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Abstract  

Scaling technology in deep-submicron has reduced the voltage supply level and increased the number 

of transistors in the chip, increasing the power supply noise sensitivity of the ICs. Excessive power supply 

noise affects the timing performance, increasing the gate delay, and may cause timing faults. Specifically, 

power supply noise induced by the currents that flow through the resistive parasitic elements of the Power 

Distribution Network (PDN) is called IR-Drop.  

This thesis deals with the modelling and simulation of logic circuits in the context of IR-drop. An 

original algorithm is proposed that allows to perform an event-driven delay simulation of the logic Block 

Under Test (BUT) while taking into account the whole chip IR-drop impact on the simulated block. To do 

so, we develop accurate and efficient electrical models for the currents generated by the switching gates, 

the propagation of the current draw through the PDN and the gate delays. First, the pre-characterization 

process for the dynamic currents, static currents and gate delays is described to generate a gate library. 

Then, another pre-characterization procedure is suggested to estimate the current distribution through the 

resistive PDN model. Our models are implemented in a first version of the simulator developed by the 

University of Passau in the context of collaboration. In addition, the impact of the parasitic capacitive 

elements of the PDN is analyzed and a procedure to derive the current distribution in a resistive-capacitive 

PDN model is proposed.  
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Résumé  

L’évolution des technologies microélectroniques voire déca-nanoélectroniques conduit simultanément 

à des tensions d’alimentation toujours plus faibles et à des quantités de transistors toujours plus grandes. 

De ce fait, les courants d’alimentation augmentent sous une tension d’alimentation qui diminue, situation 

qui exacerbe la sensibilité des circuits intégrés au bruit d’alimentation. Un bruit d’alimentation excessif se 

traduit par une augmentation du retard des portes logiques pouvant finalement produire des fautes de 

retard. Un bruit d’alimentation provoqué par des courants circulant dans les résistances parasites du 

Réseau de Distribution d’Alimentation est communément référencé sous la dénomination d’IR-Drop. 

Cette thèse s’intéresse à la modélisation et à la simulation de circuits logiques avec prise en compte du 

phénomène d’IR-Drop. Un algorithme original est tout d’abord proposé en vue d’une simulation de type 

‘event-driven’ du bloc logique sous test, en tenant compte de l’impact de l’ensemble du circuit intégré sur 

l’IR-Drop du bloc considéré. Dans ce contexte, des modèles précis et efficaces sont développés pour les 

courants générés par les portes en commutation, pour la propagation de ces courants au travers du réseau 

de distribution et pour les retards des portes logiques. D’abord, une procédure de pré-caractérisation des 

courants dynamiques, statiques et des retards est décrite. Ensuite, une seconde procédure est proposée 

pour caractériser la propagation des courants au travers du réseau de distribution. Nos modèles ont été 

implantés dans une première version du simulateur développé par nos collègues de Passau dans le cadre 

d’une collaboration. Enfin, l’impact des éléments capacitifs parasites du réseau de distribution est analysé 

et une procédure pour caractériser la propagation des courants est envisagée. 
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General introduction 

Progress in deep submicron technology is focused on the increase of the transistor density in the chip 

and the increase of the circuit performances such as functional frequency. As a result, important power 

density problems due to the large amount of current required from the Power Distribution Network (PDN) 

have appeared, increasing the power supply noise. Excessive power supply noise can affect the circuit 

performances, causing problems such as signal integrity or additional delay.  One of the main sources of 

power supply noise is the IR-Drop: an electrical phenomenon associated to the switching of logic gates. 

The inherent parasitic resistive elements of the PDN combined with the current drawn by the switching 

gates produce fluctuations in the supply voltage level. This work focuses on the supply voltage noise 

produced by the IR-Drop. 

Design and optimization of the chip PDN is a very complex task because it is almost impossible to 

anticipate all the possible operational conditions of the chip. Nevertheless, designers try obviously to 

estimate the power supply noise and reduce as much as possible the IR-drop effects at the chip level. To 

do so, different supply network models have been proposed. Most of these works are based on vector-less 

approaches and primarily target the spatial impact of the IR-drop. Although design approaches obviate the 

vector dependence of the IR-Drop phenomenon, the statistical models allow to estimate the average power 

consumption at the chip level. This information is very useful to identify the critical areas and to 

consequently modify the PDN structure in order to minimize the undesirable voltage drop. 

Concerning the test approach, the problematic is somehow different since the goal is to verify that the 

chip does not present any functional problem related to excessive delay due to IR-Drop. In this case, not 

only the spatial effect should be taken into account but also the temporal effect. Therefore power supply 

voltage analysis has to be addressed through a vector-dependent approach. However a vector-dependent 

approach is very time consuming and limited to the block level.  
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This document deals with the IR-Drop phenomenon from a test perspective, in particular, the 

modelling and simulation of logic blocks in presence of IR-Drop. The aim is to take into account the most 

relevant characteristics of the IR-Drop phenomenon in the block simulation: 

· IR-Drop is a global phenomenon. The switching activity of a given block generates voltage 

drop impacting the whole chip. For this reason, voltage drop generated by the neighboring 

blocks must be taken into account during the block simulation. 

· Voltage drop due to the IR-Drop dissipates in time and in space. Therefore, this works must 

develop accurate and efficient electrical models that allow a spatial and temporal simulation. 

· IR-Drop phenomenon comes from the logic switching activity. So IR-Drop requires a logic 

vector-dependent simulation together with an electrical simulation to estimate the voltage 

drop in the PDN. Consequently, a mixed-mode simulation is necessary. 

Therefore, an original algorithm is proposed allowing to perform an event-driven logic and timing 

simulation of the logic block under test while taking into account the whole chip IR-Drop impact on the 

simulated block. For the electrical simulation, accurate electrical models of the current draws and the gate 

delays are developed, as well as an electrical model that allows to compute the current distribution through 

the PDN. Our electrical models are implemented by the University of Passau in a first version of the 

simulator MIRID: Mixed-mode IR-Drop Induced Delay simulator. The development of the MIRID 

simulator is a joint project of LIRMM and the University of Passau funded by the German Research 

Council (DFG grant PO 1220/1-2) and by the BFHZ project FK 39-10. 

This document is structured in four chapters followed by a general conclusion. In Chapter 1 an 

extensive description of the state of the art is presented, including the design and test approaches. The 

motivation of this work and the objective are also described in detail and then, the fundamental simulation 

principles are introduced.  

In Chapter 2 the pre-characterization procedure to derive the gate library from SPICE simulations is 

explained. This library contains the electrical models for the parameters involved in an IR-Drop 

phenomenon at the gate level: dynamic currents, static currents and gate delays. All these elements are 

closely related to the technology and thus, a pre-characterization procedure is required for every 

technology. Other electrical parameters are taken into account to build the gate library: the input voltage 

swing, the supply voltage swing and the output capacitance. The used pre-characterization procedure to 

derive the electrical model from SPICE simulations for the dynamic current, static current and gate delay 
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for any electrical configuration is presented. Limitations of this pre-characterization process are also 

described. 

Chapter 3 deals with the description of an electrical model for the PDN. This chapter is divided in two 

main sections: a first section where the PDN is modeled as a resistive grid and a second one where the 

capacitive elements present in the PDN are included in the resistive grid. For the resistive model, the 

current distribution through the grid is analyzed and a set of distribution factors is characterized. This set 

allows to estimate the current distribution through the resistive grid, taking into account the edge effect. 

Furthermore, a procedure to consider the impact of the neighboring blocks is proposed. In the second 

section, an extension of the electrical model of the PDN is presented. The impact of the capacitive 

elements in the current distribution through the PDN is analyzed and an electrical model is proposed for 

the three main capacitive elements present in the PDN: parasitic capacitors of the physical PDN, 

intentional decoupling capacitors and intrinsic decoupling capacitors due to non-switching gates.  

Chapter 4 is also structured in two main sections. In the first one the simulation algorithm 

implemented in MIRID is described in detail. Then, signal waveforms and induced delays obtained from 

MIRID and SPICE simulations are compared in order to validate the gate library and the distribution 

factor principle. In the second section, we analyze the problem of implementing a PDN model with 

capacitive elements in the simulator. Mathematical computation of the current distribution is not possible 

due to the complexity and thus, a simplification method is described in order to estimate the current 

distribution. Although this method is not fully implemented in the simulator, preliminary simulations 

applying it are presented. 
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1 Introduction 

1.1 Context and state of the art 

1.1.1 Power supply noise and IR-Drop definition 

Progress in deep submicron design is focused on the reduction of power consumption and the increase 

of the number of transistors in the devices. Simultaneously, technology scaling has continued to improve 

the performance of processors increasing the functional frequency. On the one hand, voltage scaling has 

reduced significantly the noise margin and, on the other hand, the ultra-high transistor density and rising 

frequency lead to a power density problem: a large amount of current is required, increasing the power 

supply noise [1]. As a result, excessive power supply noise can significantly affect the circuit 

performances and cause problems such as signal integrity [2] or additional delay [3]. Therefore, the 

increase of power supply noise has become a critical element in the performance and reliability of 

manufactured chips. 

Power Supply Noise (PSN) refers to the voltage fluctuations in the power and ground distribution 

networks (PDN). The voltage fluctuations due to power supply noise in the PDN are generally called 

voltage drop. The power distribution network includes all the metal wires and vias that deliver power to 

every gate in the chip. This on-chip PDN is predominantly resistive but capacitive and inductive parasitic 

elements are also presented. Power supply noise is induced by current flows through the PDN: 

· IR-Drop is generated due to the resistive elements of the PDN, 

· ground bounce is generated due to the inductive elements of the PDN ( ).  

This work focuses on power supply noise produced by IR-Drop. 
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IR-Drop is defined as an electrical phenomenon associated with the switching of MOS transistors. A 

current draw appears in the power supply connection and/or the ground supply connection when 

transistors switch. The inherent parasitic elements of the PDN combined with this current draw produce 

fluctuations in the voltage level. IC scaling technology has increased the density of transistors and the 

functional frequency. Thus, there are more gates switching simultaneously and consequently, voltage 

fluctuations have also increased due to the increase of the amount of current flowing through the PDN. As 

a consequence of these fluctuations, logic gates can be powered with a lower-than-normal Vdd or higher-

than-normal Gnd or both, reducing the gate swing and impacting logic gates by an increased delay. 

Moreover the sensitivity of the gate delay to power supply noise increases with technology scaling. It has 

been reported that fluctuations of 10% in power/ground supply voltage increase gate delay by 8% in 

180nm technology [4], but fluctuations of 10% can cause up to a 30% increase in gate delay in a 130nm 

technology [5], and a 1% change in power supply voltage causes nearly 4% of additional gate delay in 

90nm technology [6]. The impact of power supply noise due to IR-Drop phenomenon has therefore 

become a critical concern, both for design and test aspects. 

1.1.2 Power supply noise analysis 

As the power supply noise becomes critical, analyzing its impact on the integrated circuit electrical 

behavior is today an important research topic. A good knowledge about the noise impact on the circuit 

functionality and timing performance can improve the design of the PDN and the test process. 

A voltage drop generated by a switching gate dissipates in time and space [7] as illustrated in Figure 

1.1. Indeed, a current draw appears when the gate input switches and finishes after the commutation, when 

the output has become stable. It means that the voltage drop vanishes rapidly after the switching of the 

gate. On the other hand, current draw propagation is closely related to the PDN structure. The original 

current draw spreads through the PDN structure. Voltage drop due to the IR-Drop in a uniform power 

mesh spreads like a “bull’s eye” with “circular” equipotential rings [8]. Therefore, neighboring gates are 

more concerned by the voltage drop due to the IR-Drop phenomenon than gates locate far away from the 

original current draws. In brief, spatial and temporal analyses are necessary to describe the IR-Drop 

phenomenon. 
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Figure 1.1: A current draw injected into a power grid dissipates quickly in time (a) and space (b) [7]. 

Voltage variations in the power and ground supply networks have adverse impact on the delay of the 

gates connected to the supply networks and thus, timing faults can appear due to these variations. 

Consequently, analyzing the induced delay due to the power supply noise is becoming an important topic. 

The delay of a logic gate depends on many electrical factors such as supply voltage level, input voltage 

level, load capacitor, input slew rate and other electrical parameters of the gate [9]. Todri analyses the 

impact of power and ground supply noise in a path delay [10]. The conclusion is that power supply noise 

reduces the drive strength by changing the operational regions of the transistor, impacts the noise 

conditions on the neighboring gates by causing a speed-up or slow-down, and causes a delay shift due to 

the different voltage levels among the gates. Delay variations are further aggravated with package 

inductance, power/ground network parasitics, switching frequencies and technology scaling. 

Regarding the electrical elements that have a significant impact on the power supply noise, we 

identify three important elements: the power distribution network, the current draw of the switching gate 

and the gate delay. The power distribution network and the package can be modeled as a combination of 

electrical elements. In [11] Panda proposes to use the following models for the package/on-chip power 

supply network: 

· a RLC model for the package leads, ball grid arrays and power planes; 

· a RC model for the gate to power connections; 

· a RC model for intrinsic decoupling capacitance of non-switching gates; 

· a RC model for intentional decoupling capacitances. 
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Regarding the electrical model at the gate level, most of the papers adopt a cell-based circuit model 

for the current draw and the delay in order to estimate the power supply noise. For some of these papers, 

an event-driven simulator uses the cell-library to inject a current draw into the PDN at the block level [12], 

[13], [14]. Other works estimate the global power supply noise based on a statistical approximation of the 

switching activity [15]. Finally other ones use the cell-library to consider the power noise information in a 

fault generator model [6]. 

For the gate delay, an analytical approach is used representing gate delay as a linear/quadratic function 

of the supply voltage in [9], [16]. Other publications propose a statistical approach to characterize delays 

[3]. Standard cell delay is treated as a perturbed random variable, and the probability functions are derived 

by simulating a set of characterization patterns.  

For the current draw, most of the publications propose to model this current as a triangular function 

[3], [17] or as a trapezoidal function [2], [18]. These models adapt the shape of the current in function of 

the output capacitance and other electrical parameters. Some approximations are applied to simplify the 

electrical model. For example, the peak current is assumed to coincide with the transition at the gate input 

[17]. The value of the peak and the duration of the current are dependent on the gate type and the load 

capacitance. 

Knowing the effect of the voltage supply noise, there are two traditional research directions:  

· The first direction is to predict the power supply noise during the design phase and to manage 

it by design modifications.  

· The second direction is to create test procedures to detect the timing faults generated by the 

power supply noise.  

1.1.3 The design approach 

The design of a good, reliable on-chip PDN of a digital IC is a very complex task because designers 

cannot anticipate all the functional conditions Design researches about the power supply sensibility try 

obviously to reduce as much as possible the whole power supply noise effect at the chip level. In essence, 

the principle is to estimate the supply voltage drop due to the IR-Drop and try to adapt the PDN design to 

minimize this phenomenon. To this aim, some techniques are applied during design to decrease the power 

supply noise and to improve the noise immunity of the circuits as explained by Larsson in [19].  

The most widely used technique consists in adding decoupling capacitors between the power and 

ground supplies. Decoupling capacitors prevent the power noise from spreading through the PDN and 
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their inclusion in the design allows to isolate different areas on the chip. In this context most of the works 

try to develop algorithms to determine the optimal size and placement of the decoupling capacitors from 

the switching activities and the spatial correlations between different blocks. A power supply noise aware 

post-floorplanning methodology is proposed in [20], [21], [22]. Another research suggests to improve the 

traditional decoupling capacitor and to include active decoupling capacitors as a most effective technique 

to reduce the power supply noise [23]. 

Another classical way to reduce the power supply noise is to design a robust power distribution 

network. A lot of research works mark that traditional constraints in the PDN design are not enough to 

remove the IR-Drop timing faults. In order to improve the PDN design, most of the works propose a 

mathematical model to address the most important issues in the PDN design: width and pitch of PDN 

wires [8], [24], size, number and location of pads [25], [26], [27], [28], [29]. Wire sizing for power and 

ground networks considering the IR-Drop induced by both the clocking and computing components is 

suggested in [24] and considering the IR-Drop and the area constrained in [8]. In order to determine the 

size, number and location of pads, [26] and [27] propose a closed form model for the power distribution 

network in N-metal layer system for wire-bond and flip-chip packages in function of given design 

constraints (as power dissipation, power supply voltage or static IR-Drop).  

Other works focus on the correlation between different parameters of the on-chip power distribution 

grid and their impact on noise [25], [28], [29]. Results from this analysis can be used as guidelines when 

designing a robust power distribution network. 

Models proposed by Rius [30] and by Shakeri [28], [29] exclusively focus on the IR-Drop 

phenomenon. Shakeri [29] demonstrates that the PDN can be approximated as a continuous layer of 

conductive material and that IR-Drop can be calculated by solving a system of partial differential 

equations, i.e. Poisson equation, with the proper boundary conditions. Shakeri [29] proposes a compact 

physical IR-Drop model of the on-chip power distribution grid and an IR-Drop model is derived for the 

wire-bond and the flip-chip packages. In this paper, the tradeoff between the package and the on-chip 

power distribution network parameters is studied in details. The size and number of pad tradeoff is also 

analyzed. The optimal placement of these pads is derived to minimize the IR-Drop. In brief, Shakeri 

suggests the use of a large number of small pads for the power distribution network instead of a small 

number of large pads to reduce the IR-Drop.  

Based on the conclusion of Shakeri, Rius [30] suggests another IR-Drop model to determine the 

average power consumption of a block. Initially, the IR-Drop is modeled in an infinite PDN. Then, the IR-

Drop model in a finite PDN is derived from the infinite model solution. The suggested model provides an 
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accuracy estimation of the average power consumption of a block for the wire-bond package. Models of 

Shakeri and Rius help designers in the early stage of the design to estimate accurately the on-chip and 

package resources that need to be dedicated to power distribution, reducing the cost of over-design. 

In brief, most of these works are based on a vector-less approach and primarily target the spatial effect 

of supply voltage noise. Suggested statistical circuit models estimate the average current consumption at 

the chip level, allow to identify the critical areas and to adapt the PDN network design in order to avoid 

the undesirable voltage drop. Although the design approaches do not take into account the input vector 

dependence of the IR-Drop phenomenon, the statistical models provide an estimated supply voltage drop 

at the chip level. We remember that a vector-based simulation at the chip level is non-viable due to 

prohibitive simulation costs. 

Some commercial tools allow the optimization of the PDN. Apache has developed a full-chip power 

network analysis solution called RedHawk [31] that analyzes the effects of simultaneous switching noise 

(core, memory, I/O), decoupling capacitance (intentional and intrinsic), on-chip and off-chip package 

inductance. It provides a dynamical analysis of the power integrity based on a cell-based library and a 

vector-less analysis of the switching activity. A mixed-mode between the vector-less mode and a vector-

based simulation of some blocks is included in the last versions of RedHawk. This assertion does not 

involve an event-driven simulation using vector patterns; it is an improvement in the statistical estimation 

of the switching activity at the block level.  

RedHawk as the other commercial solutions, PrimeRail [32] from Synopsys and HyperLynx [33] from 

Mentor, provides a very accurate solution to optimize the PDN design and to place the decoupling 

capacitors. These solutions allow to minimize the voltage drop during the design stages but test stage is 

still necessary in order to detect timing faults due the power supply noise. 

1.1.4 The test approach 

As described in the previous section, design tools cannot completely guarantee a 100% IR-Drop free 

design; the chip may still manifest some IR-Drop originated functional problems. In this context, the test 

objective is twofold:  

· Exacerbate the IR-Drop to detect the induced delay faults for non-scan test process 

· Minimize the IR-Drop to avoid over-kill for scan test process. 
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1.1.4.1 Maximum instantaneous current estimation 

Early works propose to estimate the maximum instantaneous current in order to detect excessive 

switching activity in the IC and thus, reject these devices with a high risk of timing faults. Kriplani [17] 

estimates the maximum instantaneous current using a triangular function as the current draw model. In 

order to determine the maximum current, a vector-less algorithm called iMax is proposed. This algorithm 

computes all the possible commutations for every gate of the circuit and also all the possible associated 

waveforms. But it evaluates combinations of gate excitations that may not be possible. The maximum 

instantaneous current computed therefore is an upper bound of the worst case in a circuit. In addition, the 

suggested iMax algorithm is limited, it only estimates the maximum current for small blocks.  

Jiang and Cheng [34] propose an improvement in the maximum instantaneous current estimation. 

Computation of the maximum instantaneous current is treated as an Integer Linear Programing (ILP) 

problem. ILP formulation allows to compute exactly the maximum instantaneous current for a small 

circuit using the gate library from [17]. For larger circuits, a partitioning-based approach is suggested. 

Large circuits are divided in sub-circuits whose maximum currents are computed independently. The 

maximum current of the circuit is the addition of all the maximum currents. In this case, the maximum 

current computed is again an upper bound of the real maximum current. The suggested ILP computation 

requires a longer CPU time in comparison with the iMax algorithm but the maximum instantaneous 

current estimated for small circuits is not overestimated.  

In brief, the maximum instantaneous current estimated is the worst case for a circuit and it is 

overestimated. The maximum instantaneous current in a realistic operation mode would be much smaller 

and thus, test based on these methods can reject fault-free chips. In addition, a high current density does 

not necessary mean a delay fault, but just a risk. 

1.1.4.2 Test pattern generation 

In order to detect timing faults due to power supply noise some of the works propose to generate a 

small set of patterns to maximize the voltage drop noise. In this case, the test objective is to target the IR-

Drop originated delay fault and to generate a delay test sequence able to exacerbate the IR-Drop 

phenomenon. 

Zhao [15] proposes to use Monte Carlo simulation and Genetic Algorithm in order to generate a set of 

patterns that induces the maximum switching noise. In this case, an event-driven simulation based on the 

correlation between switching events and a cell library is implemented. The cell library includes the delay 

and switching current in function of the input and output signal slopes and the output capacitance. The 
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switching noise is modeled as a weighted sum of the switching currents and the rates of change of these 

switching currents. The weights are respectively the effective resistance and inductance on the power and 

ground networks experienced by each switching current. The electrical model used to determine the 

effective resistance and inductance include a RL model for the packing and a RL model for the on-chip 

power distribution network. Finally, Monte Carlo simulation and Genetic Algorithm are used to search for 

the worst case input vector pair that induces the maximum switching noise. 

Jiang and Cheng [13] also propose to generate small sets of patterns to maximize the voltage drop 

noise. In this case, the cell library is characterized in function of the power and ground pin characteristics 

and the power net RLC parameters as well as the starting voltage, ending voltage, and the slope of the 

input voltage. For the sake of simplicity, switching currents are modeled as a triangular function that 

depends on the input voltage variables. An event-driven logic simulation is developed in order to simulate 

a given input pattern. The power lines of the power distribution network are model as a RC tree. First, the 

effective waveforms in the power and ground lines for each small block (consisting of a set of adjacent 

cells) is computed. In order to propagate the waveform through the RC tree, look-up tables are generated 

in function of the electrical parameters of the power distribution network and the waveform of every cell.  

Later, the circuit is simulated for an input pattern applying the derived waveform. Based on this event-

driven simulation for any given 2-vector sequence, a Genetic Algorithm is applied in order to generate a 

small set of patterns that would cause high power supply noise at a specified area.  

Krstic [12], [14] improves the test pattern generation of Jiang and Cheng in order to sensitize the 

selected paths. The fitness value of the pattern is calculated as a summation of the maximum power supply 

noise for the nodes on the selected path. The Genetic Algorithm generates a set of pattern that maximizes 

the voltage supply noise in the nodes along the selected paths. 

In summary, Zhao [15], Jiang and Cheng [13] developed event-driven simulators that allow to 

estimate the maximum power supply noise. However, both simulators compute the global power supply 

noise and do not take into account the impact of the power supply noise on the gate delays and on the 

switching currents. Although Jiang and Cheng [13] derive the waveform current in a RC tree, the 

estimation of the supply voltage noise through the on-chip power distribution network is not computed. 

Moreover, test pattern generated using these methods maximize the voltage supply noise and thus, present 

the same problem as the method based on the computation of the maximum instantaneous current. 
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Some other works tackle the pattern generation focusing on the type of voltage drop. Bhowmick [35] 

classifies the voltage drops into three broad categories following their locality in time and space: 

· Low Frequency Power Drop (LFPD) affects the entire PDN after a few clock cycles 

· High Frequency Power Drop (HFPD) in highly localized and is effective in the same clock 

cycle 

· Mid Frequency Power Drop (MFPD) is localized in a small area but effective for more than 

a single clock cycle. 

Polian [36] proposed a heuristic method to generate test sequences that create worst-case power drop 

by accumulating high and low frequency. To do so, Polian employs a dynamically constrained version of 

the classical D-algorithm to generate a sequence that maximizes the effects of both LFPD and HFPD. 

Bhowmick [35] addresses the problem of the multi-cycle droop faults due to the MFPD. A SAT-solver 

based ATPG for detection of these faults is developed for both combinational and full-scan circuits. 

Similarly to Polian, the resulting switching activity from the generated test vector may generate much 

higher power density and much higher IR-drop than in functional mode. In addition, both methods target 

the generation of switching activity without taking into account the electrical parameters at the gate level. 

