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Abstract

Due to the natural, non-intrusive, easily collectible, widespread applicability, machine-
based face recognition has received significant attention from the biometrics community
over the past three decades. Compared with traditional appearance-based (2D) face recog-
nition, shape-based (3D) face recognition is more stable to illumination variations, small
head pose changes, and varying facial cosmetics. However, 3D face scans captured in
unconstrained conditions may lead to various difficulties, such as non-rigid deformations
caused by varying expressions, data missing due to self occlusions and external occlusions,
as well as low-quality data as a result of some imperfections in the scanning technology.

In order to deal with those difficulties and to be useful in real-world applications, in this
thesis, we propose two 3D face recognition approaches: one is focusing on handling vari-
ous expression changes, while the other one can recognize people in the presence of large
facial expressions, occlusions and large pose various. In addition, we provide a provable
and practical surface meshing algorithm for data-quality improvement.

To deal with expression issue, we assume that different local facial region (e.g. nose,
eyes) has different intra-expression/inter-expression shape variability, and thus has differ-
ent importance. Based on this assumption, we design a learning strategy to find out the
quantification importance of local facial regions in terms of their discriminating power. For
facial description, we propose a novel shape descriptor by encoding the micro-structure
of multi-channel facial normal information in multiple scales, namely, Multi-Scale and
Multi-Component Local Normal Patterns (MSMC-LNP). It can comprehensively de-
scribe the local shape changes of 3D facial surfaces by a set of LNP histograms including
both global and local cues. For face matching, Weighted Sparse Representation-based
Classifier (W-SRC) is formulated based on the learned quantification importance and the
LNP histograms. The proposed approach is evaluated on four databases: the FRGC v2.0,

Bosphorus, BU-3DFE and 3D-TEC, including face scans in the presence of diverse ex-
pressions and action units, or several prototypical expressions with different intensities, or
facial expression variations combine with strong facial similarities (i.e. identical twins).
Extensive experimental results show that the proposed 3D face recognition approach with
the use of discriminative facial descriptors can be able to deal with expression variation-
s and perform quite accurately over all databases, and thereby has a good generalization
ability.

To deal with expression and data missing issues in an uniform framework, we propose

a mesh-based registration free 3D face recognition approach based on a novel local facial
shape descriptor and a multi-task sparse representation-based face matching process. The
proposed approach consists of three main steps: 1) A set of facial salient points are de-
tected for each facial surface by using the local extreme values of principle curvatures in
3D Gaussian scale space; 2) To describe each salient point associated with a local sup-
port region, we propose to compute the weighted statistical distributions of multiple order
surface differential quantities, including Histogram of mesh Gradient (HOG), Histogram
of Shape index (HOS) and Histogram of Gradient of Shape index (HOGS); 3) Differen-
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t from the coarse grained matching scheme which simply counts the number of matched
salient points in a pair of face scans, we propose a fine grained matching scheme by solv-
ing a multi-task sparse representation problem. Comprehensive experiments were carried
out on Bosphorus, the largest public database which best accounts for the various chal-
lenges of 3D face recognition in uncontrolled conditions, i.e. expression variations, pose
changes and external occlusions. The experimental results demonstrate the effectiveness of
the proposed method which achieves the best state of the art rank-1 recognition rates over
the whole dataset (96.56%) and its three subsets of expression variations (98.82%), pose
changes (91.14%) and occlusions (99.21%). Additional experiments on the FRGC v2.0
database show that the proposed method consistently displays competitive performance in
comparison with state of the art algorithms which mostly require accurate face alignmen-
t and/or learning of discriminating features, and thereby demonstrates its generalization
ability.

The direct motivation to deal with the low-quality data issue in this thesis is to achieve
reliable facial surface descriptions. It is well known that the estimates of surface differential
quantities such as surface normal and curvatures are very sensitive to noise and mesh qual-
ity. To handle this issue, we present a conformal mapping-based surface meshing algorith-
m to generate high-quality triangle meshes with theoretic guarantee of surface normal and
curvature convergence. Specifically, given a smooth surface embedded in E

3, our surface
meshing algorithm can generate a sequence of well-shaped and well-sized triangulations
by performing classical 2D Delaunay refinement algorithms on conformal uniformization
domain. To compare the local geometry of the smooth surface and its discrete approx-
imations, we choose to use the normal cycle theory, which gives a general framework
involving both smooth and discrete curvatures. This implies that we deal with curvature
measures, which allow to compare the local curvatures of smooth surface and triangulation.
We give explicit error estimates and prove the convergence of surface normal and curva-
ture measures. We evaluated our theoretical results by meshing smooth Spline surfaces.
The experimental results verify the theoretical results and demonstrated the efficiency of
the designed surface meshing algorithm. More experiments for 3D face recognition with
data-quality guarantee will be tested in our future work.

Keywords: 3D face recognition, expressions, occlusions, and pose variations, facial
surface descriptors, surface meshing, normal and curvature convergence.
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Résumé

En raison des naturelle, non-intrusive, facilement percevable caractéristiques, et une large
diffusive applicabilité pour la criminalistique et de la sécurité, reconnaissance faciale basée
sur la machine a reçu beaucoup d’attention de la communauté biométrie au cours des trois
dernières décennies. Par rapport à la traditionnelle reconnaissance faciale basée sur le
visage 2D, la recconnaissance faciale basé sur la forme 3D est plus stable aux variations
d’éclairage; petite changements de tête pose, et variant cosmétiques pour le visage. Cepen-
dant, le visage 3D numérise capturé dans des conditions non-contraintes peut conduire à
des difficultés diverses, comme des déformations non rigides provoquées par la variant
expressions, les données manquantes en raison de l’auto-occlusions et des occlusions ex-
ternes, ainsi que des données de faible qualité en raison de certaines imperfections de la
technologie de numérisation. Pour régler ces difficultés et d’améliorer les applications du
monde réel, dans cette thèse, nous proposons deux approches de 3D reconnaissance faciale:
l’un se concentre sur le handling de divers changements d’expression, l’autre peut recon-
naître les gens à la situation de présence d’un grand les expressions facial, des occlusions
et des grands pose divers. En outre, nous fournissons une surface prouvable et pratique
algorithme de surface maillage pour l’amélioration de la qualité de données.

Pour faire face aux problème d’expression, nous supposons que la variabilité des
formes de intra-expression/inter-expression de la faciale local région différent (e. g., nez,
yeux) est différent, et a donc une importance niveau différente. Sur la base de cette hy-
pothèse, nous concevons une stratégie d’apprentissage pour découvrir l’importance de la
quantification des régions faciales locaux en fonction de leur énergie discriminant. Pour
une description du visage, nous proposons une nouvelle descripteur pour coder la micro-
structure du multi- canal d’information normale du visage dans multiples échelles, à savoir,
Multi-Scale and Multi-Component Local Normal Patterns (MSMC-LNP). On peut glob-
alement décrire les changements de forme locale de 3D surfaces faciales par un ensemble
d’histogrammes LNP y compris les indices globaux et locaux. Pour le visage correspon-
dant, Weighted Sparse Representation-based Classifier (W-SRC) est formulée sur la base
de l’importance de la quantification appris et les histogrammes LNP. L’approche proposée
est évaluée sur quatre bases de données: le FRGC v2. 0, Bosphore, BU- 3DFE et 3D -TEC,
y compris les scans du visage en présence de diverses expressions et des unités d’action,
ou de plusieurs expressions prototypiques avec des intensités différentes, ou des variations
d’expression du visage combinée avec de fortes similitudes faciales (c.à.d. jumeaux iden-
tiques). Résultats expérimentaux étendus montrent que l’approche de reconnaissance de
3D visage proposé avec l’utilisation de descripteurs discriminants du visage peut régler
les variations d’expression et d’effectuer avec assez de précision sur toutes les bases de
données, et a ainsi une bonne capacité de généralisation.

Pour faire face à l’expression et problème des données manquantes dans un cadre uni-
forme, nous proposons une approche sur le sans-enregistrement maillage-basé reconnais-
sance du 3D visage basé sur un nouveau local descripteur de la forme du visage et un corre-
spondance processus d’clairsemée représentation du visage basée multi- tâche. L’approche
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proposée consiste en trois étapes principales: 1) Un ensemble de points saillants du vis-
age sont détectés pour chaque surface du visage en utilisant les valeurs extrêmes locales
de courbures de principe dans le 3D Gaussienne échelle espace, 2) Pour décrire chaque
point saillant associé à un local région supporté, nous proposons de calculer les distribu-
tions pondérées statistiques de plusieurs échelles du surface de quantités différentielles, y
compris Histogram of mesh Gradient (HOG), Histogram of Shape index (HOS) and His-
togram of Gradient of Shape index (HOGS); 3) Ce qui différecie de le grossière grain
appariement qui comptes simplement le nombre de points saillants correspondants dans
une paire de scans du visage, nous proposons un schéma correspondant avec grain fin en
résolvant un multi-tâche problème de représentation clairsemé. Expériences exhaustives
ont été effectuées sur le Bosphorus, ce qui est la plus grande base de données publique qui
est le meilleur des différents enjeux de la reconnaissance faciale en 3D dans des conditions
non-contrôlées, soit des variations d’expression, changements de pose et les occlusion-
s externes. Les résultats expérimentaux démontrent l’efficacité de la méthode proposée,
qui réalise le meilleur état de l’art de rang 1 des taux de reconnaissance sur l’ensemble
des données (96.56%) et de ses trois sous-ensembles de variations d’expression (98.82%),
changement de pose (91.14%) et occlusions (99.21%). Des expériences complémentaires
sur base de données FRGC v2.0 presentes que la méthode proposée affiche constamment
la performance compétitive en comparaison avec l’état de l’art des algorithmes qui de-
mandent surtout de l’alignement de visage précis et/ou l’apprentissage des caractéristiques
distinctives, et démontre ainsi sa capacité de généralisation.

La motivation directe de faire face à la problème des données de faible qualité dans
cette thèse est de gagner des descriptions de surface faciale fiables. Il est bien connu que
les estimations des quantités différentielles de surface tels que la normale de surface et des
courbures sont très sensibles à la qualité de maillage. Pour traiter cette problème, nous
présentons une surface cartographie-basée conforme algorithme de maillage pour générer
des maillages triangulaires de haute qualité avec garantie théorique de la normale de la
surface et de la convergence de courbure. Plus précisément, étant donné une surface lisse
intégré dans l’espace euclidien à trois dimensions, notre maillage surface algorithme peut
générer une séquence de triangulations bien formées et bien dimensionné en exécutant des
algorithmes de raffinement de Delaunay 2D classiques sur le domaine de l’uniformisation
conforme. Pour comparer la géométrie locale de la surface lisse et ses approximations dis-
crètes, nous choisissons d’utiliser la théorie du cycle normal, ce qui donne un cadre général
impliquant deux courbures douces et discrètes. Cela implique que nous traitons avec des
mesures de courbure, ce qui nous permet de comparer les courbures locales de surface lisse
et triangulation. Nous donnons des estimations d’erreur explicites et de prouver la con-
vergence de la normale de la surface et les mesures de courbure. Nous avons évalué nos
résultats théoriques par maillage de splines surfaces lisses. Les résultats expérimentaux
vérifient les résultats théoriques et ont démontré l’efficacité de le maillage de surface des-
tinée algorithme. D’autres expériences de reconnaissance 3D faciale avec une garantie de
qualité des données seront testées dans nos travaux futurs.

Mots-clés: reconnaissance de visage en 3D, expressions, des occlusions et poser varia-
tions, descripteurs de surface faciale, maillage surfacique, la convergence de la normale et
la courbure.
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1.1 Context and Motivation

1.1.1 What is Biometrics?

Generally speaking, “Biometrics” means “life measurement”, which is the science and
technology of measuring and analyzing biological data. But the term is usually used as
the same meaning of “Biometric Authentication” or “Biometric Recognition”. Thus, when
we are talking about “Biometrics”, it usually means the science and technology of the
identification of humans by measuring (e.g. aligning, describing and comparing etc.) their
life related, physiological, chemical, or behavioral attributes, characteristics or traits.

The selection of a particular trait for use in a specific application involves a weighting
of several factors. Jain et al. [Jain et al. 1999] identified seven such factors to be used when
assessing the suitability of any trait for use in biometrics.

1. Universality: Every person using the system should possess the trait.

2. Uniqueness: The trait should have sufficient unique properties to distinguish one
individual from any other.
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3. Acceptability: The capturing technology should be invasiveness-free and possible in
a way acceptable to a large percentage of the relevant population.

4. Measurability: The trait should be easy for capturing and suitable for measuring.

5. Permanence: A trait with “good” permanence will be reasonably invariant over a
long period of time.

6. Circumvention: The trait should be difficult to be imitated using an artifact or sub-
stitute.

7. Performance: It relates to the accuracy, speed, and robustness of technology used
involving the trait.

Among the various biometric technologies being considered, the traits which satisfy
the above requirements are fingerprint, face, iris, hand geometry, ear shape, palm print,
voice, retina, vein patterns, DNA, odor, signature, keystroke dynamics, etc. In addition,
some very common human attributes (e.g. gender, age, ethnicity, height, hair color, etc.),
which are shared by a large group of population and can be used for coarsely clustering
and labeling humans into subgroups, are called “soft biometric traits”.

In contrast, non-biometric traits, including token-based documents (e.g. a driver’s li-
cense or a person’s passport) and knowledge-based codes (e.g. a password or personal
identification number), have a large probability of being lost, forgotten, stolen, counterfeit-
ed, damaged, etc. Please refer to Fig. 1.1 for the examples of biometric and non-biometric
traits.

A biometric system can be either an “identification (recognition)” system or a “verifi-
cation (authentication)” system, which are defined as follows.

• Identification It performs a one-to-many matching between a new captured biomet-
ric sample and the enrolled biometric templates stored in a biometric database in
attempt to determine the identity of an unknown individual.

• Verification It performs a one-to-one matching between a new captured biometric
sample and a specific biometric template stored in a biometric database in attempt to
verify the individual is the person he or her claims to be.

The main picture of both identification and verification systems involves in three main
steps, including data capture and preprocessing, feature extraction and template generation,
and templates matching (see Fig. 1.2).

Considering a biometric system involves a special group of population, for the first
time, their biometric information associated with their identify information should be cap-
tured and stored in the biometric system, which is called enrollment. In the first step, the
desired biometric trait of a user is captured by a specific sensor such as a digital camera.
The following preprocessing process ususlly includes artifacts and noises removing, pose
aligning, scale normalization, etc. In the second step, the system performs feature extrac-
tion to generate biometric template (a mathematical representation of the biometric trait).
If enrollment is being performed, the template is simply stored somewhere (on a card or
within a database or both). Finally, the new template is passed to a mater that compare
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Figure 1.1: Examples of biometric and non-biometric traits.

it with other existing templates, estimating the distance between them using any metric
(e.g. Euclidean distance). The matcher will output its decision which can be used for any
specified application such as border entry or exit.

The following metrics are used for the standard performance measurement of a biomet-
ric system with a closed-set identification scenario.

• Rank-one Recognition Rate The rate that the system correctly matches the input
template to a matching template in the database with a highest similarity. It measures
the percent of inputs which are correctly identified.

• Cumulative Match Characteristic (CMC) The similarities between the input tem-
plate and all the templates in the database are first ranked. Then, the CMC curve
shows how often the individual’s template appears in the ranks (1, 5, 10, 100, etc.),
based on the match rate.

The following metrics are used for the standard performance measurement of a biomet-
ric system with a verification scenario.

• False Accept Rate (FAR) The rate that the system incorrectly matches the input
template to a non-matching template in the database. It measures the percent of
invalid inputs which are incorrectly accepted.

• False Reject Rate (FRR) The rate that the system fails to detect a match between
the input template and a matching template in the database. It measures the percent
of valid inputs which are incorrectly rejected.
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Figure 1.2: The picture of a biometric system used for identification or verification.

• Receiver Operating Characteristic (ROC) The ROC curve is a visual demonstra-
tion of the trade-off between the FAR and the FRR related to a varying threshold.

• Equal Error Rate (EER) A point of ROC curve at which FAR equals to FRR. The
EER is a quick way to compare the accuracy of systems with different ROC curves.
In general, the system with the lower EER is more accurate.

As pointed out in the book “Handbook of Biometrics” [Anil K. Jain 2007], biometrics is a
rapidly evolving field with widely applications ranging from securely accessing one’s com-
puter to gaining entry into a country. The basic concepts introduced in the above section is
referred from the web of Wikipedia in terms of “Biometrics”. For more information, please
refer to the handbooks [Anil K. Jain 2007] [Anil K. Jain 2011].

1.1.2 Why Face Recognition?

Given the requirement for determining people’s identity, the obvious question is what is
best suited to supply this information [Pentland & Choudhury 2000]? Among all the avail-
able biometric traits, fingerprint, iris, face, voice and signature have gained widely atten-
tion. In particular, fingerprint, iris and face recognition techniques grow mature gradually,
and become the mainstream biometric recognition technologies so far. Although finger-
print and iris recognition techniques can achieve reliable performance in some particular
commercial applications, they have the following obvious disadvantages:

1. Physically intrusive: Fingerprint requires user’s cooperation in making physical
contact with the sensor’s surface, while current iris imaging requires user to po-
sition their eye relative to the sensor (see Fig. 1.3). Both facts raise problems
of how to keep the surface clean and germ-free in a high-throughput application
[Bowyer et al. 2006]. Moreover, this kind of cooperation scanning techniques also
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Figure 1.3: Examples of current devices used for capturing fingerprint, iris, and face.

require user to pause for a second to ‘declare’ themselves. This ‘pause and declare’
interaction is unlikely to change because of the fine-grain spatial sensing required
[Pentland & Choudhury 2000].

2. Socially intrusive: There is a ‘oracle-like’ aspect to the interaction: since peo-
ple can’t recognize other people using this sort of data, these types of identi-
fication do not have a place in normal human interactions and social structures
[Pentland & Choudhury 2000].

While the ‘pause and present’ interaction and the oracle-like perception are useful in high-
security applications (they make the systems look more accurate), they are exactly the
opposite of what is required when building a store that recognizes its best customers, or
an information kiosk that remembers you, or a house that knows the people who live there
[Pentland & Choudhury 2000]. Face recognition from video and voice recognition have a
natural place in these next-generation smart environments,

1. Natural and non-intrusive: They are unobtrusive (able to recognize at a distance
without requiring a ‘pause and present’ interaction), are usually passive (do not re-
quire generating special electro-magnetic illumination), do not restrict user move-
ment, and are now both low-power and inexpensive [Pentland & Choudhury 2000].
See Fig. 1.3 for some examples of face capturing devices.

2. Biological perception: Perhaps most important, however, is that humans identify
other people by their face and voice, therefore are likely to be comfortable with
systems that use face and voice recognition [Pentland & Choudhury 2000].

Similar superiorities are also pointed by Hietmeyer [Hietmeyer 2000], in which he
claims that “Facial recognition is non-intrusive and does not require a person to perfor-
m an overt, time-consuming act to allow details to be captured, nor does it require touching
something. The facial image can be captured repeatedly, even from a distance”.

As a strong evidence from the International Civil Aviation Organization (ICAO), Hi-
etmeyer [Hietmeyer 2000] pointed out that biometric identification can promise fast and
secure processing of airline passengers. To select a single biometric trait for international
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Figure 1.4: Comparison of MRTD compatibility for various biometric features (Repro-

duced from [Hietmeyer 2000]).

use in machine-assisted identity confirmation, they reported the compatibility evaluation of
six biometric traits including face, fingerprint, hand geometry, voice, eye as well as signa-
ture based on the Machine Readable Travel Documents (MRTD) system. The compatibili-
ty score involves the factors of enrollment, renewal, machine-assisted identity verification
requirements, redundancy, public perception, storage requirements and performance. As
shown in Fig. 1.4, face recognition system scored the highest compatibility and is emerging
as the most likely biometric to be select for international use. Fingerprint and iris followed
and compatibility of signature, hand geometry and voice scored last.

1.1.3 Face Recognition: A Brief Review in 2D

Face recognition is an inherent ability of humans, and a nature way of people knowing and
remembering each other in their daily life. Benefiting of human visual system, humans
are extremely good at recognizing faces they are familiar with and can do so despite nature
changes in expression, viewpoint and hairstyle as well as image manipulation such as inver-
sion [Pike et al. 2000]. One of the interesting findings by Sinha et al. [Sinha et al. 2006]
concludes that humans can recognize faces in extremely low-resolution images (Fig. 1.5).
Wilmer et al. presented an unusual phenomenon: human face recognition is a highly spe-
cific and highly heritable cognitive ability [Wilmer et al. 2010]. However, humans also
have their own limitations for face recognition. Several evidences have been found that hu-
man memory for briefly seen faces is rather poor [Pike et al. 2000] [Sinha et al. 2006]. For
example, eyewitnesses to a crime find it very hard to describe and particularly to identify
the perpetrator and are very susceptible to exposure to similar faces and the instructions
given to them [Pike et al. 2000]. A reasonable explanation is that crime victims are typ-
ically terrified of weapons being used by the perpetrator, making them much less aware
of the details of the face of the perpetrator. This kind of phenomenon is called “weapon
focus” (illustrated in Fig. 1.6) . It is obviously that machine-based face recognition sys-
tems can immune to such emotional influences, and have the chances of exceeding human
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Figure 1.5: Unlike current machine based systems, human observers are able to handle

significant degradations in face images. For instance, subjects are able to recognize more

than half of all familiar faces shown to them at the resolution depicted here. The individuals

shown from left to right, are: Prince Charles, Woody Allen, Bill Clinton, Saddam Hussein,

Richard Nixon and Princess Diana [Sinha et al. 2006].

Figure 1.6: This is a representation of what crime victims often perceive: the threaten-

ing weapon in vivid detail, but only a vague sense of the details of the perpetrator. This

phenomenon is called “weapon focus” [Sinha et al. 2006] .

performance under some stressful circumstances.

As a typical biometric system shown in Fig. 1.2, machine-based 2D face recognition
system consists of four modules as describe in Fig. 1.7: face detection and alignment for
face preprocessing, as well as feature extraction and matching for face recognition. Given
an image or section of video captured from a face sensor, Face detection segments out the
face regions from their background using a face detector. In the case of video, the detected
faces may also need to be tracked by a face tracker. Face alignment aims to align all the
detected faces in the same position. Meanwhile, scale, pose and illumination normalization
are also necessary components. The normalized faces are used for facial feature extraction,
which usually provides the discriminating representations of faces as feature vectors. In the
following face matching step, each feature vector of a testing face is match against those
of enrolled faces in the database. Finally, the system outputs the identity of the face when
a match is found with sufficient confidence.
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Figure 1.7: 2D face recognition processing flow. Figure is reproduced from

[Li & Jain 2005].

As a typical visual pattern recognition problem, the performance of 2D face recognition
system highly depends on the features that are extracted for facial image descriptions and
the classifiers used to distinguish different face identities. Moreover, face detection and
alignment are indispensable components for extracting comparable features.

In the past decades, researchers in the community of biometrics, pattern recognition and
computer vision, dedicated to improve the performance of 2D face recognition systems.
Since the first automatic 2D face recognition system proposed by Kanade [Kanade 1973],
numerous 2D face recognition algorithms have been developed. We list several milestone
approaches in Fig. 1.8. Based on the taxonomy proposed in [Zhao et al. 2003], three
categories: holistic, local feature based as well as statistical based approaches are listed in
that figure.

Figure 1.8: Milestone approaches in 2D face recognition.

The core idea of holistic approaches is the face subspace theory, which assumes
that the high-dimensional pixel arrays based representation of facial images has their in-
trinsical low dimension structure. At the early stage, this low dimension structure is
approximated by linear subspaces. Principal Component Analysis (PCA) based Eign-

face [Turk & Pentland 1991] and Linear Discriminant Analysis (LDA) based Fisherface

[Belhumeur et al. 1997] are two representative approaches. At the later stage, to de-
scribe the nonlinear characteristics of face subspace, kernelization strategy is exploit-
ed, which can map the face subspace into a much higher-dimension space using non-
linear kernel functions. The nonlinear characteristics of the original face subspace is
linearized in this high-dimensional space. Kernel based Principal Component Analysis
(Kernel-PCA) [Yang 2002], and kernel based Fisher Discriminant Analysis (Kernel-Fisher)
[Liu et al. 2002] are two typical approaches. Furthermore, manifold learning strategy has
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also been developed, which dedicate to learn, identify and parameterize the intrinsical geo-
metric structure of the nonlinear face manifolds. Popular approaches include the isometric
mapping (ISO-MAP) [Tenenbaum et al. 2000] and Locality Preserving Projections (LPP)
[He et al. 2005] etc..

Different from holistic approaches, local feature based ones focus on precisely depict-
ing of local facial regions, and compactly represent of whole facial image. Face image is
often represented as some kinds of histogram-based feature vector. Face recognition ap-
proaches based on Gabor filter [Wiskott et al. 1997a], Scale-Invariant Feature Transform
(SIFT) [Bicego et al. 2006], and Local Binary Patterns (LBP) [Ahonen et al. 2006] are the
most popular ones.

Another powerful 2D face recognition approaches are based on statistical model. The
main idea of these approaches comes from the theory of statical analysis of shapes. T-
wo most famous approaches have been proposed. i) Active Appearance Model (AAM)

[Edwards et al. 1998], which adopt a statistical method to learn the ways in which the
shape and texture of the face vary across a set of training face images. The leaned model
is parameterized by several particular sets of parameters involving model, pose, texture,
expression and so on. For any test facial image, the AMM fitting process seeks the optimal
set of model parameters which can be used to best generate it. Face verification or identi-
fication then can be performed by computing the distance between two sets of fitted model
parameters. ii) Morphable Models of Faces [Blanz & Vetter 2003]: this method first con-
structs a 3D morphable face model by computing the correspondences of a set of 3D laser
scan of faces with a reference 3D face laser scan. Similar to AAM for face recognition,
given a test facial image, a fitting process is performed aiming to find a set of best model
parameters, which can be used to synthesize a new face image as close as to the input one.
Finally, the fitting parameters are used to perform face recognition.

1.1.4 Face Recognition: Challenges in 2D

Over the past three decades, numerous approaches for 2D face recognition have been
proposed, and their performances in controlled environment have achieved a satisfacto-
ry level. However, 2D face recognition in an unconstrained daily life environment without
the user’s cooperation is currently a far from solved problem and a very challenging task
[Li & Jain 2005]. There are still many challenging issues (e.g. expression, illumination,
pose) to address [Phillips et al. 2000] [Zhao et al. 2003]. In this section, we summarize
some main challenges.

Large intrasubject Variations in Facial Appearance. The intrasubject variations of
facial appearance can be influenced by a multiplicity of different factors, such as facial
expression, head pose, facial occlusion, illumination variations, as well as facial cosmetics
etc.

Facial expressions are the facial changes in response to a person’s internal emotion
states, intentions, or social communications [Li & Jain 2005]. Intuitively, facial expression
variations can change both the geometry positions of some local facial features (eyes, lips,
etc.), and the topology structure of the whole facial appearance. Some impressive facial
expressions examples of the previous US president George W. Bush are illustrated in Fig.
1.9.

Head pose has three degrees of freedom: roll, yaw, and pitch, which can be either in-
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Figure 1.9: Expressive facial expression variations of George W. Bush.

plane or out-plane (see Fig. 1.10). In-plane rotation (i.e. roll) is a pure 2D problem which
can be solved quite easily. While it will be a very challenging problem when large out-plane
rotations (i.e. pitch or yaw) happen. This is mainly because that some important facial
features (e.g. eye corners) might be invisible in this cases. Using multiple multi-view facial
images for training might be a feasible strategy to handle this problem [Zhang et al. 2012].

Figure 1.10: Comprehensive examples of head pose variations of Obama.

Facial occlusions are usually caused by a person’s facial hairs, facial accessories, hands
or any other external objects (see Fig. 1.11). Since only partial face images are available,
it is not surprising that the performances of face recognition systems will degrade signifi-
cantly when someone displays large facial occlusions.

Facial illumination is another most challenging issue in 2D face recognition. Variations
of facial illumination can largely change the intensity values of facial images. As illustrated
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Figure 1.11: Examples of the facial occlusion variations of Gaddafi.

in each column of Fig. 1.12, the same face with the same pose looks totally different
under different illuminations. These differences of appearance can be more extensive in
combined with head pose variations, as shown in each row of Fig. 1.12.

Figure 1.12: The same face looks totally different under different illuminations: 14 facial

illumination variations (columns) under 9 poses (raws) (from the Yale Face Database).

Facial cosmetics, as a common face altering technique, also have clearly impact on the
performances of gray scale image-based face recognition systems [Dantcheva et al. 2012].
In particular, the impact due to the application of eye make up is proved to be the most
pronounced. Figure 1.13 gives two examples of facial cosmetics.

Figure 1.13: Example of a subject in the YouTube Makeup (YMU) database, depicts the

subject without [(a)] and with heavy makeup [(b)]; and example of a subject in the Virtual

Makeup (VMU) database, (c) depicts the subject without makeup, whereas, (d), (e) and (f)

constitute the makeup shots. The makeup shots include the synthetic addition of (d) eye

makeup (e) lipstick, and (f) full makeup, respectively, using the popular Taaz software (this

figure is assembled from [Dantcheva et al. 2012])
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In addition to these variations, various imaging parameters such as exposure time, aper-
ture and lens aberrations also increase intrasubject variations.

Small intersubject Variations in Facial Appearance. Besides the large intrasubject
variations, possible small intersubject variations such as identical twins (see Figure 1.14)
further make 2D face recognition to be more difficult.

Figure 1.14: From left to right, similarity of faces between twins, Obama and his imitator,

a father and his son.

Figure 1.15: From left to right: the photos of Dzhokhar Tsarnaev’s the drivers license,

student ID card, and images published by the FBI and Massachusetts law enforcement

during the manhunt for him and his brother.

Moreover, video further complicates face recognition. In the scene of real video
surveillance, it is a usual case that cameras tend to record low-resolution facial images.
Meanwhile, the facial images may also be blurred due to the fast movement of a person’s
face. Figure 1.15 shows a real example of these cases. From this figure, we can find that the
quality of Dzhokhar Tsarnaev’s facial image (the third one) published by the FBI is very
bad, which makes that it is very difficult to successfully match the photos of his drivers
license and student ID card. This may be one of the most key factor which makes the face
recognition technique failed in the Boston bombing manhunt.

Finally, all possible combinations of the above factors may occur at the same time in
real applications, which lead to intersubject similarity smaller than intrasuject similarity in
a large probability. Take the identical twins with facial expression variations as an example,
the similarity between the images of two smiling twins in Figure 1.14 has a large chance to
be smaller than the similarity between one face image of the smiling twins and her neutral
face image.
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1.1.5 Face Recognition: Opportunities in 3D

Facing so many technical challenges in 2D face recognition, one may suggest that “Why
not use 3D data for face recognition?” This suggestion naturally triggers a question: “Why
3D face recognition?” To answer this question, we list several main reasons as follows.

1. The invention and popularization of 3D scanning techniques: With the invention
and rapid development of 3D scanning technologies, the world is experiencing a
3D digital revolution. Measurement, reconstruction, scanning and reproduction of
real-world 3D objects are more and more easy and popular. Nowadays, many dif-
ferent kinds of 3D sensors are available to capture static, even dynamic 3D data of
facial surface. Please refer to next section “3D Face Acquisition Techniques” for the
detailed examples.

2. Large potential to combat 2D challenges: Shape information based 3D face recogni-
tion approaches are naturally less susceptible to lighting conditions comparing with
the photometry information based 2D face recognition approaches. With the free-
form 3D facial surface in hand, it is more convenient to perform pose correction
and solve the out-plane rotation problem in 2D face recognition. Moreover, facial
cosmetics tend to have less impact for 3D face scans [Faltemier 2007].

3. Facial shape and photometric appearance contain comparable and complementary

information: As pointed in [Sinha et al. 2006], “Many study results provide evi-
dence that the “photometric” cues and shape cues are used about equally by hu-
mans to recognize faces”. “Meanwhile, investigating the use of these cues for the
recognition of familiar faces is also finding that both shape and pigmentation are
about equally important ”. Here the “pigmentation” means all surface reflect prop-
erties, including albedo, hue, specularity, translucency, and spatial variation in these
properties, which has similar meaning as photometric cues. Moreover, as stated in
[Bowyer et al. 2006], “we are particularly interested in 3D face recognition because
it is commonly thought that the use of 3D sensing has the potential for greater recog-
nition accuracy than 2D”. Another paper states: “Depth and curvature features have
several advantages over traditional intensity-based features. Specifically, curvature
descriptors: (1) have the potential for higher accuracy in representing surface-based
events, (2) are better suited to describe properties of the face in the area such as
the cheeks, forehead, and chin, and (3) are viewpoint invariant" [Gordon 1992]; On
the other hand, it has been proved many times that the performances of multi-modal
3D + 2D face recognition systems are always to be better than the one of 2D alone
[Bowyer et al. 2006] [Mian et al. 2007]. That is to say, facial shape and photometric
are also complementary to each other for face recognition.

1.2 3D Face Recognition

1.2.1 3D Face Acquisition Techniques

In the past decade, the techniques for scanning, capturing, reconstruction of 3D faces have
witness tremendous development. In this section, we summarize three typical types of
techniques: structured light, multi-view stereo, photometric stereo.
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1. Structured light: As a “active” scanning technique, structured light has been wide-
ly used in 3D face data acquisition [Beumier & Acheroy 1999] [Huang et al. 2003]
[Zhang & Huang 2004] [Tsalakanidou et al. 2005] [Zhang & Yau 2006]. The basic
setup of this technique includes a camera and a light projector under given geomet-
ric relationships. The projector projects one or more encoded light patterns onto the
scene. And the shape cues are extracted by measuring the deformation of light pat-
terns on the objects’ surface. Figure 1.16 illustrates an example of an encoded light
patterns projected onto a face. Current structured light based 3D scanner can capture
static or sequences of 3D face scans as well as 2D face images in real-time, or even
with high-speed. While the drawback is that users’ faces should been restricted into
a limited amount of area not only covered by the projected structured light but also
visible by the camera. Some popular 3D scanners based on structured light tech-
niques are the Minolta Vivid 900/910 series [Min 2011], Inspeck Mega Capturor II
3D [Ins 2011], and Kinect camera [Kin 2011] etc.

Figure 1.16: An example of structured light. A structured light (left), and its projection on

to a face. Figure is collected from [Tsalakanidou et al. 2005]

2. Multi-view stereo: As a “passive” capturing technique, multi-view stereo has also
been widely used in 3D face data acquisition [Seitz et al. 2006]. This technique u-
tilizes multiple calibrated cameras placed at various viewpoints from the subject.
Under various constraints, the corresponding points of different sense images can be
established and thereby the facial shape can be reconstructed. This technique does
not need any flashing light, since all the camera can record the same sense at the
same time with constant lights. However, accurate reconstruction of smooth surfaces
(e.g. some face regions without much nature texture) is very difficult by using this
technique [Bowyer et al. 2006]. In addition, 3D reconstruction should be operated
offline due to the huge computational complexity involving this technique. Pop-
ular commercial systems which employ multi-view stereo technique are the DI3D
(Dimensional Imaging) dynamic face capturing system [DI4 2011], and the 3DMD
dynamic 3D stereo system[3DM 2011]. Both systems have been used for acquisition
of 3D face databases [Yin et al. 2008b] [Benedikt et al. 2010] [Cosker et al. 2011].
Recently, Beeler et al. [Beeler et al. 2010] develop a promising 3D face capturing
system based on multi-view stereo technique. This system can reconstruct facial sur-
face with a sub-millimeter accuracy, which is comparable with those state-of-the-art
systems based on structured light [Beeler et al. 2010]. The basic setup and some
reconstructed faces by this system are depicted in Fig. 1.17.
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Figure 1.17: Left: Face model captured using a seven camera studio setup; Center: capture

systems; Right: Face model captured using consumer binocular stereo camera. Figure is

collected from [Beeler et al. 2010]

3. Photometric stereo: Photometric stereo, originally introduced by Woodham in 1980
[Woodham 1980], is a technique for estimating the surface normals of objects by
capturing a set of images of the object under different lighting conditions. Figure
1.18 shows an example of 3D facial surface reconstruction by four lights photomet-
ric stereo. The advantage of photometric stereo is that it can be used for high-speed
3D data capture. For example, the photometric stereo 3D data capture system de-
veloped by Hansen et.al is capable of acquiring four raw images in approximately
20 ms. However, this technique is very sensitive to the presence of projected shad-
ows, highlights and non-uniform lighting. In addition, instead of obtaining point
clouds or surface mesh directly, photometric stereo technique estimates only the
surface normals of object, the following integration procedure for surface recon-
struction not only adds more computation time but also introduces additional errors
[Frankot et al. 1988]. A very recently developed photometric stereo system used for
3D face data acquisition is introduced in [Zafeiriou et al. 2011].

Figure 1.18: Illustration of the photometric stereo method. From left to right: raw image

set captured under four lights; estimated field of surface normals (channels x, y, z respec-

tively); recovered depth map by performing integration on surface normals. Images are

collected from [Hansen et al. 2010]

1.2.2 Basic Concepts and Terminology

Since 3D face scan is also a biometric trait, all the concepts and terminology of general
biometric recognition system are suitable to 3D face recognition except a few cases. To
be more specific, we give a brief summary in this section. The general “3D face recog-
nition” refers to two categories of application scenarios. One scenario is called “3D face
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recognition” or “3D face identification”. The other one is called “3D face verification” or
“authentication”. 3D face recognition scenario is a one-to-many matching problem while
the 3D face verification scenario is a one-to-one matching problem. The rank-one recog-
nition score and CMC curve are commonly used to evaluate 3D face recognition scenario.
And the ROC curve is commonly used to evaluate 3D face verification scenario. In ei-
ther scenario, a set of 3D face scans of known subjects are initially enrolled. This set is
usually called the “galley” set. When performing recognition, 3D face scans of the sub-
jects belongs to the gallery set or other subjects are called “probes”, which are used to
match against scans in the gallery set. 3D face recognition scenario is more challenging
than the verification scenario [Bowyer et al. 2006]. The main reasons are listed as follows
: (i) In recognition scenario, a larger gallery set tends to introduce more chances for in-
correct recognition; (ii) The whole gallery set should be searched in some manner on each
recognition attempt; (iii) In verification type applications, subjects are assumed to be well
cooperative, while in recognition type applications, subjects may be captured without any
cooperation and under uncontrolled environments. Since this thesis focuses on 3D face

recognition in the real, 3D face recognition systems proposed in this thesis are evaluated

only in the 3D face recognition scenario.

Shape and reflectance are two intrinsic properties of a face object, fortunately, current
3D face acquisition system can generally deliver 3D face scans (shape) together with their
one-to-one corresponding texture counterparts (reflectance). In this case, a 2D image, also
called “2D texture image” can be regarded as a “3D texture map” overlaid on a 3D face
scan. A 3D face scan together with its texture map is usually called “textured 3D face”. A
3D face scan can be rendered in the form of range image, point clouds or triangular mesh.
A “range image”, also called “depth image”, is an image in which the pixel value records
the distance from the sensor to the imaged facial surface. A “point clouds” records the
geometry shape of a 3D face model by 3D coordinates. A “range image mesh” records the
geometry shape of a 3D face model by both 3D points and their topology structures. Figure
1.19 illustrates an example of all these four kinds of face recording formats.

Figure 1.19: Four kinds of 3D face recording formats, and from left to right: texture 3D

face face, range image, triangle mesh and the zooming nose region, point clouds and the

zooming nose region.

According to the face modality adopted to be the gallery and probe, 3D face recognition
can be performed in three matching scenarios: solely 3D shape based face recognition (3D
shape vs. 3D shape), multi-modal 2D + 3D face recognition (textured 3D vs. textured 3D),
and asymmetric 3D face recognition (3D shape vs. 2D texture or vice versa). Multi-modal
2D + 3D face recognition has proved to be more accurate than solely 3D shape based face
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recognition [Bowyer et al. 2006]. In this thesis, we focus on the matching scenario of solely

3D shape based face recognition. If there is no confusion, 3D face recognition talked in

this thesis denotes the solely 3D shape based face recognition.

As illustrated in Fig. 1.20, a typical (static) 3D face recognition system includes four
steps: 3D face preprocessing (i.e. normalization), 3D face alignment (i.e. registration),
3D face feature extraction as well as 3D face matching. In particular, give a raw probe
(or gallery) face scan, 3D face preprocessing procedure contains: noise and spike remov-
ing, holes filling, nose tip localization and face cropping. As pointed out by Bowyer et al.

[Bowyer et al. 2006], even under ideal illuminations for a given 3D face scanner, it is com-
mon for artifacts to occur in face regions such as oily regions (e.g. the eyes), and regions of
facial hair (e.g. eyebrows, mustache, or beard). The most common artifacts are generally
called “holes” or “spikes”. A “hole” is essentially an facial area of missing data. A “spike”
is an outlier error in the data. Holes are typically filled by interpolating new values based
on the values near the boundaries of the holes. Noise and spike are usually removed by
performing surface-based filters. With a relative smooth facial surface in hand, one can
perform nose tip detection based on facial shape priors. Once the nose tip is available, face
region can be easily cropped, and the face normalization step is finished. 3D face align-

ment aims to align all the normalized face scans to a reference face scan or in a common 3D
coordinate system. Iterative Closest Point (ICP) [Zhang 1994] is one of the most popular
algorithm for 3D face alignment. Then, the normalized and aligned face scans are used
for 3D face feature extraction. Facial curves, local facial regions, or curvature-based facial
descriptors are some commonly used facial features. Finally, for 3D face matching, the
similarity between each pair of gallery and probe scans is computed under a given distance
measurement for final decision.

Figure 1.20: 3D face recognition processing flow.

1.2.3 3D Face Databases

Over the past decade, many 3D face databases have been collected and released for
3D face recognition, for example, FRGC v1.0, FRGC v2.0 [Phillips et al. 2005], BU-
3DFE [Yin et al. 2006a], Bosphorus [Savran et al. 2008], 3D-TEC [Vijayan et al. 2011a],
UMB-DB [Colombo et al. 2011b], GavabDB [Moreno & Sanchez 2004], SHREC’11
[Veltkamp et al. 2011], UND-DB [UND 2008], etc. Please refer to Table 1.1 for a brief
introduction of some public 3D face databases.

17



Chapter 1. Introduction

Table 1.1: A brief introduction of some public 3D databases.

Database Device Sub. Num. Num./Sub. Changes

FRGC v1.0 Minolta Vivid 910 275 Total: 943 -
FRGC v2.0 Minolta Vivid 910 466 Total: 4007 E
Bosohorus Inspeck Mega Capturor II 105 Total: 4666 E, P, O
BU-3DFE 3DMD 100 4 E
3D-TEC Minolta Vivid 910 214 2 E, Twins
SHREC’11 Roland/Escan scanner 130 Total: 780 P
GavabDB Minolta Vivid 700 61 9 P, E
UBM-DB Minolta Vivid 900 143 Total: 1473 E, O
UND45-J2 Minolta Vivid 910 415 Total: 1800 P
UND-F Minolta Vivid 910 302 Total: 942 P
UND-G Minolta Vivid 910 235 Total: 738 P

Variation labels: (P) Pose; (E) Expression; (O) Occlusion.

From Table 1.1, we can see that each 3D face database was designed for one or more
specific research challenges, including:
• Models of a great number of subjects: FRGC v2.0;
• Models of stronge shape similarity: 3D-TEC;
• Models with varying facial expressions: Bosphorus, FRGCv2.0, BU-3DFE, etc;
• Models with large pose various: Bosohorus, SHREC’11, UND-J2, ect;
• Models with external occlussions: Bosohorus, UMB-DB, etc;
In this thesis, five databases are used for experimental evaluations and analysis of our

proposed approaches, i.e. FRGC v1.0, FRGC v2.0, Bosohorus, BU-3DFE, and 3DTEC.
Their detailed introduction can be found in chapter 3 and chapter 4.

1.2.4 Main Challenges and Objectives

In the literature, 3D face recognition is widely expected to provide solutions to overcome
the unsolved issues in 2D face recognition in unconstrained environments, namely lighting
variations and pose changes. However, the overwhelming majority of research works so
far in the literature has targeted 3D face recognition using expressive but frontal 3D face
scans (e.g. FRGCv2.0 database), although 3D face scans captured in an unconstrained
environment can depict not only facial expression variations but also arbitrary pose changes
which can lead to self-occlusion and thereby large missing face data. Moreover, they can
also be severely altered by external occlusions, e.g. hand, scarf, hair, glasses, etc. These
challenges are summarized as follows:

1. Facial Shape Similarities. All human faces are remarkably similar to each other,
especially in terms of configuration. Therefore, the first challenge in 3D face recognition
is to design effective facial representations which can capture sufficient shape detail dif-
ferences between people, and thereby offer facial features discriminating enough to enable
the distinction of similar 3D face scans, even in the extreme case of identical twins. Figure
1.21 illustrates an example of strong facial shape similarity by a pair of identical twins.
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Figure 1.21: The images of two twins taken in a session: the top row shows the first twin

and the bottom row, the second; the texture images are brightened to increase visibility in

this figure.

2. Facial Expression Variations. As 3D face data accurately capture the shape infor-
mation of facial surfaces, face recognition in 3D is likely to be more sensitive to facial
expression variations. In real-life applications, there exist an uncountable number of facial
expressions which elastically deform a facial surface, in response to a person’s internal
mental state, intention, or need for social communications. Such deformations of facial
surfaces not only occur in non-rigid regions (e.g. mouth, see also Fig. 1.22), but also can
take place in regions which are mostly considered as rigid ones (e.g. nose). Figure 4.26
gives a group of 3D face scans with nose region shape deformations, which are called “nose
expressions” in this thesis. As arbitrary facial expressions can occur in unconstrained con-
ditions, the second challenge of 3D face recognition in such a case is to design effective
matching scheme of facial surfaces which is robust enough to facial shape deformations
due to facial expressions, whether subtle, prototypical or exaggerated.

Figure 1.22: Illustration the examples of exaggerated facial expressions with open mouth.

Images taken from the Bosphrous 3D face database.

3. Pose Changes. While the shape of a 3D object is pose invariant, its capture by ex-
isting 3D scanning technologies is pose dependent because 3D scanners only have limited
field of view. As a result, a 3D face captured in an arbitrary pose can lead to self-occlusion
and result in large missing data. The resultant 3D face scans are thus only partial faces.
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Figure 1.23: Examples of “nose expressions” sampled from the Bosphorous database.

In unconstrained conditions, a scanned 3D face can lie in an arbitrary pose and thereby
may involve large missing data. Such partial faces make problematic the whole processing
pipeline mostly designed only for frontal upright 3D face scans. For instance, 3D face
matching mostly requires more or less an accurate localization of the nose tip for cropping
the face region and normalizing its pose. With partial faces, this becomes problematic
when the nose tip is simply invisible. Furthermore, although the initial position of a partial
face is manually corrected, the ICP-based face registration algorithm still won’t correctly
converge due to the limited overlap region. A straight-forward example is depicted in Fig.
1.24.

Figure 1.24: An failed example of pose normalization: ICP registration algorithm is per-

formed on a frontal and a partial face with +90◦ yaw rotation. (a,c): a frontal face scan;

(b,d): left profile scan (e): manually pose normalized frontal view of (d); (f): initial posi-

tion between (c) and (e); (g): (c) and (e) are not correctly registered by the ICP algorithm.

4. External Occlusions. In unconstrained conditions, subjects are uncooperative and
their face can be intentionally or covered by external objects, e.g., hands, hairs, scarves,
hats, etc. As a result, 3D face scans captured in such conditions can involve large face
regions covered by external objects [Colombo et al. 2011a] and the use of standard 3D
matching algorithms would generate high false negative rate, i.e., failing to recognize the
identity of “hair occluded” subjects. Figure 1.25 shows a set of 3D facial scans with various
types of facial occlusions collected from the University of Milano Bicocca (UMB) 3D face
database.

5. 3D Face Data of Variable Quality. 3D face scans as delivered by current 3D imaging
devices are generally noisy, especially when they are captured in unconstrained conditions,
and involve artifacts such as holes or spikes. Furthermore, they can vary in resolution
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Figure 1.25: Various facial occlusions sampled from the UMB database: e.g. hands, s-

carves, hats, and other types of occlusion which can occur in real-world scenarios.

and in precision. These variations raise a very fundamental problem, i.e., the stability of
all these basic geometrical measurements and descriptors mostly derived from differential
geometry, e.g., curvatures, geodesic distance, etc., which are used as building blocks in
most 3D face recognition algorithms.

In this thesis, we are interested by the issue of 3D scan resolution, i.e., sampling density
along with triangle regularity, as the depth accuracy is related to the underlying 3D sensor
and is out of the scope of this thesis. In this thesis, when we say that a facial triangle

mesh is of “low-quality” when either it has a sparse set of sampling points or it has a

large set of triangles with irregular shapes, or both. As a straightforward example, a low-
quality facial triangle mesh is shown in Fig. 4.25. There are only about 5,000 points on the
mesh and there are many irregular triangles (i.e. “skinny” triangles) on the facial mesh. The
challenge here is the generation of 3D face meshes of good quality with theoretic guarantee
of discrete measurements of differential geometry. In this thesis, we are concerned with

(a)                          (b)                                      (c)

Figure 1.26: Illustration of a low-quality data: (a): a pose normalized partial face scan;

(b): triangle mesh of (a); (c): the zooming of the region in the red box of (b). We can see

that the sampling density of this mesh is very low, and there are many “skinny” triangles

on the mesh.

face recognition using 3D data in unconstrained conditions. Our goal is to design 3D face
recognition algorithms fine enough to be able to distinguish people with strong extra-class
similarities whereas robust enough to deal with the challenges of expressions, pose and
occlusions.

1.3 Thesis Contributions

1.3.1 Methodologies

3D face data accurately capture the geometric shape of facial surfaces. Therefore, a natural
choice for the description of facial shape which proves to be pose invariant is to rely on
the powerful tool of discrete differential geometry which provides surface geometric or
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differential quantities, e.g., geodesic distance between two facial points, area of a facial
region, normal vector field of a facial surface, curvature values of a facial surface, or any
types of scalar field function defined on a facial surface in terms of a specific discrete
differential geometric operator.

However, face recognition is typically a pattern classification problem. In this work,
we have extensively made use of sparse representation-based classifier (SRC) to leverage
some useful prior knowledge for the purpose of face recognition.

Throughout this thesis work, local approaches have been favored with respect to holis-
tic approaches. This deliberate choice was first motivated by our belief that the discrimina-
tion of people with similar facial surfaces, e.g., identical twins, should rely on the difference
of local facial details, but also by the fact that local approaches are generally more robust
to those challenges of facial expressions, pose changes and occlusions in comparison with
holistic approaches.

1.3.2 Main Contributions

In the following, we summarize the main contributions of this thesis work as they will be
further developed in Chapters 3, 4 and 5.

a. Measuring and Learning Facial Shape Deformations for 3D Face Recognition Ro-

bust to Facial Expressions

We first developed an expression-robust 3D face recognition system which will be the
focus of Chapter 3. In this work, we assume that different part of facial regions have
different kinds of shape deformations for a particular expression. Based on this assumption,
we believe that if the deforming behavior of each expression can be well measured and
learned, then it will be very useful to improve the robustness of a 3D face recognition
system to resist expression variations. To explore this insight, we design a strategy to
learn the quantitative weights of different facial physical components over a training set
including various expressive faces.

Specifically, the contributions of the proposed approach to dealing with facial expres-
sions are as follows:
• We introduce a new 3D facial representation based on Multi-Scale and Multi-

Component Local Normal Patterns (MSMC-LNP) for facial shape description. MSMC-
LNP describes the micro-structure of facial normal information in multiple scales and mul-
tiple normal component channels. The extensive experiments show that the proposed LNP
based facial representation is more discriminative than both the raw normal information
and the encoded range image, i.e., Local Shape binary Patterns (LSP). We also show that
the fusion of both multiple scales and multiple components is a helpful way to improve the
final performance and demonstrate its competency on 3D face identification as well as the
challenging issue of recognizing expressive identical twins.
• A learning-based strategy is proposed to find out the quantification weights of local

patches of 3D facial surfaces in terms of discriminating power. Given a training database,
the patch weights associated with different facial regions, encoding scales, and normal
components are learned by normalizing the patch matching scores. Those scores are com-
puted by running the sparse representation-based classifier (SRC) over MSMC-LNP fea-
tures of local patches. The experimental results show that the weights associated with
these local patches in 3D are quite different from those of their 2D counterparts, especially
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in the nose region, thereby highlight the fact that 3D and 2D face data bear different facial
information which can be further explored in a multimodal face recognition scenario.
• Using the learned patch weights along with the proposed MSMC-LNP feature, a

weighted sparse representation-based classifier (W-SRC) is formulated to account for the
different sensitivities of facial components to facial expressions, making the proposed 3D
face recognition algorithm both discriminating enough for distinguishing identical twins
and robust enough to tolerate various facial expressions. In particular, we formally establish
that a weighted combination of SRCs amounts to directly weighting the corresponding
feature vectors of those SRCs.
• Extensive experiments were carried out using various 3D face datasets, including

FRGC v2.0, BU-3DFE, Bosphorus and 3D-TEC, to benchmark the effectiveness and the
generalization skills of the proposed approach with respect to 3D face scans captured under
different scenarios and conditions with different 3D sensors, depicting in particular differ-
ent challenges in terms of facial expressions. This is in clear contrast with the overwhelm-
ing majority of 3D face recognition algorithms so far proposed in the literature which are
only evaluated on FRGC v2.0 with 3D face scans depicting a limited number of facial ex-
pressions. The experimental results demonstrate the effectiveness and the generalization
skills of the proposed approach which consistently displays competitive rank-one recogni-
tion rates over those datasets of different nature.

b. Local Geometric Feature-based Matching for 3D Face Recognition in Uncon-

strained Conditions

As the overwhelming majority of existing 3D face recognition algorithms, the previous
work only deals with frontal expressive 3D face scans whereas 3D face data are widely ex-
pected to provide solutions to overcome those unsolved challenges in 2D face recognition,
namely lighting variations and pose changes. As we have seen in the previous section, in
real-life applications in unconstrained conditions, the variations of facial expressions can
occur concomitantly with other challenges, i.e., pose changes and external occlusions. To
combat all these challenges of expression, pose and occlusion simultaneously, we propose,
as extended in chapter 4, a novel local geometric feature-based matching scheme for a
robust 3D face recognition algorithm. It first automatically detects a set of local salient
regions spreading through a whole facial surface, then extracts a set of region-based local
geometric features. The similarity between two facial surfaces is then computed by match-
ing two sets of local geometric features. Using a preliminary version of this work, we
took part to the Shrec 2011 contest for 3D face recognition and retrieval. 2 runs submitted
by our group were ranked the first and the second best performance in terms of rank one
recognition rate out of 14 runs submitted by four research groups.

Specifically, the contributions of this work can be summarized as follows:
• We propose a group of novel pose-invariant local shape descriptors, namely, His-

tograms of mesh Gradient (HOG, 1st order), Histogram of Shape index (HOS, 2nd order)
and Histogram of Gradient of Shape index (HOGS, 3rd order), and their feature-level fu-
sion, Histogram of Multiple-order surface differential Quantities (HOMQ).
• We provide a group of compact facial surface representations. Each facial surface

can be represented as a sparse set of automatically detected salient vertices associated with
the proposed local shape descriptors. They are Multiple Vertex based descriptions of mul-
tiple order differential geometry quantities, namely gradient, shape index and shape index
derivative, denoted as MV-HOG (1st order), MV-HOS (2nd order), MV-HOGS (3rd order),
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and MV-HOMQ (multi-order), respectively.
• A fine grained local feature matcher (FGM) using the Sparse Representation based

Classifier (SRC) [Wright et al. 2009a] is introduced and compared with a coarse grained
local feature matcher (CGM) that was used in our preliminary work [Li et al. 2011c]. CGM
performs the matching of two face scans through their corresponding sparse sets of local
shape descriptors and simply counts the number of matched vertex pairs as matching score.
This is problematic when the underlying face scans have severe missing data due to pose
and/or external occlusions, which result in a significant decrease of the number of matched
vertex pairs. In contrast, FGM alleviates this vulnerability of missing data by making use
of SRC to compute a mean reconstruction error when each local shape descriptor from a
probe face scan is sparsely reconstructed from an over-complete dictionary composed of
the local shape descriptors extracted from all the face scans in the gallery.
• All the previous steps are directly carried out on mesh-based 3D face scans without

any prior registration or learning. The overall result is a uniform registration free 3D face
recognition framework which can deal with facial expression variations, arbitrary pose
changes and occlusions at the same time. This is in clear contrast to the overwhelming
majority of 3D face recognition algorithms which only deal with expressive frontal face
scans and mostly require in addition an expensive registration step.
• Comprehensive experiments were carried out on the Bosphorus database, the

largest public database which best accounts for the various challenges of 3D face recogni-
tion in uncontrolled conditions, i.e. expression variations, pose changes and external oc-
clusions. The experimental results demonstrate the effectiveness of the proposed method
which achieves the best state-of-the-art rank-one recognition rates over the whole dataset
(96.56%) and its three subsets of expression variations (98.82%), pose changes (91.14%)
and occlusions (99.21%). Additional experiments on the FRGC v2.0 database show that
the proposed method consistently displays competitive performance in comparison with the
state-of-the-art algorithms which mostly require accurate face alignment and/or learning of
discriminating features, and thereby demonstrates its generalization skill.

c. Dealing with 3D Face Data of Variable Quality

In the previous work, we made use of surface differential quantities of several orders
computed over 3D mesh face data in order to characterize local facial shape variations.
Their stability thus widely depends upon the quality of the underlying 3D face meshes.
Unfortunately, 3D face scans captured in unconstrained conditions could be delivered by
different 3D sensors and thus are typically of variable quality, i.e., sparse set of sampling
points and/or large set of non-uniform triangles. In this thesis work, we further studied the
issue of the efficient generation of high-quality triangle meshes with theoretic guarantee of
the measurements of various differential geometry quantities over discrete triangle mesh-
es. This can be achieved using a Delaunay refinement based surface meshing algorithm
belonging to one of the two following categories:

1. The sampling is computed in R
3, and triangulated using volumetric De-

launay triangulation, such as [Amenta & Bern 1998] [Amenta et al. 2000]
[Boissonnat & Oudot 2005].

2. The sampling is directly computed on a smooth surface, such as geodesic Delaunay
refinement [Dai et al. 2007], and Chew’s second algorithm [Paul Chew 1993].

24



Chapter 1. Introduction

However, for the sake of efficiency and simplicity, we rather consider Delaunay refine-
ment based surface algorithms with the sampling computed in the conformal parameter
domain, and triangulated using planar Delaunay triangulation, such as [Alliez et al. 2003]
[Marchandise et al. 2012] [Alliez et al. 2008], which can be classified as the third cat-
egory. Indeed, as compared to the previous two categories of mesh refinement ap-
proaches, the planar Delaunay refinement method is much easier to implement, and
the data structure for planar triangulation is much simpler than that of tetrahedral
mesh as used in the first category, and the planar algorithm is much more efficien-
t. However, while the theoretic convergence of surface normals and curvature mea-
sures for the algorithms of the previous two categories has been thoroughly discussed
in [Amenta & Bern 1998] [Boissonnat & Oudot 2005] [Cohen-Steiner & Morvan 2003a]
[Cohen-Steiner & Morvan 2006] [Morvan & Thibert 2004] by Amenta, Bern, Boissonnat,
Oudot, Cohen-Steiner, Morvan, and Thibert, all the corresponding theoretical results of the
mesh refinement algorithms using conformal mapping remain widely open.

As a result, we also provided as the third contribution (chapter 5) the theoretic guaran-
tee of conformal mapping-based surface meshing algorithms regarding the convergence of
various differential geometry quantities, mainly through the following two theorems:

Theorem 1.3.1 (Delaunay Refinement on Constant Curvature Surfaces). Let M be a com-

pact Riemannian surface with constant curvature. Suppose that the boundary of M is empty

or is a union of geodesic circles. For any given small enough ε > 0, the Delaunay refine-

ment algorithm terminates. Moreover, the shortest edge length is greater than ε .

Remark

• As an obvious consequence of this theorem, in the final triangulation, all triangles
are well-sized and well-shaped.

• This theorem gives a Delaunay refinement algorithm for abstract Riemannian sur-
faces with constant curvature. It can be easily extended to any compact Riemannian
surfaces, by using the classical uniformization theorem. In fact, it is well known
that any Riemannian metric defined on a smooth (compact with or without bound-
ary) surface M can be conformally deformed into a metric of constant curvature
c ∈ {−1,0,1} (i.e. uniformization metric), the constant c depending on the topology
of M. So, if M is any compact Riemannian surface, we first use the uniformization
theorem to deform the metric to a metric with constant curvature, then we apply the
Delaunay refinement algorithm described above, and finally, we apply the inverse
transformation. The angles of the mesh do not change under the conformal transfor-
mation and the length of the edges are multiplied by a bounded factor.

Our next step is to compare the geometry of a smooth surface embedded in E3, and
the geometry of a well shaped and well sized triangulation (generated by a Delaunay re-
finement algorithm on conformal uniformization domain). The definition of the curvatures
of a smooth surface M is standard. On the other hand, there are many possible choic-
es to define different types of curvatures on a triangulation T . Here, we choose to use
the normal cycle theory, since it gives a general framework involving both smooth and
discrete approaches. This implies that we deal with curvature measures, in the sense of
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[Cohen-Steiner & Morvan 2003a], which allow to compare the local (but not pointwise)
curvatures of M and T .

To compare the curvatures of an open set U of M with the curvature of a “correspond-
ing" open set V of T , we need a bijection between U and V . Usually, this one to one
correspondence is the orthogonal projection π from V to U = π(V ), well defined if the
vertices of T are dense enough in M. however, if M is defined by a parameterization, we
introduce a new bijection η as follows:

Let (M,g) be a C2-smooth Riemannian surface. Let D be the unit disk on the uv-
plane. Let ϕ : D → M be a conformal parameterization of M. Let T be a triangulation
of the parameter domain D . The conformal mapping ϕ induces a triangulation ϕ(T )
of the smooth surface M, denoted by T . Each vertex pi ∈ T corresponds to a vertex
ϕ(pi) ∈ T , each triangle on T corresponds to a face in T . This induces a piecewise linear
map τ : T → T .

Définition 1 (Natural projection). The homeomorphism from the triangle mesh T to the

smooth surface M

η = ϕ ◦ τ−1 : T →M

is called the natural projection.

Our main result is the following

Theorem 1.3.2 (Main Theorem). Let M be a compact Riemannian surface embedded in E
3

with the induced Euclidean metric, T the triangulation generated by Delaunay refinement

on conformal uniformization domain, with a small enough circumradius bound ε . Suppose

q ∈ T , then

|n(q)−n(η(q))| = O(ε) (1.1)

|n(q)−n(π(q))| = O(ε). (1.2)

Suppose B is the relative interior of a union of triangles of T , then:

|φ G
T (B)−φ G

M(π(B))| ≤ Kε (1.3)

|φ H
T (B)−φ H

M (π(B))| ≤ Kε (1.4)

|φ G
T (B)−φ G

M(η(B))| ≤ Kε (1.5)

|φ H
T (B)−φ H

M (η(B))| ≤ Kε (1.6)

where for fixed M

K = O( ∑
{t∈T, t⊂B̄}

r(t)2)+O( ∑
{t∈T, t⊂B̄, t∩∂B6= /0}

r(t)),

r(t) being the circumradius of triangle t. Moreover, K can be further replaced by:

K = O(area(B))+O(length(∂B)).

Here n(·) denotes the normal vector field, and φ G(·) and φ H(·) denote the Gaussian

and mean curvature measures defined in [Cohen-Steiner & Morvan 2003a].

Remark To the best of our knowledge, this is the first theoretical result on the convergence
of surface normal and curvature measures for the meshing algorithms in the third category.
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1.4 Thesis Organization

The remainder of this thesis is organized as follows.
• In Chapter 2, we review the most representative and successful approaches for 3D

face recognition. Furthermore, their robustness to the challenges of facial expression, pose,
and occlusion variations, as well as the “low-quality data” issue are discussed.
• In Chapter 3, we introduce the proposed 3D face recognition approach to solve

facial expression variations, including local normal patterns based face description, fa-
cial patch weights learning strategy, sparse representation, and experimental results on the
FRGC v2.0, Bosphorus (only fontal scans), BU-3DFE and 3D-TEC databases.
• In Chapter 4, we present the proposed registration free 3D face recognition method,

namely, local feature detection, description and matching framework, its performance on
the Bosphrous and FRGC v2.0 databases, and its effectiveness to handle facial expressions,
occlusions and pose variations.
• In Chapter 5, regarding to the “low-quality data” issue, we describe we describe

the surface meshing algorithm based on planar Delaunay refinement and conformal map-
ping, and the theoretic results related to the convergence of surface normal and curvature
measures, as well as their numerical evaluations.
• In Chapter 6, we summarize our thesis and propose future directions.
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Along with the development in 3D scanning and capturing techniques, the task of rec-
ognizing 3D face scans has been discussed in many ways, leading to numerous approaches.
Similar to the taxonomy of 2D face recognition, 3D face recognition approaches can also be
generally classified into two categories: i.e. holistic based and local feature-based. In this
chapter, we review the most representative and successful approaches for 3D face recogni-
tion. To be more specific, we classify the holistic based approaches into two categories: 1.
expression deformation modeling based approaches; 2. surface-distance based approaches;
and detail the local feature-based approaches as 3. local region/feature based approaches.
Similar taxonomy can be found in [Drira et al. 2013].

2.1 Expression Deformation Modeling based Approaches

Expression deformation modeling based approaches generally assume that human fa-
cial surfaces are non-rigid and deformable surfaces, deforming according to the varia-
tion of facial expressions. The deformation process between faces can be simulated by



Chapter 2. Literature Review: 3D Face Recognition

some physical principles such as the Thin-Plate-Spline based fitting [Lu & Jain 2008],
the Annotated Deformable Model based fitting [Kakadiaris et al. 2007a] and the de-

formable model based fitting [Mpiperis et al. 2008a]. Meanwhile, the deformation pat-
terns can be learned by some statistical models such as the PCA Subspace based

Deformation Modeling [Al-Osaimi et al. 2009], 3D Morphable Model based Deforma-

tion Modeling [Amberg et al. 2008], and Bilinear Model based Deformation Modeling

[Mpiperis et al. 2008a]. Two main properties of the expression deformation modeling
based approaches are summarized as follows:
• a deformable model are usually generated for rigid registration and non-rigid fitting,

resulting pose normalized and vertex-number normalized (i.e. one-to-one correspondence
between model and scan) face scans;
• a parametrical stastical model are usually built for expression morphing, transfer,

and neutralization.

