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Études des désintégrations B → Kππγ
avec l’expérience BABAR :
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À Bertrand, Pierre et Henri,
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la fin. Avant de débuter ce recensement et puisqu’il est probable, voire certain, que malgré
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envers Emi Kou qui m’a permis, de par sa véritable implication, de mieux comprendre une
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qu’il soit : c’est-à-dire avec écoute, attention et bienveillance. Nos conversations ont été
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leur chaleur humaine ainsi que pour leur attention envers moi.
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conclusion de ce projet. Merci infiniment à toi Vera.
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changerai rien. Je lui dois énormément. Merci Eli. Merci pour tout !

Marseille, 16 décembre 2013
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Introduction

The current knowledge on the fundamental interactions describing physics at the subatomic
scale is comprised in the Standard Model (SM) of strong and electroweak interactions. Grav-
itation, whose contribution to microscopic phenomena is negligible compared to the ones
from both strong and electroweak interactions, is not included in the SM since it still fails
to be described by quantum field theories. In the last decades Standard Model predictions
have been extensively tested, and even though several questions remain without answer, no
contradictory experimental result arises to date.

Before the start of the B Factories, BABAR in SLAC National Laboratory California,
and Belle at KEK, in Japan, the quark flavor sector described by electroweak interactions,
from which emerges the essential phenomenon of CP violation, was one of the least tested.
The first observation of CP violation in weak interactions was performed in 1964 in decays
of neutral K mesons. During the same decade, Andrei Sakharov [? ] showed that CP
violation was one of the necessary conditions in order to explain why the Universe evolved
from its initial matter-antimatter symmetric state to the one that exists today. However,
the mechanism allowing for CP violation in the SM is not sufficient to explain the observed
asymmetry between matter and antimatter, which could indicate that the SM is an effective
model for a more fundamental theory.

The absence of results coming from direct searches of New Physics (NP) effects performed
in high-energy colliders, indicates that if such NP exist, corresponding effects would arise
beyond the electroweak scale. Some specific decay processes, referred to as penguin diagrams
and further described in Sec. 1.4, in which CP violation occurs and that are accessible at
low-energy colliders such as it is the case in the B factories, could allow to probe NP effects
via indirect searches.

In this context, the “radiative penguin” transition b → sγ which proceeds via an
electroweak-interaction loop diagram is a promising process; it underlies the decays B →
Xsγ, where Xs is a hadronic final state.

In B0 (B0) transitions with radiated photons, the SM predicts a right (left) helicity of
these photons. A hadronic correction of order O(|ms/mb|2) needs to be taken into account,
introducing a small left (right) handed component. Measurement of the photon polariza-
tion would be a strong test of the SM, since non-SM processes such as supersymmetry can
introduce diagrams with different polarization.

As the polarization of the photon cannot be directly measured, different experimental
methods exist that give access to this information through other phenomena. In the present
thesis, in order to gather information on the photon helicity we exploit the mixing-induced
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CP asymmetry, S, in B0 → K0
S
ρ0γ decays. This quantity is predicted by the SM to be small

in decay modes of the type B → fCPγ gamma, where fCP is a CP eigenstate, like K0
S
ρ0.

This is due to the correlation between the final-state photon helicity to the flavor of the
decaying B-meson, as explained above, and to the fact that different (thus non-interfering)
final states do not contribute to S. The analysis of this mode is described in Chapter 7.
Since deviations from the SM predictions would indicate contributions from NP processes,
the results obtained can be used to set constraints on parameters of NP models.

Decays to Kππγ can also display an interesting hadronic structure: they have contri-
butions from several kaonic resonances decaying to Kππ. The decays of these resonances
themselves exhibits a resonant structure, with K∗π, Kρ, and (Kπ)∗0π combinations, where
(Kπ)∗0 corresponds to (Kπ) S-wave. Five kaonic resonances contribute to the Kππ invariant
mass range below 1.8GeV/c2, that is considered in the present analysis.

The structure of the Kππ system is not well measured, and can be crucial for probing
the photon helicity. Indeed, it has been shown [? ] that the photon polarization may
be measured in B → K+π−π0γ and B → K0

S
π+π0γ decays. In these decays, interference

between K∗0π0 and K∗+π− processes or between K∗+π0 and K∗0π+ can produce decay
distributions sensitive to the photon polarization. The overall decay rate does not depend
on the photon polarization, but the decay rate variation with θd is related to the polarization,
where θd is the angle between the Kππ decay plane normal and the photon direction.

In the present thesis we measure the mKππ and mKπ spectra in B+ → K+π−π+γ decays,
as described in Chapter 6, and extract information about the Kππ resonant structure. An
amplitude analysis of these two spectra is then performed. The results are used, assuming
Isospin symmetry, to extract the mixing-induced CP parameters of the B0 → K0

S
π+π−γ

process from the analysis of B0 → K0
S
ρ0γ decays without an explicit amplitude analysis.

Belle has previously reported a time-dependent CP asymmetry measurement of B0 →
K0

S
ρ0γ decays [? ]. Similar measurements with B0 → K0

S
π0γ decays have been reported by

BABAR [? ] and Belle [? ]. At this time no evidence of NP has been observed: all time
dependent CP asymmetry measurements yield CP asymmetry parameters that is compatible
with SM predictions. More generally, radiative penguin B decays have been observed in
exclusive two-body final states, where Xs is K+π− or K0

S
π0, as well as in exclusive three-

body final states such as B → K+π+π−γ and B → K0
S
π−π+γ [? ].
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Chapter 1

Flavor physics and CP violation in the
Standard Model

Contents
1.1 Weak interactions in the flavor sector . . . . . . . . . . . . . . . 6

1.2 Quark mixing and the CKM matrix . . . . . . . . . . . . . . . . 7

1.3 Mixing and CP violation in the B meson system . . . . . . . . . 11

1.3.1 Mixing of neutral B mesons . . . . . . . . . . . . . . . . . . . . . . 11

1.3.2 CP violation in the B mesons . . . . . . . . . . . . . . . . . . . . . 13

1.3.2.1 CP violation in decay . . . . . . . . . . . . . . . . . . . . 14

1.3.2.2 CP violation in mixing . . . . . . . . . . . . . . . . . . . 15

1.3.2.3 CP violation in the interferences between decays with and
without mixing . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Trees and Penguins . . . . . . . . . . . . . . . . . . . . . . . . . . 18

The Standard Model of particle physics is a quantum field theory describing the interactions
of all observed elementary particles. The SM is a gauge theory based on the gauge group
SU(3)c ⊗ SU(2)L ⊗ U(1)Y , including the strong interaction symmetry group SU(3)c, and
the electroweak interaction group SU(2)L ⊗ U(1)Y .

In the SM framework, CP violation originates from the existence of an irreducible phase
that appears in the Lagrangian describing the charged current decays of quarks. This is
a consequence of the complex coupling constants between the flavor sector in the weak
interactions and of the mass terms for the quarks. In the SM, masses of particles are brought
by a dynamical mechanism, known as the Higgs mechanism [? ]. Recent observations of
a new particle [? ? ], very likely to be the Higgs boson, bring strong indications for the
existence of such a mechanism.
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1.1 Weak interactions in the flavor sector

In the SM, the matter fields corresponding to the spin-1/2 particles are put in doublets of
SU(2)L, while the corresponding right-handed fields transform as singlets under SU(2)L.
Qi

L, u
i
R and diR are the quarks fields, where the index i label the family or generation and

the subscripts L and R denote left- and right-handed fields, respectively, such as

ψL = PLψ , ψR = PRψ , (1.1)

where PL and PR are the projection operators

PL =
1

2
(1− γ5) , PR =

1

2
(1 + γ5) . (1.2)

The quarks acquire mass through their Yukawa couplings to the Higgs field φ:

LYukawa = −Y ij
u Q

i
Lǫφ

∗ujR − Y ij
d Q

i
Lφd

j
R + h.c. , (1.3)

where the Yu,d are 3× 3 complex matrices, the indices i and j label the generations, and ǫ is
the antisymmetric tensor. In Eq. 1.3 the terms corresponding to leptons have been dropped
for simplicity, being analogous to those of the quarks.

Since the Higgs field has a vacuum expectation value, 〈φ〉 = (0, v/
√
2), the Yukawa

couplings give rise to the 3× 3 quarks mass matrices:

M ij
u =

(

v/
√
2
)

Y ij
u , M ij

d =
(

v/
√
2
)

Y ij
d . (1.4)

Since the matrices M couple the left-handed component of each quark Qi
L with the right-

handed projections of all flavors, they are non-diagonal in the flavor basis. The mass eigen-
states being the one that propagate in space and time, the matricesM must be diagonalized.
Any matrix M can be brought into a diagonal form by separate unitary transformations on
the left and right, respectively

M → ULMdiagU †
R , (1.5)

where UL and UR are unitary and Mdiag is real, diagonal and non-negative. For the quark
fields, this is done by changing from the flavor to the mass basis, the unitary transformation
being

uL = Uu
Lu

′
L , uR = Uu

Ru
′
R ,

dL = Ud
Ld

′
L , dR = Ud

Rd
′
R , (1.6)

where u and d are three-component column vectors representing the up- and down-type
quarks in flavor space, respectively, and the primed fields represent the corresponding mass
eigenstates. In this case, the transformation matrices U are chosen such as

Uu†
R MuUu

L =





mu 0 0
0 mc 0
0 0 mt



 ,
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1.2 Quark mixing and the CKM matrix

Ud†
R MdUd

L =





md 0 0
0 ms 0
0 0 mb



 . (1.7)

This change from flavor to the mass basis requires different transformations of the two parts
of each QL doublet:

(

uL
dL

)

=

(

Uu
Lu

′
L

Ud
Ld

′
L

)

= Uu
L

(

u′L
Uu†
R Ud

Ld
′
L

)

. (1.8)

When expressing the SM Lagrangian in terms of the primed mass-eigenstate fields, the quark
kinetic terms remain unchanged. The Z and γ boson couplings are also unaffected. As a
consequence no flavor-changing neutral current (FCNC) processes are allowed at the tree
level (defined in Sec. 1.4) in the SM. On the other hand, in the part of the charged-current
Lagrangian describing the couplings of the W± bosons to the quarks, the transformation
leaves the couplings unchanged by Uu

L, but not by Uu†
R Ud

L:

g√
2
uLγ

µdLW
+
µ =

g√
2
u′Lγ

µVCKMd
′
LW

+
µ , (1.9)

where g is the SU(2)L coupling constant andW+
µ is the SU(2)L gauge field. In this represen-

tation, quarks from different flavors are coupled through the complex matrix VCKM ≡ Uu†
R Ud

L,
named after Cabbibo, Kobayashi and Maskawa [? ? ]. As a result, the SM predicts the
existence of flavor-changing charged currents at the tree level.

1.2 Quark mixing and the CKM matrix

In the general case of N quark families, the 2N2 real parameters of the complex N × N
matrix VCKM, can be reduced using properties of the VCKM matrix and the quarks fields.
Indeed, due to the unitarity conditions applying to the former, the number of parameters are
reduced to N2, and by another 2N−1 degrees of freedom when individual phase redefinitions
(qLj → eiφ

q
j qLj) for the 2N quark fields are considered. All this leaves (N − 1)(N − 2)/2

irreducible phases, and turns out to be 0 for N = 2 and 1 for N = 3. As Kobayashi and
Maskawa noticed, this irreducible phase in a three-generation model would be the origin of
all CP violation in the SM (see Section 1.3.2).

Although this mechanism allows for CP violation, it is not a necessary feature of the SM.
Thus, in the case where two quarks of the same charge had equal masses, or the value of
one of the mixing angles was equal to zero or π/2, or even the value of the irreducible phase
itself was zero, the number of parameters could be reduced even further and CP violation
would no longer be manifest.

Since the VCKM matrix was formulated for the first time, several parametrizations have
been proposed. One of such parametrization is the so called ‘Standard parametrization”
proposed by Chau and Keung, and which is obtained as the product of three (complex)
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rotation matrices and a overall phase,

VCKM =





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13



 , (1.10)

where cij = cos θij, sij = sin θij for i < j = 1, 2, 3, the θij are the rotation angles between
families, and δ is the irreducible phase.

Thanks to many experimental results, it has been established that a hierarchy among
the matrix elements exists and that the matrix is dominated by its diagonal terms. In other
words, transitions among quarks from different flavor doublets are suppressed, compared to
the ones among quarks of the same generation. A useful parameterization that emphasizes
the hierarchical, nearly diagonal structure of the matrix, is due to Wolfenstein [? ]:

VCKM =





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



 ≃





1− 1
2
λ2 λ λ3A (ρ− iη)

−λ 1− 1
2
λ2 λ2A

λ3A (1− ρ− iη) −λ2A 1



+O
(

λ4
)

,

(1.11)
which is based on a Taylor development where λ is the expansion parameter, known to be
small from experimental data, i.e. λ ≃ |Vus| ∼ 0.22, and A, ρ and η are all of order 1. In
the Wolfenstein parametrization η contains the CP violation information, i.e. CP violation
occurs when η 6= 0. To all orders in λ, the exact Wolfenstein parameterization can be defined
as,

s12 ≡ λ , (1.12)

s23 ≡ λ2A , (1.13)

s13e
−iδ ≡ λ3A (ρ− iη) . (1.14)

This definition is useful because it allows an elegant improvement of the accuracy of the
original Wolfenstein parameterization. In particular, up to the order O(λ6), one get

Vus = λ , Vcb = λ2A , Vub = λ3A (ρ− iη) , (1.15)

Vtd = λ3A (1− ρ− iη) , (1.16)

ℑ(Vcd) = −λ5A2η , ℑ(Vts) = −λ4Aη , (1.17)

where

ρ = ρ(1− λ2/2) , η = η(1− λ2/2) . (1.18)

One of the major physics goal of the B Factories was to improve the experimental con-
straints on the elements of VCKM. Relations among these elements can be derived from the

8



1.2 Quark mixing and the CKM matrix

Figure 1.1: Pictorial representation, dubbed “Unitarity Triangle”, of the relation VudV
∗
ub +

VcdV
∗
cb + VtdV

∗
tb = 0 derived from the unitarity of the CKM matrix. Each of the terms can

be viewed as a vector in the complex plane. Their sum being equal to zero then implies that
they have to form a (closed) triangle in the Argand plane. The base of the triangle has been
aligned with the horizontal (real) axis by dividing the equation by VcdV

∗
cb.

unitarity condition of the matrix V †
CKMVCKM = 1. Three of them are of particular interest

for the study of CP violation, as they more sensitive to the irreducible phase

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0 , (1.19)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0 , (1.20)

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 . (1.21)

Each term in these relations can be interpreted geometrically as a vector in the complex
plane. This way, each equation above can be visualized as a triangle in the Argand plane,
known as the unitarity triangles. The first two triangles are related to the CKM matrix
elements that governs the K0 − K0 and B0

s − B0
s systems, respectively. For each of those

triangles one side is much shorter than the other two, and so they almost collapse to a line.
This would give an intuitive understanding of why CP violation is small in the leading K
and Bs decays. On the other hand, for the triangle corresponding to the relation given in
Eq. 1.21, the sides are of the same order of magnitude. It is in this third triangle, related to
the B0

d−B0
d system, that the most exciting physics of CP violation lies. Indeed, the openness

of this triangle predicts large CP asymmetries in Bd decays, which are the ones accessible
at the B Factories1. Note that all the unitarity triangles are equal in area. Equation 1.21
can be written in another way. Once divided by VcdV

∗
cb, it becomes

VudV
∗
ub

VcdV ∗
cb

+ 1 +
VtdV

∗
tb

VcdV ∗
cb

= 0 . (1.22)

In this convention one of the side of this triangle is aligned to the real axis of the Argand
plane. The resulting pictorial representation is a unitarity triangle whose apex is determined

1Belle collected a data sample of 124.4 fb−1 at the Υ (5S), allowing to study the Bs properties.
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by the ρ and η parameters, or equivalently, the irreducible phase (see Figure 1.1). In this
representation, the lengths of the sides are given by

CB = 1 , (1.23)

AB =

∣

∣

∣

∣

VtdV
∗
tb

VcdV ∗
cb

∣

∣

∣

∣

=
√

(1− ρ)2 + η2 =
1

λ

∣

∣

∣

∣

Vtd
Vcb

∣

∣

∣

∣

, (1.24)

AC =

∣

∣

∣

∣

VudV
∗
ub

VcdV ∗
cb

∣

∣

∣

∣

=
√

ρ2 + η2 =

(

1− λ2

2

)

1

λ

∣

∣

∣

∣

Vub
Vcb

∣

∣

∣

∣

, (1.25)

while the angles are given by

β = arg

(

VtdV
∗
tb

VcdV ∗
cb

)

= arctan

(

η

1− ρ

)

, (1.26)

γ = arg

(

VudV
∗
ub

VcdV ∗
cb

)

= arctan

(

η

ρ

)

, (1.27)

π = α + β + γ . (1.28)

A good way to test the SM is to overconstrain the unitarity triangle parameters by making
as many independent measurements of the sides and the angles of the triangle as possible. To
date, the experimental status seems to indicate that the Standard Model provides, up to the
available precision, a good description of CP violation in the quark flavor sector (Figure 1.2).

ρ
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Figure 1.2: Pictorial representation of the current experimental constraints on the sides
and angles of the unitarity triangle, by the CKMfitter group [? ] (right), updated with the
results available in spring 2013, and by the UTFit group [? ] (left) updated with the results
available in winter 2013. The bands representing each experimental measurement or bound
are seen to be in very good agreement with each other, all of them overlapping around the
apex of the triangle drawn.
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1.3 Mixing and CP violation in the B meson system

1.3 Mixing and CP violation in the B meson system

This section treats the quantum mechanical properties of the neutral B-meson system, which
are model independent. These properties are related to CP violation observables, and use
features of the flavor and weak-interaction structure of the Standard Model. Three different
kinds of CP violation, resulting from different processes, are to be distinguished, as they
allow to extract different CP -violating quantities.

1.3.1 Mixing of neutral B mesons

A neutral meson state and its CP conjugate decay due to weak interactions. In order to
describe the neutral meson system it is important to distinguish between different represen-
tations. On one hand, the neutral meson can be described by two flavor eigenstates, each
with a definite quark content, which are useful for understanding particle production and
decay processes. On the other hand, the neutral meson can be described by the two eigen-
states of the Hamiltonian (mass eigenstates), with definite mass and lifetime, which are the
states that propagate in space and time. Mass eigenstates are not flavor eigenstates, and so
flavor eigenstates get mixed as they propagate. Since CP symmetry is broken in the SM,
the mass and CP eigenstates can differ.

The phenomenon of mixing, referring here to the process where a neutral meson turns into
its antiparticle via a process involving two charged currents, has been observed in kaons [?
], Bd and Bs mesons [? ? ? ], and also, D mesons [? ? ? ].

Let us now consider an arbitrary combination of the neutral B-meson flavor eigenstates2:

a(t)
∣

∣B0〉+ b(t)
∣

∣B0〉 , (1.29)

which is governed by the time-dependent SchroÃàdinger equation

i
d

dt

(

a(t)
b(t)

)

= H

(

a(t)
b(t)

)

≡ (M − iΓ)

(

a(t)
b(t)

)

, (1.30)

where M and Γ are two 2 × 2 hermitian matrices known as mass and decay matrices, re-
spectively. The assumption of CPT invariance constrains the Hamiltonian and imposes to
the diagonal elements: M11 = M22 = M and Γ11 = Γ22 = Γ. The off-diagonal terms, M12

and Γ12 are particularly important in the discussion of CP violation, since arg(M12/Γ12) = 0
would be implied in the case of CP conservation. The mass matrix of the Hamiltonian
describes the oscillation between flavor eigenstates, where the diagonal terms inM are dom-
inated by the flavor eigenstates masses, and the off-diagonal ones represent the transitions
via virtual intermediate states. The diagonal terms of the decay part of the Hamiltonian
describe the flavor eigenstates decays to different final states, i.e. B0 → f and B0 → f , while
the off-diagonal terms describe transitions via real intermediate states. Figure 1.3 shows the
Feynman diagrams representing the weak transitions between B0 and B0, also referred to as
B0B0 mixing. Such transitions lead to the inclusion of the three up-type quarks in the loop,

2The flavor eigenstates of the neutral B meson are defined as B0 = bd and B0 = db
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Figure 1.3: Diagrams describing the mixing phenomenon for neutral B mesons via a second-
order weak transition.

since all of them couple via a CKM factor that is proportional to λ6. However, integration
of the internal degrees of freedom (the up-type quarks and the W ) yields an expression that
weighs the contribution of each quark by the ratio of its mass to that of the weak boson [?
]. Thus, the up and charm quarks contribution are suppressed, and an evaluation of the
corresponding CKM factors (see (??)) readily gives a phase of (VtdV

∗
tb)

2 ∼ e−i2β. In other
words, the B0 states that oscillate into B0 pick up an extra −2β phase, called the mixing

angle, with respect to the B0 states that do not oscillate. This phase is measurable whenever
both flavors decay to a common state.

Diagonalizing the Hamiltonian, H, leads to the expression of the mass eigenstates of the
neutral B meson system, which consist in a superposition of the B0 and B0 flavor eigenstates,
such as

|BL〉 = p
∣

∣B0〉+ q
∣

∣B0〉 , (1.31)

|BH 〉 = p
∣

∣B0〉 − q
∣

∣B0〉 , (1.32)

where the index L(H) refers to the lighter (heavier) mass eigenstate and the complex coef-
ficients p and q are constrained by a normalization condition

|p|2 + |q|2 = 1 . (1.33)

The mass and width difference between the neutral B mesons are defined as follows,

∆md ≡MH −ML , ∆Γ ≡ ΓH − ΓL , (1.34)

so that ∆md is positive by definition. Finding the eigenstates of Eq. 1.30 the following
relations are derived

(∆md)
2 − 1

4
(∆Γ)2 = 4

(

|M12|2 −
1

4
|Γ12|2

)

, (1.35)

∆md∆Γ = 4ℜ (M12Γ
∗
12) , (1.36)

and the ratio q/p is finally given by

q

p
= − ∆md − i

2
∆Γ

2
(

M12 − i
2
Γ12

) . (1.37)
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1.3 Mixing and CP violation in the B meson system

For the Bd mesons, the difference in width, ∆ΓBd
, is expected to be small compared to

ΓBd
. Indeed, ∆ΓBd

value is produced by decay amplitudes of channels common to B0 and
B0, with corresponding branching fractions at the level of 10−3. And since many channels
contribute with different signs, their sum is not expected to exceed the individual level, hence
∆ΓBd

/ΓBd
∼ O(10−2). From the considerations above, one should note that ∆ΓBd

≪ ΓBd

is model-independent. Moreover, the Bd oscillation parameter xd has been measured [? ],
such as

xd ≡
∆md

ΓBd

= 0.775± 0.006 , (1.38)

which implies then, model-independently, ∆ΓBd
≪ ∆md. As a consequence, using Eqs. 1.35

to 1.37, one gets
|Γ12| ≪ |M12| , and |q/p| ∼ 1 . (1.39)

Consider a state which is created at time t = 0 as an initially pure B0(B0), denoted by
∣

∣B0
phys〉 (

∣

∣B0
phys〉). The time evolution of these states can be described by the eigenvalues of

the Hamiltonian and the q and p parameters such as

∣

∣B0
phys(t)〉 = g+(t)

∣

∣B0〉+ q

p
g−(t)

∣

∣B0〉 , (1.40)

∣

∣B0
phys(t)〉 = g+(t)

∣

∣B0〉+ p

q
g−(t)

∣

∣B0〉 , (1.41)

where

g+(t) = e−
i
2
(MH+ML)te−

Γ
2
t cos

(

∆mdt

2

)

, (1.42)

g−(t) = e−
i
2
(MH+ML)te−

Γ
2
ti sin

(

∆mdt

2

)

. (1.43)

Due to the close values of the neutral B meson lifetime, τ = (1.530 ± 0.009) ps, and the
frequency of oscillation, ∆md = (0.507 ± 0.005) ps−1 [? ], the amplitude for the mixing
process is rather large. Accordingly, the integrated probability of oscillation is sizeable [?
]:

χd =
(τ∆md)

2

2(1 + (τ∆md)2)
= 0.1878± 0.0024 , (1.44)

which confers mixing a prominent role. An immediate consequence are the large time-
dependent CP asymmetries that mixing produces, and that are discussed in the next section.

1.3.2 CP violation in the B mesons

As previously discussed, the phases in the Standard Model coupling constants is responsible
for all CP -violating effects. The possible manifestation of these effects may have a few
aspects:

• CP violation in decay, which occurs when the amplitude for a decay and its CP
conjugate process have different magnitudes;
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Flavor physics and CP violation in the Standard Model

• CP violation in mixing, which occurs when the neutral mass eigenstates and the
CP eigenstates are not identical;

• CP violation in the interference between decays with and without mixing,
which occurs when the B0 and B0 mesons can decay into the same common final state.

Before presenting in more details each type of CP violation in B decays, let us first introduce
some useful notations for the B transition amplitudes.

The B(B) meson decay amplitude to a final state f(f), denoted by Af (Af ), is written
as

Af = 〈f |H|B〉 , Af =
〈

f |H|B
〉

. (1.45)

There are two types of phases that may appear in Af and (Af ). The first type is referred
to as CP -odd phases, or weak phases. They are related to the weak-interaction part of
the Lagrangian, whose relevant terms are exactly the same for a process and for its CP -
conjugate except that the multiplicative constants become complex-conjugated [? ], thus
breaking the CP symmetry of the terms they form part of. In contrast, the phases generated
by CP -invariant terms in the Lagrangian, such as those from QCD, are the same for the two
processes, and are known as CP-even phases, or strong phases.

1.3.2.1 CP violation in decay

Consider first a quantum-mechanical amplitude with CP -odd and CP -even phases φ and δ,
respectively. According to the remarks above, the amplitude transforms under CP as

Aei(δ+φ) CP−→ Aei(δ−φ) . (1.46)

However, phases are not directly observable, so even though these two amplitudes are differ-
ent, the rates for the processes they describe are the same. Since only relative phases have
physical meaning, more than one amplitude is needed for CP -violating asymmetries.

Consider now a process that is made of different contributions. The total amplitude is
then the sum of all of them

Af =
∑

j

Aje
iδjeiφj , (1.47)

Af = e2iξf−ξB
∑

j

Aje
iδje−iφj , (1.48)

where Aj is the modulus of the contributing amplitude, δj and φj their CP -even and CP -
odd phases, respectively. The phases ξB and ξf are arbitrary, and their transformations
have no physical effect, since they are related to the quark flavor symmetries of the strong
interactions. When taking the module of the ratio between the two total amplitudes, one
obtains a convention-independent quantity

∣

∣

∣

∣

∣

Af

Af

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

j Aje
iδje−iφj

∑

j Ajeiδjeiφj

∣

∣

∣

∣

∣

. (1.49)
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1.3 Mixing and CP violation in the B meson system

In the case where the CP symmetry is conserved, the weak phases φj are all equal. It is then
trivial to see that in the opposite case

∣

∣

∣

∣

∣

Af

Af

∣

∣

∣

∣

∣

6= 1 =⇒ CP violation . (1.50)

This type of CP violation is also referred to as direct CP violation, and results from the
interference among various terms in the decay amplitude. In this case the difference in the
rates is

|Af |2 −
∣

∣Af

∣

∣

2
= −2

∑

i,j

|Ai| |Aj| sin (δi − δj) sin (φi − φj) . (1.51)

Thus, for such direct CP asymmetries to appear, two or more amplitudes must contribute
to the process with different CP -odd and CP -even phases. A common definition of the CP
asymmetry is

ACP =
Γ
(

B → f
)

− Γ (B → f)

Γ
(

B → f
)

+ Γ (B → f)
, (1.52)

which applies to both cases of neutral or charged B mesons. Indeed, direct CP violation is
the only one possible for the charged modes. In the case of neutral modes, CP violation in
decays can occur among the other two types of CP violation effects as described below.

1.3.2.2 CP violation in mixing

Another type of CP violation comes from the fact that the neutral B mesons can oscillate
into its CP conjugate, as described in Sec.1.3.1. Indeed, since the mass and the CP eigen-
states are not identical in the case of neutral B mesons, an asymmetry arises between their
transition probabilities, B0 → B0 and B0 → B0. One can express these differences using
the convention-free quantity |q/p|, since it is related to the matrix elements M12 − i

2
Γ12 and

M∗
12 − i

2
Γ∗
12, describing the B0 → B0 and B0 → B0 transitions, respectively:

∣

∣

∣

∣

q

p

∣

∣

∣

∣

2

=

∣

∣

∣

∣

M∗
12 − i

2
Γ∗
12

M12 − i
2
Γ12

∣

∣

∣

∣

. (1.53)

If CP was conserved, the relative phase between M12 and Γ12 would vanish. Then Eq. 1.53
implies

∣

∣

∣

∣

q

p

∣

∣

∣

∣

6= 1 =⇒ CP violation . (1.54)

This type of CP violation is also known as indirect CP violation. It has been first observed
in 1964 [? ] in the neutral kaon system. In the neutral Bd system, effects of CP violation
in mixing is expected to be small, O(10−4) [? ], and very negligible with respect to the
sensitivity of the B factories, thus making |q/p| ∼ 1 a good approximation.
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1.3.2.3 CP violation in the interferences between decays with and without mix-
ing

Finally, another possibility for CP violation, also referred to as CP violation in mixing and
decay, is the one foreseen by Bigi, Carter, Sanda and others [? ? ? ]. It occurs whenever

Γ(B0 → f) 6= Γ(B0 → f) , (1.55)

where f is a final state accessible to both B0 and B0, a condition that is satisfied if f is a
CP eigenstate. It is of primary importance in the decays of neutral B mesons, in which CP
violation arises as a consequence of the interference between the amplitudes A(B0 → fCP )
and A(B0 → B0 → fCP ). It has to be noticed that, before the start of the B Factories, LEP
had already put some constraints on the CP violation parameters in the B meson sector,
which have been significantly improved by the results obtained at the B Factories. Note
that CP violation in the mixing and in the decay of the K0 −K0 system [? ? ], had also
been observed before the start of the B Factories.

A quantity similar to the one used to measure purely direct CP violation, given in
Eq. 1.52, could be applied in order to measure the CP violation here. However, in this
case the flavor of neutral B mesons is not straightforward to determine since, precisely,
their flavors change over time. At the B Factories, the flavor determination is facilitated
by the fact that the B mesons are produced from the decay of the Υ (4S) resonance, i.e.
Υ (4S) → BB, therefore forming an entangled pair of mesons. Such states are predicted by
quantum mechanics by the famous “EPR paradox” [? ? ], where at instant t, the probability
of one of the mesons to be a particle equals the probability for the other meson to be an
antiparticle. Thus, if it is possible to determine the flavor of one of the B mesons at time t,
the flavor of the other meson can be inferred to be the opposite at that exact same instant,
and evolves afterwards independently by means of mixing. This is experimentally known as
flavor tagging (see Figure 2.3). The flavor of a given B meson, Brec, is determined from the
observation of the other meson, Btag, decaying into a state that unambiguously establishes
its flavor. A sufficiently precise measurement of the time elapsed between the two decays,
∆t, is also required in order to account for the probability for a given B meson state to
oscillate (see Sec. 1.3.1).

With these considerations, the CP asymmetry as defined in Eq. 1.52 can be redefined in
a time-dependent way

ACP (∆t) =
Γ (Btag=B0 (∆t) → fCP )− Γ

(

Btag=B0 (∆t) → fCP
)

Γ (Btag=B0 (∆t) → fCP ) + Γ
(

Btag=B0 (∆t) → fCP
) . (1.56)

In the case where no experimental biases are taken into account, such as the probability of
wrongly determining the flavor of the Btag meson (called mistagging), the amplitudes for the
processes B0

phys(∆t) → fCP and B0
phys(∆t) → fCP are given by

〈

fCP |H|B0
phys(∆t)

〉

= ηCPAfCP (g+(∆t) + λfCP g−(∆t)) , (1.57)
〈

fCP |H|B0
phys(∆t)

〉

= ηCP
p

q
AfCP (g−(∆t) + λfCP g+(∆t)) , (1.58)
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where ηCP is the CP eigenvalue of the final state fCP , g+(∆t) and g−(∆t) are given by
Eqs. 1.42 and 1.43, respectively, and where

λfCP = ηCP
q

p

AfCP

AfCP

(1.59)

is the convention free quantity carrying the CP violation information.
It is also useful to construct the expression of the time-dependent decay rate as a function

of the tag qtag and the time difference ∆t

fqtag (∆t) =
e−|∆t|/τ

4τ
[1 + qtag (S sin (∆md∆t)− C cos (∆md∆t))] , (1.60)

where qtag = +1(−1) when the Btag is identified as a B0 (B0), and from which the asymmetry
from CP violation in mixing and decay is:

ACP (∆t) = S sin (∆md∆t)− C cos (∆md∆t) , (1.61)

where

S =
2ℑ(λfCP )
1 + |λfCP |2

, C =
1− |λfCP |2
1 + |λfCP |2

. (1.62)

The coefficient S is different from zero when CP violation in mixing and decay occurs,
whereas the coefficient C, in case it is non zero, is an indication of direct CP violation. When
taking into account experimental effects, Eq. 1.60 may be re-written in terms of the tagging
dilution factors 〈D〉 and ∆D/2 (see Section 7.1.1 for definitions and a detailed discussion),
accounting for the probability for a B meson to be mistagged

fqtag (∆t) =
e−|∆t|/τ

4τ

[

1 + qtag
∆D
2

+ qtag 〈D〉 (S sin (∆md∆t)− C cos (∆md∆t))

]

, (1.63)

from which ACP (∆t) becomes now:

ACP (∆t) = 〈D〉 (S sin (∆md∆t)− C cos (∆md∆t)) . (1.64)

Looking at Eqs. 1.61 and 1.62 it clearly appears that CP violation will occur in the case
where

λfCP 6= 1 . (1.65)

Note that in both cases of CP violation in decay and of CP violation in mixing the previous
relation on λfCP is verified for |Af/Af | 6= 1 and |q/p| 6= 1, respectively. However, in the

present case, even if |Af/Af | = |q/p| = 1, CP violation could still occur through

|λfCP | = 1 , ℑ(λfCP ) 6= 0 . (1.66)

If there is only one SM contribution to the amplitudes Af and Af , the expectations are that
S = −ηCP sin (2β) and C = 0. Deviations from that imply the existence of unaccounted
amplitudes that, depending on the characteristics of the mode, could originate from theoret-
ical uncertainties in the Standard Model contributions, or could be an indication of physics
beyond the SM.
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Figure 1.4: Feynman diagrams for the amplitudes contributing to the B0 → J/ψK0
S decay.

Left: tree level diagram. Right: Penguin diagram, where the contribution of the light, u and
c, quarks have been neglected. The dotted line corresponds to the exchange of three gluons,
necessary to produce a cc pair.

1.4 Trees and Penguins

In a quantum field theory, on which is based the SM, in order to describe a given decay
process, one needs to include all the possible contributing amplitudes. Each amplitude
does not necessarily contribute at the same level, thus it is useful to apply a hierarchical
ranking. It often happens that only the two first-order contributions to the total amplitude
are sufficient to make theoretical predictions that are precise enough to be compared to
experimental results.

For instance, in the so-called “golden mode” B0 → J/ψK0
S
, in which the final state is

a CP eigenstate that makes it sensitive to CP violation in mixing and decay, not only one
amplitude is allowed. One of the contributing amplitudes, in which the W boson is emitted
and absorbed by the same quark line, is called a “loop” or, more often, a “penguin” diagram,
whereas the other, is said to be a “tree-level”, or simply “tree”, diagram (see Figure 1.4). In
the penguin diagram, the internal loop, which is formed by the W boson and a combination
of up-type quarks, is dominated by the top quark due to its large mass compared to up
and charmed quarks. In the hypothetical presence of new physics, new heavy particles
could traverse the loop and provide new CP -odd phases that could dramatically enhance (or
suppress) the amplitude [? ? ]. As shown in Figure 1.5 candidates for such particles are for
instance charged Higgs or squarks and gluinos from a super symmetric model.

In the considered example, the CKM factors in both amplitudes carry the same phases,
as can easily be seen thanks to the powers of λ and phases that have been written next to the
CKM terms on the figure. However, as in many other decays, the penguin diagram is sup-
pressed compared to the tree diagram [? ], which have SM couplings. Thus, SM contributions
in the loop dominates over possible effects from non-SM couplings and a clean interpretation
for the time-dependent asymmetry is obtained: ACP (∆t) = sin2β sin (∆md∆t). The mea-
surement of CP violation in this channel constitutes one of the main achievements of the B
Factories. It plays the role of a benchmark with which to compare measurements of sin2β,
e.g. in b→ qqs transitions, possibly affected by new physics.

In a general way, tree diagrams are usually cleaner in their theoretical interpretation
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Figure 1.5: Diagrams demonstrating the potential for new physics sensitivity in b → s
penguin diagrams. On the left, a charged Higgs, predicted by the MSSM, enters the loop
possibly carrying a complex coupling constant. On the right, the loop is formed by a gluino
and (anti)squarks, enhancing the SM amplitude. Supersymmetry has potentially large effects
on flavor observables, since squarks may change flavor while propagating, e.g, the loop on the
right could be produced by a gluino and a bottom squark that turns into a strange squark
in the middle of the loop [? ].

than penguin diagrams. However, in some specific transition modes, the tree diagrams can
be suppressed compared to penguin diagrams, as it is the case for b → sγ transitions.
Furthermore, since SM parameters are now well constrained, any deviations due to unknown
physics should be small compared to SM predictions. Such modes are therefore particularly
interesting in the indirect search for new physics at the electroweak scale, due to the absence
of a tree contribution which could overshadow effects from possible new physics. They are
also complementary to direct searches performed in high-energy colliders such as in hadronic
colliders like the LHC.
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Chapter 2

The photon polarization in radiative
B decays and the K1(1270) resonance
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Study of FCNC processes, such as b → sγ transitions, can provide strong constraints on
NP. In the SM, the Glashow-Iliopoulos-Maini (GIM) mechanism [? ] implies that FCNC
processes are forbidden at the tree level and only occurs through a loop or box diagrams,
where heavy virtual particles can propagate. Since the presence of such heavy particles
influences the predicted values of physical observables, the study of b → sγ processes could
reveal the existence of yet unknown particles introduced by NP models.

The SM predicts that photons emitted in b → sγ decays are left-handed, up to small
corrections of order ms/mb (see Sec. 2.1), while being right-handed in b → sγ. In several
models beyond the SM the photon in b→ sγ acquires an appreciable right-handed component
due to the exchange of a heavy fermion in the electroweak loop process. The branching ratio
of inclusive B → Xsγ process is currently experimentally known up to a quite high level of
precision (B(B → Xsγ)exp. = (3.43±0.21±0.07)×10−4 [? ]) and agrees reasonably well with
the SM predictions obtained at the next-to-next-to-leading order in QCD (B(B → Xsγ)th. =
(3.15±0.23)×10−4 [? ]). On the other hand, as detailed in Sec. 2.2, up to date, no evidence
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2.1 The photon polarization

exists for the helicity of the photons in exclusive decays. In some NP models [? ? ? ], the
right-handed component may be comparable in magnitude to the left-handed component,
without affecting the SM prediction for the inclusive radiative decay rate, which motivates
independent measurements of the photon helicity in several exclusive radiative decay modes.

2.1 The photon polarization

In the SM, the quark level b→ sγ vertex is given (without QCD corrections) by:

sΓb→sγ
µ b =

e

(4π)2
g2

2M2
W

V ∗
tsVtbF2siσµνq

ν (mbPR +msPL) b , (2.1)

where q = qb − qs with qb and qs the four-momenta of the b and s quarks, respectively, F2

is the loop function, whose expression can be found in [? ], PL and PR are the projection
operators as defined in Eq. 1.2, Vts and Vtb are the leading CKM matrix elements appearing
in the loop diagram, and σµν are the commutators of the Dirac γ 4× 4 matrices.

Once fixing the three momentum direction such as qµ = (|q|, 0, 0, |q|) in the b quark rest
frame, and defining the right- and left-handed polarization vectors as

ǫµR,L = ∓ 1√
2









0
1
±i
0









, (2.2)

it is possible to compute the helicity amplitude and to demonstrate that

sLiσµνq
νbRǫ

µ∗
R = sRiσµνq

νbLǫ
µ∗
L = 0 . (2.3)

From Eq. 2.3 one can see that the first (second) term in Eq. 2.1 are non-zero only when
multiplying the b → sγ vertex by the left (right)-handed polarization vector. This shows

*

qbV
b

qsV

+
W

s

γ

t,c,u

Figure 2.1: Feynman diagram of b → sγ transition in the SM. The loop being dominated
by the top quark, the weak couplings are given by |V ∗

qb| ∼ 1 and |Vqs| ∼ λ2. In this transition,

since the b→ sγ transition is a two-body back-to-back decay in the b rest frame, and due to
the helicity conservation the photon must be right-handed, while being left-handed in b→ sγ.
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that the term proportional to mb in Eq. 2.1 describes b → sγL transitions, while the term
proportional to ms describes b→ sγR transitions. Therefore, due to the fact that the b quark
is much heavier than the s quark (i.e. ms/mb ∼ 0.02), the SM predicts that photons emitted
in b → sγ decays are predominantly left-handed. In a similar manner, photons emitted in
b → sγ decays are predominantly right-handed. Figure 2.1 shows the Feynman diagram of
the quark level b→ sγ transition in the SM.

When considering cascade decays of the type B → Kresγ → Kππγ, the weak B → Kresγ
amplitudes involving left- and right-handed photons, denoted cL and cR, respectively, need to
include QCD corrections compare to the quark level transition described above. For b→ sγ
process, QCD corrections can typically be described using an effective Hamiltonian defined
as

Heff = −4GF√
2
V ∗
tsVtb

8
∑

i=1

Ci(µ)Oi(µ) + C ′
i(µ)O′

i(µ) , (2.4)

where the Ci and Oi are, respectively, the short-distance Wilson coefficients and local long-
distance operators related to b → sγL transitions, the primed operators being related to
b → sγR transitions. GF is the Fermi constant, which is related to the coupling constant of
the weak interaction (g) and the mass of the W boson (MW ) such as GF ∝ g2/M2

W .
One can make an intuitive interpretation of Heff . The picture of a decaying hadrons with

masses of order O(mb), is more properly described by effective point-like vertices which are
represented by the local operators Oi. The Wilson coefficients Ci can then be regarded as
coupling constants associated with these effective vertices. Thus Heff is simply a series of
effective vertices multiplied by effective coupling constants Ci.

The µ dependence is the renormalization scale whose value can be chosen arbitrarily. It
serves to separate the physics contributions to a given decay amplitude into short-distance
contributions at scales higher than µ and long-distance contributions corresponding to scales
lower than µ. It is customary to choose µ to be of the order of the mass of the decaying
hadron, in the present case mb.

The leading contribution to Heff comes here from the electro-magnetic operator, O7γ,
describing the photon penguin diagram, and which is defined as

O7γ =
e

16π2
mbsLσµνbRF

µν , (2.5)

where F µν denotes the electromagnetic field strength tensor, while the primed electro-
magnetic penguin operator O′

7γ is defined as

O′
7γ =

e

16π2
mbsRσµνbLF

µν . (2.6)

Note that when only considering the contribution of the dominant O7γ operator in Heff , and
making the Fourier transform −σµνFµν → 2iσµνq

ν , the effective hamiltonian is equivalent to
the first term in Eq. 2.1.

The other operators, with subleading contributions, are the current-current operators
O1 and O2, corresponding to diagrams where two quark lines exchange a W boson; the
QCD penguin operators O3 to O6, corresponding to the same diagrams with an additional
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2.1 The photon polarization

gluon exchange between the two quark lines; the chromomagnetic gluon penguin operator
O8 corresponding to loop diagrams where a gluon is emitted from the virtual up-type quark
line.

In the SM, primed operators related to b → sγR transitions with i ≤ 6 are predicted to
have no contribution. Thus, only O′

7γ and O′
8 contribute, but are negligible since C ′

7γ and
C ′

8 Wilson coefficients are suppressed compared to C7γ and C8 such as

C ′
7γ

C7γ

=
C ′

8

C8

=
ms

mb

∼ 0.02 . (2.7)

Since in Heff the O7γ operator is dominant at the leading order, it is possible to absorb
the subleading contribution from Oi 6=7 into an effective Ceff

7γ coefficient such as the amplitude
of b→ sγ can be written

M(b→ sγ)LO = 〈f |Heff |i〉 = −4GF√
2
V ∗
tsVtb

(

C
(0)eff
7γ (µ) 〈f |O7γ|i〉+ C

′(0)eff
7γ (µ)

〈

f |O′
7γ|i
〉

)

,

(2.8)
where i and f denotes the hadronic initial and final states, respectively, and 〈f |O7γ|i〉 are

the hadronic matrix elements of O7γ between i and f . The coefficient C
(0)eff
7γ (µ) denotes

the leading logarithmic expression to Ceff
7γ . The matrix elements summarize the physics

contributions to the amplitude M(b→ sγ) from scales lower than µ, often chosen as of the
order mb.

Theoretical calculations have shown that, even though the contribution of the sublead-
ing operators was small, they can not be completely neglected. Indeed from Ref. [? ] a

significantly larger value of C
(0)eff
7γ compared to C

(0)
7γ is obtained. The observed enhancement

is due to short-distance QCD corrections, which appear to be large for the b→ sγ process.

Recent developments were made in computing the perturbative QCD corrections to the
matrix element part [? ? ]. From these developments, it appeared that contributions of
higher order diagrams in the SM could possibly enhance opposite photon polarization (i.e.
right-handed photons in b → sγ). Many efforts to evaluate such effect have been made in
the case of B → K∗γ decays [? ? ? ? ]. Calculations from Refs. [? ? ] indicate an opposite
photon helicity contamination up to 10%. However, these predictions appear to be strongly
model dependent and do not agree with each other. Some suggest much smaller values of
the contamination from opposite sign helicity photons. In some cases, right-handed photons
contribution is even found to be reduced by ∼ 20% [? ? ] with respect to the leading ms/mb

term. Thus, it clearly appears that further theoretical works are required to give a more
rigorous conclusion.

Several NP models introduce contributions to the b→ sγ process such as the proportion
of right-handed photons could be significantly enhanced. As previously emphasized, many
of such NP models allow for a large contribution of right-handed photons, which result is
a large coefficient to the right-handed electro-magnetic operator O′

7γ, without affecting the
SM prediction of the inclusive B → Xsγ branching ratio.
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Figure 2.2: One of the Feynman diagrams of b → sγ transition in MSSM. The loop is
formed by a gluino, the SUSY partner of a gluon, and (anti)squarks. In the SM the right-
handed contribution are suppressed by a factor ms/mb due to the left-handed coupling of
W to quarks, while in MSSM this suppression can be reduced due to right-handed couplings
appearing in the loop: undiscovered heavy fermions f contributing to the penguin loop would
provide an enhancement of mf/mb to the helicity-flip amplitude.

Supersymmetric (SUSY) models are an example of NP models that bring extra source of
flavor violation. One such model is the Minimal Supersymmetric Standard Model (MSSM),
which is a minimal supersymmetric extension of the SM. The MSSM introduce superpartners
to each SM particle and two Higgs doublets. For instance, the superpartners to quarks are
called the squarks. Since there is no theoretical constraint on the mass of these hypothetical
new particles, the only constraints come from experiments. Until now, no evidence of such
superpartners was found in direct searches at existing high-energy collider experiments. As
a consequence, new particles from NP models, such as MSSM, are required to be very heavy
compared to SM particles. The masses and mixing parameters are generated through the
soft supersymmetric breaking mechanism [? ].

Once the mechanism of the SUSY breaking specified, it is possible to express, the soft

breaking part1 of the Lagrangian in MSSM. After the spontaneous symmetry breaking, it
appears that the squark mass can come from any combination of left- and right-handed
couplings. Since the squark mass matrices and the couplings are not diagonal in the quark
basis, the squark propagator can change flavor and chirality. In particular, the chirality can
be flipped on the squark propagator in the loop of b→ sγ, which can lead to a right-handed
photon emission. One Feynman diagram of such process in MSSM is shown in Fig 2.2.

1In MSSM, the structure of the Lagrangian is similar to the one of the SM. The part of the MSSM
Lagrangian corresponding to the Yukawa couplings is called the soft breaking part, which consists of mass
terms for scalar fields (namely the left- and right-handed squark and slepton fields and the two Higgs fields),
Higgs mixing terms, trilinear scalar couplings and gaugino (the superpartners of gauge bosons) mass terms.
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2.2 Physical observables and experimental status

As the photon polarization is not directly measurable, several methods have been proposed
in order to measure it in b → sγ processes. A few of them are briefly described in this
Section.

2.2.1 Mixing-induced CP asymmetry

One method to probe the photon helicity is to perform an indirect measurement via a time-
dependent CP asymmetry analysis in neutral B mesons. This strategy is the one adopted
in the present thesis.

In the case of the radiative decay of a neutral B meson to a hadronic CP eigenstate fCP ,
B0(t) → fCPγ, where the B meson state is identified (tagged) as a B0 (rather than a B0) at
time t = 0, the time-dependent CP asymmetry is given by [? ]

ACP (t) =
Γ(B0(t) → fCPγ)− Γ(B0(t) → fCPγ)

Γ(B0(t) → fCPγ) + Γ(B0(t) → fCPγ)
(2.9)

≃ −ξ sin(2ψ) sin(φM − φL − φR) sin(∆Mt) (2.10)

= SfCP sin(∆Mt) , (2.11)

where SfCP is the mixing-induced CP violation parameter, ξ ≡ CP (fCP ) = ±1 and

Γ(B0(t) → fCPγ) = |ML(t)|2 + |MR(t)|2 ,

Γ(B0(t) → fCPγ) =
∣

∣ML(t)
∣

∣

2
+
∣

∣MR(t)
∣

∣

2
, (2.12)

with ML and MR corresponding to the total amplitudes involving left- and right-handed
photons, respectively. In order to obtain Eq. 2.10, both direct CP violation (CfCP ) and
the small width difference, compared to the mass difference between the B meson mass
eigenstates, are neglected.

In Eq. 2.10, sin(2ψ) parametrizes the relative amount of left- and right-handed photons
and is defined as

sin(2ψ) ≡ 2|MLMR|
|ML|2 + |MR|2

; (2.13)

the phase φM is the one appearing in the B0B0 mixing such as φM = 2β for B0
d mesons and is

almost zero for B0
s mesons; φL,R are the relative CP -odd weak phases in the b→ sγ process,

and are defined as

φL,R = sin−1

(ℑ(ML,R)

|ML,R|

)

. (2.14)

In the SM, φL,R are predicted to be almost zero (O(λ4)). Since the right-handed amplitude
is suppressed in the SM, the time-dependent asymmetry is such as

ASM
CP (t) ∼ 0 . (2.15)

From this method, it appears that, although an observation of ACP (t) 6= 0 would immedi-
ately indicate the existence of NP contributions, it is not possible to determine quantitatively
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The photon polarization in radiative B decays and the K1(1270) resonance

the ratio MR/ML, which is related to |C ′eff
7γ /C

eff
7γ |. Indeed ACP (t) measures a combination of

MR/ML and the CP violating phases in b→ sγ as well as in BB mixing. Therefore in the
case of an experimental result that would measure a deviation of ACP (t) from its predicted
value in the SM, one can only fix the CP violating phases φM,L,R as given by several NP
models in order to discriminate the one that describes the best the observed value of ACP (t).

