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Chapter 1

General Introduction

“These are tasks which will require much time to complete but we submit
that they are necessary if the precise relationships which probably lurk within
economic phenomena are to be detected and measured.”

—– Charles W. Cobb and Paul H. Douglas, A Theory of Production (1928)

“For as long as we are unable to put our arguments into the figures, the
voice of our science, although occasionally it may help to dispel gross errors,
will never be heard by practical men. They are, by instinct, econometricians
all of them, in their distrust of anything not amenable to exact proof.”

—– Joseph A. Schumpeter, The Common Sense of Econometrics (1933)

This thesis consists of four essays on applied production analysis, with a focus on
Technology, Productivity and Fixed costs.1 It outlines the limits of some recent empirical
strategies for modeling producer behavior and proposes several amendments.

1.1 Motivation

In the classical book, Value and Capital, Hicks (1946) presents production theory as
the study of relationships between productive factors and produced commodities as well
as within productive factors. In order to characterize these relationships, production

1The four essays are: Chen (2011, 2012); Chen and Koebel (2013); Chen and Olland (2013).
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14 CHAPTER 1. GENERAL INTRODUCTION

theory relies on the assumption that firms minimize their production costs and maximize
the profit, subject to a specific and changing production technology.

One objective of applied production analysis is to represent producer behavior using
mathematical formulations, and to conceptualize it through the notions of input substi-
tutability, returns to scale, and technical change among others. A further objective of
production analysis is to measure these concepts using production data and statistical
methods.

Historically, applied production analysis is originated by the work of Cobb and
Douglas (1928) entitled “A Theory of Production”. In their approach, the production
technology is represented by a parametric function, which later becomes the famous
Cobb-Douglas production function. After a heedful work of data collection, Cobb and
Douglas fitted their specification using U.S. manufacturing data for the period of 1899-
1922. They “materialized”, for the first time, the input-output relationship as:2

P Õ = 1.01L3/4C1/4.

By today’s standards, both the specification and the statistical method used by
Cobb and Douglas (1928) seem restrictive and flawed. In the following decades, a series
of major contributions to applied production analysis have been made. Frisch (1935)
attempted to measure the possibilities of inputs substitution in the manufacture of
chocolate. The seminal paper by Arrow, Chenery, Minhas and Solow (1961) proposed
the Constant Elasticity of Substitution (CES) production function. Hotelling (1932),
Samuelson (1960) and Shephard (1970) received credit for introducing the dual formu-
lation of production theory. Diewert (1971) and Christensen, Jorgenson and Lau (1973)
are responsible for the use of flexible functional forms.

Accompanied by the democratization of data and computing power during the last
century, applied production analysis and the theory of production have been signifi-
cantly improved. For instance, the production representation (functional forms) started
with the Cobb-Douglas two factors model with two free parameters, augmented to the
Translog cost function with four factors and 21 parameters. The two-points flexible
form presented in this thesis (Chapter 4) incorporates 36 parameters. The functional
forms became fully flexible in the recent years with the consideration of nonparametric
functions.

Despite significant developments in this field, we are still facing numerous theoretical
and empirical challenges, see for example Jorgenson (1986), Griliches and Mairesse
(1995) and Ackerberg et al. (2007). The main purpose of this thesis is to develop
empirical strategies with a special focus on production technology specifications and
estimation methods. Chapters 2 to 5 extend the literature on production analysis by

2Following notations used by Cobb-Douglas (1928), P

Õ denotes the fitted value of production, L and
C are the labor and capital index, respectively.
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dealing with the following issues.

Stochastic specification In order to formulate an econometric model for fitting the
data with theoretical equations, we need to add a (or several) stochastic component(s)
to the deterministic functions. Although some properties of production, cost and profit
functions can be derived from production theory, it remains silent on the way how the
unobserved disturbances should be included into the model. What are the implication
of di�erent stochastic specifications?

Substitution in productive factors The CES production function adds flexibility
to the Cobb-Douglas specification by treating the elasticity of substitution as an addi-
tional free parameter. Despite the simplicity of the CES function, the existing empirical
models yield diverging estimation results on the value of the elasticity of substitution.
This thesis investigates whether new estimation techniques bring new insights on this
elasticity. If the economy was characterized by a CES production function, what could
be the bias of considering a Cobb-Douglas specification?

Stochastic technical changes For many specifications used in empirical studies,
technical change is assumed to be either homogeneous (using the time trend) or Hicks-
neutral. Is it possible to identify the individual-specific bias of technical changes in a
flexible way? And how to estimate the factor-augmenting productivity?

Fixed cost and variable cost Christensen et al. (1973) introduced a “transcen-
dental” specification of technology, known as the Translog function, which is able to
approximate an arbitrary cost function.3 The Translog function is considered as a flex-
ible functional form and is still used in many empirical studies. However, an underlying
assumption behind this class of flexible function forms is that there is no fixed cost in
the long run. In contrast, fixed costs play an important role in numerous theoretical
models. Thus, we ask in this thesis: is the Translog cost function adequate for modeling
the fixed cost? What are the alternatives?

Applications to other fields Production theory derives fundamental principles
which often have profound implications in other fields of economics, in particular for
international trade. On the producer side of trade models, productivity and fixed costs
of entry play crucial roles for characterizing the equilibrium, see Melitz (2003). Many
empirical works studied separately the impacts of productivity and entry costs on firm’s
trade behavior. This thesis studies the relationship between productivity and fixed costs
of entry and their joint e�ects on the equilibrium. Are more productive firms able to

3Christensen et al (1973) proposed the Translog functional form primarily for modeling the produc-
tion function, whereas this specification is now widely used for the dual cost function.
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Applied Production Analysis

Theory
Empirical 

specification
Statistical
methods

● Economics of Scale 

● Inputs Substitution

● Technical changes

● Bias of technical changes

● Productivity

● Productivity growth

● Fixed cost

● Markup

● Cobb-Dougals 

● CES 

● Translog -FFF

● 2-points flexible form

● Nonparametric functions

● Stochastic specification

● Endogeneity

● 2SLS / LIML

● Control function

● Nonlinear model

● System estimation

● Treatment evaluation

Figure 1.1: An overview of topics studied in this thesis

enter the international market with less entry costs? What are the implication on the
equilibrium entry condition?

1.2 An overview of the thesis

Each chapter of this thesis consists of the three building blocks represented in Figure
1.1: the economic theory, the empirical formulation and the statistical methods. Figure
1.1 also provides an overview of di�erent topics studied within each of the three building
blocks. Chapters 2 to 4 revisit these building blocks and contribute to one or several
of them. Chapter 5 synthesizes the findings and applies them to trade models. In the
conclusion chapter, I discuss the limitations of the present work and some potential
extensions for further research.

An e�ort has been made to unify (as much as possible) the theory with the math-
ematical formulation and the empirical investigation. It reflects my willingness to ap-
proach the earlier definition of econometrics by Ragnar Frisch (1933): “[...] econometrics
is by no means the same as economic statistics. Nor is it identical with what we call
general economic theory [...] Nor should econometrics be taken as synonymous with
the application of mathematics to economics. [...] It is the unification of all three that
is powerful. And it is this unification that constitutes econometrics”. The following
paragraphs provides the abstracts of Chapters 2 to 5.

In Chapter 2, I conducted a comparative study of four estimators: the OLS, 2SLS,
LIML (Limited Information Maximum Likelihood) and F-LIML (Fuller-modified LIML)
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estimators. The di�erent estimators are compared for the direct and reverse regression
models in the context of estimating returns to scale and technical progress. The chapter
shows that the 2SLS estimation method may result in contradictory conclusions when
instruments are weak. On the other hand, the LIML and F-LIML estimators provide
more reliable estimates. The estimation results based on U.S. manufacturing industry
data show that most industries exhibit increasing returns to scale, and the role of
technical progress is relatively small when it comes to explaining productivity growth.

Chapter 3 addresses an important issue of empirical production analysis: the es-
timation of productivity. I extend the Olley-Pakes (1996) estimation method to the
CES production function with biased technical change. The new semi-parametric ap-
proach allows consistent estimation of the degree of returns to scale, the elasticity of
substitution, and the bias in technical change. In this work, I deal with two sources of en-
dogeneity through Hicks-neutral and non-neutral productivity.4 The proposed method
has the advantage that it yields estimates of relative factor-augmenting productivity.
The empirical investigation shows strong evidence that U.S. manufacturing industries
are characterized by a production technology with elasticity of substitution below one
and with a significant bias toward labor-augmenting technical progress.

Chapter 4 investigates the distinction between fixed and variable cost, which is
fundamental but quite neglected in production analysis. Empirically, most specifica-
tions of production and cost functions assume that fixed costs are zero. This chapter
derives the structure of the production function which is necessary and su�cient for
generating a fixed cost. We extend the classical production function in order to allow
each input to have a fixed and a variable part. Using U.S.manufacturing industry data,
we characterize and estimate both fixed and variable components of the cost function.
The estimates are used to study how fixed and variable cost interact and a�ect firms’
behavior in terms of price setting and returns to scale.

The aim of Chapter 5 is to extend the basic Melitz (2003) model by endogeniz-
ing the costs of entry into export markets. Our theoretical model of trade behavior
highlights the role of heterogeneity in the fixed costs structure and the links between
productivity and entry costs. We point out that the Melitz model with homogeneous en-
try costs may mis-predict the self-selection mechanism. In response to these theoretical
findings, we develop an empirical strategy based on the treatment evaluation techniques
for measuring costs to entry in the export market at the firm-level. By using French
data, our empirical investigation sheds light on the determinants of entry barriers and
how they can be reduced from the firm perspective.

4In the context of estimating a production function, the endogeneity problem arises because of the
correlation of input demands and productivity.
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Chapter 2

Direct and Reverse Estimates of
Returns to Scale1

2.1 Introduction

Increasing returns to scale are of great importance for numerous macroeconomic models
(see for example, Farmer and Guo, 1994, and Jones, 2005). However, there is a lack of
consensus on whether the assumption of increasing returns to scale is empirically plau-
sible. Di�erent methods of estimating returns to scale have been used in the literature,
and produced diverging results. Therefore, it is important to understand exactly what
each method does and when it might be preferable to use one over others.

This chapter contributes to the existing literature in several ways. First, I conduct a
comparative study between the direct and reverse regression models for various estima-
tors, namely, the Ordinary Least Squares (OLS), the Tow-Stage Least Squares (2SLS),
the Limited-Information Maximum Likelihood (LIML) and the Fuller-modified LIML
(F-LIML) in the context of estimating returns to scale and technical progress. Second,
I point out that the weak instrument problem is an important source of bias, which
causes divergence in the estimated value of returns to scale. Our empirical results are
produced by using estimation methods that are robust to weak instruments.

An important part of the literature on the estimation of returns to scale relates the
output growth index linearly to the input growth index, see for example Diewert and Fox
(2008). The intercept and the slope of the linear equation appear as the measurement of
technical progress and of returns to scale, respectively. Whereas the theory provides a
deterministic relationship between both variables of interest (output and input growth
rates), from an empirical perspective it is necessary to decide which variable, the input
or the output, is stochastic and therefore measured with errors from the true population
regression line. Suppose that the data are represented in a coordinate system, where the

1This chapter has been circulated under the title “Increasing returns to scale in U.S. manufacturing
industries: evidence from direct and reverse regressions”, Chen (2011).
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20CHAPTER 2. DIRECT AND REVERSE ESTIMATES OF RETURNS TO SCALE

x-axis is the input variable and the y-axis is the output variables. The direct regression
model assumes that the output variable is stochastic and fits a line that minimizes
the squared vertical distance between the data and the regression line in the direction
of y-axis. By contrast, the reverse regression model considers the reversed situation,
where the input variable becomes the dependent variable. Both regression models have
theoretical foundation and have been applied in empirical works. Depending on which
regression model is chosen, the estimating results are often very di�erent.

Apart from the lack of consensus on regression models, researchers are also debating
the choice of estimators. Two types of estimator are considered in the literature, namely,
the OLS and Instrumental Variables (IV) estimators, especially the 2SLS estimator. It
is easy to show that the direct and reverse OLS estimators are biased when both the
dependent variable and the regressor are measured with errors. In contrast, I show in
this chapter the direct 2SLS estimator and its reverse counterpart are consistent and
asymptotically equivalent. However, in practice the gap between the direct and re-
verse 2SLS regression is often very large. For instance, Hall (1988) presented the 2SLS
estimation results of returns to scale and price-cost markup coe�cients using annual
two-digit sectoral data for 1953-1984. His estimated returns to scale are unreasonably
large for the reverse regression model and even negative for the direct regression model.
Bartelsman (1995) was one of the first authors to question the 2SLS estimator used
by Hall (1988). Bartelsman provided a series of Monte Carlo experiments to illustrate
that the bias is likely to be large when estimating coe�cients from the reverse 2SLS ap-
proach. An influential article by Basu and Fernald (1997) compared the OLS and 2SLS
estimation strategies for the direct regression model. Their OLS estimation results for
thirty-four U.S. private business industries (1959-1989) show that estimated coe�cients
are often much smaller than one (decreasing returns). Returns to scale are larger in
the 2SLS estimation, but their average value is still close to one, and cannot confirm
the increasing returns to scale hypothesis. By applying the OLS estimation to a larger
database (for 1949-2000) of two-digit U.S. manufacturing industries, Diewert and Fox
(2008) also obtained contradictory results between the direct and reverse approaches.

One of the reasons for the failure of 2SLS in estimating returns to scale is the
weakness of instruments. Studies by Staiger and Stock (1997), Shea (1997) show that
weak instruments could generate large bias in the 2SLS estimation. The implausible
results of Hall (1988) is a typical consequence of using the weak instruments. Now, the
formal diagnostic and cure for weak instruments are available in the literature, see for
example, Hahn and Hausman (2002), Stock et al. (2002) and Stock and Yogo (2002).
In this chapter, I extend the work of Bartelsman (1995) by taking weak instruments
into account. Compared to Hall (1988), Basu and Fernald (1997) and Diewert and
Fox (2008), this chapter goes a step further by testing the quality of instruments and
estimating the returns to scale with robust estimators, such as the LIML and F-LIML
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estimators.
Working with data for twenty one sectors of U.S. manufacturing industries over

the last half-century, I found strong evidence of increasing returns to scale. On the
other hand, technical progress has made little contribution to U.S. economic growth.
Compared with prior empirical results on the estimation of returns to scale, our results
are more robust to weak instruments and support a growing body of theoretical models
emphasizing the importance of increasing returns to scale for explaining productivity
growth.

The remainder of this chapter is organized as follows: I first present the econometric
model and the identification issues in Section 2.2. More attention is given to the discus-
sion of IV estimations and the weak instrument problem in Section 2.3. The empirical
application to the U.S. manufacturing industries data is reported in Section 2.4. Section
2.5 concludes.

2.2 Econometric model

Based on the prior works of Diewert (1976) and Diewert and Fox (2008), this chapter
follows the Diewert-Fox method of measuring technical progress and returns to scale,
where a (multiple inputs and multiple outputs) firm’s technology is represented by a
non-constant returns to scale Translog cost function. The framework proposed by Diew-
ert and Fox (2008) not only relaxes a series of simplifying restrictions, i.e., single-output,
constant returns to scale and perfect competition, but also establishes a very practical
relationship between aggregate input index and aggregate output index. The measure-
ment of technical progress and of returns to scale appear respectively in this equation
as the intercept and the slope, which seem easy to identify. However, I will demonstrate
that the identification issue is not straightforward, after a broadly acceptable stochas-
tic specification is chosen. Under a series of restrictions on the Translog cost function
and the neutral technical change assumption, the deterministic relationship between the
log-Törnqvist input growth index and the log-Törnqvist output growth index is:

yú = – + —xú , (2.1)

where yú and xú are T ◊ 1 vectors of latent values of output growth index and input
growth index, respectively. The parameter – is the constant rate of cost reduction
and — is the degree of returns to scale. When inputs are increased, if output increases
at the same rate, i.e., — = 1, then the technology exhibits constant returns to scale.
If output increases by less than that quantity, i.e., — < 1, the technology exhibits
decreasing returns to scale. If output increases by more than that quantity, i.e., — > 1,
the technology exhibits increasing returns to scale.

The intercept and the slope of equation (2.1) are the two parameters of interest.
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Since these factors can never be measured or observed perfectly in the real world,
the common practice is to introduce additive error terms. Suppose that there are T

observations in the sample, where the observed values are denoted by (x, y). They are
measured with additive errors, u and v. Let

x = xú + u and y = yú + v , (2.2)

where y and x are T ◊ 1 vectors of observations. The model (2.1)-(2.2) is a linear
Error-in-Variable (EIV) model, which can be also rewritten in a more compact form
with only the observable variables, y = – + —x + Á, where Á © v ≠ —u. We make some
statistical assumptions to restrict our stochastic framework.

Assumptions 2.1. Suppose u and v are two zero-mean i.i.d. normally distributed
variables. Formally, let

V[u] © ‡2

u and V[v] © ‡2

v

and V [Á] = E[(v ≠ —u)2] © ‡2

Á . The latent variables (xú, yú) are uncorrelated with error
terms; suppose that the first and second moments exist. Let

E[xú] © µ and V[xú] © ‡2 .

The set of parameters that we want to estimate in this model is ◊ © (–, —, µ, ‡, ‡u, ‡v).

The symmetric treatment of x and y seems to be a simple extension of classical
stochastic specification, where only one variable is assumed to be subject to error. The
introduction of the second error term increases dramatically the di�culty of estima-
tion. A surprising consequence is that the unique intercept and slope of the fitting
line cannot be identified from the bivariate data set (x, y) alone. This is the well-known
identification problem of the EIV model, which was firstly highlighted by Adcock (1878)
who tried to handle it by using the Orthogonal regression (this estimation method is
consistent only if both variables are subject to errors that have the same variance, i.e.,
‡2

u = ‡2

v). Adcock’s intuition is the origin of Total least squares (TLS) estimation, which
was generalized one hundred years later by Golub and Van Loan (1980). Another idea
on the estimation of measurement error models was introduced by Wald (1940) with
the objective of proposing a method in which strong assumptions regarding the er-
ror structure are not required. Unfortunately, this class of estimators is not feasible.
Since the publication of Wald’s method, the problem of estimating EIV models, has re-
ceived increasing attention from researchers. There have been several surveys, including
Madansky (1959), Stefanski (2000) and Gillard (2006).

Under Assumptions 2.1, we can write the following five first and second order mo-
ment equations by using the Law of Large Numbers, see Kendall and Stuart (1973):

plim x̄ ≠ µ = 0; (2.3)
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plim ȳ ≠ – ≠ —µ = 0; (2.4)

plim sxx ≠ ‡2 ≠ ‡2

u = 0; (2.5)

plim syy ≠ —2‡2 ≠ ‡2

v = 0; (2.6)

plim sxy ≠ —‡2 = 0. (2.7)

The sample moments of x and y are computed as x̄ = T ≠1

qT
t=1

xt; ȳ = T ≠1

qT
t=1

yt ,

sxx = T ≠1

qT
t=1

(xt≠x̄)2, syy = T ≠1

qT
t=1

(yt≠ ȳ)2 and sxy = T ≠1

qT
t=1

(xt≠x̄)(yt≠ ȳ).
The identification problem of EIV models is apparent from an examination of the

system (2.3)-(2.7), where there are only five moment equations but six unknown param-
eters. Thus, we have not enough moment conditions to “fix” the fitting line in order to
identify ◊. Under Assumptions 2.1, the bivariate data set that contains only the input
and output growth index does not provide enough information for consistent estimation
of returns to scale and technical progress. However, if one could obtain prior informa-
tion on parameters then the identification problem can be solved. For example, let –̂,

—̂, µ̂, ‡̂2, ‡̂2

v and ‡̂2

u be consistent estimators of – —, µ, ‡2, ‡2

v and ‡2

u, respectively. If
the variance ratio ⁄ © ‡2

v/‡2

u is known, we obtain from (2.5), (2.6) and (2.7) a quadratic
equation of —̂:

—̂2sxy ≠ —̂(syy ≠ ⁄sxx) ≠ ⁄sxy = 0 . (2.8)

Given the restriction that —̂ has the same sign as sxy, there is an unique relevant solution
for —̂. This class of estimator based on prior knowledge of the parameters is called by
Wansbeek and Meijer (2000) the Consistent Adjusted Least Squares estimation method.
Adcock’s orthogonal regression (or Total least squares) estimation method is a special
case that assumes ⁄ = 1. Further examples are given in Judge et al., (1980, p.509-
531). However, these ad hoc assumptions are in general untestable in the empirical
economics studies. In order to achieve identification, a classical solution is to introduce
a set of instruments and construct the additional moment conditions based on the
instruments. In the next section, I first discuss the 2SLS estimators and their potential
bias in the context of estimating the degree of returns to scale. This analysis explains
the reason of the wide variety of results found in the literature. Then the alternative
IV estimation methods, namely the LIML and F-LIML estimators are considered. By
following Hahn and Hausman (2002), I compare di�erent estimators for both direct and
reverse regression models.

2.3 Direct and reverse regressions

Two types of estimator are commonly used in empirical studies. Some authors, such as
Hall (1988, 1990) suggested using the 2SLS estimator. Others like Basu and Fernald
(1997), Diewert and Fox (2008) emphasized the OLS approach. It is easy to show that
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OLS is biased and that the direct and reverse OLS regressions produce upper and lower
bounds on the true value of returns to scale. The direct OLS estimator is defined as
—̂ols = sxy/sxx with:

plim (—̂ols ≠ —
‡2

‡2 + ‡2

u
) = 0.

Since the ratio ‡̂2/(‡̂2 + ‡̂2

u) (which is called the reliability ratio in the literature) is
always less than one, the OLS estimate is downward biased w.r.t. the true slope. The
reverse OLS estimator is defined as —̂rols = syy/sxy with:

plim (—̂rols ≠ —2‡2 + ‡2

v

—‡2

) = 0

and it is upward biased. The direct and reverse estimates in Diewert and Fox (2008)
illustrate the bias of OLS estimator. Unlike the OLS estimator, the 2SLS estimator is
in principle able to produce the point estimation by introducing additional instruments
into the model, I will show in the following subsection that the direct and reverse 2SLS
estimators are consistent and asymptotically equivalent. This result should support the
use of 2SLS in empirical research. However, the recent literature recommends extreme
caution in interpreting 2SLS estimates, because the 2SLS estimation could lead to large
finite-sample bias when the instruments are “weak”. Thus, in this study I test the
strength of instruments and consider some alternative estimators, which have better
finite-sample properties than 2SLS.

2.3.1 Instrumental variable estimator

Assume that we have L instruments such that:

x̃ = Z� + ÷, (2.9)

ỹ = Z� + ›, (2.10)

where x̃ © x ≠ x̄, ỹ © y ≠ ȳ and Z is a T ◊ L matrix of instruments. The errors (÷, ›)
are assumed to be i.i.d. normally distributed with V[÷] = ‡2

÷ and V[›] = ‡2

› . The direct
2SLS estimator of — can be written as:

—̂
2sls = (x̃ÕPZ x̃)≠1x̃ÕPZ ỹ . (2.11)

Similarly, the reverse 2SLS estimator is:

—̂r2sls = (ỹÕPZ x̃)≠1ỹÕPZ ỹ , (2.12)

where PZ © Z(Z ÕZ)≠1Z Õ is the orthogonal projection on the column space of Z. Before
applying 2SLS to the data, I summarize here the asymptotic properties of the direct
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and reverse 2SLS estimator for our EIV model. The formal proofs of Propositions 2.1
and 2.2 are given in Appendix.

Assumption 2.2. The instruments are orthogonal to the error terms, u, v and Á.
The rank condition is satisfied, i.e., rankE[Z ÕZ] = L with L Ø 1, and rankE[Z Õx̃] =
rankE[Z Õỹ] = 1. I also assume homoskedasticity to simplify the notations, i.e., E[Á2Z ÕZ] =
‡2

ÁE[Z ÕZ].

Proposition 2.1. Under Assumptions 2.1 and 2.2, the direct 2SLS estimator defined
in (2.11) is consistent for — and asymptotically normally distributed as:

Ô
T (—̂

2sls ≠ —) ≥ N(0, ‡2

ÁA≠1), (2.13)

where A © E(x̃ÕZ)[E(Z ÕZ)]≠1E(Z Õx̃) and V[Á] = ‡2

Á .

Proposition 2.2. Under Assumptions 2.1 and 2.2, the reverse 2SLS estimator defined
in (2.12) is consistent for — and asymptotically normally distributed as:

Ô
T (—̂r2sls ≠ —) ≥ N(0, ‡2

ÁA≠1). (2.14)

A direct corollary to Propositions 2.1 and 2.2 is that
Ô

T (—̂
2sls≠—) dæ

Ô
T (—̂r2sls≠—).

This result complements Bartelsman’s (1995, p.61) finding on the relationship between
the direct and reverse 2SLS, which are related to the squared correlation between the
projections of x̃ and ỹ on the instruments Z (equation (2.15) below). The next corollary
states that this correlation converges asymptotically to 1, and implies that the direct
and reverse 2SLS estimators are asymptotically equivalent.

Corollary. The relationship between —̂
2sls and —̂r2sls is

—̂
2sls = —̂r2sls[(ỹÕPZ ỹ)≠1ỹÕPZ x̃(x̃ÕPZ x̃)≠1x̃ÕPZ ỹ]. (2.15)

Asymptotically
(ỹÕPZ x̃)≠1ỹÕPZ x̃(x̃ÕPZ x̃)≠1x̃ÕPZ ỹ

pæ 1. (2.16)

Under the conventional first order asymptotic theory, the direct and reverse 2SLS
estimates should be very similar, because the corollary shows that they have unitary
correlation. However, the two estimates may di�er substantially in practice due to the
finite sample bias. The size of this bias depends on several feature of the data and of
the underlying regression model.
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Finite-sample bias of 2SLS The finite-sample bias is only derived for the direct
2SLS estimator, the bias of the reverse estimator can be carried out in the similar way.
We can rewrite the direct 2SLS estimates as:

—̂
2sls = — + (x̃ÕPZ x̃)x̃ÕPZÁ. (2.17)

Taking expectations of —̂
2sls, we see that the bias depends on the terms E[(x̃ÕPZ x̃)≠1]

and E[x̃ÕPZÁ]. For any observation t, we have:

E[x̃Õ
tZt(Z ÕZ)≠1Z Õ

tÁt] = E{E[x̃Õ
tZt(Z ÕZ)≠1Z Õ

tÁt | Z]}

= E{E[÷Õ
tZt(Z ÕZ)≠1Z Õ

tÁt | Z]} + E{E[�ÕZtÁt | Z]}

a= ‡÷Á
1
T

Tÿ

t=1

Zt(Z ÕZ)≠1Z Õ
t

= L

T
‡÷Á,

where ‡÷Á denotes the covariance between ÷ and Á. The second equality follows because
x̃Õ
t = ÷Õ

t + �ÕZt and the instruments Z is independent of error term Á. The last equality
follows from the fact that the trace of the projection matrix is equal to the rank of the
projection matrix, and the rank of Pz is equal to L. Similarly,

E[x̃Õ
tZt(Z ÕZ)≠1Z Õ

tx̃t] = E{E[x̃Õ
tZt(Z ÕZ)≠1Z Õ

tx̃t | Z]}

= E[�̂Z Õ
tZt�̂]

a= 1
T

Tÿ

t=1

(Z Õ
t�̂)2.

We notice from above expressions that the finite-sample bias is caused by the cor-
relation of the errors terms. The bias is monotonically increasing in L (the number of
instruments) and monotonically decreasing in

qT
t=1

(Z Õ
t�̂)2. The concentration param-

eter,
qT

t=1

(Z Õ
t�̂)2/‡2

÷, measures the strength of instruments. Hence, for a fixed number
of instruments, highly correlated (with regressors) instruments reduce the finite-sample
bias of 2SLS, while weak instruments magnify this bias. Given a value of ‡÷Á and ‡÷,
the 2SLS finite-sample bias is inversely proportional to

qT
t=1

(Z Õ
t�̂)2/‡2

÷L, which can
be approximated by the F statistic of the first-stage regression. In order to justify
this approximation, I note that the infeasible F statistic follows a non-central ‰2(1)
with non-centrality parameter

qT
t=1

(Z Õ
t�̂)2/‡2

÷L. The expectation of feasible F statis-
tic, computed using the estimated value of ‡÷, is close to the infeasible F statistic when
the sample is larger. Thus, E[F ] ≥=

qT
t=1

(Z Õ
t�̂)2/‡2

÷L+1. The following sections discuss
the diagnostic of weak instruments based on the first-stage F statistic and present the
alternative estimation methods to 2SLS for reducing the finite-sample bias.
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2.3.2 Robust estimation inference with weak instruments

A simple response to the finite-sample bias problem is to limit the number of instruments
used. One can drop, for example, the weakest instruments selected with help of the first-
stage regression or combine them. Given a regression model, the literature suggests that
there is a class of alternative estimators, which are asymptotically equivalent to 2SLS
but have better finite-sample properties, see Davidson and MacKinnon (1993). One of
them is the LIML estimator due to Anderson and Rubin (1949). The LIML estimator
is rarely used in applied studies, mainly because the additional assumption of the joint
normally of error terms is required. The LIML estimator belongs to the family of k-
class estimators proposed by Nagar (1959). The direct and reverse k-class estimators
are defined as:

—̂k≠class = [x̃Õ(I ≠ kMz)x̃]≠1x̃Õ(I ≠ kMz)ỹ; (2.18)

—̂rk≠class = [ỹÕ(I ≠ kMz)x̃]≠1ỹÕ(I ≠ kMz)ỹ, (2.19)

where Mz = I ≠ Pz. The direct and reverse LIML estimators are computed as (2.18)
and (2.19) by setting k equals to k̂, which is estimated as the minimum eigenvalue of
the matrix:

(W ÕMzW )≠1/2W ÕW (W ÕMzW )≠1/2,

with W © (ỹ, x̃). The full derivation of the LIML estimator is provided in Davidson
and MacKinnon (1993). The OLS and 2SLS estimators are also special cases of the
k-class estimator for k = 0 and k = 1, respectively. One can show k̂ converges to
1 at a rate faster than 1/

Ô
T , see Schmidt (1976). Therefore, the LIML estimator is

asymptotically equivalent to the 2SLS estimator and Proposition 2.1 and 2.2 also applies
to the direct and reverse LIML estimators. Moreover, the direct and reverse LIML
estimates coincide when the same instruments set is used for the direct and reverse
regressions. In fact, Hahn and Hausman (2002) showed that the LIML estimator is
the optimal linear combination of the direct Biased-corrected 2SLS (B2SLS) estimator
and the reverse B2SLS estimator, where the B2SLS estimator proposed by Donald and
Newey (2001) is defined as the k-class estimator with k = (L≠2)/T

1≠(L≠2)/T . Bartelsman
(1995) found that the direct and reverse 2SLS estimates are equal, if Z contains only
one instrument. In the case of several instruments (L > 1), the direct and reverse 2SLS
estimates di�er, but the direct and reverse LIML estimates are still equal as long as the
same set of instruments is used.

Beside the LIML and the Donald-Newey’s B2SLS estimators, there are many other
k-class estimators. The one needs to be mentioned here, is the optimal Fuller (1977)
modified LIML (F-LIML), which is defined as a k-class estimator by setting k = k̂ ≠
1/(T ≠ L). Mariano and Sawa (1972) provided the exact distribution of the LIML
estimator and showed that the LIML estimator does not have moments of order greater
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than or equal to one in the finite-sample, i.e., E[| —̂ |] = Œ.2 Unlike the LIML estimator,
the F-LIML provides all finite moments. Davidson and MacKinnon (1993) showed the
distribution of F-LIML lies between the distribution of the 2SLS and LIML estimators.
Hahn and Hausman (2002) compared the finite-sample performance of the 2SLS, LIML
and F-LIML by Monte Carlo simulations. They found that the unbiased F-LIML is the
best estimator in term of MSE. Therefore, the F-LIML is also included for our empirical
investigation.

2.3.3 Weak instrument test and specification test

A valid instrument set must satisfy two conditions, the exogeneity and the rank con-
dition, which are formally stated in Assumption 2.2. In addition to the two classical
requirements, a valid instrument set must also be highly correlated with endogenous
regressors. As mentioned previously, instruments that do not have a high degree of ex-
planatory power, magnify the finite-sample bias of 2SLS. Therefore, a careful diagnostics
for weak instruments is important before interpreting the estimation results. Several
approaches for testing weak instruments are available. These approaches include the
test based on the partial R2 and the F statistic of the first-stage regression, the test
based on the pairwise correlations between the endogenous regressors and instruments,
and the Hahn and Hausman (2002) specification test. In this study, I follow Stock and
Yogo (2002) weak instruments diagnostic, which uses the first-stage F statistic.

Before going into the econometric analysis of testing weak instruments, it is advis-
able to define formally the weak instrument set. Stock and Yogo (2002) proposed two
definitions based on the type of consequences induced by weak instruments. In general,
weak instruments can lead to bias in estimator as shown previously, they can also lead
to large size distortion in statistical test. Thus, the first definition of weak instruments
set is given in terms of the maximum relative bias, where the relative bias is defined as
the ratio of IV bias to OLS bias, i.e., (—̂IV ≠ —)/(—̂OLS ≠ —). The second definition is
based on the maximum size of Wald test for testing the null hypothesis —̂ = —, where
the size of test is defined as Pr[reject H

0

| H
0

is true]. Hence, a set of instrument is
weak if the first-stage F statistic is su�ciently small to cause large relative bias or size
distortion.

Given the number of instruments and the definition of weak instruments set, Stock
and Yogo (2002, Table 2.1-2.4) provided critical values of F statistic for the 2SLS, LIML
and F-LIML estimators. For example, when four instruments are used in a regression
model with one endogenous regressor, the F statistic must exceed 6.7 to reject the null
hypothesis that the relative bias of 2SLS is larger or equal to 20%. The threshold value
of F statistic is increased to 10.3 for a more rigorous test with the null hypothesis that

2The nonexistence of finite moments of the LIML estimator, however, should not be considered as
the unique criterion in comparing the finite-moment performance with 2SLS. Otherwise, one would
always reject the use of LIML in favor to 2SLS.
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Table 2.1: Critical values of F statistic given four instruments and one regressor

Bias 2SLS F-LIML Size 2SLS LIML

5% 16.85 7.63 10% 24.58 5.44
10% 10.27 6.37 15% 13.96 3.87
20% 6.71 5.38 20% 10.26 3.30
30% 5.34 4.63 25% 8.31 2.98

Source: Stock and Yogo (2002)

the relative bias is larger or equal to 10%. On the other hand, the 2SLS estimator with
a F statistic less than 5, will likely produce biased estimation results. Alternatively,
from the size distortion perspective, the F statistic must exceed 24.6 to reject the null
hypothesis that the actual size of the 2SLS Wald test at 5% significance level can be
greater than 10%. The similar critical values are also available for the F-LIML estimator.
However, the LIML estimator does not have moments in finite sample and its relative
bias is not well defined, the critical values for testing weak instruments are only given in
terms of the maximum size distortion. Since the LIML and F-LIML estimators perform
better in finite-samples, their critical values are lower, which suggests that the LIML
and F-LIML estimators are superior to 2SLS when the instruments are weak. Table 2.1
summaries the critical values for the weak instrument test with L = 4 and the complete
tables can be found in Stock and Yogo (2002).

Beside the weak instrument diagnostic, I also test the validity of instrument set with
the null hypothesis:

H
0

: E[Zt · (ỹt ≠ x̃t—)] = 0 (2.20)

(or H
0

: E[Zt · (x̃t ≠ ỹt—)] = 0 in the reverse regression) and the exogeneity of regressors
with null hypothesis:

H
0

: E[x̃t(ỹt ≠ x̃t—)] = 0 (2.21)

(or H
0

: E[ỹt(x̃t ≠ ỹt—)] = 0 in the reverse regression). The validity of instruments can
be tested only in the over-identified models. The rejection of the null hypothesis (2.20)
means that at least one of the instruments is not valid. The failure to reject the null
hypothesis (2.20) guarantees only the over-identification restrictions are valid.

The test for regressor exogeneity is conditional on the consistency of 2SLS estima-
tion. The ideas is to use a Hausman specification test to see whether there is significant
di�erence between the OLS estimate and the consistent 2SLS estimate. A significant
di�erence implies the rejection of null hypothesis (2.21), which indicates the endogene-
ity of regressor. Otherwise, the OLS estimate is consistent. However, one should be
aware that the 2SLS estimator is biased toward OLS in the situation of weak instru-
ments. Thus, the failure to reject the null hypothesis (2.21) may be because of the
instruments Z are weak. For both tests, I consider the robust (HAC) estimator of the
covariance matrix. The corresponding statistics are the Hansen’s J statistic for testing
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over-identification restriction and the Durbin-Wu-Hausman (DWH) statistic for the re-
gressor exogeneity. The Hansen’s J statistic has an asymptotic chi-square distribution
with degree of freedom equals the number of over-identification restrictions. The DWH
statistic follows a chi-square distribution with degree of freedom equals one (the number
of regressors).

