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Abstract

The conventional approach for testing RF circuits is specification-based testing, which
involves verifying sequentially all specification requirements that are promised in the data
sheet. This approach is a long-time effective test approach but nowadays suffers from
significant drawbacks. First, it requires generation and capture of test signals at the DUT
operating frequency. As the operational frequencies of DUT are increasing, it becomes
difficult to manage signal generation and capture using ATE. As a consequence, there is a
need of expensive and specialized equipment. In addition, as conventional tests target
several parameters, there is a need of several data captures and multiple test
configurations. As a consequence, by adding setting time between each test and test
application time, the whole test time becomes very long, and the test board very complex.
Another challenge regarding RF circuit testing is wafer-level testing. Indeed, the
implementation of specification-based tests at wafer level is extremely difficult due to
probing issues and high parasitic effects on the test interface. Moreover, multi-site testing is
usually not an option due to the small count of available RF test resources, which decreases
test throughput. Hence, the current practice is often to verify the device specifications only
after packaging. The problem with this solution is that defective dies are identified late in
the manufacturing flow, which leads to packaging loss and decreases the global yield of the
process. In order to reduce production costs, there is therefore a need to develop test
solutions applicable at wafer level, so that faulty circuits can be removed very early in the
production flow. This is particularly important for dies designed to be integrated in Systems-
In-Package (SiP). In this context, a promising solution is to develop indirect test methods.
Basically, it consists in using DUT signatures to non-conventional stimuli to predict the result
of conventional tests. The underlying idea is to learn during an initial phase the unknown
dependency between simple measurements and RF parameters. This dependency can then
be modeled through prediction functions. During the testing phase, only the indirect
measurements are performed and specifications are predicted using the prediction model
built in the learning phase. Our work has been focused on two main directions. First, we
have explored the implementation of the indirect test method based on DC measurements
for RF circuits and we have proposed a methodology to select the most appropriate set of
DC parameters. Results from two test vehicles (a LNA using electrical simulations and a PA
using real production data) indicate that the proposed methodology allows precise
estimation of the DUT performances while minimizing the number of DC measurements to
be carried out (i.e. test solution cost). Second, we have proposed a novel implementation
scheme of the indirect test strategy in order to improve confidence in predictions and to
overcome the effect of limited training set sizes. The idea is to exploit model redundancy in
order to identify, during the production testing phase, devices with suspect predictions;
these devices are then removed from the alternate test tier and directed to a second tier
where further testing may apply.



Résumeé

Contrairement aux circuits numériques qui peuvent comporter plusieurs centaines de
million de transistors, les circuits analogiques et radio fréquence sont généralement
constitué d’'un nombre réduit d’éléments ne dépassant que rarement la centaine de
transistors. Malgré tout, le test de ces circuits est un probléme particulierement critique.
Conventionnellement, ce test se base sur la mesure des performances du circuit et la
comparaison des résultats obtenus aux spécifications décrites dans le cahier des charges.
Cette approche est considérée, de longue date, 'approche la plus efficace mais aujourd’hui
elle souffre de sérieux inconvénients. Tout d'abord, elle nécessite la génération et la capture
des signaux de test a la fréquence de fonctionnement du circuit sous test. Comme les
fréquences de fonctionnement des circuits analogique et radio fréquence sont en
augmentation, il devient difficile de gérer la génération et la capture des signaux au niveau
de I'équipement de test. En conséquence, il devient nécessaire d’utiliser des équipements
de test spécialisés et extrémement colteux. En outre, comme cette approche
conventionnelle cible le test de plusieurs parametres du circuit, il est nécessaire d’effectuer
plusieurs captures de données sous multiples configurations de test. En conséquence, en
ajoutant le temps de configuration de chaque mesure au temps de I'application des signaux,
le temps de test total devient trés long et les cartes de test complexes. Un autre défi se
présente vis-a-vis le test des circuits radio fréquence au niveau plaquettes (wafer). En effet,
la mise en ceuvre de tests basés sur les spécifications au niveau de la plaquette est
extrémement difficile en raison des parasites élevés sur les sondes de l'interface de test. En
outre, le test multi-site n'est généralement pas une option envisageable en raison des
ressources RF limité sur les testeurs, ce qui réduit la cadence de test. En conséquent, la
pratique actuelle est souvent se limite a la vérification des circuits aprés la mise en boitier.
Le probleme d’une telle approche c’est qu’elle ne permet pas d’identifier les piéces
défectueuses a un niveau tot du processus de fabrication et génére une diminution du
rendement global et augmente le colt de fabrication. Afin de réduire les colts de
production, il est donc nécessaire de développer des solutions de test applicables au niveau
de la plaquette, de sorte que les circuits défectueux peuvent étre retirés trés tot dans le flux
de production. Ceci est particulierement important dans le cadre des circuits intégrés de
type systémes en boitier (SiP). Dans ce contexte, une solution prometteuse consiste a
développer des méthodes tests indirectes. Fondamentalement, elles consistent a utiliser des
signatures et des stimuli non conventionnels pour prédire les performances du circuit sous
test. L'idée sous-jacente est d'apprendre au cours d'une phase initiale de la dépendance
inconnu entre des mesures simples et les paramétres RF. Cette dépendance peut alors étre
modélisée par des fonctions de prédiction. Au cours de la phase de test, seules les mesures
simples, dite indirects, sont effectuées et les performances du circuit sont estimées en
utilisant le modeéle de prédiction construit dans la phase d'apprentissage. Malgré, que cet
approche semble prometteuse les industriel non pas complétement confiance en ce genre
d’approche. Ceci est du faite que les valeurs des performances du circuit sont prédites et
peuvent parfois avoir des erreurs. Ce travail vise a améliorer la confiance en ce genre de test
en améliorant la précision et la robustesse des valeurs prédites.
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Introduction

The recent advances in fabrication and packaging technologies have enabled the
development of high performance complex Radio Frequency (RF) chips for a wide range of
applications. RF chips, which are the focus of this work, are on the leading edge of
technological developments and rise a significant number of production problems.
Considering first the global production costs of high volume production of Integrated Circuits
(ICs), these costs include design, manufacturing and test costs. In the recent years it has been
observed that 1) design costs have grown significantly but not drastically due to improved
design productivity, ii) manufacturing costs have remained reasonably flat because of
technological advances, iii) test costs have dramatically increased because of ever demanding
requirements on the test instrumentation. Note that this is true for today highly integrated
digital System-on-Chip (SoC) and System-in-Package (SiP) products manufactured in
nanometer technology for which an Automatic Test Equipment (ATE) equipped with high-
speed digital resources are required. But it is even emphasized for analog and RF products for
which not only high-speed but also high-precision analog and RF test resources are required.

Indeed the conventional approach for testing analog and Radio Frequency (RF) devices
is specification-oriented testing, which consists in measuring the majority or totality of the
circuit performance parameters defined in its datasheet and comparing these values to pre-
defined tolerance limits in order to sort the fabricated circuits as good or bad circuits. Typical
RF measurements include “Gain”, “Noise Figure” (NF), “Third-Order Intermodulation”
(IP3), just to name a few... This strategy, summarized by Fig. 1, aims at adapting the test to
each kind of circuit, according to its function and performances. Another strategy, called
structural-oriented testing, has been developed over the years. This strategy relies on a list of
fault models to be applied to any kind of circuit regardless of its function. The specification-
oriented strategy was and continues to be predominantly adopted due to the lack of widely
applicable fault models. The clear advantage of specification-oriented testing is that it
obviously offers good test quality, but at extremely high cost due to the required sophisticated
test equipment and long test time. In addition, testing is usually applied at two different levels

of the manufacturing process, i.e. first at wafer-level after silicon wafers have been fabricated



and then at package-level once circuits have been encapsulated. For all these reasons, testing

costs for RF products are becoming the largest part of the overall costs [1] [2].

DUT
Test Configuration

Performance
Parameters

Specifications

Pass/Fail

Fig. 1: Specification-based test strategy

Beyond the cost problems, technical measurement capabilities are also a challenge,
especially at wafer level which is of crucial importance to guarantee Known-Good-Dies
(KGD) [3]. Indeed RF measurements are severely impacted by the environment: parasitic
elements, improperly calibrated equipment, external radiations, etc. Assuming a complex RF
chip with limited access, it is very difficult if not impossible to get the correct RF parameters
measurement even by using expensive ATE equipped with high-performance resources.
Consequently due to the high cost and technical problems, specification-based RF IC testing
is the major bottleneck to reduce the overall manufacturing cost in semiconductors industry.

In this context, industrials are continuously looking for novel low-cost test strategies for
analog and RF devices to overcome the cost issue. Several techniques such as analog Built-In-
Self-Test (BIST) and Design for Test (DfT), which are no longer based on RF specification
measurements, have been investigated. They are based on signature measurements to classify
good and bad devices. Another promising solution to lessen the burden of specification testing
is indirect testing, also called in literature alternate testing. In this strategy, the results of
specification testing are derived from a set of few Indirect Measurements (IMs) obtained with
low-cost test equipment. The idea is to use a training set of devices in order to learn the
mapping between the indirect measurements and the circuit performance parameters during a
first phase; only the indirect measurements are then used during the production testing phase
to perform device specification prediction and/or device classification. As a consequence, it is
possible to significantly decrease the number and complexity of test configurations.

Despite the clear advantages of employing the indirect test approach and a number of
convincing attempts to prove its efficiency [4] [5] [6], the deployment of this strategy in
industry is limited. This is due to the fact that the RF parameters values are predicted and not

actually measured; industrials have not sufficient confidence on the predicted RF' parameters.



This lack of confidence is generated by the prediction model itself. Indeed it is very difficult
to map all the interactions between an RF parameter to be predicted and the indirect
measurements for the entire possible situations in a prediction model. Moreover, the
prediction model is valid only on a set of devices having the same statistical properties of the
set used to build the prediction model. These facts lead to inaccurate prediction of the RF
parameter for some devices. Although the number of such devices is extremely small, the
large error between actual and predicted values of these devices constitutes a serious obstacle
for a large deployment of the indirect testing strategy in the industry. The objective of this
work is to provide confidence in the indirect test strategy by improving prediction accuracy
and ensuring robustness of the test procedure.

The first chapter is a quick overview on the analog and RF ICs testing state of the art.
At this level, factors contributing to the cost of a given testing strategy are analyzed. Then we
present the specificity of RF IC testing. Finally in this chapter, some cost-reduced RF IC
testing strategies are presented.

In the second chapter, the efficiency of prediction-oriented indirect testing is deeply
analyzed. First, we introduce the test vehicles which will be used for the experiments all over
this work. These test vehicles are from NXP Semiconductors and they comprise a Low Noise
Amplifier (LNA) and a Power Amplifier (PA) Then, we present results of experiments
performed in order to compare some regression-fitting algorithms and highlight the
limitations of the conventional implementation scheme.

The third chapter deals with the problem of selecting a pertinent set of indirect
measurements that permits to accurately predict the device specifications. The efficiency of
some commonly-used feature selection algorithms is investigated and an alternative selection
strategy is developed with the objective to reduce the overall cost while maintaining the
accuracy.

The fourth and last chapter is dedicated to study prediction confidence and model
robustness versus some varying parameters. Here a strengthened implementation of the
prediction-oriented indirect test is proposed. This new implementation is based on prediction
model redundancy and it can be adopted to improve prediction accuracy and ensure
robustness against learning conditions such as training set of limited size or use of indirect
measurements with imperfect correlation with specifications.

Finally in the conclusion, the main contributions of this thesis are summarized and

perspectives for future work are presented.






Chapter [

State of the Art of Analog/RF IC Testing

I.1 Introduction

The design of digital circuits follows, for decades, trends that nowadays potentially
make them constituted of billions of transistors. On contrary analog/RF circuits remain made
of a reduced number of basic elements, rarely exceeding a few hundreds.

From a testing point of view, the main issues stand on the side of analog/RF circuits.
Indeed in parallel of the increasing number of transistors in digital circuits, the testing strategy
that became predominant is called the structural testing. Thanks to the limited number states
of a digital signal, it has been possible to develop a strategy that can be applied to any kind of
digital circuit regardless of their function. In addition thanks to structural testing, it is possible
to run parallel tests, in order to tackle the issue of the total time for testing. On the opposite,
analog signals are continuous in time and amplitude, inducing infinity of possible values.
Their characteristics strongly rely on the considered circuit and its function. In addition these
signals are also sensitive to the using conditions such as the temperature and to the variations
of manufacturing process variables. As a consequence, testing analog circuits requires the use
of stimuli that are functional signals in order to measure the specifications of the considered
circuit-under-test. As a consequence, testing methodologies for analog circuits are specific to
each type of circuit (power amplifier, low noise amplifier, mixer...). For years, some
researchers try to develop a structural test strategy for any kind of analog circuits, but it is
very difficult to provide a relevant list of fault models affecting analog circuits like for digital
circuits. As a consequence the specification-based test approach remains the main strategy
used for testing analog circuits. Although, the specification based test strategy has the golden
test quality, it is a very heavy procedure. It, due to the cost of the RF equipment, the
calibration step, enabling multisite test and the large test time, industrials want to develop
alternative analog RF test strategies to overcome these issues. This chapter provides an
overview on the current practice in analog and RF IC test. In addition, we introduce several

low-cost testing paradigms including the DFT/BIST based solution, the loopback testing, and



the indirect testing that offer the promise of significant test cost reduction with little or even

no compromise in test quality.



1.2 Industrial test generalities

Testing integrated circuits or systems is a mandatory phase in the manufacturing
process. As the functioning of an electronic device strongly relies on each circuit or systems
that compose it, each sample of a circuit or system is consequently tested before
commercialization. The test concern mainly two different phases in cycle of maturity of a
semiconductor product: characterization phase and production phase. The objectives of
product test at these two phases are radically different.

The first type is dedicated for the pre-series of a manufactured device. It is basically
intended to validate the design of the circuit or system in terms of functionality and
specifications. For this, a variety of tests involving different settings are performed to measure
the characteristics of the manufactured circuit and most critical functional conditions. At this
stage, sophisticated equipment is used; the test time and cost are not critical constraints. Once
the characterization phase is complete, the high volume production of circuit is launched. In
this level each manufactured device should be tested to ensure conformance to the datasheet
specifications. Along the flow of /C manufacturing several tests are performed. We
distinguish specially, to critical steps of the flow where the conformity of the devices should
be checked. The first is before die dicing it called wafer sort where defective die are
eliminated from the flow. The Second is after die packaging to ensure the conformance of the
device to its datasheet requirements.