Several exclusive radiative decay modes have been studied in time-dependent CP violation
analyses. Due to experimental constraints, such analyses appear to be very challenging in
hadronic colliders, and the best results to date come from the B Factories.

In the B → K0
S
π0γ decay process, where the SM predicts S ≈ −0.028 [? ], both BABAR

and Belle have performed measurements of the mixing-induced CP asymmetry parameter
S, and reported SK0

S
π0γ = −0.78 ± 0.59 ± 0.09 [? ] and SK0

S
π0γ = −0.10 ± 0.31 ± 0.07 [? ],

respectively. Moreover in the mass region of the K∗(892), BABAR reported SK∗γ = −0.08±
0.31 ± 0.05 [? ], and Belle SK∗γ = −0.32+0.36

−0.33 ± 0.05 [? ]. Note that in the B0 → K∗0γ
decays, the LHCb collaboration have reported a precise measurement [? ] of the direct CP
asymmetry, ACP = 0.008 ± 0.017 ± 0.009, corresponding to the parameter C in the time-
dependent CP asymmetry. This result is in good agreement with the SM predictions and
consolidates one of the assumptions made in Eq. 2.10.

Belle has also performed a time-dependent CP asymmetry measurement of B0 → K0
S
ρ0γ

decays, where the SM predicts S ≈ 0.03 [? ], and reported SK0
S
ργ = 0.11± 0.33+0.05

−0.09 [? ].

2.2.2 Other methods

One other method, proposed by Gronau et al. [? ? ], allows a direct determination of the
photon polarization by studying the angular distribution in the B → Kresγ → Kππγ decay.
This method uses the angular correlations among the final hadronic decay products Kππ in
order to extract the polarization λγ defined as

λγ =
|cR|2 − |cL|2
|cR|2 + |cL|2

, (2.16)

where cL and cR are the amplitudes involving left- and right-handed photons, as described
in the previous Section. They are related to the Wilson coefficients such as

cR = gKres
+ C

(0)eff
7γ , cL = gKres

+ C
′(0)eff
7γ , (2.17)

where gKres
+ are hadronic form factors at q2 = 0, which have been computed using several

models [? ? ? ? ? ? ]. Since in the SM the photon in B decays is dominantly right-handed,
it implies |cL|2 ≪ |cR|2, such that λγ ≈ 1 holds for radiative B decays, while λγ ≈ −1 applies
to radiative B decays. The determination of λγ is done via the measure of an observable
called the up-down asymmetry Aud representing the asymmetry between the measured signal
rates with photons emitted above and below theKππ decay plane in theKres reference frame.

The LHCb collaboration recently reported the first measurement of the up-down asym-
metry in B± → K±π±π∓ decays giving Aud = −0.085± 0.019(stat)± 0.003(syst) [? ]. This
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2.3 Status of the K1(1270) resonance description

result is 4.6σ away from zero, showing evidence for photon polarization in b→ sγ transitions.
However, the current theoretical status do not allow to link directly Aud to λγ, in which case
a value for the photon polarization can be determined from this result.

Another angular analysis method is based on the angular distribution of the four-body
final state in the B0 → K∗0(→ K−π+)ℓ+ℓ− decay in the low ℓ+ℓ− invariant mass region [? ].
Many observables involving different combinations of K∗ spin amplitudes, which are related
to the cL and cR amplitudes, and therefore to the C7γ and C ′

7γ Wilson coefficients, can be
studied.

The latest experimental results were reported by the LHCb collaboration in the analysis
of B → K∗e+e− [? ] and by the LHCb [? ] and CMS [? ] collaborations in the analy-
sis of B → K∗µ+µ−. No enhancement of the emission of right-handed photons in b → sγ
process have been observed, and all these results are in good agreement with SM predictions.

2.3 Status of the K1(1270) resonance description

In the present thesis, the mixing-induced CP asymmetry parameter SK0
S
ργ is determined

from the effective value of S (SK0
S
π+π−γ), which is extracted from a time-dependent analysis

of B0 → K0
S
π+π−γ decays. SK0

S
ργ is related to SK0

S
π+π−γ, by a dilution factor DK0

S
ργ depend-

ing on the amplitudes of intermediate hadronic resonances appearing in the decays of the
kaonic resonances in the cascade B → Kresγ → Kππγ. From the five kaonic resonances in
the Kππ invariant mass range below 1.8GeV/c2, the dominant contribution is expected to
originate from the axial-vector resonance K1(1270) [? ]. Therefore a good understanding of
the K1(1270) properties is useful in order to correctly model the Kππ resonant structure.

In this section we give a brief overview of the status on the K1(1270) resonance descrip-
tion. For a more complete description, see [? ].

2.3.1 Axial-vector K1 resonances

The resonances K1(1270) and K1(1400), close in mass, were disentangled for the first time
in 1977 at SLAC [? ] and a few years later by the ACCMOR collaboration at CERN [?
], in experiments on the diffractive production of the 1+(Kππ) system in the Kp → Kππp
reaction. The fact that the relative ratios of the two dominant decay modes, K∗π and Kρ,
are different between the K1(1270) and the K1(1400) resonances, i.e. the Kρ(K

∗π) channel
of K1(1270)(K1(1400)) is dominant, indicates that the two strange axial-vector resonances
are the mixtures of non mass eigenstates K1A and K1B. Using conventions from [? ], the
mass eigenstates can then be defined as

|K1(1270) 〉 = |K1A 〉 sin θK1 + |K1B 〉 cos θK1 , (2.18)

|K1(1400) 〉 = |K1A 〉 cos θK1 − |K1B 〉 sin θK1 , (2.19)
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The photon polarization in radiative B decays and the K1(1270) resonance

where θK1 is the mixing angle. In some theoretical predictions [? ], two possible solutions
were found for the value of the mixing angle: θK1 ≈ 33◦ or 57◦.

The first experimental measurement of the mixing angle was performed at SLAC [? ]
from the couplings to the K∗π and Kρ channels, and gave θK1 = (41 ± 4)◦. Results from
the partial wave analysis done by the ACCMOR collaboration yielded θK1 = (64± 8)◦ and
θK1 = (54±4)◦ for the low and high momentum transfer to the recoiling proton, respectively2.

Results from τ decays in the K1(1270) or the K1(1400) resonances and a neutrino, from
experiments at LEP, indicate that the production of K1(1270) is favored with respect to that
of K1(1400) [? ? ? ]. The mixing angle determined by CLEO [? ] is consistent with the
predictions given by [? ].

More recently, the Belle collaboration also reported the observation of the K1(1270) and
the K1(1400) resonances in radiative B decays [? ]. They observed that the branching frac-
tion of the decay B → K1(1400)γ was very suppressed compared to that of B → K1(1270)γ;
B(B+ → K1(1270)

+γ) = (4.3± 0.9(stat.)± 0.9(syst.))× 10−5, while only an upper limit was
reported for K1(1400): B(B+ → K1(1400)

+γ) < 1.5×10−5 at 90% CL. In this context, a de-
tailed study of the B → K1(1270)γ and B → K1(1400)γ decays in the light-cone QCD sum
rules approach was performed [? ]. The predicted branching fractions, B(B+ → K1(1270)

+γ)
and B(B+ → K1(1400)

+γ) are in agreement with the Belle measurement.

In the present analysis, the values of the branching fractions of B → Kresγ decays is
important. Indeed in a preliminary stage of the analysis we rely on existing measurements
and theoretical estimations of these branching fractions to model the signal.

2.3.2 The Kπ S-wave in K1(1270) decays

Some contradictions appear in the literature the branching fractions of the K1(1270) decay
modes. The PDG gives [? ]:

• B(K1(1270) → Kρ) = 0.42± 0.06 ;

• B(K1(1270) → K∗
0(1430)π) = 0.28± 0.04 ;

• B(K1(1270) → K∗π) = 0.16± 0.05 ;

• B(K1(1270) → Kω) = 0.11± 0.02 ;

as well as a small contribution of the Kf0(1370) channel. All these branching fractions are
extracted from the results from ACCMOR. Looking at the K∗

0(1430)π channel, one can have
doubts about the PDG interpretation of the ACCMOR results. Indeed, in the original pa-
per [? ], a reference is made to a strongly coupled peak in the “scalar + π” channel around
the mass MKππ ∼ 1270MeV/c2, but there is no reference to the scalar being the K∗

0(1430)
resonance. In the ACCMOR paper, the scalar meson is parametrized with a mass M of
≃ 1.25GeV/c2 and a large width of Γ ≃ 600MeV/c2, and can be treated as a continuum

2Note that different conventions were used to define the K1 mass eigenstates (see Eqs. 2.18 and 2.19) by
the two groups. Therefore, adopting conventions from [? ] implies that θK1

= θACCMOR
K1

= 90◦ − θSLAC
K1

.
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(Kπ)S−wave component.

The Belle collaboration performed an analysis of B → J/ψ (ψ′)Kππ decays [? ], and mea-
sured the branching fractions of B+ → J/ψK+π+π− and B+ → ψ′K+π+π−. In both decay
modes, since the Kππ final state originates from various Kres and as the K1(1270) turned
out to be dominant, a detailed study of K1(1270) → Kππ was also done. The branching
fraction of the K∗

0(1430)π channel was measured to be B(K1(1270) → K∗
0(1430)π) ≃ 2%,

which is much smaller than the value given by the PDG. Note that in the Belle analysis the
K∗

0(1430)π channel is described as a scalar resonance of massMK∗
0 (1430)

= (1425±50)MeV/c2

and width ΓK∗
0 (1430)

= (270± 80)MeV/c2 using a Relativistic Breit-Wigner line shape, which
is different from the scalar meson parametrization used in the ACCMOR analysis. However,
they did not observe any other “lower scalar + π” component in the decay of K1(1270), the
“missing” branching fraction being mainly absorbed by an enhancement of the Kρ channel.

From the comments above, the presence of K1(1270) → (Kπ)∗0π decays, where (Kπ)∗0
denotes a very wide scalar meson, should be considered when studying K1(1270) → Kππ
decays. One candidate is the K∗

0(800) [? ], also referred to as κ. Finally, one surprising
fact, as noticed by [? ], is that there is no evidence for the presence of a κπ channel in the
K1(1400) decay.

2.3.3 Width of the K1(1270)

When the mass of one resonance at the peak is close to a decay threshold, such as in the
K1(1270) → Kρ decay, different definitions of the resonance width are no longer equiva-
lent. One definition is the width at the peak, Γ(Mpeak), that can be predicted using the
K-matrix formalism [? ]. Another definition is the full width at half maximum, ΓK1(M),
of the Breit-Wigner distribution. In the latter case, the width appears to be smaller than
in the former case. Indeed the ACCMOR collaboration measured the K1(1270) width to be
ΓK1(1270) = 90 ± 8MeV/c2 [? ], in which case it is assumed to correspond to the full width
at half maximum. On the other hand, the theoretical calculation of Ref. [? ], using the K-
matrix couplings, gives a value of the width at the peak of the order ΓK1(1270) ≈ 200MeV/c2.
This prediction contains a sum over all possible intermediate states including κπ.

In the analysis of B → J/ψ (ψ′)Kππ decays, Belle also studied the parameters of the
K1(1270) resonance, by floating its mass and width in an additional fit to the B+ →
J/ψK+π+π− data. The averaged mass given by the PDG is MK1(1270) = (1272± 7)MeV/c2,
which is very close to the one reported by the ACCMOR collaboration (MK1(1270) = (1270±
10)MeV/c2). Belle observed a smaller mass,MK1(1270) = (1248.1±3.3(stat.)±1.4(syst.))MeV/c2,
and a larger width ΓK1(1270) = (119.5 ± 5.2(stat.) ± 6.7(syst.))MeV/c2 compared to ACC-
MOR measurement. Note that since the total width depends on the contributions of the
decay modes, these results are correlated to the fact that in Belle analysis, the “scalar + π”
channel is almost absent, increasing the proportion of K∗π and Kρ. However, the floated
width is much smaller than 200MeV/c2 as would be expected from the calculation using the
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K-matrix formalism.

As a conclusion, one should keep in mind that the measured values of the K1(1270)
width are smaller than the expected one obtained by theory, and should therefore consider,
if possible, not to fix this parameter in analyses involving K1(1270) → Kππ decays.
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BABAR and PEP-II
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Overview

As previously discussed in Chapter 1, CP violation phenomena lead to particularly large
asymmetries in the case of the B0 mesons (composed of a bottom antiquark and a light d
quark) decaying to states common to both B0 and B0. In addition, for these mesons, the
period of these particle-antiparticle oscillations was comparable to their lifetimes [? ? ],
which mean that the interfering amplitudes are of the same order, and make the B system
the best choice to study CP violation. However, the same phenomenon also impeded the
experimental determination of the flavour (i.e. B0 or B0) of the particle in decay, a sine qua

non to compare the decay rates of both flavours. The proposed solution involved using pairs
of B0-B0 mesons produced in the quantum mechanical state of entanglement, one of them
decaying to the channel of interest, and the other one to a final state that uniquely determines
its flavour (a flavour eigenstate). The entanglement implies that, at the precise moment of
the decay of the latter, the former meson would be its antiparticle, and that its flavour at
decay time could be determined as well by evolving its known state in time (tagging). Thus,
measuring CP asymmetries between the B mesons requires simultaneous reconstruction of
the decay products of both B mesons and measurement of the time difference between their
decays (see Figure 2.3 and Section 7.1.1 for more details).

The lifetime of the B mesons (∼ 1.5 ps) make impractical any such measurements using
symmetric e+e− colliders, since the small distances travelled in the detector would be washed
out by the resolution of the instrument. Therefore, Pier Oddone had the idea of building an
asymmetric e+e− collider, in which the centre-of-mass, and hence any particles produced,
would move in the laboratory frame with a relativistic boost large enough to extend those
distances into the measurable range [? ]. The BABAR and Belle experiments were built based
on this idea, associated to e+e− asymmetric colliders (PEP-II and KEKB, respectively) with
the centre-of-mass energy tuned to the Υ (4S) resonance, which decays almost uniquely to
B0

dB̄
0
d and B+

u B
−
u pairs with equal probabilities. The advantages over a hadronic collider are

substantial, a number of factors contributing to the much cleaner environment and hence to
better event reconstruction: the low multiplicity of the events (with an average of 11 charged
tracks per event), the relatively large signal-to-background ratio (σBB/σtotal hadronic ≃ 0.28),
the possibility of reconstructing photons and π0 and a physics rate low enough (∼ 10 Hz)
for the detector not be overwhelmed by data during its dead time [? ]. Furthermore, the
precise knowledge of the kinematical state of the e+e− system allows for a complete recon-
struction of the event and naturally provides us with background discriminating variables
(Section 5.3). In addition, running at the Υ (4S) resonance and using the advantage of quan-
tum entanglement, greatly helps in the tagging process by forcing the two particles to remain
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a particle-antiparticle pair for as long as both exist. In a hadronic environment, such a state-
ment is no longer true and the tagging efficiencies fall dramatically for two reasons: first, the
higher track multiplicity is an obstacle to finding the particle whose charge uniquely tags
the flavour of Btag; second, determining the flavour of Brec requires establishing the flavour
of Btag, evolving it back to the production point, and then forward to the Brec decay vertex,
thus depending strongly on the accuracy in the inference of the production point.

These properties, together with a large data sample consisting of ∼ 108 BB pairs, are the
necessary ingredients for BABAR’s main physics goals: precisely measuring the CP violating
time-dependent asymmetries and constraining the CKM matrix elements. Secondary physics
interests are rare B decays, such as the subject of this thesis, charm and τ physics, and
QCD and two-photon physics. Other quantum electrodynamic processes, such as muon pair
production, are mostly filtered due to their large cross-sections, some of them being used for
calibration and luminosity measurement purposes. Specifically, the integrated luminosity is
calculated to great accuracy by examining the accumulated samples of e+e− → e+e− (γ),
e+e− → µ+µ− (γ) and e+e− → γγ, processes for which the cross-sections are extremely well
understood thanks to QED.

 

Figure 2.3: In many processes of interest, Brec decays to a channel that can be reached
by both a B0 or a B0. Evaluation of the CP violating asymmetries requires knowing the
flavour of the B meson at its decay time. This is achieved by identifying the decay channel of
the other B meson, Btag, often only partially reconstructed. If Btag decays into a state that
uniquely determines the flavour of its parent particle, e.g. B0 → D∗+X, then the knowledge
of the difference between the decay times of both B’s allows us to infer the flavour of Brec.
The time elapsed between the two decays can be calculated from the distance ∆z measured
between the two B decay vertices along the beam direction, z.
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The constraints posed to the accelerator and detector configurations by the difficulties of
time-dependent analyses as well as the high luminosities needed to achieve the physic goals
are discussed in Chapters 3 and 4, respectively.
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Chapter 3

An asymmetric e+e− collider: PEP-II

Contents
3.1 The LINAC and the storage ring . . . . . . . . . . . . . . . . . . 38

3.2 The interaction region . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Machine backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 The injection system . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

For the time-dependent CP violating asymmetries arising in neutral B mesons to be mea-
sured, an asymmetric collider is required. The boost of the B mesons in the laboratory
frame allows the distance between the decay vertices of the two mesons to be measured,
from which the time between the decays of the two particles can be inferred.

The asymmetry is achieved by injecting into the PEP-II storage rings 9.0GeV e− and
3.1GeV e+ beams which, upon collision, result in a boost of βγ = 0.56 along the e− beam
direction in the laboratory frame for the centre-of-mass of the particles produced. The
centre-of-mass energy is tuned to the Υ (4S) mass, 10.58GeV, for 90% of the running time,
the remaining 10% being set 40MeV below the resonance peak. The first sample, known as
the On-Peak sample, contains the BB events, whereas the second one, called the Off-Peak

sample, is recorded for background characterization purposes. The light quark processes
e+e− → qq, q = u, d, s, c which constitute the most prominent background to the BB events
are the only hadronic reactions allowed below the Υ (4S) threshold.

The injection is carried out using the two mile long Stanford Linear Accelerator, which
diverts a fraction of the accelerated electrons to produce positrons in collision with a high-Z
stationary target. These are then directed back to the linear accelerator to be brought to
their nominal energy before entering the storage rings. Once there, the electrons and the
positrons, which circulate in bunches along physically separated rings, are collided in one
Interaction Region, in which the BABAR detector is located.
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An asymmetric e+e− collider: PEP-II

3.1 The LINAC and the storage ring

PEP-II is made of two storage rings of 2.2 Km of circumference in which the collision takes
place. Fig 3.1 shows an schematic view of the PEP-II collider and the LINAC accelerator.
The LINAC (LINear ACcelerator) constitutes the PEP-II injection system. It is 3 Km long
and accelerates the particles up to their nominal energies. The LINAC is a facility also used
for other purposes, being able to produce beams with energies up to 50GeV. The electrons
and positrons used by PEP-II only use part of the accelerator capabilities. These electrons
and positrons produced in the LINAC are accelerated until their nominal energies, and then
injected to PEP-II storage rings placed at the end of the linear accelerator. Once there, the
electrons and positrons, which circulate in bunches in separate rings, are made to collide at
the IP, around which the BABAR detector is located.

Figure 3.1: The linear accelerator at SLAC and the PEP-II collider.

The High Energy Ring (HER) produces electron beams with 9.0GeV of energy, while the
Low Energy Ring (LER), delivers positrons with an energy of 3.1GeV, which upon collision,
result in a boost of βγ ∼ 0.56 along the e− beam direction in the laboratory frame. This
boost allows the measurement of the Brec/Btag mesons time difference (see Sec. 7.1.2). The
parameters for these storage rings are summarized on Tab. 3.1.

3.2 The interaction region

The Interaction Region is heavily instrumented with magnets that focus the beams before the
collision, directs them so that there is no crossing angle between them, and finally separates
them before a given bunch of particles collides with a second bunch from the other beam
(see Figure 3.2). The quadrupole magnets labelled QD and QF, situated outside the BABAR
detector, focus the high and low energy beams. The dipoles labelled B1 are responsible for
bringing the beams together and separating them immediately afterwards. This is the reason
why they need to be close to the interaction point; in fact, within the detector volume.
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3.3 Machine backgrounds

Figure 3.2: Schematic view of the Interaction Region. Observe the strong bending needed to
make the two beams collide head-on, that results in the most prominent machine background:
synchroton radiation.

3.3 Machine backgrounds

Accelerator backgrounds may degrade the detector performance and must thus be prevented,
since they may cause sustained radiation damage and prolonged dead times where the detec-
tor subsystems readout is inactive. The main origin of these backgrounds is the synchrotron
radiation around the IP, followed by the beam particles interaction with the residual gas
in the storage rings and the electromagnetic showers generated in beam-beam collisions. A
serious background can find it’s origin in synchrotron radiation in the nearby dipoles, the
Q1 quadrupoles and B1 dipoles. Beam orbits, vacuum-pipe apertures and synchrotron ra-
diations masks have been conceived in a way that leads the majority of these photons to a
distant dump and before they can enter the BABAR acceptance the remnants are submitted
to various scatters.

Eventually beam particles may escape the acceptance of the ring and hit the beam pipe,
thus causing electromagnetic showers that disseminate on the detector. Such events are
caused by beam-gas bremsstrahlung and Coulomb scattering of residual gas molecules. To
avoid this there are vacuum pumps that ensure the residual pressure to a minimal level and
collimators that remove beam tails generated by betatron oscillations and beam-gas interac-
tions. Aside from the DIRC, the main cause of radiation damage in the SVT and the major
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An asymmetric e+e− collider: PEP-II

source of background in all detectors systems is beam-gas scattering. Radiative Bhabha
scattering leads to low energy electrons or positrons that hit aperture limitations within a
few meters of the IP and spray BABAR with electromagnetic showers. This background is
proportional to the instantaneous luminosity, hence being the prevailing background in the
DIRC.

3.4 The injection system

In 1999, when BABAR started, the electrons and positrons were injected in the storage rings
in bunches of 109 particles with a frequency between (1 − 30)Hz and a mean time spacing
of 4 ns. In a normal operation the injection was made every (40− 50) min. These periods of
injection (of ∼ 5 min) generated intense backgrounds in BABAR. Also, the injection induced
dead time, as it was necessary to ramp down the high voltages of detector systems for pro-
tection purposes. The result was that data taking was periodically suspended. Moreover,
not only the recorded luminosity was not optimal, but the beam currents continuously de-
creased. From 2004 a system of continuous injection was settled, the trickle injection, where
a new injection is just performed if the instantaneous luminosity falls below a pre-established
threshold, and can be made continuously at a low rate. At first this was obtained for the
LER, with a gain in luminosity of 35% and afterwards applied in the HER, resulting in an
extra gain of 12%. The main disagreement of this new method consists in it’s difficulty
to limit the backgrounds created by the injection. But it was demonstrated through vari-
ous tests that these backgrounds could be kept to a manageable level and thus the trickle
injection has since it’s implementation become the default operation.

3.5 Performance

Within it’s first year of running, PEP-II achieved it’s design luminosity and accelerator
parameter objectives, having since never stopped improving them. Table 3.1 shows the
design objectives and the latest records achieved. The machine stopped running at the Υ (4S)
peak in September 2007, having recorded a total of 432.9 fb−1 integrated luminosity. After
that, the data taking was performed at the Υ (2S) and Υ (3S) resonances (which are located
at 10.023GeV and 10.355GeV [? ], respectively), finishing with integrated luminosities of
20.3 fb−1 and 14.5 fb−1, respectively. The best instantaneous luminosity reached a value of
1.2× 1034 cm−2s−1.

Table 3.1: PEP-II design parameters, and best achieved.

Parameter Design Best achieved
HER current (A) 0.75 2.07
LER current (A) 2.14 3.21
Luminosity (1033 cm−2s−1) 3.0 12.07
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Chapter 4

The BABAR Detector

Contents
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4.8 Online prompt reconstruction . . . . . . . . . . . . . . . . . . . . 57

CP -violation study as described at the beginning of this chapter lead to an asymmetric col-
lider, and therefore, since a uniform acceptance in the centre-of-mass system is preferred, to
an asymmetric detector as well. The main physics goals as well as physics under study place
additional stringent constraints on the detector. In this section, we state the main resulting
requirements on the BABAR detector, describing each subsystem and its performance in the
next sections.

The detector must comply with the following requirements:

• A high reconstruction efficiency for charged tracks and photons of momenta above
60MeV/c and 20MeV/c, respectively.

• Good photon energy and angular resolutions, in order to reconstruct and discriminate
π0 and η particles and for radiative decays.

• Very good momentum resolution of charged particles in the momentum range 60MeV/c
to 4GeV/c for signal-background separation.
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The BABAR Detector

• Excellent vertex resolution, to measure the typical distances associated to a time-
dependent analysis, βγcτB0 . 250µm.

• Excellent hadron and lepton identification capabilities, as these are crucial to the tag-
ging procedure. In particular, electrons and muons should be reliably identified, and
hadrons such as p,K, π should be distinguished.

• Dead times as short as possible, so that higher luminosities can be handled.

• Components resisting to radiation, in order for the efficiencies of the subsystems to
operate reliably under high background conditions over the lifetime of the experiment.

The final design of the detector, installed around the interaction point (IP) of the PEP-II
collider, was built to achieve these goals. It is a classic almost 4π acceptance detector, which
consists of five subsystems: the silicon vertex tracker (SVT), used to measure angles and
positions of charged particles coming from the displaced vertices of the B mesons and other
particles with similar lifetimes; the drift chamber (DCH), whose purpose is the measure-
ment of momentum of charged particles; the detector of internally reflected Čerenkov light
(DIRC), whose input for particle identification is essential (in particular K/π separation);
the electromagnetic calorimeter (EMC) made of CsI crystals, that allows to measure the
energies of photons and electrons; and the flux return (IFR), which serves as muon detector
and as a primitive hadronic calorimeter. The three subsystems are surrounded by a su-
perconducting solenoid, which generate in a uniform axial 1.5T magnetic field necessary to
measure the transverse momentum from the curvature of the tracks. Figure 4.1 shows the
whole detector, specifying each subsystem.

To maximize the geometrical acceptance for the boosted Υ (4S) decays, the detector is
shifted relative to the IP by 37cm in the direction of the LER. The convention adopted
in BABAR for the coordinate system follows a standard spherical-polar coordinate system
centred on the IP, the z axis being parallel to the e− beam direction, and θ and φ being the
usual polar and azimuthal angles, with a coverage extends to 350 mrad and 400 mrad in
the forward and backward directions, respectively. The cartesian axes form a right-handed
system with the x axis pointing outwards from the PEP-II ring and the y axis pointing
upwards.

4.1 The Silicon Vertex Tracker (SVT)

Physics requirements

The SVT [? ] is located just outside the beam pipe, at around 3 cm from its centre, and
has been designed to provide a precise reconstruction of the decay vertices near the IP. This
is critical for the measurement of the time-difference between B and B decays, and that of
the flight distances of D mesons and τ leptons. To achieve the necessary resolution in ∆t, a
resolution of 80µm must be attained in z for single-vertex measurements. In the xy plane,
distances of ∼ 100µm must be resolved for the correct reconstruction of secondary vertices
such as those from D and τ decays.
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4.1 The Silicon Vertex Tracker (SVT)
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The BABAR Detector

The SVT is also provides precise reconstruction of trajectories of charged particles and
tracking of low momentum particles, since for pt < 120MeV/c they are unlikely to reach the
drift chamber or produce enough hits in it. This is fundamental for the reconstruction of
the D∗ decay into a low momentum pion and a D meson, which is important in itself and
for tagging purposes.

Finally, the SVT also plays a role in particle identification through its own measurement
of ionization energy loss dE/dx, and by giving the best determination of the polar angle of
high momentum tracks, which is a necessary input to fully exploit the DIRC.

Design

Although maximum coverage is desirable, the B1 dipoles situated inside the detector (see
Fig. 3.2) and some support structures limit the SVT acceptance to the polar angles 20.1◦ <
θ < 150.2◦, which still comprises 90% of the solid angle in the centre-of-mass system. Another
constraint on the SVT design is that it must be able to withstand the irradiation associated
with being so close to the beam pipe, while still keeping the amount of material as low as
possible to avoid multiple Coulomb scattering.

The SVT consists of five concentric layers (300µm thickness each) of double-sided silicon
strips (see Fig. 4.2), where the strips on opposite sides of each sensor are mutually orthogonal,
thus providing the two coordinates at the impact location in φ and z, respectively, for each
hit.

The first three layers are composed of 6 modules each, slightly tilted to provide complete
coverage. Layers 4 and 5, having 16 and 18 modules respectively, produce the overlap
between neighboring strips, in order to avoid dead zones in φ, by alternating the radii at
which they are located. The three inner layers, having each 6 modules, give the position and
angle information for the measurement of the decay vertex position. In contrast the strips
in the two outermost layers are at a much larger radii and arch-shaped in order to reduce
the material a track goes through while providing complete coverage. The two innermost
layers are particularly important in determining the polar angle of a track, while the role of
the two outermost is to help in matching tracks to those found by the DCH. The third layer
provides extra information for low momentum tracks that may not reach the drift chamber.
Each of the five layers module contains from 4 to 8 silicon detectors and has its own readout
electronics. In total, the SVT has 340 silicon detectors covering a area of 0.96m2, with a
total of 150,000 readout channels.

To be able to meet the resolution goals, the local and global alignment of the SVT is
crucial. On a daily base and each time the SVT configuration changes, calibrations are
performed in absence of circulating beams. The local alignment, of the different modules
relative to each other, is only necessary after accesses to the detector. It is carried out by
fitting tracks from cosmic rays and e+e− → µ+µ− events. Global alignment, of the SVT
with respect to the rest of the detector, is done at the beginning of each run, by minimizing
the differences between the SVT and DCH tracks in a small sample of events. Due to the
very small distance of the SVT components with respect to the beam pipe, this detector is
significantly affected by radiation. In order to protect the detector, designed to resist to a
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4.1 The Silicon Vertex Tracker (SVT)
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Figure 4.2: End (top) and side (bottom) views of the Silicon Vertex Tracker, in which the
five layer structure and the arch shape of the outer layers can be appreciated.
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maximum of 5Mrad of integrated radiation dose, from high backgrounds, a customized online
protection system, called SVTRAD was used. It permits BABAR to stop automatically the
beams when the instantaneous or integrated radiation doses go above predefined thresholds.

Performance

The average track efficiency reconstruction of the SVT as measured in data on e+e− → µ+µ−

events is 97%, after excluding the defective strips. The efficiency of low momentum tracking
in the SVT enables to perform demanding physics analyses such as BABAR’s result onD0−D0

mixing [? ], in which extraordinarily large samples of D∗ mesons decaying to a charged pion
and a D meson are needed in order to tag the flavour of the neutral meson and detect the
minute oscillation.

The spatial resolution of the SVT hits can be evaluated by fitting high momentum tracks
without the hit in the layer under inspection and comparing the hit with the intersection
of the fitted track. The residuals are divided by the uncertainty on the track determination
to get the resolution. This is found to be better than 40µm, implying a vertex resolution
better than 70µm. The resolution on the ionization energy loss dE/dx measurements is
approximately 14%. A 2σ separation between kaons and pions can be achieved up to a
momentum of 500MeV/c, and between kaons and protons below 1GeV/c.

4.2 The Drift Chamber (DCH)

Physics requirements

The drift chamber [? ? ] is the main tracking system in the BABAR detector. The principal
purpose of the DCH is the efficient detection of charged particles and the measurement of
their angles and momenta (over a wide range of 0.12 < pt < 5.0GeV/c) with high precision.
This allows, with momentum and spatial resolution of σpt/pt < 0.3% and 140µm, respec-
tively, to reconstruct exclusive B and D meson decays with low background. It provides
one of the main inputs to the Level-1 trigger and plays a key role in the extrapolation of
tracks into the DIRC, EMC and IFR. Thus, the solid angle coverage must be as complete
as possible whilst minimizing the amount of material that the particles have to traverse.

The reconstruction of decay and interaction vertices of long-lived particles outside the
SVT volume, like the K0

S
(present in the final state of the decay channel studied in this

thesis, and in many other channels studied in time-dependent analyses), relies solely on the
DCH.

The vertexing of long-lived particles outside the SVT volume, such asK0
S
particles present

in the golden mode and in one of the channel studied in this thesis, as well as in many other
final states studied with time-dependent analyses, relies solely on the DCH. It requires the
drift chamber to measure longitudinal positions to better than 1mm.

Finally, the DCH also bears the responsibility for particle identification using the mea-
surement of the ionization energy loss dE/dx, for which the DIRC is not effective, and for
tracks that fall outside the acceptance of the latter in the forward region. The achieved
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4.2 The Drift Chamber (DCH)

design resolution of about 7% allows to separate kaons from pions up to momentum of
700MeV/c.

Design

The DCH is a 276 cm long cylinder located immediately outside the SVT, with inner and
outer radii of 23.6 and 80.9 cm, respectively. Figure 4.3 shows a longitudinal section of the
DCH, where the middle of the chamber in z is located asymmetrically with respect the IP to
increase the centre-of-mass acceptance, being offset by ∼ 370mm in the HER direction. It is
bounded in the radial direction by the support tube (the DIRC) at its inner (outer) radius.
It is formed from 40 layers of hexagonal drift cells (for a total of 7104 cells). The cells consist
of a sense wire in the centre, with a diameter of 20µm and kept at 1930 V , surrounded by 6
field wires, of 80 and 120µm diameters, that are grounded. The layers are grouped by four
into ten superlayers, with different stereo angles. The stereo angle is defined as the angle
between the cells wires and the z-axis, in a revolution plane around the z-axis. The stereo
angles of the superlayers alternate between axial (null stereo angle: A) and stereo (non-null
stereo angle: U,V) pairs, in the order AUVAUVAUVA. A mixture of helium and isobutane in
a ratio 4:1 fills the chamber, with additional small amounts of water vapor (0.3%) to extend
the lifetime of the device. Altogether, the whole volume of gas and the wires represent only
0.28% of a radiation length for tracks with normal incidence.
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Figure 4.3: Side view of the drift chamber (left) and cell layout in first four superlayers
(right). The angle in mrad of the stereo layers with the z axis is written on the right of each
layer.

Performance

Some of the molecules in the gas are ionized by the charged particles traversing the chamber.
The charges then start drifting due to the electric field, which is locally quasi-cylindrical
around each sense wire. Collisions with further gas molecules result in a gain of ∼ 5× 104.
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Figure 4.4: On the left, DCH dE/dx measurements and the Bethe-Bloch predictions [? ].
On the right, the resolution on pt as calculated from cosmic ray events that fall within the
acceptance of the SVT and the DCH [? ].

The time taken for the charge to arrive at the wire translates into a distance from the wire.
That drift time, however, requires cell-by-cell calibration, which is performed by fitting high
momentum µ+µ− and e+e− tracks while omitting the cell being calibrated. The total charge
deposited, which is used to calculate dE/dx, also needs calibration.

The sample of tracks that goes through the DCH and the SVT, the two tracking devices,
allows the estimation of the track reconstruction efficiency. The proportion of tracks recon-
structed in the DCH over those observed in the SVT is of (96 ± 1)%, once the fake SVT
tracks have been adjusted.

The dE/dx value for a given track is calculated as the truncated mean of the 80% lowest
measurements dE/dx measurements for the track, since these follow a Landau distribution
whose mean diverges. Figure 4.4 shows the dE/dx measurements in the DCH as a function
of the momentum, and the corresponding Bethe-Bloch expectations [? ]. A good separation
between pions and kaons is achieved below 0.7GeV/c momentum, above which the DIRC has
the main responsibility for particle identification. This is also demonstrated in practice in
BABAR’s last measurement of B0 → h+h− (where h = K, π) [? ], where the DCH is used to
provide particle identification of forward tracks falling outside the acceptance of the DIRC1.
The dE/dx resolution on electrons is 7.5%, almost at the design value (7%). The resolution
on pt is, as shown in Fig.4.4, very close to the design value too.

1Unlike in this example, most analyses in BABAR which require particle identification do not use the
information from each subdetector separately, and instead draw on a combination of information from the
DIRC and the DCH and SVT dE/dx measurements, as described in Sec. 5.2.3.
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4.3 The Detector of Internally Reflected Čerenkov Light

(DIRC)

Physics requirements

As the BABARphysics program consists of measuring CP violating asymmetries in a variety
of channels, identifying particles is crucial. In neutral modes, it is necessary to define the
flavour of the other B in the event in order to measure these asymmetries. This definition is
obtained by correlating the charges of certain particles with the flavour of the parent meson.
Since these correlations are conditioned by the particle species, these must be identified (see
Sec. 7.1.1). Also, as similar channels, like B0 → K+π− and B0 → π+π−, have different
asymmetries it is essential to avoid contamination in the isolation of final states.

More specifically, above 700MeV/c, the drift chamber is no longer able to distinguish
kaons from pions, which the DIRC aims to separate at 4σ significance up to a momentum
of 4.2GeV/c. For the muons, the DIRC must complement the IFR, whose effectiveness falls
for momenta below 750MeV/c.

Finally, the DIRC must be small, not only due to it’s location - between the drift chamber
and inside the calorimeter - but also in order to minimize the size of this latter one (as the
calorimeter is the most expensive part of the detector), amounting to only a fraction of the
radiation length (see below).

Design

When a particle travels faster than the speed of light in the medium that surrounds it,
v/c = β ≥ 1/n, it emits Čerenkov photons at an angle cos θC = 1/nβ with the direction of
the particle. Hence, provided that its trajectory is known accurately enough, a measurement
of the direction of these photons establishes the speed of the particle. Given the space
constraints sketched above, the instrumentation to detect them must lie outside the main
body of the detector. Internal reflection on a plane surface is used to preserve the angle of
these photons while directing them towards the photomultiplier tubes (see Fig. 4.5). Forward
moving photons are reflected in a mirror, allowing the DIRC instrumentation to occupy only
the less populated backward end of the detector.

The photons are confined by bars of quartz (n = 1.474) of 17mm thick and 35mm wide
but reaching 4.9m long. In a normally incident particle, they totalize 17% of a radiation
length.In the backward end of the detector, the photons go through a wedge-shaped quartz
piece and then into a water filled expansion region, known as the standoff box, after which
they meet the photomultiplier tubes. The role of the wedge is to reflect photons arriving at
large angles, thereby reducing the area of the standoff box that needs to be instrumented at
the cost of introducing ambiguities in the angle.

There are 10752 photomultiplier tubes, surrounded by ”light catchers” that amplify the
detection area. Finally, the standoff box is magnetically shielded to avoid disturbances in
the tubes.
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Figure 4.5: Diagram illustrating the operating principles of the DIRC.

Performance

The angle and time resolution can be calibrated from dimuon events. The Čerenkov angle
resolution for a track turns out to be 2.5 mrad, giving over 4σ separation at 3GeV/c (see
Fig. 4.6). Figure 4.6 also shows the mass peak of the decay D0 → K+π− with and without
the kaon/pion separation provided by the DIRC.

4.4 The Electromagnetic Calorimeter (EMC)

Physics requirements

A number of CP eigenstates within BABAR’s physics goals contain π0’s in the final state.
Many others involve η particles or photons directly, such as b→ sγ, in which the spectrum is
quite hard. Some QED processes, such as e+e− → e+e−γ or e+e− → γγ are also important
for calibration or luminosity measurement purposes. Therefore, BABAR must be able to
reconstruct photons over a wide range of energies, from 20MeV up to 4GeV.

The EMC is the only system being able to supply precise information on particle identi-
fication and must thus identify electrons accurately, as they are relevant in flavour tagging
and semi-leptonic B decays.
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Figure 4.6: Plots illustrating the DIRC capabilities for kaon-pion separation [? ]. On the
left, the reconstructed D0 mass with and without the PID information provided by the DIRC.
On the right, the separation of kaons and pions achieved by the DIRC in standard deviations.

Design

The EMC is formed from 6580 Thallium doped Caesium Iodide crystals arranged in a barrel
and a forward endcap . The material was chosen due to its high light yield and small Molière
radius, which imply good energy and angular resolutions, respectively. The crystal size varies
from 16 radiation lengths in the backward direction to 17.5 radiation lengths in the forward
endcap, since these receive impacts from the more energetic Lorentz-boosted particles. The
crystals are tilted in such a way that they face the interaction point. Their exposed area is
∼ 5 cm2 (c.f. their Molière radius, 3.8 cm), so a typical electromagnetic shower will spread
over several crystals. Figure 4.7 shows a schematic view of the subdetector.

Performance

It is necessary to establish the relation between the light yield and the energy deposited in
the crystal as well as the between the cluster energy and the total energy of the incident
particle, in order to calibrate the electromagnetic calorimeter. From one crystal to another
there is a variation of the light yield dependence on the energy, that radiation damage may
change over time. It is calibrated for low energies using 6.13 MeV photons from a radioactive
source, and in the high energy range by using Bhabha scattering events, for which the polar
angle precisely determines the energy of the particle. The cluster energy must be calibrated
due to crystal leakage and absorption of energy by the material at the front of the crystals or
between them. This is applied during the offline reconstruction and is derived from samples
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of π0 and η mesons.
The photon energy and angular resolutions of the EMC are also extracted from the

calibrations, and are found to be parameterized, respectively (see Fig. 4.8), by

σE
E

=
a

(E(GeV))1/4
⊕ b (4.1)

σθ = σφ =
c

E(GeV)
+ d , (4.2)

where the first sum is in quadrature, and a = (2.3±0.3)%, b = (1.85±0.12)%, c = 3.87±0.07
and d = 0.00± 0.04.
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Figure 4.8: Photon energy (left) and angular (right) resolutions achieved by the electro-
magnetic calorimeter [? ].
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4.5 The Instrumented Flux Return (IFR)

Figure 4.9: Schematic view of the IFR, with the barrel on the left and the forward (FW)
and backward (BW) endcaps on the right.

4.5 The Instrumented Flux Return (IFR)

Physics requirements

The golden mode, J/ψK0
S
, involves muons, as the J/ψ is reconstructed in the channels e+e−

and µ+µ−. Their detection is also essential for semi-leptonic physics and for the tagging
algorithms. Particle identification information on muons is desirable for momenta from
about 1GeV/c.

Muons are heavier than electrons, making bremsstrahlung a far less effective energy loss
mechanism for them. Since they have relatively long lifetimes and do not participate in
nuclear interactions either, they are very penetrating particles. Therefore, the best choice is
to place a dedicated subdetector outside the rest of the instruments.

In BABAR, the outer part of the detector plays the role of the flux return for the solenoid,
at the same time as it provides a support structure. Interleaved between the steel plates of
the flux return, instruments can be placed to turn it into a muon detector and a primitive
hadron calorimeter, in charge of detecting neutral hadrons, mainly K0

L
. These feature in

a number of modes of interest, due to them having an opposite CP eigenvalue to the best
experimentally suited modes containing a K0

S
.

Design

The steel of the flux return, which is distributed in layers of increasing thickness from the
inner to the outer sides, serves the purpose of filtering the muons and absorbing the neutral
hadrons. Between the steel sheets, in the barrel and the endcaps, there are 19 and 18 gaps,
respectively, which host the instrumentation. These are shown in Figure 4.9, where the
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Figure 4.10: Resistive plate chamber design.

almost complete coverage of the detector is also apparent. The arrangement of these gaps,
and the thickness of each of the layers was carefully chosen after dedicated MC studies to
optimize the physics capabilities.

In these gaps, resistive plate chambers were installed. Two cylindrical RPCs were also
placed between the EMC and the magnet to detect particles leaving the EMC and link any
EMC clusters to IFR energy deposits.

The resistive plate chambers (see Fig. 4.10) consist of two graphite electrodes separated
by two 2 mm thick sheets of bakelite, and in between these, another 2 mm gap filled with
a mixture of gases: argon, freon and isobutane in the proportions 57:39:4. Readout strips
are located next to the graphite, separated from it only by a film of insulator. They are
placed orthogonally (hence the labels “X strip ” and “Y strip” in the figure), providing
three-dimensional positional information when combined with the distance of the RPC to
the interaction point. The apparatus works as a capacitor, with one of the graphite electrodes
grounded and the other one set to an 8 kV voltage. The passage of a charged particle or
a hadronic shower do not cause a discharge, but induce temporary changes in the charge
accumulated at each electrode, that are capacitatively read by the readout strips.

Performance

During BABAR’s first year of running, an 8% pion misidentification probability was found for
a 90% muon efficiency.

The calibration of the angular resolution and efficiency of the detection of neutral hadrons
was studied through the process e+e− → φγ → K0

S
K0

L
γ, and yielded efficiencies between 20

and 40%, and angular resolutions around 60 mrad for K0
L
that did not interact in the EMC.
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4.6 The Trigger system

When the latter also provided information, the resolution was twice as good.

However, shortly after installation, the performance of the RPC was observed to degrade
quickly, with the muon efficiency dropping at an average rate of 1.2% per month and growing
numbers of plates being declared ”dead” (efficiencies less than 10%). The RPCs in the
endcaps were replaced by new RPCs built with more stringent quality constraints, except
for the first five, in whose brass was placed to improve pion rejection. A different solution
was adopted for the barrel RPCs. These were substituted by limited streamer tubes.

Limited streamer tubes

The principle of operation of limited streamer tubes is similar to that of the RPCs. In the
case of BABAR, a conducting wire with a 100µm diameter is placed in a long resistive cell
(the ”tube”), with a section of 15× 17mm2, the wire playing the role of the anode, and the
tube, of the cathode. The volume between them is filled with a gas that is ionized upon
the passage of a charged particle or the spread of a hadronic shower, altering the charge
distribution in the cylindrical capacitor. The signal can then be read either by external
strips attached to both sides, or from the wires directly. In BABAR, the latter method is used
to measure the φ coordinate, and the former, to read the z coordinate.

Their efficiency is monitored by using dimuon events and cosmic rays, finding an average
of 90%, without any noticeable degradation trend over time.

4.6 The Trigger system

The aim of the trigger is to reduce the potential number of events per second reconstructed
by the detector, which is essentially determined by the frequency of bunch crossing, to a
manageable level of events that can be recorded. Of course, the goal of the trigger is to
reject badly reconstructed events and background while retaining as much signal as possible.

In BABAR, that is achieved through a two-stage trigger, composed of the level-1 trigger
(L1T), implemented in hardware, and the level-3 trigger, which is carried out by software,
and after which all surviving events are recorded.

Level-1 trigger

The level-1 trigger consists of a global trigger (GLT) that combines the input from several
individual triggers linked to the different subsystems of the detector, and accepts events at
rates around 1 kHz, its limit being 2 kHz. The individual triggers feeding the global one
are the DCH trigger (DCT), the EMC trigger (EMT) and the IFR trigger (IFT). These
are continuously producing abstract data (primitives) describing the objects found by the
subdetectors they are associated to, and are passed to the GLT. The global trigger then tries
to match them to any of 24 trigger lines that represent events of interest, and if the timing
of the trigger signal coincides with one bunch crossing, the fast control and timing system
issues an accept signal. It is at this point that some classes of physics events, such as typical
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QED processes that are used only in calibration, are scaled down, making their acceptance
less likely.

The DCT produces its primitives by looking for sequential DCH hits in neighboring cells.
These are then joined if possible to construct either short tracks, that traverse only a few
superlayers, and long ones, that reach the end of the chamber. Axial superlayers are also
examined looking for segments consistent with tracks with transverse momenta greater than
800MeV/c.

The EMT sums the energy deposited on 40 strips along the φ polar angle, and finds
a peak whose energy is compared to thresholds for different physics processes: minimum
ionizing particle cluster (E > 120MeV), intermediate energy cluster (E > 307MeV), high
energy electron or photon (E > 768MeV), minimum ionizing particle in forward endcap
(E > 100MeV) and backward high energy cluster (E > 922MeV).

The IFT primitives are just single clusters or back-to-back coincidences. These select
cosmic ray events for calibration purposes, and µ+µ− events.

The different trigger subsystems are optimized to select high multiplicity, multi-hadronic
events, resulting in efficiencies over 99% for BB events for both the DCT and the EMT
individually, and over 99.9% when combined.

Level-3 trigger

The level-3 trigger must reduce by >∼ 10 the number of events accepted by the L1T. It is
implemented in software and run in computing farms, which allow the use of information
from all the subdetectors. Examples are the rejection events with tracks not originating from
the interaction point, as these are likely to be machine background, or events whose timing
does not match a bunch crossing.

Level-3 trigger lines may also be prescaled to reduce the rate of less interesting physics
events, such as Bhabha scatterings. Calculation of efficiencies requires accepting events that
do not satisfy any of the level-3 criteria. These are known as L1 passthrough events.

4.7 Data acquisition

By data acquisition (DAQ) system we refer to the overall architecture by which the detector,
the triggers and the computing structure are governed. The diagram in Fig. 4.11 schemati-
cally depicts it. The front end electronics process and digitize the signals coming from the
detector and passes them to the level-1 trigger and the data flow buffers. If an accept signal
is issued by the fast control and timing, the event is passed to the level-3 trigger, which also
performs some basic data quality monitoring. Finally, if the event is accepted by the L3T,
it is written to disk, where it will be passed to the online prompt reconstruction software in
a matter of days. The DAQ is also responsible for recording the detector conditions, that
will be used in the production of simulated data to better reproduce the running conditions
(see Section 5.1.1).
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Figure 4.11: Schematic explanation of the interplay between the detector, the triggers and
the first stages of the reconstruction process, known globally as the data acquisition system.

4.8 Online prompt reconstruction

After a data sample, typically consisting of around an hour of experiment running, has been
logged on to disk, it goes through a prompt calibration processing, during which some of the
calibration methods mentioned earlier in the chapter are run, and part of the data quality
monitoring is performed. Following that, the data continue to event reconstruction, where
tracks and clusters are found, and particle identification information (PID) is calculated. An
event, by then essentially a collection of tracks, EMC clusters and IFR clusters, is stored in
a database that will be accessed by the analysts reconstruction code to form candidates for
events of a given decay channel (see Sec. 5.2). Once all these quantities have been calculated,
a more detailed data quality check is made.
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Part III

Analysis
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Analysis overview

The main goal of the study presented in this thesis is to extract the time dependent CP
asymmetry parameters, SK0

S
ργ and CK0

S
ργ, from B0 → K0

S
ρ0γ decays. However, due to the

large natural width of the ρ0(770), a non negligible amount of B0 → K∗±(K0
S
π±)π∓γ events,

which do not contribute to SK0
S
ργ, are expected to lie under the ρ0(770) resonance. These

events will therefore dilute SK0
S
ργ. We can define a dilution factor DK0

S
ργ such as

DK0
S
ργ =

SK0
S
π+π−γ

SK0
S
ργ

,

where SK0
S
π+π−γ is the effective value of the mixing induced CP asymmetry measured for the

whole dataset. Since in the time-dependent analysis a small number of signal events is ex-
pected, it is difficult to discriminate B0 → K∗±(K0

S
π±)π∓γ from B0 → K0

S
ρ0(π∓π±)γ decays.

