Texture is referred to the distinctive physical composition or structure of something, especially with respect to the size, shape, and arrangement of its parts: the texture of sandy soil; the texture of cooked fish. [1]. Usually a texture is illustrated as smooth or rough, coarse of fine, soft or hard, etc.

Textures can be categorised as tactile and visual textures. Tactile texture is defined as the physical sensation of some surface i.e. by touching. Visual texture is not a tangible but a visual phenomenon. For example image of a rock or a wooden surface is not visually smooth but have some pattern of (quasi) repeated variations in intensity levels and can be referred as visual texture. Visual texture is easily perceived by human eyes and provides plenty of information about an object. Texture is the property of the surface that gives rise to the local variabilities [2].

It should be noted that this work is about visual textures, so in rest of the document it will be referred to as "texture" unless stated otherwise. 

Fig: 1.1: Visual Textures

Normally textures are complex visual patterns composed of entities, or sub-patterns having characteristic like brightness, colour, slope, size, etc. Thus texture can be regarded as a similarity grouping in an image [3]. The local sub-pattern properties give rise to the perceived lightness, uniformity, density, roughness, regularity, linearity, frequency, phase, directionality, coarseness, randomness, fineness, smoothness, granulation, etc., of the texture as a whole [4].

Initial appearance of Textures:

Initially texture was only termed as the appearance or feeling of a surface like that of the metallic surface or textile surface and in 1939 the initial published research was "Texturen Metallischer Werkstoff (textures in metallic materials)" [5].

One definition of the texture is the property of the surface that gives rise to the local variability. The local variability arises because of the surface roughness which causes random light scattering and hence the increase or decrease of the local reflectance in the direction of view. But this varies case to case as discussed in the following examples.

A very smooth and clean surface also has this property like white paper to some extent and eggshell more so.

A surface structure can also be a cause of enhanced or reduced local reflectance like in woven materials which exhibits periodic variation in reflectance.

The textures of wooden surfaces vary from fine to coarse patterns because of their intrinsic materials no matter how much are they smoothened.

Water ripples demonstrate coarse texture although it will be a case of rapid temporal development.

Separate objects like sand on beach, grass leaves of the grassy lawn, bushes in a hedge, collectively gives the appearance of unique texture.

A spatially homogeneous pattern that typically contains repeated structures, often with some random variations.

A set of "elements" at periodic or random locations within an image.

A visual pattern which has a "stationary distribution of features": the texture elements (e.g. texels) is repeated everywhere in the image.

Texels:

A surface is said to be textured if there is large enough number of texels (texture elements), else it is a set of objects. Texels in a texture may appear overlapped or nonoverlapped, regular or irregular, directional or non-directional. Textures can vary based on their different property like periodicity, randomness, directionality and orientation.

What give rise to textures?

There is a debate on what should be called as texture and what not? A perfect periodic appearance of intensity variation is generally termed as a periodic pattern not texture and pattern with complete randomness could be called as noise not as texture. It remains a subjective matter based on the observers" judgment. Mostly a pattern is termed as texture which has both randomness and regularity. This is an academic question and can be dealt by giving relative importance if to which extant the mix of the both is to be termed as texture depending on the situation. "Busyness" is an important feature of texture and is independent of "randomness"," regularity" and "directionality". Texture is characterized to have busy microstructures and uniform macrostructure.

Texture as defined by researchers:

All that result in the fact there is no precise definition of this notion. It is due to the difference even contradiction in the properties of the textures like regularity and randomness, uniformity and distortion, etc which are very difficult to describe uniformly.

Visually texture is recognized but very difficult to define. This difficulty is shown by the following amount of texture definitions given by the different researchers based on their own prospective and research needs.

o "A texture is a set of repetitive sub-patterns, which follow a set of well defined placement rules. These sub patterns themselves are made up of more fundamental units, called primitives. Such characterization of textures is generally applicable mainly to deterministic type of textures, such as line arrays, checker boards, hexagonal tiling, etc." [6] o "A region in an image has a constant texture if a set of local statistics or other local properties of the picture function are constant, slowly varying, or approximately periodic." [7] o "An attribute representing the spatial arrangement of the grey levels of the pixels in a region." [8].

o "We may regard texture as what constitutes a macroscopic region. It structure is only contributed to the repetitive patterns in which elements or primitives are arranged according to a placement rule." [9].

o "Textures are the information obtained from a set of local measures (statistical, geometric, semantic,) in a region (visual window) of an image". [10] Texture classes.

Periodic Textures:

Periodic textures are also called regular textures. In periodic textures the primitive patterns are repeated with some method of periodicity. Mostly manmade objects have these types of textures. Chess board is good example of periodic textures.

Non-periodic Textures:

Non-periodic textures are also called irregular or aperiodic textures. In non-periodic textures there is no periodic replication of primitive patterns. Natural textures often represent such textures like grass, bushes etc.

Semi-periodic Textures:

Semi-periodic textures will be later on referred as pseudo-periodic textures. In semi-periodic textures there is a variation in the regularity of the primitive pattern repetition like brick walls etc. The Pseudo -periodic textures:

Periodic texture

Pseudo-periodic textures are the textures which have variation in the regularity of its primitive"s repetition. It is evident that pseudo-periodic textures are apparently periodic yet they are not. Brick walls, floor tiles, woven woolen crafts etc. Such textures are constituted of some basic primitives, which are placed under some irregularity rules. By finding the primitives and their placement rules, the pseudo-periodic textures can be easily evaluated.

The periodicity of a texture is one of its important visual characteristics. Indicating how textural patterns are repeated in the texture, it has been often used as a measure for texture discrimination at the structural level. A regular texture such as wallpaper can be generated by tiling its motif, which means the minimal repeating region of the texture.

Therefore, the motif gives a compact representation of the texture. Since the motif of a texture can be determined from its periodicity, knowledge of the periodicity is particularly useful for wallpaper design and compression [11].

Krumm and Schaffer [12] have worked on the finding method to derive shapes from textures using spectrogram. It was theoretically meant to be effective for both periodic and random textures. The method works best on textures that are closest to being purely periodic, like the cosine and canvas textures.

According to [13], it is time consuming to determine the textural periodicity using cooccurrence matrices. So they propose a distance matching function that can be driven directly from a texture. Given a displacement vector, the function value with respect to the vector is equivalent to the inertia of the corresponding co-occurrence matrix. Let us consider an image I of dimension , where and denote respectively its rows and columns numbers.

Employing the correlation theorem, it is shown that this function can be evaluated at all positions over a texture in O(mnlogmn) time, which constitutes a major improvement if we consider that computing inertias of all co-occurrence matrices requires O(m 2 n 2 ) time.

A set of statistical functions have been chosen to extract features from textures [14].

An algorithm has been developed that synthesizes images with the required statistical properties. The algorithm has been successful in synthesizing a large number of texturesboth natural and synthetic.

The presence of periodic textures can facilitate wide-baseline matching by providing the periodicity distinguished regions (PDRs) that efficiently constrain the search for correspondence [START_REF] Rubner | The earth mover's distance as a metric for image retrieval[END_REF].

A periodic texture has contrast functions with deep and periodic minima.

In [START_REF] Daniel Dementhon | Image Distance using Hidden Markov Models[END_REF], Balas considers pseudo-periodic textures to be images based on a spatially regular repeated pattern, which may vary slightly across the image. (Text is considered as pseudo periodic because of the even spacing of rows.) To be more specific, pseudo periodic textures seem to rely relatively equally (and weakly) on both of these sets of parameters (magnitude correlations, coefficient correlation), given that the removal of each does not cause a large increase in the number of correct detections. It was found that for pseudoperiodic textures, only the removal of the first-order statistics produces a rate of oddball detection significantly greater than the ""full set"" images (p < 0.05).

Since we can observe texture in images (both of the natural and artificial) , and seems as the repetition of basic texture elements called texels or textons made of pixels whose placement obey some rule. In the case of periodic textures, there are essentially two methods to (1) adapt waveforms to the shape of each region or (2) perform an extrapolation and in this case solution (2) was opted for [17]. Since periodic textures are very appropriate for a spectral characterization, so the algorithm belongs to a family of descriptors that extrapolate the signal to fit a rectangular window.

Periodic or Regular textures are simply periodic patterns where the color/intensity and shape of all texture elements are repeating in equal intervals.

A limitation of the near-regular (pseudo periodic) texture synthesis algorithm is that the input texture sample must contain at least two complete tiles so that the underlying lattice and the tile set are well defined. The near-regular texture synthesis algorithm preserves the square pattern because it demonstrates stronger periodicity, but the hexagon net is discontinuous between squares.

[18]

Yanxi Liu et al [19] have presented a computational model for periodic pattern perception based on the mathematical theory of crystallographic groups.

In order to extract a tile from a texture, its size, and consequently the period, must first be known. A variety of methods exist for determining the period of a near-periodic texture. In literature, the period is determined using co-occurrence matrices and other statistical tools such as the Chi-square (χ2) test, κ statistics and inertias. Certain others use an approach based on the Fourier transform, because if a texture is near-periodic, all of the energy in the power spectrum is concentrated in the frequencies corresponding to the periods. Concentrating on the rectangular tiles, it was argued that autocorrelation proves to be a very good method and the one that is simplest to implement, and was opted for another similar method i.e. Sum of Squared Differences (SSD), for texture periodicity detection [20].

The SSD is a similarity measure used to verify whether two images are similar or significantly different. The following formula defines the SSD for two images and , both of them possessing rows and columns:

According to Djado et al [20], near-periodic textures are all around us, in brick walls, fabrics, mosaics, and many other manifestations. The basic motif can be extracted, yielding a small image known as a tile. The authors have given method for extracting a representative tile from a near-periodic texture, working from a photo. Beginning with determining the size of the tile using an SSD, they establish criteria that allow the selection of only the best tiles, insisting upon urging to stay possibly close to the original image.

There is a concept of fractional Fourier texture masks. Fourier texture masks (procedural textures for the regular parts) are derived by extracting the regular structure from a texture using fractional Fourier analysis and "enlarging" it to a desired size. These masks are used to guide sample-based synthesis algorithms in faithful selection and placement of copied pixels or patches, effectively enforcing global, regular structure and therefore leading to drastically improved synthesis quality for near-regular textures. A more appropriate selection criterion is based on two observations. First, since the regular structures in the image signal dominate the overall appearance of most near-regular textures, they carry a much larger amount of energy than the irregular patterns. Second, while the energy contained in strongly visible irregular structures is distributed among a large number of frequencies, the main part of the energy contained in the periodic structures is carried by a few frequencies [21].

Regular texture refers to periodic patterns that present non-trivial translation symmetry, with the possible addition of rotation, reflection and glide-reflection symmetries.

Near-regular texture is referring to textures that are not strictly symmetrical ([22]). Perfect regularities are rarely found in the real world, while varying degrees of deviation from regularity are common to observe.

Regular textures are simply periodic patterns where the color/intensity and shape of all texture elements are repeating in equal intervals. That is, a texture element is a unit tile in a regular texture, which can be synthesized by tiling the space with the unit tile. An example of regular textures is wallpaper. In the real-world, however, few textures are exactly regular.

