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Asteroseismology

Theory of stellar structure and evolution needs constraints.

Stellar interiors are not accessible directly.

Pulsating stars sustain global mode oscillations.

Show periodic variations in their luminosity.

Asteroseismology relates oscillation frequencies to internal
properties of the star.

(Carrier et al., 2010)



Successes of asteroseismology: solar-like pulsators

Seismology greatly improved knowledge of Sun’s interior.

Space missions CoRoT & Kepler for precision measurements
of stellar brightness explore other solar-like pulsators.

Oscillation spectrum of these stars is simple.

Systematic mode identification, possibility of seismic inversion.

(Bedding and Kjeldsen, 2003).

(Schou et al. 1998)



Trouble with non-evolved hot stars

In the M > 1.5M� region of Hertzsprung-Russel diagram, no
reliable mode identification.
A large fraction of stars inaccessible to asteroseismic studies.
Identified reason: rotational effects.
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(Garciá Hernández et al. 2009)

(Christensen-Dalsgaard).



Rapid rotation of non-evolved hot stars

Non-evolved hot stars rotate rapidly on average.

Centrifugal force causes spherical symmetry breaking.

(Royer 2009)
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2.8 revolutions/day

  Model of a fast-spinning star

Equator bulges and 
darkens as star spins faster
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(Monnier et al 2007)

Fundamental obstacle to mode identification.



Mode identification in the spherically symmetric case

Very useful a priori information for mode identification:
asymptotic structure of spectrum.
For high-frequency pressure modes, ‘Tassoul’s asymptotic
formula’ (Vandakurov 1967; Tassoul 1980):
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Formula not valid for rapidly rotating stars.



An asymptotic formula for rapidly rotating stars ?

Accurate two-dimensional oscillation codes have been
developed recently (Reese et al. 2006).

Hints of regular asymptotic behaviour at high rotation rates.

Empirical asymptotic formula for pressure mode frequencies
(Lignières et al. 2006; Reese et al. 2008, 2009):

ωn,`,m ' ∆nn + ∆``+ ∆m|m|+ α.

Our goal: a theory to obtain analytical form of asymptotic
formula for rapidly rotating stars.



Ray theory and Hamiltonian mechanics

In their short-wavelength asymptotic limit, waves can be
described by rays.

Classical trajectories of Hamiltonian equations of motion:

d~x

dt
=

dH

d~k
,
d~k

dt
= −dH

d~x
.

For two degrees of freedom, phase space (~x , ~k) is of dimension
four.

Poincaré Surface of
Section



Acoustic rays in non-rotating stars

For pressure waves, acoustic rays in the high-frequency limit.

Non-rotating star: spherical symmetry ⇒ ray dynamics is
integrable.



Acoustic rays in rapidly rotating stars

Breaking of spherical symmetry.

Generic transition to chaos for increasing rotation rates.

Regular and chaotic zones in phase space ⇒ ray dynamics is
mixed.

Correspondence for waves in the short-wavelength limit ?



Quantum chaos and wave-ray correspondence

Quantum chaos studies properties of wave systems whose ray
limit is (partly or fully) chaotic.

Modes in the short-wavelength limit are localised on phase
space zones of ray dynamics.

Spectrum is a superposition of independent sub-spectra.

Sub-spectrum of modes in stable zones: ω = f (n, `,m).
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Thesis work

Analytical work to construct oscillation modes from main
stable zone of phase space.

Numerical implementation of the method with ray tracing
code.

Comparison with computations from complete numerical
oscillation code.

Consequences for observations of oscillations in rapidly
rotating stars.



‘Parabolic equation method’ (Babich, 1968)

Step 1: Wave equation expressed in ray-centered coordinates,
ω-expansion yields Gaussian wavepacket solution.

Step 2: Evolution of Gaussian width is linked to ray dynamics.

Step 3: Quantization condition.



Step 0: Reduction to Helmholtz wave equation

Adiabatic perturbations of uniformly rotating stellar model.

Hypotheses: no perturbation of gravitational potential, no
Coriolis force, no gravity waves.

Cylindrical symmetry ⇒ Ψ = Ψm exp(imφ).

Pressure wave equation in the meridian plane of the star:

~∇2Φm +
ω2 − ω2

c − c2
s (m2−1/4)

d2

c2
s

Φm = 0,

where Φm =
√
d .Ψm, d distance to the rotation axis, cs speed

of sound, and ωc cut-off frequency.
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.



Step 1: ω-expansion of wave equation

Stable zone centered on stable periodic ray γ:
ray-centered coordinates (s, ξ).

s

WKB Ansatz: Φm(s, ξ) = exp[iωτ(s)]Um(s, ξ).

Assumption : localisation on transverse scale ξ = O(1/
√
ω).

Order ω2: WKB phase τ =
∫ s

0 ds ′/c̃s(s ′).