2.1.1 Thin-Plate-Spline (TPS) based Deformation Modeling

Lu and Jain extend their previous ideas of using an ICP for rigid face matching
[Lu et al. 2004] and a Thin-Plate Spline (TPS) based deformation estimator for non-
rigid face matching [Lu & Jain 2005], and propose an expression robust 3D face match-
ing approach by modeling an expression deformation model using the TPS function
[Lu & Jain 2006] [Lu & Jain 2008]. As shown in Figure 2.1, their method includes four ba-
sic steps: (1) Hierarchical facial surface sampling for deformation learning; (2) TPS-based
deformation transfer and synthesis; (3) Expression-specific and/or expression-generic de-
formable models constructions; (4) Deformable model fitting for face matching. The core

Figure 2.1: Pipleline of the thin-plate-spline based deformation modeling approach

[Lu & Jain 2008].

part of their method is the step (2), which can be easily understood based on the following
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diagram.

Sne
f−−−−→ Mneyφ

yϕ=g◦φ◦ f−1

Sex
g−−−−→ Mex

In this diagram, suppose Sne and Sex are a pair of neutral and non-neutral scans of the same
person from the training set (i.e. control group), and suppose Mne is a 3D neutral model
from the gallery set. The goal of the TPS-based deformable model is to learn the expression
deformation between the pair of neutral and non-neutral scans of the person in the training
set (i.e. φ : Sne→ Sex), and transfer the learned deformation to another person in the gallery
set by the mappings f and g, finally, generate new expression model of Mne by the mapping
ϕ (i.e. ϕ = g◦φ ◦ f−1 : Mne→Mex).

To find the mappings, in practice, facial surfaces Sne, Sex and Mne are hierarchically
sampled as the same numbers corresponding facial landmarks (See Fig. 2.2). Then, the
following procedures are performed.

Figure 2.2: Hierarchical surface sampling. (a) first layer (fiducial set); (b) second layer;

(c) third layer; (d) final landmark set.

(1) Register the non-neutral scan Sex with the neutral scan Sne and establish the map-
ping φ : Sne → Sex. φ is assume to be a TPS mapping, which can be estimated from the
corresponding facial landmarks.

(2) Similar to φ , establish the mapping f : Sne→Mne from the landmark set of Sne to
that of Mne.

(3) Use the same mapping g = f to transfer the landmark set of Sex to Mne as Mex .
(4) Establish the mapping ϕ : Mne→Mex by the composite mapping ϕ = g◦φ ◦ f−1.
Given two sets of corresponding landmarks U = (u1,u2, . . . ,um)

T and V =
(v1,v2, . . . ,vm)

T sampled from two surfaces, the TPS mapping F is given by the condi-
tions

F(ui) = vi, i = 1,2, · · · ,m.

Meanwhile, F can be represented as

F(u) = c+A ·u+W T s(u),

31



Chapter 2. Literature Review: 3D Face Recognition

where c, A and W are TPS parameters; s(u) = (σ(u−u1),σ(u−u2), · · · ,σ(u−um))
T and

σ(r) = |r|.
Suppose there are N pairs of neutral and non-neutral training scans of N subjects (i.e.

{Si
ne}N

i=1 and {Si
ex}N

i=1) and one 3D neutral model Mne in the gallery set. Then, by running
step (2), N expression deformation mappings {φ}N

i=1, N deformation synthesis mappings
{ϕ}N

i=1, and N synthesized deformation models {Mi
ex}N

i=1 can be achieved. By combing all
the N synthesized models, one can construct the deformable model M of the gallery subject
by

M = Mne +
N

∑
i=1

αi · (Mi
ex−Mne) (2.1)

where αi’s are the mixing weights. If all the N training pairs have the same expression,
M can be an expression-specific model; otherwise, M can be an expression-generic model.
The model fitting is formulated as an optimization problem to minimize the cost function

E(αi, . . . ,αN ;R,T ) = ‖Mne +
N

∑
i=1

αi · (Mi
ex−Mne)−ξ (Ste|R,T )‖2,

where R and T are the rotation and translation matrices; Ste is a test scan and ξ (Ste|R,T )
represents applying (R,T ) to Ste. For each iteration, rigid transformations (R,T ) can be
solved by the iterative closest point (ICP) algorithm and then the parameters αi can be
solved by gradient-based iterative method. Once the model fitting is finished, the root-
square distance computed by the ICP algorithm is used as the matching distance.

For experimental evaluation, a small training set consisting of 10 subjects, each with
7 expressions (neutral, happy, angry, smile, surprise, deflated, and inflated), is collected in
their laboratory (MSU). Meanwhile, considering the time cost of model fitting, only 877
scans of 100 subjects from the FRGCv2.0 database are selected for testing, and the experi-
mental results show that the proposed deformation modeling scheme can resist expression
variations to some extent.

As pointed out by the authors, the obvious disadvantages of their current method are
i) The fiducial facial landmarks required for deformation learning are manually extracted;
ii) Only a small training set (10 subjects) are used which makes the deformable model has
a very limited generalization ability; iii) Since the ICP process has to be repeated during
the model fitting stage, their method is quite time-consuming; iv) A limited experimental
results are reported on a subset of the FRGCv2.0 database.

2.1.2 Annotated Deformable Model based Deformation Modeling

Kakadiaris et al. [Kakadiaris et al. 2007a] extend their pervious work
[Passalis et al. 2005], and propose an annotated deformable model approach for 3D
face recognition in the presence of facial expressions.

The pipeline of their method is as follows: (1) Annotated face model (AFM) building.
AFM is achieved by averaging a set of 3D facial meshes. Meanwhile, using the knowledge
of facial physiology, it is segmented into different anatomical areas by a set of anthropo-
metric landmarks (Figure 2.3 (a) and (b)); (2) AFM based multi-stage, and coarse-to-fine
rigid face alignment. Particularly, each preprocessed face scan is aligned with the AFM by
using spine image, Iterative Closest Point (ICP), and Simulated Annealing on Z-Buffers in
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Figure 2.3: Annotated face model and its fitting process: (a) Anthropometric landmarks for

face annotation; (b) Annotated facial areas; (c) Checkerboard texture to demonstrate the

global UV parameterization; AFM after (d) 0, (b) 8, (c) 32, and (d) 64 iterations. Figures

are taken from [Passalis et al. 2005] and [Kakadiaris et al. 2007a].

sequence; (3) AFM based deformable fitting. Particularly, the AFM is fitted to each aligned
face scan using the Elastically adapted Deformable Model [Terzopoulos & Metaxas 1991]
[Metaxas & Kakadiaris 2002]; (4) AFM based geometry image extraction. After the fitting
process, each deformed AFM is flatted into R

2 by a spherical mapping function to achieve
a global UV parameterization. Then, a geometry image [Gu et al. 2002] and a normal
map image are extracted from the parameterized AFM; (5) Wavelet based geometry image
analysis. Haar transformation and pyramid transformation are performed on the geometry
images to extract wavelet coefficients; (6) Face matching based on the Haar metric and the
Pyramid metric. The core part of their method for handling facial expressions is step (3),
where the Elastically adapted Deformable Model is used. To deeply understand the basic
principle of the model, in our thesis, we give a brief review in the following paragraphs.
For more details, we refer readers to [Terzopoulos & Metaxas 1991].

Elastically adapted Deformable Model has the following analytical formulation

Mqq̈+Dqq̇+Kqq = gq + fq (2.2)

where Mq is the mass matrix, Dq is the damping matrix, Kq is the stiffness matrix, gq

gives the centrifugal and Coriolis forces, fq are the external forces, and q is a vector gives
the model parameters. Equation 2.2 is a Lagrangian equation of motion, which govern-
s both global and local deformation behaviors of deformable superquadrics. Following
[Terzopoulos & Metaxas 1991], we summarize here the deviation of this equation.

1. Geometry of the Model

As shown in Fig. 2.4, the models are closed surfaces whose intrinsic coordinates are
u = (u,v), defined on a domain Ω. The positions of points on the model relative to an
inertial frame Φ are given by a vector-valued, time-varying function of u:

x(u, t) = (x1(u, t),x2(u, t),x3(u, t))
T . (2.3)

Meanwhile, these positions relative to the model frame ϕ can be expressed as

x(u, t) = c(t)+R(t)p(u, t) (2.4)

where c(t) is the origin of ϕ at the center of the model, rotation matrix R(t) gives the
orientation of ϕ relative to Φ, and p(u, t) denotes the position of points on the model
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Figure 2.4: Geometry of a deformable superquadric.

relative to the model frame ϕ . Considering the shape deformations, p(u, t) can be further
expressed as

p(u, t) = s(u, t)+d(u, t) (2.5)

where s(u, t) is a reference shape and d(u, t) is a displacement function.
In [Terzopoulos & Metaxas 1991], the authors employed superquadric ellipsoids as the

initial reference shape,which can be expressed as

s = a




a1Cε1
u Cε2

v

a2Cε1
u Sε2

v

a3Sε1
u


 . (2.6)

where u ∈ [π/2,π/2] and v ∈ [−π,π], and where Sε
w = sgn(sinw|sinw|ε) and Cε

w =
sgn(cosw|cosw|ε), respectively. Here, a ≥ 0 is a scale parameter, 0 ≤ a1,a2,a3 ≤ 1 are
aspect ratio parameters, and ε1,ε2 ≥ 0 are “squareness” parameters. All these model pa-
rameters can be collected into a parameter vector

qs = (a,a1,a2,a3,ε1,ε2)
T . (2.7)

In general, one can express the displacement d as a linear combination of a finite num-
ber of basis functions bi(u)

d(u, t) =
l

∑
i=1

diag(bi(u))qi(t). (2.8)

Equation 2.8 can further be written as

d = Sqd (2.9)

where S is the shape matrix whose entries are the basis functions and qd = (· · · ,qi, · · ·)T is
the vector form of the generalized coordinates qi.

2. Kinematics of the Model
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The velocity of points on the model is given by

ẋ = ċ+ Ṙp+Rṗ

= ċ+Bθ̇ +Rṡ+RSq̇d

(2.10)

where θ = (· · · ,θi, · · ·)T denotes the rotational coordinates of the model, and B =
[· · ·∂ (Rp)/∂θi · · · ]. Furthermore,

ṡ = [
∂ s

∂qs

]q̇s = Jsq̇s (2.11)

where Js is the Jacobian of S. Finally, we can write

ṡ = [I B RJs RS]q̇ = Lq̇ (2.12)

where q = (qT
c ,q

T
θ ,q

T
s ,q

T
d )

T , with qc = c and qθ = θ .
3. Dynamics of the Model

When fitting the model to visual data, the aim is to find the vector q, which involves
the degrees of freedom of the model. The components qc and qθ denote the global rigid
motion coordinates, qs denote the global deformation coordinates, and qd denote the lo-
cal deformation coordinates of the model. To make the model dynamic in q, the authors
use a physically based way to introduce mass, damping, and a deformation strain energy
and build a set of equations of motion under the action of externally applied forces. The
deviation of the motion equation (2.2) is introduced as follows.

a. Kinetic Energy: Mass Matrix. The kinetic energy of the model is given by

T =
1
2

∫
µ ẋT ẋdu =

1
2

q̇T [
∫

µLT Ldu]q̇ =
1
2

q̇T Mqq̇ (2.13)

where Mq =
∫

µLT Ldu is the symmetric mass matrix, and µ(u) is the mass density of the
object, respectively.

b. Energy Dissipation: Damping Matrix. The velocity dependent kinetic energy dissi-
pation can be expressed in terms of the (Raleigh) dissipation functional:

F =
1
2

∫
γ ẋT ẋdu =

1
2

q̇T [
∫

γLT Ldu]q̇ =
1
2

q̇T Dqq̇ (2.14)

where γ(u) is a damping density, and Dq is the damping matrix which has the same form
as Mq, except that γ replaces µ .

c. Strain Energy: Stiffness Matrix. The elastic properties of the model can be defined
in terms of a deformation energy with the general form

E =
1
2

qT Kqq (2.15)

where

Kq =




0 0 0 0
0 0 0

Kss Ksd

symmetric Kdd


 . (2.16)

35



Chapter 2. Literature Review: 3D Face Recognition

is the stiffness matrix, and the submatrices Kss, Ksd and Kdd related to the global deforma-
tion parameter qs and the local one qd , respectively.

d. External Forces and Virtual Work. The external forces f (u, t) applied to the model
do virtual work, which can be written as

δWF =
∫

f T Lδqdu =
∫

fqδqdu (2.17)

where
fq = f T L = ( fc, fθ , fs, fd) (2.18)

with
f T
c =

∫
f T du, f T

s =
∫

f T RJsdu

f T
θ =

∫
f T Bdu, f T

d =
∫

f T RSdu
. (2.19)

e. Lagrange Equations of motion. The Lagrange equations of motion can be written as

d

dt
(
∂T

∂ q̇
)T − (

∂T

∂q
)T +(

∂F

∂ q̇
)T +δxE = fq. (2.20)

The first two terms of (2.20) express the inertial forces and can be written as

d

dt
(
∂T

∂ q̇
)T − (

∂T

∂q
)T = Mqq̈−gq (2.21)

where

gq =−Ṁqq̇+
1
2
[

∂

∂q
(q̇T Mqq̇)]T (2.22)

gives the centrifugal and Coriolis forces. The third term expresses the friction forces and
can be written as

∂F

∂ q̇
= Dqq̇. (2.23)

And the forth term, the variational derivative of E with respect to x, expresses the elastic
forces

δxE = Kqq. (2.24)

Substituting the above equations into (2.20) yields the equations of motion (2.2). The
numerical solution of (2.2) can be approximated by using a Finite Element Method. Please
refer to [Terzopoulos & Metaxas 1991] for more details of the discretization of the model.

In [Kakadiaris et al. 2007a], the authors report a 97.0% rank-one recognition rate and
a 97.0% verification rate at 0.1% FAR on the FRGC v2.0 dataset. Along with the com-
petitive performance, additional experimental results tested on the subsets (i.e. neutral and
non-neutral) of the FRGCv2.0 database and the UH database show that their face recogni-
tion system is also robust to the facial expression variations and the face sensor changes.
Furthermore, their system is very efficient in terms of both space and time. It takes 15
seconds to finish all the first five steps for a raw face scan, and only 1/1,000 seconds to
compare the wavelet coefficients of two faces on a typical modern PC.

With the above superiorities, the method in [Kakadiaris et al. 2007a] also has some
disadvantages. For example, the computation of pyramid transform is quite expensive.
Meanwhile, the dimensionality of the wavelet coefficients will be very high when multiple
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layers wavelet transform is used. To solve these problems, in [Ocegueda et al. 2011b],
a Markov Random Field (MRF) model is formulated to select the most discriminative
wavelet coefficients and to achieve a more compact signature. It is clear that by using
the compact signatures, computational efficiency of the recognition system can be im-
proved in terms of both storage requirements and computational time. Similar idea is
used in [Ocegueda et al. 2011a], by using Linear Discriminant Analysis based dimension-
ality reduction techniques, the original high dimensional wavelet coefficients (i.e., 7200)
is reduced to quite low dimensionality (i.e., 57). With such a compact and discriminative
signature and different training databases, this improved method achieves a better perfor-
mance (≥ 99%) on the FRGCv2.0 database.

Recently, towards real-world 3D face recognition, annotated deformable model based
recognition framework has also be extended to handle large pose variations for partial data
based 3D face recognition [Perakis et al. 2009] [Passalis et al. 2011] [Chu et al. 2013].

Compared to their previous method [Kakadiaris et al. 2007a], the main contributions in
[Perakis et al. 2009] and [Passalis et al. 2011] are: (1) A novel 3D landmark detector is in-
troduced for pose estimation and registration of partial faces; (2) A symmetric deformable
model fitting procedure is proposed for pose invariant geometry image and normal map
extraction. The proposed 3D landmark detector employ the idea of statistical models (i.e.,

Figure 2.5: Illustration of 3D landmark detection: (a) 8 points based Facial Landmark

Model; (b) landmark model overlaid on a 3D facial surface; (c) extrema values of shape

index; (d) spin image templet based filter; (e) landmark model fitting for consistent land-

mark selection; (f) selected best landmarks. Figures are taken from [Perakis et al. 2009]

and [Passalis et al. 2011].

Active Appearance Models (AAM) and Active Shape Models (ASM)) to build a generic
Facial Landmark Model (FLM) using 8 anatomical landmarks of facial surface (Fig. 2.5 (a)
and (b)). The mean shape of FLM is established by using Procrustes Analysis and the land-
mark shape variations is carried out by performing Principal Component Analysis (PCA).
All the landmark candidates are first filtered by extrema values of shape index (Fig. 2.5 (c)),
and then filtered by the spin image templet (Fig. 2.5 (d)). Finally, the optimal combination
of landmark set which has the minimal fitting error to FLM (Fig. 2.5 (e)) is selected as the
best landmark set (Fig. 2.5 (f)). Once the landmark detection established, the pose of face
data (e.g., frontal, left side or right side) can be estimated. Meanwhile, the initial landmark
based coarse registration and the final Simulated Annealing based fine registration between
face data and the AFM can be done. The following symmetric deformable model fitting
procedure is established by elastically deforming the left, right or both sides of AFM to the
ones (left, right, or both sides) of left scan, right scan, or frontal scan, respectively. Then,
the missing sides are recovered by symmetrically mirroring. These fitted AFM are used
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to generate the pose invariant geometry and normal images. Finally, wavelet analysis is
performed on those images for facial feature extraction and face matching.

Figure 2.6: Illustration of symmetric deformable model fitting: (a) left and right sides of

the control mesh of AFM; (b) left and right sides of the annotated AFM; (c)-(e) raw data

(top row) and fitted AFM (bottom row) of a subject with different poses. (c) both sides of

the frontal scan are fitted; (d) left side of the left scan is fitted (and the right is mirrored);

(e) right side of the right scan is fitted (and the left is mirrored). Figures are taken from

[Perakis et al. 2009] and [Passalis et al. 2011].

Based on the fact that the human face is not perfectly symmetrical, the main assumption
for the authors of using facial symmetry is: the shape difference caused by facial asymme-
try between the left and the right region of a person’s face is less than the shape difference
between these regions and the regions of another person’s face. Their ideas are evaluated
on a combined databases, collecting frontal scans from the FRGCv2.0 and side scans (yaw
45◦, 60◦ and 90◦) from the 3D Ear database of the University of Notre Dame (UND). The
rank-one scores of 86.4%, 81.6% and 76.8% are reported on UND45, UND60 and UND90
databases, respectively. Meanwhile, a time cost of 18s for the whole pipeline is reported
on a typical PC. As pointed out by the author, one limitation of their method is that at least
half part of the face should be existing (≤ 90◦ yaw rotation), so that facial symmetry can
be used. On the other side, their current performances are largely blocked by the accuracy
of the automatic facial landmark detector.

In [Chu et al. 2013], a new scenario (the gallery scan comes from one side of a face
while the probe scan comes form the other) of partial face recognition is proposed. This
new scenario is more challenging compared to the one of frontal gallery scan and partial
probe scan. An improved version of the Semi-Coupled Dictionary Learning technique is
used to modeling this problem and promising performances are achieved.

2.1.3 PCA Subspace based Deformation Modeling

Mian et al. [Al-Osaimi et al. 2009] propose a non-rigid 3D face face recognition approach
by modeling an Expression Deformation Model (EDM) based on the Principle Compo-
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nent Analysis (PCA) technique. The key idea of this method is that: among all the shape
residues between a probe scan and all gallery scans, there is only one representing the
pure expression deformations, the one in which the probe and gallery belongs to the same
subject. The probe can be correctly recognized because the pure expression deformations
can be reconstructed with minimal error if the expression deformation patterns can be well
modeled. The model training and face matching stages are summarized as follows.

Figure 2.7: Pipeline of training EDM. [Al-Osaimi et al. 2009]

In the training stage, EDM is learned in a PCA subspace, which is built form shape
residues between neutral and non-neutral scan pairs of the same subject. As shown in Fig.
2.7, the training data contains multiple non-neutral scans and one neutral scan for each
subject. Ideally, to get a generic model, a wide range of facial expressions and a large
number of subjects should be collected in the training data set. Moreover, to accurately
compute shape residues, the scan pairs should be well-cropped, pose normalized, and finely
registered. Formally speaking, let Si and S̃i denote the neutral and non-neutral range images
of the i-training pair, Their shape residue is simply their differences,

Ri = S̃i−Si.

Suppose there are totally n training pairs, and their covariance matrix is

Σ =
1
n

n

∑
i=1

(ri− r̄i)(ri− r̄i)
T

where ri ∈ R
m is the vectorial expression of Ri and r̄i is the average shape residue. Then,

the PCA subspace based expression deformation model V ∈ R
m×k(k≪ m) is defined by k

eigenvectors of Σ

V = [v1,v2, . . . ,vk],

where Σvi = λivi, and λi is the k-th largest eigenvalue. Some eigenvectors of the matrix Σ

are shown in Fig. 2.8.

Figure 2.8: Some eigenvectors which span the shape residue PCA subspace (expression

deformation model). the images from left to right are the 1st, 2nd, 3rd, 9th, 10th, 11th and

25th.eggenvectors, respectively. Notice that the eigenvectors with the higher eigenvalues

are more relevant to the largely deformable regions (e.g. the mouth) and the other regions

(e.g. eyebrows, eyes) gradually appear in the lower eigenvectors.[Al-Osaimi et al. 2009]

In the matching stage, a probe P and a set of galley scans G1,...,N are first well-cropped,
posed normalized, and finely registered in the same way as the training phase. Then, a
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set of shape residues R1,...,N and its vectorial expressions r1,...,N are computed. For face
identification, each ri is projected to the EDM V with minimal L2 reconstruction error. The
projection coefficient ci has the following closed-from expression

ci = (VT V)−1VT ri,

then, the shape residue can be reconstructed by

r̃i = Vci = V(VT V)−1VT ri.

The gallery scan with the minimal reconstructed error is regarded to be the probe’s match.
Considering the outliers of the shape residues and the artifacts at the border of the eigen-
vectors, the model V should be further modified to avoid the term VT V to be an identity
matrix.

This method achieves a very high performance with a short processing time. A rank-
one recognition of 98.14% on the whole FRGCv2.0 database under the neutral vs. all

experimental setting. And a time cost of 4 seconds (facial signature extraction) plus 100ms
(matching per gallery) is reported based on an Intel Core 2 processor. The drawbacks of
this method may arise from: 1. the selection of a suitable number of training samples with
different expressions; 2. the carefully face cropping and registration step which impact the
artifacts at the borders of faces and the outliers in the shape residues.

2.1.4 3D Morphable Model based Deformation Modeling

Amberg et al. [Amberg et al. 2008] introduce an expression-invariant 3D face recogni-
tion method by building and fitting an identity/expression separated 3D Morphable Model
(3DMM) [Blanz & Vetter 1999] to shape data. The identity model can be described as

f (αn) = µ +Mnαn

where µ denotes the mean shape, Mn is the matrix of eigenvectors vectors and αn is the
model parameter.

The expression model can be described as

f (αn,αe) = µ +Mnαn +Meαe = µ +Mα

where M= [Mn | Me], α =

[
αn

αe,

]
and Me denotes the expression matrix and αe denotes

the expression coefficients.
As shown in the columns 1-3 of Fig. 2.9, given a target face scan with neutral or

non-neutral expression, it is iteratively fitted to the 3D Morphable Model by minimize the
following cost function

f (R, t,α) = ∑
i

‖µi +Miα + t−Rui‖2 +λ‖α‖2

where µi and Mi denote the rows of the model which correspond to the i-th vertex by
subscript i, and ui denotes a candidate scan-to-model correspondence point. Based on the
fitting results, one can normalize/remove the facial expressions, the expression neutralized
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scan are used for face recognition. The similarity measurement between faces is comput-
ed by the angle between face parameters in Mahalanobis space. The experiments shows
that, comparing to the ICP based face recognition method, the performance of the pro-
posed method does not decrease for the neutral database (e.g. UND database) and can be
improved for the expression database (e.g. GavabDB).

Figure 2.9: Columns 1-3: Expression normalization of two scans of the same subject. The

fitting algorithm gives a good estimate (b) of the true face surface given the noisy mea-

surement (a). The pose and expression normalized faces (c) are used for face recognition.

Columns 4-6: The reconstruction (b) is robust against scans (a) with artifacts, noise, and

holes [Amberg et al. 2008].

The main advantage of this method is that it is robust against scans with artifacts,
noise, and holes (columns 4-6 of Fig. 2.9). For the disadvantages, this method does
not report competitive recognition results on commonly used large scale 3D face databas-
es (e.g. FRGCv2.0). Moreover, to build a 3DMM, a large number of facial landmark-
s are usually required to be manually annotated for getting dense correspondence as in
[ter Haara & Veltkampb 2010].

2.1.5 Bilinear Model based Deformation Modeling

Similar to the spirit of 3D Morphable Model, Mpiperis et al. [Mpiperis et al. 2008a] pro-
pose to use a Bilinear Model [Tenenbaum & Freeman 2000] to encode identity and expres-
sion in independent control parameters to perform joint expression-invariant face recogni-
tion and identity-invariant facial expression recognition. The main procedures are depicted
as in Fig. 2.10. Specifically, given two original 3D face scans (i.e. a gallery and a probe)
of the same or different subjects displaying random expressions (first column), each face
scan is approximately fitted by an general landmark-guided or subspace-guided elastically
deformable model (second column). The general deformable model is created by perform-
ing subdivision on a base-mesh. The fitting produce is established by minimizing the total
energy including landmark distance, model-to-scan distance, scan-to-model distance, and
the elastic energy of the base-mesh. The aim of the deformable model fitting is to find the
one-to-one point correspondence between scan-to-model and scan-to-scan. The fitted two
scans have the same number of vertices and displaying the same poses. Thus, this step
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can be regarded as pose and vertex normalization. Each normalized scan is then fitted to a
symmetric bilinear model by minimizing the reconstruction square error, the reconstructed
face scans are described in the third column of Fig. 2.10.

Figure 2.10: Main procedures of the Bilinear Model based 3D face recognition

[Mpiperis et al. 2008a].

The bilinear model is built by a set of face scans in the training stage. Let vxp ∈ R
K be

the vertices of facial surface of person p with expression x. Then each component v
xp
k is

given by the general bilinear form [Tenenbaum & Freeman 2000]

v
xp
k =

I

∑
i=1

J

∑
j=1

wi jkax
i b

p
j

where ax
i and b

p
j are the control parameters which control expression and identity respec-

tively, while wi jk are the coefficients which model the interaction of the factors.
Assume that there exist T faces belonging to Tp persons and each one displaying one

of Tx possible expressions. The aim of training the bilinear model is to find the interaction
coefficients wi jk and the control parameters ax

i and b
p
j for each identity-expression couple.

Using the matrix notation, the bilinear model can be simplified to

v
xp
k = axT Wkbp

where ax = [ax
1 ·ax

I ]
T , bp = [bp

1 ·b
p
J ]

T and Wk(i, j) = wi jk.
Once the bilinear model fitting procedure is done. The reconstructed scans are further

neutralized by substituting the expression control vector ax by the corresponding vector of
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neutral faces (column 4 of Fig. 2.10). Note that gallery faces are neutral faces in most
cases. The final expression free comparison between faces is established by the inverse of
their vertex vectors’ square Euclidean distance.

The performance of this method is evaluated on the BU-3DFE database, where half part
(50 subjects) of the scans are used for training the elastically deformable model and com-
puting the linear coefficients. The rest of the data, is split into the gallery set that includes
a single face scan per subject (neutral or non-neutral), and probe set that includes the scans
to be classified (various facial expressions). An average rank-one face recognition rate of
86% is reported, which shown to be better than Bronstein et al.’s [Bronstein et al. 2007]
canonical images and a PCA-based method. Although promising results are achieved, as
pointed out by the authors, there are still some issues that limit the performance: 1. The
main limitation is the requirement of a large (universal) bootstrap set in which the facial
expression should be correctly annotated; 2. The accuracy of the elastically deformable
model fitting procedure is another key factor affecting the performance.

2.2 Surface-distance based Approaches

Surface-distance based approaches generally assume that facial surfaces are two-
dimensional, compact, connected, zero-genus manifolds embeded in R

3. Based on this
assumption, surface geodesics, induced by the Riemannian metric, as an intrinsic geome-
try quantity, are used to construct expression-invariant representations of faces. This idea
has been deeply discussed by several research groups (e.g. Bronstein et al., Mpiperis et

al., and Berretti et al.). Furthermore, if facial surfaces are also differentiable, their tangent
spaces are also manifolds. Thus, elastically matching of facial curves can be accomplished
by inducing specific elastic Riemannian metrics on various facial curve-based shape spaces.
These ideas have been successfully proposed and developed by Daoudi’s group. Accord-
ing to different surface parts used for face matching, surface-distance based approaches are
simply classified into three categories in our thesis: (i) iso-metric surface based approach-
es, which means the whole isometric approximated surfaces are used for face matching.
(ii) iso-level curves based approaches, which means iso-depth curves, iso-geodesic curves
or iso-geodesic path curves are used for facial features and for the final face matching. (iii)
iso-geodesic strips based approaches, which means face matching is performed based on a
set of equal width iso-geodesic strips. Their detailed descriptions are introduced as follows.

2.2.1 Iso-metric Surface based Approaches

In [Bronstein et al. 2003], Bronstein et al. explore an expression-invariant representations
of faces for expression-invariant 3D face recognition. The expression-invariant represen-
tations of faces are obtained under the assumption of the isometric model. The isometric
model assumes that all the facial surfaces with various expressions of the same subject are
approximately intrinsically equivalent (i.e., have the same metric structure). The key idea
is: all the facial expression variations only change the extrinsic geometry of facial sur-
face, while the intrinsic geometry is invariant and thus can be contributed to the subject’s
identity. Formally speaking, suppose a facial surface can be represented as a smooth com-
pact connected 2-D Riemannian manifold, denoted by S. And the geodesic distances on
S induced by the Riemannian metric are denoted by dS(pi, p j) for pi, p j ∈ S. A mapping
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φ : S→ S′ is called an isometry if

dS(pi, p j) = dS′(φ(pi),φ(p j)) (2.25)

for all pi, p j ∈ S. In practice, S is sampled as a finite set of points {p1, p2, · · · , pN} and
the geodesic distances dS(pi, p j) is approximately computed by using the fast marching
method (FMM) [Kimmel & Sethian 1998] and stored in a N×N matrix ∆. The isometric
representation of S is further isometrically embedded into a low-dimensional Euclidean
space R

m for the following face matching procedure. Formally, the isometric embedding
mapping ϕ : S→ R

m is approximated by the discrete mapping

ϕN : ({p1, p2, · · · , pN} ⊂ S,∆)→ ({q1,q2, · · · ,qN} ⊂ R
m,D) (2.26)

such that dS(pi, p j) ≈ dRm(qi,q j) for all i, j = 1, . . . ,N. ∆ = (δi j) = (dS(pi, p j)) and D =
(di j) = (dRm(qi,q j)) are two metric matrices. The surface ({q1,q2, · · · ,qN} ⊂ R

m,D) is
called canonical form of S. Once canonical forms are computed, the problem of non-rigid
matching between S is simplified to rigid matching between canonical forms. Figure 2.11
shows some examples of canonical forms of faces with strong facial expressions.

Figure 2.11: Examples of canonical forms (f)-(j) of faces with strong facial expressions

(a)-(e) [Bronstein et al. 2005].

Different aspects of this isometric model has been extended by Bronstein et al. in
their following works. In [Bronstein et al. 2004b], only metric tensor of the surface is used
for geodesic distance computation, and a 3D face recognition method is performed direct-
ly on the normal fields of facial surfaces acquired by photometric stereo techniques. In
[Bronstein et al. 2004a], texture-based canonical images are created and combined with
3D canonical forms for multi-modal 2D+3D face recognition. These two works are further
extended to [Bronstein et al. 2005], in which the choice of the optimal embedding space is
discussed and the recognition of identical twins is demonstrated. The influence of the em-
bedding geometry and dimensionality choice are deeply studied in [Bronstein et al. 2007].
In [Bronstein et al. 2006], the isometric-invariant similarity between faces is measured by
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embedding one facial surface to other. Thus, this method has the ability to handle partially
missing data.

An obvious drawback of their methods is the open mouth problem. In this case, the
genus zero surface assumption is invalid, and the isometric-invariant property of geodesic
distance is also invalid. Moreover, only a limited experimental results carried out on some
small databases are reported.

Mpiperis et al. [Mpiperis et al. 2007] propose a similar idea for 3D face recogni-
tion based on the geodesic polar representation. Their method outperforms the method
of [Bronstein et al. 2007]. Comparing to [Bronstein et al. 2007], a fast geodesic computa-
tion method is proposed. Meanwhile, open mouth problem is improved by mapping lips to
a continuous region on the geodesic plane so that the mouth hole vanishes. As pointed out
by the authors, this method has the following limitations: (i) the assumption of the isome-
try of surface deformations will be invalid for extreme facial expressions; (ii) the geodesic
polar parameterization depends on solving a differential equation. The accuracy of the so-
lution depends on the sampling or the resolution of the surface. (iii) The performance is
also influenced by the accuracy of the automatic detection of nose and sellion.

2.2.2 Iso-level Curves based Approaches

Based on the powerful surface shape analysis theory and Riemannian geometry theory,
Daoudi’s group develop a series of 3D face recognition methods by shape analysis of
various facial curves. Their methods start by assuming that a facial surface S is a two-
dimensional differentiable, connected, zero-genus manifold and mainly contain three pro-
cedures: (i) facial curves extraction for facial surface representation; (ii) Riemannian anal-
ysis of facial curve spaces for facial curve comparisons; (iii) facial surfaces measuring for
face recognition.

As shown in Table 2.1 and Figure 2.12, three types of facial curves, namely, iso-
depth curves [Samir et al. 2006], circular curves (iso-level curves) [Samir et al. 2009]
[Ballihi et al. 2012], and radial curves (iso-geodesic path curves) [Drira et al. ]
[Ballihi et al. 2012] [Drira et al. 2013] have been proposed for facial surface representa-
tions. Iso-depth curves are closed planar curves sampled from pose normalized 2.5D depth
images. An iso-depth curve can be extracted by slicing a depth image S using a plane Pλ

parallel to the xy-plan of S. Circular curves are closed space curves sampled from pose
normalized 3D facial surfaces. A circular curve can be extracted by slicing a facial sur-
face S using a sphere M

p0
λ centered at the nose tip p0 with a given radius λ . Radial curves

are open space curves sampled from pose normalized 3D facial surfaces. A radial curve
can be extracted by slicing a facial surface S using a plan P

p0
θ passing the nose tip p0 and

perpendicular to the xy-plan of S.
In practice, facial surfaces are sliced by fixed orders with respect to λ and θ . Thus, all

three types of facial curves can be extracted in order. Moreover, for each extracted facial
curve, the procedures of spline fitting, arc-length parameterization and resampling are used
for postprocessing. Finally, a facial surface can be represented as a set of ordered and uni-
formly sampled facial curves. Thus, one-to-one correspondence across facial surfaces can
be achieved at both curve-level and point-level. Figure 2.12 shows an example of the above
facial curve based surface representations. Table 2.1 summarizes the definitions, extraction
methods, and properties of these three types of facial curves based facial surface represen-
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Figure 2.12: Facial curves based surface representations: iso-depth curves

[Samir et al. 2006], circular curves [Samir et al. 2009] and radial curves

[Drira et al. 2013] (from left to right).

Table 2.1: Three types of facial curves based facial surface representations.

Iso-depth curves Circular curves Radial curves

closed closed open
R

2
R

3
R

3

αλ = {S∩Pλ } βλ = {S∩M
p0
λ } γθ = {S∩P

p0
θ }

Pλ//S(x,y) M
p0
λ = {x|d(x, p0) = λ} P

p0
θ ⊥S(x,y)

- p0 ∈ S, nose tip p0 ∈ S, nose tip
λ ∈ [minz(S),maxz(S)] λ ∈ [0,∞) θ ∈ [0,2π]

S≈ ∪λ αλ S≈ ∪λ βλ S≈ ∪θ γθ

∼ SO(2) ∼ SO(3) ∼ SO(3)

tations. It’s easy to see that iso-depth curves based surface representation is invariant to
planar rotation transformation group SO(2), and the other two types of representations are
invariant to space rotation transformation group SO(3).

Once a type of facial curves (i.e. αλ or βλ or γθ ) are extracted from a facial surface
S, a pre-shape space C (i.e. a Riemannian manifold) is constructed with the elements
of the velocity functions of curves (i.e. α̇λ or β̇λ or γ̇θ ). Then, the quotient space D

of the pre-shape space C is further defined rotation group SO(3) and the reparameteriza-
tion group S1. The quotient space D is still a Riemannian manifold. Endowing it with
a suitable (elastic) Riemannian metric, one can compute the geodesic path between two
points in D , which means the deformation process from one facial curve to another fa-
cial curve. The geodesic path can be computed by the shooting method for iso-depth
facial curves and the path-straightening method for the other two types of curves. The
length of the geodesic path supply an elastic measurement between two facial curves,
which can be used as the similarity between two facial curves. Finally, the distance be-
tween two facial surfaces d(S1,S2) is given by the average distances of all pairs of the
corresponding facial curves laying on them. Please refer to Table 2.2 for a brief sum-
mary or refer to [Samir et al. 2006] [Samir et al. 2009] [Ballihi et al. 2012] [Drira et al. ]
[Ballihi et al. 2012] [Drira et al. 2013] for the detailed descriptions.

The main advantages of the iso-level curves based approaches are: (i) They can supply
intrinsic surface based local coordinate systems for given facial surfaces; (ii) They can sup-
ply both curve-level and point-level one-to-one correspondence across facial surfaces; (iii)
They can supply natural elastic metric between deformable and non-rigid facial surfaces.
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Table 2.2: Riemannian analysis of curve spaces for facial curves and surfaces comparison-

s.

Facial curves and surfaces comparisons Explanations

αλ (s) : [0,2π]→ R
2 iso-depth curves

α̇(s) = e jθ(s), j =
√
−1 velocity function and angle function θ(s)

C = {θ | 1
2π

∫ 2π
0 θ(s)ds = π,

∫ 2π
0 e jθ(s)ds = 0} pre-shape space

D = C /(SO(2)×S1) quotient space, rotation and reparameterization groups
shooting method shooting by tangent direction g

〈g1,g2〉=
∫ 2π

0 g1(s)
T g2(s)ds,g1,g2 ∈ Tq(D) Riemannian metric and tangent space

α1
λ ∈ S1,α

2
λ ∈ S2 two iso-depth curves with same λ , from two surfaces

θ 1
λ ∈D ,θ 2

λ ∈D two points (angle functions) in D

d(α1
λ ,α

2
λ ) = dD(θ

1
λ ,θ

2
λ ) length of the shortest geodesic path connecting θ 1

λ and θ 2
λ

d(S1,S2) =
1
n ∑λ∈Λ d(α1

λ ,α
2
λ ), |Λ|= n distance between two facial surfaces

βλ (s) : [0,2π]→ R
3 circular curves

q(s) = β̇ (s)√
‖β̇ (s)‖

square-root velocity function (SRVT)

‖q(s)‖ instantaneous speed
q(s)
‖q(s)‖ instantaneous direction

C = {q|∫ 2π
0 ‖q(s)‖q(s)ds = 0,‖q(s)‖= 1} pre-shape space

D = C /(SO(3)×S1) quotient space, rotation and reparameterization groups
path-straightening method minimization of the length energy of the geodesic path
〈g1,g2〉=

∫ 2π
0 g1(s)

T g2(s)ds,g1,g2 ∈ Tq(D) Riemannian metric and tangent space
β 1

λ ∈ S1,β
2
λ ∈ S2 two circular curves with same λ , from two surfaces

q1
λ ∈D ,q2

λ ∈D two points (velocity functions) in D

d(β 1
λ ,β

2
λ ) = dD(q

1
λ ,q

2
λ ) length of the shortest geodesic path connecting q1

λ and q2
λ

d(S1,S2) =
1
n ∑λ∈Λ d(β 1

λ ,β
2
λ ), |Λ|= n distance between two facial surfaces

γθ (s) : [0,2π]→ R
3 radial curves

q(s) = γ̇(s)√
‖γ̇(s)‖

square-root velocity function (SRVT)

C = {q|‖q(s)‖= 1} ∈ S
2 pre-shape space

D = C /(SO(3)×S1) quotient space, rotation and reparameterization groups
path-straightening method minimization of the length energy of the geodesic path
γ1

θ ∈ S1,γ
2
θ ∈ S2 two radial curves with same θ , from two surfaces

q1
θ ∈D ,q2

θ ∈D two points (velocity functions) in D

ψ(s) = 1
sinξ

(sin((1− s)ξ )q1
θ + sin(ξ s)q2

θ ) great circle, shortest geodesic path connecting q1
θ and q2

θ

ξ = dD(q
1
θ ,q

2
θ ) = cos−1(〈q1

θ ,q
2
θ 〉) length of geodesic path

d(γ1
θ ,γ

2
θ ) = dD(q

1
θ ,q

2
θ ) length of the shortest geodesic path connecting q1

θ and q2
θ

d(S1,S2) =
1
n ∑θ∈Λ d(γ1

θ ,γ
2
θ ), |Λ|= n distance between two facial surfaces

A rank-one recognition of 97% is reported for the facial radial curves based method on the
whole FRGCv2.0 database [Drira et al. 2013].

The major disadvantages of the iso-level curves based approaches are: (i) The accu-
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racies of the facial curve extractions are highly depending on the accuracy of the nose tip
detection. Moreover, it will be problematic when the nose tip or the nose region of a facial
surface is missing. A possible solution is to register this facial surface to a gallery mod-
el, and then use the nose tip of the gallery model for curve extractions [Drira et al. 2013].
However, when a larger part of a facial surface is missing (e.g. the profile of a facial sur-
face), the common registration method (e.g. ICP) will be failed; (ii) Both the geometric
shapes and the topological structures of the facial curves will be largely changed for the
open mouth problem although this impact can be weakened by filling the hole of the opened
mouth for the case of radial curves based representation [Drira et al. 2013].

2.2.3 Iso-geodesic Strips based Approaches

The iso-geodesic strips based approaches [Berretti et al. 2006], [Berretti et al. 2008],
[ter Haar et al. 2008], [Berretti et al. 2010a] are proposed and developed by Berretti’s
group. As shown in Figure 2.13, the main procedures of their approaches can be sum-
marized as follows: (i) Facial surfaces are partitioned into equal width and equal number
geodesic stripes and sub-strips; (ii) The inter- and intra- distances between each pairs of
strips (or sub-strips) of the same facial surface are computed by using 3D Weighted Walk-
throughs (3DWW); (iii) A facial surface is represented as a graph, in which nodes represent
strips (or sub-strips), and edges represent distances between strips (or sub-strips); (iv) Two
facial surfaces are matched by matching two graphs.

Figure 2.13: Illustration of the main procedures for the iso-geodesic strips based approach-

es: (i) Each face is experimentally partitioned into 9 iso-geodesic stripes, and each strip is

further partitioned into 3 parts: lower (L), upper-left (UL) and upper-right (UR) with re-

spect to the coordinate of nose tip. In this figure, the UL parts are expressed by p1 to p9 for

the left face and g1 to g9 for the right face. (ii) The inter-strip distances (i.e. w(pi, p j), i 6= j,

w(gi,g j), i 6= j) and the intra-strip distances (i.e. w(pi, p j), i = j, w(gi,g j), i = j) are com-

puted by using 3D Weighted Walkthroughs. (iii) Faces are compactly represented as con-

nected graphs. (iv) Matching two faces by matching two graphs. The figure is taken from

[Berretti et al. 2010a].

The key concept of their approaches is the 3D Weighted Walkthroughs, which cap-
tures the mutual spatial displacement or relative position relationships (left/right, up/down,

front/back) between two sets of points in R
3. Formally, suppose a = (xa,ya,za) and

b = (xb,yb,zb) are two points in a 3D Cartesian coordinate system. Their mutual spatial
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displacement can be encoded by the combinations of indexes 〈i, j,k〉 according to

i =





−1 xb < xa

0 xb = xa

+1 xb > xa

j =





−1 yb < ya

0 yb = ya

+1 yb > ya

k =





−1 zb < za

0 zb = za

+1 zb > za

. (2.27)

The indexes 〈i, j,k〉 are defined as the 3D walkthrough from a to b.
Now given two iso-geodesic facial strips (or sub-strips) A and B, the number of unique

pairs (a,b) with a ∈ A and b ∈ B that are connected by the same walkthrough 〈i, j,k〉 can
be measured by the following (integral measure) expression:

wi, j,k(A,B) =
1

Ki, j,k

∫

A

∫

B
Ci(xb− xa)C j(yb− ya)Ck(zb− za)dAdB, (2.28)

where dA = dxadyadza and dB = dxbdybdzb, C±1(·) are the characteristic functions of the
positive and negative real semi-axes (0,+∞) and (−∞,0), respectively, and C0(·) is a quasi-
everywhere null function. 1

Ki, j,k
is a normalization factor and guarantees that wi, j,k ∈ [0,1].

Weights wi, j,k can be stored in a 3× 3× 3 matrix w(A,B), which is called 3DWW. In
practice, the integral measure in Eqn. 2.28 can be efficiently computed by directional

indices. The time complexity of computing the 3DWW between A and B is O(nA + nB),
where nA and nB being the number of points in A and B, respectively. Please refer to
[Berretti et al. 2010a] for more details.

The authors claim that their approaches are robust to facial expression variations mainly
for two reasons: (i) the property that iso-geodesic strips do not change too much under fa-
cial expressions; (ii) the continuity property of 3DWWs, which means slight point-drifting
or deformations of two facial strips yield slight changes in their 3DWW. The authors report
the best rank-one recognition rate (99.53%) on the SHREC08 face database, and 94.1% on
the FRGC v2.0 database. Furthermore, the robustness to missing data, face cropping and
the position of the fiducial points are also discussed by the authors. Similar to the isometric
and iso-level curves based approaches, the open mouth problem is also a major drawback
for their approaches.

2.3 Local Region/Feature based Approaches

Local region based approaches are generally proposed to handle local shape deforma-
tions caused by facial expression variations. This kind of approaches first divide the
face into a number of regions (using some facial landmarks), then perform recognition
(e.g. feature extraction, matching) on the separate regions, and finally fuse all the re-
sults. In this section, we will review several representative publications belong to this
kind of approaches. They are Change et al. [Bowyer et al. 2005] [Chang et al. 2006], Fal-
temier et al. [Faltemier et al. 2008a], Alyuz et al. [Alyuz et al. 2010], Queirolo et al.

[Queirolo et al. 2010], and Spreeuwers [Spreeuwers 2011].
In this thesis, local feature based approaches are further classified into two categories:

(1) local geometry-texture descriptor based approaches; and (2) local geometry-shape de-
scriptor based approaches. Local geometry-texture descriptor based approaches generally
treat the range image as a 2D image in order to feature extraction. This kind of approach
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has the advantage that a considerable number of well tested 2D texture descriptors for im-
age processing can be directly applied. For example, Gabor filter, Log-Gabor filter, Haar
wavelet, and Discrete Cosine Transform, see e.g. Cook et al. [Cook et al. 2006], Cook
et al. [Cook et al. 2007], Wang et al. [Wang et al. 2010]; Local Binary Patterns (LBP)
and eLBP, see e.g. Wang et al. [Wang et al. 2010], Huang et al. [Huang et al. 2011a]
[Huang et al. 2012];

Local geometry-shape descriptor based approaches generally treat the range image
as a free-form surface in order to feature extraction. This kind of approach has the ad-
vantage that a considerable number of well tested 3D shape descriptors for 3D objec-
t recognition can be directly applied. Moreover, most of the geometry-shape descrip-
tors use the intrinsic geometric attributes of the surface, thereby they are pose-invariant.
Some representative local geometry-shape descriptors used for 3D face recognition will be
shortly reviewed in this section. They are including curvature-based descriptors, see e.g.

Gordon [Gordon 1992], Tunwku and Ikeda [Tanaka & Ikeda 1996] [Tanaka et al. 1998],
Li et al. [Li & Zhang 2007] [Li et al. 2009]; spin image [Conde et al. 2006]; point
signature [Chua & Jarvis 1997]; local shape map [Wu et al. 2004]; 3D shape contex-
t [Berretti et al. 2011b]; spherical face representation [Mian et al. 2007]; tensor-based face
representation [Mian et al. 2006].

2.3.1 Multiple Region Matching based Approaches

Change et al. [Bowyer et al. 2005] [Chang et al. 2006] propose a expression-robust ex-
pression recognition approach by matching multiple overlapping nose regions. These re-
gions include a nose circle, a nose ellipse, and a region composed of just the nose itself
(Fig. 2.14). Specifically, given a raw 3D face scan with registered 2D face image, a 2D
skin detector is performed on the 2D image to remove the non-skin regions, and the corre-
sponding face region is extracted. Then, curvature-based facial landmark detection method
is adopted to detect the nose tip (peak region), eye cavities (pit region), and nose bridge
(saddle region), where a quadratic surface fitting method is used for curvature estimation.
The detected landmarks are used to extract gallery/probe local regions. As depicted in Fig.
2.14, three different regions are extracted around the nose tip for a probe, and a relative-
ly large region is extracted around the nose tip for a gallery. Pose normalization of each
local region is accomplished by aligning it to a generic 3D face model. This method uses
the ICP-based matching algorithm to compare each gallery-to-probe region pair, and the
Mean Square Error (MSE) measure is used to compute their similarity score. For classifier
fusion, product and sum rules achieved the best performance. On the FRGCv2 superset

database with a gallery of 449 subjects with a single neutral scan per person, the reported
rank one recognition rates are 97.1% and 87.1%, respectively, for neutral probe and non-
neutral probe sets. However, as pointed out by the authors, there is more to be done to solve
the problem of handling expression variations, since there is about a 10% degradation when
going from matching neutral expressions to matching varying expressions. Two important
findings of this paper are: 1. Using less of the face (e.g. nose region) can result in more
accurate recognition even for the scenarios of neutral-to-neutral matching. 2. Fusion the
scores of multiple overlapping regions can largely improve the performance.

Based on the above two findings, Faltemier et al. [Faltemier et al. 2008a] propose a
region ensemble method for 3D face recognition. As shown in Fig. 2.15, this method ex-
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Figure 2.14: Extraction of a gallery region and three probe regions. (a) A gallery region,

(b) probe C (probe region in general center face area), (c) probe N (probe region in a nose

region), (d) probe I (probe region in an interior nose region) [Chang et al. 2006].

tract 38 regions distributed over the whole face. The centroids of these regions are defined
using X and Y offset values from the nose tip location, and with a single radius or multiple
different radii, resulting some overlapping regions. The nose tip is automatically detected
by combing two or three methods discussed in their previous work [Faltemier et al. 2006].
The accuracy of the individual regions, the number of regions for fusion, and different
types of fusion rules are discussed experimentally. Experimental results demonstrated that
using 28 small regions on the face achieve the best performance, and the Borda count and
consensus voting methods yield higher performance than the standard sum, product, and
min fusion rules. They reported a rank-one recognition of 97.2% on the whole FRGCv2.0
database in a standard experimental protocol. As an obvious disadvantage, in all these s-
tudies, each probe region should compare to all the gallery faces based on the ICP-based
matcher. This is a time-consuming task when the gallery set is large. For example, it takes
about 1312 seconds for identification of a single probe using a gallery of 466 subjects of
the FRGCv2 data.

Alyuz et al. [Alyuz et al. 2010] propose a regional registration based approach for
expression-robust 3D face recognition. As shown in Fig. 2.16, this method consists of four
parts: (1) Automatic landmark localization; (2) ICP-based global and local rigid face regis-
tration; (3) Facial feature extraction; (4) Region classifier fusion. In the first part, five fidu-
cial points (nose tip, left/right inner eye pits and leftmost/rightmost points of the lower nose
border region) are automatically located using curvature-based methods. These points are
then used for coarse face alignment based on the Procrustes Analysis. The proposed region-
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Figure 2.15: left: Image of probe sphere centroids labeled by region number. Multiple

region numbers at a centroid indicate that more than one radius was used for cropping,

yielding multiple region probes with the same centroid. (a) 04514d324. right: Examples of

nose regions with different radii [Faltemier et al. 2008a].

based registration method is inspired by the average face model (AvFM)-based registration
approach [Gokberk et al. 2006] [Gokberk et al. 2008] and extended to independent local
regions, which is called the average region model (AvRM). The AvRM insists of 15 local
patches, from which 7 meaningful regions (nose, left/right eye, forehead, left/right check,
and mouth-chin) are constructed. Another region which covers local patches belonging to
eye, nose, and forehead areas, in terms upperface, is also constructed. The AvRM-based
registration provides one-to-one correspondence of all facial surface points. Two types of
3D shape descriptors: coordinates of facial surface points and curvatures of facial surface,
are considered. The nearest neighbor algorithm is used to obtain the identification result-
s for face classification. For region classifier fusion, both score-level (sum and product
rules) and abstract-level (plurality voting) fusion approaches are considered. Two 3D face
databases: the FRGCv2 and the subset of Bosphorus database excluding pose variation and
occlusion variation scans are used for experimental evaluation. For experimental setup, the
FRGCv2 database is divided into gallery and probe sets with 466 (first scan of each subject)
and 3541 (remaining scans), respectively. The subset of Bosphorus is divide into galley and
probe sets with 105 (neutral scan of each subject) and 2814 (remaining scans), respectively.
For FRGCv2 database, the best rank-one recognition rate (94.80%) is achieved by fusing
16 individual classifiers (8 for each type of descriptor) with the modified plurality voting
scheme. For Bosphorous database, the modified plurality voting scheme also achieves the
best rank-one recognition rate (98.08%) by fusing two types of descriptors and 8 local re-
gions. To further improve the performance, statistical analysis (LDA) is further performed
on the coordinate based feature for dimensionality reduction. The achieved feature is called
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statistical coordinate feature. The LDA subspace used for the FRGCv2 experiments is con-
structed using the FRGCv1 database, which consists of 943 3D face scans captured by the
same sensor as FRGCv2. For Bosphorus experiments, 643 scans of 20 subjects of the sub-
set of Bosphorus are used to construct LDA subspace and the 2265 scans of 85 subjects are

Figure 2.16: Overview of the regional registration based 3D face recognition approach

[Alyuz et al. 2010].

used to form the gallery and probe sets. Base on these experimental setups, the rank-one
recognition rates of 97.51% and 99.31% are reported on the whole FRGCv2 data and the
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subset of Bosphorus data, respectively. Although high performance are achieved, the LDA
approach has a poor generalization ability. The rank-one recognition rate on FRGCv2 will
drop to 94.55% if the LDA space is constructed using the Bosphorus database. One im-
portant advantage of this method pointed out by the authors is its speed. Compare to the
approaches of Change et al. [Bowyer et al. 2005] [Chang et al. 2006] and Faltemier et al.

[Faltemier et al. 2008a], only a single registration is sufficient for a probe face benefiting
from AvFM-AvRM approach. It totally takes about 131 seconds (11s for landmarking, 8s
for curvature estimation, 10s for AvFM-based registration, 15s per region for AvRM-based
registration, 3ms per region for similarity computation) for identification of a single probe
using a gallery of 466 subjects of the FRGCv2 data.

Queirolo et al. [Queirolo et al. 2010] propose an automatic framework for 3D face
recognition. Their method uses a Simulated Annealing-based approach (SA) for range im-
age registration with the Surface Interpenetration Measure (SIM). As shown in Fig. 2.17,
this method includes four main stages: 1. image acquisition; 2. preprocessing; 3. match-

ing, and 4. evaluation. Initially, the 3D face image can be captured by different 3D
scanners. In the preprocessing stage, the face image is first smoothed with a median filter,
and the face region is automatically detected by an ellipse detection method based on the
Hough Transform. After the face region is detected, six landmark points, i.e. the inner
left/right eye corners, the left/right nose corners, and the nose tip and base, are automat-
ically detected for face segmentation. Three local regions: the circular area around the
nose, the elliptical area around the nose, and the upper head, along with the entire face
region are considered in the following face matching stage. More details about the prepro-
cessing approach are described in their previous work [Segundo et al. 2007]. A Simulated
Annealing-based approach (SA) is adopted to perform the matching process. SA-based
matching process includes three main stages: 1) initial alignment, 2) coarse alignment,

and 3) fine alignment. The initial alignment is obtained by aligning two face images by
their center of mass. The coarse alignment is performed using an SA-based searching pro-
cess to minimize a robust alignment measure based on Maximum Likelihood Estimation
SAmple Consensus (MLESAC) estimator [Torr & Zisserman 2000]. The fine alignment is
established by performing an SA-based searching process to maximize a precise alignment
measure based on Surface Interpenetration Measure (SIM) [Silva et al. 2005]. Finally, SIM
scores of all the region pairs are fused by the sum rule to obtain the final similarity between
two faces, which can be used for final face identification or verification.

The concept of Surface Interpenetration Measure (SIM) is first proposed in
[Silva et al. 2005]. As illustrated in Fig. 2.18, in order to align two images, A and B,
SIM is defined as

SIM(A,B) =
C(A,B)

|A| ,

where the interpenetrating point p in A with respect to B, C(A,B) is defined as

C(A,B) = {p ∈ A|[(qi− c) ·~nc][(q j− c) ·~nc]< 0},

where c is the nearest point of p in B,~nc is the local surface normal at c, qi, q j ∈ Np(i 6= j),
and Np denotes a neighborhood of p.

The authors performed extensive experiments on the FRGCv2 database to evaluate the
performance of their method. In the identification scenario, a rank-one recognition rate
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Figure 2.17: The main stages of the Simulated Annealing based 3D face recognition frame-

work and the main stages of the Simulated Annealing based face matching (in the red box)

[Queirolo et al. 2010].

Figure 2.18: Interpenetrating points p in A with respect to B [Silva et al. 2005].

of 98.4% is reported. Compared to the ICP-based registration methods, this method has
the following advantages: 1. It does not require prealignment of the range surface to a
reasonable starting point. 2. It is robust to outliers arising from low surface overlap. Note
that the proper convergence of ICP is guaranteed only if one surface is a subset of the
other. 3. As a stochastic local searching algorithm, SA-based matching process has a
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large probability to reach the global optimal solution. 4. Different from the Mean Squared
Error (MSE) used in ICP-based algorithms, Surface Interpenetration Measure (SIM) is
more precise to be used to assess the quality of the registration. One disadvantage of this
method is that the SA-based registration procedure is quite time-consuming. It takes about
1864 seconds to identify a single probe using a gallery of 466 subjects of the FRGCv2 data
[Spreeuwers 2011].

Different from those one-to-all local region registration based methods, e.g. Faltemier
et al. [Faltemier et al. 2008a], Queirolo et al. [Queirolo et al. 2010], and the one-to-
one regional face model registration based method, e.g. Alyuz et al.[Alyuz et al. 2010],
Spreeuwers proposes a fast and accurate 3D face recognition method which performs face
registration to an intrinsic coordinate system [Spreeuwers 2011]. The origin of the intrinsic
coordinate system is defined as the nose tip, and the three angles of the coordinate system
are determined by the symmetry plane and the angle of the nose bridge. The RANSAC
(RANdom SAmple Consensus) algorithm [Fischler & Bolles 1981] is used to perform the
cylinder fitting and the line fitting for face detection and the slope of nose bridge estima-
tion, respectively. The aligned point cloud is used to generate high resolution range image
by resampling, which is further normalized by performing spike removing, hole filling and
face cutting. To handle expression issue, the authors defined a set of 30 overlapping re-
gions which are shown in Fig. 2.19 where the white area is included and the black area
is excluded. To compare two images, multiple region classifiers are fused to compute the

Figure 2.19: 30 local regions used for face comparison[Spreeuwers 2011].

similarity. The vectorization form of each region is used to construct the feature vector,
whose dimensionality is further reduced by performing PCA followed by LDA. Then, a
likelihood ratio classifier is used for regional feature classification. Finally, the majority
voting based fusion strategy is utilized for decision level fusion of all the region classifiers.
For experimental evaluation, the Bosphorus database (all frontal scans without occlusions)
and the 3DFace database are used for training of the region classifiers, while the FRGCv2
database is used for testing. Fig. 2.20 shows the rank-one scores for 30 region classifiers
trained on the frontal Bosphorus database. The maximal rank-one score obtained for a s-
ingle classifier is 95.9%, while a rank-one score of 97.9% is reported by fusing all the 30
classifiers. Similar results can be obtained for the region classifiers trained on the 3DFace
database. Finally, the author reported a rank-one score of 99.0% by fusing two times 30
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region classifiers trained on both databases.

Figure 2.20: Rank-one scores of individual region classifiers on the FRGCv2 database.

Besides the high performance, the time cost is also a obvious superiority of this
method. It takes only 2.5 seconds to identify a single probe using a gallery of 466
subjects of the FRGCv2 data, which is more than 700 times faster than the method in
[Queirolo et al. 2010].

2.3.2 Local Geometry-Texture Descriptor based Approaches

Cook et al. [Cook et al. 2006] propose to perform Log-Gabor filter on range image to
extract local facial descriptor for 3D face recognition. Compare to Gabor filter, Log-Gabor
filter can capture more information in the high frequency areas and also has desirable high
pass characteristics. Based on the fact that using multiple observations of a single face
aids recognition performance, the authors use 18 Log-Gabor filters (6 orientations and 3
scales). Meanwhile, the face is broken into 49 square regions (7× 7 grid) with 50% overlap
in both horizontal and vertical directions. These regions are further decomposed by 3 scales
of filter to generated 147 subregions. An overview of this process can be seen in Fig. 2.21.
Principal Component Analysis (PCA) is then applied to the Log-Gabor filter responses in
each of the 147 subregions for dimensionality reduction, and Mahalinobis Cosine distance
measure is used for similarity computation. Finally, un-weighted sum rule score level
fusion strategy is used for classifier combination and face recognition. Experimental results
evaluated on the FRGCv2 database demonstrated the robustness of the proposed method.
Rank-one scores of 92.93% is reported for the first vs. the remaining protocol and 94.63%
for the first neutral vs. the remaining protocol.

This work is further extended to use multi-scale representation for 3D face recognition
[Cook et al. 2007]. In [Cook et al. 2007], Haar wavelet transformation, Log-Gabor filter,
and Discrete Cosine Transform (DCT) are used to extract multi-scale representations of 3D
faces, respectively. Then, PCA and LDA techniques are used for dimensionality reduction.
A standard nearest neighbor scheme with the mahalanobis cosine metric is employed, and
the un-weighted summation of distances across all frequency bands is used as the final
matching score. Two main conclusions are obtained: 1) A multi-scale partitioning of the
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Figure 2.21: Decomposition of the face into subregions.

frequency domain can improve the discriminability of both the PCA and the LDA subspace
projection techniques; and 2) the over-complete representation using Log-Gabor filters pro-
vides better partioning of the space/frequency domain for recognition then regular Gabor
filters, discrete cosine transformation, or the wavelet transform.

Wang et al. [Wang et al. 2010] propose a 3D face recognition method, called Collective

Shape Difference Classifier (CSDC). The framework of this method is shown in Fig. 2.22.
This method consists of two phases: 1. Offline Training, and 2. Online Testing. Offline
training phase includes three main stages: 1) Preprocessing and Posture alignment; 2) Sign

Shape Difference Maps (SSDMs) computation and description; 3) Boosting training of the

Collective Shape Difference Classifier (CSDC) ; While in the testing phase, the well-trained
strong classifiers are employed for face verification and identification directly. In the first
stage, input a raw face scan, three Gaussian filters are adopted to remove spikes, fill small
holes, and smooth the data; a face region is detected on the texture channel, and the corre-
sponding 3D points are labeled as face points; a plane is fitted using the face points, and the
face is separated into two parts. The part with smaller mean square distance (MSD) from
the points in the part to its centroid is selected as the candidate part for nose detection. In
the candidate part, the farthest point to the fitted plane is selected as the approximate nose
tip; facial region is cropped by a sphere centered at the nose tip. For posture alignment,
facial symmetry plane is detected by registering a pair of mirrored face scans; Nose tip is
precisely located on the facial central profile; Nose bridge direction is further estimated
by fitting the points on the facial central profile; A standard coordinate system is defined
by the nose tip, nose bridge direction, and the normal of the facial symmetry plane. All
the facial points are transformed to this standard coordinate system for accurately posture
alignment. The aligned face model is then projected to a normalized depth image. Given
two depth images I1 and I2, their SSDM Ds is defined as Ds(i, j) = I1(i, j)− I2(i, j). Ds cap-
tures not only shape differences, but also shape change patterns. The proposed Collective
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Figure 2.22: The framework of Wang et al.’s method [Wang et al. 2010].

Shape Difference Classifier (CSDC) is defined as HT (Ds) = ∑
T
t=1 ct(Ds), where Ds denotes

a SSDM, ct(Ds) is a weak classifier selected based on the local features on the SSDMs dur-
ing the boosting training. Three kinds of local features: Haar-like features, Gabor features,
and multiblock Local Binary Patterns (LBPs) are used to describe different characteristics
of the SSDM. Haar-like features measure the difference between region averages of the
SSDM, which encode the change pattern of the shape difference; Gabor feature encode
the characteristics of a set of spatial localities and orientations of the SSDM; LBP features
capture the texture characteristics of the SSDM. To learn the CSDC, inter-personal and
intra-personal SSDMs are built from given 3D face models. The BU-3DFE database are
used as the training set. Finally, three CSDCs, HHaar

T , HGabor
T and HLBP

T are obtained. Com-
prehensive experimental results are reported on the FRGCv2 database. With the FAR of 0.1
percent, the authors report the verification rates of 97.97% for ROC I mask, 98% for ROC
II mask, and 98% for ROC III mask. For face identification, only HHaar

T is used. Rank-one
scores of 98.3% and 98.4% are reported for the first vs. the remaining protocol and the first
neutral vs. the remaining protocol, respectively. Besides the high recognition accuracy, this
method also has a low computation cost. It takes about 3.6 seconds to recognize against a
gallery with 1,000 faces. The main limitation of this method is that the procedure of pose
alignment will fail when too many data points of the nose are missing, which is a common
case for partial face recognition scenario.