Another classical direction for IR-Drop testing is to try to adapt the test patterns to the realistic 

behavior of the tested circuits. It is known that power consumption during at-speed delay test can be 

different than during functional operation. Often a large number of transitions occur within a short time 

frame during the test operation in comparison with the normal circuit operation. In addition, test patterns 

can generate high switching activity in a small area of the circuit, increasing significantly the IR-Drop. It 

means that the test patterns applied in the test procedure generate an unrealistic IR-Drop and fault-free 

chip can be discarded. The objective of these works [37-44] is to adapt the test pattern generation for the 

at-speed delay test considering the IR-Drop. 

Saxena [37] proposes to reduce the switching activity of the test patterns. This paper analyses the IR-

Drop during at-speed test. Concretely, the toggling events are counted while a scan-based transition test is 

performed. Analyzing the toggle activity during a clock cycle, the study concludes that the toggle activity 

of certain pattern obtained from the ATPG is exacerbated in the first frames of the clock cycle. Saxena 

concludes that generation of patterns implying a more constant switching activity during a clock cycle 

reduces the peak of power consumption.   
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A method to generate patterns is proposed by Tehranipoor in a series of works [38], [39]. A statistical 

IR-drop analysis is performed to determine the blocks that consume more power and consequently endure 

a higher IR-Drop during the test pattern application. The probability of net toggle activity over the entire 

cycle period is derived from the statistical analysis. As most of the switching activity occurs during the 

early clock cycle period [37], the Switching Time Frame (STW) is identified as a more efficient unity of 

time than the clock cycle period. As the STW is variable in function of the test vector, the average 

switching time frame window is computed for every block. Consequently, the average switching power 

threshold for every block is estimated. On the other hand, a dynamic IR-Drop analysis is implemented and 

the average power consumption during the switching time frame (referred as switching cycle average 

power or SCAP) is calculated for every ATPG test pattern, rather than during a single tester cycle. Finally, 

test patterns with an associated SCAP over the average switching power threshold are discarded due to 

their exacerbated switching activity. 

Other works address the distribution of switching on the chips. Certain test patterns generate hot-spots 

and consequently, high levels of IR-Drop appear in small areas of the chip. Lee [40] proposes a method to 

select test patterns from ATPG whose switching activity is distributed through the whole chip. The test 

pattern transitions are monitored: when a gate switches, the gate information and the load from the fan-

outs are stored into the pattern transition profile set. In function of this information, Lee proposes to derive 

a Weighted Switching Activity matrix WSA from the complete profile sets for every test pattern. The 

WSA matrix represents the switching weights of a hypothetical single pattern during the launch-on-

capture cycle. In addition, Lee derives the Maximum Weighted Switching Activity WSAmax. The WSAmax 

matrix represents the maximum switching weights for a circuit independently of the test patterns. In order 

to reduce the number of test patterns, the test patterns are compacted such that the resulting WSA 

associated to the compacted test patterns do not exceed the switching threshold that is defined as a 

percentage of the highest maximum WSAmax. The paper concludes that fixing the switching threshold 

around 20%, 25% and 30% of the maximum switching, the test coverage does not decrease significantly. 

Other works use the ‘X-filling’ approach to reduce IR-drop effect during at-speed test. The X-filling 

method assigns 0's and 1's to unspecified ‘X’ bits in a test cube obtained from ATPG. This method 

reduces the circuit switching activity in capture mode and it is claimed that the X-filling method can be 

easily incorporated in the test flow because it requires only minimal changes in the existing ATPGs. In 

addition, the method does not affect the test data volume and the test time. Wen et al. propose a X-filling 

technique to reduce the IR-drop effect in a series of work [41], [42], [43]. In [41], only flip-flops transition 

activity is considered while in [42], both flip-flop and gate transition activities are studied. In [43], the 

authors focus on preventing the IR-Drop especially on gates that are close to the activated critical paths. 
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Other authors propose improvements in the X-filling method to reduce the IR-Drop during at-speed test: J. 

Li in [44] proposes to reduce both shift power and capture power during at-speed testing by improving the 

X-filling technique: i-filling method. In [45], spatial information is taken into account to reduce the IR-

Drop effect during at-speed scan test. The IR-drop effect for each region is estimated using the WSA cost 

function. 

In brief, the objective of these works is to minimize the IR-drop phenomenon while generating a test 

sequence during scan-test. In these works the used PDN model is very simplified and it is not 

representative of the whole chip IR-Drop impact. 

1.1.4.3 Voltage drop fault models 

Tirumurti [6] proposes a Generalized Fault Model (GFM) where power noise information is 

considered. A static timing analysis is performed instead of an expensive dynamic analysis. The waveform 

characterization is developed for every cell in function of the fanout and input signal slope. According to 

the layout, the suggested method classifies the cells as aggressor cells or victim cells. Obviously, power 

lines with a high number of aggressor cells will be more affected and so more sensitive to voltage drop. 

Areas affected by an important IR-Drop are detected using this procedure. Unfortunately, the worst 

voltage droop estimated by the fault simulator would never appear in functional mode because not all the 

aggressor cells will necessarily switch simultaneously during functional operation. 

1.2 Objective and motivation 

Regardless of maximizing or minimizing its impact, the IR-Drop phenomenon has become a critical 

point during the test phase and thus, IR-Drop induced delay has to be considered, predicted and evaluated 

in this phase. Direct dependence between switching activity, power noise and delay faults requires an 

accurate vector-dependent simulation. Therefore, the objective of this work is to develop a vector-

dependent IR-Drop timing-aware and logic simulation in order to be able to simulate test pattern 

sequences and to detect the appearance of delay faults. The challenge here comes from two strong 

limitations:  

· Chip level. Classical fault oriented simulators (stuck-at faults, bridging faults…) are focused 

on the fault site and its propagation. In the case of IR-drop, there is no fault site, it is a global 

phenomenon generated by the chip as a whole. So to evaluate the IR-Drop impact, a global 

electrical model should be used together with an accurate vector-dependent simulation at the 

chip level. Obviously, it is not feasible. In the context of the PDN design optimization, 

developed models cannot be used for vector-dependent simulation due to prohibitive 
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simulation costs. In the test context, most of the works published in the literature use very 

simplified models of the PDN that permit to perform vector-dependent simulation. Of course, 

this is not representative of the whole chip IR-drop impact. Our objective is to propose a more 

refined model of the PDN that permits to take into account the whole chip IR-drop impact 

with a reasonable simulation cost. 

 

· Block level. By definition IR-drop is an electrical phenomenon that implies currents flowing 

through resistances of the PDN. Consequently, IR-Drop generates supply voltage fluctuations 

that the electrical simulation at PDN level must evaluate. Electrical simulation using 

traditional electrical tools (SPICE-like simulation) is not feasible due to the prohibitive 

simulation cost and memory-constrained computation. The aim here is to develop an accurate 

and efficient model for the currents generated by the switching gates, the propagation of the 

currents through the PDN and the gate delays as a function of the voltage drop. 

 

According to the above described simulation constraints, the simulation principles must be adapted 

taking into account the complexity of the electrical simulation of the PDN and the complexity of the logic 

simulation of the logic block. Therefore, the proposed electrical model must be a tradeoff between 

accuracy and a reasonable simulation time.  

In this work, we propose a mixed-mode simulation including a logic and electrical simulation that 

allows to validate an input sequence of vectors at the block level. The voltage drop prediction will be a 

combination of the mixed logic-electrical simulation at the block level and the impact of the average 

consumption of the neighboring blocks. This means that the global impact of the IR-Drop is taken into 

account to increase the precision in the delay estimation.  

However, electrical simulation at the block level is much time consuming and almost unfeasible. 

Consequently, the simulation principles must be optimized. One of the aims is therefore to propose an 

accurate electrical model that allows to perform a simplified electrical simulation without loss of accuracy 

in the gate delay prediction. The electrical model includes two main aspects, the gate level and the PDN 

level. 

· Gate level.  SPICE-like simulation of transistors is too complex and useless in our context. 

For our induced delay simulator not all electrical elements are concerned in the IR-Drop 

phenomenon and thus, these ones should be omitted. Roughly speaking, at the gate level there 
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are two parameters of interest: the gate current draw that flows through the PDN and the gate 

delay.  

 

· PDN level:  Supply voltage fluctuations may be predicted from the electrical elements of the 

PDN and the current flowing through these elements. Consequently, an accurate electrical 

model of the PDN including the most relevant elements, such as resistance, capacitance and 

inductance, must be proposed and more importantly, an efficient model to determine the 

current distribution inside the elements of the PDN needs to be defined.  

 

Knowing that currents flowing through the PDN are a determinant point in the supply voltage 

prediction and thus also in the induced delay prediction, these currents can be classified in two general 

groups according to their time characteristics: dynamic and static currents. Dynamic currents correspond 

to the current draws generated when gates are switching. They flow from the PDN through the gate to the 

output capacitance or symmetrically, from the output capacitance to the PDN. Static currents are currents 

that flow across a logic gate while the gate inputs are stable and non-switching. It means that gates are 

consuming power permanently, but these currents are much smaller than dynamic currents. Both currents 

are extensively described in Chapter 2. Note that neighboring blocks also generate current activity. As 

justified previously, supply voltage noise is a global phenomenon at the chip level and so, the simulator 

must take into account the average current generated by the neighboring blocks (section 3.1.2.3). 

Although average current is a stochastic estimation, this estimation allows us to include the neighboring 

switching activity in our model without increasing the simulation cost. 

1.3  Algorithm principle 

An event-driven simulation algorithm is suggested to estimate the induced delays generated by the IR-

Drop. As commented in the previous section, the IR-Drop algorithm principle is strongly dependent on a 

local-global duality on the one hand and on an electrical-logical duality on the other hand. The aim is to 

perform a logic vector-dependent block simulation at the block level that determines the logic and 

switching activity of the block and an electrical simulation of the PDN that estimates the supply voltage 

fluctuation.  

Therefore, the general structure of the simulator is highly determined by this electrical-logical duality. 

The simulator is structured into two parts that correspond to the electrical level and the logical level: 

· Electrical PDN model. The PDN model is a combination of resistors, capacitors and 

inductances representing the parasitic elements of the real PDN. In fact, the PDN is made of 
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two independent but completely similar PDNs: one for Vdd called Vdd PDN and one for Gnd 

called Gnd PDN. Complexity of the PDN model determines the precision in the supply 

voltage estimation and thus the accuracy of the delay estimation. For example, the model can 

be very simple as in the traditional delay induced simulators where PDN are not concerned in 

the delay estimation. For the first version of our simulator, the PDN is modeled as a resistive 

two dimensional grid (section 3.1). A more complex PDN model including capacitive 

elements is considered in Chapter 3 for a future version of the simulator. 

 

· Logical block model. The logical model includes all logic gates of the block and their logic 

connections. The model also includes the connection of each gate to the Vdd PDN and Gnd 

PDN. 

 

Therefore, the logic gates of the block being connected to the electrical PDN, every gate is assigned a 

node of the Vdd PDN and a node of the Gnd PDN. Figure 1.2 illustrates the general structure of the 

simulator and the connection between both models.  
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Figure 1.2: General structure of the simulator 
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Figure 1.3 gives a functional view of the mixed-mode algorithm. A logic simulation is performed at 

the block level. Input patterns are applied to the block input generating the switching activity and 

propagating. Finally the output patterns and the estimated delay induced by the IR-Drop are obtained. 

Concurrently, in the electrical domain, the algorithm computes the current flows thought the electrical 

PDN model and estimates the supply voltage in every node of the PDN grid.  
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Figure 1.3: Functional view of the simulation algorithm 

Connection between the logic domain and the electrical domain is driven by the switching events. 

When a gate switches, the algorithm inserts in the event queue a switching input event. Then, for each 

event in the queue the electrical simulation: 

· computes the supply voltage taking into account all the currents that are active in the PDN, 

· predicts the induced gate delay knowing the supply voltage, 

· injects the corresponding current draw in the PDN model, 

· generates a switching output event with the predicted gate delay. 

 

Gate current draws and delays are stored in an electrical library and depend on different parameters. 

Library pre-characterization process and parameters are extensively explained in Chapter 2.  
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Figure 1.4: Didactic view of the mixed-mode simulation 

Figure 1.4 gives a didactic view of the simulation principle. Given a gate Gi connected to the PDN at 

node Nvddi for the power supply and node Ngndi for the ground, when the gate input switches at time t0, 

the simulation performs the following steps: 

· Computation of the power supply voltage (t0) using the electrical model of the Vdd 

PDN. 

· Computation of the power supply voltage (t0) using the electrical model of the Gnd 

PDN. 

· Computation of the voltage swing Vswing1 of the input signal:  
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 1.1 

 

· Computation of the power supply voltage (t0) using the electrical model of the Vdd 

PDN. 

· Computation of the power supply voltage (t0) using the electrical model of the Gnd 

PDN. 

· Computation of the voltage swing Vswing2 of the switching gate: 

   

 1.2 

 

· Library access to get the corresponding delay d of the gate Gi as a function of Vswing1, Vswing2 

and the load capacitance Cload:  

 

 1.3 

 

· Library access to get the corresponding current (t0) in the power supply node Nvddi and 

the current (t0) in the ground supply node Ngndi as a function of Vswing1, Vswing2 and the 

load capacitance Cload: 

 

 1.4 

 

 1.5 

 

· Computation of the  and  currents propagation into the Vdd PDN and Gnd PDN 

using the PDN electrical models. 

· Logic computation of the gate output signal at time t0 + δ 
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1.4  Physical vs electrical structure of the grid 

So far, the PDN has been presented as one of the most important elements to model accurately 

because currents flowing through the PDN and the resulting supply voltage fluctuations determine the gate 

delays and the potential delay faults. As it is well known, PDN is a complex system of wires delivering 

power to the whole integrated circuit through different layers. A PDN is classically organized as a set of 

parallel large wires located in the upper metal layers covering the whole circuit surface [30]. Obviously, 

the electrical PDN model depends on the physical structure of the PDN. For the sake of simplicity, we 

assume the following classical structure: 

· In the top metal levels of the chip, high metal level #n and metal level #n-1 are exclusively 

composed of a set of parallel metal lines, these two sets having orthogonal directions. In the 

high metal levels through-vias that connect the two sets of orthogonal lines are regularly 

placed. The whole set of metal lines and through-vias creates a regular two-dimensional 

distribution network as represented in Figure 1.5.a. Usually, in a given level, one line over 

two is dedicated to Vdd and every other line to Gnd [36]; in this way, it is possible to analyze 

the Vdd distribution network and the Gnd distribution network as two independent three-

dimensional distribution networks. Figure 1.5.a illustrates the two orthogonal networks for 

Vdd PDN and Gnd PDN. 

 

· In the bottom metal levels of the chip, metal #2 is commonly used for the Vdd and Gnd lines. 

The Vdd and Gnd lines in the metal #2 level have typically a small length corresponding to 

the mega-cell they feed [36]. In addition they have multiple parallel via connections to the 

upper regular three-dimensional network as illustrated in Figure 1.5.c.  

 

· Finally, intermediate metal level represents the interface between the upper regular three-

dimensional network and the lower irregular structure as illustrated in Figure 1.5.b. 
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Figure 1.5: PDN topology 

PDN topology is obviously optimized in the design phase to reduce the parasitic elements but they 

cannot be completely removed. And so, vertical crossings of conductive elements behave as capacitive 

elements and long wires and vias behave as resistive elements. In addition, inductive elements may be 

considered although these are very small and often neglected. Among all these parasitic elements, the 

resistive ones are really predominant; reason why IR-Drop is one of the most analyzed electrical 

phenomena due to the current flows through the PDN. Therefore, the distribution network model must 

contain an accurate representation and estimation of the PDN resistive elements.   

In a modeling perspective, PDN topology can be divided into three areas: 

· High metal level may be modeled as two independent two-dimensional resistive grids. The 

Vdd and Gnd lines in this level of the chip are very long, corresponding to the whole chip 

size. For this reason the parasitic resistances of the regular network are determinant in the 

current distribution through the PDN. 
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· Intermediate metal level may be considered as included in the two-dimensional grids.  

 

· Low metal level is made of short metal connection (in the order of the mega-cell dimension) 

in comparison with the high metal level wires (in the order of the chip dimension). Moreover, 

there are multiple parallel via connections to the metal #3 lines that enable to reduce the 

resistive behavior of metal #2 lines. For these reasons, the parasitic resistance of this level can 

be neglected in the model. 

 

In conclusion, the electrical model of the PDN concerns the two independent supply networks, which 

are physically regular, intertwined and orthogonal from one level to the other, and correspond to the high 

metal levels. We can accurately model the PDN as a symmetrical structure composed of two grids with 

resistive elements. 
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2 Electrical model at gate level 

As introduced in the previous chapter, due to some current flows through the PDN, a supply voltage 

drop appears affecting the expected delays of the switching gates and so may generate timing faults. The 

current flows through the PDN can be created by logic gates that switch. Indeed, when a gate switches, a 

current is drawn from the voltage source to the gate through the PDN. This current generates a voltage 

drop in the PDN that affects the other gates. In other words, the voltage drop generated by a switching 

gate provokes a variation in the delay of the other gates. Therefore, a switching gate affects the gates that 

will switch later. 

There are therefore two different electrical characteristics that need to be studied at this point: the 

current draw created by the switching logic gates and the impact of a supply voltage drop on the gate 

delay. Both elements, current draw and impacted delay, will be characterized in the gate library. 

Therefore, both the causes and the consequences of the IR-drop will be modeled in our gate library.   

This chapter introduces the electrical parameters involved in the current flow and gate delay and gives 

a detailed view of the pre-characterization phase at the gate level. 

2.1 Dynamic and static currents 

As explained in Chapter 1, there are some intrinsic currents due to the electrical behavior of a logic 

gate. These intrinsic currents through the Vdd and Gnd power grids must be analyzed and modeled in 

order to implement our IR-Drop simulator. It is important to note that power consumption in ICs is a 

traditional research and classical topic in test researches and so we just reuse here the terminology and 

classification that is used in this field. Classically power dissipation is classified into two main groups: 

dynamic switching power dissipation and static power dissipation. According to this traditional 

classification, intrinsic currents can be divided into two general groups: dynamic and static currents.   
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Dynamic currents appear when the gate output terminal is switching. During the commutation time, 

the PMOS and NMOS devices of the gate progress through different operation regions, and the variation 

in the conductivity of the transistors generates different current flows. Analyzing the inverter as the 

simplest logic gate, there are two current flows through the inverter: the short current Ishort that flows from 

Vdd to Gnd and the load current Iload that charges and discharges the output capacitance.  

Figure 2.1 illustrates the inverter transfer curve and different operation regions, showing the output 

voltage in function of the input voltage, where VTN is the input voltage at which the NMOS transistor turns 

from off to on (NMOS threshold voltage) and VTP is the PMOS threshold voltage (the PMOS transistor 

turns from on to off region when the input voltage becomes higher than Vdd-|VTP|).  
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Figure 2.1: Inverter transfer curve 

 

When analyzing for example an input transition from high to low level, the PMOS and NMOS 

transistors progress through the different operating regions during the transition: cutoff, linear and 

saturation. Based on the operating state of both transistors, five regions can be defined as illustrated in 

Figure 2.2 and in Table 2.1 (the transistors are considered ideal). 

 



 

37 

 

 

Region 1 
PMOS cutoff 

NMOS linear 

Region 2 
PMOS saturation 

NMOS linear 

 

time 

V
i 

Region 3 
PMOS saturation 

NMOS saturation 

 

Region 4 
PMOS linear 

NMOS saturation 

 

Region 5 
PMOS linear 

NMOS cutoff 

 
VTN 

VDD  

VDD - |VTP| 

 

Figure 2.2: Transistor operating regions of an inverter (down transition)  

 

Table 2.1: Regions of operation of transistors in a symmetrical CMOS inverter 

Region Input voltage Vi Output voltage Vo NMOS transistor PMOS transistor 

1 Vi ≥ (VDD - |VTP|) VOL = 0 Linear Cutoff 

2 Vo + VTN < Vi ≤ (VDD - |VTP|) low Linear Saturation 

3 Vi ≈ VDD/2 VDD/2 Saturation Saturation 

4 VTN < Vi ≤ Vo + |VTP| high Saturation Linear 

5 Vi ≤ VTN VOH = VDD Cutoff Linear 

 

Region 1: When the inverter input corresponds to a logic 1, a high voltage (Vi ≥ (VDD - |VTP|)) is 

applied to the PMOS and NMOS devices. Then, the PMOS device is in the cutoff region and the 

NMOS device is in the linear region. There is no current Ishort flowing through the transistors from 

Vdd to Gnd. In addition, the output voltage of the inverter being 0, there is no current flowing from 

the output capacitance to Gnd through the NMOS transistor.   

Region 2: When the input signal starts to fall below the threshold voltage VTP of the PMOS transistor, 

the PMOS device switches to the on mode and jumps into the saturation region. The NMOS device 

continues to be in the linear region. During this period, a current flow from Vdd to Gnd through the 

transistors, but this current is very small as the NMOS transistor behaves like a resistor in the linear 

region. A part of the current that flows across the PMOS transistor, Iload, charges the output 

capacitance and the output voltage starts to rise.  

Region 3: While the input voltage continues to decrease and for a very short slice of time, both 

devices are in the saturation region. For an ideal symmetrical inverter, both transistors are in the 

saturation region when the input voltage is Vdd/2. The current flowing through the PMOS device is at 

its maximum. Part of this current, Iload, charges the output capacitance and the rest, Ishort, flows through 

the NMOS transistor to Gnd. 
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Region 4: This region occurs when the input voltage is lower than (Vo + |VTP|) but still higher than VTN. 

The PMOS device progresses into the linear region. The NMOS device continues in the saturation 

region and most of the current that flows across the PMOS transistor goes to charge the output 

capacitance (Iload). A small amount of the current flow goes from Vdd to Gnd (Ishort).  

Region 5: Finally, the input voltage descends to logic 0. When the input voltage is below VTN, the 

NMOS device turns off. The output voltage is stable and equal to the nominal Vdd supply voltage. 

Therefore the current flow through the inverter disappears. 

It must be noted that the load current Iload flows from Vdd to the load capacitance crossing the PMOS 

transistor as illustrated in Figure 2.3.a. For an input transition from low to high level, the load current Iload 

flows from the load capacitance to Gnd the crossing the NMOS transistor as illustrated in Figure 2.3.b.  
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Figure 2.3: Dynamic currents in the inverter 

In brief, the highest amount of dynamic current appears across the PMOS transistor in region 3, when 

both transistors are in the saturation region. Part of the dynamic current charges the output capacitance and 

the rest goes to ground across the NMOS transistor. 

Concerning now the intrinsic static current, it appears even when the gate input does not switch. In 

past technologies, the magnitude of this static current was small and usually neglected. Technology 

scaling to reduce dynamic power requires the scaling of threshold voltage and oxide thickness, which 

results in an increase in static current. The intrinsic static current of a gate is traditionally called the 

quiescent current. This term is used to describe the amount of current consumed by a gate when the input 

edge does not change over time. 
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Figure 2.4: Static currents in the inverter 

As illustrated in Figure 2.4, the quiescent or static current is composed of two main currents [46]: 

Input leakage current. This current is defined as the current drawn from the input terminal of the 

gate to the bulk and source/drain overlap region of the transistors. The input leakage current appears 

as a result of aggressive scaling of the oxide thickness of the transistor.  

Gate sub-threshold current. It is the current that flows from Vdd to Gnd when the gate does not 

switch. Regarding once again the transfer curve of the inverter, there are some voltage levels that 

determine the static noise margins as illustrated in Figure 2.5: 

· VOL: Voltage corresponding to a low logic state at the output of a logic gate, 

· VOH: Voltage corresponding to a high logic state at the output of a logic gate, 

· VIL: Maximum input voltage that will be recognized as a low input logic level, 

· VIH: Minimum input voltage that will be recognized as a high input logic level. 

Therefore, NML is noise margin associated to the low input level (NML= VIL-VOL) and NMH the noise 

margin associated to the high input level (NMH= VOH-VIH). 
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Figure 2.5: Inverter transfer curve and noise margins. 

Note that the cutoff region of the transistors (PMOS and NMOS) is not totally off. Even when the 

input voltage corresponds to logic 0 or 1, a small amount of current flows through the PMOS and NMOS 

transistors from Vdd to Gnd. Technology scaling to reduce dynamic power has implied scaling in the 

threshold voltage. As a result, the static noise margins have been reduced and thus, the sub-threshold 

current has increased. 

Consequently, gate static and dynamic currents must be known to implement an IR-Drop simulation 

and estimate the induced delay due to the IR-Drop, because the presence of both currents involves power 

dissipation at power and ground distribution supplies. From here on, the term “current draw” will refer to 

the dynamic current generated by an input transition. “Static current” or “quiescent current” will be used 

interchangeably for the current in Vdd and Gnd when the gate is not switching. 

2.2 Library models and variable parameters 

The gate library must include all currents (dynamic and static) flowing through the logic gate from the 

power and ground supply networks. In addition, the gate library must also include the delay of every logic 

gate. Because the static current of a gate is constant, the library model for static currents provides a simple 

value; this is also the case for the gate delay. On the other hand, the dynamic current evolves with time all 

along the gate commutation. For this reason, the electrical model requires to use a complete current 

characterization with ps time resolution.  

