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Résumé:  

Le noyau cellulaire est le siège de réactions chimiques dont le but est l’expression de gènes, la 

duplication du génome et du maintien et l’intégrité de l’information génétique. Ces réactions sont 

régulées au cours du cycle cellulaire ou en réponse à un stress. Parmi elles, la transcription 

permet qu’une séquence d’ADN soit reproduite sous forme d’ARN messager. La transcription 

est un exemple frappant de processus fondamental pour la cellule impliquant parfois un nombre 

très faible de molécules. En effet, il n’y a souvent dans un même génome que quelques copies 

d’un même gène. Le but de cette thèse est d’imager les processus nucléaires dans des cellules 

humaines à l’échelle de la molécule unique et d’en extraire les grandeurs caractéristiques. 

Depuis les années 90, des inventeurs de génie ont développé des méthodes simples à partir de 

microscopes inversés ordinaires pour observer des molécules individuelles jusque dans le noyau 

des cellules. Nous avons utilisé ces méthodes pour suivre des facteurs de transcription qui 

régulent la transcription d’un gène. Nos mesures montrent que, bien que hiératique, l’exploration 

du noyau par les facteurs de transcriptions est régulée par leurs propriétés chimiques. 

L’agencement des composants du noyau guide les facteurs de transcription dans la recherche 

d’un gène. Comme exemple de cet agencement, nous nous sommes ensuite intéressés à 

l’organisation de l’ADN dans le noyau pour montrer qu’elle présentait les caractéristiques d’une 

structure auto-organisée, une structure fractale. Cette structure change en réponse aux aléas de la 

vie de la cellule. Dans une dernière étude, nous avons suivi un locus dans le noyau d’une levure.  

La structure du noyau, qui est révélée par notre méthode, contraint la diffusion du locus à un 

régime de reptation. 

Tous ces résultats montrent combien la structure du noyau et les réactions chimiques qui y ont 

lieu sont interdépendantes. Cette thèse a également permis le développement de méthodes de 

quantification précises des réactions cellulaires à l’échelle de la molécule unique 

 

Mots clés: Transcription, recherche de cible, organisation du noyau, microscopie super 

résolutive. 
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Abstract: The cell nucleus is a chemical reactor. Nuclear components interact with each other to 

express genes, duplicate the chromosomes for cell division, and protect DNA from alteration. 

These reactions are regulated along the cell cycle and in response to stress. One of the 

fundamental nuclear processes, transcription, enables the production of a messenger RNA from a 

template DNA sequence. While mandatory for the cell, transcription nevertheless may involve a 

very small number of molecules. Indeed, a single gene would have only few copies in the 

genome. During my PhD, I studied nuclear processes in human cells nuclei at the single 

molecule level with novel imaging techniques. I developed new statistical tools to quantify 

nuclear components movement that revealed a dynamic nuclear architecture.  

Since the 90s, simple methods have been developed for the observation of single molecules in 

the cell. These experiments can be conducted in an ordinary inverted microscope. We used these 

methods to monitor nuclear molecules called transcription factors (TF) that regulate 

transcription. From TF dynamics, we concluded that nuclear exploration by transcription factors 

is regulated by their chemical interactions with partners. The organization of the components of 

the nucleus guide transcription factors in their search of a gene. As an example of this 

organization, we then studied chromatin, the de-condensed form of nuclear DNA, proving that 

this folding displays the characteristics of a self-organized fractal structure. This structure 

changes in response to cellular fate and stress. In yeast, we showed that the interminglement of 

chromatin constrained DNA locus movement in a reptation regime.  

All these results show the interdependence of the structure of the nucleus and of its chemical 

reactions. With combination of realistic modeling and high resolution microscopy, we have 

enlightened the specificity of the nucleus as a chemical reactor. This thesis has also enabled the 

development of accurate methods for the statistical analysis of single molecule data. 

 

 

 

Keywords : Nucleus organization, Transcription, Target search, Super resolution 

microscopy.  
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“Qu’un mathématicien puisse imposer un modèle (…) sans acquérir une longue et nécessaire 

expérience pratique, cela me terrifie” 

“There’s nothing as frightening as a mathematician imposing a model without having acquired a 

long and mandatory practical knowledge” 

Pierre Gilles de Gennes “Les objets fragiles” Plon 

 

“Assez de théorie, de l’action!” 

“Enough with theory, action!” 

Pierre Gilles de Gennes motto, written on his desk at the Ecole Supérieure de Physique de 

Chimie de Paris (ESPCI) 

 

 

In 1982 Pierre Gilles de Gennes published two articles on polymer physics. This ensemble was 

about kinetics of reaction in polymer melts. It introduced the notion of “compact diffusion” and 

developing the notion of “reptation”. To a large extent, this thesis relies on those two concepts. 

Reading De Gennes non-scientific writing, I also discovered a man whose practical vision of life, 

research and teaching changed my own perception. This thesis is humbly dedicated to the 

memory of Pierre Gilles de Gennes who has become a personal hero. 
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1 Foreword 

 

The nucleus of a cell as a chemical reactor  

The cell nucleus hosts the genetic information encoded in the DNA. In a human cell, the nucleus 

is composed of 5% nuclear acids and 40% proteins that will serve three broad tasks: express the 

genes, duplicate the chromosomes for cell division, and protect DNA from alteration. The cell 

fate is determined by the interaction between nuclear constituents, and the development of 

biochemistry has enlightened the high number of possible partners inside the nucleus and the 

various types of nuclear interactions:  

• Protein-DNA interactions have been widely studied as a consequence to the development 

of Chromatin Immuno Precipitation (ChIP) techniques.  All regions of the nucleic DNA 

do not have the same affinity to proteins and the binding of proteins in the vicinity of a 

gene would trigger or inhibit gene expression.  

• The study protein-protein interactions is referred as “proteomics”.  A nuclear protein can 

exist simultaneously in different conformations and can be integrated in complexes of 

various sizes and functions.  

• DNA-DNA interactions. Recently, high throughput sequencing methods have been 

developed to find physical interactions between DNA regions mediated by proteins. The 

spatial organization of the genome could play a crucial role in nuclear reactions. 

The above list is not exhaustive and should also include, for example, RNA. Interactions 

between nuclear components are regulated.  Cells constitute dynamic systems that keep changing 

along their living cycle and as a response to their environment. The understanding of the time 

interplay of nuclear reaction is crucial for deciphering the runing of the cell and to cure its 

possible dysfunctions.  

Biochemistry assays measure the level of nuclear interactions for a pool of cells at a given time 

of the cell cycle. Huge databases of those interactions have been created to be worldwide 

accessible and bioinformatics efforts are concentrated into extracting the architecture of cell 

reactions network. The main unit of this architecture is the pathway: a succession of chemical 
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interactions whose final purpose is the regulation of a cellular function One example of such a 

function is transcription.   

Transcription 

Transcription is the nucleic chemical reaction that consists in the production of a messenger 

RNA (mRNA) from a template gene. The mRNA will later be translated into a protein in the 

cytoplasm. In the chemical pathway of transcription, a transcription factor (TF) is a general term 

for a molecule that regulates mRNA production. A TF can be either specific to a particular gene 

or mandatory for the expression of every gene, the latter being called general. An example of a 

general TF is the RNA-Polymerase II, a complex composed of 12 subunits that will incorporate 

nucleotides in the nascent mRNA. The frontier between generic and specific TF is very narrow, 

some TF being required for the transcription of most (but not all) of the genes.  

In 1962, Jacob and Monod showed the time regulation mechanism of a single gene in bacteria by 

a combination of activation and repression of specific TFs at a DNA locus. This fundamental 

advance explained the way transcription could be time regulated but left an open issue: How will 

a TF find its specific DNA target inside the nucleus? Recent advances in cell microscopy have 

allowed to peek inside the nucleus and to follow single molecules in search of their substrate.   

Single molecule imaging 

Since the discovery of the Green Fluorescent Protein (GFP) in the 1960’s, functional fluorescent 

imaging has become a routine technique of cell biology. By tagging nuclear factors with 

fluorescent molecules, we are now able to locate proteins into the cell and to follow them 

through time. During the last decades, intense efforts have been developed to increase the 

resolution of fluorescent microscopes. Superresolution or single particle imaging now enables to 

directly see where single molecules are and to record their trajectories into the nucleus. 

Compared to biochemistry, the time ranges of fluorescent microscopy are orders of magnitude 

lower. The typical time range of biochemistry assays is one hour. We can now quantify with 

superresolution nuclear interactions that last milli-seconds and measure the cell-to-cell 

variability. Since the field is emerging, there is still a need to develop robust quantification from 

the data produced by single particle imaging. The introduction of this thesis reports some of the 

recent advances in nuclear single molecule quantification. I will first introduce how we can 
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model the motion of a single particle inside a cell. Then, I will present superresolution from a 

quantitative point of view and finally the statistics that we can compute on single particle data.  

 

Results 

In the result session I will introduce four studies that explicitly quantify nuclear interactions at 

the single molecule level in the nucleus of human cells, using superresolution microscopy. 

• The protein-DNA interaction from the DNA binding molecule H2B and the specific TF 

c-Myc. 

• protein-protein interaction via a general transcription factor, the positive transcription 

elongation factor b (P-TEFb) that binds to RNA-polymerase II to trigger transcription. 

•  DNA-DNA interaction. We imaged in 3D a the single molecule level the organization of 

chromatin, the de-condensed nuclear form of DNA (Session3). We also measured the 

movement in yeast of a DNA locus. 

 

Those results clearly show the influence off nuclear structure on the nuclear chemical 

reactions kinetics such as transcription and DNA repair. 
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2 Introduction 

2.1  Modeling single particle nuclear motion  

In the nucleus of cells, molecules diffuse in search of partners and their intra nuclear movement 

has been studied for four decades with bulk imaging techniques (Axelrod et al., 1976). Under the 

assumption that the measured fluorescence is proportional to nuclear concentration, ensemble 

measurement of moving molecules such as FRAP (Fluorescent Recovery After Photo-Bleaching) 

are described by macroscopic reaction-diffusion equations. The experimentalist fixes the 

underlying model of diffusion, and then confronts the model to the bulk data. Since possible 

models are numerous, it is difficult to rule them all out and get to the exact description of the 

movement (Mueller et al., 2010).  

Imaging molecules with single particle tracking (SPT) imaging techniques enables direct 

measurement of chemical interactions. Therefore SPT data can theoretically be explained with 

weaker assumption. For that reason, cellular live single particle assays have been a significant 

breakthrough in the measurement of reaction kinetics, but has until recently been restricted to 

membrane dynamics (Alcor et al., 2009). In the nucleus, the particles whose movement has been 

recorded are: 

• Macromolecular complexes and organelles such as Cajal bodies (Platani et al., 2002). 

Because of their size, macromolecules diffuse slowly which enable a long lasting 

imaging. 

• Inert reactants. Quantum dots have been introduced by micro injection inside the 

nucleus and followed through time (Bancaud et al., 2009). Since quantum dots are not 

supposed to react chemically, it is not the nuclear functions but rather the nuclear 

architecture that is revealed with those assays. 

• Loci. DNA is a long macromolecule whose segments can be labeled by coating 

fluorescent protein. For instance, by inserting repeats of tetracyclin or Lactose operators 

(TetO and LacO) at a specified locus and expressing fluorescent TET or Lac repressor 
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(TETr and Lacr)(Miné-Hattab and Rothstein, 2012)(Weber et al., 2010a). Another option 

is to express fluorescent sequence site specific partners (Bronstein et al., 2009). When 

DNA is damaged, one pathway for repairing is to use the homologue as a 

template(Alberts, 2008). How loci find their homologous sequence is not fully 

understood, but is investigated with single particle tracking.  

• Nuclear factors such as the transcription factor Oct4 (Plachta et al., 2011), Stat1 (Speil 

et al., 2011a)  or p53 (Mazza et al., 2012a). Because nuclear factors will bind to specific 

DNA sequences such as gene promoters, transcription dynamics are driven by the search 

of DNA sequences at the single molecule level(Normanno et al., 2012).  

In this modeling section, I will explicit the models of nuclear particle movement that have been 

developed. Those can be discriminated in two categories: free diffusion and anomalous diffusion. 

In a second part, I will focus specifically on the research of a specific sequence of nuclear DNA 

by nuclear factors or damaged loci.  Target search mechanisms have been studied for a century 

in the broad context of random walk and among the concepts introduced by one has had a 

tremendous impact on theoretical biology of the nucleus, the first passage time.  

2.1.1 Nuclear Particle diffusion  

2.1.1.1 General Formalisms 

2.1.1.1.1 Requirements for an accurate modeling of nuclear particle motion 

Before going further on the precise mathematics, there are four features of the nucleus that 

should be integrated into intra nuclear single particle dynamics models. Although those features 

seem obvious, their exact formulation is not and to a large extent, the eukaryotic nucleus is still 

terra incognita. 

• The nucleus is a closed environment. In eukaryotes, the nucleus has finite boundaries, 

and particle motion occurs in a finite volume. However, we know that the membrane is 

porous and protein-nuclear membrane interaction is still thoroughly studied (Lowe et al., 

2010). Theoreticians of nuclear movement have modeled the membrane by simply 

discarding it (von Hippel and Berg, 1989), or by instant transport of the nuclear molecule 

to a random position when it hits the membrane (Coppey et al., 2004).  
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• The nucleus is not empty.  The nucleus hosts nucleic acids and proteins, but is it a 

crowded or sparse space? As a preliminary response, the DNA packing ratio in a 

eukaryotic nucleus, that is the volume of DNA divided by the volume of the cell, is 

estimated to be only 3
102

−

×  (Phillips, 2013). However DNA is not the only molecule 

inside the nucleus and this number is only a lower bound for crowding. To model the 

motion of nuclear elements, rather that the space available for diffusion, it’s more the 

spatial distribution of chemical partners that is important. Indeed nuclear proteins 

dynamics are drastically changed by the protein’s ability to interact with its environment 

(Phair and Misteli, 2000) 

• DNA is folded inside the nucleus.  Chromosomes are meter long molecules that folds 

into a micrometric envelope. How DNA organization interferes with nuclear wanderers is 

not fully understood.  Actually, early modeling of DNA interacting protein motion have 

simply discard packing (Coppey et al., 2004). Recently, however, it has been proposed 

that DNA nuclear folding can be a key feature for nuclear chemical reaction such as gene 

regulation(Lomholt et al., 2009). Modeling how DNA is packed inside the nucleus, has 

been subjected to intense research recently with multiple techniques (Mateos-Langerak et 

al., 2009).  

• Nuclear particle motion is not deterministic. The first observations that were made on 

transcription factor single molecules dynamics showed the stochastic nature of their 

motion, even in bacteria (English et al., 2011). Any model of nuclear particle dynamics 

should incorporate randomness.  However, gene transcription is a regulated mechanism 

(Alberts, 2008). So, specifically addressing transcription factor motion, at which level 

can this regulation occurs, if any? 

2.1.1.1.2 Equations of particle diffusion 

Now that we have in mind the basic feature of nuclear particle diffusion, we need a mathematical 

formalism to express them. The evolution of the time dependent position )(tr  can be modeled  

by  three diffusion equations that are presented below from the most deterministic to the most 

probabilistic: 
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The Langevin Equation (Berg, 1993) : 

 m&&r(t)+γ &r(t)+∇K(r(t)) =ζ (t)  ( 1 ) 

Here m is the mass, γ  is the viscosity of the medium, K is a term that accounts for the 

contribution of local forces derived from a potential and )(tζ  is the noise that accounts for the 

thermal agitation of molecules. The Langevin equation is issued from Newtonian mechanics and 

is deterministic. The particle motion is completely described by its position and velocity. For 

statistical inference, that is the estimation of statistical parameters from a set of trajectories the 

Focker-Planck equation offers a more suitable framework. 

The Focker-Planck equation (Berg, 1993) expresses the probability p(r, t)  to find the particle 

at position r  and time t . p(r, t)  is sometimes referred as the propagator of the motion. 

 ∂p

∂t
= D(t) ∆p+∇K( )

 

( 2 ) 

Here )(tD  is the diffusion term that accounts for the thermal agitation of the molecules and K is 

a potential term. This approach has been very powerful for complex statistical inference. It has 

also been widely used when authors wanted to confront the data to non-mechanistic models such 

as random walks on complex media. For all those models, the propagator ),( trp  can be 

mathematically obtained regardless the physical origins of diffusion (Bénichou et al., 2010)  

The Stochastic diffusion equation  formalism enables more flexibility than the Focker-Planck 

equation (Gardiner, 1985). 

 
titiit

dWtYRDdttYRdR ),,(),,( += µ

 
( 3 ) 

Here, 
t

R  accounts for the stochastic process of the position, µ  for the deterministic trend, 

and
t

W  a stochastic noise process. With the stochastic equation, the diffusion term ),,( tYRD
it

 

can be probabilistic. 
i

Y  is an explanatory random variable that will account for instance for 

different conformations of the protein . Such formalism can be used in most state change 

measurements such as binding (Das et al., 2009). Recently, and mainly due to their importance in 

finance, statistical tools for stochastic calculus have been extensively developed but with little 

application to the interpretation of single particle data  
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2.1.1.2 Free diffusion 

With those mathematical formalisms, we can now model nuclear exploration. Unconstrained 

diffusion is sometimes labeled as “free diffusion” as opposed to anomalous diffusion, and the 

simplest model of free diffusion is Brownian motion. 

2.1.1.2.1 Brownian motion 

In 1827 when looking at small grain of pollens in water, Robert Brown found a hieratic 

movement. Later, Langevin and Einstein found independently the physical origin of the 

phenomenon with the conservation of energy and successive bouncing of the particles to its 

neighbors. The equations of Brownian motion were later experimentally proved by Perrin. The 

absence of acceleration and external forces reduces diffusion equations to their simplest form: 

(Hida, 1980). 

 
tt

dWDdX 2=

 
( 4 ) 

 
pD

t

p
∆=

∂

∂

 

( 5 ) 

 &r(t) = 2Dζ (t)
 

( 6 ) 

The only parameter left to characterize the movement is the diffusion coefficient, whose 

definition is given by the Stoke Einstein equation  ( 7 ): 

 

r

Tk
D

B

πγ6
=   ( 7 ) 

Where r is the Stoke radius of the molecule and γ is the viscosity of the medium. Brownian 

behavior has been confirmed for a wide range of phenomenon but is not true at all length and 

time scales. Looking at glass beads, Lie et al. recently showed experimentally that free 

unconstrained motion was indeed ballistic at short time scales and Brownian at higher time 

scales (Pusey, 2011)(Li et al., 2010). Mathematically, Brownian motion is the continuous limit of 

a discrete free random walk. For that reason, the Donsker theorem imposes:  

• The shape of the propagator ( 8 ) to be simple Gaussian in every direction: 

 
p(r, t) =

1

2π ×2Dt
e

−r
2

2×2Dt

 
( 8 ) 
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• The projection of the motion on orthogonal axis to be statistically independent. 

2.1.1.2.2 Diffusion and binding 

Now that we have a model of free diffusion, the simplest way to incorporate interactions of the 

nuclear particles is via binding. A single molecule binding-diffusion model would incorporate an 

hidden variable Y
t

 that switches between two states: bound (0) and diffusive (1) with 

corresponding diffusion coefficients D(Y
t
= 0) = 0  and D(Y

t
=1) = D > 0 . The transition between 

those states occurs according to rates k
on

 and koff . 

 
Y
t
= 0(bound)

koff
 →

k on
← 

Y
t
=1(diffusive)

 

( 9 ) 

With transition probabilities ( ) hkYY
ontht

===
+

10Pr and ( ) hkYY offtht ===
+

01Pr  during 

observation time h . 

For DNA binding proteins, numerous methods have been proposed to measure koff . Those 

methods include single particle tracking (Gebhardt et al., 2013) but also FRAP, FCS, 

Competition CHIP. Addressing the same factor, different techniques will rather coherently 

exhibit the same binding kinetics(Mazza et al., 2012a). The model presented here is over-

simplification of the real intra-nuclear binding. In most observed cases, a single coefficient koff  

is not enough to describe the movement (Gebhardt et al., 2013). 

To my knowledge, as opposed to koff , no assay so far has been able to reliably measure k
on

for 

nuclear factors. One possible reason could be that that the particle cannot bind anywhere and 

only to binding sites k
on

. In such a scenario the formulation Pr Yt+h =1Yt = 0( ) = koffh is not valid 

and depends on the spatial distribution of those binding sites (Mueller et al., 2010). What have 

been measured, nevertheless is the effective *

on
k , that is the product of 

on
k with ratio of bounds 

compared to unbound proteins at the equilibrium (Sprague et al., 2004). 
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2.1.1.3 Anomalous diffusion 

2.1.1.3.1 Definition 

For Brownian motion, equation ( 6 ) integrated and averaged gives the following time to distance 

dependence ( 10 ), referred as the theoretical mean square displacement MSD. 

 
r(t)− r(0)

2

= 2dDt  ( 10 ) 

Where .  denotes the mathematical expectancy and d is the dimension of the space (1, 2 or 3). 

As a result, if the squared displacement scales linearly with time, the diffusion is said to be 

normal.. As opposed to normal diffusion, the motion is anomalous if the MSD have the 

following scaling( 11 ) 

 
r(t)− r(0)

2

∝ t
α

,α <1 ( 11 ) 

I refer to Höfling and Franosh for a complete review of anomalous diffusion inside the cell 

(Höfling and Franosch, 2013). Only four type of models have been proposed to explain 

anomalous diffusion  (Metzler R. and Klafter J., 2000): 

• The continuous time random walk (CTRW) is a binding-diffusion model with binding 

times so large that koff  does not exist. CTRW is related to the more general notion of 

ergodicity, that I will develop the statistical analysis of SPT section.  

• Fraction Langevin Motion (FLM) and Fractionnal Brownian Motion (FBM) are modified 

version of the Langevin and Focker-Planck equations with fractional derivatives  

• Regimes of diffusion of monomers on a polymeric chain 

•  Random walk on complex media 

2.1.1.3.2  Equations of diffusion with fractional derivatives. 

2.1.1.3.2.1 Fractional Langevin motion (FLM) 

Brownian motion is Markovian, meaning that only the last position of the particle is needed to 

estimate the conditional future. The fractional Langevin equation is a modified version of the 

Langevin Equation that integrates a form of memory to make it non-markovian (Kobelev and 

Romanov, 2000) 
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It can be expressed as follow (Weihua Deng, 2009): 

 
m
d

2
r(t)

dt
2

= −γ t −τ( )
2H−2 dr

dτ
dτ

0

t

∫ +ηξ (t)  ( 12 ) 

with 
( )122 −

=

HHD

Tk

H

B
γ

η ,
H

D  is a scale factor for the diffusion coefficient , γ  is a generalized 

friction constant and H is the anomalous term, also called the Hurst coefficient. The friction term 

of the equation is not proportional to the speed, as it is for the ordinary Langevin equation, but to 

an integrated past displacement. The scaling of the square displacement is: 

 
r(t)2 − r(0)2 ∝ t

2−2H

 ( 13 ) 

The Fractional Langevin equation accounts for displacement of units of a flexible molecule (Min 

et al., 2005) but it most relevant application is particle motion in non-Newtonian or visco elastic 

fluids. Weber et al proposed a combined visco elastic medium–polymer model for the anomalous 

square displacement scaling of a locus in bacteria (Weber et al., 2010a). In real non Newtonian 

fluids, however, fractional Langevin dynamics seem to be only a limit case (Ott and Bonitz, 

2009) 

2.1.1.3.2.2 Fractional Brownian motion (FBM) 

Another possibility to introduce anomalous motion is via fractional derivatives of the Focker 

Planck equation (Metzler R. and Klafter J., 2000). Solutions of the equation are integrated 

Fractional Brownian motions (FBM) . 

 ∂

∂t
p(r, t) = K

α
D

t

1−α ∂

∂r
2
p(r, t) ( 14 ) 

With α−1

t
D  being the Riemann-Liouville operator and K

α
 being a scaling factor: 

 
D

t

1−α ∂

∂r2
p(r, t) =

∂

∂t
dτ

p(r,τ )

(t −τ )1−α0

t

∫  ( 15 ) 

The solution of the equation will have the following anomalous scaling r
2
∝ t

α . 

To the extent of my knowledge, there is no one to one correspondence between the solutions of 

fractional Brownian and fractional Langevin equations, but the mechanism of non markovianity 
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is similar. FBM is more convenient for sequential simulation even if it implies computing a 

correlation matrix of increasing size (Dieker, 2004) 

FBM and FLM have been suggested as an explanation of the observed anomalous exponent α  in 

nuclear factor kinetics (Weigel et al., 2011). In the specific case of loci movement, polymer 

physics have also grounded the existence of anomalous exponents α ≠1. 

2.1.1.3.3 Polymer regimes   

Looking at the movement of DNA loci. authors sreported several anomalous exponents in yeast 

and bacteria (Weber et al., 2010a) and in human cells(Bronstein et al., 2009). DNA is a long 

polymeric chain, whose monomeric unit can either be considered one nucleosome (MacKintosh, 

2012) or one base (Schiessel et al., 2001). Polymer physics has hypothesized the anomalous 

motion of a monomeric unit according to the “regime” of diffusion, that is the time scale at 

which the motion is observed. Polymeric models are therefore good candidates to explain the 

anomalous motion of loci that was observed in-vivo.  

2.1.1.3.3.1 The Rouse model (α =

1

2
) and the Zimm model (α =

2

3
) 

The Rouse and Zimm models are models of diffusion of a monomer of a free polymer chain in a 

diluted regime. The difference between the Zimm and the Rouse is the added electro-static 

repulsion between monomers in the Zimm model. It has been shown in vitro that in diluted 

regimes, naked single stranded DNA would undergo Zimm mode of motion while double 

stranded DNA would undergo a Rouse mode of motion (Shusterman et al., 2004). The first and 

second order of the 3D MSD are for the Rouse and Zimm model (Rouse, 1953)(Zimm, 1956): 

 

Rouse: 2

1
2

1

2 48
6)0()( t

Tk
tDrtr

B

g 







+∝−

πγ
 ( 16 ) 

 
Zimm: r(t)− r(0)

2

∝6D
g
t + 2

kBT

η









t

2

3

 
( 17 ) 

With η being the viscosity of the medium and γ being the friction coefficient. The term 

6D
g
t reflects the simple diffusion of the center of mass of the total polymer chain. The resulting 
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motion of those two models is anomalous in the second order term. For the motion to be 

anomalous at every scale, the global motion of the chain needs to be zero. This is for instance the 

case for polymer brushes (Zhao and Brittain, 2000), polymers that are anchored. For polymer 

brushes the first order term of the MSD vanishes, leaving only the anomalous terms. 

2.1.1.3.3.2 The reptation model α =

1

4
 and α =

1

2
 

In  1971 de Gennes introduced the reptation model of polymer diffusion in the presence of fixed 

obstacles (de Gennes, 1971). In 1982, he extended reptation to polymer melts in semi diluted 

regimes (de Gennes, 1982a). Reptation explains the anomalous motion of a polymer chain of N 

monomers, in an entangled regime where the chain creates “blobs” or entanglement segregated 

by “kinks”, with an averaged of monomers 
e

N  per entanglement. Reptation appears in entangled 

polymer solutions provided that the time is comparable to the Rouse time T
R

. T
R

 is the time 

where the rouse chain reaches equilibrium at the kinks. De Genes gives  T
R
≅W

−1
N

2 where W is 

the microscopic frequency of the monomer Rouse movement.  

 

Figure 1: Original drawing of PG De Gennes for the introduction of the reptation model in the 

case of fixed obstacles. The chain is trapped in a tube defined by adjacent constraints 
1

C … 
5

C  

 

In a reptation mode of motion, the polymer is segregated by “kinks” in topological segregated 

“blobs". The disposition of those blobs is governed by diffusion so that an alternative way to 

represent the reptation constraint is a tube whose conformation is that of a random walk (Figure 

1). Such description is similar to that of the equilibrium globule which has been suggested as a 
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possible explanation for chromosome organization in the nucleus of eukaryotes (Grosberg et al., 

1993). Along this tube, the motion of a monomer is given by successive diffusions: 

• For 
R

Tt > the chain has reached equilibrium at the kinks. Motion of a monomer of the 

chain would be random walk from entanglement to entanglement so that 

( ) 2/122
tDx

T
δ≅  where aN

e

2/1−
∝δ is the diameter of the tube and T

D is the linear 

diffusion coefficient along this tube. In the end, we get an anomalous 
2

1
=α  

• For 
R

Tt <  the equilibrium has not been reached at the kinks. At the kink the motion is 

governed by diffusion so that: ( ) 4/1442
Wtax δ≅ , with W being the mode of the Rouse 

chain. We get
4

1
=α . 

The reptation model also includes the Rouse behavior at very short time lower than 
δ

T  where the 

monomer does not see the effect of entanglement. In the end, three anomalous regimes are 

expected from reptation (Figure 2) . 

 

Figure 2: Anomalous scaling coefficient of the MSD for reptation model as a function of the time 

regime 

 

The validity of the DNA reptation mode has not been demonstrated experimentally so far in the 

nucleus. In vitro studies showed reptation during the relaxation of constrained phage DNA 

(Perkins et al., 1994). In silico experiments trying to reproduce the nucleus showed that 
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monomer motion was mostly Rouse-like even under high confinement (Weber et al., 2010a). 

Theorists showed however that the DNA wrapping along the histone octamer could induce a 

reptation-like mode of motion of the base (Schiessel et al., 2001). 

2.1.1.3.4  Diffusion on disorded media 

Another possible model of anomalous diffusion inside the cell is the random walk on a fractal 

network (Ben-Avraham, 2004). Fractals are self-similar mathematical objects built upon the 

repetition of simple rules and characterized by a non-integer number: the fractal dimension 

df (Falconer, 2003). The fractal nature of the nucleus and especially of chromatin has been 

studied for a decade and I refer to (Bancaud et al., 2012) for a complete review on the subject. 

On the Results part of this thesis I will present a new technique based on super-resolution to 

compute the fractal dimension of chromatin. 

Random walk on fractals is sub-diffussive due to the spatial correlation of displacements. The 

anomalous scaling factor is ( 18 ):  

 
r(t)− r(0)

2

∝ t
α

= t

2

dw

 
( 18 ) 

where dw is the dimension of the walk that is specific to the fractal. The number of known 

determiistic fractals is finite and each of them has different dimensions dw  and df (Ben-

Avraham, 2004). If every single fractal constitutes a system on its own, we can question the 

relevance of a general fractal model for nuclear sub-diffusion. With probability, we can create an 

infinite number copies of fractals, different but sharing the same fractal characteristics. Random 

walks on those random fractals seem to share some additional common features: 

• For a sub-class of random fractals, percolation clusters, Alexander and colleagues 

conjecture that spectral dimension 
w

f

s
d

d
d

2
=   is a constant (Alexander et al., 1982):  

 

3

4
≈

s
d  ( 19 ) 

The name of this conjecture is the Alexander Orbach conjecture (AO). According to Ben 

Avraham (Ben-Avraham, 2004) the conjecture has not been resolved so far. 
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• If the fractal is “homogenous enough”, Ben Avraham suggested the propagator on a 

random fractal to have the following general form, for the regime dwtr /1
>> . 

 








Φ=

−

dwds

ddf

t

r

t

r
trP

/12/
),(  ( 20 ) 

Where d is the embedding dimension and Φ  being exponential . Bancaud et al.  used this form 

to compute the fractal dimension of the nucleus from the motion of an inert tracer(Bancaud et al., 

2009).  

Because of those common features, random walk on random fractals have been considered as a 

“universal model” of sub-diffusion in a crowded environment (Dix and Verkman, 2008). 

However, Appelhans and colleagues failed to reproduce the anomalous motion observed in vivo, 

on an in vitro model of random fractals made with polymers (Appelhans et al., 2012). Because it 

is unsure how much of the reality of crowding the fractal model can reproduce, Saxton argued 

that the fractal interpretation of anomalous motion should be confronted to an accurate in-vitro 

model of crowding, that has not been developed yet (Saxton, 2012a). 

2.1.2 Reaction kinetics and diffusion 

In the previous part, I have described models of movement of single particles inside the nucleus. 

Now, we will describe how this motion can influence nuclear reaction dynamics and especially 

transcription. I will now describe the simplest model of single molecule. 

2.1.2.1 General Formalisms 

In the simplest model single molecule transcription, a population of N single type transcription 

factors TF diffuses in the nucleus in search of promoter B on DNA modeled as a fixed target. 

Anytime a transcription factor passes through the target B, a mRNA is produced. (Figure 3). 

 TF +B→mRNA  ( 21 ) 
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 Figure 3: Simplest schematic description 

of transcription. A transcription factor 

TF diffuses inside the nucleus in search 

of a promoter B. Anytime the TF  reaches 

B, a mRNA is produced. 

 

In such a scenario, the reaction rate, the number of mRNA produced, is the number of TFs that 

pass through the DNA site, which can be computed in either one of the two following ways: 

• To compute the flux of TFs through the target B in a “continuous regime”   

• To compute, for each molecule, the time needed to pass through the target and to sum 

over all the particles. 

The first passage time (FPT) is the time needed for a random walker to find a target. Since the 

pioneer work of Polya (Pólya, 1921), FPT has been intensively studied by theoretical physicists 

and mathematicians (Burschka, 1997). It has been for instance shown that optimal strategies of 

target search exist and that animals use those strategies (Humphries et al., 2010).   

2.1.2.2 Free diffusion 

On this section we assume that transcription factors diffuse freely with the same fixed diffusion 

coefficient D.  

2.1.2.2.1 Continuous regime 

Let’s assume that the target B is a sphere of radius r
B

. Assuming a fixed concentration TF[ ]of 

transcription factors and integrating the flux of TF through the sphere via Fick’s law, we obtain 

the rate of transcription k
T

 

 k
T
= 4πDr

B
TF[ ]  ( 22 ) 

This result, however is an over-simplification since (i) the target gene may not be spherical (ii) 

binding could be enhanced or repressed by electrostatic interaction (iii) only a small fraction of 

the target surface may interacting with the TF . In order to account for a more complex target, 

Von Hippel and Berg(von Hippel and Berg, 1989) proposed the following rescaled equation: 
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 k
T
= 4πkafD TF[ ]  ( 23 ) 

With k  being the surface ratio, a  being the interaction distance and f  being an parameter 

accounting for electrostatic interaction.  

2.1.2.2.2 First passage time in confined geometry 

On the continuous regime model, as we have seen, the main problem is to define an effective 

cross section of the interaction between the TF and its target. This first passage time formalism, 

on the opposite, is robust to any particular geometry of the target. 

In 1980, Szabo (Szabo et al., 1980) showed that the averaged mean first passage time (MFPT) 

could reproduced the reaction rate of the continuous regime. In a sphere of radius R for a target 

of size a , the mean first passage of a particle is given as a function of the distance to the target   

r   by eq( 24 ) (Schmit et al., 2009): 

 







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a
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( 24 ) 

Integrated on the whole volume, one gets the inverse mean reaction rate: 
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( 25 ) 

and we can reproduce the continuous limit regime:   

 lim

R→∞

TF[ ]
4

3
πR

3 1

τ
3D

= 4πDa TF[ ] = kT  ( 26 ) 

The flexibility of the formalism is wide and can be applied to many kinds of geometry, 

concentrations, and type of diffusion.  For instance, an optimal concentration of transcription 

factors was estimated in silico, in the context of crowding, to reach the highest reaction rate 

(Schmit et al., 2009).  Different target geometries have also been investigated with MFPT such 

as the narrow escape approximation (Holcman et al., 2011). It can be convenient for MFPT 

estimation to discretize the space and to model it as a lattice, the motion being reduced to a 

discrete random walk (Bénichou et al., 2010). However, lattice models of reaction rate 

significantly differ from continuous models if the number of particles is small (Yuste and 

Lindenberg, 2001). 
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2.1.2.2.3 Facilitated Diffusion  

In 1968, Riggs and collegues reported that E Coli Lac repressor binding to DNA in vitro was 

1000 fold faster than upper limit of the free diffusion model (Riggs et al., 1968). This 

observation led to assumption that DNA target search process was enhanced compared to a 

random process. In 1989 Von Hippel and Berg proposed the facilitated diffusion model(von 

Hippel and Berg, 1989). The facilitated diffusion model will combine 3-dimentionnal diffusion 

and 1D sliding on the DNA chain (Figure 4).  

 

Figure 4 Schematic description of 

facilated diffusion. The transcription 

factor alternates between 1D diffusion 

and 3D diffusion phases in search of its 

DNA target sequence (reproduced 

from(Coppey et al., 2004)) 

 

I refer to the exhaustive review on facilitated diffusion written by Davide Normanno (Normanno 

et al., 2012). Recently, Elf et al. proved in vivo facilitated diffusion for the Lac repressor in 

bacteria (Hammar et al., 2012). Even if observed for the Lac repressor, facilitated diffusion does 

not seem to the default search mode of transcription factors. Wang et al. showed that promoter 

search of RNA polymerase was mainly dominated by 3D diffusion in Escherichia Coli (Wang et 

al., 2012). The nature of the observed 1D sliding was highly discussed by the committee. Some 

argued for example that the salt concentration of the pioneer experiments does not seem to 

correspond to in-vivo conditions increasing the affinity of the TF to DNA in-vitro (Normanno et 

al., 2012). Szelkun and Halford showed with plasmids incorporating restriction enzymes that 1D 

sliding is indeed constant attaching and detaching from the DNA fiber in a so called “hopping 

and junping” model(Halford and Szczelkun, 2002)(Graham et al., 2011).  
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From a modeling point of view, facilitated diffusion is described by 4 parameters that are (i) the 

diffusion coefficient along the DNA fiber in 1D, D
1d

 (ii) the diffusion coefficient in  3D D
3d

 

,(iii) the association rate k
on

, and dissociation rate koff of the DNA segment: 

 
D

1d

koff
 →

k on
← 

D
3d

 

( 27 ) 

A simplification can be to discard 3D diffusion and to model it with random instant rebinding 

anywhere on the DNA strand. Let’s consider a DNA target situated between fragments of 

respective sizes M and L, the total DNA strand length being M+N. We have the following mean 

first time that fairly reproduce the Facilitated diffusion rate that was observed in vitro (Coppey et 

al., 2004): 
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( 28 ) 

The facilitated diffusion model has been expanded to take into account the particular geometry of 

DNA folding for instance DNA coiling (Lomholt et al., 2009) and fractal DNA geometries 

(Bénichou et al., 2011).  1D diffusion has also been modified to integrate a search state and a 

recognition state (Bauer and Metzler, 2012).  

DNA folding has a tremendous impact on the facilitated diffusion model. We have seen that with 

an extended DNA chain, the first passage time was reduced by facilitated diffusion, but this may 

be wrong if DNA is tightly packed. In a nucleus homogeneously filled in 3D by chromatin, 

facilitated diffusion lead to a lower reaction rate k
T

 because 1D diffusion is highly redundant 

and 3D diffusion is not (Mirny, 2008) (Kolesov et al., 2007). Foffano et al. showed a similar 

result in-sillico in spherical geometry with 10 copies of transcription factor (Foffano et al., 

2012). Interestingly, Foffano and colleagues showed that there was an impact of facilitated 

diffusion of the search rate for cylindrical geometry of the nucleus, which is, in my opinion, due 

the proximity of the cylindrical exploration with 2D exploration. Therefore, even if the number 

of copies of TF inside the nucleus is small, facilitated diffusion is not necessary expected to 

diminish the search time. If the number of copies of TF inside the nucleus is significant (Wang 
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and colleagues suggested >500 pM in bacteria ), then, facilitated diffusion, by slowing done 

diffusion, is expected to have a negative impact on the reaction rate. 

2.1.2.3 Anomalous diffusion  

TF diffusion characteristics such as the diffusion coefficient, have an influence on the 

transcription reaction kinetics. Incorporating anomalous exponent in the first passage time 

scheme, two universal classes of models appear: compact diffusion and non-compact diffusion.   