Hence the dilution factor needs to be obtained by other means. To do that, the amplitudes
of the different resonant modes are extracted in the charged decay channel B+ → K+π−π+γ,
which has more signal events and is related to B0 → K0

S
π+π−γ by Isospin symmetry. Assum-

ing that the resonant amplitudes are the same in both modes, the dilution factor is calculated
from those of B+ → K+π−π+γ. Moreover, the branching fractions of the B → Kresγ decays
are not well measured. We also use the charged decay channel B+ → K+π−π+γ to extract
the amplitudes of modes with different kaonic resonance.

The analysis work presented in this thesis is divided in two chapters:
Chapter 6 presents the analysis of B+ → K+π−π+γ decays. This analysis is done in four
steps. First the signal Kππ, Kπ and ππ invariant mass spectra are extracted, using a
background-subtracted method, from a fit to three discriminating variables. In a second
step the relative contributions of each kaonic resonance are computed from the correspond-
ing amplitudes extracted from a fit to the mKππ spectrum. Then, using as input the Kres

relative contributions extracted in the previous step, the amplitudes of the intermediate
states contributing to the Kππ final state are extracted from a fit to the mKπ invariant
mass spectrum. In a final step, the analytical expression of the dilution factor in terms of
the intermediate state amplitudes is presented in detail and the dilution factor value is then
given.
Chapter 7 presents the time-dependent analysis of B0 → K0

S
π+π−γ decays. This analysis al-

lows to extract the value of the effective CP asymmetry parameters, SK0
S
π+π−γ and CK0

S
π+π−γ.

The mixing-induced CP parameter of B0 → K0
S
ρ0γ decays, SK0

S
ργ, is finally given, using the

value of DK0
S
ργ extracted from the charged channel analysis.

61



Since both analyses are performed using common High Energy Physics analyses tools and
methods, these are first detailed in Chapter 5.

In the rest of the document, when specific decays are quoted, charged conjugation is al-
ways implied, unless explicitly specified.
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Chapter 5

Data samples and analysis techniques
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Data samples and analysis techniques

In this Chapter, we describe in detail some tools and methods commonly used in High
Energy Physics analyses, such as simulation of data (see Section 5.1), event reconstruction
(Section 5.2), signal and background discrimination (Section 5.3) and maximum likelihood
fits (Section 5.4).

5.1 Monte Carlo and data samples

5.1.1 Monte Carlo samples

Simulated data, usually referred to as Monte-Carlo (MC) data, are essential to understand
detector effects (e.g. mis-reconstruction of signal and reconstruction efficiencies), back-
grounds and systematic effects that could affect the analysis procedure. To simulate the
physics mechanisms that operate in e+e− collisions within BABAR’s energy regime, events
are first generated with the EvtGen package [? ], which gives an accurate representation
of phenomena such as mixing and interference (necessary for the correct modeling of CP -
violation) or the angular distributions of the decay products in non-trivial situations, such
as pseudoscalar-to-vector-vector decays. The vast majority of B decays are generated using
EvtGen, however, the remaining generic B decays to hadronic final states, for which there is
no specific model, and continuum events (e+e− → qq̄, q = u, d, s, c) are produced via an
interface to JETSET [? ].

Then, in order to account for the interaction of the generated-event decay products with
the detector as they propagate through it, the latter are simulated by a customized software
based on GEANT 4 [? ], which requires a detailed model of the instrument, both in geometric
and material terms. Processes like rescattering or photon conversions, for instance, as well
as a detailed account of the energy that is lost and deposited by the particles in the different
parts of the detector (e.g. silicon strips in SVT, gas and wires in DCH and crystal in EMC)
are simulated at this stage.

In the following stage, each of these interactions (or hits) are used to simulate the data
read out by the electronics, trigger and DAQ system. Typical electronic noise and machine
backgrounds characterizing a certain period of running of the experiment are taken into
account. The latter are obtained by recording real events, at regular intervals, with a random
trigger, which are then aggregated to simulated events.

In a last stage, the simulated electronic output is processed with the same version of
BABAR reconstruction software that is used on real data.

The MC samples used to characterize signal and background, and to optimize the se-
lection in the charged and the time-dependent analyses are given in Tabs. 5.1 and 5.2,
respectively. Two different types of MC samples are used to study backgrounds from B-
meson decays (B backgrounds): generic BB MC and exclusive MC, whereas only exclusive
MC samples are used to study signal events. The exclusive signal MC samples with different
kaonic resonances decaying to Kππ are combined according to cocktail weights, as described
in Secs. 6.1 and 7.2 for the charged and the time-dependent analysis, respectively. The
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5.1 Monte Carlo and data samples

generic BB MC corresponds, approximately, to an integrated luminosity of three times that
of the data sample. It comprises and is composed of a cocktail of e+e− → Υ (4S) → BB
events, where the B mesons decay to all their known and predicted decay modes. The rela-
tive abundances of different decay channels are set to the experimental branching fractions [?
? ], when available, or to theoretical predictions.

Table 5.1: MC samples used to characterize signal and background events in the charged
analysis. In the decay process description, when “gen.” is quoted, it means the corresponding
particle is allowed to decay to any known possible final state.

Studied event
Decay process NBB generated (×106)

category

S
ig
n
al

B+ → K1(1270)
+γ

7.886
K1(1270)

+ → gen.
B+ → K1(1400)

+γ
1.286

K1(1400)
+ → gen.

B+ → K∗
2(1430)

+γ
2.467

K∗
2(1430)

+ → gen.
B+ → K∗(1410)+γ

1.365
K∗(1410)+ → gen.

B+ → K∗(1680)+γ
0.650

K∗(1680)+ → gen.

B
ac
k
gr
ou

n
d

B+B− → gen. 708.8

B0B0 → gen. 718.3

B0 → Xsdγ 0.650
Xsd → gen.

B+ → Xsuγ 0.650
Xsu → gen.

B0 → K∗0γ
4.580

K∗0 → gen.
B+ → K∗+γ

4.658
K∗+ → gen.

B0 → K∗0η
0.650η → γγ

K∗0 → K+π−

B+ → a+1 π
0γ

0.216
a+1 → ρ0π+

B+ → K∗0π+π0γ
0.153

K∗0 → K+π−
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Table 5.2: MC samples used to characterize signal and background events in the time-
dependent analysis. In the decay process description, when “gen.” is quoted, it means the
corresponding particle is allowed to decay to any known possible final state.

Studied event
Decay process NBB generated (×106)

category

S
ig
n
al

B0 → K1(1270)
0γ

7.295
K1(1270)

0 → gen.
B0 → K1(1400)

0γ
1.176

K1(1400)
0 → gen.

B0 → K∗
2(1430)

0γ
2.653

K∗
2(1430)

0 → gen.
B0 → K∗(1410)0γ

3.493
K∗(1410)0 → gen.

B0 → K∗(1680)0γ
10.806

K∗(1680)0 → gen.

B
ac
k
gr
ou

n
d

B+B− → gen. 708.8

B0B0 → gen. 718.3

B0 → Xsdγ 0.650
Xsd → gen.

B+ → Xsuγ 0.650
Xsu → gen.

B0 → K∗0γ
4.580

K∗0 → gen.
B+ → K∗+γ

4.658
K∗+ → gen.

5.1.2 On-Peak and Off-Peak data samples

The data sample used in both analyses presented in this thesis is the final BABAR dataset that
consist of 470.9±2.8 million BB̄ pairs corresponding to an integrated luminosity of 429.0 fb−1

at the Υ (4S), and is referred to as the On-Peak data sample. In addition, during dedicated
running periods, 44.8 fb−1 of data were collected at 40MeV below the Υ (4S) resonance. It is
referred to as the Off-Peak data sample. As previously mentioned this small data sample is
useful to characterize specific background, called continuum, where no BB pair is produced,
and that often constitutes the largest background (in term of number of events) in BABAR

analyses. Both the On- and Off-Peak data samples are divided in six sub-data samples, or
Runs. Each one corresponding to a period of continuous data taking, lasting typically some
ten months. The data sample is summarized in Tab. 5.3.
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Table 5.3: Run by run integrated luminosity and BB number of events in the data.

Sample On Peak (fb−1) NBB (×106) σstat.+syst.
N

BB
(×106) Off Peak (fb−1)

Run 1 20.60 22.56 0.14 2.62
Run 2 62.07 68.42 0.41 7.03
Run 3 32.67 35.76 0.22 2.50
Run 4 100.78 111.39 0.67 10.23
Run 5 133.85 147.58 0.89 14.55
Run 6 79.03 85.18 0.51 7.89
Total 429.0 470.91 2.84 44.81

5.2 Reconstruction

The reconstruction of events is performed in two steps. First, the Offline Prompt Reconstruc-
tion is performed. During this step, the goal is to find tracks and to reconstruct calorimeter
clusters from hits in the DCH and the SVT, and crystals with energy deposits in the EMC,
respectively. Čerenkov photons and dE/dx information are also processed during this stage
and used to form “particle identification selectors”. In a second step, the reconstruction
process allows the reconstruction of objects that are not directly detected, but can be in-
ferred from the properties of their decay products. B and D mesons are good examples of
such composite objects. The corresponding candidates are obtained from the combination
of tracks and neutral objects, consistent with the desired meson. This allows the vertexing
of the B meson and the ∆t measurement to be made.

5.2.1 Tracking algorithms

Charged tracks follow helicoidal trajectories due to the axial magnetic field in which the
inner parts of the detector are immersed. They can be described by five parameters that are
fitted using a Kalman filter technique [? ]. The five parameters are defined at the point of
closest approach (POCA) to the z-axis:

• d0, the distance to the z-axis in the xy plane

• z0, the coordinate along the z-axis

• φ0, the azimuthal angle of the plane containing the POCA and the z-axis

• λ, the dip angle of the track with respect to the transverse (xy) plane. It is related to
the cylindrical polar angle θ via θ = π/2− λ

• ω, the (signed) curvature of the track, whose sign and magnitude are related, respec-
tively, to the charge of the associated particle and its transverse momentum, ω ∝ 1/pt.
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The Kalman filter algorithm uses an iterative and recursive fit technique, where each
vertex is fitted independently. That way the changes in the parameters are propagated to
the neighboring vertices. This procedure results in a global fit, where corrections to account
for fine details can be done, thanks to the local character of each step of the algorithm. These
details correspond to the material distribution of the detector, the slight inhomogeneities of
the magnetic field or the energy loss of low momentum tracks.

The algorithm starts from the DCH hits found by the L3 trigger to form a primary track;
further hits are added if they are consistent with this primary track. Afterwards, a search
is made, using the remaining hits in the DCH, for tracks that may not be originated from
the beamspot (e.g. K0

S
that lived long enough to decay outside the SVT), or that may not

be energetic enough to traverse the whole chamber. Finally, SVT hits are examined and
added to the existing DCH tracks if consistent, and are otherwise searched to locate any
low momentum, SVT-only tracks. All the reconstructed tracks are further classified and
stored in lists according to different selection criteria. The pion candidates, in both analyses
presented in this thesis, are taken from the standard GoodTracksLoose list, with the quality
requirements:

• pt > 0.1GeV/c

• p < 10.0GeV/c

• a minimum of 12 hits in the DCH

• d0 < 1.5 cm

• |z0| < 10 cm

Note that the K0
S
candidates, are formed from any two oppositely charged tracks that often

do not meet the GoodTracksLoose requirements above. The details on the K0
S
selection

requirements are given in Secs. 5.2.4 and 7.3.1.1.

5.2.2 Calorimeter algorithms

Particles flying through the EMC typically result in showers, spreading over several neigh-
boring crystals, and which form clusters of energy deposit. Such clusters may be due to the
interaction of more than one particle and hence present energy distributions with more than
one maximum, each of them being referred as a bump. The EMC reconstruction algorithm
purpose is to search and find these maxima, to extract the right shape of the clusters, and
to finally identify and correctly assign the energy of the flying particles.

In order to achieve these goals, the algorithm starts by looking for “seed” crystals with
energy deposits greater than 10MeV. Then, clusters are formed adding surrounding crystals
containing above 1MeV themselves, or adjacent crystals with an energy greater than 3MeV.
Local bumps are found using standard methods [? ]. For a given maximum, a weight (ωj)
is assigned to each crystal depending on the ratio of the distance from the crystal to the
maximum, its deposited energy (Ej) and the Molière radius. The bump energy is then
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estimated from the weighted sum of the energy deposits over all the crystals in the cluster,
as Ebump =

∑

j Ejωj.

In a last step, tracks are projected onto the inner face of the EMC, and if they are
consistent with one of the considered bumps, they are linked to a single charged particle
in the following reconstruction routines. The remaining bumps are assumed to be neutral
objects.

5.2.3 Particle identification

In order to achieve the physics goals, it is crucial to correctly track and identify the charged,
long-lived particles in the BABAR detector. Such particles are: electrons, muons, pions, kaons
and protons. This reconstruction step is achieved by exploiting the different ways those
particles interact with each part of the detector. Information from all subdetectors (SVT,
DCH, DIRC, EMC and IFR) is used to construct a PDF (see Section 5.4) that represents the
likelihood of a particle to belong to a given species. Electrons and muons PDFs are obtained
from information collected in the Electromagnetic Calorimeter and the Instrumented Flux
Return, respectively. In the case of protons, their production is rare compared to other
particles in BABAR and is of no interest for the analyses presented in this thesis.

For the kaon-pion separation, the likelihood for kaon and pion hypotheses is constructed
as the product of the PDFs from the SVT, the DCH and the DIRC for the given particle
hypothesis, where the first two contribute with dE/dx measurements and the last one, with
the angle (θc) with respect to the track at which Čerenkov photons are emitted in the quartz
bars of the DIRC.

For both the DCH and the SVT, the measured energy losses of each track are compared
with the Bethe-Bloch [? ] expectations by forming the pulls (see Section 5.4), and are
parameterized with a gaussian and a gaussian with asymmetric widths, respectively. In the
case of the DIRC, in which the relevant quantities suffer from long non-gaussian tails that
prevent the use of a similar method, a binned likelihood obtained from MC is used instead.
This likelihood depends on θc and on the number of photons. The latter, being a function of
the momentum and type of the particle, helps to improve the identification of low momentum
tracks.

Once the likelihoods for the different particle hypotheses have been calculated, cuts on
their values are applied, and the track is entered into different lists according to the criteria
satisfied: SuperLoose, VeryLoose, Loose, Tight, VeryTight and SuperTight for pions,
and NotPion, VeryLoose, Loose, Tight and VeryTight in the case of kaons. For both
analyses described in this thesis, pions in the SuperLoose list are selected (see Secs. 6.2
and 7.3) and charged kaons in the Loose list are selected in the charged-mode analysis (see
Secs. 6.2). In the case of pions, the efficiency of such a requirement is above 95% in most of
the kinematical range, and the kaon misidentification rate is around 5−15% depending on the
momentum, while in the case of kaons, the efficiency is above 85% in most of the kinematical
range and the pion misidentification rate is around 2 − 7% [? ]. Due to additional cuts on
background discriminating variables, we expect a negligible kaon and/or pion contaminations
in our samples.
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5.2.4 Vertexing

Candidates for composite particles are first formed from all the possible combinations of
tracks and neutral particles matching their decay products. These candidates are then
vertexed according to some kinematical criteria. For example, in the reconstruction of the
B0 → K0

S
π+π−γ decays, intermediate states like ρ0 or K∗+(892), whose decays are governed

by the strong force, have such short lifetimes that their decay vertex can be assumed to match
the vertex of the B meson. In the present analyses, only the K0

S
and the B candidates are

assumed to be long lived and are assigned to a decay vertex. Candidates for K0
S
mesons are

formed from all possible oppositely charged tracks in the event assumed to be pions, with
a total center-of-mass energy within 25MeV/c2 of the K0

S
mass [? ]. This selection of K0

S

candidates is referred as KsDefault list.
Using the TreeFitter package [? ], the assumed decay vertices of K0

S
and B candidates

are calculated with a geometric fit, in which daughter-tracks are required to emerge from a
common vertex. This procedure is performed through a global fit to the whole decay chain
by applying the Kalman filter technique. In order to estimate the interaction point, a fit
to all tracks in the event is performed. Its result is used as a starting point in the iterative
procedure for the B vertex reconstruction.

For the B vertexing, constraints may be applied in the fit to reduce detector resolution
effects. Hence a first vertexing fit is performed constraining the B candidate to have the
nominal B-meson mass [? ], from which the event shape variables are calculated. A second
vertexing fit is made with no mass-constraint; the discriminant kinematical variables mES

and ∆E are extracted from it (see Section 5.3).

5.3 Discriminating variables

The small branching fractions of the radiative B decay modes studied in this thesis1, namely
B+ → K+π−π+γ and B0 → K0

S
π+π−γ, compared to the large cross sections of some

undesired processes such as continuum background (e+e− → qq̄, q = u, d, s, c where
σqq ∼ 3.2 × σbb̄), entails the use of background-rejecting variables. In both analyses,
three event species are distinguished in the data: signal events (B+ → K+π−π+γ or
B0 → K0

S
π+π−γ), continuum events (representing the dominant background) and several

B-backgrounds corresponding to B-meson decays that differ from the signal.
By exploiting the differences between the distributions of some variables in signal and

backgrounds, it is possible to achieve a statistical separation between them. Two approaches
may be used in order to take advantage of these differences. In the case where the background
peaks at a different point than signal for a certain variable, a cut on this variable may be
applied. The rejection of all events lying on one side of the cut value enriches the sample with
signal events. Another approach consists of accepting all events, and assigning each of them
a weight or probability of belonging to each species according to the value of the considered
discriminating variable. In both analyses presented in this thesis, a mixed strategy has been
followed: loose cuts are applied on the three discriminating variables, mES, ∆E and the a

1B (B+ → K+π−π+γ) = (2.76± 0.22)× 10−5 and B
(

B0 → K0
S
π+π−γ

)

= (1.95± 0.22)× 10−5 [? ]
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combination of event shape variables, and their distributions are then used in the fit. These
three variables are described in detail in the following sections. Other variables, not present
in the fit, on which cuts are applied, are used in the event selection step of both analyses.
They are described in Secs. 6.2 and 7.3.

5.3.1 Kinematic variables

Taking advantage of the well know initial state, e+e−, at the B Factories, combined to the
fact the BB pair is produced via the decay of the Υ (4S) resonance, two kinematical variables
can be constructed in order to discriminate signal from continuum and B-background events.
Namely, these two variables are the energy difference ∆E (Sec. 5.3.1.1) and the energy-
substituted mass mES (Sec. 5.3.1.2), which are usually largely uncorrelated [? ].

5.3.1.1 The energy difference ∆E

The energy difference, ∆E, can be expressed in a Lorentz-invariant form as

∆E = (2qBq0 − s)/2
√
s , (5.1)

where qB and q0 = qe+ + qe− = (E0,p0) are the Lorentz vectors representing the momentum
of the B-meson candidate and of the initial e+e− system, and

√
s = 2E∗

beam denotes the CM
energy. In the CM frame, ∆E can be expressed as

∆E = E∗
B −√

s/2 , (5.2)

where E∗
B is the reconstructed energy of the B candidate without applying any constraint.

Since ∆E is by construction related to the mass hypotheses for each of the tracks, its
distribution will strongly depend on the nature of the final state particles. For instance, in
the case where a kaon is misidentified as a pion, its reconstructed energy, and consequently
that of the B candidate, will be smaller than expected, and the event will be shifted towards
negative values of ∆E. On the other hand, the distribution for correctly reconstructed
signal events will peak at zero. This makes ∆E especially helpful in isolating backgrounds
from misreconstructed B decays. Moreover, since continuum events do not originate from
B decays, their distribution in this variable is expected to be linear in the whole dynamical
range, excluding acceptance effects and phase space.

The ∆E distribution receives a sizable contribution from the beam energy spread, but is
generally dominated by detector energy resolution, especially in the case for modes involving
neutral particles. In modes with no neutral particles in the final state, the resolution for the
∆E variable is ∼ 15MeV, while in the present analysis it is of the order of ∼ 20− 25MeV.

5.3.1.2 The energy-substituted mass mES

The other kinematic variable, the energy-substituted mass mES can be expressed, in the
laboratory frame, as

mES =
√

(s/2 + p0 · pB)2/E2
0 − p2

B . (5.3)
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In the CM frame the three momentum of the e+e− system equals to zero, and mES can be
expressed in this case as

mES =
√

E∗
beam − p∗2

B , (5.4)

where p∗2
B is the CM momentum of the B candidate. Since the candidate is formed from a

number of tracks and neutral objects whose energies are not as accurately measured as are
the beam conditions, the B-candidate energy is here substituted by E∗

beam. This allows to
improve the mass resolution by using our knowledge of the initial kinematics. Due to the
annihilation of the electron and the positron, which creates a BB pair, and to the fact that
the masses of the particle and of the antiparticle are equal, we have

q2B = q2
B
= (q0 − qB)

2 = q20 + q2B − 2q0qB ⇒ 0 = q20 − 2q0qB ⇒ s/2 = −E0EB + p0 · pB

⇒ mB =
√

E2
B − ~p 2

B =

√

(

s/2−p0·pB

E0

)2

− p 2
B = mES.

Thus, for signal events, mES yields the mass of the B meson and shows a clean peak. For
continuum events, composed of light quarks, the only way of reaching the B rest mass is
by artificially associating random tracks. As a consequence, the distribution of this kind
of events displays the slowly varying shape that one could expect from their combinatoric
nature.

In modes with no neutral particles in the final state, the resolution for the mES variable
is ∼ 3MeV/c2, and do not exceed 10MeV/c2 in the present analysis.

The parameterizations used for the distributions of ∆E and mES, for signal and back-
grounds, are given in Secs. 6.5.3 and 7.6.3 for the charged and time-dependent analyses,
respectively. Plots of both variables for signal and backgrounds can be seen in Figs. 6.10
and 6.16 to 6.22 for the charged channel analysis and in Figs. 7.4 and 7.8 to 7.15 for the
time-dependent analysis, respectively.

5.3.2 Event-shape variables

Due to the underlying kinematics of the decay products in e+e− → Υ (4S) → BB and
e+e− → qq̄, q = u, d, s, c processes, strong differences arise in the angular correlations
among the produced daughters in BB and continuum events.

In continuum events, a small amount of the initial energy is invested in the rest masses of
the quarks. As a result most of the available center-of-mass energy will be carried as kinetic
energy, which implies that the event will have a two-jet-like structure and will roughly follow
a (1 + cos2 θ) dependence, where θ is the center-of-mass angle of a jet with respect to the
beam axis. This is as predicted by lowest order Feynman QED diagram for an e+e− → ff̄ ,
where f is a spin-1/2 fermion.

On the contrary, BB events are characterized by the decay of the spin-1 Υ (4S) resonance
into two spin-0 B mesons, resulting in a sin2 θ distribution, where θ is the angle between the
B direction and the z-axis. In addition, since the reaction is barely allowed kinematically,
the B mesons have in average very low momenta in CM frame, ∼ 340MeV/c, which is
smaller than the typical momenta of their daughters, ∼ 1-2GeV/c. This implies that the
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decay products of a B meson will not follow its flight direction. Furthermore, the B-meson
being a pseudoscalar, it decays isotropically and the distributions of its daughters will be
approximately spherical in the Υ (4S) CM frame .

Taking advantage of the differences described above, some variables, called event-shape or
topological variables, are useful for the separation between these two event species. Since B-
background is coming from BB events, the event-shape variables will not allow to efficiently
separate it from signal events. In that case discrimination can only be obtained using the
kinematical variables mES and ∆E.

In the definitions below, some variables take advantage not only of the B candidate
daughters, but also of tracks coming from the other B meson in the event. Hence, it is
useful to distinguish between the reconstructed-B side of the event, and the Rest Of the
Event (ROE). The latter being defined as the ensemble of all the tracks and neutral objects
that do not make up the B candidate.

5.3.2.1 Angle between the B momentum and the beam axis

One of the event-shape variables is the cosine of the angle between the CM B candidate
direction and the z axis, θBmom

. As described above, the distribution of this variable for
signal is a parabolic: sin2 θBmom

= 1 − cos2 θBmom
. For continuum events, in contrast, the

B candidates can only be formed from random combinations of tracks, which implies that
cos θBmom

will have random values and will therefore follow (without taking into account any
acceptance effects) a flat distribution.

5.3.2.2 Thrust Axis variables

The thrust of an ensemble of particles is defined as the direction, t̂, in which the sum, T̂ , of
the projections of the momenta of the particles is maximized:

T̂ = max

(

∑

i

∣

∣t̂i · p∗
i

∣

∣

∑

i |p∗
i |

)

, (5.5)

where the index i runs over all the particles in the ensemble. For BB events, T̂ takes almost
random values, as the events are mostly isotropic. For qq events, on the other hand, T̂
follows the direction of the formed jets, and is therefore strongly directional.

Several variables can be defined employing the thrust axis, such as the cosine of the angle
between the thrust axis of the B candidate and the z axis, cos θT̂ , or the cosine of the angle
between the thrust axes of the B candidate and the rest of the event, cos θROE

T̂
.

5.3.2.3 The ROE and momentum-weighted polynomials

Additional variables can be defined taking advantage of the differences in the angular dis-
tributions between BB (∝ sin2 θ) and continuum (∝ 1 + cos2 θ) events. When the whole
allowed phase space of a multi-body decay is explored, the signal-side angular information
cannot be used without biasing the data sample. In that case, the fact that the other B
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in the event behaves statistically, but independently, in the same way is fully exploited to
separate between signal and continuum events. Indeed, the tracks from the ROE should
exhibit a very small correlation with the kinematical variables, since these are constructed
using only signal-side information. Possible correlations are at the first order, assumed to
be negligible.

In order to characterize the angular correlations of the ROE, we can define the momentum-
weighted Legendre polynomials as

L0 =
ROE
∑

i

pi , (5.6)

L1 =
ROE
∑

i

pi cos θi , (5.7)

L2 =
ROE
∑

i

pi

1

2

(

3 cos2 θi − 1
)

, (5.8)

where pi and θi are the momentum and the angle, with respect to the thrust axis of the B
candidate, of the i-th particle in the ROE. The expectation values of these variables in both
signal and background show that the L0 and L2 have the largest separation power. This is
due to the fact that the corresponding expectation values are non-zero and different for the
two species, while the expectation value of L1 is zero for both species. The ratio of the two
polynomials, L2/L0, also shows a good separation between signal and continuum.

Other variables, also based on information coming from the ROE, called Fox-Wolfram
moments, may help the separation between BB and continuum events. They are defined as
follows:

FW(l) =
∑

ij

|pi||pj|Pl(cos(θij)), (5.9)

where the summation is over all final state particles in the ROE, pi and pj are momenta of
the particles i and j, θij is the angle between them and Pl(x) are the Legendre polynomials of
order l. We can construct the ratio, R2, between the 2-nd and 0-th Fox-Wolfram moments
of the ROE, which exhibits a large separation power. This quantity taking values in the
range [0, 1] is indicative of the collimation (“jettiness”) of an event topology. In the case of
a qq event, R2 expected values are closer to 1, which indicates a jet-like event. In contrast,
for BB events, values of R2 are expected to be closer to 0, indication of a nearly isotropic
event.

5.3.3 Fisher discriminant

Since the event-shape variables described above exploit different aspects of the same physical
principle, some correlations might appear among them. This implies that it may be difficult
to find the best set of cuts among these variables during an optimization procedure.

As an alternative, a unique quantity defined as a linear combination of several discrimi-
nating variables xi, can take full advantage of all the variables under consideration and their
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correlations to maximize the separation power. The Fisher discriminant (F) [? ] is designed
to do precisely that and is defined as

F =
∑

i

aixi = aTx , (5.10)

where aT is a line vector. The ai coefficients are found by maximizing the separation between
the signal and background distributions. This is defined to be

D(a) =
(FS −FB)

2

σ2
S + σ2

B

, (5.11)

F j being the mean of the distribution of the species j, and σ2
j the variances, where the

index j denotes either signal or background. Writing these in terms of the means µj and
covariance matrices Vj of the variables,

F j = aT
µj, σ2

j = aTVja , (5.12)

we get

D(a) =
aT (µS − µB)(µS − µB)

Ta

aT (VS +VB)a
, (5.13)

which can be maximized by differentiating and equating to zero, giving

a = (VS +VB)
−1(µS − µB). (5.14)

Thus, by using signal and background control samples, such as signal MC and off-resonance
data, the coefficients a can be calculated.

The Fisher discriminant is used in both analyses presented in this thesis. A study was first
performed for the charged channel, to find an optimal choice of background discriminating
variables. Due to the very similar final states (the only difference being the presence of a
K0

S
instead of a charged kaon in the neutral channel analysis), the optimal set of variables,

consisting of six variables, is identical in both analyses. As a preliminary stage to the
optimization other additional event-shape variables were tried and rejected, due to strong
correlations among them, in favor of:

• absolute value of the cosine of the angle between the momentum of the B candidate
and the beam (z) axis in the CM frame, | cos θBmom

|;

• cosine of the angle between the B thrust axis and the z axis, cos θT̂ ;

• cosine of the angle between the B thrust axis and the ROE, cos θROE
T̂

;

• 0-th order Legendre polynomials moments of the ROE, L0;

• ratio between the 2-nd and the 0-th order momentum-weighted Legendre polynomials
moments of the ROE, L2/L0;
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• ratio between the 2-nd and 0-th order Fox-Wolfram moments of the ROE, R2.

For this set of variables comparisons between the performance of the Fisher discriminant,
a Neural Network (NN) [? ] and a Boosted Decision Tree (BDT) [? ] were also made.
It was found that the BDT and the NN where slightly more performant: at 90% of signal
efficiency, the continuum rejection was of 73% and ∼ 76% for the Fisher and both the NN
and BDT, respectively. However, due to the gaussian behavior of the Fisher discriminant
distributions compared to the more complicated ones of the BDT and the NN, we chose to
keep the Fisher discriminant, in order to use parametric descriptions for it in the fit.

The parameterizations used to describe this variable for signal and backgrounds are given
in Secs. 6.5.3 and 7.6.3 for the charged-mode and neutral-mode time-dependent analyses,
respectively. Plots of this variable for signal and backgrounds can be seen in Figs. 6.10
and 6.16 to 6.22 for the charged channel analysis and in Figs. 7.4 and 7.8 to 7.15 for the
time-dependent analysis, respectively.

5.4 The maximum likelihood fit

Often, in particle physics, one of the main goals is to extract parameters of interest for a
given event category (usually signal) in a data sample containing several event species (i.e.
signal and various backgrounds). Since it is almost never possible to completely separate
signal from other contributions by applying cuts, another method may be used. Therefore
taking advantage of the different behaviors between signal and background categories in
several discriminating variables, the maximum likelihood fitting method is used. In this case
it is even more interesting to apply loose cuts on the discriminating variables, since it allows
keep a reasonable large number of events in the MC samples in order to parametrize their
distributions more accurately.

Indeed, this powerful method enables to estimate the parameters that characterize the
distribution of certain variables in the data sample [? ? ]. The distribution represents the
values taken by a random variable x and can usually be described by a function P(x, a)
whose shape is characterized by a set of parameters a. In the case where this function
is normalized, it is said to be a Probability Density Function (PDF) for x. In order to
extract the best possible estimations for the values of the parameters a, given a set of N
measurements of the random variable, the maximum likelihood method seeks the values of
a that maximize the likelihood function:

L (a) =
N
∏

i=1

P (xi, a) . (5.15)

In other words, the likelihood function represents the probability of drawing the N measure-
ments of x given a certain set of values for the parameters a. Consequently, optimizing this
probability should yield the parameter values that best describe the sample.

In a realistic analysis, the likelihood function can be quite complicated due to the presence
of several event species (“hypotheses”) with different distributions as well as several random
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variables to be described:

P (i, a) =
M
∑

j=1

Pj (xi, yi; a) , (5.16)

where M is the number of hypotheses, xi and yi are two random variables in the i-th
experiment. In the case where there is no correlation among the variables xi and yi, the
PDF can be written as

P (i, a) =
M
∑

j=1

Qj (xi; aQ)Rj (yi; aR) . (5.17)

Otherwise, one needs to take them into account through multi-dimensional PDFs that de-
pend on the correlated variables.

In order to simplify the computation of the likelihood function during the optimization
procedure, the expression given in (??) is not usually applied as written. Instead, a mini-
mization of the negative logarithmic likelihood function (NLL) is performed

NLL = − lnL = −
N
∑

i=1

lnP (xi, a) , (5.18)

where the sum of logarithms is far more manageable in terms of machine precision than the
original product. Two packages are used for the likelihood fitting in this thesis. The first
one is based on the Laura++ package [? ] and the second is based on the RooFit package [?
]. Both are interfaced to Minuit [? ? ] through ROOT [? ].

5.4.1 Extended maximum likelihood fit

Usually, the number of events is also unknown, and needs to be incorporated in the likelihood
function. As a consequence, the previous definition needs to be modified in order to include
the probability, given by the Poisson distribution, of having N occurrences when ν is the
expected value:

L (ν, a) =
e−ννN

N !

N
∏

i=1

P (xi, a) =
e−ν

N !

N
∏

i=1

νP (xi, a) . (5.19)

which, can be generalized for M hypotheses by

L (n, a) =
e−

∑M
k=1 nk

N !

N
∏

i=1

(

M
∑

j=1

njPj (xi, a)

)

, (5.20)

where nj is the number of events for the hypothesis j.

In both analyses presented in this thesis, the initial parameters a are extracted either
from MC simulation or Off-Peak data. It may happen that some of them need to be fixed
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in the minimization procedure, depending on the fit ability to extract them, which is tested
through validation tests, as described in Sec. 5.4.3. The minimum found in the fitting
procedure may or may not be global and therefore, we need to check the behavior of results
when performing several fits using random initial values of each parameter. If the minimum
stays stable, we consider it to be global. In some cases, the shape of the likelihood as a
fraction of a particular variable is also obtained as described in Sec. 6.6.2.

The variables used in the fit are the two kinematical variables (mES and ∆E) and the
Fisher discriminant in both analyses. In the time-dependent analysis, ∆t (whose model is
described in Sec. 7.1) is used in addition.

5.4.2 Error estimations

In Minuit the statistical errors estimation is performed by default using the HESSE routine,
which calculates the matrix of second derivatives of the likelihood function with respect to
the parameters evaluated at the maximum and inverts it to get the error matrix:

(

V −1
)

ij
= − ∂2 logL

∂ai∂aj

∣

∣

∣

∣

a=a0

(5.21)

where a0 are the values returned by the fit. Due to the assumptions that are made here, such
as infinite data sample and a gaussian behavior of the likelihood function in the parameter
space, the error estimations may result in an underestimate of the errors.

Another method to extract error estimations can also be used in Minuit: the MINOS

routine, which uses more resources than HESSE, allows to estimate the one standard deviation
(σ) errors using the variation of the likelihood as a function of the parameter values. This
“scan” method consists of defining the errors σi by the points a0i ±σi in which the logarithm
of the likelihood drops by 1/2:

NLL
(

a0i + σi
)

= NLL
(

a0i
)

+ 1
2
= NLLmax +

1
2
, (5.22)

NLL
(

a0i − σi
)

= NLL
(

a0i
)

+ 1
2
= NLLmax +

1
2
. (5.23)

In the case where the likelihood function has gaussian behavior, the error is of the width of
the gaussian.

In the rest of the document, when reporting fit results the HESSE routine is used to
estimate the errors, unless otherwise specified.

5.4.3 Toy Monte Carlo

In order to test the robustness of the fit model, before extracting the parameter of interest in
the data, validation tests are performed by means of the “toy MC” studies, using generated
“toy samples” or pseudo experiments. These allow, using “pull” distributions, to estimate the
potential biases that can arise from the model. In order to get a realistic estimation of these
biases, each toy sample, must be statistically equivalent to the real data sample. In other
words, the different categories present in the fit model must have yields and characteristics
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corresponding to these expected in data. The pull of a free parameter a in the i-th pseudo
experiment is defined as:

pulli =
afiti − atruei

σfit
i

, (5.24)

where afiti and σfit
i correspond to the fitted value of a parameter and its fit-error, respec-

tively. In case the parameter is unbiased, the corresponding pull distribution is a gaussian
of zero mean and unity width. Otherwise, the pull distribution gives the bias in units of the
statistical error.

Two types of toy studies are used in the present thesis: pure and embedded. Pure toys
consist in generating pseudo experiments using the fit model itself. They allow to determine
which PDF parameters can be varied in the fit, and are sensitive, for instance to biases due
to small number of events. Embedded toy studies use reconstructed MC events for signal
and certain backgrounds, embedded within generated samples for the other categories. They
are sensitive to reconstruction effects, such as correlations between variables. We ensure that
for each embedded category, a MC event does not appear twice, and thus the limitation of
these studies is the number of statistically independent MC samples that can be used to
construct the pull distribution. Significant biases observed in these studies could then be
corrected in the fit to data.

5.4.4 The sPlot technique
The sPlot technique corresponds to a background subtracting method fully described in
Ref. [? ]. It takes place in the context of a unbinned extended maximum likelihood fit,
making use of the discriminating variables denoted y. We can express the log likelihood as:

L =
N
∑

e=1

ln

(

Ns
∑

i=1

Nifi(ye)

)

−
Ns
∑

i=1

Ni , (5.25)

where N is the total number of events considered, Ns is the number of species populating
the data sample, Ni is the number of events expected on the average for the ith species, y
represents the set of discriminating variables, which can be correlated with each other and
fi(ye) is the value of the Probability Density Function of y for the ith species and for event
e. Let us define another variable x, whose distributions are unknown for a particular source
of events, and which is uncorrelated with y.

The aim of the sPlot formalism is to unfold the true distribution, Mn(x), of a the vari-
able x for events of the nth species (any one of the Ns species), from the sole knowledge of
the PDFs of the discriminating variables fi. The advantage of the sPlot technique is to allow
building histograms in x keeping all signal events while removing all background events, and
propagating the statistical uncertainties per bin in x. Therefore, this method is more pow-
erful than simpler methods consisting of placing cuts to enhance signal, mainly because this
reduces the number of signal events and does not completely filter out backgrounds events.
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When considering two sets of uncorrelated variables x and y, the total PDFs fi(x, y) all
factorize into products Mi(x)fi(y). A fit having been performed to determine the yields Ni

for all species, one can define, for all events, a weight (called sWeight) defined by:

sPn(ye) =

∑Ns

j=1 Vnjfj(ye)
∑Ns

k=1Nkfk(ye)
, (5.26)

where Vnj is the covariance matrix, such as its inverse, V−1
nj , is related to the second deriva-

tives of −L:
V−1

nj =
∂2(−L)
∂Nn∂Nj

. (5.27)

These sWeights can be used to build an estimate, denoted sM̃n, of the x-distribution of the
species labelled n (signal or background):

Nn sM̃n(x̄)δx ≡
∑

e⊂δx

sPn(ye) , (5.28)

where the sum runs over the events for which the x value lies in the bin centered on x̄ and
of total width δx. The fact that the covariance matrix Vnj explicitly enters the sWeight
definition implies that locally the sPlot histogram can be negative, due to the fact that the

sWeights are not positive definite. Nevertheless, the sPlot histogram reproduces, on average,
the true binned distribution of variable x:

〈

Nn sM̃n(x)
〉

= NnMn(x) . (5.29)

The sPlot formalism implies some nice properties, such as that each x-distributions is prop-
erly normalized. The sum over the x-bins of Nn sM̃nδx is equal to Nn. Moreover, in each bin,
the sum over all species of the expected numbers of events equals to the number of events
actually observed.
Some limitations of the sPlot formalism need to mentioned. For instance, as already empha-
sized, in order to correctly reproduce the true NnMn(x) distribution, the variable x must be
uncorrelated with the discriminating variables y. Moreover, the procedure described above
is only valid in the case where the yields, Ni, of all event categories present in the fit are
let free to vary. Otherwise, the sPlot formalism can to be extended, and corrections to

the
〈

Nn sM̃n(x)
〉

must be applied in order to reproduce the true NnMn(x) distribution,

as described in appendix B of Ref. [? ]. One must then distinguish two cases: either the
x-distributions of the fixed categories are well known, using other sources of information, or
not. In the former case, the correction procedure is rather straight forward. However, this
is not often the case, and the x-distributions of the fixed categories are usually taken from
MC, and therefore cannot be fully trusted. The extended sPlot can still be applied in this
last case, but the statistical price to pay can be prohibitive.
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Chapter 6

Analysis of B+ → K+π−π+γ decays:
study of the Kππ resonant structure
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The main purpose of the charged-channel analysis is to extract the dilution factor DK0
S
ργ,

assuming Isospin asymmetry, as described in detail in Sec. 6.8. Its expression is related to
the amplitudes of the three resonant modes, and the interferences among them, contributing
to the Kππ final state. Namely these modes are the Kρ0(770) and the K∗0(892)π P-waves
as well as the (Kπ)0π S-wave. Their amplitudes and the corresponding interferences among
them are extracted from a fit to the signal-TM1 mKπ spectrum (see Sec. 6.7). The mKπ

fit model relies on the relative fractions of each kaonic resonance contributing to our signal.
Lacking better source of information, these are, in a preliminary stage of the analysis, taken
from existing measurements and from theoretical estimations as described in Sec. 6.1. In
order to extract these quantities from the data, we first perform a fit to the mKππ spectrum
(see Sec. 6.6), from which we extract the amplitudes of each of the considered kaonic res-
onance. Both the mKπ and mKππ spectra for signal-TM events are extracted from a fit to
mES, ∆E and the Fisher discriminant detailed in Sec. 6.5, using the sPlot technique.

6.1 Signal Monte Carlo cocktail

Several different resonances may contribute to the K+π−π+ spectrum. We model our signal
with a cocktail of the exclusive MC samples listed in Tab. 5.1.

Each of the channels is weighted according to the branching fractions given below (Tab. 6.1,
6.2). The measured branching fractions in Tab. 6.1 are taken from Ref. [? ]. The other ones
having not been measured, we take ansatz values estimated from theoretical papers. For the
mode B → K1(1400)γ, Belle published the upper limit B(B → K1(1400)γ) < 15.0 × 10−6;
we use 8.0 × 10−6, which corresponds to typical values predicted by Ref. [? ? ]. Lacking
better information, and as done in the previous BABAR analysis [? ], we take the same rate
for B(B → K∗(1410)γ). Finally, for B(B → K∗(1680)γ) we take, as suggested by theoreti-
cal estimations (Ref. [? ? ]), a smaller branching fraction: 2.0 × 10−6. These branching
fractions are applied in the cocktail used to study the signal probability density functions

1detailed in Sec. 6.3
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Table 6.1: Assumed branching fractions for the signal cocktail.

Signal mode Assumed B(10−6) σB (10−6) Reference
B → K1(1270)γ 43.0 1.2 Measured [? ]
B → K1(1400)γ 8.0 ∅ Theoretical (estimation)
B → K∗(1410)γ 8.0 ∅ Theoretical (estimation)
B → K∗

2(1430)γ 14.5 4.3 Measured [? ]
B → K∗(1680)γ 2.0 ∅ Theoretical (estimation)

Table 6.2: Assumed branching fractions for decays of kaonic resonances into our signal
mode.

Signal mode Assumed B(10−2) σExp.
B (10−2)

K1(1270)
+ → K+π−π+ 32.85 11.6

K1(1400)
+ → K+π−π+ 42.19 13.4

K∗(1410)+ → K+π−π+ 40.52 ∅
K∗

2(1430)
+ → K+π−π+ 13.92 1.45

K∗(1680)+ → K+π−π+ 23.76 3.07

Table 6.3: Assumed branching fractions for decays of B mesons into our signal mode and
their relatives weights. More accurate values for the relative weight are extracted from a fit
to the data, and used thereafter (see Sec. 6.6).

Signal mode
Assumed B σExp.

B Relative
σRW(10−6) (10−6) Weights

B+ → K1(1270)
+(K+π−π+)γ 14.1 2.86 0.608 0.145

B+ → K1(1400)
+(K+π−π+)γ 3.38 ∅ 0.145 ∅

B+ → K∗(1410)+(K+π−π+)γ 3.24 ∅ 0.140 ∅
B+ → K∗

2(1430)
+(K+π−π+)γ 2.02 0.08 0.087 0.011

B+ → K∗(1680)+(K+π−π+)γ 0.47 ∅ 0.020 ∅
B+ → K+π−π+γ + c.c. 23.2 2.9 1.0 0.08

(PDFs) and in validation tests. More accurate values are then extracted from the fit to data
(see Sec. 6.6.2) and used thereafter.

Furthermore, to compute the weights we multiply the above numbers by the decay
branching fractions corresponding to all contributing resonant and non-resonant modes,
listed in Ref. [? ]. Table 6.2 summarizes the overall branching fraction of each kaonic
resonance into our signal mode. Note that in the case of K∗(1410) decays, the only mea-
sured decay branching fraction is B(K∗(1410) → Kπ) = 6.6 × 10−2, other branching frac-
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tions being reported as upper limits (B(K∗(1410) → Kρ) < 7 × 10−2) or lower limits
(B(K∗(1410) → K∗π) > 40 × 10−2). Therefore, we fix the B(K∗(1410) → Kρ) value to
its upper limit and take the fraction not accounted neither by Kπ nor by Kρ intermediate
states as the B(K∗(1410) → K∗π) value. Table 6.3 summarizes the different weights applied
for the signal cocktail. Finally, we apply a global scale to the entire cocktail to make it
equivalent to the integrated luminosity of our On-Resonant data sample.

6.2 Event Selection

For candidate selection from MC and data samples, a skim is first applied, as described in
Sec. 6.2.1. In a second stage, several selection cuts are used (Sec. 6.2.2).

At the first order, the candidate selection for the present analysis relies on the selection
criteria from the previous BABAR analysis [? ] that considered severalKππγ modes. Then we
modify these criteria to optimize the sensitivity to B+ → K+π−π+γ events. This optimiza-
tion procedure is described in Sec. 6.2.3. Some signal events, after event selection, contain
multiple candidates. Section 6.2.4 describes the technique applied for multiple candidate
selection.

6.2.1 Skim

In order to reduce the data sample, a skim is applied before any other selection criteria. It
generally consists of loose requirements, which can be used by several different analyses. In
the present analysis, we use the BtoXGamma skim available in the BABAR code. It is applied to
both data and MC samples. This skim selects events passing the BGFMultiHadron [? ] filter
that requires at least three tracks in the RecoGoodTracksLoose list, which are matching the
EMC clusters. The skim also requires a high-energy photon, consistent with a radiative B
decay, and that the CM energy of the highest-energy photon candidate in the event falls
between 1.5 and 3.5 GeV, corresponding to the range of the photon energy spectrum in
radiative B decays, as taken from semi-inclusive analyses of B → Xsγ decays (see Refs. [?
? ] and references therein).

6.2.2 Selection cuts

Some of the selection variables used in the present analysis have already been described in
Chapter 5. Additional selection variables, which are described below, are also used in order
to enrich the data sample in signal events.

6.2.2.1 High-energy photon selection

The high-energy photons, which are taken from the GoodPhotonLoose list, are further re-
quired to pass the following selection criteria:

• No dead or noisy crystals in the cluster;
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• −0.74 < cos θγ < 0.93, where θγ corresponds to the angle with respect to the beam of
the EMC cluster centroid in the lab frame (i.e. the polar angle);

• The three-dimensional distance between the centroid of the EMC cluster and the cen-
troid of the nearest cluster is greater than 25 cm. This isolation requirement suppresses
photons from π0 and η decays;

6.2.2.2 Vetos of π0 and η

As in our signal mode we have a high energy photon, most of our photon background
originates from misreconstructed π0 and η-mesons. Indeed, these fake photons either come
from asymmetric decays of π0 and η (one of the photons takes most of the energy of the
decaying particle) or from merged decays (the decaying particle has a high momentum in the
CM frame therefore the two outgoing photons cannot be properly separated in the EMC).
To reduce these backgrounds, the photon candidate γ1 is associated with all other photons
γ2 in CalorNeutral list. Then we construct the π0 and η likelihood functions, defined as

LR =
p(mγ1γ2 , Eγ2 |θ)

p(mγ1γ2 , Eγ2 |K+π+π−γ) + p(mγ1γ2 , Eγ2 |θ)
, (6.1)

where θ is either π0 or η, and p is a probability density function in terms of mγ1γ2 , and the
energy of γ2 in the lab frame, Eγ2 . The π0 (η) LR is between zero and one, and the larger
the value is, the more likely it is that γ1 comes from the π0 (η) decay. Details on the LR
construction can be find elsewhere [? ]. Figures 6.1 and 6.2 show the π0 and η likelihood
function distributions, respectively. We select the events satisfying:

• LRπ0 < 0.86,

• LRη < 0.957.

The cut values where optimized using the procedure described in Sec. 6.2.3. The cut on
LRπ0 , if applied before any other cuts, retains ∼ 93% of signal events, while it rejects
∼ 83% of continuum events and ∼ 63% of B-background events. The cut on LRη, if applied
before any other cuts, retains ∼ 95% of signal events, while it rejects ∼ 87% of continuum
events and ∼ 10% of B-background events.

Vetoes are also applied on photon candidates invariant mass, mγ1(e+e−), when one pho-
ton converts to an (e+e−) pair by interacting with the detector. Here we select the events
satisfying:

• |mγ1(e+e−) −mπ0 | > 25MeV/c2,

• |mγ1(e+e−) −mη| > 50MeV/c2.
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Figure 6.1: Normalized distributions of π0 Likelihood ratio for signal MC events (red area),
Off-Peak data (green), generic B+B− backgrounds (blue) and generic B0B0 backgrounds
(violet). The vertical dashed line shows the corresponding selection cut. All other selection
cuts have been applied.
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Figure 6.2: Normalized distributions of η Likelihood ratio for signal MC events (red area),
Off-Peak data (green), generic B+B− backgrounds (blue) and generic B0B0 backgrounds
(violet). The vertical dashed line shows the corresponding selection cut. All other selection
cuts have been applied.

6.2.2.3 Photon-merged π0 consistency

To discriminate between merged π0-mesons and photons, we use a standard BABAR algo-
rithm [? ]. The latter calculates the likelihood for the EMC deposit to be a π0 or a γ by
evaluating, for a given hypothesis h = π0 or h = γ, the expression:

Lh =
M2

h − E2(S − Sγ)

σ(M2
h)

where S is the second moment of the energy deposit and M2
h is the invariant mass of the

energy deposit under the hypothesis h. We select the events satisfying Lh < 0.00031. This
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cut, if applied before any other cuts, retains ∼ 97% of signal events, while it rejects ∼ 9%
of continuum events and ∼ 4% of B-background events.

6.2.2.4 Invariant mass of the K+π−π+ system

In the present analysis, we do not expect theK+π−π+ resonance mass region above 1.8GeV/c2

to contain a large fraction of signal events, while we expect a significant number of back-
ground events, as shown in Fig. 6.3. Therefore, we restrict the K+π−π+ resonance mass to
the region mKππ < 1.8GeV/c2.
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Figure 6.3: Normalized distributions of mKππ for signal MC events (red area), Off-Peak

data (green), generic B+B− backgrounds (blue) and generic B0B0 backgrounds (violet). The
vertical dashed line shows the corresponding selection cut. All other selection cuts have been
applied.