Most of the time, the textures we see in the real-world are near-regular, such as cloth, basket, windows, brick walls… Near-regular textures can be considered as departures of regular textures in different spaces with different degrees. For example, in brick wall textures, the major departure happens in the color/intensity space as the shape of each brick is regular but the color/intensity may vary.

Near regular textures are pervasive in both man-made and natural world. Even though textures are usually classified as either (structurally) regular or stochastic, most real-world textures fall somewhere in-between these two extremes. Such textures can be viewed as statistical departures of regular textures along different dimensions [23].

Homogeneity cues were used to detect the texel size in periodic, corrupted periodic and near-periodic textures [24].

By selecting appropriate parameters for explosive cladding makes it possible to obtain bimetallic semi-finished products which have a cross section with a periodic texture and strong bonds between the layers and are suited for subsequent hot rolling [25].

Towards the non-periodic textures:

Irregular textures refer to geometrically-irregular textures or textures with straightforwardly identifiable primitives (e.g. granite, sand). It is important to note that irregular textures (clouds, grass, spiral pattern etc,) are very difficult or even impossible to be represented by regularly arranged patterns.

Some proto-typical examples of irregular textures which are known as random macrotextures, are ceramic, marble and granite images, which are of particular concern in this paper. As a matter of fact, the placement of the primitives within these is purely random and highly irregular [START_REF] Kittler | Detection of defects in colour texture surfaces[END_REF].

Stam has worked on "a-periodic textures" [START_REF] Stam | Aperiodic texture mapping[END_REF]. He used a standard grid of square patches to tile the plane, and mapping 16 samples of different texture of a homogeneous texture. To achieve a non-periodic approach, he applied an algorithm for a-periodically tiling the plane with convex polygons of different colors (the tiles colors mark the boundaries of texture tiles).

Neyret et al [START_REF] Neyret | Pattern-based texturing revisited[END_REF] designed a method for covering the surface with an homogeneous non-periodic texture such as those that can be found on many natural objects.

Conclusion:

In this introduction have been presented the results of a bibliographical study we have made in order to propose a definition of the concept of texture. We can conclude that such a definition does not exist. Nevertheless, all the authors cited converge towards the same ideas concerning pseudo-periodic textures i.e. textures constituted initially on the basis of a pattern or tile, which is repeated with small variations of shape, orientation, lighting, scale and so on.

The main part of our work will be dedicated to such textures, and the manuscript will conclude on an attempt in direction of random textures. Co-occurrence matrix (or co-occurrence distribution) is a matrix which can be defined over (any) matrix as a distribution of values co-occurring at a certain offset. A very common practice of using such matrices is over images (over binary, grayscale or color images) which are two dimensional distributions of some numbers, and the values are actually the pixels intensities of the image. It can be given as Co-occurrence matrices can describe a texture in terms of its statistics. A cooccurrence matrix can be viewed as a generalized/abstract form of a two dimensional histogram. The two axes of a 2 dimensional histogram of a two-channel image represent the pixel values in the first and the second channel. Each bin of this histogram represents the number of occurrences of a certain combination of values in a channel of the image. In cooccurrence matrices, the second channel is only limited to the representation of the second channel of the image, but can be some neighboring pixel for example. In a low contrast image the neighboring pixels are usually similar in contrary to the ones with high contrast, where plenty of neighboring pixels present quite different values. The co-occurrence matrix of an image, a chessboard for example, with the condition of having similar right side neighboring pixels will result in such a matrix , which is empty along diagonal and concentrated enough at left in top and right in bottom.

A co-occurrence matrix of an image can depict the distance and angular spatial relationship of an image sub-region of specific size, and that"s why it is called spatial dependence matrix.

A co-occurrence matrix is defined as a two dimensional array in which rows and columns represent some set of possible image values V. This can be a set of possible gray tones for gray level images and a set of possible colours for colour images. The value shows how many times value co-occurs with value in some specific predefined spatial order. This spatial order can be let"s say that value occurs immediately to the right of value . Precisely we are looking for a specific case where set represents the set of grey tones and the spatial order is defined by a translation t between the pixels having values i and j. As at most of the cases we use co-occurrence matrices of the images having gray level intensities so we call them grey level co-occurrence matrices or shortly GLCMs.

For example, we can consider the translation , where represents row wise translation and represents column wise translation. Let be a set of gray tones. The , a gray tone co-occurrence matrix, for image I can be defined as Examples:

1 1 0 4 0 0 0 0 1 2 1 2 1 1 3 4 0 2 0 3 0 4 0 1 0 Image I j 0 1 2 3 4 0 2 3 1 0 0 1 4 0 0 2 0 i 2 0 1 1 0 0 3 0 0 0 0 0 4 0 0 1 0 1 This normalizes the co-occurrence values to lie between zero and one which can be thought of as probabilities in the large matrix.

j 0 1 3 4 0 2 2 1 2 1 2 2 1 0 i 2 1 1 0 0 3 0 0 0 0 4 3 0 0 0 j 0 1 2 3 4 0 1 3 2 0 1 1 3 1 1 0 1 i 2 2 0 0 1 0 3 1 0 0 1 0 4 1 1 0 0 0 j 0 1 2 3 4 0 1 1 1 1 1 1 3 2 1 0 0 i 2 0 0 0 1 1 3 1 0 0 0 0 4 0 1 0 0 0 j 0 1 3 4 0 1 0 2 0 1 2 2 0 0 i 2 0 1 0 0 3 0 0 0 0 4 0 0 0 0 Figure 2
b) The second is symmetric grey tone co-occurrence matrix t that is

But the problem with the co-occurrence matrix is that it neglects the image contents as the distance of co-occurrence enlarges. So it does not remain useful in that case.

Co-occurrence matrix of a gray level image is a square matrix. The size of the cooccurrence matrix is given by , where k is the number of intensities in the image.

2-1-2-Weakness of this approach and solutions to overcome this drawback

Let us note that the method based on the computation of co-occurrence matrices is not so easy to perform:

1. The previous approach requires a lot of computation (many matrices to be computed) 2. Features are not invariant to rotation or scale changes in the texture.

3. It neglects the image contents as the distance of co-occurrence enlarges. So it does not remain useful in that case.

To overcome these shortcomings following two solutions are possible. 

Classification of the image (example: k-means algorithm)

-Computation of Haralick parameters

Now let us explain another way to extract more information of initial co-occurrence matrices. This approach is due to Haralick and is presented in the following section

2-2-Haralick parameters

Robert M. Haralick [2] has given few parameters which are also called textural features, based on the co-occurrence matrices, given as follows. The aim of this technique is clearly to cumulate the few amount of information present in the co-occurrence matrix by means of summations.

a) Angular Second Moment:

As an example, consider the following formula:

where for is the th entry in a normalized gray-tone spatial dependence matrix = This feature is also termed as Energy [3] or Total Energy [4]. It is the number of repeated pairs and will be high in case there are a lot of pixels pairs presenting the same intensity). Albregtsen calls it Homogeneity [5]. A scene is homogeneous if it has a little number of gray levels thus having gray level cooccurrence matrix with a little but high values hence high sum of squares.

b) Contrast:

The second Haralick parameter is called "contrast" and is defined according to:

where represents the number of distinct gray levels in the quantized image. Karuni et al [3] have given the above formula as:

This parameter is also known as Inertia. It measures a local contrast in an image and will be low in case the gray levels are similar i.e. at the diagonal (top-left to right bottom) and will be high at the at the other corners.

c) Correlation:

Another parameter, the "correlation", is given by the following formula: This is given by [3] as follows,

Variance is high valued if the gray levels in the image are spread out. It gives high weight to those for which values differ from their mean.

e) Inverse difference Moment:

This one is:

We observe that k=2 in [2] and [4]. This is also termed as local homogeneity [4], [5]. IDM is high when the image is locally homogeneous and will be low if there is less or no local homogeneity.

f) Sum Average, defined according to:

where It is determined by the homogeneity of darkness or brightness of the image. The more homogeneously bright the image is the high is the Sum Average and vice versa.

g) Sum Variance:

This one is classically defined by: Sum Variance usually has high values when the values of the co-occurrence matrix are equally concentrated in the lowest and highest cells.

h) Sum Entropy:

Entropy is computed on the basis of events probabilities multiplied by their own logarithm. Here it gives:

It is possible that can be zero, and thus undefined value for , so an arbitrary number is used to avoid such situation.

i) Entropy:

Since it is the measure of disorder of the image so the images with homogeneous scenes will have low entropy and the opposite ones have high. where

Comments about Haralick parameters:

A lot of scientific papers have been dedicated to Haralick parameters which have demonstrated their ability to classify textures. Such works are well-known by the community of searchers interested in texture estimation and textures images classification, so our aim is not here to deeply discuss their interest and application field.

Nevertheless, at the very beginning of this thesis work, we planned to adapt Haralick parameters in the context of the LIP (Logarithmic Image Processing) Model. In fact, this

Model has been demonstrated as consistent with Human Vision, and it is an evidence to consider the concept of texture as strongly linked with the Human Visual system. We spent a significant time to define Logarithmic Haralick parameters, but we have met a real obstacle due to the necessity to compute grey levels products. We have failed in defining a grey level multiplication with a real meaning in the field of LIP. This is the reason why we decided to orient our investigation towards Covariograms, which constitute a neighboring notion of cooccurrence matrices and are exploitable thanks to Metrics, which are easily defined in the LIP framework.

2-3-Covariograms

The concept of covariogram gives the spatial description of a regionalized variable , where and generally d= 2 or 3, in the form of distance vector h given as:

The integral covers the whole geographical area, or its equivalent, over the range D

where can be a point in space, any pixel in an image for example, and can be then given as pixel density. It is termed as transitive covariogram in [6] and [7].

It is zero beyond some definite distance i.e. the range. At short distances its behavior, like derivability and connectivity, depends on the spatial regularity of the regionalized variable. The integral range of the covariogram is given by [6].

Covariogram can be considered as curve , representing the probability that a point lying in a phase remains in the same phase when translated according to a distance h in a given direction:

In the following binary image I, the points which satisfy these conditions are the common points between the image and the translated image with some distance . In practice, is thus measured as the intersection of the two images (cf. Fig 23).

We also talk about covariance function, let the phase function is denoted by such that:

Fig 2.

3: Image I translated by distance "h" giving I h . C(h) is the overlapped area of I and I h

It can also be written as following

In some books covariance is referred as the correlation of two points.

It is important to note that have significant properties:

-Probability that a point be in considered phase. It can be also said that it is not null in a limited field because it is cancelled outside D.

-The Cauchy-Schwarz inequality holds :

-Symmetry holds and is given as .

-The slope at the origin is related to the number of intercepts and thus at specific perimeter:

This property can be particularly used to correct the effect of a very tortuous outline, by calculating this slope by a mean over a finite distance; this is equivalent to the smoothening the contour of the phase by the image.

-The slope reproduces the periodicity of the image if there is any; more generally due to its oscillations the possible correlation can be detected.

-If the image is not periodic the correlation fades away at large distance; i.e. that the points are no more correlated if is large enough and tends to a constant (probability that two mutually interdependent points should be in the same phase = product of the probabilities). This can be represented by a slope with an asymptote for this value. The distance beyond which the asymptote is reached indicates the correlations scale (scope of the correlation).