2.4 Evidence of increasing returns to scale

The data set used in this work comes from the U.S. Bureau of Labor Statistics (BLS),
especially the historical KLEMS database for 1949-2001.3 The BLS’s Multifactor Pro-
ductivity program provides the annual output and combined input quantity indexes,
which are calculated using the Törnqvist index formula. The combined input index is
an aggregate of capital, labor, energy, material and purchased business services inputs.
The associated output and input prices are also provided. Twenty one manufacturing
sectors including three aggregate sectors are considered in this study. The input and
output growth indexes x and y correspond to the first-di�erence of inputs and output
quantity indexes, respectively. The changes (first-di�erences) in the price of capital,
labor, energy, material and services make up my set of five instruments. The input
prices expressed in level have also been considered as instrument, but the first-stage F
statistic shows that the prices expressed in first-di�erence are more relevant.

The direct and reverse regression models are estimated using the OLS, 2SLS, LIML
and F-LIML estimators. In order to limit the number of instruments, the weakest
instrument is dropped. The main outcomes of these estimations are summarized in
Table 2.2, 2.3 and 2.4, which report the estimates of returns to scale and technical
progress parameters as well as the estimated standard errors and the test statistics.

The estimates of returns to scale from the direct OLS regression average to 1.1 and
the reverse OLS estimates average to 1.4, the average di�erence between direct and
reverse estimates is about 0.3. This results is similar to those found by Diewert and
Fox (2008) and Koebel and Laisney (2010) who use the same data. The di�erence
between the direct and reverse estimates is mainly due to the opposite bias of direct
and reverse OLS estimators. In some sectors, the two OLS estimators produced very
contradictory results. For instance, the direct OLS regression suggests a statistically
significant decreasing returns to scale of 0.5 for the “Food & Kindred Prod” sector (SIC
20). On the other hand, the reverse OLS reports an increasing returns to scale of 2.1
for the same sector.

Both OLS estimates are inconsistent in the EIV framework due to the endogenous
regressor. The IV estimations (2SLS, LIML and F-LIML) can solve the endogeneity
problem as long as the instruments set is not weak. I report in Table 2.2 the first-stage

3See BLS website http://www.bls.gov/mfp/. The data for 1950, 1951 and 1952 are missing. An
older version of this data set was used by Diewert and Fox (2008).
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Table 2.2: OLS and 2SLS estimates of returns to scale

Direct regression Reverse regression

SIC OLS 2SLS DWH Hansen F WI OLS 2SLS DWH Hansen F WI

Manu. 1.315
(0.048)

úúú 1.467
(0.076)

úúú 5.580
(0.018)

4.502
(0.212)

11.954 z4 1.456
(0.068)

úúú 1.510
(0.106)

úúú 1.141
(0.285)

3.573
(0.311)

16.690 z4

Nondur. 1.193
(0.176)

úúú 1.736
(0.161)

úúú 3.441
(0.064)

1.763
(0.623)

3.080 z5 1.659
(0.136)

úúú 1.856
(0.198)

úúú 1.401
(0.237)

1.397
(0.706)

6.082 z5

20 0.468
(0.126)

úúú 0.834
(0.318)

úú 1.889
(0.169)

2.773
(0.428)

4.683 z3 2.083
(0.503)

úúú 1.719
(0.591)

úú 0.431
(0.512)

7.269
(0.064)

7.308 z1

22 0.951
(0.045)

úúú 1.056
(0.084)

úúú 3.082
(0.079)

4.157
(0.245)

8.299 z4 1.060
(0.056)

úúú 1.070
(0.085)

úúú 0.031
(0.861)

4.015
(0.260)

10.230 z4

23 0.973
(0.038)

úúú 0.880
(0.208)

úúú 0.249
(0.618)

7.981
(0.046)

0.616 z3 1.096
(0.077)

úúú 2.076
(1.152)

2.601
(0.107)

2.997
(0.392)

1.069 z2

26 1.253
(0.133)

úúú 1.318
(0.154)

úúú 0.332
(0.565)

1.938
(0.585)

13.834 z4 1.669
(0.126)

úúú 1.414
(0.138)

úúú 2.229
(0.136)

1.851
(0.604)

10.859 z4

27 1.224
(0.118)

úúú 1.331
(0.295)

úúú 0.345
(0.557)

10.617
(0.014)

6.046 z4 1.616
(0.158)

úúú 1.763
(0.387)

úúú 0.460
(0.497)

3.541
(0.315)

8.000 z4

28 1.166
(0.171)

úúú 1.498
(0.190)

úúú 3.731
(0.053)

10.107
(0.018)

4.780 z3 1.758
(0.257)

úúú 2.249
(0.801)

úú 3.751
(0.053)

3.237
(0.357)

10.913 z3

29 1.210
(0.031)

úúú 1.251
(0.082)

úúú 0.012
(0.914)

10.281
(0.016)

6.875 z3 1.255
(0.055)

úúú 1.319
(0.136)

úúú 0.268
(0.604)

7.509
(0.057)

7.893 z3

30 1.109
(0.042)

úúú 1.296
(0.171)

úúú 1.923
(0.166)

2.005
(0.571)

3.830 z2 1.207
(0.054)

úúú 1.367
(0.211)

úúú 1.749
(0.186)

1.119
(0.772)

5.563 z5

Durab. 1.250
(0.025)

úúú 1.326
(0.066)

úúú 4.432
(0.035)

6.498
(0.090)

17.477 z5 1.322
(0.049)

úúú 1.351
(0.080)

úúú 0.622
(0.430)

5.264
(0.153)

21.815 z5

24 0.827
(0.064)

úúú 0.965
(0.084)

úúú 3.742
(0.053)

2.287
(0.515)

13.653 z3 1.120
(0.080)

úúú 0.983
(0.082)

úúú 2.698
(0.101)

2.489
(0.477)

14.385 z5

25 1.150
(0.044)

úúú 1.305
(0.092)

úúú 7.019
(0.008)

8.841
(0.031)

4.393 z2 1.204
(0.048)

úúú 1.369
(0.124)

úúú 5.424
(0.020)

6.394
(0.094)

6.410 z2

32 1.277
(0.077)

úúú 1.668
(0.168)

úúú 7.174
(0.007)

3.974
(0.264)

5.861 z3 1.452
(0.065)

úúú 1.778
(0.219)

úúú 8.276
(0.004)

4.607
(0.203)

13.924 z5

33 1.215
(0.041)

úúú 1.277
(0.059)

úúú 1.247
(0.264)

2.561
(0.464)

11.910 z4 1.285
(0.036)

úúú 1.296
(0.063)

úúú 0.046
(0.831)

4.211
(0.240)

13.490 z5

34 1.123
(0.022)

úúú 1.213
(0.082)

úúú 4.485
(0.034)

2.656
(0.448)

9.929 z4 1.163
(0.034)

úúú 1.222
(0.086)

úúú 2.580
(0.108)

2.186
(0.535)

12.825 z4

35 1.136
(0.038)

úúú 1.253
(0.112)

úúú 2.043
(0.153)

5.832
(0.120)

5.670 z5 1.265
(0.058)

úúú 1.312
(0.143)

úúú 0.267
(0.605)

4.830
(0.185)

7.010 z5

36 1.195
(0.041)

úúú 1.226
(0.113)

úúú 0.131
(0.718)

5.035
(0.169)

4.800 z5 1.283
(0.077)

úúú 1.297
(0.169)

úúú 0.017
(0.898)

5.453
(0.141)

5.053 z5

37 1.151
(0.030)

úúú 1.185
(0.064)

úúú 0.685
(0.041)

11.678
(0.009)

7.331 z4 1.193
(0.046)

úúú 1.238
(0.104)

úúú 0.666
(0.415)

9.299
(0.026)

8.208 z4

38 1.012
(0.079)

úúú 1.083
(0.046)

úúú 2.424
(0.120)

12.890
(0.005)

16.420 z4 1.113
(0.023)

úúú 1.140
(0.039)

úúú 0.524
(0.469)

10.332
(0.016)

20.460 z2

39 1.050
(0.090)

úúú 0.436
(0.688)

4.581
(0.032)

4.655
(0.199)

1.463 z3 1.555
(0.194)

úúú 5.362
(8.995)

4.366
(0.037)

2.864
(0.413)

1.752 z5

mean 1.107 1.258 - - 7.757 - 1.372 1.434 - - 9.997 -

Note: The column “WI” reports the dropped instrument. z1: price of capital; z2: price of labor; z3: price

of energy; z4: price of material; z5: price of service. For the estimated coe�cient, the standard errors

are reported in parenthesis. For the test statistics, the associated p-values are reported in parenthesis. *

corresponds to p<0.05, ** corresponds to p<0.01, *** corresponds to p<0.001. The mean values in the

last row are computed by averaging over estimates that are at least significant at the 5% threshold.
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Table 2.3: LIML and F-LIML estimates of returns to scale

Direct regression Reverse regression

SIC LIML F-LIML Hansen
(LIML)

Hansen
(F ≠ LIML) LIML F-LIML Hansen

(LIML)
Hansen

(F ≠ LIML)

Manu. 1.530
(0.133)

úúú 1.520
(0.123)

úúú 3.291
(0.349)

3.438
(0.329)

1.530
(0.133)

úúú 1.527
(0.129)

úúú 3.283
(0.350)

3.321
(0.345)

Nondur. 1.891
(0.254)

úúú 1.815
(0.198)

úúú 1.294
(0.731)

1.514
(0.679)

1.891
(0.238)

úúú 1.875
(0.218)

úúú 1.360
(0.715)

1.377
(0.711)

20 1.124
(0.513)

ú 1.062
(0.467)

ú 2.958
(0.398)

2.935
(0.402)

1.576
(0.734)

ú 1.600
(0.709)

ú 6.739
(0.081)

6.832
(0.077)

22 1.071
(0.093)

úúú 1.065
(0.089)

úúú 4.421
(0.219)

4.323
(0.229)

1.071
(0.091)

úúú 1.071
(0.089)

úúú 4.030
(0.258)

4.024
(0.259)

23 ≠8.502
(781.252)

0.742
(0.672)

0.037
(0.998)

5.740
(0.125)

≠7.890
(77.415)

4.002
(8.308)

0.708
(0.871)

1.586
(0.663)

26 1.339
(0.170)

úúú 1.336
(0.167)

úúú 1.903
(0.593)

1.909
(0.591)

1.339
(0.170)

úúú 1.351
(0.164)

úúú 1.803
(0.614)

1.811
(0.612)

27 2.572
(8.590)

2.208
(4.986)

2.078
(0.556)

3.205
(0.361)

2.572
(3.133)

2.429
(2.468)

2.438
(0.487)

2.576
(0.462)

28 3.153
(7.501)

2.749
(4.723)

2.881
(0.410)

3.922
(0.270)

3.153
(3.313)

3.033
(2.878)

2.205
(0.531)

2.277
(0.517)

29 2.061
(10.927)

1.776
(5.020)

2.405
(0.493)

4.045
(0.257)

2.061
(6.146)

1.877
(3.824)

4.251
(0.236)

4.979
(0.173)

30 1.377
(0.275)

úúú 1.350
(0.237)

úúú 1.507
(0.681)

1.652
(0.648)

1.403
(0.264)

úúú 1.388
(0.240)

úúú 1.120
(0.772)

1.121
(0.772)

Durab. 1.365
(0.105)

úúú 1.361
(0.101)

úúú 5.032
(0.169)

5.150
(0.161)

1.365
(0.101)

úúú 1.364
(0.099)

úúú 4.852
(0.183)

4.889
(0.180)

24 0.973
(0.086)

úúú 0.967
(0.084)

úúú 2.286
(0.515)

2.287
(0.515)

0.974
(0.084)

úúú 0.979
(0.083)

úúú 2.482
(0.479)

2.486
(0.478)

25 1.582
(0.566)

úú 1.525
(0.434)

úúú 3.056
(0.383)

3.748
(0.290)

1.582
(0.443)

úúú 1.544
(0.372)

úúú 3.563
(0.313)

3.887
(0.274)

32 1.816
(0.287)

úúú 1.778
(0.252)

úúú 2.846
(0.416)

3.090
(0.378)

1.871
(0.300)

úúú 1.850
(0.280)

úúú 4.143
(0.246)

4.237
(0.237)

33 1.291
(0.067)

úúú 1.288
(0.065)

úúú 2.513
(0.473)

2.525
(0.471)

1.300
(0.074)

úúú 1.300
(0.072)

úúú 4.233
(0.237)

4.230
(0.238)

34 1.236
(0.110)

úúú 1.231
(0.103)

úúú 2.042
(0.564)

2.168
(0.538)

1.236
(0.105)

úúú 1.233
(0.101)

úúú 1.879
(0.598)

1.944
(0.584)

35 1.342
(0.239)

úúú 1.325
(0.211)

úúú 4.645
(0.200)

4.830
(0.185)

1.342
(0.220)

úúú 1.336
(1.336)

úúú 4.592
(0.204)

4.630
(0.201)

36 1.345
(0.705)

1.319
(0.533)

ú 4.098
(0.251)

4.269
(0.234)

1.345
(0.671)

ú 1.335
(0.555)

ú 5.260
(0.154)

5.292
(0.152)

37 1.670
(4.460)

1.538
(2.568)

2.825
(0.419)

4.139
(0.247)

1.670
(2.974)

1.579
(2.044)

4.125
(0.248)

4.728
(0.193)

38 1.129
(0.046)

úúú 1.124
(0.044)

úúú 12.143
(0.007)

12.241
(0.007)

1.173
(0.085)

úúú 1.171
(0.081)

úúú 10.202
(0.017)

10.211
(0.017)

39 ≠1.405
(8.041)

≠0.432
(3.118)

1.311
(0.726)

2.570
(0.463)

≠2.295
(7.097)

≠6.136
(29.705)

1.183
(0.757)

1.692
(0.639)

mean 1.362 1.338 - - 1.400 1.395 - -

Note: see Table 2.2.
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Table 2.4: Estimates of technical change

Direct regression Reverse regression

SIC OLS 2SLS. LIML F-LIML OLS 2SLS LIML F-LIML

Manu. 0.006
(0.003)

ú 0.003
(0.003)

0.002
(0.004)

0.002
(0.004)

0.003
(0.003)

0.002
(0.004)

0.002
(0.004)

0.002
(0.004)

Nondur. 0.002
(0.003)

≠0.008ú

(0.004)
≠0.011
(0.005)

ú ≠0.010
(0.004)

ú ≠0.007
(0.005)

≠0.011
(0.005)

ú ≠0.011
(0.006)

≠0.011
(0.006)

20 0.014
(0.003)

úúú 0.007
(0.007)

0.001
(0.011)

0.002
(0.010)

≠0.017
(0.011)

≠0.010
(0.013)

≠0.007
(0.015)

≠0.008
(0.015)

22 0.024
(0.003)

úúú 0.024
(0.003)

úúú 0.024
(0.003)

úúú 0.024
(0.003)

úúú 0.024
(0.003)

úúú 0.024
(0.003)

úúú 0.024
(0.003)

úúú 0.024
(0.003)

úúú

23 0.011
(0.002)

úúú 0.011
(0.002)

úúú 0.078
(5.586)

0.012
(0.005)

ú 0.010
(0.002)

úúú 0.003
(0.012)

0.074
(0.542)

≠0.011
(0.067)

26 ≠0.000
(0.005)

≠0.002
(0.005)

≠0.002
(0.005)

≠0.002
(0.005)

≠0.011
(0.006)

≠0.004
(0.006)

≠0.002
(0.006)

≠0.003
(0.006)

27 ≠0.010
(0.004)

ú ≠0.013
(0.009)

≠0.047
(0.237)

≠0.037
(0.137)

≠0.020
(0.005)

úúú ≠0.025
(0.010)

ú ≠0.047
(0.085)

≠0.043
(0.066)

28 0.005
(0.006)

≠0.006
(0.006)

≠0.057
(0.225)

≠0.044
(0.140)

≠0.014
(0.011

≠0.029
(0.024)

≠0.057
(0.097)

≠0.053
(0.084)

29 ≠0.000
(0.002)

≠0.001
(0.002)

≠0.018
(0.221)

≠0.012
(0.101)

≠0.001
(0.002)

≠0.003
(0.002)

≠0.018
(0.123)

≠0.014
(0.076)

30 0.003
(0.004)

≠0.004
(0.008)

≠0.007
(0.012)

≠0.006
(0.010)

≠0.001
(0.005)

≠0.007
(0.010)

≠0.009
(0.011)

≠0.008
(0.011)

Durab. 0.011
(0.003)

úúú 0.010
(0.004)

úú 0.009
(0.004)

ú 0.009
(0.004)

ú 0.010
(0.003)

úú 0.009
(0.004)

ú 0.009
(0.004)

ú 0.009
(0.004)

ú

24 0.013
(0.004)

úú 0.011
(0.004)

ú 0.011
(0.004)

ú 0.011
(0.004)

ú 0.010
(0.005)

0.011
(0.004)

ú 0.011
(0.004)

ú 0.011
(0.004)

ú

25 0.003
(0.003)

≠0.001
(0.003)

≠0.007
(0.013)

≠0.006
(0.010)

0.002
(0.003)

≠0.002
(0.003)

≠0.007
(0.010)

≠0.006
(0.008)

32 0.002
(0.003)

≠0.005
(0.005)

≠0.007
(0.006)

≠0.006
(0.006)

≠0.001
(0.004)

≠0.006
(0.006)

≠0.008
(0.007)

≠0.008
(0.006)

33 ≠0.001
(0.004)

≠0.002
(0.004)

≠0.002
(0.004)

≠0.002
(0.004)

≠0.002
(0.004)

≠0.002
(0.004)

≠0.002
(0.004)

≠0.002
(0.004)

34 0.000
(0.002)

≠0.002
(0.003)

≠0.002
(0.003)

≠0.002
(0.003)

≠0.001
(0.003)

≠0.002
(0.003)

≠0.002
(0.003)

≠0.002
(0.003)

35 0.018
(0.005)

úúú 0.014
(0.006)

ú 0.011
(0.008)

0.012
(0.008)

0.014
(0.005)

úú 0.012
(0.006)

0.011
(0.008)

0.011
(0.008)

36 0.025
(0.004)

úúú 0.024
(0.006)

úúú 0.019
(0.028)

0.020
(0.021)

0.022
(0.005)

úúú 0.021
(0.008)

úú 0.019
(0.027)

0.020
(0.022)

37 0.005
(0.004)

0.004
(0.004)

≠0.009
(0.110)

≠0.005
(0.062)

0.004
(0.004)

0.003
(0.004)

≠0.009
(0.071)

≠0.006
(0.048)

38 0.015
(0.004)

úúú 0.012
(0.005)

ú 0.010
(0.005)

0.010
(0.005)

0.011
(0.004)

úú 0.009
(0.005)

0.008
(0.006)

0.008
(0.006)

39 0.010
(0.005)

0.018
(0.010)

0.045
(0.113)

0.031
(0.043)

0.002
(0.006)

≠0.053
(≠0.053)

0.058
(0.111)

0.111
(0.446)

mean 0.013 0.012 0.008 0.009 0.010 0.005 0.015 0.015

Note: see Table 2.2.
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F statistic for both direct and reverse regression models (for each of the two endogenous
regressors, x̃ and ỹ, I use the same set of instruments). The average first-stage F statistic
by dropping the weakest instrument reaches 7.8 for the direct regression and 10.0 for
the reverse regression, which are lower than and equal to the threshold of 10. Hence, we
should suspect that the 2SLS estimator may generate more than 20% relative bias and
15% size distortion (for a 2SLS Wald test at 5% significance level). However, the weak
instrument problem is less severe in the LIML and F-LIML estimation. For both direct
and reverse regression models, the F statistic is su�ciently larger that the relative bias
of F-LIML estimates is less than 5% and that the size distortion of LIML estimators
is less than 5%. In some sectors, such as “Durable Goods” (F = 17.5 for the direct
regression and F = 21.8 for the reverse regression), the F statistic is large enough that
the 2SLS estimator is approximately unbiased (less than 5% relative bias) with a small
size distortion (less than 10% size distortion). There are other sectors, such as “Apparel
and Related prod.” (SIC 23) with F = 0.6 for the direct regression and F = 1.1 for
the reverse regression, the F statistic is too low that the test fails to reject the null
hypothesis of weak instruments even for the LIML and F-LIML estimators.

Given the results of weak instrument test, now I examine the estimates of returns to
scale. The 2SLS estimates are reported in Table 2.2, the LIML and F-LIML estimates
are reported in Table 2.3. The 2SLS estimates suggest larger degree of returns to scale
than OLS, and all 2SLS estimates of returns to scale are significantly non-decreasing.
The 2SLS Hansen’s J statistic (for testing the null hypothesis that the instruments set is
valid) and the 2SLS Durbin-Wu-Hausman statistic (for testing the null hypothesis that
the regressors are exogenous) as well as the associated p-values in parenthesis are also
reported in Table 2.2. The direct 2SLS Hansen test rejects the validity of instruments
set in seven sectors and the reverse 2SLS Hansen test rejects the null hypothesis in two
sectors (at 5% significance level). In the majority of sector the test fails to reject that
the OLS estimates are significantly di�erent from the 2SLS estimates. This result is
not surprising, because with weak instruments, the 2SLS estimators is biased toward
OLS. The direct and reverse 2SLS estimators of — are in general closer than those
obtained by OLS, except for two sectors, “Apparel and Related prod.” (SIC 23) and
“Misc. Manufacturing” (SIC 39), which have low first-stage F statistic. Theoretically,
according to Proposition 2.1 and 2.2, the direct and reverse 2SLS are asymptotically
equivalent in the conventional sense. Nevertheless, some di�erence between the two
estimates is due to the finite-sample bias, which is magnified when instruments are
weak. In the case of “Food and Kindred Prod.” sector (SIC 20, F = 4.7 for the
direct regression and F = 7.3 for the reverse regression), the di�erence between the two
estimates is larger than one, where the direct 2SLS regression suggests decreasing returns
to scale and the reverse 2SLS regression provides the opposite results. These results are
somewhat contradictory but more plausible than these obtained by Hall (1990), who
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reported direct estimated returns to scale of 0.3 and reverse estimated returns to scale of
33.5. The evidence from Table 2.2 indicates the presence of weak instrument problem in
our data. Hence, we need to use in this case, more robust estimation methods, namely
the LIML and F-LIML estimators.

The LIML and F-LIML estimators reduce substantially the gap between the direct
regression and the reverse regression. The average direct and reverse di�erence is 0.04
for LIML and 0.06 for F-LIML, which are about 20% and 30% of those produced by
OLS and 2SLS. Hence, we avoid the contradiction between the two regression models.
For instance, one can safely say that the “Food and kindred Prod.” sector (SIC 20) is
characterized by a production technology with non-decreasing returns to scale, which
is range between 1.1 and 1.6. Closing the gap between direct and reverse estimates
can be viewed as an evidence that the LIML and F-LIML estimators are more robust
to weak instruments than 2SLS. Indeed, the weak instrument test proposed by Hahn
and Hausman (2002) is based on testing the di�erence between the direct and reverse
estimates.

I report in Table 2.4 the direct and reverse estimates of technical change, –̂. Similarly
to Diewert and Fox (2008), our estimates of – are low and insignificantly for many
sectors, which suggest that the e�ect of technical progress is modest when it comes to
explaining productivity growth. However, there is an exception, the technical change
parameter is positive and statistically significant for “Textile Mill prod.” sector (SIC
22) whereas returns to scale is not significantly di�erent from one. This results shows
that, unlike other sectors, the source of productivity growth for “Textile Mill prod.”
sector comes from positive technical progress rather than increasing returns to scale.

2.5 Conclusion

Following the theoretical developments, the empirical outcomes of this chapter provide
evidence of increasing returns to scale and relatively small technical progress. Compared
with prior studies, including Hall (1991), Bartelsman (1995), Basu and Fernald (1997)
and Diewert and Fox (2008), this chapter contains a more complete econometric analysis
and yield more convincing empirical results for the estimated coe�cients of returns to
scale.

This chapter compares the OLS, 2SLS, LIML and F-LIML estimators for the direct
and reverse regression models within the EIV framework. I show that the reliability
of 2SLS estimates is highly dependent on the strength of instruments. Our empirical
findings suggest that the LIML and F-LIML are clearly better estimation methods
when instruments are weak. The gap between the direct and reverse LIML and F-
LIML estimates are generally smaller than those of OLS and 2SLS estimates. The next
step of research on this topic may be oriented towards exploring richer databases, such
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as the four-digit NAICS manufacturing industries database from BLS or the six-digit
NAICS database from NBER-CES, and using panel data analysis. A further purpose
is to generalize these findings to nonlinear specifications of the production technology
along the lines of Kumbhakar and Tsionas (2011).

2.6 Appendix

Asymptotic Properties of the direct and reverse 2SLS estimators

Proof of Proposition 2.1.

The direct 2SLS estimator of our model can be written as:

—̂
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Since the observable output index is ỹt = —x̃t + Át, we can rewrite the estimator as:
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Under Assumption 2.2 and the law of large numbers,
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is non singular and we have:
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Thus, we have plim[—̂
2sls] = — + A≠10 = —. We can write:
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The central limit theorem implies that
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where B © E(x̃ÕZ)E(Z ÕZ)≠1E(Á2Z ÕZ)E(Z ÕZ)≠1E(Z Õx̃). Therefore,
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2sls ≠ —) ≥ N(0, A≠1BA≠1) .

The homoskedasticity assumption allows to simplifying the form of 2SLS asymptotic
variance to ‡2

ÁA≠1 .

Proof of Proposition 2.2.

The reverse 2SLS estimator is
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Similarly to Proposition 2.1, this estimator is consistent under Assumption 2.2. plim[—̂r2sls] =
— + C≠10 = —, where C © [E(ỹÕZ)E(Z ÕZ)≠1E(Z Õx̃)]. Again, by using the central limit
theorem, we have: Ô

T (—̂r2sls ≠ —) ≥ N(0, C≠1DC≠1) ,

where D © E(ỹÕZ)E(Z ÕZ)≠1E(Á2Z ÕZ)E(Z ÕZ)≠1E(Z Õỹ). Then, using the homoskedas-
ticity assumption, we have:

Avar[
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T (—̂r2sls ≠ —)] = ‡2

Á [E(x̃ÕZ)E(Z ÕZ)≠1E(Z Õx̃)]≠1 = ‡2

ÁA≠1 .



38CHAPTER 2. DIRECT AND REVERSE ESTIMATES OF RETURNS TO SCALE



Chapter 3

Hicks-neutral and Non-neutral
Productivity1

3.1 Introduction

The seminal paper of Olley and Pakes (1996) introduced a structural semi-parametric
method, the so-called control function approach, to deal with the endogeneity problem
encountered in estimating production functions. This class of estimation techniques has
been applied in a large number of recent empirical studies.2 Following Olley and Pakes
(1996), recent developments have exclusively focused on the Cobb-Douglas specifica-
tion, for example, Levinsohn and Petrin (2003), Ackerberg et al. (2006), Wooldridge
(2009), and De Loecker (2011).3 The Cobb-Douglas specification, however, is an ex-
treme restrictive assumption that ignores key features of the economy, in particular, the
non-neutrality of productivity improvements (biased technical change).

In general, the neutrality restriction can be relaxed by considering a class of pro-
duction functions where technical change is non-separable from the productive factor.
In particular the non-linearity of CES specifications allows us to study biased technical
change. But at the same time the non-linearity together with unobserved technical
change increases the di�culties in estimating parameters. In this chapter, I investigate
how a CES production function with biased technical change and non-constant returns
to scale can be consistently estimated.

Three approaches were used in the literature for estimating a CES production func-
tion. The most common estimation method uses the first order conditions of profit
maximization. Based on first order conditions, Berndt (1976) provided estimates of the
elasticity of substitution which are close to unity. Antràs (2004) showed that Berndt’s

1This chapter has been circulated under the title “Estimation of the CES Production Function with
Biased Technical Change: A Control Function Approach”, Chen (2012).

2Empirical studies using the Olley-Pakes control function approach include, for example, Javorcik
(2004), Konings and Vandenbussche (2008), and De Loecker (2011).

3The interested reader is referred to Ackerberg et al. (2007) and Van Beveren (2012).

39
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results are biased toward the Cobb-Douglas specification, because his estimates su�er
from spurious regression bias. The second approach uses the Kmenta (1967) approx-
imation to transform the nonlinear CES function into a linear-in-parameter equation
in order to facilitate estimation (for example, Thursby and Lovell, 1978). The third
one consists of estimating jointly the first order conditions and production function in
a system. The origin of this idea can be traced back to the paper of Nerlove (1967) and
a recent application is Klump et al. (2007). Chirinko (2008) provides a survey of the
recent literature and shows that the elasticity of substitution lies in the range of 0.4 to
0.6. for U.S. economy. However, all these estimation methods have their limits and are
not suitable for the purpose of this study. The first order conditions approach is based
on optimizing behavior of producers only, while the Kmenta approximation is based on
the production function that captures only technology. Based on di�erent aspects of
production analysis, the regression models produce divergent results and contribute to
the lack of consensus on the value of the substitution elasticity. Compared to single
equation approaches, the system estimation is able to provide more e�cient estimates
of technology parameters by using both aspects of information (production function
and first order conditions), see León-Ledesma et al. (2010). However, this estimation
strategy does not follow the recent developments that address the input simultaneity
problem.

Firm’s input decisions are typically related to productivity. Therefore, the Ordinary
Least Squares (OLS) estimation su�ers from the simultaneity bias. The traditional esti-
mation methods that control the simultaneity bias, include the Instrumental Variables
(IV), the fixed e�ect (Mundlak, 1961) and the dynamic panel (Arellano and Bond, 1991),
however are not able to provide satisfactory results in the case of production function
estimation, see Van Beveren (2012). Olley and Pakes (1996) have developed an alter-
native empirical strategy to overcome endogeneity problems. In this chapter, I combine
two strands of literature: the one that focus on estimating the CES production function
by using traditional methods (for example, Berndt, 1976, Antràs, 2004, Klump et al.,
2007 and León-Ledesma et al., 2010) and the one that deals with endogeneity problems
by using the semi-parametric estimation method with a Cobb-Douglas specification (for
example, Olley and Pakes, 1996, Levinsohn and Petrin, 2003 and De Loecker, 2011). I
contribute to the literature by proposing an extension of the Olley-Pakes method for
the CES production function with biased technical change, which allows consistent es-
timation of the degree of returns to scale, the elasticity of substitution, and the bias in
technical change. Both information on technology (characterized by production func-
tion) and optimizing behavior of producers (characterized by first order conditions) are
used to achieve identification.

This study di�ers from the existing literature in several ways. First, I generalize be-
yond the Cobb-Douglas specification to a more flexible CES production function with
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Hicks-neutral and factor-augmenting productivity shocks. I propose a semi-parametric
estimation method that is able to deal with the endogeneity bias caused by the two
unobserved productivity shocks. Second, since I have long time series for many sectors,
I estimate the model for di�erent periods and for di�erent sectoral groups in order to
understand the technology evolution and the intra-industrial distortion. Using data
from U.S. manufacturing industries over the period 1958-2005, it transpires that within
the class of CES production functions the unitary elasticity of substitution restriction
is rejected. I provide estimates of sectors-level returns to scale and elasticity of sub-
stitution, which are 0.95 and 0.63, respectively. The estimation results show that the
Cobb-Douglas-based estimator generally overestimates the degree of returns to scale. I
also find that the degree of returns to scale is diminishing over time and di�ers across
sectors. By using the estimated elasticity of substitution, I recover the growth rate of
relative biased technical change.

The remainder of this chapter is organized as follows: I first present the CES pro-
duction function with biased technical change and some implications in Section 3.2. In
Section 3.3, I discuss the control function approach, the identification conditions and the
estimation procedures. Empirical results and robustness checks are given and analyzed
in Section 3.4. Section 3.5 concludes.

3.2 A CES production function with biased technical change

Before going into the formal econometric analysis, I frame the problems and give the
precise definition of notions discussed above. Firstly, I focus on the CES functional
specification, then introduce the technical change terms.

3.2.1 CES specification

Consider a production function F (.) of two factors, labor (L) and capital stock (K)
with the value-added output, Y . The elasticity of substitution ‡ between capital and
labor is defined by the percentage change in factor proportions due to a change in the
relative marginal products, see Hicks (1932):

‡ © ≠ dlog(K/L)
dlog(FK/FL) Ø 0, (3.1)

where FK and FL denote ˆF/ˆK and ˆF/ˆL, respectively. Given this definition, Arrow
et al. (1961) derived an aggregate production technology with Constant Elasticity of
Substitution (CES):

Y = F (K, L) = C[–K
‡≠1

‡ + (1 ≠ –)L
‡≠1

‡ ]
fl‡

‡≠1 , (3.2)
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where C is the constant term. Factors are gross complements in production when
‡ < 1 and substitutes when ‡ > 1. The CES production becomes Cobb-Douglas when
‡ = 1. This function is homogeneous of degree fl in K and L. For any given value of
‡, the functional distribution of income is determined by – œ [0, 1]. This distribution
parameter also depends on the units in which capital and labor are measured and on
an arbitrary normalization point. Klump et al. (2012) emphasized the importance of
normalizing the CES function, when it comes to identifying the two terms, C and –.
Without normalization, the two parameters (C and –) could be any arbitrary point.
Here, I focus only on identifying the parameters ‡ and fl.

Given the two factors CES production function above, the parameter fl only repre-
sents the degree of returns to scale in capital and labor, i.e.,

fl © ˆlogY

ˆlogL
+ ˆlogY

ˆlogK
. (3.3)

When capital and labor are increased, if output increases in the same proportion, i.e.,
fl = 1, then the technology exhibits constant returns to scale. If output increases less
than proportionately, i.e., fl < 1, the technology exhibits decreasing returns to scale.
If output increases more than proportionately, i.e., fl > 1, the technology exhibits
increasing returns to scale. We also need to be aware of the degree of aggregation
under study. Basu and Fernald (1997) and Basu (2008) showed that the estimate of
returns to scale varies with the aggregation level, in particular it seems to be smaller in
disaggregated data. The estimation results presented in Section 3.4 are obtained from
U.S. manufacturing data at the six-digit NAICS level.

3.2.2 Factors-augmenting technical change

Technical change can enter the production function in di�erent ways. The most common
choice is the Hicks-neutral technology, i.e., AhF (K, L), as in the case of Cobb-Douglas
production function. Hicks-neutrality implies that technical change does not a�ect the
balance between labor and capital demand. Other economic neutrality conditions are
Harrod- and Solow-neutrality assumptions. If technical change is Harrod-neutral, the
production function becomes F (K, BlL), where Bl is the labor-augmenting productivity,
an increase in productivity is equivalent to having more labor. If technical change is
Solow-neutral, i.e., F (BkK, L), where Bk is the capital-augmenting productivity, an
increase in productivity is equivalent to saving capital. In this chapter, I relax these
neutrality assumptions by considering the following CES production function:

Y = AhF (BhK, BlL) = Ah[–(BkK)
‡≠1

‡ + (1 ≠ –)(BlL)
‡≠1

‡ ]
‡fl

‡≠1 . (3.4)
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Figure 3.1: Average capital-labor ratio and factor price ratio for U.S. manufacturing
industries in the period 1958-2005.

We can also rewrite this production function as:

Y = A[–(BK)
‡≠1

‡ + (1 ≠ –)L
‡≠1

‡ ]
‡fl

‡≠1 , (3.5)

where A © Ah/Bfl
l is the relative Hicks-neutral productivity, and B © Bk/Bl is the

relative capital-augmenting productivity.

Given a basic assumption that firms minimize costs, firms set marginal products
equal to input prices. The first order conditions of the CES production function under
cost minimization problem imply that:

K

L
=

3
–

1 ≠ –

4‡ 3
w

r

4‡

B‡≠1, (3.6)

where w and r denote the wage and the rental capital price, respectively. This equation
illustrates that the capital-labor ratio depends on the biased technical change but not
on the neutral technical change. If factors are complements in production (‡ < 1),
firms reduce their capital-labor ratio when they face an increase in relative capital-
augmenting productivity. If factors are substitutes (‡ > 1), firms raise their capital-
labor ratio. When ‡ = 1 (Cobb-Douglas specification), the e�ect of biased technical
change vanishes and the factors ratio becomes proportional to w/r.

Given any value of the elasticity of substitution, the growth of the capital-labor ratio
can be decomposed into two parts, the relative price e�ects and the biased technical
change e�ects. Figure 3.1 shows the evolution of average capital-labor ratio for U.S.
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manufacturing industries in the period 1958-2005.4 By examining this figure, we can
expect that ‡ was significantly di�erent from one in the period of the late 60s and early
80s. The next section presents the strategy for estimating the parameters of interest,
fl, ‡ and the growth rate of technical change by using the control function approach.