6.2.2.5 Kinematic variables

Three kinematic cuts are applied. The first one, a basic sanity check, selects events with
total energy less than 20GeV. In addition, we require mES and ∆E to be:

• mES > 5.20GeV/c2;

• |∆E| < 0.2GeV.

Figure 6.4 shows the discriminating power of these last two variables.

6.2.2.6 Kaon PID

The K+ candidates are required to satisfy the LooseKMKaon selector. The K+ track is also
required to satisfy the GoodTracksLoose.

6.2.2.7 Pion PID

Both of the π± candidates are required to satisfy the SuperLooseKMPion selector. The π±

track are also required to satisfy the GoodTracksLoose.
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Figure 6.4: Normalized distributions of the two kinematical variables entering into the fit
model, mES (left) and ∆E (right) for signal MC events (red area), Off-Peak data (green),
generic B+B− backgrounds (blue) and generic B0B0 backgrounds (violet). Note that in
the case of mES, the Off-Peak distribution is shifted towards lower values of ∼ 0.02GeV/c2

compared to the other contributions. This is due to the fact that the corresponding data are
taken at a CM energy about 40MeV below the Υ (4S) resonance peak mass. The vertical
dashed lines show the selection cut applied. All other selection cuts have been applied.
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Figure 6.5: Normalized distributions of Fisher discriminant for signal MC events (red area),
Off-Peak data (green), generic B+B− backgrounds (blue) and generic B0B0 backgrounds
(violet). The vertical dashed line shows the corresponding selection cut. All other selection
cuts have been applied.

6.2.2.8 Event shape variable: Fisher discriminant

As described in Sec. 5.3.3 a unique variable, combining the information from six event shape
variables, is used in the present analysis. Figure 6.5 shows the distributions of the Fisher
discriminant for K+π+π−γ signal MC and different backgrounds (Off-Peak data, B+B− and
B0B0 generic MC). Figure 6.6 gives the linear correlations among the six event shape variables
used to build the Fisher discriminant. We observe no strong correlations for the signal event
category. Since the Fisher discriminant is used in the maximum likelihood fit, the applied
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cut value is not optimized using the optimization procedure described in Sec. 6.2.3. We
select candidates with a Fisher discriminant output value greater than −0.095. This cut is
chosen in order to retain, if applied before any other cut, ∼ 90% of signal events. This allows
to reject ∼ 60% of continuum events and ∼ 10% of B-background events.

6.2.2.9 Vertex selection

As described in Sec. 5.2.4, the B candidates are formed by fitting the vertex of all the final
state particles, using tracks or cluster information in case of charged particles or the photon,
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Figure 6.6: Linear correlations between the variables used in the Fisher discriminant, for
signal and continuum background events in (a) and (b), respectively.
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respectively. The fit on the decay products of the reconstructed B is performed with a beam
spot constraint, where the B candidate trajectory is reconstructed using information from
the assumed beam position and the B decay vertex. Although the high-energy photon is
included in the fit in order to get higher constraints on the B candidate kinematics, it will
not contribute to the vertex information (unless the photon has converted).

In order to reduce combinatoric backgrounds, a cut on the vertex probability, which
results from the vertex fit, is applied. Figure 6.7, in a logarithmic y-axis scale, shows that
the discriminating point is near zero. From the optimization procedure, described below, we
select candidates with a vertex probability greater than 0.0199.

6.2.3 Cut Optimization

The cut optimization was done using the BumpHunter algorithm [? ] of the
StatPatternRecognition package. The optimization consists in maximizing the figure of
merit (FOM) defined as S/

√
S +B, where S is the yield of truth-matched (TM) signal MC

and B is the total yield of backgrounds. Note that both S and B are normalized to the
luminosity in the data. The signal yield is estimated from exclusive MC samples, weighted
using the cocktail weights given in Tab. 6.2. The total yield of backgrounds (B) corresponds
to the sum of the continuum and two (neutral and charged) B-backgrounds contributions.
The continuum yield is estimated from the number of events in the Off-Peak data sample
(after applying the other selection cuts) scaled by a factor 12.3 as described in Sec. 6.4.2.
The two B-background yields are taken from the number of events in the neutral and generic
BB MC samples (after applying the other selection cuts) and scaled by factors 0.31 and 0.29,
respectively.

The optimization was done using a set of 7 variables, listed below, in the fit region, for
which BumpHunter was able to find optimum values in order to maximize the FOM.

• PhotonMergedPi0Consistency, Lh

• Pi0VetoLikelihoodRatio, LRπ0

• EtaVetoLikelihoodRatio, LRη

• Daug1TrackPID KSelectorKM, Kaon PID

• Daug2TrackPID PiSelectorKM, Pion PID

• Daug3TrackPID PiSelectorKM, Pion PID

• BvtxProbChi2, vertex probability

Figure 6.8 shows there are no significant correlations between the variables used in the cut
optimization. The value of the FOM is S/

√
S +B ∼ 4.66 after optimization.

91



Analysis of B+ → K+π−π+γ decays: study of the Kππ resonant structure

-100

-80

-60

-40

-20

0

20

40

60

80

100

BvtxProbChi2

Pi0VetoLikelihoodRatio

EtaVetoLikelihoodRatio

PhotonGammaConsistency

PhotonMergedPi0Consistency

Daug1TrackPID_KSelectorKM

Daug2TrackPID_PiSelectorKM

Daug3TrackPID_PiSelectorKM

BvtxProbChi2

Pi0VetoLikelihoodRatio

EtaVetoLikelihoodRatio

PhotonGammaConsistency

PhotonMergedPi0Consistency

Daug1TrackPID_KSelectorKM

Daug2TrackPID_PiSelectorKM

Daug3TrackPID_PiSelectorKM

Correlation Matrix (signal)

100   1  -1   2  -1   2

100   4   6   2   1   3

  4 100  -1

  1   6  -1 100  -4   1   5   2

 -1   2  -4 100

  2   1   1 100

 -1   5 100

  2   3   2 100

Linear correlation coefficients in %

-100

-80

-60

-40

-20

0

20

40

60

80

100

BvtxProbChi2

Pi0VetoLikelihoodRatio

EtaVetoLikelihoodRatio

PhotonGammaConsistency

PhotonMergedPi0Consistency

Daug1TrackPID_KSelectorKM

Daug2TrackPID_PiSelectorKM

Daug3TrackPID_PiSelectorKM

BvtxProbChi2

Pi0VetoLikelihoodRatio

EtaVetoLikelihoodRatio

PhotonGammaConsistency

PhotonMergedPi0Consistency

Daug1TrackPID_KSelectorKM

Daug2TrackPID_PiSelectorKM

Daug3TrackPID_PiSelectorKM

Correlation Matrix (background)

100   1   2  -6   4   5

100 -12   9  -5  -3   1   1

  1 -12 100   1  -4

  2   9   1 100 -17  -3  -1   1

 -5  -4 -17 100   1

 -6  -3  -3 100  -2   6

  4   1  -1  -2 100   5

  5   1   1   1   6   5 100

Linear correlation coefficients in %

(a) (b)
Figure 6.8: Correlations between the variables used in the cut optimization, for signal and
background events in (a) and (b), respectively.

6.2.4 Multiple candidate selection

In this section, we describe the technique used to select a single candidate in events where
more than one is reconstructed and passes the selection criteria. We only consider candidates
that have already passed all selection cuts described earlier in this chapter. The average
number of candidates per event is ∼ 1.4, for both signal and B-backgrounds, while the
maximum number of candidate can be of 6 or 7 per event.

In order to select the best candidate, we compared a naive random selection to a “best-

Table 6.4: Multiple candidate selection efficiency of all kaonic resonances contributing
to our signal mode, for the fit region in mES ∆E and the Fisher discriminant. Multiple
candidate selection efficiency is the ratio of signal-TM events on MC events containing at
least one candidate (either TM candidate or not), after all other candidate selection cuts, the
fit region cut, and multiple candidate selection.

Signal mode MCS technique MCS Efficiency (%)

K1(1270)
+ BvtxProbChi2 90.89± 0.56

Random 85.58± 0.53

K1(1400)
+ BvtxProbChi2 90.68± 0.52

Random 84.86± 0.50

K∗(1410)+
BvtxProbChi2 91.00± 0.56
Random 85.29± 0.53

K∗
2(1430)

+ BvtxProbChi2 90.21± 0.92
Random 84.82± 0.88

K∗(1680)+
BvtxProbChi2 93.22± 0.91
Random 88.07± 0.88

92



6.2 Event Selection

B-vertex-probability” selection. The multiple candidate selection efficiency is defined as the
yield of TM signal MC candidates after the dedicated selection, divided by the number of
signal MC events in which the TM candidate passes all other cuts. Signal events in which the
correctK+π+π−γ combination is not reconstructed at all do not enter into this efficiency, nor
do background processes, since for these we do not care which candidate is chosen. Table. 6.4
shows the multiple candidate selection efficiency for both techniques.

We choose to use BvtxProbChi2 as selecting variable for multiple candidate selection,
to maximize the multiple candidate selection selection. Note that we also checked that the
variable used for the multiple candidate selection was not correlated to the fit variables.

6.2.5 Efficiency

Table 6.5 details, for each of the applied selection criteria, the efficiency in TM signal MC.
The reconstruction efficiency, before any cut, is also indicated. In addition, Tab. 6.6 gives
the total efficiency once multiple candidate selection is applied. Moreover, Tab. 6.7 shows
that the overall efficiencies are comparable between resonances. This observation excludes
the K∗(1680), for which the overall efficiency is smaller. This is due to the large width
(Γ = 322 ± 110 MeV/c2) of this resonance combined with a pole mass of m0 = 1717 ± 27
MeV/c2, near the K+π−π+ invariant mass cut (i.e. mKππ < 1.8 GeV/c2). This cut is
responsible for the significant decrease in efficiency for the K∗(1680) .
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Table 6.5: Absolute, last- and first-cut efficiencies of candidate selection cuts in TM signal
MC. The absolute efficiency is obtained from the product of all the preceding cut efficiencies
in the table, including the corresponding one. The reconstruction efficiency is obtained from
the ratio between the number of generated and reconstructed events, before any of the cuts
is applied. The last- (first-)cut efficiency is the efficiency of the corresponding cut when
applied after (before) all the other cuts. Events that satisfy the condition on the cut value
are selected. Mass and time cuts are expressed in GeV/c2 and ps, respectively.

Cut Value
Absolute Last-cut First-cut
efficiency efficiency efficiency

Reconstruction ∅ 0.542 ∅ ∅
mKππ x < 1.8 0.517 0.806 0.948
LRπ0 x < 0.86 0.470 0.907 0.932
LRη x < 0.957 0.446 0.947 0.954
|mγ1(e+e−) −mπ0 | x < 0.025 0.446 > 0.999 > 0.999
|mγ1(e+e−) −mη| x < 0.050 0.446 > 0.999 > 0.999
B vertex probability 0.0199 < x 0.398 0.866 0.917
∆E −0.2 ≤ x ≤ 0.2 0.375 0.902 0.936
mES 5.2 < x 0.375 0.866 > 0.999
Fisher x > −0.095 0.339 0.878 0.911
B∆t −20 ≤ x ≤ 20 0.337 0.967 > 0.999
Bσ∆t

x < 2.5 0.331 0.953 0.983
B vertex status x = 0 0.331 0.985 > 0.999
B tag vertex status x = 0 0.330 0.975 0.998
cos θγ −0.74 ≤ x ≤ 0.93 0.330 > 0.999 > 0.999
Photon bump distance 25 < x 0.313 0.920 0.962
Photon track distance 25 < x 0.292 0.907 0.937
Photon merged π0

x < 0.00031 0.283 0.964 0.968
consistency
K+ PID LooseKMKaon 0.234 0.726 0.852
π1 PID SuperLooseKMPion 0.232 0.945 0.994
π2 PID SuperLooseKMPion 0.231 0.982 0.994
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Table 6.6: Individual and absolute efficiency (product of all the preceding cut efficiencies
in the table, including the corresponding one) of candidate selection cuts in TM signal MC.

Cut Efficiency Absolute efficiency

Reconstruction 0.542 0.542
Candidate selection 0.426 0.231
MCS 0.909 0.210

Table 6.7: Overall efficiency of TM candidates by resonance in signal MC. The efficiency
of K∗(1680) resonance is smaller due to the cut applied on the K+π−π+ invariant mass (i.e.
mKππ < 1.8 GeV/c2). Uncertainties come from MC statistics.

Resonance K1(1270) K1(1400) K∗(1410) K∗
2 (1430) K∗(1680)

Overal
0.2130± 0.0006 0.2110± 0.0013 0.1926± 0.0013 0.2092± 0.0016 0.1276± 0.0020

efficiency

6.3 Signal study

In this section we present the study of signal events and their separation in two categories:
TM and self-cross-feed (SCF). The corresponding PDFs are presented in Sec. 6.5.1.

6.3.1 Truth matching

Qualifying an event as TM or SCF is generally based on MC truth information. As a
first criterion (C1 in the following), events are considered as TM when all reconstructed
B daughters match the MC truth daughters, and SCF otherwise. This criterion results in
wrongly assigning some TM events to the SCF category, mainly in the following cases:

• Photon conversion: the photon has converted into a e+e− pair, therefore its particle
ID does not match anymore a photon.

• Pion decay: the pion decayed into a muon and a neutrino, therefore its particle ID
does not match anymore a pion.

• Kaon/Pion swap: the kaon has been identified as the pion and vice versa2.

Figure 6.9 shows the fit variables distributions of the TM events wrongly assigned to the
SCF category. Table 6.8 gives the relative fraction of events concerned by these three sources
of contamination. Finally events are considered as TM if they satisfy the criterion C1 or one
of the main cases of mistake listed previously, and SCF otherwise.

2It has been realized at an advanced stage of the analysis that the case of Kaon/Pion swap was in fact
corresponding to true SCF. Possible effects on the physical parameters extracted in the present analysis due
to assigning such events to the signal-TM event category have been studied. These effects were found to be
not significant, therefore they are treated as systematic uncertainties (see Sec. 6.9.1.6).
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Figure 6.9: Distributions of TM events, wrongly assigned to the SCF category, in the two
kinematical variables entering the final fit (mES and ∆E). Photon conversions are presented
in blue, the pion decays in green, and the kaon/pion swap in red.

Table 6.8: Fractions of wrongly assigned TM events to the SCF category compared to the
total number of events (f1) as well as to the number of SCF events (f2), before correction,
for each source of contamination.

Contamination source f1 (%) f2 (%)

Photon conversion 1.41 5.77
Pion decay 0.82 3.35
Kaon/Pion swap 0.37 1.53
Total 2.60 10.65

Table 6.9: B+ → K+π−π+γ signal estimated yields for the final BABAR Run1-6 dataset.
The uncertainties on the estimated yields are dominated by the uncertainties on the branching
fractions taken from Refs. [? ? ]. The uncertainties on the fractions come from MC statistics.

Category Estimated yield Fraction
Signal TM 2295± 306 0.7699± 0.0031
Signal SCF 686± 91 0.2301± 0.0052
Total Signal 2981± 397 ∅

6.3.2 Expected yields

The total signal yield, is estimated multiplying the total number of B mesons expected in
the final BABAR dataset by the estimated branching fractions of each mode given in Tab. 6.3,
and then by adding the resulting numbers. Then the TM and SCF yields are estimated
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using the amount of each category extracted from the MC, as given in Tab. 6.9.

6.4 Backgrounds study

As previously mentioned, the backgrounds in the present analysis are of two different types:
B backgrounds (discussed in Sec. 6.4.1) and continuum background (discussed in Sec. 6.4.2).
Section 6.4.3 gives the expected yields of each background category. The resulting PDFs are
presented in Sec. 6.5.2.

6.4.1 B backgrounds

6.4.1.1 General procedure

Using the generic MC samples, corresponding approximately to an integrated luminosity of
three times that of the data sample (see Tab. 5.1) we exclude the signal events using MC truth
information. We then apply our selection criteria and list all the remaining decay modes by
decreasing order of number of events. The ones with the largest expected yields are then
studied using the corresponding exclusive MC sample, whose corresponding luminosities are
given in Tab. 5.1.

As expected, we observe that the main backgrounds originate from b→ sγ processes. As
they have, like signal events, a high energy photon in the final state, we consider them as the
most dangerous source of background. Section 6.4.1.2 details the study of these backgrounds.
Other B backgrounds observed in the generic MC events, are discussed in Sec. 6.4.1.3.

6.4.1.2 Radiative b→ sγ backgrounds

From the generic MC, we isolate six dominant radiative B backgrounds, listed in Tab. 6.10.
As the size of the generic MC sample does not allow to perform an accurate study of these
radiative B backgrounds, we use exclusive MC datasets, as described in Sec. 5.1.1.

We separate these six dominant radiative B backgrounds in two groups. The first one is
composed of “low multiplicity” decays with only three particles in the final state. Namely,
those are the B → Kπγ decays detailed in Tab. 6.10, where one pion is taken from the other
side of the event. All these “low multiplicity” radiative B backgrounds are expected to have
comparable distributions in our fit variables. Thus, we combine the B0 → K∗0(→ Kπ)γ
and B0 → Xsd(→ Kπ)γ contributions into one category. When doing that, we exclude the
contributions coming from Xsd formXsd

< 1.1GeV/c2. This takes into account the difficulties
of the MC to correctly reproduce data in this range of mass for the Xsd decays. However, this
mass range is included by the B0 → K∗0(→ Kπ)γ sample. Details on this procedure can be
found elsewhere [? ]. The same argument holds for the combination of B+ → K∗+(→ Kπ)γ
and B+ → Xsu(→ Kπ)γ decays.

For the second group of radiative B backgrounds, the “Higher multiplicity” decays of
Tab. 6.10, one particle or more has been missed in the reconstruction. Thus, for these
modes the final states are semi inclusive, due to the fact that many of the Xsu or Xsd decays
contribute to our background. A detailed study of these decays performed in another BABAR
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Table 6.10: Radiative backgrounds contributing to B+ → K+π−π+γ, observed in the
generic MC.

Specificity Decay mode

B → Kπγ

B0 → K∗0(→ Kπ)γ
B0 → Xsd(→ Kπ)γ
B+ → K∗+(→ Kπ)γ
B+ → Xsu(→ Kπ)γ

Higher B0 → Xsd(9 Kπ)γ
multiplicity decay B+ → Xsu(9 Kπ)γ

analysis [? ] shows that the model used to generate and decay the Xsu and Xsd states is not
fully accurate, and does not reproduce data. More precisely, the relative fractions between
the Xs decay modes are not correct, while the inclusive branching fraction of B → Xsγ is
properly modeled. Therefore corrective weights, obtained in Ref. [? ], are applied separately
to each decay mode. The corresponding weights are given in App. B.

For B0 → Xsd(9 Kπ)γ and B+ → Xsu(9 Kπ)γ decays, there is no obvious reason to
think that the charged and the neutral modes should have the same distributions in our fit
variables. Indeed, these distributions do not show significant differences. To avoid too many
categories in our fit model, we finally merge the charged and neutral Xs decay modes into
one category.

6.4.1.3 Other B backgrounds

From generic MC sample we also identified non radiative B backgrounds with small contri-
butions in term of estimated number of events, but with distributions that are similar to
those of signal.

The first one is B0 → K∗0η mode, which we isolate into one single category. Here, the
η decays into a pair of charged pions (π+π−) and one photon. The selection cut applied to
the high energy photon explains that this background does not contribute much. To model
properly the PDFs of this background category we use an exclusive MC sample given in
Tab. 5.1.

We also identified other modes with very little expected numbers of events, but with
distributions very close to signal in mES. Using exclusive MC we constructed another
category including B± → a±1 (→ ρ0π±)π0γ and B± → K∗0(→ Kπ)π±π0γ decays labelled
“Peaking charmless”.

Once the main peaking B-backgrounds were identified, i.e. all the B-backgrounds previ-
ously cited, they have been removed from the generic B+B− and B0B0 MC samples. All the
remaining non-peaking contributions were further grouped into one single category labelled
“generic B background”.
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6.4.2 Continuum background

For the continuum background, we use the complete Off-Peak dataset of 44.81 fb−1 collected
by BABAR. To estimate the continuum yield, we need to normalize the number of events
passing through the selection criteria using two factors, given in Tab. 6.11. The first one is the
ratio of integrated luminosity between On-Peak and Off-Peak data. The second corresponds
to a correction due to a shift in mES of −20MeV/c2.

Table 6.11: Normalization factor used to estimate the continuum yield.

Normalization factor Value
Luminosity ratio 9.66

mES shift 1.27
Total 12.29

6.4.3 Expected background yields

Table 6.12 gives the yields of the different background categories defined in the B+ →
K+π−π+γ analysis.

Table 6.12: B+ → K+π−π+γ background estimated yields for the final BABAR Run1-6
dataset.

Continuum (udsc) 70983
B0 → Xsd(9 Kπ)γ

2872
B+ → Xsu(9 Kπ)γ
B0 → K∗0(→ Kπ)γ

1930
B0 → Xsd(→ Kπ)γ
Generic B-background 1065
B+ → K∗+(→ Kπ)γ

442
B+ → Xsu(→ Kπ)γ
B0 → K∗0η 56
B± → a±1 (→ ρ0π±)π0γ

17
B± → K∗0(→ Kπ)π±π0γ
Total Bkg 77365
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6.5 Fit to mES, ∆E and Fisher

Here we present the fit performed on mES, ∆E and the Fisher discriminant in order to
extract the mKππ and mKπ sPlots of the signal-TM category. The fit was performed using
the Laura++ package [? ]. Sections 6.5.1 and 6.5.2 detail the PDFs use in the fit model
and the correlations between the fit variables for the signal and the backgrounds categories,
respectively. Then Sec. 6.5.3 summarizes the fitting functions. Section 6.5.4 presents the
validation tests of the fit model. Finally, Sec. 6.5.5 gives the projections and the yields
extracted from the fit.

6.5.1 Signal PDFs

Probability density functions for the TM and SCF signal events are constructed using the
cocktail of signal MC samples (Tab. 6.3). The TM and SCF PDFs for each discriminating
variable entering the fit model are shown in Figs. 6.10 and 6.11, respectively. We can observe
that the shape of the ∆E distribution of the SCF is slightly bended and that the linear
function used to parametrize the distribution can not account for this feature. Possible effects
on the physical parameters extracted in the present analysis due to the ∆E parametrization
of the SCF have been studied. These effects were found to be not significant, therefore the
are treated as systematic uncertainties (see Sec. 6.9.1.5). The total number of events shown
in these figures is normalized to the expected yield, given in Tab. 6.9. Details on the function
used to describe the PDFs presented below are available in Appendix A.

 (GeV/c2)ESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

E
v

e
n

ts
 /

 (
 0

.0
0

1
8

4
 )

0

100

200

300

400

500

600

E (GeV)∆

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

E
v

e
n

ts
 /

 (
 0

.0
1

3
3

3
3

3
 )

0

50

100

150

200

250

Fisher
0 0.2 0.4 0.6 0.8 1

E
v

e
n

ts
 /

 (
 0

.0
3

6
5

 )

0

20

40

60

80

100

120

140

160

180

200

220

Figure 6.10: Probability density functions for the fit variables mES (left), ∆E (center) and
the Fisher discriminant (right) of signal-TM category. Here the mES PDF is described by
a Crystal Ball function, the ∆E PDF by a Cruijff and the Fisher discriminant PDF by a
gaussian. The blue curves represent the PDF distributions, and the black points correspond
to MC events.
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Figure 6.11: Probability density functions for the fit variables mES (left), ∆E (center) and
the Fisher discriminant (right) of signal SCF category. Here the mES PDF is described by the
sum of a Bifurcated Gaussian function (green dotted line) and an Argus (red dashed line),
the ∆E PDF by a linear function and the Fisher discriminant PDF by a gaussian. The blue
curves represent the PDF distributions, and the black points correspond to MC events.

Correlations among the fit variables for signal events

We checked for possible correlations among our fit variables. No significant correlations
were found between the Fisher discriminant and both mES and ∆E. However between mES

and ∆E, for which correlations may be induced by event reconstruction, some significant
correlations were found. A priori we expect to have significant correlations for the signal SCF
category. However, it is in the signal-TM component that the stronger correlations appear.
We split MC signal events into three bins in mES and three bins in ∆E. Figures 6.12
and 6.13 show the mES (∆E) distributions in ∆E (mES) bins for the signal SCF and TM
categories, respectively. From these distributions, we decided to take mES-∆E correlations
into account for signal-TM events. This is done by implementing a two-dimensional PDF for
mES-∆E. As previously shown in Sec. 6.5.1, the mES and ∆E PDFs were parametrized by
1-dimensional functions. To allow conserving a parametric function for the signal-TM PDFs
while accounting for mES-∆E correlations, we use a two-dimensional conditional PDF. It is
constructed as the product of a conditional PDF (Crystal Ball for mES) by a marginal PDF
(Cruijff for ∆E). Thus, by construction, the mES dependence in ∆E is chosen to be explicit
while ∆E dependence remains implicit. The Crystal Ball depends on four parameters and
is defined as:

CB(x;µ, σ, α, n) =
1

a











(

n
α

)n exp(−α2/2)
((µ−x)/σ+n/α−α)n

x ≤ µ− ασ

exp
[

1
2

(

x−µ
σ

)2
]

x > µ− ασ

(6.2)

where µ and σ describe a Gaussian, which is truncated on the low side at µ−ασ and joined
continuously to a power function with exponent n; 1/a is a normalization constant.

The mES Crystal Ball parameters dependence in ∆E was studied in ten bins (with var-
ious sizes) in ∆E, as listed in Tab. 6.13. For each of the ten subsets, we perform an
unbinned maximum likelihood fit to extract the Crystal Ball parameters.
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Figure 6.12: mES (left) and ∆E (right) distributions of SCF events in ∆E and mES bins,
respectively

mES

5.26 5.265 5.27 5.275 5.28 5.285 5.29

N
o

r
m

a
li
z
e
d

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

mES TM

All bins

E <= -0.07∆-0.20 < 

E <= 0.07∆-0.07 < 

E <= 0.20∆0.07 < 

DeltaE

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

N
o

r
m

a
li
z
e
d

0

0.02

0.04

0.06

0.08

0.1

DeltaE TM

All bins

 <= 5.27
ES

5.20 < m

 <= 5.28
ES

5.27 < m

 <= 5.30
ES

5.28 < m

Figure 6.13: mES (left) and ∆E (right) distributions of TM events in ∆E and mES bins,
respectively

Table 6.13: ∆E bins definition for the mES Crystal Ball parameters dependence in ∆E.

∆E bin ∆E range
number (GeV)

0 [−0.20 ; −0.15[
1 [−0.15 ; −0.10[
2 [−0.10 ; −0.07[
3 [−0.07 ; −0.04[
4 [−0.04 ; −0.01[
5 [−0.01 ; 0.02[
6 [0.02 ; 0.05[
7 [0.05 ; 0.10[
8 [0.10 ; 0.15[
9 [0.15 ; 0.20]
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The following polynomial functions are used to describe the evolution of the Crystal-Ball
parameters between ∆E bins:

• µ and σ: second order polynomial function [Fig. 6.14];

• α and n: first order polynomial function [Fig. 6.15].

As a consistency check, we generated toy data samples using this two-dimensional conditional
PDF parametrization for each ∆E bin and extracted the Crystal-Ball parameters by a fit.
Figures 6.14 and 6.15 show the ∆E-dependent mES Crystal Ball parameters obtained from
both MC and generated toy data samples. As another consistency test, we compared MC
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Figure 6.14: mES Crystal Ball µ (left) and σ (right) parameters evolution in ∆E bins.
Blue points correspond to MC sample, red points to a toy sample generated using the two-
dimensional conditional PDF, and the green horizontal line corresponds to a 1-dimensional
Crystal-Ball PDF without mES-∆E correlations. The central value of each point is the fitted
value of the Crystal Ball parameter, the vertical error bars correspond to the parameter fit
error and the horizontal error bars to the size of each ∆E bin.
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Figure 6.15: mES Crystal Ball α (left) and n (right) parameters evolution in ∆E bins.
Conventions are identical as those of Fig. 6.14.
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and generated mES fit projection distributions for each ∆E subset. Figures D.6 to D.7 in
appendix D.2.1, show these fit projections. Even if the Cruijff parameters dependence in
mES bins is not explicitly parametrized we also did consistency tests, comparing the MC and
generated ∆E fit projection distributions in each mES bin. This is not shown in this section,
but can be found in appendix D.1.

6.5.2 Background PDFs

Here we present the probability density functions of all the background categories previously
defined. They are presented in decreasing order of expected yields, in Figs. 6.16 to 6.22. The
total number of events is always normalized to the expected yield for each category. Details
on the function used to describe the PDFs presented below are available in Appendix A.
Note that when constructing the PDFs for one particular observed B-background mode, we
ensure, using MC truth information, that none of the other identified background modes
appear in the decay of the other B meson in the event. This procedure ensures that the
PDFs corresponding to a given mode are not contaminated by contributions from the other
identified background modes.
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Figure 6.16: Probability density functions for the fit variables mES (left), ∆E (center) and
the Fisher discriminant (right) of continuum (udsc) background category. The blue curve
represent the PDF distribution, and the black points correspond to MC events. Here the
mES PDF is described by an Argus, the ∆E PDF by an order 2 Chebychev polynomial and
the Fisher discriminant by an exponential.
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Figure 6.17: PDFs of B0 → Xsd(9 Kπ)γ + B+ → Xsu(9 Kπ)γ B-background category.
Conventions are similar to those of Fig. 6.16. Here the mES PDF is described by the sum of
a Cruijff (green dotted line) and an Argus (red dashed line), the ∆E PDF by an exponential
and the Fisher discriminant by a gaussian.
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Figure 6.18: PDFs of B0 → K∗0(→ Kπ)γ + B0 → Xsd(→ Kπ)γ background category.
Conventions are similar to those of Fig. 6.16. Here the mES PDF is described by the sum of
a Cruijff (green dotted line) and an Argus (red dashed line), the ∆E and the Fisher PDFs
discriminant are described by Cruijffs.
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Figure 6.19: PDFs of generic B-background category. Conventions are similar to those of
Fig. 6.16. Here the mES PDF is described by an Argus, the ∆E PDF by an exponential and
the Fisher discriminant by a Gaussian.
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Figure 6.20: PDFs of B+ → K∗+(→ Kπ)γ + B+ → Xsu(→ Kπ)γ-background category.
Conventions are similar to those of Fig. 6.16. Here the mES PDF is described by the sum
of a linear function (green dotted line) and an Argus (red dashed line), the ∆E PDF by
exponential function and the Fisher discriminant PDF is described by a Cruijff.
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Figure 6.21: PDFs of B0 → K∗0η background category. Conventions are similar to those of
Fig. 6.16. Here the mES PDF is described by the composition of a Cruijff (green dotted line)
and an Argus (red dashed line), the ∆E PDF by the composition of a gaussian (green dotted
line) and a constant function (red dashed line). The Fisher discriminant PDF is described
by a Cruijff.

 (GeV/c2)ESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

E
v

e
n

ts
 /

 (
 0

.0
0

2
3

 )

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

E (GeV/c)∆

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

E
v

e
n

ts
 /

 (
 0

.0
1

 )

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fisher
0 0.2 0.4 0.6 0.8 1

E
v

e
n

ts
 /

 (
 0

.0
5

4
7

5
 )

0

0.5

1

1.5

2

2.5

3

Figure 6.22: PDFs of charmless peaking background category. Conventions are similar to
those of Fig. 6.16. Here the mES PDF is described by a Crystal Ball, the ∆E and the Fisher
discriminant PDFs by bifurcated gaussians.
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Correlations among the fit variables for background events

As for signal events, we checked for possible correlations between the fit variables. Again,
no significant correlations were found between the Fisher discriminant and both mES and
∆E. We present the study of the correlations between mES and ∆E for the four main B-
background components (in terms of expected yields). Figures 6.23 to 6.26 show mES (∆E)
distributions in ∆E (mES) bins, for the following B-background categories :

• B0 → Xsd(9 Kπ)γ + B+ → Xsu(9 Kπ)γ [Fig. 6.23];

• B+ → K∗+(→ Kπ)γ + B+ → Xsu(→ Kπ)γ [Fig. 6.24];

• B0 → K∗0(→ Kπ)γ + B0 → Xsd(→ Kπ)γ [Fig. 6.25];

• Generic B background [Fig. 6.26].

We do not observe significant mES-∆E correlations, except for the B0 → K∗0(→ Kπ)γ +
B0 → Xsd(→ Kπ)γ in Fig. 6.24. Thus, we take these correlations into account using a
two-dimensional PDF. However, as we do not intend to vary any of the corresponding PDF
parameters in the fit to data, we use a non parametric two-dimensional PDF for mES-∆E.
The histogram is taken from a cocktail of MC events.
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Figure 6.23: mES (left) and ∆E (right) distributions of B0 → Xsd(9 Kπ)γ + B+ →
Xsu(9 Kπ)γ events in ∆E and mES bins, respectively
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Figure 6.24: mES (left) and ∆E (right) distributions of B0 → K∗0(→ Kπ)γ + B0 →
Xsd(→ Kπ)γ events in ∆E and mES bins, respectively
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Figure 6.25: mES (left) and ∆E (right) distributions of B+ → K∗+(→ Kπ)γ + B+ →
Xsu(→ Kπ)γ events in ∆E and mES bins, respectively
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Figure 6.26: mES (left) and ∆E (right) distributions of generic B background events in
∆E and mES bins, respectively
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6.5.3 Fitting functions

Table 6.14 summarizes the choice of functions used to parametrize the different fit com-
ponents. Note that for both signal-TM and B0 → K∗0(→ Kπ)γ + B0 → Xsd(→ Kπ)γ
categories, the PDF functions are two-dimensional. This is motivated by the correlations
that arise between mES and ∆E, as shown in Secs. 6.5.1 and 6.5.2, respectively.

Table 6.14: Summary of all the fit components and the functions used to parametrize their
PDFs.

Fit component
PDF function

mES ∆E Fisher

Signal TM
Two-dimensional parametric

Gaussian
(Crystal Ball – Cruijff)

SCF
Argus +

Linear Gaussian
Bifurcated Gaussian

Continuum udsc Argus Chebychev (2nd order) Exponential

B0 → Xsd(9 Kπ)γ
Cruijff + Argus Exponential Gaussian

B+ → Xsu(9 Kπ)γ
B0 → K∗0(→ Kπ)γ Two-dimensional

Cruijff
B0 → Xsd(→ Kπ)γ non parametric
B+ → K∗+(→ Kπ)γ

Argus + Linear Exponential Cruijff
B+ → Xsu(→ Kπ)γ
Generic

Argus Exponential Gaussian
B-background

B0 → K∗0η Cruijff + Argus
Gaussian +

Cruijff
Constant

Small Charmless
Crystal Ball

Bifurcated Bifurcated
Peaking Gaussian Gaussian

6.5.4 Validation tests

In order to test the robustness of our model before fitting the data, we perform validation
tests by means of the toy-MC studies (see Sec. 5.4.3).

6.5.4.1 Pure toy studies

We use our fitter to generate an ensemble of 331 pseudo experiments using the PDFs listed
in Tab. 6.14. In each pseudo experiment, the yield of each category is randomly generated
from a Poisson distribution (aka “poissonized”) corresponding to its expected value (Tabs. 6.9
and 6.12 for signal and background yields, respectively). The values of shape parameters are
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extracted from all the MC information available for signal and B background. For continuum
background the shape parameters are extracted from Run1-6 Off-Peak data sample.

The usual signal description uses a single yield for the total signal, and a fraction of
SCF events. However we found out that, using this description, strong correlations appear
between the fit parameters. Details about this are given in appendix E.1. We therefore
separate the signal-TM and SCF components, using two separated yields in our model. This
choice is also due to the fact that we only use the signal-TM component to extract the
needed information for the B0 → K0

S
ρ0γ analysis.

We use the nominal PDF to fit each of the 331 pseudo-experiments. Due to the large
number of shape parameters (greater than 100) we fix many of them, mainly in the back-
ground PDFs. Several combinations were tested in order to maximize the number of floated
parameters in order to reduce systematic uncertainties without impairing the fit ability
to discriminate the different components. As a result, we fix all the B-background shape
parameters, as well as some of their yields. Indeed, as some of them have similar PDF
shapes, the fitter has difficulties to discriminate them. Namely we fix the B+ → K∗+(→
Kπ)γ + B+ → Xsu(→ Kπ)γ, B0 → Xsd(9 Kπ)γ + B+ → Xsu(9 Kπ)γ, B0 → K∗0η
and Peaking charmless yields, letting all the others vary. Furthermore, we fix all the SCF
shape parameters as well as the Gaussian parameters of the Fisher discriminant PDF for the

Table 6.15: Means and widths of pull distributions of all the floated parameters entering
the model from the pure toy studies.

Fit
Fit Parameter Pull Mean Pull Width

variable

S
ig
n
al

T
M

mES

CBµ(Coeff0) 0.079± 0.052 0.946± 0.037
CBµ(Coeff1) 0.035± 0.052 0.950± 0.037
CBµ(Coeff2) 0.009± 0.056 1.001± 0.039
CBσ(Coeff0) −0.060± 0.047 1.085± 0.042
CBσ(Coeff1) −0.098± 0.054 0.980± 0.038
CBσ(Coeff2) −0.116± 0.058 1.053± 0.041

∆E
Crµ 0.004± 0.048 0.870± 0.034
CrσL

0.067± 0.053 0.958± 0.037

Fisher
Gµ −0.037± 0.054 0.991± 0.039
Gσ −0.012± 0.052 0.943± 0.037

u
d
sc

mES Argξ −0.031± 0.054 0.989± 0.038

∆E
Chebychev(Coeff0) −0.037± 0.056 1.017± 0.040
Chebychev(Coeff1) −0.090± 0.055 1.000± 0.039

Y
ie
ld
s

Signal TM 0.094± 0.059 1.090± 0.042
Continuum udsc 0.034± 0.057 1.032± 0.040
Generic B-background −0.063± 0.056 1.027± 0.040
B0 → K∗0(→ Kπ)γ

0.006± 0.054 0.980± 0.038
B0 → Xsd(→ Kπ)γ
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continuum udsc. For the signal, we found that it is possible to vary the Gaussian parameters
of the Fisher discriminant, the Cruijff parameters µ and σL and all the evolution coefficients
of Crystal Ball parameters µ and σ describing the ∆E polynomial dependence of mES in the
two-dimensional PDF.

Table 6.15 gives the results of the pure toy studies, showing the mean and width of the
pull distributions of each floated parameter in our model. We conclude from these results
that the model has no intrinsic dysfunction. Note that the fit convergence rate is 100%,
and that all the pull distributions are gaussian of means and widths that are compatible,
within the statistical uncertainties, with 0 and 1, respectively. Figures 6.27 and 6.28 show
the pull distributions for the floated yields in the fit model. Pull distributions of the shape
parameters can be found in Appendix E.2.
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Figure 6.27: Signal-TM (left) and continuum udsc (right) yield pull distributions for the
pure toy studies with 331 toys, respectively.
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Figure 6.28: Generic B background (left) and B0 → K∗0(→ Kπ)γ + B0 → Xsd(→ Kπ)γ
(right) yield pull distributions for the pure toy studies with 331 toys, respectively.
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6.5.4.2 Embedded toy studies

In the so called “embedded toys”, pseudo experiments are produced by generating events out
of the PDFs for the simpler species (background categories with no significant correlation
among the fit variables), whereas events for signal (TM and SCF) and B background B0 →
K∗0(→ Kπ)γ + B0 → Xsd(→ Kπ)γ are drawn from the fully reconstructed MC samples.
331 of such pseudo experiments are generated, which are then fitted using the same PDFs
as in the pure toy studies. The yield of each category is poissonized around their expected
value. Table 6.16 gives the results of the embedded toy studies, showing the means and
widths of the pull distributions of each floated parameter in the model.

From these results, we conclude that our model has no significant bias on the signal-
TM yield. As shown in Sec. 6.5.4.3 no significant biases are found in the relevant mass
spectra. We observe some significant biases in the other yields, due to complicated correla-
tions between the corresponding categories, where events migrate from one to others. Some
significant biases also appear in shape parameters, but again, this is not of any issue here
since this does not affect the signal-TM yield. Therefore, we do not correct for any biases
that appear in the embedded pulls. Note that the fit convergence is 100%, and that all the

Table 6.16: Means and widths of pull distributions of all the floated parameters entering
the model from the embedded toy studies.

Fit
Fit Parameter Pull Mean Pull Width

variable

S
ig
n
al

T
M

mES

CBµ(Coeff0) 0.706± 0.057 1.042± 0.040
CBµ(Coeff1) −0.338± 0.058 1.048± 0.040
CBµ(Coeff2) −0.328± 0.064 1.180± 0.046
CBσ(Coeff0) 1.033± 0.054 0.983± 0.038
CBσ(Coeff1) −0.901± 0.053 0.961± 0.037
CBσ(Coeff2) −0.681± 0.065 1.174± 0.046

∆E
Crµ −0.061± 0.053 0.971± 0.038
CrσL

−0.457± 0.063 1.154± 0.045

Fisher
Gµ 0.117± 0.057 1.030± 0.040
Gσ 0.116± 0.055 0.994± 0.039

u
d
sc

mES Argξ 0.125± 0.052 0.948± 0.037

∆E
Chebychev(Coeff0) −0.642± 0.058 1.056± 0.041
Chebychev(Coeff1) 0.052± 0.053 0.957± 0.037

Y
ie
ld
s

Signal TM −0.027± 0.058 1.050± 0.041
Continuum udsc 0.229± 0.058 1.054± 0.041
Generic B-background −0.354± 0.057 1.035± 0.040
B0 → K∗0(→ Kπ)γ −0.026± 0.055 1.002± 0.039
B0 → Xsd(→ Kπ)γ
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pull distributions are gaussian. Figures 6.29 and 6.30 show the pull distributions for the
floated yields in the fit model. Distributions of the shape parameter pulls can be found in
Appendix E.3.
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Figure 6.29: Signal-TM (left) and continuum udsc (right) yield pull distributions for the
embedded toy studies with 331 toys, respectively.
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Figure 6.30: Generic B background (left) and B0 → K∗0(→ Kπ)γ + B0 → Xsd(→ Kπ)γ
(right) yield pull distributions for the embedded toy studies with 331 toys, respectively.

6.5.4.3 Validation of the invariant mass spectra extraction method

In this section we present the validation tests, performed on MC, of the signal-TM invariant
mass spectra extraction method. The tests consist in checking the ability of the fit model
to discriminate signal-TM from other events in order to extract the mKππ, mKπ and mππ

invariant mass distributions using the sPlot technique3. To do so, we compare the sPlot
3The sPlot technique, described in Sec. 5.4.4, allows to extract unknown distributions of one specific

category, when the latter is well discriminated from other categories in the extended maximum likelihood
fit. In the present analysis the relevant event category is the signal TM, whose yield appears unbiased (see
the pull results in Sec. 6.5.4.2), which shows the model ability to discriminate this category.
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distributions to the MC-truth ones. We first present the K+π−π+ invariant mass extraction
and then the “pseudo-Dalitz-plot” extraction. Indeed in the present analysis, the final state
is composed of three charged particles (K+π−π+) and a photon. We define the “pseudo-
Dalitz-plot” as the m2

Kπ − m2
ππ plane. This implies that the pseudo-Dalitz-plot plane will

not have properly defined phase-space boundaries. The photon is not contributing to any
resonance, and its energy is only constrained bymKππ; in the B meson rest frame, the photon
recoils back to back with the K+π−π+ system.

Invariant mass spectrum of the K+π−π+ system

From the result of a fit performed on one MC pseudo experiment, we obtain the signal-TM

sWeights, and apply them to all mKππ values in the dataset.
Figure 6.31 compares the signal-TM mKππ distribution obtained using the sPlot tech-

nique to the MC-truth information. There are no significant differences between the two
distributions within statistical errors. From this we conclude that the model is able to
extract the signal-TM mKππ spectrum.

Pseudo-Dalitz-plot distributions

We use the same procedure to reconstruct the pseudo-Dalitz-plot signal-TM distributions.
Figure 6.32 shows the pseudo-Dalitz-plot distributions between the K+π− and π+π− in-
variant mass systems: the signal-TM sPlot, the MC-truth information and the residual
distribution between them. Figure 6.33 shows a comparison between the MC truth and

sPlot distributions of the pseudo-Dalitz-plot projections on mKπ and mππ. As for the mKππ
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Figure 6.31: Background subtracted mKππ distribution (data expected statistic). The
black points represent the background subtracted mKππ distribution, and the red points the
MC-truth one.
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spectrum, we do not observe significant differences between the MC truth and sPlot distri-
butions.
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Figure 6.32: Background subtracted (a), MC truth (b) and residual (c) K+π−π+ pseudo-
Dalitz-plot distributions between K+π− and π+π− invariant mass system (data expected
statistics). The residuals are obtained by dividing the difference between the histograms (a)
and (b) by the square root of their sum. The unit in z corresponds to the number of events
for (a) and (b).
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Figure 6.33: K+π− (left) and π−π+ (right) invariant mass distributions (data expected
statistic). The black points represent the background subtracted distributions, and the red
points the MC-truth one.
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6.5.5 Fit yields and projections

Here we present the results of the fit to mES, ∆E and the Fisher discriminant. Table 6.17
gives the fitted yields and Figs. 6.34 to 6.35 show the fit variables projections (i.e. mES,
∆E and the Fisher discriminant). We observe a good agreement between the model and the
data in the signal region, within the statistical uncertainties. The model describes very well
the mES and the Fisher discriminant data distributions, whereas the agreement is slightly
worse for ∆E. The latter case was studied, and Figs. F.5 to F.15 in appendix F.2 indicate
that these differences between the model and the data are probably due to some background
fluctuations. Fit projections, enriched in signal events, for mES and the Fisher discriminant
are also shown in App. F.1.

Table 6.17: B+ → K+π−π+γ fitted yields for the final BABAR Run1-6 dataset.

Category Fitted yield Fit error (stat.)
Signal TM 2441 91
Continuum udsc 70078 446
B0 → K∗0(→ Kπ)γ + B0 → Xsd(→ Kπ)γ 1529 116
Generic B-background 3270 385
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Figure 6.34: mES fit projection. Black points describe data events and the full colored
histograms describe the contribution of each event species in the model.
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Figure 6.35: ∆E (a) and the Fisher discriminant (b) fit projections. Conventions are
identical as in Fig. 6.34.
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6.6 Fit to the mKππ spectrum

As already mentioned (see Sec. 6.3), not all the branching fractions of the contributions to
themKππ spectrum are known precisely. We perform a fit to the signal-TM sPlot ofK+π−π+

invariant mass spectrum in order to extract their weights from data. The fit model4 of the
mKππ distribution is described in Sec. 6.6.1, and the fit results are given in Sec. 6.6.2.

6.6.1 Fit model

We model the mKππ distribution as a coherent sum of five resonances described by Rela-
tivistic Breit-Wigner (BW) line shapes, whose widths (Γ) are independent of the mass (m).
The total PDF is then defined as:

|A(m; ck)|2 =
∑

J

∣

∣

∣

∣

∣

∑

k

ck BW
J
k (m)

∣

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

∣

m=mKππ

, (6.3)

with

BWJ
k (m) =

1

(m0
k)

2 −m2 − im0
kΓ

0
k

∣

∣

∣

∣

m=mKππ

, (6.4)

and
ck = αk e

iφk . (6.5)

The values of m0
k and Γ0

k are listed in Tab. 6.18. In Eq. 6.3 the index J runs over the
different spin parity (JP ) and the index k runs over the kaonic resonances of same JP . In
Eq. 6.5, the coefficients αk and φk are the magnitude and phase of the complex coefficients,
ck, corresponding to a given resonance. Table 6.18 details the different resonances in the
mKππ fit model. Six parameters of the complex coefficients vary in the fit: 4 magnitudes and
2 relative phases. The other parameters are fixed as references: 1 for theK1(1270) magnitude
and 0 for the K1(1270), K

∗(1680) and K∗
2(1430) phases. It has been checked that the choice

of references does not affect the results. Note that we do not take phase-space effects into
account here. However, distortions of line shapes of the kaonic resonances may occur from
two sources: the available energy in the production process (i.e. B → Kres.γ), and the mass
of particular intermediate-state particles being close to the threshold, for instance as in the
case of K1(1270) → Kρ0(770). The first source of distortion was studied by comparing, for
each kaonic resonance, the invariant-mass distribution generated by EvtGen to the BW that
was used as an input to the generator. As shown in Figs. C.1 to C.5 of App. C, we do not
observe any significant distortions. The second source of distortion would be complicated to
estimate since it requires the knowledge of the proportions of each decaying process, which
we want to extract next. This would require an complicated iterative procedure. Moreover,
due to the relatively low available statistics (∼ 2500 events in the whole mKππ mass range),
we assume not to be sensitive to such effects. The model used here is effective; in the present
analysis it describes the data rather well, but it may be improvable when larger data samples

4We implemented the mKππ fit model using the RooFit library [? ] .
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are analyzed.
The fit fractions FF(k) extracted for each kaonic resonance, as well as the interference fit
fractions FF (k, l) between same JP resonances, are calculated as:

FF (k) =
|ck|2 〈BWkBW

∗
k〉

∑

µν(cµc
∗
ν) 〈BWµBW

∗
ν〉

; FF (k, l) =
2Re{(ckc∗l ) 〈BWkBW

∗
l 〉}

∑

µν(cµc
∗
ν) 〈BWµBW

∗
ν〉

, (6.6)

where the terms 〈BWµBW
∗
ν〉 are:

〈BWµBW
∗
ν〉 =

∫

BWµBW
∗
νdm . (6.7)

In addition, we let free to vary two line-shape parameters in the fit: the widths of K1(1270)
and K∗(1680) resonances. This choice is motivated in the case of K1(1270) by the fact that
the width quoted in Ref. [? ] might be underestimated according to the measurements
reported in Ref. [? ]. In the case of K∗(1680) the uncertainty on the width quoted in Ref. [?
] being large and in order to minimize the systematic errors in the present analysis, we
decided to let it free to vary. Finally eight parameters are free to vary in the fit.

Table 6.18: Resonances entering in the mKππ fit model. The pole mass m0
k and width Γ0

k

are fixed to the values taken from Ref. [? ].

JP Kres
Mass m0

k Width Γ0
k

(MeV/c2) (MeV/c2)

1+
K1(1270) 1272± 7 90± 20
K1(1400) 1403± 7 174± 13

1−
K∗(1410) 1414± 15 232± 21
K∗(1680) 1717± 27 322± 110

2+ K∗
2(1430) 1425.6± 1.5 98.5± 2.7

6.6.2 Fit results

To extract the various Kres fit fractions we fit a binned distribution of signal-TM K+π−π+

invariant mass, using the model described in Sec. 6.6.1. The choice of fitting a binned
distribution comes from the fact that the sWeights, used to retrieve the signal-TM mKππ

distribution, can be negative, which introduces difficulties to perform an unbinned maximum
likelihood fit. Figure 6.36 shows the fit projection as well as the residual distribution between
the fitted PDF and the data points. Table 6.19 gives the fitted values of all free parameters
as well as the extracted fit fractions FF(k). The statistical errors on the magnitudes and
phases, as well as on the widths of K1(1270) and K

∗(1680) resonances come directly from
the fit.

