
HAL Id: tel-00998249
https://theses.hal.science/tel-00998249

Submitted on 11 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable Trajectory Approach for ensuring deterministic
guarantees in large networks

Sara Medlej

To cite this version:
Sara Medlej. Scalable Trajectory Approach for ensuring deterministic guarantees in large networks.
Other [cs.OH]. Université Paris Sud - Paris XI, 2013. English. �NNT : 2013PA112168�. �tel-00998249�

https://theses.hal.science/tel-00998249
https://hal.archives-ouvertes.fr

UNIVERSITE PARIS-SUD

ECOLE DOCTORALE D’INFORMATIQUE DE PARIS-SUD

Laboratoire de Recherche en Informatique

DISCIPLINE : COMPUTER SCIENCE

DOCTORAL THESIS

defended on September, 26th 2013

by

Sara MEDLEJ

Scalable Trajectory Approach to ensure deterministic

guarantees in large networks

Jury members:

Reviewers: Guy Pujolle, Université Pierre et Marie Curie Professor

Houda Labiod, Telecom ParisTech Associate Professor

Examiners: Hakima Chaouchi, Telecom SudParis Professor

Véronique Véque, Supelec Professor

Supervisor Khaldoun Al Agha, Université Paris-Sud Professor

Supervisor Steven Martin, Université Paris-Sud Associate Professor

ii

Acknowledgment

I owe my gratitude to all the people who have made this thesis possible with their

help, support and contributions.

It is my pleasure to thank my supervisor, Dr. Steven Martin, for offering me this

opportunity and helping me in every problem I encountered in this period. His good

advice, support and knowledge have been invaluable on both academic and personal

level for which I am extremely grateful.

I would like also to thank Prof. Khaldoun Al AGHA, for the insightful discussions

and support in all stages of this thesis.

I would like to express my gratitude to the whole team P1A in EDF for their sympa-

thy and helpful collaboration. I appreciate the valuable comments provided by Mr.

Jean-Marie COTTIN, Mr. Denis TROGNON and Dr. Gaelle MARSAL.

I would like to express my deepest gratitude to the reviewers Dr. Houda LABIOD

and Prof. Guy PUJOLLE for having the patience to read the dissertation and pro-

vide me with constructive comments. Many thanks go to all members of the jury,

Prof. Hakima CHAOUCHI, Prof. Veronique VEQUE for coming to serve on my

thesis committee, and for sparing their invaluable time reviewing the manuscript.

I would like to express my appreciations to all my colleagues in the LRI laboratory,

Asma, Valeria, Roccio, Joseph, Soran, Reben, Hassan, Guangy, Kehao, Simon and

iii

iv ACKNOWLEDGMENT

Thomas, who have enriched my graduate life in many ways. I have also appreciated

the good time I have spent with my friends from the algorithmic and Database team.

The last year has been less stressing thanks to Dr. Reza and the funny moments

that we have shared. Finally, special thanks to my dearest friend Youghourta for

all the fruitful discussions we had, and of course for allowing me to keep Uba for an

additional year.

My stay in France wouldnt be so pleasant without the presence of all my Lebanese

friends in Rennes, Troyes and Paris: Hadi, Youssef, Ali, Rima, Sara J., Abbas, Ri-

hame, Hussein, Moussa, Sara K., Sarab, Kassem, Rola and Mazen, each one of you

has a special place in my heart. And of course, I cant forget Zeinab, Imane and Lana

who were there every time I needed them; thank you girls for being who you are.

Lastly, I would like to thank my Sweetheart Hussein for his unconditional love, sup-

port, encouragement and unlimited kindness through all these years. I express my

regards to my fiancé family for their kindness. My life would be really boring with-

out the presence of my brother Hussein and his wife Hanan, my sister Rita and her

husband Nizar, my nephews Ali, Hussein and Karim who took as a mission cheering

me up. Finally, words cannot express my gratitude and love for my mom and dad:

the best thing that happened to me is being your daughter. I am blessed for having

you in my life.

Abstract

In critical real-time systems, any faulty behavior may endanger lives. Hence, system veri-

fication and validation is essential before their deployment. In fact, safety authorities ask

to ensure deterministic guarantees. In this thesis, we are interested in offering temporal

guarantees; in particular we need to prove that the end-to-end response time of every flow

present in the network is bounded. This subject has been addressed for many years and

several approaches have been developed. After a brief comparison between the existing

approaches, the Trajectory Approach makes a good candidate due to the tightness of its

offered bound. This method uses results established by the scheduling theory to derive

an upper bound. The reasons leading to a pessimistic upper bound are investigated.

Moreover, since the method must be applied on large networks, it is important to be able

to give results in an acceptable time frame. Hence, a study of the method’s scalability

was carried out. Analysis shows that the complexity of the computation is due to both

recursive and iterative processes. As the number of flows and switches increases, the to-

tal runtime required to compute the upper bound of every flow present in the network

understudy grows rapidly. While based on the concept of the Trajectory Approach, we

propose to compute an upper bound in a reduced time frame and without significant loss

of precision. It is called the Scalable Trajectory Approach. After applying it to a net-

work, the simulation results show that the total runtime was reduced from several days

to a dozen of seconds.

v

vi ABSTRACT

Contents

Acknowledgment iii

Abstract v

Acronyms and notations xiii

1 Introduction 1

1.1 Context and Problematic . 2

1.2 Characteristics of the studied network 3

1.3 Safety property . 4

1.4 Contributions . 5

1.5 Dissertation outline . 6

2 Temporal guarantees 7

2.1 Introduction . 8

2.2 Timing analysis . 8

2.2.1 Simulation-based approach . 9

2.2.2 Analytical approach . 10

2.2.2.1 Model Checking . 11

2.2.2.2 Network Calculus . 15

vii

viii CONTENTS

2.2.2.3 Trajectory Approach (TA) 18

2.3 Summary . 31

2.4 Conclusion . 33

3 TA limitations for FIFO scheduled flows 35

3.1 Introduction . 36

3.2 Trajectory Approach for FIFO policy 36

3.3 Basic computation example . 37

3.4 Limitations . 40

3.5 Precision . 41

3.5.1 Junction packets . 42

3.5.2 Serialization . 43

3.5.3 Effect of leaving flows . 45

3.5.3.1 Flows leaving the path of τi 46

3.5.3.2 Flows leaving the path of one (or more) flow(s) inter-

acting directly with τi 49

3.5.3.3 Flows leaving the path of one (or more) flow(s) inter-

acting indirectly with τi 50

3.6 Scalability . 52

3.7 Numerical evaluation on sample configurations 53

3.7.1 Impact of serialization . 54

3.7.2 Impact of leaving flows . 55

3.7.2.1 Flows leaving the path of the studied flow τi 55

3.7.2.2 Flows leaving the path of a flow interacting directly

with τi . 56

CONTENTS ix

3.7.2.3 Flows leaving the path of a flow interacting indirectly

with τi . 57

3.7.3 Scalability . 58

3.7.3.1 Comparison between TA and ETA 58

3.7.3.2 TA Average runtime 59

3.8 Conclusion . 60

4 Scalable Trajectory Approach 63

4.1 Introduction . 64

4.2 Scalable Trajectory Approach . 64

4.2.1 Basic computation example 68

4.2.2 Reducing the set of instants to test 70

4.2.3 All flows have the same processing time and the same period . 76

4.2.3.1 Expression of Ai,m 76

4.2.3.2 End-to-end response time 81

4.3 Results on industrial configurations 82

4.3.1 Comparison between ETA and STA results 83

4.3.2 Effect of the variation of the processing time on the upper bound 87

4.3.3 Effect of the variation of the period on the runtime 88

4.3.4 Flows have different processing times and periods 89

4.4 Conclusion . 91

5 Conclusions and perspectives 93

5.1 Conclusions . 93

5.2 Perspectives . 95

Bibliography 97

x CONTENTS

List of Figures

1.1 The network under study. 3

1.2 Buffering inside a switch . 4

2.1 Model checking concept . 12

2.2 leaky bucket arrival curve . 16

2.3 The backlog and the delay derived using Network Calculus 17

2.4 Example illustrating the path of a flow 20

2.5 Illustration of the delays experienced by packet p 21

2.6 Example illustrating the notion of idle instants and busy period. . . . 22

2.7 Illustration of firsti,j, firstj,i, lasti,j and lastj,i notations 23

2.8 Response time of packet p activated at time t. 24

2.9 Trajectory Approach busy period decomposition 26

2.10 Generation interval of packets having a priority level higher than that

of p . 28

2.11 Generation interval of packets having the same priority level as packet p 29

2.12 End-to-end response time bounds . 31

3.1 Illustrative configuration . 38

3.2 Illustrative configuration . 42

xi

xii LIST OF FIGURES

3.3 Scheduling diagram of flow τ1 . 43

3.4 graphical solution of R1 = max{WN3

1,t − t+ C1} 44

3.5 Serialization example . 45

3.6 Illustrative example . 46

3.7 Configuration illustrating the effect of flows leaving the path of the

studied flow . 47

3.8 worst-case scenario of τ1 . 48

3.9 Configuration illustrating the effect of flows directly interacting with

the studied flow. 50

3.10 Configuration illustrating the effect of flows indirectly interacting with

the studied flow . 51

3.11 Representative example . 52

3.12 Impact of serialization on the Trajectory approach’s upper bound . . 54

3.13 Impact of leaving flows on the Trajectory Approach upper bound . . 56

3.14 Impact of leaving flows on the upper bound of τ1 57

3.15 Impact of leaving flows on the upper bound of τ1 58

3.16 Total runtime required by TA and ETA 59

3.17 Average runtime in function of the number of switches and flows . . . 60

4.1 Notation illustration . 65

4.2 Illustrative example . 68

4.3 Representative figure . 76

4.4 Comparison between ETA and STA results 84

4.5 Upper bounds determined by STA for a network composed of (a) 1000

and (b) 5000 flows . 85

4.6 Total runtime using STA, ETA and TA 86

LIST OF FIGURES xiii

4.7 Total runtime required to analyze a network composed of 10 switches

using STA . 87

4.8 Variation of the upper bound with the processing time. 88

4.9 Variation of the total runtime in function of the period. 89

4.10 Upper bound in microseconds . 90

xiv LIST OF FIGURES

List of Tables

2.1 generation interval of flows postponing p 29

2.2 delay introduced by flows postponing p 30

2.3 Methods used to compute the worst-case end-to-end response time. . 32

3.1 Paths of the considered flows . 38

3.2 Upper bounds obtained using the Trajectory Approach 40

4.1 Characteristic of the flows . 69

4.2 Comparison results between STA and ETA 90

xv

xvi LIST OF TABLES

Acronyms and notations

List of acronyms

AFDX Avionic Full DupleX

CSMA/CD Carrier Sense Multiple Access with Collision Detection

DP Dynamic Priority

EDF Earliest Deadline First

ETA Enhanced Trajectory Approach

EWCRT Exact Worst-Case Response Time

FIFO First In First Out

FP Fixed Priority

MAC Medium Access Control

MC Model Checking

NC Network Calculus

RM Rate Monotonic

STA Scalable Trajectory Approach

TA Trajectory Approach

xvii

xviii ACRONYMS AND NOTATIONS

List of notations

τi sporadic flow

Ch
i processing time of a packet belonging to flow τi on node h

Ti minimum arrival time of two successive packets of flow τi

Ji activation jitter of flow τi

Di deadline of flow τi

L Switching fabric delay including propagation delay, consulting the MAC address

table and copying the frame into the output buffer

W q
i,t latest execution time of flow τi on node q

Ri worst case response time (WCRT) of flow τi

Pi path of flow τi

|Pi| length of the path of τi

firsti first node in the path of flow τi

lasti last node in the path of flow τi

firsti,j first node in common between Pi and Pj

lasti,j last node in common between Pi and Pj

Sh
maxj

maximum time put by a packet of flow τj to travel from its source to node h

Sh
minj

minimum time put by a packet of flow τj to travel from its source to node h

Mh
i minimum time put by a packet to travel from the source of flow τi to node h

Ai,j Sum of the arrival jitters of flows τi and τj

Chapter 1

Introduction

Contents

1.1 Context and Problematic 2

1.2 Characteristics of the studied network 3

1.3 Safety property . 4

1.4 Contributions . 5

1.5 Dissertation outline . 6

1

2 CHAPTER 1. INTRODUCTION

First, in section 1.1, the context and the problematic are presented. Secondly,

section 1.2 details the characteristics of the studied network. Thirdly, the property

under study is invoked in section 1.3. Then, our contributions are listed in section 1.4.

Finally, the outline dissertation is presented in section 1.5.

1.1 Context and Problematic

Engineering is human endeavor and thus it is subject to errors. Some engineering

errors are neglectable, as when a new concrete building develops cracks. While,

some errors seem humanly unforgettable, like when a bridge collapses resulting in

the death of those who had taken its soundness for granted [1].

Ensuring that a system is safe is not a newly addressed subject. Almost four thou-

sands years ago, a number of Babylonian law codes were collected in what has known

to be the Hammurabi Code. Among nearly three hundred cuneiform inscriptions gov-

erning matters related to the status of women, drinking-houses, etc, there are those

related to the safety of constructions.

In [2], authors illustrate mistakes in requirements and/or system verification and

validation that has lead to famous failures. The Tacoma Narrows bridge, for exam-

ple, was a scale up of an old design. In the design of the first one, the effect of the

winds was not considered. Eventually, the bridge became unstable in the crosswinds

and it collapsed four months after its opening. We can also list the Space shuttle

challenger, the chernobyl nuclear power plant, Arian 5 missile. For other famous

failures see [1], [3], [4], and [5].

Nowadays, the Ethernet has also been used in hard real-time systems such as in

nuclear power plants, on board airplanes and so on. Accordingly, before deploying

any system, it is necessary to ensure that a set of logic and temporal properties are

1.2. CHARACTERISTICS OF THE STUDIED NETWORK 3

respected. This thesis focuses only on temporal property, particularly the end-to-end

response time (or delay) of a packet across the network.

1.2 Characteristics of the studied network

The studied network is a full-duplex switched-Ethernet. It is composed of one hun-

dred identical switches connected in a line topology (see Fig. 1.1). Each switch is

connected to a single node which can be either a sensor node or an actuator.

Figure 1.1: The network under study.

The used switches are 8 ports Ethernet switches implementing store and forward

strategy. As illustrated in Fig. 1.2, for each output port a 1MByte buffer is dedicated.

The serving policy used in this kind of switches is the First In First Out (FIFO) policy

which means that packets are scheduled according to their arrival time. Each switch

keeps updated a so called bridge forwarding table. It associates to each MAC address

the port on which the packet must be sent to reach its destination. Moreover, the

switching delay - including consulting the MAC table, copying a packet into the

corresponding output buffer, etc.- is considered constant and is equal to 3µs.

4 CHAPTER 1. INTRODUCTION

rx porttx port

rx porttx port

rx port

tx port
rx port

tx port

processor

Figure 1.2: Buffering inside a switch

1.3 Safety property

In order to be certified as secure, the deployed network has to verify several prop-

erties listed in [6]. In our work, we concentrate on the first property: In normal

functioning, every transmitted message reaches the right destination in a bounded

time. We assume that each message reaches the correct destination. Hence our work

consists of proving that the message end-to-end response time (or delay) is bounded.

It is important to show that this bound does not exceed a specific deadline. There-

fore, to avoid overdimensioning the network, the upper bound should be as close as

possible to the exact worst-case response time.

1.4. CONTRIBUTIONS 5

1.4 Contributions

Our work consists of focusing on a method called the Trajectory Approach that is

recently used for upper bounding the end-to-end response time and that showed its

efficiency when compared to the Network Calculus - a method traditionally used for

the same purpose [7].

In the following, we list our main contributions:

1. Identifying the main sources of pessimism for FIFO policy

The upper bound obtained using this method is sometimes not precise. We

show on small configurations how other flows affect the tightness of this bound.

We have noticed that when flows leave the path of the studied one or the path

of a flow interacting directly or indirectly with the studied one, the computed

bound may be pessimistic. Results were published in [8].

2. Proposing a scalable Trajectory Approach

The second parameter studied when applying the adopted method is its scal-

ability. Indeed, it must be applied on large industrial networks composed of

hundreds of switches and where a large amount of messages are exchanged.

As the original version of the method fails to offer results in these networks,

we propose to compute an upper bound in a reduced time frame and without

significant loss in the precision of the upper bound. The obtained results were

submitted to RTSS’13 (Real Time System Symposium 2013) and RTNS’13

(Real-Time Systems and Software 2013)

6 CHAPTER 1. INTRODUCTION

1.5 Dissertation outline

This thesis is composed of five chapters in which the problematic is first exposed,

then our contributions are presented and finally the proposed approach is evaluated

on large network.