2.1.2.3.1 Compact-non compact diffusion 

In 1982, Pierre Gilles de Gennes (de Gennes, 1982b) assessed the kinetics of a reaction where 

reactantq vanishes to create  a product ( 29 ): 

 A+ A→ product  ( 29 ) 

In this fundamental paper PG de Genes characterized two universal regimes according to the 

dimension of the walk dw  and dimension of the space df  that we have expressed in the specific 

case of diffusion on a fractal (eq ( 18 )).  However  df , dw  and the compact - non compact 

formalism are not subrogated to this model and the formalism applies in all cases of diffusion, 

either anomalous or free. The idea of de Genes is to explain the kinetics of the reaction as a 

function of the scanning efficiency of the walker. If we call “site” a fundamental unit of space, 

we can measure this efficiency by looking at the average number of distinct sites S(t) visited 

during a given period of time t.  De Gennes showed that  

 
S(t)∝ t

−

df

dw

 
( 30 ) 

The motion was qualified  as compact if dw > df  and non-compact if df > dw . For non-

compact search the integral of S converges asymptotically leading to a single reaction rate 

similar to the continuous regime of free diffusion that we have already seen before:  

 
kT ∝ Dbt

−
df

dw

0

∞

∫ dt∝Db  ( 31 ) 
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where b is the target and D is a scaling factor
1
 . For compact mode of motion, the rate is time 

dependent.  

On the compact interpretation of diffusion, I would like to make the following remarks: 

• Compact diffusion is recurrent. For recurrent search, the probability of going back to a an 

initial position after a certain number of steps does not vanish (Montroll and Weiss, 

1965),  Recurrent searches was first introduced in the twenties by Polya in the case of 1D 

free diffusion
2
 (Pólya, 1921) (Hardy, 1959).  

• In de Gennes’ work the space dimension is not considered fractional and df =1,2,3. In a 

fundamental article of 1986, Kopelman extended De Gennes results to fractals 

(Kopelman, 1986).  

• For De Gennes and Kopelman, for compact diffusion there is not one single rate of 

reaction ( 29 ) because the reaction creates a non-homogeneous concentration in the 

reactor. In fact the average concentration as a function of the distance is a probability, the 

probability that the two reactants found each other. Kopelman showed theoretically and 

proved experimentally on foam that there was not a single reaction rate for fractal 

reactions. 

• We have already seen the Alexander Orbach conjecture, that was introduced the same 

year of de Gennes’ article postulating that the spectral dimension ds is stable for 

percolation cluster ds ≈
4

3
( 19 ). Would that mean that for all random walk on random 

fractals, the motion is compact? Meakin and Stanley investigated a more universal class 

of random fractal than percolation clusters and showed that indeed for that class of 

fractals ds ≠ 4
3

 (Meakin and Stanley, 1983).  

                                                

1
 In the case of free diffusion, D would be the diffusion coefficient. 

2
 1D diffusion is compact since df=1 and dw=2 for 1D Brownian motion 
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2.1.2.3.2  Anomalous diffusion and first passage kinetics 

The chemical transcriptional reaction TF +B→mRNA  differs from the classical reaction 

A+ A→ product . For reaction TF +B→mRNA  there is no consumption of the reactant at the 

site B. For that reason concentration does not vary at least at the macroscopic scale. There is only 

one single reaction rate no matter the mode of motion of the TF, compact or not, and mass action 

applies. However there are still some big differences between compact and non-compact 

dynamics of the transcription factor: 

We have seen that the inverse of the reaction rate k
T

is the mean first passage time τ . Indeed for 

compact fractional diffusion in 2D r(t)− r(0)
2

∝ t
α  ( α < 2 ), Gitterman et al. computed the 

global mean first passage time ( 32 ) in 2000 for an arbitrary target in a confined geometry of 

size L,  that was independent of the size of the target (Gitterman, 2000) . 
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4
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The most striking feature of this reaction rate is that it is independent from the size of the target 

gene B. If the gene target is very small, the mean first passage time is significantly diminished in 

a compact mode of motion, a result that has been introduced by Guigass and Weiss as the 

“discovery of slowness”(Guigas and Weiss, 2008). But the most significant breakthrough for the 

application of the compact not compact mode of motion to transcription was the computation of 

the mean first passage time as a function of the distance to the site. Condamin and colleagues 

saw De Gennes ‘s concentration at a given distance r  as a “rescaled” mean first passage time 

)(rτ , (Condamin et al., 2007). They computed the mean first passage time as ( 33 ). 
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With A and B being structural constants and N being the lattice volume. Condamin et al. latter 

introduced the probability to share the same transcription machinery for two distant sites of the 

closed volume as an additional observable (Condamin et al., 2008). In an additional paper 

Benichou and al. computed the exact shape of the first passage time distribution, and not only the 
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mean in terms of the radial distance to the site and time rescaled by the GMFPT (Bénichou et al., 

2010). 

Because of the radial dependence of the mean first passage time for compact diffusion, two 

genes that are close to each other have a higher probability to share the same transcription 

machinery than two genes that are distant. Indeed, genes that are co–regulated are often found 

close to each other inside the nucleus and it is still unknown whether this co-localization is 

induced by transcription or by other nuclear components to enhance transcription(Kolesov et al., 

2007). Because of the recurrence of compact exploration, Meyer and colleagues showed that it 

could induce a bursting mode of expression of genes regulated by a small number of copies of 

nuclear TF (Meyer et al., 2012). 

2.1.3 Conclusion on modeling 

In this section, we have investigated several modes of motion of nuclear elements, from free to 

anomalous diffusion. We have also shown that the type of particle diffusion can have a high 

impact on the nuclear reactions rates. Pioneer studies showed that nonspecific interactions can 

also play role in this regulation (Dundr and Misteli, 2001). On the results part, we will 

investigate the motion of nuclear reactants in relation with their chemical properties and discuss 

the implication of the motion in the specific case of transcription.  

Now that we have a model of nuclear particle motion, I will introduce the imaging assays that 

enable the recording of nuclear single particle motion. 
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2.2  Nuclear single particle microscopy 

Since the 1960’s, and the discovery of GFP (Shimomura et al., 1962), functional microscopy has 

become a routine technique to understand cellular structures and dynamics. Recently a  method 

is called sptPALM (Single particle tracking Photo Activated Light Microscopy) (Manley et al., 

2010) has been developed to reach single molecule accuracy in the following functional proteins 

in cells with an ordinary inverted light microscope.  

 In a first part, I will introduce the mathematics of PALM imaging that is PALM on fixed dead 

cells. Then I will introduce the specific properties of nuclear sptPALM, where super-resolution is 

performed on the nucleus of living cells and when we can record the mobility of its components. 

In a third part, I will try to make the link between SptPALM and another imaging techniques, 

FLIP (Fluorescent Loss In Photo-Bleaching. 

2.2.1 Super resolution 

Super resolution was introduced to break the fundamental diffraction limit of Light microscopy. 

Upon response to a point source, because of diffraction through the optical path, the microscope 

will produce a blurry image, the point spread function (PSF). This makes two imaged molecules 

closer than 100nm impossible to be separated with ordinary inverted microscope. Super–

resolution uses time to overcome this limitation. 

2.2.1.1 PALM and STORM principle 

In 2006 two methods were conjointly developed for super resolution with a conventional 

inverted microscope. PALM (Betzig et al., 2006) and STORM (stochastic optical reconstruction 

microscopy))(Rust et al., 2006). These approaches rely on the stochastic activation of 

fluorescence to intermittently photo switch individual photoactivatable molecules to a bright 

state, which are then imaged and photobleached. Thus, very closely spaced molecules that reside 

in the same diffraction-limited volume (and would otherwise be spatially indistinguishable), are 

temporally separated. Merging all of the single-molecule positions obtained by repeated cycles 
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of photoactivation followed by imaging and bleaching produces the final superresolution 

reconstructedimage (Figure 5). 

 

 

Figure 5 The principle behind PALM. 

A sparse subset of Photo activated probes 

is illuminated (A and B) and then partialy 

bleached after a pulse of illumination 

(C).The process is repeated (C and D) 

until the population of inactivated, 

unbleached molecules is depleted. 

Suming the molecular images across all 

frames results in a diffraction-limited 

image (E and F). reproduced from 

(Betzig et al., 2006) 

 

PALM and STORM are based on the same principles, but were originally published using 

different photoswitchable probes. PALM was developed using photoactivatable or 

photoconvertible fluorescent proteins as the switchable probes, whereas STORM was originally 

published using the synthetic carbocyanine dyes, Cy3 and Cy5. In contrast to the situation with 

classical fluorescence microscopy, superresolution microscopy allows biological structures to be 

defined with nanometric accuracy, so that their distributions and dynamics can be analyzed. 
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Figure 6:  schematics of the PALM 

experimental set-up. The activation (405 

nm) LASER and the excitation (561 nm) 

LASER are aligned on a single beam 

using a dichroic beamsplitter. Their 

intensity and on/off switching ratio is 

independently controlled with an acousto-

optic tunable filter (AOTF). The 

combined LASER beam is expanded 

through a beam expander and focused on 

the rear plane of the objective in an 

inverted microscope, with the help of a 

long-pass dichroic. The emission from 

the sample is imaged through the tube 

lens with an EMCCD 

Figure 6 is a representation of a typical PALM set-up. Photoactivation and readout LASERs (405 

and 561 nanometers, respectively) are positioned so that they can be shuttered or used 

simultaneously when necessary. A cooled electron-multiplying charge-coupled device (EMCCD) 

camera system is attached to the microscope. The specimen is mounted in a specialized holder 

and bolted to the precision x-y stage for gathering transient images of single molecules. A high 

numerical aperture objective is positioned beneath the specimen. Central to the instrumentation 

is a high-speed computer system that acquires and processes images recorded by the camera. 
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Figure 7: Comparison off images of cell micro-tubules. (a), (c), (e), conventional microscopy. 

(b), (d), (f), super resolution microscopy (STORM) reproduced from (Bates et al., 2007) 

 

Super resolution images differ fundamentally from conventional microscopy images, as they are 

computer-reconstructed images (Figure 7). On the following section, I will try to mathematically 

express those differences. 

2.2.1.2 Differences between Super resolution microscopy and conventional fluorescent 

microscopy 

2.2.1.2.1 Conventional microscopy 

For conventional wide field fluorescent microscopy, there are four different steps in the 

construction of the final image I : blurring, discretizing, integrating and amplifying.  The 

exact mathematical formulation of those four steps can be heavy (Grünwald et al., 2008) . Here, 

for clarity, I will adopt the formalism of Thompson (Thompson) that is maybe less precise, but to 

my opinion easier to follow. I will also refer to the density after successive transformations as 

“data”.  
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I will confront conventional fluorescent microscopy to a 3D time –independent density of 

fluorescent emitter s . 

• The density s  is convoluted with the point response of the microscope, the point spread 

function h that accounts for the diffraction pattern through the optical path: The data is 

blurred: h ⊗ s  

• Each point is submitted to photonic noise (stage Q  )  that can be modeled as a Poisson 

time and spatial process of intensity h ⊗ s (Murphy and Davidson, 2012) . After this 

treatment, our data is a collection of dimensionless photons with time and spatial origin. 

The data is discretized : Q(h ⊗ s ) 

• Then data is pixelised (stage M ).  Pixelisation can be modeled as the integration of the 

discrete data over a partition of hyper-volumes, the pixels. Pixels have the following time 

and spatial dimension: square in the xy directions, a probability profile in the z direction 

called the focal depth of the system and the exposure time camera t
exp

 in the time  

dimension. The data is summed or integrated:MQ(h ⊗ s) 

• The signal is converted to electric charge according to known quantic efficiency. At this 

stage there is also one perturbation called electronic noise due to the non-linear 

conversion that is often modeled as a Gaussian white noise on the pixels. Finally, each 

pixel amplified by the electo-multiplier device (EM) .  

 I = EM (MQ(h ⊗ s)) ( 34 ) 

I used this formulation for validation of image tprocessing in the results part of this thesis. I fixed 

a density of emitter, a Dirac in the case of a single molecule, and I applied the previous steps to 

construct an artificial fluorescent image. 

2.2.1.2.2 Ideal Super resolution microscopy PALM 

PALM experiments rely on the sequential photo activation of molecules imaged during several 

frames. For that reason, the raw output of a PALM experiment is a collection of images I
t

{ }with 

a sparse subset of the emitter ensemble s  spatially resolved. Here I will assume an ideal PALM 
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experiment, where only one molecule emits light in one acquired frame. Thus, the signal per 

frame I
t
 is 

 I
t
= EM (MQ(h ⊗1

x
i
,y

i
,z
i{ }
)) ( 35 ) 

where 1
x
i
,y

i
,z
i{ }

 is the spatial Dirac function at position of the single molecule x
i
, y

i
, z

i{ } . The 

purpose of PALM is now to invert the function EM (MQ(h ⊗ .))  to find the exact position 

x
i
, y

i
, z

i{ } of the molecule. For 2D representation, afterwards, only the spatial projection x
i
, y

i{ } is 

computed and displayed. Ideal super resolution imaging is therefore equivalent to Monte Carlo 

sampling of the density of emitters s . Since the function EM (MQ(h ⊗ .)) is not deterministic, 

the position is not known exactly but inferred from the frame I . Here is the fundamental 

difference between conventional fluorescent and super resolution imaging: after image 

processing, PALM final output is not an image but a set of coordinates, for instance in 2D 

x
i
, y

i{ }{ } .  

If one wants to display the coordinates x
i
, y

i{ }{ }  on an image I ', one needs to add bulk to the 

points. Since the position of individual emitters is only known up to a given uncertainty, the 

effective point spread function heff
i

, one solution is to use this uncertainty for display. In that case 

the final image I 'is obtained by the sum over all individual detections x
i
, y

i{ }   

 I ' = heff
i
⊗1

xi ,yi{ }

xi ,yi{ }

∑  
( 36 ) 

This effective point spread function heff
i

differs from the real point spread function h  because: 

• It accounts for the optics but also for the computational efficiency to recover the exact 

position of the emitter x
i
, y

i{ }  

• It is theoretically only limited by the quantity of information available for the inference of 

the position and therefore only by the number of photons that can be collected by the 

camera 
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Giving to each detection on a reconstructed image a weight proportional to the uncertainty of the 

detection also means that ideal PALM detection with 0 uncertainty cannot be displayed at all. 

There is therefore a trade-off for ideal representation. As a function of the number of detected 

molecules, Fizgeralald and colleagues computed a density filter ĝ  for optimal representation of 

the density s  (Fitzgerald et al., 2012) 

 I ' = ĝ⊗1
xi ,yi{ }

xi ,yi{ }

∑  
( 37 ) 

In 3D, Beheiry and Dahan computed several texture method for optimal rendering (Beheiry and 

Dahan, 2013). 

2.2.1.2.3 Real Super resolution microscopy PALM 

2.2.1.2.3.1 Fluorophore persistence 

We have seen that ideal super resolution imaging is equivalent to the Monte Carlo sampling of 

the density of emitters s . However, for real super resolution, the sampling is not independently 

distributed. Activation puts fluorophores into a non-stable “triplet state”, an activated emitter will 

emit light for several frames until it bleaches with stochastic blinking.  

The persistence of the fluorophore for several frames is a drawback for analyzing super-resolved 

image on fixed cells since it is not straightforward to count molecules that can appear repeatedly. 

But this persistence is an advantage for live cell imaging because it allows the imaging of 

individual molecules until they bleach and therefore the recording of their motion (Manley et al., 

2010) 

2.2.1.2.3.2 Point spread function and detection  

One of the critical point of super resolution imaging is the detection of the exact position of the 

fluorophore x
i
, y

i{ } . Detection is equivalent to the inversion the point response of the 

microscope and camera, represented by the function EM (MQ(h ⊗ .)). For accurate detection of 

the single molecule position, one needs to know the shape of the function or at least geometrical 

properties on which we can base the inference. 
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The point spread function h  for an ideal microscope, for and a molecule exactly in focus is 

(Murphy and Davidson, 2012)  

 
h(r) =

2J
1
(ra)

r











2

 with a =
2πNA

λ
 ( 38 ) 

NA being the numerical aperture, λ  being the wavelength and J
1
 being the first Bessel function. 

Unfortunately, there is no analytic formula for J
1
 which is a severe drawback for inference. 

Several algorithms have been developed to compute a realistic PSF and to integrate it over the 

pixels of a camera (Nasse and Woehl, 2010). More recently, authors also argued that we cannot 

base the inference on a point spread function since fluorophores are not points but indeed dipoles 

(Mortensen et al., 2010). For simplification however, simplified Gaussian versions of the PSF is 

predominantly used. 

The PSF can be modeled by a succession of rings of increasing radius and of decreasing height, 

the Airy disks.  The radius of the first peak is given by: 

 NAr 2/22.1 λ=  ( 39 ) 

One simplification is to consider only the first peak and to model it with a Gaussian with full 

width half maximum equal to NAd 2/λ= . Zhang and colleagues showed that this 

approximation is not accurate for wide field microscopy but good for LASER scaning 

microscope (Zhang et al., 2007). I refer to (Ober) for a comparison between Airy and Gaussian 

function for maximum efficiency of the maximum likelihood estimator. 

For computational speed, alternative methods to maximum likelihood inference have been 

proposed to find the position, the most popular way being 2d Gaussian least square fit after a 

preliminary filtering (Mashanov and Molloy, 2007). But since PALM images are noisy, 

sometimes the simplest method is the best. For example, Thompson  and colleagues showed that 

2D Gaussian fit did not improve much a simple center of mass computation for noisy data 

(Thompson et al., 2002). Recently, Parthasarathy proposed a novel method based only on the 

symmetric properties of the PSF, the radial symmetry center (Parthasarathy, 2012). 
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2.2.1.2.3.3 Cramer Rao Lower bound and pointing accuracy 

Now that the single molecule is detected, we can question the efficiency of the detection and the 

pointing accuracy. For an ideal microscope with infinitely small pixels, photonic noise can be 

considered as N observations drawn from a distribution of probability distribution function 

(PDF) 'h 3. In such a scenario, for Gaussian PSF h the natural average of those observations 

reaches maximum likelihood to estimate the center of h which would be the 2D position of the 

imaged molecule. The standard deviation of the mean σ (x) , that gives the uncertainty of this 

estimated position x  is given by the Cramer Rao lower bound. 

 

)2ln(8
)(

22

2

N

d

N
x ==

ε

σ  ( 40 ) 

with d  being the full width half maximum and  ε  the standard deviation of the Gaussian PSF. 

Thompson et al proposed the following correction to integrate pixel size and (Thompson et al., 

2002) 

 

22

2422
8

12 Na

b

N

a

N

πεε

σ ++=  ( 41 ) 

With abeing the pixel size andb the standard deviation of the background noise.  

The formula has become the standard method to compute theoretical pointing accuracy, or signal 

to noise ratio. A more experimental approach, which is also very popular, consists on the 

sequential detection of stable fluorocrhom such as a quantum dot. The ratio between the number 

of photons collected during the experiment and real tagged fluorophore giving a rescaled 

pointing accuracy (Betzig et al., 2006). 

                                                

3
 Readers may be a confused here as result of the notation of the Probability density function 

(PDF) noted 'h   and  of the Point spread function (PSF), noted h . I leave it this way since the 

PDF we refer to, here, is a modeling of the physical PSF. 
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2.2.1.2.3.4 Two or more particle per frames 

In real PALM imaging there is not only one particle per frame, but many. Several methods have 

been developed to simultaneously find several single particle positions in an image whose signal 

overlap. Serge et colleagues did iterative fitting: once a single particle is detected, its signal is 

removed from the frame and all the particles are detected after several deflection loops (Sergé et 

al., 2008).   

Another solution is to preliminary deconvolve the signal with  econvolution nonlinear filtering 

(Weisstein)(Henriques et al., 2010). Wavelet analysis was introduced to discard small objects 

that would not qualify as single particles (Genovesio et al., 2006)(Olivo-Marin, 2002). The most 

promising technique is, to my opinion, compressed sensing in which the single particle position 

is given according to a sparse matrix whose distance to the real data is iteratively minimized 

(Zhu et al., 2012) 

2.2.1.3 Developments 

The methodology of PALM has been significantly enhanced during the past years in two 

directions, the reduction of out of focus noise and the 3D determination of the particle position. 

• For the reduction of out of focus noise, different methods have been proposed, the most 

commonly used being TIRF (total internal reflection Fluorescent microscopy) 

(Information et al., 1981) that uses for excitation an evanescent wave. The signal to noise 

ratio is dramatically increased but the observation is limited to a 200 nm depth above the 

coverslip. Hi-LO (highly inclined and laminated optical sheet) (Tokunaga et al., 2008)  is 

a modification of the technique that enables deeper sample illumination.  

• Numerous efforts have been undertaken to extend PALM imagig to 3D by shaping the 

PSF so that the position can be determined from a 2D fit of h  (Izeddin et al., 2012) 

(Thompson et al., 2010) or by illuminating simultaneously several focal planes (Hajjoul 

et al., 2009) (Abrahamsson et al., 2013) 

2.2.1.4 Statistical analysis of PALM outputs 

Ideal PALM outputs are dimensionless observations of a spatial distribution, namely a point 

pattern. Real PALM data is polluted  by blinking and fluorophore persistence. To use spatial 

statistics on real PALM outputs, one needs to discard blinking that would alter the exact counting 
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of molecules. A method called pair correlation PALM (PC PALM) has been developed to 

remove double counts from the final output in 2D (Sengupta and Lippincott-Schwartz, 2012). 

Spatial statistics have long been developed for geology and ecology but is still not so widely 

applied on PALM (Owen et al., 2012)(Owen et al., 2010). I refer to the result part 3.3.3 for 

application of spatial statistics to real PALM data. 

2.2.2 Spt PALM 

In 1996 Schmidt et al showed that it was possible to track moving lipids in solution with 5ms 

exposure time (Schmidt et al., 1996) and since that pioneer experiment, single molecule tracking 

has become a powerful tool to understand the mechanisms of bio-chemistry in vitro and in vivo.  

SptPALM has been a natural development of PALM to do the imaging on live cell and to record 

displacement of the tagged protein (see Manley and colleagues for review (Manley et al., 2010)). 

2.2.2.1 Tracking moving single particle 

2.2.2.1.1 Detection 

A plethora of computer algorithms have been developed to monitor single molecule in vivo ( see  

Levi and Gratton  for a complete description (Levi and Gratton, 2007)).  Motion significantly 

affects pointing accuracy actually, even if the sample is fixed and the only motion is set up 

artifact (Pertsinidis et al., 2010). Moving particles signal differs from immobile, as their signal is 

indeed a motion blur, the convolution between the movement and the PSF. To get an accurate 

moving particle position there is a trade-off between a high exposure time that will increase the 

number of collected photons and a low exposure time that will decrease the motion blur.  

Exposure time is also bounded by the energy transfer of the full chip EMCCD camera, To 

decrease exposure time to the microsecond range, stroboscopic illumination has been proposed, 

for instance, with a non-mechanistic illumination shutter like an AOTF ( acousto-optic ttunable 

filter)(English et al., 2011). 

2.2.2.1.2 Tracking 

The next move of is to track the molecule for several frames (Saxton, 2008a). In that case, there 

are two broad categories of tracking methods if the expected trajectory is long (a least 100 

frames) or short (a few frames). 
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• For short trajectories and identical particles there is not much information that can be 

used to link detections to another. Simple routines such as connecting particles to the 

closest neighbor on the consecutive frame and fixing a maximum radius are sometimes 

the best (Ghosh and Webb, 1994)(Mashanov and Molloy, 2007).  Tracking algorithms 

can also use other features than coordinates to connect detections between consecutive 

frames such as brightness (Smith et al., 2011). Connecting simultaneously one frame 

detections to their corresponding detections on the consecutive frame can reduce miss-

assignement for dense samples. This can be done by finding the displacement that 

maximize the correlations between consecutive frame (Gelles et al., 1988) (Shafique and 

Shah, 2005) or by minimizing a global “cost” that depends on spatial distance between 

consecutive detections (Jaqaman et al., 2008). 

• For long trajectories, it is possible to compute from the past the a-priori position of the 

particle on the next frame (Ng et al., 2005)(Simo Srkk, 2004). For instance, the time 

dependent diffusion coefficient of a particle inferred from the past can help associating 

particle according to their speed (Sergé et al., 2008). Most methods use Kalman filtering 

and its related likelihood (Genovesio et al., 2006)(Wu et al., 2010), but the distinction 

between past and future is indeed purely theoretical for trajectory reconstruction, as 

tracking is most often processed after the images are recorded. One efficient method, is to 

treat the time acquisitions as a whole and to use particle matching and graph theory to 

converge to the trajectories (Sbalzarini and Koumoutsakos, 2005).  

2.2.2.2 From single particle to global statistics 

From single particle assays, we get trajectories of individual molecules. The crucial point of 

tracking algorithm is to minimize tracking errors, the possible miss assignments of particles on 

consecutive frames. Tracking errors significantly alter the validity of the conclusions that can be 

drawn from SPT assays.  There are two kinds of tracking errors: type 1 (false positive) and type 

2 (false negative) (Figure 8). 
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Figure 8: Type 1 and type 2 tracking error .  

Moving particles are sequentially detected at frame recorded at 

time t and sequential frame at t+dt . 

Panel A type 2 tracking error (false negative): the moving 

particle moves further than the limit of an over-restrictive 

tracking algorithm pictured by the dot circle. The trajectory is 

stopped. 

 Panel B type 1 tracking error (false positive): The particle either 

moves far away or bleach or de-focalized. Another particle comes 

within the limit of the tracking algorithm and is wrongly assigned 

to the detection at time dt. 

Any tracking method is a tradeoff between type 1 and type 2 errors. A restrictive algorithm that 

stops tracking whenever there is an ambiguity will decrease type 1 and increase type 2 error.  If 

the motion is uniform (all the particle behaves the same) such as Brownian motion, then type 2 

error is expected to cause a reduction of the number of observed displacements and in the end a 

loss is a consistency of the statistic (Ng et al., 2005). By limiting the observed translocations, it is 

also possible that the recorded motion appears to be slower than in reality (Wieser and Schütz, 

2008). Type 1 errors on the other hand will lead to observed displacements that have nothing to 

do with the movement and therefore will strongly alter the validity of the conclusion that are 

drawn from the motion.   

So far, to my opinion, tracking algorithms have been predominantly developed to minimize type 

2 error rather than type 1 error, which makes them unsuitable for intra nuclear sptPALM. 

Nuclear sptPALM have often reported motions that were heterogeneous, with populations of 

particles moving at different speed  (Holtzer et al., 2007), (Grünwald et al., 2008), (Speil et al., 

2011b). Intra-nuclear SPT has, to my knowledge, mostly been performed using the projection of 

the motion in 2D. Due to more rapid de-focalization of the fast moving particles, any statistic on 

sptPALM data is biased (Figure 9) and any tracking algorithm that would be over-restrictive 

increases the bias. For that reason, we have developed our own tracking method for which type 1 

error is reduced while type 2 error is high but carefully measured.  
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Figure 9: Selection bias for intra 

nuclear SptPALM. Panel A: a slow 

moving protein that stays in focus (the 

focal depth of the camera) for several 

frames. Panel B: a fast moving protein 

that de-focus between two frames 

Trying to quantify the different 

populations from spt PALM, there will be 

a biased towards the slow moving 

populations since they are image longer.  

2.2.3 FLIP (Fluorescent Loss in Photo-Bleaching) 

2.2.3.1 Bulk imaging techniques 

SPT PALM is of course not the only technique for the following of nuclear factors, Numerous 

imaging assays have been developed to measure the mobility of nuclear factor tagged with a 

fluorochrome. Below is a non-exhaustive list:  

• FRAP,( Fluorescent Recovery After Photo Bleaching) . In a FRAP experiment, a nuclear 

area is bleached and the recovery of the fluorescence is monitored. By linking the 

fluorescence with the molecule concentration, we can extract the kinetics of the tagged 

molecule (Köster et al., 2005). 

• FCS (Fluorescent Correlation Spectroscopy). In a FCS experiment, we monitor the 

variation of fluorescence inside a small region and we link those variation with the 

entrance or escape  of a tagged protein(Thompson, 2002). 

• FLIP (Fluorescence Loss in Photo Bleaching). In a FLIP experiment a region of a cell is 

cantinuouslly bleached and we monitor the loss of photo bleaching at a distant point from 

bleaching area (Köster et al., 2005).  

FRAP, FCS and FLIP are bulk imaging techniques. It is the global motion of the pool of 

fluorescent molecules that is observed. The measured fluorescence is assumed to be proportional 

to the nuclear concentration, eventually corrected from photo bleaching. FRAP, FCS and FLIP 
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are indirect measure of the movement. The kinetics that can be extracted from those techniques 

depend on the model that is fitted to the data, and the number of possible models has increased 

huge as the techniques become popular(Mueller et al., 2010).   

 FCS FRAP FLIP 

Time range  Nano second- 

millisecond 
Milli second-second second-minute 

Spatial range 0-100nm 1-10 µm The entire cell 

probe concentration nM µM µM 

 

FLIP has not been extensively used compared to FRAP. Here, I will explicit the link between 

Spt-PALM and FLIP in broad context of mean first passage time. 

2.2.3.2 Protocol 

Fluorescent Loss in Photobleaching (FLIP) relies on the bleaching of a precise area by LASER 

and the analysis of the resulting profile. In a FRAP experiment, the system is left to evolve after 

a short but intense LASER bleach. In the FLIP experiment, the intensity measurement is done at 

a given distance from the bleaching area, and the bleaching is continuous or at least periodic The 

first FLIP experiments where done on Golgi proteins (Cole et al., 1996) to assess the link 

between distant cicternae of the Golgi. The global and constant bleaching of distant cicternae 

accelerates the bleaching of distant one and we can, with FLIP, measure the exchange rate 

between hose compartments. FLIP can so be used to qualitatively assess shuttling rates, for 

instance between the cytoplasm and the nucleus (Köster et al., 2005) 

The typical duration of a FLIP experiment is 100s, and to estimate quantitative parameters, the 

measured intensity I  in a given area needs to be corrected from the background level B and 

bleaching due to imaging measured on a distant cell of the imaging area KI and then rescaled by 

the signal at time t=0. 
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The resulting intensity )(

~

t
I , let aside additional noise, ranges from 0 to 1 and can be fitted to a 

single exponential decay function τ/1)( tetf −

−=  . This strategy has for instance been used to 

estimate dissociation constants in eukaryote cells of Fibrillarin and SF2/ASF out of their 

respective nuclear compartments, the nucleoli and the nuclear splicing nuclear factors (Phair and 

Misteli, 2000) and later expanded to other ribosomal proteins (Chen and Huang, 2001). A decay 

of florescence that is not explained by a single exponential has been seen as the signature of the 

aggregate movement of different populations. For instance the polymerase population inside a 

cell can be divided between a free, a bound and an engaged population (Kimura et al., 

2002)(Hieda et al., 2005). Recently it has been proposed that the decay rate of the FLIP 

experiment could represent not only the dissociation rate, but also the restriction of the 

movement imposed by the geometry before going to bleaching area. For instance Dieteren et al 

have extended the measurement of effective diffusion coefficient by FRAP to predict the FLIP 

rate as a function of the number of barriers in the mitochondrial matrix (Dieteren et al., 2011).  

2.2.3.3 Link with sptPALM 

Models to be confronted to the FLIP analysis are still lacking, and so far only a few parameters 

have been extracted from the FLIP experiment. With the notable exception of ((Köster et al., 

2005)), FLIP has mostly been used not to assess spatial exploration of cellular factor but rather a 

dissociation constantkoff . The link with mobility have been introduced through a combination of 

FLIP and FRAP “Continuous Fluorescent Photobleaching (CFP)” (Wachsmuth et al., 2003), but 

only looking at the integrated value of  the fluorescence I(t)  and not the fluorescence as a 

function of the distance to the bleaching point I(t, r). This quantity that we call RFLIP (Figure 

10) for Radial FLIP is directly related to sptPALM.  
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Figure 10: Schematic principle of an 

ideal  RFLIP experiment.  A bleaching 

laser is focused on a small and limited 

region of the nucleus, the bleaching spot. 

Anytime a fluorescent particle passes 

through the bleaching spot, it is bleached. 

The remaining fluorescence as a function 

of the distance to the bleaching spot is 

therefore proportional to the fraction of 

particle that has not pass through the 

bleaching point. . 

We have seen in the previous section that the motion of nuclear factors can be modeled either by 

the local exploration or the mean first passage time. If SPT-PALM is directly related to local 

movement, an ideal RFLIP is the direct measure of the distribution of the first passage time 

through the LASER bleaching spot. 

Let’s assume that the nucleus is isotropic around the bleaching spot, so that that I(r, t) is the 

same at every point of annular region of radius r and that there is no side effect of the shape of 

the nucleus. In such a case, I(r, t) corresponds to the fraction of unbleached proteins at radius r 

at a time t Here we assume the reversibility of the exploration process so that any protein 

trajectory inside the nucleus has the same probability to occur whatever the direction. If we 

mentally reverse time the fraction I(r, t) of light that remains at a particular place corresponds to 

the fraction of particles that was there at time t and that have not passed through the bleaching 

point. It is therefore a survival probability that depends only on the position inside the nucleus. 

I(r, t). For ideal RFLIP,  I(r, t) is an exact quantification of  the rescaled mean first passage 

that I’ve presented at equation ( 33 ). The implication of this relation will be discussed in part 

3.2.4.2 

2.2.4 Conclusion on microscopy 

Single molecule microscopy is a rather young discipline that was built upon the genius idea of 

using time to overcome the limitations of conventional fluorescent microscopy. Because of its 

versatility and relative low cost, PALM microscopy has been awarded method of the year by 

nature magazine (Betzig et al., 2006). So far, PALM microscopy has mainly been restricted to 

membrane or thin samples. PALM and its living cell corresponding sptPALM however, are 
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limited for precise quantification due to various selection biases like bleaching, blinking and 

movement out of focus. Another drawback of PALM is that the data is only accessible after 

heavy image analysis. But, still, PALM enables functional imaging of the organelles with 

resolution one order of magnitude lower than obtained with conventional microscopy.  

When applied to live cell imaging, PALM set-ups enables the tracking of molecules at high 

resolution. SptPALM is a nice tool to understand the heterogeneity of the movement within a 

micro-metric range, but, at a larger scale, nuclear exploration is better assessed with ensemble 

measurement such as FLIPs. Finally, it is by confronting the same problem to different 

microscopic assays that we can reliably understand the movement of nuclear factors(Mazza et 

al., 2012a).  
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2.3 Statistical analysis of live cell single particle trajectories 

Single molecule tracking (SMT) or single particle tracking (SPT) has shed light on the specific 

exploration of cellular organelles by its active constituents. So far, live cell SPT has been mostly 

restricted to membrane (Alcor et al., 2009) but numerous efforts have developed to extend the 

analysis deeper inside the cell, to the cytoplasm or to the nucleoplasm. In this section, I will not 

only discuss nuclear SPT studies, because there’s only a few, but I will review the statistics that 

can be used to interpret SPT data in all the compartments of the cell. Biological questions that 

justify the use of SPT fall in the following global categories: 

• Bio-measuring:. Using single molecule tracking, we can directly measure at the single 

molecule level chemical reaction kinetics. Those type of measurement can be for instance 

actin filament groth rates (Das et al., 2009) or nuclear pore transport rates (Lowe et al., 

2010).  

• Interaction:s Chemical partners inside the cell interact in various ways. They can bind to 

each other or can be spatially restricted to specific organelles. SPT can help understand 

what kinds of phenomenon bring the partners together ,such as a force derived from a 

potential (Masson et al., 2009) 

• Rheology:  By introducing tracers inside the cell and studying their movement, scientists 

can measure the physical properties of the cell components (Etoc et al., 2013) and resolve 

their architecture (Bancaud et al., 2009). 

• Target search: We have seen in the first session that chemical reactions such as 

transcription are significantly enhanced in a cell. How a reactant will find its substrate 

inside the cell is not fully understood and single particle tracking can help understand 

how a transcription factor will find its way to a specific gene (Plachta et al., 2011) or how 

a virus will scan a cellular membrane ((Rothenberg et al., 2011)). 

Lexicon of single molecule tracking: The final outputs of SMT assays are lists of time-indexed 

points or positions, in 2D: x
i
(t), y

i
(t)( ) and in 3D : x

i
(t), y

i
(t), z

i
(t)( ) that I will refer as 

r

r
i
(t) or  
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trajectories that represent the successive position of a tracer i .  The recording of the position is 

sequentially done each t∆  interval of time, called inter-frame, for a maximum of N points and 

total duration of tN ∆− )1( .  In fact, for most experiments, the recording of the position is not 

instantaneous and the photonic captor is usually open during an acquisition time 
E
t . More over 

the exact position is not known exactly 
r

r
i
(t)but within a probabilistic distribution of given 

variance 
0
σ  called pointing accuracy or localization error.  In the previous section, we 

introduced tracking errors.  Here we discard those errors and assume that trajectories faithfully 

reflect the behaviort of one single molecule moving in its environment  

2.3.1 Mean square displacement and free diffusion 

We have seen in the first section that the simplest model of random exploration is the Brownian 

motion or free diffusion model characterized by a single parameter, the diffusion coefficient D. 

For Brownian motion, the second moment of the propagator integrated and summed other d  

independent dimensions gives the dependence between the square linear distance and time of 

equation ( 10 ) reproduced here: 

 r

r (t)−
r

r (0)
2

= 2dDt  ( 43 ) 

The statistical estimation of this equation has given rise to the ordinary MSD analysis (see  

(Wieser and Schütz, 2008) for a complete review).. 

2.3.1.1 Definition and computation of the MSD 

Let’s suppose that we observe by SPT a Brownian motion, and that we need to measure the 

diffusion coefficient Dof a single trajectory. We have the sequential N detections  ( )
nn
yx ,  in 

2D recorded every time interval t∆  without localization error. The computation of the mean 

square displacement MSD for the time interval tn∆ , is obtained as follow. 

 ( ) ( )∑
=−

−+−=∆

nji

jiji
yyxx

N
tnMSD

22

'

1
)(  

( 44 ) 

The averaging is done between the N
' pairs of detection that are n∆t  distant.  
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Before even trying to estimate the diffusion coefficient, we can question the robustness of this 

statistic and compute its variance. Even with this simple definition, the computation of the MSD 

is not straightforward.  Brownian motion has independent increments, which means that distant 

displacements or segment are independent from one another. However displacements that time-

overlappes are correlated.  Two types of averaging MSD(n∆t) can be applied: over the 

N
1

independent segments or on the whole set. Qian et al. showed that averaging over 

independent segments do not improve much the variance of )( tnMSD ∆ , 
n
σ  (Qian et al., 1991)). 

In the first case the variance is, with central limit theorem: 

 ( ) 2/1

1
4 NDt

n
=σ  ( 45 ) 

When averaging MSD(n∆t)  over all the segments and not only the independent ones, the scaling 

remains the same  

 ( ) 2/1
),(4 NnFDt

n
=σ  ( 46 ) 

With a form of ),( NnF  that changes as a function of 1+−= nNN
A

. 

 For 
A

Nn <  ( ) ( )232 6/2),(
AAA

nNnnNNnNnF −++= , and for 
A

Nn >  

( ) ( )
AAAA

NnNnnNNNnF
223 6/441),( −+−+=  

The variance increases with time lag n  (Figure 11). To fairly compute MSD, Saxton suggested 

to use only lag times smaller than ¼ of the trajectory (Saxton, 1997). Despite further 

developments that refined this value, ¼ remains a benchmark in the scientific community. For ¼, 

we are in the nK >>  regime, and we have the following simplification  

 ( ) ( ) ( ) ( ))1(3/)12(3/)12(),( 22
+−+=+= nNnnnKnNnF  ( 47 ) 
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Figure 11: Single trajectory MSD with 

relative statistical error 
n
σ . The 

envelope is 
n
σ± . The plot is done as 

function of N the length of the trajectory 

(from (Qian et al., 1991) 

 

 

 

 

2.3.1.2 Experimental limitations: pointing accuracy, lag times... 

The previous results shows that MSD is only precise up to a given lag time, and this limit 

depends on the trajectory length. Therefore, why not restrict the analysis to the first MSD curve 

points, or, more drastically to the first one? Unfortunately, initial points are also biased by 

lociztion error 
0
σ  and exposure time 

E
t  (Wieser and Schütz, 2008). For large time lags, the 

influences 
0
σ  and 

E
t  vanishes, but for short time lags, it can be critical. Michalet (Michalet, 

2010) recently explored in details the implication 
0
σ  and 

E
t on the mean square displacement of 

a single trajectory. 
E
t  shrinks the time interval between two independents detections and 

0
σ  lift 

the MSD(t) curves up. More precisely, in 2D we have the following expectancy of the MSD 

curve: 

 
DtDttMSD

E
4

3

4
4)(

2 +







−= σ  ( 48 ) 

In most SPT reports, the localization error 2
σ I s obtained by imaging an immobile protein. 

