H;Q Bi?KB+ +QKTH2tBiv, "2ir22M ai m+ir
EMQrH2/;2 >Qr Sm bmBi@2p bBQM : K2b
LB+QH b LBbb?2

hQ +Bi2 i?Bb p2 ' bBQM,

LB+QH b LBbb2X H:Q Bi?KB+ +QKTH2tBiv, "2ir22M ai'm+im'2 M/ E
- K2b ?2HTXX . i ai'm+im 2b M/ H:Q Bi?Kb (+bX.a)X IMBp2 bBid LB+
yyNN3389

> G A/, iZH@yYyNN3389
2iiTh,ffi?2b2bX? HXb+B2M+2fi2H@yyNN338¢
am#KBii2/ QM k CmM kyR9

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X



Sophia Antipolis
N d'ordre :

Habilitationa Diriger la Recherche

pesente pour obtenir le grade de
HDR
Srecialie : Informatique

Algorithmic complexity
Between Structure and Knowledge

How Pursuit-evasion Games help

NicolasNisse

Soutenue le 26 mai 2014 devant le jury compo< de :

Rapporteurs :  Cyril GAVOILLE Professeur
Dimitrios M. THILIKOS Directeur de Recherche
Peter WIDMAYER Professeur
Examinateurs : Victor CHEPOI Professeur
David COUDERT Charge de Recherche
Fedor V. FOMIN Professeur
Pierre FRAIGNIAUD Directeur de Recherche

Jean-Charles R EGIN Professeur






Introduction 5
Pursuit-evasion games . . . . . . . ... e 6
Telecommunication networks and algorithmic perspectives . . . . . . 7
Organization of the manuscript and personal contributions. . . . . . 9

1 Turn-by-turn Two-Player Games in Graphs 15

1.1 Cop-numberinanutshell . ... ... ................. 16
1.1.1 Cop-number and Meyniel Conjecture . . . . . ... ... ... 17
1.1.2 Beyond Meyniel conjecture: when graph structure helps . . . 21

1.2 Variants of Cops and Robbergames . . . . . ... ... ....... 27
1.21 FastCopsand Robber. . ... ................. 27
1.2.2 Visibility, radius of capture and other variants . . . . .. .. 31

1.3 Web-page prefetching and Surveillance game . . . .. ... ... .. 33
1.3.1 Complexity and algorithms in several graph classes . . . . . . 36
1.3.2 Connected and online Surveillance Game . . ... ... ... 39

1.4 Fractional Combinatorial games . . . . . . . ... ... ... ... .. 41
1.4.1 Fractional Cops and Robber and Surveillance Games . . . . . 41
1.4.2 General fractional Games . .. ... ... ... ........ 43

2 Tree Decomposition, Graph Searching and Applications 45

2.1 Algorithmic applications of tree-decompositions . . . . . . .. .. .. 46
211 Treewidth . . . . . . . .. 46
2.1.2 Applications to parameterized complexity . . . ... ... .. 47
2.1.3 Computing chordality and \caterpillar" tree-decompositions . 50

2.2 From pursuit-evasion games' pointof view . . . . . .. ... ... .. 51
2.2.1 Non-deterministic Graph Searching, branched decompositions 51
2.2.2 Partitioning trees and general set decompositions . . . . . . . 54
2.2.3 Related work on decompositions of directed graphs . . . . . . 57

2.3 Application to Routing Recon guration: Processing game . . . . . . 58
2.3.1 Routing recon guration in WDM networks . . . . . .. ... 59
2.3.2 Processing Game and digraph decomposition . . .. .. ... 61
2.3.3 Adding constraints from telecommunication networks . ... 65

3 Graph Searching: Connectivity, Exclusivity, Distributed set tings 69

3.1 Quick reminder on Graph Searching . . ... .. ........... 70

3.2 Distributed connected Graph Searching . . .. ... ......... 72
3.2.1 Recent progress on Connected Graph Searching . . . . .. .. 72
3.2.2 Distributed Graph Searching in unknown graphs . . ... .. 73

3.3 Exclusive and Perpetual graph Searching . . . ... ... ...... 76

Contents

3.3.1 Exclusive graphsearching . . ... ............... 77



4 Contents

3.3.2 Perpetual graph searching in CORDA model . .. ... ... 82
4 Complexity of Locality: Routing and Graph Properties 91
4.1 Routing in various telecommunication networks . . . . . .. ... .. 93
4.1.1 Data Gathering in Wireless Grids with Interferences . . . . . 93
4.1.2 Stability of a local and greedy routing algorithm . . . . . . . 96
4.1.3 Maintaining e cient di usion trees for streaming systems . . 97
4.2 Compactrouting . . . . . . . . . e 100
4.2.1 Tradeo knowledge/performance/graph structures . . . . .. 101
4.2.2 Routing in k-chordalgraphs . . . . . ... ... ... ..... 104
4.2.3 Faulttolerantrouting . ... ... ... ... .. ....... 105
4.3 Local models and Property testing . . . .. ... ... ........ 108
Appendix: Other contributions on complexity and graph structures 113
A.1 Convexity: hull number of some graphclasses . . . . . ... ... .. 114
A.2 Weighted Coloringintrees . . . .. ... ... ... ... ...... 115
Conclusion and Perspectives 117

References 121



Introduction

This document describes the work | did since | obtained my Ph.D. m 2007. Fol-
lowing my Ph.D. thesis where | mainly worked ongraph searching gameand graph
decompositions [t-Nis07], my main contributions relate to pursuit-evasion games
and their relationship with graph structural properties.

The theoretical studies | am dealing with have applications for solvirg telecom-
munication problems, mainly related to routing. Such problems are generally dif-
cult (NP-hard) but may become easier when restricted to classes ofgraphs with
speci ¢ structural properties®. Therefore, understanding graph structuresbecame
one important topic of my research. Pursuit-evasion games- where mobile entities
try to capture other ones - are one of my main tools for this purpose. Inde@, sev-
eral variants of these games are closely related to graph structures. Fonstance,
graph searchingis an algorithmic interpretation of graph decompositionsand, there-
fore, it is an interesting (and fruitful) way to study them. Moreo ver (and somehow
surprisingly), pursuit-evasion games are again of a great help to study mblems of
telecommunication networks, by providing new models.

Another important issue of my research is to deal with the increasing e of
nowadays networks (tra c, data, etc.) that makes unpractical most of the existing
solutions. In particular, centralized algorithms with a full knowle dge of the envi-
ronment are no longer adequate to deal with current telecommunication poblems
while achieving expected performance. Therefore, part of my reseehn focuses on
simple local algorithms that may be used in real large-scale networks. &lso study
models of distributed computation by themselves. | mainly focus on their limits:
what can be computed when nodes or mobile agents have very little kndedge
and/or few abilities?

The manuscript is divided into 4 chapters. Chapter 1 is dedicatedto the study
of several variants of turn-by-turn Pursuit-Evasion Games, mostly to the Cops
and Robbergames. Chapter 2 focuses on graph decompositions and their relation-
ship with graph searching. Chapter 3 treats another aspect of Pursuit-Easion
games with a study of variants of Graph Searchinggames, both in centralized and
distributed settings. Finally, Chapter 4 deals with routing probl ems in various
environments and with distributed computing. In the whole manuscript, three
complementary aspects of my research are deeply interleaving:

Characterization of graph structural properties. | study various graph
properties through new point of views that give rise to alternative de nitions
and characterizations;

Recognition of graph properties. | take advantage of the proposed cha-
racterizations to design e cient algorithms that either decide whet her a graph
satis es some property, or compute some structures in graphs.

1For basics notions on graphs, algorithms and computational complexity, see [CLRS01, BM08]
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Application of my theoretical study on problems arisingin telecommuni-
cation networks.

The work presented here is the result of collaborations with colleaguesf the
\MASCOATI" project-team and with colleagues from various French or foreign
universities?. In particular, some of the work has been done during the Ph.D.
theses of Ronan P. Soares [Soal3] and Bi Li under my co-supervision.

Before describing more precisely the organization of the manuscript, start with
a general introduction on Pursuit-Evasion games. Then, | present thecontext of
our work on telecommunication networks, focusing on the algorithmic chdenges
that are arising nowadays.

Pursuit-evasion games

Pursuit-evasion refers to the problems in which one team of mobile entities, thecops
or searchersor hunters or pursuers etc. attempts to track down another group of
mobile entities, the robbersor fugitives or rabbits or evadersetc. The dual problem
for the evaders is to avoid being caught. These are natural games arisingoim a
wide range of applications, from the practical ones such as search and resc(e.g.,
rescuing a speleologist in a cave, Breish (1967) [Brel2]), surveillaecmonitoring,
military strategy to trajectory tracking, etc. to the handling of abst ract mathema-
tical and theoretical computer science concepts (e.g., Graph Minor Thory, Robert-
son and Seymour (1983-2004)). Hence, Pursuit-evasion games have been studied
various divergent disciplines, e.g., graph theory, di erential gamesrobotics, control
theory, geometric algorithms, etc. (see [FT08, CHI11] for recent surveys

One famous such game is theion-and-Man problem stated by Rado in 1930 [Lit53]
where a lion and a man with the same maximum speed are con ned in a closed
arena. Surprisingly, Besicovitch showed that the man can inde nitely evade the
lion while the lion can get arbitrarily close to him [Lit53]. On the other h and, when
the man and the lion are moving within the non-negative quadrant of the plkne
(both initial coordinates of the lion are larger than those of the man), then the
lion will eventually be sated [Sga0l1]. Many other variations of the problem lave
been considered (e.g., [KRO5, BBH08, KI09]). This simple example illusates the
fact that many parameters (such as the environment where the game is pled, or
whether the robber must be touched or only approached to be captured,te.) may
impact the solution of the Pursuit-evasion games. Therefore, the stugs of these
games can be categorized into many variants, approaches and technigues.

In the di erential approach, the motions of the players are described by di er-
ential equations well re ecting the physical constraints of the players (embodied by
robots, drones, etc.). The solutions of these equations are used as coaitinputs to
achieve the objective of the game. Game theory and probabilistic approaclseare

2Since most of the contributions presented in this manuscript is the result of collaboration with
other colleagues, | use \we" throughout the document. | will u se \I' when personal opinions are
presented or when further work is described.
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widely used to address these games (see the textbook of Basar and Ols{l@O99b]).
The complexity of the di erential equations generally limits the solutions to heuris-
tics. In this manuscript, | consider only combinatorial techniques and exact (i.e.,
achieving optimal solutions) or approximation algorithms.

In the combinatorial approach, research on Pursuit-evasion games falls iottwo
main categories depending on whether the environment is represesd geometrically
using polygonal modelsor by graphs In the former case, the space is continuous
and the complexity comes from obstacles (holes) that impede visibity. Some recent
results in this area can be found in [SY92, GLL* 99, CHI11, KS12, BKIS12, KS13].
In my work, | consider only the graphical models, i.e., both players nove in a graph.

Another important distinction that | would like to mention deals witht he objec-
tive of the games. Pursuit-evasion problems have been addressedtat regarding
the worst-case behaviof the evader or using anaverage-case approachin the lat-
ter approach, the objective is generally to minimize the expected itne of capture.
In all cases, the games highly depend on the assumptions about the knowdge of
the players. | consider only the worst-case approach, i.e., when thevader must be
captured regardless of its strategy.