3.3 Identification and estimation via control functions

The assumption that data reflect technology and optimizing behavior of producers im-
plies that the DGP can be represented by a set of equations, which includes the pro-
duction function (technology) and the optimal input demand functions (optimization
behavior). Both aspects of information are used for identification, in particular the two
equations of our regression model are Equations (3.5) and (3.6).

logYit = fllogLit + fl‡

‡ ≠ 1log
5
–(Bit

Kit

Lit
)

‡≠1
‡ + (1 ≠ –)

6
+ logAit + Áit, (3.7)

Equation (3.7) is the logarithmic transformation of (3.5) with an error term appended;
i = 1, ..., N indexes sectors and t = 1, ..., T indexes time. The parameters fl and ‡

are our central parameters of interest. The scalar disturbance term Áit is an ex post
shock, which captures the exogenous shocks that are not anticipated by firms. Hence
Áit does not a�ect the optimal choice of labor demand and capital-labor ratio. The
endogenous variables Lit (optimal labor demand) and K

it

L
it

(optimal capital-labor ratio)
are partially determined by unobserved productivity shocks Ait and Bit. Similar models
have been studied by Chesher (2003), Imbens (2007), Imbens and Newey (2009) in the
nonparametric framework. Imbens and Newey (2009) provide various partial identifica-
tion results for the structural equation via the control function approach (e.g. average
derivatives, bounds for quantile and average structural function). However, these results
are not su�cient for recovering the two technology parameters fl and ‡. The principal
reason for the lack of point identification is that the unobserved variable Bit is not
additively separable from the regressors in the production function. Therefore, in the
following lines, I will linearize Equation (3.7) in order to obtain a more tangible form
for the empirical investigation.

Firstly, I eliminate the constant term and the potential individual e�ect by first-
di�erencing model (3.7):

—logYit = fl—logLit+
fl‡

‡ ≠ 1log

S

U –(Bit
K

it

L
it

)
‡≠1

‡ + (1 ≠ –)

–(Bit≠1

K
it≠1

L
it≠1

)
‡≠1

‡ + (1 ≠ –)

T

V+—logAit+—Áit. (3.8)

4This series is obtained by averaging the 462 U.S. manufacturing industries.
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Consider the optimal capital-labor ratio equation:

Kit

Lit
=

3
–

1 ≠ –

4‡ 3
wit

rit

4‡

B‡≠1

it , (3.9)

where the input price ratio w
it

r
it

is observed and exogenous w.r.t. Ait and Bit (firms are
assumed to be price-takers). We can use (3.9) to substitute the unobservable produc-
tivity shock Bit from Equation (3.8). Some algebraic manipulation yields:

log(1 ≠ –) + logSit = log
5
–(Bit

Kit

Lit
)

‡≠1
‡ + (1 ≠ –)

6

¸ ˚˙ ˝
Sú

it

, (3.10)

where the observed variable Sit is defined as r
it

K
it

w
it

L
it

+1 and Sú
it denotes a latent variable.

According to (3.10), one can replace the latent variable with the observed one, but as
in practice the substitution of the latent variable is usually not perfect, I introduce a
scalar measurement error term. This leads to a fully additive regression model:

—logYit = fl—logLit + “—logSú
it + —ait + —Áit; (3.11)

—logSit = —logSú
it + ÷it, (3.12)

where ait © logAit, “ © fl‡
‡≠1

and ÷it is a classical (zero-mean and uncorrelated with
—logSú

it) measurement error term.
The model (3.11)-(3.12) can be viewed as an EIV (Error-in-Variable) model in which

we are still facing two endogeneity problems. The first endogeneity problem is due to
the Hick-neutral productivity shock that a�ects the optimal labor demand decision of
firms, then the regressor —logLit is correlated with the unobserved term —ait. The
second endogeneity problem is that the regressor —logSit is correlated with the mea-
surement error ÷it. There are di�erent ways of estimating the parameters in linear
regression models with endogenous regressors. 2SLS is one of the most common esti-
mators in linear IV regressions. An asymptotically-equivalent alternative is the control
function approach. In this chapter, I use the latter approach because of the lack of valid
instruments for controlling productivity shocks. The following sections discuss the con-
trol function approach, the identification conditions and the estimation procedures. I
also compare the estimations based on di�erent production function specifications (CES
versus Cobb-Douglas).

3.3.1 Control function approach

The control function approach was first developed and applied to correct the selection
bias of binary response models in Heckman and Robb (1985). This method has been
extended for identification of a wide class of models where the explanatory observed
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variables and the explanatory unobserved variables are not independently distributed.
For instance, it is used for triangular simultaneous equations models in Imbens and
Newey (2009), for treatment e�ect models in Heckman and Vytlacil (2007) and for
measurement error models in Hahn et al. (2008). The use of the control function ap-
proach for estimating a production function was introduced by Olley and Pakes (1996).
The control function approach is a closely related alternative to the classical IV method.
In 2SLS estimation, the exogenous variations of instruments are used directly for con-
structing moment conditions, while the idea of the control function approach is to use
control variables (either observed or estimated) that purge the dependence between the
observed and unobserved explanatory variables.

Formally, consider a general regression model, y = f(x, u), where the regressor x

is correlated with the error term u. Given the assumption that x and u are indepen-
dent conditionally on a control variable v, Imbens and Newey (2009) give a set of the
identification results for this nonlinear models with non-separable disturbances. The
identification power of the control variable (v) can be illustrated by the following equa-
tion (Imbens and Newey, 2009, p.1488). For any integrable function �(y),

E[�(y) | x, v] =
ˆ

�(f(x, u))Fu|x,vdu

=
ˆ

�(f(x, u))Fu|vdu = E[�(y) | v],

where Fu|. is the conditional cumulative distribution function (CDF) of u. The identi-
fication comes from the fact that the unobserved variable u of the structural equation
can be integrated out by conditioning on v. Since in this chapter, we are dealing only
with the linear regression model, a weaker assumption is su�cient: x and u are mean-
independent conditionally on v, instead of the stochastic independence. For the rest of
this chapter, a valid control variable is defined as follows:

Definition 2.1. A valid control variable is any observable or estimable variable v such
that x and u are mean-independent conditionally on v, i.e.,

E[u | x, v] = E[u | v], (3.13)

where x and u are not independently distributed.

Now, as a concrete example consider a simple linear regression model:

y = —x + u, (3.14)
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with the reduced form equation of x:

x = g(z, v), (3.15)

where the variable z is assumed to be a valid instrument that is highly correlated with x

and uncorrelated with u and v. The endogeneity of x arises if and only if u is correlated
with v. I assume that v is observable or estimable and can be used as a proxy for u:

u = m(v) + e, (3.16)

where E[ve] = 0. Plugging (3.16) into the linear regression model (3.14) gives:

y = —x + m(v) + e, (3.17)

where the function of v is viewed as an additional regressor. It can be shown that v is
a valid control variable, which satisfies (3.13), i.e., E[u | x, v] = E[u | g(z, v), v] = E[u |
z, v] = E[u | v]. The identification of — is achieved in the model (3.17) if and only if
x is not an deterministic function of v. Otherwise, there is a collinearity problem, i.e.,
y = —g(v) + m(v) + e. Thus, in this setup the identification requires the presence of at
least one exogenous variable z in (3.15), which satisfies E[u | z, v] = E[u | v]. This is
similar to the rank condition in the 2SLS estimation. Since x and v are uncorrelated with
the error term e, the parameter — and the function m(.) can be consistently estimated
by using the Robinson (1988) estimator. Compared to the 2SLS estimator, the main
advantage of using the control function approach in linear regression models is that
this estimation method can be implemented whether the instrument z is observed or
unobserved.

When instrument z is not available in the data but several candidates of the control
variable are observed (typical choices of the control variable for controlling productivity
shocks, are the investment, Olley and Pakes, 1996 and the material demand, Levinsohn
and Petrin, 2003), then the model (3.17) can be directly estimated. While when z is
observed but v is unobserved, the control variable is estimated by using x and z in the
first stage of the estimation. For instance, the estimated conditional CDF of x given z

has been proved to be a valid control variable, see Imbens and Newey (2009).

3.3.2 Identification conditions

We return to our model of interest, the CES-based model (3.11)-(3.12). The two poten-
tial sources of bias are the endogeneity caused by the unobserved productivity shock,
ait, and by the measurement error, ÷it. For controlling the first endogeneity problem
(caused by the productivity shock), it seems hard to find a valid instrument but con-
trol variables are available. For controlling the second endogeneity problem (caused
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by the measurement error), valid instruments are available. Thus, the treatments of
the two endogeneity problems are di�erent. Now, I provide conditions that guarantee
identification of our model.

Assumption 3.1. For any observation (indexed by i and t), there is a variable V
1it

such that the labor demand Lit can be written as:

Lit = L(Z
1it, V

1it), (3.18)

where ait is mean-independent of Z
1it given V

1it.

Under Assumption 3.1 the dependence between regressors and the unobserved pro-
ductivity shock ait can be purged by conditioning on variable V

1it. The identification
of the model (via control variable V

1it) is achieved as long as there is some exogenous
variation in either Lit or V

1it. To see this point, note that:

E[ait | Lit, V
1it] = E[ait | L(Zit, V

1it), V
1it] = E[ait | Z

1it, V
1it] = E[ait | V

1it], (3.19)

where the last equality follows from the mean-independence condition. The choice of
control variables depends essentially on whether it satisfies Assumption 3.1. Given an
observed control variable V

1it, one can replace ait with a nonparametric function of V
1it.

In a similar way, the second endogeneity problem (caused by the measurement error,
÷it) can be solved by using the next assumption:

Assumption 3.2. For any observation, at least one valid instrument is available such
that:

—logSit = h(Z
2it) + V

2it, (3.20)

where ÷it is mean-independent of Z
2it given V

2it.

The additivity restriction is imposed in (3.20) for simplifying the estimation proce-
dure. Given the data at hand, V

2it is not observed. However, we can assume that the
growth rate of w

it

r
it

or the lagged values of Sit are valid instruments (Z
2it) and estimate

V
2it in the first-stage. The traditional approach in the linear EIV case is to estimate the

model by using the 2SLS estimator. But the estimation procedure based on the control
function approach is more convenient here. Under Assumption 3.2, the residuals V

2it is
a valid control variable:

E[÷it | —logSit, V
2it] = E[÷it | h(Z

2it) + V
2it, V

2it] = E[÷it | Z
2it, V

2it] = E[÷it | V
2it],
(3.21)

and by construction V
2it is a proxy for ÷it, then the model (3.11)-(3.12) can be identified
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by inverting out ÷it.

3.3.3 Estimation procedures

Now I describe the estimation procedure for the CES based model (3.11)-(3.12), which
follows closely the previous identification discussion. I also review briefly the estimation
strategy proposed by Olley and Pakes (1996) for the Cobb-Douglas model, which is
included in our empirical studies for comparison.

The Cobb-Douglas based model (Olley and Pakes, 1996) The regression model
based on the Cobb-Douglas production function is:

—logYit = —l—logLit + —k—logKit + —ait + —Áit. (3.22)

Olley and Pakes (1996) assume that the investment function It(.) is strictly monotonic
in ait, i.e.,

Iit = It(Kit, ait). (3.23)

Then (3.22) can be inverted to ait = I≠1

t (Kit, Iit), where the variables Kit and Iit are
used as control variables. Substituting this inverse function into the model (3.22), we
have:

—logYit = —l—logLit + �(Kit, Iit, Kit≠1

, Iit≠1

) + —Áit, (3.24)

where �(Kit, Iit, Kit≠1

, Iit≠1

) = —k—logKit+I≠1

t (Kit, Iit)≠I≠1

t≠1

(Kit≠1

, Iit≠1

). Thus, we
can estimate the parameter —l and the nonparametric functions by applying Robinson’s
(1988) estimator on (3.24). Olley and Pakes (1996) assume that productivity ait evolves
exogenously as a first-order Markov process:

ait = E[ait | informationt≠1

] + ›it

= E[ait | ait≠1

] + ›it,

where a firm’s expectations about future productivity depend only on ait≠1

, and ›it

is the unexpected innovation in ait that is orthogonal to the information set at t ≠ 1,
i.e., E[›it | informationt≠1

] = 0. Assuming a linear model ait = · + flait≠1

+ ›it, the
implied innovation term is ›it = ait ≠ · ≠ flait≠1

. Given the estimated coe�cient —̂l

of the first-stage estimation, we can rewrite the unexpected innovation as a parametric
function of observations:

›it(—k, ·, fl) = logYit ≠ —̂llogLit ≠ —klogKit ≠ · ≠ fl(logYi≠1

≠ —̂llogLit≠1

≠ —klogKit≠1

).

Typically, the production timing assumption suggests that the period s capital de-
mand (Kis) and the period s ≠ 1 labor demand (Lis≠1

), for s Æ t, are decided upon
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at t ≠ 1 or before, and are included in the information set at t ≠ 1. This assumption
implies that both Kis and Lis≠1

must be uncorrelated with the unexpected innovation
(›it ). In particular, I estimate the parameter —k, · and fl by using GMM with the
following instruments: the capital accumulation at t (—logKit) and the lagged value of
labor demand (logLit≠1

).5 Given the estimates of —l and —k, the degree of returns to
scale is computed as the sum of the two estimated parameters, fl̂CD = —̂l + —̂k under
the Cobb-Douglas specification. The estimator fl̂CD is a sequential two-step estimator
whose standard error is computed using the bootstrap.

The CES based model The treatment of the unobserved productivity ait remains
the same as in the Olley-Pakes estimation method, but the additional di�culty here is
that the regressor —logSit is correlated with the measurement error ÷it. Consider the
model (3.11)-(3.12) where the term —ait is substituted as before:

—logYit = fl—logLit + “—logSit ≠ “÷it + Ï(Kit, Iit, Kit≠1

, Iit≠1

) + —Áit, (3.25)

with Ï(Kit, Iit, Kit≠1

, Iit≠1

) = I≠1

t (Kit, Iit) ≠ I≠1

t≠1

(Kit≠1

, Iit≠1

). If the control variable
is directly observed, the measurement error term ÷it can be proxied by a nonparametric
function, i.e., E[“÷it | V

2it] = �(V
2it). However, the control variable V

2it is unobserved,
then it has to be estimated first. Assume that the growth rate of input price ratio,
i.e., Z

2it = w
it

r
it

is a valid instrument that satisfies Assumption 3.2. The preliminary
estimated values of the control variable V

2it are obtained based on the kernel estimation:
V̂

2it = —logSit ≠ ĥ(Z
2it). Since we cannot insert an estimated variable into a nonlinear

function, we need to restrict the nonparametric function �(.) to a linear parametric one,
i.e., E[“÷it | V

2it] = ≠◊V
2it.

—logYit = fl—logLit + “—logSit + ◊V̂
2it + Ï(Kit, Iit, Kit≠1

, Iit≠1

) + —Áit. (3.26)

Therefore, the parameter fl, “ and ◊ can be consistently estimated by using the Robin-
son (1988) estimator. Since the first-stage estimation is nonparametric, the asymptotic
variance matrix of the estimator depends on preliminary estimates and it is di�cult to
compute using general results for semi-parametric regression models. Thus, the corre-
sponding standard errors are obtained using the bootstrap. Henceforth, the estimated
elasticity of substitution is recovered as: ‡̂ = “̂

“̂≠fl̂ .

3.3.4 Bias of the Cobb-Douglas specification

Now the question is, what di�erences should we expect in term of estimation outcomes
between the Cobb-Douglas-based regression model and the CES-based regression model.

5The starting values of GMM estimation is: c = 0, fl = 1 and —̂

ols

k

obtained by regressing —â

it

©
—logY

it

≠ —̂

l

—logL

it

≠ —

k

—logK

it

on —logK

it

.
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Firstly, the Cobb-Douglas model sets the elasticity of substitution, ‡, to one. Thus, if
the economy was not characterized by the Cobb-Douglas technology, then we should
find estimates of ‡ that significantly di�er from one. Secondly, both models produce
estimates of returns to scale, fl. I will show in the following lines that the Cobb-Douglas
specification may overestimates the returns to scale.

For the sake of clarity and convenience, I focus only on the bias of misspecifica-
tion. Thus, the technical change terms, Ait and Bit are disregarded in this subsection.
Consider the Kmenta approximation of (3.2):

logYit = C + fl–logKit + fl(1 ≠ –)logLit + 1
2fl

‡ ≠ 1
‡

–(1 ≠ –)(logKit ≠ logLit)2, (3.27)

where C is the constant term. The last term of the right hand side is ignored when one
considers the Cobb-Douglas production function. The first-di�erence transformation
yields:

—logYit = fl–—logKit + fl(1 ≠ –)—logLit (3.28)

+1

2

fl‡≠1

‡ –(1 ≠ –)[(logKit ≠ logLit)2 ≠ (logKit≠1

≠ logLit≠1

)2].

If —̂k and —̂l are the estimated coe�cients of —logK and —logL based on the Cobb-
Douglas specification. According to the well known results of Theil (1957), the expec-
tations of these estimators are:

E(—̂k) = fl– + 1
2fl

‡ ≠ 1
‡

–(1 ≠ –)fîk; (3.29)

E(—̂l) = fl(1 ≠ –) + 1
2fl

‡ ≠ 1
‡

–(1 ≠ –)fîl, (3.30)

where fîk and fîl are the two estimates obtained from the regression of the omitted
variable, (logKit ≠ logLit)2 ≠ (logKit≠1

≠ logLit≠1

)2, on the included variables, —logKit

and —logLit. Thus, the bias of the estimated returns to scale by using the Cobb-Douglas
specification is:

E(—̂k + —̂l) ≠ fl = 1
2fl

‡ ≠ 1
‡

–(1 ≠ –)(fîk + fîl). (3.31)

Given the parameter fl is positive and – œ [0, 1], the bias of estimated returns to scale
based on the Cobb-Douglas specification are summarized in the following table.

The case of negative elasticity ‡ < 0 is not allowed by economic theory, but due
to estimation errors this case is empirically possible. Since the empirical results in this
chapter suggest that ‡ < 1 (see Section 3.4) and fîk + fîl is generally negative, we can
expect that the regression based on the Cobb-Douglas specification overestimates the
degree of returns to scale. The estimation results in the next section will confirm this
conclusion.
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Table 3.1: Bias of estimated returns to scale based on the Cobb-Douglas specification

fîk + fîl < 0 fîk + fîl = 0 fîk + fîl > 0
‡ < 1 overestimation unbiased underestimation
‡ = 1 unbiased unbiased unbiased
‡ > 1 underestimation unbiased overestimation
‡ < 0 underestimation unbiased overestimation

Table 3.2: Estimates of the full panel (1958-2005)

Cobb-Douglas CES
Labor (—l) 0.907 (0.008) -

Capital (—k) 0.306 (0.016) -
Returns to Scale (fl) 1.213 (0.019) 0.954 (0.025)

Elasticity of Substitution (‡) 1 0.629 (0.009)
fik + fil -0.524 (0.033)

3.4 Empirical investigation

The empirical investigation focuses on U.S. manufacturing industries at six-digit NAICS
aggregation level. The information needed for conducting the econometric analysis
comes from the NBER Manufacturing Industry database, which contains annual infor-
mation on output, employment, payroll, investment, capital stock and other inputs cost
together with prices deflators of 462 industries from 1958 to 2005. The construction of
this database has been discussed in the technical report of Bartlesman and Gray (1996).
The detailed description of this data set is reported in Appendix. Compared to firm-
level data sets, the NBER data set o�ers some advantages. Firstly, it contains the price
indexes that are the essential information for characterizing the optimizing behavior.
Secondly, it allows us to avoid the multiple products problem of the firm-level data.
Finally, at the six-digit NAICS aggregation level we still have a large number of sectors,
which guarantees a good asymptotic approximation for cross-sectional regressions.

3.4.1 Estimation results

I start by reporting the estimates of returns to scale and elasticity of substitution for
di�erent windows of observation and for di�erent sector groups. Then, given the esti-
mates of technology parameters, I recover the Hicks-neutral and the factor-augmenting
productivity and compute their annual growth rates.

Table 3.2 summarizes the estimation results over the full panel as well as the esti-
mated standard errors (obtained by using the bootstrap with 1000 replications). The
second column reports the estimates of parameters —l and —k based on the Cobb-Douglas
specification (following Olley and Pakes, 1996). The third column gives the estimation
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results for the CES model. The degree of returns to scale defined in (3.3) is computed as
the sum of —l and —k in the Cobb-Douglas model, which is 1.213 with a 95% confidence
interval [1.176, 1.250]. This result indicates that the industries were characterized by
increasing returns to scale technology. The estimated degree of returns to scale obtained
from the CES based model is 0.954 with a 95% confidence interval [0.906, 1.003], which
suggests that the technology exhibits non-increasing returns to scale. The estimated
elasticity of substitution is 0.629 with a 95% confidence interval [0.611, 0.647] that is far
from covering one. In Section 3.3.4, I showed that the Cobb-Douglas based estimation
of returns to scale su�ers from an omitted variables bias when the elasticity of substi-
tution di�ers from unity, see Table 3.1. The estimate of fik + fil in Equation (3.31) is
negative and significantly di�erent from zero, which indicates that the Cobb-Douglas
based regression overestimates the degree of returns to scale.

When T is large in the panel, one potential concern is the non-stationarity of the
data. The first-di�erence transformation could stationarize series in the linear function,
but not for nonlinear parts of the model. Therefore, given the non-stationarity the ques-
tion we need to ask is whether the estimation results obtained by using the long panels
are misleading? To answer this, I consider shorter panels, where T = 3 and compare
the estimation results with previous findings. In this case, the estimation relies mainly
upon the cross-sectional variation, thus the results are less a�ected by the problem of
non-stationarity. The estimation results are reported in Table 3.3. The evolution of es-
timated returns to scale and elasticity of substitution with the 95% confidence intervals
are depicted in Figures 3.2 and 3.3, respectively.

On the average, I find the similar estimation results as for the full panel case. The
average estimates obtained from the CES based model suggest that the industries were
characterized by a non-increasing returns to scale technology with the non-unitary elas-
ticity of substitution, while the Cobb-Douglas based model predicts increasing returns to
scale. The average estimated returns to scale obtained from the Cobb-Douglas specifica-
tion and the CES specification are 1.164 and 0.819, respectively. The average estimated
elasticity of substitution is 0.675.

Comparing the estimates of returns to scale obtained from the two models, we see
that the Cobb-Douglas based regressions overestimate the degree of returns to scale in
the majority of cases (14 out of 16 panels). Figures 3.2 and 3.3 show that the estimates
of returns to scale are diminishing over time in both models, while the estimates of the
elasticity of substitution are relatively stable. By regressing the estimates of returns to
scale on a linear trend, I find that the decreasing rates are 3.4% (based on the CES
specification) and 3.9% (based on the Cobb-Douglas specification) for each period of
three years. This result may reflect the fact that the growth of U.S manufacturing
industries was more and more driven by the technical change rather than the economies
of scale.
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From Figure 3.3, we can see that the confidence intervals of the estimated elasticity
of substitution lay entirely below one for 8 out of 16 panels. In 3 out of 16 panels,
the confidence intervals cover one, where we cannot conclude on the substitutability of
production factors. The estimated elasticity of substitution should not be heeded in 5
cases, because their standard errors are very large. For the cases in which the estimated
elasticity of substitution are significantly below unity, the estimates of fil + fik predict
correctly the bias of estimated returns to scale based on the Cobb-Douglas specification.
For example, in the panel “64-65-66”, the estimated fil +fik is significantly negative and
the Cobb-Douglas based regression overestimates the degree of returns to scale; in the
panel “88-89-90”, the estimated fil + fik is not significantly di�erent from zero and the
two estimates of returns to scale are close.

The size of elasticity of substitution has important economic implications, for ex-
ample ‡ is critical for determining the pattern of capital accumulation or the path of
growth. Previous estimation procedures only produce the economy’s aggregated esti-
mates. The elasticity of substitution, however, may di�er across sectors. Now I stratify
the panel according to the sectoral classification (the 3-digit NAICS) and perform the
regressions for each sub-group of manufacturing industry. The estimation results are
reported in Table 3.4. Figures 3.4 and 3.5 depict the corresponding estimates with 95%
confidence intervals for di�erent sectors.

There are significant di�erences among the estimates of technology parameters
across the sectors. The estimates of returns to scale lay in the range of 0.566 to 1.173
with the CES model, and the estimates of the elasticity of substitution lay in the range
of 0.479 to 0.865. As for previous findings, the Cobb-Douglas based regressions overes-
timate the degree of returns to scale in the majority of sectors, expect for Sector 316
(Leather & allied prod) where the estimated returns to scale by considering the CES
specification is higher. All estimates of the elasticity of substitution are significantly
below one, which rejects once again the Cobb-Douglas specification. In 15 out of 20
cases, the estimates of fil + fik are negative and significantly di�erent from zero, which
explain the overestimation of returns to scale by the Cobb-Douglas based regression. In
other cases, the estimates of fil+fik have relatively large estimated standard errors that
we cannot conclude on the direction of the bias for the Cobb-Douglas based regression.
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Table 3.3: Estimates with the short panel of 3 periods

Cobb-Douglas CES
Panels —

l

—

k

—

l

+ —

k

fl ‡ fi

k

+ fi

l

58-59-60 1.066
(0.032)

0.258
(0.076)

1.324
(0.087)

1.237
(0.064)

0.377
(3.790)

≠0.959
(0.108)

61-62-63 1.019
(0.027)

0.623
(0.088)

1.642
(0.090)

1.060
(0.074)

0.847
(0.045)

≠0.051
(0.137)

64-65-66 0.958
(0.033)

0.478
(0.151)

1.436
(0.144)

1.001
(0.073)

0.819
(0.041)

≠0.245
(0.092)

67-68-69 0.981
(0.043)

0.383
(0.098)

1.364
(0.101)

1.107
(0.078)

0.861
(0.023)

≠0.519
(0.125)

70-71-72 0.783
(0.029)

0.816
(0.112)

1.600
(0.115)

0.860
(0.127)

0.910
(0.075)

≠0.236
(0.193)

73-74-75 0.972
(0.044)

≠0.486
(0.148)

0.487
(0.156)

0.766
(0.076)

0.837
(0.035)

0.125
(0.172)

76-77-78 0.903
(0.037)

0.408
(0.128)

1.310
(0.126)

0.831
(0.094)

0.622
(0.193)

0.386
(0.147)

79-80-81 1.137
(0.051)

0.091
(0.096)

1.228
(0.112)

0.965
(0.103)

0.685
(0.078)

≠0.652
(0.115)

82-83-84 0.971
(0.048)

0.394
(0.127)

1.365
(0.127)

0.551
(0.122)

0.691
(0.072)

≠0.300
(0.134)

85-86-87 0.848
(0.040)

0.340
(0.132)

1.188
(0.133)

0.716
(0.126)

≠0.266
(11.247)

≠0.524
(0.183)

88-89-90 0.762
(0.049)

0.095
(0.117)

0.856
(0.122)

0.735
(0.136)

0.767
(0.067)

0.198
(0.142)

91-92-93 0.716
(0.037)

0.325
(0.148)

1.041
(0.151)

0.478
(0.089)

0.829
(0.449)

0.626
(0.124)

94-95-96 0.605
(0.053)

0.376
(0.197)

0.981
(0.207)

0.601
(0.186)

0.905
(0.234)

0.256
(0.133)

97-98-99 0.833
(0.053)

0.225
(0.100)

1.057
(0.142)

0.622
(0.148)

0.656
(0.092)

≠0.461
(0.170)

00-01-02 0.803
(0.041)

0.121
(0.152)

0.924
(0.175)

1.045
(0.169)

0.812
(5.444)

0.169
(0.227)

03-04-05 0.580
(0.054)

0.251
(0.134)

0.831
(0.123)

0.532
(0.198)

0.451
(37.401)

≠0.450
(0.131)

Mean 0.871 0.293 1.164 0.819 0.675 -
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Figure 3.2: Estimates of returns to scale with 95% confidence intervals
Note: the sloping line represents the fitted line of the regression of estimates on a linear trend.

E
la

st
ic

ity
 o

f s
ub

st
itu

tio
n

-0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

58
-59

-60

61
-62

-63

64
-65

-66

67
-68

-69

70
-71

-72

73
-74

-75

76
-77

-78

79
-80

-81

82
-83

-84

85
-86

-87

88
-89

-90

91
-92

-93

94
-95

-96

97
-98

-99

00
-01

-02

03
-04

-05

Figure 3.3: Estimates of elasticity of substitution with 95% confidence intervals
Note: the horizontal line represents the average value of estimates when the panels “59-59-60”,

“64-65-66”, “67-68-69”, “00-01-02” and “03-04-05” are disregarded.
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Table 3.4: Estimates with sectoral stratification

Cobb-Douglas CES
Sectors N · T —

l

—

k

—

l

+ —

k

fl ‡ fi

k

+ fi

l

Food mfg (311) 2112 0.809
(0.042)

0.384
(0.112)

1.242
(0.127)

0.767
(0.121)

0.546
(0.048)

≠2.108
(0.100)

Beverage & tobacco prod. (312) 432 0.768
(0.077)

0.191
(0.136)

1.035
(0.197)

0.785
(0.212)

0.557
(0.106)

≠0.789
(0.199)

Textile & mills (313&314) 864 0.820
(0.041)

0.241
(0.085)

1.129
(0.106)

0.566
(0.111)

0.709
(0.055)

≠0.592
(0.101)

Apparel (315) 1104 0.838
(0.031)

0.152
(0.066)

1.032
(0.088)

0.940
(0.111)

0.795
(0.082)

≠2.847
0.163)

Leather & allied prod.(316) 480 0.847
(0.057)

≠0.147
(0.194)

0.713
(0.199)

0.715
(0.164)

0.865
(0.050)

≠1.218
(0.221)

Wood product mfg (321) 672 0.794
(0.043)

0.197
(0.120)

1.040
(0.123)

0.791
(0.087)

0.687
(0.042)

0.146
(0.092)

Paper mfg (322) 960 0.742
(0.039)

0.240
(0.126)

1.051
(0.178)

0.579
(0.253)

0.642
(0.058)

≠0.638
(0.164)

Printing (323) 576 0.870
(0.024)

0.201
(0.108)

1.122
(0.127)

1.032
(0.110)

0.664
(0.034)

≠0.862
(0.106)

Petroleum & coal prod. (324) 240 0.890
(0.125)

0.294
(0.212)

1.230
(0.279)

1.089
(0.358)

0.677
(0.118)

0.160
(0.305)

Chemical mfg (325) 1632 0.814
(0.041)

0.191
(0.145)

1.049
(0.151)

0.598
(0.097)

0.479
(0.074)

≠0.422
(0.096)

Plastics & rubber prod. (326) 768 0.967
(0.040)

0.377
(0.097)

1.143
(0.095)

0.806
(0.094)

0.562
(0.048)

≠0.341
(0.073)

Nonmetallic mineral prod.(327) 1152 0.952
(0.029)

0.002
(0.071)

1.019
(0.077)

0.994
(0.065)

0.568
(0.029)

0.099
(0.084)

Primary metal mfg (331) 1248 0.966
(0.052)

0.032
(0.145)

1.044
(0.154)

0.961
(0.131)

0.627
(0.051)

≠0.669
(0.145)

Fabricated metal prod. (332) 2064 0.925
(0.020)

0.268
(0.114)

1.243
(0.117)

1.029
(0.064)

0.639
(0.024)

0.005
(0.077)

Machinery (333) 2352 1.012
(0.025)

0.153
(0.136)

1.215
(0.138)

1.041
(0.075)

0.613
(0.049)

≠0.548
(0.070)

Computer & electro. prod. (334) 1344 0.867
(0.031)

0.679
(0.097)

1.592
(0.101)

1.173
(0.085)

0.479
(0.209)

≠1.062
(0.147)

Electrical equipment (335) 1056 0.906
(0.040)

0.204
(0.092)

1.157
(0.094)

0.694
(0.111)

0.680
(0.042)

≠0.169
(0.106)

Transportation equipment (336) 1440 1.160
(0.029)

0.031
(0.071)

1.235
(0.075)

0.991
(0.105)

0.669
(0.035)

≠0.438
(0.103)

Furniture & related prod.(337) 576 0.856
(0.042)

0.185
(0.125)

1.088
(0.148)

0.788
(0.167)

0.812
(0.054)

≠0.344
(0.105)

Miscellaneous (339) 1104 0.770
(0.031)

0.294
(0.101)

1.111
(0.112)

0.812
(0.160)

0.641
(0.083)

≠0.740
(0.086)
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Figure 3.4: Estimates of returns to scale with 95% confidence intervals for di�erent
sectors

Note: the horizontal line represents the average value of estimates.
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Figure 3.5: Estimates of elasticity of substitution with 95% confidence intervals for
di�erent sectors

Note: the horizontal line represents the average value of estimates.
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3.4.2 Recovering the Hicks-neutral and factor-augmenting productiv-
ity

Given the estimates of technology parameters, I can now recover the relative Hicks-
neutral and factor-augmenting productivity in logarithmic forms, logAit and logBit, and
then compute the corresponding growth rates. The term logAit is defined as logAit =
logAhit ≠ fllogBlit and the term logBit is defined as logBit = logBkit ≠ logBlit, where
Ah is the net Hicks-neutral productivity, Bl is the net labor-augmenting productivity
and Bk is the net capital-augmenting productivity, see Equation (3.5). Since the net
productivity terms cannot be identified separately, we only interpret the productivity
measures in relative terms.

Given the estimates obtained from the CES based regression, the relative Hicks-
neutral productivity logAit is recovered by using Equation (3.7) as:

logÂit + c = logYit ≠ fl̂logLit ≠ “̂logSit, (3.32)

where c = “log(1 ≠ –). For the sake of comparison, we can also compute the Hicks-
neutral productivity under the Cobb-Douglas model, which is denoted with superscript
CD.

logÂCD
it = logYit ≠ —̂llogLit ≠ —̂klogKit. (3.33)

Given the estimated elasticity of substitution, I can invert the capital-labor ratio equa-
tion (3.9) to obtain the expression of logarithmic relative factor-augmenting productiv-
ity:

logB̂it + d = ‡̂

‡̂ ≠ 1log rit
wit

+ 1
‡̂ ≠ 1logKit

Lit
, (3.34)

where d = ‡
‡≠1

log
1

–
1≠–

2
. As mentioned above the parameter – is not identified under

our estimation procedure, but this is not a problem here, these constant terms do not
a�ect the estimation of the growth rate.

Consider the estimates obtained from the full panel cases,6 after averaging over
sectors, I examine the time variation of the aggregated productivity growth rates:

⁄At © N≠1

Nÿ

i

—logÂit and ⁄Bt © N≠1

Nÿ

i

—logB̂it.

Figure 3.6 compares the estimation of the relative Hicks-neutral productivity growth,
⁄At and of the relative labor-augmenting productivity growth, ≠⁄Bt obtained from the
CES based model for the period 1959-2005.

6Under the CES specification, the estimates are: ‡̂ = 0.629, fl̂ = 0.954, “̂ = 1.617 and ◊̂ = ≠1.655;
under the Cobb-Douglas specification, the estimates are: —̂

l

= 0.907 and —̂

k

= 0.306
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Figure 3.6: Estimation of the relative Hicks-neutral and the relative labor-augmenting
productivity growth rates (⁄At and ≠⁄Bt ) for the period 1959-2005

Figure 3.6 shows that both time series are stationary and that the relative labor-
augmenting productivity growth rates (≠⁄Bt ) is more volatile than the relative Hicks-
neutral productivity growth rates (⁄At ). The time series of the relative labor-augmenting
productivity growth consists of two main spikes. The earlier spike was in 1967, and the
second one has been in 1995 where a spike of ⁄At appeared at the same period. The two
series are positively correlated with a correlation coe�cient of 0.486. Now, by averaging
over sectors and periods, I compute the average (annual) productivity growth rates as:

⁄̄A © T ≠1N≠1

Tÿ

t

Nÿ

i

—logÂit and ⁄̄B © T ≠1N≠1

Tÿ

t

Nÿ

i

—logB̂it.

I obtain an average Hicks-neutral productivity growth (⁄̄A) of 3.37% based on the
CES model (3.32), while under the Cobb-Douglas model (3.33) the average Hicks-
neutral productivity growth is 1.89%. I find that labor-augmenting technical progress
grew annually about 6.42% faster than capital-augmenting technical progress, i.e.,
⁄̄B = ⁄̄Bk ≠ ⁄̄Bl = ≠6.42%, where ⁄̄Bk denotes the net capital-augmenting produc-
tivity growth rate and ⁄̄Bl denotes the net labor-augmenting productivity growth rate.7

Our estimation of ⁄̄B is larger than the one obtained by Antràs (2004), i.e., 3.15%.
But both findings lead to the same conclusion that when the production technology is
characterized by ‡ < 1, all firms have the incentive to pursue labor-augmenting inno-
vations on the balanced growth path rather than capital-augmenting innovations (the
theoretical justifications can be found in Acemoglu, 2003).