-The feature scale of correlation, the integral range, is given as:

The covariogram can be used to choose the appropriate magnification for images: if the asymptote is not affected by an image, it means that the points of an image are (partially)

inter-correlated and that the observation range is not sufficient. Observations could therefore be quite different at another point of the image, and it should be depending on whatever we want to measure like increase the field or multiply the observation i.e. measure of the range.

Another term called relative covariogram has been given in [6] as:

The inverse of equivalent surface is given by at x=0.

The relative covariogram represents individuals of a population. Consider two independent individuals selected randomly. The distance between the said individuals is a vectorial random variable and the relative covariogram is given by its probability density function [7].

2-3-1-Geometric Covariogram:

A special case of transitive covariogram is geometric covariogram noted and defined according to:

where represents the measure (length, area, volume, etc.) of the , where is the translation of by the vector In particular, is the measure of , implying the relationship given as

The geometric covariogram is a measurement of the area of intersection of the set with its translation by [8].

The geometric covariogram describes the form of the field , so it always has the linear behavior at the origin. Under certain conditions, the derivative at the origin in all directions can be related to the perimeter of (in 2-dimensional case). Even there exists the derivative at the origin in all directions yet the geometric covariogram is not differentiable at [9].

It is stated in [10] that , and we have the following definition of geometric covariogram:

2-3-2-Regionalized variable:

Regionalized variable is a single valued function defined over a metric space [8].

Or a regionalized variable is a variable that can be considered as to be distributed in space. This space is not limited to the three-dimensional kind of space that we move around in every day, but can be extended to include time, parameter space, property space, etc. This definition "distributed in space" is purely descriptive and makes no probabilistic assumptions.

A phenomenon, when spreads in a space and exhibits a certain spatial structure, is termed as regionalized. If f(x) denotes a value at a point x of a characteristics f of this phenomenon, we can say that the f(x) is regionalized variable [7].

This is a neutral and purely descriptive.

From the mathematical point of view, a regionalized variable is then simply a function f(x) of point x but is, generally, a very irregular function.

It shows two complementary characteristics:

a) A random characteristic:

It may show irregularity and unpredicted variations from one point to another. In other words, an observation of a variable at a point , within the larger study area , is a realization of a random variable at the point [12].

b) A structured characteristic

To some extent it must reflect the structural characteristics of the regularized phenomenon. It can be thought of a nonrandom component in which the random variables for the two locations and i.e. separated by a distance h, are not considered spatially independent [12].

The field of the regionalized variable is the region where it differs from zero. [7].

A regionalized phenomenon cannot be infinitely large, thus we study the regionalized variable only inside a limited domain D, the range of the variable. This range D can represent a natural zone outside which the z is undefined. This can be some particular domain where the regionalization has an interest, the points where it is not null or superior than the detection limits [9]. Regionalized variable is statistically homogenous throughout the surface [12].

One technique used to design an optimal sampling network for a regionalized variable, such as air pollution, is sequential sampling. Sequential sampling is based on extended knowledge of the area to be sampled and expertise in the factors controlling the distribution of a regionalized variable [11].

2-3-3-Our Approach of Covariogram:

Covariogram is the graph of similarity metric (correlations, distances) obtained by the superposition of an image A over an image B (B can be the replica of A) and then translating factor of one of the images in some direction. In short, we plot the translations at x-axis and the summation of similarity measure (using some similarity metric) for the superposed area of the two images on y-axis and term it as covariogram.

The distance is zero at the initial point of the superposition and it becomes minimal as the repeating pattern arrives in the image and thus valleys as well as lowest points of valleys are obtained. The repetitions of these valleys and those of lowest points show that at there is reappearance of some structure. These repeated structures are identified as texture according to its definition.

In case of correlations there is inverse relation. Initially when the two images are superposed, the correlation is high and as we translate the superposed images in some direction, the correlation begins to lower. In this case we get some peaks when there is similarity between the superposed portions of the two images. It can be minimal or even zero when there is no similarity in the superposed images.

Let us assume that we have a binary image of size , with white and black squares representing the intensity of pixels as zeros and ones in Fig 2 .3 a. We have its duplicate image . In Fig 2 .3 b the images are superposed in a way that they look like another image with darker black squares. In this case, if we calculate the sum " ", of differences of the superposed pixels, will be zero i.e. the following equation will result in zero as all the superposed pixels are similar.

If from equation we get , it shows that the both the images are exactly similar. Now we exhibit the superposition of image over image by translating it in some directions by some step size here for example 1, i.e. each time we translate it by one pixel in some direction, until there is no superposition and for each step we calculate the sum for the pixel intensities of the superposed parts according to the equation 2.27. 

Diagonal translation:

In the below Figure 2.4a, we see the image , ie image superposed by image . In Further more this covariogram shows that the image in figure 2.4 a is higly periodic and that"s why there is no value of equation which goes above zero. Hence the aforementioned equation calculates the distance values between the two images and in this case all the resulting values (for image and its duplicate image ) are zero showing that there is a perfact repetition of some patterns in the image, and from this we assume that this image is a textured image.

Vertical Translation:

In computing and plotting all these values, we get the following plot (Fig. 2.7). In this case the peaks show how much are the superposed pixels different from one another. On the other hand the valleys which are exactly zero shows that at these steps of translations the superposed portions are exactly similar.

And the repetition of this feature shows that there are some repeating patterns which we term as texture. In the following steps of translations we get the results which we plot as follows (Fig. 2.9). In this figure at initial step "0" we have distance measure S=0, showing that both the image and image are totally identical. It produces image as in in which black part square cover black squares and white squares cover white ones. But when the columnwise translation is made at the first step, the black and white squares superpose the squares of opposite colors which will result in high distances sum and that is why there is a peak at the first translation step shown in at 1. It is repeated for 3, 5, etc for x-axis, where y-axis have high values. Similarly at 2, 4, etc, of the x-axis we get "0" for y-axis as the distance sum S of equation is zero, and it produce valleys. This repetition of valleys and peaks shows that there is a repeating pattern in the image which termed as texture.

Correlation:

Correlation is the parallel, reciprocal or complementary relationship (structural, functional etc) between two or more comparable objects. It permits the comparison between/among two/more things (images) based on some characteristics e.g. similarity etc.

Correlation has two variants i.e. autocorrelation and cross-correlation. Autocorrelation is applied on an image to find the correlating segments inside it while cross-correlation is used for finding such feature between two images.

While applying this to evaluate textures in images to construct covariogram we will try to find that how much are the overlapped portions correlating to one another at each translation step. We have the following formula:

For each translation we note the correlation value and then plot these values against the translations steps. The values of peaks here represent high similarities while valleys show the less similarity or no similarity if it is zero. Each value of image will be multiplied (compared in some cases) with the overlapping image values and thus all resultant values when summed up will be the correlation for one translation step. This will be repeated until the end of the translation. Since we have binary images here so one exemption will be made, that in both cases, when white pixel overlaps white one (1 overlaps 1) or when black over black (0 overlaps 0), we note 1 and sum these ones to get the correlation. So, image is and same is image , thus using this exception we get the value 64, for zero translation. Following are the diagrams of stepwise translations in diagonal, horizontal and vertical directions with the relative covariograms. It should be noted that in all the three cases the initial value of equation is same and is the highest in this case i.e. 64. Later values of the equation and the covariogram for the diagonal translation is different from the later two , notably in this case the later two remain the same in representation.

Correlation for Diagonal translation:

The initial correlation value as discussed above is 64. Then at the first diagonal translation ,as in Figure 2 This figure shows that at each translation there is complete correlation. It also shows at each translation step the existence of periodicity as there is high correlation value.

Correlation for Horizontal translation:

Correlation between the two superposed images, and , is observed at each translation step while translating image along the x-axis. In correlation value for equation is 0. In the succeeding translation steps we get the values for are 48, 0, 32, and so on. When plotted the values of correlation on y-axis against translation steps on x-axis, we get the following covariogram (Fig. 2.13).

In this covariogram we observe that there are peaks and valleys. The peaks show the high correlation and the valleys show the low correlation. In this case no correlation as y-axis approaches zero at certain translation steps. This phenomenon is repeated showing that there is some repeating pattern which can be termed as textures. 

Correlation for Vertical translation:

The initial step in this case is identic to the previous one i. The covariogram for this is given as below: The explanation is as discussed for the previous case of horizontal translation.

Similarity Metrics:

Distances:

Distance generally is defined as the length from point A to point B or the length of straight line segment which separates two points, A and B. In mathematics distance is defined as a quantitative variable which generally satisfies at least the first three of the following conditions:

o distance between x and y cannot be negative. For images comparison, two images are considered to be "similar" if the calculated distance between them is sufficiently small. It is to note that distance and similarity are of the same nature, as a smaller distance denotes a higher similarity. Among the too many available tools used as image similarity metrics i.e. distance, correlation, mutual information etc, the distance metric has been widely used in measuring similarities. For example, distance between two images is summation of all the differences between the corresponding pixel intensities. Distance metrics such as Manhattan ( ), Euclidean ( ), Weighted-Mean Variance (WMV), Chebychev (L∞), Mahalanobis, Canberra, Bray-Curtis, Squared Chord and Chi-Squared distances were used in [13]. Euclidean distance (also called sum of squared differences) is commonly used for different purposes in image processing but [14] has ruled out its efficiency for all kinds of applications. Harmonic distance and geometric distance were used in [14] as similarity metrics. Earth Mover Distance has been an effective tool used as a similarity metric [START_REF] Rubner | The earth mover's distance as a metric for image retrieval[END_REF] and [START_REF] Daniel Dementhon | Image Distance using Hidden Markov Models[END_REF] has exploited the distance measure between images and with the corresponding Hidden Markov Mesh Models and for their similarity. Some examples of distances are given below.

Manhattan Distance Euclidean Distance

Mahalanobis Distance

Correlation:

Correlation as discussed above is also a very important metric for producing covariogram.

LIP Version of the above mentioned metrics: Distances:

LIP Distance is given as

LIP Manhattan

where such that and S= size of Image.

LIP Correlation:

LIP Covariogram:

Using the given metrics we obtain the covariogram in LIP framework. Also we show the difference of the LIP covariogram from the classical one: when applied to dark images, it is much more significant than the classical approaches (for an example, see following Figure 2.17).

a) Initial dark image b)Covariogram of a) with classical Manhattan distance c)Covariogram of a) with LIP Manhattan distance Fig. 2.17 Efficiency of Logarithmic metrics applied to ,dark images

For a complete example, we invite the reader to report to Figure 3.20 of the next chapter.

2-4-Conclusion: Why the LIP framework?

In the first chapter, we have seen that the concept of texture is not mathematically defined. As a consequence, the tools created until now for evaluating textured images present some weaknesses, and particularly the notion of co-occurrence matrices. In fact, if we consider their content informations, such matrices are generally very poor at a statistical level. This is the reason why Haralick has proposed to cumulate in various manners these informations, resulting on the well-known "Haralick parameters". Another drawback of cooccurrence approach is linked to the very large amount of matrices to be computed: the same number as the translations lengths we are interested in, multiplied by the directions in which these translations are applied.

We have proposed a solution to decrease the computation volume by performing a preliminary classification on the studied image, thus limiting the size of the matrices and increasing the average number of occurrences at each location inside the matrix.