As the fit fractions are functions of the complex amplitudes ck (Eq. 6.6), the statistical
errors on the FF are estimated in a different way. Using the full information coming from
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Figure 6.36: mKππ nominal fit projection (80 bins) and the residual distribution between
the total PDF (blue solid curve) and the data points.

the nominal fit (including correlations between fitted parameters), approximately 105 sets
of ck values are randomly generated. Then, we calculate the corresponding fit fractions for
each set and obtain the FF(k) distributions. The final fit fraction value of resonance k is
calculated using the fitted ck, while the ±1σ statistical errors are taken as the values at
±34% of the FF distribution integral around the FF value extracted from the fit results.

We consider various sources of systematic uncertainties: the number of bins in the fitted
dataset, the fixed parameters in the fit performed to mES, ∆E and the Fisher discriminant
from which we extract the signal TM sPlot distributions and the fixed line-shape parameters.
Details on the procedure to evaluate each source of systematic uncertainty as well as the
corresponding values are given in Sec. 6.9.1. We add in quadrature the minus and plus signed
uncertainties coming from the different sources in order to get the total minus and plus signed
uncertainties, which correspond to the values reported in Tab. 6.19. It appears that dominant
contribution to the total systematic uncertainties comes from the fixed parameters of the
resonance line shapes in the mKππ fit model.

We also perform likelihood scans of the fitted parameters (Fig. 6.37), in order to check
for the presence of multiple solutions. It appears that the fitted solution is unique. Each
of these scans is obtained by fixing the corresponding parameter at several consecutive val-
ues. Each of the fits is repeated with random initial values of the varying parameters and
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6.6 Fit to the mKππ spectrum

Table 6.19: Results of the mKππ fit. The nominal fit is performed with 80 bins. The
quoted systematic errors take into account the uncertainties coming from various sources:
the bin size of the dataset, the fixed parameters in the mES-∆E-Fisher fit model and the
fixed parameters in the mKππ fit model. The individual systematic uncertainties are added in
quadrature in order to obtain the total systematic errors. The dominant source of systematic
uncertainty comes from the fixed parameters of the resonance line shapes in the mKππ fit
(taken from Ref. [? ]). Details on the values of the systematics errors from the various sources
considered are given in Sec. 6.9.1.

JP Kres Magnitude α Phase φ (rad.) Fit fraction

1+
K1(1270) 1.0 (fixed) 0.0 (fixed) 0.61+0.08

−0.05(stat.)
+0.05

−0.05
(syst.)

K1(1400) 0.71± 0.10(stat.)
+0.12

−0.08
(syst.) 2.97± 0.17(stat.)

+0.11

−0.12
(syst.) 0.17+0.08

−0.05(stat.)
+0.05

−0.03
(syst.)

1−
K∗(1410) 1.25± 0.16(stat.)

+0.18

−0.13
(syst.) 3.15± 0.12(stat.)

+0.03

−0.02
(syst.) 0.37+0.08

−0.07(stat.)
+0.06

−0.02
(syst.)

K∗(1680) 2.02± 0.28(stat.)
+0.32

−0.21
(syst.) 0.0 (fixed) 0.43+0.05

−0.04(stat.)
+0.09

−0.06
(syst.)

2+ K∗
2 (1430) 0.33± 0.09(stat.)

+0.07

−0.14
(syst.) 0.0 (fixed) 0.06+0.04

−0.03(stat.)
+0.04

−0.05
(syst.)

Sum of fit fractions 1.64+0.18
−0.14(stat.)

+0.14

−0.07
(syst.)

Interferences
JP = 1+ : {K1(1270) –K1(1400)} −0.35+0.10

−0.16(stat.)
+0.05

−0.06
(syst.)

JP = 1− : {K∗(1410) –K∗(1680)} −0.29+0.08
−0.11(stat.)

+0.06

−0.12
(syst.)

Line-shape parameters

Kres Mean (GeV/c2) Width (GeV/c2)

K1(1270) 1.272 (fixed) 0.099± 0.006(stat.)
+0.004

−0.006(syst.)

K∗(1680) 1.717 (fixed) 0.356± 0.050(stat.)
+0.045

−0.026(syst.)

always converge to the same likelihood solution. We further compare in Tab. 6.20 the ra-
tio of the FFs extracted from the fit to the ratio of previously-used MC weights (mainly
taken from theoretical estimations). The extracted FF ratio FF(K∗

2(1430))/FF(K1(1270))
is compatible with the unique MC weight ratio extracted from existing measurements (i.e.
B(B+ → K∗

2(1430)
+γ)/B(B+ → K1(1270)

+γ), where the branching fractions are taken from
Ref. [? ]). The main difference concerns the K∗(1680) FF for which the initially-estimated
MC weight is widely underestimated. Nevertheless, the result obtained by the present analy-
sis is compatible with existing measurements: from Ref. [? ] we have
B(B+ → K∗(1680)+γ) < 1.9× 10−3 and B(B+ → K1(1270)

+γ) = (4.3± 1.3)× 10−5.

Using efficiency-correction factors for each resonance, we calculate new MC weights (see
column “Fit based MC weight” in Tab. 6.20) to be used to construct the appropriate signal-
MC cocktail for the mKπ fit (Sec. 6.7) and in the B0 → K0

S
ρ0γ analysis.

We also checked the dependance of these results in regard to the values of initial cocktail
weights. Since the cocktail weights only affect the values of the signal PDFs parameters,
we re-extract the values of these parameters for all the discriminating variables using the
new cocktail weights from the results of the fit to mKππ. Table 6.21 gives the values of
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these parameters for the two cocktail weights: the initial one given in Tab. 6.3, which is
based on existing measurements and theoretical predictions, and the one from the fit to
mKππ given in Tab. 6.20. We observe that largest differences between the fitted values of
the parameter, obtained with the two sets of signal weights, are comparable5 to the fitted
statistical uncertainty. Therefore, we consider that the impact of the difference in weights
of signal cocktail is negligible for the rest of the analysis.

Table 6.20: Fit-based MC weights and fit-fraction ratios compared to the initially esti-
mated MC weights and their ratios, respectively. The fit-based MC weights are defined as
the fit fraction of the considered kaonic resonance divided by the sum of fit fractions, as given
in Tab. 6.19, after correction for efficiency. The initially estimated MC weights are taken
from Tab. 6.3. The “Fit fraction ratios” in the table are obtained by dividing the consid-
ered kaonic resonance fit fraction or initially estimated MC weight value by the one of the
K1(1270) resonance. The uncertainties quoted in the columns “Fit fraction ratio” and “Fit
based MC weight” correspond to the total uncertainties resulting from the quadratic sum
of the statistical and total systematic uncertainties. The uncertainties quoted for the global
efficiency reflect the limited size of the MC samples.

Resonance
Efficiency Fit fraction Initially estimated Fit based Initially estimated

ratio ratio MC weight ratio MC weight MC weight

K1(1270) 1.000 1.00 1.00 0.309+0.083
−0.064 0.608± 0.145

K1(1400) 0.991± 0.007 0.28+0.17
−0.11 0.24 0.086+0.055

−0.034 0.145

K∗(1410) 0.904± 0.007 0.67+0.21
−0.15 0.23 0.208+0.072

−0.054 0.140

K∗
2 (1430) 0.982± 0.008 0.11+0.09

−0.10 0.14± 0.04 0.035+0.028
−0.031 0.087± 0.011

K∗(1680) 0.599± 0.009 1.17+0.32
−0.23 0.03 0.362+0.116

−0.084 0.020

5We observe for the parameter CBµ(Coeff2) a difference of two time the size of the error. However, since
this parameter is free to vary in the fit, it should have no impact on the further results.
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Figure 6.37: One-dimensional scans of −2∆lnL as a function of magnitudes (top and
middle) and phases (bottom). The horizontal dashed lines mark the one- and two-standard
deviation levels.
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Table 6.21: Extracted values of the signal PDF parameters for the two sets of signal weights
(the initial one based on existing measurements and theoretical predictions and the one from
the fit to mKππ). We also give the normalized difference, which corresponds to the absolute
value of the difference between the two parameter values divided by the averaged error. When
0.0000 is quoted for the error value, it is less than 5× 10−5.

Fit
Parameter

Initial cocktail Fit based Normalized
variable weights cocktail weights difference

S
ig
n
al

T
M

mES

CBµ(Coeff0) 5.2792± 0.0000 5.2792± 0.0000 0.7492
CBµ(Coeff1) −0.0048± 0.0002 −0.0047± 0.0003 0.2769
CBµ(Coeff2) −0.0994± 0.0026 −0.0917± 0.0036 2.0960
CBσ(Coeff0) 0.0025± 0.0000 0.0025± 0.0000 0.5359
CBσ(Coeff1) 0.0017± 0.0002 0.0011± 0.0003 0.1947
CBσ(Coeff2) 0.1568± 0.0044 0.1602± 0.0043 0.7851
CBα(Coeff0) 1.7802± 0.0923 1.6729± 0.0972 1.1978
CBα(Coeff1) 5.2342± 1.0052 4.3917± 0.8588 0.7758
CBorder(Coeff0) 7.6280± 2.5806 10.258± 2.4375 1.0340
CBorder(Coeff1) −41.647± 37.350 −57.674± 34.158 0.4291

∆E

Crµ −0.0021± 0.0054 −0.0022± 0.0053 0.0272
CrσL

0.0592± 0.0076 0.0590± 0.0075 0.0220
CrσR

0.0324± 0.0039 0.0322± 0.0038 0.0471
CrαL

0.2790± 0.0627 0.2788± 0.0622 0.0013
CrαR

0.1259± 0.0267 0.1237± 0.0264 0.0841

Fisher
Gµ 0.1234± 0.0125 0.1248± 0.0124 0.1173
Gσ 0.2310± 0.0085 0.2301± 0.0084 0.1113

S
ig
n
al

S
C
F mES

BGµ 5.2757± 0.0404 5.2812± 0.0402 0.1368
BGσL

−0.0569± 0.0499 −0.0625± 0.0499 0.1129
BGσR

0.0041± 0.0022 0.0042± 0.0016 0.0566
Arg end point 5.2892± 0.0004 5.2892± 0.0001 < 10−5

Arg slope −149.53± 66.756 −145.15± 53.125 0.8232
frac 0.3167± 0.6583 0.3520± 0.3828 0.9220

∆E Linc1 −3.0200± 0.4639 −3.2940± 0.3846 0.7126

Fisher
Gµ −0.0067± 0.0039 0.0078± 0.0316 0.4382
Gσ 0.2315± 0.0201 0.2310± 0.0169 0.0322
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6.7 Fit to the mKπ spectrum

6.7 Fit to the mKπ spectrum

This section describes the fit performed on the efficiency-corrected mKπ invariant mass spec-
trum in order to extract the efficiency-corrected dilution factor, to be used in the time de-
pendent analysis of B0 → K0

S
ρ0γ decays. The efficiency correction is described in Sec. 6.7.1.

Then the mKπ fit model and the study of the parameters to vary in the fit are described in
Sec. 6.7.2 and Sec. 6.7.4, respectively. Finally the fit results, as well as the extracted values
of the FFs are given in Sec. 6.7.3.

6.7.1 Efficiency correction

In order to correct for efficiency effects, we construct efficiency maps in the (mKπ, mππ) plane
for each kaonic resonance in the fit model. Each efficiency map is constructed using an exclu-
sive non resonant MC sample of the corresponding kaonic resonance
(i.e. B+ → Kres(K

+π−π+)γ). The maps are shown in Fig. 6.38. Using the relative weights
between each kaonic resonance extracted from the mKππ fit (see Tab. 6.20), we construct a
combination of the individual maps. In order to get the mKπ spectrum corrected for effi-
ciency effects, we divide the (mKπ, mππ) sPlot distribution by the combined efficiency map.
Then integrating over the mππ dimension, we construct the signal-TM mKπ spectrum cor-
rected for efficiency effects. Figure 6.39 shows the combined efficiency map, the (mKπ, mππ)

sPlot distribution is given in Fig. 6.40 and Fig. 6.41 shows the signal-TM mKπ spectrum
before and after applying the efficiency corrections. The efficiency correction effects result
in a global enhancement of the total number of events with a few small local effects.
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Figure 6.38: Two-dimensional (mKπ, mππ) efficiency maps for each resonance contributing
to the signal. In the upper right side of each map, some bins present efficiency close to one.
This is due to the very low density of events in these bins, and to event migration.
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Figure 6.39: Result of the combination of the individual efficiency maps per kaonic reso-
nance. The relative weights used for the combination are the ones extracted from the fit to
the mKππ spectrum (Tab. 6.20).

)2 (GeV/c
πK

m
0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

)
2

 (
G

e
V

/c
π

π
m

0.4

0.6

0.8

1

1.2

-10

0

10

20

30

40

50

60

Effi_Corr_DataHist_RhoRegion

Figure 6.40: Signal-TM two-dimensional (mKπ, mππ) sPlot distribution, before application
of the efficiency correction.
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Figure 6.41: Signal-TM mKπ spectrum before (a) and after (b) application of the efficiency
correction.
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6.7 Fit to the mKπ spectrum

6.7.2 Fit model

We model the mKπ spectrum using the projections of two 1− P-wave and one 0+ S-wave
components on themKπ dimension. The two P-wave components correspond to theK∗0(892)
and the ρ0(770) resonances, which can be described by the Relativistic Breit-Wigner (RBW)
and Gounaris-Sakurai (GS) line-shapes, respectively. Their expressions are given in Eqs. 6.9
and 6.13. The 0+ component of the Kπ spectrum (referred to as (Kπ)0, or (Kπ) S-wave in
this thesis) is poorly understood [? ? ? ]; we use the LASS parameterization [? ? ], which
is given in Eq. 6.18. It consists of the K∗

0(1430)
0 resonance together with an effective range

non-resonant component.
Due to the relatively low mass of the kaonic resonances decaying to K+π−π+, the

line shapes are distorted6. In order to account for this effect, we model the invariant-
mass-dependent magnitude of each resonance Rj by:

√

HRj
(mKπ,mππ), where H is a two-

dimensional histogram. It is obtained from signal MC at the generator level using the EvtGen
package [? ].

In the event generator, the K∗0(892) and the ρ0(770) are modeled by the RBW and
GS line-shapes, respectively. The LASS parametrized S-wave component is obtained by
applying weights to the MC sample, as will be described below. In order to take into account
interferences between the components, the invariant-mass-dependent phases (ΦRj

(m)) are
required. The hypothesis made in the present analysis is that the phases can be directly
taken from the analytical expression of the corresponding line shape:

ΦRj
(m) = arccos

(ℜ[Rj(m)]

|Rj(m)|

)

⇔































Rj(mKπ) is taken as
m = mKπ ⇒ RBW for K∗0(892) and

as LASS for S-wave ,

m = mππ ⇒ Rj(mππ) is taken as a GS
line shape for ρ0(770) ,

(6.8)

where the different line-shapes are taken from the expressions below:

• The RBW parameterization [? ] used to express the corresponding invariant-mass-
dependent phase, ΦRBW(mKπ), is defined as

RRBW(m) =
1

(m0)2 −m2 − im0Γ(m)

∣

∣

∣

∣

m=mKπ

, (6.9)

where m0 is the nominal mass of the resonance and Γ(m) is the mass-dependent width. For
a spin-J resonance decaying into a pair of pseudo-scalar particles (i.e. Kπ), the latter can
be expressed as

Γ(m) = Γ0

( |q|
|q|0

)2J+1
(m0

m

) X2
J(|q|r)

X2
J(|q|0r)

∣

∣

∣

∣

∣

m=mKπ

. (6.10)

6The phase space is noticeably different for events below or above the resonance pole mass
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The symbol Γ0 denotes the nominal width of the resonance. The values of m0 and Γ0

are listed in Tab. 6.22. The symbol q is the momenta of one of the resonance daughters,
evaluated in the resonance rest frame. The modulus of q is a function ofm and the resonance
daughter masses, ma and mb, given by

|q| = m

2

(

1− (ma +mb)
2

m2

)1/2(

1− (ma −mb)
2

m2

)1/2

. (6.11)

The symbol |q|0 denotes the value of |q| when mKπ = m0. The XJ(|q|r) function describes
the Blatt-Weisskopf barrier factor [? ] with barrier radius of r. Defining the quantity
z = |q|r, their expression, depending on the resonance spin-J value, are given by

XJ=0(z) = 1 ,

XJ=1(z) =

√

1 + z20
1 + z2

, (6.12)

where z0 represents the value of z when the invariant mass is equal to the pole mass of the
resonance. This factor only has an effect for J > 0.

• The Gounaris-Sakurai parameterization [? ], used to express the corresponding
invariant-mass-dependent phase, ΦGS(mππ), is given by:

RGS(m) =
1 + d · Γ0/m0

((m0)2 −m2) + f(m)− im0Γ(m)

∣

∣

∣

∣

m=mππ

, (6.13)

where

f(m) = Γ0
(m0)

2

|q|30

[

|q|2(h(m)− h(m0)) + ((m0)
2 −m2)|q|20

dh

dm2

∣

∣

∣

∣

m=m0

]∣

∣

∣

∣

∣

m=mππ

, (6.14)

and the function h(m) is defined as

h(m) =
2

π

|q|
m

ln

(

m+ 2|q|
2mπ

)∣

∣

∣

∣

m=mππ

, (6.15)

with
dh

dm2

∣

∣

∣

∣

m=m0

= h(m0)

(

1

8|q|20
− 1

2(m0)2

)

+
1

2π(m0)2
. (6.16)

The normalization condition at Rj(0) fixes the parameter d = f(0)/(Γ0m0). It is found to
be:

d =
3

π

m2
π

|q|20
ln

(

m0 + 2|q|0
2mπ

)

+
m0

2π|q|0
− m2

πm0

π|q|30
. (6.17)
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6.7 Fit to the mKπ spectrum

• The LASS parameterization, used to express the corresponding invariant-mass-
dependent phase, ΦLASS(mKπ), is given by:

RLASS(m) =
m

|q| cot δB − i|q| + e2iδB
m0Γ0

m0

|q|0

(m2
0 −m2)− im0Γ0

|q|
m

m0

|q|0

∣

∣

∣

∣

∣

m=mKπ

, (6.18)

where

cot δB =
1

a|q| +
1

2
r|q|. (6.19)

Table 6.22 gives the parameters of the line shapes used to derive the invariant-mass-dependent
phase of the components entering the fit model.

Finally, the total amplitude used to describe the mKπ distribution can be written as:

|A(mKπ; cj)|2 =

∣

∣

∣

∣

∣

∫ mmax
ππ

mmin
ππ

(

∑

j

cj

√

HRj
(mKπ,mππ) e

iΦRj
(m)

)

dmππ

∣

∣

∣

∣

∣

2

, (6.20)

= |cK∗ |2 HK∗ + |cρ0 |2 Hρ0 +
∣

∣c(Kπ)0

∣

∣

2 H(Kπ)0 + I , (6.21)

with
cj = αj e

iφj , (6.22)

and

HRj
(mKπ) =

∫ mmax
ππ

mmin
ππ

HRj
(mKπ,mππ) dmππ. (6.23)

Table 6.22: Parameters of the resonance line shapes used to express the corresponding
invariant-mass-dependent phase (ΦRj

) entering in the mKπ fit model. For the fit the mean
m0 and width Γ0 are fixed to the values taken from the corresponding references. The values
of m0 and Γ0 are expressed in MeV/c2. The parameters r and a correspond to the Blatt-
Weisskopf barrier radius and the scattering length, respectively.

JP Resonance Parameters
Analytical Ref. for
Expression Parameters

1−

K∗0(892)
m0 = 895.94± 0.22

RBW [? ]Γ0 = 50.8± 0.9
r = 3.6± 0.6 (GeV/c)−1

ρ0(770)
m0 = 775.49± 0.34

GS [? ]Γ0 = 149.1± 0.8
r = 5.3+0.9

−0.7 (GeV/c)−1

0+ (Kπ) S-wave

m0 = 1425± 50

LASS
[? ]

Γ0 = 270± 80
a = 2.07± 0.10 (GeV/c)−1

[? ]
r = 3.32± 0.34 (GeV/c)−1
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The term I in Eq. 6.21 describes the interferences among the different components in
the model. In the two-dimensional mKπ-mππ plane the interferences between the (Kπ) S-
wave and the (Kπ) P-wave components are proportional to a cosine term. Therefore, when
integrating over the mππ dimension, these interferences vanish. As the fit is to be performed
to an efficiency-corrected mKπ distribution, we do not allow for (Kπ) S-wave and (Kπ) P-
wave interferences in the model. The remaining source of interferences comes from the (Kπ)
and (ππ) P-wave components (i.e. between the K∗0(892) and the ρ0(770) resonances), as
well as from the (Kπ) S-wave and the (ππ) P-wave components, which is given by

I(mKπ; cρ0 , c(Kπ)0) = 2αρ0

[

cos(φρ0 − ΦRBW)

∫ mmax
ππ

mmin
ππ

√

Hρ0HK∗ cos(ΦGS) dmππ (6.24)

− sin(φρ0 − ΦRBW)

∫ mmax
ππ

mmin
ππ

√

Hρ0HK∗ sin(ΦGS) dmππ

]

+2αρ0α(Kπ)0

[

cos(φρ0 − φ(Kπ)0 − ΦLASS)

∫ mmax
ππ

mmin
ππ

√

Hρ0H(Kπ)0 cos(ΦGS) dmππ

− sin(φρ0 − φ(Kπ)0 − ΦLASS)

∫ mmax
ππ

mmin
ππ

√

Hρ0H(Kπ)0 sin(ΦGS) dmππ

]

.

The K∗0(892) coefficients, αK∗ and φK∗ are set as references to 1 and 0, respectively. It
has been checked that the choice of references does not affect the results. This leads to three
four parameters in the fit (i.e. αρ0 , φρ0 , α(Kπ)0 and φ(Kπ)0). The fit fractions FF(j) extracted
for each component in the model, are defined as in the mKππ fit model by Eq. 6.6.

The two-dimensional projection histograms used to describe the K∗0(892) and ρ0(770)
resonance mKπ-dependent magnitudes are given in Fig. 6.42. They are obtained from a
two-dimensional histogram, constructed as the combination of individual kaonic resonance
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Figure 6.42: Two-dimensional histogram projections used to describe the K∗0(892) and
the ρ0(770) resonance modules in the mKπ fit model. The histograms were generated using
EvtGen [? ] at the generator level.
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6.7 Fit to the mKπ spectrum

contribution to the corresponding resonance (i.e. Kres → K∗0(892)π or Kρ0(770)). The
combination is performed using the relative weights between each kaonic resonance extracted
from the mKππ fit (see Tab. 6.20).

The EvtGen MC generator used to produce the two-dimensional distributions of the fit
components do not allow a stand-alone use of the LASS parametrization in the present case.
Therefore in order to obtain the S-wave distribution, we weighted a phase-space distribution
of B+ → K1(1270)

+(→ K±π∓π+)γ processes generated from EvtGen using an accept-reject
method based on the LASS expression given in Eq. 6.18. Figure 6.43 shows the distribution
of the S-wave mKπ-dependent magnitude used in the model. The unusual shape of the
S-wave distribution is due to phase-space effects. The LASS parametrization includes a
effective range term, as well as a resonant term around mKπ = 1425MeV/c2. Due to the
fact that in the present analysis the K+π−π+ system comes from the decay of the K1(1270)
kaonic resonance, the resonant part of the LASS parametrization is very much suppressed,
as observed in Fig. 6.43. The dominant contribution comes from the non-resonant term,
which corresponds to the effective-range part.

For each histogram used to built the total PDF, the nominal numbers of the bins are 450
and 100 in the mKπ and mππ dimensions, respectively.
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Figure 6.43: Two-dimensional histogram projection used to describe the 0+ (Kπ) S-wave
component in themKπ fit model. The histogram was generated using an accept-reject method
base on the LASS parametrization applied to a phase-space distribution generated using
EvtGen [? ] at the generator level.
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6.7.3 Fit results

Figure 6.44 shows the fit projection and the residual distribution. The nominal fit is per-
formed on a dataset of 90 bins. Table 6.23 gives the fitted values of the free parameters as
well as the extracted FFs. The quoted errors on the magnitudes and the phase come directly
from the fit. For the fit fractions, which are functions of the complex amplitudes cj (Eq. 6.6),
the errors were estimated in the same way as in the mKππ fit, as detailed in Sec. 6.6.2.

We consider various sources of systematic uncertainties: the number of bins in the fitted
dataset, the number of bins in the PDF, the fixed parameters in the fit performed to mES,
∆E and the Fisher discriminant, the fixed line-shape parameters of the resonances entering
in the mKπ fit model, the weights of the kaonic resonances used to construct the total
PDF and the line-shape parameters of the kaonic resonances used in the MC generator.
Details on the procedure to evaluate each source of systematic uncertainty as well as the
corresponding values are given in Sec. 6.9.2. We add in quadrature the minus and plus
signed uncertainties coming from the different sources in order to get the total minus and
plus signed uncertainties, which correspond to the values reported in Tab. 6.23. It appears
the dominant contribution to the total systematic uncertainties come from the weights of
the kaonic resonances extracted from a fit to the mKππ spectrum.

We also perform likelihood scans of the fitted parameters, shown in Fig. 6.45, in order
to check for multiple solutions. It appears that the fitted solution is unique. Each of these
scans is obtained by fixing the corresponding parameter at several consecutive values, for
each of which the fit is repeated with random initial values of the varying parameters and
always converge to the same solution.

134



6.7
F
it
to

th
e
m

K
π
sp
ectru

m

Table 6.23: Results of the mKπ fit. The nominal fit is performed with 90 bins.

Module α Phase φ (rad.)
Fit Measured

Fraction Values [? ]

K∗0(892) 1.0 (fixed) 0.0 (fixed) 0.636+0.011
−0.009(stat.)

+0.017
−0.012(syst.) 0.576

ρ0(770) 0.725+0.015
−0.015(stat.)

+0.013
−0.022(syst.) 3.110+0.036

−0.035(stat.)
+0.060
−0.048(syst.) 0.335+0.015

−0.013(stat.)
+0.033
−0.032(syst.) 0.314

(Kπ) S-wave 0.808+0.044
−0.050(stat.)

+0.044
−0.058(syst.) 3.197+0.132

−0.125(stat.)
+0.126
−0.101(syst.) 0.416+0.039

−0.041(stat.)
+0.056
−0.072(syst.) 0.110

Sum of all fit fractions 1.387+0.048
−0.042(stat.)

+0.106
−0.088(syst.) 1.000

Interferences

K∗0(892)—ρ0(770) −0.178+0.004
−0.006(stat.)

+0.008
−0.010(syst.) ∅

(Kπ) S-wave—ρ0(770) −0.208+0.029
−0.044(stat.)

+0.032
−0.049(syst.) ∅
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Figure 6.44: mKπ nominal fit projection (90 bins) and the residual distribution between
the total PDF (dark blue solid curve) and the data points. The solid red, green and magenta
curves correspond to the K∗0(892), ρ0(770) and (Kπ) S-wave contributions, respectively.
The dashed gray curve corresponds to the interferences between the two P-wave components,
i.e. the K∗0(892) and the ρ0(770) resonances, while the dashed light blue curve corresponds
to the interferences between the (Kπ) S-wave and ρ0(770) components.
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6.7.4 Study of the model consistency

In order to check for possible biases, we perform pure toy studies of the model. From
the parameters extracted from the nominal fit to the signal-TM mKπ sPlot we generated
1000 pseudo-experiments. These were then fitted in order to create the pull distributions
of the fit fractions, which are functions of the fitted amplitudes. Figure 6.46 shows the
pull distributions of each fit fraction. The pull means and widths, given in Tab. 6.24, are
reasonably consistent, within the statistical uncertainties, with 0 and 1, respectively. We
conclude that the model has no significant bias on the fit fractions.
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Figure 6.46: Pull distributions of the parameters in the mKπ fit model.
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6.7 Fit to the mKπ spectrum

Table 6.24: Pull means and widths of the parameters in the mKπ fit model.

Fit Pull Pull
fraction Mean Width
FFK∗0(892) −0.027± 0.034 1.046± 0.026
FFρ0(770) 0.080± 0.035 1.077± 0.027
FF(Kπ)S−wave

0.109± 0.032 0.987± 0.024
FFSum 0.055± 0.034 1.050± 0.026

FFInterf.
K∗0(892)−ρ0(770) 0.018± 0.033 1.034± 0.025

FFInterf.
(Kπ)S−wave−ρ0(770) −0.076± 0.036 1.095± 0.027

6.7.5 Angular moments and results interpretation

In order to add information for the interpretation of the fit results, we calculate the angular
moments, defined as

〈Pℓ (cos θh)〉 ≡
∫ 1

−1

dΓPℓ (cos θh) d cos θh , (6.25)

where θh is the helicity angle between the K+ and the π+, measured in the rest frame of
K+π−, Pℓ is the ℓth Legendre polynomial, and dΓ is the differential decay rate. For a three
body decay p→ ijk the helicity angle expression in the ij rest frame is given by

cos θijh =
m2

ij −m2
i −m2

k − 2E∗
iE

∗
k

2
√

(

(E∗
i )

2 −m2
i

)(

(E∗
k)

2 −m2
k

)

, (6.26)

where E∗
i and E∗

k are the energy of particles i and k calculated in the ij rest frame, such as

E∗
i =

m2
ij −m2

j +m2
i

2mij

, (6.27)

E∗
k =

m2
ijk −m2

ij −m2
k

2mij

. (6.28)

Angular moments plotted as a function of mK+π− provide more information than the mKπ

invariant mass fit projections, in particular, spin information. However, in this case, as
we are integrating over the whole mKππ dimension, some caution must be taken in the
interpretation of results. We built the angular moments from the mKπ data distribution,
which is signal weighted using the sPlot technique, using the Legendre polynomials from
ℓ = 0 up to the ℓ = 4.

P0 (x) = 1 P1 (x) = x

P2 (x) =
1

2

(

3x2 − 1
)

P3 (x) =
1

2

(

5x3 − 3x
)

P4 (x) =
1

8

(

35x4 − 30x2 + 3
)

. (6.29)
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The resulting 〈Pℓ〉 distributions are shown in Fig. 6.47.

• 〈P0〉 is simply the mKπ invariant mass distribution. It indicates a large contribution
from the K+π− P-wave amplitude, as confirmed by the measured fit fractions (Tab. 6.23).

• 〈P1〉 can be interpreted as representing the projection of the P-wave K+π− vector onto
an effective S-wave vector. Then the fact that 〈P1〉 has a similar distribution to that of
〈P0〉, indicates that the effective S-wave vector lies along the imaginary axis in the complex
plane. This appears to be quite different from what was observed in the Kπ scattering
experiment [? ? ], which indicates that the overlap with Kρ0 is large.
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Figure 6.47: Angular moments computed as a function of mKπ for signal-weighted data.
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• 〈P2〉 gives information on the helicity state of the Kπ P-wave amplitude with respect
to the recoil pion. For a K+π− P-wave amplitude produced with helicity-0, the 〈P2〉 dis-
tribution should be positive and for helicity either +1 or −1 it should be negative. Since
we do not observe much of a signal at the K∗(892) pole mass, and since the general trend
is to be negative at higher mass values, it could be that there is significant production of
helicity ±1. However, this could also be due to Kρ0 production, especially since the region
above 1GeV/c2 is probably correlated with the production of the K1(1270), which has a large
expected branching fraction into the Kρ0 mode.

• 〈P3〉 and 〈P4〉 are a good indicator for the presence of interferences with Kρ0 mode. In
the case where the interferences are zero or negligible, the 〈P3〉 and 〈P4〉 shapes should be flat
along zero. Since we observe that these distributions are small, but non-zero, they cannot
be explained by a simple S-P wave description of the K+π− system, and presumably result
from overlap with Kρ0. This observation is in agreement with the fit results, which yields a
rather larger contribution for the interference between the two P-wave resonant systems.

6.8 The dilution factor

6.8.1 Analytical expression of the dilution factor

Using the conventions from Ref. [? ] we consider the time-dependence of the following
exclusive decay processes

B0(t) → HresPscalγ , (6.30)

where the B meson state is identified (tagged) as a B0 (rather than a B0) at time t = 0,
Hres represents a hadronic resonance and Pscal a pseudoscalar particle. In these processes, we
specifically consider HresPscal to represent the hadronic self-conjugate final state K0

S
π+π−.

We assume that this state comes from a few resonant decay modes where Hres corresponds
to ρ0, K∗+, K∗−, (Kπ)+ or (Kπ)− S-wave. Pscal corresponds to K

0
S
or π±. Note that here

we implicitly integrate over the kaonic resonances contributing to the hadronic intermediate
states. We can write the amplitudes for these transitions as

AHres
R (B0 → HresPscalγL) = ξ1AHres sinψe

−iφHres
R eiδ

Hres
,

AHres
L (B0 → HresPscalγR) = ξ2AHres cosψe

−iφHres
L eiδ

Hres
,

AHres
L (B0 → HresPscalγL) = ξ3AHres cosψe

iφHres
L eiδ

Hres
,

AHres
R (B0 → HresPscalγR) = ξ4AHres sinψe

iφHres
R eiδ

Hres
, (6.31)

where AHres is the (complex) amplitude of the resonance Hres, ξi are the CP eigenvalues,
ξi ≡ CP (HresPscal) = ±1, ψ is related to the short-distance Wilson coefficients C7γ and C

′

7γ

by tanψ = C
′

7γ/C7γ , φ
Hres

L/R are the CP -odd weak phases, and δHres corresponds to the strong
phases and is related to the corresponding hadronic matrix elements. tanψ gives the relative
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amount of left-polarized photons and right-polarized photons in B0 decays and the sign ξi
are:

(ξ1, ξ2, ξ3, ξ4) = (+,−,+,−) for ρ and K∗± ,

(ξ1, ξ2, ξ3, ξ4) = (+,+,+,+) for (Kπ)± S-wave .

The time-evolution of a state B0(t = 0), which oscillates into a mixture of B0 and B0 and
decays at time t to HresPscalγ, can be written as

f±(t) ≡
1

2

(

e−iMLte−
1
2
ΓLt ± e−iMH te−

1
2
ΓH t
)

. (6.32)

We can then define ∆M = MH −ML and ∆Γ = ΓH −ΓL, where ML and MH are the masses
of the mass eigenstates in the B0B0 mixture, BL and BH , and ΓL and ΓH are their widths. In
the case of Bd mesons, we have ∆Γ ≪ ∆M, which allows to consider only the leading term in
the expansion of the exponential terms in Eq. 6.32. We can then define the time-dependent
CP asymmetry as

ACP (t) =
ΓB0(t)− ΓB0(t)

ΓB0(t) + ΓB0(t)
≡ C cos(∆Mt) + S sin(∆Mt) , (6.33)

where

ΓB0(t) = |ML(t)|2 + |MR(t)|2 ,

ΓB0(t) =
∣

∣ML(t)
∣

∣

2
+
∣

∣MR(t)
∣

∣

2
, (6.34)

with M corresponding to the total amplitudes defined as

ML(t) =
∑

Hres

(

AHres
L f+(t) + AHres

L

q

p
f−(t)

)

,

MR(t) =
∑

Hres

(

AHres
R f+(t) + AHres

R

q

p
f−(t)

)

,

ML(t) =
∑

Hres

(

AHres
L f+(t) + AHres

L

q

p
f−(t)

)

,

MR(t) =
∑

Hres

(

AHres
R f+(t) + AHres

R

q

p
f−(t)

)

, (6.35)

with
q

p
= e−iφ , (6.36)

where φ is the phase in the box diagram such as φ ≃ 2β.
We can now consider the time-dependent CP asymmetry for two cases: when we only

consider the presence of the ρ0 resonance (A
K0

Sργ

CP (t)), and when the sums in the total

amplitudes run over all the hadronic resonances Hres (A
K0

Sπ
+π−γ

CP (t)). The former writes

A
K0

Sργ

CP (t) = 2 cosψ sinψ sin(φ− φL − φR) sin(∆Mt) , (6.37)
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and the latter:

A
K0

Sπ
+π−γ

CP (t) =
1

∫

[

|Aρ|2 + ℜ
(

A∗
ρAK∗+

)

+ ℜ
(

A∗
ρAK∗−

)

+
|AK∗+ |2+|AK∗− |2

2
+

|A(Kπ)+ |2+|A(Kπ)− |2
2

]

×
{

+ 2 cosψ sinψ sin(φ− φL − φR) sin(∆Mt)

×
∫

[

|Aρ|2 + ℜ
(

A∗
ρAK∗+

)

+ ℜ
(

A∗
ρAK∗−

)

+ ℜ(A∗
K∗+AK∗−) + ℜ(A∗

(Kπ)+A(Kπ)−)
]

− 4(cos2 ψ − sin2 ψ) cos(∆Mt)

×
∫

[

ℜ(A∗
(Kπ)+Aρ) + ℜ(A∗

(Kπ)−Aρ)

2

]}

. (6.38)

Note that the amplitudes AHres correspond to the decay of either a B or a B meson. The
dilution factor DK0

S
ργ is then defined as the ratio between the coefficients multiplying the

sin(∆Mt) terms in Eqs. 6.37 and 6.38

DK0
S
ργ ≡

SK0
S
π+π−γ

SK0
S
ργ

(6.39)

=

∫

[

|Aρ|2 + ℜ
(

A∗
ρAK∗+

)

+ ℜ
(

A∗
ρAK∗−

)

+ ℜ
(

A∗
K∗+AK∗−

)

+ ℜ(A∗
(Kπ)+A(Kπ)−)

]

∫

[

|Aρ|2 + ℜ
(

A∗
ρAK∗+

)

+ ℜ
(

A∗
ρAK∗−

)

+
|AK∗+ |2+|AK∗− |2

2
+

|A(Kπ)+ |2+|A(Kπ)− |2
2

] ,

where the amplitudes AHres depend on the invariant masses mππ or mKπ through the corre-
sponding line-shape expressions, and A∗

Hres
are simply the complex conjugates of AHres . In

both Eqs. 6.39 and 6.38, phase-space integrals are performed over a given region, which is
detailed in Sec. 6.8.2. Here we impose the same value of φL, as well as the same value of
φR for all the hadronic resonances. Moreover, as discussed in Sec. 6.7.2, we do not take into
account the interferences between the Kπ P- and S-wave components. Due to opposite CP
final states the interference terms between the ππ P-wave and the (Kπ) S-wave components
cancel and, therefore, do not appear in the dilution factor expression.

6.8.2 Extraction of the dilution factor

Using the hypothesis of Isospin conservation, we assume that B0 decays have the same am-
plitudes, AHres , as B

+ decays. This allows to use the results extracted from the fit to the
mKπ spectrum in B+ → K+π+π−γ decays from the measured amplitudes to obtain the
dilution factor for the time dependent analysis.
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In the charged-mode analysis, the amplitude of a resonance is modeled in m12 as

Fres = cres
√

Hres(m12,m23)e
iΦ(m12) , (6.40)

where cres is a complex constant, and Hres is a real distribution,
√

Hres(m12,m23)e
iΦ(m12) being

the line shape. The total event rate (given here without the (Kπ) S-wave for simplicity) is
written as

|F |2 = |Fρ + FK∗ |2 . (6.41)

In the analysis, we consider the total event rate from B+ and B− in the mKπ (Kπ+ or
Kπ−)–mππ plane. If the charge specific amplitudes are noted F+

res and F
−
res, this implies the

underlying assumption

|Fρ + FK∗ |2 = |F+
ρ + F+

K∗ |2 + |F−
ρ + F−

K∗ |2 (6.42)

or

|Fρ|2 + |FK∗ |2 + 2ℜ(FρF
∗
K∗) = |F+

ρ |2 + |F−
ρ |2 + |F+

K∗+ |2 + |F−
K∗− |2

+2ℜ(F+
ρ F

+∗
K∗+) + 2ℜ(F−

ρ F
−∗
K∗−) . (6.43)

Assuming no direct CP violation in the considered transition:

Fρ =
√
2F+

ρ =
√
2F−

ρ , (6.44)

FK∗ = eiδrescat.
√
2F+

K∗+ =
√
2F−

K∗− , (6.45)

with δ = δrescat. = 0 or π. Given that we measure a sizable interference between the ρ and the
K∗ (see Tab. 6.23), we keep δrescat. = 0. Indeed, δrescat. = π would result in zero interference,
as can be deduced from Eq. 6.43. Identical expressions are obtained for the (Kπ) S-wave
terms.

Using these conventions, the term |Aρ|2 in Eq. 6.39 can be written as

|Aρ|2 =
|F+

ρ |2 + |F−
ρ |2

2
=

|Fρ|2
2

, (6.46)

which contribution to the dilution factor is

1

2

∫

|Fρ|2 =
1

2
|cρ|2

∫

m12

∫

m23

|Hρ(m12,m23)|2dm12dm23

=
1

2
FFρ , (6.47)

where FFρ is the measured fit fraction of the ρ resonance in the consideredmKπ-mππ domain,
with m12 = mKπ and m23 = mππ.

The term
|AK∗+ |2 + |AK∗− |2

2
(6.48)
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in Eq. 6.39 is written as

|F+
K∗+ |2 + |F−

K∗− |2
2

=
|FK∗ |2

2
(6.49)

and its contribution to the dilution factor is

1

2

∫

|FK∗ |2 =
1

2
|cK∗ |2

∫

m12

∫

m23

|HK∗(m12,m23)|2dm12dm23

=
1

2
FFK∗ , (6.50)

where FFK∗ is the measured fit fraction of the K∗ resonance in the considered mKπ-mππ

domain.

Identically, the term

|A(Kπ)+ |2 + |A(Kπ)− |2
2

(6.51)

is written as

|F+
(Kπ)+ |2 + |F−

(Kπ)− |2

2
=

|F(Kπ)|2
2

(6.52)

and its contribution to the dilution factor is

1

2

∫

|F(Kπ)|2 =
1

2
|c(Kπ)|2

∫

m12

∫

m23

|H(Kπ)(m12,m23)|2dm12dm23

=
1

2
FF(Kπ) , (6.53)

where FF(Kπ) is the measured fit fraction of the (Kπ) S-wave component in the considered
mKπ-mππ domain.

The terms ℜ(A∗
ρAK∗+) + ℜ(A∗

ρAK∗−) are written as

ℜ(F+∗
ρ + F+

K∗+) + ℜ(F−∗
ρ + F−

K∗−) = 2ℜ
(

1√
2
F ∗
ρ

1√
2
FK∗

)

(6.54)

= ℜ
(

F ∗
ρFK∗

)

= ℜ
(

c∗ρcK∗

√

Hρ(m12,m23)HK∗(m12,m23)e
i(ΦRBW(m12)−ΦGS(m23))

)

.
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Then, with the notation cres = αrese
iφres , the contribution of the terms in Eq. 6.54 to the

dilution factor is

αραK∗

∫

m12

dm12

∫

m23

dm23

√

Hρ(m12,m23)HK∗(m12,m23) cos (φρ − φK∗ + ΦGS(m23)− ΦRWB(m12))

= αρ

[

∫

m12

dm12 cos (φρ − φRWB(m12))

∫

m23

dm23

√

Hρ(m12,m23)HK∗(m12,m23) cos (ΦGS(m23))

−
∫

m12

dm12 sin (φρ − ΦRWB(m12))

∫

m23

dm23

√

Hρ(m12,m23)HK∗(m12,m23) sin (ΦGS(m23))

]

=
1

2
FFinterf.

K∗−ρ ,

where FFinterf.
K∗−ρ is the measured fit fraction of the interference between the K∗ and the ρ

resonances in the considered mKπ-mππ domain. By convention αK∗ = 1 and φK∗ = 0.

The term ℜ(A∗
K∗+AK∗−) in Eq. 6.39 is written as

ℜ(F+∗
K∗+F

−
K∗−) =

1

2
ℜ
(

eiδ|cK∗ |2
√

HK∗(m12,m13)HK∗(m13,m12)e
i(ΦRBW(m12)−ΦRBW(m13))

)

.

Note that here m12 = mKπ+ and m23 = mKπ− . This term’s contribution to the dilution
factor is

|cK∗ |2
2

∫

m12

dm12

∫

m13

dm13

√

HK∗(m12,m13)HK∗(m13,m12) cos (δ + ΦRBW(m12)− ΦRBW(m13))

=
1

2

[

∫

m12

dm12 cos (δ + ΦRBW(m12))

∫

m13

dm13

√

HK∗(m12,m13)HK∗(m13,m12) cos (ΦRBW(m13))

+

∫

m12

dm12 sin (δ + ΦRBW(m12))

∫

m13

dm13

√

HK∗(m12,m13)HK∗(m13,m12) sin (ΦRBW(m13))

]

,

where the constant factor |cK∗ |2 has been removed since |cK∗ |2 = 1 by convention. The
contribution of the term ℜ(A∗

(Kπ)+A(Kπ)−) is obtained in a similar way and is:

|c(Kπ)|2
2

[

∫

m12

dm12 cos (δ + ΦRBW(m12))

∫

m13

dm13

√

H(Kπ)(m12,m13)H(Kπ)(m13,m12) cos (ΦRBW(m13))

+

∫

m12

dm12 sin (δ + ΦRBW(m12))

∫

m13

dm13

√

H(Kπ)(m12,m13)H(Kπ)(m13,m12) sin (ΦRBW(m13))

]

.

Since the dilution factor is defined as the ratio between the effective value of S SK0
S
π+π−γ

and the target value SK0
S
ργ, the error on SK0

S
ργ is expected to be greater than the one on

SK0
S
π+π−γ. A large value of the dilution factor is thus preferential. From Eq. 6.39, it is clear

that to obtain a large value for DK0
S
ργ, the proportion of the ρ0(770) component needs to be
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maximized while minimizing the proportions of the K∗(892) and (Kπ) S-wave components.
Moreover, since the value of the interference term between the K∗(892) and the ρ0(770),
ℜ(F+∗

ρ +F+
K∗+)+ℜ(F−∗

ρ +F−
K∗−), as extracted from a fit to the mKπ spectrum (Tab. 6.23), is

negative, its contribution also needs to be minimized. For this reason, we apply selection cuts
in the mππ dimension around the ρ0(770) mass as well as a veto on the K∗(892) resonance
in the mKπ dimension. These criteria are optimized taking into account the estimated error
on SK0

S
π+π−γ, which is more or less proportional to the estimated number of signal events in

the dataset after applying these cuts. We found that the best estimated value of the error
on SK0

S
ργ was obtained for:

• mππ ∈ [0.600, 0.900] (GeV/c2) ;

• mKπ ∈ [mmin
Kπ , 0.845] ∪ [0.945,mmax

Kπ ] ( GeV/c2) ;

where mmin
Kπ and mmax

Kπ denote the allowed phase-space boundaries in the mKπ dimension.
This set of cut gives an estimated value of the error on SK0

S
ργ of ∼ 0.5. Note that the cuts

on mππ take into account the fact that the ρ0(770) is mainly distorted in the small invariant
mass region due to phase space effects. The K∗ veto in the mKπ dimensions roughly corre-
sponds to (mK∗±ΓK∗), wheremK∗ and ΓK∗ are the mass and width of theK∗(892) resonance.

Using the integration region defined above in the mππ and mKπ dimensions, each term
that appears in the dilution factor expression given in Eq. 6.39 can now be calculated. The
corresponding values are:

• |Aρ|2 = 0.270+0.030
−0.028 ;

• |AK∗+ |2+|AK∗− |2
2

= 0.078+0.002
−0.001 ;

• |A(Kπ)+ |2+|A(Kπ)− |2
2

= 0.139+0.023
−0.027 ;

• ℜ
(

A∗
ρAK∗+) + ℜ(A∗

ρAK∗−

)

= −0.092+0.005
−0.006 ;

• ℜ
(

A∗
K∗+AK∗−

)

= 0.002+0.001
−0.000 ;

• ℜ
(

A∗
(Kπ)+A(Kπ)−

)

= 0.037+0.008
−0.010 .

The quoted uncertainties account for both statistical and systematical uncertainties, which
were summed up in quadrature.

We finally obtain for the dilution factor:

DK0
S
ργ = 0.549+0.096

−0.094 . (6.55)
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6.9 Systematics

As the main purpose of the charged channel is to extract the dilution factor DK0
S
ργ, we study

effects that may influence its extracted value. As described in the previous section, the latter
depends on the resonance amplitudes extracted from a fit to the mKπ spectrum. Therefore
in Sec. 6.9.2, we studied various sources of systematic uncertainties on the parameters of the
fit to the mKπ spectrum. Since the mKπ model depends on the kaonic-resonance amplitudes
extracted from a fit to the mKππ spectrum, we also studied various sources of systematic
uncertainties on the parameters of the fit to the mKππ spectrum, as detailed in Sec. 6.9.1.

6.9.1 Fit to the mKππ spectrum

Here we give the systematic uncertainties on the parameters of the fit to the mKππ spectrum
(Sec. 6.6.2) originating from: the number of bins in the fitted dataset (Sec. 6.9.1.1), the
fixed parameters in the fit performed to mES, ∆E and the Fisher discriminant (Sec. 6.9.1.2)
and the fixed line-shape parameters of the kaonic resonances entering in the mKππ fit
model (Sec. 6.9.1.3). We also checked the effects of modifying the procedure of the signal-
TMmKππ sPlot extraction (Sec. 6.9.1.4). Finally, we studied the effects of some minor model
corrections, such as the parametrization of the ∆E distribution for the SCF event category
(Sec. 6.9.1.5) and the criteria of assigning events to the SCF category (Sec. 6.9.1.6).

The dominant source of systematic uncertainty n this category is the fixed parameters
of the resonance line shapes in the mKππ fit model.

6.9.1.1 Number of bins in the fitted dataset

To assign systematic uncertainties to the choice of bin size, we perform new fits using either
60 or 100 bins, instead of 80 in the nominal fit. We take the lower and upper deviations
from the nominal value of each free parameter as minus- and plus-signed uncertainties,
respectively. The corresponding values are given in Tab. 6.25.

6.9.1.2 Fixed parameters in the fit to mES-∆E-Fisher

To assign systematic uncertainties due to the fixed parameters in the fit to mES, ∆E and the
Fisher discriminant, we vary each of the 109 fixed parameters within its uncertainties7 and
redo the fit. Since the mES-∆E distribution of B0 → K∗0(→ Kπ)γ + B0 → Xsd(→ Kπ)γ
background is described by a two-dimensional histogram, we fluctuate the bins and redo the
fit. The fixed yields are varied according to the corresponding branching fraction uncertain-
ties taken from [? ]. For the categories describing a sum of modes, the fraction of each mode
is varied according to the relative branching fraction uncertainties taken from [? ]. The
SCF yield is varied according to the uncertainties due to MC statistics8 and the total signal
branching fraction uncertainties in Ref. [? ] are also taken into account. The fixed yield
of the Generic B-background category, describing a sum of several small contributions from

7e.g. in the fit to the MC sample from which it is extracted.
8All the uncertainties due to MC statistics are scaled to the size of the expected data sample.
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Table 6.25: Systematic uncertainties on the parameters of the fit to the mKππ spectrum
due to number of bins in the fitted dataset.

