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Résumé en français  

Dans cette thèse, nous décrivons comment on peut utiliser un diagramme de séquence UML 

avec des contraintes de temps MARTE pour spécifier complètement le comportement des 

systèmes à base de composants tout en faisant abstraction des rôles fonctionnels des 

composants. Nous avons proposé une approche qui permet d'analyser ces spécifications d'une 

manière modulaire. Pour cela, nous avons attribué une sémantique opérationnelle aux 

diagrammes de séquence en les traduisant vers les TIOSTS qui sont des automates symbolique 

et temporisé. Nous avons utilisé des techniques d'exécution symbolique pour calculer les 

exécutions du système sous la forme d'un arbre symbolique. Nous avons défini des 

mécanismes de projection pour extraire l'arbre d'exécution associé à un composant sous-

jacent. L'arbre résultant de la projection caractérise les comportements attendus du composant 

et peut être utilisé comme une référence pour valider le système bout par bout. Pour ce faire, 

nous nous sommes intéressés à des techniques de test. Nous avons présenté un résultat qui 

ramène la conformité du système à la conformité des composants qui le composent. Sur la 

base de ces résultats, nous avons proposé une méthodologie incrémentale de test basé sur des 

spécifications décrites sous la forme de diagrammes de séquence. 

 

Mots-clés 

Diagramme de séquence UML, contraintes de temps MARTE, transformation de modèles, 

exécution symbolique, et test de conformité. 

 

 

 

Résumé en Anglais     

In this thesis, we describe how to use UML sequence diagrams with MARTE timing 

constraints to specify entirely the behavior of component-based systems while abstracting as 

much as possible the functional roles of components composing it. We have shown how to 

conduct compositional analysis of such specifications. For this, we have defined operational 

semantics to sequence diagrams by translating them into TIOSTS which are symbolic 

automata with timing constraints. We have used symbolic execution techniques to compute 

possible executions of the system in the form of a symbolic tree. We have defined projection 

mechanisms to extract the execution tree associated with any distinguished component. The 

resulting projected tree characterizes the possible behaviors of the component with respect to 

the context of the whole system specification. As such, it represents a constraint to be satisfied 

by the component and it can be used as a correctness reference to validate the system in a 

compositional manner. For that purpose, we have grounded our validation framework on 

testing techniques. We have presented compositional results relating the correctness of a 

system to the correctness of components. Based on these results, we have defined an 

incremental approach for testing from sequence diagrams. 

 

Key words 

UML sequence diagrams, MARTE timing constraints, model transformation, symbolic 

execution, and conformance testing. 
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Chapter 1

Introduction

Contents
1.1 Context of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Component-based system specifications . . . . . . . . . . . . . . . . 2

1.3 Produce correct specifications . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Extract unitary requirements for system components . . . . . . . 6

1.1 Context of the thesis

As the complexity of systems grows, new specification paradigms have emerged in recent years.

Component-based software engineering (CBSE) is among the most popular paradigms adopted

in the industry. CBSE consider systems to be a collection of many functional units referred to,

in a generic sense, as components. A component is encapsulated and communicates with other

components (or with the system environment) only through clearly defined interfaces. Some

of the components may be realized in-house or acquired from a third party (e.g. "commercial

off-the-shelf" components (COTS)). Some others are created to be specifically used in the system.

The whole system is designed by bringing together all these components into a coherent whole.

Characterizing the system architecture is quite straightforward and done by specifying connections

between components interfaces. Let us remark that component systems behaviors are often

specified "only" by models presenting their component architectures together with more or

less precise concurrent functional descriptions (including, sometimes, timing constraints). In

particular, when dealing with COTS components, it may be difficult to obtain exhaustive formal

specifications. The role of the specification is to define the intended system behaviors. But most

specifications are not really system specifications: they are rather a collection of component

specifications and the collaboration between component to form the system is left implicit in the

semantics of connectors occurring in the system architecture descriptions. Such specifications

do not truly specify explicitly behaviors of systems. Thus relating them to informal system

behavioral requirements may be complicated. Moreover, such specifications are very close to

implementations. Modern component systems, in a lot of domains, are often very big. Therefore,

such specifications are likely to be very big, and thus, hard to analyze and full of bugs. We study

another kind of modeling techniques (based on UML sequence diagrams [73]) to describe more

abstract and more "system-focused" specifications. In this thesis, we suggest to use UML sequence

diagrams with MARTE timing features [41] in order to fully specify the system intended behavior

while abstracting as much as possible the roles of components (which are still seen as black boxes).

Sequence diagrams are interaction-oriented specifications having the modeling power, in terms

of structuring operators, capable of specifying the system behavior as a whole. Industry wants

practical methods which do not require mathematical skills: the use of the sequence diagrams as

being an acceptable technology to engineers seems adequate in that sense.

Now, validation of component systems may call for modular techniques. This is firstly because

fully implementing such systems may take time. Waiting for the full implementation to begin

validation may lead to discover bugs late and to question design choices made months ago which

1



Chapter 1. Introduction

may have harmful economic consequences. Moreover, big component systems may be hard to test

"as a whole" because they may involve lots of subsystems destributed over a network of devices,

which substantially complicates the building of the testing architecture. In this thesis, we study

how to extract (we also say elicit), from systems specifications, constraints on components or

subsystems behaviors, and how they can be used in a modular validation process.

In the sequel, we illustrate all these points on a concrete case. We present, in Section 1.2, an

example of a component-based system specified using UML MARTE composite structures [73, 39].

It will serve as a running example in the introduction. We discuss, in Section 1.3, our use of

sequence diagrams. Then, we discuss, in Section 1.4, the elicitation of subsystems behaviors from

systems specifications and their utility in a modular testing process of systems.

1.2 Component-based system specifications

As glimpsed previously, components are functional units interacting through the communication

architecture. A component has interaction points called ports which constitute the component

interface. An example of a component system architecture, taken from the MARTE standard,

is illustrated in Figure 1.1. It is a simplified Flight Management System (FMS) in a modern

aircraft. The system computes the trajectory of the aircraft and generates continuous navigation

commands to other equipments. In Section 1.3, we show how we can specify the full system

behavior as a sequence diagram.
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Figure 1.1: Flight management system as UML MARTE composite structure

Components receive input data and emit data through their ports. Internally, they compute

results from received data in order to provide services. Connectors are abstractions of the

different communication protocols between components (correspond to the lines in Figure 1.1)

permitting to convey data between components. FMS is made of three components: Trajectory,

FlightP lan, and Database. Trajectory makes use of the flight plan data, as well as the current

plane location to perform computations. It receives from the environment (specifically, from a

sensor not depicted in the diagram) continuously the current location of the aircraft (on its port

location). The frequency of locations measure (periodic every 10 milliseconds) is identified by

the added MARTE annotation rtFeature [40]. This annotation may be applied to a port to

specify its temporal behavior (here, it was applied to port location). Trajectory explicitly asks

to access the plan when needed (the port plan of Trajectory is bound to the dedicated port plan

of FlightP lan). Trajectory also makes use of the performance and fuel consumption parameters

stored in its cache. A pilot may change these parameters, initially stored in the database, when

the FMS is in operation. The pilot is in the environment of the system (and interacts with
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1.3. Produce correct specifications

components FlightP lan and Database respectively through ports plan and param). If so, the

Database component notifies Trajectory that the new parameters values need to be taken into

account (their respective ports param are connected). The parameters are stored in the cache

of Trajectory, in their arrival order (see the MARTE annotation dataPool stating that data is

inserted/consumed in a FIFO order). When computations are completed, Trajectory generates

navigation commands transmitted (through a dedicated port navCmd) to external equipment.

In spite of the presence of functional annotations, sometimes component-connectors specifications

are still poor, in the sense that they focus only on the composition of components in terms

of provided and required services (by connecting ports). Obviously, all the logical sequence of

interactions described previously cannot be inferred from such specifications: the system behaviors

which result from the interactions of components (and the system environment) through the

communication architecture are not specified. We address, in the next section, the question of how

to produce specifications of the system overall behaviors, that is, behaviors of the system which

are considered to be correct at this level of abstraction (i.e. the one of component-connectors

specifications).

1.3 Produce correct specifications

"A final difficulty encountered in modeling is the frequent lack of good requirement documents

associated with the project. Most of the time, industrial requirement documents are either

almost nonexistent or far too verbose."

Jean-Raymond Abrial, Theory becoming practice, Journal of Universal Computer Science,

2007

Implementing a correct system starts with a specification which can be considered as correct.

Usually, the relation between early requirements and the specification is informally stated. This is

because the notion of formal correctness relates two mathematical objects: an object to evaluate

against a reference object from which one can define behaviors that are considered to be correct.

Here, the object to evaluate is indeed the specification of the system and there exists necessarily

at some phase of the system development cycle, a specification of all possible executions of the

system which can be considered as the most abstract. The evaluation of the correctness of such a

specification may be done by human proof-reading the requirements. Another alternative is to

execute the specification on simulators in order to construct scenarios of executions and analyze

them manually. Sometimes, requirements are formal (e.g. using temporal logics) in which case

formal verification and validation techniques can be applied to evaluate the satisfaction of such

requirements (e.g. using model checking). Unfortunately, most abstract available specifications of

the system behaviors are described in terms of components and connectors as shown in Figure 1.1.

In such specifications, we specify the components behaviors (e.g. using state diagrams) and the

system behaviors as a whole are left implicit (simply obtained by connecting the components).

As a matter of fact, we never explicitly characterize the intended behaviors of the system. This

complicates the understanding of what behaviors have been really specified at the system level.

That is why engineers often use simulation platforms to exercise the system behaviors. However,

conducting these simulations while covering a proper part of the system behaviors is a hard task

because of the voluminous size of the specification, which shares the same level of abstraction as

the implementation.

Sequence diagrams are visual formalisms for scenario-based specifications and is a specification

of the OMG consortium (Object Management Group, for modeling object-oriented systems) as

part of the Unified Modeling Language (UML). The predecessors of sequence diagrams are SDL

(Specification and Description Language) [49] and MSC (Message Sequence Chart) [51]. MSC

3



Chapter 1. Introduction

is an ITU-T standard (ITU Telecommunication Standardization Sector). Earlier versions of

MSC were an input to make UML 2.0 sequence diagram. There are few technical differences [45]

between the MSC and sequence diagrams in their modeling power. Our motivation is to use rather

the UML technology very tightly related to model-driven development (MDD). Moreover, we use

sequence diagrams with time properties formulated using MARTE::VSL [41]. The Modeling and

Analysis of Real-Time and Embedded systems (MARTE) profile is also an OMG standard which

extends UML with capabilities for model-driven development of embedded and real-time systems.

An example of a sequence diagram is depicted in Figure 1.2. It specifies the intended behaviors

of the Flight Management System illustrated in Figure 1.1.
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Figure 1.2: Flight Management System behavior as UML MARTE sequence diagram

In sequence diagrams, one may describe execution scenarios in terms of partially-ordered se-

quences of messages exchanged between basic interaction entities which represent ports owned by

components to communicate with their environment. Figure 1.2 depicts messages (arrows) m1, . . .,

m8 exchanged between all connected component ports (see Figure 1.1). For example, consider the

initialization messages m1, m2 and m3: m1 and m2 convey information about the flight coming

from the environment (the pilot) respectively towards components FlightP lan and DataBase;

and m3 notifies Trajectory of the flight parameters sent by the DataBase. Message descriptions

may include constraints on the data transmitted and the time at which the message occurs. An

example of a data constraint is db.param <> db.prevParam, which states that the parameters

computed by DataBase carried by m7 arriving at port param of Trajectory are different form

the previously sent parameters. An example of a time constraint is t1[i] − t1[i − 1] = (10, ms)

states that the delay between the previous occurrence of m4 conveying the location measure from

the environment and the current one is exactly 10 milliseconds.

The usual practice is to use sequence diagrams to describe particular system scenarios in terms

of message exchanges. However, sequence diagrams introduce structuring operators to define

precedence or concurrency between occurrences of messages. This allows one to specify completely

the system behavior. Figure 1.2 shows how the FMS behaviors may be entirely specified thanks

to these operators. Typically, the cyclic behavior of the system during the flight is captured by

the iterative operator loop: Trajectory receives locations measures and generates navigations
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1.3. Produce correct specifications

commands (see messages m4, . . . , m8) while being notified of any new parameters (see messages

m6 and m7) from the DataBase. Notifications are random behaviors captured by the (most

external) alt operator which specifies, here, that either the behavior corresponding to notifications

occurs or nothing happens. The whole cyclic behavior is sequenced by the (most external) strict

operator, which introduces synchronization points in the system behavior at the level of its dashed

horizontal lines. Finally, note that ports are considered as particular variables to store data in

transit. Their assigned values change if a message is received or if the new action is applied. The

effect of new is to assign a random value to the port. We have introduced new simply to control

values stored on ports when computations are abstracted.

What we have presented in Figure 1.2 is actually a subset of the sequence diagram constructs with

slight enrichments added in order to better control the behaviors of the underlying components

in the system (e.g. the new action). In fact, we have defined a subset of the sequence diagram

language that allowed us to specify many examples, in particular to specify a railway use case,

whose natural language description has been provided by ALSTOM in the Context of the ITEA

project VERDE 1. The objective of the use case is to operate a train along the tracks, in the

requested direction of traction, while ensuring that all safety parameters and delays are always

preserved.

Now we want to automatically analyze timed sequence diagrams which specify the intended

behaviors of component-based systems. While defining tools based on sequence diagrams as a

popular industrial standard is quite straightforward, the key obstacle to using sequence diagrams

has been demonstrated ([70]) to be its informal semantics ambiguously defined in natural language.

We start by giving an operational semantics to the subset of the sequence diagrams that we have

selected. The semantics was given to sequence diagrams by translating them into a formalism

of communicating symbolic automata. This formalism is an extension, defined in this thesis, of

IOSTS (Input/Output Symbolic Transition Systems) to support timing features. IOSTS have

been widely used in black box testing approach based on symbolic execution [1, 36, 33, 32, 30, 34].

Several works (e.g. [57, 66, 78, 92, 72]) have addressed the issue of formal semantics for UML

sequence diagrams (or similar ones like MSC [51]). Our proposal of semantics is related to our use

of symbolic techniques for (timed) black box testing. IOSTS are automata where transitions are

labeled by guards over variables, by symbolic communication actions and by variable assignments

which capture state evolutions. Our extension called TIOSTS (Timed Inout/Output Symbolic

Transition Systems), allows to define in addition timing constraints on transitions and particular

variables to store dates according to sequence diagrams semantics. We may have used other

formalism for the same purpose, for example the Timed Automata ([3]); but we have chosen

TIOSTS because IOSTS are already associated with symbolic execution techniques [1, 36] and

tools. The tools are gathered in the Diversity platform [76, 26] 2 developed in our laboratory (of

the CEA LIST). We had simply to extend these existing techniques and tools with capabilities

to handle time and hence be able to execute symbolically timed sequence diagrams. Symbolic

execution [52] is an analysis technique which was initially defined for programs. Symbolic execution

represents values of (program) variables with symbols introduced on the fly and accumulates

conditions on them throughout the execution. These conditions are the so-called path conditions.

This technique is used to check the behavior of code (e.g. using Java Path Finder [23] with

Java code) or of symbolic specifications (e.g. using Diversity) in order to detect livelocks and

deadlocks. It is used as well to generate test inputs by solving the path conditions. Therefore,

our operational semantics (jointly defined with tools extensions) enables this kind of analysis on

sequence diagrams. Now, we are interested in extracting intended behaviors of components in

the context of their use in the system.

1http : //www.eclipse.org/modeling/mdt/papyrus/
2formerly called AGATHA
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Chapter 1. Introduction

1.4 Extract unitary requirements for system components

"There is general consensus that the most significant problems in software development are

due to inadequate requirements, especially where these concern what one component or

subsystem may expect of another."

John Rushby, Automated formal methods enter the mainstream, Journal of Universal

Computer Science, 2007

We study how to use symbolic techniques to elicit requirements for any component (or for any

subsystem) from the sequence diagram specifying all the possible executions of the system as a

whole. As discussed in the previous section, basic components are seen in this kind of specification

as black boxes, only observable by sequences of incoming and outgoing values through their ports.

However, by characterizing precedence and concurrency rules on the messages exchanged between

components in the system, the designer implicitly characterizes constraints on the component

behaviors themselves: if a message has to transit from a component to another at a given instant,

then the sending component should produce the requested value at the appropriate instant.

Consider again the FMS example as described in Figure 1.2. Here is an example of a specified

behavior for the FlightP lan component in the context of FMS system that we can deduce from

the sequence diagram: when DataBase receives new parameters (through m6), it sends them

to Trajectory within 0.8 milliseconds (through m7). Or more evidently, we can deduce that

when Trajectory receives the location measure (message m4), it reacts by sending navigation

commands (message m8) within 8 milliseconds.

As glimpsed previously, based on symbolic techniques we want to derive such unitary behaviors

(relative to one component) from the sequence diagram. For that purpose, we adapted the

projection introduced in [33] to project the symbolic behaviors associated with the sequence

diagram on the interface of components. Those behaviors obtained by projection can be used as

unitary test purposes to select a COTS component or as guideline to produce the component code.

Within a testing context, the following question arises naturally: if we decompose the system

into subsystems and if each subsystem conforms to its requirements obtained by projection, what

about the conformance of the system as a whole to the sequence diagram? For the purpose

of answering this question, we need a formal definition of the correctness. We use the tioco

conformance relation defined in [20, 54, 81]. tioco defines when an implementation is correct with

respect to some given specification: tioco states that after a specified behavior, any reaction or

delay observed of the implementation is intended in the specification. We establish in the frame of

tioco, a theorem which relates the conformance of a system to the conformance of the subsystems

composing it. This kind of result is interesting because waiting until the system is finished to test

means errors are discovered too late in the development cycle. This may be costly. In addition,

one may question the different design choices since it is difficult to figure out where these errors

come from. Far better is to test components as they are implemented. The elicited unitary

behaviors by our projection mechanism are exactly the behaviors expected from components

(or subsystems) in the context of the system. Our result states that any fault discovered by

testing the system as a whole, can be discovered by unitary testing the subsystems. Therefore,

it is sufficient to test components earlier in the development cycle, before being assembled to

realize the system. Clearly, testing components separately is more practical, in the sense that the

tester has full observability, than developing a complicated testing architecture, especially in a

distributed context, and test the entire system while running. This result is a first step towards

a fully automated process of test generation in which the system is tested in a modular way

subsystem-by-subsystem.

6



1.4. Extract unitary requirements for system components

Outline of the thesis

The thesis is structured as follows:

Chapter 2: UML MARTE sequence diagram presents the subset of the timed sequence

diagram that we use to specify the system intended behaviors.

Chapter 3: Formal preliminaries gives preliminaries about typed equational logic and au-

tomata formalisms related to our work.

Chapter 4: Formalizing UML MARTE sequence diagram provides a formalization of se-

quence diagrams in a logical framework were time and data are handled as first order

structures.

Chapter 5: Timed Input Output Transition Systems (TIOSTS) defines TIOSTS formal-

ism and its associated symbolic execution.

Chapter 6: Operational semantics of UML MARTE Sequence Diagram gives operational

semantics to the selected subset of the sequence diagrams as translation rules into the

TIOSTS formalism.

Chapter 7: Application to testing establishes compositional results relating the correctness

of systems to the correctness of components composing them and links these results to

sequence diagram as a reference for testing.

Chapter 8: Related Work reviews the state of the art relevant to the thesis: the synthesis of

automata formalism from sequence diagrams; the use of sequence diagram in testing; and

the analysis of sequence diagram to obtain requirements by projection.

Chapter 9: Implementation and experiments describes the prototype of our approach eval-

uated on a railway use case.

Chapter 10 is the conclusion.
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Chapter 2

UML MARTE sequence diagram

Contents
2.1 Basics and graphical representation . . . . . . . . . . . . . . . . . . 9

2.1.1 Lifelines and messages . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Local actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Combining operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.4 Data constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.5 Timing constraints with MARTE . . . . . . . . . . . . . . . . . . . . . 13

2.2 UML Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Modeling elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Element relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

In this chapter, we present our use of the UML sequence diagrams specialized with the MARTE

profile to handle timing constraints. First, we informally define sequence diagrams based on their

graphical representation. Then we introduce the syntax of sequence diagrams as being a part

of the UML language given with a metamodel (called abstract syntax in the UML parlance):

The metamodel describes the concepts of the language and the relations between them, sequence

diagrams are just a concrete notation to depict them. Hence the graphical notation is called

concrete syntax in the OMG specification.

2.1 Basics and graphical representation

A sequence diagram is made up of two dimensions : participants are distributed along the

horizontal dimension and the vertical dimension is temporal. A sequence diagram is a graphical

depiction of information exchange between participants over time. We give in the following some

background on the key concepts of a sequence diagram. As we go along this section, we also

discuss point by point the different restrictions and choices we impose in the use of sequence

diagrams.

2.1.1 Lifelines and messages

Sequence diagrams essentially rely on two concepts, lifelines and messages. Consider the elemen-

tary sequence diagram illustrated in Figure 2.1. A lifeline is depicted as a vertical line along

which time flows from top to bottom. Specifically, a lifeline represents a single port in our case.

In the example, there are three lifelines representing respectively from left to right ports p1,

p2 and p3. Participants communicate through message passing. A message is depicted as an

arrow from the sending to the receiving lifelines. An arrow with an open head corresponds to an

asynchronous message. Asynchronous means that the behaviors are not blocked until a message

sent is received. In the sequel, we only consider asynchronous messages. Continuing the example,

two messages are depicted namely m1 and m2. At port p2 level, the fact that the message m1

9



Chapter 2. UML MARTE sequence diagram
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Figure 2.1: Elementary sequence diagram

is asynchronous implies that : once m1 was sent, the emission of the message m2 may happen

before the reception of the message m1 by the port p2. Each lifeline is associated with its own

time scale and by default an instant corresponding to a point on a lifeline cannot be compared

(in terms of precedence) to an instant of another lifeline. Only messages bridging two lifelines

induce a partial order on the instants of different lifelines. In the example, the receptions of the

messages m1 and m2 by respectively the ports p1 and p3 may occur in any order, however the

emission of m1 by the port p1 happens necessarily before the emission of m2 by p2 and therefore

the reception of m2 by the port p3.

Notice that the message labels (figuring on the message arrow) which appear in our diagram are

the messages identifiers and not the conveyed data. We consider a piece of data conveyed by a

message as an abstraction of all kinds of piece of information that can be exchanged between

lifelines. The nature of the entities that the involved lifelines represent (ports in our context),

decides of the nature of the piece of data in transit. In order to control the exchanged data, we

use the port as a locale variable to store these data. The question now is where is stored the data

in transit before being received by the lifeline? In fact, in the case of asynchronous messages, the

UML does not precise the underlying communication model. We choose to associated an implicit

queue to every message with a FIFO selection policy to store the data conveyed by the message

before the target lifeline is ready to process it.

2.1.2 Local actions
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(b)

Figure 2.2: Local actions

We use another feature of sequence diagrams which is a unit of behaviors or an action within

a lifeline in order to capture concise interactions. We show in Figure 2.2 examples of such

actions. We call them local actions in the following. They are drawn as labeled boxes covering

the lifelines. The local action p2 = 3 is an assignment action performed on the port p2. The

assignment action is specific to our use of actions in sequence diagrams. We assume that it

is executed atomically. Recall that we consider ports as particular variables. Unless modified

locally, say by an assignment action, the value associated with a port is the last one received. In
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2.1. Basics and graphical representation

figure 2.2a after the reception of the message m1, the value 3 is associated with port p1. Moreover,

this same value will be associated with the port p3 after the reception of the message m2. In

fact, messages carry the value contained on the emitting port and this value is stored on the

receiving port. We do not make any assumption on the value associated with a port if none has

been received or no local action has been performed yet on that port. This is quite unusual, as

conventionally in sequence diagrams, no assumption at all is made on the value associated with a

port. For this reason, we introduce local actions of the form new(p) that may occur on lifelines

and whose effect is to randomly associate a new value with p. We call such an instruction an

underspecification action. This action allows us to distinguish messages consisting in plain data

forwarding from those depicting unspecified value exchanges. We illustrate in Figure 2.2b the

use of the underspecification action. The action is applied on port p1. Then, the message m2

provides p3 with the random value assigned to p1.

2.1.3 Combining operators

One may compose behaviors in sequence diagrams thanks to a number of combining operators.

In this thesis, we consider three of them namely : the loop, alt and strict operators. Those

operators are graphically associated with rectangles (covering portions of lifelines and messages),

as in Figures 2.3—2.5. In the rest of the paper, we will call that range a region (it is an operand

in UML parlance). In Figure 2.3, the region associated with the loop operator is called o as

indicated optionally in the upper right part of the rectangle (this is an addition w.r.t. UML

graphical notation, usually no sign is added to operands in the diagram).
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Figure 2.3: loop operator

• The loop operator is a repetition operator: all behaviors inside its region occur cyclically. The

number of iterations is unknown beforehand and may be infinite. In the example, the message

m1 may occur many times before m2 occurs or m1 may never occur (zero iteration of the loop).

When the number of iterations is finite, the execution of a lifeline behavior can leave the loop

region, while it is perfectly possible that other lifelines still have some behaviors to be executed

in that region. For example, we may have the following situation : p2 sends twice m1 then

leaves region o and proceeds with the behavior outside (sending m2). Due to the asynchronism

of messages, it may happen that by the time p2 sends m2, p1 has not received yet any of the

occurrences of m1. Recall that we use FIFO-buffering to encode asynchronous messages where

the values issued by a sender are buffered and then consumed later by the receiver.

We use the loop operator without guard which corresponds implicitly according to the OMG

specification, that the number of iteration is unknown beforehand (between 0 and infinity). The

loop may not be executed at all or execute any number of times. These are excerpts from the

OMG specification concerning this point:

”[. . .] The loop operand will be repeated a number of times. The Guard may include a

lower and an upper number of iterations of the loop as well as a Boolean expression. The
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Chapter 2. UML MARTE sequence diagram

semantics is such that a loop will iterate minimum the minint number of times (given by the

iteration expression in the guard) and at most the maxint number of times.” (p. 472)

” If only loop, then this means a loop with infinity upper bound and with 0 as lower bound.”

(p. 473)

Each lifeline may decide to leave the loop at its own. However, the number of iteration is the

same for all lifelines which may quit the loop at different time instants (since each lifeline evolve

at its own rate).
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Figure 2.4: alt operator

• The alt operator illustrated in Figure 2.4 is a non deterministic choice among a set of possible

behaviors. This is because we use it without explicit guards usually associated with the execution

of behaviors : an implicit true guard is implied if the behavior has no guard according to the

OMG specification. Those behaviors are depicted within sub-regions, horizontally delimited by

dotted lines. Only one of the two sub-region behaviors occurs. In Figure 2.4, one such example is

shown, where either the emission of m1 or the emission of m2 occurs. If a loop operator encloses

the alt operator then the sub-region behaviors would be executed in any order within that loop

(one of them per cycle) but no assumption is made concerning priorities between them. If a loop

encloses the alt depicted in Figure 2.4 then executions may consist in many occurrences of m1

before m2 transits.
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Figure 2.5: strict operator

• The strict operator allows to specify instants at which all lifeline behaviors are forced to

leave a region. To do so, a synchronization point is introduced as an horizontal dotted line

between two regions of a strict operator, as for example, between o1 and o2 in Figure 2.5. All

execution fragments of the first region o1 must be finished before any lifeline execution enters the

second region o2. In particular, thanks to the strict operator, the reception of m1 by p1 happens

necessarily before the emission of m2 by p2. Note that by default, these two receptions have no

implied ordering as discussed earlier about the Figure 2.1.
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2.1. Basics and graphical representation

2.1.4 Data constraints

We distinguish two kinds of constraints : data constraints and timing constraints. Data constraints

restrain the allowed values which transit between lifelines. While timing constraints define

restraints on execution instants. An example of data constraint is given in Figure 2.6. It states

that the value available on the port p1 has an upper bound of 10 after the reception of the

message m1.
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Figure 2.6: Data constraint

2.1.5 Timing constraints with MARTE

A typical example of the kind of timing constraint supported by our framework, is illustrated in

Figure 2.7. They are a subset of those allowed by the MARTE profile from which we borrow the

notations introduced by the VSL language. Typically our approach does not use clock constraint

language [67, 38] to deal with time. This was done so as to reduce the assumptions imposed

on the modeling of behavior (the same is true for our choice of using operators with no guards

–alt,loop–).
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Figure 2.7: Timing constraint

Notations of the form t1[i] or t1[i − 1] are introduced in the VSL language of the MARTE

specification and are syntactic constructions capturing time instants. t1 is a so-called time

observation in UML (associated here with the sending of m2). In VSL, a time expression denotes

either a duration or a time instant. We consider rather timing expressions constraining instants.

We interpret time observations as unbounded array variables capturing consecutive time instants.

We designate these special variables time variables. Thus, t1[i] is the time instant of the ith

occurrence of m2 stored at the index i of t1. The constraint t1[i]− t1[i − 1] = (0.5, s) is used to

signify that the delay between the previous occurrence of message m2 (whose instant is stored at

location i − 1) and the current one (whose instant is stored at location i) is exactly 0.5s (s means

seconds, we do not consider units of measurement in our analysis). The location i is implicitly

incremented at each new occurrence of m2. i is incremented several times because of the loop

operator that defines an iterative behavior. The following excerpts show that our interpretation

is compliant with the MARTE specification :

”[. . .] One single instant or duration observation can be expressed with an occurrence
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Chapter 2. UML MARTE sequence diagram

index. For instance, we can express the ”i − th” occurrence of a given event. [. . .]

recurrent interaction fragments represented by a single sequence diagram, such as

periodic or loop fragments may require time assertions comparing different instance

traces of the sequence diagram. For instance, the duration between the i-th and

i+1-th occurrence of an event that triggers a periodic scenario.” (p. 433)

” Index i enables comparisons between different occurrences of the same event that

may not be consecutive (e.g. burstiness).” (p. 434)

” t1[i] returns the instant time of an event observation t1 declared in a UML model

element time observation. The index i is a modifier that indicates that the instant

time refers to whatever of the occurrences of the observed event.” (p. 459)

” (t1[i+ 1]− t1[i]) returns the duration between any two successive occurrences of an

observed event whose occurrence instants are labeled by t1.” (p. 459)

Notice that we rewrite constraints as following : t1[i+1]− t1[i] = 0.5 becomes t1[i]− t1[i−1] = 0.5.

Anyway, the MARTE specification does not indicate what happens when an occurrence index

is not defined yet. Typically, it is not clear for example when does the first occurrence happen

considering the constraint t1[i]− t1[i − 1] = 0.5 on the occurrences of m2. In full generality, if

t[term] appears in a constraint expression where t is a time variable and term is any integer term

denoting a location in t then whenever t[term] is not defined we consider that the constraint is

true. This makes for instance the first occurrence of m1 happens at any time (since t1[−1] is not

defined in the evaluation of t1[0]− t1[−1] = 0.5).

2.2 UML Metamodel

We discuss in this section the metamodel architecture of UML which is related to our use of

sequence diagrams. In fact, the UML metamodel as a whole consists of a variety of modeling

elements to describe the system structure and behavior from multiple views. In this context, the

sequence diagram is a high level view of system behavior as interactions between entities of the

system. The metamodel provides a syntax for sequence diagrams combined with graphic and

natural language description.

2.2.1 Modeling elements

The UML metamodel of a sequence diagram defines modeling elements and relations between

them. It is shown in figure 2.9. In the following, the main constructs of the metamodel are

discussed by incrementally making a focus on some parts of it for illustration. In figure 2.8, below

the line we introduce the main modeling elements of UML which are useful to define sequence

diagrams. For each of them, above the line, we introduce either their graphical denotation if it is

unique or an example when the element is more abstract and corresponds to several concrete

notations.

The graphical elements above the line are indeed the representation of the concepts below the line

introduced in the UML metamodel to describe interactions. An Interaction element corresponds

to the frame of the sequence diagram itself. Lifeline, Message and CombinedFragment of the

metamodel correspond respectively to a lifeline, a message and a combining operator in the

sequence diagram. The element OccurrenceSpecification denotes a point on the lifeline when an

execution occurs : E.g. the message m1 reception by the lifeline of p2 defines a point in the

diagram which is the intersection between the head of the arrow of m1 and the vertical line of the

lifeline of p2. Finally, the element ExecutionSpecification corresponds to a local action. A local
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Figure 2.8: Modeling elements and graphical denotations

action is identified by two points on the lifeline that is : an OccurrenceSpecification denoting the

beginning of the action and another one when it ends. This precise identification is not relevant

for our analysis because we assume the execution of a local action to be instantaneous.
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Figure 2.9: UML sequence diagram metamodel: a simplified view

2.2.2 Element relationships

When two elements in the metamodel are related then a line is drawn between them (see all the

lines linking boxes in Figure 2.9). There are different kinds of relationships:

• If the line ends with a solid white arrowhead then the source element inherits all the relationships

(and properties) defined in the target element. In this case, the relation is called generalization.

Let us comment the generalization relationship linking elements in Figure 2.10.

The element InteractionFragment is introduced to generalize among others the elements Com-

binedFragment, OccurrenceSpecification and ExecutionSpecification (see Figure 2.10a). In turn,

an OccurrenceSpecification is an generalization of the element MessageEnd (see Figure 2.10a)

when it denotes a point on the lifeline of a reception or an emission of a message. This kind of

relation is used to factorize the metamodel.
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Figure 2.10: Generalization

• When it is not a generalization, the line denotes a relation, called association, which may be

annotated by roles. Note that the association line may be annotated also by multiplicities. A

multiplicity denotes the number of individuals/instances of the target or source element which

may participate in the association. Figure 2.11 depicts examples of associations.
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Figure 2.11: Association

A Lifeline may be associated with a set of InteractionFragments (has a multiplicity ∗) : We say

a Lifeline is covered by each InteractionFragment. Conversely, an InteractionFragment covers

a set of Lifelines (see Figure 2.11a). This is the case when the InteractionFragment denotes a

combining operator and thus some/all lifelines may traverse the regions of that operator. The

kind of association discussed previously is bidirectional. But, if the line of the association ends

with an open arrowhead then the association maps the source element to the target element and

said to be navigable from the source element. The Message is associated with at most (multiplicity

0..1) one MessageEnd with the role sentEvent (see Figure 2.11b). Recall that the latter is actually

a point on the lifeline and thus when a message is not be emitted by a lifeline, it comes from the

environment of a sequence diagram (hence the zero multiplicity).

When the association line ends with a filled-in diamond then the element at the opposite side of

the diamond exists only if the the source element exists and is said to be a composition :

������������	
�����
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�

Figure 2.12: Composition

The Figure 2.12 indicates that an Interaction is composed of a set of lifelines (considering the

multiplicity ∗). Recall the metamodel illustration of a sequence diagram in figure 2.9. The main

element of a sequence diagram is an Interaction (represented with the top most box on the left).

Besides the set of Lifeline elements, an Interaction is composed, following the outgoing association

lines with diamonds, as well of a set of Message and a set of InteractionFragment elements.

Example 1 An elementary sequence diagram is given in Figure 2.13 together with its structure

using the metamodel elements. The Interaction sd1 is composed of two Lifeline elements l1, l2
associated respectively with ports p1, p2. Also, sd1 has a set of Message elements, here reduced to

the singleton containing m1. The set of fragments composing sd1 contains two OccurrenceSpecifi-

16



2.2. UML Metamodel

cation elements named send_m1 and receive_m1 corresponding respectively to the emission and

reception of the message m1.
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(b)

Figure 2.13: An elementary sequence diagram and its structure with metamodel elements

Conclusion

We have presented the syntax and semantics of the subset of sequence diagrams as a part of the

UML language that will be considered in the rest of this thesis. This subset is quite complete

and includes the main commonly used constructs of the language. We have also discussed our

usage of sequence diagrams in terms of semantics choices and restrictions. As we have seen from

some excerpts of the OMG specification of UML, the semantics of sequence diagrams is defined

informally using natural language. In this thesis, we give an operational semantics to sequence

diagrams by mapping them on a particular kind of automata TIOSTS (that will be discussed in

Chapter 5). For that purpose, we introduce a concise formalized textual representation of sequence

diagrams which reflects the metamodel in Chapter 4. Links between this textual representation

used in the semantics attribution and the metamodel are stated in the implementation Chapter 9

where is discussed the model transformation which generates automata from sequence diagrams.

Before the formalization of sequence diagrams, mathematical preliminaries will be given in the

next chapter in order to be used for the formalization and also for the definition of TIOSTS

automata.
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Formal preliminaries
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3.1 Typed equational logic

As glimpsed in the introduction, sequence diagrams introduce pieces of data denoted in a symbolic

manner. In the following, we use the classical typed equational logic 1 to represent and reason

about data according to the UML and MARTE standards. Herein we introduce this logic whose

syntactic part will be the basis of sequence diagram textual representation introduced later (in

Chapter 4). Moreover, this logic will be used also in the next section as the mean to define data

in IOSTS and later in TIOSTS (refer to chapter 5). In a classical manner, we begin by presenting

syntax of the logic, and then we define the mathematical meaning of that syntax, that is its

associated semantics.

3.1.1 Syntax

The syntax of Typed Equational Logic is defined is several steps. The first step consists in defining

a syntactical structure used to declare function symbols and types. Such a structure is called a

signature. A signature is simply a couple whose first component is a set of type names and the

second component is a set of typed function names. In order to represent types associated with a

function, each function name is provided with a profile consisting in a sequence of type names.

Definition 1 (Signature) A (data type) signature is a pair Ω = (S, Op) where S is a set of

type symbols and Op is a set of function names, each one provided with a profile s1 · · · sn−1 → sn

(for i ≤ n, si ∈ S).

A function name of the form f associated with a profile s1 · · · sn−1 → sn is latter denoted

f : s1 · · · sn−1 → sn and represents a function taking n − 1 arguments of respective types

s1 · · · sn−1 and computing a value of type sn. A function name of the form f :→ sn denotes a

constant value of type sn.

1The Typed Equational Logic restricts the first order logic to the only use of the predicate equality (=).
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Chapter 3. Formal preliminaries

Example 2 (Primitive data types) We use the usual basic data types in the sequence diagram

for conveyed values. Number of primitive types have been defined by the specification of the UML

standard. These include primitive types such as Integer and Boolean.

The signature ΩInteger = (SInteger, OpInteger) is associated with the specification of integer

arithmetic.

• SInteger = {Integer, Boolean}

• OpInteger = {0 :→ Integer,

true :→ Boolean,

false :→ Boolean,

succ : Integer → Integer, (successor)

pred : Integer → Integer, (predecessor)

+ : Integer × Integer → Integer, (addition)

− : Integer × Integer → Integer, (subtraction)

∗ : Integer × Integer → Integer, (multiplication)

<: Integer × Integer → Boolean} (inequality less than).

Note that noted ΩInteger to signify that it is a signature where one of the sorts is Integer.

Example 3 (FIFO queue) A queue is a FIFO (First In, First Out) structure. Any value

inserted first, will be the first to be consumed. We use the queuing to capture underlying

communication mechanism in sequence diagrams between component of the system where the

exchanged messages will be stored in the queue in the same order of receipt. The signature

ΩQueue = (SQueue, OpQueue) is such that :

• SQueue = SInteger ∪ {Queue}

• OpQueue = OpInteger ∪ {emptyQueue :→ Queue,

top : Queue → Integer,

pop : Queue → Queue,

push : Queue × Integer → Queue}.

The second step of the syntax definition consists in representing executions over functions whose

names are declared in a signature. Such executions are represented as so-called terms which are

defined as follows over a signature and a set of variables.

Definition 2 (Term) Let Ω = (S, Op) be a signature and V = ∪s∈SVs be a set of so-called

typed variables satisfying ∀s, s′ ∈ S, s Ó= s′ ⇒ Vs ∩ Vs′ = ∅. The set of Ω-terms with variables in

V is denoted TΩ(V ) = ∪s∈STΩ(V )s and is inductively defined as follows:

• if x ∈ Vs then x ∈ TΩ(V )s,

• if f has a profile → sn then f ∈ TΩ(V )sn
,

• if f has a profile s1 · · · sn−1 → sn and (t1, . . . , tn−1) ∈ TΩ(V )s1 × . . . × TΩ(V )sn−1
then

f(t1, . . . , tn−1) ∈ TΩ(V )sn
.

Example 4 Using the signature ΩInteger = (SInteger, OpInteger), let us consider the typed vari-

able names V = VBoolean ∪ VInteger where VBoolean = ∅ and VInteger = {x, y}. The following are

some Ω-terms with variables in V (TΩInteger
(V )):

terms 0, x, y, succ(0), pred(0),succ(x), succ(y), −(0, 0) and ∗(x, y) are in ∈ TΩInteger
(V )

Ineteger
;

and the term is in TΩInteger
(V )

Boolean
.

20



3.1. Typed equational logic

Now we can define the formulas associated with a signature and a set of variables: they denote

properties concerning executions. Basic formulas are simply equalities between executions

(i.e. terms) and more complex formulas are obtained by connecting formulas by means of the

conjunction or disjunction operators, or by the negation of a formula.

Definition 3 (Formula) Let (S, Op) be a signature and V be a set of variables typed in S. The

set SenΩ(V ) of typed equational Ω-formulas over V is inductively defined as follows:

• True and False are in SenΩ(V ),

• for any s in S, for any t and t′ in TΩ(V )s, we have t = t′ is in SenΩ(V ),

• for any ϕ1 and ϕ2 in SenΩ(V ), we have ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2 and ¬ϕ1 are in SenΩ(V ),

• for any x in V and ϕ in SenΩ(V ), we have ∀xϕ and ∃xϕ are in SenΩ(V ).

Example 5 Based on the signature and terms of Examples 2 and 4, we can define the following

formulas:

x = y, ¬(0 = succ(x)), x+ 0 = x, succ(x+ y) = x+ succ(y).

Notation 1 In the sequel Senqf
Ω (V ) (qf stands for quantifier free) is the subset of SenΩ(V ) such

that its elements contain no occurrences of ∀ and ∃.

The syntax of the typed equational logic is then fully characterized by the set of all possible

triples (Ω, V, SenΩ(V )) that can be built by means of the previous definitions. In the remaining of

the Section we characterize some syntactical operations that will be useful in the sequel. We now

define the notion of substitution which is used to assign computations to variables. Substitutions

simply consist in functions associating terms with variables while preserving types.

Definition 4 (Substitution) A Ω-substitution over V is a function σ : V → TΩ(V ) preserving

types, that is, associating with each variable v of type s, a term t ∈ TΩ(V ) also of type s. In the

following, we note TΩ(V )
V the set of all Ω-substitutions of the variables V . Any substitution σ

may be canonically extended to terms (with σ(f(t1, . . . , tn−1)) = f(σ(t1), · · · , σ(tn−1))).

Example 6 Consider now the signature ΩInteger and the set of variables VInteger = {x, y}.

We can define the following ΩInteger-substitution σ : VInteger → TΩInteger
(VInteger) such that

σ(x) = x+ 1 and σ(y) = y + 1. For example, we have then σ(x+ y) = (x+ 1) + (y + 1).