Another problem, generally neglected in classical approaches is the essential role of Human Visual System in the perception of texture. This is the reason why we have chosen the LIP (Logarithmic Image Processing) context.

To propose efficient tools for studying textured images, the LIP framework possesses very strong properties:

-It is consistent with human vision, and the notion of texture is clearly dependant of the Human Visual system -It permits to develop tools weakly sensitive to lighting variations and/or lighting drift -It furnishes a context where new notions of contrast and associated metrics may be defined From such metrics, "correlation" tools may be derived in order to build covariograms which take into account Human Vision.

The addition of two images f and g corresponds to the superposition of the obstacles (objects) generating respectively f and g. The resulting image will be noted f g. Such an addition is deducted from the transmittance law:

T f g = T f x T g (1)
which means that the probability, for a particle emitted by the source, to pass through the "sum" of the obstacles f and g, equals the product of the probabilities to pass through f and g, respectively. Jourlin and Pinoli ( [3]) established the link between the transmittance T f (x) and the grey level f(x) :

T f (x) = 1 -f(x) / M (2)
Replacing in formula (1) the transmittances by their values deducted from (2) yields:

f g = f + g -f.g / M (3) 
From this addition law, it is possible ([1], [3]) to derive the multiplication of an image by a real number λ according to: From this remark, it appears clearly that the logarithmic multiplication λ f allows the brightness control of an image (cf. fig. 3-2). Furthermore corrections may be applied to images f and g acquired under variable illumination or aperture (cf. fig. 3-3). As an example, λ and μ are computed to obtain the same average grey level (here 128) for λ f and μ f. Second row corresponding homothetic images with average grey level 128.

λ f = M -M ( 1 -f / M ) λ ( 4 
Initial image f 2 f 4 f Initial image 1/2 f 1/4 f
From remarks 3 and 4, it appears clearly that each law of our vector space structure (addition-subtraction on one hand and scalar multiplication on the other) is efficient to perform brightness modifications. They are then applicable for correcting lighting variations, to enhance low-lighted images (near night vision), all the corresponding algorithms being performed in real time (25 images per second with a classical Pentium).

To conclude this introduction part, note that the presence of a vector space structure permits the use of various efficient tools associated to this kind of space: logarithmic interpolation, scalar product...( [3]).

3-2-Logarithmic Additive Contrast and associated metrics 3-2-1-Recalls on the classical Michelson contrast

Given a grey level image f and two points x and y lying in D 2 , it is common to define the "Michelson" contrast of f at the pair (x,y) according to: Take care that in the case of this classical contrast, the origin 0 of the grey scale represents the "black" extremity.

Remark 6:

The "Michelson" approach clearly overestimates the contrast of dark pairs of points compared to bright pairs with the same grey levels difference.

Remark 7:

If one of the two considered pixels is black (grey level 0), the value of their Michelson contrast equals 1, independently of the second pixel grey level. Note also that C m is not defined when f(x) = f(y) = 0. For these reasons, we will limit the computation of C m (x,y) (f) to the case where f(x) ≠ 0 and f(y) ≠ 0.

In such conditions, the value 1 is not reachable: C m (x,y) (f) This result will appear essential in order to demonstrate an explicit link between the Logarithmic

Additive Contrast and the Michelson contrast.

3-2-2-Definition of a Logarithmic Additive Contrast (LAC) in the LIP context

In the LIP framework, Jourlin et al. ( [6]) introduced the Logarithmic Additive Contrast (LAC) noted C (x,y) (f) of a grey level function f at a pair (x,y) of points lying in D 2 . It is defined according to the following equation:

Min(f(x), f(y)) (C (x,y) (f)) = Max(f(x), f(y)) (6)
Optical interpretation: Such a contrast represents the grey level which must be added (superposed) to the brightest point (smallest grey level) in order to obtain the darkest one (highest grey level). Then this logarithmic contrast may be visualized without any normalization.

Using the addition formula (3) yields:

C (x,y) (f) = |f(x) -f(y)| / (1-Min(f(x), f(y)) / M) (7)
The same reasoning permits to define the Logarithmic Additive Contrast C x (f,g) between two grey level functions f and g at a same point x of their spatial support D:

C x (f,g) = |f(x) -g(x)| / (1-Min(f(x), g(x)) / M) (7 bis))
Properties and results:

a) It is possible to express this contrast as a LIP subtraction:

C (x,y) (f) = Max(f(x), f(y)) Min(f(x), f(y))
b) The LAC is clearly a sub-additive and homogeneous operator on the space of grey level images I(D, [0,M[):

C (x,y) (f g) ≤ C (x,y) (f) C (x,y) (g) C (x,y) (λ f) = λ C (x,y) (f)
c) It is important to observe that the considered contrasts C m (x,y) (f) and C (x,y) (f) are of the same nature in the sense that each of them enhances the contrast of dark pairs of points compared to bright pairs with the same grey level difference |f(x)-f(y)|.

To illustrate that remark, let us consider the following results (Fig. 34 information, and are then inefficient in detecting small sized differences between two functions or two images (Fig. 10 -a)).

Atomic metrics

On the contrary, we can use "atomic" metrics, similar to measures using "weighted" points (Dirac measures). They are then perfectly adapted in detecting small differences, even as small as a pixel (Fig. 10 -b)). The most typical example is the metric d ∞ derived from the norm of uniform convergence in the L ∞ space, which is computed on the point realizing the greatest difference between f and g: 

3-2-3-2-Logarithmic metrics

Now let us present the logarithmic versions of all these metrics. Preliminary results on this subject have been exposed in [7], and the interested reader will refer to a detailed presentation ( [8]).

The global logarithmic metric d1

Given Applied to digital images, such a metric becomes:

d 1 D or R (f,g) = [ (i,j) D or R Max(f(i,j), g(i,j)) Min(f(i,j), g(i,j)) ]
x (area of a pixel) (11) where represents the summation, in the LIP sense, of the contrasts between f and g at each point (i,j) of the considered region.

Remarks

8)

The term "dxdy" in formula (10) becomes in digital version "area of a pixel" (cf ( 11))

9) The presence, in formula ( 11), of the "area of a pixel" permits to obtain a result independent of the numerization (sensor resolution) and to preserve the homogeneity of formula ( 10) which clearly represents a volume.

10) Formulas ( 10) and (11), respectively in continuous or digitized expression, estimate a "contrast volume" separating the representative surfaces of f and g.

11)

A real difficulty arises if we need the visualization of such a distance. In fact, each contrast Max(f(i,j), g(i,j)) Min(f(i,j), g(i,j)) is a grey level and the sum of an arbitrary number of grey levels, although it remains a grey level, in general quickly approaches the limit value M. To solve this problem, we propose to replace this cumulative distance by an average contrast, taking into account the number of points present in the region of interest : if #R denotes the cardinal of R, we replace formula (11) by : d 1R (f,g) = (1/ #R (f,g) = (1/ #R (i,j) R Max(f(i,j), g(i,j)) Min(f(i,j), g(i,j))] ( 12)

12) Formulae ( 11) and ( 12) are obviously compatible because the average contrast of (12) corresponds to the "contrast volume" of ( 11): in fact, computing an average contrast from the volume expression consists in dividing by "area(D)" whose value is (area of a pixel) multiplied by (#D)

The atomic metric

We start from the expression, recalled below, of the "classical" atomic metric d :

d d (f, g) = Sup x R or D |f(x)-g(x)|
In the LIP context, if we refer to (5), the same formula with a LIP subtraction is not correct because the expression |f(x) g(x)| is not always defined, according to the fact that f(x) is greater than g(x) or not. It must be replaced by the logarithmic difference between the maximum and the minimum of the pair (f(x), g(x)):

d f, g) = Sup x R or D ( Max (f(x), g(x)) Min (f(x), g(x)) (13)
As for d (f, g), such a metric seems theoretically well adapted to industrial control and more precisely to point out possible defects, but it is very « sensible » because determined by one unique point, which may correspond to a very small, and then acceptable, defect.

Given a reference function without defects, noted f and the same image with defects, noted g, it is possible that a unique pixel x 0 corresponds to the "Sup" value: in this case, only x 0 will be detected. In most cases, this kind of answer is not completely satisfactory because the defect size around x 0 may be larger than one pixel. Furthermore the method may ignore a number of other defects whose contrasts with the reference image are less than d (f, g). A possible answer to this problem is to perform a threshold t on the contrasts map between f and g, in order to know where g significantly differs from f and if x 0 is really an isolated point.

3-3-Logarithmic Multiplicative Contrast and associated metrics 3-3-1-Definition of a Logarithmic Multiplicative Contrast (LMC) in the LIP context

Now let us define a contrast notion based on the scalar multiplicative law of the LIP framework. This notion is completely different of existing contrasts. Nevertheless, we took care to give it a physical meaning, once more based on the transmittance law. It will be seen that this contrast, which is a real number instead of a grey level, presents the advantage to be more sensible near the white extremity of the grey scale than near the black one.

If f represents a grey level image and x and y two points of D, we define the logarithmic multiplicative contrast (LMC), noted C (x,y) (f) as the real number ratio of Max (f(x), f(y)) by Min (f(x), f(y)). In other words, it represents the number by which the brightest grey level must be multiplied, in the LIP sense, in order to obtain the darkest grey level:

C (x,y) (f) Min (f(x), f(y)) = Max (f(x), f(y)) ( 14 
)
In the same way, the logarithmic multiplicative contrast may be defined for a pair of grey level functions (f,g) at each point x of D:

C (x) (f,g) Min(f(x), g(x)) = Max (f(x), g(x)) ( 15 
)
Remarks 18 -In each of the precedent situations, the multiplicative contrast clearly corresponds to the number of times we must "add" (physically superpose) the « Min » grey level between the source and the sensor to obtain an attenuation equivalent to the « Max » grey level.

19 -In order to illustrate the better sensitivity of the Logarithmic Multiplicative Contrast for the bright part of the grey scale, let us consider a pair of grey levels f(x) and f(x) + k. We compute the Multiplicative Contrast between f(x) and f(x) + k when f(x) varies in the interval [0, 255-k], in a classical grey scale (0 = black). In Figure 3456789, the curves corresponding to these contrasts are represented for various values of the grey level difference k (here k = 30, 50, 100, 150, 200).

The non-linearity of the Logarithmic Multiplicative Contrast appears clearly, as well as its attenuation near the black extremity of the grey scale and its high sensitivity towards the white extremity.

Such a behavior must be compared to the LAC one, which overestimated the contrasts of dark points.

This situation present a very important advantage: it permits the processing of over-lighted images as well as low-lighted ones. The normalized (lying in the interval [0, 255]) multiplicative contrast C (x,y) (f) of f at a pair (x,y) satisfies then:

C (x,y) (f) = 255 x (1/ C max ).C (x,y) (f) (17) 
sometimes denoted C (f(x),t) in the following when at less one of the considered grey levels is not defined by f but a threshold t for example.