Given the large number of manufactured devise, typically several million per year, the
test cost becomes very important criterion. The cost of a test solution results from many
factors: test equipment capital, additional facilities capital (Handler, RF probes, etc.),
operations overhead (operator, maintenance, building, etc.), Test development engineering [7]
[8].

Fig. 2 emphasizes the relative importance of the test time on the overall test cost per
device. The cost factors associated with testing a device at various test times are shown. Note
that the primary contributor to the device test cost is the operations overhead cost followed by

the test system capital cost.
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Fig. 2: Test cost versus test time.

According to this model the test time play a significant role to reduce the overall test
cost per device. A total test time of 330ms leads to a one-cent-per-device total test cost. Based
on the above observation, an RF IC test system is needed that could achieve a 300 ms (or less)
per device test time to reach the targeted one-cent-per-device test cost. How to accomplish
these two factors play a significant role starting with the hardware cost and then test time

reduction.
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ATE Cost
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Base ATE
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Fig. 3: ATE cost increase with additional added features

The Fig. 3 shows the cost test equipment capital increase with adding additional
features. Regarding to Fig. 2 and Fig. 3 RF devices have the highest test cost among all the
types of circuits. This is due to the higher cost of the RF test features. This is a real obstacle
for developing test solutions with a reduced cost per device. However, several techniques
have been developed to relax the equipment constraints. The strategies presented in this

chapter and in the next ones aim at reducing the amount due to the test equipment.



Concerning the test time, there are two main contributors: the time for the test program
to run (which is linked to the time needed to set and operate each test) and how fast can the
handler move the parts between the bins and the socket or move the wafer. This work focuses
on the first contributor. One way to reduce the program test time is to simplify the test
measurement required such as converting a test signal to a DC parameter instead of digitizing
it. Further in this chapter, techniques for test time reduction and equipment cost reduction will

be presented.

I.3 Analog/RF ICs testing specificity
1.3.1 Faults in analog/RF ICs

Faults in analog/RF ICs could be classified into two main categories: Catastrophic faults
and parametric faults. Catastrophic faults (i.e. hard impact in the circuit) include generally
shorts between nodes, open nodes and other hard changes in a circuit. Parametric faults (i.e.
soft impacts in the circuit) are faults that do not affect the connectivity of the circuit; those
are, for the most, variations of the dimensions of transistors and passive components due to a
not-well controlled technology process. Moreover, the parametric faults are further
categorized into global and local faults. The first one occurs when all active or passive area in
the device are impacted while the second occurs only when these areas are affected locally in
the circuit. Global defects usually result from fluctuation in the manufacturing environment,
such as a systematic misalignment of masks or a problem which systematically affects the
active areas of the transistors. The variation of manufacturing environment can also lead to
local defects. In this case, it is not a systematic variation but a local variation generating slight
random differences between two adjacent components: this is called mismatch. Other typical
example of a local defect is constituted by a dust particle on a lithographic mask producing a

disparity such as a local variation in the ratio w/! of a transistor.

1.3.2 Analog/RF ICs test: current practice

Usually, catastrophic faults are easy to detect. In this case the device has a severe
dysfunction or it simply does not work. A simple continuity test is often enough to identify
defective devices including this type of fault. In addition, defect models modeling shorts and
opens in the circuit can be used to primary eliminate this kind of faulty circuits. The most
problematic thing is how to detect devices including parametric faults. Insofar as the

parametric faults affect the performance of the circuit, the device passes the continuity test
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and there are no reliable fault models that can detect the faults. The only way to detect the
devices affected by the parametric faults is to measure the performance of the circuits and to
compare them to those defined in its datasheet.

In the context of analog/RF ICs the specification test is usually reserved to the final test
(i.e. packaged device). For many years, the wafer sort is based on decimating devices only
including catastrophic faults. As a result there was limited ability to reduce overall test costs.
Another problematic fact that with novel IC integration methods like SiP (System in Package)
and 3D the industrials need for KGD (known good die) to develop reliable and cost efficient
processes. The issue of package scrap is more problematic with these technologies. For the
RF devices, KGD is synonym of specification test which performance of each device is

measured. Fig. 4 shows an example of wafer level RF IC test.

Fig. 4: Wafer-level RF IC test (RF prob)

It is clear that wafer level test in this case is very costly due to the need of expensive
equipment that avoids the possibility for multi-site testing.

During many years test engineers should choose between two strategies for RF IC
testing. The first favor a cost optimized test solution for which only basic tests are performed
at wafer level and a specification oriented test is performed once the devices are packaged.
Note that this strategy leads to high scrap and does not suite advanced IC integration
technologies like SiP and 3D. The second strategy favors a high quality test solution which is
a costly and complex solution due to RF equipment needed to perform a specification based

test at wafer level.
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In the following some techniques for RF IC test cost reduction are discussed. Some of
these techniques use the IC resources to relax the constraints on tester equipment. Others try

at time to optimize test time and relax tester constraints by using DC stimulus.

1.4 Cost-reduced RF IC testing strategies

This section presents a state-of-the-art of strategies proposed in the literature to deal

with the test cost reduction of the analog and RF circuits.

1.4.1 Integrated test solution

A classical approach to reduce the equipment cost required for the test procedure, is to
embed all or a part of the test resources into the circuit itself. This approach is known as
Design for Testability (DfT) or Built-In Self-Test (BIST) in case of self-testing. Fig. 5 shows
the principle of the integrated test.

- ——— e ————— -

G . R i —
B b

Low Cost Test Equipment

Fig. 5: Principle of integrated test solution

These techniques either directly measure the circuit performance on-chip or produce a
signature that has strong correlation to the “health” of the circuit. To offer self-test capability,
the BIST circuitry, which comprises a signal generator and a response analyzer, should be
more robust than the DUT. These techniques imply adding additional circuitry that can
dramatically increase the device area. In the context of small devices like Low Noise
Amplifier (LNA), mixer or Power Amplifier (PA) these techniques are not efficient due to the
amount of added area for test resources. Contrariwise, they could be very interesting test
solution in the context of complex circuit like SoC and SiP systems which digital resources of

the device could be used for the RF front ends test.
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1.4.2 Loopback testing

The loopback testing is a low-cost solution for testing RF frontend modules and
systems. Since the RF emitter and the receiver are integrated in the same device they are
configured to test each other, the requirement for high-performance testers is alleviated [9].

The following figure shows the principle of the loopback testing.

™
[
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]
: Iinternal looping
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Fig. 6: Principle of the loopback testing

Actually, the loopback testing is a system-oriented strategy to the extent that we are
interested in evaluating the performance of the entire system and not to evaluate the
performance of each RF block. The main advantages of this approach are on the one hand, the
relaxed constraints on the test equipment necessary since the application and analysis of test
signals are in baseband domain. Secondly, the test time is reduced since the whole system is
tested once [10]. However, this approach suffers from limited test coverage [11] and requires

careful design elements inserted in the system to perform the loopback [12] [13].

1.4.3 Indirect testing

Also called alternate testing, the purpose of this strategy is to relax constraints on the
number and complexity of industrial test configurations needed to perform the RF parameters
evaluation. Instead of directly measuring the circuit performances, the approach predicts them
based on a set of DUT signatures that are captured from cheaper and simpler test setups and
measurements. As presented by the Fig. 7, the underlying idea of indirect testing is that
process variations that affect the conventional performance parameters of the device also
affect non-conventional low-cost indirect parameters in the same way. If the correlation
between the indirect parameter space and the performance parameter space can be established,

then specifications may be verified using only the low-cost indirect signatures. Unfortunately
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the relation between these two sets of parameters is complex and cannot be simply identified
with an analytic function. The solution commonly implemented uses the computing power of

machine-learning algorithms.

Process Variations

Performance Parameters Low-costIndirect Parameters
Vdc a
Bad Good w

Galn(dB) Correlation? Time (s)
Idc ;
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IP3(dB) Time (9

Fig. 7: Underlying idea of indirect testing.

The indirect test principle is split into two sequential steps, namely training and
production testing phases. The underlying idea is to learn during the training phase the
unknown dependency between the low-cost indirect parameters and the conventional test
ones. For this, both the specification tests and the low-cost measurements are performed on a
training set of device instances. The mapping derived from the training phase is then used
during the production testing phase, in which only the low-cost indirect measurements are
performed.

The indirect testing is an interesting test solution for both package and wafer test levels.
The non-complex indirect measurements are perfect for the wafer level test. Two main
directions are explored for the implementation of the indirect testing, i.e. classification-

oriented strategy [14] [15] [16] [17] [18] or prediction-oriented strategy [5] [19] [20] [21].

A. Classification-oriented strategy

As illustrated by the Fig. 8 in the first direction, the Training Set (7S) is used to derive
decision boundaries that separate nominal and faulty circuits in the low-cost indirect

measurement space (specification tolerance limits are therefore part of the learning
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algorithm). The objective is actually to perform the classification of each circuit as a good

circuit or a faulty circuit, but without predicting its individual performance parameters.

Specﬁ
tolerance limits
Analog/RF

performance —L
Data from measurements Learn decision
training set boundaries on

of devices Indirect J—' indirectmeas.

low-cost
measurements

TRAINING PHASE

PRODUCTION TESTING PHASE

New Passf/fail
device Indirect Process through decision
low-cost — learned decision
measurements boundaries

CLASSIFICATION-ORIENTED ALTERNATE TESTING

Fig. 8: Classification oriented Indirect Testing

B. Specification prediction-oriented strategy

As illustrated by the Fig. 9 in the second variant, the training set is used to derive
functions that map the low-cost indirect measurements to the performance parameters
(typically using statistical regression models). The objective is actually to predict the
individual performance parameters of the device; subsequent test decisions can then be taken

by comparing predicted values to specification tolerance limits

Analog/RF
performance 1
t
Datafrom | |_meaurements | Build
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i for Spec1
of devices Indirect
low-cost
measurements

TRAINING PHASE

PRODUCTION TESTING PHASE

New Specs
device Indirect Process through prediction
low-cost — builtregression
measurements models

PREDICTION-ORIENTED ALTERNATE TESTING

Fig. 9: Prediction oriented Indirect Testing

The main advantage of this strategy is that it provides a prediction of the individual
performance parameters. This information can then be used to monitor possible shift in

process manufacturing, adjust test limits during production phase if necessary, or perform
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multi-binning. Because of these significant advantages of prediction-oriented approach on
classification-oriented one, it is decided to focus improvement efforts on this approach.
During next chapter this variant of the indirect testing will be studied in details.

Note that in case of DC-based indirect measurement this technique is practically

suitable for wafer level testing.

C. Spatial correlation based testing

Another type of exploiting correlation in analog RF IC testing is the spatial correlation
based approach. In this case, contrary to the indirect test approach, costly specification tests
are not completely eliminated. Instead, they are only performed on a sparse subset of die on
each wafer and, subsequently, used to build a spatial model, which is then used to predict
performances at unobserved die locations in the wafer. The assumption made is that during
the manufacturing process the neighboring dies are affected in the same way. Knowing the
value of the performance of a die, we can predict the performance of its nearest neighbors.

The Fig. 10 shows the synopsis of the spatial correlation based testing.

Die sampling

[ Tested dies
B Predicted dies
Spatial model
construction

Industrial test

Fig. 10: Wafer level test cost reduction based on spatial correlation.

Several works investigate methods to develop variability decomposition method for
spatial modeling. In [22] authors estimate the spatial wafer measurements using Expectation
Maximization (EM) algorithm. The idea assumes that data is governed by a multivariate
normal distribution. In case that the assumption is not true the authors use the Box-Cox
transformation. Another way to model the spatial variation is the Virtual Probe (VP) which
uses a Discrete Cosine Transform (DCT) to define the model [22]. Similarly, Gaussian
Process (GP) models based on Generalized Least Square fitting can be used for the spatial
interpolation of manufacturing data [23].

We note that good accuracy of spatial model is not usually guaranteed. In [24], authors

combine the indirect testing with the spatial correlation for enhanced accuracy models.
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1.5 Conclusion

The importance of developing high quality and cheaper IC is highlighted by the interest
of semiconductor industrials to develop leading test techniques. Contrary to digital circuits the
test of the RF IC is one of the problematic issues in semiconductors industry development.
Due to the high cost of the RF IC test equipment. The need to develop cost efficient test
strategies for the RF IC is expressed.

In this chapter, after introducing the general context, a brief recall of the specificity of
the industrial test in particular RF IC test is presented. Factors impacting the cost of a given
test solution are identified. It is pointed that the cost of the test solution can be easily reduced
by acting on two factors: First, the test equipment capital, by relaxing its constraints using
resources imbedded in the DUT for example. Second, test time which is reduced using low
frequency and DC measurements. Then techniques allowing a cost reduced RF IC testing are
presented. Emphasis is put in indirect testing which is a promising strategy to develop an
extreme low cost RF test solution and a wafer-level as package-level suitable test solution. In

the next chapter a case of study of the prediction-based indirect testing will be analyzed.
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Chapter II

Analysis of indirect testing: case of
specification prediction

II.1 Introduction

In this chapter, the author investigates the second approach of the indirect test,
namely prediction-oriented indirect test. In literature, there are some contributions [4] [6]
[25] [26]based on this approach; authors use different test vehicles, different regression
algorithms and different efficiency metrics to implement and validate their test strategies.
So, the analysis and the comparison between these works are not evident. The objective
of this chapter is to analyze the efficiency of the classical implementation of prediction-
oriented indirect testing and to define the framework that will be used all along the
manuscript to implement and validate our proposals.

The first part of the chapter gives a brief overview of the classical implementation
of prediction-oriented indirect testing and introduces the DC-based strategy we intend to
use. The test vehicles that will be used for evaluation are then described and the RF
parameters intended to be tested are defined. In the second part of the chapter,
preliminary experiments are presented and discussed to compare some regression-fitting
algorithms applied in the field of prediction-based indirect test and weaknesses of the

conventional implementation scheme will be highlighted.
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II.2 Classical implementation of prediction-oriented

indirect test

The implementation of indirect testing involves two sequential phases, namely

model building and production testing phases as illustrated in the Fig. 11.