To sum up, in Chapters 1 to 3, | address Pursuit-evasion games played on
graphs. | consider worst-case behavior of the evader, that is, | mainly ansider
deterministic strategies ensuring that the pursuers eventualy capture the evader
whatever it does. | survey the literature on two families of such gams: the Cops and
Robber gamegqSections 1.1 and 1.2) and theGraph Searching gamegSections 3.1
and 3.2, and Section 2.3 for directed graphs). My contributions on Pursuitevasion
games mainly depend on the rules of the games considered, e.g., vigiyilof the
players, their speed, their knowledge of the graph, etc. and on thelass of graphs
in which the games are played. This allows to provide new charactezations for
several structural properties of graphs that may be used for algorithmicpurposes.

Another important aspect of my study of Pursuit-evasion games is that theyal-
low us to model problems arising in telecommunication networks, ., prefetching
(Section 1.3) or routing recon guration problems (Section 2.3). Using the poposed
models and the studied graph structural properties allows the degin of e cient
algorithms for several applications in telecommunication networks. As sbhwn be-
low, structural properties of current large-scale telecommunicatbn networks play a
crucial role for facing the applications e ciently.

Telecommunication networks and algorithmic perspectives

My work comes from problems arising in telecommunication networks. Aninpor-
tant aspect is to design e cient algorithms for solving these problemsin networks
of large size.

Both the growth of (tele)communication networks and the changes in ther us-
age lead to new algorithmic challenges. The size of large-scale networkso¢sal
networks, the Internet) is exponentially growing and their dynamics is increasing.
For instance, recent telecommunication networks consist of severalhbusands or
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even millions of nodes and they are still growing. For example, more tharg5; 000
Autonomous Systems (AS) compose the Internet [fIDAC]. On the other hanl, due
to the growth of networks and the emergence of new applications and usesileo
streaming, data sharing, cloud computing, social networking (Facebook)etc.), the
tra c drastically grows. For instance, in optical networks the trac is  growing
exponentially and this trend is expected to continue [cis12]. Thosesvolutions lead
to new algorithmic challenges.

Solutions that have been proposed so far generally do not scale up to theag-
nitude of today's networks and cannot be straightly adapted to the dynanics of
both topologies and trac. For instance, due to time or space constraints, most
polynomial-time algorithms cannot be used e ciently in large networks: A naive
implementation of an algorithm with running time O(n*) takes several months (on
a standard laptop) when n = 10;000. One possible approach to design e cient
algorithms is to specialize the algorithms to particular network classs, that is, to
take advantage of the structural properties of real life networks in orderto de-
sign algorithms with better practical performance on such networks. Imdeed, it is
well known that most large-scale networks (the Internet, twitter, citation graphs,
youtube links) share structural properties such as logarithmic diameer, power-law
degree distribution and high clustering coe cient [BA99, AJB99, FFF99, SFFF03].
A lot of work has been done to discover/measure the speci ¢ propertiesf large-scale
networks and then use this information for the design of e cient algorith ms. For
instance, distributed routing has been widely studied in variousenvironments such
as greedy geometric routing insmall-worlds [WS98, Kle00b, Kle00a, FG10, GS11]
or compact routing in power-law networks [KFY04, CSTW12] (see Section 4.2) In
Chapter 4, among other contributions on routing in several networking ewiron-
ments, we provide some new results on compact routing using graph sictures.

On the theoretical side, di cult (NP-complete) problems have been studied in
order to design e cient algorithms solving them (almost) independently of the size
of the inputs. More formally, the Fixed Parameterized Tractability ( FPT) complex-
ity paradigm aims at understanding where the di culty of a problem lie s if not in
the size of the instance [DF99, FG06, Nie06]. That is, given a di cult problem, the
question is to capture the \structure” (formalized by a parameter k) for which the
problem may be easy to solve. A typical example of such a parameter is #treewidth
of graphs that measures the proximity of a graph with a tree [Ros74, RS86a, BAB,
Bod07]. Roughly, a graph with small treewidth \looks" like a tree, i.e., can be de-
composed in a tree-like manner using small separators. Hence, problenthat can
be e ciently solved in trees are generally tractable in bounded treaevidth graphs by
using dynamic programming on the tree-decomposition (e.g., [Cou90]). Imortantly
and surprisingly, the algorithmic counterpart of tree-decompositionsis precisely the
graph searching gamevhere a team of searchers aims at capturing a visible and ar-
bitrarily fast fugitive in a graph. In addition to its importance in the Graph Minor
Theory [RS86a, RS90, RS91, RS03a, RS03b], treewidth plays a crucial role in man
recent breakthrough results in parameterized complexity (see Sé¢ion 2.1). Chap-
ter 2 is devoted to our contributions on tree-decompositions that mainy rely on a
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graph searching approach.

Another aspect of large-scale networks is their high dynamicity (for insance,
peer-to-peer networks are characterized by an important churn: node arrive or
leave the network at any time, etc.). Hence, it is important to design algorithms
that can easily cope with the changes and that tolerate some faults, or at leastan
recover quickly (back) to a normal behaviour. Moreover, recent nevorks are not
de ned in a global way. For instance, a social network is emerging throgh local in-
teractions growing thanks to the acquaintances of each person, a priori ithout any
global structure. This aspect makes irrelevant several algorithms bagkon global
knowledge/structure (e.g., tree-decompositions for dynamic programrng, path-
vector routing tables of the Border Gateway Protocol (BGP) in the Inte rnet, etc.)
or intrinsically centralized. Hence, current research concentragés on distributed
or even local solutions, that is, solutions where nodes have limiteanemory and
local knowledge of the network. It is important to note that \simple" pr oblems
(with polynomial or even linear complexity) may become di cult or eve n impos-
sible to solve when communication is restricted. In particular, e cient solutions
that have been proposed in a centralized setting highly rely on the kowledge of
some structures of the network that are intrinsically global (hyperbolicity, chordal-
ity, treewidth, etc.) and thus are di cult to compute in a distri buted (and even
more in a local) way. For instance, most of the properties of the Interret have
been estimated by some heuristics on partial maps of CAIDA. Moreover, madsof
the e cient algorithms that take advantage of them either are highly centr alized
algorithms (e.g., FPT algorithms), or rely on a global and centralized strudure
(tree-decompositions, sparse cover, etc.). The mobile agents paragn is a natural
and interesting approach to understand how information is spread (or gatlered) in
networks and to design distributed algorithms. In Chapters 3 and 4, we gidy sev-
eral tasks requiring the coordination of mobile agents in various distributed settings,
and we also investigate the computation of graph properties in a local seihg.

Organization of the manuscript and personal contributions

In this document?, several topics such as pursuit-evasion games, graph decomposi-
tions, properties of graphs and applications to telecommunication netwdks (in par-
ticular routing) are deeply interleaving. The order chosen to presat them mainly
depends on the computational setting: from the study of graph propertiesand of
several theoretical pursuit-evasion games in a centralized settingo the study of
routing in various distributed models. While our work mainly concerns theoretical
study of graphs and algorithms, several sections throughout the manuscripare
directly related to applications in telecommunication networks.

In the remaining of this section, | summarize our main contributions that are
structured in four chapters.

3Notations.  Throughout the document, my contributions are cited in the margi ns and with
some keys: [j-X] (international journals), [c-X] (internationa | conferences), [s-X] (submitted papers)
and [t-Nis07] (Ph.D. thesis).



10 Introduction

Chapter 1: Turn-by-turn Two-Player Games in Graphs. This chapter is
dedicated to the study of several turn-by-turn two-player games in graphs: the
famous Cops and Robber gameéSections 1.1 and 1.2), thesurveillance gamethat
we introduced as a model for Web-prefetching (Section 1.3), and a #éictional game
that we introduced as a generic relaxation of many existing turn-by-urn two-player
games (Section 1.4).

Sections 1.1 and 1.2 focus on the Cops and Robber C&R) games In this
game, Player 1 rst places k tokens (the cop9 on some vertices of a graph, then
Player 2 places its token (therobbern at some vertex. Then, in turn, starting with
the cops, each player may move each of its tokens along an edge of the graph.
Player 1 wins if it manages to move one of its tokens on the node occupleby the
robber. Player 2 wins otherwise. Thecop-numberof a graph G is the minimum
integer k such that Player 1 usingk cops wins inG whatever Player 2 does. The
famous Meyniel conjecture asks whether the cop-number of anp-node graph is

survey on O(" n) [Fra87a]. In Section 1.1 , we rst propose a survey of the literature on
C&R game this game. In particular, the Meyniel's conjecture has been solveddr many graph
[c-KLNS12, classes. We prove it is asymptotically true in the class of graphs withbounded
FKLNS14] chordality (Th. 9). In Section 1.2 , we introduce the variant in which each player

has aspeed(i.e., a token with speeds 1 may move along at mosts edges at each
turn). We fully characterize the cop-win graphs in this variant, i.e., the graphs in
[FCCNV11] which one cop with speeds wins against a robber with speeds® (Th. 13 and 14).
In the classical game, 3 cops are su cient in any planar graph [AF84]. We prove
that, in contrast, when the robber is faster than the cops, the cop-nunber of planar
[c-NS08, graphs becomes unbounded (Th. 15). We then survey some other variants ofops
JFGK * 10] and Robber games including one where the cops have no permanent vigity or
when the cops only need to be at some distance of the robber to capture.itWe
provide partial characterization of the cop-win graphs in the latter two variants
[IFCCNV11] (Th. 17-18 and Lemma 5).
In Section 1.3 , we introduce the surveillance gamein which Player 2 starts
from a given marked node of a graphG. Alternatively, Player 1 may rst mark
k nodes ofG and then Player 2 may move to a neighbor of its position. Player 2
wins if it reaches an unmarked node, while Player 1 wins if it manages mark all
nodes before this happens. Thesurveillance numberof G from vg 2 V(G) is the
minimum k such that Player 1 marking at most k nodes at each turn wins whatever
Player 2 does starting fromvg. This parameter is related to the minimum amount
of resources (e.g., bandwidth) required during a prefetching pscess (e.g., Web-
caching). We show that computing the surveillance number is not FPT and NP-
hard in many graph classes and even PSPACE-complete in DAGs (Th. 20-22). ©
the other hand, we design polynomial-time algorithms for trees and inteval graphs
c-FGaM 12, (Th. 24 and 26). We then consider two restrictions of the surveillancegame that are
FFGIM " 141 closer to the practical application of Web-prefetching: in the connected surveillance
game the set of marked vertices must always induce a connected subgraphnd in
the online surveillance game Player 1 discovers the graph as it marks the nodes.
We rst study the cost of connectivity, i.e., give some upper and lower bound on the
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ratio between the connected and unrestricted surveillance numers (Th. 27 and 28).
We then prove that the best online strategy is actually the trivial one that consists  [c-GMN * 13]
for Player 1 to mark all neighbors of Player 2 at each step (Th. 29).
Finally, Section 1.4 is devoted to some preliminary results on our on-going
work about fractional games We de ne a framework generalizing and relaxing
many games (including the ones mentioned above) where Player 1 may ark or
move fraction of tokens at each turn while Player 2 may move fractions ofts token
at each turn. We design an algorithm for solving the fractional games. In partcular, [s-GNPS13]
our algorithm runs in polynomial-time when the length of the game is boundel by
2 (in contrast, computing the surveillance game is NP-hard even whenhe game
is limited to 2 turns). For some games, we also prove that the fractionalvariant
provides some good \approximation". Unfortunately, this does not hold for Cops
and Robber games.
This research has been done in collaboration with J. Chalopin, V. Chepoi, F
V. Fomin, F. Giroire, P. Golovach, A. Jean-Marie, A. Kosowski, J. Kratochvil, I.
Lamprou, B. Li, D. Mazauric, S. Rerennes, R. P. Soares, K. Suchan and Y. Vees.

