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1. Introduction

1.1. Mitochondria

Mitochondria are organelles found in most eukaryotic cells (all plants, animals,
fungi and protists) (Henze & Martin, 2003). This compartment, which has a double-
membrane-enclosed structure, together with the nucleus is the distinguishing
characteristics of eukaryotic cells and is not found in prokaryotic cells. Mitochondria
are considered to be the double-membrane-bounded powerhouses of eukaryotic cells,
because they generate most of the supply of adenosine triphosphate (ATP) used as a
source of chemical energy for the cells. The prokaryote-to-eukaryote transition is still
unclear with many different theories on the go. In addition to supplying cellular
energy, mitochondria are involved in other functions such as signalling, cellular
differentiation, cell death, as well as the control of the cell cycle and cell growth. They
are also implicated in several human diseases including mitochondrial disorders
(Burnett et al, 2005) and cardiac dysfunction (Lesnefsky et al, 2001) and may play a
role in the aging process.

Mitochondria are semi-autonomous in the sense that they are partially
dependent on the cell to replicate and grow. They have their own DNA, ribosomes and
can make their own proteins. Similar to bacteria, mitochondria have circular DNA (mt
DNA) and replicate by a reproductive process called fission. A typical animal cell will
have on the order of 1000 to 2000 mitochondria. So the cell will have a lot of materials
that are capable of producing a high amount of available energy. This ATP production
by the mitochondria is coupled to the process of respiration, which occurs in the

mitochondrial inner membrane with an electron transporting chain.

1.1.1. History and diseases

The first observations of intracellular structures probably representing

mitochondria date to the 1840s (e.g. Henle, 1841; Aubert, 1852; Kkolliker, 1856;
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Butschli, 1871; Flemming, 1882; Kolliker, 1888; Retzius, 1890). In 1894, Richard
Altmann established them as “elementary organisms” living inside cells and carrying
out vital functions and called them “bioblasts”. His idea of symbiotic origin of
mitochondria was accepted several decades later, based on similarities between
mitochondria and bacteria. The term mitochondrion was introduced in 1898 by Carl
Benda. It originates from the Greek “mitos” (thread) and “chondros” (granule),
referring to the appearance of these structures during spermatogenesis. The
observations of mitochondria developed with time and electromicroscopy technology.
Bonjamin F. Kingsbury, in 1912, first related mitochondria with cell respiration but
almost exclusively based on morphological observations. It was not until 1925 when
David Keilin discovered cytochromes that the respiratory chain was described. In the
middle of 20" century, the observations of mitochondria were revolutionary on
structure and metabolism. The first high-resolution micrographs appeared in 1952.
This led to a more detailed analysis of the structure of the mitochondria. The popular
term “powerhouse of the cell” was defined by Philip Siekevitz in 1957. In 1967 it was
discovered that mitochondria contained ribosomes. The year after, methods were
developed for mapping the mitochondrial genes, with the genetic and physical map of
yeast mitochondria being completed in 1976.

There are two hypotheses about the origin of mitochondria: endosymbiotic and
autogenous. The endosymbiotic hypothesis suggests mitochondria were originally
prokaryotic cells that were capable of implementing oxidative mechanisms, of which
eukaryotic cells were not capable. The autogenous hypothesis suggests mitochondria
were born by splitting off a portion of DNA from the nucleus of the eukaryotic cell at
the time of divergence with the prokaryotes. Since mitochondria share many common
features with bacteria, the endosymbiosis theory is more popular at present.

Mitochondria are found in every cell of the human body except red blood cells.
They are implicated in several human diseases. Mitochondrial diseases result from
failures of the mitochondria, damage and subsequent dysfunction in mitochondria,
which influence the cell metabolism. Diseases caused by mutation in the mtDNA

include Keams-Sayre syndrome (Butler & Gadoth, 1976), MELAS syndrome
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(Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) (Pavlakis
et al, 1984), Pearson’s syndrome (Baerlocher et al, 1992), progressive external
ophthalmoplegia, MERRF (myoclonic epilepsy with ragged red fibers) (Wu et al, 2010)
and Leber’s hereditary optic neuropathy (Hadavi et al, 2013). In most case, these
diseases are transmitted by a female to her children, as the zygote derives its
mitochondria and hence its mtDNA from the ovum. The disease primarily affects
children, but adult onset is becoming more and more common. In addition, a number
of mitochondrial dysfunctions of genetic origin are implicated in a range of age-related
diseases, including tumours. Mutations in the mitochondria-encoded subunits of ATP
synthase cause OXPHOS disease (Kovarova et al, 2012; Shoffner, 1999). ATP synthase
has also been found on the surface of cancer cells, whereas the enzyme was thought
to be localized mainly to mitochondria. More recent work on mitochondrial ATPase
regulator IF1 (description in paragraph 1.3) revealed that in tumor cells IF1
overexpression inhibits the oxidative phosphorylation causing membrane
hyperpolarization and favoring the aerobic glycolysis by ROS-mediated activation of
NFkB which results in cell proliferation. It suggested that IF1 would inhibit both ATP
synthesis and hydrolysis depending on the mass action ratio. (Formentini et al, 2012;
Sanchez-Cenizo et al, 2010). Conversely, it has been proposed that in the hypoxic
conditions of cancer cells, IF1 is involved in protecting tumor cells from excess ROS

production and ROS-mediated apoptosis (Faccenda & Campanella, 2012).

1.1.2. Main structure and function

Mitochondria vary widely in shape, such as rod-like or granular; and in size
ranging from 0.5 to 1.0 um in diameter. The first high-resolution micrographs
appeared in 1952 revealed by Palade (Palade, 1952). In the following years, different
models have been established. Figure 1 shows an observation of mitochondria from
rat pancreas exocrine cells using High-resolution scanning electron microscopy
(Perkins & Frey, 2000). This ultra-fine-structure of mitochondria was published in 2000

by Perkins and Frey, from which we could clearly distinguish the outer and inner
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mitochondrial membrane, as well as cristae, and maybe also the ATP synthase. A

model of mitochondria is shown in figure 2. Details of their components will be

developped as follows.

Figure 1. Ultra-fine-structure of mitochondria revealed by HRSEM (High-Resolution Scanning Electron

Microscopy) (Perkins & Frey, 2000).

Mitochondria from rat pancreas exocrine cells are shown in the figure. 1) Fracture plane revealing the
surface (left) and interior structure (right) of mitochondria (M). Labeled features are outer mitochondrial
membrane (OM), inner mitochondrial membrane (IM), cristae (C), tubular cristae (tC), rough endoplasmic
reticulum (rER), ribosome (r). 2) View emphasizing the intermembrane space separating the outer and

inner membranes (arrowheads) and “elemental particles” (arrows), which may be the ATP synthases.
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Figure 2. Model of mitochondrial components.

This model originated with Palade in 1952 and was reproduced by Perkins and Fray, 2000. This figure

shows the representation of the mitochondria that has been prominent until recently.

a) Outer mitochondrial membrane

The outer membrane of mitochondria encloses the entire organelle. It is around
6 and 7 nm thick and barely selective to ions or other small molecules. This membrane
has a protein-to-phospholipid ratio close to 4:6 which is similar to that of the
eukaryotic plasma membrane. It contains large numbers of integral proteins such as
porins and translocases allowing molecules of different sizes to pass from one side to

the other.

b) Intermembrane space

The intermembrane space is the space between outer membrane and inner
membrane of a mitochondrion. It is also known as perimitochondrial space. In the
intermembrane space, the concentration of small molecules such as ions and sugars is

the same as in cytosol because of the outer membrane permeability. However, large
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size proteins have specific signalling sequences to be transported across the outer

membrane to the intermembrane space, e.g. cytochrome c (Chipuk et al, 2006).

c) Inner mitochondrial membrane

The inner membrane of mitochondria is very rich in protein. It contains around
1/5 of the total protein in a mitochondrion. It is also very selective to most of
molecules. Almost all ions and molecules require special membrane transporters to
enter or exit the matrix. Proteins are ferried into the matrix via the translocase of the
inner membrane (TIM) complex or via Oxal (Herrmann & Neupert, 2000). Besides, the
inner membrane has a particularly high level of one phospholipid, cardiolipin, which is
important to stabilize the respiratory chain supercomplexes (Eble et al, 1990; Pfeiffer
et al, 2003; Zhang et al, 2005). The respiratory chain, or electron transport chain, is
located in the inner membrane containing four protein complexes. It forms a
membrane potential, which is used to produce ATP. Most of the ATP in a cell is
produced in the inner membrane by the enzyme ATP synthase, which is also known as
complex V forming the oxidative phosphorylation (OXPHOS) chain. This membrane
also contains the ATP/ADP transporter, phosphate transporter that insure the

production of ATP.

d) Matrix

The matrix is the space enclosed by the inner membrane. It contains about 2/3 of
the total protein in a mitochondrion as well as a few mitochondrial genetic materials
and the machinery to manufacture the mitochondrial proteins. There are several
important metabolic processes occurring in the matrix, such as the oxidation of
pyruvate and fatty acids, the citric acid cycle, vitamins biosynthesis, and hormone
steroids biosynthesis etc. It is also implicated in the calcium and ROS signaling. In

addition, it participates in the cell aging and apoptosis.
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1.1.3. Electron transport chain

The electron transport chain locates in the inner mitochondrial membrane. It
consists of a series of protein complexes cooperating to generate redox reactions,
which couples electron transfer between an electron donor and an electron acceptor
(such as NADH and 0,) to the transfer of protons H" across the membrane, establishing
an electrochemical proton gradient. The proton gradient is used by the enzyme ATP
synthase to store energy as ATP (adenosine triphosphate). Figure 3 shows the

mitochondrial electron transport chain in Saccharomyces cerevisiae.
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Figure 3. Representation of S. cerevisiae mitochondrial electron transport chain (Rigoulet et al, 2010).

a) Complex | or NADH dehydrogenase

Complex | is the first enzyme of the respiratory chain, which contains a soluble
and transmembrane part. The protein structure in Thermus thermophiles was solved in
2010 (Efremov et al, 2010). This complex couples electron transfer between NADH and
quinone to proton translocation. Two electrons are removed from NADH and
transferred to ubiquinone (Q). The reduced product ubiquinol (QH2) freely diffuses
within the membrane, and complex | translocates n protons (n, the number of
translocated protons) across the membrane, thus producing a proton gradient.

NADH + H" + Q + n H' atrix = NAD" + QH, + n H' intermembrane
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In yeast mitochondria, the complex | is replaced by two NADH dehydrogenases
located in inner membrane facing matrix (Ndip) or facing intermembrane space
(Ndelp and Nde2p). They lack the transmembrane part, thus in yeast mitochondria

the reduction of NADH does not induce proton translocation.

b) Complex Il or succinate dehydrogenase

Complex Il refers succinate dehydrogenase, which is bound to the inner
membrane facing matrix. It is the only enzyme that participates in both the citric acid
cycle and the electron transport chain (Oyedotun & Lemire, 2004). It catalyzes the
oxidation of succinate to fumarate with the reduction of ubiquinone to ubiquinol. The
succinate binding site and ubiquinione binding site are connected by a chain of redox

centers including FAD and the Fe-S cluster.

c¢) Complex Ill or complex bc,

Complex Il is also called cytochrome bcl complex. It is a mutisubunit
transmembrane protein encoded by both mitochondrial (cytochrome b) and the
nuclear genomes (all other subunits) (Gao et al, 2003). Three subunits have prosthetic
groups. The cytochrome b subunit has two b-type hemes (b, and by), the cytochrome ¢
subunit has one c-type heme (c1), and the Rieske Iron Sulfur Protein subunit (ISP) has a
two iron, two sulfur iron-sulfur cluster (2Fe-2S). This complex catalyzes the reduction
of cytochrome c by oxidation of coenzyme Q (ubiquinone) and the concomitant
translocation of four protons from the mitochondrial matrix to the intermembrane

space.
QHZ +2 Cyt c (Fe3+) +2 H+matrix 9 Q +2 CVt c (Fe2+) +4 H+intermembrane

In the Q cycle process, two protons are consumed from the matrix, four protons

are released into the intermembrane space, and two electrons are passed to

cytochrome c (Kramer et al, 2004). As a result a proton gradient is formed across the

membrane.
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d) Complex IV or cytochrome c oxidase

The complex IV or cytochrome ¢ oxidase is a large transmembrane protein
complex found in bacteria and the mitochondrion (lwata et al, 1995; Tsukihara et al,
1996). This is the last enzyme in the respiratory chain of mitochondria. It receives an
electron from each of four cytochrome ¢ molecules, and transfers them to one oxygen
molecule, converting molecular oxygen to two molecules of water. In the process, it
translocates four protons across the membrane, helping to establish a transmembrane

proton gradient that is subsequently used by ATP synthase to synthesize ATP.

4 cyt c (Fe2+) + 02 + 8 H+matrix 9 4 Cyt c (Fe3+) +2 HZO +4 H+intermembrane

e) Coupling with ATP production via ATP synthase (complex V of OXPHOS chain)

The electron transport chain and ATP synthesis are coupled by the proton
gradient across the inner membrane. The chemiosmotic hypothesis was first proposed
in 1961 by Peter D. Mitchell. The protons move back across the inner membrane
through the enzyme ATP synthase (also called complex V). The flow of protons back
into the matrix of the mitochondria via ATP synthase provides energy for adenosine
disphosphate (ADP) to combine with inorganic phosphate to form ATP. The term
proton motive force (pmf) was created from the electrochemical gradient to describe
the energy that is generated by the transfer of protons or electrons across an energy
transducing membrane. The equation of the electrochemical proton gradient can be

simplified to:
A+ = FAy - 2,3 RT ApH

where the F is Faraday constant (96,485 C mol'l); R is the molar gas constant
(8.314) mol'lK'l), T is the temperature in Kelvins, and Ay is the transmembrane

electrical potential difference in volts.
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1.2. ATP synthase

ATP synthase is an essential enzyme in all kinds of cells, no matter prokaryote or
eukaryote, plants or animals. It catalyzes ATP synthesis from ADP and inorganic
phosphate driven by a flux of protons across the membrane down the proton gradient
generated by electron transport chain. ATP is the most commonly used energy form of
cells from most organisms in order to achieve most of cellular functions. ATP synthase
is a large protein complex sitting in the inner membrane of mitochondria with a
membrane embedded section F, and a soluble section F;-ATPase facing the matrix. So
it is called Fo,F; ATP synthase. When neither respiratory chain nor photosynthetic
proteins can generate the pmf, ATP synthase works as a proton pump at the expense
of ATP hydrolysis. The overall reaction is as following, where the n represents the
number of protons pumped through ATP synthase. This number varies from different

organismes (see paragraph 1.2.3.3 proton translocation).

ADP> + HPO4™ + H" + n H'intermembrane & ATPY + Hy0 + n H' magrix

However, in most cases ATP hydrolysis activity is a potential danger to a living
cell, so ATP synthase has several regulatory mechanisms to prevent futile ATP wasting,

such as the IF1 inhibition.

1.2.1. Classification of different types of ATPases

There are different types of ATPases found in different organisms. According to
their functions, structures, localisations as well as ions that they transport, they are
classified into different types.

F-ATPase is also known as Fo,F; ATP synthase, which is found in bacterial plasma
membranes, in mitochondrial inner membranes, and in chloroplast thylakoid
membranes. Its major function is to use the proton gradient to drive ATP synthesis by

allowing the protons flux across the membrane down their electrochemical gradient.
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The produced energy is then used to support cell functions. The F, domain is integral in
the membrane to insure the proton transport across the membrane, whereas the F;
domain is peripheral and contains the enzyme catalytic sites. F,F; ATP synthase of
Saccharomyces cerevisiae is the central subject of our study. Its structure, function and
catalytic mechanism will be described in following paragraphs.

V-ATPase is called vacuolar-type H'-ATPase, which is one of the most
fundamental enzymes found in almost every eukaryotic cell. V-ATPase functions as
ATP-dependent proton pump. It couples the energy of ATP hydrolysis to proton
transport across intracellular and plasma membranes of eukaryotic cells. It plays a
variety of roles for the function of many organelles (Nelson et al, 2000).

A-ATPase is called A,A; ATPase. It is found exclusively in Archaea and has a
similar function to F-ATPase. But structurally, it is closer to V-ATPase. This type of
ATPases may have arisen as an adaptation to the different cellular needs and the more
extreme environmental conditions faced by Archaeal species (Bickel-Sandkotter et al,
1998).

P-ATPase is also known as E1-E2 ATPase. They are found in bacteria and in a
number of eukaryotic plasma membranes and organelles. And they function to
transport a variety of different compounds, including many ions and phospholipids,
across @ membrane using ATP hydrolysis for energy. There are many different classes
of P-ATPases, each of which transports a specific type of ion (Axelsen & Palmgren,
1998). In addition, they all appear to interconvert between at least two different
conformations, denoted by E1 and E2. During their ion transport cycle, P-ATPases form
phosphorylated intermediate state, which is the distinction from other classes of
ATPases (Bublitz et al, 2011).

E-ATPase is a type of membrane-bound cell surface enzymes. E stands for
“Extracellular”. These ATPases are found in most eukaryotic cells and hydrolyse
nucleotide tri- and/or diphosphates in the presence of Ca** or Mg** (Plesner, 1995).
And they play important roles in many biological processes.

F-, V- and A-ATPases are multi-subunit complexes with a similar architecture,

which is one membrane embedded part and one soluble catalytic part. And they
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possibly use the rotary motors to achieve catalytic mechanism and ions transport.
Details will be described in F,F; ATP synthase structures. The P-ATPases are quite
distinct in their subunit composition and in the ions they transport, and they do not

appear to use a rotary motor.

1.2.2. Structures of FoF1 ATP synthase

In order to better understand the catalytic mechanism of this large protein
complex ATP synthase, it is necessary to start with its structure. The common global
structure shared by various ATP synthases is composed of two linked complexes: the
soluble catalytic core F; ATPase complex and the membrane-embedded proton
channel F, complex. Electron microscopic images in figure 4 show the similarity of the
global structure of ATP synthases from chloroplast, bacteria and mitochondria.
Although F.F; ATP synthases from different organisms share a common general
structure, the nomenclature of different subunits are sometimes different, especially
in the case of F, sector. Thus, different ATP synthases with their compositions of

subunits as well as the nomenclature are presented in table 1.

Figure 4. Electron microscopic images of ATP synthase from various organisms.

The images were obtained by averaging negatively stained single particles images. a) chloroplast ATP
synthase (Bottcher et al, 1998); b) E. coli ATP synthase (Wilkens & Capaldi, 1998); c) bovine
mitochondrial ATP synthase (Karrasch & Walker, 1999).
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Figure 5. Simplified representation of yeast F,F; ATP synthase structure (according to the thesis of

Vincent Corvest, 2006).

Figure 5 is a simplified image representing yeast F,F; ATP synthase architecture,
with its F, and F; sectors coloured in pink and blue respectively. In addition, since the
enzyme functions with a rotary mechanism, we could also distinguish the mobile part
as the rotor (hatched part in figure 5), and the fixed part as the stator (figure 5). It will

be described later in the following paragraphs.
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Bacteria Chloroplast Mitochondria

Stoichiometry Escherichia Arabidopsis Saccharomyces Bos
in coli thaliana cerevisiae taurus
S. cerevisiae
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F, sector 1 ) ) i )
n.d. - » k -
1 " S IF1 IF1
63aa (7383Da)
Protein
regulators n.d. = . STF1 .

Table 1. Nomenclature of subunits from F,F, ATP synthase in bacterial, chloroplast and mitochondrial

ATP synthases.

The name and the stoichiometry of each subunit are indicated in this table. The composition of both
subcomplex F, and F; are as well indicated. In addition, proteins associated to F, sector and proteins

function as ATP synthase regulators are listed.

1.2.2.1. F,sector

Fo sector is the membrane-embedded F,F; ATP synthase subcomplex, which is

also well studied but less visualized comparing to the F; sector. As we can see in table
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1, this F, sector consists of eight subunits (OSCP, 4, d, h, 9, 6, 8 and f, nomenclature of
yeast) in mitochondrial ATP synthases. In the case of yeast, there are four other
subunits associated to F,, €, g, k and i; in the case of bovine, the associated proteins
are e and g. For bacteria and chloroplast, the F, sector simply has subunits a, b and c,

which are equivalent of mitochondrial 6, 4 and 9.

Figure 6. Models of F,F; ATP synthases representing Saccharomyces cerevisiae mitochondrial ATP

synthase and Escherichia coli ATP synthase.

Panel a, topological model of Saccharomyces cerevisiae mitochondrial ATP synthase F, sector, with
partially reconstructed protein structure (Stock et al, 1999) (thesis of Rémy Fronzes, 2004). Panel b, the

bacterial ATP synthase is illustrated as the simplest version of ATP synthases (Yoshida et al, 2001).

OSCP is the short form of Oligomycin Sensitivity Conferring Protein in
mitochondrial ATP synthase, which is called & subunit for bacterial and chloroplast ATP
synthases. It appears to be part of the peripheral stalk that holds the F; subcomplex
o333 catalytic core stationary against the torque of the rotating central stalk.

Subunit 4 links the F; subcomplex to F, membranous part via the OSCP and
related membranous proteins. Similar with OSCP, subunit 4 also stabilize the asf3

catalytic core against the rotation.
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Subunit 6 (analogue of subunit a in E. coli) cooperates with subunit 9 to form the
proton translocation pathway through the four indispensable residues Gluige, Argaio,
Glu,19 and Hisyss (numbering in E. coli, also shown in figure 7) that form the two half-
channels. In the basic structure of E. coli, it is proposed that this subunit consists of five
or six transmembrane segments (Jager et al, 1998; Long et al, 1998; Vik et al, 2000).

Subunit 9 (analogue of subunit c in bacteria, chloroplast and bovine) functions as
the membranous rotor of ATP synthase. Ten subunits 9 (the stoichiometry varies from
8 to 15 among different organisms) (Dimroth et al, 2006; Meier et al, 2006; Meier et al,
2007; Pogoryelov et al, 2007; Toei et al, 2007; Watt et al, 2010) form an oligomeric ring
that makes up the F, rotor (Jiang et al, 2001; Stock et al, 1999). The earlier NMR study
of bacterial single copy subunit ¢ showed a stoichiometry of twelve (Rastogi & Girvin,
1999) (see figure 7). Later on, the size of bacterial c-ring was suggested to be ten
(Ballhausen et al, 2009; Fillingame & Dmitriev, 2002; Fillingame et al, 2000). The flux of
protons through the proton translocation channels drives the rotation of the c ring,
which in turn is coupled to the rotation of the F; subcomplex y subunit rotor due to the
permanent binding between the y and € subunits of F; and the c ring of F,. The residue
Aspg; in E.coli (figure 7) (glutamate for other organisms) is essentially implicated in the

proton translocation (described in paragraph 1.2.3.3 proton translocation).
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Figure 7. 3D structure of E. coli subunit c monomer determined by NMR, and representation of E. coli

subunits a-c;,.

Panel A, side view of protonated subunit c monomer, at pH5 (pdb file, 1cOv) (Girvin et al, 1998). Panel B,
side view of deprotonated subunit ¢ monomer, at pH8 (pdb file, 1c99) (Rastogi & Girvin, 1999). Panel C,
representation of duodenary oligomer of subunit c (green) with subunit a (orange) (pdb file, 1c17) (Rastogi

& Girvin, 1999).

Subunit 8 is essential for the F, subcomplex assembly (Devenish et al, 2000;
Marzuki et al, 1989). But its function is not yet very clear.

Subunit d is important for the ATP synthase function. It is a hydrophilic protein,
and associated to subunits 4, h and OSCP (Norais et al, 1991).

Subunit f is required for the assembly of subunits 6, 8 and 9. (Spannagel et al,

1997).

1.2.2.2. F; sector

F1 sector is the soluble part of the ATP synthase, which contains the catalytic
core of the enzyme. This subcomplex has been well studied in various organisms. F;
sector of ATP synthase could generate ATP synthesis as well as ATP hydrolysis when it
is attached to F, part, whereas the isolated F; could only hydrolyze ATP. So it is also

called F;-ATPase. For instance, FoF;-ATP synthase catalyzes ATP synthesis from ADP
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and inorganic phosphate through its F; sector en presence of the proton gradient
across the membrane generated by electron transport chain. When the membrane
could not generate the proton gradient or the Fi;-ATPase becomes soluble detached
from the F, part, F;-ATPase would function in the direction of ATP hydrolysis. Many
studies have been done to determine the structure of F-ATPase, such as bacterial F;-
ATPase from E. coli (Cingolani & Duncan, 2011; Hausrath et al, 1999; Rodgers & Wilce,
2000), chloroplast F;-ATPase from spinach (Groth & Pohl, 2001), and mitochondrial F;-
ATPase from beef heart (Abrahams et al, 1994), rat liver (Bianchet et al, 1998), and
also from yeast S. cerevisiae (Kabaleeswaran et al, 2006; Kabaleeswaran et al, 2009).
The common structure of F;-ATPase shared by many organisms contains five subunits,
o, B, v, 6 and g, with the stoichiometry of 3, 3, 1, 1 and 1 respectively (Walker et al,
1985) (see table 1 and figure 8).

Figure 8. Structure of F-ATPase from Saccharomyces cerevisiae.

Panel a, globle view of X-ray crystal structure F;-ATPase from Saccharomyces cerevisiae. Panel b,
separated presentation of a, B, y, 6 and € subunits (Kabaleeswaran et al, 2006). The presented a and B

subunits correspond to aDP and BDP. Images created using PyMol software, with pdb file 2h/d.
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o and B subunits form the catalytic core of the F; subcomplex with three copies
of each. There is a substrate-binding site on each of the af interface, which is the
binding site in each af catalytic interface and aB non-catalytic interface. The asf3
complex forms a cylinder that surrounds the central stalk. The three pairs of a/B
subunits undergo a sequence of conformational changes leading to ATP synthesis (or
hydrolysis), which are induced by the rotation of y subunit.

y subunit forms the central shaft that connects the F, rotary motor to the F;
catalytic core. It sequentially deforms the oas[Bs catalytic core by a rotary activity
transmitted from the membrane-embedded rotor of subunit 9. Its two terminal
extremities are inserted into the catalytic core, and its midpart forms the “foot of
gamma” (name frequently used in this work, referring residues around 80-180 in
yeast).

6 subunit contributes to the assembly of the protein rotor by the connection of y
subunit and subunit 9 (Watts et al, 1995). But the mitochondrial & subunit does not
play a role during enzyme catalytic activity. It is analogue of bacterial or chloroplast €
subunit.

€ subunit only exists in mitochondrial ATP synthases. It is observed that yeast
depleted of this subunit could not grow in fermentative medium (Guelin et al, 1993).
Other experiments demonstrated the essential role of subunit € in the assembly of F;
and the incorporation of hydrophobic subunit c into the F;-c oligomer rotor structure

of mitochondrial ATP synthase in higher eukaryotes (Havlickova et al, 2010).