Huang et al. extend their previous work [Huang et al. 2011e] [Huang et al. 2011a], and
propose a 3D face recognition method using extended Local Binary Patterns (eLBP)-based
facial description and local feature hybrid matching [Huang et al. 2012]. Input a raw face
scan, this method first perform the basic preprocessing, e.g. spike removal, smoothing and
hole filling. Then, eLBP descriptor is extracted. Different from the original LBP, eLBP not
only computes the relative gray value difference between central pixel and its neighbors as
provided by LBP, but also focuses on their absolute difference which are also important to
describe the detailed information of local shapes. Similar to LBP, multi-scale extension of
eLBP is used to generate multi-scale extended LBP. As shown in Fig. 2.23, 8 scales and 4
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Figure 2.23: MS-eLBP-DFs of a facial range image with different radii from 1 to 8 (from

left to right), the layer 1 is the same as original LBP, from layer 2 to layer 4, the absolute

difference between central pixel and its neighbors are encoded [Huang et al. 2012].

layers are considered. Finally, each original depth image can be represented by 32 multi-
scale eLBP depth faces (MS-eLBP-DFs). Once the MS-eLBP-DFs have been produced,
the widely used SIFT features [Lowe 2004] are extracted from them for keypoints detection
and description. Then, a hybrid matching process is performed, which combines a local
matching step using SIFT-based features with a global one under the facial component
and configuration constraints. Finally, three types of matching similarities: the number
of matched keypoint pairs, similarity of the facial component constraint and similarity of
the facial configuration constraint are fused using a basic weighted sum rule. This method
is evaluated on three public databases: i.e. FRGCv2.0, Bosphorus, and Gavab DB. A
rank-one score of 97.6% is reported on the FRGCv2.0 database using the neutral vs. all
protocol, and a rank-one score of 97.0% is achieved on a subset of the Bosphorus database
(3301 scans of 105 subjects with different expressions and occlusions). On the Gava DB
database, the overall rank-one score of 91.39% is reported. All these experimental results
demonstrate that the proposed method is robustness to facial expression variations, external
occlusions, as well as extreme pose changes. One of the main advantage of this method is
that the generally costly registration is not required thanks to the relative tolerance of the
proposed hybrid matching algorithm to nearly frontal faces like the ones in the FRGCv2.0
and the subset of Bosphorus. However, to deal with extreme pose, e.g. left and right
profiles, a coarse alignment step based on a few manually facial landmarks are needed.

2.3.3 Local Geometry-Shape Descriptor based Approaches

As early as 1990’s, Gordon [Gordon 1992] introduced the outline of the use of curvature
information in the process of 3D face recognition. Specifically, several aspects of using
curvature information for face descriptions are considered: 1. sign of Gaussian and mean

curvature is used to segment face into convex, concave, and two types of saddle regions
(see Fig. 2.24); 2. extrama values of two principle curvatures are used to extract rigid and
valley lines on face surface; 3. principle directions are used to detect umbilic facial points;
4. curvature maps are used to detect facial features such as nose region, nose bridge, eye
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Figure 2.24: From left to right: segmentation of two faces by sign of Gaussian and mean

curvature: convex (white), concave (black), and two types of saddle: positive mean curva-

ture (light grey), negative mean curvature (dark grey) [Gordon 1992]. maximum principle

directions; minimum principle directions; rigid lines; valley lines; EGI of rigid lines (top),

and EGI of valley lines (bottom) [Tanaka et al. 1998].

corners, eyeballs etc. The detected facial features are then used in the process of face pose
normalization. Finally, depth templates are compared to implement face recognition. Ex-
periments are carried out on a test set of three views of each of 8 faces and recognition
rates as high as 100% are reported. Similar idea is also explored by Tunwku and Ikeda
[Tanaka & Ikeda 1996] [Tanaka et al. 1998], in which they propose to use Extended Gaus-

sian image (EGI) of facial rigid and valley lines for face representation (See Fig. 2.24)
and Fisher’s Spherical Correlation as similarity measurement. Experimental results car-
ried out on 37 range faces shows that shape information from surface curvatures provides
vital cues in identifying human faces. However, these kinds of directly pointwise descrip-
tion and comparison of faces have obvious drawbacks: 1) In practice, the one-to-one point
correspondence between two face surfaces is always unavailable; 2) The point-wise fea-
tures usually have a very high dimensionality and contain a lot of redundant information.
Fortunately, all these two drawbacks can be improved by the following two ways:

a) Establish one-to-one point correspondence between faces by fitting all of them

to a generic face model, or by performing surface remeshing (or resampling). In
[Alyuz et al. 2010], a generic face model is used. In [Li & Zhang 2007] [Li et al. 2009],
Li et al. give an example of using surface remeshing technique. They explore the use of
multiple intrinsic geometric attributes, including angles, areas, geodesic distances, curva-

tures for 3D face recognition. To obtain the one-to-one correspondence and compare those
low-level features, each face is represented by a triangular mesh, 43 mask vertices are man-
ually detected on it, and an uniform remeshing procedure is implemented (see Fig. 2.25).
To deal with expression variations, they train different weights for each individual attribute
[Li & Zhang 2007], or perform feature ranking [Li et al. 2009]. Based a Nearest Neighbor
classifier [Li & Zhang 2007] and a Sparse Representation Classifier (SRC) [Li et al. 2009],
they display the effectiveness of their methods on the Gavab database and the FRGC 3D
database.

b) Construct compact local shape descriptors. Local shape descriptor, as a compact
feature vector, designed to describe the local shape of a object by quantizing some kinds
of basic geometric attributes (e.g. curvature, distance, area, angel) in a regular or para-
metric space, has been widely explored in the filed of 3D object recognition and 3D face
recognition.
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Figure 2.25: Facial mask (left), An original face mesh and its Remeshings [Li et al. 2009].

Figure 2.26: Illustration of three local shape descriptors: spin image (left), point signature

(middle), and local shape map (right).

Spin image [Johnson & Hebert 1999], as a well-known 3D shape descriptor, has proven
useful for face surface registration [Kakadiaris et al. 2007a], facial feature point extraction
[Conde et al. 2006], and face recognition [Wu et al. 2004] [Mian et al. 2007]. Given a ba-
sic point and a support region of a surface mesh, a spin image of this point is generated by
spinning an image (for example, of size 6× 6) around the normal of the basic point and
summing the surface points as they pass through the bins of the image (see Fig. 2.26).

Point Signature [Chua & Jarvis 1997] is proposed to describe the shape of the 3D con-
tour curve of a basic point. Based on a predefined local coordinate system, a 2D planar
contour curve is generated by projecting the 3D contour curve to the tangent plane of
the basic point. Then, the point signature is defined by the sign distance from the two
curves according to a constant angle sampling of the 2D planar curve (see Fig. 2.26). In
[Chua et al. 2000], Chua et al. propose to use point signature for 3D face registration and
recognition. Experimental results evaluated on 6 subjects, each with 4 different expres-
sions, demonstrate the effectiveness of their method.

Local Shape Map [Wu et al. 2004] is motivated by the spin image and the point sig-
nature. It is a 2D histogram constructed by mapping 3D coordinates of surface’s points
with a sphere centralized at this point into 2D space. The distance from a basic point to its
neighbor point and the displacement of the neighbor point to the tangent plane of the basic
point are quantized to construct the 2D histogram (see Fig. 2.26). Testing on a database
of 31 range images of 6 subjects, the authors claim that local shape map outperforms spin
image for 3D face recognition.

3D Shape Context [Frome et al. 2004], as a straightforward extension of the original
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Figure 2.27: Illustration of three local shape descriptors: 3D shape context (left), spherical

face representation (middle), and tensor-based face representation (right).

2D shape context [Belongie et al. 2002], describes the point distribution of a local shape
by quantizing in a 3D spherical sampling space (see Fig. 2.27). In [Berretti et al. 2011b],
Berretti et al. propose to use 3D shape context to describe the local shape of facial surface at
the points detected by the SIFT descriptor. The effectiveness of their local shape descriptor
is evaluated for the scenario of 3D partial face recognition.

Spherical Face Representation (SFR) is proposed by Mian et al. [Mian et al. 2007].
In which, an efficient multimodal 2D-3D hybrid face recognition approach is developed.
SIFT descriptor is used to perform the 2D face matching, while for 3D face matching, both
SFR descriptor and region-ICP (eye-forehead and nose) are used. A SFR can be considered
as the quantization of the point cloud of a face into spherical bins centered at the nose tip.
(See Fig. 2.27 as an example of 3 spherical bins). To compute an n bin SFR, the distance
of all points from the nose tip is computed. These distances are then quantized into a 1-D
histogram of n+1 bins. A rank-one recognition of 96.2% is reported by using the region-
ICP algorithm. This score is further improved to 97.37% by fusing the 2D-SIFT matching,
3D-SFR matching and the region-ICP matching.

Tensor-based Face Representation is also proposed by Mian et al. [Mian et al. 2006].
It is defined as the quantization of the surface area of a face into a predefined 3D grid. Fig.
2.27 (right one) shows a 10×10×10 tensor over a facial point cloud. In [Mian et al. 2008],
Mian et al. propose another multimodal 2D-3D hybrid face recognition approach based on
the framework of local keypoint detection, description, and matching. 2D face recogni-
tion is accomplished by performing 2D SIFT keypoint detection, description and matching
procedures on texture images; while for range image based 3D face recognition, Princi-
ple Component Analysis (PCA) is used for local keypoint detection and local coordinate
system assignment, then modified tensor-based face representation is employed for local
shape description. The local shape features are further projected to a PCA subspace for
dimensionality reduction. Finally, graph based matching strategy is explored for local fea-
ture matching. The proposed method achieves a rank-one recognition rate of 96.1% on the
whole FRGCv2.0 database.
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2.4 Discussion

Expression deformation modeling based approaches are originally proposed for dealing
with the expression problem. Along with expression variations, matching of 2.5D probe
scans in the presence large head pose changes (∼ 45◦ left from frontal and ∼ 45◦ right
from frontal) to full 3D gallery face models is also discussed in the TPS-based deforma-
tion modeling approach [Lu & Jain 2008]. But very limited experiments are displayed. As
mentioned before, the annotated deformable model based deformation modeling frame-
work has been extended to recognize 3D partial face caused by large head pose variations
[Perakis et al. 2009] [Passalis et al. 2011] [Chu et al. 2013]. However, their methods are
largely depending on the accuracy of 3D facial landmarking techniques. To the best of our
knowledge, there are no published works to study 3D face recognition with missing data
caused by large pose and external occlusion variations for other four kinds of expression
deformation modeling based approaches.

For the category of surface-distance based approaches, it is visible that the iso-metric
surface based approaches are originally proposed for constructing expression-invariant
representations of faces [Bronstein et al. 2003]. To deal with partially missing data like
simulated “big holes”, iso-metric embedding among facial surfaces is also discussed
[Bronstein et al. 2006]. But this idea does not test for real missing face data caused by
head pose and external occlusion variations. On the other hand, approaches based on iso-
depth curves [Samir et al. 2006] and circular curves [Samir et al. 2009] can deal with the
face data only in the presence of a limited facial expressions of closed mouth; approaches
based on radial curves can deal with the face data in the presence of not only various expres-
sions, but also pose and occlusion variations [Drira et al. 2013]. To handle the missing data
caused by pose variations, the authors introduce a restoration step by building a PCA-based
statistical model on shape manifolds of curves in order to complete the partially-observed
radical curves. To handle occlusions, the authors introduce an occlusion detection and
removal step based on recursive-ICP. However, the nose tips in profile faces in the GavaD-
B and occluded faces in the Bosphorus database should be annotated manually. For the
iso-strip based approaches, 3D face recognition in the presence of only facial expression
variations is evaluated.

Compared to the above two categories of holistic matching approaches, local feature
based matching approaches have much more potential superiorities to handle expression,
pose and occlusion variations under an uniform framework. For example, the multi-
region matching approach proposed by Alyuz et al.[Alyuz et al. 2010] has been extended
to handle the occlusions in their following works [Alyüz et al. 2012b] [Alyüz et al. 2012a]
[Alyüz et al. 2013]. Their basic idea for handling occlusions is to improve the previous
region-based registration strategy to a registration scheme which can adaptively select the
non-occluded facial parts. The local geometry-texture descriptor based approach proposed
by Huang et al. [Huang et al. 2011a] has also been extended to recognize the missing face
data caused by pose variations [Huang et al. 2012]. As mentioned before, to deal with ex-
treme pose, e.g. left and right profiles, a coarse alignment step based on a few manually
facial landmarks is required for their approach.

The local geometry-shape descriptor based approaches can supply a promising solution
to handle the puzzle problems of using manually annotated facial landmarks and the time-
consuming registration algorithms, even for the cases of extreme pose and severe occlusion.
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The main reason is that the geometry-shape descriptors are pose-invariant in nature. Spe-
cially, the framework proposed in [Mian et al. 2006], which combines local feature detec-
tion, description, and matching has been proved very powerful in the field of 3D face recog-
nition [Maes et al. 2010] [Li et al. 2011c] [Berretti et al. 2011b] [Berretti et al. 2013] and
3D object recognition [Zaharescu et al. 2009] [Sun et al. 2009] [Darom & Keller 2012].
Recently, a large number of 3D keypoint detectors are proposed such as the Mesh-
DoG 3D detector [Zaharescu et al. 2009], Heat Kernel Signature (HKS) 3D detec-
tor [Sun et al. 2009], Laplace-Beltrami operator 3D detector [Ruggeri et al. 2010], Har-
ris 3D detector [Pratikakis et al. 2010] etc., see [Tombari et al. 2013] for a compre-
hensive survey. Meanwhile, many 3D local shape descriptors are also develope-
d such as Mesh-histogram of gradient (HOG) [Zaharescu et al. 2009], Scale-Invariant
Spin Image [Darom & Keller 2012], Heat Kernel Signature (HKS) [Sun et al. 2009],
mesh-SIFT [Maes et al. 2010], histogram of multiple-order surface differential quantities
[Li et al. 2011c] etc. Due to that the 3D keypoint detectors can work automatically; the 3D
local shape descriptors are pose-invariant in nature; and the local feature matching strategy
has the ability to select and match the regions with less shape deformations, when used for
3D face recognition, this framework has a large potential to simultaneously deal with the
challenges of facial expression variations [Maes et al. 2010] [Li et al. 2011c], data missing
caused by head pose variations [Maes et al. 2010] [Li et al. 2011c] [Berretti et al. 2011b]
[Berretti et al. 2013], and external occlusions [Maes et al. 2010] [Li et al. 2011c].

2.5 Summary

In this chapter, we have extensively reviewed three categories approaches: i.e. expression
deformation modeling based, surface-distance based, and local region/feature based, for
3D face recognition. For each category, the most representative and successful approaches
are deeply discussed. Among these approaches, the local region/feature based approaches
are the most promising category to achieve high performance and to handle expressions,
large pose and external occlusion variations in an uniform framework.

To achieve high performance, local region/feature based approaches usually describe
face scans by multiple observations (e.g. multiple local regions, multiple encoding scales or
multiple encoding parameters), different weights for different observations may be consid-
ered, then, the performance of all observations are well-fused to obtain the face similarity
for the final decision. Based on this idea, we propose a local geometry-texture descriptor
based approach in chapter 3.

To handle expressions, pose and occlusion in an uniform framework, as discussed in
section 2.4, the framework of local feature detection, description, and matching is the most
promising one. In chapter 4, we propose a feasible scheme to explore this framework and
display its superiorities.

To achieve a robust recognition system, facial surface uniform resampling technique
has been utilized in many successful approaches, such as the annotated deformable mod-
el based deformation modeling approaches [Kakadiaris et al. 2007a] [Passalis et al. 2011],
the iso-level curve based approaches [Samir et al. 2006] [Drira et al. 2013], the local
geometry-texture descriptor based approaches [Wang et al. 2010], and the local geometry-
shape descriptor based approaches [Mian et al. 2008]. In chapter 5, as a similar technique,
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surface remeshing with curvature convergence will be deeply discussed.
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3D Face Recognition in the Presence

of Various Expressions
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3.1 Introduction

Biometric systems are dedicated to identifying human beings from their own unique hard
or soft physiological attributes such as the iris, face, fingerprint, hand vein, gait, gen-
der, etc. Among these attributes, the face has proved to be one of the most popular and
promising biometric modalities mainly due to the nature of human perception and the non-
intrusiveness of face data acquisition. Although intensity image based 2D face recognition
(FR) systems have provided solutions to achieve high performance under constrained con-
ditions, the variations, especially caused by lighting and pose, which typically occur in an
uncontrolled environment, are still its main obstacle [Zhao et al. 2003]. With the advent
of 3D sensors, it is widely expected that 3D face scans, in providing geometrical infor-
mation of facial surfaces, will open up a new avenue to handling these unsolved issues in
2D. As such, 3D face recognition (FR) has attracted increasing attention in recent years
[Phillips et al. 2005, Bowyer et al. 2006].
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3.1.1 Related work

A typical 3D FR algorithm comprises the following major components although they are
strongly interwoven with each other [Gokberk et al. 2008]: 3D face landmarking, 3D face
registration, the extraction of facial features along with the design of a matching scheme
which closely depends upon the chosen facial features. Automatic 3D face landmark-
ing is to automatically locate some key facial fiducial points, e.g., the nose tip, inner eye
corners, etc., which are instrumental in face cropping, face alignment and pose normaliza-
tion. The most challenging issue of automatic landmarking is to tolerate the disturbance
caused by arbitrary variations in facial expression, pose, or occlusion [Zhao et al. 2011],
and existing landmarking techniques are mainly based on the analysis of facial surface
curvatures, shape index values, the facial symmetry central profile or depth information
[Szeptycki et al. 2009a, Alyuz et al. 2010, Wang et al. 2010]. 3D face registration is align-
ing 3D face scans on a common coordinate system so that the matching of facial features
can be carried out in a consistent way. Popular methods for the registration of 3D face s-
cans are ICP-based [Faltemier et al. 2008a, Mian et al. 2007], consisting of minimizing the
distance of two 3D point clouds in an iterative way, although they are reputed to be com-
putationally expensive. The extraction of facial features means generating a discriminating
facial representation which should comprehensively describe each 3D face scan for the
latter stage of matching. As all human faces are similar to each other in terms of configu-
ration whereas a 3D face scan accurately captures the geometrical shape of the underlying
3D facial surface, thereby making it likely to be more sensitive to facial expressions in
comparison with 2D facial images, the design of a discriminating facial feature which re-
mains robust to facial expressions is a critical issue in 3D FR. A number of approaches have
been proposed in the literature, including facial curves [Samir et al. 2006], geometry and
normal maps [Kakadiaris et al. 2007a], tensor based representations [Mian et al. 2008],
iso-geodesic stripes [Berretti et al. 2010a], Multi-Scale Local Binary Pattern (MS-LBP)
Depth maps and Shape Index (SI) maps [Huang et al. 2010], Multi-Scale extended Local
Binary Pattern (MS-eLBP) maps [Huang et al. 2012], LBP-based normal angle encoding
[Tang et al. 2013], etc. Other essays try to explicitly account for facial expression vari-
ations. An original tentative was made by Bronstein et al. [Bronstein et al. 2007] who
assumed that facial expressions can be modeled as isometries of the facial surface and pro-
posed a facial expression invariant canonical form. However, their assumption proves to be
inexact, especially in the presence of exaggerated facial expressions [Drira et al. 2013]. A
far more popular approach observes that facial expressions introduce facial distortions but
there are still relatively stable facial regions, e.g., forehead, nose region, from which expres-
sion robust features can be extracted [Ben Amor et al. 2008, Amor et al. 2006b]. Chang et

al. [Chang et al. 2006] selected three regions around the nose for 3D face matching where-
as Faltemier et al. [Faltemier et al. 2008a] extended this number to 28 small regions on
the face. Tang et al. [Tang et al. 2013] proposed a 3D face specific feature-based sparse
and dense division to capture the face structure and the face feature distribution. However,
automatic detection and segmentation of facial surface into rigid and mimic regions is still
problematic [Wang et al. 2010, Amor et al. 2006b].

The overwhelming majority of 3D FR algorithms proposed so far in the literature are
evaluated on the FRGC v2.0 dataset [Phillips et al. 2005] which has de facto become the
standard benchmark for 3D FR algorithms. Very high performance, up to 99% rank-
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one recognition rate [Spreeuwers 2011], was reported on this dataset. However, although
FRGC v2.0, with its 4007 3D face scans from 466 subjects, is the largest public 3D face
dataset so far known in the literature, all its scans were captured in a frontal pose and in
controlled lighting conditions, and less than half of them depict only a limited number
of facial expressions, e.g., happiness, surprise, etc. 3D face scans captured from unco-
operative subjects in real-life applications can feature other challenges, i.e. missing data
due to an arbitrary pose, external occlusions, and innumerable other types of facial ex-
pressions, whether subtle, prototypical or exaggerated. As a result, 3D FR algorithm-
s with high performance on FRGC v2.0 can vastly degrade under other settings as re-
vealed by the recent studies on the 3D Twins Expression Challenge (3D-TEC) database
[Vijayan et al. 2011b, Vijayan et al. 2011a]. 3D-TEC stages a scenario of distinguishing
107 sets of identical twins through 3D face scans, each subject depicting a neutral and
a smiling facial expression. This is a very challenging scenario for 3D FR systems be-
cause of the strong similarities between the 3D facial surfaces of twins, in addition to
the traditional interference factors such as facial expression variations. Vijayan et al.

[Vijayan et al. 2011b] evaluated the performance of four state-of-the-art 3D FR algorithms
on the 3D-TEC dataset. They found that some algorithms performed very well on FRGC
v2.0 but their performance greatly deteriorated on 3D-TEC, especially in the joint presence
of disturbing factors, i.e. strong inter-class facial similarities and intra-class variations of
facial expressions. Their results suggest that benchmarking 3D FR algorithms on FRGC
v2.0 is certainly necessary but not sufficient to ensure the same performance and robustness
with respect to the challenges of real-life applications, including in particular uncountable
facial expressions which can lead to subtle, moderate and exaggerated facial surface defor-
mations.

3.1.2 Motivations and the proposed approach

In this chapter, we target the challenge of facial expressions in 3D FR and propose a dis-
criminative facial surface representation and an expression-robust method to handle ex-
pression variations. Specifically, we propose a novel facial shape descriptor, namely Multi-
Scale and Multi-Component Local Normal Patterns (MSMC-LNP), which represents the
local facial shape by encoding their three normal components: x, y, and z respectively as
binary patterns in a multi-scale way. An input facial surface can then be represented as a
certain number of local normal pattern based maps or histograms of Local Normal Patterns
(LNP).

As we know, surface curvatures [Alyuz et al. 2010, G.G.Gordon 1992, Sun et al. 2011]
and shape index values [Huang et al. 2010, Zhang & Wang 2011, Li et al. 2011c] have
been widely investigated for facial surface representation and characterization. How-
ever, the surface normal, which determines (at each point) the orientation of a facial
surface, has not been fully explored in terms of 3D face representation 1. Abate et

al. [Abate et al. 2005, Abate et al. 2006, Abate et al. 2007a, Abate et al. 2009] introduced
normal maps to describe facial surfaces, but this direct use of normal information in the
holistic way did not achieve satisfying results. Gokbert et al. [Gokberk et al. 2006] used

1Note that, recently, normal constraint based surface registration for 3D FR methods such as
[Queirolo et al. 2010, Mohammadzade & Hatzinakos 2013] have achieved very high performance on FRGC
v2.0. In this paper, we focus on extracting a normal based facial descriptor for 3D FR.
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surface normal variance at each pixel location as a distance measure between face images
and reported a rank-one score of 87.8% on the whole FRGC v2.0 database, while this per-
formance greatly deteriorated on the 3D-TEC database [Vijayan et al. 2011b]. Kakadiaris
et al. [Kakadiaris et al. 2007a] proposed to extract wavelet coefficients from normal and
geometry maps for the computation of similarity, and reported a rank one recognition rate
of 97% on the FRGC v2.0 database; however, the wavelet transform along with the fitting of
the annotated deformable model is quite computationally expensive. Inspired by the com-
petitive performance and computational efficiency of local binary patterns (LBP) for tex-
ture classification and 2D FR [Ojala et al. 2002, Ahonen et al. 2004a, Huang et al. 2011h],
we propose to encode surface normal information, namely x, y, and z component normal
images, in a local manner in order to generate histograms of LNP, in a way similar to that
used by LBP for texture image description. The idea behind it lies in the fact that different
facial shapes can be comprehensively described by the LNPs through different encoding
scales and normal components, thereby making LNPs a very discriminative descriptor ca-
pable of recognizing 3D faces and even distinguishing between identical twins.

To pursue expression-robust 3D face recognition, we have seen that the popular
method consists of choosing rigid facial regions, e.g., the nose and forehead regions
[Faltemier et al. 2008a, Chang et al. 2006], for the purpose of 3D face matching. How-
ever, the segmentation of a 3D facial surface into relatively rigid and elastic regions is
problematic. Furthermore, such an approach also tends to ignore the elastic facial regions
which also bear significant discriminating information. In this paper, we consider another
alternative and propose to find the average quantification weights of meaningful local fa-
cial regions, e.g., the eyes, nose, mouth, etc., according to their discriminating power in 3D
face recognition. This kind of quantification weights of local patches has been investigated
in 2D FR and several works [Ahonen et al. 2004a, Martinez 2002, Lei et al. 2011] demon-
strated its effectiveness (see Fig. 3.1 (a) and (b) for an example). It is interesting to note
that to the best of our knowledge, the corresponding strategy in 3D using the weighting of
local facial regions has not been studied yet for the purpose of expression-robust 3D FR .
As shown in Fig. 3.1 (c) and (d), in this paper, we will show that the weights associated
with 3D local facial regions are largely different from those of their 2D counterparts, es-
pecially in the regions of the nose and mouth. These weights can be learned from a given
training set in the training phase (see Fig. G.1). The learned patch weights then can be used
to build a weighted sparse representation model and compute the weighted reconstruction
errors, leading to a Weighted Sparse Representation-based Classifier (W-SRC).

The main contributions of this chapter can be summarized as follows:
1. We introduce a new 3D facial representation based on Multi-Scale and Multi-

Component Local Normal Patterns (MSMC-LNP) for facial shape description. MSMC-
LNP describes the micro-structure of facial normal information in multiple scales and mul-
tiple normal component channels. The extensive experiments show that the proposed LNP
based facial representation is more discriminative than both the raw normal information
and the encoded range image, i.e., Local Shape binary Patterns (LSP) [Huang et al. 2011g]
(see Tab. 3.3). We also show that the fusion of both multiple scales and multiple normal
components is a helpful way of improving the final performance and we demonstrate its
competency on 3D face identification as well as in the challenging issue of recognizing
expressive identical twins.

2. A learning-based strategy is proposed to find out the quantification weights of local
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(a)                                 (b)                                (c)                                (d)

Figure 3.1: Illustration of patch weights for 2D and 3D face recognitions: (a-b) a 2D face

image and its corresponding patch weights [Ahonen et al. 2004a]; (c-d) a 3D face depth

image and its corresponding patch weights learned by our method. All images are split to

6× 6 local patches. Darker patches indicate lower weights, while brighter ones indicate

higher weights.

patches of 3D facial surfaces in terms of discriminating power. Given a training database,
the patch weights associated with different facial regions, encoding scales, and normal
components are learned by normalizing the patch matching scores. Those scores are com-
puted by running the sparse representation-based classifier (SRC) over MSMC-LNP fea-
tures of local patches. The experimental results show that the weights associated with these
local patches in 3D are quite different from those of their 2D counterparts, especially in the
nose region, thereby highlighting the fact that 3D and 2D face data bear different facial
information which can be further explored in a multimodal face recognition scenario.

3. Using the learned patch weights along with the proposed MSMC-LNP feature, a
weighted sparse representation-based classifier (W-SRC) is formulated to account for the
different sensitivities of local facial regions to facial expressions, making the proposed 3D
FR algorithm both discriminating enough to distinguish between identical twins and robust
enough to tolerate various facial expressions. In particular, we formally establish that a
weighted combination of SRCs amounts to directly weighting the corresponding feature
vectors of those SRCs.

4. Extensive experiments were carried out using various 3D face datasets, including
FRGC v2.0, BU-3DFE, Bosphorus and 3D-TEC, to benchmark the effectiveness and the
generalizability of the proposed approach with respect to 3D face scans captured in dif-
ferent scenarios and conditions with different 3D sensors, depicting in particular different
challenges in terms of facial expressions. This is in clear contrast with the overwhelm-
ing majority of 3D FR algorithms so far proposed in literature which are evaluated only
on FRGC v2.0 with 3D face scans depicting a limited number of facial expressions. The
experimental results demonstrate the effectiveness and the generalization ability of the pro-
posed approach which consistently displays competitive rank-1 recognition rates over those
datasets of different natures.

This chapter integrates our preliminary work in [Li et al. 2011a] but significantly ex-
tends that work. First, we carefully reformulate here the weighted sparse representation-
based classifier (W-SRC) and formally establish that a weighted combination of SRCs
amounts to directly weighting the feature vectors of those SRCs. Then, we highlight the
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contributions of each design decision, e.g., local normal patterns, the use of multi-scale
encoding and normal components, the SRC-based learning strategy, with respect to the
improvement of the recognition performance, and carry out an analysis of time complex-
ity of the proposed 3D FR algorithm in comparison with the state of the art. Finally, we
extensively evaluate the robustness of the proposed system with respect to a rich set of fa-
cial expressions, using in particular the BU-3DFE database which includes expressive 3D
face scans depicting the six prototypical expressions in different intensities, as well as the
Bosphorus database which features both the six prototypical expressions and subtle facial
expressions through action units. This is in clear contrast with the overwhelming majority
of 3D FR algorithms which were only benchmarked over FRGC v2.0 depicting merely a
limited number of facial expressions. Besides, we validate the discriminative power of the
proposed feature and the robustness of the proposed approach to facial expressions in the
challenging issue of distinguishing between expressive identical twins using the 3D-TEC
database. In addition, we also evaluate the computational cost of the proposed method.

The reminder of this chapter is organized as follows. The framework overview of
the proposed system is presented in Section 2. Section 3 introduces the proposed Local
Normal Patterns (LNP) based facial descriptor. Section 4 describes the weighted sparse
representation-based classifier. In section 5, we present the experimental and algorithmic
settings and discuss the experimental results. Section 6 concludes this chapter.

3.2 Overview of the Proposed Approach

As illustrated in Fig. G.1, the framework of the proposed approach consists of two phases:
i.e. a training phase and a testing phase. Before the training and testing phases, each raw
3D face scan is preprocessed, e.g., spike and noise removing, holes filling, nose tip local-
ization, face cropping and alignment, to generate a range image with a predefined size. The
training process is carried out in order to learn from a predefined training set the quanti-
tative weights of local facial regions in terms of discriminating power and robustness in
facial expression variations. It includes three procedures: feature extraction, identification
and score normalization within different patches. They are briefly summarized as follows:

(1) Patch feature extraction. This procedure consists of three steps: (a) facial normal
estimation; (b) facial normal encoding; (c) facial normal representation. Specifically, given
a raw 3D face scan, we first launch the preprocessing pipeline (see Sec. 3.5.2) to normalize
the range image to an m× n× 3 matrix (i.e., x, y and z coordinates). Based on the range
image, we estimate its three normal components (x, y, and z) by the local plane fitting
method (see Sec. 3.3.1). Each normal component map is coarsely split into several local
patches (e.g. 3× 3); then each of these local patches is encoded as LNP with multiple
scales, giving birth to multi-scale and multi-component local normal patterns (MSMC-
LNP) to comprehensively describe the shape of each patch.

(2) Patch-based identification. Given a patch, an encoding scale, and a normal com-
ponent, the corresponding LNP is extracted and fed into the sparse representation-based
classifier (SRC) to generate a rank-one recognition rate using the training set.

(3) Patch score normalization. The patch scores, i.e. rank-one recognition rates, of dif-
ferent encoding scales and normal components are further normalized as the corresponding
patch weights. The importance of facial physical regions in terms of discriminating power
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Figure 3.2: Overview of the proposed approach.

and robustness to facial expression variations can thus be measured by those quantitative
patch weights.

During the testing phase, given a preprocessed range image in the testing set, we first
compute the MSMC-LNP features over all the patches as in procedure (1) in the training
phase. The global MSMC-LNP features are then obtained by simply stacking all these
patch based MSMC-LNP features according to the holistic configuration of facial surfaces
(see Sec. 3.3.3). Based on the patch weights learned in the training phase, weighted s-
parse representation (W-SRC) is formulated as seeking the sparse solution of the sum of
the weighted patch based sparse representation (see (3.13) in Sec. 3.4). Then, W-SRC car-
ries out face identification by finding the minimal weighted reconstruction residuals. (see
(3.14) in Sec. 3.4). The final similarity measurement of MSMC-LNP in decision mak-
ing is computed using the score level fusion which combines the matching scores of three
encoding scales and three normal components through a simple sum rule.

3.3 Local Normal Patterns (LNP) based Facial Descriptor

3.3.1 Facial Normal Estimation

To highlight local variations of facial surfaces, remember that we make use of their normal
information instead of the original point-cloud or range images. Existing normal estima-
tion methods can be roughly classified into optimization based methods (i.e., local fitting
methods) and averaging methods [Klasing et al. 2009].

The basic idea of optimization based methods is as follows: 1) the normal vector on
a given point can be calculated as the normal vector of a plane or the quadratic surface
which it belongs to; 2) the underlying plane or surface can be estimated by fitting it to
the local neighboring points around that given point; 3) the fitting problem then can be
solved by minimizing a cost function penalizing a certain criterion, e.g., the distance of the
neighboring points from the searched local plane (see Fig. 3.3 (a)). The averaging methods
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estimate the normal vector of a given point by computing a weighted average of the normal
vectors of the triangles in its one-ring neighbors, the weights being the inverse ratios of the
areas or the surrounding angles of the triangles in its one-ring neighbors (see Fig. 3.3 (b)).
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Figure 3.3: Illustration of two approaches to normal estimation: (a) a plane is fitted to

a vertex p and its neighbors; (b) the normal vectors of triangles in one-ring of p are

averaged.

The optimization-based methods can be applied to 3D point-clouds and triangular
meshes while the averaging methods can only work on triangular meshes. Both types
of methods are competent for normal calculation. In this paper, 3D face scans from various
datasets were captured in different conditions and scenarios with divers 3D sensors, result-
ing in a diversity of data formats. As a result, an optimization-based method is adopted for
the estimation of normals.

Specifically, given a facial range image P represented by an m×n×3 matrix:

P = [pi j(x,y,z)]m×n = [pi jk]m×n×{x,y,z}, (3.1)

where pi j(x,y,z) = (pi jx, pi jy, pi jz)
T ,(1 ≤ i ≤ m,1 ≤ j ≤ n, i, j ∈ Z) represents the 3D co-

ordinates of the point pi j. Let its unit normal vector matrix (m×n×3) be

N(P) = [n(pi j(x,y,z))]m×n = [ni jk]m×n×{x,y,z}, (3.2)

where n(pi j(x,y,z)) = (ni jx,ni jy,ni jz)
T ,(1 ≤ i ≤ m,1 ≤ j ≤ n, i, j ∈ Z) denotes the unit

normal vector of pi j. As described in [Hoffman & Jain 1987], the normal vector N(P) of
range image P can be estimated using the local plane fitting method. That is to say, for
each point pi j ∈ P, its normal vector n(pi j) can be estimated as the normal vector of the
following local fitted plane:

Si j : ni jxqi jx +ni jyqi jy +ni jzqi jz = d, (3.3)

where (qi jx,qi jy,qi jz)
T represents any point within the local neighborhood of point pi j and

d = ni jx pi jx +ni jy pi jy +ni jz pi jz. In this work, a neighborhood of 5×5 window is used. To
simplify, each normal component in equation (2) can be represented by an m×n matrix:

N(P) =





N(X) = [nx
i j]m×n,

N(Y) = [ny
i j]m×n,

N(Z) = [nz
i j]m×n.

(3.4)
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where ‖(nx
i j,n

y
i j,n

z
i j)

T‖2 = 1.
Fig. 3.4 shows a sample range image extracted from the 3D-TEC database and it-

s estimated three normal component matrices (images). As we can see from this figure,
the normal component images contain more informative geometric information than their
corresponding range image which is quite smooth. In particular, it can be seen that the
geometric shape details around the eyes, mouth and forehead regions are quite well high-
lighted.

(a)                                 (b)                                (c)                              (d)

Figure 3.4: Illustration of facial normal estimation: (a) the original range image, (b-d) its

normal images of component x, y and z (the sample comes from the 3D-TEC dataset).

3.3.2 Facial Normal Encoding

Inspired by the discriminative power and computational simplicity of LBP for 2D texture
description, we propose encoding each normal component, x, y, and z, respectively, as lo-
cal normal patterns (LNP) to further highlight local shape variations. Thanks to the matrix
form of these normal components as in equation (G.4), the encoding of these local shape
variations can be carried out in a similar way to that used by LBP to encode 2D texture
images. Specifically, the value of each point in a normal component is compared with
its neighbors in a pre-defined neighborhood. A local neighborhood is defined as a set of
sampling points evenly over a circle which is centered at the pixel to be labeled, and the
sampling points that do not fall within the pixels are interpolated using bilinear interpola-
tion, thus allowing for any radius and any number of sampling points in the neighborhood.
Fig. 3.5 shows two examples of neighborhood of LNP, where the notation Qr,p denotes a
neighborhood of p sampling points on a circle of radius of r.

After subtracting the central pixel value, the resulting strictly negative values are en-
coded with 0 and the others with 1; a binary number is thus obtained by concatenating
all these binary codes in a clockwise direction starting from the top-left one and its corre-
sponding decimal value is used for labeling. The decimal numbers which result from such
a process are referred to as local normal patterns (LNP). Formally, given a point pi j, its
normal component noted as nk

i j(0), the derived LNP decimal value is:

LNP(Qr,p(pi j)) =
p−1

∑
q=1

t(nk
i j(q)−nk

i j(0))2
q, (3.5)

where t(x) = 1, if x≥ 0 and t(x) = 0, if x < 0.
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(a) (b)

Figure 3.5: Examples of the neighborhood of LNP: (a) Q1,8 and (b) Q2,16.

Given a normal component, LNP(Qr,p) thus encodes local normal variations around
each point as a decimal value, denoted as e([nk

i j]m×n),k∈{x,y,z}. Fig. 3.6 gives an example
of LNP(Q1,8) on the three facial normal components of the same subject.

(a)                       (b)                     (c)                     (d)                     (e)                      (f)

Figure 3.6: Illustration of facial normal encoding: (a) to (c), normal images of component

x, y and z; (d) to (e), their corresponding LNP maps using the neighborhood Q1,8.

LNP encodes the local shape variations at point level. In order to characterize the
shape of a local region, histogram-based statistics are computed and used as a facial feature
vector. For a given normal component k ∈ {x,y,z}, the histogram of the encoded normal
component e([nk

i j]m×n) can be defined as:

H = ∑
i, j

I{e([nk
i j]m×n) = s},s = 0, . . . ,S−1, (3.6)

where s is the encoded decimal number, and S− 1 is the maximum value of local nor-
mal patterns (LNPs) given a neighborhood Qr,p, e.g., for Q1,8,S = 28 = 256. I{A} =
1, if A is true, else I{A} = 0. This histogram describes the local micro-patterns of a giv-
en normal component over the whole face model.

3.3.3 Facial Normal Representation

To utilize the spatial information of 3D face scans, each facial normal component, x, y, and
z, can be further divided into several patches, from which LNP histograms H are extracted
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Figure 3.7: Illustration of facial normal representation: histogram of LNP.

and then concatenated to form a global histogram G which thus captures the facial con-
figuration of the encoded facial normal feature (see Fig. 3.7). Finally, the original facial
surface is described by three global feature histograms Gx,Gy, and Gz on a given encoding
scale.

3.4 Weighted Sparse Representation-based Classifier

Once 3D face scans have been described by their respective facial normal representations,
a proper classifier is needed for the purpose of 3D face identification. In this work, we in-
troduce a Weighted Sparse Representation-based Classifier (W-SRC) which is described in
this section. We first introduce the 3D face subspace based sparse representation model and
its corresponding SRC. Then, we theoretically formulate a weighted sparse representation
model and its corresponding W-SRC to account for the patch weights which are learned
using a training set to quantify the relative discriminating power of each local facial region.
We demonstrate in particular that solving a weighted SRC amounts to computing a single
SRC with global feature vectors in stacking the weighted feature vectors of each patch.

3.4.1 3D Face Subspace and Sparse Representation-based Classifier

A common assumption in 2D FR is the 2D face subspace model which assumes that well-
aligned frontal face images in different lighting conditions and various facial expressions,
approximately lie on a special low-dimensional linear subspace spanned by sufficient train-
ing samples from the same subject. Using such an assumption, Wright et al. [?] proposed
a sparse representation model and its corresponding SRC for robust 2D FR. In this work,
we make an extension of this assumption to the 3D case, and assume that well-aligned
frontal 3D face scans with different facial expressions approximately lie on a special low-
dimensional linear subspace spanned by sufficient training 3D face scans from the same
subject. We call this assumption a 3D face subspace model. Formally, it can be formulated
by the following equation:
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y≈ α1v1 +α2v2 + ...+αNvN . (3.7)

That is, given Ni training samples of the i-th subject, [vi,1,vi,2, . . . ,vi,Ni
] ∈ R

M×Ni , any
test sample yi ∈ R

M of the i-th subject can be represented, according to (3.7), as:

yi ≈ αi,1vi,1 +αi,2vi,2 + ...+αi,Ni
vi,Ni

, (3.8)

where αi, j ∈ R, j = 1,2, . . . ,Ni.

However, it is worth noting that there is only one training sample for each subject in the
gallery in the most common experimental setting in 3D FR. Without occlusion, the only
difference between two well-aligned frontal 3D face scans of the same subject is the local
shape distortion caused by variations in expression. This problem of insufficient training
samples along with the shape distortion caused by expression variations introduces a new
model error term, denoted as εi ∈ R

M. Thus, model (3.8) can be modified as:

yi ≈ αi,1vi,1 = αi,1vi,1 + εi, (3.9)

where yi ∈R
M, vi,1 ∈R

M and αi,1 ∈R represent a probe face, a gallery face from the same
subject and their linear scalar factor respectively. Using (3.9), sparse representation model
and its corresponding SRC for 3D FR can be formulated as follows:

Given a gallery set with N 3D face scans, each of which belongs to one subject, we
define the dictionary as D

.
= [v1,v2, . . . ,vN ] ∈ R

M×N . Then for any probe y ∈ R
M, we have

y = Dx+ ε, (3.10)

where x = [0, . . . ,0,α j,0, . . . ,0]T ∈ R
N is the coefficient vector whose entries are zero ex-

cept the one associated with the j-subject. Sparse coefficients x in (G.13) can be solved by
the following l0 minimization problem:

x̂ = argmin
x
‖x‖0 s.t.‖y−Dx‖2

2 ≤ T, (3.11)

where T = ‖ε‖2
2.

In practice, we employ the Orthogonal Matching Pursuit (OMP) [Pati et al. 1993] al-
gorithm to solve (3.11) and compute the reconstruction residuals:

ri(y) = ‖y−Dδi(x̂)‖2
2, i = 1,2, . . . ,N. (3.12)

where δi is a characteristic function which selects the coefficient associated with the i-th
gallery. Finally, the index of minimal ri(y) delivers the identity of the probe y.

3.4.2 Weighted Sparse Representation-based Classifier

Assume now that each face scan is divided into L different patches. Denote wl as the
learned weight for patch l. Using the MATLAB convention:

[x1;x2]
.
=

[
x1

x2

]
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the feature vector vi can be rewritten as

vi = [vi1;vi2 . . .viL],

where vil ∈ R
(M/L)×1, and the dictionary D can be denoted as

D = [D1;D2 . . .DL],

where Dl = [v1,l,v2,l, . . . ,vi,l, . . . ,vN,l], and a probe y can be denoted as

y = [y1;y2 . . .yL],

where yl ∈ R
(M/L)×1, l = 1,2, . . . ,L.

Eq. (3.11) can then be rewritten as the following weighted sparse representation model:

x̂ = argmin
x
‖x‖0 s.t.

L

∑
l=1

wl‖yl−Dlx‖2
2 ≤ T, (3.13)

and the corresponding weighted reconstruction residuals are

ri(y) =
L

∑
l=1

wl‖yl−Dlδi(x̂)‖2
2, i = 1,2, . . . ,N. (3.14)

To solve eq. (3.13), we notice that it equals to solve

x̂ = argmin
x
‖x‖0 s.t.

L

∑
l=1

‖wlyl−wlDlx‖2
2 ≤ T. (3.15)

We write

W (D) = [w1D1;w2D2 . . .wLDL],

and

W (y) = [w1y1;w2y2 . . .wLyL].

Then Eq. (3.15) is equal to

x̂ = argmin
x
‖x‖0 s.t.‖W (y)−W (D)x‖2

2 ≤ T. (3.16)

Eq. (3.16) means that the weighted sparse representation model as expressed in Eq.
(3.13) amounts to solving a single SRC with global feature vectors by simply stacking
weighted features of the corresponding patches. Eq. (3.16) can be solved by the OMP
algorithm [Pati et al. 1993]. Once determined the sparse representation coefficient x̂ of Eq.
(3.16), weighted reconstruction residuals in Eq. (3.14) can be computed. Then the minimal
ri(y) can be used to determine the identity of y. We call this sparse representation-based
classifier enhanced by spatial weights the Weighted Sparse Representation-based Classifier
(W-SRC) in the subsequent.
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3.5 Experiments

Recent studies [Vijayan et al. 2011b] show that 3D FR algorithms with very high perfor-
mance on the de facto standard benchmark, namely FRGC v2.0, can vastly deteriorate
when evaluated on expressive 3D face scans captured in a different scenario. As a result,
we decide to evaluate the effectiveness and the generalizability of the proposed approach
using various datasets, namely FRGC, BU-3DFE, Bosphorus and 3D-TEC, with 3D face
scans depicting a rich set of facial expressions, subtle, prototypical and exaggerated. De-
pending on the underlying dataset, these expressive 3D face scans were captured in differ-
ent scenarios and conditions, e.g., 3D sensors, lighting conditions, and thus offer different
levels of challenge with respect to facial expression variations. In this section, we first
introduce the different datasets and describe their particularity, then present the different
experimental settings in order to highlight the various facets of the proposed approach and
finally discuss the experimental results.

3.5.1 Databases and Preprocessing

In our experiments, three databases, namely FRGC v1.0 [Phillips et al. 2005], BU-3DFE
[Yin et al. 2006a] and Bosphorus [Savran et al. 2008], are used as training sets to learn the
the respective patch weights, while four databases, the BU-3DFE, Bosphorus, FRGC v2.0
[Phillips et al. 2005] and 3D-TEC [Vijayan et al. 2011a] are used as testing sets for cross
database validation and evaluation. Fig. 3.8 plots a raw 3D face scan from each of these
databases. They are briefly introduced as follows:

(a)                (b)                  (c)               (d)              (e)

Figure 3.8: Illustrate of the raw samples of the five databases: (a) FRGC v1.0, (b) FRGC

v2.0, (c) Bosphorus, (d) BU-3DFE, (e) 3D-TEC.

• FRGC v1.0 : The FRGC v1.0 database (Spring2003) consists of 943 textured 3D
face models of 275 subjects with a neutral expression. The hardware used to acquire
these range images is a Minolta Vivid 900 (MV 900) laser range scanner, with a
resolution of 640×480.

• FRGC v2.0 : The FRGC v2.0 database (Fall2003 and Spring2004) is made up of
4007 textured 3D face models of 466 subjects with different facial expressions. The
same hardware as in FRGCv1.0 is used for data acquisition, and the resolution of
each range image is also 640×480. FRGC v2.0 is the largest public 3D face dataset
which includes 1642 expressive frontal 3D face scans captured in controlled lighting
conditions. Although FRGC v2.0 has become de facto the standard benchmark for
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evaluating 3D FR algorithms, in particular because of its size, it contains only a very

limited range of facial expressions, including happiness, surprise, disgust, sadness

and so on. This is to be compared with the uncountable number of facial expressions

which can occur in real-life applications in uncontrolled conditions. As a result,

a 3D FR algorithm with high performance on FRGC v2.0 does not guarantee the

same level of performance on other 3D face scans captured in different conditions

and scenarios. The generalizability of a claimed robustness to facial expression

variations needs to be checked on representative expressive 3D face scans.

• BU-3DFE : The BU-3DFE database contains 100 subjects (56 females and 44
males), ranging in age from 18 to 70 years old, with a variety of ethnic origins.
Each subject performs seven expressions. Except for neutral, each of the six pro-
totypic expressions (happiness, disgust, fear, anger, surprise, and sadness) includes
four levels of intensity. Therefore, there are 25 instant models for each subject, re-
sulting in a total of 2,500 3D facial models. The 3D models are captured with a 3D
face imaging system named a 3DMD digitizer. Each model is saved as a polygo-
nal mesh with a resolution ranging from 20,000 to 35,000 polygons. This dataset

thus makes it possible to benchmark 3D FR algorithms over 3D face scans depicting

prototypical facial expressions of different intensities, ranging from very subtle to

exaggerated, and quantitatively measures the robustness of a given 3D FR technique

when varying the intensities of facial expressions.

• Bosphorus: The Bosphorus database contains 4666 textured 3D face models of 105
subjects in various facial expressions, action units, poses and occlusions. The 3D
models are acquired with a device named the Inspeck Mega Capturor II (IMC II).
Each model is saved as a range image with a resolution of 1,600× 1,200. This

dataset thus allows benchmarking 3D FR techniques in an uncontrolled environment

in nearly real-life conditions. In this work, we are interested in Bosphorus for the

difficulty it presents with facial expressions which contain not only prototypical ex-

pressions but also action units.

• 3D-TEC : The 3D-TEC database consists of 106 pairs of identical twins and a set
of triplets, totalizing 214 subjects. Each subject contains two scans: one neutral
scan and one smiling scan. More details can be found in [Vijayan et al. 2011b].
This dataset thus enables the evaluation of 3D FR algorithms in difficult conditions,

i.e. the joint presence of strong inter-class similarities and intra-class expression

variations.

All scans of FRGC v1.0, FRGC v2.0, and 3D-TEC databases are preprocessed
by using the 3D Face Models Preprocessing Tool 2 developed by Szeptycki et al.

[Szeptycki et al. 2009a]. The preprocessing pipeline contains: spike and noise re-
moving, holes filling, nose tip localization and face cropping. As introduced in
[Szeptycki et al. 2009a], a decision-based median filtering technique is used to remove
spikes, and the holes are detected by searching vertexes having less than 8 neighbors, and
filled by fitting square surfaces. The nose tip is located through a curvature analysis-based

2http://pszeptycki.com/tool.html

81



Chapter 3. 3D Face Recognition in the Presence of Various Expressions

coarse grained search and generic face model-based fine grained search. Exceptionally for
3D-TEC, the manually labeled nose tips provided by the database are used in this work.
Finally, each scan is cropped by a sphere centering at the nose tip and with a radius of 90
mm. The polygon surface scans in BU-3DFE are first preprocessed as discrete manifold
triangular meshes and then projected as range images by an interpolation algorithm. Then,
nose tip localization and face cropping are carried out for all the scans of BU-3DFE and
Bosphrous databases by using the same aforementioned preprocessing tool. Regarding the
registration, we select a face scan with a neutral expression in frontal pose for each of the
five databases as a reference model, and all the other face scans are then aligned to the
reference model using the Iterative Closest Point (ICP) [Zhang 1994] algorithm. Fig. 3.9
illustrates several examples of preprocessed face models.

Figure 3.9: Illustration of several examples of preprocessed face models: first row: models

of one subject with different facial expressions (BU-3DFE); second and third rows: models

of one subject with different facial expressions and action units (Bosphorus); fourth row:

models of one subject with different facial expressions (FRGC v2.0); last row: two pairs of

identical twin models with neutral and smiling expressions (3D-TEC).

3.5.2 Experimental Settings

To comprehensively evaluate the proposed approach and highlight its various facets, seven
experiments were designed. 1) The discriminative power of the proposed LNP descrip-
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tor. This experiment aims to compare the proposed LNP with the raw normal maps and
the direct encoding of range images to highlight the effectiveness of the proposed encod-
ing to normal maps; 2) The effectiveness of SRC. This experiment aims to highlight the
advantage of using a sparse representation-based classifier (SRC) in comparison with the
popular Chi-square distance when histogram-based features (e.g., LNP) are involved; 3)
The impact of multi-scale encoding of LNPs and the benefit of using multi-component of
normal images; 4) The patch weights learning and the effectiveness of W-SRC. This exper-
iment is to show the learning process of patch weights, to bring out the difference of patch
weights between 3D and 2D face data, and to highlight the effectiveness of the proposed
W-SRC in terms of performance improvement; 5) The robustness analysis of the proposed
approach with respect to various facial expression variations. This experiment aims to high-
light the behavior of the proposed approach with respect to facial expressions as well as
their intensities; 6) The performance of distinguishing between expressive identical twins.
This experiment aims through 3D-TEC to benchmark the proposed 3D algorithm in dif-
ficult conditions, i.e. the recognition of expressive identical twins with strong inter-class
similarities in presence of intra-class variations introduced by facial expressions. 7) The
comparison with the state-of-the-art. This study compares the proposed approach with the
state of the art using the four datasets whenever state of the art results are available.

The experimental settings are as follows: for the FRGC v1.0 and FRGC v2.0 databases,
the first scan of each subject is used to make a gallery set and the remaining 3D face scans
are treated as probes. As a result, 571 scans of 267 subjects from FRGC v1.0 and 3541
scans of 466 subjects from FRGC v2.0 are used as probes; for the BU-3DFE database,
the neutral scan of each subject is used to make a gallery set and the remaining scans are
treated as the probe set. Therefore, 2400 scans of 100 subjects are used as probes. For the
Bosphorus database, we focus on the challenge of facial expression variations and select the
first neutral scan to make the gallery set whereas the remaining scans with frontal pose and
without occlusions are treated as probes, thus excluding those scans with pose variations
and occlusions which depict different challenges. This results in a total of 2797 scans of
105 subjects being used as probes. Table 3.1 summarizes these protocols.

Table 3.1: Experimental settings of FRGC v1.0, BU-3DFE, Bosphorus, and FRGC v2.0

databases.

Database Subject Scan Gallery Probe

FRGC v1.0 267 838 267 571
FRGC v2.0 466 4007 466 3541
BU-3DFE 100 2500 100 2400
Bosphorus 105 2902 105 2797

The gallery and probe scans used for 3D-TEC database are based on the standard pro-
tocol shown in Table 3.2 [Vijayan et al. 2011b]. One person in each pair of twins is arbi-
trarily labeled Twin A and the other Twin B, and four Cases are considered. In Case I, all
the images in the gallery set possess a smiling expression while all the images in the probe
set have a neutral expression. Case II reverses Case I roles. In Case III, Twin A smiling
and Twin B neutral make up the gallery set; while Twin A neutral and Twin B smiling as
probe compose the probe set. Case IV reverses these roles of Case III. As pointed out in
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[Vijayan et al. 2011b], theoretically the main challenge would be to distinguish between
the probe image and the image of his/her twin in the gallery. Case III and IV are more
difficult than Cases I and II since the expression of the probe face is different from his/her
image in the gallery but the same as the image of his/her twin in the gallery. For all four
cases, both gallery and probe sets consist of 214 scans of 214 subjects.

Table 3.2: Experimental setting of 3D-TEC database: “A Smile, B Neutral” means that the

set contains all images with Twin A smiling and Twin B neutral [Vijayan et al. 2011b].

No. Subject Scan Gallery Probe

I 214 428 A Smile, B Smile A Neutral, B Neutral
II 214 428 A Neutral, B Neutral A Smile, B Smile
III 214 428 A Smile, B Neutral A Neutral, B Smile
IV 214 428 A Neutral, B Smile A Smile, B Neutral

Each preprocessed range image is further resized into 120× 96 for facial normal esti-
mation, resulting in three normal component matrices or images in sizes of 120×96. Each
normal component matrix is divided into 10 × 8, 6 × 6 and 3 ×3 windows correspond-
ing to local patches with sizes of 12 × 12, 20 × 16 and 40 × 32, respectively. Then,
three different scales are considered with all kinds of local patches. This amounts to per-
forming encoding operators Q1,8, Q2,16, and Q3,24 on local patches with sizes of 12 × 12,
20 × 16 and 40 × 32, respectively. As a result, for each normal component, we encode
it with three different scales, achieving three histograms of local normal patterns (LNP).
In order to reduce the dimensionality of final facial features, the uniform pattern strategy
[Ojala et al. 2002] as in LBP is adopted to decrease the number of bins in each local patch.
Finally, from one original 3D face scan, we generate 9 histograms of local normal pat-
terns (3 normal components and 3 encoding scales) involving both local patch based and
global features. Each histogram representation of the whole face is fed into the classifier
to achieve one similarity score matrix. All the 9 similarity score matrices are then fused
through a simple sum rule to compute the final accuracy of MSMC-LNP. To solve (3.11)
and (3.16), the Orthogonal Matching Pursuit (OMP) [Pati et al. 1993] algorithm with the
sparse number of 30 for x is used in all the experiments.

3.5.3 Experimental Results

3.5.3.1 Experiment I: The discriminative power of local normal patterns

To highlight the discriminating power of the proposed LNP based facial feature, we com-
pare it with other two kinds of facial features: i) The raw normal information based facial
features Nx, Ny and Nz, by simply stacking the columns of each normal component ma-
trices ni jx,ni jy and ni jz respectively, and their fusion Nxyz. ii) Local Shape binary Patterns
(LSP), i.e. LBP histograms extracted directly from range images. For a fair comparison,
LNP descriptor used the same encoding parameter (i.e. Q2,16) with LSP to extract the fea-
ture vector on each normal component, respectively noted as LNPx, LNPy and LNPz, and
their fusion, i.e. Multi-Component Local Normal Patterns (MC-LNP). All features were
finally fed into a SRC classifier. Once again, the score-level fusion through a simple sum
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rule was employed to combine different normal components and encoding scales.

Table 3.3: Comparison of rank-one scores: original normal, LSP and LNP on the whole

FRGC v2.0 database.

Approaches Rank-one Scores

(1) Nx + SRC 67.83%
(2) Ny + SRC 65.62%
(3) Nz + SRC 71.63%
(4) Nxyz + SRC 73.19%
(5) LSP2,16 + SRC 82.07%
(6) LNPx(Q2,16) + SRC 87.01%

(7) LNPy(Q2,16) + SRC 86.13%

(8) LNPz(Q2,16) + SRC 88.43%

(9) MC-LNP(Q2,16) + SRC 92.60%

Table 3.3 reports the rank-one recognition rates on the whole FRGC v2.0 database.
We can see that LNP performs much better (about 20% higher) than the original normal
feature. On the other side, without normal information, the result based on LSP is about 5%
lower than that of each encoded normal component and 10% lower than their fusion, i.e.

MC-LNP(Q2,16). This experiment indicates that the encoded normal information (LNP) is
more discriminative, not only more so than the original normal information, but also than
the encoded depth information (LSP).

3.5.3.2 Experiment II: The effectiveness of sparse representation-based classifier

For histogram based feature vector (e.g., LNP), Chi-Square distance is the preferred simi-
larity measurement in the literature [Pele & Werman 2010]. Table 3.4 compares the rank-
one recognition rates achieved by SRC and Chi-Square distance based classifiers on the
whole FRGC v2.0 database. All the results are achieved using LNP feature with the same
encoding scale (i.e. Q2,16).

Table 3.4: Comparison of rank-one scores: Chi-Square vs. SRC on the whole FRGC v2.0

database.

Approaches Rank-one Scores

(1) LNPx(Q2,16) + Chi-Square 77.36%
(2) LNPx(Q2,16) + SRC 87.01%

(3) LNPy(Q2,16) + Chi-Square 77.87%
(4) LNPy(Q2,16) + SRC 86.13%

(5) LNPz(Q2,16) + Chi-Square 81.33%
(6) LNPz(Q2,16) + SRC 88.43%

(7) MC-LNP(Q2,16) + Chi-Square 82.64%
(8) MC-LNP(Q2,16) + SRC 92.60%

As can be seen from Table 3.4, the rank-one scores of SRC using LNPx, LNPy and
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LNPz as well as their fusion MC-LNP, with an average gain of 8 points, consistently out-
perform those of the Chi-square distance-based classifier using the same feature vectors.
These results highlight the effectiveness of SRC when using local normal pattern (LNP)
based facial representation.

3.5.3.3 Experiment III: The effectiveness of multi-scale and multi-component local

normal patterns

As described in subsection 3.5.2 on the experimental settings, the proposed 3D FR method
makes joint use of three normal images, along with three different encoding scales through
3 regular grids of different sizes. This results in a global descriptor, namely MSMC-LNP,
which is made up of 9 histograms of local normal patterns (i.e., 3 normal components
and 3 encoding scales). One interesting question here is thus how discriminating each
normal component is in the task of 3D FR with the individual encoding scheme through
a specific regular grid overlaid on 3D face scans. In this subsection, we propose to study
the discriminating power of each normal component on a given encoding scale and its
complementarity for the 3D FR task through FRGC v2.0.

Specifically, in the proposed 3D FR method, three regular grids of different size, name-
ly 10 × 8, 6 × 6, and 3 × 3, are overlaid on 3D face scans. For a range image that we
normalize to the size of 120 × 96, these regular grids lead to patch sizes of 12 × 12, 20
× 16 and 40 × 32, respectively. They thus capture the spatial relationships of different
granularity, from the finest grid of 10 × 8 with a patch size of 12 × 12 to the coarsest grid
of 3 × 3 with a patch size of 40 × 32, the grid of 6 × 6 with a patch size of 20 × 16 being
the intermediate size.

Associated with these three different grids and thus three different patch sizes, LNP
of three different scales, namely Q1,8, Q2,16, and Q3,24, are computed on each component
of the normal images, leading to LNPx, LNPy and LNPz, respectively on three different
scales. The LNP of the finest scale Q1,8 is computed over the finest grid 10 × 8, the LNP
of the coarsest scale Q3,24 over the coarsest grid 3 × 3 and the LNP of the intermediate
scale Q2,16 over the intermediate grid 6 × 6. These LNPs capture the shape variations of
the underlying facial surface on different scales, from the finest variations to the coarsest
ones.

Table 3.5 lists the performance of each normal component, namely LNPx, LNPy and
LNPz in rows, using three different encoding schemes, namely Q1,8, Q2,16, and Q3,24 in
columns, and tabulates the performance of their fusion using the three normal components
(row MC-LNP) and the three encoding scales (column MS-LNP). The performance of the
whole fusion using the three different normal components through three encoding scales
is reported in the row MSMC-LNP. As we can see from this table, all the three normal
components on the three different encoding scales depict a more or less similar rank-one
recognition rate with LNPz being (just) the best. However, when fused together, their
performance is greatly improved, with more than 8 points when the coarsest encoding
scale is used.

Now when analyzed from the viewpoint of the encoding scale along with the grid
size, we can find from Table 3.5 that the best encoding scale is Q2,16, which corresponds
to the grid of intermediate granularity 6× 6 with a patch size of 20× 16. This result
suggests that, if only one encoding scale needs to be chosen for the purpose of 3D face
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recognition, scale Q2,16 is the best tradeoff as it makes it possible to capture enough details
of a facial shape to efficiently discriminate between people while remaining sufficiently
robust to facial expression variations. However, the encoding at different scales captures
different shape information and its fusion in the column MS-LNP results in an improvement
in their individual rank-one recognition rate which can attain more than 4 points in the case
of LNPy.

Table 3.5: The effectiveness of multi-scale and multi-component local normal patterns on

the whole FRGC v2.0 database. The encoding scales, namely Q1,8, Q2,16, and Q3,24, are

computed over regular grid 10x8 with patch size 12x12, grid 6x6 with patch size 20x16,

and grid 3x3 with patch size of 40x32, respectively. The range image size is normalized to

120x96 in this work. Fusion is carried out at score level through simple sum rule.

Q1,8 Q2,16 Q3,24 MS-LNP

LNPx 86.41% 87.01% 75.52% 89.05%

LNPy 85.39% 86.13% 80.17% 90.47%

LNPz 87.69% 88.43% 80.31% 90.89%

MC-LNP 90.78% 92.60% 88.74%

MSMC-LNP 94.13%

As the three different normal components and encoding schemes capture differen-
t shape information, we also perform the fusion of these two types of information, i.e.,
combining the three normal components at 3 different encoding scales. It can be seen from
the row MSMC-LNP in Table 3.5 that this overall fusion, i.e., MSMC-LNP, does further
improve the recognition accuracy which now attains 94.13% which is 2 points higher than
the best fusion result using the three normal components and roughly 4 points higher than
the best result achieved by fusing the three different scales. However, all the previous re-
sults are achieved by brute force application of our MSMC local normal patterns and do
not make use of training datasets which should enable the weighting of these facial patches
based on their discriminating power and robustness to facial expressions. The following
section depicts the effectiveness of such a learning strategy to further improve recognition
accuracy.

3.5.3.4 Experiment IV: The patch weight learning and the effectiveness of W-SRC

In this experiment, we first describe the way to learn patch weights and analyze the relative
importance of local facial regions for face identification. Then, we compare the perfor-
mance of W-SRC and SRC on FRGC v2.0, Bosphorus, and BU-3DFE respectively. Three
databases are used for learning the patch weights: FRGC v1.0, BU-3DFE, and Bosphorus.
The experimental protocol listed in Table 3.1 is used, and according to the proposed frame-
work, the patch weights are achieved by the following four steps: 1) divide each normal
component into local patches (10 × 8, 6 × 6, and 3 ×3 windows); 2) extract patch based
MSMC-LNP features, three normal components and three encoding scales (Q1,8, Q2,16,
and Q3,24); 3) compute patch based rank one scores using the SRC classifier on a given
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(a)                     (b)                    (c)                    (d)                   ((e)                    (f)       (g)                    (h)                    (i)

Figure 3.10: Illustration of the patch weights learned from the Bosphorus database.

Columns (a-c), normal images x, y and z and their patch weights (10×8 patches); column-

s (d-f), normal images x, y and z and their patch weights (6× 6 patches); columns (g-i),

normal images x, y and z and their patch weights (3×3 patches). Darker patches indicate

lower weights, while brighter ones indicate higher weights.

training database. 4) compute patch based weights by normalizing the patch based scores.
Fig. 3.10 shows the results of such a learning process using the Bosphorus as the

training database in displaying the patch weights of three normal component images x, y

and z with three binary encoding scales Q1,8, Q2,16 and Q3,24. The patch numbers with
respect to those three encoding scales are 10×8, 6×6 and 3×3, respectively. The weights
are marked by gray values where darker ones indicate lower weights while the brighter ones
indicate higher weights. We can see that the weight distribution patterns are quite different
from each other among different normal components and different encoding scales but we
can observe some similar trends, in particular with the largest weights near the nose regions,
and larger weights near the eyes, while the smallest weights are found near the mouth
regions and the boundary parts. For more detail, consider column (e) in Fig. 3.10 as an
example. The rigid regions including nose, eyes and forehead altogether possess about 56%
importance of the whole face, while the mouth region has only about 2.8% importance. It
is worth noting that the facial cheek regions (on both sides), which are usually considered
as non-rigid regions, own more than 20% importance, showing that much identity related
information also exists in those non-rigid facial regions. Note that these kinds of weight
distribution patterns are quite different from those of the 2D face, especially in the nose
region in comparison with Fig. 3.1 (b). This difference can be explained by the different
nature of the data between 2D and 3D faces; for example, the nose region in a 2D image
is easily influenced by the variations in lighting whilst that of the 3D face remains stable
during variations in expression.