Anflog/ RF Machine Learning Algorithm
performance —I—)
|
Data from measurements [
training set Building regression
of devices Indirect _|—> model for spec 1
low-cost
measurements
Training Step
Validation Step
|
[
Indirect .
regression model
low-cost
for spec 1
measurements
Data from _—
. Specs prediction
Validation set ll pecsp
of devices
Analog/RF Model Accuracy
performance .
Evaluation
measurements
(a) Model building phase
New - I I Predicted
Device . Indirect regression model i Specifications
low-cost >
for spec 1
measurements
Prediction-Oriented Alternate Testing

(b) Production testing phase
Fig. 11: Indirect Test: classical implementation

The first phase involves two steps: the training and the validation steps. During the
training step, the unknown dependency between the low-cost indirect parameters and the
RF performances is studied. For this, both specification tests and low-cost measurements
are performed on a Training Set (7) of devices and a machine-learning algorithm is used
to build regression models that map the indirect measurements to the RF performances.

There is then a validation step in which the accuracy of the derived models is evaluated
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by comparing specification values predicted using the models to actual specification
values. This evaluation is performed on a Validation Set (VS) of devices different from
the training set, but for which both indirect measurements and specification
measurements are available.

When the prediction accuracy meets the expectations, the production testing phase
can start. In this phase, only the low-cost indirect measurements are performed and RF

specifications are predicted using models developed in the previous phase.

II.3 DC-based indirect test strategy

A cornerstone of the efficient implementation of the indirect test approach is to find
low-cost indirect measurements that are well correlated with the RF parameters.
Chatterjee et al. first introduced this approach to reduce test time for analog and mixed-
signal devices. They use stimuli like multi-tone or Piece Wise Linear (PWL) signals and
they capture the transient output response in order to extract relevant signatures used to
feed the machine-learning algorithm. The key idea to reduce test time is to predict all the
circuit specifications from a single acquisition with a carefully optimized test stimulus,
instead of using different dedicated test setups as usually required by conventional
specification measurements. Regarding the use of the indirect test approach for RF
circuits, the objective is also to relax the constraints on the required ATE resources,
besides test time optimization. In this context, an attractive approach is to implement the
indirect test strategy using only DC measurements. In this case, expensive RF options can
be omitted from the ATE and only cheap DC resources are exploited. In addition because
DC resources are usually widely available on a standard ATE, multi-site testing can be
implemented to further reduce test time.

In this work, all experiments will be performed considering this DC-based indirect
test strategy. Different types of DC measurements will be exploited including DC
voltages on internal nodes (the circuit has to be equipped with simple DfT allowing to
probe some internal nodes), standard DC measurements classically performed during
production test (e.g. power supply current measurement, reference biasing voltage
measurement...) or DC signatures extracted from embedded process sensors (e.g. MIM’
capacitor, dummy transistors...). These measurements combined to different power, bias

and temperature conditions could provide a huge number of indirect measurement

' MIM : Metal Insulator Metal capacitor
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candidates. The choice of a pertinent set of /Ms for predicting the RF specifications is an

area of research that will be discussed in the next chapter.

11.4 Presentation of the test vehicles

In this section, we first present the two circuits from NXP Semiconductors that will
be used as test vehicles: a Low-Noise Amplifier (LNA) and a Power Amplifier (PA). We
then define the RF parameters to be predicted with the indirect test approach, together

with the conventional method to measure these parameters.

11.4.1 The Low Noise Amplifier

The first test vehicle is a wideband variable-gain Low-Noise Amplifier (LNA)
integrated in a hybrid tuner for analog and digital 7V. Fig. 12 shows the block diagram of
the tuner where the LNA block is highlighted in red. This test vehicle has four different
operating modes corresponding to four different gain settings: 6dB, 9dB, 12dB and 15dB.
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Fig. 12: Block diagram of the tuner

The objective is to estimate three different RF' performances, namely Gain, Noise
Figure (NF), and the 3" order Intercept Point (IP3) under the different operating modes,
there are therefore twelve RF performances to predict.

This device is equipped with an analog bus that allows probing of six different

internal nodes. DC voltages on these internal nodes are obvious /M candidates together
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with DC voltage measurement on the conventional RF output. These measurements can
be performed for the different functional modes of the device and for different values of
power supply. Here five different values of the power supply are considered ranging from
3.0V to 3.6V (typical power supply voltage is 3.3V). So the final set of IM candidates is
composed of /20 elements. For this device, both RF performance measurements and
indirect measurements are obtained from simulation of a population of 500 devices

generated through Monte-Carlo simulations.

11.4.2 Power Amplifier

The second test vehicle is a Power Amplifier (PA) with high linearity (see Fig. 13).
This PA is intended to be used in telecommunication applications. For this test vehicle,
we have a large set of experimental (tester) data measured on /0,000 devices, which
includes 37 low-cost Indirect Measurements (/M) based on standard DC test and 2 RF
performance measurements, namely the /-dB compression point (CP/) and the third order

intercept point (/P3).
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Fig. 13: Block diagram of the PA

11.4.3 RF Parameters
11.4.3.1. Gain

In RF devices, the power gain is more significant parameter than the voltage gain.

The most common definition of power gain is the so-called transducer gain G defined by:
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Gag = 10log (2ot ) Eq. (3.1)

Pavailable

where P4 1 the power at the load and P41 1S the power available from the source.
This definition assumes that matching at the input and the output ports of the DUT
is optimized and that reflections at the input and the load could be neglected. However the
gain exhibits a frequency-dependent behavior that should be characterized over all the
functional frequency range of the device. Usually a network or spectrum analyzer
equipment is used for this gain frequency response measurement. In volume production
test, this technique is not preferred due to test cost and time considerations. Thus, in this
context the gain is only evaluated at a given frequency in the functional range and only

RF signal generator and power meter are required for the gain measurement.

11.4.3.2. Noise Figure (NF)

In telecommunication systems, especially those dealing with very weak signals, the
signal-to-noise ratio (SNR) at the system output is a major criterion. The noise added by
the system components might tend to obscure the useful signals and dramatically degrade
SNR. The figure of merit that gives a measurable and objective qualification of this
degradation is the Noise Figure (NF). Fig. 14 illustrates the degradation. The basic
definition of NF is the ratio of SNR;, at the input and the SNR,,,, at the output [27].

NFgp = 10log (o) Eq. (3.2)

SNRoyt

There are two main techniques for the NF' measurement: the “Y-factor” technique
and the “Cold-source” technique [28] [29]. For the first technique (i.e. Y-factor) a noise
source and two power measurements are required to calculate the NF. The first
measurement is made with the noise source in its cold state: noise diode is off. Then the
second measurement is made with the noise source in the hot state: noise diode is on.
From these two measurements, and from knowing the ENR® values of the noise source,

the NF can be calculated.

2ENR : Excess Noise Ratio
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Fig. 14: SNR degradation of a signal passing through a semiconductor device

The cold-source technique consists in measuring the output power with the DUT
placed at room temperature. The measured noise is the combination of the amplified input
noise and the noise added by the device itself. If the amplification gain is accurately
known, then the amplified input noise can be subtracted from the measurement, giving
only the noise contribution of the DUT. From this the noise figure can be calculated. For
this technique a vector network analyzer is required for doing measurements.

Note that for the two cited techniques, a calibration step is highly required to
characterize and compensate the actual noise added by the circuitry of measurement

equipment.

11.4.3.3. Gain Compression

The gain compression is a non-linear phenomenon due to the device saturation. In
the linear region, when the input power increases, the output increases according to the
device gain. As shown in Fig. 15, from a certain level of input the signal is not amplified
as expected. This input level is said to be the compression point. Quite often, it is referred
to the one-dB compression point (CPI) for amplifiers but two-dB or three-dB

compression points could be defined for other devices or applications.
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Fig. 15: Definition of the /-dB Compression Point

The measurement of the CPI is often performed in two steps. As the device gain
response is not the same over frequencies, the frequency at which the /-dB gain
compression first occurs is needed to be located. Then, a power sweep is applied to the
device’s input. The gain compression can be observed when the input power is increased
by 2dB while the output power increases by /dB. Note that at least an RF signal generator

and a power meter are required for doing measurements.

11.4.3.4. Third Order Intercept Point

The third order intercept point (/P3) is an important parameter that defines the
distortion caused by the nonlinearity of the device. This point is usually defined as the
intercept point between the theoretical gain characteristic and the interpolation of the third
order distortion characteristic as illustrated in Fig. 16.
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Fig. 16: Definition of the 3" order intercept point
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The measurement of the 3" order intercept point is divided into two groups: in-band
and out-of-band measurements. In-band measurements are used when the tones are not
attenuated by filtering through the cascade.

For example, intercept point for a power amplifier is generally done with 2 tones
that exhibit the same power throughout the system. Out-of-band measurements are used
when they are attenuated like filtering in an Intermediate Frequency (/F). In the case of
our study, only in-band measurements will be done. For the in-band measurements two
tones, f; and f, are created by two signal generators and combined before entering the

DUT.
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Fig. 17: In-band Intermodulation Measurement

The intercept point is determined from the measured power level of the two tones
and the power levels of the intermodulation tones on a spectrum analyzer as shown in the

Fig. 17. The Output third order Intercept Point (OIP3) is determined as follows:

01P34pm = Prone + -2 Eq. (3.3)

The Input third order Intercept Point is deduced as:

I11P3 5m = OIP3 45m + Gaingg Eq. 3.4)
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II.5 Benchmarking of some machine-learning

regression algorithms

There are several machine-learning algorithms used for regression mapping. In the
field of indirect testing, people use different algorithms but they didn't discuss their
choice in detail [5] [21]. In this section, we investigate the performance of four
commonly-used machine-learning algorithms on a practical case study. The four
algorithms are first briefly described. Then the case study is then presented. Finally

results are analyzed and discussed.

I1.5.1 Multiple Linear Regression

The most basic regression model consists in a linear relationship between the
response variable to be evaluated (i.e. one analog/RF performance in our case) and one or
more predictor variables (i.e. indirect measurements in particular case). The case of one

predictor variable is called simple linear regression while for more than one predictor
variable, it is called multiple linear regression. Given a dataset {Yi, Xi1, Xin, o, X ip}i—l of

N elements, where Y is the response variable to be predicted and Xj...,, are the p predictor

variables, the multiple linear model takes the form:

Y=X[L+c¢ Eq. (3.5)
V1 1%11 = X1p go &
YN 1Xn1 = Xnp . EN
Bp

The [ vector is usually estimated using the least mean square estimator as follows:

B =&)Xty Eq. (3.6)

This equation assumes that XX is invertible, which means that all variables are non-
correlated. In the practical case of indirect test this assumption is not always verified,

some measurements might be correlated.
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11.5.2 Multivariate Adaptive Regression Splines

The Multivariate Adaptive Regression Splines (MARS) [30] is a form of regression
model presented for the first time by J. Friedman in [31]. This technique can be seen as an
extension of the linear regressions that modeled automatically interactions between
variables and nonlinearities. The model tries to express the dependence between one

response variable Y and one or more predictor variables X;...,, on given realizations (data)

{yi, Xi1) xl—p}llv. The phenomenon that governs the data is presumed to be:
Y=f(X)+¢ Eq. 3.7)

The aim of algorithm is to use the data (learning technique) to build an estimated
function f(X) that can serve as a reasonable approximation to f(X) over the domain of
the interest constituted by the predictors. The estimated function f(X) is built from
bilateral truncated functions of predictors having the following form where the

summation is over the non-constant M terms of the model:

FX) = Bo+ XM _) BrHin (X) Eq. 3.8)

This function is constituted by the term [, the value of Y where X = (0,---,0) and
a weighted sum of one or many basis functions H,, (X). Each basis function is simply a
hinge function and takes one of the two following forms:
» A hinge function has the form of max(0, x — ¢) or max(0, ¢ — x). Where

c is a constant, called the knot. The hinge function is often represented:

X—cC X>C}

(x—c)y = { 0 otherwhise Eq.(3.9)

» A product of two or more hinge functions which have the ability to model
interactions between two or more predictors.
One might assume that only piecewise linear functions can be formed from hinge
functions, but hinge functions can be multiplied together to form non-linear functions.
Note that the MARS model can treat classification problem as well as prediction
problem. Therefore, it is used for both variants of indirect test, namely the classification-

oriented test and the prediction-oriented test.
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11.5.3 Artificial Neural Network

An Atrtificial Neural Network (ANN) is a mathematical model inspired by biological
neural networks, which involves a network of simple processing elements (neurons)
exhibiting complex global behavior determined by the connections between the
processing elements and element parameters. Neural networks can be used for modeling
complex relationships between inputs and outputs and they have been successfully

implemented for prediction tasks related to statistical processes.

X1 X3 X3 Xp

Fig. 18: Single Neuron

As presented in Fig. 18 the basic processing element of a neural network, i.e. the
neuron, computes some function f of the weighted sum of its inputs, where f is usually
named the activation function. Many activation functions could be used: linear, z-shape,

hyperbolic tangent, threshold, etc.

Y=f(a) with a=Y;wx; Eq. (3.10)

11.5.4 Regression Trees

Decision trees can be used to create a model that predicts the value of a target
variable Y based on several input variables x4, -+, x,,. Each interior node corresponds to
one of the input variables and each leaf represents a value of the target variable given the
values of the input variables represented by the path from the root to the leaf. A tree can
be "learned" by splitting the source set into subsets based on an attribute value test. This
process is repeated on each derived subset in a recursive manner. The recursion is
completed when the subset at a node has all the same value of the target variable, or when

splitting no longer adds value to the predictions [32]. Fig. 19 illustrates the case of a



30

regression tree built for the prediction of the NF performance based on 4 indirect
measurements (/M;). Note that decision trees could fit with both variants of the indirect

test strategy: prediction-oriented and classification-oriented strategies.