In this chapter, we presented the studied problematic: worst-case timing analysis.

We are interested in estimating the worst-case upper bound of the end-to-end re-

sponse time (or delay) of a flow.

Chapter 2 presents some methods existing in the state of the art useful when tack-

ling the problem of ensuring the determinism of a network. After explaining their

principles, the advantages and drawbacks are listed. As a result, we conclude that

the Trajectory Approach makes a good candidate.

In chapter 3, we discuss the limitations of applying the adopted approach on a large

switched-Ethernet network. The flows in this case are scheduled using FIFO serving

policy. The investigated properties are the precision and the scalability of the ap-

proach.

Chapter 4 is dedicated for ensuring the scalability of the approach. We propose

a computation based on the Trajectory Approach allowing to determine an upper

bound of the end-to-end response time but in a smaller time frame.

Finally, chapter 5 holds the conclusion and perspectives.

Chapter 2

Temporal guarantees

Contents

2.1 Introduction . 8

2.2 Timing analysis . 8

2.2.1 Simulation-based approach 9

2.2.2 Analytical approach . 10

2.3 Summary . 31

2.4 Conclusion . 33

7

8 CHAPTER 2. TEMPORAL GUARANTEES

2.1 Introduction

As described before, we need to prove that every flow in the studied network respects

its deadline which means that the end-to-end response time does not exceed the

corresponding deadline. In section 2.2, we briefly explore existing methods that are

used to study the temporal behavior of a real-time system. Then, the advantages

and drawbacks of these methods are listed in 2.3. Finally, the conclusion is presented

in section 2.4.

2.2 Timing analysis

Ethernet is widely deployed in local area networking solutions at home and offices.

This huge spread of the Ethernet is due to its fast and easy way of installation. In

addition, this technology has lately seen an increase in the speed (1Gbps and up to

100Gbps). Moreover, most computerized devices come with an Ethernet interface.

For all these reasons, the Ethernet technology has found its way to the industrial

sector. It is now being used in even most critical domains such as on board airplanes,

in nuclear plant, etc.

However, the major issue confronted when using Ethernet in distributed real-time

applications is its stochastic property that is generated by the collision recovery

mechanism. To get rid of this problem, hub-based infrastructure was simply replaced

by Ethernet switches in FDX (Full Duplex). Switched Ethernet creates point-to-

point connections between communicating entities, therefore eliminating any kind of

collisions [9]. By using the switched Ethernet, the problem resulting form sharing

the medium was overcame. Nevertheless, a new problem arises: since packets are

now competing over the switch’s resources (i.e. output buffers), the switches must

2.2. TIMING ANALYSIS 9

be well dimensionned to avoid any possible overflow.

In critical real-time systems such as those used in the avionic, the nuclear or the

chemical domains, any faulty behavior may endanger lives. Hence system verification

and validation is essential before its deployment. In fact, safety authorities ask, before

delivering their certificate, to ensure deterministic guarantees. Those guarantees

usually mean that the underlying network must ensure bounded end-to-end response

time, bounded (or null) jitter, reliability (with respect to corruption, loss due to

overflow or duplication of messages). In our study, we are only interested in offering

temporal guarantees; in particular we need to prove that the end-to-end response time

of every flow, present in the network, is bounded. This subject has been addressed for

many years and several approaches have been developed tackling it. In the literature,

simulation and/or testing, formal verification methods especially Model Checking

and Network Calculus were used to estimate end-to-end response time in complex

systems. In addition, another method called the Trajectory Approach addresses the

same problem.

In the following, we describe the principle on which these methods are based and list

their advantages as well as their drawbacks.

2.2.1 Simulation-based approach

Simulation and testing are both conducted before deploying the system in the field.

The difference between the two of them is that when simulating we are interacting

with software that imitates the behavior of the system under study. Where, testing

deals with the product itself meaning that we are interacting with a hardware. For

instance, to check the performance of an electronic design, we can use Pspice [10]

to emulate the behavior of the system; in this case we are performing a simulation.

10 CHAPTER 2. TEMPORAL GUARANTEES

While if we are dealing with the electrical board itself, we are conducting tests. The

common point in both cases is that an input is inserted into the system and the

system behavior, represented by the output, is observed. WebNSM Simulation Tool

Kit [11] is an example of network simulator used for several purposes such as auto-

mated network simulation, configuration of device values and simulation types for

performance testing. Another tool is the famous Matlab/simulink software [12] that

allows us to evaluate the temporal behavior of systems.

Being a costless method, simulation and testing have been used for a long time. In

contrast, the main disadvantage of these methods is the fact that it is impossible to

check all possible events of the system and that sometimes rare event can be missed

when performing the testing and/or the simulation. Consequently, the determined

bound offered by these methods is not very accurate and is sometimes below the real

value [13]. However, when asked to offer deterministic guarantees, underestimating

the bound is not tolerated. In addition, the problem is characterized as NP-hard

which means that to test all possible events, a very long period of time is required

in order to obtain results and in most scenarios, this period may reach up to sev-

eral years. For all these reasons, the simulation-based approaches fail to fulfill our

requirements.

2.2.2 Analytical approach

Performing appropriate mathematical analysis contributes to the reliability and ro-

bustness of the design. Several mathematical approaches were developed allowing

the evaluation of the network performance. Our interest is not to explore all of them,

but to introduce the most used ones and to choose the best candidate. In the fol-

lowing sections, we briefly introduce the Model Checking, a formal method, then we

2.2. TIMING ANALYSIS 11

talk about the Network Calculus and finally the Trajectory Approach is presented.

2.2.2.1 Model Checking

Performance evaluation aims at predicting system behavior in terms of delay, through-

put, etc. This kind of evaluation addresses quantitative questions. However, tradi-

tional formal verification answers qualitative questions. Formal verification addresses

problems related to safety, and liveness (i.e. does a packet reach the correct destina-

tion?). If considering the elevator system for example, the safety property is satisfied

if the elevator car stops whenever the door opens and the liveness property is satisfied

if the elevators never get stuck between doors. On the other hand, Model Check-

ing [14], for instance, allows obtaining quantitive results. Model Checking (MC)

is based on timed automata and was presented by Alur and Dill in [15]. It offers

the possibility of analyzing a system while taking into consideration the time. The

worst-case scenario and the corresponding end-to-end response time (or delay) is

obtained [16], [17]. MC has been used in many real applications including electrical

circuits, communication protocols, digital controllers, etc.

Model checking consists of three tasks which are modeling, specification and finally

verification. Fig. 2.1 shows the concept on which this method is based. The ap-

proach requires a model of the studied system and a desired property to be verified.

After modeling the system and formalizing the property, the Model Checking tools

exhaustively checks if the property is satisfied in each state of the system model.

If an error occurs, the approach generates the exact scenario that have caused this

error. Hence, providing an evidence that the system is faulty and need to be re-

vised [18]. However, if the property is satisfied by the system, meaning no error was

found, then the developer can refine his model and retest it. UPPAAL [19], BLAST

12 CHAPTER 2. TEMPORAL GUARANTEES

formalizing Modeling

Model checker

Simulation

requirements system

Property
specification

System
model

Location error

satisfied violated

Counter
example

Figure 2.1: Model checking concept

model checker [20], SPIN model checker [21] are examples of model checking tools.

It is necessary to be careful when formalizing the property desired to be satisfied by

the system. As mentioned in [14], the Model Checking is able to identify if a system

satisfies a given property but it is impossible to check whether the given specifica-

tion covers all properties that the system must satisfy. Thus, the completeness of

the specification has an important impact on the results.

Moreover, the size of the model affects the performance of the Model Checking which

was shown in [14]. The authors derive three models for the same architecture and

check a temporal logic for each model using Model Checking. The architecture un-

der inspection is composed of 12 interacting components. In the first model, the

behavior of all components is detailed. The second model is a simplified version of

the first model where components that do not affect directly the temporal logic are

eliminated and the behavior of the remaining components is also simplified. The

2.2. TIMING ANALYSIS 13

third model is obtained by applying the state space approximation on the second

model. For the first model, the system explodes and no result was computed. When

using the second model, 28 hours were necessary to compute the result while using

the third model reduces the computing time to only one second. There is no doubt

that the main challenge confronted when using Model Checking is the state space

explosion problem. This problem arises when the global states are enormous which

can happen in a system having a large number of components interacting. Such a

problem makes the approach incapable of providing solution when dealing for exam-

ple with large industrial networks similar to our case.

In the last years, the state space explosion problem has attracted many researchers

attempting to overcome it and several solutions were proposed. According to [22],

these solutions can be divided into three categories which we describe succinctly.

The first category is based on automata theory which consists of three steps. Step

one consists of converting the modeled system into the buchi automaton A which is

an extension of a finite state automaton to infinite inputs. The second step consists

of translating the negation of the specification into an automaton S. In the last step

the emptiness of the intersection between the Kripke structure M and the automaton

S is checked. If the intersection between M and S is not empty, a counter example

is reported. As defined in [23], a kripke structure is a directed graph whose vertices

are labeled by a set of atomic propositions. Vertices represent states of the system

and edges represent transitions between states. The kripke structure M over a set

of atomic propositions A is a tuple M = (S,R, L, I) such that S is the set of states,

R ⊆ S2 is the set of transitions, I ⊆ S is the initial states which should not be

empty and L : S → 2A labels each state by a set of atomic propositions. The kripke

structure can be also viewed as an automaton.

14 CHAPTER 2. TEMPORAL GUARANTEES

The second category is based on symbolic verification in which rather than explicitly

constructing the kripke structure, boolean functions representing respectively tran-

sition relations and the set of states are computed. Then model checking algorithm

is applied on these functions. Since boolean functions are exponentially smaller than

the explicit representation, symbolic verification theoretically alleviates the state

space explosion problem [23], [22]. The main ingredient in symbolic verification is

the Binary Decision Diagram BDD. Given a boolean function, binary decision tree

is constructed on condition that along a path from root to leaf, variables are listed

in the same order and each variable appears just once. Reducing the size of a BDD

can be achieved by applying two rules:

− merging all duplicate nodes

− removing nodes if their branches end up on the same child node.

BDD in its current form is called a reduced and ordered binary decision diagram (RO-

BDD). It is clear that the complexity of the symbolic model depends on the size of

the BDD. However, classic information theory argument shows that only a small

fraction of all finite kripke structure can be exponentially compressed [24]. Similarly,

the same limitation applies as well on the BDD. Moreover, practical experiments

show that the performance of symbolic verification methods is highly unpredictable.

This phenomena can be partially explained by complexity theory which states that

BDD representation does not improve worst-case complexity.

The third category, called alternative methods, includes methods such as abstraction

and symmetry. The abstraction concept consists of partitioning the states of Kripke

structure into clusters and treating clusters as new abstract states. Applying this

method reduces the model which makes it fit into memory. If the abstract model

2.2. TIMING ANALYSIS 15

satisfies the property, we deduce that the original Kripke structure also satisfies the

property specification.

2.2.2.2 Network Calculus

Network Calculus is based on the min-plus algebra and is used to evaluate determinis-

tic bounds for queuing systems encountered in communication systems; allowing thus

to offer deterministic guarantees for a flow or a group of flows. It was first presented

by Cruz in [25], [26]. The concept of the service curve has been formalized by Cruz,

Sariowan, Cruz and Polyzos [27],[28], Argual and Rajan [29], Chang [30], [31], Le

Boudec [32], and Agrawal, Cruz, Okino and Rajan [29] toward the general framework

known as network calculus today.

Based on node’s arrival and service curves, Network Calculus derives bounds on

the end-to-end delay and backlog. In the following, we explain the notion of arrival

and service curves.

Data flow can be described as a wide-sense increasing function R(t) which represents

the number of bits seen in an interval of time [0, t]. Let us consider a black box S

which can be a simple buffer, a complex node or even an entire network. S receives

a data flow represented by the function R(t) at its input. S delivers the data on

its output after a variable delay. The output data is characterized by a cumulative

function R∗(t). Several policies can be implemented by S to process incoming data.

For example a packet is processed as soon as its first bit is received by the system or

until the entire packet is received, etc. Each flow R is constrained by an arrival curve

α(t) if and only if R(t) − R(s) ≤ α(t − s) for all s ≤ t. It means that the number

of bits arriving between time s and t is at most α(t− s). The arrival curve α(t) is a

wide sense increasing function. The most famous arrival curves are the leaky bucket

16 CHAPTER 2. TEMPORAL GUARANTEES

and the generic cell algorithm; the latter corresponds to a stair function. The leaky

bucket curve, depicted in Fig. 2.2, is represented by the formula α(t) = b+ rt where

r is the rate and b is the burst size.

time

b

r

Figure 2.2: leaky bucket arrival curve

To offer guarantees to a data flow, the data must be declared conformant in other

words it must not lead to a buffer overflow. We are considering for instance a flow

constrained by a leaky bucket arrival curve. The flow R is said to be conformant if

the amount of poured data into the bucket is equal to the amount of data exiting

in the bucket. We say that the system S offers a service curve β(t) if and only if

R∗ ≥ (R⊗ β) (t) where (R⊗ β) (t) := inf0≤τ≤t{R(τ) + β(t− τ)} and β(t) is a wide

sense increasing function. Based on arrival and service curves, Network Calculus can

derive three parameters which are the delay, the backlog and the output flow.

1. The backlog is constrained by vertical deviation between arrival curve and the

service curve.

2. The delay is constrained by horizontal delay between arrival and service curves

2.2. TIMING ANALYSIS 17

time

b

r

T

R

delay
ba

ck
lo

g

Figure 2.3: The backlog and the delay derived using Network Calculus

3. Output flow is constrained by the arrival curve α∗(t) = α(t)⊗ β(t)

An example on how to derive the delay and the backlog is depicted in Fig. 2.3. If

r ≤ R, then the delay bound is d = T + b/R, otherwise the delay is infinite.

It is obvious that the precision of the end-to-end delay bound depends on the ac-

curacy of the arrival and the service curves. The authors in [33] consider a system

composed of two nodes N1 and N2 and then compute the delay bound. Each of

the nodes has, respectively, α1(t) and α2(t) as arrival curves and β1(t) and β2(t)

as service curves. Arrival curves are constrained by leaky buckets. The delay D1

introduced on the first node N1 is equal to b
R1

+ T1 and the output flow on N1 is

constrained by α∗
1(t) = r(t + T1) + b. The output flow of node N1 is the input flow

of the node N2, thus the delay experienced on the node N2 is D2 = b+rT1

R2

+ T2.

The delay bound of the entire network is equal to the sum of delays on each node

D1 +D2 =
b
R1

+ T1+ b+r·T1

R2

+ T2. Hence, applying Network Calculus sequentially on

18 CHAPTER 2. TEMPORAL GUARANTEES

a chain of nodes yields in a high delay bound and the obtained bound is pessimistic.

To improve the delay bound obtained using Network Calculus, the authors in [33]

propose to consider a service curve of the entire system instead of applying Network

Calculus on each node. The global service curve is the result of the convolution of

service curves offered by each node of the system. Now going back to the previous

example, computing delay bound gives a result equal to b
R0

+T0 where R0 = min{R}

and T0 =
∑

Ti. Although using a global service curve, representing the service of-

fered by the entire network, improves the computed end-to-end delay bound, it is

not always easy to derive the global service curve. A survey on the service curves

was conducted in [34].

A set of software implementing this method are available such as the CyNC tool-

box [35], the RTC toolbox [36] [37], the DISCO network calculator [38], the COINC

toolbox [39], Deborah [40] and finally the commercial SymTA/S toolbox [41].

2.2.2.3 Trajectory Approach (TA)

The approach has been developed in [42] for non-preemptive scheduling. It allows

computing the upper bound of any flow scheduled using either Fixed Priority algo-

rithms (FP), or Dynamic Priority algorithms (DP), or a combination of both. For

FP algorithms, the packets belonging to the same flow have all the same priority

level; while for DP algorithms the packet priority depends of its activation time. For

instance, Rate Monotonic RM and deadline monotonic DM are fixed priority algo-

rithms. On one hand, the priority assigned to a flow by RM is inversely proportional

to its period. Thus, the flow with the shortest period has the highest priority. On

the other hand, the priority assigned to a flow by DM in inversely proportional to its

2.2. TIMING ANALYSIS 19

relative deadline. Moreover, two of the most common used dynamic priority schedul-

ing algorithms are the FIFO (First In First Out) and the EDF (Earliest Deadline

First). At any time, EDF executes among the activated packets, those whose abso-

lute deadline is earliest (note that the absolute deadline is equal to the activation

time plus the relative deadline).

