shell-based SPH model allowed an estimation WSPH
cr = 152mm,

while the reference solution of Leicester et al. [106] gave WLeicester
cr = 138.5mm, and the

one found by Bucalem and Bathe [107] was WBucalem
cr = 152.6mm.

An analysis of the three curves depicted in Figure 3.25 showed that the present shell-based

SPH model allows a good prediction of the structure response up to the critical buckling

point with an overall error about 2% compared to the mean reference solution. However

for the post-buckling phase the present SPH model overestimated the solution to a certain

extent.

For comparison purpose, a summary of principal obtained results with their corresponding

errors with respect to reference solutions are given in Table 3.5.

Table 3.5: Comparison of CPU time for analysis of the beam (Present SPH vs. Continuum SPH)

Buckling load parameter Displacement

λ SPH error (%) W (mm) SPH error (%)

FEM(Leicester [106]) 6.216 -2.78 138.5 9.75

FEM(Bucalem and Bathe [107]) 5.917 2.13 152.6 -0.39

Mean reference solution 6.067 -0.39 145.55 4.43

As we can observe from Table 3.5, the results obtained using the present shell-based SPH

model are very close to the mean reference solution (The average solution of Leicester et

al. [106] and Bucalem and Bathe [107]). The critical buckling load is estimated with 0.39%

of error while the displacement predicted at the starting of buckling presents an error of

4.43%. These values are very small which indicates that the present SPH model can be

used as a powerful tool for the nonlinear analysis of shell structures.

Figure 3.26 shows the deformed configuration of the spherical shell obtained for the maxi-

mal transversal displacement. Together with the deformed structure, one-half of the initial

structure is plotted to show the magnitude of deflection of the spherical shell under the

load.

3.7 Conclusion

In this Chapter, the classical SPH method used for 3D solids, has been extended using

the Total Lagrangian to build-up a new shell-based SPH formulation for the geometrically
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Figure 3.26: Initial and deformed configuration of the shallow shell for W = 300mm using the

present SPH model

nonlinear analysis of shell-like structures. The shell-based SPH method has been developed

using the Mindlin-Reissner shell theory which is valid for thin and thick shell structure.

This combination allows only one layer of particles located in the shell mid-surface to

reproduce the whole shell behavior. Moreover, the Rodrigues formula associated with

quaternion parameterization was introduced to update the pseudo-normal vector. This

allows the method to be very efficient in dealing with structures undergoing very large

three dimensional rotations.

To validate the reliability and accuracy of the newly developed shell-based SPH method in

solving shell-like structure problems, several numerical applications including geometrically

nonlinear behavior were performed and the results were compared with analytical solutions

and also with numerical reference solutions available from the literature or obtained using

the Finite Element method by means of ABAQUS c© commercial software. While keeping

a good level of accuracy, the present shell-based SPH model presents promising potentials

as a new alternative numerical method.



Chapter 4

Shell-based SPH method for thin

multilayered structures

In this chapter, the constitutive relations of composite laminates will be incorporated into

the above mentioned efficient shell-based SPH method, to build-up a SPH model for multi-

layered composite shell structures. Equivalent single-layer theories for analyzing composite

plates/shells are presented briefly. As a best compromise of solution accuracy, economy

and simplicity, the first-order shear deformation theory is employed and a suitable shear

correction factor is introduced. This will ensure that the strain energy provided by the

constant transverse shear stress is equal to the energy due to 3D stress distribution, which

is in the elastic case quadratically distributed through the layer thickness. The resulting

strong-form governing dynamic equations of composites are discretized using the shell-

based SPH method with respect to the material coordinates. At the end, several numerical

applications are presented to validate the proposed SPH method.

4.1 Overview of laminates modeling using mesfree methods

Composite structural parts are often very thin and made up of complex anisotropic mate-

rials which are usually produced by pultrusion [108]. Nowadays with the establishment of

compulsory environmental protection and safety standards, laminated composite structures

are intensively used in various engineering areas, involving aerospace, automotive, marine,

civil, sport, etc. This is due to their numerous desirable characteristics compared to tradi-

tional isotropic structures, such as high strength and stiffness to weight ratio, strong energy

absorption, long fatigue life, good corrosion resistance and often low production cost.

Generally multilayered thin structures are often designed to support heavy loads or se-

vere loading impacts, they usually present a nonlinear behavior which consist in large

displacements (due to lightweighting) accompanied with small elastic strains. Therefore

77
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the nonlinear analysis of flexure, buckling and post-buckling of thin to thick multilayered

composite structures becomes firmly necessary in order to better control their behavior.

Many theories have been proposed in the literature to handle laminated structures, such

as the Equivalent Single Layer (ESL) theories which are well developed. They are derived

from the 3D elastic continuum theory by making suitable assumptions concerning the

kinematics of deformation or the stress state through the thickness of the laminate and

render a 3D problem reduced to a 2D problem.

Such theories include the Classical Laminated Plate Theory (CLPT), the First-order Shear

Deformation Theory (FSDT), the Higher-order Shear Deformation Theory (HSDT) [102].

The simplest one therein, the CLPT originates from the Kirchhoff plate theory, in which the

normal vectors to the mid-surface remain straight and normal in the deformation process.

Therefore, the transverse shear deformation is ignored and good results can be obtained

only for thin isotropic shell structures.

As it is well known, transverse shear effects are important for multilayered composite

structures, even if they are thin [102]. The FSDT based on Mindlin-Reissner shell theory,

assumes the transverse shear strains to be constant along the thickness. This assumption

violates the zero-shear stress condition on the bounding layers of the laminate, while it is

well-known that the exact shear stress distribution through the thickness is a piece-wise

parabolic function for the case of elastic materials. Therefore it is important to take into

account the shearing effects by introducing the so-called shear correction factor [102, 109,

110] to avoid the dominance of shear strain energy compared to the flexural one in the

case of very thin structures. This makes the FSDT capable of providing accurate physical

response of the laminated composite structures.

In HSDT usually high order polynomial functions in normal direction are used for the

definition of the shell displacement field, with the introduction of additional degrees of

freedom (dof). The later are often difficult to interpret in physical terms and solved using

the equilibrium conditions on the shell layers. The displacement description accommodates

quadratic distribution of transverse shear strains and hence stresses, and vanishing of

transverse shear stresses on the top and bottom plies. However, these methods require

more additional computational efforts and therefore may become not convenient for the

modeling of complex industrial structures. On the other side, the simplicity of the FSDT

has peaked the interest of researchers and has been the subject of extensive investigations

since last few decades to improve constantly its performance. As a result, nowadays the
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FSDT is widely used and implemented in most of FE commercial codes.

Since their introduction, laminate theories have been developed using the FE method,

due to its simplicity and good accuracy. Many efficient FE models have been proposed by

authors for the modeling of composite multilayered structures. Based on CLPT, Sleight

and Knight [111] studied the progressive failure of composite plates subjected to shear and

compressive loading under geometrically nonlinear deformations. Based on FSDT, several

phenomenological failure criteria were used in FE laminate structure models to capture

linear and nonlinear first-ply failure loads of composite laminates subjected to in-plane and

transverse loads [112]. For instance Zhang and Kim [113] proposed a simple displacement-

based 3-node triangular element LDT18 for the study of geometrically nonlinear behavior

of thin and thick laminated composite plates using the FSDT. Based on the HSDT, Moita

et al. [114] proposed a discrete FE model based on an 8-node isoparametric element with

10 degrees of freedom per node, for the buckling analysis of laminated composite plate-shell

structures.

Recently, a considerable work has been done for the modeling of composite multilayered

structures using meshless methods. Liew et al. [115] used a Moving Least Squares Differen-

tial Quadrature method for the bending and buckling analysis of moderately thick plates

based on the FSDT. Xiao et al. [116] studied static infinitesimal deformations of thick

laminated composite elastic plates under different boundary conditions using the Meshless

Local Petrov-Galerkin (MLPG) method combined with Radial Basis Functions (RBF)

and the higher order normal and shear deformable plate theory. The Multiquadric Radial

Basis Functions with a third-order shear deformation theory were developed by Ferreira et

al. [117] to study static deformations of functionally graded square plates of different aspect

ratios. The same authors also addressed the buckling analysis of isotropic and laminated

plates subjected to partial in-plane edge loads using the FSDT based on wavelet collocation

technique. Perhaps Wang et al. [118] were the first to investigate the reproducing kernel

particle meshless method (RKPM) combined with the FSDT. They successfully used the

RKPM for the modeling of flexural and buckling analysis of laminated composite plates.

Nonlinear flexural analysis of laminated composite plates have been studied by Singh et

al. [119] using RBF mesh free method. The same authors [120] investigated the buckling

analysis of laminated composite plates subjected to thermo-mechanical loading, using

Gaussian and multiquadric radial basis functions incorporating two different higher order

shear deformation theories. A detailed review on applications using meshfree methods for
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the analysis of composite structures can be retrieved in [121].

As for Smoothed Particle Hydrodynamics (SPH) method, high-even hyper-velocity impact

and damage problems in different laminates have been investigated using 3D continuum

SPH models [122–124]. However, based to our knowledge, large deflection and buckling

analysis of composite multilayered structures using shell-based SPH technique with an

equivalent single layer theories have not been studied.

In the following sections we will present the derivation of SPH composite shell model

based on FSDT. The kinematics assumptions of multilayered shells are similar to the one

used for the isotropic shells which has been detailed in Chapter 3, and are not repeated

in this chapter. The deformation process is also expressed by the variation of five dofs

{uL,θL} = {u, v, w, θ, ϕ}T of mid-surface particles written in the tangent mid-plan of the

shell. The stress-strain relation of the composite material is more complex than that of

isotropic material, which will be seen in section 2.