IM1 <27

IM3< 55  IM2< 1.124e-04
NF=1.09 NF=1.43 NF=1.28 [ NF=2.32 NF=2.27 NF=2.67

IM1= 0.5
NF=1.97 NF=1.83 NF=2.14

NF=1.583 NF=1.75

Fig. 19: The regression tree

I1.5.5 Test case definition

As previously mentioned, the choice of a given machine-learning algorithm is
generally not discussed in the literature. In order to compare the performance of different
algorithms, experiments have been performed on one case study that involves the
prediction of the CPI specification for the PA test vehicle. Note that for meaningful
comparison, exactly the same training and validation data will be used for the four
algorithms.

Practically, the experimental test data available from 70,000 devices are split into
two subsets of 5,000 devices, one that will be used for training and the other for
validation. A technique inspired from Latin Hypercube Sampling [33] [34] (LHS) is used
to obtain two subsets with similar statistical properties regarding the CP/ specification, as

illustrated in Fig. 20.
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Fig. 20: Statistical properties of Training and Validation subsets regarding CP1
specification

Data from the 5,000 training devices are fed into the different machine-learning
algorithms and corresponding regression models are built (models are built with the same
set of 4 pre-selected IMs in this experience). These four models are then used to perform
CP1 prediction for the 5,000 other devices of the validation set. Efficiency of the different
algorithms can be evaluated qualitatively by comparing correlation graphs, i.e. graphs that
plot predicted CPI values with respect to the actual CP/ value. The closer the points to
the first bisector, the better the model accuracy is. Efficiency can also be evaluated

quantitatively by computing the Mean Squared Error (MSE) metric defined by:
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MSE = %I, (y; — 9,)? Eq.(3.11)

where N is the number of devices, y; and y; are the actual and predicted RF performances
of the i™ device, respectively. The lower the MSE metric, the better the model accuracy

is.

I1.5.6 Results and discussion

Fig. 21 gives the correlation graphs obtained with the four different regression
algorithms. For the sake of comparison, all graphs are presented with the same scale from
10 to 20dBm. It clearly appears that the regression models built using MARS, Regression
tree (M5P) and ANN algorithms offer better performance than the model built using MLR
algorithm, which could not fit the correlation between used IMs (i.e. predictors) and the
RF specification. So the linear model will be ruled out for the rest of the study.

From the qualitative analysis of these graphs, there is no significant difference
between MARS, M5P and ANN algorithms. In the three cases, most of the devices are
correctly predicted with a good accuracy. This is confirmed by computing the MSE metric

associated to each model, which exhibits similar value:
MSElMARS = 0.016; MSElMSP = 0.02; MSE'ANN = 0.023

To further analyze the performance of these three regression algorithms, a more
advanced evaluation is necessary. To do this, regression models are built for the three
algorithms considering 7,000 different combinations of 3 IMs randomly chosen among
the 37 low-cost IMs available for this case study. The MSE metric is then computed on

both training and validation subsets, for each model and each regression algorithm.
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Fig. 21: Comparison of the correlation plots obtained

with 4 different regression algorithms

During this experiment, it sometimes happens that the estimation of the RF

performance is aberrant for a particular model and a particular device of the validation

subset. As an illustration, Fig. 22 shows the case of an aberrant CP/ prediction for one

device (device number 513) with a predicted value around 9.9 10! dBm, which of

course never happens in real circuit. If this prediction is considered in the calculation of

the MSE, it significantly affects the calculated value, which is 1.7639 10%° for this

example. If this aberrant prediction is removed for the computation, the non-biased value

of the MSE is 0.0162, which corresponds to a realistic value of the MSE for this example.

Consequently for a faithful comparison of the model accuracy achieved using the

different regression algorithms and the different /M combinations, such aberrant
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predictions should be removed from the MSE calculation on the validation subset. Note
that these aberrant predictions are easy to identify because they are totally out of the
possible value range of the performance to be predicted (for the case of the CPI
performance, a realistic range of the possible predicted values is from OdBm to 30dBm).

We denote these predictions Out-Of-Range (OOR) predictions.

11
12X 10

Device #513

Estimated CP1 (dBm) .
> ¢ §

A
T

’;O FJT rl.‘z 1‘3 14 15 "% 17 18 ;9 m
Actual CP1 (dBm)

Fig. 22: Example of aberrant prediction for one particular device

All the results presented in the following are computed after removing the OOR
predictions from the validation subset. Fig. 23 reports the MSE values corresponding to
the 1,000 models built with different /M combinations, for the three different regression
algorithms. In each graph, both the MSE calculated on the Training Subset (7) and the
MSE calculated on the Validation Subset (VS) are provided. The MSE calculated on TS
translates the ability of the model to accurately represent the relation that links the
selected IMs to the RF specification for the considered training devices, while the MSE
calculated on VS translates the ability of the model to accurately predict the value of the
RF specification from the selected IMs for new devices different from the training
devices. So to ensure accurate performance prediction, a model should exhibit not only a
low MSE value with respect to TS, but also an MSE value in the same range with respect
to VS. Note that for the sake of clarity, models are sorted regarding their MSE computed
on T§.
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Fig. 23: MSE variation over models built with different IM combinations

for different regression algorithms

Analyzing these results, a slight advantage appears for the MP5 regression
algorithm regarding MSE values calculated on 7S. However there is a significant
discrepancy between MSE values calculated on 7S and VS. In the same way for the ANN
regression algorithm, a good MSE value on 7S does not ensure a MSE value on VS in the
same range. In contrast, the MARS regression algorithm appears much more robust since
most of the models built with this algorithm give almost identical values for the MSE
calculated on both 7S and VS. For these reasons, the MARS algorithm will be chosen for

regression model construction during the rest of the study.
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I1.6 Limitations & bottleneck of the conventional

indirect test scheme

The main challenge of indirect test is the prediction confidence. The confidence is
usually assimilated to two aspects: the first one is the model accuracy which is usually
expressed in terms of average prediction error; the second one is the model robustness
against anomalies which usually manifest themselves in the devices having a big
prediction error. In the following some experiments which highlight the weaknesses of

the classical implementation of the indirect test are presented.

I1.6.1 Prediction confidence: flawed predictions

Many of the experiments reported in the literature on various devices demonstrate
that very low average prediction error can be achieved. However, two main points limit
the credit we can give to this good accuracy. First, low average prediction error does not
guaranty low maximal prediction error, which is of crucial importance regarding the
classification step where the predicted values are compared to the specification limits
promised in the datasheet.

The maximal prediction error is defined as follows:

. P ~ .
Emax = liMy,_q \/Z?I:ﬂ)’i — 9ilP = supi<ien|yi — Jil Eq. 3.12)

Second, evaluation is usually performed on a small set of validation devices,
typically ranging from few hundreds to one thousand instances, while the technique aims
at predicting values on a large set of fabricated devices, typically one or several millions.
So even if low maximal prediction error can be observed on the small validation set, there
is no guarantee that the maximal prediction error will remain in the same order of

magnitude when considering the large set of fabricated devices.
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Fig. 24: Tllustration of prediction error for different sizes of 7'S and VS

To illustrate these points, some experiments have been performed on one case study

that involves the prediction of the IIP3 specification for the PA test vehicle. Here again,
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the experimental test data available from /0,000 devices are split into two subsets of
5,000 devices with similar statistical properties, one used for training and the other for
validation.

In the first experiment, 7,000 devices are chosen randomly from the 7 to build
prediction models based on triplets of IMs and the prediction accuracy is evaluated with
1,000 devices chosen randomly in the VS. As an illustration, Fig. 24.a presents an
example of /IP3 prediction for one “good” model. In this case, MSE and €,,,, values
calculated on both 7S and VS give coherent results, with both low average and maximal
prediction errors.

Then, in the second experiment, the number of the devices used for validation is
increased to 5,000 devices, i.e. the obtained model is validated with a large VS. For most
of the devices, the average prediction error is nearly preserved but we observe flawed
predictions for some devices resulting in a large maximum prediction as illustrated in Fig.
24.b.

Such flawed predictions are usually attributed to the fact that the mapping obtained
using finite-size TS is not fully representative of the actual complex mapping. So, in the
third experiment, we use all the 5,000 devices of the TS to build the regression model and
the prediction accuracy is evaluated using all the 5,000 devices of the VS. Unfortunately
even with such a large training set, we still observe flawed predictions for some devices
as illustrated in Fig. 24.c.

Note that one could reasonably think that these flawed predictions are due to some
distinctive features of particular devices, for instance devices which are not consistent
with the statistical distribution of manufactured devices. In this case, it would be possible
to filter these devices prior to applying the alternate test procedure, as suggested in [15].
However this does not seem the case because different behaviors are observed depending
on the model used to predict the performance, as illustrated in Fig. 25. Indeed even if
both models are built with the same training set, flawed predictions are observed for
devices 4,512 and 1,179 using model 1 while they are correctly predicted using model 2,
and flawed prediction is observed for device 2,326 while it is correctly predicted using

model 1.
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Fig. 25: Illustration of prediction error for different regression models

(with same training and validation subsets)

In summary, these experiments have pointed out an important weakness of the
prediction-based alternate test method: although it provides accurate prediction results for
most of the devices, flawed predictions are observed for a very small number of devices.
Obviously, this is a serious obstacle for the deployment of the strategy in an industrial

context, where one or several millions of devices have to be processed by the test flow.

11.6.2 Dependency of model performances with respect to
TSS

The problem addressed in this subsection deals with alternate test robustness with
respect to the Training Set Size (7'SS). Note that there is no detailed study in the literature
on this aspect. The main reason is that in most of the cases, data are available only for a
limited number of devices, due to constraints on RF and indirect measurements. Indeed
performing RF measurements is very costly since it requires high accuracy equipment and
takes long time. So, the number of the measured devices hardly exceeds few thousands
and people usually deal with few hundreds of devices. Still, the common assumption is
that the larger the training set size, the better the prediction accuracy.

To illustrate the influence of the 7SS on the regression model efficiency,
experiments were performed on the PA case study, for which we have experimental test

data on a large number of instances. The CP1 is the specification considered in this study.
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Fig. 26: CP1 prediction for two different 7SS

In a first experiment, 300 devices randomly chosen in the 7S are used to build
prediction models based on triplets of IMs and we evaluate prediction accuracy using all
5,000 devices of the VS. Prediction accuracy is evaluated in terms of both average and
maximal prediction errors. Fig. 26.a presents an example of CP/ prediction for one
“good” model, i.e. a model with low average and low maximal errors on the 7S. On the
validation set, although most of the devices are correctly predicted, some devices suffer
from large prediction error. There are actually 2 circuits for which we observe an aberrant
prediction with an error that exceeds several hundreds of dB (not represented on the graph
for scale reasons). Such aberrant predictions correspond to OOR predictions, as discussed
in the section I1.5.6, and are easy to identify. More problematic is the case of circuits for
which the predicted value is in the possible performance value range but with a
significant prediction error. For the considered example, /0 circuits (represented with
black circles) present a prediction error that exceeds 2.5dB, but is still in the possible
operating range of manufactured circuits, i.e. [0dBm, 30dBm]. In these cases, there is no
evident way to identify that the predicted value corresponds to a non-reliable prediction.
Moreover, such predictions are a real concern in the context of production testing because
they might generate additional yield loss or test escape. Note that the value of 2.5dBm has
been arbitrarily chosen for illustration purpose but is of no particular significance.

In a second experiment, we perform the same study but using a much larger training
set of 2,000 devices. Prediction accuracy is still evaluated using all 5,000 devices of the

validation set. Fig. 26.b illustrates CP1 prediction results for the regression model built
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using the same triplet of IMs. Despite the larger T, there are still some circuits (4
circuits) for which prediction error exceeds 2.5dB but is in the possible operating range of
manufactured circuits. So although if increasing the size of the training set mitigates the

number of problematic predictions, it does not solve the problem.
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Fig. 27: Influence of Training Set Size (TSS) on prediction accuracy for CP1

specification

To further corroborate these observations, we have carried out an extensive
campaign of experiments considering different 7SS from /00 to 2,000 devices randomly
chosen in the initial training set of 5,000 devices. Each experiment is repeated /00 times
and reported results correspond to the mean of results obtained over the /00 runs. Results

are summarized in Fig. 27 that reports average and maximal prediction errors together
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with the number of instances for which prediction error exceeds 2.5dB with respect to
TSS. It can be observed that the average prediction error is slightly reduced when using
training sets of larger size. Still note that good accuracy is obtained whatever the size of
the training set with an error that remains below 2%. In the same way, the maximal
prediction error is slightly reduced when using training sets of larger size. However it
remains high with an error that remains above 6dBm, even when using large training sets.
These results clearly translate the fact that accurate prediction results are obtained for
most of the devices, but some circuits suffer from rather large prediction errors. The
number of these circuits reduces when the size of the training set augments, as illustrated
in Fig. 27.c which shows that the percentage of circuits with a prediction error larger than
2.5dB is divided by a factor 1.74 when TSS increases from /00 to 2,000 devices. It is
worth noting that even with a small training set, this percentage remains very low, i.e. less

than 0.25% of the circuits in case of 7.55=100.
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11.7 Conclusion

The indirect testing is a promising technique to overcome the prohibitive cost of
conventional test methods. It is specially adapted to analog and RF devices testing which
suffer from heavy testing strategies. The prediction- oriented indirect test is very
interesting; it has the advantage to provide the value of the individual performance
parameters. This information can then be used to monitor possible shift in process
manufacturing, adjust test limits during production phase if necessary, or perform multi-
binning. The use of DC indirect measurements dramatically lessens the cost of the test
strategy by removing the expensive RF equipment from the test process and allowing
multi-site testing using only DC resources of the ATE.

Today there are many contributions in this field; however there is no clear
benchmark to compare works: people use different specific DUTs, different learning
conditions and different figures of merit for model accuracy evaluation. In this context,
we have performed in this chapter a comparison of some commonly used machine-
learning algorithms to build predictive models. Results show that models built with a
simple multiple linear regression are not efficient to correctly represent the relationship
between indirect measurements and an RF performance to be predicted, while models
built with more refined algorithms such as Multivariate Adaptive Regression Splines,
Artificial Neural Networks or Regression Trees indeed permit to accurately represent this
relationship. Results also demonstrate that the MARS algorithm is more robust than the
others regarding its ability to perform performance prediction. For this reason, only this
algorithm will be used for the construction of predictive models in the rest of the
manuscript.