Chapter 2: Tree Decomposition, Graph Searching and Applications.
This chapter focuses on graph decompositions (in particular tree-demmpositions),
their algorithmic applications (Section 2.1) and their relationship wit h graph search-
ing games (Section 2.2). A directed graph decomposition is studied thragh the
problem of routing recon guration in networks (Section 2.3).
In Section 2.1 , we rst recall the formal de nition of tree-decompositions and
give a brief overview of recent work using tree-decompositions for ekigning e -
cient algorithms for various optimization problems. In particular, we detail several Brief survey
aspects of bidimensionality and of kernelization theories. We then fous on the Z;p‘l"l'fa(;'g:?'c
problem of computing the chordality of graphs. In particular, we prove that the of treewidth
treewidth of a graph is at most its chordality times its maximum degree (Corol-
lary 2). This result follows our de nition of a restriction of tree-de composition that  [c-KLNS12,
can be e ciently computed in a wide family of graphs (Th. 33). JFKLNS14]
Section 2.2 is devoted to the study of graph searching games and their rela-
tionship with tree-decompositions. In graph searching, a team of seard@rs aims at
capturing an arbitrarily fast fugitive which is either visible or in visible. Searchers'
strategies are equivalent to tree-decompositions (visible case) ootpath-decomposi-  [c-FFNoS5,
tions (invisible case). Non-deterministic graph searching (de nel in [t-Nis07]) al- jc_;\'/‘l",\'l\‘oog'
lows us to establish a bridge between treewidth and pathwidth thiough the notion of j-FFNog’;]
branched treewidth. We provide several results on non-determiistic graph search-
ing in trees. In particular, we design a polynomial-time algorithm for approximating  [s-ACN07]
the branched treewidth of trees up to a factor of two (Th. 37). We then extend
the notion of branched tree-decomposition to the notion of partitioning-trees that
allows us to generalize many distinct width parameters of graphs. In pdicular, [-AMNTO9,
we generalize the duality results of Seymour and Thomas [ST93] (Th. 41) andhe  SBBM ™ 13]
FPT-algorithms to compute width parameters. We conclude the sectionby a survey
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on digraph decompositions which, unfortunately, do not fall into our genealization
framework.

Section 2.3 addresses the problem of digraph decompositions through thpro-
cessing gamgvariant of digraph searching) introduced by Coudert et al. [CPPS05]
for modeling the routing recon guration problem in WDM networks. Giv en a net-
work with a given routing (paths and wavelengths) for a set of requests, the goal
is to reach a new routing con guration without disturbing too much th e network's
customers. Theprocess numberof the dependency digraph (w.r.t. to the initial and
nal routings) is related to the number of interrupted requests during a routing
recon guration process. We show that the processing game is monotone arttiere-
fore is equivalent to a digraph decomposition (Th. 43). Then, we study he tradeo
between the total number and the maximum number of concurrent interuptions
during the recon guration process, which is equivalent to study the tradeo be-
tween the number of pursuers and the number of nodes occupied byhé pursuers
during the processing game (Th. 44-46). We conclude this chapter by pwving sev-
eral complexity results in the recon guration problem when more realstic (physical)
constraints are considered.

This work has been done in collaboration with O. Amini, S. Belhareth, P.
Berthone, N. Cohen, D. Coudert, F. Huc, D. Mazauric, F. Mazoit, N. Nepomuceno,
J.-S. Sereni, R. P. Soares, S. Thomass, and |. Tahiri.

Chapter 3: Distributed Graph Searching. In this chapter, we address the
problem of \clearing" a network through several variants of graph searching gares.
There, we turn ourselves toward the coordination of mobile agents in a @tributed
setting. We propose various algorithms for mobile agents with very limitel capa-
bilities (Sections 3.2 and 3.3).

In graph searching, capturing an invisible fugitive is equivalent to clearing a
network. Section 3.1 brie y recalls the formal de nition of graph searching using
the \clearing" terminology. We also give a brief overview of some of the mai results
of the literature.

Section 3.2 starts with a survey of recent results on connected graph searching
where the clear part (i.e., the part of the graph that cannot be occupiedby the
fugitive) is always connected. We then consider connected graph sezring from a
distributed point of view. That is, the searchers are autonomous mobileentities
that must clear the network without having a global knowledge about it. Among
other things, we show that, in this setting, the number of searchersrequired to
clear a network drastically increases when compared with the numbeof searchers
needed in a centralized setting (Th. 50 and 51).

In Section 3.3, we introduce a new variant of graph searching, namely the
exclusive graph searchingIn this variant, the nodes of the graph can be occupied
by at most one searcher at a time. We rst give several results on this ne vari-
ant such that the NP-hardness in the general case, the polynomiality in tees, etc.
(Th. 52-55). Finally, we study exclusive graph searching and other robotsoordi-
nation problems in the Look-Compute-Move modela.k.a. CORDA) [FPS12]. This
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distributed model allows us to explore the feasibility of severaltasks using robots
with very poor abilities. We design algorithms in several topologies sut as trees
and rings (Th. 56-61).

This research has been done in collaboration with G. d'Angelo, L. Blin, J.
Burman, G. Di Stephano, D. licinkas, E. Markou, A. Navarra, S. Rerennes, D.
Soguet and K. Suchan.

Chapter 4: Complexity of Locality: Routing and Graph Properties. In
this Chapter, we focus on routing problems. We consider various congtints that
depend on the environment considered (wireless networks, AS-ngbrk, etc.) and
that are mainly related to the degree of locality of the knowledge of the wdes that
must perform the routing. We also investigate the computation of graph progerties
with new models of local computations.

Section 4.1 is devoted on information spreading in dierent contexts. For
wireless networks, i.e., in the presence of interference, weesign a polynomial-
time approximation algorithm that computes schedules for gathering inbrmation
at some node in a grid (Th. 62). The computed schedules are optimal up to amall
additive constant and the complexity of the problem remains open. Thenwe focus
on routing in queuing networks where nodes have no routing tablestkiey have no
knowledge about the network). We propose a greedy algorithm that we proveéo be
stable, i.e., the number of packets in the network remains boundedTh. 63). Finally,
we focus on streaming networks, for which we design a distributed gbrithm for
maintaining a di usion tree (Th. 64 and 65).

Section 4.2 starts with the basics on compact routing. In distributed routing,
packets are routed toward their destination using the local information they meet
on their way. This information is stored locally by each node in arouting table. A
key challenge in large scale networks is to reduce the size of these timg tables,
i.e., to make the tables as compact as possible, without degrading the @ity (the
length) of the routes. We give an overview on the results obtained in tiis area,
focusing on the performance that may be achieved when consideringractural
properties of graphs. We then present our contributions on compact routig in
graphs having no long induced cycles (Th. 66). It is worth to note that these
results deeply rely on the characterizations we obtained in Section&.1 and 2.1. To
conclude the section, we consider routing when routing tables may é faulty. We
design randomized algorithms that achieve good performance in grids and raom
regular graphs (Tables 4.2 and 4.3).

Finally, in Section 4.3 , we de ne a new model of distributed computation in
which nodes have only local knowledge and can share only a compresseiéw of
it. In this setting, we investigate which graph properties can be compited through
the composition of this partial local information. By introducing a red uction-like
technique, we show that several problems such as detecting triangé or deciding
if the graph has a small diameter cannot be solved using only local informébn
(Th. 67). On the other hand, the complete knowledge can be recovereahithis very
simple model in the case of sparse graphs (Th. 68). We then derive otheelated
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models of computation where the information is shared sequentially anghrove that
our models form a strict hierarchy in terms of computational power (Th. 69 and
Table 4.4).

This work has been done with F. Becker, J.-C. Bermond, C. CaillouetF. Giroire,
N. Hanusse, D. llcinkas, A. Kosowski, B. Li, M. Matamala, R. Modrzejewski S.
Rerennes, |. Rapaport, H. Rivano, K. Suchan, I. Todinca and M.-L. Yu.

Appendix: Other contributions related to complexity and graph stru c-
tures. In this Appendix, we present two additional contributions (that are a bit
marginal but still related with complexity and graph properties comput ation). We
rst present several complexity results on the computation of the hull number in
various graph classes (Section A.1). We then study the computational comgixity
of weighted coloringin trees (Section A.2). we show that, unless the Exponential
Time Hypothesis fails, the problem cannot be solved in timen°!°9 ") in n-node trees
(Th. 70).

This work has been done in collaboration with J. Araujo, V. Campos, F. Giroir e,
S. Rerennes, L. Sampaio and R. P. Soares.



Chapter 1
Turn-by-turn Two-Player
Games in Graphs

Content

This chapter is devoted to present our contributions in the area ofCops and Robber
(C&R) games and, more generally, of some positional games played on graphs or
digraphs. These are two-player games where players alternatively nve their token
along edges (arcs) of a (di)graph, or act on nodes/links of the (di)graph. Thegoal
is to compute winning strategies for one of the players, optimizing geci c criteria.

Generally, strategies may take advantage of the structural properties ofthe
graph where the game is played. Therefore, studying these games o eemn alter-
native point of view for understanding graph properties. Another motivation for
this study is that some of these games provide nice models for problesrarising in
telecommunication networks. In particular, we introduce the Surveillance game for
modeling prefetching problems. Last but not least, these games are oheoretical
interest by themselves and are fun.

Section 1.1 presents the de nition of theC&R games as initially de ned by Win-
kler and Nowakowski [NW83] and Quilliot [Qui83, Qui86, Qui93]. Then, the main
results and techniques ofC&R games are surveyed, focusing on their complexity
issues and how they relate to graph structural properties [c-KLNS12, KLNS14].
Section 1.2 is dedicated to the study of variations of2& R games [c-NS08, j-FGK 10,
j-CCNV11]. In section 1.3, We introduce the Surveillancegame and present the re-
sults we obtained about it [c-FGIM* 12, j-FGIM* 14, c-GMN* 13]. Finally, in sec-
tion 1.4, we present a new abstract game generalizing humerous positional gas
and that looks promising for a better understanding of such games, and pagly
for designing approximation algorithms, using linear programming technques.
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1.1 Cop-number in a nutshell

Cops and Robber(C&R) games have been initially introduced by Winkler and
Nowakowski [NW83] and independently by Quilliot [Qui83]. We try, in this sec-
tion, to give an exhaustive overview of the results obtained along thity years in
this area. For further details, see the surveys [Als04, Hah07, BB12] and theecent
book [BN11].

The Cops and robber game is played on ar-node m-edge connected graph
G = (V;E) by two players. One player C controls a team ofk 1 copswhile the
second playerR has onerobberthat must avoid to be caught by the cops. Initially,
C places its cops on vertices of5. Several cops may occupy the same node. Then,
R chooses a vertex to be occupied by its robber. Then, alternativg] C may move
each of its cops along an edge, and then the robber may move to an adjacent ned
of its position. In particular, the players may pass. This is a full information game.
That is, at each step, the robber has the full information concerning the position(s)
of the cops and the other way around. PlayerC wins if at some step of the game,
one of its cops occupies the same vertex as the robber. If the robber mpetually
avoids this situation, then R wins.