4.2 Constitutive relations of a multilayered shell structure

A lamina or ply is a typical sheet (flat or curved) of composite material and many laminae

well bonded together by curing procedure to compose a laminate. The mechanical response

of a laminate depends on the properties of each lamina, as well as the order in which the

laminae are stacked. Therefore constitutive relations of lamina have to be introduced at

first.

A typical unidirectional fiber-reinforced composite lamina is inherently heterogeneous from

the microscopic point of view, but assumed to be homogeneous at the macroscopic level

because of its weighted average of the constituent materials (fiber and matrix). A lamina is

always treated as an orthotropic, linear elastic continuum [102] whose material symmetry

planes are parallel and transverse to the fiber direction. Hence the constitutive relation

is conveniently expressed in the principle material coordinates system {L;T ;Z} in which

axes L and T are taken to be parallel and transverse to the fiber direction in the plane of

the lamina (see Figure 4.1). Axis Z is perpendicular to the plane of the lamina, coinciding

with the global thickness direction of the synthetic laminate.

Most laminae are typically thin and experience a plane state of stress (Figure 4.2). FSDT

employed here neglects the transverse normal stress σZZ and reduce the generalized Hooke’s
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Figure 4.1: Fiber-reinforced lamina orientation axes

law to be

σL = HL εL and τL = HτL γL (4.1)

with σL =


σLL

σTT

τLT

 ; εL =


εLL

εTT

γLT

 ; τL =

 τLZ

τTZ

 ; γL =

 γLZ

γTZ

 .

Figure 4.2: A lamina in a plane state of stress.

HL =


HLL HLT 0

HTL HTT 0

0 0 GLT

 ; HτL =

 GLZ 0

0 GTZ

 are called plane stress-reduced

stiffnesses. The components of the stiffness matrices are related to the engineering constants

as follows:

HLL =
EL

1− νLT νTL
, HLT = HTL =

νTLEL
1− νLT νTL

=
νLTET

1− νLT νTL
, HTT =

ET
1− νLT νTL

.

For unidirectional fiber composite lamina, the plane normal to the fiber direction L can be

considered as the isotropic plane, which signifies transversely isotropy. Therefore, there are

only five independent engineering elastic constants: EL, ET = EZ , νLT , GLT = GLZ and
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GTZ =
ET

2(1 + νTZ
). These constants can be determined experimentally using appropriate

test specimens made up of the material.

The principal material directions {L;T ;Z} of orthotropy often do not coincide with curvi-

linear coordinate directions that are geometrically natural to the solution of the problem.

Further, composite laminates have several layers, each with different fiber orientation.

Thus, it is necessary to establish the stress-strain relations in the local curvilinear direction

{ξ; η; ζ} in which the ζ-axis is parallel to Z-direction. Considering the material fiber orien-

tation angle φ = φ(ξ, L) counterclockwise from the ξ-axis, the in-plane and transverse shear

stress components can be written with relation to the correspondent strain components

which are directly computed from the displacement assumption of FSDT

σ = H ε = TT1 HL T1ε and τ = Hτ γ = TT2 HτL T2 γ (4.2)

in which we have the transformation matrix between {ξ; η; ζ} and {L;T ;Z} coordinate

system

T1 =


C2 S2 CS

S2 C2 −CS

−2CS 2CS C2 − S2

 ; T2 =

 C S

−S C

 ; and C = cosφ; S = sinφ.

Considering constant over the thickness, the membrane strains εm, the curvatures εb and

the shearing strains γ, and integrating their conjugated stresses in each ply, one can get

the membrane forces N , the bending moments M , and the transverse shearing forces T

as follows

N =


Nξξ

Nηη

Nξη

 =

∫ t
2

−t
2

σ dζ = A εm + B εb (4.3)

M =


Mξξ

Mηη

Mξη

 =

∫ t
2

−t
2

ζσ dζ = B εm + D εb (4.4)

T =

 Tξζ

Tηζ

 =

∫ t
2

−t
2

Hτ γ dζ = C γ (4.5)

Finally the generalized constitutive relation for a lamina can be expressed in a more

condensed form
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
N

M

T

 =


A B 0

B D 0

0 0 C



εm

εb

γ

 (4.6)

with

A =

∫ t
2

−t
2

H dζ =
NL∑
k=1

(ζk − ζk−1) Hk (4.7)

B =

∫ t
2

−t
2

ζ H dζ =
NL∑
k=1

1

2

(
ζ2
k − ζ2

k−1

)
Hk (4.8)

D =

∫ t
2

−t
2

ζ2 H dζ =

NL∑
k=1

1

3

(
ζ3
k − ζ3

k−1

)
Hk (4.9)

C =

∫ t
2

−t
2

Hτ dζ =
NL∑
k=1

(ζk − ζk−1) Hτk (4.10)

Figure 4.3: Stacking of NL material layers within the shell thickness

In the constitutive relation of Equation (4.6), NL is noted as the number of layers of

laminae. k signifies the k-th lamina which is bounded in coordinates [ζk−1, ζk] in the

thickness direction, showed in Figure 4.3. Sub-matrix A, expressed in Equation (4.7) and

involved with the in-plane response of the laminate, is denoted as extensional stiffness.

Detailed in Equation (4.9), the sub-matrix D is related to the out-of-plane bending response

of the laminate, hence it is called bending stiffness. The sub-matrix B in the Equation

(4.8) is called bending-extension coupling matrix who relates to the interaction between

the membrane and the bending deformations. The sub-matrix C documented in Equation

(4.10) is the transverse shear stiffness. For isotropic shell structures and symmetric stacking

B is null which means no coupling of extension and bending effects occurs.
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4.2.1 Shear correction factor

As mentioned above, FSDT for mulatilayered composite shells results in a constant trans-

verse shear stress through each lamina and consequently a piece-wise constant transverse

shear stress distribution through the laminate thickness. However, the exact 3D elasticity

solution for laminated shell structures exhibits a piece-wise higher order variation of these

types of stresses through the thickness and vanishing at the two external bounding surfaces

normal to the thickness. This discrepancy between the actual and predicted stress state is

often corrected by a coefficient called shear correction factor [102,109,110].

A recall of Equation (4.2) and rewriting the equation of transverse shear stress explicitly,

gives  τξζ

τηζ

 =

 Hτ11 Hτ12

Hτ12 Hτ22

  γξζ

γηζ

 (4.11)

By introducing two coefficients κ1 and κ2, the new transverse shear stresses in a lamina

take the following form τ
′
ξζ

τ
′
ηζ

 =

 κ2
1Hτ11 κ1κ2Hτ12

κ1κ2Hτ12 κ2
2Hτ22

  γξζ

γηζ

 (4.12)

It is possible to define one correction factor for a given cross section or several ones with

one factor per ply and these two methods are equivalent [109]. In this chapter, the way

that all plies have the same factor is employed. Therefore, the resultant transverse forces

can be reobtained by integrating the correspondent shearing stresses through the thickness

T =

 Tξζ

Tηζ

 =

 κ2
1C11 κ1κ2C12

κ1κ2C12 κ2
2C22

  γξζ

γηζ

 (4.13)

At first, we present the procedure for determining the factor κ1. Considering a laminated

beam based on the FSDT, the resultant stresses Nηη, Nξη,Mηη,Mξη, Tηζ are assumed to

be zero [110]. The in-plane strains can be computed by inverting the stiffness matrix in

the Equation (4.6):  εm

εb

 =

 A
′

B
′

B
′

D
′

  N

M

 (4.14)

The transverse shear strains can be given by solving the Equation (4.13) and γξζ is explicitly

expressed as

γξζ =
C22Tξζ

κ2
1(C11C22 − C2

12)
(4.15)
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Consequently, the transverse shear strain energy per unit length evaluated from the pre-

dicted constant transverse strain Ushell can be computed aas

Ushell =
1

2
Tξζγξζ =

C22T
2
ξζ

2κ2
1(C11C22 − C2

12)
(4.16)

True transverse shear stress τξζ is obtained from the resolution of static equilibrium

equation for the stresses acting in the ξζ-plane in the absence of body forces:

σξξ,ξ + τξζ,ζ = 0 (4.17)

Hence

τξζ = −
∫ ζ

−t
2

σξξ,ξdζ (4.18)

where σξξ is linked with the in-plane strains by Equation (4.2)

σξξ = H11εξξ +H12εηη +H13εξη

= H11εmξξ +H12εmηη +H13εmξη

+ ζ(H11εbξξ +H12εbηη +H13εbξη)

(4.19)

Substituting the in-plane strains calculated from Equation (4.14) into the expression of

σξξ, yields

σξξ = H11(A
′
11Nξξ +B

′
11Mξξ) +H12(A

′
12Nξξ +B

′
12Mξξ) +H13(A

′
13Nξξ +B

′
13Mξξ)+

ζ
[
H11(B

′
11Nξξ +D

′
11Mξξ) +H12(B

′
12Nξξ +D

′
12Mξξ) +H13(B

′
13Nξξ +D

′
13Mξξ)

]
= H1α(A

′
1αNξξ +B

′
1αMξξ) + ζH1α(B

′
1αNξξ +D

′
1αMξξ)

(4.20)

in which α = 1, 2, 3.