Finally, we have performed some experiments in order to analyze the efficiency of
the classical implementation of prediction-oriented indirect testing and highlight the
weakness of such implementation. Two main aspects restrain the large deployment of
such an approach by the industrials, namely confidence in the predicted values and
robustness of the procedure against learning conditions and potential process shift. In
chapter IV, we will propose novel implementation of the prediction-based indirect test
which manages prediction confidence in order to improve the robustness of the

procedure.
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All results presented in this chapter are based on two test vehicles from NXP
Semiconductors, which we have been described in the beginning of the chapter. These

test vehicles will be also used in the rest of the manuscript.
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Chapter III

Strategies for IMs Selection

III.1 Introduction

Typically, the used IMs are based on complex signals (multi-tone, PWL...) and people
are focused on the optimization of the stimulus waveforms [4] [19] [35]. The need of
developing efficient method to select the best set of IMs is first expressed when people begin
to investigate the implementation of the alternate test method based on DC measurements.
The main motivation for this DC-based strategy is that it offers the perspective of a really
low-cost solution. Indeed as far as indirect measurements are performed in static conditions,
no stimulus is applied to the functional input and obviously the cheapest stimulus is no
stimulus. Discussions on stimulus optimization such as presented in [19] [35] are therefore
not relevant in this context. In the same way, DC measurements are extremely simple
signatures and there is no need of additional process to extract pertinent information such as
presented in [20] [36].

As seen in chapter II, there is a large number of DC-based IMs that may be exploited to
perform performance prediction for a given DUT. However as mentioned in the previous
chapter, an analytic correlation between indirect measurements and RF specifications is
extremely complex and it is even extremely difficult to forecast which indirect measurements
are the most likely to have a strong correlation with the targeted specifications. Moreover
because of the curse of dimensionality, it would not be efficient to build a predictive model
based on all the possible IMs. Indeed it is well-known that for a fixed number of training
samples, the predictive power of the model reduces as the dimensionality of the feature space
increases. In this context, the selection of pertinent /M subsets for building predictive models
is a keystone in the quality of the indirect test. The goal of this chapter is to investigate some
solutions for the clever selection of a subset of /Ms in the context of prediction-oriented

indirect test.
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III.2 Benchmark of some feature selection techniques

In the field of Information Technologies (I7), several methods for pertinent data
selection are developed. There is an interdisciplinary subfield of computer science, namely
data mining, which studies solution for efficient information extraction from large data. In this
section, we investigate some commonly used methods for feature subset selection. Along the
following subsections we will adopt terminology used by the specialists of this field. We
denote by “feature selection” the algorithm that is used for subset selection. In our case, the
term “feature” refers to the IM and the term “class” refers to the RF performance to be

predicted.

I11.2.1 Variable subset selection techniques

Variable subset selection methods are essentially divided into two categories, i.e. filters
and wrappers. Filters select subsets of features as a pre-processing step independently of the
chosen predictor, while wrappers utilize a learning machine as a black box to score subsets of
features according to their predictive power. We choose to investigate three different filters

and three different wrappers, which are briefly described in the following.

II1.2.1.1. Filters
A. Correlation-based Feature Selector

The Correlation-based Feature Selection (CFS) is an algorithm that ranks feature
subsets according to a correlation-based heuristic evaluation function. The evaluation function
is toward favor the subsets that contain features (i.e. IMs) that are highly correlated with the
class (i.e. RF specification to be predicted) and uncorrelated with each other. Irrelevant
features should be ignored because they will have low correlation with the class. Redundant
features should be screened out as they will be highly correlated with one or more of the
remaining features. The acceptance of a feature will depend on the extent to which it predicts
class in areas of the instance space not already predicted by other features. The CFS’s feature

subset evaluation function is defined here:

Kryc

[+ (k- D)ty

Merity, = ; X,y € Xk Eq. 4.1)
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where Merity, is the heuristic “Figure of merit” of a feature subset X containing k features,
Txc corresponds to the mean feature-class correlation (x € Xj), and 7y, corresponds to the
average feature-feature cross-correlation. Details on the definition of 7, and 7, can be found

in [37].

B. Relief algorithm

One of the most famous feature selection algorithms is the RELIEF algorithm based on
the nearest-neighbor algorithm, which is described by Kira and Rendell in [38]. It uses
instance-based learning to assign a relevance weight to each feature (i.e. IMs in our case).
Each feature weight reflects its ability to distinguish among the class values (i.e. RF
specification in our case). Features are ranked by weight and those that exceed a user-
specified threshold are selected to form the final subset.

According to [39] [40], the RELIEF algorithm attempts to approximate the following

difference of probabilities to compute the weight of a feature X:

wyx = P(different value of X/nearest instance of different class) —
P(different value of X/nearest instance of same class)
Eq. 4.2)

The previous equation can be reformulated as:

L Gini’ Txex p(x)2
Reliefy = G5 007 Seecn©? Egq. @.3)

where C is the class variable (i.e. RF specification) and

Gini' = [Seecp(©)(1 ~ P()] ~ Sxex (522 Seecp(elX)(1 ~ p(clx)))  Eq. (d.4)

Yxex P(X)?

Gini’is a modification of another attribute quality measure called the Gini-index’.

3 o~ . . . . .
Gini-Index : @ measure of statistical dispersion
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C. Minimum-Redundancy-Maximum-Relevance

“Minimum-Redundancy-Maximum-Relevance” (mRMR) is a feature selection method
first introduced by Pend and al. in 2005 [41] that can use either mutual information,
correlation, distance/similarity scores to select features. The main idea is to select features
with maximum relevance (MR) while minimizing the redundancy (mR) between selected
features. For example, with mutual information, the relevance of a feature set F to predict the

class C and the redundancy of all features in the set F are given by the following equations:

Redundancy(F) = %ZX,YEFI(X, Y) ; Relevance(F) = %ZXEFI(X, o) Eq.
4.5)

where F is the set of features and P its size. I(X,Y) is the mutual-information between two
different features from F. I(X,C) is the mutual-information between a feature and the class.

The following equation gives the mutual-information:

_ pxy)log(p(xy))
I(X,Y) = Xxex Zer PP Eq.(4.6)

The mRMR score of a feature set F is a combination of both relevance and redundancy
obtained either by a quotient or a difference:

Relevance(F)

score(F) =
( ) Redundancy(F)

or score(F) = Relevance(F) — Redundancy(F) Eq.
4.7)

The objective is then to select the set that have the maximum score.
I11.2.1.2. Wrappers

The wrapper methodology offers a simple and powerful way to address the problem of

feature selection. In its most general formulation, the wrapper methodology consists in using
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the prediction performance of a given learning machine to assess the relative usefulness of
subsets of features. In practice, one needs to define: (i) how to search the space of all possible
feature subsets; (ii) how to assess the prediction performance of a learning machine to guide
the search and halt it; and (iii) which predictor to use. An exhaustive search can conceivably
be performed, if the number of variables is not too large. But the problem is known to be NP-
hard and the search becomes quickly computationally intractable. In that case, a wide range of
search strategies can be used, including best-first, branch-and-bound, simulated annealing,
genetic algorithms or Greedy search.

In our case, we choose to use a simple iterative strategy to select for each class P;, a
subset S; of features allowing to predict the class with a given accuracy constraint &g, This

iterative strategy is described in the simplified diagram of Fig. 28.

Subset; = &
i=1

| i=i+1

Build Regression models fj:
(S,IMy)—>P;
for k=1 tom

l

Select IM, with MIN &(f)
sj = sj v {IMseIected}

Fig. 28: Iterative search of IM subsets for specification prediction

The first iteration of the search algorithm consists in building a predictive model using
each feature and selecting the feature giving the model with minimum average prediction
error € In the second iteration, a predictive model is built using each pair of features
including previously selected one, and the pair of features that gives the model with minimum
average prediction error is selected. Then, we work with triplets of features, always keeping
the features selected in the previous iterations and so on. The procedure stops when the
obtained average prediction error is below a pre-defined target value € < €0 (Or when no
further improvement is obtained by adding new feature to the model).

Note that the learning algorithm used to perform feature subset selection may be

different from the learning algorithm used to predict a class. In our case, we will consider
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both linear regression and multivariate adaptive regression splines (MARS) models for the
evaluation of prediction performance during the iterative selection procedure.

Finally, the last method that will be investigated is the built-in variable selection
procedure of the Multivariate Adaptive Regression Splines (MARS) algorithm itself. Indeed, a
predictive model constructed by MARS consists of a linear combination of basis functions
together with a constant ‘intercept’ term, where each basis function is associated to one or
more input variables, i.e. Indirect Measurements in our case. During the construction of a
model, there is a first forward phase in which a greedy algorithm is used to select basis
functions that give the maximum reduction in sum-of-squares residual error. This process of
adding terms continues until the change in residual error is too small to continue or until the
maximum number of terms is reached. There is then a backward phase that prunes the model,
i.e. it removes terms one by one, deleting the least effective term at each step until it finds the

best sub-model (based on the Generalized Cross Validation criterion).

I11.2.2 Test case definition

Experiments are performed on the LNA test vehicle. For this case study, we have data
from Monte Carlo simulation of 500 ICs, which comprise 12 RF performances to be predicted
and a large set of /M candidates composed of 152 DC-based measurements. So, this case of
study illustrates well the difficulty to choose the best subset to predict each RF performance.

This dataset is actually divided into two distinct sets: the first one constituted of 300
devices that will be used both for IMs selection and for building of regression models
(training step), and the second one is constituted of 200 devices that will be used to evaluate
the accuracy of predicted specification values with respect to actual specification values
(validation step). More precisely for each RF specification, we will use the previously
presented methods to select a pertinent subset of IMs constituted from 7 elements and we will
use these subsets to build regression models using MARS algorithm. Then the comparison
between selection methods will be performed considering the 200 devices of the validation
set, based on a modified version of the MSE metric. This metric will be denoted RMSNE?, it
allows to express model accuracy regardless of the range of the RF performance. This metric

is an image of the rms prediction error and is expressed in percentage:

* Root Mean Squared Normalized Error
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1 =91\
RMSNE = \/NZ’,-‘LI (=) (Eq. 4.8)

where N is the number of devices, y; and y; are the actual and predicted RF performances for
the i device, respectively.

Note that we choose to build models with /M subsets of 7 elements because preliminary
experiments have revealed that models built with a lower number of elements selected with

procedures mentioned above exhibit a poor accuracy.

I11.2.3 Results and discussion

Fig. 29 compares the different feature selection methods in terms of accuracy of the
predictive model built for each RF specification. The subset of IMs used for each model is
selected according to each feature selection method. Here we have six different methods, the
three first methods corresponding to wrappers and the other ones corresponding to filters.
Regarding wrappers, the first two methods are based on an iterative search strategy using
either a linear regression model (Iter_1) or a MARS model (Iter_2) during the selection
procedure. The last method corresponds to the built-in variable selection procedure of the
MARS algorithm. Regarding filters, namely CFS, mRMR and Relief, IM subset selection is

performed with the corresponding algorithm.
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Fig. 29: Comparison of six different feature selection methods based on achieved model
accuracy
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Analyzing the results of Fig. 29, a first comment is that the achieved accuracy may
significantly vary with the specification to be predicted and with the used feature selection
method. However, there is no clear advantage in favor of one particular method and the

average accuracy over the twelve RF performances is around 4% for the six methods.

A clever use of these different feature selection techniques consists in choosing the
more appropriate method for each RF specification (i.e. the method that leads to the best
model accuracy), instead of using the same feature selection method for all RF specifications.
Table 1 reports the average accuracy achieved over the twelve RF performances when using
the six feature selection methods for all specifications, and when combining these methods
depending on the specification to be predicted (Best*). It clearly appears that choosing the
appropriate selection method for each RF specification leads to a significant accuracy

improvement, with a reduction of the average prediction error by a factor of about 2.

Table 1: Average accuracy over the RF performances for the six feature selection methods
and combined strategy according to specification to be predicted

Iter_1 Relief Wrapper Best*
Mean 4.77 % 4.40 % 4.94 % 3.84 % 461 % 3.75% 2.31%

Fig. 29 shows that there is no selection method suitable for all data and Table 1
highlights that combining various selection methods can significantly improve the achieved
prediction accuracy. But the question that must be asked is whether these selection strategies
are giving solutions close to the optimum solution, which is accessible only using exhaustive
subset evaluation. The exhaustive search is a brute-force- method, which is extremely time-
consuming and that can be applied only when the problem size is limited. In our case, an
exhaustive evaluation of subsets composed of 7 IMs would necessitate the construction of
more than 32 10° predictive models for each RF specification, which is not feasible for
obvious reason of computational time. Instead, we choose to perform an “exhaustive”
evaluation of subsets constituted with only 3 IMs. Prior a post treatment on /Ms set is done
only 1/3 of IMs are kept to build the combination (i.e. 54 from 152 IMs). The operation of IM
space reduction is discussed farther in the next section. In this case, 24 804 models are built
for each one of the twelve RF specifications; the solution adopted as reference corresponds to
the IMs subsets that provide the best prediction accuracy for each RF specification. Fig. 30

shows that, whatever the RF specification to be predicted, the reference solution provides
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much better accuracy than the Best* solution. As a result, the average prediction error reduces

from 2.31% down to 1.18%.
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Fig. 30: Comparison of the Best* solution computed in the space of 7-IM subsets and
the optimum solution in the reduced space of 3-IM subsets

From previous experiments, we can conclude that the combined feature selection
strategy gives a solution with improved accuracy compared to solutions provided by a single
selection method. However the achieved accuracy remains lower than the one obtained with
an exhaustive search on a reduced IM-space. Besides, these experiments prove that there are

solutions with a limited number of IMs that provide good model accuracy.

III.3 Proposed IM selection strategy

In the context of industrial testing, the most critical aspects of a test solution are
accuracy and cost. The time to develop a test solution or strategy is only a secondary aspect,
because it is shared by each tested device and therefore does not directly impact each device
test cost. Hence, it is more interesting to spend time to define a test solution with optimized
accuracy and cost rather than optimizing efforts to develop the test strategy. In this context,
our objective is to define a strategy that permits to select a minimum number of /Ms, which
can then be used to build models allowing prediction of all specifications with a given
accuracy. The idea is to reduce the number of indirect measurements that have to be

performed during production test, and therefore the testing costs (time), but without
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sacrificing accuracy. The problem to be solved is a classical coverage problem, which is

known to be an NP-hard problem.