In the same way, the contrast of a pair (f,g) of images at a point x is given by:

C (x) (f,g) = 255 x (1/ C max ).C (x) (f,g) (18)

3-3-2-Examples of metrics associated to the Logarithmic Multiplicative Contrast

3-3-2-1-The global metric

In section 3-2-3-1, we have seen that on the space L 1 of integrable functions, it is classical to compute the distance d 1 (f,g) as the integral of the difference |f(x)-g(x)| where x varies in the region of interest, which may be for example an interval of R. The same distance may be defined on images with a double integral on a subset of R 2 ... 

d 1,D or R (f,g) = D or R C (x) (f,g) drdc (19) = D or R 255 x (1/ C max ). C (x) (f,g) drdc
where the coordinates of a point x in terms of rows and columns are noted (r,c) Applied to digital images, such a metric becomes:

d 1,D or R (f,g) = [ (r,c) D or R C (x) (f,g)] x(area of a pixel) (20)
Remarks 23-The presence, in formula (20), of the "area of a pixel" permits to obtain a result independent of the digitization scale.

24-Formulas ( 19) and (20), respectively in continuous or numerical expression, estimate a "multiplicative contrast volume" separating the representative surfaces of f and g.

25-

Obviously, the size (number of pixels, or "cardinal" noted #) of the considered region R plays a role in the distance estimation. To suppress it, we can divide the distance by the region area i.e. (cardinal(R) x (area of a pixel), and thus obtain an averaged value noted d 1,D or R (f,g) and defined by: As aforementioned for "additive" metrics, it may be useful to introduce an intermediate solution.

d 1,D or R (f,g) = (1/ #R). (r,c) D or R C (x) (f,g)] (21 

3-3-2-3-The intermediate metric

When applied to industrial control, the atomic metric seems theoretically well adapted to defects detection, and also to biomedical applications when small objects have to be acceptable, the controlled product must be rejected.

28 -In order to detect the set of all the defects, acceptable or not, we propose to choose a particular pixel inside the region R, for example the gravity center c. For each x of D, denote Rx the region R when its gravity center c is superposed to x, and compute the distance d 1, Rx (f,g) which becomes the grey level of x. We obtain a grey level image. If we apply to it a threshold corresponding to the "acceptable error" , all the pixels presenting a grey level greater than must be interpreted as defects.

3-4-Applications of these Metrics notions

The problem of defects detection in industrial control has been aforementioned. Now some applications are going to be presented in order to illustrate the interest of the introduced metrics.

Scene modifications

Given a reference image f of a certain scene, and a current image g of the same scene, a recurrent question is: what differs between f and g? Such a question covers various domains:

-Comparison of two satellite images of the same site at different times, the aim being to put in evidence new buildings or roads, expansion of towns, and also modifications of agriculture areas… -Robots safety, the aim being to detect the entrance of a person in a forbidden area.

-Industrial or military sites surveillance.

-Automated crossroads supervision -….

The metric tools can obviously answer such problems.

Pattern recognition and target tracking

When possessing a reference image f of a region (object) of interest, and given a current image g, the addressed question is to decide if, inside g, some region very similar to f exists or not. Such a similarity may be estimated by the distance between f and a considered sub-region of g.

It is also possible to extend this method to a video: the target of interest is detected on the first image of the sequence and this target"s image is used as searched region on the second image, and so on. The tolerance accepted on the considered metric permits small variations of the target in terms of shape, orientation and grey levels, allowing the tracking of the target.

Metrics as correlation tools

The notion of correlation is a fundamental tool in the field of statistics. It is also commonly used in image processing in order to perform the optimal superposition of two images, in particular to compensate sensor motions.

The role of metrics as correlation tools is evident: given two images, one may be moved (translation, rotation…) in reference to the other until the correlation becomes optimal, that is to say when a certain distance between them reaches a minimal value.

A perfect example of this approach has been given in the precedent section, when a given target has been moved of the reference image in order to detect the locations corresponding to a minimal distance.

Characterization of pseudo-periodic textures

The concept of "texture" is rather difficult to define with rigorous terms, in the sense of mathematics for example. In this section, our ambition is not to go into this subject in depth, so we will limit us to propose some new tools to study images presenting a pseudoperiodic texture. For examples of such images, see Fig. 3.10.

Fig. 3.10 Initial pseudo-periodic image: bricks wall

A recurrent question about pseudo-periodic images is to estimate a period in some direction. One of the major techniques to answer this question consists, given an image f, in computing a covariogram (notion introducted by Matheron in [9]) of function f in some direction. To do that, f is translated related to itself in the given direction. For each value of the translation vector h, the "correlation" between f and its translated f h is computed. Then the results are presented as a curve.

Example of covariogram is presented in Fig. 3.11: it has been applied to the image of Note that if the first minimal value is reached for a translation vector h o , the expected estimation of the period of f is precisely given by h o . Let us begin with a definition of percolation.

The slow passage of a liquid through a filtering medium is called percolation. Thus percolation appears as a physical critical process to describe the transition of a system from one state to another.

It can also be interpreted as a phenomenon of transmission of "information" through a set of interconnected sites and links that can relay information to neighboring sites based on some status or properties these sites present.

Broadbent and Hammersley (1957) [1] introduced the "percolation model" to study how the anti-gas masks of the soldiers become in effective [2]. Consider a porous stone putted in a container of water. So what is the probability that the centre of the stone will be wetted?

It is explained as following.

Let

, where Z represents vertices and E represents edges, be the plane square lattice and let p be some probability, which simply means that .

We examine each edge of , and declare this edge to be "open" with probability "p" and "closed" otherwise, independently of all other edges. The edges of represent the inner passages of the stone, and the parameter p is the proportion of passages which are broad enough to allow water to pass along them. We think of the stone as being modeled by a large, finite subsection of (see Now let us look at some applications of percolation:

There are plenty applications of percolation in many diverse situations. We can give as examples:

1). Network stability and fragility. Percolation theory can be used to determine the number of random nodes to be removed from a network so that its connectivity is lost (cf D.

Callaway et al ( [3])).

2). Oil fields: Percolation theory is used in predicting oil or gas distribution in the porous rocks of oil fields (cf. D. Stoffer ( [4])). P R King et al applied percolation theory to estimate the time for a fluid injected into an oilfield to breakthrough into a production well [5] 3). Conductors: Consider a regular body built with tiny particles of two materials, A (conductor) and B (insulator). Assuming that electric field is applied over the opposite sides of the body, we suppose that each particle of the body is chosen at random to be either of type A or type B. In such conditions, a percolating cluster of neighboring particles of type A between the two electrodes can result in producing finite resistance phenomenon, while the absence of such cluster will result in infinite resistance. This is dependent on the ratio of type

4-1-3-Application to texture evaluation:

In our knowledge, it is not classical to use the notion of percolation to evaluate and classify textured images.

Nevertheless, we can refer to the PhD thesis of François MAYET and Gabriel FRICOUT, whose references are listed in Chapter 5 of the present work, in which we propose a first experiment aiming at classifying randomly textured images. The method consists of associating to percolation trajectories inside a studied image some parameters like length, fractality…and performing well-known classifications algorithms on the retained parameters.

4-2-Fast Marching Model

Fast Marching Method (FMM) is introduced by J.A.Sethian Thus the boundary value formulation is given by the Eikonal Equation as given below:

where T is the gradient of T.

Using an approximation to the gradient, the Eikonal equation may be discretized as:

[max(D ij -x T,0) 2 + min(D ij +x T,0) 2 + max(D ij -y T,0) 2 + min(D ij +y T,0) 2 +] = 1/F 2 , where T(x,y,0)=0, D ij -x T=(T ij -T i -1,j)/(x i -x i -1), D ij +x T=(T i +1,j -T ij )/(x i +1 -x i ),
D ij -y T=(T ij -T i,j -1)/(y j -y j -1) and D ij +y T=(T i,j +1 -T ij )/(y j +1 -y j ).

A less diffusive approximation to the gradient is (this will be implemented):

[max(max(D ij -x T,0), -min(D ij +x T,0)) 2 + max(max(D ij -y T,0), -min(D ij +y T,0))2 ] = 1/F 2 .
This equation is implemented over grid points which are of the following three types.

Alive Points (black points) are points where values of T are known.

Trial Points (green) are the closer points to alive points curve and the propagation is to be computed for it, and its set is called narrow band. The points from narrow band join the alive points as propagation takes place and the narrow band spreads.

Far Away Points (blue points) are points which are outside of the narrow band and could be the part of it ie can be transformed into trail points later. 

Basic Algorithm

The basic algorithm to fast marching method is:

-Initialization Step

Alive Points:

Let A be the set of all grid points {i A ,j A } that represents the initial curve;

2. Narrow Band:

Let NarrowBand be the set of all grid points neighbors of A.

Far Away Points:

Let FarAway be the set of all others grid points {i,j}. Set T i,j = for all points in FarAway.

As T rig , T lef , T top and T bot have negative values, T ij is the smaller absolute value among them. Figure 4.7 a) shows this calculation. That's obvious that the situation where the four neighbors are positive is an exception, where the initial front is a single point. point (i,j) to line L. That's important remember that in the evolution considered above the speed F>0, so the front will evolve outward. If the front would evolve inwards, it wouldn't be considered the signed distance in for the initial alive points.

The above computation considers that we have an implicit function f. In many situations we don't have such function, but only a set of values defined in the grid points (i,j), and given an iso-value c (that represents the curve C) we'd like to propagate from points with value c. In this case the initialization process is similar to the case where we have C ={f(x,y)=c}.

Marching Forward

The step 4 of the marching forward algorithm tells that the values of T at all neighbors of (i min ,j min ) are recomputed according to discrete Eikonal equation

[max(max(D ij -x T,0), -min(D ij +x T,0)) 2 + max(max(D ij -y T,0), -min(D ij +y T,0))2 ] = 1/F 2 ,
selecting the largest possible solution to the quadratic equation. The upwind difference of such equation indicates that information propagates from smaller values to bigger values of T.

For simplification consider 1/F = g.

In In this case T X value may be computed from equation:

(T X -T A ) 2 + (T X -T B ) 2 = g 2 .
Because of condition T A + g T B , the discriminant has a non-negative value.

To prove that the T values are always crescent, we should find that T X T A , as bellow:

The solution of equation is

T X = [T A +T B + (2g 2 -(T B -T A ) 2 ) 1/2 ] / 2. As g (T B -T A ), so T X [T A +T B + (2(T B -T A ) 2 -(T B -T A ) 2 ) 1/2 ] / 2
, and this results that T X T B .

As T A is the smallest among T B , T C , and T D , so T X T A , what proves the monoticity of T.

If TA + g min (TB, TD)

In this case the discriminant has a negative value and T X value is computed from:

T X = T A + g. As g>0, so T X T A .
Realize that in both cases above if the T value of any point B,C, D is far away, it won't be considered in the calculation of T X .

Kimmel and Sethian ([10]) give a technique for computing geodesics on manifolds using the Fast Marching Method. Tao X. et al used the FFM to extract weighted geodesic curves that have desired global properties [11] and experimented it on a simulated image.

The simulated image is a gray level image with some bright structures ( N. Forcadel et al used the Generalized Fast Marching method, an extension of FMM, for image segmentation ( [12]). The Fast Marching Method (FMM) is useful when tracking a propagating front that evolves with a constant sign speed, the GFMM offers more general assumptions on the velocity and in particular no sign restrictions. A second order version of the Fast Marching Method on triangulated domains to compute shape offsets on machine parts is given by Sethian and Vladimirsky in [13].