Replacing the σξξ in Equation (4.17) by above expression and considering the static

equiblirium condition Nξξ,ξ = 0, Mξξ,ξ = Tξζ , results in

τξζ = −
∫ ζ

−t
2

{
H1α(A

′
1αNξξ +B

′
1αMξξ) + ζ

[
H1α(B

′
1αNξξ +D

′
1αMξξ)

]}
,ξ
dζ

= −
∫ ζ

−t
2

H1α(B
′
1α + ζD

′
1α)Mξξ,ξdζ

= −
∫ ζ

−t
2

H1α(B
′
1α + ζD

′
1α)Tξζdζ

(4.21)

The correspondent transverse shear strain γξζ is obtained from Equation (4.11)

γξζ =
Hτ22τξζ

Hτ11Hτ22 −H2
τ12

(4.22)
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The exact transverse shear strain energy per unit length U3D is a product of the mutually-

conjugated stress and strain

U3D =
1

2

∫ t
2

−t
2

τξζγξζdζ

=
1

2

∫ t
2

−t
2

Hτ22τ
2
ξζ

Hτ11Hτ22 −H2
τ12

dζ

=
1

2

∫ t
2

−t
2

Hτ22T
2
ξζ

Hτ11Hτ22 −H2
τ12

[∫ ζ

−t
2

H1α(B
′
1α + ζD

′
1α)dζ

]2

dζ

(4.23)

Finally, the factor κ1 is computed such that the strain energy due to the transverse shear

stresses predicted by FSDT equals the one due to the true transverse stresses predicted

by the three-dimensional elasticity theory, i.e. Ushell = U3D. κ2 is evaluated in the similar

way. For the shell structure with isotropic material, κ1 = κ2 = 5/6.

4.3 SPH implementation for multilayered shell structures

Using the continuum SPH formulation for derivatives of a function detailed in the Chapter

2, the deformation gradient and the GL strain tensor can be evaluated. Then, the gener-

alized force vectors are determined via Eq.(4.6). The rest task of SPH implementation for

multilayered shell structures, is to discretize the governing equilibrium equations using the

SPH particles in its shell formulation (with only one layer of particles).

The classical dynamic equilibrium equations of a laminated composite shell structure,

subjected to surface loading vector bL = {bξ, bη, bζ}T are given by [102]

ρm ü+ ρmb ϕ̈ = Nξξ,ξ +Nξη,η + bξ

ρm v̈ + ρmb θ̈ = Nξη,ξ +Nηη,η + bη

ρm ẅ = Tξζ,ξ + Tηζ,η + bζ

−ρmb v̈ + ρb θ̈ = −Mξη,ξ −Mηη,η + Tηζ

ρmb ü+ ρb ϕ̈ = Mξξ,ξ +Mξη,η − Tξζ

(4.24)

in which,

ρm =
NL∑
k=1

(ζk − ζk−1)ρk, ρmb =
NL∑
k=1

1

2
(ζ2
k − ζ2

k−1) ρk, ρb =
NL∑
k=1

1

3
(ζ3
k − ζ3

k−1)ρk. (4.25)

As ρmb is often very small compared to ρm and ρb, therefore by neglecting this term,

Equation (4.24) takes a simple form, which can be written in matrix form as follows
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ρm üL = divL(NL) + bL (4.26)

ρb θ̈L = divL(ML) + TL (4.27)

in which,

NL =


Nξξ Nξη Tξζ

Nξη Nηη Tηζ

Tξζ Tηζ 0

 , ML =


−Mξη −Mηη 0

Mxx Mξη 0

0 0 0

 and TL =


Tηζ

−Tξζ
0

 .
(4.28)

One can find the reduced equations of motion for laminate is similar to ones of isotropic

shell given in Chapter 3. So the successive derivation process for the discretized equilibrium

equations is omitted, and the results appear to be
Üi =

Nj∑
j=1

(
N0i

ρ2
m0i

+
N0j

ρ2
m0j

− Nvij

)
∇0W0ij ρm0jA0j +

b0i

ρm0i

Θ̈i =

Nj∑
j=1

(
M0i

ρ2
b0i

+
M0j

ρ2
b0j

)
∇0W0ij ρb0jA0j +

T0i

ρb0i

(4.29)

where Nv is the viscous forces written in the global coordinates.

4.4 Numerical applications

In this section, some numerical applications of multilayered composite shell involving geo-

metrically nonlinear behavior are presented and the obtained results using the shell-based

SPH method are compared with those of reference (analytical and FE results obtained

using ABAQUS c©).

4.4.1 A clamped square plate under uniform pressure load

As a first application, an example of a clamped multilayered square plate is studied. The

plate is subjected to a uniform pressure q0 = 1.2MPa. Its geometrical data correspond to

a side length of a = b = 200mm and a thickness of t = 2.69mm (see Figure 4.4). Each ply

is made of the unidirectional fiber-reinforced composite with the following properties:

EL = 25 ET , ET = EZ = 6894.95MPa, GLT = GLZ = 0.5ET ,

GTZ = 0.2ET , vLT = 0.25, ρ = 1600kg/m3.
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Figure 4.4: Geometry of the square plate

Three symmetric cross-plies such as: (0◦), (0◦/90◦/0◦), (0◦/90◦/0◦/90◦/0◦) and three an-

tisymmetric stack sequences: (0◦/90◦), (0◦/90◦/0◦/90◦), (0◦/90◦/0◦/90◦/0◦/90◦) are stud-

ied.

This example has been studied by Mavel [125] using a geometrically linear analysis by

means of semi-analytical solution based on the Fourier series decomposition. In the follow-

ing geometrically nonlinear effects are taken into account and the obtained results of the

present shell-based SPH model are compared with the reference solution of ABAQUS c©.

Due to the symmetry, a quarter of the plate neutral surface is modeled using 21 × 21

SPH particles while the FE mesh used in ABAQUS c© corresponds to 20× 20 quadrilateral

shell elements of various types (S4, S4R and S8R) in implicit static and explicit dynamics

formulations. The vertical displacement WC at the centroid of the plate is taken as a

criterion for comparison. A summary of results obtained at point C is given in Table 5.2.

Table 4.1: Vertical displacement of the central point WC (mm)

Stack sequence SPH FEM(S4) FEM(S4R) FEM(S8R)

(0◦) 5.329 5.159 5.159 5.146

(0◦/90◦) 6.077 5.955 5.958 5.937

(0◦/90◦/0◦) 5.661 5.560 5.562 5.541

(0◦/90◦/0◦/90◦) 5.895 5.812 5.815 5.790

(0◦/90◦/0◦/90◦/0◦) 5.769 5.675 5.678 5.654

(0◦/90◦/0◦/90◦/0◦/90◦) 5.857 5.768 5.771 5.746

After a first analysis of Table 5.2, one can observe the very good overall solutions obtained
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using the proposed shell-based SPH model. FE results obtained using either implicit static

(S8R) or explicit dynamics (S4R, S4), show almost the same stable deflection values. We

can also remark the very good accuracy of solutions obtained using the developed SPH

model, even for a high number of layers, with a maximum error less than 3.5%.

4.4.2 A hinged multilayered square plate under uniform load

The second application deals with a hinged 4-layer symmetric cross-ply (0◦ /90◦ /90◦ /0◦)

square plate. Different ratios of length to thickness L/t of 40, 20, 10 are considered [126–

128]. A pressure load q0 is controlled using the factor q0L
4/ET t

4 of 50, 100, 150, 200, 250

and imposed uniformly on the plate. The length remains fixed to L = 200mm, and the

material data of each ply is assumed to be the same as in the previous application.

For simplicity reason, a 21×21 particles’ distribution is used to model a quarter of the plate.

The non-dimensional central deflectionsWC/t are listed in the Table 4.2 and compared with

the FE results using high-order element HOST [127] and with analytical solutions [128].

Table 4.2: Non-dimensional deflection of the centroid of the plate WC/t

q0L
4

ET t4
L/t=40 L/t=20 L/t=10

SPH HOST Analytical SPH HOST Analytical SPH HOST Analytical

50 0.313 0.293 0.293 0.329 0.320 0.320 0.371 0.360 0.356

100 0.486 0.464 0.464 0.500 0.493 0.486 0.535 0.520 0.510

150 0.603 0.582 0.582 0.614 0.592 0.592 0.644 0.624 0.610

200 0.692 0.658 0.664 0.701 0.680 0.680 0.728 0.696 0.689

250 0.765 0.738 0.738 0.773 0.752 0.752 0.798 0.760 0.747

As in the first application, results given in Table 4.2 show a very good agreement between

results obtained using the proposed SPH model and those of reference. This remark remain

valid for thin as well as thick structure, which proves the robustness of the shell-based SPH

technique.

4.4.3 Laminated strip under three-point bending

The structure presented here is a seven-layer, composite, orthotropic, rectangular strip that

is simply supported on its supports on A and B and subjected to a line load of 10N/mm
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at C onto the top surface, showed in Figure 4.5.

Figure 4.5: Geometry and loading of the laminated strip

The layers are oriented at (0◦/90◦/0◦/90◦/0◦/90◦/0◦) sequentially with respect to AB edge.

Each ply has the material properties given by

EL = 100000MPa, ET = EZ = 5000MPa, GLT = GLZ = 3000MPa,

GTZ = 2000MPa, vLT = 0.4, ρ = 1600kg/m3.

The whole laminated strip is modeled using mapped discretizations with the same space

between particles (nodes) in both X and Y directions. Our numerical results are compared

with the reference solution given by NAFEMS [129] and a second verification is done using

a comparison with the results obtained thanks to the S4R shell element of ABAQUS c©

explicit dynamics. Table 4.3 summarizes the deflection of the central point C using different

discretizations.

Table 4.3: Convergence of the laminated strip deflection WC

Number of particles or nodes WC (mm) WC (mm)

in the width direction Present model ABAQUS c© Explicit (S4R)

3 -1.435 -1.024

4 -1.219 -1.042

6 -1.159 -1.050

8 -1.130 -1.053

10 -1.112 -1.055

20 -1.077 -1.059

40 -1.068 -1.063

NAFEMS -1.060 -1.060
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The deformed configurations of which the width is discretized using 10 particles or nodes

by SPH method and FEM are presented in Figure 4.6.

Figure 4.6: Deformed configuration of the laminated strip : (a) SPH model (b) FE model

(ABAQUS c©)

As we can observe from Figure 4.6, the overall deformed shape of the laminated strip

obtained using the developed SPH model is very similar to the one obtained using the S4R

shell FE model of ABAQUS c©. From Table 4.3 we can also remark that the predicted values

of the strip deflection using refined discritization (40 particles) are in good agreement with

the reference solution of NAFEMS. However for this structure, we observed also a relatively

slower convergence of the present SPH model when compared with the FE convergence

process of the S4R shell element of ABAQUS c©.