Finally we give a notation useful to update values of some variables in a substitution.

Notation 2 The identity Ω-substitution over the variables V , idV , is defined as idV (v) = v

for all v ∈ V

Let x1 · · · xn be variables of respectively Vs1 · · · Vsn
, let t1 · · · tn be terms of respectively

TΩ(V )s1 · · · TΩ(V )sn
. [(xi ← ti)i≤n] is the substitution TΩ(V )

V such that for all j ≤ n we have

[(xi ← ti)i≤n](xj) = tj and for all y ∈ V \ {x1, · · · , xn} we have [(xi ← ti)i≤n](y) = y.

3.1.2 Semantics

Semantics of Typed equational logic is based on the notion of model. A model associated with a

signature is a mathematical structure used to interpret all symbols of the signature. It is defined

21
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as a set whose elements are typed data and which is provided with a function for each function

name of the signature.

Definition 5 (Model) A Ω-model is a set M whose elements are associated with a type in S,

and we note Ms ⊆ M the subset of M whose elements are associated with s. Each

f : s1 · · · sn → s ∈ Op, is interpreted as a function

fM : Ms1 × · · · × Msn
→ Ms.

Models give a semantical counterpart to type and function names. We now introduce the notion

of interpretation to give a semantical counterpart to variables.

Definition 6 (Interpretation) We define Ω-interpretations as applications ν from V to M

preserving types and extended to terms in TΩ(V ). MV is the set of all Ω-interpretations of

V in M . Any interpretation ν can be extended to terms in a canonical way ν(f(t1, . . . , tn)) =

fM (ν(t1), . . . , ν(tn)).

We now proceed to define the notion of satisfaction of a formula. Roughly, an Ω-model being

given, the satisfaction relation is a mathematical relation associating interpretations and formulas.

A variable interpretation is associated with a formula whenever that formula is true for the

interpretation.

Definition 7 An interpretation ν satisfies a formula ϕ Let Ω = (S, Op) be a signature

and V be a set of variables typed in S. Let M be a Ω-model. For any ν ∈ MV and ϕ ∈ SenΩ(V ),

we say that ν satisfies ϕ denoted ν |= ϕ if and only if:

• if ϕ is True then we have ν |= ϕ

• if ϕ is False then we do not have ν |= ϕ

• whenever ϕ is of the form t = t′, we have ν(t) = ν(t′),

• whenever ϕ is of the form ¬ψ, we do not have ν |= ψ,

• whenever ϕ is of the form ϕ1 ∧ ϕ2, we have ν |= ϕ1 and ν |= ϕ2,

• whenever ϕ is of the form ϕ1 ∨ ϕ2, we have ν |= ϕ1 or ν |= ϕ2,

• whenever ϕ is of the form ∀xψ, we have for all ν′ such that for all y in V \{x}, ν′(y) = ν(y),

we have ν′ |= ψ,

• whenever ϕ is of the form ∃xψ, we have exists ν′ such that for all y in V \{x}, ν′(y) = ν(y),

we have ν′ |= ϕ,

3.2 Input Output Symbolic Transition System

Herein we present Input Output Symbolic Transition Systems (IOSTS). IOSTS are widely

employed in black box testing based on symbolic techniques [1, 36, 33, 32, 30, 34]. IOSTS

are symbolic automata used to specify behaviors of reactive systems expressed as reactions by

producing outputs to external stimuli. They form the basic formalism that we will extend in

Chapter 5 to give an operational semantics to sequence diagrams in Chapter 6.
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3.2.1 IOSTS syntax

IOSTS are defined over a IOSTS signatures which are used to introduce particular variables

whose valuations define states of the IOSTS and to introduce the so-called communication

channels through which values may be received or emitted. In the sequel, we suppose that a

datatype signature Ω = (S, Op) is given. IOSTS signatures are defined as follows.

Definition 8 (IOSTS signature) A IOSTS signature Σ is defined as a couple (A, C) where

A is a set of variables of the form ∪s∈SAs such that for all s and s′ in S s Ó= s′ ⇒ As ∩ As′ = ∅.

Variables of A are called attribute variables and elements of C are called communication channels.

We now define the communication actions over channels. Communication actions can be inputs

or outputs sent by communication channels, or they can be internal actions. Internal actions

represent operations that do not involve any communication with the environment. They are all

represented by a generic symbol τ .

Definition 9 (Communication actions) Let Σ be an IOSTS signature.

The set of communication actions over Σ is defined as Act(Σ) = I(Σ) ∪ O(Σ) ∪ {τ}, where:

• I(Σ) = {c?x | x ∈ A, c ∈ C}

• O(Σ) = {c!t | t ∈ TΩ(A), c ∈ C}

Elements of I(Σ) are called inputs and those of O(Σ) are called outputs.

IOSTSs are composed of a set of states, an initial state, and transitions going from one state to

another. Transitions are composed of: guards, which are conditions that have to be satisfied in

order to fire the transition; communication actions, introduced in Definition 33; and affectations,

representing the modifications on the attribute variables when firing the transition.

Definition 10 (IOSTS) Let Σ = (A, C) be an IOSTS signature.

An IOSTS over Σ is a tuple G = (Q, init, T ) where:

• Q is a set of state names

• init ∈ Q is the initial state

• T ⊆ Q × Senqf
Ω (A)× Act(Σ)× TΩ(A)

A × Q is a set of transitions

Notation 3 In the following, for any IOSTS G of the form (Q, init, T ) over Σ, we use the

notations state(G), init(G), and Trans(G) in order to refer, respectively, to Q, init, and T .

In the same way, for any transition tr ∈ Trans(G) of the form (q, ϕ, act, ρ, q′) we use the

notations source(tr), guard(tr), act(tr), sub(tr), and target(tr) in order to refer, respectively,

to q, ϕ, act, ρ, and q′.

Example 7 We represent an IOSTS in the standard way, that is, by a directed, edge-labeled

graph where nodes represent states and edges represent transitions. Transitions are represented

with an arrow → representing the flow of the communication from their source state to their

target state.

An example of an IOSTS is shown in Figure 3.1. It is defined over the signature Σ = (A, C)

where A = {xenv, xcmd, xdata} and C = {env, cmd, data}. Consider for example the transition
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Figure 3.1: IOSTS G

of G which goes from q4 to q1 with the input data?xdata. It denotes the reception of a value

on channel data and stored in the attribute variable xdata. The execution of the transition is

constrained by the guard xdata < 500.

3.2.2 IOSTS behavior

The behaviors of an IOSTS, also called its semantics, is defined by the notion of the interpreted

traces that can be generated from it. Traces are possible successions of communication actions

that are specified by an IOSTS. However, those succession of communication actions are to be

interpreted in order to get real values. We suppose a Ω-model M is given. Therefore, we give a

series of definitions that are needed in order to define the behavior of an IOSTS.

We start by defining the notion of concrete actions, which are the interpretations of the commu-

nication actions.

Definition 11 (Concrete actions) Let Σ = (A, C) be an IOSTS signature.

The set of concrete actions over Σ is the defined as ActM (Σ) = IM (Σ) ∪ OM (Σ) ∪ {τ}, where:

IM (C) = {c?v | c ∈ C, v ∈ M}

OM (C) = {c!v | c ∈ C, v ∈ M}

The value v is the interpretation of the received or emitted terms.

Traces of an IOSTS are built from sequences of transitions. The semantics of an IOSTS is the

semantics that we give to the transitions.

Definition 12 (Semantics of a transition) Let G = (Q, init, T ) be an IOSTS over Σ. The

semantics of a transition tr ∈ T of the form (q, ϕ, act, ρ, q′) is the relation Run(tr) ⊆ MA ×

ActM (Σ)× MA, such that (νi, actM , νf ) ∈ Run(tr) if and only if:

• if act is of the form c!t, then νi |= ϕ, νf = νi ◦ ρ and actM = c!νi(t)

• if act is of the form c?x, then νi |= ϕ, there exists νa such that νa(z) = νi(z) for every

z Ó= x, νf = νa ◦ ρ, and actM = c?νa(x)

• if act is of the form τ then νi |= ϕ, νf = νi ◦ ρ and actM = τ
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3.2. Input Output Symbolic Transition System

Notation 4 In the following, Run(tr) stands for the run of a transition and, for any run r of

Run(tr) of the form (νi, actM , νf ), we use the notations source(r), act(r), and target(r) in order

to refer, respectively, to νi, actM , and νf .

The application νi is the interpretation of variables before executing the transition, and νf is the

interpretation of the variables after the execution of the transition. actM is the interpretation of

either the value sent or received in the communication action of the transition or the internal

action τ .

Example 8 Consider again the IOSTS G depicted in Figure 3.1. Recall that G is defined over

Σ = (A, C) where A = {xenv, xcmd, xdata} and C = {env, cmd, data}. Consider in particular the

transition going from q4 to q1: q4
xdata<500 data?xdata idA−−−−−−−−−−−−−−−−−−−−→ q1. This is a possible run of the

transition: νi
data?200
−−−−−−→ νf , where νi and νf are defined as follows:

interpretation of variables

νi(xenv) = ”start”, νi(xcmd) = ”ack”

νi(xdata) = 999

νf (xenv) = ”start”, νf (xcmd) = ”ack”

νf (xdata) = 200

Paths are sequences of transitions beginning at the initial state of the IOSTS.

Definition 13 (Paths of an IOSTS) Let G = (Q, init, T ) be an IOSTS over Σ. The set of

paths, denoted Path(G), contains all the finite sequences tr1 · · · trn of transitions of T such that:

• source(tr1) = init

• for every i, 1 ≤ i < n, target(tri) = source(tri+1)

The run of a path is the sequence of runs of the transitions in the path, where the target state

shares the variable interpretation with the source state of the consecutive transitions.

Definition 14 (Runs of paths) Let G be an IOSTS over Σ. The set of runs of a path p,

denoted Run(p), for a path p = tr1 · · · trn in Path(G), are sequences r1 · · · rn such that:

• for all i ≤ n, ri is a run of tri, ri ∈ Run(tri)

• for all i < n, target(ri) = source(tri+1)

Now we define how to extract traces from a path.

Definition 15 (Concrete traces) Let G be an IOSTS over Σ, and let p ∈ Path(G). The set

of concrete traces of a path p, denoted traces(p), is the set
⋃

r∈Run(p){traces(r)}, where traces(r)

is inductively defined as follows:

• if r is ε, then traces(r) is ε

• if p is of the form p′.tr and r is of the form r′.a, where r′ ∈ Run(p′) and a ∈ Run(tr),

then:

– if act(a) is τ , we have traces(r) = traces(r′)
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– if act(a) is not τ , we have traces(r′) = traces(r).act(a)

Finally, the behaviors of an IOSTS, also called its semantics, are defined as the set of all the

concrete traces that can be obtained from its paths.

Definition 16 (Semantics of an IOSTS) Let G be an IOSTS over Σ. The semantics of G

is defined as Traces(G) =
⋃

p∈P ath(G) traces(p).

Example 9 The trace env?”start”.cmd!”aquire”.cmd?”ack”.data?200 is in the semantics of G.

3.3 TIOLTS

Timed Input Output Labeled Transition Systems (TIOLTS or TIOTS) [21, 81, 55, 31]: they are

simply automata whose transitions are labeled either by actions (inputs, outputs, or the internal

action τ) or by delays. We have however slightly adapted the actions format of TIOLTS in order

to better fit our needs of assigning semantics to sequence diagrams. First, inputs and outputs

introduce channel names as in the case of IOSTS. Values exchanged between a TIOLTS and its

environment are denoted as elements of a model M of a signature Ω that are considered given in

the sequel of this section.

We begin by defining the actions occurring in TIOLTS.

Definition 17 (TIOLTS actions) Let C be a set whose elements are called channels.

The set of communication actions over C, denoted ActM (C), is the set IM (C) ∪ OM (C) ∪ {τ},

where:

• IM (C) = {c?v | v ∈ M, c ∈ C}

• OM (C) = {c!v | v ∈ M, c ∈ C}

c?v denotes the reception of a value v on channel c, c!v denotes the emission of the value v on

channel c and τ denotes the unobservable action. Elements of IM (C) (respectively OM (C)) are

called inputs (respectively outputs).

Transitions of a TIOLTS may introduce durations that may be denoted as integers or real numbers.

In the sequel, we note I the type introduced in Ω to handle those durations. We suppose that Ω

introduces an addition over durations + : I.I → I. MI is either isomorphic to natural numbers

or real numbers and is left implicit in the sequel. Moreover, + : I.I → I is associated with

+M : MI × MI → MI the usual addition (either on integers or reals). In the following for

readability sake, we note by abuse + : MI × MI → MI instead of +M : MI × MI → MI .

Now TIOLTS are simply defined as triples introducing a set of states, an initial state and a set of

transitions as follows :

Definition 18 (TIOLTS) Let C be a set of channels. A Timed Input/Output Labeled Transi-

tion System (TIOLTS) over C is is a triple (Q, q0, T ) where:

• Q is a set of states

• q0 ∈ Q is the initial state
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3.3. TIOLTS

• T ⊆ Q × ActM (C) ∪ MI × Q is a set of transitions

Notation 5 For any TIOLTS A = (Q, q0, T ) over C and for any transition tr ∈ T of the form

(q, act, q′), we use the notations state(A), init(A), Trans(A), Chan(A), source(tr), target(tr)

and act(tr) in order to refer, respectively, to Q, q0, T , C, q, q′ and act.
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Figure 3.2: TIOLTS A

Example 10 We show an example of a TIOLTS in Figure 3.2. Note that it is defined over the

set of channels Cctrl = {env, cmd, data}. Consider for example the transition of A which goes

from q0 to q1 with the concrete action as a delay 0.5, concrete in the sense that 0.5 is in MI (not

symbolic in I). It denotes time passing. Now consider the transition going from q8 to q9 labeled

with the action data?200. It denotes the reception of the value 200 on the channel data.

3.3.1 Trace semantics

TIOLTS specify sequences of actions separated by durations. Those sequences are called timed

traces. The definition of a timed trace is based on the notion of paths of a TIOLTS which

corresponds to a sequence of consecutive transitions.

Definition 19 (Paths of a TIOLTS) Let A = (Q, q0, T ) be an TIOLTS over C. The set

of finite paths of A, denoted FP (A) is the set of all sequences of transitions of T such that

tr1 · · · trn ∈ FP (A) if and only if:

• source(tr1) is q0,

• for all i < n we have target(tri) = source(tri+1).

Any path of a TIOLTS can be associated with a so called trace that is simply defined as the

sequence of actions and durations introduced in the path. Traces of a TIOLTS are then defined

as the set of all traces of all its finite paths.

Definition 20 (Traces of a TIOLTS) Let A = (Q, q0, T ) be a TIOLTS over C. Let fp ∈

FP (A). The trace of fp denoted trace(fp) ∈ (ActM (C) ∪ MI)
∗ is defined as follows:

• if fp is ε then trace(fp) is ε,

• if fp is of the form fp′.tr where tr is a transition then:

– if act(tr) is of the form c!v or c?v or d then trace(fp) is trace(fp′).act(tr),

– if act(tr) is τ then trace(fp) is trace(fp′).

The set of traces of A, denoted Traces(A), is the set
⋃

fp∈F P (A){trace(fp)}.
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Example 11 The following trace is associated with the path starting in q0 and going to q12 in

the TIOLTS depicted in Figure 3.2:

(0.5).env?”start”.(0.01).cmd!”acquire”.(0.004).cmd?”ack”.(0.004).(0.002).data?200.(0.02).(0.07).env?”start”

In the sequel, we need to be able to represent any given duration as any decomposition of small

durations. For example, the duration 0.5 may be decomposed as the sum of delays 0.3 and 0.2

since 0.5 = 0.3 + 0.2. It may also be represented as 0.1 + 0.1 + 0.1 + 0.2, etc. In order to take

into account all such durations, we define timed traces of a TIOLTS as the set of all sequences

obtained by applying arbitrary decompositions of durations in any trace of the TIOLTS.

Definition 21 (Timed traces of a TIOLTS) For any finite path fp in FP (A), the set of

timed traces of fp denoted ttraces(fp) is defined as follows:

• trace(fp) in ttraces(fp)

• for any timed trace in ttraces(fp) of the form σ.d1.d2.σ2 with σ1 and σ2 in (ActM (C)∪MI)
∗,

d1 and d2 in MI , we have σ.d1 + d2.σ2 in ttraces(fp),

• for any timed trace in ttraces(fp) of the form σ.d.σ2 with σ1 and σ2 in (ActM (C) ∪ MI)
∗,

d in MI , for any d1 and d2 in MI such that d = d1+ d2, we have σ.d1.d2.σ2 in ttraces(fp).

The set of timed traces of A, denoted TTraces(A) is defined as follows:

• for any fp in FP (A) and for any σ in ttraces(fp), we have σ in TTraces(A),

• for any σ in TTraces(A) of the form σ′.d with σ′ in (ActM (C) ∪ MI)
∗ and d in MI , we

have σ′ in TTraces(A).

Example 12 This an example of a timed trace of the TIOLTS A defined in Figure 3.2 and

corresponding to the trace depicted in Example 11 :

decomposition

0.5
︷ ︸︸ ︷
(0.2).(0.3) .env?”start”.(0.01).cmd!”acquire”.(0.004).cmd?”ack”. (0.006)

︸ ︷︷ ︸

0.004+

0.002

additivity

.data?200.(0.02).(0.07).env?”start”

By applying last item of Definition 21, we have that the following trace is also a timed trace of A

being a prefix of the previously given trace:

(0.2).(0.3).env?”start”.(0.01).cmd!”acquire”.(0.004).cmd?”ack”.0.006)

This trace does not correspond to any a timed trace of any path in A simply because the duration

0.006 at the end of the trace does not appear explicitly in A and was obtained by adding durations

as illustrated previously. However it is a possible trace of A since it corresponds to an acceptable

waiting time in the execution of A. Stating that the timed traces of A correspond to the timed

traces of all paths of A is hence not sufficient. Indeed the last item of Definition 21 ensures that

such a trace is taken into consideration in the set of timed traces of A.

3.3.2 TIOLTS composition

We define in the following how to compose two TIOLTS. In fact, two TIOLTS synchronize on

actions performed on shared channels and time delays. Other actions are executed asynchronously.
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Definition 22 (TIOLTS composition) Let A1 = (Q1, q10 , T1) and A2 = (Q2, q20 , T2) be two

TIOLTS respectively over C1 and C2. The composition of A1 and A2, denoted A1 || A2, is an

TIOLTS (Q, q0, T ) over C1 ∪ C2 such that:

• Q = Q1 × Q2

• q0 = (q
1
0 , q20)

• T is defined as follows:

– synchronous execution: if (q1, c!v, q′
1) ∈ T1 and (q2, c?v, q′

2) ∈ T2, such that c ∈

C1 ∩ C2 then ((q1, q2), c!v, (q′
1, q′

2)) ∈ T ,

– synchronous time passing: if (q1, d, q′
1) ∈ T1 and (q2, d, q′

2) ∈ T2, such that d ∈ MI

then ((q1, q2), d, (q′
1, q2)) ∈ T ;

– asynchronous execution: and for any (q1, a, q′
1) ∈ T1 where a is of the form τ or

c?v or c!v with c /∈ C1 ∩ C2, then for any q2 ∈ Q2, ((q1, q2), a, (q′
1, q2)) ∈ T .

The role of A1 and A2 can be inverted.

Example 13 Consider the TIOLTS in Figure 3.3b. It is the result of the composition of the

TIOLTS A, A′ respectively in Figures 3.2,3.3a. To see this, first note that this TIOLTS is defined

over the set of channels Csys = Cctrl ∪ Csens that is {env, cmd, data}.

���

���

��� ��� ��	 ���

���� ����	

���


��
��������

���� ��� ��� ���

�����

����	

���

���������
��������


�����
��

(a) TIOLTS A′

����������	
���
������

������

��� ���� �����

��������

������

������������

��������

�����

�����

����������	
���
������

������ ������ ������ ������ ������

���������������������������������

(b) TIOLTS A||A′

Figure 3.3: TIOLTS composition

For example, the transition (q5, q′
4)

cmd!”ack”
−−−−−−−→ (q6, q′

5) corresponds to the synchronous execution

of the transition q5
cmd?”ack”
−−−−−−−→ q6 and the transition q′

4
cmd!”ack”
−−−−−−−→ q′

5 : A
′ notifies A of the

reception of its request for a new data by an acknowledgment message ”ack”.

The transition (q4, q′
3)

0.004
−−−→ (q5, q′

4) corresponds to the synchronous execution of the transi-

tion q4
0.004
−−−→ q5 and the transition q′

3
0.004
−−−→ q′

4 : Time elapses of 0.004 delay since the

acknowledgment message ”ack” transited in the system.
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Chapter 4

Formalizing UML MARTE

sequence diagram
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The UML syntax is precise thanks to meta-modeling, its semantics is informally defined. By

means of translation of a subset of the UML metamodel, we carry out operational semantics for

timed sequence diagrams: the target formalism is TIOSTS which are symbolic automata with

time. In order to prepare this translation phase, we introduce a an intermediate representation as

a textual syntax of such timed sequence diagrams. The textual representation is given as input

to translation rules which generates a set of TIOSTS automata denoting the semantics of the

sequence diagram. This intermediate representation has the advantage of describing concisely

and formally the subset of UML that we use.

We begin by exemplifying our use of timed sequence diagrams on the component based system of

a Rain-sensing wiper control. This example will be used through the whole chapter. We present

the textual representation of timed sequence diagrams which is a simple way to delimit the subset

of UML sequence diagram we consider. Besides, the formulation of the textual representation

prepares the translation phase (see chapter 6).

4.1 Example: Rain-sensing wiper control system

Figure 4.1 specifies a Rain-sensor Wiper Controller in a car (RWC). This device automatically

adjusts the frequency of the wipers according to the measured rain intensity. Every 0.5s, the

controller sends the rain intensity received from the environment (sensor) to the system calculator.

The calculator computes the speed of the wiper. If the calculated speed changes, the system

sends the new value to the wipers’ engine.

The sequence diagram sd RainSensingWiperControl defines a cyclic behavior with the loop

operator covering all the lifelines of the system ports. Upon execution, the lifeline associated with

the port speed of the controller component ctrl, starts with an assignment action ctrl.prevSpeed =

0. In fact, a component may own computation variables. In the example, the component controller

ctrl owns a computation variable prevSpeed which stores the speed that was last applied to the

engine eng. This information serves later in the sequence diagram, to characterize interactions in

which the wipers engine receives a new speed different from the previous applied one.

The system contains a controller ctrl which receives rain intensity values on its port intensity
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Figure 4.1: Rain-sensor Wiper Controller system (RWC) as a UML MARTE sequence diagram

from a sensor not depicted in the diagram: these values are conveyed by message m1 whose

source, supposed to be the sensor, is the environment of the sequence diagram. Every 0.5 seconds

the received value is forwarded via m2 to a calculator component calc, whose main purpose is

to compute an appropriate speed for the wiper depending on the rain intensity. The frequency

is identified by means of the constraint t1[i]− t1[i − 1] = (0.5, s). The message transmission is

expected to take at most 0.1s (see the constraint t2[i]− t1[i] < (0.1, s)).

All this sequence occurs alternatively with another behavior (specified by the most external alt

operator of the diagram): ctrl receives a new speed value computed by calc conveyed by message

m3. Note the formula at the target of m3 which specifies that the reception occurs in between two

occurrences of m2. Then two alternative behaviors may occur depending on the new speed value

(differentiated thanks to the most internal alt operator). If the new speed value is different from

the previously computed speed (ctrl.speed <> ctrl.prevspeed) the ctrl.prevspeed is updated

(ctrl.prevspeed = ctrl.speed) and the new value is sent to the engine (message m4). The updating

and forwarding are sequentialized thanks to the strict operator. If ctrl.speed = ctrl.prevspeed

nothing happens.

4.2 Sequence diagram data signature

In order to represent types and operations of data in sequence diagrams, we consider a data

signature Ω = (S, Op) and a set of typed variables V = ∪s∈SVs as defined in Section 3.1, is

given. S includes basic types such as Integer and Boolean and Op contains all operations names

which relate to them. These types are used to define variables used in computations. Besides

computation variables, sequence diagrams use special variables to handle instants in time hence

the need to introduce more advanced types for that purpose.
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Time modeling Time in the MARTE standard may be both of discrete or dense nature. In

our setting, we introduce the type I (already discussed in Section 3.3 of Chapter 3) in order to

type time instants whose associated model MI may be either (a) the set of integers Z and so

discrete isomorphic to positive natural numbers or (b) may be R the set of real numbers. Besides

we introduce the type I∗ for variables capturing time instants. Recall that we call them time

variables as discussed in Section 2.1.5 of Chapter 2. In Figure 4.1, the time variable t1 captures

for example consecutive instants of the message m2 emission, being in cyclic behavior. Typically

this variable is considered of type I∗. The type I∗ can be understood as a type of array of

instants. Indeed a variable like t1 as discussed before is used to capture successively instants (at

each iteration of the loop going in region o1).

In the sequel, we consider that Op contains the following operations:

• Op contains:

− : I × I → I, (subtraction)

<: I × I → Boolean and (inequality less than)

MI associates respectively the function −MI
: MI × MI → MI to − : I × I → I and

<MI
: MI × MI → MI with <: I × I → I. These functions are respectively the subtraction

and the inequality less than as they are classically defined on MI = Z or MI = R.

• Op contains all the constant symbols associated with the type I. If I denotes discrete

instants then it contains 0 :→ I, 1 :→ I, 2 :→ I, etc. If I denotes real numbers then it

contains all constants names of real numbers (e.g. 0.5 :→ I).

• Op contains:

emptyArr :→ I∗ (empty array)

[] : I∗.Integer → I (access instant in array by location)

pushArr : I∗.I → I∗ (push instant onto array, add it to end of array)

len : I∗ → Integer (array length)

These operations are interpreted in MI as follows:

– emptyArr is associated with emptyArrMI
which is ǫ denoting the empty word;

– [] : I∗.Integer → I is associated with a function []MI
: M∗

I .MInteger → MI such that

[]MI
(d, a) is the value at location a in d whenever a denotes such an index. More

precisely, if d is of the form d0 . . . dn then we have []MI
(d0.d1 . . . dn, a) is da if 0 ≤ a ≤ n

and has any value otherwise (whenever a falls beyond the length of d or is a negative

integer);

– pushArr is associated with pushArrMI
: M∗

I .MI → M∗
I such that:

pushArrMI
(d0.d1 . . . dn, dn+1) returns d0.d1 . . . dn.dn+1 (adds an instant dn+1 to the

end of d);

– len is associated with the function lenMI
: M∗

I → MInteger≥0
such that len(d0.d1 . . . dn)

returns n+ 1 the length of d0.d1 . . . dn and len(ǫ) = 0.

Example 14 In this example, we illustrate how some terms which relate to time, occurring

in the sequence diagram of Figure 4.1 are built in our formal framework. Using the signature

Ω = (S, Op) and over the sets of the typed variable names VInteger = {i} and VI∗ = {t1, t2, t3},

one may built the following Ω-terms with variables in V = VInteger ∪ VI∗ (TΩ(V )):

0.1, 0.5, i, −(i, 1), [](t1, i), [](t1, −(i, 1)), [](t2, i), [](t3, i), −([](t1, i), []I(t1, i − 1)) = 0.5, <

(−([](t2, i), [](t1, i)), 0.1) and < (−([](t3, i), []I(t1, i)), 0.5).
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Let us discuss some of them. Regarding the the controller, the constant 0.5 denotes the frequency

of the transmissions of the rain intensity to the calculator and 0.1 denotes the maximum allowed

propagation delay of the rain intensity to the calculator. i and −(i, 1) are integer terms denoting

locations in time variables. The terms [](t1, i) and [](t1, −(i, 1)) denote the instants located

respectively at i and −(i, 1) of the time variable t1 related to the emissions of the rain intensity.

Notation 6 In the sequel for the sake of simplicity, we simply note t[x] instead of [](t, x). We

often adopt as well an infix notation instead of the prefix one. For instance, we note t[x]− t[x −1]

rather than −([](t, x), [](t, x − 1)).

We introduce now a subset of formulas useful to the definition of timing constraints.

Definition 23 (Time formula) The set of time formula denoted TΩ(V \ VI) is inductively

defined as follows:

• For any term t1 and t2 in TΩ(V ), we have

– t1 = t2 is in TΩ(V ),

– < (t1, t2) = True is in TΩ(V ),

– < (t1, t2) = False is in TΩ(V ).

• For any ϕ1 and ϕ2 in TΩ(V ), we have ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2 and ¬ϕ1 are in TΩ(V ).

Let us recall the meaning of time formula according to sequence diagrams. What is special about

such formula, is that they may contain terms of the form t[−1], that is for negative integer indexes

where values are not significant. In which case, the formula is ignored (as if we have a true guard).

Typically in a sequence diagram in Figure 4.1, the timing constraints t1[i]− t1[i − 1] = 0.5 states

that between two successive emissions of m2 there is a delay of 0.5, the first emission (where i

equals to 0) occurs anyway: the evaluation of t1[0]− t1[−1] = 0.5 is irrelevant and hence ignored

in this case.

This validation of formulas as defined in Definition 7 does not reflect this semantical interpretation.

However we can define from any time formula, a weaker formula that will be satisfiable exactly

according to the semantic interpretation discussed above. In order to prepare this definition,

consider the following definition which allows one to identify syntactically terms of the form t[i]

occurring in a time formula expression.

Definition 24 (Instants of a time formula) Let ϕ ∈ TΩ(V ) be a time formula. The set of

time instants associated with ϕ, denoted InstantTerms(ϕ) is defined as:

• if ϕ is of the form t[x] = d where t ∈ VI∗ , x ∈ TΩ(V )Integer and d ∈ VI

then InstantTerms(ϕ) = {t[x]}

• if ϕ is of the form t[x] = t′[y] where t, t′ ∈ VI∗ and x, y ∈ TΩ(V )Integer

then InstantTerms(ϕ) = {t[x], t′[y]}

• if ϕ is of the form ϕ1 ∧ ϕ2 and ϕ1 ∨ ϕ2 then InstantTerms(ϕ) = InstantTerms(ϕ1) ∪

InstantTerms(ϕ2).

Example 15 Consider the time formula ϕ = t1[i] − t1[i − 1] = 0.5. The set of time instants

associated with ϕ is {t1[i], t1[i − 1]}.
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Now, we show how to define the formula discussed above (we call it "weak form" of the original

formula). Firstly, we build a formula characterizing situations where the index occurring in a

time instant term is out of bound of the corresponding time variable.

Definition 25 (Time index out of bound formula) Let t[x] be an instant term where t ∈

VI∗ and x ∈ TΩ(V )Integer. We note IOB(t[x]) (for Index Out of Bound) the formula x < 0∨ x >

len(t).

The weak form of a time formula is a formula which is true when ϕ is true or when some index of

some time instant term is out of bound.

Definition 26 (Weak form of a time formula) Let ϕ ∈ TΩ(V ) be a time formula. The weak

form of ϕ, denoted WF (ϕ) is the formula ϕ ∨ ∨t∈InstantT erms(ϕ)IOB(t).

Example 16 The weak form of ϕ = t1[i] − t1[i − 1] = 0.5 is ϕ = t1[i] − t1[i − 1] = 0.5 ∨ (i <

0 ∨ i > len(t1)) ∨ (i − 1 < 0 ∨ i − 1 > len(t1)).

Specifically, WF (ϕ) is evaluated to True when i = 0. This means that when the first period of

0.5s starts (at t1[0]) the formula is satisfied (regardless the value at t1[−1]). Then, the only sub

formula of WF (ϕ) that matters when the second period starts (at t1[1], i = 1), is ϕ: it is obvious

that the remaining sub formulas are not satisfied.

4.3 Sequence diagram syntax

For any sequence diagram, we define the sequence diagram signature which structures all symbols

introduced by the specifier that may occur in a sequence diagram.

Definition 27 (Sequence diagram signature) A Sequence diagram signature (signature for

short) is a 5-tuple Σ = (P ∪ {e}, V ar ∪ {i}, Msg, Obs, Reg) where

• P is a typed set of ports of the form P = ∪s∈SPs, e is distinct element representing the

environment satisfying e Ó∈ P ,

• V ar is a set of typed variables called computation variables V ar = ∪s∈SV ars such that

s Ó∈ {I, I∗}. We assume that V ar can be partitioned as V ar = ∪p∈P V arp such that

p Ó= p′ ⇒ ∅. Moreover i is a distinct variable of type Integer satisfying i Ó∈ V ar.

• Msg is a set of typed message labels of the form Msg = ∪(u,v)∈(P ∪{e})2Msg(u,v), where:

– for any u, v ∈ P of different types, we have Msg(u,v) = ∅

– for any u ∈ P ∪ {e}, we have Msg(u,u) = ∅

• Obs is a set of time variables of type I∗,

• Reg is a set of regions names.

In the sequel we note V the set of variables P ∪ V ar ∪ Obs ∪ {i}.

Example 17 Consider as an example the signature Σ of the sequence diagram depicted in the

upper part of Figure 4.2.
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Σ = (P ∪ {e}, V ar ∪ {i}, Msg, Obs, Reg) where:
P = PInteger = {p1, p2}; V ar = ∅;
Msg = Msg(p2,p1) ∪ Msg(p2,e), where Msg(p2,p1) = {m1} and Msg(p2,e) = {m2},
m1 (respectively m2) starts at port p2 and ends at p1 (respectively environment e);
Obs = {t1}, t1 is the unique time variable defined in the diagram capturing emission instants
of m2; and Reg = {o} where o is the region of the loop operator.

Figure 4.2: Sequence diagram signature

Example 18 The signature ΣRW C of the sequence diagram of the Rain-sensing Wiper Control

system (RWC) in Figure 4.1 defines these sets:

P = PInteger = {ctrl.intensity, ctrl.speed, calc.intensity, calc.speed, eng.speed};

V ar = V arInteger = V arctrl.speed = {ctrl.prevSpeed};

Msg = Msg(e,ctrl.intensity) ∪ Msg(ctrl.intensity,calc.intensity) ∪ Msg(calc.speed,ctrl.speed)

∪Msg(calc.speed,eng.speed),

where Msg(e,ctrl.intensity) = {m1}, Msg(ctrl.intensity,calc.intensity) = {m2},

Msg(calc.speed,ctrl.speed) = {m3}, and Msg(calc.speed,eng.speed) = {m4}; Obs = {t1, t2, t3};

and Reg = {o, o1, o2, o11, o12, o111, o112}.

4.3.1 Messages

Recall that a message introduces a temporal order between two instants belonging respectively to

the sending and receiving lifelines (which are by default incomparable) and hence allows one to

constrain the transmission delay of the piece of data conveyed by the message. We encapsulate

the message in a structure containing besides the message label, additional timing features. The

message expression may contain two time variables which relate to the connection points of

the message and also contains a timing constraint. Based on the sequence diagram signature

definition Σ, the set of messages may be reformulated as follows:

Definition 28 (Messages) The set of messages over Σ is the set Msg(Σ) of all quadruples

of the form: (t, φt, m, t′) and (_, true, m,_), where t, t′ ∈ Obs are time variables, m ∈ Msg,

φt ∈ TΩ(V ) (the symbol _ denotes the absence of a time variable).

Note that a messages cannot be of form (t, φt, m,_) or (_, φt, m, t′) because the intended use if

to constrain the transmission delay and hence relate t and t′ in the timing constraint expression.

However constraining t or t′ alone is possible at the lifeline level. In the following, we call a

messages of the form (t, φt, m, t′) (respectively (_, true, m,_)) a a timed message (respectively

simple message).

Example 19 Figure 4.3 depicts the expression of the message m2 of the RWC system as specified

in Figure 4.1. As discussed in the section, m2 coveys cyclically (being in a loop operator region)

the rain intensity from the controller to the calculator within at most 0.1s (stated by the timing

constraint t2[i]− t1[i] < 0.1). The message (t1, t2[i]− t1[i] < 0.1, m2, t2) is an element of the set

Msg(ΣRW C) over the sequence diagram signature ΣRW C defined in Example 18.
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(t1, t2[i]− t1[i] < 0.1, m2, t2)

Figure 4.3: Syntax of a message of Rain-sensing Wiper Control system (RWC)

4.3.2 Lifelines

As we have seen in Chapter 2, there are three kinds of actions that may occur on a lifeline

representing a given port, namely: an emission of a message, a reception of a message and a local

action. These actions are performed atomically. They are the basic units of concurrency. These

atomic actions occur at the port level, hence we call them atoms of a port. The instant at which

the atom occurs may be constrained. Therefore, the expression of an atom may contain a time

variable and a timing constraint. Besides, a data constraint is introduced to guard the action

execution. This results in the encapsulation of the action in a richer structure, i.e. atom, such

that its expression may contain data and timing features. We define the set of atoms of a given

port as follows:

Definition 29 (Atoms of a port) Let p ∈ P , the set of atoms of p over Σ is the set Atom(p,Σ)

of all quadruples of the form: (t, φt, φd, m), (_, true, φd, m), (t, φt, φd, new(x)), (_, true, φd, new(x)),

(t, φt, φd, x = ̺) and (_, true, φd, x = ̺), where t, t′ ∈ Obs are time variables, φt ∈ TΩ(V ),

φd ∈ SenΩ(V arp ∪ {p}), m ∈ ∪(u,v)∈({p}∪{e})2\{(e,e)}Msg(u,v), x ∈ V arp ∪ {p}, ̺ is term of

TΩ(V arp ∪ {p}) (= is the assignment operation), the instructions of the form new(x) randomly

associates a new value with x.

Similarly to messages, we distinguish two kinds of atoms, based on the presence or not of timing

features, respectively called timed atoms and simple atoms.

Example 20 Consider again the sequence diagram of RWC system. The Figure 4.4

illustrates expressions of lifeline atoms built over ΣRW C : Atom in Figure 4.4a

is in Atom(ctrl.intensity,ΣRW C); Those in Figures 4.4b and 4.4d are elements of

Atom(ctrl.speed,ΣRW C); and the one in Figure 4.4c belongs to Atom(calc.speed,ΣRW C). Note

that the atom (t1, t1[i]−t1[i−1] = 0.5, true, m2) in Figure 4.4a denotes a sending of a message since

m2 ∈ Msg(ctrl.intensity,calc.intensity) that is the message originates from the port ctrl.intensity

and the atom is of the port ctrl.intensity. Similarly, (t3, t3[i]− t1[i] < 0.5, true, m3) inFigure 4.4b

denotes a reception of a message (m3 ∈ Msg(calc.speed,ctrl.speed), the port ctrl.speed is the target

of the message).

Besides local actions, operators may be depicted on lifelines. Unlike actions which concern

individual lifelines, an operator may cover some/all lifelines of the sequence diagram and so

the behavior contained in its region concern all of them. However we translate each lifeline

into a TIOSTS automaton. This allows us to characterize the sequence diagram as a set

of communicating automata and classically obtain traces by synchronizing actions on values

exchanges and interleaving the others. The translation requires to capture operators locally in

lifeline expressions. From the point of view of the lifeline, it is sufficient to know the kind of the

behavior (iterative with loop, choice with alt, etc.) and the portion of the behavior contained

in the operator region which concerns that lifeline. Regions names are also kept in the lifeline
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(t3, t3[i]− t1[i] < 0.5, true, m3)

(b) Reception atom
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(c) Underspecification atom
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(_, true, ctrl.speed <> ctrl.prevSpeed, ctrl.prevSpeed = ctrl.speed)

(d) Assignment atom

Figure 4.4: Syntax of lifeline atoms of the RWC system

expression because we make use of them in the translation mechanism as content of artifact

messages for the lifelines to notify each others of some choice of behavior (e.g. when a lifeline

chooses (non deterministically) to go in a given region of an alt operator, it notifies the other

lifelines of the region choice, refer to the translation Chapter 6). This definition formulates the

expression of a lifeline in an inductive manner:

Definition 30 (Lifeline of a port) Let p ∈ P , the set Lf(p,Σ) of lifelines of p is inductively

defined as follows:

• ǫ ∈ Lf(p,Σ)

• if lf ∈ Lf(p,Σ) then (seq, atom, lf) ∈ Lf(p,Σ) where atom ∈ Atom(p,Σ),

• if lf, lf ′ ∈ Lf(p,Σ) then (loop, o, lf, lf ′) ∈ Lf(p,Σ) where o ∈ Reg,

• if lf, lf ′, lf ′′ ∈ Lf(p,Σ) then (alt|strict, o, lf, o′, lf ′, lf ′′) ∈ Lf(p,Σ) where o, o′ ∈ Reg,

Example 21 This is the expression of the lifeline associated with the port ctrl.intensity (see

Figure 4.1) built over ΣRW C (an element of Lf(ctrl.intensity,ΣRW C)):

lfcalc.intensity = (loop, o, lf0, lf1), where lf1 = ǫ; lf0 = (alt, o1, lf2, o2, lf3, lf4); lf3 = ǫ; lf4 = ǫ;

lf2 = (seq, (_, true, true, m1), lf5); lf5 = (seq, (t1, t1[i] − t1[i − 1] = 0.5, true, m2), lf6); and

lf6 = ǫ.

We define now sequence diagrams as couples of sets: the first set is the set of messages and the

second one is the set of lifelines.

Definition 31 (Sequence diagram) Let Σ be a sequence diagram signature. A sequence dia-

gram sd over Σ is a couple (Msg, Lf), where Msg is a set of messages such that Msg ⊆ Msg(Σ)

and Lf is a set of lifelines of the form ∪p∈P,lf∈Lf(p,Σ){lf}.

Example 22 Consider again the sequence diagram in Figure 4.1 of the RWC system. Its

textual expression is (MsgRW C , LfRW C) where MRW C is {m1, m2, m3, m4} and LfRW C is

{lfctrl.intensity, lfctrl.speed, lfcalc.intensity, lfcalc.speed, lfeng.speed}.
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The goal of this chapter is to present Timed Input/Output Symbolic Transition Systems

(TIOSTS) [12] that are later used to associate a formal counterpart with sequences diagrams

with MARTE constraints. TIOSTS extend Input/Output Symbolic Transition Systems (IOSTS)

(refer to Section 3.2). IOSTS are symbolic automata used to specify behaviors of reactive systems

expressed as reactions by producing outputs to external stimuli. In few words, IOSTS are au-

tomata whose transitions are labeled by guards over variables called data constraints, by symbolic

communication actions and by variable assignments which capture state evolutions. We define

TIOSTS automata [12] which are similar to IOSTS except that they introduce timing constraints

on transitions and particular variables to store instants as in sequence diagram semantics. Hence,

TIOSTS formalism handles both data and time in a symbolic manner. This differentiates the

TIOSTS from timed automata [3] (TA) used also in testing [29, 60, 54] where data is enumerated.

In this chapter, we present the syntax of TIOSTS automata and give their semantics. Then we

discuss some closely related automata formalisms in the literature which treat time and data

symbolically.

5.1 TIOSTS syntax

As glimpsed previously in the introduction, TIOSTS are automata in which one describes data

manipulations in symbolic manner. In order to represent types and operations of these data, we

use data signature and all along this chapter, we consider that a data signature Ω = (S, Op) as

defined in section 3.1, is given. TIOSTS manipulate variables capturing instants as in sequence

diagrams. For that purpose, we suppose that S contains the type I and I∗ and Op contains all

operation names introduced in Section 4.2.