In [43], authors formalized the approach for FIFO scheduling policy and in [44] it

was formalized for FP/FIFO. In this latter case, packets are first served according to

their fixed priority, then those having the same fixed priority are scheduled according

to their arrival time.

In the following, we present the traffic model used by the approach as well as the

notations, then TA’s concept is described.

Traffic model

A set of sporadic flows are exchanged across the studied network. A sporadic flow

denoted τi is defined by the following tuple (Ch
i , Ti, Di, Ji) such that:

− Ch
i is the processing time of any packet belonging to τi on node h,

− Ti is the minimum inter-arrival time between two successive packets of flow τi,

− Di is the flow’s deadline. The response time of a packet generated at time t

should not exceed t+Di.

− Ji is the release jitter of flow τi.

Moreover, each flow τi is processed on a set of nodes called path Pi. For in-

stance, the path of τ1 in Fig. 2.4 is P1 = {N1, SW1, SW2, SW3, N3} and that of

τ2 is P2 = {N2, SW2, SW3, SW4, N4}.

Moreover, we consider neither network failures nor packet losses. In addition, The

20 CHAPTER 2. TEMPORAL GUARANTEES

Figure 2.4: Example illustrating the path of a flow

switching delay (including consulting the MAC table, copying a packet into the cor-

responding output buffer, etc.) is respectively lower and upper bounded by Lmin and

Lmax.

Mapping TA and traffic model

The mapping between the traffic model used by the Trajectory Approach and the

studied network is illustrated in Fig. 2.5. The end-to-end response time of a flow τi

is composed of the following:

− time spent by a packet denoted p in the buffer of the switch. It depends on the

priority level of the packet and ahp its arrival time on node h. It is represented

by the light gray period.

− packet processing time (or the transmission time over the link). Ch
i = s/R

where s is the packet size and R is the node data rate. If all nodes have the

same data rate then the processing time of a packet is the same on all nodes

(Ch
i = Ci). It is presented by the dark gray period.

− and finally, the switch introduces additional delay (or latency); it is called

switching delay. In our case, it is equal to L = 3µs and is represented by white

2.2. TIMING ANALYSIS 21

0

p

1

p

p

2 3

t

t

t

time in
the buffer

switching
delay

processing
time

CPU
CPU

SW1 SW2
N1

SW1

SW2

N1

Figure 2.5: Illustration of the delays experienced by packet p

period.

Definitions and notation

The concept of the Trajectory Approach is based on the notion of the busy periods.

Before explaining it, we illustrate first the notion of idle instants and busy periods.

We also present some notations that are useful to understand the approach.

Definition 2.1. An instant t0 is said to be idle of level L if all packets activated

22 CHAPTER 2. TEMPORAL GUARANTEES

before t0 with a priority level higher or equal to L have been processed before t0.

Definition 2.2. A busy period of level L is an interval of time [t1, t2[such that t1

and t2 are two idle instants of level L and there is no other idle instant in this interval.

Fig. 2.6 illustrates the notions of idle instant and busy period. At time t0, three

packets p1, p2 and p3 are activated, then at time t1 another packet p4 is activated.

However, at this time (i.e. instant t1) the execution of p2, which was started before

t1, is not finished yet. This means that t1 is not an idle instant. On the other hand,

the execution of packets activated before t2 have finished. We can deduce that t2 is

an idle instant. Hence, the interval [t0, t2[forms a busy period.

p1 p2 p3 p4

t0

t1 t2

busy period
time

Idle instants

Figure 2.6: Example illustrating the notion of idle instants and busy period.

In addition, let τi, i ∈ [1, n] be a sporadic flow following a path Pi and which is

characterized by a priority Pi. Three sets are defined in [42]:

− hpi = {j ∈ [1, n], Pj > Pi} is the set of flows having a fixed priority strictly

higher than that of flow τi;

2.2. TIMING ANALYSIS 23

− spi = {j ∈ [1, n], j 6= i, Pj = Pi} is the set of flows having a fixed priority equal

to that of flow τi. Flow τi is not included in this set.

− lpi = {j ∈ [1, n], Pj < Pi} is the set of flows having a fixed priority strictly

lower than that of flow τi.

Finally, let us consider two flows τi and τj that share a part of their paths. The

notation firsti (respectively lasti) denotes the source (respectively the destination)

of flow τi. The first common node between the paths of τi and τj is denoted firsti,j

and the last common node is denoted lasti,j. The notion of firsti,j and lasti,j is

illustrated in Fig. 2.7 when flows have a) the same direction b) reverse direction.

τi

τj

firsti,j lasti,j

firstj,i lastj,i

(a) same direction

τi

τj

firsti,j lasti,j

firstj,ilastj,i

(b) reverse direction

Figure 2.7: Illustration of firsti,j, firstj,i, lasti,j and lastj,i notations

TA concept

The Trajectory Approach is based on the analysis of the worst-case scenario expe-

rienced by a packet p of a sporadic flow τi along its path denoted Pi. Traditional

methods like the Holistic approach [45] considers the worst-case scenario on every

24 CHAPTER 2. TEMPORAL GUARANTEES

visited node, thus yielding pessimistic upper bounds [46]. Its objective is to compute

an upper bound denoted Ri of the worst-case response time.

We consider that the path of the studied flow is numbered from 1 to q.

Let ri,t be the response time of packet p activated at time t on its source (i.e. node

1) and W q
i,t its latest execution time on the last visited node (i.e. node q).

As shown in Fig. 2.8, ri,t is equal to the latest execution time minus the packet ac-

tivation time t plus the packet processing time Cq
i .

ri,t = W q
i,t − t+ Cq

i (2.1)

Let Ri be the upper bound of the worst-case response time of flow τi.

To determine the upper bound of the worst-case response time of a flow, it suffices

to retain the maximum value of ri,t such that t ≥ −Ji.

Ri = max
t≥−Ji

{ri,t} = max
t≥−Ji

{

W q
i,t − t+ Cq

i

}

(2.2)

Hence, the main objective is to determine the expression of W q
i,t.

p

p

p1

h

q-1

q
W

q

i,t

t

ri,t

p
Ci

q

Figure 2.8: Response time of packet p activated at time t.

2.2. TIMING ANALYSIS 25

To achieve this goal, TA does not proceed like other traditional methods that

start their analysis from the source and forward until reaching the destination. In

fact, TA identifies the set of packets that postpone p and impact its response time

on its visited nodes. To do so, it starts from the last node and goes backward until

reaching the source. On the destination, the set of packets postponing the execution

of the studied one are identified and form a busy period bpq. In this busy period, two

packets are defined: f(q) and p(q− 1). f(q) is the first packet of this period; it does

not necessarily come from the previous node, i.e. node q− 1. The packet p(q− 1) is

the first packet of this busy period such that it was processed on node q − 1.

Then on node q − 1, packet p(q − 1) is located and the set of packets postponing

its execution are identified. This packet p(q − 1) belongs to the busy periods of two

successive nodes and is called junction packet. Next, packets f(q − 1) and p(q − 2)

are located. Then, the same analysis occurs on the previous node (i.e node q − 2)

and so on, until determining the busy period on the source of the studied flow.

In brief, each busy period is composed of:

− packets having a priority higher than that of packet p,

− packets having the same priority level of packet p.

Finally, on each node h such that h ∈ Pi, a single packet of a priority level lower than

that of p can delay its execution. For this to be true, the execution of this packet

must have been started before the arrival of packet f(h) on the considered node.

Fig. 2.9 illustrates the concept of the Trajectory Approach.

As formalized in [47], the sum of these periods added to the total switching delay

allows establishing the expression of the latest execution time of p. As said before,

once computing W q
i,t, obtaining the upper bound of the worst-case response time of

a flow is quite simple. All we need to do is to recursively compute the response time

26 CHAPTER 2. TEMPORAL GUARANTEES

p(1)f(1)

p(h)f(h)

p(q-1)f(q-1)

f(q)

p

p

p

t

p(q-1)

p(h)

p(h-1)

W i,t
q

p

1

h

q-1

q

bp1

bph

bpq-1

bpq

Figure 2.9: Trajectory Approach busy period decomposition

of packet p at each time t. Finally, the maximum value obtained is the upper bound

of the studied flow.

Furthermore, it was proved in [42] that, except for the junction packet, a packet

cannot belong to two different busy periods.

Given these facts, the expression of the latest execution time W q
i,t consists of three

parts:

− the total switching delay which is equal to (q − 1)Lmax,

− the non-preemptive delay, denoted δ1,qi , produced by the packets of lower pri-

ority level than p. On each node, only a single packet of this priority level can

postpone the execution of the studied packet. The delay introduced by these

packets is equal to
∑q

h=1 max{0,maxj∈lpi
⋃

spi(t){C
h
j } − 1},

− the delay of packets having a priority level higher or equal to that of p. It can

be expressed as follows: Xi,t =
∑q

h=1

∑f(f+1)
g=f(h) C

h
τ(g) − Cq

i . The processing time

of τi is subtracted since we are interested here in the expression of the latest

execution time.

2.2. TIMING ANALYSIS 27

In summary, the expression of W q
i,t becomes:

W q
i,t = (q − 1)Lmax + δ1,qi +

q
∑

h=1

f(h+1)
∑

g=f(h)

Ch
τ(g) − Cq

i (2.3)

We recall that junction packets are those processed at the end of the busy period on

node h such that h 6= q and at the beginning of the busy period on the next node

h + 1. Since we are interested in a worst-case analysis, then these packets should

generate the largest delay on these nodes. Hence, the delay incurred is equal to
∑q−1

h=1 maxj∈hpi
⋃

spi C
h
j .

In order to assess the delay introduced by packets belonging to the busy periods,

TA determines the largest interval of time in which if packets are activated on their

sources, they will postpone the execution of the studied flow. This interval is called

generation interval.

First, the delay incurred by packets of priority higher than that of packet p is eval-

uated. For these packets to delay the execution of the studied packet, they have to

belong to one of the busy periods between the first common node firsti,j and the

last common one lasti,j. These packets postpone p if they arrive on its last common

node (i.e. node lasti,j) at most before the beginning of its execution (i.e. W
lasti,j
i,t).

Hence, they must be activated on their source firstj at most before W
lasti,j
i,t −S

lasti,j
minj

where Sh
minj

is the minimum arrival time on node h. Moreover, packets of flow τj,

j ∈ hpi, belong to one of the busy periods if they arrive on the first common node

firsti,j at least after a
firsti,j
f(firsti,j)

the arrival time of the first packet processed in the

busy period. Thus, these packets must be generated on their sources at least after

a
firsti,j
f(firsti,j)

− S
firsti,j
maxj − Jj. Similarly to Sh

minj
, Sh

maxj
is the maximum arrival time of

a packet of τj on node h. Now, a
firsti,j
f(firsti,j)

can be lower bounded by considering the

minimum switching delay and counting the smallest packets processed on the nodes,

starting from firsti until reaching node firsti,j (see Eq. (2.4)). Fig. 2.10 illustrates

28 CHAPTER 2. TEMPORAL GUARANTEES

firsti,j
f (firsti,j)

afirsti,j

f (firsti,j)
≥ M firsti,j

i

firstj

W
lasti,j

i,t - S
lasti,j

min j
afirst i,j

f (first i,j)
- S

first i,j

max j

- Jj

plasti,j

W lasti,j
i,t

Figure 2.10: Generation interval of packets having a priority level higher than that

of p

the length of the generation interval of higher priority packets.

a
firsti,j
f(firsti,j)

≥ M
firsti,j
i =

firsti,j
∑

h′=firsti

(

min
j∈hpi

⋃
spi

{Cj}+ Lmin

)

(2.4)

Secondly, flows having the same priority level as p postpone its execution, if on

their first common node firsti,j they arrive before a
firsti,j
p . This means that they

should be generated on their source nodes at most before a
firsti,j
p − S

firsti,j
minj

. Besides,

the arrival time of packet p on firsti,j is smaller than the packet activation time t

added to S
firsti,j
maxi the maximum arrival time of flow τi on node firsti,j. Furthermore,

these packets belongs to one of the busy periods if, on their first common node, they

arrive at least after the arrival instant of f(firsti,j). Therefore, these packets must

be generated on their sources at least after a
firsti,j
f(firsti,j)

− S
firsti,j
maxj − Jj. Fig. 2.11 illus-

trates the length of the generation interval of packets of the same priority level than p.

2.2. TIMING ANALYSIS 29

firsti,j

firstj

f (firsti,j)

a firsti,j

p

a first i,j
p - S first i,j

min j
a first i,j

f (first i,j)
- S first i,j

max j
- Jj

≤ t + S
first i,j
max i

a firsti,j

f (firsti,j)
≥ M

firsti,j

i

Figure 2.11: Generation interval of packets having the same priority level as packet

p

afirsti,jp = t+ Sfirsti,j
maxi

(2.5)

Moreover, the delay incurred by packets belonging to flow τj activated in an

interval [a, b] is equal to (1 +
⌊

b−a
Tj

⌋

)Cj. Consequently, the delay incurred by packets

of higher or similar priority can be deduced. To conclude, packets of τi are processed

before packet p if they are activated before t. Hence, the delay incurred by these

packets is equal to
(

1 +
⌊

t
Ti

⌋)

Ci.

Table 2.2 summarizes the interval of generation of packets postponing the studied

flow so as their incurred delay.

flow generation interval

τi [0, t]

j ∈ hpi

[

M
firsti,j
i − S

firsti,j
maxj − Jj,W

q
i,t − Sq

minj

]

j ∈ spi

[

M
firsti,j
i − S

firsti,j
maxj − Jj, t+ S

firsti,j
maxi − S

firsti,j
minj

]

Table 2.1: generation interval of flows postponing p

30 CHAPTER 2. TEMPORAL GUARANTEES

flow total delay

τi

(

1 +
⌊

t
Ti

⌋)

Ci

j ∈ hpi
∑

j

(

1 +

⌊

W
q
i,t−S

q
minj

+S
firsti,j
maxj

−M
firsti,j
i +Jj

Tj

⌋)

Cj

j ∈ spi
∑

j

(

1 +

⌊

t+S
firsti,j
maxj

−S
firsti,j
minj

+S
firsti,j
maxi

−M
firsti,j
i +Jj

Tj

⌋)

Cj

lpi δ1,qi =
∑q

h=1 max{0,maxj∈lpi
⋃

spi(t){Cj} − 1}

Table 2.2: delay introduced by flows postponing p

Subsequently, the expression of the latest execution time becomes:

W q
i,t = (q − 1) · Lmax + δ1,qi +

q−1
∑

h=1

max
j∈hpi

⋃
spi

{Cj}

+
∑

j∈hpi

(

1 +

⌊

W q
i,t − Sq

minj
+ S

firsti,j
maxj −M

firsti,j
i + Jj

Tj

⌋)

Cj

+
∑

j∈spi

(

1 +

⌊

t+ S
firsti,j
maxj − S

firsti,j
minj

+ S
firsti,j
maxi −M

firsti,j
i + Jj

Tj

⌋)

Cj

+

(

1 +

⌊

t

Ti

⌋)

Ci − Ci

Finally, the upper bound of flow τi can be expressed as follows.

Ri = max
t≥−Ji

{

(q − 1) · Lmax + δ1,qi +

q−1
∑

h=1

max
j∈hpi

⋃
spi

{Cj}

+
∑

j∈hpi

(

1 +

⌊

W q
i,t − Sq

minj
+ S

firsti,j
maxj −M

firsti,j
i + Jj

Tj

⌋)

Cj

+
∑

j∈spi

(

1 +

⌊

t+ S
firsti,j
maxj − S

firsti,j
minj

+ S
firsti,j
maxi −M

firsti,j
i + Jj

Tj

⌋)

Cj

+

(

1 +

⌊

t

Ti

⌋)

Ci − t

}

2.3. SUMMARY 31

The set of instants to test was reduced such that −Ji ≤ t ≤ Bslow
i , where:

Bslow
i =

∑

j∈hpi
⋃

spi
⋃
{i}

⌈

Bslow
i

Tj

⌉

Cj (2.6)

2.3 Summary

We have explored some methods that can be used to ensure that, for each flow ex-

changed across a studied network, the end-to-end response time does not exceed its

corresponding deadline. The model checking, for example, gives the exact worst-

case response time but does not fit for large scale industrial networks. The Net-

work Calculus and the Trajectory Approach form good candidates to address the

studied problem. They were both applied on a real industrial network such as the

AFDX avionic system. The results showed that the Trajectory Approach gives tighter

bounds [48]. Table 2.3 lists the advantages and the drawbacks of each method. In

addition, Fig 2.12 illustrates the bounds obtained by the different methods.

Figure 2.12: End-to-end response time bounds

32 CHAPTER 2. TEMPORAL GUARANTEES

Method Advantages Drawbacks

Model Checking

− exact worst-case re-

sponse time

− provides a counter ex-

ample

− Completeness of the

formalized property.