1.2.2.3. F,F; complex

Using single particle electron cryomicroscopy, the complete view of bovine
(Baker et al, 2012; Rubinstein et al, 2003) and yeast (Lau et al, 2008) F,F; ATP synthase
has been observed. None of the entire protein complex structure has been resolved
either by X-ray crystallography or by NMR. Nevertheless, the protein assembly of F;

sector into the membrane-embeded c ring has been studied. The first crystal structure
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model of yeast F1c10-ATP synthase was resolved at 3.9 A. The visualization of the c ring
and its close contact with y and & subunits suggested that they might rotate as an
ensemble during catalysis (Stock et al, 1999). Then the yeast Fic10-ATP synthase was
revealed by the recent work of at 3.43 A, which was the first model of MgADP-
inhibited state of the yeast enzyme (Dautant et al, 2010). Compared to bovine enzyme
that has eight copies of c subunit (Watt et al, 2010), the yeast central stalk was twisted
(see figure 9). Besides, isolated partial peripheral stalk has also been resolved (Dickson
et al, 2006). To date, the structure of the membranous subunit a (or subunit 6) as well

as the entire complex still remain unclear, which requires more research.

Figure 9. X-ray crystal structures of yeast and bovine F;,c,,-ATP synthase.

Panel a, structure of yeast F,c,o-ATP synthase (Dautant et al, 2010); Panel b, structure of bovine F,cg-ATP

synthase (Watt et al, 2010).
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1.2.2.4. Supramolecular organization of F,F;-ATP synthase

For many organisms including yeast, plant and mammals, mitochondrial ATP
synthase has been shown to adopt oligomeric structures (Arnold et al, 1998; Eubel et
al, 2003; Krause et al, 2005). In yeast mitochondria, it has been demonstrated that ATP
synthase subunits e and g are involved in the dimerization and oligomerization (Arnold
et al, 1998; Paumard et al, 2002; Thomas et al, 2008). This oligomerization of ATP
synthase has been suggested to determine the arrangement of mitochondrial cristae
(Arselin et al, 2004; Paumard et al, 2002), which is the basis of mitochondrial
mophology. An exemple of yeast dimeric ATP synthase observation using electron
microscopy is shown in figure 10. Althrough the oligomerization of ATP synthase is
shown to play an important role in the network of cristae during mitochondrial
biogenesis, no evidence has been shown that the ATP synthase oligomerization has

any effect on the enzyme functions.

Figure 10. Observation of dimeric yeast mitochondrial ATP synthase by electron microscopy (Thomas et

al, 2008).

Averaged images represent six classes in which dimers exhibit various angle between two monomers.

1.2.3. FoF1 ATP synthase: A molecular rotary motor

1.2.3.1. Visualization of the rotation

The first direct visualization of Bacillus PS3 F; rotation driven by ATP was
obtained sixteen years ago (Noji et al, 1997). In that experiment, bacterial subcomplex

a3fB3y was immobilized on a glass surface covered by Ni-NTA via the N-terminal
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extremity of its B-subunits. The y subunit was biotinylated to bind streptavindin and a
fluorescently labeled actin filament, which rotated uni-directionally, counterclockwise

(view from membrane side) after ATP addition (figure 11).

W

Figure 11. First direct observation of the y subunit rotation in the asBsy subcomplex (Noji et al, 1997).

The rotary motor model was confirmed in 1999 by another observation of ¢
subunit (equivalent to subunit 9 in Sccahromyces cerevisiae) of F,F; ATP synthase
rotation (Sambongi et al, 1999). In this model (figure 12), Escherichia coli F.F, was
immobilized on a coverslip through a His-tag linked to the N-terminus of each a
subunit. A ¢ subunit glutamine was replaced by cysteine and then biotinylated to bind
streptavindin and a fluorescently labeled actin filament. After the addition of MgATP,

the actin filament that was connected to the c subunits rotated.

Figure 12. Observation of the c subunit rotation in F,-ATPase of E. coli (Sambongi et al, 1999).
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Later on, several similar experiments were carried out to show the rotation of
ATP synthase more precisely, such as different steps of rotation by 120° (Yasuda et al,
1998), which corresponds to the sequential ATP hydrolysis by the three B subunits. In
order to detect the stepwise rotation, a smaller marker, a colloidal gold bead of 40 nm
diameter was used to replace actin (Yasuda et al, 2001). PS3 subcomplex asfBsy was
immobilized and its y subunit was attached by the gold bead (figure 13). It was shown
that one 120° rotation step consisted of roughly 90° and 30° substeps, which were
suggested to be related to ATP binding and hydrolysis product (ADP, phosphate, or

both) release respectively.

Figure 13. Observation of Bacillus PS3 F,-ATPase stepwise rotation (Yasuda et al, 2001).

More recently, the observation of the rotation was performed with a more
sophisticated technique that visualized rotation by attaching a bead duplex to the y
shaft and simultaneously detected binding of a fluorescent ATP analog to a particular
site through angle-resolved fluorescence imaging (Nishizaka et al, 2004) (figure 14).
This work showed that the 120° rotary step were more likely subdivided into an 80°
and a 40° substeps. In particular, this 80° substep was linked to the binding of one ATP
molecule to one empty site, triggering the ATP hydrolysis and/or the phosphate

release but not ADP release.
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Figure 14. Simultaneous observation system of Bacillus PS3 F;-ATPase rotation and ATP binding

(Nishizaka et al, 2004).

Simultaneous-observation system (not to scale). Single turnovers of ATP hydrolysis on catalytic sites in
F,-ATPase are visualized with fluorescently labeled ATP (Cy3-ATP), which is excited by an evanescent
wave under total internal reflection fluorescence microscopy. Cy3-ATP appears as a stable fluorescent
spot when it binds to a surface-immobilized F, molecule and the spot disappears when ADP is released,
whereas unbound Cy3-ATP is virtually invisible because of its rapid Brownian motion. Rotation of a bead
duplex attached to the y shaft is simultaneously observed under bright-field illumination at a

wavelength different from the emission of Cy3-ATP.

Stepwise y rotation has also been proved by single-molecule FRET (fluorescence
resonance energy transfer). In the study of Diez and co-workers, the double-labeled E.
coli FoF1 ATP synthase was incorporated into liposomes. And it was demonstrated that
y subunit rotated during ATP synthesis powered by proton transport, showing three
distinct distances to b subunits in repeating sequences (Diez et al, 2004). More
recently, a splendid work using high-speed atomic force microscopy revealed rotary
catalysis of rotorless F;-ATPase. In this work, isolated asBs; stator ring was shown to
cyclically propagate conformational states in the counterclockwise direction, similar to
rotary shaft rotation in F;-ATPase. It suggested the cooperative interplay between
subunits in hexameric ATPases (Uchihashi et al, 2011).

All those studies as well as some other brilliant work demonstrated the rotary
mechanism of F,F; ATP synthase in precising the substeps of the rotation and the
relative sequence of substrate binding, ATP hydrolysis and product release. In the

following paragraph, | am going to introduce the rotor and stator of ATP synthase.
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1.2.3.2. Rotor and stator

The rotor refers to the mobile part of the molecular motor, which is to say the
subunit 9 (or c), the central axis formed by subunits y, § and € in mitochondrial case, y
and € in bacterial and chloroplast cases (see figure 5).

The rotary activity is initiated by the protomotive force which triggers the
rotation of subunit 9 by the proton translocation. This rotary movement will then
transmit to the asymmetric central axis (y, 6, € subunits or y, € subunits), which then
deform the three catalytic sites located in B subunits, sequentially. The conformational
change of the catalytic sites generates the ATP synthesis from ADP and inorganic
phosphate. The transformation of chemiosmotic energy to mechanical energy is the
key point of ATP synthesis, which makes the subunit 9 essential by its contribution of
energetic coupling between F, and F; sectors.

The central axis y subunit is essential not only for the protein complex assembly
but also for the rotary procedure owing to its contact with the membrane rotor
subunit 9 and asymmetric structure interacting with F; catalytic subunits. It plays the
important role of coupling energy between the rotor and the stator.

The stator is the immobile part of F,F; ATP synthase. It contains three pairs of
o/B subunits and all the subunits in F, sector except the c-ring (subunit 9). The crown-
like asB3 subunits are fixed by the peripheral stalk, subunits 4, 6 and OSCP through the
contact with OSCP (see figure 5). And the asB; subunits catalyse ATP synthesis or
hydrolysis. The subunit 6 contributes to the proton translocation (Fillingame et al,

2002) (see figure 5-6).

1.2.3.3. Proton translocation

The proton translocation initiates the rotation of ATP synthase. This activity
requires the cooperation of the subunits 6 and 9 in yeast (a and c in E. coli,
respectively). Since these two subunits are coded by the mitochondrial genes, it is

difficult to perform genetic modifications. Moreover, the fact that the protein
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structures of the membrane-embedded subunits a and b are not yet clear adds more
inconvenience of the study. Most of the studies about proton translocation were
realized using the bacterial ATP synthase as model. The classic mechanism of proton
translocation in bacterial subunits a and ¢ was proposed (Junge et al, 1997; Vik &
Antonio, 1994; Vik et al, 2000), and it could be adapted for mitochondrial and sodium-

driven bacterial ATP synthases (figure 15).
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Figure 15. Models for the generation of rotation by proton transport through the F, domain of bacterial ATP

synthase.

Panel a, model according to (Junge et al, 1997). Panel b, model according to (Vik et al, 2000).

It is shown that several properties are required for the proton translocation
function of ATP synthase. Firstly, an electrostatical constraint implies that protonated
sites (Aspe1) on the c-ring are always electroneutral when facing the lipid core,
whereas their facing the protein (a subunit) can be deprotonated and charged.
Secondly, the intramembranous a subunit contains two hypothetical half-channels that
allow passage of protons through the membrane. The two accessible channels refer to:

the first one that extends from the cytoplasmic surface to the center of the membrane
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includes subunit a residues Hisyss and Gluyig; the second one that extends from the
periplasmic surface to the center of the membrane includes subunit a residues Arg,1g
and Gluige. Thirdly, the c subunit carries out Brownian rotational fluctuations relative
to a subunit with the influence of neighbouring molecules. As long as the Aspg; of ¢
subunit (interacting with Arg,1o of subunit a) gets protonated from protons originating
from the periplasm through half channel Hisyss and Glusss, it is electroneutral and free
to rotate towards the lipid environment. Most importantly, this rotation will be driven
by the pmf. And it will also be electrostatically driven, as Arg,1o of subunit a will be
strongly attracted to the remaining unprotonated Aspe;. This arrangement assures that
rotation is unidirectional. When rotation occurs, a protonated Aspe; of ¢ subunit will
move from the lipid environment into contact with subunit a and release the proton.
And the cycle continues.

The proton translocation drives the rotation of ATP synthase. And the number of
¢ subunit monomer determines the number of proton transported per cycle.
Consequently, as the F; sector contains three catalytic sites and synthesizes three
molecules of ATP per cycle, the various number of ¢ subunit monomers automatically
leads to different H*/ATP ratio. This ratio is also related to the number of ATP
molecules synthesized by mitochondrial respiration. So it is an important parameter
influencing the cell bioenergetics. In different species, the ¢ ring monomers vary from
8 to 15. So the H'/ATP ratio are expected to vary from 2.7 to 5. Experimental
determination of the H'/ATP ratios revealed values of 4 for chloroplast (theoretical
values of 4.67) and E. coli ATP synthase (theoretical values of 3.33) (Steigmiller et al,
2008); 3 for yeast mitochondrial ATP synthase (theoretical values of 3.33) (Petersen et
al, 2012).

1.2.4. Forward the mechanism of ATP synthase

ATP synthase has a mode of function that is unusual for enzymes because of its
structural complexity and reaction mechanism, and this required much time and

extensive studies to establish. For years, the mechanism of ATP synthase has been a
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popular topic for scientists. The most detailed studies of ATP synthase concern the F;
part and how it functions. Boyer and co-workers clarified that the enzyme functions in
a very particular way. In 1993, Boyer established a sophisticated model called “Binding
Change Mechanism” (Boyer, 1993). Later on, Walker and co-workers established the
3D structure of F;-ATPase from bovine heart mitochondria (Abrahams et al, 1994).
Walker clarified the structural conditions of the enzyme’s molecular machinery and
thereby verified Boyer’s mechanism. To award their outstanding contribution to this
field, the Nobel Prize in Chemistry 1997 was divided, one half jointly to Paul D. Boyer
and John E. Walker "for their elucidation of the enzymatic mechanism underlying the
synthesis of adenosine triphosphate (ATP)"; and the other half to Jens C Skou for his
discovery of the enzyme Na’, K'-ATPase. At the same period, there were many other
valuable studies focused on the structural and catalytic properties of ATP synthase
using various approaches. All of them contribute to cumulate our knowledge on this
splendid enzyme, an exceptional molecular machine. However, this journey is not
finished yet. For instance, the number and mode of participation of three potential
catalytic sites remain unsettled, which is still ongoing debated. And also the
regulations of ATP synthases during their catalysis, such as our topic of IF1 inhibition,

are not yet clear. Anyway, the research never stops.

1.2.4.1. Binding change mechanism

According to Boyer's binding change mechanism for ATP synthesis, the three
catalytic sites on the enzyme bind ADP and phosphate in sequence and then undergo a
conformational change so as to make a tightly bound ATP. The sites then change
conformation again to release the ATP. At any instant of catalysis, the three sites
undergoing sequential conformational changes have three different conformational
states (O: Open, T: Tight, L: loose). These conformational changes are accomplished by
rotational catalysis driven by the rotating inner core of the enzyme, which is in turn

driven by the protons crossing the mitochondrial membrane.
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Most in vitro studies of the catalysis of ATP synthase trend to the reversed
direction, ATP hydrolysis. Since the purification of mitochondria as well as isolated F;-
ATPase has been well developed, experiments testing ATP hydrolysis with these
materials are easier to establish. For example, with purified isolated F1-ATPase, one
could manipulate more precise functional experiments and obtain more accurate
results without interference of impurities. Moreover, experimentally, with liposomes it
is difficult to create an artificial proton gradient that is necessary for the enzyme to

catalyze ATP synthesis.

ADP-P; Release

ATP

ADP-Pi wweasey AP B
Hydrolysis
h
ATP ADP-P;

Figure 16. Model of ATP synthase rotary catalysis (Yoshida et al, 2001) annotated according to Boyer’s

classic model.

Figure 16 shows the binding change mechanism when ATP synthase functions in
the direction of ATP hydrolysis, which is based on Boyer’s classic binding change

mechanism. Taking one of the three catalytic sites as an example (top site colored in
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dark salmon), we could see that hydrolysis of one nucleotide is subdivided into three
steps. When y subunit rotates the first 120°, the catalytic site intakes one ATP with
loose binding. When y subunit rotates the second 120°, ATP binding becomes tight
with the conformational change and hydrolysis occurs. When y subunit rotates the
third 120°, the catalytic site containing the hydrolyzed products ADP and Pi will open

to release the products. Then the cycle repeats.

1.2.4.2. Catalytic sites occupancy: Uni-site catalysis and multi-sites

catalysis

Uni-site catalysis refers to the conditions that allow only a single catalytic site to
bind one ATP molecule during the ATP hydrolysis of F;-ATPase (Grubmeyer et al,
1982). In such conditions, ATP hydrolysis goes very slow, with a turnover around 10™s™
(Grubmeyer et al, 1982). Later on, other studies using nucleotide-depleted enzyme
updated the turnover value to 10™ s (Milgrom Ya & Murataliev, 1987a; Milgrom Ya &
Murataliev, 1987b). This slow catalytic turnover of ATP hydrolysis was shown to be
related to the slow release of hydrolyzed products, especially ADP, but not to be
limited by the binding of ATP to the high affinity catalytic site (Grubmeyer et al, 1982;
Milgrom Ya & Murataliev, 1987a; Milgrom Ya & Murataliev, 1987b). In addition,
evidences showed that the uni-site catalysis could occur without the y subunit rotation
(Garcia & Capaldi, 1998). The y subunit rotation only affects ATP binding to the second
or third catalytic site (Garcia & Capaldi, 1998). Moreover, when ATP is loaded at a
single catalytic site on nucleotide-depleted MF;, the rate of product release is
accelerated by the binding of ATP at adjacent catalytic sites. This fact shows strong
cooperative interactions between catalytic sites (Milgrom & Cross, 1997). Finally, it is
shown that normal steady-state ATPase activity requires three intact catalytic sites, of
which at least two are required to achieve a catalytic cooperativity (Amano et al,
1996).

Multi-site occupancy has always been a controversial discussion. Some

specialists believe that ATPase catalyzes the maximal ATP hydrolysis with two catalytic
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sites occupied (bi-site); some others stand for a tri-site model, in which the maximal
turnover rates occur as long as the filling of the third site. Since they all have
experimental evidence to support their hypotheses, this question still opens to
discussion. Here, | am going to show some of those different voices.

Bi-site model is in agreement that all three catalytic sites participate sequentially
in an equivalent manner, but emphasizes that only two of the three catalytic sites
need to be simultaneously filled for rapid, steady-state ATP hydrolysis (Boyer, 2000;
Murataliev & Boyer, 1994). Bi-site model is as well supported by a centrifuge filtration
assay, which compared the ATP concentration dependence of the rate of ATP
hydrolysis by MF1 to the ATP concentration dependence of the level of catalytic sites
occupancy during steady-state catalysis (Milgrom & Cross, 2005).

Tri-site model supporters claim that occupancy of one or two catalytic sites per
F1 molecule did not yield significant rates of hydrolysis while occupancy of all three
sites yielded maximal rates (Weber & Senior, 2000; Weber & Senior, 2001; Weber et
al, 1993). The simultaneous observation of nucleotide kinetics and rotation stands by
the tri-site scheme because the marked nucleotide remained bound until 240° of y
rotation or until two more ATP molecules bound occurred (Nishizaka et al, 2004).
Specific placement of tryptophan in the catalytic site was used to detect the nucleotide
binding to the catalytic site. The fluorescence of this tryptophan was strongly
guenched on binding of nucleotides to the catalytic sites. Based on the concentration
dependency of fluorescence quenching upon ATP addition, it has been suggested that
three catalytic sites must be filled for near maximal hydrolysis activity to be attained

(Dou et al, 1998; Gruber & Capaldi, 1996; Weber et al, 1993; Weber et al, 1994).

1.2.4.3. non-catalytic sites

Non-catalytic sites refer to the nucleotide binding sites on a subunits. They
cooperate with the catalytic sites during enzyme catalytic activity. It is shown that the
nucleotide binding to the three non-catalytic sites are indispensable for ATP hydrolysis

activity (Milgrom et al, 1990). Others showed an inhibitory effect of ADP bound to
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these sites (Bullough et al, 1989; Di Pietro et al, 1981; Di Pietro et al, 1980).
Nevertheless, nucleotide binding to the non-catalytic sites seems not so important

when enzyme functions as ATP synthesis (Bald et al, 1998).

1.2.5. Regulation of ATP synthase

As mentioned above, ATP synthesis is the main function of the enzyme in most
organisms. However, in many species, especially many bacterial ones (mostly
anaerobic), the reverse reaction of ATP hydrolysis is vitally important. When neither
respiratory nor photosynthetic chains can generate pmf, ATP synthase works as a
proton pump, generating pmf at the expense of ATP hydrolysis. In this way many
important cellular functions, such as flagella motility or ion\nutrients transmembrane
transport are supported. Clearly, ATP hydrolysis activity is mostly a potential danger to
a living cell, so ATP synthase has several regulatory mechanisms to prevent futile ATP
wasting.

Several regulatory mechanisms are known to suppress the ATPase activity. 1)
Non-competitive inhibition by MgADP, a feature shared by F.F; from bacteria,
chloroplasts and mitochondria. 2) Inhibition by subunit € in chloroplast and bacterial
enzymes. 3) Inhibition upon oxidation of two cysteines in subunit y in chloroplast FoF;.
4) Inhibition by an additional regulatory protein IF1 in mitochondrial enzymes, which is
the main subject of this work.

Many natural or synthetic molecules could also inhibit ATPase hydrolysis activity
by binding to different sites of ATPase. Table 2 shows a list of identified covalent and

non-covalent inhibitors of mitochondrial F1-ATPase (Gledhill & Walker, 2005).
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Covalent Non-covalent

NBD-CI (4-chloro-7-nitrobenzofurazan) Nature inhibitor protein IF1

DCCD (N,N’ -dicyclohexylcarbodi-imide) efrapeptins

8-azido-ATP (upon UV illumination) aurovertins

2-azido-ATP (upon UV illumination) non-hydrolysable sustrate analogue

(adenylylimidediphosphate; ADP aluminium
fluoride; ADP beryllium fluoride)

5’ -p-fluorosulphonylbenzoyladenosine polyphenolic phytochemicals
(resveratrol; piceatannol)

5’ -p-fluorosulphonylbenzoylinosine non-peptidyl lipophilic cations
(rhodamine 6G);

amphiphilic peptides

(melittin from bee venom; SynA2, SynC)

Table 2. Identified covalent and non-covalent inhibitors of mitochondrial F;-ATPase (Gledhill &

Walker, 2005).

1.3. Endogenous inhibitor of ATPase, IF1

IF1 is a natural mitochondrial endogenous inhibitor, which was discovered in
1963 by Pullman and Monroy from bovine heart mitochondria (Pullman & Monroy,
1963). Until today, IF1 homologues have been characterized from mitochondria of
yeast (Hashimoto et al, 1981; Matsubara et al, 1981; Venard et al, 2003), rat (Cintron &
Pedersen, 1979), goat heart (Di Pancrazio et al, 2004) and plants (Norling et al, 1990).
Its basic inhibitory sequence is well conserved. As an inhibitor of ATPase, IF1 efficiently

prevents the enzyme from hydrolyzing ATP by binding to the F;-ATPase.

1.3.1. Structures of IF1: bovine vs yeast

In bovine heart, IF1 is a small, heat-stable protein of 84 amino acids, which is

encoded by nuclear DNA. It has been well studied and its 3D structure has been
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characterized both in solution (Cabezon et al, 2001) and bound to MF; (Bason et al,
2011; Gledhill et al, 2007b). The crystal structure of isolated soluble bovine IF1 is
shown in figure 17. As we can see, the major structure of IF1 is a long a helix with its
residues 19 to 83 solved. Its primary sequence is well conserved, particularly over
residues 14 to 47 (bovine numbering), which have been defined as the minimal
inhibitory region (van Raaij et al, 1996b). Bovine IF1 has been shown to have two
oligomeric states, tetramer and dimer, favoured by pH values above and below 6.5,
respectively (Cabezon et al, 2000b). Dimerization of IF1 occurs in its C-terminal region,
allowing the active dimeric inhibitor IF1 to bind two F; domains simultaneously
(Cabezon et al, 2000a). At pH 8, the protein forms a tetramer through its midpart,
where the inhibitory regions are masked (Cabezon et al, 2000b). The N-terminal
extremity of IF1 is not visible in the crystal structure shown in figure 17. But it was
observed interacting with the central y subunit of F; domain in the structure of
inhibited complex (Gledhill et al, 2007a). The homologue of IF1 in yeast shares the
similarity with bovine IF1, especially the well conserved minimal inhibitory sequence

(see sequence alighnment in figure 18).

N-terminus N-terminus

Figure 17. Stereo view of the 2.2 A crystal structure of bovine IF1 (Cabezon et al, 2001).

Image created by PyMol software. Pdb file, 1gmj. This crystal was solved as a tetramer. The selected

monomer has more complete residues (19 to 83) solved and shown.
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Figure 18. Protein sequence alignment of bovine and yeast IF1.

In bovine IF1 sequence, the minimal inhibitory sequence (van Raaij et al, 1996a) is underlined.

In yeast, IF1 is a smaller protein of 63 amino acids, which is encoded by nuclear
DNA as well. The crystal structure of yeast IF1 bound to MF; was recently solved with
only 1 to 36 residues visible, which is shown in figure 17. Previous study showed that
yeast IF1 also has two oligomeric states, monomer or dimer (Cabezon et al, 2002). The
monomer of yeast IF1 functions as an effective ATPase inhibitor according to the yeast
IF1 oligomerization study of Tiona ANDRIANAIVOMANANJAONA as well as the crystal
structure of IF1 inhibited ATPase (Robinson et al, 2013). But the dimeric yeast IF1 is
not yet characterized. Besides, the N-terminal part of yeast IF1 is shown to stabilize the
inhibited IF1-MF; complex but plays no role in the protein recognition step
(Andrianaivomananjaona et al, 2011). In addition, it appears to exist a homologue of
IF1 in yeast, which is named STF1. STF1 shows a similar ATPase inhibitory activity to
IF1, but at presence of IF1, its affinity to ATPase is much lower (Venard et al, 2003).
Two other proteins STF2 and STF3 have been proposed to modulate the activities of
yeast IF1 and STF1. Their physiological characters and structures still remain unclear.
STF2 seems playing a role of stabilization during inhibition of ATPase (Hashimoto et al,
1990; Hong & Pedersen, 2002). STF3 is known to be a homologue of STF2, but it has

not been isolated yet.
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N-terminus N-terminus

Figure 19. Stereo view of the 2.5 A crystal structure of yeast IF1 from the inhibited IF1-MF; complex
(Robinson et al, 2013).

Image created by PyMol software. Pdb file, 3zia. Residues 1 to 36 are solved and shown.

1.3.2. Mechanism of IF1 inhibition

1.3.2.1. Uni-directional inhibitory mechanism

The inhibition of mitochondrial F,F; ATPase by its endogenous inhibitor IF1 is
called uni-directional, for the reason that IF1 is able to inhibit mainly the ATP
hydrolysis activity of the enzyme but not the ATP synthesis (Schwerzmann & Pedersen,
1986).

When the pmf across the mitochondrial inner membrane drops, ATPase starts to
hydrolyze ATP where IF1 binds to the F; domain of ATPase and inhibits the ATP
hydrolysis. As soon as the mitochondrial inner membrane gets re-energized and the
proton gradient is rebuilt across the membrane, the enzyme will restart to catalyze the
ATP synthesis again. At this moment, IF1 is rejected from the enzyme, so that the ATP

synthesis activity is not affected by IF1 (see figure 20).
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Figure 20. Representation of IF1 inhibition of mitochondrial ATPase.

1.3.2.2. Mitochondrial-specific ATPase inhibition

IF1 is known to be a mitochondrial-specific ATPase inhibitor. It has not yet been
reported IF1 existence in bacteria or chloroplasts. Besides, it was revealed that neither
yeast IF1 nor bovine IF1 could inhibit E. coli ATPase (Cabezon et al, 2002). On the
contrary, either yeast or bovine IF1 could effectively inhibit ATPases from both species.
Whereas bovine IF1 inhibits yeast Fi-ATPase even better than yeast IF1, and yeast
inhibitors are not as effective as their bovine counterpart (Cabezon et al, 2002). Even
earlier, other studies showed that IF1 from potato mitochondria could also inhibit
bovine ATPase but poorly, despite its weak homology with IF sequences from
mammals and yeasts (Polgreen et al, 1995). Functional experiments in our lab also
showed similar results that yeast IF1 did not inhibit bacterial or chloroplast ATPase
(details in paragraph 3.2.1). The given evidences drive to the most probable conclusion

that IF1 inhibits specifically mitochondrial ATPases.
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1.3.2.3. Other inhibitory system for bacterial and chloroplast
ATPases

Absence of IF1 regulation, bacteria and chloroplast have their own inhibitory
system for ATPase hydrolysis activity, which implicates the € subunit (equivalent to 6
subunit in mitochondrial ATPases). The € subunit was first shown to be important in
bacterial ATPase regulation by (Kuki et al, 1988). Similar function was then shown in
chloroplast (Nowak et al, 2002). The conformational change of € subunit was finally
revealed to be the regulation system of bacteria ATPase (Tsunoda et al, 2001) (see

figure 21).

Figure 21. Representation of € subunits regulation of bacterial ATPase.