7Under the Cobb-Douglas specification, by construction, the net factor-augmenting productivity
growth is restricted to zero, i.e., ⁄̄

Bl = ⁄̄

Bk = 0.
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Table 3.5: Estimates of average productivity growth rates with sectoral heterogeneity

Sectors N · T fl ‡ ⁄̄

A

⁄̄

B

Food mfg (311) 2112 0.767 0.546 0.037 ≠0.071
Beverage & tobacco prod. (312) 432 0.785 0.557 0.039 ≠0.064
Textile & mills (313&314) 864 0.566 0.709 0.035 ≠0.083
Apparel (315) 1104 0.940 0.795 0.051 ≠0.223
Leather & allied prod.(316) 480 0.715 0.865 0.023 ≠0.242
Wood product mfg (321) 672 0.791 0.687 0.025 ≠0.064
Paper mfg (322) 960 0.579 0.642 0.026 ≠0.060
Printing (323) 576 1.032 0.664 0.023 ≠0.072
Petroleum & coal prod. (324) 240 1.089 0.677 0.045 ≠0.062
Chemical mfg (325) 1632 0.598 0.479 0.035 ≠0.042
Plastics & rubber prod. (326) 768 0.806 0.562 0.036 ≠0.056
Nonmetallic mineral prod.(327) 1152 0.994 0.568 0.028 ≠0.040
Primary metal mfg (331) 1248 0.961 0.627 0.027 ≠0.050
Fabricated metal prod. (332) 2064 1.029 0.639 0.024 ≠0.053
Machinery (333) 2352 1.041 0.613 0.023 ≠0.054
Computer & electro. prod. (334) 1344 1.173 0.479 0.070 ≠0.072
Electrical equipment (335) 1056 0.694 0.680 0.031 ≠0.063
Transportation equipment (336) 1440 0.991 0.669 0.028 ≠0.041
Furniture & related prod.(337) 576 0.788 0.812 0.030 ≠0.107
Miscellaneous (339) 1104 0.812 0.641 0.031 ≠0.066

The previous estimation of productivity growth are obtained by assuming that all
sectors have the same technology, which is characterized by the degree of returns to
scale (fl) and the elasticity of substitution (‡) under the CES specification. However,
the results in Table 3.4 suggest that the production technology may di�er across sectors.
Table 3.5 summarizes the estimation of (relative) average productivity growth rates by
taking into consideration the sectoral heterogeneity. Figure 3.7 displays the estimated
values of average productivity growth rates for the 20 sectoral groups. In most cases, the
estimates of ⁄̄A lay in the range of 0.02 to 0.05; the estimates of ⁄̄B are negative (labor-
augmenting technical progress grew faster than capital-augmenting technical progress)
and lay in the range of -0.04 to -0.10. There are 3 outliers, which are sectoral groups
315, 316 and 334. Despite the sectoral di�erences, the estimation results obtained by
considering the sectoral heterogeneity are generally in line with the previous aggregated
estimation results.
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Figure 3.7: Estimation of average productivity (⁄̄A and ≠⁄̄B)

3.5 Conclusion

In this study, I introduced a new method of estimating a CES production function with
biased technical change, which extends the work of Berndt (1976), Olley and Pakes
(1996), Antràs (2004), Klump et al (2007) and Leon-Ledesma et al (2010). This ap-
proach is superior to its prior counterparts in three aspects. First, it employs a more
flexible production function specification; second, it is able to deal with the endogeneity
problem of input variables; third, the degree of returns to scale, the elasticity of substi-
tution and the growth rate of biased technical change can be estimated simultaneously.

The new empirical evidences presented in this chapter, show that the U.S manu-
facturing industries were characterized by decreasing returns to scale and non-unitary
substitution elasticity (below one) technology; the bias in technical change is mainly
labor-augmenting. Furthermore, the estimation results obtained by considering di�erent
windows of observation and stratified data sets, may throw some light on the questions
such as the production technology evolution of last half century and the intra-industrial
distortion in U.S manufacturing sectors.
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3.6 Appendix

Presentation of Data set and Construction of Variables

Di�erent sources of data

The main source of information comes from the NBER-CES Manufacturing Indus-
try databases.8 These data reflect essentially the Annual Survey of Manufactures
(ASM) conducted by U.S. Census Bureau, which aggregates approximately 50,000 es-
tablishments to 473 six-digit NAICS manufacturing sector groups for the period 1958-
2005.9 The variables included in the database are output, employment (production/non-
production), payroll, investment, capital stocks, materials and energy cost together with
price deflators. The construction of this database has been discussed in the technical
report of Bartlesman and Gray (1996). Malley and Muscatelli (1999) provided further
detail on the definition of variables.

The variable payroll of the NBER data set does not include social security or other
legally mandated payments, or employer payments for some fringe benefits. Therefore,
the labor costs are systematically understated by this data set. In order to correct this
bias, we need to include fringe benefits. To this end, additional information is required,
especially the fringe benefits costs ratio, i.e, (fringe benefits/total compensation). Two
sources of information can be used, i.e., the 1992-2005 ASM tables and the National
Income and Product Account (NIPA) tables conducted by BEA.

The NIPA tables (especially Tables 6.2 - 6.3 and Tables 6.10 - 6.11), record the
compensation of employees, wage and salary accruals, legally required social insurance,
pension and insurance funds from 1948 to 2010 for 21 two-digit SIC sector groups.10

We can use these data for covering the period of 1958 to 1991 by assuming homogeneity
within sectors at the two-digit level. More disaggregated data (at four-digit SIC and
six-digit NAICS level) are available in the ASM tables. For the period 1992 to 1996, we
can find the value of fringe benefits recorded in SIC classification system, while for the
period 1997 to 2005 the data are collected in NAICS.

Construction of capital price

The NBER database provides the total real capital stock (K), then we need to construct
the rental price of capital (PK) by using the investment price index (PI). Consider the
following formula: PK,t © PI,t(1 + fit) ≠ Et[(1 ≠ ”t)PI,t+1

], where fi denotes the nominal
interest rate. In this study we use the 10-year U.S. treasury constant maturity rate,
which comes from the Federal Reserve Bank of St. Louis. ” is the physical depreciation
rate. The depreciation rate can be computed by using the classical capital accumulation

8The database is accessible on the website: www.nber.org/nberces/nbprod96.htm
9See the website: http://www.census.gov/manufacturing/asm/index.html

10See the website: http://www.bea.gov/national/nipaweb/Index.asp



64 CHAPTER 3. HICKS-NEUTRAL AND NON-NEUTRAL PRODUCTIVITY

equation, Kt = It + (1 ≠ ”t)Kt≠1

or set to be constant (in this chapter we assume that
” = 8%). Assuming that there is no expectation errors on PI,t+1

, the above formula
can be simplified as: PK,t © PI,t(”t + fit).

Construction of fringe benefits ratio

The total fringe benefits is the employer’s costs for legally required social insurance,
employee pension and insurance funds.11 The fringe benefits can be computed in two
manners: the di�erence between the total compensation and the payroll or the sum
of costs for social insurance, employee pension and insurance funds (the two methods
carry out the similar results in our data). Thus, the ratio of fringe benefits to total
compensation is used to magnify the labor costs of the NBER database. The main
di�culty of incorporating the fringe benefits into the NBER database is that the data are
recorded at di�erent aggregation level and in di�erent industrial classification systems
before 1997. We converted the 2-digit SIC data (for the period 1958-1990) of NIPA
tables and the 4-digit SIC data (for the period 1991-1996) of ASM tables in to the
NAICS data, according to the concordance proposed by Census Bureau.12

Sources of missing values The main source of missing values is that the data on
fringe benefits from the NIPA tables is only available at the 2-digit SIC level. Therefore,
we assume that the fringe benefits are invariant across sectors within the 2-digit SIC
industry group. The second source is that some 6-digit NAICS sectors are missing in
the ASM tables for the period of 2002 to 2005. In this case, we replace the missing
values by the variation rate of corresponding 5-digit NAICS sectors.13 The third source
of missing values is due to the concordance relationships between the 4-digt SIC and 6-
digit NAICS classification system. Some NAICS industry groups correspond to several
SIC industry groups. Thus, the fringe benefits of NAICS sector is computed as the
average of fringe benefits of its SIC counterparts. In some cases, the corresponding SIC
groups are not manufacturing industries. Consequently, their fringe benefits data are
not available and we simply disregard these non manufacturing SIC industry groups for
computing the average of fringe benefits.

Finally, we obtain a balanced panel data set that contains the output, adjusted
labor costs, capital cost, investment and material input costs with price deflators for
462 NAICS manufacturing industry groups over the period 1958-2005.

11The ASM define the fringe benefits as the expenditures for social security tax, unemployment
tax, workmen’s compensation insurance, state disability insurance pension plans, stock purchase plans,
union-negotiated benefits, life insurance premiums, and insurance premiums on hospital and medical
plans for employees.

12See the website: http://www.census.gov/eos/www/naics/concordances/concordances.html
13The variation rate of fringe benefits at period t of 6-digit sector = F

6≠digit

t≠1 · (1 + F

5≠digit
t

F

5≠digit
t≠1

), where
F denotes the fringe benefits rate.



Chapter 4

Fixed and Variable Cost1

4.1 Introduction

A long tradition going back to Viner (1931) considers that fixed costs correspond to the
cost of fixed inputs.2 However, splitting the whole set of inputs into two disjoint sets
(with either fixed or variable inputs) does not provide a faithful description of many
economically interesting technologies. If some variable inputs are substitutable to fixed
inputs, then this sharp distinction vanishes. This chapter extends the microeconomic
foundations of production analysis by allowing each input to have a fixed and a variable
part.

Empirical specifications of production and cost functions are also shaped by this
dichotomy between fixed and variable inputs. Some specifications consider fixed costs
to be the cost of the fixed inputs. Others, like the Cobb-Douglas, the CES, and even
flexible functional forms like the Translog, assume that fixed costs are nonexistent. We
propose a generalization of the Translog functional form which is compatible with inputs
having both a fixed and a variable part. Our empirical results support the extended
Translog specification and show that the fixed cost is significant and neglecting it yield
estimation biases, especially on the markup and the rate of returns to scale. Fixed costs,
although not functionally dependent on the output level, are correlated with output,
and should be explicitly considered to avoid these estimation biases. Our findings are
compatible with the predictions of models that incorporate heterogeneous technologies
(see e.g. Acemoglu and Shimer, 2000 and Cabral, 2012), in which there is a trade-o�
between production functions having a large fixed cost and low variable cost and those
with the converse configuration.

1This chapter has been circulated under the title “Fixed cost, variable cost, markups and returns to
scale”, Chen and Koebel (2013).

2In the words of Viner (1931, p.26): “It will be arbitrarily assumed that all of the factors can for the
short-run be sharply classified into two groups, those which are necessarily fixed in amount, and those
which are freely variable. [...] The costs associated with the fixed factors will be referred to as the fixed
costs”.

65
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Despite the challenging result of Baumol and Willig (1981, p.405) according to
which fixed costs “do not have the welfare consequences normally attributed to barriers
to entry”, there is a quite large literature on fixed inputs. Fixed costs are useful for
explaining coordination failure (Murphy et al., 1989) and international trade (Krugman,
1979 and Melitz, 2003). Blackorby and Schworm (1984, 1988) and Gorman (1995) have
shown that fixed inputs hamper the aggregation of production (and cost) functions,
whereas a fixed cost does not represent an aggregation problem. Fixed costs are also
considered in general equilibrium theory with imperfect competition, see for instance
Dehez et al. (2003). Contributions in the field of industrial organization on the reasons
and consequences of fixed (and sunk) cost, are so numerous that we cannot survey
them here. Berry and Reiss (2007) discuss some important issues on identification and
heterogeneity of fixed costs. Di�erences between fixed and sunk cost are commented by
Wang and Yang (2001, 2004) and Sutton (2007).

The objective of this chapter is to characterize and estimate both fixed and variable
components of the cost function, to investigate their heterogeneity over firms and study
how fixed costs a�ect their behavior in terms of price setting and returns to scale.
Microeconomic textbooks present alternative characterizations of fixed costs. We follow
Baumol and Willig (1981, p.406) and consider the long run fixed cost as the magnitude of
the total long run cost function when the production level tends to zero. This chapter
derives the production technology which generates the fixed cost, an issue which is
usually neglected when dealing with fixed cost. It is well known (see Mas-Colell et al.,
1995, p.135) that fictitious inputs can be used for imposing constant returns to scale
on arbitrary technologies. This chapter shows that the fixed cost of production can
be represented as the cost of fictitious (unobserved) inputs. We first characterize the
production technology which generates the traditional fixed cost and show that it is
quite restrictive and given by y = F (xv + xf ) where xv denotes the vector of variable
inputs and xf the fixed inputs. As total input x can always be additively split into
two categories, the structure F may be considered as perfectly general. However, two
physically similar inputs may be technologically di�erent and we propose to extend the
production function to y = G (xv, xf ). This extended production technology generates
a fixed cost which is not equal to the cost of inputs xf , and identification of fixed inputs
is no longer possible. However, the amount of inputs which allows to initiate production
is well identified.

Our theoretical contribution also requires extending the econometric toolbox for
estimating cost functions. First, usual cost function specifications are not compatible
with a flexible specification of the fixed cost. For approximating a cost function with a
fixed cost component, we have to go beyond (locally) flexible cost functions, and develop
a cost specification which is a valid approximation at two points: around the actual point
of production and around the breakup point which allows a firm to start production.
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Second, as the inputs xv and xf cannot be observed, we have to amend the traditional
estimation method by introducing unobserved and correlated heterogeneity in the fixed
and variable cost specification. We extend Swamy’s (1970) random coe�cient estimator
to our nonlinear setup. The empirical part of this chapter uses panel data for U.S.
manufacturing sectors in order to estimate the size and the type of fixed cost as well as
their implications in terms of markup pricing, returns to scale and technical change.

In Sections 4.2 and 4.3 we explore two definitions of fixed costs and their microe-
conomic foundations. Sections 4.4, 4.5, and 4.6 discuss econometric issues related to
fixed costs: biases when they are neglected, specification issues, and unobserved hetero-
geneity. Section 4.7 reports the empirical results, obtained for 462 U.S. manufacturing
industries observed over the years 1958 to 2005.

4.2 Defining fixed costs and fixed inputs

The definition of fixed costs is central in economics and is briefly discussed in most
introductory microeconomic textbooks.3 One di�culty with most definitions is that
they do not highlight the relationship between the fixed cost and the fixed inputs. Are
fixed inputs physically fixed? Do fixed inputs correspond to non-optimal choices? This
section shows that it is not necessarily the case: a fixed cost can arise in a context where
all inputs are optimally adjusted.

Most economists agree that the fixed cost u corresponds to the part of the cost which
does not vary with the level of production:

c (w, y) = u (w) + v (w, y) , (4.1)

where w denotes the input prices and y the output level. Function v corresponds to the
variable cost of production and satisfies v (w, 0) = 0. Any cost function can uniquely be
written in this way by defining:

u (w) © c (w, 0) (4.2)

v (w, y) © c (w, y) ≠ c (w, 0) .

We will comment the following alternative definitions for the fixed cost and fixed inputs.

Definitions 4.1. For an active firm, the fixed cost is
a) the accounting cost of the inputs which are physically fixed.
b) the cost of the inputs required for producing an arbitrarily small amount of output.

3It seems somewhat surprising, however, that the New Palgrave dictionary of economics has no
entry for the term “fixed cost”. The term is also not commented in Diewert’s (2008) contribution on
cost functions.
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Definition 4.1 does not require (at this stage) that the level of the fixed cost is optimal
(so it does not necessarily correspond to the minimal value of the accounting cost). In
Definition 4.1b the inputs required for initiating production could be physically fixed
but it is not necessary the case. Since the cost function is related to input demands x¶

by the accounting relationship c (w, y) = w€x¶ (w, y) for any y Ø 0, we obtain the level
of fixed cost compatible with Definition 4.1b as:

u (w) = lim
yæ0

+
c (w, y) = lim

yæ0

+
w€x¶ (w, y) .

This shows that Definition 4.1b implies that the fixed cost does not change with the
production level, but can change with w. Whereas it is straightforward to define variable
inputs as inputs whose level can be adjusted to minimize their accounting cost and can
possibly be set to zero, the definition of fixed inputs is more involved, as they are not
necessarily optimal, nor can they necessarily be set to zero.

We show that the fixed cost u (w) does not necessarily correspond to the cost of the
fixed inputs, but that it also includes a part of the cost of variable inputs when they
are su�ciently complementary to the fixed inputs. For instance, if capital is physically
fixed and energy is fully variable, but capital cannot be run without say 1000 KWh of
energy, then the part of the energy input which is necessary to run the fixed capital
input becomes fixed. It is the production technology which determines whether inputs
are variable or fixed and which part of each input is fixed or variable. This remark
has important implications for the specification of fixed and variable cost functions and
these have been largely ignored in the literature.

4.3 A microeconomic framework for fixed costs

The main result of this section characterizes an extended production function able to
describe fixed inputs in a more general way than the existing literature. A shortcoming
of the traditional restricted cost function (see Subsection 4.3.1), is that it relies on a
partition of all inputs into two disjoint categories: variable and fixed inputs. Actually,
similar inputs can be used for di�erent types of production activities. Engineers, for
instance, can be allocated to production or to research and development activities.
While engineer’s production increases the current output level, it is not the case when
they are allocated to research and development, which withdraws them from production
(like in Aghion and Howitt, 1992, for instance). Similarly, computers can be used either
for logistics, production management or accounting, activities which do not have the
same impact in terms of production and cost. Before presenting the extended production
and cost function, we shortly overview traditional production analysis.
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4.3.1 On the limitations of traditional production analysis

For modeling fixed inputs, production analysis relies on a partition of the input vector
x into two disjoint categories: those which can be adjusted (variable inputs, denoted Âx)
and those which are fixed or quasi-fixed (x):4

x =
A

Âx
x

B

Ø 0. (4.3)

The corresponding input prices are denoted by
1

Âw€, w€
2€

. The output level is given
by y = F (x) where F : RJ æ R denotes the production function which is increasing in
x. The restricted variable cost function is defined as:

Vr ( Âw, x, y) = min
ÂxØ0

Ó
Âw€Âx : F (Âx, x) Ø y

Ô
.

The properties of the restricted cost functions have been investigated by Lau (1976) and
Browning (1983). For empirical implementations see e.g., Caves et al. (1981), Pindyck
and Rotemberg (1983) and Morrison (1988). The total restricted cost function is given
by:

Vr ( Âw, x, y) + w€x, (4.4)

where the last term denotes the fixed cost. In the long-run, all the fixed inputs can
be adjusted at their optimal level and this defines the long-run or unrestricted cost
function:

c (w, y) = min
xØ0

Ó
Vr ( Âw, x, y) + w€x

Ô
= Âc (w, y) + c (w, y) , (4.5)

where Âc (w, y) = Vr ( Âw, xú (w, y) , y) represents the long run variable cost, and c (w, y) =
w€xú (w, y) is the long run fixed cost. Function xú denotes the optimal level of fixed
inputs, which, without further restrictions on Vr, depends on the production level. As a
consequence, this approach violates (in the long run) both definitions given in Definition
4.1. More than that, in the long run it is not possible to identify Âc separately from c,
unless we make strong a priori assumptions on which inputs are fixed in the short run.
A further drawback of technology F appears when we impose that Vr be a variable cost
function, namely Vr ( Âw, x, 0) = 0. This restriction implies that there are no fixed cost in
the long run: xú (w, 0) = 0 (unless we impose a positive lower bound to x).

So, according to traditional production analysis, the only justification for fixed cost
is that physically fixed inputs cannot be optimally adjusted (either for technical reasons
or for lack of rationality). This view excludes a variety of interesting situations in which
fixed and variable inputs are imperfect substitutes and play di�erent roles in production.

4Here, the notation x > 0 means that all J components x

j

> 0. In contrast x Ø 0 means that x

j

Ø 0
for all j.
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4.3.2 Another view of the traditional production function

Instead of partitioning x into two disjoint types of inputs, let us assume that each input
comprises a part which can be adjusted and a part which is fixed (in a sense that is
clarified in Definition 4.2 below):

x = xv + xf , (4.6)

with x, xv, xf œ RJ
+

. This generalizes (4.3) which is obtained as a special case when
xv =

1
Âx€, 0€

2€
and xf =

1
0€, x€

2€
. This subsection shows that the variable and

fixed cost functions used in production analysis is generated from an additive production
function:

y = F (xv + xf ) , (4.7)

which requires perfect substitutability between xv and xf .

As our purpose is to describe the production possibilities for a production level close
to zero (in order to be consistent with Definition 4.1b), we define the input requirement
set as follow.

Definition 4.2. In terms of the traditional production function, the fixed cost is the
cost associated to inputs belonging to the input requirement set XF defined as:

XF © lim
Áæ0

+
{z Ø 0 : F (z) = Á} .

Definition 4.2 requires that the limiting isoquant XF exists. Definition 4.2 is useful to
characterize the fixed cost in terms of the production function F : it is easy to show that
a fixed cost occurs if the set XF does not include the point x = 0.5 In order to be com-
patible with Definition 4.1b, we consider in Definition 4.2 the isoquant corresponding
to the production level Á > 0, instead of Á = 0, because with most production functions
compatible with a fixed cost, the condition F (x) = 0 characterizes a thick isoquant, in
the sense that, if it is possible to produce nothing with something (÷x > 0 : F (x) = 0),
then it is also possible to produce nothing with even less (there exist xÕ < x such that
F (xÕ) = 0). So, only the upper frontier of the set {z Ø 0 : F (z) = 0} is interesting for
identifying a fixed cost. Let us investigate the implications of this additive structure in

5For the purpose of exposition we assume that the minimum value of y included in the range of F

is zero, but we could easily generalize to any other value.
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terms of the restricted variable and total cost functions:

vr (w, xf , y) = min
x

v

Ø0

Ó
w€xv : F (xv + xf ) Ø y

Ô
;

cr (w, xf , y) = vr (w, xf , y) + w€xf .

The restriction xv Ø 0 is important here, because it can be optimal to use no variable
inputs at all for some levels of xf .

Proposition 4.1. Let xf œ XF ”= ? and xv Ø 0. Then cr (w, xf , 0) = w€xf Ø 0,

vr (w, xf , 0) = 0. The restricted cost function cr and the cost minimizing variable inputs
xú
v satisfy either

(i) for xú
v > 0 and y > 0,

cr (w, xf , y) = C (w, y) > w€xf (4.8)

and xú
v (w, xf , y) = Xú

v (w, y) > 0 or

(ii) xú
v,j = 0 for some j, and

cr (w, xf , y) = Vr ( Âw, x, y) + w€x, (4.9)

where x is a subvector of xf and Âw corresponds to the price subvector of
w =

1
Âw€, w€

2€
corresponding to xú

v,j > 0.

The proof of this result is given in the Appendix. Proposition 4.1 states that the variable
cost is zero when production vanishes. This result is driven by the additive structure
of F which ensures that if there exists a point x such that F (x) = 0, then xv can be
set to zero in the additive decomposition x = xv + xf . In the case of Proposition 4.1(i),
the production function F yields a cost function which is independent of the level of
fixed input, and which is compatible with both Definition 4.1a and 1b. A frustrating
consequence of Proposition 4.1(i) is that fixed inputs can be seen as if they were set at
their optimal level, as:

ˆcr
ˆxf

(w, xf , y) = 0 … ≠ ˆvr
ˆxf

(w, xf , y) = w.

It is the perfect substitutability between the variable and the fixed inputs which is
driving this result. Any mistake in adjusting xf can be perfectly compensated by
setting xv optimally. In summary, technology F is not really suitable for modeling
fixed inputs, as it lacks generality. Proposition 4.1(ii) gives the general formulation of
the cost function corresponding to F when corner solutions for the variable inputs are
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Figure 4.1: Isoquants for F (xv + xf )

allowed. The structure of the cost function (4.9) is the same as in (4.4) and is common
in traditional production analysis (see Chambers, 1988, for instance). So we conclude
this section by noting that production function F with an additive structure between
xv and xf is behind the traditional theory of fixed and variable costs. This additive
structure is restrictive and hides important features of production theory.6

Figure 4.1 illustrates Proposition 4.1. Endowed with a fixed input vector x0

f , the
variable inputs available to the firm and satisfying xv Ø 0 are located in the north-east
quad of x0

f . At given input prices w, the firm minimizes its variable cost of producing y1

at the interior point A. At this point, according to Proposition 4.1(i), the cost function
is given by C (w, y) . With another level of fixed inputs, however, the available set of
variable inputs will be di�erent. With x1

f , the minimal variable cost for producing y1

is achieved at B, on the boundary of the set
Ó

xv Ø 0 : F
1
xv + x1

f

2
Ø y1

Ô
. At point B

we have xú
v1

= 0 and the optimal level of xú
2v is restricted by the level of x1

f .

4.3.3 An extended production function

Whereas from the accounting viewpoint both types of inputs xv and xf are similar (the
cost of a unit of the jth fixed and flexible input is wj), technologically they should not
be restricted to play similar roles as it is the case with F (xv + xf ). We now define

6One restriction is that
ˆ

2
c

r

ˆ Âw
j

ˆw

k

(w, x

f

, y) = 0.

For given x

f

, y, there is no substitutability between inputs j and k. This is too restrictive because, even
for given x

f

, inputs j and k can be substituted for each other because they have a fixed and a variable
component.



4.3. A MICROECONOMIC FRAMEWORK FOR FIXED COSTS 73

an extended production function G as y = G (xv, xf ) where G : RJ
+

◊ RJ
+

æ R
+

. For
simplicity, we assume that G is single valued, continuously di�erentiable, increasing
in its arguments and that G (0, xf ) = 0. In this context, the restricted variable cost
function now becomes:

vr (w, xf , y) = min
x

v

Ó
w€xv : G (xv, xf ) Ø y

Ô
. (4.10)

Now, a given input, say capital, can appears twice in (4.10): once in vector xv and
once in xf ; their marginal productivities can be di�erent. This overlapping structure
is similar to the one considered by Blundell and Robin (2000) in consumer analysis. In
contrast to their approach, we do not impose that xv is separable from xf (a structure
which they call latent separability).

Leontief’s (1947) aggregation theorem highlights the restrictions which are implicit
in production function F . The number 2J of inputs xv and xf which appear in G can
be reduced to the J aggregate inputs xv + xf i� we have:

ˆG

ˆxv
i

= ˆG

ˆxf
i

, ’i = 1, . . . , J.

We do not assume in the sequel that these restrictions necessarily apply to G.

One di�culty with (4.10), is that if vr is defined for any arbitrary levels of xf , we
can switch the notation from xf to xv and rewrite vr (w, xv, y) . So, in order to be able
to identify xf as the fixed inputs, we need to put more structure on vr, and we do this
by introducing restrictions derived from the definition of the fixed cost and inputs.

Definition 4.3. In terms of the extended production function G, the fixed cost is the
cost associated to inputs belonging to the fixed input requirement set XG defined as:

XG © lim
Áæ0

+
{z Ø 0 : G (0, z) = Á} . (4.11)

Definition 4.3 defines the set of all fixed input combinations required for starting
production. This definition is more general than Definition 4.2, because it does not
assume that fixed and variable inputs are perfectly substitutable. As for XF , we impose
that xv = 0 belongs to the fixed input requirement set XG, but get rid of additivity.
The next result is a straightforward extension to technology G of those available for
technology F.7

Proposition 4.2. If xf œ XG then,

7We only give the properties which are the more interesting for our purpose, see Lau (1976) and
Browning (1983) for other properties.
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(a) Technology F (b) Technology G

Figure 4.2: Fixed and variable inputs and production possibilities

(i) vr (w, xf , 0) = 0, vr (w, xf , y) > 0 for any y > 0

(ii) vr is increasing in y

(iii) vr is decreasing in xf .

Proposition 4.2 means that the restricted variable cost function vr satisfies the properties
of a variable cost function: it vanishes for arbitrarily small production levels. As a
consequence, the restricted fixed cost is given by:

ur (w, xf ) © lim
yæ0

+
cr (w, xf , y) = w€xf ,

and total restricted cost satisfies

cr (w, xf , y) = ur (w, xf ) + vr (w, xf , y) . (4.12)

Both production technologies F and G are represented on Figure 4.2 in the case
where a single input is decomposed into a fixed and a variable component. Figure
4.2a illustrates how the introduction of a fixed input xf satisfying F

1
x0

f

2
= 0 and the

reparameterization x © xv + xf yield the technology F
1
xv + x0

f

2
. On Figure 4.2b, the

isoquant corresponding to the startup production level G (xv, xf ) = Á is not a straight
line, which opens the possibility to choose a fixed input di�erent from x0

f as an admissible
value for starting production. Input x1

f for instance, allows to start production with
production function G

1
xv, x1

f

2
”= G

1
xv, x0

f

2
, provided that xv is su�ciently high for

compensating the decline from x0

f to x1

f .
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We illustrate the usefulness of technology G with an example which also illustrates
the claims of Proposition 4.2.

Example. The technology G : R2

+

æ R
+

is given by:

y = G (xv, xf ) = (xv + —xf ) x–
f ≠ “

for y Ø 0. Here xf œ XG … xf = (“/—)1/(–+1) . This yields the restricted variable cost
function:

vr (w, xf , y) = wxú
v (w, xf , y) = w (y + “) x≠–

f ≠ w—xf = w
y

x–
f

,

which satisfies vr (w, xf , 0) = 0 for xf = (“/—)1/(–+1) . The restricted fixed cost function
is ur (w, xf ) = wxf = w (“/—)1/(–+1) . For – = 0 and — = 1 we obtain the traditional
production function as a special case. This example also illustrates that in both cases
of exogenous (physically fixed) and endogenous input xf , there is no conflict between
Definition 4.1a and 4.1b.

The structure of the isoquants of F and G is represented in Figure 4.3 for J = 2,
in the (x

1

, x
2

)-plane (with x
1

= xv1

+ xf1

). In Figure 4.3a the slopes of the isoquants
corresponding to F only depend upon total input use x = xv + xf and not upon the
share of the fixed inputs xf in the composite input x. At point A for instance, it is
possible to produce y0 using fixed input x0

f or x1

f . Only the total input quantity matters
and since x0

f + x0

v = x1

f + x1

v at point A, the choice of the fixed input is irrelevant. Note
that, contrary to Figure 4.2, the isoquants do not necessarily cross the axes on Figure
4.3, because axes now report total input levels for two di�erent inputs, and not just
how a given input is split into variable and fixed amounts.

Figure 4.3b represents in the (x
1

, x
2

)-plane the isoquants for technology G and two
di�erent fixed input vectors x0

f and x1

f . With technology G, the choice of the level of fixed
inputs determines the substitution possibilities between the variable inputs. Although
we have not introduced any distinction between ex-ante and ex-post technologies in our
model, Figure 4.3 resembles those typically obtained with putty-putty (or putty-clay
or clay-clay) technologies (see e.g., Fuss, 1977). The similarity is due to the fact that
we split x into two (fixed and variable) non-additive components. With technology G

the choice of a particular fixed input level xf coincides with a choice of a particular
production technology and a specific substitution pattern between variable inputs. On
Figure 4.3b, the isoquant corresponding to x0

f characterizes inputs which can easily be
substituted the one for the other, whereas for x1

f substitution becomes more di�cult.
Note that for a given output level, the isoquants for G corresponding to the fixed
input level x0

f can cross those obtained for x1

f . For instance, at point A the production
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(a) Isoquants for F (b) Isoquants for G

Figure 4.3: Fixed and variable inputs and substitution possibilities

level y0 can be produced using two types of technologies, each one exhibiting a specific
substitution pattern.

Figure 4.3b also illustrates that if fixed inputs are neglected, production function
G is not necessarily quasi-concave in x (at point A). Moreover, optimal choices for
input bundles can be located in the zone violating quasi-concavity in x and so the cost
function will not necessarily be concave in w. In the context of fixed cost, imposing
simultaneously concavity in w and xf = 0 on the cost function may end up with worse
estimates than extending the cost function to be compatible with the occurrence of
fixed cost (see Lau, 1978, and Diewert and Wales, 1987, for seminal contributions on
concavity enforcement).

The next di�culty we have to deal with is related to the fact that the level of
fixed inputs can be either exogenous or endogenous. Figure 4.3b depicts at point C a
situation at which the variable inputs are optimal given the levels of fixed inputs x0

f

and production level y0, however, if xf could be chosen, the firm would set them to x1

f

and produce y0 at point B. It is important to note that isoquant and isocost line are
not necessarily tangent at the optimum level x1

f for xv = 0.

Whereas variable inputs can by definition be adjusted for minimizing costs, the fixed
inputs are not necessarily set at their optimal level. We say that a fixed input xfj is
exogenous when its actual level is not optimal in the sense that the equality between its
shadow value and market price is violated:

≠ ˆvr
ˆxfj

(w, xf , y) ”= wj , (4.13)

for the observed values of (w, xf , y) and xfj > 0. The extended framework based on
G (xv, xf ) is useful as it allows to split the input x into a part xv that is e�ciently
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allocated, and a part xf which is not necessarily so.8

In the long run, fixed inputs can be determined endogenously by the firm, and they
may in some case be set to zero. Such a corner solution occurs at xf = 0 if 0 œ XG and:

0 Æ vr (w, 0, y) © min
x

v

Ø0

Ó
w€xv : y Æ G (xv, 0)

Ô
< vr (w, xf , y) + w€xf ,

for any xf > 0. Equivalently, the choice xú
f = 0 is (locally) optimal if at point (w, 0, y)

the increase in fixed cost is not compensated by a greater reduction of the variable cost:

wj + ˆvr
ˆxfj

(w, 0, y) > 0.

Then it is optimal to adopt a production structure without any fixed input. In many
cases however, an inner solution for xú

f exists. It is characterized by the equality between
the shadow value of the fixed input and its market price:

≠ ˆvr
ˆxfj

1
w, xú

f , y
2

= wj . (4.14)

Example (continuation). For vr (w, xf , y) = w (y + “) x≠–
f ≠ w—xf , we find that

(assuming – > 0 and — < 1):

xú
f (w, y) =

3
–

1 ≠ —
(y + “)

4 1
1+–

,

which varies with the level of output. In the traditional case: – = 0 and — = 1, the
restricted variable cost function becomes vr (w, xf , y) = wy and we obtain a corner
solution xú

f = 0, conformably to Section 4.3.1. The long-run variable cost function
becomes:

vr
1
w, xú

f , y
2

= w (y + “)
3

–

1 ≠ —
(y + “)

4 ≠–

1+–

≠ w—

3
–

1 ≠ —
(y + “)

4 1
1+–

,

and this does not necessarily vanish anymore for a production level going to zero:

vr
1
w, xú

f (w, 0) , 0
2

= w“

3
–

1 ≠ —
“

4 ≠–

1+–

≠ w—

3
–

1 ≠ —
“

4 1
1+–

.

The example above illustrates the fundamental identification problem occurring
when inputs are optimally adjusted: the fixed cost generally di�ers from the cost of
the fixed inputs. Indeed, after normalizing the variable and fixed cost function accord-

8Common explanations for why the level of the fixed inputs is not optimal are related to (i) technolog-
ical constraints, (ii) indivisibilities of the fixed inputs, (iii) allocative ine�ciencies and (iv) inter-temporal
dependences.
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ing to (4.2), we obtain the fixed cost:

u (w) = w€xú
v

1
w, xú

f (w, 0) , 0
2

+ w€xú
f (w, 0) .

When fixed and variable inputs can be imperfectly substituted for each other, the op-
timal amount of fixed input depends upon w and xú

f (w, 0) is not necessarily included
in the input requirement set XG. This means that the level of fixed input cannot be
determined ex-ante using only the definition of XG. When xf can be adjusted, it is
no longer possible to separately identify xf and xv. Fortunately, Definition 4.1b of
the fixed cost is fully compatible with this situation, but Definition 4.1a is violated:
u (w) ”= w€xú

f (w, 0). Briefly, an input cannot be said to be fixed or variable prima
facie, using only physical properties of the inputs. It is the technology which in last
instance determines whether a given input is fixed or variable. This explains why Def-
inition 4.1b which relies on the technology provide the more general definition of the
fixed cost. Few technologies allow to obtain an optimal level of xú

f independent of y.
We characterize them below.

Proposition 4.3. Assume that the technology G is increasing and quasi-concave in
xv, and that xú

v > 0 at the optimum. Let K : RJ
+

æ RJ
+

and F : RJ
+

æ R
+

both be
increasing functions.

(i) The restricted cost function is given by:

cr (w, xf , y) = ur (w, xf ) + v (w, y) , (4.15)

with v (w, 0) = 0 if and only if the production function is given by:

G (xv, xf ) = F (xv + K (xf )) . (4.16)

(ii) The optimal level of xf is independent of y if and only if the restricted cost
function is (4.15) or the production function is (4.16).