Static and dynamic currents are highly dependent on technology. Similarly, the delay of a standard 

gate also depends on the technology. This is why a library pre-characterization is required in order to 

determine the static current, the dynamic current and the gate delay for every technology. It is also 
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important to note that the static currents, dynamic currents and delays vary in function of the type of gate 

and thus, gate library must contain the three electrical models for every type of gate. Furthermore, these 

currents and delay also depend on electrical variables reminded hereafter:  

· Direction of the input transition: As explained in the previous section, the dynamic current 

of the gate depends on the operation region of the MOS device. In the current draw generated 

by a high to low transition, the current draw flows from Vdd to the PMOS transitor. Part of 

this current charges the output capacitance and the rest goes to Gnd across the NMOS 

transistor. In this case, the current drawn from Vdd is predominant and the current flowing to 

Gnd is significantly smaller. In contrast, when the input signal increases from low to high 

level, the predominant current is in Gnd due to the output capacitance discharge and the 

current drawn from Vdd is much smaller. Therefore, current draw in Vdd and Gnd is closely 

related to the direction of the input transition. In the same way, gate delay and static current 

also depend on the direction of the input transition. For this reason, current and gate delay are 

modeled as a function of the input transition direction (edge). 

 

· Supply voltage swing: As mentioned briefly in the algorithm principles, the gate can be 

affected by voltage drop in the power and/or the ground supplies, which has an impact on 

static and dynamic currents and delay. Indeed, variation in the expected voltage supply affects 

the operating regions of the MOS transistors of the gates. Therefore, it is important to take 

into account the voltage swing of the considered gate (Vswing2 or supply swing), defined by 

equation 1.2: 

 2.1 

 

The voltage supply and ground supply  of the characterized gate refer to the 

position in the PDN of the gate Gi. As in the pre-characterization procedure we are only 

interested in the electrical model at the gate level, in particular in the voltage level, then the 

power supply level will be called Vdd2 and the ground supply level Gnd2 for the characterized 

switching gate G2 as illustrated in Figure 2.6. 

· Input voltage swing: the upstream gate G1 may also be affected by a voltage drop, which has 

an impact on the behavior of this upstream gate and consequently on its output voltage level. 

In order to determine the library models, it is important to take into account the voltage swing 

of the upstream gate (Vswing1 or input swing), defined by equation 1.1. Similarly to the supply 
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voltage swing, Vdd1 and Gnd1 are the power supply and ground supply levels of the upstream 

gate G1 in the pre-characterization. 
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Figure 2.6: Library variable parameters definition 

· Load capacitance: Gate G2 output is connected to downstream gates (fanout). These gates 

have an intrinsic input capacitance, which is charged and discharged during the switching 

process. Therefore, the output capacitance of the gate has an impact on the current draw and 

gate delay. For the model procedure, an equivalent capacitance of the downstream gates Cload 

is connected to the characterized gate. 

The gate library therefore includes the current and delay models derived from electrical simulation. 

The current and delay models are computed according to the above listed parameters: 

d =  (G, edge, Vswing1, Vswing2, Cload) 

 

=  (G, edge, Vswing1, Vswing2, Cload)
 

=  (G, edge, Vswing1, Vswing2, Cload) 

 

 =  (G, edge, Vswing1, Vswing2) 

 =  (G, edge, Vswing1, Vswing2) 

 

Note that static currents do not depend on the load capacitance in the above equations. This is because 

there is no charge and discharge activity in the output capacitance when a gate does not switch and thus, 

static currents are independent of the load capacitance. 

2.3 Library pre-characterization  

During the pre-characterization process for a given technology, SPICE simulations are performed to 

pre-characterize the dynamic current, the static current and the gate delay of every standard gate under all 
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the conditions that are likely to exist in a realistic environment. A standard electrical configuration, 

illustrated in Figure 2.7, is used to simulate all the library gates with all the possible combinations of the 

electrical parameters. To make the input transition generation more realistic, a traditional pulse voltage 

source is connected to an inverter, which creates a realistic signal in terms of rise and fall times. Both 

elements are supplied with nominal voltage for Vdd and Gnd called Vddn and Gndn. The output signal of 

the auxiliary inverter is connected to a controlled voltage source. This controlled voltage source does not 

apply a modification to the voltage level of the output. Its role is only to filter all the spurious variations 

resulting from the ideal pulse voltage source. 
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Figure 2.7: Pre-characterization electrical schematic for an inverter 

 Once the input signal for the circuit has been defined, an upstream gate is attached to the 

characterized gate. In the standard model, an inverter is used as upstream gate to model the voltage supply 

swing of the characterized gate input. Finally, the output of the characterized gate is connected to a load 

capacitance that represents the fanout of the characterized gate. The proposed pre-characterization 

schematic provides an accurate electrical configuration for SPICE simulations of all possible 

combinations of Vswing1, Vswing2 and load capacitance Cload. 

The voltage swings Vswing1 and Vswing2 vary from 100% to 80% of the nominal power supply. The 

voltage supply levels applied to the bias of the characterized gate (Vdd2 and Gnd2) and to the bias of the 

upstream inverter (Vdd1 and Gnd1) are constant in time and symmetrical. Therefore, if a voltage supply 

swing of 80% of the nominal one is applied to a characterized gate, the voltage supply Gnd2 will be 10% 

of the nominal power supply and the voltage supply Vdd2 will be 90% of the nominal power supply. From 

now on, we define Vswing1 and Vswing2 in percentage of the nominal power supply Vnominal as expressed in 

equations 2.1and 2.3. 

 2.2 
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 2.3 

 

Concerning the load capacitance, the pre-characterization process applies discrete variations of its 

value between one Cmin and five Cmin, where Cmin is the equivalent input capacitance of an elementary 

inverter. All possible combinations of Vswing1, Vswing2 and load capacitance Cload are simulated using SPICE 

for every gate in the pre-characterization procedure. As a result, a model can be derived from these 

electrical simulations to compute the current draw, quiescent current and gate delay based on any 

electrical configuration. The gate library contains electrical models for the following types of gate: 

inverter, NAND2, NOR2, NAND3, NOR3, NAND4, NOR4 and buffer. In the following subsections, the 

pre-characterization procedure for every library element is explained in detail.  

2.3.1 Delay model 

The conventional definition of the propagation delay δ is the amount of time between the input signal 

of the gate crossing half of its excursion (Vnominal/2 in an ideal case without IR drop) and the output signal 

of the gate crossing half of its excursion.  

In the pre-characterization procedure, SPICE simulations are performed with different supply and 

input swings (Vswing2 and Vswing1 respectively). As supply and input voltage swings can be different, the 

propagation delay δ is defined as the duration between the time t0 at which the input signal of the gate 

crosses half of its specific excursion Vswing1/2 and the time t1 at which the output signal of the gate crosses 

half of its specific excursion Vswing2/2, as illustrated in Figure 2.8.  
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Figure 2.8: Library electrical parameters definition 

Note that the nominal delay δnom of a gate can be obtained with ideal voltage supplies Vswing1=Vnominal 

and Vswing2=Vnominal. For example, in the 45nm technology used here, the nominal delay is δnom=4.903ps for 

an inverter controlled by a high to low transition. 

The delay increases linearly when the voltage swing Vswing2 of the gate decreases, the other parameters 

being constant at their nominal value, for a positive input transition, as illustrated in Figure 2.9.b. It also 

increases when the input swing Vswing1 decreases. This latter dependence is slightly less linear, but it can 

be approximately defined by a straight line with an average error inferior to 0.5%, as respresented in 

Figure 2.9.a. Although the delay with varying load capacitance describes an exponential curve, this curve 

can be approximated by a linear function if the load capacitance variation stays in a small range from one 

to five times Cmin, as shown in Figure 2.9.c. 



 

46 

 

 

Figure 2.9: Inverter delay variations in function of voltage swings and load capacitance 

The three varying parameters are dependent and consequently the effect of one variable on the delay 

depends on the value of the other two variables, i.e. an additive Multiple-Linear Regression (MLR) 

equation with multiplicative interactions can be used for each parameter and also for the combination of 

the variables in order to model the gate delay. Therefore an additive MLR equation of the delay is 

established as a function of Vswing1, Vswing2 and load capacitance Cload. This MLR equation depends on the 

direction of the input transition (rising or falling) and the gate type (e.g. inverter, NAND2). Consequently, 

two sets of 8 regression coefficients are given to the simulator to compute the delay for each gate type as 

shown by equations 2.4(rising edge) and 2.5(falling edge):  

d

 
2.4 

 

d

 
2.5 

 

where a0, b0, c0, d0, e0, f0 , g0, h0 are the coefficients associated to the delay of the inverter for a rising 

transition (d0_1) and  a1, b1, c1, d1, e1, f1, g1, h1 are the coefficients of the delay for a falling transition (d1_0). 

The two sets of coefficients associated to the inverter are given in Table 2.2. 
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Table 2.2: Regression coefficients for the delay computation of an inverter. 

 ai bi ci di ei fi gi hi 

δ0_1 (10
-12

) 14.295 -9.656 -8.160 5.999 6.746 -2.750 -4.162 2.600 

δ1_0 (10
-12

) 13.479 -9.337 -6.427 5.583 5.185 -3.395 -4.203 3.113 

 

Figure 2.10 shows the delay variation for an inverter controlled by a positive input transition as a 

function of the input and power swings with minimal load capacitance obtained from SPICE simulation 

(left graphic) and from the MLR model (right graphic). Average relative error is a faithful way to measure 

the accuracy of the model because relative error is high only in the front corner case, i.e. the worst relative 

error is 1.06% for a 20% of voltage supply drop in the upstream gate and the characterized gate. But a 

voltage supply drop of more than 10% is extremely improbable. However, over the full range of swing 

corresponding to 20% of the drop, the average error when estimating delay is 0.56%. Overall, including 

variations in the load capacitance, the average error is as low as 0.35%. The average error is very 

satisfactory compared to other studies on the topic [9]. 

 

Figure 2.10: Variation of the delay as a function of Vswing1 and Vswing2 with Cmin load obtained from Spice simulation (left) 

and computed from MLR function (right). 

To determine the overall precision of the model, the worst relative error and the average relative error 

are computed for every library gate. For the considered 45nm technology, Table 2.3 shows the estimation 

errors. As illustrated with the above inverter example, the relative error can be high in the corner case, but 

it is not representative of the simulation error for the delay model. The worst relative error in delay 
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estimation is 5% for the buffer gate. The average relative error is as low as 1.75% for the same gate. In 

brief, the obtained results look very satisfactory for all characterized gates and the suggested electrical 

model provides an accurate model to estimate the induced gate delay in function of the electrical 

parameters previously described. 

Table 2.3: Delay model error. 

Gate Input vector Switching input Worst relative error (%) Average relative error (%) 

INV 0/ 1 Input 1: Rising edge 1.2324 0.3561 

INV 1/0 Input 1: Falling edge 1.8228 0.6020 

BUF 0/1 Input 1: Rising edge 5.0439 1.7582 

BUF 1/1 Input 1: Falling edge 2.9783 0.5406 

NAND4 0111/1111 Input 1: Rising edge 2.2225 0.5187 

NAND3 011/111 Input 1: Rising edge 2.1956 0.4758 

NAND2 01/11 Input 1: Rising edge 1.5358 0.3634 

NAND4 1111/0111 Input 1: Falling edge 2.3041 0.4827 

NAND3 111/011 Input 1: Falling edge 2.1057 0.4800 

NAND2 11/01 Input 1: Falling edge 2.4156 0.4793 

NAND4 1011/1111 Input 2: Rising edge 3.7521 0.5336 

NAND3 101/111 Input 2: Rising edge 1.9149 0.4287 

NAND2 10/11 Input 2: Rising edge 1.5917 0.3710 

NAND4 1111/1011 Input 2: Falling edge 1.6869 0.3387 

NAND3 111/101 Input 2: Falling edge 1.5810 0.3537 

NAND2 11/10 Input 2: Falling edge 1.7089 0.3707 

NAND4 1101/1111 Input 3: Rising edge 2.1284 0.5305 

NAND3 110/111 Input 3: Rising edge 2.1805 0.4393 

NAND4 1111/1101 Input 3: Falling edge 2.4785 0.3559 

NAND3 111/110 Input 3: Falling edge 1.5927 0.3027 

NAND4 1110/1111 Input 4: Rising edge 2.7773 0.5744 

NAND4 1111/1110 Input 4: Falling edge 1.4083 0.3398 

NOR4 0010/0000 Input 3: Falling edge 2.7397 0.6070 

NOR4 0000/0010 Input 3: Rising edge 1.1659 0.2817 

NOR4 0000/0001 Input 4: Rising edge 1.2701 0.2977 

NOR4 0001/0000 Input 4: Falling edge 3.1232 0.6967 

NOR3 000/001 Input 3: Rising edge 1.2246 0.3148 

NOR3 001/000 Input 3: Falling edge 2.6132 0.5666 

NOR4 0000/0100 Input 2: Rising edge 1.1202 0.3557 
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NOR3 000/010 Input 2: Rising edge 1.1930 0.2913 

NOR2 00/01 Input 2: Rising edge 1.2475 0.3291 

NOR4 0100/0000 Input 2: Falling edge 2.2522 0.4842 

NOR3 010/000 Input 2: Falling edge 2.5316 0.5631 

NOR2 01/00 Input 2: Falling edge 2.7057 0.5557 

NOR4 0000/1000 Input 1: Rising edge 1.1450 0.4695 

NOR3 000/100 Input 1: Rising edge 1.1902 0.3840 

NOR2 00/10 Input 1: Rising edge 1.1788 0.2982 

NOR4 1000/0000 Input 1: Falling edge 2.0635 0.3988 

NOR3 100/000 Input 1: Falling edge 2.0773 0.4763 

NOR2 10/00 Input 1: Falling edge 1.9369 0.4637 

2.3.2 Dynamic current model 

As previously mentioned, the current drawn by a switching gate from the power and ground supplies 

is a time variant function. Therefore, the electrical model for the dynamic current cannot be a single value. 

For this reason, the current draw is modeled as an array of values as illustrated in Figure 2.11. For the sake 

of simplicity, from now on we consider a convention with positive currents getting into the gate, i.e. the 

current flow is considered positive from the supply to the gate whatever the considered supply. As a result, 

the current Ignd from the ground supply to the gate is presented as positive, although it actually flows in the 

opposite direction as previously illustrated in Figure 2.3.  
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Figure 2.11: Dynamic current model arrays 

The reference current draw, corresponding to the current draw induced by the switching gate under 

nominal electrical conditions, is thus stored as an array of 100 current amplitude values with picosecond 

resolution. From this reference, the actual current draw can be computed according to environmental 
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conditions. The first point of the array corresponds to t0 in Figure 2.8. Note that it is sure that the current 

draw will fall back to zero in less than 100ps whatever the conditions, so our 100 point table is large 

enough. When a gate is switching, the current drawn from Vdd is different from the current drawn from 

Gnd (see section 2.2) and so two reference arrays must therefore be used: Ivdd and Ignd. 

 

Figure 2.12: Variation of the transient current draw for different values of a)the power swing; b) the input swing; c) the 

load capacitance 

Figure 2.12 shows the transient current drawn from the ground supply during the switching of an 

inverter controlled by a positive transition (in this case, this is the predominant current draw). Figure 2.12.a 

gives the current draw obtained by SPICE simulation for different values of the gate power swing Vswing2, 

Figure 2.12.b for different values of the input swing Vswing1 and Figure 2.12.c for different values of the 

load capacitance Cload. Note that only one parameter varies at a time while the two other parameters are kept 

constant at nominal value (Vswing1,2=100% of nominal voltage and Cload=Cmin). Considering a reference 

curve with Vswing1=100%, Vswing2=100% and Cload=Cmin (in yellow on Figure 2.12.a and Figure 2.12.b, in 

blue on Figure 2.12.c), the effect of the gate power swing Vswing2 on the transient current draw appears to be 

a simple homothety of the amplitude. In this case, a single multiplying factor is thus sufficient to derive the 

array of current values from the reference array. A similar amplitude effect can be observed on the current 

draw when the input swing Vswing1 varies, but this is then associated with a shift in time. To derive the 

actual current values from the reference, it is possible to shift the values in the array and then apply a 

multiplying factor. The impact of the load capacitance on the current draw is significantly much more 

difficult to model. No simple factor can be found to compute all the other curves from a reference curve. 

However, because only five different values of the load capacitance are considered, it is possible to store 
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the corresponding five arrays of current values for a nominal input and power swings. It should be noted 

that the results and conclusions for the current draw in the Vdd power supply are similar to those previously 

presented for Gnd. 

The average Normalized Root Mean Square Deviation (NRMSD) between the current draw 

waveforms, sweeping all the possible combinations of Vswing1 and Vswing2, obtained by SPICE simulation on 

the one hand and derived from the reference current arrays applying the adequate amplitude factor and time 

shift is computed to determine the electrical model accuracy. Table 2.4 gives a representative extract of the 

obtained NRMSD for different gates and input transitions. The complete table of NRMSD is available in 

annex. The maximal average estimated error for all possible combinations of the electrical parameters is 

5.19% in the case of an inverter. The   error in this latter case is particularly high compared to the observed 

results in the other cases. In general, the average error is close to 1% for a given gate and input transition 

(the overall average error for all the logic gates and transitions is as low as 1.15%). Although these results 

in terms of estimation error are worse than the ones obtained with the gate delay, it should be noted that an 

array of values is much more complex to handle. In some papers the current draw is modeled as a simple 

triangular function [3], [17] or as a trapezoidal function [2], [18], implying obviously some 

approximations. Note that the estimation errors are not available in these publications but it is obvious that 

this kind of approximation is less accurate than the suggested electrical model introduced in this section. 

For this reason we can conclude that the suggested electrical model is accurate for the current draw 

prediction.  

Table 2.4: NRMSD of the current draw model (extract). 

Gate Input vector Switching input Cload 
Current Vdd: 

average NRMSD (%) 

Current Gnd: 

average NRMSD (%) 

INV 0/ 1 In 1: Rising edge 5 Cmin 0.2375 5.1877 

INV 1/0 In 1: Falling edge 5 Cmin 2.9270 0.1672 

BUF 0/1 In 1: Rising edge 1 Cmin 1.6808 1.2412 

BUF 1/1 In 1: Falling edge 1 Cmin 1.1576 1.2156 

NAND4 0111/1111 In 1: Rising edge 2 Cmin 0.3366 1.130 

NAND3 011/111 In 1: Rising edge 5 Cmin 0.3291 0.8893 

NAND2 01/11 In 1: Rising edge 5 Cmin 0.3493 1.8745 

NAND4 1111/0111 In 1: Falling edge 2 Cmin 1.9991 0.3448 

NAND3 111/011 In 1: Falling edge 4 Cmin 2.3699 0.3614 

NAND2 11/01 In 1: Falling edge 3 Cmin 1.0119 0.1953 

NAND4 1011/1111 In 2: Rising edge 5 Cmin 0.4626 1.7695 
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NAND3 101/111 In 2: Rising edge 3 Cmin 0.4858 1.6074 

NAND2 10/11 In 2: Rising edge 5 Cmin 1.2716 3.7823 

NAND4 1111/1011 In 2: Falling edge 4 Cmin 0.8490 0.2203 

NAND3 111/101 In 2: Falling edge 5 Cmin 0.6310 0.1742 

NAND2 11/10 In 2: Falling edge 5 Cmin 0.6493 0.1789 

NAND4 1101/1111 In 3: Rising edge 5 Cmin 2.3316 1.3808 

NAND3 110/111 In 3: Rising edge 5 Cmin 1.9255 4.0419 

NAND4 1111/1101 In 3: Falling edge 4 Cmin 0.4023 0.3691 

NAND3 111/110 In 3: Falling edge 5 Cmin 0.6506 0.1567 

NAND4 1110/1111 In 4: Rising edge 3 Cmin 3.0476 3.8167 

NAND4 1111/1110 In 4: Falling edge 2 Cmin 1.5753 0.3529 

NOR4 0010/0000 In 3: Falling edge 4 Cmin 0.4727 3.6431 

NOR4 0000/0010 In 3: Rising edge 5 Cmin 1.2971 0.1897 

NOR4 0000/0001 In 4: Rising edge 5 Cmin 0.4784 1.9594 

NOR4 0001/0000 In 4: Falling edge 4 Cmin 1.7924 0.1654 

NOR3 000/001 In 3: Rising edge 2 Cmin 0.1719 1.3203 

NOR3 001/000 In 3: Falling edge 3 Cmin 0.4784 1.6886 

NOR4 0000/0100 In 2: Rising edge 5 Cmin 0.3316 2.3088 

NOR3 000/010 In 2: Rising edge 1 Cmin 1.4558 1.6867 

NOR2 00/01 In 2: Rising edge 1 Cmin 2.3716 1.3795 

NOR4 0100/0000 In 2: Falling edge 5 Cmin 1.9979 0.1527 

NOR3 010/000 In 2: Falling edge 4 Cmin 0.2008 0.7838 

NOR2 01/00 In 2: Falling edge 2 Cmin 0.1463 1.6658 

NOR4 0000/1000 In 1: Rising edge 4 Cmin 0.5057 2.2549 

NOR3 000/100 In 1: Rising edge 5 Cmin 3.3468 0.7776 

NOR2 00/10 In 1: Rising edge 5 Cmin 2.4373 1.7666 

NOR4 1000/0000 In 1: Falling edge 1 Cmin 3.1374 0.5565 

NOR3 100/000 In 1: Falling edge 5 Cmin 0.4114 1.4539 

NOR2 10/00 In 1: Falling edge 4 Cmin 2.8578 0.3560 

2.3.3 Static current model 

The static or quiescent current of a gate is defined in section 2.1. These undesirable currents are 

generated by the parasitic elements of the MOS transistor. In past technologies the static currents were low 

and neglected, but today technology scaling has increased the magnitude of the static current. Firstly, it is 

necessary to determine whether the quiescent current can be neglected or has a significant impact on the 

voltage drop in the PDN. 
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Figure 2.13: Static currents in the inverter (low input) 

To determine the static current flowing through the voltage supplies Vdd and Gnd, SPICE simulations 

are performed for each logic gate with all possible input states. For the first simulations, the supply 

voltage swing Vswing2 and the input voltage swing Vswing1 are fixed at 100% of the nominal voltage. Table 

2.5 shows the simulated static currents for an inverter, a NAND2 gate and a NOR2 gate. Ivdd is the static 

current flowing through the Vdd supply and corresponds to the current Istatic on Figure 2.13, which 

illustrates the case of an inverter with a low input. Ignd is the static current flowing through the Gnd supply 

and corresponds to the current Isub-threshold on Figure 2.13. 

Table 2.5: Simulated static currents in 45nm technology under nominal conditions 

Simulated static currents 

Gate Input state Istatic_vdd (nA) I static_gnd (nA) 

INV 
0 1.905 1.607 

1 0.820 0.991 

NAND2 

(0,0) 1.869 1.851 

(0,1) 0.263 0.116 

(1,0) 0.396 0.519 

(1,1) 0.990 0.894 

NOR2 

(0,0) 1.850 1.525 

(0,1) 0.511 0.372 

(1,0) 0.227 0.284 

(1,1) 0.019 0.099 

 

The SPICE simulation results show that static currents are in the order of magnitude of 10
-9

A, which 

is much smaller than the maximum current draw when a gate is switching, the latter being in the order of 

magnitude of 10
-4

A. However, depending on the gate density in the IC, there may be a huge number of 

gates connected to the same node of the PDN. This means that the total static current can finally be 

critical. In brief, quiescent current represents a small part of the total current flowing through the PDN, but 

the contribution of all the static gates of the chip can be in the order of magnitude of one dynamic current. 

The static current of a gate depends on the electrical parameters listed in section 2.2. However, it 

should be reminded that static currents are not affected by the load capacitance because there is no current 
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spread from the gate to the output terminal in a non-switching gate. On the contrary, the static current 

appears when the input state is stable and so this current depends on the input swing Vswing1. Naturally, the 

amount of static current flowing from Vdd to Gnd also depends on the power swing Vswing2. 

Figure 2.14 shows the static current evolution for an inverter gate depending on the input voltage Vinput 

and the supply voltage swing Vswing2. Note that the supply voltage swing is applied symmetrically in the 

pre-characterization schematic. As the nominal supply voltage for 45nm technology is 1V, when the input 

voltage swing is 80% of the nominal supply voltage, Vinput is 0.1V if the logic input is 0, and 0.9V if the 

logic input is 1. As far as static currents in Vdd have a very similar behavior when the voltage swings 

vary, we focus only on the current in Vdd in the next paragraph. Of course, similar projections are 

observed for the current in Gnd. 

 

Figure 2.14: Static current of an inverter in function of Vinput and Vswing2 

The obtained static current values are plotted in Figure 2.15 for different combinations of Vinput and 

Vswing2. Regarding the static current dependency on supply voltage, it can be concluded that: 

· The static current of a gate exponentially decreases with the gate supply voltage swing Vswing2. 

In other words, the higher the IR-drop effect on the supply of the gate, the smaller its static 
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current. Indeed, when the supply swing is smaller, the difference of potential is smaller and 

therefore the current flowing from the power supply to the ground is smaller. 