Image is reconstructed according to the study of (Tsunoda et al, 2001). Panel A, with the C-terminal
domain of € toward the F, (indicated as C,o), ATP hydrolysis is activated. Panel B, with the C-terminal
domain of € toward the F, part, ATP hydrolysis is inhibited. In both cases of € conformations, the enzyme

is fully functional in ATP synthesis.

Two different arrangements of the € subunit have been visualized, which are
simplified as shown in figure 21. The first one is as figure 21-A, where the C-terminal
portion of € subunit is arranged as a hairpin of two a helices that extends away from
the aszBs catalytic region and toward the position of the c subunit ring. In this

arrangement, ATP hydrolysis is activated, but the enzyme is fully coupled in both ATP
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hydrolysis and synthesis. The second one is as figure 21-B, where the two C-terminal a
helices are apart and extend along the y subunit to interact with a and B subunits.
With the C-terminal domain toward the F; part, ATP hydrolysis is inhibited and yet the
enzyme is fully functional in ATP synthesis, which is similar to the IF1 uni-directional
inhibition. Moreover, the € subunit conformational change was shown to respond the
proton motive force both in bacteria (Suzuki et al, 2003) and in chloroplast (Komatsu-
Takaki, 1989; Richter & McCarty, 1987). Nucleotide binding also has an influence of €
subunit conformational change. FRET probe was used to optically monitor the
transitions of € subunit, which confirmed that ATP binding to catalytic site induced the
contracted conformation of € subunit while ADP favored the extended one (Feniouk et

al, 2006; lino et al, 2005; Suzuki et al, 2003).
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1.4. Thesis statement

In this work, our central interest is the regulation of mitochondrial ATP synthase
by its endogenous inhibitor IF1 in Saccharomyces cerevisiae. Since ATP hydrolysis
activity is always a potential danger to a living cell, the study of IF1 regulation could
help us to better understand one efficient way to prevent futile ATP wasting, all the
more to better and better reveal details about the bio-energy system created by the
art of nature. At the same time, yeast is a perfect biological model, which is simple but
complete, easy to manipulate but sophisticated to study. As a well-studied model, we
also have access to more information, which prevents from wasting time and energy.

More precisely, in order to understand IF1 regulation system, we studied many
protein crystal structures. Indeed, they provide direct visualization of ATP synthases as
well as their interaction with IF1 (in some organisms). But this is not all. Knowing well
IF1 binding to ATP synthase is a dynamic procedure, we could only visualize the dead-
end protein complex but not fully understand the inhibitor binding process. In our lab,
the current work as well as some previous work made connections of several
techniques, such as structure analyses, mutagenesis, enzymatic kinetics and so on, to
investigate how does IF1 bind to yeast mitochondrial ATPase thereby effectively inhibit
the ATP hydrolysis.

At a molecular level, we studied numerous residues in ATPase a, B and y subunits
that are most probably implicated in IF1 binding process. Target residues were
generally classified into four groups. Mutagenesis was performed to modify those
residues, on one hand into their non-mitochondrial counterpart to investigate IF1
mitochondrial ATPase specificity; on the other hand into glycine to weaken the protein
interaction thus determine IF1 binding pathway. And of course, mutagenesis was
combined to kinetic approach in order to study the effect of mutations and
consequently analyze the roles played by each residue during IF1 binding and locking
to ATPase. With all the results, we eventually managed to propose a binding-locking-
inhibiting model for the regulation of yeast mitochondrial ATPase by IF1. Even though
the problem is not 100% solved yet, our work allows the understanding to get closer to

the reality.
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2. Materials and Methods

2.1. Materials

2.1.1. Yeast and bacteria strains

In this work, we used yeast as a biological model to study the mitochondrial
ATPase and its inhibition by IF1. Wild type and mutated ATPase in different subunits
were expressed in vyeast Saccharomyces cerevisiae, followed by subsequent
mitochondria preparations. We mainly used 3 different strains of yeast. 1)
Saccharomyces cerevisiae W303-1A AATP1AATPZ2 is a strain deficient in mitochondrial
ATPase a and B subunits. It was created by Dr. David Mueller (Chicago, IL) and kindly
provided by Dr. Marie-France Giraud (CNRS Bordeaux). 2) Saccharomyces cerevisiae
Euroscarf BY4741 AATP2 purchased from Euroscarf is a strain deficient in
mitochondrial ATPase B subunit. 3) Saccharomyces cerevisiae W303-1B YG1 AATP3
deficient in mitochondrial ATPase y subunit and transformed by wild type or mutations
were kindly provided by Dr. Emmanuel Tetaud (Bordeaux, IBGC). Detailed information

is shown in table 3.

S. cerevisiae Deficience | Genotype Applications
1) W303-1A AATP1 MAT a, ade 2-1, his 3-1, 15, leu | Expression of
AATP2 2-3, 112, trp 1-1, ura 3-1 mutations in a
and/or B subunits
2) Euroscarf AATP2 MAT a, his3A1, leu2A0, Expression of
BY4741 met15A0, ura3A0, atp2::G418R | mutations inin
subunit
3) W303-1BYG1 AATP3 MAT a, ade2-1, his3-1,15, leu2- | Expression of
3,112, trp1-1, ura3-1 mutations inin y
subunit

Table 3. Description of Saccharomyces cerevisiae strains.

Bacteria Escherichia coli were used to amplify plasmids carrying ATPase

mutations and to overexpress yeast IF1. 3 different E. coli strains with different
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functions were used. 1) XL1-Blue was chemical competent and was used to amplify
plasmids of mutagenesis products. The transformation was made by a heat shock at
42°C. 2) DH5a was electrocompetent and was used to amplify plasmids in general. The
transformation was made by an electroporation system using a Bio-Rad Gene Pulser.
3) BL21DE3 was a strain specially used for IF1 overexpression. It was deficient in two
key proteases, which reduced degradation of heterologous proteins expressed in the

strain. Detailed information is shown in table 4.

E. coli Genotype Transformation Applications
system
XL1-Blue endA1 gyrA96(nal®) thi-1 recA1 Heat shock Plasmid
relA1 lac ginV44 F'[ ::Tn10 proAB amplification

" lacl® A(lacZ)M15] hsdR17(r,- my
")

DH5a F- endA1 ginV44 thi-1 recA1 Electroporation Plasmid
relA1 gyrA96 deoR nupG amplification
®80dlacZAM15 A(lacZYA-
argF)u169, hsdR17(r, m,*), A—
BL21(DE3) F~ompT gal dcm lon hsdSg(rg Electroporation IF1
mg’) A(DE3 [lacl lacUV5-T7 gene overexpression

1 ind1 sam7 nin5])

Table 4. Description of Escherichia coli strains

2.1.2. Cell culture media

Transformed yeasts and bacteria were grown at 28°C and 37°C respectively.
Their culture media were varied according to the selective markers. For yeast, cells
were grown either on a strictly respiratory medium with the selection of respiration, or
on a fermentable medium with the selection of amino acids lacked in the cell strain
and carried by transformed plasmid. The composition of liquid media is described in
table 5. As for solid media, 2% (m/v) of agar was added. All the media were sterilised

by autoclave at 120°C for 20min under pressure. However, glucose solution of 10%
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(m/v) and amino acids solutions were sterilised separately, and subsequently added
into culture media. Amino acids or antibiotics used to prepare culture media are

indicated in table 6.

Name Composition Celltype Characteristic
YPD 1% yeast extract, S. cerevisiae | Enriched nutrient
1% bactopeptone, medium with
2% glucose, pH 5.5 no selection
YLac 1% yeast extract, S. cerevisiae | Strictly respiratory
0.1% KH,PO,4, 0.12% SO,4(NH,),, medium with
and 2% lactate, pH 5.5 additional amino acids
sSD 0.7% Yeast Nitrogen Base S. cerevisiae | Fermentable medium
without aminoacids, with additional
2% glucose, pH 5.5 amino acids
LB 0.5% yeast extract, E. coli Enriched nutrient
(Luria- 1% bactotryptone, medium with
Bertani) | 1% NaCl, pH 7.2 additional antibiotics
Table 5. Description of cell culture media.
Name Supplier Final concentration
Histidine Sigma-Aldrich 20 mg/L
Leucine Sigma-Aldrich 60 mg/L
Tryptophan Sigma-Aldrich 20 mg/L
Methionine Sigma-Aldrich 40 mg/L
Adenine Sigma-Aldrich 20 mg/L
Uracil Sigma-Aldrich 20 mg/L
Geneticin (G418) Roche, Gibco 200 mg/L
Ampicillin Sigma-Aldrich 200 mg/L
Kanamycin Sigma-Aldrich 30 mg/L

Table 6. Description of amino acids, bases and antibiotics.
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2.1.3. Plasmid vectors and protein modification

Gene encoding different mitochondrial ATPase subunits or IF1 were replicated
and inserted in different plasmid vectors (see table 7). Mutations were made on basis
of these plasmid constructions using site-directed mutagenesis. In yeast mitochondrial
ATPase, mutations in a, B, and y subunits were constructed and studied.

The plasmid with ATP1 gene was obtained by modifying the plasmid pFL61
(Minet et al, 1992) as following description. First, the 2 micron replication origin was
replaced by the ARS/CEN replication origin. Then, gene encoding a subunit was
amplified by polymerase chain reaction (PCR). The PCR fragment was ligated into a
centromeric plasmid between 5 promotor and 3’ terminator PGK, leading to
pVC2/ATP1, created by Dr. Vincent Corvest. Two groups of mutations were made by us
in different regions of a subunit (locations see table 8).

Gene encoding B subunit was amplified by polymerase chain reaction. The PCR
fragment was ligated into a centromeric plasmid, pRS313. A His10-tag codon was
inserted between the signal peptide sequence and the mature B subunit sequence by
site-directed mutagenesis. The same as a subunit, different regions of B subunit were
mutated subsequently (locations see table 8).

Modifications in y subunit were performed in Bordeaux, by Dr. Emmanuel
Tetaud. Gene encoding y subunit was replicated using PCR and then ligated into
plasmid vector pES425#1 (Doron Rapaport). All mutants of y subunit were obtained by
transforming S. cerevisiae cells with pES425. Transformed cells were subsequently
deleted for ATP3 gene with the ATP3 deletion cassette obtained by PCR amplification
of pUG6 containing KanMX4 module (Wach et al, 1994).

Gene encoding yeast IF1, INH1, was replicated and inserted into plasmid vector
pET30a offered by Dr. Marie-France Giraud (Bordeaux). A protein fusion including a
His-tag and an enterokinase cleavage site was added in front of INH1 sequence in
order to facilitate IF1 purification. The whole insert was overexpressed in E.coli. The
protein  fusion was removed using enterokinase during purification

(Andrianaivomananjaona et al, 2011). Yeast IF1 “wild type” produced in this work
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differed from the natural WT in two points: Phe28 was replaced by Trp to enable

spectrophotometric detection of the protein at 280 nm; the first residue (Ser) was

replaced by the triplet Ala-Met-Ala, which was found to improve the purification and

the stability of the peptide. None of these modifications altered the binding properties

of the inhibitory peptide.

Name Insert | Size Selection marker application

pVC2 ATP1 7324 pb Amp®R: URA3 a subunit WT or mutants expression in yeast
pRS313 | ATP2 7450 pb Amp~=; HIS3 3 subunit WT or mutants expression in yeast
pET30a | INH1 5593 pb Kana® overexpression of IF1 in bacteria

Table 7. Description of plasmid vectors.

2.1.4. Oligonucleotide primers

Oligonucleotide primers used in PCR, site-directed mutagenesis, and sequencing

were designed, detailed information shown in table 8 and table 9.

Mutation oligonucleotides (5’- 3’) plasmid
o-°EAELF*™ GGTCAAATATTCTTGGAAGCTGACTTATTCTACA | pVC2/atp1
— a->EADLF>** AGGG

a-"'KQTL*™ GCCTCCACCAAGAACACTTTGGTTAGAGG pVC2/atp1
- 0—417KNTL42°

o-"QYREVA™* GAAATTGTTTTTGGCTCAATTCGCTGAATTGGC | pVC2/atp1
— o> QFAELA**? TGCTTTTGCTCAATTCG

o-""’GSDLDAST"™ GCTCAATTCGGTTCCGATTTAGGTGCCTCC pVC2/atp1
— o-"°GSGLDAST*"®

a-"“GSDLDAST*™® CGGTTCCGGTTTAGATGCCTCCACCAAGC pVC2/atp1
— o-"°GSDLGAST*"®

o-""”GSDLDAST*™ GCTTTTGCTCAATTCGGTTCCGGTTTAGGTGCC | pVC2/atp1
— o-"®GSGLGAST*® | TCCACCAAGCAAACTTTG

o-""’GSDLDAST"™ GCTTTTGCTCAATTCGGTTCCGGTGGTGGTGCC | pVC2/atp1
— 0-"®GSGGGAST*"® | TCCACCAAGCAAACTTTG
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a-""GSDLDAST*™ GCTCAATTCGGTGGCGGTGGTGGTG pVC2/atp1
- 0—409GMAST416
a-""GSDLDAST*™ CGGTGGTGGTGGCGGCGGCAAGCAAACTTTGG | pVC2/atp1
— 0-**GSGGGGGG*"®
a-""GSDLDAST*™ GCTCAATTCGGTGGCGGTGGTGGTG pVC2/atp1
— 0-**GGGGGGGG"® | +

CGGTGGTGGTGGCGGCGGCAAGCAAACTTTGG
a-*"GSDLDAST*"® GCTTTTGCTCAATTCGGTTCCGCCTCCACCAAG | pVC2/atp1
— a-*?GS---AST*"® CAAACTTTGG
B-"*DELSEQD*" GCTATTTTGGGTATGGGTGAATTGTCCGAACAA | pRS313/atp2-
— B-**GELSEQD* G H10
B-"*DELSEQD™™ GGGTATGGATGGATTGTCCGAAC pRS313/atp2-
— B-**DGLSEQD*® H10
B-"**DELSEQD*" GCTATTTTGGGTATGGATGGAGGGGGCGAACA | pRS313/atp2-
— B-***DGGGEQD*® AGATAAACTAACTGTCG H10
B-"*DELSEQD™™ GGTATGGATGAATTGTCCGGACAAGGTAAACTA | pRS313/atp2-
— B->*DELSGQG*™ ACTGTCGAAAGGGC H10
B-*QTYKSLQ™ CCTCCAAGGTTCAAGAAACTTTACAGAGATATA | pRS313/atp2-
— B-*"QRYKELQ** AAGAATTACAAGATATCATTGCTATTTTGG H10
B-""AEKIAR*" GAAGATGTTGTTGCTAAAGCTAAAAAGTTAGAA | pRS313/atp2-
— B-*"°AKKIER*"® GCTGAAGCCAACTAGAAG H10

Hindlll-Start-y AGAAAGCTTATGTTGTCAAGAATTGTATCAAAC | pES425/G2-G3
Notl-Stop-y ATAGCGGCCGCTCATCCCAAAGAGGAAGCA pES425/G2-G3
y-°MQLL™ GATAAAATTAAAGGTGGTCTATTGAGAACCCAT | pES425/G2

- Y-116GGLL119 I

y- °MQLL™ GATGGGTTCTCAATAGACCACCTTTAATTTTATC | pES425/G2

- Y-116GGLL119

y-°MQLL™ GGTGATAAAATTAAAGGTGGTGGATTGAGAACC | pES425/G3

— y-"°GGGL™" CATCC

y-°MQLL™ GGATGGGTTCTCAATCCACCACCTTTAATTTTAT | pES425/G3

— y-"°GGGL""? CACC

Atp3 deletion &’

aggtggaaacaattgaagacgagcagtaaacattattttatttagtagt
cCATAGGCCACTAGTGGATCT

Atp3 deletion 3’

ttctacaaaaacaacgtcaaataaagaggcaatgcagggtgattttttt
aCAGCTGAAGCTTCGTACGC

Table 8. Description of mutations and their oligonucleotide primers.
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Name Oligonucleotides (5’- 3’) Application

344WTA AAACGACGGCCAGTGAATTG Plasmid pRS313 sequencing
344WTB AGGAAACAGCTATGACCATG Plasmid pRS313 sequencing
344WTC CGTTATCGGTGAACCTATTG Gene encoding ATP2 sequencing
344WTD AGGGTTCTGTCACTTCTGTG Gene encoding ATP2 seqguencing
344WTE TAGCCGCTGAAGCCAACTAG Gene encoding ATP2 sequencing
344WTF ACGGTGCCTGACTGCGTTAG Gene encoding ATP2 seqguencing
344WTG TATTACGCCAGCTGGCGAAG Gene encoding ATP2 seguencing
ATP1WTa CGGTCAAAAGCTCATTGTGATTGG Gene encoding ATP1 sequencing
ATP1WTb GGAGCCAAGTATTGTAGAGGAGCGG Gene encoding ATP1 sequencing

Table 9. Description of oligonucleotide primers for sequencing.
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2.2. Methods

2.2.1. Mutagenesis

2.2.1.1. Site-directed mutagenesis principle

Using Stratagene’s QuickChange® Site-Directed Mutagenesis Kit, we managed to
make a number of mutants including point mutations, and single or multiple amino
acids deletions in ATPase a and B subunits. The QuikChange site-directed mutagenesis
method is performed using PfuTurbo® DNA polymerase and a temperature cycler. The
basic procedure utilizes a double-stranded DNA plasmid vector with an insert of
interest and two synthetic oligonucleotide primers containing the desired mutation
(see figure 20). The oligonucleotide primers, each complementary to opposite strands
of the vector, are extended during temperature cycling by PfuTurbo DNA polymerase.
Incorporation of the oligonucleotide primers generates a mutated plasmid containing
staggered nicks. Following temperature cycling, the product is treated with Dpn I. The
Dpn | endonuclease is specific for methylated and hemimethylated DNA and is used to
digest the parental DNA template and to select for mutation-containing synthesized
DNA. DNA isolated from almost all E. coli strains is dam methylated and therefore
susceptible to Dpn | digestion. The nicked vector DNA containing the desired
mutations is then transformed into XL1-Blue cells. XL1-Blue cells then repair the nicks

in mutated plasmid.
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Figure 22. Overview of site-directed mutagenesis principle.

According to QuikChange Site-Directed Mutagenesis Kits.
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2.2.1.2. Bacteria and Yeast cells transformations

Bacteria transformation with a plasmid vector carrying WT or mutation
information was performed using two methods: Heat shock at 42°C for chemical
competent cells as XL1-Blue, or Electroporation with a Bio-Rad Gene Pulser for
electrocompetent cells as DH5a and BL21(DE3). Transformed cells were incubated at
37°C with antibiotic selection. The harvest of selected cells was then used to extract

DNA for further use like yeast transformation and protein overexpression (figure 23).

Plasmid vector
o 3
og° Electroporation,
pulse at 2.5 kV,

4°C P4 25puF, 200Q
E—
or =
Transformed cell harvest,
Thaw competent Incubate bacteria cells with antibiotic selection
bacteria cells on with additional plasmid Heat shock
ice vectors at42°C

% | duing 45sec

Figure 23. Overview of bacteria transformations.

Yeast transformation with a plasmid vector carrying WT or mutation information
was performed using lithium acetate treatment (Gietz et al, 1995). Transformed cells
were selected using SD medium lacked some certain amino acid, which was
complemented by transformed plasmid expression. Selected cells were grown on Ylac
medium at 30°C to verify the respiration function. Growth time varied between
mutants. The most frequently used vyeast strain was S. cerevisiae W303-1A
AATP1AATP2. To achieve one final mutated product, two transformations were carried
out introducing 2 plasmids coding for ATP1 and ATP2. Each step was examined by a
group of selective media, including negative control of S. cerevisiae W303-1A AATP1 or

S. cerevisiae W303-1A AATP2 on strict respiratory medium (see table 10).
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a) 1%t transformation: S. cerevisiae W303-1A AATPTAATP2 + pRS313-ATP2-HIS3

Plasmid Yeast Medium Control Cell
Ne° s
1 pRS313-ATP2- AATP1AATP2 Ylac Respiration -
HIS3
2 pRS313-ATP2- AATP1AATP2 SD+leutade+trp+ura His +
HIS3
3 - AATP1AATP2 | YPD Non +
selective
4 - AATPT1AATP2 SD+leu+ade+trp+his Auxotrophy +
+ura
5 - AATPTAATP2 Ylac Respiration -
6 - AATP1AATP2 SD+leu+ade+trp+ura His -
7 - AATP1AATP2 SD+leu+ade+trp+his Ura B
b) 2n transformation: S. cerevisiae W303-1A AATPTAATP2 + pVC2 ATP1-URA3
Plasmid Yeast Medium Control Cells
)
1 pVC2 ATP1-URA3 AATP1 | Ylac Respiration -
2 pVC2 ATP1-URA3 AATP1 | SD+leu+ade+trp His, Ura +
3 |- AATP1 | YPD Non +
selective
4 | - AATP1 | SD+leu+ade+trp+his+ura Auxotrophy +
5 |- AATP1 | SD+leu+ade+trp+ura His +
6 | - AATP1 | Ylac Respiration -
7 - AATP1 | SD+leutade+trp Ura -

Table 10. Yeast (S. cerevisiae W303-1A AATP1AATP2) transformation Selections.

2.2.1.3. DNA extraction and quantification

Plasmids carrying mutations were amplified in E. coli and extracted and purified
using QlAprep Spin Miniprep Kit. Plasmid purification followed a simple bind-wash-
elute procedure. First, bacterial cultures were lysed and the lysates were cleared by
centrifugation. The cleared lysates were then applied to the QlAprep column where
plasmid DNA adsorbed to the silica membrane. Impurities were washed away and pure

DNA was eluted in a small volume of elution buffer or water.
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Purified plasmid quantification was then estimated with a spectrophotometer at

260nm. 1 OD indicates about 50 pg/mL double-stranded DNA.

2.2.2. Preparation of yeast mitochondria (WT & mutants)

Transformed yeast cells were grown on the strictly respiratory medium YLac with
large volume (3 to 8 L) at 30°C. Cell density was estimated by spectrophotometer
absorption at 600nm. The stage of population tells if the population is in lag phase,
exponential phase, or stationary phase. Our culture harvests were always at late state
of their exponential growth phase, around OD 7. One entire mitochondria preparation
lasts 4 days including cell culture. On day 4, cell harvest was centrifuged at 2500 xg
during 5 min. Cell pellet was washed and digested by zymolyase 20T (200U/ g dry cell).
In the meantime of yeast cell wall digestion (average 150 min), the cell membrane was
broken by osmotic pressure. The target particle mitochondrion was then released from
yeast cell. Following series of differential centrifugations, mitochondria were finally
purified from yeast cells (Venard et al, 2003). The final product was formed into
mitochondria beads in liquid nitrogen with the help of a syringe. Each bead contained
about 10puL mitochondria. All the purified mitochondria were conserved in liquid
nitrogen for further study.

Sub-mitochondrial particles devoid of IF1 were prepared by sonication in TSE (20
mM Tris-SO4, 200 uM EDTA, pH 8.5) as previously (Venard et al, 2003), except that
after endogenous IF1 release (4°C, overnight) they were centrifuged for 20 min (8000
g, 4°C). The supernatant was then centrifuged for 40 min (100,000 g, 4°C), and the
pellet was resuspended into a small volume (100-200 pl) of TSE, then kept on ice

before use.
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2.2.3. Production of yeast IF1

His-tagged yeast IF1 was overexpressed in E. coli BL21(DE3) at 37°C during 3
hours. By following the OD 600nm, we estimated the overexpression level. Cells were
lysed and the peptide was purified using a Ni-NTA column (Andrianaivomananjaona et
al, 2011).

E. coli BL21(DE3) is a protein expressing strain. The gene encoding lac operon
was substituted by the gene encoding T7 RNA polymerase (cassette DE3). The
induction system was based on the lactose operon function. The principle of IF1

overexpression in E. coli BL21(DE3) is described in figure 24.

7~
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RNA pol7 T P .
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T7 RNA polymerase
& &
oy @
& &
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Figure 24. Principle of IF1 overexpression in E. coli BL21(DE3) (adapted to the thesis of

Andrianaivomananjaona, 2011).

The repressor lacl binds to the operator lacO and stops T7 RNA polymerase expression, without which
gene encoding IF1 located in the transformed plasmid could not be expressed. Transformed plasmids
containing T7 promoter driven expression are repressed until IPTG induction of T7 RNA polymerase. The

production of T7 RNA polymerase leads to IF1 overexpression.

The cell lysates containing overexpressed IF1 were transferred into the Ni-NTA
column. After the protein binding to the column, the impurily was washed away by low

concentration of imidazole solution. The enterokinase cleavage was performed inside
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the column (30U enterokinase/column), where the His-tag was removed. Enterokinase
was denatrued and removed by heating the sample at 90°C during 10 min and
centrifuging at 11000 rpm during 20 min at 10°C. Then IF1 was eluted and precipitated
by TCA (10%). Another step of centrifugation was performed to eliminate TCA. The
pellet containing the final product was dissolved in small volume of 50mM Na Acetate

solution, at pH5.5.

2.2.4. Kinetic measurement

Continuous monitoring of ATP hydrolysis by SMP coupled to NADH oxidation was
carried out spectrophotometrically as described (Andrianaivomananjaona et al, 2011).

We used the classic ATP regenerating system demonstrated in figure 25 below.

FoF1-ATPase/F 1-ATPase

RN

" ADP ATP

\ / Lactate dehydrogenase
PEP

P PYRUVATE P |LACTATE

Pyruvate kinase / \
NADH NAD+

7\,= 340 nm

Figure 25. ATP regeneration system using pyruvate kinase and lactate dehydrogenase.

NADH consumption is detected at 340nm in the spectrophotometer during the kinetics of ATP hydrolysis
and IF1 inhibition.

The reaction was observed in a stirred and thermostated cuvette (25°C)
containing 50 mM MES (pH 6.5) or 50 mM Tris (pH 8.0), 20 mM KCI, 1 mM MgCl2, 1
mM phosphoenolpyruvate, 20 units/mL pyruvate kinase, 50 units/mL lactate
dehydrogenase, 0.4 mM NADH, 1 mM MgATP, 2 uM antimycin and 2 uM FCCP. ATP

hydrolysis was initiated by adding SMP and monitored by NADH absorbance decrease
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at 340 nm. After 2 to 4 min, yeast IF1 was injected and ATPase activity decayed.

Demonstration of this procedure is shown in figure 26.

Figure 26. Spectrophotometric recording of ATP hydrolysis and IF1 inhibition in real time kinetics.

Vo represents the constant rate of absorbance variation before IF1 addition, which indicates the initial
ATPase activity; V, represents the final rate of absorbance variation after IF1 addition, which indicates

the final ATPase activity. k,p, represents the apparent inhibition rate constant.

The spectrophotometric recording was fitted to the following function

corresponding to a monoexponential decay of the ATPase activity:

y(t)=V(1) t +[(V(0)-V(1)) /Kapp] [1-exp(-kappt) I+ Yo Ean. (1)

where y(t) is the absorbance at time t, and y0 the absorbance at zero time defined as
the time of IF1 addition. V(0) is the constant rate of absorbance variation before IF1
addition in absorbance units per second (proportional to the initial ATPase activity),
V(1) the final rate of absorbance variation after IF1 addition (proportional to the final
ATPase activity), and kapp the apparent inhibition rate constant in st The obtained Kapp
value was plotted as a function of the inhibitor concentration [I] to determine the rate

constants kon (in M™s™) and ke (in s™*) according to:
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kapp = Kon [I] + Ko Eqn. (2)

The relation between the V(1)/V(0) ratio and the inhibitor concentration was fitted to

the following function:

V(1)/V(0) = vr + (1-v;)/(1+ [11/Ka) Ean. (3)

where v, is the inhibitor-insensitive fraction of V(0) (always lower than 5%).
Theoretically, K4 should be equal to the ko/kon ratio. kosr was also directly calculated
using the following linear relationship between 1/k,p, and V(1)/V(0), drawn from Eqns.