In this section, we develop the syntax of TIOSTS and their composition which is used to represent

communicating TIOSTS.
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5.1.1 Basic definition

TIOSTS are defined upon TIOSTS signatures (or signature when the context is clear of confusion)

which are used to define syntactical elements specific to a particular TIOSTS. A signature

introduces two sets:

• a set of variables which are used either to abstract data handled in the TIOSTS or to stores

instants and are of type I∗,

• a set of so-called channels which are used later to define communication actions.

A particularity of TIOSTS is that variables introduced in their signatures are partitioned into

two sets. The first one is a set of so-called read/write variables, to which the TIOSTS may assign

values or use associated values. The second one is a set of so-called read only variables whose

values can be defined by the TIOSTS environment but not by the TIOSTS itself. In fact, what

we call environment of a TIOSTS G corresponds to another TIOSTS communicating with G.

From the point of view of G, the value of a read only variable of its signature may change without

any control of G. This will be discussed more precisely in Section 5.2 and the usefulness of such

read only variables will made clear in Section 6.2.2.

Definition 32 (TIOSTS signature) A TIOSTS signature (signature for short) is a couple

Σ = (A, C) where A is a set of variables typed in S and C is a set of communication channels. A

is of the form Arw ∐ Ar where variables of Arw are called read/write variables and variables of

Ar are called read only variables. Moreover Arw satisfies Arw ∩ AI∗ = Arw ∩ AI = ∅.

Notation 7 We note Read(Σ) the set Ar and Write(Σ) the set Arw. In the sequel, AI∗ is called

the set of time variables.

Example 23 Let us define the signature Σctrl as the couple (Actrl, Cctrl) such that:

• Actrl = Actrl
rw ∐ Actrl

r ,

where Actrl
r = Actrl

I∗ = {t1, t2, t3} (A
ctrl
I = ∅) and Actrl

rw = {xenv, xcmd, xdata, it1 , it3}.

• Cctrl = {env, cmd, data}

t1, t2, t3 are time variables and hence read only variables. xenv, xcmd, xdata are read/write variables

assigned by data stored in communication or computation where xenv, xcmd are of type String and

xdata is of type Integer. Intuitively, it1 , it3 are read/write variables of type Integer which are used

later to identify places where instants are stored respectively in t1, t3. Finally, env, cmd, data are

channels through which data inputs and outputs transit.

TIOSTS are automata whose transition executions are associated with action occurrences. The

set of actions that can be defined for a signature contains: input actions used to denote receptions

from the TIOSTS environment; output actions which denote value emissions performed by the

TIOSTS towards its environment; the action new(x) which denotes an arbitrary updating of the

data variable x and corresponds to a underspecification action introduced in sequence diagram

(see section 2.1.2); and the invisible action τ which is classically used to denote the absence of an

observable action during the execution of some transitions. Formally, the set of actions associated

with a TIOSTS signature is defined as follows:

Definition 33 (TIOSTS actions) Let Σ = (A, C) be a TIOSTS signature.

The set of TIOSTS actions (actions for short) over Σ is defined as

Act(Σ) ::= c?x|c!t|new(x)|τ,
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5.1. TIOSTS syntax

where c ∈ C, x ∈ Arw, t ∈ TΩ(Arw). c?x denotes the reception of a value on channel c stored in

x, c!t denotes the emission of the value assigned to t on channel c.

Example 24 Based on the signature Σctrl of Example 23, we give some actions in Act(Σ):

• The action env?xenv represents an input received by the system on the channel env and

stored in the variable xenv.

• The action cmd!”acquire” represents an output sent by the system on channel cmd as a

string constant ”acquire”.

As in the case of IOSTS, transitions of a TIOSTS introduce: a source state, a formula called

a guard over data variables defining a constraint on variable interpretations for the transition

firing, a communication action, an assignment of data variables to update their values and a

target state. In addition to these features, transitions of a TIOSTS introduce two notions: first

they declare a (possibly empty) set of time variables used to capture the current instant, second

they introduce a guard over time. A guard over time is a time formula constraining the instant

of the transition execution as defined in Definition 23.

Definition 34 (TIOSTS) Let Σ = (A, C) be a TIOSTS signature. A TIOSTS over Σ is a

triple (Q, q0, T ), where Q is a set of states, q0 ∈ Q is the initial state and T is a set of transitions

of the form (q,T, φt, φd, act, ρ, q′) where q, q′ ∈ Q, T ⊆ AI∗ , φt ∈ TΩ(A), φd ∈ Senqf
Ω (Arw),

act ∈ Act(Σ) and ρ is a substitution of variables of Arw in TΩ(Arw).

φt is a time formula constraining the instants at which the action act occurs. φd is a firing

condition on data variables. ρ assigns new values to data variables when the transition is executed.

Values assigned to variables occurring in T are updated implicitly by storing at the last defined

index the instant of occurrence of act when the transition is executed. T is not restricted to a

singleton because a TIOSTS may result from a composition of several TIOSTS, each of them

defining instants with different time variables (See Definition 35).

Notation 8 For any transition tr of the form (q,T, φt, φd, act, ρ, q′) we use the notations source(tr),

vart(tr), guardt(tr), guardd(tr), act(tr), ρ(tr), and target(tr) in order to refer, respectively, to

q, T, ϕt, φd, act, ρ, and q′. If ρ(tr) does not affect any variable in Arw, we note it id, which

stands for the identity function over the set Arw.

Example 25 In the rest of this chapter, we use a toy example for illustration: the system

consists of a controller and a sensor. The controller is repeatedly activated by a command ”start”,

with a spaced time delay of at least 0.1 seconds. The controller sends an initiate command

”acquire” to the sensor, and waits for the sensor to reply with an acknowledgment ”ack”. After

the acknowledgment is received, the controller receives the measurement data from the sensor.

Figure 5.1a illustrates the TIOSTS G
ctrl for the system controller over the signature Σctrl that

was defined in Example 23.

Let us focus on the transition from q1 to q2 (there is only one) of G, Figure 5.1b zooms in on

this transition. The transition reflects the system evolution from one source state (here state

q1) to another target state (state q2) over time. The transition action (env?xenv) is fired. Note

that the transition may be executed many times because of the iterative behavior of the system,

and thus has many execution instants. We capture these instants in the time variable associated

with the transition (t1). Also these instants may be constrained by a time guard associated with

the transition: in the example, the time guard is t1[it1 ]− t1[it1 − 1] > 0.1. Also, a condition on
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(b) TIOSTS transition

Figure 5.1: Timed Input Output Transition Systems (TIOSTS)

data must be satisfied to cover the transition: the condition xenv = ”start” must be true after

the reception action env?xenv (of a value stored in xenv). The substitution associated with the

transition is id[it1 ← it1 + 1] or can be simply written [it1 ← it1 + 1]. It increments the time

index it1 used to write the constraint on time as explained before, and leaves the other variables

unchanged. As a whole, the transition denotes the activation of the system by the command

”start” received from the environment on the channel env.

Consider the transition q2
{t2}

−−−−−−−−−→
cmd!”acquire”

q3 of G
ctrl. Here, the controller asks for a new data

measure by sending the command ”acquire” on the channel cmd.

Let us consider now the branching in the automaton. From state q4, two behaviors are possible:

either the system receives a piece of data which does not surpass the acceptable threshold (transition

q4 → q1, xdata < 500) and iterates with a new cycle; otherwise, the system exits the looping

behavior (transition q4 → q5, xdata ≥ 500).

5.1.2 TIOSTS composition

Any TIOSTS G can be the result of a structuring of basic TIOSTS (not structured of composition)

by means of a composition operator. That operator reflects communications between these basic

TIOSTS. The composition makes both TIOSTS execute two communication actions performed on

the same channel simultaneously. The synchronized execution consists in one TIOSTS outputting

a value on a shared channel and the second TIOSTS inputting that value on the same channel.

Any other action which does not have a match in that sense is evaluated asynchronously.

Definition 35 (TIOSTS composition) Let Σ1 = (A
1, C1) and Σ2 = (A

2, C2) be two TIOSTS

signatures such that A1rw ∩ A2rw = ∅. Let us define Σ1 + Σ2 the signature (A, C) such that:

Arw = A1rw ∪ A2rw, Ar = (A
1
r ∪ A2r) \ (A1rw ∪ A2rw) and C = C1 ∪ C2.

Let G1 = (Q1, q10 , T1) and G2 = (Q2, q20 , T2) be two TIOSTS respectively over Σ1 and Σ2.

The composition of G1 and G2 denoted G1||G2 is the TIOSTS (Q, q0, T ) over Σ1 + Σ2 where
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Q = Q1 × Q2, q0 = (q
1
0 , q20) and T is defined as follows:

• asynchronous execution for any (q1, q2) ∈ Q1 × Q2 and tr1 = (q1,T, φt, φd, act, ρ, q′
1) ∈

T1 where act is not of the form c?x or c!t with c ∈ C1 ∩ C2,

we have tr = ((q1, q2),T, φt, φd, act, ρ, (q′
1, q2)) ∈ T . The role of G1 and G2 can be inverted.

• synchronous execution for any tr1 = (q1,T1, φ1t , φ1d, c?x, ρ1, q′
1) ∈ T1

and tr2 = (q2,T2, φ2t , φ2d, c!t, ρ2, q′
2) ∈ T2, let us define ρ1||ρ2 the substitution from A1rw ∪A2rw

to TΩ(A
1
rw ∪ A2rw) as: for all

1 y ∈ A1rw ∪ A2rw, ρ1||ρ2(y) = [x ← t] ◦ ρ1(y) if y ∈ A1rw

and ρ1||ρ2(y) = ρ2(y) if y ∈ Arw. Then we have tr = ((q1, q2),T1 ∪ T2, φ1t ∧ φ2t , [x ←

t](φ1d) ∧ φ2d, c!t, ρ1||ρ2, (q
′
1, q′

2)) ∈ T . The role of G1 and G2 can be inverted.

Example 26 Recall that our system consists of a controller and a sensor. We built the TIOSTS

corresponding to the whole system exactly from two TIOSTS: the one of the controller already

defined in Figure 5.1a and the TIOSTS of the sensor given in Figure 5.2a.

We consider also the signature Σsens = (Asens, Csens) defined for the TIOSTS of the sensor as

follows:

• Asens = Asens
rw ∐ Asens

r , where Asens
rw = {x′

cmd, x′
data, i′

t′
2
} and Asens

r = {t′
1, t′

2}

• Csens = {cmd, data}.

We note Gsys the TIOSTS of the system, depicted in Figure 5.2b. It is the result of the composition

of Gctrl and G
sens. To see this, firstly note that Gsys is defined over the signature Σsys =

(Asys, Csys), where Asys = Actrl ∪ Asens and Csys = Cctrl ∪ Csens. So, we have:

• Asys = Asys
rw ∐ Asys

r such that Asys
rw = {xenv, xcmd, xdata, it1 , it3 , x′

cmd, x′
data, i′

t′
2
} and Asys

r =

{t1, t2, t3, t′
1, t′

2},

• Csys = {env, cmd, data}.

We next show examples of transitions in the product and how they were computed.

The transition (q1, q′
1)

{t1} 0.1<t1[it1 ]−t1[it1−1],xenv=”start”
−−−−−−−−−−−−−−−−−−−−−−−−−→

env?xenv

it1←it1+1

(q2, q′
1) in Figure 5.2b was obtained

from the asynchronous execution of the transition of Gctrl, illustrated in Figure 5.1b since

the channel env is not shared between the two composed TIOSTS (see the first item of

Definition 35). Thus the controller TIOSTS evolves to the state q2 while the sensor TIOSTS

stalls in state q′
1.

Now consider the successor transition (q2, q′
1)

{t2,t′
1}

−−−−−−−−−−−→
cmd!”acquire”

x′
cmd←”acquire”

(q3, q′
2). It results from the

synchronous execution of the transitions, which takes the controller from state q2 to q3 and

the sensor from state q′
1 to q′

2. They exchange the value ”acquire” on the channel cmd (see

the second item of Definition 35) which is stored in the variable x′
cmd (of the sensor): it is

easy to see that [x′
cmd ← ”acquire”] ◦ id = [x′

cmd ← ”acquire”]. Note that the set of time

variables associated with the resulting transition contains two variables {t2, t′
1}, each one

comes from a different TIOSTS involved in the product.

1[x ← t] is the substitution associating t to x and leaving all other variables unchanged. We also note [x ← t]
its extension to formulae.
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(b) Gsys = Gctrl||Gsens

Figure 5.2: TIOSTS Composition

Finally note that all the τ transitions are executed asynchronously (see transitions between

(q0, q′
0) and (q1, q′

1) corresponding the initialization of the time indexes).

In the sequel, we are interested in being able to identify transitions of G1 and G2 used to build a

given transition in G1||G2. For example, the transition ((q1, q2),T, φt, φd, act, ρ, (q′
1, q2)) of the

item asynchronous execution in Definition 35 is build from the transition (q1,T, φt, φd, act, ρ, q′
1)

of G1. In the same way, the transition ((q1, q2),T1∪T2, φ1t ∧φ2t , [x ← t](φ1d)∧φ2d, c!t, ρ1||ρ2, (q
′
1, q′

2))

of item synchronous execution in Definition 35 is built over transition (q1,T1, φ1t , φ1d, c?x, ρ1, q′
1)

of G1 and the transition (q2,T2, φ2t , φ2d, c!t, ρ2, q′
2) of G2.

In order to identify those transitions of basic TIOSTS used to build a transition of a composition,

we use a syntactic naming mechanism. In the sequel, we suppose that all basic TIOSTS (i.e.

not resulting of a composition) are associated with a naming function for transitions and we

show how to build a name for any transition of any composition of basic TIOSTS. We begin by

defining the set of TIOSTS that can be obtained by composing basic TIOSTS.

Definition 36 (Systems) Let Col be a set of TIOSTS. The set of Sys(Col) of systems over

Col is defined inductively as follows:

• for any G ∈ Col, G ∈ Sys(Col)

• for any G1 and G2 ∈ Sys(Col) such that G1||G2 is defined, we have G1||G2 ∈ Sys(Col)
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5.2. TIOSTS semantics

Now a set of TIOSTS being given (we call such a set a collection, that is why we note it C in

Definition 36), we define the notion of transition naming system associated with it.

In the sequel, we consider that a set TN of transition names is given.

Definition 37 (Naming) Let Col be a set of TIOSTS. A transition naming system over Col

is a set NS =
⋃

G∈Col{(G, n)} such that for all G ∈ Col and for all n, n′ ∈ TN , if (G, n) ∈ NS

and (G, n′) ∈ NS then n = n′. For any (G, n) ∈ NS, n : Trans(G) → 2T N is injective such

that for any tr ∈ Trans(G), n(tr) is a singleton. For any (G1, n1), (G2, n2) ∈ NS, for any

tr1 ∈ Trans(G1) and any tr2 ∈ Trans(G2), we have if G1 Ó= G2 then n(tr1) Ó= n(tr2).

In the following, for any (G, n) ∈ NS we note nameG the function n. nameG returns a singleton.

Definition 38 extends transition naming to systems by returning sets of basic transition names.

Definition 38 (Naming extension to systems) Let NS be a transition naming system. The

extension of NS to Sys(Col) is the set N̆S =
⋃

S∈Sys(Col){(S, n)} such that (S, n) ∈ N̆S if and

only if:

• if S ∈ Col then n = nameS

• if S is of the form S1||S2 with (S1, n1), (S2, n2) ∈ N̆S then for any tr ∈ Trans(S1||S2) we

have:

– if tr is obtained by applying the item asynchronous execution in Definition 35

with a transition tr1 ∈ Trans(S1) (respectively tr2 ∈ Trans(S2)) then n(tr) = n1(tr1)

(respectively n(tr) = n2(tr2)),

– if tr is obtained by applying the item synchronous execution in Definition 35

with a transition tr1 ∈ Trans(S1) and a transition tr2 ∈ Trans(S2) then n(tr) =

n1(tr1) ∪ n2(tr2).

We apply the convention that for any (S, n) ∈ N̆S, we note nameS for the function n as we do for

basic TIOSTS. For any transition tr of a system S, nameS(tr) returns names of basic TIOSTS

transitions that have been used by applying successively items of Definition 35 to build tr.

Example 27 Consider the transition tr : (q2, q′
1)

{t2,t′
1}

−−−−−−−−−−−→
cmd!”acquire”

x′
cmd←”acquire”

(q3, q′
2) (see Figure 5.2b). tr

was built by synchronizing the two transitions tr1 : q2
{t2}

−−−−−−−−−→
cmd!”acquire”

q3 and tr2 : q′
1

{t′
1}

−−−−−−→
cmd?x′

cmd

q′
2.

Let nameGctrl(tr1) and nameGsens(tr2) be respectively {n1} and {n2}, we have nameGctrl||Gsens(tr)

is {n1, n2}.

5.2 TIOSTS semantics

We propose to define TIOSTS semantics using TIOLTS (Timed Input Output Labeled Transition

System).

TIOLTS associated with a TIOSTS

As glimpsed in the introduction of Section 3.3, semantics (i.e. behavior) of a TIOSTS is defined

as a set of traces. In order to build this set of traces for a TIOSTS, we define a TIOLTS
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associated with the TIOSTS and then define the semantics. To reach that goal, we first define the

so-called runs of TIOSTS transitions. Intuitively, a run of a transition is simply the mathematical

representation of a possible execution of that transition.

Definition 39 (Runs of Transitions) Let G = (Q, q0, T ) be an TIOSTS over Σ = (A, C).

The set of snapshots of G is the set SnpM (G) = Q × MI × MA. For any tr ∈ T of the form

(q,T, ϕt, ϕd, act, ρ, q′), the set of runs of tr is the set Run(tr) ⊆ SnpM (G)× ActM (C)× SnpM (G)

such that:

((q, T , ν), actM , (q′, T ′, ν′)) ∈ Run(tr) if and only if T ≤ T ′ and there exists νi : A → M

satisfying:

• for all x ∈ T, we have νi(x) = pushArrMI
(ν(x), T ′),

• if act is of the form c!t (respectively τ) then for all x ∈ A \ T we have νi(x) = ν(x),

• if act is of the form c?x (respectively new(x)) then for all y ∈ A \ (T ∪ {x}) we have

νi(y) = ν(y),

such that actM = νi(act), for all x ∈ Arw we have ν′(x) = νi(ρ(x)), for all x ∈ AI∗ we have

ν′(x) = νi(x), M |=νi
WF (ϕt) and M |=νi

ϕd.

Notation 9 For any run r of the form ((source(tr), T , ν), actM , (target(tr), T ′, ν′)) ∈ Run(tr),

the transition tr is called the ground transition of r and is denoted g(r), the duration T ′ − T

is called duration of tr and is denoted δ(r). source(r), act(r) and target(r) stand respectively

for (source(tr), T , ν), actM and (target(tr), T ′, ν′). Finally for any snapshot snp = (q, T , ν),

state(snp) stands for q, T (snp) stands for T and ν(snp) stands for ν.

Let us comment Definition 39. SnpM (G) is the mathematical denotation of a current numeric

state of the TIOSTS. Such numeric state, or snapshot, characterizes: a given state of G, that

is supposed to be reached after some executions; an instant of MI which represent the instant

at which the state is reached; and an interpretation of variables of A denoting current values

of variables. A run of a transition is simply a triple that introduces : a snapshot denoting the

numeric state before executing the transition; a numeric communication action associated with

the transition execution; and finally a snapshot denoting the numeric state after the transition

execution. Following notations of Definition 39, the instant T ′ after the execution of tr is supposed

to be posterior to the instant T before the execution of tr (T ≤ T ′). It is also the instant at

which actM occurs. Now we have to take into account that tr can be executed if and only if both

φt and φd are satisfied. Let us note two facts : first φt should be true at the instant T ′ when

actM occurs; second we suppose that φd is true after having taken into account the new value

received whenever act(tr) is a reception (or a new definition of variable in the case of an action

of the form new(x)). Those two facts are not taken into account in ν. Therefore, we build an

intermediate interpretation νi to take them into account. Let us comment in order the three

items of Definition 39 :

• The variables of T are the time variables that are supposed to store the occurrence instant

of actM . Since they are all arrays, we use the function pushArrMI
to store them (denoted

by νi(x) = pushArrMI
(ν(x), T ′)).

• The second item states that whenever tr does not introduce a reception (or a redefinition)

then for all variables not in T we have νi is defined as ν.
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• third item states that if tr introduces an input of the form c?x (or a redefinition of x of the

form new(x)) then for all variables not in T and different from x, we have νi is defined as ν.

There is no constraints on νi(x) since it represents a value received which is not controlled

by G (or a random redefinition of x).

Now we consider the satisfaction of φt. Recall as discussed in Section 4.2, that φt introduces

terms of the form t[i] referring to the value in the array t stored at place i. Moreover recall that

the concrete value assigned to i may some times refer to an irrelevant place (typically −1 is an

irrelevant place) and to be consistent with an accepting sequence diagram execution. We impose

that transition can be fired if νi(i) represents such value (and of course if M |=νi
φd too). To

reach that goal in Definition 39, we do not impose that M |=νi
φt which could be false although

νi(i) refers to an irrelevant place. However, we impose M |=νi
WF (φt) where WF (φt) is defined

in Definition 25 of Section 4.2. Recall that WF (φt) is a formula which is true whenever either φt

is true or same index associated to time variables refers to irrelevant places. Finally, ν′ takes

into account assignment ρ for all variables in Arw (ν′(x) = νi(ρ(x))). ν′ is νi for all variables in

AI∗ and there are no constraints on ν′ for variables in Ar \ AI∗ because their associated value

evaluation is not controlled by the TIOSTS G.

Example 28 Let us consider again the TIOSTS G
ctrl depicted in Figure 5.1a and defined over

the signature Σctrl = (Actrl, Cctrl) in Example 23. Recall Σctrl is defined as follows:

• Actrl = Actrl
rw ∐ Actrl

r ,

where Actrl
r = Actrl

I∗ = {t1, t2, t3} (A
ctrl
I = ∅) and Actrl

rw = {xenv, xcmd, xdata, it1 , it3}.

• Cctrl = {env, cmd, data}

Specifically consider the transition tr as an illustration of Definition 39:

q1
{t1} 0.1<t1[it1 ]−t1[it1−1],xenv=”start”
−−−−−−−−−−−−−−−−−−−−−−−−−→

env?xenv

it1←it1+1

q2

We discuss a possible run r of the transition tr:

(q1, 0, ν0)
env?”start”
−−−−−−−→ (q2, 0.5, ν1),

where

interpretation of variables

ν0(t1) = ǫ, ν0(t2) = ǫ, ν0(t3) = ǫ

ν0(it1) = 0, ν0(it3) = 0

ν0(xenv) = ”none”, ν0(xcmd) = ”none”, ν0(xdata) = 999

ν1(t1) = pushArrMI
(ǫ, 0.5) = 0.5, ν1(t2) = ǫ, ν1(t3) = ǫ

ν1(it1) = 1, ν1(it3) = 0

ν1(xenv) = ”start”, ν1(xcmd) = ”none”, ν1(xdata) = 999

Initially in the snapshot source(r) that is (q0, 0, ν0), the reached state of G
ctrl is q0 and the time

instant is 0. The time variable t1 associated with tr is the empty array (ν0(t1) = ǫ where the

empty word ǫ is the semantic counterpart of emptyArr, refer to Section 4.2), hence we consider

a run reflecting a first execution of tr.

In order for tr to be fired both guards 0.1 < t1[it1 ]− t1[it1 − 1], xenv = ”start” must be satisfied.

The latter is satisfied since after the run, according to the third item of Definition 39, xenv has

an arbitrary value (being in a reception action env?xenv, and not redefined because the only

redefinition here is it1 ← it1 + 1) however the data guard require it to have the value ”start”

(xenv = ”start”) hence the only acceptable assignment is that value (ν1(xenv) = ”start”).
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At this level of the execution where ν0(it) = 0 and ν0(t1) = ǫ, the timing guard to be satisfied is

rather WF (0.1 < t1[it1 ]− t1[it1 − 1]) that is:

0.1 < t1[it1 ]− t1[it1 − 1]
︸ ︷︷ ︸

0.1<ǫ[0]−ǫ[−1]

∨ it1 < 0 ∨ i > len(t1)
︸ ︷︷ ︸

0<0∨0>0

∨, it1 − 1 < 0 ∨ i − 1 > len(t1)
︸ ︷︷ ︸

−1<0∨−1>0

.

The first atom of the disjunction 0.1 < ǫ[0]− ǫ[−1] may be true or false (ǫ[−1], ǫ[0] return random

instant values). All other atoms are false but −1 < 0. This makes the hole formula evaluated to

true anyway. Consequently, the at the first execution of the transition this formula is satisfied.

This is consistent with our interpretation of such timing formula constraining two successive

occurrence instants: the formula is ignored at the first occurrence of the transition and is relevant

starting from the second occurrence.

We now define the TIOLTS associated with a TIOSTS which is mainly constructed by building

TIOLTS transitions from all runs of all transitions of the TIOSTS and by adding other one that

will be discussed after Definition 40.

Definition 40 (TIOLTS associated with an TIOSTS) Let G be an TIOSTS (Q, q0, T ) over

Σ = (A, C).

The TIOLTS associated with G, denoted LTSG = (SnpM (G)∪ {init, qδ}, init, T ′) over ActM (C),

is such that:

• init, qδ are two distinct (arbitrary) states satisfying init, qδ Ó∈ SnpM (G)

• T ′ is the smallest subset of (SnpM (G)∪ {init, qδ})× (ActM (C)∪ MI)× (SnpM (G)∪ {qδ})

such that:

– Initialization transitions for any ν ∈ MA such that for all x ∈ AI∗ we have

ν(x) = ǫ, (init, τ, (q0, 0, ν)) is in T ′,

– Transitions of runs for all tr ∈ T , for any r ∈ Run(tr)

of the form ((q, T , ν), actM , (q′, T ′, ν′)), we have ((q, T , ν), δ(r), (q, T ′, ν))

and ((q, T ′, ν), actM , (q′, T ′, ν′)) are in T ′,

– Quiescence Let snp ∈ SnpM (G) ∪ {init} be a snapshot such that for all transitions

of the form (snp, actM , snp′) ∈ T ′ with snp′ ∈ SnpM (G), actM is of the form c?v, we

have for any d ∈ MI , (snp, d, qδ) is in T ′.

The state init is the initial state of LTSG. It is not built as a snapshot over q0 because we have

to consider any arbitrary assignment of variables (regardless of time variables which has to be

assigned by ǫ denoting the empty array). Those possible assignments are taken into account in the

Initialization transitions item. Now transitions of TIOLTS introduces either communication

actions or durations. In item Transitions of runs, we show how to decompose any run of any

transition into two TIOLTS transitions: the first one denotes a delay before the observation of

the action, and the second one introduce the action itself.

The third item Quiescence refers to the so-called quiescence situations as initially introduced by

Jan Tretmans [82]. For some state snp of LTSG (or for init), it may happen that no transition

tr such that source(tr) = snp that may be built considering the two previous items (if any)

introduces an input action. It means that no (if any) reactions of the system are specified from

the state. We interpret that situation by considering that the system does not react and represent

this fact adding additional transitions in T ′.

We can now simply define the semantics of a TIOSTS as the set of timed traces of its associated

TIOLTS.
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Definition 41 (Traces of a TIOSTS) With notations of Definition 40, the semantics of G

denoted Sem(G) is the set TTraces(LTSG).

5.3 Symbolic Execution

In the previous Section 5.2, we have seen how to define the semantics of a TIOSTS in terms of

traces. In this section we show how to compute this semantics in order to represent it in intention

thanks to symbolic execution techniques.

Symbolic execution was initially defined for programs [52] and extended to IOSTS [36, ?]. Symbolic

execution of TIOSTS, as for the case of IOSTS and programs, simply consists in executing the

TIOSTS, not for concrete input values, but for symbolic ones, and to reason on those symbolic

values to characterize the set of all possible executions (i.e. traces) of the TIOSTS. The main

difference with IOSTS is that we have to define the symbolic treatment of time variables. We

begin by introducing the notion of a symbolic state which is a structure used to store pieces of

information concerning an execution. In order to represent symbolic values, we suppose that a

set of variables F =
⋃

s∈S Fs, disjoint of any set of variables introduced in TIOSTS signatures, is

given.

Definition 42 (symbolic state) For a TIOSTS G = (Q, q0, T ) over (A, C), a symbolic state

over F is a quadruple η = (q, πt, πd, T , σ) where q ∈ Q, πt ∈ TΩ(F ), πd ∈ SenΩ(F ), T ∈ TΩ(FI∗)

and σ is a function of variables of A in TΩ(F ) preserving types. We note S the set of all the

symbolic extended states over F .

q denotes the state reached after the execution leading to η, πt is a constraint on symbolic

execution instant values called time path condition and πd is a constraint on symbolic data values

called data path condition. Both constraints must be satisfied for the execution to reach η, T

denotes the current instant and σ denotes the current terms (built over symbolic values) assigned

to variables of A.

Notation 10 In the sequel, ΣF stands for (F, C). Moreover for any symbolic state η =

(q, πt, πd, T , σ), q(η), πt(η),πd(η), T (η) and σ(η) stand respectively for q, πt, πd, T and σ.

For any σ : A → TΩ(F ) we also note σ : TΩ(A) → TΩ(F ) and σ : SenΩ(A) → SenΩ(F ) its

canonical extensions respectively to terms and formulae. We also note σ : Act(Σ) → Act(ΣF ) its

extension to communication actions defined as σ(c?x) = c?σ(x), σ(c!t) = c!σ(t), σ(new(x)) = τ

and σ(τ) = τ .

When generating the symbolic execution tree, it may happen that some symbolic states are not

reachable. That is, the time and data path conditions of the symbolic state are not satisfiable.

Thus, we define the set of satisfiable symbolic states.

Definition 43 (Satisfiable symbolic states) Let S be the set of all symbolic extended states

over F . Ssat is the set of all symbolic extended states of the form (q, πt, πd, T , σ) for which there

exists an interpretation ν in MF such that: ν |= φt and ν |= φd.

Similarly to the way we defined TIOLTS associated with a TIOSTS by starting to define runs of

a transition, symbolic execution of TIOSTS is based on the symbolic execution of a transition.

Definition 44 (symbolic execution of a transition) With notations of Definition 42, for

any symbolic state η and tr = (q,T, φt, φd, act, ρ, q′) ∈ T with q = q(η), a symbolic execution of
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tr from η is a triple st = (η, actF , η′) ∈ S × Act(ΣF ) × S such that q(η′) = q′, T (η′) is of the

form T (η) + δ where δ ∈ FI is a new fresh variable, there exists σi : A → TΩ(F ) satisfying:

• for all x ∈ T, we have σi(x) = pushArr(σ(η)(x), T (η′)),

• if act is of the form c!t (respectively τ) then for all x ∈ A \ T we have σi(x) = σ(η)(x),

• if act is of the form c?x (respectively new(x)) then σi(x) is a new fresh variable and for all

x ∈ A \ (T ∪ {x}) we have σi(x) = σ(η)(x),

such that actF = σi(act), for all x ∈ Arw we have σ(η′)(x) = σi(ρ(x)), for all x ∈ AI∗ we have

σ(η′)(x) = σi(x), πt(η
′) = πt(η) ∧ σi(WF (φt)) and πd(η

′) = πd(η) ∧ σi(φd).

Notation 11 st is called a symbolic execution of tr from η. δ is called the duration of st and is

denoted δ(st). tr is called the ground transition of st and is denoted g(st). source(st), act(st)

and target(st) stand respectively for η, actF and η′.

We note Fresh(st) = {δ(st)} if act is an output or τ and Fresh(st) = {δ(st), σi(x)} if act is of

the form c?x for some c ∈ C or of the form new(x).

Instants at which actions occur are denoted by sum of symbolic durations introduced in the course

of the symbolic execution (∆i =
∑i

j=0 δj). Similarly, ∆k→i means
∑i

j=k δj.

Note the strong similarity between Definition 44 and Definition 39 of runs. Clearly Definition 44

symbolic intentional representation of sets of runs of transitions.

T (η′) is the instant at which the actions actF occurs. The intermediate substitution σi is σ(η)

except that it updates values of time variables occurring in T by adding the new symbolic instant

T (η′) in arrays assigned to them. σi also redefines values of variables occurring in actions of

the form c?x or new(x) to reflect that the value of x has changed due respectively to a value

reception or a random updating. actF is simply the symbolic interpretation of act and σ(η′)

is obtained by taking into account the substitution ρ from σi. πt(η
′) and πd(η

′) are formulas

respectively on time and data that must be satisfied so that the transition can be executed.

Example 29 Consider again the transition tr as an illustration of Definition 44 :

q1
{t1} 0.1<t1[it1 ]−t1[it1−1],xenv=”start”
−−−−−−−−−−−−−−−−−−−−−−−−−→

env?xenv

it1←it1+1

q2

We have discussed a concrete run of the transition tr in Example 28, in a similar way we give a

possible symbolic execution of tr :

(q1, true, true, 0, σ)
env?xenv#1
−−−−−−−−→ (q2, π0t , π0d, δ0, σ0),

where

substitution of variables

σ(t1) = emptyArr, σ(t2) = emptyArr, σ(t3) = emptyArr

σ(it1) = 0, σ(it3) = 0

σ(xenv) = xenv#0, σ(xcmd) = xcmd#0, σ(xdata) = xdata#0

σ0(t1) = pushArr(emptyArr, δ0) = δ0, σ0(t2) = emptyArr, σ0(t3) = emptyArr

σ0(it1) = 1, σ0(it3) = 0

σ0(xenv) = xenv#1, σ0(xcmd) = xcmd#0, σ0(xdata) = xdata#0
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time path condition

0.1 < t1[it1 ]− t1[it1 − 1]
︸ ︷︷ ︸

0.1<emptyArr[0]−emptyArr[−1]

∨ it1 < 0 ∨ it1 > len(t1)
︸ ︷︷ ︸

0<0∨0>0

∨, it1 − 1 < 0 ∨ it1 − 1 > len(t1)
︸ ︷︷ ︸

−1<0∨−1>0

π0t = true

data path condition

π0d = xenv#1 = ”start”

Same reasoning as in Example 28, we have 0.1 < emptyArr[0]− emptyArr[−1] may be true or

false (emptyArr[0], emptyArr[−1] return irrelevant fresh instant values). However πt is true

as a hole because −1 < 0 is true. This was a symbolic execution of tr corresponding to the

first occurrence of the reception action env?xenv of tr in the system (σ(t1) = emptyArr then

σ0(t1) = δ0).

Example 30 Continuing the example 29, consider the following symbolic execution of tr, it

corresponds to a second occurrence of env?xenv (in between, some other preceding transitions

have been symbolically executed). The goal is to illustrate how the symbolic execution handle the

timing guard 0.1 < t1[it1 ]− t1[it1 − 1] when the the array of instants t1 associated with the action

env?xenv contains relevant values.

(q1, π4t , π4d,∆4, σ4)
env?xenv#2
−−−−−−−−→ (q2, π5t , π5d,∆5, σ5),

where

substitution of variables

σ4(t1) = δ0,

σ4(it1) = 1,

σ4(xenv) = xenv#1, . . .

σ5(t1) = pushArr(δ0,∆5) = δ0.∆5,

σ5(it1) = 2,

σ5(xenv) = xenv#2, . . .

time path condition

0.1 < t1[it1 ]− t1[it1 − 1]
︸ ︷︷ ︸

0.1 < δ0.∆5[1]− δ0.∆5[0]
︸ ︷︷ ︸

0.1<∆1→6

∨ it1 < 0 ∨ it1 > len(t1)
︸ ︷︷ ︸

1<0∨1>2

∨ it1 − 1 < 0 ∨ it1 − 1 > len(t1)
︸ ︷︷ ︸

0<0∨0>2

π5t = π4t ∧ 0.1 < ∆1→5

data path condition

π5d = π4d ∧ xenv#2 = ”start”

Since the first occurrence of action env?xenv (corresponding to the symbolic action env?xenv#1)

at time instant δ0, time elapsed of ∆1→5 = δ1 + . . . + δ5 when env?xenv occurs again (that is

at ∆5 = δ0 + . . . + δ5 corresponding to the symbolic action env?xenv#2). The timing guard

0.1 < t1[it1 ]− t1[it1 − 1] equals 0.1 < ∆1→5 for it1 and t1 are mapped respectively to 1 and δ0.∆5.

The symbolic execution tree associated with the TIOSTS is then defined simply by executing

exactly once all executable transitions from all symbolic states. We now introduce the symbolic

tree of a TIOSTS.

Definition 45 (symbolic tree of a TIOSTS) With notations of Definition 44, a symbolic

execution of G is a couple T (G) = (Init, T ) where:

• Init is a symbolic state of the form (q0, true, true, 0, σ) where for all x ∈ AI∗ we have
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σ(x) = emptyArr and for all x, y ∈ A \ AI∗ we have x Ó= y ⇒ σ(x) Ó= σ(y) and σ(x) ∈ F ,

• T is a set of symbolic transitions such that for any η ∈ S and for any tr ∈ T there exists

exactly one symbolic execution of tr from η. Moreover for any two st1, st2 ∈ T we have

Fresh(st1) ∩ Fresh(st2) = ∅.

Notice that T (G) has a tree-like structure whose all paths denote in an abstract way all possible

executions of G. At the beginning of the execution, there is no constraint on time and on data as

it is signified by the two occurrences of true respectively for time path condition and data path

condition in the symbolic state Init.

Always concerning the initial states, time variables are initialized to the empty array and all

other variables are initialized with fresh variables of F . In order to make no suppositions on their

initial values, we impose the assignment to be injective.

Symbolic execution of a TIOSTS is simply the restriction of T (G) to satisfiable symbolic extended

states.

Definition 46 (symbolic tree of a TIOSTS) The symbolic execution of G, denoted SE(G)

is the couple (Init, ST ) where ST is the set of all (η, act, η′) in T such that η′ in Ssat.

Example 31 Figure 5.3 depicts the symbolic execution for the TIOSTS of Figure 5.1a. For

the readability sake, apart from the initial state Init of the symbolic tree which is given in

details, only changes in affectations are shown inside the remaining symbolic states. The symbolic

execution is shown until symbolic states η5 and η′
4. In η5, a new cyclic behavior of Gctrl is

re-visited for the second time. In η′
4, the execution stops. Note that in the branching state

η3, there is only one decision that had to be made depending on the value of the variable xdata

(represents the data measure received from the sensor). If its value (xdata#1) is below the threshold

(xdata#1 < 500), then the left branch is taken. The right branch represents the state of the system

where xdata#1 ≥ 500 and no transition can fire anymore.

Now as the reader can see in Definition 40, the TIOLTS associated with a TIOSTS introduces

transitions reflecting quiescence and time passing. Those transitions have no counterpart in a

symbolic tree. Next definition shows how to complete a symbolic tree with transitions reflecting

quiescence and time passing.

Definition 47 (Symbolic execution with quiescence) With notations of Definition 46, the

quiescence and time passing enrichment of SE(G) denoted SE(G)δ is the couple (Init, ST ∪ STδ)

where STδ is defined as follows :

For all η ∈ S, let us note React(η) the set of all transitions of ST such that str ∈ React(η) if

and only if source(st) = η and act(st) is τ or an output.

• data based quiescence Let us note πδ
d(η) the formula restricted to true if React(η) = ∅

and equal to ∧str∈React(η)¬πd(target(str)). Let us note ηδ
d the symbolic state (qδ, πt(η), πd(η)∧

πδ
d(η), T (η) + δ, σ(η)) where δ is a new fresh variable in FI . We have then (η, τ, ηδ

d) ∈ STδ.

• time based quiescence Let us note πδ
t (η) the formula restricted to true if React(η) = ∅

and equal to ∧str∈React(η)∀δ(str).(¬πt(target(str))). Let us note ηδ
t the symbolic state

(qδ, πt(η)∧ πδ
t (η), πd(η), T (η)+ δ, σ(η)) where δ is a new fresh variable in FI . We have then

(η, τ, ηδ
t ) ∈ STδ.

Example 32 Figure 5.4 depicts the application of Definition 47 on some states of the symbolic

execution tree in Figure 5.3.
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Init
q(Init) : q0

πt(Init) : true
πd(Init) : true

T (Init) : 0
σ(Init) : it1 ← it1#0, it3 ← it3#0

xenv ← xenv#0, xcmd ← xcmd#0, xdata ← xdata#0
t1 ← emptyArr, t2 ← emptyArr, t3 ← emptyArr

η0
q(η0) : q1

σ(η0) : it1 ← 0
it3 ← 0

T (η0) : δ0

η1
q(η1) : q2

σ(η1) : xenv ← xenv#1
t1 ← ∆1

πd(η1) : xenv#1 = ”start”
T (η1) : ∆1

η2
q(η2) : q3

σ(η2) : t2 ← ∆2
T (η2) : ∆2

η3
q(η3) : q4

σ(η3) : t3 ← ∆3
xcmd ← xcmd#1

πt(η3) = δ3 < 0.008
T (η3) : ∆3

η4
q(η4) : q1

σ(η4) : xdata ← xdata#1
πd(η4) : xenv#1 = ”start”

∧xdata#1 < 500
T (η4) : ∆4

η5
q(η5) : q2

πt(η5) : δ3 < 0.008 ∧ 0.1 < ∆1→5

πd(η1) : xenv#2 = ”start”
σ(η5) : xenv ← xenv#2

t1 ← ∆1.∆5
T (η5) : ∆5

N

env?xenv#2

data?xdata#1

η′
4

q(η′
4) : q5

σ(η′
4) : xdata ← xdata#2

πd(η
′
4) : xenv#1 = ”start”
∧xdata#2 ≥ 500

T (η′
4) : ∆3 + δ′

4

data?xdata#2

cmd?xcmd#1

cmd!”aquire”

env?xenv#1

τ

Figure 5.3: Symbolic tree

SE(G)δ characterizes in an intentional way the set of all traces of the TIOLTS associated with

G. In the remaining of this section we show how to compute such traces. To reach that goal we

begin by characterizing paths of SE(G)δ.