Authors cross-linked the cell, for instance with para-formaldeide (PFA) and detect the same 

protein and find the standard deviation of successive detections (Manley et al., 2008) . Such 

protocol however, neglects the influence of motion blur on pointing accuracy. Here 2
σ is the 

error that integrates the ability to detect accurately an immobile protein, that is distributed with 
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standard deviation 
0
σ  and the uncertainty of accurately detect the center of mass of a moving 

protein that is with 
0
s  being the standard deviation of the point spread function of the set up.  

 

2

0

0
1

s

Dt

N

S
E

+== σσ  ( 49 ) 

Now, estimating the variance 
n
σ  of the nth t∆ interval, Michalet and colleagues obtained: 

2/1
),,(4
−

∆= xNntFD
n
σ  with  

tD
x

∆
=

2
σ

 and nNK −=  

 )2(
1

)446(
6

1
),,(

2322
xnx

K
KKnnKKn

K
xNnF ++−++−=  for Kn >  

 
























−++++−+= 232

2
1
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K
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The influence of the exposure time 
E
t is tremendous and most experimentalists have tried to 

experimentally reduce it. Since the acquisition time of most detector such as EMCCD or C-MOS 

cameras are usually limited to a 5-10 ms lower bound, the most popular way to reduce 
E
t  is 

stroboscopic illumination. The shutter that drives sample illumination is only open during a short 

fraction of time. Some shutters also allow the modulation of the amplitude during 
E
t . To 

accurately find the position of the center of mass of the movement during 
E
t , it can be worthy to 

collect more photons in the center of the trajectory. In a more recent article authors refined the 

influence of exposure to MSD variance, changing the value 
tD

x
∆

=

2
σ

 to R
tD

x 2

2

−
∆

=
σ

 (Michalet 

and Berglund, 2012) with [ ]∫
∆

−
∆

=

t

dttStS
t

R

0

)(1)(
1

and S being the illumination percentage 

occurring during frame interval. In the end, R ranges between 0 to ¼. 

2.3.1.3 Fitting the diffusion coefficient 

Now, finding the diffusion coefficient, we need to fit the MSD curve to a line, with equation:  

baty += ,  a  with  eing an estimate of 2dD . Linear fit is often performed with ordinary least 

square regression. However we have seen on the previous paragraph for single trajectory MSD, 
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the variance of MSD(n∆t)  increases as a function of the time lag which makes ordinary least 

square regression non suitable. For Brownian motion, the variance is fortunately known. One 

solution is therefore to compute the MSD least square regression up to the ¼ limit with weights 

that should be inversely proportional to the variance (Saxton, 1997).  

 With localization error, the ¼ limit is not an optimum.  Michalet showed the existence of an of 

optimal number of points 
min

p for the computation of the least square regression of the MSD 

curve (Michalet, 2010). However, for a weighted least square regression, authors did not find an 

analytic expression for 
min

p  but an heuristic that is independent of N but only relies on the 

illumination ratio 
tD

x
∆

=

2
σ

. 

 )7.22( 5.0

min
xEp +=  ( 50 ) 

where E is the integer part. Michalet and Berglund latter refined to )7.22( 5.0

min
xEp +=  to 

)3.22( 52.0

min
xEp +=  and detailed an algorithm to sequentially find D and 

min
p  (Michalet and 

Berglund, 2012). At optimal time
min

p the question between a weighted and an unweighted least 

square regression is not relevant. The variance σ
D

 of the least square estimate of the diffusion 

coefficient 
)

D  was found to be the same for weighted and un-weighted regression and to be  

 

2

3

−

∝

ND

D
σ

 ( 51 ) 

Without localization error  and against the ¼  consensus, (Michalet, 2010) found that the best 

protocol was to use only the first 2 points of the MSD curve. 

2.3.1.4 Discussion on the ordinary MSD analysis 

The lack of consensus in the scientific community for the computation of the simplest statistic of 

SPT, the MSD curve is an example of the technical difficulties of SPT that remain largely 

unaddressed. Here, I will briefly cite two MSD related problems that have risen in my PhD and 

for which I have not found the answer yet: 

• What is the influence of the electronic and out of focus noise on the detection accuracy of 

moving proteins? Electronic cameras and out of focus photons emitters give an 
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additional variance 2
σ . The effect of noise on immobile particle is known (Betzig et al., 

2006) but as the particle moves the signal is spread and a significant part fall into the 

noise standard deviation. To compute the influence of noise as a function of the 

diffusion coefficient will be of great interest. My intuition is that that a longer exposure 

time will be eager to capture stochastic restricted motion. This is the reason why in our 

lab, for intra cellular single molecule tracking, we have favored a protocol opposed to 

stroboscopic illumination where we illuminate the sample for almost the whole inter-

frame interval. 

•  What is the influence of the cellular motion during acquisition of the trajectory? When 

assessing the question of a cellular component movement the cell most experimentalist 

discard cellular motion and deformations. In our lab studying the motion of a yeast 

locus, we have used a membrane bound organelle, the spindle pole body (SPB) as fixed 

cellular reference. However this only corrects translational displacement and not 

rotations or deformations and the reference is also under the influence of localization 

accuracy problems. To circumvolve the problem some authors have studied the relative 

motion of a pair single particle. For instance two loci on different alleles (Miné-Hattab 

and Rothstein, 2012) or two beads of latex under the same magnetic field (Sainis et al., 

2007). For Brownian motion, the computation of this relative MSD only doubles the 

variance but what for more complicated motion?  

Because free diffusion is related to stochastic thermal agitation, scientists are more interested in 

deviation from Brownian motion. The linearity MSD curve is a well-established test for normal 

diffusion. If the MSD curve significantly deviates from a line, the motion is not free.     

2.3.2 Constrained diffusion in a cell 

The “shape” of the MSD curves is the most used empirical criterion to address a particle motion 

inside the cell. A linear MSD would mean a stochastic organization of obstacles. A MSD curve 

that over perform would qualify the movement as “facilated diffusion”. Facilated diffusion 

means that particles have an additional energy source to reach a distance larger than expected 

upon thermal agitation and therefore imposes the existence of a molecular motor. Facilated 
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diffusion has been shown for instance looking a virus HiV1 sliding on a microtubule (Arhel et 

al., 2006).  

 

Figure 12: Qualitative interpretation of the MSD curve.. Adapted from (Sainis et al., 2007) 

A MSD curve that is below a line would be the signature of a motion that is restricted compared 

to Brownian motion and is called “sub-diffusion” (Figure 12). Literature has described two 

kinds of restriction. One that is due to physical barriers that particle shall cross to proceed 

further. The motion is in that case labeled as “confined” if the crossing is impossible and 

“corralled” if it is possible. The last type of motion that can be shown with MSD is “anomalous 

diffusion”.  

2.3.2.1  Confinement 

In 1993 Kusumi and colleagues investigate gold particles in plasma membranes confined into a 

limited area ((Kusumi et al., 1993).  They proposed that the confinement they observed was due 

to membrane associated cyto-skeleton network. This conclusion was drawn from the bending 

shape of the MSD curves. To understand how confinement would bend the MSD, Kusumi and 

colleagues computed the expected mean square displacement in the simple case of a square 

where x and y dimensions can be treated separately. Even in this simplified framework, the result 

is quite complicated and successive reflections have to be sequentially added: 
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Where L is the square radius and 
micro

D  is the diffusion coefficient in the absence of 

confinement. Only 15 years later was resolved the shape of the MSD in the much more realistic 

case of circular or spherical confinement (Bickel). The exact formula, that will not be reproduced 

here, uses zeros of Bessel functions. 

Those complicated expected form of MSD curves makes them useless for fitting. In the case of a 

circular confinement, Kusumi and colleagues used a much simpler form that integrates only one 

reflection and therefor only one exponential: 
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The validity of this simplification was later discussed by Saxton (Saxton, 1995) but remains a 

widely used protocol in the field (Marshall et al., 1997)  (Miné-Hattab and Rothstein, 2012) (Jin 

et al., 2008) (English et al., 2011). I refer to Wieser and colleagues for very complete review on 

the influence of illumination time and pointing accuracy on confined MSD in different 

geometries (Wieser and Schütz, 2008).  

The MSD analysis of smoothens the data and the shape and nature of the confinement are often 

hidden in the averaging. It is tempting to remove the time averaging from MSD and to consider 

only an initial time. This method is sometimes referred as square displacement,  “range”, or 

ensemble averaged MSD. 

2.3.2.2 Confinement in a complex environment 

As we have seen, even the simplest geometry such as squares and disk and without any 

localization accuracy introduced bias, can have a strong influence on the MSD curve. The exact 

architecture of the cell can be way more complicated than a square or a disk (Dietrich et al., 

2002). 

Exploration changes as a function of the geometry and bouncing against the wall can also change 

the speed and so the apparent diffusion coefficient. For instance, Chatterjee et al. have 

theoretically shown the increase of the “apparent diffusion coefficient” in the presence of 
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particular network or geometry (Chatterjee, 2011) and Domanov and Holcman showed the 

influence of the lateral confinement on the diffusion coefficient (Domanov et al., 2011)(Holcman 

et al., 2011). Experimental evidences also exist of the influence of the confining geometry on the 

instantaneous diffusion coefficient. Defining “apparent diffusion coefficient” as the linear 

regression of the first 3 points of a trajectory MSD and looking at the motion of inner protein 

L25 inside E coli English et al. showed the motion was much rapid in the middle of the cell even 

for molecules that couldn’t feel the confinement (English et al., 2011). 

To decipher the motion of SM trajectories experimentalists needsto clearly understand the 

constrained at stakes. For instance, the projected motion of Kaede membrane protein in E-coli 

can artificially appear as non-Brownian and heterogeneous due to the geometry of the nuclear 

envelope (Bakshi et al., 2011). When Bakshi and colleagues considered the cellular membrane as 

cylindrical and decomposed the motion on the two axis of the cylinder as 1D sliding and 2D 

wandering along a circle, the motion was indeed nothing else than a Brownian on a particular 

environment. So, when the environment appears to display particular symmetry such as the 

different axes of the bacteria, one solution to plot MSD along the different axis.  

Now, what if the geometry does not have any particular symmetry?  This question arises for 

most of the biological constrains. A solution is to divide the trajectory into subsets where the 

geometry can be linearized. For instance Long and Vu used “splines” to extract the exact 

diffusion coefficient in the case of diffusion a curvi-linear path (Long and Vu, 2010). They 

divided the trajectory in several compartments of same number of detected single molecule. For 

each trajectory on this this path Long and Wu computed the curvilinear coordinate along the 

spline (SCSA  spline curve spatial analysis) and  the diffusion along the curvilinear axis and 

orthogonally from the axis (SCDA: spline curve diffusion analysis) 

2.3.2.3 Corral motion 

Barriers in biology such as membranes are never fully hermetic and molecules can pass through 

them. Confinement is therefore mostly transient, as it has been shown for instance following gold 

covered with anti-biotin antigens ( Dietrich et al., 2002). Motion in a transient confinement is 

referred as “corral”. In 1995, Saxton first computed the escape time from a porous corral with 

Bessel functions (Saxton, 1995) 
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where τ  is the time to explore a corral, a  its typical size and h  the permeability of the 

membrane. The existence of a corral motion can have drastic implication for reaction kinetics 

since the probability to inter-act with neighbors is greatly enhanced by corrals.  (Saxton, 2008b). 

Corralled motion have been long described in biological dynamics. For instance, the diffusion of 

phospholipid DOPE in membrane of eukaryote cells showed successive compartments (Murase 

et al., 2004). The shape of the MSD in the case of corral motion is only empirically known but, 

as far as I know, there is no analytic formula for it.  

How to distinguish a “porous” confinement from a hard-wall one? One argument is obvious: in a 

porous confinement, the particle can cross the barrier.  However, this particularity is obviously 

smoothed by MSD averaging.  As an alternative to MSD, Jin and colleagues defined the range as   

 
Range(n∆t, t

0
) = x(t

0
+ n∆t)− x(t

0
)( ) 

2

+ y(t
0
+n∆t)− y(t

0
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2
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With initial time 
0
t . The range can  provide an empirical measure of the dwell time in the 

confinement. Dietreren and colleagues fitted the range to a super-diffusive form (of the MSD 

Dieteren et al., 2011). 

 [ ])exp(1
32

2

1
taata −+  ( 56 ) 

According to Dieteren et all., when a particle  cross a potential barrier to go from one 

compartment to another, the diffusion is facilitated and  the fit gives  
3

1

a

to the residence time. 

An alternative to the range was also proposed  by Tejedor and colleagues in the so called Mean 

Maximal Exclusion MME (Tejedor et al., 2010). The computation of MME relies on the 

probability ( )trr
o
,Pr

max
=  which is the probability to have reached at least once the distance 

o
r  

as a function of the time. In the case of confined diffusion, which is not discussed by Tejedor  

and colleagues, the distribution of ( )trr
o
,Pr

max
= is similar to the range. For instance, a sharp 

break of ( )trr
o
,Pr

max
=  is expected to appear much sooner that the confinements plateau of the 

MSD.  
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2.3.3 Fitting MSD curves to a power law 

2.3.3.1 Anomalous scaling coefficient 

When the MSD of a trajectory is well approximated by a power lawMSD(t)∝ t
α , the motion is 

labeled as anomalous. I refer to the first section of the introduction for the theoretical models that 

can lead to an anomalous scaling of the diffusion coefficient 2.1.1.3. 

Anomalous motion implies the estimation of the anomalous coefficientα . Becauseα  can be 

directly linked to a structure that constrains the motion, anomalous diffusion has been very 

popular in the field of single molecule studies. For instance, Saxton re-interpreted the case of 

single molecules undergoing corral diffusion with an anomalous scaling (Saxton, 2007) The idea 

beneath it is that if geometry of the space is made of corrals of various sizes, then it is much of a 

fractal structure. Dramatic implication of anomalous diffusion for inner cells chemical reaction 

kinetics has made anomalous diffusion even more popular in the SMT field (Saxton, 2008b) 

(Bénichou et al., 2010) 

The determination of the MSD anomalous coefficient and the validity of the power law shape of 

the MSD is most usually done in a log-log scale: 

 log(MSD(t))∝α log(t) ( 57 ) 

Saxton (Saxton, 2007) suggested to plot the logarithmic version of the MSD divided by the time: 

log(MSD(t) / t)∝ α −1( ) log(t)  for the convenience that deviation from the horizontal is more 

easily spotted by the experimentalist and that it is a way to weight the least square fit  for a MSD 

whose variance increase linearly with the time. As the popularity of the anomalous diffusion 

models was increasing, so did the number of studies that criticized it. 

2.3.3.2 Critics of the anomalous diffusion scaling 

We have seen in the first section that diffusion is a highly stochastic process and that the 

variance of MSD increases linearly with time (Qian et al., 1991). Therefore an anomalous MSD 

curve with α  close to 1 will fall into the confidence envelope of MSD(n∆t)±σ
n
 (Figure 11). So 

assuming a Brownian motion the probability to accurately fit an anomalous diffusion to the MSD 

curve can be significant. The opposite is also true. For instance, there is probability that an 

anomalous motion will never be detected from the MSD curve. Indeed the MSD is only one 
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aspect of the motion, the order 2 moment, that does not faithfully describe the movement the way 

higher moment would (Ferrari et al., 2001).  

What is most limiting to finding of anomalous diffusion is localization error. At short time range, 

the localization error σ is not smoothed in log-log scale so that the MSD curve look anomalous 

but is not (Martin et al., 2002). If the ratio α =

2σ
2

4D
 is high so that a free diffusion coefficient D  

is small compared to the localization accuracy then the log log scale can show artificial 

anomalous scaling. Specifically if ∆t  is the maximum time interval of the MSD, the apparent 

anomalous scaling coefficient given by the log log fit would be: 

tD

app

∆
+

=

4

2
1

1

2
σ

α . 

Transitions between different regimes or segregated compartments can also explain anomalous 

scaling (Murase et al., 2004).  Monte Carlo simulations on corrals show that corral motion can be 

fit with anomalous models even on the simplest corral geometry (Ritchie et al., 2005). In a 

striking study, Lill and colleagues showed by Monte Carlo that the distribution sizes of bacteria, 

and the pooling of all the MSD curves can explain the anomalous MSD that was measured 

imaging the motion of the green fluorescent protein (GFP) that has no known chemical partner 

inside the bacteria E coli (Lill et al., 2012).  

The limited number of models that can mathematically explain anomalous scaling is also a 

strong argument against their efficient description of real motion. To rule out possible critics, one 

solution is to compare the motion observed to an in-vitro physical model. Comparing the motion 

of Qdot labeled aquaporin -1 in a membrane and in solution Dix and Verkman found similar 

anomalous scaling. They concluded that this scaling was rather induced by lipid protein or 

protein-protein interactions rather that by the fixed obstacles or high order super-molecular 

interaction that the fractal model predicts (Dix and Verkman, 2008). Most of the time however, it 

is impossible to reproduce in–vitro the condition observed in-vivo. For instance, The membrane 

is not flat as we can see by hopping prob-ion conductance topography (Adler et al., 2010). A 

Projected Brownian motion on this 3D folded membrane can appear to be anomalous, with 

slowing and acceleration but it will be only an artifact due to 2D projection. 
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2.3.3.3 Ergodicity and CTRW 

 As we have just seen, averaging heterogeneous motions can lead to an artificial anomalous α . 

Mathematicians have introduced another model of sub-diffusion where the averaging does not 

even converge. This model of anomalous diffusion is the continuous time random walk (CTRW). 

A CTRW is a Brownian motion with long residence time. More precisely, if the distribution of 

residence time is so wide that it cannot be averaged then the ensemble averaged MSD or range 

shows anomalous scaling. A typical long tailed distribution that fits this characteristic is a power 

law: 

 
α

τ
α

τψ
−−

−Γ
=

1

)(
)(

K
 

( 58 ) 

were K is a scaling factor. With such a distribution of waiting time, we get an anomalous 

ensemble MSD (Burov et al., 2011) 

In order to show CTRW in a cell, experimentalists need to have enough traces to have the time 

average converged. With CTRW, ordinary MSD between different cells can be seemingly 

different although they are observation of the same process. One other aspect should be kept in 

mind addressing CTRW: it has no effect on the shape of the trajectory and only set an anomalous 

“clock” for the recording of the position. On the ordinary MSD curve, CTRW has no effect, at 

least if the motion is not confined (Lubelski et al., 2008). 

Difference between the time and ensemble average of the MSD is called ergodicity. With an 

ordinary Brownian motion, all traces are samples of a same motion. Therefore, it is equivalent to 

compute the averaged MSD of traces or the MSD of one artificial trace made of all the traces 

joined one after the other. This is not the case for non ergodic process such as CTRW. In a cell, 

non ergodic processes were for instance shown for lipid granules in living yeast cell that 

exhibited long pauses (Jeon et al., 2011). It was also invocated as a possible explanation for the 

anomalous motion of telomeres in U2OS (Bronstein et al., 2009) 

Consideration between time averaging and ensemble averaging can lead to an increasing 

complexity of the model. For instance, analyzing the motion of lipid granules in living yeast cell 

Jeonand colleagues showed CTRW at short times and FBM at longer time scales (Jeon et al., 

2011). Studying ergodicity breaking, that is the variation of the diffusion coefficient among the 
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population, and looking at GFP-Kv2.1 channels labels with Qdots in the plasma membrane 

Weigel et al. showed that the motion was indeed a CTRW on a fractal ((Weigel et al., 2011). 

CTRW is a convenient model to integrate particle variability in the MSD analysis. A type of 

diffusion that would integrate that particles are stochastically different and do not see the same 

surrounding environment will exhibit ergodicity breaking that has nothing to do with CTRW.  

To rule out CTRW from alternative models of sub-diffusion, one needs to compare MSD to an 

alternative statistic that is more dependent on the spatial organization of the trajectory than the 

MSD. For instance, theoretically, Dybiec and Gudowaska-Novak showed by Monte Carlo 

calculation that higher moments than MSD (which is the second moment) were more useful in 

the case of anomalous diffusion to discriminate the underlying model (Dybiec and Gudowska-

Nowak, 2009). Confronting CTRW to FLM to explain anomalous motion of bacterial 

chromosome loci in bacteria, Weber et al chose FLM from the angle distribution (see paragraph  

2.3.4.2). To decipher a movement of protein from single molecule data, one needs to have 

various statistics extracted from the traces so that in the end, a bunch of evidences will get to the 

real model. 

2.3.4 Alternative statistics to MSD 

We have seen that the MSD curve is useful statistic to assess the model of the observed motion. 

The first step is to confront the MSD curve to the null hypothesis of free diffusion. Once free 

diffusion is ruled out we have seen that even on the simple case of a square confinement, the 

analytic form of the MSD was so complicated that it was not suitable for inference. Alternative 

statistics are therefore required to fully understand the motion. They can be classified in 3 

groups: 

- The propagator p(
r

r, t) that expresses the probability to find the particle at position 
r

r  and 

time t . 

- The correlation between successive step translocations 

- Point pattern statistics on the set of detections x
i
, y

i( ){ }analyzed without time reference 
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2.3.4.1 Propagator: 

The MSD is the second radial moment of the propagator p(
r

r, t)  and its computation is only part 

of the information we can extract from single molecule trajectories. As an alternative to MSD, 

why not consider the whole p(
r

r, t) ? The only but important condition is to have enough data to 

populate and histogram of displacement with a given binning. For a Brownian motion in 1D the 

motion is isotropic so that the probability p(
r

r, t) only depends on the radial distance r , the 

central limit theorem imposes to have the following form: 

 
p(r, t) =

1

2π × 4Dt
e

−r
2

2×4Dt  ( 59 ) 

If the model is not specified, a qualitative analysis of p(r, t)can be important to choose the right 

one. The symmetry of the propagator is a characteristic of Brownian motion and therefore, a 

non-symmetric propagator is a strong argument against it. For instance, analyzing the distance 

between r between two beads of latex and defining r∆ is the difference of distances between 

initial and final state Sainis et al showed a growing anisotropy of the propagator towards positive 

r∆  and therefor proved repulsion of the beads (Sainis et al., 2007). Another example is the dwell 

time of matrix melanoprotease (MMPS) in collagen fibril. Along the axis of the fibril, p(r, t)   

displays two peaks that appears with increasing time length meaning a kind of pausing (Sarkar et 

al., 2012). Sarkar et al concluded that the diffusion coefficient was different according to the 

time scale. In the end, p(r, t)  can help discriminate between confine, active transport and free 

diffusion (Jin et al., 2007) and (Figure 13). 
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Figure 13: Qualitative evolution of the 1D propagator ),( trp
r

 for different models.  The 

particle position is at initial position (0,0) and the two colors refer to different times 
redblack
tt <   . 

Adapted from (Sainis et al., 2007) 

 

The computation of the propagator as an histogram, however, is highly dependent to binning. 

The cumulative step translocation histogram does not have this drawback. In 2D, it is even more 

interesting the cumulative square step translocation histogram. In the case of free diffusion the 

exact cumulative distribution function has a convenient simple form. 
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tD

r
trP  ( 60 ) 

Vrljic et al. used this statistic compute D estimated at differ time lag for MHC membrane 

proteins (Vrljic et al., 2002). 

 

2.3.4.2 Correlation and angles 

Free diffusion is Markovian, meaning that a step translocation is not correlated with the 

following one. So are other motions such as the continuous time random walk (CTRW). The 

MSD is blind to Markovian hypothesis since all step square translocations are incorporated in the 

statistic regardless their relative position on the trace. Testing the correlation between successive 

translocation can rule out free diffusion. The correlation factor C
(δ )(τ ) is defined as function of 

the dead time τ  and of the lag time δ  as follow (Weber et al., 2010). (Figure 14). 

 ).0()().()(),(
)(

rrrrC
rrrr

−−+= δτδτδτ
δ

 ( 61 ) 

Where .  is time and ensemble averaging and )0(r
r

 is the initial position. The correlation factor 

is dependent to the size of the step translocations. To confront different time lags δ , and more 

precisely for δ = n∆t , we shall define a unit-less parameter, the coefficient of variation by 

dividing C
v

(δ )(τ )  with the mean square displacement σ
2
= ∆r(δ)

2

 

 
C

v

(δ )
(τ ,δ) =

1

σ
2

r

r (τ +δ)−
r

r (τ ).
r

r (δ)−
r

r (0).  ( 62 ) 
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Angles are a related statistic that is defined on successive displacements. Each pair of successive 

step translocations gives one angle value and the distribution of the angles are an indication of 

the geometry of the movement. 

 ( )














−−+

−−+
= −
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δτθ  ( 63 ) 

As it is expressed above, the angle values range in the interval 0;π[ ] or 0;180°[ ]  . In 2D, 

however the orientation of the vector product between 
r

r
i
(τ +δ)−

r

r
i
(τ )  and 

r

r
i
(δ)−

r

r
i
(0)  can 

extend the analysis to the interval 0;2π[ [ or 0;360°[ [ . 

 

    

Figure 14: The correlation coefficient ),(
)(

δτ
δ

C  and the angle ),( δτθ
i

 as a function of the 

time lag σ and dead time τ . The numbers describe the time in arbitrary unit and here 1=τ and 

3=δ . ),(
)(

δτ
δ

C is the scalar product between the green vectors and ),( δτθ
i

is their respective 

angles. 

 

The most straightforward use of angles and correlation statistics is to assess directed motion. For 

instance Bouzigues and Dahan computed C
(1)(τ =1)  on a sliding window to assess events of 

directed motion of GABA receptors in membranes (Bouzigues and Dahan, 2007). The 

distribution of angles has been similarly used to find directive motions of proteins inside cells in 

relation the cytoskeleton. To estimate micro-tubule plus end growth in drosophila oocytes, it was 

mandatory to find the ones that were effectively growing, and this was done with the angle 
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statistic (Hamilton et al., 2010). The case of viral infection of bacteria E-Coli was also studied 

with the angle statistic measured between the longitudinal and perpendicular axis of the cell 

(Rothenberg et al., 2011). Authors found a predominant 30° associated with a rotational behavior 

around the cell. They found that this value was optimal for an efficient scanning of the 

membrane by the virus in search for an entrance.  

Angles and correlations are associated with the notion of persistence. A persistent random walk 

such as directed motion would display successive step translocations on the same direction and 

axis than the previous displacement. The resulting angle distribution would be enriched around 

the O° value and the coefficient of variation would be positive. Anti-persistent walk, on the 

contrary, would display a distribution of angles that are enriched around the 180° value. Raupach 

et al. have defined the “anti-persistence degree “ as the integration of the angle histogram in the 

90°;180°[ [  interval to compute the turning angles of beads in the cytoskeletal (Raupach et al., 

2007). Confronting CTRW to FLM to explain anomalous motion of bacterial chromosome loci 

in bacteria, Weber et al chose FLM because anti –persistence revealed by C
(δ )(τ ) decreased as a 

function of δ  which was signature of FLM (Weber et al., 2010b). 

The study of Weber et al. however raised numerous questions and critics because of  the bias 

induced by localization accuracy on the statistic C
(δ )(τ ) (Burov et al., 2011). Kikura and 

colleagues use the angles  of quantum dot labeled Simian virion 40 sliding and tumbling in lipid 

bilayers of the membrane (Kukura et al., 2009), but did not publish exact quantification and 

instead rather qualitative assessments since the angle were biased by a low pointing accuracy. 

The argument has already been raised when looking at immobilized beads in a gel that 

nevertheless displays anisotropy (Niehaus et al., 2008).  

Weber et al. replied to the critics with a complete and detailed study on the influence of 

confinement and localization accuracy on C
(δ )(τ ) (Weber et al., 2012a).   

• Localization accuracy induces anti-persistence via a seemingly confined motion. For 

τ = 0 , even if the motion is purely Brownian with diffusion coefficient D  there is a 

residual coefficient of variation that is directly related to offset of the MSD : 




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δ
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DtC . To investigate the influence of this correlation on the 
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statistic, one solution is to look at the evolution of the correlation with time. For 

Brownian motion with a low pointing accuracy, C
(δ )(τ ) displays negative correlation at 

very short time τ scale for Brownian motion that vanishes at long τ .  

• Confinement induces also anti-persistence by a “bouncing on the walls” effect. To discard 

confinement, one solution is to study the influence of δ  on the statistic. For small δ , we 

get decreasing anti-correlation until the particle forget its previous position in the 

confinement domain. For large δ , that correspond to a full exploration of the volume 

C
(δ )(τ )  displays no correlation except for τ = δ  where constant anti correlation is 

displayed without evolution with time lag that is the signature of confinement,  
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 The limitation of pointing accuracy can be turned an advantage in the case of movement of big 

particles. For instance Gu et al. computed the correlation of motion blurs with a Pearson 

coefficient to find out that the motion of Nano cargos in axons was indeed a rotational movement 

(Gu et al., 2012).  

2.3.4.3 Point pattern related techniques 

Motion blurs MB are created by the photons that hit the captor during exposure time. Without 

electronic noise induced by the camera and with infinitely small pixels, photons hits on the 

captor during exposure time would create a point pattern with no known time reference. 

Similarly, if we remove the clock that labels the points of trajectory, we would also get a point 

pattern. I will now describe methods that deliberately forget the time for SMT trajectory analysis, 

only considering the spatial distribution of their constitutive points. 

2.3.4.3.1 Motion blurs  

Motion blurs are the convolution between the axial projected point spread functionPSF
xy

, the 

pathway R
xy,t

 that would follow the particle and the shot A
t
  noise defined by the arrival of 

photons. 

 MB = R
xy,t

⊗ PSF
xy
⊗ A

t  ( 65 ) 
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Recovering R
xy,t

 from the motion blur is an inverse problem involving de-convolution. To solve 

it, one needs to also remember that A
t
and R

xy,t
are stochastic. Lots of de-convolution method 

exist (Sibarita, 2005) that will not be developed here. I will just briefly introduce two results that 

have been obtained in the specific case of single molecule tracking to infer parameters from 

motion blurs.  

In the case of an infinitely accurate captor, a deterministic linear or circular displacement and 

Gaussian PSF, Wong et al computed the Cramer Rao lower bound limit of inference of the 

parameters of the movement (Wong et al., 2011). This means that up to a certain extent, we can 

recover the speed and initial position of a photon-emitting particle directly from the motion blur. 

For more complex mode of motion such as Brownian motion, the solution is not easily found. 

We have seen that the localization accuracy of a moving particle was function of the number of 

photons P  

 

2
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Dt
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S
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+== σσ  ( 66 ) 

This variance is indeed the expected variance motions blur for a Gaussian PSF. On real motion 

blurs, Zareh and colleagues have developed a method to directly compute the diffusion 

coefficient from an heuristic version of this formula with real PSF (Zareh et al., 2012). They 

define the Pathway distribution function (PWD) as the convolution between the axial projected 

real PSF and the real pathway. PWD is thus the rmotion blur without photon or electronic noise 

and pixel size limitations. Since moving particles can move out of focus Zareh and colleagues is 

to considered only uni-modals motion blurs, fit them to a one-peak Gaussian and kept for 

analysis only those with a good fit quality. Once this done, the standard deviation along the xy 

focal plane is fit to the formula: 

 tDAxys Dyx 3

2

0,
2.+= σ  

( 67 ) 

Here σ
0

2 is found by imaging immobile particle and Axy  is an heuristic found with simulations. 

Zareh et al applied this method for the determination of the diffusion coefficient of e-GFP 

molecules in membrane finding a narrow distribution of diffusion coefficients.  
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Motion blur inference is highly model dependent. Since time of arrival of the photons is lost in 

motion blurs, we cannot have the relation between position and time in the particle movement.   

2.3.4.3.2  Kurtosis and Skewness 

Considering the point pattern ( ){ }
iii
yxr ,=

r

 made by a trajectory, the skewness S  and the kurtosis 

K are defined by the ratios, in one dimension: 
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( 68 ) 

where . is spatial averaging. S  is an indicator of the distribution asymmetry, is defined in a 

particular 
r

i direction and  is equal to 0 for symmetric distributions. K can be computed in 2D 

and 3D and is related to the “peakedness” of the distribution. It is equal to 3 in the case of a 

normal distribution. Authors often compute the normalize kurtosis K ' =
K

3
−1 . When K '  is 

positive the distribution would be more peaked than a normal distribution.  Kurtosis can help rule 

out Brownian motion as a model of the movement. For instance, for a strictly confined motion or 

more exactly for a corral motion with fixed barriers, the rescaled kurtosis is negative. Since 

skewness is direction dependent, in 2D, Coscoy and colleagues added another parameter to 

decipher anisotropy called anisotropy coefficient ρ  (Coscoy et al., 2007). ρ  is the ratio of 

explicated variance between the linear regression and regression along the orthogonal axis.  We 

have ρ =1  for a purely isotropic distribution and ρ <1   for anisotropic. Even for Bownian 

motion, ρ =1 only stochastically occurs Coscoy et al chose to plot the cumulative distribution of 

ρ  and found than ρ  was more robust than S  to assess anisotropy. Using ρ  and K  Coscoy and 

colleagues assessed the motion of GFP tagged microvilli of Epithelial cells and indeed found that 

the motion was not Brownian. Coscoy et al also performed a time window analysis to detect 

local confinement. 

 One can compute the kurtosis as a function of time to spot changes in the geometry of the 

movement: 
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Lushnikov et al. applied time kurtosis for the for corral diffusion in the specific case of a cage –

type Gaussian potential: )/exp()( 22

,
σ

lii
dHlU −= (Lushnikov et al., 2012) were

li
d

,

 is the distance 

to a the frontier.  If the corrals are isotropicaly distributed, K
α
(t) will exhibit two peaks that 

correspond to the time needed to explore two adjacent corrals. Time position of the second 

kurtosis peak is given as a function of the lattice mesh size L  and the effective diffusion 

coefficient D  
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Tejedor et al. used a related definition of the kurtosis )(/)( 2

max

4

max
trtr  to classify the 

mechanism that would lead to an anomalous behavior (Tejedor et al., 2010). With this statistic, 

Tejedor et al interpreted time dependent kurtosis of Lipid granules in yeast cell as “transient 

FBM” but acknowledged that it could be a simple effect of the heterogeneity of the lipidic 

particle that are trapped in corrals of various sizes. Kurtosis is the 4
th

 moment of the distribution, 

compared to the MSD that is the second moment. We can go further and compute a whole 

anomalous moment scaling spectrum ( ) γ
τ tx

n

∝  (Ewers et al., 2005). Distribution of the 

spectrum is characteristic of the different anomalous diffusion models (Ferrari et al., 2001) 

2.3.4.3.3 Radial density distribution 

As we have seen, point pattern statistics are useful to find confinement, real or transient, out of 

single molecule trajectories. A particle is confined when a force is opposed to its natural 

spreading behavior. Damien Hall list all the potentials derived from for molecular interaction that 

can influence single particle trajectory (Damien Hall, 2010) . They range from macromolecular 

crowding, free overlap, hard particle (wall), square well, saw tooth (inter-action that is seen up to 

a given range) , soft sphere and Lenard-Jones (attractive at long scale and repulsive at small 

scale) 
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Crane et al visualized Q dots labeled aquaporin 4 dynamics in cell plasma membrane (Crane et 

al., 2008). Aquaporin 4 forms immobile ensemble known as orthogonal arrays of particle (OAP). 

Crane et al. investigated the potential of the force that keeps aquaporin 4 with Radial density 

distribution,n a method that was introduced by Jin and colleagues (Jin et al., 2007). They finally 

measured a spring like potential inside OAP.  

Radial density distribution analysis work as follow on a  set of detections of a trajectory (Figure 

15): 

- Computation of the center of mass of the set of detections 

- Computation for all the points of the distance to the center of mass r  

- Setting of a small radial interval ∆r  

- Computation of the number of points N(r) that fall in an annular region of width ∆r  at 

distance r  of the center of mass 

- Computation of the radial density distribution. 

 [ ]22 )2/()2/(/)()( rrrrrNrd ∆−−∆+= π  ( 71 ) 

The density is analytically related to the potential with the formula )/)(exp()0()( TkrVdrd
B

−= . 

This method is therefore scale independent. Whatever the diffusion coefficient or confinement 

size, it can assess the potential, at least qualitatively. 

  

      

Figure 15: Computation of the radial density distribution )(rd . Left panel : the 

single particle detections ( )
ii
yx ,  are counted as a function of the estimated center of 

the potential. The shape of the radial density distribution is directly related to the 
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nature of the potential (left panel from (Jin et al., 2007))  

 

However, to efficiently use the method, one needs to have a set of long lasting trajectories. Crane 

et al used only trajectories longer than >200 frames used to find the ratio free/immobile and 

trajectories longer than 455 frames to find the potential. The influence of pointing accuracy is 

also dreadful, and so is the accurate determination of the center mass (Jin et al., 2007). A 

perfectly immobile particle with Gaussian localization accuracy will exhibit a spring-like 

potential and as far as I know, using this method, experimentalists only found spring like 

potentials. 

2.3.4.4 Potential inference  

A force derived from a potential would modify the Langevin and Focker –Plank  equations as 

follow: 

 )())(()()( ttrVtrtr σζγ =∇++ &&&  ( 72 ) 

 ∂p

∂t
= D∆p+∇ V (X)( ) p  ( 73 ) 

However, the analytical dependence between the propagator or trajectory and potential is hard to 

find and methods to solve are not popular in the single molecule community (Risken, 1996).  

Numerical methods have been developed for the Focker Planck equation by numerical 

simulation such as Monte Carlo Markov Chain or matrix continued fraction expansion (Chen, 

2002). Exact calculation of the propagator have been made in the case of spring potentials, or 

two wells located far apart with a transition probability (Chen and Huang, 2001), but most of the 

time random trajectories are computed by simulation with a given time shift and then compared 

to real (Biess et al., 2011). For simplification, authors restrict the study to the drifted random 

walk. 

2.3.4.4.1 Drift  

With a constant force, the Focker Planck diffusion equation can be re-written as follow in an 

arbitrary 
r

x  direction: 
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 ∂p
x

∂t
= D∆p

x
+F

ext
.

r

x  ( 74 ) 

If particles were in the void, such potential would result in a constant acceleration. In a crowed 

environment, however, in a regime where friction prevail and causes energy loss, a  weak force 

would only  result in a constant drift (Cuche et al., 2012).  In such a regime, at the first order the 

propagator has a simple form:  the non-square displacement r∆  has still variance 2Dt but the 

expectancy is the non-zero drift rate: 

 

γ
µ

tF
ext
∆

=  ( 75 ) 

The orientation of the force drift is obtained by the angle of the shift: )/arctan( yx
out

∆∆=θ . In 

such cases, to estimate the force, the drift rate µ  must be significantly higher than the step 

displacement standard displacement that is given: 4Dn∆t n / (N − n)[ ]
1/2

where n is lag time and 

N is the length of the trajectory(Qian et al., 1991). Particles undergoing drifted motion will 

therefore exhibit facilated diffusion. Haggie et al found an heuristic to determine the potential 

(Haggie et al., 2006).  