Proposition 4.3 characterizes the cost and production functions which generate a fixed
cost. Requirement (4.16) is less stringent than separability of G in xf because it does not
impose that K (xf ) be a unique aggregate fixed input. Here, the vector valued function
K comprises J aggregates for the fixed inputs. Proposition 4.3 also aggregates additively
some fixed and variable inputs together since F depends upon xv + K (xf ) . As can be
seen by comparing (4.16) and F (xv + xf ), the former is also more general than the tradi-
tional production function F for which fixed and variable inputs are perfect substitutes.
Figure 4.4 provides an illustration in the two inputs case (J = 1). It shows that xf does
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Figure 4.4: Fixed and variable inputs decomposition

not vary with y, contrary to xú
v.9 Figure 4.4 gives the decomposition of variable input xv

into a fully variable component xú
v (w, y)≠xú

v (w, 0) which can be set to zero when there
is no production, and xú

v (w, 0) which has to be used for starting production. It also
shows how technology F (xv + K (xf )) di�ers from F (xv + xf ) . With F (xv + K (xf ))
there is perfect substitutability between the components of xv and K (xf ), but not be-
tween xv and xf . For a given input xi, the slope (ˆF/ˆxvi) / (ˆF/ˆxfi) of the isoquant
(Figure 4.4) is not restricted to be equal to ≠1 out of the optimum. Moreover, for
two di�erent inputs, xh and xi, the slope (ˆF/ˆxfh) / (ˆF/ˆxfi) of the isoquant is not
restricted to be equal to (ˆF/ˆxvh) / (ˆF/ˆxvi) out of the optimum. Fixed inputs can
be substituted according to a di�erent pattern than variable inputs.

We conclude this section by emphasizing that, even though a separate identification
of xf and xv is not possible without additional restrictions, it is possible to identify
uniquely xú

f (w, 0) + xú
v (w, 0) as well as the level of the fixed cost. If we assume that

decomposition (4.1) is not unique, then there exist Âu ”= u and Âv ”= v such that:

c (w, y) = Âu (w) + Âv (w, y) ,

with Âv (w, 0) = v (w, 0) = 0. However, the equality:

u (w) + v (w, y) = Âu (w) + Âv (w, y)

9We also see why the corner solution x

ú
v

= 0 has to be excluded, because at this point the level of
x

ú
f

can vary with y.
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is satisfied for any (w, y) i� u (w) = Âu (w) (obtained for y = 0) and v (w, y) = Âv (w, y),
and this proves unicity. It is also interesting to note, that although fixed cost cannot be
observed, because the situation in which firms produce an output level close to zero is
hypothetical, the level of fixed cost is well identified empirically and can be estimated.

4.4 Some consequences of neglecting fixed costs

This section discusses three drawbacks arising when fixed inputs are neglected. A first
problem of disregarding xf is the oversimplification of various economic relationships, in
particular the relationship between fixed inputs and pricing behavior. Let p = P (y, z)
denote the inverse output demand which depends on exogenous macroeconomic param-
eters z and the firm’s own production level. With market power, the firms’ optimum is
characterized by:

ˆvr
ˆy

(w, xf , y) = p

3
1 + ˆP

ˆy

y

P

4
. (4.17)

This equation and the discussion above shows that a fixed input xf has an impact on the
marginal cost function unless cr has the specific structure given in (4.15). It also implies
that there is a relationship between the fixed input and the markup ÷ © ˆ ln P/ˆ ln y,

via the marginal cost.
Neglecting the fixed cost is a source of bias. By Shephard’s lemma, we have:

xú (w, y) = ˆu

ˆw
(w) + ˆv

ˆw
(w, y) .

If the fixed cost is neglected, then it enters the residual term which will be correlated
with w, and may bias the estimates.

From a theoretical viewpoint, neglecting the fixed cost by setting u (or ur) equal
to zero may lead to underestimation of returns to scale. In order to show this point,
we consider the long-run case and assume that the cost function is convex in y. By
convexity we have:

c (w, 0) Ø c (w, y) + ˆc

ˆy
(w, y) (0 ≠ y)

∆ ˆc

ˆy
(w, y) y

c (w, y) Ø 1 ≠ c (w, 0)
c (w, y) .

As the return to scale is the inverse of the cost elasticity with respect to the output,
imposing zero fixed cost implies imposing decreasing return to scale. The equation
above also shows that for given level of costs and outputs, neglecting the fixed cost
leads to an overestimation of the marginal cost, which will also cause an underestima-
tion of the markup. As ˆc/ˆy (w, y) = w€ˆxú/ˆy (w, y) , overestimating the marginal
cost often coincides with the overestimation of the input demand sensitivity to output
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variations. In addition, from an empirical viewpoint, setting the fixed cost equal to zero
introduces an omitted-variable bias in the estimation of technology parameters. In the
following sections, we discuss the empirical issues raised by the estimation of the fixed
cost, including suitable functional forms for cost functions, and the treatment of cost
heterogeneity with unobserved levels of xf .

4.5 On flexible functional forms

In the 1970’s and 1980’s, several researchers proposed new parametric specifications for
the production technology, and introduced so-called flexible functional forms, which are
able to approximate locally an arbitrary cost function. These functional forms, still
widely used in production analysis, are not adequate for modeling fixed costs: either
they completely exclude fixed costs, or specify them in an inflexible way. The variable
t is now introduced for denoting technical change.

In their seminal paper, Diewert and Wales (1987) have introduced several cost func-
tions, many of which can be written as:

CDW (w, y, t) = a€
ww +

1
–€
ww

2
att + V DW (w, y, t) , (4.18)

with V DW (w, 0, t) = 0. This identifies the fixed cost as UDW (w, t) = a€
ww +

1
–€
ww

2
att,

where aw, –w, at denote technological parameters. So, the fixed cost function is linear
in w and t and is not a flexible specification (in the sense of Diewert and Wales, 1987).
The same can be shown for the variable cost specification V DW .

Let us now consider the Translog functional form (Christensen et al., 1971) with
technology parameters given by —:

CTL (w, y, t) = exp(—
0

+ —€
w ln w + —y ln y + —tt (4.19)

+1
2 ln w€Bww ln w + ln w€Bwy ln y + ln w€Bwtt

+1
2—yy (ln y)2 + —ytt ln y + 1

2—ttt
2),

where the notation is as in Koebel et al. (2003). One of the main drawbacks of the
Translog functional form is that it is not suitable for modeling fixed cost.

Proposition 4.4. The Translog functional form implies a fixed cost that is either zero
or infinite (in which case CTL is decreasing in y for some values of y).

This result shows that the Translog cost function is badly behaved in some regions,
and especially when production is close to zero, which defines the fixed cost of produc-
tion. This proposition illustrates that the Translog is only able to approximate locally
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an unknown cost function, but not globally, and justifies the specification of alternative
functional forms for the purpose of estimating a fixed cost. Proposition 4.4 points out
a paradox: although the Translog specification is flexible (Diewert and Wales, 1987,
Theorem 1), it excludes fixed costs. The reason for this apparent contradiction is to
be found in the limitations of the flexibility requirement, which just requires that the
cost function be a local approximation, in some neighborhood of y, but not necessarily
at the neighborhood of y = 0 which defines the fixed cost. In the sequel we rely on a
functional form which is flexible at two points.

Definition 4.4. A two-points Flexible Functional Form (2FFF) for a cost function
provides a second order approximation to an arbitrary twice continuously di�erentiable
cost function C at point where y > 0 and at y = 0+.

We have seen that a production technology with fixed cost, can be represented by two
di�erent production technologies: one for initiating production H (xf ) © G (0, xf ) (us-
ing only fixed inputs), and one for reaching the output level y, and given by G (xv, xf ) .

So it becomes quite natural to specify both technologies in a flexible way. Similarly,
the cost function is additively separable in two parts: one part u corresponding to the
cost at zero output level and one part, v, reflecting the production cost of the output.
So if our objective is to provide an approximation of the production technology, both
parts should be treated with equal importance, and we suggest here to use a flexible
functional form for both the fixed and variable cost functions. Definition 4.4 implies
that a 2FFF cost function is the sum of two 1FFF fixed and variable cost functions U

and V.

Diewert and Wales (1987, p.45-46) define a one point (1FFF) flexible cost function
at the point

!
w0, y0, t0

"
as one being able to approximate an arbitrary cost function C0

locally, where C0 is continuous and homogeneous of degree one in w. This definition is
satisfied if and only if C has “enough free parameters so that the following 1+(J + 2)+
(J + 2)2 equations can be satisfied”:

C
1
w0, y0, t0

2
= C0

1
w0, y0, t0

2
(4.20)

ÒC
1
w0, y0, t0

2
= ÒC0

1
w0, y0, t0

2

Ò2C
1
w0, y0, t0

2
= Ò2C0

1
w0, y0, t0

2
,

where the ÒC (respectively Ò2C) denotes the first (second) order partial derivatives
with respect to all arguments of C. Since the Hessian is symmetric and C is linearly
homogeneous in w, this system includes only J (J + 1) /2 + 2J + 3 free equations. The
requirements (4.20) have to be fulfilled at a single point y0 which can be chosen to
be positive, so the 1FFF definition is compatible with the absence of fixed cost. This
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explains why the Translog is flexible although U © 0. This drawback of 1FFF explains
why we consider 2FFF.

A 2FFF for a cost function has enough free parameters for satisfying the following
1 + (J + 1) + (J + 1)2 + 1 + (J + 2) + (J + 2)2 equations:

U
1
w0, t0

2
= U0

1
w0, t0

2
, (4.21)

ÒU
1
w0, t0

2
= ÒU0

1
w0, t0

2
,

Ò2U
1
w0, t0

2
= Ò2U0

1
w0, t0

2
,

and for y0 > 0,

V
1
w0, y0, t0

2
= V 0

1
w0, y0, t0

2
, (4.22)

ÒV
1
w0, y0, t0

2
= ÒV 0

1
w0, y0, t0

2
,

Ò2V
1
w0, y0, t0

2
= Ò2V 0

1
w0, y0, t0

2
.

Since U is linearly homogeneous in w, and its Hessian is symmetric, this imposes the
following additional restrictions 2 + J + (J + 1) J/2 on U :

w€ ˆU

ˆw
(w, t) = U (w, t) , w€ ˆ2U

ˆwˆt
(w, t) = ˆU

ˆt
(w, t) ,

w€ ˆ2U

ˆwˆw€ (w, t) = 0, Ò2U (w, t) = Ò2U (w, t)€

It turns out the fixed cost function U has at least (J + 1)+J (J + 1) /2 free parameters
in order to be flexible. Similarly, the variable cost function V must have at least
(J + 2) + (J + 1) (J + 2) /2 free parameters. In total, a 2FFF cost function must have
at least 1 + 3 (J + 1) + J (J + 1) free parameters. Moreover, in order to identify V as
a variable cost function, we impose:

V
1
w0, 0, t0

2
= 0.

Note that (4.21) and (4.22) imply (4.20), but not conversely.

4.6 Econometric treatment of cost heterogeneity

In our most general model, the level of fixed input is not necessarily optimal and has
an impact on both the fixed and variable cost:

cr (w, xf , y, t) = ur (w, xf , t) + vr (w, xf , y, t) ,
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which is somewhat embarrassing as we do not observe the level of xf , but only total
input quantity x. However, our objective is not to estimate firm specific functions vr

and ur but rather their conditional mean given the value of the observed explanatory
variables w, y and t, so we consider:

V (w, y, t) © E [vr (w, xf , y, t) |w, y, t] ,

U (w, t) © E [ur (w, xf , t) |w, t] .

Here integration is over unobserved heterogeneity with respect to the joint distribution
of xf and the individual cost functions vr and ur. Using these definitions, we rewrite
the model as follow:

cr (w, xf , y, t) = “U (w, xf , t) U (w, t) + “V (w, xf , y, t) V (w, y, t) , (4.23)

where the functions “U and “V are defined by:

“U (w, xf , t) © ur (w, xf , t)
U (w, t) , “V (w, xf , y, t) © vr (w, xf , y, t)

V (w, y, t) ,

and satisfy E
Ë
“U |w, t

È
= E

Ë
“V |w, y, t

È
= 1. Note that the covariance between “U and

“V can a priori take any value. However, we derive an important statistical relationship
between the fixed and variable cost functions “UU and “V V.

Proposition 4.5. Under the assumptions that, (a) individual heterogeneity in the fixed
and variable cost functions is independent of xf ; (b) the fixed inputs xf are positive and
are optimally allocated; then:

(i) the conditional covariance cov
1
“U , “V |w, y, t

2
is non-positive;

(ii) the conditional variance matrix V [“|w, y, t] is singular.

When the fixed inputs are unobserved we will not be able to estimate functions
ur and vr, and we cannot test whether ˆcr/ˆxf = 0 is satisfied or not. However, we
will be able to estimate V [“|w, y, t] and cov

Ë
“U , “V |w, y, t

È
. If the statistical test leads

to rejection of the singularity of V [“|w, y, t] or cov
Ë
“U , “V |w, y, t

È
Æ 0, then we can

deduce that either the fixed inputs are not optimally allocated (Proposition 4.5), or
that the production technology has the specific structure given in (4.16). The level
of the fixed cost “UU and the level of the variable cost “V V are certainly positively
correlated with any dataset: both the fixed and the variable cost increase over time,
and firms with a high fixed cost certainly produce more than smaller firms and also
have a higher variable cost. Hence the positive correlation between “UU and “V V.

Proposition 4.5, however, states that there is a trade-o� – a negative correlation –
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between the fixed and the variable cost for given values of the explanatory variables
(w, y, t) . Such a trade-o� cannot be directly observed in a dataset, because it pertains
to unobserved heterogeneity. With panel data, the issue of interrelated heterogeneity
is often discarded, one exception is Gladden and Taber (2009) who considered it in
estimating linear wage equations. In contrast to Gladden and Taber (2009), we derive
the sign of the covariance from a structural nonlinear model.

Let us now explain our strategy for estimating this covariance along with other
statistics of interest. We have to explicitly introduce the parameters in the notations of
the cost function and rewrite the observed cost level cnt as follow:

cit = “UitU (wit, t; –) + “Vit V (wit, yit, t; —) + eit, (4.24)

where i = 1, . . . , N denotes the sector, t = 1, . . . , T represents time. The random term
eit is i.i.d., satisfies E [eit|wit, yit, t] = 0 and has constant variance ‡2

c . It is also as-
sumed that eit is uncorrelated with “it ©

1
“Uit , “Vit

2€
and any right hand side regressors.

Equivalently, we can write our empirical model as:

cit = U (wit, t; –) + V (wit, yit, t; —) + Ácit. (4.25)

with the composite error term:

Ácit ©
1
“Uit ≠ 1

2
U (wit, t; –) +

1
“Vit ≠ 1

2
V (wit, yit, t; —) + eit. (4.26)

Note that E [Ácit|wit, yit, t] = 0. We also assume that:

V [“it|w, y, t] © � =
A

‡2

U ‡UV

‡UV ‡2

V

B

, (4.27)

and V
Ë
“it“

€
js|w, y, t

È
= 0, for any i ”= j and t ”= s. This model is an extension of

Swamy’s (1970) random coe�cient model to our nonlinear setup with individual and
time varying random coe�cients. The values of “it can be considered as incidental
parameters, because they are not fundamentally interesting (and cannot be identified).
Their distribution however is informative. The joint distribution of “it reflects the way
the variable and fixed cost vary together. The covariance between “Uit and “Vit allows to
discriminate between the case of optimally and non-optimally allocated fixed input and
whether fixed cost has an impact on the marginal cost of production and the markup
via (4.17). The parameters of interest are the technology parameters ◊ ©

1
–€, —€

2€

and the variance matrix �.

In principle, all estimates of the technology parameters ◊ and the covariance matrix
can be obtained simultaneously by solving (numerically) the likelihood maximization



86 CHAPTER 4. FIXED AND VARIABLE COST

or the nonlinear least squares problem.10 However, these objective functions are highly
nonlinear in ◊, and it turns out that nonlinear numerical algorithms often do not con-
verge to a solution. We avoid these numerical problems, and use a two-stage estimation
procedure. First, the technological parameters ◊ are consistently estimated (without
identification of � and ‡2

c ) by minimizing the sum of squared residuals:

‚◊ = arg min
–,—

ÿ

i,t

[cit ≠ U (wit, t; –) ≠ V (wit, yit, t; —)]2 .

As the random term Ácit exhibits heteroscedasticity and serial correlation, we rely on the
Newey-West (1987) estimator for estimating the variance matrix V

Ë
‚◊
È
.

In the second-stage, two equivalent estimation methods are again available: Maxi-
mum Likelihood (ML) and Least Squares (LS). The conditional variance of Á̂cit can be
expressed as (using (4.26)):

E
Ë
(Á̂cit)

2 |wit, yit, t
È

© —it(‡2

c , �, ‚◊) (4.28)

= ‡2

c + ‡2

UU2 (wit, t; ‚–) + ‡2

V V 2

1
wit, yit, t; ‚—

2
+ 2‡UV U (wit, t; ‚–) V

1
wit, yit, t; ‚—

2
.

It turns out that the parameters ‡2

c , ‡2

U , ‡2

V and ‡UV of (4.28) can be estimated by an
OLS regression of the squared NLS residuals:

(‚Ácit)
2 =

Ë
cit ≠ U (wit, t; ‚–) ≠ V

1
wit, yit, t; ‚—

2È
2

, (4.29)

on a constant, ‚U2, ‚V 2 and ‚U ‚V . If we assume that the heterogeneity vector “it and the
error term eit follow some parametric distribution, then the estimated covariance matrix
can be obtained by maximizing the likelihood function. Both second-stage estimation
methods are asymptotically equivalent, but their estimation outcomes may di�er: first,
because the ML is more e�cient than OLS if the distribution of the random terms is
well specified; second, because the covariance matrix � is not restricted to be positive-
definite in the OLS regression, but this restriction is imposed in most ML estimation
algorithms.11 As this matrix may well be singular (Proposition 4.5), we prefer the OLS

10The NLS estimator of
!
◊, ‡

2
c

, �
"

could be obtained (in one step) by minimizing the following sum
of squared residuals:

ÿ

i,t

#
Á

c2
it

(◊) ≠ ‡

2 ≠ ‡

2
U

U

2 (w
it

, t; –) ≠ ‡

2
V

V

2 (w
it

, y

it

, t; —) ≠ 2‡

UV

U (w
it

, t; –) V (w
it

, y

it

, t; —)
$2

.

An alternative estimator of parameters ◊, ‡

2
c

and � is the maximum likelihood estimator. Under the
normality assumption of the random term Á

c

it

≥ N

!
0, —

it

!
◊, ‡

2
c

, �
""

, we can write

logL(◊, ‡

2
c

, �) = ≠1
2

ÿ

i,t

Ó
log (2fi) + log —

it

!
◊, ‡

2
c

, �
"

+ —
it

!
◊, ‡

2
c

, �
"≠1 (Ác

it

(◊))2
Ô

.

11It can be shown that the first order conditions of ML are identical to the moment conditions of
OLS.
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approach.
Our estimation approach can be viewed as a sequential two-stage M-estimation,

where in the first-stage ‚◊ is obtained by solving a NLS problem and then, given ‚◊,
the estimates ‚‡2, ‚� are obtained by OLS. This second stage estimator is simple and
consistent if the first-stage estimator is consistent for ◊, see Cameron and Trivedi (2005,
Section 6.6). However, the asymptotic distribution of �̂ given the estimation of ‚◊
is di�cult to establish. Hence we use the panel bootstrap for deriving the standard
deviations of the second-stage estimator.12

4.7 Empirical investigation

In this section, we first summarize the empirical models and strategies, we then present
briefly the data set and discuss the estimation results.

4.7.1 Empirical models and estimation strategies

For the empirical fixed and variable cost functions U and V, we assume Translog func-
tional forms denoted by UTL and V TL. As seen in Proposition 4.4, the traditional
Translog cost function CTL satisfies CTL (w, 0, t) = 0 and is not compatible with the
occurrence of a fixed cost (in the best case where —yy Æ 0). It is, however, quite simple
to generalize the Translog specification by adding a fixed cost function to the variable
Translog cost function (the two-points flexible form):

CTL(w, y, t; –, —) = UTL(w, t; –) + V TL(w, y, t; —),

where

UTL (w, t; –) = exp{–
0

+–€
w ln w+–tt+ 1

2 ln w€Aww ln w+ln w€Awtt+ 1
2–ttt

2}, (4.30)

and

V TL(w, y, t; —) = exp{—
0

+ —€
w ln w + —y ln y + —tt + 1

2 ln w€Bww ln w

+ ln w€Bwy ln y + ln w€Bwtt + 1
2—yy (ln y)2 + —ytt ln y + 1

2—ttt
2}.

We impose linear homogeneity and symmetry in w using the following 2+J+(J + 1) J/2
parametric restrictions on UTL:

ÿ€–w = 1, ÿ€Awt = 0, ÿ€Aww = 0, Aww = A€
ww. (4.31)

12We assume that the errors are i.i.d. over individuals (but not over time). The panel bootstrap
performs a classical paired bootstrap that resamples only over i and not over t.
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There are 1 + J + (J + 1) J/2 free parameters left in UTL. Similarly, the variable cost
function V TL has 3 + 2J + (J + 1) J/2 free parameters which satisfies:

ÿ€—w = 1, ÿ€Bwt = ÿ€Bwy = 0, ÿ€Bww = 0, Bww = B€
ww. (4.32)

Note that the logarithmic transformation of the total cost function is not useful anymore
for linearizing the nonlinear Translog specification (unless UTL © 0). For J = 4, the
fixed cost function has 15 free parameters to which are added the 21 free parameters of
the variable cost function.

Given the two-points flexible specification, we estimate the parameters – and — by
using NLS based on (4.25) in the first-stage. The second-stage consists in the estima-
tion of the variance matrix � and ‡2

c by using OLS based on (4.28) and (4.29). The
classical Translog cost function which includes only the variable cost function V TL (and
assumes that UTL © 0) is also considered for comparison. We consider further empiri-
cal models that include the system estimation by adding the input demand equations
(obtained by applying Shephard’s lemma to CTL), as well as the model estimated in
first-di�erences. Substantial gains in e�ciency can be realized by system estimation,
because more observations are available. The first-di�erence estimation model is more
robust against non-stationarity of the series and unobserved individual fixed e�ects.
Henceforth, Model I denotes the single equation model without any fixed cost. Model
II is the baseline model where the cost function includes both a fixed and a variable
part (the two-points flexible form). More e�cient frameworks are Model III (in level)
and Model IV (in di�erence), which include the cost and the input demand functions.
We note that the choice of starting values is crucial for reaching the optimum in the
case of system NLS.13

4.7.2 Data and empirical results

We use the NBER-CES manufacturing industry database for our empirical study.14 This
database records annual information on output yit, output price pit, and the input levels
xit, together with input prices indexes wit, for 462 U.S. manufacturing industries (at
the six-digit NAICS aggregation level) and covers the period 1958 to 2005. See Chapter
3 for descriptive statistics and details on the computations made for generating the
depreciation rate, interest rate, and the user cost of capital. Information is available for
four inputs: capital, labor, energy and intermediate materials.

We begin by commenting the first-stage estimation results for models I to IV (Ta-
ble 4.1). Instead of reporting estimates for all Translog parameters, we only select

13For the single equation estimation (Model I and II), the starting values are set arbitrarily to zero.
For the system estimation in levels (Model III), the starting values are the estimates obtained from
Model II. For the system estimation in first di�erences (Model IV), the starting values are obtained
from the estimation of the cost function in first-di�erences.

14The dataset can be downloaded at: http://www.nber.org/data/nbprod2005.html
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some informative estimated coe�cients and statistics. An important coe�cient is the
parameter —yy, which is crucial for Proposition 4.5. Given the estimated Translog
coe�cients, we compute statistics such as the share of the fixed cost in the total
cost U/C, the ratio of the output price to the predicted marginal cost of production
p/ (ˆC/ˆy) which measures the markup, and the rate of returns to scale 1/Á (C, y),
where Á (C, y) © ˆ ln C/ˆ ln y denotes the elasticity of costs with respect to output.

As mentioned in Section 4.4, neglecting the fixed cost is a source of bias. By com-
paring the estimation outcomes of Model I and Model II, we note that the results of the
two models di�er with respect to several key points. First, the parameters of the fixed
cost function (–) in Model II are significantly di�erent from zero, which indicates the
existence of fixed costs in the production process. Second, the model without a fixed
cost (Model I) suggests that the industries exhibit decreasing returns to scale, but the
model with a fixed cost (Model II) suggests increasing returns to scale. The bias on
the degree of returns to scale is due to the overestimation of the elasticity of cost and
neglect of the fixed cost (see Section 4.4). Finally, the overestimation of marginal costs
by Model I leads to underestimation of the markup: the median of p/ (ˆC/ˆy) in Model
I is about 36% lower than the one predicted by Model II.15

Table 4.1 also shows that empirical results obtained from models II to IV exhibit
some regularities. First, the estimated coe�cient of —yy is significantly negative in
all cases, which implies that the limit of the classical Translog variable cost function
is zero as y approaches 0. Second, all models predict that the fixed cost represents a
considerable share of total cost. The median of estimated shares U/C varies in the range
between 51% and 76%. Third, the estimation results also suggest that the industries
exhibit increasing returns to scale. The median of the rate of returns to scale, Á (C, y)≠1

ranges between 1.4 and 2.1. Fourth, there is a significant di�erence between the selling
price and the predicted marginal cost of production, the median of estimated markup
varies from 1.8 to 2.6. However, we note that the results of Model IV (with data in
first-di�erences) di�er quantitatively from those of Model II and Model III (with data
expressed in levels).

Now, we focus on the fixed cost share (U/C), in particular on its evolution over time.
These series (averaged over all industries) are depicted on Figure 4.5. We note that for
all the empirical models, the fixed cost shares are decreasing over time. This may reflect
firms’ e�orts to increase production flexibility. The series generated by model II (where
the input demands system is not included in the estimation), exhibit a structural break
around 1980. For other models, the decline of fixed cost shares over time is smoother.
However, the decrease is less significant in the first-di�erenced model (Model IV).

When it comes to the second-stage estimation, the estimates of ‡2

U , ‡2

V , ‡UV and
‡2

c , are somewhat more divergent across the models. However, we see that the variance
15We also reestimate Model I after appending a linear fixed cost term w

€Â– in the specification. The
corresponding empirical results are not reported, but lie in between those obtained for Model I and II.
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Table 4.1: Summary of estimation results

Model I II III IV
1st q - 0.19 0.27 0.48

U/C median - 0.52 0.51 0.76
3rd q - 0.91 0.77 0.94
1st q 1.19 1.32 1.37 1.58

p/ (ˆC/ˆy) median 1.36 1.87 1.78 2.63
3rd q 2.47 6.60 2.74 5.73
1st q 0.69 1.01 1.01 1.10

1/Á (C, y) median 0.89 1.40 1.37 2.07
3rd q 0.98 6.04 2.71 7.07

—yy coe� -0.05 -0.14 -0.15 -0.32
t-value -2.05 -4.21 -3.11 -3.85

‡2

U coe� - 0.54 30.83 1.09
t-value - 1.67 1.29 0.15

‡2

V coe� - 0.02 0.27 0.12
t-value - 1.95 1.96 1.27

‡UV coe� - -0.32 -13.04 -1.19
t-value - -0.91 -1.43 -0.11

‡2

c coe� 3.7e+6 1.9e+6 1.3e+6 2.1e+6
t-value - 2.09 0.24 0.66

Notes: Rows 2 to 11 report the estimated parameter values and the
corresponding t-statistic for the hypothesis that the parameter is equal
to zero. Rows 12 to 20 report the median value of the corresponding
statistic over all observations as well as the 1st and 3rd quartiles.



4.7. EMPIRICAL INVESTIGATION 91

Figure 4.5: Fixed costs shares over time

of the fixed cost heterogeneity “U is always larger than the variance of the variable cost
heterogeneity “V . The covariance between heterogeneities is found to be negative and
the covariance matrix � is close to singular for all models, which is conform to what
we expect from Proposition 4.6. The second-stage estimation results, however, are not
precisely estimated and are not statistically significant. This result may be due to our
overly restrictive assumption of random heterogeneity in the fixed and variable cost
function specification (4.23). Economically, this heterogeneity may well be correlated
with further explanatory variables which are individual specific (like for instance the
level of production, the type of industry, etc.). So we conduct further analysis in the
next subsection.

4.7.3 Estimation with industry specific dummies

Although Models II to IV with random heterogeneity yield some interesting results on
the scope of fixed cost and returns to scale, the interaction between fixed and variable
costs was not precisely estimated. This may due to the fact that heterogeneity is not
purely random but correlated with sectoral characteristics as the level of production
or the level of fixed and variable cost. We pursue the investigation a step further and
introduce individual-specific dummies into Model IV. The most flexible specification
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replaces “Uit and “Vit in regression (4.24) by 2N individual-specific parameters. In order
to limit over-parameterization, we introduce instead dummies for more broadly defined
groups of industries. There are di�erent ways to define these groups, for instance, in
the spirit of Mundlak’s (1978) correlated random coe�cient model, individuals can be
grouped w.r.t. the average value of their covariates. For the industry database, however,
a more natural clustering criterion, is to group the 462 manufacturing sectors available
at the six-digit NAICS level into 20 three-digit NAICS sectors. See Table 4.2 for a list
of the 3-digit industries.16

Formally, we introduce the multiplicative dummy variables “Uj and “Vj for j =
1, ..., 20 in place of the random parameters of (4.24) which becomes:

cit = “Uj UTL(wit, t; –) + “Vj V TL(wit, yit, t; —) + eit. (4.33)

Since the Translog cost function also includes the terms –
0

and —
0

, all the parameters
cannot be identified separately, unless we consider two additional restrictions. Since
by construction, we have E

Ë
“U |w, t

È
= E

Ë
“V |w, y, t

È
= 1, it is natural to impose the

normalization conditions:
1
20

20ÿ

j=1

“Uj = 1
20

20ÿ

j=1

“Vj = 1,

which allow to identify all parameters. In this case, the estimated parameters “Uj and “Vj
represent the industry-specific deviation in percentage from the average. For instance,
if the estimated value of “Uj is significantly above one and the estimated value of “Vj is
significantly below one, this indicates that the industry group j incurs more fixed and
less variable costs than average. In this framework, the interaction between the fixed
and variable components of the cost function is characterized by the variation of “Uj
and “Vj over industry groups. We examine the empirical correlation between “Uj and
“Vj along with group-specific shares of fixed cost, degree of returns to scale, markups
and rate of technical change.

We estimate the parameters of the extended Model IV and report the estimation
results in Table 4.2. Column 3 and 4 of Table 4.2 report the estimated coe�cients of
“Uj and “Vj . Our estimation results indicate, for instance, that compared to the average,
the industry group NAICS 311 (food) operates with 24% less fixed cost and 4% less
variable cost than the average. We also note that industries with lower than average
fixed cost generally have higher than average variable cost and conversely. Contrary to
the above random e�ect models, the parameters reflecting cost heterogeneity are now
statistically significant.

Columns 5 to 10 report the median (for each group) of the fixed cost share U/C,

16At the three-digit NAICS level, there are actually 21 manufacturing industry groups. We merge
the smallest (in terms of the number of subsectors) NAICS 324 industry group (petroleum and coal
products manufacturing) with NAICS 325 industry group (chemical manufacturing).
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Figure 4.6: Scatterplot of ‚“Uj and ‚“Vj

the markup p/ (ˆC/ˆy), returns to scale 1/Á (C, y), and technical change measured as
ˆ ln C/ˆt, ˆ ln U/ˆt and ˆ ln V/ˆt. For the NAICS 311 industry group, the estimates
indicate that the fixed cost represents 25% of the total production cost, with almost
constant returns to scale and a markup of 68%. In average over all industries, the
results confirm former findings with strong evidence for fixed cost, increasing returns to
scale and markup pricing. We also find evidence for the conjecture brought forward in
Section 4.4: industries with higher fixed cost also exhibit higher markups and returns
to scale.

Regarding the degree of technical change, our results on ˆ ln V/ˆt show that the
variable cost is on average decreasing by 0.9% over time with little variance over indus-
tries. In contrast, the fixed cost increases with time i.e., ˆ ln U/ˆt = 0.04. Altogether,
our results are in line with those obtained by Diewert and Fox (2008) who found modest
empirical evidence for technical change in U.S. manufacturing. Our interpretation is
that the deterministic trend only partially captures technical progress, and that one
important part of technical change is stochastic and embodied in the unobserved fixed
inputs (the xf ). These fixed inputs contribute to increase the fixed cost and decrease
the variable cost and, as a consequence of our approach, this random component of
technical change is captured by the negative correlation between “Uj and “Vj .
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Table 4.2: Summary of estimation results with industry dummies
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Table 4.3: Correlation matrix

“

U

j

“

V

j

“

U

j

U

C

p

ˆC/ˆy

1
Á (C, y)

ˆ ln C

ˆt

ˆ ln U

ˆt

ˆ ln V

ˆt

y

j

cr

j

“V

j

-0.79
“U

j

U

C
0.86 -0.84

p

ˆC/ˆy
0.80 -0.77 0.83

1

Á (C, y)

0.86 -0.67 0.79 0.95
ˆ lnC

ˆt
0.81 -0.78 0.97 0.88 0.83

ˆ lnU

ˆt
-0.07 0.31 0.01 0.28 0.26 0.20

ˆ lnV

ˆt
0.22 0.02 -0.03 0.26 0.29 0.09 0.56

y
j

0.58 -0.58 0.29 0.27 0.28 0.18 -0.55 0.22
cr

j

0.23 -0.39 0.20 0.23 0.07 0.20 -0.16 0.14 0.58
H

j

0.24 -0.45 0.25 0.21 0.01 0.24 -0.20 0.17 0.61 0.92

Table 4.3 reports the empirical correlations between di�erent estimated statistics.
The main result is that the correlation between ‚“Uj and ‚“Vj is negative, and quite strong
(≠0.79). The scatterplot of ‚“Uj and ‚“Vj is depicted on Figure 4.6. These results are in
line with Proposition 4.5. The extension of Model IV to include industry-specific fixed
and variable cost heterogeneity now allows us to find more precise empirical results
than those obtained with random heterogeneity. The separable structure of Proposition
4.3, (4.15), which implies no interaction between fixed and variable cost, is statistically
rejected: technology G (xv, xf ) fits the data better than F (xv + K (xf )) for any function
K.

We also find that the fixed-cost heterogeneity is positively correlated with most of
the statistics especially with the markup and the rate of returns. This coincides with
our discussion of Section 4.4 on the dangers of neglecting fixed cost. Not surprisingly,
the correlations involving “Vj have the opposite sign to those involving “Uj . The strong
positive correlation between “Uj U/C and p/ (ˆC/ˆy) seems to be contrary to the pre-
diction made by the theory of contestable markets (Baumol et al., 1988). However, it
can be explained in the light of our framework: a higher fixed cost reduces the variable
cost (at given level of production), a relationship which is reflected by the negative cor-
relation between “Uj and “Vj . This negative correlation is in turn inherited by “Uj U/C

and ˆC/ˆy.

These results help to understand why specifications neglecting the fixed cost (or
including an inflexible parameterization of the fixed cost) are likely to overestimate the
marginal cost of production and underestimate the markup and the rate of returns to
scale. The omission of the fixed cost leads to attribute neglected variations in fixed costs
(which according to Table 4.3 are positively correlated with output) to the variable cost
function which is increasing in y. Like in the case of an omitted variable bias, the
variable cost function (and especially its partial derivative w.r.t. y) will catch up the
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part of the fixed cost function which is correlated with production and so, it will be
biased upwards. The positive correlation corr

1
“Uj ; yj

2
= 0.58 explains the gap between

the results obtained with the standard and extended Translog specifications (see Table
4.1). The neglected fixed cost with Model I is directly responsible for low rate of returns
to scale and moderate markups obtained with this specification.

Regarding technical change, we find that ˆ ln C/ˆt is positive and highly correlated
with “Uj , “Vj , “Uj U/C and p/ (ˆC/ˆy) , which means that fixed cost and market power
preclude productivity growth (as in Arrow, 1962). Surprisingly, neither ˆ ln U/ˆt nor
ˆ ln V/ˆt are strongly correlated with market power. This paradox is solved if we go
back to the definition of technical change, in which the share of fixed cost plays an
important role:

ˆ ln Cj

ˆt
= ˆ ln U

ˆt

“Uj U

Cj
+ ˆ ln V

ˆt

A

1 ≠
“Uj U

C

B

,

and introduces correlation between ˆ ln Cj/ˆt and “Uj and “Uj U/Cj . We also investigate
the link between the fixed cost, the size and the concentration of industries. Table 4.3
also reports correlations between the fixed cost and the average output level (over time
and subsectors within industry j), the concentration ratio for the 20 largest firms crj ,

and the Hirschman-Herfindahl index Hj .
17 We find a positive correlation between the

fixed cost share and the industrial concentration. These results suggest that industries
with a higher fixed cost and a lower variable cost, produce more in average, and are
more concentrated.