Strategies: On the algorithmic point of view, the goal is therefore to designstrate-
giesthat allow one of the players to win. A strategy for one player de ne how it
must behave at each step. Because this is a full information game, detinistic
strategies do not depend on the past. Therefore, the way both playerdecide their
next move only depends on the currentcon guration , i.e., the multi-set of vertices
occupied by the cops and the position of the robber.

More formally, a (positional) strategy for Player Cusingk 1 cops is de ned as
follows. A k-strategy for Cis de ned by a pair (I; ¢) wherel V is the multi-set
of initial positions of the k cops (lj= k) and ¢:V* V! VKis a function that
associates c(S) =(¢f; ;) toany conguration S=((c;; ;c);r)2 VK V,
where c®2 N [c] represents the new position of thei™ cop, for anyi k.

Similarly, a strategy for R against k cops is dened as a pair (o 2 V; r :
vk v,

A strategy is winning for one player if this player following wins whatever
be the strategy followed by the other player.

Examples: As a warm-up, it is easy to see that PlayerC wins using one cop
(k =1) in any tree T. Indeed, a winning strategy for C can be de ned as follows.
The cop starts at any vertex of T. Then, at each step, the cop moves along the
(unigue) path between its position and the one of the robber. Clearlyafter a nite
number of steps, the robber is eventually caught whatever it does. @ the other
hand, Player R can win in any cycle of length at least 4 against one cop. Indeed,
a winning strategy for R consists in, at each step, for the robber to reach a vertex
at distance at least 2 from the cop without being caught.
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1.1.1 Cop-number and Meyniel Conjecture

In this section, we present the main algorithmic and computational compéxity
aspects ofC& R games.

Cop-win graphs

The seminal work onC&R games has been the characterization of graphs in which
one single cop can always win [NW83, Qui83]. Theop-win graphs are the graphs
in which there exists a winning 1-strategy for C. Nowakowski and Winkler [NW83]
and Quilliot [Qui83] have provided a nice combinatorial characterization of cop-win
graphs. In section 1.2, we show how we have generalized this result féurther
variants of C& R games [[F-CCNV11]. Below, we brie y present the cop-win char-
acterization because on the one hand, it is very instructive for the sidy of C&R
games, and on the other hand some of our contributions presented throughoutis
chapter take advantage of similar techniques.

Consider the last step of a game played by a single cop, before the capwiof the
robber. At this step, a cop moves to a vertexy 2 V, and then, the robber atx 2 V
has no way to escape (otherwise it would do it and the game would continje
Hence,N[x] N(y), i.e., vertex y dominates the neighborhood ofx!. Pushing
this argument a step forward, the cop arrives at some vertexz when the robber is
in w, such that for any node x in N[w], the neighborhood ofx is dominated by
someyy 2 N[z]. Then, whatever be the next move of the robber toward a vertex
x 2 N[w], the cop will then move to y, and then capture the robber during the
next step. This naturally leads to the following de nition. A graph i s dismantable
if its vertices can be ordered V¥3; ;Vn) such that, for any i < n, there isj > i
with Nx,[vi] N(vj), Xi=fvi; ;a0

Theorem 1 [NW83, Qui83] A graph is cop-win if and only if it is dismantable.

Before sketching some proofs of this result, let us mention some graptiasses
that are dismantable such aschordal graphs (graphs without inducedcycles of length
at least 4) and bridged graphs (graphs without isometric cycles of length at least
4) [Far87, AF88, Che97, LS04].

Several proofs have been proposed for the above result. One of them ly
induction on the number n of vertices. The induction consists in identifying a
particular vertex v and transforming a winning strategy in G[V nfvg] into a strategy
in G, and vice versa. We detail a bit and unformally how to show that a cop-whn
graph is dismantable. SinceG is cop-win, we can pick a vertexv occupied by
the robber one step before its capture. As mentionned above, there ia vertex
w dominating the neigborhood ofv in G. Hence, it remains to prove that G° =
G[V nfvqg] is cop-win, and then the induction hypothesis says that the vertces of

1 Throughout the document, given a graph G, a subgraphH of G and a nodev 2 V(H), Ny (v)
denotes the set of nodes ofH that are adjacent to v. Ny [v] = Ny (V) [f vg and the subscript is
omitted whenever H = G.
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GO can be ordered in the desired way. Addingv as rst vertex in this order gives
a dismantable ordering for G. To prove that G®is cop-win, we consider a winning
strategy  for the cop in G and, roughly, we de ne a strategy °in G%that is the
same as strategy , but each time the cop should go tov, following in G, it goes
to w instead remembering it is “virtually" on v. It is worth mentioning that the
de ned strategy is not positionnal but should take advantage of one bit of memoy.
We let the reader prove that such a strategy is winning inG°

Assume that G is dismantable, then the dismantling ordering o ers a winning
strategy for C (see, e.g., [IKKO6]). Let T be the spanning tree ofG rooted in v,
and such that, for any i < n, the parent of v; in the tree is the vertex v;, with
greatest indexj > i , dominating the neighborhood ofv; in G[X;]. The cop starts
in vp. Then, its strategy consists of going to its neighbor that is an ancestor of
the current position of the robber in T, and that is closest to the robber. To prove
that this strategy is winning, we need to prove that (1) there always eists such a
vertex in the neighborhood of the cop, so that the cop always occupiean ancestor
of the position of the robber, and (2) the distance between the cop and/,, never
decreases and strictly increases after a nite number of steps, sthat the strategy
terminates.

About complexity

Next to the seminal work of Winkler and Nowakovski and Quilliot, Player C has
been allowed to use more than one cop by Aigner and Fromme [AF84]. Clearly,
using n cops’ makes the task easy foiC. Therefore, the question is to minimize the
number of cops that C has to use to ensure its victory in a given graph. Given a
graph G, the cop-numberof G, denoted by cn(G), has been de ned in [AF84] as
the minimum number of cops required to capture a robber inG. The question of
the complexity of computing the cop-number of a graph arises naturally. As seen
above, whether a graphG is cop-win, i.e., whethercn(G) = 1, can be decided in
guadratic time: it is su cient to decide whether G is dismantable. This section is
devoted to summarize the complexity results related to the cop-nmber of graphs.

In the early eighties, the complexity of several other variants on pursiit problems
on directed graphs was investigated in [CS76, KAI79, Rei79, CKS81, Joh83, AlIK84,
Rei84, FG87]. For instance, in some variants, the robber does not need toeb
caught but it must be prevented to reach a particular vertex. Following this work,
Goldstein and Reingold proved that deciding ifcn(G)  k (k part of the input)
is EXPTIME-complete when initial positions are given [GR95]. Their reduction
uses the Alternating Boolean Formula, where two players alternativédy modify the
variables of a conjunctive normal boolean formula and the goal of the rst player is
the formula to become true. Using a similar argument, they proved that deciding
if cn(G) k is EXPTIME-complete in strongly connected digraphs.

On the other hand, k being xed, deciding whether the cop-number of ann-node
graph is at most k can be decided in polynomial timen©®) [BI93, HM06]. One

2Unless state otherwise, n always denotes the number of nodes of the considered graph.
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important ingredient for this result is the notion of con gurations graph. Recall
that a con guration represents the set of vertices occupied by the ops and the
robber. When k cops are playing, there areO(n**1) con gurations. The graph of
con gurations has as vertex-set the set of all con gurations and two con gurations
(ci;  ogr)yand (cf; ;29 are adjacent if it is possible to go to one from the
other during one step of the game, i.e.;%2 N[r] and c®2 N[g] for any i k. The
con gurations (¢1;  ;c;r) with r 2 N[g] for somei k are called nal and are
labelled with 0. Now, a con guration (c;;  ;c;r) is labelled with i > 0 if for any
r®2 N[r] there is (; ;c)), ®2 N[c] for any i Kk, such that (¢?; ;cl;r9
is labelled at mosti 1. With such a labeling, it is easy to see thatk cops can
win in G if and only if there are fcy;  :og 2 VX such that for any r 2 V, the
conguration ( ¢;;  ;ck;r) has received a nite label. This can clearly be checked
in time polynomial in the size n®) of the con gurations graph. The problem of
generalizing the characterization of cop-win graphs to graphs with cop-nmber k
has been extensively studied (e.g., [Bea04]). Recently, graphs wkitcop-number at
most k 1 have been characterized in [CM12]. | confess that | don't understand
what brought this recent result compared to the ones in [BI93, HMO06].

Surprisingly, a long time went by before further complexity resuts appeared.
The problem of computing the cop-number of graphs has been shown to be NP
hard, and even W[2]-hard in [FGKO08, j-FGK* 10]. In particular, the problem is [-FcK * 10]
not FPT (no algorithm in running time  f (k)n®® to decide if ann-node graph has
cop-number at most k) unless the complexity hierarchy collapses. Also, [FGKO08,
j-FGK *10] proved that the cop-number ofn-node graphs cannot be approximated
up to a ratio O(logn) in polynomial time. The question of approximate it up to
aratio O(n' ) for > 0 is still open. Contrary to many \classical" optimization
problems, proving that the computation of the cop-number is NP-hard is not the
last step. Indeed, what about the NP membership? In other words, the gestion to
know whether this problem belongs to NP is quite di cult. It has bee n rst proved
that the C&R game is PSPACE-complete when each cop is allowed to move a
bounded number of times [FGL10]. Then, Mamino proved recently that the C&R
game is PSPACE-hard [Mam13]. The key point of Mamino's proof is the de nition
of a generalized game on edge-labelled graphs where edges are labeflemtected
or unprotected and the robber is captured if a cop reaches its position through an
unprotected edge [Mam13]. The protected edges allow to give more freedoin
the robber, which was the missing element to obtain this complexy result (until
then, most of the complexity results were in directed graphs becawsit allowed to
\control" the trajectory of the robber). Very recently, Bill Kinne rsley proved that
the problem is XPTIME-complete [Kin13].

From minimum degree, girth and Lower bounds, to Meyniel conjecture

While previously mentioned results show that computing the cop-rumber of graphs
is di cult in general, the cop-number highly depends on the structural properties
of the considered graph. In the next subsection, we survey the re#s showing
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that graph properties allow to give upper bounds on the cop-number. Fistly, we
describe the lower bounds on the cop-number derived from graph propes. That
is, we show how the structure of a graph may make the life of the robbeeasier.

Recall that the girth of a graph is the minimum length of its induced cycles.
Clearly, the greater the minimum degree of a graph is, the more ways to sape
the robber has. If moreover, there are no short cycles in the graph, th cops
cannot “surround" the robber easily. Hence, minimum degree and girth a natural
parameters that determine whether lots of cops are needed to captureht robber.
More formally,

Theorem 2 [AF84] Let G be a graph with minimum degree and girth 5,
cn(G)

We sketch the proof of the above theorem. Consider any grapks with minimum
degree and girth at least 5. First, the size of any dominating set in graphs with
no short cycles is at least its minimum degree. Hence, the robber has safe initial
position v. Now, let v be the current position of the robber at the robber's turn.
Then, becauseG contains no triangles nor squaresN (v) is a stable set andv is the
uniqgue common neighbor of any two nodes irN (v). Hence, if strictly less than
cops are available, a simple calculation implies that there is a neightr w of v such
that no cops occupy a node inN [w]: the robber can safely go tow.