- Subtract offset on the 3 first points of the MSD 

 offsettDtr +=
−31

2 4)(  ( 76 ) 

- Fit the MSD to the it to the corresponding form obtained by the conservation of the energy 

from ballistic mode of motion trap in a potential. 

 r
2
(t)

fit
= µt

2
+ a

2
1− exp(a

3
t)[ ]  ( 77 ) 

Such heuristic was also applied by Crane et al.  (Crane et al., 2008) and similarly, Bouzigues and 

Dahan computed the drift  of GABA receptors in the membrane by fitting the mean square 

displacement to the following formula (Bouzigues and Dahan, 2007): 

 r
2(t) = 4Dt +µ × t

2  ( 78 ) 
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Studying the motion of nano-particles that was trapped into lipid rafts Masson et al. linearize the 

potential in small ij  sub-area of the raft so that the (Masson et al., 2009)   

 ∂
r

p

∂t
= D∆

r

p+
r

F
ij
 ( 79 ) 

Using the crowed regime approximation and assuming that the propagator had still a Gaussian 

form, Masson at al computed the likelihood of the force of the one step displacement F
ij
 and 

diffusion coefficient observing the one step displacementT = (r
µ+1

r
µ
).  
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Masson and colleagues later refined equation ( 80 ) to take into account all kinds of displacement 

(r
2
, t

2
r
1
, t

1
)  for different time lags and local diffusion coefficient D

ij
 (Türkcan et al., 2012) 
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The method was applied by Voisinne et al. for assessing the potential that maintained Lipid rafts 

on the membrane (Voisinne et al., 2010), and also on pore-forming toxins (CPeT ) and display a 

polynomial potential (Türkcan et al., 2012) . Of course the method is highly dependent to the 

distribution of the propagator p
x
 which can be far more complex than Gaussian in the case of a 

FBM with a drift (Karine Bertin). Masson and colleagues also misleadingly referred to the 

method as “Bayesian”.  With a high number of points, Bayesian schemes and maximum 

likelihood method are equivalent.  Mason et al also chose all a-priori distributions to be constant. 

Finally, with a Gaussian form of the density, the method is exactly equivalent to a simple 

ordinary weighted least square regression (Gouriéroux and Monfort, 1996).  

2.3.4.5 Combining statistics 

I’ve introduced some of the statistics that authors have computed on SPT data, but this is not an 

exhaustive inventory and authors’ imagination is limitless. As we have seen in detailed with the 

MSD, inferring models from a single statistic is not an easy task. Below are twoexamples 
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computed on the different statistics introduced and of the rules of thumbs method to classify 

them.  

• Studying secretory vesicle dynamics on the plasma membrane region of human carcinoid 

BON cells, Huet et al. used together the rolling diffusion coefficient, the “MSD 

curvature” and the skewness to put trajectories in the following categories: constrained, 

facilated and free and then settin threshold (Huet et al., 2006).  

• Studying Adenovirus-2 trajectories, Helmuth and al. used the “additional straightness” 

(mean cosinus value for all detections, between successive detections),  net displacement, 

bending (mean sinus value for all points), efficiency (deviation from normal diffusion), 

skewness and kurtosis (Helmuth et al., 2007). They found 4 types of regimes: directed, 

fast drift, slow drift, confined. 

Indeed, SP motions in cell are most of the time composite. This heterogeneity can arise from the 

population itself, such different protein conformations but can also be time heterogeneity, with 

proteins that switch from a regime to another. The analysis of heterogeneous data is far harder 

than single model inference  e have presented here and even the heterogeneity can be hard to 

prove. 

2.3.5 Analysis of an heterogeneous set of trajectories 

We have seen in the case of continuous time random walk (CTRW) the time averaged MSD is 

different from the ensemble average. On this particular model, even with an infinitely long 

trajectory, it is impossible to recover all the possible behaviors. We have seen with CTRW that 

such a motion is called non-ergodic.. The same protein can have different folding so that, even if 

we could observe indefinitely a single molecule, it will never display all its possible 

configurations. So the question that biologists ask is “Do I see multiple populations of moving 

particles or is it random variation of one single type of movement?”.  

2.3.5.1 Distribution of the measured diffusion coefficients 

In most cases, such as the case of the movement individual integrins nanoclusters (cell 

membrane adhesion receptors) authors average MSD coming from different trajectories in an 

time-ensemble MSD (Bakker et al., 2012) 
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MSDall (n∆t) =
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Nn

1

Nn

k
xi,k − x j,k( )

2

+ yi,k − y j,k( )
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i− j=n

∑
k
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Where x
i,k

 and y
i,k

 are the coordinates of the trajectory k , N
n
 is the number of trajectories that 

are at least of size n  and N
n

k  is the number of segments of size n  of the trajectory k . This 

definition, however is not the only one used. In some cases, authors prefer the following (Saxton, 

1997). 
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Where N
n

k '  is the number of segments of size n  of the whole set of trajectories. The difference 

between the two formulas is the weight of the trajectories in the MSD. The first definition gives 

an equal weight to all the trajectories, whereas the second definitions favor long trajectories. If 

all the particles are observations of the same model or if all the trajectories have the same length, 

both should give similar results (Brameshuber and Schütz, 2008). 

Let’s consider a Brownian motion with true diffusion coefficient D
0
 but finite trajectories of 

duration N∆t . What would be the distribution of measured diffusion coefficients D
e
obtained 

from individual linear regressions? Studying the motion of NHC membrane protein, Vrljic and 

colleagues answer the question simply by looking at the distribution of the Nth mean square 

displacement (Vrljic et al., 2002). They substitute tDr
e
∆= 4

2  the distribution of 22 )( rdrp  

obtained by Saxton and found (Saxton, 1997): 
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So that D
e
 follows a gamma distribution (

N

D
0

=θ and K=N) that was indeed observed for lipid 

molecules in membrane(Sonnleitner et al., 1999). The result was later refined to include of 

localization error (Michalet, 2010). 

A gamma distribution is a left skewed distribution. A log normal distribution is also left 

skewed and, in most cases the two distributions can be equivalently used to model a broad range 
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of phenomenon. Indeed, only few tests exist to discriminate one from the other (Jackson, 1969). 

Without, to my knowledge, any model justification for it, authors have switched to the log-

normal distribution to estimate relative proportions of populations with different diffusion 

coefficients.. Studying the SPT trajectories of integrin receptors (cell membrane adhesion 

receptors) on T cells membrane that change according to activation state of the cell and trying 

separated diffusive from immobile receptors, Cairo et al. indeed found that both populations 

were log-normaly distributed (Cairo et al., 2006). Using the kernel density function 
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xx
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=  ( 85 ) 

Cairo and colleagues fitted the distribution histogram of diffusion coefficients and found, with  

the fitted parameter A , the relative proportion of bound vs free receptors
4
. The method was later 

refined with a variable bandwidth to quantify the proportion of up to 3 populations of freely 

diffusing proteins on the membrane (Pinaud et al., 2009). 

Sometimes, different populations are mixed and the computation and the distribution coefficient 

is not as straightforward. After micro injection of R-phycoerythrin (RPE) protein inside the 

cytoplasm, Goulian and Simon found that the diffusion coefficient distribution was broader than 

the Gamma distribution that was recovered after injection in glycerol (Goulian and Simon, 

2000). Studying the motion of beads inside the cyto-skeleton, Raupach and colleagues found that 

the distribution was too wide to be fitted with only one population but failed in counting them 

Raupach et al., 2007).  On such wide distributions, the computation the relative population 

proportion is impossible and only qualitative measurement can be performed.  To show that the 

mobility of the integrin nano-clusters that was studied by Cairo and colleagues was increased in 

T cells after treatment with extra Ca2+, Bakker and colleagues compared the Diffusion 

                                                

4
 In a kernel-fitting scheme, the most important parameter is the bandwidth “c”. Cairo et al 

obtained the band with from a combination of log normal and normal fitting with corresponding 
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coefficient cumulative probability distribution  before and after activation (Bakker et al., 2012). 

When the distribution of diffusion coefficient is not smooth enough to be fit, one solution is to 

set an arbitrary threshold. Dahan and colleagues computed the relative proportions of quantum 

dots in the membrane with diffusion coefficients higher and lower than 0.01µm²/s (Dahan et al., 

2003). Some authors have also computed by the correlation of the diffusion coefficient with an 

additional criterion. For example, Mimoura and colleagues showed that the diffusion coefficient 

of f hydrophilic nanoparticles that interacts with micro-tubules decreased with the charge 

(measured as a volume) (Minoura et al., 2010). 

When studying changes in the diffusion coefficients with or without treatment, one can argue 

that the observed difference is due to experimental bias. It is therefore of high importance to 

image the particle in exact same conditions. For instance, studying the binding of molecular 

complexes to T cell receptors one important is to have a constant density of image (Axmann et 

al., 2012).   Finally, measured heterogeneity of the movement should always be related to a 

biological property of the process and biological processes are most of the time transient. If 

particles remain is segregated state, then heterogeneity only means that no model will ever 

explain the motion. If transitions are observed, then relative proportions can be interpreted as 

observation of a composite movement. For example, Oh and colleagues showed that the 

percentage of bound and unbound molecules determines a dwell time(Oh et al., 2012). To justify 

ergodicity, it is important to show transitions between regimes. 

2.3.5.2 Transition between regimes 

In most inner cell single particle studies, the finding of different regimes is common but 

transitions between regimes are not often shown with statistical significance.  From ensemble of 

trajectories of the motion of lambda phages on E coli, Rothenberg and colleagues found three 

different populations of diffusing phages according to the diffusion coefficient histogram but did 

not find transitions between those regimes (Rothenberg et al., 2011). Rothenberg and colleagues 

argued that the square exponent of the MSD would smooth transitions. The only justification was 

a trajectory that was supposed to be transiently changing from fast to slow exploration according 

to the successive absolute displacement in X and Y.  From the histogram of diffusion coefficients 

Axman et al. also showed that there were two populations of fast and slow exploration but 

transition between regimes was only empirically justified (Axmann et al., 2012). 
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To understand regime switching, let’s imagine that there the motion can be described by 2 free 

diffusing regimes 1 and 2 with diffusion coefficient D
1
<< D

2
 and that stochastic transition 

between those regimes with occur with constants koff  and k
on

 

 
D

1

koff
 →

k on
← 

D
2
 ( 86 ) 

Then τ off =1/ koff  and τ
on
=1/ k

on
 are the average time to respectively be in regime 1 or 2. In the 

case of τ off << τ on
Jin and colleagues proposed a simulation grounded method to find τ off

on a set 

of individual trajectories. The idea is not to compute a linear regression of the whole MSD 

curves but to measure it only with one step regression on a particular tlag  value laglag ttr 4/))(( 2 . 

If at the tlag < τ off
  then the diffusion coefficient histogram should display two population, and 

if offlagt τ> the diffusion coefficient histogram should display only one (Figure 16). 

 

Figure 16: Diffusion coefficient histograms displaying one (left panel, unimodal) or two (right 

panel, bimodal) populations. If the motion is switching from fast diffusion to slow diffusion, the 

diffusion coefficient histogram estimated at different time lag tlagwill be bimodal for tlag < τ off
 

and unimodal tlag > τ off
, τ off

being residency time in slow diffusing regime adapted from (Jin and 

Verkman, 2007) 

 

Another method that can be applied is to find transitions is to compute the diffusion coefficient 

on a sliding window on the trajectory. For Michalet and colleagues, using less than 10 points for 

this window is a “useless enterprise“ (Michalet, 2010). If one still want to proceed, with a large 

error accuracy large the best is to use all the 9 points of the MSD for the fit and the uncertainty 
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of the fit remains large 1/ >D
D
σ . For small value of localization accuracy the best fit is 

obtained with only the first points of the MSD curve and the uncertainty. 

When D
1
= 0  then the particle would switch between a bound state and an unbound state. 

Binding of molecules inside the nucleus has been studied for decades and we refer to Mueller 

and colleagues for a complete study of the different techniques that had been used to measure 

binding time. From a single molecule tracking point of view, binding time measurement is 

mostly restricted localization accuracy, and approaching binding time is often achieved by 

comparing motion to a benchmark of bound references. For instance, Speil and colleagues  

observed the binding of Stat1 transcription factor inside the nucleus after micro-injection 

compared with a sliding window the local variance of the detections on a trajectory to the 

variance Stat1 proteins that were long lasting bound (Speil et al., 2011b). Mazza measured 

τ off
for TMR labeled p53 protein with sliding window MSD  compared to a bound reference, 

H2B protein (Mazza et al., 2012b) 

 We have seen that most trajectory statistics such as the MSD converges slowly with the 

trajectory length N.  Computing the MSD on a ∆N  sliding window drastically reduces its 

accuracy. Speil et al computed the local variance for 3≤ ∆N ≤ 7  and Mazza et al for ∆N =16 .  

This method is also blind to residency time τ off
 shorter that the sliding window time  ∆N ∆t . 

found an alternative method to find τ off
 by varying the time inter-frame∆t and quantifying co-

localization of successive detections (Gebhardt et al., 2013) but this method, and so far to my 

knowledge no other method, could ever recover an on rate k
on
=1/ τ

on
.  

Transition between regimes will only be accurately found with not only the MSD but a bunch of 

alternative statistics such as correlations (Nandi et al., 2012). For example Arcizet and colleagues 

showed transport of ferromagnetic beads inside amoebas vytoplasm with a sliding window MSD 

and angles between successive step translocations close to zero active  (Arcizet et al., 2008). To 

quantifying transitions, the most promising methods are, to my opinion, hidden Markov model of 

regime switching (Das et al., 2009). With such a model, transition probabilities koff  and k
on

are 

directly inferred with likely likelihood based algorithm. 
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2.3.5.3 Cumulative distribution of square displacement (cumulative radial analysis) 

Most studied single molecule motions are either 2D motion on a surface such as the membrane 

or the projection in the 2D focal plane of the camera of a 3D motion. This is a restriction, but can 

be turned into an advantage. In 2D the cumulative distribution of square displacement P(r2, t)  as 

a function of time has simple exponential form (Schütz et al., 1997) 
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Schütz and colleagues used this formula to find out on the mobility of phosphor lipids in 

membrane was indeed composite, ),( 2
trP  being accurately fit by a two exponential variation of 

the previous formula: 
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With α  being the relative proportions between the two component of the movement. Axmann et 

al. found this way the relative proportion between slowly diffusing and fast diffusing MHC 

proteins in the membrane and the method has been extended to the binding-diffusion mode of 

motion or two-corral diffusion. (Appelhans et al., 2012)  (Vrljic et al., 2002). Wieser et al. 

highlight the limitations of the method. To faithfully show that the motion is composite, it is 

mandatory to perform a Kolomogorov Smirnov test to asses non Gaussiannity and to carefully 

exclude localization accuracy biases (Wieser et al., 2008). To my opinion, the method is limited 

since we do not clearly see what is averaged. The number of square displacement for different 

time lags depends on the trajectory length and the relative proportions α  will be biased toward 

long trajectories for increasing time lag. The cumulative distribution of square displacement is 

therefore non robust for a heterogeneous set of trajectories of various length or transition 

between regimes that do not have the same characteristic time. 

2.3.5.4 Spatial heterogeneity- mapping 

A possible explanation for the composite nature of a particle movement can be the heterogeneity 

of the medium where it diffuses. As a function of its position, a particle will diffuse with 

different speed. The problem is to define its position, which is not straightforward since the 
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particle moves. One solution is to diplay the traces  as a function of their diffusion coefficient 

with a color code(Manley et al., 2008) (Benke et al., 2012). Because of a finite observation time 

imposed by photo-toxicity and to the necessity to be on diluted regimes to accurately track 

particles, inner cell SPT mapping is mostly sparse. Even if with a high concentration of 

trajectory, interpretation of diffusion maps can be done only after heavy image processing such 

as surface rendering (English et al., 2011). On dendrites however, from diffusion maps  Hoze et 

al. found that AMPA receptors can either be pushed in or out dendritic spines (Hoze et al., 2012).  

 

2.3.6 Conclusion on statistics 

Single live cell microscopy has recently exploded and so did the possible applications of the 

technique. Scientists have produced terabytes of trajectories of diffusing molecules in search of 

their partners in the nucleus of the cell. The statistical interpretation of those trajectories, 

however, is still an emerging field. Even the most popular statistic that can be computed, the 

Mean Square Displacement (MSD) is not fully characterized under the most simple model 

assumption.  The main reason is that experimental bias that is specific to single cell microscopy, 

such localization or tracking error, has still not been properly characterized. Once this achieved, 

the field could be open to the advances of time-statistics such as stochastic calculus and time 

series analysis. Pioneer studies have already been published using Markov process and message 

passing model (Chertkov et al., 2010) or hidden markov model of regime switching (Das et al., 

2009). Biologists would argue that more complex models would reduce the reliability of the 

interpretation of the data. This is true, but sticking to one simple model and doing an impossible 

fit on it is also a way to misinterpret results. Considering free diffusion for instance, 

heteroscedastic models such as GARCH and ARCH (Gourieroux, 1992) could be faithfully 

reproduce the heterogeneity of the medium even if not related to a physical quantity. The next 

move would be an improvement in particles counting. Dyes can or bleach and the particle putting 

a final stop to its detection. But dyes can blink. In such conditions multiple trajectories will be 

recorded and counting is biased. Even with long lasting emitting dyes, trajectories do not have 

the same time lengths and we have seen that single particle statistics are highly sensitive to the 

time length. Implication of blinking on statistic robustness is not fully understood. 
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This censorship bias is all the more limiting in 3D. As we have seen on the first section, 3D live 

cell imaging has only been achieved a couple of years ago. Most of nuclear motions that was 

recorded with SPT is the projection on the focal plane of the camera but particle would move in 

and out of focus. Holzer and colleagues used bright dyes such as quantum dot to limit de-

focusing (Holtzer et al., 2007). Bright dyes such as Q dots or organic dyes cannot be expressed 

by the cell and needs to either micro injected (Grünwald et al., 2008) (Speil et al., 2011b) 

(Bancaud et al., 2009) or in vivo cross linked to the protein of interest (Mazza et al., 2012a). But 

even with bright dyes, the particles that move in or out of focus biases the counting scheme 

based upon 2D statistic. On my thesis I proposed an empirical method to compensate this bias 

but numerous efforts need to be done to overcome the limitation. 
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3  Results 

3.1 I-SPT PALM 

Distinct target search modes of c-Myc and P-TEFb revealed 

by single molecule tracking in live cells 

 With Ignacio Izeddin, Lana Bosanac, Ibrahim I. Cissé, Lydia Boudarene, Florence Proux, Claire 

Dugast-Darzacq, Olivier Bénichou, Raphaël Voituriez, Olivier Bensaude, Maxime Dahan, and 

Xavier Darzacq 

3.1.1 Summary 

In the following, we investigated the motion of four proteins with a new technique called I-SPT 

PALM (Intra-nuclear Single Particle Tracking Photo-Activation Light Microscopy) that enables 

the recording of protein motion inside the nucleus. The proteins investigated are: 

• Dendra 2  is a free fluorophore that is not supposed to have known partners inside the 

nucleus. 

• H2b is an histone protein. It strongly binds to DNA to form the fundamental unit of 

chromatin, the nucleosome. 

• C-Myc is a proto- oncogene specific transcription factor. It is implicated in the regulation 

of 15% of the gene ((Lüscher, 2001)) and is supposed to have many chemical partners 

inside the cell 

• P-TEFb is a general transcription factor that phoshorilates the serin 2 of polymerase II 

CTD to trigger elongation. P-TEFb is an hetero-dimer that consists of two proteins, 

Cyclin T1 (CycT1) that was tagged with dendra 2 and CdK9. It co-exists in two forms 

inside the nucleus: the plain hetero-dimer and a bigger complex together with protein 

Hexim and  a small RNA, the snRNP 7SK  
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We investigated the motion of those four proteins in the nucleus of U2OS osteo sarchoma cell 

line. 

Method 

Microscopy 

I-SPT PALM is a versatile technique based on stochastic photo-activation of the tag with very 

low power of activation UV lASER.  It extended the SPT-PALM technique to intra nuclear 

studies (Introduction 2.2.2). We set the activation LASER power low enough so that only a few, 

maybe only one protein emits light in the red domain where we image the cell. Tuning the 

LASER power to a suitable regime where the number of emitter is low enough so that we can 

accurately detect their position but still get robust statistics is the challenge of this technique. 

Statistics 

For I-SPT PALM, we computed the time and ensemble averaged MSD ( 82 )  and the cumulative 

squared displacement histogram ( 87 ). We showed that indeed, even for the free fluorophore 

dendra 2 the motion was heterogeneous (paragraph 2.3.5), different copies of the same protein 

undergoing diffusion with a broad range of different diffusion coefficients.  This interesting 

result creates a challenge for exact quantification of the movement. For I-SPT is a selection bias 

of the recorded trajectories towards slow moving proteins.  The slower proteins move, the longer 

they stay in the focal plane of the camera. We solved the problem by quantifying this selection 

bias via simulation and by looking at statistics that are less dependent on the averaged 

displacement size such as correlations and angles ( 61 )( 63 ). 

Results 

Below is a summary of the results for each of the proteins. One of the main result is that the type 

of exploration of the nucleus is protein dependent.  

• Dendra 2 : The motion is heterogeneous but free in the time and length range of I-SPT 

PALM 

• H2b: H2b is, for a large part bound to chromatin. However a fraction of H2B is not 

integrated inside the nucleosome and diffuses freely.  
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• C-Myc movement is characterized by a big heterogeneity that reflect its numerous 

possible chemical partners. Each of the component of the movement diffuses freely but 

with different diffusion of motions 

• P-TEFb movement is also heterogeneous but with state changes in the time range of I-

SPT PALM. From the shape of the MSD, of the cumulative square displacements and of 

the histogram of angles, we got evidence of an anomalous motion of P-TEFb 

(Introduction 2.1.1.3) . 

 

Discussion 

With the anomalous coefficient of P-TEFb MSD (Introduction 2.3.3.1), we found that the 

exploration of P-TEFb is compact (Introduction 2.1.2.3.1) compared to the Brownian but 

heterogeneous nature of C-Myc (Introduction 2.1.1.2). We then fully discuss the implication in 

terms of mean first passage time (Introduction 2.1.2.3.2). 

3.1.2 Abstract 

Gene regulation relies on transcription factors (TFs) exploring the nucleus in search of their 

targets. So far, most studies have focused on how fast TFs diffuse and underestimated the role of 

nuclear architecture. Here, we implemented a single-molecule tracking assay to determine the 

TFs dynamics using photoactivatable tags in human cells. We found that c-Myc is a global 

explorer diffusing in the nucleus without spatial constraints. In contrast, the positive transcription 

elongation factor P-TEFb is a local explorer that oversamples its environment, constrained by a 

fractal nuclear architecture. Consequently, each c-Myc molecule is equally available for all 

nuclear sites while P-TEFb reaches its targets in a position-dependent manner. Our observations 

are consistent with a model in which the exploration geometry of TFs is constrained by their 

interactions with nuclear structures and not by exclusion properties. The geometry-controlled 

kinetics of TFs target search link nuclear architecture and gene regulation, which might have 

major roles in transcription. 
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3.1.3 Introduction 

The nucleus is a complex environment where biochemical reactions are spatially organized in an 

interaction network devoted to transcription, replication or repair of the genome (Misteli, 2001). 

Molecular interactions relevant to gene regulation involve transcription factors (TFs) that bind to 

specific DNA regulatory sequences or other components of the transcriptional machinery. In 

order to find their targets, TFs diffuse within the seemingly non-compartmentalized yet highly 

organized nuclear volume. Since the kinetics of a reaction can be largely determined by the 

mobility characteristics of the reactants (Rice, 1985; Shlesinger and Zaslavsky, 1993; Misteli, 

2001), the target search strategy of TFs is a key element to understanding the dynamics of 

transcriptional activity and regulation.  

Over the past decade, the nuclear dynamics of TFs has become an important topic of research 

and has been investigated with a variety of imaging and biochemical approaches. Overall, these 

studies have emphasized the high mobility of nuclear factors, which results from a combination 

of diffusive motion and transient specific and non-specific interactions with chromatin (Misteli, 

2001; Darzacq et al., 2009; Mueller et al., 2010; Normanno et al., 2012). These transient 

interactions are essential to ensure a fine regulation of binding site occupancy—by competition 

or by altering the TF concentration—but must also be persistent enough to enable the assembly 

of multicomponent complexes (Dundr, 2002; Darzacq and Singer, 2008; Gorski et al., 2008). In 

parallel to the experimental evidence of the fast diffusive motion of nuclear factors, our 

understanding of the intranuclear space has evolved from a homogeneous environment to an 

organelle where spatial arrangement among genes and regulatory sequences play an important 

role in transcriptional control (Heard and Bickmore, 2007).  

Here, we aim to investigate the principles governing nuclear exploration of different factors 

involved in transcriptional control. To this end, we used single-molecule (SM) imaging to 

address the relationship between the nuclear geometry and the search dynamics of two nuclear 

factors having distinct functional roles: the proto-oncogene c-Myc and the positive transcription 

elongation factor P-TEFb. c-Myc is a basic helix-loop-helix DNA-binding transcription factor 

that binds to E-Boxes; 18 000 E-boxes are found in the genome and c-Myc affects the 

transcription of numerous genes (Gallant and Steiger, 2009; Nie et al., 2012). P-TEFb is 

composed of the CDK9 kinase and a Cyclin T. It phosphorylates the elongation control factors 
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SPT5 and NELF to allow productive elongation of class II gene transcription (Wada et al., 1998). 

The C-terminal domain (CTD) of the catalytic subunit RPB1 of Polymerase II is also a major 

target (Zhou et al., 2012) of P-TEFb. c-Myc and P-TEFb are therefore two good examples of 

transcriptional regulators binding numerous sites in the nucleus; the latter binds to the 

transcription machinery itself and the former directly to DNA. 

Single particle tracking constitutes a powerful method to probe the mobility of molecules in 

living cells (Lord et al., 2010). In the nucleus, SPT has been first employed to investigate the 

dynamics of mRNAs (Fusco et al., 2003; Shav-Tal et al., 2004) or for rheological measurements 

of the nucleoplasm using inert probes (Bancaud et al., 2009). Studies of individual nuclear 

proteins were initially based on the microinjection of dye-labeled molecules (Grünwald et al., 

2008; Speil et al., 2011) but this approach cannot be generalized to multi-component complexes 

that are not amenable to in vitro manipulation. Recently, the tracking of single nuclear factors 

has been facilitated by the advent of efficient in situ tagging methods such as Halo tags (Mazza 

et al., 2012). Nonetheless, these experiments relied on the labeling and detection of a small sub-

fraction of the molecules that decayed upon photobleaching. An alternative approach for the 

tracking of proteins in cells takes advantage of photoconvertible tags (Lippincott-Schwartz and 

Patterson, 2009) and photoactivated localization microscopy (PALM) (Betzig et al., 2006; Hess 

et al., 2006). In live cells, PALM has been used to achieve high-density diffusion maps of 

membrane proteins (Manley et al., 2008). An advantage of using PALM is that the number of 

SM trajectories is not limited by photobleaching and is tuned by photoactivation. However, 

single particle tracking PALM (sptPALM) experiments have so far remained limited to proteins 

with slow mobility (Misteli, 2001; Manley et al., 2008; Darzacq et al., 2009; Mueller et al., 2010; 

Normanno et al., 2012) or those that undergo restricted motions (Dundr, 2002; Darzacq and 

Singer, 2008; Gorski et al., 2008; English et al., 2010; Frost et al., 2010; English et al., 2011).  

In this study, we developed a new sptPALM procedure adapted for the recording of individual 

proteins rapidly diffusing in the nucleus of mammalian cells. We used the photoconvertible 

fluorophore Dendra2 (Gurskaya et al., 2006; Heard and Bickmore, 2007) and took advantage of 

tilted illumination (Tokunaga et al., 2008; Gallant and Steiger, 2009; Nie et al., 2012). A careful 

control of the photoconversion rate minimized the background signal due to out-of-focus 

activated molecules and we could thus follow the motion of individual proteins freely diffusing 
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within the nuclear volume. With this sptPALM technique, we recorded large datasets (on the 

order of 104 single translocations in a single imaging session), which was essential for a proper 

statistical analysis of the search dynamics. 

We applied our technique to several nuclear proteins and found that diffusing factors do not 

sense a unique nucleoplasmic architecture: c-Myc and P-TEFb adopt different nuclear space 

exploration strategies which drastically change the way they reach their specific targets. The 

differences observed between the two factors were not due to their diffusive kinetic parameters 

but to the geometry of their exploration path. c-Myc and our control protein, “free” Dendra2, 

showed unrestricted diffusion in a 3-dimensional nuclear space. In contrast, P-TEFb explored the 

nuclear volume by sampling a space of reduced dimensionality, i.e. smaller than 3, displaying 

characteristics of exploration constrained in fractal structures. The role of the space-sampling 

mode in the search strategy has long been discussed from a theoretical point of view (de Gennes, 

1982; Wada et al., 1998). Our experimental results support the notion that it could indeed be a 

key parameter for diffusion-limited chemical reactions in the closed environment of the nucleus 

(Bénichou et al., 2010; Zhou et al., 2012). We discuss the implications of our observations in 

terms of gene expression control and its relation to the spatial organization of genes within the 

nucleus. 
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3.1.4 Results 

3.1.4.1 Intracellular single-molecule tracking with photoconvertible fluorescent 

proteins 

 

Figure 17: From bulk to single molecule fluorescence imaging (A) Images of the 525 nm bulk 

emission of the pre-converted form of Dendra2 in the cellular nucleus for the “free” fluorophore 

Dendra2 and Dendra2 fused to H2B, c-Myc, and P-TEFb. (B) Schematics of the intracellular 

sptPALM; wide-field illumination is necessary in order to reach the nucleus of mammalian cells. 

A signature of single molecule detection is the on/off single-step fluorescence shown in panel 

(C). To achieve single molecule detection, 405 nm laser photoactivation needs to be reduced to a 

level where no background noise is produced by out-of-focus fluorophores. Graphic in panel (D) 

shows the number of detected single molecules (blue data, right axis) and the mean SNR of the 

single molecule signal (red data, left axis) as a function of 405 nm photoactivation photon flux 

per pulse (10 ms pulses every 1 s). The signal-to-noise ratio (SNR) of the molecules within the 

image depth of focus indeed increases as the total number of detected particles decreases. In 
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panel (E), the trace of a single Dendra2 molecule freely diffusing in the nucleus of a living cell is 

depicted, imaged at a rate of 95 Hz (10 ms acquisition time and 0.5 ms interval between frames). 

 

We developed a simple and versatile approach based on photoconvertible protein tags that 

extends the use of sptPALM to any protein expressed in mammalian cells. To probe the 

dynamics of transcription factors within the nucleoplasm, proteins of interest were fused to the 

photoconvertible protein Dendra2(Gurskaya et al., 2006; Lord et al., 2010) (Figure 17 A). As in 

standard PALM, the imaging set-up used a wide-field activation and excitation scheme, allowing 

fast and sensitive acquisition with an EMCCD camera (see Supplementary Informationand). The 

light emitted by activated molecules outside the focal depth contributed to background noise 

(Figure 17 B). At standard PALM activation intensity (~ 0.1-1 kW/cm
2
 at 405 nm), this 

background prevented the detection of individual molecules. However, by lowering the 

activation intensity, one could reach the regime of SM detection, characterized by single-step 

activation and photobleaching (Figure 17 C). The decreasing density of detected particles was 

correlated with an increasing average signal-to-noise ratio (SNR) (Figure 17 D). We found that 

an activation intensity around 0.01 kW/cm
2 

offered the best trade-off between the number of 

detected particles (~1) and SNR. When further lowering the intensity, the number of detected 

particles reached a plateau due to spontaneous activation of photoconvertible Dendra2.   

Compared to membrane proteins or other proteins with constrained mobility, diffusion dynamics 

of intracellular molecules is much higher and can exceed 10 µm
2
/s. Images recorded for such fast 

moving objects depart from the well-defined point spread function (PSF) of the microscope and 

exhibit a motion blur that cannot be characterized with standard Gaussian localization algorithms 

(Thompson et al., 2002; Fusco et al., 2003; Shav-Tal et al., 2004). Therefore, we developed new 

localization and tracking algorithms (see Supplemental Procedures and Figure S 2 Figure S 1) 

and validated them with simulations (Supplementary Information ). We could thus obtain single 

trajectories formed by individual translocations recorded every 10 ms. 50 % of the traces were 

reconstructed with more than 4 time points, and some of them were as long as 60 consecutive 

translocations. The step size of single translocations ranged between tens of nanometers (limited 

by our localization accuracy of ~ 70 nm) and ~ 2 µm (Figure 17). Hence, it became possible to 

track molecules with diffusion coefficients exceeding 10 µm
2
/s. 
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3.1.4.2 System validation using “free” Dendra2 and histone H2B fused to Dendra2 

 

 

 

Figure 18: Diffusion properties of “free” Dendra2 and H2B Examples of single molecule 

traces of the free fluorophore Dendra2 (A) and DNA-associated histone H2B (B). Recorded 

traces gave us access to the translocation histograms, plotted for 1∆t (10 ms), 3∆t, and 6∆t for 

both proteins in panel (C). Fits of the step size distribution with one Brownian diffusive 

population (dotted line), two populations (dashed lines), and three diffusive populations (red 

solid line) are represented in the graphs. Also, the averaged mean square displacement (MSD) 

as a function of time is represented in (D) for both proteins with interval of confidence of 95%. 

 

We first investigated two limit cases relevant to protein dynamics in the nucleoplasm: Dendra2 

and DNA-associated histone H2B. Dendra2 is the fluorescent label that we fused to all other 

proteins used in our analysis. Intrinsic blinking of Dendra2 is seven times smaller than that of 

other photoconvertible fluorescent proteins like mEos2 (Bancaud et al., 2009; Lee et al., 2012), 

which makes it a suitable tag for SPT. Green fluorescent protein (GFP) has no detectable 

interacting partners in mammalian cells (Grünwald et al., 2008; Trinkle-Mulcahy et al., 2008; 

Speil et al., 2011) and we therefore considered “free” Dendra2 as a model for freely diffusing 

particles due to its structural similarity with GFP. In contrast, Dendra2 fused to histone H2B 

(Dendra2-H2B) was expected to insert into chromatin and thus to display restricted motion. 
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Indeed, from a visual inspection, “free” Dendra2 and Dendra2-H2B trajectories (Figure 18 A and  

Figure 18 B respectively) exhibited obvious differences. As expected for free versus chromatin-

bound particles, the translocation length of most “free” Dendra2 particles exceeded 0.5 µm 

within 60 ms whereas most of Dendra2-H2B molecules traveled less than 0.2 µm in 60 ms 

(Figure 18). 

Notably, translocation histograms for “free” Dendra2 and, to a lesser extent, for Dendra2-H2B 

were not consistent with a single diffusing species (Figure 18, Supplementary Information ), thus 

suggesting that displacements of these molecules were more complex than anticipated. Three 

distinct populations were needed to fit the translocation histograms corresponding to different 

time intervals. For “free” Dendra2, one population (~ 4% of all the molecules) corresponded to 

proteins with translocations within the experimental localization accuracy (~ 70 nm) and were 

therefore considered as immobile particles (Figure S 1). The other two populations could be 

distinguished by their diffusion coefficients: 24% moved with a slow diffusion coefficient (D2 = 

2.6 µm2/s) and 72% moved faster (D3 = 13 µm2/s). For Dendra2-H2B, 35% of molecules 

appeared immobile and might correspond to molecules engaged in chromatin-bound 

nucleosomes. Two populations of mobile Dendra2-H2B molecules (D2 = 0.5 µm2/s, 25%, and 

D3 = 13 µm2/s, 40%) were also observed, probably corresponding to Dendra2-H2B inserted into 

“free” nucleosomes and “free” Dendra2-H2B. Histone H2B binding kinetics to chromatin have 

recently been investigated by SPT (Mazza et al., 2012; 2012), however, fast diffusing histones 

have not been detected in that assay. This is likely due to the fact that the authors used a 

Gaussian fit detection algorithm, which mainly account for molecules remaining localized within 

a region of the size of the PSF during the acquisition window (immobile and slow diffusing 

populations). 

To complement our analysis of the translocation histograms, we plotted the mean square 

displacement (MSD) of the molecules as a function of time. We computed the time-averaged 

MSD of every SM trace, and averaged it over the ensemble of traces (see Supplementary 

Information II). The MSD of “free” Dendra2 increased regularly with time. However, it slightly 

deviated from the linear behavior expected for molecules undergoing normal diffusion. This was 

attributed to a ‘population exclusion effect’ due to the different defocusing rates of the various 

diffusive subpopulations of Dendra2. Indeed, because of their three-dimensional motion in the 
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nucleus, slow moving particles remained within the focal depth of observation (~ 0.5 dm) for a 

longer time than fast moving ones. As a result, fast diffusing molecules contributed 

comparatively less than the slow ones to the MSD at longer time lags. Note that this effect is 

inevitable for any single-molecule experiment involving more than one diffusive population and 

in which the three-dimensional movement of particles is recorded in two dimensions (see 

Supplementary Information and Figure S 3). For Dendra-H2B, the MSD reached a plateau after 

~ 20 ms at ~ 0.5 µm2 (Fig. 2D), consistent with a confined motion of individual histone 

molecules inserted into chromatin.  

Numerical simulations were used to carefully define the range of application of our method 

(Supplementary Information ). On the one hand, the particle localization precision sets the lower 

bound to a reliable estimation of the diffusion parameters, i.e. ~ 0.01 µm2/s for a pointing 

accuracy of ~ 70 nm. On the other hand, fast moving particles can be tracked with a mobility up 

to ~ 20 µm2/s, beyond the experimental values determined for “free” Dendra2. Altogether, our 

experimental and numerical results provide a benchmark for studying nuclear factors with a 

mobility ranging between that of chromatin-bound H2B molecules and of “free” proteins such as 

Dendra2.  

3.1.4.3 c-Myc and P-TEFb differ in the nature of their diffusion 
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Figure 19: Diffusion properties of c-Myc and P-TEFb For c-Myc (A) and P-TEFb (B), 

examples of single molecule traces. From these, we plotted the averaged mean square 

displacement (MSD) as a function of the lag time with intervals of confidence of 95% (panel C). 

In panel D, the MSD over time was represented as a function of time in logarithmic scale for 

“free” Dendra2, c-Myc and P-TEFb. The fit in the inset follows the time rescaling law MSD(t)= 

D tα, where α = 1 for normal diffusion, and 0 < α < 1 for subdiffusive behavior. 

 

We next probed the mobility of transcription factors. Dendra2 was fused to the proto-oncogene 

c-Myc or to the Cyclin T1 subunit of P-TEFb. Translocation histograms for c-Myc were well-fit 

with 3 diffusive populations (Figure S 4). The most abundant corresponded to rapidly diffusing 

particles (13.5 µm2/s, 70% of the molecules) (Figure 19, black trajectories). In addition, a 

significant fraction of c-Myc was immobile (9.5 %) (, green trajectory) or displayed slow 

Brownian diffusion (D2 = 0.5 µm2/s, 20.5%) (Figure 19A, blue trajectories). For P-TEFb, the 

typical translocation length and the translocation histograms were comparable to those obtained 

for c-Myc (Figure S 6). Yet, we noted that individual trajectories of P-TEFb molecules often 

showed abrupt transitions from slow to fast displacement modes within the same trajectory (see 

example in red in Figure 19B). Such transitions were never observed for “free” Dendra2 or c-

Myc and suggested a transport process more complex than heterogenous Brownian diffusion. 