To evaluate the effectiveness of W-SRC in facial expression variations, we compare
the performance of SRC and W-SRC on FRGC v2.0, Bosphorus, and BU-3DFE respec-
tively (see Table 3.6, 3.7, and 3.8). The weights learned from FRGC v1.0, BU-3DFE,
and Bosphorus are denoted as F-W-SRC, BU-W-SRC, and BO-W-SRC respectively. The
local normal encoding operator Q2,16 is used in all three Tables. Table 3.6 presents the
rank-one scores on the FRGC v2.0 database using SRC, F-W-SRC, BU-W-SRC, and BO-
W-SRC. The results using the single normal component LNPx(Q2,16), LNPy(Q2,16), and
LNPz(Q2,16) and that of their fusion MC-LNP(Q2,16) are reported. We can see from Ta-
ble 3.6 that the performance of F-W-SRC is slightly better than SRC except LNPx(Q2,16).
The results of BU-W-SRC and BO-W-SRC are similar and both are improved by 1.5% to
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Table 3.6: Comparison of rank-one score improvements on the FRGC v 2.0 database:

patch weights are learned using FRGC v1.0, BU-3DFE, and Bosphorus respectively.

LNPx(Q2,16) LNPy(Q2,16) LNPz(Q2,16) MC-LNP(Q2,16)

SRC 87.01% 86.13% 88.43% 92.60%
F-W-SRC 86.63% 88.40% 88.65% 93.59%
BU-W-SRC 88.85% 88.54% 90.58% 94.50%
BO-W-SRC 88.62% 88.88% 90.41% 94.61%

Table 3.7: Comparison of rank-one score improvements on the BU-3DFE database: patch

weights are learned from Bosphorus.

LNPx(Q2,16) LNPy(Q2,16) LNPz(Q2,16) MC-LNP(Q2,16)

SRC 78.92% 80.92% 84.08% 88.25%
BO-W-SRC 78.83% 84.29% 86.21% 90.71%

2% in comparison with SRC. These results suggest W-SRC used with the weight learning
strategy does provide more robustness to facial expression variations than SRC.

Table 3.7 presents the rank-one scores on the BU-3DFE database using SRC and BO-
W-SRC. We can see that the performance improvements based on BO-W-SRC are largely
different in the three normal components, with -0.09%, 3.37% and 2.13% for LNPx, LNPy
and LNPz respectively. These results indicate that the facial surface deformations caused
by facial expression variations are likely to break down into different quantities in different
normal components. The improvement of the fusion result using MC-LNP is about 2.5%
which also proves the effectiveness of W-SRC handling facial expression variations.

Table 3.8 presents the rank-one scores on the Bosphorus database using SRC and BU-
W-SRC. We can see that BU-W-SRC improves the performance for all three normal com-
ponents, with 3.76%, 2.03% and 4.19% for LNPx, LNPy, and LNPz respectively.

Table 3.8: Comparison of rank-one score improvements on the Bosphorus database: patch

weights are learned from BU-3DFE.

LNPx(Q2,16) LNPy(Q2,16) LNPz(Q2,16) MC-LNP(Q2,16)

SRC 83.12% 86.24% 84.91% 90.92%
BU-W-SRC 86.88% 88.27% 89.10% 93.21%
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3.5.3.5 Experiment V: Comparison of the performance degradation due to facial

expression variations

We first evaluate the degradation influenced by facial expression variations of the FRGC
v2.0 database. According to the experimental protocol used in [Mian et al. 2008],
[Huang et al. 2010] and [Huang et al. 2011a], we split all probe faces into two subsets
based on their original expression labels. The first subset consists of only neutral faces,
while the second one is only made up of non-neutral faces. The performance degra-
dation, reflected by the difference between the accuracies of subset I and II reported in
Table 3.9, is utilized to analyze the robustness to facial expression variations. We can
see from this table that the 6.6% drop is achieved based on the proposed MSMC-LNP
descriptor and SRC, and the 3.8% drop is obtained by using Bosphorus database as the
training set for W-SRC. Note that our performance on subset I is a little worse than
[Mian et al. 2008, Huang et al. 2010, Huang et al. 2011b], while the degradations are com-
petitive in comparison with their results.

Table 3.9: Comparing the degradations of rank-one scores influenced by facial expression

changes on the FRGC v 2.0 database (Subset I: neutral probes; Subset II: non-neutral

probes).

Sub. I Sub. II Degradation

(1) Mian et al. [Mian et al. 2008] 99.0% 86.7% 12.3%
(2) Huang et al. [Huang et al. 2010] 99.1% 92.5% 6.6%
(3) Huang et al. [Huang et al. 2011a] 99.0% 94.9% 4.1%
(4) MSMC-LNP + SRC 97.1% 90.5% 6.6%
(5) MSMC-LNP + BO-W-SRC 98.0% 94.2% 3.8%

Since all the 2,400 non-neutral probe faces in the BU-3DFE database have labels of
expression intensity levels (increasing from level 1 to level 4), it is thus possible to quantify
the performance drop as the intensity of facial expressions increases. For this purpose,
all the probe faces are divided into four subsets according to their labels of expression
intensity. Subset I, II, III, and IV are made up of the probe faces with the expression
intensity of level 1, level 2, level 3, and level 4 respectively, and each subset consists of
600 probe faces with six prototypical expressions.

Table 3.10: The degradations of rank-one scores of the proposed approach as the intensity

of facial expressions increases in the BU-3DFE database.

Sub. I Sub. II Sub. III Sub. IV

MSMC-LNP + SRC 97.0% 94.0% 90.5% 80.5%
MSMC-LNP + BO-W-SRC 97.3% 95.0% 92.7% 83.8%

The performance is shown in Table 3.10. We can find that the degradation from the
lower level to higher level expression intensity becomes larger and larger especially from
Subset III to Subset IV. By using SRC without weight learning, the degradations are 3.0%
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from Subset I to Subset II, 3.5% from Subset II to Subset III, and 10.0% from Subset III
to Subset IV. By using BO-W-SRC, the degradations are 2.3% from Subset I to Subset II,
2.3% from Subset II to Subset III, and 8.9% from Subset III to Subset IV. As we can see, all
three degradations using BO-W-SRC are smaller than those using SRC, suggesting that the
weight learning of different local facial regions is an effective way to improved robustness
to expression changes.

3.5.3.6 Experiment VI:The performance of distinguishing between identical twins

across expression variations

In this experiment, we evaluate the performance of our system to distinguish between i-
dentical twins with a smiling expression. We regard the SRC based recognition rate as the
baseline and compare it with W-SRC, where the patch weights are learned from different
training sets. Given the fact that there are only neutral and smile scans in the 3D-TEC
dataset, a specific training set is designed based on the subset of Bosphrous dataset, i.e.

105 first neutral scans as gallery and 105 happy scans as probe, the corresponding W-SRC
is denoted as BOS-W-SRC. All the rank-one scores achieved by using MSMC-LNP fea-
ture as well as SRC, F-W-SRC, BU-W-SRC, BO-W-SRC, and BOS-W-SRC classifiers are
shown in Table 3.11.

Table 3.11: Comparison of the rank-one scores on 3D-TEC by using different training sets.

Algorithm Rank-one scores

I II III IV

MSMC-LNP + SRC 94.9% 96.3% 89.3% 88.3%
MSMC-LNP + F-W-SRC 93.5% 94.4% 88.8% 88.3%
MSMC-LNP + BU-W-SRC 93.9% 96.3% 90.7% 91.6%
MSMC-LNP + BO-W-SRC 94.4% 96.7% 90.7% 92.5%

MSMC-LNP + BOS-W-SRC 95.8% 96.7% 95.3% 95.3%

From Table 3.11, we can see that the performance improvements are very limited for F-
W-SRC, BU-W-SRC, and BO-W-SRC. The main reason is the asymmetry of the training
and testing data. The 3D-TEC dataset contains identical twin samples with only neutral
and smiling expressions, while the FRGC v1.0 database only includes neutral expression
scans; BU-3DFE and Bosphrous databases consist of the scans with different expression
types. The performance of BOS-W-SRC confirms this analysis, i.e. when the sample
distributions of the training and testing sets are more similar to each other, W-SRC will be
more efficient, with 6% and 7% improvements for Cases III and IV.

3.5.3.7 Experiment VII: Comparison with the state-of-the-art

To further evaluate the performance of the proposed method, in Table 3.12 we display a
comprehensive comparison of the rank-one recognition rates of the FRGC v2.0, Bosphrous,
BU-3DFE, and 3D-TEC databases with the state of the art. In this table, our best results
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Table 3.12: Comparison of the Rank-1 scores on the FRGC v2.0, Bosphrous, BU-3DFE and 3D-TEC databases.

Approaches FRGC v2.0 Bosphrous BU-3DFE
3D TEC

Case I Case II Case III Case IV

(1) Chang et al. [Bowyer et al. 2005] 91.9% - - - - - -
(2) Cook et al. [Cook et al. 2006] 92.9% - - - - - -
(3-a) Mian et al. [Mian et al. 2008] 93.5% - - - - - -
(3-b) Mian et al. [Mian et al. 2007] 96.2% - - - - - -
(3-c) Mian et al. [Al-Osaimi et al. 2008] 93.8% - - - - - -
(3-d) Mian et al. [Al-Osaimi et al. 2009] 96.5% - - - - - -
(4) Abate et al. (Normal) [Abate et al. 2009] (1024 faces) 92.2% - - - - - -
(5) Tang et al. (Normal + Depth) [Tang et al. 2013] (900 faces) 94.89% - - - - - -
(6-a) Faltemier et al. (ICP) [Faltemier et al. 2008a] 97.2% - - - - - -
(6-b) Faltemier et al. (ICP) a [Faltemier et al. 2008a] 98.0% - - 93.5% 93.0% 72.0% 72.4%
(6-c) Faltemier et al. (ICP) b [Faltemier et al. 2008a] 98.0% - - 94.4% 93.5% 72.4% 72.9%
(7-a) Huang et al. (SI) [Huang et al. 2010] 91.8% - - 92.1% 93.0% 83.2% 83.2%
(7-b) Huang et al. (eLBP) [Huang et al. 2011a] 97.2% - - 91.1% 93.5% 77.1% 78.5%
(7-c) Huang et al. (Range PFI) [Huang et al. 2011d] 95.5% - - 91.6% 93.9% 68.7% 71.0%
(8) Gokbert et al. (Normal + Geometry) [Gokberk et al. 2006] 87.8% - - 62.6% 63.6% 54.2% 59.4%
(9-a) Kakadiaris et al. (Normal + Geometry) [Kakadiaris et al. 2007a] [Ocegueda et al. 2011b] 97.0% - - 98.1% 98.1% 91.6% 93.5%
(9-b) Kakadiaris et al. (Normal) c [Ocegueda et al. 2011a] 97.9% 98.2% (2797/105) 99.7% - - - -
(10) Alyuz et al. [Alyuz et al. 2010] 97.5% (94.55%) 98.2% (2814/105) - - - - -
(11) C. Maes et al. [Smeets et al. 2013] 89.6% 97.7% (3186/105) - - - - -
(12) H. Li et al. [?] 94.1% (4561/105) - - - - -
(13) Queirolo et al. [Queirolo et al. 2010] 98.4% - - - - - -
(14) Spreeuwers et al. [Spreeuwers 2011] 99.0% - - - - - -
MSMC-LNP + SRC 94.1% - - 94.9% 96.3% 89.3% 88.3%
MSMC-LNP + BU-W-SRC 96.3% 95.4% (2797/105) - 93.9% 96.3% 90.7% 91.6%
MSMC-LNP + BO-W-SRC 96.3% - 92.21% 94.4% 96.7% 90.7% 92.5%
MSMC-LNP + BOS-W-SRC - - - 95.8% 96.7% 95.3% 95.3%

amatch scores normalization using Epkn , Epkn(p,gk) = Emin(p,gk)/∑N
j=1, j 6=k

(Emin(gi ,gk)/(N−1)), where p is a probe image, gk are the gallery images, and N is the number of gallery images. Emin(p1 , p2) = min(E(p1 , p2),E(p2 , p1)), and E(p1 , p2)

be the match score of point clouds p1 and p2 .
bmatch scores normalization using Eminmax , which is the min-max normalization on the resulting match score from the Epkn normalization
cBosphrous, BU-3DFE and Bosphrous as the training sets corresponding to FRGC v2.0, Bosphrous and BU-3DFE as the testing sets respectively.

92



Chapter 3. 3D Face Recognition in the Presence of Various Expressions

are highlighted as well as those of the state of the art which are better than ours. From this
table, we can observe that:

(i) The vast majority of 3D FR algorithms only report their performance on FRGC v2.0
which is the de facto standard benchmark in 3D FR. Table 3.12 lists only some of them.
However, because of different nature of 3D face data captured in different conditions and
scenarios, a 3D FR technique with high performance on FRGC v2.0 does not guarantee
the same level of performance on other 3D face data and can even vastly degrade, e.g.,
methods (6-b), (6-c), (7-a), (7-b), (7-c) and (8) on 3D TEC. Note that for method (10),
the LDA approach has a poor generalization ability. The rank-one score 97.5% achieved
on the FRGCv2.0 database will drop to 94.55% when the Bosphorus database instead of
FRGCv1.0 is used to constructed the LDA space. This means that it is important to bench-
mark 3D FR techniques on other datasets to check their generalizability. To the best of our
knowledge, except for our method, only (9-a) and (9-b) report their results on all the four
databases.

(ii) The proposed approach, i.e. Multi-Scale and Multi-Component Local Normal Pat-
terns (MSMC-LNP) along with the weighted SRC for an improved robustness to facial ex-
pression variations, consistently displays competitive rank-one recognition rates on these
various datasets, and even the best results in the difficult scenarios, namely case III and
case IV with 3D-TEC, and thereby demonstrates its effectiveness and its generalizability,
in particular with respect to various types and intensities of facial expressions. The results
achieved by the proposed approach on 3D-TEC tend to suggest that the proposed MSMC-
LNP facial feature is discriminative enough to distinguish between even identical twins
despite their strong similarities whereas W-SRC, in learning the discriminative weights of
different facial regions, makes the proposed solution robust enough to facial expression
variations as stated in the difficult cases III and IV on 3D-TEC.

(iii) Facial normal information is also used as 3D facial representation for the extrac-
tion of facial features, e.g., methods (4), (5), (8), (9-a) and (9-b). In (4), the difference of
normal maps is used as similarity measurement, while a rank-one score of 92.2% is report-
ed on a subset of FRGC v2.0 (1024 samples) database; In (5), both facial depth and normal
information are encoded using LBP. As regards the encoding of normal information, they
propose an original method which encodes the angle difference between the normal vector
of a given central vertex and those of its eight neighboring ones over facial triangular sur-
faces. They further make use of 20 manually labelled facial markers to build a 2D specific
feature-based sparse division and reported a rank-one score of 94.89% on a subset of FRGC
v2.0 (900 samples of 150 subjects) under a different experimental evaluation protocol. In
(8), Gokbert et al. use surface normal variance at each pixel location as a distance mea-
sure between face images and report a rank-one score of 87.8% on the whole FRGC v2.0
database, while this reasonable performance vastly deteriorates on the 3D-TEC database,
achieving only around 60% rank-one recognition rate. In (9-a) and (9-b), wavelet coeffi-
cients are used as a similarity measurement on both normal and geometry maps. Note that
this method is the one of the best 3D FR methods in the literature with a very good gen-
eralization ability. Kakadiaris et al. in (9-a) and (9-b) use a very sophisticated multistage
face registration (spin images, ICP, and Simulated Annealing on Z-Buffers) and deformable
model fitting techniques, and a Linear Discriminant Analysis (LDA) based feature selection
technique in their following works [Ocegueda et al. 2011b, Ocegueda et al. 2011a]. Com-
pared with the proposed method, they make use of additional information of 3D face scans,
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e.g., geometry image, and achieve better results on all the four databases except difficult
Case III and Case IV over the 3D-TEC database.

In addition to recognition accuracy and good generalizability, processing time is anoth-
er key factor in judging the effectiveness of a 3D FR algorithm. Table 3.13 lists the compu-
tation time of our method and a number of top-ranking 3D FR methods on the FRGC v2.0
database. For each method, we report the time required for preprocessing and/or feature ex-
traction, face matching, and identification of a single probe using a gallery of 466 subjects
of the FRGC v2.0 database in the first three columns. In the last column, we also report the
rank-one recognition rates of different approaches. For our method, all range images are
resized to 120× 96 and it takes 2.4 seconds for registration, 0.65 seconds for the extraction
of a LNP-based facial feature, whereas normal estimation takes 0.62 seconds and normal
encoding takes 0.03 seconds for each scale and each normal component. For face match-
ing, unlike other matching methods which compare the probe face with every gallery face,
the SRC-based method compares a probe face with all the gallery faces at the same time by
solving a l0 minimization problem. The computation complexity of this optimization prob-
lem is related to the dictionary size (i.e., gallery size) and the feature dimensionality. In our
case, it takes 0.5 seconds to match a probe face and all the 466 galley faces with the highest
encoding dimensionality. Thus, our method only takes 3.55 seconds to identify a single
probe in a gallery of 466 subjects such as those in the FRGC v2.0 database. This makes
the proposed method much faster than the competing methods except [Spreeuwers 2011].
However, the generalizability of the 3D FR method in [Spreeuwers 2011] is not checked on
other datatsets as we did. Note that our method is implemented in Matlab and the compu-
tation time of our method tested on a PC with Intel Core 2 CPU and 2.66 GHz. Please refer
to [Spreeuwers 2011] for more information regarding the processor and the computation
time of all the other methods in the table.

Table 3.13: Computation time for preprocessing and/or feature extraction, face matching

and identification of a single probe using a gallery of 466 subjects of the FRGCv2 database.

Approach Preprocessing (s) Matching (s) Total time (s) Rank-one

Spreeuwers et al. [Spreeuwers 2011] 2.5 1/ 11 150 2.5 99.0%
Queirolo et al. [Queirolo et al. 2010] - 4 1864 98.4%
Alyuz et al. [Alyuz et al. 2010] 131 1/ 20 000 131 97.5%
Faltemier et al. [Faltemier et al. 2008a] 7.5 2.4 1312 97.2%
Kakadiaris et al. [Kakadiaris et al. 2007a] 15 1/1000 15.5 97.0%
Mian et al. [Al-Osaimi et al. 2009] 4 10 50.6 96.5%
This work 3.05 0.5 3.55 96.3%

3.6 Conclusion and Future Work

In this chapter, we have presented an expression-robust 3D face identification approach
based on a novel 3D facial surface descriptor, namely Multi-Scale and Multi-Component
Local Normal Patterns (MSMC-LNP), along with a weighted Sparse Representation-based
Classifier (W-SRC). The extensive experiments that we carried out using 4 different 3D
face datasets indicate that: 1) LNP is much more discriminative than either the original
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normal information or LSP. 2) SRC is more efficient than the Chi-square distance based
classifier. 3) Both multi-scale and multi-component are efficient ways of improving the
performance of LNP. 4) The importance of local facial regions for 3D face identification
is quite different from the 2D-based one, especially in the nose region. 5) Patch-weight
based W-SRC is very robust to facial expression variations, even for identical twins with
expression changes, and a significant improvement can be achieved if the distributions of
training and testing sets are similar to each other. 6) The proposed system (i.e. MSMC-LNP
+ W-SRC) consistently achieves competitive rank-one recognition rates on the FRGC v2.0,
Bosphrous, BU-3DFE, and 3D-TEC databases and thereby displays a good generalizability
with respect to various types of facial expressions. 7) In addition to competitive recognition
accuracy and good generalizability, the proposed method is also very fast.

In the future, we will focus on the following three aspects to further improve the pro-
posed method. 1) In this work, a basic 3D face alignment method, i.e. few iterations
of ICP with respect to a reference model, was used. Recent works [Spreeuwers 2011,
Mohammadzade & Hatzinakos 2013] suggest that a better 3D face alignment can further
lead to significant performance improvement. We are seeking to improve the proposed
approach with a better alignment method; 2) In this work, we presented only the iden-
tification results of the proposed method. Notice that there are very few works on the
study of sparse representation-based classifiers for 2D and 3D face verification. Reference
[Guo et al. 2012] is perhaps the only work stressing this issue for 2D face verification. In
our future work, we will explore the sparse representation-based classifiers for 3D face ver-
ification and report the verification results on the FRGC v2.0, Bosphrous, BU-3DFE and
3D-TEC databases. 3) In this work, only the challenge of facial expression variations was
considered. However, in real-life applications, 3D face scans concern uncooperative sub-
jects in uncontrolled conditions and in arbitrary poses, thus with missing face data, along
with possible external occlusions (e.g., glasses, scarfs, etc.). We want to extend this work
to face these new challenges.
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Chapter 4. 3D Face Recognition in the Presence of Expression, Pose and Occlusion

Variations

4.1 Introduction

Face is potentially one of the best biometrics for people identification related applications,
since it is non-intrusive, contactless and socially well accepted. The past three decades have
witnessed tremendous research effort firstly focused on 2D face images [Zhao et al. 2003]
and more recently on 3D face scans [Bowyer et al. 2006]. Despite the great progress
achieved so far in the field [Zhao et al. 2003], face recognition (FR) in 2D are still not
reliable enough [Abate et al. 2007b] in uncontrolled environment, especially in the pres-
ence of pose and lighting changes [Phillips et al. 2000]. Along with the rapid development
of 3D imaging systems, there has been a lot of research interest in 3D face analysis and
recognition over the past decade for an improved robustness to pose and lighting variation-
s in comparison with 2D FR. However, the overwhelming majority of research works so
far in the literature has targeted 3D FR using facial expressive but frontal 3D face scans
(e.g., FRGC datasets), although 3D face scans captured in a unconstrained environmen-
t can depict not only facial expression variations but also arbitrary pose changes which
can lead to self-occlusion and thereby large missing face data. Moreover, they can also
be severely altered by external occlusions, e.g.,hand, scarf, hair, glasses, etc. Fig. 4.1
illustrates these diverse challenges using several 3D face scans of the Bosphorus dataset
[Savran et al. 2008].

(a)                         (b)                                (c)                                   (d)

Figure 4.1: 2D texture images (1st row) and 3D face scans (2nd row) from the Bosphorus

dataset illustrating the various challenges in real-life applications under uncontrolled en-

vironment: (a) frontal and neutral; (b) facial expression variation; (c) pose variation and

data missing due to self-occlusion; and (d) external occlusion.

Depending on the underlying application requirements, 3D FR techniques can be de-
signed differently based on the underlying applicative scenario, i.e. identification or verifi-
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cation, and the assumption whether users are cooperative or not under controlled environ-
ment or not. In the scenario of verification, a subject claims an identity to be checked by a
biometric system, the subject is generally assumed cooperative so that the claimed identity
be accepted by the system. The scenario of identification requires identifying a probe face
among the gallery ones and can take place either in controlled conditions with cooperative
users or uncontrolled conditions with uncooperative users. Although one can envisage low
quality 3D face scans (e.g., rotated and occluded faces) in the gallery, the overwhelming
majority of works in the literature assumes a neutral frontal 3D face scan of good quality
per subject in the gallery. When users are assumed cooperative, a frontal and neutral face
scan of good quality, thus with moderate pose variations, can be acquired for probe. The
major challenge in this case is therefore to design an appropriate matching scheme which
is robust enough to tolerate possible intra-class facial shape variations over time (e.g., face
morphology changes with age) and fine enough to distinguish extra-class 3D face similari-
ties (e.g., identical twins). However, when users are assumed uncooperative in uncontrolled
settings, thereby within a scenario of identification, a probe 3D face scan can display any
facial expression, thus leading to significant facial surface deformation, be in an arbitrary
pose, thereby possibly resulting in large missing face data, and occluded by external ob-
jects (e.g., sun glasses, scarf, hands, etc.). In such a case, 3D FR algorithms have to face
these multiple challenges within the same framework.

However, while 3D face data is widely expected to help overcome the unsolved issues
in 2D FR, i.e. lighting variations and pose changes, which typically occur in uncontrolled
conditions, the overwhelming majority of 3D FR algorithms so far proposed in the lit-
erature only target the challenge of facial expressions using frontal face data with slight
pose variations as those in the FRGC v2.0 dataset [Phillips et al. 2005]. Very high per-
formance, up to 99.0% rank-1 recognition rate, has been reported on FRGC v2.0 by state
of the art 3D FR algorithms which mostly operate on range face data, thereby require a
more or less accurate and costly face registration step (e.g., ICP), through several anthro-
pometric landmarks (e.g., nose tip), to align frontal 3D scans with moderate pose variation-
s [Kakadiaris et al. 2007a] [Faltemier et al. 2008a] [Queirolo et al. 2010]. Those methods
reporting a performance among the best on FRGC v2.0 may also require an additional stage
of learning to further boost the performance [Wang et al. 2010] [Spreeuwers 2011]. Using
the benchmark of FRGC v2.0, Kakadiaris et al. [Kakadiaris et al. 2007a] reported a high
performance at the early stage of its public release with a method which performs a multi-
stage fine alignment to fit a deformable Annotated Face Model (AFM) to an input face scan.
They further improved their approach using a LDA-based learning strategy to select highly
discriminating wavelet coefficients extracted from the geometry image which results from
the fitting of AFM [Ocegueda et al. 2011a]. Queirolo et al. [Queirolo et al. 2010] reported
a 98.4% rank-1 recognition rate with a method which first locates on a frontal range image
six anthropometric landmarks, e.g.,the inner right and left eye corners, the right and left
nose corners, and the nose tip and base, and then crop four face regions on which a boosted
ICP using Simulated Annealing is performed for matching.

Spreeuwers [Spreeuwers 2011] reported a rank-1 recognition rate as high as 99.0%
with a method which aligns 3D face scans through an intrinsic face coordinate system
thanks to landmark structures, i.e. the vertical symmetry plane, the nose tip and the slope
of the bridge of the nose, then fuse several region classifiers trained on additional 3D face
data, e.g., Bosphorus, using subspace-based methods. Unfortunately, all these methods
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Figure 4.2: Overview of the proposed method.

implicitly assume that 3D face scans are captured at a frontal pose and thereby make it
possible the use of a priori face information, e.g., nose tip, symmetry plane, that may be
simply unavailable because of face missing data due to pose or external occlusions in a
scenario of 3D FR under uncontrolled conditions.

There does exist in the literature a few methods dealing with one specific or another
challenge of 3D FR in uncontrolled conditions, e.g., pose estimation using the nose tip di-
rection [Dibekliouglu et al. 2009] or facial landmark structure [Passalis et al. 2011], the re-
covery of missing face data due to pose using facial symmetry plane [Passalis et al. 2011],
the detection and restoration of occluded facial regions in aligning an input potentially oc-
cluded 3D face scan with some landmarks and the learning of a subspace of registered
frontal 3D face scans [Colombo et al. 2011a] [Drira et al. 2013]. However, it is hard to
predict in advance the specific kind of degradation on an input 3D face scan captured from
a uncooperative subject in uncontrolled conditions. The possible joint presence of pose
changes and external occlusions makes it difficult to automatically localize facial land-
marks or structures which are required by the previous techniques for face registration.

In this chapter, we are concerned with 3D FR under uncontrolled conditions and there-
fore target an identification scenario dealing with those aforementioned challenges. For
this purpose, we propose a registration free local feature-based 3D FR method which per-
forms the matching of two 3D face scans through their respective shape description, i.e.

a sparse set of pose invariant local shape descriptors, and thereby offers a uniform frame-
work to deal with the challenges of facial expression variations, pose changes and external
occlusions at same time.

4.1.1 Overview of the Proposed Method

As shown in Fig. G.1, given an input probe 3D face scan, we first estimate its multiple
order surface differential quantities, including facial normal (1st order), facial shape in-
dex (2nd order) and their derivation (3rd order). Then, facial salient vertices are detected
by the local extreme values of maximum curvature (κmax) and minimum curvature (κmin)
within a 3D Gaussian scale space, giving birth to κmax salient vertex detector and κmin

salient vertex detector. Once salient vertices located on the input probe scan, we move
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to the description of local shapes around those salient vertices and compute histograms
of multiple order surface differential quantities, including Histograms of mesh Gradient
(HOG, 1st order), Histogram of Shape index (HOS, 2nd order) and Histogram of Gradient
of Shape index (HOGS, 3rd order), and their early fusion, namely Histogram of Multi-
ple Quantities (HOMQ, multi-order). The input probe face scan is then represented as a
sparse set of pose invariant local shape descriptors computed over those automatically lo-
cated salient vertices, leading to Multiple Vertices based HOG, HOS, HOGS and HOMQ,
denoted as MV-HOG (1st order), MV-HOS (2nd order), MV-HOGS (3rd order) and MV-
HOMQ (multi-order), respectively. The same pipeline is also applied once to all the 3D
face scans in the gallery. The matching of a probe 3D face scan and a gallery one is car-
ried out through their respective sparse set of local shape descriptors, using a SRC-based
fine grained matcher (FGM) which computes the mean reconstruction error. FGM is fur-
ther compared with a coarse grained matcher (CGM) which simply counts the number of
matched pairs of salient vertices between the probe and gallery.

4.1.2 Main Contributions of the Proposed Method

1) Three novel pose-invariant local shape descriptors are proposed which describe the
neighborhood of a given salient vertex as weighted statistical distributions of multiple order
surface differential quantities, including Histograms of mesh Gradient (HOG, 1st order),
Histogram of Shape index (HOS, 2nd order) and Histogram of Gradient of Shape index
(HOGS, 3rd order). As each of those local shape descriptors provides complementary geo-
metric shape information, we also consider a local shape descriptor, namely Histogram of
Multiple Quantities of multiple order (HOMQ), which is their early fusion, i.e. their simple
concatenation;

2) Automatic extraction of a sparse set of salient vertices which are detected as the
local extreme values of maximum and minimum curvatures within a 3D Gaussian scale
space. These salient vertices prove to be evenly distributed on both the rigid and elastic
facial regions, thereby achieve a comprehensive but still compact description of a facial
surface when combined with the proposed local shape descriptors. The fact that these
salient vertices cover the whole face surface is important because we believe that both
rigid and elastic facial regions carry out discriminating information. The facial description
which results from such a process remains compact as the detected salient vertices are quite
sparse and their number typically around 650 in comparison with the number of vertices
of a raw point cloud which is on the order of multiple ten thousands, e.g., 30,000. Each
facial surface is thus represented as a sparse set of local shape descriptors, namely Multiple
Vertices based HOG, HOS, HOGS and HOMQ, denoted as MV-HOG (1st order), MV-HOS
(2nd order), MV-HOGS (3rd order) and MV-HOMQ (multi-order), respectively. Such a
compact facial description prevents one to recover the original raw 3D face data which is
in line with the respect of privacy policy as required in practical biometric applications;

3) A fine grained local feature matcher (FGM) using the Sparse Representation based
Classifier (SRC) [Wright et al. 2009a] is introduced and compared with a coarse grained
local feature matcher (CGM) that was used in our preliminary work [Li et al. 2011c]. CGM
performs the matching of two face scans through their corresponding sparse sets of local
shape descriptors and simply counts the number of matched vertex pairs as matching score.
This is problematic when the underlying face scans have severe missing data due to pose
and/or external occlusions, which result in a significant decrease of the number of matched
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vertex pairs. In contrast, FGM alleviates this vulnerability of missing data by making use
of SRC to compute a mean reconstruction error when each local shape descriptor from a
probe face scan is sparsely reconstructed from an over-complete dictionary composed of
the local shape descriptors extracted from all the face scans in the gallery.

4) All the previous steps are directly carried out on mesh-based 3D face scans without
any prior registration or learning. The overall result is a uniform registration free 3D FR
framework which can deal with facial expression variations, arbitrary pose changes and
occlusions at the same time. This is in clear contrast to the overwhelming majority of 3D
FR algorithms which only deal with expressive frontal face scans and mostly require in
addition an expensive registration step.

Comprehensive experiments were carried out on Bosphorus, the largest public
dataset which best accounts for the challenges of 3D FR in uncontrolled condition-
s [Savran et al. 2008] and depicts large variations of expressions, pose and occlusions
[Savran et al. 2008]. Indeed, Bosphorus encompasses 4666 3D face scans of 105 subject-
s depicting 34 expressions (both action units and six basic emotions), 13 pose variations
(yaw, pitch and cross rotations) leading in particular to self-occlusion and thus large miss-
ing data, and 4 external occlusions (e.g.,hand, hair, eyeglasses). It permits thus to compre-
hensively test the robustness of 3D FR algorithms against the aforementioned challenges
in uncontrolled conditions. Without any prior registration or learning, the experimental
results demonstrate the effectiveness of the proposed method which achieves the best state
of the art rank-1 recognition rates over the whole dataset (96.56%) and its three subsets
of expression variations (98.82%), pose changes (91.14%) and occlusions (99.21%). As
recent studies show that state of the art 3D FR algorithms with high performance over
a database can vastly degrade over 3D face scans captured under different conditions in
a different scenario [Vijayan et al. 2011b], we also carried out additional experiments on
the FRGC v2.0 database. The experimental results show that the proposed method con-
sistently displays competitive performance in comparison with state of the art algorithms
which mostly require accurate face alignment and/or learning of discriminating features,
and thereby demonstrates its generalization skill.

In our preliminary work [Li et al. 2011c], we assumed that both rigid and elastic fa-
cial regions have contributions to 3D face recognition, and thus proposed a local matching
approach to robustly associate the descriptors extracted from salient vertices which are de-
tected on the entire facial surface in the presence of expression variations. With it we took
part in the track on 3D face retrieval and recognition at SHREC 2011 contest, and our two
runs were awarded the first and the second performance in terms of rank one recognition
rate out of 14 runs submitted by four research groups [Veltkamp et al. 2011]. Furthermore,
since the probe set contains a certain number of partial face scans, our method also presents
the potential to deal with data missing caused by severe pose changes as often occurs in
the real. This work integrates that preliminary work but significantly extends it. The main
extensions are summarized as follows: (i) Instead of a coarse grained matching scheme as
defined in [Li et al. 2011c] which simply counts the number of matching vertices in a pair
of 3D face scans, we introduce in this paper a fine grained matching scheme based on a
multi-task sparse representation to further boost the robustness of the proposed approach
with the challenges of real-life applications in uncontrolled settings; (ii) In addition to the
challenge of facial expression variations, we further consider the two other challenges,
namely pose changes and occlusions through the improved framework and benchmarked
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the proposed framework on the whole Bosphorus dataset and its various subsets. Moreover,
we also provide in-depth analysis of the proposed method compared with the state of the
art; (iii) Additional experiments were also carried out on the FRGC v2.0 database to check
the generalization skill of the proposed method in comparison with the state of the art. (iv)
We also give insights into and provide in-depth analysis of the proposed method as well as
the time complexity analysis.

The remainder of this chapter is organized as follows: Section 2 overviews the related
work. Section 3 introduces multiple order surface differential quantities which are esti-
mated on facial triangular meshes. Section 4 presents the detection of salient vertices and
the construction of various pose invariant local shape descriptors. Section 5 describes the
SRC-based fine grained matcher (FGM) along with the coarse grained matcher (CGM).
Experimental results are discussed in section 6. Section 7 concludes this chapter.

4.2 Related Work

3D FR literature has been extensively surveyed by Bowyer et al. [Bowyer et al. 2006]
for works appeared prior to 2006, and Huang et al. [Huang et al. 2012], Smeets et al.

[Smeets et al. 2012], Spreeuwers [Spreeuwers 2011] and Drira et al. [Drira et al. 2013] for
more recent contributions. In this section, we try to broadly categorize them and analyze
their advantages and shortcomings, in particular with respect to the challenges of 3D FR
in uncontrolled environments, i.e. facial expressions, pose and occlusions, in order to
introduce the proposed approach.

A typical 3D FR algorithm comprises the following major components although they
are strongly interwoven each other [Gokberk et al. 2008]: selection of a proper face rep-
resentation, feature extraction, the design of a matching scheme which can be possibly
followed by a fusion strategy. As a result, 3D FR algorithms can be categorized using a
number of criteria, depending on the underlying technique chosen for each of these com-
ponents.

4.2.1 3D Facial Representations

3D FR algorithms can be first differentiated by the chosen face representation from which
facial features can be extracted for the matching step. Different face representations were
utilized in the literature, including raw point cloud [Faltemier et al. 2008a], range image
[Spreeuwers 2011], or more elaborated representations, e.g., geometry image and sur-
face normal map [Kakadiaris et al. 2007a], shape index image [Huang et al. 2011e], signed
shape difference map (SSDM) [Wang et al. 2010], specific encodings of facial range im-
age, i.e., eLBP [Huang et al. 2012] etc.. As human faces are all similar each other, elabo-
rated facial representations tend to highlight the distinctiveness of human faces and thereby
facilitate the extraction of facial features at the latter stage. A key question here is whether
3D face scans need to be registered before the generation of a proper facial representation.
The registration of a 3D face scan consists of aligning it to a common coordinate system
so that the matching of facial features can be carried out in a consistent way. As a matter
of fact, the generation of a range image, i.e. depth map, from a 3D face scan is pose depen-
dent. The net consequence is that all facial representations based on facial range images
need first to register properly the raw 3D face scans before their generation.
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Popular methods for the registration of 3D face scans are ICP-based
[Besl & McKay 1992] which consists of minimizing in an iterative way the distance
of two 3D point clouds representing two different 3D face scans. Its shortcomings are
well known. The ICP algorithm was designed for the matching of rigid surfaces whereas
facial surfaces typically depict elastic deformations. ICP is also quite expensive for
aligning 3D face scans of vertices numbered in terms of multiple ten thousands. Besides,
ICP-based registration requires in practice that 3D face scans be firstly coarsely registered
before their alignment, using for instance a few number of anthropometric points or
landmarks located on those 3D face scans, e.g., nose tip, eye corners. Another school of
registration methods is called self-dependent alignment [Wang et al. 2006c] which consists
of aligning 3D face scans through an intrinsic coordinate system of the face defined by
3D landmark structures, e.g., nose tip, nose ridge, symmetry plane [Wang et al. 2006c]
[Spreeuwers 2011]. However, automatic and accurate localization of 3D landmarks
as required in both the two approaches is problematic on partial faces captured in a
unconstrained setting [Zhao et al. 2011] [Passalis et al. 2011].

4.2.2 Facial Features

Given a facial representation, a number of facial features has been proposed
in the literature to characterize facial surfaces for the latter stage of match-
ing, including raw face coordinate-based [Maurer et al. 2005] [Amor et al. 2006c],
facial curve-based [Samir et al. 2006] [Drira et al. 2013], shape descriptor-
based [Chua et al. 2000] [Li et al. 2011c] [Smeets et al. 2013], subspace-based
[Russ et al. 2006] [Spreeuwers 2011], facial representation specific features
[Kakadiaris et al. 2007a] [Wang et al. 2006c] [Huang et al. 2012] [Li et al. 2011a],
etc. As a typical pattern recognition problem, good facial features for 3D FR should have
the following properties [Huang et al. 2012]: first, they should depict high discriminative
power to facilitate the latter stage of classification while accounting for large intra-class
variations, e.g., pose and expression changes; second, they should be easily extracted from
raw facial data to allow fast processing; finally, they should be compact enough so that
the matching process can be cost effective and thereby make possible large scale person
identification applications.

Facial features can thus be first judged according to the fact whether they are pose-
invariant or pose-aligned based [Pears et al. 2010]. Most facial features so far proposed
in the literature, in particular those extracted from range images, are pose-aligned features.
One notable exception is shape-based features, e.g., curvature, shape index, etc. In a uncon-
strained setting, pose-invariant facial features are far preferable than pose-aligned features
because 3D face scans can be in an arbitrary pose and face alignment is not only compu-
tationally expensive but even problematic in the presence of missing data due to pose and
external occlusions.

Another interesting property of facial features is that, while staying discriminating e-
nough for distinguishing different subjects, they could be invariant to variations due to
facial expressions. An original essay was made by Bronstein et al. [Bronstein et al. 2007]
who assumed that facial expressions can be modeled as isometries of the facial surface and
proposed a facial expression invariant canonical form. However, their assumption proves to
be inexact, especially in the presence of exaggerated facial expression [Drira et al. 2013].
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A far more popular approach observes that facial expressions introduce facial distortions
but there are still relatively stable facial regions, e.g., forehead, nose region, from which
expression robust features can be extracted [Amor et al. 2006b] [Ben Amor et al. 2008].
Chang et al. [Chang et al. 2006] selected three regions around the nose for 3D face match-
ing whereas Faltemier et al. [Faltemier et al. 2008a] extended the later number to 28 small
regions on the face. However, automatic detection and segmentation of facial surface into
rigid and mimic regions is still problematic [Amor et al. 2006a] [Wang et al. 2006c].

Facial features can also be evaluated according to their compactness which impacts
the scalability and thereby the applicability of the proposed 3D FR algorithm in real-life
biometric applications. From this viewpoint, raw 3D face data, i.e. point clouds, which
could be used directly as facial features as in [Maurer et al. 2005] [Amor et al. 2006c]
[Mian et al. 2007] [Faltemier et al. 2008a], are not desirable although the extraction of
such a facial feature is obviously straightforward and effortless. Furthermore, the match-
ing of two 3D point clouds generally is carried out through a surface distance, e.g., Mean
Square Error (MSE), using ICP which is quite time-consuming, thereby makes the direct
use of raw 3D face data as facial features impracticable for identification scenario which
requires one-to-many comparisons. Besides, raw 3D face data as facial features are also
at odds with the respect of privacy policy in biometric applications which wants to prevent
the reconstruction of the original biometric data from their template.

4.2.3 Matching Scheme

3D FR algorithms can also be categorized into three streams according to the nature of their
matching scheme: holistic, feature-based or hybrid [Zhao et al. 2003] [Mian et al. 2008]
[Huang et al. 2012]. Holistic matching-based 3D FR algorithms perform the matching
of global features extracted from the entire 3D face data. Examples of this stream are
ICP-based matching [Lu & Jain 2008], subspace-based methods [Heseltine et al. 2004],
annotated deformable model [Kakadiaris et al. 2007a], and isometry invariant description
[Bronstein et al. 2007]. Holistic 3D FR algorithms utilize global facial features that fully
capture facial details and thereby offer potentially very high discriminating power. The
downside is that they are likely more sensitive to facial expression variations. Further-
more, for a meaningful matching between holistic facial features, they require an accurate
registration step with respect to pose changes. As discussed previously, this is particular-
ly problematic in the presence of missing data and external occlusion for 3D face scans
captured under unconstrained conditions from uncooperative subjects.

Feature-based 3D FR algorithms perform the matching of local features extract-
ed from the neighborhoods of a set of keypoints, e.g., feature points automatical-
ly detected [Mian et al. 2008] [Smeets et al. 2009] [Huang et al. 2011e] [Li et al. 2011c]
[Veltkamp et al. 2011] or anthropometric landmarks manually or automatically labelled
[Berretti et al. 2010a]. Much of these works was inspired by the SIFT methodology
[Lowe 2004] which was first applied to 2D FR [Bicego et al. 2006], then extended to
3D FR in the wave of its extension to 3D range images [Mian et al. 2008] or 3D mesh-
es [Russ et al. 2009]. As long as the underlying facial representation from which local
features are extracted is pose invariant, feature-based matching, as pointed out firstly by
Mian et al. in 3D FR [Mian et al. 2008], has the potential advantage of being robust to fa-
cial expression, pose and lighting changes and even to partial occlusions. The downside of
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this scheme is the difficulty in extracting sufficient informative feature points from similar
or smooth 3D facial surfaces.

Some studies also exist which make use of a hybrid matching in combining global facial
features with local ones. Examples of this stream are the component and morphable model-
based method [Weyrauch et al. 2004], multiple region-based matching [Mian et al. 2007],
[Faltemier et al. 2008a], [Ben Amor et al. 2008], [Li et al. 2011a]. Most of them consist of
utilizing multiple face components, e.g., nose, forehead, which are independently matched
through ICP and then fused for a final matching score. As this kind of matching scheme
tends to combine facial configuration information with local properties of faces, it is theo-
retically the most powerful. However, it also risks inheriting both types of shortcomings:
necessity of expensive face registration, sensitivity to pose changes and occlusions, diffi-
culty of generating sufficient stable descriptive features, etc.

In this chapter, we are concerned with 3D FR in uncontrolled conditions and need to
cope with the various challenges, i.e. expression variations, pose changes and external
occlusions, at the same time. As a result, we propose a registration free local feature
oriented 3D FR method which performs the matching of sparse sets of pose invariant local
shape descriptors that we introduce in the following sections.

4.3 Estimating Multiple Order Facial Surface Differential

Quantities

In this section, we introduce the estimators of multiple order facial surface differential
quantities, which encompass a gradient estimator, a curvature estimator and a derivative of
curvature estimator.

4.3.1 Facial Surface Gradient Estimator

Let T be a discrete facial surface represented as a triangular mesh of E3. T can be regarded
as an undirected graph G = (V,E), where V = {vi}1≤i≤N and E = {ei j} denote the set of
vertices and the set of edges respectively. ∀vi ∈ V , we define N1(vi) = {vi, j}k

j=1 as its k

adjacent vertices, i.e. its one-ring neighbors (Fig. 4.3-a, i = 1,k = 5). We denote nvi
as

the unit normal vector of T and vi as the coordinate vector at vertex vi. Then, nvi
can

be computed as the average of the normals of the triangles incident to vi (Fig. 4.3-b) as
follows:
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Suppose that the local shape of T at vertex vi can be fitted by a cubic polynomial func-
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(−nx
vi

nz
vi

,− n
y
vi

nz
vi

,−1)T, the surface gradient direction θ and magnitude can be then estimated as

follows:

θ = arctan(
zy

zx

) = arctan(
n

y
vi

nx
vi

) (4.2)

||∇z(x,y)||=
√

zx
2 + zy

2 =

√
(nx

vi
)2 +(ny

vi)
2

|nz
vi |

(4.3)
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Figure 4.3: Illustration of normal estimation. (a) one-ring neighborhood, (b) nv1 is com-

puted by averaging the normal vectors of triangles in one-ring of v1.

4.3.2 Facial Surface Curvature Estimator

There are three main approaches to calculate curvatures on triangular meshes
[GATZKE & Grimm 2006]: a. local fitting; b. discrete estimation of curvature directly
on triangular meshes; c. estimation of curvature tensor. In this paper, we make use of
the local cubic-order surface fitting method as in [Goldfeather & Interrante 2004b] which
displays a better behaviour than discrete estimation method for facial expression analysis
[Wang et al. 2006a].

For each vertex vi of T , this method first defines a local 3D coordinate frame with its
origin at the vertex and z axis along the normal vector of the vertex. Given two orthogonal
axes, x and y, randomly chosen in the tangent plane perpendicular to the normal vector,
vertices in the neighborhood (two-ring) of the vertex vi are then transformed and rotated to
the local coordinate system, in which a cubic polynomial function:

z(x,y) =
A

2
x2 +Bxy+

C

2
y2 +Dx3 +Ex2y+Fxy2 +Gy3 (4.4)

is approximated by the coordinates of the vertices within the local neighborhood. And it’s
normal:

(zx,zy,−1) = (Ax+By+3Dx2 +2Exy+Fy2,

Bx+Cy+Ex2 +2Fxy+3Gy2,−1) (4.5)

is approximated by the normal vectors of the vertices within the local neighborhood. By
using least-square fitting method to solve appriximation equations (4.4) and (4.5), we can
obtain all the parameters of the local fitting function z(x,y). Then the Weingarten curvature
matrix at vertex vi can be estimated as

Wvi
=

(
A B

B C

)
.
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The maximum curvature κmax and minimum curvature κmin (κmax ≥ κmin) can be estimated
as the eigenvalues of Wvi

. The shape index can be estimated as:

S(vi) =
1
2
− 1

π
arctan(

κmax +κmin

κmax−κmin

) (4.6)

4.3.3 Facial Curvature Derivation Estimator

3D FR algorithms require a comprehensive description of shape variations of facial sur-
faces. As a result, instead of derivatives of deriving curvatures, we compute the gradient of
shape index which is a third order differential quantity but more importantly a quantitative
measurement of the shape variations of a surface. As in [Russ et al. 2009], we define shape
index as a scalar function f : T → [0,1]. Then the gradient of this scalar function f at vi

defined in its local tangent plane can be approximated by solving an optimization problem
using the finite element numerical algorithm [Meyer et al. 2001].

Let vi ∈ N1(vi), the gradient ∇ f (vi) can be estimated by minimizing:

∇ f̃ (vi) = argmin
k

∑
j=1

|∇ f (vi)
TP(−−→vivi, j)−

f (vi, j)− f (vi)

||vi, j−vi||
| (4.7)

where P(−−→vivi, j) is the projected unit vector of −−→vivi, j in the local tangent plane of vi. Fig.
4.4 shows the estimated normal vector (b), maximum curvature (c), minimal curvature (d),
shape index (e) and gradient of shape index (f) on a sampled facial surface (a).

(a) (b) (c)

(d) (e) (f)

Figure 4.4: Illustration of multiple order surface differential quantities estimation. (a)

original facial surface; (b) normal vector; (c) maximum principle curvature; (d) minimum

principle curvature; (e) shape index; (f) gradient of shape index;

108



Chapter 4. 3D Face Recognition in the Presence of Expression, Pose and Occlusion

Variations

4.4 3D Facial Salient Vertices Detection and their Local Shape

Description

Given an input 3D face scan, the purpose of this section is to generate a set of compact
yet comprehensive pose invariant local features directly computed over the input 3D mesh
to enable the later stage of the matching of partial 3D face scans without any registration.
We first describe the automatic detection of facial salient vertices then introduce the pose
invariant local shape description of those salient vertices.

4.4.1 3D Facial Salient Vertices Detection: κmax and κmin based Detectors

The detection of salient vertices over 3D face meshes is an extension of the SIFT method-
ology to 3D [Zaharescu et al. 2009] [Maes et al. 2010] [Li et al. 2011c]. In the case of
3D facial surfaces, the aim here is to automatically locate in the 3D Gaussian scale space
salient facial vertices which are evenly distributed over the entire face scan, rigid and elas-
tic regions included, to enable a comprehensive shape description of an input 3D face scan.
Specifically, an input raw 3D mesh is firstly smoothed by a Gaussian filter with different
values of standard deviation σ . Curvature is then estimated for each vertex on the original
and smoothed meshes. Given a vertex vi, we compute the difference of estimated curva-
tures of the same vertex for each pair of adjacent scales. Finally, this difference of curvature
at a vertex on a given scale is compared to the differences of its one-ring neighbors on its
own scale as well as the corresponding ones on upper and lower scales. A vertex is select-
ed as a salient vertex only if its value is a local extreme value within one-ring scale space
neighborhood. In order to accurately characterize local shape variations at a given vertex,
we propose to make use of maximum curvature (κmax) and minimum curvature (κmin) in
this work although their average value, i.e. mean curvature, could be another alternative
but less precise. Fig. 4.5 shows the detected salient vertices by κmax and κmin detectors,
respectively on a sampled facial surface.

(a) (b)

Figure 4.5: Illustration of the salient vertex detection: salient vertices detected by κmax

detector (a), and κmin detector (b), over a facial surface.

As we can see from Fig. 4.5, salient vertices are evenly distributed over the entire
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face surface, containing rigid and elastic facial regions. Furthermore, κmax and κmin de-
tectors locate differently salient vertices which provide added value in 3D FR as we will
demonstrate in the experiments.

4.4.2 Pose-invariant Local Shape Description: Histograms of Multi-order

Surface Differential Quantities

Once a salient vertex detected on an input 3D face mesh, we introduce several pose-
invariant local shape descriptors to comprehensively describe the local shape variations
at the detected salient vertex using the histograms of multiple order surface differential
quantities. To make the resulted local shape descriptors robust to small transformations,
e.g., spatial shifting and non rigid deformations, those histograms are obtained in pooling
the multiple order surface differential quantities computed over a properly chosen neigh-
borhood of the detected salient vertex. Specifically, these pose invariant local shape de-
scriptors are computed as follows.

i) Canonical direction(s) assignment. Similar to the original 2D SIFT descriptor, we
need to assign a canonical direction(s) to generate a rotation invariant local shape descrip-
tor. Based on the canonical direction(s), two local surface pathes of two different salient
vertices can be aligned to be better compared. As shown in Fig. 4.6-a, given a detected
salient vertex v (red color), a local geodesic disk surface patch centered at v and with a
radius R is considered. Using the same scheme as in section 4.3.2, we first transform the
local patch vertices (blue color) to the local coordinate system, where the salient vertex v is
the origin, and its normal vector is along the positive z axis. Then, we compute the normal
vector of each vertex (Fig. 4.6-b). All these vectors are then projected to the local tangent
plane of v, and an initial reference direction is randomly selected (Fig. 4.6-c). Finally, one
or several canonical orientations are assigned according to the dominant direction(s) of the
projected normal vectors with 360 bins based on the reference direction (Fig. 4.6-d).

Figure 4.6: Canonical direction(s) assignment: (a) a detected salient vertex and it-

s geodesic disk patch; (b) coordinate transformation and normal vector estimation; (c)

normal vector projection and initial direction selection; (d) angle statistics and canonical

direction(s) assignment.

ii) The configuration of a local shape descriptor. The local shape descriptors associated
with a salient vertex are computed in simulating the operation of human complex cells in
the visual cortex [Hubel & Wiesel. 1962] so that they are robust to small transformations,
e.g., spatial shifting, non rigid deformations. This is achieved in pooling multiple order
surface differential quantities computed over the neighborhood of a salient vertex as shown
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in Fig. 4.7. Once the canonical orientations are assigned, the local coordinate system
rotates in the local tangent plane, making each canonical orientation as new x axis. New y

axis can be computed by the cross product of z and x. Based on this new local coordinate
system, all the neighbor vertices of a salient vertex are projected to the tangent plane of that
salient vertex. Eight projected vertices along to eight quantized directions starting from the
canonical orientation with a distance of r1 to the salient vertex are fixed. 9 circles with a
radius r2, centered at the salient vertex and its eight neighbors, respectively, can be further
located. Each of those 9 circles defines a local region which overlaps each other to achieve
smooth transitions between those local regions.

Figure 4.7: The configuration of a local shape descriptor : Canonical orientation (red

vector stemming from the centre vertex with an arrow), the centre salient vertex (+) and its

8 neighborhood vertices (+) with a distance of r1; 9 circles with the same radius of r2 are

assigned to the 9 vertices, respectively.

iii) Multiple order surface differential quantities statistics. In each circle i, we pool mul-
tiple surface differential quantities and calculate three histograms, namely the histogram of
surface gradient (hogi), histogram of shape index (hosi) and histogram of gradient of shape
index (hogsi). For hogi and hogsi, the histogram is computed as the gradient angle weight-
ed by gradient magnitude. This histogram is with 8 bins representing 8 main orientations
ranging form 0◦ to 360◦. For hosi, the values of shape index belong to [0,1] are also quan-
tized to 8 bins. Then, all the values of histograms are weighted by a Gaussian function,
where the standard deviation is computed as the Euclidian distance between the current
vertex and the center vertex of the circle. The final histograms: HOG, HOS and HOGS at
a detected salient vertex are formed by concatenating hogi, hosi and hogsi with clockwise
direction, represented as follows:

HOG = (hog1,hog2, . . . ,hog9), (4.8)

HOS = (hos1,hos2, . . . ,hos9), (4.9)

HOGS = (hogs1,hogs2, . . . ,hogs9). (4.10)
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These three local shape descriptors provide different local shape information within the
vicinity of a given vertex. HOG characterizes the orientations where a local surface changes
the most and thereby coarsely describe the shape of that local shape. HOS comprehensively
describes the various shapes in the vicinity of the given vertex whereas HOGS delivers the
speed of local shape changes. We simply concatenate HOG, HOS and HOGS as a single
feature vector of a detected salient vertex, and name it as Histogram of Multiple surface
differential Quantities (HOMQ):

HOMQ = (hog1hos1hogs1,hog2hos2hogs2, . . . ,hog9hos9hogs9). (4.11)

To avoid too big disparities of multi-order surface differential quantities which may
typically result from the irregularities of the underlying triangular 3D mesh, all those his-
tograms, i.e. hogi, hosi, hogsi, hogihosihogsi, HOG, HOS, HOGS and HOMQ, are further
normalized to an unit vector and delivered as local feature vectors. These local feature
vectors comprehensively describe local shape variations around a given salient vertex on
the input 3D face scan. They are pose invariant and remain very compact. The dimensions
of hogi, hosi, hogsi and hogihosihogsi equal to 8, 8, 8 and 24, respectively. As a result, the
dimensions of HOG, HOS, HOGS and HOMQ are 72, 72, 72 and 216, respectively.

Given a facial triangular mesh T representing a 3D face scan. Let M be the number
of salient vertices detected on it and m the total number of canonical directions assigned
(M ≤= m). The 3D face scan T can thus be represented by a set of multiple differential
quantities based local shape descriptors associated with a set of salient vertices, denoted
as,

FT = {f1, f2, . . . , fm},

where fi, i ∈ {1,2, . . . ,m} can be HOG, HOS, HOGS or HOMQ. Each of those descriptors
is pose invariant, compact and contributes to describe the local shape variations around
a given salient vertex. However, depending on the possible missing data due to the face
pose and/or external occlusions, the number of those descriptors can vary from one scan to
another. In the subsequent, the set of descriptors of all salient vertices detected on the entire
face scan are referred to as Multiple salient Verices and multiple Histograms, denoted as
MV-HOG, MV-HOS, MV-HOGS and MV-HOMQ, respectively.

4.5 Facial Surface Matching: a SRC-based Fine Grained

Matcher vs. a Coarse Grained Matcher

Given two sets of local shape descriptors extracted from two 3D face scans as explained in
the previous section, one needs to design a proper matching scheme so as to compare the
two input 3D face scans and deliver a similarity measurement. In this section, we intro-
duce a fine grained local feature matching scheme using the Sparse Representation based
Classifier (SRC) [Wright et al. 2009a] which is put in comparison with a coarse grained lo-
cal feature matching scheme that was used in our preliminary work [Li et al. 2011c]. The
coarse grained local feature matching between two face scans, i.e. two sets of local shape
descriptors, is much inspired by the SIFT methodology in 2D [Lowe 2004] and consists
of counting the number of matching pairs of vertices as matching score. However, this is
problematic when the underlying face scans have missing data due to arbitrary pose and/or
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severe occlusions, which result in a significant decrease in the number of matching pairs of
salient vertices. As a result, we propose in this paper a fine grained local feature matching
scheme which better accounts for the challenges of missing data and occlusions for 3D FR
under uncontrolled setting. It makes use of SRC to compute a mean reconstruction error
when each local shape descriptor from a probe face scan is sparsely reconstructed from
an over-complete dictionary composed of the local shape descriptors extracted from all
the face scans in the gallery. In the subsequent, the coarse grained matcher is first briefly
described and then the fine grained matcher is introduced.

4.5.1 The Coarse Grained Matcher (CGM)

Given two facial triangular meshes T1 and T2 with m and n salient vertices respectively, we
can then extract two sets of local shape descriptors to describe them as explained in section
3:

FT1 = {f1
1, f

1
2, · · · , f1

m}

and
FT2 = {f2

1, f
2
2, · · · , f2

n}.

Similar to the SIFT-like matcher which uses the angle of two feature vectors as similarity
measurement, we compute ai j = arccos〈f1

i , f
2
j 〉, with i ∈ {1,2, . . .m}, and j ∈ {1,2, . . .n},

and define a similarity matrix [ai, j]. Each row in that matrix is further ranked in an ascend-
ing order. A match between two local shape descriptors is detected if the ratio of the first
and the second values in a same row is smaller than a pre-defined threshold µ . The simi-
larity between two 3D face scans T1 and T2 is then measured in counting simply the total
number of matching pairs. The matching scheme using such a similarity measurement is
called coarse grained matcher and abbreviated as CGM in the subsequent.

This simple coarse grained matching scheme was implemented in several works for 3D
FR using facial range images [Mian et al. 2008] [Mian et al. 2007] [Lo & Siebert 2009]
[Zhang & Wang 2009] [Huang et al. 2011a] [Huang et al. 2012] or 3D facial meshes
[Maes et al. 2010] [Li et al. 2011c] [Smeets et al. 2013]. It has been improved to account
for the facial configuration in incorporating holistic spatial relationships [Mian et al. 2008]
[Huang et al. 2011a] [Huang et al. 2012]. However, its coarse nature in simply counting
the number of matching pairs makes it very vulnerable to missing data and external occlu-
sions which typically occur in real-life biometric applications in uncontrolled conditions.

4.5.2 SRC-based Fine Grained Matcher (FGM)

Instead of simply counting the number of matching pairs of salient vertices between two
3D face scans as in CGM, we can estimate a mean reconstruction error when the sparse
set of local shape descriptors of the first 3D face scan is used to reconstruct those of the
second 3D face scan. The intuition here is that when two 3D face scans are of the same
subject and thereby match each other, there should exist, even in case of missing data or
occlusions, a set of pairs of salient vertices detected from both the two 3D face scans,
which are identical in an ideal case and otherwise very close each other. As a result,
when the local shape descriptors of the salient vertices of a first 3D face scan are used
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to reconstruct those of the second 3D face scan, the mean reconstruction error should be
very small and thereby delivers a fine grained similarity measurement. In this work, we
achieve at the same time the identification of matching pairs of local shape descriptors
between two 3D face scans and the estimation of mean reconstruction error through a
specific sparse representation-based classifier (SRC) firstly introduced by Wright et al.

[Wright et al. 2009a] for 2D FR. In that work, they tried to reconstruct a 2D probe face
using those in the gallery and made assumption that a well-aligned probe 2D face image can
be represented by a linear combination of gallery 2D facial images of the same subject and
thus a sparse linear combination of the whole gallery 2D face images. The reconstruction
error of this sparse representation was then used for classification. In this work, SRC is
used to reconstruct the local shape descriptors of the salient vertices extracted from an
input probe 3D face scan using those extracted from all the gallery faces. Our a priori
knowledge here is that a salient vertex of a probe 3D face scan should correspond uniquely
to a salient one of the gallery 3D face scan of the same subject as long as that salient vertex
is not missing, due to arbitrary pose, or covered, due to external occlusions. In putting into
a dictionary the local shape descriptors of all the salient vertices extracted from the gallery
3D face meshes, the local shape descriptor of a given salient vertex on a probe 3D face scan
should thus be a very sparse linear combination of those pooled in the dictionary provided
that the subject corresponding to the input probe 3D face scan is in the gallery. This idea
is implemented here in forming a dictionary with local shape descriptors extracted from
all the gallery 3D face scan. The mean reconstruction error of the local shape descriptors
extracted from the sparse set of salient vertices in a probe 3D face scan by those of a gallery
3D face scan is then used as a similarity measurement between the probe and that gallery
3D face scan. In comparison with CGM which counts the number of matching pairs of
salient vertices, this similarity measurement is a fine grained measure computed in terms
of mean reconstruction error. It proves to be more robust to missing data or occlusions and
is referred to as SRC-based Fine Grained Matching scheme and abbreviated as FGM in the
subsequent.

4.5.2.1 Building the Gallery Dictionary

Let T1,T2, . . . ,TC be C triangular meshes making up the gallery set of C classes (subjects).
Each subject has thus exactly one 3D face scan in the gallery set. Let ni be the number
of salient vertices detected from a 3D face scan Ti, where i ∈ {1,2, . . . ,C}, using a given
salient vertex detector, e.g., maximum or minimum curvature-based in this work, the 3D
face scan Ti can thus be represented by the set of local shape descriptors extracted from
those salient vertices:

FTi
= {fi

1, f
i
2, · · · , fi

ni
}.

Let di,ni
= fi

ni
and

Di = (di,n1 ,di,n2 , · · · ,di,ni
).

Thus, all the local shape descriptors of class (subject) i are represented by a sub-dictionary
Di of size M× ni, where M = 72, or M = 144, depending on the underlying local shape
descriptor, i.e. HOG, HOS, HOGS or HOMQ, being used. The overall dictionary for all
the C classes in the gallery is thus defined as

D = (D1,D2, · · · ,DC).
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Note that D has a total of K = ∑
C
i=1 ni local shape descriptors, leading to a dictionary of

size M×K.
Given a facial surface, hundreds of salient vertices can be detected, making K a large

number. That is to say, D is an over-complete dictionary to represent all the C classes. The
local shape descriptor associated with a salient vertex of a probe 3D face scan can thus be
sparsely represented using the over-complete dictionary D. Since multiple salient vertices
are generally detected from a 3D face scan, multi-task sparse representation is introduced
and described in the following subsection.

4.5.2.2 Multi-task Sparse Representation

Given a probe face scan with n salient vertices and n local shape descriptors,

Y = (y1,y2, · · · ,yn), (4.12)

the sparse representation of Y associated with the gallery dictionary D is formulated as

X̂ = argmin
X

n

∑
i=1

‖xi‖0 s.t. Y = DX, (4.13)

where X = (x1,x2, · · · ,xn) ∈ R
K×n is the sparse representation coefficient matrix, and the

l0 norm of vector x defines the number of its non-zero elements.

‖x‖0 = ♯{i|xi 6= 0}.

This is a multi-task problem since both X and Y have multiple measurements. However,
this multi-task problem differs from the one studied in the literature, e.g., joint sparse repre-
sentation of multiple tasks [Zhang et al. 2012], as the observations on 3D face scans here,
i.e.the local shape descriptors of salient vertices, vary from one 3D face scan to another
one, both in terms of number and location. It is thus quite hard to consistently order these
salient vertices and capture their collaborative relationships. As a result, we decompose
this multi-task problem into n simple sparse representation problems, one for each probe
local shape descriptor yi,

x̂i = argmin
xi

‖xi‖0 s.t. yi = Dxi, i = 1,2, · · · ,n. (4.14)

It has been proved that (4.14) is equivalent to solving the following n l1 minimization
problems if the corresponding solution is sparse enough:

x̂i = argmin
xi

‖xi‖1 s.t. yi = Dxi, i = 1,2, · · · ,n. (4.15)

There are a number of efficient and fast l1 minimization algorithms which can be used to
solve Eq. (4.15). In this work, we use OMP algorithm [Pati et al. 1993] to solve Eq. (4.14),
where the sparsity parameter in OMP algorithm is denoted as L. Similar to voting SRC, we
use the average reconstruction error to determine the identity of the probe face scan Y.

r j(Y) =
1
n

n

∑
i=1

‖yi−Dδ j(x̂i)‖2
2 (4.16)
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where δ j is a characteristic function which selects the coefficients associated with the j-
th gallery (sub-dictionary). Finally, the index j which minimizes r j(Y) in Eq. (4.16) is
selected as the identity of Y.