Definition 48 (Paths of SE(G)δ) The set of paths of SE(G)δ denoted Path(SE(G)δ), con-

tains all the finite sequences st1 · · · stn of transitions of ST ∪ STδ, such that:

• source(st1) = Init

• for every i, 1 ≤ i ≤ n, target(sti) = source(sti+1)
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η4
q(η4) : q1

σ(η4) : xdata ← xdata#1
πd(η4) : xenv#1 = ”start”

∧xdata#1 < 500
T (η4) : ∆4

ηδ
d0

q(ηδ
d0
) : qδ

πt(η
δ
d0
) : true

πd(η
δ
d0
) : true

T (ηδ
d0
) : ∆4 + δ

τ

ηδ
t 0

q(ηδ
t 0
) : qδ

πt(η
δ
t 0) : true

πd(η
δ
t 0) : true

T (ηδ
t 0) : ∆4 + δ0q

τ

η5
q(η5) : q2

πt(η5) : δ3 < 0.008 ∧ 0.1 < ∆1→5

πd(η1) : xenv#2 = ”start”
σ(η5) : xenv ← xenv#2

t1 ← ∆1.∆5
T (η5) : ∆5

η6
q(η6) : q2

πt(η6) : δ3 < 0.008 ∧ 0.1 < ∆1→5

πd(η6) : xenv#2 = ”start”
T (η6) : ∆6

N

cmd!”aquire”

ηδ
t 1

q(ηδ
t 1) : qδ

πt(η
δ
t 1
) : ∀δ ≥ 0 ∧ δ6 = δ

∧(δ3 ≥ 0.008 ∨ 0.1 ≥ ∆1→5)

πd(η
δ
t 1) : xenv#2 = ”start”
∧xenv#2 = ”start”

T (ηδ
t 0) : ∆5 + δ1q

τ

env?xenv#2

Figure 5.4: Symbolic tree enrichment

In the sequel, for any finite path p, target(p) is Init if p is empty and is the target state of its

last transition otherwise.

Example 33 Let us consider the symbolic execution of Figure 5.4. A finite path of that tree is

the sequence of symbolic transitions going from the root state init until the symbolic state η5, that

is, the sequence:

(init, τ, η0).(η0, env?xenv#1, η1).(η1, cmd!”aquire”, η2).(η2, cmd?xcmd#1, η3).(η3, data?xdata#1, η4.

(η4, env?xenv#2, η5)

In the sequel, we pay attention to particular symbolic execution trees (with quiescence) in which

there do not exists arbitrary long sequences of transitions introducing τ actions. We call them

"livelock free" symbolic execution trees.

Definition 49 (Livelock free symbolic tree) SE(G)δ is livelock free if and only if exists N

in N such that for any path of Path(SE(G)δ) of the form st1 . . . stm for any i and j between 1

and m with i ≤ j satisfying: for all k in N, (k ≥ i ∧ k ≤ j) ⇒ act(stk) = τ , we have N ≥ j − i.

If G is such that it does not contain any path with such sequences of transitions with τ actions of

length greater than N , then SE(G)δ is livelock free. However this restriction is very strong and

the livelock freedom of SE(G)δ may be satisfied while G does not have this property. Indeed the

bound on the number of consecutive transitions with τ may come from constraints on time or

data. When SE(G)δ is livelock free it is possible to associate its paths their τ -reduction versions.

The τ− reduced version of a path is a path characterizing the same sequence of actions than p

with the same constraints but in which all occurrences of τ disappear. It is depicted as following:

Definition 50 (τ-reduction of a path) Let p be a path in Path(SE(G)δ) such that if we note

p as p′.st where st ∈ ST ∪STδ then either act(st) is an input or an output or state(target(st)) = qδ.

The τ -reduction of p denoted τ(p) is inductively defined as follows:
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• if p is ǫ then τ(p) is ǫ,

• if p is of the form p′.st, we have:

– if act(st) is τ and state(target(st)) Ó= qδ then τ(p) = τ(p′),

– if act(st) is not τ or if state(target(st)) = qδ

then τ(p) = τ(p′).(target(τ(p′)), act(st), target(st)).

Example 34 Let p1 be (Init, τ, η1).(η1, c!u, η2), the τ -reduction of p1 is τ(p1) = (Init, c!u, η2).

Consider now the path p2 = (Init, c!u, η1).(η1, τ, η2) where state(η2) is qδ. In this case we have

τ(p2) = p2.

The τ -reduction of p characterizes the same executions than p, only keeping the sequence of

observable actions occurring in p. In the sequel, as we did in Definition 44, for any st occurring

in τ(p), δ(st) stands for δ(target(st))− δ(source(st)). Similarly to the case of transitions of a

symbolic execution where δ(st) is simply a variable of FI , in the case of a transition of a τ -reduced

path, we may have δ(st) is a sum of variables of FI .

τ -reduction of a path is a kind of normalization. We have to define another normalization process,

this time on timed traces. It simply consists in summing all the consecutive durations of the

trace (similar to [81]).

Definition 51 (Normalization of a trace) Let σ be a timed trace which is either ǫ or of the

form σ′.act where act is an output or input and σ′ begins by a duration. The normalization of σ

denoted norm(σ) is defined as follows:

• if σ is ǫ, we have norm(σ) is 0,

• if σ is a sequence d1 . . . dn of durations in MI , we have norm(σ) is Σn
i=1di,

• if σ is of the form σ′.act where act is an input or an output, we have norm(σ) is

norm(σ′).act,

• if σ is of the form σ′.d1 . . . dn where σ′ is of the form σ′′.act and act is an input or output,

we have norm(σ) is norm(σ′).Σn
i=1di.

Example 35 Let σ be the trace (0.1).(0.1).(0.1).c!200. The normalization of σ is the trace

(0.3).c!200.

We are now in position to define the traces of a path.

Definition 52 (Traces of a symbolic path) Let σ be a timed trace and p be a path in Path(SE(G)δ).

We note Indent(σ, p) the formula defined as follows:

• if norm(σ) is ǫ and τ(p) is ǫ, Ident(σ, p) is True,

• if norm(σ) is ǫ and τ(p) is not ǫ, Ident(σ, p) is False,

• if norm(σ) is not ǫ and τ(p) is ǫ, Ident(σ, p) is False,

• if norm(σ) is of the form σ′.d where d is in MI , let us note τ(p) as st1 . . . stm. We have

Indent(σ, p) is Indent(σ′, st1 . . . stm−1) ∧ d = δ(stm),

• otherwise let us note norm(σ) as σ′.d.act where d is duration (in MI) and act is an input

or an output. Let us note τ(p) as p′.st:
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– if act is of the form c!v (respectively c?v) and act(st) is of the form c!u (respectively

c?u), we have Ident(σ, p) is Ident(σ′, p′) ∧ v = u ∧ d = δ(st),

– if act is of the form c!v (respectively c?v) and act(st) is not of the form c!u (respectively

c?u), we have Ident(σ, p) is False.

We say that σ belongs to p if and only if Ident(σ, p) ∧ φt(target(p)) ∧ φd(target(p)) is satisfiable,

that is there exists an interpretation ν in MF such that ν |= Ident(σ, p) ∧ φt(target(p)) ∧

φd(target(p)). TTraces(p) is the set of all timed trace that belong to p.

Example 36 Let σ be the trace (0.1).(0.1).(0.1).c!200 and p be the path (Init, τ, η1).(η1, c!u, η2).

Besides we have that φt(η2) = δ1 < 0.5 and φd(η2) = u < 700. We have already seen that

norm(σ) = (0.3).c!200 and τ(p) = (Init, c!u, η2). Given that δ((Init, c!u, η2)) = δ0 + δ1. By

applying Definition 52, we obtain Ident(σ, p) = True ∧ 200 = u ∧ 0.3 = δ0 + δ1. The formula to

be satisfied so that σ belongs to p is: 200 = u ∧ 0.3 = δ0 + δ1 ∧ δ1 < 0.5 ∧ u < 700. This formula

is obviously satisfiable. We deduce that σ belongs to p.

Finally, we state in the following definition when a trace belongs to a symbolic execution.

Definition 53 (Traces of a symbolic execution) Let σ be a timed trace. We say that σ

belongs to SE(Gδ) if and only if exists a path p in Path(SE(G)δ) such that σ belongs to p.

TTraces(SE(Gδ)) is the set of all timed traces that belong to SE(Gδ).

5.4 Related work

Recently, some authors have suggested seemingly different approaches to represent symbolically

both time and data (approaches in [87], [5], and [31]). Time is handled by means of clocks whose

values constrain occurrences of actions in the timed automata style. In all these works, time

instants at which actions occur are not explicitly referred to as it is the case in timing annotations

on sequence diagrams. We show in this section that the timing constraints expressing relations

between time instants can be encoded using clocks. However, our TIOSTS formalism allows a

more straightforward encoding of these kind of constraints (as they are formulated in sequence

diagrams) thanks to special variables capturing time instants of occurrences. In the following, we

present the approaches [87, 5, 31] while putting more emphasis on [87]. This one serves as a proof

of concept showing some clock-based patterns which can encode the kind of timing constraints

discussed before.

TA were extended to support symbolic treatment of data based on first order logic into Symbolic

Timed Automata (STA) [87]. We give some transitions in Figure 5.5 of the STA of the Beverage

Vending Machine. The system accepts money, allows to choose a beverage, serves it within

a parameterizable delay depending on the nature of the beverage and returns the change.

Transitions in STA define input or output communication like actions with parameters (e.g. the

input ?money < x >, where x is a data parameter representing the money received from the

user; the input ?choice < y, t > where y is the choice of beverage and t is the delay to serve the

beverage; the output !serve < y, x >, where y represents the served beverage and x is the change

returned back to the user). The transitions define two kinds of assignments. Classically, there

are variable assignments (e.g. money → x, the variable money assigned to x and thus stores the

money received by the user when ?money < x > is performed; time → t means that the delay t

given by the user through ?choice < y, t > to serve the beverage is stored in the variable time).

There are clock assignments consisting exactly in clock resets. An example of a clock reset is

c := 0 where c is a clock variable. In fact a clock is a special variable storing delays such that its

value evolves spontaneously as time elapses since it is reset.
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Figure 5.5: STA transitions as in [87]

Transitions are labeled by a data guard and a clock guard. The data guard change < q for

instance signifies that change has to be available to execute the transition (it has to be lower than

the cash q in the machine). The time guard c = time, where c is a clock and time is variable

used to control time (time was set to the delay t after ?choice < y, t >), makes the transition

execute when the time elapsed is exactly time. States, i.e. locations, may also be labeled by

guards called invariants which restrict the way time may elapse in a location. An example of such

invariants is c ≤ time in location l2 which together with the guard c = time of the only outgoing

transition from l2 ensures that location l2 is left after exactly time time units.

On the whole, a part from symbolic representation of data, STA handle time with clocks

conforming to TA syntax. This is the case of the TIOSTS in [5] (except state invariants which

are not considered).

Note that the same name "TIOSTS" is given to the automaton formalisms in [5], [31] and ours.

We make sure to mention the reference of the approach when the context is confusing.

In fact TIOSTS [5] extend a variant of a symbolic transition system IOSTS [80] with time as in

TA style. Figure 5.6 shows examples of transitions of a TIOSTS as defined in [5] that models a

withdrawal transaction in an ATM system.
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Figure 5.6: TIOSTS transitions as in [5]

An input or output communication action may be associated with a transition (e.g.

DispenseCash!(amount) dispenses the value in amount). Clocks may be reset to zero (clock := 0,

where clock is a clock). A single guard constrains the execution of a transition which ranges over

time and data (e.g. the guard amount = withdrawlV alue∧withdrawlV alue ≤ balance∧clock ≤

10 means that the value of withdrawalV alue is less than the balance and the time elapsed repre-

sented by clock is less than 10 time units).
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Figure 5.7: TIOSTS transitions as in [31]

In the same spirit of our work, IOSTS [36] were extended with time into TIOSTS [31]. Examples

of transitions of such TIOSTS which model an orchestration of Hotel Reservation service are
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illustrated in Figure 5.7. A single transition of such a TIOSTS may define a sequence of

communication actions (e.g. w!date;w!price denoting the outputs date and price communicated

to the web service). Time is handled by means of implicit clocks. In fact, a transition has a

minimal and a maximal delay to be fired (respectively δmin and δmax) as if the transition is

associated with one clock reset after each measure (e.g. the answer from the Hotel Web service

w?rstat;w?rdates;w?rprice must arrive before δmax = 60 time units). These TIOSTS can be

seen as restrictions of STA with one clock per transition. The transition format here reflects the

common usage of timers in orchestrator descriptions (typically when using WS-BPEL).
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Figure 5.8: TIOSTS transitions as in [12] (ours)

Finally we introduce our version of TIOSTS. The Figure 5.8 depicts TIOSTS transitions corre-

sponding to some behavior of a Rain-sensing wiper control system that have already specified as

a sequence diagram in Figure 4.1. The idea is to capture explicitly instants in time of occurrences

of actions rather than delays between them. For that purpose, transitions are labeled by variables

which are arrays capturing time instants as discussed in Section 4.2 (e.g. t1, t3 are examples of

such a variables). This allows one to deal naturally with a particular kind of MARTE timing

constraints that may annotate a sequence diagram stating that: "two successive stimuli are spaced

of 0.5 time slots", typically in a periodic sampling or "an output occurs 0.5 time slots after the

beginning of the period" (Example of such constraints are respectively t1[i]− t1[i − 1] = 0.5 where

the period starts at t1[i] when the system gets a new rain intensity and t3[i]− t1[i] < 0.5 where

the wiper speed is produced at t3[i]. See sequence diagram in Figure 4.1).

It is possible to encode such guards constraining two occurrence instants of the same action

using clocks. An example is given for the guard t1[i]− t1[i − 2] < 0.5 with the STA formalism in

Table 5.1 (see first row). Another example specifying the guard t2[i]− t1[i] < 0.1 which relates

occurrence instants of two different actions is also illustrated in the table (see second row).

Recall that the guard t1[i]− t1[i − 2] < 0.5 states that there is a delay of at most of 0.5s between

the ith and i+ 2th occurrences of the message sending, which is annotated by t1 in the sequence

diagram (see first row, first column). Similarly to the example in Figure 5.8, this constraint is

trivially captured by our TIOSTS formalism. Note that the first and the second occurrences

may occur at any time. Starting from the third occurrence, the constraint must hold. We have

specified this constraint also using STA (see first row, third column). This required two clocks

clock1 and clock1. clock1 measures the time elapsed since the first (inductively since the ith)

occurrence and clock2 measures the time elapsed since the second (inductively since the i+ 1th)

occurrence. In this way, at the third (inductively i+2th) occurrence, clock1 contains the delay to

constrain (clock1 < 0.5) and is then reset (transition q3 → q4). Meanwhile, clock2 is recording

time such that at the forth (inductively i+ 3th) occurrence, the time elapsed respects as well the

deadline (clock2 < 0.5) and then (again) clock2 is reset (transition q4 → q3).

The example of the second row is a typical example of the translation into a TIOSTS of an

asynchronous message in our framework. A fifo queue receives the values cyclically (transition

tr2). Concurrently, values stored in the fifo are retransmitted (tr3). A deadline of 0.1s is specified

for the transmission delay of each received piece of data. The difficulty is that many values (not

known beforehand, depending on the sender operating rate) may be received and enqueued before
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Table 5.1: Specification of MARTE timing constraints relating instants : Comparison of the
expressiveness of TIOSTS (ours) and STA [87]

Timing constraint TIOSTS (ours) STA
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Timing constraint relating occurrence instants of same action :

there is a delay of at most of 0.5s between the ith and i+ 2th

of the same sending action (noted c!x and !c < x > resp. in TIOSTS and STA).
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clock : N → C is a mapping,

where C is a set of clocks

Timing constraint relating occurrence instants of two different actions :

there is a (transmission) delay of at most of 0.1s between the reception

action (noted c?y or ?c < y >) and the sending action (noted c!top(fifo) or !c < top(fifo) >).

a given value is consumed from the queue. So, we reset a new clock clock[i1] each time a given

value is received (where i1 is a natural number identifying the ith
1 reception occurrence and clock

is a mapping from natural numbers to a set of clocks C, see tr2). Since the ith
2 stored value is also

the ith
2 transmitted value, when the emission occurs, the guard clock[i2] < 0.1 must be satisfied

(where i2 identifies emissions, see tr3).

In full generality, using STA formalism requires as many clocks as the number of occurrence

instants to constrain, to choose suitable moments to reset the clocks cyclically whenever it is

needed, and a non trivial transformation of the constraint. That latter may result in loss of

essential traceability informations. In this context, the work [61] suggests to equip a variant of

MSC [51] (scenario-based specification charts similar to sequence diagrams) with TA-like clock

variables, clock constraints and clock reset actions. This resulting scenarios are therefore easily

translated into TA. Unlike our approach, this work does not handle data in transit symbolically

as first-order structures, they are rather enumerated. Besides, to the best of our knowledge, our

approach is unique as we analyze (MARTE) constraints containing relations between time instants

in scenarios. Our TIOSTS format is clearly better tailored to capture this kind of constraints as

they are formulated in sequence diagrams. It is a natural extension of TIOSTS ([31]) and can be

viewed simply as syntactic sugar for the STA ([87]) or TIOSTS ([5]) patterns needed to encode

this kind of constraints.
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Chapter 6

Operational semantics of UML

MARTE Sequence Diagram

Contents
6.1 Translation of messages . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 Translation of lifelines . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2.1 Empty lifeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2.2 Simple sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2.3 Combination operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2.4 Completion operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3 Full translation of a sequence diagram . . . . . . . . . . . . . . . . . 77

6.4 Symbolic execution of a sequence diagram . . . . . . . . . . . . . . 79

In this chapter we give the operational semantics of a subset of sequence diagrams with timing

annotations as they were presented in natural language earlier in Chapter 2. The semantics is

obtained by translating timed sequence diagrams into TIOSTS. In the following, we present the

translation mechanism to obtain a TIOSTS from the textual definition of a sequence diagram (as

described in Section 4.3). We translate each lifeline and message into a TIOSTS. Each lifeline

TIOSTS is then completed with transitions which allow lifelines to be aware when a region of the

sequence diagram is entered. Some regions does not concern the lifeline, however the the lifeline is

notified when they are entered anyway. Those notifications are simply ignored in the completion

transitions, hence the importance of knowing which regions concern each lifeline. Finally, a new

TIOSTS is obtained by composing the automata of the lifelines and messages altogether. The

resulting TIOSTS gives the semantics of the sequence diagram.

For the rest of this chapter, we suppose a sequence diagram signature Σsd = (P ∪ {e}, V ar ∪

{i}, Msg, Obs, Reg) is given. We write the translation mechanism from the textual definition of

a sequence diagram to a TIOSTS as rules. The general form of a rule is the following:

rule name

expr = . . . [o] . . . [expr′] . . . [Gexpr′ over Σexpr′ ] [reg]

Gexpr over Σexpr [reg ∪ {o}]

Above the horizontal line of the deduction rule, we have first the textual expression (expr) of

any pattern of the sequence diagram (a lifeline, a sub lifeline, a message, etc.) or the sequence

diagram itself. Since the translation is inductive on the form of the sequence diagram definition,

the translation of a sequence diagram pattern (expr) may be based on the translation of one

of its sub patterns (see expr′ occurring in expr). Therefore the upper part of the a rule may

introduce TIOSTS (Gexpr′) resulting from the translation of such a sub pattern. In addition, any

region occurring in a sub pattern, more precisely in a sub lifeline pattern, is accumulated during

the translation in the set reg: This is a kind of syntactic analysis of each lifeline definition in

order to deduce which regions concern the lifeline among all the regions of the sequence diagram

(reg ⊆ Reg). reg is used in the completion of transitions of the lifeline TIOSTS.
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Chapter 6. Operational semantics of UML MARTE Sequence Diagram

Below the horizontal line, we have first the new TIOSTS (Gexpr) constructed by the rule and its

signature (Σexpr). Then we have, in the case of the translation of lifeline expression, the new set

of accumulated regions (it is increased with the new region o along with regions of reg obtained

by antecedent rules applications).

As introduced in Definition 31, a sequence diagram is defined as couple of sets: a set of messages

and a set of lifelines containing exactly one lifeline per port. We show a step-by-step translation

going from messages then lifelines translation in order to obtain finally the full translation of the

sequence diagram expression.

6.1 Translation of messages

A message in a sequence diagram represents the data exchanged between lifelines. It is depicted

as an arrow from the sending lifeline to the receiving one. As mentioned in chapter 2, we consider

asynchronous messages. That is to say that the sender of a message is not blocked until the

message is received. Therefore, the translation of a message has to reflect this signification by

decoupling emissions and receptions. Intuitively, we use a FIFO queue to hold data conveyed by

a message until the target lifeline is ready to receive it.

There are two possible textual representations of a message msg: The form (_, true, m,_)

denotes a simple (not timed) message, and the form (t, φt, m, t′) denotes a timed message (refer to

Definition 28). The translation rules of the two forms are given respectively in Figures 6.1 and 6.2.

Both rules are similar in the way they handle data in transit. In addition, the second rule, the

one for the timed message, takes into consideration the timing features in the translation.
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message

msg = (_, true, m,_)

Gmsg = ({q, q
′}, q, {tr1, tr2, tr3})

over Σmsg = ({fm, xm}, {m.in, m.out})

where







Read(Σmsg) = ∅
W rite(Σmsg) = {fm, xm}
tr1 = (q, ∅, true, true, τ, id[fm ← empty()], q′)
tr2 = (q

′, ∅, true, true, m.in?xm, id[fm ← push(fm, xm)], q′)
tr3 = (q

′, ∅, true, fm Ó= emptyQueue, m.out!top(fm), id[fm ← pop(fm)], q′)

Figure 6.1: Translation of a simple message

In the left upper parts of Figures 6.1 and 6.2, msg is represented graphically in a sequence

diagram as being exchanged between two ports: p1 and p2. Thus m ∈ Msg(p1,p2). The rule in

Figure 6.2 shows how to translate a timed message annotated with two time variables t, t′ ∈ Obs,

respectively capturing successive emission and reception instants of m. The transmission of m is

constrained by the time guard φt ∈ TΩ(V ). E.g. φt may be of the form t′[i]− t[i] < 0.1 stating

that the transmission of m is takes at most 0.1s.

1For any formula φ, φ[z ← y] is the formula where all occurrences of z are replaced by y
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timed message

msg = (t, φt, m, t
′)

Gmsg = ({q, q
′}, q, {tr1, tr2, tr3})

over Σmsg = ({fm, xm, t, t
′
, it′ } ∪ V ar(φt) \ {i}, {m.in, m.out})

where 1







Read(Σmsg) = {t, t′} ∪ V ar(φt) \ {i}
W rite(Σmsg) = {fm, xm, it′ }
tr1 = (q, ∅, true, true, τ, id[fm ← empty(), it′ ← 1], q′)
tr2 = (q

′, {t}, true, true, m.in?xm, id[fm ← push(fm, xm)], q′)
tr3 = (q

′, {t′}, φt[i ← it′ ], fm Ó= emptyQueue, m.out!top(fm), id[fm ← pop(fm), it′ ← it′ + 1], q′)

Figure 6.2: Translation of a timed message

We map msg to a TIOSTS Gmsg (represented graphically in Figures 6.1 and 6.2 in the right side,

when a constraint is not shown, it means that it is true) over the signature Σmsg. The TIOSTS

Gmsg communicates over channels of the form m.in and m.out respectively for reception and

emission of values to be transmitted from a port lifeline to another. As we will see later in the

chapter, the channel m.in is shared with the emitter lifeline and the channel m.out is shared with

the receiver lifeline. Intuitively, for any message whose name is m, i.e. as it appears in the third

field of the message definition, the convention m.in is used to represent a channel to receive values

of the sender lifeline while the convention m.out is used to represent a channel to emit values

to the receiver one. Now, the two data variables fm and xm are auxiliary variables introduced

to handle the transported values by m: fm is an unbounded FIFO queue used to store these

values successively received on a variable xm through the channel m.in. Given m ∈ Msg(u,v)

such that Msg(u,v) Ó= ∅, note that the type of the data stored in fm and xm is of the same

type as u and v (refer to Definition 27). Both variables xm and fm are read/write variables

(xm, fm ∈ Write(Σmsg)).

When the message is timed (as in Figure 6.2), the message signature Σmsg contains additionally

the time variables t, t′ (of type I∗) respectively associated with the receptions and the emissions.

Times variables t and t′ are read-only variables of Σmsg. Recall that time variables are not

controlled by the TIOSTS and their values are implicitly updated and thus are read-only variables.

Besides t and t′, some other time variables may occur in φt, those variables belong to Σmsg as

read-only variables (V ar(φt) ⊆ Read(Σmsg), where V ar(φt) returns all variables occurring in

φt expression). Recall that instants in φt are of the form t[i], t′[i], where i a distinct variable of

the sequence diagram signature Σsd (refer to Definition 27) denotes a given ith instant of an

execution in a generic manner (it may also be used elsewhere in the sequence diagram for that

purpose). For instance, V ar(t′[i]− t[i] < 0.1) returns the set of variables {t, t′, i}. As we explain

later in this section, we translate this use of i by introducing the time index it′ (of type Integer)

in order to capture the last instant of the occurrence of the execution, specifically here the last

emission instant: it′ refers to the last relevant location in t′ and is incremented accordingly.

i is replaced as the context requires by it′ since it is not used. For example, t′[i] − t[i] < 0.1

constraining the emission instants becomes t′[it′ ] − t[it′ ] < 0.1. it′ is a read/write variable of
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Chapter 6. Operational semantics of UML MARTE Sequence Diagram

Σmsg (it′ ∈ Write(Σmsg)) and we do not keep i in Σmsg.

For both cases of either a simple or timed message, the built TIOSTS Gmsg has two states q, q′ and

three transitions tr1, tr2, tr3: The transition tr1 from q to q′ is a variables-initialization transition;

the self−looping transition tr2 on q′ contains a value reception action; and the self−looping

transition tr3 on q′ contains a value emission action. This way, the reception is decoupled from the

emission. It remains to explain the storage mechanism in order to fully characterize asynchronous

messages. Consider the transition tr1. Initially fm is empty. The queue fm stores the values

received (on a variable xm) through the channel m.in (see the communication action m.in?xm of

the transition tr2). Each time a value reaches its target port, it is interpreted as an emission on

channel m.out (transition tr3). Values reach destination in the same order than they arrive. For

this reason, at each step only one message can be emitted and it corresponds to top(fm).

We discuss now the additional features to consider in the case of timed messages. In this case, the

time variables t, t′ are respectively associated with the reception transition tr2 and the emission

transition tr3 in Figure 6.2. The major difficulty is that if t[i] and t′[i] occurs in φt then t[i]

corresponds to the date the value arrived through m.in while t′[i] corresponds to the time the

value is emitted through m.out. To identify those respective dates we introduce a time index

it′ associated with time variable t′, initially assigned by 0 and which is incremented in order to

correspond to the size of t′. In the TIOSTS the variable t′ (respectively t) is updated by adding a

new instant in the transition corresponding to the emission (respectively reception). That is done

implicitly by stating that t and t′ belong to the sets of time variables associated with transitions

corresponding respectively to the reception and the emission case. t′[it′ ] thus denotes the instant

of emission of the ith
t′ value. Since the ith

t′ emitted value is also the ith
t′ received value, t′[it′ ] is the

date of reception of the value. The transition guarding the emission is thus φt where i is replaced

by it′ .
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message

msg2 = (t1, t2[i]− t1[i] < 0.1, m2, t2)

Gmsg2 = ({q, q
′}, q, {tr1, tr2, tr3})

over Σmsg2 = ({fm2 , xm2 , t2, t1, it2}, {m2.in, m2.out})

Figure 6.3: Translation of a message of Rain-sensing Wiper Control system (RWC)

Example 37 Figure 6.3 depicts the translation of the message m2 of the Rain-sensing Wiper

Control system (RWC) as specified in Section 4.1. As discussed in the section, m2 coveys

cyclically (being in a loop operator region in the sequence diagram of RWC, refer to Figure

4.1) the rain intensity from the controller to the calculator within at most 0.1s. The TIOSTS

Gmsg2 was obtained by applying the rule TIMED MESSAGE on the message definition msg2 as

(t1, t2[i]− t1[i] < 0.1, m2, t2) where m2 ∈ Msg(ctrl.intensity,calc.intensity).

Note that, the intensity values are of type Integer (type of ports ctrl.intensity, calc.intensity),

so is xm2 and fm2 is a queue of Integers. The transition tr1 initializes fm2 and it2 . The
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6.2. Translation of lifelines

message TIOSTS encodes indeed a cyclic behavior where the two looping transitions tr2, tr3
models respectively the intensity values received through the channel m2.in on xm2 and emissions

of these values in the same order they arrive through m2.out. This last transition is guarded by

t2[it2 ]− t1[it2 ] < 0.1 obtained by substituting the i by it2 in t2[i]− t1[i] < 0.1 as in the message

m2 definition and this because in the context of the TIOSTS Gmsg2 the index it2 captures the

current emission instant stored in the last location in t2 (it2 being incremented at each emission).

6.2 Translation of lifelines

In this section, we provide the rules to obtain the translation of a lifeline to a TIOSTS on the

basis of possible lifeline expressions as described in Definition 30. Therefore, the translation is

inductively defined on the form of the lifeline.

In the sequel, let p be a port in P and lf be a lifeline of p (in Lf(p,Σ)).

6.2.1 Empty lifeline

Let lf be ε ∈ Lf(p,Σ). We map the empty lifeline to the TIOSTS Gǫ. Here is the translation

rule:

empty

ǫ

Gǫ = ({q}, q, ∅)

over Σǫ = ({p, schedp}, {start}) ∅

where W rite(Σǫ) = {p}

The set of variables is the set {p, schedp} where: p is the port associated with the lifeline ǫ

(ε ∈ Lf(p,Σ)) and considered as a distinct variable used to store values arriving on (or emitted

from) the lifeline as discussed in Section 2.1.2. p is built as a read/write variable in Σǫ; schedp is

an unbounded FIFO variable storing occurrences of region names each time a remote lifeline, not

the one of p, execution goes into a region. It is a mechanism of scheduling locally, at the level

of the lifeline, executions of operators defined as global in the sequence diagram. This will be

detailed later in the sub section treating of combining operators translation. The set of channels

of Σǫ is the singleton {start} where start is a channel used also in the scheduling mechanism

though which exchanged regions names transit between lifelines (It is a shared channel between

them).

The symbol q denotes a new fresh state. The state q is the initial state of Gǫ, denoted init(Gǫ).

We also call it the final state of Gǫ, denoted final(Gǫ).

6.2.2 Simple sequencing

In the special case of lf is of the form (seq, atom, lf ′) where atom ∈ Atom(p,Σ) and lf ′ ∈

Lf(p,Σ), let us note Glf ′ = (Q, q0, T ) the translation of lf ′. The translation of lf is of the form

Glf = (Q∪{q}, q, T ∪{tr}) where q is a new fresh state symbol and tr is a transition depending of

the atom form and whose target state is q0. Note that final(Glf ) is final(Glf ′). In the following

subsections we consider all possible forms of atoms as defined in Definition 29.
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Chapter 6. Operational semantics of UML MARTE Sequence Diagram

6.2.2.1 Emission/reception atom

Consider the case where atom is of the form (_, true, φd, m) or (t, φt, φd, m) respectively for

simple/timed atoms where m is a message name (see Definition 29). Here two cases are possible:

either m is of source p (∃v ∈ P ∪ {e} such that m ∈ Msg(p,v)) that denotes an emission of a value

and the corresponding translation rules SEND and TIMED SEND are given in Figures 6.4–6.5; Or m

is a message name of target p (∃u ∈ P ∪ {e} such that m ∈ Msg(u,p)) that denotes a reception of

a value and the corresponding translation rules named RECEIVE and TIMED RECEIVE are given in

Figures 6.6–6.7.
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send

lf = (seq, (_, true, φd, m), lf
′) m ∈ Msg(p,v)

Glf ′ = (Q, q0, T ) over Σlf ′ = (A, C) reg

Glf = (Q ∪ {q}, q, T ∪ {tr})
over Σlf = (A ∪ V ar(φd), C ∪ {m.in}) reg

where 2

{
Read(Σlf ) = Read(Σ′

lf ) ∪ V ar(φd) \ W rite(Σlf ′)
W rite(Σlf ) = W rite(Σ′

lf )
tr = (q, ∅, true, φd, m.in!p, id, q0)

Figure 6.4: Translation of simple sending atom of a lifeline
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timed send

lf = (seq, (t, φt, φd, m), lf
′) m ∈ Msg(p,v)

Glf ′ = (Q, q0, T ) over Σlf ′ = (A, C) reg

Glf = (Q ∪ {q}, q, T ∪ {tr})
over Σlf = (A ∪ {t, it} ∪ V ar(φt) ∪ V ar(φd) \ {i}, C ∪ {m.in}) reg

where

{
Read(Σlf ) = Read(Σ′

lf ) ∪ {t} ∪ V ar(φt) ∪ V ar(φd) \ (W rite(Σlf ′) ∪ {i})
W rite(Σlf ) = W rite(Σ′

lf ) ∪ {it}
tr = (q, {t}, φt[i ← it], φd, m.in!p, id[it ← it + 1], q0)

Figure 6.5: Translation of timed sending atom of a lifeline

2Let φ ∈ SenΩ(V ). The set of variables of φ, denoted V ar(φ) is the subset of V defined as follows: If φ is
true or false then V ar(φ) = ∅; If φ is of the form t1 = t2 then V ar(φ) = V ar(t1) ∪ V ar(t2); If φ is of the form
φ1 ∨ φ2 or φ1 ∧ φ2 then V ar(φ) = V ar(φ1) ∪ V ar(φ2); If φ is of the form ¬ψ then V ar(φ) = V ar(ψ).
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receive

lf = (seq, (_, true, φd, m), lf
′) m ∈ Msg(u,p)

Glf ′ = (Q, q0, T ) over Σlf ′ = (A, C) reg

Glf = (Q ∪ {q}, q, T ∪ {tr})
over Σlf = (A ∪ V ar(φd) \ {i}, C ∪ {m.out}) reg

where

{
Read(Σlf ) = Read(Σ′

lf ) ∪ V ar(φd) \ W rite(Σlf ′)
W rite(Σlf ) = W rite(Σlf ′)
tr = (q, ∅, true, φd, m.out?p, id, q0)

Figure 6.6: Translation of simple reception atom of a lifeline
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timed receive

lf = (seq, (t, φt, φd, m), lf
′) m ∈ Msg(u,p)

Glf ′ = (Q, q0, T ) over Σlf ′ = (A, C) reg

Glf = (Q ∪ {q}, q, T ∪ {tr})
over Σlf = (A ∪ {t, it} ∪ V ar(φt) ∪ V ar(φd) \ {i}, C ∪ {m.out}) reg

where

{
Read(Σlf ) = Read(Σ′

lf ) ∪ {t} ∪ V ar(φt) ∪ V ar(φd) \ (W rite(Σlf ′) ∪ {i})
W rite(Σlf ) = W rite(Σlf ′) ∪ {it}
tr = (q, {t}, φt[i ← it], φd, m.out?p, id[it ← it + 1], q0)

Figure 6.7: Translation of timed reception atom of a lifeline

Let us discuss the emission case. Recall that the emission of the value conveyed by the message m

(depicted as an outgoing arrow from the lifeline of p in the sequence diagrams in Figures 6.4–6.5,

see the upper left part) may happen only if φd and additionally, when the atom is timed, φt

are satisfied. p is considered as a one buffer variable that contains the value to be sent. If this

variable is not defined/assigned after an initialization for example, the same initial value is sent

each time the system outputs.

We start by explaining the constituents of the built TIOSTS signature Σlf . Obviously based on

the inductive form of the lifeline lf = (seq, atom, lf ′), Σlf contains all variables and channels

of Σlf ′ . It contains as well the variables V ar(φd) occurring in φd expression. In the same way

as in the case where the message is timed, time variables associated with the timed atom of an

emission are added to Σlf : which are the time variable associated with the emission t together

with time variables of V ar(φt). The partition read/write and read only of variables is similar to

messages translation for variables t, it (the time index associated with t) and the timing variables
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Chapter 6. Operational semantics of UML MARTE Sequence Diagram

of V ar(φt). Clearly all variables of Write(Σlf ′) are also read/write of Σlf . We consider further

the data variables occurring in φd (V ar(φd)). Some of them may have been already declared as

read/write variables in Σlf ′ (that is in Write(Σlf ′)) and so only the remaining variables, i.e. in

V ar(φd) \ Write(Σlf ′), are considered as read-only variables in Σlf .

A key point in the translation of an emission atom is the introduction of the channel m.in in Σlf .

Emitted values by the lifeline actually transit through m.in which is a shared channel between Glf

and the TIOSTS of m in order to operate a synchronization between the two TIOSTS allowing

the message to transmit these values. This is possible thanks to the naming convention m.in

used in either translation rules: on one hand, the rules MESSAGE and TIMED MESSAGE and on the

other hand the rules SEND and TIMED SEND.

Now let us look at the augmented transition structure. As glimpsed at the beginning of the

section, tr is built over a fresh state q as its source state and its target state is q0 which is the

initial state of Glf ′ . The execution of tr is guarded by φd as it is formulated in the sequence

diagram. tr performs on the channel m.in the communication action m.in!p to output the value

contained in p. Consider the case when the atom is timed: tr is associated with the time variable

t; it is guarded by φt where all occurrences of i are replaced by the index variable it (same

reasoning as in the timed message case); and the substitution of tr increments it and leaves all

other variables unchanged.

Consider now the case of a reception atom (atom = (t, φt, φd, m) or (_, true, φd, m) with m is a

message name of target p). The corresponding translation rules RECEIVE and TIMED RECEIVE are

shown in Figures 6.7– 6.6. The signature Σlf differ from the one built by the previous emission

rules only in the channel identity shared with TIOSTS of the message m. The channel is named

conventionally rather m.out as in the messages rules. The resulting transition tr here is very

similar to the one constructed by the emission rules except that its communication action m.out?p

denotes an input on the channel m.out. The received value is stored in the variable p. As a result,

the TIOSTS of the message m is supposed to synchronize with the TIOSTS of the emitter lifeline

TIOSTS on m.in in order to get data values. In a symmetrical manner, it should synchronize

with the receiver lifeline TIOSTS on m.out in order to transmit those values.
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(b)

Figure 6.8: Examples of translation of respectively a sending and reception atoms

Example 38 Consider again the sequence diagram of RWC system in Figure 4.1. The Figure 6.8a
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6.2. Translation of lifelines

illustrates the translation of the sub lifeline of the port ctrl.intensity starting at the atom

whose associated instant is t1 (lf
′ is the empty lifeline in this case). The rule RECEIVE is

applied such that the atom atom is equal to (t1, t1[i] − t1[i − 1] = 0.5, true, m2) where m2 ∈

Msg(ctrl.intensity,calc.intensity). The generated transition constrains the sending of the intensity

(see the output action m2.in?ctrl.intensity) to be performed every 0.5s: the transition guard

t1, t1[it1 ]−t1[it1−1] = 0.5 is obtained replacing i by it1 . it1 is a fresh index incremented exclusively

by the transition (it1 ← it1 + 1) oin order to capture the current time instant of the emission

(t1[it1 ], t1 quantifies all time elapsed between successive emissions). The Figure 6.8b illustrates

another example of an atom translation: the translation of the sub lifeline of ctrl.speed starting

at the atom (t3, t3[i]− t1[i] < 0.5, true, m3) whose associated instant is t3 (lf
′ starts with a alt

operator in Figure 4.1).

6.2.2.2 Assignement atom

Let atom be of the form (t, φt, φd, x = ̺) or (_, true, φd, x = ̺). The corresponding translation

rules named respectively TIMED ASSIGN and ASSIGN are defined in Figure 6.9.
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timed assign

lf = (seq, (t, φt, φd, x = ̺), lf
′)

Glf ′ = (Q, q0, T ) over Σlf ′ = (A, C) reg

Glf = (Q ∪ {q}, q, T ∪ {tr})
over Σlf = (A ∪ {x, t, it} ∪ V ar(φt) ∪ V ar(φd) ∪ V ar(̺) \ {i}, C ∪ {m.out}) reg

where

{
Read(Σlf ) = Read(Σ′

lf ) ∪ {t} ∪ V ar(φt) ∪ V ar(φd) ∪ V ar(̺) \ (W rite(Σlf ′) ∪ {x, i})
W rite(Σlf ) = W rite(Σlf ′) ∪ {x, it}
tr = (q, {t}, φt[i ← it], φd, τ, id[it ← it + 1, x ← ̺], q0)

assign

lf = (seq, (_, true, φd, x = ̺), lf
′)

Glf ′ = (Q, q0, T ) over Σlf ′ = (A, C) reg

Glf = (Q ∪ {q}, q, T ∪ {tr})
over Σlf = (A ∪ {x} ∪ V ar(φd) ∪ V ar(̺), C ∪ {m.out}) reg

where

{
Read(Σlf ) = Read(Σ′

lf ) ∪ V ar(φd) ∪ V ar(̺) \ (W rite(Σlf ′) ∪ {x})
W rite(Σlf ) = {x} ∪ W rite(Σlf ′)
tr = (q, ∅, true, φd, τ, id[x ← ̺], q0)

Figure 6.9: Translation of an assignment atom of a lifeline

Note that the partition read/write and read-only variables in Σlf takes into account that some

data variables occurring in ̺ expression (V ar(̺)) may be already read/write variables in Σlf ′

and of course that the variable x which is defined by the atom is necessarily a read/write

variable. Obviously, in the constructed transition tr, there is no communication action (then τ is

introduced). The substitution of the transition tr assigns the term ̺ to x, all other variables are

not modified.
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Chapter 6. Operational semantics of UML MARTE Sequence Diagram

6.2.2.3 Underspecification atom

Let atom be of the form (t, φt, φd, new(x)) or (_, true, φd, new(x)). The corresponding translation

rules named respectively TIMED UNDERSPEC and UNDERSPEC are defined in Figure 6.10.
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timed underspec

lf = (seq, (t, φt, φd, new(x)), lf
′)

Glf ′ = (Q, q0, T ) over Σlf ′ = (A, C) reg

Glf = (Q ∪ {q}, q, T ∪ {tr})
over Σlf = (A ∪ {x, t, it} ∪ V ar(φt) ∪ V ar(φd) ∪ V ar(̺) \ {i}, C ∪ {m.out})
reg

where

{
Read(Σlf ) = Read(Σ′

lf ) ∪ {t} ∪ V ar(φt) ∪ V ar(φd) \ (W rite(Σlf ′) ∪ {x, i})
W rite(Σlf ) = W rite(Σlf ′) ∪ {x, it}
tr = (q, {t}, φt[i ← it], φd, new(x), id[it ← it + 1], q0)

underspec

lf = (seq, (_, true, φd, new(x)), lf
′)

Glf ′ = (Q, q0, T ) over Σlf ′ = (A, C) reg

Glf = (Q ∪ {q}, q, T ∪ {tr})
over Σlf = (A ∪ {x} ∪ V ar(φd) ∪ V ar(̺), C ∪ {m.out}) reg

where

{
Read(Σlf ) = Read(Σ′

lf ) ∪ V ar(φd) \ (W rite(Σ′
lf ) ∪ {x})

W rite(Σlf ) = {x} ∪ W rite(Σlf ′)
tr = (q, ∅, true, φd, new(x), id, q0)

Figure 6.10: Translation of a lifeline underspecification atom

Now we construct the transition tr for the underspecification atom that is recognizable by the

symbol new. Recall that new(x) assigns a random value to the variable x (and it is still possible

that this variable is assigned with its previous value). Therefore as in the case of an assignment

atom, x is considered as a read/write variable in Σlf . The action of tr is naturally new(x) which

was intended for that use in our TIOSTS formalism.
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Figure 6.11: Examples of translation of respectively an assignment and underspecification atoms

Example 39 Figure 6.11 gives some examples of translation of atoms taken from the sequence

diagram of RWC system in Figure 4.1.
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6.2. Translation of lifelines

6.2.3 Combination operator

Recall that we are discussing the translation rules of all possible forms of a lifeline as defined in

Definition 30: starting with an empty lifeline; continuing with all possible forms which contain

atoms; and now in this section finishing with the remaining forms, that is, those which contain

combining operators.