When plotting the MSD as a function of time for c-Myc and P-TEFb, we observed a deviation 

from linearity for both factors (Figure S 5). Such deviation could be due to the ‘population 

exclusion effect’ described above (Figure 18 and Supplementary Information Figure S 8), but, 

alternatively, it could also be the signature of an anomalous diffusion process. Indeed, when a 

particle undergoes anomalous diffusion, the MSD versus time scales as a power-law t
α

 , where 

α < 1 is characteristic of a subdiffusion process (Saxton, 2007; Lippincott-Schwartz and 

Patterson, 2009). However, neither the “free” Dendra2 nor the c-Myc MSD data could be 

properly fit by such a law (Figure 19D). Similarly to “free” Dendra2, c-Myc molecules were 

distributed between populations of very distinct diffusion coefficients. In contrast, for P-TEFb, 

the MSD variations were remarkably fit by a t
α

 power law with the anomalous coefficient α = 

0.6 (Fig. 3D). The subdiffusion of P-TEFb was also apparent when we plotted the cumulative 

histograms of the square displacement for multiples of the time interval (∆t) between two frames 

and rescaled them by the factor t
α

, with α determined from the fit in Fig. 3C. All the rescaled 
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histograms curves collapsed for P-TEFb but not for c-Myc or “free” Dendra2 (Figure S 6).  We 

therefore concluded that the characteristics of single P-TEFb trajectories are consistent with an 

anomalous diffusive behavior whereas the deviation from linearity of the c-Myc MSD curve 

reflects the heterogeneity of its diffusion dynamics.  

3.1.4.4 Asymmetric distribution of angles between consecutive translocations 

Subdiffusion in cells is commonly attributed to one of the following two microscopic processes: 

a broad distribution of trapping times or an obstructed movement resulting from a reduction of 

the accessible space (Betzig et al., 2006; Hess et al., 2006; Condamin et al., 2008) (for a 

discussion about subdiffusion causes, see Supplementary Information). In other words, the 

subdiffusive behavior, evidenced by the sublinear MSD, is due to either temporal or spatial 

restrictions. In order to probe the spatial characteristics of the exploration independently of 

temporal considerations, we analyzed the distribution of angles Θ between two consecutive 

translocations, an observable that is predominantly sensitive to the geometry of the exploration 

space (Liao et al., 2012). 

For “free” Dendra2 and c-Myc, the angular distribution was uniform (Figure 20 A), as expected 

for Brownian diffusion. In a three-dimensional space, there is no privileged direction and all 

angles Θ are equiprobable. In contrast, the angular distribution for P-TEFb was significantly 

biased toward 180°, reflecting an increased probability of the molecule to return backwards. 

Such anisotropic angular distribution is consistent with diffusion in a space of reduced 

dimensionality such as a fractal network (ben-Avraham and Havlin, 2005). A particle that 

diffuses in such a structure encounters dead ends, in which case it cannot but return back to 

previously visited locations (Θ = 180º). Noteworthy, the diffusing subpopulation of H2B 

molecules also showed a non-uniform angular distribution, indicating that they also move in a 

space with reduced dimensionality, as opposed to “free” Dendra2 or c-Myc. 



Récamier Vincent – Thèse de doctorat - 2013 

104 

 

3.1.4.5 Evolution of angular distribution with time sampling 

 

Figure 20: Angle distribution between consecutive steps (A) Distribution histogram, in polar 

coordinates, of the angle θ formed between the vectors of two consecutive translocation steps 

(vectors formed by positions at time 0 and  01
���10 ms, and between 10 ms and 20 ms), for Dendra2, 

H2B, c-Myc, and P-TEFb. In (B), temporal evolution of the angle distribution at increasing lag 

times: angle between the vectors formed by the positions at  01

���0 to 10 ms and 10 ms to 20 ms  12

���, 2∆t 

in black; angle between the vectors formed at positions 0 to 20 ms and 20 ms to 40 ms  24
� ��, 4∆t in 

red; between 0 to 30 ms  03

��� and 30 ms to 60 ms 36

� ��, 6∆t in green; 8∆t (blue); and 10∆t (cyan). 

 

A defining property of fractal structures is their scale invariance, namely the repetition of 

structural motifs at different length scales. For a particle diffusing in such a fractal structure, we 

expected the scale invariance to be apparent in the characteristics of the movement of the 

particle. We therefore examined the temporal evolution of the angular distribution in order to 

further investigate the underlying geometry of the space available for exploration (Figure 20B). 
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The angle distribution for “free” Dendra2 remained isotropic up to 60 ms (the angle between the 

two vectors formed by the particle positions at times 0 and 30 ms, and between 30 ms and 60 ms, 

i.e., total time of 60 ms). Beyond this time point, asymmetric features appeared in the histogram, 

with slightly higher distribution frequency between 90° and 270°. This is consistent with a 

significant probability to encounter the nuclear boundary after 60 ms of exploration. Similarly, 

the angular distributions for c-Myc varied over time and the frequency of angles between 90° 

and 180° increased for longer temporal increments in a slightly more pronounced manner, 

potentially reflecting its confinement to domains significantly smaller than the nucleus. 

The temporal evolution of the angular distributions for H2B and P-TEFb differed qualitatively 

from those of “free” Dendra2 and c-Myc. The angle distribution asymmetry for H2B and P-

TEFb, already pronounced at the minimum time interval (2∆t, 20 ms), remained remarkably 

stable with larger time increments (Figure 20B). Furthermore, for all proteins, the angular 

distributions and their evolution in time were unaltered upon removal of the translocation steps 

within our localization accuracy (Figure S 7). This rules out a potential implication of the 

pointing accuracy on the asymmetry of the angular distribution. 
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3.1.4.6 Numerical simulations of particle diffusion in networks with different 

dimensionalities 

 

Figure 21: Simulated trajectories and angle distribution Simulated trajectories of random 

walks in: (A) infinite Euclidean cubic lattice, (B) 3D fractal critical percolation cluster, and (C) 

confined Euclidean cubic lattice. From each simulation, we analyzed the angle distribution of 

consecutive steps (A2, B2, and C2, in polar coordinates) and the time evolution of the angle 

distribution, with increasing lag time (A3, B3, and C3). 

 

In order to gain insight about the different scenarios giving rise to the observed angular 

distributions, we performed numerical simulations of random walks in media with varying 

dimensionalities (see Supplementary Information III for details about the numerical simulations). 

First, we simulated molecules undergoing Brownian motion in an infinite cubic lattice (Figure 

21A). Predictably, the distribution of angles θ was isotropic at all time scales. Next, we 
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investigated the movement of molecules with 3D Brownian diffusion in a closed volume Figure 

21B), a more realistic scenario than that of an infinite lattice. In this case, the angular distribution 

revealed a larger occurrence of angles comprised between 90° and 180°, and the anisotropy of 

the distribution increased over time. The increasing anisotropy of the angle distribution at larger 

time scales results from the reflecting boundary conditions imposed on the limits of the sphere. 

Finally, we considered the diffusion of molecules in a fractal structure such as the 3D critical 

percolation cluster (ben-Avraham and Havlin, 2005) (Figure 21 C). Here, the angular distribution 

revealed a distinct tendency toward 180° degrees, with the same shape as that observed for P-

TEFb and H2B. Importantly, the anisotropy found in the simulations on the percolation cluster 

was invariant with time, illustrating the scale-invariant features of fractal structures.  

3.1.4.7 Compact vs. non-compact space exploration 

The choice of a fractal network as an underlying structure on which to simulate the diffusion of 

nuclear factors was motivated by recent works on the geometry of the nuclear space (Bancaud et 

al., 2012). Evidence coming from neutron scattering, optical imaging, chromatin capture and 

rheology suggest that the organization of chromatin and of the nucleoplasm is compatible with a 

fractal architecture (at least on a length scale comprised between ~10 nm and a few microns) 

(SACHS et al., 1995; Yokota et al., 1995; Lebedev et al., 2005; Bancaud et al., 2009; Lieberman-

Aiden et al., 2009). The fractal architecture is characterized by its dimension Df, a number 

between 0 and 3, which expresses the reduction of the dimensionality or equivalently, the 

lacunarity of the accessible space compared to an ordinary 3D medium (for which Df = 3). 

The fractal geometry of the nucleoplasm has particularly important implications for the search 

kinetics of TFs and thereby, their interactions with molecular partners. This can be easily 

understood by means of scaling arguments. If one considers a region of dimension R, the number 

Na of sites accessible to the explorer scales as R
D f

. To evaluate the efficiency of the search 

process, Na needs to be compared to the number Nv of sites, not necessarily distinct, visited by 

the diffusing factor before it escapes the region R. Nv depends on the dynamic properties of the 

random walker, parameterized by the dimension of the walk Dw. The dimension of the walk can 

be defined by the scaling law t
2/D

w  of the mean square displacement as a function of time (Dw = 
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2 for a regular Brownian motion, and > 2 for subdiffusion processes). As a result, the escape time 

and consequently, the number Nv of visited sites, scales as R
D
w . 

With these expressions of Na and Nv in mind, one perceives why the search strategy is entirely 

determined by the relative values of the parameters Df and Dw (see references (de Gennes, 1982; 

ben-Avraham and Havlin, 2005; Condamin et al., 2007) for infinite space and for more detailed 

discussions). In the case Df > Dw, originally referred to as non-compact exploration by de 

Gennes (de Gennes, 1982), Na increases more rapidly than Nv, meaning that the searcher 

explores only a fraction of all the accessible sites and leaves many of them unvisited. The search 

time does not depend on the relative distance between the initial position and the target (or only 

at very short distances) but rather on the available diffusion volume. In the opposite case Df < 

Dw, defined as compact exploration (de Gennes, 1982), the number Nv dominates Na. In this 

case the search is redundant and individual sites are visited several times. A benefit of this spatial 

oversampling strategy is that no sites are left unexplored. Yet, it also means that the search time 

now critically depends on the initial distance to the target (Bénichou et al., 2010). At a 

microscopic level, the notion of compactness is well established in chemistry to describe 

dimensional effects on reaction rates (ben-Avraham and Havlin, 2005). However, it has not yet 

been much considered for biological systems, even though it is presumably of great importance 

for the description of molecular interactions and the geometrical control of their reaction kinetics 

(Bénichou et al., 2010). 

3.1.4.8 c-Myc and P-TEFb adopt opposed search strategies 

We have determined that while c-Myc undergoes normal Brownian diffusion, the dynamics of P-

TEFb is well described by a subdiffusive behavior. In the case of P-TEFb, our simulations 

support the notion that anomalous diffusion is compatible with an obstructed mobility of the 

proteins, as obtained on a fractal structure (we have ruled out other models of subdiffusion 

Figure S 10 and Supplementary Information for a more detailed discussion). As previously 

described, the exponent α = 0.6 of anomalous diffusion obtained for P-TEFb (Figure 19) is a 

direct measure of the dimension of the walk Dw = 2/α = 3.3. Since the fractal dimension Df has 

an upper limit at Df = 3, we can therefore conclude that Dw > Df, and thus that P-TEFb is 

engaged in a compact exploration of the nucleoplasm. In contrast, the isotropic sampling of 

space of c-Myc excludes a compact mode of exploration; it undergoes normal 3D diffusion and 
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therefore the dimension of the walk is Dw = 2, sampling the nucleoplasm in a non-compact 

manner. These results imply that different factors sense a protein-dependent nuclear 

environment, which can be determinant for their exploration strategy. 

3.1.4.9 The distance-dependence of the mean first passage time differs between c-Myc 

and P-TEFb  

The distinctive properties of compact and non-compact trajectories have potentially important 

functional consequences on the ability of searchers to find and react with molecular partners. As 

noted above, a striking difference is the distance-dependence of the mean first passage time 

(MFPT) of the searcher to the target site. The MFPT of non-compact explorers is essentially 

constant, depending solely on the total volume and not on the distance r to the target. 

Conversely, in the compact case, the MFPT still scales with the volume but also increases with 

the distance as r
(Dw−D f )

. 
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Figure 22: Compact vs. non-compact exploration Entangled polymer interpretation of the 

anomalous exponent. (A) Mean first passage time (MFPT) as a function of the initial distance to 

the target for both c-Myc (non-compact exploration; Df = 3, Dw = 2, and diffusion coefficient D 

= 9.8 µm2/s) and P-TEFb (compact exploration; Df = 2.6, Dw = 3.3, and scale factor of the 

MSD fit D = 7.8). The MFPT was calculated for three different target sizes: 1 nm, 10 nm, and 

100 nm. Also, two-dimensional representation of the plots for a = 100 nm are depicted in the 

lower part of the panel. (B) Probability of interaction with target 1 before interacting with target 

2, placed at a distance of 20 µm from each other, as a function to the relative distance between 

the searcher and the targets; two-dimensional plots in the lower side of the panel. 

 

As an illustration, we computed the MFPT as a function of the distance (see analytical 

expressions of MFPT in (Condamin et al., 2005; Bénichou et al., 2010)), using the experimental 

data for c-Myc and P-TEFb, two examples of non-compact and compact explorers. For c-Myc, 

which behaves as an ordinary Brownian walker, the fractal dimension is Df = 3, and the 

dimension of the walk is Dw = 2. We used a diffusion coefficient D = 9.8 µm2/s, the value 

obtained by a weighted average of the diffusion coefficients of the three subpopulations. (It is 

important to note that the value used for the diffusion coefficient does not affect the dependence 

of the MFPT on the initial distance to the target.) To calculate the MFPT, we used a nuclear 

volume of 600 dm3 and considered a target in its center. For P-TEFb, we did not have direct 

access to the value of Df and used several values previously reported (Bancaud et al., 2012). In 

Figure 22 we used Df = 2.6 and the results were qualitatively similar for values of Df = 2.2, and 

Df = 3 (see Figure S 9). For both proteins, we also varied the size a of the target between 1 nm 

(i.e. corresponding to a couple of base pairs), 10 nm (the size of a protein complex) and 100 nm 

(the size of a large multimolecular complex). 

For c-Myc, the MFPT was constant, irrespective of the distance r (Figure 22A). However, it was 

inversely proportional to the size of the target, similar to what is predicted from the diffusion-

limited rate of bimolecular reactions (Nelson et al., 2008). In contrast, the MFPT of P-TEFb 

increased with the distance r but did not depend on the target size. The lack of size dependence 

can be simply viewed as a consequence of the redundant exploration of compact explorers, and 

reflects the fact that the limiting step to find a target is the time taken to reach its vicinity. We 

stress that the differences of MFPT can be very significant. For instance, the time needed to find 

a 10 nm target located at a distance of 250 nm is 68 times longer for c-Myc compared to P-TEFb 
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(506.1 s for c-Myc and 7.4 s for P-TEFb). If the target is located at 5 µm of the TFs, the 

difference in the search time is reduced to a factor of 8 (525.3 s for c-Myc and 64.6 for P-TEFb).  

Here we considered that c-Myc has a full access to the nuclear volume. It is interesting to note 

that if, as suggested by the temporal variance of the angular distribution, c-Myc is confined to a 

smaller domain, the MFPT would scale linearly with this volume. 

We also considered the case of a factor susceptible to bind to two different targets T1 and T2 

(Figure 22B). To do so, we computed the splitting probability P, that is the probability to reach 

T1 before T2, as a function of the initial distance to T1. For c-Myc, the probability was equal to 

0.5 as soon as the initial distance was larger than a few tens of nanometers, in stark contrast with 

the case of P-TEFb for which P varied almost linearly with the distance. 

Overall, our analysis of SM experiments of c-Myc and P-TEFb reveals two characteristics of TFs 

diffusion relevant to the understanding of transcription regulation kinetics. First, the exploration 

geometry of the nucleus by TFs is determined by the function and interactions of the nuclear 

factor. Rather than being subjected to a universal sampling geometry imposed by the nuclear 

architecture, c-Myc and P-TEFb adopt different modes of exploration leading to normal and 

anomalous diffusion, respectively. Second, despite apparently similar diffusion coefficients, the 

different exploration strategies of c-Myc and P-TEFb (non-compact and compact, respectively) 

can lead to opposite dependence of the search kinetics on the distance to the target and on the 

target size. The distance-dependence of the MFPT has direct implications on the probability of 

interaction of c-Myc and the P-TEFb with their respective partners, which in turn may affect 

transcriptional kinetics and regulation. 

 

3.1.5 Discussion 

3.1.5.1 Protein-specific sensing of nuclear organization 

With the PALM imaging assay adapted for SM detection of intracellular proteins in eukaryotic 

cells, we probed the spatial dynamics of different proteins in the nucleus of live human cells: the 

“free” Dendra2, the histone H2B, the proto-oncogene c-Myc and the elongation factor P-TEFb. 

The analysis of individual trajectories, supported by numerical simulations of diffusive tracers on 

free, confined, and fractal structures show that these nuclear proteins fundamentally differ in 
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their exploration of the nucleoplasm. Our results on “free” Dendra2 are along the lines of those 

obtained with microinjected fluorescent streptavidin, which explores all nuclear compartments 

with 3 subpopulations having different diffusion characteristics (0.15, 0.8 and 5 µm2/s) 

(Grünwald et al., 2008). In contrast, FCS experiments using “free” GFP-repeats or SPT tracking 

of QD aggregates suggested anomalous diffusion (Bancaud et al., 2009). 

We determined that “free” Dendra2 and the proto-oncogene c-Myc undergo normal Brownian 

diffusion in 3D, whereas displacements of P-TEFb and of the mobile subset of histone H2B were 

accounted for by a subdiffusive movement. This finding was further supported by measurements 

of the distribution of angles between consecutive translocations. Importantly, this distribution 

was isotropic for Dendra2 and c-Myc, as expected for a Brownian motion, but showed a 

pronounced and time- invariant anisotropy for P-TEFb and H2B, consistent with the motion on a 

fractal structure. Thus, the nuclear geometry, or equivalently, the architecture of the space 

sampled by diffusing factors, is not unique but constitutes a protein-specific parameter. 

Furthermore, taking into consideration the diffusion parameters derived from the analysis of the 

MSD, together with the geometrical aspects of the exploration of c-Myc and P-TEFb, we 

determined the mode of exploration of these factors to be non-compact and compact, 

respectively. 

We stress that the distinction between compact and non-compact exploration, rather than the one 

between anomalous and normal diffusion (Saxton, 2007), is the proper criterion to analyze the 

search dynamics of transcription factors. The notion of compactness is intimately linked to the 

geometry and the dimensionality of the sampled space. In this regard, there is a specificity of 

random motions in a three-dimensional medium with respect to the one- and bi-dimensional 

cases, for which the exploration is always compact since the fractal dimension Df (less or equal 

to 1 and 2, respectively) is necessarily smaller than Dw. Only in the case of 3D search, can both 

compact and non-compact behaviors be observed. Our data demonstrate the relevance of the 

notion of compactness for the description of nuclear factor dynamics.   

3.1.5.2 Possible mechanisms controlling the geometry of nuclear explorations 

One microscopic mechanism leading to a compact exploration of the nucleus could be a 

compartmentalization of the nucleoplasm into interconnected domains forming a fractal labyrinth 

in which molecules diffuse. In our view, such a model assuming that molecules encounter 
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physical barriers is poorly compatible with the dynamic nature of nuclear organization and with 

the lack of correlation between protein size and mobility in the nucleus (Sprague et al., 2004; 

Mueller et al., 2008; Speil et al., 2011). Moreover, our results showing that Dendra2 and c-Myc 

are free and unrestricted explorers are not consistent with fixed impermeable frontiers. 

Another interpretation is that of a fractal structure restricting the mobility of proteins at its 

surface. Chromatin has been described as a fractal globule (Grosberg et al., 2007; Lieberman-

Aiden et al., 2009) and transient, non-specific interactions to a continuum of binding sites would 

account for the diffusing factors not escaping from their interaction with chromatin. In this 

scenario, the number of binding sites with which c-Myc interacts is not sufficient to restrict its 

motion to chromatin (36 000 E-boxes in a diploid genome, representing less than 50 sites per 

µm3). In the same scenario, unassembled histone H2B, with a stronger general affinity to the 

available DNA, would bind to chromatin in a quasi-continuum manner jumping from site to site. 

P-TEFb interacts with the CTD domain of the catalytic subunit of RNA Polymerase II that 

contains 52 repetitions of a hepta-peptide motif (Taube et al., 2002). RNA Polymerase CTD 

domain is not folded and can occupy the space very efficiently, potentially forming a mesh 

offering a nuclear continuum of binding sites for P-TEFb. Such CTD matrix could have an 

intrinsic existence or be linked to the chromatin globular organization. The existence of a nuclear 

protein scaffold or matrix has been speculated for more than half a century (Pederson, 2000) and 

our work offers an indirect observation of a functional role for such a structure. Several studies 

support this hypothesis, showing that nuclear proteins are in constant interaction with their 

environment and their motion is governed by specific and non-specific bindings (Misteli, 2001; 

Phair et al., 2004; Sprague et al., 2004; Hager et al., 2009; Mueller et al., 2010; Speil et al., 

2011), therefore opening the door for mechanisms where factors are guided on networks of 

binding sites (Bénichou et al., 2011). 

3.1.5.3 The effect of the exploration strategy on gene regulation by transcription 

factors 

From a general standpoint, the distance-dependence of the search kinetics could have strong 

implications for gene regulation. Let us consider the case of TFs co-regulating multiple loci; the 

relative localization of these loci is an important parameter which will play different roles 

depending on the compact or non-compact exploration of the TFs. Non-compact TFs have a very 
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similar probability to bind to all loci. In other words, all loci will have the same probability to be 

occupied, regardless of their spatial position. In contrast, compact factors will be preferentially 

shared between proximal loci and therefore the probability of a locus to be occupied by a 

compact explorer is a function of the occupation history of its neighboring sites: it is distance and 

time dependent. The compactness of the exploration, which is a protein specific parameter, will 

modulate the amount of material shared between different sites. Importantly, this indicates that 

two loci, such as two regulatory sites located a few tens of kbp away from one another, can 

transfer information and influence one another without direct physical contact. This spatial 

relation could underlie the process of sequestration of factors away from their targets (Yao et al., 

2011), which would occur only with compact explorers. Such geometrically controlled long-

distance interactions are not detectable using conventional chromatin capture assays, which 

predominantly rely on the chemical crosslinking between contacting sites. 

3.1.5.4 Compact transcription factors and the stability of molecular complexes 

A remarkable feature of compact searchers is their propensity to visit their neighboring sites 

multiple times. As a result, they have a probability equal to one to return to a site that they 

previously occupied, a property designated as the recurrence of compact trajectories. From a 

biochemical viewpoint, this property might affect our understanding of the kinetic stability of 

molecular complexes. Indeed, molecular machines controlling the nuclear functions such as 

transcription, splicing, and replication are composed of large numbers of molecules. Some of 

these molecules are stable constituents while others can be rapidly exchanged in order to control 

the specificity and modulate the activity of a particular complex (Fong et al., 2012). It is 

therefore important to understand how these molecular machines can assemble from their 

principal components. For instance, we cannot yet reconcile the need for strong and stable 

interactions, believed to be required for the viability of such complexes, and the requisite of 

weak and transient interactions required for molecules to compete for the same target regulating 

their composition. The observation of compact modes suggests that strong binding, associated to 

small dissociation rates, is not required to ensure high occupancy. 

3.1.5.5 Compact transcription factors favor transcriptional bursting  

Recently, the role and importance of transcriptional fluctuations within a single cell have been 

extensively studied (Raj et al., 2008; Zenklusen et al., 2008; Larson et al., 2009; Itzkovitz and 
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van Oudenaarden, 2011; Li and Xie, 2011). Using a simple model in which the activation of a 

gene is controlled by the binding of a single TF to a locus, Meyer et al. have modeled how the 

search dynamics of these TFs affects the transcriptional response (Meyer et al., 2012). For 

compact TFs, the recurrence of the trajectories and the facilitated re-association to the locus 

result in transcriptional bursting. In contrast, for the non-compact case, the gene activation rate is 

determined by the total TF concentration in the nucleus and the transcriptional activity is 

uncorrelated in time. This further illustrates how the translocation properties of nuclear factors 

might underlie the kinetics of functional cellular events.  
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3.1.6 Experimental Procedures 

3.1.6.1 Cell culture and Transfection 

U2OS (Human Osteosarcoma) cells were grown in DMEM (Life Technologies, CA92008 USA) 

with 1g/l glucose and glutamax supplemented with 10% FBS (Fetal Bovine Serum, Life 

Technologies, CA92008 USA) and 1% Penicillin/Streptomycin  (Life Technologies, CA92008 

USA) at 37°C with 5% CO2. 48 hours prior to the imaging, cells were seeded at 30-40% 

confluence on a plasma-cleaned (2mn with air with Femto model, Diener Electronic, MI48073 

USA) and collagen-coated (Collagen I from Rat tail, Life Technologies, CA92008 USA)  

coverslips (N°1 25mm, Marienfeld 97922 Germany).  

For experiments with c-Myc (fused to Dendra2 on C terminal), and H2B (fused to Dendra2 on C 

terminal), cells were transfected 24 hours before imaging with the plasmid of interest 

(10ng/25mm coverslip) using Fugene 6 (Roche Applied Science, IN46250-0414 USA) according 

to manufacturer instructions. Clones with very low expression of fluorescent protein, as judged 

by low fluorescence intensity of pre-converted Dendra2, were used. 

Experiments with P-TEFb (Cyclin T1 fused to Dendra2 on N terminal) and Dendra2 (alone) 

were performed on U2OS cell line stably transfected and selected with geneticin (Life 

Technologies, CA92008 USA). Clones with very low expression of fluorescent protein 

(CyclinT1-Dedra or Dendra), as judged by low fluorescence intensity of pre-converted Dendra2, 

were used. 

3.1.6.2 Single-molecule imaging 

Single-molecule imaging was performed on an inverted microscope Nikon Ti Eclipse, with a 

high numerical aperture objective (1.49 NA) and 100X magnification; extra magnification of 

1.5X was used in the tube lens of the microscope, resulting in a total magnification of 150X. We 

also used perfect focus system® (Nikon) designed to avoid drift on the Z-axis (focus) of the 

objective, relative to the coverslip. The excitation (561 nm) and activation (405 nm) laser beams 

were injected into a fiber and focused in the back focal plane of the objective, using an 

appropriate dichroic (Di01-R561-25x36) Figure S 1, panel a). A motorized mirror allowed us to 

choose between wide-field or inclined excitation configurations; a small angle, between 0 and 30 
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degrees, was typically used to avoid stray-light reflections and reduce background from cell 

auto-fluorescence. Experiments were acquired under continuous excitation (561 nm laser, 5 

kW/cm2 on the sample) and pulsed activation (405 nm laser, 1 pulse of 10 ms per second, 0.01 

kW/cm2 during the pulse on the sample). Fluorescence emission from individual Dendra2 

molecules was filtered with a single band emission filter centered at 617 nm and a bandpass of 

73 nm, and recorded on an EMCCD camera (iXon 897). The pixel size of the EMCCD was 16 

µm, and we imaged a small region of interest (ROI) of about 100pixelsx100pixels. This ROI was 

sufficient for imaging a large cross-section within the nucleus of single cells, and allowed 

acquisition rates as fast as 100 Hz (10 ms per frame). Images of the pre-converted (green) form 

of the ensemble fluorescence of Dendra2 were taken using a mercury lamp for illumination 

(excitation: 485 nm, emission FF01-525/30). 

Cells were imaged in Leibovitz's L15 medium (Life Technologies, CA92008 USA) containing 

10% FBS (Fetal Bovine Serum, Life Technologies, CA92008 USA). The sample was placed on 

the microscope, on a stage heated at 37°C on the microscope. Once an ROI was selected from 

the pre-converted (Dendra2 green-form) fluorescence imaging of the live cells, activation pulses 

were fired every 100 frames, and movies of several thousands of frames were acquired under 

continuous 561 nm illumination (typically 2000 to 10000 frames per cell).  Each coverslip was 

used for a maximum of 45 minutes after placing them on the scope. 

3.1.6.3 Pre-converted Dendra2 imaging 

Same conditions as for SM imaging using an Intensilight (Nikon) as a light source and in order 

to compensate the very weak expression levels, images were reconstituted averaging 100 images 

of a temporal sequence therefore minimizing the noise observed in single images. 
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3.2 P-TEFb Dynamics 

With: Lana Bosanac Ignacio Izeddin, Claire Dugast-Darzacq, Florence Proux, Olivier Bensaude 

and Xavier Darzacq 

 

3.2.1 Summary 

In the following session we investigated in details the motion of P-TEFb by perturbing its 

functional properties.  We investigated together the influence of the complex Hexim 7SK and the 

interaction with Polymerase II CTD on the way P-TEFb explores the cell nucleus. We indeed 

found that the type of exploration of P-TEFb driven by its ability to chemically interact    

Method 

Drug treatment 

We dissociated the complex containing protein Hexim and snRNP 7SK using: 

• Transcription inhibitor DRB (5,6-Dichloro-1-β-D-ribofuranosylbenzimidazole) 

specifically targets Cdk9 kinase leaving no detectable traces of the large 7SK containing 

complex . 

• RNAi that specifically target snRNP 7SK  

 

We investigated P-TEFb motion in the absence of interaction with the CTD using α-amanitine 

that triggers the complete degradation of the RNAPolII catalytic subunit Rpb1 within  hours . 

 

Microscopy 

We used I-SPT PALM to investigate the motion of P-TEFb for the different conditions. We also 

used FRAP (Introduction 2.2) and FLIP (Introduction 2.2.3) to quantify the global exploration of 

the molecule.    
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Results 

We found that P-TEFb exploration is compact (Introduction 2.1.2.3.1 and results 0) and that its 

exploration is driven by its chemical interactions. The CTD matrix constrained its motion so that 

P-TEFb wandering in the nucleus is highly recurrent.  snRNP 7SK and Hexim chaperon P-TEFb 

interaction with the CTD, enabling a more global and efficient exploration of the nucleus in 

search of a distant target. 

 

3.2.2 Abstract 

Proteins move throughout the nucleus by diffusion, transiently and repetitively contacting their 

target sites. While DNA has been reported as a guide facilitating target search in the cell by 

restricting 3 dimensional explorations to a 1 dimensional search, such exploration modes were 

not envisioned for proteins. In an accompanying report, we showed using single particle tracking 

that the Positive Transcription Elongation Factor b (P-TEFb) explores the nucleoplasm in a 

compact mode consistent with a guided mechanism. In this report, using a combination of 

photobleaching techniques and single particle tracking, we demonstrate that P-TEFb nuclear 

mobility is controled by the interaction of its component Cycline T1 to the CTD of the 

polymerase subunit RPB1. Constant oversampling of adjacent binding sites on the CTD repeats 

guides its exploration to the transcriptional machinery. Finally we show that the 7SK snRNP acts 

as a chaperone to this guiding transient interaction modulating the local oversampling and 

therefore facilitating longer-range explorations. This work highlights the role of the CTD as a 

major platform for transient interactions acting as a net, guiding factors to polymerases in a 

spatially and temporally controlled and regulated manner.  

3.2.3 Introduction 

Gene regulation is a highly organized and controlled process at the core of all cellular functions. 

Gene expression occurs within the nucleoplasm, where genes are not compartmentalized nor 

separated from each other by impermeable barriers. Transcription factors regulating gene 

expression have thus potentially equal opportunity to access all existing genes in the nuclear 
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compartment. Since several nuclear factors are enriched in nucleoplasmic domains; it has been 

proposed that chromatin and its associated proteins could offer a primary spatial segregation 

barrier to contain the active transcription factors and facilitate their accumulation to ensure 

efficient transcription of a particular gene depending on its chromatin condensation state. Other 

nucleoplasmic compartments are formed and maintained by proteins and poorly rely on their 

DNA content. Transcription is controlled at several different steps: (Saunders et al., 2006)(Sims 

et al., 2004), in eukaryotic transcription, the process of elongation is considered the critical 

control mechanism of gene transcription. In order to maintain efficient transcription of a gene, 

transcription factors necessary for initiation and processivity of RNA elongation need to be 

available in sufficient local concentration. The Positive Elongation Factor b (P-TEFb) is a 

heterodimer consisting of Cycline T1 and the serine protein kinase Cdk9 ,which phosphorylates 

Ser2 residues on the Pol II CTD along with negative transcription elongation factors NELF and 

DSIIF. This defines P-TEFb as the major factor controlling elongation of Pol II transcription. P-

TEFb exists in two forms, the heterodimer alone and a catalytically inactive complex sequestered 

by 7SKsnRNP. The 7SKsnRNP complex consists of the snRNA 7SK, Hexim1 and Larp7 

(PIP7S). The two forms associate in a specific and reversible manner. P-TEFb exists in a 

dynamic equilibrium with its inactive form at 50% ratio in HeLa cells. The ability to shift this 

ratio reversibly by intracellular signalling, stress or pathological conditions  indicates a highly 

regulated mechanism of this equilibrium. While the P-TEFb engaged in the 7SKsnRNP complex 

is catalyticaly inactive, this complex never inhibits all the cellular P-TEFb (20 to 50% depending 

on cell lines or conditions). It is therefore believed that this control is necessary for a fine tuning 

of the P-TEFb activity or alternatively serves as a “reservoir” to balance general transcription 

fitness 

Transcription factors that interact with macromolecular complexes on chromatin exhibit high 

mobilities within the nucleus, transiently and repetitively contacting their target sites (Gebhardt 

et al., 2013). Diffusive properties of molecules are modified by their binding to immobile 

substrates or interactions with largem macromolecular complexes. Diffusion is a stochastic 

process that does not orient molecules movements but spatial constraints like impermeable 

organelles or numerous weak binding sites can constrain the geometry of the exploration 

effectively leading to guiding mechanisms. In an accompanying report, P-TEFb was shown to 
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explore the nucleoplasm adopting a mode of motion consistent with random motion guided on an 

underlying structure. Such guiding mechanisms demonstrate that proteins can be sequestered and 

committed to explore subregions of the space without being trapped in a particular location but 

rather being restricted to a network on which they will locate their binding sites. 

In this work we investigate the exploration mechanism of P-TEFb in relation to its co-existence 

in the 7SKsnRNP complex and identified the molecular interactions responsible for this guiding 

mechanism. Using live cell imaging techniques such as photobleaching and single particle 

tracking, we found that the P-TEFb nuclear exploration guiding is mediated by the 

transcriptional machinery itself in a process that requires an intact cyclin T1 binding domain to 

the RNA pol II CTD. In addition we found that this exploration is tightly controlled by the 7SK 

snRNP that acts as a chaperone facilitating the nuclear exploration.  Altogether our findings 

point toward a cellular mechanism controlling P-TEFb target search efficiently controlling its 

sampling properties.  

3.2.4 Results 

3.2.4.1 P-TEFb mobility is governed by its binding kinetics to the transcriptional 

machinery 

The P-TEFb subunit Cyclin T1 was fused to GFP and stably expressed in a U2OS human cell 

line named U2OS-TG1b. A western blot showed an overexpression level equivalent to the 

endogenous protein. The overexpressed fusion protein is homogeneously nuclear, with an 

exclusion of nucleoli as its endogenous counterpart. 

To quantify the diffusion and binding of P-TEFb in the nuclear environment, we perform 

fluorescent recovery after photobleaching (FRAP) on the TG1b cell line (data not schown)  

FRAP experiments lead to the conclusion that CycT1 dynamics in the nucleoplasm is limited by 

its specific and non-specific binding properties and that the major binding sites responsible for 

the observed kinetics are linked to the transcriptional machinery. This result implies that the pool 

of free diffusing P-TEFb is neglectable compared to the pool of bound complexes. Since P-TEFb 

catalytic activity is regulated by its interaction with the 7SK snRNP, we next addressed the 

influence of this regulation on P-TEFb dynamics. 
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3.2.4.2 R-FLIP, a measure for P-TEFb exploration at the nuclear scale  

Binding dominant dynamics of P-TEFb as observed by FRAP indicating an excess of CycT1 

binding sites across the nucleus. These observations are consistent with the ones made in the 

accompanying paper showing that P-TEFb nuclear explorations are guided by an underlying 

structure. Single particle tracking experiments however, could only account for short trajectories. 

Next, we addressed whether the nucleoplasmic exploration of P-TEFb is consistent with a guided 

exploration at the scale of the entire nucleoplasm. To reveal the nuclear search process at the 

scale of the entire nuclear compartment, we implemented the method of fluorescent loss in 

photobleaching (FLIP). FLIP was previously performed in the nucleus by (Kimura et al., 2002) 

to reveal differences in mobility of RNA Pol II upon treatment with different transcriptional 

inhibitors, mainly focusing on fixed fractions of PolII. (Miermont et al., 2013) used FLIP to 

measure turnover rates between nuclear and cytoplasmic pools of fluorescent molecules. 

Quantitative analysis of FLIP extended to analysis of dissociation kinetics of SF/A2 and 

fibrillarin from nuclear compartments(Phair and Misteli, 2000), while (Wüstner et al., 2012) 

describes a quantitative measure of FLIP to diagnose dynamics of the fluorophore in the 

bleached region in direct comparison to the unbleached regions by a stretched exponential 

function, giving a relative measure of mobility with the parameters fitted. 
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Figure 23: R-FLIP, a method for the measure of the inverse first passage time of the P-TEFb  

Panel A : Representation of ideal R-FLIP experiment. A small focus in the nucleus is constantly 

bleached in the nucleus which expresses PTEFb-GFP. R-FLIP curves are the decays as a 

function of distance to the bleaching spot. Panel B : Representation of the theoretical R-FLIP 

intensity profile  ),( trI  as a function of the distance to the bleaching spot.  The radial factor 

)(rΠ  is independent of the time and the decay rate ( )tϕ  is the same for every radius. Panel C : 

Comparison between ideal and experimental R-FLIP. For ideal R-FLIP, the volume is large 
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compared to the bleaching spot and there is no side effect of the nuclear boundaries. For 

experimental R-FLIP, the bleaching efficiency is spread in the laser beam profile and the 

bleaching is sequential. Panel D : Exemplary movie of a FLIP experiment conducted on a fixed 

cell of the stable cell line transfected with CycT1-GFP. Panel E : The R-FLIP graph of the decay 

in (D); We used that experiment to investigate the effect of the LASER beam. Panel F : The 

intensity profile )1,( srI shortly after laser lighting for the crosslinked and free CycT1-GFP. For 

short times, the main effect on the intensity profile is the LASER beam profile.  Panel G : 

Evolution of the radial factor ),(* trΠ  as a function of time for CycT1-GFP. The rescaling was 

done using the minimum and maximum intensity ),( trI  for different time t. For short times 

)(* rΠ  is the LASER beam profile is the main effect then )(* rΠ  reaches a long lasting form 

that is the convolution beween the LASER beam and diffusion. For long time ranges, the profile 

vanishes. Panel H : Decomposition of the R-FLIP curves according to time. The radial 

dependence is only expected to be measured at medium times. Panel I :  Computation of the 

Compactness Indicator (CI). We used the rescaled R-FLIP curves and fitted to a function of the 

form T

t

er

−

Π )(  for r between 2.5µm and 6µm. Fitting of a power law dependency on  )(rΠ  gives 

the compactness indicator CI. 

 

Here we introduce a spatial quantification method of FLIP for homogeneusly distributed 

fluorophores in the nuclear environment FLIP decays were quantified as a function of the radial 

distance to the bleached spot and abbreviated R-FLIP. In an R-FLIP experiment, the local loss of 

fluorescence corresponds to the probability that molecules present at time T0 to be replaced by 

molecules that have already at least once travelled through the bleached region at a particular 

time T. Thus, R-FLIP can be considered as a spatial measure of the inverse mean first passage 

time (ie. the survival time of the fluorophore) Figure 10 and Figure 23. By measuring the spatial 

inhomogeneity of the fluorescent decay, we are able to quantify the level of compactness of the 

fluorophore bleached Figure 23 I.  

For quantification, we implemented a continuous radial analysis and quantitative measure that 

we named a Compact Indicator (CI) Figure 23 H. R-FLIP datasets consist of a matrix of 

fluorescent intensities resolved in time and as a distance to the bleached spot. To extract 

information on the dynamics of fluorophores at different distances from the bleach spot, the 

direct contribution of the laser is calibrated and corrected using fixed cells (see Supplementary 

Information). For each radial annulus emerging from the bleach center, the fluorescent decay 

was fitted to an exponential of fixed temporal decay, and the radial kinetic parameter was 
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extracted Figure 23 kE  I. The radial dependence of this kinetic parameter, named compactness 

indicator CI, is a direct indicator of the exploration mode of the protein.  