− State space explosion

problem

Network Calculus

− deterministic upper

bound

− Application on lossy

systems

− accuracy of the arrival

and service curves de-

termines the precision

of the upper bound

− global service curve is

not easy to compute

Trajectory Approach

− can be used on net-

works holding hetero-

geneous flows

− tighter upper bound

(compared to other

methods)

− Could only be applied

on lossless networks

Table 2.3: Methods used to compute the worst-case end-to-end response time.

2.4. CONCLUSION 33

2.4 Conclusion

In this chapter, we have briefly explored some methods that can be used to perform

timing analysis. In particular, we are asked to determine an upper bound of the end-

to-end response time of flows exchanged across the studied network. These methods

can be divided into two groups: the simulation-based and the analytical approaches.

We recall that, when interested in computing deterministic guarantees, simulation

approaches fail to meet the requirements. Among the analytical approaches, we

have the model checking, the network calculus and the Trajectory Approach. After

comparing these approaches, the trajectory approach presents several advantages.

In the next chapter, we investigate the problems of applying this method on large

industrial configurations.

34 CHAPTER 2. TEMPORAL GUARANTEES

Chapter 3

TA limitations for FIFO scheduled

flows

Contents

3.1 Introduction . 36

3.2 Trajectory Approach for FIFO policy 36

3.3 Basic computation example . 37

3.4 Limitations . 40

3.5 Precision . 41

3.5.1 Junction packets . 42

3.5.2 Serialization . 43

3.5.3 Effect of leaving flows . 45

3.6 Scalability . 52

3.7 Numerical evaluation on sample configurations 53

3.7.1 Impact of serialization . 54

3.7.2 Impact of leaving flows . 55

3.7.3 Scalability . 58

3.8 Conclusion . 60

35

36 CHAPTER 3. TA LIMITATIONS FOR FIFO SCHEDULED FLOWS

3.1 Introduction

As stated in the previous chapter, the Trajectory Approach is a great candidate to

tackle the problem of ensuring the determinism of the deployed network. In this

chapter, we are interested in computing the upper bounds of flows scheduled using

the FIFO serving policy and having null release jitters. Moreover, all nodes have the

same data rate. In section 3.2, the expression of the upper bound as presented by the

Trajectory Approach is introduced. An example is given in section 3.3 illustrating the

computation process. Then, we discuss the problems confronted when applying this

method on large industrial configurations in section 3.4. Then, for simplicity sake

and without loss of generality, we illustrate these limitations on small configurations

in sections 3.5 and 3.6. Finally, the effect of these limitations is studied in section 3.7

and the conclusion is presented in section 3.8.

3.2 Trajectory Approach for FIFO policy

The FIFO policy is the most used due to its implementation simplicity. This means

that there are no flows that have strictly smaller or greater priority level. In this

case, lpi and hpi are two empty sets. Hence, no delay introduced by these flows is

considered. The expression of the latest execution time becomes:

W q
i,t ≤ (q − 1) · Lmax +

q−1
∑

h=1

max
j

{Cj}+

⌊

t

Ti

⌋

Ci

+
∑

j 6=i

(

1 +

⌊

t+ S
firsti,j
maxj − S

firsti,j
minj

+ S
firsti,j
maxi −M

firsti,j
i

Tj

⌋)

Cj

(3.1)

3.3. BASIC COMPUTATION EXAMPLE 37

Hence, the expression of W q
i,t can also be written as follows:

W q
i,t ≤ (q − 1) · Lmax (3.2)

+

q−1
∑

h=1

max
j

{Cj} (3.3)

+

⌊

t

Ti

⌋

Ci (3.4)

+
∑

j∈spi

(

1 +

⌊

t+ Ai,j

Tj

⌋)

Cj (3.5)

with Ai,j = S
firsti,j
maxj − S

firsti,j
minj

+ S
firsti,j
maxi −M

firsti,j
i .

We recall that, once the expression of the latest execution time is established, com-

puting the upper bound requires testing all time instants until the largest period on

the slowest node denoted Bslow
i (as defined in Eq. 2.6). The expression of the upper

bound is:

Ri = max
t≤Bslow

i

{W q
i,t − t+ Ci} (3.6)

3.3 Basic computation example

We show the application of the Trajectory Approach on a simple configuration de-

picted in Fig. 3.1. We consider five flows whose paths are described in Table 3.1. All

flows have the same processing time and the same period.

Ci = 26µs, ∀i ∈ [1, 5]

Ti = 1000µs, ∀i ∈ [1, 5]

We recall that the used switches associate to each output port a dedicated buffer.

Hence, we say that a flow postpone another one if they share the same output port.

38 CHAPTER 3. TA LIMITATIONS FOR FIFO SCHEDULED FLOWS

Figure 3.1: Illustrative configuration

flow Path

τ1 P1 = {N1, SW1, SW2, SW3, N3}

τ2 P2 = {N2, SW2, SW3, N3}

τ3 P3 = {N2, SW2, SW3, N3}

τ4 P4 = {N2, SW2, SW1, N1}

τ5 P5 = {N3, SW3, SW2, SW1, N1}

Table 3.1: Paths of the considered flows

Let us take for example flows τ1 and τ5; these flows do not share on any switch the

same output port. Therefore, τ5 does not delay the execution of τ1 and vice versa.

Flows postponing the execution of τ1 are τ2 and τ3 and the first common node in

this case is switch SW2. The latest execution time of a packet belonging to τ1 and

activated at time t can be written as follows:

WN3

1,t ≤ 4L+ 4C +

⌊

t

T1

⌋

C1 +

(

1 +

⌊

t+ A1,2

T2

⌋)

C2 +

(

1 +

⌊

t+ A1,3

T3

⌋)

C3

3.3. BASIC COMPUTATION EXAMPLE 39

where

A1,2 = SSW2

max1
+ SSW2

max2
− SSW2

min2
−MSW2

1

= (2C + 2L) + (3C + L)− (C + L)− (2C + 2L)

= 2 · C = 52µs.

In the same manner, A1,3 = 2 · C = 52µs.

Hence, the expression of WN3

1,t becomes:

WN3

1,t ≤ 4 · 3 + 4 · 26 +

⌊

t

1000

⌋

· 26 +

(

1 +

⌊

t+ 52

1000

⌋)

· 2 +

(

1 +

⌊

t+ 52

1000

⌋)

· 26

The next step consists of determining the value of the longest busy period B1.

The computation is recursive. We start by B0
1 = 1, then we use the equation intro-

duced in the previous chapter. We stop computation when the series converges.

B0
1 = 1

B1
1 =

∑

j∈spi
⋃
{i}

Pi

⋂
Pj 6=∅

⌈

B0
1

T

⌉

· Cj =

⌈

1

T1

⌉

· C1 +

⌈

1

T2

⌉

· C2 +

⌈

1

T3

⌉

· C3 = 3C

B2
1 =

⌈

3C

T1

⌉

· C1 +

⌈

3C

T2

⌉

· C2 +

⌈

3C

T3

⌉

· C3 = 3C

The upper bound R1 is expressed below. It is obtained for t = 0 and is equal to

194µs.

R1 = max
0≤t≤3C

{WN3

1,t − t+ C}

Table 3.2 depicts the upper bounds of the end-to-end response times of the five flows

present in the studied configuration. The results were obtained using a tool which is

described in section 3.7 and was developed during this thesis.

40 CHAPTER 3. TA LIMITATIONS FOR FIFO SCHEDULED FLOWS

flow τ1 τ2 τ3 τ4 τ5

Ri(µs) 194 191 191 191 168

Table 3.2: Upper bounds obtained using the Trajectory Approach

3.4 Limitations

When applying the Trajectory Approach on a large industrial configuration, we are

interested in two main aspects. The first one is the precision of the end-to-end re-

sponse time upper bound and the second one is the scalability.

1. Precision: We know that, for certification purposes, the exchanged flows must

respect their deadlines (in other terms, the end-to-end response time should be

smaller than the corresponding deadline). If the upper bound is overestimated

then it is possible that it might exceed the corresponding deadline, while in

reality it is not the case. Thus, to be able to certify the system, it must be

overdimensioned leading to higher costs. Consequently, the precision of the

computed upper bound is a serious matter.

We list briefly why the loss of precision of the computed upper bound can oc-

cur. In section 3.5, a more detailed analysis is carried out.

For FIFO policy and as obvious in the expression of W q
i,t, the pessimism de-

tected in the method is due to:

− Overestimating the delay of junction packets which is expressed by Eq. (3.3).

− Overestimating the delay of packets postponing the studied flow which is

expressed by Eq. (3.5).

3.5. PRECISION 41

A measurement of the pessimism was proposed in [49] for an AFDX (Avionic

Full DupleX) network.

2. Scalability: This parameter is as important as the precision of the upper

bound. In fact, the approach must be applied on large industrial configura-

tions that are composed of more than hundred switches and can hold more

than thousands of exchanged flows. In this case, the computation can become

complex. Yet, the computation time required by this method to determine the

upper bound of every flow must be reasonable.

3.5 Precision

The loss of precision in the computed upper bound is mainly due to a precision loss of

the expression of W q
i,t. As we said before, this can be explained by an overestimation

in two terms of Wi,t expression.

The first term (i.e. Eq. (3.3)) is the delay introduced by junction packets which are

packets counted twice. We recall that a junction packet is a packet that is present

at the end of busy period on node h and at the beginning of the busy period on the

next node (i.e. node h+ 1).

The second term (i.e. Eq. (3.5)) is in fact the delay introduced by packets postponing

the studied flow. In this case, two types of overestimation may occur:

− the first one is because of the summation. In reality, for physical reasons, a

flow that shares the same path does not necessarily postpone the considered

flow. This is called the serialization effect;

− secondly, the value of Ai,j affects the precision of Ri. If overestimated, then

the upper bound might be too. This scenario is identified when flows leaving

42 CHAPTER 3. TA LIMITATIONS FOR FIFO SCHEDULED FLOWS

the path either of the studied flow or another one affecting it.

To illustrate the source of pessimism when using the FIFO serving policy, small con-

figurations are used in the following.

3.5.1 Junction packets

The delay introduced by the junction packets is up to
∑q−1

h=1 maxj∈hpi
⋃

spi{Cj}. It is

clear that if all flows have the same processing time, then this term does not introduce

any pessimism into the upper bound of the end-to-end response time. On the other,

if flows do not have the same processing time, the obtained upper bound might no

longer be precise. For that, let us consider the following scenario (see Fig. 3.2): the

studied flow τ1 crosses the following node sequence P1 = {N2, SW2, SW3, N3}. The

flow τ2 has the same source and destination while flow τ3 is sent from node N1 to

node N3. Flows τ1 and τ3 have the same processing time (i.e. C1 = C3 = 50µs)

while the processing time of τ2 is smaller than that of τ1 (C2 = 25µs). The period

of the flows is equal to 2000µs. The delay incurred by the switches is equal to 3µs.

SW1 SW2 SW3

N1 N2 N3

τ3 τ2τ1

Figure 3.2: Illustrative configuration

The exact worst-case response time is shown in the scheduling diagram (see

Fig. 3.3) and is equal to 3L + C2 + 4C1 = 234µs. On the other hand, the ex-

3.5. PRECISION 43

pression of the latest execution time WN3

1,t is given in Eq. (3.7).

2 1

3

23 1

23

23 1

N2

SW2

SW3

N3

SW1

3N1

t

t

t

t

t

t

1

Figure 3.3: Scheduling diagram of flow τ1

The upper bound of the end-to-end response time can be easily obtained by solv-

ing graphically the equation of R1 = max{WN3

1,t − t+ C1} = 284µs (see Fig. 3.4). It

is equal to the maximum deviation between y1 = WN3

1,t + C1 and y2 = t.

W q
1,t ≤ 3L+ (C1 + C1 + C1) +

⌊

t

T1

⌋

C1 +

(

1 +

⌊

t

T2

⌋)

C2 +

(

1 +

⌊

t+ C1

T3

⌋)

C3

W q
1,t ≤ 3L+ 4C1 + C2 +

⌊

t

T1

⌋

C1 +

⌊

t

T2

⌋

C2 +

⌊

t+ C1

T3

⌋

C3 (3.7)

3.5.2 Serialization

To understand the serialization effect, let us consider the simple example depicted in

Fig. 3.5(a) in which the studied flow τ1 traverses the sequence {N1, SW1, SW2, SW3, N3}

and two flows (τ2 and τ3) follow the same sequence {N2, SW2, SW3, N3}. We con-

sider that all flows have the same processing time C. Fig. 3.5(b) shows the exact

44 CHAPTER 3. TA LIMITATIONS FOR FIFO SCHEDULED FLOWS

Figure 3.4: graphical solution of R1 = max{WN3

1,t − t+ C1}

worst-case response time of packet p belonging to τ1. Packets of flow τ2 and τ3 are

serialized (i.e. processed one after the other) on their source - node N2. The differ-

ence between the arrival time of these packets on node SW2 is at least equal to the

processing time C.

The original calculus considers that both τ2 and τ3 postpone the execution of the

studied flow. However, in order to postpone the execution of packet p, packets of

flow τ2 and τ3 should arrive at the same time as the arrival time of p on node SW2

which is impossible.

In general, the original calculus of the Trajectory Approach considers postponing

individual packets without taking into consideration that packets sharing the same

links are serialized which means that not all of them postpone the execution of the

desired packet. This effect was first presented in [50]. A solution was proposed to

reduce it in [48], in which instead of postponing individually each packet, sequence

of already serialized packets are postponed.

3.5. PRECISION 45

SW1 SW2 SW3

N1 N2 N3

(a) Illustrative configuration

N1

SW1

SW2

SW3

N3

N2

t

t

t

t

t

t

1

1

2

2 1

3

3

2 1 3

2 1 3

(b) Scheduling diagram of flow τi

Figure 3.5: Serialization example

3.5.3 Effect of leaving flows

Let us consider the following scenario:

1. existence of a flow (or set of flows) leaving the path of τi or the path of one of

the flows directly or indirectly affecting the response time of the studied flow.

2. existence of a flow meeting τi for the first time on a node located after that on

which the flow has left.

For instance, let us consider the configuration depicted in Fig. 3.6. The studied flow

is τ1. After flow τ2 leaves the path of τ1 on SW1, another flow (i.e. τ3) join the path

of the studied flow on node SW3.

If this scenario is present in the studied network, then the Trajectory Approach

may introduce an over-estimation into the upper bound.

If the value of Ai,j is overestimated and is higher than the period of the inserted

46 CHAPTER 3. TA LIMITATIONS FOR FIFO SCHEDULED FLOWS

N
4

N
3

N
2

SW
1

SW
2

SW
3

SW
4

N
1

τ3τ1 τ2

Figure 3.6: Illustrative example

flow, then TA counts additional packets which introduces a pessimism into the upper

bound.

We have identified the following scenarios for which the parameter Ai,j might be

overestimated:

1. flows leaving the path of the studied flow.

2. flows leaving the path of a flow (or set of flows) interacting directly with the

studied flow.

3. flows that do not interact directly with the studied flow but leave the path of

a flow (or set of flows) interacting indirectly with the studied flow.

In the following, we give simple examples explaining the effect of each of these flows

on the precision of the computed upper bound.

3.5.3.1 Flows leaving the path of τi

The following configuration (e.g. Fig. 3.7) is used to explain the effect of flows

leaving the trajectory of the studied flow. Nine flows coexist in this configuration:

the studied flow τ1 (blue arrow) follows path P1 = {N1, SW1, SW2, SW3, SW4, N4},

3.5. PRECISION 47

seven flows (green arrow), numbered from τ2 to τ8, have {N1, SW1, SW2, N2} as their

path and flow τ9 (red arrow) visits the following sequence P9 = {N3, SW3, SW4, N4}.

In addition, all flows have the same processing time C. τ9 has a period equal to 4C

and periods of the other flows are considered to be extremely large.

SW
1

SW
2

SW
3

SW
4

N
1

N
2

N
3

N
4

Figure 3.7: Configuration illustrating the effect of flows leaving the path of the

studied flow

The latest execution time WN4

1,t of τ1 becomes:

WN4

1,t ≤ 5(C + L) +

⌊

t

T1

⌋

.C

+
8
∑

j=2

(

1 +

⌊

t

Tj

⌋)

C

+

(

1 +

⌊

t+ 7C

T9

⌋)

C

and R1 = max0≤t≤B1
{WN4

1,t − t+ C1}.

Determining B1 is recursive computation. We start by B0
1 = C for example, then

replace it in the equation of B1 (defined in the previous chapter) and so on until B1

48 CHAPTER 3. TA LIMITATIONS FOR FIFO SCHEDULED FLOWS

converges.