6.2.3.1 alt operator

From a local point of view, the one of the lifeline, the alt operator defines a non deterministic

choice between (two) lifeline sub patterns. The translation of the alt operator is more subtle

than the translation of the other operators. The difficulty arises because it may cover lifelines of

other ports as well, each of which operates at its own rate while the translation must be able to

guarantee consistent global choices.
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(b) lf = (alt, o1, lf1, o2, lf2, lf3)
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(c) lf ′ = (alt, o1, lf ′
1, o2, lf ′

2, lf ′
3)

Figure 6.12

Let lf be of the form (alt, o1, lf1, o2, lf2, lf3) where lf1, lf2, lf3 ∈ Lf(p,Σ). In order to discuss

the translation of lf , we need a global view of some interactions structured by an alt and involving

besides the port p (recall that lf ∈ Lf(p,Σ)), another port. A generic example is illustrated

in the sequence diagram of Figure 6.12a where is depicted further the lifeline lf ′ of another

port p′ (lf ′ ∈ Lf(p′,Σ)). lf ′ is of the form (alt, o1, lf ′
1, o2, lf ′

2, lf ′
3) where lf ′

1, lf ′
2, lf ′

3 ∈ Lfp′(Σ).

Figures 6.12b–6.12c show how the sequence diagram is decomposed by the syntax that we have

introduced in Chapter 4 in order to encode the alt operator at the level of the lifelines lf and

lf ′ respective expressions. Note the role of the region names in preserving informations about

each lifeline sub behavior location in the diagram. For instance, we know that the sub lifeline

lf1 (respectively lf2) of p is located in the region o1 (respectively lf2) (symmetric information

is available for lf ′
1 and lf ′

2). Recall that the semantics of the alt operator requires that exactly

one region will be executed either o1 or o2. Consequently, the translation rule of the alt operator

has to make sure that if lf1 of p is executed then, on p′ side, lf ′
1 is executed and vice versa (this

must be true for lf2 and lf ′
2 as well).
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Chapter 6. Operational semantics of UML MARTE Sequence Diagram

The translation rule ALT for the alt operator is given in Figure 6.13. Remember that the lifeline

lf of the port p is our "reference" lifeline, the one for which the rule generates a TIOSTS Glf .
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(a)

alt

lf = (alt, o1, lf1, o2, lf2, lf3)

Glf1 = (Q1, q
1
0 , T1) over Σlf1 = (A1, C1)

Glf2 = (Q2, q
2
0 , T2) over Σlf2 = (A2, C2)

Glf3 = (Q, q0, T ) over Σlf3 = (A, C) reg

Glf = (Q1 ∪ Q2 ∪ Q ∪ {q}, q, T1 ∪ T2 ∪ T ∪ {tr1, tr2, tr3, tr4, tr5, tr6})
over Σlf = (A1 ∪ A2 ∪ A, C1 ∪ C2 ∪ C) reg ∪ {o1, o2}

where





Read(Σlf ) = Read(Σlf1) ∪ Read(Σlf2) ∪ Read(Σlf3) \ (W rite(Σlf1) ∪ W rite(Σlf2) ∪ W rite(Σlf3))
W rite(Σlf ) = W rite(Σlf1) ∪ W rite(Σlf2) ∪ W rite(Σlf3)
tr1 = (q, ∅, true, NOT (elem({o1, o2}, schedp)), start!o1, id, q10)
tr2 = (q, ∅, true, last({o1, o2}, schedp) = o1, τ, id[schedp ← popLast(o1, schedp)], q10)
tr3 = (q, ∅, true, NOT (elem({o1, o2}, schedp)), start!o2, id, q20)
tr4 = (q, ∅, true, last({o1, o2}, schedp) = o2, τ, id[schedp ← popLast(o2, schedp)], q20)
tr5 = (final(Glf1), ∅, true, true, τ, id, q0)
tr6 = (final(Glf2), ∅, true, true, τ, id, q0)

Figure 6.13: Translation of the alt operator

In the rule ALT, we note Glf1 , Glf2 and Glf3 the TIOSTS respectively associated with lf1, lf2
and lf3. The TIOSTS Glf associated with lf is built upon a new fresh initial state (denoted q).

It contains all transitions of Glf1 , Glf2 and Glf3 . Since the alt operator permits to define choices

of executions between different sub lifelines (lf1 and lf2), it introduces transitions to reflect those

choices (the four transitions tr1, tr2, tr3, tr4 of source q also illustrated in Figure 6.13a).

Let us discuss the two transitions tr1, tr2 of source q situated on the top right part of Figure

6.13a (the transitions tr3, tr4 are the ones on the top left of the figure and represent a symmetric

case). Obviously when two lifelines (here lf and lf ′) share a common region, the fact that an

execution associated with one of the lifelines went through that region has an impact on the

execution of the other: if Glf and Glf ′ share regions o1 and o2 and some execution of Glf went

successively into region o1 and o2, then the corresponding execution of Glf ′ should also go into

o1 and o2. Therefore the choice to be made to follow an execution of lf1 or lf2 is conditioned

by a decision made by some other lifelines sharing o1 or o2 with lf . schedp is an unbounded

FIFO variable storing occurrences of region names oi (i ∈ {1, 2}) each time such a remote lifeline

execution go into oi. If neither o1 nor o2 occurs in schedp then the execution may go in region

o2 (transition tr1 illustrated in the upper right part of Figure 6.13a) and the value o2 is sent

through the channel start, which is shared by all lifeline translations, in order to inform the other
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6.2. Translation of lifelines

concerned remote lifelines of that execution choice. In the transition tr2 of source q just below in

Figure 6.13a, o2 occurs in schedp and if o1 also occurs in schedp then the last occurrence of o2
is after the last occurrence of o1 (thus an execution through o2 was required before executions

through o1 since schedp has a FIFO structure). In that case the execution has to go in o2 and

the last occurrence of o2 in schedp is removed.

Note that additional operations were defined on the FIFO queues in order to encode the complex

behavior explained before: recall that S is the set of types and F is the set of operations. The

operation elem ∈ F with profile set(s).queue(s) → bool tells whether at least an element of type

s ∈ S from the input set is in the queue; The operation last with profile set(s).queue(s) → s

returns the element of the input set which was the first to be enqueued in the queue (without

removal), if none of them exists in the queue then the operation fails; The operation popLast

with profile s.queue(s)→ queue(s) removes the first occurrence,i.e. enqueued first, of the input

element from the queue if it does exist.

Lastly, the two transitions tr5, tr6, that are in the lower part of the figure, whose targets are the

initial state of Glf3 are non guarded transitions with τ actions and that do not modify variables

assignments; they are added to connect executions of Glf1 and Glf2 to those of Glf3 .

Example 40 In Figure 6.14a, the lifeline of port p′ shares regions o1, o2 (resp. o3, o4) with the

one of port p (resp. p′′). A possible scenario of execution is illustrated in Figure 6.14b: we show

how the content of the FIFO queue schedp′ evolves. We have that the lifelines of p′′, p went

successively in regions o3, o2 before any execution is started on the port p′ side. At this level, the

queue schedp′ contains in order of arrival the regions o3 then o2. However, the lifeline of p′ has

to execute the behavior in region o2 before the one in o3 (as specified in Figure 6.14a). That is

why, the region token o2 is consumed first (The effect of popLast operation call is the removal of

o2 from the queue).
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(b)

Figure 6.14: Synchronization mechanism of operator regions

Example 41 The TIOSTS in Figure 6.13a illustrates the translation of the sub lifeline of

ctrl.speed (p = ctrl.speed) starting at the most external alt operator, see the sequence diagram

in Figure 4.1.
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Chapter 6. Operational semantics of UML MARTE Sequence Diagram

6.2.3.2 loop operator

Let lf be of the form (loop, o, lf1, lf2). The translation is given in Figure 6.15 by the rule LOOP.
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(a)

loop

lf = (loop, o, lf1, lf2)

Glf1 = (Q1, q
1
0 , T1) over Σlf1 = (A1, C1)

Glf2 = (Q, q0, T ) over Σlf2 = (A, C) reg

Glf = (Q1 ∪ Q, final(Glf1), T1 ∪ T ∪ {tr1, tr2, tr3, tr4})
over Σlf = (A1 ∪ A, C1 ∪ C) reg ∪ {o1, o2}

where





Read(Σlf ) = Read(Σlf1) ∪ Read(Σlf2) \ (W rite(Σlf1) ∪ W rite(Σlf2))
W rite(Σlf ) = W rite(Σlf1) ∪ W rite(Σlf2)
tr1 = (final(Glf1), ∅, true, NOT (elem({o1, o2}, schedp)), start!o1, id, q10)
tr2 = (final(Glf1), ∅, true, last({o1, o2}, schedp) = o1, τ, id[schedp ← popLast(o1, schedp)], q10)
tr3 = (final(Glf1), ∅, true, NOT (elem({o1, o2}, schedp)), start!o2, id, q0)
tr4 = (final(Glf1), ∅, true, last({o1, o2}, schedp) = o2, τ, id[schedp ← popLast(o2, schedp)], q0)

Figure 6.15: Translation of the loop operator

Translation rule for the loop operator is based on the same kind of synchronization mechanisms

than the one used for alt.

Translation of the loop operator adds transitions tr1, tr2 to reflect cyclic executions (the two

transitions on the upper right part of Figure 6.15a). The cyclic behavior consists in repetitive

executions of Glf1 the translation of the sub lifeline lf1 which is in the region o1 delimited by

the loop operator frame in the diagram. The number of iteration is not predefined and may

be finite or infinite. The challenge when the number of iteration is finite and not known in

advance, is to force the execution associated with any lifeline to iterate that same number of

iterations on Glf1 then continue with the execution of lf2 without waiting for the others to leave

o1. The synchronization mechanism makes each lifeline execution that initiates a new iteration,

informs the others by sending the region token o1 on the channel start (transition tr1). The

execution necessarily enters the region o1 if the corresponding token is available in the queue

schedp (transition tr2).

Two transitions tr3, tr4 are introduced to force the execution to leave the region o1 of the cyclic

behavior (the two transitions on the lower left part of Figure 6.15a). In fact, a lifeline execution

may choose non deterministically to leave the region o1 and execute Glf2 so it informs the others

by sending on channel start an artifact region o2, a fresh region symbol introduced for that

purpose (transition tr3). Of course, the lifeline execution may have been informed before to leave

that region by another lifeline execution (captured by the transition tr4).
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(b)

Figure 6.16: Synchronization mechanism of operator regions

Example 42 In Figure 6.16a, the lifeline of port p′ shares regions o1 of the loop with the one of

port p. A possible scenario of execution is illustrated in Figure 6.16b. The lifeline of p went twice

in the region o1 then left that region before any execution is started on the port p′ side. The queue

schedp′ contains in order of arrival two occurrences of the region o1 then o2, o2 is an artifact

region used as token to notify the others when leaving the cyclic behavior. Thus, the lifeline of p′

has to execute only twice the behavior in region o1 before leaving the loop and continue with the

following behavior.

6.2.3.3 strict operator

Let lf be of the form (strict, o1, lf1, o2, lf2, lf3). Consider the translation rule STRICT for the

strict operator in Figure 6.17.

The rule STRICT is illustrated in Figure 6.17.

The key idea here is to force the execution of the first sub lifeline translation Glf1 to wait for others

before resuming with the execution of the second sub lifeline translation Glf2 . Consequently, this

rule has to make all executions of the first sub lifelines lf1 of all ports in region o1 interleave

and then synchronize before continuing with the executions of the second sub lifelines lf2 in the

region o2. Since the treatment of the strict operator is performed simultaneously, the lifeline does

not exchange region values, so no need to increase the set reg. For this aim, we introduce the

channel waito1.o2 on which all the lifelines executions have to synchronize. This name is unique.

Two transitions tr1, tr2 are constructed to encode the synchronized execution: we have either the

translation of lifeline Glf is the one to output on the channel waito1.o2 (transition tr1) or it is

among some other lifelines translation Glf ′ to input on that channel (transition tr2). Finally, the

transition tr3 connects the executions of Glf2 to those of Glf3 .

6.2.4 Completion operations

Once all lifelines lf of the sequence diagram to be translated have been associated with a TIOSTS

Glf , two last operations are performed on it. First the set of transitions of Glf is enriched by an
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(a)

strict

lf = (strict, o1, lf1, o2, lf2, lf3)

Glf1 = (Q1, q
1
0 , T1) over Σlf1 = (A1, C1)

Glf2 = (Q2, q
2
0 , T2) over Σlf2 = (A2, C2)

Glf3 = (Q, q0, T ) over Σlf3 = (A, C) reg

Glf = (Q1 ∪ Q2 ∪ Q, q
1
0 , T1 ∪ T2 ∪ T ∪ {tr1, tr2, tr3})

over Σlf = (A1 ∪ A2 ∪ A, C1 ∪ C2 ∪ C ∪ {waito1.o2}) reg

where





Read(Σlf ) = Read(Σlf1) ∪ Read(Σlf2) ∪ Read(Σlf3) \ (W rite(Σlf1) ∪ W rite(Σlf2) ∪ W rite(Σlf3))
W rite(Σlf ) = W rite(Σlf1) ∪ W rite(Σlf2) ∪ W rite(Σlf3)
tr1 = (final(Glf1), ∅, true, true, waito1.o2 !, id, q20)
tr2 = (final(Glf1), ∅, true, true, waito1.o2?, id, q20)
tr3 = (final(Glf2), ∅, true, true, τ, id, q0)

Figure 6.17: Translation of the loop operator

initialization transition (see Figure 6.18 for illustration) which assigns the value 0 to all the time

indexes associated with the time variables of the lifeline (in Figure 6.18, iti
← 0 for all i ≤ n

where {t1, · · · , tn} is the set of all time variables of the lifeline). The FIFO schedp is initialized

to the empty FIFO and a variable myRegp is assigned to the set of all regions occurring in the

definition of lf . This information was obtained by the static analysis of lf definition where

regions were accumulated in reg during successive applications of translation rules.
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Figure 6.18: Initialization Completion.

The second operation consist in adding for all states of the TIOSTS a looping transition whose

purpose is to store in schedp all the region crossing decision made by lifelines sharing regions

with lf . As illustrated in Figure 6.19 each time a region name occurring in myRegp is received

on the channel start, it is stored in schedp.
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Figure 6.19: Input Completion.

We note Glf the TIOSTS resulting of the application of the two operations described above on

Glf .

6.3 Full translation of a sequence diagram

Let sd be a sequence diagram ({lfp1 , . . . , lfpn
}, {msg1, . . . , msgl}). The translation of sd is a

TIOSTS Gsd defined as Glfp1
|| · · · ||Glfpn

||Gmsg1 || · · · ||Gmsgl
(the chosen order of the composition

has no impact since the operator || of Definition 35 is commutative).

Example 43 Consider the lifeline lfctrl.intensity associated with the port ctrl.intensity in Fig-

ure 4.1:

(loop, o, lf1ctrl.intensity, lf0ctrl.intensity)

where lf0ctrl.intensity = ǫ

lf1ctrl.intensity = (alt, o1, lf2ctrl.intensity, o2, lf3ctrl.intensity, lf4ctrl.intensity)

lf3ctrl.intensity = ǫ

lf4ctrl.intensity = ǫ

lf2ctrl.intensity = (seq, (_, true, true, m1), lf5ctrl.intensity)

lf5ctrl.intensity = (seq, (t1, t1[i]− t1[i − 1] = 0.5, true, m2), lf6ctrl.intensity)

lf6ctrl.intensity = ǫ

We apply inductively the translation rules until we obtain at the end (check further for the step

9) the translation of the lifeline lfctrl.intensity. A sub lifeline can be translated only if any sub

lifeline which occurs in its expression has been already translated. For example, in order to apply

the rule SEND in the 2nd step on the sub lifeline lf5ctrl.intensity, the translation of the sub lifeline

lf6ctrl.intensity was computed in the 1
st step by the applying the rule EMPTY.

1.

empty

lf
6
ctrl.intensity = ǫ

Glf6
ctrl.intensity

= ({q0}, q0, ∅)

over Σlf6
ctrl.intensity

= (∅, ∅) ∅

2.

send

lf
5
ctrl.intensity = (seq, (t1, t1[i]− t[i − 1] = 0.5, true, m2.in!ctrl.intensity), lf

6
ctrl.intensity)

Glf6
ctrl.intensity

over Σlf6
ctrl.intensity

∅

Glf5
ctrl.intensity

= ({q0, q1}, q1, {tr0})

over Σlf5
ctrl.intensity

= ({t1, ctrl.intensity, it1}, {m2.in}) ∅

where tr0 = (q1, {t1}, t1[it1 ]− t[it1 − 1] = 0.5, true, m2.in!ctrl.intensity, id[it1 ← it1 + 1], q0)
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3.

receive

lf
2
ctrl.intensity = (seq, (_, true, true, m1.out?ctrl.intensity), lf

5
ctrl.intensity)

Glf5
ctrl.intensity

over Σlf5
ctrl.intensity

∅

Glf2
ctrl.intensity

= ({q0, q1, q2}, q2, {tr0, tr1})

over Σlf2
ctrl.intensity

= ({t1, ctrl.intensity, it1}, {m2.in, m1.out}) ∅

where tr1 = (q2, ∅, true, true, m1.out?ctrl.intensity, id, q1)

4.

empty

lf
3
ctrl.intensity = ǫ

Glf3
ctrl.intensity

= ({q3}, q3, ∅)

over Σlf3
ctrl.intensity

= (∅, ∅) ∅

5.

empty

lf
4
ctrl.intensity = ǫ

Glf4
ctrl.intensity

= ({q4}, q4, ∅)

over Σlf4
ctrl.intensity

= (∅, ∅) ∅

6.

alt

lf
1
ctrl.intensity = (alt, o1, lf

2
ctrl.intensity, o2, lf

3
ctrl.intensity, lf

4
ctrl.intensity)

Glf2
ctrl.intensity

over Σlf2
ctrl.intensity

Glf3
ctrl.intensity

over Σlf3
ctrl.intensity

Glf4
ctrl.intensity

over Σlf4
ctrl.intensity

∅

Glf1
ctrl.intensity

= ({q0, q1, q2, q3, q4, q5}, q5, {tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7})

over Σlf1
ctrl.intensity

= ({t1, ctrl.intensity, it1 , schedctrl.intensity}, {m2.in, m1.out, start})

{o1, o2}

where







tr2 = (q5, ∅, true, NOT (elem({o1, o2}, schedctrl.intensity)), start!o1, id, q2)

tr3 = (q5, ∅, true, last({o1, o2}, schedctrl.intensity) = o1, τ,

id[schedctrl.intensity ← popLast(o1, schedctrl.intensity)], q2)

tr4 = (q5, ∅, true, NOT (elem({o1, o2}, schedctrl.intensity)), start!o2, id, q3)

tr5 = (q5, ∅, true, last({o1, o2}, schedctrl.intensity) = o2, τ,

id[schedctrl.intensity ← popLast(o2, schedctrl.intensity)], q3)

tr6 = (q0, ∅, true, true, τ, id, q4)

tr7 = (q3, ∅, true, true, τ, id, q4)

7.

loop

lf
0
ctrl.intensity = (loop, o, lf

1
ctrl.intensity), lf

0
ctrl.intensity

Glf1
ctrl.intensity

over Σlf1
ctrl.intensity

Glf0
ctrl.intensity

over Σlf0
ctrl.intensity

{o1, o2}

Glfctrl.intensity
= ({q0, q1, q2, q3, q4, q5, q6}, q4,

{tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7, tr8, tr9, tr10, tr11})

over Σlfctrl.intensity
= ({t1, ctrl.intensity, it1 , schedctrl.intensity}, {m2.in, m1.out, start})

{o1, o2, o, o
′}

where
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6.4. Symbolic execution of a sequence diagram







tr8 = (q4, ∅, true, NOT (elem({o, o′}, schedctrl.intensity)), start!o, id, q5)

tr9 = (q4, ∅, true, last({o, o′}, schedctrl.intensity) = o, τ,

id[schedctrl.intensity ← popLast(o, schedctrl.intensity)], q5)

tr10 = (q4, ∅, true, NOT (elem({o, o′}, schedctrl.intensity)), start!o′, id, q6)

tr11 = (q4, ∅, true, last({o, o′}, schedctrl.intensity) = o′, τ,

id[schedctrl.intensity ← popLast(o′, schedctrl.intensity)], q6)

Consider the TIOSTS in Figure 6.20 without the dotted transitions. It is the translation

Glfctrl.intensity
of the lifeline lfctrl.intensity obtained by applying inductively the rules as detailed

previously. The translation does not include the application of the completion operators. Now

consider the TIOSTS with the dotted transitions which are the results of the input completion

and the initialization operators. Thus, this TIOSTS is Glfctrl.intensity
exactly the full translation

of the lifeline.
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Figure 6.20: TIOSTS Glfctrl.intensity
of the lifeline corresponding to the port ctrl.intensity in Figure 4.1

6.4 Symbolic execution of a sequence diagram

After the translation phase of a sequence diagram sd, we obtain a TIOSTS Gsd. Based on

Definition 46, the symbolic symbolic execution of sd is simply the symbolic execution SE(Gsd) of

its associated TIOSTS Gsd obtained by translation.

Note that SE(Gsd) is a tree whose all paths denote in an abstract way all possible executions

of Gsd. By solving time and data path conditions, we obtain concrete actions and delays

corresponding to the sequence of symbolic actions in paths and hence extract timed traces

specified by sd.

In Figures 6.21– 6.22b, we illustrate the symbolic execution SE(Gsd) where sd is the sequence

diagram of the RWC system (see Figure 4.1). The symbolic tree has infinitely many executions
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Chapter 6. Operational semantics of UML MARTE Sequence Diagram

paths (because of the loop operator modeling reactive behaviors of RWC system), we just depict

branches in Figure 6.21 which give enough intuition of how the execution works, at least at

the beginning. Then we look in detail at a particular path of the symbolic tree depicted in

Figure 6.22b.

init

η0 : δ0
myRegctrl.intensity ← {o, o′, o1, o2}
schedctrl.intensity ← emptyQueue

it1 ← 0

N

m1.in?xm1#1
y e?xm1#1

η5 : ∆5

η6 : ∆6
schedctrl.intensity ← emptyQueue

schedctrl.speed ← {o}
schedcalc.intensity ← {o}

schedcalc.speed ← {o}
schedeng.speed ← {o}

η7 : ∆7

η8 : ∆8

m1.in?xm1#1
y e?xm1#1

N

start!o1
y τ

N

start!o2
y τ

N

start!o
y τ

N

start!o′

y τ
ctrl.prevSpeed ← 0

N

τ

N

τ

N

τ

N

Figure 6.21: Symbolic execution of the Rain-sensor Wiper Controller system (partial view)

In Figure 6.22b, channels of the form m.in and m.out corresponding to a message name m are

replaced by the source or the target port of m depending on the component point of view: e.g.

The channel m3.in is replaced by port name calc.speed because the component calc emitted a

speed value from that port through m3 (m3 ∈ Msg(calc.speed,ctrl.speed)). The channel m3.out is

replaced by port name ctrl.speed because the component ctrl received the speed value on that

port through m3. This improves readability by helping the reader to make links with Figure 4.1.

Also all actions performed on channel start are replaced by τ because they are just artifacts to

schedule the combining operators and do not have counterparts in the component interface (i.e.

ports). These transformations are shown by curvy arrows.

Recall that instants at which actions occur are denoted by sum of symbolic durations introduced

in the course of the symbolic execution (∆i =
∑i

j=0 δj). Similarly, ∆k→i means
∑i

j=k δj .

Now let us look at the structure of the tree. From the symbolic initial state init, the symbolic transi-

tion init → η0 corresponds to some execution in the TIOSTS product Gsd of the transition q → q4
of the TIOSTS Gctrl.intensity (see the Figure 6.20): the substitution σ(η0) assigns to variables

myRegctrl.intensity, schedctrl.intensity, it1 respectively the values {o, o′, o1, o2}, emptyQueue, 0. Then,

after executing similar transitions of the remaining TIOSTS in Gsd in the state from η5, the

loop region o may be entered by lfctrl.intensity (η5
start!o
−−−−→ η6). In which case, the lifeline notifies

the others by this choice (see the σ(η6), e.g. schedctrl.intensity of the notifier is still assigned to

the empty queue emptyQueue and schedcalc.intensity is assigned by {o}, the chosen region). The

other alternative behavior from η5 is ignore the loop (η0
start!o′

−−−−−→ .).

Continuing with a particular path of the symbolic tree (depicted in Figure 6.22b), the reception

of the intensity calc.intensity!xm1#0 is observed at time instant ∆15. The first new speed value
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6.4. Symbolic execution of a sequence diagram

emitted by calc after the first reception is not null (0 Ó= calc.speed#1) and the second value is

equal to the last calculated speed (calc.speed#1 = calc.speed#2). From constraint ∆15→60 = 0.5,

we deduce that the duration between the first reception of the rain intensity by the calculator

(calc.intensity!xm1#0 at instant ∆15) and the second reception (calc.intensity!xm1#1 at instant

∆61) is at least of 0.5s.

η3 : ∆3

η12 : ∆12

η13 : ∆13

η14 : ∆14

η15 : ∆15

η26 : ∆26

η27 : ∆27

η30 : ∆30

η31 : ∆31

η41 : ∆41

η42 : ∆42

η45 : ∆45

η46 : ∆46

η57 : ∆57

η58 : ∆58

η59 : ∆59

η60 : ∆60

η61 : ∆61

η73 : ∆73

η74 : ∆74

η76 : ∆76

η77 : ∆77

η78 : ∆78

m1.in?xm1#1
y e?xm1#1

τ

m1.out!xm1#1
y ctrl.intensity!xm1#1

m2.in!xm1#1
y ctrl.intensity!xm1#1

m2.out!xm1#1
y calc.intensity!xm1#1

τ

m3.in!calc.speed#1
calc.speed!calc.speed#1

τ

m3.out!calc.speed#1
y ctrl.speed!calc.speed#1

τ

m4.in!calc.speed#1
calc.speed!calc.speed#1

m4.out!calc.speed#1
y eng.speed!calc.speed#1

τ

m1.in?xm1#2
y e?xm1#2

m1.out!xm1#2
y ctrl.intensity!xm1#2

m2.in!xm1#2
y ctrl.intensity!xm1#2

m2.out!xm1#2
y calc.intensity!xm1#2

τ

m3.in!calc.speed#2
calc.speed!calc.speed#2

τ

m3.out!calc.speed#2
y ctrl.speed!calc.speed#2

τ

τ

(a) Symbolic path

π(η78)







δ15 < 0.1
∆15→31 < 0.5
0 Ó= calc.speed#1
∆15→60 = 0.5
δ61 < 0.1
∆61→77 < 0.5
calc.speed#1 = calc.speed#2

(b) Path conditions

Figure 6.22
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Application to testing
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In Chapter 6, we have shown how to associate semantics to sequence diagrams in the form of

a set of timed traces of a TIOLTS. In this chapter, we study how to use sequence diagrams

as references for testing. In Section 7.1, we present the tioco conformance relation [20, 54, 81]

that we use as a basis. Section 7.2 presents compositional results relating correctness of systems

and correctness of components composing them. Such results are a first attempt to define an

incremental approach for testing in which a system would be tested pieces by pieces rather than

as a whole. Finally, as all results above are defined in the TIOLTS framework, we have to relate

them to sequence diagrams which is done in Section 7.3.

7.1 Testing framework

In this section, we introduce the conformance relation tioco, that grounds our testing framework.

Subsection 7.1.1 is dedicated to the characterization of a system under test while subsection 7.1.2

presents the conformance relation.

7.1.1 System Under Test

In order to denote a conformance relation in a mathematical way, the first step is to mathematically

represent the objects it relates. The conformance relation is supposed to define the correctness of

implementations (or systems under test, SUT for short) with respect to specifications. In our

approach specifications are given in the form of sequence diagrams that may be associated with a

TIOLTS. Now we are interested in black box testing framework. In such a framework, SUT are

only observable by means of traces that a tester builds while interacting with the SUT. Therefore,

a SUT can be conventionally represented as a TIOLTS that we do not know but for which we

can discover associated traces by interacting with it.

Definition 54 (System Under Test) Let C be a set of channels. An System Under Test over

C is a TIOLTS A = (Q, q0, T ) over C satisfying the following property:

• Input enableness: for all q in Q, for all c in Cu and v in M there exists tr in T of the

form (q, c?v, q′),
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• Time elapsing: for all q in Q such that there are no transitions in T whose source state

is q and whose action is τ or an output, there exists q′ in Q and d in MI such that (q, d, q′)

in T ,

• Time decomposition: for any q1 and q2 in Q, for any d1 and d2 in MI , if (q1, d1+d2, q2)

in T then there exists q in Q such that (q1, d1, q) is in T and (q, d2, q2) in T ,

• Time additivity: for any q1, q2 and q3 in Q and for any d1 and d2 in MI , if (q1, d1, q2)

and (q2, d2, q3) are in T then (q1, d1 + d2, q3) is in T ,

• τ-closure: for any q1, q2 and q3 in Q, and for any d in MI , for any two transitions

(q1, a1, q2) and (q2, a2, q3) in T such that (a1, a2) is (d, τ) or (τ, d), we have (q1, d, q3) in T .

Input enableness is very classical in testing and only states that from the point of view of the

tester, SUT can not refuse an input. Time elapsing ensures that the absence of reaction of SUT

amounts to observing a waiting time during which no output occurs. Time decomposition

states that any possible decomposition of durations is taken into account in the SUT. Conversely,

we assume time additivity which states that any merging of subsequent delays into one delay

is taken into account in SUT. Those two properties are important for ensuring that the product

of two SUT reflect correctly the system resulting of their connection: in particular it permits to

ensure the ability to apply the item synchronous time passing of Definition 22.

Example 44 (System under test) Let us consider Figure 7.1. It illustrates a SUT over the

set of communication channels C = {c1, c2}. We consider that MI is isomorphic to natural

numbers and we consider that inputs and outputs are natural numbers too.
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Figure 7.1: System under test SUT1

In the depicted TIOLTS there are some elements which are denoted by symbols because otherwise

there would be an infinity of transitions to represent. For the same reason we do not represent

transitions with zero delay. The TIOLTS is input enabled. Consider for example the state q0, the

TIOLTS accepts all inputs: a?1, b?v and a?u where v is any natural number and u is any natural

number different from 1 (since the input is already represented, see the transition q0
a?1
−−→ q1).

Now consider all the transitions making the system evolve from q1 to q2. They illustrate the

properties of time decomposition/additivity by an arbitrary decomposition of the delay 3 as a sum

of delays 1+ 1+1, 1+ 2 and 2+ 1. Finally the time elapsed property is respected: in the states q0
and q3, there are two looping transitions respectively with delays d and d′ allowing time to elapse

since there is no reaction of the system, i.e. output or an unobservable action. Note that those

transitions are illustrative to time decomposition/additivity properties.

7.1.2 Timed conformance relation

Let us now introduce the tioco relation defined in [20, 54, 81]. Intuitively a TIOLTS A1 conforms

to a TIOLTS A2 for the tioco relation if and only if for any timed trace σ common to A1 and A2,

any reaction (output or delay) of A1 after σ is also a possible reaction of A2 after σ.
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Definition 55 (tioco) Let A1 and A2 be two TIOLTS over the same set of channels C. A1

conforms to A2, denoted A1 tioco A2, if and only if:

for all σ in TTraces(A1) ∩ TTraces(A2) and r in OM (C) ∪ MI ,

σ.r ∈ TTraces(A1) ⇒ σ.r ∈ TTraces(A2).

Example 45 (tioco) Consider the TIOLTS A in Figure 7.2a as a reference specification.
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(a) Specification A
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(b) SUT2✘✘tioco A : Not conform output
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(c) SUT3✘✘tioco A : Not conform delay

Figure 7.2: Not conform SUT

Based on the TIOLTS A of Figure 7.2a, we can notice that SUT1 of Figure 7.1 tioco A, because

after any specified sequence of actions and delay (trace), the outputs and delay emitted by SUT1
are also specified. Even if the SUT does not realize all the behaviors of A (Specifically the one on

the lower part of Figure 7.2a).

Figure 7.2 depicts different system under test.

SUT2 in Figure 7.2b does not conform to A (in the sense of tioco). This is because after the

trace tra = (a?1).3, in state q1 SUT2 produces the output (b!1) while A after tra produces (b!0)

which breaks tioco relation.

Finally, SUT3 does not conform to A, because after the specified trace tra′ = (a?1).3, the non-

specified delay 1 can be observed. It means that this realization of the system allows in all a delay

of 4 time slots before outputting b!0. However the intended behavior is to have a delay of exactly

3 time slots.
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7.2 Results

We want to state results allowing a tester to incrementally test a system during its design phase.

Let us suppose that we know the specification of a system built by synchronizing two TIOLTS

A1 and A2. Our system specification consists in A1||A2. By analyzing A1||A2 we can identify

behaviors of A1 (respectively A2) that are involved in A1||A2. In order to explain what we

mean here, let us consider an example. Let A1 (respectively A2) be the TIOLTS of Figure 7.3a

(respectively of Figure 7.3b).
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(b) A2
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(c) A1||A2
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(d) (A1||A2)A1 : the
projection of A1||A2
on A1

Figure 7.3: Unitary behaviors by projection

The product A1||A2 is depicted in Figure 7.3c.

Note that the transitions (q0, c?4, q1) and (q1, d!6, q3) of A1, can not be used to build transitions

of A1||A2 in any item of Definition 22 because those two transitions introduce actions defined on

channels shared with A2, and A2 does not contain any transitions that can be synchronized with

them. The TIOLTS containing all transitions of A1 which can be used to build transitions of

A1||A2 is depicted in Figure 7.3d.

We say that the set of finite paths of the TIOLTS depicted in Figure 7.3d depicts all the behaviors

of A1 that are involved in (A1||A2). The TIOLTS depicted in Figure 7.3d is called the projection

of (A1||A2) on A1 and is denoted (A1||A2)A1 . In order to define such a projection for any two

TIOLTS A1 and A2, we use a naming functions nameA1||A2 : Trans(A1||A2) → 2T N which is an

adaptation of the naming function defined for TIOSTS in Definitions 36– 37 – 38 of Section 5.1).

It suffices to replace the word "TIOSTS" by "TIOLTS" in those definitions to obtain the formal

definition of name(A)."

Definition 56 (TIOLTS projection) Let A1 and A2 be two TIOLTS. For any i ∈ {1, 2}, the

projection of A1||A2 on Ai, denoted (A1||A2)Ai
is the TIOLTS (state(Ai), init(Ai), T ) where T is

the set such that for all tr ∈ (A1||A2): if there exists tr′ ∈ Trans(Ai) such that nameAi
(tr′) ⊆

nameA1||A2(tr) then tr′ is in T . tr′ is called the projection of tr on Ai and is denoted trAi
.

Note that in Definition 56, if such a transition tr′ exists it is necessarily unique by definition
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of naming functions. In the sequel when there is no transition tr′ in Trans(Ai) such that

nameAi
(tr′) ⊆ nameA1||A2(tr), we say that trAi

is undefined. If there is tr′ in Trans(Ai) such

that nameAi
(tr′) ⊆ nameA1||A2(tr), we say that trAi

is defined.

Example 46 Consider again the example in Figure 7.3. Actually A1 and A2 are basic TIOSTS as-

sociated respectively with the naming functions nameA1 and nameA2 (see respectively Figures 7.4a–

7.4b, names are colored labels on transitions edges). These are some examples of a transition

names : nameA1((q0, c?5, q2)) = {n2} and nameA2((q
′
0, c!5, q′

1)) = {n′
1}. The product A1||A2 is

associated with the naming function nameA1||A2 computed by applying the Definition 38 (see

Figure 7.4c). An example of transition name in the product is nameA1||A2(((q0, q′
0), c!5, (q2, q′

1))) =

{n2, n′
1} (obtained by synchronizing the two transitions mentioned previously). In this settings,

the projection of A1||A2 on A1 is given in Figure 7.4d : By applying Definition 56, we retain

the two transitions of A1 named {n2} and {n4} because they correspond to some transitions in

A1||A2. That is we have {n2} ⊆ {n2, n′
1} and {n4} ⊆ {n4, n′

2}.
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(c) nameA1||A2
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(d) (A1||A2)A1 : the pro-
jection of A1||A2 on A1

Figure 7.4: Unitary behaviors by projection

We now extend the projection of TIOLTS to both paths and traces.

Definition 57 (Path projection) With notations of Definition 56, for any path p ∈ FP (A1||A2),

the projection of p on Ai, denoted pAi
is the path of FP (Ai) inductively defined as follow:

• if p is the empty path ε then we have pAi
is ε,

• if p is of the form p′.tr where p′ ∈ FP (A1||A2) and tr ∈ Trans(A1||A2) then:

– if trAi
is defined we have pAi

= p′
Ai

.trAi
,

– if trAi
is not defined we have pAi

= p′
Ai
.

The extension of the projections to timed traces is a bit more difficult to define than the one

defined for path for two reasons. The first reason is that a timed trace in A1||A2 may be projected

in several ways on A1 or on A2: an output action c!v (where c is a channel shared between A1

and A2) introduced in a transition of A1||A2 may be mapped on an input or an output on A1 or

on A2. Indeed, c!v may result from a synchronization of c?v in A1 and c!v in A2 but also from
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a synchronization of c!v in A1 and c?v in A2 (see Definition 22). Moreover those cases are not

exclusive since a TIOLTS may introduce a transition with an input on c and another transition

with an output on c. The next example illustrate this point.

Example 47 The example in Figure 7.5 shows that the projection of a trace of a product is not

necessarily a singleton.
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(c) A1||A2

Figure 7.5: One trace/two projections

The sequence b!1.c!1 is a trace of TTraces(A1||A2). This trace may originate from two possible

paths in TTraces(A1||A2) in each of which the roles of A1 and A2 is different. Let us focus on the

role of A1. The first path (in left side of Figure 7.5) corresponds to A1 performing successively b?1

and c!1. The second one (in right side of Figure 7.5) corresponds to A1 performing successively

b!1 and c?1. Therefore, the projection of b!1.c!1 on A1 has to return both possibilities, that is,

both traces b?1.c!1 and b!1.c?1 of TTraces(A1).

The second difficulty is that durations occurring in a timed trace may come from decompositions

or re-compositions of durations introduced in transitions (See Definition 21).

Example 48 Consider the product defined in Figure 7.6.
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(c) A1||A2

Figure 7.6: Durations in the product

Let us look at the following finite path in A1||A2 : p = (q0, q′
0)

a?5
−−→ (q1, q′

0)
2
−→ (q2, q′

1)
3
−→ (q3, q′

2).

First the trace of p according to Definition 20 is trace(p) = a?5.2.3. These are some timed traces

of p obtained by delays decomposition/re-composition from trace(p), i.e. in ttraces(p) :
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a?5.

2
︷︸︸︷

1.1 .

3
︷︸︸︷

1.1.1 (decomposition)

a?5.

1.1.1.1
︷︸︸︷

4 .1 (recomposition)

Note that a?5.4.1 is a trace of p since the subsequent delays 2 then 3 may be decomposed and

recomposed to get 4 then 1. The sequence a?5.4 is also a trace of A1||A2 because a?5.4.1 is a trace

of p and timed traces of TIOLTS are stable by prefix for delays (see Definition 21). Therefore the

projection mechanism which explores all the paths A1||A2 has to accept a?5.4 as a trace of p even

though the delay 4 does not occur explicitly in p. Assuming for example that q0
a?5
−−→ q1 does not

originate from a transition in A1, typically the projection of a?5.4 on A1 returns simply the trace

4 and the projection on A2 returns a?5.4.

Definition 58 characterizes the projection of a timed trace σ.

Definition 58 (Trace projection) With notations of Definition 57, for any σ ∈ TTrace(A1||A2),

the set of projections of σ on Ai, denoted ProjAi
(σ) is the set

⋃

p∈F P (A1||A2)
ProjAi

(p, σ) where

ProjAi
(p, σ) ⊆ TTrace(A1||A2A1) is the empty set if σ is not a prefix of a timed trace in ttraces(p)

and otherwise is defined as follow:

• if σ is the empty trace ε we have ProjAi
(p, σ) = {ε},

• if p is not the empty path let us note p as p′.tr where p′ is a finite path and tr is a transition:

– if act(tr) ∈ IM (Chan(A1) ∪ Chan(A2)) ∪ OM (Chan(A1) ∪ Chan(A2)) let us note σ

as σ′.a where σ′ is a timed trace and a is an action:

∗ if act(tr) Ó= a or σ′ /∈ ttraces(p′) we have ProjAi
(p, σ) = ProjAi

(p′, σ),

∗ if σ′ ∈ ttraces(p′) and a = act(tr):

· if trAi
is defined we have ProjAi

(p, σ) = {σ′
p′,Ai

.act(trAi
)\σ′

p′,Ai
∈ ProjAi

(p′, σ′)},

· if trAi
is not defined we have ProjAi

(p, σ) = {σ′
p′,Ai

\σ′
p′,Ai

∈ ProjAi
(p′, σ′)},

– if act(tr) ∈ MI :

∗ if σ can be decomposed as σ′.a where σ′ is a timed trace and where a is an action

such that a /∈ MI then we have ProjAi
(p, σ) = ProjAi

(p′, σ),

∗ if σ can be decomposed as σ′.d0 · · · dN where for all i ≤ N , di ∈ MI , and σ′ is

either the empty trace or a trace of the form σ′′.b where σ′′ is a timed trace and b

is an action such that b /∈ MI ,

let us decompose p as p′′.tr0 · · · trM where for all j ≤ M trj is a transition such

that act(trj) ∈ MI , and where p′′ is either the empty path or a path of the form

p′′′.tr′′ where p′′′ is a finite path and tr′′ is a transition such that act(tr′′) /∈ MI :

· if ΣN
i=0di > ΣM

j=0act(trj) or if σ′ /∈ ttraces(p′′) then we have ProjAi
(p, σ) =

ProjAi
(p′′, σ),

· if ΣN
i=0di ≤ ΣM

j=0act(trj) and σ′ ∈ ttraces(p′′) then we have ProjAi
(p, σ) =

{σ′
p′′,Ai

.d0 · · · dN \σ′
p′′,Ai

∈ ProjAi
(p′′, σ′)},

Let us discuss Definition 58. As exemplified previously, for any i ∈ {1, 2} the projection

ProjAi
(σ) of a trace σ of A1||A2 on Ai is a set which is not necessarily reduced to a singleton.

Many paths of A1||A2 may have σ as a trace, and hence, we need to visit all paths of A1||A2 :
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⋃

p∈F P (A1||A2)
ProjAi

(p, σ) where ProjAi
(p, σ) is the trace obtained by projecting σ on a given

path p.

We focus now on how the projection ProjAi
(p, σ) is computed. Obviously when σ is not a prefix

of ttraces(p) then ProjAi
(p, σ) is the empty set.