The problem is actually twofold. First, we have to identify, for each specification to be
predicted, which are the IM subsets that give satisfying accuracy. Second, among all these
possible IM subsets, we have to select one subset for each specification so that the total
number of IMs required to predict all specifications is minimal. Although an exhaustive
approach would permit to define the optimum test solution, it is clear that this approach is not
feasible for DUT with several tens of /M candidates. We propose an alternative approach for

smart /M selection based on three steps:

» Dimensionality reduction of the /M-space,
» Search space construction,

» Optimized IM subset selection.

I11.3.1 Dimensionality reduction of IM-space

The first step of the procedure is to perform a pre-selection of a reduced number of IMs
among all possible candidates; only these /Ms will be used for the construction of the search
space. The idea is that it is very likely that redundancy exists in the information contained by
the different /Ms and the objective is to keep only the IMs that contain valuable information.
In this objective, our idea is to use the Principal Component Analysis (PCA) [42]. The PCA
principle is to use an orthogonal transformation to convert a set of data of possibly correlated
variables (in our case IMs) into a set of data of new uncorrelated variables (called Principal
Components: PCs). These new data are arranged in order that the first components retain most
of the information present in all the original data. The variance of the first one is as high as
possible (maximal variability of the original data). The second component is built to have the
highest variance possible but with the additional constraint to be orthogonal to the previous
component and so on. It is clear that data variability is an important aspect for the
implementation of an alternate test strategy. We can expect that the more the variations seen

through IMs, the more efficient will be the prediction of RF specifications using these IMs.

In this context, our idea to preselect a reduced number of pertinent /Ms is to consider

only the first PCs and keep only IMs with a significant contribution (highest weighting
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coefficients) to these PCs. The number of considered PCs and the thresholds on the IM

weighting coefficients are defined empirically according to the considered application.
II1.3.2 Search space construction

The second step of the procedure is to define the space of IM subsets and build the
associated predictive models for each specification. This space has to be large enough so that
the coverage problem has some solutions (i.e. it exists at least one model with satisfying
accuracy for each specification), but small enough so that the resolution of the coverage

problem is feasible.

For this, the idea is to iteratively construct the /M subset space based on the selection of
a limited number k of IM subsets and increasing by 1 the considered IM subset size at each
iteration. More precisely at a given iteration i and for each specification, the IM subsets are
ranked according to the accuracy achieved by the associated predictive model and only the IM
subsets corresponding to the k-best models are selected. These subsets composed of i IMs are
then used in the following iteration to build models with subsets composed of i+/ IMs (i.e.
subsets that include the preselected IMs). The procedure stops when it exists at least one

model with satisfying accuracy for each specification.

I11.3.3 Optimized IM subset selection

The last step of the procedure involves the resolution of the coverage problem, i.e. the
determination of all IM subsets that permit to predict all specifications with a satisfying
accuracy. From all these solutions, the one involving the best global cost is then selected. In
the context of DC-based IMs, all indirect measurements have almost the same cost on ATE.
Hence, the overall cost of the test solution could be assimilated to the number of used IMs to
cover all the specifications. In the case of using complex IMs, different weights could be
attributed to the IMs; the cost of a given solution then corresponds to the summation of these

weights.

Note that the exact resolution of the coverage problem is feasible only for relatively
small search spaces. In case of a DUT with many specifications to be predicted, it is likely
that the search space will be too large to perform the exact resolution. In that case, heuristics

may be employed to search for a satisfactory IM subset.
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II1.3.4 Results and discussion

The proposed optimized IM selection strategy has been applied to the LNA case study.
The first step of this strategy is to reduce the set of IM candidates using PCA. In this
experiment, we consider only the first 10 PCs and we only keep the 10 /Ms with the highest
weighting coefficients in the first PC, 9 IMs with the highest weighting coefficients in the
second PC, and so on for the following PCs. With this preliminary process, the initial set of
152 IMs is reduced down to a set of 54 IMs. The second step of the strategy consists in the
construction of the search space. Based on the previous observation that shows that only few
IMs are actually sufficient to reach good accuracy, we arbitrarily choose to construct the
search space considering all possible combinations of 3 IMs among the pre-selected 54 IMs,
which corresponds to 24,804 predictive models built for each RF specification. Finally, the
last step of the strategy is the selection of an optimized /M subset that allows to tradeoff test
accuracy and global test cost. For this, we keep only 20 models with best accuracy (in terms
of RMSNE evaluated on the training set of devices) for each specification. From the resolution
of the coverage problem, we then select the solution that minimizes the number of IMs

required to perform prediction over the global specification set.
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Fig. 31: Accuracy of the solutions given by Best*, Optim* and REF selection strategies
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Fig. 30 shows the accuracy (in terms of RMSNE evaluated on the validation set of
devices) achieved with the optimized IM selection strategy (Optim*) compared to the
accuracy achieved with the combined feature selection strategy (Best*) and the reference
solution (REF) obtained by selecting among the 24,804 models available for each RF

specification, the one that provide the best prediction accuracy.

These results clearly demonstrate the superiority of the optimized IM selection strategy
compared to the combined feature selection strategy, with an average prediction error over the
twelve RF specifications of 1.22% instead of 2.3/%. Moreover there is no significant
degradation compared to the reference solution, with an accuracy difference of only 0.04%. In
contrast, there is a significant gain in terms of number of IMs required to perform the
prediction of all RF specifications, as illustrated in Fig. 32. Only 14 IMs are required with the
optimized strategy instead of 18 IMs for the reference solution, which corresponds to a global

test cost reduction of 22%.
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Fig. 32: Cost of the solutions given by Best*, Optim* and REF selection strategies

Finally to summarize, these results show that it is more interesting to use a method
based on brute-force search for the pertinent selection of /M subsets rather than a strategy
based on feature selection algorithms, even if the search space is not exhaustive. This permits
to identify models built with few IMs that have good accuracy for each specification.
Moreover by evaluating a large number of models, the overall cost of the test solution can be

optimized without significant loss of accuracy.
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II1.4 Conclusion

In this chapter, we have explored different strategies for the selection of an appropriate
subset of DC measurements to be used for RF performance prediction. In particular, the
efficiency of some commonly-used feature selection algorithms are investigated and
confronted to solution obtained with an exhaustive search. An alternative selection strategy
that relies on the smart construction of a search space is developed with the objective to
reduce the overall cost while maintaining the accuracy. The different strategies are evaluated
and validated on the LNA test vehicle, for which a large set of 152 IMs is available to perform
the prediction of twelve RF specifications. For this case study, results show that the accurate
estimation of the RF performances can be achieved with only limited number of DC

measurements using the proposed optimized selection strategy.
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Chapter IV

Strategy for increasing robustness of
prediction-oriented indirect test

IV.1 Introduction

As explained in chapter III, the main problem related to indirect testing, highlighted by
industrial test engineers, is the lack of confidence in the efficiency of the method. The
objective of this chapter is to tackle this issue in order to demonstrate the major breakthrough
that the indirect testing strategy can make in the domain of low-cost testing of RF ICs. As
shown in chapter III, the strategy is accurate for most of the tested devices but for few
devices, large prediction errors are observed (these devices are commonly called outliers).
From an industrial point of view, the misestimated DUTs might induce some test escapes or
yield losses. They are therefore significant problems since one of the major challenges of
production test is to guarantee low defective level (typically few PPMs). Additionally, the
dependency of prediction model performance with respect to the data used during the training
phase to build the model (both selected IMs and training devices) is also a concern. All these
facts make industrial test engineers reluctant to implement the indirect test strategy for
volume production testing of RF ICs.

In this chapter, we introduce a novel implementation of the prediction-oriented indirect
test that permits to manage incorrect predictions and ensures a good robustness of the test
procedure, even in case of models built with low correlation IMs and training set of reduced
size. This solution is based on information redundancy, i.e. the same specification of a device
will be predicted many times using different models built in different contexts; the resulting
predicted values can then be cross-compared to identify anomalies in predictions. All along
this chapter, we will illustrate the efficiency of this strategy using the PA test vehicle for

which we have a large set of experimental data as a case study.
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IV.2 Outlier definitions

Iv.2.1 Process-based outlier

In the literature, some works investigate the problem of outliers which are usually
related to devices affected by catastrophic faults occurring during the manufacturing process.
In particular, a defect filter based on a kernel density estimation technique is presented in [15]
that permits to screen out devices not consistent with the statistical distribution of
manufactured devices. Obviously these devices should not be submitted to the indirect test
procedure as they are likely to be incorrectly predicted. Note that this filter directly operates
on indirect measurement data and therefore permits to identify devices qualified as outliers

before any processing through a regression model.
Iv.2.2 Model-based outlier

Let us now assume that we have a number of devices free of process-based outliers that
are processed by the indirect test procedure. As pointed out in Chapter II, accurate prediction
results can be achieved for most of the devices. However aberrant or flawed predictions are
observed for a small number of devices. We define these devices as model-based outliers.
Indeed such incorrect predictions do not depend on the device itself since the same device
may exhibit correct or aberrant/flawed prediction depending on the considered regression
model (cf. Fig. 25), but are generated by the predictive model. These model-based outliers are
a real concern for the efficiency of the indirect test strategy since they might generate test

escape or yield loss.

IV.3 Redundancy-based filter for model-based outliers
Iv.3.1 Principle

In order to have an efficient implementation of the indirect test strategy, the procedure
should be able to properly manage both process-based and model-based outliers. Process-
based outliers can be easily detected using conventional statistical filters and removed from
the test procedure. However to the best of our knowledge, there is no existing solution to
identify model-based outliers.

In this context, our idea to identify model-based outliers is to introduce an additional
step in the procedure that provides for each device an indication on the confidence that can be
placed on the prediction. If this confidence is low, the device is identified as a potential

model-based outlier and removed from the indirect test flow for further action to be taken.
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This approach is similar to the approach suggested in [14] [17]in case of classification-
oriented strategy, where guard-bands are allocated in the indirect measurement space in order
to identify devices for which the alternate test decision is prone to error. Note that this
solution does not apply in case of prediction-oriented strategy because test decisions are not
taken in the indirect measurement space but in the performance parameter space by
comparing predicted values to specification tolerance limits.

Our idea to provide an indication of confidence in the context of prediction-oriented
indirect test is to exploit model redundancy [43]. Indeed as previously mentioned, different
regression models may lead to either correct or aberrant/flawed predictions for the same
device. Our proposal is therefore to use multiple models to predict one specification and to
crosscheck the predictions obtained with the different models. A device whose performance
predictions are similar whatever the regression model used is likely to be properly predicted.
On the contrary, when different models lead to different performance predictions for the same
device, we can suspect that at least one of the models does not predict the performance
correctly. Unfortunately, we cannot know which one of the predictions is correct and which is
not. We consequently consider that the prediction for this device cannot be trusted: the
prediction is considered suspect and the device is removed from the alternate test flow. In
other words, we use model redundancy to distinguish reliable predictions from suspect
predictions. This operation will be denoted Check Prediction Consistency (CPC) procedure.

This strategy, called two-tier alternate test scheme using model redundancy, is
illustrated in Fig. 33. In the conventional implementation of the prediction-oriented alternate
test, one regression model is built during the training phase for each specification; these
models are then used during the testing phase to predict device specification values. In the
proposed new implementation, 3 regression models that involve different combinations of
indirect measurements are built during the training phase, for each specification. During the
testing phase for each specification, 3 predicted values are therefore computed using the 3
models derived in the previous phase; prediction confidence is then established by checking
the consistency between these 3 predictions. More precisely for each pair of models, the
difference between the predicted values is computed and checked against a threshold value €.
If all these differences are inferior to the threshold, it means that there is no discrepancy
between the values predicted by the 3 models and the specification prediction is considered
reliable. On the contrary, if one (or more) of these differences is superior to €, the prediction is

considered suspect. Two scenarios are then possible:
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o Predictions are considered reliable for all specifications. In this case the device is
directed to the first tier, where device performances are computed by averaging the
3 predicted values, for each specification.

o Prediction is suspect for one (or more) specification. In this case, the device is
removed from the alternate test flow and directed to the second tier, where further
testing may be applied to characterize the device (for instance standard

specification testing).
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Fig. 33: Flow diagram of the proposed two-tier indirect test scheme using model redundancy.

IV.3.2 Experimental results using accurate predictive models

A number of experiments have been performed on the PA case study to validate the
proposed strategy. The experimental test data available from 70,000 devices are split into two
subsets of 5,000 devices with similar statistical properties, one for training and the other for
validation. In all experiments presented in this section, models are built using the 5,000
devices of the training set and evaluation is conducted using the 5,000 devices of the
validation set.

First in a preliminary step, we have chosen the combination of /Ms that will be used to

build the redundant models. For this, we have built all regression models based on triplets of
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IMs, both for CP1 and /P3 specifications. For each specification, we have selected the 3
combinations offering the best performance in terms of average prediction error evaluated on
the training set (see previous chapter). Results are summarized in the first sub-table of Table
2. It can be seen that the 3 models selected for each specification have almost equivalent
performances: the average prediction error ranges between 0.62% and 0.69% for CP1
prediction and between 0.92% and 1.19% for [P3 prediction, and the maximal prediction
error ranges between 0.81dB and 0.85dB for CPI prediction and between 7.10 dB and
1.24dPB for [P3 prediction.