A new matching scheme is thus achieved by solving Eqs. (4.14) and (4.16) and is
referred to in the subsequent as SRC-based fine grained matcher (FGM). It is worth to note
that this fine grained matching scheme achieves within the same framework not only the
matching of the salient vertices of the input 3D probe face scan with those of all the gallery
3D face scans through Eq. (4.15), but also the computation of mean reconstruction errors
of the probe 3D face scan with those in the gallery using Eq. (4.16).

4.6 Experimental Results

We evaluated the effectiveness of the proposed approach on Bosphorus, the largest pub-
lic 3D face database which best accounts for the various challenges of 3D FR in un-
controlled conditions, namely expression variations, pose changes and external occlusions
[Savran et al. 2008]. As recent studies show that 3D FR algorithms showing state of the
art performance over a dataset can vastly degrade on 3D face scans captured in a different
scenario, we also carried out additional experiments on FRGC v2.0 [Phillips et al. 2005],
a popular benchmark in 3D FR, to further check the generalization skill of the proposed
approach.

In this section, we first describe in subsection 4.6.1 the Bosphorus database and its
various subsets along with a short introduction of FRGC v2.0. We then define in subsection
4.6.2 the experimental setups and protocols and analyze in subsection 4.6.3 the stability of
salient vertices located by κmax and κmin detectors and their added value. The experimental
results on the the whole Bosphorus and its various subsets are comprehensively analyzed
in subsection 4.6.4 in comparison with the state of the art. Subsection 4.6.5 presents the
additional experimental results on FRGC v2.0. Finally, we give in subsection 4.6.6some
insights of the proposed framework and analyze its time complexity.

4.6.1 Databases

Bosphorus is quite unique for its broad set of expression types, systematic variation of pos-
es and different external occlusions, thus depicts the various challenges that can typically
occur in real-life applications under uncontrolled environment. On the other hand, FRGC
v2.0 was the first largest dataset of frontal 3D face scans with various facial expressions. In
the subsequent, we first comprehensively describe Bosphorus and its various subsets and
then introduce shortly FRGC v2.0.

1) The Bosphorus 3D Face Database. The database contains a total number of 4666
3D scans of 105 subjects composed of 61 men and 44 women. For each subject, there
are around 34 expressions, 13 poses, and 4 occlusions. 30 professional actors/actresses are
incorporated to obtain more realistic expression data. The detailed composition of the three
variations are listed as follows:

i) Facial Expressions (FE). This subset contains 6 basic emotions along with neutral,
i.e. Anger, Disgust, Fear, Happiness, Sadness and Surprise (see Fig. 4.8); 28 facial Action
Units (AUs): 20 Lower AUs (LAU), 5 Upper AUs (UAU), 3 Combined AUs (CAU). LAUs
occur by the movement of lip(s), mouth, cheek, nose or chin while UAUs correspond to
the movement of upper facial components, e.g., eye(s) or brow(s) (see Fig. 4.9 for several
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samples). Those facial expressions thus encompass not only prototypical facial expressions
but also subtle and exaggerated ones.

Figure 4.8: 2D Samples of 6 basic facial emotions with neutral: (a) neutral; (b) Anger; (c)

Disgust; (d) Fear; (e) Happiness; (f) Sadness; (g) Surprise.

Figure 4.9: 2D Samples of facial action units: (a-f) displaying Lower Action Units, (g-j)

displaying Upper Action Units, and (k-l) representing Combined Action Units.

ii) Poses (P). This subset contains 7 Yaw Rotations (YR): +10◦,+20◦,+30◦,
+45◦,+90◦,−45◦and− 90◦; 4 Pitch Rotations (PR): Strong upwards/downwards, Slight
upwards /downwards; 2 Cross Rotations (CR): +45◦ yaw and approximately ±20 pitch
(see Fig. 4.10).

iii) Occlusions (O). This subset encompasses: Occlusion of eyes by hand (HandE);
Occlusion of mouth by hand (HandM); Occlusion of eyes by glasses (Glasses); Occlusion
by hair (long hair of the female and facial hair like beard and moustache of the male) (Hair)
(see Fig. 4.11).

vi) A subset of 18 unlabeled frontal scans without occlusion. They are however mostly
expressive.
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Figure 4.10: Samples of head pose variations: (a) frontal; (b) Yaw +10◦; (c) Yaw +20◦;
(d) Yaw +30◦; (e) Yaw +45◦; (f) Yaw −45◦; (g) Yaw +90◦; (h) Yaw −90◦; (i) PR: Strong

upwards; (j) PR: Strong downwards; (k) CR: +45◦ yaw and approximately +20 pitch; (l)

CR: +45◦ yaw and approximately −20 pitch.

Tab. 4.1 shows the distribution of 3D face scans for different subsets. For illustration
purposes, only 2D samples are shown in this paper. Please refer to [Savran et al. 2008] for
more details and more samples of both 2D and 3D scans 1.

Figure 4.11: Samples of occlusions: from (a) to (d), Occlusion by glasses, hair, by hand on

right eye and by hand on mouth.

The 3D face scans in that database were acquired using Inspeck Mega Capturor II 3D
digitizer device, which has about 0.3mm sensor resolution in all x, y and z dimensions.
After the preprocessing steps of manually facial region segmentation, noise removing, and
down sampling, each scan approximately contains 35K points.

2) The Face Recognition Grand Challenge v2.0 (FRGC v2.0). The FRGC v2.0 database
is the first largest public 3D face dataset with various facial expressions. It consists of 4007
3D scans of 466 subjects acquired using a Minolta Vivid 900 laser scanner. All the scans
are (near) frontal and present several facial expression variations, e.g., anger, happiness,

1http://bosphorus.ee.boun.edu.tr/default.aspx

118



Chapter 4. 3D Face Recognition in the Presence of Expression, Pose and Occlusion

Variations

Table 4.1: The distribution of 3D face scans over the various subsets in the Bosphorus

database. In the subset of facial expressions, 105 neutral scans, one for each 105 subjects,

are used as gallery set whereas the remaining ones as probe sets. The subset YR45◦ of size

210 (YR90◦, resp.) contains both the subset of 105 scans at Yaw +45◦ (Yaw +90◦, resp.)
and those at Yaw −45◦ (Yaw −90◦, resp.).

Expression scans (105+2797)
Neutral Anger Disgust Fear Happy Sad Surprise LAU UAU CAU

105+194 71 69 70 106 66 71 1549 432 169
Pose scans (1365)

YR (735) PR (419) CR (211)
YR10◦ YR20◦ YR30◦ YR45◦ YR90◦ - -

105 105 105 210 210 - -
Occlusion scans (381)

HandE HandM Glasses Hair
105 105 104 67

unlabeled scans (18)

sadness, surprise, disgust and cheek puffing. Although FRGC v2.0 only contains frontal
3D face scans captured under controlled lighting conditions, it is a popular benchmark for
the assessment of 3D FR algorithms, especially with respect to facial expression variations.

In our experiments, all the scans in Bosphorus were first down sampled and triangu-
lated to triangular meshes by connecting each pair of neighboring vertices. All the scans
of FRGCv2 were first preprocessed using the publicly available 3D Face Preprocessing

Tools developed by Szeptycki et al. [Szeptycki et al. 2009a]. The preprocessing pipeline
contains: spike and noise removing, holes filling, nose tip localization, face cropping and
triangulation.

4.6.2 Experimental Setups

The proposed approach was first benchmarked on Bosphorus using the identification sce-
nario. Specifically, the first neutral scan of each subject in Bosphorus was used to construct
a gallery set and the remaining scans or its subsets were used as probe sets. Therefore, the
gallery size is 105 and the probe set size is 4561 for the whole database. Tab. 4.1 gives the
various sizes of probe sets tested for each subset.

In the proposed framework, the detection of salient vertices on a 3D face mesh requires
the definition of scale parameters σi whereas the computation of the local shape descriptors
associated with a salient vertex the specification of three radiuses R, r1 and r2. In this work,
we set the standard deviation of the Gaussian filter σi,(i = 1,2,3) to 1.83, 2.50 and 4.80,
respectively, whereas R, r1 and r2 were set to 22.50 mm, 15 mm and 7 mm, respectively.
Tab. 4.2 synthesizes these values.

The matching process was carried out using the salient vertices detected separately
through the extreme values of κmax and κmin curvatures over the corresponding Gaussian
scale space, and their score level fusion was used for final decision. For the coarse grained
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Table 4.2: Parameter Values

Parameter σ1 σ2 σ3 R r1 r2

Values 1.83 2.50 4.80 22.50 15 7

matcher (CGM), the number of matched salient vertices based on κmax detector added
with that using κmin detector is used for the fused similarity measure for a pair of gallery
and probe scans. Similarly, for the SRC-based fine grained matcher (FGM), the sum of
the average reconstruction error based on κmax salient vertex detector and that using κmin

detector is used for the fused similarity measure for a pair of gallery and probe scans. Tab.
G.2 shows the effectiveness of this score level fusion.

For CGM, one needs to set µ , the ratio of the score of the best matching pair over that
of the second best matching pair, to an appropriate value. For this purpose, we tested µ =
0.70, µ = 0.75 and µ = 0.80 respectively for different descriptors on the whole Bosphorus
database. Based on the results shown in Tab. 4.3, we set µ = 0.70 for HOG and µ =
0.75 for all the other descriptors in all of our experiments. For FGM, in addition to the
sparsity parameter L set to 1 as the result of the proposed framework which seeks one-
to-one matching of salient vertices, we also consider the setting of L = 5 which enables
the approximation of a local shape descriptor associated with a salient vertex by those of
maximum 5 vertices nearby. The results on the whole Bosphorus dataset using the proposed
local shape descriptors are shown in Tab. 4.4. As we can see from that table, these two
different settings roughly display the same performance, but the setting with L=1 not only
performs much faster but also is our basic assumption in FGM which seeks, for a local
shape descriptor of a given salient vertex in a probe face scan, that of the corresponding
gallery face scan. As a result, the setting L=1 is adopted in the following experiments.

Table 4.3: Selection of the parameter µ for the coarse grained matcher (CGM): test on the

whole Bosphorus database (105/4561), kmax + kmin salient vertex detectors.

% MV-HOG MV-HOS MV-HOGS MV-HOMQ

µ = 0.70 82.50 88.82 80.55 93.33

µ = 0.75 75.18 90.11 81.93 94.10

µ = 0.80 60.75 89.72 81.90 93.77

Table 4.4: Selection of the sparsity parameter L for the SRC-absed fine grained matcher

(FGM): test on the whole Bosphorus database (105/4561), kmax + kmin detectors.

% MV-HOG MV-HOS MV-HOGS MV-HOMQ

L = 1 93.12 94.37 93.14 96.56

L = 5 93.05 94.65 93.53 96.49
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Regarding the additional experiments on FRGC v2.0, the popular protocol as used
in [Faltemier et al. 2008a] [Mian et al. 2008] [Kakadiaris et al. 2007a] [Huang et al. 2012]
is adopted. Specifically, the first scans of each subject is used to construct a gallery set
whereas the remaining 3D scans or its subsets as probe sets. The gallery size is 466 and
the probe set size is 3561 for the whole database. The probe sets of other two subsets are
the neutral and non-neutral sets, respectively.

4.6.3 Analysis of Salient Vertices Located by κmax and κmin Detectors

In the proposed framework, each 3D face scan is represented by the set of pose invariant
local shape descriptors, namely statistics of multiple order surface differential quantities,
computed over a set of salient vertices using κmax and κmin detectors in their respective
Gaussian scale space. The stability of detected salient vertices detected, i.e. the repeatabil-
ity and their number over 3D face scans are thus a key factor which is analyzed in-depth in
this subsection using Bosphorus. Furthermore, we also highlight the potential added value
of these two salient vertices detectors for the purpose of 3D FR.

4.6.3.1 On the Stability of Detected Salient Vertices

Given two arbitrary face scans of a same subject, the repeatability of detected salient ver-
tices implies that the two sets of salient vertices extracted from the two face scans at a
same pose are roughly located at the same facial positions. However, it is quite hard to
have ground truth to check such a repeatability over 3D face scans of the same subject. In
this paper, we adopted the protocol proposed by Mian et al. [Mian et al. 2008] and checked
the repeatability of salient vertices as follows: (i) we considered all face scans in the gallery
set as reference scans and registered all probe scans to its corresponding reference scan, i.e.

the gallery scan of the same subject, using the ICP algorithm [Zhang 1994]; (ii) For each
salient vertex of the test scan, we located its closest salient vertex on the reference scan and
their distance was recorded as its error. As a result, for all the test scans, one can display the
cumulative repeatability percentage as a function of the increasing error tolerant distance.
Fig. 4.12 plots such a cumulative repeatability of salient vertices on the 3D face scans of
the subset of expression in Bosphorus. From that figure, we can see that: (i) κmin detector
is more stable than κmax detector, within a distance of 6 mm, the repeatability of κmin de-
tector reaches 75.3% (67.6%, resp.) while κmax detector achieves 67.62% (61.01%, resp.)
for neutral face scans (non neutral face scans, resp.) individually. (ii) Both the repeata-
bility of κmin detector and κmax detector record significant drop from neutral face scans to
non neutral ones. This is expected as facial expressions elastically deform facial surfaces
and thereby induce different salient vertices being located. However, the repeatability in
such case still remains as high as 67.6% for κmin detector (61.01% for κmax detector, re-
sp.), meaning that much local regions around detected salient vertices can still be used for
matching.

The proposed 3D FR achieves the description of a 3D face scans using a sparse set
of pose invariant local shape descriptors computed around salient vertices. The number
and spatial locations of those salient vertices thus impact the quality of such a description.
Fig. 4.5 suggests that detected salient vertices are rather evenly distributed over an entire
face scan. But how their number is impacted by the various challenges, i.e. variations of
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Figure 4.12: Repeatability of salient vertices on the Bosphorus database.

expression, pose and occlusion, in 3D FR under uncontrolled conditions? For this purpose,
Fig. 4.13 plots the average number of detected salient vertices across different variations
of expression, pose and occlusions.

As we can see from Fig. 4.13, the average number of salient vertices detected by both
the two κmax and κmin detectors remains relatively stable across different facial expression
classes, moderate pose changes up to 20◦ and occlusions. However, when the pose change
significantly increases, e.g.,from yaw 20◦ to 90◦, the average number of salient vertices
detected by the κmax detector (κmin detector, resp.) also decreases from more than 300
(350, resp.) to less than 200 (250, resp.). However, this decrease rate, roughly 30%, is
less rapid than the missing data rate which is of 50% when a face is rotated from a frontal
pose to a profile one (e.g., Yaw 90◦). Furthermore, we find that external occlusions, e.g.,
hand, scarf, don’t lead to a decrease of detected salient vertices on 3D face scans, as they
introduce different surfaces covering the underneath facial surfaces. As we will see later
on, this decrease of detected salient vertices will impact the performance of the proposed
framework.

Tab. 4.5 further synthesizes the average number of salient vertices located by both the
κmax and κmin detectors on the whole Bosphorus and its three subsets of expression, pose
and occlusion. As we can see from that table, the κmin detector detects in average more
salient vertices than the κmax detector. This can be explained by the concave nature of facial
surfaces. Furthermore, when there is no disturbing factor, e.g.,pose, leading to significant
missing face data, the average number of detected salient vertices remains relatively stable,
roughly 300 by the κmax detector and 350 by the κmin detector.
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Figure 4.13: The average number of detected salient points on each subset of the Bosphorus

database.

Table 4.5: The average number of detected salient vertices on the subsets of expression,

pose and occlusion and the whole Bosphorus database.

Expression Pose Occlusion All

κmax κmin κmax κmin κmax κmin κmax κmin

Mean 304 368 270 324 320 384 293 355

4.6.3.2 The added value of the joint use of κmax and κmin detectors

A natural question of using both the κmax and κmin detectors is their added value for the pur-
pose of 3D FR. The previous subsection already reports that they locate different number of
salient vertices on 3D face scans. In this subsection, we further highlight their complemen-
tarity and added value in 3D FR in comparing the joint use of their detected salient vertices
through both the proposed coarse grained matcher (CGM) and fine grained matcher (FGM)
with the single use of each alone. Tab. G.2 displays the results of this comparison on the
whole Bosphorus dataset using the proposed 4 local shape descriptors, namely MV-HOG,
MV-HOS, MV-HOGS and MV-HOMQ. As we can see from that table, in comparison with
the cases where the salient vertices located by κmax and κmin detectors are used separately,
both CGM and FGM significantly improves their performance for each of these local shape
descriptors when those salient vertices are jointly used through a score level fusion using
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a simple sum rule. This complementarity and added value is further highlighted using the
Cumulative Match Curves (CMC) as plotted in Fig. 4.17 (c) and (d).

Table 4.6: The complementarity and added value of using both kmax and kmin detectors on

the whole Bosphorus database (105/4561).

%
CGM FGM

κmax κmin κmax + κmin κmax κmin κmax + κmin

MV-HOG 69.57 76.21 82.50 86.65 90.79 93.12

MV-HOS 82.53 85.31 90.11 91.80 92.83 94.37

MV-HOGS 71.32 75.47 81.93 91.87 88.75 93.14

MV-HOMQ 87.33 91.01 94.10 94.78 95.35 96.56

4.6.4 Face Recognition on the Bosphorus Database

We benchmarked the proposed 3D FR method on Bosphorus, the most comprehensive
public database which best accounts for the various challenges of real-life applications
in uncontrolled conditions, e.g., facial expression variations, pose changes and external
occlusions.

4.6.4.1 The Results

Tab. 4.7 reports the rank one recognition rates of the proposed method on the whole
Bosphorus database and its various subsets. The CGM is compared with the fine grained
matcher over the proposed four local shape descriptors, namely MV-HOG, MV-HOS, MV-
HOGS and MV-HOMQ which results from the early fusion, i.e. the simple concatenation,
of the first three descriptors. Fig. 4.14 plots the performance of CGM over the various sub-
sets of Bosphorus when the aforementioned four local shape descriptors are individually
used. Fig. 4.15 does the same for FGM.

Tab. 4.7 can be analyzed from several viewpoints, e.g., the expressiveness of the pro-
posed local shape descriptors, the effectiveness of the fusion schemes, the quality or fine-
ness of the matchers, and the robustness of the proposed framework with respect to the
various challenges of 3D FR under uncontrolled conditions. Thus, it can be seen from Tab.
4.7 that:

(i) In terms of descriptive power of single local shape descriptors, MV-HOS performs
the best in the class of single local shape descriptors in comparison with MV-HOG and MV-
HOGS over both the two CGM and FGM matchers and across all 3D face variations. This is
rather expected as HOS computed over the neighborhood of a given vertex is the histogram
of shape index values which accurately characterize the local shape of that neighborhood
whereas HOGS, i.e. the histogram of gradient of shape index, measures the speed of shape
variations in the vicinity of a vertex. Finally, HOG is the histogram of surface gradients
which delivers the orientations where a local surface change the most and thereby only
coarsely describes the geometric shape of a local facial surface.
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Table 4.7: Rank-1 recognition rates with respect to Expression, Pose and Occlusions Vari-

ations on the Bosphorus database . CGM is compared with the FGM over the four different

local shape descriptors. The meaning and composition of each subset is detailed in Tab.

4.1.

CGM (left) vs. FGM (right)

Expression Variations (2797 scans)

MV-HOG MV-HOS MV-HOGS MV-HOMQ

Neutral 99.48 100.0 100.0 100.0 99.48 100.0 100.0 100.0

Anger 69.01 91.55 87.32 98.59 76.06 94.37 88.73 97.18

Disgust 50.72 84.06 56.52 78.26 60.87 88.41 76.81 86.96

Fear 71.43 92.86 88.57 92.86 84.29 94.29 92.86 98.57

Happy 79.25 91.51 85.85 96.23 75.47 98.11 95.28 98.11

Sad 80.30 95.45 90.91 96.97 86.36 96.97 95.45 100.0

Surprise 81.69 100.0 97.18 100.0 84.51 97.18 98.59 98.59

LAU 88.96 96.97 95.09 98.13 90.70 98.52 97.22 98.84

UAU 94.21 99.07 98.15 100.0 95.14 99.54 99.07 100.0

CAU 92.90 100.0 97.04 99.41 95.86 100.0 98.82 100.0

Overall 88.09 96.96 94.32 97.96 90.24 98.32 96.89 98.82

Pose Variations (1365 scans)

MV-HOG MV-HOS MV-HOGS MV-HOMQ

YR10◦ 98.10 100.0 100.0 100.0 96.19 100.0 100.0 100.0

YR20◦ 90.48 99.05 96.19 99.05 87.62 98.10 99.05 100.0

YR30◦ 84.76 98.10 92.38 100.0 75.24 96.19 98.10 99.05

YR45◦ 49.52 89.05 80.48 91.90 49.05 84.76 90.95 97.62

YR90◦ 07.62 16.67 17.62 25.24 02.86 10.00 33.33 47.14

YR 55.37 72.65 69.25 76.19 51.84 71.43 69.12 84.08

PR 94.27 99.28 96.90 98.57 84.73 99.28 98.81 99.52

CR 60.66 90.05 79.62 94.79 48.34 89.10 94.31 99.05

Overall 68.13 83.52 79.34 85.93 61.39 81.47 86.89 91.14

Occlusions (381 scans)

MV-HOG MV-HOS MV-HOGS MV-HOMQ

HandE 96.19 100.0 100.0 100.0 96.19 100.0 100.0 100.0

HandM 90.48 100.0 97.14 98.10 93.33 99.05 99.05 100.0

Glasses 95.19 100.0 97.38 97.12 100.0 97.12 100.0 100.0

Hair 86.57 94.03 94.03 91.01 86.57 82.09 97.01 95.52

Overall 92.65 98.95 97.38 97.90 93.96 96.59 99.21 99.21

Unlabeled scans (18 scans)

MV-HOG MV-HOS MV-HOGS MV-HOMQ

Overall 88.89 100.0 100.0 100.0 94.44 100.0 100.0 100.0

All Meshes Except Yaw 90 (4351 scans)

MV-HOG MV-HOS MV-HOGS MV-HOMQ

Overall 86.12 96.81 93.61 97.70 85.75 97.15 97.04 98.94

All Meshes (4561 scans)

MV-HOG MV-HOS MV-HOGS MV-HOMQ

Overall 82.50 93.12 90.11 94.37 81.93 93.14 94.10 96.56
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(ii) Regarding the effectiveness of the fusion schemes, recall that the proposed frame-
work proposes two different fusion schemes: an early fusion, i.e. a simple concatenation
of the previous three single local shape descriptors, namely MV-HOG, MV-HOS and MV-
HOGS, leading to MV-HOMQ, and a late fusion through the simple sum of scores when
both the salient vertices located by κmax and κmin detectors are jointly used. Fig. 4.17 plots
the Cumulative Match Curves (CMC) in highlighting the usefulness of these two fusion
schemes. In 4.6.3.2, we already discussed the added value of using jointly the salient ver-
tices located by both the κmax and κmin detectors through the score-level fusion. We focus
our attention here on the usefulness of feature level fusion as shown in Fig. 4.17 (a) and
(b). In capturing the complementary local shape information as provided by MV-HOG,
MV-HOS and MV-HOGS, MV-HOMQ indeed achieves a more comprehensive description
of local shapes than each of the three single local shape descriptors, and thereby improves
their individual performance through both the two matchers CGM and FGM, aside from
only the two cases of anger and disgust. This improvement is particularly significant in
case of severe missing face data, e.g., YR90◦, where the rank-1 recognition rate using CG-
M (FGM, resp.) is increased from 7.62% (16.67%, resp.) by MV-HOG, 17.62% (25.24%,
resp.) by MV-HOS and 2.86% (10%, resp.) by MV-HOGS to 33.33% (47.14%, resp.) by
MV-HOMQ.

(iii) Concerning the matcher quality, the proposed SRC-based fine grained matcher
(FGM) clearly demonstrates its effectiveness in outperforming the coarse grained matcher
(CGM) over the whole Bosphorus dataset. The amelioration by FGM is even general,
across all local shape descriptors and all face variations, aside from the only case of MV-
HOMQ in dealing with the subset of external occlusions. This improvement is particularly
impressive in hard cases with pose variations, e.g., YR45◦,YR90◦, and weak descriptors,
e.g., MV-HOG. Indeed, in the case of YR45◦ with MV-HOG, FGM achieves 49.52% rank-
1 recognition rate which increases by 40 points the performance of 89.05% by CGM. Fig.
4.16 further highlights such a behavior. In the case of using a more comprehensive local
shape descriptor, i.e. MV-HOMQ, the improvement by FGM is less impressive but still
significant, in particular in the extreme case of using 3D face profiles as probe set, i.e. the
subset of YR90◦. In that case, FGM achieves still 48.57% rank-1 recognition rate and thus
improves by roughly 15 points the rank-1 recognition rate (33.33%) achieved by CGM.

(iv) In terms of robustness to the various challenges of 3D FR in uncontrolled condi-
tions, the proposed local feature-based framework displays its effectiveness, in particular
when MV-HOMQ, the most comprehensive local shape descriptor, is used. However, the
fine grained matcher (FGM), aside from the only case of occlusions, clearly outperforms
the coarse grained matcher (CGM), in particular when missing face data due to pose is
increasing. Specifically, when dealing with expression variations, the configuration MV-
HOMQ/FGM of the proposed framework, i.e. MV-HOMQ along with the fine grained
matcher FGM, achieves very high recognition rates on all the expression subsets excluding
Disgust, and even attains 100% rank-1 recognition rates in dealing with half of them, i.e.

Neutral, Sad, Surprise, UAU, CAU, respectively. The overall rank-1 recognition rate of
the configuration MV-HOMQ/FGM in dealing with the subset of all the 2797 expressive
3D face scans attains 98.75%. Regarding the challenge of pose variations, in excluding
the extreme case of YR90 where 3D face scans only contain the profile face, the config-
uration MV-HOMQ/FGM achieves once more a high rank-1 recognition rate of 98.80%
and even 100% rank-1 recognition rates in dealing with the subsets of YR10, YR20 and
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YR30, respectively. Finally, in handling the subset of occlusions, the configuration MV-
HOMQ/FGM only misclassifies 3 face scans heavily occluded by hair (see Fig. 4.23)
and thus displays a rank-1 recognition rate up to 97.90%. All these figures consistently
demonstrate the robustness of the proposed framework with the challenges of expression-
s variations, pose changes and occlusions. Please see Fig. 4.18 for the CMC curves of
several sample expression and pose subsets and Fig. 4.19 for the CMC curves of the con-
figurations of MV-HOMQ/CGM and MV-HOMQ/FGM on the whole Bosphorus database.
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Figure 4.14: The rank-1 recognition rates by the coarse grained matcher (CGM) over the

various subsets of the Bosphorus database.

4.6.4.2 Comparison with the State of the Art

Tabs. 4.8, 4.9 and 4.11 compare the proposed 3D FR method with the state-of-the-art
work on the expression and pose subsets, and the whole set of the Bosphorus database,
respectively. Indeed, the Bosphorus database encompasses such a joint level of challenges
that most state of the art works are only benchmarked using a subset of Bosphorus in
targetting a specific challenge.

Tab. 4.8 compares the proposed 3D FR method with the state of the art in terms
of robustness to facial expression variations. As it can be seen, early works, e.g.,
[Alyuz et al. 2008] [Dibekliouglu et al. 2009], only evaluated their methods on a subset
of the Bosphorus database. They performed a two phase registration with a first phase of
coarse registration which is followed by a second phase of local dense registration through
a set of average regional models. A follow-up work of the same group proposes to segment
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Figure 4.15: The rank-1 recognition rates by the fine grained matcher (FGM) over the

various subsets of the Bosphorus database.

the nasal region for 3D FR under pose and expression variations where the nose direction is
utilized to correct pose variations [Dibekliouglu et al. 2009]. They further improved their
method later on in learning discriminating 3D features through LDA and fusing region-
based registration classifiers [Alyuz et al. 2010]. The LDA-based learning strategy was
also adopted by Ocegueda et al. [Ocegueda et al. 2011a] to select highly discriminating
wavelet coefficients extracted from a geometry image, the later being computed after a fine
multistage alinement and the fitting of an Annotated Face Model (AFM) to an input probe
scan [Kakadiaris et al. 2007a]. Maes et al. [Maes et al. 2010] developed a similar local
feature-based approach as compared the proposed method and displayed a rank-1 recogni-
tion rate of 97.7% on all the frontal probe scans. As we can see from Tab. 4.8, without any
prior registration, the proposed method with the configuration MV-HOMQ/FGM achieves
the best rank-1 recognition rates in dealing with both the subset of all frontal scans or the
one of all expressive scans.

Tab. 4.9 compares the proposed method with the state of the art on the subset of pose
variations in Bosphorus. As we can see from that table, very few methods in the literature
tackle this problem and take this hard subset as benchmark. Hajati et al. [Hajati et al. 2012]
reported an approach using patch geodesic moments which are extracted from the texture
image controlled by the corresponding range image. However, the cropping, pose cor-
rection and alignment in their method were made manually. Comparatively, the proposed
method achieves much better results over all subsets of pose changes using the mesh-based
3D scans without any prior information. It is worth to note that, with a rank-1 recognition
rate less than 50%, matching profile 3D face scans in the extreme case of YR90 is still
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Figure 4.16: Comparison of the coarse grained matcher (CGM) and the fine grained match-

er (FGM) on the whole Bosphorus database when MV-HOG is used as local shape descrip-

tor.

problematic and needs further investigation.

Tab. 4.10 compares the proposed method with the state of the art with re-
spect to occlusion variations using the corresponding subsets of Bosphorus. Very
few methods deal explicitly with this issue. State of the art techniques, i.e.

[Colombo et al. 2011a][Drira et al. 2013], are learning-based approach which proposes to
detect and restore partially occluded face parts using a subspace of 3D face scans trained
with an additional dataset. As such, both training 3D face scan and probe scans need to
be correctly registered. Colombo et al. [Colombo et al. 2011a] benchmarked their method
using the probe subset of occlusion reduced to 360 scans by discarding scans judged as of
bad quality. Drira et al. [Drira et al. 2013] made use of the nose tip coordinates provided
by the Bosphorus dataset to preprocess and align probe face scans.As we can see from Tab.
4.10, the proposed framework, without any prior training and alignment, outperforms these
state of the art methods qui require both learning and registration.

Finally, tab. 4.11 presents a comparison of overall performance on the whole Bospho-
rus database. To the best of our knowledge, there is only another work in the literature
which has the ability of dealing with the whole Bosphorus database. Once more, we can
see that our method outperforms that method.
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Figure 4.17: On the usefulness of salient point detector fusion and feature fusion. Early

fusion of local shape descriptors: (a) coarse grained matcher (CGM); (b) fine grained

matcher (FGM). Score-level fusion of both the κmax and κmin detectors: (c) CGM; (d)

FGM.
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Figure 4.18: Illustration of performance on expression and pose subsets. (a) performance

of coarse-matcher on expression subsets; (b) performance of fine-matcher on expression

subsets; (c) performance of coarse-matcher on pose subsets; (d) performance of fine-

matcher matcher on pose subsets.
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Table 4.8: Performance comparison on the subset of expressions in the Bosphorus

database. The subset frontal encompasses all probe 3D face scans, the subset of occlu-

sion and unlabeled scans included, and only excludes the subset of pose.

Approaches Gallery Probe Registration Rank-one

Baseline ICP [Alyuz et al. 2008] 47 1508 Yes 72.41%

Baseline PCA (whole face) [Alyuz et al. 2008] 47 1508 Yes 70.56%

Base line PCA (Eye, Nose) [Alyuz et al. 2008] 47 1508 Yes 88.79%

Alyuz et al. [Alyuz et al. 2008] 47 1508 Yes 95.3%

Dibeklioglu et al. [Dibekliouglu et al. 2009] 47 1527 Yes 89.2%

Alyuz et al. [Alyuz et al. 2010] (AvRM-PC-LDA) 85 2180 Yes 99.3%

Alyuz et al. [Alyuz et al. 2010] (AvRM-CD) 105 2814 Yes 98.2%

Kakadiaris et al. [Ocegueda et al. 2011a] (expression) 105 2797 Yes 98.2%

Maes et al. [Maes et al. 2010] (frontal) 105 31862 No 97.7%

MV-HOMQ/FGM (expression) 105 2797 No 98.8%

MV-HOMQ/FGM (frontal) 105 3196 No 98.9%

Table 4.9: Performance comparison on the subset of the Bosphorus database with various

pose variations.

% [Dibekliouglu et al. 2009] [Maes et al. 2010] [Hajati et al. 2012] MV-HOMQ/FGM

YR10◦ - - 92.3 100

YR20◦ - - 88.6 100

YR30◦ - - 80.0 99.1

YR45◦ - 85.6 38.6 97.6

YR90◦ - 24.3 - 47.1

PR - - - 99.5

CR - - - 99.1

Overall 79.41 84.2 69.1 91.1

Table 4.10: Performance comparison on the subset of the Bosphorus database with diverse

occlusions.

% Eye Mouth Glasses Hair Overall

Alyuz et al. [Alyuz et al. 2008] (381 scans) 93.6 93.6 97.8 89.6 93.6

Colombo et al. [Colombo et al. 2011a] (360 scans) 91.1 74.7 94.2 90.4 87.6

Drira et al.[Drira et al. 2013](381 scans) 97.1 78 94.2 81 87

MV-HOMQ/FGM (381 scans) 100 100 100 95.5 99.2
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Figure 4.19: Illustration the Cumulative Match Curves on the Bosphorus database.

Table 4.11: Performance comparison on the whole Bosphrous database.

% Maes et al. [Maes et al. 2010] MV-HOMQ/FGM

Rank-one score 93.66 96.56

4.6.5 Face Recognition on the FRGC v2.0 Database

FRGC v2.0 was designed to evaluate 3D FR algorithms which are widely expected to pro-
vide the ability to cope with the unsolved issues, e.g., lighting variations and pose changes,
in 2D FR under uncontrolled conditions. However, FRGC v2.0 only contains expressive
frontal 3D face scans captured under controlled lighting conditions [Phillips et al. 2005].
While the proposed method targets 3D FR under uncontrolled environment, thus making
it hard to apply standard preprocessing techniques, e.g., fine 3D face alignment, which
are generally adopted by 3D FR techniques evaluated on FRGC v2.0, we also bench-
marked the proposed method (MV-HOMQ/FGM) over FRGC v2.0 to check its general-
ization skill as a recent study shows that 3D FR algorithms with state of the art perfor-
mance over one database can vastly degrade in another setting using a different dataset
[Vijayan et al. 2011b]. To test the robustness of our method to expression variations on
FRGC v2.0, we adopted the same protocol as in [Mian et al. 2008] and divided all the
probe set into Neutral and Non-neutral subsets.
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4.6.5.1 The Results

Tab. 4.12 reports the performance of the proposed framework in varying the matcher,
i.e. CGM vs. FGM, as well as the salient vertex detector, i.e. κmax vs. κmin vs. their
fusion. As we can see from that table, one can draw the same conclusions as we did on
the experimental results on Bosphorus: (a) the proposed method benefits from the joint
use of κmax and κmin salient vertex detectors; score-level fusion of two salient detectors
for both SIFT-matcher and SRC-matcher is very efficient to improve the recognition rates;
(b) The FGM improves a lot the performance of the CGM, especially for the Neutral vs.
Non-neutral case; (c) Without any prior registration or subspace-based feature selection
(e.g., LDA), the proposed framework MV-HOMQ/SRC achieves competitive results for all
the three cases. The corresponding Cumulative Match Curves (CMC) are displayed in Fig.
4.20 and Fig. 4.21.

Table 4.12: Robustness to Expression Variations on FRGC v2.0.

%
MV-HOMQ/CGM MV-HOMQ/FGM

κmax κmin κmax + κmin κmax κmin κmax + κmin

N vs. N 95.82 95.21 97.25 97.91 97.76 98.73

N vs. Non-N 81.69 82.78 88.28 89.82 90.78 93.34

N vs. All 89.56 89.70 93.28 94.33 94.67 96.34

4.6.5.2 Comparison with the State of the Art

Tab. 4.13 compares the proposed method with several state of the art techniques through
the viewpoint of performance drop under facial expression variations whereas Tab. 4.14
lists the state of the art performance in comparison with the proposed method. As we can
see from those tables, most state of the art 3D FR algorithms make use of range images
and require a more or less costly registration step (e.g., ICP), through several anthropomet-
ric landmarks (e.g., nose tip), to align frontal 3D scans with moderate pose variations as
those in FRGC v2.0. The best state of the art results so far achieved on FRGC v2.0, i.e.,
[?] [Wang et al. 2010] [Spreeuwers 2011], require fine face alignment and/or the learn-
ing of discriminating face features through additional 3D face training data. Spreeuwers
[Spreeuwers 2011] reports a rank-1 recognition rate as high as 99.0% on the whole FRGC
v2.0 database with a method which aligns 3D face scans through an intrinsic face coordi-
nate system thanks to landmark structures, i.e. the vertical symmetry plane, the nose tip and
the slope of the bridge of the nose, then fuse several region classifiers trained on additional
3D face data, e.g., Bosphorus, using subspace-based methods. Queirolo et al. [?] reports a
98.4% rank-1 recognition rate on FRGC v2.0 with a method which first locates on a frontal
range image six anthropometric landmarks, e.g.,the inner right and left eye corners, the
right and left nose corners, and the nose tip and base, and then crop four face regions on
which a boosted ICP using Simulated Annealing is performed for matching. All the prepro-
cessing steps, e.g., nose tip, symmetry plane, in those methods are simply made unavailable
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Figure 4.20: The Cumulative Match Curves on FRGC v2.0.
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Figure 4.21: Illustration of the Cumulative Match Curves on the FRGCv2 database.

because of face missing data due to pose or external occlusions in a scenario of 3D FR un-
der uncontrolled conditions. Once more, without any prior registration and learning for the
selection of discriminating features, the proposed framework, MV-HOMQ/FGM as local
shape descriptor, achieves a competitive rank-1 recognition rate (96.3%) and consistently
demonstrates its effectiveness. Thanks to FGM and the descriptive power of MV-HOMQ,
the proposed method also outperforms roughly by 7 points another local feature-based
method by Smeets et al. [Smeets et al. 2013].

4.6.6 Discussion

To gain insights into the proposed local feature-based framework in dealing with those
challenges of real-life applications under uncontrolled conditions, we plot in Fig. 4.22 the
matching pairs of salient vertices over 3D face scans of the same subject under expression,
pose and occlusion variations. In that figure, salient vertices are located by the κmax detector
and CGM is used along with MV-HOMQ as local shape descriptor. As we can see from
Fig. 4.22, in the case of comparison Neutral vs. Neutral, a large number of salient vertices,
spread over the whole facial surface, is accepted as matching ones; When we move to
the case of Neutral vs. Expression, all the salient vertices around the opened mouth are
automatically rejected in the matching process, while most of the salient vertices detected
on the rigid or near rigid regions, e.g., nose, eyes and upper cheek, are retained. For the case
of Neutral vs. YR, the matched vertices are concentrated on the visible left part of the facial
surfaces when one face scan displays some degree of yaw rotation to the right. Finally,
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Table 4.13: Performance comparison under expression variations on the FRGCv2

database.

% N vs. N N vs. Non-N Degradation

Mian et al. [Mian et al. 2008] 99.0 86.7 12.3

Huang et al. [Huang et al. 2011e] 99.1 92.5 6.6

Huang et al. [Huang et al. 2011a] [Huang et al. 2012] 99.0 94.9 4.1

Li et al. [Li et al. 2011a] 98.0 94.2 3.8

MV-HOMQ/FGM 98.7 93.3 5.4

Table 4.14: Performance comparison on the whole FRGC v2.0 database.

Method Year Data format Face alignment Rank-one score

Chang et al. [Chang et al. 2006] 2006 Range Yes 91.9%

Kakadiaris et al. [Kakadiaris et al. 2007a] 2007 Range Yes 91.9%

Mian et al. [Mian et al. 2007] 2007 Range Yes 96.2%

Mian et al. [Mian et al. 2008] 2008 Range Yes 93.5%

Faltemier et al. [Faltemier et al. 2008a] 2008 Range Yes 97.2%

Alosaimi et al. [Al-Osaimi et al. 2009] 2009 Range Yes 96.5%

Alyuz et al. [Alyuz et al. 2010] 2010 Range Yes 97.5%

Queirolo et al. [Queirolo et al. 2010] 2010 Range Yes 98.4%

Wang et al. [Wang et al. 2010] 2010 Range Yes 98.3%

Huang et al. [Huang et al. 2011a] 2011 Range No 97.2%

Spreeuwers [Spreeuwers 2011] 2011 Range Yes 99.0%

Li et al. [Li et al. 2011a] 2011 Range Yes 96.3%

Ballihi et al. [Ballihi et al. 2012] 2012 Mesh Yes 98.2%

Smeets et al. [Smeets et al. 2013] 2013 Mesh No 89.6%

MV-HOMQ/FGM 2013 Mesh No 96.3%
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for the case of Neutral vs. Occlusion, there is only a small number of matched vertices
around the occluded regions. One can thus easily understand why the performance of CGM
which simply counts the number of matching pairs drastically degrades when expression,
occlusion, and pose variations occur, since the number of matches is seriously decreased
(especially in the case of Neutral vs. YR) compared with that in Neutral vs. Neutral.
In contrast, the FGM computes the average reconstruction error between the local shape
descriptors of the probe salient vertices and those of gallery ones and largely alleviates the
issue of decreasing number of matching pairs in the presence of missing data. Fig. 4.23

Figure 4.22: Gaining insights into the proposed local feature-based 3D FR framework.

The four cases are displayed using the κmax salient vertex detector and MV-HOMQ/CGM

framework: (a) Neutral vs. Neutral; (b) Neutral vs. Expression; (c) Neutral vs. YR; (d)

Neutral vs. Occlusion.

contains the only three 3D face scans in the subset of occlusion which are not correctly
recognized by the proposed MV-HOMQ/FGM approach. It can be seen from that figure
that hair in these 3D face scans covers up to 50% of the corresponding facial surfaces. Fig.
4.24 gives two other examples of bad recognition in Bosphorus when the extreme pose,
e.g., YR90◦, leads to more than 50% missing face data.

Figure 4.23: Examples of non correctly recognized samples with hair occlusion.

Another problem with the extreme pose is the bad mesh quality of the resulted 3D face
scan as shown in Fig. 4.25. As the face is scanned over its right profile, the depth of the
scanned facial surface quickly decreases when passing from the closest facial region (ear)
to the most remote one (nose) and thereby results in high disparities of triangles of various
size. Those disparities make the computation of multiple order differential quantities highly
unreliable. Figure 4.26 shows several 3D scans with disgust expressions which are not
correctly recognized by the proposed MV-HOMQ/FGM method. It can be seen that the
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(a)                          (b)                        (c)                     (d)                          (e)                              (e)

Figure 4.24: Examples of non recognized faces with large pose variations (YR90◦) in

Bosphorus.(a): gallery neutral face scan; (b-c):left profile scan (b) and its frontal view

(c); (d-e): right profile scan (d) and its frontal view; (e): manual registration of (d) over

(a) showing that more than 50% face data is missing in the right profile scan (d).

(a)                          (b)                                      (c)

Figure 4.25: Illustration of the mesh quality of the sample with large pose variation: (a)

the scan of BS001YRR90; (b) corresponding triangulation mesh of (a); (c) the zooming of

(b) over the region around the eye and nose.

disgust expressions by those 3D scans are quite exaggerated, leading to serious deformation
of the whole facial surfaces, even to the rigid regions e.g. the nose and forehead. While
Fig. 4.27 displays some wrong matches caused by exaggerated LAUs, and we can see
that similar to the cases in Fig. 4.26, the entire face including the rigid areas are seriously
deformed as well. Both the facts indicate when the expression are exaggerated enough to
change the relative rigid regions, i.e. the forehead and nose, it will dramatically challenges
the proposed method.

Figure 4.28 shows three incorrect matching results by the proposed MV-HOMQ/FGM
method. As it can be seen from that figure, exaggerated facial expressions tend to deform
the whole facial surfaces and result in very few matching pairs (Fig. 4.28(a)). The same
phenomenon occurs on the matching result with a profile 3D face scan (Fig. 4.28(b)).
Because of the bad mesh quality which results from the profile 3D face scan, only one (bad)
matching pair can be observed on the 3D face scans. In the case of external occlusion (Fig.
4.28(c)), the covering surface induced by the external occlusion (e.g., hair) significantly
decrease the number of matching pairs.

To analyze the computational complexity of our approach, we report in Tab. 4.15 the
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Figure 4.26: Examples of non correctly recognized samples with disgust expression.

Figure 4.27: Examples of non correctly recognized samples with lower action unit.

computation time consumed per salient vertex in each step. Recall that the proposed 3D
FR method for the identification of a probe face scan encompasses, as illustrated in Fig.
G.1, the following three main stages: the detection of salient vertices, the description of the
input face scan as a sparse set of local shape descriptors around the detected salient vertices
and the matching of the resulted description with those in the gallery. The proposed 3D FR
method was implemented on Matlab3 on a PC with CPU 950 3.07GHz and 8GB RAM. In
particular, the main time cost for salient vertex detection is the estimation of minimum and
maximum curvatures over different 3D Gaussian scale spaces of the input mesh. For salient
vertex description, the geodesic neighborhood localization step is the most expensive part
of the computation. For salient vertex matching, we make use of the notations of section
4.5. Let D ∈ R

M×K be the gallery dictionary. Given a local shape descriptor of a salient
vertex yi ∈R

M extracted from a probe scan, the theoretical complexity of CGM to identify

3Matlab Toolbox Fast Marching is used to compute the geodesic distance and the ring neighborhood ver-
tices.

140



Chapter 4. 3D Face Recognition in the Presence of Expression, Pose and Occlusion

Variations

Figure 4.28: Illustration of three incorrect matching results: (a) Disgust expression; (b)

Extreme pose; (c) External occlusion by hair.

this vertex is to compute K inner products 〈yi,dj〉 for all dj ∈ D, which costs O(M×K);
for FGM with L = 1, the OMP algorithm also requires to first compute the above K inner
products, and then compute the reconstruction error, which costs O(M), thus, totally, FGM
costs O(M×K)+O(M) to match a local shape descriptor of one salient vertex on a probe
scan.

As we can see from Tab. 4.15, the most time consuming steps are the detection of
salient vertices over a 3D face scan of multiple ten thousands of vertices (e.g., 35K in
Bosphorus) and the description of the neighboring regions around those salient vertices,
i.e., the computation of the local shape descriptors, respectively. The step of the local
shape description deeply depends upon the neighboring distance being used, geodesic or
Euclidean distance, with the latter more than ten time faster than the first. It is worth noting
that all these computations can be made massively parallel, first because the location of a
salient vertex only depends upon its local vicinity in neighboring scales of curvatures, then
the extraction of local shape descriptors around salient vertices, as well as the matching of
the local shape descriptors of salient vertices with those gallery ones are independent tasks
individually, and can be carried out in parallel.

4.7 Conclusion

In this chapter, we introduced a local feature-based 3D FR method to cope with the various
challenges of 3D FR in the real under un controlled conditions, i.e. facial expression vari-
ations, missing face data due to arbitrary pose and external occlusions. In contrast to the
overwhelming majority of 3D FR algorithms of the literature which need accurate and cost-
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Table 4.15: Average computation time consumed per salient vertex.

Detection

Description Matching

MV-HOMQ
CGM FGM

Geodesic Euclid

Per Vertex 29ms 170ms 12ms 7ms 13ms

ly registration of face range images, the proposed method is mesh-based and registration
free. It describes each 3D face scan as a sparse set of pose invariant local shape descriptors,
namely histograms of multiple order surface differential quantities, i.e. HOG, HOS, HOGS
and their early fusion HOMQ, thereby achieving a compact, comprehensive and pose in-
variant 3D face description. Those local shape descriptors are computed over the vicinity
of salient vertices automatically located by both the κmax and κmin salient vertex detectors
in their respective Gaussian scale space. The matching between two 3D face scans is car-
ried out using a SRC-based fine grained matcher (FGM) between their corresponding 3D
face descriptions in computing a mean reconstruction error between a probe and a gallery.
Without any prior registration nor learning of discriminating face features, the proposed 3D
FR framework was comprehensively benchmarked on the Bosphorus database, the largest
public 3D face database which best depicts the aforementioned challenges of 3D FR in
the real. The experimental results demonstrates the effectiveness of the proposed method
which achieves the best state of the art performance in the various scenarios featuring dif-
ferent levels of difficulties with respect to expression variations, pose changes and external
occlusions. Additional experiments carried out on the FRGC v2.0 dataset show that the
proposed alignment free method consistently displays competitive rank-1 recognition rate
and thereby demonstrates its generalization skill over novel face data captured under dif-
ferent conditions.

In the future, we are willing to further reinforce the expressiveness of the proposed
pose invariant 3D face description, in considering alternative salient vertex detector, e.g.,
Harris 3D [Yu et al. 2013], and additional local shape descriptors, e.g., spin image, 3D
shape context, heat kernel signature [Sun et al. 2009]. We also want to study 3D FR using
face data of variable quality, e.g., resolution, and improve the proposed 3D FR algorithm
over 3D meshes of low quality.
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5.1 Introduction

Surface meshing and remeshing play fundamental roles in many engineering fields, includ-
ing computer graphics, geometric modeling, visualization and medical imaging. Typically,
surface meshing finds a set of sample points on the surface with a curved triangulation,
then approximates each face by an Euclidean triangle in R

3, thereby approximating the un-
derlying smooth surface by a polyhedral triangular surface, which is called triangle mesh.
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Many geometric processing tasks are equivalent to solving geometric partial differential
equations (PDEs) on surfaces. The following are some direct examples: for shape analysis,
heat kernel signature (HKS) [Sun et al. 2009] is mostly utilized, which entails solving a
heat equation and computing the eigenvalues and eigenfunctions of the Laplace-Beltrami
operator on surfaces; for shape registration, a surface harmonic map [Wang et al. 2008] is
widely used, which essentially means solving elliptic PDEs on surfaces; for surface param-
eterization, the discrete Ricci flow [Jin et al. 2008] is often computed, which amounts to
solving a non-linear parabolic equation on surfaces.

Most geometric PDEs are discretized on triangle meshes, and solved using numerical
methods, such as Finite Element Methods (FEM). The numerical stability, the convergence
rates, and the approximation bounds of the discrete solutions are largely determined by the
quality of the underlying triangle mesh, which is measured mainly by the size and the shape
of triangles on the mesh. Therefore, the generation of high quality meshes has fundamental
importance.

Most existing meshing and remeshing algorithms are based on the Delaunay refinement
method. There are three main different categories:

1. The sampling is computed in R
3, and triangulated using volumetric De-

launay triangulation, such as [Amenta & Bern 1998] [Amenta et al. 2000]
[Boissonnat & Oudot 2005] [Cheng et al. 2004] [Dey et al. 2005]
[Dey & Levine 2007].

2. The sampling is directly computed on a the smooth surface, such as geodesic Delau-
nay refinement [Dai et al. 2007], and Chew’s second algorithm [Paul Chew 1993].

3. The sampling is computed in the conformal parameter domain, and triangulated us-
ing planar Delaunay triangulation, such as [Alliez et al. 2003] [Remacle et al. 2010]
[Marchandise et al. 2011] [Marchandise et al. 2012] [Alliez et al. 2008].

The convergence of curvature measures for the approaches of the first t-
wo categories has been thoroughly discussed in [Cohen-Steiner & Morvan 2003a]
[Cohen-Steiner & Morvan 2006] [Morvan 2008a] [Morvan & Thibert 2004]. This work
focuses on the curvature measure convergence of the third category.

5.1.1 Existing Theoretical Results

Based on the classic results of Federer [Federer 1983] and Fu [Fu 1989], among oth-
ers, the authors in [Cohen-Steiner & Morvan 2003a] [Cohen-Steiner & Morvan 2006]
[Morvan 2008a] defined a general and unified framework of curvature measures for both
smooth and discrete submanifolds of RN based on normal cycle theory. Furthermore, they
proved the convergence and approximation theorems of curvature measures for general
geometric subset of RN .

In particular, suppose M is a smooth surface embedded in R
3, Mε is an ε-sample of

M, namely, for each point p ∈M, the ball B(p,εlfs(p)) contains at least one sample point
in Mε , where lfs(p) denotes the local feature size of M at point p. Let T be the triangle
mesh induced by the volumetric Delaunay triangulation of Mε restricted to M. If ε is small
enough, each point of the mesh has a unique closest point on the smooth surface. This leads
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to the introduction of the closest point projection π : T →M. This map has the following
properties:

1. Normal deviation: ∀p ∈ T , |n(p) − n ◦ π(p)| = O(ε), by Amenta et al.

[Amenta & Bern 1998], and Boissonnat et al. [Boissonnat & Oudot 2005].

2. Hausdorff distance: |p − π(p)| = O(ε2), by Boissonnat et al.

[Boissonnat & Oudot 2005].

3. Homeomorphism: π is a global homeomorphism, by Amenta et al.

[Amenta & Bern 1998] and Boissonnat et al. [Boissonnat & Oudot 2005].

4. Curvature measures: Let B be a Borel subset of R3, then the differences between the
curvature measures on M and that on T are Kε , where K depends on the triangulation
T [Cohen-Steiner & Morvan 2003a], [Morvan 2008a].

In the first category, the authors show that, unfortunately, the convergence of cur-
vature measures can not be guaranteed. Depending on the triangulation, when ε goes
to 0, K may go to infinity, (see [Cohen-Steiner & Morvan 2006] for a counterexample).
To ensure the convergence of the curvature measures, in [Cohen-Steiner & Morvan 2006]
[Morvan 2008a], the authors suggest adding a stronger assumption to the sampling con-
dition, namely, κ-light ε-sample, which is an ε-sample with the additional constraint that
each ball B(p,εlfs(p)) contains at most κ sample points.

In the second category, the curvature measure convergence for meshes obtained by
Chew’s second algorithm on surface has been proved in [Morvan & Thibert 2004]. The
normal and area convergence for meshes based on geodesic Delaunay refinement has been
proved in [Dai et al. 2007]. However, the computation of geodesic Delaunay triangulation
is prohibitively expensive [Xin et al. 2011] in practice.

5.1.2 Our Theoretical Results

This chapter will deal with triangulations of the third category, showing stronger estimates.
Using conformal parameterization, we get meshes satisfying as before the first two proper-
ties,

1. Normal deviation: O(ε), Lemma 5.4.2 and Lemma 5.4.3.

2. Hausdorff distance: O(ε2), Lemma 5.4.2 and Lemma 5.4.3.

Moreover, we improve the other two properties as follows:

3. Homeomorphism: Besides the closest point projection π , we also define a novel
mapping, the natural projection η , induced by the conformal parameterization. Both
projections are global homeomorphisms, see section 4.4.

4. Curvature measures: we show the Delaunay refinement method on conformal pa-
rameter domain generates κ-light ε-sample, which guarantees the convergence of
curvature measures. Moreover, we show the bounds of the curvature measures are
Kε , where K is O(area(B))+O(length(∂B)), and are independent of the triangula-
tions, see Theorem 5.3.2.
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In addition, the coding complexity is much lower and computations are less prohibitive
than those in the second category.

5.1.2.1 Similarities

Following the work in [Cohen-Steiner & Morvan 2003a], our proof is mainly based on
the normal cycle theory. Both methods estimate both Hausdorff distance and the normal
deviation at the corresponding points. Then both methods construct a homeomorphism
from the triangle mesh to the surface, which induces a homotopy from the normal cycle of
the mesh to the normal cycle of the surface. Then, the volume swept by the homotopy and
the area of its boundary are estimated. This gives a bound on the difference between the
curvature measures.

5.1.2.2 Differences

But our work has sharp distinctions from theirs, in terms of both theoretical and algorithmic
aspects:

• In theory, as pointed out previously, without stronger sampling condition, volumet-
ric Delaunay refinement method cannot guarantee the convergence of curvature mea-
sures. In contrast, our results can ensure the convergence curvature measures without
extra assumptions.

• In theory, the volumetric Delaunay refinement method requires the embedding of the
surface. Our method is intrinsic, which only requires Riemannian metric. In many
real-life applications, e.g. the general relativity simulation in theoretical physics, the
surface metric is given without any embedding space. In such cases, the volumetric
Delaunay method is invalid, but our method can still apply.

• In theory, to prove the main theorem, the closest point mapping is constructed in
[Cohen-Steiner & Morvan 2003a]. In contrast, we supply two proofs: one is based
on the closest point mapping, whereas the other uses a completely different mapping
based on conformal parameterization. Conceptually, besides its novelty, the latter is
also simpler.

• In practice, the planar Delaunay refinement method is much easier to implement, the
data structure for planar triangulation is much simpler than that of tetrahedral mesh,
and the planar algorithm is much more efficient.

Remark

Current meshing algorithm aims to achieve a good triangulation, and requires a confor-
mal parameterization, which in turn requires a triangulation. Consequently, this looks like
a chicken-and-egg problem.

In fact, conformal parameterization can be carried out using an initial triangulation of
low quality, and this algorithm will produce a new triangulation with much better quality.
Many geometric processing tasks cannot be computed on the initial mesh. For example,
the error bound for a discrete solution to the Poisson equation is O(ε2) on good quality
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meshes. If the mesh has too many obtuse angles, then the discrete results will not converge
to the smooth solution.

In reality, surfaces are acquired by 3D scanning technologies, such as laser scanner and
structured-light scanner, or reconstructed form medical data. Usually, the raw point cloud
is very dense, and the initial triangulation is induced by the pixel or voxel grid structures.
In the geometric modeling field, the input surfaces may be spline surfaces, and the initial
triangulation can be chosen as the regular grids on the parameter domain. Then conformal
parameterizations can be computed using the dense samples with the initial triangulation.
Then we can perform the remeshing using the current conformal parametric Delaunay re-
finement algorithm to improve the mesh quality or compress the geometric data.

5.2 Previous Works

5.2.1 Surface Meshing/Remeshing

5.2.1.1 Delaunay Refinement

The Delaunay refinement algorithm was originally designed for meshing planar domain-
s, and was later generalized for meshing surfaces and volumes. We refer readers to
[Cheng et al. 2012] for full details.

Chew’s first algorithm [Paul Chew 1989] splits any triangle whose circumradius is
greater than the prescribed shortest edge length parameter ε and hence generates triangu-
lation of uniform density and with no angle smaller than 30◦. But the number of triangles
produced is not optimal. Chew’s second algorithm [Paul Chew 1993] splits any triangle
whose circumradius-to-shortest-edge ratio is greater than one, and hence in practice pro-
duces grade mesh. Similar split criterion was used in Ruppert’s algorithm [Ruppert 1995],
which has the theoretical guarantee of the minimal angle of no less than 20.7◦. Shewchuk’s
algorithm [Shewchuk 2001] can create meshes with most angles of 30◦ or greater. Dey et

al. developed a series of algorithms for surface meshing and remeshing based on vol-
umetric Delaunay refinement [Cheng et al. 2004] [Dey et al. 2005] [Dey & Levine 2007],
which are the methods in the first category.

5.2.1.2 Centroidal Voronoi Tessellation

The concept of Centroidal Voronoi Tessellations (CVT) was first proposed by Du et

al. [Du et al. 1999], then generalized to constrained Centroidal Voronoi Tessellations
[Du et al. 2002]. Recently, CVT has been widely used for surface meshing/remeshing
to produce high quality triangulations. It can be carried out in the ambient space, e.g.
Yan et al. [Yan et al. 2009], or the conformal parameter domain, e.g. Alliez et al.

[Alliez et al. 2003] [Surazhsky et al. 2003], or even high embedding space, e.g. Lévy et

al. [Lévy & Bonneel 2013]. A complete survey of the recent advancements on CVT based
remeshing can be found in [Alliez et al. 2008]. Although visually pleasing and uniform,
all the existing CVT based remeshing methods for the generation of high quality triangu-
lation have no theoretical bound of the minimal angle [Alliez et al. 2008]. Therefore, the
curvature measure convergence cannot be guaranteed.
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5.2.2 Conformal Surface Parameterization

Over the last two decades, surface parameterization has gradually become a
very popular tool for various mesh processing processes [Sheffer et al. 2006]
[Floater & Hormann 2005]. In this work, we consider only conformal parameter-
izations. There are many approaches used for this purpose, including harmonic
energy minimization [Desbrun et al. 2002] [Gu et al. 2004] [Wang et al. 2005], Cauchy-
Riemann equation approximation [Lévy et al. 2002], Laplacian operator lineariza-
tion [Haker et al. 2000], circle packing [Hurdal et al. 2000], angle-based flattening
[Sheffer & de Sturler 2001], holomorphic differentials [Gu & Yau 2003], Ricci curvature
flow [Jin et al. 2008] [Zeng et al. 2010a], Yamabe flow [Lui et al. 2010], conformal
equivalence class [Springborn et al. 2008], most isometric parameterizations (MIPS)
[Hormann et al. 1999], etc..

5.3 Statement of the Main Theorem

5.3.1 Curvature Measures

First, let M be a C2-smooth surface embedded in R
3, its curvature measures can be defined

as follows.

Définition 2. The Gaussian curvature measure of M, φ G
M , is the function associated with

each Borel set B⊂ R
3,

φ G
M(B) =

∫

B∩M
G(p)d p

where G(p) is the Gaussian curvature of M at point p. Similarly, the mean curvature

measure φ H
M is given by

φ H
M (B) =

∫

B∩M
H(p)d p

where H(p) denotes the mean curvature of M at point p.

Let V be a polyhedron of R
3 and its polyhedral boundary M be a triangular mesh

surface. We use vi to denote a vertex, [vi,v j] an edge, and [vi,v j,vk] a face of M. We define
the discrete Gaussian curvature of M at each vertex as the angle deficit,

G(vi) = 2π−∑
jk

θ
jk

i ,

where θ
jk

i is the corner angle on the face [vi,v j,vk] at the vertex vi. Similarly, the discrete
mean curvature at each edge is defined as

H(ei j) = |vi− v j|β (ei j),

where βi j is the angle between the normals to the faces incident to ei j. The sign of β (ei j)
is chosen to be positive if ei j is convex and negative if it is concave.

Définition 3. The discrete Gaussian curvature measure of M, φ G
M , is the function associated

with every (Borel) set B⊂ R
3

φ G
M(B) = ∑

v∈B∩M

G(v). (5.1)
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The discrete mean curvature measure φ H
M is

φ H
M (B) = ∑

e∈M

length(e∩B)β (e). (5.2)

The curvature measures on both smooth surfaces and polyhedral surfaces can be unified
by the normal cycle theory, which will be explained in Section 5.4.3.

5.3.2 Main Results

It is well known that any Riemannian metric defined on a smooth (compact with or without
boundary) surface M can be conformally deformed into a metric of constant curvature c ∈
{−1,0,1}, depending on the topology of M, the so-called uniformization metric (cf. Fig.
5.1). Now if M is endowed with a Riemannian metric with constant curvature, Delaunay
refinement algorithms can be used to generate a triangulation on M with good quality.

The most common Delaunay refinement algorithms include Chew’s [Paul Chew 1989,
Paul Chew 1993] and Ruppert’s [Ruppert 1995]. Let ε be a user defined upper bound of
the circumradius of the final triangulation. Given an initial set of samples on surface M,
such that the distance between any pair of samples is greater than ε . If M has boundaries,
then the boundaries are sampled and approximated by piecewise geodesics, such that each
geodesic segment is greater than ε . The Delaunay refinement method on the uniformiza-
tion space starts with an initial Delaunay triangulation of the initial samples, then updates
the samples by inserting circumcenters of the bad triangles, and meanwhile, updates the
triangulation by maintaining the Delaunay property. A bad triangle can be either bad-sized
or bad-shaped. A triangle is bad-sized, if its circumradius is greater than ε . A triangle is
bad-shaped, if its circumradius-to-shortest-edge ratio is greater than one. In this work, we
will show the following meshing algorithm using the packing argument.

Theorem 5.3.1 (Delaunay Refinement). Let M be a compact Riemannian surface with

constant curvature. Suppose that the boundary of M is empty or is a union of geodesic

circles. For any given small enough ε > 0, the Delaunay refinement algorithm terminates.

Moreover, in the resultant triangulation, all triangles are well-sized and well-shaped, that

is

1. The circumradius of each triangle is not greater than ε .

2. The shortest edge length is greater than ε .

Suppose M is also embedded in E
3 with the induced Euclidean metric. Then M can

also be conformally mapped to a surface with uniformization metric, such that all bound-
aries (if there are any) are mapped to geodesic circles. By running Delaunay refinement
on the uniformization metric, we can get a triangulation of M, which induces a polyhedral
surface T , whose vertices are on the surface, and all faces of which are Euclidean trian-
gles. Furthermore, all triangles are well-sized and well-shaped under the original induced
Euclidean metric. Based on the induced triangulation T , we will show the following main
theorem.

Theorem 5.3.2 (Main Theorem). Let M be a compact Riemannian surface embedded in E
3

with the induced Euclidean metric, T the triangulation generated by Delaunay refinement
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on conformal uniformization domain, with a small enough circumradius bound ε . If B is

the relative interior of a union of triangles of T , then:

|φ G
T (B)−φ G

M(π(B))| ≤ Kε (5.3)

|φ H
T (B)−φ H

M (π(B))| ≤ Kε (5.4)

|φ G
T (B)−φ G

M(η(B))| ≤ Kε (5.5)

|φ H
T (B)−φ H

M (η(B))| ≤ Kε (5.6)

where for fixed M

K = O( ∑
{t∈T, t⊂B̄}

r(t)2)+O( ∑
{t∈T, t⊂B̄, t∩∂B6= /0}

r(t)),

r(t) being the circumradius of triangle t. Moreover, K can be further replaced by:

K = O(area(B))+O(length(∂B)). Furthermore, If M is an abstract compact Riemannian

surface (only with a Riemannian metric, but not an embedding), inequality (5.5) still holds.

Here π denotes the closest point projection on M, and η denotes the natural projection

on M, which is induced by the conformal parameterization.

5.4 Theoretical Proofs

5.4.1 Surface Uniformization

Let (M1,g1) and (M2,g2) be smooth surfaces with Riemannian metrics. Let φ : M1→M2

be a diffeomorphism, φ is conformal if and only if

φ ∗g2 = e2λ g1,

where φ ∗g2 is the pullback metric on M1, and λ : M1→ R is a scalar function defined on
M1. Conformal mappings preserve angles and distort area elements. The conformal factor

function e2λ indicates the area distortion.
According to the classical surface uniformization theorem, every metric surface (M,g)

can deform to one of three canonical shapes, the sphere, the Euclidean plane or the hy-
perbolic plane. Namely, there exists a unique conformal factor function λ : M→ R, such
that the uniformization Riemannian metric e2λ g induces constant Gaussian curvature, the
constant being one of {+1,0,−1} according to the topology of the surface. If surfaces
have boundaries, then the boundaries are mapped to circles on the uniformization space.