 

· The static current of a gate exponentially increases when the gate input voltage swing Vswing1 

decreases. This means that the static current of an inverter with a low input increases when 

Vinput increased and the static current of an inverter with a high input increases when Vinput 

decreases. Indeed, when the input voltage swing is smaller, the input voltage level approach to 

the noise margins of the gate and thus, transistor in the cut-off operating region (NMOS for a 

low input and PMOS for a high input) allows to conduct more current. 

 

Figure 2.15: Static current in Vdd of an inverter in function of Vinput and Vswing2 

Concerning the IR-Drop simulation, we consider that a large number of gates are connected to the 

same node in the PDN model. All the gates connected to the same node are affected by the same supply 

voltage drop and therefore the output voltage of these gates is affected by the same voltage drop. Because 

of the physical connectivity most of the gates are connected to the same node as their upstream gates. 
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Therefore, generally the input voltage swing Vswing1 and the supply voltage swing Vswing2 are equal for the 

static current computed by the simulator. This enables a simplification of the static current model using 

Vswing1=Vswing2. Figure 2.16 shows the static current function using this simplified model for an inverter. 

 

Figure 2.16: Static current of an inverter when Vswing1 = Vswing2 

2.4 Pre-characterization constraints 

The pre-characterization procedure for the gate delay and current draw provides a model that is valid 

for a wide range of combinations of the electrical parameters. Indeed, SPICE pre-characterization 

simulations are performed under all the conditions that are likely to exist in a realistic environment. But of 

course, there are some limitations concerning the accuracy of this model.  

During the pre-characterization, dynamic currents, static currents and delays are derived from SPICE 

simulations for different values of input voltage swing Vswing1, supply voltage swing Vswing2 and load 

capacitance Cload. When a gate switches, the input voltage swing and the supply voltage swing of the gate 

evolve in the time, changing their levels during the commutation time due to the switching activity of the 

neighboring gates. Therefore, there is an infinity of different possibilities that pre-characterization 

procedure cannot take into account for the modeling. For this reason, the pre-characterization procedure 

considers only stable levels of input voltage swing and the supply voltage swing. 

Another limitation of the model refers to the considered fanout. The discretization of the load 

capacitance to Cmin multiples is necessary to define the current draw models. Obviously, the input 

capacitance of a gate is Cmin only for the inverters. For rest of the standard gates the input capacitance is 
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higher than Cmin. It means that the computed load capacitor is always smaller than or equal to the real load 

capacitance.  

The pre-characterization simulations for each logic gate only include single input switching 

conditions, not simultaneous switchings of different inputs of the same gate. In the case of simultaneous 

switchings of a gate inputs, the current draw and the delay of the gate depend on both input transitions. 

The actual resulting current draw and delay is not a simple combination of both transitions considered 

independently. A similar observation can be made when different inputs of the same gate switch 

successively in a small slice of time (typically smaller than the gate delay). In these cases, the exhaustive 

characterization of the delay and the current draw is not feasible because there is an infinity of possible 

combinations of input events during a gate commutation delay. In brief, the electrical model provided by 

the pre-characterization library is imprecise in these cases. Fortunately, the probability of simultaneous 

switching events is small and in addition their impact is limited due to the modest impact of a single 

current draw generated by a switching gate in comparison with the global current that flows through the 

whole chip.  

2.5 Self IR-Drop 

In the pre-characterization procedure, SPICE simulations are performed for different supply voltage 

swings Vswing2 but the pre-characterization procedure does not take into account the supply voltage 

variation generated by the switching gate itself. We call this phenomenon self-IR-Drop. Although self-IR-

Drop is an electrical effect at the gate level, it also depends on the resistive elements of the PDN. 

The aim of this section is to evaluate the impact of self-IR-Drop on the current draw and delay of the 

gate. To do so, a new electrical schematic is simulated with SPICE; this schematic must include a resistive 

PDN model between the voltage supply Vdd and the power bia connection and other one between the 

ground supply Gnd and the ground bia connection. As the current distribution through the PDN is 

irrelevant, an equivalent resistance of the resistive grid can be used (Rg_vdd_eq for the power grid and 

Rg_gnd_eq for the ground grid). Resistive grid and its equivalent resistance are explained with more details in 

section 3.1. The equivalent grid resistance is connected between the power supply Vdd (resp. ground 

supply Gnd) and the power bia connection nvdd_supply (resp. ground bia connection ngnd_supply) of the gate as 

illustrated in Figure 2.17. 
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Figure 2.17: Schematic for self-IR-Drop simulation 

Our expectation is that self-IR-Drop is negligible because the current draw generated by a gate is 

approximately 10
-4

 A. Therefore, using a realistic value for the equivalent grid resistance around 1Ω, the 

self-IR-Drop voltage drop at the supply voltage connection of the gate will be negligible. To confirm this 

hypothesis a simulation with an inverter is performed. The supply voltage swing Vswing2 and the input 

voltage swing Vswing1 of the inverter are fixed at 100% of the nominal voltage. To create a realistic 

environment, equivalent grid resistance values between 0Ω and 1Ω are simulated (see 3.1.2.4).  

Once the electrical parameters have been defined, the impact of the self-IR-Drop is evaluated. The 

current draws and gate delays gotten from the SPICE simulations with and without the equivalent grid 

resistance in Vdd and Gnd are compared. Figure 2.18 shows the SPICE results when the inverter input 

switches from low to high. In the plotted results, the equivalent grid resistor used to model the Vdd PDN 

and the equivalent grid resistor used to model the Gnd PND have the same value R_eq which varies from 

0Ω to 1Ω. We observe for example the current and voltage in the Gnd node ngnd_supply: the current draw 

variation is slight. In addition, the voltage drop in Gnd node is approximately 10
-4

V for the worst case 

corresponding to Rg_eq = 1Ω. 
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Figure 2.18: Self IR-Drop simulation of an inverter 

In conclusion, when the self-IR-Drop effect is omitted in the pre-characterization procedure, the 

maximal error in delay estimation is 0.018%. For the current draw, the maximal error is 0.020%. 

Therefore, self-IR-Drop impact is negligible due to the low voltage drop generated by the characterized 

gate switching itself and can indeed be neglected during the pre-characterization procedure. 
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3 Electrical model of the PDN current distribution  

As described in the first chapter, an IR-Drop simulation requires by definition a model for the current 

‘I’ and a model for the resistance ‘R’. In the previous chapter, an electrical model has been defined for 

dynamic and static currents in the frame of the pre-characterization procedure. In this chapter, the current 

distribution through the PDN needs to be analyzed as a function of the resistance ‘R’ of the PDN, i.e. an 

electrical model for the PDN must be proposed in order to determine the current distribution through the 

PDN.    

As explained in section 1.1, IR-Drop is an electrical phenomenon that dissipates in space. Hence, the 

current distribution through the PDN generated by a current draw causes a voltage drop in the area 

neighboring the switching gate. Far from the switching gate, the impact of the current draw is negligible. 

Consequently, in order to reduce the simulation time, the simulator only computes the current distribution 

in the neighborhood of the gate. This area is called the current window and the main objective of this 

chapter is to accurately determine the current into the considered current window.  

It is important to note that the current distribution through the PDN is closely related to the electrical 

model used for the PDN. For this reason, the electrical model of the PDN must be carefully determined. 

We consider two different electrical models for the PDN and this chapter is consequently structured into 

two main sections:  

· In the first section, the current distribution is analyzed using a purely resistive model for PDN 

grid.  

· In the second one, the presence of capacitive elements in the PDN is studied and an electrical 

model of the PDN including capacitive elements is suggested. 
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3.1 Electrical model for the current distribution in a resistive grid 

3.1.1 PDN resistive model  

As explained in section 1.4, on-chip parasitic elements of the PDN imply that the PDN can be 

modeled as a conductive grid with resistive, inductive and capacitive parasitic elements. This electrical 

model of the PDN is used by the simulator to compute the current distribution and calculate the voltage 

drop in every node. Consequently, it is necessary to use an accurate PDN model in order to implement an 

IR-Drop induced delay simulator. 

IR-Drop is defined as an electrical phenomenon that mainly concerns the resistive elements of the 

PDN and the current that flows through these resistive elements. Naturally, the current distribution also 

depends on the capacitive and inductive elements, but these ones have a low impact in comparison with 

the resistive ones. Indeed, the resistance is the dominant on-chip parasitic element of the PDN. In this first 

approach of the IR-Drop phenomenon, the capacitive and inductive elements of the PDN are not 

considered and so, the electrical model exclusively tackles the resistive elements and their impact on the 

current distribution.  

Therefore, the PDN is modeled as a two-dimensional resistive grid NgxMg as described in section 1.4. 

The value of each resistor depends on the PDN topology, the technology and the types of metal in the 

PDN. For the high metal levels the PDN topology is regular. For the low metal level, wires and vias are 

placed irregularly, but these wires are used for short local connections. For this reason, the parasitic 

resistance at the low metal level is negligible. Consequently, only the high metal levels with a regular grid 

structure are taken into account for the electrical model. In addition, it is usual to simplify the PDN model 

by assuming that horizontal resistors are all equal to each other and vertical resistors are also all identical 

to each other.  

These horizontal and vertical resistor values are computed using design commercial tools based on the 

extracted resistance values from the PDN metal levels. Hence, a resistive grid with an elementary 

horizontal resistance rh and an elementary vertical resistance rv is suggested as an electrical model for the 

PDN as illustrated in Figure 3.1.a for a 4x4 grid example.  



 

63 

 

 

 Figure 3.1: PDN resistive model 

For the sake of simplicity, the resistive grid is illustrated in the rest of this document by a simple grid 

where segments implicitly represent the different resistances as shown in Figure 3.1.b. The nodes through 

the symbolic resistive grid are illustrated in Figure 3.2.a. Every resistor of the PDN grid is associated to a 

current and thus, currents across the different segments of the symbolic grid represent currents across the 

resistive elements. The currents across vertical resistors Iv(i,j) and the currents across horizontal resistors 

Ih(i,j) with their corresponding names are illustrated in Figure 3.2.b.  

 

Figure 3.2: Currents and nodes in the symbolic grid 
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3.1.2 The distribution factor 

During simulation, the current drawn by a gate is first obtained from the pre-characterized library and 

then needs to be propagated through the whole PDN. In other words, different fractions of this ‘original’ 

current flow through the different resistors of the PDN. It is therefore necessary to determine the fraction 

of current in each resistance of the PDN. Although the ideal method would be to mathematically compute 

the current fractions, the grid topology makes it difficult to find a simple and efficient equation. For this 

reason, mathematical computation is dismissed and the current fractions are determined from a simple pre-

characterization of the grid using SPICE.  

The pre-characterization procedure consists in determining a distribution factor that corresponds to the 

percentage of the current draw flowing in each branch of the PDN grid. We consider a gate connected to 

the node n(i,j) of the resistive NgxMg grid whose edge is connected to the nominal supply voltage Vdd. As 

explained in the previous section, the current draw I of the gate spreads through the PDN as illustrated in 

Figure 3.3.a. Obviously, the current distribution through the PDN is a function of the current I drawn by 

the gate and the values rv and rh. The pre-characterization procedure is illustrated hereafter in the case of 

the power PDN. Obviously, the same approach can be conducted for the ground PDN with similar 

conclusions. When both grids have the same characteristics in terms of rh and rv, the same distribution 

factor can be used for both grids.  
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Figure 3.3: Example of SPICE simulations to determine the distribution factor 
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Regarding the current distribution through the NgxMg grid, we can associate a ratio to every horizontal 

and vertical resistor. This ratio determines the relation between the current draw and the current across the 

resistor: 

 

 

 

3.1 

 

For a different current draw, the ratio is defined as: 

 

 

3.2 

 

The current across every resistive element is directly proportional to the current draw but as the 

current spreads through a resistive grid, the ratio of every resistor is independent of the current draw and 

constant. Therefore, the ratio associated to a resistor is equal even for different values of current draw.  

 

 

3.3 

 

Based on this property, if the current draw I is modeled as a unitary current source Is=I=1 connected to 

the node n(i,j) (as illustrated in Figure 3.3.b), the current flowing in each branch of the resistive grid 

corresponds directly to the ratio of the corresponding resistor.  

 

 

3.4 

 

Once known the ratio for every resistor, the current through every resistor of the grid can be estimated 

whatever the current draw. The ratio is referred to as the distribution factor df(i,j) in the rest of the 

document.  
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 3.5 

 

 3.6 

 

Figure 3.4 shows the current distribution generated by a unitary source of current connected to the 

central node of a 4x4 resistive grid. These currents are therefore the distribution factors. The results are 

stored in two matrixes: horizontal currents are stored in the horizontal distribution factor matrix DFh and 

vertical currents in the vertical distribution factor matrix DFV, as illustrated in Figure 3.4.  
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Figure 3.4: Distribution factor matrixes 

Note that the distribution factor matrixes have different sizes: for a NgXMg resistive grid, the 

horizontal distribution factor matrix is a (Ng-1)xMg matrix while the vertical distribution factor matrix is a 

Ngx(Mg-1) matrix. 

The distribution factor depends on the position of the gate in the PDN grid. Computing the 

distribution factors for every node of the PDN is not efficient and so, a simplification is proposed in the 

following subsections. For this simplification it is important to remember that the goal is to compute the 

voltage drop in every node of the PDN during simulation with an acceptable accuracy. Therefore, the 

distribution factor must just guarantee an error in the simulated current of the PDN branches inferior to 

1%. The suggested current window must also be large enough to contain all current fractions higher than 

1%. 
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3.1.2.1 Central model 

The aim of the first pre-characterization simulation is to determine the current distribution when the 

gate is connected in the central area of the PDN. As explained in the previous section, a SPICE simulation 

is performed with the current draw modeled by a unitary current source in the center of the grid. For 

example, Figure 3.5 shows the current distribution using a 100x100 resistive grid with horizontal and 

vertical resistors of 0.4Ω [28] and whose edge is connected to the nominal power supply. The unitary 

source of current is connected to the central node n(50,50). We can observe that the current distribution is 

highly localized, i.e. current amplitudes are high only in the close neighborhood of the central node. 

 

Figure 3.5: Horizontal distribution factor in the 100x100 grid in the central area 

In a simulation context, the voltage drop in every node of the PDN is computed from the current in 

each branch of the grid using Ohm’s law. Although the current spreads through all the resistors in the grid, 

its value is only significant through the resistors close to the current source as illustrated in Figure 3.5. 

Computing current distribution in the whole PDN is the most accurate solution to determine the voltage 

drop, but it is very difficult given the long computation time. There is therefore a clear trade-off to be 

made between computation time and accuracy of the distribution model. For this reason, a current window 

of size NcurxMcur is determined. 

By disregarding currents inferior to 1% of the source, the current window can be defined as the area of 

NcurxMcur around the central node outside of which all the currents are inferior to 1% of the source. 
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Consequently, the computation time of the voltage drop, which is then related to a sub-matrix of the 

distribution factor of size NcurxMcur, decreases considerably when a current window is used. 

In the previous example, the currents in the horizontal and vertical resistors are stored into two 

matrixes (DFh and DFv) that define the distribution factor of the PDN for a central current draw. Figure 

3.6 shows the horizontal and vertical distribution factors accompanied by their respective contour. 

Looking at the contour we can observe the area where the current through the resistors is inferior to a 

given value. For our example, the horizontal dispersion factor is inferior to 1% for all resistors that are 

more than 16 resistors away from the current source in the horizontal direction and 7 resistors away from 

the current source in the vertical direction. The area for the vertical distribution factor is similar to the 

horizontal one, but with inverted axes, because the horizontal and vertical resistor values are equal in this 

example. Disregarding currents inferior to 1% of the source, the two matrixes that define the distribution 

factor for the central area can be reduced to two sub-matrixes DFh_15x32 and DFv_32x15. These two sub-

matrixes determine the current distribution in the current window NcurxMcur that includes all the currents 

superior to 1% of the current draw. 

 

Figure 3.6: Horizontal and vertical dispersion factors in the central area 
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Although current distribution depends on the position of the current draw in the grid, the same 

distribution factor can be used for all the nodes located in the central area of the PDN. Therefore the 

distribution factor obtained from the SPICE simulation with the unitary source in the central node is called 

the central distribution factor. During the simulation, the central distribution factor is applied to all the 

static or dynamic currents. For the application of the distribution factor, the center of the current window 

NcurxMcur is placed on the node connected to the gate and the currents across the resistors within the 

current window are computed in function of the central distribution factor. 

3.1.2.2 Edge effect 

Current distribution is highly dependent on the position of the current draw due to the edge effect. 

When a gate switches in the edge area, the proximity of the ideal power supply Vdd at the border of the 

grid creates significant dissymmetry in the current distribution. In order to determine the size of the central 

area where the central distribution factor can be used with an error inferior to 1%, we estimate the error 

made when the central distribution factor is applied in comparison with the actual current distribution 

from SPICE simulations. 

For every node of a 100x100 resistive grid, a SPICE simulation is performed with a unitary current 

source connected to the concerned node in order to determine the effective current distribution. The 

currents across the horizontal and vertical resistors from the SPICE simulations are compared with the 

corresponding currents obtained applying the central distribution factor. The maximum relative error in 

the current distribution over the grid is computed for every node of the 100x100 grid and Figure 3.7 gives 

the error results.  

 

Figure 3.7: Maximum relative error between the current distributions simulated with SPICE and computed with the 

central distribution factor (horizontal resistors) 
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The maximum relative error is inferior to 1% only in the center of the grid, in an area that is 30 nodes 

smaller than the 100x100 grid, as symbolically illustrated in Figure 3.8. In this example, the maximum 

error in the central area of the grid is 0.93%. The current distribution error exceeds the limit of 1% when 

the current is drawn from a node close to the edges of the grid. The proximity of the ideal power supply 

Vdd generates a deformation that can induce an error as high as 2.9% in the edge area. Therefore, a 

dedicated distribution factor must be pre-computed for the edge area of the PDN. As the edge effect 

generates different perturbations, a specific model is pre-characterized for the corners (the area 

corresponding to the 30x30 nodes in the corners of the PDN grid) and another one for the 30-node wide 

edge bands located between the corners. 

 

Figure 3.8: The three different distribution areas: central, band and corner areas.  

A dedicated distribution factor is computed for each edge area (corner and band) using the same 

procedure as for the central area. A unitary source of current is placed in every node of the edge area. 

Comparing all the current distributions from the edge area, we conclude that the distribution factor for the 

node (15, 15) can be used to estimate the current distribution for a current connected in the corner area and 

the distribution factor for the node (15, 50) can be used to estimate the current distribution for a current 

connected in the band area.  

The same procedure as for the central distribution factor is used to determine the maximum relative 

error when the distribution factor for the node (15, 15) is applied in the corner area on the one hand and 

when the distribution factor for the node (15, 50) is applied in the band area on the other hand. Figure 3.9 

illustrates the maximum relative error of the horizontal current in the corner area. The worst error is 

0.95%. 
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Figure 3.9: Maximum relative error between the current distributions simulated with SPICE and computed with the 

corner distribution factor (horizontal resistors) 

Figure 3.10 illustrates the maximum relative error of the horizontal current in the band area. The worst 

maximal error is inferior to 0.77%.  

 

Figure 3.10: Maximum relative error between the current distributions simulated with SPICE and computed with the 

band distribution factor (horizontal resistors) 

In brief, using the appropriate distribution factor for each of the three distribution areas, it is possible 

to guarantee an error in the propagation of a current draw that is inferior to 1%. Figure 3.11 and Figure 

3.12 show the dedicated distribution factor in the horizontal resistors for the corner area and the band area. 

The dissymmetry in the distribution factor is noticeable in comparison with the central distribution factor. 

In order to reduce the simulation time, a current window must be determined for the dedicated distribution 



 

72 

 

factor of the corner and the band areas. The same procedure as for the central area is used to determine the 

current window. 

 

Figure 3.11: Horizontal dispersion factor in the corner area 

 

Figure 3.12: Horizontal dispersion factor in the band area 

3.1.2.3 Influence of the neighboring blocks 

The current draw distribution in the PDN grid also depends on the effective power supply at the 

extreme nodes of the grid border. During the pre-characterization of the dispersion factor, a grid 

corresponding to the whole chip is used and consequently the power supply of the grid border is the 

nominal supply voltage. Unfortunately, it is not possible to simulate the whole chip due to prohibitive 



 

73 

 

simulation time. The simulator therefore tackles the simulation of a block and thus, only a part of the grid 

is simulated in practice. The power supply of this sub-grid can differ from the nominal value due to the 

activity of the neighboring blocks as illustrated in Figure 3.13. Although it is not possible to simulate the 

whole chip, an overall static effect resulting from the average activity of the other blocks can be evaluated 

and injected into the simulation.  

The average consumption of the neighboring blocks is estimated by Shakeri [29] and Rius [30] using a 

statistical approximation. In addition, tools as RedHawk allow estimating the power consumption by a 

statistical analysis of the power supply noise. A simple pre-characterization of the PDN sub-grid that takes 

into account the effective power supply at the extreme nodes of the sub-grid border, without any gate 

switching in the BUT (Block Under Test), gives the distribution of static currents through the sub-grid. 

Figure 3.13.b illustrates the current distribution of the static currents due to the average switching activity 

of the neighboring blocks. 

 

Figure 3.13: Pre-characterization of the PDN grid taking into account the influence of the neighboring blocks. 

This means that the influence of the non-ideal power supply values at the borders of the sub-grid can 

be modeled as a permanent static current flowing through the resistive grid. During the simulation, the 

different transient current draws in the BUT are superposed on these permanent static currents. The 

superposition theorem is valid for linear circuits such as the PDN grid. If the effective voltages at the 

border nodes of the sub-grid cannot be estimated, the BUT simulation is executed considering the nominal 

voltage on the border of the sub-grid.  
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It should be noted that the computation of the neighboring blocks influence is the only step in the pre-

characterization procedure that must be computed for each BUT. The three dedicated distribution factors 

for the central, corner and band areas are valid for a given technology whatever the chip. 

3.1.2.4 Equivalent grid resistance  

Generally, the total resistance of a resistive circuit is calculated by reducing the different series and 

parallel combinations step-by-step to end up with a single equivalent resistance for the circuit. 

Unfortunately, the topology of the resistive grid makes the traditional calculation very complex. 

Therefore, the equivalent grid resistance of the PDN model is obtained from SPICE simulations. The 

equivalent resistor is an increasing function of the grid size NgxMg and to the horizontal rh and vertical rv 

resistance values. Figure 3.14 shows the equivalent grid resistance according to the grid size and the 

elementary grid resistor. In this example, the horizontal and vertical resistors are equal and vary from 0Ω 

to 1Ω [29]; the grid is square with size NgxNg. Figure 3.15 enhance the projections of the 3D graphic of 

Figure 3.15. It can be observed that the equivalent grid resistance is a linear function of the elementary 

grid resistance for a given grid size. The influence of the grid size on the equivalent grid resistance is of 

logarithmic type, the elementary grid resistance being constant. 

 

Figure 3.14: Equivalent grid resistance vs grid size and elementary grid resistance value 
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Figure 3.15: Equivalent grid resistance vs elementary grid resistance (left) and equivalent grid resistance vs grid size 

(right) 

For the equivalent grid resistance, it can be considered that the equivalent resistance will always be 

lower than 1Ω for a 100x100 grid. The equivalent grid resistance is used in section 2.5 to determine the 

self-IR-Drop. 

3.2 Electrical model for the current distribution in a resistive and capacitive 

grid 

The previous section tackles the problem of IR-Drop taking into account only the parasitic resistive 

elements of the PDN. Consequently, in this first approach a resistive grid is suggested to model the PDN. 

The IR-Drop phenomenon is caused by the currents that flow through the PDN and generate supply 

voltage drop due to the parasitic resistances. Although the resistive grid makes it possible to simulate the 

distribution of IR-Drop through the IC, the current distribution is also affected by other parasitic elements 

present in the PDN. Therefore parasitic inductive and capacitive elements must also be considered in the 

PDN electrical model.  

It is important to note that our work deals with delay fault simulation of logic circuits in the context of 

IR-drop induced delay and thus, it is necessary to estimate the drop caused by the parasitic resistances. 

This section is an extension of our work that analyses the presence of other parasitic elements. 

The inductance of the on-chip PDN has traditionally been disregarded because the network inductance 

is dominated by the parasitic inductance of the package pins and bonding wires and pads. Inductive 

elements are omitted and only the presence of capacitive parasitic elements in the PDN is analyzed. This 
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section focuses on the study of the different parasitic capacitive elements and their impact on the current 

distribution. Finally, a PDN resistive and capacitive model is suggested, which includes the most relevant 

capacitive elements of the PDN. 

3.2.1 Different types of capacitive elements   

The first step is to analyze all the types of capacitive elements that could have an impact on the 

current distribution behavior. Capacitive elements can be parasitic capacitors (due to the physical 

superposition of electrical elements) or capacitors that are intentionally included during the design 

process: 

· Parasitic capacitors of the physical PDN. Parallel conductive wires of the PDN behave as 

capacitive elements. The conventional way to model this parasitic capacitive element is to 

include small capacitors regularly in the PDN resistive model. The size of these capacitors is 

determined by the layout parameters of the PDN. These capacitors are connected to every 

node of the resistive grid. An electrical analysis of the parasitic capacitors of the grid is 

described in detail in section 3.2.4.1. 

