Application of quantum chaos methods to the oscillations of rapidly rotating stars

Michael Pasek
Laboratoire de Physique Théorique - IRSAMC, Institut de Recherche en Astrophysique et Planétologie - OMP

Advisors: Bertrand Georgeot (LPT) \& François Lignières (IRAP) In collaboration with: Daniel R. Reese (Liège)

Asteroseismology

- Theory of stellar structure and evolution needs constraints.
- Stellar interiors are not accessible directly.

■ Pulsating stars sustain global mode oscillations.
■ Show periodic variations in their luminosity.
■ Asteroseismology relates oscillation frequencies to internal properties of the star.

Successes of asteroseismology: solar-like pulsators

- Seismology greatly improved knowledge of Sun's interior.

■ Space missions CoRoT \& Kepler for precision measurements of stellar brightness explore other solar-like pulsators.

- Oscillation spectrum of these stars is simple.
- Systematic mode identification, possibility of seismic inversion.

(Bedding and Kjeldsen, 2003).

(Schou et al. 1998)

Trouble with non-evolved hot stars

■ In the $M>1.5 M_{\odot}$ region of Hertzsprung-Russel diagram, no reliable mode identification.

- A large fraction of stars inaccessible to asteroseismic studies.

■ Identified reason: rotational effects.

(Garciá Hernández et al. 2009)

(Christensēn-Dalsgāard).

Rapid rotation of non-evolved hot stars

■ Non-evolved hot stars rotate rapidly on average.

- Centrifugal force causes spherical symmetry breaking.

(Monnier et al 2007)
(Royer 2009)
■ Fundamental obstacle to mode identification.

Mode identification in the spherically symmetric case

■ Very useful a priori information for mode identification: asymptotic structure of spectrum.

- For high-frequency pressure modes, 'Tassoul's asymptotic formula' (Vandakurov 1967; Tassoul 1980):

$$
\nu_{n, \ell} \simeq \frac{1}{2 \int_{0}^{R} \frac{d r}{c_{s}(r)}}\left(n+\frac{\ell}{2}+\frac{1}{4}+\alpha\right)
$$

■ Formula not valid for rapidly rotating stars.

An asymptotic formula for rapidly rotating stars ?

- Accurate two-dimensional oscillation codes have been developed recently (Reese et al. 2006).
■ Hints of regular asymptotic behaviour at high rotation rates.
- Empirical asymptotic formula for pressure mode frequencies (Lignières et al. 2006; Reese et al. 2008, 2009):

$$
\omega_{n, \ell, m} \simeq \Delta_{n} n+\Delta_{\ell} \ell+\Delta_{m}|m|+\alpha .
$$

- Our goal: a theory to obtain analytical form of asymptotic formula for rapidly rotating stars.

Ray theory and Hamiltonian mechanics

■ In their short-wavelength asymptotic limit, waves can be described by rays.

- Classical trajectories of Hamiltonian equations of motion:

$$
\frac{d \vec{x}}{d t}=\frac{d H}{d \vec{k}}, \frac{d \vec{k}}{d t}=-\frac{d H}{d \vec{x}} .
$$

- For two degrees of freedom, phase space (\vec{x}, \vec{k}) is of dimension four.

Poincaré Surface of Section

Acoustic rays in non-rotating stars

■ For pressure waves, acoustic rays in the high-frequency limit.
■ Non-rotating star: spherical symmetry \Rightarrow ray dynamics is integrable.

Acoustic rays in rapidly rotating stars

- Breaking of spherical symmetry.
- Generic transition to chaos for increasing rotation rates.

■ Regular and chaotic zones in phase space \Rightarrow ray dynamics is mixed.

- Correspondence for waves in the short-wavelength limit ?

Quantum chaos and wave-ray correspondence

- Quantum chaos studies properties of wave systems whose ray limit is (partly or fully) chaotic.
- Modes in the short-wavelength limit are localised on phase space zones of ray dynamics.
■ Spectrum is a superposition of independent sub-spectra.
■ Sub-spectrum of modes in stable zones: $\omega=f(n, \ell, m)$.

Thesis work

- Analytical work to construct oscillation modes from main stable zone of phase space.
■ Numerical implementation of the method with ray tracing code.

■ Comparison with computations from complete numerical oscillation code.

■ Consequences for observations of oscillations in rapidly rotating stars.

'Parabolic equation method' (Babich, 1968)

- Step 1: Wave equation expressed in ray-centered coordinates, ω-expansion yields Gaussian wavepacket solution.
■ Step 2: Evolution of Gaussian width is linked to ray dynamics.
- Step 3: Quantization condition.