Parameter + signed deviation − signed deviation

Magnitude K1(1400) 0.003 0.001
Magnitude K∗(1410) 0.005 0.002
Magnitude K∗

2 (1430) 0.002 0.006
Magnitude K∗(1680) 0.008 0.005

Phase K1(1400) 0.002 0.002
Phase K∗(1410) 0.002 0.001

Width K1(1270) 0.001 0.003
Width K∗(1680) 0.005 0.001

FF K1(1270) 0.001 0.009
FF K1(1400) 0.007 0.001
FF K∗(1410) 0.005 0.005
FF K∗

2 (1430) 0.003 0.002
FF K∗(1680) 0.006 0.001

FF {K1(1270) –K1(1400)} 0.002 0.001
FF {K∗(1410) –K∗(1680)} 0.001 0.001

FF Sum 0.002 0.002

Table 6.26: Systematic uncertainties on the parameters of the fit to the mKππ spectrum
due to fixed parameters in the fit performed to mES, ∆E and the Fisher discriminant.

Parameter + signed deviation − signed deviation

Magnitude K1(1400) 0.027 0.014
Magnitude K∗(1410) 0.060 0.025
Magnitude K∗

2 (1430) 0.015 0.026
Magnitude K∗(1680) 0.108 0.047

Phase K1(1400) 0.018 0.022
Phase K∗(1410) 0.013 0.005

Width K1(1270) 0.002 0.004
Width K∗(1680) 0.012 0.004

FF K1(1270) 0.010 0.009
FF K1(1400) 0.009 0.003
FF K∗(1410) 0.019 0.005
FF K∗

2 (1430) 0.008 0.012
FF K∗(1680) 0.010 0.005

FF {K1(1270) –K1(1400)} 0.011 0.013
FF {K∗(1410) –K∗(1680)} 0.004 0.020

FF Sum 0.023 0.001
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various B-background modes, is varied according to the uncertainties due to MC statistics.
For each new fit performed this way, we generate a mKππ sPlot distribution that we then
fit using the nominal mKππ model. Assuming no correlations between the fixed parameters,
we sum up in quadrature each of the lower and upper deviations from the nominal value of
each free parameter, and take the resulting values as minus- and plus-signed uncertainties,
respectively. The corresponding values are given in Tab. 6.26.

6.9.1.3 Fixed parameters of the kaonic-resonance line shapes

For the systematic uncertainties due to the fixed parameters of the line-shape resonances in
the mKππ fit model, we vary each of the 8 fixed parameters according to its uncertainties,
taken from [? ], and redo the fit to the nominal signal-TM mKππ sPlot distribution. We sum
up in quadrature each of the lower and upper deviations from the nominal value of each free
parameter, and take the results as minus- and plus-signed uncertainties, respectively. The
corresponding values are given in Tab. 6.27.

Table 6.27: Systematic uncertainties on the parameters of the fit to the mKππ spectrum
due to fixed line-shape parameters of the kaonic resonances entering in the mKππ fit model.

Parameter + signed deviation − signed deviation

Magnitude K1(1400) 0.117 0.075
Magnitude K∗(1410) 0.174 0.127
Magnitude K∗

2 (1430) 0.073 0.135
Magnitude K∗(1680) 0.303 0.202

Phase K1(1400) 0.104 0.118
Phase K∗(1410) 0.024 0.022

Width K1(1270) 0.004 0.003
Width K∗(1680) 0.043 0.025

FF K1(1270) 0.050 0.050
FF K1(1400) 0.052 0.030
FF K∗(1410) 0.053 0.023
FF K∗

2 (1430) 0.035 0.049
FF K∗(1680) 0.089 0.056

FF {K1(1270) –K1(1400)} 0.050 0.060
FF {K∗(1410) –K∗(1680)} 0.057 0.115

FF Sum 0.140 0.072

6.9.1.4 The sPlot extraction procedure

As described in Ref. [? ], when using the sPlot technique in the case where one or more
event categories have their yields fixed in the maximum likelihood fit, the estimate of the x-
distribution considered sM̃n, which is obtained as the sum of the sWeights in each bin, needs
to be corrected. The correction consists in adding to the sM̃n histogram the normalized
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distributions of each fixed category scaled by the factor cn = Nn −∑j Vnj, where V is
the covariance matrix resulting from the fit and N the expected yield of category n. This
procedure, which is used in the present analysis to extract the signal-TM sPlot, implies that
the x-distributions of the fixed categories are well known. Here the mKππ distributions are
taken from MC, are cannot be considered to fulfill this criterium. Therefore, in order to
check for possible effects on the parameters of the fit to the mKππ spectrum, we performed a
new fit to mES, ∆E and the Fisher discriminant, where we merged all the previously fixed-
yield categories. Since the shape of PDFs for the Generic B background and of the merged
category are very similar, we add the former to the latter and consider them as a single “large
background” category. This way we were able to perform a fit with four event categories

Table 6.28: B+ → K+π−π+γ fitted yields for the final BABAR Run1-6 dataset where all
the backgrounds with fixed yields and Generic B background are merged into a single large
background category, whose yield is free to vary in the fit.

Category Fitted yield Fit error (stat.)
Signal TM 2418 95
Continuum udsc 71086 418
B0 → K∗0(→ Kπ)γ + B0 → Xsd(→ Kπ)γ 1555 119
Large background 6298 375

Table 6.29: Systematic uncertainties on the parameters of the fit to the mKππ spectrum
due to sPlot extraction procedure.

Parameter + signed deviation − signed deviation

Magnitude K1(1400) 0.003 ∅
Magnitude K∗(1410) ∅ 0.016
Magnitude K∗

2 (1430) ∅ 0.007
Magnitude K∗(1680) ∅ 0.051

Phase K1(1400) 0.004 ∅
Phase K∗(1410) ∅ 0,000

Width K1(1270) 0.001 ∅
Width K∗(1680) ∅ 0.002

FF K1(1270) 0.009 ∅
FF K1(1400) 0.005 ∅
FF K∗(1410) ∅ 0.001
FF K∗

2 (1430) ∅ 0.001
FF K∗(1680) ∅ 0.009

FF {K1(1270) –K1(1400)} ∅ 0.009
FF {K∗(1410) –K∗(1680)} 0.005 ∅
FF Sum ∅ 0.004
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(i.e. signal-TM, continuum, B0 → K∗0(→ Kπ)γ + B0 → Xsd(→ Kπ)γ and the new large
background) where all the yields are free to vary in the fit. We observe a good agreement,
within statistical uncertainties, between the fitted yields in the present and the nominal
fit configurations; the yields in the two cases are given in Tab. 6.28 and 6.17, respectively.
Thus we further extracted the signal-TM sPlot distributions, where no corrections are to be
applied since no event category is fixed in this configuration. We performed a fit to the new
mKππ sPlot distribution, using the nominal mKππ fit model. Table 6.29 gives the deviations
from the nominal value of each free parameter. In this case, since only one fit is performed,
only one deviation is reported (lower or upper) for each free parameter.

6.9.1.5 Parametrization of the SCF ∆E distribution

As described in Sec. 6.5.1, the ∆E distribution of the SCF event category is parametrized us-
ing a linear function. In Fig. 6.11, we observe a small disagreement between this parametriza-
tion and the MC distribution. In order to study its effect, we modified the parametrization
from a linear function to a 4-th order chebychev polynomial. The latter is shown in Fig. 6.48.
Using this parametrization, we performed a new fit to mES, ∆E and the Fisher discriminant,
from which we generated a new mKππ sPlot distribution that we fit using the nominal mKππ

model. The deviations from the nominal value of each free parameter appear to be non
significant (O(10−4)) compared to the other sources of systematic uncertaintiy, and thus we
do not take them into account
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Figure 6.48: Alternative ∆E parametrization of signal SCF category for the systematic
uncertainty study. Here the ∆E distribution is parametrized by a 4-th order chebychev
polynomial function. Convention are similar to those of Fig. 6.11.
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6.9.1.6 Characterization of the signal event category

As described in Sec. 6.3.1, it has been realized at an advanced stage of the analysis that the
case of Kaon/Pion swap was in fact corresponding to true SCF. Therefore, we studied the
effect of considering these events to be a part of the TM category. Since the fraction of such
events (given in Tab. 6.8) is small compared to the estimated number of signal events, the
effect of this correction is small. However, we check for possible deviations of the parameters
of the fit to themKππ spectrum. Since the considered correction only affects the initial values

Table 6.30: Extracted values of the signal PDF parameters before and after correcting for
Kaon/Pion swap. We also give the normalized difference, which corresponds to the absolute
value of the difference between the two parameter values divided by the averaged error. When
0.0000 is quoted for the error value, it is less than 5× 10−5.

Fit
Parameter

Before Kaon/Pion After Kaon/Pion Normalized
variable swap correction swap correction difference

S
ig
n
al

T
M

mES

CBµ(Coeff0) 5.2792± 0.0000 5.2792± 0.0000 0.0558
CBµ(Coeff1) −0.0048± 0.0002 −0.0048± 0.0003 0.0967
CBµ(Coeff2) −0.0994± 0.0026 −0.0989± 0.0020 0.2248
CBσ(Coeff0) 0.0025± 0.0000 0.0025± 0.0000 0.3381
CBσ(Coeff1) 0.0017± 0.0002 0.0017± 0.0001 0.0651
CBσ(Coeff2) 0.1568± 0.0044 0.1549± 0.0052 0.3987
CBα(Coeff0) 1.7802± 0.0923 1.7794± 0.0638 0.0107
CBα(Coeff1) 5.2342± 1.0052 5.8407± 1.3813 0.5083
CBorder(Coeff0) 7.6280± 2.5806 6.3329± 3.0377 0.4610
CBorder(Coeff1) −41.647± 37.350 −36.239± 48.101 0.1266

∆E

Crµ −0.0021± 0.0054 −0.0017± 0.0032 0.0922
CrσL

0.0592± 0.0076 0.0563± 0.0079 0.3755
CrσR

0.0324± 0.0039 0.0331± 0.0050 0.1636
CrαL

0.2790± 0.0627 0.2491± 0.0818 0.4142
CrαR

0.1259± 0.0267 0.1295± 0.0233 0.1427

Fisher
Gµ 0.1234± 0.0125 0.1222± 0.0102 0.1060
Gσ 0.2310± 0.0085 0.2320± 0.0108 0.1009

S
ig
n
al

S
C
F mES

BGµ 5.2757± 0.0404 5.2600± 0.0326 0.4292
BGσL

−0.0569± 0.0499 −0.0759± 0.0603 0.3455
BGσR

0.0041± 0.0022 0.0055± 0.0028 0.5468
Argėndpoint 5.2892± 0.0004 5.2892± 0.0004 0.0730
Argṡlope −149.530± 66.756 −136.010± 98.144 0.1640
frac 0.3167± 0.6583 0.4025± 0.9044 0.1098

∆E Linc1 −3.0200± 0.4639 −3.0653± 0.2673 0.1238

Fisher
Gµ −0.0067± 0.0039 −0.0059± 0.0022 0.2766
Gσ 0.2315± 0.0201 0.2378± 0.0232 0.2908
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of PDF parameters for TM and SCF events, we re-extract these parameters from a fit to the
(initial) cocktail of signal MC sample and compare the obtained values to the original ones.
Table 6.30 gives the two sets of parameters values. We observe that the largest differences are
comparable to the statistical uncertainty corresponding to the extraction of the parameters
from MC. Therefore, we do not take these effects into account as a systematic uncertainty.
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6.9.2 Fit to the mKπ spectrum

Here we give the systematic uncertainties on the parameters of the fit to the mKπ spectrum
(Sec. 6.7.3) originating from: the number of bins in the fitted dataset as well as the number of
bins in the PDF (Sec. 6.9.2.1), the fixed parameters in the fit performed to mES, ∆E and the
Fisher discriminant (Sec. 6.9.2.2), the fixed line-shape parameters of the resonances entering
in themKπ fit model (Sec. 6.9.2.3), the weights of the kaonic resonances used to construct the
total PDF (Sec. 6.9.2.4) and the line-shape parameters of the kaonic resonances used in the
MC generator (Sec. 6.9.2.5). The dominant source of systematic uncertainty in this category
is due to the weights of the kaonic resonances extracted from a fit to the mKππ spectrum. We
also checked the effects of modifying the procedure of the signal-TM mKπ sPlot extraction
(Sec. 6.9.2.6). Finally, we studied the effects of some minor model corrections, such as the
parametrization of the ∆E distribution for the SCF event category (Sec. 6.9.2.7) and the
criteria of assigning events to the SCF category (Sec. 6.9.2.8).

6.9.2.1 Number of bins in the fitted dataset and in the PDF

We account for two sources of systematic uncertainties from the number of bins: in the fitted

sPlot (90 bins in the nominal fit) and in the two-dimensional histograms used to create the
total PDF (450× 100 bins in the nominal fit for mKπ ×mππ, respectively). We estimate the
effect of the bin size of the sPlot from fits performed with 75 and 105 bins, while the bin size
of the PDF is fixed to its nominal value. The corresponding results are given in Tab. 6.31.
We associate one systematic uncertainty to the bin size in mKπ and another to the one in
mππ. We estimate the effect of the bin sizes of the PDF, in the mKπ(mππ) dimension, from
fits performed with alternative PDFs with 270(50) and 630(150) bins in mKπ(mππ), and the
nominal number of bins in the other dimension. For each of these sources we take the lower
and upper deviations from the nominal value of each FF as the corresponding uncertainty.
We add the uncertainties coming from the bin size in mKπ(mππ) in quadrature assuming no
correlations between them. The corresponding values are given in Tab. 6.32.

6.9.2.2 Fixed parameters in the fit to mES-∆E-Fisher

Using the procedure described in Sec. 6.9.1.2, we generate a set of new mKπ sPlot distri-
butions that we fit using the nominal model. We sum up in quadrature each of the lower
and upper deviations from the nominal result of each free parameter, and take the resulting
values as minus and plus signed uncertainties, respectively. The corresponding values are
given in Tab. 6.33.

6.9.2.3 Parameters of the resonances in the mKπ fit model

To account for systematic effects due to the fixed parameters of the resonances in the mKπ

fit model, we vary each of them according to the uncertainties given in Tab. 6.22. These
parameters appear both in the line shapes used to generate the histograms of the resonances
as well as in the corresponding analytical phase expression. Therefore, for each parameter
variation in a given line shape, we apply the accept-reject method to a non-resonant phase
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Table 6.31: Systematic uncertainties on the parameters of the fit to the mKπ spectrum
due to the number of bins in the sPlot.

Parameter + signed deviation − signed deviation
Magnitude ρ0(770) 0.006 0.000
Magnitude (Kπ) S-wave 0.000 0.035
Phase ρ0(770) 0.000 0.009
Phase (Kπ) S-wave 0.000 0.016

FF K∗0(892) 0.011 0.000
FF ρ0(770) 0.014 0.000
FF (Kπ) S-wave 0.000 0.029
FF {K∗0(892) – ρ0(770)} 0.000 0.006
FF {(Kπ) S-wave – ρ0(770)} 0.000 0.020
FF Sum 0.053 0.000

Table 6.32: Systematic uncertainties on the parameters of the fit to the mKπ spectrum
due to the number of bins in the PDF.

Parameter + signed deviation − signed deviation
Magnitude ρ0(770) 0.000 0.004
Magnitude (Kπ) S-wave 0.020 0.000
Phase ρ0(770) 0.012 0.000
Phase (Kπ) S-wave 0.013 0.000

FF K∗0(892) 0.000 0.006
FF ρ0(770) 0.000 0.003
FF (Kπ) S-wave 0.015 0.000
FF {K∗0(892) – ρ0(770)} 0.001 0.000
FF {(Kπ) S-wave – ρ0(770)} 0.007 0.000
FF Sum 0.000 0.022

space MC distribution as described in Sec. 6.22 to generate a new distribution of the corre-
sponding resonance, and use the same parameter value in the analytical phase expression.
For each variation we perform a new fit to the nominal mKπ sPlot distribution. We sum
up in quadrature each of the lower and upper deviations from the nominal result of each
free parameter, and take the resulting values as minus and plus signed uncertainties, respec-
tively. The corresponding values are given in Tab. 6.34. The dominant effect here is due to
the line-shape parameters of the K∗

0(1430) corresponding to the resonant part of the LASS
parametrization. The effects coming from the ρ0(770) and K∗0(892) line-shape parameters
are negligible.
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Table 6.33: Systematic uncertainties on the parameters of the fit to the mKπ spectrum
due to the fixed parameters in the fit performed to mES, ∆E and the Fisher discriminant.

Parameter + signed deviation − signed deviation
Magnitude ρ0(770) 0.005 0.009
Magnitude (Kπ) S-wave 0.018 0.005
Phase ρ0(770) 0.045 0.003
Phase (Kπ) S-wave 0.073 0.006

FF K∗0(892) 0.002 0.003
FF ρ0(770) 0.011 0.009
FF (Kπ) S-wave 0.020 0.013
FF {K∗0(892) – ρ0(770)} 0.003 0.001
FF {(Kπ) S-wave – ρ0(770)} 0.013 0.007
FF Sum 0.024 0.045

Table 6.34: Systematic uncertainties on the parameters of the fit to the mKπ spectrum
due to the line-shape parameters of the resonances used in the mKπ fit model.

Parameter + signed deviation − signed deviation
Magnitude ρ0(770) 0.002 0.001
Magnitude (Kπ) S-wave 0.007 0.001
Phase ρ0(770) 0.012 0.017
Phase (Kπ) S-wave 0.018 0.042

FF K∗0(892) 0.000 0.004
FF ρ0(770) 0.003 0.011
FF (Kπ) S-wave 0.021 0.001
FF {K∗0(892) – ρ0(770)} 0.002 0.001
FF {(Kπ) S-wave – ρ0(770)} 0.014 0.004
FF Sum 0.007 0.039

6.9.2.4 Weights of the kaonic resonances used to construct the total PDF

To account for systematic effects due to the weights of kaonic resonances used to construct
the total PDF, we first generated a large number of sets of weights (10000) from the mKππ

fit-fractions correlation matrix (taking into account the corresponding statistical and sys-
tematical uncertainties). In a second step, we performed a fit to the mKπ spectrum using
each of these sets of weight as a new parametrization of the total PDF. From the results of
these fits we obtained a distribution for each free parameter and for each of the fit fractions.
Finally we took the values at plus and minus 34.1% of the integral of the corresponding dis-
tribution from the nominal fit value as the plus or minus signed uncertainties, respectively.
The corresponding values are given in Tab. 6.35.

157



Analysis of B+ → K+π−π+γ decays: study of the Kππ resonant structure

6.9.2.5 Parameters of the kaonic-resonances used in the MC generator

The distortions of the ρ0(770) and K∗0(892) resonances, taken into account in the fit model
by histograms generated using MC distributions from exclusive kaonic resonance decays, are
correlated to the parameters of the kaonic-resonance line shapes in the MC generator. In
order to study systematic effects from the fixed values of these parameters, we generated new
MC distributions of the ρ0(770) and K∗0(892) for each kaonic resonance. We checked that
the only significant effect arrises for the ρ0(770) distribution in the K1(1270) → Kρ0(770)
decay channel. Therefore, in order to estimate the systematic uncertainties coming from
the K1(1270) resonance parameters, we varied its mean and its width, taken from Ref. [?

Table 6.35: Systematic uncertainties on the parameters of the fit to the mKπ spectrum
due to the weights of the kaonic resonances used to construct the total PDF.

Parameter + signed deviation − signed deviation
Magnitude ρ0(770) 0.011 0.003
Magnitude (Kπ) S-wave 0.009 0.046
Phase ρ0(770) 0.030 0.030
Phase (Kπ) S-wave 0.077 0.042

FF K∗0(892) 0.013 0.007
FF ρ0(770) 0.027 0.006
FF (Kπ) S-wave 0.012 0.065
FF {K∗0(892) – ρ0(770)} 0.005 0.008
FF {(Kπ) S-wave – ρ0(770)} 0.020 0.038
FF Sum 0.087 0.030

Table 6.36: Systematic uncertainties on the parameters of the fit to the mKπ spectrum
due to the line-shape parameters of the kaonic resonances used in the MC generator.

Parameter + signed deviation − signed deviation
Magnitude ρ0(770) 0.000 0.003
Magnitude (Kπ) S-wave 0.014 0.001
Phase ρ0(770) 0.021 0.030
Phase (Kπ) S-wave 0.025 0.063

FF K∗0(892) 0.000 0.005
FF ρ0(770) 0.000 0.005
FF (Kπ) S-wave 0.006 0.001
FF {K∗0(892) – ρ0(770)} 0.002 0.001
FF {(Kπ) S-wave – ρ0(770)} 0.008 0.003
FF Sum 0.011 0.021
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], according to the corresponding uncertainty in our fit on the mKππ spectrum. For each
variation we generated a new PDF, that we used to perform a fit to the nominal mKπ

sPlot distribution. We sum up in quadrature each of the lower and upper deviations from
the nominal result of each free parameter, and take the resulting values as minus and plus
signed uncertainties, respectively. The corresponding values are given in Tab. 6.36.

6.9.2.6 The sPlot extraction procedure

To account for systematic effects coming from the sPlot extraction procedure on the pa-
rameters of the fit to the mKπ spectrum, we performed a fit to the mKπ sPlot distribution,
obtained from the procedure described in Sec. 6.9.1.4, using the nominal mKπ fit model.
Table 6.37 gives the deviations from the nominal value of each free parameter. Again in this
case, since only one fit is performed, only one deviation is reported (lower or upper) for each
free parameter.

6.9.2.7 Parametrization of the SCF ∆E distribution

As in the case of the mKππ spectrum (see Sec. 6.9.1.5, we studied the effects of changing the
parametrization of the ∆E distribution for the SCF event category (initially a linear function,
changed for a 4-th order chebychev polynomial function, the latter shown in Fig. 6.11) on the
parameters of the fit to the mKπ spectrum. As previously, the deviations from the nominal
value of each free parameter appear to be non significant (< 0.001) compared to other
sources of systematic uncertainties. Therefore we do not take into account these deviations
as a systematic uncertainty.

Table 6.37: Systematic uncertainties on the parameters of the fit to the mKπ spectrum
due to the sPlot extraction procedure.

Parameter + signed deviation − signed deviation
Magnitude ρ0(770) ∅ 0.019
Magnitude (Kπ) S-wave 0.030 ∅
Phase ρ0(770) ∅ 0.014
Phase (Kπ) S-wave ∅ 0.042

FF K∗0(892) 0.001 ∅
FF ρ0(770) ∅ 0.027
FF (Kπ) S-wave 0.043 ∅
FF {K∗0(892) – ρ0(770)} 0.004 ∅
FF {(Kπ) S-wave – ρ0(770)} 0.014 ∅
FF Sum ∅ 0.048
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6.9.2.8 Characterization of the signal event category

From the conclusion of the study of the change in the initial PDFs parameters of signal
TM and SCF given in Sec. 6.9.1.6, we conclude that, as in the case of the mKππ spectrum,
the effects of moving the Kaon-Pion swap events from the TM into the SCF category are
not significant and therefore, we do not take these effects into account as a systematic
uncertainty.
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Before presenting the analysis, whose purpose is to extract the CP violation parameters,
we introduce, in Sec. 7.1, some additional analysis techniques that are particular to time-
dependent analyses in B-meson decays, such as tagging (Section 7.1.1), the measurement
of ∆t between the decay of the two B mesons in the event modeling the ∆t resolution
(Section 7.1.2) and finaly the ∆t PDFs for each event species considered in the present
analysis (Secs. 7.1.3 and 7.1.4).
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7.1 Time-dependent model

7.1.1 Flavor tagging

As discussed at the beginning of Part II, in order to perform the measurement of time-
dependent CP asymmetries it is essential to determine the flavor of one of the two neutral B
mesons in the event, referred to as Btag. This is achieved by looking at the decay products of
the B meson when it decays into a flavor-specific state. Among these, semileptonic decays,
in which the charge of the lepton ℓ unambiguously identifies that of the b quark and hence
the B-meson flavor, represent one of the best example.

Since the statistical error (σ) on measurements of time-dependent parameters (such as CP
asymmetry parameters in the present study or sin2β and ∆md or, in other BABAR analyses)
strongly depends on the tagging algorithm, it is primordial to maximize the tagging efficiency
ǫtag while minimizing the probability of assigning a wrong flavor to Btag, also called mistag

rate or ω. Indeed, σ is inversely proportional to the square-root of the “effective tagging
efficiency”, Q [? ]:

σ ∝ 1√
Q
, with Q = ǫtag (1− 2ω)2 . (7.1)

The efficiency ǫtag, which is defined as the fraction of events that are assigned a tag, is
calculated with respect to the sample of events that satisfy the requirements for the tag-side
vertexing (see Section 7.1.2) and that have at least one fully reconstructed candidate. In order
to improve the tagging algorithm, various tagging categories “c” (detailed in Sec. 7.1.1.1)
are defined. To each one are assigned a tagging efficiency and a mistag rate (ǫctag and ωc),
in which case the effective tagging efficiency can be written as Q =

∑

c ǫ
c
tag(1− 2ωc)2. With

the latest version of the BABAR tagging protocol, Tag08 [? ], which is used in the present
analysis and described later in this section, a value of Q = 32.7± 0.3% is achieved.

Using the probability ω (ω) of incorrectly reporting a Btag = B0 as B0 (Btag = B0 as
B0), we can define quantities that are more convenient from the experimental point of view,
in each of the tagging category c:

〈ω〉c = 1
2
(ωc + ωc) , ∆ωc = (ωc − ωc) (7.2)

Dc = 1− 2ωc , Dc
= 1− 2ωc (7.3)

〈D〉c = 1
2
(Dc +Dc

) = 1− (ωc + ωc) , ∆Dc = (Dc −Dc
) = −2(ωc − ωc), (7.4)

where D is referred to as the “dilution factor” and ∆Dc parameterize a possible difference
in performance of the tagging procedure for the two tags, B0 and B0.

7.1.1.1 The BABAR flavor tagging algorithm

In order to achieve an optimal separation between B0 and B0 events, the BABAR tagging
algorithm [? ] is based on multivariate techniques, that combine several different signatures.
In a first step, tracks from the fully reconstructed B meson (Brec) are removed, the rest of
the event being assigned to the Btag. Tracks from the Btag are then analyzed by a Neural
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Network (NN), referred to as Tag08, whose output values range from −1 to +1, where the
absolute value represents the confidence in the estimation, and the sign indicates the flavor
of the meson:

• NN > 0 → Btag = B0

• NN < 0 → Btag = B0

The output value of Tag08, and hence the Btag flavor, is calculated from the combination of
nine other NNs, referred to as “sub-taggers”, each of which being optimized to identify spe-
cific signatures such as the charge, momentum or decay angles of charged leptons, kaons and
pions. The sub-taggers are called Electron, Muon, Kinematical Lepton, Kaon, slow

pion, Kaon-slow pion, maximum-momentum, fast-slow particles correlation and Lambda.
As an illustration of the procedure used to identify the Btag flavor, a detailed description of
some of the sub-taggers contributing the most to the value of Q in BABAR, is given below:

• Lepton sub-taggers

In order to fully exploit the semileptonic decays of the B meson (with B = 10.4% [?
]), these sub-taggers focuse on electrons and muons, which provide excellent tagging
information. Indeed in b→ cℓ−ν̄ processes, where a virtual W−(W+) boson, emitted
by the b(b̄) quark, decays to an electron or a muon and an (anti)neutrino, the charge
of the primary lepton is unambiguously linked to the flavor of the B meson. Other
processes occur, containing secondary leptons such as in cascade decays, where the
lepton comes from the decay of a daughter D0 meson. The issue, then, is to isolate
the primary leptons from secondary leptons, since the latter carries opposite tagging
information: their charge is opposite to that of the primary lepton.

For this purpose, several discriminating variables are used. Since the secondary leptons
are characterized by a softer momentum spectrum, the CM momentum of the track,
p∗ is used. In addition, due to directions of the primary ℓν pair that are expected
to be anticorrelated in the CM frame, the cosine of the angle between the missing
momentum (which approximates that of the neutrino) and the lepton’s momentum,
cos θmiss, is also used. Finally, the energy contained in the hemisphere defined by the
direction of the virtual W±, is also used. Indeed the primary leptons, unlike secondary
ones, are likely to be isolated from the rest of the charged tracks involved as illustrated
in Fig. 7.1.

The flavor tagging algorithm uses three different sub-taggers trained independently,
which exploit the discriminating variables described above:

– the electron sub-tagger, with tracks that satisfy the VeryTight (see Section 5.2.3)
electron ID criteria

– the muon sub-tagger, with tracks that satisfy the Tight muon candidates

– the kinematical lepton sub-tagger, based only on kinematics in order to recover
the primary leptons that where not selected by the two previous PID criteria
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• Kaon sub-tagger

This sub-tagger uses signatures from charged kaons, formed mainly in cascade decays,
B0 → D̄ (→ K+Y )X, as input to the tagging algorithm. As in the case of leptons, a
clear distinction much be achieved between kaons whose charges correlate differently
with the flavor of Btag. The dominant source of charged kaons comes from b→ c→ s
processes, which gives rise to right-sign kaons (e.g. in the b → W−c(→ s → K−)
transition), whereas the wrong sign kaons come from the decay products of theW−, for
instance in b → XW− transitions with W− → cq, (c → s → K+). This is illustrated
in Figure 7.1. Due to the high branching fraction for inclusive B0 → K±X decays
(78(8)% [? ]) and the good signal-to-background ratio, the kaon sub-tagger is the
most powerful source of tagging information in BABAR.

The NN input variables are here: the charge and PID likelihood of the best three kaon
candidates of the event; the number ofK0

S
candidates; the sum of transverse momentum

squared on the tag side, Σp2t . The higher is Σp2t the better is the discrimination of
kaons originating from a W rather than from a charmed object. On the contrary,
a non-zero number of K0

S
will decrease the tag power, since they are likely to come

from the strange quark in the cascade b→ c→ s, providing no information on the Btag

flavor.

Figure 7.1: Diagrams representing b decays likely to produce a Lepton tag (left) and a
Kaon tag (right). The right-hand diagram demonstrates how right- and wrong-sign kaons
may appear in a b decay.

A further classification of the events into tagging categories is performed according to
their overall numerical value of the NN, to which all nine sub-taggers contribute. In order of
increasing mistag rate, these categories are: Lepton, KaonI, KaonII, Kaon-Pion, Pion,

Other and Untagged, where the last one is a category where no reliable tagging information is
provided (i.e. Duntagged = 0). The name given to each category are related to the sub-tagger
with the largest contribution in the flavor identification.
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To ensure the good behavior of the algorithm, it is trained and checked using MC. It is
further validated on data using a large sample of fully reconstructed flavor-specific decays:
B0 → D(∗)±π∓, B0 → D(∗)±ρ∓ and B0 → D(∗)±a∓1 . A fit to the data ∆t distribution allows
the extraction of the mistag rates (see Table 7.1).

Table 7.1: Performance of BABAR’s Tag08 tagging algorithm in terms of efficiency and mistag
probabilities, as measured on a large sample of fully reconstructed flavor-specific decays. The
definition for ∆ǫctag and ∆Qc is analogous to the one of ∆ωc. The algorithm is described in
detail in [? ] and references therein.

Category ǫctag(%) ∆ǫctag(%) ωc(%) ∆ωc(%) Qc(%) ∆Qc(%)

Lepton 9.70± 0.07 −0.0± 0.2 2.0± 0.2 0.6± 0.5 8.95± 0.11 −0.28± 0.37
KaonI 11.38± 0.08 −0.2± 0.2 4.9± 0.3 0.6± 0.6 9.27± 0.14 −0.44± 0.46
KaonII 15.71± 0.09 0.4± 0.3 13.5± 0.3 −1.0± 0.6 8.36± 0.16 0.68± 0.49
Kaon-Pion 13.39± 0.08 0.2± 0.2 23.0± 0.4 −0.9± 0.7 3.90± 0.12 0.33± 0.34
Pion 17.20± 0.09 −0.1± 0.3 33.6± 0.4 0.2± 0.6 1.85± 0.09 −0.07± 0.24
Other 10.19± 0.07 −0.2± 0.2 41.1± 0.5 4.8± 0.8 0.32± 0.04 −0.35± 0.10
Total 77.59± 0.10 0.0± 0.6 32.7± 0.3 −0.1± 0.9

7.1.2 ∆t measurement and resolution

7.1.2.1 ∆z measurement

In order to be able to determine the time difference between the decays of the two B mesons,
the distance along the z-axis between the two corresponding vertexes must be measured first.
For this purpose, the Brec vertex is reconstructed using all the daughter tracks as described
in Sec. 5.2.4. In the case of charmonium sin2β analyses [? ], the resolution in z is about
65µm for more than 99% of the B meson candidates (∼ 45µm for more than 80%). The
resolution is evaluated by subtracting the true value from the reconstructed one, and the
uncertainty corresponds to the RMS of this residual distribution. In contrast, the Btag

meson is reconstructed inclusively, using all the other tracks in the event, in order to keep a
reasonably high level of efficiency. This leads to a total uncertainty on the ∆z measurement
of ∼ 190µm (∼ 150µm for 99% of the events), which dominates the overall resolution in
∆z. To avoid too large biases and tails in the reconstruction algorithm of the Btag vertex,
the daughters of long-lived particles, such as K0

S
and Λ, are replaced by the trajectories

of the composite particles. Additionally, the tracks consistent with photon conversions are
removed. Since the lifetimes of D mesons and other charmed particles are comparable to
those of the B mesons, their daughters can still introduce the undesired effects described
above. In order to reduce these contributions, an iterative fit procedure is used, in which
the track with the largest vertex χ2 contribution (i.e. greater than 6 units) is removed and
the fit is redone. This procedure is repeated until no track fails the criterion.

In modes where the Brec is fully reconstructed, like in both analyses presented in this
thesis, the measurement of ∆z can be further improved be means of the quantities extracted
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from the Brec vertex fit. In particular, its three-momentum, its decay vertex, the beam
spot position and the Υ (4S) average boost can be used as input to a geometrical fit to the
tagging candidate daughters into a common vertex. This is illustrated in Figure 2.3 giving
a representation of the tagging process.

7.1.2.2 ∆t determination

To determine ∆t from the ∆z measurement, the BABAR reconstruction code uses the boost
βγ of the Υ (4S) resonance in the laboratory frame

∆t =
∆z

βγc
, (7.5)

the average separation between the two vertices due to the boosted Υ (4S) rest frame being
given by

βγcτB0 = 257µm , (7.6)

where βγ is known to high precision from the beam energies, which are monitored every 5 s
with an accuracy of 0.1%, and corresponds to βγ = 0.56.

The previous expression given for ∆t is only accurate in the case of negligible B momenta
in the Υ (4S) rest frame. Since the B mesons do have a small momentum in the Υ (4S) rest
frame, p∗B = 340MeV/c,Eq. 7.5 needs to be corrected accordingly. In the case of fully
reconstructed Brec mesons, their momentum can be measured and ∆z can then be written
as

∆z = βγγ∗recc (trec − ttag) + γβ∗
recγ

∗
rec cos θ

∗
recc (trec + ttag) , (7.7)

where trec(ttag) is the instant when the Brec (Btag) meson decayed, and γ∗rec = 1.002, β∗
rec =

0.064 and θ∗rec are, respectively, the boost factor of the reconstructed B meson in the center-
of-mass frame, its speed, and its angle with respect to the z axis. However, the correction
depends on the quantity trec+ ttag, which is not directly measured. Instead its average value,
〈trec + ttag〉 = τB + |∆t|, is used to correct for the measured Brec momentum direction and
extract ∆t from the following expression:

∆z = βγγ∗recc (trec − ttag) + γβ∗
recγ

∗
rec cos θ

∗
recc (τB + |∆t|) . (7.8)

The use of Eq. 7.8 improves the ∆t resolution by about 5%, and the value of ∆t is only
corrected by about 0.02 ps relative to the expression used in Eq. 7.5. It also removes a
correlation between the true value of ∆t and its resolution.

7.1.2.3 ∆t resolution model

The imperfect measurement of ∆t is taken into account through a function describing the
resolution on the ∆t measurement, which is convoluted with the ∆t PDFs as described
below.

The resolution function has different parametrization depending on the event category
(signal, various backgrounds). For the signal the resolution in ∆t is modeled as the sum
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of three gaussians, consisting of a “core” and a “tail” each of whose mean (width) is given
by the event-by-event uncertainty on ∆t, σ∆t, scaled by an independent bias (scale factor)
parameter. The third “outlier” Gaussian is broad and is not scaled by the event-by-event
uncertainty: the bcout and s

c
out parameters correspond to the mean and width of the outlier

Gaussian. The parameters of the resolution function can, in general, vary with the tagging
category “c” as:

Rc
sig(∆t, σ∆t) = (1− ftail − fout)G (∆t; bccoreσ∆t, s

c
coreσ∆t) (7.9)

+ ftailG (∆t; bctailσ∆t, s
c
tailσ∆t)

+ foutG (∆t; bcout, s
c
out) ,

where the G functions are normalized Gaussians:

G(∆t, µ, σ) =
1

σ
√
2π

exp

(

−(∆t− µ)2

2σ2

)

. (7.10)

The introduction of the means and widths dependence on the error σ∆t, is due to the presence
of correlations between event-by-event uncertainty and the means and RMS of the ∆t residual
distributions. These effects are caused by the decay products of charmed resonances. In the
case where the charmed meson flies along the z direction, rather than in the xy plane,
it leads to even larger effects. Indeed, the determination of the z component of the Btag

vertex is impacted by particles coming from a secondary displaced vertex. Therefore, a bias
in ∆z is produced, due to the correlation between larger values of σ∆z that appears. A
smaller correlation was observed in events tagged by a lepton, which explains why the b and
s parameters are defined as tagging-category-dependent quantities in Eq. 7.9. Figure 7.2
illustrates the effects that a typical resolution model has on the ∆t distribution.
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Figure 7.2: ∆t distributions for B0 (red) and B0 (blue) tagged events with perfect tagging
and resolution (left), and with typical BABAR mistag rates and resolution effects incorporated
(right). A simple single gaussian model has been used in the demonstration of the resolution
effects.

The parameters used in the present analysis, given in Table 7.2, are taken from compre-
hensive studies for the charmonium sin2β. Indeed, since the dominant factor in the ∆t error
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comes from the Btag vertex resolution, and hence is generally independent of the channel
into which the Brec decays, the resolution in ∆t can be assumed to be the same for most
channels.

The implementation of the convolution between the expected PDFs and the resolution
to obtain the observed ∆t distributions are described elsewhere [? ].

Table 7.2: Parameters describing the resolution in ∆t for signal events, as extracted from a
large sample of fully reconstructed flavor-specific decays for the charmonium sin2β analyses [?
], and used in the present analysis.

Parameters Core Gaussian Tail Gaussian Outlier Gaussian
lepton-tagged non-lepton-tagged

mean -0.0789 ± 0.0304 -0.1850 ± 0.0138 -1.1186 ± 0.1354 0
sigma 1.0610 ± 0.0459 1.1059 ± 0.0223 3 8
fraction 1− ftail − foutlier 1− ftail − foutlier 0.1050 ± 0.0094 0.0034 ± 0.0006

7.1.3 Signal ∆t PDF

The signal ∆t PDF accounting for B0B0 mixing and decay effects is defined as:

Psig(∆t, σ∆t) =
e−|∆t|/τ

B0

4τB0

×
[

1 + qtag
∆Dc

2
− qtag 〈D〉c C cos (∆md∆t) (7.11)

+ qtag 〈D〉c S sin (∆md∆t)

]

⊗Rc
sig(∆t, σ∆t),

where qtag is the flavor-tag of the event: qtag = −1 for B0 mesons (i.e. Brec = B0 and
Btag = B0) and qtag = +1 for B0 mesons (i.e. Brec = B0 andBtag = B0), τB0 is theB0 lifetime
and ∆md is the B0B0 oscillation frequency. The coefficients S and C are the parameters
associated with mixing-induced CP violation and direct CP violation, respectively.

7.1.4 Background ∆t PDFs

The ∆t resolution function for each B-background category j described below is in general
the same as for signal, except in a few selected modes, in which a few parameters are changed.

7.1.4.1 Charged B-background ∆t PDF

For backgrounds from charged B mesons decays, ∆t is modeled as an exponential decay with
an effective lifetime, with a value very close to τB+ , convoluted with the usual resolution
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function:

PB±(∆t, σ∆t) =
e−|∆t′|/τj

4τj
×

[

(

1− qtagAj

2

)

ωc (7.12)

+

(

1 + qtagAj

2

)

(1− ωc)

]

⊗Rc
B±(∆t′ −∆t, σ∆t),

where the index j refers to the background category. The Aj parameter is the asymmetry
taking into account for possible differences between B0 and B0 tags, and the τj parameter is
the effective lifetime. In cases where secondary vertices occur, the effective lifetime and/or
resolution can be significantly altered.

7.1.4.2 Flavor eigenstates neutral B-background ∆t PDF

For backgrounds from neutral B mesons decays to flavor eigenstates, a similar treatment to
that of charged B backgrounds is used, differing only in the mixing term that now appears
in the ∆t PDF:

PB0
Flv
(∆t, σ∆t) =

e−|∆t′|/τj

4τj
×

[

(

1− qtagAj

2

)

ωc (1− cos(∆md∆t
′)) (7.13)

+

(

1 + qtagAj

2

)

(1− ωc) (1 + cos(∆md∆t
′))

]

⊗Rc
B0

Flv
(∆t′ −∆t, σ∆t).

7.1.4.3 CP eigenstates neutral B-background ∆t PDF

For backgrounds from neutral B mesons decays to CP eigenstates, we account for possible
CP violation effects using a similar ∆t PDF as for signal:

PB0
CP
(∆t′, σ∆t) =

e−|∆t′|/τj

4τj
×

[

1 + qtag
∆Dc

2
− qtag 〈D〉c C cos (∆md∆t

′) (7.14)

+ qtag 〈D〉c S sin (∆md∆t
′)

]

⊗Rc
B0

CP
(∆t′ −∆t, σ∆t),

where τj are effective lifetimes.
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7.1.4.4 Continuum background ∆t PDF

We describe the ∆t PDF for the continuum background as a combination of “prompt” decays
and “lifetime” decays coming from charmed mesons:

Pbg(∆t, σ∆t) =

[

fpromptδ(∆t
′ −∆t) + (1− fprompt) exp

(

−|∆t|
τbg

)]

⊗Rbg, (7.15)

where Rbg is the resolution function defined as a sum of a “core” and an “outlier” Gaussian:

Rbg = (1− fout)G (∆t; bcoreσ∆t, scoreσ∆t) + foutG (∆t; bout, sout) . (7.16)

The outlier Gaussian has the bias fixed to bout = 0, while the core Gausian’s width and bias
are scaled with the event-by-event uncertainty on ∆t. All the continuum background ∆t
PDF parameters (except for bout) were extracted from a fit to the Off-Peak data sample (see
Sec. 7.6.4.2). The “lifetime” parameter τbg in Eq. 7.15 corresponds to an effective lifetime.

7.2 Signal Monte Carlo cocktail

As detailed in Sec. 6.1, the branching fractions of the various resonances that may contribute
to the signal are not well measured. Using isospin symmetry, we assume that the fraction and
phase of each kaonic resonance channel in the B0 decay is the same as that in the B+ decay.
Therefore, using the relative weights of each kaonic resonance channel extracted from a fit
to the mKππ spectrum (Tab. 6.20) and the branching fractions of the corresponding kaonic
resonance in the K+π−π+ final state from Ref. [? ] we estimate the branching fractions of
B → Kresγ using as a reference the value of B(B → K1(1270)) = 4.3 × 10−5, taken from
Ref. [? ]. This allows to estimate the branching fractions of the B0 → K0

res(K
0
S
π+π−)γ

processes, using the corresponding values of B(Kres → K0
S
π+π−) reported in Ref. [? ].

Table 7.3: Estimated branching fractions of decays of B0 mesons to K0
Sπ

−π+γ (using
different intermediate kaonic resonances) and their relatives weights. Since we reconstruct
the K0

S in two charged pions, here the estimated branching fractions take into account the
value of B(K0

S → π+π−).

Signal mode
Estimated B Relative

(10−6) Weights
B0 → K1(1270)

0(K0
S
π+π−)γ 6.47 0.305

B0 → K1(1400)
0(K0

S
π+π−)γ 2.64 0.097

B0 → K∗(1410)0(K0
S
π+π−)γ 5.98 0.219

B0 → K∗
2(1430)

0(K0
S
π+π−)γ 0.32 0.036

B0 → K∗(1680)0(K0
S
π+π−)γ 5.29 0.344

B0 → K0
S
π+π−γ 20.70 ∅
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Table 7.3 summarizes the weights that are used to create the signal cocktail. Finally, we
apply a global scale to the entire cocktail to make it equivalent to the integrated luminosity
of our On-Resonance data sample.

7.3 Event selection

At first order, the candidate selection for the present analysis relies on the selection criteria
from the charged channel analysis, described in Sec. 6.2.2. Additional selection criteria are
applied, as described in Sec. 7.3.1 below. We determine optimal cut values following the
procedure described in Sec. 7.3.2.

In signal events containing more than one candidate after event selection, we use the same
technique for multiple candidate selection as in the charged channel analysis, described in
Sec. 6.2.4.

7.3.1 Selection cuts

This Section gives the selection cuts applied to MC and data samples. Only the new selec-
tion criteria, with respect to the charged channel analysis, are detailed here: Secs. 7.3.1.1
and 7.3.1.2 present the K0

S
selection and the cuts applied to the time variables ∆t and σ∆t,

respectively. The values of the other selection cuts are reported in Tab. 7.5.
We found that the set of variables used to build the Fisher discriminant in the charged

mode (Sec. 6.2.2.8) is still optimal. Therefore, we only updated the coefficients in the linear
combination to optimize the separation between signal and continuum background events.

7.3.1.1 K0
S
selection

As described in Sec. 5.2.4, we select K0
S
candidates from the KsDefault list. The geometric

fit performed by TreeFitter that determines the K0
S
decay vertex, allows to evaluate the

K0
S
candidate four momentum and trajectory. Its mass is also computed using π± track

momenta evaluated at the vertex. In order to determine the trajectory, the K0
S
production

vertex (i.e. the B decay vertex) is also required.
The displaced decay of the K0

S
is useful for rejecting background, especially qq events.

Thus, we compute the decay length significance, dK0
S
/σ(dK0

S
), defined as the ratio of the three-

dimensional length of the K0
S
trajectory divided by the error on that quantity obtained from

the vertex fit. We also compute θflight corresponding to the angle between the K0
S
trajectory

and its momentum vector. The following cuts are applied on K0
S
candidates:

• |mπ+π− −mK0
S
| < 11MeV/c2

• cosθflight > 0.995

• dK0
S
> 5σ(dK0

S
)

These selection criteria corresponds to standard requirements in BABAR analyses. Their
values are taken from Ref. [? ], and not re-optimized for the present analysis.
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7.3.1.2 ∆t and σ∆t

Very loose cuts are also applied to the variables ∆t and σ∆t. These cuts are the same as those
applied in the BABAR charmonium sin2β analyses [? ], from which we take the parameters
of the signal ∆t resolution function (see Tab. 7.2). We apply the following cuts:

• |∆t| ≤ 20 ps

• σ∆t ≤ 2.5 ps

7.3.1.3 mππ and mKπ

As described in Sec. 6.8.2, in order to increase the dilution factor value (i.e. increase the
proportion of B0 → K0

S
ρ0γ events), we apply cuts on the mππ and mKπ dimensions:

• 0.6GeV/c2 ≤ mππ ≤ 0.9GeV/c2,

• mKπ ≤ 0.845GeV/c2 or 0.945GeV/c2 ≤ mKπ,

where in the latter case the cut is applied in both K+π− and K−π+ dimensions. These sets
of cut are optimized to minimize the final error on the indirect CP asymmetry parameter.

7.3.2 Cut Optimization

The cuts were optimized in order to maximize the sensitivity on the CP asymmetry pa-
rameters S and C. We first use the BumpHunter algorithm in order to maximize the FOM
S/

√
S +B, where S is the yield of TM-signal MC and B is the total yield of backgrounds.

Both S and B are normalized to the luminosity in the data, as in the control channel analy-
sis. This first step of the optimization procedure was done inside the signal region (i.e. for
mES > 5.26GeV/c2), using a set of 6 variables:

• PhotonMergedPi0Consistency

• Pi0VetoLikelihoodRatio

• EtaVetoLikelihoodRatio

• Daug2TrackPID PiSelectorKM

• Daug3TrackPID PiSelectorKM

• BvtxProbChi2

BumpHunter was able to find an optimum for these variables. The correlations between them
were found to be non significant.

In a second step, using the full fit region in mES (mES > 5.20GeV/c2), we built 25 sets
of cuts with different ranges in ∆E and the Fisher discriminant given in Tab. 7.4. Each set
is assigned a unique “selection-cut code” that is given in the table.
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For each set we generated and fitted a pseudo experiment composed of embedded signal
events (drawn from MC sample) as well as two B-background categories (from the B+B−

and B0B0 generic MC, respectively) and a continuum category (generated from the PDFs).
Since the aim is to select a set of cut which minimize the errors on S and C, we use the total
available MC statistics in order to minimize the uncertainty on the fitted errors. Since the
generic MC samples correspond to about 3 times the luminosity in the data, we generate
the pseudo experiment using the estimated yields of each event category scaled by a factor
three. Figure 7.3 shows the fitted errors on the CP -asymmetry parameters: S and C. The
selected set of cuts corresponds to a value of the Fisher discriminant ≥ 0.0 and ∆E ∈
[−0.200; 0.200]GeV/c2 (i.e. cut code = 79). This choice appears to be a good compromise
between CP -asymmetry parameters sensitivity and continuum background suppression with
the tighter cut on the Fisher Discriminant.

With this set of cuts on the Fisher Discriminant and ∆E, the optimization of the figure
of merit S/

√
S +B was done again. The changes in the optimized cuts appeared to be non

significant. The value of the FOM is S/
√
S +B ≃ 6.7 in the signal region (i.e. mES ≥

5.26GeV/c2) and S/
√
S +B ≃ 3.6 in the fit region (i.e. mES ≥ 5.20GeV/c2) .

7.3.3 Efficiency

Table 7.5 details, for each of the final cuts, the selection efficiency of TM candidates in signal
MC. The reconstruction efficiency is also indicated. Tab. 7.6 gives the total efficiency once
multiple-candidate selection is applied (same procedure as described in Sec. 6.2.4). Tab. 7.7
shows the overall efficiencies for the different kaonic resonances. The observed differences
in the efficiencies among these, are mainly due to the cut on the mππ and mKπ dimensions,
since each kaonic resonance have different branching fractions in ρ0K0

S
and K∗±π∓ channels.

Table 7.4: The sets of cuts on the Fisher Discriminant and ∆E used for the optimization on
the CP -asymmetry parameters sensitivity. The selection-cut codes are defined as α× 10+β,
where the values of α and β correspond to given ranges of the Fisher Discriminant (labelled
F in this table) and ∆E, respectively.