4.4.4 Composite shallow cylindrical shell with a central point load

In the present application, we investigate the buckling behavior of a composite flat cylin-

drical segment subjected to a central pinching force. The shallow shell is hinged along its

straight edges and free on the other edges as shown in Figure 4.7.

The geometric data are: L = 254mm, R = 2540mm, t = 12.6mm, φ = 0.1rad. This

problem has been studied by Laschet and Jeusette [130], Brank et al. [131], Balah and

Al-Ghamedy [132]. The roof is built up by a layer-up of 12 plies with ply thickness

tP = 1.05mm. In order to investigate the layer-up effects on the solution, two stacking

sequences are studied: (i) (90◦4/0
◦
4/90◦4) and (ii) (0◦4/90◦4/0

◦
4), where the 0◦ means that

the fiber orientation is in the circumferential direction. The carbon-epoxy layer owns the

following properties:

EL = 3300MPa, ET = EZ = 1100MPa, GLT = GLZ = 660MPa,

GTZ = 660MPa, vLT = 0.25, ρ = 1400kg/m3.

Due to the symmetry of the problem, only one quarter of the shell is modeled using 21×21

SPH particles. The numerical results concerning the deflection at the central point load
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Figure 4.7: Composite shallow cylindrical

shell
Figure 4.8: Load-displacement curve

location are reported in Figure 4.8, together with the solution from [132] using a four-node

isoperimetric laminated shell element based on a cubic displacement field over the shell

thickness.

For the case (i), the critical buckling load predicted using the present SPH model is

Fcr = 1022.27N with a deflection corresponding to WC = 9.9mm, while the reference

critical buckling load is Fcr = 1061.18N obtained for the same deflection [132]. A first

comparison of the buckling load values, shows that the proposed SPH model underestimates

the solution with an error less than 3.7% which is very acceptable. From Figure 4.8, a

comparison of the whole load-displacement history shows that the SPH solution is very

close to the reference, even for large deformations.

For the case (ii), the predicted critical buckling load obtained using the SPH model is

Fcr = 1684.83N while the reference solution corresponds to Fcr = 1753.16N , both obtained

for a deflection ofWC = 14mm. As for the previous case, the error of the predicted buckling

load by the SPH model presents a small error which remains less than 3.8% which is very

satisfactory.

A general analysis of the post-buckling response of the composite shallow cylindrical shell

given in Figure 4.8, shows that the structure of case (ii) possess higher resistance to buckling

than the case (i). This can be explained simply by the number of fibers orientated in the

0◦ direction, much greater in case (ii) than in case (i). The good agreement of the solution

predicted by the SPH model and the reference, proves that the SPH method may be used
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as a good technique for the post-buckling analysis of nonlinear behavior of composite shells.

4.4.5 Laminated dome under concentrated load

In the last application, nonlinear analysis of a thin spherical shell segment is carried out

using the proposed SPH model. The studied laminated dome is depicted in Figure 4.9

in which the shell is simply supported at all four edges. The geometrical properties are:

radius R = 10m, the side length of the projected plane consisted of the four vertex a =

b = 0.9996m and the total thickness of the laminated composite shell structure t = 0.01m.

This problem has been investigated by To and Wang [133].

Figure 4.9: Geometry of the spherical shell segment

The spherical shell is composed of two equal thickness layers oriented at (−45◦/ + 45◦).

Each layer has the following material properties

EL = 2.5× 1011Pa, ET = EZ = 1.0× 1010Pa, GLT = GLZ = 0.5× 1010Pa,

GTZ = 2.5× 1010Pa, νLT = 0.25, ρ = 103kg/m3 .

For simplicity reasons, one quarter of the shell is modeled using 21×21 SPH particles. The

same structure is analyzed using a FE model of ABAQUS c© which will constitute a reference

solution for comparison purpose. The FE model consists of 20 × 20 S4R shell elements

using the implicit static analysis. The loading condition corresponds to a concentrated

force applied in the negative z-direction on the top point C of the dome.

Figure 4.10 shows the nonlinear response of the dome represented by the load-deflection

curve at point C. As we can observe the nonlinear behavior of the dome is captured

accurately and the predicted deflection is in a good agreement when compared to the

FE solution obtained using S4R shell element of ABAQUS c©. The final deformed dome is
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Figure 4.10: Load-displacement curve at

point C
Figure 4.11: Deformed configuration

shown in Figure 4.11 where only one layer of SPH particles are capable of representing the

nonlinear behavior of the structure.

4.5 Conclusion

In this Chapter we presented a new shell-based SPH model for the study of thin mul-

tilayered composites structures. The present model is based on the First-Order Shear

Deformation Theory which has been proven to be efficient in solving problems involving

thin/thick shell structures. Based on the Mindlin-Reissner assumption, the classical SPH

method has been modified to reproduce the laminated shell behavior, by modeling the

stacking of a thin shell structure with only one layer of particles located into the shell

mid-surface.

Several numerical benchmarks involving bending and buckling of laminated structures

have been treated successfully using the developed shell-based SPH model. The obtained

results were compared to the reference solutions taken from the literature as well as to

numerical reference solution of the FE using ABAQUS c© software. It has been shown,

through the numerical applications that the shell-based SPH method using only one layer

of particles is very suitable for the study of laminated composite structures undergoing large

transformations and therefore the present approach may constitute a good alternative to

the classical FE method.



Chapter 5

Low velocity impact and failure

modeling of composite shells using

the SPH method

In this chapter, the nonlinear shell-based SPH method detailed in the previous two chapters

is extended to investigate the dynamic response of the isotropic and laminated shell struc-

tures, subjected to low velocity impacts by rigid spherical projectiles. A simplified contact

force between the projectile and the shell structure is estimated thanks to the Hertzian

law. The transient response of the system (projectile and the structure) are evaluated using

the developed shell-based SPH method incorporating first-order shear deformation theory.

The effects of the shell thickness, stacking sequence, the projectile mass and velocity on the

global impact solution are studied by virtue of some standard benchmarks with available

reference solutions from literature. The progressive failure analysis is also conducted by

using the popular Tsai-Wu failure criterion.

5.1 Brief overview on shell impact modeling

Mulitlayered shell structures are very susceptible to low velocity transverse impacts caused

by various foreign objects, which still restrains their use in the engineering applications.

Such impact events can cause significant devastations in thin composite shell structures,

such as the intralaminar damage (matrix cracks, fiber/matrix debonding and fiber break-

age) and interlaminar failure, which develops at the interface between adjacent plies in the

form of debonding between layers which is known as delamination. Therefore, there is a

strong need to clearly understand their dynamic response to transient dynamic loading.

Through the literature, we find a large number of studies that have been conducted to

determine the dynamic properties of laminated structures, in terms of experimental investi-

95
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gations [134,135], or analytical [136,137], and numerical works [138,139]. For instance, Yang

and Sun [134] presented the experimental indentation law through static indentation tests

on composite laminates. Pierson and Vaziri [140] proposed an analytical model based on the

combined effects of shear deformation, rotary inertia and the nonlinear Hertzian contact

law. Hertzian contact was modified by Sun [141] for low velocity impact response analysis

of composite laminates. Choi et al. [138] proposed a linearized contact law and compared

low velocity impact response on composite laminates to modified Hertzian contact law.

Based on the Rayleigh-Ritz method, Nallim and Grossi [142] presented the free transverse

vibration analysis of symmetrically laminated solid and annular elliptic and circular plates.

Two simple and improved models, namely the energy-balance model and the spring-mass

model [144, 145, 152] are popularly applied to calculate impact force and duration during

low velocity impact of circular composite plates. Olsson [146] presented an approximate

solution for wave-controlled impacts, similar to impact on infinite plates.

A FE model of the higher-order shear deformation theory is used to study the response of

graphite/epoxy laminated composite non-prismatic folded plates subjected to impacting

loads [147]. Low velocity impact analyses of general fiber reinforced laminated composites

was carried out using the FE method based on three-dimensional elasticity coupling with

layerwise laminated plate theory [139].

In this chapter, the proposed shell-based SPH method is developed for the analysis of low

velocity impact of multilayered composite shell structures based on the first-order shear

deformation theory. The projectile is assumed to be a spherical rigid body, and the contact

force is estimated using the Hertzian law. Both kinematics and deformation of the impacted

shell structures are studied and compared to reference solution to show the effectiveness

of the present SPH method.

5.2 Modeling of contact force and indentation

In the following we assume that the projectile is a rigid body of a spherical shape. If two

solid bodies enter in contact between each other, deformation takes place at the contact

zone and a contact force emerges. If the contact force can be estimated a priori, then

the conventional stress-strain analysis presented in the previous chapters can be used to

describe the deformation process of a shell structure. Due to this fact, the contact force-

indentation relationship has gained lots of interests from researchers.
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The most famous contact law was developed by Hertz [148] for the contact of two de-

formable spheres of elastic isotropic materials. As showed in Figure 5.1, an elastic sphere

of radius R1 impacts on another elastic one with radius R2, and contact occurs in a circle

zone of radius a where the normal pressure p varies as

Figure 5.1: Impact problem of two deformable spherical bodies

p = p0

(
1−

(r
a

)2
)1/2

(5.1)

where p0 is the maximum contact pressure at the center of the contact zone and r is the

radial position of the point in the contact zone. The contact force F can be obtained by

integrating the contact force p in the contact area

F =

∫
A
pdA =

∫ a

0
p 2πrdr =

2

3
πa2p0 (5.2)

Following the derivation from [149], the radius of the contact zone is related to the contact

force by

a =

(
3R

4

F

E

)1/3

(5.3)

where R and E are defined by
1

R
=

1

R1
+

1

R2
(5.4)

1

E
=

1− ν2
1

E1
+

1− ν2
2

E2
(5.5)

and E1, ν1 and E2, ν2 are Young’s modulus and Poisson’s ratios of the two colliding bodies

respectively.