 

· Intentional decoupling capacitors. In the design phase, on-chip decoupling capacitors are 

deliberately included in the PDN. Decoupling capacitors are an efficient way to reduce the 

power supply noise created by the transient elements in the IC. Moreover, placing some 

decoupling capacitors in the design reduces power supply fluctuations between different areas 

of the IC. Consequently, decoupling capacitors reduce the IR-Drop impact. 

Intentional decoupling capacitors are much larger than the parasitic capacitive elements of the 

PDN and their placement is determined during the PDN design phase using commercial tools 

(such as RedHawk, PrimeRail and HyperLynx). Therefore, value and placement of the 

decoupling capacitors are known. Section 3.2.4.2 illustrates an electrical model for intentional 

decoupling capacitors. 

 

· Intrinsic decoupling capacitors due to non-switching gates. The CMOS transistors of the 

logic gates have intrinsic decoupling capacitance elements due to their internal electrical 

parameters and the interconnection capacitance [47]. The equivalent decoupling capacitor of a 

gate is a function of the internal transistor capacitance and the interconnection capacitance. It 

can be calculated using the layout information. In a single gate, the intrinsic decoupling 

capacitor is negligible, but it becomes very significant when a large number of non-switching 
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gates are connected to the same node of the PDN. Section 3.2.4.3 shows an electrical model 

that includes the intrinsic decoupling capacitors due to non-switching gates.  

3.2.2 Analysis of the capacitive elements 

The second step is to study the impact of the above listed capacitive elements on the current 

distribution through the PDN. Computing the current distribution in a resistive grid is easier than in a 

resistive-capacitive (RC) grid because in the first case the calculation involves only a system of linear 

equations. In addition, this system of equations does not include integrals or derivatives. For this reason, a 

predefined distribution factor can be used to predict the current distribution in the resistive grid. The 

mathematical analysis of the current distribution through a resistive and capacitive grid involves integrals 

and derivatives, making it more complicated to predict the current distribution. In addition, the RC grid 

includes several capacitive elements with different values and each one is placed in a given node of the 

PDN. Thus, simplifying the electrical schematic using the traditional calculation of equivalent impedance 

is extremely difficult as the mathematical analysis involves solving a system of differential equations. In 

brief, a simple system of differential equations could be solved, but in this case it is unfeasible due to the 

topology complexity and the huge number of variables. 

In order to evaluate the impact of the capacitive elements on the current distribution, didactic 

examples are simulated using SPICE. These simple examples allow us to apprehend the behavior of the 

complex set of capacitive elements. For the sake of clarity, a RC model with a limited number of 

capacitors is used to make easier the analysis of the capacitors contribution to the distribution factor. For 

the same purpose, instead of a two-dimensional grid, a resistive and capacitive one dimensional linear 

PDN is used.  

3.2.2.1 Example 1: Resistive PDN with a single capacitor 

In the first simulation, the current distribution through a resistive line on the one hand and through a 

resistive and capacitive line on the other hand are compared in the case of a current draw generated by a 

switching gate. The first schematic includes two resistors R1 and R2 as shown in Figure 3.16.a. On the 

right side of the schematic, at the terminal of the line that is opposite Vdd, an inverter gate is connected to 

the resistive line at node n1. For the second schematic, the electrical structure is the same except that a 

capacitor C1 is included between R1 and R2 as illustrated in Figure 3.16.b. In both simulations, the inverter 

input switches from 0 to 1. Therefore, a current flowing from Vdd to the inverter appears across the 

different elements of the PDN line. 
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 Figure 3.16: Simulation of the resistive PDN with a single capacitor 

In the first simulation with only resistive elements, the current across R1 and R2 is identical to the 

current draw Idraw because Vdd is the only source that can provide current. Figure 3.17 shows the current 

across R1 and R2 and the voltage in nodes n1 and n2 for the purely resistive simulation. As expected, the 

voltage drop in node n1 is more pronounced than in node n2 but in both nodes the voltage returns to the 

nominal voltage (Vdd) when the current draw finishes.  

 

Figure 3.17: Currents and voltages in the simplified resistive PDN model 

On the other hand, Figure 3.18 shows the results provided by SPICE for the second simulation. In this 

case, although the current across R1 is equal to the current draw, the current in R2 is shifted in time and its 

maximum peak is smaller with respect to the current draw. Vdd is no longer the only source able to 

provide current. Current variation across R2 is due to the discharging and charging currents of the 

capacitor C1.  
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Figure 3.18: Currents and voltages in the simplified resistive and capacitive PDN model 

By definition, the current across C1 is determined by the voltage variation at the node n2 according to 

the equation 3.7:  

 3.7 

 

As the voltage in n2 decreases due to the drop induced by the flow of current drawn by the gate, the 

capacitor provides current to the PDN reducing the amount of current given by the voltage source. When 

the voltage in n2 increases, the capacitor starts to demand current in order to recharge. Current across the 

capacitor C1 and voltage in n2 are plotted in Figure 3.19. When the voltage in n2 is at its lowest level (point 

B), the capacitor C1 moves from the discharging phase to the charging phase (point A).  

 

Figure 3.19: Current across the capacitor and voltage in node n2 
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Regarding now the relation between the current provided by the capacitor and the current draw, all the 

voltages and the currents of the simulation are plotted in Figure 3.20. Note that the current across the 

resistor R1 is equal to the current draw of the inverter. We can observe that the current demanded by the 

inverter IR1 is at its maximum at time t1. However, the current provided by the voltage source, IR2 in Figure 

3.20, is at its maximum later, at time t3. It is because the capacitor provides a part of the demanded 

current. The maximum of the current IR2 is correlated with the minimum voltage in the node n2 and the 

capacitor transition between the charging and discharging phases. In brief, the transition between the 

discharging phase and the recharging phase cannot be associated to the current draw peak. Regarding the 

voltage in the node n1, we can observe that the minimum voltage in the node n1, at time t2, is not correlated 

with the current draw peak, at time t1. Indeed, the voltage in the node n1 depends on the voltage drop in R1 

and in R2. For the first simulation with a purely resistive PDN, currents across R1 and R2 are equal to the 

current draw. Consequently, voltage in the node n1 is proportional to the current draw and thus, the 

maximum current draw and the minimum voltage in node n1 are at the same time. For the second 

example, the current across the resistor R1 is equal to the current draw but the current across R2 is 

different. Consequently, voltage is node n1 is not correlated with the current draw. We can conclude that 

all the currents and voltages are affected by the capacitor with the exception obviously of the current draw 

of the invertor.  

 

Figure 3.20: Current across each element and voltage in each node 
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Figure 3.21: Capacitor discharge and charge phases. 

In summary, we can define different transition phases as illustrated in Figure 3.21: 

· Phase 1: The gate switches and starts to demand current. The voltage in n2 decreases and the 

capacitor starts to discharge. The capacitor provides part of the required current and the 

voltage source provides the rest (IR1 = IR2 + |IC1|). 

· Phase 2: The current draw of the gate starts to decrease and voltage in n2 begins to rise. The 

capacitor starts to demand current, which is provided by the voltage source. At this moment, 

the current draw of the gate and the current required by the capacitor are active and the 

voltage source must supply both currents (IR2 = IR1 + IC1). 
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· Phase 3: When the current draw no longer demands current, there is a small period during 

which the capacitor finishes to recharge. This means that the voltage source must furnish 

some current only due to the capacitor effect (IR2 = IC1).  

3.2.2.2 Example 2: Resistive PDN with several capacitors 

In the real PDN grid, parasitic capacitive elements may be multiple and may be present in every node 

of the grid. Although the previous example already analyzed the current distribution with a single 

capacitor connected to the PDN, it is also important to analyze the impact of several capacitors on the 

current distribution. For this reason, a new schematic as shown in Figure 3.22 including several capacitors 

in the PDN line is simulated with SPICE.   

 

Figure 3.22: Simplified resistive and capacitive PDN with five capacitors 

Observing in Figure 3.23 the waveforms provided by SPICE, we conclude that the voltage drop in the 

nodes gets obviously smaller when the nodes are further from the current draw. In addition, currents 

provided by a capacitor quickly decrease when the distance between the capacitor and the node where the 

inverter is connected increases.  
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Figure 3.23: Simulation current and voltage waveforms for a multi-capacitor PDN. 

In a simulation without capacitors, the current provided by the voltage source is equal to the current 

drawn by the switching gate. In the present case, the maximum of current provided by the voltage source 

decreases because the current contribution of all the capacitors fulfills part of the current draw as 

illustrated in Figure 3.24. However, it must provide current over a longer period of time in order to 

recharge the capacitors. 
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Figure 3.24: Current draw vs current provided by the voltage source with/without capacitive elements 

When the voltage drop generated by the current draw, illustrated in Figure 3.23.c, starts to decrease, 

the capacitors that have discharged must be recharged. Capacitors that are closer to the switching gate 

require more current to recharge than the further ones because they have provided more current during the 

discharging phase (phase 1). Consequently, the voltage source must provide the necessary current to 

recharge the capacitors and concurrently satisfy the current draw, which is still active (phase 2). 

Moreover, the current demand to recharge the capacitors lasts over time. In other words, the capacitors 

start to demand current at different times with respect to each other: starting from the gate, the closest 

capacitor starts to recharge just before its left neighbor and so and so forth for the rest of the capacitors. In 

this way, the farthest capacitors keep supplying current and supporting the voltage source with their 

current contribution for a while. Gradually, these capacitors start to demand current themselves and stop 

supporting the voltage source. As already commented in the first example, the recharging phase continues 

even after the current draw has finished (phase 3). When the last capacitor enters into the recharging 

phase, the current draw has already finished and most of the capacitors are already recharged. 

The amount of current demanded by a capacitor to the source for its recharge is the same as the 

current it provided to the current draw. Therefore, the voltage supply must provide in the end the entire 

current draw, however the capacitors discharging and charging process changes the timing. In other 

words, the voltage supply provides the same amount of current but over a longer period of time. This 

means that the area of the region bounded by the Idraw curve on the top and the x-axis on the bottom must 

be equal to the area of the region bounded by the IVsource curve on the top and the x-axis on the bottom as 
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illustrated in Figure 3.25. Moreover, this equivalence is also true for the current across each resistor of the 

PDN line because capacitors give and receive the same amount of current.  

 

Figure 3.25: Signed area of the regions in the xy-plane bounded by Idraw and IVsource 

Currents flowing across the resistors are impacted by the presence of capacitors. The further away 

from the current draw they are, the smaller the magnitude of the current across the resistors and the longer 

this current is active. Compared to the PDN model without capacitive elements, the voltage drop in a node 

of the line generated by the current draw is consequently smaller in magnitude but longer in time. 

In brief, the voltage source is responsible for providing the whole current requested by the gate current 

draw. When the current starts to flow through the PDN, the capacitive elements connected to the PDN 

start to provide some current. Capacitors close to the gate are more sensitive to the current demand and 

their discharging rate is greater than the more distant ones. While the required current increases, 

capacitances provide current; when the required current decreases these capacitances no longer provide 

current but absorb it. They complete this process in an orderly manner: the first ones are the capacitors 

that are close to the gate; the latter ones are more distant capacitors on the Vdd line.  

3.2.2.3 Impact of capacitive elements on the current distribution  

In conclusion, the presence of capacitances in the PDN model modifies the current distribution in 

magnitude and time: 

· The amount of current released by each capacitor increases when the capacitor value 

increases.  
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· The amount of current released by each capacitor is a decreasing function of its distance to the 

switching gate. 

· The time during which a capacitor provides current increases with its distance to the switching 

gate. 

· The time after which a capacitor is completely recharged is an increasing function of its 

distance to the switching gate. 

· The active current distribution lasts longer than the duration of the current draw itself. 

· The impact of the capacitive elements on the current distribution decreases when their 

distance to the gate increases. 

The further away from the switching gate they are, the smaller the amount of current first provided 

and then demanded by the capacitor. This means that the impact of the capacitors may be negligible across 

greater distances. These conclusions make it possible to suggest a model that includes only the capacitive 

elements within a capacitance window around the switching gate. 

3.2.3 Theoretical analysis and simplified model 

Although SPICE simulations provide a descriptive idea of the impact of capacitive elements, a 

mathematical analysis of the capacitances impact is necessary to understand the current contribution of the 

capacitive elements in function of the electrical parameters of the PDN. In order to have a more precise 

understanding of the current distribution variations due to the capacitive elements, a simple schematic is 

suggested in Figure 3.26. In this schematic, the PDN model has been simplified to one dimension. RgL and 

RgR represent the equivalent resistance of the PDN in the left and right branch respectively and Rg is the 

grid resistor connected to both branches. For the sake of simplicity, the capacitive elements were modeled 

as a simple capacitor in the previous SPICE examples. However the intrinsic decoupling capacitors due to 

non-switching gates must be model as a resistor and a capacitor in series as we will see in the next section. 

For this reason, in this schematic the capacitive element is modeled as a resistor Rs and a capacitor Cs 

connected in series. This capacitive element is connected to the node n1. Finally, the current draw of the 

switching gate is modeled as a current source I(t) and is connected to the node n2. 
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Figure 3.26: Generic schematic for the mathematical analysis 

As explained in the previous section, the current across the capacitor is active even when the 

switching gate does not demand current any longer. Therefore, the mathematical solution of the electrical 

circuit must be tackled in two phases: when the current draw is active and when the current draw has 

finished.  

3.2.3.1 Phase 1: current draw active  

Given I(t) the current draw, the relation between the currents can be determined using Kirchhoff's 

circuit laws: 

 3.8 

 

 3.9 

 

Applying the nodal analysis between the two nodes connected to Vdd, we deduce the equation 3.10:  

 3.10 

 

By definition, the current across CS is determined by the voltage variation at the node nc according to 

the equation 3.15: 

 3.11 
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Therefore,  is defined by a first-order linear differential equation: 

 

3.12 

 

Considering that the capacitor is charged at t0=0, the initial condition is: 

 3.13 

 

Therefore,  is a function of all the resistive elements of the power grid and it also depends on the 

capacitive elements and the current draw. The current draw of all the different gates is known and 

described as an array of values in the pre-characterization library, but a function approximation is required 

to solve the equation. In this case, a parabolic function approximation is used. 

 3.14 

 

The current drawn from Vdd by a switching inverter and the corresponding approximated parabolic 

function are plotted in Figure 3.27. Although the current draw is not exactly a parabola, the approximation 

makes it possible to simplify the differential equation resolution with an acceptable accuracy. 
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Figure 3.27: Parabolic function approximation for the current draw 

Once all the electrical elements are known, the differential equation can be solved. The general 

solution to a linear equation can be written as , where  is the solution to the 

associated homogeneous differential equation and  is a particular solution. The associated 

homogeneous differential equation of the equation 3.12 is: 

 3.15 

 

The solution of the associated homogeneous differential equation is an exponential function:  

 3.16 

 

where the time constant τ is: 

 3.17 

 

The time constant depends on the capacitor value and also on all the resistive elements of the 

schematic. At the same time, the charging and discharging curve of the capacitor depends on the time 
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constant. Therefore, we conclude that the charging and discharging curve of the capacitor depends on the 

resistive elements of the PDN. 

To find a particular solution, the following solution is used:  

 3.18 

 

where the constants A, B and D of the particular solution are computed applying the initial condition to 

the differential equation 3.13. Once the particular solution has been computed, the general solution of the 

differential equation is described in the following equations: 

 3.19 

 

 3.20 

 

 

 

3.21 
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3.23 
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3.2.3.2 Phase 2: current draw non-active 

To solve the differential equation once the current draw is finished, the functions are defined using the 

same convention as in the previous section, but including the notation prime. When the current draw is 

inactive, the differential equation deduced in the previous section is correct except that I(t) is 0. 

Consequently  is defined by the homogenous differential equation 3.24: 

 3.24 

 

To maintain the continuity in the  function, the voltage in the node connected to Rs and Cs must be 

the same when the current draw finishes at t= -a/b. 

 3.25 

 

Once the initial condition is defined, the differential equation can be solved. The general solution for 

the homogenous differential equation 3.24 has the following form: 

 3.26 

 

where τ’ is the time constant. Applying the initial condition, we deduce the general solution of the 

differential equation. 
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3.30 

3.2.3.3 Complete theoretical analysis 

Therefore, the electrical behavior of a capacitive element composed of Rs and Cs can be determined by 

solving the differential equation and applying a parabolic function approximation for the current draw. 

The current across Cs calculated mathematically and obtained from SPICE are compared. Figure 3.28 

shows the  waveform simulated with SPICE and the  waveform computed using the differential 

equation. The computed  waveform is very satisfactory given that the current draw is approximated as a 

parabolic function. 

 

 

Figure 3.28: Simulated and computed current across the capacitor CS 

The simplified schematic helps to understand the impact of capacitive elements on the current 

distribution. As described in section 3.2.2.3, the current across the capacitive elements depends on the 

capacitor value and also on all the resistive elements of the PDN model. The current provided by the 



 

93 

 

voltage source lasts longer than the current draw due to the recharging process of the capacitive elements. 

Finally, theoretical analysis confirms that the maximum current peaks are displaced in function of the time 

constant.  

For a schematic with several capacitors, the mathematical analysis requires to solve a system of 

differential equations. Given the complexity of the resolution and the number of possible combinations for 

the capacitive elements, mathematical solution for several capacitors is extremely complex. Fortunately, 

the didactic SPICE simulation and the resolution of the simplified model have shown that a capacitor 

connected far from the current draw provides a very small current in comparison to the current draw 

amplitude. This means that it is not necessary to take into account all the grid capacitors. Only 

neighboring capacitors have a real impact on the current distribution. We remember that a current window 

was defined for the resistive grid. A capacitance window can also be defined to determine the area where 

the current distribution is affected by the capacitive elements. Furthermore, the current across a capacitor 

depends directly on the capacitance value. Therefore, the capacitance window depends on the resistive 

elements of the grid and also on the size of the capacitors. The analysis and definition of the capacitance 

window is presented in Chapter 4. 

3.2.4 Electrical model for capacitive elements 

As commented in section 3.2.1, there are different types of capacitive elements in the PDN. Their 

characteristics and locations are different and, for this reason, different electrical models are required. In 

this section, an electrical model for every type of capacitive element is proposed. 

3.2.4.1 Model for the PDN parasitic capacitors 

The conventional model for the capacitive elements of the PDN includes capacitors connected to 

every node of the PDN. The capacitor size, which depends on the capacitance density (layout parameters) 

of the PDN, is known. Therefore, the traditional resistive grid must include small capacitors connected to 

every node of the grid. As these capacitors are very small, the first hypothesis is that the contribution of 

the grid capacitors to the current distribution through the PDN will be limited.  

In order to determine the impact of the grid capacitors, SPICE is used to compare the current 

distribution through a resistive grid with parasitic capacitors in every node on the one hand and through a 

purely resistive grid on the other hand. The current across the resistive elements of the power grid in both 

cases is observed. In addition, the average normalized root mean square deviation of the currents across all 

the resistors of the grid is computed. In Figure 3.29, the average NRMSD is plotted for different grid 

resistor values (from 0.01 to 1Ω) and grid capacitor values (from 0pF to 1pF) [13]. 
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Figure 3.29: Average NRMSD of PDN currents with and without grid capacitors 

For the distribution factor, defined in chapter 3, a current window has been described and the fractions 

of the current draw smaller than 1% were disregarded. The same convention is used for the average 

NRMSD: if the average NRMSD is smaller than 1%, the parasitic capacitors of the physical PDN are 

omitted. The contour function shown below makes it possible to determine if the capacitive effect of the 

grid is negligible in function of the grid resistor and grid capacitor values (respectively Rg and Cg). Grid 

capacitors Cg whose combination with Rg suppose an average deviation smaller than 1% are omitted from 

the electrical PDN model. In brief, the parasitic capacitors of the physical PDN can be disregarded in most 

cases.  

 

Figure 3.30: NRMSD contour for PDN currents with and without grid capacitors 
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3.2.4.2 Model for decoupling capacitors 

Decoupling capacitors are real physical capacitors connected to the PDN. The decoupling capacitor 

value is significant in comparison with the grid capacitor value and must be taken into account in the 

current distribution as the decoupling capacitors reduce the voltage drop propagation through the PDN. 

The decoupling capacitors are not connected to all of the PDN nodes, their placement is determined during 

the PDN design phase using commercial tools (such as RedHawk, PrimeRail and HyperLynx). As their 

values are known, the decoupling capacitors are modeled as a single capacitor Cd connected to the 

corresponding nodes. 

3.2.4.3 Model for intrinsic decoupling capacitors due to non-switching gates 

The CMOS transistors of the logic gates contain a number of internal parasitic capacitances. 

Therefore, every logic gate connected to the Vdd PDN and the Gnd PDN behaves as a small decoupling 

capacitor. These intrinsic decoupling capacitors depend on the transistor electrical parameters. Therefore, 

their value can be calculated using the layout information. Note that interconnection capacitances may 

also be considered as illustrated in Figure 3.31. 

 

Figure 3.31: Gates input capacitances and interconnection capacitance connected to a node 

The intrinsic decoupling capacitor of a single logic gate is negligible. However the high number of 

logic gates connected to the same node makes this capacitive impact quite significant. Indeed they will 

produce a determinant impact on the current behavior. Note that these intrinsic decoupling capacitors are 

not connected directly to the PDN nodes but through conducting N or P transistors, which are modeled as 

a single resistance Rs in the ‘on’ transistor side. The transistor resistance impedes the contribution of 

current from the logic gate to the PDN preventing the current from being harmful to the IC integrity.  

In brief, the non-switching gates connected to the PDN are modeled as a resistor Rs and a capacitor Cs 

in series. The resistor value Rs is the on transistor resistance and the capacitor value Cs is the output 

capacitance Cout of the gate. Rs and CS depend on the type of gate and on the input vector. Figure 3.32 

illustrates the complete electrical model for a non-switching gate.  
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Figure 3.32: Electrical model for the non-switching gates 

For all the non-switching gates connected to the power grid, the resistor Rs and capacitor Cs are 

connected to the PDN in parallel. The question now is how to approximate a single resistor Req and 

capacitor Ceq connected to the grid in order to get an equivalent to the whole bench of resistances Rs and 

capacitances Cs. For identical non-switching gates, the equivalent resistor Req and capacitor Ceq are 

defined by: 

 3.31 

  

 3.32 

 

Assuming now different types of gates connected to the same node, it is necessary to make an 

approximation because the mathematical computation is extremely complex. In this context, we have 

considered that all the gates have the same Rs and Cs values for the sake of simplicity. Future works can be 

dedicated to find a more accurate model. 
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4 Simulator implementation  

In chapter 1, the IR-Drop phenomenon has been introduced in the view of implementing an IR-Drop 

simulator that allows the prediction of the induced delay at the block level. IR-Drop depends on all the 

currents generated by the logic gate switchings of the IC and also on the resistive elements of the PDN, 

and consequently on the distribution of the currents through the PDN. In Chapter 2, an electrical model at 

the gate level has been developed and the pre-characterization procedure to generate the gate library has 

been explained in detail. The pre-characterized gate library contains the electrical models for the gate 

delay, the dynamic currents and the static currents in function of the voltage drop of the PDN. 

Furthermore, the electrical model for the PDN and the current distribution through it have been studied in 

Chapter 3. Consequently, once defined an electrical model at the gate level and an electrical model for the 

PDN, the voltage drop in every point of the PDN can be computed and we can estimate the induced delay 

due to the IR-Drop phenomenon. 

By definition, IR-Drop concerns the resistive elements of the PDN and the dynamics currents 

generated when a gate switches and thus, both elements are determinant in the induced delay estimation. 

Regarding the results of Chapter 2, dynamic currents are predominant in comparison with static currents. 

In the same way, current distribution through the PDN is highly dependent on the resistive elements of the 

PDN. For this reason, an implementation of the simulator is developed including the dynamic currents and 

computing the voltage drops using a resistive grid. In the first sub-section of this chapter, the 

implementation details and the validation results are presented.  

On the other hand, including the static currents and the capacitive elements in the PDN model 

improves the accuracy of the simulator because both elements generate variations in the current 

distribution and thus, impacts the voltage drops. Whereas the static currents are injected in every node in 

the same way as the dynamic currents, computing the current distribution in a RC grid involves some 
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problems. In the second sub-section of this chapter the problematic to develop a simulator that includes 

capacitive elements in the PDN model is analyzed and a simplification method is suggested. 

The software of the IR-Drop induced delay simulator (MIRID) has been developed by the department 

of Informatics and Mathematics of the University Passau (GERMAY). This dedicated software employs 

the electrical model developed at the LIRMM (FRANCE) in the context of a French-German 

collaboration project.  

4.1 Simulation principle and validation 

In the implementation of the simulator a resistive PDN model is used to inject the current draws of 

the gate library (defined in section 2.3). Regarding gate static currents (section 2.3.3), the static current 

contribution is negligible as far as the number of gates connected to the same node is small. It means the 

static currents must be evaluated only when a high number of gates is connected to the same node. In the 

other case, these currents can be omitted reducing the simulation computation time. Note that 

consideration of static current in further version will be straight forward knowing that the gate library 

contains electrical models for the static and dynamic currents. 