4.8 Conclusion

This chapter investigates technologies in which fixed inputs can be imperfectly sub-
stituted to variable inputs, and we propose extended production and cost functions
compatible with the occurrence of a fixed cost. Many available flexible specifications,
like the Translog cost function, restrict the fixed cost to be equal to zero. Our extended
specification of the Translog is compatible with arbitrary levels of fixed cost, and al-
lows for interactions between the fixed and the variable cost. Our empirical findings
highlight the importance of fixed cost which represent about 20% to 60% of total cost
in the manufacturing industries and tend to decline to decline over time. Our esti-
mates also supports our extended framework which explains why industries with higher
fixed cost, in average have lower variable cost, higher returns to scale and markups.
Conformably to our theoretical prediction, we also find that the classical Translog cost
function underestimates the rate of return to scale and the markup.

A natural extension of our framework would be to examine explicitly strategic inter-
actions between firms in their joint decision on product price and production capacity

17The concentration data for 2002 are obtained from the U.S. Census Bureau.
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(fixed cost). This would potentially allow to revisit the link between fixed cost and
barriers to entry.

4.9 Appendix

Proof of Proposition 4.1.

From the definition of XF and XF ”= ? it directly follows that:

cr (w, xf , 0) = min
x

v

Ø0

Ó
w€xv + w€xf : F (xv + xf ) Ø 0

Ô
= w€xf Ø 0,

and so vr (w, xf , 0) = cr (w, xf , 0) ≠ w€xf = 0.

(i) The variable inputs must satisfy the non-negativity constraints xv Ø 0. If
these constraints are not binding at the optimum, we can write:

cr (w, xf , y) = min
x

v

>0

Ó
w€xv + w€xf : F (xv + xf ) Ø y

Ô
= vr (w, xf , y)+w€xf ,

where vr (w, xf , y) © minx>x
f

Ó
w€x : F (x) Ø y

Ô
≠w€xf > 0. Then cr (w, xf , y) =

C (w, y) and by Shephard’s lemma xú
v (w, xf , y) = Xú

v (w, y) .

(ii) If some constraints xv,j Ø 0 are binding at the optimum, the total input x

can be rewritten as:

x = xv + xf =
A

Âx
x

B

,

with Âxi = xv,i + xf,i for xv,i > 0 and xj = xf,j for xv,j = 0. Vector w is
partitioned accordingly as w =

1
Âw€, w€

2€
. Then

cr (w, xf , y) = min
x

v

Ø0

Ó
w€xv + w€xf : F (xv + xf ) Ø y

Ô

= min
Âx>0

Ó
Âw€Âx + w€x : F (Âx, x) Ø y

Ô

= min
Âx>0

Ó
Âw€Âx : F (Âx, x) Ø y

Ô
+ w€x = Vr ( Âw, x, y) + w€x.

Proof of Proposition 4.2.

(i) If xf œ XG then xv = 0 is admissible and so:

vr (w, xf , 0) = min
x

v

Ø0

Ó
w€xv : G (xv, xf ) Ø 0

Ô
= 0.

The assumption that G is single valued and increasing implies that G (xv, xf ) >

0 for and xv > 0 and xf œ XG. Then vr (w, xf , y) = w€xú
v (w, xf , y) > 0 for

y > 0 because w > 0 at least one element of xú
v (w, xf , y) is strictly positive.
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(ii) For yÕ > y, and G increasing in xf , it implies that {xv : G (xv, xf ) Ø yÕ} µ
{xv : G (xv, xf ) Ø y} and as a consequence:

vr
!
w, xf , yÕ" = min

x
v

Ø0

Ó
w€xv : G (xv, xf ) Ø yÕ

Ô
> vr (w, xf , y) .

(iii) Similarly, xÕ
f > xf and G increasing in (xv, xf ) , implies that {xv : G (xv, xf ) Ø y} µÓ

xv : G
1
xv, xÕ

f

2
Ø y

Ô
and as a consequence:

vr
1
w, xÕ

f , y
2

= min
x

v

Ø0

Ó
w€xv : G

1
xv, xÕ

f

2
Ø y

Ô
< vr (w, xf , y) .

Proof of Proposition 4.3.

Part (i), Necessity. For an exogenous level of xf œ XG, we have:

vr (w, xf , y) = min
x

v

Ø0

Ó
w€xv : y = F (xv + K (xf ))

Ô

= min
x

v

Ø0

Ó
w€xv + w€K (xf ) : y = F (xv + K (xf ))

Ô
≠ w€K (xf )

= min
XØK(x

f

)

Ó
w€X : y = F (X)

Ô
≠ w€K (xf )

= vy (w, y) ≠ w€K (xf ) .

The last line follows from our assumption that xú
v (w, y) > 0 at the optimum. Defin-

ing v (w, y) © vy (w, y) ≠ vy
!
w, 0+

"
ensures that v

!
w, 0+

"
= 0. Defining ur (w, xf ) ©

vy
!
w, 0+

"
≠ w€K (xf ) + w€xf ensures that cr (w, xf , y) = ur (w, xf ) + v (w, y) .

Conversely, we can recover the convex hull of all inputs producing y, for a given
level of xf , by solving:

min
w

Ó
w€xv ≠ vy (w, y) + w€K (xf )

Ô
.

The corresponding J first order conditions for an inner solution are given by:

xv + K (xf ) ≠ ˆvy
ˆw

(w, y) = 0,

which can be solved with respect to w/wJ and y to obtain:

y = F (xv + K (xf )) .

If G is quasi-concave in xv, this convex hull corresponds to the isoquants of G.

Part (ii). Necessity. With (4.15), the first order conditions for an inner solution in
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xf to the cost minimization problem are given by:

ˆur
ˆxf

(w, xf ) = w,

and do not depend on y and so the solutions xú
f (w). With (4.16), the first order

conditions for an inner solution in xv are:

w = ⁄
ˆF

ˆxv
(xv + K (xf ))

y = F (xv + K (xf )) ,

where ⁄ denotes the Lagrange multiplier. The solution in xv to this system takes the
form xú

v (w, xf , y) = Xú (w, y) ≠ K (xf ) and so the restricted cost function (4.15), with
vy (w, y) © w€Xú (w, y) and ur (w, xf ) = w€xf ≠ w€K (xf ) . Then xú

f is independent
of y.

Su�ciency. If xú
f depends only upon w, then the first order conditions for an inner

solution, given by:
ˆur
ˆxf

(w, xf ) + ˆvr
ˆxf

(w, xf , y) = 0

imply that:
ˆ2vr

ˆxfˆy
(w, xf , y) = 0

and so cr (w, xf , y) = ur (w, xf ) + v (w, y) .

Proof of Proposition 4.4.

We rewrite CTL as:

CTL (w, y, t) = b (w, t) y—y

+lnw€B
wy

+

1
2—yy

ln y+—
yt

t,

with

b (w, t) © exp
3

—
0

+ —€
w ln w + —tt + 1

2 ln w€Bww ln w + ln w€Bwtt + 1
2—ttt

2

4
> 0.

If —yy Æ 0, then:
lim
yæ0

+
CTL (w, y, t) = 0, (4.34)

whereas if —yy > 0,

lim
yæ0

+
CTL (w, y, t) = +Œ.

The cost function is nondecreasing in y > 0 i�:

ˆCTL

ˆy
(w, y, t) =

1
—y + ln w€Bwy + —yy ln y + —ytt

2 CTL (w, y, t)
y

Ø 0.
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If —yy > 0, then:

lim
yæ0

+

ˆCTL

ˆy
(w, y, t) < 0,

and ˆCTL/ˆy becomes positive only for y su�ciently large.

Proof of Proposition 4.5.

There are two types of unobserved heterogeneities here: one due to unobserved xf and
one due to heterogeneous functional forms for ur and vr over individuals. For simplicity
we use the subscript r for denoting this heterogeneity. Let fu|x denote the conditional
density function of ur (w, xf , t) |xf . Under Assumption (a) we can write fu|x = fu where
fu denotes the marginal density of ur. Let us define the average fixed and variable cost
functions (over all firms in our sample) as:

u (w, xf , t) ©
ˆ

ur (w, xf , t) fu (r) dr

v (w, xf , y, t) ©
ˆ

vr (w, xf , y, t) fv (r) dr.

These functions still depend on the unobserved heterogeneity in xf , but individual
heterogeneity in the cost functions ur and vr has been integrated out. Let us also
consider:

“U (w, xf , t) © u (w, xf , t)
U (w, t) , “V (w, xf , y, t) © v (w, xf , y, t)

V (w, y, t) ,

and (we skip the arguments for simplicity)

c = “UU + “V V.

Using the optimality condition ˆcr/ˆxf = 0, and Assumption (a), it follows that
ˆc/ˆxf = 0. So, conditionally on observations (w, y, t) , we write:

cov
Ë
“U , “V

È
= cov

Ë1
c ≠ “V V

2
/U, “V

È
= cov

Ë
≠“V V/U, “V

È
= ≠V

U
V

Ë
“V

È
Æ 0

V
Ë
“U

È
= V

Ë1
c ≠ “V V

2
/U

È
= V 2

U2

V
Ë
“V

È
.

(i) Under Assumption (a) we can write:

cov
1
“U , “V

2
=
ˆ 1

“U ≠ 1
2 1

“V ≠ 1
2

fxdxf

=
ˆ 3ˆ

R
“Ufuv (r) dr ≠ 1

4 3ˆ
R

“V fuv (r) dr ≠ 1
4

fxdxf

=
ˆ ˆ

R

1
“U ≠ 1

2 1
“V ≠ 1

2
fuv (r) fx (xf ) drdxf
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=
ˆ ˆ

R

1
“U ≠ 1

2 1
“V ≠ 1

2
fuv|x (r|xf ) fx (xf ) drdxf

= cov
1
“U , “V

2
,

where the fourth equality follows from the fact that under Assumption (a)
we have the independence of individual heterogeneity with respect to the
level of fixed inputs: fuv|x (r|xf ) = fuv (r) . Putting things together, we
have cov(“U , “V ) = cov

1
“U , “V

2
Æ 0.

(ii) Similarly, the variance matrices satisfy V [“] = V [“] and so:

V [“] =

S

U
V 2

U2 V
Ë
“V

È
≠V
U V

Ë
“V

È

≠V
U V

Ë
“V

È
V

Ë
“V

È

T

V ,

whose determinant is zero.
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Chapter 5

Productivity, Fixed Cost and
Export1

5.1 Introduction

During the past decade, research in the field of international trade has moved from a
countries and sector perspective to a firms perspective. The usage of firm-level data
has been democratized, which in turn o�ers new insights on trade behavior. Empirical
evidence from firm-level data shows that more productive, larger and more capital
intensive firms have a higher probability to become exporters, see for example Bernard
and Jensen (1999). In parallel, a series of pioneer works by Baldwin (1988, 1989),
Krugman (1989) and Roberts and Tybout (1997) introduce a sunk cost for entering into
the export market. In response to these findings, the seminal paper of Melitz (2003)
provides a highly tractable theoretical framework for modeling firms’ export decisions,
in which heterogeneous firms face sunk costs of entry and uncertainty concerning their
productivity. However, the drawbacks of his model are that all firms face the same
entry cost and heterogeneity only appears in Total Factor Productivity (TFP). From
an empirical perspective, the econometric models treat the sunk cost of entry as a
common parameter across firms and focus only on testing the existence of entry costs,
see Roberts and Tybout (1997), Campa (2004) and Bernard and Jensen (2004). Thus,
the heterogeneity of entry costs is largely ignored in this literature.

In this chapter, we propose a Melitz-type model with a heterogeneous entry cost for
export markets. This heterogeneity is introduced into the cost structure through pro-
ductivity, where the entry cost is modeled as a function of productivity. The underlying
assumption is that the entry into export markets is less costly for more productive firms.
The e�ect of productivity on entry costs is characterized by a constant elasticity (the
productivity elasticity of entry costs) in our model. The implication of this assumption

1This chapter has been circulated under the title “Self-selection into export market: Does produc-
tivity a�ect entry costs?”, Chen and Olland (2013).
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is that the minimum entry requirement at equilibrium also depends on the productivity
elasticity of entry costs.2 We find that in a relatively selective export market, a higher
degree of dependence between productivity and entry costs yields a lower entry require-
ment. Conversely, in a relatively open market, the productivity elasticity of entry costs
plays the opposite role: a higher dependence between productivity and entry costs in-
creases the entry requirement. In order to test our working assumption that entry costs
are a�ected by productivity, we develop an empirical strategy based on a treatment
evaluation model for measuring entry costs, and for evaluating the relationship between
entry costs and neutral as well as non-neutral productivity. Our study sheds light on
determinants of the entry barriers in the international market and how entry barriers
could be reduced from the firms’ perspective.

The distinction between various types of fixed costs (per-period or sunk), firm-level
di�erences in fixed costs and their impact on the market structure and trade behavior
are fundamental issues but are largely neglected in both theoretical and empirical mod-
els. For example, the basic Melitz model suggests that firms may have di�erent marginal
cost structures, but share the same operating fixed cost and the same sunk cost of entry,
no matter how di�erent they are in terms of productivity. In addition, neither operating
nor entry fixed costs are a�ected by productivity (because the additive separability be-
tween productivity and fixed costs is imposed in the production technology). Numerous
theoretical reasons and empirical evidence show that fixed cost structures may di�er
at the firm level, see Chapter 4. For instance, the sunk cost associated with product
adaptation and promotion (for the international market) may depend on firm specific
characteristics, such as innovation capacity and management skills. Considering that
these characteristics are the key elements of productivity, we propose a trade model
where firm’s productivity partly determines the cost of entry. In such a way, we add
firm-level heterogeneity into the fixed cost structure. We point out that the productiv-
ity elasticity of entry costs is a crucial parameter for entry conditions at equilibrium. It
adds (in comparison to the traditional Melitz model) an indirect channel through which
the level of productivity determines the self-selection. Our empirical investigations are
focused on French manufacturing firms for the last seven years, where we find significant
costs of entry, as well as a relationship between productivity and these costs.

The theoretical models proposed by Krugman (1989), Dixit (1989a,b), Melitz (2003)
and by Bernard et al. (2003) gave birth to a large number of empirical studies testing
entry cost e�ects. Roberts and Tybout (1997) develop an empirical model of exporting
decision with sunk costs. This dynamic discrete-choice framework quantifies the im-
pacts of sunk cost hysteresis, by directly analyzing the firm’s entry and exit patterns
(the so-called, direct approach).3 Based on Colombian manufacturing plants data over

2The minimum entry requirement in the Melity-type trade model is defined in terms of productivity,
and only the most productive firms can enter into the international market.

3Before the Robert and Tybout’s (1997) model, the empirical investigations have rather focused on
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the period 1981-1989, Roberts and Tybout (1997) provide strong evidence for the exis-
tence of sunk entry costs. Campa (2004) validates the sunk cost hysteresis assumption
for Spanish manufacturing plants. In addition, he also finds that sunk costs of entry
into the foreign market are much larger than costs of exit. Coinciding with a growing
body of trade literature that emphasizes the role of heterogeneity, Bernard and Jensen
(2004) extend Robert and Tybout’s dynamic export decision model by adding individual
e�ects. They find that sunk costs of entry are significant for U.S. manufacturing plants
over the period 1984-1992, and that plant characteristics reflecting past performance
increase the probability of entry. However, a surprising result documented in Bernard
and Jensen (2004) is that Total Factor Productivity has no significant impact on trade
decisions. This result may be due to their empirical model specification. Similar to
Roberts and Tybout (1997) and Campa (2004), the dependent variable in that study is
the export participation (a binary variable), and the volume of export is not considered.
This approach can only capture one aspect of firms’ trade behavior. A further contribu-
tion to the literature of sunk entry costs is made by Das et al. (2007), whose empirical
results provide a series of policy recommendations for export-oriented reforms. Based
on a dynamic structural model, their empirical investigation incorporates both aspects
of trade behavior: the participation and exports volume. Their simulations point out
that policies targeting export revenues are much more e�ective than entry cost sub-
sidies. Compared to previous empirical papers on the sunk entry cost, our empirical
investigation di�ers in two aspects: first, our objective is not only to test the existence
of sunk costs but also to test the relationship between the sunk cost of entry and pro-
ductivity. Second, we adopt a di�erent and more flexible empirical methodology using
the treatment evaluation model for estimating sunk entry costs and for revealing how
firm-specific characteristics influence the cost of entry.

The chapter is organized as follows: in the next section, we extend the Melitz
model and discuss the implications of heterogeneous sunk entry costs on the equilibrium.
Section 5.3 describes our empirical methodology for measuring the e�ects of firms’
characteristics on the entry cost. Data and estimation results are presented in Section
5.4. Section 5.5 concludes.

5.2 Theoretical model with heterogeneous entry costs

In this section, we present a Melitz trade model with heterogeneous entry costs and
their implications on the open economy equilibrium. We consider a simple two-countries
framework where firms use labor as the unique factor to produce di�erentiated prod-
ucts in a monopolistic competition market (see for example, Melitz, 2003, Helpman
et al., 2004 or Chaney, 2008). Since productivity is drawn exogenously and does not

asymmetries in the responses of trade flows to exchange rate variations (the so-called, indirect approach).
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Figure 5.1: Cuto� values and the self-selection

change during the firm’s lifetime, then this type of model focuses on the self-selection
mechanism, and learning by exporting is not considered.4

On the demand side, we follow the standard Dixit-Stiglitz framework which is a
simple general equilibrium model with monopolistic goods. Consumers have CES pref-
erence with an elasticity of substitution ‘ > 1 across varieties. Solving for the consumer’s
maximization problem yields the demand for a specific variety of good Ê:

q(Ê) = Qp(Ê)≠‘P ‘≠1,

where P =
!´

�

p(Ê)1≠‘dÊ
"

1/(1≠‘) is the aggregate price, Q is the exogenous demand
level that reflects the market size and p(Ê) is the optimal pricing for the variety Ê

with a constant mark-up. On the supply side, firms that paid the entry cost draw
their productivity from a continuous cumulative distribution G(Ï), where Ï denotes
the marginal cost, which is the inverse of productivity. Then, given their productivity,
firms decide whether they produce or not, and whether they export or not.

First, firms choose to produce and to serve the domestic market (subscripted by D)
if their operating profit is positive. The domestic operating profit is given by �D =
�DÏ1≠‘ ≠ fD where �D © QD‘≠‘(1 ≠ ‘)1≠‘ represents the domestic demand and fD is
the operating fixed cost of production. Second, firms that export (subscripted by X)
can earn an additional profit �X = �X(Ï·)1≠‘ ≠ FX , where �X represents the foreign
demand and · > 1 denotes the iceberg transport cost between the two countries. FX

represents both the operating fixed cost and the entry cost for the export market.
Therefore, three types of firms coexist (see Figure 5.1). Firms that draw a low level of
productivity, such as 1/Ï < 1/ÏD, choose to immediately exit production because their
operating profits are negative. Firms that draw a level of productivity between 1/ÏD

and the export cuto� value 1/ÏX , are serving the domestic market only. Firms with a
high level of productivity, 1/Ï > 1/ÏX , serve the domestic market as well as the export
market.

4Testing e�ects of learning by exporting is beyond the scope of this chapter. Future research may
consider a more dynamic trade model that allows us to study simultaneous the e�ect of self-selection
and of learning by exporting.
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5.2.1 Heterogeneous export entry costs

Often, fixed production costs and sunk costs of entry are supposed to be identical for
all firms in the literature on heterogeneous firms. These hypotheses seem to be very
restrictive regarding the real situation of firms. The di�erences between two firms in
their sunk costs may due to their own specificities or some externalities. Thus, this
additional source of heterogeneity is needed to be taken into account. We introduce
this heterogeneity through productivity. Our working assumption is that a more pro-
ductive firm is able to adapt products for foreign markets at a lower entry cost than
less productive firms.

As we cannot empirically estimate firms’ entry costs in their own domestic market
because we do not observe firms that are not producing, these start up costs (fE) are
assumed to be identical across firms. The operating fixed cost for the domestic market
fD is also identical across firms. We focus on the fixed and sunk entry costs for the export
market. We define these costs as a function of firm’s productivity FX(Ï) © fXh(Ï),
where fX represents the common sunk cost and h(Ï) represents firm’s deviation from
these common sunk costs. We impose that h(Ï) is an increasing function of Ï to satisfy
our working assumption that sunk costs are lower for more productive firms. In order
to ensure that a firm cannot export without being a domestic producer, we also impose
that fD < FX(Ï) for any level of productivity 1/Ï. Therefore, the two cuto� values ÏD

and ÏX are determined by setting operating profits to zero in each market. The zero
profit cuto� conditions for the domestic and export market can be written respectively
as:

�DÏ1≠‘
D = fD; (5.1)

�X(·ÏX)1≠‘ = fXh(ÏX). (5.2)

Prior to production, firms have to decide whether they incur or not the start up cost
fE . For a specific firm, the expected operating profit associated to a variety has to be
larger than fE . For the marginal firm, this can be written as:

V (ÏD)�D + ·1≠‘V (ÏX)�X ≠
5
G(ÏD)fD + fX

ˆ Ï
X

0

h(Ï)dG(Ï)
6

= fE , (5.3)

where G(Ï) is the cumulative distribution function from which a potential market en-
trant draws its productivity and V (Ïj) =

´ Ï
j

0

Ï1≠‘dG(Ï) (j = D, X) is the expected
value of a firm that draws a productivity Ï. In line with Helpman et al. (2004), firms’
productivity is drawn from a Pareto distribution, which is a good approximation of data
and makes the model more tractable. The Pareto cumulative distribution function is
defined as G(Ï) © (Ï/Ï̄)k where Ï has a positive support over [0; Ï̄]; Ï̄ and k > 0 are the
scale and shape parameters, respectively. Since we assume that countries are symmetric,
so that the demand shifter is the same in both types of countries, � = �D = �X . Then,
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from (5.1) and (5.2) we can derive the cuto� value ratio to illustrate the self-selection
bias of traditional models.

ÏX

ÏD
=

3
fX

fD·1≠‘

4 1
1≠‘

◊ h(ÏX)
1

1≠‘ , (5.4)

where
!
fX/fD·1≠‘

" 1
1≠‘ is the cuto� value ratio in the traditional model. Note that our

equilibrium ratio in (5.4) is identical to a traditional model ratio except that h(Ï) now
appears on the right-hand side of this expression. The predicted proportion of firms
that are between ÏX and ÏD (domestic producers) deviates from the prediction of the
traditional model by h(ÏX)1/(1≠‘).

In order to derive more explicit results, we consider the simplest functional form for
h(·) which is compatible with our working assumption, i.e., h(Ï) © Ï“ . The parameter
“ Ø 0 is the productivity elasticity of entry costs. It measures how the change of
productivity a�ects the sunk cost of entry into the export market. If “ = 0, then
h(Ï) = 1 and we are back to the traditional model (FX(Ï) = fX). For any “ > 0, there
is a deviation from the common fixed cost. The magnitude of the deviation depends
on “ and Ï (see section 5.2.2 for a numerical application). For any “ ”= 0, there is
no analytical solution in the present model for ÏD, ÏX and �, where the variables are
expressed exclusively on the fixed parameters. However, we can compare equilibrium
of our model to those of the traditional model by examining the following proposition.
From (5.1), (5.2), (5.3) and (5.4) we can obtain the productivity threshold values at
equilibrium.5

Proposition 5.1. The unique equilibrium of productivity threshold values is:

Ïk
D = Ï̄k fE(— ≠ 1)

fD[1 + �(Ï“
X)1≠—�] ; (5.5)

Ïk
X = Ï̄k fE(— ≠ 1)�

fX(Ï“—
X + ��Ï“

X)
, (5.6)

where — © k/(‘ ≠ 1) > 1, � © — ≠ (— ≠ 1)[k/(k + “)] > 0 and � © (·1≠‘)—(fX/fD)1≠—.
� is a trade openness parameter that is bounded by 0 (correspond to autarky) and 1
(correspond to free trade).

The proof of Proposition 5.1 is given in Appendix A. Note that when “ = 0 our threshold
values correspond to the threshold values of the traditional model. From (5.5) and (5.6),
we see that ÏX also appears in the right-hand side of the equations whereas it does not
in the traditional model. The additional parameter “ a�ects the equilibrium value of
ÏX , ÏD and �, which will have an impact on the number of entrants (for both domestic

5See Appendix A for details of calculation.
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and foreign markets), on the volume of trade and also on consumer welfare.
In this chapter, we focus on what happens to the threshold value, ÏX , at the equi-

librium when the productivity elasticity of entry cost, “, changes. The equilibrium is
characterized by an implicit function and it is impossible to solve (5.6) explicitly for
ÏX . Therefore, in the next subsection, we carry out the comparative statics by using
the Implicit Function Theorem (IFT), and provide a numerical example.

5.2.2 Comparative statics

In our model, the e�ect of productivity on sunk entry costs is characterized by the
elasticity “. We now investigate analytically the e�ects of an increase in “ on the
equilibrium entry condition, ÏX , for export markets. By fixing all other parameters,
Equation (5.6) can be rewritten as the following implicit function of ÏX and “:

F (ÏX , “) = Ï̄k fE(— ≠ 1)�
fX(Ï“—

X + ��Ï“
X)

≠ Ïk
X = 0. (5.7)

Given some regularity conditions, the IFT provides the derivative of ÏX w.r.t. “ al-
though it is impossible to solve this implicit function explicitly:

ˆÏX

ˆ“
= ≠

ˆF
ˆ“ (ÏX , “)
ˆF
ˆÏ

X

(ÏX , “)
,

where

ˆF

ˆ“
(ÏX , “) = ≠ Ï̄kfE(— ≠ 1)�

fX

1
(Ï“—

X + ��Ï“
X)2

C

—log(ÏX)Ï“—
X + �Ï“

X [log(ÏX)(k + “)(—“ + k) + (— ≠ 1)k]
(k + r)2

D

;

ˆF

ˆÏX
(ÏX , “) = ≠ Ï̄kfE(— ≠ 1)�

fX

(“—Ï“—≠1

X + ��“Ï“≠1

X )
(Ï“—

X + ��Ï“
X)2

≠ kÏk≠1

X .

Using this result, we obtain the following proposition whose proof is provided in Ap-
pendix A.

Proposition 5.2. The three conditions of IFT are satisfied by (5.7): a) F (.) is con-
tinuously di�erentiable function; b) ˆF (ÏX , “)/ˆÏX ”= 0; c) there is a unique equilib-
rium.

i) For ÏX œ [1, +Œ[, ÏX is decreasing in “, i.e., the slope ˆÏX/ˆ“ < 0;

ii) For ÏX œ]0, exp( 1

k+“≠ 1

‘≠1+“ )], ÏX is increasing in “, i.e., the slope ˆÏX/ˆ“ >

0;
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iii) For ÏX œ]exp( 1

k+“ ≠ 1

‘≠1+“ ), 1[, the sign of slope is undetermined.

This proposition shows that there are two schemes. If the export market is relatively
open, the low entry barrier scheme, i.e., ÏX œ [1, +Œ[, then Proposition 5.2 indicates
that ˆÏX/ˆ“ < 0, implying that the threshold productivity for entry (1/ÏX) faced
by firms increase as “ increases. Thus, this export market becomes more selective.
Conversely, ˆÏX/ˆ“ > 0 when the equilibrium is established in the high entry barrier
zone, i.e., ÏX œ]0, exp( 1

k+“ ≠ 1

‘≠1+“ )], where exp( 1

k+“ ≠ 1

‘≠1+“ ) < 1. This suggests
that the export market becomes less selective as the parameter “ increases. We note
that there is an interval, ÏX œ]exp( 1

k+“ ≠ 1

‘≠1+“ ), 1[, where the monotonicity is unclear.
However, it does not a�ect our conclusion for two reasons: first, this ambiguous zone
is small for a reasonable calibration of the model. Second, it is reducing as “ increases,
i.e., lim“æ+Œ exp( 1

k+“ ≠ 1

‘≠1+“ ) = 1.6

In order to provide a graphic representation of the proposition above, we solve the
model numerically for the variable of interest ÏX . We adopt calibrations as in previous
literature on heterogeneous firm models, such as Bernard et al. (2007) and Costantini
and Melitz (2007). The parameter calibration is reported in Table 5.1.

Table 5.1: Parameter calibration

Parameter Value
k 3
‘ 3.8

fD 0.1
fE 2
fX 0.1 or 2.1
Ï̄ 2

Given the calibration of parameters, we are able to plot the equilibrium values of ÏX

for di�erent values of “ in Figures 5.2 and 5.3. The low entry barrier scheme is depicted
in Figure 5.2, where ÏX œ [1; +Œ[. In this case, entry becomes more di�cult for a higher
“. Figure 5.3 is the relatively selective market situation ÏX œ]0; exp( 1

k+“ ≠ 1

‘≠1+“ )[,
with a high common cost fX = 2.1. In this case, we note that entry is easier for a
higher “. We also see from Figure 5.3 (the red line), that the lower bound of the critical
interval exp( 1

k+“ ≠ 1

‘≠1+“ ) is very close to one and the equilibrium value of ÏX never
falls into this interval. Thus, the slope of ÏX is well determined on its full support in
this example.

6Following Bernard et al. (2007), we assume that k = 3 and ‘ = 3.8. Thus, even when “ is set to be
zero, the unclear interval is ]0.976, 1[.
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Figure 5.2: Low entry barrier scheme with fX = 0.1

Intuitively, there are two schemes because of the non-monotonicity of FX(Ï) = fXÏ“

in “.7 When the equilibrium value ÏX œ]0, exp( 1

k+“ ≠ 1

‘≠1+“ )[, the potential entrants
with productivity level Ïi < 1 (in the neighborhood of ÏX), benefit from a higher “

(reduction of FX(Ï)). In the opposite case, when ÏX œ [1, +Œ[, the potential entrants
with the productivity level Ïi > 1, su�er from a higher “ (increase in FX(Ï)). Without
loss of generality, we can easily restrict our model to allow for only one of these two
situations by bounding the Pareto distribution di�erently.8

In order to validate theoretical implications of heterogeneous fixed costs, we need
to estimate sunk entry costs for the export market as well as productivity, and to
test the link between them. In particular, we investigate whether and how productivity
influences the sunk costs of entry. The answer to these questions is important to evaluate
self-selection. As we have shown in this section, the influence of productivity on sunk
entry costs can have an e�ect on the cuto� values (ÏD, ÏX) for market entry. Therefore,
the selection process can be stronger (or weaker, depending on the equilibrium schemes)
leading to a higher (or lower) aggregate productivity.

7When Ï < 1, a higher parameter “ yields a low F

X

. Reversely, when Ï > 1, F

X

increases with a
higher parameter “.

8If the support of the Pareto distribution is [1; +Œ[, we only have the low entry barrier scheme.
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Figure 5.3: High entry barrier scheme with fX = 2.1

5.3 Empirical methodology for measuring entry barriers

A large number of empirical studies, following Roberts and Tybout (1997), investigate
the determinants of the export participation decision (for example, Bernard and Wagner,
2001, Campa, 2004, Bernard and Jensen, 2004 and Das et al., 2007). Although firm
heterogeneity is often embodied in the trade decision process, the sunk cost of entry is
considered to be a common parameter in these empirical studies.9

In the basic Melitz (2003) model, firms may have di�erent marginal cost structures
(depending on their characteristics and productivity) but all firms face the same sunk
cost of entry. Chapter 4 of this thesis, however, shows that fixed and variable costs are
not independent and that any heterogeneity a�ecting variable cost also influences the
fixed cost. One of our contributions w.r.t. the previous trade models is that we endo-
genize the sunk cost of entry as a function of firm-level characteristics. The empirical
objective of this chapter is to evaluate the impact of firms’ characteristics, in particular
productivity, on costs of entry. We propose an empirical strategy that allows us to
estimate the firm-specific entry cost and that keeps a minimum level of restrictions on
the model.

Following our theoretical model, we disregard the assumption that firms can improve
their productivity through exporting. This notion is referred to as learning-by-exporting.
In this literature, researchers test the e�ect of entry into exporting markets on firm’s

9One exception is Das et al. (2007), where the sunk cost of entry depends on firm specific character-
istics.
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productivity, see Bernard and Jensen (1999), Van Biesebroeck (2005) and De Loecker
(2007). In contrast, we study the reverse causality of the productivity-export relation-
ship, which consist of testing whether more productive firms face lower costs of entry
into export markets.

In this chapter, we first test for the existence of sunk entry costs. Second, we evaluate
the impact of firms’ characteristics on their incurred entry costs. In particular, we focus
on the impact of neutral and non-neutral productivity. Our empirical model extends the
idea of heterogeneous firms in the “new new” trade theory (proposed by Melitz, 2003
and Bernard et al., 2003) by also allowing heterogeneity in terms of entry costs. This
empirical investigation supports the exported-oriented policies which favor domestic
productivity growth rather than subsidizing entry costs. Such a subsidy policy will
not be e�cient, first, because entry costs are heterogeneous and the actual expenditure
incurred by similar (in terms of export volume) firms can di�er significantly from the
average level. Second, a large part of these costs are unobservable for the national trade
promotion agency.

5.3.1 Overview of our empirical model

The strategy for identifying the sunk cost of entry in our chapter is similar to Roberts
and Tybout (1997). This approach consists of comparing the net export profits of newly
entered exporters with those of established exporters. However, this chapter di�ers from
their work in the way of estimating sunk costs of entry, and our empirical model allows
for entry cost heterogeneity.

The logarithmic net export profits for exporter i at period t (fiit © log�it) can be
written as:

fiit =

Y
]

[
fi

0it = fiú
it + v

0it if Dit≠1

= 0;

fi
1it = fiú

it ≠ logfX + v
1it if Dit≠1

= 1.
(5.8)

The net current profit depends on firm’s previous exporting status, where we distinguish
two cases that are denoted by fi

0it and fi
1it. The binary variable Dit≠1

= 0 indicates
that the exporter is “on the export market” at period t ≠ 1 (so the established exporters
since t ≠ 1) and Dit≠1

= 1 indicates that the exporter is “out of the export market”
at period t ≠ 1 (as the newly entered exporter at t). The logarithmic gross exporting
profit is denoted as fiú

it. The terms v
0it and v

1it represent the individual-specific gain
(or loss) from export participation, which are anticipated by firms but unobserved by
econometricians.

The di�erence between the i-th newly entered exporter’s net profits (observed) and
his potential profits without incurring the (unobserved) entry cost defines the sunk cost
of entry, i.e., logFXit = fi

0it ≠ fi
1it = logfX + v

0it ≠ v
1it. If we only had data on newly

entered exporters (with Dit≠1

= 1), it would be infeasible to separately identify the
sunk cost of entry from the expected profits. Fortunately, it is generally possible to
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have a control group of established exporters (with Dit≠1

= 0), which are “already on
the export market” at t ≠ 1. The sunk cost is identified as the di�erence in terms of
actual profits between the newly entered exporters and the established exporters which
have comparable potential profit streams.

An additional empirical di�culty in this framework is that our data set does not
provide information on the export profit, but we observe instead the export revenue
(rit © logRit). We follow Das et al. (2007), and assume the classical markup equation:

pit(1 ≠ ÷≠1

i ) = cit,

where pit denotes the foreign output price, cit is the marginal cost for the export pro-
duction, and ÷i > 1 denotes the firm-specific foreign markup. Multiplying both sides of
the markup equation by the export quantities yields:

Rit(1 ≠ ÷≠1

i ) = Cit,

where Cit is the variable cost of exporting. Then we can express the export profit as:

�it = Rit ≠ Cit = ÷≠1

i Rit.

Substituting the equation above into model (5.8), we obtain the corresponding empirical
model in terms of revenues:

rit = log÷i + fiit =

Y
]

[
r

0it = log÷i + fiú
it + v

0it if Dit≠1

= 0

r
1it = log÷i + fiú

it ≠ logfX + v
1it if Dit≠1

= 1.
(5.9)

In the earlier empirical literature, researchers estimated the sunk cost as an aver-
age constant term by considering that the sunk cost is identical across firms. Several
attempts to incorporate the firm-level heterogeneity have focused on the heterogeneity
in the trade decision process rather than on the sunk cost structure, see for example
Bernard and Jensen (2004). In our theoretical model, the sunk cost of entry is not
constant but a function of firm’s characteristics. To capture the feature of endoge-
nous sunk costs, our empirical model allows firms to deviate from the average entry
requirement. The average sunk cost of entry (logfX) is estimated along with the firm’s
deviation (v

0it ≠ v
1it) from the average sunk cost. Compared to the dynamic discrete-

choice model proposed by Roberts and Tybout (1997), our estimation method follows
the treatment evaluation literature (Heckman and Hotz, 1989), and matches newcom-
ers with established exporters which share similar characteristics. The structural model
proposed by Das et al. (2007) can also be used to characterize the heterogeneity in the
sunk cost of entry. However, we prefer the treatment evaluation approach because it
avoids to impose further ad hoc assumptions on the functional form and on the dynamic



5.3. EMPIRICAL METHODOLOGY FOR MEASURING ENTRY BARRIERS 115

stochastic process for expected profits and sunk costs.
The matching method compares the current export revenue of the two groups (the

treated with the control group) based on a series of criteria which are embodied in a vec-
tor of pretreatment variables. These variables reflect the firm’s financial and production
information as well as its productivity. An additional novelty of this chapter is that we
consider two types of productivity: Hick-neutral (Total Factor Productivity, TFP) and
non-neutral (Relative Factor-augmenting Productivity, RFP). Following Chapter 3, we
estimate two measurements of productivity and evaluate their impacts on firm-specific
entry costs. In the next subsections, we first present the treatment evaluation model
for testing the existence of sunk entry costs and for quantifying the impact of firm-level
characteristics on the sunk cost of entry. Then, we describe the estimation method for
productivity measurement.