B0
1 = C

B1
1 =

∑

j=1,2...,8

⌈

B0
1

Tj

⌉

Cj +

⌈

B0
1

T9

⌉

C9 =
∑

j=1,2...,8

⌈

1

T

⌉

C +

⌈

1

4C

⌉

C = 9C

B2
1 =

∑

j=1,2...,8

⌈

9C

T

⌉

C +

⌈

9C

4C

⌉

C = 11C

B3
1 =

∑

j=1,2...,8

⌈

11C

T

⌉

C +

⌈

11C

4C

⌉

C = 11C

The upper bound of the end-to-end response time of τ1 is obtained for t = 0 and is

equal to 15C + 5L. The exact worst-case response time (EWCRT) of τ1 is depicted

in Fig. 3.8 and is equal to 14C + 5L.

N1

SW1

SW2

SW3

SW4

N4

N3

t

t

t

t

t

t

t

Ai,j = 7C

Figure 3.8: worst-case scenario of τ1

We can notice that the Trajectory Approach has counted two packets of flow τ9

instead of a single one. This is due to an overestimation of the value of Ai,j. The

3.5. PRECISION 49

Trajectory Approach considers that all packets activated on node N3 within an inter-

val of length Ai,j = 7C postpone the execution of the studied flow. While in reality,

the length of the interval is suppose to be equal to C. We show in section 3.7 that

the error introduced by the Trajectory Approach can be worse and depends on the

number of leaving flows.

3.5.3.2 Flows leaving the path of one (or more) flow(s) interacting di-

rectly with τi

Configuration represented in Fig. 3.9 shows the impact of flows leaving the tra-

jectory of a flow that directly interact with the studied flow. In this configura-

tion, we consider nine flows with the following characteristics: the studied flow τ1

(represented by a blue arrow) follows path P1 = {N5, SW5, SW6, N6}, seven flows

(numbered from τ2 to τ8) represented by a red arrow have {N1, SW1, SW2, N2} as

their path and flow τ9 represented by a green arrow visits the following sequence

{N1, SW1, SW2, SW3, SW4, SW5, SW6, N6}. We consider that all flows have the same

processing time C. In addition, τ9 has a period equal to 4C and periods of the other

flows are considered to be extremely large compared to C.

The latest execution time of τ1 on its last visited node becomes:

WN6

1,t ≤ 3(C + L) +

⌊

t

T1

⌋

.C +

(

1 +

⌊

t+ 7C

T9

⌋)

C

and R1 = max0≤t≤2C{W
N6

1,t − t + C1} The upper bound of the end-to-end response

time is obtained for t = 0 and is equal to 6C +3L. Flows going from node N1 to N2

do not interact directly with the studied flow, yet their effect is present in the value

of A1,9. The exact worst case response time (EWCRT) is equal to 5C + 3L. Once

50 CHAPTER 3. TA LIMITATIONS FOR FIFO SCHEDULED FLOWS

N
6

SW
1

SW
2

SW
3

SW
4

SW
5

SW
6

N
1

N
2

N
3

N
4

N
5

Figure 3.9: Configuration illustrating the effect of flows directly interacting with the

studied flow.

again, the Trajectory Approach has counted a single packet in excess. Similarly, the

value of A1,9 is the reason of the error introduced by the Trajectory Approach.

3.5.3.3 Flows leaving the path of one (or more) flow(s) interacting indi-

rectly with τi

We consider the following configuration (depicted in Fig. 3.10). The studied flow τ1

traverses the node sequence P1 = {N6, SW6, SW7, SW8, N8} and is represented by a

blue arrow. Flow τ2 follows the node sequence P2 = {N4, SW4, SW5, SW6, SW7, N7}

and its period is 2C. Flow τ3, represented by a green arrow, follows the sequence

P3 = {N1, SW1, SW2, SW3, SW4, SW5, N5} and its period is 4C. In addition, four

flows rejoin on node SW2 the path of τ3 and leave it on node SW3. They are

represented by a purple arrow. The periods of the other flows are extremely large.

The latest execution time of τ1 on node N8 is given by the expression (3.8).

WN8

1,t ≤ 4(C + L) +

⌊

t

T1

⌋

.C +

(

1 +

⌊

t+ A1,2

T2

⌋)

C (3.8)

where A1,2 = SSW6

max1
+ SSW6

max2
−MSW6

1 − SSW6

min2
.

3.5. PRECISION 51

N
3

N
2

N
5

N
7

SW
7

N
6

SW
1

SW
2

SW
3

SW
4

SW
5

SW
6

N
1

N
4

N
8

SW
8

Figure 3.10: Configuration illustrating the effect of flows indirectly interacting with

the studied flow

We have SSW6

max1
−MSW6

1 = 0 and SSW6

min2
= 3(C + L).

Determining SSW6

max2
requires computing RSW5

2 .

The latest execution time of τ2 on node SW5 is given by expression (3.9).

W SW5

2,t ≤ 2(C + L) +

⌊

t

T2

⌋

.C +

(

1 +

⌊

t+ 4C

T3

⌋)

C (3.9)

The worst-case response time of τ2 on node SW5 is obtained at t = 0 and is upper

bounded by RSW5

2 = 5C + 2L. The value of SSW6

max2
becomes equal to 5C + 3L. After

replacing SSW6

max2
by its value in Eq. (3.8), the expression of WN8

1,t becomes:

WN8

1,t ≤ 4(C + L) +

⌊

t

T1

⌋

.C +

(

1 +

⌊

t+ 2C

T2

⌋)

C (3.10)

The worst-case response time of τ1 is obtained for t = 0 and is upper bounded by

RN8

1 = 7C + 4L, while the exact worst case response time has a value of 6C + 4L.

Although flows activated onN2 do not interact directly with τ1, yet they have affected

the precision of the upper bound R1.

52 CHAPTER 3. TA LIMITATIONS FOR FIFO SCHEDULED FLOWS

3.6 Scalability

Even if a method offers the exact worst-case response time, yet it is vital that it gives

results in an acceptable time frame when applied on large industrial configurations.

We show on a simple example, the reason for which computing the upper bound of

a flow τi can be complex.

Let us consider the configuration represented in Fig 3.11. The studied flow τ5 is

processed on the node sequence P5 = {N5, SW5, SW6, N6}.

All flows have the same processing time C and the same period T . The expression

of the upper bound R5 on node N6 is given in Eq. (3.11).

N
6

N
4

N
5

SW
1

SW
2

SW
3

SW
4

SW
5

SW
6

N
1

τ4

N
2

N
3

τ5τ3τ1 τ2

Figure 3.11: Representative example

RN6

5 = max
t≥0

{

WN6

5,t − t+ C
}

(3.11)

and

WN6

5,t = 3(L+ C) +

(

1 +

⌊

t

T

⌋)

· C

+

(

1 +

⌊

t+ A4,5

T

⌋)

· C − C (3.12)

To compute W5,t, we need to determine the value of A4,5 which is the sum of the

jitters of τ4 and τ5 on node SW5.

3.7. NUMERICAL EVALUATION ON SAMPLE CONFIGURATIONS 53

A4,5 =
(

SSW5

max4
−MSW5

4

)

+
(

SSW5

max5
− SSW5

min5

)

Since all flows have the same processing time then MSW5

4 = SSW5

min4
where

Sh
minj

(respectively Sh
maxj

) is the minimum (respectively the maximum) time required

by a packet of τj to reach node h.

Computing SSW5

max4
requires determining its response time on the previous node (e.g

node SW4). Similarly, determining the response time of τ4 on SW4 requires calcu-

lating the value of the response time of τ3 on node SW3 and so on. This makes the

computation process recursive.

Moreover, we need to test several instants t to derive the worst-case upper bound.

If flows have large periods then the set of instants to test is large.

3.7 Numerical evaluation on sample configurations

In this section, we first increase the number of serialized flows and evaluate their

impact on the upper bound provided by the Trajectory Approach. At the next step,

the impact of leaving flows on the upper bound offered by the Trajectory Approach

is observed. For this purpose, a Trajectory Approach tool was developed. The pro-

gram takes a text file (.txt) in its input. Each line of the file contains information

about the exchanged flows such as their processing time, their period and the set of

nodes crossed by each flow. The output file contains the end-to-end response time’s

upper bound of each flow and the time required to compute it.

The configurations presented in section 3.5 are used. Small configurations were cho-

sen allowing us to compute the exact worst-case response time. For this purpose, a

tool was also developed; it exhaustively checks all possible flows activation searching

54 CHAPTER 3. TA LIMITATIONS FOR FIFO SCHEDULED FLOWS

for the worst-case scenario experienced by a flow.

We consider that all flows have the same processing time on all nodes and is equal

to 26µs. The switching delay L is equal to 3µs.

3.7.1 Impact of serialization

The configuration under study is depicted in Fig. 3.5(a); it consists of six nodes.

The flow under study is τ1, it follows the sequence {N1, SW1, SW2, SW3, N3}. Sev-

eral flows are being serialized before joining the path of flow τ1. These flows follow

the sequence {N2, SW2, SW3, N3}. Periods of flows are extremely large.

We increase the number of serialized flows and observe their impact on the upper

bound computed using the Trajectory Approach. The exact worst-case response time

is equal to 168µs. Fig. 3.12 shows that the upper bound calculated by the Trajectory

Approach becomes pessimistic as the number of serialized flow increases.

Figure 3.12: Impact of serialization on the Trajectory approach’s upper bound

3.7. NUMERICAL EVALUATION ON SAMPLE CONFIGURATIONS 55

3.7.2 Impact of leaving flows

To evaluate the impact of leaving flows that affect directly or indirectly the response

time of the studied flow, we increase on small configurations the number of these

flows and observe their influence on the Trajectory Approach’s upper bound.

3.7.2.1 Flows leaving the path of the studied flow τi

The configuration represented in Fig. 3.7 is used to study the effect of increas-

ing the number of flows interacting directly with the studied flow. Flows in this

configuration have the same characteristics as listed previously. The flow under

study is τ1 and crosses the sequence {N1, SW1, SW2, SW3, SW4, N4}. An addi-

tional flow τ2 is inserted into the path of τ1 and has a path composed of the

sequence {N3, SW3, SW4, N4}. A set of flows τn (n = 3, 4, ...) traverses nodes

{N1, SW1, SW2, N2}; these flows leave the path of τ1 on node SW2. Fig. 3.13 shows

how this kind of flows affect the tightness of the Trajectory Approach upper bound.

The latest starting time of flow τ1 is:

W 7
1,t ≤ 5(C + L) +

⌊

t

T1

⌋

.C +
8
∑

j=2

(

1 +

⌊

t

Tj

⌋)

C

+

(

1 +

⌊

t+ C.nLF

T9

⌋)

C

nLF corresponds to the number of leaving flows.

The fourth parameter in the latter equation increases when C · nLF is a multiple

of T9 = 4C. When nLF becomes a multiple of 4, the Trajectory Approach’s upper

bound becomes more pessimistic. This fits with results of Fig. 3.13 in which the er-

ror introduced by the Trajectory Approach becomes more important in the interval

56 CHAPTER 3. TA LIMITATIONS FOR FIFO SCHEDULED FLOWS

Figure 3.13: Impact of leaving flows on the Trajectory Approach upper bound

[8, 11] than in [4, 7].

3.7.2.2 Flows leaving the path of a flow interacting directly with τi

The configuration used to evaluate the effect of these flows on the upper bound is

depicted in Fig. 3.9. The studied flow τ1 follows the sequence {N5, SW5, SW6, N6}.

An additional flow exists in the considered configuration and has N1 as source and

N6 as destination. A set of flows are sent from node N1 to node N2. We increase the

number of these flows and observe their impact on the Trajectory Approach upper

bound. In Fig. 3.14, the EWCRT and the Trajectory Approach’s upper bound are

shown. The upper bound computed by the Trajectory Approach increases by step.

In this case, each time the number of leaving flows becomes a multiple of 4C, the

Trajectory Approach’s upper bound becomes more pessimistic.

3.7. NUMERICAL EVALUATION ON SAMPLE CONFIGURATIONS 57

Figure 3.14: Impact of leaving flows on the upper bound of τ1

3.7.2.3 Flows leaving the path of a flow interacting indirectly with τi

The configuration used to evaluate the effect of these flows on the upper bound

is depicted in Fig. 3.10. We are interested in flow τ1 that traverses the node se-

quence P1 = {N6, SW6, SW7, SW8, N8}. Flow τ2 follows the node sequence P2 =

{N4, SW4, SW5, SW6, SW7, N7} and its period is 2C. Flow τ3 follows the sequence

P3 = {N1, SW1, SW2, SW3, SW4, SW5, N5} and its period is 4C. In addition, a set

of flows τn rejoin on node SW2 the path of τ3 and leave it on node SW3. We increase

the number of these flows and compute the end-to-end response time of τ1 using the

Trajectory Approach.

Fig. 3.15 shows both the EWCRT of τ1 and the Trajectory Approach’s upper bound.

As the number of flows of set τn increases, TA upper bound loses its precision.

58 CHAPTER 3. TA LIMITATIONS FOR FIFO SCHEDULED FLOWS

Figure 3.15: Impact of leaving flows on the upper bound of τ1

3.7.3 Scalability

In the following, we study the ability of the approach of offering results in an ac-

ceptable time frame. We start first by comparing the total runtime required by the

Trajectory Approach (TA) and the Enhanced Trajectory Approach (ETA). Then we

show the impact of increasing both the number of flows and the number of switches

on the total runtime.

3.7.3.1 Comparison between TA and ETA

In this analysis, we consider that all flows have the same processing time (C = 26µs)

and the same period (T = 100ms). We assume that the switching delay is equal to

3µs. Moreover, the sources and the destinations are chosen randomly. We increase

3.7. NUMERICAL EVALUATION ON SAMPLE CONFIGURATIONS 59

the number of flows and compare the total runtime required by TA and ETA. Results

are depicted in Fig. 3.16.

Figure 3.16: Total runtime required by TA and ETA

The number of flows varies from 100 to 1000. As the number of flows increase,

both TA and ETA requires more time to compute the upper bounds of all flows.

However, as the number of flows increase, ETA becomes far more slower than TA.

3.7.3.2 TA Average runtime

We investigate the impact of both increasing the number of switches and the num-

ber of flows on the total runtime required to compute the upper bounds of all flows

present in the corresponding configuration.

The number of flows varies from 100 to 1000 while the number of switches varies from

10 to 100. For a fix number of flows and switches, 50 configurations are generated

60 CHAPTER 3. TA LIMITATIONS FOR FIFO SCHEDULED FLOWS

and for each configuration, the sources and the destinations are randomly chosen. We

consider that the packet processing times are equal to 1µs and the periods are equal

to 1000µs. We assume that the switching delay is considered to be null. Fig. 3.17

shows the average total runtime. As the number of switches and number of flows

increase, the average runtime becomes more important.

Figure 3.17: Average runtime in function of the number of switches and flows

3.8 Conclusion

In this chapter, we have investigated the limitations of applying the Trajectory Ap-

proach for FIFO scheduled flows. The first one is the precision of the upper bound.

We have identified the flow’s configurations that introduce pessimism into the com-

3.8. CONCLUSION 61

puted upper bound. The second one is the scalability of the approach. We have

shown that the Enhanced Trajectory Approach requires more time than the Trajec-

tory Approach to analyze the same configuration. As much as the precision of the

upper bound is important, the scalability of the method is too. For that, in the

next chapter, we compute an upper bound of the end-to-end response time but in a

reduced time frame.

62 CHAPTER 3. TA LIMITATIONS FOR FIFO SCHEDULED FLOWS

Chapter 4

Scalable Trajectory Approach

Contents

4.1 Introduction . 64

4.2 Scalable Trajectory Approach 64

4.2.1 Basic computation example 68

4.2.2 Reducing the set of instants to test 70

4.2.3 All flows have the same processing time and the same period 76

4.3 Results on industrial configurations 82

4.3.1 Comparison between ETA and STA results 83

4.3.2 Effect of the variation of the processing time on the upper

bound . 87

4.3.3 Effect of the variation of the period on the runtime 88

4.3.4 Flows have different processing times and periods 89

4.4 Conclusion . 91

63

64 CHAPTER 4. SCALABLE TRAJECTORY APPROACH

4.1 Introduction

Since we apply the Trajectory Approach on large industrial configuration in which

the amount of interacting flows can be huge, the approach as originally developed fails

in offering results in an acceptable time frame. As stated in the previous chapter, the

main reasons for which computing the upper bound can be complex are the recursive

and the iterative process. We are interested in developing a scalable version of the

Trajectory Approach that offers a trade off between the precision of the upper bound

and the total time required to calculate the upper bound of each flow in the studied

network. In this chapter, a solution allowing to get rid of the recursive process is first

introduced in section 4.2. Then, we prove in section 4.2.2 that, for flows verifying

specific conditions, the set of instants to be tested can be reduced to a single time

instant. In section 4.2.3, the case for which all flows have the same processing time

and the same period is discussed. Finally, in section 4.3, we compare results obtained

using our proposition and the Enhanced Trajectory Approach and we show that our

proposition allows obtaining results on large industrial networks in an acceptable

time frame. A conclusion is presented in section 4.4.