For instance, the following trace a?5.b!5.2 of some given product of TIOLTS is a prefix of a timed

trace of the following path p : q0
a?5
−−→ q1

b!5
−−→ q2

4
−→ q3. However the trace σ = a?5.b!6 is not, in

which case ProjAi
(p, σ) = ∅.

The other trivial case is when σ is the empty trace, i.e. empty word ǫ, we have then ProjAi
(p, ǫ) =

{ǫ} : that is the projection of the empty trace is the empty trace (see the first item of Definition 58,

note that the trace ǫ is a prefix of any path trace).

Let us consider now the case of a non empty path p (see the second item of Definition 58)

and σ Ó= ǫ is a prefix of a trace of p, ProjAi
(p, σ) defined by induction on the sequence of

transitions in p. In fact, p may be decomposed as a path p′ and a subsequent transition tr

(p = p′.tr). Here two cases are possible either act(tr) is an input/output action (act(tr) ∈

IM (Chan(A1)∪Chan(A2))∪OM (Chan(A1)∪Chan(A2))) or a delay (act(tr) ∈ MI). We discuss

in the following these two cases starting with act(tr) being an input/output action.

The trace σ is decomposed into a trace σ′ followed by an action a (σ = σ′.a). The comparison of

a and act(tr) decides of the projection :

• When they do not coincide (act(tr) Ó= a), we deduce that p goes beyond σ. Simply σ

is a trace obtained from a shorter path overlapping with p. This is an example of such

situation :

σ = a?5
︸︷︷︸

σ′

. b!5
︸︷︷︸

a

p = q0
a?5
−−→ q1

b!5
−−→

︸ ︷︷ ︸

p′

q2

act(tr)

︷︸︸︷

c!6
−−−−→ q3

︸ ︷︷ ︸

tr

Note that σ = a?5.b!5 is a prefix of a trace of p. Regarding p, the shortest path carrying

a?5.b!5 is not p but rather p′ with q2 as a target state. This is captured by the fact that

act(tr) = c!6 is different from a = b!5. Now for p′, act(p′) = b!5 coincide with a = b!5 in

which case the projection is defined as discussed in the the next item.

However even when a and act(tr) coincide (act(tr) = a), p may go beyond σ. Consider for

instance this example :

σ = a?5
︸︷︷︸

σ′

. b!5
︸︷︷︸

a

p = q0
a?5
−−→ q1

b!5
−−→ q2

c!6
−−→

︸ ︷︷ ︸

p′

q3

act(tr)

︷︸︸︷

b!5
−−−−→ q4

︸ ︷︷ ︸

tr

In the example, a = b!5 and act(tr) = b!5 are indeed equal. Obviously this is because b!5

occurs twice in p and not because p is the shortest path carrying σ. Such a situation is

captured by the fact that σ′ Ó∈ ttraces(p′). In the example, we have a?5.b!5 Ó∈ ttraces(p′)

because p′ itself goes beyond σ′.

In both discussed cases, ProjAi
(p, σ) is equal to the inductively computed projection

ProjAi
(p′, σ). That is the transition tr is ignored and the visiting of p = p′.tr proceeds

with p′.
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• When σ′ and act(tr) do not satisfy any of the previous cases, i.e. σ′ ∈ ttraces(p′) and

a = act(tr), ProjAi
(p, σ) is defined as follows :

– "if trAi
is defined we have ProjAi

(p, σ) = {σ′
p′,Ai

.act(trAi
)\σ′

p′,Ai
∈ ProjAi

(p′, σ′)}".

Let us comment this item of Definition 58. Recall that trAi
is called the projection of tr

on Ai. trAi
is defined means that tr originates from a transition in Ai. That is trAi

∈

Trans(Ai) such that nameAi
(tr) ⊆ nameA1||A2(tr) (see Definition 56). Therefore, the

action of act(trAi
) is retained in the projection of σ on Ai (σ

′
p′,Ai

.act(trAi
)), where the

inductively defined projection ProjAi
(p′, σ′)). Here is an illustration :

σ = a?5
︸︷︷︸

σ′

. b!5
︸︷︷︸

a

p = (q0, q′
0)

a?5
−−−→
{n′
1}

︸ ︷︷ ︸

p′

(q0, q′
1)

b!5
−−−−−→
{n1,n′

2}
(q1, q′

2)

︸ ︷︷ ︸

tr

Note that n1 is a transition name of A1 and n′
1, n′

2 are names of A2. We have then

ProjA1(p, a?5.b!5) = {σ′
p′,A1

.b?5\σ′
p′,A1

∈ ProjA1(p
′, a?5)} given trA1 is q0

b?5
−−−→
{n1}

q1.

– "if trAi
is not defined we have ProjAi

(p, σ) = {σ′
p′,Ai

.act(trAi
)\σ′

p′,Ai
∈ ProjAi

(p′, σ′)}".

trAi
is not defined means that tr does not originate from a transition in Ai. Hence

act(tr) a ignored in the projection. Looking at the previous example, we have

ProjA1(p
′, a?5) = {σ′

ǫ,A1
\σ′

ǫ,A1
∈ ProjA1(ǫ, ǫ)} = {ǫ} because trA1 is not defined.

Now, trA2 is defined and equal to q′
0

a?5
−−−→
{n′
1}

q′
1. So we have ProjA2(p

′, a?5) = {a?5}.

Recall that we have identified two cases either act(tr) is an input/output action or a delay.

Recall that p is of the form p′.tr where tr is a transition. We have discussed the first case.

We are interested in the second case namely act(tr) ∈ MI . We pay attention to all possible

decompositions/re-composition of delays as defined in Definition 21.

Again we first look at the structure of σ. When σ is of the form σ′.a where a is an input/output

action and not a delay (a Ó∈ MI), it means that p which ends with a delay action goes beyond σ.

Obviously the visiting of p by the projection continues with p′ (ProjAi
(p, σ) = ProjAi

(p′, σ)). Oth-

erwise σ ends with a sequence of delays d0, . . . , dN . These delays result from a decompositions/re-

composition of delays originally occurring in p in particular they may involve act(tr) ∈ MI . Let

us decompose further σ and p as follows :

σ = σ′
︸︷︷︸

σ′′.b

.d0. . . . .dN where b Ó∈ MI and ∀i ≤ N, di ∈ MI

p = p′′

︸︷︷︸

p′′′
tr′′

−−→

tr0−−→ . . .
trM−−→

where tr′′′ is a transition such that act(tr′′′) Ó∈ MI

and ∀j ≤ M , trj is a transition such that act(trj) ∈ MI

As in the case of input/output action a of σ = a.σ′ identification in p.tr, we need to identify the

delays d0, . . . , dN of σ = σ′.d0. . . . .dN in p.tr0 . . . trM :

• When the time elapsed since the last input/output action (b) in σ is greater than the one

elapsed since the last input/output action (act(tr′′′)) occurring in p (ΣN
i=0di > ΣM

j=0act(trj)),

we deduce that p goes beyond σ. For example in this illustration :

σ = ǫ
︸︷︷︸

σ′′

. a?5
︸︷︷︸

b

. 1.1.1
︸︷︷︸

d0.d1.d2

p = q0
a?5
−−→ q1

3
−→

︸ ︷︷ ︸

p′′′

q2
c!6
−−→ q3

︸ ︷︷ ︸

tr′′′

1
−→ q4

1
−→ q5

︸ ︷︷ ︸

tr0−−→
tr1−−→

91



Chapter 7. Application to testing

However this condition is not enough because in the case where it is not satisfied. That is

the delays may coincide (ΣN
i=0di = Σ

M
j=0act(trj)) or the delays in p may be decomposed in

a way to involve those at the end of σ (ΣN
i=0di ≤ ΣM

j=0act(trj)) and still p may go beyond

σ as shown here :

σ = ǫ
︸︷︷︸

σ′′

. a?5
︸︷︷︸

b
︸ ︷︷ ︸

σ′

. 1.1
︸︷︷︸

d0.d1

p = q0
a?5
−−→ q1

3
−→

︸ ︷︷ ︸

p′′′

q2
c!6
−−→ q3

︸ ︷︷ ︸

tr′′′

︸ ︷︷ ︸

p′′

1
−→ q4

1
−→ q5

︸ ︷︷ ︸

tr0−−→
tr1−−→

or p = q0
a?5
−−→ q1

3
−→

︸ ︷︷ ︸

p′′′

q2
c!6
−−→ q3

︸ ︷︷ ︸

tr′′′

1
−→ q4

1
−→ q5

1
−→ q6

︸ ︷︷ ︸

tr0−−→
tr1−−→

tr2−−→

The condition to consider besides is that σ′ Ó∈ ttraces(p′′). In the example, we have

a?5 Ó∈ ttraces(p′′). In both discussed cases, ProjAi
(p, σ) is equal to the inductively computed

projection ProjAi
(p′′, σ). That is the transitions tr0 . . . trM are ignored and the visiting of

p = p′′.tr0 . . . trM proceeds with p′′.

• When the time elapsed since the last input/output action (b) in σ is less than or equal to

the time elapsed since the last input/output action (act(tr′′′)) occurring in p (ΣN
i=0di ≤

ΣM
j=0act(trj)) and σ′ ∈ ttraces(p′′), we deduce that σ is a trace of p. So we have

ProjAi
(p, σ) = {σ′

p′′,Ai
.d0 · · · dN \σ′

p′′,Ai
∈ ProjAi

(p′′, σ′)}. This an example of such case :

σ = ǫ
︸︷︷︸

σ′′

. a?5
︸︷︷︸

b
︸ ︷︷ ︸

σ′

. 1.1
︸︷︷︸

d0.d1

p = ǫ
︸︷︷︸

p′′′

q0
a?5
−−→ q1

︸ ︷︷ ︸

tr′′′

︸ ︷︷ ︸

p′′

1
−→ q2

1
−→ q3

1
−→ q4

︸ ︷︷ ︸

tr0−−→
tr1−−→

tr2−−→

In the sequel we are interested in particular kind of TIOLTS called TIOLTS with partitioned

actions. In such TIOLTS, a given channel can be used to send value or to receive value but not

both.

Definition 59 (TIOLTS with partitioned actions) A TIOLTS with partitioned actions is

a TIOLTS A such that Chan(A) is partitioned in two sets ChanI(A) and ChanO(A) (i.e.

Chan(A) = ChanI(A) ∪ ChanO(A) and ChanI(A) ∩ ChanO(A) = ∅) such that for any tr ∈

Trans(A) if act(tr) is of the form c?u (respectively c!u) then we have c ∈ ChanI(A) (respectively

c ∈ ChanO(A)).

TIOLTS with partitioned actions are simply TIOLTS in which one may differentiates channels

used to receive values and channels used to send values.

Example 49 In figure 7.7a, A is not a TIOLTS with partitioned actions because we have the

channels b and c which are used at once to receive and send values. E.g. considering the transition

tr1 : q0
b?1
−−→ q1, we have act(tr1) = b?1 is an input. The channel b is used again in tr2 : q0

b!1
−−→ q2

where act b!1 is an output. The figure 7.7b illustrates a TIOLTS A
′ with partitioned actions. We

have ChanI(A
′) = {b} and ChanO(A

′) = {c}. That is b is used exclusively for inputs and c is

used exclusively for outputs.

Products of such TIOLTSs have a particular property: the projection of any of their traces is

restricted to a singleton as stated in the following lemma.
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(b) A′ is a TIOLTS
with partitioned ac-
tions

Figure 7.7

Lemma 1 Let A1 and A2 be two TIOLTS with partitionned actions such that ChanI(A1) ∩

ChanI(A2) = ∅ and ChanO(A1) ∩ ChanO(A2) = ∅. For any σ ∈ TTrace(A1||A2), for any

i ∈ {1, 2} we have ProjAi
(σ) is a singleton. We note σAi

the unique element of ProjAi
(σ).

Proof 1 (Lemma 1) The proof is done by induction on the structure of σ:

Basic case : if σ is the empty trace then for any p ∈ FP (A1||A2) we have ProjAi
(p, σ) = {ε}.

Now ProjAi
(σ) is defined as

⋃

p∈F P (A1||A2)
ProjAi

(p, σ). Therefore ProjAi
(σ) is {ε} which

is a singleton.

Induction steps :

In all cases described thereafter, we suppose that for all prefix σp of σ such that σp Ó= σ we

have ProjAi
(σ′) is a singleton, and we prove that ProjAi

(σ) is a singleton.

• Let us suppose that σ is of the form σ′.a with a ∈ IM (Chan(A1) ∪ Chan(A2)) ∪

OM (Chan(A1)∪ Chan(A2)). By hypothesis we have ProjAi
(σ′) is a singleton. Let us

prove that ProjAi
(σ) is a singleton.

Since σ ∈ TTrace(A1||A2), from Definition 20, we conclude that there exists a path p of

the form p′.tr where p′ is a finite path and tr is a transition such that σ′ ∈ ttraces(p′)

and a = act(tr).

Now From Definition 58 we have:

– if trAi
is defined we have ProjAi

(p, σ) = {σ′
p′,Ai

.act(trAi
)\σ′

p′,Ai
∈ ProjAi

(p′, σ′)},

– if trAi
is not defined we have ProjAi

(p, σ) = {σ′
p′,Ai

\σ′
p′,Ai

∈ ProjAi
(p′, σ′)},

Now ProjAi
(σ′) is a singleton. Let us note it {σ′

Ai
}.

From the two items above we have:

– if trAi
is defined we have ProjAi

(p, σ) = {σ′
Ai

.act(trAi
)},

– if trAi
is not defined we have ProjAi

(p, σ) = {σ′
Ai

},

In both case ProjAi
(p, σ) is a singleton.

Now let us consider that there exists l ∈ FP (A1||A2) such that

l Ó= p and ProjAi
(l, σ) Ó= ∅.

From Definition 58, ProjAi
(l, σ) is always defined as ProjAi

(h, σ) for some h being a

prefix of l unless we have :

l is of the form l′.tr′ where l′ is a finite path and tr′ is a transition such that σ′ ∈

ttraces(l′) and a = act(tr′).
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So let us consider:

l is of the from l′.tr′ where l′ is a finite path and tr′ is a transition such that σ′ ∈

ttraces(l′) and a = act(tr′).

From definition 58 we have:

– if tr′
Ai
is defined we have ProjAi

(l, σ) = {σ′
l′,Ai

.act(tr′
Ai
)\σ′

l′,Ai
∈ ProjAi

(l′, σ′)},

– if trAi
is not defined we have ProjAi

(l, σ) = {σ′
l′,Ai

\σ′
l′,Ai

∈ ProjAi
(l′, σ′)},

Since σ′ ∈ ttraces(l′) we have ProjAi
(l′, σ′) Ó= ∅.

Besides ProjAi
(σ′) = {σ′

Ai
}.

Therefore we conclude ProjAi
(l′, σ′) = {σ′

Ai
}.

Now from the two items above we have:

– if tr′
Ai
is defined we have ProjAi

(p, σ) = {σ′
Ai

.act(tr′
Ai
)},

– if tr′
Ai
is not defined we have ProjAi

(p, σ) = {σ′
Ai

},

Now we have act(tr) = act(tr′) (both equal to a).

Now:

(A): tr′
Ai
is not defined if and only if trAi

is not defined because it happens in both

cases whenever a is of the form c?v or c!v with c /∈ Chan(Ai).

(B): tr′
Ai
is defined if and only if trAi

is defined: and act(tr′
Ai
) = act(trAi

):

indeed tr′
Ai
and trAi

are defined if and only if a is of the form c?v or c!v with

c ∈ Chan(Ai).

In this case both act(tr′
Ai
) and act(trAi

) are equal to c?v or to c!v depending on the

fact that c ∈ ChanI(Ai) or c ∈ ChanO(Ai).

From (A) and (B) we deduce:

(C): that for any two paths p and l such that ProjAi
(p, σ) and ProjAi

(l, σ) are defined,

we have ProjAi
(p, σ) = ProjAi

(l, σ) and both equal to a singleton.

Since ProjAi
(σ) =

⋃

p∈F P (A1||A2)
ProjAi

(p, σ) from (C) we deduce that ProjAi
(σ) is

a singleton.

• Let us consider that σ can be decomposed as σ′.d0 · · · dN where for all i ≤ N , di ∈ MI ,

and σ′ is either the empty trace or a trace of the form σ′′.b where σ′′ is a timed trace

and b is an action such that b /∈ MI . By hypothesis we have ProjAi
(σ′) is a singleton.

Since σ ∈ TTrace(A1||A2), from Definition 20, we conclude that there exists a path p of

the form p′′.tr0 · · · trM where for all j ≤ M trj is a transition such that act(trj) ∈ MI ,

and where p′′ is either the empty path or a path of the form p′′′.tr′′ where p′′′ is a

finite path and tr′′ is a transition such that act(tr′′) /∈ MI and such that Σ
N
i=0di ≤

ΣM
j=0act(trj) and σ′ ∈ ttraces(p′′).

In this case, from Definition 58 we have:

(A): ProjAi
(p, σ) = {σ′

p′′,Ai
.d0 · · · dN \σ′

p′′,Ai
∈ ProjAi

(p′′, σ′)}.

Now by hypothesis we have ProjAi
(σ′) is a singleton. Let us note ProjAi

(σ′) = {σ′
Ai

}.

From (A) we have:

(B): ProjAi
(p, σ) = {σ′

Ai
.d0 · · · dN }.

Therefore ProjAi
(p, σ) is a singleton.

Now let us consider that there exists l ∈ FP (A1||A2) such that

l Ó= p and ProjAi
(l, σ) Ó= ∅.

From Definition 58, ProjAi
(l, σ) is always defined as ProjAi

(h, σ) for some h being a

prefix of l unless we have :

l is of the form l′′.tr0 · · · trM ′ where for all j ≤ M ′ trj is a transition such that

act(trj) ∈ MI , and where l′′ is either the empty path or a path of the form l′′′.tr′′
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7.2. Results

where l′′′ is a finite path and tr′′ is a transition such that act(tr′′) /∈ MI and such that

ΣN
i=0di ≤ ΣM ′

j=0act(trj) and σ′ ∈ ttraces(p′′).

In this case, from Definition 58 we have:

(C): ProjAi
(l, σ) = {σ′

l′′,Ai
.d0 · · · dN \σ′

l′′,Ai
∈ ProjAi

(l′′, σ′)}.

Now by hypothesis we have ProjAi
(σ′) = {σ′

Ai
}. From (A) we have:

(D): ProjAi
(l, σ) = {σ′

Ai
.d0 · · · dN }.

From (B) and (D) we conclude ProjAi
(p, σ) = ProjAi

(l, σ) and since ProjAi
(σ) =

⋃

p∈F P (A1||A2)
ProjAi

(p, σ) we conclude ProjAi
(σ) is a singleton.

Local output consistency We are interested in particular product of TIOLTS where any

reaction of a subsystem after a local trace is specified in the product for any path carrying such a

trace. The intuition is that from the point of view of a subsystem its reaction after the same

given local trace is consistent with all expected system behaviors requiring the subsystem to

follow that particular trace.

Definition 60 (Local output consistency) Let A1 and A2 be two TIOLTS with partitioned

actions. The A1||A2 is called locally consistent if it satisfies the following property :

∀i ∈ {1, 2}, ∀σ ∈ TTraces(A1||A2), if there exists r ∈ OM (C) ∪ MI such that σAi
.r is in

TTraces(A1||A2Ai
) then for any σ′ satisfying σ′

Ai
= σAi

, we have σ′.r is in TTraces(A1||A2).

A counterexample given in the following shows why such a property does not hold in full generality

in the construction of a product.

Counterexample Consider the example in Figure 7.8. Consider the path p = ((q0, q′
0), a!5, (q2, q′

1))

(of course p ∈ FP (A1||A2)). We have ttrace(pA1) = a!5. Let r = b!5, we have a!5.b!5 ∈

TTraces(A1||A2A1). However, ttrace(p).r = a!5.b!5 and a!5.b!5 Ó∈ TTraces(A1||A2). In fact, e?5

must occur in order for A1||A2 to accept successively a!5 then b!5 which is not the case for the

path p.

Timed compositional testing The projection of a system A1||A2 on Ai reflects behaviors of

Ai in the context of A1||A2. We show , under some assumptions, that if SUT1 tioco A1||A2A1
and SUT2 tioco A1||A2A2 , we have SUT1||SUT2 tioco A1||A2.

Theorem 1 Let A1 and A2 be two TIOLTS with partitioned actions such that ChanI(A1) ∩

ChanI(A2) = ∅ and ChanO(A1)∩ChanO(A2) = ∅. Let us suppose that A1||A2 is locally consistent.

Let SUT1 and SUT2 be two TIOLTS with partitioned actions such that Chan(SUT1) = Chan(A1),

Chan(SUT2) = Chan(A2), ChanI(A1) = ChanI(SUT1) and ChanO(A2) = ChanO(SUT2).

The following property holds:

SUT1 tioco A1||A2A1 ∧ SUT2 tioco A1||A2A2 ⇒ SUT1||SUT2 tioco A1||A2

.

Proof 2 Let us suppose that there exists σ in TTrace(A1||A2)∩ TTrace(SUT1||SUT2) such that

there exists r in MI ∪ OM (Chan(SUT1||SUT2)) satisfying σ.r in TTrace(SUT1||SUT2). Let us

prove that σ.r in TTrace(A1||A2).

Since A1 and A2 are TIOLTS with partitioned actions form Lemma 1 we have ProjA1(σ) and

ProjA2(σ) are singleton that we note respectively σA1 and σA2 .
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(e) (A1||A2)A2 : the projection
of A1||A2 on A2

Figure 7.8: Counterexample to local consistency

Moreover from Definition 58, we have ProjA1(σ) in TTrace(A1||A2A1) and ProjA2(σ) in

TTrace(A1||A2A2) and thus we have σA1 in TTrace(A1||A2A1) and σA2 in TTrace(A1||A2A2).

Since SUT1 and SUT2 are also TIOLTS with partitioned actions, we also prove that ProjSUT1(σ)

and ProjSUT2(σ) exist and are unique. We note them respectively σSUT1 and σSUT2 and we

have σSUT1 in TTrace(SUT1||SUT2SUT1
) and σSUT2 in TTrace(SUT1||SUT2SUT2

). Now from

Definition 58, SUT1||SUT2SUT1
has the same set of states and the same initial state than SUT1

and Trans(SUT1||SUT2SUT1
) is a subset of Trans(SUT1) so we have TTrace(SUT1||SUT2SUT1

)

is a subset of TTrace(SUT1). Hence we have σSUT1 in TTrace(SUT1). We prove exactly the

same way that σSUT2 in TTrace(SUT2).

Now since SUT1 and A1 are defined over the same set of channels and since ChanI(A1) =

ChanI(SUT1) and ChanO(A1) = ChanO(SUT1), we have σA1 = σSUT1 . For the same rea-

sons this time applied on SUT2 and A2, we have σA2 = σSUT2 . Since we have proven σSUT1

in TTrace(SUT1) and σSUT2 in TTrace(SUT2), we have σA1 in TTrace(SUT1) and σA2 in

TTrace(SUT2).

Now since σ.r is in TTrace(SUT1||SUT2) there exists i in {1, 2} such that σAi
.r in TTrace(SUTi)

(if r is in MI , it is true for i = 1 and i = 2). Since SUTi tioco A1||A2Ai
, we have σAi

.r is
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in TTrace(A1||A2Ai
). The local consistency of A1||A2 allows us to conclude that σ.r is in

TTrace(A1||A2) which ends the proof.
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(c)
SUT1||SUT2 is not conform to A1||A2:
non conform output

Figure 7.9: Counterexample to compositional testing

Discussion Consider the SUT in Figure 7.9. This example suggests that the non-satisfaction

of the local output consistency property may cause that the implication of Theorem 1 does not

hold anymore. Reconsider the product A1||A2 in Figure 7.8c which is not locally consistent

for outputs. We suggest two SUT namely SUT1 and SUT2 respectively in Figures 7.9a– 7.9b

such that SUT1 tioco A1||A2A1 and SUT2 tioco A1||A2A2 . However as shown in Figure 7.9c, the

product of SUT that is SUT1||SUT2 is not conform to A1||A2. This is because after the trace

a!5, SUT1||SUT2 reacts with an unspecified output b!5 (a!5.b!5 Ó∈ A1||A2).

The Theorem 1 states that we can deduce the conformity of SUT1||SUT2 to A1||A2 by reasoning on

SUT1 and SUT2. Let us consider the contrapositive of Theorem 1 (with notations of Theorem 1):

SUT1||SUT2 ✘✘✘tioco A1||A2 ⇒ SUT1 ✘✘✘tioco A1||A2A1 ∨ SUT2 ✘✘✘tioco A1||A2A2

.

This means that any non conformance (in the sense of tioco) of the system with respect to a

given specification boils down to a non conformance of one of its subsystems with respect to

a particular TIOLTS which is the projection of the specification on the concerned subsystem.

In the next section, we show how to compute this projection in a symbolic framework and how

Theorem 1 can be used to reason about conformance to sequence diagrams.

7.3 Compositional testing from sequence diagrams

In Section 7.2, we have studies in the context of the tioco theory how to relate the correctness

of a system to a notion of correctness of its components. We have shown how to extract from

a TIOLTS denoting a system, new TIOLTS obtained by projection mechanisms (Definition 56)

denoting behaviors of subsystems in the context of the system of interest. We have then studied

how to relate the correctness of the subsystems to the correctness of the system. The result
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obtained is stated in Theorem 1.

In Chapter 6, we have shown how to translate a sequence diagram into TIOSTS and how to

symbolically execute them in order to compute their associated behaviors in the form of a

symbolic tree. In Section 7.3.1, we show how to adapt projection of TIOLTS to symbolic trees.

In Section 7.3.2, we discuss relations between systems under test as defined in Section 7.1.1

and sequence diagram specifications. Since sequence diagram semantics can be computed as a

symbolic tree, we show how to define a symbolic tree projection for any subsystem of SUT.

7.3.1 Projection mechanism

Let us show how to compute the projection of the symbolic tree (associated with a sequence

diagram) in order to give a symbolic counterpart to the projection of TIOLTS. After the

translation phase, a sequence diagram is associated with a set of TIOSTS Colsd = {G1, · · · ,Gk}.

A subsystem C of sd is any subsystem over Colsd (see Definition 36). Intuitively, a subsystem of

sd is semantically characterized as a composition of all the TIOSTS associated to a group of ports

and possibly the TIOSTS characterizing messages between these ports. In Figure 4.1, behaviors

of the subsystem corresponding to the component calc are depicted by lifelines associated to

intensity and speed (here there are no messages exchanged between them).

The symbolic execution SE(Gsd) characterizes in intention the set of all timed traces associated

to sd and the behaviors associated with a subsystem C can be intuitively characterized as the

restriction of those timed traces to the interface of C (consisting of all channel names occurring

in C). In order to identify those behaviors, our projection mechanism consists in hiding all the

actions of transitions of SE(Gsd) which are not defined on the interface of C (replacing them by

the invisible action τ) and by retrieving actions defined in C for the other transitions.

To reach that goal, we use the transition naming introduced in Definition 35. Any transition

st of SE(Gsd) is associated with a ground transition g(st), being a transition of Gsd. Since Gsd

results of a composition, g(st) is associated with a name as a set of names of basic TIOSTS

transitions. Let tr be, if defined, the transition of C such that nameC(tr) ⊆ nameGsd
(g(st)). We

have to identify if the corresponding transition introduce an input or an output to modify act(st)

accordingly. Indeed it may happen that act(st) is an output action but corresponds to an input

in tr (let us recall that a synchronization between an input and an output results in an output as

stated in Definition 35).

Definition 61 (Projection of symbolic trees) The projection of SE(Gsd) = (Init, ST ) on

C is the couple SE(Gsd)C = (Init, STC) such that for all st ∈ ST :

• if there exists tr such that nameC(tr) ⊆ nameGsd
(g(st)):

– if act(st) is τ or an input then we have st ∈ STC,

– if act(tr) is an output then we have st ∈ STC,

– if act(st) is an output c!z and act(tr) is an input 1 then we have

(source(st), c?z, target(st)) ∈ STC

• otherwise we have (source(st), τ, target(st)) ∈ STC,

Technically, let us note that SE(Gsd)C characterizes a subset of all the traces of SE(C). The

restriction results from the communications with other TIOSTS occurring in the definition of Gsd.

1act(tr) is then necessarily an input through channel c.
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7.3. Compositional testing from sequence diagrams

SE(C) is symbolic counterpart to the projection defined in the numerical framework. As compared

to Definition 56, Definition 61 is slightly different. Indeed, instead of defining the projection as a

subset of SE(Gsd) which would be in the spirit of Definition 56, we rather transform the paths

of SE(Gsd) in order to make disappear all actions that do not concern the subsystem C. In order

to illustrate these two different approaches, let us use an example in the frame of the TIOLTS

formalism.
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(d) Pro-
jection
of A1||A2
on A1 in
the spirit
of Defini-
tion 61

Figure 7.10

Figures 7.10a and 7.10b depict respectively two TIOLTS A1 and A2. If we define the projection

A1||A2A1 according to Definition 56, we would observe that A1||A2A1 is A1. Now following the

projection mechanism of Definition 61 (of course transposed to TIOLTS), we obtain the TIOLTS

of Figure 7.10d. Even though, A1||A2A1 and the TIOLTS of Figure 7.10d are not built on the

same set of states, it is clear that they are associated with the same timed traces since the

sequence of actions occurring in the TIOLTS of Figure 7.10d is exactly the one occurring in

A1||A2A1 .

Example 50 In Figure 7.11a, we illustrate a path p of SE(Gsd) where sd is the sequence diagram

of Figure 4.1. We show in the same figure, the projection of p on C = Glfcalc.intensity
||Glfcalc.speed

associated with the calculator calc. Transformations of definition 61 are shown by curvy arrows.

Instants at which actions occur are denoted by sum of symbolic durations introduced in the course

of the symbolic execution (∆i =
∑i

j=0 δj). Similarly, ∆k→i means
∑i

j=k δj. In p after the

projection, the reception of the intensity m2.out?xm1#0 (m2 in Msg(ctrl.intensity,calc.intensity))

occurs at time instant ∆15. The first new speed value emitted by calc after the first reception is not

null (0 Ó= calc.speed#1) and the second value is equal to the last calculated speed (calc.speed#1 =

calc.speed#2). From constraint ∆15→60 = 0.5, we deduce that the duration between the first

reception of the rain intensity by the calculator (m2.out?xm1#0 at instant ∆15) and the second

reception (m2.out?xm1#1 at instant ∆61) is at least of 0.5s.
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η4 : ∆4

η12 : ∆12

η13 : ∆13

η14 : ∆14

η15 : ∆15

η26 : ∆26

η27 : ∆27
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η31 : ∆31
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η42 : ∆42

η45 : ∆45

η46 : ∆46

η57 : ∆57
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η59 : ∆59
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η61 : ∆61
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η78 : ∆78
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y τ

m2.in!xm1#1
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m2.out!xm1#1
y m2.out?xm1#1

τ
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τ
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y τ

τ

m4.in!calc.speed#1
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τ

m3.in!calc.speed#2

τ

m3.out!calc.speed#2
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τ

τ

(a) Symbolic path and projection

πt(η78)







δ15 < 0.1
∆15→31 < 0.5
∆15→60 = 0.5
δ61 < 0.1
∆61→77 < 0.5

πd(η78)

{
0 Ó= calc.speed#1
calc.speed#1 = calc.speed#2

(b) Path conditions

Figure 7.11: Projection of the symbolic tree of the RWC system

7.3.2 Testing architecture

A sequence diagram specifies possible interactions between components ports. The sequence

diagram sd1 in Figure 7.12a depicts three messages m1 and m2 exchanged between three ports u

and v. sd1 is a sequence diagram ({lfu, lfv}, {m1, m2}).

In a sequence diagram, a subsystem is characterized as a group of lifelines (corresponding to

ports) with possibly messages exchanged between them. The sequence diagram in Figure 7.12a

is decomposed into two groups (delimited by a dotted line) characterizing behaviors of two

subsystems : a group containing the lifeline associated with the port u and the message m2 (see

Figure 7.12b); and a group containing the lifeline associated with the port v and the message

m1(see Figure 7.12c). This decomposition maps to the architectural decomposition of the

component system into two subsystems as illustrated in Figures 7.12d-7.12e-7.12f. Figure 7.12e

depicts the first subsystem which is made of the component owning u and the connector c2;

and Figure 7.12f depicts the first subsystem which is made of the component owning v and the
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Figure 7.12

connector c1. Let us structure all connectors occurring in the system in the set Conn. Similarly to

the messages set Msg = ∪u,v∈P ∪{e}Msg(u,v), Conn is of the form Conn = ∪u,v∈P ∪{e}Conn(u,v).

Regarding the system in Figure 7.12d, Conn equals Conn(u,v)∪Conn(v,u) where Conn(u,v) = {c1}

and Conn(v,u) = {c2}.

Now we want to characterize systems under test corresponding to such architectural decomposi-

tions. Recall that an SUT is defined over a set of channels, the same as its associated TIOLTS

specification. In our symbolic framework, specifications are symbolic executions of TIOSTS

built by the translation mechanism. These TIOSTS communicate over channels occurring in

their definitions. Until now, we have named channels of the TIOSTS obtained by translation

using the convention m.in and m.out where m is the message label. Recall that m.in is used to

represent a channel to receive values of the sender lifeline while the convention m.out is used

to represent a channel to emit values to the receiver lifeline. This was useful in the translation

phase. However, in practice those message labels do have a counterpart in the real system. We

need to characterize channels differently rather based on observability issues. When testing the

system, values in transit are observed at the port level. We observe a value a at port u. Besides

we assume additional observability capabilities of the tester related to the component system

architecture: the tester observes if the exchanged value is an incoming or outgoing value; besides,

the tester observes which connector conveys exchanged values. For instance, a value a may be

observed at port u as being an emission (by the component owning u) through the connector c1.
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a may also be observed at u rather as being a reception coming from the connector c2. Based on

these hypothesises, we introduce a mapping which associates messages in the sequence diagram

with connectors (as specified in the system architecture). We define such mapping as a function

f :Msg → Conn such that if f(m) = f(m′) then exists ports u and v such that m and m′ are

in Msg(u,v). This assumption states that messages exchanged between two ports u and v are

mapped onto a connector linking these two ports. Besides, it states that connectors attributed to

messages are unidirectional, that is they vehicle values in one direction from a port to another.

We have assumed such a property on connectors in order to ensure that channels are partitioned

into input channels and output channels as will be examined later in the section.

In order to encode observability, discussed before, in our mathematical models of SUT, we

introduce the following format of channels:

Recall that, in order to translate messages of sequence diagrams into TIOSTS, we used channels

of the form m.in and m.out for a message m in Msg(u,v). Similarly, in order to denote, in system

under test, the source and the target of a given connector c in Conn(u,v) such that f(m) = c,

we introduce channels names from the point of view of the connector as follows: the channel

c.u (same as f(m).u) used to receive values from the port u and c.v (same as f(m1).v) used to

receive values from the port v.

In this context, a system under test may be seen as a composition of two SUT: SUT1||SUT2 which

is also compliant with the architectural decomposition of the system in terms of components and

connectors. SUT1 and SUT2 are SUT over channels of the form: c.p and c.e where p is a port

and e models the environment.

In the example, SUT1 and SUT2 corresponding to the decomposition from left to right in

Figure 7.12d are defined respectively over these two sets of channels: {c1.u, c2.u, c2.v} and

{c1.v, c2.v, c1.u}. Both sets of channels are partitioned into input/output channels as follows:

ChanO(SUT1):

c1.u, c2.u

ChanI(SUT1) :

c2.v

ChanI(SUT2) :

c1.u

ChanO(SUT2):

c1.v, c2.v

Note that ChanI(SUT1) ∩ ChanI(SUT2) = ∅ and ChanO(SUT1) ∩ ChanO(SUT2) = ∅.

After having named channels in SUT based on observability hypothesis relating to the component

system architecture. We now show how to transform the specification as symbolic tree in order

to take into consideration changes in the channels naming.

Recall that, besides the technical artifacts such as the channel start and channels of the form

waito1.o2 (see Chapter 6), the channel names occurring in the symbolic execution SE(G)δ are of

the form m.in and m.out as it is the case in the translation of the sequence diagram Gsd. The

renaming of channels in SE(G) is defined as follows:

• τ is left unchanged,

• all actions on channels of the form start and waito1.o2 are replaced by τ ,

• all actions of the form m.in!a (respectively m.in?a) with m in Msg(u,v) are renamed

f(m).u!a (respectively f(m).u?a),

• all actions of the form m.out!a (respectively m.out?a) with m in Msg(u,v) are renamed

f(m).v!a (respectively f(m).v?a).
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7.3. Compositional testing from sequence diagrams

In this naming, we observe either from the point of view of the components or from the point of

view of the connectors:

• c.u!a can be understood as an output from a component point of view, c being a connector

conveying values from u to v. The component owning u sends a to the port v through c,

• c.u?a is a reception from the connector point of view, the value a is to be sent to v,

• c.v!a can be understood as an output from the point of view of a connector. The connector

brings the value a to the port v,

• c.v?a corresponds to a reception from a component point view. The component receives at

its port v the value a computed by the component owning v.

In the sequel, we note Ren(SE(G)) the symbolic execution SE(G) after the renaming.

Example 51 Let us apply the renaming on the symbolic execution of the RWC system. For that

purpose, we consider given a mapping f of messages on connectors. The transformation is illus-

trated in Figure 7.13 by curvy arrows. For example, m1.in?xm1#2y f(m1).e?xm1#2 denotes the

renaming of the action m1.in?xm1#2 to f(m1).e?xm1#2 where f(m1) is in Conn(e,ctrl.intensity)

(note that m1 is in Msg(e,ctrl.intensity)).

η4 : ∆4

η12 : ∆12

η13 : ∆13

η14 : ∆14

η15 : ∆15

η26 : ∆26

η27 : ∆27

η30 : ∆30

η31 : ∆31

η41 : ∆41

η42 : ∆42

η45 : ∆45

η46 : ∆46

η57 : ∆57

η58 : ∆58

η59 : ∆59

η60 : ∆60

η61 : ∆61

η73 : ∆73

η74 : ∆74

η76 : ∆76

η77 : ∆77

η78 : ∆78

τ

m1.out!xm1#1
y f(m1).(ctrl.intensity)!xm1#1

m2.in!xm1#1
y f(m2).(ctrl.intensity)!xm1#1

m2.out!xm1#1
y f(m2).(calc.intensity)!xm1#1

τ

m3.in!calc.speed#1
y f(m3).(calc.speed)!calc.speed#1

τ

m3.out!calc.speed#1
y f(m3).(ctrl.speed)!calc.speed#1

τ

m4.in!calc.speed#1
y f(m4).(calc.speed)!calc.speed#1

m4.out!calc.speed#1
y f(m3).(eng.speed)!calc.speed#1

τ

m1.in?xm1#2
y f(m1).e?xm1#2

m1.out!xm1#2
y f(m1).(ctrl.intensity)!xm1#2

m2.in!xm1#2
y f(m2).(ctrl.intensity)!xm1#2

m2.out!xm1#2
y f(m2).(calc.intensity)!xm1#2

τ

m3.in!calc.speed#2
f(m3).(calc.speed)!calc.speed#2

τ

m3.out!calc.speed#2
y f(m3).(ctrl.speed)!calc.speed#2

τ

τ

Figure 7.13: Channels renaming in the symbolic tree of the RWC system
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In our symbolic framework, we need to give a counterpart to tioco which defines the conformance

of SUT with respect to a TIOLTS. Therefore, we define in the following the conformance of SUT

with respect to the symbolic trees being either symbolic executions or projection of symbolic

executions. We abstract those two possible cases as the so-called Symbolic Trees over a signature

(F, C) where F is a set of fresh variables and C is a set of channels. Symbolic Trees over a signature

(F, C) are couples (Init, R) where Init ∈ Ssat satisfies the same properties as in Definition 46

and R ∈ Ssat × Act(ΣF )× Ssat.

Definition 62 (tioco) Let STre be a Symbolic Tree over a signature (F, C) and SUT be an

Implementation Under Test over C. SUT conforms to STre, denoted SUT tioco STre, if and

only if:

∀σ ∈ TTraces(STre) ∩ TTraces(SUT ), ∀r of the form c!a or belonging to MI we have:

σ.r ∈ SUT ⇒ σ.r ∈ TTraces(STre)

We want to make use of Theorem 1, so that testing a system with respect to a sequence diagram,

amounts to testing subsystems with respect to projections. For that, we need the local consistency

property to be satisfied. As defined for a product of TIOLTS, we need to check that every local

trace (which belongs to the projections of the system tree on the subsystems) is consistent with

all behaviors characterized by the symbolic tree of the system. Usually, symbolic trees are big

structures (may be infinite) and encodes too many concrete (local) traces. In practice, we propose

to test this property. For that purpose, we use the local traces that we have built by interacting

with a SUT associated with the subsystem as we discuss it in the following.

Let us denote STre the symbolic execution SE(Gsd)δ after the renaming. Consider a SUT SUTC

corresponding to the subsystem C of Colsd.

Let σC be a trace built by interacting with a SUTC such that σC is in STreC (i.e. σC is in

SUTC ∩ STreC).

The property of local consistency does not hold:

If there exists a prefix σ′
C of σC of the form σ′′

C .act where act is an output or a duration such that

there exists a trace σ′′ which belongs to STre (in the sense of Definition 53) such that proj(σ′′, C)

is σ′′
C and σ′′.act does not belong to STre.

σ′′ belongs to a path (or several paths) of STre (in the sense of Definition 52) and according

to our definition of the projection (Definition 61): for any such path p there exists a path pC in

STreC . Obviously σ′′
C belongs to pC .

From Definition 61, we have σ′′.act belongs to p if and only if σ′′
C .act belongs to pC .

If for all such p, we have either σ′′
C .act belongs to pC or there exists a symbolic transition st

such that σ′′
C .act belongs to pC .st (see Definition 61), we can deduce that for all σ′′ such that

proj(σ′′, C) is σ′′
C and for all p such that σ′′ belongs to p, we have either σ′′.act belongs to p or

σ′′.act belongs to p.st.

Therefore, in order to test the local consistency regarding σ′′
C , we can consider working only on

the projection STreC : we have to test that act is consistent with all paths of STreC to which

belongs σ′′
C . Figure 7.14 depicts the algorithm which tests if the local output consistency holds

on STreC , regarding any trace σC of SUTC as discussed before. If σC permits to prove that the

local output consistency does not hold, the algorithm returns FAIL, otherwise it returns PASS.