The difference between the displacement of the projectile and the one at the back face of

the shell surface, is the indentation hc (see Figure 5.2), which is calculated using

hc =
a2

R
=

(
9

16R

(
F

E

)2
)1/3

(5.6)
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Figure 5.2: Indentation produced by the impact

Correspondingly, the contact force-indentation relationship can be written as

F = kc h
3/2
c (5.7)

where kc is defined as Hertzian contact stiffness and kc =
4

3
ER1/2 for two isotropic bodies.

For the impact problem of a spherical projectile on laminated composite plate, the contact

stiffness is modified by Sun et al. [141],

kc =
4

3

Rp
1/2

(1− ν2
p)/Ep + 1/ET

(5.8)

where Rp, Ep and νp are local radius, Young’s modulus and Poisson’s ratio of the projectile,

respectively. ET is the transverse Young’s modulus of the fiber-reinforced composite.

Considering a normal impact on a shell structure with a spherical projectile of a mass

mp and an initial velocity Ẇ 0
p (along z-axis), the dynamic equilibrium equations of the

structure can be solved by the developed Shell-based SPH method detailed previously.

The motion of the projectile controlled by the Hertzian contact force can be stated as

mp Ẅp(T ) + F (T ) = 0 (5.9)

where T is time, Wp is the displacement of the projectile in the normal direction to the

shell structure.

Recalling the central difference time integration method exposed in Chapter 2, the updating

procedure for the projectile displacement by assuming the absence of any damping forces,

can be written as

Wn+1
p = 2Wn

p −Wn−1
p + ∆T 2Ẅn

p (5.10)
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which can be self-started using

W−1
p = W 0

p −∆TẆ 0
p +

∆T 2

2
Ẅ 0
p (5.11)

5.3 Modeling of progressive failure modeling using SPH

Generally, the impact modeling of composite structures can be categorized into low and

high velocity impact [150]. However, there exist no clear and defined transition frontier

between low and high velocity, which is dependent on several parameters (material proper-

ties, projectile mass, shape,...). Following the literature, usually a limited velocity is known

to be within the range of [10−100]m/s. Different damage models can be introduced within

this family of impact events [143, 151]. In the high velocity impact, the incident energy is

dissipated in a small zone resulting of a localized damage. Hence, high velocity impact is

characterized by penetration and perforation induced by fiber breakage. However, damage

produced in the low velocity impacts is generally initialed by matrix cracks which induce

delamination at the interfaces between plies with different orientations. Fiber breakage is

generally confined into the region under and near the contact zone between the projectile

and the laminate [153]. Such damages are very difficult to detect by visual inspections and

can cause significant reductions in the strength and stiffness of the materials.

Through the literature, numerous research publications have been devoted to the damage

prediction of composite laminates subjected to low velocity impacts. For instance, based on

experimental observations [154] and 3D finite element analysis [155], Choi et al. concluded

that intraply matrix cracking constitute the initial damage mode and delamination starts

initiating when the matrix crack reaches the interface between the ply groups having

different fiber orientations. They also reported in their work expressions of the degenerated

material properties of the matrix after cracking.

Choi and Chang [156] found that the delamination can result from the point-nose impact

that appears in a peanut shape. They proposed a double failure criterion identifying

separately, the matrix rupture and delamination. The main limitation of these criteria is the

use of a parameter obtained only from experimental results. Ganapathy and Rao [157] used

a 4-noded and 48 degree-of-freedom double curved quadrilateral shell element for predicting

the damage of laminated composite panels of cylindrical/spherical shapes subjected to

low-velocity impacts. The damage at each integration point within an element is predicted

using the Tsai-Wu quadratic failure criterion. The mode of the damage is identified using
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the maximum stress criterion and the corresponding reduced material properties are then

included.

The classical Fourier series was also used in the investigation of the impact response

and damage modeling in laminated composite cylindrical shells [158]. Based on Tsai-Wu

quadratic failure criterion, Zhao and Cho [159] used the Tsai’s criterion together with

an additional delamination model evaluated at all of the quadrature points, of a three-

dimensional eight-node non-conforming element, for the prediction of the three damage

modes and progressive failure of curved laminates.

In the present investigation, the quadratic Tsai-Wu failure criterion [160, 161] will be

adopted in the context of SPH modeling. This choice may be justified by the fact that

Tsai-Wu failure criterion, still one of the most popularly failure criteria that are used for

orthotropic materials and gives satisfactory results for brittle failure. This macroscopic

failure criterion presents a form of scalar function of two strength tensors and takes into

account the difference in strengths due to positive and negative stresses.

For example in particular case of unidirectionally reinforced lamina in a plane stress state,

the Tsai-Wu criterion can be formulated for each ply as follows

F1σLL + F2σTT + F11σ
2
LL + F22σ

2
TT + F33τ

2
LT + 2F12σLLσTT ≤ 1 (5.12)

where σLL, σTT , τLT are the in-plane stress described in the principle material direction. For

each ply, they are obtained by the linear elastic constitutive relationship. Fi and Fij(i, j =

1, 2, 3) are strength parameters, which have to be determined by tensile, compressive and

shear experimental tests,

F1 =
1

Xt
− 1

Xc
, F2 =

1

Yt
− 1

Yc

F11 =
1

XtXc
, F22 =

1

YtYc

F33 =
1

S2
, F12 = − 1

2
√
F11F22

(5.13)

where Xt, Xc are the strength of the lamina in the fiber direction in tension and com-

pression, Yt, Yc are the strength of the lamina in the transverse direction in tension and

compression and S is the shear strength of the lamina.

However, Tsai-Wu failure criterion is just a phenomenological failure criterion because

only the occurrence of failure is predicted, not the mode of failure. Since the propagation

of impact-induced damage strongly depends on the damage modes, an additional criterion

for differentiating the damage types is needed. Hou et al. [162] summarized the stress-based
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failure criteria for matrix cracking, matrix crushing, fiber failure and delamination along

with the corresponding strategy of updating stresses. An equivalent strategy for updating

elastic constants was proposed by Li et al. [163] to simulate the low-velocity impact damage

in a composite lamina by using a 9-node Lagrangian Mindlin plate element.

In the present investigation, matrix cracking and fiber breakage but delamination are

considered and identified through the use of maximum stress criteria as suggested in

[157, 159]. The originality will reside in the coupling between the former failure model

with the context of composite SPH-shell modeling. Therefore the material properties at

the SPH particles where failure is detected, are degraded during the calculation and the

modified properties are updated during the nonlinear analysis.

After the Tsai-Wu failure criterion is saturated i.e. reaches the value 1, the damage mode

would be identified:

• For tensile stress:

σLL > Xt fiber failure

σTT > Yt matrix cracking (transverse tension splitting)

|τLT | > S matrix cracking (shear splitting)

• and for compressive stress:

σLL < −Xc fiber failure (crushing)

σTT < −Yc matrix cracking (crushing)

When matrix cracked, degraded material properties at failed layer point are set by the zero

elastic constants ETT , GLT and νLT . On the other hand, when fiber breakage occurs, the

elastic constants ELL, ETT , GLT , and νLT are nullified.

5.4 Low-velocity impact analysis

5.4.1 Impact of a clamped isotropic plate by a steel sphere

The first application studied here is an isotropic square plate subjected to an impact

induced by a steel ball at its center (Figure 5.3). The plate is clamped at all edges. The

geometrical and material parameters of the projectile and target plate are summarized in

Table 5.1.

The transient solution of this problem, in terms of the impacting force, displacements and

velocity at the centroid of the plate and projectile were given by Karas [164]. This problem
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Figure 5.3: Impact of a clamped isotropic plate by a steel sphere

Table 5.1: Geometrical and material parameters of the projectile and target plate

Parameters

Target Steel plate, clamped

Dimensions: 200mm× 200mm× 8mm

Material properties: Et = 210GPa, νt = 0.3, ρt = 7800kg/m3

Projectile Steel ball

Radius: Rp = 10mm

Mass: Mp = 32.67g (full solid)

Impact velocity: 1m/s

Material properties: Ep = 210GPa, νp = 0.3, ρp = 7800kg/m3

Hertzian contact stiffness: kc =
4
3

√
Rp

(1− ν2
p)/Ep + 1/Et

= 4.636× 105N/m3/2

has also been investigated by Mahajana and Dutta [165] using three different FE mesh

discretizations (9, 208 and 569 eight-noded degenerate shell finite elements for a quarter

part of the laminate) to conduct the convergence test. In the present investigation, we

considered the finest mesh of [165] as a reference solution for comparison purpose. It has

to be noticed that another study of this problem, using 8-node brick element and direct

Gauss quadrature integration scheme, has been conducted by Wu and Chang [166] but not

covered here.

In the present shell-based SPH impact model, and due to the symmetry of the problem,

only a quarter of the plate is modeled using a uniform discretization of 21 × 21 particles
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(see Figure 5.3). The total simulation time for this problem has been fixed to 100µs.

The nonlinear transient analysis has been carried out using our shell-SPH model with the

explicit dynamics for the time integration scheme as described in the previous chapters.

The impact load predicted using our shell-SPH model is depicted in Figure 5.4 and com-

pared to the reference solutions of Karas [164] and Mahajana and Dutta [165].