Step 0: Reduction to Helmholtz wave equation

■ Adiabatic perturbations of uniformly rotating stellar model.

- Hypotheses: no perturbation of gravitational potential, no Coriolis force, no gravity waves.
- Cylindrical symmetry $\Rightarrow \Psi=\Psi_{m} \exp (i m \phi)$.
- Pressure wave equation in the meridian plane of the star:

$$
\vec{\nabla}^{2} \Phi_{m}+\frac{\omega^{2}-\omega_{c}^{2}-\frac{c_{s}^{2}\left(m^{2}-1 / 4\right)}{d^{2}}}{c_{s}^{2}} \Phi_{m}=0
$$

where $\Phi_{m}=\sqrt{d} . \Psi_{m}, d$ distance to the rotation axis, c_{s} speed of sound, and ω_{c} cut-off frequency.
■ $\tilde{c}_{s}=c_{s} / \sqrt{1-\frac{1}{\omega^{2}}\left[\omega_{c}^{2}+\frac{c_{s}^{2}\left(m^{2}-1 / 4\right)}{d^{2}}\right]}$.

Step 1: ω-expansion of wave equation

- Stable zone centered on stable periodic ray γ : ray-centered coordinates (s, ξ).

- WKB Ansatz: $\Phi_{m}(s, \xi)=\exp [i \omega \tau(s)] U_{m}(s, \xi)$.

■ Assumption: localisation on transverse scale $\xi=O(1 / \sqrt{\omega})$.

- Order ω^{2} : WKB phase $\tau=\int_{0}^{s} d s^{\prime} / \tilde{c}_{s}\left(s^{\prime}\right)$.
- Order ω :

$$
\frac{\partial^{2} V_{m}}{\partial \nu^{2}}-K(s) \nu^{2} V_{m}+\frac{2 i}{\tilde{c}_{s}} \frac{\partial V_{m}}{\partial s}=0
$$

with $\nu=\sqrt{\omega} \xi, V_{m}=U_{m} / \sqrt{\tilde{\tau}_{s}}$ and $K(s)=\left.\frac{1}{\tilde{c}_{s}(s)^{3}} \frac{\partial^{2} \tilde{\tau}_{s}}{\partial \xi^{2}}\right|_{\xi=0}$.

- Quantum harmonic oscillator in ν.

Step 2: Evolution of Gaussian width from ray dynamics

- Gaussian wavepacket solution: $V_{m}^{0}=A(s) \exp \left(i \frac{\Gamma(s)}{2} \nu^{2}\right)$, where $\Gamma(s)$ is complex.
- $\frac{1}{\tilde{\tau}_{s}} \frac{d \Gamma(s)}{d s}+\Gamma(s)^{2}+K(s)=0$ and $\frac{1}{A(s)} \frac{d A(s)}{d s}=\frac{-\tilde{\tau}_{s}}{2} \Gamma(s)$.
- Change of variable $\Gamma(s)=p(s) / z(s)$ yields:

$$
\frac{1}{\tilde{c}_{s}(s)} \frac{d}{d s}\left[\begin{array}{l}
z(s) \\
p(s)
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-K(s) & 0
\end{array}\right]\left[\begin{array}{l}
z(s) \\
p(s)
\end{array}\right] .
$$

\Leftrightarrow Equations for linear deviations of rays from periodic ray γ :

$$
\binom{z_{f}}{p_{f}}=\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)\binom{z_{i}}{p_{i}}
$$

■ Periodic ray γ is stable $\Rightarrow|\operatorname{Tr}(M)|<2$ and $\Lambda^{ \pm}=\exp (\pm i \alpha)$.

- $\forall s, \operatorname{Im}(\Gamma)<0$ to have localisation of wavepacket on ray γ.

Step 3: Quantization condition

■ Higher-order solutions of quantum harmonic oscillator are Hermite-Gauss polynomials:

$$
V_{m}^{\ell}(s, \nu)=\left(\frac{i}{\sqrt{2}}\right)^{\ell}\left(\frac{\bar{z}}{z}\right)^{\ell / 2} H_{\ell}(\sqrt{\operatorname{Im}(\Gamma)} \nu) \frac{\exp \left(i \frac{\Gamma}{2} \nu^{2}\right)}{\sqrt{z}} .
$$

- Recall that $\Phi_{m}(s, \nu)=\exp \left(i \omega \int^{s} \frac{d s^{\prime}}{c_{s}\left(s^{\prime}\right)}\right) \sqrt{\tilde{c}_{s}} V_{m}^{\ell}(s, \nu)$.