Figures 5.1 and 5.2 show the uniformizations for closed surfaces and surfaces with
boundaries, respectively. The left-hand columns show genus zero surfaces, which can con-
formally deform to the unit sphere with +1 curvatures. The middle columns demonstrate
genus one surfaces, whose universal covering space is conformally mapped to the Eu-
clidean plane, and the boundaries become circles. The columns on the right illustrate high
genus surfaces, whose universal covering space is flattened to the hyperbolic plane, and
whose boundaries are mapped to circles.

Surface uniformization can be carried out using the Ricci flow method [Jin et al. 2008].
Then we can compute the triangulation of the surface by performing the Delaunay refine-
ment method on the canonical uniformization domain.
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Figure 5.1: Uniformization for closed surfaces.

Figure 5.2: Uniformization for surfaces with boundaries.

5.4.2 Delaunay Refinement

The Delaunay refinement algorithm for mesh generation operates by maintaining a Delau-
nay triangulation, which is refined by inserting circumcenters of triangles, until the mesh
meets constraints on element quality and size.

5.4.2.1 Geodesic Delaunay Triangulation

By the uniformization theorem, all oriented metric surfaces can be conformally deformed
to one of three canonical shapes, the unit sphere S

2, the flat torus E2/Γ and the hyperbolic
surface H2/Γ, where E2 is the Euclidean plane, H2 the hyperbolic plane, and Γ is the Deck
transformation group, a subgroup of isometries of E2 or H2, respectively. The unit sphere
S

2 can be conformally mapped to the complex plane by stereographic projection, with a
Riemannian metric

C∪{∞},g =
4dzdz̄

(1+ zz̄)2 .
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Similarly, the hyperbolic plane H2 is represented by Poincaré’s disk model with a Rieman-
nian metric

{|z|< 1|z ∈ C},g =
4dzdz̄

(1− zz̄)2 .

The concepts of Euclidean triangles and Euclidean circles can be generalized to geodesic
triangles and geodesic circles on S

2 and H
2. Therefore Delaunay triangulation can be di-

rectly defined on these canonical constant curvature surfaces. A triangulation is Delaunay
if it satisfies the empty circle property, namely the geodesic circumcircle of each geodesic
triangle does not include any other point. Spherical circles on S

2 are mapped to Euclidean
circles or straight lines on the plane by stereographic projection. Similarly, hyperbolic
circles are mapped to the Euclidean circles on the Poincaré disk. Therefore, geodesic De-
launay triangulations on S

2 or H2 are mapped to Euclidean Delaunay triangulations on the
plane. As a result, geodesic Delaunay triangulations can be carried out using conventional
Euclidean Delaunay triangulation.

5.4.2.2 Delaunay Refinement on Constant Curvature Surfaces

The Delaunay refinement algorithm on constant curvature surfaces with empty boundary is
introduced as follows. Take a flat torus E2/Γ as an example. The user chooses a parameter
ε , which is the upper bound of the circumradius.

1. An initial set of samples is generated on the surface, such that the shortest distance
between any pair of samples is greater than ε . An initial Delaunay triangulation is
constructed.

2. Select bad size triangles, whose circumradii are greater than ε , insert their circum-
centers, and maintain the Delaunay triangulation.

3. Select bad shape triangles, whose ratio between circum radius and shortest edge
length is greater than one, insert their circum centers, maintain the Delaunay trian-
gulation.

4. Repeat 2 and 3, until the algorithm terminates.

The proof of theorem 5.3.1 is based on the conventional packing argumen-
t [Paul Chew 1989].

Proof. In the initial setting, all the edge lengths are greater than ε . In step 2, after inserting
the circumcenter of a bad size triangle, all the newly generated edges are connected to the
center, their lengths are no less than the circumradius, which is greater than ε . In step 3, the
circumradius of the bad shape triangle is greater than the shortest edge of the bad triangle,
which is greater than ε . All the newly generated edges connecting to the center are longer
than the radius ε . Therefore, during the refinement process, the shortest edge is always
greater then ε .

Suppose p and q are the closest pair of vertices, then the line segment connecting them
must be an edge of the final Delaunay triangulation, which is longer than ε . Therefore, the
distance between any pair of vertices is greater than ε . Centered at the each vertex of the
triangulation, a disk with radius ε/2 can be drawn. All these disks are disjoint. Because the
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total surface area is finite, the number of vertices is finite. Therefore, the whole algorithm
will terminate.

When the algorithm terminates, all triangles are well-sized and well-shaped. Namely,
the circumradius of each triangle is smaller than ε , and the shortest edge length is greater
than ε . For the flat torus case, the minimal angle is greater than 30◦.

By the uniformization theorem, if a surface has a boundary, it can be conformally
mapped to the constant curvature surfaces with circular holes. Then the boundaries can
be approximated by Planar Straight Line Graph (PSLG), such that the angles between two
adjacent segments are greater than 60◦. Using a proof similar to the one given by Chew in
[Paul Chew 1989] and [Paul Chew 1993], we can show the theorem still holds.

5.4.2.3 Delaunay Refinement on General Surfaces

For general surfaces, we need to add grading to the Delaunay triangulation. The grading
function is the conformal factor e2λ , which controls the size of the triangles. Step 2 in
the above algorithm needs to be modified as follows: select a bad size triangle with the
circumcenter p and circumradius greater than εe−λ (p). The same proof can be applied
to show the termination of the algorithm. In the resultant triangulation, the grading is
controlled by the conformal factor, the circum-radius is less than εe−λ , the shortest edge is
greater than εe−λ , so the triangles are still well-shaped. On the original surface, the edge
length is greater than ε and the circumradius is less than ε . The minimal angle is bounded.

According to [Funke & Ramos 2002], such a kind of sampling is locally uniform, thus
is also a κ-light ε-sample. Suppose the triangulation is T , t ∈ T is a triangle, with circum-
radius r(t), B⊂ T is a union of triangles of T , then

Lemma 5.4.1. The following estimation holds

∑
t⊂B̄

r(t)2 + ∑
t⊂B̄,t∩∂B 6= /0

r(t) = O(area(B))+O(length(∂B)). (5.7)

In the following, we denote V as a compact set in three dimensional Euclidean space
R

3, M its boundary surface. Hence, M is orientable.
5.4.3 Normal Cycle Theory

In order to be complete, we briefly introduce the normal cycle theory, which closely follows
the work in [Cohen-Steiner & Morvan 2003a]. For a more in-depth treatment, we refer
readers to [Cohen-Steiner & Morvan 2003a].

Intuitively, the normal cycle of a surface is its offset surface embedded in a higher
dimensional Euclidean space. If the surface is not convex nor smooth, its offset surface in
R

3 may have self-intersections. By embedding it in higher dimensional space, it can be
fully unwrapped.

5.4.3.1 Offset Surface

Suppose V is a volumetric domain in R
3, whose boundary M = ∂V is a compact C2-smooth

surface. Let ρ be the distance between M and the medial axis of the complement of V .
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V

Vε

M

BVε(B)

ρ Sk(R2/V )

Figure 5.3: Offset surface and tube formula.

The ε-offset of V minus V is

Vε = {p|p 6∈V d(p,V )< ε} ⊂ R
3.

The tube formula can be written as

Vol(Vε) = area(M)ε +φ H
V (M)

ε2

2
+φ G

V (M)
ε3

3

for ε < ρ . The localized version of the tube formula is as follows. Let B ⊂M be a Borel
set, the ε-offset of B is Vε(B), then we have

Vol(Vε(B)) = area(B)ε +φ H
V (B)

ε2

2
+φ G

V (B)
ε3

3
.

The volume of the ε-offset Vε(B) is a polynomial in ε , and its coefficients are multiples
of the curvature measures of B. Even if the boundary of V is not smooth but if ρ > 0,
the volume of Vε(B) is always a polynomial in ε for ε < ρ . Therefore the coefficients
of this polynomial generalize the curvature measures from smooth surfaces to polyhedral
surfaces.

This approach does not generalize to non-convex polyhedral surfaces, where ρ may
be equal to 0. So the normal cycle theory has been developed. Intuitively, normal cycles
provide a way of unfolding offsets in a higher dimensional space.

5.4.3.2 Normal Cycles

Définition 4. The normal cycle N(M) of a C2-smooth surface M is the current associated

with the set

N(M) := {(p,n(p))|p ∈M}
endowed with the orientation induced by that of M, where a current is the generalization

of an oriented surface patch, with integral coefficients. When no confusion is possible, we

use the same notation N(M) to denote both the current and its associated set.
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The normal cycle of V is the same as that of M, namely, N(V ) = N(M). The diffeo-
morphic mapping from M to its normal cycle N(M) is denoted as

i : M→ N(M)
p→ (p,n(p))

V1 V2V1 ∩ V2

Figure 5.4: Additivity of the normal cycle.

Suppose V is a convex body, whose boundary M is a polyhedral surface. We use normal
cones to replace normal vectors.

Définition 5. The normal cone NCV (p) of a point p ∈ V is the set of unit vectors v such

that

∀q ∈V,〈q− p,v〉 ≤ 0.

Définition 6. The normal cycle of M is the current associated with the set

{(p,n(p))|p ∈M,n ∈ NCV (p)}

endowed with the orientation induced by the one of M.

As in figure 5.4, normal cycles are graphically represented by their image under the
map sending (p,n(p)) to p+n(p).

The crucial property of the normal cycle is its additivity as shown in Fig. 5.4. Suppose
V1 and V2 are two convex bodies in R

3, such that V1∪V2 is convex, then

N(V1∩V2)+N(V1∪V2) = N(V1)+N(V2).

By the additivity property, we can define the normal cycle of a polyhedron. Given a
triangulation of the polyhedron V into tetrahedra ti. i = 1,2, · · · ,n, the normal cycle of V is
defined as

N(V ) =
n

∑
k=1

(−1)k+1 ∑
1≤i1<···<ik≤n

N(∩k
j=1ti j

)
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by inclusion-exclusion. It is proved that the normal cycle N(V ) is independent of triangu-
lations.

Similar to the smooth surface case, one can define a set-valued mapping from M and
its normal cycle N(M)

i : M→ N(M)
p→ (p,n(p)) n ∈ NCV (p).

5.4.3.3 Invariant Differential 2-Forms

Normal cycles are embedded in the space R
3×R

3, denoted as Ep×En, where Ep is called
point space, and En is called normal space. Let g be a rigid motion of R3, g(p) = Rp+d,
where R is a rotation matrix, d is a translation vector. g can be extended to Ep×En as
ĝ(p,n) = (R(p) + d,R(n)). We say that a differential 2-form ω is invariant under rigid
motions, if

ĝ∗ω = ω.

The following invariant 2-forms play fundamental roles in normal cycle theory,

Définition 7. Let the coordinates of Ep×En be (x1,x2,x3,y1,y2,y3), then

ωA = y1dx2∧dx3 + y2dx3∧dx1 + y3dx1∧dx2

ωG = y1dy2∧dy3 + y2dy3∧dy1 + y3dy1∧dy2

ωH = y1(dx2∧dy3 +dy2∧dx3)+
y2(dx3∧dy1 +dy3∧dx1)+
y3(dx1∧dy2 +dy1∧dx2).

Curvature measures of a surface can be recovered by integrating specific differential
forms on its normal cycle. The following formula unifies the curvature measures on both
smooth surfaces and polyhedral surfaces. For a Borel set B ⊂ R

3, the curvature measures
are given by ∫

N(M) ωG
|i(B∩M) = φ G

M(B)
∫

N(M) ωH
|i(B∩M) = φ H

M (B)∫
N(M) ωA

|i(B∩M) = area(B)

where ωG
|i(B∩M) denotes the restriction of ω to i(B∩M).

5.4.4 Estimation

In this section, we explicitly estimate the Hausdorff distance, normal deviation, and differ-
ences of curvature measures between the discrete triangular mesh to the smooth surface.

5.4.4.1 Configuration

Let (M,g) be a C2 metric surface. D is the unit disk on the uv-plane. A conformal param-
eterization is given by ϕ : D →M, such that g(u,v) = e2λ (u,v)(du2 +dv2). Suppose p ∈D

is a point on the parameter domain, then ϕ(p) is a point on the surface. The derivative map
dϕ|p : TpD → Tϕ(p)M is a linear map

dϕ|p = eλ (p)

(
cosθ −sinθ

sinθ cosθ

)
.
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(M, g)

D

τ (t)

Tϕ(p0)M

ϕ

τ

dϕ

p0 p1

p2

ϕ(p0)
dϕ(p1)

ϕ(p2)

ϕ(p1)
dϕ(p2)

dϕ(t)

t

Figure 5.5: Configuration.

Let T be a triangulation of the parameter domain D , the conformal mapping ϕ induces
a triangulation ϕ(T ) of the smooth surface M, T is the corresponding polyhedral surface.
Each vertex pi ∈T corresponds to a vertex ϕ(pi) ∈ T , each triangle on T corresponds to
a face in T . This induces a piecewise linear map τ : T → T (see Fig. 5.5 and Tab. 5.1).

Définition 8 (Natural projection). The homeomorphism from the triangle mesh T to the

smooth surface M

η = ϕ ◦ τ−1 : T →M

is called the natural projection.

Another map from the mesh to the surface is the closest point projection,

Définition 9 (Closest point projection). Suppose T has no intersection with the medical

axis of M. Let q ∈ T , and π(q) be its closest point on the surface M,

π(q) = argminr∈M|r−q|,

we call the mapping from q to its closest point π(q) as the closest point projection.

We will show that the closest point projection is also a homeomorphism.

5.4.4.2 Hausdorff Distance and Normal Deviation

In the following discussion, we assume the triangulation is generated by the Delaunay Re-
finement in Theorem 5.3.1. Our goal is to estimate the Hausdorff distance and the normal
deviation, in terms of both natural projection and closest point projection.

Lemma 5.4.2 (Natural projection). Suppose q ∈ T , then

|q−η(q)| = O(ε2), (5.8)

|n(q)−n(η(q))| = O(ε). (5.9)
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Symbols Meaning

Surfaces

M smooth metric surface
D parameter domain
Mappings

ϕ : D →M conformal parameterization
dϕ|p : TpD → Tϕ(p)M derivative map of ϕ

τ : T → T piecewise linear map between meshes
η = ϕ ◦ τ−1 : T →M natural projection from T and M

π : T →M closest point projection from T and M

Triangulations

T triangulation on D

ϕ(T ) surface triangulation induced by ϕ

T polyhedral surface induced by ϕ(T )

Faces

t ⊂D a triangle on parameter domain
dϕ(t)⊂ Tϕ(p)M corresponding face on tangent plane
τ(t)⊂ T corresponding face on T

Table 5.1: Symbol list

Proof. As shown in Fig. 5.5, suppose p∈D , τ(p)= q. p is inside a triangle t = [p0, p1, p2],

p =
2

∑
k=0

αk pk,0≤ αk ≤ 1,

where αk’s are barycentric coordinates. All the edge lengths are Θ(ε), and angles are
bounded. The area is Θ(ε2).
Equation 5.8: By the linearity of τ and dϕ , τ(pk) = ϕ(pk) and |ϕ(pk)−dϕ(pk)|= O(ε2),
we obtain

|τ(p)−dϕ(p)| = |∑k αk(τ(pk)−dϕ(pk))|
≤ ∑k αk|ϕ(pk)−dϕ(pk)|
= O(ε2).

Therefore
|τ(p)−ϕ(p)| ≤ |τ(p)−dϕ(p)|+ |dϕ(p)−ϕ(p)|= O(ε2),

where q = τ(p) and η(q) = ϕ ◦ τ−1(q) = ϕ(p), this gives Eqn. 5.8.
Equation 5.9: Construct local coordinates on the tangent plane Tϕ(p0)M, such that ϕ(p0)
is at the origin, dϕ(p1) is along the x-axis. Then τ(p1) is (Θ(ε),0,O(ε2)), τ(p2) is
(Θ(ε)cosβ ,Θ(ε)sinβ ,O(ε2)), where β is the angle at p0. By direct computation, the
normal to the face τ(t) is (O(ε),O(ε),Θ(1)). Therefore

|n◦ τ(p)−n◦ϕ(p0)|= O(ε).

Furthermore,
|n◦ϕ(p)−n◦ϕ(p0)| = |W (ϕ(p)−ϕ(p0))|

≤ ‖W‖|ϕ(p)−ϕ(p0)|
= O(ε),
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where W is the Weigarten map. M is compact, therefore ‖W‖ is bounded, |ϕ(p)−ϕ(p0)|
is O(ε).

|n◦ τ(p)−n◦ϕ(p)| ≤ |n◦ϕ(p)−n◦ϕ(p0)|
+ |n◦ τ(p)−n◦ϕ(p0)|
= O(ε).

This gives Eqn. 5.9.

Lemma 5.4.3 (Closest point projection). Suppose q ∈ T , then

|q−π(q)| = O(ε2), (5.10)

|n(q)−n(π(q))| = O(ε). (5.11)

Proof. Equation 5.10: From Eqn. 5.8 and the definition of closest point, we obtain

|q−π(q)| ≤ |q−η(q)|= O(ε2).

Equation 5.11: From Eqn. 5.8 and Eqn. 5.10, we get

|η(q)−π(q)| ≤ |η(q)−q|+ |q−π(q)|= O(ε2),

therefore
|n◦η(q)−n◦π(q)| ≤ ‖W‖|η(q)−π(q)|= O(ε2).

Then from Eqn. 5.9 and the above equation,

|n(q)−n(π(q))| ≤ |n(q)−n◦η(q)|
+ |n◦η(q)−n◦π(q)|
= O(ε)+O(ε2).

Remark The proofs for the Hausdorff distances in Eqn. 5.8 and Eqn. 5.10 do not require
the triangulation to be well-shaped, but only well-sized. The proofs for the normal devi-
ation estimation in Eqn. 5.9 and Eqn. 5.11 require the triangulation to be both well-sized
and well-shaped. In the proofs we use the facts that the triangulation on parameter domain
has bounded angles, and the mapping ϕ is conformal. Figure 5.6 shows a counterexample:
a triangle is inscribed in a latitudinal circle of a cylinder, no matter how small it is, its
normal is always orthogonal to the surface normals.

5.4.4.3 Global Homeomorphism

Both the natural projection and the closest point projection are homeomorphisms. While it
is trivial for natural projection, in the following we give a detailed proof to show the closest
point projection is a piecewise diffeomorphism, and estimate its Jacobian.

Lemma 5.4.4. The closest point projection π : T →M is a homeomorphism.
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φ(p0)

φ(p2)

φ(p1)θ2

S

Figure 5.6: Small triangles inscribed to attitudinal circles of a cylinder do not guarantee

the normal convergence.

Proof. First we show that π restricted to the one-ring neighborhood of each vertex of T is
a local homeomorphism. Suppose p ∈ T is a vertex, therefore p ∈M as well. U(p) is the
union of all faces adjacent to p. We demonstrate that π : U(p)→M is bijective. Assume
q ∈U(p), then |p−q|= O(ε),

|π(q)− p| ≤ |π(q)−q|+ |q− p|= O(ε2)+O(ε).

Therefore
|n(π(q))−n(p)|= O(ε). (5.12)

Assume there is another point r ∈U(p), such that π(q) = π(r). Let the unit vector of the
line segment connecting them be

d =
r−q

|r−q| ,

then because r,q ∈U(p), d is almost orthogonal to n(p),

〈d,n(p)〉= O(ε). (5.13)

On the other hand, d is along the normal direction at π(q), n(π(q)) = ±d, assume d is
along n(π(q)), from Eqn. 5.12, we obtain

|d−n(p)|= O(ε). (5.14)

Eqn. 5.13 and Eqn. 5.14 contradict each other. Therefore π|U(p) is bijective.
Then we show π restricted on each face is a diffeomorphism. Let r(u,v),n(u,v) be

position and normals of M respectively, where (u,v) are local parameters along the prin-
cipal directions. t ∈ T is a planar face. The inverse closest point projection map is
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π−1 : r(u,v)→ q(u,v), where q(u,v) is the intersection between the ray through r(u,v)
along n(u,v) and the face t,

q(u,v) = r(u,v)+ s(u,v)n(u,v),

direct computation shows

〈qu×qv,n〉= (1+2Hs+Ks2)〈ru× rv,n〉, (5.15)

where s = O(ε2). When ε is small enough, the above equation is close to 1, which means
π|U(P)| is a piecewise diffeomorphism.

Secondly, we show that π is a global homeomorphism. We have shown that π is a
covering map. At each vertex of T , the closest point equals itself, therefore the degree of
π is 1. So π is a global homeomorphism.

Note that, the estimation of the Jacobian of the closest point projection in Eqn. 5.15
can be applied to show the following. Suppose B⊂ R

3 is a Borel set, then

|area(B∩T )−area(π(B)∩M)|= Kε2.

5.4.4.4 Proof of the Main Theorem

In the following, we give two different proofs of the main theorem 3.4. The first one is
based on the following main theorem in [Cohen-Steiner & Morvan 2003a].

Theorem 5.4.5. Suppose T is a bounded aspect ratio triangulation projecting homeomor-

phically on M, if B is a relative interior of a union of triangles of T , then

|φ G
T (B)−φ G

M(π(B))| ≤ Kε (5.16)

|φ H
T (B)−φ H

M (π(B))| ≤ Kε (5.17)

where for fixed M

K = O( ∑
{t∈T, t⊂B̄}

r(t)2)+O( ∑
{t∈T, t⊂B̄, t∩∂B6= /0}

r(t)),

r(t) is the circumradius of triangle t.

The first proof is a simple corollary of this theorem, based on the Lemma 5.4.4 and the
Theorem 5.3.1.

Proof. By Lemma 5.4.4, the closest point projection is a homeomorphism, by Theorem
5.3.1 the triangulation T has bounded aspect ratio, therefore the conditions of Theorem
5.4.5 are satisfied, and consequently, Eqns. 5.16 and 5.17 hold. According to Eqn. 5.7 in
Lemma 5.4.1, therefore the main theorem holds.

The second proof is more direct, and replace the closest point projection π : T →M by
the natural projection η : T →M.
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Proof. The natural projection η : T→M can be lifted to a mapping between the two normal
cycles f : N(T )→ N(M), such that the following diagram commutes:

N(M)
f←−−−− N(T )

i

x
yp1

M
η←−−−− T

,

where p1 is the projection from Ep×En to Ep, and i(q) = (q,n(q)) for all q ∈M. Namely,
given a point q ∈ T , and n(q) in its normal cone, (q,n(q)) ∈ N(T ),

f : (q,n(q))→ (η(q),n◦η(q)) ∈ N(M).

By Lemma 5.4.2,
|(q,n(q))− f (q,n(q))|= O(ε). (5.18)

It is obvious that f is continuous.
Let B ⊂ Ep, we denote the current N(T )∩ (B× En) by D, and the current N(M)∩

(η(B)×En) by E, as shown in Fig. 5.7. Consider the affine homotopy h between f and

D = N(T ) ∩ (B × En)

E = N(M) ∩ (B × En)

C

O(ε)

(q,n)

f(q,n)

Figure 5.7: Homotopy between the normal cycles N(T ) and N(M).

the identity,
h(t, ·) = (1− t)id(·)+ t f (·), t ∈ [0,1].

We define the volume swept by the homotopy as

C = h#([0,1]×D),

whose boundary is
∂C = E−D−h#([0,1]×∂D).

Intuitively, C is a prism, the ceiling is E, the floor is D, and the walls are h#([0,1]×∂D).
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φ G
M(η(B))−φ G

T (B) =
∫

E−D
ωG =

∫

∂C
ωG +

∫

h#([0,1]×∂D)
ωG.

By Stokes’ Theorem, ∫

∂C
ωG =

∫

C
dωG.

Both ωG and its exterior derivative dωG are bounded, therefore, we need to estimate the
volume of block C and the area of the wall h#([0,1]×∂D). We use M(·) to denote the flat
norm (volume, area, length).

The volume of the prism C is bounded by the height and the section area. The height
is bounded by sup| f − id|. The section area is bounded by the product of the bottom area
M(D) and the square of the norm

‖Dh(t, ·)‖2 = ‖tD f +(1− t)id‖2 ≤ (t sup‖D f‖+(1− t))2.

In later discussion, we will see that sup‖D f‖ ≥ 1, therefore

‖Dh(t, ·)‖ ≤ sup‖D f‖.

We obtain
M(C) ≤ M(D)sup| f − id|sup‖D f‖2,

M(h#([0,1]×∂D)) ≤ M(∂D)sup| f − id|sup‖D f‖.
Now we estimate each term one by one.

1. Eqn. 5.18 shows
sup| f − id|= O(ε).

2. Since the triangulation has a bounded ratio of circumradius to edge length, we obtain

M(D) = O(∑t∈T,t⊂B̄ r(t)2)

M(∂D) = O(∑t∈T,t⊂B̄,t∩∂B 6= /0 r(t)).

Let K be the summation of the two terms above. According to Lemma 5.4.1, K is
bounded by the area of B and the length of ∂B.

3. For the estimation of ‖D f‖, we observe that on each triangle t ∈ D , the mapping τ

converges to dϕ , so D f on each triangle converges to

(ru,0)du+(rv,0)dv→ (ru,nu)du+(rv,nv)dv,

where r(u,v) and n(u,v) are the position and normal vectors of the smooth surface
M, (u,v) the conformal parameters, namely, |ru|= eλ , |rv|= eλ and ru ⊥ rv.

Assume (du,dv) = (cosθ ,sinθ) for any angle θ , we obtain that the norm of the
tangent vector on the left hand side is eλ . The norm of the vector on the right hand
side is bounded by the eigenvalues of the following matrix

[
〈(ru,nu),(ru,nu)〉 〈(ru,nu),(rv,nv)〉
〈(rv,nv),(ru,nu)〉 〈(rv,nv),(rv,nv)〉

]
= e2λ id + III, (5.19)
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where the third fundamental form is

III =

[
〈nu,nu〉 〈nu,nv〉
〈nv,nu〉 〈nv,nv〉

]
.

From III− 2HII +GI = 0, where the first fundamental form I = e2λ id, the second
fundamental form II = e2λW , W is the Weigarten matrix, we get

III = 2HII−GI = e2λ (2HW −Gid).

Plugging into Eqn. 5.19, we get ‖D f‖2 bounded by the eigenvalues of

(1−G)id +2HW,

therefore on each face

‖D f‖2 ≤max{1+ k2
1,1+ k2

2}.

So ‖D f‖2 is globally bounded.

Putting all the estimates together, we obtain

|φ G
M(η(B))−φ G

T (B)| ≤ Kε.

According to Lemma 5.4.1, K is bounded by the area of B and the length of ∂B. The proof
for mean curvature measure is exactly the same.

Remark The estimation for Gaussian curvature measure holds for surface intrinsically
defined, namely, with a Riemannian metric but without embedding. We can prove it in the
same way by applying Nash’s embedding theorem [Nash 1954] [Nash 1956] and normal
cycle theory which holds in any codimension.

5.5 Computational Algorithm

We verified our theoretical results by meshing spline surfaces and comparing the Gaussian
and mean curvature measures.

Each spline patch M is represented as a parametric smooth surface defined on a planar
rectangle γ : R → E

3, where R is the planar rectangle parameter domain, the position
vector γ is C2 continuous, therefore the classical curvatures are well defined. Let ϕ : D →
M be the conformal mapping from the unit disk D to the spline surface M. As shown in
the left-hand diagram in Diagram (5.20), the mapping f is from D to R, which makes the
diagram commute, therefore f = γ−1 ◦ϕ .

R M

D

✲γ

✻
f

�
�
��✒
ϕ

T k
R T k

M

T k
D

✲γ

✻
f̄

�
�
�✒
ϕ̄

(5.20)
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(a) regular grid T 0
R ⊂R (b) M

(c) T 0
M (d) T 0

D ⊂D

(e) Delaunay triangulation T 1
D ⊂D (f) T 1

M

Figure 5.8: Pipeline for meshing a Bézier patch of Utah teapot.

As shown in Fig. 5.8, in our experiments, each planar domain or surface S (S ∈
{D ,R,M}), is approximated by two triangle meshes, T k

S ,k = 0,1, where the T 0
S is in-

duced by the regular grid on the rectangle; T 1
S is induced by the Delaunay triangulation

on the unit disk. Both conformal parameterization ϕ and the parameter domain mapping
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f are approximated by piecewise linear (PL) mappings, ϕ̄ and f̄ , respectively, which are
computed on the meshes.

5.5.1 Algorithm Pipeline

(a) spline surface M (b) initial mesh T 0
M (c) triangulations on conformal

parameter domain: T 0
D and T 1

D

(d) Delaunay meshing result (e) Delaunay meshing result (f) Delaunay meshing result
T 1

M with 1K samples T 1
M with 2K samples T 1

M with 4K samples

Figure 5.9: Remeshing of the Car spline surface model.

5.5.1.1 Conformal Parametrization

In the first stage, the conformal parameterization is computed as follows:

f̄−1 : T 0
R T 0

M T 0
D

✲γ ✲ϕ̄−1

T 0
R is a triangulation induced by the regular grids structure on the rectangle R. Each

vertex on T 0
R is mapped to the spline surface M by γ , each face is mapped to a Euclidean

triangle, this gives the mesh T 0
M. If the grid tessellation is dense, the quality of the mesh T 0

M

is good enough for performing the Ricci flow and we get the PL mapping ϕ̄−1, which maps
T 0

M to a triangulation of the disk T 0
D . The composition of ϕ̄ and γ−1 gives the PL mapping

f̄ = γ−1 ◦ ϕ̄ : T 0
D → T 0

R .

5.5.1.2 Resampling and Remeshing

The process in the second stage is described in the following diagram:

ϕ̄ : T 1
D T 1

R T 1
M

✲f̄ ✲γ

First, we apply Ruppert’s Delaunay refinement method to generate the triangulation T 1
D

with good quality on the unit disk. The triangulation on the disk T 1
D is mapped to a trian-

gulation T 1
R on the rectangle by the PL mapping f̄ : T 0

D→ T 0
R . The connectivity of T 1

R is the
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same as that of T 1
D . The vertices of T 1

R are the images of the vertices of T 1
D under the PL

mapping f̄ , which are calculated as follows. Suppose q is a Delaunay vertex of T 1
D on the

disk, covered by a triangle [p0, p1, p2] ∈ T 0
D . Assume the barycentric coordinates of q are

(α0,α1,α2), q = ∑k αk pk, then

f̄ (q) = ∑
k

αk f̄ (pk).

The triangulation T 1
R induces a triangle mesh T 1

M, whose connectivity is that of T 1
R ,

vertices of T 1
M are the images of those of T 1

R under the spline mapping γ . The discrete PL
conformal mapping is given by

ϕ̄ = γ ◦ f̄ : T 1
D → T 1

M.

The triangle mesh generated by the Delaunay refinement based on conformal parameteri-
zation is T 1

M.
Fig. 5.9 shows the meshing results using the proposed method for a car model. In

this experiment, the conformal parameter domain D is also a rectangle. Frame (a) shows a
B-spline surface patch M; Frame (b) shows the initial triangle mesh T 0

M; Frame (c) shows
the triangualtions on the conformal parameter domain, T 0

D
on the top and T 1

D
at the bottom;

Frames (d), (e) and (f) illustrate the triangle meshes generated by Delaunay refinement
on conformal parameter domain with a different number of samples, 1K, 2K, and 4K,
respectively.

5.6 Experimental Results

Table 5.2: The numbers of vertices and triangles of the sequence of meshes {Tn} with

different resolutions.

mesh T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

# vertex 1021 2045 4093 6141 8189 10237 12285 14333 16381 18429 21876
# triangle 1904 3910 7950 11973 16040 20118 24192 28249 32316 36372 43202

The meshing algorithms are developed using generic C++ on Windows platform, all
the experiments are conducted on a PC with Intel Core 2 CPU, 2.66GHz, 3,49G RAM.

5.6.1 Triangulation Quality

The patch on the Utah teapot (see Fig. 5.8) is meshed with different sampling densities,
the meshes are denoted as {Tn}11

n=1 as in Table 5.2. The statistics of the meshing quality
are reported in Fig. 5.10. Frame (a) shows the maximal circumradius of all the triangles of
each mesh. Frame (b) is the average circumradius of all the triangles of each mesh, because
the sampling is uniform, we expect the circumradius εn vs. the number of vertices sn to
satisfy the relation

εn ∼
1√
sn

.
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Figure 5.10: The maximal and average circumradii {εn} (a-b), and the minimal and aver-

age of minimal angles of {Tn} (c-d).
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Figure 5.11: Curvature errors eG
n and eH

n of {Tn} converge to zeros as the number of sample

points goes to infinity (a-b), and as the average of circumradii {εn} goes to zero (c-d).

The curve in Frame (b) perfectly meets our expectations. Frames (c) and (d) show the
minimal angles on all meshes. According to the theory of Rupert’s Delaunay refinement,
the minimal angle should be no less than 20.7◦. Frame (c) shows the minimal angles; in
our experiments they are no less than 20.9◦. Frame (d) illustrates the means of the minimal
angles, which exceed 46.5◦.

5.6.2 Curvature Measure Comparisons

For each triangle mesh Tk produced by our method, for each vertex q∈ Tk, we define a small
ball in R

3, B(q,r) centered at q with radius r. We then calculate the curvature measures
φ G

Tk
(B(q,r)) and φ H

Tk
(B(q,r)) using the formulae Eqn. 5.1 and Eqn. 5.2, respectively.

We also compute the curvature measures on the smooth surface M, φ G
M(B(q,r)) and

φ H
M (B(q,r)) using the following method,

φ G
M(B(q,r)) :=

∫

γ(u,v)∈B(q,r)
G(u,v)g(u,v)dudv,

where γ(u,v) is the point on the spline surface. The G(u,v) is the Gaussian curvature
at γ(u,v), g(u,v) is the determinant of the metric tensor. Because the spline surface is
C2 continuous, all the differential geometric quantities can be directly computed using
traditional formulae. Note that, because M and Tk are very close, we use B(q,r)∩ Tk to
replace π(B(q,r))∩M in practice. In all our experiments, we set r to be 0.05area(M)

1
2 and

0.08area(M)
1
2 for Gaussian and mean curvature measures, respectively.
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Figure 5.12: Illustration of the curvature values on the Utah teapot spline surface patch M,

(a, d), and on its approximate mesh T11 (b, e). Their relative curvature error distribution

histograms are shown in (c) and (f).

We define the average error between curvature measures as

eG
n =

1
|Vn| ∑

v∈Vn

|φ G
M(B(v,r))−φ G

Tn
(B(v,r))|,

and

eH
n =

1
|Vn| ∑

v∈Vn

|φ H
M (B(v,r))−φ H

Tn
(B(v,r))|,

where Vn is the vertex set of Tn.
Figure 5.11 shows the errors between curvature measures with respect to sampling

densities, or equivalently, the number of samples and the average circumradius. Frames
(a) and (b) show the curvature measure error is approximately proportional to the inverse
of the square root of the number of sample points; Frames (c) and (d) show the curvature
measure error is approximately linear with respect to the circumradius. This again matches
our main Theorem 5.3.2.

Figure 5.12 visualizes the curvature distributions on the smooth patch M (left column),
and the triangle mesh T11 (right column). The histograms show the distributions of the
relative curvature errors at the vertices of the mesh. From the two left-hand columns, we
can see that the curvatures of M look very similar to their counterparts on T11. Moreover,
from the right-hand column, we can find that the overwhelming majority of vertices have
relative curvature errors very close to zeros. In particular, for Gaussian curvature measure,
more than 97% vertices are gathered in the relative error range of (-0.05, 0.05). For mean
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curvature measure, more than 95% of vertices are in the relative error range of (-0.05,0.05).
This demonstrates the accuracy of the proposed method.

5.7 Conclusion

This work analyzes the surface meshing algorithm based on conformal parameterization
and the Delaunay refinement method. Based on the normal cycle theory and conformal
geometry, we rigorously prove the curvature measure convergence and estimate Hausdorff
distance and normal deviation. According to [Hildebrandt et al. 2005], these theoretical
results also imply the convergence of Riemannian metric and Laplace-Beltrami operator.

The method can be generalized to prove the curvature convergence of other meshing
algorithms, such as the centroidal voronoi tessellation method, and so on. The normal cycle
theory is general to arbitrary dimension. We will generalize the theoretical results of this
work to higher dimensional discretizations, such as volumetric shapes. We will explore
these directions in the future.
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This Ph.D. thesis mainly concentrates on the topic of 3D face recognition in the re-
al. In chapter 1, we give a general introduction of the contexts, motivations, objectives,
methodologies, and contributions of this thesis. In chapter 2, we extensively review three
categories of 3D face recognition approaches: i.e. expression deformation modeling based,
surface-distance based, and local region/feature based. Our main research works are intro-
duced in the following three chapters. In Chapter 3, we present a 3D face recognition
approach to handle various expressions. and In chapter 4, we display a registration free
local feature-based approach to handle expression, pose and occlusion issues in an uniform
framework. In chapter 5, we transfer our attention to improve the data-quality of 3D mesh.
In the last chapter, we concludes this thesis and list some suggestions for the future work.

6.1 Contributions

The contributions in this thesis are as follows.

6.1.1 3D Face Recognition in the Presence of Various Expressions

To handle expression variations, we present an effective and general approach by using a
novel highly discriminative facial shape descriptor along with a facial shape deformation
learning strategy. The proposed facial shape descriptor is based on three facial normal
images encoded by multi-scale local binary patterns and enables accurate and fast charac-
terization of local shape changes. It is much more discriminative than both raw normal
images and range images encoded in the same way. The facial shape deformation learn-
ing strategy is accomplished by running the Sparse Representation-based Classifier (SRC),



Chapter 6. Conclusions and Future Work

which computes the recognition scores of local facial regions at a given normal image and
encoding scale. This approach achieves a rank-one score up to 96.3% on the FRGC v2.0
database. Furthermore, experimental results on the Bosphorus, BU-3DFE and 3D-TEC
databases demonstrate a good generalizability with respect to various types of facial ex-
pressions. Finally, the proposed approach is also very fast. It takes only 3.55 seconds to
identify a single probe in a gallery of 466 subjects such as those in the FRGC v2.0 database.

6.1.2 3D Face Recognition in the Presence of Expression, Pose and Occlusion

Variations

To handle expression, pose and occlusion in an uniform framework, we present a mesh-
based registration free 3D face recognition approach using novel pose invariant local shape
descriptors and a multi-task sparse representation-based fine grained face matching. Fa-
cial salient vertices are automatically located using the minimum and maximum curvatures
through a 3D Gaussian scale space. The local shape of each salient vertex is comprehen-
sively described by histograms of multiple-order surface differential quantities. In addition
to a Coarse Grained Matching scheme (CGM) which simply counts the number of matched
vertices, we also propose a Fine Grained Matching scheme (FGM), where the similarity
between a pair of face scans is measured as the average spare representation reconstruc-
tion error. Comprehensive experiments are carried out on Bosphorus, the largest public
database which best accounts for the various challenges of 3D FR in uncontrolled condi-
tions, i.e. expression variations, pose changes and external occlusions. The experimental
results demonstrate the effectiveness of the proposed method which achieves the best state
of the art rank-1 recognition rates over the whole dataset (96.56%) and its three subsets of
expression variations (98.82%), pose changes (91.14%) and occlusions (99.21%). Addi-
tional experiments tested on the FRGC v2.0 database show that the proposed approach also
has a good generalizability.

6.1.3 3D Data Quality Improvement: Surface Meshing with Curvature Con-

vergence

Surface differential quantities such as surface normal and curvatures are the basic building
blocks of the proposed facial surface descriptors in this thesis. Thus, their accurate esti-
mations play a key role for reliable facial surface descriptions. To this aim, we present
a practical surface meshing algorithm which can largely improve the mesh quality of 3D
data and thereby accurately estimate the surface differential quantities. Given a metric sur-
face, the proposed algorithm triangulates its conformal uniformization domain by planar
Delaunay refinement, and produces high quality meshes. Furthermore, we give explicit es-
timates for the Hausdorff distance, normal deviation, and differences of curvature measures
between the surface and the mesh. Our strong estimates directly guarantee the convergence
of Hausdorff distance, normal deviation, and curvature measure. Meanwhile, our result on
Gaussian curvature measure is intrinsic to the Riemannian metric and independent of the
embedding. Finally, the experimental results verified the theoretical results and demon-
strated the efficiency of the approach.
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6.2 Perspectives for Future Work

In this section, we present some possible extensions and future directions of this thesis.

6.2.1 3D Face Recognition: Encoding Surface Normal or Coordinate?

Facial surface normal information, as the first order surface differential quantity, deter-
mines the orientation of the surface at each point and contains informative local sur-
face shape information. However, the majority of existing 3D face recognition ap-
proaches directly compare the point-distance between facial surfaces (e.g. ICP-bsed),
or extract facial shape descriptors directly from the geometric coordinates of range
image or depth image. Recently, normal information has been successfully utilized
for facial surface description [Kakadiaris et al. 2007a] and facial surface registration
[Queirolo et al. 2010] [Mohammadzade & Hatzinakos 2013]. As an important conclusion
in [Mohammadzade & Hatzinakos 2013], the authors show that the surface normal vectors
of the face at the sampled points contain more discriminatory information than the coor-
dinates of the points. In chapter 3, we also use Local Binary Patterns (LBP) to encode
the original normal information and indicates that the encoded normal information (LNP)
is much more discriminative than the encoded depth information (LSP). It seems that the
superiority of using surface normal for 3D face recognition becomes more and more clear.
Thus, we believe that this conclusion is true in general.

It will be a very valuable research work if one can design a general and fair compari-
son scheme to comprehensively compare the performance of local facial shape descriptors
extracted based on the surface normal information and the surface depth (coordinates) in-
formation. As a preliminary extension, in [Li et al. 2012], we also propose two new ways
to encode the normal information, including multi-scale and multi-orientation Gabor Fil-
ters (GFs) and Local Gabor Binary Patterns (LGBPs). Together with MSMC-LNPs, we
achieve a group of facial normal descriptors consisting of Normal Local Binary Pattern-
s descriptor (N-LBPs, i.e. MSMC-LNPs), Normal Gabor Filters descriptor (N-GFs) and
Normal Local Gabor Binary Patterns descriptor (N-LGBPs). The effectiveness of the pro-
posed descriptors are evaluated on the 3D TEC dataset for recognizing identical twins, and
we find that all these descriptors are much more discriminative than those counterpart ones
based on depth images.

6.2.2 3D Partial Face Recognition with Data Quality Guarantee

3D partial face recognition is a common scenario for real-life biometric applications and
pose a great challenge to current face recognition approaches. The challenge is mainly
come from: 1. data missing caused by pose variations, and 2. low-quality data (e.g. low-
resolution, irregular sampling and irregular triangles). The data missing issue has been s-
tudied in several works, see e.g. Kakadiaris et al. [Perakis et al. 2009] [Passalis et al. 2011]
[Chu et al. 2013], Maes et al. [Maes et al. 2010], Li et al. [Li et al. 2011c], Berretti et al.

[Berretti et al. 2011b] [Berretti et al. 2013], Drira et al. [Drira et al. 2013]. However, the
low-quality data issue is still open. As mentioned in chapter 1, when we say that a facial tri-
angle mesh is of “low-quality”, either it has a sparse set of sampling points or it has a large
set of triangles with irregular shapes, or both. All these cases can make the computation of
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multiple order differential quantities highly unreliable. In chapter 5, we introduce a surface
meshing algorithm to generate “high-quality” surface mesh, from which the convergence
of surface normal and curvatures can be guaranteed. Based on the result of this algorithm,
an immediate extension of the work in chapter 4 is that how large of the performance im-
provement for 3D partial face recognition can be achieved after we change the low-quality
face data to high-quality one. We leave this work in near future.

6.2.3 3D Video-based Face Recognition

In the last several decades, face recognition in 2D video has received significant attention
[Liu & Cheng 2003] [Lee et al. 2003], see [Wang et al. 2009] for a comprehensive survey.
Not only since the informative dynamic information contained in video sequence has a pos-
sibility to largely improve the still image-based recognition performance, but also the wide
range of real-life biometric applications (e.g. video surveillance). We believe that similar
things will be happened in the field of 3D face recognition in the near future. along with
the development of 3D shape scanning, tracking, and description techniques. For example,
two published 3D video-based face databases have already been used in the study of 3D
dynamic facial expression recognition (the BU-3DFE Database [Yin et al. 2008b]) and 3D
gender recognition (the EURECOM Kinect Face Dataset [Huynh et al. 2013]). And the 3D
surface registration and tracking techniques are also becomes a very active research top-
ic in recent years [Zeng et al. 2010b] [Zeng et al. 2011]. Combing all these achievements
and the temporal extensions of the local facial shape descriptors proposed in this thesis, it
is possible for us to study the new topic of 3D video-based face recognition, which will be
a new direction of real-life 3D face recognition in the near future.
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APPENDIX A

Smooth Surfaces

In this chapter, we will give a short introduction of the basic concepts and theorems of
smooth surface. Locally, the geometry of a smooth surface patch (i.e., a simple surface)
can be better described and characterized based on its parametrization. For example, based
on a parametric representation of a smooth surface patch, we can define its first fundamental
form and second fundamental form. And then, the concepts of area, normal and curvatures
can be well defined and computed. Meanwhile, the structure of a smooth surface can also
be simply characterized by using the tool of moving frame (i.e., differential forms).

Furthermore, to describe the global geometry information of a complex topology sur-
face, the concept of local coordinate chart and atlas play a fundamental effect. Based on
them, we can define smooth manifold, conformal structure and Riemann surface. Mean-
while, we can analysis the mappings between two Riemann surfaces, such as conformal
mapping, smooth map and tangent map. Then, the Riemannian metric on a smooth mani-
fold can be defined from the product tangent space to a real number. Any Riemann surface
endowed with a Riemannian metric composes a Riemannian surface. By generalizing the
concept of Gaussian curvature and theorem of Gauss-Bonnet to Riemannian surface, we
can define the surface Ricci flow on a Riemannian surface. The uniformization theorem
tell us that the universal covering space of a surface can be isometrically embedded onto
one of the three canonical spaces: the sphere, the Euclidean plane or the hyperbolic disk.
Finally, we give the definition of the degree of a map between two manifolds. We can see
that the orientation and the topology of a surface is very related to the degree of the map
defined on it.

The main contents of this chapter are written by referring to the Lecture Notes and
the Tutorials of Prof. Xianfeng David Gu. They are “Lecture Notes on Computational
Conformal Geometry”,“Tutorial on Riemann Surface”, “Tutorial on Euclidean Ricci flow”
etc. 1 Meanwhile, the following books: [Shifrin 2010], [Carmo 1976], [Mei 2003] and
[Bai 1992] have been our valuable supplementary references.

A.1 Local Differential Geometry

A.1.1 Regular parameterized Surface Patch

Suppose D = {(u,v)} is a planar domain, a map r : D→ R
3,

r(u,v) = (x(u,v),y(u,v),z(u,v)),

satisfying

1All these Lecture Notes and the Tutorials are free available on Prof. Xianfeng David Gu’s homepage:
http://www.cs.sunysb.edu/ gu/.
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• x(u,v),y(u,v),z(u,v) are differentiable of class C2;

• ru and rv are linear independent, namely

ru = (
∂x

∂u
,

∂y

∂u
,

∂ z

∂u
),rv = (

∂x

∂v
,
∂y

∂v
,

∂ z

∂v
),ru× rv 6= 0,

is called a C2 smooth regular surface patch in R
3 (for C2 map r, we have ruv = rvu), (u,v)

are the coordinates parameters of the surface r(u,v).

u

v

(u0, v0)

D

r(u, v)

S

ru

rv

r(u0, v0)

Figure A.1: Regular parameterized surface patch S.

A.1.2 First Fundamental Form and Area

Définition 10. Given a surface S in R
3 with parametric representation r = r(u,v). The

quadratic differential from

I = 〈dr,dr〉= 〈rudu+ rvdv,rudu+ rvdv〉
= 〈ru,ru〉du2 +2〈ru,rv〉dudv+ 〈rv,rv〉dv2

is called the first fundamental form of S.

In particular, if denote

E = 〈ru,ru〉,F = 〈ru,rv〉,G = 〈rv,rv〉,

then
I = dr2 = ds2 = Edu2 +2Fdudv+Gdv2.

Définition 11. Given a surface S in R
3 with parametric representation r = r(u,v). Then,

its area element

dσ = ‖rudu× rvdv‖= ‖ru× rv‖dudv.

According to the Lagrange Equation: (x×y)2 = x2y2− (xy)2, we have

‖ru× rv‖2 = r2
ur2

v− (ruxv)
2 = EG−F2 > 0,

Thus, the area element dσ of S is also equals to

dσ =
√

EG−F2dudv.
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A.1.3 Normal, Second Fundamental Form and Curvatures

Définition 12. Suppose a surface S has a parametric representation r = r(u,v), ru and rv

are coordinate tangent vector of S, then the unit normal vector of S is

n =
ru× rv

‖ru× rv‖
.

Définition 13. The the second fundamental form of S is defined as

II =−〈dr,dn〉= 〈rudu+ rvdv,nudu+nvdv〉
= 〈ru,nu〉du2 + 〈ru,nv〉dudv+ 〈rv,nu〉dudv+ 〈rv,nv〉dv2.

Since
ru ·n = 0⇒ (ru ·n)v = ruv ·n+ ru ·nv = 0,

ru ·n = 0⇒ (ru ·n)u = ruu ·n+ ru ·nu = 0,

rv ·n = 0⇒ (rv ·n)u = rvu ·n+ rv ·nu = 0,

rv ·n = 0⇒ (rv ·n)v = rvv ·n+ rv ·nv = 0,

We have
ru ·nv =−ruv ·n =−rvu ·n = rv ·nu,

ru ·nu =−ruu ·n,
rv ·nv =−rvv ·n.

Define functions,
L =−〈ru,nu〉= 〈ruu,n〉

M =−〈ru,nv〉=−〈rv,nu〉= 〈ruv,n〉
N =−〈rv,nv〉= 〈rvv,n〉

Then the second fundamental form is represented as

II =−〈dr,dn〉= 〈d2r,n〉= Ldu2 +2Mdudv+Ndv2.

The second fundamental form characterizes how to bend of a surface near a point, it
approximately equals to two times of the distance between surface and its tangent plane at
a given point. As shown in Fig. A.2,

The position vectors of P and P′ are r(s) and r(s+△s). By Taylor formula, we have

−→
PP′ = r(s+∆s)− r(s) = ṙ∆s+

1
2
(r̈+ ε)(∆s)2,

where lim∆s→0 ε = 0. the distance between P′ and π:

δ =
−→
PP′ ·n = [r(s+∆s)− r(s)] ·n =

1
2
(r̈ ·n+ ε ·n)(∆s)2.

Thus, when r̈ ·n 6= 0,
2δ ≈ n · r̈(∆s)2 = 〈d2r,n〉= II.
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n

P ′

P

Q

S

π
C

δ

2δ ≈ 〈d2r,n〉 = II

Figure A.2: Illustration of the second fundamental form.

S

π
n

w

r(u, v)
Γ

Figure A.3: Normal curvature.

Définition 14. (Normal curvature) Suppose w = aru +brv is a tangent vector of S at point

r(u,v), a plane π through normal n and w, the planar curve Γ = S∩π has curvature kn,

at point r(u,v), which is called the normal curvature of S along the tangent vector w. See

Fig. A.3.

Suppose w = aru + brv is a tangent vector of S at point r(u,v), the normal curvature
along w is

kn(w) =
II(w,w)

I(w,w)
.

On convex surface patch, the normal curvature along any directions are positive. On the
saddle surface patch, the normal curvature may be positive and negative, or zero (See Fig.
A.4).

Définition 15. (Gauss map) Suppose S is a surface with parametric representation r(u,v),
the normal vector at point (u,v) is n(u,v), the mapping

g : S→ S2,r(u,v)→ n(u,v),

is called the Gauss map of S, (see Fig. A.5).
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k1 > 0
k2 > 0

n

k2 > 0

k1 < 0
n

Figure A.4: Normal curvature.

S S2

n

n g

Figure A.5: Gauss map.

Définition 16. (Weingarten transform) The differential map W of Gauss map g is called

the Weingarten transform. W is a linear map from the tangent space of S to the tangent

space of S2,

W : TpS→ TpS2

v = aru +brv→W(v) =−(anu +bnv).

The Weingarten transform has the following properties:

• Weingarten transform is independent of the choice of the parameters;

• Suppose v is a unit tangent vector of S, the normal curvature

kn(v) = 〈W(v),v〉;

• Weingarten transform is self-conjugate transform from tangent plane to itself.

〈W(v),v〉= 〈v,W(v)〉.

Définition 17. (Principle curvature) The eigenvalues of Weingarten transformation is

called principle curvatures. The Corresponding eigenvectors are called principle direc-
tions, namely

W(e1) = k1e1,W(e2) = k1e2,

where e1 and e2 are unit vectors. Since the Weingarten transformation is self conjugate, it

is symmetric. Therefore, the principle directions are orthogonal.
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Proposition A.1.1. (Euler’s Formula) Suppose an arbitrary unit tangent vector v =
cosθe1 + sinθe2, then the normal curvature along v is

kn(v) = 〈W(v),v〉= cos2 θk1 + sin2 θk2,

therefore, normal curvature reaches the maximum and minimum at the principle curva-

tures.

Proposition A.1.2. The matrix representing of the Weingarten map W with respect to the

basis {ru,rv} is

W =
II

I
=

[
E F

F G

]−1

·
[

L M

M N

]
,

In particular, if {ru,rv} is an orthogonal basis for TpS, then W equals to II.

Définition 18. The product of the principle curvatures is called the Gaussian curvature:

K = detW = k1k2. The average of the principle curvatures is called the mean curvature:

H = 1
2 trW = 1

2(k1 + k2). We say S is a minimal surface if H = 0 and flat if K = 0.

Corollary A.1.3.

K = k1k2 =
LN−M2

EG−F2 , H =
1
2
(k1 + k2) =

LG−2MF +NE

2(EG−F2)
,

In particular, if there is no umbilical points and the parameter curves are lines of curvature,

then F = M = 0, and k1 =
L
E
, k2 =

N
G
. Then, K = LN

EG
, H = LG+NE

2EG
.

A.1.4 Surface Theory with Differential Forms

Suppose S is a surface with parametric representation r(u,v). we define a moving frame

e1,e2,e3 on surface S. Here ei are vector fields defined on S with the properties that:

• e1,e2,e3 gives an orthogonal basis at each point;

• e1,e2 is a basis for the tangent space of S and e3 = n.

Then, we define 1-forms ω1 and ω2 on S by

dr = ω1e1 +ω2e2;

Then, we have the first fundamental form

I = 〈dr,dr〉= ω2
1 +ω2

2 .

To see how the frame itself twists, we define 1-forms ωi j, i, j = 1, 2 ,3, by

dei =
3

∑
j=1

ωi jej.

Since ei · ej = 0 for any i, j = 1, 2 ,3, we have

0 = d(ei · ej) = d(ei) · ej + ei ·d(ej) = (
3

∑
k=1

ωikek) · ej +(
3

∑
k=1

ω jkek) · ei = ωi j +ω ji,
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So ωi j = ω ji for all i, j = 1, 2 ,3, and ωii = 0 for all i. i.e.,



de1

de2

de3


=




0 ω12 ω13

−ω12 0 ω23

−ω13 −ω23 0






e1

e2

e3


 ,

In particular, we have

dn = de3 = ω31e1 +ω32e2 =−(ω13e1 +ω23e2).

Thus, we have the second fundamental form

II =−〈dr,dn〉= ω1ω13 +ω2ω23.

When we write
ω13 = h11ω1 +h12ω2

ω23 = h21ω1 +h22ω2

for appropriate coefficient hαβ , we can see that the Weingarten map W with respect to
the basis {e1,e2} for TpS is nothing but [hαβ ]. According to the properties of the exterior
derivative, we have

0 = d(dr) = d(ω1e1 +ω2e2) = dω1e1 +dω2e2−ω1∧ (
3

∑
j=1

ω1 jej)−ω2∧ (
3

∑
j=1

ω2 jej)

= (dω1−ω2∧ω21)e1 +(dω2−ω1∧ω12)e2− (ω1∧ω13 +ω2∧ω23)e3,

From the third term, we have

0=ω1∧ω13+ω2∧ω23 =ω1∧(h11ω1+h12ω2)+ω2∧(h21ω1+h22ω2)= (h12−h21)ω1∧ω2,

Thus, we have h12 = h21. That is to say, the Weingarten map is symmetric.
In particular, if e1 and e2 are principle directions if and only if h12 = h21 = 0, and we

have ω13 = k1ω1 and ω23 = k2ω2, where k1 and k2 are principle curvatures. Based on these
results, we can define the curvature measures as follows,

ωA = ω1∧ω2 (A.1)

ωK = ω13∧ω23 = Kω1∧ω2 (A.2)

ωH = ω1∧ω23−ω2∧ω13 = 2Hω1∧ω2 (A.3)

where ωA (Eqn.A.1), ωK (Eqn.A.2) and ωH (Eqn.A.3) are the area element, the Gauss

curvature measure and the mean curvature measure.

A.2 Riemann Surface: Global Differential Geometry

A.2.1 Riemann Surface and conformal mapping

Définition 19. (Manifold) Suppose S is a topological surface. {Uα},α ∈ I is a open cov-

ering of S, S⊂∪αUα . For each Uα , φα : Uα →R
n is a homeomorphism. The pair (Uα ,φα)

is a local coordinate chart. Suppose Uα
⋂

Uβ 6= /0, the transition function

φαβ = φβ ◦φ−1
α : φα(Uα ∩Uβ )→ φβ (Uβ ∩Uα).

is smooth, then S is called a smooth manifold, {(Uα ,φα)} is called an atlas.
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Uα Uβ

S

φα
φβ

φαβ

φα(Uα) φβ(Uβ)

Figure A.6: Smooth manifold.

Définition 20. (Holomorphic function) Let U be an open subset of C, f : U → C be a

complex-valued function. We write, for all real numbers x an y, f (x+ iy)= u(x,y)+ iv(x,y),
where u denotes the real part of f and v its imaginary part. If f satisfies the following

Cauchy-Riemann equations:

∂u

∂x
=

∂v

∂y
,
∂u

∂y
=−∂v

∂x
,

then f is a holomorphic function. If both f and f−1 are holomorphic,then f is a bi-

holomorphic function.

Définition 21. (Conformal atlas) Suppose S is a topological surface, (2-manifold), A is an

atlas, such that all the chart transition functions φαβ : C→ C are bi-holomorphic, then A

is called a conformal atlas. If B is another conformal atlas, and A∪B is still a conformal

atlas, we say A and B are compatible.

Définition 22. (Conformal structure) Suppose S is a topological surface, consider all the

conformal atlas on S, classified by the compatible relation

{all conformal atlas}/∼,

each equivalence calss is called a conformal structure.

Définition 23. (Riemann surface) A topological surface with conformal structure is called

a Riemann surface.
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Définition 24. (Conformal mapping) Let S1 and S2 be two Riemann surfaces with confor-

mal structures {(Uα ,φα)} and {(Vβ ,ηβ )}. A map f : S1 → S2 is conformal, if any local

presentation

ηβ ◦ f ◦φ−1
α : φα(Uα)→ ηβ (Vβ )

is holomorphic.

Définition 25. (Smooth map) Suppose f : S1→ S2 is a map between two smooth manifolds.

For each point p, choose a chart of S1, (Uα ,φα), p ∈Uα . The image f (Uα)⊂Vβ ,(Vβ ,τβ )
is a chart of S2. The local representation of f

τβ ◦ f ◦φ−1
α : φα(Uα)→ τβ (Vβ )

is smooth, then f is called a smooth map.

A curve on a manifold is a map γ : [0,1]→M,γ(t) ∈M. Choose a local chart (Uα ,φα)
with local parameter (x,y), then the curve can be represented as (x(t),y(t)). The velocity
vector of the curve is represented as

dγ(t)

dt
=

∂

∂x

dx

dt
+

∂

∂y

dy

dt
.

Let f : M→ N be a smooth map, then f ◦ γ : [0,1]→ N is a curve on N. Choose a local
chart on N, (Vβ ,τβ ) with local parameters (u,v). Then the local representation of the map

τβ ◦ f ◦φ−1
α : (x,y)→ (u(x,y),v(x,y)),

the local representation of f ◦ γ is (u(x(t),y(t)),v(x(t),y(t))).
The velocity of f ◦ γ is

f ◦ γ

dt
=

∂

∂u

du

dt
+

∂

∂v

dv

dt
.

where [
du

dv

]
=

[
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

][
dx

dy

]
.

Définition 26. (Tangent map) The linear map d f : TpM→ Tf (p)N, which maps a tangent

vector in TpM to a tangent vector Tf (p)N,

dγ(t)

dt
→ f ◦ γ

dt

is call the tangent map of f , or the push-forward map.

we say f◦γ
dt

is the push-forward of dγ(t)
dt

, and denote it as

f∗(
dγ(t)

dt
) =

f ◦ γ

dt
.

The local representation of the tangent map is the Jacobi matrix.

Définition 27. (Riemannian metric) A Riemannian metric on a smooth manifold M is an

assignment of an inner product gp : TpM×TpM→ R,∀p ∈M, such that
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M N

Uα

γ(t)

Vβ

f ◦ γ(t)

φα
τβ

τβ ◦ f ◦ φ−1

α

(x(t), y(t)) (u(t), v(t))

dγ
dt

df◦γ
dt

Figure A.7: Tangent map.

• gp(a1X1 +a2X2,b1Y1 +b2Y2) = ∑
2
i, j=1 aib jgp(Xi,Yj);

• g(X ,Y ) = g(Y,X);

• g is non-degenerate;

• ∀p ∈ M, there exists local coordinates {xi,x j}, such that gi j = gp(
∂

∂xi
, ∂

∂x j
) are C∞

functions.

Définition 28. (Pull back Riemannian metric) Suppose f : (M,g)→ (N,h) is smooth map-

ping between two Riemannian manifolds, ∀p ∈M, f∗ : TpM→ Tf (p)N is the tangent map.

The pull back metric f ∗h induced by the mapping f is given by

f ∗h(X1,X2) := h( f∗X1, f∗X2),∀X1,X2 ∈ TpM.

Local representation of the pull back metric is given by

(
∂u
∂x

∂v
∂x

∂u
∂y

∂v
∂y

)(
h11 h12

h21 h22

)( ∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)

Définition 29. (Conformal equivalent metrics) Suppose g1, g2 are two Riemannian metrics

on a manifold M, if

g1 = e2ug2,u : M→ R

then g1 and g2 are conformal equivalent.

Définition 30. (Conformal structure) Consider all Riemannian metrics on a topological

surface S, which are classified by the conformal equivalence relation,

{Riemannian metrics on S}/∼

each equivalence class is called a conformal structure.
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Définition 31. (Riemannian surface) Any Riemann surface may be endowed with a Rie-

mannian metric g, compatible with its holomorphic structure, that is, such that on each

local coordinates chart with local parameters (Uα ,φα), g has the following expression :

g = e2λ (uα ,vα )(du2
α +dv2

α),

where λ is a smooth function. The couple (S,g) is called a Riemannian surface. Such local

coordinates are called isothermal coordinates.

Conversely, on any metric surface (S,g), the existence of isothermal coordinates. Then
one can use isothermal coordinates to build an atlas, which gives a conformal structure of
the surface. Therefore all Riemannian surfaces are Riemann surfaces.

Définition 32. (Conformal mapping) If S1 (resp. S2) is endowed with a metric g1 (resp.

g2) compatible with its holomorphic structure, then a map f : S1→ S2 is conformal, if and

only if the pull back metric induced by f satisfies

f ∗g2 = e2λ g1.

All the conformal mappings from the unit disk to itself can be represented as a Möbius

transformation,

z→ eiθ z− z0

1− z̄0z
,z0,z ∈ D,

where D is the unit disk on the complex plane |z|< 1.
The Gaussian curvature of a Riemannian surface (S,g) can be defined locally with help

of isothermal coordinates as follows.

Définition 33. (Gaussian Curvature) Let (S,g) be a surface with a Riemannian metric g,

under the isothermal coordinates, the Gaussian curvature is defined as

K(u,v) =− 1

e2λ (u,v)
∆λ ,

where ∆ = ∂ 2

∂x2 +
∂ 2

∂y2 .

The operator 1
e2λ (u,v) ∆ is called the Laplace-Beltrami operator of the surface. Gauss-

Bonnet theorem states that the total curvature
∫

S K(p)dA of a closed surface S is a topolog-
ical invariant.

Theorem A.2.1. (Gauss-Bonnet) The total Gaussian curvature of (S,g) equals 2πχ(S) :

∫

S
K(p)dA = 2πχ(S),

where χ(S) is the Euler-characteristic of S.
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A.2.2 Ricci Flow

Suppose S is a surface endowed with two conformal Riemannian metrics g and ḡ confor-
mal, ḡ = e2λ g. Then the corresponding Gaussian curvature functions satisfy the following
Yamabe equation

K̄ = e−2λ (−∆gλ +K),

where ∆g is the Laplace-Beltrami operator induced by g. Hamilton’s Ricci flow is a pow-
erful tool to solve the Yamabe equation.

Définition 34 (Hamilton’s Surface Ricci Flow). Let S be a closed surface endowed with a

Riemannian metric g = (gi j), the Ricci flow on it is the flow gi j(t) satisying the following

equation

dgi j(t)

dt
=−2K(t)gi j(t), (A.4)

where K(t) is the Gaussian curvature of g(t).

We can simplify this equation, setting g(t) = e2u(t)g(0). Then, normalizing A.4 so that
the area of S is preserved during the deformation, the Ricci flow equation can be written

du(t)

dt
=−2(K +

2πχ(S)

A(t)
), (A.5)

where A(t) is the area under g(t).

Theorem A.2.2 (Hamilton and Chow). When t tends to +∞, the Ricci flow A.5 converges,

and induces a metric g(∞) with constant Gaussian curvature.

This metric g(∞) is called the uniformization metric. Remark that at each t, g(t) is
conformal to g(0). We apply surface Ricci flow for computing conformal mappings.

Définition 35 (Universal covering space). Let p : S̃→ S be a continuous surjective map,

such that each point q ∈ S has a neighborhood U whose preimage p−1(U) =
⋃

iŨi is a

disjoint union of open sets Ũi, and such that the restriction of p on each Ũi is a local

homeomorphism. Then (S̃, p) is a called a covering space of S, and p is called a projection

map. If the covering space S̃ is simply connected, then S̃ is called the universal covering
space of S.

Theorem A.2.3 (Uniformization). Let (S,g) be a compact Riemannian surface, then there

exists a metric g̃ = e2λ g on S conformal to g, which has constant Gaussian curvature.