Example 52 (Counterexample to local output consistency in a symbolic framework)
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7.3. Compositional testing from sequence diagrams

Algorithm 1:

Data: σC is a timed trace of SUTC , ST reC is the projection of Ren(SE(Gsd)δ) on C
1 begin

2 for prefix σ′′
C .act of σC where act is an output or a duration do

3 for path p in ST reC s.t. σ′′
C belongs to p do

4 if σ′′
C .act does not belong to p ∨

5 there does not exist a transition st of ST reC s.t. σ′′
C belongs to p.st then

6 return F AIL

7 return P ASS

Figure 7.14: Testing local output consistency

Consider the example in Figure 7.15. Consider first the trace σC = a!5.b!5 of SUTC and

STreC. Here σC = σ′′
C .act where σ′′

C = a!5 and act = b!5. In the example, we have two paths

p1C = (Init, a!u, η1) and p2C = (Init, τ, η2).(η2, a!5, η3) such that σ′′
C belongs to both of them. We

have σ′′
C .b!5 belongs to p2C. However, for p1C there does not exist a symbolic transition st of STreC

such that σ′′
C .b!5 belongs to p1C .st which violates the local consistency.
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(b) ST reC : the projection of
Ren(SE(Gsd)δ) on C
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(c) ST reC′ : the projection of
Ren(SE(Gsd)δ) on C′

Figure 7.15: Counterexample to local consistency in a symbolic context

Discussion

We have reformulated tioco with respect to symbolic trees. This permits to use the symbolic

execution as a reference for testing SUT. Since we have defined how to symbolically execute

sequence diagrams, this allows us to use symbolic executions of sequence diagrams as references

for testing. We have discussed how to relate sequence diagrams to the architecture of systems

under test. We have identified, using projection mechanisms, symbolic trees denoting behaviors

of any subsystem (i.e. group of selected components or connectors) in the context of the whole

system. We relate conformance of subsystems (to their projected trees) and conformance of the

whole system (to the symbolic tree associated with its sequence diagram) thanks to Theorem 1.

In order to be applicable, Theorem 1 requires the reference specification product (formulated as

a TIOLTS) to be "local output consistent". Transposed to symbolic trees, it means that for any

σC built by a tester while interacting with a subsystem, if σC belongs to the projected symbolic

tree associated with the subsystem, and if an output or duration r can occur according to the

projected symbolic tree, then for any trace σ of the system symbolic tree whose projection is σC ,

we have σ.r is a trace of the symbolic tree of the system. Instead of proving this property on
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the whole symbolic tree of the sequence diagram, we propose to prove it just for traces that are

built concretely during a subsystem testing process. Generally, deriving the proof with respect

to the whole symbolic tree of the sequence diagram can be impossible because it is often an

infinite structure. On the contrary, when testing a subsystem, we only build a finite number

of finite traces and it is sufficient to prove that "local output consistency" is not "broken" by

these traces, which is done by the algorithm of Figure 7.15 (which tests that the "local output

consistency" property holds) by proving that traces built when testing the subsystems do not

break the property. This result is a first step towards the definition of a modular testing process,

in which a tester identify a partition of the system into smaller ones, for which it is easy to define

a concrete testing architecture. Indeed, the result permits (as long as the local output consistency

property holds) to ensure that any fault, occurring at the system level, could be observed at

the level of one of the subsystems of the partition, as long as the used testing algorithm uses

the subsystem projected trees as reference specifications, and as long as the testing algorithm is

complete. A direct extension to this work will be to adapt the algorithm in [31] for that purpose.
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The Unified Modeling Language (UML) includes many types of diagrams to capture the system

structure and dynamics, among the latter are sequence diagrams. Sequence diagrams are visual

formalisms for scenario-based specifications and is a standard of the OMG consortium (Object

Management Group, for modeling object-oriented systems) [74]. The predecessors of sequence

diagrams are SDL (Specification and Description Language) [49] and MSC (Message Sequence

Chart) [51]. MSC is an ITU-T standard (ITU Telecommunication Standardization Sector) [50]

whose first version MSC-92 emerged in turn from SDL. Then successive revisions gave MSC-2000.

The latter was one of the basis to make early versions of UML 2.0 sequence diagrams. There are

few technical differences [45] between the MSC and sequence diagrams in their modeling power

(e.g. sequence diagrams exhibit few more combining operators such as strict sequencing, and

there are differences in the definition of timing properties: in MSC timers may be used). We

use rather the UML technology which is closely related to model-driven development, executable

models, code generation and round-trip engineering. However, situating the works related to

MSC is in the scope of those related to sequence diagrams.

The related approaches that we have selected focus on three main axes of interest:

• The synthesis of state-based models from sequence diagrams and MSC. The

definition of the target state-based formalism depends on the kind of analysis to be pursued

on scenarios (e.g. model driven development of systems by code generation, model checking).

In this thesis, our concern is symbolic execution, and in particular how it can be used for

testing.

• The use of sequence diagrams and MSC in testing. We discuss variant uses of

scenario-based models in the testing process: some works use scenarios as a modeling

notation to describe tests, some other deal with tests generation from scenarios with

different level of formality.
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• The exploitation of sequence diagrams and MSC by projection. Scenarios repre-

sent the dynamics of the intended cooperation between the entities of the system. Hence,

by projection, unitary behaviors can be derived from the scenarios.

Besides, we have identified some transversal comparison criteria relevant to our work :

• Structuring scenarios with combining operators. We discuss which approaches support

operators dedicated to the composition of scenarios such as sequence, iteration and choice.

Note that in sequence diagrams, it is possible to directly draw a nested operator in another

operator region. In the MSC paradigm, HMSC (High level message sequence charts) [68]

are rather used for that purpose. HMSC are flow graphs with control nodes (for operators

conditions) and the other nodes are just references to basic MSC 1 defined elsewhere, in

another diagram. MSC may also be structured by modalities called LSC (Live Sequence

Chart) [24]: LSC adds another semantics to MSC, they can express mandatory behavior,

and not only possible behavior.

• Annotation of scenarios with timing features. We pay attention to whether considered

scenarios are constrained by timing guards. Also, we look at the expressive power of these

guards to capture relations between execution instants.

• Symbolic denotation of scenarios. The usual practice is to use concrete data values (in

finite domains) while treating time symbolically. This brings about classically problems of

state explosion. Seldom approaches handle both data and time requirements symbolically

in the scenarios.

8.1 Synthesis of state-based models from scenarios

We have synthesized TIOSTS automata from timed sequence diagrams. There is a huge literature

on synthesizing state-based models from scenarios. We discuss only some of them in this section

which are either more known or closely related to our work.

8.1.1 Basic scenarios

Early works (e.g. [56, 43, 44, 89, 4]) along this axis addressed generation of automata from basic

MSC without time annotations and for different purposes than ours (symbolic execution). In

order to enable their integration in the development process, authors in [56] translate MSC into

statecharts [42] integrated later in UML and for which verification and code generation tools were

developed. In the same spirit, the approach in [43, 44] considers generation from LSC. Authors in

[89] focus on the generation of structured statecharts from a collection of basic sequence diagrams.

Hierarchy and alternatives are implicit behaviors and are deduced automatically from merging all

the behaviors of the sequence diagrams in that collection. The work in [4] translates a collection

of basic MSC into a set of concurrent automata (one per system entity) with buffers. By taking

into account the communication architecture in the translation, this work is the closest to ours in

that sense, and differs only in the kind of conducted analysis. In fact, the product of the automata

may generate behaviors not present in the entry scenarios (e.g. Each entity of the system chooses

to start a different scenario, not being aware of others entities choices). These behaviors are

called implied scenarios. Their analysis aims at the inference of (undesirable) implied behavior

and the construction of correct deadlock free models.

1We say basic MSC (or basic sequence diagram) when it does not include combining operators.
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8.1.2 Combined scenarios

Structured scenarios have been considered later in the literature (e.g. in [83, 84, 53, 7]). In these

approaches the timing constraints are not yet supported.

The work in [83, 84] defines a methodology for incremental elaboration of scenario based specifica-

tions structured as HMSC. Authors focus on the implied scenarios detection. A specification is a

set of scenarios, their composition using HMSC operators (similar to sequence diagram operators

alt, loop, etc.) may not provide the required system behavior. Implied scenarios may appear

as a result of unexpected components interactions. In order to accommodate implied scenario

acceptance and rejection, the approach synthesizes state-based models as labeled transition

systems (LTS) for both intended and undesirable behaviors. The communication mechanism

is encoded by the parallel composition of LTS synchronizing on the concrete exchanged values

(message labels). Based on the generated state-based models, authors present a technique to

provide feedback on the existence of implied scenarios.

In [53], authors describe a translation of a sequence diagram containing combining operators

into an automaton for model checking. This automaton is used as an observer process in the

SPIN tool [48] to check whether a sequence diagram can be satisfied by a given set of UML state

machines modeling entities of the system. The subset of operators handled is quite complete

but the work avoids some problems linked to concurrency, like in the translation of the choice

operator.

The work presented in [7] is close to ours: authors infer the communication mechanism from

structured sequence diagrams. This communication mechanism is meant to encode coordination

protocols implicitly. Constraint automata are generated for connectors from scenarios. A

constraint automaton describes the desired input/output behavior at the ports of the components.

In fact, constraint automata encode constraints on data assigned to ports, and one port is defined

per entity of the system (a constraint tells that the data has to be equal to the concrete exchanged

value). The constraint automata generated can then be used to generate Reo circuits [8], which

provides the glue code (synchronous, asynchronous, broadcast communication, etc.). In addition,

we consider scenarios with data and timing constraints denoted symbolically in the translation.

8.1.3 Time annotations and symbolic analysis

Timing constraints have been considered in more recent works [61, 92, 88]. Synthesis of a network

of timed automata [3] from a set of LSC charts is given in [61]. LSC charts have been extended

with timing features: Charts are equipped with clock variables and thus may be annotated in

the timed automata style with clock constraints and assignments as clock resets. The real-time

model checker UPPAAL [14] is then used to check the consistency of the set of charts 2. Note

that a timed automaton is associated with symbolic structures 3 to store symbolic representation

of the states, for timed analysis purposes. A similar approach was adopted in [92] but with

translation to time petri nets [69]. Here, the entry scenarios are sequence diagrams with a variant

form of timing constraints with the MARTE::VSL language. Also, analysis of time petri nets

that the authors use relies on the construction of a data structure 4 abstracting the state space

to classes with the same time firing conditions. Clearly, our work is similar to these works in

sense of making use of symbolic techniques to represent the state space in an abstract manner for

2Consistent means that there does not exist an infinite message sequence, i.e. sequence of concrete values
exchanged, that satisfies all the universal LSC.

3e.g. The difference bound matrices (DBMs) are data structures to describe zones (a zone correspond to a set
of constraints).

4The so-called States Classes Graph (SCG) [16] are used, among other techniques, in the state reachability
analysis of time petri nets.
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time variables, but data variables encoding constraints on exchanged values are also symbolically

treated in our framework rather than enumerated. In addition, we support another form of

constraints with MARTE::VSL language which allows us to constrain time instants. However,

these works address verification problems while we focus on symbolic execution-based techniques

for black box testing.

An overview of the selected approaches along this axis, i.e. synthesis of state-based models from

sequence diagrams and MSC, is given in Table 8.1 including a comparison with our approach.

Approach Notation Combining Time Target state Symbolic Use Tool

operators constraints -based model interpretation support

Kruger et al. MSC no no statechart no code no
1998 [56] generation

Harel et al. LSC no yes statechart no code yes
2000 [43] generation (Play-engine)

Whittle et al. SD no no statechart no code yes
2000 [89] generation

Alur et al. SD no no concurrent no verification yes
2003 [4] automata

Uchitel et al. MSC HMSC no LTS no verification yes
2004 [83, 84]

Knapp et al. SD yes no interaction no model- yes
2006 [53] automata model-checking (+SPIN)

Arbab et al. SD yes no constraint no glue yes
2008 [7] automata code generation (+Reo)

Larsen et al. LSC no yes timed time model- yes
2010 [61] automata variables model-checking (+UPAAL)

Zhu et al. SD yes yes time time verification yes
2010 [92] (MARTE) Petri net variables (+ROMEO)

our approach SD yes yes TIOSTS time+data symbolic yes
(MARTE) +TIOLTS variables execution (+Diversity)

Abbreviations: MARTE: Modeling and Analysis of
MSC: Message Sequence Chart Real-Time and Embedded systems
HMSC: High-Level MSC LTS: Labeled Transition System
LSC: Live Sequence Chart TIOLTS: Timed Input Output Labeled Transition System
SD: Sequence Diagram TIOSTS: Timed Input Output Symbolic Transition System

Table 8.1: Comparing our approach to other synthesis of state-based models from scenarios

8.2 Scenario-based testing

We use sequence diagrams as a reference specification in a conformance testing framework. In

this section, we give an overview of the usage of sequence diagrams in testing in general.

8.2.1 Earlier work

Testing based on UML scenario models is the subject of a long thread of works [90, 19, 13, 35,

9, 2, 71]. These approaches use/derive sequence diagrams as test cases. The strength of such

approaches is that they enable the industrial integration of testing in the practices and tools

of the designers of UML models. These works tackle the test generation problem from a more

practical perspective. In [19], test cases are derived from use cases, which are structured and

detailed using UML activity and sequence diagrams. Sequence diagrams are used in [35] and

in [90] for describing test specifications, which are extended with method parameters, and return

values for method calls for actual testing. The work in [13] uses UML sequence diagrams for

describing system use cases. Corresponding to each use case, a set of test cases for testing such

use case are then derived. The UBET tool [15] supports test generation from a HMSC model, in

which test generation is primarily driven by the edge-coverage criteria in a HMSC. In [59], the

play-engine tool for Live Sequence Charts (LSCs), which are an extension of MSCs, has been

extended to support testing of scenario-based requirements.

8.2.2 Concrete test generation from scenarios

The work in [64, 63] gives an algorithm to derive tests from UML 2.0 sequence diagram. The

derived tests are themselves sequence diagrams. Authors define operational semantics [65, 64, 63]
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for their entry sequence diagrams which applies as well to the derived ones. The test derivation

algorithm is an adaptation of the ioco based testing algorithm in [82]. The subset of the sequence

diagrams does include time features in the semantics (defined in [63]), however it does not include

them in the test derivation. They consider besides the repetition, the choice and the strict

sequencing operators that we handle in our approach, assertion and negative operators (neg and

assert) for forbidden and required behaviors. In fact, UML states that behaviors are defined as

traces, and traces may be valid or invalid. The assert operator allows one to specify the only

valid behaviors that can occur starting from the moment the assert region is entered. The neg

operator specifies a behavior which is considered to be invalid, and implies that all other behaviors

happening since the neg region is entered are valid. In our approach, all the specified behaviors by

a sequence diagram are considered to be valid, as if we had enclosed such behaviors in an assert

region, except that we allow the underspecification of messages coming from the environment.

The execution system that the authors defined to capture the semantics of a sequence diagram

is interpreted as a labeled transition system (LTS). This allowed them to define test derivation

in the fashion of [82]. The intuition is that the execution models attributes a meta property

mode to each executed action (emission/reception of a message). For instance, when entering an

neg operator region (captured by a special label on an unobservable action τneg), the execution

system sets the mode value of next actions to invalid. From the semantics defined for the sequence

diagram, the proposed algorithm generates a sequence diagram of test events which ends with a

verdict pass, fail or inconc (for inconclusive i.e. behaviors which does not allow to conclude on

the conformance). The algorithm works as follows: (i) The diagram is supplied with an input

(external receptions from the environment), and the test continues recursively with all the states

which are reachable after that input. (ii) The diagram is checked: if the observed output is a

specified response then the test continues recursively, otherwise the test sequence terminates with

a verdict. In fact, if the unspecified output was observed while the execution mode is valid (in an

assert region) then the verdict is fail, otherwise the verdict is inconc (typically in neg region).

(iii) When the diagram accepts no stimulation the test terminates with a verdict. It is fail if the

execution mode is invalid (in a neg region), otherwise it is an accept.

Authors in [75] use sequence diagrams in the testing activities. They presented an approach

to generate test cases (expressed as UML scenarios) from state-based UML models guided by

test objectives (also expressed as scenarios). The UML state-based models are transformed into

IOLTS (Input Output Labeled Transition System). Then, the test case derivation is based on

ioco. Note that the derived test cases may be structured (e.g. using the choice operator).

Test generation from MSC was studied extensively in [10, 11]. The approach denote the semantics

of a HMSC as a partial order graph in which each node corresponds to communication actions.

The graph is used during test generation. Besides, the test generation takes as input the subsystem

in the MSC format which represents the SUT (System Under Test). Generated tests (as scripts)

have the form of a tree (data) structure where nodes are communication actions or verdicts. The

authors distinguish three test criteria. (a) Trace Testing: in which each trace through an MSC is

created as a separated test script. This is the simplest test strategy. (b) Branch Testing: in which

each test represents a separate path through an MSC that contains branching such as alternatives.

(c) Completion Testing: The messages sent by a test script will be dependent upon how the SUT

behaves at execution time, but will be fixed within the branch taken. Authors in [10] discuss

concurrent test generation issues: The SUT can be stimulated/observed by a set of parallel test

components (each running their own test script independently). The test components can be

autonomous processes running over a distributed system and can synchronize their behavior by

dedicated communication channels carrying coordinating messages. The final verdict is computed

automatically from the individual verdicts by a master test component. In the test architecture,

coordination channels between the testers have been introduced. This can allow information to

be shared between the testers and increase the observational power of testing. Authors assume

111



Chapter 8. Related Work

that all coordinating messages can be implemented with negligible latency compared to ordinary

messages that communicate with the SUT. Authors were interested also in timed test generation

in [10]. They use a basic mechanism that consists in constraining two communication actions by a

time interval that specifies a window of time in which they occur relative one to another. Tests are

generated for constraints expressing an exact waiting delay as follows: a timer is started after the

referenced action is executed, and the constrained action is suspended when the timer has expired.

For intervals, two timers are considered. Depending on their timeouts, verdicts are emitted. In

order to prevent false passes the timers are pessimistic: They restrict more the interval. For

example, the upper bound timer is started just before the reference event (necessarily a send)

and the lower bound timer begins just after. And so, no pass is emitted when the constrained

event occurs just after the upper bound is expired, or a fail just before lower bound expires. Note

that when two constraints defined in two alternative regions with a reference event outside these

regions, two timers are started because the tester does not know in advance which alternative

branch will be chosen: for example, if the SUT reacts and makes the execution goes to the region

different from the one being tested, then both timers are canceled and the verdict is inconclusive.

Clearly, this work gives more technical solutions to generate and execute tests and less links with

the testing theory. Authors were interested in how to test distributed systems. We are rather

interested in simplifying the testing thanks to our result on the compositionality.

8.2.3 Symbolic test generation from scenarios

In [28, 27], symbolic techniques are used to generate test inputs from information contained in a

class diagram and a sequence diagram. Transformation rules are defined to obtain a directed graph

VGA (Variable Assignment Graph) from these diagrams: It describes the effect of the message

exchanges on the variables of the system. Paths in the VGA encode all the possible executions

of the system which may be huge or infinite due to unbounded loops in the sequence diagram.

The authors define coverage criteria for sequence diagrams to select relevant paths: all Messages

coverage, each message must be sent at least once; all conditions coverage, each condition in each

decision must be evaluated to both true and false; and all message paths coverage, each message

path must be traversed at least once. The last criterion cannot be satisfied when the number of

paths is infinite. For each selected path, system variables are treated symbolically, that is, a new

fresh variable is introduced when a variable is redefined. Test inputs are determined by solving

the system of path conditions. In order to evaluate the relevance of their generated test inputs,

the authors introduce faults in the specification as a sequence diagram (among the most frequent

in the design process, e.g. a missing alternative or a modified alternative). In such situations, the

condition coverage criterion is demonstrated to be efficient in fault detection. Notice that the

test inputs were used to test the specification model and it is not clear how these inputs help to

test the (model of the) implementation with respect to the specification.

Testing based on symbolic denotation of scenarios has been considered recently in other works [79,

37, 78]. While in the case of a MSC a lifeline can represent only one concrete process, the

approach extends MSC with a symbolic lifeline which represents at any point of the interaction

some/all processes from a collection: a guard may be associated with a communication action for

selecting which subset of processes from that collection actually perform the action. [79] describes

a methodology for testing systems with large number of behaviorally similar processes, i.e. process

classes, based on SMSC (Symbolic message Sequence Chart). The testing framework takes as

input besides the SMSC specification, a user test purpose, also as a SMSC, which represents a

particular behavior of the specification to be tested. First, an abstract test case, i.e. denoted

symbolically, is generated in the form of a SMSC, satisfying the test purpose. Concrete test

cases as MSC, where a set of concrete lifelines are instantiated from each symbolic lifeline, are

not generated directly from the abstract test case. Rather, a minimal set of test case templates
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are derived from the abstract test case. A template is an intermediate representation which

allows to determine the minimum number of processes from each class of processes required to

represent a distinct realization of the abstract test case thanks to the analysis of selection guards.

Thus, for any two instantiations of two different templates, we obtain necessarily two distinct

concrete test cases. This method guarantees an optimal coverage of all the abstract test case

behaviors by instantiating each one of its templates to a concrete test case with the required

minimum number of processes. Besides, given subsets of representative processes for each process

class, the concrete test case for that concrete process configuration can be generated from the

already generated template without remodeling or re-executing the system. Finally, the concrete

test cases are classically experimented against the implementation within the ioco conformance

relation framework. In this work, authors use symbolic techniques to analyze scenarios where

lifelines are denoted symbolically while we focus on the use of such techniques to analyze scenarios

which are structured by combining operators and guarded by timing constraints.

8.2.4 Distributed testing with scenarios

Testing in distributed architecture with MSC has been investigated in [11, 10, 18, 25].

The work [25] defines a distrusted testing architecture for conformance testing from MSC with

different assumptions on the observational power of the tester. The system behavior modeled

by the MSC consists in message exchanges between the users and the subsystems which are

distributed at different physical locations. This work distinguishes three kind of messages in

the MSC: border messages exchanged between the users and the subsystems; user messages

exchanged between users; and internal messages exchanged between the subsystems. The users

behavior is performed by testers and the subsystem behavior is observed by testers. As usual in

conformance testing, the conformance of an implementation with respect to its specification is

expressed using a formal relation called conformance relation. Notice that the SUT is assumed to

be modeled by partial orders (between communication actions) represented by MSCs. Traces

correspond to the linearisation of all these partially ordered actions. Linearisation means simply

here computing all the possible traces by interleaving the concurrent behaviors. The authors

define three conformance relations: b-conf , t-conf , and a-conf . The relation b-conf expects each

tester to see a (local) trace which can be found in the projection of some specification traces

after hiding the user messages, on the interface of the concerned user; t-conf expects to find

for each global trace of the implementation, a global trace in specification which has the same

projection on all the users interfaces. a-conf expects to find all the implementation traces in

the specification. The latter assumes the tester to observe the internal messages between the

subsystems. Test cases are all the possible concrete sequences of communication actions which

can be observed by the tester. For example, under b-conf and t-conf the test case sequence does

not contain internal communication actions between the subsystems. For a test case, verdicts are

generated based on observational power of the testers. For b-conf , a global verdict is pass if the

local testers have verdicts pass, otherwise the global verdict is fail. t-conf requires two steps of

testing: first, observe a local trace at each port, and then check if the overall trace is consistent

with the specification and deduce a verdict (local verdict is computed here). For a-conf , the

global verdict is pass if the observed global trace is specified. The last algorithm allows to verify

the implementation at the subsystem level since the internal messages are observable and thus

considered in the global trace. This work is in the frame of our concerns since our goal is also

to decompose the testing task. Authors focus on distributed testing [46] while we have stated

different results which relate to the compositional testing in the fashion of [17], besides in our

approach time is taken into consideration.

Authors in [18, 85] are interested in distributed testing with MSC. More precisely, they look into

how a test scenario can be correctly implemented in a distributed test architecture. The main
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issue in implementing a distributed test is to guarantee that all the test events are executed in

the right order, especially if the test components run concurrently. A coordination by message

can be implemented between test components to generate a correct MSC test implementation,

i.e. without false passes (i.e. masking SUT faults). This task is automated: the transformation

of a test specification into a test implementation with a required coordination [11, 10]. Another

solution is presented in [18]: Observable quiescence action called null event is introduced in the

MSC and models a sufficient delay for the SUT to become quiescent and all the pending messages,

including coordination ones, to arrive. Note that communications are assumed to be asynchronous

and messages transit over unbounded FIFO channels. The work suggests two algorithms for

generating test implementations and discusses their fault detection power in terms of false passes.

Both algorithms rely on the addition of coordinating messages and null events in order to avoid

races in the generated MSC of the test implementation. It is interesting to investigate links with

our work because we have introduced the necessary elements in the semantics to capture the

underlying communication mechanism which is used in [18] to realize the test scenario.

8.2.5 Testing criteria for scenarios

Authors in [6] present coverage criteria that determine the modeling elements of the UML

communication diagrams5 that a behavioral test must cover in order to be considered adequate.

Authors consider the following coverage criteria: (a) Condition Coverage Criteria: any decision

condition is evaluate to both true and false. (b) Full Predicate Coverage Criterion: any clause

in each condition is evaluate to both true and false. (c) Each Message on link Criterion: any

message is covered at least once. (d) All Message Paths Criteria: given a message, cover any

path (sequence of messages) that contains that message at least once. This is done for all the

messages in the diagram. (e) Collection Coverage Criteria: the participant may represent a

collection of objects, in this case, the diagram is instantiated with any subset of objects in that

collection. Note that when a sequence diagram contains an unbounded loop, the All Message

Paths Criteria criterion is not doable. In practice, testers may set a bound. The approach

in [77] defines control-flow coverage criteria for sequence diagrams: (f) All-branches criterion

requires testing to execute enough start-to-end paths to cover all conditional behavior, similar to

traditional branch coverage. We have used simply the criterion (c) during our simulations. It is

interesting to validate our results for the other criteria however, we deal most of the time with

(unbounded) looping behaviors. This requires to explore additional criteria borrowed from testing

which are more suitable for these kind of behaviors such as restriction by inclusion criterion [36]

and eventually adapt it to our timed context.

8.3 Eliciting unitary behaviors from scenarios

The exploitation of scenario models by the projection mechanism appears rarely in the literature.

The study of the resulting properties of an assembly of components, separately validated or

tested, receives much more attention (e.g. [91, 17]) than approaches such as ours, trying to

infer component requirements from the whole system model. Among the latter [58] describes a

complete tool framework that goes from the specification of high-level services as MSC scenarios

to the derivation of models of the components to be designed/chosen using projection techniques.

Authors in [57, 58] use projection directly on MSC, they do not consider complex MSC with

combining operator (e.g. alternatives and loops), just messages and guards. In fact, after having

selected the component for which they want to construct an automaton specification, they project

5formerly called a UML collaboration diagrams contain the same modeling elements as sequence diagrams
and describe the exchange of messages between participants but without the time dimension : messages can be
numbered to show the exact order in which they are exchanged
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each of the given MSCs on this component by removing all other components axes (lifelines in

sequence diagram parlance), as well as message arrows that neither start nor end at the axis

of the concerned component. Then they turn every remaining message into a transition of the

automaton.

In [25], a conformance testing framework is defined for MSCs without intermediate representation

as input output transition systems or finite state machines. The MSC traces which correspond

to the linearisation of the partially ordered communication actions of that MSC are projected

to obtain traces at the subcomponent level. The resulting trace is used by a distributed tester

to conduct tests on the subcomponent locally. Our contribution is similar but is defined in

a symbolic framework where time and data are handled as first-order structures rather than

enumerated.
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We have attributed operational semantics to sequence diagrams with timing features by translating

them into a set of TIOSTS. We prototype our approach in the frame of the UML model-based

development environment Papyrus and the symbolic simulator Diversity. The diversity tool has a

generic entry language that we used to encode TIOSTS. The translation rules are implemented

as a model to text transformation: TIOSTS specifications are generated in the entry text format

of Diversity from the sequence diagram represented as an instance of the UML metamodel in

Papyrus. Those specifications are symbolically executed to obtain a symbolic execution tree

which characterizes in intension all concrete behaviors specified by the sequence diagram. We

applied our approach on an example of a case study from the railways industry which allowed us

to conduct symbolic simulations at a larger scale. We put a limit on the generated tree size by

considering coverage criteria. In particular we are interested in achieving 100% message coverage

defined for sequence diagrams [6, 77].

In the first section of this chapter, we present the tools that we used. The second section discusses

implementation issues concerning the implementation of the TIOSTS formalism in Diversity. We

also give in this section the implemented transformation algorithms. The third section provides

the case study description. Finally the fourth section is dedicated to the experimentations and

the evaluation of the scalability of our approach with regard to the coverage criteria.

9.1 Tools

In this section, we present respectively the Papyrus and the Diversity tools which are both

developed at the CEA.
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9.1.1 Papyrus

Papyrus [62] is a graphical editing tool for UML 2 as defined by OMG. Papyrus implements most

of the OMG specification of UML in particular the sequence diagram metamodel. In addition,

Papyrus provides an implementation of MARTE and offers a textual editor for VSL. We use

papyrus to produce sequence diagrams in accordance with the OMG specification.

9.1.2 Diversity

Diversity 1 is a symbolic automatic analysis and testing tool. Diversity has a generic entry

language called xfsp (extensible formal specification) which has previously been used to encode

specifications in SDL, Statecharts of Statemate, UML statemachines, ESTELLE, IF and Simulink

stateflow. In our case, we encode the TIOSTS formalism with xfsp. Diversity generates a symbolic

tree which represents all the possibles executions of the system. The symbolic tree is obtained

by simulating the system specification with input symbols rather than concrete values for data.

Each path of the tree has a constraint on input symbols, commonly called a path condition, for

the execution to follow that particular path. Sequences of concrete test inputs are computed by

solving these path conditions using a constraint solver. For that purpose, Diversity integrates

solvers such as CVC32, OMEGA, Yices 3 and Z3.

In this section, we give some introductory background on a subset of the language xfsp and

introduce the symbolic execution mechanism in Diversity.

9.1.2.1 Entry language xfsp

The language xfsp is flexible to capture different specifications based on communicating automata.

We illustrate in Figure 9.1 the coding in xfsp of a simple IOSTS G (no timing features are specified)

that computes the absolute value of its input (see the declaration of G as a statemachine of

kind or in the xfsp syntax, line 6). We explain next how such a specification can be understood

intuitively by making links with IOSTS syntax.

The IOSTS G has data variables x,y of type Integer (lines 8—9). It communicates over channels

c1,c2 (lines 10—11). In xfsp, each state is defined by a set of outgoing transitions. In the example,

the state q0 (line 17) has one outgoing transition namely n0 and the state q1 (line 22) has two

outgoing transitions n1,n2 both targeting the state q2. The transition n0 denotes a reception of

a value on channel c1 stored in x (see line 19, input c1(x) encodes the communication action

c1?x in IOSTS syntax). Transitions n1,n2 are exclusive: they are taken only if the value stored

in x is respectively either a positive or a strictly negative integer (see the guards respectively lines

24 and 28). In the first case, the variable y is assigned with x, otherwise it is assigned with -x

(see statements lines 25 and 29). Hence, y contains the absolute value of the input value stored in

x. Then, the transition n3 outputs this calculated value on channel c2 (see line 34, output c2(y)

encodes the communication action c2!y). Finally, the xfsp code specifies from where each channel

gets data that may be either acquired from the environment or from another IOSTS (same for

emitted data). In the example we consider only one IOSTS, hence c1 receives values from the

environment and c2 emits towards the environment (see lines 39—43). We use this mechanism

later in the chapter to encode the parallel composition of TIOSTS resulting from the sequence

diagram translation.

1formerly named AGATHA tool set [76]
2http : //www.cs.nyu.edu/acsys/cvc3/
3http : //yices.csl.sri.com/
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absoluteVal.xfsp

1 @xfsp< system , 1.0 >:
2

@main:
4 statemachine< and > main {

@machine:
6 statemachine< or > G {

@declaration:
8 var integer x;

var integer y;
10 public port input c1( integer );

public port output c2( integer );
12 @machine:

state< initial > qi {
14 @ni --> q0 {

}
16 }

state q0 {
18 @n0 --> q1 {

input c1(x);
20 }

}
22 state q1 {

@n1 --> q2 {
24 guard (x >= 0);

y = x;
26 }

@n2 --> q2 {
28 guard (x < 0);

y = -x ;
30 }

}
32 state q2 {

@n3 --> q0 {
34 output c2(y);

}
36 }

}
38 @com:

connect< env > {
40 input G->c1;

}
42 connect< env > {

output G->c2;
44 }

}

(a) xfsp code (b) Visualization in Diversity

Figure 9.1: Simple IOSTS specification in Diversity

9.1.2.2 Symbolic execution

Diversity takes a specification of a system in xfsp as input and generates a symbolic tree. Let

us recall once again that this tree characterizes exhaustively all the behaviors (i.e. traces) of

the system by simulating the specification not for concrete input values, but for symbolic ones.

The simulation determines constraints on these symbolic values for each behavior, that is the

path condition (noted PC from now on). Consider the IOSTS specification in Figure 9.1. Its

corresponding symbolic execution tree generated by Diversity is given in Figure 9.2. Nodes

are symbolic states called execution contexts (EC) in Diversity which include besides the PC,

an assignment of variables at each point during the execution and reached state of the IOSTS.

Initially, the PC is equal to true and the variables x and y are assigned respectively to symbolic

values pid#2:x#0 and pid#2:y#0 (see the label associated with the root node of the tree EC 0).
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Figure 9.2: Symbolic execution tree in Diversity

At each point of the execution, the variable assignments and the PC are updated. For example,

when the transition n0 (q0 → q1) is taken, the IOSTS receives an input x from the environment

(the communication action c1?x is performed) and hence semantically x is assigned a new fresh

symbolic value pid#4:x#1, the current state becomes q1 and the PC is left unchanged (see

EC 2). From q1 two possible transitions may be executed n1,n2. In the symbolic tree, this

corresponds respectively to the branches EC 2 → EC 3 and EC 2 → EC 4. The PC in EC 2 is

pid#4:x#1 >= 0 and y is set to pid#4:x#1, the value stored in x which is the absolute value of

x when it is a positive integer. Similarly, EC 4 reflects the execution when x is negative (PC is

equal to pid#4:x#1 < 0 and y={* pid#4:x#1 -1}, i.e. y={pid#4:x#1 * (-1)} infix notation).

More generally, the discussed example is also illustrative of symbolic execution of a program

fragment computing the absolute value of an input that may be specified in an imperative manner

in Diversity. Our concern is state based specifications. The symbolic execution tree covers every

possible input value. In particular for the example, both alternatives of x positive or negative

integer are taken into consideration symbolically. The execution indicates which value is returned

in both cases.

Trace generation Constraints of PC are solved with CVC3 in Diversity in order to obtain

the test inputs. Symbolic inputs introduced during the symbolic execution are concretized with

values which satisfy the PC. Figure 9.3 shows the tests generated based on the symbolic tree in

Figure 9.2 using the solver CVC3.

Note that the IOSTS of the example models a reactive system in the sense that it continuously

interacts with the environment: the IOSTS has a looping behavior where, at each iteration, the

system receives an input on channel c1 and emits a result on c2. Consequently, the symbolic tree
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is infinite. Actually, we have chosen to stop the simulation when the tree height equals 4. In fact,

Diversity may be parametrized with stop criteria. For this part of the symbolic tree (computed

up to height 4), the generated test inputs meet the path coverage criteria. The symbolic tree has

two execution paths corresponding exactly to the two cases x>=0 and x<0. Consequently, the

first scenario denotes a trace c1?0.c2!0 of the first path and the second scenario denotes a trace

c1?− 1.c2!1 of the second path. These traces define the inputs c1?0 and c1?− 1 which make the

execution follow those particular paths.

------- SCENARIO NUMBER 1 ------

INPUT -----> c1( 0 )
OUTPUT ----> c2( 0 )

[log] generation with CVC3
EC number = 5
pid#4:x#1 = 0

(a)

------- SCENARIO NUMBER 2 ------

INPUT -----> c1( -1 )
OUTPUT ----> c2( 1 )

[log] generation with CVC3
EC number = 6
pid#4:x#1 = -1

(b)

Figure 9.3: Test inputs generation in Diversity

Parametrization For the symbolic simulation, Diversity allows to define exploration strategies

and stopping criteria.

Classically, search algorithms like Depth First Search (DFS) or Breadth First Search (BFS) are

implemented. In addition, some other heuristic algorithms are implemented like the HIT-OR-

JUMP algorithm [22]. In brief, the algorithm takes as input a sequence of transitions to cover

and a parameter integer N and returns the path of maximal length N containing (a prefix of)

that sequence (where some intermediate transitions may come in between).

Diversity offers some widely used coverage criteria in testing: states coverage, transitions coverage,

formulas coverage and paths of a maximal length coverage [36]. Also it performs a more

sophisticated criterion in order to avoid combinatory explosion : the inclusion criterion [36],

based on the inclusion of EC, i.e. symbolic states. This criteria allows stopping the symbolic

execution when it detects that an encountered EC is included in another already computed one.

Intuitively, the inclusion means that the reached states are the same and that the constraints

induced by the assignment of variables and the PC are stronger in the encountered EC than in

the already computed one. The symbolic tree in Figure 9.4 was obtained with respect to the

inclusion criterion. Symbolic states EC 5 and EC 6 are detected to be included in EC 1 where the

reached state is q0. In EC 5 for instance, PC={ pid#4:x#1 >= 0 } is stronger than PC=true in

EC 1. This means that the behavior expected after EC 5 has already been covered.

9.2 Implementation

The implementation consists in accomplishing two tasks:

• encoding the TIOSTS formalism in Diversity

• implementing the translation rules as a model to text transformation in Papyrus.

9.2.1 Implementation of TIOSTS

We saw in Section 9.1.2.1 how an elementary IOSTS may be coded in Diversity. Now we present

how we implemented a TIOSTS in Diversity. A TIOSTS Ge implementation is given in Figure 9.5.
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Figure 9.4: Symbolic execution tree in Diversity : inclusion criterion

In the same Figure, we also illustrated how the composition of two TIOSTS namely G||Ge is

encoded. The implementation of G is entirely given in Figure 9.1 and can be seen as a TIOSTS

implementation itself because it does not exhibit any timing features as discussed later in the

section. Recall that G computes the absolute value of an integer value input. In the system, Ge

uses G to compute the absolute value of a new integer value sent each 0.5 time slot. It requires

the answer to be sent within 0.2 time slot.

The implementation of TIOSTS is similar to the implementation of IOSTS discussed in Sec-

tion 9.1.2.1 except that it introduces additional code to handle the timing features that we

discuss in the following. We first introduce two global variables T and d (lines 2—4) where

T captures the current time and d captures the duration of the last executed transition in

the system. Initially T is assigned 0 (see line 53). Each time any transition is executed, d

is assigned a new fresh symbol and T is increased (see lines 56—58). E.g. after executing

three transitions in the system, we may have this setting : d is assigned pid#1:d#3 and T is

assigned pid#1:d#1 + pid#1:d#2 + pid#1:d#3 hence the current time (stored in T) is a sum

of fresh durations. We can now discuss how a TIOSTS transition is implemented. Consider the

following transition named n5 : q4
{t2} t2[i_t2]−t1[i_t2]<0.2 true c2?w [i_t2←i_t2+1]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q3 (denot-

ing the reception of the absolute value by Ge). Its implementation is given in (lines 43—47).

What is important to mention is that the time variable (t2) associated with the transition

is updated explicitly in the code (t2[i_t2] = T, line 43) and the index i_t2 is incremented

subsequently (i_t2 = (i_t2 + 1), line 47). The weak form (refer to Definition 26) of the time

guard t2[i_t2]− t1[i_t2] < 0.2 is directly expanded in the code (lines 44—45):

tguard (t2[i_t2] - t1[i_t2] < 0.2) || (i_t2 < 0) || (i_t2 > (size t1)) . Finally,

the data guard is omitted since equal to true and the output c2?w is encoded by input c2(w)

exactly as in the case of IOSTS. Actually, Figure 9.5 specifies the composition G||Ge. In the code

we indicate explicitly which channels match for synchronizations because state machines in xfsp

do not share channels. For example, G sends the absolute value on channel c2 (see the action

output c2(y), line 34 in Figure 9.1) and Ge receives that value on channel c2 (see the action

input c2(w), line 46). The correspondence is stated by connecting both channels in lines 61–64.

Note that when two transitions are synchronized, both associated time variables are updated

with the value of T being a global variable of the system.
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1 @xfsp< system , 1.0 >:
2 @declaration:

var real T;
4 var real d;

@main:
6 statemachine< and > main {

@machine:
8 statemachine< or > G {

@declaration:
10 var integer x;

var integer y;
12 public port input c1( integer );

public port output c2( integer );
14 @machine:

...
16 }

statemachine< or > Ge {
18 @declaration:

var integer u;
20 var integer w;

public port output c1( integer );
22 public port input c2( integer );

var vector<real> t1 ;
24 var vector<real> t2 ;

var integer i_t1 = 1;
26 var integer i_t2 = 1;

@machine:
28 state< initial > qi {

@ni --> q3 {
30 }

}
32 state q3 {

@n4 --> q4 {
34 t1[i_t1] = T;

tguard (t1[i_t1] - t1[i_t1 -1] == 0.5) ||
36 (i_t1 < 0) || (i_t1 > (size t1)) ||

(i_t1 - 1 < 0) || (i_t1 - 1 > (size t1)) ;
38 i_t1 = (i_t1 + 1);

input u;
40 output c1(u);

}
42 }

(a) xfsp code

state q4 {
42 @n5 --> q3 {

t2[i_t2] = T;
44 tguard (t2[i_t2] - t1[i_t2] < 0.2) ||

(i_t2 < 0) || (i_t2 > (size t1)) ;
46 input c2(w);

i_t2 = (i_t2 + 1);
48 }

}
50 }

@moe:
52 @init{

T = 0;
54 }

@irun{
56 input d;

guard (d >= 0) ;
58 T = (T + d);

}
60 @com:

connect< rdv > {
62 output Ge->c1;

input G->c1;
64 }

connect< rdv > {
66 output G->c2;

input Ge->c2;
68 }

}

(b)

Figure 9.5: TIOSTS specification in Diversity

Symbolic execution and test input generation We illustrate the timed symbolic exe-

cution by giving in Figure 9.7a a symbolic state in the execution tree. The generation of

the tree was stopped at height 4 where all states and transitions were covered. The exe-

cution reaches the symbolic state EC 6 (called execution context (EC) in Diversity) where

the states q0 of G and q3 of Ge were revisited again. Let us look at the assignment of

variables which relate to the time. First, three fresh durations pid#1:d#1, pid#1:d#2 and

pid#1:d#4 were successively cumulated in T (T={+ pid#1:d#1 pid#1:d#4 pid#1:d#2}). The

time variables t1 and t2 and their associated indexes are updated as follows: t1[0]=pid#1:d#1,

t2[0] = {+ pid#1:d#1 pid#1:d#4 pid#1:d#2}, i_t1=1 and i_t2=1. The path condition PC

states that there is at most 0.2 between t1[0] and t2[0] (that is (pid#1:d#4 + pid#1:d#2)< 0.2).

There is no constraint on t1[0] and t1[-1] because it corresponds to the location i_t1-1 of

t1 being out of bound and hence WF (t1[i_t1] − t1[i_t1 − 1] = 0.5) evaluated to True. PC

constraints are solved with CVC3 in order to obtain the scenario in Figure 9.7. Symbolic inputs

introduced during the symbolic execution are concretized with values which satisfy the PC.