Dans le chapitre 4, nous introduisons les outils qui vont nous permettre d"aborder l"étude des images à texture aléatoire. La notion de percolation est rappelée de manière détaillée, ainsi que la construction de front de propagation qui en découle et le concept de fast marching qui est un moyen de sa mise en oeuvre. 

5-5-Conclusion and perspectives

References of the Chapter

We apply to this image a percolation algorithm (explained in detail later) from top (first line of the image) to bottom (last line of the image).

Thus, each pixel of the first line moves inside the image according to a percolation trajectory. Some of these trajectories are superimposed to the initial image, which is shown on 

5-2-Implementation of percolation:

This section has been realized in collaboration with Bassam Abdallah, which was spending his End Studies Project in the Laboratory Hubert Curien and is now a PhD student in the Centre de Morphologie Mathématique (Ecole des Mines de Paris). We were particularly interested in the characterization of the so-called random textures, considering that for pseudo-periodic textures, many interesting tools have been developed and are functional at the moment.

Initially, we select a number of points on the starting line (in our study the first line of the image, but any other line can be chosen as starting line). In order to initialize the percolation process, we have chosen to consider middle/second third of the points as focus

For each of these neighboring points, a parameter is computed (which can be driven by a grayscale LUT), which here is simply the value of the pixel. Then we will select the neighboring point to maximize the selected parameter (in our case the lightest point).

Note 1: In order to overcome the problem of multiple points with the same parameter value, we set up a random selection from among the best candidate. 

5-3-Percolation curves and parameters extraction

Once the percolation process is over, that is to say, when each of the starting points arrives to the bottom of the image, we obtain a multitude of trajectories (see Fig 5-1 c)) that we must now examine.

We first tried a multitude of parameters that can be used in the study of these trajectories. After study of the influence of these, we have selected the most significant parameters in a PCA, which allows us to calculate the weights of the various chosen parameters. This study was conducted with the Brodatz base of textured images. The parameters selected are those producing the best separation of different textures and at the same time bringing together the best textures of the same nature.

Our approach is exploratory and does not aim at deeply justify the selection of retained parameters. It is the reason why we have limited ourselves to the extraction of 9 parameters, listed hereafter.

Histogram:

This variable is not used directly as a parameter, but the parameter MeanHisto is derived from it. This variable is a vector (1 x m), where m is the image size, in the direction perpendicular to the percolation axis (in this case the width). Variable Histo at each index j represents the number of trajectories arriving in column j (in the case of a vertical percolation).

Mean Histogram:

This parameter represents the average offset d (that is to say, on the axis orthogonal to the axis of the percolation) of trajectories. It is calculated by taking the weighted average of the columns (the weight of a column j corresponding to the number of curves approaching this column"s end). Thereafter we subtract the average of the column values initially chosen (variable Windows). Thus we obtain the average displacement through our connected curves (percolation candidates) from the departure point to the end point.

In addition, as we want to have a variable independent of the initial image size, these results are normalized i.e. divided by the width m of the image. If the size of initial image I was n * m, the following result holds:

The other selected parameters are:

L: probability at a given moment, a droplet at the position (i, j) arrives at (i, j-1) at next step.

R: probability at a given moment, a droplet at the position (i, j) arrives at (i, j +1) at next step.

BR: probability at a given moment, a droplet at the position (i, j) arrives at (i +1, j +1) at next step.

BL: probability at a given moment, a droplet at the position (i, j) arrives at (i +1, j-1) at next step.

B: probability at a given moment, a droplet at the position (i, j) arrives at (i +1, j) at next step.

Hausdorff -Besicovitch dimension:

Before Mandelbrot, Hausdorff and Besicovitch have defined fracta lity and fractal dimension. The mathematical definition of Hausdorff or Hausdorff-Besicovitch dimension (Hausdorff [5], Besicovitch [6], [7], [8]) is based on the following definition of α-dimensional measure.

Let be a metric space and ε a real number strictly positive. Consider an overlapping of E by a finite union of subsets A 1 …A n of E, whose diameter δ (A i ) is less than ε. In such conditions, for a given ε and a given exponentiation α, the measure of the smallest overlapping is noted m ε,α (E): m ε,α (E) = Inf { ∑ [δ (A i )] α , for E ⊂ union (A i ) with δ (A i ) ≤ ε }

The α-dimensional measure m α (E) of E is the limit value of m ε,α (E) when ε tends to 0: m α (E) = lim ε →0 m ε,α (E) Let be a metric space. Let be its α-dimensional measure. The Hausdorff dimension is the unique value such that

The Hausdorff dimension appears thus as the value for which the -dimensional measure makes a "jump" from zero to infinity. This definition is difficult to implement, hence other methods which does not involve the notion of measure have been developed.

Minkowski-Bouligand Dimension:

"Minkowski sausage" of an object is the set of points located at a distance less than of it, which means the dilation of E by a ball of radius ε.

Let be the area of this sausage. The Minkowski-Bouligand Dimension (Bouligand [9], [10], Minkowski [11]) is defined according to and can be deduced from the slope of a log-log plot as given in the figure 567. For texture of type 2, however, we observe a small degradation of good results after adding noise (cf. . We begin to observe confusions between this texture and other textures in the database. 

General conclusion:

At the beginning of the present work, we decided to study the possible contributions of the logarithmic Image Processing (LIP) framework to the processing and interpretation of textured images.

In fact, the concept of texture is not so easy to define, but everybody admits that it is strongly connected to the Human Visual System. Knowing that the LIP Model has been demonstrated as consistent with human vision, it appeared us interesting to create logarithmic tools dedicated to texture evaluation.

In a first time, we have worked to adapt the Haralick parameters in the LIP framework, but most of them necessitate the notion of logarithmic product of two grey levels, which is not rigorously defined. Although some parameters have been defined in a logarithmic version, we have not obtained sufficient results with this approach and we have decided to not present it in the present manuscript.

Concerning the classical method of co-occurrence matrices, their definition is not particularly suitable to the LIP context. It"s the reason why we have focused on the covariogram approach, which can be driven by various notions of logarithmic metrics. Such metrics play the role of "correlation" tools, with the advantage to take into account the human vision. Moreover, the logarithmic tools are weakly dependent of illumination variations, and thus produce results rather independent of such variations.

The two last Chapters propose a new approach consisting of considering the grey levels of an image as phases of a medium. According to its grey level, each phase permits to simulate the percolation of a liquid through the medium, thus defining percolation trajectories.

Each propagation of the liquid from a line to another is considered as easy or not, in link with the crossed grey levels. Such a method permits the creation of a "cost" function which modifies the "time" for progressing from a point to another.

Moreover, this cost function may be computed in the LIP framework, with the possible advantage to take into account the Human Visual System.

Finally, the trajectories allow the computation of various parameters including the fractal dimension. On the basis of such parameters, a first experience on random textures classification has been realized, proving the pertinence of the idea.

Obviously, the proposed approach is only a first step and necessitates complementary works to result in a reliable classification method.
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 12 Fig: 1.2: Examples of periodic, pseudo periodic and non periodic Textures
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 22 Classical tools for studying pseudo-periodic textured images. Weakness of this approach and solutions to overcome this drawback -Classification of the image (example : k-means)

  where , ,are the means and , are the standard deviations of and . The is the th entry in the marginal-probability matrix obtained by summing the rows of i.e. linear dependence of the gray levels between the pixels in some relative specified positions. Or correlation is high in case the gray level pixel pairs are strongly dependent.d) Sum of squares or variance:This parameter is:

  measure of correlation -I: where and are entropies of and . m) Information measure of correlation-II: where n) Maximal Correlation coefficient:

Fig 2 .

 2 Fig 2.3 a) Fig 2.3 b) Fig.2.3: a) The binary image of size 8x8 and b )Image resultant of image superposed by its duplicate Image .

Figure 2 .

 2 Figure 2.4 b we see the image superposed by a translated image . In this case first column and first row of image are not superposed and similarly 8 th row and 8 th column of also

Figure 2 Fig 2 .

 22 Figure 2.4 a Figure 2.4 b Figure 2.4 c Fig 2.4 a. image B resulting from image superposed by its duplicate Image , Fig 2.4 b is the first step(1,1) translation and Fig 2.4 c shows the 2 nd step (1,1) translation.

Fig 2 . 5 :

 25 Fig 2.5: Covariogram of the image in Figure 2.4 by diagonal translations or (1,1) translation and using the distance metric as given in equation 2.27.

  Fig 2.6 a), image is superposed by , giving image as mentioned above and the result of apply equation is known to be zero. Now by translation one row down wards we get the Fig 2.6 b), where first row of image and last row of image remain uncovered.

Figure 2 .

 2 Figure 2.6 a.Figure 2.6 b Figure 2.6 c

Figure 2 . 6 b

 26 Figure 2.6 a.Figure 2.6 b Figure 2.6 c Fig 2.6 a. image B resulting from image superposed by its duplicate Image , Fig 2.6 b. is the first step(1,0) translation and Fig 2.6 c. shows the 2 nd step (1,0) translation But the last seven rows of Image are superposed by the first 7 rows of image and thus we get the result of equation as S=56. For Fig 2.6 c), the last 6 rows of image are superposed by the first 6 rows of image , but since the white pixels cover white pixels and the black pixels cover black ones so the result of equation is 0. For the step of translation it would 5 rows superposed and the value of S=40 in the equation . By

Fig. 2 . 7 :

 27 Fig. 2.7 : Covariogram of the image in Figure 2.6 by vertical translations or (1,0) translation and using the distance metric as given in equation 2.27.
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 22 Figure 2.8 a.Figure 2.8 b Figure 2.8 c Fig 2.8 a. image B resulting from image of Fig 2.4a superposed by its duplicate Image , Fig 2.8 b. is the first step(0,1) translation and Fig 2.8 c. shows the 2 nd step (0,1) translation.

Figure 2 . 9 :

 29 Figure 2.9: Covariogram of the image in Figure 2.8 by horizontal translations or (0,1) translation and using the distance metric as given in equation 2.27.

Figure 2 .

 2 Figure 2.10 c resulting in the correlation value = 36. In the third translation step the correlation value = 25, and so on. The covariogram is obtained by plotting these translation steps on x-axis and the corresponding correlation values on y-axis which is given in Fig 2.11. Here we see that the correlation value at translation step "0" is highest i.e. 64. The correlation value decreases with the following translation steps because the number of overlapping pixels decreases and finally it becomes zero when there is no overlap.

Figure 2 Figure 2 .

 22 Figure 2.10.a Figure 2.10.b Figure 2.10.c Figure 2.10 :a)shows the correlation between the superposed images and at translation step "0", b) shows the correlating pixels at diagonal translation step "1", and c) shows the correlation at diagonal translation step "2".

Fig. 2 .

 2 Fig. 2.11: Covariogram based on correlation of two images, which are translated diagonally.

Figure 2 .

 2 12a we have image of the Figure 2.4b where image is superposed by at the translation step "0" and has the correlation value = 64, as already explained. At first translation step, the last 7 column of the image are overlapped by first 7 columns of the image , resulting in the

Fig. 2 .Fig. 2 .