Figure 5.4: Evolution of the impact load vs. time

The analytical solution given in [164] predicts a maximum impact load of 1383.99N

occurring at 33µs and a total duration of contact between the ball and the target of

approximately 73µs. The present shell-based SPH model predicts a maximum impact

load of 1373.7N at 34µs, while the FE model of Mahajana and Dutta [165] gives an

impact load of 1291.1N at 33.7µs. Therefore by comparing the accuracy of the SPH

model to the analytical solution, we conclude that the present SPH model provides a

more precise solution than the FE model of Mahajana and Dutta [165] for almost the

same discretization. The solution error of the present shell-SPH model is very small about

0.74% in the prediction of the maximum impacting force and about 3.03% and 2.05% in

the prediction of impacting time and total duration of contact respectively.

Figure 5.5 shows the evolution of the velocity of the projectile and the centroid of the target

vs. time. As one can oberve, the velocity of the centroid of the plate starts from 0 (resting

at initial conditions) and then increases until reaching a maximum value of 0.21m/s at

34µs of time which is the same as the projectile velocity, precisely when the contact force

reaches its maximum. Starting from this moment, the projectile starts to slow down to
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Table 5.2: Comparison of the impact load (SPH vs. FE and Analytical solutions)

Analytical [164] FEM [165] Shell-SPH

Maximum impact load (N) 1383.99 1291.1 1373.7

Error on load (%) – -6.71 -0.74

Time at maximum load (µs) 33 33.7 34

Error on time (%) – 2.12 3.03

Total duration of impact (µs) 73 74.8 74.5

Error on total duration (%) – 2.47 2.05

Figure 5.5: Evolution of the velocity of the projec-

tile and the plate centroid).

Figure 5.6: Evolution of the projectile stroke and

the target centroid deflection.

change the sign of it’s movement, resulting a maximum indentation (see Figure 5.6) and a

maximum impact load predicted using the Hertzian contact law.

The contact between the projectile and the target, ends at 74.5µs when the projectile

and the centroid of the plate experienced the same displacement. After the impact, the

projectile returns back with a constant velocity of 0.685m/s, which implies that the final

kinetic energy of the projectile is only 47% of its kinetic energy before impact, therefore

53% of its energy has been absorbed by the plate. The plate undergoes free vibrations

after contact ceases (see Figure 5.7), and a continuous exchange is introduced between the

kinetic energy and the strain energy with the sum remaining constant.
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Figure 5.7: Evolution of the target deflection vs. time at the impact point.

5.4.2 Impact of a T300/934 carbon-epoxy plate by a steel sphere

The second application consists of center impact of a simply supported composite plate

made of T300/934 carbon-epoxy, by a spherical ball made of steel. This problem was

investigated initially by Qian and Swanson [167] using the Rayleigh-Ritz method coupled

to the Newmark algorithm for the time integration. Abrate [144] proposed a procedure

starting by a infinite plate assumption and solving a single nonlinear, ordinary differential

equation which governs the non-dimensional indentation. Both techniques are based on the

nonlinear Hertzian contact law. The material and geometrical properties of the projectile

and the plate are summarized in Table 5.3.

The first task is to explore the prediction of the impact force between the projectile and

the plate with a thickness t = 2.69mm. A quarter of the target plate was discretized using

three types of particle sizes: 6.67mm, 5mm and 4mm. The number of particles are 16×16,

21 × 21 and 26 × 26 respectively. The total simulation time for the impact modeling was

fixed to 600µs. As in the previous application, the nonlinear transient analysis has been

carried out using our shell-SPH model with the explicit dynamics scheme for the time

integration. The obtained impact load using our shell-SPH model is shown in Figure 5.8

and compared to the reference solution of Qian and Swanson [167].

As a first observation of Figure 5.8, the impact force history predicted using our shell-

SPH model is in good agreement with the semi-analytic solution [167]. Two impacts occur

between the projectile and the plate. The results of the maximum impact force Fmax, the
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Table 5.3: Geometrical and material parameters of the projectile and the target

Parameters

Target [0/90/0/90/0]s T300/934 carbon-epoxy plate, simply supported

Plate size: 200mm× 200mm

Plate thickness: (A) t = 2.69mm

Plate thickness: (B) 2t = 5.38mm

Plate thickness: (C) 4t = 10.76mm

Material properties: E11 = 120GPa,E22 = 7.9GPa,G12 = G23 = 5.5GPa

Material properties: ν12 = ν23 = 0.3, ρ = 1580kg/m3

Projectile Steel ball

Radius: Rp = 6.35mm

Mass: Mp = 8.537g (full solid)

Impact velocity: 3m/s

Material properties: Ep = 210GPa, νp = 0.3, ρp = 7960kg/m3

Hertzian contact stiffness: kc = 8.394× 108N/m3/2

Figure 5.8: Evolution of the impact load vs. time (plate of thickness t)

total duration time T1 of the first impact, the starting time T2 and the ending time T3 of

the second impact are summarized in Table 5.4.

From Table 5.4, we can observe that the result of the finest SPH discretization is close

to the semi-analytical solution given in [167], with an error of 13.91% on the maximum
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Table 5.4: Comparison of the impact load (SPH vs. semi-analytical solution)

Semi-analytical Shell-SPH Shell-SPH Shell-SPH

[167] 16× 16 26× 26 81× 81

Maximum impact load Fmax(N) 286.8 413.8 326.7 298.5

Error on Fmax (%) – 44.28 13.91 4.09

Duration of first impact T1(µs) 219.1 215.3 232.4 215.9

Error on T1(%) – -2.80 4.92 -1.46

Start time of 2nd impact T2(µs) 352.1 385.1 375.4 363.2

End time of 2nd impact T3(µs) 417.9 498.4 461.1 426.9

impact load and only 4.92% of error of on the duration of the first impact. Therefore, the

finest discretization using 26× 26 SPH particles is used in the following investigation.

Figure 5.9: Evolution of the plate deflection and projectile stroke vs. time.

The deflection at the centroid of the plate shown in Figure 5.9, presents a good evolution

vs. time when compared to the semi-analytical solution based on the Rayleigh-Ritz tech-

nique [167]. At the time T1 = 232.4µs, the displacement is equal to the one of the projectile,

and the first impact ends. Then the deflection of the plate increases and becomes larger

than the projectile displacement, and two objects move in the opposite direction. When

the centroid of the plate reaches its extreme position, it starts moving backwards. When it

encounters the projectile at time T2 = 375.4µs, the second impact takes place. The second
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colliding comes to an end at time T3 = 461.1µs, after which the plate centroid had turned

around.

In what follows, the next task is to study the influence of the thickness on the maximum

impact load. Thus, we performed the impact modeling for three different thicknesses t, 2t

and 4t of the plate. As mentioned by Abrate [144], the disturbance initiated by the impact

at the centroid of the plate would travel around in the plate. After the disturbance reaches

the boundary, it is reflected back, but does not have sufficient time to travel back to the

point of impact. Therefore, the proposed infinite plate model is valid for these problems

and this problem was classified as wave controlled impact one.

Figure 5.10 shows a comparison of the result in impact force history obtained using the

present shell-SPH model and the two reference solutions: semi-analytical model of Qian

and Swanson [167] and infinite plate model of Abrate [144]. One can observe from 5.10,

that our results are very close to the reference solutions for all three different thicknesses.

The maximum impact force Fmax and contact duration T1 are summarized in Table 5.5.

Figure 5.10: Comparison of predicted impact force for the t, 2t and 4t plate thickness

The first view of Figure 5.10 indicates that, Abrate’s solution (assumption of impact on

infinite plate) agrees well with Qian’s solution (Rayleigh-Ritz technique) when the thickness

is t, but SPH solution becomes closer to Qian’s solution as the thickness increases compared

to the solution of Abrate. The errors of SPH model in contrast with Qian’s solution are

13.9%, 6.32% and 2.27% when the plate thickness is t, 2t and 4t respectively. The predicted

contact duration from SPH computation are always of excellent agreement with Qian’s
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Table 5.5: Maximum impact force and contact duration for the t, 2t and 4t plate thickness

Models
t 2t 4t

Fmax(N) T1(µs) Fmax(N) T1(µs) Fmax(N) T1(µs)

Shell-based SPH 326.7 232.1 598.4 119.3 776.6 110.6

Reference (Qian) 286.8 219.1 562.8 124.7 759.3 111.2

Reference (Abrate) 285.4 257.4 591.7 116.5 802.7 105.5

solution. We also can remark from Table 5.5 that, the maximum impact force produced

by the 2t-thickness plate is nearly two times of that by t-thickness plate and the contact

duration is approximately half. This observation is no longer valid when comparing the

responses of the 4t-thickness plate and 2t-thickness plate. This implies that the effects of

geometrical nonlinearities become more and more dominant.

5.4.3 Impact of a clamped graphite-epoxy laminate by a rigid sphere

In this application, a four-edge clamped square composite plate made of graphite-epoxy is

impacted by a spherical projectile. Relative information of the plate and the projectile are

detailed in Table 5.6.

Choi and Hong [168] investigated the frequency characteristics of the impact force history

of this impact problem, using a FE program. Infinite plate model was also used to analyze

this problem by Abrate [144]. During the predicted contact duration, the waves introduced

by the impact reach the boundaries and are reflected back for many time in this finite size

plate. This problem is categorized into boundary controlled impact and can not be modeled

by infinite plate assumption. Then the author used a single-degree-of-freedom spring-mass

model with a spring constant calculated by assuming that the plate is circular. However,

higher order fluctuation of impact force history cannot be obtained. The FE solution given

in [168] is employed for comparison purpose.

In the present investigation our developed shell-based SPH model is used for the modeling

of a quarter of the plate using 26× 26 particles.