Depending on the genus (g) of the surface, the constant curvature is +1 (g = 0), 0 (g = 1),

or −1 (g > 1).

Therefore the universal covering space of the surface can be isometrically embedded
onto one of the three canonical spaces: the sphere S2, the Euclidean plane E2 or the hyper-
bolic disk H

2. If the surface is with boundaries, then it can be conformally mapped onto
circle domains in the canonical space, whose complements are geodesic circles.
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A.2.3 Degree of Maps

Définition 36 (Degree of maps). Let (M,ω), (N,θ) be compact oriented manifolds of the

same dimension, without boundaries. Assume N is connected. Let f : M→ N be a C1 map

and x ∈M a regular point of f . Put y = f (x). We say x has positive type if the isomorphism

(tangent map) Tx f : Mx → Ny preserves orientation, that is, it sends ωx to thetay. In this

case, we write degx f = 1. If Tx f reverses orientation then x has negative type, and we write

degx f =−1. We call degx f the degree of f at x.

Suppose y ∈ N is any regular value for f . Define the degree of f over y to be

deg( f ,y) = ∑
x∈ f−1(y)

degx f ;

if f−1(y) is empty, deg(f,y) = 0. To indicate orientation, we also write

deg( f ,y) = deg( f ,y;ω,θ).

Reversing ω , or θ changes the sign of deg( f ,y) = deg( f ,y;ω,θ).
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APPENDIX B

Discrete Surfaces

In this chapter, we will give a short introduction of the basic concepts and theorems of
discrete surface corresponding to the ones of smooth surface introduced in Chapter 2. We
begin with the concepts of simplex, simplicial complex, and triangular mesh. Then, we
introduce definitions of the discrete normal and curvatures. Finally, we ended with the
concept of discrete Riemannian metric and the theorem of discrete Euclidean Ricci flow.

The main contents of this chapter are written by referring to the Lecture Notes and
the Tutorials of Prof. Xianfeng David Gu. They are “Lecture slides of Discrete surface”,
“Tutorial on Discrete Ricci flow” and “Tutorial on Euclidean Ricci flow” etc. 1

B.1 Local Differential Geometry

B.1.1 Simplicial Complex and Triangular Mesh

Définition 37 (n-Simplex). Suppose n+1 points {v0,v1, . . . ,vn} in the general position in

R
n, the n-simplex [v0,v1, . . . ,vn] is the minimal convex set including all of them

σn = [v0,v1, . . . ,vn] := {
n

∑
i=0

λivi|
n

∑
i=0

λi = 1,λi ≥ 0}

we call v0,v1, . . . ,vn the vertices of the n-simplex σn.

Fig. B.1 shows the examples of the 1, 2, 3-simplices in R
3.

1-simplex 2-simplex 3-simplex

Figure B.1: 1, 2, 3-simplices in R
3.

Définition 38 (Face). Suppose σn is a simplex, τm ⊂ σn,(m < n), is also a simplex, then

we say τm is a face of σn.

1All these Lecture Notes and the Tutorials are free available on Prof. Xianfeng David Gu’s homepage:
http://www.cs.sunysb.edu/ gu/.
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Définition 39 (Boundary Operator). The boundary of a n-simplex is

∂σn =
n

∑
i=0

(−1) j[v0, · · · ,v j−1,v j+1, · · · ,vn].

Définition 40 (Simplicial Complex). A simplicial complex Σ is a union of simplicies, such

that

1. If a simplex σ belongs to Σ, then all its faces also belongs to Σ.

2. If two simplicies σ1,σ2 ⊂ Σ,σ1∩σ2 6= /0, then their intersection is a common face.

A simplicial complex may not necessary to be a manifold. Fig. B.2 gives an example,
where the simplicial complex is the union of a 1-simplex, a 2-simplex and a 3-simplex.

Figure B.2: A non-manifold simplicial complex.

Définition 41 (Triangular Mesh). Given a two dimensional simplicial complex Σ, if Σ is

also a manifold, namely, for each point p ∈ Σ, there exists a neighborhood of p, U(p),
homeomorphic the whole plane or the upper half plane, then Σ is called a triangular mesh.

If U(p) is homeomorphic to the whole plane, then p is called a interior point; if U(p)
is homeomorphic to the upper half plane, then p is called a boundary point.

The combinatorics of the simplicial complex fully determines the topology of the sur-
face. The geometric quantities, such as normal, curvature, can be regarded as functions
defined on the edges and vertices of the complex. In the following discussion, we use
Σ = (V,E,F) to denote the mesh with vertex set V , edge set E and face set F .

B.1.2 Discrete Normal and Curvatures

Définition 42 (Discrete Normal). Let Σ = (V,E,F) be a triangular mesh, f = [v0,v1,v2] is

face of Σ. The discrete normal function N : F → R
3 defined on f is as follows,

N( f ) = ei× ei,

where

ei =
vi− v0

|vi− v0|
.

Définition 43 (Discrete Gaussian Curvature). Let Σ = (V,E,F) be a triangular mesh, the

discrete Gaussian curvature function K is defined on vertices, K : V → R
1.

K(v) =

{
2π−∑i αi, v 6∈ ∂M

π−∑i αi, v ∈ ∂M.
(B.1)
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where αi’s are corner angles adjacent to the vertex v, ∂M represents the boundary of the

mesh.

α1 α2

α3

v v

α1 α2

v 6∈ ∂M v ∈ ∂M

Figure B.3: Gaussian curvature at point v.

Définition 44 (Dihedral Angle). Let Σ = (V,E,F) be a triangular mesh, suppose e =
[v0,v1] ∈ E be a edge on the mesh, with adjacent left face [v0,v1,vl] and the right face

[v0,v1,vr]. The normal of the left and the right faces are nl and nr. Then the dihedral angle

of the edge is given by

β (e) = cos−1 nl×nr · e,

where e is the unit directional vector along the edge

e =
v1− v0

|v1− v0|
.

Note that, if the surface is convex, then β (e) is positive, if the surface is concave, then
β (e) is negative (See Fig. B.4).

vr

v1

v0

vl nr

nl

v0

v1

nr

nl

vr

vl

Positive dihedral angle Negetive dihedral angle

Figure B.4: Dihedral angle on edge e = [v0,v1].

Définition 45 (Discrete Mean Curvature). Let Σ = (V,E,F) be a triangular mesh, the

discrete mean curvature function H is defined on edges, H : E→ R
1.

H(e) = l(e)β (e),e 6∈ ∂M.

where l(e) represents the length of e and β (e) represents the dihedral angle of e.
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Theorem B.1.1 (Discrete Gauss-Bonnet Theorem). Let Σ = (V,E,F) be a triangular mesh

with Euclidean background metric, then the total curvature is a topological invariant,

∑
vi 6∈V

Ki + ∑
vi∈V

Ki = 2πχ(M).

B.2 Global Differential Geometry

B.2.1 Discrete Metric

Définition 46 (Discrete Riemannian Metric). Let Σ = (V,E,F) be a triangular mesh, the

discrete Riemannian metric on Σ is a function defined on the edges, l : E → R
+, satisfies

triangular inequality: on each face [vi,v j,vk],

li j + l jk > lki, l jk + lki > li j, lki + li j > l jk.

The discrete metric determines the corner angles on each face by the cosine law,

αi = cos−1
l2
i j + l2

ik− l2
jk

2li jlik
.

Définition 47 (Circle Packing Metric). Let Σ = (V,E,F) be a triangular mesh, we asso-

ciate each vertex vi with a circle with radius γi. On edge ei j, the two circles intersect at the

angle of φi j. The edge length are

l(ei j) = γ2
i + γ2

j +2γiγ jcosφi j

The Circle Packing Metric is defined as (Σ,Γ,Φ), where Γ = {γi|∀vi}, Φ = {φi j|∀ei j}, (See

Fig. B.5).

v1

v2 v3

φ31

φ12

φ23

e31

e23
e12

γ1

γ2

γ3

Figure B.5: Circle packing metric.
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B.2.2 Discrete Euclidean Ricci Flow

Définition 48 (Conformal Factor). Define on each vertex u : V → R,

ui = logγi.

Then, we have the following symmetric relation:

∂Ki

∂u j

=
∂K j

∂ui

.

Définition 49 (Discrete Ricci Flow). Given a circle packing metric (Σ,Γ,Φ), the discrete

Ricci flow is
du

dt
= K−K

where u = (u1,u2, · · · ,un), K = (K1,K2, · · · ,Kn), |V | = n, and K = (K1,K2, · · · ,Kn) is the

user defined target curvature.

Définition 50 (Discrete Euclidean Ricci Energy). The discrete Euclidean Ricci energy is

defined as

E(u) =
∫ u

u0
∑

i

(Ki−Ki)dui,

where u0 = (0,0, · · · ,0).

Theorem B.2.1 (Chow & Luo: Convexity of Euclidean Ricci Energy). The Euclidean

Ricci energy E(u) is strictly convex on the hyperplane ∑i ui = 0.
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APPENDIX C

Surface Discretization and

Approximation

In this chapter, we transfer our attention to surface discretization and approximation. For
surface discretization, we introduce the classical concept of Delaunay triangulation, mean-
while, one of the most famous Delaunay refinement algorithm, namely, Ruppert’s Delau-
nay refinement algorithm is introduced. This algorithm plays a very important effect in the
following chapter when we carry out surface meshing with curvature convergence.

On the surface geometry approximation theory, we first give two negative examples:
the Lantern of Schwarz for area approximation and the angle defect for point-wise Gauss
curvature approximation. From these two examples, we can find that with the condition of
very closed Hausdorff distance between smooth surface and triangular mesh is not enough
to guarantee a good approximation, more conditions related to the quality of the triangular
mesh are also necessary. Based on these two examples, we introduce the concept of unified
curvature measures (i.e., generalized curvatures), which is based on the normal cycle the-
ory. Finally, the main approximation and convergence theorems of the curvature measures
are introduced.

The contents of the surface approximation section is written by fully referring to the
book “Generalized curvatures” written by Prof. Jean-Marie Morvan.

C.1 Surface Discretization

C.1.1 Delaunay Triangulation

Définition 51 (Delaunay Triangulation). Suppose Ω is a domain in E
2. A sample point

set P = {p1, p2, · · · pn} ⊂ Ω is in a general position (no more than three points in the

same line and no more than four points in the same circle). a delaunay triangulation

of P is a triangulation DT (P) such that no point in P is inside the circumcircle of any

triangle in DT (P). Delaunay triangulations maximize the minimal angle of all the angles

of the triangles in the triangulation; they tends to avoid skinny triangles. The Delaunay

triangulations is unique if P is in general position.

C.1.2 Ruppert’s Delaunay Refinement Algorithm

In mesh generation, Ruppert’s Delaunay Refinement Algorithm, proposed by Jim Ruppert
in the early 1990s [Ruppert 1995], is an algorithm for creating 2D high quality Delaunay
triangulations. The algorithm inputs a planar straight-line graph with non-acute angle and
begins with a Delaunay triangulation of the input vertices. Then, it augments the vertices
by the following two operations.
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Figure C.1: A Delaunay triangulation in E
2 with circumcircles shown.

1. Any encroached segment (a segment with non-empty diametral circles) is split into
subsegments by inserting a new vertex at its midpoint, and then updating the Delau-
nay triangulation (See Fig. C.2).

Figure C.2: Any encroached segment is split into subsegments by inserting a new vertex at

its midpoint.

2. The circumcenter of a poor-quality triangle (a triangle with small angle) is insert
into the triangulation, unless this circumcenter lies in the diametral circle of some
segment. In this case, the encroached segment is split instead, and then updating the
Delaunay triangulation (See Fig. C.3).
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t

v v

Figure C.3: Insert vertices at circumcenters of triangles with small angles (e.g., < 20.7◦).

The operations are repeated until no poor-quality triangles exist and all segments are not
encroached. Finally, it returns the Delaunay triangulation of the augmented vertices.

The following theorems guarantee that Ruppert’s algorithm generates high-quality tri-
angulation.

Theorem C.1.1. The triangulation produced by Ruppert’s algorithm conforms to the input

Planar straight line graph X and contains no angles less than 20.7◦.

Définition 52 (Local feature size). Give a Planar straight line graph X, the local feature
size of a point p, denoted l f s(p), is the radius of the smallest disk centered at p that

intersects two non-incident vertices or segments of X.

Theorem C.1.2. For α < arcsin( 1
2
√

2
) ≈ 20.7◦, Ruppert’s algorithm terminates. More-

over, there exists Cα = 1+
√

2
1−2
√

2sin(α)
> 0 such that for each vertex q inserted into the mesh,

l f s(q)≤Cαrq, where rq = d(q,nq) and nq is a nearest neighbor to q in the mesh.

Theorem C.1.3. Given a point p of the output mesh, its nearest neighbor point q is is a

distance at least
l f s(p)
Cs+1 , where Cs =

1+
√

2
1−2
√

2sin(α)
, for any α < arcsin 1

2
√

2
≈ 20.7◦.

Theorem C.1.4. For α ≤ 20.7◦, Ruppert’s algorithm terminates. Moreover, the number of

points in the output mesh is most

♯(points)≤ Area(B)

Cε2 ,

where B is the region enclosed by the bounding square, ε = min{l f s(x)|x ∈ B}, and C is a

constant to be specified.

C.2 Surface Approximations

C.2.1 Two Negative Examples

Example 1. Area Approximation
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One could think that the area of a smooth surface can be computed as the limit of the
area of a sequence of triangulations "tending to it". Here we give a negative example,
namely, the Lantern of Schwarz, to show that: one can construct a sequence of triangular
meshes Tn inscribed in a smooth surface S in E

3, moreover, the Hausdorff limit of Tn tends
to S, however,

lim
n→∞

A(Tn) 6= limA(S).

Let C be a cylinder of finite height l and radius r in E
3. Let P(n,m) be a triangulation

inscribed in C defined as follows: consider m+ 1 circles on the cylinder C obtained by
intersecting C with 2-planes orthogonal to the axis of C. Inscribe in each circle a regular
n-gon of the slice k−1 by a rotation of angle π

n
. Then, join each vertex v of the slice k−1

to the two vertex of the slice k which are nearest to v. One obtains a triangulation whose
vertices vi j are defined as follows: for all i ∈ {0, . . . ,n−1} and all j ∈ {0, . . . ,m},

θ

Figure C.4: Hexagons inscribed in a circle, n = 6,θ = π
6 .

vi j =

{
(r cos(iα),r sin(iα), jh) if j is even,
(r cos(iα + α

2 ),r sin(iα + α
2 ), jh) if j is odd,

(C.1)

and whose faces are

vi jv(i+1) jvi( j+1),

vi jv(i−1)( j+1)vi( j+1),

where α = 2π
n

and h = l
m

(See Fig. C.4 and Fig. C.5 1).
Note that the area of the cylinder is A(C) = 2πrl. On the other hand, the area

A(P(n,m)) of P(n,m) is nothing but the sum of the areas of its triangles. When n tends to

1This figure is downloaded from the web of google image.
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infinity, a simple computation shows that

lim
n→∞

A(P(n,m)) = 2πrl

√
1+

m2π4r2

4n4l2 .

In particular,

lim
n→∞

A(P(n,n)) = 2πrl

√
1+

π4r2

4l2 6= A(C)

and
lim
n→∞

A(P(n,n3)) = +∞,

although C is the Hausdorff limit of both P(n,n2) and P(n,n3).

Figure C.5: Illustration of a Schwarz Lantern.

This example shows that it is impossible to find sequence of triangulations inscribed
in a (smooth) surface S whose Hausdorff limit is C, but whose area tends to infinity or to a
limit different from the area of C.

Example 2. Gauss Curvature Approximation

A classical result on Gauss curvature approximation is that: the Gauss curvature at a
point p of a smooth surface S can be recovered by the angle differ of flattening a geodesic

triangle incident to p to Euclidean geodesic triangle [?]. As shown in Fig. C.6, let τi be
a geodesic triangle on S with vertices p, pi and pi+1, denote by lp, li, li+1 the length of
geodesic arcs opposite to the vertices. Finally, let βi be the angle of τi at p. Now we flat τi

to obtain corresponding Euclidean geodesic triangles ti whose vertices are v,vi,vi+1 in E
2

and whose edge lengths satisfy

lp = |vivi+1|, li = |vvi+1|, li+1 = |vvi|.

Let γi be the angle of ti at v. Then the Gauss curvature Kp at p satisfy

βi = αi +
1
6

Kplili+1sinαi +o(l2
max),
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n

βi

p

pi

pi+1

v

vi

vi+1li+1

lp

li

lp

li

li+1

αi

tiτigeodesic triangle Euclidean geodesic triangle

Figure C.6: Flattening a geodesic triangle derives an estimation of the Gauss curvature.

where lmax = max(li, li+1).
When we consider all the geodesic triangles around p, its easy to see ∑i βi = 2π . Based

on this point, one gets:

Theorem C.2.1.

2π−∑
i

αi =
∑i A(ti)

3
Kp +o(l2

max).

Unfortunately, both the angle αi and the area of ti are rely on the information of the
geodesic triangles τi, making this estimation unpractical. A nature insight is that when the
edges lengths ppi go to zero, one can approximate the ti by directly replacing the geodesic
arcs from p to pis on S by the Euclidean segments ppis. Indeed, this method is commonly
used in practice, and is called angle defect point-wise Gauss curvature estimation method.
See definition 43 in Chapter 3. However, the angle defect method is not reliable in most
cases.

A deep study of the reliable of this method can be found in [Borrelli et al. 2003]. Here
we give a short summarize of their main results. The basic idea to obtain the results is that
performing the Taylor expansion of the angle defect in terms of the geometry of the surface
around one of its points.

Consider a point p on a smooth surface S together with n Euclidean triangles {pi ppi+1}
(with pn+1 = p1), forming a piecewise approximation of S around p, refer to Fig. we give
the following notations.

• The 1-ring around p is the set of points p1, p2, . . . , pn which have a common edge
with p.

• The integer n is called the valence of p.

• Considering the plane Πi, containing the normal np, p and pi. This plane is defined
by its angle ϕi with respect to some coordinate system in the tangent plane of S at p.

• The Euclidean distance from p to pi is denoted by ηi.

• The angel at p of the triangle ppi pi+1 is denoted by γi.
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n

βip

pi

pi+1

ϕi+1

ϕi

γi

ηi

Figure C.7: Notations.

• The angle between two consecutive normal sections Πi and Πi+1 is denoted by βi.

• To simply the notations, we put

ci = cosϕi,si = sinϕi.

Let

Ai =
1

4sinγi

[ηiηi+1(c
2
i s2

i+1 + s2
i c2

i+1)−
cosγi

2
(η2

i (2c2
i s2

i )+η2
i+1(2c2

i+1s2
i+1))],

Bi =
1

4sinγi

[ηiηi+1(c
2
i c2

i+1−
cosγi

2
(η2

i c4
i +η2

i+1c4
i+1),

Ci =
1

4sinγi

[ηiηi+1(s
2
i s2

i+1−
cosγi

2
(η2

i s4
i +η2

i+1s4
i+1).

Let
A = ∑

i

Ai,B = ∑
i

Bi,C = ∑
i

Ci.

One has the following theorem.

Theorem C.2.2. At each point p of S,

2π−
n

∑
i=1

γi = (AKp +Bλ 2
1 +Cλ 2

2 )+o(η2),

where λ1 and λ2 denotes the principle curvature of S at p.
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In full generality, this theorem shows that there is no hope to get any meaningful ap-
proximation of the Gauss curvature of the surface, up to order 2, with the angle defect
method.

The only possibility is to find special triangulations around p which cancel the terms B

and C. This happens for the triangulations having some kind of regularity. let’s introducing
the following definition.

Définition 53. Let p be a point of a smooth surface S and pi, i = 1,2, . . . ,n be its 1-ring
neighbors. The point p is called a regular vertex if: (i) ∀i,βi =

2π
n

; (ii) ∀i,ηi = η .

In particular, we have the following theorem,

Theorem C.2.3. Consider a regular vertex p with valence 6. Then

lim
η→0

2π−∑i γi

η2 =

√
3

2
Kp.

C.2.2 Unified Curvature Measures

C.2.2.1 Invariant 2-forms of E3×S
2

Let ST (E3) =E
3×S

2 be the unit tangent bundle of E3. Thus, elements of ST (E3) are pairs
(m,ξ ), where m is some point of E3 and ξ is some tangent direction (of unit length) to E

3

at m. Let (m,ξ ) be a point of ST (E3). Consider an orthonormal frame of E3 whose third
vector is ξ : (e1,e2,e3 = ξ ). Then, an orthonormal frame of T(m,ξ )ST (E3) is given by the
vectors

ε1 =

(
e1

0

)
,ε2 =

(
e2

0

)
,ε3 =

(
e3 = ξ

0

)
,

ε̃1 =

(
0
e1

)
, ε̃2 =

(
0
e2

)
.

(C.2)

Using identification of 1-forms with vectors given by the scalar product, we introduce
three 2-forms of ST (E3) defined at each point (m,ξ ), as follows:

ωA = ε1∧ ε2, ωH = ε1∧ ε̃2 + ε̃1∧ ε2, ωK = ε̃1∧ ε̃2, (C.3)

which are invariant under the rigid motion of E3×S
2.

Compared to the classical surface theory, the restrictions of {ε1,ε2} on the surface are
{ω1,ω2} in the structure equation, The restrictions of {ε̃1, ε̃2} are {ω31,ω32} respectively.
The restrictions of {ωA,ωK ,ωH} on surfaces are the area element (A.1), Gauss curvature
measure (A.2) and mean curvature measure (A.3) straight forwardly.

C.2.2.2 Integral 2-currents of E3×S
2

By definition, the space of 2-currents of ST (E3) is the topological dual of the space of
2-forms with compact support on ST (E3). Integral 2-currents generalize oriented surface
patches.

Formally, they are defined as linear combinations of oriented surface patches. The du-
ality 〈·, ·〉 between 2-forms and integral 2-currents is simply given by Lebesgue integration
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over each term (that is, each oriented surface): for all 2-forms ω and integral 2-currents

T = ∑i λiTi, where Ti is represented by an oriented surface, and λi ∈ R,

〈T,ω〉= ∑
i

λi

∫

Ti

ω.

C.2.2.3 Normal Cycle of Oriented Surface of E3

The normal cycle is the generalization of the unit normal bundle.

Définition 54 (Normal cycle of smooth surface). If S is a smooth orientated surface, then

its normal cycle N(S) is the current whose support is the unit normal bundle of S with

canonical orientation.

N(S) := {(p,np)|p ∈ S,np ∈ S
2}. (C.4)

In order to define normal cycles for discrete surfaces, we first define them on simplicial
complex, then use the additivity property to define them on the whole mesh.

Définition 55 (Normal cycle of l-simplex). The normal cycle of σl is the current (oriented

surface) N(σl), whose support spt(N(σl)) is the (smooth) hypersurface defined by

spt(N(σl)) = {(p,np) ∈ ST (E3), s.t.∀p,q ∈ σl,〈−→pq,np〉 ≤ 0} (C.5)

and whose orientation is given by the outward normal.

The normal cycle satisfies the following additivity property.

Proposition C.2.4. Let A and B be currents such that A∪B and A∩B are currents as well.

Then,

N(A∪B) = N(A)+N(B)−N(A∩B). (C.6)

Définition 56 (Normal cycle of discrete surface). If T is a discrete orientated triangula-

tion, let us suppose T can be decomposed into 0-simplex , 1-simplex , and 2-simplex with

numbers of m,n, and s respectively. Let σl be an elementary l-simplex. Then the normal
cycle N(T ) can be defined as follows:

N(T ) = N({∪m
i=1σ i

0|}
⋃
{∪n

j=1σ
j

1}
⋃
{∪s

k=1σ k
2}) (C.7)

Eqn. (C.7) can be constructed from the normal cycles of simplicies by the additivity
property of Eqn. (C.6).

Définition 57 (The mass of normal cycle). The mass of the normal cycle of a oriented

surface S, M(N(S)) is the area of the normal cycle.

C.2.2.4 Generalized Curvatures

By evaluating the three invariant 2-forms: ωA,ωH , and ωK on the normal cycle of a oriented
surface, we can define the generalized curvatures (i.e. curvature measures) of smooth and
discrete surface within a unified framework.

203



Appendix C. Surface Discretization and Approximation

Définition 58 (Smooth Curvatures Measures). Let S be a (oriented) smooth surface of

E
3, then the generalized curvatures of S restricted on a local region B ⊂ S are defined as

follows:

MS
A(B) = 〈N(S)|B×S2 ,ωA〉= Area(B)

MS
H(B) = 〈N(S)|B×S2 ,ωH〉=

∫

B
H(p)d p

MS
K(B) = 〈N(S)|B×S2 ,ωK〉=

∫

B
K(p)d p

where H(p) and K(p) denote the mean and Gaussian curvatures of S at point p respectively.

Définition 59 (Discrete Curvatures Measures). Let T be a (oriented) triangulation mesh

of E3, then the generalized curvatures of T restricted on a local region B ⊂ T are defined

as follows:

MT
A(B) = 〈N(T )|B×S2 ,ωA〉= Area(B)

MT
H(B) = 〈N(T )|B×S2 ,ωH〉= ∑

e∈B

H(e)

MT
K(B) = 〈N(T )|B×S2 ,ωK〉= ∑

v∈B

K(v)

where K(v) denotes the discrete Gauss curvature at the vertex v, H(e) is the discrete mean

curvature at the edge e.

C.2.3 Curvature Measure Approximations

Définition 60 (Projection map). Suppose p ∈ E
3 is a point, the project point of p to S is

defined as

pr(p) := min
q∈S

d(p,q).

It is straightforward to show that p−pr(p) is along the normal direction at pr(p).
Some special points may have multiple project points, which form the medial axis of

the surface.

Définition 61 (Medial axis and local feature size). Let S be a smooth surface embedded

in E
3. The medial axis of S is the closure of the set of points with more than one project

point on S. The local feature size lfs(p) at point p ∈ S is the least distance from p to the

medial axis. The local feature size of the surface is defined as

lfs(S) := min
p∈S

lfs(p).

The tubular neighborhood of the surface S is defined as

Ur(S) := {p ∈ E
3|min

q∈S
d(p,q)≤ r}.

Définition 62 (Hausdorff distance). Let T be a triangulation and S be a smooth surface

embedded in E
3. the Hausdorff distance between T and S is defined as

δ (T,S) = inf{r > 0|T ⊂Ur(S),S⊂Ur(T )}.

204



Appendix C. Surface Discretization and Approximation

In particular, given the projection map pr : T → S, let B be a local region of T , B⊂ T .
We denote δB as the Hausdorff distance between B and pr(B).

Définition 63 (Closely inscribed). Let T be a triangular mesh and S be a smooth surface

embedded in E
3. T is closely inscribed in S if:

• for any vertex v ∈ T ⇒ v ∈ S,

• for any vertex v ∈ ∂T ⇒ v ∈ ∂S,

• T ⊂Ur(S), where r = lfs(S).

• the projection map pr : T → S is bijective.

Définition 64 (Angular deviation). Let T be a triangulation closely inscribed in a smooth

surface embedded in E
3. The angular deviation between p ∈ T and pr(p) ∈ S is defined as

αp = max
(p,np)∈sptN(T )

〈np,npr(p)〉,

where pr : T → S is the projection map, npr(p) denotes the unit normal vector of S at point

pr(p), sptN(T ) denotes the support of the normal cycle of T . Furthermore, let B be a local

region of T , B⊂ T , then the angular deviation between B⊂ T and pr(B)⊂ S is defined as

αB = sup
p∈B

αp.

The following theorem gives the approximation error bound for curvature measures
in terms of Hausdorff distance δB, angular deviation αB and the mass of normal cycles
M(N(T )) and M(∂N(T )) restricted on B.

Theorem C.2.5 (Approximation theorem 71, [Morvan 2008a]). Let T be a triangulation

closely inscribed in a smooth surface S embedded in E
3, let B be a local region of T ,

B ⊂ T , then the errors of the generalized curvatures between MT
k (B) and MS

k(pr(B)), k ∈
{A,H,K}, are as follows:

|MT
k (B)−MS

k(pr(B))| ≤

(δB +αB)

(
2(1+ |hpr(B)|)
1−δB|hpr(B)|

)2

(M(N(T )|B×S2)+M(∂N(T )|B×S2)),

where |hpr(B)| = suppr(p)∈pr(B) |hpr(p)|, and |hpr(p)| denotes the norm of the second funda-
mental form of S at pr(p).

The following theorem gives the estimation for the masses of normal cycles.

Theorem C.2.6 (Mass of normal cycle [Morvan 2008a]). With the same conditions as

above, one has the bounds for the mass of normal cycles

1. M(N(T )|B×S2) = O(s(B)).

2. M(∂N(T )|B×S2) = O(sd(B)).
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where

s(B) = ∑
t∈T, t⊂B

R(t)2, (C.8)

and

sd(B) = ∑
t∈∂T, t⊂B, t∩∂B6= /0

R(t), (C.9)

R(t) is the maximal circum circle radius of T .

Therefore, we need to estimate the bounds for Hausdorff distance, angular deviation
and the right hand sides of Eqn.C.8 and C.9. Moreover, we need to show the projection
map is bijective.
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APPENDIX D

3D Facial Expression Recognition

Based on Histograms of Surface

Differential Quantities

3D face models accurately capture facial surfaces, making it possible for precise descrip-
tion of facial activities. In this chapter, we present a novel mesh-based method for 3D
facial expression recognition using two local shape descriptors. To characterize shape in-
formation of the local neighborhood of facial landmarks, we calculate the weighted statis-
tical distributions of surface differential quantities, including histogram of mesh gradient
(HoG) and histogram of shape index (HoS). Normal cycle theory based curvature estima-
tion method is employed for the first time on 3D face models along with the common cubic
fitting curvature estimation method for the purpose of comparison. Based on the basic fact
that different expressions involve different local shape deformations, the SVM classifier
with both linear and RBF kernels outperforms the state of the art results on the subset of
the BU-3DFE database with the same experimental setting.

D.1 Introduction

Facial expression recognition (FER) has been subject of intensive research effort for the
last three decades because of its usefulness in many applications such as human-computer
interaction and the analysis of conversation structure [Otsuka et al. 2007]. Acknowledging
that facial expressions are actuated by contraction of facial muscles, Ekman et al.
[Ekman 1972] introduced the Facial Action Coding System (FACS) and evidenced six
universal prototypic facial expressions, namely happiness, sadness, anger, fear, surprise
and disgust along with neutral. There exists currently an impressive body of results on
FER firstly in static 2D images, and then dynamic 2D videos [Fasel & Luettin.J. 2003]
and more recently on static 3D scans [L. Yin & Rosato. 2006], [J. Wang & Sun 2006],
[Soyel & Demirel. 2007a], [I. Mpiperis & Strintzis 2008], [Tang & Huang 2008a],
[B. Gong & Tang 2009], [A. Maalej 2010], [S. Berretti 2010] and dynamic 3D videos
[Yin et al. 2008a], [Sun & Yin 2008]. With 3D imaging systems readily available, the use
of 3D facial data for FER has attracted increasing interest as 3D data are theoretically
pose invariant and robust to illumination changes. Furthermore, they also capture accurate
geometry information closely sensitive to expression variations.

Existing methods for FER based on static 3D data can be categorized into two streams,
i.e. feature based or model based. The first category claims that the distributions of fa-
cial surface geometric informations such as gradient and curvature [J. Wang & Sun 2006],
distances between pairs of interest landmarks [Soyel & Demirel. 2007a] and local shapes
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Differential Quantities

near landmarks [A. Maalej 2010], [S. Berretti 2010], are closely related to expression cat-
egories. These geometric informations are then extracted as features and fed to various
classifiers, such as linear discriminant analysis (LDA), support vector machine (SVM) or
Neural Network etc., for FER. The main drawback of this kind of approaches is that they
require a set of accurately located landmarks. This explains that most of these work made
use of the 83 landmarks manually labeled on the BU-3DFE dataset. The second catego-
ry tries to simulate the physical process of generating expression and explores a generic
elastically deformable face model, which can generate universal expressions by adjusting
parameters [I. Mpiperis & Strintzis 2008]. In general, this kind of methods needs align-
ment and normalization steps to find one-to-one correspondence among 3D faces, then the
shape deformations between each pair of faces can be represented by model parameter-
s [I. Mpiperis & Strintzis 2008] or feature vectors [B. Gong & Tang 2009] etc, which are
further used to perform FER. The downside of these approaches is first their computational
cost which is expensive. Furthermore, the fitting process also require existence of some
landmarks for initialization and hardly converge in case of opening of the mouth in facial
expressions.

In this chapter, we propose a new mesh-based method for FER using two local shape
descriptors. To characterize shape information of the local neighborhood of facial land-
marks, weighted statistical distributions of surface differential quantities, including his-
togram of mesh gradient (HoG) and histogram of shape index (HoS) are extracted as local
shape descriptors from facial landmarks. These local shape descriptors can be consid-
ered as an extension of the popular 2D SIFT feature [D.G.Lowe 2004] (Scale Invariant
Feature Transform) to 3D-mesh based discrete surfaces [et al 2010]. Normal cycle theo-
ry based curvature estimation method [Cohen-Steiner & Morvan 2003b], [Morvan 2008b],
[P. Alliez 2003] is employed for the first time on 3D face models along with the popular
cubic fitting curvature estimation method for the purpose of comparison. Based on the ba-
sic fact that different expressions involve different local shape deformations, we combine
all the local shape descriptors, respectively HoG and HoS, into a global shape descriptor
according to a simple early fusion strategy. Finally, all these global features are fed to a
SVM classifier using both linear and RBF kernels to perform facial expression recognition.
The proposed approach was benchmarked on the BU-3DFE database with the same exper-
imental setting as its main competitors and the experimental results show that the proposed
approach outperforms the state of the art.

The remainder of this chapter is organized as follows: differential quantities estimated
on mesh-based facial models are introduced in section 2. Section 3 presents the local
shape descriptors. Experimental results are discussed in section 4. Section 5 concludes the
chapter.

D.2 Estimating Differential Quantities on Triangular Meshes

D.2.1 Estimating Curvature by Normal Cycle Theory based Method

There are many approaches to calculate curvature on triangular meshes based on estima-
tion of curvature tensor. Taubin [Taubin 1995] introduced a 3D curvature tensor from
which the principal curvatures directions can be estimated by two of the three eignvectors
and the principal curvature can be computed by linear combinations of two of the three
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eigenvalues. Cohen-Steiner and Morvan introduced in [Cohen-Steiner & Morvan 2003b],
[Morvan 2008b] a discrete definition for the mean, Gaussian curvature and the curvature
tensor based on normal cycle theory, and proved that the estimated curvature tensors con-
verge to the true ones of the smooth surface under specific sampling conditions. The basic
idea and its discrete form can be carried out as follows [P. Alliez 2003]:

For every edge e of the mesh, there is an obvious minimum (i.e., along the edge) and
maximum (i.e., across the edge) curvature. A nature curvature tensor can therefore be
defined at each point along an edge, named as generalized curvatures [Morvan 2008b].
This line density of tensors can now be integrated over the arbitrary region B by summing
the different contributions from B, leading to the simple expression:

T (v) =
1
B

∑
edgese

β (e)|e∩B|eet (D.1)

Where v is an arbitrary vertex on the mesh, |B| is the surface area around v over which
the tensor is estimated. β (e) is the signed angle between the normals to the two oriented
triangles incident to edge e (positive if convex, negative if cancave), |e∩B| is the length
of e∩B (always between 0 and e), and e is a unit vector in the same direction as e. In
our experiments, we estimate the tensor at every vertex location v, for a neighborhood B

of 2-ring. The principal curvatures kmin and kmax at v can now be estimated by the two
maximum eigenvalues of T (v). Fig. 1 shows the schematic of this method.

Figure D.1: Illustration of normal cycle theory based curvature estimation method (equa-
tion (1) [19]).

Shape index which expresses different shape classes by a single number ranging from
0 to 1 can then be estimated by the following equation:

S =
1
2
− 1

π
arctan(

κmax +κmin

κmax−κmin

) (D.2)

The first row of Fig.2 shows an example of maximum, minimum curvatures and shape
index estimated by this method on a 3D face model.

D.2.2 Estimating Curvature by Local Cubic Fitting based Method

In this paper, we also compare the performance of our shape descriptors using different
curvature estimation methods. For this purpose, we also adopt local cubic fitting method
[Goldfeather & Interrante 2004a] to estimate curvatures. The basic idea of this method is
that: for each vertex p of the 3D mesh, a local coordinate system is defined by taking the
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Figure D.2: First row, from left to right: κmax, κmin and shape index estimated by normal
cycle theory based method. Second row, from left to right: κmax, κmin and shape index
estimated by cubic fitting based method, (model M0044-DI03).

vertex p as an origin and normal vector np = (nx,ny,nz)
T as the z axes. Two orthogonal

axes, x and y, randomly chosen in the tangent plane perpendicular to the normal vector.
The local neighborhood points (2-ring in our paper) and its corresponding normal vectors
are first transformed to the local coordinate system, then used for fitting a cubic function
and its normal respectively. The cubic function and its normal having the following forms:

z(x,y) =
A

2
x2 +Bxy+

C

2
y2 +Dx3 +Ex2y+Fxy2 +Gy3 (D.3)

(zx,zy,−1) = (Ax+By+3Dx2 +2Exy+Fy2 +

+Bx+Cy+Ex2 +2Fxy+3Gy2,−1) (D.4)

By using least-square fitting method to solve the fitting equations (3) and (4), the Wein-
garten matrix on a vertex can be computed as:

W =

(
∂ 2z(x,y)

∂x2
∂ 2z(x,y)

∂x∂y
∂ 2z(x,y)

∂x∂y

∂ 2z(x,y)
∂y2

)
=

(
A B

C D

)
(D.5)

The maximum curvature kmax and minimum curvature kmin then can be estimated as the
eigenvaules of the Weingarten matrix. The second row of Fig.2 shows a example of maxi-
mum, minimum curvatures and shape index estimated by cubic fitting method on the same
3D face model.
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Figure D.3: Illustrated the estimated normal vectors (model M0044-DI03).

D.2.3 Mesh Gradient Estimation

Let the normal vector at p as np = (nx,ny,nz)
T , which can be estimated by averaging the

normal vectors of one-ring faces. According to (3) and (4), the gradient direction and the
gradient magnitude can be estimated as follows:

θ = arctan(
ny

nx

) (D.6)

||∇z(x,y)||=
√

(−nx

nz

)2 +(−ny

nz

)2 (D.7)

Fig. 3 shows the estimated normal vectors on a 3D mesh-based face model.

D.3 Local Shape Descriptors

D.3.1 Landmarks Selection

A set of landmarks, e.g. eye corners, nose tip, etc. is used for the purpose of FER. For
each landmark, two local shape descriptors, namely HoG and HoS, are extracted from its
neighborhood. In this work, a neighborhood with a geodesic disk is considered. The ex-
periments were carried out on the BU-3DFE database using the first 60 landmarks defined
on regions of eyebrows, eyes, nose and mouth, which are a subset of 83 manually labeled
landmarks in the database. The radius of the disk is equal to 22 mm in our experiments.
The 60 selected landmarks and an example of local neighborhood of the left mouth corner
are shown in Fig. 4.

D.3.2 Local Coordinate System and Orientation Assignment

In practice, we first transform the points within a local neighborhood to a local coordinate
system, in which the landmark point is the origin and its normal vector is along the positive
z axis. Two perpendicular vectors x and y axis are randomly chosen in the tangent plane.
In order to make the descriptor invariant to rotation, each landmark point is assigned one
or several canonical orientations according to the dominant direction(s) of gradients in the
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Figure D.4: From left to right, 60 selected manual landmarks, local neighborhood points
of the left mouth corner (M0044-DI04 and M0044-DI03).

local tangent plane with 360 bins. Once the canonical orientations are assigned, the local
coordinate system rotates in the local tangent plane, making each canonical orientation as
new x axis. Now y axis can be computed by cross product of z and x.

In this new local coordinate system, we project all the neighbors of a landmark point
to its tangent plane. Eight projected points along to eight quantized directions starting
from canonical orientation with a distance of r1 to the landmark point are fixed. Nine
circles centered at the landmark point and its eight neighbors with a radius r2 can be further
located. Fig.5 shows this arrangement.

Figure D.5: Canonical orientation (arrow), landmark point (o) and its 8 neighborhood
vertices (+) assigned with 9 circles.

D.3.3 Feature Vectors Computed as Histograms of Surface Differential

Quantities

In each circle, we calculate the histogram of surface gradient (hogc) and histogram of
shape index (hosc). For hogc, we compute the histogram of gradient angle weighted by
gradient magnitude. This histogram has 8 bins representing 8 main orientations ranging
form 0 to 360 degree. For hosc, the values of shape index ranging from 0 to 1 are also
quantized to 8 bins. Then, all the values of histograms are weighted by a Gaussian kernel
with the Euclidian distance to the center point of the circle as the standard deviation. Every
histogram with the length of 72 is then normalized and form a feature vector for a single
landmark point. Formally, hogp and hosp are defined as follows:

hogp = (hogc
1,hogc

2, . . . ,hogc
9) (D.8)

hosp = (hosc
1,hosc

2, . . . ,hosc
9) (D.9)
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The final feature vectors of each face model, respectively HoG and HoS, are then obtained
by simply concatenating the corresponding histograms of all 60 manual landmarks in a
fixed order, giving birth to a 60 × 72 = 4320 length bins. They can be represented as
follows:

HoG = (hog
p
1 ,hog

p
2 , · · · ,hog

p
60) (D.10)

HoS = (hos
p
1 ,hos

p
2 , · · · ,hos

p
60) (D.11)

In an early fusion strategy, the fusion of these two local shape descriptors, HoG+HoS, are
a simple concatenation of these two vectors.

D.4 Experimental Results

The BU-3DFE database [L. Yin & Rosato. 2006] contains 2500 textured 3D face models
of 100 subjects with different gender, race, and age. Each subject contains one neutral
model and six universal non-neutral expressions: happiness, sadness, anger, fear, surprise
and disgust. Also, each non-neutral expression is displayed at four different intensities:
low, middle, high and highest. Fig.5 shows some samples of the database with six different
expressions of high and highest intensities.

Figure D.6: Examples of six universal expressions, from left to right: anger, disgust, fear,
happiness, sadness, surprise. First row, high intensity, Second row, highest intensity.

In our experiments, we used the same set up as in [B. Gong & Tang 2009]. A subset
of 60 subjects was randomly selected with two high-intensity models for each of the six
facial expressions. In total, 60 × 12 = 720 3D mesh-face models were selected. Then,
54 and 6 subjects were randomly selected respectively as training set (648 models) and
test set (72 models). In practice, since the number of models in test set is very limited
(only 12 models for each expression), and people of different race, gender and age may
have different facial surface changes when they perform the same expression, the average
recognition accuracy obtained by 10 or 20 random experiments varies greatly, from about
50% to more than 90% [B. Gong & Tang 2009] with the same feature set, classifier and
parameters setup. To obtain stable average recognition accuracies, we run all of our ex-
periments 1000 times independently. To calculate descriptors, we set r1 and r2 equal to
15 mm and 7 mm respectively. HoG and HoS each having 4320 dimensions, it is hard
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to have information on their distributions in such high dimension space. We made use of
the SVM (LIBSVM [Chang & Lin 2001]) classifier with both liner kernel and RBF (radial
basis function) kernel for final FER. The parameter ’gamma’ for RBF kernel was set to
0.04 by 8-fold cross-validation. The results are shown in table 1-5. AN, DI, FE, HA, SA,
SU designate anger, disgust, fear, happiness, sadness, and surprise, respectively.

Table D.1: Average confusion matrix obtained by HoG

linear kernel RBF kernel

% AN DI FE HA SA SU AN DI FE HA SA SU
AN 74.0 8.3 0.8 1.6 15.2 0.1 66.0 12.0 3.0 0.9 18.1 0
DI 5.9 76.5 10.4 3.7 2.6 0.9 2.3 80.7 8.5 3.8 3.2 1.5
FE 5.4 11.7 63.6 9.7 5.4 4.2 3.4 8.4 63.2 13.2 5.5 6.2
HA 1.1 0.9 16.0 82.0 0 0 0.1 1.4 12.6 85.6 0 0.3
SA 16.6 2.7 8.2 0 72.2 0.3 15.6 4.1 5.7 0 72.6 2.0
SU 1.0 2.3 4.9 0.3 1.5 90.0 0 2.6 4.1 1.6 0.9 90.7

Average 76.4 76.5

Table 1 shows the average confusion matrix obtained by the HoG feature using the
SVM classifier with linear and RBF kernels. We can find that both linear and RBF kernels
achieve relatively high recognition accuracies for happiness and surprise and lower accu-
racies for other expressions. We observe the same phenomenon already evidenced in other
work: anger and fear have comparatively lower classification rates. Anger is confused
mainly by sadness while fear is confused mainly by happiness and surprise. Linear kernel
works slightly better for anger while slightly worse for disgust and happiness as compared
to the RBF kernel. Both of these two kernels achieve almost the same average recognition
rate about 76.5% for all six expressions.

Table D.2: Average confusion matrix obtained by normal cycle based HoS

linear kernel RBF kernel

% AN DI FE HA SA SU AN DI FE HA SA SU
AN 77.0 8.5 0.9 0 13.3 0.4 71.5 10.4 2.2 0 15.2 0.7
DI 7.6 80.0 6.2 2.8 3.4 0 3.6 82.0 6.5 3.4 4.4 0
FE 5.2 5.9 70.9 8.9 5.9 3.2 4.4 8.1 65.6 12.0 6.1 4.0
HA 0.4 0.9 4.8 93.2 0 0 0.6 1.0 6.5 91.2 0 0.7
SA 15.5 1.8 7.3 0 74.4 0.9 14.1 2.4 10.1 0 72.0 1.5
SU 0.2 1.9 1.9 0.4 0 95.6 0.1 1.6 1.4 0.2 0 96.8

Average 81.9 79.9

Table 2 shows the average confusion matrix obtained by the HoS feature (estimated by
normal cycle theory based method) and the SVM classifier of linear and RBF kernels. All
the results are better than the accuracies in Table 1 except the one obtained by the RBF
kernel for sadness (72%, vs 72.6%). Linear kernel works better than the RBF kernel except
disgust (80.0% vs 82.0%) and surprise (95.6% vs 96.8%). The average recognition rates
for all six expressions are 81.9% and 79.9% for linear and RBF kernels, respectively.
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Table D.3: Average confusion matrix obtained by cubic fitting based HoS

linear kernel RBF kernel

% AN DI FE HA SA SU AN DI FE HA SA SU
AN 73.1 7.7 2.7 0.2 16.2 0 72.3 9.9 2.6 0 15.2 0
DI 5.1 80.6 9.3 3.0 1.7 0.5 3.3 81.3 8.5 2.9 2.7 1.2
FE 5.4 4.8 72.3 8.7 6.0 2.7 5.5 73.3 66.6 9.5 6.7 4.4
HA 0.8 3.9 4.2 90.5 0 0.7 0.9 2.2 5.2 91.1 0 0.7
SA 16.3 0.6 5.9 0 76.3 0.9 12.8 1.5 8.6 0 76.2 0.9
SU 0.1 2.3 3.0 0 0.8 93.9 0.1 2.3 1.1 0 0.6 95.9

Average 81.1 80.6

Table 3 shows the average confusion matrix obtained by the HoS feature (estimated by
local cubic fitting method) and SVM classifier of linear and RBF kernels. All the results
are better than the corresponding results in table 1 except the one obtained by linear kernel
for anger (73.1%, vs 74.0%). For the case of linear kernel, the performances are worse than
the ones in table 2 except for disgust (80.6% vs 80.0%), fear (72.3% vs 70.9%) and sadness
(76.3% vs 74.4%); while for the case of RBF kernel, the performances are a little better
than table 2 (80.6% vs 79.9%) especially for sadness (76.2% vs 72%). The two curvature
estimation methods achieve comparative results which are in contrast to the conclusion
made in [J. Wang & Sun 2006].

Table D.4: Average confusion matrix obtained by HoG+HoS descriptor using a linear ker-
nel with the SVM

normal cycle based cubic fitting based

% AN DI FE HA SA SU AN DI FE HA SA SU
AN 76.8 7.6 2.1 0 13.5 0 76.4 8.0 1.8 0 13.7 0
DI 7.6 78.1 6.6 2.1 5.0 0.7 4.4 80.2 10.2 2.8 2.0 0.5
FE 4.6 7.6 73.2 7.3 5.1 2.3 5.1 6.2 73.6 8.0 5.3 1.7
HA 0.5 0.5 6.8 91.4 0 0.8 0.8 2.2 6.5 90.4 0 0.8
SA 14.5 1.1 8.3 0 75.5 0.6 14.7 0.5 6.2 0 77.8 0.8
SU 0 1.7 2.0 0.9 0.8 94.5 0 2.0 3.3 0.1 1.0 93.6

Average 81.6 82.0

Table 4 presents the average confusion matrix obtained by fusing the features HoG and
HoS into a single feature according to a simple early fusion scheme, denoted as HoG+HoS
(estimated by normal cycle theory and cubic fitting), and a SVM classifier with a linear
kernel. Compared to the results in left column of table 2 and the one of table 3 also achived
by a SVM with a linear kernel, the fused feature HoG+HoS, when estimated using the
normal cycle theory for the computation of curvature, ameliorates the recognition accuracy
for sadness and fear while recording a slight performance drop for other expressions. Now
when estimated using the cubic fitting technique for the computation of curvature, the fused
feature HoG+HoS improves the recognition accuracies for sadness, fear along with anger
this time and also records a slight drop for the remaining expressions. Overall, there are
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no significant increase of recognition accuracies either using normal cycle or cubic fitting
in the case of the early fused feature vector HoG+HoS. This may be caused by the huge
dimension (8640×1) of the fused descriptor on the one hand and the different nature of
geometric information captured by HoG and HoS. It may be interesting to study some
other fusion strategies, for instance late fusion strategy in combining similarity scores.

Table D.5: Comparison of the proposed method with the state of the art [11], [9], [5], [6],
[8].

HoG HoS HoG+HoS Berretti Gong Wang Soyel Tang
AVE 76.48% 81.86% 82.01% 77.54% 76.22% 61.79% 67.52 74.51%

Table 5 compares the experimental results achieved by the proposed method (HoG by
RBF kernel, HoS by normal cycle and linear kernel, HoG+HoS by cubic fitting and linear
kernel) with the ones reported in [B. Gong & Tang 2009] and [S. Berretti 2010]. In fact,
the results of the approaches proposed by Gong et al. (Gong) [B. Gong & Tang 2009],
Wang et al. (Wang) [J. Wang & Sun 2006], Soyel et al. (Soyel) [Soyel & Demirel. 2007a],
and Tang et al. (Tang) [Tang & Huang 2008a], were obtained using the same experimental
setting. In Berretti et al. (Berretti) [S. Berretti 2010], 60 subjects were selected randomly
from experiment to experiment. It can be seen from the table that the proposed approach
using HoG feature achieves comparable result as the others while HoS and HoG+HoS
features outperform all the other methods.

D.5 Conclusion and Future Work

In this chapter, we have developed a mesh-based 3D facial expression recognition approach
and evaluated it on the BU-3DFE database. The proposed approach is based on two local
shape descriptors, namely HoG and HoS, computed from surface differential quantities
with the SVM classifier. The surface differential quantities are extracted from the local
neighborhoods around a set of landmarks, in this work 60 landmarks from the 83 manually
labeled landmarks in the BU3D-FE database. Curvatures are estimated by normal cycle
theory based method and cubic fitting method. Both linear and RBF kernels of SVM are
employed for classification. The experimental results show that the proposed approach
outperforms the state of the art and demonstrate its effectiveness.

In our future work, we will investigate alternative fusion schemes than the simple early
fusion scheme used in this work. Furthermore, we also want to study the stability of the
proposed approach when landmarks are automatically located for instance by our statistical
technique SFAM as proposed in [X. Zhao 2009].

216



APPENDIX E

3D Facial Expression Recognition via

Multiple Kernel Learning of

Multi-Scale Local Normal Patterns

In this chapter, we propose a fully automatic 3D person-independent facial expression
recognition framework based on Multiple Kernel Learning (MKL) of Multi-Scale Local
Normal Patterns (MS-LNPs). To extract discriminative expression features, each aligned
3D facial surface is compactly represented as multiple global histograms of local normal
patterns from multiple normal components and multiple binary encoding scales, namely
Multi-Scale Local Normal Patterns (MS-LNPs). Expression recognition is finally carried
out by modeling multiple kernel learning to efficiently embed and fuse these multiple fea-
tures. By using the SimpleMKL algorithm with chi-square kernel, we achieved an average
recognition rate of 80.14% based on a fair experimental setup. To the best of our knowl-
edge, our result outperforms most of the state-of-the-art results.

E.1 Introduction

Recently, with the tremendous progress of 3D face recognition technology, 3D facial
expression recognition has also drawn much attention since the BU-3DFE database
[Yin et al. 2006b] was made publicly available in 2006 (refer to the recently survey
[Fang et al. 2011]). However, developing an fully automatic and highly accurate 3D fa-
cial expression system is still a huge challenge.

To handle the challenge of accuracy, there are two key issues: facial expres-
sion feature and facial expression classifier. Most of the existing feature based
methods extract various local or global geometric information as expression features,
e.g., curvature based primitive label map [Wang et al. 2006b]; distances between fa-
cial feature points [Soyel & Demirel 2007b], [Tang & Huang 2008b]; Shape Deformation
[Gong et al. 2009]; 2.5D SIFT-like descriptor [Berretti et al. 2010b]; histograms of sur-
face differential quantities [Li et al. 2011d]. Most of these methods reported relative high
accuracies while all of them (except [Gong et al. 2009]) require a predefined set of fa-
cial feature points (i.e., manually labeled landmarks) making them hardly applicable to
real-world applications. Meanwhile, except [Berretti et al. 2010b] and [Gong et al. 2009],
all the other methods used an unstable and unfair experimental protocol pointing out
by [Gong et al. 2009]. In this paper, we address the problem of six prototypical ex-
pressions classification by using feature based methods, referring to [Fang et al. 2011]
for model based methods and other methods for 3D facial action units classifica-
tion. Once expression features are extracted, many different classifiers can be used,
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e.g., Quadratic Discriminant Classifier [Wang et al. 2006b]; LDA [Wang et al. 2006b],
[Tang & Huang 2008b]; Naive Bayes [Wang et al. 2006b], [Tang & Huang 2008b]; Near-
est Neighbor [Tang & Huang 2008b]; Neural Network [Soyel & Demirel 2007b] and SVM
[Wang et al. 2006b], [Gong et al. 2009], [Berretti et al. 2010b], [Li et al. 2011d]. In this
chapter, we address both of the two key issues. To design a highly discriminative and ro-
bust expression feature, three components, in X, Y and Z-plane respectively, of normal
vectors estimated from 2.5D range image, are first encoded locally to their corresponding
Local Normal Patterns (LNPs) similar to Local Binary Pattern (LBP) works on texture im-
age. Then, to utilize the spatial distribution information of facial normal patterns, each
kind of Local Normal Pattern: LNPx, LNPy and LNPz , can be further divided into several
patches, from which histograms of LNPs are computed. Finally, the expression feature of a
facial surface is represented by a global histogram of LNPs concatenated by facial configu-
ration. Like multi-scale LBP, we encode LNPs with different scales, achieving Multi-Scale
Local Normal Patterns (MS-LNPs) [Li et al. 2011b]. Based on MS-LNPs, each 3D facial
surface now represented by nine feature vectors: coming from three encoding scales and
three normal components. How to make best fusion of all these multiple feature vectors to
improve the final accuracy becomes a key problem. Fortunately, Multiple Kernel Learn-
ing (MKL) based classifier can be a good choice comparing with traditional signal kernel
based SVM classifier and recently popular Sparse Representation Classifier (SRC). This is
mainly because that MKL can learn different weights for feature vectors extracted from d-
ifferent scales or different normal components, which is usually better than using the same
weights by SVM or SRC conducting feature-level or score level fusion. As the general-
ization of single kernel based classifier, the basic idea of Multiple Kernel Learning (MKL)
was first used for genomic data fusion, in which the authors shown that using multiple k-
ernel instead of a single one can enhance the interpretability of the decision function and
improve performances [Lanckriet et al. 2004].

The chapter is organized as follows: Section 2 introduces the Multi-Scale Local Normal
Patterns (MS-LNPs) based expression feature extraction; Section 3 presents the basic idea
of Multiple Kernel Learning (MKL) for multi-class expression classification. Experimental
results are discussed in section 4. Section 5 concludes the paper.

E.2 Multi-scale local normal patterns

Given a 3D facial surface represented by an m×n×3 matrix as follows,

P = {pi j(x,y,z)}m×n = {pi jk}m×n×{x,y,z}, (E.1)

where pi j(x,y,z) = [pi jx, pi jy, pi jz]
T represents the 3D coordinates of the point pi j. Its unit

normal at each point can be estimated by fitting a local plane. Each of the normal compo-
nents can be represented by an m×n matrix:

N(P) =





N(X) = {ni jx}m×n,

N(Y) = {ni jy}m×n,

N(Z) = {ni jz}m×n.

(E.2)

where −1≤ ni jk ≤ 1.
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Figure E.1: MS-LNPs: images of normal components X, Y and Z and corresponding fea-
tures extracted from three scales: Q1,8, Q2,16 and Q3,24 (from left to right).

Inspired by the discriminative power and computational simplicity of LBP describing
2D texture, we encode each normal component as local normal patterns (LNPs). Here we
suppose the values of each normal component are just like the intensity values of the nature
texture image. Indeed, if we re-scale the normal values from [−1,1] to the range of [0,255],
the normal components can be displayed as component-normal images (see Fig.1). Thus,
each point of each normal component can be encoded as local binary pattern corresponding
to a decimal number. In practice, each facial normal component matrix can be divided into
several patches, from which histograms of local normal patterns are extracted respectively,
then concatenated by facial configuration to form a global histogram. Finally, the original
facial surface is described by nine global histograms extracted from three normal compo-
nents and three encoding scales (see Fig.1). See [Li et al. 2011b] for more details about
MS-LNPs.

E.3 Multi-class multiple kernel learning

During last few years, as the generalization of single kernel based support vector ma-
chine (SVM), multiple kernel learning (MKL) has proved to be an efficient tool for solving
learning problems like classification and regression [Lanckriet et al. 2004], especially after
Bach et al. proposed the simple-MKL algorithm which enables to effectively tackle large
scale problems [Rakotomamonjy et al. 2008].

In a binary classification scenario, given the learning set {xi,yi}M
i=1, where xi belongs to

some input space X and yi is the label of xi. The MKL makes predictions based a function
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of the form

f (x) =
M

∑
i=1

α⋆
i

N

∑
j=1

d⋆
j K j(x,xi)+b⋆ (E.3)

where K j(·, ·),( j = 1,2, . . . ,N) is one of the given positive definite basis kernel, d⋆
j is its

corresponding weight, and d⋆
j ≥ 0,∑N

j=1 d⋆
j = 1, N is the total number of the kernels, all

α⋆
i , d⋆

j and b⋆ are some coefficients to be learned from the learning set. To solve the MKL
problem efficiently, SimpleMKL algorithm involves a weighted l2 regularization to lead to
the following smooth and convex optimization problem (prime MKL):

min
{ f},b,ξ ,d

1
2 ∑

m

1
dm

|| fm||2Hm
+C∑

i

ξi

s.t. yi ∑
m

fm(xi)+ yib≥ 1−ξi ∀i

ξi ≥ 0 ∀i
∑
m

dm = 1,dm ≥ 0 ∀m

(E.4)

where Hm = { f | f ∈ H ′
m :

|| f ||H ′m
dm

< ∞}, endowed with the inner product 〈 f ,g〉Hm
=

1
dm
〈 f ,g〉H ′

m
, and H ′

m is a reproducing kernel Hilbert space (RKHS) associated with ker-
nel Km and inner product fm(x) = 〈 f (·),Km(·, ·)〉H ′

m
.

The dual MKL problem is

max
αi,λ

∑
i

αi−λ

s.t. ∑
i

αiyi = 0

0≤ α1 ≤C ∀i
1
2 ∑

i, j

αiα jyiy jKm(xi,x j)≤ λ ∀m

(E.5)

Due to the difficult of optimization the last constraint,
SimpeMKL minimizes a variation version of the prime MKL as follows,

min
d

J(d) s.t.∑
m

dm = 1,dm ≥ 0, (E.6)

where

J(d) =





min
{ f},b,ξ ,d

1
2 ∑

m

1
dm

|| fm||2Hm
+C∑

i

ξi ∀i,

s.t. yi ∑m fm(xi)+ yib≥ 1−ξi ∀i,
ξi ≥ 0 ∀i.

(E.7)

Refer to [Rakotomamonjy et al. 2008] for the details of the SimpleMKL algorithm.
Noticing that in our paper, {xi}M

i=1 come from multiple sources, i.e., x, y and z com-
ponents of surface normal vector and three encoding scales of the local normal patterns
(LNPs). Features with different normal components or encoding scales usually capture
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different and complementary shape information of facial surface, making them have dif-
ferent degree of discriminative power thus should be associate with different weights. And
that is exactly what MKL does. Once given kernels associate with different type of fea-
tures, MKL seeks to the best combination weights of these kernels. One of the most useful
kernel used for measurement the similarity of two sets of histogram like feature vectors x

and y is chi-square kernel (χ2 distance)

K(x,y) = exp(− 1
D

n

∑
i=1

(xi− yi)
2

1
2(xi + yi)

). (E.8)

where n is the number of feature vectors, D is the parameter for normalizing the distances.
The decision function for binary classification SimpleMKL is

D(x) = sign(
M

∑
i=1

N

∑
j=1

α⋆
i yid

⋆
j K j(x,xi)+b⋆) (E.9)

where α⋆
i , d⋆

j and b⋆ have the same meaning as equation (E.3). Suppose we have a multi-
class problem with K class, the multi-class SimpleMKL differ from its binary version by
defining a new cost function

J(d) = ∑
p∈P

Jp(d) (E.10)

where P is the set of all pairs (one-to-one or one-to-rest) to be considered, and Jp(d) is
the binary cost function in (E.6).

E.4 Experimental results

We performed six prototypical expressions classification task on the BU-3DFE database
[Yin et al. 2006b]. A relative fair experimental protocol is used as [Berretti et al. 2010b],
e.g., during each time of test, first, 60 subjects are randomly selected from 100 subjects
(only the two high intensity models of each expressions are selected), then, randomly split
54 to 6 training and testing sets, and repeated 100 times.

Each triangle model is first transferred to one range image stored in a m×n×3 coordi-
nate matrix by interpolation technique and then registered by ICP algorithm. As described
in section 2, for each training or testing model, we extracted 9 global histograms of local
normal patterns: 3 normal components, and 3 encoding scales. The encoding parameter-
s are: Q(8,1),Q(16,2) and Q(24,3) corresponding to local patch sizes of 8× 8,20× 16
and 40× 32, working on the normal component matrices with size of 120× 96. (see
[Li et al. 2011b] for more details.) Three classifiers: score level fusion of sparse repre-
sentation classifier (SRC) with OMP algorithm and sparse number of 30 [Li et al. 2011b];
score level fusion of multi-class SVM classifier [Chang & Lin 2011] and SimpleMKL
[Rakotomamonjy et al. 2008] with fixed C as 100 are used. To compare the performance
of SVM and SimpleMKL, linear kernel, RBF kernel with γ = 3 (empirical choice) and
chi-square kernel (D is set to the average value of the χ2 similarity matrix of two sets of
features) are tested respectively. To simplify test, all the 9 MS-LNPs use the same kind of
kernel, SimpleMKL learns the kernel weights associate with different MS-LNPs to achieve
the final score.

221



Appendix E. 3D Facial Expression Recognition via Multiple Kernel Learning of

Multi-Scale Local Normal Patterns

Table E.1: Average, Minimal and Maximal recognition rates obtained by SRC, SVM and
SimpleMKL, kernel I: linear; kernel II: RBF; kernel III: chi-square.

% Average rate Min Max
SRC 78.36 59.72 91.67
SVM-kernel I 75.78 56.94 88.89
SVM-kernel II 76.65 63.89 93.06
SVM-kernel III 78.72 62.50 95.83
SimpleMKL-kernel I 78.60 65.28 88.89
SimpleMKL-kernel II 78.24 62.50 90.28
SimpleMKL-kernel III 80.14 63.89 95.83

Table 1 shows the numerical comparisons. We can see that SimpleMKL performs
better than SVM for all the three kernels. SimpleMKL with chi-square kernel achieves best
average recognition rate (80.14%), which is better than SRC (78.36%) and SVM-kernel III
(78.72%). During the 100 times tests, the differences between maximal and minimal rates
of all the methods are around 30% which indicates that the recognition rates are largely
depends on the subjects used for training and testing.

Table 2 presents the average confusion matrix achieved by SimpleMKL-kernel III. We
find that it performs quite well to classify happiness and surprise, getting the recognition
rates of 93.17% and 92.67% respectively. The most likely confused expressions are anger-
sadness and fear-disgust-happiness.

Table E.2: Average confusion matrix obtained by SimpleMKL-kernel III
% AN DI FE HA SA SU

AN 77.92 6.33 3.08 0.33 11.58 0.75
DI 6.83 77.17 7.17 3.58 1.67 3.58
FE 4.42 9.00 69.25 9.92 3.67 3.75
HA 0.00 0.25 6.17 93.17 0.00 0.42
SA 18.42 2.58 7.08 1.00 70.67 0.25
SU 0.08 1.42 4.00 1.00 0.83 92.67

Table 3 compares with the performance of SimpleMKL-kernel III and the ones reported
in [Gong et al. 2009], [Berretti et al. 2010b], [Li et al. 2011d] and [Lemaire et al. 2011].
In fact, Gong et al. [Gong et al. 2009] reproduced the approaches of Wang et
al. [Wang et al. 2006b], Soyel et al. [Soyel & Demirel 2007b], and Tang et
al.[Tang & Huang 2008b] under the same experimental setting. We can see that our
result is better than others except [Li et al. 2011d]. It should be notice that excep-
t [Gong et al. 2009], [Lemaire et al. 2011] and our proposed method, all the others need
many manual landmarks. On the other side, choosing fixed 60 subjects in setup I is not as
fair as setup II.

E.5 Conclusion

In this paper, person independent facial expression recognition is performed on the whole
BU-3DFE database. We propose a novel 3D expression descriptor named multi-scale local
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Table E.3: Comparison of average recognition rates, (I: Setup [Gong et al. 2009]; II:

Setup [Berretti et al. 2010b]).