(1) and (3):

V(I)/V(O) =Vt (1'Vr) koff/ kapp Eqn. (4)

In all of the experiments, the inhibitor concentration was much higher than the
enzyme concentration. Therefore the total and free concentrations of inhibitor could

be considered identical and constant during the kinetics of inhibition. One experiment

consisted in a set of at least ten kinetics obtained with different IF1 concentrations.
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Chapter 3. Results and Discussions
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3. Results and Discussions

3.1. Analyses of published X-ray crystallographic structures of F;-ATPase

In the protein data bank, we can find a lot of valuable studies about ATPase X-
Ray diffractions. Those X-ray crystallographic structures give access to further studies
of their functions and mechanisms. In this work, analyses of published X-ray
crystallographic structures of Fi-ATPase helped us to visualize possible contacts
between protein subunits at an amino acid level. This was also one important point of
our mutation choices. In this chapter, | am going to show our analyses of bovine and

yeast crystal structures, images and measurements.

3.1.1. Bos taurus F1-ATPase crystal structures, with or without IF1

Bovine mitochondrial Fi-ATPase has been widely studied. 66% of the published
radiocrystallographic F;-ATPase structures belong to Bos taurus. The X-ray diffraction
varies from a large resolution over 3 A to 1.9 A. The following structures are models of
bovine mitochondrial F;-ATPase with and without IF1 bound corresponding to pdb files
2v7q and 1e79 respectively (Gibbons et al, 2000; Gledhill et al, 2007a).

Bovine mitochondrial F;-ATPase consists of the crown-like catalytic core, 3 pairs
of a/B subunits (stator), the central shaft gamma subunit, and delta, epsilon subunits
(rotor). The inhibitor protein IF1 inserts in one catalytic pair of aB subunits. Crystal
structures are shown in figure 27. Target residues of this work are highlighted in
sphere. Top views (seeing from the top of F, part) of the enzyme (c, d) show the three
catalytic pairs of af subunits in ribbon with their names and orientations, and vy
subunit in the centre. The three catalytic aff interfaces are in different conformations.
These interfaces are named (aB)TP, (af)DP and (aB)E. This nomenclature was given
according to the catalytic nucleotide occupancy (ATP analogue, ADP or empty) in the
first published structure (Abrahams et al, 1994). And it refers more generally to the

rotor orientations even in the absence of nucleotides (Kabaleeswaran et al, 2009). Side
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views of the enzyme (a, b) show the (af)DP catalytic interface of bovine F;-ATPase, as
well as IF1 inserting site. In most of IF1-free bovine crystals (e.g. pdb files 1bmf, 1e79
and 2jdi for F;-ATPase, 2xnd for Cg-F1-ATPase), F;-ATPases have similar conformations
(Abrahams et al, 1994; Bowler et al, 2007; Gibbons et al, 2000; Watt et al, 2010). In the
inhibited complex, IF1 midpart is inserted in the (af)DP catalytic interface. Its N-
terminal part mainly interacts with the central axis of y subunit, and also with aE
subunit. The C-terminal part is truncated. IF1 containing residues 1-60 was solved only
with residues 8-50 (Gledhill et al, 2007a). The minimal inhibitory sequence 14-47 (van
Raaij et al, 1996b) is included in the visible part.

Bovine F1-ATPase crystal structure used to be the most similar and comparable
reference to our model yeast, before the recently crystallised yeast IF1 inhibited F;-
ATPase coming out in March 2013 (Robinson et al, 2013). Therefore, the basic
structural analysis and site-directed mutagenesis in this work was carried out with help
of bovine crystal structures and sequence alignment of bovine and yeast ATP

synthases.
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Figure 27. Bovine mitochondrial F;-ATPase, IF1-free or IF1-bound.

a) and c) show IF1-free bovine mitochondrial F;-ATPase, side view and top view (pdb file 1e79). b) and d)
show IF1-bound bovine mitochondrial F;-ATPase, side view and top view. IF1 residues 8-50 (white) were
solved and are shown in ribbon (pdb file 2v7q). Images created using PyMol software. Top views of the
enzyme (c, d) show the secondary structure of 3 pairs of af subunits in ribbon with their names
indicated, and y subunit in the centre. Side views (a, b) show the catalytic pair aDP (green) BDP (red),
and the central shaft y subunit (cyan) in ribbon, as well as IF1. Target residues in these 3 subunits around

IF1 are shown in sphere. The rest of the enzyme is shown in surface.

In the zoomed figure of IF1 binding region (figure 28), target residues in aDP,

BDP and y subunits of F;-ATPase are highlighted in sphere both in IF1-free (a) and IF1-
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bound (b) structures. IF1 is presented in white ribbon, with its side chains. IF1 binding
site is well visualized, as well as the protein conformational changes before and after
IF1 binding (see below). Our target residues in aDP, BDP subunits around IF1 are
mainly classified in four groups according to their positions with respect to the foot of

y subunit. Classification and mutations of the four groups in this work will be described

in detail in yeast structural analysis.

Figure 28. Zoom of IF1 binding region in bovine mitochondrial F;-ATPase.

a) IF1-free bovine mitochondrial F;-ATPase. pdb file 1e79. b) IF1-bound bovine mitochondrial F;-ATPase
pdb file 2v7q. Both images are zoomed in IF1 binding region. Target residues in aDP, BDP and y subunits
are shown in sphere. In aDP subunit, amino acids E355, Y397, R398, V400, and Q416 are shown on top

407

left in limon green; the loop GSDLDAAT** is shown in forest green on the left, note that in panel b)

410

only LDAAT** are visible in the IF1-bound crystal. In BDP subunit, amino acids D380, S383, D471, and

394

A474 are shown on top right in salmon red; the lower loop DELSEED*® is shown in ruby red. Iny

subunit, amino acids S114, 1115, L116, H117 and R118 are shown on bottom left in dark cyan. Images

created using PyMol software.

In aDP subunit (figure 28), a and b, lines and spheres in green), the first group
contains amino acids E355, Y397, R398, V400 and Q416 shown on top left in limon
green. In BDP subunit, the second group of amino acids D380, S383, D471 and A474 is

shown on top right in salmon red. The two groups of residues locates inside the crevice
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of (a)DP catalytic interface, remote from y subunit. They were selected on one hand
because of their close distance to IF1, on the other hand considering their potential
importance for the specific sensitivity of mitochondrial F;-ATPase to IF1, which will be
developed in the following paragraph about IF1 mitochondrial specificity.

Seeing the conformational change after IF1 binding, we noticed the third group
of residues **’GSDLDAAT*** in aDP subunit. This group of residues forms a loop
neighbouring y subunit. In the IF1-inhibited structure, we observed that the loop
17 GSDLDAAT* bent towards the foot of y subunit and got in contact with y***SILHR'"®
residues (note that only *°LDAAT** are visible in IF1-bound crystal); it was not
observed in IF1-free structure. Since the y neighbouring group “®’GSDLDAAT*'* is
relatively far from IF1 and the conformational change occurs between F;-ATPase
subunits, it seems that this group might play a role in IF1 stabilization rather than
recognition. The last group refers to the loop 39DELSEED*®in BDP subunit. It also has a
contact with y subunit (e.g. R133 not highlighted in figure 28), but independent of IF1
binding.

3.1.2. Saccharomyces cerevisiae Fi-ATPase crystal structures, with or

without IF1

In this work, yeast mitochondrial F;-ATPase, which is homologue with bovine
mitochondrial F;-ATPase, is our biological model. The three catalytic pair of a B
subunits share the same nomenclature as described in bovine structure, which form
the three catalytic interfaces referring (af)TP, (aB)DP and (aB)E. The inhibitor protein
IF1 inserts in catalytic interface of (a8)DP, as in bovine. Structures used in this work
refer to pdb files 2hld and 3zia, corresponding to IF1-free and IF1-bound complexes
(Kabaleeswaran et al, 2006; Robinson et al, 2013). The crystal of yeast IF1-free F;-
ATPase (pdb file 2hld) contains three non-equivalent copies of the complex. Only two
copies (I and Il) have the major part of their structure solved. Copy Il is more similar to
bovine F1-ATPase with the same state whereas copy | is different. In particular its

(aB)DP catalytic interface is noticeably more open, as observed in crystallised yeast c;o-
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Fi-ATPase (pdb file 3zry) (Dautant et al, 2010). After analysing the structures, we
basically consider the copy Il of pdb file 2h/d as the most probable conformation of
yeast IF1-free F;-ATPase in this current work. And it is used through the whole study
except for special indications. The crystallographic structures of yeast IF1-bound F;-
ATPase discussed here is the lately published 3zia. (Robinson et al, 2013). The latter
contains two copies that are quite similar. This is the first published structure of yeast
IF1-bound F1-ATPase. Before this, our structure analyses of IF1 inhibited F1-ATPase of
yeast was series of work including analyses of yeast IF1-free structure, analyses of
yeast homologue structures (specially bovine crystal structures +/-IF1), sequence
alignment and simulation of yeast IF1-bound structure. Since bovine and yeast crystal
structures are quite similar, most of the analyses in bovine adapt well in yeast. A few
reasonable distance changes will be compared between the two crystals and discussed
in following paragraphs.

Presentations of yeast crystal structures are shown in figure 29. Target residues
of this work are highlighted in sphere. Top views of the enzyme (c, d) show the three
catalytic pairs of af subunits in ribbon with their names and orientations, and vy
subunit in the center. Side views of the enzyme (a, b) show the (af)DP catalytic
interface of yeast F;-ATPase, as well as IF1 inserting site. In the inhibited complex, IF1
midpart is inserted in the (aB)DP catalytic interface. Its N-terminal part mainly
interacts with the central axis of y subunit, similar as in bovine structure. The
difference from bovine IF1 is that this time yeast IF1 was fully expressed but the C-
terminal part was partially solved. The full length of yeast IF1 is 63aa, only 1-36 were
solved in this crystal (Robinson et al, 2013). The C-terminal protruding part is

unfortunately invisible in the crystal.
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Figure 29. Yeast mitochondrial F;-ATPase, IF1-free or IF1-bound.

a) and c) show IF1-free yeast mitochondrial F;-ATPase, side view and top view. pdb file 2h/d. b) and d)
show IF1-bound yeast mitochondrial F;-ATPase, side view and top view. IF1 residues 1-36 (white) were
solved and are shown in ribbon. pdb file 3zia. Images created using PyMol software. Top views of the
enzyme (c, d) show the 3 pairs o subunits in ribbon with their names and orientations, and y subunit in
the center. Side views (a, b) show the catalytic pair aDP (green) BDP (red), and the central shaft y
subunit (cyan) in ribbon, as well as IF1. Target residues in these 3 subunits around IF1 are shown in

sphere. The rest of the enzyme is shown in surface.
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In the zoomed figure of IF1 binding region (figure 30), target residues in aDP,
BDP and y subunits of F;-ATPase are highlighted in sphere both in IF1-free (a) and IF1-
bound (b) structures. IF1 is presented in white ribbon, with its side chains in sticks. IF1
binding site is well visualized, as described in bovine case. Our target residues in aDP,
BDP subunits around IF1 are mainly classified in four groups A, B, C and D with

according to their positions to y subunit with respect of bovine structure analyses.

Figure 30. Zoom of IF1 binding region in yeast mitochondrial F1-ATPase.

a) IF1-free yeast mitochondrial F;-ATPase. pdb file 2hld copy Il. b) IF1-bound yeast mitochondrial F;-
ATPase pdb file 3zia. Both images are zoomed in IF1 binding region. Target residues in aDP, BDP and y
subunits are shown in sphere. In aDP subunit, amino acids E357, Y399, R400, V402 and Q418 are shown

409 416

on top left in limon green, named as group A; the loop =~ "GSDLDAST " is shown in forest green on the
left named as group C. In BDP subunit, amino acids T380, $S383, E471, and A474 are shown on top right
in salmon red, named as group B; the lower loop **DELSEQD™ is shown in ruby red, named as group D.
In y subunit, amino acids M116, Q117 and L118 are shown on bottom left in dark cyan. Note that in the
case of IF1-free F;-ATPase a), y-Q117 and L118 are not visible, which makes the evaluation of their

proximity to group C residues difficult.

Group A and B contain selected residues from aDP, BDP subunits which are
remote from the foot of y subunit. Group A consists of aDP-E357, Y399, R400, V402
and Q418; whereas group B consists of BDP-T380, S383, E471, and A474. The two

groups of residues locate in the catalytic interface facing IF1, which caught our first
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attention. Furthermore, among all the amino acid around IF1, those were selected
considering their potential importance for the specific sensitivity of mitochondrial F;-
ATPase to IF1. With the help of sequence alignment between a large variety of species
(see paragraph 3.1.3 figure 31 and 32), we found that around IF1 binding area some
particular amino acids were highly conserved in mitochondrial ATP synthases but quite
different in non-mitochondrial ATP synthases, such as our group A and B. This
observation was linked to the IF1 inhibition test in vitro, which showed that IF1 from
any species could inhibit other mitochondrial ATPases but had no effect to bacterial or
chloroplast ATPases (Cabezon et al, 2002). Experiments in our lab also confirmed this
observation (shown in figure 36), which will be discussed in paragraph 3.2.1.
Therefore, site-directed mutagenesis was performed to mutate residues in group A
and B into their non-mitochondrial counterparts (details in 3.2.1). Group A, aDP-
E357D, Y399F, R400A, V402L and Q418N; Group B, BDP-T380R, S383E, E471K, and
A474E. Kinetic studies on the effect of mutations were then carried on.

Group C and D are y subunit neighbouring residues selected from aDP, BDP
subunits. Group C is a loop with aDP-**GSDLDAST*'®, whereas Group D consists of
BDP-***DELSEQD*®. They are both located around IF1 at first place, and also very close
to the foot of y subunit. Group C has been observed being relatively close and getting
contact with y***MQLL™*® with IF1 bound (Figure 30). On one hand, this a-y contact
only appears with IF1 bound in bovine case, which makes this group of residues
interesting in a sense of link with IF1 binding process. On the other hand, it is difficult
to measure and compare their distance precisely in yeast case since there are two
residues missing (y-Q117, y-L118). But with the visible residues, such as y-M116, the
measurements suggest that the a-y contact exists all the time in yeast case. Therefore,
these residues in group C were mutated gradually into glycine in order to reduce the
steric hindrance. Group D has been widely studied. It is known as B-DELSEED motif in
most species, and it periodically interacts with y subunit during catalytic turnover
(Duncan et al, 1995). It is revealed involving in coupling catalysis to y subunit rotation
(Hara et al, 2000; Mnatsakanyan et al, 2009; Tanigawara et al, 2012). It has also been

proposed to play a role in the inhibitory effect of the bacterial regulatory € subunit
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(Hara et al, 2001), which is the counterpart of mitochondrial & subunit. Moreover, it
has a close distance with IF1 in the inhibited complex. With the same consideration as
group C, glycine substitutions were made for group D. Details in mutations of both
group C and D will be discussed later.

Comparing the structures with or without IF1, we could see not only the IF1
binding site, but also the conformational change of the protein complex. However, the
crystal structure of the inhibited F;-ATPase shows only the dead-end state of the
complex. The initial recognition step between F;-ATPase and IF1 remains unknown.
The limit of structure studies would be overcome by the combination of mutagenesis

and kinetic approach, which we will discuss in following paragraphs.

3.1.3. Sequence alignment on a and B subunits of mitochondrial and

non-mitochondrial ATP synthases

Sequence alignments on ATP synthase a and B subunits between different
species are presented in figure 31 and 32. Sequences containing selected residues are
shown with different colours representing conservation degrees. F1F, ATP synthases
from either mitochondrial or non-mitochondrial families share a number of common
sequences that assure their basic functions in common. At the same time, some highly
conserved residues are found in mitochondrial ATP synthases. In this work, we are
interested in residues highly conserved only in mitochondrial family that are related to
the interaction with IF1, such as group A and B described above. In addition, our
groups C and D are also very well conserved, not only in mitochondrial family but also
in some non-mitochondrial species (details shown in figure 31 and 32). The similarity
of crucial sequences shared by ATP synthases from different species allows the
comparison and discussion of our work and previous studies in the same domain.
Moreover, by means of sequence alignment, we confirmed the compatibility between

bovine and yeast structures in our work.
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Figure 31. Sequence alighment on a subunit of mitochondrial and non-mitochondrial ATP synthases.

Sequence alignment was done with Jalview software using MAFFT alignment program. The above
numbering is related to Saccharomyces cerevisiae a subunit. Sequences from residues 352 to 363 and
from 396 to 423 are shown. 42 sequences of mitochondrial and non-mitochondrial (chloroplastic and
bacterial) a-subunits were compared. Percentage identity is shown in blue. Dark blue, the most
conserved residues; Light blue, the less conserved residues; Red, y-remote residues corresponding to
group A residues E357, Y399, R400, V402 and Q418; Grey, y-neighboring residues corresponding to
group C a-SDLDAST.
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Figure 32. Sequence alignment on 8 subunit of mitochondrial and non-mitochondrial ATP synthase.
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Sequence alignment was done with Jalview software using MAFFT alignment program. The above
numbering is related to Saccharomyces cerevisiae B subunit. Sequences from residue 378 to 402 and
from 463 to 478 are shown. 42 sequences of mitochondrial and non-mitochondrial beta subunit were
compared. Percentage identity is showed in blue. Dark blue, the most conserved residues; Light blue,
the less conserved residues; Red, y-remote residues corresponding to group B residues T380, S383, E471

and A474; Grey, y-neighboring residues corresponding to group D B-DELSEQD.
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3.1.4. Kinetic parameters

Kinetic approach is the method that we used in this work to investigate IF1
binding to F1-ATPase. Kinetic parameters obtained from different experiments helped
us to analyze step-by-step IF1 inhibition of F;-ATPase. The calculations are detailed in
Material and Methods.

The rate constant of association k., is related to the IF1 recognition step,
whereas the kinetic constants of dissociation, Kq and ke, are inversely related to the
stability of the inhibited complex. Figure 33 shows one example of determination of
these constants from experimental data. The residual activity observed in kinetic
experiments which refers to the ATP hydrolysis activity resisting to IF1 inhibition is
shown in figure 33 as v,. This residual activity was observed especially in non-

centrifuged SMP, which will be discussed in paragraph 3.1.5 SMP centrifugation.
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Figure 33. Experimental determination of IF1 binding parameters to SMP WT.

Conditions are as described in Material and Methods, pH6.5. Experimental data of SMP WT shown in the
figure are the average of 29 single experiments. Panel a, rate constant of inhibition (k.p,) as a function of
IF1 concentration, used as k., determination. Panel b, normalized ATPase activity at equilibrium as a
function of IF1 concentration, used as Ky determination. Panel c, normalized ATPase activity at
equilibrium as a function of 1/kspp, Used as ko determination. Equations used as data calculation are
indicated beside the figure (details see Materials and methods). Resulting value of IF1 binding

parameters: ko,=4.310° M's™, K4= 0.24 10° M, and ko= 1.8 10 s™.

It has been shown that the measured association rate constant ko, of IF1
depends on MgATP concentration (Milgrom Ya, 1989), because it is actually modulated
by the nucleotide occupancy and the catalytic turnover of F;-ATPase (Corvest et al,
2007; Corvest et al, 2005). As shown in figure 34 panel a, kapp for IF1 binding increases
with MgATP concentration and also with the filling of two catalytic sites. It reaches a
peak when enzymes have a competition of two catalytic sites occupied and three sites

occupied, and IF1 locking is more favoured than its release. When ATPases have all
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three sites occupied, their ATP hydrolysis achieves the maximal level (Weber et al,
1996), whereas IF1 binding rate slightly decreases and reaches an equilibrium plateau
where it represents the real rate binding constant. A similar preliminary experiment
testing IF1 inhibition on function of MgATP concentration was performed using yeast
SMP WT in this work (figure 34, panel b). We observed the same IF1 binding feature.
So these results helped us to fix our experimental condition for MgATP concentration

at 1 mM, with which the ko, value reaches the plateau.
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Figure 34. Experimental determination of IF1 binding parameters to MF; WT (Corvest et al, 2007;

Corvest et al, 2005), and SMP WT.

Panel a, apparent rate constant of IF1 binding (-M-) as a function of MgATP concentration. Apparent
binding rate constant, equivalent to k.., was obtained by dividing the apparent rate constant of
inhibition (kapp) by IF1 concentration (75 nM). The two dashed curves represent the proportion of the
F,-ATPases with two (left curve) and three (right curves) bound nucleotides. Experiments were
performed with yeast MF; WT and IF1, at pH 6.5, 25°C. Panel b, rate constant of IF1 inhibition ke, (-O-)
as a function of MgATP concentration. k,, was obtained by dividing the apparent rate constant of
inhibition (k,pp) by IF1 concentration (50 nM). Here the residual activity v, was introduced to calculate

the ko, value. Experiment was performed with yeast SMP WT and IF1, at pH 8, 25°C.

92



For the kofr value, it used to be estimated only by the Kjkon product as described
in previous studies (Andrianaivomananjaona et al, 2011; Bason et al, 2011; Robinson et
al, 2013). However, we defined in this work the ko value by directly correlating ki, to
the residual activity at equilibrium (see Materials and methods, Eqn. 4). This method of
kot determination turns out to be insensitive to possible uncertainties on IF1
concentrations. For all the mutants we investigated, the ko values were calculated in

both ways and compared, so that the results would be more reliable.

3.1.5. SMP centrifugation

In order to carry out the kinetic approach, mitochondria were sonicated into
SMP. The inner membrane would enclose in a way that statistically half materials could
turn inside out, so that the ATP synthase could be exposed to the environment and are
accessible to the inhibitor. At the same time, SMP were incubated in the alkaline
buffer (pH 8.5) overnight at 4°C in order to facilitate the release of endogenous IF1. In
the previous studies, SMP were directly used at this step. Experimental condition of
most kinetics is at pH 6.5, 25°C except for a few experiments with indications. Since
the SMP injection in the measuring spectroscopic cuvette is extremely small volume
(2.5 to 5 pL comparing to the total volume 1mL), the effect of aliquot pH as well as the
contaminant endogenous IF1 are negligible. However, we always observed some
residual activities of ATP hydrolysis. For instance, in figure 35-b1, the ATP hydrolysis
activity of non-centrifuged SMP (-O-) kept always some certain resistance to IF1
inhibition even with a saturating IF1 concentration and long enough operating time
(from 30 to 120 min for some single experiments). This observation of residual activity
of ATP hydrolysis could be due to the enzyme partial resistance to IF1 inhibition, which
could be important for IF1 binding mechanism. It could also be due to the impurity of
SMP samples, partially degradation of the enzyme or the miss enclosure of SMP with
enzyme wrapping inside, etc. Therefore, in this study we added two extra
centrifugations before applying the SMP. One first centrifugation of SMP sample was

at low speed (8000xg, 4°C) in order to eliminate big impure elements such as degraded
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membranes. One second centrifugation of the supernatant was at high speed
(100,000xg, 4°C) in order to eliminate small contaminant elements such as
endogenous IF1, or the membrane dissociated Fi-ATPase. We improved the SMP
purification with these two steps of centrifugation expecting minimizing the impurity-
caused residual activity. Figure 35-a-b-c shows two examples of kinetic experiments

comparing centrifuged or non-centrifuged SMP.
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Figure 35a. Experimental determination of k,, value comparing SMP WT and ct‘mGS:AST416 with

or without centrifugation

Conditions are as described in Material and Methods, pH6.5, 25°C. Rate constant of inhibition (kapp) as
a function of IF1 concentration is show in the figure. Panel al, (-M-) centrifuged SMP WT, average of

29 single experiments. (-0-) non-centrifuged SMP WT, average of 8 single experiments. Panel a2, (-A-

) centrifuged SMP (14OQGS:AST416, average of 4 single experiments. (-A-) non-centrifuged

409

416 . .
, average of 5 single experiments.
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Figure 35b. Experimental determination of K, value comparing SMP WT and (1409GS:AST416 with or

without centrifugation.

Conditions are as described in Material and Methods, pH6.5, 25°C. Normalized ATPase activity at
equilibrium as a function of IF1 concentration is shown in the figure. Panel b1, (-M-) centrifuged SMP

WT, average of 29 single experiments. (-0-) non-centrifuged SMP WT, average of 8 single

409 416

experiments. Panel b2, (- A-) centrifuged SMP o "GS- - -AST , average of 4 single experiments. (-A-)

409 4

non-centrifuged SMP a "GS- - -AST 16, average of 5 single experiments.
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Figure 35c. Experimental determination of k. value comparing SMP WT and ctmGS:AST416 with

or without centrifugation.

Conditions are as described in Material and Methods, pH6.5, 25°C. Normalized ATPase activity at
equilibrium as a function of 1/kp, is shown in the figure. Panel c1, (-M-) centrifuged SMP WT, average

of 29 single experiments. (-O-) non-centrifuged SMP WT, average of 8 single experiments. Panel c2,

(- A-) centrifuged SMP a*Gs- - -AST416, average of 4 single experiments. (-A-) non-centrifuged SMP

409

o*°Gs- - -AST*

16 . .
, average of 5 single experiments.
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Results show that centrifuged SMP, both from WT and mutant. a*®GS- - -AST*®
, have a lower residual activity of ATP hydrolysis. In the case of non-centrifuged SMP,
the example of the mutant a*®GS- - -AST*'® reached 19% whereas the centrifugation
decreased the residual to 5.8%. The SMP WT also had an important decrease of
residual activity from 7.6% to 1.6% after the centrifugation. Same phenomenon was
observed in all the mutants. At high concentration of IF1, ATP hydrolysis was inhibited
more completely with centrifuged SMP, which is to say the residual activity stays
between 1% to 10%. As a result, the residual activity is considered to be an artifact.

In addition, the ko, increased about 25% for both WT and mutant
a*?GS- - -AST*®, after centrifugation. The increase stays in a reasonable range. The
same type of slight increase of ko, was observed with almost all the mutants. It could
be simply variation of individual experiments. It could also be related to the residual
activity. On presence of the residual activity, it gave impression that it took more time
for IF1 to inhibit the enzyme, which could be a possible cause of the slightly lower k.
Or, if the centrifugation of SMP has an effect on kon, it is probably due to the
elimination of the impurity of the sample including partially degraded ATPases, so that
IF1 binding becomes more efficient. In the case of ko values, the given examples
showed increases of different level. But for the rest of mutants in this work, the
modifications of ko seem more random, which is to say that the increase or decrease
of ko (as well as none changed cases) do not follow one same logic. However, with the
centrifuged SMP, we have done big amounts of kinetic experiments for each mutant
and WT, among which slight variations of kinetic parameters always existed even with
the same preparation of SMP sample. As a matter of fact, all the data showed
relatively reproducible results, which were not far away from non-centrifuged ones
(except for the residual activities). We consider that the minor variation of kon, Kof
values after additional SMP centrifugation do not affect the quality of our functional
experiments.