The result of Aigner and Fromme has been later generalized by Frankl. His
idea is that in a graph with large girth, a ball with large radius around any node
v looks like a tree Ty. Roughly, if the robber starts from a node v with a branch
of Ty containing no cops, then the robber can reach in a nite number of steg and
without being captured another node satisfying the same property. ®ing on in
this way provides an escape strategy for the robber.

Theorem 3 [Fra87a] Let G be a graph with minimum degree at least and with
girth at least 8t 3. Then, cn(G) > .

Theorems 2 and 3 are important because they show that the cop-number in
not bounded in general. Indeed, for any 2 N, there exists a graph with minimum
degree and girth at least 5. In particular, for arbitrary large n, there exist ( ~ n)-
regular graphs with girth at least 5. For instance, in [AFLNO8], a family of (p™ +2)-
regular graphs of girth 5 and of order 2*™, p 5 prime, is described. Hence,

Corollary 1  For arbitrary large n, there are n-node graphsG with cn(G) = ( P n).

Other graph classes achieve the same order of magnitude for the cop-numbe
For instance, the projective plane viewed as the bipartite graph wih 2(¢? + q+
1) vertices (points and lines) and where the edges correspond to thengidence
relation, is g+ 1-regular and has girth at least 5, hence it has cop-number at least
g+ 1 [BKL13, LP12].
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As shown in the next subsection, the cop-number of many classes of graph
appears to be bounded. The case of graphs with small order (at most 10 nodes)
has been studied in [BBB 13]. However, bounding the cop-number of any graph
still remains a challenging problem. Hence, while the cop-number ofny graph G
is trivially bounded by the minimum size of a dominating set of G, a general upper
bound of the cop-number of G in terms of its order is a thirty years outstanding
problem. In 1987, Frankl mentioned the following conjecture of Henri Meyiel:

Conjecture 1 (Meyniel) [Fra87a] For any n-node graphG, cn(G) = O(Io n).

During the last few years, many other variants of Cops and Robber games have
been studied, mainly to bring new evidence and techniques to tr to prove the
Meyniel's conjecture (see Section 1.2 and, e.g., [BB12]).

1.1.2 Beyond Meyniel conjecture: when graph structure helps

In this section, we survey the work showing that the cop-number isbounded in
many graph classes. Mainly, the cop-number has been bounded in terms other
graph parameters (e.g., genus, treewidth, chordality, etc.). Ther&ore, in the class of
graphs where the considered graph invariant is bounded, the cop-numipés bounded
too and, in particular, its computation is polynomial. For instance, in graphs with
dominating set of size at mostk, the cop-number is trivially at most k.

Maximum degree and diameter don't help

We rst recall that the cop-number is not bounded even in graph with maximum
degree at most three or with diameter at most two.

Andreae answers a question in [AF84] by showing that the maximum degreesi
not a general upper bound on the cop number. To do so, Andreae is using thact
that there are regular graphs with arbitrary large girth and then the result holds
by Theorem 3.

Theorem 4 [And84] Forany ;k 3, thereisa -regular graphG with cn(G)
K.

Even for graphs with diameter 2, the cop-number cannot be bounded by some
constant. This result seems to be well known as folklore. With J. Clalopin, V.
Chepoi and Y. Vaxes, we proved it by considering the following family of graphs:
Let us consider a setS = f1; ;3kg and let G be the graph with vertex set V,
the set of all subsets ofS with k elements, and such thatx;y 2 V are adjacent if
and only if x\ y=;.

Lemma 1 (folklore(?)) For any k 1, there is a (Ek)—node (ﬁ")—regular graph G
with diameter 2 and cn(G) k.
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While diameter and maximum degree are useless to upper bound the cop-
number, there are many rich graph classes in which few cops are reqel to capture
the robber. As already mentioned, the class of bounded size dominatinges graphs
is an example.

Graphs with bounded genus and graphs excluding some xed minor

Aigner and Fromme were the rst to use several cops to capture the robbe For this
purpose, they made cops collaborating as follows: one cop \controling" a subgph
separating the graph, while the other cops can go toward the component oopied
by the robber. More formally, some copscontrol a subgraphH of the graph G, if
there is a strategy, such that, after a nite number of steps, thesecops ensure that
the robber cannot go to a vertex ofH without being captured immediately at the
next cops' move. For instance, one cop can control any arbitrarily large star The
main idea of Aigner and Fromme is that one cop is su cient to control any shortest
path in a graph [AF84].

Controling a shortest path. This result is the cornerstone of most of the capture
strategies described in what follows. Therefore, we give more detailabout it. The
idea of the proof is that, given a shortest pathP in a graph, if, at some step when
the robber occupies a vertex, the cop is occupying a vertexc 2 V (P) that satis es
d(r;z) d(c;z) forall z2 V(P), then, whatever be the next move of the robber to
r%2 NJr], there exists a neighbor oc®2 N [c] preserving the property. Such a vertex
c of P is called the shadowof the position r of the robber on P. In other words,
once the cop has reached the shadow of the robber, then it can always follothe
shadow of the robber. Clearly, if the robber reaches a vertex oP when the cop is
occupying its shadow, then the robber is captured during the nekstep. Moreover,
it is easy to show that the cop can reach the shadow of the robber in a nie number
of steps.

Grids. As an example, consider a grid where a cop occupies the same row as the
robber, then this cop may remain on the same column (the shortest path)and
ensure that if the robber reaches this column it will be captured at the next step.
Using this property, it is easy to prove that two cops are enough to captue one
robber in any grid: a possible winning strategy is for one cop to control oneolumn
while the second cop reaches the next column (in the direction of theobber) until

he controls it. Then, the role of the two cops are reversed. Since on®p is obviously
not su cient to capture the robber in any grid, then c¢n(G) = 2 for any grid G.

Bounded genus graphs.  The main result of Aigner and Fromme is that three
cops are su cient to capture one robber in any planar graph. This surprising result
follows the facts that one cop can control any shortest path and that there alvays is
a separator consisting of three shortest paths in planar graphs [LT80]. Roudi, in

any planar graph, two shortest paths forming a cycle (separator) can be comblled

by two cops that therefore isolate the robber in a smaller part of the graph Then

a third cop is sent to control a new shortest path to separate the zone a@ssible by
the robber, and so on, recursively. Hence,
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Theorem 5 [AF84] For any planar graph G, cn(G) 3.

Moreover this bound is tight because the dodecahedron is a planar graph it
minimum degree 3 and girth at least 5, and therefore 3 cops are necessary [B#].

Using the fact that removing an uncontractible cycle lets the genusy of a graph
decreasing, Quilliot uses at most g cops to recursively reduce the genus of the
component where the robber stands. Then, 3 remaining cops are used tmpture
the robber in the planar component where it stands. Hence, §+3 cops are su cient
to capture a robber in any graph with genus at mostg [Qui85]. By studying more
carefully how to deal with shortest path separators to gradually reducethe genus
of the zone accessible by the robber, Schreder improved this bound

Theorem 6 [Sch01] For any graphG with genusg, cn(G) b %gc+3.

The case of non-orientable surfaces has been considered in [CFJT12]. Hevwer,
the best lower bound for graphs with bounded genus is far from the uppebound.
For instance, the projective plane has genugy = ( n) (because of its number of
edges) and therefore, its cop-number is ( g). Hence, the following conjecture is
still open® even for graphs with genusg = 2:

Conjecture 2  For any graph G with genusg, cn(G) g+3.

Another large class of graphs has bounded cop-number: any graph excluding
a minor with bounded number of edges. Recall that aminor of a graph G is any
subgraph of a graph obtained fromG after sequentially contracting some edges.
Given aH-minor-free graph G, Andreae uses shortest paths to somehow \represent"
the edges of the graphH in G. SinceH is not a minor of G, at some point, this
set of paths separates the graph, and this can be done recursively.

Theorem 7 [And86] Let H be any graph andv be any non isolated vertex inH.
Then, for any graph G excludingH as a minor, cn(G) j E(H nv)j.

Note that, recently, this result has been used to compute some partigdar de-
composition for Minor-free graphs [AGG' 13].

Using similar arguments, Andreae gived explicit graphsH for which any graph G
excludingH as minor is such thatcn(G) 3 [And86]. Moreover,cn(G) d n=3e+1
for any graph G with no wheel W,, as minor [And86].

Treewidth, chordality, bipartite graphs and others

The cop-numbers of many graph classes have been studied such as the eoymber
of Cayley graphs [Fra87b, Ham87, Ham87], of various products of graphs [Tos88,
MM87, NN98J, of graphs with strong isometric dimension two [FNO1]. Also, series
parallel graphs have cop-number at most two [The08]. More generally, it isnot

3Note that for g =1, above theorem prove the conjecture. However, it is not known wh ether it
is tight: are there toroidal graphs with cop-number 4?
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di cult to show that graphs G with bounded treewidth tw(G) have cop-number
at most tw(G)=2 + 1 [JKT10, BCF *13]. Also, it is at most k in any graph of
cligue-width at most k [FGK08, j-FGK * 10].

More recently, Lu and Peng proved the Meyniel conjecture for graphs vth di-
ameter at most 2 and for bipartite graphs with diameter at most 3 [LP12]. More
precisely, Lu and Peng proved by induction onjV (H)j that, if the robber is con-
strained to move on the vertices of ak-degenerate subgraphH of G, then k cops
can capture the robber [LP12]. Hence, if there isS V such that GnN(S) is
k-degenerate, thencn(G) | Sj+ k. The cops are placed uniformly at random on
the vertices of thek-core K of G (maximum subgraph of G with all vertices having
degree at leastk + 1) until the cops dominate all vertices in K. Then, k extra cops
can capture the robber inG nK. The expected number of cops to dominate the

n-core of G is at most ' n [LP12]. Hence:

Theorem 8 [LP12] For any n-node graphG with diameter at most 2, or which is
bipartite with diameter 3, cn(G) 2" n 1.

While the smallest induced cycle leads to a lower bound on the copumber,
strangely, little is known related to the largest induced cycle (dordality). A graph
is k-chordal if its greatest induced cycle has length at mosk. In [AF84], it is shown
that cn(G) 3 for any 2-connected 5-chordal graphG. We generalize this result.

Theorem 9 Let k 3. For any k-chordal connected graphG, cn(G) k 1, and
there exists a strategy where alk 1 cops always occupy a chordless path.

Proof. Let v 2 V be any vertex and place all cops at it. Then, the robber chooses
a vertex. Now, at some step, assume that the cops are occupyirfg1;  ;Vvig which
induce a§hordless path, k 1, and it is the turn of the cops (initially i = 1).
LetN = ; ;N [v;], and if the robber occupies a vertex inN , it is captured during
the next move. Else, letR 6 ; be the connected component of5 nN occupied by
the robber. Finally, let S be the set of vertices inN that have some neighbor inR.
Clearly, while R is not empty, then so doesS.

Now, there are two cases to be considered.

If N(v))\' S Sl<j i N[v;]. This case may happenonlyif > 1. Then,\remove"
the cop(s) occupyirgjvl. That is, the cops occupyingvi go to vo,. Symmetri-
cally, if N(vi)\ S 1j< N [vj ], then the cops occupyingv; gotov; 1. Then,
the cops occupy a shorter chordless path while the robber is stillestricted to
R.