The CI for a YFP tagged with a nuclear localization signal nls was measured and gave the 

reference for a non-specifically binding explorer while Cyclin T1 GFP served as a reference for a 

compact explorer. The observed difference is in agreement with single particle experiments 

reported on the previous result session. This result shows that indeed P-TEFb compact 

exploration is homogeneous and general over the whole nucleoplasm.  

To test the R-FLIP quantitative analysis, we performed R-FLIP in the nucleoplasm of cells 

transfected with YFP tagged with a nuclear localization signal nls, as well as on the TG1b 

CycT1-GFP cell line. We find two distinct radial dispersions of FLIP dynamics Accordingly, the 

resulting CI value is three times higher for CycT-GFP in comparison to YFPnls, indicating a 

fluorophore of higher compactness. This result shows that indeed P-TEFb compact exploration is 

homogeneous and general over the entire nucleoplasm. 
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3.2.4.3 7SK snRNP facilitates long-range exploration of P-TEFb 

 

Figure 24: FLIP reveals chaperon-regulated dynamics of P-TEFb Panel A : Western blot 

showing co-immunopercipitation of Hexim, a part of the 7SKsnRNP complex. In the second lane, 

upon addition of DRB showing breakdown of the 7SKsnRNP complex by absence of Hexim in the 

pull-down Panel B : Exemplary movie of the CycT1-GFP FLIP shows homogeneous decay of 
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fluorescence throughout the cytoplasm Panel C : Movie of the CycT1-GFP stable cell line 

treated with DRB shows a sink forming towards the laser bleach spot, i.e. an inhomogeneus 

decay of fluorescence. Panel D : The compactness indicator reveals higher values obtained by 

the FLIP curves of cells lacking the 7SKsnRNP complex due to DRB treatment. RNA interference 

against 7SK likewise breaks down 7SKsnRNP and reveals higher values of the CI compared to 

its Luciferase control. Panel E : SPT single molecule trajectory of CycT1-DENDRA2 shows a 

single molecule capable of diffusing over long distances  Panel F : MSD graph of CycT1-

DENDRA2 shows linear trend in log scale, fitable by a power law of exponent 0.6, indicative of 

anomalous diffusion Panel G : The angle distribution of CycT1 has a preference for the return 

angles, indicative of compact movement Panel H :The typical SPT trajectory of CycT1 obtained 

from nuclei treated with DRB shows a decrease in step size and confinement of movement: Panel 

I :MSD graph consistently plateaus at early time scales: Panel J :The angle distribution upon 

breakdown of 7SKsnRNP shows an even larger preference for the back-direction, indicative of 

an amplified compactness  

 

The binding nature of the P-TEFb remains unaltered upon loss of the 7SKsnRNP complex, as 

shown by FRAP and accumulation experiments.. This implies a global increase in interaction of 

the two molecules in absence of 7SKsnRNP. To investigate this phenomenon in terms of  nuclear 

dynamics, we conducted R-FLIP experiments on T1GB cells under conditions known to affect 

the equilibrium between the 7SK-P-TEFb complexes. Treating cells with 100uM DRB resulted 

in dissociation of the 7SKsnRNP complex Figure 24 A. FLIP recordings show a quasi-

homogeneous decay of fluorescence throughout the nucleoplasm in presence of the 7SKsnRNP 

complex, while in absence of the complex there is an inhomogeneity at the nucleoplasm forming 

a sink at the bleach spot .R-FLIP analysis consistently yields an increase of the CI value 

indicating more compact dynamics of P-TEFb in absence of the 7SKsnRNP complex. Likewise, 

RNA interference mediates knockdown of 7SKsnRNA. CI-values of 7SK RNAi showed an even 

sharper increase in compactness level, possibly due to a contribution of the kinase activity 

Figure 24 D 

In order to investigate the differences of compactness at the single molecule level, we used the 

method of sptPALM as described in the previous session to capture single molecule dynamics of 

P-TEFb in the nucleus. Single molecule measurements require sparse signal and thus allowed us 

to work at overexpression levels closer to the endogenous situation  

Trajectories of single molecules recorded by sptPALM showed significantly different signatures 

of the case with P-TEFb alone and the one treated with DRB. In the case where both complexes 

co-exist in the cell, it is possible to identify two different interchanging behaviors of the 
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molecule: one with a low displacement per time unit, and another one able to cover larger 

distances Figure 19. The case where 7SKsnRNP is dissociated from P-TEFb exhibits traces only 

with low displacements, consistent with a higher compactness as observed in FLIP results 

Figure 24 H. 

The mean square displacement obtained from these trajectories both show a subdiffusive 

behavior, as they are not directly proportional to the time. Fitting to the power law gives a 

anomalous coefficient of alpha = 0.6 for P-TEFb in presence of both complexes Figure 19. In the 

case of treatment with DRB, the MSD graph forms a plateau Figure 24 I and is not fittable by a 

power law. 

Consistently, the angle distribution of P-TEFb movement, calculated from the angle presented 

between two consecutive translocations shows preference for the reverse direction Figure 24 G 

indicating dependence on the geometry of exploration space, and thus compact modes of 

movement. This preference for the reverse direction is amplified Figure 24 J upon breakdown of 

7SKsnRNP, indicating higher compactness.  

 

3.2.4.4 P-TEFb nuclear distribution is limited by its binding to the transcriptional 

machinery  
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Figure 25: FLIP and SPT reveal RNA PolII as the binding substrate via the histidine-rich 

domain. Panel A : CycT1-YFPnls truncation was constructed removing the histidine rich domain 

known to interact with the CTD of the Rpb1 subuinit  Panel B :An exemplary movie of the FLIP 

conducted on a cell transiently transfected with CycT1(1-490)-YFPnls shows homogeneus decay 

throughout the nucleoplasm Panel C : As a control to (B), a movie of the transiently transfected 

CycT1-YFP shows attenuated diffusion as observed by the inhomogeneus decay of fluorescence 

Panel D : The CI value for (A) shows to be similar to the one upon degradation of binding 

substrate (alpha-amanitine treatment). The CI value for (B) is higher due to addition of the nls 

tag. Panel E : A CycT1 mutant was constructing to test the CTD binding by making a point 

mutation at the within the histidine rich region Panel F : The trajectory obtained resembles the 

one of treatment by alpha-amanitine, resembling large step size and area covered by exploration 

Panel G : The MSD likewise fits a pure diffusion model, yielding a straight line of slope 1 in the 

log scale against deltaT Panel H :The angle distribution is isotropic, indicating absolute 

freedoæm of diffusion within the nucleoplasm 
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 Next, we explored the relation between the presence of a functional RNAPolII complex in the 

nucleoplasm and the compactness of P-TEFb dynamics. We treat the cells with a massive dose of 

α-amanitine sufficient to trigger the complete degradation of the RNAPolII catalytic subunit 

Rpb1 within four hours Figure 25A. Upon treatment, P-TEFb dynamics exhibits a homogeneus 

decay of fluorescence in FLIP Figure 25B as compared to its control without alpha-amanitin 

Figure 25B and C. The CI obtained upon treatment with alpha-amanitine is comparable of that of 

the free nuclear fluorophore yfp-NLS. The CI is not sensitive to DRB Figure 25D 

Next, we pursued single molecule measurements of CycT1-DENDRA2 stable cell line under 

alpha-amanitin treatment. Consistently with our FLIP measurements, the fluorophore’s 

trajectories exhibit a fast-moving molecule, as the MSD graph shows a linear correlation with 

time Figure 25F, indicating free diffusion throughout the nuclear environment. The angle 

distribution of P-TEFb after alpha-amanitin treatment shows equal distribution at all angles 

Figure 25G, similar to the angular profile of free Dendra2 Figure 20. This indicates that P-TEFb, 

without the presence of its substrate Rpb1, is free to diffuse until it eventually hits the nuclear 

boundary. 

P-TEFb phosphorylates the Pol II CTD of the catalytic subunit of Rpb1 on 54 potential sites. 

While P-TEFb function in elongation control relates most likely to NELF and DSIF 

phosphorylation, the Pol II CTD is by far the most abundant target. It was shown that binding of 

P-TEFb to RNAPolII CTD is not mediated by the Cdk9 kinase but rather the C-terminal domain 

of Cyclin T1  

3.2.5 Discussion 

In the present work, we have addressed the nuclear dynamics of P-TEFb with several different 

imaging techniques in order to provide insight into the spatial and temporal factor of its 

regulation in vivo. 

,We address the spatial dynamics of P-TEFb by conducting fluorescence loss in photobleaching 

(FLIP). The results obtained from FLIP experiments clearly demonstrate attenuation in the 

mobility of P-TEFb in the case where only the small complex is present. Considering the sizes of 

the small and large complexes and the high density of the nucleus, this result might look 
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paradoxical at first. However, we have to remember that the small complex is the catalytically 

active one that is shown to bind to the RNA PolII, while the large is unable to bind.  

Consistent results were obtained in single molecule measurements: upon recording traces of 

single P-TEFb molecules and plotting the translocations into a histogram, one obtains a clear 

decrease in the long-range traveling population in the case where the large complex has been 

broken down. The population of the short-range traveling molecules rises at its expense. 

We conclude that the 7SKsnRNP acts as a nuclear transporter of the small catalytically active 

complex, and uses 3D diffusion to transport it throughout the nuclear environment. This 

indicates indeed that diffusion within the nucleus is a process that can tightly be regulated by the 

cell with means of sequestering the active into inert complexes that freely diffuse around the 

nucleus. The small complex sequestered within the big does not change its conformation, 

enabling fast release and recruitment to genes. The distribution of free P-TEFb in the form of the 

large complex thus presents the population efficient in recruiting factors to newly activated sites 

at longer distances from its initial positions, while the small complex is efficient in maintaining 

its pool of active complexes and reactivating genes at shorter distances to its initial starting 

position. 

3.2.6 Material and methods 

3.2.6.1 Cell Culture and Reagents 

Human U2OS osteosarcoma cells were cultured in phenol-red low D-glucose (1g/L) DMEM 

(Invitrogen) with 10% fetal calf serum (FCS). Cells were transfected by FuGene 6 transfection 

reagent for both transient and stable transfections. 

Stable cell line clones were selected by media containing 1.5mg/ml geneticin (GIBCO) which 

was changed every 3 days. Selection of clones was conducted after visual judgement – 

approximately 10days. CycT1-GFP cell lines were subcloned and selected according to their 

expression levels for the overexpression experiment. 

RNA interference was conducted with OPTIMEM and oligofectamine transfection reagent. The 

treatment lasted 3days involving 4hours/day of starvation and transfection.  
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3.2.6.2 Plasmids: 

CycT1-GFP at N1 (by Gaelle Diribarne) 

LacI-CFP 

MS2-Cherry 

YFPnls (Clontech) 

CycT1-YFPnls, CycT1 (1-490)- YFPnls, CycT1 (1-503)- YFPnls, CycT1 (1-533)- YFPnls, 

CycT1 (1-551)- YFPnls (by Nina Verstraete) 

Rpb1-YFP (by Vera Ruda) 

CycT1-DENDRA2 at N1 (by Florence Proux) 

siRNA: 

7SK siRNA (from OB lab Gaelle) 

Luciferase siRNA (from OB lab Gaelle) 

 

3.2.6.3 Drug Treatments 

DRB (5,6 Di-chloro-1-beta-D-Ribofuranosylbenzimidazole) (Sigma) was used to inhibit 

transcription at a concentration of 100dM, keeping the DMSO concentration at a 1000x dilution. 

DRB was added to the media maximally avoiding contact of solution with plastics to ensure the 

DRB concentration at cell level to be the one put into the solution.  

Alpha-amanitin (…) was incubated into the cells at a concentration of 100µg/ml over the course 

of 4h. 1hour before imaging/3h into alpha-amanitin treatement, DRB was added to the cells.  

For experiments involving the activation of the gene array, transcription was induced by addition 

of 1µg/ml doxycycline for 6 hours minimum to maximize the probability of steady state 

transcription during experiment. 

3.2.6.4 Antibodies 

Polyclonal goat anti-CycT1 (from Giuliana Napoletano, OB lab); rabbit anti-Rpb1, and rabbit 

anti-Hexim1 (OB lab).   

Secondary antibodies for Western/coIP Western: anti-rabbit HRP; anti-goat, anti-mouse HRP.  
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Secondary antibodies for Immunofluorescence: anti-goat Cy3, anti-rabbit Cy3.  

3.2.6.5 Western Blot 

Cells were lysed, boiled, sonicated and loaded on gel; then the denatured protein was transferred 

to a nitrocellulose membrane. The membrane was treated with goat antibody against CycT1 500x 

dilution, then secondary antibody (anti-goat HRP and anti-mouse-HRP at 7500x dilution and 

transferred to film.  

3.2.6.6 Co - Immunoprecipitation 

Cell lysates with/without DRB treatment were ran on a glycine gel, transferred on a 

nitrocellulose membrane, blocked and treated with the primary antibody Hexim1 C4 at 1:5000 

dilution and anti-CycT1 at 1:500 dilution; then washed, and treated with secondary antibody 

anti-rabbit HRP at a dilution of 1:5000, and anti CycT1 anti-mouse and anti-goat at 1:5000 

dilution each.  

3.2.6.7 Immunofluorescence 

Cells expressing LacI-CFP on coverslips were crosslinked with 4% formaldehyde; permeabilized 

with Triton x100; blocked with BSA 3%; then incubated with the primary (anti-goat CycT1 

1000x, anti-rabbit Rpb1 1000x dilution) and secondary antibodies (anti-goat-Cy3, anti-rabbit-

Cy3 1000x dilution) for the duration of 1hour each; then transferred with mounting media on 

microscope slides for imaging.  

3.2.6.8 Fluorescence Μicroscopy 

Images of fixed cells were obtained on a wide-field Olympus equipped with illumination box. 

All cells were imaged in z-stacks of 30 frames 200nm apart. Metamorph interface was used for 

acquisition.  

Live cell imaging was conducted on cells plated on 25mm coverslips in phenol-red-free DMEM. 

DRB was induced 1hour before imaging. Experiments were performed at 37oC using 

temperature control of stage, lid and objective by heat calibrator and 5% CO2. Occasionally L15 

was used as imaging medium in case of absence of CO2.  

FRAP and FLIP experiments were conducted on an inverted wide-field Nikon microscope With 

an oil-immersion 60x objective. The µscope is equipped with a DG4 illumination box and 
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Quantem camera as well as a laser box with 488nm Argon laser. Metamorph was used as the 

controlling interface.  

FRAP images were acquired at a fast-imaging protocol by cropping the area of imaging to 

include the entire nucleus only as a control area, and thus allowing an exposure time of 

15ms/frame. FRAP diffusion-coupling was tested bleaching increasing areas of bleach (FRAP 

recovery curve comparison at diameters of 0.8, 1.2, 1.6 and 2 µm; the Gaussian profile of bleach 

measured from a 2µm diameter bleach). The bleach duration was kept below 1/10th of the 

recovery time.  

FLIP was conducted by time-lapse of 100s pre-bleach and 500s of 1bleach/s with an exposure 

time of 50ms/frame.  

Single molecule measurements were conducted on a Nikon Ti. microscope and Andor camera 

equipped with a Mercury illumination lamp and lasers of 405nm, 561nm wavelength.  

GFP channel was visualized by the mercury lamp; while the red channel used laser illumination 

at 561nm visualization. Stochastic conversion of single DENDRA2 molecules was obtained by 

low power 405nm laser of pulse duration 10ms, interval 2s, calibrated to minimize possibility of 

new conversion before decay. The exposure time was 10ms with a writing delay of 2.5ms. 

Interface of image acquisition used is micromanager by ImageJ.  



Récamier Vincent – Thèse de doctorat - 2013 

136 

 



Récamier Vincent – Thèse de doctorat - 2013 

137 

 

 

3.3 Single cell correlation fractal dimension of chromatin.  

A framework to interpret 3D single molecule super-

resolution 

With: Ignacio Izeddin, Lana Bosanac and Xavier Darzacq 

3.3.1 Summary 

In the following paper we investigated the 3D position of H2B histones molecules inside the 

nucleus with superresolution microscopy. We showed that the relative position of H2B has the 

characteristics of a fractal structure. 

Method 

Microscopy 

We used PALM microscopy (Introduction 2.2.1.1) on U2OS osteo-sarchoma cell line that was 

preliminary transfected with H2B-Dendra2. The cells were fixed using para-formaldeide (PFA). 

With a deformable we induced astigmatism in the optical pathway to recover the z position of  

H2B-Dendra 2 with respect to the focal plane of the camera   (Introduction 2.2.1.3). We obtained 

the 3D position of 500 000 H2B molecules in a 600 nm thickness slice of the nucleus   

Statistics 

We considered the measured PALM distribution of H2B as the monte carlo estimation of a 

density (Introduction 2.2.1.2.2). We computed the pair distance distribution of H2B, namely the 

K Ripley   (Introduction 2.2.1.4). We found that it indeed have fractal scaling properties. 

Results and discussion 

We computed the correlation fractal dimension of chromatin and found a 2.6 value. We fully 

discussed the implication of this number in terms of chromatin conformation. Indeed, Chromatin 

is non-uniformly packed. This heterogeneity impacts the distance between  loci and is supposed 

to have a high impact on gene regulation. 
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3.3.2 Abstract:  

Chromatin is a major nuclear component and it is an active matter of debate to understand how it 

is folded and its implication in gene regulation. Several models coexist and are supported by 

Conformation capture experiments (Hi-C) and Fluorescent in situ hybridization. In a possible 

scenario, the fractal globule, chromatin folding generates strong relations linking nucleoplasmic 

proximity to genomic distances. An alternative hypothesis, the equilibrium globule, would be 

that  links between genomic and spatial distances are weak and rapidly vanish for distant loci. 

High-resolution imaging opens new possibilities to measure chromatin organization in situ. Here, 

we performed a direct measure of chromatin compaction at the single cell level. We used histone 

H2B, one of the 4 core proteins forming the nucleosome, as a chromatin density marker. Using 

photoactivated localization microscopy (PALM) and adaptive optics, we measured the three-

dimensional distribution of H2B with nanometric resolution. We computed the distribution of 

distances between every two points of the chromatin structure, namely the Ripley 

)(rK distribution. We found that the )(rK  distribution of H2B followed a power law, leading to 

a precise measurement of the chromatin correlation fractal dimension of 2.6.  Using 

photoactivable Histone H2B, we measured the dynamics of different chromatin domains in time 

over several hours and observed massive compaction and decompaction events As a result, the 

correlation fractal dimension of chromatin reported here can be interpreted as a measure of the 

distribution of sizes of topologically segregated domains that constantly evolve in time. This 

highly dynamic view of chromatin provides with a solid frame to interpret the different levels of 

chromatin organization known to regulate nuclear functions. 

 

3.3.3 Introduction 

Chromosomes are meter-long polymers that fold into a micrometric nucleus. Recent studies have 

shown that chromatin folding is not random with potential consequences in gene regulation 

(Fraser and Bickmore, 2007). One aspect of chromatin organization that has been intensively 

studied recently is the relation between the linear genetic distance s  along a chromosome and its 
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physical distance ( )sR  in the nucleus. During the interphase, chromosomes decondense and loci 

that are close on the linear DNA sequence could be segregated from each other.  However, it has 

long been shown that a certain degree of proximity is maintained along the cell cycle (van 

Dekken and Hulspas, 1993). Recent evidences for this nonrandom folding of the de-condensed 

chromatin were drawn from fluorescent in situ hybridization (FISH) (Mateos-Langerak et al., 

2009) that addresses the physical distance ( )sR  as a function of the linear distance on the 

chromosome s .   Chromosome conformation capture assays such as Hi-C also highlighted a 

relation in between the probability of contact )(sP
c

 and the physical 3D distance (XXX) 

averaged on a whole population of cells (Lieberman-Aiden et al., 2009) .   Taking all the inter-

loci distances lower than 10Mb and averaging them ,  FISH showed that  ( ) 3

1

ssR ∝   (Rosa and 

Everaers, 2008) and Hi-C that ( ) 1−
∝ ssP

c
   (Lieberman-Aiden et al., 2009) (Mirny, 2011),  and 

that the corresponding scaling exponents 
3

1
 and 1−  significantly deviate from the value 

( ) 2

1

ssR ∝  and ( ) 2

3
−

∝ ssP
c

 that was expected upon random organization of the genomic 

material. One possible explanation is that chromatin folds into a knot-less structure, a fractal 

globule that homogeneously fills the nuclear space (Grosberg et al., 1993). However such a 

description relies on nuclear DNA representation as a uniform space filling polymer. This 

assumption of uniformity can be questioned by any DNA stained image of nucleus such as DAPI 

that shows regions of lower and higher density.  An alternative hypothesis is a particular 

distribution of sizes of segregated DNA domains, from chromatin domains to super-domains and 

chromosome territories (Meaburn and Misteli, 2007). Recently an in-silico model “strings and 

binders” showed that it was possible to recover the scaling of ( )sR  and )(sP
c

found with Hi-C 

and FISH with DNA modeled as a self-avoiding polymer and a given surrounding concentration 

of binding proteins (Barbieri et al., 2012).  In a “strings and binders” model the apparent fractal 

exponents could be explained either by the equilibrium between two segregate states of DNA 

compaction or an equilibrium concentration of binders that would lead to a fractal organization. 

However such a model is purely stochastic with a random distribution of binding sites. It does 

not take into account the sequence specific nature of the DNA domains such as binding regions 
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(Bickmore and van Steensel, 2013) nor the known dynamics of chromatin(Dion and Gasser, 

2013). Chromosome conformation captures assays are also blind to deviation from equilibrium 

since measurements are retrieved from an average of millions of cells and it is impossible to 

distinguish a strong but transient interaction between loci from a weaker relation that is 

constitutive. To our knowledge, no studies so far have confronted the fractal exponent found in 

Hi-C and FISH to the non-uniform density of chromatin observed at the single cell level, 

although numerous efforts have been developed to reveal the fractal nature of single cell 

chromatin organization in eukaryotes nuclei (see reference (Bancaud et al., 2012) for a review 

and citations therein). 

 The first set of evidence of the fractal nature of the nucleoplasm came from the diffraction 

pattern of neutron scattering data (Lebedev et al., 2005) and by direct visualization of the nucleus 

with light microscopy. By imaging a May-Grünwald-Giemsa stained nucleus (Adam et al., 2006) 

or studying the movement of an inert tracer inside different nuclear compartments (Bancaud et 

al., 2009), regions of lower and higher density were observed evaluating a so-called mass fractal 

dimension of the nucleus. Unfortunately, a consensus has not been reached for this dimension, 

with reported values ranging from 2 to 2.8. The greatest shortcoming of these microscopic assays 

has been their limitation to two-dimensional imaging. In 2D microscopy, images are formed by 

projecting on a plane the 3D object captured within the focal depth of observation (typically ~ 

500-1000 nm). With a probability equal to 1, it is impossible to recover a fractal dimension 

ranging between 2 and 3 from a 2D projection (theorem 6.2 of reference (Falconer, 2003)). 

Therefore, the impact of imaging in 2D is largely under-evaluated in those studies, even though 

some rescaling methods were proposed. To overcome this limitation in the most straightforward 

manner, there is a need to acquire the experimental data in 3D.  

Photo-activated localization microscopy (PALM) (Betzig et al., 2006) is a technique that enables 

to retrieve the organization of proteins with a resolution lower than the fundamental diffraction 

limit of light. Initially developed for 2D imaging it has been extended to 3D by the induction of 

astigmatism in the optical path(Huang et al., 2008). The output of a PALM experiment are  the 

x,y, and z coordinate positions of a tagged protein of interest. Lists of points coordinates or 

“point pattern” have been studied for decades addressing the question of homogeneity (Diggle, 

2003). The Ripley K(r)  distribution of a point process is the inter-point distance distribution 
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(Ripley, 2004). This statistics has been recently used for analyzing PALM experiments in the 

case of specific enriched regions of proteins. When proteins gather in clusters, 

the )(rK distribution of PALM experiments can quantify the ratio of clusterization (Owen et al., 

2010), as well as the cluster size (Williamson et al., 2011).  Although Localization microscopy 

has already been applied to chromatin it has indeed been restricted to 2D projection along the 

focal depth of the set-up (Bohn et al., 2010). 

Here, we performed a direct visualization with 3D PALM microscopy of the chromatin structure 

using advanced adaptive optics (Izeddin et al., 2012). We detail a method to  quantify chromatin 

enrichment   at the nanometric scale, in the cellular nucleus of an osteosarcoma cell line (U2OS) 

in the inter-phase. We specifically address histone H2B, one of the 4 core proteins forming the 

nucleosomes which strongly bind to DNA (Mazza et al., 2012b).  H2B covers nearly all the 

cellular DNA fiber and can be used as a density reference for chromatin with super-resolution 

imaging techniques (Matsuda et al., 2010).  We computed the 3d )(rK  distribution of H2B and 

found that this protein does exhibit clusterization. Notably, the H2B clusters do not have any 

specific size within the range of the experimental limits (between 30nm to 1µm). Such an 

observation is coherent with a fractal nature of chromatin organization. We also found a power 

law dependency between the )(rK  distribution and that of a random distribution, with an 

exponent of 2.6 that is stable among the cell population. To assess the stability of such a 

structure, we performed H2B Photo-Activation assays on live cells labeling chromatin domains 

and found that this organization is very transient. This number, 2.6, corresponds the so-called 

“correlation fractal dimension of the chromatin” (Cheng and Agterberg, 1995a) m. As the 

correlation fractal dimension characterizes the fractal nature of the distance between two 

randomly chosen point of the chromatin structure, it can be confronted to the exponent found 

with Hi-C assays. It helps understand how inter-loci distances can be lower than expected upon a 

random organization of chromatin regardless their relative position on the DNA strand. 

3.3.4 Results 

3.3.4.1 PALM images of H2B heterogeneity 
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Figure 26:. H2B PALM localization inside the cellular nucleus. Panel A: Projection of a 3D 

PALM image of tagged histone H2B in the xy focal plane of the camera. The color code is local 

the density, estimated on a 100 nm circular sliding window showing heterogeneous regions that 

could be labeled as clusters. Inset: Image zoomed with a 10 nm binning, displaying an intra-

nuclear cluster. Panel B: H2B PALM detections spatially re- distributed over complete spatial 

randomness (CSR) in the nuclear envelope, with 100 nm circular sliding window density, 

showing no clusters. Panel C: PALM image of tagged histone H2B with local density estimated 

over a 1µm circular sliding window, showing an enrichment of H2B on the edges of the nucleus. 

Panel D: Density map estimated over the 50 nm annular regions defined by their distance to 

nuclear membrane. 
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In order to directly determine the spatial distribution of chromatin, we performed 3D PALM 

experiments of H2B tagged with the photoactivatable fluorescent protein Dendra2 (Baker et al., 

2010). We used an adaptive optics system, placed in the emission optical path between the 

microscope and the recording EMCCD, in order to induce an astigmatism deformation to the 

point-spread function (PSF) of the detected single molecules (SM). With such controlled 

deformation, we were able to determine the z position of the individual fluorophores within the 

focal depth of observation (Izeddin et al., 2012). We thus obtained the planar as well as axial 

position of H2B molecules with a pointing accuracy of ~ 15nm and ~ 30 nm, respectively. The 

observation was limited in the axial direction to a region of ~ 1 µm, with a Normal distribution 

of detections along the optical axis (FWHM ~ 600 nm) determined by the fundamental limit of 

the diffraction of light (Figure S 11) (Betzig et al., 2006) . Typically, we obtained ~ 500 000 

detections of H2B-Dendra2 molecules in one nucleus, within the aforementioned optical depth. 

For visualization purposes, we then represented the planar projection of the H2B distribution 

density, calculated for all the SM detections as the number of neighbors within a radius of 100 

nm (Figure 26A). Such image representation of the chromatin distribution revealed clusterization 

patterns, notably, but not only, within an annular region of 3 µm from the nuclear envelope. The 

clusterization and heterogeneity of H2B distribution is blatant when compared to an image where 

the experimental data points have been randomized within the nuclear volume, followed by the 

same image processing method (Figure 26Fig. 1B) 

The outcome of single-molecule based super-resolution microscopy experiments are lists of 

coordinates with a given localization accuracy. Points are dimensionless objects and therefore 

the outcome of the representation of point patterns is highly dependent on the chosen image 

rendering method. When the radius used to calculate the number of neighbors was increased to 1 

µm, the H2B clusters were not any longer visible in the image (Figure 26). Conversely, the H2B 

enrichment in the proximity of the nuclear membrane became all the more evident as it is when 

representing the density as a function of the distance to the membrane (Figure 26D). We can say 

that there is local enrichment of H2B in the nucleus and that the corresponding enriched regions 

can be selectively enlightened by different image rendering method. We therefore have an 

indication that H2B distribution cannot be accounted for simply by a random distribution of 

clusters of similar size and shape. The heterogeneous density of H2B in the nucleoplasm exists at 
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different sizes and for a more detailed description of H2B clusterization in 2D we refer to 

reference  (Bohn et al., 2010). 

The alternation of enriched and depleted regions raise the question of the average density of 

chromatin compared to random organization of the genome. Let’s note that pure spatial 

averaging would only smooth H2B density so that it would be undistinguishable from uniform 

distribution (Fig. S1 and Supplementary text 1). For that reason, only chromatin to chromatin 

distance can quantify the heterogeneity.  The inter-distance distribution )(rK  of single molecule 

detections of H2B is a suitable tool to further quantify the implication of the non-uniform 

chromatin on the expected distance between loci. 

 

3.3.4.2 Test against Complete Spatial Randomness (CSR) 

 

Figure 27:. Test of H2B distribution against complete spatial randomness.. Re-sampling test of 

the distribution of H2B detections inside the nucleus against Complete Spatial Randomness 

(CSR) based on the inter-point Palm distribution. The Palm distribution is the number of points 

that lie within a circular vicinity of a reference point, averaged on all possible reference. )(rK  

is the Palm  distribution of H2B detections and )(rK
u

  the  Palm distribution obtained under 

complete spatial randomness, averaged over 100 Monte Carlo repeats. For distance “r” 
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between 0 and 3um with a 10nm step, we computed )(rK   and )(rK
u

. We then plot 

)(rK against )(rK
u

 f. We also plot the 5% and 95% minimum and maximum quantile of the 

distribution that are hardly distinct due to the fast convergence of the statistic As the K statistic 

never lie in the quantile envelope, the test that the actual distribution of H2B detection could be 

observed with CSR is rejected at almost every scale the 10% confidence level. The two 

distributions cross at radius r=1µm that gives the distance at which H2B distribution is on 

average denser than CSR. Inset is a log-log representation that displays a power law 

dependence between )(rK  and )(rK
u

. 

 

The Ripley )(rK  distribution, is the reference function to assess the heterogeneity of lists of 

spatial coordinates or point patterns (Diggle, 2003). It is obtained by choosing a reference point 

coordinate, counting all the points that lie within a distance r of this reference, and finally 

averaging )(rK  for all the possible references. If one divides the )(rK  distribution by the 

average density of points of the region of interest, one gets a rescaled function that is invariant 

upon any stochastic diminution of the number of points also called  thinning (2007). This a 

crucial characteristic of the )(rK  distribution function that allows us to analyze PALM data 

which, by the nature of the technique, gives us access to a stochastic subset of the total number 

of H2B molecules. Moreover, it makes the )(rK  statistically independent from the level of H2B-

Dendra2 expression and we are therefore able to compare cells upon this criterion. DNA-FISH 

assays also statistically address )(rK  such the distance between loci but with the additional 

information of their position in the genome sequence and only for one or two sites, the averaging 

being done at the inter-cell level. 

It has recently been shown that experimental data resulting in point patterns in biology can be 

misinterpreted as clustered due to a low pointing accuracy or a poor number of observations 

(Weston et al., 2012). We therefore had to test whether the H2B PALM distribution significantly 

deviates from uniformity. We compared the )(rK  distribution of the experimental data to that of 

randomized data named complete spatial randomness (CSR) (Diggle, 2003) (Figure 27). We took 

exactly the same number of detections and disposed them randomly in the volume defined by the 

nuclear envelope and the focal depth. Here the distribution probability of SM detections along 

the optical axis was limiting but the shape and amplitude of this distribution D
µ is highly 

conserved in all the nuclear regions (Figure S 12). We could therefore use this distribution to 
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randomly distribute point along the z axis (see Supplementary Information).  We then computed 

the Ripley distribution of the CSR data for 100 different independent realizations. We obtained 

from this resampling approach the reference )(rK
u

 and the corresponding 5% and 95% quantiles 

that define the upper and lower limits of acceptance of uniformity at a particular radius. For 

every distance from 0 to 3 mµ  estimated within a 10nm interval, we obtained an envelope for 

)(rK  in which we could accept the complete spatial randomness of H2B-PALM. Due to a fast 

convergence of the statistics )(rK , this envelope is hardly distinguishable from the reference 

)(rK
u

. By plotting the points ))(),(( rKrK
u

 for all the distance “r”, that is K against 
u

K  

together with upper and lower limit envelope, we obtain a curve whose deviation from the line 

enables to compare the dataset spatial organization to that of the CSR generated dataset. 

The first observation is that the )(rK  distribution never lies in the min-max envelope around the 

line xy =  except when crossing. The value at which the cross is approximately r=1µm. This 

means that before r=1µm H2B PALM is on average enriched, so that clusters of size lower than 

1µm exist. After that limit, H2B PALM is depleted, thus r=1µm also corresponds to the average 

distance to a region of lower density. We have therefore a locally enriched distribution of H2B 

inside the nucleus.  Provided the fact that H2B distributes homogeneously along the chromatin 

fiber, we have therefore chromatin clusters.  

It has been shown that quantifying detections from a Palm image can lead to an over estimation 

of the numbers of particles as the fluorophore blinks (Owen et al., 2012) that could be 

responsible for local enrichment. Some methods have been proposed to reduce this bias with 

computational efforts  (Sengupta and Lippincott-Schwartz, 2012).  We chose to reduce the 

number of detection incorporated into our analysis according to increasingly strong blinking 

schemes and to compute the )(rK  statistic on the resulted data Figure S 13). Blinking is shown to 

have a minimal contribution to our measurements and the conclusions are still valid even with a 

drastic rejection of the all possible blinking events. We also ruled out a possible effect of the 

labeling by repeating the same measurement on the fluorescent free protein Dendra2 without 

finding the same shape of the CSR test and no enrichment at the cell membrane (Figure S 14). 

Interestingly, the nucleoli of the cell were enriched in Dendra2 and the CSR test was able to 
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recover this specific enrichment. We investigated several models of cluster distribution to show 

that the CSR test was indeed able to assess model specificities (Figure S 15). 

The )(rK  distribution has been used in previous studies to compute cluster sizes and 

distributions on PALM data (Hsu and Baumgart, 2011)(Williamson et al., 2011) or electron 

microscopy data(Prior et al., 2003). We investigated the H2B cluster dimension and recovered 

the specific enrichment to the distance r=1µm (Supplementary text 2 and Figure S6). We also 

showed that after this limit, the deviation of )(rK from )(rK
u

is mainly due to the depletion of 

H2B-PALM segregated in enriched areas which sets an upper limit for our study. Let’s note that 

this threshold is approximately our focal depth so that there is no evidence that our assumptions 

are not valid at longer length scale. 

 

3.3.4.3 Interpretation of the CSR test 

The cluster interpretation of the )(rK function rely on the assumption that there is a typical size 

for enriched and depleted regions, which is not true if the distribution of sizes is scale-less such 

as in the case of a fractal structure. The deviation of )(rK from )(rK
u

 after the 1µm limit shows 

that effects of the depletion could be seen on larger scale, and the shape of the )(rK  and )(rK
u

 

is compatible with a power law. A mean least square log log fit (Figure 27 inset) gives the 

dependence
9.0)()( rKrK

u
∝

. To summarize this result, we can say that the local concentration at 

a given scale is lower than the same concentration measured on a larger scale. This is compatible 

with a reduction of dimension. Indeed the portion of space occupied by a fractal is also a power 

law whose exponent  is the fractal dimension (Falconer, 2003).  

Theoretical fractals are mathematical objects built upon the repetition of simple rules that also 

exhibit subunits of various sizes (Mandelbrot, 1975). A fractal can be defined by the following 

properties: i) a certain degree of self-similarity, ii) an irregular contour and iii) the existence of a 

fractal dimension that extends the notion of Euclidean dimension (1D, 2D and 3D) to non-integer 

figures (Falconer, 2003). Self-organized fractals are common in nature and fractals have the very 

interesting property of summarizing heterogeneity into one single number: the fractal dimension. 

Typically, a 3D embedded object with a fractal dimension between 2 and 3 will exhibit 
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lacunarities at every length scale, thus never completely filling its environment.  The most 

common mathematical definition of fractal dimension is the Haussdorff dimension f but its exact 

formulation makes it irrelevant to a finite data set (Falconer, 2003). Alternative approaches have 

been proposed to estimate fractal dimensions that are related to the Hausdorff dimension on real 

data.  Among them, the Ripley distribution )(rK  can give access to the so-called correlation 

fractal dimension df  of point patterns (Ogata and Katsura, 1991), if we are able to find a spatial 

range when it scales as a power law as a function to the distance. 

The test against complete spatial randomness is a preliminary way to compute the correlation 

fractal dimension of H2B PALM. A reasonable assumption would be that the complete spatial 

randomness has a correlation fractal dimension of 3 so that 3)( rrK
u

∝  where r  is the distance. 

Extending the power law dependence that we have found, we get 9.03)( ×

∝ rrK
u

 so that the 

correlation fractal dimension the H2B localization is 7.29.03 ≈× . This calculation may be 

untrue since we do not know the influence of the confinement nor the spatial range of radius 

where the fractal dimension would be valid and it does not give any spatial range for validity. To 

accept or reject the fractal nature of chromatin, we had to use a statistic that is independent from 

cell shape. 

3.3.4.4 Correlation fractal dimension 
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Figure 28: Correlation fractal dimension of H2b distribution. Panel A: Ripley inter-point 

distribution for H2B PALM )(ˆ rK , corrected from focal depth and  as a function of the distance 

correction estimated between 0 and 1um displaying a power law dependence.  This power law 

can be interpreted as the correlation fractal dimension H2B. Panel B: Box counting estimation 

of the correlation fractal dimension. The method is less efficient due to side effects of regions of 

zero densities, but reveals a scaling factor of the second moment )2(τ , that is close to the value 

Df that was measured with Ripley )(ˆ rK . 

In order to compare the chromatin structure of different cells, independent of the shape or 

volume of the nucleus, we treated the nuclear envelope as a restricted region of interest whose 

effect needed to be corrected. We used the isotropic correction protocols first introduced by 

Ripley (Ripley, 2004). The basis of this correction is to weight each pair of detections as a 

function of their relative distance in the )(rK  statistic to compensate the bias introduced by the 

envelope. We also introduced a focal depth correction to obtain to obtain a corrected )(ˆ rK that 

only depends on the distance r (see Supplementary Information). The )(ˆ rK  statistic was 

drastically limiting as the weight smoothed all heterogeneities for distance further than 1µm 

(Figure S 16). Furthermore, the fact that H2B-PALM is enriched close to the cell membrane 

contradicts the isotropic assumption of the correction. Despite these limitations, the corrected 

)(ˆ rK  shows a good match with a power law of value 05.063.2 ±  (Figure 28). Both the )(ˆ rK  

and )(rK  scaling are conserved among the cell population (Figure S6 and  Figure S7).  This 

number is a reliable estimate of the correlation fractal dimension df  of H2B-PALM.   

The correlation fractal dimension of a density can also be recovered by ordinary box counting 

measure. In that case, dividing the space with a cubic mesh, df should be equivalent to the 

power law exponent of the sum of square inner density of the meshes as a function of their size, 

ie the second moment exponent )2(τ . In Figure 3B we show the result of the box counting 

evaluation of )2(τ . Due to the 1µm focal depth of the experiment, boxes were restricted to the 

size of 1µm but still do not overlap for big boxes even with density correction. Despite those 

limitations, for a very small range of boxes, a log log fit of the box counting curve gives the 

value  7.2)2( =τ  that is the value obtained with the CSR test and K Ripley distribution. )2(τ  is 

indeed characteristic of multi-fractals that extend the notion of fractals to densities(Falconer, 
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2003). The multi-fractal framework can also display a fractal spectrum that ranges from 0 to 2.8 

(Figure S7) whose implication and formalism is discussed in Supplementary text 3. 