Figure 9.3 shows the tests generated based on the symbolic tree in Figure 9.2 using the solver

CVC3. The scenario denotes the following trace 1.c1! − 3.(0.05).(0.1).c2!3. Let us remark the

delay of 0.15 = 0.05 + 0.1 < 0.2 between the first communication (c1!− 3) between G and Ge (the

latter asks to compute the absolute value of −3) and the response (c2!3) of the former.
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Figure 9.6: TIOSTS: graphical view in Diversity

(a) Symbolic state

------- SCENARIO NUMBER 2 ------
INPUT -----> d( 1 )
OUTPUT -----> c1( -3 )
INPUT -----> d( 0.05 )
INPUT -----> d( 0.1 )
OUTPUT ----> c2( 3 )

[log] generation with CVC3
EC number = 6
pid#1:d#4 = 1/10
pid#1:d#2 = 1/20
pid#9:u#1 = -3
pid#1:d#1 = 1

(b) Constraint solving

Figure 9.7: Test inputs generation form TIOSTS symbolic execution

9.2.2 Implementation of the translation rules

We present in this section the implementation of the translation rules as model to text transfor-

mation. The transformation takes as input a UML MARTE sequence diagram in accordance with

our use, as described in Chapter 2, and produces a set of TIOSTS corresponding to the sequence

diagram translation as defined formally in Chapter 6. In practice the transformation generates
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xfsp code encoding these TIOSTS in Diversify. The transformation is mainly made up of two sub

transformation algorithms: a transformation for the messages which is quite straightforward and

a much more subtle transformation for the lifelines. The difficulty comes from the fact that we

synthesize an automaton per lifeline while the behaviors are captured by the metamodel globally

at the operators level. In other words, units of behaviors (such as sending/reception of messages)

belonging to different lifelines are grouped by region then structured with operators. Therefore,

we need to extract from these groups of behaviors those concerning each single lifeline without

loss of information about their structuring with operators. This requires the understanding of how

the graphical positioning of behaviors (units of behaviors and operators frames) in the diagram is

captured by the metamodel. This particular point is also discussed in this section.

The reader of this section is supposed to be familiar with the metamodel constructs introduced

in Section 2.2 of Chapter 2.

Message Translation

We suggest an algorithm to automatically implement a message TIOSTS as an OR state machine

in the Diversity parlance. The algorithm is given in figure 9.8 and takes as inputs a UML element

Message, a mapping [OccurrenceSpecification, TimeObservation] which allows to obtain the time

variables associated with the message and a mapping [Message, Constraint] which allows to

obtain the constraint associated with the message. From a practical perspective, it would be

slow to parse the collection of constraints of an Interaction and the collection of observations of

the model each time a message or a lifeline is translated. We structure this information in the

mentioned mappings once and for all. We assume in the algorithm that the message is timed,

that is two time variables and a constraint are defined for the message (which is not the case for

simple messages).

Algorithm 2: TranslateMessage
Data: m: Message,
observations: Map[OccurrenceSpecification, TimeObservation],
constraints: Map[Message, Constraint]

1 begin

2 create state machine machine<m> of kind OR ;
3 t1 ← observations.get(m.getReceiveEvent()) ;
4 t2 ← observations.get(m.getSendEvent()) ;
5 add to machine<m> the variables ;
6 < t1 >, i<t1>, < t2 >, i<t2>, fifo f<m>, x<m> ;
7 add to machine<m> the ports ;
8 < m >in, < m >out ;
9 add to machine<m> the state q as initial, the state q′ as final ;

10 add to q the transition targeting q′, having the statements ;
11 i<t1> = 0; i<t2> = 0;
12 add to q′ the transition targeting q′, having the statements ;
13 input < m >in(x<m>); push f<m> ( x<m> );
14 < t1 >[i<t1>] = T; i<t1> = i<t1> + 1 ;
15 constr ← constraints.get(m) ;
16 add to q′ the transition targeting q′, having the statements ;
17 output < m >out(top f<m>); pop f<m> ;
18 < t2 >[i<t2>] = T ;
19 tguard W F (< constr.getSpecification() >); i<t2> = i<t2> + 1 ;
20 return machine<m>

Figure 9.8: Model to text transformation: Generate xfsp machine (TIOSTS in Diversity) for the
UML element Message
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Lifeline translation

Each lifeline is associated with a TIOSTS. In order to define this automata, we need to deduce

the order on units of behaviors within each lifeline.

Graphical order Recall that these units of behaviors correspond to the Interaction Fragments

in the metamodel. How the metamodel captures the graphical order of the Interaction Fragments

in the diagram is a key point to deduce the local order on lifelines. For instance within an

elementary sequence diagram, the Interaction Fragments which are in this case exactly Occurrence

Specifications, execute on each lifeline in their graphical order from top to bottom of the line.

However, the Interaction Fragments graphical order in general is not captured at the lifeline level

but rather at the Interaction level as we will see in the following. Let us focus on the composition

relation between an Interaction and CombinedFragment elements:
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It states that all the fragments of the interaction are ordered (see the label on the composition

line ordered). The order comes from the vertical coordinates of the fragments in the diagram as

expressed in the (OMG) specification, in natural language :

Excerpt from UML specification ”[. . .] In Sequence Diagrams these InteractionFragments

are ordered according to their geometrical position vertically. The geometrical position

of the InteractionFragment is given by the topmost vertical coordinates of its contained

OccurrenceSpecifications or symbols.” (page 501)

”[...] The vertical position of an OccurrenceSpecification is given by the vertical position of the

corresponding point. The vertical position of other InteractionFragments is given by the

topmost vertical position of its bounding rectangle.” (page 486)

Example 53 Consider the sequence diagram of Figure 9.9. The fragments associated with the

interaction sd1 are recorded in the order of their vertical coordinates that is : the emission and the

reception of m1 (at y1) then the emission and the reception of m2 (at y2) then the loop operator

(at y3) then the emission and the reception of m5 (at y4). Note that this order is not of course

the order of execution : e.g. according to the semantics of sequence diagrams, the emissions of

m1 and m2 may occur in any order whereas graphically m1 occurs before m2 (y1 < y2).
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Figure 9.9: Graphical order of fragments implied by the metamodel
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Note that fragments inside the loop operator region are not considered as fragments of the

interaction explicitly. In fact, similarly to an interaction, any operator region, i.e. element

InteractionOperand in the metamodel in Figure 2.9, contains fragments which are ordered the

same way : e.g. the fragments of the loop operator region have fragments ordered as follows :

the emission and the reception of m3 then the emission and the reception of m4. This allows

recursive structuring of the sequence diagram by the metamodel. In some way, a region of an

operator is considered as if it were an interaction itself.

Local order on lifelines We now show how to deduce the order of fragments (including

CombinedFragments) on each lifeline. The Interaction is composed of a set of InteractionFragments.

The fragments are ordered according to their geometrical position vertically. In order to deduce

the order of fragments on each lifeline, let us consider the association between the Lifeline

element and the InteractionFragment element. In fact, any fragment is related to a lifeline by the

association with the role covered. For a given lifeline, by visiting the ordered fragments which

belong to the interaction and extract only those which are covered by that lifeline, we get a

set of fragments having the same vertical position, the one of the lifeline. If the fragment is a

CombinedFragment, its nested fragments are also visited. In fact, in order to obtain the TIOSTS

automaton of a lifeline, the fragments of the interaction are traversed recursively in a depth first

manner. The formulation of the textual syntax we attribute to sequence diagrams in Chapter 4.3,

takes into account this projection algorithm at the level of the lifeline expression.
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Figure 9.10: Local order on lifelines

Example 54 Consider again the sequence diagram in Figure 9.9. A partial overview of its

structuring with the metamodel elements is given in Figure 9.10. Also, we illustrate in the figure

how to obtain the local order of fragments on the lifeline associated with the port p2 from the set

of fragments of the interaction sd1. The fragments are presented in order (graphic one) from

left to right. The fragments of the loop CombinedFragment, contained the region o1, are also

orderly represented. Here, we can see how the depth-first traversal of the fragments set works.

As stated before, fragments directly related to the interaction are visited in order, for the port

p2 only one fragment is kept which is the OccurrenceSpecification receivem1 before arriving at

the fragment loop1. The latter contains fragments as well, they are visited at their turn keeping

only the fragment receivem3 covering the lifeline of p2. Finally, the remaining fragments of the

enclosing interaction are visited where only the fragment sendm5 concerns p2.

Recursive algorithm The core of the lifelines transformation routine is given in figure 9.11.
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Algorithm 3: TranslateLifelines
Data: lifelines: Set[Lifeline],
fragments: List[InteractionFragment]

1 begin

2 machines: Map[Lifeline,state machine] ;
3 for frag next in fragments do

4 if frag is ActionExecutionSpecification then

5 machines ← translateAction(machines, frag) ;

6 if frag is MessageOccurrenceSpecification then

7 machines ← translateComAction(machines, frag) ;

8 if frag is CombinedFragment then

9 machines1,machines2: Map[Lifeline,state machine] ;
10 operand1, operand2: Operand ;
11 for i ∈ {1, 2} do

12 operandi ← frag.getOperands()[i] /* if i is a valid index */ ;
13 machinesi ← T ranslateLifelines(operandi.getF ragments(), operandi.getCovereds())

14 operator ← frag.getInteractionOperator() ;
15 if operator is loop then

16 machines′ ← T ranslateLoop(machines1, operand1);

17 machines ← T ranslateSeq(machines, machines′) ;

18 if operator is alt then

19 machines′ = T ranslateAlt(machine1, machine2, operand1, operand2) ;

20 machines ← T ranslateSeq(machines, machines′) ;

21 if operator is strict then

22 machines′ = T ranslateStrict(machine1, machine2, operand1, operand2) ;

23 machines ← T ranslateSeq(machines, machines′) ;

24 for lf in lifelines do

25 if lf has no machine<lf> in machines then

26 create state machine machine<lf> of kind OR ;
27 add to machine<lf> the state q as final/initial ;
28 machines.put(lf, machine<lf>) ;

29 return machines

Figure 9.11

The algorithm takes as input a set of UML Lifeline elements and an ordered list of UML

InteractionFragments elements. It returns a mapping [Lifeline,state machine] that associates

an OR state machine with each lifeline of the input set. In the recursive phase of the algorithm,

the routine is called on the fragments and the lifelines of the nested combined fragments at the

first level. This is the case when the fragments are combined ones. Otherwise the fragment in

the input list is either a MessageOccurrenceSpecification or a ActionExecutionSpecification. The

first UML element denotes a sending or reception of a message and the second one denotes an

assignment action or underspecification action. Thus no recursive call is needed but the call of

respectively the routines TranslateComAction and TranslateAction. These routines increase

the state machine of the concerned lifeline (covered by the fragment) by a transition to denote its

associated action.

Recall that an Interaction or an Operand of a combined fragment has an ordered list of fragments

but the fragments in the list belong to different lifelines: the order here is given geometrically

by the vertical position of the fragment in the diagram. A lifeline may be concerned by the

Interaction or an Operand without having any fragment in the list 4. This case is trivial, the

algorithm generates a state machine with one state : see lines 27−29. This phase of the algorithm

comes naturally after the completion of loop parsing the fragments list because if no state machine

was generated for the lifeline (line 26) then the lifeline would have no fragment in that list.

Following the explanations given previously about the local order on lifelines, we now show the

first phase of the algorithm. Assume without loss of generality that all the fragments of the list

belong to one lifeline. Parsing the list in order (line 3 next in fragments) and concatenating the

generated states/state machines in sequence constructs the expected machine for the lifeline in

4For example being in a strict operand, the lifeline behavior has to wait for other lifelines to complete theirs in
that same operand before leaving the operand.
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9.3. Application to a railway use case: A train reversing direction of traction

terms of behavior precedence. We generalize to a group of lifelines simply by considering the

projection of the list of fragments based on the belonging of a fragment in the list to a lifeline 5.

Plug-in

(a) (b)

Figure 9.12: Papyrus plug-in

We have implemented the translation in the Java programming language as an Eclipse plug-in

sdToTIOSTS. The use of the plug-in is illustrated in Figure 9.12. It is executed on the sequence

diagram of RWC system in Papyrus.

The automation of the translation allows us to conduct experiments on larger system models like

the railway use case that we present in the next section.

9.3 Application to a railway use case: A train reversing

direction of traction

In early design phases, requirements are still expressed in natural language. We believe that

sequence diagrams come close to the way one would specify dynamic requirements in a natural

language. The goal of this section is to illustrate by means of an example in the frame of railway

systems, that the constructs of sequence diagrams have the expressive power to capture the

behavior of the system at the requirement level. Starting from requirements described in natural

language, we suggest to specify the system behavior as a sequence diagram following these steps :

• We present the system architecture as a flow-oriented UML composite diagram [73] which

describes the components of the system, their ports and the way they are connected.

• We identify the combining operators.

5The belonging of a fragment to a lifeline is available in the meta model by the association covered.
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• We identify the set of conveyed messages through this architecture and their functional

roles.

• We relate time and data constraints to these combined interactions.

In the rest of the section, we show how to apply our modeling methodology to the design of this

railway use case. The objective of the use case is to operate a train along the tracks, in the desired

direction of traction, while ensuring that all safety parameters and delays are always respected.

This analysis is based on a working document specifying the use case in natural language.

9.3.1 The Automatic Train Control (ATC) system overview

The ATC is a railway system described in this chapter from the perspective of the French based

railway industry. The system consists of the following components, as shown in Figure 9.13 :

• Automatic Train Supervisor (ATS) manages the train movements according to the train

timetable and sends instructions for that purpose.

• Automatic Train Protector (ATP) ensures the basic safety requirement which is to keep

a safe distance between the two trains. The ATP is made in its turn of two components

namely the carbone ATP (cATP) and the wayside ATP (wATP) such that,

– the wayside ATP (located along the tracks) evaluates the possible danger ahead of the

train.

– the carborne ATP (located on the train) evaluates cabin activation and analyzes the

traction authorizations.

• Automatic Train Operator (ATO) provides controls to replace the driver such as stop and

start commands.

• Rolling Stock RS (the train itself)
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Figure 9.13: Components of the Automatic Train Control (ATC): the ATS and the wayside ATP
are on a wired network. The carbon ATP and ATO on the train are part of the network on the
train. The components on the train communicate with the ATS and the wayside ATP via a radio
link — Protection envelope to ensure safety of the train

Actually, some components are redundant in the ATC system. We simplified redundancy not

relevant to our study. We are interested in a specific use case of the system namely reversing

direction of traction.
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Use case

A train can move towards one direction at a time: direction 1 or direction 2. When moving

towards direction 1, the front cabin is considered as active, otherwise the rear cabin is active. First,

the ATS demands to shift the train direction of traction. Then, safety messages are exchanged

between the components ATP and ATO. The timing constraints relate to the temporal validity of

the messages. Finally, the ATP provides the RS with the authorization to traction in the chosen

direction.

In order to ensure the safety of the train, it is essential to ensure that the train does not run into

obstacles, or no other trains runs into the rear of this train. This is done by maintaining, at all

times, a protection envelope (as shown in Figure 9.13) for the train, which is maintained obstacle

free. The ATO and the carbone ATP ensure that this safety envelope is always maintained.

9.3.2 ATC system architecture as a composite diagram

Recall that we consider a system as an assembly of components with entry points, represented

by ports, and connectors as glue between them. Before defining the sequence diagram for

the ATC system, we introduce the architecture of the system as a UML composite structure

diagram. Figure 9.14 represents such a composite structure diagram that we qualify as the system

architecture.
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Figure 9.14: Railway system signature as composite diagram

Components Five components which exchange data through their ports, are introduced

according to the system description given previously: the ats, the ato, the watp, the catp and

the rs (drawn as boxes). They correspond to the UML parts in the diagram: part ats of type

ATS, part ato of type ATO, etc. Some/all components may have variables used for computations,
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Table 9.1

Port Description Type Example and signification
TR Traction request Boolean × Boolean (true, false)

request traction in direction 1
NTI No traction inhibition Boolean true

traction release in direction 1
NDTTS No danger to traction switch Boolean × Boolean (true, false)

safe for traction in direction 1
CSR Authorized to traction and active cabin Boolean × Boolean (true, false)

authorize traction in direction 1
T Traction Boolean × Boolean (true, false)

current traction is in direction 1
AT Active train Boolean true

train is active

called calculation variables. The variable prevTR is a calculation variable of the component ato

and stores the last direction applied to the rolling stock.

Ports Each component owns ports to communicate with other components. The component ats

communicates the traction request through its port ats.TR. The components catp, watp receive

the request through their ports TR. Table 9.1 summarizes the characteristics of the component

ports in terms of functional description and typing. Also, are given some examples of concrete

values that ports may be assigned with. Remember that ports are considered in our framework

as particular variables which store exchanged values between components. For instance, the

port TR denotes a traction request in one of the two possible directions. The port TR is of type

Boolean × Boolean. When it is assigned the value (true, false), the traction is requested in the

direction 1.

The connectors represent the communication media between the ports of the components. In the

example, there are nine connector lines between entities: an example of a connector is the one

linking the ports TR of the components catp and ats.

9.3.3 ATC system behavior as a sequence diagram

In this section, we present the sequence diagram sd reverseDirectionOfTraction illustrated in

Figure 9.15 of the ATC system. Notice that we have not shown the message exchanges and

local actions, just the skeleton of the main applied combining operators. And so regions of the

diagram were hidden by special blocks with the key word ref inside the operator frames. This

shorthand is available in UML to ease the specification of complex behaviors. The ref blocks are

labeled by the name of the sequence diagram defining the hidden region and shown elsewhere

in what follows (e.g. the ref block labeled with sd initialization hiding the upper region of

sd reverseDirectionOfTraction in Figure 9.15, is defined in another diagram: see Figure 9.16).

The specification consists of the five diagrams represented in figures 9.15–9.19.

9.3.3.1 Reversing direction of traction

The sequence diagram sd reverseDirectionOfTraction represents all the intended interactions

between all the components of the ATC system each time the train changes direction. For any

port of a component, there is a lifeline is the diagram. A total of fifteen lifelines take part in the

interactions. We give the textual expression of sd reverseDirectionOfTraction as a couple of

sets :

(∪1≤i≤16{mi}, {lfats.T R, lfato.T R, lfato.NT I , lfcatp.T R, lfcatp.NT I , lfcatp.CSR, lfcatp.NDT T S ,

132



9.3. Application to a railway use case: A train reversing direction of traction

lfwatp.T R, lfwatp.NDT T S , lfwatp.T A, lfwatp.T DIR, lfrs.NT I , lfrs.CSR, lfrs.T A, lfrs.T DIR}).

The first set is the set of messages. As mentioned before, the set of messages is not represented

yet but is explored later in the section. The second set is the set of lifelines. An element of this

set for example is the lifeline lfats.T R associated with the port ats.TR. This lifeline captures at

this port level, all the requests emitted by the component ats to change the direction of traction.
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Figure 9.15: Use case: Reversing direction of traction as sequence diagram

Combining operators

The sd reverseDirectionOfTraction contains at the first level of operators hierarchy (in terms

of frame nesting) respectively from top to bottom: a ref block labeled sd initialization, a loop

operator and a ref block labeled sd stopTrain. The sequence diagram is built that way because the

train is initially stopped then after running while repeatedly changing direction of traction (the loop

iteration number is unknown beforehand) the train is stopped again. Now consider the hierarchy

inside the loop region, we have respectively a ref block labeled sd changeDirectionRequest and

a strict operator sequencing an alt region with a ref block labeled sd stopTrain then a ref block

labeled sd moveDirection. This specifies the cyclic behavior of the system including starting the

train. Firstly, a request to traction in a given direction is emitted (sd changeDirectionRequest).

Then, there are two possibilities captured by the alt operator: The train is expected to halt

(sd stopTrain in the first region of the alt is executed) or not (the second region of the alt is

empty 6). In fact, if the requested direction does not change or when the train is started, stopping

the train is meaningless in these cases. However, safety requirements are still checked to keep the

train moving in a given direction (sd moveDirection).

Initialization

The initialization (specified in Figure 9.16) consists of two assignment actions. The first action

initializes the variable ato.prevTR with the value (false, false). This variable stores the train

last direction of traction. When the execution starts, no traction has been applied yet and thus

this specific value is distinct from both direction values (that is (true, false) for direction 1 and

(false, true) for direction 2). The second action assigns the port (considered as a variable too)

rs.AT with the value false. In general, the values communicated through this port are considered

6When the second region of an alt operator is empty, it is renamed to the operator opt and drawn without the
second region in the frame of the operator.
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as heartbeats making the system aware that the rolling stock (train) is active. Initially the train

is not active and so the value available on this port AT (Active Train) of the component rs is set

to false.
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Figure 9.16: Use case: Initialization

9.3.3.2 Reversing direction of traction request

The sequence diagram in Figure 9.17 describes how a new direction of traction request propagates

in the ATC system. Four components take part in the described interactions, exactly via

their port TR (Traction Request) namely ats, ato, catp, watp by exchanging messages (arrows in

Figure 9.17).

Messages

The messages represent the data conveyed between two ports. In the example, the message m1

(respectively m2) transmits the request for a direction of traction by the component ats to the

component catp (respectively watp) through their dedicated ports TR.

��������	
��	�
����	��	�


�������

��

��	���


��

�����
���

��

���������

��

������������
��

��

��

������������������ �!����"����������� �!����������#

Figure 9.17: Use case: Reversing direction of traction request

Let us see what behavior is specified here. Firstly, at the component ats level, the action

new is performed on the port TR. Its effect is to assign a random value to that port, here

a new direction of traction 7. It can be the same as the former direction assigned to the

port in a previous iteration of the enclosing loop operator. However, the data constraint

ats.TR = (true, false) ∨ ats.TR = (false, true) states that the new value is a request for

a traction either in direction 1 or direction 2: the traction may be requested by the ATS

component in one direction only. This is one of the safety requirements of the ATC system.

7This represents an underspecification since the way the new direction of traction is computed by the ATS
according to the train timetable is abstracted away.
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9.3. Application to a railway use case: A train reversing direction of traction

Finally after communicating the new value to components catp and watp, the former notifies the

component ato via message m3 of that value.

9.3.3.3 Stopping the train

The sd stopTrain is shown in Figure 9.18. The diagram provides the process to stop the train:

the train must be stopped in order for it to change direction of traction. The component ato

(Automatic Train Operator) is responsible for this decision which depends on the previous applied

direction (stored in the variable ato.prevTR): if the newly received request of traction (on the

port ato.TR) is in the same direction, the train does not stop. This is what the data constraint

ato.prevTR <> ato.TR ∧ ato.prevTR <> (false, false) expresses. Note that the second part

of the conjunction is needed for the constraint to hold at the first iteration, when the train is

initially stopped (the variable ato.prevTR is set to (false, false)).

In order to make the train grind to a halt, the component ato informs the component catp (both

located on the train) of its decision to inhibit the traction. In fact, the port NTI (No Traction

Inhibition) of the component ato is assigned with false (see the assignment atom on the lifeline

lfato.NT I) and thus this value is sent to the catp (through the message m4). In its turn, the catp

forwards the traction inhibition decision to the train itself rs (through the message m5). The

train is then stopped (see the atom rs.T = (false, false), no traction T is applied). However the

train is still active (see the atom rs.AT = true) because it is just a temporary halt before running

again. Both informations (conveyed respectively by messages m6 and m7) are transmitted, in

any order, to the component watp that is located on the tracks. In this case, the watp tells the

catp that there is a danger to traction in both directions (watp.NDTTS is set to (false, false)

and sent through m8, remember that NDTTS stands for No Danger To Traction Switch). Next,

the cabin oriented to the previous direction is switched off, so at this point of the stopping

process both cabins are off (catp.CSR is set to (false, false)) and finally the catp informs the rs

(through m9) of the cabin statuses. Note that the strict operator forces the sequencing described

before 8.
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Figure 9.18: Use case: stopping the train

8The strict operator frame encloses more than two regions, it is a shorthand of nesting successive strict
operators and forces the enclosed regions to happen one before the other from top to bottom
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Chapter 9. Implementation and experiments

9.3.3.4 Moving towards the chosen direction of traction

We illustrate in Figure 9.19 the sd moveDirection. It specifies how to get the train moving in a

given direction of traction.
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Figure 9.19: Use case: moving towards the chosen direction of traction

Consider the first two regions of the strict operator. The component watp (on the tracks) states

that it is safe to run in the desired direction by updating the value on the port NDTTS : The

port is assigned with the already received value on the port watp.TR of that same component,

so its value now is either (true, false) or (false, true). Then, the watp acquaints the catp (on

the train) of this safe situation (message m10). The latter changes the value on its port CSR

accordingly, which denotes the activation of either the front or the rear cabin. Next the watp

notifies the train rs (message m11) and confirms the direction of traction to the ato (message

m12). Note that the activation of the adequate cabin occurs necessarily after guarantees are given

to realize the traction in the wanted direction safely: here, the NDTTS value is updated before

changing the CSR value, thanks to the strict operator. This is another safety requirement of the

ATC system.

Now consider the last two regions of the strict operator. The ato decides to release the traction

inhibition (the port ato.NTI is assigned to true) and informs the catp (message m13). The latter

authorizes the rs to apply the traction (message m14). After, the rs starts the traction T towards

the required direction (rs.T = rs.CSR) and then sends the applied traction to the watp (message

m15). Meanwhile, the watp also receives the information that the train is still active (message

m16) and the ato stores the current applied direction of traction (ato.prevTR = ato.TR). Again

another safety requirement of the ATC system is implied here : two preconditions must hold in

order to get the traction applied in a given direction that are the cabin located on the good side

of the train is activated and the traction inhibition is released.

9.3.3.5 Time requirements

The time requirements of the ATC system mainly concern the temporal validity of the messages

propagated in the system, to ensure safety. On the other hand, the constraints on the movement

and the active state of the train ensure availability.
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9.3. Application to a railway use case: A train reversing direction of traction

1. The Train is said to be active if it has been moving in the last 4s. The Train should always

be active. (This ensures availability.)

2. Validity time of messages:

(a) The clearance to proceed, CSR, issued by catp (message m11) is valid only for 4

seconds. That is, the train rs must start moving with that duration (message m15).
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(b) The request NTI to move (message m13) issued by the ATO is valid for 8 seconds till

the train rs actually runs (message m15).
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The train moves in the direction permitted by the carborne ATP if both the CSR message

(from cATP) and the NTI message (from ATO) are valid.

3. While changing direction of movement, the instruction NTI (traction inhibition) to brake

should be issued by catp the carborne ATP (message m5), within 8 seconds of reception of

TR the request to change traction direction (message m1).
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4. The train rs must stop (message m6) within 4 seconds of the catp issuing the instruction

NTI to brake (message m5), traction inhibition.
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5. Once the ATS has issued instruction TR to change the direction of traction (message m1),

(a) the train rs should stop moving in the earlier direction of traction T within 10 seconds

(message m6).
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(b) the wayside ATP watp should declare the earlier direction unsafe (NDTTS through

message m8) within 20 seconds.
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(c) the wayside ATP watp should declare the new direction safe for traction (NDTTS

through message m10) within 20 seconds.
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6. After the wayside ATP watp declares a direction of traction as safe/unsafe (NDTTS), the

carborne ATP catp should grant/revoke permission CSR to move in that direction within

4 seconds.
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7. ATO issues instruction NTI to move (release brakes, message m13) if the current direction

permitted by the carborne ATP (message m11) is valid (and is same as the direction

requested by the ATS this is guaranteed in the first modeling part of the ATC system

behavior).
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9.4. Experiments

9.4 Experiments

In this section, we firstly discuss our experience in modeling component systems behavior as UML

MARTE sequence diagrams. Then we comment some collected experimental results obtained by

symbolically executing the sequence diagram as being a set of communicating TIOSTS obtained

by automatic generation. Those results relate to the coverage of the messages defined by the the

sequence diagram. We ground our analysis on the RWC system and the ATC system specified by

the sequence diagrams respectively depicted in Figures 4.1–9.15.

9.4.1 Modeling effort

In our context, the modeling effort relates to the identification of the different modeling features

used in the sequence diagram from the requirements. We have illustrated the different identification

tasks in Figure 9.20a which involve human intervention to analyze the requirement documents.

The requirements for the ATC system are given in natural language and using truth tables. The

truth tables reflect relations between compatible control requests in the system at different phases

of the use case: e.g. "T1 is set to false; T2 remains at false" where for any i in {1, 2}, Ti is true if

the traction is applied in direction i. Message exchanges and timing constraints are expressed in

natural language: E.g. "ATP receives a change direction request from ATS and set NTI to false

after maximum 8 seconds". Analyzing these kind of excerpts of the requirement document allows

us to deduce units of executions on each lifeline. The elaboration of the behavior structuring

with the combining operators required however the decomposition of the system overall behavior

as sub behaviors: E.g. change direction request, stop the train, activate the cabine, start the

traction, etc. At this step the role of each component may not be known yet. Some characteristics

of the ATC resulting sequence diagram are given in Figure 9.20b. We give those of the sequence

diagram of the RWC system which is our running example through the thesis.

The lifeline number is the number of ports in the component architecture (since each lifeline

represents a port). Therefore it already gives an idea about the system size and complexity in

terms of concurrent executions at the simulation phase (since each port is associated with its

own time scale). What is important to see is that the number of combining operators, especially

the non deterministic choice operator (alt) and the iteration operator (loop), does not increase

significantly (4 and 5 operators respectively for the RWC and ATC system) when the system

size increases. This is a comforting finding for the modeler and is coherent with the fact that we

are at a higher level of abstraction. Of course the number of units of behavior and constraints

relating to them is much more important (e.g. going from 4 messages and 3 timing constraints in

the RWC system to 16 messages and 10 timing constraints in the ATC system). This phase of

the design takes more time but is more straightforward.

9.4.2 Symbolic execution

We first generate TIOSTS from the sequence diagrams sd RainSensingWiperControl and

sd reverseDirectionOfTraction respectively associated with the RWC and the ATC systems

using our plug-in sdToTIOSTS. Each sequence diagram is then associated with a set of TIOSTS.

The goal is to simulate symbolically such specifications. Table 9.2 shows some statistics about

these specifications sizes: number of automata (corresponds to the number of lifelines + number

of messages), total number of states, total number of transitions. Clearly the growing number of

involved ports (represented by the lifelines) makes the specification tend to grow.

Let us start by executing symbolically our running example, the RWC system. Results are shown

in Table 9.3. All results are obtained using the Diversity tool.
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(a) Modeling tasks

RWC ATC
(academic example) (industrial example)

lifelines nbr. 5 15
combining operators nbr. 4 5
messages nbr. 4 16
local actions/data constraints nbr. 5 16
timing constraints nbr. 3 10

(b) Statistics about modeling features

Figure 9.20

automata nbr. total states total transitions

RWC 9 64 166

ATC 31 252 656

Table 9.2: Entry automata characteristics

max. max. symbolic time transition covered
height width states coverage messages

RWC 7 3577 5000 2m32s 33
163

m1.in

8 120736 150 000 12m50s 48
163

m1.in

Table 9.3: Symbolic execution of RWC

The results in Table 9.3 show the coverage achieved in terms of transition coverage and message

coverage computed in a breadth first search manner (BFS). Message coverage is one of criteria

defined in the literature for scenarios [6]. It states that any message is covered at least once. We

stopped the simulation twice when the number of symbolic states in the tree reached respectively

5000 and 150 000 states. This is because we observed that despite the growing size of the symbolic

tree (number of states and also the width), we had only covered the sending of the message m1

(corresponding to the channel m.in in the TIOSTS). This is explained by the fact that sequence

diagrams characterize behaviors which are highly concurrent and hence result in interleaving too

many behaviors in between synchronized executions.

However, some of the interleaving is not relevant because it does not affect the behaviors expected

locally at the lifeline level (i.e. port level). A typical example is the interleaving of two simple

(not timed) assignment actions happening on two different lifelines before a synchronization. For

a given lifeline, the other assignment action happening before or after its assignment occurs is

irrelevant. In full generality, all transitions with unobservable actions (such that a transition
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9.4. Experiments

resulting from the translation of an assignment atom, refer to Chapter 6) and not associated with

a time variable or (and) a timing constraint are concerned by this finding. For that purpose, we

suggest the following optimization in the symbolic tree computation.

Partially ordered τ−transitions reduction We synchronize unobservable actions performed

by concurrent TIOSTS. Intuitively, all τ−transitions, i.e. transitions with an unobservable action

τ or with an underspecification action new(x), which can be executed from a "global state" (result

from a composition) and belong each one to a different basic TIOSTS are executed together.

This results in a single symbolic state in the execution tree. And so two τ−transitions which

belong to the same TIOSTS (alternatives or non deterministic) are synchronized each one on its

side as described before. Such technique appears in the literature, called Partial order reduction

(POR) [86]. We use it simply for transitions whose actions are not input nor output actions

(i.e. underspecification/unobservable actions) and such that they are not associated with timing

features. This guarantees that there is no information loss at the semantical level. We show that

we obtain a significant reduction of the size of the symbolic tree.
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Figure 9.21: τ−transitions reduction

For that purpose, we compare the symbolic execution tree size in Table 9.4 computed in BFS

manner before and after the reduction for a simple sequence diagram depicted in Figure 9.21a.

The sequence diagram specifies an iterative behavior consisting in two ports p1 and p2 exchanging

a message m1: in side the loop region, a new value (new(p1)) is conveyed from p1 to p2. We stop

the simulation when the unique message in the diagram sending and reception are covered. To

achieve the coverage, the simulation without considering the optimization computes a tree of size

5–4–17 (corresponding respectively to height–width–states of the tree). When the optimization is

activated, the size of the tree is 4–2–11. That is, the size of the tree decreases.

max. max. sym. sym. time covered
height width states transitions (s) messages

sd τ reduc.
(Fig.9.21a) 4 2 11 10 ≈ 0 m1.in,m1.out

no reduc.
5 4 17 16 ≈ 0 m1.in,m1.out

Table 9.4: Symbolic execution of sd in Figure 9.21a

In order to comfort these results, we suggest to parametrize the maximum number of the loop

iterations. Recall that, according to the sequence diagram semantics, the loop (without a

guard) may iterate infinitely many times before leaving the loop region. In fact, the behavior

corresponding to any n ∈ N iteration of the loop is a subset of all the behaviors specified by

such a loop (without guard), in particular it is a subset of the behavior corresponding to n+ 1

iterations. In Table 9.5, we compare the effect of the optimization when the loop may be left

after respectively 1 and 2 iterations (this is our new stop criteria).
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sd max. loop itr max. max. sym. sym. Time
height width states transitions (s)

sd 1 τ reduc.
(Fig.9.21a) 4 2 11 10 ≈ 0

no reduc.
5 4 17 16 ≈ 0

2 τ reduc.
10 10 54 64 ≈ 0

no reduc.
10 36 135 171 ≈ 0

Table 9.5: Symbolic execution: Parametrized loop iteration number

When the maximum iteration number is set to 1, we have the same results as in Table 9.4

where the message was covered once. In the case where the maximum iteration number is 2, the

size of the tree decreased from 10–36–135 to 10–10–54. All these first results indicate that our

optimization may allow our simulation to scale better.

Large scale simulation Let us carry on now with the rest of the experiments on the RWC

and ATC systems. The results of the symbolic execution of both sequence diagram specifications

are given in Table 9.6. Symbolic trees were generated by activating the optimization discussed

above.

sd max. max. sym. time transition covered
height width states coverage messages

RSW τ reduc. (5000 states)
7 4602 5000 10m23s 68

166
m1.in, m1.out

τ reduc. (11 072 states)
15 8 973 11 072 18m50s 137

166
m1.in, m1.out, . . . , m4.in, m4.out

ATC τ reduc. (15 000 states)
17 12 171 15 000 21m32s 547

656
m1.in, m1.out, . . . , m16.in, m16.out

Table 9.6

The goal is to cover all the messages. This was achieved for the RWC system for a tree of size

15–8 973–11 072 in 18 minutes and 50 seconds. The size of the tree covering all the messages

in case of the ATC system is 17–12 171–15 000 computed in 21 minutes and 32 seconds. Let

us remark the relatively small jump in the size of the tree between the RWC and ATC systems

although the ATC system has more lifelines: ATC has 15 lifelines while RWC has only 5 of them.

This difference can be explained by the fact that the sequence diagram of the RWC specifies a

highly concurrent behavior with its two nested non-deterministic choice operators (alt). On the

other hand, the sequence diagram of the ATC system introduces much more synchronization

points (with the use of the strict operator) which reduces significantly the specified concurrent

behaviors. Applied to these two non trivial sequence diagrams in terms of lifelines number and

complex structuring operators, the results show a good scalability of our approach.

Conclusion

One of the main challenges of the achieved implementations was mechanizing the link between

the model based environment Papyrus where sequence diagrams are designed and the formal

tool Diversity where they are symbolically simulated. We have implemented the chain until the

symbolic execution and we are currently implementing the projection mechanism. The scalability

of our approach is no less important challenge. We obtained promising simulation results for

the railways case study which required further computing optimizations in the generation of the

symbolic tree.
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10.1 Thesis summary

We have proposed to use a subset of sequence diagrams with timing annotations to specify

behaviors of component-based systems. Models written using sequence diagrams permit to

capture the behaviors of systems by focusing on message exchanges sequencing and constraints

over them. We have shown how to associate semantics with such models. Traces correspond to

sequences of emissions and receptions (over ports occurring in the sequence diagram) separated

by durations. In order to define the set of traces associated with a sequence diagram, we

have begun by associating them with symbolic automata called Timed Input Output Symbolic

Transition Systems (TIOSTS) using translation mechanisms. TIOSTS are extensions of Input

Output Symbolic Transition Systems (IOSTS), that we defined by adding timing constraints on

transitions. Those timing constraints are inherited from those that can be written using MARTE.

TIOSTS semantics is characterized as a set of traces. Semantics of sequence diagrams models are

simply semantics of TIOSTS associated with them. We have then shown how to compute such

semantics by symbolically executing those TIOSTS associated with sequence diagrams. Symbolic

execution permits to characterize, in intention, classes of equivalent traces. Traces are equivalent

when they follow the same path of the symbolic execution. A path in a symbolic execution

characterizes a path in the TIOSTS together with constraints on data and time, to follow that

path in particular. We have defined symbolic execution of TIOSTS from the previously defined

symbolic execution of IOSTS and we have extended the symbolic execution engine Diversity to

implement TIOSTS symbolic execution. The chain from sequence diagrams to symbolic execution

has been implemented by chaining the Papyrus editor for UML based models with the Diversity

tool. This chaining has been successfully applied on a large scale railway use case: we have

covered all the messages exchanged in the sequence diagram up to a given depth in the symbolic

execution tree.

We have also studied how to extract symbolic behaviors of subsystems from the symbolic behaviors

of systems. This is done using projection techniques applied to the symbolic executions of sequence

diagrams. Such projections characterize behaviors of subsystems as they are constrained by

the whole system. We have then proposed to use the conformance relation tioco to define the

notion of correctness of a system with respect to a sequence diagram. We have been interested in

breaking up the testing process of systems into testing separately the components (or subsystems)

composing them. For that aim, we have established a new compositionality result for modular

testing based on tioco which relates the correctness of components to the correctness of the

system altogether. What distinguish our result (from [17]) is that the components are tested

with respect to specifications obtained by projection. That is, they are tested not for all the

behavior they exhibit, but for part of these behavior that are required to realize the system. Our
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result holds when the specification of the system satisfies the local output consistency property.

Intuitively, the property means that the local behavior of a component does not depend on some

other component decision, which makes its behavior consistent with all behaviors of the system.

The next step has been to relate such results to testing with sequence diagrams. We have shown

how to test whether the symbolic tree of a sequence diagram, as being a specification of the whole

system behavior, is compliant with the property of local consistency. We have characterized

a system under test, realizing some component (or some subsystem), based on observability

issues related to underlying communication architecture. The result of compositional testing

from sequence diagram flows naturally in this case from those previously established in more

general context. Components (or subsystems) are separately tested with respect to their unitary

behaviors derived from sequence diagrams. Our result states that any fault of the system, is

necessarily a fault of some subsystem and hence can be detected while testing the subsystems in

isolation.

10.2 Future work

Optimization of symbolic execution An immediate perspective to our work is to explore

more coverage criteria in the generation of the symbolic execution and tune them to our context.

What is special about our context is that we reason about symbolic tree projections. Since some

behaviors project the same way, we may use partial order reduction method [86]. However, we

need to pay attention to handle time properly (in the experiments, we have used such method

only on untimed parts of the behaviors which has already given good reduction of symbolic tree

size). Besides, another possibility is to use a stop criteria called restriction by inclusion [36]: the

symbolic execution stops when the reached state is included, in terms of variables interpretation,

in another already encountered state. It is not possible to use this criteria directly as it is

formulated with time variables because they are growing structures throughout the execution.

We can use it, however, on untimed parts of the behaviors because we have separated the data

and time constraints in our context. We plan to investigate this use and how we can apply it in

full generality, that is with time variables.

Online testing A natural future work is the adaptation to our context of the runtime testing

algorithm in [31] based on tioco conformance relation. We suggest this algorithm to check the

conformance of a component implementation against its specification obtained by projection.

Besides the specification, the algorithm takes as input, behaviors to be tested in order to pilot

the testing generation. Such behaviors are called test purposes. Both the specification and

the test purpose are characterized as symbolic trees: the specification is the unitary symbolic

tree obtained by projection; and the test purpose is a finite sub tree of that unitary tree. The

algorithm operates online by acting in a way that maintains the test executions stay within

the behaviors specified by the test purpose. The algorithm interacts with a system under test

realizing some components, observes its response at any time and whenever it is possible a verdict

is emitted (e.g. illegal observed outputs or delays lead to a FAIL verdict). This algorithm needs

to be adapted in order to take into account our version of TIOSTS and its associated symbolic

execution structure.

Distributed systems Another perspective, is to combine our compositional results with testing

in distributed architectures. In such architectures, the decomposition of the system corresponds

to the physical deployment of components. In distributed architectures, a tester is placed at

each port. Most of the time, testers cannot communicate with each other. Recent works have

appeared in the literature [46, 47] defining a new conformance relation dioco which compares
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10.2. Future work

local traces of the system under test with projections of the specification, only if the execution

reaches quiescent states. Those states are stable in the sense that the implementation cannot

perform any output without receiving additional input from some local tester. Authors propose

an algorithm to construct local test cases from global test cases satisfying an identified property

eliminating some form of nondeterminism induced by distribution. A first step, in this direction, is

to characterize a new conformance relation dtioco which is the timed extension of dioco and then

extend Theorem 1 to dtioco (note that the work in [46, 47] does not consider compositionality

issues).

Refinement Another possible extension to our work, is the refinement of sequence diagram

specifications and tracing it throughout the design layers. Refinement may be architectural in

terms of further decompositions into subsystems. It may be behavioral: e.g. refining messages

into groups of messages while paying particular attention to timing constraints guarding their

executions; or eliminating concurrent behaviors and some forms of nondeterminism. Refinement

may consist also in making links between the sequence diagram specification of the system and

specifications (of parts) of components behaviors expressed with other UML notations such as

activity diagrams or state machine diagrams [73].
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