Finally, since this work, we improved our protocol of SMP preparation by adding

two extra centrifugations before doing kinetic experiments. The centrifugation
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improved effectively the experimental conditions of IF1 inhibition. All the data shown

in this work were obtained by centrifuged SMP.

3.2. Specificity of mitochondrial ATPase inhibition by IF1

3.2.1. Original study of IF1 specificity

Studies of ATP synthase specificity to its inhibitor at a molecular level have been
published. It has been shown that some ATP synthase inhibitors specificity depends on
one or a group of critical residues, which are in charge of the molecular recognition of
their inhibitors. Modifications of these residues could effectively turn enzyme
insensitive of their inhibitors. For instance, the aurovertin sensitivity of mitochondrial
and E. coli F;-ATPases is due to a single residue of B subunit, f-R398 (Lee et al, 1989).
Structural study of aurovertin B inhibited bovine F;-ATPase showed that aurovertin
interacted with B-R412 (van Raaij et al, 1996a), the homologue of E. coli $-R398.
Another good example is tentoxin. The tentoxin sensitivity of chloroplast and PS3
bacillus F1-ATPase (Santolini et al, 2002) is owing to residue 83 of the B subunit and a
few residues of a subunits (Avni et al, 1992; Tucker et al, 2001). For instance, the
sequence SRLIESP containing residues a-S127 to a-P133 in spinach chloroplasts, and
the sequence TRPIESR containing a-T126 to a-R132 in PS3 bacillus are shown to play a
role in tentoxin sensitivity.

IF1 is a mitochondrial F;-ATPase specific inhibitor as described in introduction.
IF1 from different species could inhibit, in vitro, any F;-ATPase from mitochondrial
family (Cabezon et al, 2002), but not those from bacteria or chloroplast which have
their own inhibition systems (Cingolani & Duncan, 2011; Tsunoda et al, 2001). In
mitochondrial F;-ATPase, a similar system could explain IF1 specificity. As a matter of
fact, kinetic experiments in our lab confirmed the IF1 specificity by adding a large
concentration of purified yeast IF1 during ATP hydrolysis of bacterial and chloroplast
F,-ATPases, which were not inhibited at all, whereas 50 times less IF1 inhibited yeast

mitochondrial F;-ATPase perfectly under the same condition (figure 36).

99



IF1

\l IF1

NI
S~

0.4 Ay
0.2 Agyg

2 min 10 min

Figure 36. Yeast IF1 inhibiting ATP hydrolysis of purified F;-ATPases from different organisms.

Conditions are as described in Material and Methods, pH6.5, MgATP 1mM. Bacterial and chloroplast F1-
ATPases were purified as described in previous study (Santolini et al, 2002) (Santolini et al., 2002). ATP
hydrolysis was monitored by the decrease of absorbance at 340nm. Yeast IF1 injections are indicated
by arrows. a) 10 nM PS3 bacillus F,-ATPase (TF;) followed by injection of 5 uM yeast IF1, at 50°C; b) 1
nM Saccharomyces cerevisiae F,-ATPase (MF;) followed by injection of 0.1 uM yeast IF1, at 25°C; c) 2
nM Spinacia oleracea chloroplast F;-ATPase devoid of € subunit (CF1-€) and pre-treated with 5 mM

DTT, followed by injection of 5 uM yeast IF1, at 25°C.

Several years ago, in our laboratory Vincent Corvest and Yuan Luo started this
project about IF1 specificity. F;-ATPases from different species were compared using
sequence alignment. Residues highly conserved in mitochondrial family were found
(figure 31, 32). After structural analyses, four residues located in B subunit close to IF1
were selected and mutated into their non-mitochondrial counterpart. Two B-subunit
residues (T380, S383) were mutated into the residues present in almost chloroplast
sequences and in a number of bacterial sequences. BE471 and BA474, located in a
region poorly conserved in the non-mitochondrial world, were respectively mutated
into their E.coli and chloroplast homologues. Notice that by that time, crystal structure
of IF1 inhibited yeast F1-ATPase was not resolved yet. Hence most structural analyses

were effectuated with its homologue bovine structures, and they were re-examined in
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the recently published yeast IF1 inhibited F;-ATPase crystal structure. Selected

residues and their mutations are shown in table 11.

Residues Residues in | Mutations in Distance to Distance to IF1
in S. S. cerevasiae | IF1 residue in residue in S.
B. taurus cerevasiae B. taurus cerevasiae
) D380 T380 T380R 7TAto A12 51Ato E2
O
&'@ = S383 S383 S383E 3.8Ato A12 3.4Ato E2
e
'{t ? D471 E471 E471K 3.8Ato L42 11.9A to Q36
e
w A474 A474 A4T4E 3.5A to L45 10.9A to Q36

Table 11. Residues in B subunit selected for IF1 specificity study.

Selected residues located in F,-ATPase B subunit, from bovine and yeast, are shown in the table.

Mutations of selected amino acids in yeast were made using site-directed mutagenesis. Distance

between target residues and closest IF1 residues were measured using published bovine (pdb file: 2v7q)

and yeast (pdb file: 3zia) IF1 inhibited F,-ATPase crystal structures.

Figure 37 shows locations of selected residues in F;-ATPase B subunit

investigated for IF1 specificity. In bovine structure (figure 37a), IF1 8-50 amino acids

were resolved. Measurements of distance between selected residues and IF1 are

shown to be close enough to have a possible interaction. After the yeast IF1 inhibited

F1-ATPase published (figure 37b), we re-examined the distance and compared to their

bovine homologue. The distances remained relatively close except for that yeast IF1

had only 1-36 amino acids resolved, so that IF1 closest residues to B-E471 and B-A474

were not visible.
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Bovine IF1

Yeast IF1

Figure 37. Bovine and yeast crystal structures showing the selected residues in F;-ATPase B subunit for

IF1 specificity study.

IF1 is shown in helix, white ribbon with its side chains in sticks. Selected residues located in F;-ATPase B
subunit are shown in red sticks. Their closest IF1 residues are highlighted in blue, and the distances
between them are measured and shown, see also in table 11. Panel a, bovine IF1 with 8-50 amino acids
solved from pdb file 2v7q. Panel b, yeast IF1 with 1-36 amino acids solved from pdb file 3zia, in which the

closest residues to B-E471, A474 are not visible. Images created using PyMol software.
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With the same thinking, Tiona Andrianaivomananjaona continued the project
and constructed mutations in a subunit. Selected residues in yeast F1-ATPase a subunit
are shown in figure 38 with measurements of their closest distance to IF1 (see also

table 12).

Yeast IF1

Figure 38. Yeast crystal structures showing the selected residues in F;-ATPase a subunit for IF1

specificity study.

IF1 is shown in helix, white ribbon with its side chain in sticks. Selected residues located in F;-ATPase a
subunit are shown in green sticks. Their closest IF1 residues are highlighted in blue, and the distances
between them are measured and shown, see also in table 12. Yeast IF1 with 1-36 amino acids solved

corresponds to pdb file 3zia. Image created using PyMol software.
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Residues Residues Mutations in Distance to | Distance to
in in S. | S IF1 residue | IF1 residue in
B. taurus cerevasiae cerevasiae in B. taurus S. cerevasiae
E355 E357 E357D 5A to K24 7.4A to K19
, Y 97 Y399 Y399F 4.6Ato R35 9.1Ato K9
Q
v
§ 3 R398 R400 R400A 4. Ato Q27 4A to K19
=
g o
w @ V400 V402 V402L 3.8A to A28 6.7A to R30
Q416 Q418 Q418N 3.2A to K39 11.2A to R30

Table 12. Residues in a subunit selected for IF1 specificity study.

Selected residues located in F;-ATPase a subunit, from bovine and yeast, are shown in the table.

Mutations of selected amino acids in yeast were made using site-directed mutagenesis. Distance

between target residues and closest IF1 residues were measured using published bovine (pdb file: 2v7q)

and yeast (pdb file: 3zia) IF1 inhibited F,-ATPase crystal structures.

3.2.2. Effect of mutations in a and B subunit: investigation of IF1

specificity

As described above, preliminary kinetic studies were started by Vincent Corvest

and Yuan Luo to study wild type and mutants of yeast F1-ATPase of their ATP hydrolysis

inhibition by IF1 at different pH. The study of IF1 inhibition characterized the binding

and release of inhibitor from the complex. We continued the study of these mutations

in a and B subunit, which were regrouped as following (known as group A and B in the

current study):

o-E357D-Y399F-R400A-V402L-Q418N

B-T380R-S383E, B-E471K-A474E, and B-T380R-S383E-E471K-A474E

Centrifuged SMP from Saccharomyces cerevasiae carrying wild type or mutations

are examined using kinetic approach. Kinetic experiments of IF1 inhibition were

104



performed at pH 6.5, 25°C (see description in Materials and Methods). Results for a

single IF1 concentration are shown in figure 39.

100nM IF1

\l

5 min

Figure 39. IF1 inhibition of wild type and mutant SMP from yeast.

Conditions are as described in Material and Methods, pH6.5, at 25°C. Wild type and mutants modifying
ATP synthase a and B subunits were expressed in yeast. Centrifuged SMP were prepared as described in
Material and Methods. ATP hydrolysis was monitored by the decrease of absorbance at 340nm. Arrow
indicates 100nM of yeast IF1 injections. a) SMP WT; b) SMP mutant a-E357D-Y399F-R400A-V402L-
Q418N; c) SMP mutant B-T380R-S383E; d) SMP mutant B-E471K-A474E; e) SMP mutant B-T380R-S383E-

E471K-A474E.

Our data show that no mutation abolished IF1 inhibition. At a saturating
concentration of IF1, such as 100nM indicated in figure 39, it inhibited both WT and
mutants ATP hydrolysis almost 100%. Mutant a-E357D-Y399F-R400A-V402L-Q418N
and B-T380R-S383E showed similar inhibition as WT (figure 39-a, b, c), where the
inhibition occurred immediately and effectively after IF1 injection. In the case of B-
E471K-A474E and B-T380R-S383E-E471K-A474E (figure 39-d, e), mutations resulted in

slowing down the inhibition. These observations are very interesting for studying IF1
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inhibition process, more complete study and further discussion will be done in
paragraph 3.3. However, talking about IF1 specificity study here, all the mutants

maintain the sensitivity to IF1.

3.2.3. Discussion

In yeast SMP, with a saturating concentration of IF1 (100 nM), all mutants of F;-
ATPase were totally inhibited. The results suggest that none of the selected residues
from o or B subunit are in charge of IF1 specificity to mitochondrial ATPase. The study
of IF1 specificity still remains a big question. Our hypothesis of specific recognition in
molecular level between IF1 and F;-ATPase requires more investigation in other
residues. Since the crystal structures of IF1 inhibited complex show only the final state
of the inhibition, it is hard to imagine the whole enzyme-inhibitor recognition process.
Maybe the specific molecular recognition occurred only in some transient step that
would be more difficult to visualize with a crystal structure. Afterall, it is quite possible
that there exist crucial residues in mitochondrial ATP synthases that are in charge of
IF1 specific recognition, seeing examples of other inhibitor cited at the beginning of
this part. In our previous work, we were concentrated in highly conserved
mitochondrial F1-ATPase residues that had also close distances with IF1 in final state.
Further study of IF1 specificity could be on residues of F1-ATPase highly conserved in
mitochondrial ATP synthases, but more exposed in peripheral region where possibly
occurs the first contact with IF1. Those entire hypotheses need further investigation to
confirm.

By the way, we found modifications of IF1 inhibition with some mutants. Even if
these residues are not responsible for IF1 specificity to mitochondrial F;-ATPase, some
of them are still implicated in IF1 inhibition process shown by their mutations that
modified the inhibition rate. What roles do they play during IF1 inhibition? It is also a
very interesting question. Therefore, studies of mutants in group A and B are
regrouped with group C and D. Further examination and discussion about IF1 inhibition

process will be described as following.
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3.3. IF1-F;-ATPase interaction process in Saccharomyces cerevisiae: Grasping

and locking of inhibitor IF1 by yF;-ATPase?

3.3.1. Previous studies lead the pathway to study IF1 binding process

The regulation of mitochondrial ATP synthase by its endogenous inhibitor IF1 is a
complex mechanism. IF1 binding to the ATP synthase and inhibition of ATPase activity
are favoured by an acidic pH (pH6.5-6.7) (Cabezon et al, 2000b). Although many X-ray
crystal structures of the inhibited enzyme have been solved and the activity of IF1 has
been characterized, little is known of the IF1 binding process. Moreover, many
researchers have mutated individual amino acid residues of IF1 implicated in its
inhibition but not those of ATP synthase. Known a protein-protein interaction occurs
on both proteins, it appears interesting to us to complete the study from the point of
view ATP synthase.

In order to understand the contributions of individual amino acid residues to IF1
binding, point mutations and deletions in yeast F1-ATPase a, B, and y subunits have
been produced and examined. Thanks to the analyses of kinetics, we characterized
different sites in yeast F1-ATPase that participate in the initial binding event and those

that stabilize the IF1-F;-ATPase.

3.3.2. Group A and B: y-remote residues from aDP, BDP

Group A: aDP-E357, Y399, R400, V402 and Q418
Group B: BDP-T380, S383, E471, and A474

As defined in the previous chapter, investigation of these two groups of residues
was first oriented to the IF1 specific inhibition of mitochondrial ATPases, and then
focused on their roles during the IF1 binding process. SMP devoid of endogenous IF1
were centrifuged and kinetics of ATP hydrolysis and IF1 inhibition were carried out at

pH 6.5.
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Mutants are reminded as following:
Group A: a-E357D-Y399F-R400A-V402L-Q418N
Group B: B-T380R-S383E,
E471K-A474E,
T380R-S383E-E471K-A474E

3.3.2.1. Effect of mutations in group A (a-E357D-Y399F-R400A-
V402L-Q418N)

Figure 40 shows kinetic consequences of mutations in group A at pH6.5. Binding
parameters, as those displayed in table 13, were obtained after merging the results of
numerous independent kinetic experiments, which is to say 29 experiments for WT
and 3-to-4 experiments for each mutant of the entire project (experiments at pH 8 are
not included). IF1 inhibitions of WT and mutant a-E357D-Y399F-R400A-V402L-Q418N
are compared in the same graph. IF1 at saturating concentration inhibited ATPase
activity to more than 95% in SMP prepared from both WT and mutant. Comparing to
the WT, this mutant had no effect on the binding rate constant ko,. It slightly increased
the directly determined rate constant of dissociation kes but had no significant effect

on the Kgkon product.
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Figure 40. Experimental data of mutants in group A and determination of IF1 binding parameters.

Conditions are as described in Material and Methods, pH6.5, 25°C. Experimental data of SMP WT and
mutants from group A are shown in the figure. (-M-) SMP WT, average of 29 single experiments. (-O-)
SMP mutant aDP-E357D-Y399F-R400A-V402L-Q418N, average of 3 single experiments. Panel a, rate
constant of inhibition (kap) as a function of IF1 concentration. Panel b, normalized ATPase activity at

equilibrium as a function of IF1 concentration. Panel c, normalized ATPase activity at equilibrium as a

function of 1/kapp.
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mutation Kon Ky Ko Kakon n
(pH 6.5) (10°M's™) (10 M) (10*s™) (10*s™)
none (WT) 43+0.2 0.24 + 0.06 1.8+0.2 1.00£03 | 29
E357D-Y399F-R400A- 46+0.7 06+04 6.3+1.3 27+20 |3
V402L-Q418N

Table 13. IF1 binding parameters of ATP synthase with mutants of group A.

Experimental conditions and calculations as described in Materials and methods. pH 6.5. n, number of

experiments.

At pH 6.5, the Ky values are lower than 1 nM, which could not precisely
distinguish the different effect of mutations. To better precise the effects of the
mutation on the dissociation constant, we did the same kinetic experiment at pH 8,
where these parameter constants are higher than at pH 6.5 therefore more precise,
especially for the case of K4 value (WT K4=0.24 10° M at pH 6.5), and the consistancy
of ko and Kgkon is better. But since higher pH does not favour IF1 binding, in order to
get one detectable result, we had to consume more purified IF1. It also took much
longer measuring time under this pH condition. Table 14 shows the IF1 binding
parameters obtained at pH8. When the pH was increased from 6.5 to 8, the K4 value
for WT dramatically increased from 0.24 nM to 9 nM, the ks value increased from 1.8
10" s* t0 1.8 107 s, and the Kykon product increased from 10* s™ to 2 10? s, which
now matches the ko value. For the mutant a-E357D-Y399F-R400A-V402L-Q418N, Ky
value increased from 0.6 nM to 23.4 nM, the ko value increased from 6.3 10* s to 5.6
10 s'l, and the Kgkon product increased from 2.7 10% s t0 5.5 102 s, It confirmed the
results obtained at pH 6.5 that the quintuple mutation on a subunit had no effect on

kon, Whereas it increased the ko value and Kgkon product by about 2.5 fold.
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mutation Kon Ky Ko KqKon n
(pH 8) (105 M-1s-1) (109M) (104s) (104s)

none (WT) 221+ 009 | 906 £ 060 | 184+13 | 200+ 20 | 7

E357D-Y399F-R400A- | 2.33 £ 0.19 2341+ 22 | 555+78| 54678 |1
V402L-Q418N

Table 14. IF1 binding parameters of ATP synthase with mutants of group A.

Experimental conditions and calculations as described in Materials and methods. pH 8. n, number of

experiments.

3.3.2.2. Effect of mutations in group B (B-T380R-S383E, E471K-A474E
and T380R-S383E-E471K-A474E)

Residues selected in group B are located in BDP subunit bordering IF1 midpart.
Three different mutants were T380R-S383E, E471K-A474E and T380R-S383E-E471K-
A474E. Figure 41 shows the effect of mutations in group B at pH6.5. Binding
parameters were obtained after merging the results of numerous independent kinetic
experiments as those displayed in table 15. IF1 inhibitions of WT and mutants are
compared in the same graph. IF1 at saturating concentration inhibited ATPase activity
to more than 95% in SMP mutants, the same as described in group A. Comparing to
the WT, mutant T380R-S383E had no effect on the binding rate constant k., and
mutant E471K-A474E decreased the ko, by a factor of 7. The combination of the four
mutations had no significant additional effect as compared to E471K-A474E. However,
at first sight none of this set of mutations had significant effect on the rate constant of

dissociation.

111



0.2
0.15
"“T o X X X X
£ 2:7 0.1 X
E )
& > -
© 20 40 60 80 100
~ 0.05
. 0 - - O
0 20 40 60 80 100 120 300 400 500
[IF1] (nM) a) [IF1] (nM) b)
0.08 7
0.06
>°
% 0.04 1
>
0.02
O
0 . r . . . .
0 1 2 3 4 5 6
1/K,p (Min) c)

Figure 41. Experimental data of mutants in group B and determination of IF1 binding parameters

Conditions are as described in Material and Methods, pH6.5, 25°C. Experimental data of SMP WT and mutants
from group B are shown in the figure. (-M-) SMP WT, average of 29 single experiments. (-A-) SMP mutant -
T380R-S383E, average of 3 single experiments. (-O-) SMP mutant B-E471K-A474E, average of 4 single
experiments. (-X-) SMP mutant B-T380R-S383E-E471K-A474E, average of 3 single experiments. Panel a, rate
constant of inhibition (k,p,) as a function of IF1 concentration. Panel b, normalized ATPase activity at
equilibrium as a function of IF1 concentration, where the zoomed area corresponds to IF1 concentration up to

120 nM. Panel ¢, normalized ATPase activity at equilibrium as a function of 1/kpp.
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Mutation Kon Ky Ko KiKon n
(pH 6.5) (10°m's™) (10° M) (10%s™) (10*s™)
none (WT) 43+02 024+006 | 1.8+02 1.00+0.3 | 29
T380R-S383E 45+05 0.4 +0.1 1.7+05 1.8+07 | 3
E471K-A474E 0.63 +0.02 22+0.2 1.7+0.2 15+02 | 4
T380R-S383E-E471K- 0.55+0.10 35+ 04 1.8+0.2 18+05 | 3
A4TAE

Table 15. IF1 binding parameters of ATP synthase with mutants of group B.

Experimental conditions and calculations as described in Materials and Methods. pH 6.5, 25°C.

As described in group A, the same kinetic experiments at pH 8 were done for

mutants in group B. Results are displayed in table 16. At this pH, mutant T380R-S383E

still had no effect either on ko, or on kess. Mutants E471K-A474E and T380R-S383E-

E471K-A474E both kept the same range of decrease on kon. By the way, these two

mutants showed an effect of increasing the ko by 2 to 2.5 fold at pH 8 by both

methods of k. determination. The cause of the ko modification effect is not clear. But

maybe it was related to pH change that modified the charges of protonable residues.

Thus the electrostatic interaction between mutated residues (especially E471K and

A474E) and IF1 could be slightly affected, which decreased the stability of the protein

complex. It could be other reason that still needs further verification.

mutation Kon Ky Ko Kgkon n
(pH 8) (10°M's™) (10 M) (10*s™) (10*s™)
none (WT) 2.21+0.09 | 9.06+0.60 | 18.4 +1.3 20.0+20 | 7
T380R-S383E 2.34+0.23 | 10.8+2.0 | 20.1+0.3 25.3 +7.1
E471K-A474E 0.25+0.10 182 + 10 39+0.6 458+ 3.4
T380R-S383E-E471K- 0.32 +0.02 173 +12 52+5.2 56.3+6.9
A4TAE

Table 16. IF1 binding parameters of ATP synthase with mutants of group B, at pH 8.
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3.3.2.3. Discussion

The mutant a-E357D-Y399F-R400A-V402L-Q418N classified as group A does not
affect IF1 binding step, and it contributes only a little to the stability of the inhibited
complex suggested by the 2.5-fold increase of ko with their simultaneous mutation
into their non-mitochondrial counterparts. These mutations globally decrease the
volume of the lateral chains except for V402L. Thus some of these residues probably
limit movements of IF1 when it is trapped in between aDP and BDP. The limited effect
of mutagenesis could be due to the nature of the mutations of the residues. Since they
were designed for IF1 specificity study, these mutations did not effectively reduce the
IF1-F;-ATPase interaction. It could also be due to their relative remoteness from IF1
suggested by the yeast crystal. According to the structural analyses, residues in group
A are closer to IF1 in bovine crystal but not in yeast, where four of the five residues are
more than 6 A to IF1 (see figure 36). Thus, other type of mutations could be interesting
to examine the roles played by these residues during IF1 inhibition, such as glycine
substitutions. And other residues in this region could also be interesting to investigate.

In group B, the Cter extremity residues E471 and A474 are clearly involved in IF1
initial binding step judging from the 7-fold decrease of k., observed from its mutant.
The Cter extremity of B subunit protrudes from the complex regardless the catalytic
state of the interface, which is a facility of IF1 grasping. This initial IF1 grasping step
occurs in one of the three catalytic states of the interface, and it follows large
conformational changes until the dead-end state. It is also interesting to wonder which
residues from IF1 part might interact with E471 and A474. In bovine F;-ATPase
crystallized complex with bound IF1, residues E471 and A474 of BDP are close to IF1
residues L42, L45 and K46 (figure 42), whereas in yeast complex the homologues of
these IF1 residues are not visible. In yeast crystal, residues E471 and A474 of BDP have
a distance more than 10 A to the closest IF1 residue (Q36, see figure 38). One could
possibly imagine that in yeast IF1 homologue region, which refers IF1-L37 to L40, there
exist residues closer to BDP E471 and A474. Mutations of these residues could be

helpful to confirm our finding of BDP-E471 and A474. Interestingly, mutation into
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alanine of yeast IF1-L40, the homologue of bovine IF1-L45, has been recently shown to
decrease ko, by a factor of 5 (Robinson et al, 2013). This matches our finding of the 7-
fold decrease of ko, for the mutant B-E471K-A474E. Therefore, it strengthens the idea
that interaction between the B C terminal extremity and IF1 midpart (presumably IF1-
L40 or its neighbours) is involved in the recognition step. On the other hand, the

residues T380 and S383 play no role in IF1 binding process.

Figure 42. Interaction between BDP-E471, A474 and IF1 midpart in bovine IF1-F;-ATPase.

Image created form the pdb file 2v7q using PyMol software. Residues of IF1 L42, L45 and K46 are
shown in white sticks. Residues of BDP-E471, A474 are shown in salmon sticks. The closed distance

between IF1 and BDP residues are measured and shown in yellow.

In addition, the result of the mutation B-E471K-A474E consists of slight increase
of the dissociation rate constant at pH 8, which suggests that these two residues are

also involved in stabilizing the inhibited complex but with a very limited function.

3.3.3. Group C and D: y-neighbouring residues from aDP, BDP

Group C: aDP*®GSDLDAST**®
Group D: BDP***DELSEQD*®

115



As defined previously, these two groups of residues are located in aDP, BDP
subunits Cter. They are highly conserved in ATP synthases. And they interact with the
foot of y subunit as well as IF1. The central shaft y subunit of ATP synthase connects
the F, rotary motor and the F; catalytic core. It deforms sequentially the three catalytic
pairs of a, B subunits in order to achieve ATP synthesis or hydrolysis. The contact
between y subunit and the C terminal extremity of a, B subunits, especially a, appears
after IF1 bound in bovine ATP synthase, but this contact remains more constant in
yeast ATP synthase according to the observations of crystal structures with or without
IF1 bound. Here we consider that this interaction might indirectly contribute to the

inhibitory effect of IF1.

Figure 43. Zoom of residues in Group C and D in bovine mitochondrial F1-ATPase.

IF1-bound bovine mitochondrial F;-ATPase pdb file 2v7q, image created in PyMol. The figure shows IF1

(grey ribbon in middle) binding region. Group C and D residues in aDP, BDP subunits are shown in

407 414

sphere. In aDP subunit (green lines), the loop ~ 'GSDLDAAT " is shown in forest green on sphere. In

394 400 .

BDP subunit (red lines), the loop ™ 'DELSEED ™" is shown in ruby red. y subunit is shown on cyan ribbon.
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These two groups of selected residues were gradually mutated into glycine using

site-directed mutagenesis in the aim of reducing their steric hindrance and eventually

weaken their contact to y subunit and to IF1. Obtained mutants are as following:

Group C: a*®GSGLDAST*!®

Group D:

a*®GSDLGAST*®
a*®GSGLGAST***
a4ogGS@AST416
0L4096 GGGG AS-|-416
o«*®GSGGGGGG'"®
o«*”GGGGGGGG*"®
a4O9GS_ - _AST416
[3394§E LSEQD4OO
[3394D§LSEQD400
[3394DE LS§Q§400

[3394DGGGEQD4OO

SMP of different mutants devoid of endogenous IF1 were investigated by kinetics

of ATP hydrolysis and IF1 inhibition at pH 6.5. Then we studied the IF1 binding

parameters of these two groups of mutations.

3.3.3.1.

a*®GSGLDAST*®
o*®GSDLGAST*®
a*®GSGLGAST***
a4ogGS@AST416
0L4096 GGGG AS-|-416
o«*°GSGGGGGG'"®
«*”GGGGGGGG*®
‘%G S--- ASTA16

Effect of mutations in Group C:
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Kinetic results of this group of mutations are shown in figure 44-a-b-c, and the
binding parameters obtained from numerous single experiments were calculated and
shown in table 17. To better visualize the results, the calculated ko, and kos values of

different mutants are shown in table 17 were plotted in figure 45.
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Figure 44a. Group C: rate constant of inhibition (k,p,) as a function of IF1 concentration.