4.1.1 Simulator algorithm 

Knowing, from the pre-characterization phase, the gate electrical parameters and the horizontal and 

vertical distribution factors in function of the technology, the delay of a circuit induced by the IR-Drop 

phenomenon can be predicted. As explained in section 1.3, an event-driven simulation designed for a logic 

simulator and an electrical simulator is performed. The logic simulation determines the logic value 

propagation at the block level. When a gate switches, the voltage drop at his power and ground nodes 

must be predicted to determine the gate delay and current draws. The gate delay is computed as a function 

of different electrical parameters (Vswing1, Vswing2 and Cload). In the same way, the current draws are derived 

in function of the electrical parameters of the gate and then injected into the PDN grid. Therefore, the 

logic and electrical simulations are performed concurrently.  

Consequently, the data structure of the mixed-mode simulator is composed of both the logic structure 

of the simulated block and the electrical structure of the PDN (one for Vdd and one for Gnd). Figure 4.1 

illustrates the mixed-mode structure. In addition, given the logic structure of the circuit under test, the 

connection between each gate and the PDN grid (Vdd and Gnd) is stored in the data structure. For this 

reason, the logic structure of the circuit is closely connected to the electrical structure of the resistive grid 

through power and ground connections. Moreover, the logic and the electrical simulations communicate 

through the input switch events and the output switch events. 
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Therefore, given an input pattern, the simulation starts by applying the input pattern to the logic 

structure. At each time step (in this case, for every picosecond), the logic simulation propagates the logic 

values. If a gate switches, an input switching event is generated and sent from the logic simulation to the 

electrical simulation. When the input switching event arrives to the electrical simulation, the voltage drop 

in the node of the switching gate and the voltage drop in the node of the upstream gate are computed. The 

delay and the current draw of the switching gate are calculated using the stored gate library as a function 

of the electrical parameters. The corresponding current draw of the gate is injected into the PDN model. In 

this context, injection of the current into the PDN means that for every input switching event the 

computed current draw of the gate is stored in the current event queue and processed later. 
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Figure 4.1: Mixed-mode simulator  

In order to explain in detail the electrical simulation, a didactical example illustrated in Figure 4.1 is 

used. The gate Gi is connected to the PDN through node Nvdd(i,j) for the power supply and node Ngnd(i’,j’) 

for the ground. It is important to note that logic gates are not connected necessarily to the same node, in 

terms of coordinates, of Vdd and of Gnd. The upstream gate (Gi-1) is connected to the PDN through node 

Nvdd(m,n) and node Ngnd(m’,n’). When the gate Gi switches at time t an input event is generated by the 
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logic simulation and the electrical simulation is activated. The electrical simulation of the PDN grid 

consists of the following stages: 

If gate Gi switches at time t{ 

1. Computes the electrical parameters 

1.1. Voltage swing of upstream gate Gi-1 

Vswing1 (t) = V(Nvdd(m,n),t) - V(Ngnd(m’,n’),t) 

1.2. Voltage swing of gate Gi 

Vswing2 (t) = V(Nvdd(i,j),t) - V(Ngnd(i’,j’),t) 

2. Deduces from the gate library the delay and current draws: 

2.1. δ (gate,Vswing1,Vswing2,Cload) 

2.2. Ivdd (gate,Vswing1,Vswing2,Cload) 

2.3. Ignd (gate,Vswing1,Vswing2,Cload) 

3. Stores deduced current draws in the current event queue  

4. Generates output switching event at t+δ 

} 

 

In step 1, the simulator computes the electrical parameters related to the upstream gate and the 

switching gate. Taking Vswing1(t) as an example of the computation procedure, Vswing1(t) is the difference 

between the voltage in the node Nvdd(m,n) of the power PDN and the voltage in the node Ngnd(m,n) of the 

ground PDN at time t, as written in equation 4.1. In other words, Vswing1(t) is the supply voltage swing of 

the gate Gi-1 at time t. 

 4.1 

 

Voltages in the nodes Nvdd(m,n) and Ngnd(m’,n’) are computed taking into account all the active current 

draws in the PDN. These currents are stored by the electrical simulator in the current event queue. The 

electrical simulator calculates the current through each horizontal resistor placed in the same line as the Gi-

1 connection node (in the Vdd and the Gnd grids). Current computation takes into account all the active 

currents and their corresponding distribution factor depending on their position in the grid. Equation 4.2 

describes the current across the horizontal resistors Rh(m,s). 

 4.2 
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The simulator computes the voltage in the node Nvdd(m,n) and in the node Ngnd(m’,n’). The voltage is 

computed, as described in equations 4.3 and 4.4, calculating the voltage drop between the border of the 

grid in the same line as and the Gi-1 connection node, considering only the direct horizontal line. 

 4.3 

 

 4.4 

 

The same procedure for Vswing2 (t) calculation is used to compute the voltage swing of the gate Gi 

at time t (equation 4.5). 

 4.5 

 

In step 2, once known the electrical parameters Vswing1, Vswing2 and the load capacitance Cload, the 

corresponding gate delay and dynamic currents drawn from Vdd and Gnd are deduced from the gate 

library. 

d  4.6 

 

  4.7 

 

 

Vdd and Gnd current draws of the gate are stored in the current event queue and the simulator generates 

the output switching event with the corresponding delay d(Gi). The logic simulation stores the estimated 

delay of the gate and continues the logic simulation. Output gate commutation is effective when the logic 

simulation arrives to the time “t+ d(Gi)”. Following the last algorithm for every switching gate of the 
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circuit, an output pattern is obtained at the end of the simulation as well as the estimated delay associated 

to the output pattern. 

4.1.2 Simulation validation 

A first version of MIRID is developed using the suggested algorithm. The validation aims at 

determining the accuracy of the electrical model and the resulting estimated delay. It should be noted that 

although the proposed electrical models at the gate level (static and dynamic currents and delays) have 

already been validated in Chapter 2, a further validation through realistic circuit simulation is worth being 

performed. Indeed, in Chapter 2, the electrical model at the gate level and its validation are computed for 

constant voltage swings. In a realistic environment, voltage swings (Vswing1 and Vswing2) evolve in time. In 

addition, the possible load capacitance is quantified. It means that only Cmin multiples are taken into 

account in the pre-characterization procedure while the real input capacitance of a gate may not be a Cmin 

multiple. The goal of this further validation is to quantify the impact of these limitations from the gate 

library pre-characterization on the MIRID results. To estimate the accuracy of the proposed electrical 

models, the validation procedure is based on the comparison between results obtained from SPICE and 

results obtained from MIRID. Unfortunately, the number of gates that can be simulated with SPICE is 

limited. On the one hand, a large circuit cannot be simulated using SPICE. On the other hand, only a large 

circuit would generate a relevant IR-Drop level in the PDN and thus, a large variation in the delay. Due to 

this limitation, the validation procedure is divided into three steps: 

· Comparison between MIRID and SPICE results using an inverter chain simulation in order to 

validate the electrical model of the power grid and the electrical model of the current draw. 

· Comparison between MIRID and SPICE results using small benchmark circuits in order to 

validate the electrical model of the power grid and the electrical model of the current draw 

with different values of fanout.  

· Comparison between MIRID and SPICE results using a circuit dedicated to maximizing the 

delay in order to validate the electrical model of the gate delay. 

Note that a 100x100 grid for the PDN is used in the simulations with SPICE and MIRID. The values 

of the horizontal and vertical resistances are 0.4Ω [29]. 
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4.1.2.1 Validation with an inverter chain 

The first experiment aim is to validate the electrical models, above all the PDN electrical model. A 

simple electrical schematic is simulated using SPICE and MIRID. The schematic is made of a chain of 

14 inverters connected to the Vdd and Gnd grids as illustrated in Figure 4.2. A test pattern pair (0,1) is 

applied to the first inverter input (connected to node (40,47) in both Vdd and Gnd grids). Note in Figure 

4.2 that half of the inverters are connected to line 40 and half to line 60. More precisely, the odd inverters 

making a positive transition are connected to line 40 and the even inverters making a negative transition 

are connected to line 60. 

 

40 

60 

100 
47 47 48 49 50 51 51 52 52 53 

40 

60 

100 
47 47 48 49 50 51 51 52 52 53 

VDD grid 

GND grid 

 

Figure 4.2: Schematic of 14-inverter chain validation 

Therefore, inverters with the same input transition are connected to the same horizontal line. As 

justified in section 2.3.2, when a gate switches a current draw appears in the Vdd supply and another 

appears in the Gnd supply. Depending on the input transition of the gate, one of the two current draws is 

predominant on the other. The smaller one is more complex to model and more sensitive to the power 

voltage supply. The main benefit to use this simple schematic is that all inverters connected to same line 

have the same input transition and thus all their predominant current draws settle in the same supply line 

(in Vdd or Gnd). Hence, the IR-Drop effect is maximized. In addition, the accuracy of the current model is 
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analyzed independently for the predominant current draw and for the weak current draw. Note that the 

generated voltage drop has an imperceptible impact on the delay of a 14-inverter chain (the order of 

magnitude of the additional delay is 10
-6

ps, which is much smaller than the MIRID time resolution); as a 

consequence, the induced delay validation is not possible using this schematic. What we want to validate 

at this step is the electrical models of dynamic currents and current distribution by comparing the current 

and the voltage waveforms. 

 

Figure 4.3: Validation electrical waveforms in node and resistor (40,50) for a 14-inverter chain (ps precision) 

 

Figure 4.4: Validation electrical waveforms in node and resistor (60,50) for a 14-inverter chain (ps precision) 
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Figure 4.3 and Figure 4.4 show some results obtained from SPICE (in blue) and MIRID (in red) 

simulations. The figures exhibit the voltage waveforms of the node (40, 50) in Gnd and Vdd grids versus 

time as well as the currents waveforms in the resistor (40, 50) in Gnd and Vdd grids versus time. Current 

and voltage waveforms resulting from SPICE and MIRID simulations are very similar in shape and 

amplitude. Obviously, some small differences appear due to the electrical model approximations. The 

Normalized Root Mean Square Deviation (NRMSD) is calculated to estimate the error between MIRID 

and SPICE for each electrical waveform (Table 4.1).  

Table 4.1: NRMSD error for voltage and current estimation for a chain of 14 inverters (in the example nodes and 

resistors) 

 NRMSD Vvdd NRMSD Vgnd NRMSD Ivdd NRMSD Ignd 

(40,50) 4.33% 7.90% 2.02% 2.56% 

(60,50) 4.03% 11.25% 1.53% 3.72% 

 

In our first validation case, the maximal error over the entire PDN grids is 11.25% for the voltage 

waveforms (at Vgnd(60,50) shown in Figure 4.4) and 3.72% for the current waveforms (at Ignd(60,50)). 

Both errors correspond to the weak current draw in the Gnd supply at line 60. An inferior accuracy in the 

weak current draw model was expected due to the noise sensibility. It does not mean a decrease in the 

accuracy of the global electrical model because weak current draw amplitude is around 10 times smaller 

than the predominant current draw and the impact of this weak current in the global voltage drop is 

limited. In conclusion, we consider that the current model waveforms from MIRID are adequate and 

accurate (as shown in Figure 4.3 and Figure 4.4 which are the worst cases). 

4.1.2.2 Validation with a benchmark circuit 

Another experiment is performed mainly to validate the current draw electrical model. In this case the 

ISCAS circuit c17, which contains 2INV, 3 NAND2 and 4 NAND2, is simulated. All the gates are 

connected to the center of the Vdd and Gnd grids, i.e. to node (50,50) for both supply PDN. This circuit 

enables us to study the impact of the load capacitance Cload. In the previous validation, the load 

capacitance of all the gates is the same: the input capacitance of an inverter (Cmin). In the current case, 

different load capacitances must be taken into account during the MIRID simulation. Note that, as justified 

in section 2.3.2, the gate library used in MIRID considers discrete values of the load capacitance 

parameter Cload, which are multiples of Cmin. 
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Figure 4.5: Validation electrical waveforms in node and resistor (50,50) for c17 (ps precision) 

Current waveforms in resistor (50,50) and voltage waveforms in node (50,50) for Vdd and Gnd grids 

when a vector pattern is applied to the input of the circuit are plotted in Figure 4.5. First inspection shows 

that the duration of the currents computed by MIRID is smaller than the duration of the currents simulated 

with SPICE. However, computed current and voltage error is limited; indeed, the maximal NRMSD error 

is 15.11% (Table 4.2). Of course, the maximal error in node (50,50) where all the gates are connected is 

the maximal error over the whole grid. 

Table 4.2: NRMSD error for voltage and current estimation for c17 in node and resistor (50,50) 

 NRMSD Vvdd NRMSD Vgnd NRMSD Ivdd NRMSD Ignd 

(50,50) 11.79% 15.11% 9.88% 8.84% 

 

At first glance, we can suspect that the differences between SPICE and MIRID results are due to the 

time precision of the simulator. Indeed, with a time step of 1ps, all computed gate delays must be rounded. 

Naturally, we face the traditional trade-off between accuracy and computation time. Using a time step 

smaller than 1ps, MIRID would provide more fitted waveforms and delays but the computation time 

would increase consequently.  

To investigate the impact of time precision on the simulation accuracy, a new gate library is 

characterized with 0.1ps resolution. A MIRID simulation is then performed with a time step of 0.1ps, 

using the new gate library with higher time precision. The new MIRID waveforms with higher time 
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precision are very similar to the waveforms with lower precision, as illustrated in Figure 4.6. The maximal 

NRMSD error is 13.76% (Table 4.3). In conclusion, an increase of time precision does not improve 

significantly the electrical model.  

 

Figure 4.6: Validation electrical waveforms in node and resistor (50,50) for c17 (0.1ps precision) 

 

Table 4.3: NRMSD error for voltage and current estimation for c17 in node and resistor (50,50) (with 0.1ps precision) 

 NRMSD Vvdd NRMSD Vgnd NRMSD Ivdd NRMSD Ignd 

(50,50) 10.31% 13.76% 7.91% 8.98% 

 

Although the waveforms from MIRID simulation fit slightly better with SPICE waveforms when a 

gate library with 0.1ps precision is used, the error is far from being cancelled, which means that time 

precision is not a key point to explain the differences between SPICE and MIRID results. An important 

point is likely to be the fundamental reason of these differences: in this first version of the simulator, we 

have simplified and considered that the input capacitance of the different standard gates was always the 

equivalent input capacitance of an inverter Cmin (which is obviously not true for the other gates – NAND4 

for example), as justified in section 2.4. As a result, the computed equivalent input capacitance of a gate is 

always lower than or equal to its real value. Note that we have taken into account the fanout of the gates: a 

gate connected to n downstream gates is therefore loaded by n times Cmin, but as far as each downstream 
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gate input capacitance is likely to be underestimated, the total load capacitance of a gate is necessarily 

lower than or equal to the real load capacitor. 

 

Figure 4.7: Variation of the current draw for the different output capacitance values 

In Figure 4.7, the current draw reference models for different load capacitance values are plotted. The 

amplitude and time duration of the current draw increase with the load capacitance value. Therefore, the 

simplification related to the load capacitance, which consists in setting all the gate input capacitances to 

Cmin, induces a reduction in the amplitude and time duration of the injected current draws. We can 

therefore conclude that the underestimation of the load capacitance is the main cause of the variation 

between MIRID and SPICE waveforms. Considering the worst case over the PDN grid, reported in Table 

4.2, computed NRMSD errors are lower than 15%. These results are satisfactory especially taking into 

account that the error can be reduced in future versions of MIRID considering different input capacitance 

values in function of the type of gate rather than approximating it to a fixed input capacitance value.  

4.1.3 Validation with a circuit designed to maximize the induced delay 

IR-Drop is an electrical phenomenon due to small currents flowing through the PDN. A relevant 

voltage drop in the PDN appears when there are a lot of current flows in a small area. As justified, the 

estimated delay validation is complex due to the trade-off between the generation of significant voltage 

drop and the number of gates that can be simulated with SPICE. Large circuits generate relevant voltage 

drop in the PDN and therefore relevant induced delay. Unfortunately, such large circuits cannot be 

simulated with SPICE. In this sub-section a simple logic circuit that can be simulated with SPICE is 
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proposed in order to maximize the voltage drop in the PDN and, consequently, to maximize the induced 

delay.  

As the global current flowing through the PDN is the addition of all the individual current draws, it is 

mandatory that several gates switch simultaneously to draw a significant amount of current from the PDN. 

Indeed voltage drop due the IR-Drop dissipates in time, so simultaneous switching is needed. In addition, 

current distribution is very located and thus, voltage drop dissipates in space in a narrow neighborhood. 

Consequently, it is necessary to find a circuit with a high density of gates gathered in a small area. To 

summarize, voltage drop increases when there are several gates switching at same time in a small area. In 

these conditions, currents that flow through the PDN generate a significant voltage drop. 

An inverter chain is a simple circuit whose inverters switch consecutively after the input pattern 

commutation. The duration of the switching activity in the chain depends on the number of inverters of the 

chain and thus, the chain delay increases with the number of inverters. In addition, if the inverter chain is 

connected to the PDN describing a “pseudo-circle” loop on itself, the voltage drop tackles the “pseudo-

circle” area. Moreover, if several inverter chains are connected in parallel with the same input pattern 

applied at the same time, the corresponding inverters of each chain will switch at the same time and thus, 

switching activity increases, enhancing consequently the induced voltage drop. In brief, using inverter 

chains connected in parallel throughout the PDN generates high voltage drop. The number of chains in 

parallel and the number of inverters in a chain are variable parameters that enable to regulate the level of 

voltage drop. 
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Figure 4.8: Dedicated circuit to enhance the IR-Drop: logic schematic and PDN connection 

In this sub-section a macro-cell composed for inverter chains is suggested to maximize the induced 

delay. Figure 4.8 illustrates the structure of this macro-cell. There are three variable parameters in the 

macro-cell structure.  

· n inverters in each chain: A large number of inverters connected allows to generate a large 

induced delay due to the IR-Drop (Figure 4.8.a).  

· m chains in parallel: The more chains connected in parallel, the largest voltage drops. (Figure 

4.8.b). 
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· Localization of the chain connections: Disjoint/joint/overlapping placements through the 

resistive grid (Figure 4.8.d).  

In our example, an inverter-chain composed of 8 inverters is our basic structure (Figure 4.8.a). When 

there is no voltage drop, a chain of 8 inverters switches in 35.604ps (nominal δ0_1 is 4.903ps and nominal 

δ1_0 is 3.998ps). The basic inverter chain is connected to the PDN describing a diamond (Figure 4.8.c). 

This position optimizes the density of gates switching in the same area of the PDN. To induce 

simultaneous switching activity, m basic inverter chains are connected in parallel at the same position (m 

varying from 1 to 80). Finally, 9 groups of inverter chains in parallel are placed in the PDN (Figure 4.8.d) 

generating the maximum voltage drop in the central node: 1 around the central node and 1 around each 

immediate neighboring node. 

 

Figure 4.9: IR-drop delay in function of the number of inverter chains in parallel for MIRID and SPICE 

Figure 4.9 shows the delay estimated from MIRID (red curve) and obtained from SPICE (blue curve) 

for one of the central chains. A curve is additionally plotted: the delay obtained for one of the central 

chains when the macro cell structure is directly connected to nominal supply and ground voltages (black 

curve). In this case, the delay does not change in function of the number of inverter chains connected in 

parallel because there is no voltage drop. As expected, the macro-cell structure enhances the voltage drop. 

As a consequence, the delay of the inverter chains increases linearly with the number of chains in parallel. 

Taking as a reference the delays from the SPICE simulation, the maximum relative error is 1.17%. Note 

that this result is very satisfactory, especially if we take into account that the macro-cell, which aims at 

enhancing the voltage drop, also accumulates errors because the same electrical model is replicated at the 

same nodes. In other cases, some errors could compensate each other; this is clearly the worst case in 

terms of error accumulation.  
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4.2 Problematic of the simulation implementation using a RC grid 

In a resistive PDN model, the current across every resistor at time t is a simple fraction of the global 

current drawn in the PDN at time t by the switching gates. It means that calculating the current distribution 

involves only linear functions. Figure 4.10.a illustrates the relationship between the current draw Ivdd and 

the current Ir(i,j) across a resistor of the resistive grid. Equation 4.9 determines the fraction of the current 

draw Ivdd(t) that flows across a resistor of the resistive grid, where k is a constant that depends on the 

position (i,j) in the grid. 

Ir(i,j)(t)= df(i,j) x Ivdd(t) 4.9 

 

In conclusion, the distribution factor df is sufficient to exactly define the current in every element of the 

resistive PDN. 
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Figure 4.10: Current distribution through the R grid vs current distribution through RC grid 

Considering a resistive and capacitive PDN model, capacitive elements imply transient phenomena 

and thus, calculation of the current distribution requires complex integrals and derivatives that make the 

simulation much more complex. As illustrated in Figure 4.10.b, the waveform of the current across a 

resistor of the RC grid is completely different from the current draw. Indeed, not only is the maximum 

value A’ different from A, but the time t’ corresponding to the maximal current in the resistor is not equal 

to the time t of the maximal global current.  
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In addition, the electrical model for the intrinsic decoupling capacitor of the non-switching gates 

involves the connection of capacitive elements in all the nodes of the PDN. As a result, an exact 

mathematical analysis would imply to solve a system of complex differential equations. Obviously, the 

simulator cannot tackle such computation due to the complexity and its prohibitive computation time. For 

this reason, a simplified model is proposed in this section. 

4.2.1 Capacitance window 

As we have defined a time window and current window in order to reduce the simulation time, we can 

also consider a capacitance window, because the capacitive elements located far away from the current 

draw have a very limited effect on the global current behavior. Consequently, the model takes only into 

account the capacitive elements that are close to the current draw. The other capacitive elements are 

omitted for the global current behavior estimation. Obviously, the size of this capacitance window 

depends on the values of resistive and capacitive elements of the RC grid.  

As justified in section 3.2.4, there are three different types of capacitive elements:  

· the parasitic capacitors of the physical PDN Cg, which are placed in every node of the PDN; 

in most cases these capacitors are negligible (see 3.2.4.1), 

· the decoupling capacitors Cd whose size and placement in the grid are known by design 

(section 3.2.4.2), 

· the intrinsic decoupling capacitors due to non-switching gates whose electrical model (RS and 

CS) depends on the number and type of static gates connected to each node (section 3.2.4.3) 

and also depends on the input vector. 

In brief, the capacitive elements connected to every node of the grid are different and depend on the 

simulated block as well as on the input vector. Therefore, exact prediction of the capacitance window is 

unfeasible due to prohibitive computation time and high number of different variables. The first objective 

here is to estimate a fix window size that could be used in any case. 

For our analysis, a SPICE simulation is performed using the following simplifications for the 

electrical parameters: 

· The horizontal and vertical grid resistors are equal and called Rg.  

· For every node, the resistors and capacitors in series representing the non-switching gates are 

considered equal (Rs and Cs).  

· The decoupling capacitors are omitted. 
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The resulting grid is given in Figure 4.11. For the sake of simplicity, the Rg resistances are not drawn 

but are implicitly represented by the branches of the grid. Applying the above simplifications, there are 

only three parameters to take into account for the simulation: Rg, Rs and Cs. 
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Figure 4.11: Standard resistive grid with parasitic resistive and capacitive elements (RC grid) 

In order to determine the capacitance window, an inverter is connected to the center of the resistive 

grid and the current across all the capacitors in series is reported when the inverter switches. The 

amplitude of the current across each capacitor is compared to the amplitude of the inverter current draw. 

Following the same criterion as for the current window calculation, only the currents across the capacitors 

larger than 1% of the current draw are taken into account for the electrical model. In other words, the 

capacitance window includes only the capacitive elements whose contribution to the current distribution is 

significant.  

Simplified schematic is simulated using realistic Rg, Rs and Cs values: The Rg values commonly 

applied in SPICE simulations vary from 0.4Ω to 0.7Ω [29], the Rs values are in the range from 0 to 2Ω 

and the Cs values are comprised between 0 and 10pF based on the intrinsic parasitic elements of the MOS 

transistors in 45nm technology. Figure 4.12 and Figure 4.13 show the radius of the capacitive window, 

given in number of nodes, in function of Rs and Cs for different values of Rg. 



 

115 

 

 

Figure 4.12: Radius of the capacitance window 

 

Figure 4.13: Detail of the radius of the capacitance window 
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Regarding the results, we can determine the following relations: 

· The area of influence of the capacitive elements decreases when the elementary grid 

resistance Rg increases. 

· The area of influence of the capacitive elements decreases with the series resistance Rs of the 

capacitive elements. 

· The area of influence of the capacitive elements decreases when the series capacitance Cs of 

the capacitive elements increases. 

By definition, the current across the resistive-capacitive element (Rs and Cs) is proportional to the 

capacitance value (Cs). A bigger capacitor can provide more current. In addition, the current across the 

capacitive element is inversely proportional to the resistor value Rs. We analyze the resistance effects: 

· If the resistance Rs of the non-switching gates is high, the current will flow mainly from the 

power supply to the switching gate. 

· If the resistance Rg of the grid is high, the current will flow predominantly from the capacitor 

Cs to the switching gate. 