The first task is to explore the impact analysis of a spherical projectile with different masses

on the laminated plate. The initial velocity of the projectile v is fixed to 5m/s and the mass

is controlled by a mass ratio variable ξm = Mp/Mt between projectile and the laminate

masses. Geometrical nonlinear effects are not considered here. The results corresponding to
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Table 5.6: Geometrical and material parameters of the projectile and the target

Parameters

Target [0/90]4s graphite-epoxy plate, fully clamped

Plate size: 100mm× 100mm× 1.8mm

Mass: Mt = 28.5g

Material properties: E11 = 135.4GPa,E22 = 9.6GPa,G12 = 4.8GPa

G23 = 3.2GPa, ν12 = 0.31, ρ = 1580kg/m3

Projectile Sphere

Radius: Rp = 6mm

Mass: Mp = ξmMt

Material properties: Ep = 207GPa, νp = 0.3

Hertzian contact stiffness: kc = 9.513× 108N/m3/2

ξm = {0.1, 0.35, 1} are shown in Figure 5.11 and those of ξm = {1, 3.5, 10, 35} are depicted

in Figure 5.12.

Figure 5.11: Evolution of the impact load vs. time, for ξm < 1.0 and v = 5m/s

From Figure 5.11, we can remark that the contact between the projectile and the plate

repeats three times when ξm = 0.1, twice when ξm = 0.35 and only once for the case

ξm = 1. When ξm = 0.35, the maximum impact force is produced in the second impact

process.

We can observe from Figure 5.12 that, just one time impact occurs between the projectile
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Figure 5.12: Evolution of the impact load vs. time, for ξm > 1.0 and v = 5m/s

and the laminated plate when ξm = {3.5, 10, 35}. Generally we can conclude that when

ξm ≥ 1 contact happens only once. Figure 5.12 shows that the impact force and the contact

duration become larger and longer as the mass ratio ξ increases. Also when ξ raises, the

secondary fluctuations of the force history curve become smaller in comparison to the full

shape of the curve. And the whole shape of the impact force history becomes increasingly

similar to a sine wave. The maximum impact force Fmax and the contact duration T2 of

the impact events induced by different projectile masses are summarized in Table 5.7.

Table 5.7: Maximum impact force (N) and contact duration (ms) using different projectile masses

Models
ξm = 1 ξm = 3.5 ξm = 10 ξm = 35

Fmax T2 Fmax T2 Fmax T2 Fmax T2

Shell-SPH 672.7 0.78 1331.9 1.64 2017.1 2.58 3591.4 4.76

FEM (Choi) 673.5 0.75 1246.9 1.54 1997.6 2.46 3571.4 4.71

First view of Table 5.7 gives a good agreement between the SPH solution and the reference

values obtained by the FE method. After computation, we find that the maximum impact

force and the contact duration is roughly proportional to the square root of the projectile

mass.

The second task is to perform the numerical analysis of dynamic response of the laminate

impacted by the same projectile with different velocities. The mass of the projectile is
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fixed Mp = 35Mt and the impact velocities are 1m/s, 3m/s and 5m/s. The corresponding

impact force histories are shown Figure 5.13. The maximum impact force Fmax at time T1

and the contact duration T2 are listed in Table 5.8.

Figure 5.13: Comparison of the impact load function of the initial velocity, for ξm = 35.

Table 5.8: Comparison of the maximum impact load (N) and contact duration (ms) function of

the initial velocity

Models
v = 1m/s v = 3m/s v = 5m/s

Fmax T1 T2 Fmax T1 T2 Fmax T1 T2

Shell-based SPH 707.7 2.24 4.81 2119.9 2.21 4.75 3473.5 2.21 4.76

FEM (Choi) 701.5 2.37 4.67 2129.2 2.35 4.78 3571.4 2.34 4.71

From Figure 5.13 and Table 5.8, we can see that the overall evolutions of the impact force

for three cases are similar. As the velocity increases, the impact force history enlarges in

proportion to the magnitude of the velocity. The contact duration are almost the same.

Therefore, we can summarize that the contact duration and the shape of the impact force

history are not dependent on the initial velocity but on the mass ratio between the projectile

and the structure. Coupling the conclusion obtained from the impact responses of different

mass ratios, the maximum impact force is proportional to the the square root of the initial

kinetic energy of the projectile.

The third task is to consider the effects of geometric nonlinearities due to the large
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deflection of the plate. To this end, all problem parameters have been fixed and only

the nonlinearities are activated or not. The projectile is assumed having an initial velocity

of 2.76m/s and a mass Mp = 35Mt. The geometrically linear and nonlinear analysis of the

impact problem were carried out, the corresponding obtained results are drawn in Figure

5.14.

Figure 5.14: Evolution of the impact load vs. time for ξm = 35 and v = 2.76m/s

From Figure 5.14, we can observe the good agreement between the present shell-SPH

model and the FE model used in [168]. The maximum displacement of the plate center

were 4.08mm and 3.12mm for linear and nonlinear impact response respectively. The

deflections are larger than the thickness of a plate and geometrical nonlinearities play

an important role as rule of thumb. Comparing the two curves in Figure 5.14, the linear

analysis underestimates the impact force and overestimates the contact duration!

5.5 Progressive failure analysis

5.5.1 Damage analysis of a carbon/epoxy square plate impacted by a

point-nose projectile

In this application, we consider a laminate plate made of graphite/bismalemide, submitted

to an impact of a point-nose projectile at its center. The laminate is simply supported along

all edges. The corresponding material and geometric properties of the plate and projectile
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are summarized in Table 5.9.

Damage growth and distributions induced by impact were studied by Razi and Kobayashi

[169] using both experimental testing and three-dimensional linear elastic FE analysis.

Ganapathy and Rao [157] have also investigated this problem using a 4-noded, 48 degree-

of-freedom double curved quadrilateral shell element.

Table 5.9: Parameters of the projectile and target

Parameters

Target [04/904]s Hitex 46/F650 graphite/bismalemide plate, simply supported

Plate size: 76.2mm× 76.2mm

Plate thickness: t = 2mm

Material properties: E11 = 177.8GPa,E22 = 12.4GPa,G12 = G23 = 4.62GPa

ν12 = ν23 = 0.39, ρ = 1580kg/m3

Xt = Xc = 1500MPa, Yt = 40MPa

Yc = 246MPa, S = 68MPa

Projectile Steel projectile

Point-nose radius: Rp = 3.175mm

Mass: Mp = 590g

Impact velocity: Vp = 1.931m/s

Material properties: Ep = 207GPa, νp = 0.3, ρp = 7960kg/m3

Hertzian contact stiffness: kc = 8.834× 108N/m3/2

Due to symmetry, only a quarter of the plate was modeled using the proposed shell-SPH

model. Different particle distributions of 16× 16, 21× 21, 26× 26 and 41× 41 were used

to model the quarter part. The damaged area of laminate from experimental tests was

ultrasonic C-scanned by Razi and Kobayashi [169], which is reproduced in Figure 5.15(a).

For damage analysis by numerical simulation using the Tsai-Wu criterion, the region where

Tsai-Wu criterion is greater or equal to unity represents the location of the critical matrix

cracking. By virtue of 40 × 40 FE to discretize a quarter of the plate, Ganapathy and

Rao [157] obtained the outer most damage contour by superposing the damaged area

contours of all plies as shown in Figure 5.15(b). The damage area and location predicted

by present shell-SPH model are depicted in Figure 5.15(c) to Figure 5.15(f) with different
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particle sizes. We can observe that the damage shape predicted here coincide well to that

of experimental result and FE solution. We can observe that the failure contour is much

wider along the fiber direction than in the direction normal to the fiber direction. The

impact energy of the projectile is 1.1J , which produces only matrix cracking and no fiber

fracture.

(a) Experimental result (b) FE solution (40× 40) (c) Shell-based SPH (16× 16)

(d) Shell-based SPH (21× 21) (e) Shell-based SPH (26× 26) (f) Shell-based SPH (41× 41)

Figure 5.15: Superposed damage area and location

The approximate maximum length and width of the damage area are presented in Table

5.11 along with the experimental results and FE solution. We can remark that all shell-

SPH models can predict accurately the damaged area, while comparing with FE and

experimental data. Overall, the 41 × 41 shell-SPH model reproduced the closest result

and it is considered as a valid mesh for the following investigations.

The approximate final damaged region in each layer is presented in Figure 5.16, from

bottom up. The damage of matrix crack initialed in top layer (layer No. 16) corresponding

to the impact position. Then the damage propagates out around the contact zone and the

largest damaged ares appears in the top layer.

Figure 5.17 shows the impact response of the laminate with and without the consideration
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Table 5.10: Dimensions of damaged area

Max. length (mm) Max. width (mm)

Experimental Result 42.4 19.8

FE solution (40× 40) 39.4 18.0

Shell-based SPH (16× 16) 43.2 17.8

Shell-based SPH (21× 21) 43.8 17.1

Shell-based SPH (26× 26) 41.1 16.8

Shell-based SPH (41× 41) 41.0 18.1

(a) Layer 1-9 (b) Layer 10 (c) Layer 11 (d) Layer 12

(e) Layer 13 (f) Layer 14 (g) Layer 15 (h) Layer 16

Figure 5.16: Damage area of all plies

of material properties degradation. From the above figure, we can notice that the reduced

material properties just influence to a small extent the impact response. This phenomenon

can be attributed to the fact that only matrix crack cannot introduce much stiffness

reduction in the structure.

Another study on the impact of the same laminate with a projectile of a mass 4Mp and

an initial velocity Vp has been modeled using the present shell-SPH model. In this case,

the fiber fracture initiated in the bottom layer and propagated from bottom up until the

midplane. The damage of matrix crack and fiber breakage primarily occur near the impact

site, but also evolve near the boundaries. The evolution of laminate center displacement

and the impact load is plotted in 5.18, from which we can see that degradation of material
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(a) Displacement history (b) Impact force history

(c) Force vs. displacement

Figure 5.17: Transient reponse of the laminate impacted by 1Mp mass projectile - Effect of matrix

degradation.

property influences significantly the transient response. When integrating the stiffness

deterioration, the normal displacement of the plate center at impact arises and the free

vibration amplitude after impact ease increases. The reduced stiffness also leads to a longer

contact duration and smaller impact force.