(%herwise, there isu 2 (N(vi)\ S)n (S 1 iN [viDand v 2 (N(vi)\ S)n
(, i<i N [vj]). First, we show that this case may happen only ifi <k 1.
Indeed, otherwise, letP be a shortest path between suchu and v with all
internal vertices in R (possibly, P is reduced to an edge). Such a path exists
by de nition of S. Then (v1;  ;vi;Vv;P;u) is a chordless cycle of length at
leasti + 2. Since G is k-chordal, this implies that i +2 k.
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Then one cop goes tovi+; = v while all the vertices in fvyq; ;Vig remain
occupied. Sincev 2 S, it has some neighbor inR, and then, the robber is
restricted to occupy R® the connected component ofG n(N [ N [v]) which is
strictly contained in R.

Therefore, proceeding as described above strictly reduces tharea of the robber
(i.e., R) after < k steps, R decreases progressively and the robber is eventually
captured.

Note that previous Theorem somehow extends the model in [CNO5], wherehe
authors consider the game when two cops always remaining at distance at mi2
from each other must capture a robber. It is possible to improve the pevious result
in the case of 4-chordal graphs, i.e. fok = 4. More precisely:

Lemma 2 For any 4-chordal connected graphG, cn(G) 2 and there always exists [c-KLNS12,
a winning strategy for the cops such that they are always at distae at most one IKLNS14]
from each other.

Theorem 9 relies on chordless path® in G such that N[P] is a separator of
G, i.e., there exist verticesa and b of G such that all paths between a and b
intersect N[P]. In Section 2.1, we show how to adapt this to compute particular
tree-decompositions.

Random graphs

Recently, the cop-number of random graphs has been intensively ingtigated. Be-
sides the fact that many real networks share important structural propeties of
particular classes of random graphs (and therefore, studying the cop-maber of
such classes gives hints on the cop-number of real networks), some ofetfe studies
have provided new techniques that have been used for bounding éhcop-number of
general graphs (see below).

Erdes-Renyi graphs have been rst investigated in [BHWO07] (see also[BKP12]).
In such a graph G(n; p), each edge has independent and xed (independent of the
number n of nodes) probability 0 < p < 1to exist. In that case, it is proved that the
cop-number is (log n) asymptotically almost surely(a.a.s.), i.e., with probability
tending to one whenn goes to in nity. This result (clearly, the upper bound) is
mainly based on similar results on the dominating number of such graphs.More
precisely,

Theorem 10 [BHWO7] For any xed O0<p< 1and forany > 0, a.a.s:
(1 )Iog% n cn(G(n;p) @1+ )Iog% n:
p p

Then, sparse random graphs (whereg = d=n, 0 < d < 1) have been studied
in [BPWO7]. Roughly, such n-node graphs consist of the union of trees or unicyclic
graphs with at most log logn vertices a.a.s. Since the authors of [BPWO07] de ne the
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cop-number of a not connected graph as the sum of the cop-number of its corated
components, sparse random graphs have large cop-number a.a.s.

The case of denser graphs, for whichn=n ,0< < 1, has been rst studied
in [BKL13]. Then, Luczak and Pralat proved that the cop number of dense randm
graphs has an intriguing \zig-zag" behavior:

Theorem 11 [LP10] Let 0< < landd=n p=n *°D then

if 21%1 < < % for somej 1, then a.a.s. cn(G(n;p)) = ( d).
if % < < ﬁ for some j 1, then a.as. ( ) = cn(G(n;p)) =
( g logn).

Finally, random graphs with given degree distribution have been invstigated
in [BPWOQ7]. Given a sequencew = (Ww1; ;W,) where w; is the expected degree
of nodev;:

Lemma 3 [BPWO7] Let G be a random graph with expected degree distribution.
w2
Letpp <. Forany > 0, with probability at least1 e (" .

cn(G) (1 )Iogﬁn:

The casew being a power law distribution is particularly interesting since many
real networks have this property. Because such graphs have many isokd vertices,
[BPWO7] concludes that their cop-number is ( n), wheren is the number of nodes.
On the other hand, regular-random graphs are considered in [PVW11]. Recelyt it
has been proved that Meyniel Conjecture holds for binomial random graph$PW13].
In particular, it is proved that the conjecture holds for a general clas of graphs
with some speci ¢ expansion-type properties [PW13].

Many questions remain open in this area. Indeed, my point of view is that
the cop-number of a graph should be de ned as the maximum cop-number ofts
connected components (not the sum). Following this de nition, most of the above
guestions should be revisited.

General graphs

We showed above that Meyniel conjecture holds in many graph classes. kever,
the question is still open, in general graphs.

The rst upper bound for general graphs has been proposed by Frankl who
showed that cn(G) = O(n'ol%'%) in any n-node graph G [Fra87a]. This bound
has then been improved toO(%) in [Chi08] by recursively nding long minimum
distance caterpillar between the root and a leaf of some arbitrary BFS-tee of G.
More precisely, a subgraphT of G is a minimum distance caterpillar if it consists
of a shortest (in G) path P and some vertices adjacent toP. Generalizing the
fact that one cop can control one shortest path, Chiniforooshan showed that ®ops

are su cient to control any minimum distance caterpillar in a graph. Th en, using
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any BFS-tree, it is possible to compute a minimum distance caterglar (from the
root to a leaf of the BFS-tree) with size O(logn) in any n-node graph. Going
on recursively, any graph can be partitioned into O(n=logn) minimum distance
caterpillars. Hence,cn(G) = O(%) in any n-node graphG [Chi08].

Recently, several groups improved independently this result @ obtain the best
current bound:

Theorem 12 [SS11, LP12] For any connectech-node graphG, cn(G) = O(z7—mr—).

2(1 o(1)) " logn

To conclude this section, we try to summarize the structural propeties of a
minimal counter example for the Meyniel conjecture. From previous esults, it
follows that:

Assertion 1 Any minimal counter example n-node graphG to the Meyniel conjec-
ture would have:

maximum degreeo(p n);
diameter at least3 (or at least 4 if G is bipartite) and o(p n);

minimum hitting set of the induced cycles of length (pﬂ with size at least
LT n);
genus, cliqgue-width and treewidth (p n), and

any graph with O(IO n) edges as a minor.

For completeness, we also like to mention that the cop-number of in rite graphs
has also been studied [CLP0OO, HLSWO02, BHWO07, BHT10].

1.2 Variants of Cops and Robber games

The previous section shows that new techniques or approaches must livented to
solve the Meyniel conjecture. Therefore, many variants and generalaions of the
Cops and Robber game have been proposed to handle this problem.

1.2.1 Fast Cops and Robber.

A rst natural generalization of C&R games is the one where the cops and the
robber are faster [FGKO08]. We say that the cops have speed 1 if, atits turn, a
cop can move along a path of length at moss. The speeds® of the robber is de ned
similarly. Clearly, if one cop is faster than the robber, then it will eventually catch
the robber by decreasing their relative distance at each step. Henceve may assume
that s° s. Let cngso(G) be the smallest number of cops with speed required to
capture a robber with speeds®in a graph G.

On the one hand, this variant seems to behave as the original one. For inahce,
the graphs that are cop-win in this variant, i.e., graphs where one cop wit speed
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Figure 1.1: (a) A big brother graph. (b) A big two-brother graph.

s can capture a robber with speeds’, can also be characterized by a kind of dis-
mantling ordering. For any i 0, H subgraph of a graphG and x 2 V(H), let

N;(x;H) be the set of nodes at distance at most from x in H. If H = G, we note
Ni(x;H) = N;j(x). Finally, Ni[x] = N;j(x)[f xg.

Theorem 13 Lets® s and G be a graph.cns.(G) = 1 if and only if the vertices

of G can be orderedfvy; ;vhg such that, for any i < n, there is|j > i with
Nso(vi;Gnvj)\f vi;  ;vag Ns[vj]. Moreover, this can be decided in polynomial
time.

When s = 1, we achieve a stronger characterization. A graph isdually chordal
if its line graph is chordal and its clique hypergraph is an hypertree.A graph G is
a big brother graph if its block#-decomposition can be represented in the form of
a rooted tree T in such a way that each block of G has a dominating vertex and
for each blockB distinct from the root, the articulation point between B and its
father-block dominates B (see Figure 1.1(a)).

Theorem 14 Let G be a graph ands®> 0. cny.s(G) = 1 if and only if:
Cases®=1: G is dismantable. (see also [NW83, Qui83, AF84])
Cases’=2: G is a dually-chordal graph

Cases’> 2: G is a big brother graph

The speed of the robber being xed, the speed that one cop must achievto
be able to capture the robber seems related to the hyperbolicity ofhe graph: the
smaller the hyperbolicity is (somehow, the closer to a metric of a itee, the metric

“A block is a maximal 2-connected component
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of the graph is), the easier it is for the cop. A graph G is called aHelly graph if
its family of balls (1-neighborhood) satis es the Helly property: any collection of
pairwise intersecting balls has a common vertex.

Lemma 4

Lets° 4 0, s°even. For any -hyperbolic graphG, cng,,  (G)=1. [-CCNV11]
042 ;
If s° 2s, then if cngso(G) = 1 then the graphG is (s° 1)-hyperbolic.

If s°> s, then any bridged graph or Helly graphG with cnsso(G) = 1 is
s®-hyperbolic.

The previous lemma suggests that there is a functiori such that, for s°> s, any
graph G such that cns.o(G) = 1 is f (s9-hyperbolic. Such a result would give a new
characterization of hyperbolicity of graphs. Chalopin, Chepoi and others ecently
closed this question [CCPP13].

On the complexity point of view, this variant also behaves similarly as the
original one. More precisely, the proof that computing the cop-numberof a graph
is W[2]-hard works for the general case® s =1 [FGKO08, j-FGK *10]. The case
of interval graphs has been considered in [FGK08, j-FGK 10] where a polynomial
time algorithm is presented that computescni.so(G) for any interval graph G and
any s° 1 xed. Gavenciak designed a polynomial time algorithm in the cases®
is unbounded [Gav11]. In that case, an upper bound ofO(" n) has been proved
in [Meh10]. The case of unbounded?® has recently been studied in [Mar14].

Whens® s=1,ithas beep shown that the cop number of a connected-node

graph can be as large as (ns*sfl) [AM11, Meh11], hence generalizing the Meyniel
conjecture for larger speeds. However, even in this case, the conjee remains
open: the best general upper bound on the cop-number afi-node graphs being
(140(1))”9@:” where =1+1 =s°[FKL12]. This latter result generalizes the results

of [LP12, SS11] in the case®= 1.

On the other hand, we proved that capturing a fast robber may be very d erent
than the original game. Indeed, all results concerning bounded genus gréagp in the
original variant fail as soon as the speed of the robber increases Speci cally, we
proved:

Theorem 15 For any n n square-grid G, cni:2(G) 2 ( P log(n)). [c-NSO08,
j-FGK *10]
This result must be put in contrast with the fact that cn(G) 2 for any square-
grid G. Moreover, we did not manage to apply the previous techniques for lowe
bounds. To prove Theorem 15, we propose an evasion strategy for a robber with

5Thanks to F.V. Fomin who asked me, in a forest of Puerto Varas during LAGOS 2007, whether
capturing a fast robber could be done with a constant number of cops in a planar graph.
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X \'
(a) (b)

Figure 1.2: (a) a graph G with cn/(G) = 1 <cnyk(G) for all k 2, and (b) a
graph G with cny(G) =1 <cni(G).

speed 2 againsk 1 cops in anyn n square-grid, wheren 2 (2 k2). Intuitively,

the strategy we designed for the robber is de ned recursively. Thee arek + 1
levels in our strategy. For any 0<i Kk, the leveld strategy uses the level-{ 1)
strategy as a subroutine. The key point is that the leveli strategy only deals with

enough” from the robber.