Conditions are as described in Material and Methods, pH6.5, 25°C.
(-M-) SMP WT, average of 29 single experiments, presenting in each figure as control.
Panel al, (-A-) SMP mutant a4OQGS§LDAST416, average of 3 single experiments.
-0- mutant a G , average of 3 single experiments.
(-o-) SMP *9GSDLGAST**® f 3 singl i
-O- mutant a GLG , average of 3 single experiments.
(-0-) SMP *9GSGLGAST f 3 singl i
-X- mutant a , average of 3 single experiments.
(-x-) SMP *9GSGGGAST*® f 3 singl i
Panel a2, (-O-) SMP mutant 014OQGGGGGAST416, average of 3 single experiments.
-X- mutant a , average of 4 single experiments.
(-x-) SMP *6s66GGGG""* f 4 singl i
-A- mutant a , average of 3 single experiments.
(-A-) SMP *°G6GGGGGG"* f 3 singl i

(-0-) SMP mutant 0(40965:AST416, average of 4 single experiments.
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Figure 44b. Group C: normalized ATPase activity at equilibrium as a function of IF1 concentration.

(-m-) SMP WT, average of 29 single experiments, presenting in each figure as control.

409

Panel al, (-A-) SMP mutant a GSQLDAST“G, average of 3 single experiments.

409

(-o-) SMP mutant a GSDLQAST416, average of 3 single experiments.

409

(-O-) SMP mutant a GSQLQAST416, average of 3 single experiments.

409 416

(-x-) SMP mutant a” GSGGGAST ", average of 3 single experiments.

Panel a2, (-O-) SMP mutant 014OQGGGGGAST416, average of 3 single experiments.

(-x-) SMP mutant a**GSGGGGGG""®

409

, average of 4 single experiments.

(-A-) SMP mutant a GGGGGGGG“G, average of 3 single experiments.

(-0-) SMP mutant a*®Gs- - -AST**®

, average of 4 single experiments Conditions and labels are as
described in figure 42a. Panel b1, SMP WT and mutants are the same as figure 42-al. Panel b2, SMP WT

and mutants are the same as figure 42-a2.
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Figure 44c. Group C: normalized ATPase activity at equilibrium as a function of 1/k,p.

(-M-) SMP WT, average of 29 single experiments, presenting in each figure as control.

Panel a1, (-A-) SMP mutant o'’ GSGLDAST**®

409

, average of 3 single experiments.

(-o-) SMP mutant a GSDLQAST416, average of 3 single experiments.

409

(-O-) SMP mutant a GSQLQAST416, average of 3 single experiments.

409

(-x-) SMP mutant a GSGGGAST“G, average of 3 single experiments.

Panel a2, (-O-) SMP mutant 014OQGGGGGAST416, average of 3 single experiments.

409 416

(-x-) SMP mutant ™ GSGGGGGG ", average of 4 single experiments.

409

(-A-) SMP mutant a GGGGGGGG“G, average of 3 single experiments.

409 416

(-o0-) SMP mutant o GS- - -AST *, average of 4 single experiments
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mutation Kon Kq Kost KeKon n
(pH 6.5) (10°M"'s™) (10° M) (10*s™) (10%s™)

none (WT) 43+0.2 0.24 +0.06 1.8+0.2 1.00£03 | 29
a*“GSGLDAST""® 23102 1.3+0.2 3.0£0.2 3107 | 3
a""“GSDLGAST " 3.6+0.5 0.62+0.19 3.2+06 22+10 | 3
a*?GSGLGAST'™ 1.7+0.2 10.0 1.0 9.8+17 16.8+4.0 | 3
a*“GSGGGAST"" 1.7+0.2 13.7+1.4 244+1.9 236+58 | 3
a*"GGGGGAST"* 1.7+0.2 6.0+ 1.4 16.5+4.3 101+£39 | 4
a'“GSGGGGGG' " 1.6+0.1 14.7£2.0 31.1+4.0 236+44 | 4
«*"GGGGGGGG'" 28+0.2 55+0.2 15.7 £ 1.3 154+17 | 3
a*“GS - - - AST'" 25+0.2 16.8+ 3.0 50 + 12 42+ 1 4

Table 17. IF1 binding parameters of ATP synthase with mutants of Group C.

Experimental conditions and calculations as described in Materials and methods. pH 6.5, at 25°C. n,

number of experiments.
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Figure 45. Kinetic constants of IF1 binding and release after mutagenesis of Group C residues.

Mutated or deleted residues are indicated by black, bold, underlined characters. The WT sequence is
GSDLDAST. 1/k, has been plotted in Panel a; increase of 1/k,,, similar as increase of ks, results in a loss of
affinity of IF1 for ATP synthase. Panel b, dissociation rate constant expressed by ks (grey bars) and by the

product Kykon (hatched bars). The k¢ value and the Kyko, product are well matched.

All the mutations in this group changed more or less the IF1 binding affinity to F;-
ATPase. Since the first glycine substitution, the ko, value drops from 4.3 10° M (WT)
to 2.3 10° M*s™( a*®GSGLDAST**®). But the decrease of ko, value stays in a moderate
range that never drop further than 2.5 times. Nevertheless, the dissociation constant
K4 as well as the dissociation rate constant ke increase gradually with the increasing
number of mutated residues. Taking K4 as example, comparing the value to WT, it
increases from the first mutant o*®?GSGLDAST*'® 5 times to the most pronounced

mutant a**°GS- - -AST*'® 70 times. The kot of the mutants have the same trend of

modification. Comparing to the WT, it increases from the first mutant
(a**°GSGLDAST**®) 1.7 folds to the most pronounced mutant a*®°Gs- - -AST*® 27.7
folds. One exception of the increasing Ky, ko values is the mutation S410G. Mutations
including S410G slightly go backwards in their Kq, ko values increasing level, such as

mutants a**?GGGGGAST*® and «*°GGGGGGGG**®.
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3.3.3.2. Effect of mutations in Group D

B3 GELSEQD*®
B3%DGLSEQD*®
B3*DELSGQG"®
B3*DGGGEQD"®

This group of residues refers to the highly conserved motif, termed DELSEED-
loop, described previously. The DELSEED-loop of B subunit makes contact with the foot
of y subunit. It also has direct interaction with IF1. Mutations of these residues into
glycine reduce the steric hindrance of the loop, so that it may weaken the contact at
the same time between B and y subunits, and between B subunit and IF1. But since
this B-DELSEED-loop has been suggested to be involved in coupling between catalysis
and rotation (Mnatsakanyan et al, 2011), our mutations in this group did not go further
than triple glycine substitution in order not to affect enzyme functions.

Kinetic results of this group of mutations are shown in figure 46, and the binding
parameters obtained from numerous single experiments were calculated and shown in

table 18.
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Figure 46. Experimental data of mutants in group D and determination of IF1 binding parameters.

Conditions are as described in Material and Methods, pH6.5, 25°C. Experimental data of SMP WT and mutants

from group B are shown in the figure.

(-M-) SMP WT, average of 29 single experiments.

(-0-) SMP mutant [3394§ELSEQD4O°, average of 3 single experiments.

(-A-) SMP mutant [3394
(-X-) SMP mutant B***DELSGQG"®
(-o-) SMP mutant B394

DgLSEQD4OO, average of 3 single experiments.

, average of 3 single experiments.

DELSGGG4OO, average of 3 single experiments.

Panel a, rate constant of inhibition (k,p,) as a function of IF1 concentration. Panel b, normalized ATPase activity

at equilibrium as a function of IF1 concentration. Panel ¢, normalized ATPase activity at equilibrium as a

function of 1/kapp.
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mutation Kon Ky Ko KqKon n
(pH 6.5) (10°M"'s™) (10° M) (10*s™) (10%s™)
none (WT) 43+0.2 0.24 + 0.06 1.8+0.2 1.00£03 | 29
p*“GELSEQD™ 40+0.3 0.80 +0.23 5.0+0.7 3.2+1.1 3
B**DGLSEQD*" 5.7+ 0.4 27402 18.6 + 2.4 154+25 |3
p*“DELSGQG™" 3.8+04 1.1£0.23 6.0+0.6 41+18 |3
p**DGGGEQD*"" 3.8+0.8 0.4+0.3 3.8+0.8 1514 3

Table 18. IF1 binding parameters of ATP synthase with mutants of Group D.

Experimental conditions and calculations as described in Materials and methods. pH 6.5, 25°C. n,

number of experiments.

None of the mutations in group D shows significant effect on the rate constant of
IF1 association. But all the four mutations have more or less increased the rate
constant of dissociation kof, as well as the Kq. The most remarkable effect is observed
with the mutant B***DGLSEQD*®(E395G). This single substitution on glycine brings a
10-fold increase in ko . However, this important increase of ko does not appear with
the triple mutation B**DGGGEQD*® that includes E395G. The results suggest that

BE395 plays a specific role.

Combination of crucial mutations a**°GS- - -AST**® and

3.3.3.3.
[3394DG LSEQD®®

With the observations of mutations in group C and D, we selected one crucial
mutation from each of the subunit: «**°GS- - -AST**® and 8394D§LSEQD4°°. In the aim of
detecting a maximal effect of mutations from y remote residues, we combined the two
selected mutations and created a new “double mutant”, a*®°GS---AST*® and
B***DGLSEQD*®. Kinetics of ATP hydrolysis and IF1 inhibitions are displayed in figure

47. Experimental data are shown in table 17.
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mutation Kon Ky Ko KgKon n
(pH 6.5) (10°M's™) (10° M) (10*s™) (10%s™)
none (WT) 43+02 0.24 + 0.06 1.8+0.2 1.00+03 | 29
a*GS - - -AST™® nd 194 + 18 nd nd 4
p*“DGLSEQD™”

Table 19. IF1 binding parameters of “double mutant”, m‘ngS;AST416 and 6394D§LSEQD4°°.

Experimental conditions and calculations are as described in Materials and methods. pH 6.5, 25°C. n,

number of experiments.

SMP mutant
a499GS - - - AST416
B394D§LSEQD400

LT

\\\d

0.04 Asyg
0.2 Ago

2 min 5min

Figure 47. Kinetics of ATP hydrolysis and IF1 inhibitions of yeast wild type and the “double mutant”

SMP.

Conditions are as described in Material and Methods, pH6.5, at 25°C. SMP of wild type and the “double

mutant” a*®Gs- - -AST**® and [3394D§LSEQD400 were prepared as described in Material and Methods. ATP

hydrolysis was monitored by the decrease of absorbance at 340nm. Arrow indicates SMP injections and
purified yeast IF1 injections. a) SMP WT, 100 nM IF1; b) SMP WT, 50 nM IF1; ¢) SMP mutant
o*GSs- - -AST*® and B***DGLSEQD*®, 5 mM IF1; d) SMP mutant o ®°GS- - -AST**® and B***DGLSEQD"®,

500 nM IF1; e) SMP mutant a**°GS- - -AST**® and B***DGLSEQD*®, 50 nM IF1.
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As expected, the combination of the two important mutations results in a
dramatic decrease of IF1 affinity. The Kq value drops from 0.24 10° M to 194 10° M.
However, it requires extremely high concentration of IF1 to achieve a detectable
inhibition. As a consequence, it reaches instantly the equilibrium between active and
inhibited forms of ATPase, and the ko, and ks values are not detectable (see examples
of single experiments in figure 47). Finally, the result of the final inhibition Ky
estimation corresponds to the multiplication of K4 values of each “single mutation”. As
the K4 value and IF1 binding energy are logarithmically related, the binding energy
change of the “double mutation” should be the addition of energy from each “single
mutation” from different region of a, B subunits. In fact, our calculation based on the
experimental data shows that both the K4 value and binding energy calculation are in
accord with the independent contribution to IF1 interaction from each side of a, B

subunits.

3.3.3.4. Residues in y subunit interacting with Group C

According to the crystal structure of IF1-Fi-ATPase, y'**MQLL'"® are facing
aDP*®GSDLDAST*'®. The contact between o and y subunits might be linked to the IF1
binding process. Since the series of mutations in group C showed significant effect in
kofr, it is also very interesting to know whether it has the same effect with the same
type of diminishing-volume mutations in y subunit. A series of glycine substitutions iny
subunit was designed and constructed through the collaboration with Dr. Emmanuel
Tetaud at Bordeaux. Until recently, two mutants have been successfully grown and

determined of their kinetic parameters (table 20).
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mutation Kon K4 Kot KgKon n
(pH 8) (10°M's™) (10 M) (10*s™) (10%s™)
none (WT) 221+0.09 | 9064060 | 184%13 | 200+20 | 7
y-M116G-Q117G 215+0.10 | 198+15 | 309+08 | 426+53 |5
y-M116G-Q117G-L118G | 256 +0.12 | 9.00+0.58 | 212108 | 23.0+25 | 3

Table 20. IF1 binding parameters of mutants in y subunit.

Experimental conditions and calculations as described in Materials and methods. pH 8, at 25°C. n,

number of experiments.

Kinetics have been performed at pH 8, at 25°C. The two mutants in y subunit
facing residues in group C have no effect on rate constant of IF1 association. But the
double mutant y-M116G-Q117G increased the dissociation rate constant by around
70% comparing to WT. The triple mutant y-M116G-Q117G-L118G abolished this
increase in kofr, which is similar to the mutation aS410G. This result of limited effect is

accordable to the effect of group C mutations afterall.

3.3.3.5. Discussion

In o subunit, the group C residues aDP*®GSDLDAST**® seems somehow
participate in the initial step of IF1 recognition according to the moderate decrease of
kon value while mutated into glycine. Since the first substitution of glycine (D411G),
enzyme showed a remarkable effect. So this residue D411 probably has the main
contribution for IF1 recognition among all the target residues in group C. Since the
group C is relatively far from IF1 in the crystal structure comparing to group B that
plays a main role in IF1 binding step, it is reasonable for this group to have a minor
contribution to initial binding step. Known the crystal structure shows only the final
state of the inhibited complex, the initial binding step including the transient

conformational changes remains unclear. We could possibly imagine that the group C
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residues are partially involved in IF1 loose binding step. Then after enzyme performing
a fraction of turn, they turn to play the main role of stabilizing the inhibited complex.

Suggested by the modification of ke values, aDP*®GSDLDAST** shows
important contribution to the stability of inhibited complex. According to the crystal
structure, these residues in aDP subunit do not have direct contact with IF1 in the final
state, except one possible electrostatic interaction between aD413 and IF1-R30, and
one other possible hydrophobic interaction between al412 and IF1-F27. These weak
interaction with IF1 would probably limit the inhibitor movement inside the (af)DP
crevice. Moreover, their position in the enzyme and their steric hindrance allow the
formation of a pliers-like motif cooperating with BDP subunit through their lateral
chains in order to block IF1 movement. The contact between aDP*®GSDLDAST*'® and
v °KMQLL™® might contribute to the rigidity of these pliers (figure 48).

In B subunit, the motif DELSEQD is not involved in IF1 recognition, but it
contributes to stabilize the IF1 inhibited complex, as suggested by k. increase with
mutations. The most significant contribution to IF1 stability was observed with
mutation in B-E395. On one hand, BDP-E395 has no close distance to IF1 (more than 9
R), but it is close enough with y-R30 to establish a salt bridge (less than 3 A), as well as
electrostatic interactions with y-K81. On the other hand, BTP-E395 also seems to play a
role to the stability of the inhibited complex, since it has a relatively close distance
with IF1-R20 (more than 4.8 A). Moreover, the B-E398 was also observed by the crystal
structure holding a close distance to IF1, such as BDP-E398 establishing a salt bridge
with IF1-R32 (3.2 A), and PBTP-E398 forming a H-bond with y-Q117. All these
interactions contribute to IF1 stability, which were confirmed by kinetics with
mutations reducing the interactions (figure 49).

All together, the results suggest that not only the direct contacts between a/p
subunit and IF play a role in stabilizing the inhibited complex, but also the interaction
between a/f subunit and y subunit. It is a complicated subunit-subunit cooperation

that keeps the IF1-F;-ATPase stable.
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Figure 48. Interaction between aDP " "GSDLDAST ~ and its neighbouring residues.

Image created form the pdb file 3zia using PDBviewer software. On the left, y subunit is shown on cyan

119

sticks, with indicated residues yllSKMQLL on sphere. IF1 secondary structure is shown on white

409 416

ribbon, with its side chains on sticks. aDP"~GSDLDAST " (green) and BDP-DELSEQD (red) are shown on

409 416

sphere. On the right, residues of aDP " "GSDLDAST " are shown in green sticks with the label of alL412

115

and aD413. IF1 F27 and R30 are shown in white sticks. Residues of y KMQLL'"® are shown on cyan

409 416

sticks. The closed distance between aDP "GSDLDAST — and its neighbouring residues in IF1 and

yllsKMQLL119 are measured and shown in yellow.

131



Figure 49. Interaction between B-DELSEQD and its neighbouring residues.

Image created form the pdb file 3zia using PDBviewer software. On the top, IF1 secondary structure is
shown on white ribbon, with its side chains on sticks. Residues in y subunit are shown on cyan sticks.
BTP-DELSEQD (yellow) and BDP-DELSEQD (red) are shown on sticks. On the bottom left, residues
interacting BTP-DELSEQD (IF1-R20: white sticks, y-Q117: cyan sticks) are zoomed with measured
distance indicated in yellow. On the bottom right, residues interacting BDP-DELSEQD (IF1-R32: white

sticks, y-R30 and K81: cyan sticks) are zoomed with measured distance indicated in yellow.
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Chapter 4. Conclusion and Perspectives

134



135



4. Conclusion

Being an essential enzyme in the mitochondria of a cell, ATP synthase functions
as an energy producer. The reverse action of ATP hydrolysis is a potential danger for
the cell in most cases. Therefore, the regulation of mitochondrial ATPase by its natural
inhibitor IF1 is important. During the three years of my thesis, our team worked on the
ATPase regulation by IF1 in the model of Saccharomyces cerevisiae mitochondria. This
work was ained in studying the dynamics of the inhibition process, by discriminating
motifs or residues of ATP synthase that are involved in the IF1 recognition and locking
steps; as well as in understanding the specificity of mitochondrial ATPase inhibition
that IF1 showed in in vitro experiments.

Numerous residues in ATPase a, B and y subunits that are most probably
implicated in IF1 binding process were selected and mutated. Mutants were classified
into four different groups according to their locations and their mutation types.
Mutagenesis was then combined with kinetic approach in order to study the effect of
mutations in IF1 inhibition and consequently analyze the roles played by each residue
during IF1 binding and locking to ATPase.

Firstly, with the preliminary experiments in the lab showing that IF1 inhibits
specifically mitochondrial ATPase, we examined residues of group A and B. Results
show that none of the selected residues are responsible for IF1 specific inhibition of
mitochondrial ATPase. This specificity, if it exists, could involve in specific molecular
recognition occurring only in some transient steps that are not visualized in a crystal
structure. It could also possibly involve in other residues that we did not mutate. And it
requires more investigations.

Secondly, kinetic studies were performed to estimate the effect of mutations on
ATPase represented in four groups during IF1 inhibition. Kinetic parameters of IF1
binding to ATPase were observed. These results revealed the formation of the
interaction between IF1 and ATPase, from the initial recognition step to the
stabilization of inhibited complex. With the help of structural analyses, we proposed in
this work the sequence of events occurring in mitochondrial ATPase inhibition by IF1

(see figure 50).
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1)

2)

3)

4)

o)

IF1 midpart is recognized by the C-terminal extremity of ATPase 3
subunit (in particular E471, A474), which belongs to one of the
three af catalytic interfaces. At the same time, the a motif
GSDLDAST slightly contributes to IF1 recognition.

After IF1 loose binding, ATPase still experiences one fraction of
turn and the catalytic interface that has just bound IF1 closes and
becomes (af3)DP. IF1 is then trapped.

IF1 trapping involves aDP-GSDLDAST and BDP-DELSEQD,
which form a pair of pliers that encage IF1. Whereas 3 C-terminal
extremity becomes much less important than the beginning. In
addition, other residues in a subunit (group A) facing IF1 midpart
modestly contribute to IF1 trapping by limiting its movements
inside the (af)DP crevice.

The interactions between a, y and B, y subunits (a-GSDLDAST
and foot of y, B-DELSEQD and foot of y) ensure the rigidity of the
pliers mentioned in step 3.

Another contribution comes from the N-terminal part of IF1, which
was shown to play a key role in stabilizing the inhibited complex.
(Andrianaivomananjaona et al, 2011; Ichikawa et al, 2001) by
interacting with central axis of y and internal parts of a and 3
subunits.

GRASPING LOCKING

Figure 50. Representation of IF1 binding-locking process in yeast mitochondrial ATPase.



All together, the regulation of mitochondrial ATPase by IF1 is shown to be
complicated subunit-subunit cooperation. Most of the enzyme-inhibitor interaction in
the initial binding step are not visualized in crystal structure, but are suggested in this
work by the combination of kinetics and site-directed mutagenesis, as well as
accumulation of experiments. This approach notably improves our knowledge of IF1
inhibition mechanism. There are still other aspects about IF1 regulation that remain to

be elucidated.
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5. Perspectives

In this work, we have mutated and examined the role of numerous residues
implicated in the IF1 binding process, located in four different regions involving three
subunits. Still, there are several things we could do in the future work to improve the
understanding of IF1 inhibition to mitochondrial ATPase.

Speaking about the mutagenesis, we barely started to study residues in y subunit
that are in contact with a and B subunit. By those limited mutations, we found
interesting results that matched the effect of mutations in their counterpart in a and B
subunit. Thus, more investigations in y subunit will be interesting. For instance, around
the region y-""*MQLL'"?, those amino acids are suggested to be in contact with a
subunit stabilizing the inhibited complex. They also have a close distance with BTP-
DELSEQD. But in the crystal structure, there are some residues missing in y subunit.
Plus, the transient interaction between the two subunits remains unknown. We need
to re-examine the structures in order to find and study more potential candidates
located in a-contacting region of y subunit involving in IF1 binding process, which
would definitely help the understanding of IF1 interaction especially the stabilization
step. On its other side, y subunit is in contact with BDP-DELSEQD, perhaps participating
in the stabilization of the complex. As we discussed previously, y-R30 is a good
candidate, as well as y-K81. They get really close to BDP-DELSEQD, less than 4 A. So
that they could probably play an important role as y-**MQLL'® (or their
neighbourhood residues), contributing to the stabilization of inhibited complex. So, it
would be interesting to mutate these regions of y subunit and compare the effect to
mutations in a and B subunits. On the other hand, inside a and B subunits, especially
those regions contacting IF1 midpart, there is also something interesting that could be
tested, which could then be compared to group A and B. Since we turned the focus
now to the research of IF1 binding process, it could be interesting to re-examine these
residues by glycine substitutions. In this way, we could more effectively weaken the
interaction between IF1 and F;-ATPase, and consequently study the IF1 recognition

step by these residues. Besides, the choices of these residues were made on basis of
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sequence alignment between different organisms (mitochondrial versus non-
mitochondrial families). The most conserved residues in mitochondrial family were
selected, but they were not meant to be the closest residues interacting with IF1
midpart. Which is to say that further intensive work could be done to study other
residues located in the catalytic ap interface facing IF1 midpart, in order to identify
other residues that contribute to IF1 recognition.

Speaking about the technique, until now the studies of interaction between IF1
and ATPase are mainly realized by two approaches: X-ray crystallography, and enzyme
kinetics combined to site-directed mutagenesis. X-ray crystallography allows to solve
the 3D structure of the IF1 inhibited ATPase, which is the dead-end conformation.
Kinetic experiments with mutations allow distinguishing two steps in the inhibition
process (recognition and stabilization), and identifying residues involved in the
process. However the successive conformational changes of ATPase and IF1 during
their interaction are not revealed. Structural characterization of these different states
is necessary to have a dynamic view of the inhibition process, in particular to
understand the uni-directional, mitochondrial ATPase inhibition process. The
remaining questions are as follows: What is the catalytic state of af interface that
initially binds IF1? How does IF1 adjust its conformation during the inhibition? We
proposed that IF1 is recognized by the enzyme through its midpart and the N-
termainal part folds in the opposite direction (Andrianaivomananjaona et al, 2011).
Winding of its N-terminal part around the central y subunit is likely to occur in the
following steps to stabilize the complex. But it lacks direct visualizing evidence. What
happens in the transient binding steps? How does IF1 specifically inhibit mitochondrial
ATPase? What role does the dimerization of yeast IF1 play in the inhibition?

To solve these questions, new experimental approaches are required. For
instance, the spin-labeling EPR spectroscopy could be used to characterize the protein-
protein interaction at the structure level. IF1 and F;-ATPase will be labeled at certain
sites and observed of their conformational transitions as well as biomolecule
associations by EPR spectroscopy under different conditions, such as presence of ATP,

absence of ATP and so on. The FRET (Fluorescence Resonance Energy Transfer) could
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also be used to estimate time-dependent or conformer-dependent distance within the
IF1-F;-ATPase complex. Since FRET is a distance-dependent interaction between the
electronic exited states of two dyes, it is powerful to study interaction between
proteins and conformational changes within proteins. Although complicated, it is also
interesting to crystalize those mutated F;-ATPases with IF1 bound in order to visualize
the effect of mutations in a dead-end complex.

Of course, it exists other methods to study this same phenomenon. Hence, we
just need a little bit more imagination, creative ideas, courage and skills, patience and

financial support.
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ABSTRACT

When mitochondria gets deenergized, futile ATP hydrolysis is prevented by reversible binding of an
inhibitory peptide called IF1 to ATP synthase. Between IF1 initial binding and locking the enzyme
experiences large conformational changes. Structural studies give access to analysis of the dead-end
inhibited state, not of the transient ones. Here, we studied both initial and final states by reporting, for the
first time, the consequences of mutations of Saccharomyces cerevisiae ATP synthase on its inhibition by
IF1. Kinetic studies allowed identifying amino acids or motifs of the enzyme involved in recognition
and/or locking of IF1 a-helical midpart. This led to draw an outline of IF1 binding process. In the
recognition step, o and especially  subunits protruding parts grasp IF1, probably by a few residues of its
a-helical midpart. Locking IF1 within the aff interface involves additional residues of both subunits.
Interactions of a and B subunits with the foot of the y subunit might contribute to lock and to stabilize the

dead-end state.
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ABBREVIATIONS

The abbreviations used are: FoF;-ATPase, ATP synthase complex (EC 3.6.3.14); F,-ATPase, isolated
extrinsic part of ATP synthase; IF1, endogenous inhibitory peptide of mitochondrial ATP synthase; yIF1,
IF1  from yeast; SMP, submitochondrial particles; pmf, protonmotive force; Tris,
tris(hydroxymethyl)aminomethane; MES, 2-(N-morpholino)ethanesulfonic acid; FCCP, carbonyl
cyanide-p-trifluoromethoxyphenylhydrazone; Ni-NTA, nickel-nitrilotriacetic acid; PGK,

phosphoglycerate kinase; KanM X4, kanamycin-resistance gene; G418, geneticin.
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1. INTRODUCTION

ATP synthase, also called FoF-ATPase, plays a key role in energetics of the cell. This enzymatic
complex is anchored to bacterial, chloroplastic and mitochondrial energy-transducing membranes. It
consists of a membranous sector (Fy) and an extrinsic subcomplex (F,). It recycles ATP, the main
biological energy vector, at the expense of a transmembrane electrochemical proton gradient also called
protonmotive force (pmf) [1]. ATP synthase is a molecular motor driven by protons [2]. A downbhill
proton flow through the Fy sector rotates a cylindrical homo-oligomer containing 8 or 10 transmembrane
¢ subunits [3-4] in the case of mitochondria and bound to the central shaft (yd¢ subunits) of the extrinsic
part of the complex. The rotation is thus transmitted to the y subunit, that sequentially distorts the three
catalytic sites located at the interfaces of the peripheral o and B subunits arranged in a (af)3 crown-like
structure. These conformational changes induce binding of ADP and inorganic phosphate (Pi), their
condensation into ATP and the release of ATP, according to the classical "binding-change" mechanism
[5]. Viewed from the membrane, the central shaft rotates clockwise during ATP synthesis and in the
opposite direction during ATP hydrolysis [2, 6]. The direction of the reaction depends on the energetic
balance between the pmf and the Gibbs' free energy of the reaction, determined by ADP, Pi and ATP
concentrations.