5.3.2 Treatment evaluation model

We formally define the sunk cost of entry for export markets:

Definition 5.1. At period t, the sunk cost of entry for i-th newly entered firm is
defined as the di�erence between the actual (observed) export revenue (r

1it) and its
potential (unobserved) export revenue without incurring the entry cost (r

0it):

logFXit = r
0it ≠ r

1it = logfX + (v
0it ≠ v

1it)

= ◊ + (v
0it ≠ v

1it), (5.10)

where ◊ © logfX represents the average sunk cost of entry into the exporting market.
The term (v

0it ≠ v
1it) that is time-varying and firm-specific, represents the individual

deviation from the average sunk cost.

If the same firm could be observed in both states at the same time period, the sunk
cost of entry could simply be calculated. However, the di�culty is that a firm cannot be
in both states simultaneously. We observe either r

0it or r
1it for the i-th individual at t.

Basically, we are facing a missing data problem. To overcome this problem, we use the
matching technique to estimate the e�ect of entry. Our group of interest (the treated
group) includes newly entered exporters with Dit≠1

= 1 that earn r
1it in the export

market at t. The control group includes established exporters with Djt≠1

= 0 that
earn r

0jt, with i ”= j. Intuitively, the sunk cost of entry is revealed by comparing the
di�erence in the actual exporting revenue at t across exporters that have comparable
expected profits and characteristics, but di�er in whether they exported in the previous
period. The underlying hypothesis here is that sunk costs of entry are borne completely
within one year after the entry.
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Our empirical objective is not to obtain the structural parameters as in Das et al.
(2007), but to evaluate the cost of entry and to study how this cost changes with
some firm’s characteristics. Therefore, we avoid ad hoc restrictions on the expect profit
function and the markup. The quantity of interest is the average treatment e�ects
(ATE) conditional on firm’s pretreatment characteristics xit≠1

:

ATE(xit≠1

) = E[r
1

≠ r
0

| xit≠1

]. (5.11)

The vector of covariates x, may include firm’s past productivity and size. Equation
(5.11) measures the average cost of entry cost in terms of export revenue shortfalls. It
also characterizes how the cost of entry changes for various level of x, in particular, we
are interested in the impacts of TFP and RFP on entry cost into the export market.

The di�culty in estimating ATE is that the treatment (the previous exporting
experience, Dit≠1

) is certainly not randomized across firms, and the firm’s decision
variable at t ≠ 1, Dit≠1

, may be related to its anticipation of the entry that is captured
in v

0it and v
1it. To deal with this problem, several approaches are available in the

literature. Wooldridge, (2002, p.602), Heckman and Vytlacil (2007) and Imbens and
Wooldridge (2009) provide recent reviews on this rapidly growing literature. We use
the Heckman and Hotz (1989) approach to estimate the treatment evaluation model.
A fundamental assumption required by this approach is the ignorability of treatment
assumption (Rosenbaum and Rubin, 1983).

Assumption 5.1. (Ignorability of treatment) Conditional on pretreatment char-
acteristics xit≠1

, the decision variable Dit≠1

and the outcomes (r
0it,r1it) are mean in-

dependent.
E[r

0it | Dit≠1

, xit≠1

] = E[r
0it | xit≠1

];

E[r
1it | Dit≠1

, xit≠1

] = E[r
1it | xit≠1

].

In order to see the implication of this assumption, we recall the export revenue
equations (5.9), which can be viewed as a switching regression model:

rit = (1 ≠ Dit≠1

)r
0it + Dit≠1

r
1it

= r
0it + Dit≠1

(r
1it ≠ r

0it)

= log÷i + fiú
it + v

0it ≠ ◊Dit≠1

+ Dit≠1

(v
1it ≠ v

0it).

Endogeneity arises because the previous entry decision (Dit≠1

) is related to the firm’s
expectation about entry benefits or costs, which is reflected in the unobserved term
(v

1it≠v
0it). Under the ignorability of treatment assumption, the conditional expectation
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of outcome becomes:

E[rit | Dit≠1

, xit≠1

] = f(xit≠1

) + g
0

(xit≠1

) ≠ ◊Dit≠1

+ Dit≠1

[g
1

(xit≠1

) ≠ g
0

(xit≠1

)],

where g
0

(xit≠1

) © E[v
0it | Dit≠1

, xit≠1

] = E[v
0it | xit≠1

] and g
1

(xit≠1

) © E[v
1it |

Dit≠1

, xit≠1

] = E[v
1it | xit≠1

]. Both expected profits and the markup are a function
of firm’s characteristics, i.e., f(xit≠1

) © E[log÷i + fiú
it | xit≠1

]. By rearranging the terms,
the equation above yields:

E[rit | Dit≠1

, xit≠1

] = G
0

(xit≠1

) ≠ ◊Dit≠1

+ Dit≠1

G
1

(xit≠1

),

where G
0

(xit≠1

) © f(xit≠1

) + g
0

(xit≠1

) and G
1

(xit≠1

) © g
1

(xit≠1

) ≠ g
0

(xit≠1

). From
the above equations, we note that the dependence between Dit≠1

and the unobserved
terms, v

0it and v
1it are eliminated by conditioning on xit≠1

. The conditional ATE in
this model is:

ATE(xit≠1

) = ≠◊ + G
1

(xit≠1

).

Under the ignorability of treatment assumption, the two quantities of interest can
be estimated in a fairly flexible way without imposing any distributional restrictions on
the observed outcome. However, in order to simplifying the estimation, we consider a
linear model where the parameters of interest are obtained by regressing rit on xit≠1

,
Dit≠1

and Dit≠1

(xit≠1

≠ x̄), where x̄ denotes the sample average of xit≠1

:

rit = ⁄Õ
1

xit≠1

≠ ◊Dit≠1

+ ⁄Õ
2

Dit≠1

· (xit≠1

≠ x̄) + eit. (5.12)

The error term eit is assumed to be i.i.d. Consistent estimates of parameters in (5.12)
yield the prediction: [ATE(xit≠1

) = ≠◊̂ + ⁄̂Õ
2

Dit≠1

· (xit≠1

≠ x̄) . ◊̂ measures the cost
of entry for the newcomer in comparison to the established exporter. If the estimated
◊̂ is significant, it suggests that there is a potential entry cost in the export market.
A consistent estimate of [ATE(xit≠1

) also allows us to evaluate how the ATE given
xit≠1

changes with a particular element of xit≠1

. The estimated vector of parameter
⁄̂

2

indicates the impact of pretreatment variables on the entry e�ect. If ◊̂ is significant
(there is a sunk costs of entry), a positive value of ⁄̂

2

suggests that xit≠1

can contribute
to reducing the sunk cost of entry.

A more practical question now is: what are the suitable pretreatment variables
in xit≠1

? Given the data at hand, we include firm’s characteristics that may a�ect
the decision of entry into the export market and past performances: firm’s size, core
business sector, as well as the two measurements of productivity at period t ≠ 1.10 In
the next subsection, we describe how Hicks-neutral and non-neutral productivity (TFP

10
x

it≠1 includes only the pretreatment variables. Thus, we assume that firms chose to enter into
export markets at t after knowing their size and productivity at t ≠ 1.
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and RFP) are measured.

5.3.3 Estimating the productivity

There is a long tradition of studying the productivity-export relationship in the litera-
ture. However, in the majority of cases (Crozet and Trionfetti, 2011 is an exception),
productivity is referred to TFP (Hicks-neutral). Syverson (2011) and Van Beveren
(2012) provide recent surveys on this literature. We take into account a second type of
productivity measurement, RFP (non-neutral), for analyzing the firm’s trade behavior.

Chapter 3 of this thesis proposes a structural semi-parametric estimation method for
recovering the firm-level productivity. This approach extends the Olley and Pakes (1996)
estimator to the more flexible and realistic specification of CES production function with
biased technical change. The advantage of this approach is that it not only estimates
TFP, but also yields time-varying and firm-specific estimates of RFP without prior
assumption on its functional form. This approach deals with two sources of endogeneity:
the regressors in the production function (input variables) may correlate with both
Hicks-neutral and non-neutral productivity. By using the first order conditions derived
from competitive factor market, this method allows consistent estimation of the degree
of returns to scale, the elasticity of substitution, and the bias in technical change.

The CES production function with two factors, labor (Lit) and capital stock (Kit),
and the value-added output, Yit can be written as:

Yit = Ait[–(BitKit)
‡≠1

‡ + (1 ≠ –)Lit
‡≠1

‡ ]
‡fl

‡≠1 , (5.13)

where the parameters –, ‡ and fl are the income distribution parameter, the degree of
returns to scale and the elasticity of substitution, respectively. Ait is the relative Hicks-
neutral productivity (TFP), and Bit is the relative capital-augmenting productivity
(RFP), see Chapter 3 for more details on this point. We assume that the productivity
term Ait follows a first-order Markov process. Cost minimizing firms set the marginal
product equals to input prices. The first order conditions of the CES production function
imply that:

Kit

Lit
=

3
–

1 ≠ –

4‡ 3
Wlit

Wkit

4‡

B‡≠1

it , (5.14)

where Wl and Wk denote the wage and the capital rental price, respectively. The
logarithmic CES production function can be rewritten as:

logYit = fllogLit + ‡fl

‡ ≠ 1log[–(Bit
Kit

Lit
)

‡≠1
‡ + (1 ≠ –)] + logAit,

and the capital-labor ratio equation (5.14) yields:

log[–(Bit
Kit

Lit
)

‡≠1
‡ + (1 ≠ –)] = log(1 ≠ –) + logSit, (5.15)
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where Sit © W
kit

K
it

W
lit

L
it

+ 1 reflects the factor cost ratio.11 Then, we can use (5.15) to
substitute the unobservable productivity shock Bit from the production function and
to obtain the following regression equation:

yit = c + fllit + ”sit + ait + Áit. (5.16)

The random term Áit corresponds to the exogenous shock that is not anticipated by
firms. The lower-cases denote the logarithmic values. The parameters c and ” are
defined as c © fl‡

‡≠1

log (1 ≠ –) and ” © fl‡
‡≠1

.

Now, we have a log-linear model, in which we need to deal with two sources of
endogeneity through ait © logAit and bit © logBit (both ait and bit are correlated with
regressors lit and sit). The seminal paper of Olley and Pakes (1996) introduces the
so-called control function approach to deal with the endogeneity problem for estimating
production functions. The idea behind this approach is to use a control function of
proxies for inverting out the unobserved productivity term in the production function.
Levinsohn and Petrin (2003) assume the monotonicity of material demand equation in
ait, and inverse ait out from the material demand equation. Thus, the productivity term
ait is expressed as a function of the material demand and capital stocks, see Chapter 3
for details. Note that Olley and Pakes (1996) as well as Levinsohn and Petrin (2003) do
not allow for biased technical change in their model, because of the choice of a Cobb-
Douglas specification. Based on the CES model, we consider a generalized material
demand equation, mit = M(ait, bit, kit) where both terms ait and bit are included in
the equation.12 One technical di�culty of this generalization is that the inversion trick
in Levinsohn and Petrin (2003) is not longer working for ait. The monotonicity of
the material demand equation in ait is not su�cient for the inversion of the material
demand equation, because the additional term bit is unobserved. Fortunately, using the
capital-labor ratio equation (5.14), bit can be expressed as a function of the observed
variable Sit and the input price ratio.13 Thus, we can obtain the following generalized

11Given the capital-labor ratio equation (5.14),

W

kit

K

it

/W

lit

L

it

= –/(L
it

/K

it

)1/‡≠1
B

(‡≠1)/‡

it

≈∆ (1 ≠ –)(W
kit

K

it

/W

lit

L

it

+ 1) = –( Lit
Kit

B

it

)(‡≠1)/‡ + (1 ≠ –)

12The econometric model considered here di�ers slightly from Chapter 3 in two aspects: first, we
follows Levinsohn and Petrin (2003) by using material input as proxy. Second, the control function now
includes the additional term, b

it

, which allows for the interaction between inputs demands and RFP.
Therefore, the corresponding estimation method is also modified.

13Inverting the capital-labor ratio equation yields:

B

it

=
11 ≠ –

–

2 ‡
‡≠1

(S
it

≠ 1)
1

‡≠1
1

W

kit

W

lit

2
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invertible relationship.14

E[ait | sit, kit, mit, wkit, wlit] = M≠1(sit, kit, mit, wkit, wlit).

Plugging this function into Equation (5.16), we have our final regression equation:

yit = c + fllit + ”sit + M≠1(sit, kit, mit, wkit, wlit) + Áit

= fllit + �(sit, kit, mit, wkit, wlit) + Áit,

which is a partial linear model. It is clear that the parameters c and ” are not identi-
fied separately from the nonparametric function. Thus, only the parameter fl and the
nonparametric function �(.) are estimated in the first-stage using Robinson’s (1988)
estimator. Then, given a candidate value of ”, the estimates of ait can be expressed as:
âit(”) = �̂ ≠ ”sit.

In the second stage, we need at least one additional moment condition for the esti-
mation of ”. For this purpose, we impose the first-order Markov assumption on ait, and
decompose the current TFP as:

ait = E[ait | ait≠1

] + ›it.

The term ›it is the innovation shock, which represents a deviation of ait from its ex-
pectation at t ≠ 1. We assume that the current composition of factor cost (sit) is
chosen by firms at t ≠ 1.15 As consequence, the second-stage moment condition is:
E[›it · sit] = 0. Given the first-stage estimation, the innovation shock ›it can be written
as: ›̂it(”) = âit(”) ≠ E[âit(”) | âit≠1

(”)]. We estimate the parameter ” by minimizing the
sample analogues of E[›̂it(”) · sit] = 0.

Given the estimates of fl and ”, we can recover an estimate of TFP up to a constant
term as:

[TFP = âit + c = yit ≠ fl̂lit ≠ ”̂sit. (5.17)

Given the implicit estimates of ‡ = fl
fl≠” and the capital-labor ratio equation (5.14), an

estimate of RFP up to a constant term (d) is:

[RFP = ≠b̂it + d = 1
(1 ≠ ‡̂) log(Kit

Lit
) ≠ log(Wkit

Wlit
). (5.18)

This estimate reflects the relative labor-augmenting productivity. In the next sections,
14The corresponding production timing assumption is that the material demand is fully flexible (and

monotone in a

it

), which is decided after knowing the capital stock (k
it

) and the factor cost ratio (s
it

).
15This assumption can be justified by the fact that labor is quasi-fixed. Typically, the capital-labor

cost composition (s
it

) is chosen prior to t, if there is a training process before a worker can actually
enter production at t, or if there is a significant hiring cost. More discussion about the production
timing can be found in Ackerberg et al. (2006).
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we apply our empirical strategy to French manufacturing data.

5.4 Empirical investigation

For our empirical investigation, we use two di�erent sources of data. The Amadeus
database provides us with production and financial information for more than 7000
large and very large French manufacturing firms over the period of 2003-2009.16 The
variables included in our data set are operating revenue, export revenue, sales, capital
stock, number and costs of employees and costs of material. We merge this information
with the price index constructed using INSEE’s sector-level series in order to deflate
revenues and intermediate material inputs. Our data set at hand allows us to estimate
productivity, sunk costs of entry as well as the e�ects of di�erent factors on the entry
cost.

Table 5.2 displays the macroeconomic conditions for trade in France and the distri-
bution of exporting status across firms in the sample. We compare the export partici-
pation rates of large and very large firms with the macroeconomic trade index, i.e., the
export volume of manufactured goods in France (with the base-year in 2005) and the
exchange rate index of the U.S. dollar against the Euro (with the base-year in 2005).
Despite changes in the foreign trade environment for French manufacturing firms over
the sample period (for instance, the exchange rate of the U.S. dollar against the Euro
decrease from 110.1 to 89.4), we observe from Table 5.2 that the proportion of exporters
is relatively stable in average this proportion is 76%. Typically, this can be explained
by the fact that the sunk cost of entry into the export market produces hysteresis in
firm’s trade behavior (Baldwin and Krugman, 1989). The entry and exit (in the export
market) transition matrix for each pair of two years are reported in Table 5.3. We
see that export market entry and exit dynamics are rather stable over the period of
2003-2009.

Our empirical investigation focuses on the entry of firms into export markets. Based
on this data set, our estimation method follows the treatment evaluation literature
that matches pairs of newly entered and established exporters which share the similar
characteristics. For each panel of two years, the control group includes the established
exporters and the treated group includes the newly entered exporters. For example, in
the period from 2003 to 2004, the control group includes the 3234 firms that are already
on the export market in 2003 and continue to serve the foreign market in 2004. The
treated group are the 220 newly entered firms in 2004. In this study we consider only
pairs of two years, mainly because it is the case where we have a significant number of

16The original data set includes 8196 firms, only 7140 French firms (1056 “Credit needed" firms are
excluded) for the period 2003-2009 are downloaded from Amadeus database. The definitions of large
and very large firms: very large firms are defined as the firms that Turnover > 100 million Euros or Total
assets > 200 million euros or Employees > 1000. Large firms are defined as the firms that Turnover >
10 million Euros, or Total assets > 20 million euros, or Employees > 150.
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Table 5.2: Export participation of French manufacturing firms 2003-2009

2003 2004 2005 2006 2007 2008 2009

Exchange rate index (1) 110.1 100.1 100 99.1 90.8 84.9 89.4

Export volume index (2) 93.1 97.2 100 107.9 109.1 107.8 93.8

Exporters in % (3) 76.5 76.4 77.2 76.4 76.0 75.0 74.0

Souce: INSEE
Note: (1) - Exchange rate index is the annual average exchange rate of of U.S. dollar (for
1 dollar) against Euro with base year in 2005. (2) - Export volume index is the French
aggregate export volume index with base year in 2005 for all manufactured goods. (3)
- Exporters in % indicates the percentage of exporters in the sample.

Table 5.3: Transition rates in the export market 2003-2009

2003-04 2004-05 2005-06 2006-07 2007-08 2008-09

Outsider (1) 616 616 628 603 549 477
Insider (2) 3234 3254 3141 2996 2561 2120
Entry 220 175 153 175 131 120
Exit 161 171 189 167 174 149
Total firms (3) 4231 4216 4111 3941 3415 2866

Outsider in % 14.6 14.6 15.3 15.3 16.1 16.6
Insider in % 76.4 77.2 76.4 76.0 75.0 74.0
Entry in % 5.2 4.2 3.7 4.4 3.8 4.2
Exit in % 3.8 4.1 4.6 4.2 5.1 5.2

Note: (1) - Outsider indicates the number of non-exporting firms. (2) - Insider indicates
the number of exporters. (3) - Total firms indicates the total number of firms in the
sample, whose production and trade information are available in both years.
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new entrants and controls.

5.4.1 Estimation of productivity

Following the methodology described in Section 5.3.3, we estimate both the Cobb-
Douglas and the CES production function. The method proposed in Chapter 3 is based
on the CES production function and the Levinsohn and Petrin (2003) method is based
on the Cobb-Douglas specification. More details on the second method can be found in
Levinsohn and Petrin (2003).

Given the estimates of parameters, TFP and RFP are recovered by using (5.17) and
(5.18). The estimates of productivity are used in the second stage for the matching
model, and the matching consists of comparing firms with comparable characteristics
at period t ≠ 1. Therefore, we need to find the comparable productivity measurement
between the treated and control groups. The problem is that, at period t ≠ 1, the
control group (including established firms) serves both foreign and domestic markets
while the treated group (including newly entered firms) serves only the domestic market.
Therefore, we match the two groups with their domestic market productivity at t ≠
1. Formally, in order to measure only the domestic market productivity, we use the
domestic value-added as the dependent variable in the production function regression.17

Table 5.4 presents estimates of technology parameters. —l and —k denote the co-
e�cients of labor and capital in the Cobb-Douglas production function. fl, ” and ‡

are the technology parameters of the CES specification (5.13). The value of the elas-
ticity of substitution ‡ is the fundamental di�erence between the Cobb-Douglas and
CES production functions. This elasticity is restricted to be one in the Cobb-Douglas
specification while it is a free parameter in the CES case. From the estimation results
of Table 5.4, we note that the estimated elasticity of substitution is significantly below
one. This finding rejects the use of Cobb-Douglas specification in favor of the CES
model and suggests that capital and labor are complements for production. Chapter 3
points out that, compared to the CES model, the Cobb-Douglas model yields a lower
estimate of returns to scale and this bias is essentially due to the omitted-variable-bias.
In our data, we confirm the prediction of Chapter 3 (Table 3.1) that the estimates of
returns to scale in the Cobb-Douglas case is lower than the estimates of returns to scale
in the CES case.

Given the estimates of technology parameters, we compute the correlation coe�-
cients between estimated domestic productivity, domestic output, labor, capital stock
and the export revenue. The correlation matrix for 2003-2004 is reported in Table 5.5.
Table 5.8 and Figure 5.4 in Appendix B provide the correlation matrix in other periods
and the distributions of estimated productivity, respectively. The two estimated TFP

17The domestic intermediate materials is calculated as the total intermediate materials weighted by
domestic production share. Thus, the domestic value-added is defined as gross domestic output net of
domestic intermediate materials.
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Table 5.5: Correlation matrix between productivity and firm’s characteristics

2003-2004 [TFP
CB

t≠1 [TFP
CES

t≠1 [RFP
CES

t≠1 Yt≠1 Lt≠1 Kt≠1

[TFP
CES

t≠1 0.94
[RFP

CES

t≠1 0.07 0.31
Yt≠1 0.83 0.73 0.17
Lt≠1 0.39 0.18 0.03 0.73
Kt≠1 0.33 0.36 0.71 0.64 0.72

rt 0.06 -0.01 0.18 0.34 0.53 0.51

Note: the subscript “t” and “t ≠ 1” indicate the 2004 and 2003 variables, respectively.

that are obtained from the Cobb-Douglas and CES models, are highly correlated and
have similar distribution shapes. The CES model provides an additional productivity
measurement, RFP. The estimate of RFP is positively correlated with TFP and its dis-
tribution is flatter. We note that RFP is highly correlated with capital stock. This may
reflect the fact that the labor-augmenting innovation is mainly realized through invest-
ment in capital. The RFP is also positively correlated with the next period exporting
revenue.

Table 5.4: Estimation of technology parameters

2003-04 2004-05 2005-06 2006-07 2007-08 2008-09

Cobb-Douglas
—

l

0.511
(0.024)

0.510
(0.021)

0.468
(0.024)

0.492
(0.021)

0.493
(0.025)

0.511
(0.029)

—

k

0.080
(0.030)

0.068
(0.040)

0.006
(0.030)

0.077
(0.041)

0.067
(0.057)

0.304
(0.120)

—

k

+ —

l

0.591 0.578 0.474 0.569 0.560 0.815

CES
fl 0.736

(0.034)
0.731
(0.036)

0.615
(0.037)

0.589
(0.039)

0.607
(0.051)

0.780
(0.053)

” ≠0.319
(0.172)

≠0.440
(0.169)

≠0.579
(0.141)

≠0.405
(0.122)

≠0.386
(0.131)

≠0.332
(0.257)

‡ 0.302
(0.133)

0.376
(0.095)

0.485
(0.071)

0.407
(0.081)

0.389
(0.091)

0.298
(0.230)

Note: the bootstrap estimated standards deviations are reported in parenthesis.

5.4.2 Entry costs and productivity

In our matching model, the treated group are firms which become exporters at period
t and serve only the domestic market at period t ≠ 1. The control group consists of
established exporters which serve both the foreign and the domestic market for t and
t ≠ 1. The treatment indicator variables D is defined as D = 1 for the individuals in
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Table 5.6: Estimation of ATE(x)

2003-04 2004-05 2005-06 2006-07 2007-08 2008-09

Intercept 6.27
(4.00)

4.40
(4.66)

7.30
(2.44)

7.99
(3.00)

2.10
(3.84)

≠3.41
(3.11)

D

it≠1 ≠1.12
(0.18)

≠2.07
(0.26)

≠1.26
(0.33)

≠2.08
(0.34)

≠1.51
(0.27)

≠2.01
(0.33)

D

it≠1·TFP
it≠1 1.05

(0.35)
2.28
(0.37)

0.66
(0.56)

2.09
(0.59)

1.35
(0.46)

2.35
(0.56)

D

it≠1·RFP
it≠1 ≠0.09

(0.11)
≠0.32
(0.15)

0.03
(0.15)

≠0.19
(0.14)

≠0.14
(0.16)

≠0.15
(0.19)

D

it≠1·Sector
i

9.57e

≠4
(2.35e

≠4)
7.96e

≠4
(3.56e

≠4)
2.28e

≠4
(3.12e

≠4)
1.28e

≠3
(3.85e

≠4)
1.90e

≠4
(3.95e

≠4)
9.65e

≠4
(3.70e

≠4)

D

it≠1·Labor
it≠1 0.89

(0.58)
1.44
(0.99)

1.96
(1.10)

≠0.16
(1.00)

0.57
(0.83)

≠0.17
(1.12)

D

it≠1·Squared labor
it≠1 ≠0.09

(0.05)
≠0.20
(0.10)

≠0.18
(0.12)

≠0.03
(0.11)

≠0.06
(0.08)

≠0.02
(0.10)

D

it≠1·Wage
it≠1 6.63

(4.93)
≠15.10

(7.84)
≠1.77
(9.45)

≠12.19
(6.19)

≠2.17
(7.01)

≠8.68
(7.57)

D

it≠1·Squared wage
it≠1 ≠0.89

(0.64)
1.81
(1.03)

0.21
(1.29)

1.49
(0.86)

0.19
(0.90)

0.82
(1.00)

TFP
it≠1 ≠0.91

(0.05)
≠0.87
(0.05)

≠0.81
(0.05)

≠0.83
(0.05)

≠0.86
(0.06)

≠0.70
(0.06)

RFP
it≠1 0.27

(0.03)
0.25
(0.03)

0.20
(0.02)

0.23
(0.03)

0.22
(0.03)

0.20
(0.03)

Sector
i

≠1.82e

≠5

(5.23e

≠5)
≠5.00e

≠6

(5.21e

≠5)
5.51e

≠5
(5.63e

≠5)
5.48e

≠5
(5.56e

≠5)
3.73e

≠5
(5.80e

≠5)
4.59e

≠6
(6.25e

≠5)

Labor
it≠1 0.35

(0.20)
≠0.02
(0.20)

≠0.19
(0.25)

≠0.19
(0.28)

≠0.14
(0.23)

≠0.19
(0.25)

Squared labor
it≠1 0.09

(0.02)
0.12
(0.02)

0.14
(0.02)

0.14
(0.03)

0.13
(0.02)

0.12
(0.02)

Wage
it≠1 ≠1.12

(2.13)
0.34
(2.62)

≠0.73
(1.31)

≠0.92
(1.58)

2.09
(1.96)

4.27
(1.59)

Squared wage
it≠1 0.51

(0.29)
0.31
(0.37)

0.43
(0.18)

0.44
(0.21)

0.06
(0.30)

≠0.22
(0.20)

the treated sample and D = 0 for the individuals in the control sample. The ATE

and ATE(x) are estimated using the regression based method (see Heckman and Hotz,
1989).

In our specification of the empirical model (5.12), the regressors vector xit≠1

includes
an indicator for the sector of activity (Sector), labor (l), wage (wl), squared labor (l2),
squared wage (w2

l ) and the estimated productivity [TFP and [RFP .18 Table 5.6 sum-
marizes the estimation results as well as the estimated standard deviations (reported
in parentheses). Since the estimates are obtained by using a step-wise estimation ap-
proach (a first-stage yields TFP and RFP), we estimate standard deviations by panel
bootstrapping. A robustness check is reported in Appendix B, where the treatment
evaluation model is re-estimated using a propensity score matching.

We note that the estimate of ≠◊ (the estimated coe�cients of Dit≠1

) in Table 5.6, are

18The squared variables (l2 and w

2
l

) are introduced in order to capture the potential nonlinearity.
However, we cannot plug the productivity measurements into the nonlinear function, because they are
estimated variables.
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significantly negative for all periods. These estimates correspond to the (negative) sunk
cost of entry, which represents the expectation of the di�erence between the treated
group (newly entered firms) and the control group (established exporters) in terms
of export revenue. Therefore, the negative and significant estimated coe�cients of
Dit≠1

suggest the existence of sunk costs of entry for the newly entered firms.19 The
alternative method - the propensity score matching, provides very similar results, see
Table 5.9 in Appendix B. We also examine the impact of productivity on the sunk cost.
The estimated coe�cients of variable Dit≠1

· TFPit≠1

are significantly positive for all
panels, which indicate that the cost of entry is decreasing with TFP. In other words, this
suggests that firms with higher TFP levels incur significantly less entry costs than the
average. This empirical evidence supports our theoretical framework, in which the sunk
cost of entry is modeled as a function of firm-level productivity. The empirical results
regarding the impact of RFP are less conclusive. Although the estimated coe�cients
of variable Dit≠1

· RFP are negative in five out of six cases, the bootstrap confidence
intervals show that they are not precisely estimated.

5.5 Conclusion

Estimation results in this chapter suggest that the firms in our sample face a significant
sunk cost of entry into the foreign market and there is a significant link between pro-
ductivity and sunk costs. These results validate the working assumption made in our
theoretical model: sunk entry costs are heterogeneous across firms and less important
for more productive firms. We show theoretically that the productivity elasticity of
entry costs (“) has a great impact on the minimum entry requirement at equilibrium
and therefore on the self-selection process. We find that, in a selective export market,
a higher elasticity makes the market entry easier. The opposite occurs in a more open
market.

The limitation of the current model is that only the entry of firms is considered while
the exit decision is disregarded. Further research may take a direction toward a more
dynamic trade model, where productivity evolves over time as a stochastic process (see
Costantini and Melitz, 2007). Thus, we can model firm’s decision explicitly for each
period of time, which will allow us to analyze the exit process.

19The estimates of ⁄1 are not interpretable in our model, they correspond to the linear prediction of
a composite function, i.e., G0(x

it≠1) © f(x
it≠1) + g0(x

it≠1) .
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5.6 Appendix

Appendix A: Theoretical model derivations

Appendix A.1: Proof of Proposition 5.1 - Derivation of the Equilibrium

Before presenting derivation of equilibrium, we provide a summary of all parameters
used in our theoretical model and the corresponding restrictions.

Table 5.7: Summary of parameters

Notation Definition Support
Ï̄ scale parameter of Pareto dist. [0, +Œ[
k slope parameter of Pareto dist. [0, +Œ[
‘ elasticity of substitution across varieties [1, +Œ[
“ productivity elasticity of entry costs [0, +Œ[

fX export fixed costs ]0, +Œ[
fE domestic entry costs ]0, +Œ[
fD production fixed costs ]0, +Œ[
· iceberg costs [0, +Œ[
— k/‘ ≠ 1 [1, +Œ[
� — ≠ (— ≠ 1)[k/(k + “)] [0, +Œ[
� indicator of openness, � © (·1≠‘)—(fX/fD)1≠— [0, 1]

To solve for the equilibrium values of ÏD, ÏX and �, we use the free entry condition
and the zero cuto� profit condition for both domestic and export market:

�Ï1≠‘
D = fD (5.19)

�(·ÏX)1≠‘ = fXh(Ï) (5.20)

V (ÏD) · � + ·1≠‘V (ÏX) · � ≠
5
G(ÏD)fD + fX

ˆ Ï
X

0

h(Ï)dG(Ï)
6

= fE . (5.21)

Using the definition of the expected value of firms, we can solve for V (Ïi) (i = D, X):

V (Ïi) =
ˆ Ï

i

0

Ï1≠‘dG(Ï) =
ˆ Ï

i

0

Ï1≠‘g(Ï)dÏ =
3

—

— ≠ 1

4
Ï̄≠kÏk≠‘+1

i . (5.22)

From (5.19) and (5.20), we can find the relative equilibrium threshold value for entry:

ÏX

ÏD
=

3
fXh(ÏX)
fD·1≠‘

4 1
1≠‘

(5.23)
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Also, from (5.19) and (5.20) we have:

� = fDÏ‘≠1

D = fXh(ÏX)(·Ï)‘≠1 (5.24)

Equation (5.21) can be rewritten as:

fE + fDG(ÏD) + fX

ˆ Ï
X

0

h(Ï)g(Ï)dÏ = B
Ë
V (ÏD) + ·1≠‘V (ÏX)

È

Using (5.24) and dividing both sides by fDG(ÏD) yields:

fE
fDG(ÏD) + 1 +

fX
´ Ï

X

0

h(Ï)g(Ï)dÏ

fDG(ÏD) = Ï‘≠1

D

5
V (ÏD)
G(ÏD) + ·1≠‘V (ÏX)

G(ÏD)

6

Replacing V (ÏD) and V (ÏX) by (5.22) and using the definition of G(Ï) = (Ï/Ï̄)k, we
can write:

fE
fD

3
Ï̄

ÏD

4k

+ 1 + fX
fD

3
Ï̄

ÏD

4k ˆ Ï
X

0

h(Ï)g(Ï)dÏ =
3

—

— ≠ 1

4 C

1 + ·1≠‘
3

ÏX

ÏD

4k≠‘+1

D

where — © k/‘ ≠ 1. Then using (5.23) we find:

fE
fD

3
Ï̄

ÏD

4k

+ 1 + fX
fD

3
Ï̄

ÏD

4k ˆ Ï
X

0

h(Ï)g(Ï)dÏ =
3

—

— ≠ 1

4 S

U1 + ·1≠‘
3

fXh(ÏX)
fD·1≠‘

4 k≠‘+1
1≠‘

T

V

fE
fD

3
Ï̄

ÏD

4k

+ 1 + fX
fD

3
Ï̄

ÏD

4k ˆ Ï
X

0

h(Ï)g(Ï)dÏ =
3

—

— ≠ 1

4 Ë
1 + �h(ÏX)1≠—

È

where � © (·1≠‘)—(fX/fD)1≠—. Now consider the functional form h(Ï) = Ï“ . We have

fX

ˆ Ï
X

0

h(Ï)g(Ï)dÏ = fXG(ÏX) k

k + “
Ï“ .

This yields:

fE
fD

3
Ï̄

ÏD

4k

+ 1 + fX
fD

3
Ï̄

ÏD

4k k

k + “
(Ï“

X)G(ÏX) =
3

—

— ≠ 1

4 Ë
1 + �(Ï“

X)1≠—
È

fE
fD

3
Ï̄

ÏD

4k

+ 1 + fX
fD

3
ÏX

ÏD

4k k

k + “
(Ï“

X) =
3

—

— ≠ 1

4 Ë
1 + �(Ï“

X)1≠—
È

fE
fD

3
Ï̄

ÏD

4k

+ 1 + � k

k + “
(Ï“

X)1≠— =
3

—

— ≠ 1

4 Ë
1 + �(Ï“

X)1≠—
È

fD
fE

53
—

— ≠ 1

4 Ë
1 + �(Ï“

X)1≠—
È

≠ 1 ≠ � k

k + “
(Ï“

X)1≠—
6

=
3

Ï̄

ÏD

4k

fD
fE(— ≠ 1)

5
1 + �(Ï“

X)1≠—(— ≠ (— ≠ 1) k

k + “
)
6

=
3

Ï̄

ÏD

4k
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Finally we obtain Equation (5.5):

Ïk
D = Ï̄k fE(— ≠ 1)

fD[1 + �(Ï“
X)1≠—�] ,

where � © — ≠ (— ≠ 1)[k/(k + “)]. Using (5.4) and the specification of h(Ï), we derive
the equilibrium value for ÏX :

Ïk+“—
X

1
f

X

f
D

·1≠‘

2—

Ï̄k
= fE(— ≠ 1)

fD[1 + �(Ï“
X)1≠—�]

Ïk+“—
X = Ï̄k fD

fX

fE(— ≠ 1)
fD[1 + �(Ï“

X)1≠—�]
fX
fD

3
fX

fD·1≠‘

4≠—

Ïk+“—
X = Ï̄k fE(— ≠ 1)

fX [1 + �(Ï“
X)1≠—�]�

Ïk+“—
X + ��Ïk+“

X = Ï̄k fE(— ≠ 1)�
fX

Ïk
X = Ï̄k fE(— ≠ 1)�

fX(Ï“—
X + ��Ï“

X)

Note that if “ = 0 our model corresponds to the linear model because � = 1 if “ = 0.