In any case, it clearly appears in Figure 4.12 that a window of 5 to 6 nodes around the switching gate 

may be of interest whatever the values of Rs, Rg and Cs. 

If we consider the case of decoupling capacitors that are added by design, these capacitors are not 

connected to every node of the grid. Therefore, simulating a resistive and capacitive grid with large Cs in 

every node is not realistic. Fortunately, the impact of a decoupling capacitor Cd may be predicted: a 

decoupling capacitor reduces the capacitance window because it provides the most of the drawn current 

due to its high value. 

In summary, only the capacitor elements included in a fixed area (the capacitance window) of the 

PDN must be considered to determine the current distribution. This capacitance window is centered in the 

node where the current draw appears. Exact capacitance window size cannot be determined but being 

conservative a radius of 6 or 5 nodes for the capacitance window is enough to include all the capacitive 

elements that are relevant for the current distribution. 
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4.2.2 Simplified model 

Although the capacitance window allows reducing the number of considered capacitors, the 

computation of the current behavior is still very complex, implying to solve a system of differential 

equations. The goal of the model simplification is to find a single couple of Req and Ceq serial elements 

equivalent to all the resistive-capacitive elements in the capacitance window, as illustrated in Figure 3.14. 

If all the resistive-capacitive elements inside the capacitance window are simplified as a single equivalent 

resistive-capacitive element, the distribution current can be approximated resolving a simple differential 

equation.   
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Figure 4.14: Simplified model of the capacitive-resistive grid 

As explained in section 3.2.3, to solve the differential equation the current draw is modeled as a 

parabolic function. The current across the capacitor is a function of the electrical parameters of the RC-

grid and the current draw. If the capacitor is connected to the same node as the switching gate, the current 

injected to the PDN model is the difference between the current draw and the current across the capacitor. 

The computed current distribution through the PDN may be computed using the distribution factor of a 

resistive grid because there are no capacitive elements connected into other nodes of the grid (the 

capacitive elements inside in the capacitance window are included in the central equivalent capacitive 

element and the ones outside the capacitance window are neglected as justified in the previous section). 

Therefore, the goal is to simplify the electrical model of the PDN and reduce the number of resistive-

capacitive elements to only one equivalent resistive-capacitive element (as illustrated in Figure 3.14). 

Obviously, the equivalent element must be tuned to provide the same current to the switching gate. The 
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next sub-section presents the procedure to simplify the electrical model, i.e. to calculate the equivalent 

resistive-capacitive element and to compute the current distribution in the grid.     

4.2.2.1 Simplification process principles 

As explained in section 3.2.2, when a gate switches a current draw appears in the PDN and the 

capacitive elements supply a part of this current. Therefore, the discharge of the capacitive elements 

provides current to the switching gate at first, but later on a reverse situation appears and the capacitive 

elements are re-charged by another current from the power supply. The different phases of charge-

discharge are described in section 3.2.2.1. Recapitulating, during phase 1 the capacitors provide current to 

satisfy the current demand of the switching gate. In phase 2, the capacitors start to re-charge while the gate 

still draws current. Finally, during phase 3, the gate does not demand any current, but the capacitors are 

still recharging. Figure 4.15 illustrates the different phase current flows through the PDN model for a 

single capacitor connected to the grid and a single switching gate. 
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Figure 4.15: Contribution of a capacitive element in the current distribution (different phases in time) 

Looking at the current distribution generated by a capacitive element, we observe the way the currents 

spread through the grid .When the gate switches (as illustrated in Figure 4.15.a): 

· The current provided by the capacitor (red current) is flowing from the capacitor to the 

switching gate to satisfy the demand of current. The current dispersion is located in the area 

between the capacitor and the switching gate.  

· Additional current flows from the voltage supply to the gate. 
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When the capacitor starts to recharge in phase 2 and phase 3, the current that charges the capacitor is 

provided by the power supply. Note that in phase 1, the current spread is centered on the node of the 

switching gate and in phase 3, the current spread is centered on the node of the capacitor as illustrated in 

Figure 4.15.b. 

Consequently, if every resistive-capacitive element (Rs and Cs in series) has to be moved from his 

original node to the switching gate node, the current distribution generated by the simplified model is not 

exactly equal to the original current distribution. As we can observe in Figure 4.16.a, in the original 

schematic there are currents flowing from the resistive-capacitive element to the switching gate. These 

currents (in green) interfere with the current distribution inside the capacitance window (in blue). The 

simplified model omits the current distribution in the capacitance window due to the discharge-charge of 

the capacitive elements as illustrated in Figure 4.16.b. 
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Figure 4.16: Contribution of a capacitive element in the current distribution (impact of the simplification) 

In brief, the simplification process involves an error in the current distribution. This error is more 

important in the area between the node where the capacitive element is actually connected and the node 

where the switching gate is connected. In order to compensate this error in the current distribution for the 

simplified model, a correction in the distribution factor must to be applied in this area.  

As justified in this section, there are several capacitive elements inside the capacitance window. Every 

capacitive element must be displaced to the node of the switching gate and adapted to be equivalent in 
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terms of current provided to the gate. Figure 4.17 gives an example of the simplification process for 

several capacitive elements in a one-dimension PDN. 
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Figure 4.17: Simplification method for RC-PDN model 

The simplification method must be applied for every capacitive element. Given a switching gate Gi 

connected to the PDN at node n(i,j), the simplification algorithm:  

· Determines which capacitive elements are not negligible as far as they are connected inside 

the capacitance window centered on node n(i,j). 

· Computes the equivalent capacitance Ceq and resistance Req of every capacitive element as a 

function of the position in the grid and the grid resistance value. 

· Connects all the equivalent resistive-capacitive elements to n(i,j). 

· Computes the current provided by the whole set of resistive-capacitive elements connected 

to node n(i,j). 

· Applies the corrections in the distribution current due to the displacement of the capacitive 

elements.  

In the next sub-sections, the detailed computations of the different steps of the simplification 

algorithm are described: the mathematical computation of the equivalent resistive-capacitive element is 
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explained, a validation example for the equivalent calculation is presented and finally the pre-

characterization of the correction distribution factor is described in details.  

4.2.2.2 Equivalent capacitor calculation 

As explained above, in order to use the simplified model, the resistive-capacitive elements within the 

capacitance window must be displaced to the node of the switching gate and their capacitor value must be 

adapted. The goal of the adaptation is to find an equivalent capacitor that provides the switching gate with 

a current equivalent to the current given by the original capacitor. 
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Figure 4.18: Resistive-capacitive element connected to the node n(i,j)  

Figure 4.18 illustrates a resistive-capacitive element connected to the node n(i,j) of the resistive grid. 

When a gate connected to the resistive grid switches, the current draw spreads through the resistive grid 

and a voltage drop appears in node n(i,j) where the resistive-capacitive element is connected. By 

definition, the current through the capacitor Cs is: 

 4.10 

 

where VC(i,j) is the voltage at the capacitor upper node. As justified in Chapter 3, the voltage in the node 

n(i,j) (Vn(i,j)) is the device nominal supply voltage Vdd minus the voltage drop generated by all the 

horizontal resistors on the line between the border of the grid and n(i,j): 

 4.11 
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The current I(k,j) across the resistors is determined by the current draw and the dispersion factor. 

Therefore, Vn(i,j) can be described as: 

 4.12 

 

where df is the corresponding distribution factor. As the aim is to find an equivalent capacitor that 

provides a current equivalent to the current given by the original capacitor, the Rs element is omitted in a 

first time for the capacitor calculation; consideration of the resistive element will be introduced in the next 

sub-section to guaranty an equivalent time constant. Therefore, the voltage at the capacitor upper node 

VC(i,j) is equal to  Vn(i,j) and thus, the VC(i,j) derivative is a function of the current draw, the grid 

elementary resistance rh and the distribution factor of the power grid: 

 4.13 

 

In the last equation 4.13, Idraw derivative and the horizontal resistor rh are independent of the node 

position. Only the dispersion factor summation depends on the resistive-capacitive element connection 

location in the grid.  

Equation 4.15 defines the current across a resistive-capacitive element connected to the node n(i,j). 

 4.14 

 

Up to this point we have defined the current across a resistive-capacitive element. We now want to 

calculate an adaptation factor that allows to displace the capacitive element to another node in the grid (in 

practice, to the node of the considered switching gate). Figure 4.19 illustrates a particular example. Given 

a resistive-capacitance element (Rs, Cs) connected to the node n(m,n) in the PDN and a gate G connected 

to the node n(r,s), an adaptation factor must be defined to displace the capacitive element from n(m, n) to 

n(r,s) with its equivalent value Ceq. The calculation of the equivalent resistive element Req is developed in 

the next subsection. 



 

123 

 

 

 

 

 

 

 

 

n(r-1,s) n(r-2,s) n(r-3,s) n(1,s) n(r,s) 

n(m+1,n) n(1,n) n(m-2,n) n(m-1,n) VDD n(Rh 
n(m,n) 

Vc(m,n) 

Cs(m,n) 

Rs(m,n) 

n(
Rh 

n(
Rh 

n(
Rh 

i(m,n) 

n(Rh 

i(m-1,n) i(1,n) 

Ic(m,n) 

VDD 
Rh Rh 

n(
Rh Rh 

i(r-1,s) 

Rh 

i(r-2,s) i(1,s) 

) Rh 

Rh 

Req(r,s) 

Ceq(r,s) 

Vc(r,s) 

G 

i(r,s) 

 

Figure 4.19: Resistive-capacitive element connected to the node n(m,n) and its equivalent displaced to the node n(r,s) 

To determine the adaptation factor in order to obtain the equivalent capacitive element Ceq, the basic 

idea is that the current provided by the capacitor to the gate should be the same in both cases; this implies 

that the current across the displaced equivalent capacitor must be equal to the one of the original capacitor. 

Let ICs be the current across Cs connected to the node n(m,n) and ICeq the current across Ceq connected to 

node n(r,s) (defined using the equation 4.10), both currents ICs and ICeq  are equal: 

 4.15 

 

The adaptation factor fc is defined as: 

 4.16 

 

The adaption factor depends only on the distribution factor of the PDN and can be calculated for any 

couple of nodes of the capacitance window using the equation 4.17: 
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 4.17 

 

To summarize, the adaptation factor to obtain the equivalent capacitance value once the capacitive 

element is displaced depends only on the distribution factor and thus, on the switching gate and the 

resistive-capacitive element positions. 

4.2.2.3 Equivalent resistor calculation 

The capacitive elements discharge and charge in function of their time constant. For RC circuits, the 

time constant obviously depends on the capacitance and the resistance (section 3.2.3). For the parasitic 

capacitors of the physical grid and the decoupling capacitors, there are no resistive elements in the 

suggested electrical model. In this case, the time constant depends only, in addition to the capacitor itself, 

on the grid resistors. For the intrinsic decoupling capacitors due to non-switching gates, the suggested 

electrical model includes a resistive element. In this case, the time constant of the resistive-capacitive 

element depends on the capacitor and resistor included in the model (transistor equivalent capacitance and 

resistance) and on the grid resistors. In both cases (capacitive only or resistive-capacitive original 

element), once moved to the node of the gate, the equivalent element contains both a resistive and a 

capacitive component (Req and Ceq). The calculation of the equivalent element must lead to the same time 

constant as the original one. 

Let us first consider the displacement of purely capacitive elements (grid capacitive elements and 

decoupling capacitors). The equivalent resistor Req of the displaced element depends on the grid resistors 

on the path between the initial connection node and the target node where the gate is connected. It can be 

computed according to either one of the following methods: 

· First method: We know that the voltage in every node of the power grid is defined by the 

equation 4.18 

 4.18 

 

Considering that there are no more capacitive elements in the grid, the voltage difference 

between two points is defined as: 
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 4.19 

 

where Req is the equivalent resistor value between the two points. Using the voltage definition 

(equation 4.18) in the last formula, the voltage difference between the node n(m,n) and the 

node n(r,s) is: 

 4.20 

 

Therefore, the equivalent resistance between the node n(m,n) and the node n(r,s) is: 

 4.21 

 

· Second method: Traditional way to determine the equivalent resistance is to compute the 

voltage drop between two nodes of the PDN. The voltage drop is the same for all the paths 

that connect the node n(m,n) to the node n(r,s) and is defined by the function: 

 

 

4.22 

 

From the last formula the equivalent resistance can be deduced: 

 

4.23 

 

Figure 4.20 shows an example of equivalent resistor calculation where horizontal and vertical 

resistances are equal (rh=rv=rg). Taking the blue path or the red path, the computed voltage 
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drop between the two nodes is the same. In practice, the equivalent resistance can be 

computed taking an arbitrary path. 

 4.24 

 

 4.25 

 

0,25 0,113 0,066

9 

0,068

3 

0,068

3 

0,053

7 

0,038 0,038 0,023 

0
,2

5
 

0
,1

1
3

 

0
,0

6
8

3
 

0
,0

6
8

3
 

0
,0

2
3

 

0
,0

1
 

0
,0

2
2

 

0
,0

3
8

 

C 

 

Figure 4.20: Equivalent resistor calculation example 

Both described methods are equivalent, because the voltage drop between the two considered nodes is 

fixed and independent of the path used to compute it. In the second method, the path must be selected by 

the simulator among all paths connecting both nodes. However, the first method is easy to implement in 

the simulator because the path used to determine the voltage drop is strictly defined wherever the 

switching gate and the resistive-capacitive element are connected.  

 Finally, for the capacitive elements that initially include a resistive element Rs (case of static gates 

intrinsic capacitances), the path equivalent resistance previously computed must be added to Rs in order to 

obtain the value of the equivalent resistance Req in the displaced resistive-capacitive element. 

4.2.2.4 Validation of the equivalent resistor and capacitor calculation 

The suggested method to calculate the equivalent resistor and capacitor in function of the distribution 

factor and the position in the PDN is an approximation that allows the simulator to compute the current 

provided (in a first time) and demanded (in a second time) by the capacitor. To evaluate the accuracy of 

this simplification method, an example is simulated with SPICE. In the example, we assume 9000 static 

inverters (input signal fixed to 0) connected to the node n(25,23) of the grid (illustrated in Figure 4.21.a). 

There is a switching inverter connected to the node n(25,25). 
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Figure 4.21: Example for the validation of the equivalent resistor and capacitor calculation 

Appling the simplification method for the intrinsic decoupling capacitors due to the 9000 non-

switching gates, the non-switching gates connected to the n(25,23) are replaced by an equivalent resistor 

and a capacitor connected in series. In the 45nm technology, for a static inverter (WPMOS = 200nm, 

WNMOS=90nm and L=45nm) whose input signal is 0, the approximate transistor equivalent resistance is 

1300Ω and its equivalent capacitance is 748aF. In our example, the equivalent resistor and capacitor for 

9000 inverters in parallel are respectively: 

 4.26 

 

 4.27 

   

When a rising input edge arrives at the switching inverter input, a current flow appears through the 

PDN due to the inverter current draw. The current flow distribution in the PDN depends on the grid 

resistances and on its capacitive elements. Following the simplification model proposed in the previous 
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sections, the capacitive elements included in the capacitance window in the neighborhood of the switching 

gate are displaced to the node of the switching gate (node (25,23) in the example) and their equivalent 

resistance Req and capacitance Ceq are computed. In the example, according to equations 4.17 and 4.23, the 

adaption factor and the resistor equivalent are calculating as: 

 4.28 

 

0.145Ω 
4.29 

 

Therefore, the resistor RS and capacitor CS in series that represent the 9000 static inverters must be 

adapted to be connected to the node n(25,25) in the following way: 
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To validate the equivalent resistor and capacitor calculation, the original schematic with 9000 non-

switching inverters connected to the node (25,23) (illustrated in Figure 4.21.a) on the one hand and the 

equivalent schematic with the equivalent resistor Req and capacitor Ceq connected to the node n(25,25) 

(illustrated in Figure 4.21.b) on the other hand are simulated with SPICE. The current provided by the 

intrinsic decoupling capacitors of the 9000 non-switching inverters and the current provided by the 

equivalent capacitor are compared. Figure 4.22 shows the current provided by the original non-switching 

gates (black curve) and the current provided by the equivalent capacitance of the model (blue curve). The 

normalized root-mean-square deviation (NRMSD) is 4.23%. In this example, the electrical model for the 

static gate intrinsic decoupling capacitors and the simplification method obviously constitute an accurate 

procedure to compute the current provided by intrinsic decoupling capacitors within the capacitance 

window. This conclusion can be generalized as far as the hypotheses for the approximations in the 

calculation of Ceq and Req are valid (  small enough to approximate the derivative of Vn1 with the one of 

 in the calculation of Ceq on the one hand and negligible impact of the capacitive elements of the grid 
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on the voltage drop between the node of origin and the target node in the calculation of Req on the other 

hand). 

 

Figure 4.22: Validation of the equivalent resistor and capacitor calculation 

4.2.2.5 Current distribution correction 

As justified in the simplification process principles, moving a resistive-capacitive element from a grid 

node to another implies not only the adaptation of the resistor and capacitor values but also the adaptation 

of the current distribution in the area between the original placement of the resistive-capacitive element 

and its new placement (Figure 4.16). Therefore, a correction in the original current distribution must be 

implemented.  

Let us consider a resistive-capacitive element (CS and RS) connected to the PDN in the node n(m,n) 

and a gate connected to the PDN in the node n(r,s) as illustrated in Figure 4.23.a; when the gate switches, 

the resistive-capacitive element will be displaced to the node n(r,s) and its resistive and capacitive values 

are adapted (Ceq and Req). As explained in the previous sub-sections, the equivalent resistor and capacitor 

behave as the original resistive-capacitive element with regard to the switching gate: the current flow 

induced by the switching is provided and then demanded at the same time and with the same amplitude. 

However, the simplification method described up to here does not yet include the distribution of current 

that actually flows from the original resistive-capacitive element connected to the node n(m,n) to the gate 

connected to n(r,s). 

If the current provided by the resistive-capacitive element is known, this current can be spread through 

the power grid using a distribution correction factor. Fortunately, the contribution in current of every 

resistive-capacitive element can be estimated using the mathematical solution of the differential equation 
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for a simple schematic with only a capacitor (see 3.2.3). In addition, a current distribution correction is 

necessary to compensate the displacement of the resistive-capacitive element. The current distribution 

correction must spread properly the current provided by the resistive-capacitive element through the PDN 

area between the original node where it was connected (n(m,n) in our example) and the switching gate 

node (n(r,s)). A distribution correction factor must be defined to determine the fraction of current in every 

resistor inside the capacitance window. Obviously, the current distribution of the resistive-capacitive 

element depends on the resistive-capacitive element placement with respect to the switching gate node. 

Therefore, a distribution correction factor must be defined for every node inside the capacitance window 

during the pre-characterization procedure.  

 

Rs 

Cs 

n(m,n) 

n(r,s) 

n(m,n) 

VDD 

n(r,s) 

a b 

 

Figure 4.23: Pre-characterization of the distribution correction factor 

In order to determine the distribution correction factor, a procedure of pre-characterization similar to the 

distribution factor pre-characterization in a resistive grid is executed. To determine the distribution 

correction factor, a 100x100 node resistive grid is used. A unitary source of current is connected in the 

central node n(50,50) to figure the current draw. A unitary source of current is connected in the central 

node n(50,50) to figure the current draw. Until now, the schematic used to determine the distribution 

correction factor is the same than the one used f or the distribution factor of a purely resistive grid 

(proposed in the Chapter 3). In order to determine the current distribution from the resistive-capacitive 

element to the gate node in the pre-characterization procedure, the nominal voltage Vdd is connected to 

the node n(m,n) instead of being connected to the border of the resistive grid. Then, a SPICE simulation is 

performed for every node of the capacitance window. Figure 4.23.b illustrates the electrical model for the 

calculation of a distribution correction factor. 
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Figure 4.24: Distribution correction factor for the node n(50,48) 

Figure 4.24 shows the distribution correction factor of a capacitive element connected to the node 

n(50,48). Note that although the horizontal and vertical distribution correction factors obtained from 

SPICE are respectively a 99x100 matrix and a 100x99 matrix, only the sub-matrixes inside the 

capacitance window are required to correct the current distribution. Considering a 12x12 capacitance 

window, the horizontal distribution correction factor is a 11x12 matrix while the vertical distribution 

correction factor is a 12x11 matrix. As expected, the current flows from the n(50,48) to the node n(50,50), 

mainly across the shorter paths between both nodes. Figure 4.25 shows another example of distribution 

correction factor of a capacitive element connected to the node n(48,48). 
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Figure 4.25: Distribution correction factor for the node n(48,48) 

4.2.3 RC model validation and conclusion 

In the previous sections of this chapter, a simplification method has been proposed to take into 

account the capacitive effects in the computation of the current distribution through the PDN. Obviously, 

this simplification method implies some errors in the current distribution. Although the correction of the 

distribution factor reduces the error magnitude, the adaptation of the displaced resistive-capacitive 

elements on the one hand and the application of a mathematical approximation in the current draw of the 

gate (see section 3.2.3) on the other hand still generate some errors in the computed currents.  

To analyze the impact of the simplification method on the current distribution through the PDN, we 

take back the example of section 4.2.2.4. In this example, there are 9000 non-switching inverters 

connected to the node n(25,23) of the grid and there is a switching inverter connected to the node n(25,25) 

as illustrated in Figure 4.26. A first SPICE simulation is performed and all the currents around the node 

n(25,25) are noted. These currents are used as a reference for the validation of the simplification model. 
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Figure 4.26: SPICE simulation for the simplification model validation  

A second simulation is performed with SPICE. In this case, the 9000 non-switching inverters are 

replaced by their equivalent resistive-capacitive element in node n(25,25). The computation of the 

equivalent resistor and capacitor is explained in the section 4.2.2.4. In the same way as in the first 

simulation, all the currents around the node n(25,25) are noted. 

Finally, the full simplified model of the circuit is applied to compute the current distribution through 

the PDN. To calculate these currents: 

· The resistor and capacitor equivalent to the 9000 non-switching inverters (Ceq and Req) are 

computed and adapted to be connected to the node n(25,25) (as computed in the section 

4.2.2.4). 

· The current draw of the switching gate is derived from the gate library. For this example, the 

load capacitor is Cmin and Vswing1 and Vswing2 are 100% of the nominal tension. 

· The current across the capacitor Ceq is computed using the simplified model described in 

section 3.2.3. To solve the differential equation, it is necessary to model the current draw as a 

parabolic function. 
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· The current actually drawn from the PDN is the difference between the gate current draw of 

the inverter and the current provided by the capacitor (as illustrated in Figure 4.27). 

 

ICeq 
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Figure 4.27: Current drawn at node n(25,25)   

· The resulting current drawn at the node n(25,25) is injected to the PDN using the distribution 

factor. The distribution factor is centered on the node n(25,25) and applied only in the current 

window (defined in section 3.1.2, as illustrated in Figure 4.28). 

· The correction in the current distribution (computed as explained in section 4.2.2.5) is 

applied. The current provided by the capacitor Ceq is used to compute the current distribution 

between the original placement of the resistive-capacitive element and its new placement, 

using the corresponding distribution correction factor that depends on the original position. In 

this case, the 9000 non-switching inverters are connected to the node n(25,23). The 

distribution correction factor for n(25,23) is applied in the capacitance window centered on 

the node n(25,25) (as illustrated in Figure 4.28). 

· The current in the current window is computed: 

o Currents inside the capacitance window are computed as the addition of the 

percentage of the current drawn from the node n(25,25) determined by the 

distribution factor and the percentage of the current across the capacitor determined 

by the distribution correction factor. 

o Currents outside the capacitance window are the percentage of the current drawn from 

the node n(25,25) determined by the distribution factor. 
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Figure 4.28: Application of the distribution factor and the distribution correction factor for a resistive-capacitive grid. 

To validate the simplified model, the first SPICE simulation with 9000 static inverters and the 

computed distribution factor using the simplified model are compared. In addition, the currents when the 

resistive-capacitive element equivalent to the static gates is connected to the node n(25,25), obtained in the 

second SPICE simulation, are also compared to show that the correction in the distribution factor is 

necessary. 

The currents around the node n(25,25) given by the two SPICE simulations and the computed currents 

using the simplified model are plotted in Figure 4.29 (horizontal currents) and Figure 4.30 (vertical 

currents). The black curves represent the currents obtained with the first SPICE simulation containing the 

9000 non-switching inverters in the node n(25,23), the blue curves correspond to the currents obtained 

with the second SPICE simulation when the resistive-capacitive element equivalent to the static gates is 

connected to the node n(25,25). Finally, the red curves show the currents computed with the simplified 
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model. 

 

Figure 4.29: Horizontal current distribution 

 

 

Figure 4.30: Vertical current distribution 
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The first conclusion is that the correction in the distribution factor is indispensable: the differences 

between the blue curves and the black curves (taken as a reference) are significant especially in the area 

between the node n(25,23) and the node n(25,25). To quantify the deviation generated by the displacement 

of the capacitive-elements, the normalized root mean square deviation is calculated for every current 

around the node n(25,25). The maximum error is 15.17% in the current across Rv(25,23). 

On the other hand, the comparison between the original schematic and the simplified model is made. 

As observed in Figure 4.29 and Figure 4.30, a deviation between the simulated and estimated currents is 

perceptible in the currents close to the node n(25,23). To quantify the precision of the simplified model, 

the normalized root mean square deviation is calculated for every current around the node n(25,25).   