Cut code
F ≥ 0.3 F ≥ 0.2 F ≥ 0.1 F ≥ 0.0 F ≥ −0.1
α = 1 α = 3 α = 5 α = 7 α = 9

∆E ∈ [−0.100; 0.100]
11 31 51 71 91

β = 1
∆E ∈ [−0.125; 0.125]

13 33 53 73 93
β = 3

∆E ∈ [−0.150; 0.150]
15 35 55 75 95

β = 5
∆E ∈ [−0.175; 0.175]

17 37 57 77 97
β = 7

∆E ∈ [−0.200; 0.200]
19 39 59 79 99

β = 9
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Figure 7.3: Fitted error on the CP asymmetry parameter S (a) and C (b). The selection
cut codes on the x-axis are related to the corresponding cuts in Tab. 7.4. Note that the origin
of the y-axis have been set to entry with the lower value in both graphs.

Note that the overall efficiency is smaller than that of the charged channel analysis. This is
mainly due to the cut applied on the mππ and mKπ dimensions, to the tighter cut applied on
the Fisher discriminant and also to the reconstruction of the K0

S
candidate, which is slightly

less efficient than charged tracks.
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Table 7.5: Absolute, last- and first-cut efficiencies of candidate selection cuts in TM signal
MC. The absolute efficiency is obtained from the product of all the preceding cut efficiencies
in the table, including the corresponding one. The reconstruction efficiency is obtained from
the ratio between the numbers of generated events and of reconstructed events, before any
of the cuts is applied. The last- (first-)cut efficiency is the efficiency of the corresponding cut
when applied after (before) all the other cuts. Events that satisfy the condition on the cut
value are selected. Mass and time cuts are expressed in GeV/c2 and ps, respectively.

Cut Value
Absolute Last-cut First-cut
efficiency efficiency efficiency

Reconstruction ∅ 0.497 ∅ ∅
mKππ x < 1.8 0.399 0.548 0.768

LRπ0 x < 0.838 0.369 0.893 0.925

LRη x < 0.975 0.361 0.969 0.977

B vertex probability 0.00351 < x 0.327 0.758 0.905

∆E −0.2 ≤ x ≤ 0.2 0.304 0.891 0.929

mES 5.2 < x 0.301 0.887 0.992

Fisher x > 0.0 0.239 0.743 0.794

B∆t −20 ≤ x ≤ 20 0.238 0.954 0.998

Bσ∆t
x < 2.5 0.232 0.929 0.974

B vertex status x = 0 0.232 0.921 0.999

B tag vertex status x = 0 0.232 0.965 0.999

cos θγ −0.74 ≤ x ≤ 0.93 0.231 0.999 0.999

Photon bump distance 25 < x 0.223 0.917 0.964

Photon track distance 25 < x 0.207 0.892 0.925

Photon merged π0 consistency x < 0.00087 0.204 0.980 0.985

|mπ+π− −mK0
S
| x < 0.011 0.200 0.707 0.984

cos θflight 0.995 < x 0.195 0.445 0.975

dK0
S
/σ(dK0

S
) 5 < x 0.188 0.545 0.962

π1 PID SuperLooseKMPion 0.180 0.843 0.959

π2 PID SuperLooseKMPion 0.173 0.839 0.956

mπ+π− (ρ0(770) selection) 0.6 ≤ x ≤ 0.9 0.107 0.651 0.675

mKπ (K∗(892) veto) [x ≤ 0.845] ∪ [0.945 ≤ x] 0.052 0.537 0.893

Table 7.6: Individual and absolute efficiency (product of all the preceding cut efficiencies
in the table, including the corresponding one) of candidate selection cuts in TM signal MC.

Cut Relative efficiency Cumulative efficiency

Reconstruction 0.497 0.497
Candidate selection 0.105 0.052
MCS 0.903 0.047
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Table 7.7: Overall efficiency of mKππ TM candidates in signal MC by kaonic resonance.
The observed differences in the resonance efficiencies, are mainly due to the cut on the mππ

and mKπ dimensions. Uncertainties come from MC statistics.

Resonance K1(1270) K1(1400) K∗(1410) K∗
2 (1430) K∗(1680)

Overal
0.0563± 0.0004 0.0287± 0.0009 0.0264± 0.0010 0.0409± 0.0011 0.0420± 0.0002

efficiency

7.4 Classification of signal events

Signal events are separated in two categories: TM and self-cross-feed (SCF) by the same
criteria as in the charged channel analysis (see Sec. 6.3.1). The corresponding PDFs are
presented in Sec. 7.6.1.

The total signal yield, is estimated by multiplying the total number of B mesons expected
in the final BABAR dataset by the estimated branching fractions of each mode given in
Tab. 7.3, and then by summing up the resulting products. The TM and SCF yields are
estimated using the fraction of each category in the MC.

Since the SCF contributes to the time-dependent CP violation, the SCF is not considered
as a background in the present analysis, contrarily to the charged-mode analysis.

Table 7.8: B0 → K0
Sπ

+π−γ signal estimated yields for the final BABAR Run1-6 dataset.

Category Estimated yield Fraction
Signal TM 153± 26 0.728± 0.002
Signal SCF 57± 10 0.272± 0.003
Total Signal 210± 36 ∅

7.5 Background study

This section describes the study of the B backgrounds (discussed in Sec. 7.5.1) as well as
the continuum background (discussed in Sec. 7.5.2). The same background identification
procedure as in the charged channel analysis (Sec. 6.4) is applied here. Again the main
background comes from continuum events, and the dominant source of B background arises
from radiative b → sγ transitions. For the time-dependent analysis we further classify the
different identified B backgrounds into three categories: charged, CP eigenstates and flavor
eigenstates. As shown in Sec. 7.1, different time-dependent PDF are applied to each of these
categories. Table 7.10 gives the yields of the different background categories defined in the
B0 → K0

S
π+π−γ analysis. The resulting PDFs are presented in Sec. 7.6.2.
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7.5.1 B backgrounds

7.5.1.1 Radiative b→ sγ B backgrounds

From the generic MC, we isolate six dominant radiative B backgrounds, listed in Tab. 7.9.
As in the case of the charged channel, the size of the generic MC sample does not allow to
perform an accurate study of these radiative B backgrounds. Therefore, we use exclusive
MC datasets, as described in Sec. 5.1.1.

We first separate these six dominant radiative B backgrounds in the same two groups
than in the charged channel analysis: the “low multiplicity” decays (i.e. the B → Kπγ
decays), as detailed in Tab. 7.9, and the “Higher multiplicity” decays where one particle or
more has been missed in the reconstruction.

We further classify these backgrounds according to their time-dependent properties. We
divide the neutral B → Kπγ radiative B backgrounds in two categories, depending on
the K∗0 or the Xsd final states: K∗0(Xsd) → K0

S
π0 and K∗0(Xsd) → K±π∓ correspond to

the neutral CP and neutral flavor eigenstates, respectively. Charged B+ → Kπγ decays
form another B-background category. For the second group of radiative B backgrounds, the
“Higher multiplicity decays” of Tab. 7.9, we separate the charged and the neutral contribu-
tions. Many of the Xsu or Xsd decays contribute to these backgrounds. Therefore in the case
of the neutral category, we account for a possible CP asymmetry coming from specific decay
modes using the neutral CP eigenstate time-dependent model. The contributions to S are
diluted by non CP eigenstates, which are also included in this category. As for the charged
channel (see Sec. 6.4.1.2), corrective weights, obtained in Ref. [? ], are applied separately to
each Xs decay mode.

Table 7.9: Radiative backgrounds contributing to B0 → K0
Sρ

0γ, observed in the generic
MC.

Specificity Decay mode

B → Kπγ

B0 → K∗0(→ K0
S
π0)γ

B0 → Xsd(→ K0
S
π0)γ

B0 → K∗0(→ K±π∓)γ
B0 → Xsd(→ K±π∓)γ
B+ → K∗+(→ K0

S
π+)γ

B+ → Xsu(→ K0
S
π+)γ

Higher B0 → Xsd(9 Kπ)γ
multiplicity decays B+ → Xsu(9 Kπ)γ

7.5.1.2 Other B backgrounds

All the other B-background contributions, which do not exceed one expected event in the
data, are grouped in two categories labelled “B+B− generic B background” and “B0B0
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generic B background”. As for the neutral B0 → Xsd(9 Kπ)γ category, we use the neutral
CP eigenstate time-dependent model to describe the B0B0 generic ∆t PDF.

7.5.2 Continuum background

To model the continuum background, we use the complete Off-Peak dataset of 44.81 fb−1 col-
lected by BABAR. The continuum yield is estimated using the same normalization procedure
as in the charged channel (see Sec. 6.4.2).

Table 7.10: Estimated yields for backgrounds to B0 → K0
Sπ

+π−γ decays for the final
BABAR Run1-6 dataset.

Background Time-dependent Estimated
category model yield

Continuum (udsc) Continuum 2236
B+ → Xsu(9 Kπ)γ Charged 94
B+ → K∗+(→ K0

S
π+)γ

Charged 54
B+ → Xsu(→ K0

S
π+)γ

B0 → Xsd(9 Kπ)γ Neutral CP 51

B0B0 generic
Neutral CP 35

B background
B+B− generic

Charged 34
B background
B0 → K∗0(→ K0

S
π0)γ

Neutral CP 30
B0 → Xsd(→ K0

S
π0)γ

B0 → K∗0(→ K±π∓)γ
Neutral flavor 4

B0 → Xsd(→ K±π∓)γ

Total Bkg 2538

7.6 Fit to mES, ∆E, the Fisher discriminant and ∆t

Here we present the fit performed on mES, ∆E, the Fisher discriminant and ∆t in order
to extract the CP asymmetry parameters of the signal. Sections 7.6.1 and 7.6.2 detail the
PDFs used in the fit model and the correlations between the fit variables for the signal and
the backgrounds categories, respectively. Then Sec. 7.6.3 summarizes the fitting functions.
Section 7.6.5 presents the validation tests of the fit model. Finally, Sec. 7.6.6.1 gives the
projections, the yields and the CP asymmetries extracted by the fit.
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7.6.1 Signal PDFs

PDFs for the TM and SCF signal events are constructed using the cocktail of signal MC
samples (Tab. 7.3). The TM and SCF PDFs for each discriminating variable entering the fit
model are shown in Figs. 7.4 and 7.5, respectively. The total number of events shown in these
figures is normalized to the expected yield, given in Tab. 7.8. Formulas of the functional
forms used to describe the PDFs presented below are available in Appendix A.

The ∆E distribution of the SCF category, which is expected to be described by a linear
function, appears to be better described by a higher order polynomial. This feature was
investigated and is not due to TM contamination. Splitting the SCF into sub-categories,
depending on which particle (i.e. the K0

S
, one of the π or the γ) is taken from the other side
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Figure 7.4: Probability density functions for the fit variables mES (left), ∆E (center) and
the Fisher discriminant (right) of signal-TM events. Here the mES PDF is described by a
Crystal Ball function, the ∆E PDF by a Cruijff function and the Fisher discriminant PDF by
a Gaussian. The blue curves represent the PDF distributions, and the black points correspond
to MC events.
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Figure 7.5: Probability density functions for the fit variables mES (left), ∆E (center) and
the Fisher discriminant (right) of signal SCF events. Here the mES PDF is described by the
sum of a first order Chebychev polynomial (red dashed line) and an Argus function (green
dotted line), the ∆E PDF by a forth order Chebychev polynomial and the Fisher discriminant
PDF by the sum of a Gaussian (green dotted line) and an exponential (red dashed line). The
blue curves represent the PDF distributions, and the black points correspond to MC events.
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of the event, it clearly appears that each sub-category has a different distribution in ∆E.
When either the K0

S
or the γ are taken from the other B, the corresponding ∆E distributions

are linear. When it is one of the pions that is taken from the other side, the ∆E shape is
better described by a second order polynomial. The combination of these different shapes
yields a complex shape described by a non-linear function. In the fit to data, we do not split
anymore the SCF into sub-categories, and as shown later (see Sec. 7.6.5), the coefficients of
the 4th order chebychev polynomial function used to describe SCF ∆E distribution have to
be fixed.

7.6.1.1 Correlations among the fit variables for signal events

We checked for possible correlations among our fit variables. No significant correlations were
found between the Fisher discriminant and both mES and ∆E. As in the charged channel
analysis, the correlations between mES and ∆E are not significant for the signal SCF cate-
gory. Again, it is in the signal-TM component that the stronger correlations appear.

Following the same procedure (see Sec. 6.5.1) we found that the mES-∆E correlations for the
signal-TM category can be parametrized using a two-dimensional PDF. As previously, it is
constructed as the product of a conditional PDF (Crystal Ball for mES) by a marginal PDF
(Cruijff for ∆E). The mES Crystal Ball parameters dependence in ∆E was studied using
the same set of ∆E subsets as listed in Tab. 6.13. For each of the ten subsets, we perform
an unbinned maximum likelihood fit to extract the Crystal Ball parameters.

The following polynomial functions are used to describe the evolution of the Crystal-Ball
parameters between ∆E bins:

• µ and σ: second order polynomial [Fig. 7.6];

• α and n: first and second order polynomial, respectively [Fig. 7.7].
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Figure 7.6: Evolution of the parameters µ (left) and σ (right) of the mES PDF in bins of
∆E. The central value of each point is the fitted value of the corresponding Crystal Ball
parameter, the vertical error bars correspond to the parameter fit error and the horizontal
error bars to the size of each ∆E bin. The blue horizontal line corresponds to a 1-dimensional
Crystal-Ball PDF without mES-∆E correlations. The black curve correspond to the fitted
polynomial function describing the evolution of the corresponding Crystal Ball parameter as
a function of ∆E.

E Bins∆

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

 C
B

 A
lp

h
a

E
S

m

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Fit Parameters Evolution E Bins∆Parameter value in 

E region∆Parameter value in whole 

E Bins∆

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

 C
B

 O
rd

e
r

E
S

m

0

5

10

15

20

25

30

35

40

Fit Parameters Evolution E Bins∆Parameter value in 

E region∆Parameter value in whole 

Figure 7.7: Evolution of the parameters α (left) and n (right) of the mES PDF in bins of
∆E. Conventions are identical as those of Fig. 7.6.

7.6.2 Background PDFs

Here we present the probability density functions of all the background categories previously
defined. They are presented in Figs. 7.8 to 7.14 in a decreasing order of expected yields. The
total number of events is always normalized to the expected yield for each category. Details
on the function used to describe the PDFs presented below are available in Appendix A.
Note that when constructing the PDFs for a particular B-background mode, we ensure,
using MC truth information, that none of the other identified background modes appear in
the other side of the event. This procedure ensures that the PDFs corresponding to a given
mode are not contaminated by contributions from the other identified background modes.
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Figure 7.8: Probability density functions for the fit variables mES (left), ∆E (center) and
the Fisher discriminant (right) of continuum (udsc) background category. The blue curves
represent the PDF distributions, and the black points correspond to MC events. Here the
mES PDF is described by an Argus, the ∆E PDF by a second order Chebychev polynomial
and the Fisher discriminant by an exponential.
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Figure 7.9: PDFs of B+ → Xsu(9 Kπ)γ B-background category. Conventions are similar
to those of Fig. 7.8. Here the mES PDF is described by an Argus, the ∆E PDF by a second
order Chebychev polynomial and the Fisher discriminant by a Gaussian function.
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Figure 7.10: PDFs of B+ → K∗+(→ K0
Sπ

+)γ + B+ → Xsu(→ K0
Sπ

+)γ background
category. Conventions are similar to those of Fig. 7.8. Here the mES PDF is described by the
sum of a Cruijff (red dotted line) and an Argus (green dashed line), the ∆E PDF by a second
order Chebychev polynomial and the Fisher discriminant PDF by a Gaussian function.
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Figure 7.11: PDFs of B+B− generic B-background category. Conventions are similar to
those of Fig. 7.8. Here the mES PDF is described by an Argus, the ∆E PDF by a second
order Chebychev polynomial function and the Fisher discriminant by a Gaussian function.
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Figure 7.12: PDFs of B0 → Xsd(9 Kπ)γ + B+ → Xsu(9 Kπ)γ background category.
Conventions are similar to those of Fig. 7.8. Here the mES PDF is described by a Crystal Ball
function, the ∆E PDF by a Cruijff function and the Fisher discriminant PDF is described
by a Gaussian function.
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Figure 7.13: PDFs of B0B0 generic background category. Conventions are similar to those
of Fig. 7.8. Here the mES PDF is described by an Argus, the ∆E PDF by a second order
Chebychev polynomial function and the Fisher discriminant PDF is described by a Gaussian
function.
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Figure 7.14: PDFs of B0 → K∗0(→ K0
Sπ

0)γ + B0 → Xsd(→ K0
Sπ

0)γ background category.
Conventions are similar to those of Fig. 7.8. Here the mES PDF is described by an Argus,
the ∆E PDF is described by a second order Chebychev polynomial function and the Fisher
discriminant PDF is described by a Gaussian function.
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Figure 7.15: PDFs of B0 → K∗0(→ K±π∓)γ + B0 → Xsd(→ K±π∓)γ background
category. Conventions are similar to those of Fig. 7.8. Here the mES PDF is described
by an Argus, the ∆E PDF is described by a first order Chebychev polynomial function and
the Fisher discriminant PDF is described by an exponential.
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7.6.2.1 Correlations among the fit variables in background events

We checked for possible correlations between the fit variables, in background events. No
significant correlations were found between the Fisher discriminant and both mES and ∆E.
We only observed significant correlations between mES and ∆E in two B-background cat-
egories, namely B+ → K∗+(→ K0

S
π+)γ + B+ → Xsu(→ K0

S
π+)γ and B+ → K∗+(→

K0
S
π+)η(→ γγ), as shown in Figs. 7.16 and 7.17, respectively. Since the expected yield of

the B+ → K∗+(→ K0
S
π+)η(→ γγ) background is very small compared to the other ones,

we decided to neglect the correlations between mES and ∆E in this category. In the case
of B+ → K∗+(→ K0

S
π+)γ + B+ → Xsu(→ K0

S
π+)γ, we take the correlations into account

using a non parametric two-dimensional PDF for mES-∆E. The histogram is taken from a
cocktail of MC events.
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Figure 7.16: mES (left) and ∆E (right) distributions of B+ → K∗+(→ K0
Sπ

+)γ + B+ →
Xsu(→ K0

Sπ
+)γ events in ∆E and mES bins, respectively

mES
5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

N
o

rm
a

li
z
e

d

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

BpBm_KstarEta_mes

E<=-0.1∆-0.2<

E<=-0.0∆-0.1<

E<=0.1∆0.0<

E<=0.2∆0.1<

DeltaE
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

N
o

rm
a
li
z
e
d

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

BpBm_KstarEta_deltae

5.20<mes<=5.23

5.23<mes<=5.26

5.26<mes<=5.275

5.275<mes<=5.292

Figure 7.17: mES (left) and ∆E (right) distributions of B+ → K∗+(→ K0
Sπ

+)η(→ γγ)
events in ∆E and mES bins, respectively
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7.6.3 Fitting functions

Table 7.11 summarizes the choice of functions used to parametrize the different fit com-
ponents. Note that for both signal-TM and B0 → K∗0(→ Kπ)γ + B0 → Xsd(→ Kπ)γ
categories, the PDF functions are two-dimensional. This is motivated by the correlations
that arise between mES and ∆E, as shown in Secs. 7.6.1 and 7.6.2, respectively.

Table 7.11: Summary of all the fit components and the functions used to parametrize their
PDFs.

Fit component
PDF parametrization

mES ∆E Fisher

Signal TM
Two-dimensional parametric

Gaussian
(Crystal Ball – Cruijff)

Signal SCF
Argus +

Chebychev (4th order)
Gaussian +

Chebychev (1st order) Exponential

Continuum udsc Argus Chebychev (2nd order) Exponential

B+ → Xsu(9 Kπ)γ Argus Chebychev (2nd order) Gaussian

B+ → K∗+(→ K0
S
π+)γ Two-dimensional

Gaussian
B+ → Xsu(→ K0

S
π+)γ non parametric

B+B− generic Argus Chebychev (2nd order) Gaussian

B0 → Xsd(9 Kπ)γ Argus Chebychev (2nd order) Gaussian

B0B0 generic Argus Exponential Gaussian

B0 → K∗0(→ K0
S
π0)γ

Argus Chebychev (2nd order) Gaussian
B0 → Xsd(→ K0

S
π0)γ

B0 → K∗0(→ K±π∓)γ
Argus Chebychev (1st order) Exponential

B0 → Xsd(→ K±π∓)γ
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7.6.4 Parameters of the ∆t PDFs

7.6.4.1 Signal

The parameters of the resolution function as well as the dilutions, dilution differences and
tagging-category fractions are taken from the BABAR charmonium sin2β analyses [? ], and
are detailed in Tab. 7.2 and Tab 7.1, respectively.

The signal events are separated in two categories (i.e. TM and SCF); the total number
of signal events is free to vary in the fit, while we fix the fraction of SCF events. As we
split signal according to the tagging categories, we assign a fraction of SCF events for each
of those. The SCF fractions, given in Tab. 7.12, are obtained from true MC information
in signal MC samples and are fixed in the fit. In each tagging category, we use the same
resolution function parameters, dilutions and dilution differences for both TM and SCF
events.

The error functions (σ∆t) for both TM and SCF are separated in tagging category and
parametrized using a Landau distribution, where the “mean” and “width” are extracted
from MC. They are given in Tab. 7.13.

Table 7.12: Signal SCF fractions separated in tagging category (extracted using true MC
information).

Tagging SCF
category fraction
Lepton 0.168± 0.004
KaonI 0.245± 0.005
KaonII 0.276± 0.004
Kaon-Pion 0.265± 0.005
Pion 0.289± 0.004
Other 0.298± 0.006

Untagged 0.307± 0.004

Table 7.13: Signal TM and SCF error function parameters, extracted from fits to MC using
a Landau distribution.

Tagging Signal TM Signal SCF
category µ σ µ σ
Lepton 0.505± 0.000 0.083± 0.000 0.551± 0.024 0.124± 0.013
KaonI 0.502± 0.006 0.071± 0.004 0.550± 0.019 0.109± 0.009
KaonII 0.572± 0.005 0.088± 0.004 0.618± 0.018 0.105± 0.007
Kaon-Pion 0.601± 0.006 0.114± 0.003 0.668± 0.026 0.147± 0.012
Pion 0.635± 0.007 0.116± 0.003 0.688± 0.020 0.150± 0.012
Other 0.637± 0.011 0.126± 0.005 0.678± 0.022 0.129± 0.011

Untagged 0.663± 0.006 0.127± 0.003 0.737± 0.019 0.153± 0.012
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7.6.4.2 Continuum

The parameters of the resolution function are extracted from a fit to the Off-Peak data. In
order to maximize the sensitivity, we enlarged the Fisher discriminant range from its nominal
lower value (i.e. 0.0) to −0.4. This allows to obtain 3.6 times more events. It was checked
that this procedure does not affect the PDF parameters of the other variables in the fit (i.e.
mES, ∆E and the Fisher discriminant). Table 7.14 gives the values of the fitted resolution
function parameters and Fig. 7.18 shows a comparison between the ∆t distribution in the
Off-Peak data and in a sample generated from the results of the fit performed to extract the
continuum ∆t parameters. The tagging-category fractions, given in Tab. 7.15, are extracted
from Off-Peak data using the Tag08 algorithm. The error functions (σ∆t) are separated
in tagging category and parametrized using a Landau distribution, where the “mean” and
“width” are extracted from fits to Off-Peak data. They are given in Tab. 7.16.
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Figure 7.18: Compared Off-Peak data and fitted ∆t distributions with normal-scale y axis
(top) and log-scale y axis (bottom). Blue points correspond to event generated using the
fit results and the red points correspond to Off-Peak data. The generated distribution is
normalized to the Off-Peak integral.
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Table 7.14: Continuum ∆t resolution function parameters extracted from a fit to Off-Peak
data.

Parameters Core Gaussian Outlier Gaussian

mean 0.0690 ± 0.0314 0.0
sigma 1.2503 ± 0.0327 0.8521 ± 0.4349
fraction 1− foutlier 0.0456 ± 0.0317

“lifetime” τ 2.3703 ± 0.3353
prompt fraction 0.9206 ± 0.0223

Table 7.15: Continuum tagging-category fractions (ǫc) extracted from Off-Peak data using
Tag08 algorithm.

Tagging
ǫ

category
Lepton 0.010± 0.002
KaonI 0.063± 0.005
KaonII 0.147± 0.007
Kaon-Pion 0.112± 0.005
Pion 0.187± 0.008
Other 0.119± 0.006

Untagged 0.363± 0.011

Table 7.16: Continuum error function parameters, extracted from fits to Off-Peak data
using a Landau distribution.

Tagging
µ σ

category
Lepton 0.686± 0.184 0.037± 0.121
KaonI 0.539± 0.058 0.117± 0.033
KaonII 0.614± 0.047 0.132± 0.029
Kaon-Pion 0.713± 0.057 0.145± 0.029
Pion 0.756± 0.066 0.180± 0.028
Other 0.779± 0.070 0.164± 0.035

Untagged 0.769± 0.041 0.191± 0.022
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7.6.4.3 B backgrounds

The parameters of the resolution function are taken from the BReco fit to data, except
for two B-background categories, for which the parameters are extracted from fits to MC
distributions. Tables 7.17 and 7.18 give the fitted values of the resolution function parameters
for B+ → K∗+(→ K0

S
π+)γ + B+ → Xsu(→ K0

S
π+)γ and B0 → K∗0(→ K0

S
π0)γ + B0 →

Xsd(→ K0
S
π0)γ B-backgrounds, respectively.

The tagging-category fractions (ǫc), mis-tag fractions (ωc) and dilution differences (∆Dc)
are extracted fromMC using true information and are given in Tabs. 7.19 and 7.20 for charged
and neutral B backgrounds, respectively.

The error functions (σ∆t) are separated in tagging category for each B background.
We use a Landau parametrization, where the “mean” and “width” are extracted from fits
to MC, except for B+ → K∗+(→ K0

S
π+)γ + B+ → Xsu(→ K0

S
π+)γ and B0 → K∗0(→

K0
S
π0)γ + B0 → Xsd(→ K0

S
π0)γ, for which the Landau parametrization did not fit well the

MC distributions. For these two B-background categories, we use the histograms obtained
from the MC. The fitted parameters for the other B backgrounds are given in Tabs. 7.22
and 7.23.

Table 7.21 gives the values extracted from a fit to MC of the S and C parameters for
the radiative CP -eigenstate neutral B backgrounds. These values are compatible with zero,
therefore in the fit to the data we fix the S and C parameters for radiative CP -eigenstate
neutral B backgrounds to 0. The non radiative CP -eigenstate neutral B background (i.e.
B0B0 generic event category) contains both CP -eigenstates and flavor-eigenstates. As the
contribution of the latter is expected to be dominant, the S and C parameters are both fixed
to 0. It was checked that the effect on the signal CP parameters was negligible compared

Table 7.17: B+ → K∗+(→ K0
Sπ

+)γ + B+ → Xsu(→ K0
Sπ

+)γ B-background ∆t resolution
function parameters extracted from a fit to MC.

B-background
Parameters Core Gaussian Tail Gaussian Outlier Gaussian

Category
mean -0.081 ± 0.012 0.383 ± 0.539 0.0

B+ → K∗+(→ K0
S
π+)γ sigma 0.892 ± 0.020 1.210 ± 0.776 8.0

B+ → Xsu(→ K0
S
π+)γ fraction 1− ftail − foutlier 0.019 ± 0.002 < 5× 10−3 ± 0.002

“lifetime” τ 1.464 ± 0.018

Table 7.18: B0 → K∗0(→ K0
Sπ

0)γ + B0 → Xsd(→ K0
Sπ

0)γ B-background ∆t resolution
function parameters extracted from a fit to MC.

B-background
Parameters Core Gaussian Tail Gaussian Outlier Gaussian

Category
mean −0.038 ± 0.021 −0.367 ± 0.306 0.0

B0 → K∗0(→ K±π∓)γ
sigma 0.986 ± 0.029 3.936 ± 0.609 8.0

B0 → Xsd(→ K±π∓)γ
fraction 1− ftail − foutlier 0.047 ± 0.012 0.009 ± 0.004

“lifetime” τ 1.018 ± 0.028
“oscillation” ∆m 0.502
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to the statistical errors. We generated a pseudo-experiment with S = 0 and performed a
fit with S = sin(2β) and found that the deviation on the signal CP parameter was not
significant compared to the statistical error. Finally, the direct CP asymmetry between the
number of events with a B or a B meson, for the charged and the flavor-eigenstate neutral
B backgrounds, are given in Tab. 7.24. These parameters are not separated into tagging
categories.

Table 7.19: Charged B-backgrounds tagging-category fractions (ǫc), mis-tag fractions (ωc)
and dilution differences (∆Dc) extracted using true MC information.

B-background Tagging
ǫ ω ∆D

category category
Lepton 0.043± 0.018 0.018± 0.012 −0.059± 0.054
KaonI 0.129± 0.033 0.067± 0.010 −0.011± 0.043

B+ → K∗+(→ K0
S
π+)γ

KaonII 0.165± 0.046 0.130± 0.013 0.003± 0.059

B+ → Xsu(→ K0
S
π+)γ

Kaon-Pion 0.148± 0.032 0.228± 0.020 0.048± 0.096
Pion 0.153± 0.038 0.376± 0.021 −0.017± 0.096
Other 0.095± 0.033 0.377± 0.027 −0.050± 0.114
Untagged 0.242± 0.047 0.5 0.0

Lepton 0.062± 0.014 0.028± 0.047 0.048± 0.339
KaonI 0.091± 0.023 0.151± 0.071 0.032± 0.265
KaonII 0.191± 0.029 0.262± 0.075 −0.175± 0.304

B+ → Xsu(9 Kπ)γ Kaon-Pion 0.167± 0.027 0.314± 0.108 −0.001± 0.416
Pion 0.181± 0.028 0.329± 0.125 −0.152± 0.427
Other 0.119± 0.021 0.393± 0.126 0.216± 0.563
Untagged 0.285± 0.042 0.5 0.0

Lepton 0.009± 0.031 0.651± 0.408 0.859± 1, 852
KaonI 0.049± 0.056 0.394± 0.294 −0.215± 1, 041
KaonII 0.246± 0.076 0.383± 0.262 0.286± 0.892

B+B− generic Kaon-Pion 0.066± 0.063 0.612± 0.299 0.248± 0.958
Pion 0.180± 0.073 0.577± 0.324 −0.763± 1, 302
Other 0.091± 0.059 0.304± 0.406 −0.635± 1, 878
Untagged 0.246± 0.104 0.5 0.0
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Table 7.20: Neutral B-backgrounds tagging-category fractions (ǫc), mis-tag fractions (ωc)
and dilution differences (∆Dc) extracted using true MC information.

B-background Tagging
ǫ ω ∆D

category category
Lepton 0.051± 0.027 0.187± 0.034 −0.120± 1, 537
KaonI 0.099± 0.037 0.192± 0.030 −0.316± 1, 261

B0 → K∗0(→ K0
S
π0)γ

KaonII 0.157± 0.048 0.291± 0.026 0.026± 0.349

B0 → Xsd(→ K0
S
π0)γ

Kaon-Pion 0.163± 0.043 0.343± 0.035 −0.301± 0.515
Pion 0.233± 0.052 0.440± 0.033 0.112± 0.546
Other 0.163± 0.043 0.449± 0.038 0.239± 0.687
Untagged 0.307± 0.075 0.0 0.0

Lepton 0.059± 0.031 0.065± 0.033 −0.010± 0.109
KaonI 0.098± 0.036 0.107± 0.030 −0.032± 0.092
KaonII 0.237± 0.054 0.219± 0.037 −0.067± 0.152

B0 → Xsd(9 Kπ)γ Kaon-Pion 0.193± 0.047 0.280± 0.058 0.069± 0.191
Pion 0.186± 0.055 0.389± 0.053 −0.029± 0.192
Other 0.116± 0.048 0.399± 0.062 −0.180± 0.201
Untagged 0.267± 0.074 0.5 0.0

Lepton 0.052± 0.024 0.603± 0.303 0.942± 1, 286
KaonI 0.072± 0.034 1, 015± 0.300 0.017± 1, 179
KaonII 0.178± 0.054 0.757± 0.164 0.298± 0.722

B0B0 generic Kaon-Pion 0.183± 0.052 0.840± 0.158 −0.064± 0.785
Pion 0.257± 0.069 0.758± 0.201 0.184± 0.647
Other 0.118± 0.042 0.570± 0.181 0.231± 0.726
Untagged 0.282± 0.066 0.5 0.0

Lepton 0.025± 0.056 0.249± 0.134 0.373± 0.742
KaonI 0.082± 0.112 0.965± 0.176 −0.072± 0.799

B0 → K∗0(→ K±π∓)γ
KaonII 0.419± 0.324 0.792± 0.124 0.055± 0.559

B0 → Xsd(→ K±π∓)γ
Kaon-Pion 0.202± 0.213 0.775± 0.146 0.084± 0.588
Pion 0.398± 0.284 0.571± 0.107 −0.299± 0.445
Other 0.147± 0.143 0.552± 0.138 −0.321± 0.677
Untagged 0.375± 0.221 0.5 0.0
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Table 7.21: S and C values for radiative CP -eigenstate neutral B backgrounds extracted
from a fit to MC.

B-background S C
category
B0 → K∗0(→ K0

S
π0)γ

(0.936± 9.237)× 10−2 (3.298± 5.935)× 10−2

B0 → Xsd(→ K0
S
π0)γ

B0 → Xsd(9 Kπ)γ (2.213± 19.64)× 10−2 (−4.733± 11.91)× 10−2

Table 7.22: Charged B-backgrounds error function parameters, extracted from fits to MC
using a Landau distribution.

B-background Tagging
µ σ

category category
Lepton 0.557± 0.048 0.117± 0.033
KaonI 0.531± 0.031 0.082± 0.022
KaonII 0.602± 0.026 0.103± 0.014

B+ → Xsu(9 Kπ)γ Kaon-Pion 0.698± 0.045 0.143± 0.021
Pion 0.699± 0.036 0.146± 0.023
Other 0.702± 0.050 0.137± 0.028
Untagged 0.757± 0.038 0.177± 0.020

Lepton 0.513± 0.100 0.056± 0.041
KaonI 0.608± 0.087 0.125± 0.041
KaonII 0.712± 0.092 0.170± 0.049

B+B− generic Kaon-Pion 0.665± 0.145 0.204± 0.055
Pion 0.701± 0.092 0.146± 0.061
Other 0.678± 0.102 0.164± 0.055
Untagged 0.699± 0.055 0.140± 0.029
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Table 7.23: Neutral B-backgrounds error function parameters, extracted from fits to MC
using a Landau distribution.

B-background Tagging
µ σ

category category
Lepton 0.586± 0.079 0.121± 0.043
KaonI 0.579± 0.035 0.063± 0.019
KaonII 0.671± 0.043 0.082± 0.028

B0 → Xsd(9 Kπ)γ Kaon-Pion 0.702± 0.056 0.144± 0.029
Pion 0.679± 0.051 0.140± 0.033
Other 0.816± 0.081 0.192± 0.048
Untagged 0.635± 0.036 0.120± 0.020

Lepton 0.616± 0.069 0.049± 0.047
KaonI 0.680± 0.082 0.177± 0.056
KaonII 0.588± 0.064 0.117± 0.030

B0B0 generic Kaon-Pion 0.722± 0.079 0.186± 0.044
Pion 0.703± 0.059 0.136± 0.035
Other 0.748± 0.085 0.132± 0.044
Untagged 0.816± 0.083 0.213± 0.041

Lepton 0.562± 0.037 0.102± 0.023
KaonI 0.483± 0.014 0.064± 0.008

B0 → K∗0(→ K±π∓)γ
KaonII 0.524± 0.018 0.095± 0.008

B0 → Xsd(→ K±π∓)γ
Kaon-Pion 0.524± 0.024 0.100± 0.011
Pion 0.540± 0.024 0.124± 0.011
Other 0.622± 0.036 0.109± 0.020
Untagged 0.549± 0.026 0.122± 0.012

Table 7.24: Direct CP asymmetry, between B and B events, for the charged and the
flavor-eigenstate neutral B backgrounds.

B-background
Asymmetry

category

B+ → Xsu(9 Kπ)γ −0.029± 0.057

B+ → K∗+(→ K0
S
π+)γ −0.098± 0.074

B+ → Xsu(→ K0
S
π+)γ

B+B− generic 0.028± 0.178

B0 → K∗0(→ K±π∓)γ
0.421± 0.830

B0 → Xsd(→ K±π∓)γ
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7.6.5 Validation tests

We first tested the ability of the fitter to yield unbiassed measurements of the CP asymmetry
parameters S and C in signal regardless to their values. The results of these validation tests
are given in Sec. 7.6.5.1. In order to test the robustness of our model before fitting the data,
we perform validation tests by means of the toy MC studies, using the procedure previously
described in Sec. 6.5.4. Again, two types of toy studies are used: pure (Sec. 7.6.5.2) and
embedded (Sec. 7.6.5.3). The different parameters entering the ∆t PDFs (dilutions, dilution
differences, asymmetries, resolution function parameters) as well as the tagging-category
fractions are discussed in Sec. 7.6.4.

7.6.5.1 Validation of S and C extraction

In order to test the ability of the maximum likelihood fit to yield unbiassed results of the sig-
nal S and C parameters, we use simplified toy studies with only signal and continuum. Signal
events are drawn from the fully reconstructed MC samples, whereas events for continuum
are generated out of the corresponding PDFs. The available MC for signal was generated
with zero S and C values. Therefore, using the full MC statistics, we created by rejecting
events several sets of samples (not statistically independent) with different non-zero values
of S and C, within the constraint S2 + C2 ≤ 1. Each sample was obtained by weighting the
number of B0 and B0 events from MC true information using an accept-reject method based
on the fraction f :

f =
1− (S sin(∆m∆t)− C cos(∆m∆t))

1 + (S sin(∆m∆t)− C cos(∆m∆t))
. (7.17)

From a random number (x1) drawn uniformly between 0 and 1, we accept an event from a
B0 meson if:

x1 ≤
1

1 + f
, (7.18)

and reject it otherwise. From another random number (x2) drawn uniformly between 0 and
1, we accept an event from a B0 meson if:

x2 ≤
f

1 + f
, (7.19)

and reject it otherwise.

We then performed a fit to each pseudo experiment obtained this way with a simplified
model containing signal and continuum only, where the initial values for S and C are set
to zero. All the other parameters are fixed in the fit, except for the signal and continuum
yields. Note that the yields are not realistic, since the aim of the test is to validate the
ability to correctly extract non-zero values of S and C. Therefore full signal MC statistics
is used and the continuum background yield is scaled to the obtained signal one, given the
ratio of their expected yields in the data.
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Tables 7.25 and 7.26 give the fitted values of S and C, respectively. We observe that within
the statistical uncertainties, the fitted values of S and C are in good agreement with the true
generated values. From these results, we conclude that the fitter is able to correctly extract
non-zero values of S and C.

Table 7.25: Fitted values of S for each of the signal weighted MC samples. Cells with the
symbol ∅ designate non-allowed values given the constraint S2 + C2 ≤ 1.

C S −0.9 −0.7 −0.5 −0.3 −0.1

−0.9 ∅ ∅ ∅ −0.317± 0.048 −0.159± 0.048
−0.7 ∅ −0.664± 0.044 −0.473± 0.046 −0.307± 0.049 −0.091± 0.050
−0.5 ∅ −0.621± 0.046 −0.529± 0.048 −0.275± 0.052 −0.061± 0.051
−0.3 −0.850± 0.046 −0.630± 0.048 −0.505± 0.050 −0.197± 0.052 −0.025± 0.051
−0.1 −0.899± 0.044 −0.658± 0.048 −0.470± 0.050 −0.268± 0.051 −0.104± 0.051
+0.1 −0.836± 0.045 −0.639± 0.050 −0.479± 0.050 −0.287± 0.052 −0.068± 0.052
+0.3 −0.895± 0.043 −0.666± 0.048 −0.448± 0.050 −0.225± 0.051 −0.101± 0.051
+0.5 ∅ −0.709± 0.046 −0.468± 0.048 −0.282± 0.051 −0.175± 0.050
+0.7 ∅ −0.717± 0.044 −0.475± 0.047 −0.301± 0.049 −0.067± 0.050
+0.9 ∅ ∅ ∅ −0.240± 0.047 −0.131± 0.048

C S +0.1 +0.3 +0.5 +0.7 +0.9

−0.9 0.109± 0.047 0.346± 0.046 ∅ ∅ ∅

−0.7 0.135± 0.048 0.296± 0.049 0.456± 0.048 0.685± 0.044 ∅

−0.5 0.042± 0.050 0.237± 0.050 0.478± 0.049 0.724± 0.046 ∅

−0.3 0.110± 0.052 0.333± 0.050 0.490± 0.050 0.677± 0.048 0.844± 0.045
−0.1 0.080± 0.053 0.356± 0.051 0.449± 0.051 0.622± 0.049 0.789± 0.045
+0.1 0.106± 0.052 0.327± 0.050 0.372± 0.051 0.667± 0.048 0.802± 0.046
+0.3 0.115± 0.052 0.286± 0.050 0.410± 0.050 0.636± 0.049 0.915± 0.042
+0.5 0.060± 0.051 0.298± 0.050 0.380± 0.051 0.622± 0.047 ∅

+0.7 0.070± 0.049 0.254± 0.049 0.442± 0.049 0.609± 0.046 ∅

+0.9 0.102± 0.048 0.266± 0.048 ∅ ∅ ∅
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Table 7.26: Fitted values of C for each of the signal weighted MC samples. Cells with the
symbol ∅ designate non-allowed values given the constraint S2 + C2 ≤ 1.

S C −0.9 −0.7 −0.5 −0.3 −0.1

−0.9 ∅ ∅ ∅ −0.340± 0.032 −0.160± 0.033
−0.7 ∅ −0.716± 0.029 −0.531± 0.032 −0.274± 0.033 −0.125± 0.034
−0.5 ∅ −0.716± 0.030 −0.510± 0.033 −0.278± 0.033 −0.071± 0.034
−0.3 −0.908± 0.026 −0.703± 0.030 −0.481± 0.032 −0.255± 0.034 −0.041± 0.034
−0.1 −0.878± 0.027 −0.715± 0.030 −0.509± 0.033 −0.321± 0.034 −0.107± 0.034
+0.1 −0.878± 0.028 −0.700± 0.031 −0.461± 0.033 −0.323± 0.034 −0.116± 0.034
+0.3 −0.879± 0.027 −0.726± 0.030 −0.555± 0.033 −0.350± 0.034 −0.117± 0.034
+0.5 ∅ −0.680± 0.031 −0.507± 0.032 −0.285± 0.034 −0.115± 0.034
+0.7 ∅ −0.716± 0.029 −0.509± 0.032 −0.259± 0.033 −0.159± 0.034
+0.9 ∅ ∅ ∅ −0.301± 0.033 −0.086± 0.034

S C +0.1 +0.3 +0.5 +0.7 +0.9

−0.9 0.043± 0.033 0.262± 0.033 ∅ ∅ ∅

−0.7 0.078± 0.034 0.282± 0.033 0.500± 0.031 0.683± 0.028 ∅

−0.5 0.083± 0.034 0.303± 0.033 0.447± 0.033 0.670± 0.030 ∅

−0.3 0.061± 0.034 0.262± 0.034 0.493± 0.033 0.656± 0.031 0.874± 0.027
−0.1 0.061± 0.034 0.311± 0.034 0.484± 0.033 0.683± 0.031 0.832± 0.028
+0.1 0.065± 0.034 0.259± 0.034 0.484± 0.033 0.687± 0.031 0.913± 0.026
+0.3 0.101± 0.035 0.307± 0.034 0.505± 0.032 0.700± 0.030 0.825± 0.028
+0.5 0.090± 0.034 0.319± 0.033 0.483± 0.032 0.696± 0.030 ∅

+0.7 0.055± 0.034 0.317± 0.033 0.495± 0.032 0.659± 0.030 ∅

+0.9 0.100± 0.034 0.330± 0.032 ∅ ∅ ∅
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7.6.5.2 Pure toy studies

We generate with our fitter an ensemble of 500 pseudo experiments using the PDFs listed
in Tab. 7.11. In each pseudo experiment, the yield of each category is randomly generated
from a Poisson distribution (aka “poissonized”) corresponding to its expected value (Tabs. 7.8
and 7.10 for signal and background yields, respectively). The values of shape parameters are
extracted from all the MC information available for signal and B background. For continuum
background the shape parameters are extracted from Run1-6 Off-Peak data sample.

We use the nominal PDF to fit each of the 500 pseudo-experiments, and we set the values
of S and C parameters for the signal event category both to zero. Due to the large number
of shape parameters (more than 100) we fix many of them, mainly in the background PDFs.
Several combinations were tested in order to maximize the number of varied parameters in
order to reduce systematic uncertainties without impairing on the fit ability to discriminate
the different components. As a result, we fix all the B-background shape parameters, as
well as all their yields, except for the B+ → K∗+(→ K0

S
π+)γ + B+ → Xsu(→ K0

S
π+)γ one.

Indeed, as some of them have similar PDF shapes, the fitter has difficulties to discriminate
them. Furthermore, we fix all the SCF shape parameters as well as the Argus and Exponen-
tial parameters of the mES and the Fisher discriminant PDFs for the continuum background,
respectively. For the signal TM, we found that it is possible to vary the Gaussian parameter
µ of the Fisher discriminant, the Cruijff parameters σL and σR and all the evolution coeffi-
cients of Crystal Ball parameters µ and σ describing the ∆E polynomial dependence of mES

in the two-dimensional PDF.

Concerning the ∆t PDFs parameters, we fix all the dilutions, dilution differences, tagging
category fractions and asymmetries as well as all the σ∆t parameters. We fix the resolution
function parameters of all the categories in the model, except for the continuum background,
for which the mean and sigma of the core gaussian as well as the width and the fraction of
the outlier gaussian are free to vary in the fit. The S and C parameters for signal are free to
vary in the fit, while the ones for the CP -eigenstate neutral B backgrounds are fixed.

Table 7.27 gives the results of the pure toy studies, showing the mean and width of the
pull distributions of each floated parameter in our model. We conclude from these results
that the model has no intrinsic dysfunction. Note that the fit convergence rate is 100%,
and that all the pull distributions are gaussian of means and widths that are compatible,
within the statistical uncertainties, with 0 and 1, respectively. Figure 7.19 shows the pull
distributions of the signal S and C parameters. Pull distributions of the yields, the shape
parameters and the continuum background resolution function parameters can be found in
Appendix G.1.

7.6.5.3 Embedded toy studies

For the embedded toy studies, we produced pseudo experiments by generating events out
of the PDFs for the simpler species (background categories with no significant correlation
among the fit variables), whereas events for signal (TM and SCF) and the B-background
B0 → K∗0(→ K0

S
π0)γ + B0 → Xsd(→ K0

S
π0)γ are drawn from the fully reconstructed MC

samples. In the signal MC sample the values of the S and C parameters for the signal event
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Table 7.27: Means and widths of pull distributions of all the floated parameters entering
the time-dependent model from the pure toy studies.

Fit
Fit Parameter Pull Mean Pull Width

variable

S
ig
n
al

T
M mES

CBµ(Coeff0) 0.071± 0.049 1.059± 0.037
CBµ(Coeff1) −0.078± 0.050 1.062± 0.038
CBµ(Coeff2) −0.187± 0.055 1.103± 0.046
CBσ(Coeff0) −0.095± 0.054 1.053± 0.035
CBσ(Coeff1) 0.064± 0.044 0.898± 0.041
CBσ(Coeff2) −0.002± 0.045 0.960± 0.038

∆E
CrσR

0.025± 0.044 0.941± 0.031
CrσL

0.038± 0.046 0.826± 0.038
Fisher Gµ 0.027± 0.045 0.996± 0.037

u
d
sc

∆E
Chebychev(Coeff0) −0.003± 0.045 0.976± 0.038
Chebychev(Coeff1) 0.001± 0.045 0.987± 0.031

Rbg

bcore 0.043± 0.044 0.964± 0.032
score −0.104± 0.046 0.997± 0.037
soutlier 0.166± 0.061 1.247± 0.056
foutlier 0.086± 0.045 0.961± 0.045

Y
ie
ld
s Signal 0.084± 0.049 0.977± 0.034

Continuum udsc 0.032± 0.046 0.985± 0.036
B+ → K∗+(→ K0

S
π+)γ −0.049± 0.046 1.003± 0.041

B+ → Xsu(→ K0
S
π+)γ

S 0.082± 0.048 1.053± 0.037
C −0.020± 0.046 1.001± 0.035

Entries  665

Mean   0.000469± 0.0427 

RMS    0.0003317± 0.0121 

N         226.7± 665.5 

      µ  19.9429± 0.3018 

   σ  312.124± 1.339 

S_signal_Pull
-5 -4 -3 -2 -1 0 1 2 3 4 5
0
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100
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Entries  500

Mean   0.04785± 0.08107 

RMS    0.03383±  1.069 

N         5.30± 92.47 

      µ  0.04781± 0.08223 

   σ  0.037± 1.053 

Entries  500

Mean   0.04785± 0.08107 

RMS    0.03383±  1.069 

N         5.30± 92.47 

      µ  0.04781± 0.08223 

   σ  0.037± 1.053 

C_signal_Pull
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RMS    0.03097± 0.9795 

N         5.61± 98.96 
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   σ  0.035± -1.001 

Figure 7.19: Signal S (left) and C (right) pull distributions for the pure toy studies with
500 toys.
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category are both equal to zero. 351 of such pseudo experiments are generated, which are
then fitted using the same PDFs as in the pure toy studies. The yield of each event category
is poissonized around their expected value. Table 7.28 gives the results of the embedded toy
studies, showing the means and widths of the pull distributions of each floated parameter
in the model. The fit convergence is 100%. Figure 7.20 shows the pull distributions of the
signal S and C parameters. We observe that our model has no significant bias on the yield
and on the CP asymmetry parameters for signal, when both S and C are generated in MC
as equal to zero. Pull distributions of the shape parameters can be found in Appendix G.2.

In addition, to check for possible biases in the whole range of the CP asymmetry pa-
rameter space, we performed several embedded-toy studies where only signal events were
embedded (i.e. continuum and B-background events are generated from the corresponding
PDFs). These events were drawn from weighted MC samples, which were created using the
same method as in the validation test of the time-dependent fitter (see Sec. 7.6.5.1). We
generated and fitted 20 sets of 300 embedded pseudo experiments with different S and C
values such as S = 0.4i and C = 0.4j with (i, j) ∈ [−2,−1, 0,+1,+2] and with the constraint
S2+C2 ≤ 1. In each toy study (i.e. for each set of embedded pseudo experiments), the same
parameters, as in the nominal embedded toy study presented above, are free to vary in the
fit. The results of the S and C pull means and widths are given in Tabs. 7.29 and 7.30. We
observe a good behavior of the pull means and widths for values of S and C close to the SM
expected values (i.e. zero for both). For some combination of large S and C values (i.e. one
at 0.8 and the other at 0.4), some small biases appear. Since it is very unlikely that such
values of S and C arise from the fit to the data, we conclude that the model is robust for
any combination of S and C, with values taken in the range [−0.4; 0.4]. Note that the fit
convergence is in all cases 100%.