■ Phase accumulated by Φ_{m} after one period of γ must be a multiple of 2π :

$$
\omega_{n, \ell, m} \oint_{\gamma} \frac{d s}{\tilde{c}_{s}}-\frac{\alpha+2 \pi N_{r}}{2}-\left(\alpha+2 \pi N_{r}\right) \ell=2 \pi n+\pi
$$

Numerical implementation of the method

- Formula for frequency spacings:

$$
\omega_{n, l, m}=\delta_{n}(m) n+\delta_{\ell}(m) \ell+\beta(m)
$$

with

$$
\delta_{n}(m)=\frac{2 \pi}{\oint_{\gamma} \frac{d s}{\tilde{\tau}_{s}}}, \quad \delta_{\ell}(m)=\frac{2 \pi N_{r}+\alpha}{\oint_{\gamma} \frac{d s}{\tilde{\tau}_{s}}} \text { and } \beta(m)=\frac{\delta_{n}+\delta_{\ell}}{2} .
$$

Numerical implementation of the method

- Formula for frequency spacings:

$$
\omega_{n, l, m}=\delta_{n}(m) n+\delta_{\ell}(m) \ell+\beta(m)
$$

with

$$
\delta_{n}(m)=\frac{2 \pi}{\oint_{\gamma} \frac{d s}{\tilde{\tau}_{s}}}, \quad \delta_{\ell}(m)=\frac{2 \pi N_{r}+\alpha}{\oint_{\gamma} \frac{d s}{\tilde{c}_{s}}} \text { and } \beta(m)=\frac{\delta_{n}+\delta_{\ell}}{2} .
$$

Comparisons with complete numerical computations: the TOP code

- High-frequency modes from accurate two-dimensional oscillation code using spectral method.
- Includes Coriolis force and gravitational potential perturbations.
- Polytropic stellar models $\left(p_{0}=K \rho_{0}^{1+1 / N}\right)$ with $N=3$, at different rotation rates.
■ Mode following from $\Omega / \Omega_{K}=0$ to 0.896 , in the frequency range $n \in[42,51]$.

Comparisons with complete numerical computations: frequency spacings at $m=0$

■ Good agreement outside bifurcation range (Pasek et al. 2011).

$$
m=0
$$

Comparisons with complete numerical computations: frequency spacings at $m= \pm 1$

■ Good agreement over a large range of rotation rates (Pasek et al. 2011).

$$
|m|=1
$$

Comparisons with complete numerical computations:

 rotational splitting δ_{m}■ Rotational splitting in co-rotating frame: $\delta_{m}=\omega_{n, \ell, m}-\omega_{n, \ell, 0}$.
■ From explicit dependence of δ_{n} on m, we derive

$$
\delta_{m}(\ell=0) \simeq\left(\frac{m}{\sqrt{n}}\right)^{2} \frac{1}{4 \pi} \oint \frac{c_{s}}{d^{2}} d s
$$

$$
\begin{aligned}
& \Omega / \Omega_{K}=0.419 \\
& \text { good } \quad \text { agreement } \\
& \text { for } \Omega / \Omega_{K}>0.4
\end{aligned}
$$

Comparisons with complete numerical computations: eigenfunctions

Equatorial cuts of eigenfunctions for different values of quantum numbers and Ω / Ω_{K}

Astrophysical applications of regular modes

■ For mode identification: a priori information on the structure of spectrum.
■ For seismic diagnostic and inversion: seismic observables linked to internal properties of the star.

- For numerical codes: asymptotic regularities help search for patterns in spectrum.

Phenomenology of spectral observables

- Structure of regular spectrum given by $\delta_{n}, \delta_{\ell}, \delta_{m}$, and $m \Omega$ in the inertial frame.
■ At small Ω, rapid evolution of δ_{ℓ} : reorganisation of spectrum.
- At high Ω, evolution dominated by advection term $m \Omega$ for frequencies in inertial frame.
$■$ Frequency clustering for $\delta_{n} \sim \delta_{\ell}$, and $\delta_{n} \sim \Omega$ in inertial frame.

Conclusion

- Application of wave chaos to a very large scale system: $\lambda \sim 10$ times the size of the Earth.
■ Central result: asymptotic formulas for regular oscillation frequencies in rapidly rotating stars using ray theory.
- These formulas provide physical understanding of frequency spacings, which is useful for mode identification and inversion.

Perspectives

- Search for regular frequency spacings in observed spectra of rapidly rotating stars:
- Hints of regularities recently found (García Hernández et al. 2009; Mantegazza et al. 2012).
- Need to develop tools to search for regularities using theoretical calculations.
- Refinements of theory: bifurcation and near-integrable regime, discontinuities, etc.
- Asymptotic theory of chaotic modes.