 22 Fig. 2.12 a) Fig. 2.12 b) Fig. 2.12 c) Fig. 2.12: a) has the identic description as that of Figure 2.10a. b) shows the correlating pixels at horizontal translation step "1", and c) shows the correlation at horizontal translation step "2".

Fig. 2 . 13 :

 213 Fig. 2.13: Covariogram based on correlation of two images, which are translated horizontally.

  e. the image is superposed by image and the value of equation at the translation step "0" is 64 as shown in the Fig 2.14a. By translating image vertically downwards the first 7 rows of image overlap the last 7 rows of as in Fig 2.14b .But here the white and black squares representing the pixels of the relevant colors are superposed by those of the opposite colors so the values of correlation according to equation is 0. Fig 2.14c shows that in translation step "2", the last 6 rows of image and the first 6 rows of image are overlapped by each other producing the correlation values 48 according to equation . In the forthcoming translation steps the values of the equation are 0,32,0,16, and so on respectively.

Figure. 2 Fig. 2 .

 22 Figure. 2.14 a Figure 2.14 b Figure 2.14 c Fig. 2.14 a) has the identic description as that of Figure 2.10a. b) shows the correlating pixels at vertical translation step "1", and c) shows the correlation at vertical translation step "2".

Fig. 2 . 15 :

 215 Fig. 2.15 : Covariogram based on correlation of two images, which are translated vertically.

o

  distance satisfies the "separating" property. o distance is symmetric. o distance satisfies triangular inequality.

Figure 2 . 16 :

 216 Figure 2.16:Triangle to explain triangular inequality.

) Remark 1 :Remark 2 :Remark 3 :Remark 4 :

 1234 Fig. 3-1 Adding (resp. subtracting) a constant from an image Remark 4: The multiplication of an image f by a real number λ possesses a very strong physical interpretation: in fact λ controls the "thickness" of the considered obstacle which is doubled if λ = 2. More generally, the image λ f is darker than f for λ ≥ 1 and λ f is darker than μ f if λ ≥ μ. On the opposite, λ f will appear brighter than f for λ ≤ 1.

Fig. 3 - 2 -

 32 Fig. 3-2 -Brightness control of an image

  C m (x,y) (f) = (Max(f(x), f(y)) -Min (f(x), f(y)) ) / (Max (f(x), f(y)) + Min(f(x), f(y))) = |f(x) -f(y)| / (f(x) + f(y)) Remark 5:

Fig. 3 - 4 Fig. 3 - 5

 3435 Fig.3-4 Comparison of LIP Additive and Michelson contrasts for pixels pairs with the same grey level difference (here 40)

Fig 3 - 7 Fig. 3 -

 373 Fig 3-7 The value of d 1, (f,g) corresponds to the hatched area between the representative curves of f and g. The distance d (f, g) is realized at the point x 0

  two grey level functions f and g, let us recall what represents their LAC (Logarithmic Additive Contrast) C (x,y) (f,g) at a point (x,y) of the spatial domain D. It is defined by the relation (cf. formula 7 bis): C (x,y) (f,g) = Max(f(x,y), g(x,y)) Min(f(x,y), g(x,y)) and is expressed according to: C (x,y) (f,g) = |f(x,y) -g(x,y)| / (1-Min(f(x,y), g(x,y)) / M) Comment: a point of the spatial support D is generally noted x when no distinction between rows and columns is necessary, and (x,y) otherwise. Now, a summation of such contrasts on all the elements of D or a region of D makes possible to exhibit a novel metric d 1 , tractable in the LIP context, and defined on the space I(D,[0,M[), either on the whole domain D or a region R D: d 1 D or R (f,g) = D or R Max(f(x,y), g(x,y))Min(f(x,y), g(x,y)) dxdy(10) 

Fig. 3 - 9 :

 39 Fig.3-9: Curves representing the LMC between f(x) and f(x)+k for various values of k: k=30,50,100,150 et 200

  Replacing in the integral the local distance |f(x)-g(x)| by the logarithmic multiplicative contrast C (x) (f,g) and then cumulating such contrasts on the elements of D or a region of D, generates a novel metric d 1 defined on the space I(D,[0,M[), either on the whole domain D or a region R D. Such a metric is tractable in the LIP framework and is expressed according to:

) 3 - 3 - 2 - 2 -Remark 26 :

 332226 The « atomic » metric When applied to a subset D R 2 or a region R of D, remember the « uniform convergence metric » is defined by: d (f, g) = Sup x R or D |f(x)-g(x)| If we aim at transferring this formulation in the context of multiplicative contrast, the expression |f(x)-g(x)| must be replaced by C (x) (f,g) and thus: d (f, g) = Sup x R or D C (x) (f,g) (22) the two precedent metrics are comparable to those associated to the LAC in the sense that d 1 and d have respectively a "global" or "atomic" behavior. The first one evaluates the resemblance of an image g to a given image f through the belonging of g to unbounded neighbors of f and the second one through the belonging of g to "tolerance tubes" the grey scale. Thus they will produce their best results for over-lighted images or on the light-grey part of an image.

Remarks 27 -

 27 detected. The problem is the extreme « sensitivity » of this metric because it is determined by one unique point. This is the reason why we introduce an "intermediate" definition between the "diffuse" distance d 1,D or R and the "atomic" one d , noted d 1, supR . It consists first in choosing a subset (region) R of the domain D, then to compute the distance d 1, R (f,g) for each position of R inside D, and finally to define: d 1, supR (f,g) = Sup R D d 1, R (f,g) (23) As the atomic one, the intermediate metric obviously detects one position of the region R inside D corresponding to the largest distance between f and g. If this distance is not

Fig. 3 .

 3 Fig. 3.10 on which the correlations are computed for horizontal translations with the distance d 1 (f, f h ). The locations where this distance presents a relative minimum value correspond to local optimal correlations.

Fig. 3 .Remarks 13 - 14 -

 31314 Fig. 3.11 Covariogram of Fig.3.10 showing the average "period" of bricks.

Fig. 3 . 1 Fig. 3 . 1 Fig. 3 . 1 Fig. 3 .computed with d 1 Chapter 4 -

 313131314 Fig. 3.12 a) Initial image f Fig. 3.12 b) The same under lowlighting conditions.

Figure 4 . 1 )

 41 , perhaps those vertices and edges of contained in some specified connected sub-graph of . By sinking the stone, a vertex x inside the stone is wetted if and only if there exists a path in from x to some vertex on the boundary of the stone, using open edges only. Percolation theory is concerned primarily with the existence of such "open paths". By deleting the closed edges only random sub-graphs of are left. The structure of the subgraphs of is studied to point out the relation between the structure and the numerical value of the initial probability p. Importantly the interior passages of the stone are in notable amount according to the overall size of the stone. So the probability that a vertex near the centre of the stone becomes wet because of the water diffusion from its surface, is similar to the probability that the vertex is the end-vertex of an infinite path of open edges in . Thus it can be said that the large scale diffusion of water into the stone is due to the infinite connected clusters of open edges.

Figure 4 . 1 .

 41 Figure 4.1. Structure of 2-D porous stone. Open edges are indicated by lines. Clearly vertex w and x can be wetted while y and z will remain dry while the stone is sunk in the water.

Figure 4 .

 4 Figure 4.2a )Site Percolation Figure 4.2 b)Bond Percolation

  [9]. It is a numerical technique designed to track the evolution of Interface. FMM is very efficient for certain specialized front problems. It handles the problems in which separating interfaces develop sharp corners and cusps, change topology and become truly intricate. Consider an interface, separating two regions from one another, and a speed F which indicates the motion of each point of the interface. In the figure 4.3., a green dotted line separates the inner region and the external surrounding region (yellow), and at each point of the dotted green line the speed F is given (represented by vectors orthogonal to the green line). Moreover, let us suppose that the speed F is always positive, which means that the front always moves outwards.

Fig 4 . 3 .Fig 4 . 4

 4344 Fig 4.3. Representation of a propagation front

Fig 4 .

 4 Fig 4.5. a) and b) Example of circular propagation and arrival time surface.

  It's important to observe that the propagation occurs from smaller to greater values of T. Figures 4.6 a) -f) explain this idea: in figure 4.6 a), the black point (alive) represents the initial curve; in figure 4.6 b), the value of T is computed in the neighborhood of black point; this neighborhood is converted from far away (blue) to trial points (green); in figure 4.6 c) the trial point with smallest value of T is chosen (for example "A"); in figure 4.6 d), values of T are computed in the neighbors of point A, converting them from far away to trial. In figure 4.6 e), the trial point with smallest value of T is chosen (for example, "B"); in figure 4.6 f), the neighbors of B are converted from far away to trial. And so on.

Figure 4 .

 4 Figure 4.6: a) Initiating from alive point ( black) Figure 4.6 b) Updating "Upwind " and compute possible values for neighbors

Figure 4 .

 4 Figure 4.6c) Choose the minimum value of (here "A").

Figure 4 .

 4 Figure 4.6 d) Compute values of T around of point A, converting them from far away to trial.

Figure 4 .Figure 4 .

 44 Figure 4.6e) Choose the smallest value of T is chosen ( "B" here);

Fig 4 .

 4 Fig 4.7 a) Calculating T(i,j) Fig 4.7 b:Smallest values of T(i,j) is calculated by using from line L.The values of the trial points are computed in the same way.

Figure 4 . 8 ,

 48 consider that the value T X of the point X must be computed. Consider that the T X value is computed from point A (containing the smallest T value among points B, C and D).

Fig 4 . 8 :

 48 Fig 4.8 : A contains the smallest value T (out of A,B,C,D).

  Fig 4.9). In the image we specified the end points of the desired curve. If the speed function is set to be the intensity value, the resulting curve will run through regions with high intensity values as much as possible. This is the upper curve in the figure. If instead, the lower curve is desired, without constraints on the global appearance of the curve, we need to specify some intermediate points (circles in the figure).

Fig 4 . 9

 49 Fig 4. 9 simulated image is a gray level image with some bright structures to extract weighted geodesic curves that have desired global properties as discussed above.
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 5 Application

Fig 5 . 1

 51 Fig 5.1.b). Finally, these trajectories are represented separately on Fig 5-1 c) to facilitate their readability.

Fig 5 Fig 5 - 1

 551 Fig 5-1 a) Original Image from Brodatz database

Fig 5 - 4 Note 3 :

 543 Fig 5-4 Inertia rule in order to avoid oscillations

Fig 5 - 5

 55 Fig 5-5 Result of the percolation of the example presented in Fig 5-2

Fig 5 -

 5 Fig 5-11 Percentage of good answers according to the level of Gaussian noise (texture 1).

Fig 5 - 12

 512 Fig 5-12 Percentage of good results according to the level of Gaussian noise (texture 2).

  

  

  

  

  

  

  

  Dans ce chapitre, nous présentons le sujet de la thèse, consacré à l"étude des images texturées, qu"elles soient de nature pseudo-périodique ou aléatoire. Nous montrons la difficulté de donner une définition scientifiquement précise de la texture, bien que cette notion soit parfaitement perçue par le système visuel humain.
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  Classification like k-means is applied over image to regroup the image intensities into lesser number of intensities so that to remove the small local variations and decrease the co-occurrence matrix dimension. It is also called clustering. K-means is simple unsupervised learning algorithm. It simply classifies the studied dataset into the given fixed "k" number of clusters. The basic idea is to specify k-centroids , i.e. a centroid for each cluster. These centroids should be selected carefully as the selection of different centroids produces different results. The better choice could be to choose them with sufficient gap in between them. In the next step, each point in the data set is associated to its closest centroid, by finding lowest distance, using any of Euclidean,

Manhattan or Bray Circuit etc., between a point and a centroid. This step ends when there is no point unassociated, and the initial k classes are obtained. Then re-calculation of new kcentroids is needed for the classes obtained from the earlier step. After having calculated the new k-centroids , a new binding takes place between the same data set points and the relative nearest new centroid. This step is to be repeated, times for example, until the k centroids for the n th iteration and those for th iteration , i.e. the centroids do not move any more. It is very popular algorithm for unsupervised learning of neural network, pattern recognition, classification analysis, clustering analysis etc.