Table 4.4 and Table 4.5 contain the computed NRMSD for every horizontal and vertical current. The 

maximum error on the estimated current is 6.84% in the current across Rh(25,23). The more significant 

errors appear close to the node where the original static gates were connected. NRMSD of the currents 

that flow through distant resistors are significantly smaller. In conclusion, the suggested simplified model 

including the correction of the distribution factor allows an accurate computation of the current 

distribution.  

Table 4.4: NRMSD for the horizontal currents (%) 

Ih(i,j) 23 24 25 26 27 28 

23 4.61 1.82 2.63 2.56 1.16 1.01 

24 1.76 2.16 2.16 1.01 0.84 0.86 

25 6.84 2.91 1.62 0.85 0.79 0.80 

26 1.76 2.16 2.16 1.01 0.84 0.86 

27 4.61 1.82 2.63 2.56 1.16 1.01 

Table 4.5: NRMSD for the vertical currents (%) 

Iv(i,j) 23 24 25 26 27 

23 2.83 1.30 0.81 0.78 0.78 

24 5.64 1.30 0.81 0.82 0.80 

25 6.06 1.30 0.99 0.94 0.87 

26 6.06 1.30 0.99 0.94 0.87 

27 5.64 1.30 0.81 0.82 0.80 

28 2.83 1.30 0.81 0.78 0.78 
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5 General conclusion and future work 

Continuous scaling in deep-submicron technologies has reduced progressively the supply voltage and 

increased the number of transistors in the ICs. Consequently supply voltage noise has increased, 

negatively impacting the performance and reliability of the chips. Power supply noise has therefore 

become a critical concern, both for design and test aspects. One of the most important sources of supply 

voltage drop is the IR-Drop; a phenomenon intrinsically related to the resistive elements of the PDN and 

the switching activity. This work was concerned by the modeling and simulation of logic circuits in the 

context of IR-drop induced delay.  

This document has proposed an original algorithm for an event-driven mixed-mode simulation of the 

IR-Drop. This algorithm takes into account the different characteristics of the IR-Drop. Indeed, the 

simulation involves an electrical simulation and a logic simulation. For this reason, we have developed 

accurate and efficient electrical models for the currents generated by the switching gates, the propagation 

of these currents through the PDN and the gate delays. 

Chapter 2 described the modeling procedure for all the electrical parameters of the logic gate that are 

required in the simulator: static currents, dynamic currents and gate delays. The three elements are highly 

dependent on the transistor electrical parameters and thus, a library pre-characterization is required for 

every technology. There are also other variable parameters involved in the modeling process: the input 

voltage swing Vswing1, the switching gate supply voltage swing Vswing2 and the output capacitance Cload. 

SPICE simulations have been performed for all possible combinations of Vswing1, Vswing2 and Cload. As a 

result, a model was derived to compute the static currents, the dynamic currents and the delays for any 

electrical configuration. Since the current draw generated by a switching gate lasts a limited amount of 

time, a time window of 100ps is used for the current draw model.  
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Current distribution is closely related to the PDN structure and thus, a model for the PDN has been 

proposed to estimate the current distribution in Chapter 3. Because the IR-Drop involves the resistive 

elements, the PDN is modelled as a resistive two-dimensional grid. Based on this model, different 

distribution factors depending on the position in the grid are computed. These distribution factors allow to 

estimate the fraction of current that flows through every resistance of the grid and then, to compute the 

voltage in every node of the grid. In addition, a current window is determined in order to reduce the 

simulation time: the simulation only takes into account fractions of current higher than 1% of the original 

current draw. In addition, an electrical model to take into account the voltage drop generated by the 

neighbouring block is proposed. As a result, the voltage drop is considered as a global phenomenon at the 

chip level.  

In Chapter 4 the proposed algorithm was explained in details. Logic and electrical simulations are 

running concurrently and communicate through the switching events. The logic simulation sends input 

switching events to the electrical simulation. The electrical simulation estimates the voltage drop in the 

node of the resistive grid where the gate is connected, using the dispersion factor and taking into account 

all the currents generated by the precedent switching gates. Then, the simulator derives the current draw 

and the gate delay in function of the input voltage swing Vswing1, the supply voltage swing Vswing2 and the 

output capacitance Cload. Finally, the estimated current draws at Vdd and Gnd are noted in the event queue 

and a switching output event that considers the estimated gate delay is sent to the logic simulation. 

Using the electrical models proposed in this work, the University of Passau has developed a Mixed-

mode IR-drop Induced Delay simulator (MIRID). In order to validate the electrical models, waveforms 

and induced delay obtained from MIRID and from SPICE simulations have been compared for different 

circuits. Note that large circuits cannot be simulated with SPICE but voltage drop generated by small 

circuits is not enough to generate significant induced delay. For this reason, a macro-cell structure was 

proposed to increase the voltage drop and consequently, validate the IR-Drop induced delay estimation. 

Although this work originally tackles the IR-Drop phenomenon, Chapter 3 presented an extension that 

includes capacitive elements of the PDN in the electrical model in order to analyze the impact of these 

capacitive elements on the current distribution. An electrical model has been described for the three types 

of capacitive elements present in the PDN: parasitic capacitors of the physical PDN, intentional 

decoupling capacitors and intrinsic decoupling capacitors due to non-switching gates. 

From the above analysis we have concluded that the presence of capacitive elements reduces the 

voltage drop propagation in space and that the voltage drop dissipates slowly over time. In addition, 

we have concluded that the impact of the capacitance elements on current distribution decreases when the 
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distance increases. The further away from the switching gate they are, the smaller the amount of current 

provided and demanded by the capacitor. Thus, a capacitance window can be used to determine the 

capacitive elements that are relevant in the current distribution. 

A mathematical estimation of the current distribution through a resistive grid with capacitive elements 

is very complex. Using simplifications, a method was proposed to compute the current distribution. It 

allows to define a single lumped capacitive element connected to the node where the switching gate is 

connected, which is equivalent to all the capacitive elements into the capacitance window. The 

contribution of the single capacitance is calculated by a differential equation. As a result, the current 

drawn at the node from the PDN is the difference between the current draw of the gate and the current 

provided by the single capacitance. A maximal error of 3.4% in the current distribution estimation is 

obtained in the preliminary simulations applying the simplified model. 

Thanks to the electrical modelling, an extensive analysis of the electrical parameters involved in the 

IR-Drop phenomenon has been presented in this document. In addition, the impact of the voltage drop due 

to the IR-Drop and its propagation through the PDN has been also analysed. This knowledge may be very 

useful in order to tackle the future works about the IR-Drop. In the short term, the future work must be 

focused on improving the electrical models used in the simulation and developing a new simulator version 

that includes the capacitive elements in the PDN model. In the long term, MIRID can be used as an 

accurate tool to simulate test sequences and to determine the induced delay due to the IR-Drop. Note that 

MIRID can simulate test sequences oriented to detect delay faults or other types of faults (stuck-at faults, 

bridging faults, etc.). In the context of the IR-Drop, MIRID can be used as an analysis tool. The 

information obtained can be used to develop new test pattern generation methods to test the timing faults 

due to the IR-Drop or other types of faults. 
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Annex  

Complete table of NRMSD of the dynamical current model, explained in section 2.3.2. 

Table A.1: Compete table of the NRMSD of the current draw model 

Gate Input vector Switching input Cload 
Current Vdd: 

average NRMSD (%) 

Current Gnd: 

average NRMSD (%) 

INV 0/ 1 In 1: Rising edge 1Cmin 0.3198 1.8845 

INV 0/ 1 In 1: Rising edge 2Cmin 0.4026 2.6482 

INV 0/ 1 In 1: Rising edge 3Cmin 0.2998 3.9139 

INV 0/ 1 In 1: Rising edge 4Cmin 0.2394 4.5671 

INV 0/ 1 In 1: Rising edge 5Cmin 0.2375 5.1877 

INV 1/0 In 1: Falling edge 1Cmin 1.4209 0.4151 

INV 1/0 In 1: Falling edge 2Cmin 2.0467 0.2045 

INV 1/0 In 1: Falling edge 3Cmin 2.5305 0.1846 

INV 1/0 In 1: Falling edge 4Cmin 2.9270 0.1672 

INV 1/0 In 1: Falling edge 5Cmin 3.1532 0.1557 

BUF 0/1 In 1: Rising edge 1Cmin 1.6808 1.2412 

BUF 0/ 1 In 1: Rising edge 2Cmin 1.1576 1.2156 

BUF 0/ 1 In 1: Rising edge 3Cmin 0.8535 0.7053 

BUF 0/ 1 In 1: Rising edge 4Cmin 0.9773 0.6457 

BUF 0/ 1 In 1: Rising edge 5Cmin 1.0635 0.5160 

BUF 1/1 In 1: Falling edge 1Cmin 1.6808 1.2412 

BUF 1/1 In 1: Falling edge 2Cmin 1.1576 1.2156 

BUF 1/1 In 1: Falling edge 3Cmin 0.9734 1.2507 

BUF 1/1 In 1: Falling edge 4Cmin 0.5781 1.2168 

BUF 1/1 In 1: Falling edge 5Cmin 0.3871 1.1214 

NAND4 0111/1111 In 1: Rising edge 1Cmin 0.3470 0.8040 

NAND4 0111/1111 In 1: Rising edge 2Cmin 0.3437 1.0029 

NAND4 0111/1111 In 1: Rising edge 3Cmin 0.3366 1.130 

NAND4 0111/1111 In 1: Rising edge 4Cmin 0.3335 1.1576 

NAND4 0111/1111 In 1: Rising edge 5Cmin 0.3332 1.1656 

NAND3 011/111 In 1: Rising edge 1Cmin 0.3541 0.8537 

NAND3 011/111 In 1: Rising edge 2Cmin 0.3291 0.8893 

NAND3 011/111 In 1: Rising edge 3Cmin 0.3055 0.6658 
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NAND3 011/111 In 1: Rising edge 4Cmin 0.2835 0.7184 

NAND3 011/111 In 1: Rising edge 5Cmin 0.2297 1.1442 

NAND2 01/11 In 1: Rising edge 1Cmin 0.3761 0.8612 

NAND2 01/11 In 1: Rising edge 2Cmin 0.3909 1.0194 

NAND2 01/11 In 1: Rising edge 3Cmin 0.2494 1.1431 

NAND2 01/11 In 1: Rising edge 4Cmin 0.2524 1.5815 

NAND2 01/11 In 1: Rising edge 5Cmin 0.3493 1.8745 

NAND4 1111/0111 In 1: Falling edge 1Cmin 0.7134 0.4428 

NAND4 1111/0111 In 1: Falling edge 2Cmin 1.9991 0.3448 

NAND4 1111/0111 In 1: Falling edge 3Cmin 1.4447 0.3385 

NAND4 1111/0111 In 1: Falling edge 4Cmin 1.0174 0.3272 

NAND4 1111/0111 In 1: Falling edge 5Cmin 0.8210 0.3152 

NAND3 111/011 In 1: Falling edge 1Cmin 0.4730 0.3927 

NAND3 111/011 In 1: Falling edge 2Cmin 0.7115 0.5136 

NAND3 111/011 In 1: Falling edge 3Cmin 2.1552 0.4177 

NAND3 111/011 In 1: Falling edge 4Cmin 2.3699 0.3614 

NAND3 111/011 In 1: Falling edge 5Cmin 1.6668 0.3535 

NAND2 11/01 In 1: Falling edge 1Cmin 0.6843 0.2186 

NAND2 11/01 In 1: Falling edge 2Cmin 0.7256 0.2164 

NAND2 11/01 In 1: Falling edge 3Cmin 1.0119 0.1953 

NAND2 11/01 In 1: Falling edge 4Cmin 0.7918 0.1707 

NAND2 11/01 In 1: Falling edge 5Cmin 2.5833 0.1969 

NAND4 1011/1111 In 2: Rising edge 1Cmin 0.4879 1.2089 

NAND4 1011/1111 In 2: Rising edge 2Cmin 0.4737 1.3986 

NAND4 1011/1111 In 2: Rising edge 3Cmin 0.4624 1.4984 

NAND4 1011/1111 In 2: Rising edge 4Cmin 0.4621 1.6078 

NAND4 1011/1111 In 2: Rising edge 5Cmin 0.4626 1.7695 

NAND3 101/111 In 2: Rising edge 1Cmin 0.4713 1.1208 

NAND3 101/111 In 2: Rising edge 2Cmin 0.4619 1.4444 

NAND3 101/111 In 2: Rising edge 3Cmin 0.4801 1.5536 

NAND3 101/111 In 2: Rising edge 4Cmin 0.4858 1.6074 

NAND3 101/111 In 2: Rising edge 5Cmin 0.5063 1.7128 

NAND2 10/11 In 2: Rising edge 1Cmin 1.4158 2.0656 

NAND2 10/11 In 2: Rising edge 2Cmin 1.1813 2.321 

NAND2 10/11 In 2: Rising edge 3Cmin 1.0537 2.4875 

NAND2 10/11 In 2: Rising edge 4Cmin 1.1476 3.1315 

NAND2 10/11 In 2: Rising edge 5Cmin 1.2716 3.7823 

NAND4 1111/1011 In 2: Falling edge 1Cmin 0.2239 0.3242 

NAND4 1111/1011 In 2: Falling edge 2Cmin 0.2199 0.2713 

NAND4 1111/1011 In 2: Falling edge 3Cmin 0.8490 0.2203 

NAND4 1111/1011 In 2: Falling edge 4Cmin 0.9291 0.1920 

NAND4 1111/1011 In 2: Falling edge 5Cmin 0.6561 0.1766 

NAND3 111/101 In 2: Falling edge 1Cmin 0.3580 0.3395 

NAND3 111/101 In 2: Falling edge 2Cmin 0.3305 0.2461 

NAND3 111/101 In 2: Falling edge 3Cmin 0.3482 0.2031 

NAND3 111/101 In 2: Falling edge 4Cmin 0.6310 0.1742 

NAND3 111/101 In 2: Falling edge 5Cmin 0.8484 0.1547 

NAND2 11/10 In 2: Falling edge 1Cmin 0.5155 0.3823 

NAND2 11/10 In 2: Falling edge 2Cmin 0.5148 0.2265 
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NAND2 11/10 In 2: Falling edge 3Cmin 0.6493 0.1789 

NAND2 11/10 In 2: Falling edge 4Cmin 1.2795 0.1563 

NAND2 11/10 In 2: Falling edge 5Cmin 1.3052 0.1544 

NAND4 1101/1111 In 3: Rising edge 1Cmin 2.3316 1.3808 

NAND4 1101/1111 In 3: Rising edge 2Cmin 2.2684 1.7386 

NAND4 1101/1111 In 3: Rising edge 3Cmin 2.2136 2.0173 

NAND4 1101/1111 In 3: Rising edge 4Cmin 2.1679 2.2536 

NAND4 1101/1111 In 3: Rising edge 5Cmin 2.1294 2.4641 

NAND3 110/111 In 3: Rising edge 1Cmin 2.0135 1.9311 

NAND3 110/111 In 3: Rising edge 2Cmin 2.0068 2.5634 

NAND3 110/111 In 3: Rising edge 3Cmin 1.9904 3.0461 

NAND3 110/111 In 3: Rising edge 4Cmin 1.9397 3.5036 

NAND3 110/111 In 3: Rising edge 5Cmin 1.9255 4.0419 

NAND4 1111/1101 In 3: Falling edge 1Cmin 0.4023 0.3691 

NAND4 1111/1101 In 3: Falling edge 2Cmin 0.3917 0.1173 

NAND4 1111/1101 In 3: Falling edge 3Cmin 0.2855 0.04960 

NAND4 1111/1101 In 3: Falling edge 4Cmin 0.4618 0.08620 

NAND4 1111/1101 In 3: Falling edge 5Cmin 0.2783 0.04400 

NAND3 111/110 In 3: Falling edge 1Cmin 0.9346 0.2218 

NAND3 111/110 In 3: Falling edge 2Cmin 0.6506 0.1567 

NAND3 111/110 In 3: Falling edge 3Cmin 0.6847 0.1168 

NAND3 111/110 In 3: Falling edge 4Cmin 0.9576 0.2192 

NAND3 111/110 In 3: Falling edge 5Cmin 1.5883 0.4002 

NAND4 1110/1111 In 4: Rising edge 1Cmin 2.7663 2.1682 

NAND4 1110/1111 In 4: Rising edge 2Cmin 2.9087 2.7267 

NAND4 1110/1111 In 4: Rising edge 3Cmin 2.9932 3.2404 

NAND4 1110/1111 In 4: Rising edge 4Cmin 3.0476 3.8167 

NAND4 1110/1111 In 4: Rising edge 5Cmin 3.0647 4.3224 

NAND4 1111/1110 In 4: Falling edge 1Cmin 1.1331 0.4199 

NAND4 1111/1110 In 4: Falling edge 2Cmin 1.5753 0.3529 

NAND4 1111/1110 In 4: Falling edge 3Cmin 1.2951 0.2764 

NAND4 1111/1110 In 4: Falling edge 4Cmin 0.9256 0.2404 

NAND4 1111/1110 In 4: Falling edge 5Cmin 1.1751 0.3994 

NOR4 0010/0000 In 3: Falling edge 1Cmin 0.5374 1.8113 

NOR4 0010/0000 In 3: Falling edge 2Cmin 0.3639 2.0159 

NOR4 0010/0000 In 3: Falling edge 3Cmin 0.4618 2.2004 

NOR4 0010/0000 In 3: Falling edge 4Cmin 0.4727 3.6431 

NOR4 0010/0000 In 3: Falling edge 5Cmin 0.4363 2.8243 

NOR4 0000/0010 In 3: Rising edge 1Cmin 0.6859 0.2293 

NOR4 0000/0010 In 3: Rising edge 2Cmin 0.9612 0.2080 

NOR4 0000/0010 In 3: Rising edge 3Cmin 1.0353 0.2004 

NOR4 0000/0010 In 3: Rising edge 4Cmin 1.2971 0.1897 

NOR4 0000/0010 In 3: Rising edge 5Cmin 1.5188 0.1450 

NOR4 0000/0001 In 4: Rising edge 1Cmin 0.5458 2.0979 

NOR4 0000/0001 In 4: Rising edge 2Cmin 0.3573 2.208 

NOR4 0000/0001 In 4: Rising edge 3Cmin 0.4779 1.7126 

NOR4 0000/0001 In 4: Rising edge 4Cmin 0.4784 1.9594 

NOR4 0000/0001 In 4: Rising edge 5Cmin 0.4500 2.1764 

NOR4 0001/0000 In 4: Falling edge 1Cmin 0.8233 0.2106 
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NOR4 0001/0000 In 4: Falling edge 2Cmin 0.9897 0.1861 

NOR4 0001/0000 In 4: Falling edge 3Cmin 1.4074 0.1727 

NOR4 0001/0000 In 4: Falling edge 4Cmin 1.6072 0.1595 

NOR4 0001/0000 In 4: Falling edge 5Cmin 1.7924 0.1654 

NOR3 000/001 In 3: Rising edge 1Cmin 0.2551 0.7337 

NOR3 000/001 In 3: Rising edge 2Cmin 0.1719 1.3203 

NOR3 000/001 In 3: Rising edge 3Cmin 0.1455 0.9824 

NOR3 000/001 In 3: Rising edge 4Cmin 0.1390 0.6844 

NOR3 000/001 In 3: Rising edge 5Cmin 0.1344 0.5282 

NOR3 001/000 In 3: Falling edge 1Cmin 0.6164 0.5246 

NOR3 001/000 In 3: Falling edge 2Cmin 0.4089 1.5231 

NOR3 001/000 In 3: Falling edge 3Cmin 0.4784 1.6886 

NOR3 001/000 In 3: Falling edge 4Cmin 0.4744 1.6795 

NOR3 001/000 In 3: Falling edge 5Cmin 0.4510 1.571 

NOR4 0000/0100 In 2: Rising edge 1Cmin 0.5274 1.6216 

NOR4 0000/0100 In 2: Rising edge 2Cmin 0.3316 2.3088 

NOR4 0000/0100 In 2: Rising edge 3Cmin 0.4543 1.8965 

NOR4 0000/0100 In 2: Rising edge 4Cmin 0.4746 2.0556 

NOR4 0000/0100 In 2: Rising edge 5Cmin 0.4522 2.6831 

NOR3 000/010 In 2: Rising edge 1Cmin 1.4558 1.6867 

NOR3 000/010 In 2: Rising edge 2Cmin 1.6773 1.5655 

NOR3 000/010 In 2: Rising edge 3Cmin 1.7796 1.6054 

NOR3 000/010 In 2: Rising edge 4Cmin 1.7313 1.6271 

NOR3 000/010 In 2: Rising edge 5Cmin 1.8161 1.6369 

NOR2 00/01 In 2: Rising edge 1Cmin 2.3716 1.3795 

NOR2 00/01 In 2: Rising edge 2Cmin 1.6713 1.527 

NOR2 00/01 In 2: Rising edge 3Cmin 1.8547 1.5313 

NOR2 00/01 In 2: Rising edge 4Cmin 2.2648 1.3398 

NOR2 00/01 In 2: Rising edge 5Cmin 2.3932 1.1104 

NOR4 0100/0000 In 2: Falling edge 1Cmin 1.0208 0.2088 

NOR4 0100/0000 In 2: Falling edge 2Cmin 1.1781 0.1803 

NOR4 0100/0000 In 2: Falling edge 3Cmin 1.9611 0.1634 

NOR4 0100/0000 In 2: Falling edge 4Cmin 1.9979 0.1527 

NOR4 0100/0000 In 2: Falling edge 5Cmin 2.119 0.1459 

NOR3 010/000 In 2: Falling edge 1Cmin 0.1207 0.7596 

NOR3 010/000 In 2: Falling edge 2Cmin 0.1536 0.7373 

NOR3 010/000 In 2: Falling edge 3Cmin 0.2008 0.7838 

NOR3 010/000 In 2: Falling edge 4Cmin 0.1608 0.8374 

NOR3 010/000 In 2: Falling edge 5Cmin 0.1307 0.8870 

NOR2 01/00 In 2: Falling edge 1Cmin 0.2323 1.1589 

NOR2 01/00 In 2: Falling edge 2Cmin 0.1463 1.6658 

NOR2 01/00 In 2: Falling edge 3Cmin 0.1602 1.3492 

NOR2 01/00 In 2: Falling edge 4Cmin 0.1556 1.0585 

NOR2 01/00 In 2: Falling edge 5Cmin 0.1486 0.9179 

NOR4 0000/1000 In 1: Rising edge 1Cmin 0.2564 0.5000 

NOR4 0000/1000 In 1: Rising edge 2Cmin 0.3944 1.9214 

NOR4 0000/1000 In 1: Rising edge 3Cmin 0.5004 2.1723 

NOR4 0000/1000 In 1: Rising edge 4Cmin 0.5057 2.2549 

NOR4 0000/1000 In 1: Rising edge 5Cmin 0.4880 2.2015 
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NOR3 000/100 In 1: Rising edge 1Cmin 1.729 0.8017 

NOR3 000/100 In 1: Rising edge 2Cmin 2.4428 0.7842 

NOR3 000/100 In 1: Rising edge 3Cmin 3.3468 0.7776 

NOR3 000/100 In 1: Rising edge 4Cmin 3.760 0.7675 

NOR3 000/100 In 1: Rising edge 5Cmin 4.1451 0.7724 

NOR2 00/10 In 1: Rising edge 1Cmin 2.0047 0.9736 

NOR2 00/10 In 1: Rising edge 2Cmin 1.8563 1.421 

NOR2 00/10 In 1: Rising edge 3Cmin 1.8607 1.6457 

NOR2 00/10 In 1: Rising edge 4Cmin 1.9983 1.7171 

NOR2 00/10 In 1: Rising edge 5Cmin 2.4373 1.7666 

NOR4 1000/0000 In 1: Falling edge 1Cmin 2.1266 1.3187 

NOR4 1000/0000 In 1: Falling edge 2Cmin 3.0438 1.2187 

NOR4 1000/0000 In 1: Falling edge 3Cmin 3.0057 0.8174 

NOR4 1000/0000 In 1: Falling edge 4Cmin 3.1374 0.5565 

NOR4 1000/0000 In 1: Falling edge 5Cmin 3.2600 0.4003 

NOR3 100/000 In 1: Falling edge 1Cmin 0.5417 0.5445 

NOR3 100/000 In 1: Falling edge 2Cmin 0.3858 1.1446 

NOR3 100/000 In 1: Falling edge 3Cmin 0.4326 1.3286 

NOR3 100/000 In 1: Falling edge 4Cmin 0.4114 1.4539 

NOR3 100/000 In 1: Falling edge 5Cmin 0.4087 1.6681 

NOR2 10/00 In 1: Falling edge 1Cmin 1.5765 1.2808 

NOR2 10/00 In 1: Falling edge 2Cmin 1.4248 0.7475 

NOR2 10/00 In 1: Falling edge 3Cmin 2.0625 0.4822 

NOR2 10/00 In 1: Falling edge 4Cmin 2.6643 0.3801 

NOR2 10/00 In 1: Falling edge 5Cmin 2.8578 0.3560 
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