Entries  351

Mean   0.05373± 0.4049 

RMS    0.03799±  1.004 

N         5.15± 76.29 

      µ  0.0503± 0.4666 

   σ  0.0337± 0.8586 
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Figure 7.20: Signal S (left) and C (right) pull distributions for the embedded toy studies
with 259 toys, respectively.
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Table 7.28: Means and widths of pull distributions of all the floated parameters entering
the time-dependent model from the embedded toy studies.

Fit
Fit Parameter Pull Mean Pull Width

variable

S
ig
n
al

T
M mES

CBµ(Coeff0) 0.118± 0.059 1.085± 0.046
CBµ(Coeff1) −0.156± 0.064 1.155± 0.048
CBµ(Coeff2) −0.188± 0.066 1.171± 0.051
CBσ(Coeff0) −0.153± 0.062 1.085± 0.060
CBσ(Coeff1) 0.052± 0.054 0.969± 0.044
CBσ(Coeff2) −0.062± 0.057 0.992± 0.048

∆E
CrσR

0.012± 0.053 0.955± 0.039
CrσL

0.057± 0.055 0.821± 0.040
Fisher Gµ 0.164± 0.054 0.991± 0.043

u
d
sc

∆E
Chebychev(Coeff0) −0.047± 0.054 0.983± 0.035
Chebychev(Coeff1) 0.055± 0.053 0.952± 0.040

Rbg

bcore 0.020± 0.052 0.962± 0.038
score −0.157± 0.054 0.995± 0.039
soutlier 0.123± 0.068 1.186± 0.053
foutlier 0.148± 0.054 0.923± 0.043

Y
ie
ld
s Signal −0.001± 0.054 0.967± 0.042

Continuum udsc 0.050± 0.055 1.010± 0.044
B+ → K∗+(→ K0

S
π+)γ −0.151± 0.054 0.990± 0.040

B+ → Xsu(→ K0
S
π+)γ

S 0.011± 0.053 0.969± 0.044
C −0.026± 0.055 0.999± 0.040
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Table 7.29: Means and widths of pull distributions of all the CP asymmetry parameters
for a few selected points in the parameter space for S ≤ −0.4.

Generated Fit
Pull Mean Pull Width

value in MC Parameter

S
=

−
0.
8

C = −0.8
S ∅ ∅

C ∅ ∅

C = −0.4
S 0.067± 0.050 0.882± 0.035
C 0.030± 0.058 1.020± 0.041

C = 0.0
S −0.031± 0.057 0.977± 0.040
C −0.023± 0.062 1.070± 0.044

C = +0.4
S −0.007± 0.056 0.989± 0.040
C 0.069± 0.055 0.978± 0.039

C = +0.8
S ∅ ∅

C ∅ ∅

S
=

−
0.
4

C = −0.8
S −0.032± 0.063 1.110± 0.044
C −0.135± 0.060 1.060± 0.042

C = −0.4
S 0.021± 0.059 1.040± 0.041
C 0.006± 0.058 1.028± 0.041

C = 0.0
S 0.011± 0.057 1.024± 0.040
C 0.062± 0.060 1.067± 0.042

C = +0.4
S 0.061± 0.063 1.101± 0.045
C 0.081± 0.061 1.062± 0.043

C = +0.8
S −0.146± 0.060 1.047± 0.043
C 0.161± 0.062 1.076± 0.044
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Table 7.30: Means and widths of pull distributions of all the CP asymmetry parameters
for a few selected points in the parameter space for S > −0.4.

Generated Fit
Pull Mean Pull Width

value in MC Parameter

S
=

0.
0

C = −0.8
S −0.091± 0.059 1.097± 0.046
C −0.116± 0.057 1.041± 0.044

C = −0.4
S −0.058± 0.060 1.048± 0.042
C −0.001± 0.059 1.039± 0.042

C = 0.0
S 0.011± 0.053 0.969± 0.044
C −0.026± 0.055 0.999± 0.040

C = +0.4
S 0.006± 0.058 1.02± 0.041
C 0.074± 0.059 1.041± 0.042

C = +0.8
S 0.104± 0.058 1.025± 0.041
C −0.060± 0.057 1.008± 0.040

S
=

0.
4

C = −0.8
S 0.077± 0.062 1.086± 0.044
C −0.074± 0.057 1.004± 0.041

C = −0.4
S 0.005± 0.061 1.058± 0.043
C 0.012± 0.060 1.045± 0.043

C = 0.0
S 0.066± 0.063 1.113± 0.045
C 0.114± 0.056 0.976± 0.039

C = +0.4
S 0.066± 0.063 1.097± 0.045
C 0.081± 0.057 0.986± 0.040

C = +0.8
S 0.052± 0.062 1.083± 0.044
C 0.105± 0.065 1.163± 0.046

S
=

0.
8

C = −0.8
S ∅ ∅

C ∅ ∅

C = −0.4
S −0.062± 0.058 0.992± 0.041
C −0.102± 0.060 1.024± 0.042

C = 0.0
S −0.014± 0.058 1.013± 0.041
C 0.028± 0.064 1.095± 0.045

C = +0.4
S −0.141± 0.056 0.994± 0.039
C 0.036± 0.058 1.039± 0.041

C = +0.8
S ∅ ∅

C ∅ ∅
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7.6.6 Results

7.6.6.1 Yields and projections

Here we present the results of the fit tomES, ∆E, the Fisher discriminant and ∆t. Table 7.31
gives the yields and Figures 7.21, 7.22 and 7.23 show the projections of mES, ∆E, the Fisher
discriminant and ∆t. We observe some non negligible fluctuations of the data distributions
in these projections. We therefore study these effects by examining the behavior of signal-
enriched projections. These are shown in Figs 7.24 to 7.27. They were obtained by applying
cuts around the signal region in the other dimensions of the fit (e.g. in ∆E for the mES

enriched fit projection). In the enriched projections, we observe a good agreement between
the model and the data points, within the statistical uncertainties, which indicates that the
differences between the model and the data, in the whole fit region, are probably due to
background fluctuations.

Table 7.31: B0 → K0
Sπ

+π−γ fitted yields for the final BABAR Run1-6 dataset.

Category Fitted yield Fit error (stat.)
Signal (TM+SCF) 245.0 24.3
Continuum udsc 2446.4 56.8
B+ → K∗+(→ K0

S
π+)γ

41.7 21.8
B+ → Xsu(→ K0

S
π+)γ
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Figure 7.21: mES fit projection. Black points describe data events and the full colored
histograms describe the contribution of each event species in the model.
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Figure 7.22: ∆E (a) and the Fisher discriminant (b) fit projections. Conventions are
identical as in Fig. 7.21.
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Figure 7.23: ∆t fit projection. Black points describe data events and the full colored
histograms describe the contribution of each event species in the model.
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Figure 7.24: mES fit projections in the signal region (−0.15 ≤ ∆E ≤ 0.10GeV/c) (a) and
in the background region (∆E ≤ −0.15GeV/c or ∆E ≥ 0.10GeV/c) (b). Conventions are
identical as in Fig. 7.21.
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Figure 7.25: ∆E fit projections in the signal region (mES > 5.27GeV/c2) (a) and in the
background region (mES < 5.27GeV/c2) (b). Conventions are identical as in Fig. 7.21.

209



Time Dependent Analysis of B0 → K0
S
π+π−γ decays: probing the photon helicity

fisher

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u

m
b

e
r
 o

f 
E

v
e
n

ts

0

20

40

60

80

100

(a)

fisher
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u

m
b

e
r 

o
f 

E
v
e
n

ts

0

100

200

300

400

500

600

700

800

900
Signal (TM)

Signal (SCF)

Continuum (udsc)
γ

s
BpBm X

γ)+π
S

0
(->K

su
 & Xγ)+π

S

0
(->K

*+
BpBm K

BpBm Generic

γsBBbar CP X

BBbar CP Generic
γ)0π

S

0
(->K

sd
 & Xγ)0π

S

0
(->K

*0
BBbar CP K

γ)-π
+

(->K
sd

 & Xγ)-π
+

(->K
*0

BBbar Flv K

Data

(b)
Figure 7.26: Fisher discriminant fit projections in the signal region (mES > 5.27GeV/c2

and −0.15 ≤ ∆E ≤ 0.10GeV/c) (a) and in the background region (mES < 5.27GeV/c2 and
∆E ≤ −0.15 or ∆E ≥ 0.10GeV/c) (b). Conventions are identical as in Fig. 7.21.
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Figure 7.27: ∆t fit projections in the signal region (mES > 5.27GeV/c2 and −0.15 ≤
∆E ≤ 0.10GeV/c) (a) and in the background region (mES < 5.27GeV/c2 and ∆E ≤ −0.15
or ∆E ≥ 0.10GeV/c) (b). Conventions are identical as in Fig. 7.21.
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7.6.6.2 Extraction of the CP asymmetry parameters

The result of the fit to data for the time-dependent CP violation parameters in signal events
is

SK0
S
π+π−γ = 0.137± 0.249(stat.)+0.042

−0.033(syst.) ,

CK0
S
π+π−γ = −0.390± 0.204(stat.)+0.045

−0.050(syst.) ,

where the first quoted uncertainties are statistical and the second are systematic. Details on
the procedure to extract the latter are given in Sec. 7.7.

In order to obtain the value of SK0
S
ργ, we divide SK0

S
π+π−γ by the dilution factor given in

Sec. 6.8.2, which gives:

SK0
S
ργ = 0.249± 0.455(stat.)+0.076

−0.060(syst.) . (7.20)

7.6.6.3 Comparison with the Belle results

The results we obtain for the time-dependent CP violation parameters directly from the fit
are compatible with the ones Belle previously published [? ]:

SBelle
K0

S
π+π−γ = 0.09± 0.27(stat.)+0.04

−0.07(syst.) ,

CBelle
K0

S
π+π−γ = −0.05± 0.18(stat.)± 0.06(syst.) .

However, some noticeable differences appear in the computation of the dilution factor. In-
deed, in the expression of the amplitudes contributing to the B0 → K0

S
π+π−γ decay ampli-

tude (see Eq. 6.31), the signs of the CP eigenvalues ξi for Kρ and K∗π are different between
the Belle analysis and the present one1 [? ]:

(ξ1, ξ2, ξ3, ξ4)(Kρ),(K∗π) = (+,−,+,−) in the present analysis,

(ξ1, ξ2, ξ3, ξ4)(Kρ),(K∗π) = (−,+,+.−) in Belle’s analysis.

As a consequence, the expression for the time-dependent CP asymmetry for B0 → K0
S
π+π−γ

decays given in Eq. 6.38 is modified, and the term related to cos(∆Mt) does not appear when
using Belle’s definition for ξi. Note that in the present case, this have no impact on the ex-
pression of the dilution factor, since it is defined as the ratio between the sin(∆Mt) terms in

A
K0

Sπ
+π−γ

CP (t) and A
K0

Sργ

CP (t).

Another difference with Belle is the fact that in the present analysis we account for
the presence of a (Kπ) S-wave component in the nominal expression of the dilution factor,
whereas in the Belle paper, the (Kπ) S-wave component is only taken into account for the
estimation of systematic uncertainties on the value of the dilution factor. In addition, the

1Note that the signs of ξi for the (Kπ)π S-wave component in Ref. [? ] are different from the ones
used here and by Belle: (ξ1, ξ2, ξ3, ξ4)(Kπ)S−wave

= (−,−,+.+). This results in a different expression of the
dilution factor for S.
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(Kπ) S-wave parametrization differ between the two analyses: Belle uses a the K∗0(1430)
resonance, while in the present analysis, the use a LASS parametrization consisting of a non
resonant part and a resonant part that describes the K∗0(1430).

When looking at the results obtained from the fit to the charged B+ → K+π−π+γ mode,
it appears that the contribution of the interference term between the Kρ and K∗π channels
are different. Indeed, in the present analysis, the interferences are found to be destructive,
while in the Belle paper they are constructive. The value of the dilution factor, and thus
the final value and errors on SK0

S
ργ strongly depend on this term. From the dilution factor

expression (Eq. 6.39), one can easily see that a negative interference term decreases the value
of the dilution factor. This explains why in the present analysis we veto the K∗, while Belle
does not2.

However, the result on SK0
S
ργ obtained in the present analysis is compatible with the one

reported by Belle [? ]:

SBelle
K0

S
ργ = 0.11± 0.33(stat.)+0.05

−0.09(syst.) . (7.21)

2Since the intensity of the interference is proportional to the amount of K∗ and ρ, a veto on the K∗

significantly decreases the contribution of the interference term.
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7.7 Time-dependent analysis systematics

The aim of the neutral channel analysis is to extract the values of the time-dependent CP -
asymmetry parameters from a fit to mES, ∆E, the Fisher discriminant and ∆t. In order
to assign systematic uncertainties due to the fixed parameters in the fit, we vary each of
the fixed parameters within its uncertainties, which are taken from different sources that
are detailed below, and redo the fit. The fixed shape parameters of mES, ∆E and the
Fisher discriminant PDFs are varied according to the errors obtained in the fit to the MC
samples from which they are extracted. Since the mES-∆E distribution of B+ → K∗+(→
K0

S
π+)γ + B+ → Xsu(→ K0

S
π+)γ background events is described by a two-dimensional

histogram, we use several histograms with fluctuated bin contents. The fixed yields are
varied according to the corresponding branching fraction uncertainties taken from [? ]. For
the categories describing a sum of modes, the fraction of each mode is varied according
to the relative branching fraction uncertainties taken from [? ]. The SCF fractions are
varied according to the uncertainties due to MC statistics3 and the total signal branching
fraction uncertainties in Ref. [? ] are also taken into account. The fixed yields of B0B0 and
B+B− generic B backgrounds, describing a sum of several small contributions from various
B-background modes, are varied according to the uncertainties due to MC statistics. The
fixed parameters of the ∆t PDFs are varied according to the errors that are either taken
from other BABAR measurements or extracted from individual fits to MC. The parameters of
the ∆t PDFs, as well as their corresponding uncertainties, are given in Secs. 7.1 and 7.6.4.

Assuming no correlations between the fixed parameters, we sum up in quadrature each
of the lower and upper deviations from the nominal value of each of the time-dependent CP -
asymmetry parameters, and take the resulting values as minus- and plus-signed uncertainties,
respectively. The corresponding values are given in Tab. 7.32. Note that these uncertainties
are small compared to the statistical uncertainties.

Table 7.32: Systematic uncertainties on the time-dependent CP -asymmetry parameters
due to the fixed parameters in the fit to mES, ∆E, the Fisher discriminant and ∆t.

Parameter + signed deviation − signed deviation
SK0

S
π+π−γ 0.042 0.033

CK0
S
π+π−γ 0.045 0.050

3All the uncertainties due to MC statistics are scaled to the size of the expected data sample.
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We have measured the time-dependent CP asymmetry in the decay B0 → K0
S
π+π−γ, with

the full BABAR dataset of 470.9 million BB pairs (429.0 fb−1) at the Υ (4S), using events
with mKππ < 1.8GeV/c2, 0.6 < mππ < 0.9GeV/c2 and with mKπ < 0.845GeV/c2 and
mKπ > 0.945GeV/c2. We obtain the CP -violating parameters SK0

S
π+π−γ = 0.137±0.249+0.042

−0.033

and CK0
S
π+π−γ = −0.390 ± 0.204+0.045

−0.050, where the first quoted errors are statistical and the
second are systematic. To probe the photon polarization in the underlying b→ sγ transition,
the time-dependent CP asymmetry related to the hadronic CP eigenstate ρ0K0

S
in the final

state needs to be extracted. Given that the sample size is not sufficient to perform an angular-
or an amplitude-analysis of B0 → K0

S
π+π−γ decays, we extract resonant amplitudes in the

mode B+ → K+π+π−γ, and, assuming isospin symmetry, use them to compute a dilution
factor DK0

S
ργ such that SK0

S
ργ = SK0

S
π+π−γ/DK0

S
ργ. We measure

DK0
S
ργ = 0.549+0.096

−0.094 ,

which yields
SK0

S
ργ = 0.249± 0.455+0.076

−0.060 .

The quoted errors on DK0
S
ργ account for both statistical and systematic uncertainties, while

the first quoted errors on SK0
S
ργ are statistical and the second are systematic. These results

are consistent with those from Belle [? ], and with the standard model expectation of
S ≈ 0.03, C ≈ 0 [? ]. It is also consistent with the similar measurements in B0 → K0

S
π0γ

decays from BABAR [? ] and Belle [? ].
The measurement of amplitudes in B+ → K+π+π−γ decays provides several observables

of interest, beyond the purpose of extracting the dilution factor. We have measured the
fractions of the different Kres → Kππ states, and found4:

FFK1(1270)+ = 0.61+0.09
−0.07 ; ǫrel. = 1.000 ,

FFK1(1400)+ = 0.17+0.10
−0.06 ; ǫrel. = 0.991± 0.007 ,

FFK∗(1410)+ = 0.37+0.10
−0.07 ; ǫrel. = 0.904± 0.007 ,

FFK∗
2 (1340)

+ = 0.06+0.05
−0.06 ; ǫrel. = 0.982± 0.008 ,

FFK∗(1680)+ = 0.43+0.10
−0.07 ; ǫrel. = 0.599± 0.009 ,

with ǫrel. the relative efficiencies with respect to that of K1(1270)
+. The quoted errors on

the fit fractions account for both statistical and systematic uncertainties. In addition, the

4Before the publication of this work, it is planned to extract from these observables the branching fractions.
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overall fractions of the ρ0K+, K∗0π+ and (Kπ)S−waveπ
+ components are measured to be:

FFρ0K+ = 0.335+0.036
−0.035 ,

FFK∗0π+ = 0.636+0.020
−0.015 ,

FF(Kπ)S−waveπ+ = 0.416+0.068
−0.083 ,

where the quoted errors account for both statistical and systematic uncertainties.
The measurement of the time-dependent CP asymmetry in B0 → K0

S
π0γ and B0 →

K0
S
ρ0γ decays is at reach of e+e− B Factories rather than hadronic colliders. The state-of-

the-art of time-dependent CP asymmetry measurements in radiative decays after the era of
B Factories shows an overall consistency with the standard model but the obtained precision
does not allow to draw clear conclusions about possible contribution of NP processes.

However, probing the photon helicity in radiative b → sγ decays by other methods is
one of the hot topics of LHCb. Until the end of the year 2012, the experiment has recorded
roughly 3 fb−1 of data, and has already obtained several results providing information on
the observable of interest. For instance, an angular analyses of B0 → K∗0µ+µ− decays has
been performed using 1 fb−1 of data [? ? ]. Ref. [? ] presents, among other observables,
a measurement of S3 that is proportional to the ratio of processes involving left- and right-
handed photons. The result is consistent with the standard model prediction. Ref. [? ]
presents the measurement of form-factor independent observables, and reports a tantalizing
tension at the level of 3.7 standard deviations for one of these observables at a certain region
of the dimuon invariant mass. Another key channels of LHCb towards a measurement of the
photon polarization, this time from CP asymmetry observables, is the B0

S → φγ decay. This
mode is rather in the LHCb ball park, since Bs decays are generally not accessible at the B
Factories5. Yet, such an analysis is challenging in LHCb due to the low tagging efficiency
in hadronic colliders. A first step was recently completed through the measurement of the
ratio of branching fractions B(B0 → K∗0γ)/B(B0

S → φγ) [? ? ].
LHCb is expected to collect at least 7 fb−1 of data by the end of 2017. In addition, two

major projects in flavor physics are being developed. An upgrade of the LHCb experiment is
planned in 2018, and the super flavor factory Belle-II in KEK is expected to start collecting
data in 2015. The LHCb upgrade consists in adapting the trigger system and the detector,
to enable them to operate in a higher instantaneous luminosity. The upgraded detector will
collect 5 to 10 fb−1 per year, resulting in a sample of 50 fb−1. Belle-II is a second-generation
high-luminosity flavor factory, which is expected to accumulate, over a period of five-years,
a sample of 50 ab−1. The analysis presented in this thesis could be much improved, possibly
by means of a more sophisticated method, in Belle-II. The ensemble of future measurements
in the different decay modes that are sensitive to the photon helicity will hopefully shed light
on the open issues in the domain.

5 Apart from a data sample of 124.4 fb−1 collected at the Υ (5S) by Belle.
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Appendix A

Probability Density Function
Definitions

In this section, we give the definitions of PDFs used in the fit.

A.1 Gaussian function

The expression for the standard Gaussian function is given below.

G(x;µ, σ) =
1

a
exp

[

1

2

(

x− µ

σ

)2
]

The parameters µ and σ are the mean and the width of the Gaussian; 1/a is a normalization
constant.

A.2 Bifurcated Gaussian function

The expression for the standard Bifurcated Gaussian function is given below.

BG(x;µ, σl, σr) =
1

a
exp

[

1

2

(

x− µ

σi

)2
]

{

i = l (x− µ) < 0
i = r (x− µ) > 0

The parameters µ and σi describe a Gaussian; 1/a is a normalization constant.

A.3 Cruijff function

The expression for the standard Cruijff function is given below.

Cruijff(x;µ, σl, σr, αl, αl) =
1

a
exp

[

− (x− µ)2

2σ2
i + αi(x− µ)2

]{

i = l (x− µ) < 0
i = r (x− µ) > 0

The parameters µ and σi describe a Gaussian, while the αi parameters describe the curvature
of the slope; 1/a is a normalization constant.
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A.4 Crystal Ball function

A.4 Crystal Ball function

The expression for the standard Crystal Ball function is given below.

CB(x;µ, σ, α, n) =
1

a











(

n
α

)n exp(−α2/2)
((µ−x)/σ+n/α−α)n

x ≤ µ− ασ

exp
[

1
2

(

x−µ
σ

)2
]

x > µ− ασ

The parameters µ and σ describe a Gaussian, which is truncated on the low side at µ− ασ
and joined continuously to a power function with an exponent n; 1/a is a normalization
constant.

A.5 Argus function

The Argus function [? ], is given by

Argus(x; ξ, Eb) =
1

a
x
√

1− x2/E2
b e

−ξ
√

1−x2/E2
b

The parameter ξ is the Argus shape parameter, the cutoff Eb is at the nominal beam energy,
and 1/a is a normalization constant.

A.6 Exponential function

The Exponential function, is given by

Ex(x; s) =
1

a
esx

1/a is a normalization constant.

A.7 Linear function

The Linear function, is given by

Lin(x) =
1

a
(1 + c1x)

1/a a normalization constant.
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Appendix B

Fragmentation corrective weights

Here we give the fragmentation corrective weights (as reported in [? ]) applied to the dif-
ferent Xs decay modes in order to build the radiative B background PDFs, as described in
Sec. 6.4.1.2.

The Xs events are separated in several modes depending on the particle contents of the
final states. Moreover, the Xs events are splitted in four mass ranges. Tables B.1- B.4, give
the applied weight for each mode, as their definition in term of final state particle content,
each table for one specific Xs mass range. In this analysis, we use true MC information in
order to separate the Xs events in the different modes and mass ranges.

Table B.1: The reweighing factors in mass region mXs=1.1-1.5GeV, as reported in [? ].

Modes definition
Frag. Weight Found
in mXs

=1.1-1.5GeV
2 bodies without π0 0.650 ± 0.027
2 bodies with 1 π0 0.533 ± 0.051
3 bodies without π0 1.195 ± 0.025
3 bodies with 1 π0 1.701 ± 0.047
4 bodies without π0 0.337 ± 0.079
4 bodies with 1 π0 1.242 ± 0.125

3/4 bodies with 2 π0s 0.563 ± 0.186
5 bodies with 0-2 π0s 1.000+1.048

−1.000

η → γγ 0.938 ± 0.145
3K modes 0.000 ± 0.000
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Table B.2: The reweighing factors found in mass region mXs=1.5-2.0GeV, as reported
in [? ].

Modes definition
Frag. Weight Found
in mXs

=1.5-2.0GeV
2 bodies without π0 0.376 ± 0.033
2 bodies with 1 π0 0.276 ± 0.060
3 bodies without π0 1.008 ± 0.037
3 bodies with 1 π0 1.026 ± 0.060
4 bodies without π0 1.339 ± 0.101
4 bodies with 1 π0 1.156 ± 0.108

3/4 bodies with 2 π0s 1.365 ± 0.298
5 bodies with 0-2 π0s 0.573 ± 0.159

η → γγ 1.719 ± 0.200
3K modes 0.621 ± 0.109

Table B.3: The reweighing factors found in mass region mXs=2.0-2.4GeV, as reported
in [? ].

Modes definition
Frag. Weight Found
in mXs

=2.0-2.4GeV
2 bodies without π0 0.047+0.052

−0.047

2 bodies with 1 π0 0.323 ± 0.119
3 bodies without π0 0.723 ± 0.105
3 bodies with 1 π0 0.334 ± 0.125
4 bodies without π0 1.115 ± 0.229
4 bodies with 1 π0 1.279 ± 0.268

3/4 bodies with 2 π0s 0.828 ± 0.533
5 bodies with 0-2 π0s 0.743 ± 0.284

η → γγ 2.470 ± 0.502
13K modes 0.744 ± 0.307
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Fragmentation corrective weights

Table B.4: The reweighing factors found in mass region mXs=2.4-2.8GeV, as reported
in [? ].

Modes definition
Frag. Weight Found
in mXs

=2.4-2.8GeV
2 bodies without π0 0.175± 0.134
2 bodies with 1 π0 0.145 +0.246

−0.145

3 bodies without π0 0.250+0.252
−0.250

3 bodies with 1 π0 1.000+0.465
−1.000

4 bodies without π0 2.294 ± 0.740
4 bodies with 1 π0 0.102+0.387

−0.102

3/4 bodies with 2 π0s 2.064 ± 1.643
5 bodies with 0-2 π0s 0.294+1.270

−0.294

η → γγ 1.085+1.033
−1.085

3K modes 0.825+1.107
−0.825
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Appendix C

Kaonic resonances distortion
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Figure C.1: Compared K1(1270) distributions generated from EvtGen (blue points) and
the RBW expression (red points).
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Kaonic resonances distortion
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Figure C.2: Compared K1(1400) distributions generated from EvtGen (blue points) and
the RBW expression (red points).
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Figure C.3: Compared K∗(1410) distributions generated from EvtGen (blue points) and
the RBW expression (red points).
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Figure C.4: Compared K∗
2 (1430) distributions generated from EvtGen (blue points) and

the RBW expression (red points).
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Figure C.5: Compared K∗(1680) distributions generated from EvtGen (blue points) and
the RBW expression (red points).

225



Appendix D

Parametrization of TM mES-∆E
correlations

Here we present the results of the signal-TM mES-∆E correlations study.

D.1 Study of ∆E Cruijff parameters dependence in mES

bins

B+ → K+π−π+γ signal-TM case

The study of ∆E Cruijff parameters dependence in mES study was done using a set of ten
bins in mES as listed in Tab. D.1.

Table D.1: ∆E bins definition for the mES Crystal Ball parameters dependence in ∆E.

mES bin mES range
number (GeV/c2)

0 [5.200 ; 5.270[
1 [5.270 ; 5.272[
2 [5.272 ; 5.274[
3 [5.274 ; 5.275[
4 [5.275 ; 5.276[
5 [5.276 ; 5.278[
6 [5.278 ; 5.280[
7 [5.280 ; 5.282[
8 [5.282 ; 5.284[
9 [5.284 ; 5.292]

Figures D.1 to D.5 show the implicit dependence of the Cruijff parameters in mES bins.
The first bin in mES (mES bin0) having a large range compared to others, we present for
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D.1 Study of ∆E Cruijff parameters dependence in mES bins

each Cruijff parameter distributions two plots: the first one in the whole mES range, the
second in a tighter region excluding the mES bin0.
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Figure D.1: ∆E Cruijff µ parameter evolution in mES bins, in the whole mES range (left)
and excludingmES bin0 (right). Blue points correspond to MC sample, red points correspond
to generated sample using our two-dimensional conditional PDF, and the green horizontal
line corresponds to the uni-dimensional Cruijff initial PDF. The central value of each point
corresponds to the fitted value of the Cruijff parameter, the vertical error bars correspond to
the parameter fit error given by MINUIT and the horizontal error bars define the size of each
∆E bin.
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Figure D.2: ∆E Cruijff σl parameter evolution in mES bins, in the whole mES range (left)
and excluding mES bin0 (right). Conventions are identical as those used in Fig. D.1.
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Parametrization of TM mES-∆E correlations
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Figure D.3: ∆E Cruijff σr parameter evolution in mES bins, in the whole mES range (left)
and excluding mES bin0 (right). Conventions are identical as those used in Fig. D.1.
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Figure D.4: ∆E Cruijff αl parameter evolution in mES bins, in the whole mES range (left)
and excluding mES bin0 (right). Conventions are identical as those used in Fig. D.1.

D.2 Fit projections

Here we present the study of the two-dimensional PDF implemented in Laura++. The PDF
is the product of a conditional PDF (Crystal Ball for mES) and a marginal PDF (Cruijff for
∆E), where the Crystal Ball parameters are functions of ∆E. This two-dimensional PDF
is used to describe the correlations between mES and ∆E of signal-TM events. The aim
of this study is to check the behavior of the two-dimensional PDF comparing the distribu-
tions of events taken from MC to the one generated using the PDF. Section D.2.1 presents
the projections on the mES dimension for several bins in ∆E, defined in Tab. 6.13, while
Sec. D.2.2 presents the projections on the ∆E dimension for several bins in mES, defined in
Tab. F.1. In each plot, we compare the MC-truth signal-TM distribution (blue points) to the
distribution generated using the two-dimensional PDF (red points). In addition, the curves
(corresponding colors), represent the fit result using the corresponding one-dimensional PDF

228



D.2 Fit projections
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Figure D.5: ∆E Cruijff αr parameter evolution in mES bins, in the whole mES range (left)
and excluding mES bin0 (right). Conventions are identical as those used in Fig. D.1.

(either a Crystal Ball for mES or a Cruijff for ∆E).

In a few bins, significative differences appear between the MC-truth and the generated
distributions. However, these differences concerns only low-statistics bins, where the param-
eters describing the correlations have large uncertainties. Moreover, from the embedded toy
studies, no significant bias appeared corresponding these parameters. Therefore, we conclude
that the two-dimensional PDF is reliable.
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Parametrization of TM mES-∆E correlations

D.2.1 mES projections in ∆E bins
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Figure D.6: mES Crystal Ball fit projection in ∆E bins 0 to 5. Blue curve correspond to
MC sample, red curve correspond to generated sample using our two-dimensional conditional
PDF.
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D.2 Fit projections
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Figure D.7: mES Crystal Ball fit projection in ∆E bins 6 to 9. Blue curve correspond to
MC sample, red curve correspond to generated sample using our two-dimensional conditional
PDF.
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Parametrization of TM mES-∆E correlations

D.2.2 ∆E projections in mES bins
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Figure D.8: ∆E Cruijff fit projection in mES bins 0 to 5. Blue curve correspond to MC
sample, red curve correspond to generated sample using our two-dimensional conditional
PDF.
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D.2 Fit projections
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Figure D.9: ∆E Cruijff fit projection in mES bins 6 to 9. Blue curve correspond to MC
sample, red curve correspond to generated sample using our two-dimensional conditional
PDF.
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Appendix E

Toy studies for the charged channel
analysis

E.1 Self-cross-feed fraction

In this Section we present the different results that lead us to separate the SCF and signal-
TM categories in our fit model. This conclusion was made after testing our model in a very
simple case, with only the SCF, signal-TM and continuum udsc categories. We tested two
configurations:

1. the SCF is described as a fraction of the signal yield;

2. the SCF is described as a separated category.

We performed pure toys studies based on 4000 toys and 2000 toys for the two configurations
listed above, respectively.

From this study, we observed that the second configuration gave better results on the pulls.
Figures E.1 and E.2 show the pull distributions for the SCF fraction and the SCF yield
parameters for configurations (1) and (2), respectively. Figures E.3 and E.4 show the pull
distributions for the total signal yield and the signal-TM yield for configurations (1) and (2),
respectively.

Furthermore, we found that when describing the SCF component as a fraction of the total
signal yield, significant correlations (ρ = 0.86) appeared between the signal yield and the
SCF fraction. When using configuration (2), the correlation between the SCF fraction that
became the SCF yield and the signal yield that became the signal-TM yield almost disap-
peared (ρ = −0.36). Figures E.5 and E.6 show the linear correlations between the floated
parameters entering in the fit when the SCF component is described as a fraction of the
total signal events or as a separated category, respectively.

From these results we decided to separate explicitly the SCF contribution from the signal
TM in a different category.
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E.1 Self-cross-feed fraction
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Figure E.1: SCF fraction pull distribution, when the SCF component is described as a
fraction of the total signal.
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Figure E.2: SCF yield pull distribution, when the SCF component is described as a sepa-
rated category.
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Toy studies for the charged channel analysis
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Figure E.3: Total signal yield pull distribution, when the SCF component is described as a
fraction of the total signal.
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Figure E.4: Signal-TM yield pull distribution, when the SCF component is described as a
separated category.
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E.2 Pure toy studies

E.2 Pure toy studies

In this Section we present the shape parameter pull distributions of the pure toy studies
described in Sec. 6.5.4.1
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Figure E.7: Pull distributions of signal TM mES Crystal Ball µα0 (a), µα1 (b), µα2 (c), σα1
(d), σα2 (e), σα3 (f) parameters for the pure toy studies with 331 toys.
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Figure E.8: Pull distributions of signal TM ∆E Cruijff µ (a), σL (b) and the Fisher
discriminant Gaussian µ (c), σ (d) parameters for the pure toy studies with 331 toys.
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Figure E.9: Pull distributions of continuum udsc mES Argus ξ (a), ∆E Chebychev first
coefficient (b) and ∆E Chebychev second coefficient (c) parameters for the pure toy studies
with 331 toys.
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E.3 Embedded toy studies

In this Section we present the shape parameter pull distributions of the embedded toy studies
described in Sec. 6.5.4.2.
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Figure E.10: Pull distributions of signal TM mES Crystal Ball µα0 (a), µα1 (b), µα2 (c),
σα1 (d), σα2 (e), σα3 (f) parameters for the embedded toy studies with 331 toys.
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Figure E.11: Pull distributions of signal TM ∆E Cruijff µ (a), σL (b) and the Fisher
discriminant Gaussian µ (c), σ (d) parameters for the embedded toy studies with 331 toys.
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Figure E.12: Pull distributions of continuum udsc mES Argus ξ (a), ∆E Chebychev first
coefficient (b) and ∆E Chebychev second coefficient (c) parameters for the embedded toy
studies with 331 toys.
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Appendix F

B+ → K+π−π+γ fit projection study

In order to study in more details the good behavior of the fit to mES, DeltaE and the Fisher
discriminant, especially in the signal region, we enriched the fit projections in signal events,
as shown in App. F.1 for the mES and the Fisher discriminant fit projections. A more
attentive study was performed in the case of the ∆E fit projection as described in App. F.2.

F.1 Study of the mES and the Fisher discriminant fit

projections

Figures F.1 and F.2 show the mES fit projection in the entire fit region and in the signal
region, respectively. Figures F.3 and F.4 show the Fisher discriminant fit projection in the
entire fit region and in the signal region, respectively. Here the signal region is defined as
−0.15 ≤ ∆E ≤ 0.10GeV/c and mES > 5.27GeV/c2.
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Figure F.1: mES fit projection in the whole fit region.
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Figure F.2: mES fit projection in the signal region, where the following cuts have been
applied in order to enrich the data sample in signal events: −0.15 ≤ ∆E ≤ 0.10GeV/c and
mES > 5.27GeV/c2. Conventions are identical to those in Fig. F.1
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F.1 Study of the mES and the Fisher discriminant fit projections
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Figure F.3: The Fisher discriminant fit projection in the whole fit region.
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Figure F.4: The Fisher discriminant fit projection in the signal region, where the following
cuts have been applied in order to enrich the data sample in signal events: −0.15 ≤ ∆E ≤
0.10GeV/c and mES > 5.27GeV/c2. A log scale is applied to the y-axis. Conventions are
identical to those in Fig. F.3
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F.2 Study of the ∆E fit projection

Here we present the ∆E fit projection in terms of mES bins as described in Tab. F.1.

Table F.1: mES bins definition for the ∆E fit projection study.

mES bin mES range
number (GeV/c2)

0 5.200 ≤ x < 5.270
1 5.270 ≤ x < 5.272
2 5.272 ≤ x < 5.274
3 5.274 ≤ x < 5.275
4 5.275 ≤ x < 5.276
5 5.276 ≤ x < 5.278
6 5.278 ≤ x < 5.280
7 5.280 ≤ x < 5.282
8 5.282 ≤ x < 5.284
9 5.284 ≤ x ≤ 5.292

We observe comparing Fig. F.5 and F.6 that the little discrepancy in the whole mES re-
gion remains in the first bin in mES (bin 0) where lies almost no signal events. This shows
that this is mainly due to a background fluctuation. Moreover in the other mES bins, except
in bin 8, the agreement, within statistical errors is really good between data points and the
fit projections.
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E (GeV/c)∆
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

N
u

m
b

e
r 

o
f 

E
v
e
n

ts

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Data

Signal (TM)

Continuum (udsc)

Generic

sd
 & XsuX

π->K
sd

 & Xγ
*0

K

SelfCrossFeed
π->K

su
 & Xγ

*+K

η
*0

K

Charmless

Figure F.5: ∆E fit projection in the whole mES range.
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Figure F.6: ∆E fit projection in mES bin 0.
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Figure F.7: ∆E fit projection in mES bin 1.
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Figure F.8: ∆E fit projection in mES bin 2.
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Figure F.9: ∆E fit projection in mES bin 3.
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Figure F.10: ∆E fit projection in mES bin 4.
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Figure F.11: ∆E fit projection in mES bin 5.
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Figure F.12: ∆E fit projection in mES bin 6.

252



F.2 Study of the ∆E fit projection
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Figure F.13: ∆E fit projection in mES bin 7.
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Figure F.14: ∆E fit projection in mES bin 8.
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B+ → K+π−π+γ fit projection study
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Figure F.15: ∆E fit projection in mES bin 9.
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Appendix G

Toy studies for the time-dependent
analysis

G.1 Pure toy studies

In this Section we present the shape parameter pull distributions of the pure toy studies
described in Sec. 7.6.5.2
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Toy studies for the time-dependent analysis
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Figure G.1: Yields pull distributions of signal events category (a), continuum background
(b) and B+ → K∗+(→ K0

Sπ
+)γ + B+ → Xsu(→ K0

Sπ
+)γ B background (c) for the pure toy

studies with 500 toys.
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G.1 Pure toy studies

Entries  500

Mean   0.0438± -0.03053 

RMS    0.03097± 0.9795 

N         5.61± 98.96 

      µ  0.04576± -0.02027 

   σ  0.035± -1.001 

CB_mean_mes_Coeff0_TM_Pull
-5 -4 -3 -2 -1 0 1 2 3 4 5
0

20

40

60

80

100

Entries  500

Mean   0.04823± 0.06528 

RMS    0.0341±  1.078 

N         5.25± 92.52 

      µ  0.04851± 0.07138 

   σ  0.037± 1.059 

Entries  500

Mean   0.04823± 0.06528 

RMS    0.0341±  1.078 

N         5.25± 92.52 

      µ  0.04851± 0.07138 

   σ  0.037± 1.059 

CB_mean_mes_Coeff1_TM_Pull
-5 -4 -3 -2 -1 0 1 2 3 4 5
0

20

40

60

80

100

Entries  500

Mean   0.04776± -0.07343 

RMS    0.03377±  1.066 

N         5.28± 92.24 

      µ  0.0498± -0.0778 

   σ  0.038± 1.062 

(a) (b)
Entries  500

Mean   0.04776± -0.07343 

RMS    0.03377±  1.066 

N         5.28± 92.24 

      µ  0.0498± -0.0778 

   σ  0.038± 1.062 

CB_mean_mes_Coeff2_TM_Pull
-5 -4 -3 -2 -1 0 1 2 3 4 5
0

20

40

60

80

100

Entries  500

Mean   0.05781± -0.1589 

RMS    0.04087±   1.29 

N         5.28± 84.85 

      µ  0.0551± -0.1865 

   σ  0.046± 1.103 

Entries  500

Mean   0.05781± -0.1589 

RMS    0.04087±   1.29 

N         5.28± 84.85 

      µ  0.0551± -0.1865 

   σ  0.046± 1.103 

CB_sigma_mes_Coeff0_TM_Pull
-5 -4 -3 -2 -1 0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

Entries  500

Mean   0.04709± -0.06544 

RMS    0.03329±   1.05 

N         5.06± 91.02 

      µ  0.05400± -0.09479 

   σ  0.035± 1.053 

(c) (d)
Entries  665

Mean   2.461e-06± 0.0003322 

RMS    1.74e-06± 6.347e-05 

N         226.7± 665.5 

      µ  19.9428± 0.3018 

   σ  312.122± 1.339 

CB_sigma_mes_Coeff1_TM_Pull
-5 -4 -3 -2 -1 0 1 2 3 4 5
0

20

40

60

80

100

120

Entries  500

Mean   0.04698± -0.06181 

RMS    0.03322±  1.048 

N         6.8± 104.1 

      µ  0.04352± 0.06361 

   σ  0.0413± 0.8978 

Entries  665

Mean   0.0001366± 0.01063 

RMS    9.662e-05± 0.003524 

N         227.0± 665.5 

      µ  19.9923± 0.3017 

   σ  313.37±  1.34 

CB_sigma_mes_Coeff2_TM_Pull
-5 -4 -3 -2 -1 0 1 2 3 4 5
0

20

40

60

80

100

Entries  500

Mean   0.04639± -0.08746 

RMS    0.0328±  1.032 

N         6.0± 100.6 

      µ  0.044474± -0.002482 

   σ  0.0379± -0.9601 

(e) (f)

Figure G.2: Pull distributions of signal TM mES Crystal Ball µα0 (a), µα1 (b), µα2 (c), σα1
(d), σα2 (e), σα3 (f) parameters for the pure toy studies with 500 toys.
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Toy studies for the time-dependent analysis
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Figure G.3: Pull distributions of signal TM ∆E Cruijff and the Fisher discriminant Gaus-
sian parameters: CrσL

(a), CrσR
(b) and Gµ (c), as well as the continuum background Fisher

discriminant Chebychev polynomial parameters: Chebychevc1 (d), Chebychevc2 (e) for the
pure toy studies with 500 toys.
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G.1 Pure toy studies
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Figure G.4: Pull distributions of the continuum background resolution function (Rbg)
parameters: bcore (a), soutlier (b), score (c) and foutlier (d) for the pure toy studies with 500
toys.
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Toy studies for the time-dependent analysis

G.2 Embedded toy studies

In this Section we present the shape parameter pull distributions of the embedded toy studies
described in Sec. 7.6.5.3.
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Figure G.5: Yields pull distributions of signal events category (a), continuum background
(b) and B+ → K∗+(→ K0

Sπ
+)γ +B+ → Xsu(→ K0

Sπ
+)γ B background (c) for the embedded

toy studies with 351 toys.
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G.2 Embedded toy studies
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Figure G.6: Pull distributions of signal TM mES Crystal Ball µα0 (a), µα1 (b), µα2 (c), σα1
(d), σα2 (e), σα3 (f) parameters for the embedded toy studies with 351 toys.
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Toy studies for the time-dependent analysis
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Figure G.7: Pull distributions of signal TM ∆E Cruijff and the Fisher discriminant Gaus-
sian parameters: CrσL

(a), CrσR
(b) and Gµ (c), as well as the continuum background Fisher

discriminant Chebychev polynomial parameters: Chebychevc1 (d), Chebychevc2 (e) for the
embedded toy studies with 351 toys.
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G.2 Embedded toy studies
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Figure G.8: Pull distributions of the continuum background resolution function (Rbg)
parameters: bcore (a), soutlier (b), score (c) and foutlier (d) for the embedded toy studies with
351 toys.
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Résumé: Une mesure de l’asymétrie de CP dépendante du temps des désintégrations ra-
diativesB0 → K0

S
π+π−γ, est effectuée à partir d’un échantillon de 470.9 millions d’événements

Υ (4S) → BB enregistrés par le détecteur BABAR auprès du collisionneur asymétrique PEP-
II situé au SLAC. En utilisant les événements satisfaisant mKππ < 1.8GeV/c2, 0.6 <
mππ < 0.9GeV/c2, mKπ < 0.845GeV/c2 et mKπ > 0.945GeV/c2, les paramètres de viola-
tion de la symétrie de CP ainsi obtenus sont SK0

S
π+π−γ = 0.137± 0.249+0.042

−0.033 et CK0
S
π+π−γ =

−0.390 ± 0.204+0.045
−0.050. À partir de ces résultats la valeur de l’asymétrie de CP dépendante

du temps reliée aux états propres de CP ρ0K0
S
, est extraite: SK0

S
ργ = 0.249 ± 0.455+0.076

−0.060.
Cette observable apporte de l’information relative aux états de polarisation du photon dans
les processus sous-jacents de transitions radiatives b → sγ. En utilisant l’hypothèse de
conservation de la symétrie d’isospin, l’extraction de SK0

S
ργ à partir SK0

S
π+π−γ est effectuée

à partir de l’étude des désintégrations B+ → K+π+π−γ, où les amplitudes des différentes
résonances intermédiaires ρ0K+, K∗0π+ et (Kπ)S−waveπ

+, contribuant au système Kππ, sont
mesurées. Cette étude, en plus de l’information nécessaire à l’extraction de SK0

S
ργ, a permis

d’extraire les contributions relatives des résonances kaoniques au système Kππ, ainsi que
les fractions globales des modes résonants ρ0K+, K∗0π+ et (Kπ)S−waveπ

+, constituant une
source d’information utile à d’autres études sur la polarisation du photon.

Mots-clés: BABAR, méson B, pinguoin radiatif, asymétrie de CP dépendante du temps,
polarisation du photon, résonances kaonique

Abstract: We present a measurement of the time-dependent CP asymmetry in the
radiative-penguin decay B0 → K0

S
π+π−γ, using a sample of 470.9 million Υ (4S) → BB

events recorded with the BABAR detector at the PEP-II e+e− storage ring at SLAC. Using
events with mKππ < 1.8GeV/c2, 0.6 < mππ < 0.9GeV/c2 and with mKπ < 0.845GeV/c2 and
mKπ > 0.945GeV/c2, we obtain the CP -violating parameters SK0

S
π+π−γ = 0.137± 0.249+0.042

−0.033

and CK0
S
π+π−γ = −0.390±0.204+0.045

−0.050, where the first quoted errors are statistical and the sec-
ond are systematic. We extract from this measurement the time-dependent CP asymmetry
related to the hadronic CP eigenstate ρ0K0

S
and obtain SK0

S
ργ = 0.249±0.455+0.076

−0.060. This ob-
servable provides information on the photon polarization in the underlying b→ sγ transition.
To extract SK0

S
ργ from SK0

S
π+π−γ, assuming isospin symmetry, we study B+ → K+π+π−γ de-

cays and measure intermediate resonant amplitudes of different resonances decaying to Kππ
through the intermediate states ρ0K+, K∗0π+ and (Kπ)S−waveπ

+. In addition to the need
of this information for the extraction of SK0

S
ργ, it provides input on the B → Kππ system,

which is useful for other studies of the photon polarization. The fractions of the different
Kres → Kππ states as well as the overall fractions of the ρ0K+, K∗0π+ and (Kπ)S−waveπ

+

components are also measured.

Key words: BABAR, B meson, radiative penguin, time-dependent CP asymmetry, photon
polarization, kaonic resonances


	Titre
	Contents
	List of Figures
	List of Tables
	Introduction
	I Theoretical overview and brief experimental status
	Flavor physics and CP violation in the Standard Model
	Weak interactions in the flavor sector
	Quark mixing and the CKM matrix
	Mixing and CP violation in the B meson system
	Mixing of neutral B mesons
	CP violation in the B mesons

	Trees and Penguins

	The photon polarization in radiative B decays and the K1(1270)  resonance
	The photon polarization
	Physical observables and experimental status
	Mixing-induced CP asymmetry
	Other methods

	Status of the K1(1270)  resonance description
	Axial-vector K1 resonances
	The K S-wave in K1(1270)  decays
	Width of the K1(1270) 



	II BABAR and PEP-II
	An asymmetric e+e- collider: PEP-II
	The LINAC and the storage ring
	The interaction region
	Machine backgrounds
	The injection system
	Performance

	The BABAR Detector
	The Silicon Vertex Tracker (SVT)
	The Drift Chamber (DCH)
	The Detector of Internally Reflected Cerenkov Light (DIRC)
	The Electromagnetic Calorimeter (EMC)
	The Instrumented Flux Return (IFR)
	The Trigger system
	Data acquisition
	Online prompt reconstruction


	III Analysis
	Data samples and analysis techniques
	Monte Carlo and data samples
	Monte Carlo samples
	On-Peak and Off-Peak data samples

	Reconstruction
	Tracking algorithms
	Calorimeter algorithms
	Particle identification
	Vertexing

	Discriminating variables
	Kinematic variables
	Event-shape variables
	Fisher discriminant

	The maximum likelihood fit
	Extended maximum likelihood fit
	Error estimations
	Toy Monte Carlo
	The sPlot technique


	Analysis of B+   K+- +   decays: study of the K resonant structure
	Signal Monte Carlo cocktail
	Event Selection
	Skim
	Selection cuts
	Cut Optimization
	Multiple candidate selection
	Efficiency

	Signal study
	Truth matching
	Expected yields

	Backgrounds study
	B backgrounds
	Continuum background
	Expected background yields

	Fit to mES, E and Fisher
	Signal PDFs
	Background PDFs
	Fitting functions
	Validation tests
	Fit yields and projections

	Fit to the mK  spectrum
	Fit model
	Fit results

	Fit to the mK  spectrum
	Efficiency correction
	Fit model
	Fit results
	Study of the model consistency
	Angular moments and results interpretation

	The dilution factor
	Analytical expression of the dilution factor
	Extraction of the dilution factor

	Systematics
	Fit to the mK  spectrum
	Fit to the mK  spectrum


	Time Dependent Analysis of B0  K0S +-   decays: probing the photon helicity
	Time-dependent model
	Flavor tagging
	t measurement and resolution
	Signal t PDF
	Background t PDFs

	Signal Monte Carlo cocktail
	Event selection
	Selection cuts
	Cut Optimization
	Efficiency

	Classification of signal events
	Background study
	B backgrounds
	Continuum background

	Fit to mES, E, the Fisher discriminant and t
	Signal PDFs
	Background PDFs
	Fitting functions
	Parameters of the t PDFs
	Validation tests
	Results

	Time-dependent analysis systematics


	Summary, conclusion and perspectives
	Appendix
	Probability Density Function Definitions
	Gaussian function
	Bifurcated Gaussian function
	Cruijff function
	Crystal Ball function
	Argus function
	Exponential function
	Linear function

	Fragmentation corrective weights
	Kaonic resonances distortion
	Parametrization of TM mES-E correlations
	Study of E Cruijff parameters dependence in mES bins
	Fit projections
	mES projections in E bins
	E projections in mES bins


	Toy studies for the charged channel analysis
	Self-cross-feed fraction
	Pure toy studies
	Embedded toy studies

	B+   K+- +   fit projection study
	Study of the mES and the Fisher discriminant fit projections
	Study of the E fit projection

	Toy studies for the time-dependent analysis
	Pure toy studies
	Embedded toy studies


	Bibliography
	Résumé