FiSH and Hi-C is ensemble averages and any fluctuation in the cell population of the distance 

between loci is smoothed by those techniques. In order to confront our measure to FISH or Hi-C 

data, we needed to know its stability between cells and within time. Since super-resolution is not 

suitable for live cell imaging, we chose a different and more qualitative approach to monitor 

through time chromatin compaction.  

 

3.3.4.5 Photo-activation of H2B 
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Figure 29:. Time evolution of H2B density Panel A: U2OS cell nucleus in the inter phase 

transfected with Photo Activatable –GFP (PA-GFP) tagged H2B. We photo-activated a linear 

region, and then followed the evolution of the with one frame every 45 minutes. Panel  B: 3 

photo-activated sub-regions the nucleus followed through time during a 9 hours experiment. We 

were able to see condensation and de-condensation of the chromatin showing that H2B fractal is 

not stable.  

 

The fractal nature of chromatin folding is stable among the population (Figure S6 and  Figure 

S7), but we can ask the following question: “Is this structure stable through the cell fate?”, a 

question that ca not be answered with 3D PALM since the experiment is conducted on fixed cells 

and live PALM imaging is too transient to recover such a structure. We therefore proceeded to 

photo-activation assay. We transfected cells with H2B tagged with photo-activatable GFP and 

draw a pattern with a UV laser on the tagged H2B protein scaffold (Figure 29A). We then 

followed the condensation and de-condensation of sub-regions of the interphase chromatin fiber 

for several hours taking an image every 15 mn (Figure 29B). Such events show that the 

chromatin density is not stable through time and is constantly rearranged. 

We therefore have a self-organized yet transient organization of the chromatin. This time 

dependence makes our result not possible to be fully recovered from ensemble averages such the 

ones obtained by FISH or Hi-C. Since we do not have information of the position of condensed 

regions along the DNA chain, we ca not know if such events occur always at the same loci 

among the cell population.  Interestingly we previously observed that chromatin organization in 

strongly affected by ATP depletion (Shav-Tal et al., 2004)  also reflecting this constant 

remodeling. To summarize this last result, the fractal correlation is a fixed characteristic on a 

moving chromatin. 

3.3.5 Discussion 

With this work, we were able to measure the three-dimensional distribution of H2B molecules 

inside the nucleus of human U2OS cells, using PALM microscopy. We confirmed that H2B 

distribution is heterogeneous in the nucleoplasm, and we could determine that chromatin is 

organized in regions of enriched density that can be seen at different length scales, from 10 nm to 

1 µm (the technical limit of our measure). The single-molecule nature of PALM microscopy 

allowed us to address the Ripley distribution of H2B, i.e. the distribution of distances between all 
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detected H2B molecules. With these tools, we developed an analytical method that revealed that 

H2B distribution deviates significantly from that of complete spatial randomness. Moreover, this 

deviation follows a power law which exponent corresponds to a fractal dimension of 2.6, an 

invariant value among different cells analyzed.  
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Figure 30: Superposition of H2B fractal density on the fractal and equilibrium globule model. 

Panel A: The Hilbert space filling curve that homogeneously fills the 2D space used as an 

graphic example of the space filling DNA fractal globule. By applying a density over the 

representation, we gets the heterogeneously space filling curve of Panel B. Panel C: The 

physical distance as a function of the genomic distance for  4 models: the equilibrium globule, 

the equilibrium globule with fractal density, the fractal globule and the fractal globule with 

fractal density, with respective power laws of 
2

1
,0.43, 

3

1
 and 0.29. 

A chromatin fiber with a spatial distribution of correlation fractal dimension of 2.6 will exhibit 

zones of enriched and zones of depleted density. These enriched and depleted regions will be 

juxtaposed, and found at all the length scales. Subsequently, close pairs of loci are more 

numerous than expected upon random organization. The finding that loci are closer than 

expected by a random distribution taking into account only their genomic distance was the 

reason for the development of the fractal globule model of chromatin organization as opposed to 

the equilibrium globule (Mirny, 2011). The fractal globule is also a non-equilibrium state that 

represents of chromatin as a non-entangled space filling polymer. However, the nature of our 

result significantly differs from the globule interpretation. Chromatin conformation capture 

related techniques are averaged over a large population of cells and thus unable to recover the 

correlation fractal dimension we present here.. While every tested cell showed the same 

correlation fractal dimension of 2.6, Photo-activation assays also show that chromatin 

compaction is the result of a highly dynamic system.  Since ensemble measurements are blind to 

cell to cell and dynamic variation, we can hypothesized that the correlation dimension we present 
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here is an additional layer of organization to the globule model. Although there is no exact 

representation of the fractal globule, the best mathematical model is a space-filling curve such as 

the Hilbert curve (Figure 30A). On a fractal globule, the average physical distance ( )sR   

between two loci as a function of their relative genomic distance s  scales as a power law:  

( ) 3

1

ssR ∝  that is significantly different from the exponent expected at the equilibrium state, the 

equilibrium globule, for which 2

1

)( ssR
mequilibriu

∝ . On a chromatin structure with correlation 

fractal dimension of 2.6, two loci taken at random will have a relative distance “lower than 

expected” because they have higher chance to have be picked in the same cluster and chromatin 

density is no longer uniform (Figure 30B). More precisely, if e
R  is the distance expected if the 

space was homogenously filed and o
R  is the observed distance we get: 3

6.2

eo
RR ∝ . Taken 

together with the fractal globule exponent, we obtain:  29.09

6.2

)( sssR
o

≈∝ . The same calculus 

can be extended to the equilibrium globule and in both cases existence of chromatin density 

clusters adds a higher level of complexity in the understanding of chromatin folding creating a 

relation between genomic and physical distances lower than expected (Figure 30C).  

The previous results only hold if chromatin is indeed a globule. The validity of the globule 

interpretation of the link between genomic and physical distance is strongly discussed among the 

scientific community (Bickmore and van Steensel, 2013) and our result may be in line with this 

controversy. On a fractal or on equilibrium globule the density of chromatin is uniform, which 

we have proven to be wrong. Rejecting globule interpretation, we believe the cluster 

organization of chromatin  we present here is rather consistent with the existence of DNA 

domains of higher compaction such as the topological associated domains found with 

chromosome conformation capture related techniques (Bickmore and van Steensel, 2013). As a 

result of our direct observation and analysis of the correlation fractal dimension, we can now 

assert that such domains do not have a characteristic size but rather can be found at all sizes. 

With all the evidences in hand, the chromatin environment we propose is a non-equilibrium state 

that favors interactions between distant loci. This organization extends the genomic distance at 

which distant enhancers can act on specific genes.  
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Our 3D-PALM assay cannot discriminate between different models of dependence between 

genomic and physical distance since we only have access to foci and not to sequence loci. 

However, our live cell experiment rules out the possibility that the observed non-equilibrium 

chromatin organization is the result of insufficient relaxation time in between mitotic 

condensations which was proposed as a possible explanation for the fractal globule. Our results 

are in favor of a model where chromatin organization is actively maintained by enzymes acting 

on chromatin compaction. In such a dynamic model, particular genomic regions constantly 

explore their neighboring DNA constantly sampling distant enhancers. Therefore transcription 

activation involving a distant enhancer would just be the result of the trapping of a chromatin 

conformation that occurs naturally even for loci separated by large genomic distances. 

3.3.6 Material and Methods 

3.3.6.1 PALM imaging 

Microscopic image has a resolution limited by Abbe’s formula  
NA

d
2

λ
= , where, λ and NA are 

respectively the illumination wavelength and the numerical aperture of the objective. It gives the 

value nmd 184
49.12

551
≈

×

=  for an inverted microscope under green illumination that is far from 

the precision needed to assess nucleus organization. The PALM principle is to resolve tagged 

proteins sequentially so that they never overlap. We transfected U2OS cells with a tagged 

version of H2B. The tag we used is dendra 2, a photo-switchable fluorochrom,  that can be 

turned from a green emitting state to a red emitting state under UV illumination. After fixation 

with para- formaldeid, we stochastically photo activate the sample to reach single molecule 

signal (Betzig et al., 2006). The single molecule signal is the so-called point spread function 

whose center gives the localization of the single protein in the focal plane xy of the camera.  

To determine the z position of the molecule, we used  deformable mirror to induce astigmatism 

on the Point Spread Function (Izeddin et al., 2012). Therefore, by fitting the signal with a 2D 

Gaussian with free sx and sy width, we are able to compute the x and y position with 10-20nm 

precision accuracy as well as the sx/sy ratio (Sergé et al., 2008). With the computation of 

calibration curves on beads preliminarily deposed on the coverslip we can estimate the z axis 

position with a 50nm pointing accuracy 
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3.3.6.2 Focal depth and Z correction 

The distribution of H2B-PALM )(z
D

µ along the z axis is limited by the focal depth of the 

camera. )(z
D

µ is the convolution between the real distributions of position )(zµ  and a detection 

bias  that favors positions in the focal plane of the camera. This detection bias varies from one 

experiment to another as a function of the noise level, but is remarkably stable among different 

regions of the cell (Figure S1). 

As we are acquiring H2B positions on a large area, the best assumption is the stationarity  of the 

point pattern In the z direction so that )(z
D

µ is the best estimator of )(zµ (Baddeley, 2004).  We 

assumed that this distribution )(z
D

µ  is independent of the real distribution of H2B position 

),,( zyxµ that we would have obtained without this bias, so that, with Bayes theorem: 

 

)(

),,('
),,(

z

zyx
zyx

D
µ

µ
µ =

 
( 89 ) 

where ),,(' zyxµ is the measured distribution of H2B detections in the nucleus.  

Density measurement of the box counting method where subsequently corrected using a 10 nm 

binning estimation of this distribution.  

Drawing CSR points, one needs to define the boundaries of the distribution. In the z direction, 

the distribution was drawn according to the selection bias )(z
D

µ . In the x y plane the limit of the 

cell was defined as the convex envelope of the z projected PALM image of H2B with 10nm 

bining,  and  a 10 nm opening an closure of the image to exclude isolated detection.   

)(),( zyx
Du

µµ M where ),( yx
u

µ  is uniform inside the convex envelope.   

3.3.6.3 Isotropic correction of the )(rK  distribution 

The )(rK  distribution is an ever-increasing function, sensitive to pointing accuracy (Kagan, 

2007) and highly dependent of the embedded volume. The latter can be clearly observed when 

considering a point pattern randomly distributed in a circular or spherical domain of radius R. In 

that case, the )(rK  function exhibits a saturation behavior at distance 
1+D

R
, where D is the D is 

the embedded dimension 2 or 3, for the circular and the spherical case, respectively (Kagan, 
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2007). For computational speed and efficiency, we pre-estimated those weights and stored them 

as an image before computing the corrected )(ˆ rK  statistic. In those weights, we also integrated 

the limiting focal depth. 

We assume that the cell boundaries is independent from the z direction so that the theoretical 

weights can be expressed in the following way: 

 

2
4

)(2

r

drrirw

W

ji

jir

Dij

ij
π

µπ∫
−

−−=

+××

=  
( 90 ) 

where ij
w

is the Ripley weight and is estimated on the 2D projection of the nucleus in the focal 

plane of the camera. However, the correction is very computer time consuming and is to be made 

on all the pairs of H2B detections. To get around this problem, we estimated the Ripley weight 

on a 10nm grid and then interpolated the results. The 2D weight ij
w

was estimated by the 

convolution of the binary image of the nuclear envelope with a circular mask for successive 

radius between 10nm and 3um every 10nm All those manipulations make the estimation a lot 

faster, since most weight estimation are stored in images. However, as the Ripley weights 

increase quadratically as a a function of the distance to the focal plane, we had to restrict our 

analysis for reference point i  of the )(rK  distribution to a region were the z distribution is 

relatively high, within the 100nm peak of the distribution.  
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3.4 Yeast locus mobility 

with Judith Miné-Hattab, Ignacio Izeddin, Rodney Rothstein and Xavier Darzacq 

This is a work in progress. Most of the results shown here are still debated and investigated by 

authors.  

3.4.1 Introduction 

Chromosomes are meter long molecules that fold into a micrometric envelope, the nucleus.  This 

folding is not static, but dynamic even in the interphase when chromosome are de-condensed 

(Miné-Hattab and Rothstein, 2013). Saccharomyces cerevisiae yeast is a model organism that has 

been intensively used to study chromosome mobility (Fung et al., 1998) (Heun et al., 2001). Recent 

works in Saccharomyces cerevisiae yeast have shown that the resulting mobility is related with 

the cellular functions or dysfunctions. For instance transcription (Cabal et al., 2006), cancer 

(Fudenberg et al., 2011), or double strand break (DSB) significantly modify loci movement. 

DSB is the accidental breaking of the DNA strand that has the potential to dramatically alter the 

genetic material. One pathway to repair DSBs is by homologous recombination. The broken loci 

will pair with its corresponding allele which will be used as a template for DNA repair. In yeast, 

recent studies reveal that chromosome ability to explore its environment is significantly 

increased following DSB induction (Miné-Hattab and Rothstein, 2012)(Dion and Gasser, 2013) 

Surprisingly, the increased mobility was not because DSB would create a loose DNA chain, 

since, in 80% of the cases both broken double strands stayed glue together (ref).   

 There are some specific features in the yeast nucleus that has proven or is supposed to have 

impact on loci mobility. Among those features, some are mechanical constraints that are not 

sequence specific. Its genome is composed of 16 chromosomes in the haploid form and 16 pairs 

in the diploid form. The chromosome in anchored in nucleoplasm membrane in the telomeric 

region and in the centromeric region via the spindle pole body (SPB). Motions of those 

anchoring exist either for the telomere (Hozé et al., 2013) or the SPB but have proven to be order 

of magnitudes slower than the intra chromosomal motion. Aside mechanical constrains, several 
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nuclear factors have also a role to play in chromosome mobility, and most of them have been 

studied in the specific case of DSB. Among those factors are ATP dependent chromatin 

remodelers, and proteins of the repair complex composed of protein rad51 among others . The 

relative importance of mechanical compared to chemical factor is still debated. It has recently 

been hypothesized that a simple mechanical model could recover most of the characteristic of the 

motion observer in-vivo(Wong et al.) . 

To quantify the mobility of the loci, the standard statistic remains the mean square displacement 

(MSD), but several models have been confronted to measure MSD. A proposed model is 

confined diffusion, free diffusion in a restricted area (Miné-Hattab and Rothstein, 2012). An 

alternative model that has been proposed to is anomalous diffusion, characterized by a power law 

form of the MSD∝ t
α . The confined diffusion model implies an upper limit for the MSD that is 

not satisfied with anomalous diffusion model.  Anomalous diffusion has been theorized to be 

crucial to understand reaction kinetics at the individual reactant scale, which chromosome 

pairing is an example  (Bénichou et al., 2010).  Different anomalous exponent α  have been 

reported in the literature ranging from 0.4 to 0.5(Cabal et al., 2006),(Weber et al., 2010b) which 

has been related to polymer physics, but so far no consensus no consensus exists. 

We have followed the movement of a yeast locus consisted of repeated LacO or TetO repeats 

that binds to fluorescently tagged protein for different times and recovered that the locus was 

moving sub-diffusively at least up to our experimental limit. Surprisingly, the anomalous 

exponent was dependent of the exposure time of the camera that would define regimes of the 

observed motion. As expected in the case of DSB, either randomly induced by d-irradiation or 

site specific with the I-Scel system, the mobility was increased. We measured this increase with a 

higher anomalous coefficient. We did our measurement on diploid cells. On haploid cells, the 

motion was measured less anomalous and features the 0.5 exponent that was previously 

reported(Bancaud, 2012). Those results are coherent with a model of chromosome as free 

polymers with different degree of interminglement that was proposed by PG de Gennes as the 

reptation model (de Gennes, 1971). 
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3.4.2 Results 

We used the construction of Miné-hattab et al. (Miné-Hattab and Rothstein, 2012) in which two 

homologous loci (URA3 on each chromosome V) are fluorescently labelled by inserting a 

LacO/LacI-YFP and a TetO/TetR-RFP array respectively. We also labelled the SPB by fusing 

SPC110 to YFP. A specific DSB could be induced with galactose via an I-scel site near TetO 

array (Figure 31 A and B).  We imaged diploid cells in S phase when a bud was forming in the 

periphery of the membrane and recorded the loci position, provided that they stay in the back 

focal plane of the camera. We used three different exposure times for recording the position of 

the locus: 0.005s, 0.05s and 0.5s. For long exposure time (0.05-0.5s), we used the SPB as a 

reference point to correct the displacements of the locus inside the cell. 
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Figure 31:.Different regimes of movement as a function of the exposure time. Panel A: 

Description of the strain used to study chromosome dynamics. The tetO array (3x112 copies) is 

adjacenton chromosome V at URA3 (top). The Rad52, TetR and Spindle Pole Body (SPB) 

proteins are tagged with CFP, RFP and YFP, respectively. Some strains also contain a 

galactose-inducible I-SceI insertedat the LYS2 locus. (b) DIC, CFP, RFP and YFP images. 

Flattened images of all 15 z -stacks are shown inmaximum z -projection. In the absence of a 

DSB, there is no Rad52 focusand each chromosome V is visualized by an RFP and YFP focus. 

Scale bar:1 µm. Panel C, D E: Global Mean square displacement, time and ensemble averaged, 

of the movement of the locus in diploïd yeast for different exposure times in S phase. The time 
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upper bound was set as one third of the longest recorded trajectory. 3 trajectories out of 15 and 

1 trajectories out of 7 were excluded respectively for exposure time  0.05s and 0.005s, for 

aberrant  displacements one order of magnitude higher than the other trajectories. The error bar 

is the 95% confidence interval of the mean estimated by bootstrap. We fitted  the data with 

ordinary least square fitting  to a function of the form batrf +=
α)(  with constraint 0>b . 

Panel F Global mean square displacement in log log scale showing the 3 different regimes. 

 

After tracking we plot the time and ensemble averaged MSD up  to 1/3 of the recorded longest 

trajectory. Less than 10% of the recorded trajectories were excluded from the analysis due to an 

average squared displacement one order of magnitude larger (Figure 31 C, D and E).  We fitted 

the resulted MSD to a power law and found very good agreement. In log log scale the power law 

exponent of each graph is blatant (Figure 31 F). Fitting MSD to a power law has been the subject 

of discussion in the scientific community (Destainville et al., 2008) (Saxton, 2012b). Authors 

shown that power law exponents can appear as artifact in the case of confined diffusion (Lill et 

al., 2012) or due to a bad pointing accuracy in log-log scale (Martin et al., 2002). We fitted the 

MSD either in lin-lin scale with a positive offset term or in log log and found similar values 

which discarding artifact from a bad pointing accuracy(Figure S 20). We also try to fit the data to 

an exponential form that would account for confined diffusion(Wieser and Schütz, 2008) without 

satisfactory results(Figure S 21). Since the power law exponent is real, yeast locus motion can be 

labelled as sub-diffusive (Metzler R. and Klafter J., 2000).     

The most surprising aspect of the anomalous fit is that we did not find the same anomalous 

coefficient as a function of the exposure time. The anomalous exponents were respectively 0.22, 

0.34 and 0.41 for exposure time 0.005s, 0.05s and 0.5s respectively. Although surprising, those 

results were coherent with one-another. Reproducing 0.05s exposure time data from 0.005s 

exposure time position averaging and 0.5s from 0.005s exposure time, we were able to recover 

the exact same anomalous coefficient as the raw data (Figure S 22). 
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Figure 32:.Evolution of the anomalous coefficient after double stand break (DSB). Panel A 

strain with γ- irradiation of 100Gy that would cause an average 10 double strand breaks per 

nucleus. Panel B Co-localisation of the locus with a rad52 foci Panel C and D Global Mean 

square displacement for 5ms  nd 50ms exposure time 

 

We investigated the several perturbations of the cell in relation with DNA repair. Inducing 

random DSBs with γ-irradiation, we observed the increase of mobility that was previously 

reported. The anomalous exponent shifted from 0.34 for the control to 0.42 (Figure 32)..  
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Figure 33: Global mean square 

displacement for haploïd strain. The 

anomalous exponent is fit in lin-lin  

 

We also investigated ploidy since authors have reported a 0.5 exponent from anomalous 

diffusion of loci (Bancaud, 2012) and found the same exponent which is a proof of the 

reproducibility and the reliability of our approach (Figure 33). 

3.4.3 Discussion 

3.4.3.1 Comparison of the measured anomalous coefficients to previous studies 

Anomalous exponents of the MSD were previously reported in the literature describing the 

motion of loci in yeast. To our knowledge the first reported exponent was 0.42 by Cabal et 

al.(Cabal et al., 2006).   Weber et al found in bacteria an exponent of 0.39 (Weber et al., 2010b) 

which was similar to the “comportment” observed in yeast(Weber et al., 2012b). Those two 

studies were performed using a same exposure time of the camera of 0.2s. The value ~0.4 was 

consequently considered as the standard value for anomalous loci movement inside the nucleus 

(Zimmer and Fabre, 2011) and is coherent with the 0.41 value we recovered at 0.5s exposure 

time. However, this exponent is not the only one measured. Albert and colleagues recently 

reported an exponent of 0.5 with also a 0.2s exposure time (Albert et al., 2013).  Those exponent 

where confronted to various polymer models 

DNA is indeed a polymer although it is unclear if the monomeric unit that should be considered 

inside the nucleus is the base or the nucleosome.  Two models have predicted the anomalous 

motion of monomers of a polymer in a diluted solution: the Rouse model (Rouse, 1953) and the 
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Zimm model (Zimm, 1956). The Rouse model predicts a 
2

1
exponent and the Zimm model a 

3

1
exponent. Since 0.5 exponent is the Rouse A Bancaud tried to recover a persistence length 

from his data and the Rouse model. However the nanometric value of the recovered length 

however does not match the 50nm has been previously measured in-vitro (Garcia et al., 2007). 

The Rouse model not only theorized a 
2

1
 exponent but also a free diffusion regime as time 

longer than 
R

T , the time needed for the Rouse chain to relax. The existence of different regimes 

of sub-diffusion has been previously shown in higher eukaryotes. On U2OS osteosarcoma cell 

lines, studying the motion of telomeres labelled with GFP-RFP2, Bronstein et al found 3 

anomalous exponents 0.32, 0.51 and 1.15 respectively at 100Htz, 5Htz and 0.05 Htz (Bronstein 

et al., 2009).  In mouse embryos, Roukos et al recently exhibited averaged MSD that were 

apparently free diffusive and therefore with an exponent of ~1 ( Figure3A of (Roukos et al., 

2013)). 

The ~0.4 anomalous exponent cannot be predicted by Rouse and Zimm models and even less the 

0.22 and 0.34 that we have measured at fast frame rates. Simulations have shown that high 

confinement of the polymer would result in monomeric anomalous exponent of at least 0.46 in 

the Rouse regime (Weber et al., 2010a). To solve that problem Weber et al introduced an 

additional parameter to explain the low 0.39 coefficient, the visco-elasticity of the nucleoplasm 

so that motion was proposed to undergo a Rouse regime but with fractional dynamics(Weber et 

al., 2010a).  
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3.4.3.2 De Gennes’s Reptation model 

 

Figure 34: Entangled polymer interpretation of the anomalous exponent. Panel A: 

Classification of the time regime for various anomalous exponents for entangled polymer 

solution. 
T
σ is the time needed for a monomer reach the boundaries imposed by entanglements. 

T
R is  the time needed for the chain to relax at entanglement coils. Panel B Different scenarios 

for exposure time 0.05s. Panel B1 in a diploïd cell, the level of entanglement is high and we are 

in a coil regime. Panel B2 in the case of a DSB, relaxing time at the coil is reduced at the site by 

the repair complex that gather the chain together. Panel B3 For random DSB, the chain length 

reduced either by repair complex gathering or just cut. TR , the time for the whole rouse chain to 
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relax is therefor reduced.   Panel B4: For haploïd cells, the level of entanglement is lowed than 

for diploïd cells and the regime is shifted to the reputation mode.    

 

The Rouse model cannot explain anomalous exponent as low as measured, but in the case of 

high interminglement of polymer chains, another model was developed that could predict 

anomalous exponent as low as 
4

1
.  In 1971, PG de Gennes introduced the reptation model  of 

individual  polymer motion(de Gennes, 1971). In a reptation mode of motion, the polymeric 

chain is constrained through succesive  coils that define a tube in which the motion of the 

polymer occurs. In  1982,  De Gennes  explicited three different regimes of sub-diffusion of 

individual monomers  (de Gennes, 1982a). Those three different regimes are bounded by time 

σ
T and the Rouse time 

R
T , which is the time for the whole chain to relax at the coils (Figure 34 

Panel A). For regime lower than 
σ

T , the monomer does not encounter adjacent polymer chains 

and the motion is Rouse like. For regimes t  with 
R

TtT <<
σ

 the motion is at “coil equilibrium “ 

and its main characteristic  is the back and forth  movement at the coil. The motion on diploid 

cell with 0.005s exposure time seems to match this description of frequent re-sampling. When 

the motion is averaged with higher exposure time (0.05s and 0.5s) , it changes regime so that we 

get closer to the Rouse time
R

T . Let’s note that the exponent 
2

1
 and 

4

1
proposed for the tube 

regime came indeed respectively random walks on the diffusion reptation tube and all its 

possible conformation, ensemble averaged. For that reason, those exponents cannot be recovered 

from an individual monomeric MSD unless the observed time would be so long that we switch 

regime. 

Another argument in favour of the reptation model is the difference of regimes observed between 

haploid and diploid cells at sT 05.0
exp

= . The Rouse time is function of the interminglement 

degree that itself depends on the concentration of polymers. Haploid cells have half the genetic 

material of diploid cell and super-resolution imaging of the chromatin are in favour of a lower 

degree of crowding in haploid yeast nucleus (data not shown). For that reason motion in haploid 

cell is rather in the reptation regime (Figure 34 B4).    



Récamier Vincent – Thèse de doctorat - 2013 

168 

 

3.4.3.3 Double strands break and reptation 

With the reptation model in mind, what would be the implication of a DSB on the broken locus 

motion?  At sT 05.0
exp

= , we have measured a higher anomalous coefficient compared to control 

for either I-Scel site induced double strand break or random double strand break induced by 

irradiation. For that reason we switch regimes compared to simple diploid cells and switching 

can be either towards a lower or higher time regime. 

The bigger mobility that was previously reported(Miné-Hattab and Rothstein, 2012) is not in 

favour of a reduced time regime. Indeed, it is much more in favour of a decreased rouse time 
R

T . 

Since the Rouse time depends on the chain length, it is possible that the repair complex gatherers 

individual monomers, so that the time to pass through a coil will be reduced(Figure 4 Panel B). 

Such a scenario however poorly accounts for the reduced mobility that was also observed in the 

case of random induced double strand break Figure 34 B).  The change of conformation of the 

DNA chain in the case of DSB will need to be further investigated.  

3.4.3.4 Scanning efficiency of sub-diffusive motion of Loci 

As a conclusion, we have shown that locus motion in yeast was sub-diffusive with different 

anomalous coefficients representing different regimes. Those regimes are well described by the 

reptation model of movement of entangled polymers. The anomalous exponent accounts for 

recurrent motion, with frequent resampling of the space. For that reason anomalous diffusion can 

have drastic implication on cell DNA reaction kinetics such as chromosome pairing (Bénichou et 

al., 2010) 

What the reptation model does not take into account however is the larger scale barriers that 

confine the motion. Loci position is confined in micrometric domains (Berger et al., 2008)  

whose boundaries are supposed to be reached at longer scales that our study. In the case of 

chromosome pairing, it is unclear what is predominant in the search time. If the broken allele and 

its homologue are physically close then reaction time will obey “non markovian reaction 

kinetics” (Guérin et al., 2012). If the broken allele are segregated far away from each other   then 

it’s rather the confinement and would be a key parameter of the search time (Agmon et al., 

2013). In the case of double strand break, the constraints induced by the interminglement of the 
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chromosome are reduced. This brings together chemical nuclear factor action and biophysical 

constraints to explain the increased mobility of broken locus. 
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4 Conclusion 

 

“An intellect which at a certain moment would know all forces that set nature in motion, and all 

positions of all items of which nature is composed, if this intellect were also vast enough to 

submit these data to analysis, it would embrace in a single formula the movements of the greatest 

bodies of the universe and those of the tiniest atom; for such an intellect nothing would be 

uncertain and the future just like the past would be present before its eyes.” 

“Une intelligence qui pour un instant donné connaîtrait toutes les forces dont la nature est animée 

et la situation respective des êtres qui la composent, si d'ailleurs elle était assez vaste pour 

soumettre ces données à l'analyse, embrasserait dans la même formule les mouvements des plus 

grands corps de l'universe et ceux du plus léger atome; rien ne serait incertain pour elle, et 

l'avenir comme le passé serait présent a ses yeux.” 

Pierre Simon de Laplace 

 Laplace’s deterministic assertion is the dream of every scientist. In cellular biology, there is no 

lower scale than the molecule. Aside their chemical properties, the bio-molecules’ precise 

motion inside cells is the ultimate data to understand the clock of cell metabolism. Indeed, 

cellular functions are time regulated, especially chemical reactions inside the nucleus. Among 

nuclear reactions, genes transcription is a striking example of a reaction regulated at the single 

molecule level. There are, for most genes, only a few copies in the genome and therefore a few 

places to bind for gene regulators.     

Fluorescent microscopy has shed light on cellular functions. During half a century, numerous 

breakthroughs have increased the resolution of the technique so that the tiny details of the cell 

architecture can now be imaged live. However, until recently, only the bulk motion and position 

of molecules could be extracted by the technique. Thanks to some genius inventors who found 

ways to break the fundamental resolution limit of microscopy, we can nowadays detect and 

follow cellular single molecules with ordinary inverted microscopes. In order to reach such a 

resolution, there is an experimental trade-off. Single molecule microscopy requires sparse data 

and is time consuming to get a sufficient sampling of cells. Another limitation is the indirect 

availability of the molecule position and displacements. Image acquisition needs to be processed 
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by algorithms, whose numerous steps are also sources of error. Some efforts have been 

undertaken and superesolution currently provides robust cellular molecule trajectories.     

When it comes to precise quantification of the cellular interactions, nuclear single molecule 

microscopy is, to my opinion, still an emerging field. Bulk fluorescent imaging provides direct 

spatial and time image correlation and averaging. Finding the mean comportment of a molecule 

from an ensemble of trajectories is not as straightforward. Once the possible averaging artifacts 

ruled out, the wide range of possible spatial statistics on single molecule trajectories helps us to 

understand the way a molecule is going to find its partner in the nucleus. 

We have investigated the motion of nuclear elements with single molecule microscopy. We have 

shown that the chemical properties of the nuclear elements strongly affect their mode of motion. 

With the example of the transcription factor P-TEFb, we proved that regulators such as 

chaperons do not only move the chemical equilibrium but also change the type of nuclear 

exploration of regulated proteins. One key parameter to understand nuclear reaction is the 

structure of the nucleus itself. With single molecule microscopy, we can now extract the 3D 

organization of the nucleus. Specifically addressing the de-condensed nuclear DNA, chromatin, 

we have effectively established that it has fractal properties. Finally we have used single 

molecule to quantify the fundamental determinants of DNA motion in yeast.  

Single molecule microscopy is now pushing its own limits. It was long restricted to surface 

imaging in 2D and we obtained among the first results of deep samples imaging in 3D. 

Fluorochrom will soon be accurately followed for minutes before bleaching. The time frontier 

will be however the harder to cross since it not only depends on the chemistry but also on the 

ability of the experimentalist to efficiently track the molecules. However, the time range restricts 

single molecule imaging to chemical reactions rather than cellular physiology. In the end, there is 

a limit that cellular molecule live cell imaging will probably never cross. To image a single 

molecule, the experimentalist needs the molecule environment not to emit light. For that reason, 

live cell single molecule imaging will always be blind to concentration. We can see live nuclear 

reactions at single molecule level but Laplace’s dream of a single molecule metabolism will 

never be achieved. 
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6 Supplementary information 

6.1 I-Spt-PALM 

6.1.1 Supplementary Figures 

 

Figure S 1: Motion blur and detection algorithm 

In panel A, schematics of the experimental set-up. The activation (405 nm) laser and the 

excitation (561 nm) laser were aligned on a single beam using a dichroic beamsplitter. Their 

intensity and on/off switching ratio were independently controlled with an acousto-optic tunable 

filter (AOTF). The combined laser beam was expanded through a beam expander and focused on 

the rear plane of the objective in an inverted microscope, with the help of a long-pass dichroic. 

The emission from the sample was imaged through the tube lens with an EMCCD. Panel B 

shows the transition of a fast diffusing particle to a bound state. .The image of the moving 

particle results in a motion blur whereas the image of the  bound molecule is a well-defined PSF. 

In panel C, schematics of the steps followed by the detection algorithm for both a well-defined 

PSF and a motion blur. The initial image (i) was smoothed by a Gaussian mask and the 

threshold value set as the 80% percentile of the raw image (ii). Finally, the image was binarized 

according to the threshold and aggregates of sufficient size set as a positive detection. Panel D 

shows the estimation of the experimental localization accuracy computed for an immobile-like 

H2B protein. The position of the centroid of 29 consecutive detections represents the 

experimental error of the detection. Computation of the standard deviation of the mean along the 

X and Y axes is a measure of the pointing accuracy. 
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Figure S 2: Tracking algorithm In A, decay of fluorescence intensity of the ensemble of 

Dendra2 fluorophores in the nucleus of a cell, after strong pulsed activation. The decay was 

fitted to a single exponential of lifetime τ = 600 ms. After 5 second of illumination, 99.9999% of 

the particles have bleached, allowing us to compute the misconnection probability. For each 

detected molecule, detections located at a time distance of at least five seconds were taken into 

account. Those detections have a negligible probability of 10-6 to arise from the same protein. 

For a given radius R, we could therefore compute the expected number of misconnections. In 

panel B, the number of connections, misconnections, and their difference as a function of the cut-

off tracking radius R, for each protein under study are shown. Gradual increase of the cut-off 

distance increases the number of both connections and misconnections. The optimal cut-off 

radius R is reached when the number of connections reaches a plateau and only the number of 

misconnections increases. For all the proteins, we found an optimal value of ~ 2 µm. 
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Figure S 3: Localization accuracy and detection efficiency as a function of diffusion 

coefficient In panels A and B, step translocation histograms as retrieved by the detection and 

tracking algorithms on simulated movies of particles following pure Brownian diffusion, with 

different diffusion coefficients (D = 1 µm2/s and D = 10 µm2/s for A and B, respectively). In 

panel C, the localization accuracy of the detection is plotted as a function of the diffusion 

coefficient of the particle, for a series of simulated movies with increasing diffusion coefficient 

(0.001, 0.01, 0.1, 1, 10, and 20 µm2/s). In panel D, the percentage of detected particles is plotted 

as a function their distance to the focal plane, averaged over the acquisition time, for two 

diffusion coefficients: 1 µm2/s and 10 µm2/s. 
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Figure S 4 Analysis of the cumulative distribution function of step translocations for c-Myc 
Cumulative distribution function (CDF) of the step translocations is plotted in red for three 

different time intervals (1∆t, 3∆t and 6∆t in panels A, B, and C, respectively; ∆t = 10.5 ms). The 

fit of the CDF is shown for 1 (dotted line) 2 (dashed line) and 3 (solid line) Brownian diffusive 

populations. In the inset, the residuals of the fits are shown. On the right hand side, the step 

translocation histograms from which the CDF were calculated, shown with the results of the 

CDF fit for 1, 2, and 3 populations. At increasing lag times, 3 diffusive species were needed to 

retrieve a good fit of the data. In panel D the temporal evolution of the exponential coefficient  

for each population is shown. The diffusion coefficient for each population was calculated by a 

linear regression of the first four points of the MSD. In panel E, a simulation was performed 

using the results of the measurement of the diffusing coefficients and corresponding rescaled 

proportions (D1 = 0 µm2/s, 9%; D2 = 1.4 µm2/s, 20%; D3 = 14.4 µm2/s, 70%) and the 

resulting MSD is shown.  
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Figure S 5 Histogram of single translocations for c-Myc and P-TEFb Histograms of single 

step translocation lengths for c-Myc (A) and P-TEFb (B), for 1∆t = 10.5 ms. Black curves are 

the result of the fit of the cumulative distribution function with three populations. Note that both 

histograms span within the same range of lengths. 

 

 

 

Figure S 6 Cumulative histogram of square displacements rescaled in time For “free” 

Dendra2 (A), c-Myc (B) and P-TEFb (C), cumulative histograms of the square displacements 

rescaled in time to ∆tα, for increasing lag times. Only the data obtained from P-TEFb show a 

collapse of the curves, indicating the goodness of the fit to the anomalous diffusion model. 
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Figure S 7 Angular distribution and its temporal evolution without immobile steps The angular 

distribution and its temporal evolution is calculated for consecutive translocations whose 

summed distance (from position 1 to position 2 plus distance from position 2 to position 3, i.e. 

2∆t) is larger than 0.1 µm. For each molecule (Dendra2, A; H2B, B; c-Myc, C; P-TEFb, D) 

distribution histogram of the angle θ formed between the vectors of two consecutive 

translocation steps (2∆t, in black) and its temporal evolution (up to 10∆t) is plotted. ∆t = 10.5 

ms. 
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Figure S 8 Supplemental Figure S4: Population exclusion In panel A, the average single step 

translocations (∆t = 10.5 ms) plotted as a function of the length of the trace for “free” Dendra2. 

In panel B, the number of detected translocations is shown for increasing diffusion coefficient 

(0.001, 0.01, 0.1, 1, 10, and 20 µm2/s) for simulated movies of the same duration, volume and 

particle concentration (one single diffusing particle). Simulations with a mixture of two diffusive 

species with different diffusion coefficients of 1 µm2/s and 10 µm2/s were also performed. The 

translocation histogram in panel C shows the effect of the bias due to the lower percentage of 

detections of fast particles. The same effect can be observed at larger lag times in the difference 

for the theoretical and measured averaged MSD shown in panel D. 
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Figure S 9 Mean first passage times with Df = 2.2 and Df = 3 Mean first passage time (MFPT) 

as a function of the initial distance to the target for c-Myc (non-compact exploration; Df = 3, 

Dw = 2, and diffusion coefficient D = 9.8 µm2/s) and P-TEFb calculated with two fractal 

dimensions: Df = 2.2 in (A), and Df = 3 in (B) (Dw = 3.3, and scale factor of the MSD fit D = 

7.8). The MFPT was calculated for three different target sizes: 1 nm, 10 nm, and 100 nm (in A, 

the three curves overlap in the case of P-TEFb). 

 

Figure S 10 Supplemental Figure S9: Continuous-time random walk In A, ensemble averaged 

mean square displacement (MSD) for a continuous-time random walk (CTRW) on a cubic lattice, 

with a heavy-tailed probability distribution of power -1.6 and a position recorded every 1000 

steps. The MSD exhibits an anomalous curvature. The corresponding angular distribution is 

shown in panel B. The angular distribution of angles is symmetric and uniform at all time scales. 
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6.1.2 Supplementary texts 

6.1.2.1 Detection and tracking of single molecules 

6.1.2.1.1 Particle detection 

The diffusion of the molecules imaged in the nucleus of eukaryotes can be as fast as ~ 10 µm2/s. 