ÏD = Ï̄

5
fE(— ≠ 1)
fD(1 + �)

6 1
k

; ÏX = Ï̄

5
fE(— ≠ 1)�
fX(1 + �)

6 1
k

.

Appendix A.2: Proof of Proposition 5.1 - Uniqueness of the Equilibrium

To show the uniqueness, we examine the monotonicity of the implicit function (5.6)
that characterizes the equilibrium of ÏX :

Ï̄k fE(— ≠ 1)�
fX(Ï“—

X + ��Ï“
X)

≠ Ïk
X = 0,

The derivative w.r.t. ÏX is:

≠ Ï̄kfE(— ≠ 1)�
fX

(“—Ï“—≠1

X + ��“Ï“≠1

X )
(Ï“—

X + ��Ï“
X)2

≠ kÏk≠1

X < 0.

The implicit function (5.6) is monotone. Thus, there is a unique solution for ÏX . Since
the equilibrium value of other variables is defined by ÏX , we can conclude that the
equilibrium is unique.

Appendix A.3: Proof of Proposition 5.2

ÏX is implicitly defined as a solution to:
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F (ÏX , “) = Ï̄k fE(— ≠ 1)�
fX(Ï“—

X + ��Ï“
X)

≠ Ïk
X = 0,

Using the Implicit Function Theorem, we obtain:

ˆÏX

ˆ“
= ≠ ˆF/ˆ“(ÏX , “)

ˆF/ˆÏX(ÏX , “) ,

where

ˆF

ˆ“
(ÏX , “) = ≠ Ï̄kfE(— ≠ 1)�

fX

1
(Ï“—

X + ��Ï“
X)2

C

—log(ÏX)Ï“—
X + �Ï“

X [log(ÏX)(k + “)(—“ + k) + (— ≠ 1)k]
(k + “)2

D

= � ·
C

—log(ÏX)Ï“—
X + �Ï“

X [log(ÏX)(k + “)(—“ + k) + (— ≠ 1)k]
(k + “)2

D

;

ˆF

ˆÏX
(ÏX , “) = ≠ Ï̄kfE(— ≠ 1)�

fX

(“—Ï“—≠1

X + ��“Ï“≠1

X )
(Ï“—

X + ��Ï“
X)2

≠ kÏk≠1

X

= � · (“—Ï“—≠1

X + ��“Ï“≠1

X ) ≠ kÏk≠1

X ,

where
� © ≠ Ï̄kfE(— ≠ 1)�

fX

1
(Ï“—

X + ��Ï“
X)2

In order to conclude on the sign of the slope, ˆÏX/ˆ“, we have to discuss the sign of
ˆF/ˆ“ and ˆF/ˆÏX . We start with the latter. First, � is negative given a reasonable
values of parameters. Second, we note that “—Ï“—≠1

X +��“Ï“≠1

X and kÏk≠1

X are positive.
Thus, we conclude that ˆF/ˆÏX is negative.

Sign of ˆF/ˆ“: The sign of ˆF/ˆ“ is less obvious. First, if we only consider the
interval ÏX œ [1, +Œ[, ˆF/ˆ“ is negative. In contrast, for the interval ÏX œ [0, 1[,
log(ÏX) is negative. Thus, the sign ofˆF/ˆ“ is indeterminate. However, we can conclude
on the sign of ˆÏX/ˆ“ or the sign of

—log(ÏX)Ï“—
X + �Ï“

X [log(ÏX)(k + “)(—“ + k) + (— ≠ 1)k]
(k + “)2

,

if we can find a condition on ÏX that ensure log(ÏX)(k + “)(—“ + k) + (— ≠ 1)k to be
negative. This is because —log(ÏX)Ï“—

X is always negative for ÏX œ [0, 1[, see Table
(5.7). This condition is:

log(ÏX) < ≠ (— ≠ 1)k
(k + “)(—“ + k) = 1

k + “
≠ 1

‘ ≠ 1 + “
< 1.
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Therefore we have:

• i) For ÏX œ [1, +Œ[, ÏX is decreasing in “, i.e., the slope ˆÏX/ˆ“ > 0;

• ii) For ÏX œ]0, exp( 1

k+“ ≠ 1

‘≠1+“ )], ÏX is increasing in “, i.e., the slope ˆÏX/ˆ“ <

0;

• iii) For ÏX œ]exp( 1

k+“ ≠ 1

‘≠1+“ ), 1[, the sign of slope is undetermined.
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Appendix B: Estimation results of productivity and Robustness checks

Table 5.8: Correlation matrices

2004-5 \TFP
CB

t≠1 \TFP
CES

t≠1 \RFP
CES

t≠1 Y
t≠1 L

t≠1 K
t≠1

\TFP
CES

t≠1 0.935

\RFP
CES

t≠1 0.057 0.327

Y
t≠1 0.844 0.734 0.166

L
t≠1 0.383 0.173 0.046 0.722

K
t≠1 0.323 0.364 0.724 0.623 0.719

r
t

0.048 -0.013 0.170 0.306 0.504 0.484

2005-6 \TFP
CB

t≠1 \TFP
CES

t≠1 \RFP
CES

t≠1 Y
t≠1 L

t≠1 K
t≠1

\TFP
CES

t≠1 0.947

\RFP
CES

t≠1 0.150 0.382

Y
t≠1 0.893 0.801 0.175

L
t≠1 0.460 0.277 0.037 0.708

K
t≠1 0.446 0.481 0.726 0.622 0.708

r
t

0.113 0.048 0.137 0.300 0.516 0.475

2006-7 \TFP
CB

t≠1 \TFP
CES

t≠1 \RFP
CES

t≠1 Y
t≠1 L

t≠1 K
t≠1

\TFP
CES

t≠1 0.960

\RFP
CES

t≠1 0.056 0.318

Y
t≠1 0.849 0.838 0.189

L
t≠1 0.366 0.327 0.060 0.706

K
t≠1 0.308 0.462 0.736 0.620 0.715

r
t

0.029 0.053 0.156 0.281 0.487 0.458

2007-8 \TFP
CB

t≠1 \TFP
CES

t≠1 \RFP
CES

t≠1 Y
t≠1 L

t≠1 K
t≠1

\TFP
CES

t≠1 0.962

\RFP
CES

t≠1 0.083 0.331

Y
t≠1 0.857 0.831 0.196

L
t≠1 0.402 0.331 0.060 0.715

K
t≠1 0.352 0.474 0.732 0.634 0.720

r
t

0.067 0.069 0.165 0.303 0.506 0.480

2008-9 \TFP
CB

t≠1 \TFP
CES

t≠1 \RFP
CES

t≠1 Y
t≠1 L

t≠1 K
t≠1

\TFP
CES

t≠1 0.844

\RFP
CES

t≠1 -0.260 0.293

Y
t≠1 0.608 0.725 0.187

L
t≠1 0.000 0.053 0.038 0.650

K
t≠1 -0.170 0.264 0.746 0.577 0.691

r
t

-0.164 -0.054 0.153 0.268 0.474 0.445
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Figure 5.4: Distributions of estimated productivity
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Note: the black line is the distribution of TFP based on Cobb-Douglas; the red line is the
distribution of TFP based on CES; the dash line is the distribution of RFP.
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Table 5.9: Estimates of ATE by Propensity score matching
2003-04 2004-05 2005-06 2006-07 2007-08 2008-09

Intercept ≠5.710
(0.896)

≠4.995
(1.055)

≠1.500
(1.053)

≠1.940
(1.035)

≠5.085
(1.126)

≠3.207
(1.219)

Sector 2.867e

≠4
(1.187e

≠4)
3.367e

≠4
(1.303e

≠4)
1.262e

≠4
(1.365e

≠4)
1.048e

≠5
(1.273e

≠4)
5.953e

≠5
(1.480e

≠4)
1.686e

≠4
(1.563e

≠4)

TFP
t≠1 0.809

(0.199)
0.882
(0.222)

0.699
(0.224)

1.152
(0.2339)

0.714
(0.256)

1.043
(0.288)

RFP
t≠1 1.739

(0.592)
1.979
(0.514)

1.338
(0.289)

1.939
(0.401)

1.684
(0.500)

3.285
(0.815)

Labor
t≠1 2.235

(0.843)
3.036
(0.828)

2.050
(0.557)

3.146
(0.673)

2.236
(0.809)

4.657
(1.179)

Capital
t≠1 ≠2.670

(0.848)
≠3.390
(0.826)

≠2.753
(0.569)

≠3.428
(0.678)

≠2.832
(0.819)

≠4.816
(1.165)

Output
t≠1 0.301

(0.180)
0.276
(0.201)

0.196
(0.212)

≠0.193
(0.219)

0.425
(0.232)

0.033
(0.248)

ATE ≠1.603
(0.408)

≠2.484
(0.457)

≠0.501
(0.498)

≠2.165
(0.64383)

≠1.680
(0.580)

≠1.125
(0.617)

Note: the propensity score is computed using a logit regression in the first-stage. The logistic
regression results are reported in Lines 2-8.



Chapter 6

General Conclusion

The aim of this thesis has been to identify and extend some limits of recent contribu-
tions to production behavior modeling. In the preceding chapters, I compared di�erent
empirical specifications and statistical methods which have often been used in produc-
tion analysis, and pointed out their implications for estimating technology parameters.
I have studied the causes and cures of the endogeneity problem in the context of pro-
duction analysis. This thesis also addressed the important but neglected issue of fixed
costs. This work defined and characterized the fixed cost, and developed empirical
strategies to estimate the fixed cost using the standard production database. Empir-
ical evidence suggests that the fixed cost is significant and has profound impacts on
producer’s behavior in terms of price setting, returns to scale and exports.

6.1 Main findings and implications of the analysis

This thesis contributes to the theory and empirics of production analysis on the following
five points:

• Estimating returns to scale, elasticity of substitution and technical change;

• Problem of endogeneity;

• Productivity measurements;

• Microeconomic foundation of fixed costs;

• Identification of fixed costs.

Estimating technology parameters is a primary objective of applied production
analysis. However, divergent and often contradictory estimation results are documented
in the literature which mislead and hamper the development of the field. Chapter 2, 3
and 4 of this thesis identify a series of reasons for the lack of consensus on three key
parameters: returns to scale, elasticity of substitution and technical change. First, I
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show in Chapter 2 that the direct and reverse regressions yield two di�erent estimation
results on the degree of returns to scale, and this di�erence is due to the assumptions
on the stochastic specification of error terms. A second reason for the divergence of
estimates is highlighted in Chapter 3. Often, the estimates of parameters based on dif-
ferent economic assumptions are compared. In many empirical works, the estimates are
obtained by imposing restrictions on key parameters, such as constant returns to scale,
unitary elasticity of substitution or Hicks-neutral technical change. The estimation
method proposed in Chapter 3 avoids this source of bias by estimating simultaneously
the three parameters in a semi-parametric setup. Third, we also point out in Chapter 4
that the parameters such as returns to scale may be overestimated when the fixed cost
is neglected.

Beside the estimation bias that is introduced by stochastic assumptions and func-
tional restrictions, the problem of endogeneity is another source of bias in empirical
production analysis. In Chapter 2, both input and output growth variables in the model
of interest are measured with error. Thus, endogeneity arises as a result of measurement
error. The IV estimation is a solution to this problem. However, I show that the use
of weak instruments may, in contrary, magnify this bias. Therefore, a series of tests
for weak instruments are needed and our study suggests that alternative IV estima-
tions as the LIML and F-LIML estimators are more robust against weak instruments.
In a di�erent context (Chapter 3), estimation of production function, the endogeneity
problem is caused by a loop of causality between the input demand and output vari-
ables through the unobserved productivity terms. The classic IV estimation can be
used to deal with this problem, but the valid instruments are not always available in
this context. Based on the Cobb-Douglas production function, an alternative and more
structural method, the so-called control function approach, is introduced by Olley and
Pakes (1996). In Chapter 3, I extended this approach to a CES production function,
allowing for complementarity between production factors and biased technical change.

The study on the two preceding points also provides a solid base for investigat-
ing productivity measurements. The measures of productivity (Hicks-neutral as
well as non-neutral) are obtained as the residuals in the functional relationships that
reflect both firms’ production technology and optimization behavior. Thus, consistent
estimates of parameters in these functions are essential for recovering productivity. Tra-
ditional productivity studies only focus on the measure of TFP (Hicks-neutral) obtained
as the residual of a Cobb-Douglas production function. Based on a CES production func-
tion, the method proposed in Chapter 3 yields an individual-specific measure of RFP
(Relative Factor-augmenting Productivity) by incorporating the additional information
on firms’ optimization behavior into the estimation. This new measure of non-neutral
productivity opens the possibility for further understanding of technical change and
production e�ciency, and can be used for various applications. For example, we use
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this extension in Chapter 5 to investigate the relationship between costs of entry into
export markets and productivity.

Chapter 4 and 5 discuss the microeconomic foundation of fixed costs. We
extend in Chapter 4 the classical production function in order to generate a fixed cost.
This fixed cost is defined as the cost of inputs required for producing an arbitrarily
small amount of output. We study how fixed costs a�ect firms’ behavior in terms of
price setting and returns to scale. In Chapter 5, we consider another type of fixed
costs: the entry cost into the export market. We propose a theoretical trade model that
highlights the relationship between productivity and entry costs. Our model shows
that this relationship a�ects the minimum entry requirement at equilibrium and has
an impact on the self-selection process. After having provided definitions and studied
implications of fixed costs, our analysis moves toward the empirical question: how to
identify fixed costs from data?

The identification of fixed costs conformably to their specific definition, is chal-
lenging by the fact that most of standard production data do not provide information on
the fixed input and fixed cost. Chapter 4 and 5 contribute to this point by introducing
two identification strategies. In Chapter 4, we propose an empirical cost function that is
two-point flexible, has a fixed and a variable component and allows cost heterogeneity.
Empirical results based on this cost function suggest that a considerable part of pro-
duction costs is fixed, and there is a trade-o� between the fixed and variable cost. We
also find that industries with higher fixed costs, produce more in average, benefit from
a higher markup as well as returns to scale, and are more concentrated. In Chapter
5, we estimate the cost of entry into the export market, which is quantified in terms
of export revenue shortfall. Our empirical strategy consists of comparing the revenue
of newly entered exporters with those of established exporters, based on a treatment
evaluation model. We find evidence that entry costs exist and more productive firms
are able to enter the market with less entry costs.

6.2 Limitations and extensions

This work contributes to the literature in several aspects as discussed in the previ-
ous section. However, it also encountered a number of limitations, which need to be
considered. These issues can be grouped into four categories, discussed below.

Model specification. In Chapter 2, I follow the Diewert and Fox’s (2008) method
of measuring technical progress and returns to scale. As a direct consequence of this
methodology, the output growth index is linearly related to the input growth index. An
extension of this study is to generalize the analysis to nonlinear specifications of the
production technology along the lines of Kumbhakar and Tsionas (2011). In Chapter
3, I extend Olley and Pakes’s (1996) method to a CES production function by allowing



138 CHAPTER 6. GENERAL CONCLUSION

non-unitary substitution elasticity between factors. However, the basic CES form still
restricts the substitution elasticity to be constant and it is not suitable for more than
two inputs in the production technology, see Uzawa (1962) and Sato (1967) on this
point. Therefore, the extension of this approach to flexible functional forms is the topic
of both theoretical and practical interest for future research. Note that the ongoing
work on nonparametric identification and estimation of production functions using the
control function approach o�ers further research possibilities (see Hong, 2008).

Level of aggregation. The analysis in Chapter 2 and 3 are conducted at di�erent
levels of aggregation: two-digit SIC for Chapter 2 and six-digit NAICS for Chapter 3.
A number of studies show that the level of aggregation may a�ect the estimation results
of returns to scale and of substitution elasticities (Solow, 1964, p.118 and Basu, 2008).
Therefore, it is interesting to evaluate the e�ects of aggregation on the estimates of
technology parameters. We can for example use the NBER database (six-digit NAICS)
to reconstruct series for di�erent levels of aggregation and compare the corresponding
estimation results. The increasing availability of firm-level data o�ers another possible
extension to this thesis. In Chapter 4, we estimate the fixed cost at the sector-level.
The same analysis can be carried out in the future at the firm-level. Such a study would
allow us to examine explicitly strategic interactions between firms in their joint decision
on product price and production capacity. This would expand our understanding of the
link between fixed cost and barriers to entry.

Stochastic properties of productivity and unified trade model. The idea
that firms improve their productivity through exporting is referred to as learning-by-
exporting. Numerous studies have been devoted to test empirically this hypothesis.
However, no clear evidence has been found to support learning-by-exporting. A re-
cent paper by De Loecker (2013) provides some answers to this question. De Loecker
(2013) argues that the current econometric methods (including those used in this the-
sis) rely on the assumption that productivity evolves exogenously, which is not suitable
for characterizing learning-by-exporting. He introduces a new estimation method that
incorporates endogenous productivity processes. A possible extension of this thesis is
to generalize De Loecker’s (2013) proposition to our method in Chapter 3. This would
provide the empirical basis for a key element of our research agenda: unified trade the-
ory. In Chapter 5, our theoretical model focused only on the self-selection process,
where the e�ect of learning-by-exporting is not modeled. In the spirit of Costantini and
Melitz (2007), we could extend our trade model to a more dynamic one, which incor-
porates explicitly entry, exit, technology choices and endogenous productivity in every
period. This model would unify the two features of the export premium: self-selection
and learning-by-exporting, identify the di�erent channels of aggregate productivity im-
provements, and provide recommendations for outward-oriented policy reforms.



Chapitre 7

Résumé de thèse

(Summary of the thesis in French)

Cette thèse se compose de quatre chapitres sur l’analyse de la production appliquée,
avec un accent sur la technologie, la productivité et les coûts fixes.

7.1 Contexte

Dans Value and Capital (1946), Hicks présente la théorie de la production comme l’étude
des relations entre les facteurs de production (input) et les biens produits (output), ainsi
que celle des relations entre les facteurs de production. Afin de caractériser ces relations,
la théorie est basée sur l’hypothèse que les entreprises minimisent le coût de production
et maximisent le profit, sous la contrainte technologique.

Le premier objectif de l’analyse de la production est de formaliser le comportement
des producteurs à l’aide de modèles mathématiques, et de les représenter par les notions
de substituabilité des inputs, de rendement d’échelle, et de progrès technique. L’objectif
second de cette analyse est de mesurer empiriquement ces concepts en utilisant les
données de production et des méthodes statistiques.

Historiquement, l’analyse appliquée de la production est née du travail de Cobb et
Douglas (1928) intitulé “A Theory of Production”. Dans leur approche, la technologie
de production est représentée par une fonction paramétrique. Après un travail minu-
tieux de la collecte des données, Cobb et Douglas ont estimé leur modèle sur données
manufacturières américaines pour la période de 1899 à 1922. Ils "matérialisent", pour la
première fois, la relation input-output :
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P Õ = 1.01L3/4C1/4.

D’après les notations utilisées par Cobb-Douglas (1928), P Õ désigne la valeur ajustée de
la production, L et C désignent le travail et le capital, respectivement. Par rapport aux
techniques d’aujourd’hui, la méthode statistique utilisée par Cobb et Douglas (1928)
semble restrictive. Dans les décennies suivantes, une série de contributions à l’analyse
de la production ont été réalisés. Frisch (1935) a tenté de mesurer les possibilités de
substitution entre les facteurs de production dans la fabrication du chocolat. Arrow,
Chenery, Minhas et Solow (1961) ont proposé la fonction de production, communément
appelée Constant Elasticity of Substitution (CES) production function. Hotelling (1932),
Samuelson (1960) et Shephard (1970) ont introduit la théorie de la dualité. Diewert
(1971), Christensen, Jorgenson et Lau (1973) ont proposé des formes fonctionnelles
flexibles pour la modélisation de la technologie de production.

Accompagnée par la démocratisation des données et de l’augmentation de la puis-
sance de calcul au cours du siècle dernier, l’analyse empirique de la production a
été considérablement améliorée. Malgré d’importants progrès dans ce domaine, nous
sommes toujours confrontés à de nombreux défis théoriques et empiriques (cf. Jorgen-
son, 1986 ; Griliches et Mairesse, 1995 et Ackerberg et al., 2007). L’objectif principal
de cette thèse est de développer des stratégies empiriques en mettant l’accent sur les
spécifications empiriques de la technologie de production et les méthodes d’estimation.

7.2 Problématiques

Cette thèse vise à étudier les techniques récemment mises au point pour estimer les
fonctions de coûts et de production afin de souligner leurs limites, et d’apporter des
améliorations à ces méthodes. Un grand nombre d’articles décrit les questions d’esti-
mation de l’approche primitive (the primal approach), mais une solution alternative,
connue sous le terme d’approche duale (the duality approach), est également utilisée.
La déduction des fonctions de demande à partir de la fonction de production est bien
connue, selon la théorie de la dualité. Il est également possible de déduire la fonction de
production par le système des fonctions de demande, car ces deux notions incorporent
les mêmes informations sur les technologies. Alors qu’une telle relation de dualité est
théoriquement bien connue, l’économétrie de la dualité n’a pas vraiment été étudiée.
Il est intéressant par exemple d’étudier les conditions dans lesquelles l’estimation des
relations technologiques, par l’approche duale, est plus adaptée que l’approche primitive
(et inversement). Les chapitres 2 à 5 de la thèse contribuent à l’extension de la littéra-
ture concernant l’analyse de la production existant en traitant plus spécifiquement les
questions suivantes :
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Spécification stochastique Bien que la forme et les propriétés des fonctions de
production et de coût peuvent être déduites de la théorie, la théorie reste muette sur la
manière dont les termes des erreurs doivent être inclus dans le modèle. Quelles sont les
implications de di�érentes spécifications stochastiques ? Voir le chapitre 2.

Substitution des facteurs de production Malgré la simplicité de la fonction CES,
les di�érents modèles empiriques ont produit des résultats divergents sur la valeur de
l’élasticité de substitution. Dans quelle mesure ces nouvelles techniques d’estimation
permettent d’apporter de nouveaux éclairages sur cette élasticité ? Voir le chapitre 3.

Biais de progrès techniques Pour la majorité des spécifications qui sont utilisées
dans les études empiriques, le progrès technique est supposé être neutre au sens de
Hicks. Est-il possible d’identifier le biais de progrès techniques ? Et, comment estimer la
productivité du facteur augmentant (factor-augmenting productivity) ? Voir le chapitre
3.

Coûts fixes et coûts variables La fonction Translog est considérée comme une
forme fonctionnelle flexible et utilisée dans de nombreuses études empiriques. Cepen-
dant, une hypothèse sous-jacente à cette classe de formes fonctionnelles, est que les
inputs sont ajustés instantanément à leur niveau optimal. Est-ce que la fonction de coût
Translog est su�sante pour modéliser le coût fixe ? Sinon, quelles en sont les alterna-
tives ? Voir le chapitre 4.

Application dans d’autres domaines Les résultats de l’analyse de la production
ont de profondes implications dans d’autres domaines de l’économie, en particulier pour
les modèles de commerce international. Dans ces modèles, la productivité et les coûts
fixes jouent un rôle crucial pour caractériser l’équilibre, voir Melitz (2003). De nombreux
travaux empiriques ont étudié indépendamment les impacts de deux éléments sur le
comportement de l’entreprise. Quelle est la relation entre la productivité et les coûts
fixes d’entrée ? Est-ce que les entreprises plus productives peuvent entrer sur le marché
international avec un frais d’entrée moindre ? Voir le chapitre 5.
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7.3 Résumé de chapitres

Chaque chapitre de cette thèse se compose de trois éléments clés de l’analyses écono-
mique : la théorie, la formulation empirique et la méthode statistique. Les chapitres 2 à
4 revisitent ces éléments clés et contribuent à un ou plusieurs d’entre eux. le chapitre 5
synthétise et applique les résultats pour les modèles du commerce international. Dans
le chapitre de conclusion, les limites de mes travaux et leurs extensions potentielles sont
discutés.

La figure suivante fournit un résumé des di�érents thèmes étudiés dans la thèse. Les
thèmes spécifiques sont organisés suivant trois piliers : théorie, modèle mathématique
et méthode statistique.

Applied Production Analysis

Theory
Empirical 

specification
Statistical
methods

● Economics of Scale 

● Inputs Substitution

● Technical changes

● Bias of technical changes

● Productivity

● Productivity growth

● Fixed cost

● Markup

● Cobb-Dougals 

● CES 

● Translog -FFF

● 2-points flexible form

● Nonparametric functions

● Stochastic specification

● Endogeneity

● 2SLS / LIML

● Control function

● Nonlinear model

● System estimation

● Treatment evaluation

Figure 7.1: Sujets étudiés dans cette thèse

Un e�ort a été fait dans cette thèse pour unifier (autant que possible) la théorie à la
formulation mathématique et la méthode empirique. Il reflète la volonté d’appréhender
l’économétrie à la manière d’Ragnar Frisch (1933) : [...] econometrics is by no means
the same as economic statistics. Nor is it identical with what we call general economic
theory [...] Nor should econometrics be taken as synonymous with the application of
mathematics to economics. [...] It is the unification of all three that is powerful. And
it is this unification that constitutes econometrics”.
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Chapitre 2 : “Direct and Reverse Estimates of Returns to Scale”

Dans ce chapitre, nous avons mené une étude comparative de quatre estimateurs :
MCO, 2SLS, LIML et F-LIML. Les di�érents estimateurs sont comparés pour la ré-
gression directe et inverse dans le contexte de l’estimation du rendement d’échelle, et
du progrès technique. Les résultats montrent que la méthode d’estimation 2SLS (di-
rect/inverse) peut conduire à des conclusions contradictoires lorsque les instruments
sont faibles. D’autre part, les estimateurs LIML et F-LIML fournissent des estima-
tions plus fiables. Les résultats basés sur des données de l’industrie manufacturière aux
États-Unis, montrent que la plupart des industries présentent des rendements d’échelle
croissants et que le rôle du progrès technique est relativement faible.

Chapitre 3 : “Hicks-neutral and Non-neutral Productivity”

Ce chapitre aborde une question importante de l’analyse de la production, à savoir l’es-
timation de la productivité. Nous proposons une extension de la méthode Olley-Pakes
(1996) adaptée à la fonction de production CES avec le progrès technique biaisé. La nou-
velle approche semi-paramétrique permet d’estimer le degré de rendements d’échelle,
l’élasticité de substitution et le biais de progrès techniques. La méthode proposée a
l’avantage non seulement d’estimer la TFP (Total Factor Productivity), mais également
de donner des estimations de la productivité dite factor-augmenting. L’étude empirique
montre que les industries manufacturières sont caractérisées par une élasticité de sub-
stitution inférieure à l’unité et un biais important de progrès technique.

Chapitre 4 : “Fixed and Variable Cost”

La distinction entre coûts fixes et variables est fondamentale, mais assez négligée dans
l’analyse de la production. Peu de papiers ont étudié la substituabilité entre les inputs
fixes et variables. Empiriquement, la plupart des spécifications de la fonction de coûts
supposent que les coûts fixes sont nuls. Nous proposons donc dans ce chapitre une
structure de la fonction de production qui est nécessaire et su�sante pour obtenir un
coût fixe. En utilisant les données de l’industrie, nous estimons les éléments fixes et
variables de la fonction de coût, et étudions la façon dont les coûts fixes et variables
interagissent, ainsi que l’impact sur le comportement des entreprises en matière de
pricing et des rendements d’échelle.
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Chapitre 5 : “Productivity, Fixed Cost and Export”

Le but de ce chapitre est d’étendre le modèle de Melitz (2003) en endogénéisant les
coûts d’entrée sur les marchés d’exportation. Notre modèle théorique du commerce in-
ternational met en évidence le rôle de l’hétérogénéité dans la structure de coûts fixes et
les liens entre ces coûts et productivité. Nous montrons que le modèle de Melitz avec
des coûts d’entrée exogènes et homogènes ne permet pas d’estimer correctement les mé-
canismes d’auto-sélection. En réponse à ces résultats théoriques, nous développons une
stratégie empirique basée sur les techniques de treatment evaluation pour mesurer les
barrières à l’entrée sur le marché d’exportation (avec des coûts endogénéisés). En utili-
sant des données pour les entreprises françaises, nos investigations empiriques mettent
en lumière l’importance des barrières à l’entrée et les déterminants de ces barrières.

7.4 Principaux résultats et les implications de l’étude

Dans cette thèse, nous avons comparé les principales spécifications empiriques et les
principales méthodes statistiques qui ont été utilisées dans l’analyse de la production, et
souligné leurs implications pour l’estimation des paramètres technologiques. Nous avons
étudié les causes et les remèdes du problème d’endogénéité dans le cadre de l’estimation
de la fonction de production. Cette thèse a également abordé une question importante
mais largement négligée de la littérature : les coûts fixes. Ce travail contribue à la
définition et à la caractérisation des coûts fixes. Nous avons développé des stratégies
d’estimation du coût fixe, et montré que le coût fixe est important et a un impact
significatif sur la politique des prix, les rendements d’échelle et les exportations.

Cette thèse contribue à l’analyse de la production sur les cinq points suivants :

1. Estimation des rendements d’échelle, de l’élasticité de substitution et du change-
ment technique ;

2. Problème d’endogénéité ;

3. Mesures de la productivité ;

4. Fondement microéconomique des coûts fixes ;

5. Identification des coûts fixes.

Estimation des paramètres technologiques L’estimation des paramètres techno-
logiques est un objectif primordial de l’analyse appliqué de la production. Cependant, les
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résultats d’estimation que l’on trouve dans la littérature sont divergents, voire contra-
dictoires. Les chapitres 2, 3 et 4 de cette thèse identifient les raisons des divergences de
résultats relatifs à trois paramètres clés : les rendements d’échelle, l’élasticité de sub-
stitution et le changement technique. Tout d’abord, nous montrons dans le chapitre 2
que les régressions directes et inverses donnent deux résultats d’estimation di�érentes
sur le degré de rendements d’échelle. Cette di�érence est due aux hypothèses sur la
spécification stochastique des termes d’erreur. Une deuxième raison de la divergence
des estimations est mis en évidence dans le chapitre 3. Dans de nombreux travaux em-
piriques, l’estimation d’un paramètre est obtenu en imposant des restrictions, tels que
les rendements d’échelle constants, l’élasticité unitaire de substitution ou changement
technique neutre. Une méthode d’estimation semi-paramétrique est proposée le chapitre
3, qui permet d’éviter ce biais en estimant simultanément les trois paramètres. Dans
le chapitre 4, nous soulignons également que les paramètres tels que les rendements
d’échelle peuvent être surestimés lorsque le coût fixe est négligée.

Problème de l’endogénéité En plus des biais d’estimation introduits par des hy-
pothèses stochastiques et des restrictions fonctionnelles, le problème de l’endogénéité
est une autre source de biais dans l’analyse de la production. Dans le chapitre 2, l’en-
dogénéité apparaît à la suite d’une erreur de mesure. L’estimation IV est une solution
à ce problème. Cependant, nous montrons que l’utilisation d’instruments faibles peut
amplifier le biais d’estimation. Par conséquent, une série de tests pour identifier les ins-
truments faibles est recommandée et notre étude suggère que des méthodes alternatives
comme le LIML et F-LIML sont plus robustes lorsque les instruments sont faibles. Dans
un contexte di�érent d’estimation de la fonction de production, le problème d’endogé-
néité est causé par la corrélation entre les termes de productivité non observés et les
inputs. La méthode d’estimation IV peut aussi être utilisé pour faire face à ce problème,
mais les instruments valides sont rarement disponibles dans ce contexte. Une méthode
alternative et plus structurelle, est proposée par Olley et Pakes (1996). Dans le chapitre
3, cette approche est étendue à une fonction de production CES, qui permet de prendre
en compte la complémentarité entre les facteurs de production et le progrès technique
biaisé.

Mesures de la productivité L’analyse des deux points précédents fournit égale-
ment une base solide pour étudier les mesures de la productivité. Les mesures de la
productivité (Hicks-neutre et non-neutre) sont obtenus comme les résidus des fonctions
qui reflètent à la fois la technologie de production et le comportement d’optimisation
des entreprises. Ainsi, les estimations convergentes des paramètres de ces fonctions sont
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essentielles pour mesurer la productivité. Les études traditionnelles de productivité se
concentrent uniquement sur la mesure de la TFP (Hicks-neutre) obtenu comme le résidu
d’une fonction de production. La méthode proposée dans le chapitre 3 donne une me-
sure de la RFP (Relative Factor-augmenting Productivity) en intégrant les informations
complémentaires sur le comportement d’optimisation des entreprises dans l’estimation.
Cette nouvelle mesure de la productivité non-neutre ouvre la possibilité d’études plus
approfondie sur le changement technique et l’e�cacité de la production, et peut être
utilisée pour diverses applications. Par exemple, nous utilisons cette extension dans le
chapitre 5 pour étudier la relation entre les coûts d’entrée sur les marchés d’exportation
et la productivité.

Fondement microéconomique des coûts fixes Chapitre 4 et 5 traitent du fonde-
ment microéconomique des coûts fixes. Dans le chapitre 4, nous étendons la fonction de
production classique afin de générer un coût fixe. Ce coût fixe est défini comme le coût
des inputs nécessaires à la production d’une arbitrairement petite quantité d’output.
Nous étudions comment les coûts fixes influencent le comportement des entreprises en
matière de fixation des prix et des rendements d’échelle. Dans le chapitre 5, nous consi-
dérons un autre type de coûts fixes : le coût d’entrée sur le marché d’exportation. Nous
proposons un modèle théorique qui met en évidence la relation entre les coûts d’entrée
et la productivité. Notre modèle montre que cette relation influence la condition d’en-
trée minimum à l’équilibre et a un impact sur le processus d’auto-sélection du marché.
Après avoir donné des définitions et étudié les implications de coûts fixes, notre analyse
se déplace vers une question empirique : comment identifier les coûts fixes à partir des
données ?

Identification des coûts fixes L’identification des coûts fixes est di�cile, car la
plupart des données standard ne fournissent pas d’informations sur les facteurs pro-
ductifs fixes ou sur les coûts fixes. Les chapitres 4 et 5 introduisent deux stratégies
d’identification. Dans le chapitre 4, nous proposons une spécification de la fonction de
coût qui comprend une partie fixe et une partie variable (two-points flexible fonctionnelle
form). Les résultats empiriques basées sur cette fonction de coût suggèrent qu’une partie
considérable des coûts de production est fixe, et il y a un arbitrage entre coûts fixes et
coûts variables. Nous constatons également que les industries à coûts fixes élevés, pro-
duisent plus en moyenne, bénéficient d’un pouvoir de marché ainsi que de rendements
d’échelle plus élevés, et sont souvent plus concentrés. Dans le chapitre 5, nous analysons
le coût d’entrée sur le marché d’exportation. Notre stratégie empirique consiste à com-
parer les revenus des exportateurs nouvellement entrés sur le marché international avec
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ceux des exportateurs déjà établis, en utilisant un modèle d’évaluation du traitement
(treatment evaluation model). Nous constatons que les coûts d’entrée existent dans le
secteur manufacturier français et que les entreprises les plus productives sont en mesure
d’entrer sur le marché avec un moindre coût d’entrée.
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Xi CHEN 

Technologie, productivité et 
coûts fixes : quatre essais sur 

l’analyse de la production 
appliquée 

 

 

Résumé 
Cette thèse se compose de quatre essais sur l’analyse de la production appliquée, avec un accent 
mis sur la technologie, la productivité et les coûts fixes. L'objectif de cette thèse est d'identifier les 
limites de la modélisation du comportement de producteurs, et de proposer certaines améliorations. 
Dans cette thèse, nous avons comparé les principales spécifications empiriques et les méthodes 
statistiques qui ont été utilisées dans l’analyse de la production, et souligné leurs implications pour 
l’estimation des paramètres technologiques. Nous avons étudié les causes et les remèdes au 
problème d’endogénéité dans le cadre de l’estimation de la fonction de production. Cette thèse a 
également abordé un aspect important de la production et pourtant largement négligé dans la 
littérature : les coûts fixes. Ce travail a contribué à la définition et à la caractérisation des coûts fixes. 
Nous avons développé des stratégies d’estimation du coût fixe, et montré que le coût fixe a un 
impact significatif sur la politique de prix, les rendements d’échelle et les exportations. 

 

 

 

Résumé en anglais 
This thesis consists of four essays on applied production analysis, with a focus on technology, 
productivity and fixed costs. The aim of this thesis is to identify some limitations of recent 
contributions to production behavior modeling, and to propose improvements. In this dissertation, I 
compared different empirical specifications and statistical methods which have often been used in 
production analysis, and pointed out their implications for estimating technology parameters. I 
studied the causes and cures of endogeneity problems in the context of production analysis. This 
thesis also addressed the important but neglected issue of fixed costs. This work defined and 
characterized the fixed cost, and developed empirical strategies to estimate the fixed cost using the 
standard production database. Empirical evidence suggests that the fixed cost is significant and has 
profound impacts on producer’s behavior in terms of price setting, returns to scale and exports. 

 

 

 

 