5.5.2 Damage analysis of a carbon/epoxy cylindrical shell panel im-

pacted by a point-nose projectile

The last application deals with the damage analysis of a [04/904]s symmetric cross-ply

carbon/epoxy cylindrical shell panel subjected to impact by a point-nose projectile. The
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(a) Displacement history (b) Impact force history

(c) Force vs. displacement

Figure 5.18: Transient reponse of the laminate impacted by 4Mp mass projectile - Effect of

matrix/fibers degradation.

geometry of the panel is given in Figure 5.19, where the radius R = 381mm, length

L = 76.2mm, thickness t = 2mm and the angle θ = 11.46◦. The material properties of the

panel are identical to those used in the previous application. The same projectile impacts

the panel with a velocity of 1.647m/s, which corresponds an initial kinetic energy of 0.8J .

For symmetry reasons, only one quarter of the cylindrical shell panel was analyzed, using

41 × 41 SPH particles in the present shell-SPH model and 40 × 40 shell FE in the work

of [157].

Damaged area was predicted in each ply and superposed on one another to get the outer

most damage contour, which is plotted in Figure 5.20. The agreement between the present
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Figure 5.19: Geometry of the laminated cylindrical shell panel

shell-SPH results and the FE solution is very good. The damage is also initiated in the top

ply and then spreads around the impact point, much wider along the fiber direction than

in the direction normal to the fiber direction.

(a) FE solution (40× 40) (b) Shell-based SPH (41× 41)

Figure 5.20: Superposed damage area and location

Table 5.11 gives the dimensions of the outer most damaged contour. The present shell-

SPH model underestimates the maximum damage size compared to the FE solution given

by [157].
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Table 5.11: Dimensions of damaged area

Max. length (mm) Max. width (mm)

FE solution (40× 40) 39.8 16.4

Shell-SPH (41× 41) 37.2 14.3

5.6 Conclusion

In this Chapter, Shell-SPH method was used for the modeling of the transient response

of isotropic and laminated structures impacted by foreign objects. The projectile was ap-

proximated by a rigid sphere and its movement is updated thanks to the explicit dynamics

scheme for the time integration. Nonlinear contact law of Hertz was adopted to describe

the relationship between the impact force and the indentation induced in the target. The

transient response of the impacted composite structure is calculated using our developed

Shell-SPH method based on the first-order shear deformation theory. Several numerical

applications have been treated using the proposed methodology. Without considering the

geometrical nonlinearity, the maximum impact load was varying in proportion to the

projectile velocity and to the square root of its mass. The same effect of square root

of the projectile mass, has been observed on the total contact duration, but the impact

velocity has no influence. The geometric nonlinearities introduced in the impact modeling

reveal that smaller impact force but longer contact duration can be obtained if geometric

nonlinearities are not taken into account (linear transient response).

After validation of Shell-SPH impact model, the failure analysis has been included in

the model by considering the Tsai-Wu failure criterion. The damage modes of matrix

cracking and fiber fracture is distinguished by the maximum stress failure criterion. The

correspondent degradation of elastic constants were integrated to generate a progressive

damage of the structure. two numerical applications were presented in order to validate

this approach.



Conclusion

5.7 General conclusion

The present research has been focused mainly on exploring the possibilities offered by

the Smoothed Particle Hydrodynamic (SPH) method, which has been widely applied

in astrophysical and fluid dynamic problems. The topic of major interest has been the

modeling of laminated composite shell structures under dynamic or impulsive loading.

Primarily, the classical SPH formulation for a field and its derivatives have been modified

for the analysis of 2D solids under the plane stress condition. The adaptability and accuracy

of the modified SPH have been validated by simulating several benchmarks and comparing

the results with solutions taken from literature and those obtained using the FE method.

Geometric nonlinearities were also considered including the large transformations of solids

and thin structures.

The key techniques for assuring its effectiveness consist of:

• The classical SPH method was reformulated using the Total Lagrangian Formulation

which allowed reduction of the so-called tensile instability problem. In this new con-

cept, initial configuration was taken as the reference configuration. The neighborhood

of the particles was searched only once in the beginning of numerical calculation and

hence CPU time is saved noticeably.

• Another defect of the classical SPH method, was the inconsistency problem, which

was alleviated through the use of the Corrective Smoothed Particle Method (CSPM).

This correction is based on the Taylor’s series expansion and can exactly reproduce

a linear function and its derivatives.

• An artificial viscous force was introduced to avoid the unphysical oscillations usu-

ally appear in the numerical calculation when dealing with problems of shocks and

impacts.

121
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In addition, the current SPH method integrated the constitutive equation to describe the

stress-strain relationship, rather than the equations of state employed in the classical SPH

for fluid and high-gradient-deformed solid.

Based on the robust performance of 2D-SPH method, modeling of thin-walled shell struc-

tures was conceived through a layer of particle located in the mid-surface. Mindlin-Reissner

theory made it possible by degenerating the realistic three-dimensional continuum problem

to two-dimensional problem. This theory took account of the transverse shear and hence

made it valid for thin to thick shell structures and especially composite shells. Large

rotations were treated thanks to the rotations parametrization using Rodrigues rotation

formula and quaternion parameters. The artificial viscosity was also extended to shell

structures.

Further more, a particular interest has been done to the large bending and buckling behav-

iors of multilayered composite shell structures based on the first-order shear deformation

theory. Constitutive relationship of the orthotropic composite material under plane stress

state and the dynamic equilibrium equations have been presented and formulated by the

modified shell-SPH method.

Finally, transient response of laminate shell structures subjected to impact by foreign

projectiles was investigated using the present shell-SPH method. The impact force between

the projectile and target was described in function of the indentation through the use of

Hertzian contact law. Damage involved by the impact was simulated thanks to the Tsai-Wu

failure criterion. Maximum stress criterion was employed as a auxiliary tool to distinguish

the damage form between matrix cracking and fiber breakage. Correspondent stiffness

degradation was integrated to simulate progressive damage of the structure.

The good capabilities of the modified SPH method in aforementioned applications have

been proven through various numerical applications involving geometrically nonlinear be-

havior. They were solved using the explicit dynamics scheme for the time integration.

Accurate solution have been obtained when comparing with results available from the

literature as well as with those obtained using the FE method.

5.8 Future works

Further study is warranted into:

• SPH formulation with high-order consistency should be considered, for example, Mov-
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ing Least Square Particle Hydrodynamics (MLSPH) [67,68], Modified SPH (MSPH)

[69], Symmetric SPH (SSPH) [70]. However, more neighbor particles need to be in-

clude in the support domain, and some difficulties merges for the boundary particles.

• Zero energy mode cannot be thoroughly removed by Total Lagrangian SPH formu-

lation. Stress point technique [170] or Updated Lagrangian SPH formulation [171]

have been reported to solve this problem.

• The locking phenomenon is not considered in this research. But for very thin shell

structures, it may be severe and result in catastrophic calculation. The idea including

the Discrete Kirchhoff shell formulation may constitute a good alternative.

• For impact problem, permanent indentation occurs even at relatively low loading

levels. Therefore the unloading phase is significantly different from the loading phase.

The permanent indentation and relative parameters have to be determined by exper-

iment.

• For damage analysis, more damage forms (matrix tensile/shear cracking, fiber break-

age, buckling and lamination) can be determined through other failure criteria, like

Hashin-type failure criteria [172]. Detailed degradation of material properties can be

estimated by some emerged modes or determined by experiments.

• With consideration of plastic deformation, the shell-SPH can be used in sheet metal

forming, or hydroforming.
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Title :
Nonlinear transient analysis of isotropic and composite shell structures under dynamic
loading by SPH method

Abstract:
The objective of this thesis is the development and the extension of the SPH method for
the analysis of isotropic and multilayered composite shell structures, undergoing dynamic
loading. Major defects of the classical SPH method such as the lack of consistency, the
tensile instability are solved by "Corrective Smoothed Particle Method", the use of the
Total Lagrangian Formulation and artificial viscosity. Mindlin-Reissner Theory is employed
for the modeling of thick shells, by using only one layer of particles in the mid-plane.
The strong form of the governing equations for shell structures are discretized directly
by the modified SPH method and solved using the central difference time integration
scheme. An extension of the method has been introduced for the modeling of low-velocity
impact of shells by rigid impactors. The contact force is calculated based on the Hertzian
contact law. A last extension of the SPH method concerns the integration of Tsai-Wu
failure criterion for the modeling of progressive degradation of multilayered structures.
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SPH; shell; Nonlinearities; Composites; Impact; Progressive failure.

Titre :
Modélisation du comportement non linéaire transitoire de structures coques isotropes et
composites sous chargement dynamique par méthode SPH

Résumé :
L’objectif de cette thèse est le développement et l’extension de la méthode SPH pour
l’analyse de structures de type coque, isotropes et composites multicouches soumises
à des chargements dynamiques. Les différents verrouillages de la méthode SPH clas-
sique, tels que la non consistance, l’instabilité en traction, sont résolus par la méthode
dite "Corrective Smoothed Particle Method", l’utilisation d’une Formulation Lagrangienne
Totale et l’introduction de viscosité artificielle. Le modèle de coque basé sur la théorie de
Reissner-Mindlin est adopté pour la modélisation des structures de coque épaisses en
utilisant une seule couche de particules dans le plan moyen. La forme forte d’équations
gouvernantes de coque sont discrétisées directement par la méthode SPH améliorée et
résolues par un schéma explicite basé sur les différences finies centrées. Une extension
de la méthode a été faite pour la modélisation d’impact de coques par des objets rigides
à faible vitesse. La force de contact est calculée en utilisant la théorie de Hertz. Une
dernière extension de la méthode concerne l’intégration du critère de rupture de Tsai-
Wu pour la modélisation de la dégradation progressive pour les structures composites
multicouches.
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