The above result can be generalized to ang®> s where the ratio between the
speeds appears in the basis of the logarithm. Moreover,

Theorem 16 Let H be a planar graph containing ann  n square-grid G with
n2 (2 ¥*) as an induced subgraph, themnyo(H) k.

Surprisingly, the best known upper bound for cn1.2(G) in n  n square-grid
G is O(n). Therefore, capturing a fast robber is not fully understood evenin
simple topologies. New techniques are required for achieving new praggs in this
direction. In particular, establishing a link with similar games in other metric spaces
(Euclidean or hyperbolic spaces) could be a good approach (e.g., see $8| Ben01,
BLWO09, AR10]).

Recently, the technique of Aigner and Fromme has been applied to polygai
environments [BKIS12]: more precisely, it is shown that 3 cops are saient to
capture a visible robber in any polygonal environment with :Hbitrary complexity.
In [KS12, KS13], the case of an invisible evader is studiedO( h +log n) cops are
su cient when the speed of all players is at least the minimum distance between
nodes f is the number of nodes of the polygon anch the number of holes) [KS12]
while ( n%3) may be required for arbitrary speed [KS13]; (' n) cops are necessary
and su cient when h =0 and a general upper bound ofO(n°%®) is proven [KS13].
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Figure 1.3: (a) 2-bidismantlable graph G with cnj(G) > 1 (b) Graph G with
cny(G) = 1 that is not strongly 2-bidismantlable.

1.2.2 Visibility, radius of capture and other variants
When the robber can hide

Another natural generalization of C& R games is the one proposed by Clarke [Cla09].
In this variant, the robber is visible only every w 1 turns. Let cny,(G) be the
smallest number of cops that can capture inG a robber that shows up only everyw
steps and is hidden the remaining turns. Note that, if a cop reaches th same node
as the robber, it is captured even if it is invisible. By de nition , cnj(G) = cn(G) is
the classical cop-number.

Note that it is not clear that, for a xed graph G, cny,(G) is a non decreasing
function of w. In [[FCCNV11], we proved that, for all w 2, there are graphsG
such that 1 = cny,(G) < cny,,4 (G) (see Figure 1.2(b)). However, the question to
know whether cny,,; (G) = 1 implies cny,(G) =1 for any G and w is still open.

In the case when the robber can hidew > 1) classical dismantling orders are
not su cient anymore to characterize cop-win graphs. No full characterization has
been found until now. However, a characterization of some necessary ou sient
conditions have been proved in some other cases.

A graph G is called abig two-brother graphif G can be represented as an ordered
union of subgraphsGi; ;G in the form of a tree T rooted at G; such that Gy
has a dominating vertex and anyG; , i > 1, contains one vertex or two adjacent
vertices disconnectingG; from its father and one of these two vertices dominates
Gj (see Figure 1.1(b)).

Theorem 17 cn\,(G) =1 forallw 1ifand onlyif G is a big two-brother graphs. [-ccnvii]

For particular values of w, we prove several necessary or su cient conditions,
but none of them provides a full characterization. A graph G = (V;E) is w-
bidismantlableif the vertices of V can be ordered yx; ;Vp) in such a way that,
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Figure 1.4: A graph G with cn},(G) =1 that is not w-bidismantlable

for any 1 i < n, there exist two adjacent or coinciding verticesx;, y; with
Yi = Vi, Xj = v- and j;" > i such that Ny (vi;Gnfx;;yig)\ X N1(yi), where
Xi = fvi;vis1;  ;;vng. A graph G is strongly 2-bidismantlableif G admits a 2-

bidismantling order such that, for any vertex vi, i<n,y; = X; or No(vi; Gnfy;g)\
Xi  N(xi;Gnfy;g).

Lemma 5 Any graph G with cn%(G) = 1 is 2-bidismantable. There are2-
bidismantable graphsG with cn}(G) > 1 (see Fig 1.3(a)).

Any strongly 2-bidismantable graphG satis es cn}(G) = 1. There are graphs
G with cn%(G) =1 that are not strongly 2-bidismantable (see Fig 1.3(b)).

Let w > 1 be an odd integer. Anyw-bidismantable graphG satis es cny,(G) =
1. There are graphsG with cny,(G) = 1 that are not w-bidismantable (see
Fig 1.4).

A way to obtain a full characterization of cop-win graphs in this variant would
probably be to study the case when the robber can remain hidden at mostv 1
steps. However, it seems more di cult to analyze.

Numerous results have also been dedicated to the case when all plageare
always invisible (hunter-and-rabbit gamé. In that case, some work allows the pur-
suer to be faster than the robber [SD13], or probabilistic strategies forthe cops
have been proposed [ARS03, IKK06, IK0O8, KMP13, DDTY13]. In particular, in
the all-invisible case, a single cop can catch the robber in {1 logn) expected time
in any n-node graph [ARS 03]. Some cases when visibility is limited depending on
the distance is studied in [IKK06, IK08].

When the robber can shoot

The last variant we would like to insist on is the one where the cops can apture
the robber at some distance [BCP10]. In other words, in this variant, therobber
is captured as soon as she is at distance at most O from a cop. r is called
the radius of capture of the cops. Letcnd(G) be the smallest number of cops with
radius capture r that can capture a robber in G. Note that cnS(G) = ¢cn(G) is the
classical cop-number.



1.3. Web-page prefetching and Surveillance game 33

Bonato et al. proved that computing cn®(G) is NP-hard in general graphs and
gave an algorithm that decides whethercnd(G)  k in time O(n?¢*3) [BCP10]. The
analogous of the Meyniel conjecture has also been studied: there are grap@ for
which cnd(G)  (1)¥2* oD and cnd(G) = O(ﬁ%'ogﬂ;z)) in any n-node graph
G [BCP10].

Surprisingly, the characterization of cop-win graphs in this variant seems much
harder. As far as we know, almost nothing is known to characterize cop-wi graphs
for r > 0, but in the following very restricted case:

Theorem 18 A bipartite graph G is such thatcn‘l’(G) =1 if and only if V can be
ordered (v1; ;Vn), with fv, 1;vag 2 E and, for any i < n 1, there isj > i,
Ni(vi; Xi)nfvig  Ni(vj).

Miscellaneous

To conclude this section, we should mention other variants that have leen studied:
when the goal of the cops is not to capture the robber but to avoid that she eaches
some given subgraph [FGH 08, FGL09, FGH* 11, SSV11], when each cop has a
limited number of moves [FGL10, FGL12], when cops may be helped by trapsr
radars [CNOO, CNO1, CCO06], when the robber can attack the cops [BFG13] etc.
Also, other objectives are considered such as the capture time [BGHK09, BKP13,
KW13].

We also like to mention that almost nothing is known about the Cops and
Robber games in directed graphs. For instance, a characterization of copigraphs
in this variant, say when only the robber is constrained to follow the arcs, seems
much more di cult to obtain (if any). We started investigated this top ic during
the internship of Melanie Duco e.

1.3 Web-page prefetching and Surveillance game

The games mentioned above are natural variants of Cops and Robber games and
they all are very interesting from the theoretical point of view, in particular because
they o er new ideas for solving Meyniel conjecture. In this section we study a
similar game that, for once (?), has been introduced mainly because it wdels a
practical problem. More precisely, we de ned the surveillance gameo study the
prefetching problems [c-FGIM' 12, j-FGIM™* 14].

Prefetching.

Prefetching is a basic technique in computer science. It explts the parallelism
between the execution of one task and the transfer of information neceasy to the
next task, in order to reduce waiting times. Consider the executbn of some program
by a CPU, some future instruction of the program makes reference to a nmaory
block. When this instruction is being processed, the CPU mustwait until this

[[FCCNV11]
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memory block is loaded into the registers to be able to proceed. Her¢ one way to
speed up the execution of such program is to fetch this memory block éfore said
instruction is being processed [God09]. The possibility to premptively load data

necessary for the execution of some task is called prefetching in comer science
domains. A modern instance occurs in the Web, where browsers magiownload

documents connected to the currently viewed document (Web pagevideo, etc.)

while it is being read or viewed. If the browser can anticipate whith web page
the web-surfer would like to read, the web-surfer will be given he impression of a
greater download speed. For these reasons link prefetching has beeroposed as an
Internet Draft standard by Mozzila [FS04, Inc99]. As of this work, severalbrowsers
attempt to use some kind of prefetching to lessen the waiting timeof its users [wik].

Unfortunately, some di culties arise when dealing with prefetching. In general,
the amount of available space to store the documents (web pages, memoryolk,

instructions, etc.) might be small, making it necessary to choose Wich documents
are going to be prefetched. Moreover, the speed of the prefetchingechanism might
not be arbitrarily big, restricting the amount of documents that can be prefetched
before some task has to wait. Lastly, the prefetching mechanism might & a resource
that we would like to minimize. In the case of web pages, the bottlendc resource
is the bandwidth. Hence, every page that is prefetched and never sedy the user
is a wasted resource.

The execution digraph of a prefetching problem is a graph in which vetices
represents all the tasks involved in the problem and arcs represeniependencies
between the prefetching of such tasks, meaning that if there is an arbetween two
vertices, then one must be prefetched before the other. In prefehing web pages,
vertices represent web pages and arcs hyperlinks from one web page tocdlner.
Some studies [JG97, GCD02, MIM10], use a markovian model with a transitining
function over the arcs of the execution digraph to model the behaviou of the web
surfer. However, the exact solution of such a model requires an expential time in
the number of vertices of the execution digraph. Such a model also cstraints the
web surfer to access web pages through a predetermined speci ¢ ramgh manner.

It worths also mentioning more \technical" studies of prefetching. There are
mainly three types of prefetching. In local prefetching [WLZC12], the client has no
aid from the server when deciding which documents to prefetchin the server based
hints prefetching [AEFP98, AZN99, Mog96], the server can aid the client to ecide
which pages to prefetch. Lastly, in the proxy based prefetching [ELJ99], a proxy
that connects its clients with the server decides which pages tonefetch. Moreover,
some studies consider that the prefetching mechanism has perfeé&nowledge of
the web-surfer's behaviour [PM96, KLM97]. In these studies, the obgctive is to
minimize the waiting time of the web-surfer with a given bandwidth, by designing
good prediction strategies for which pages to prefetch.

We are concerned with perfect prefetching, i.e., ensuring that the Web surfer
never accesses a document that has not been prefetched yet. In otheords, the
surfer is \impatient” in the sense that she does not tolerate waiting for informa-
tion. Due to network's capacity (bandwidth) limitation, it is import ant to limit the
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number of Web pages that can be prefetched at each step: We aim at determing
its minimum value. In addition to being simpler than a fully speci ed optimization
problem, this question does not need speci c assumptions on the befior of the
Web surfer as in [GCD02, MIJM10].

Surveillance game.

We introduced the surveillance gamewhich is a model to study a local prefetching
scheme to guarantee that a websurfer never has to wait a web-page to beown-
loaded, whilst minimizing the bandwidth necessary to achieve ths [c-FGIM* 12,
j-FGJM * 14]. This two-player game involves one Player moving a mobile agent,
called surfer, along the edges of a graph, while a second Player, calleabserver
marks the vertices of the graph. The surfer wins if it manages to reach amn-
marked vertex. The observer wins otherwise.