% I II

Wang et al. [Wang et al. 2006b], [2006] 61.79 -
Soyel et al. [Soyel & Demirel 2007b], [2007] 67.52 -
Tang et al.[Tang & Huang 2008b], [2008] 74.51 -
Gong et al. [Gong et al. 2009], [2009] 76.22 -
Berretti et al. [Berretti et al. 2010b], [2010] - 77.54
Li et al. [Li et al. 2011d], [2011] 82.01 -
P. Lemaire et al. [Lemaire et al. 2011] [2011] 76.22 -
SimpleMKL-kernel III - 80.14

normal patters (MS-LNPs). To efficiently fuse the multiple scales and multiple components
of MS-LNPs, multiple kernel learning classifier is employed. Base on a fair setup, we
achieved an average recognition rate of 80.14%, which outperforms most of the state-of-
the-art results.
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APPENDIX F

An Automatic 3D Expression

Recognition Framework based on

Sparse Representation of Conformal

Images

In this chapter, we propose a general and fully automatic framework for 3D facial expres-
sion recognition by modeling sparse representation of conformal images. According to
Riemann Geometry theory, a 3D facial surface S embedded in R

3, which is a topological
disk, can be conformally mapped to a 2D unit disk D through the discrete surface Ricci
Flow algorithm. Such a conformal mapping induces a unique and intrinsic surface con-
formal representation denoted by a pair of functions defined on D, called conformal factor
image (CFI) and mean curvature image (MCI). As facial expression features, CFI cap-
tures the local area distortion of S induced by the conformal mapping; MCI characterizes
the geometry information of S. To model sparse representation of conformal images for
expression classification, both CFI and MCI are further normalized by a Möbius transfor-
mation. This transformation is defined by the three main facial landmarks (i.e. nose tip, left
and right inner eye corners) which can be detected automatically and precisely. Expression
recognition is carried out by the minimal sparse expression-class-dependent reconstruc-
tion error over the conformal image based expression dictionary. Extensive experimental
results on the BU-3DFER dataset demonstrate the effectiveness and generalization of the
proposed framework.

F.1 Introduction

F.1.1 Background

Facial expression is one of the most naturally preeminent means for human beings
to express their emotions, opinions and intentions. Its automatic recognition has a
wide range of applications, including entertainment, psychology studies, smart human-
computer interface, etc. [Zeng et al. 2009]. Thus, Facial Expression Recognition (FER)
has been extensively investigated over the last two decades and mostly focused on
2D facial texture images and videos [Fasel & Luettin 1999], [Samal & Iyengar 1992],
[Pantic & Rothkrantz 2000], [Zeng et al. 2009].

Despite the great advancements has achieved, 2D/2D video facial texture image based
facial expression recognition system still fails to solve the two major challenges: illu-
mination changes and pose variations [Fasel & Luettin 1999], [Samal & Iyengar 1992],
[Pantic & Rothkrantz 2000], [Zeng et al. 2009]. With the recently fast development of
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3D scanning technology, 3D/3D video facial surface based facial expression recognition
system becomes the indispensably complementary to the traditional 2D/2D video based
methods [Fang et al. 2011], [Malassiotis & Tsalakanidou 2011], [Sandbach et al. 2012],
[Fang et al. 2012]. This is mainly because that 3D facial surface can provide accurate ge-
ometry and topology structure information in 3D space which is very useful for expression
feature extraction. These kinds of expression features are illumination and pose invariant
naturally.

F.1.2 Related Work

Different from Action Units (AUs) detection system like [Savran & Sankur 2009],
in this paper, we focus on recognizing the six prototypical expressions (i.e. hap-
piness, sadness, anger, fear, surprise and disgust). In this literature, developing
a fully automatic 3D landmark detection technique or a fully automatic 3D FER
system is still a big challenge. As we have known, most existing 3D FER meth-
ods are based on a large set of manual landmarks (e.g. [Wang et al. 2006b],
[Soyel & Demirel 2007b], [Tang & Huang 2008b], [Tang & Huang 2008c],
[Soyel & Demirel 2008], [Berretti et al. 2010b], [Maalej et al. 2010], [Li et al. 2011d],
[Sha et al. 2011]), which make these kind of methods unrealistic for real world applica-
tions.

Only a few efforts have been reported on the automatic recognition of 3D facial
expression (e.g. [Venkatesh et al. 2009], [Rosato et al. 2008], [Mpiperis et al. 2008b],
[Zhao et al. 2010], [Gong et al. 2009]). Theses methods can be roughly classified into two
categories: i) 2D landmark based [Venkatesh et al. 2009], [Rosato et al. 2008]; ii) learn-
ing based [Zhao et al. 2010]. By using the one-to-one correspondence of 2D facial image
and 3D facial surface, 2D landmark based methods first automatically detect a set of fa-
cial landmarks on the 2D facial image and then map them to its corresponding 3D surface.
But automatic 2D facial landmark detection involving illumination changes and pose vari-
ations is still very challenging. Meanwhile, learning based methods often train a facial
shape/landmark statistical model, which is very computationally expensive and parameter
sensitive. However, thanks to the landmark free property of conformal mapping, we only
need three landmarks to normalize our conformal images, which makes the normalized
conformal images more suitable for modeling sparse representation expression dictionary
and classifier. Meanwhile, the selected three main landmarks can be automatically and
precisely detected [Szeptycki et al. 2009c].

Recently, conformal geometry has been introduced as a powerful surface shape
analysis tool, such as surface matching, recognition and stitching [Wang et al. 2007]
[Gu & Vemuri 2004] surface registration [Zeng et al. 2008], 3D face recognition
[Szeptycki et al. 2010] and 3D FER [Rosato et al. 2008] [Savran & Sankur 2009]. Differ-
ent from the previous works, in this paper, for the first time, we propose to use the unique
surface conformal representation, i.e., conformal factor image (CFI) and mean curvature
image (MCI), as expression features of the proposed 3D FER framework.

Inspired by [Wright et al. 2009b], Ying et al. [Ying et al. 2010] proposed to fuse the
sparse representation of gray facial images and their local binary patterns (LBP) for 2D
FER. Cotter et al. [Cotter 2010] investigated sparse representation for classification of
corrupted and occluded 2D facial expressions. Zafeiriou et al. [Zafeiriou & Petrou 2010]
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proposed to use sparse representation on the difference facial images for 2D FER. To the
best of our knowledge, our work is the first one to solve 3D facial expression recognition
problem by modeling sparse representation of well normalized conformal images.

F.1.3 Framework Overview

3D
Input

3 Main
Landmarks

Conformal
Map

H-
Conformal
Image

λ-Conformal
Image

Normalization

I

II

III

IV

Sparse Rep.
Classification

Figure F.1: Overview of the proposed 3D FER framework.

As shown in Fig. 1, our framework consists of four steps: I. Conformal map com-
putation and 3 main landmark detection; II. Conformal map normalization; III. Conformal
image based facial surface representation and expression feature extraction; IV. Sparse rep-
resentation modeling for expression classification. Specifically, given a raw 3D face scan
(texture is unnecessary, here, only for better illustration in Fig. 1), we first run the discrete
surface Ricci Flow algorithm to compute the conformal map from the original 3D facial
surface to the 2D unit disk. Simultaneously, we launch the landmark detection algorithm
[Szeptycki et al. 2009c] to detect the 3 main landmarks, i.e., the nose tip and the two inner
eye corners. To normalize the conformal map, we then apply a Möbius transformation to
the conformal map obtained in the first step. The Möbius transformation can be determined
by the 3 detected landmarks. Based on the normalized conformal map, the original 3D fa-
cial surface can be uniquely represented by a pair of functions: (λ ,H), where λ denotes the
conformal factor, H denotes the mean curvature. We encode the λ and H information onto
the conformal mapping result, then we get two conformal images, such as mean curvature
conformal image (MCI) and conformal factor image (CFI). Thus, expression features are
extracted as follows: The CFI captures the local area distortion (between the 3D surface
and its conformal map in the 2D unit disk) induced by the conformal map. The MCI char-
acterizes the geometry information of the original 3D facial surface. Finally, to build the
sparse representation model, expression features (i.e. MCI and CFI) from the training set
are arranged according to their expression labels to generate conformal image based ex-
pression dictionary. Expression features from the testing set are classified by the minimal
sparse expression-class-dependent reconstruction error over the expression dictionary. The
main contributions of this paper can be summarized as follows:
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• We propose a fully automatic 3D facial expression recognition system. Three main
facial landmarks can be automatically and precisely detected and are enough to nor-
malize the conformal map.

• We propose to extract expression features with the unique and complete surface con-
formal representation, which includes CFI and MCI.

• We propose to solve 3D facial expression recognition problem by modeling sparse
representation of well normalized/aligned conformal images.

• We propose a general 3D facial expression recognition framework. Thanks to Rie-
mann geometry theory, any other geometry information (e.g. normal, curvature,
shape index, etc.) of the original 3D facial surface can also be mapped to 2D unit
disk by computing the conformal map. Meanwhile, any sate-of-the-art 2D texture
descriptors (e.g. LBP, HOG, SIFT) can be used on the conformal images to improve
their discriminative power.

F.2 Surface conformal mapping

F.2.1 Conformal Mapping and Surface Conformal Representation

Intuitively, conformal mappings are angle preserving mappings, which don’t distort the
angles but areas. Locally, a conformal mapping is a scaling transformation.

Définition 65. (Conformal mappings) Let S1 and S2 be two metric surfaces, with Rieman-

nian metrics g1 and g2 respectively. A map φ : S1→ S2 is conformal, if and only if the pull

back metric induced by φ satisfies φ ∗g2 = e2λ g1.

The function λ : S1 → R represents the area distortion, and is called the conformal

factor. Specifically, all conformal mappings from the unit disk of a complex plane C,
D = {|z|< 1|z ∈ C} to itself are the so-called Möbius transformations, with the form

φ(z) = eiθ z− z0

1− z̄0z
,z0 ∈ D. (F.1)

We can see that Mobius transformation has 3 degree of freedoms: rotation parameter, θ ,
and translation parameter, z0. Thus, three points are enough to determine a Mobius trans-
form.

Définition 66. (Riemann mapping) All the simple connected surfaces with a single bound-

ary can be conformally mapped onto the unit disk. Such kind of conformal mapping is

called a Riemann mapping.

Theorem F.2.1 (Riemann mapping [Schoen & Yau 1994]). Suppose (S,g) is a topological

disk, then there exists a conformal mapping φ : S→ D, which maps S to the unit disk D.

All such kind of mappings differ by a Möbius transformation.

For example, suppose a surface S embedded in R
3, then it has the induced Euclidean

metric g. A Riemann mapping φ : S→ D maps S to the planar disk D, then the original
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metric g can be represented as g = e2λ dzdz̄, namely, conformal factor λ determines the
first fundamental form of the surface.

Furthermore, assume the mean curvature function of S is H : S→ R, then H ◦ φ is
a function defined on the unit disk D, in the following we treat H as a function on D.
Under a Riemann mapping, H and λ can determine the second fundamental form of S. The
following representation theorem plays a fundamental role in the current work.

Theorem F.2.2 (Surface conformal representation [Gu & Vemuri 2004]). A surface S em-

bedded in R
3 is uniquely determined by the conformal factor and the mean curvature func-

tion λ ,H : D→ R and its boundary.

This theorem shows that the pair of conformal factor and mean curvature (λ ,H) mainly
determines the geometry of the surface. Therefore, we call (λ ,H) as surface conformal

representation.

F.2.2 Surface Ricci Flow

Converting a surface S to its conformal representation (λ ,H) is a challenging problem. One
of the powerful technical tool for computing conformal mapping is Surface Ricci Flow.

Ricci flow was invented by Hamilton for the purpose of proving Poincaré’s conjecture
[Hamilton 1982]. Ricci flow deforms the Riemannian metric of the surface proportional
to its Gaussian curvature, such that the curvature evolves according to a non-linear heat
diffusion process, and eventually the curvature becomes constant everywhere. Suppose the
Riemannian metric g = (gi j), the Ricci flow is

dgi j

dt
=−2Kgi j. (F.2)

where K is the Gauss curvature of the surface.

Theorem F.2.3 (Ricci Flow). Surface Ricci flow will converge to constant curvature metric

without encountering singularities.

In practice, for surfaces with boundaries, one can prescribe the target Gaussian cur-
vature for interior points and geodesic curvature on boundary points, the Ricci flow is
modified to

dgi j

dt
= 2(K̄−K)gi j, (F.3)

where K̄ is the target curvature. Ricci flow still converges and leads to the Riemannian
metric with desired curvatures.

F.3 Expression feature extraction: normalized conformal im-

ages

We describe the details of expression feature extraction , including conformal mapping
computation, normalization and conformal images computation.
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F.3.1 Conformal Mapping Computation

We apply discrete surface Ricci Flow algorithm [Zeng et al. 2010a] to compute the con-
formal mapping. First, we choose a point p0 on the facial surface, and punch a small hole
around p0 to convert the surface to a topological annulus. Then we run Ricci Flow by set-
ting the interior point curvature to be zeros everywhere, and the boundary point geodesic
curvature to be zeros as well. The flat metric induced by the Ricci Flow can embed the
annulus onto a planar strip isometrically. By applying complex exponential mapping ez,
the strip is mapped to a planar annulus with a concentric inner hole. If the original punc-
ture is tiny, the inner hole will be very small. By filling the inner hole, we obtain a good
approximation to the Riemann mapping φ : S→ D.

Due to the Möbius ambiguity, we need to locate main feature points to normalize the
conformal mapping. Once conformal mapping is normalized, the conformal images are
normalized at the same time.

AN03 DI03 FE03 HA03 SA03 SU03

Figure F.2: Conformal images for 3D human facial expressions. The subject is M0021 in
BU3D database. 1st row: 6 expression images in camera view; 2nd row: conformal maps
with human facial texture; 3rd row: mean curvature images; 4th row: conformal factor
images.

F.3.2 Conformal Mapping Normalization

We apply the algorithm in [Szeptycki et al. 2009c] to locate the 3 major feature points
automatically: the nose tip, the left and right inner eye corners, denoted as {p1, p2, p3}. By
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applying the following Möbius transforamtion

τ(z) = (z− p1)/(1− p̄1z) (F.4)

to move the nose tip to the origin, and a rotation

η(z) = eiθ z, (F.5)

where θ =−arg(τ(p2)−τ(p3)) to rotate the line through left and right eye inner corners to
be horizontal. Therefore, the normalized Riemann mapping has the form η ◦ τ ◦φ . Figure
F.2 (row 2) shows the normalized conformal mappings for 6 human faces with different
expressions (row 1).

F.3.3 Conformal Images Computation

To achieve the facial surface conformal representation (λ ,H) : D→ R, the mean curva-
ture and conformal factor of a vertex v ∈ S are computed as follows: 1) Mean curvature
[Morvan 2008a]:

H(v) =
∑e∈B l(e)β (e)

area(B)
(F.6)

where v is a vertex of triangular mesh S, B is a local ball neighborhood of a vertex v,
area(B) means the area of B, and e is any edge in B, l(e) is the length of e, and β (e) is the
exterior dihedral angle along the edge. 2) Conformal factor:

λ (v) = ∑
T∈B

λ (T ) = ∑
T∈B

logarea(T )− log ˜area(T )

2
(F.7)

where T is the triangle in B, area(T ) is the area on the surface, and ˜area(T ) is the area on
the unit disk.

CFI and MCI are obtained by scale normalization of λ and H to the range of gray
value [0,255]. Fig. F.2 shows the mean curvature images (row 3). and the conformal factor
images (row 4). It is obvious that the nose tip area has much larger conformal factors.

F.4 Sparse representation of conformal image for expression

classification

F.4.1 Conformal Images based Expression Dictionary

Both the MCI and CFI computed from the training dataset are used for building expression
dictionary respectively. For any MCI or CFI with size of w× h, we first reshape it as a
m dimensional vector v ∈ Rm by simply stacking its columns, where (m = wh). Then we
arrange the given ni training samples of the i-th expression class as columns of a matrix
Di = [vi,1,vi,2, . . . ,vi,ni

] ∈ R
m×ni . Finally, we define a new matrix D for all the expression

classes of the training set as the concatenation of the n training samples of all k expression
classes:

D
.
= [D1,D2, . . . ,Dk] = [v1,1,v1,2, . . . ,vk,nk

] (F.8)
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Specially, since we use the 54 vs. 6 training and testing protocol for six basic expression
classification, thus k = 6, nk = 54× 2 = 108, and n = 108× 6 = 648. Furthermore, we
fixed the ordering of our expression dictionary as anger, disgust, fear, happy, sadness and
surprise, corresponding to D1,D2, . . . ,D6.

F.4.2 Sparse Representation of Conformal Images

Assume a testing conformal image (MCI or CFI) y is in class i, then the linear representa-
tion of y can be approximated by the linear combination of all n training samples,

y = Dx+ ε ∈ R
m. (F.9)

where x is the sparse representation coefficient, whose entries are zeros or closed to zeros
except those associated with the i-th class. The basic idea here is that the conformal images
of the same facial expression approximately lie in a low dimensional subspace. As pointed
out in [Wagner et al. 2012], sparse representation model is very sensitive to the face align-
ment. Thanks to our conformal map normalization step, all the conformal images are well
aligned and thus well fitted the sparse representation model.

In order to eliminate the spurious non-zero entries, we seek the sparse solution to Eqn.
(F.9) by solving the following optimization problem:

x̂0 = argminx||x||0 s.t.||y−Dx||2 ≤ ε, (F.10)

or its equivalent its l1 regularization version [Donoho 2006].

x̂1 = argminx||x||1 s.t.||y−Dx||2 ≤ ε, (F.11)

F.4.3 Expression Classification by Class-dependent Reconstruction Error

Similarly to the idea of sparse representation of face recognition in [Wright et al. 2009b],
we use the expression class-dependent reconstruction error as the rule for expression clas-
sification. That is to say, given a test sample y belonging to one kind of prototypical expres-
sion, we first estimate its sparse representation x̂1 by optimizing Eqn. (F.11). For each class
i, let δi : Rn → Rn be the characteristic function which selects the coefficients associated
with the i-th class. Then, using only the coefficients associated with the i-th class, one can
approximate reconstruction the given test sample y as ŷi = Dδi(x̂1). Finally, we class y by
assigning it to the expression class that minimizes the reconstruction error between y and
ŷi.

min
i

ri(y)
.
= ||y−Dδi(x̂1)||2. (F.12)

As pointed out in [Wright et al. 2009b], sparse representation can be considered as a gen-
eralization of nearest subspace (NS) classifier. It considers all the possible supports (with
each class and across multiple classes) and chooses the minimal number of the training
samples required to represent each test sample.
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F.5 Experimental results

F.5.1 Database and Preprocessing

We tested our proposed 3D FER framework on the BU-3DFER dataset [Yin et al. 2006b].
It contains 2500 textured 3D facial surfaces of 100 subjects with different attributes such
as gender, race, and age. For each subject, it includes one neutral and six prototypical ex-
pressions (anger (AN), disgust (DI), fear (FE), happiness (HA), sadness (SA) and surprise
(SU)) with 4 intensity levels. All the facial triangular meshes are preprocessed by denois-
ing, hole filling and local re-meshing, to ensure them to be manifolds with disk topology.

F.5.2 Experimental Settings

To set up a fair evaluation for the proposed framework, we used the same experimental set-
ting as [Berretti et al. 2010b]. That is to say, only the two high levels of the six prototypical
expressions were used for all the experiments (100 subjects, 1200 faces). Meanwhile, for
each time, we first randomly selected 60 subjects, and then randomly selected 90% (i.e., 54
subjects, 648 faces) as the training set, 10% (i.e., 6 subjects, 72 faces) as the testing set. To
obtain the stable average recognition accuracy, we repeated 100 times. This kind of setting
is relatively fair and can avoid the influence caused by the variation of selecting different
subjects for training and testing.

The original conformal factor image (CFI) and mean curvature image (MCI) have the
same size of 256×256. To achieve a relative low dimension feature vector, we first cropped
20 pixels at each side (216×216) and then resized all the images to be 32×32. Then, each
resized image is then reshaped as a vector with dimension of 1024. The Orthogonal Match-
ing Pursuit (OMP) [Pati et al. 1993] algorithm with sparse number of 30 was employed to
solve Eqn. (F.11) to achieved the sparse representation coefficient x̂1.

F.5.3 Experimental Results

In our test, four experiments were designed for evaluating our framework, including 1) ef-
fectiveness and discrimination power analysis, 2) performance evaluations, 3) extensibility
analysis, and 4) comparison with the state-of-the-art.

F.5.3.1 Effectiveness and discrimination power analysis

To illustrate the effectiveness and discrimination power of our framework, two simple ex-
amples are reported as follows. All the examples are tested on the mean curvature images,
conformal factor images are similar.
Example 1. (Right expression classification) For effectiveness analysis, as shown in
Fig.F.3, given a testing MCI with disgust expression, we compute its sparse representa-
tion coefficients on the MCI based expression dictionary using Eqn. (F.11). We can see
that the coefficients in (d) cluster round the range of disgust expression class while sparsely
scatter in other classes. Meanwhile, the disgust expression-class-dependent reconstruction
error in (e) is the minimal one. Therefore, the testing MCI is rightly classified to disgust
expression.
Example 2. (Wrong expression classification) For discrimination power analysis, as shown
in Fig.F.4, given a testing MCI with disgust expression, we compute its sparse represen-
tation coefficients and find its reconstructed MCI with minimal reconstruction error. We
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Figure F.3: Example of right expression classification: (a) a testing MCI with disgust
expression; (b) the reconstructed MCI with minimal reconstruction error; (c) the minimal
reconstruction error image (i.e. the difference of (a) and (b)); (d) the sparse representation
coefficients over MCI based expression dictionary (the range of disgust dictionary is from
109 to 216); (e) the expression-class-dependent reconstruction errors.

can see that the distribution of the coefficients in (d) are almost uniform and spread evenly
across all the six expression classes. Meanwhile, the expression-class-dependent recon-
struction errors are very close to each another except happy and surprise. The minimal
one is not disgust but sadness. This example indicates that our framework may have some
limitation to discriminate the expressions of disgust, anger, sadness and fear.

Figure F.4: Example of wrong expression classification: (a) a testing MCI with disgust
expression; (b)-(e) have the same meanings as the ones in Fig. F.3.

F.5.3.2 Performance evaluations

To show a visual impression and give a fair evaluation, we demonstrate the performance of
one random test based on mean curvature images (MCIs) and the average performance of
100 times tests based on both MCIs and conformal factor images (CFIs).
One random test based on MCI feature: Table F.1 gives the confusion matrix and we
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can see that the average recognition accuracy is 79.17%. Specially, all the samples with
anger and surprise expressions are rightly classified. And only one sample with happy
expression is wrongly classified as sadness. The remaining expressions are confused with
the other two or three. Fig. F.5 shows the 72 randomly selected testing samples of MCIs.
Fig. F.6 and Fig. F.7 show the corresponding reconstructed MCIs with minimal error and
the corresponding error MCIs. The MCIs come from 6 subjects and 6 expression classes
(2 intensities for each expression). We can see that even for human beings, recognizing the
wrongly classified happy expression sample is also very difficult.

Table F.1: Confusion matrix: one random test based on MCI.
% AN DI FE HA SA SU

AN 100 0 0 0 0 0
DI 0 66.67 8.33 16.67 0 8.33
FE 25 8.33 50 0 16.67 0
HA 0 0 0 91.67 8.33 0
SA 25 0 8.33 0 66.67 0
SU 0 0 0 0 0 100

Average accuracy rate = 79.17%

Figure F.5: 72 randomly selected testing MCIs: 6 subjects and 6 classes expressions. The
samples of two adjacent columns belongs to the same subject and the samples of each row
belongs to the same expression class. The wrong classified samples are indicated by red
boxes.
100 times random test based on MCI and CFI features: As shown in Table F.2, the aver-
age recognition accuracy based on MCI, CFI and their fusion (on feature level) are 67.28%
61.78% and 68.15%, respectively. We can see that: a) MCI performs better than CFI mean-
ing that MCI contains more geometric information of the original facial surface than CFI.
b) The fusion of CFI and MCI performs better than the single one, meaning that they con-
tain complementary geometric information of the original facial surface. These two points
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Figure F.6: 72 reconstructed MCIs with the minimal errors corresponding to Fig. F.5. The
wrong classified samples are indicated by red boxes.

Figure F.7: The minimal expression-class-dependent reconstruction errors corresponding
to Fig. F.5 and F.6.
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are consistent to the surface conformal representation theory introduced in section F.2.

Table F.2: Average accuracy: MCI and CFI with SRC classifier.

Features MCI CFI MCI + CFI
Accuracy 67.28% 61.78% 68.15%

Table F.4 shows the average confusion matrix obtained by the feature level fusion of
MCI and CFI. The fused feature vector is obtained by simply concatenating of MCI and
CFI features with a final dimension of 2048. We can find that the results consistent to
the human intuition, e.g. high accuracies are achieved for happiness and surprise, while
other ones get relatively lower recognition rates. Further more, anger and sadness greatly
confuse with each other, and disgust and fear are confused by all of the six expressions.

Table F.3: Comparison of 3D FER frameworks and performance on the BU-3DFER dataset
(L-Automatic: the framework needs leaning or training a model; F-Automatic: the frame-
work is fully automatic and learning free.)

Methods Landmarks Automaticity Expression Feature Classifier
Performance

I II III

Wang et al. [Wang et al. 2006b] [2006] 64 Manual Non-Automatic Primitive label map LDA 83.60% 61.79% -
Soyel et al. [Soyel & Demirel 2007b] [2007] 11 Manual Non-Automatic Distance of landmarks Neural network 91.30% 67.52% -
Soyel et al. [Soyel & Demirel 2008] [2008] 83 Manual Non-Automatic Distance of landmarks Neural network 93.72% - -
Tang et al. [Tang & Huang 2008b] [2008] 83 Manual Non-Automatic Distance of landmarks AdaBoost + LDA 95.10% 74.51% -
Tang et al. [Tang & Huang 2008c] [2008] 83 Manual Non-Automatic Distance and slopes SVM 87.10% - -
Berretti et al. [Berretti et al. 2010b] [2010] 27 Manual Non-Automatic 2.5D SIFT SVM - - 77.54%
Berretti et al. [Berretti et al. 2011a] [2011] 9 Automatic F-Automatic 2.5D SIFT SVM - - 78.43%
Li et.al [Li et al. 2011d] [2011] 60 Manual Non-Automatic 3D HoG+HoS SVM 82.01% -

Gong et al. [Gong et al. 2009] [2009] Not used L-Automatic Depth changes SVM -
68.77%

-
-

76.22%
-

Zhao et.al [Zhao et al. 2010] [2010] 19 Automatic L-Automatic Texture and geometry BBN 82.30% - -
Mpiperis et.al [Mpiperis et al. 2008b] [2008] Automatic L-Automatic Bilinear model parameters Max-Likelihood 90.50% - -
Lemaire et.al [Lemaire et al. 2011] [2011] 21 Automatic L-Automatic ICP-distance SVM - 75.76% -
Our method 1 3 Automatic F-Automatic MCI + CFI SRC - - 68.15%

Our method 2 3 Automatic F-Automatic LBP-(MCI + CFI) SRC - - 70.93%

F.5.3.3 Extensibility analysis

In this section, we want to point out that our proposed framework is very general and has
strong extensibility. Different from the raw MCI and CFI, it would be more discriminative
if we continue to extract some compact and histogram based 2D texture descriptors (e.g.
LBP, HOG, SIFT) on these conformal images. In addition, except MCI and CFI, we can
also use other conformal images, such as geometry map and normal map. Furthermore, we
can also extract more discriminative 2D local texture descriptors (e.g. LBP, HOG, SIFT)
on them.

In this paper, we demonstrate a simple experiment to show how to improve the dis-
criminative of raw conformal images by using LBP descriptor. We continue to extract LBP
descriptor on MCIs and CFIs respectively and then use feature level fusion of them. Here,
we only use the single scale LBP operator with the parameters P = 8 and R = 1, i.e. LBP8,1.
The same experimental setting of 100 times random test is used. The average accuracy is
70.93 % shown in Table F.3. We can see that the performance of LBP-(MCI+CFI) is better
than MCI+CFI. This experiment indicates that extracting descriptor based on conformal
images is quite promising to improve the performance of our proposed framework.
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F.5.3.4 Comparison with the state-of-the-art

Table F.3 demonstrates the comparison of 3D FER frameworks and their performances on
the BU-3DFER dataset. To give a comprehensive evaluation, the following elements are
considered: number of landmarks, automaticity of landmark detection, automaticity of 3D
FER system, expression feature, classifier, experimental setting and performance. Three
experimental settings are considered: I, II and III were first used in [Wang et al. 2006b],
[Gong et al. 2009] and [Berretti et al. 2010b], respectively. In setting I, 60 subjects are
selected and fixed, and then 54 training and 6 testing (54 vs. 6) protocol is used, the average
accuracy is obtained as the mean accuracies of 20 times tests. In setting II, the authors also
selected and fixed 60 subjects as [Wang et al. 2006b], and used 54 vs. 6 protocol. But the
average accuracy is obtained as the mean accuracies of 1000 times tests. The drawback
of setting I and II is that the ID of selected 60 subjects are not listed for fair comparison.
Meanwhile, the results may be largely different if different groups of 60 subjects are used.
Compared with setting I and II, III is more fair, it randomly selects 60 subjects from 100
subjects, and then runs the 54 vs. 6 protocol, the average accuracy is achieved as the mean
accuracies of 100 times tests. From Table F.3, we can get the following conclusions:

• Most of the existing 3D FER frameworks need a large set of manual landmark-
s, therefore are non-automatic [Wang et al. 2006b], [Soyel & Demirel 2007b],
[Soyel & Demirel 2008], [Tang & Huang 2008b], [Tang & Huang 2008c],
[Berretti et al. 2010b], [Li et al. 2011d]. Only a few methods can de-
tect a large set of landmarks automatically but by a learning way
[Zhao et al. 2010], [Lemaire et al. 2011], and some others are landmark-
independent [Gong et al. 2009], [Mpiperis et al. 2008b] but need to train a
generic model; They are learning based automatic frameworks. As an advantage,
our framework only needs three landmarks, which can be learning free and
automatically detected, therefore, is fully automatic.

• The proposed expression feature has deeply theoretical rigorous and depends on the
surface conformal representation theorem. Meanwhile, the discriminative power of
our feature can be improved by local texture descriptor like LBP.

• Different from the classifiers used in other methods, we present to build sparse rep-
resentation model over the well normalized conformal images for expression classi-
fication.

Table F.4: Average confusion matrix: MCI+CFI

% AN DI FE HA SA SU
AN 59.58 10.91 5.58 0.83 22.91 0.17
DI 9.92 63.67 12.83 3.67 3.83 6.83
FE 7.58 11.08 51.00 15.25 7.91 7.16
HA 1.33 3.08 9.58 84.58 0.33 1.08
SA 27.50 2.83 6.83 1.58 59.58 1.67
SU 0.91 2.91 3.75 1.42 0.50 90.50

Average accuracy = 68.15%
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• For performance evaluation, the work [Gong et al. 2009] gives the reproduced re-
sults of [Wang et al. 2006b], [Soyel & Demirel 2007b] and [Tang & Huang 2008b]
in setting II and points out that all the results are largely dropped from setting I to
setting II. The result of [Gong et al. 2009] changes from 68.77% to 76.22% when the
learned generic neutral face model was used. Some other model-based methods, such
as [Zhao et al. 2010], [Mpiperis et al. 2008b] and [Lemaire et al. 2011], need an of-
fline training phase, unsuitable to use setting III. As a comparison, the framework
of [Berretti et al. 2010b] has higher accuracy than ours in setting III but it uses 27
manual landmarks and 85 uniform sample landmarks near nose, mouth and face con-
tour areas, therefore is highly non-automatic. It should notice that the improvement
version of [Berretti et al. 2010b] in [Berretti et al. 2011a] can automatically detect 9
special keypoints.

F.6 Conclusion

In this paper, we propose a fully automatic and general person-independent 3D facial ex-
pression recognition framework based on sparse representation of conformal images. By
computing conformal mapping, the original 3D facial surface can be conformally mapped
to a 2D unit disk. Meanwhile, three automatically detected landmarks are used for con-
formal map normalization. Based on the normalized conformal map, the original surface
can be uniquely represented by two functions defined on 2D unit disk, mean curvature and
conformal factor. This two functions correspond to two conformal images, CFI and MCI,
which are used for expression feature extraction. Based on these two well normalized con-
formal images, we design sparse representation model for expression classification. In our
experiments, we give the fair evaluation results and show the effectiveness and extensibil-
ity analysis of our framework. Finally, we illustrate a comprehensive comparison with the
state-of-the-art 3D FER frameworks on the BU-3DFER dataset.

239





APPENDIX G

A Group of Facial Normal

Descriptors for Recognizing 3D

Identical Twins

In this chapter, to characterize and distinguish identical twins, three popular texture de-
scriptors: i.e. local binary patterns (LBPs), gabor filters (GFs) and local gabor binary
patterns (LGBPs) are employed to encode the normal components (x, y and z) of the 3D
facial surfaces of identical twins respectively. A group of facial normal descriptors are thus
achieved, including Normal Local Binary Patterns descriptor (N-LBPs), Normal Gabor Fil-
ters descriptor (N-GFs) and Normal Local Gabor Binary Patterns descriptor (N-LGBPs).
All these normal encoding based descriptors are further fed into sparse representation clas-
sifier (SRC) for identification. Experimental results on the 3D TEC database demonstrate
that these proposed normal encoding based descriptors are very discriminative and efficien-
t, achieving comparable performance to the best of state-of-the-art algorithms.

G.1 Introduction

As the performance of 2D still-image face recognition system in constrained environments
continues to increase [Grother et al. ] and the high enough accuracies achieved by existing
3D face recognition algorithms against public datasets like FRGC v2.0, focus is shifting
from methods that improve face recognition performance in general, to the ones that handle
specific failure cases, caused by interference factors such as illumination conditions, pose,
lapse of time, facial expression changes [Klare et al. 2011]. Recently, the new scenario of
distinguishing identical twins becomes a challenging problem of traditional face recogni-
tion system since the quite strong similarity of their 2D facial appearance and 3D facial
geometric shapes. Some recent studies have evidenced these challenges [Sun et al. 2010],
[Phillips et al. ], [Klare et al. 2011], [Vijayan et al. 2011b], [Vijayan et al. 2011a].

To the best of our knowledge, Sun et al. [Sun et al. 2010] were the first to evaluate the
face recognition performance on a dataset consisting of multiple biometric traits (finger-
print, face, and iris) of identical twins. They tested face modality using the Cognitec Face-
VACS system on 134 subjects (66 pairs of twins and two sets of triplets). They revealed that
their face system could distinguish non-twins better than identical twins. Meanwhile, they
concluded that the distribution of identical twin impostor was more similar to the genuine
distribution than the general impostor distribution.

Phillips et al. [Phillips et al. ] investigated the performance of three of the top submis-
sions to the Multiple Biometric Evaluation (MBE) 2010 Still Face Track [Grother et al. ]
on a dataset of twins acquired at Twins Day [Twi ] in 2009 and 2010. Their experimental
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Figure G.1: Framework of our proposed method.

dataset is composed of images taken from 126 pairs of identical twins (252 people) collect-
ed on the same day and 24 pairs of identical twins (48 people) with images collected one
year apart. They revealed that the results were largely dropped by the variations of lighting
conditions (studio and outside); expressions (neutral and smiling); gender and age.

Klare et al. [Klare et al. 2011] proposed to classify facial features into three levels,
i.e. appearance features (Level 1), local features (Level 2) as well as detailed features
(Level 3), and studied the feature distinctiveness of Level 2 (MLBP and SIFT) and Level 3
(facial marks) with respect to distinguish identical twins. They indicate that these features
which perform well in twin identification are not always consistent with the ones good at
recognizing non-twin faces.

Later, Vijayan et al. [Vijayan et al. 2011b] evaluated the performance of four state-
of-the-art 3D face recognition algorithms against the largest dataset of 3D facial scans
of twins, namely the 3D Twins Expression Challenge (3D TEC) dataset which contains
107 pairs of identical twins. They found that some algorithms perform very well on the
FRGC v2.0 dataset but vastly degrades in performance on the 3D TEC dataset, especially
distinguishing the cases combining factors related to facial similarity and the variation of
facial expression. Their results show that 3D face recognition of identical twins in the
presence of varying facial expression is far from a solved problem, but good performance
is possible [Vijayan et al. 2011b]. In another work of Vijayan et al. [Vijayan et al. 2011a],
they also pointed out that distinguishing between identical twins with the variation of facial
expression is a very challenging problem.

Recently, Li et al. [Li et al. 2011b] proposed a 3D face descriptor namely Multi-Scale
Local Normal Patterns (MS-LNPs) which encodes the three normal components of facial
surface using Multi-scale LBP operators. The recognition was carried out by the weight-
ed sparse representation of the encoded facial normal descriptor (MS-LNPs) to enhance
the robustness of their system to resist the variation of facial expression. The weights
of each facial physical component were learned from training datasets. They achieved a
rank-one recognition rate of 96.3% which is comparable to the state-of-the-art tasks. One
of the important conclusions they draw in their work lies in that: the encoded normal in-
formation is much more discriminative than both the original normal information and the
encoded geometric information (i.e., depth images or range images). On the other side, as
we know, except Local Binary Patterns (LBP) [Ahonen et al. 2004b], Gabor Filters (GFs)
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[Wiskott et al. 1997b], and Local Gabor Binary Patterns (LGBPs) [Zhang et al. 2005] are
also two popular face descriptors successfully used in the state-of-the-art 2D face biomet-
ric systems. Later, LBP [Huang et al. 2011c] and GFs [Cook et al. 2006], [Xu et al. 2009]
have also been exploited to describe 3D facial shape and applied to 3D face recognition
systems. In contrast to what we do in this study, all these 3D face descriptors directly
encode the geometric information of 3D facial surfaces.

Inspired by the two facts mentioned above, in this paper, we propose two new ways to
encode normal information, including multi-scale and multi-orientation Gabor Filters (GF-
s) and Local Gabor Binary Patterns (LGBPs). Together with MS-LNPs [Li et al. 2011b],
we achieve a group of facial normal descriptors consisting of Normal Local Binary Patterns
descriptor (N-LBPs, i.e. MS-LNPs), Normal Gabor Filters descriptor (N-GFs) and Normal
Local Gabor Binary Patterns descriptor (N-LGBPs). The effectiveness of the proposed de-
scriptors are conducted on the 3D TEC dataset, and we find that all these descriptors are
very discriminative to distinguish identical twins.

The rest of the chapter is organized as follows. The framework overview of the pro-
posed method is presented in section 2. Section 3 introduces the method of facial normal
estimation. Facial normal encoding and representations are explained in section 4. Section
5 describes the sparse representation classifier. In section 6, we show the experimental and
algorithmic settings as well as the results. Section 7 concludes the chapter.

G.2 Framework Overview

As shown in Fig. G.1, our framework consists of four steps: 1) normal estimation; 2) nor-
mal encoding; 3) comprehensive representation and 4) classification. Specifically, given a
raw 3D facial scan, we first launch the preprocessing step to normalize the range image to
an m×n×3 matrix (i.e., x, y and z coordinates). Based on the range image, we estimate its
three normal components (x, y, and z) by local plane fitting method (see Sec. 3). For each
normal component, we propose to use three kinds of encoding and representation meth-
ods and thus we achieve a group of normal descriptors: N-LBPs, N-GFs and N-LGBPs.
Since all the three descriptors comprehensively encode normal information either by mul-
tiple scales or orientations, we make use of two manners to fuse them for classification.
Feature-level fusion which concatenates all the features extracted at different scales and
orientations; and score-level fusion which creates one feature vector at one scale or ori-
entation for the classifier to calculate an individual similarity score, and all these scores
are further fused for the following step. Considering its powerful classification ability, in
this study, we apply sparse representation classifier (SRC) for the classification. Due to
the high dimension of the feature vector of N-GFs and N-LGBPs, we employ PCA for di-
mensionality reduction. The final similarity measurement of each descriptor computed by
combining the ones of three normal components are used for decision making.

G.3 Facial Normal Estimation

Given a range image based face model represented by an m×n×3 matrix as follows,

P = [pi j(x,y,z)]m×n = [pi jk]m×n×{x,y,z}, (G.1)

243



Appendix G. A Group of Facial Normal Descriptors for Recognizing 3D Identical

Twins

where pi j(x,y,z) = (pi jx, pi jy, pi jz)
T ,(1 ≤ i ≤ m,1 ≤ j ≤ n, i, j ∈ Z) represents the 3D co-

ordinates of the point pi j. Let its unit normal vector matrix (m×n×3) be

N(P) = [n(pi j(x,y,z))]m×n = [ni jk]m×n×{x,y,z}, (G.2)

where n(pi j(x,y,z)) = (ni jx,ni jy,ni jz)
T ,(1≤ i≤m,1≤ j≤ n, i, j ∈Z) denotes the unit nor-

mal vector of pi j. We have ‖n(pi j(x,y,z))‖2 = 1. As described in [Hoffman & Jain 1987],
the normal vector N(P) of range image P can be estimated by using local plane fitting
method. That is to say, for each point pi j ∈ P, its normal vector n(pi j) can be estimated as
the normal vector of the following local fitted plane:

Si j : ni jxqi jx +ni jyqi jy +ni jzqi jz = d, (G.3)

where (qi jx,qi jy,qi jz)
T represents any point within the local neighborhood (5× 5 window

in our paper) of point pi j and d = ni jx pi jx +ni jy pi jy +ni jz pi jz.
Figure G.2 shows one example of three normal component matrices (images) estimated

from the original range image. we can see that normal components highlight the informa-
tive clues of the raw range image, e.g. the details in the forehead region, which corresponds
to the conclusion in [Li et al. 2011b] . To simplify, each normal component in equation (2)
can be represented by an m×n matrix:

N(P) =





N(X) = [nx
i j]m×n,

N(Y) = [ny
i j]m×n,

N(Z) = [nz
i j]m×n.

(G.4)

where −1≤ nk
i j ≤ 1, k ∈ {x,y,z}.

Figure G.2: From left to right: the original range image, and its normal images of compo-
nent x, y and z.

G.4 Facial Normal Encoding and Representation

Thanks to the matrix form of these normal components in equation (G.4), we can encode
and characterize each of them using the similar way of feature extraction as for 2D texture
images. In this paper, we propose to use LBP, Gabor and LGBP descriptors to encode the
discriminative information from each of these normal components.
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G.4.1 Normal Local Binary Patterns

Our Normal Local Binary Patterns (N-LBPs) is directly inherited from MS-LNPs proposed
in [Li et al. 2011b], where three scales of LBP, i.e., Q1,8, Q2,16 and Q3,24, (Qn,m denotes a
neighborhood of m sampling points on a circle of radius of n) operator were used. Formally,
given a point pi j, its normal component noted as ni jk(0), the derived LNPs decimal value
is:

LNPs(Qn,m(pi j)) =
m−1

∑
q=1

t(ni jk(q)−ni jk(0))2
q, (G.5)

where t(x) = 1, if x≥ 0; t(x) = 0, if x < 0. LNPs(Qn,m) encodes local normal variations of
each normal component as decimal value, noted by e({ni jk}m×n),k ∈ {x,y,z}. See Fig. G.3
for an example of LNPs(Q1,8) representation of three normal components.

To describe a local shape region, the normal component is encoded as the histogram of
LNPs as follows:

H = ∑
i, j

I{e({ni jk}m×n) = r},r = 0, . . . ,R−1, (G.6)

where R is the encoded decimal number, for Q1,8,R = 28 = 256. I{A} =
1, if A is ture, else I{A} = 0. This histogram contains the local micro-patterns of normal
component over the whole face model. To utilize spatial information of facial shape, each
facial normal component can be further divided into several patches, from which local nor-
mal patterns histograms H are extracted; then concatenated by facial configuration to form
a global histogram G. Please see [Li et al. 2011b] for more details.

Figure G.3: (a) to (c): normal images of component x, y and z; (d) to (e), the corresponding
N-LBPs (LNPs) representation Q1,8.

G.4.2 Normal Gabor Filters

Inspired by the motivation that the smooth properties of depth Gabor image cannot describe
the facial features in detail [Xu et al. 2009], our proposed Normal Gabor Filters descriptor
(N-GFs) characterizes facial surfaces by Gabor Filters on its normal components. The
mathematical expression of 2D Gabor wavelets can be defined as follows [Lee 1996]:

ψ(z) =
k2

µ,v

σ2 exp(−
k2

µ,vz2

2σ2 )[exp(ikµ,vz)− exp(−σ2

2
)], (G.7)

where z = (x,y), and µ and v define the orientation and scale of the Gabor wavelets. kµ,v is
define as follows:

kµ,v = kveiΦµ , (G.8)
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where kv = kmax/ f v and Φµ = πµ/8. kmax is the maximum frequency, and f is the spacing
factor between Gabor filters in the frequency domain. In this study, we use Gabor filters
with five different scales, v ∈ {0, . . . ,4}, and eight orientations, µ ∈ {0, . . . ,7}, with the
parameters σ = 2π,kmax = π/2 and f =

√
2,asin[Xu et al. 2009].

By the convolution operation of Gabor Filters and normal components, we achieve the
Gabor based representation of normal components:

Ok
µ,v(x,y) = [nk

i j(x,y)]m×n ∗ψ(x,y),k ∈ {x,y,z}, (G.9)

where * denotes the convolution operator.
Given the normal component k, orientation µ and scale v, at each point (x,y), Ok

µ,v(x,y)
is a complex number. We compute its magnitude. Thus, totally, for each normal component
k, we can achieve 40 (5×8) Gabor magnitude images. Please see Fig. G.4 for an example
of normal component z. The comprehensive description of Normal Gabor Filters (N-GFs)
can be obtained by feature level fusion or score-level fusion.

Figure G.4: (a). Normal component z. (b) Its Gabor representation.

G.4.3 Normal Local Gabor Binary Patterns

It have been proved that the combination of Gabor filters and LBP (i.e. Local Gabor Bi-
nary Patterns, namely LGBP for short) can improve the performance of LBP for 2D face
recognition [Zhang et al. 2005]. Analogously, to characterize 3D facial surfaces, our pro-
posed Normal Local Gabor Binary Patterns descriptor (N-LGBPs) employ LGBP operator
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Figure G.5: (a). Normal component z. (b) Its LGBP representation.

to encode the facial normal components. That is to say, we continue to encode the micro-
patterns of normal Gabor magnitude images by the LBP operator.

Formally, given a point pk
i j of normal component k, the derived N-LGBPs decimal

value is:

N-LGBPsk
µ,v(Qn,m(pk

i j)) =
m−1

∑
q=1

t(Ok
µ,v(q)−Ok

µ,v(0))2
q, (G.10)

where Qn,m, t, q, 0 have the same meaning as Eq. (G.5), and Ok
µ,v represents the Gabor

representations of normal component k as Eq. (G.9). See Fig. G.5 for an example of
N-LGBPsz

µ,v(Q1,8) based normal representation. Like LBP, to avoid the loss of spatial in-
formation of facial normal representation by histograms, each Normal Gabor Magnitude
image is further divided into several non-overlapping regions. The global representation
can be obtained by concatenating (by facial configuration) all the N-LGBPs histograms ex-
tracted from each sub-regions. Similarly, the comprehensive description of Normal Local
Gabor Binary Patterns (N-LGBPs) can be achieved using feature level fusion or score-level
fusion.

G.5 Sparse Representation Classifier

Based on the face subspace model: a well-aligned frontal face image under different light-
ing conditions and various facial expressions lies close to a special low-dimensional lin-
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ear subspace spanned by sufficient training samples from the same subject, Wright et al.

[Wright et al. 2009c] modeled the face recognition problem by solving the l1 minimization
sparse representation. They also proposed sparse representation classifier (SRC) for robust
2D face recognition.

Analogously, we assume that a well-aligned frontal test 3D face model represented by
a feature vector under different facial expressions approximately lies in a linear subspace
spanned by the 3D faces in the training set (represented by the same type of facial features)
associated with the same subject.

That is, given ni training samples of i-th subject, Ai = [vi,1,vi,2, . . . ,vi,ni
] ∈ R

m×ni , any
test sample y ∈ R

m from the same subject can be represented by:

y = αi,1vi,1 +αi,2vi,2 + ...+αi,ni
vi,ni

, (G.11)

where αi, j ∈ R, j = 1,2, . . . ,ni.
However, the case is not exactly the same, in our experiments, the training set is com-

posed of one face model from each subject (gallery set) (ni = 1). This problem of insuffi-
cient training samples introduces a new model error, noted by ε ∈ R

m. Model (8) can be
modified as:

y≈ αivi = αivi + ε, (G.12)

where y ∈ R
m, vi ∈ R

m and αi ∈ R represent a probe face, a gallery face from the same
subject and their linear scalar factor respectively.

Considering the whole gallery set with n 3D faces, each of which belongs to one sub-
ject, A

.
= [v1,v2, . . . ,vn] ∈ R

m×n and any probe y ∈ R
m, (G.12) can be rewritten as

y = Ax+ ε̃, (G.13)

where x= [0, . . . ,0,αi,0, . . . ,0]T ∈Rn is the coefficient vector whose entries are zero except
the one associated with the i-subject. Sparse coefficients x in (G.13) can be solved as the
following l1 minimization problem:

x̂1 = argminx||x||1s.t.||Ax− y||2 ≤ ||ε̃||2, (G.14)

We employ OMP [Pati et al. 1993] algorithm to solve (G.14) and compute the residu-
als:

ri(y) = ||y−Aδi(x̂1)||2, i = 1,2, . . . ,n. (G.15)

where δi is a characteristic function which selects coefficient associated with the i-th
gallery. Finally, the index of minimal ri(y) corresponding to the identity of y.

G.6 Experimental and Algorithmic Settings

G.6.1 Datasets and Preprocessing

To evaluate the performance of our proposed descriptors to distinguish identical twins, as
used in [Vijayan et al. 2011b], all our results were reported on the 3D TEC dataset. 3D
TEC is a subset of the Twins Days 2010 dataset acquired at the Twins Days Festival in
Twinsburg, Ohio [Twi ]. The whole dataset contains 266 subject sessions, with the 3D s-
cans in the dataset containing two scans: one with a neutral expression and another with
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a smiling expression. There are 106 sets of identical twins, one set of triplets, and the
rest are non-twins. The subset (i.e. 3D TEC) only includes the 3D face scans acquired
in the first session and thus consists of of 107 pairs of twins (two of the triplets are in-
cluded as the 107th set of twins). More instructions of data parameters can be found in
[Vijayan et al. 2011b].

All 3D face models were preprocessed using the tool developed by Szeptycki et al.

[Szeptycki et al. 2009b], including spike removal, hole filling. Then manually labeled nose
tips provided by the dataset were used for face cropping and an ICP fine registration. After
normal estimation from each normalized range image, three normal component matrices:
[nx

i j]m×n, [n
y
i j]m×n and [nz

i j]m×n are resized to the same size of 120× 96 for the following
encoding step.

G.6.2 Experimental Settings

We did experiments according to the same experimental protocol as defined in
[Vijayan et al. 2011b]. To be specific, one person in each pair of twins was arbitrarily
labeled as Twin A and the other as Twin B. Verification and identification experiments
were performed using four different gallery and probe sets as shown in Table 1.

No.Gallery Probe

I A Smile, B Smile A Neutral, B Neutral
II A Neutral, B NeutralA Smile, B Smile
III A Smile, B Neutral A Neutral, B Smile
IV A Neutral, B Smile A Smile, B Neutral

Table G.1: Gallery and probe sets for cases I, II, III, and IV. “A Smile, B Neu-
tral” means that the set contains all images with Twin A smiling and Twin B neutral
[Vijayan et al. 2011b].

In Case I, all the images in the gallery set possess a smiling expression while all the
images in the probe set have a neutral expression. Case II reverses these roles of Case I.
Both the two cases model a scenario that the gallery has one expression and the probe has
another. As stated in [Vijayan et al. 2011b], in the verification scenario, both the match
and non-match pairs of gallery and probe images have different expressions and in the
identification scenario, theoretically the main challenge would be to distinguish between
the probe image and the image of his/her twin in the gallery since they look similar.

In Case III, Twin A smiling and Twin B neutral make up of the gallery set; while
Twin A neutral and Twin B smiling as the probe compose the probe set. Case IV reverses
these roles of Case III. These two cases model a worst scenario in which the system does
not control for the expressions of the subject in a gallery set of twins. As pointed out
in [Vijayan et al. 2011b] as well, in the verification scenario, the match pairs would have
opposite expressions like in Cases I and II but the non-match pairs that are of the same pair
of twins would have the same expression and in the identification scenario, theoretically the
main challenge would be to distinguish between the probe image and the image of his/her
twin in the gallery. This is more difficult than Cases I and II since the expression of the
probe face is different from his/her image in the gallery but is the same as the image of
his/her twin in the gallery.
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G.6.3 Algorithmic Settings

On Normal Local Binary Patterns descriptor (N-LBPs, i.e. MS-LNPs), as introduced in
[Li et al. 2011b], each normal component matrix is empirically divided into local patches
of sizes 12× 12, 20× 16 and 40× 32 for the operators LNPs of Q1,8, Q2,16 and Q3,24

respectively. Thus three LBP histograms are achieved with dimensions of 4,720, 8,748
and 4,995. Each of this histogram can be used for score level fusion based comprehensive
representation directly. For feature level fusion based comprehensive representation, the
three histograms are concatenated to achieve the final feature vector (with a dimension of
18,463).

On Normal Gabor Filters descriptor (N-GFs), for feature level fusion based comprehen-
sive representation, each Gabor magnitude image (size of 120×96) is first down-sampled
by a factor of 8 and then reshaped to a column vector with a dimension of 180 (15× 12).
The final feature vector (with a dimension of 7,200) is achieved by concatenating all the
40 column vectors. For score level fusion based comprehensive representation, each Ga-
bor magnitude image is directly reshaped to a column vector with dimension of 11,520
(120×96).

On Normal Local Gabor Binary Patterns descriptor (N-LGBPs), empirically, we use
LBP operator of Q2,16 with local patches of 20× 16. For feature level fusion based com-
prehensive representation, all the Normal Gabor Magnitude images are first down-sampled
by a factor of 2 before extracting LBP histograms. By concatenating all the 40 LBP based
histograms, the final feature thus has a dimension of 87,480 (40× 2,187). For score lev-
el fusion based comprehensive representation, each Normal Gabor Magnitude image is
directly encoded by the LBP histogram with a dimension of 8,748.

PCA is employed to reduce the huge dimensions of the N-GFs and N-LGBPs descrip-
tors. For all the cases, including the two descriptors with two kinds of comprehensive
representations, according to the number of the gallery samples, we fix the compacted di-
mension of features at 205. To solve (G.14), OMP algorithm with sparse coding number
of 30 was used.

G.6.4 Experimental Results

G.6.4.1 Comparison of comprehensive representations

To evaluate the influences of different comprehensive representations related to different
facial normal descriptors, we compared their rank-one performance at both feature level
and score level fusion according to Case I. Since the effectiveness of fusion different normal
components have been proved by Li et al. [Li et al. 2011b], all the results shown this study
are the final one obtained by fusing the three normal components. From Tab. G.2, we
can see that score level fusion is better for N-LBPs; while feature level fusion is better
for N-GFs and N-LGBPs. Therefore, we report our following results based on their better
schemes, i.e. score level fusion for N-LBP, feature level fusion for N-LGFs and N-LGBPs.
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Descriptor Rank-1 Recognition Rate

score-level fusionfeature-level fusion
N-LBPs 94.86% 92.52%
N-GFs 88.79% 93.93%

N-LGBPs 93.46% 96.73%

Table G.2: Comparison of feature level and score level fusion based comprehensive repre-
sentation (tested in Case I))

G.6.4.2 Comparison of identification results

Tab. G.3 shows the rank-one recognition rate of our proposed method (noted as Alg. 5)
and the algorithms reported in [Vijayan et al. 2011b]. We can find that N-LGBPs performs
best among the group of proposed normal descriptors for all the four cases. N-LBPs and N-
GFs achieved comparable results for all the four cases. All the proposed descriptors work
better for Cases I and II than Cases III and IV. Compared with other algorithms, N-LGBPs
displays comparable results to the best results (given by Alg. 4) for all these four cases.
This indicates that our proposed normal descriptors (especially N-LGBPs) prove very high
discrimination to recognize identical twins.

Algorithm Rank-1 Recognition Rate

I II III IV
Alg.1 (Epkn) [Faltemier et al. 2008b] 93.5% 93.0% 72.0% 72.4%
Alg.1 (Eminmax) [Faltemier et al. 2008b] 94.4% 93.5% 72.4% 72.9%
Alg.2 (SI) [Huang et al. 2011f] 92.1% 93.0% 83.2% 83.2%
Alg.2 (eLBP) [Huang et al. 2011c] 91.1% 93.5% 77.1% 78.5%
Alg.2 (Range PFI) [Huang et al. 2011d]91.6% 93.9% 68.7% 71.0%
Alg.2 (Text. PFI) [Huang et al. 2011d] 95.8% 96.3% 91.6% 92.1%
Alg.3 [Gokberk et al. 2006] 62.6% 63.6% 54.2% 59.4%
Alg.4 [Kakadiaris et al. 2007b] 98.1%98.1%91.6%93.5%

Alg.5 (N-LBPs) 94.9% 96.3% 89.3% 88.3%
Alg.5 (N-GFs) 93.9% 94.4% 89.3% 90.2%
Alg.5 (N-LGBPs) 96.7%96.7%92.5%93.5%

Table G.3: Comparison of rank-one scores of our method (Alg. 5) and the state-of-the-art
methods.

G.6.4.3 Comparison of verification results

In [Wright et al. 2009c], they tested the outlier rejection (i.e. face validation) capability
of sparse representation classifier using the False Accept Rate (FAR) and the Verification
Rate (VR) curve (FAR-VR curve, i.e. Receiver Operating Characteristic (ROC) curve).
Our verification scenario is like the case of subsection IV-A.2 in [Wright et al. 2009c],
where the outlier is the same as the imposter.

As [Vijayan et al. 2011b], we evaluate the verification results using True Accept Rate
at 0.1% False Accept Rate (TAR at 0.1% FAR) and Equal Error Rate (EER). Figures G.6,
G.7 and G.8 show the Receiver Operating Characteristic (ROC) curves of the verification
experiments for N-LBPs, N-GFs and N-LGBPs respectively. From the figures, we can
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Figure G.6: ROC curves in four cases of our method based on N-LBPs. The legend shows
TAR at 0.1% FAR.

find out that the TAR (at 0.1% FAR) results of Case I and Case II are obviously better
than that of Case III and Case IV for all the three descriptors. Tab. G.4 and G.5 show
the comparison of TAR and EER of our method (Alg. 5) and and the tasks reported in
[Vijayan et al. 2011b]. We can see that for TAR, N-LGBPs performs better than N-LBPs
and N-GFs (except N-LBPs in Case II). N-LBPs achieves the best performance as Alg. 4
in Case II. For other three Cases, the results achieved by N-LGBPs are slightly below but
still comparable to the best ones in the literature. For EER, all the three descriptors achieve
comparable accuracies to the best so far reported in this database.

G.7 Conclude and Perspective

In this chapter, we proposed a group of facial normal descriptors consisting of Local Nor-
mal Patterns (N-LBPs, i.e. MS-LNPs), Normal Gabor Filters (N-GFs) and Normal Local
Gabor Binary Patterns (N-LGBPs). Their discriminations for distinguishing 3D identical
twins were evaluated in both identification and verification scenarios. Meanwhile, both
feature level fusion and score level fusion based comprehensive representations of each
descriptor were compared. We achieved the state-of-the-art results.

In our future work, we will mainly investigate the follow issues: 1) As used in
[Li et al. 2011b], we will study the learning-based weighted sparse representation method
for N-GFs and N-LGBPs to resist facial expression variations. 2) Except PCA, other more
efficient techniques for dimensionality reduction and feature selection methods, such as
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Figure G.7: ROC curves in four cases of our method based on N-GFs. The legend shows
TAR at 0.1% FAR.

Algorithm True Accept Rate

I II III IV
Alg.1 (Epkn) [Faltemier et al. 2008b] 79.0% 81.3% 54.2% 53.3%
Alg.1 (Eminmax) [Faltemier et al. 2008b] 99.5%97.7%
Alg.2 (SI) [Huang et al. 2011f] 91.1% 89.7% 83.2% 81.8%
Alg.2 (eLBP) [Huang et al. 2011c] 94.4% 95.3% 79.0% 78.0%
Alg.2 (Range PFI) [Huang et al. 2011d]93.5% 94.4% 68.7% 69.2%
Alg.2 (Text. PFI) [Huang et al. 2011d] 96.7% 96.7% 93.0% 93.5%
Alg.3 [Gokberk et al. 2006] 38.1% 41.0% 31.4% 34.1%
Alg.4 [Kakadiaris et al. 2007b] 98.1%98.1%95.8%95.8%

Alg.5 (N-LBPs) 96.7%98.1%92.1% 91.6%
Alg.5 (N-GFs) 94.4% 96.3% 91.6% 91.1%
Alg.5 (N-LGBPs) 97.2%97.7%94.4%94.9%

Table G.4: Comparison of TAR at 0.1% FAR of our method (Alg. 5) and the state-of-the-art
methods.

Linear Discriminant Analysis (LDA), AdaBoost, manifold learning, etc. will be discussed
for N-GFs and N-LGBPs descriptors.
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Figure G.8: ROC curves in four cases of our method based on N-LGBPs. The legend
shows TAR at 0.1% FAR.

Algorithm Equal Error Rate

I II III IV
Alg.1 (Epkn) [Faltemier et al. 2008b] 1.2% 1.0% 1.4% 1.1%
Alg.1 (Eminmax) [Faltemier et al. 2008b] 0.2% 0.5% 1.3% 0.9%
Alg.2 (SI) [Huang et al. 2011f] 2.7% 3.7% 4.2% 4.5%
Alg.2 (eLBP) [Huang et al. 2011c] 3.7% 3.3% 4.2% 4.2%
Alg.2 (Range PFI) [Huang et al. 2011d] 4.1% 2.8% 4.7% 4.6%
Alg.2 (Text. PFI) [Huang et al. 2011d] 2.7% 2.8% 3.3% 2.8%
Alg.3 [Gokberk et al. 2006] 11.6%11.8%12.0%12.2%
Alg.4 [Kakadiaris et al. 2007b] 0.8% 0.8% 0.8% 0.8%

Alg.5 (N-LBPs) 1.4% 1.4% 1.4% 1.9%

Alg.5 (N-GFs) 2.8% 1.4% 2.8% 1.9%

Alg.5 (N-LGBPs) 1.4% 1.4% 1.9% 1.9%

Table G.5: Comparison of EER of our method (Alg. 5) and the state-of-the-art methods.
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During my Ph.D studying, I have published nine publications in international conferences,
and three journal papers are currently under review.

Published International Conference Papers :

1. RC. Veltkamp, S. van Jole, H. Drira, B Ben Amor, M. Daoudi, H. Li, L. Chen, P.
Claes, D. Smeets, J. Hermans: SHREC’11 Track: 3D Face Models Retrieval, Eu-
rographics 2011 Workshop on 3D Object Retrieval (3DOR), pp. 89-95, Llandudno,
UK, 2011;

2. H. Li, D. Huang, J. M. Morvan, L. Chen: Learning Weighted Sparse Representation
of Encoded Facial Normal Information for Expression-robust 3D Face Recognition,
IEEE International Joint Conference on Biometrics (IJCB), pp. 1-7, Washington,
DC, USA, 2011;

3. H. Li, P. Lemaire, J.-M. Morvan, L. Chen: Expression-robust 3D Face Recognition
via Mesh-based Histograms of Multiple-order Surface Differential Quantities, IEEE
International Conference on Image Processing (ICIP), pp. 3053-3056, Brussels, Bel-
gium, 2011.

4. H. Li, J.-M. Morvan, L. Chen: 3D Facial Expression Recognition based on His-
tograms of Surface Differential Quantities, Advances Concepts for Intelligent Vision
Systems (ACIVS), pp. 483-494, Ghent, Belgium, 2011.

5. H. Li, D. Huang, L. Chen, Y. Wang, J. M. Morvan: A Group of Facial Normal De-
scriptors for Recognizing 3D Identical Twins, Fifth IEEE International Conference
on Biometrics: Theory, Applications and Systems (BTAS), pp. 271-277, Washing-
ton, DC, USA, 2012;

6. H. Li, L. Chen, D. Huang, Y. Wang, J. M. Morvan: 3D Facial Expression Recogni-
tion via Multiple Kernel Learning of Multi-scale Local Normal Patterns, 21st IEEE
International Conference on Pattern Recognition (ICPR), pp. 2577-2580, Tsukuba
Science City, Japan, 2012;

7. W. Zeng, H. Li, L. Chen, J. M. Morvan, X. David Gu: An Automatic 3D Expression
Recognition Framework based on Sparse Representation of Conformal Images, 10st
IEEE International Conference on Automatic Face and Gesture Recognition (FG),
Shanghai, China, 2013;
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8. X. Wang, H. Li, C. E. Bichot, S. Masnou, L. Chen: A Graph-cut Approach to Image
Segmentation using Affinity Graph based on l0 Sparse Representation of Features,
IEEE International Conference on Image Processing (ICIP), Melbourne, Australia,
2013 (accept);

9. X. Wang, H. Li, C. E. Bichot, S. Masnou, L. Chen: Sparse Coding and Mid-level
Super-pixel Feature for l0-Graph based Unsupervised Image Segmentation, 15st In-
ternational Conference on Computer Analysis of Images and Patterns (CAIP), York,
UK, 2013 (accept).

Submitted International Journal Manuscripts:

1. H. Li, W. Zeng, J. M. Morvan, L. Chen, X. David Gu: Surface Meshing with Curva-
ture Convergence, Submitted to IEEE Transactions on Visualization and Computer
Graphics (TVCG), Submission Date: Nov. 26th, 2012, Submission Number: TVCG-
2012-11-0263, Manuscript Status: Under Review.

2. H. Li, D. Huang, J. M. Morvan, L. Chen, Y. Wang: Expression-Robust 3D
Face Recognition via Weighted Sparse Representation of Multi-Scale and Multi-
Component Local Normal Patterns, Submitted to Neurocomputing, Submission
Date: March 24th, 2013, Submission Number: NEUCOM-S-13-00419, Manuscript
Status: Under Review.

3. H. Li, D. Huang, J. M. Morvan, Y. Wang, L. Chen: Towards 3D Face Recognition in
the Real: A Registration Free Local Feature Matching Approach using Mesh-based
Histograms of Multiple Order Surface Differential Quantities, Submitted to Inter-
national Journal of Computer Vision (IJCV), Submission Date: April 26th, 2013,
Submission Number: VISI-S-13-00373, Manuscript Status: Under Review.
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