4.2 Scalable Trajectory Approach

The recursive process is inducted by flows delaying the studied flow on its first crossed

switch. To reduce the computational runtime, we propose at a first step to simplify

the expression of the upper bound established using the Trajectory Approach. This

can be achieved by eliminating the terms incurring the recursive process.

We consider a sporadic flow τi and SWfirsti is the first switch crossed by the studied

flow τi. Let τj be a flow activated on the source of the studied flow and τk a flow

4.2. SCALABLE TRAJECTORY APPROACH 65

meeting the studied one for the first time on SWfirsti . Flow postponing τi on a

node other than the source and SWfirsti is denoted τk. τj, τk, and τm are depicted

in Fig. 4.1.

SWfirst_i

τj τmτi

Source of τi

τk

Figure 4.1: Notation illustration

The upper bound Ri as defined by the Enhanced Trajectory Approach (ETA)

can be written as follows:

Ri = (|Pi| − 1)L+
∑

h∈Pi
h 6=lasti

max
{j}
h∈Pj

{Cj}

 (4.1)

+ max
t≥0

∑

i
⋃

j
firstj=firsti

(

1 +

⌊

t

Tj

⌋)

· Cj (4.2)

+
∑

k
firsti,k=SWfirsti

(

1 +

⌊

t+ Ai,k

Tk

⌋)

· Ck (4.3)

+
∑

m
firstm 6=firsti

firsti,m 6=SWfirsti

(

1 +

⌊

t+ Ai,m

Tm

⌋)

· Cm (4.4)

−∆
SWfirsti

i −
∑

h
h 6={firsti,SWfirsti

}

∆h
i − t

(4.5)

66 CHAPTER 4. SCALABLE TRAJECTORY APPROACH

Term (4.2) is the delay incurred by flows activated on the source (denoted firsti) of

the studied flow.

Term (4.3) is the delay of flows postponing the studied flow on its first crossed switch

denoted SWfirsti .

Term (4.4) represents the delay introduced by flows postponing τi on nodes other

than its source and the first switch.

where ∆h
i is the maximum between zero and lhx − lh0 on node h, since there is only

one other input other than IP h
0 (the input of the studied flow on the corresponding

switch). We recall that l
SWfirsti
x is the delay incurred by flows postponing the studied

flow on the first switch. l
SWfirsti

0 is the delay of flows competing with the studied flow

over the resources on the output port of nodes firsti and SWfirsti . The expressions

of lhx and lh0 , for h = SWfirsti , are given respectively in Eq. (4.6) and Eq. (4.7).

l
SWfirsti
x = Eq.(4.3)− max

IP
SWfirsti
x

{Ck} (4.6)

l
SWfirsti

0 =
∑

i
⋃

j
firstj=firsti

lasti,j 6=SWfirsti

(

1 +

⌊

t

Tj

⌋)

· Cj − min
IP

SWfirsti
0

{Cj}

(4.7)

In fact, the recursive process is introduced by flows delaying the studied flow on the

first switch. It is presented by the term (4.3). The idea consists of eliminating this

term (4.3). Since it reappears in ∆ on the first crossed switch, we have to study the

cases for which the value of Delta on this switch is positive and is null.

If Delta is positive this means that Eq. (4.6) is greater than Eq. (4.7). By re-

placing the value of Delta in Eq. (4.5), we eliminate the effect of flows creating the

recusive process. In fact, Eq. (4.3) can be replaced by l0 plus the maximum process-

4.2. SCALABLE TRAJECTORY APPROACH 67

ing time of a packet that meet the studied flow for the first time on SWfirsti .

If Delta on SWfirsti is null then lx is smaller than l0 which means that Eq. (4.3)

is smaller than l0 on this switch plus the maximum processing time of a packet that

meet the studied flow for the first time on SWfirsti .

Now, by considering that the sum of Deltas in Eq. (4.5) is null, an upper bound

of Ri is obtained (see Eq. (4.8)). In fact, such hypothesis allows us to determine

an upper bound of Ri without the need of computing the value of Ai,k of flows

postponing τi on the first switch SWfirsti . Hence, the runtime required to determine

the upper bound of a flow is reduced.

Finally, the expression of Ri becomes:

Ri ≤ (|Pi| − 1)L+
∑

h∈Pi
h 6=lasti

max
j

h∈Pj

{Cj}

+ max
h=SWfirsti

{Ck} − min
h=SWfirsti

{Cj}

+ 2 ·
∑

i
⋃

j
firstj=firsti

lasti,j 6=SWfirsti

Cj +
∑

j
firstj=firsti

lasti,j=SWfirsti

Cj +
∑

m
firstm 6=firsti

firsti,m 6=SWfirsti

Cm

+max
t≥0

2 ·
∑

i
⋃

j
firstj=firsti

lasti,j 6=SWfirsti

⌊

t

Tj

⌋

· Cj +
∑

j
firstj=firsti

lasti,j=SWfirsti

⌊

t

Tj

⌋

· Cj

+
∑

m
firstm 6=firsti

firsti,m 6=SWfirsti

⌊

t+ Ai,m

Tm

⌋

· Cm − t

(4.8)

We recall that Ai,m =
(

S
SWfirsti
maxi −M

SWfirsti

i

)

+
(

S
SWfirsti
maxm − S

SWfirsti

minm

)

. It is

computed on the first common node between the paths of flows τm and τi.

68 CHAPTER 4. SCALABLE TRAJECTORY APPROACH

The flow τm postpone the execution of the studied flow on any node except its source

and the first switch. Hence, the source of τm when the first common node is not the

last switch crossed by τi is at one hop of the common node. In order to compute

Smaxm
, we simply need to determine the flow response time on its source +L.

Computing Smaxi
requires determining the response time of τi on the previous node

which in its turn depends on its response time on the first switch SWfirsti . Based

on Eq. (4.8), Ri on SWfirsti can be computed without the need of determining the

value of Ai,k of flows postponing the studied flow on this node. Hence, computing

Ri requires determining less parameters.

4.2.1 Basic computation example

Let us consider the example illustrated in the Figure. The characteristics of the flow

exchanged across the network are presented in Table 4.1. We show the steps used to

compute an upper bound of the end-to-end response time of flow τ1. Let us assume

that the switching delay L is null.

SW
1

SW
2

SW
3

SW
4

SW
5

SW
6

N
1

τ1, τ2

N
2

N
3

N
4

N
5

N
6

τ3τ4τ5, τ6

Figure 4.2: Illustrative example

Let us first determine the value of A1,3 on the first common node between these

flows and which is SW3. A1,3 is equal to the sum of the jitters of τ1 and τ3. The

4.2. SCALABLE TRAJECTORY APPROACH 69

flow C T Path

1 10 100 {N4, SW4, SW5, SW6, N6}

2 10 100 {N4, SW4, SW5, SW6, N6}

3 20 50 {N5, SW5, SW6, N6}

4 40 200 {N2, SW2, SW3, SW4, SW5, SW6, N6}

5 10 200 {N1, SW1, SW2, SW3, N3}

6 10 200 {N1, SW1, SW2, SW3, N3}

Table 4.1: Characteristic of the flows

jitter of τ3 is equal to null because the minimum and the maximum arrival time of

τ3 on SW3 are identical (Smax3
= Smin3

= C3 + L).

The minimum arrival time of τ1 denoted Smin1
on node SW1 is equal to 2(C1 + L),

while the maximum arrival time Smax1
is equal to RS3

1 +L. The expression of R1 on

node SW3 is given as follows:

RSW3

1 ≤ (C1 + C4 + C4 + C4) + (C4 − C1) + 2(C1 + C2)

+ max
t≥0

{

2

(⌊

t

T1

⌋

C1 +

⌊

t

T2

⌋

C2

)

− t

}

RSW3

1 ≤ 4C4 + 2(C1 + C2) + max
t≥0

{

4

⌊

t

100

⌋

C1 − t

}

The maximum is obtained for t = 0, RSW3

1 is equal to 170 and A1,3 = 150.

Using Eq. (4.8), the upper bound of the end-to-end response time of τ1 is equal to:

R1 ≤ 4C4 + 2(C1 + C2) + max
t≥0

{

2

(⌊

t

100

⌋

C1 +

⌊

t

100

⌋

C2

)

+

⌊

t+ 150

50

⌋

C3 − t

}

70 CHAPTER 4. SCALABLE TRAJECTORY APPROACH

As defined in [42], the set of instants to test is such that t ≤ Bslow
1 .

Bslow
1 is the largest busy period and is defined by Eq. (4.9).

Bslow
i =

∑

i
⋃

j
Pi

⋂
Pj 6=∅

⌈

Bslow
1

Tj

⌉

Cj (4.9)

Bslow
i =

⌈

Bslow
1

T1

⌉

C1 +

⌈

Bslow
1

T2

⌉

C2 +

⌈

Bslow
1

T3

⌉

C3 +

⌈

Bslow
1

T4

⌉

C4

The next step consists of determining the value of Bslow
i which is a numerical sequence

that converge towards a constant value. Let us start with B0
i = 1.

B1
1 = 2

⌈

B0
1

100

⌉

C1 +

⌈

B0
1

50

⌉

C3 +

⌈

B0
1

200

⌉

C4

= 2

⌈

1

100

⌉

C1 +

⌈

1

50

⌉

C3 +

⌈

1

200

⌉

C4 = 2C1 + C3 + C4 = 80

B2
1 = 2

⌈

B1
1

100

⌉

C1 +

⌈

B1
1

50

⌉

C3 +

⌈

B1
1

200

⌉

C4

= 2

⌈

80

100

⌉

C1 +

⌈

80

50

⌉

C3 +

⌈

80

200

⌉

C4 = 2C1 + 2C3 + C4 = 100

B3
1 = 2

⌈

100

100

⌉

C1 +

⌈

100

50

⌉

C3 +

⌈

100

200

⌉

C4 = 2C1 + 2C3 + C4 = 100

Hence, Bslow
1 is equal to 100. Computing the upper bound requires testing every

instant between 0 and Bslow
1 . In this case, R1 is obtained for t = 0 and is equal to

200

4.2.2 Reducing the set of instants to test

In the following, we prove that for flows verifying a specific condition determining

the upper bound of the end-to-end response time does not require testing all time

4.2. SCALABLE TRAJECTORY APPROACH 71

instants. It suffices to check the instant t = 0. In other words, the maximum of the

Eq.(4.8) is supposed to be reached for the instant t = 0.

Proof. Let f(t) be the function declared below. We need to determine its maximum.

f(t) = 2 ·
∑

i
⋃

j
firstj=firsti

lasti,j 6=SWfirsti

⌊

t

Tj

⌋

Cj +
∑

j
firstj=firsti

lasti,j=SWfirsti

⌊

t

Tj

⌋

Cj +
∑

m
firstm 6=firsti

firsti,m 6=SWfirsti

⌊

t+ Ai,m

Tm

⌋

Cm − t

We note Tmin (respectively Tmax) the minimum (respectively maximum) period

among flows postponing the studied flow.

We have f(t) ≤ g(t) for every instant t such that g(t) is giving as below.

g(t) = 2
∑

i
⋃

j
firstj=firsti

lasti,j 6=SWfirsti

⌊

t

Tmin

⌋

Cj +
∑

j
firstj=firsti

lasti,j=SWfirsti

⌊

t

Tmin

⌋

Cj +
∑

m
firstm 6=firsti

firsti,m 6=SWfirsti

⌊

t+ Ai,m

Tmin

⌋

Cm − t

Next, we determine the maximum of g(t). For that, we can test only the instants

t = 0, KTmin, and KTmin − Ai,m with K ∈ N
∗

− The expression of g(KTmin) is giving below.

g(KTmin) = 2
∑

i
⋃

j
firstj=firsti

lasti,j 6=SWfirsti

⌊

KTmin

Tmin

⌋

Cj +
∑

j
firstj=firsti

lasti,j=SWfirsti

⌊

KTmin

Tmin

⌋

Cj

+
∑

m
firstm 6=firsti

firsti,m 6=SWfirsti

⌊

KTmin + Ai,m

Tmin

⌋

Cm −KTmin

72 CHAPTER 4. SCALABLE TRAJECTORY APPROACH

g(KTmin) = K

2
∑

i
⋃

j
firstj=firsti

lasti,j 6=SWfirsti

Cj +
∑

j
firstj=firsti

lasti,j=SWfirsti

Cj +
∑

m
firstm 6=firsti

firsti,m 6=SWfirsti

Cm − Tmin

+
∑

m
firstm 6=firsti

firsti,m 6=SWfirsti

⌊

Ai,m

Tm

⌋

· Cm

Moreover, TA considers that flows postponing the studied one are all processed

on the slowest node (denoted slow). The utilization factor Uslow on this node

is given in Eq. (4.10) and is less than 1.

Uslow =
∑

i∪j
Pi∩Pj 6=∅

Cj

Tj

≥
∑

i∪j
Pi∩Pj 6=∅

Cj

Tmax

(4.10)

If the sum of the processing times of flows delaying the studied flow on its first

crossed switch is greater or equal to the total processing time of those acti-

vated on the same source and sharing the same output link with τi on SWfirsti

(see Eq. (4.11)), then the factor multiplied by K present in the expression of

g(KTmin) is smaller or equal to Uslow · Tmax − Tmin.

∑

k
firsti,k=SWfirsti

Ck ≥
∑

j
firstj=firsti

lasti,j 6=SWfirsti

Cj (4.11)

4.2. SCALABLE TRAJECTORY APPROACH 73

Using Eq. (4.10) and Eq. (4.11), g(KTmin) can be bounded as follows.

g(KTmin) ≤ K (Uslow · Tmax − Tmin) +
∑

m
firstm 6=firsti

firsti,m 6=SWfirsti

⌊

Ai,m

Tmin

⌋

· Cm

≤ K · Tmax

(

Uslow −
Tmin

Tmax

)

+
∑

m
firstm 6=firsti

firsti,m 6=SWfirsti

⌊

Ai,m

Tmin

⌋

· Cm

g((KTmin) is negative if Eq. (4.12) and Eq. (4.13)are verified.

Uslow −
Tmin

Tmax

< 0 (4.12)

Ai,m < Tmin (4.13)

− The expression of g(KTmin − Ai,m) can be written as follows.

g(KTmin − Ai,m) = 2
∑

i
⋃

j
firstj=firsti

lasti,j 6=SWfirsti

⌊

KTmin − Ai,m

Tmin

⌋

Cj

+
∑

j
firstj=firsti

lasti,j=SWfirsti

⌊

KTmin − Ai,m

Tmin

⌋

Cj

+
∑

m
firstm 6=firsti

firsti,m 6=SWfirsti

⌊

KTmin

Tmin

⌋

Cm − (KTmin − Ai,m)

74 CHAPTER 4. SCALABLE TRAJECTORY APPROACH

= 2
∑

i
⋃

j
firstj=firsti

lasti,j 6=SWfirsti

⌊

K −
Ai,m

Tmin

⌋

Cj +
∑

j
firstj=firsti

lasti,j=SWfirsti

⌊

K −
Ai,m

Tmin

⌋

Cj

+
∑

m
firstm 6=firsti

firsti,m 6=SWfirsti

⌊

KTmin

Tmin

⌋

Cm − (KTmin − Ai,m)

= K

2
∑

i
⋃

j
firstj=firsti

lasti,j 6=SWfirsti

Cj +
∑

j
firstj=firsti

lasti,j=SWfirsti

Cj+

∑

m
firstm 6=firsti

firsti,m 6=SWfirsti

Cm − Tmin

+ 2
∑

i
⋃

j
firstj=firsti

lasti,j 6=SWfirsti

⌊

−Ai,m

Tmin

⌋

Cj +
∑

j
firstj=firsti

lasti,j=SWfirsti

⌊

−Ai,m

Tmin

⌋

Cj + Ai,m

Similar to g(KTmin), the expression of g(KTmin − Ai,m) can be bounded as

follows.

g(KTmin − Ai,m) ≤ K (Uslow · Tmax − Tmin) + Ai,m

+ 2
∑

i
⋃

j
firstj=firsti

lasti,j 6=SWfirsti

⌊

−Ai,m

Tmin

⌋

Cj +
∑

j
firstj=firsti

lasti,j=SWfirsti

⌊

−Ai,m

Tmin

⌋

Cj

Furthermore, we have shown that Ai,m should be less than Tmin and Uslow ·

Tmax − Tmin should be negative. Hence, we have the following:

4.2. SCALABLE TRAJECTORY APPROACH 75

g(KTmin − Ai,m) ≤ K · (Uslow · Tmax − Tmin) + Ai,m

≤ (Uslow · Tmax − Tmin) + Ai,m

It is clear that g(KTmin−Ai,m) is negative if Ai,m is less than Tmin−Uslow ·Tmax.