Order ω:
∂2Vm

∂ν2
− K (s)ν2Vm +

2i

c̃s

∂Vm

∂s
= 0,

with ν =
√
ωξ, Vm = Um/

√
c̃s and K (s) = 1

c̃s(s)3
∂2c̃s
∂ξ2

∣∣∣
ξ=0

.

Quantum harmonic oscillator in ν.



Step 2: Evolution of Gaussian width from ray dynamics

Gaussian wavepacket solution: V 0
m = A(s) exp

(
i Γ(s)

2 ν2
)

,

where Γ(s) is complex.

1
c̃s

dΓ(s)
ds + Γ(s)2 + K (s) = 0 and 1

A(s)
dA(s)
ds = −c̃s

2 Γ(s).

Change of variable Γ(s) = p(s)/z(s) yields:

1
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d

ds
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⇔ Equations for linear deviations of rays from periodic ray γ:

(
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)
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pi

)
Periodic ray γ is stable ⇒ |Tr(M)| < 2 and Λ± = exp(±iα).

∀s, Im(Γ) < 0 to have localisation of wavepacket on ray γ.



Step 3: Quantization condition

Higher-order solutions of quantum harmonic oscillator are
Hermite-Gauss polynomials:

V `
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Recall that Φm(s, ν) = exp
(
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)√
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`
m(s, ν).

Phase accumulated by Φm after one period of γ must be a
multiple of 2π:
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γ
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2
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Numerical implementation of the method

Formula for frequency spacings:

ωn,l ,m = δn(m)n + δ`(m)`+ β(m) ,

with

δn(m) =
2π∮
γ

ds
c̃s

, δ`(m) =
2πNr + α∮

γ
ds
c̃s

and β(m) =
δn + δ`

2
.

with ΩK =
√

GM/R3
eq

0.0 0.2 0.4 0.6 0.8 1.0
r/Req

−160

−80

0

80

160

kr

ω



Numerical implementation of the method

Formula for frequency spacings:

ωn,l ,m = δn(m)n + δ`(m)`+ β(m) ,

with

δn(m) =
2π∮
γ

ds
c̃s

, δ`(m) =
2πNr + α∮

γ
ds
c̃s

and β(m) =
δn + δ`

2
.

with ΩK =
√

GM/R3
eq



Comparisons with complete numerical computations:
the TOP code

High-frequency modes from accurate two-dimensional
oscillation code using spectral method.

Includes Coriolis force and gravitational potential
perturbations.

Polytropic stellar models (p0 = Kρ
1+1/N
0 ) with N = 3, at

different rotation rates.

Mode following from Ω/ΩK = 0 to 0.896, in the frequency
range n ∈ [42, 51].



Comparisons with complete numerical computations:
frequency spacings at m = 0

Good agreement outside bifurcation range (Pasek et al. 2011).
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Comparisons with complete numerical computations:
frequency spacings at m = ±1

Good agreement over a large range of rotation rates (Pasek et
al. 2011).
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Comparisons with complete numerical computations:
rotational splitting δm

Rotational splitting in co-rotating frame: δm = ωn,`,m − ωn,`,0.

From explicit dependence of δn on m, we derive

δm(` = 0) '
(

m√
n

)2 1

4π

∮
cs
d2

ds.

Ω/ΩK = 0.419,
good agreement
for Ω/ΩK > 0.4.



Comparisons with complete numerical computations:
eigenfunctions
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Astrophysical applications of regular modes

For mode identification: a priori information on the structure
of spectrum.

For seismic diagnostic and inversion: seismic observables
linked to internal properties of the star.

For numerical codes: asymptotic regularities help search for
patterns in spectrum.



Phenomenology of spectral observables

Structure of regular spectrum given by δn, δ`, δm, and mΩ in
the inertial frame.

At small Ω, rapid evolution of δ`: reorganisation of spectrum.

At high Ω, evolution dominated by advection term mΩ for
frequencies in inertial frame.

Frequency clustering for δn ∼ δ`, and δn ∼ Ω in inertial frame.

m = 0 m = 0, |m| ∈ 1, 2



Conclusion

Application of wave chaos to a very large scale system:
λ ∼ 10 times the size of the Earth.

Central result: asymptotic formulas for regular oscillation
frequencies in rapidly rotating stars using ray theory.

These formulas provide physical understanding of frequency
spacings, which is useful for mode identification and inversion.



Perspectives

Search for regular frequency spacings in observed spectra of
rapidly rotating stars:

Hints of regularities recently found (Garćıa Hernández et al.
2009; Mantegazza et al. 2012).
Need to develop tools to search for regularities using
theoretical calculations.

Refinements of theory: bifurcation and near-integrable regime,
discontinuities, etc.

Asymptotic theory of chaotic modes.