This implies that the detected molecules can travel a distance larger than the diffraction limit of 

light (~ 250 nm) during the characteristic acquisition time (10 ms). The intensity profile is 

therefore a convolution between the Airy pattern of the point spread function (PSF) and the 

trajectory of the particle during the 10 ms acquisition time (Figure 17, panel b). While such 

motion blur contains potentially useful information (English et al., 2011), it has some detrimental 

consequences: a decrease of the SNR and the ineffectiveness of traditional Gaussian fit 

localization algorithms. An approach, demonstrated in bacteria, to minimize the blurring effect 

consists in illuminating the sample with brief (1 ms or less) and intense (up to 100 kW/cm2) laser 

pulses. In bacteria, this stroboscopic method is all the more necessary since the extension of the 

motion blur is often comparable to the size of the cell itself (section of 1 µm2) (English et al., 

2011),. However, given the larger dimension (section ~ 200 µm2) of a mammalian nucleus, this 

method requires high laser power, not practical with standard microscopes or live cell 

microscopy due to phototoxicity effects. Hence, we favored an approach using lower intensity (~ 

4 kW/cm2) and longer illumination time (~ 10 ms), limited by the readout rate of our camera. At 

this time scale, trajectories are not affected by the nuclear confinement. 

In this case, the emission of fast diffusing single fluorophores cannot be detected with traditional 

two-dimensional Gaussian fit algorithms (Cheezum et al., 2001) (Abraham et al., 2009). We 

developed an alternative, comprehensive algorithm capable of detecting fast diffusing molecules 

that typically have low signal to noise ratio (SNR) as well as immobile particles with higher 

SNR.  

For each frame, background intensity was estimated at each pixel as the median intensity of the 

pixel over the entire movie. This background was subsequently subtracted from the raw image. 

Fluorescence signal from individual molecules may still appear as an aggregate of disconnected 

pixels, therefore a smoothing step was applied using a Gaussian mask with standard deviation of 

σ = 121 nm. Those pixels with an intensity corresponding to the highest 20% of the non-
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smoothed (but background corrected) image were selected (Fig. S1, panel C). At such threshold 

level random noise fluctuations were still included in the pixel selection, we therefore 

disregarded any spot that spanned less than 0.2 µm² (~20 pixels, or about half the theoretical 

optical response of the system). Individual pixel aggregates were then selected for each frame, 

with one additional constraint to account for molecules diffusing outside and back inside the 

focal plane during the acquisition time; we considered detected spots closer than 500 nm as 

originating from the same molecule. The position of each spot was calculated as the center of 

mass of the pixel aggregate as a good estimator of the particle position suggested by 

deconvolution approaches (Michalet, 2010). 

We tested our detection algorithm with simulated movies consisting of white noise (without 

single particles signals) with pixel intensity values and standard deviation comparable to the 

background noise of our live cell data, resulting on a detection rate of 10-6 detections per frames 

per µm², three orders of magnitude lower than the typical detection rates obtained with the 

experimental data. 

The localization accuracy of the detection algorithm could also be estimated. We calculated the 

standard deviation of the position coordinates of a H2B molecule, detected in 290 consecutive 

frames (3 seconds tracking) with no apparent diffusion. As shown in Fig. S1, panel D, we 

obtained a localization accuracy of ~ 70 nm. 

6.1.2.1.2 Tracking 

In order to connect consecutive detections of one given molecule, we defined the maximum 

distance R allowed for the translocation of a single step of the particle. For each single particle 

detection, the radius R defined an area centered on the particle position at time T on the 

consecutive frame at T+∆t. When a detection at T+∆t was found within the area defined by R, 

the two detections were linked in a trajectory. When two or more particles were detected within 

this area, the trajectory was truncated and the positions considered as the first detection of new 

trajectories. When the detection  of one particle could be included in two different trajectories, 

both trajectories were also truncated, and the detection disregarded. We defined such a restrictive 

policy of tracking in order to reduce the number of misconnections, or false-positive tracking 

connections. A misconnection occurs when two consecutives detections from two different 
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molecules are included in the same tracking sequence. Therefore, when there is any ambiguity 

between two spatially closed detections the algorithm truncates the trajectories. 

Such restricting tracking policy reduced the number of misconnection but also reduced the total 

number of traces suitable for analysis. Therefore, in order to set an appropriate maximum radius 

R, we computed the probability of detecting two different molecules in consecutive frames 

within a distance lower than R. 

6.1.2.1.3 Maximum tracking radius R and misconnection probability 

Considering the detection of a given molecule in consecutive frames we could estimate the 

probability of tracking error by determining the local density of molecules different than the 

molecule of interest. In order to do so, we determined the local particle density at a time point 

where the probability of detecting the same particle is close to zero. We estimated the 

fluorescence photobleaching characteristic time under our experimental conditions by measuring 

the fluorescence lifetime of an ensemble of proteins in the nucleus, after a high intensity 

activation pulse, and under usual imaging conditions (Fig. S2, panel A). We measured a 

fluorescence half-life of ~ 600 ms, suggesting that the probability of a molecule photobleaching 

between two consecutive frames is 0.02. After 5 seconds (476 frames) of the initial detection, it 

is highly improbable (0.0001 probability) that a detection originates from the same molecule. For 

each molecule detected, we could therefore calculate the number of detections around the same 

spatial coordinates but at a time separation of 5 seconds or more and thus estimate the average 

local density within a radius R of the molecule. 

Considering the set of all the detections , where  are the spatial coordinates and 

 the time, for each detection  we defined , the total number of frames recorded more than 5 

seconds after each particular detection . The detections made during this period are estimators of 

the local density around detection . We therefore defined  as the total number of 

detections during these time-shifted frames within a distance smaller than R (i.e. the total number 

of detections within R, after 5 seconds). Being M the total number of detections, we could 

calculate the total number of expected misconnections within a radius R as follows: 

 



Récamier Vincent – Thèse de doctorat - 2013 

208 

 

 

 
( 91 ) 

By comparing the value obtained from this expression to the number of connections we 

measured, we could estimate the probability to miss-connect two detections. The total number of 

connections C(R) could be then calculated integrating both, the misconnections and the positive 

translocations. For every detection i we calculated Ci(R), the number of detections at the 

consecutive frame at a distance smaller than R. The sum of all detections was therefore: 

 

 
( 92 ) 

In Fig. S2, panel B, we plotted the measured W(R) and C(R) as well as their difference, for the 

free fluorophore Dendra2 as well as for all the proteins under study. We observed that for R 

bigger than ~ 2 µm the total number tracking assignments was dominated by misconnections; we 

therefore set the maximum allowed radius R for tracking under our imaging conditions to be 2 

µm. 

A tracking misconnection could occur at the first or last translocations of a trace, or in the middle 

of the trajectory. If a false connection occurred in the middle of the trace, its origin was the 

erroneous link of two traces from different molecules, being the first one detected until frame i 

and the second one frame i+1, appearing in the vicinity of the first molecule. The probability of 

such event to happen is very low because the number of single frame detections outnumbered by 

two orders of magnitude the number of trajectories with at least two consecutive detections. We 

could therefore consider that the tracking error misconnections occurred mainly at the beginning 

or end of the trajectories. Taking into account only the detections that are at the extremities of a 

trajectory, after tracking with a maximum radius of 2µm, we could therefore estimate the 

probability of false connection from the fraction of misconnections as: 

 

 
( 93 ) 
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Where and  stand for the first order derivative of and  that were estimated for 

mathematical convenience every 0.05 µm and then linearly extrapolated. 

To extend the notion of one-step translocation error probability to several steps displacement, the 

probability for a trajectory to be false was set to be the mean of all the one-step translocations 

that composed the trajectory. 

 

6.1.2.2 Cumulative histogram analysis and mean square displacement 

The data of proteins diffusing in the nuclear volume is the 2D projection of a 3D motion. 

Provided the nucleus is isotropic along the three spatial axes X, Y, and Z, the XY projection data 

fully reflects the 3D behavior of the molecules. 

The analysis of the cumulative translocations histogram allows the determination of individual 

components from a mixed set of translocations, i.e. translocation steps that cannot be governed 

by a single diffusion coefficient. For the 1∆t time step (10.5 ms), the cumulative distribution 

function (CDF) is a function  that represents the probability that a random translocation 

may be found at a distance smaller than  . 

The cumulative function weighted with the probability of misconnection is: 

 

 
( 95 ) 

where the sum is computed for all the recorded translocations ,   represents the heavy side 

step function, which is 1 for  and 0 for  and  is the misconnection 

probability that was described in the previous section . 

The probability distribution of 2D translocations for a single diffusion coefficient  and an inter-

frame lag time is given by . This imposes a CDF of translocations for a set of 

translocations that can be described by single population of diffusion to be: 
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When the dynamics pool reflects a range of square-translocations with different diffusion 

kinetics, this single exponential function fails to describe the empirical CDF. In the case of k 

diffusing species, the empirical CDF is best described by   

 
 ( 97 ) 

where represents the fraction of translocations in the probability distribution imposed by a 

diffusion coefficient . The normalization condition  has to be satisfied, 

and k, the number of different diffusing populations, is as small as possible.  

The evaluation of the CDF for different time lags (∆t = 1, 2, … 10) allowed us to estimate the 

individual diffusion coefficients (Wieser and Schütz, 2008) (Fig. 2C). This analysis of the 

cumulative distribution function fits the experimental data with a model of Brownian diffusion of 

different populations. Further analysis of the mean square displacement of translocations and the 

step correlation was necessary to determine the nature of diffusion and validate or refuse the 

simple Brownian model independently for each protein. 

6.1.2.2.1 Mean Square Displacement (MSD) 

We first computed the mean square displacement of translocations for each individual trace j 

(MSDj) of length n, weighted with the probability of misconnection previously described. The 

MSDj is therefore:  

 

 
( 98 ) 

where  is the translocation distance between the frames   and . The MSDj for 

individual traces was then computed for increasing lag times up to 10∆t (t = 1∆t, 2∆t, … 10∆t) 

where ∆t is the experimental inter-frame time interval of 10.5 ms. We then calculated the average 

mean square displacement MSD(t) for t = 1∆t, 2∆t, … 10∆t as the mean of all the individual 

traces MSDj(t)  for all the trajectories that had a length of at least equal to t. Finally, error bars for 
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each data point of the average MSD(t) were calculated as the 95% interval of confidence 

computed by bootstrap resampling of the population. 

 

6.1.2.3 Numerical simulations 

In order to validate our detection and tracking algorithms and analysis, we performed a series of 

numerical simulations. These simulations consisted in movies of particles with the optical 

response of our optical system, diffusing in 3D Brownian motion with a given diffusion 

coefficient. The signal was then corrupted with additional noise composed by a mixture of 

Gaussian and shot noise that mimicked our raw experimental data. 

6.1.2.3.1 Parameters of the simulation 

The PSF of the single particle signal was obtained with the PSF Lab software (Nasse and Woehl, 

2010). The parameters used to retrieve the PSF were: emission wavelength 600 nm, objective 

NA 1.49, coverslip thickness 150 µm, oil refractive index 1.51, coverslip refractive index 1.52, 

and sample refractive index 1.3. The PSF was computed for a total height of 4 µm in layers of 

100nm and radius of 2 µm, on a pixelated image with pixel size of 107 nm. Intermediate values 

were estimated by linear interpolation of the 8 surrounding points. 

In order to estimate the noise, we analyzed the distribution of the pixel intensity values of 

experimental movies after removing the values of those pixels included in any detection. We 

then fitted this distribution to a combination of Gaussian and Poisson distributions, with a result 

of 95% Poisson distribution ( 20=λ ) multiplied by a factor determined by the camera gain, and 

5% white noise. 

The movement of the particles was simulated to take place in the interior of a closed box with 

similar dimensions to those of the eukaryotes nucleus: 10 µm x 10 µm x 6 µm. The particle 

density inside the box was set to be constant (ie the photobleaching rate and the photoactivation 

rate were the same), and therefore the  ratio of disappearance and appearance of a new particle at  

a random position was set accordingly to the measured photobleaching half-life. 

The movie images were finally obtained as a convolution of the PSF with the displacement of the 

particle in the pixelated matrix during the acquisition time. We computed this by estimating the 

position (x,y,z) every 1 ms (10 estimations per frame)  and by adding the convolved PSF at 



Récamier Vincent – Thèse de doctorat - 2013 

212 

 

(x,y,z) to the final image. To take into account the displacement during the EMCCD transfer 

time between two consecutives images, an additional unrecorded movement of 0.5 ms was added 

to the simulation. 

6.1.2.3.2 Reconstruction of diffusion 

We then run the simulated movies of one single population of 3D Brownian diffusing particles 

through our detection and tracking algorithms. The histogram of translocations retrieved from 

the analysis of simulated films was in very good agreement with the theoretical values for 

diffusion coefficients between 0.1 µm²/s and 20 µm²/s (Fig. S3, panels A and B).  

6.1.2.3.3 Diffusion coefficient boundaries 

In our experiments, the minimum inter-frame displacement was limited by the experimental 

single molecule localization accuracy. The pointing error can be defined as the distance between 

the real centroid of the particle and the coordinates of the detection (Fig. S3, panel C). Using our 

simulations, we could determine the localization accuracy as the mean value of the pointing 

error, as a function of the diffusion coefficient. It was estimated to be ~ 70 nm with a dramatic 

increase for particles with diffusion coefficient higher than 10 µm2/s. This is in agreement with 

the experimental estimation of the localization accuracy retrieved from the consecutive 

detections of an immobile H2B molecule (Fig. S1, panel D). The lower bound of a detectable 

diffusion coefficient was thus  ~ 0.01 µm2/s. 

The analysis of simulated movies also allowed us to determine the percentage of detected 

particles. We could determine that the percentage of detections followed a Gaussian-like 

distribution along the optical axis, centered at the focal plane (Fig. S3, panel D). The width of 

such distribution determined the focal depth and it is in good agreement with the axial width of 

the PSF in our experimental conditions (~ 600 nm). Moreover, the amplitude of the detection 

distribution was dependent on the diffusion coefficient of the particles. There is a higher rate of 

detection for slow particles than for those with higher diffusion coefficient. This effect could also 

be observed in the in vivo data by plotting the averaged 1∆t displacement as a function of the 

duration of the trajectory (Fig. S4, panel A, for Dendra2). Particles which were less mobile were 

detected for longer periods of time.  
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6.1.2.3.4 Population exclusion 

The dependency of the percentage of detected particles with the diffusion coefficient of the 

particles needs to be taken into account when analyzing the mobility of a heterogeneous mixture 

of molecules with different diffusion coefficients. We performed simulations of an extreme case 

with 50% of the molecules following Brownian diffusion at 1 µm²/s and 50% at 10 µm²/s. As 

expected, fast particles had a higher probability of escaping the focal depth of observation 

between two consecutive frames, and therefore slow particles were over-represented in the 

measurement (Fig. S3, panel C). Such exclusion of the fast diffusing particles population 

significantly affects population analysis as well as the average Mean Square Displacement. The 

population analysis of the one step translocation histogram gave a proportion rate of 80% of 

particles with D = 1 µm²/s and 20% D = 10 µm²/s. Despite the bias on the population, the values 

of diffusion coefficients were not affected by the population exclusion (Fig. S4, panel C). 

Similarly, the resulting MSD analysis of the simulated data showed a deviation from linearity, 

suggesting an apparent subdiffusive behavior of the ensemble of molecules (Fig. S4, panel D).  

In order to take this bias into account in our analysis, we measured the number of translocations 

detected on single particle simulation movies with diffusion coefficients ranging from 0.001 

µm²/s to 20 µm²/s (Fig. S4, panel B). We then used this graphic as the reference curve to correct 

the proportions of populations retrieved from the analysis of our experimental data.  

In order to perform such correction, we considered an arbitrary fit of the one step translocation 

histogram with three populations: ,  and , with ,  and  

representing the fractions of populations and ,  and  their diffusion coefficients. We 

found, interpolating the reference curve for each diffusion coefficient, the proportion of the 

population that was integrated in our study p( ,  and . For instance, when D = 

1µm²/s, we detected p(D) = 97%  of the translocations. We then computed the corrected values 

for ,  and  as , and   to obtain the relative rate of diffusive populations. 

It is important to note that this correction assumes Brownian diffusion of the molecules, and 

therefore has to be understood as a first order correction of the population rates in all our 

experimental data. However, due to this selection bias, fast diffusing molecules, for which the 
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MSD slope is the highest, contribute less to the average MSD at longer time lags. As a result, the 

average MSD observed for Dendra2 is consistent with a normal diffusive behavior for 3 species. 

 

6.1.2.4 Numerical simulations of anomalous diffusion models  

6.1.2.4.1 Models for subdiffusion 

Subdiffusion motion has been frequently reported in SPT experiments {Saxton:2007fm}. In 

cells, it is commonly attributed to one of the following two processes: a broad distribution of 

trapping times or an obstructed movement due to crowding effects. In our experiments on P-

TEFb, we could rule out the former, often referred to as the continuous time random walk model 

(CTRW) {Metzler:2000tt}). Indeed, we noted that the power-law scaling of the MSD for the P-

TEFb was unchanged upon removal of immobile steps in the trajectories, which excludes that the 

observed sub-diffusion is induced by long trapping times (see Fig. S8). We also address this 

model by simulation to compute its angle distribution. In Fig. S9, we show the result of a Monte 

Carlo simulation of a continuous time random walks performed on an infinite cubic lattice. The 

position was recorded every 1000 steps and the waiting times were uncorrelated following a 

discretized heavy tailed probability distribution 

 

 
( 99 ) 

with α set as 0.6. The MSD shown in Fig. S9A is an ensemble MSD, averaged on 10000 

trajectories and rescales as a power law . It is noteworthy to point out that the time-

average MSD of a CTRW realization does not result in a sublinear relationship with time (Ben-

Avraham, 2004). The experimental MSD curves shown in Fig. 2 and Fig. 3 were averaged over 

time and also over the ensemble of all the trajectories, which was an additional indication against 

the CTRW model for our data. 

For an obstructed diffusion model giving rise to the observed subdiffusion behavior, we 

considered a modification of the accessible space for the diffusing particle. Bancaud and 

colleagues have for instance shown by fluorescence correlation spectroscopy (FCS) on GFP-

multi repeats and tracking of microinjected quantum dots aggregates that the accessible 

nucleoplasm is not a standard 3D environment but, rather, has a fractal dimension Df ~ 2.6 and 
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2.2 for euchromatin and heterochromatin, respectively (Bancaud et al., 2012). We addressed this 

model by simulations and computed the angular distribution of consecutive steps. We computed 

a fractal network as the maximum cluster of a cubic lattice at critical site percolation probability 

(Ben-Avraham, 2004). The initial cubic lattice dimensions were 2000 x 2000 x 500 sites. We 

then removed sites from the lattice according to the critical probability 0,311604 probability 

(Ben-Avraham, 2004). The size of the maximum cluster, was 5 967 870 sites. We then 

performed random walks on such fractal structure by recording a position every 2000 steps on 

the lattice. 

6.1.2.4.2 Angular distribution evaluation by Monte Carlo simulations 

Simulations of trajectories on cubic and fractal lattices were performed in order to obtain the 

angular distribution of consecutive steps, and their temporal evolution. The angular distribution 

was obtained by Monte Carlo simulations of 10000 realizations of trajectories of 500 steps with a 

randomly distributed start. The cubic lattice and the maximum percolation cluster are isotropic 

only at a very large scale. Since the initial mesh was a cube, there were privileged directions with 

higher number of sites and thus a higher number of possible successive positions. In 

computations of the angular distributions on such simulated trajectories, this results in an over 

representation of the 90°angle that vanished with an increasing time lag. This bias would be 

negligible if the percolation cluster had a large number of sites, such that allowed us to record the 

position of the trajectory for at time lag significantly larger than 2000 steps. The limitation to 

perform such a simulation was the random access memory of the computer. We therefore applied 

a simple correction to the angular distribution of the simulated trajectories. We recorded all the 

possible translocations from our simulations for time lags 1 t to 10 t. These translocations were 

then shuffled to compute the distribution of the angles that was inherent to the network itself and 

not to the successive displacement correlation. Such “structural distribution” reflected therefore 

the anisotropy of the structure due to the finite scale of the computations and we used it as a 

normalization distribution. We verified that this “structural” angular distribution flattened at 

increasing time lag. The angular distributions shown in Fig. 5 were therefore rescaled by 

dividing each bin proportion by the corresponding one in the structural distribution. 
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In Fig. S9 panel b we show the angular distribution of a CTRW, computed as explained on the 

previous section, after removal of the steps where no displacements were performed. Since the 

geometry of the space available for diffusion of the regular Brownian motion and of the CTRW 

is the same, the angle distribution does not show anisotropy. 

6.2 P-TEFb dynamics 

6.2.1 Supplementary texts 

6.2.1.1 R-FLIP 

The P-TEFb experiments were conducted with a Gaussian profile LASER and a bleach duration 

of more than 10ms and an image exposure of 50ms each second.  

Correction of bleach was estimated by the first hundred images before the bleach start. 

Additional bleach correction was necessary since different intensity areas within the nucleus, 

with intensities decreasing from the center to the outerskirts of the nucleus resulting from the 

nuclear egg-shape on the coverslip had a different bleach-rate. Thus after the initial estimated 

bleach correction we fitted the first hundred images to exponentials and thereby multiplied the 

curve by the correction. This consistently gave horizontal lines for all different radii emerging 

from the nucleus.  

Nucleus geometry was treated by ignoring the first 10 and measuring up to the 70th ring which is 

consistently avoiding nuclear borders. Nucleoli were diminished in significance by 

multiplication of a significance – factor that linearly corresponds to the initial intensity of the 

pixel set by a certain threshold estimated by the average intensity of the nucleus.  

Number of cells averaged ranges from 6 – 12. Same size nuclei were picked for averaging since 

the FLIP behaviour largely depends on the size of container in which the measurements were 

conducted.  

To be completed by Lana: Correction of the bleach, inter-frame interval, number of cells 

averaged, nucleus geometry treatment 

Complete depletion of fluorescence was achieved at approximately 400 bleaches, while 

bleaching was resumed until 500s of duration. We represent the FLIP by radial analysis in which 
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the LASER spot is taken as the reference point. Originating from the LASER bleach position, 

circular strips of 160nm width are defined at multiples of 160nm distances all the way to the 

outskirts of the nucleus. The final result is the rescale intensity level ),( trI  as a function of time 

t  and radius r . Here, we present an interpretation of the R-FLIP curves in terms of the geometry 

of exploration. We first present ideal R-FLIP experiment in the case of a perfect nuclear 

geometry and LASER beam. We then present the approximation made with real curves. 

6.2.1.1.1 Theoretical Modeling of Ideal R-FLIP decays 

An ideal R-FLIP experiment done on a given tagged protein of interest can be described as 

follow  

• The LASER beam is a restricted and infinitely small area  (point). 

• Every molecule that pass through the LASER beam is bleached. 

• The nucleus is isotropic around the bleaching point, meaning that ),( trI  is the same at 

every point of annular region of radius r . 

• There is no side effect of the shape of the nucleus and, at every radius there is a fixed 

amount of pooled fluorescent and bleached molecules. In such a case, ),( trI  corresponds 

to the fraction of unbleached proteins at radius r at a time t and therefore ),(1 trI−  

corresponds to the fraction of bleached proteins. 

The un-bleached proteins have passed at least once through the bleaching site. Here we assume 

the reversibility of the exploration process so that any protein trajectory inside the nucleus has 

the same probability to occur whatever the direction. If we mentally reverse time the fraction 

),( trI  of light that remains at a particular place corresponds to the fraction of particles that was 

there at time t and that have not passed through the bleaching point. It is therefore a survival 

probability that depends only on the position inside the nucleus.  The time at which the particle is 

bleached is first passage time through the bleaching point.  In the case of pure diffusion with 3d 

spherical nucleus and bleaching point, this first passage time interpretation can resolved the 

Smolukowski master equation of reaction diffusion and we have global rate of bleaching that set 

as an exponential [ref A. Szabo 1980]. 
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In the case of a more complex geometry in the so called large volume limit , Benichou et al. [ref 

geometry controlled kinetics nature chemistry] showed that ),( trI  can be decomposed in two 

terms: 
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whereσ  is the Dirac function that is zero except for 0=t  and T is the first passage time 

integrated on all possible starting points inside the nucleus, the mean first passage time.  The 

instantaneous bleaching profile )(rΠ  corresponds to the proteins that reach the bleaching site 

prior bouncing to the cell membrane. For time t>0, we therefore have a variable separation 
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rtrI ϕ)(),( meaning that the decay rate is the same on every point of the nucleus far 

from the bleaching point and the bleaching profile )(rΠ  is permanent (sup fig B). 
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proportional to the size of the bleaching point and ds is the spectral dimension that characterize 

the recurrence of the random walk. At any given starting point, the expected number of time you 

pass again through your starting point is 
2

ds

t∝ .  For a compact mode of motion we have 0>ds  

and for a non-compact mode of motion, we get 0<ds  so that a non-compact search is highly 

non-recurrent. 

Theoretical results were obtained in the case of spherical symmetry.  Provided that the motion is 

isotropic, the cylindrical symmetry and projection of the FLIP measurement do not change the 

results 
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6.2.1.1.2 Real FLIP data  

There are limitations to the application of the exact theoretical model to experimental R-FLIP 

data. With experimental setup, we do not image the movement of the endogenous protein. The 

LASER beam is not a point and every particle that goes through bleaching area is stochastically 

bleached according to the LASER power. The nucleus is not isotropic. Finally, the bleaching is 

sequential and not continuous (sup fig C). A continuous bleaching would have bleached the 

nucleus in only a few seconds. In the following, we assume that the impact of repetitive bleach 

can be integrated to the bleaching efficiency  

The experimental bleaching of the nucleus ),( trI  therefore could be expressed as: 

 )(),(),( rKLtrItrI
ee

⊗=  ( 101 ) 

Where K the bleaching efficiency as a function of the LASER power and )(rL  is the radial 

profile of the LASER.  

To investigate the influence of the LASER profile on our measurement, we performed R-FIP 

experiment on CycT1-GFP transfected cells that we crosslinked with paraformaldeid (PFA). We 

observed a small decay rate and fixed bleaching profile. Comparing the rescaled profile with our 

CycT1 FLIP data, we showed that at time short (1-5s), the main effect was the LASER, with 

both profile being superimposed (sup fig F). The radial profile )(rΠ  is therefore the LASER 

profile at short time scale. At medium time scale )(rΠ is stable and is the convolution between 

LASER profile and mobility. Finally )(rΠ  when the level of protein is low, side effects of the 

LASER beam appear and the overall decay is representative to the global search time T  of the 

protein. 

In the end, we could decompose FLIP curves in three different regimes. At short time scale, the 

decay is due to the LASER profile, then the stability of decay profile shows the influence of the 

of the geometry. In the end of the bleaching, the profile vanishes, leaving only an overall decay 

rate. 

6.2.1.1.3 Analyzing FLIP curve  

To capture the radial dependency, we focused on the central part of the FLIP curve. We 

restricted our analysis to a radial distance between 1.5 to 6.5µm as for long distances, the effect 
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of the LASER was restrictive. We also restricted our time interval from 5 to 80 seconds. We then 

shifted all the curves up so they start at value 1 as a raw de-convolution the Laser effect.  

FLIP decays have recently been successfully fitted to a skewed exponential showing that there 

were not one single decay [ref FLIP skewed]. However, we found that their only one decay rate 

on this particular restricted domain as predicted by the non-compact mode of motion. We believe 

that the larger time scale (>5s) makes most of the modes of the compact mode exploration 

vanish. The inverse decay rate T is the global mean first passage time through the bleach area. 

To find T the curve at central radius of 4µmwas   fit to an exponential the form 
T

t

Ae . Then we 

fitted all the radiuses from 1.5 to 6.5µm to a function T

t

er)(Π  (figure I). The output is a list of 

values that are estimators of the radial factors )(rΠ . 

We then fitted )(rΠ  to a compact ds
rr ∝Π )(  or a non-compact form

ds

r

r

−









−=Π

1
1)( α . 

Surprisingly, the compact form gave always the best fit, maybe because of its scale free form. 

We used the estimated value of compact  ds  as our compactness indicator CI. The larger ds is, 

the larger the dependence of the bleach decay on the radius. 

6.2.1.1.4 A note on the interpretation of CI 

Our compactness indicator CI is an estimation of the spectral dimension ds . The exact 

expression of ds is dfdw − where dw is the dimension of the walk and df is the dimension of 

the space. Due to raw de-convolution of the laser beam profile, projection of the data and 

sequential bleaching, we didn’nt have an exact estimation of dfdw − .  The fact that the non-

compact form of )(rΠ  was always weaker to describe the mode of motion is an additional 

argument in favor of the bad specification of the model. However experimental estimatison show 

that our compact indicator CI sort protein movement according to intuition. We believe that CI 

can be interpreted the same way than ds but with different scaling.  
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6.3 Single cell correlation fractal dimension of chromatin 

6.3.1 Supplementary figures 

 

Figure S 11 . PALM H2B distribution along the z axis Panel A: Distribution of Z position 

)(z
D

µ over the whole nucleus with a 10nm binning, obtained with the deformation of the Point 

Spread Function (PSF) induced by deformable mirror. The resulting focal depth is about 1µm 

but is not uniform, the detection being further away from the focal plane having a lower 

probability to be detected. Panel B: )(z
D

µ  distribution for different sub-areas of the PALM 

image of the nucleoplasm. The stability of this distribution inside the nucleus for several regions, 
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provided that they are large enough allow us to use it as a rescaling factor. It was estimated with 

a 10 nm bins and nanometric values were interpolated.  

 

 

Figure S 12 . Average density estimation for a finite point pattern. Panel A1: schematic 

representation of a simple point pattern in one dimension consisting of one point in the middle of 

segment of length d . The local density as a function of the distance
)(rd

s , if averaged over all 

the points of the segment, will scale as 
rrd

s
∝)(

 like the local density measured on a uniform 

distribution pictured on panel A2. Similarly, The PALM H2B local the density, estimated on a 

100 nm circular sliding window with a 10nm binning (Panel B1), if averaged with the same 

density, but on bins that are detections empty (Panel B2), will have the same average scaling 

that complete spatial randomness (Panel B3) 
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 Figure S 13 Blinking A protein can be detected up to five times sequentially before bleaching, 

but all with the same stochasticity, which could lead to an over estimation of the local density.  

We tried several filters to discard this bias. Every step, the H2B dendra2 proteins signals that 

are detected in the radial vicinity of another detection in the next 5 frames are discarded from 

the analysis. It reduces the consistency of the test against Complete Spatial Randomness but do 

not change its conclusions.  
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Figure S 14 .3D PALM analysis done on U2OS cells transfected with the tag Dendra2.Panel A: 

Image in the green GFP channel. It shows enrichment in the nucleoli, but homogeneity 

elsewhere. Panel B and C: Projections of a 3D PALM image of tagged histone H2B in the xy 

focal plane of the camera. The color code are local densities, estimated on a 100 nm and 1 µm 

circular sliding mask respectively. It shows in refine details the enrichment in the nucleoli but 

not the enrichment in the vicinity of the membrane that we have with H2B-PALM. Panel D: CSR 

test showing a deviations from complete spatial randomness that is similar to the cluster model 

(see Supplementary Figure 5 A2 and B2) 
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Figure S 15 . Performance of the CSR test on two cluster models of distribution.  

Panel A1 and B1: On an infinite cluster centered, the test never saturates and always over-

perform the uniform Ripley distribution u
K

. Panel A2 and B2: uniformly distributed Gaussian 

clusters of 300 nm radius (standard deviation). The test shows two bumps corresponding to the 

clusters and the averaged inter-cluster distance. 
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Figure S 16 Computation of the cluster size. A1-B1-C1: Cluster size as a function of the distance 

estimated with the second derivative of the Ripley K function  

)(
2

2

r
K

K

u
∂

∂

 for 3 different cells. The 

function was estimated with the formula :
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 for a value 

nmh 100= . When reaching zero, the function shows a saturation effect that could define cluster 

size. A2-B2-C2:The same calculation but for the rescaled 
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L , for the formula 
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2

)()(2)(

h

hrLrLhrL −+−+
. The saturation is visible before 1 µm, but, after that limit, the 

distribution is heavily corrected with isotropy. 

 

Figure S 17 Box counting computation of the multi-fractal spectrum. Panel A: Cubic box 

counting of the H2B point pattern for exponent q applied on the density of each box from 10nm 

to 1 µm wich is the thickness of the point pattern. The curve for q=0 is the regular box counting. 

Each of them shows a good power law dependency that is a characteristic of multi fractal 

scaling. Panel B is the result of the linear regression the log log dependence for each value of q. 

Deviation from the line is a proof that the space is not fractal but indeed multi fractal. Panel C is 

resulting truncated fractal spectrum that is the deviation from the line in the previous graph. The 

spectrum recovers power laws ranging from 0 to 2.8. 
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Figure S 18 and  Figure S 19 Repetition of the experiment for different cells showing the 

consistency of the results. 

6.3.2 Supplementary texts 

6.3.2.1 Density averaging 

The radial density d
i
(r)  that is the number of points of a given point pattern that lie within the 

distance r  of a point i , will have a totally different form if averaged on all the points of the 

point pattern or summed on all the point of the space. To clearly see the difference let’s simplify 

the problem by estimating the average in 1D on the simplest point pattern consisting on one point 
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on a segment of size d at position 0 (Figure S2 panel A1). Since there is only one point the 

density average over this point: 

 
{ }01)(
>

=
r

rd  ( 102 ) 

Where { }01
>r

is the in indicative function that r is positive . Average )(rd
i

 on all the point of the 

space, we have a different form )(rd
s

: 

 

{ }∫
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<
=
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rxs
dx

d
rd  ( 103 ) 

By symmetry and for  
2

d
r < , we have 

 
d
s
(r)=

2

d
1

x<r{ }
dx

0

d /2

∫ =

2

d
1dx

0

r

∫ =

2r

d
 ( 104 ) 

And in the end, )(rd
s

 is the same )(rd
i

would be measured on any inner point i  of the segment 

if we did not have a point pattern but a uniform density of value 
d

1
 (Figure S2 panel A2). By 

superposition, this result is also valid in 2D or 3D and with multiple points. 

For PALM-H2B, this means that if we measure the density on regions where we have detections 

(Figure S2 panel B1) and we average it with regions that do not have detections (Figure S2 panel 

B2), we will get the same average density )(rd
s

 that Complete Spatial randomness (Figure S2 

panel B3). 
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6.3.2.2 Finite cluster size analysis  

Several models of clustered point pattern exists such as cluster processes or double Poisson 

cluster processes but the )(rK  statistic is not powerful to discard one model from another and 

estimate their parameter, at least for small datasets (Ripley, 2004) but rather give qualitative 

information about the point pattern. We simulated different kinds of cluster processes and 

superimposed our experimental limitation and try to understand what would be the resulting 

)(rK  statistic (Supplementary Fig 4). A cluster of infinite size such as enrichment in the center 

of the cell would produce a statistic K always deviating from the uniform K
u
 and so does a 

randomly distributed cluster family of a given size provided that they sometimes overlap. 

However, it was impossible to rule out all the possible existing models of local enrichment, but 

we investigated the maximum distance at which the effect could be seen. 

Properties such as cluster sizes and numbers are highly dependent on the underlying model. In 

the case of distant circular clusters of uniform inner concentration a methodology was studied 

(Kiskowski et al., 2009). The idea is to use the rescaled statistic 

3/1

3

4

)(ˆ
)(



















=
πλ

rK
rL whereλ  is the 

intensity or number of detection per unit of space and to compare it to the radius r . Kislowski et 

al found a correspondence between the cluster size and the maximum of the 

function rrLrH −= )()(  and the minimum of its derivative )(rH ′ , the latter being more efficient 

in the case of overlapping clusters. On PALM-H2B, we chose the )(rH ′   approach that is 

independent from the intensity λ  as we could criticize the stationarity of the point pattern due to 

enrichment at the edges. Let’s note that this method is equivalent to finding the minimum of the 

function )(rL′ . We plotted both the second derivatives )(rL ′′   and the uncorrected )(
2

2

r
K

K

u
∂

∂
to see 

where the enrichment stops and to define a typical size of our domain. We found a maximum 

cluster size of 1.01± µm (Supplementary Fig 5). After that limit, )(rL is a linear function of the 

intensity 
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6.3.2.3 Multi-fractal and fractal densities 

The  Haussdorff dimension f  quantifies the minimum number 
ε

N of sets of radius needed to 

cover the fractal structure. The Haussdorff dimension can subsequently be calculated for epsilon 

tending to 0, as the exponential of the power law that exactly compensates  such that  is 

bound (Falconer, 2003). Because in a PALM experiment, we detect single molecules coordinates, 

the notion of space filling is difficult to address. Indeed, the theoretical Haussdorff fractal 

dimension of every finite point pattern is strictly zero, due to the fact that the minimum 

distance between two points of the pattern is a non-zero value, and below that limit, the 

minimum number of sets needed to cover the pattern is fixed. In the case of H2B only a small 

fraction of molecules were labeled and detected. We can postulate that there is H2B everywhere 

but with different concentration with PALM-H2B being only a sparse subset of a non-zero 

density. However, since it fills the space, the Haussdorff dimension of a non-zero density 

should be 3, the dimension of the embedding 3D space itself . 

The paradox, either 0 or 3 for the fractal dimension of any 3D finite point pattern, illustrates our 

apparent inability to address the potential lacunarity of H2B distribution and its possible fractal 

scaling.  The paradox however does not hold if the density is multi-fractal (Falconer, 2003). Multi-

fractals extend the notion of fractals to continuous density (Biswas et al., 2012).  In a multi fractal 

formalism  the correlation fractal dimension we measured  does not necessarily converge to the 

Hausdorff dimension (Cheng and Agterberg, 1995b). Using the multi fractal formalism, different 

levels or organization can be retrieved addressing spatial distributions of points but also 

providing a measure of higher order relations in between groups of points (clusters)(Mandelbrot, 

1999). 

 

We address multi fractals by box counting, covering the 3D nucleus with cubic boxes i
A , then 

counting the number of detection )(
i

AN that lie within those boxes so that ∑ =

i

i
NAN )( with 
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N being the total number of detections (Falconer, 2003). The box counting exponents )(qτ are  

the power law dependence between the sum ∑=
i

q

iq
AN ))(()( εεχ  and the box size (Falconer, 

2003). For q=0, one gets the ordinary box counting method. Here we compute N as 

∑=
k ikD

i

z
AN

)(

1
)(

µ
  where 

ik
z are the z positions of tagged H2B detections inside the 

i
A  mesh 

so that take into account the anisotropy of the distribution in the z direction and limited the 

maximum mesh size to 1µm. 

 

Pigure S7  A shows that for every q we get a good power law dependency. The value of the log 

log slope )(qτ is shown on the Figure S7 B. A fractal model would result in a straight line and 

we get a deviation from it. To compute its deviation from it we compute the first order derivative 

2

)1()1( −−+ qq ττ

and, by comparing by comparing )(qqα to )(qτ , one gets: 

 )()()( qqqf ταα −=  ( 105 ) 

)(αf  is the fractal, spectrum of H2B PALM that is displayed on Figure S7 C. We only get half 

of the spectrum because the spectrum computation needs a very high density of points (Cheng and 

Agterberg, 1995b). Especially, we get apparently absurd estimation for negative values of q , since 

empty meshes of the network ca not be raised at the power of q . The value of the spectrum at q 

=0 : 2.65 is the box counting fractal dimension of the support. It is theoretically addressed as the 

maximum of the spectrum, which does not seem to be the case. We believe that the low density 

far away from the focal plane of the camera creates a lack of measurement of small densities that 

shifts the spectrum toward the right. Despite those limitations, the box counting curve gives the 

value  7.2)2( =τ  which is close to the value obtained for the K Ripley estimation of the 

correlation fractal dimension. 
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6.1 Yeast locus mobility 

6.1.1 Supplementary figures 

 

Figure S 20 Mean square displacement of figure 1 in log log scales. The alpha anomalous 

exponents were those obtained by linear least square fitting of the data 








t

MSD
log  to a function 

of the form ( ) bty +−= 1α . 
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Figure S 21 Fitting the data with 0.5s to an exponential function. The offset was found with 

linear regression of the first four points and intercept with the vertical axis. 
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Figure S 22 Mimicking higher exposure time with lower exposure time. Position recovered 

with lower exposure time was time averaged with a ten fold window. The exponent, were the 

same, although less consistent then the one measured on Figure 1..  

 