− The value of g(0)

g(0) =
∑

m
firstm 6=firsti

firsti,m 6=SWfirsti

⌊

Ai,m

Tmin

⌋

· Cm

We know that Ai,m is less than Tmin − Uslow · Tmax. This means that the value

of g(0) is null.

To conclude, the function f(t) is less or equal to zero and f(0) = 0. Hence, under

these conditions, the maximum of f(t) is reached for t = 0.

Property 4.1. Let τm be the set of flows delaying the studied flow denoted τi after

its first crossed switch.

If 1) the sum of the processing times of flows delaying the studied flow on its first

crossed switch is greater or equal to the total processing time of those activated on

the same source and sharing the same output link with τi on SWfirsti and, 2) Ai,m

is less than Tmin−Uslow ·Tmax, then an upper bound of the end-to-end response time

is equal to:

Ri ≤ (|Pi| − 1)L+
∑

h∈Pi
h 6=lasti

(

max
j;h∈Pj

{Cj}

)

+ max
h=SWfirsti

{Ck} − min
h=SWfirsti

{Cj}

+ 2
∑

i
⋃

j
firstj=firsti

lasti,j 6=SWfirsti

Cj +
∑

j
firstj=firsti

lasti,j=SWfirsti

Cj +
∑

m
firstm 6=firsti

firsti,m 6=SWfirsti

Cm

76 CHAPTER 4. SCALABLE TRAJECTORY APPROACH

4.2.3 All flows have the same processing time and the same

period

In this section, we consider that flows have all the same processing time and the

same period. Let C be the processing time and T the period.

We first prove that, under these hypothesis, the value of Ai,m is smaller than Uslow

times the period. Then, we show that, for flows respecting a specific utilization fac-

tor’s condition, an upper bound of the end-to-end response time can be easily derived.

4.2.3.1 Expression of Ai,m

The expression of Ai,m differs whether τm (the flow postponing the studied flow after

the first crossed switch) delay τi on the last switch or on another one.

For simplicity sake, we note first SW the first switch, SW + l the switch positioned

at l hops from SW and τml
are flows postponing τi on SW + l (refer to Fig. 4.3).

Let last SW be the last switch crossed by τi.

Figure 4.3: Representative figure

We start by determining the expression of Ai,m on node SW+1, SW+2, ..., SW+l

then on the last switch.

On node SW + 1, Ai,m1
is equal to the sum of jitters of flow τi and τm1

. We recall

4.2. SCALABLE TRAJECTORY APPROACH 77

that the jitter of a flow is equal to the maximum arrival time Smax minus the min-

imum arrival time Smin. Hence, Smax of τm1
is simply equal to its response time on

the source +L. The response time is equal to the number of flows activated on the

source of τm1 times the processing time C. Furthermore, Smin can be computed by

considering that there are no other flows in the network. Thus, Smin of τm1
is equal

to C + L. Similarly, Smin of τi is equal to 2C + 2L. To compute Smaxi
on SW + 1,

we need to determine its response time on the previous switch (i.e first SW). It is

given in the equation below and Ai,m1
is given in Eq. (4.16).

SSW+1
maxi

= Rfirst SW
i + L

= 2 ·
∑

i
⋃

j
firstj=firsti

lasti,j 6=SWfirsti

C +
∑

j
firstj=firsti

lasti,j=SWfirsti

C + (C + L) + L

+max
t≥0

2 ·
∑

i
⋃

j
firstj=firsti

lasti,j 6=SWfirsti

⌊

t

T

⌋

· C +
∑

j
firstj=firsti

lasti,j=SWfirsti

⌊

t

T

⌋

· C − t

The maximum of the previous formula is obtained for t = 0.

Proof. Let us consider the following function f(t).

f(t) = 2 ·
∑

i
⋃

j
firstj=firsti

lasti,j 6=SWfirsti

⌊

t

T

⌋

· C +
∑

j
firstj=firsti

lasti,j=SWfirsti

⌊

t

T

⌋

· C − t

78 CHAPTER 4. SCALABLE TRAJECTORY APPROACH

To obtain the maximum, we need to test the instants t = KT .

f(KT) = K

2 ·
∑

i
⋃

j
firstj=firsti

lasti,j 6=SWfirsti

C +
∑

j
firstj=firsti

lasti,j=SWfirsti

C − T

On the other hand, the Trajectory Approach considers that all flows postponing

the studied flow are processed on the slowest node of the path of the studied flow.

Hence, To be able to apply the approach, the utilization factor on this node denoted

Uslow should be less than one and its expression is given (4.14).

Uslow =
∑

i
⋃

j
firstj=firsti

C

T
+

∑

k;firsti,k=SWfirsti

C

T

∑

m;firstm 6=firsti
firsti,m 6=SWfirsti

C

T
(4.14)

If the number of flows postponing the studied flow on SWfirsti is greater than the

number of flows competing with the studied flow over resources on its source and

SWfirsti (see (4.15)), then f(KT) is smaller or equal to K ·T (Uslow−1). This means

that the maximum of the previously defined function f(t) is reached for K = 0.

∑

k
firsti,k=SWfirsti

C ≥
∑

i
⋃

j
firstj=firsti

lasti,j 6=SWfirsti

C (4.15)

The expressions of Smaxi
and Ai,m1

become:

SSW+1
maxi

= 2 ·
∑

i
⋃

j
firstj=firsti

lasti,j 6=SWfirsti

C +
∑

j
firstj=firsti

lasti,j=SWfirsti

C + (C + L) + L

4.2. SCALABLE TRAJECTORY APPROACH 79

Ai,m1
=
(

SSW+1
maxi

− SSW+1
mini

)

+
(

SSW+1
maxm1

− SSW+1
minm1

)

=

2 ·
∑

i
⋃

j
firstj=firsti

lasti,j 6=SWfirsti

C +
∑

j
firstj=firsti

lasti,j=SWfirsti

C − C

+

(

∑

m1

C − C

)

Ai,m1
= 2

∑

i
⋃

j
firstj=firsti

lasti,j 6=SWfirsti

C +
∑

j
firstj=firsti

lasti,j=SWfirsti

C +
∑

m1

C − 2C (4.16)

Since Ai,m1
is less than Uslow · T then it is also less than T on SW + 1.

Similarly, the expression of Ai,m2
on node SW + 2 is given in Eq.(4.17) and it is

smaller than Uslow · T .

Ai,m2
= 2

∑

i
⋃

j
firstj=firsti

lasti,j 6=SWfirsti

C +
∑

j
firstj=firsti

lasti,j=SWfirsti

C +
∑

m1

C

+
∑

m2

C − 2C (4.17)

Moreover, the expression of Ai,ml
on node SW + l is given in Eq. (4.18). Based on

Eq.(4.15), it is clear that Ai,ml
is less than Uslow · T .

Ai,ml
= 2

∑

i
⋃

j
firstj=firsti

lasti,j 6=SWfirsti

C +
∑

j
firstj=firsti

lasti,j=SWfirsti

C +
∑

m1

C

+
∑

m2

C + ...+
∑

ml

C − 2C (4.18)

80 CHAPTER 4. SCALABLE TRAJECTORY APPROACH

It is clear that for every flow τmx
(x = [1, 2, ..., l]) meeting τi for the first time on a

switch between the first and the last switch crossed by τi, the sum of jitters Ai,mx
is

always less than Uslow · T .

We need to determine now the expression of Smax−Smin of both the studied flow

and the flow τm postponing it on the last switch. The expression of Smax − Smin of

τi is simple to obtain; it is equal to:

Slast SW
maxi

− Slast SW
mini

= 2
∑

i
⋃

j
firstj=firsti

lasti,j 6=SWfirsti

C +
∑

j
firstj=firsti

lasti,j=SWfirsti

C

+
∑

m1

C +
∑

m2

C + ...+
∑

ml

C − C

The reasoning on node last SW is slightly different when it comes to computing the

maximum arrival time Smax of the flow τm. In fact, before reaching the last switch,

this flow might have crossed several switches and might have been delayed by several

other flows. However, the value of Smax is still equal to R
prem(last SW)
m its response on

the previous node +L. The same logic used to compute Ri on node SW + l can be

used to determine R
prem(last SW)
m which is equal to the sum of the delay introduced

by:

− flows activated on the source of τm multiplied by 2 such that the last common

node between these flows and τm is not the source of τm.

− flows activated on the source of τm such that the last common node between

these flows and τm is the source of τm.

− flows postponing τm on a switch different than the first switch crossed by τm.

By analogy, the expression of Smaxm
− Sminm

on last SW is similar to that of

Smaxi
− Smini

on this node.

4.2. SCALABLE TRAJECTORY APPROACH 81

TA considers that all flows postponing τi are processed on the slowest node. Let us

assume that it is last SW . On the other hand, flows postponing τm are also supposed

to be processed on the slowest node; let it be also last SW . And since the utilization

factor on the latter node should be less than one, therefore Ai,m which includes the

delay introduced by flows τi, τm and those postponing them should also be less than

or equal to the corresponding utilization factor on the slowest node multiplied by

the period.

Property 4.2. When all flows have the same processing time C and the same

period T , the value of Ai,m of flows postponing the studied flow after the first

crossed switch is smaller than Uslow · T .

4.2.3.2 End-to-end response time

In section 4.2.2, an upper bound of the end-to-end response time was derived for

flows verifying that the terms Ai,m is smaller than T (1−Uslow). We recall that index

m refers to flows meeting the studied for the first time on a node different than

the source and the first switch. The corresponding upper bound can be written as

follows.

Ri ≤ (|Pi| − 1) (L+ C)

+ 2
∑

i
⋃

j
firstj=firsti

lasti,j 6=SWfirsti

C +
∑

j
firstj=firsti

lasti,j=SWfirsti

C +
∑

m
firstm 6=firsti

firsti,m 6=SWfirsti

C

On the other hand, we have shown that when all flows have the same processing time

and the same period, the terms Ai,m becomes less than Uslow · T .

Hence, to be able to use the result obtained in section 4.2.2, the condition presenented

82 CHAPTER 4. SCALABLE TRAJECTORY APPROACH

in Eq. (4.19) should be respected. In other words, the utilization factor on the slowest

node should be less than 1/2.

Ai,m ≤ Uslow · T ≤ T (1− Uslow) (4.19)

Property 4.3. When all flows have the same processing time C and the same

period T , if the utilization factor on the slowest node is smaller than 1/2, then

an upper bound of the end-to-end response time is equal to :

Ri ≤ (|Pi| − 1) (L+ C)

+ 2
∑

i
⋃

j
firstj=firsti

lasti,j 6=SWfirsti

C +
∑

j
firstj=firsti

lasti,j=SWfirsti

C +
∑

m
firstm 6=firsti

firsti,m 6=SWfirsti

C

4.3 Results on industrial configurations

In this section, we compare the Scalable Trajectory Approach (STA) and the En-

hanced Trajectory Approach (ETA) in terms of pessimism of the upper bounds and

total computation runtime. We have also studied the effect of the variation of the

processing time on the upper bound and the effect of the variation of the period on

the runtime.

For this purpose, we have developed three programs under C++ that computes the

upper bounds using:

− the original version of the Trajectory Approach

− the Enhanced version of the Trajectory Approach

− the Scalable Trajectory Approach.

4.3. RESULTS ON INDUSTRIAL CONFIGURATIONS 83

Each program takes a text file (.txt) in its input. Each line of the file contains

information about the exchanged flows such as their processing time, their period

and the set of nodes crossed by each flow. The output file contains the end-to-end

response time’s upper bound of each flow and the time required to compute it.

The program using STA proceeds as follows: for flows verifying the conditions listed

above, STA is directly applied otherwise ETA is used to compute the upper bound.

4.3.1 Comparison between ETA and STA results

We first apply only ETA then STA on a network composed of 10 switches. We are

interested in comparing the obtained results using these two approaches in terms

of precision of the upper bounds and the total runtime. One thousand flows are

exchanged across the chosen network. The sources and destinations were chosen

randomly. All flows have the same processing time which is equal to 26µs and the

same period (T = 100ms). In addition, the switching delay is known and is equal to

3µs. We use the developed programs to analyze this network; the upper bounds are

presented in Fig. 4.4. We state that the obtained results are ordered in an increasing

order.

When using the STA program, we notice that on 71.9% of the exchanged flows sat-

isfies the previously described condition and thus the upper bounds of these flows

are obtained instantaneously. For the rest of the flows (i.e. 28.2%), the condition

is not satisfied and their upper bounds are obtained using ETA. Moreover, for flows

satisfying the condition, the average error between the bound obtained using STA

and that using ETA is 1.75%. In addition, when using the STA program, the results

show that, for 52% of the exchanged flows, the bounds obtained using STA are equal

to the bounds obtained using ETA.

84 CHAPTER 4. SCALABLE TRAJECTORY APPROACH

Nevertheless, in order to compute the upper bounds of the one thousand flows,

ETA program puts four days whiles STA program requires only 15 seconds.

Figure 4.4: Comparison between ETA and STA results

For more realistic analysis, we have also applied the proposed approach on a large

network composed of one hundred switches. Flows have the same characteristics

as listed before. The upper bounds when the number of flows exchanged is equal

1000 and 5000 flows are respectively illustrated in Fig. 4.5(a) and Fig 4.5(b). STA

requires about 45 minutes to determine the upper bounds for the one thousand flows.

However, it takes 11 hours to compute the upper bounds of the 5000 flows.

4.3. RESULTS ON INDUSTRIAL CONFIGURATIONS 85

(a) number of flows=1000

(b) number of flows=5000

Figure 4.5: Upper bounds determined by STA for a network composed of (a) 1000

and (b) 5000 flows

86 CHAPTER 4. SCALABLE TRAJECTORY APPROACH

We have also studied the three methods (the Trajectory, the Enhanced Trajec-

tory and the scalable Trajectory Approaches) in terms of total runtime as shown in

Fig 4.6. In this analysis, the network is composed of ten switches and the number of

flows varies from 100 to 1000. In each scenario, the sources and the destinations are

chosen randomly. The processing time is equal to 1µs and the flow’s period is equal

to 1ms. In addition, the switching delay is considered to be null.

As the number of flows increases, the three methods requires additional time to upper

bound all flows. However, the total runtime required by ETA grows exponentially,

while that required by TA grows linearly. Fig 4.6 shows a zoomed view of the results

obtained using STA. In this case, the total runtime increases slowly. For even a

configuration composed of one thousand flows, STA puts only 5 seconds to compute

the upper bounds of all flows.

Figure 4.6: Total runtime using STA, ETA and TA

4.3. RESULTS ON INDUSTRIAL CONFIGURATIONS 87

Figure 4.7: Total runtime required to analyze a network composed of 10 switches

using STA

4.3.2 Effect of the variation of the processing time on the

upper bound

One thousand flows are exchanged across the studied network which is composed

of one hundred identical switches. Their sources and the destinations are chosen

randomly.

For this simulation, we consider that all flows have the same period and is fixed to

100 msec. In addition, all flows have the same processing time. Then, the processing

time is varied from C = 30µsec to 60µsec. We are interested in studying the effect of

the processing time changes on the computed upper bound. The results presented in

Fig. 4.8 shows that, for the same flow, the upper bound increases with the processing

time.

88 CHAPTER 4. SCALABLE TRAJECTORY APPROACH

Figure 4.8: Variation of the upper bound with the processing time.

4.3.3 Effect of the variation of the period on the runtime

The same configuration described in the previous section is used to study the effect

of the period on the total runtime. In this analysis, the processing time of the flows is

fixed to 26µseconds. We increase the period of the flows starting from 30 milliseconds

until reaching 100milliseconds.

Results given in Fig. 4.9 show the impact of the flow’s period on the total runtime.

For a period varying from T = 30ms to 80ms, the time required to compute the

upper bounds of the one thousand flows is approximately the same and is around 2

seconds. When we increase the flow’s period to 90ms, the runtime becomes bigger

and is equal to 30 minutes. For a period up to 100ms, the total computational

runtime is equal to 45 minutes.

4.3. RESULTS ON INDUSTRIAL CONFIGURATIONS 89

Figure 4.9: Variation of the total runtime in function of the period.