Table 2: Average and maximal prediction errors for CP1 and IP3 specifications

CP1 IP3
Average prediction Maximal prediction Average prediction Maximal prediction
error error error error
Model 1 0.62 % 0.83 dB 112 % 1.24dB
Model 2 0.62 % 0.85dB 0.92% 1.10dB
Model 3 0.69 % 0.81 dB 1.19 % 1.19dB
CP1 IP3
Average prediction Maximal prediction Average prediction Maximal prediction
error error error error
Model 1 0.79 % 3.49dB 1.18 % 4.60dB
Model 2 0.71 % 2.04dB 1.29 % 14.01dP
Model 3 0.71 % 0.90 dB 1.23 % 5.64dB
Mean of 0.75 % 1.44 dB 1.05% 3.32dB
After removing suspect predictions (€cp;=1dB, €;p;=2dB)
CP1 IP3
Average prediction Maximal prediction Average prediction Maximal prediction
error error error error
ngglgf 0.61% 0.90 dB 1.02 % 1.13dB

Then in a second step, these models are used to predict the performance parameter
values for each device in the validation set. Results are summarized in the second sub-table of
Table 2. Looking at the different models independently; the average prediction error is almost
preserved, ranging between 0.71% and 0.79% for CPI1 prediction and between 1.18% and
1.29% for IP3 prediction. However the maximal prediction error significantly increases
compared to the maximal prediction error observed on the training set of devices: maximal

prediction error reaches 3.49dPB for CP1 prediction and 74.01dPB for /P3 prediction.
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This is due to the fact that some devices suffer from flawed predictions, as clearly
illustrated on the scatter plots of Fig. 34 that report the predicted value versus the actual value
for CP1 and /P3 predictions, respectively. Note that averaging predictions of the 3 models
permits to reduce the maximal prediction error, but the error is still much larger than the
maximal prediction error expected from the training set.

In the last step, the prediction confidence procedure is applied considering a threshold
value &cp=1dPB for CP1 prediction and &p3=2dB for [P3 prediction. This procedure permits
to identify 6 suspect predictions regarding CPI specification and 5 suspect predictions
regarding IP3 specification, represented by green marks in the scatter plots of Fig. 34. It can
be seen that all flawed predictions are correctly identified by the prediction confidence
procedure. Results in terms of average and maximal prediction errors obtained after removing
devices with suspect prediction are reported in the last sub-table of Table 2: the average
prediction is now 0.61% for CP1 prediction and 1.02% for [P3 prediction, and the maximal
prediction error is 0.90dB for CP1 prediction and 1.13dPB for /P3 prediction. These maximal
prediction errors are in the same range than the maximal prediction errors expected from the
training set, therefore demonstrating the efficiency of the proposed strategy.

In the previous experiment, the detection threshold was arbitrarily set to value
Ecp1=1dB and ¢gp3=2dB. We have investigated how the performances of the proposed
strategy are impacted by the value of this threshold. Results are summarized in Fig. 35, which
give the evolution of the maximal prediction error and the percentage of devices directed to
the second tier (i.e. devices with suspect predictions) with respect to the value of the detection
threshold, regarding CPI and /P3 specifications, respectively. It clearly appears that an
adequate value of the detection threshold can be easily found that significantly reduces the
maximal prediction error while only a limited number of devices are directed to Tier 2 due to

suspect predictions.
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Fig. 35: PA performance prediction with model redundancy: impact of the threshold value
€cpip3 used during identification of suspect predictions

For CP1 specification with a detection threshold &cp; between 1dB and 2.5dP, the
maximal prediction error observed over the training set of 5 000 devices is limited to 0.90dB
while less than 0.7% of the devices are directed to Tier 2. In the same way, for IP3
specification with a detection threshold €p; between 71.5dB and 5.9dB, the maximal
prediction error is limited to 7.73dB while less than 0.1% of the devices are directed to Tier
2. Note that there is not real benefit at lowering the detection threshold below these values
because it results in a minor reduction of the maximal prediction error but at the price of a

very strong increase in the number of devices directed to Tier 2.
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IV.4 Making predictive indirect test strategy independent of

training set size

The previous section has introduced the concept of model redundancy to establish
prediction confidence and demonstrated its efficiency to identify suspicious predictions. As a
consequence, aberrant or flawed predictions can be avoided and accurate predictions results
are achieved for all circuits processed by the indirect test tier. It is worth noting that these
results were obtained using predictive models built on a large training set of 5,000 devices.
The objective of this section is to investigate the efficiency of the proposed strategy in case of
training sets of reduced size. Indeed as highlighted in Chapter II, the Training Set Size (7SS)
has a significant impact of the quality of the built regression models, in particular regarding
they ability to correctly predict new devices different from the training devices (cf. Fig. 27),
which shows that the number of circuits affected by large prediction errors augments when
the size of the training set reduces). However using large training sets increases the overall
cost of the test method since the conventional and expensive RF measurements have to be

performed for all devices of the training set.
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Fig. 36 : Average prediction error of selected redundant models vs. TSS.

Experiments have been performed on the same case study in order to evaluate the
influence of the training set size. More precisely, the redundant models have been built for
different sizes of training set ranging from /00 to 2,000 devices randomly chosen in the initial
training set of 5,000 devices. Note that we have verified that the model performance remains
unchanged for the different sizes of the training set. As illustrated in Fig. 36, the 3 selected

models (for each specification) lead to similar performances with a constant average
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prediction error of about 0.6% for CP1 specification and about 7% for /P3 specification,
whatever the 7SS value.

Using these selected models, the efficiency of the proposed alternate test
implementation has then been evaluated for different 7'SS. Detection threshold for prediction
consistency checking has also been set to IdB for CP1 specification and 2dB for [IP3
specification.

As an illustration, Fig. 37 gives correlation plots between predicted and actual values
for CP1 and /P3 specifications respectively, associated to the 3 different models built on a set
of 300 devices randomly chosen in the 7S. For both specifications, it clearly appears that
whatever the regression model, some circuits suffer from large prediction errors. However the
efficiency of the procedure that checks prediction consistency is also clearly demonstrated
since all circuits affected with large prediction error are correctly identified. As a result when
suspect predictions are removed, a good agreement is observed between the value computed
as the average of the 3 predictions and the actual value, for all circuits. On this example, 25
circuits are identified as circuits likely to be affected with large prediction errors regarding
CP1 specification, and 27 regarding /P3 specification. After removal of these circuits,
maximal prediction errors are limited to 1.75dPB for CP1 specification and 1.53dPB for IP3
specification, respectively. Note that some circuits are identified as suspect circuits for both
specifications, so the number of circuits directed to the second tier of the test flow is actually

only 38, which corresponds to 0.76% of the 5,000 processed circuits.
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More generally, the efficiency of the proposed alternate test implementation for
different training set sizes is summarized in Fig. 38 that compares prediction errors observed
when using each regression model individually (excluding OOR predictions) to prediction
errors observed after removal of suspect predictions and averaging of the 3 prediction results.
It clearly appears that the proposed alternate test implementation offers better performance
than the classical one, both in terms of average and maximal prediction errors. More in
details, it can be observed that when using a single regression model and excluding OOR
predictions, results depends on both the used model and the training set size. The average
prediction error ranges between 1.72% and 1.99% for CP1 specification and between 1.32%
and 1.90% for IP3 specification, whereas expected prediction accuracy from the training is of

about 0.6% for CP1 specification and about 7% for /P3 specification.
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In the same way, even if OOR predictions are excluded, large prediction errors are still
obtained for some circuits with a maximal prediction error that ranges between 6.1dB and
11.1dBfor CP1 specification and between 9.5dB and 20.1dPB for IP3 specification.

In contrast when the prediction consistency checking procedure is introduced in the test
flow, results are independent of the training set size and good prediction accuracy is obtained
for all circuits evaluated by the alternate test tier. The average prediction error is around 0.7%
for CP1 specification and 1.1% for /P3 specification, and the maximal prediction error is
limited to 7.9dB for CP1 specification and 71.5dPB for /P3 specification, whatever the 7SS. Of
course, these good results are obtained at the price of some circuits directed to the second tier
of the test flow where additional testing should be applied to characterize them. However it is
worth noting that the number of these circuits is extremely small.

To illustrate this point, Fig. 39 reports the percentage of identified suspect predictions
regarding CPI and /P3 specifications for different training set sizes. As expected, this
percentage increases when the number of instances in the training set reduces, but in both
cases it remains below 7%. Consequently, even with a small training set of only 300 devices,

less than 7.5% of the circuits are directed to the second tier of the test flow.
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To summarize, these results show that on the contrary to the classical implementation
where prediction accuracy degrades when reducing the training set size, the proposed
approach permits to preserve prediction accuracy independently of the training set size, while

only a very small number of devices are directed to the second tier of the test flow.

IV.5 Model redundancy to balance the lack of correlation

between IMs and RF performance parameters

In this section, we investigate the efficiency of the proposed strategy in case of non-
accurate redundant models. Indeed results presented in the previous sections rely on the use of
3 accurate models involving different combinations of indirect measurements for each
specification. However depending on the product to be tested, it may happen that the number
of potential IMs and/or the correlation between these IMs and the product specifications is
limited. In this case, it may be difficult to build redundant models with a satisfying accuracy.

The objective of this section is to analyze such a situation using the PA as a case study.
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As previously mentioned we have a set of 37 IMs for this test vehicle, which means that

we can build 7,770 different models based on triplets of /Ms for each specification. Obviously

not all these models exhibit a good accuracy, as illustrated in Fig. 40 that shows the

distribution of the average prediction error (computed on the training set of 5,000 devices) for

all the 7,770 models. For both specifications, there are some models with very good accuracy

but the majority of the models have an average prediction error above 7%.
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For the purpose of this study, we intentionally choose to implement the redundant

strategy using models with a degraded accuracy. More precisely, we choose to implement the

strategy using 3 models randomly chosen among the set of models with an average prediction

error (computed on 75) exceeding 7% for each specification, and repeating this experiment
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5,000 times. For each run, the efficiency of the strategy is evaluated in terms of average and
maximal prediction errors observed on the validation set of 5,000 devices, and compared to
the conventional implementation of the indirect test strategy using a single predictive model
for each specification (among the 3 redundant models, only the model with the lowest
prediction error computed on 7 is kept).

Results are summarized in Fig. 41 and Fig. 42 for CP1 and /P3 specifications
respectively. Note that for readability reasons, values are sorted in ascending order for each
curve. The benefit of the redundant strategy clearly appears from these graphs. Indeed good
accuracy is observed over the 5,000 runs when using this strategy, with an average prediction
error evaluated on VS that remains below 2% for both specifications whatever the random
run. In contrast when using the conventional strategy with a single predictive model, the
average prediction error exceeds 2% for about 35% of the random runs in case of CPZ
specification, and about 25% in case of /P3 specification. The superiority of the redundant
strategy is even stronger when looking at maximal prediction errors. In case of CPZ
specification, the maximum prediction error is below ZdFB only for 30% of the random runs
when using the conventional strategy, while the redundant strategy permits to reach this
condition for 99% of the random runs. Similarly in case of /P3 specification, the percentage
of occurrences for which the maximum prediction error is below 2dPB is around 20% with the
conventional strategy, against /5% with the redundant strategy. Note that these good
performances are achieved with only a small number of circuits removed from the indirect
test tier, as illustrated by Table 3 that reports the percentage of circuits identified as suspect

predictions for both CP7 and /P3 specifications.

Table 3: Percentage of suspect predictions:
average and maximum values over the 5,000 runs

Percentage of suspect predictions

Average Maximum
cP1 0.97% 3.46%
IP3 0.40% 1.24%

More generally, these results demonstrate the efficiency of the redundant strategy to
correctly identify model-based outliers, even if the predictive models have a limited accuracy.
This is a very interesting feature because by relaxing the constraint on model accuracy, it
widens the application field of the indirect test strategy to the case of products with a reduced

number of exploitable IMs and/or IMs that present imperfect correlation with specifications. It
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also gives great flexibility for test engineers to choose the set of used IMs, and therefore offers

interesting perspective in terms of cost-optimized implementations.

IV.6 Different implementation schemes of redundancy

Iv.6.1 Motivation

In the initial redundancy strategy, prediction confidence is established based on the use
of 3 regression models that involve different combinations of indirect measurements, for each
specification. As described previously, the CPC module qualifies the different predictions as
confident and suspect predictions [44]. The efficiency of the proposed scheme relies on the
assumption that it is very unlikely that 3 regression models built using different combinations
of indirect measurements will erroneously predict the device performance with the same error.
To widely validate the assumption, we have performed additional experiments on the PA case
study. In these experiments, we have evaluated the performances achieved by the redundant
strategy regarding CP1 specification when using 3 regression models randomly chosen among

a set of 5,000 acceptable models and repeating this experiment 100 times.
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Fig. 43: Particular CP1 prediction example illustrating the limitation of the proposed
implementation.
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Results show that there is only one case over the /00 experiments, for which the
procedure fails to identify a relatively large error on one device prediction of the validation
set. This example is illustrated Fig. 43. It can be clearly seen that the CPC procedure permits
to identify all devices affected with relatively large prediction error, expect one. For this
particular device and these particular regression models, the 3 models actually yield to an
erroneous performance prediction with a similar error (difference between each pair of
predicted values is less than 1dBm). The prediction is therefore not detected as a suspect one

and the device is not directed towards the appropriate test tier.

Our objective is to reinforce redundancy in order to avoid such situation. More
precisely, the idea is to increase the number of redundant models used in the procedure that
checks prediction consistency in order to diminish the probability that all models give the

same erroneous prediction for one device.

1V.6.2 Principle of augmented redundancy CPC schemes

A first option to increase redundancy is to continue to exploit the different indirect
measurements and to build, for each specification, not only 3 but a higher number of
regression models based on different /M combinations. However it is clear that selecting a
higher number of different /M combinations will inevitably imply a higher number of indirect
measurements that have to be performed, which has a direct impact on the testing cost. This
option is therefore not favored. Instead, our idea is to exploit another attribute of the data
available for the construction of regression models related to training devices. Indeed, data
used for the construction of a regression model clearly involves two aspects, i.e. indirect
measurements and training devices. Any change in the set of indirect measurements or in the
set of training devices results in a different model. Up to now, redundant models were built by
changing the set of considered indirect measurements. The basic principle is to maintain this
feature but also to exploit the other aspect, i.e. to build redundant models by changing the set
of training devices. In particular, the idea is to split the training set in a number of partitions

and to build regression models for the different partitions.

Our proposal for the generation of redundant regression models, for each specification
S;, is summarized in Fig. 44. On one hand 3 combinations of indirect measurements are

selected from the set of available indirect measurements, and on the other hand the training
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set is split is 3 distinct partitions. For each selected /M combination C;, a regression model is
then built considering the different partitions of the training set. A total number of 9
redundant models are therefore built, which exploit both different /M combinations and
different partitions of the training set. These 9 models will be used during the testing phase in

order to establish prediction confidence.