The activity of ATP synthase is regulated. Collapse of the pmf, which should theoretically
trigger ATP hydrolysis, actually leads to enzyme inhibition. In mitochondria, this process involves a
regulatory peptide called IF1 [7]. IF1 is a soluble peptide, 84 residues-long in B. taurus and 63 residues-
long in S. cerevisiae [8]. Its structure is a-helical, except for its N-terminal extremity [9-11].
Radiocrystallographic structures of bovine and yeast Fi-ATPases, with or without bound IF1, have been
published and revealed that the three catalytic (af) interfaces are in different conformations. These
interfaces are named (af)TP, (af)DP and (af)E. This nomenclature was given according to the catalytic
nucleotide occupancy (ATP analogue, ADP or empty) in the first published structure [12], and more
generally to the rotor orientation, which determines interface conformations even in the absence of
nucleotides [13]. In crystallized bovine and yeast F;-ATPase in complex with IF1, the inhibitory peptide
interacts with a, B and y subunits. The middle part of IF1 is inserted in the (af§)DP catalytic interface. The
N-terminal part mainly interacts with the central axis of the y subunit and also with the oE subunit. The
C-terminal part is truncated in the bovine crystal and not visible in the yeast crystal [10-11].

When the inner membrane is deenergized, IF1 thus binds to the catalytic part of ATP synthase
and blocks ATP hydrolysis. As soon as the pmf is restored, the affinity of IF1 for ATP synthase
dramatically decreases, which leads to its release and therefore allows the enzyme to catalyze ATP
synthesis [14-21]. The reason for this pmf-dependent binding/release is not yet understood, its elucidation
requires analysis of IF1 binding dynamics. Previous studies with the isolated F;-ATPase subcomplex
have distinguished a first step, in which IF1 loosely binds to a catalytic site in an adequate conformation,
and a second step, turnover-dependent, in which it is trapped within the complex [22-23]. Kinetic

experiments using IF1 with the N-terminal extremity deleted [24-25] or attached to a globular protein
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suggested that this part of IF1 is not involved in the recognition step but contributes to the stability of the
inhibited complex [24].

In this work, we intended to identify amino acids or motifs of F;-ATPase involved in the
different steps of IF1 binding process. To reach this goal, we mutated residues of S. cerevisiae ATP
synthase selected on the basis of structures of the IFl-inhibited F,-ATPase complex. Then, using
submitochondrial particles prepared from wild type and mutated cells, we studied the kinetics of
inhibition of ATP hydrolysis by IF1. For the first time, the effect of mutations in a,  and y subunits on
IF1 binding parameters (kon, Kd and koff) was observed. These data reveal how the set of interactions
between IF1 and F;-ATPase subunits varies between IF1 grasping and formation of the dead-end state.
Moreover, they bring a new insight on the inhibition process by suggesting that subunit-subunit

interactions within F;-ATPase contribute to the stabilization of the inhibited complex.

2. MATERIALS AND METHODS

2.1. Mutagenesis of a subunit and B subunit - o subunit and § subunit mutagenesis was achieved
by transforming Aatpl and/or Aatp2 S. cerevisiae cells with plasmids containing WT or mutated ATP1
and/or ATP2 genes, respectively. The plasmid with ATP1 gene was obtained by modifying the plasmid
pFL61 [26] as following. First, the 2 micron replication origin was replaced by the ARS/CEN replication
origin. Then, the coding DNA sequence of ATP1 gene was inserted into this plasmid under the control of
PGK promoter and terminator, leading to the plasmid pVC2-ATP1. The plasmid with ATP2 gene was
pRS313/ATP2-H10 [23]. Mutagenesis of ATP1 and ATP2 genes in the two plasmids was performed
using PCR. Primers used for PCR are displayed in Supplementary Material, Figure SM1. All mutants of o
subunit and most mutants of 3 subunit were obtained by successively transforming S. cerevisiae cells
(W303-1A-AatplAatp2 MAT a, ade2-1, his3-1,15, leu2-3,112, trpl-1, ura3-1) kindly provided by Pr
David Mueller (Chicago, IL, USA) with pVC2-ATP1 and pRS313/ATP2-H10 plasmids. Cells were first
transformed by WT or mutated pRS313/ATP2-H10 and selected on a fermentable medium (FM)
containing 0.7% Yeast Nitrogen Base without aminoacids, 2% glucose, supplemented with 60 mg/L
leucine, 20 mg/L adenine, 20 mg/L tryptophan and 20 mg/L uracil. Selected cells were grown in a
medium containing 1% Yeast Extract, 1% Bacto Peptone and 2% glucose. Then they were transformed
with WT or mutated pVC2-ATP1 plasmid. Transformed cells were selected and grown at 30°C on a
strictly respiratory medium (RM) containing 1% yeast extract, 0.1% KH2PO4, 0.12% SO4(NH4)2, 2%
lactate, supplemented with 60 mg/L leucine, 20 mg/L adenine and 20 mg/L tryptophan, pH 5.5.
Auxotrophy of each of the mutated strains was checked on the final sample used for mitochondria
preparation. For double mutations B-T380R-S383E, B-E471K-A474E and the quadruple mutation -
T380R-S383E-E471K-A474E, S. cerevisiae cells (Euroscarf BY4741-Datp2 MAT a, his3D1, leu2DO0,
met15D0, ura3DO0, YJR121w::kanMX4) were transformed with the WT or the mutated pRS313/ATP2-

HI10 plasmid. Transformants were selected and grown at 30°C on RM supplemented with 40 mg/L
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methionine, 60 mg/L leucine, 20 mg/L adenine, 20 mg/L tryptophan, 20 mg/L uracil, and 200 mg/L
G418 pH 5.5.

2.2. Mutagenesis of y subunit - y subunit mutagenesis was achieved by PCR amplification using
DNA from strain W303-1B as a template. Primers used for PCR are displayed in Supplementary
Material, Figure SM1. PCR product was digested with HindIII-Notl and ligated into the vector pES425#1
(Doron Rapaport). All mutants of y subunit were obtained by transforming S. cerevisiae cells (W303-1B
MAT a, ade2-1, his3-1,15, leu2-3,112, trpl-1, ura3-1) with the pES452-y vector and selected on FM
supplemented with 20 mg/L adenine, 20 mg/L tryptophan, 20 mg/L histidine and 20 mg/L uracil.
Obtained strains were subsequently deleted for ATP3 gene with the deletion cassette of ATP3 obtained
by the PCR amplification of the pUG6 plasmid containing the KanMX4 module [27] as a template and
primers displayed in Supplementary Material, Figure SM1. Transformants were selected on complete
synthetic medium supplemented with 200 pg/ml G418. Transformed cells were grown at 30°C on RM
supplemented with 20 mg/L adenine, 20 mg/L histidine, 20 mg/L uracil and 20 mg/L tryptophan, pH 5.5.
Auxotrophy of the mutated strains was checked on the final sample used for mitochondria preparation.

2.3. Biological materials - S. cerevisiae cells were grown at 30 °C in a large volume of RM as
indicated above, and cells were harvested in exponential phase to prepare mitochondria as previously
described [28]. Sub-mitochondrial particles devoid of IF1 were prepared by sonication in TSE (20 mM
Tris-SO4, 200 uM EDTA, pH 8.5) as previously [28], except that after endogenous IF1 release (4°C,
overnight) they were centrifuged for 20 min (8000 g, 4°C). The supernatant was then centrifuged for 40
min (100,000 g, 4°C), and the new pellet was resuspended into a small volume (100-200 pl) of TSE, then
kept on ice before use. His-tagged yIF1 was overexpressed in E. coli and the peptide was purified as
previously [24] using a Ni-NTA column. The His-tag was removed using enterokinase. yIF1 produced in
this work differed from the WT in two points: Phe28 was replaced by Trp to allow spectrophotometric
detection of the protein at 280 nm, and the first residue (Ser) was replaced by the triplet Ala-Met-Ala,
which was found to improve the purification and the stability of the peptide. None of these modifications

altered the binding properties of the inhibitory peptide.

2.4. ATP hydrolysis measurement and kinetic analysis - Continuous monitoring of ATP
hydrolysis by SMP coupled to NADH oxidation was carried out spectrophotometrically as described [24].
The reaction was observed in a stirred and thermostated cuvette (25°C) containing 50 mM MES (pH 6.5)
or 50 mM Tris (pH 8.0), 20 mM KCl, 1 mM MgCl2, 1 mM phosphoenolpyruvate, 20 units/mL pyruvate
kinase, 50 units/mL lactate dehydrogenase, 0.4 mM NADH, 1 mM MgATP, 2 uM antimycin and 2 uM
FCCP. ATP hydrolysis was initiated by adding SMP and monitored by NADH absorbance decrease at
340 nm. After 2-4 min, yIF1 was injected and ATPase activity decayed. The spectrophotometric
recording was fitted to the following function corresponding to a monoexponential decay of the ATPase

activity:

y(®) = v(D) t + [(V(0)-V(D)kapp] [1- exp(- kapp )] + y0O (1)
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where y(t) is the absorbance at time t, and y0 the absorbance at zero time defined as the time of
IF1 addition. V(0) is the constant rate of absorbance variation before IF1 addition in absorbance units per
second (proportional to the initial ATPase activity), V(I) the final rate of absorbance variation after IF1
addition (proportional to the final ATPase activity), and kapp the apparent inhibition rate constant in s-1.
The obtained kapp value was plotted as a function of the inhibitor concentration [I] to determine the rate

constants kon (in M-1s-1) and koff (in s-1) according to:

kapp = kon [I] + koff 2)

The relation between the V(1)/V(0) ratio and the inhibitor concentration was fitted to the following

function:

V() / (V(0) = vr + (1- vr) / (1 + [1] / Kd) 3)

where vr is the inhibitor-insensitive fraction of V(0) (always lower than 5%). Theoretically, Kd
should be equal to the koff/kon ratio. koff was also directly calculated using the following linear

relationship between 1/kapp and V(1)/V(0), drawn from Eqns. (1) and (3):

V(@) / (V(0)=vr + [(1 - vr) / koff] (1 / kapp) @)

kon, Kd and koff values and their standard errors were obtained by fitting the experimental data
with Eqns. (2), (3) and (4), respectively, using Microcal Origin software. In all of the experiments, the
inhibitor concentration was much higher than the enzyme concentration. Therefore the total and free
concentrations of inhibitor could be considered identical and constant during the kinetics of inhibition.

One experiment consisted in a set of at least ten kinetics obtained with different IF1 concentrations.

2.5. Chemicals and reagents - All reagents were of analytical grade. PCR mutagenesis was
carried out using the QuikChange Site-Directed Mutagenesis Kit from Stratagene (La Jolla, CA, USA).
DNA ligase was from New England Biolabs (Ipswitch, MA, USA). BCIP (5-bromo-4-chloro-3-indolyl
phosphate) and NBT (nitro blue tetrazolium) were from Bethesda Research Laboratories (Gaithersburg,
MD, USA). Yeast extract was from Difco (Detroit, MI, USA). ATP, NADH, and phosphoenolpyruvate
were purchased from Roche (Basel, Switzerland). Pyruvate kinase and lactate dehydrogenase were

purchased from Sigma-Aldrich (St Louis, MO, USA).
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3. RESULTS

3.1. Classes of mutations in o and § subunits - In order to determine their role in IF1 recognition
and locking, we mutated some residues or groups of residues of the yeast ATP synthase and examined the
consequences of these mutations on IF1 binding parameters. To select the amino acids to be mutated, we
defined four distinct classes of residues surrounding IF1 in the crystallized IF1/F-ATPase complexes
[10-11], two located in aDP subunit (classes A and C) and two in BDP subunit (classes B and D) (Figure
1). In each subunit, the two classes of residues were discriminated on the basis of the distance from the
foot of the y subunit. Class A (o subunit) and B (B subunit) consist of discrete amino acids, remote from
v, generally well conserved within mitochondrial ATP synthases but not in other ATP synthases. Class C
(o subunit) and D (B subunit) are motifs of contiguous, highly conserved amino acids, some of which

interact with y.

3.2. Kinetic parameters estimates and meaning - The rate constant of association kon is related to
the recognition step, whereas thermodynamic and kinetic constants of dissociation, Kd and koff, are
inversely related to the stability of the inhibited complex. Figure 2 shows typical examples of
determination of these constants from single experiments. It has been previously shown that the measured
association rate constant kon of IF1 depends on MgATP concentration [29], because it is actually
modulated by the nucleotide occupancy and the catalytic turnover of F;-ATPase [22-23]. Experiments
reported here were carried out with 1 mM MgATP. At this MgATP concentration the kon value reaches a
plateau and represents the true rate binding constant. Importantly, the koff value was here estimated not
only by the Kdkon product as in previous studies [24-25, 11], but also by directly correlating kapp to the
residual activity at equilibrium (see Materials and Methods, Eqn. 4). This makes koff determination
insensitive to possible uncertainties on IF1 concentrations. Comparison of these two koff values allows
evaluating self-consistency, and then reliability of parameter estimates. Figure 2 shows an example of
single experiments from three phenotypes in which the koff/Kdkon ratios are 1.6 + 1.2, 1.4 £ 0.5 and 1.05

+ 0.26. These values are reasonably close to the theoretically expected ratio of 1.

3.3. Effect of mutations of y-remote residues - The residues of classes A and B were selected on
the basis of two criteria: their proximity of IF1 in crystals and their relative specificity to mitochondrial
Fi-ATPases (Figure SM2 of Supplementary Material). This second criterion was applied with the aim to
identify residues responsible for the fact that IF1 specifically inhibits mitochondrial ATP synthases in
vitro. IF1 peptides purified from B. taurus and S. cerevisiae indeed non-specifically inhibit F;-ATPase
from both species, but they do not inhibit F;-ATPase from E. coli [30]. Accordingly, purified yIF1 does
not inhibit Fi-ATPase from PS3 bacillus and from spinach chloroplasts, even after removal of the ¢
subunit in the latter case (Figure SM3 of Supplementary Material).

The selected residues were mutated into their non-mitochondrial counterparts (Figure SM2). All a-
subunit residues (E357, Y399, R400, V402, Q418) and two B-subunit residues (T380, S383) were

mutated into the residues present in almost chloroplastic sequences and in a number of bacterial
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sequences. BE471 and BA474, located in a region poorly conserved in the non-mitochondrial world, were
respectively mutated into their E.coli and chloroplastic homologues. IF1 at saturating concentration
inhibited ATPase activity to more than 95% in SMP prepared from all these mutants. Binding parameters
were obtained after merging the results of several independent kinetic experiments as those displayed in
Fig. 2, 3-4 experiments for mutants, and 29 experiments for WT. The results obtained at pH 6.5 are
displayed in Table 1. and Fig. 3a focuses on the values of IF1 association and dissociation constants, the
latter being estimated by koff as well as by the Kdkon product (see Materials and Methods and section
3.2). Combined mutagenesis of the five residues selected on o (class A) had no effect on the binding rate
constant kon. It increased the rate constant of dissociation or had no significant effect, depending whether
it is determined by koff or by the product Kdkon. On the B subunit (class B), the double mutation
T380R-S383E had no significant effect on kon value and the double mutation -E471K-A474E decreased
the kon value by a factor of 7. Combining the four mutations has no significant additional effect as
compared to E471K-A474E. Mutations on the  subunit had no significant effect on the rate constant of
dissociation.

To precise the effects of the mutations on the dissociation rate constants, we did some
complementary experiments at pH 8 for which these constants are higher. At this pH, the Kd value of WT
dramatically increased from 0.24 nM to 9 nM, the koff value from 1.8 10-4 s-1 to 1.8 10-3 s-1, and the
Kdkon product from 0.9 10-4 to 2 10-3 s-1, which almost perfectly matches the koff value. Binding
constants values at pH 8 are displayed in Table II and kon, koff and Kdkon are shown in Figure 3b. It is
confirmed that the quintuple mutation on a subunit had no effect on kon, whereas it increased the koff
value and the Kdkon product by about 2.5 fold. It seems that the double mutation -E471K-A474E or the
quadruple mutation B-T380R-S383E-E471K-A474E actually increased by a factor of 2 to 2.5 the
dissociation rate constant estimated either by koff or by Kdkon, whereas the double mutation B-T380R-

S383E had no effect.

3.4. Effect of mutations of o subunit residues close to the foot of y subunit - This region of o
subunit was chosen for mutagenesis because in the aDP case it interacts with the foot of the y subunit.
This interaction might indirectly contribute to the inhibitory effect of IF1. We studied IF1 binding
parameters after mutation into glycine of an increasing number of residues of the 409GSDLDAST416
motif. Results are displayed in Table I (Class C), and Fig. 4 focuses on the values of IF1 association and
dissociation constants. Mutations into glycine resulted in moderate decrease of the kon value and in more
pronounced decrease of IF1 affinity. The dissociation rate constant gradually increases with the number
of mutated residues, except when S410 is replaced by G, which results in a small decrease of koff :
compare  409GGGGGAST416 to  409GSGGGAST416 and  409GGGGGGGG416  to
409GSGGGGGG416. The highest koff value was obtained after mutating 6 amino acids into glycine. It
reached about 3 10-3 s-1, i.e 15-30 times the value obtained with the WT. Another mutation, which
consisted in removing a-D411, a-L412 and a-D413, had a higher effect on koff, which reached here 5 10-
3s-1.
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Globally, except for S410G, decreasing the steric hindrance of the a409GSDLDAST416 motif
tends to destabilize the inhibited IF1-F;ATPase complex. In the aDP subunit of the crystallized IF1-
ATPase complex, 409GSDLDAST416 amino acids face 116MQLL119 residues belonging to an a-helix
of the y subunit. In particular, residues aD411, al.412 and aD413 are closer to this y116MQLL119 motif
than to IF1 (Figure 1). This suggests that koff increase consecutive to their mutation or deletion could be
due, at least in part, to modifications of aDP-y interactions in this region. In this case, diminishing the
steric hindrance of the y116MQLL119 motif is also expected to increase koff. We have then performed
the double mutation y-M116G-Q117G and the triple mutation y-M116G-Q117G-L118G and examined
their effect on IF1 binding. Not surprisingly, these mutations had no effect on the kon value. The double
mutation y-M116G-Q117G resulted in increasing the dissociation rate constant by more than 70%, a
limited but significant effect observed both at pH 6.5 and at pH 8. At pH 8, the koff value shifted from
1.8103 s 1 (WT)to3.1103s 1 (y-M116G-Q117G). The triple mutation y-M116G-Q117G-L118G
restored koff to the wild type value. The detailed results obtained at pH 8 are displayed in Table II and in
Figure 5.

Taken together, these results show that modifications in the o-y contact region involving
409GSDLDAST416 and y-116MQLL119 affect the dissociation rate constant and the affinity of the
peptide for the enzyme. The effect of the double mutation y-M116G-Q117G is limited and reversed by
the additional y-L118G mutation, but it remains consistent with a contribution of this a-y contact in

stabilization of the IF1-inhibited complex.

3.5. Effect of mutations of P subunit residues close to the foot of y subunit - DELSEED
(394DELSEQDA400 in yeast) is a well-conserved motif of B subunit, which periodically interacts with y
subunit during catalytic turnover [31]. Without being essential, it is involved in coupling catalysis to y
subunit rotation [32-34] and has been proposed to play a role in the inhibitory effect of the bacterial
regulatory € subunit [35], the counterpart of the mitochondrial & subunit. Like «DP-409GSDLDAST416,
BDP-394DELSEQDA400 is located in a region close to the foot of the y subunit. Table I (Class D) shows
IF1 binding parameters of ATP synthase in which different residues of DELSEQD have been mutated
into glycine. These mutations had no effect of the rate constant of IF1 binding. All the mutations
increased the rate constant of dissociation. The most important increase (10-15 fold) was by far obtained
with the single mutation of aE395 into glycine, which suggests a specific role for this residue. This effect
was partly reversed by the additional double mutation aL.396G-aS397G.

We also combined the two mutations that had separately the greatest effect on Kd and koff, a-
409GS - - - AST416 and B-394DGLSEQDA400. It resulted in a dramatic decrease of IF1 affinity.
Minimum IF1 concentrations required to obtain significant inhibition were so high that the equilibrium
between active and inhibited forms of the enzyme was reached in a few seconds. As a consequence, the
inhibition could not be kinetically solved here and kon could not be estimated. Only the final levels of
inhibition could be estimated, which gave a Kd value of almost 200 nM (Table I, Classes C-D). This
additive effect of mutations on a and B subunits illustrates the fact that multiple interactions contribute to

the binding energy.
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4. DISCUSSION

4.1. Rationale. The approach developed here, a combination of site-directed mutagenesis and
kinetic experiments, allows identifying domains of ATP synthase involved in initial and late steps of IF1
binding process. Until now only the effect of IF1 modifications on its binding properties have been
reported [36-39, 24-25, 11] including only a few kinetic studies [24-25, 11]. Here, for the first time, the
effects of mitochondrial ATP synthase mutations on IF1 binding kinetics have been investigated.

Residues to be mutated were initially selected on the basis of distances between their
homologues and IF1 in the bovine IF1/F;-ATPase crystallized complex (pdb file 2v7q). The recently
published structure of the equivalent yeast complex (pdb file 3zia) has revealed some differences that will
be discussed below. The y-remote residues of a and B subunits were also selected considering their
potential importance for the specific sensitivity of mitochondrial F1-ATPases to IF1. For other F;-
ATPases inhibitors, specificity indeed depends on critical residues. For example, the aurovertin-
sensitivity of mitochondrial and E. coli F|-ATPases is due to a single residue of  subunit [40], which
matches structural data [41]; the tentoxin-sensitivity of chloroplast and PS3 bacillus F,-ATPases [42] is
determined by a few residues of o and B subunits [43-44]. The case of IF1 appears more complex, since

the mutations of the y-remote residues into their non-mitochondrial counterparts had limited effects.

4.2. F;-ATPase motifs or residues implicated in IF1 recognition - In initial binding step IF1 is
recognized by a catalytic pair of o and B subunits, the conformation of which differs from that of the
(ap)DP pair in the dead-end inhibited complex. With this restriction in mind, locations of the different
residues shown to be implicated in this step are visualized in Figure 6a (yeast IF1/F;-ATPase complex,
pdb entry 3zia).

In B subunit the C-terminal extremity (E471, A474) is clearly involved in initial binding step. By
contrast, neither the couple of residues located in the a-helix preceding the p-DELSEQD motif (T380,
S383), nor the B-DELSEQD motif itself are involved in IF1 recognition. It is also interesting to wonder
which IF1 residues might be implicated. In the bovine F;-ATPase crystallized complex with bound IF1,
residues E471 and A474 of BDP are close to residues L42, 145 and K46 of IF1, whereas in the yeast
complex the homologue region of IF1 is not visible. Interestingly, mutation into alanine of yeast IF1-L40,
the homologue of bovine IF1-L45, has been recently shown to decrease kon by a factor of 5 [11]. This
matches the 7-fold decrease of kon observed here for the double mutation BE471K-BA474E. It therefore
strengthens the idea that interaction between the B C-terminal extremity and IF1 midpart, presumably
IF1-L40 or its neighbours, is involved in the recognition step.

In a subunit the GSDLDAST motif also seems implicated in IF1 recognition, but much less than
the C-terminal extremity of B subunit. aD411 seems to have the main contribution, but in the aDP subunit
of the yeast crystal it is not really close to IF1, and its homologue aD409 is not visible in the bovine
crystal. It should be mentioned that interactions involved in recognition might be transient, and not

present in the dead-end inhibited state thought to be that of the crystallized complex. Finally, residues of
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aDP subunit bordering IF1 midpart (aE357, aY399, aR400, V402, 0Q418) do not play any role in initial
binding step.

Among the residues that we have mutated, those belonging to the C-terminal extremity of
subunit play the major role in IF1 recognition. This part of B protrudes from the complex regardless the

catalytic state of the interface, which is a facility in IF1 grasping.

4.3. F;-ATPase motifs or residues implicated in the inhibited complex stabilization - After the
loose IF1 binding during the recognition step [22-23], partial catalytic turnover modifies subunit-subunit
interactions and IF1-F; interactions. This leads to the final inhibited state. In B subunit, the C-terminal
extremity (E471, A474) poorly contributes to stabilize the inhibited complex. The DELSEQD motif of 8
subunit, and more especially E395, has a more significant contribution on the basis of the koff increase
resulting from mutations. This result needs to be related to the interactions of PDP and BTP subunits with
IF1 and y subunit in the crystallized yeast IF1-inhibited F;-ATPase complex (Figure 6b). In the PDP
subunit, E395 does not interact with IF1, the closest residue of which is distant by more than 9 A. On the
other hand, the lateral chain of PDP-E395 closely interacts with y subunit, with distances lower than 3 A.
It may establish a salt bridge with y-R30 and attractive electrostatic interactions with y-R30 and y-K81. In
the BTP subunit (not visible in Fig. 6b), the only IF1 residue located in the neighbouring of E395 is R20,
with a distance higher than 4.7 A. The PE398 residue also contributes, to a lower extent, to stabilize the
inhibited complex. In BDP, its lateral chain may establish a salt bridge with IF1-R32. In BTP, it makes a
H-bond with y-Q117. Both interactions may play a role. Overall, residues of the B-DELSEQD motif
which contributes the most to IF1 locking interact more with the y subunit than with IF1 in the
crystallized complex.

In o subunit, the GSDLDAST motif has a sizeable role in the stability of the inhibited complex.
Except for a possible hydrophobic interaction between oL412 and IF1-F27 (distance 4.2 A) and a
possible electrostatic interaction between aD413 and IF1-R30, a-GSDLDAST does not establish specific
interactions with IF1. Since koff grossly increases with the number of glycine substitution mutations, this
effect is likely due to steric hindrance decrease. The aDP-GSDLDAST motif forms pliers together with
BDP subunit, and its lateral chains probably contribute to limit IF1 movements within these pliers. It
should be noted that aDP-GSDLDAST is close not only to IF1, but also to the 115KMQLL119 motif of
the y subunit. Therefore contacts between a-GSDLDAST and the foot of y subunit may contribute to the
rigidity of pliers. Although quite modest, the effect of mutagenesis of y-M116G-Q117G is detectable, and
then it is consistent with this view. A more extensive mutagenesis of this region of y would be susceptible
to confirm or infirm this proposal.

Among the o subunit residues we have mutated, one or several of the five residues bordering IF1
midpart (¢E357, aY399, aR400, aV402, aQ418) contribute only a little to the stability of the inhibited
complex. Their simultaneous mutation into their non-mitochondrial counterparts results in a 2.5-fold koff
increase. Except for V402L, these mutations globally decrease the volume of the lateral chains. Thus
some of these residues probably limit movements of IF1 trapped in the cavity between aDP and BDP.