4.3.4 Flows have different processing times and periods

In this section, we are interesting in analyzing the case where flows exchanged across

the studied network do not have neither the same processing times nor the same

periods.

The network understudy is composed of one hundred switches connected in a line

topology. The number of exchanged flows is up to one thousand. The sources and

the destinations are chosen randomly. The processing times varies between 25 and

50µsec, while the periods are equal to either 0.05 or 0.1msec.

For each flow, we test if the conditions to apply the scalable approach are satisfied.

If not, the enhanced approach is used to determine the upper bound. The results

illustrated in Fig. 4.10 are presented in an increasing order.

Results regarding runtime and are grouped in Table 4.2. For 97.2% of the flows,

the Scalable Trajectory Approach was used to determine an upper bound; while the

90 CHAPTER 4. SCALABLE TRAJECTORY APPROACH

Figure 4.10: Upper bound in microseconds

enhanced Trajectory Approach was applied for the rest. Moreover, the total runtime

taken by STA to calculate the upper bounds of 972 flows was approximately up to

2.4 hours. On the other hand, ETA needed up to 26 hours to determine the upper

bounds of just 28 flows.

STA ETA total

number of flows 972 28 1000

runtime (in hours) 2.4 26 28.4

Table 4.2: Comparison results between STA and ETA

4.4. CONCLUSION 91

4.4 Conclusion

In this chapter, we have tackled the scalability problem confronted when applying

the Trajectory Approach on a large industrial configuration. We have proposed a

method allowing to compute immediately an upper bound for some flows. These

flows have to satisfy specific conditions. We have also investigated the case for which

all flows have the same processing time and the same period. In this particular case,

we proved that the condition becomes simply a load condition.

We have applied this approach on a limited industrial network. Results show that

computing the upper bounds is faster using our solution without significant loss in

the precision of the obtained bound. Hence, our solution allows us obtaining results

on large industrial configuration where the number of variables to determine is huge.

92 CHAPTER 4. SCALABLE TRAJECTORY APPROACH

Chapter 5

Conclusions and perspectives

5.1 Conclusions

System verification and validation is an old addressed topic. The studied network

is an Ethernet-switched based network. Though the use of switched-Ethernet elimi-

nates the indeterminism introduced by the CSMA/CD protocol, yet the problem is

shifted to the buffer level. In fact, the flows compete over the resources inside the

switch and the essential problem consists of determining the time spent by a packet

in the buffer. Hence, this thesis focuses on timing analysis.

First, the methods that can be used to perform timing analysis were briefly ex-

plored in chapter 2. In particular, we are asked to compute an upper bound of the

end-to-end response time of any flow exchanged across the studied network. These

methods can be divided into two groups: the simulation-based and the analytical

approaches. We recall that, when interested in computing deterministic guarantees,

simulation approaches fail to meet the requirements. Hence, approaches based on

93

94 CHAPTER 5. CONCLUSIONS AND PERSPECTIVES

mathematical models sound like good candidates. Among the analytical approaches,

we have the Model Checking (MC), the Network Calculus (NC) and the Trajectory

Approach(TA). Model checking based on timed automata computes the exact worst-

case response time and offers the corresponding scenario. However, it is still unable

to analyze large networks. While the Network Calculus is being used in the system

verifcation and validation process nowadays, the corresponding upper bound of the

end-to-end response time is pessimistic which leads to overdimensioning the network.

Another possible method is the Trajectory Approach; it uses results established by

the scheduling theory to derive an upper bound. Both the network calculus and

the Trajectory Approach were applied on an avionic system; the results showed that

TA outperforms NC. For all these reasons, we focused our study on the Trajectory

Approach.

Secondly, the limitations of applying the Trajectory Approach for FIFO sched-

uled flows were discussed in chapter 3. The first one is the precision of the upper

bound. We have identified the flow’s configurations that introduce pessimism into

the computed upper bound. The second one is the scalability of the approach. We

have shown that the Enhanced Trajectory Approach requires more time than the

Trajectory Approach to analyze the same configuration. As much as the precision of

the upper bound is important, the scalability of the method is even more important.

For that, we are interested in computing an upper bound of the end-to-end response

time but in a reduced time frame.

Finally, the scalability problem confronted when applying the Trajectory Ap-

proach on a large industrial configuration was tackled in chapter 4. We have proposed

a method allowing to compute immediately an upper bound for some flows. These

5.2. PERSPECTIVES 95

flows have to satisfy specific conditions. We have also investigated the case for which

all flows have the same processing time and the same period. In this particular case,

we proved that the condition becomes simply a load condition. We have applied this

approach on a limited industrial network. Results show that computing the upper

bounds is faster using our solution without significant loss in the precision of the

obtained bound. Hence, our solution allows us to obtain results on large industrial

configuration where the number of parameters to determine is huge.

To summarize, our work consists of using the Trajectory Approach to derive the

upper bounds of the end-to-end response time of every flow present in a large network.

5.2 Perspectives

There are several prospects of the work performed in this thesis:

− The scalable Trajectory Approach was applied on a line topology. It is also

interesting on other topologies such as a tree network for example.

− It is also interesting to compare the results obtained using the Scalable Trajec-

tory Approach and those obtained using the Network Calculus.

− Another axis consists of applying the Scalable Trajectory Approach on networks

holding heterogeneous traffic. In this case for example, flows can be attributed

a fixed priority and those having the same priority can be scheduled according

to their arrival time.

− Another topic to research is to find a compromise between the computation

96 CHAPTER 5. CONCLUSIONS AND PERSPECTIVES

complexity and the precision of the upper bound. For flows that do not satisfy

the condition of the Scalable Trajectory Approach, it would be interesting

to compute an upper bound using another approach even if this bound is

pessimistic. Then after comparing this bound to the deadline, if the deadline

is not respected, then the computed bound could be tighten. So on until the

deadline is respected.

Bibliography

[1] H. Petroski, To Engineer is Human: The Role of Failure in Successful Design.

New York: Vintage, 1992.

[2] A. T. Bahill and S. J. Henderson, “Requirements development, verification and

validation exhibited in famous failures,” System Engineering, pp. 1–14, 2005.

[3] M. Talbott, “Why system fails (viewed from hindsight),” in In Proceeding of the

International Conference on System Engineeering INCOSE.

[4] D. Dorner, The Logic Of Failure: Recognizing And Avoiding Error In Complex

Situations. Basic Books, 1 ed., Aug. 1997.

[5] Y. Bar-Yam, “When systems engineering fails-toward complex systems engi-

neering,” in International Conference on In Systems, Man and Cybernetics.

[6] D. Trognon, “Control network case study for dening a safety qualification

method,” tech. rep., EDF, 2007.

[7] H. Bauer, Analyse pire cas de flux hétérognes dans un réseau embarqué avion.

PhD thesis, Institut de Recherche en Informatique de Toulouse, 2011.

97

98 BIBLIOGRAPHY

[8] S. Medlej, S. Martin, and J.-M. Cottin, “Identifying sources of pessimism in the

trajectory approach with FIFO scheduling,” in Embedded Real-Time Software

and Systems ERTS2, 2012.

[9] M. T. J. Jasperneite, P. Neumann and K. Watson, “Deterministic real time com-

munication with switched ethernet,” in 4th international workshop on Factory

communication systems.

[10] “Pspice.” http://www.cadence.com/products/orcad/pspice-

simulation/Pages/default.aspx.

[11] “Webnsm simulation tool kit.” http://www.webnms.com/simulator/network-

simulator-ds.html.

[12] “Matlab.” http://www.mathworks.fr/.

[13] S. Perathoner, E. Wandeler, L. Thieler, A. Hamann, S. Schliecker, R. Henia,

R. Racu, R. Ernst, and M. G. Harbour, “Influence of different abstraction on

the performance analysis of distributed hard-real time systems,” in Proceedings

of the 7th ACM and IEEE international conference on Embedded Softaware,

(NY, USA), 2007.

[14] E. Clarke, O. Grumberg, and D. A. Peled, Model Checking. MIT Press, Cam-

bridge, MA, USA, 2000.

[15] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical Computer

Science, vol. 126, pp. 183–235, 1994.

[16] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a Nutshell,” Int. Journal

on Software Tools for Technology Transfer, vol. 1, pp. 134–152, October 1997.

BIBLIOGRAPHY 99

[17] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and

P. Schnoebelen, Systems and Software Verification: Model-Checking Techniques

and Tools. Springer Publishing Company, Incorporated, 1st ed., 2010.

[18] C. Baier, B. Haverkort, H. Hermanns, and J. pieter Katoen, “Automated perfor-

mance and dependability evaluation using model checking,” in In Performance

Evaluation of Complex Systems: Techniques and Tools, Performance 2002, Tu-

torial Lectures, pp. 261–289, SpringerVerlag, 2002.

[19] “Uppaal.” http://www.uppaal.com/.

[20] “Blast.” http://mtc.epfl.ch/software-tools/blast/index-epfl.php.

[21] “Spin.” http://spinroot.com/spin/whatispin.html.

[22] Z. Xin-feng, W. Jian-dong, L. Bin, Z. Jun-wu, and W. Jun, “Methods to tackle

state explosion problem in model checking,” in Proceedings of the 2009 Third

International Symposium on Intelligent Information Technology Application -

Volume 02, IITA ’09, (Washington, DC, USA), pp. 329–331, IEEE Computer

Society, 2009.

[23] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Progress on the state

explosion problem in model checking,” in Informatics - 10 Years Back. 10 Years

Ahead., (London, UK), pp. 176–194, Springer-Verlag, 2001.

[24] M. Li and P. M. Vitnyi, An Introduction to Kolmogorov Complexity and Its

Applications. Springer Publishing Company, Incorporated, 3 ed., 2008.

[25] R. L. Cruz, “a calculus for network delay, part i: network elements in isolation,”

IEEE transactions on Information theory, 1991.

100 BIBLIOGRAPHY

[26] R. L. Cruz, “a calculus for network delay, part ii: network analysis,” IEEE

transactions on Information theory, 1991.

[27] R. L. Cruz, “Quality of service guarantees in virtual circuit switched networks,”

IEEE Journal on selected areas in communications, vol. 13, pp. 1048–1056, 1995.

[28] R. L. Cruz, “Sced+: Efficient management of quality of service guarantees,” in

In Proceedings of INFOCOM’98, pp. 625–642, 1998.

[29] R. Agrawal and R. Rajan, “Performance bounds for guaranteed and adaptive

services,” tech. rep., IBM, 1996.

[30] C.-S. Chang, Performance Guarantees in Communication Networks. London,

UK: Springer-Verlag, 2000.

[31] C.-S. Chang, “Stability, queue length and delay of deterministic and stochastic

queueing networks,” IEEE Transactions on Automatic Control, vol. 39, pp. 913–

931, 1994.

[32] J.-Y. L. Boudec, “Application of network calculus to guaranteed service net-

works,” IEEE Transaction on Information Theory, vol. 44, pp. 1087–1096, Sept.

2006.

[33] J.-Y. L. Boudec and P. Thiran, Network calculus: a theory of deterministic

queuing systems for the internet. Berlin, Heidelberg: Springer-Verlag, 2001.

[34] M. Fidler, “Survey of deterministic and stochastic service curve models in the

network calculus,” IEEE Communication Surveys and Tutorials, vol. 12, pp. 59–

86, Jan. 2010.

BIBLIOGRAPHY 101

[35] H. Schioler, H. P. Schwefel, and M. B. Hansen, “Cync: A matlab/simulink

toolbox for network calculus,” October 2007.

[36] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for schedul-

ing hard real-time systems,” in Proc. international symposium on Circuits and

systems, (Geneva), 28-31 May 2000.

[37] N. Gollan, F. A. Zdarsky, I. Martinovic, and J. B. Schmitt, “The disco network

calculator,” in in Proceeding Measuring, Modelling and Evaluation of Computer

and Communication Systems (MMB), 14th GI/ITG Conference.

[38] J. B. Schmitt and F. A. Zdarsky, “The disco network calculator: a toolbox

for worst case analysis,” in Proceedings of the 1st international conference on

Performance evaluation methodolgies and tools, valuetools ’06, (New York, NY,

USA), ACM, 2006.

[39] A. Bouillard and E. Thierry, “An algorithmic toolbox for network calculus,”

Discrete Event Dynamic Systems, pp. 3–49, 2008.

[40] L. Bisti, L. Lenzini, E. Mingozzi, and G. Stea, “Deborah: a tool for worst-case

analysis of fifo tandems,” in Proceedings of the 4th international conference on

Leveraging applications of formal methods, verification, and validation - Volume

Part I, ISoLA’10, (Berlin, Heidelberg), pp. 152–168, Springer-Verlag, 2010.

[41] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst, “Sys-

tem level performance analysis - the symta/s approach,” in IEEE Proceedings

Computers and Digital Techniques, 2005.

[42] S. Martin, Maitrise de la dimension temporelle de la qulité de service dans les

réseaux. PhD thesis, Université Paris XII, 2004.

102 BIBLIOGRAPHY

[43] S. Martin and P. Minet, “Schedulability analysis of flows scheduled with FIFO:

application to the expedited forwarding class,” in Proceedings of the 20th inter-

national conference on Parallel and distributed processing, IPDPS’06, (Wash-

ington, DC, USA), IEEE Computer Society, 2006.

[44] S. Martin and P. Minet, “Worst case end-to-end response times of flows sched-

uled with FP/FIFO,” in Proceedings of the International Conference on Net-

working, International Conference on Systems and International Conference

on Mobile Communications and Learning Technologies, ICNICONSMCL ’06,

(Washington, DC, USA), pp. 54–, IEEE Computer Society, 2006.

[45] K. Tindell and J. Clark, “Holistic schedulability analysis for distributed hard

real-time systems,”Microprocessing and Microprogramming - Parallel processing

in embedded real-time systems, vol. 40, pp. 117–134, April 1994.

[46] S. Martin, P. Minet, and L. George, “End-to-end response time with fixed pri-

ority scheduling: trajectory approach versus holistic approach,” International

Journal on Communication Systems, vol. 18, no. 1, pp. 37–56, 2005.

[47] S. Martin and P. Minet, “Improving the analysis of distributed non-preemptive

FP/DP* with the trajectory approach.,” In Telecommunication Systems,

Springer, vol. 30, pp. 49–79, November 2005.

[48] H. Bauer, J.-L. Scharbarg, and C. Fraboul, “Improving the worst-case delay

analysis of an AFDX network using an optimized trajectory approach,” IEEE

transactions on industrial infromatics, vol. 6, pp. 521–533, November 2010.

[49] X. Li, J.-L. Scharbarg, and C. Fraboul, “Analysis of the pessimism of the trajec-

tory approach for upper bounding end-to-end delay of sporadic flows sharing a

BIBLIOGRAPHY 103

switched ethernet network,” in 19th International Conference on Real-time and

Networked Systems, (Nantes, France), 2011.

[50] H. Bauer, J.-L. Scharbarg, and C. Fraboul, “Applying and optimizing trajec-

tory approach for performance evaluation of AFDX avionics network,” in 14th

IEEE conference on, Emerging Technologies and Factory Automation, (Mal-

lorca, Spain), pp. 1–8, 22-26 September 2009.

	Acknowledgment
	Abstract
	Acronyms and notations
	Introduction
	Context and Problematic
	Characteristics of the studied network
	Safety property
	Contributions
	Dissertation outline

	Temporal guarantees
	Introduction
	Timing analysis
	Simulation-based approach
	Analytical approach
	Model Checking
	Network Calculus
	Trajectory Approach (TA)

	Summary
	Conclusion

	TA limitations for FIFO scheduled flows
	Introduction
	Trajectory Approach for FIFO policy
	Basic computation example
	Limitations
	Precision
	Junction packets
	Serialization
	Effect of leaving flows
	Flows leaving the path of i
	Flows leaving the path of one (or more) flow(s) interacting directly with i
	Flows leaving the path of one (or more) flow(s) interacting indirectly with i

	Scalability
	Numerical evaluation on sample configurations
	Impact of serialization
	Impact of leaving flows
	Flows leaving the path of the studied flow i
	Flows leaving the path of a flow interacting directly with i
	Flows leaving the path of a flow interacting indirectly with i

	Scalability
	Comparison between TA and ETA
	TA Average runtime

	Conclusion

	Scalable Trajectory Approach
	Introduction
	Scalable Trajectory Approach
	Basic computation example
	Reducing the set of instants to test
	All flows have the same processing time and the same period
	Expression of Ai,m
	End-to-end response time

	Results on industrial configurations
	Comparison between ETA and STA results
	Effect of the variation of the processing time on the upper bound
	Effect of the variation of the period on the runtime
	Flows have different processing times and periods

	Conclusion

	Conclusions and perspectives
	Conclusions
	Perspectives

	Bibliography