Indirect
Measurements
v 3
IM subset IM subset IM subset
combination C'1 bingrion (2 combination (3

GENERATION of REDUNDANT MODELS for SPEC §;

Fig. 44: Generation of redundant regression models

We have actually explored different implementations of the procedure that CPC. In the
first version, consistency between the values predicted by the 9 models is checked in a single
step, i.e. the difference between the predicted values is computed for each pair of models and
prediction is considered reliable only if all these 36 differences are inferior to a given
threshold €4;. In the case, the final predicted value is computed as the mean of the 9 predicted
values. In the two other versions, prediction consistency is verified is two steps. In the first
step, consistency between predicted values is checked considering models 3 by 3 according to
the used training set partition in one version or the used IM combination in the other version;
then 3 intermediate predicted values can be computed. In the second step, consistency
between these 3 intermediate values is checked and the final predicted value is computed as
the mean of these 3 values. These different implementations of the two-tier alternate test

scheme with augmented model redundancy are summarized in Fig. 45.
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Fig. 45: Implementations of the two-tier indirect test scheme with augmented model
redundancy

1vV.6.3 Experimental Results

A number of experiments have been performed on our case study (PA) to validate these
new implementations. First, we have considered the particular CPI prediction example
discussed in previous sub-section, for which the initial implementation fails to identify a
relatively large prediction error on one device of the validation set. Results are summarized in
Table 4 that reports both average and maximal prediction errors observed for the different
implementations. Note that implementations with augmented model redundancy involve the
partitioning of the training set in 3 disjoint subsets. Although the training set comprises a
rather large number of devices, results are quite sensitive to the repartition of training devices
in the different subsets. Consequently, we create several random splits of the training devices
in 3 partitions and we report minimum, mean and maximum values observed over all runs
(100 runs in this experiment). Finally for the sake of comparison, we also report results
obtained when using a reduced-cost implementation that exploits model redundancy based
only on different training set partitions (a single /M combination is considered and only 3

redundant models are built using the 3 different partitions).
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Table 4: Average and maximal prediction errors observed using the different
implementations for the particular CPI prediction example of previous sub-section

" New Implementations Cost-reduced
Initial Implem. . . :

Version A Version B Version C Implem.
t min 1.17 % 1.17 % 1.17 % 1.65%
C{)“ mean 1.28 % 1.18 % 1.18% 1.18 % 1.71%
max 1.19% 1.19% 1.20 % 1.76 %
:;é min 0.77 dB 0.77 dB 0.78 dB 2.03dP
S mean 4.08 dB 0.81 dB 0.81 dP 0.82 dB 3.35dB
max 0.96 dB 0.96 dP 0.96 dB 5.09 dB

From the results of Table 4, it can be observed that the 3 versions of the new
implementation of augmented model redundancy have equivalent performances. The
efficiency of these new implementations is clearly demonstrated, since they permit to reduce
average and maximal prediction errors compared to the initial implementation. The
improvement is particularly significant regarding the maximal prediction error that reduces
from 4.08dFB with the initial implementation down to less than 7dB. Also it can be observed
that the cost-reduced implementation that exploits model redundancy based only on different

training set partitions offers degraded performances compared to other implementations.

Table 5: Comparison of the different implementations for CP1 prediction

. New Implementations Cost-reduced
Initial Implem. - . -

Version A Version B Version C Implem.

min 0.69 % 0.66 % 0.66 % 0.66 % 0.64 %

gl) mean 0.97 % 0.96 % 0.96 % 0.97 % 1.11%
((E max 1.28 % 1.25% 1.25% 1.26 % 503 %
o 016 % 0.15 % 0.15 % 0.15 % 0.31 %

min 0.70 dB 0.52 dB 0.53 dB 0.53 dB 0.66 dB

>¢§ mean 1.06 dB 0.91 dB 0.93 dB 0.95 dB 1.57dB
E max 4.08 dB 2.16dB 2.17dB 2.16dB 3849 dB

W

o 0.42 dB 0.28 dB 0.29 dB 0.29 dB 0.78 dB




83

Table 6: Comparison of the different implementations for IP3 prediction

. New Implementations Cost-reduced
Initial IMplem. T e S

Version A Version B Version C Implem.

min 0.87 % 0.85 % 0.85 % 0.85 % 0.91 %

gl) mean 1.06 % 1.06 % 1.06 % 1.06 % 1.17 %
ES max 1.31% 1.41 % 1.43 % 1.44 % 1.58 %
o 0.07 % 0.07 % 0.07 % 0.07 % 0.09 %

min 1.01dB 0.97 dB 0.97 dB 0.97 dB 1.17dB

% mean 1.77dB 1.51dB 1.55dB 1.59dB 2.93dPB
E max 7.35dB 4.47 dB 6.28 dB 6.50 dB 14.66 dB

W

o 0.96 dB 0.50 dB 0.53 dB 0.56 dB 1.74 dB

Results on the previous CPI prediction example are obtained considering 3 particular
IM combinations. To further corroborate these results, we have conducted a large campaign of
experiments varying the IM combinations used to build the redundant models. More precisely
for each specification, we perform 50 random selections of 3 different IM combinations
among all the combinations corresponding to models with a satisfying accuracy. For each 3
selected IM combinations, redundant models are then built considering 100 random splits of
the training devices in 3 partitions. Implementations with augmented model redundancy are
therefore evaluated over 5,000 different cases of generated redundant models. Results are
summarized in

Table 5 and

Table 6 for CP7 and /P3 predictions respectively.

These results confirm the observations made on the particular CPI prediction example,
and in particular the superiority of the new implementations with augmented model
redundancy. Indeed although impact on the average prediction error is not significant, there is
a substantial improvement regarding the maximal prediction error, with a reduction not only
of the mean and maximum values observed over the different cases of generated redundant
models, but also of the standard deviation. In particular, this standard deviation reduces from
0.42dB with the initial implementation down to 0.28dF for CP1 specification, and from
0.96dPB down to 0.5dBm for /P3 specification. This constitutes an important improvement of

the robustness of the technique. Regarding comparison between the performances offered by
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the 3 versions of the new implementation, they are equivalent for CPI specification, but
version “A” leads to slightly better results for /P3 specification; this implementation may
therefore be preferred. Regarding the cost-reduced implementation that exploit model
redundancy based only on different training set partitions, this solution should not be retained

as it presents degraded performances compared to other implementations.

Finally we have compared the different implementations regarding the percentage of
circuits for which suspect predictions are identified. Results are summarized in Fig. 46. As
expected, implementations with augmented model redundancy lead to a higher number of
suspect predictions compared to implementations with model redundancy based only on either
different /M combinations or different training set partitions, both for CPI and [/P3
specifications. However the percentage remains extremely low, less than 7.5%, which means
that the new implementations permits to improve prediction results while maintaining a low

test cost overhead.
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Fig. 46: Comparison of different implementations in terms
of percentage of suspect predictions
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IV.7 Conclusion

The main obstacle against the wide development of indirect test is the lack of
confidence in the predicted RF performance values. As shown along this chapter, although
circuit specifications are accurately predicted for most of tested devices, there are some
devices for which prediction is affected by large errors; experiments show that these
anomalies appear regardless of the used IM combination and the size of the training set, i.e.
even though well correlated IMs and large TSS are used for model construction. Nevertheless,
the percentage of these circuits increases when using models with low accuracy or reduced set
of training devices.

To cope with these issues, we have proposed in this chapter a novel implementation of
the prediction-oriented indirect test strategy. The idea is to introduce in the test procedure a
kind of “safety” mechanism in order to prevent incorrect predictions which may cause test
escape or yield loss. For this, we have exploited model redundancy and we have implemented
a simple procedure that permits to identify devices for which prediction is prone to error.
These devices are then removed from the indirect test tier and directed to a second tier where
further testing may apply. In this way, we expect that most of the devices are evaluated
through the low-cost indirect test tier and only a small fraction of devices are evaluated
through a more expensive test procedure. As a result, the overall test cost is reduced compared
to standard specification testing while accuracy is preserved.

This redundancy-based strategy has proven its efficiency along many experiments.
Moreover it improves prediction accuracy and robustness in different contexts, such as
building of models with training set of reduced size or low correlation IMs. It therefore
permits to relax some important constraints faced by the test engineers for the efficient
implementation of indirect test. Finally, we have proposed new implementations of the CPC
procedure to improve its efficiency. These new implementations are based on redundant
models that involve not only different combinations of indirect measurements as initially
proposed, but also different partitions of the training set. Combining these two aspects permits
the generation of a higher number of redundant models while maintaining the same cost, i.e.
the same number of indirect measurements to be performed. All implementations redirect
only a very small fraction of the devices to second tier, therefore incurring very low test cost

overhead.
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Conclusion

With the development of complex IC manufacturing processes and advanced IC
integration schemes, it becomes increasingly challenging to produce operational chips. The
quality assurance of the devices is becoming a very important criterion over the phases of the
manufacturing process. Testing is of course an essential function to ensure product quality. In
the context of analog and RF IC, the conventional practice is based on measuring the circuit
performances and comparing them to specifications given by the datasheet. This
specification-based test strategy, in spite of providing a golden test quality, has prohibitive
cost. Two main factors contribute to this prohibitive cost: first the capital investment on the
required RF test resources which could reach over than 60% of the total cost of an ATE;
second the long test time needed to perform all RF measurements. In this context, testing of
systems including RF parts has become a bottleneck to obtain low-cost products with high
quality with respect the datasheet specifications and with reasonable time-to-market.

Some cost-reduced RF IC testing techniques have emerged in last decades. A quick
overview on these techniques is given in the first chapter. One of the promising techniques is
the indirect test strategy. This strategy can be applied at different levels in the manufacturing
process; i.e. it can be adopted at wafer-level as well as package-level.

In this work, we have investigated the implementation of the indirect test strategy in the
context of prediction-oriented test. This technique dramatically decreases the cost of the test
solution, in particular when DC measurements are used to predict the circuit RF
performances. In this case, there is no need for expensive RF equipment to perform the test.
Moreover, the test time is considerably reduced. In addition because it gives access to the
value of the device RF parameters, prediction-oriented indirect test also allows the industrials
to perform additional post-silicon quality assurance operations, such as quality binning or
process monitoring.

In spite of the clear advantages offered by this technique, the industrials have not yet
entire confidence to widely adopt such a test strategy. The lack of confidence in the predicted
value of RF parameters comes from different sources. As seen in the second and the third
chapters, learning conditions and used IMs for the construction of a predictive model have a

significant impact on the model accuracy. It also impacts the robustness of the model



88

regarding its ability to perform accurate prediction for new devices, and incorrect predictions
observed for some devices might generate additional test escape or yield loss.

This thesis intends to improve confidence in the prediction-oriented indirect test
strategy. Model accuracy and robustness are the key features to achieve trustable predicted
values of the RF parameter. The model accuracy mainly depends on how much the used IMs
express the RF parameter variation. Wise selection of the IMs is therefore required to build
accurate models. In the literature, there are several methods for pertinent data selection. In
chapter II, some of them have been investigated and compared to a reference solution based
on an “exhaustive” search of the pertinent IMs subset. Due to evident computational issues;
the search is restricted to subsets constituted only of 3 IMs. In spite of the limited space
search, we have been able to build models with better accuracy than those built from IMs
selected by the existing techniques. Moreover, thanks to the large number of prediction
models built for each RF parameter, optimization of the cost of the test solution can be
performed. So, clever IM subset selection can contribute to accurate model and more cost
efficient test solutions. To this aim, we have proposed a method for pertinent IM subset
selection based on three steps: (i) dimensionality reduction of the /M space based on PCA, (ii)
iterative construction of the search space based on the selection of a limited number IM
subsets at each iteration, and (iii) selection of an optimized IM subset through coverage
problem resolution. The proposed method has been validated on the LNA test vehicle using
simulation data; results show that predictive models with good accuracy can be built for the
12 RF performances using only 18 DC measurements selected among the 152 available IMs.
Note that the selection of a cost-effective solution is a difficult task when dealing with a large
number of RF parameters to be predicted and when /Ms have different individual costs (i.e.
the assumption that the test solution cost is directly proportional to the total number of used
IMs is no longer valid). So, further work on this area could be the development of an
optimization algorithm able to handle these aspects in the selection of a cost-effective
solution.

In addition to the appropriate IMs selection for good model accuracy (i.e. low average
prediction error), another challenge is to ensure high model robustness (i.e. low maximal
prediction error). Unfortunately, good accuracy is achieved for most of the devices when
using the conventional implementation of the prediction-oriented test strategy, but some
devices exhibit large prediction errors. Even if the number of these devices is very small, this
constitutes a real obstacle for wide development of the indirect test strategy. In this context, a

novel implementation of the prediction-oriented indirect test strategy has been presented in



89

chapter IV. The key idea is to exploit model redundancy in order to establish prediction
confidence for each tested device, which can then be used to define a robust test procedure.
The proposed scheme is an adaptive test strategy based on two different tiers. All devices for
which good prediction confidence is established are directed to the first tier, which
corresponds to the indirect test procedure. In case of low prediction confidence, devices are
removed from the indirect test procedure and directed to the second tier. The devices may be
submitted to additional tests or simply discarded depending on the industrial strategy adopted
for each product. Experiments presented in chapter IV using measurement test data have
proven the efficiency of the proposed implementation to improve prediction accuracy and
robustness against outliers. Moreover it also permits to get rid of the model performance
dependency with the training data, and therefore obtain good efficiency even in case
predictive models are built with training set of reduced size or low-correlation IMs. Note that
the proportion of devices redirected to the second tier is very low (around 1%), which means
that the large majority of devices are tested with the low-cost indirect test tier.

Another issue of the indirect test strategy, which is not addressed in this work, is the
predictive model validity with respect to potential manufacturing process shift. Indeed it is
likely that predictive models should be relearned in case of process shift for more efficient
implementation. An interesting perspective is to investigate whether the number of circuits

redirected to the second tier could constitute a good indicator for model relearning.
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