Résumé Chapitre 2 :

Le deuxième chapitre est dédié à la présentation des principaux outils utilisés classiquement en analyse de texture, en particulier les matrices de co-occurrence, dont nous présentons les difficultés de mise en oeuvre et d"interprétation, ainsi que des solutions pour pallier ces difficultés, par exemple l"approche proposée par Haralick. La technique un peu moins classique des covariogrammes est aussi détaillée. Dans la conclusion de cette partie, nous expliquons pourquoi nous avons choisi de transférer ces notions dans le cadre du Modèle LIP (Logarithmic Image Processing).

-

3-1-Notations and recalls:

Introduced by Jourlin et al ( [1], [2], [3]), the LIP (Logarithmic Image Processing) Model proposes first a physical and mathematical framework adapted to images acquired in transmitted light (when the observed object is placed between the source and the sensor).

Based on the transmittance law, the LIP Model proposes two operations on images allowing the addition of two images and the multiplication of an image by a scalar, each of them resulting in a novel image. Such operations possess strong mathematical properties, as recalled hereafter. Furthermore, the demonstration, by Brailean ([4]) of the LIP Model compatibility with human vision, considerably enlarges the application field of the Model, particularly for images acquired in reflected light on which we aim at simulating human visual interpretation.

In the context of transmitted light, each grey level image may be identified to the observed object, as long as the acquisition conditions (source intensity and sensor aperture) remain stable. An image f is defined on a spatial support D and takes its values in the grey scale [0, M[, which may be written:

Note that within the LIP Model, 0 corresponds to the « white » extremity of the grey scale, which means to the source intensity, i.e. when no obstacle (object) is placed between the source and the sensor. The reason of this grey scale inversion is justified by the fact that 0 will appear as the neutral element of the addition law defined in formula (3). The other extremity M is a limit situation where no element of the source is transmitted (black value). This value is excluded of the scale, and when working with 8-bits digitized images, the 256 grey levels correspond to the interval of integers [0,..,255].

The transmittance T f (x) of an image f at x D is defined by the ratio of the outcoming flux at x by the incoming flux (intensity of the source). In a mathematical formulation, T f (x) may be understood as the probability, for a particle of the source incident at x, to pass through the obstacle, which means to be seen by the sensor. 

Fig. 3-6 Classical grey-scale and inverted one in the LIP context

We can write:

-in classical situation:

and the formula is established.

Fundamental remark: the precedent result gives a precise "physical" meaning to the Michelson contrast. As the LAC, it is interpretable in terms of transmittance. Note that the "thickness" k separating the considered grey levels must be doubled for Michelson. This fact explains why, at the beginning of our comparison, the LAC seemed more "sensible". Now let us present some applications of the LAC.

3-2-3-Examples of Metrics associated to the Logarithmic Additive Contrast

The mathematical field of "functional analysis" is mainly devoted to the study of functions and spaces of functions. Because the LIP Model gives the set of images a vector space structure, we are clearly interested in the "functional" approach. Among the considerable number of tools created by mathematicians, we will particularly focus here on the concept of "metrics". In fact, when studying images, we are obviously interested in detecting the presence of some object of interest (target) inside an image or in tracking this target in a sequence of images. It is also a very common task (not always easy) to estimate the similarity (or the differences) between two images in order, for example, to perform defects detection in industrial control. The concept of metrics is well adapted for such objectives.

3-2-3-1-Recalls on functional metrics

Global metrics

Given a pair (f,g) of real valuated functions which are definite and integrable on a real interval [a,b], it is classical to define a metric noted d 1 according to: A particles, represented by probability . There exists a critical probability , such that the resistance is finite otherwise infinite [2].

4-1-2-Application to image processing:

Bond percolation based model for image segmentation is used by Iftekhar H. et al [6], [7]. The terms pixel and site are used interchangeably if an image is defined on a square lattice with one-to-one correspondence between the pixels and the sites. A threshold is defined, and a bond is assumed to exist between a site and its nearest pixels until the threshold is not crossed.

To form a bond-percolation lattice for an image I with size NxM, the following two parameters are defined and where is the image size, is the magnitude of the gradient at pixel and is the average gradient magnitude. So here the probability can be considered as the threshold. Being calculated the values of and the corresponding bond-percolating lattice is formed by finding a bond to be present between a pixel and its neighbor if and only if .

From the definition of and , it"s clear that the bond exists between neighboring pixels at if they have high gradients like contrast edges or textures areas. Yamaguchi and Hashimoto [8] used a method of scalable window processing based on percolation model that takes into account the connectivity between the focal pixels and the neighborhood. This method is proved to be effective for various tasks like crack detection, noise reduction and edge detection.

-Marching Forwards 1. Begin Loop: Let (i min , j min ) be the point in NarrowBand with the smallest value for T.

2. Add the point (i min , j min ) to A; remove it from NarrowBand.

3. Tag as neighbors any points (i min -1, j min ), (i min +1, j min ), (i min , j min -1), (i min , j min +1) that are either in NarrowBand or FarAway. If the neighbor is in FarAway, remove it from that list and add it to the set NarrowBand. neighbor (i+1,j), (i-1,j), (i,j+1), (i,j-1), then (i,j) is classified as alive and its neighbors where f>0 are classified as trial. The T value may be computed as follows:

Suppose f ((i+1) x,j y) >0, then

Supose f ((i-1) x,j y) >0, then

Supose f (i x,(j+1) y) >0, then T top = y f(i x,j y) / [f(i x,j y) -f (i x,(j+1) y)] .

Supose f (i x,(j-1) y) >0, then T bot = y f(i x,j y) / [f(i x,j y) -f (i x,(j-1) y)] .

The resulting T ij value may be computed as

-

5-1-Introduction:

Considering that the concept of percolation is not very familiar in image processing, let us recall a possible general definition of it.

The free encyclopedia "Wikipedia" gives a very interesting definition of "Percolation" of which we are going to quote here:

Percolation is [...] a threshold phenomenon, associated with the transmission of "information" through a network of sites and links, depending on their condition, to or not to relay information to neighboring sites. The term percolation comes from the similar phenomenon like the passage [...] of water through a percolator, the filter of a coffee machine, to make coffee.

Our approach is an attempt to answer the following questions.

-Is it possible to study the propagation of a fluid through a percolating medium to extract sufficient features which allow identifying the medium?

-In other words, consider in image processing (as we will apply this idea in it):

Is it possible to extract sufficient parameters of the percolation trajectories to characterize and identify a texture?

Such an approach has been previously used by F. Mayet ( [1]) and suggested by G.

Fricout ([2]) in their respective theses. Nevertheless it seems that a very few literature is dedicated to this idea.

The following Figure 5-1 a), b), c) shows the approach we have presented considering that the percolation is directed from the top to the bottom of the image (this direction is identical to a gravitational field in the case of physics). Once the starting points are selected, we perform the rest of the process until the end line of the image is reached.

We select one by one each of the current (red) points as we are interested in a portion of its neighborhood V8 (green in Fig 5-3 given here). Since we are working on a binary image (another version of percolation grayscale was also implemented but we do not present it here)

we will try to follow the contours of extracted patterns in the preprocessing. It is simply to follow as possible pixel value 1 (white as in Fig 5 -3).

Fig 5-3 Useful part (in green) of the neighborhood of the studied pixel (in red)

MeanFractality: Average fractal dimension calculated for each observed droplet trajectory. The fractal dimension of droplets trajectories is computed using the method "boxes", hereafter recalled.

Recalls about Fractal Dimension

The state or condition of being Fractal is called fractality.

Fractals are self-similar structures where the whole has the same shape as its parts e.g., broccoli ( Mandelbrot ([3], [4]) has defined fractals as the object having self-similarity. Fractals are geometrical objects with fractional dimensions. Fractality also addresses extremely irregular curves or shape for which any suitably chosen part is similar in shape to a given larger or smaller part when magnified or reduced to the same size.

"Fractal is defined as an object or a quantity which depicts the self-similarity in certain senses on various or all scales". But it is important to note that there should be some similarity of structure, at least, instead of demonstrating the exact similarity among the sub-objects inside the object. And each complete sub-object has almost all the information like the whole object.

Since the geometrical objects/shapes live in spaces with dimensions greater than or equal to that of objects so Fractals are the objects (shapes or curves) having dimensions in fraction".

Following are few methods of calculating fractal dimensions. 

Dimensions by Box counting:

This method is also called grid method. The spatial domain is covered with a square grid consisting of contiguous boxes of size (Figure 5678).

Let be the number of boxes intercepted by the studied object. The dimension of the boxes is given by It can be demonstrated that the union of intercepted boxes constitutes an approximation of the Minkowski sausage (Bouligand [10]) and thus this method is identical to that of Bouligand-Minkowski (Tricot [12]). 

5-5-Conclusion and perspectives:

The proposed method is novel and the obtained results are promising. Nevertheless, it would need exploratory deeper work.

For example, increasing the number of extracted parameters would improve the performances of the method for texture classification.

Résumé Chapitre 5 :

Cette partie est une étude exploratoire sur la possibilité de classer des images texturées au moyen d"un nombre limité de paramètres issus de trajectoires de percolation. Sur une image donnée, ces trajectoires sont construites à partir de points initiaux (appartenant à la première ligne de l"image par exemple), de façon à optimiser une « fonction de coût » liée aux variations de niveaux de gris observées sur les pixels successifs de la trajectoire. A cette Chapter 6 -Conclusion and perspectives.

-General Conclusion

-Conclusion (Français)

-Highlights on our contribution

Highlight on our contributions:

As announced at the manuscript beginning, the aim of our work was to propose new tools for texture analysis, in particular in link with the LIP Model, which presents the advantage to be consistent with Human Vision.

Our main contributions are:

-For pseudo-periodic textures, the introduction in the Covariogram approach of logarithmic metrics based on new contrast notions.

-For random textures, a percolation approach producing trajectories more or less tortuous according to the image context. To such trajectories, n selected parameters are computed and the classification of textures is performed on these parameters values.

-The adaptation of Haralick parameters to the LIP framework, but this approach has not produced the expected results: it necessitates the use of a logarithmic product of grey levels and such a definition is not clearly justified. 

International

Publication

After the French ISS (International Society for Stereology) Congress, a publication will be proposed to the review « Image Analysis and Stereology » (May 2013) with title "Random Textures Classification thanks to Logarithmic Percolation" (same authors).