Compared to a-GSDLDAST, the effect of mutagenesis is much less important. This could be due to the
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nature of the mutations of the residues, to their relative remoteness from IF1 suggested by the yeast
crystal, or to the lack of stabilizing interaction with the y subunit.

Residues involved in stabilization of the inhibited complex were found in different regions of a
and B subunits interacting not only with IF1, but also with the foot of y subunit. This supports the idea

that a part of the stabilization energy of the inhibited complex is brought by a/y and/or B/y interactions.

4.4. Possible distortion of F;-ATPase by IF1 binding - Since IF1 locking may involve contacts
not only between the inhibitory peptide and ATP synthase, but also between different subunits of the
enzyme, it is interesting to know how the latter can be distorted by IF1 binding. This can be done by
comparing the published structures of F1-ATPase with and without bound IF1. In most of IF1-free bovine
crystals (e.g. pdb files 1bmf, 179 and 2jdi for F;-ATPase, 2xnd for c8-F,-ATPase) F;-ATPases have
similar conformations [12, 45-46, 3]. This is not the case for yeast. The crystal of IF1-free yeast F;-
ATPase with two catalytic nucleotides (pdb file 2hld) contains three non-equivalent copies of the
complex [47]. Only two copies (I and II) have the major part of their structure solved. Copy II looks
similar to bovine F;-ATPase, but copy I is different and in particular its (ap)DP catalytic interface is
noticeably more open, as in crystallized yeast c10-F;-ATPase (pdb file 3zry) [4]. In the following, copy 1I
of pdb file 2hld will be considered the most probable conformation of IF1-free yeast F;-ATPase.

The crystallographic structures of Fi-ATPase with bound IF1 are 2v7q for bovine [10] and 3zia
for yeast [11]. The latter contains two copies that are quite similar. In bovine case, comparison of these
structures with IF1-free structures as defined above suggests that interaction between the motifs
homologous to aDP-409GSDLDAST416 and y116MQLL119 occurs only after IF1 binding. This IF1-
dependent distortion due to incomplete closure of (aff)DP catalytic interface is not observed in yeast
crystals, where the two motifs always appear in contact. The situation is different for the contact between
BDP-DELSEQD motif (especially E395) and y subunit. In yeast this interaction seems to be a
consequence of IF1 binding. In bovine and in yeast the y subunit residues interacting with BDP-E395 are
not homologous, and in bovine their interaction does not seem to depend on IF1 binding.

Comparison of structures with and without IF1 also provides a clue for the role of aS410 in
409GSDLDAST416 motif. The koff decrease due to aS410G mutation suggests that aS410 weakens the
stability of the IF1-inhibited complex. This residue makes a H-bond with aA406 in the yeast IF1-free
crystal, but not in the yeast IF1-inhibited one. This H-bond could stabilize the loop containing S410 in its
non-inhibited conformation, and therefore its suppression by mutagenesis might displace the equilibrium
towards the conformation inhibited by IF1.

Examination of published structural data may help to know whether distortions of the catalytic
interface by IF1 binding indirectly contribute to the stabilization of the inhibited complex, by favouring
contacts between the stator and the rotor. However, these distortions may differ between species. In the

yeast case, the evidence for such distortions depends on the choice of the IF1-free state.

4.5. Energetic considerations - Kd variations induced by the different mutations reflect IF1

binding energy variations. The relationship between the equilibrium constant of dissociation (in M) and
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the binding energy (in kJ mol-1) is, at 25°C, AGO = - 5.7 log10 Kd. The variations observed in this work
ranged between 2 kJ mol-1 (about doubling the Kd value) and 10 kJ mol 1 (multiplying Kd by about 70)
when a single subunit was mutated. These values are moderate and range in the same order of magnitude
as those previously obtained after deleting the N-terminal extremity of IF1 [24]. This illustrates the fact
that binding energy is shared between lots of interactions. We think that the lowest energetic
contributions (2 kJ mol-1) are not due to specific interactions, but to steric hindrance limiting the mobility
of IF1 within its binding site. Although low, these values are significant and may reveal proximities that
cannot be deduced from structural data. For example, the couple pDP-E471-A474 is in contact with IF1
residues that are not visible in the yeast IF1-inhibited F;-ATPase complex. Interestingly, the loss of
binding energy due to the combination of 11DLD13 deletion in a and E395G in B is 16.6 kJ mol-1. It is
the sum of energy losses associated with separate mutations: 10.5 kJ mol-1 for a-11DLD13 deletion and
6.0 kJ mol-1 for B-E395G. These numbers should be cautiously considered regarding uncertainties on the
Kd value for the WT enzyme. Nevertheless, they suggest that a-GSDLDAST and B-DELSEQD motifs
would independently contribute to IF1 binding energy. This example shows that combinations of
different mutations could reveal possible cooperativity between different contact zones within the IF1-

inhibited F|-ATPase complex.

4.6. An outline of IF1 binding process - Our work together with structural data analysis and
previous functional studies allow proposing the following sequence of events for inhibition of
mitochondrial ATP synthase by IF1. First, IF1 midpart is recognized by one of the three catalytic off
interfaces. It interacts mainly with the very C-terminal extremity of B subunit, but also somehow with the
GSDLDAST motif of a subunit. After IF1 loose binding, the enzyme still experiences a fraction of turn
and the catalytic interface which has just bound IF1 closes and becomes (af})DP, which results in IF1
trapping. Thus aDP-GSDLDAST and BDP-DELSEQD motifs become elements of pliers that encage IF1,
where the a-motif interacts more tightly with IF1. The role of B subunit C-terminal extremity becomes
much less important than during the initial step. In addition, other aDP residues flanking IF1 midpart
modestly contribute to trapping, probably by limiting IF1 movements within the crevice between aDP
and BDP. The rigidity of the pliers formed by aDP-GSDLDAST and BDP-DELSEQD is partially ensured
by their interactions with the foot of the y subunit. These o-y and B-y interactions could be slightly
different in bovine and yeast enzymes according to the structure comparisons, which suggest that IF1
binding brings aDP-GSDLDAST closer to y in the bovine case and brings BDP-DELSEQD closer to y in
the yeast case. Another contribution to locking comes from the N-terminal part of IF1 that penetrates in
the complex and interacts with y and internal parts of a and B subunits. IF1-F17, located at the boundary
between the a-helical midpart of IF1 and the flexible N-terminal extremity, also plays a key role in
stabilization of the inhibited complex [39, 24]. To make exhaustive this dynamic scheme, a more
systematic program of mutagenesis should be undertaken. More than the precise role of key residues, the
present pioneering work reveals the global role of different motifs and regions in the different steps of

inhibition by IF1. This approach notably improves our knowledge of its mechanism. Other aspects remain
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to be elucidated, like the possible energetic interferences between the different locking events and their

time-sequence. This will be a challenge for future studies.
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FIGURE LEGENDS

FIGURE 1. Location of the mutated residues in the yeast Fi-ATPase inhibited with IF1 and of
corresponding residues in the bovine species. Left image, S. cerevisiae model, pdb entry 3zia; only
residues 1-36 of IF1 were solved. Right image, B. taurus model, pdb entry 2v7q; only residues 8-50 of
truncated IF1 containing residues 1-60 were solved. Image created using PyMol software. Only aDP,
BDP, v and IF1 are represented for the sake of clarity. A, B, group of discrete residues remote from the
foot of y subunit; A, residues located on aDP subunit, close to the catalytic interface entrapping IF1
midpart; B, residues located on BDP subunit, close to the N-extremity or to the midpart of IF1; C, D,
groups of contiguous residues close to the foot of y subunit, only a part of which are close to IF1; C,
residues located on aDP subunit; D, residues located on BDP subunit. The topological arrangement of all
F;-ATPase subunits is recalled by the scheme in the right part of the figure. Nomenclature of catalytic
interfaces (DP, TP, E) is defined by their nucleotide occupancy in the reference 3D structural model (12),

see Introduction for details.

FIGURE 2. Data from single typical experiments carried out with SMP from three different cell
lines and determination of binding parameters. Conditions as described under Material and Methods, pH
6.5.(m) WT; () o A[D411 L412 D413]; () p E471K A474E. Panel a, rate constant of inhibition
(kapp) as a function of IF1 concentration, for kon determination. Panel b, normalized ATPase activity at
equilibrium as a function of IF1 concentration, for Kd determination. Panel ¢, normalized ATPase activity
at equilibrium as a function of 1/kapp, for koff determination. Enlarged view of WT data is displayed in b
and c. Resulting parameters: WT, kon = (4.7 £ 0.3) 105M 1s 1, Kd= (3.0 + 1) 10 10 M, koff = (2.3 +
0.8) 104 s 1, koff / Kdkon = 1.6 = 1.2; a A[D411 L412 D413], kon=(2.2+0.6) 105M 1s 1, Kd=(1.18
+ 0.08) 10 8 M, koff = (3.6 £ 0.3) 10 3 s 1, koff / Kdkon = 1.4 + 0.5; B E471K A474E, kon = (7.9 + 0.2)
104M1s1,Kd=(1.4£0.2) 109 M, koff = (1.1 £0.1) 10 4 s 1, koff / Kdkon = 1.05 + 0.26). The koff/
Kdkon ratio should theoretically be 1.

FIGURE 3. Kinetic constants of IF1 binding and release after mutagenesis of group A and group B
residues. (a), pH 6.5; (b), pH 8. For a better comparison, 1/kon, and not kon, has been plotted in the left.
increase of 1/kon, like increase of koff, results in a loss of affinity of IF1 for ATP synthase. The
dissociation constant is expressed by koff (grey bars) or by the product Kdkon (hatched bars). The effects
of mutations on kon are similar at pH 6.5 and pH 8. The effect on koff and Kdkon appears more

consistent at pH 8 than at pH 6.5 (see text for details).

FIGURE 4. Kinetic constants of IF1 binding and release after mutagenesis of group C residues.
Data from Table II. Mutated or deleted residues are indicated by black, bold, underlined characters. The
WT sequence is GSDLDAST. For a better comparison, 1/kon, and not kon, has been plotted in Panel a;

increase of 1/kon, like increase of koff, results in a loss of affinity of IF1 for ATP synthase. Panel b,
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dissociation rate constant expressed by koff (grey bars) or by the product Kdkon (hatched bars). These

two different estimates are reasonably equivalent within the experimental errors.

FIGURE 5. Binding parameters obtained at pH 8 with SMP from wT and y subunit mutants.
Conditions as described under Materials and Methods. Averaged data from at least three different
experiments. (m ) wT; () y MI116G Q117G; (A ) y M116G Q117G L118G. Panel a, rate constant of
inhibition (kapp) as a function of IF1 concentration, for kon determination. Panel b, normalized ATPase
activity at equilibrium as a function of IF1 concentration, for Kd determination. Panel ¢, normalized
ATPase activity at equilibrium as a function of 1/kapp, for koff determination. Resulting parameters: wT,
kon=(2.21+0.09) 105M 1 s 1,Kd = (9.1 +£0.6) 10 9 M, koff = 1.84 + 0.13) 10 3 s 1, koff/Kdkon =
0.92 £0.16; y M116G Q117G, kon = (2.2 +0.1) 105M 1 s 1, Kd = (1.98 £ 0.15) 10 8 M, koff = (3.09 +
0.08) 10 3 s 1, koff / Kdkon = 0.72; y M116G Q117G L118G, kon = (2.56 £ 0.12) 105 M 1 s 1, Kd =
(9.00 + 0.58) 10 9 M, koff = (2.12 £ 0.081) 10 3 s 1, koff / Kdkon = 0.92.

FIGURE 6. Yeast F|-ATPase motifs or residues involved in IF1 recognition and locking. Images
created from the pdb file 3zia using PyMol software. IF1 (residues 1-36, shown in grey sticks and ribbon)
is mainly located between aDP (green) and BDP (red) subunits. Panel a, IF1 residues 37-40, not visible in
yeast structure, were added according to the homologue bovine structure (magenta sticks and ribbon) to
show the possible proximity to PDP-E471, A474 (orange sticks). Highlighted motifs in both aDP and
BDP subunits are implicated in IF1 recognition step. BDP-E471, A474 play a more important role than
motif a-409GSDLDAST416 (green sticks and ribbon), in which D411, L412 and D413 have the main
contribution. Panel b, y subunit appears in blue. The motif a-409GSDLDAST416 (green sticks and
ribbon) and the motif B-394DELSEQD400 (dark red sticks, E395 in light red), located on left and right
side of IF1, respectively, play the major role in IF1 locking step. The group of residues aDP-E357-Y399-
R400-V402-Q418 (green sticks) has a less important contribution, as well as BE471, A474 represented in
Panel a. Highlighted residues M116, Q117 in y subunit (black sticks) participate indirectly in IF1 locking
through the possible interaction with a-409GSDLDAST416. Similarly, y-R30 (black stick, residue not
mutated) could contribute to IF1 locking through the potential interaction with B-394DELSEQD400.
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o ”GSGLGAST"¢ 1.7+0.2 10010 9.8+1.7 17.0+40 3

o*”GSGGGAST"® 1.7+0.2 13.7+14 244+19 233+58 3

0 *GGGGGAST"® 1.7+0.2 6.0+ 1.4 16.6+43 102+39 4

0*“GSGGGGGG"® 1.6 0.1 147420 31.1+40 235+44 4

0 ’GGGGGGGG*"* 2.8+0.2 55+0.2 156+13 154+17 3

0*”GS - - - AST® 25402 16.8+3.0 50+12 42+11 4

Class D

B***GELSEQD*” 40+0.3 0.8+0.2 5.0+0.7 32+1.1 3

B**DGLSEQD*" 57+04 27402 186+24 154+25 3

B**DELSGQG*"” 3.8+0.4 1.1+04 6.0+0.6 42+1.38 3

B**DGGGEQD™ 3.9+0.8 0.4+0.3 3.8+0.8 1.6+ 1.4 3

Classes C-D

0*”GS - - - AST® nd 193 + 18 nd nd 4

B394D QLSEQD4OO

TABLE I. IF1 binding parameters of ATP synthase with mutated a and 3 residues.
Experimental conditions and calculations as described under Materials and Methods. pH 6.5. n,
number of experiments.

mutation Kon K4 Kotr Kikon n
(10°M"' s (107 M) (10*s™) (10*s™)

none (WT) 22+0.1 9.1+0.6 184+13  200+20 7

Class A

a-E357D-Y399F-R400A- 2.3 +0.2 23.4+22 555+7.8 54.6+7.8 1
V402L-Q418N

Class B

B-T380R-S383E 2.3+0.2 10.8 +2.0 20.1+0.3 253+7.1 1
B-E471K-A474E 0.25+0.01 182=+10 39.0+0.6 455+34 1
B-T380R-S383E-E471K- 0.32+£0.02 173£12 52.0+52 554+6.9 1
A474E

v subunit

v-M116G-Q117G 2.2+0.1 19.8+1.5 309+0.8 42.6+53 5

y-M116G-Q117G-L118G 2.6 £0.1 9.00+0.6 21.2+£0.8 23.0£2.5 3

TABLE II. IF1 binding parameters of ATP synthase with mutated a,  and y residues.
Experimental conditions and calculations as described under Materials and Methods. pH 8. n,
number of experiments.
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SUPPLEMENTARY MATERIAL

Mutation oligonucleotides (5°’- 3’) plasmid
o-" EAELF* 1.GGTCAAATATTCTTGGAAGCTGACTTATTCTACAAGGG | pVC2/atpl
N (1-355EAQLF359

o-"""KQTL*™ 2.GCCTCCACCAAGAACACTTTGGTTAGAGG pVC2/atpl
N (1-417KNTL420

a-""QYREVA*” 3.GAAATTGTTTTTGGCTCAATTCGCTGAATTGGCTGCTT | pVC2/atpl
— - *QFAELA*” TTGCTCAATTCG

o-"GSDLDAST*'® 4.GCTCAATTCGGTTCCGATTTAGGTGCCTCC pVC2/atpl
—0-"”GSGLDAST""

o-"”GSDLDAST*'® 5.CGGTTCCGGTTTAGATGCCTCCACCAAGC pVC2/atpl
—0-"”GSDLGAST""

o-"”GSDLDAST*'® 6.GCTTTTGCTCAATTCGGTTCCGGTTTAGGTGCCTCCAC | pVC2/atpl
—a-"GSGLGAST*'¢ CAAGCAAACTTTG

o-"”GSDLDAST*'® 7.GCTTTTGCTCAATTCGGTTCCGGTGGTGGTGCCTCCAC | pVC2/atpl
—0-"YGSGGGAST*'® CAAGCAAACTTTG

o-"”GSDLDAST*'® 8.GCTCAATTCGGTGGCGGTGGTGGTG pVC2/atpl
—0-"”"GGGGGAST*

a-"”GSDLDAST*'® 9.CGGTGGTGGTGGCGGCGGCAAGCAAACTTTGG pVC2/atpl
—a-*"GSGGGGGG*"*

o-"GSDLDAST*'® 10.GCTCAATTCGGTGGCGGTGGTGGTG + 9 pVC2/atpl
—a-**GGGGGGGG™*

o-"GSDLDAST*'® 11.GCTTTTGCTCAATTCGGTTCCGCCTCCACCAAGCARA | pVC2/atpl

—)0-409GS“-AST416

CTTTGG

B-""DELSEQD™
— B-*GELSEQD*”"

12.GCTATTTTGGGTATGGGTGAATTGTCCGAACAAG

pRS313/atp2-H10

B-""DELSEQD""
~ B-**DGLSEQD*®

13.GGGTATGGATGGATTGTCCGAAC

pRS313/atp2-H10

B-""DELSEQD™"
= B-**DGGGEQD*”

14 .GCTATTTTGGGTATGGATGGAGGGGGCGAACAAGATA
AACTAACTGTCG

pRS313/atp2-H10

B-394DELSEQD4OO
- B-394DELSQQQ4OO

15.GGTATGGATGAATTGTCCGGACAAGGTAAACTAACTG
TCGAAAGGGC

pRS313/atp2-H10

B- PQTYKSLQ™
p- IQRYKELQ®™

16.CCTCCAAGGTTCAAGAAACTTTACAGAGATATAAAGA
ATTACAAGATATCATTGCTATTTTGG

pRS313/atp2-H10

B_470 AEKIAR®”
- B_470 AKKIERY"®

17.GAAGATGTTGTTGCTAAAGCTAAAAAGTTAGAAGCTG
AAGCCAACTAGAAG

pRS313/atp2-H10

HindIII-Start-y

18 . AGAAAGCTTATGTTGTCAAGAATTGTATCAAAC

pES425-G2/G3

Notl-Stop-y 19. ATAGCGGCCGCTCATCCCAAAGAGGAAGCA pES425-G2/G3

y-"’MQLL"™ 20.GATAAAATTAAAGGTGGTCTATTGAGAACCCATC pES425-G2

—y _IIGGGLL119

y-"""MQLL119 21.GATGGGTTCTCAATAGACCACCTTTAATTTTATC pES425-G2

— v -116GGLL""”

y-"’MQLL"™ 22.GGTGATAAAATTAAAGGTGGTGGATTGAGAACCCATC | pES425-G3

—y _116GGGL119 C

y-"*MQLL"™ 23.GGATGGGTTCTCAATCCACCACCTTTAATTTTATCAC | pES425-G3
116 119

— v -"“GGGL C

Atp3 deletion 5’

24.aggtggaaacaattgaagacgagcagtaaacattatt
ttatttagtagtcCATAGGCCACTAGTGGATCT

Atp3 deletion 3’

25.ttctacaaaaacaacgtcaaataaagaggcaatgcag
ggtgatttttttaCAGCTGAAGCTTCGTACGC

Figure SM1. Sequences of primers used for PCR mutagenesis of atp1, atp2 and atp3 genes
as described under Materials and Methods.

190




395

N
w

Saccharomyces_cerevisiae
Homo_sapiens

Mus_musculus
Rattus_norvegicus

Bos taurus

Salmo_salar

Dania_rerio

Gallus_gallus

Xenopus_laevis
Drosophila_melanogaster
Acromyrmex_echinatior
Harpegnathos_saltator
Caenorhabditis_elegans
Neurospora_tetrasperma
Puccinia_graminis_f_sp_tritici_
Exophiala_dermatiticis
Kluyveromyces_lactis
Cryptococcus_neoformans_var_neoformans
Arabidopsis_thaliana
Allium_cepa

Fea_mays

Nicotiana_tabacum
Chlamydomonas_reinharatii
Physcomitrella_patens
Arabidopsis_thaliana
Allivm_cepa

Zea_mays

Nicotiana_tabacum
Solanum_lycopersicum
Solanum_tuberosum
Chlamydomonas_reinharadtii
Physcomitrella_patens
Escherichia_coli
Candidatus_glomeribacter
Herminiimonas_arsenicoxydans
Methylomicrobium_alcaliphilum
Thermosynechococcus_elongatus
MNostoc_sp_ PCCTF120
Synechococcus_sp_PCC 6716
Synechocystis_sp.6803
Candidatus_Frotochlamydia_amoebophilia
Chlorobium_limicola
Chlorobium_phaecbacteroides
Salmonella_enterica
Helicobacter_pylori

T
L
L
L
L
L
L
L
L
L
L
L
L
T
L
T
T

I 3= 3= G

I=

I=

=

b s e W W Wl M W |
=

I=

H

Non-mitochondrial

Mitochondria
HE EEEEEEEEEEEEEE N N N N

MDO 0 -< D >>DMOMOD>DDE2EDhbbbsNsFFFszbrsrlsr7Z7ZFFzZ 2 F 2 000000 <D
T

Figure SM2(a). Sequence alignment on o subunit of mitochondrial and non-
mitochondrial ATP synthase. Sequence alignment was done with Jalview software
using MAFFT alignment program. The above numbering is related to the numbering of
the sequence of alpha subunit from Saccharomyces cerevisiae. Sequence from residue
352 to 363 and from 395 to 423 are shown. 42 sequences of mitochondrial and non-
mitochondrial (chloroplastic and bacterial) o subunits were compared. Percentage
identity is shown in blue. In dark blue, the most conserved residues and in light blue,
the less conserved residues. In red, y remote residues corresponding to residues aE357,
Y399, aR400, aV402, and aQ418 (yeast nomenclature). In grey, residues in the
neighbouring of the foot of y subunit corresponding to the S. cerevisiae a-SDLDAST
sequence.
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Figure SM2(b). Sequence alignment on B subunit of mitochondrial and non-
mitochondrial ATP synthase. Sequence alignment was done with Jalview software
using MAFFT alignment program. The above numbering is related to the numbering of
the sequence of B subunit from Saccharomyces cerevisiae. Sequence from residue 378
to 402 and from 463 to 478 are shown. 42 sequences of mitochondrial and non-
mitochondrial (chloroplastic and bacterial) B subunit were compared. Percentage
identity is shown in blue. In dark blue, the most conserved residues and in light blue,
the less conserved residues. In red, y remote residues corresponding to residues fT380,
BS383, BE471 and BA474 (yeast nomenclature). In grey, residues in the neighbouring of
the foot of y subunit corresponding to the yeast f-DELSEQD.
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Figure SM3. yIF1 effect on ATP hydrolysis catalyzed by isolated F;-ATPase from
different organisms. Conditions as described under Material and Methods, pH 6.5.
Bacterial and chloroplast F;-ATPases were prepared as in Santolini et al. (2002)
Biochemistry 41, 6008-6018. ATP hydrolysis followed by the decrease of absorbance at
340 nm. yIF1 addition indicated by arrows. Curve a, 10 nM F;-ATPase from PS3
bacillus (TF;) at 50°C, addition of 5 uM ylIFl. Curve b, 1 nM F;-ATPase from
Saccharomyces cerevisiae (MF,) at 25°C, addition of 0.1 uM yIFl. Curve ¢, 2 nM
chloroplast F;-ATPase from Spinacia oleracea, devoid of & subunit (CF;-¢) and
pretreated with 5 mM DTT, 25°C, addition of 5 uM yIF1. Despite the very high
concentrations used (50-fold higher than for MF,), yIF1 has no effect on TF; and CF;-¢
activities.
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Abstract

ATP synthase is an essential protein complex located in the mitochondrial inner
membrane, which synthesizes ATP by coupling to a rotary proton transport across the
membrane at the expense of the electrochemical proton gradient created by the
electron transport chain. This reaction guarantees the supply of energy to biological
processes in a cell. When mitochondria get deenergized, i.e. the protomotive force
across the mitochondrial inner membrane collapses, the ATP synthase switches from
ATP synthesis to hydrolysis. This hydrolytic activity is then immediately prevented by a
natural soluble mitochondrial ATPase inhibitor, IF1. This efficient reversible inhibition
system protects cells from wasting energy. In yeast, IF1 is a small protein consisting of
63 amino acids. It binds to one of the three (af) catalytic interfaces of ATP synthase
and thereby blocks the rotary catalysis. Although the crystal structure of the dead-end
IF1 inhibited F{-ATPase complex has been resolved, IF1 initial binding and locking to
ATPase still remain unclear events at the molecular level.

During my thesis, we have been interested in the dynamic mechanism of ATPase
inhibition by IF1. By means of analyses of published structures and protein sequence
alignment, we selected numerous residues located in different regions of
Saccharomyces cerevisiae ATP synthase a, B subunits, which might potentially
paticipate in IF1 binding process. Using site-directed mutagenesis combined with
kinetic experiments, we studied the effect of mutations of the selected candidates on
the rate and extent of ATPase inhibition by IF1. In this way we identified residues or
motifs in ATP synthase a, B subunits involved in IF1 recognition and/or locking steps,
which allows complementing structural studies and drawing an outline of IF1 binding.

Résumé

ATP synthase est une protéine essentielle associée a la membrane interne
mitochondriale, qui synthétise I'ATP par couplage d’un transport de protons au travers
de la membrane, en dissipant un gradient électrochimique de protons créé par la
chaine respiratoire. Cette réaction assure I'alimentation en énergie des processus
biologiques cellulaires. Si la membrane mitochondriale se dépolarise, la réaction
inverse d’hydrolyse d’ATP est rapidement bloquée par un inhibiteur soluble naturel de
I'ATPase mitochondriale, IF1. Cette régulation efficace et réversible évite le gaspillage
de I'énergie par la cellule. Chez la levure, IF1 est une petite protéine de 63 amino-
acides. Elle se fixe sur l'une des trois interfaces catalytiques de I'ATP synthase et
inhibe I'hydrolyse d’ATP. Bien que les structures cristallographiques des complexes F-
ATPase inhibés par IF1 aient été résolus, I'étape initiale de reconnaissance et celle du
verrouillage d’IF1 restent peu claires au niveau moléculaire.

Pendant ma thése, nous nous sommes intéressés au mécanisme d’inhibition de
'ATPase par IF1. Par des analyses des structures disponibles et des alignements de
séquence, nous avons sélectionné de nombreux résidus localisés dans différentes
régions des sous-unités a et B de I'ATP synthase de Saccharomyces cerevisiae et
susceptibles de participer au processus de fixation d'IF1. En utilisant le mutagenése
dirigée combinée a des experiences cinétiques, nous avons étudié les effects des
mutations sur l'inhibition de I'ATP synthase par IF1 chez Saccharomyces cerevisiae.
Dans ce travail, nous avons identifié des résidus ou motifs des sous-unités a et § de
'ATP synthase impliqués dans les étapes de reconaissance et/ou vérrouillage d’'IF1,
ce qui nous permet de compléter les études structurales et d'esquisser un mécanisme
de fixation d'IF1.
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