More formally, let G = (V; E) be an undirected simplen-node graph,vg 2 V,
and k 2 N . Initially, the surfer stands at vp which is marked and all other nodes
are not marked. Then, turn-by-turn, the observer rst marks k unmarked vertices
and then the surfer may move to a neighbor of her current position. Oge a node
has been marked, it remains marked. The surfer wins if, at some steghe reaches
an unmarked vertex; and the observer wins otherwise. Note that the gameakts at
most die turns (after which all nodes are marked). When the game is played on
a directed graph, the surfer has to follow arcs when it moves. A-strategy for the
observer fromvg, or simply a k-strategy from vg, is a function :V 2V 1 2V that
assigns the set (v;M) V of vertices,j (v;M)j Kk, that the observer should
mark in the con guration (v;M), where M V, vo 2 M, is the set of already
marked vertices andv 2 M is the current position of the surfer. We emphasize the
fact that depends implicitly on the graph G, i.e., it is based on the full knowledge
of G (this will always be the case but for Theorem 29 below). Ak-strategy from vo
is winning if it allows the observer to win whatever be the sequence of moves tifie
surfer starting in vg. The surveillance number of a graph G with initial node vy,
denoted by sn(G; vp), is the smallestk such that there exists a winning k-strategy
starting from vy.

Discussion on the hypothesis.

In the surveillance game, the fugitive plays the role of the Web sur moving in
the execution (di)graph while the observer must prefetch the Webpages before the
fugitive reaches them. Before going further, we aim at discussing soahypotheses
of our model.

First, in our model, we assume a constant prefetching time for all tle Web pages.
It is however not a strong assumption since the surveillance game magiso model
the fact that some Web pages are heavier than others. Indeed, let us agse that
each Web pageu has a proper sizeVN (u) and so a proper prefetching time. Consider
the graph GP obtained by replacing any nodeu of G by a clique K of size W (u)
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and any edgef u; vg by a complete bipartite graph betweenK and K. Thus, the
surveillance problem for the weighted graphG is equivalent to the problem in GP.

We also assume that the step duration is the minimum visiting time anong
all pages. If there exists a perfect prefetching strategy with thé constant duration
time, then this strategy is also a perfect prefetching strategy wih the initial visiting
times for all the pages. This hypothesis corresponds to studying thevorst case in
which the visiting time of all pages is constant (and so corresponds tolte minimum
visiting time among all the pages).

The strongest assumption is probably the in nite memory, that is when a Web
page is prefetched, then it remains prefetched. In other words, aertex that is
marked remains marked for all the following steps of the surveillancegame. That
is, we assume that the amount of local memory available is, usually, muclvigger
than what a web surfer can browse in a given time, making the network esources
(bandwidth) the principal concern in designing good prefetchingstrategies. This
is motivated by the fact that memory in modern computers is not scarce agmore,
which makes network resources the critical ones. However, local stage memory is
also a potential issue, and prefetching is classically associated thithe question of
cache management. We plan to investigate two more realistic models cagsponding
to two cache management policies. The rst variant assumes that a markedrertex
becomes unmarked after a constant number of steps. The second modela¥s the
observer to unmark some vertices, respecting the constraint thathe total number
of nodes that are marked never exceeds a given threshold correspondirio the
maximum number of Web pages that can be prefetched simultaneously.

1.3.1 Complexity and algorithms in several graph classes

This section is devoted to the study of the computational complexity ofthe surveil-
lance game. All these results can be found in [c-FGJIM12, j-FGIM ™ 14].

As a warm-up, let us describe a simple basic strategy g: at each step, the
observer simply marks all unmarked neighbors of the current position othe fugitive.
Note that, the surfer always arrives to any vertex (but vg) by an already marked
neighbor. This allows us to derive simple general bounds.

Assertion 2 For any graph G with maximum degree and for any vg with degree

[c-FGIM * 12,  dp,
j-FGIM * 14] do  sn(G;vg) maxf 1; dog:

From Assertion 2, it is almost straightforward that the surveillance number of
graphs with maximum degree 3 or with a universal vertex can be easily coputed.

Lemma 6 Let G be a connected undirected graph with maximum degree at most

[c-FGIM *12,  three and at least one edge. Thenl sn(G;vg) 3 and
-FGIM * 14]
sn(G;vg) =1 i G is a path, wherevp has degree one;

sn(G;vg) =3 i Vg has degree3.
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Lemma 7 Let G be an undirected graph with a universal vertex. For anyg 2 V(G)
1

with degreedy, sn(G; Vo) = maxfdo; "5= g.

One important and useful result is that we can restrict our study to simpler
trajectories of the surfer. That is, when computing the surveillance number of a
graph, we don't need to consider all possible moves of the surfer. Morngrecisely,
in the monotone variant of the surveillance game, the surfer is restricted to move
at every step and to follow only induced paths inG. That is, for all ~ > 0, after
having followed a path (vo; ;v), the surfer is not allowed reaching a vertex
in N[fvo; ;v 10]. Note that if the surfer cannot move, then she loses. Let
msn(G; Vo) be the smallestk such that there is a winning monotonek-strategy in
G when the surfer starts from v, i.e., the observer can win, marking at mostk
vertices at each step, against a surfer constrained to follow inducegdaths.

Theorem 19 For any (di)graph G and vp 2 V(G), sn(G;Vp) = msn(G; Vo). [c-FGIM * 12,
j-FGIM * 14]

We give the intuition of the proof. Assume that the observer may win the monotone
game in G by marking at most k nodes at each step. Then, a strategy for the non-
monotone game can be de ned as follows. As long as the fugitive follows an inded
path, the observer just plays according to its monotone strategy. It is\clear" that if
the fugitive does not move in some step, that does not hurt the obseer at all. Now
consider the rst time that the robber breaks the rule of moving along an induced
path. Say her trajectory is vo;Vvy; :Vm and then she moves tovy+1 Which is a
neighbour ofyv; for0 j m 1. Then the observer can imagine that time has
gone backwards, and consider the timg, when the fugitive has moved along the
trajectory vo;vi1; ;Vj , and then she is moving tovn+1 in the next step. The
observer just plays according to the strategy that he would have plagd if the robber
had taken the trajectory vp;vs; 'Vj;Vm+1 . Intuitively, the only di erence with
the real game is that some additional vertices are marked in the real game, vith
does not hurt the observer. Hence the observer can still win by markig k vertices
in each step in the original variant.

Previous result means that we can always consider that the fugitive fdbws
induced paths, and so that the fugitive has to move at every step becae an induced
path is necessarily a simple path. This assumption is very importantin the proofs
of next results since it simpli es them a lot.

Complexity

We have shown that the problem of computing the surveillance numbeis actu-
ally very di cult in \simple" graph classes. By reducing the 3-Hitti ng Set Prob-
lem [GJ90], we proved the following theorems. The intuition is that when marking
the nodes, the observer has to choose few nodes that cover all podsibneighborhood
of the next position of the surfer.

In particular, the problem is not FPT when parameterized by its solution:

Theorem 20 Deciding if sn(G;vg) 2 is NP-hard in chordal graphs. [c-FGIM * 12,
-FGIM * 14]
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The game is also di cult, when the number of turns is bounded. In particular,
in split graphs, the game is limited to two turns since there are no nduced paths
of length > 2.

Theorem 21 Deciding whethersn(G;vg) k is NP-hard in split graphs.

Next, we show that the problem of deciding whethersn(G;vg) 4 is PSPACE-
complete in DAGs. Following the ideas in [FGL10], it is done by reducng the
3-QSAT problem [GJ90]. Intuitively, the choice of which nodes mustbe marked
by the observer at each step corresponds to the existential quanti es, while each
move of the surfer corresponds to a universal quanti er.

Theorem 22 Deciding whethersn(G;vp) 4 is PSPACE-complete in DAGS.

An interesting question is to know if the problem remains PSPACEhard in
undirected graphs. In comparison, Mamino recently proved that the ps and
Robber game is PSPACE-hard in undirected graphs [Mam13].

Algorithms

Besides the bad news above, we obtained some positive results by @gsng a general
exponential algorithm for computing the surveillance number and polyromial time
algorithms in the case of trees and interval graphs.

The general algorithm consists of a classical backward labeling of the con gu
ration digraph, a.k.a. arena digraph (e.g., see [ACP87, HMO06, j-FFNQ9]).

Theorem 23 sn(G;vg) can be computed in timeO (4") on n-node graphs.

The case of trees can be dealt with by using a slight generalization of thgame.
In this generalization, v is initially marked and the observer can mark at most
ko O other vertices before the fugitive's rst step. Let k 0 and T be a rooted
tree. We de ne the function fy : V(T)! N in the following recursive way:

fx(v) =0 for any leaf v of T;

P
forany v 2 V(T) with d children, fi(v) = maxf0;d+ ., fk(w) kg, where
C is the set of children ofv.

We prove that, in any tree T rooted at vg, fx(Vp) =0 if and only if sn(T;vg) k.
Hence, by a simple dynamic programming algorithm:

Theorem 24 For any tree T and any vg, sn(T;vg) can be computed in timeO(n
logn).

We moreover give a combinatorial characterization of the surveillance nmber
of trees.
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| . m
Theorem 25 For any graph G and vp 2 V(G), sn(G;vp) max ‘N[JS% , Where

the maximum is taken over allS V(G) inducing a connected subgraph ofs
containing vp. Moreover, there is equality in the case of trees.

In [c-GMN * 13], we showed that the inequality may be strict.

Finally, we prove that, in interval graphs, the observer wins if it is able to
protect some particular paths, whose number is polynomial in the size othe graph.
Intuitively, the hardest case for the observer is when the surfer rst chooses a
direction, left or right (with respect to the realization of the inte rval graph), and
then always goes to its neighbor with leftest (or rightest) end. Hene, to compute
the surveillance number of an interval graph it is su cient to check, for all integers
k, if the observer can protect these paths.

Theorem 26 sn(G;vg) can be computed in timeO(n  3) in the class ofn-node [c-FGIM * 12,
interval graphs with maximum degree . IFGIM * 14]

Regarding the prefetching motivation, it would be interesting to study the be-
havior of the surveillance number in the Web graph. That is, we would Ike to study
this problem in random graphs and more speci cally in such a graph with paver
law degree distribution.

1.3.2 Connected and online Surveillance Game

By nature of the web-page prefetching problem, in particular becausef the huge
size of the web digraph, it is not realistic to assume that a strategy maymark
any node of the network, even nodes that are \far" from the current posiion of
the surfer. For this reason, in [c-FGIM" 12, j-FGIJM™ 14] we also introduced the
connected variant of the surveillance game.

A strategy is said connectedif (v;M)[ M induces a connected subgraph
of G forany M, vop 2 M V(G). In other words, a node may be marked only if
it has an already marked neighbor. Note that the basic strategy g is connected.
The connected surveillance numberof a graph G with initial node vy, denoted by
csn(G; vp), is the smallestk such that there exists a winning connectedk-strategy
starting from vg.

All the results of the previous section extend to the connected vaant of the
surveillance game [c-FGIM 12, j-FGJM™* 14]. In particular, the surveillance number
and its connected counterpart are equal in the class of trees and of inteal graphs.
Therefore, a natural question is to know how both parameters may di @ one from
the other. By de nition, csn(G;vp) sn(G;vp) for any graph G and vp 2 V(G).
Moreover, it is easy to nd a graph where the two parameters di er (see Figure 1.5).
More generally,

Lemma 8 Let k 2. There exist a graphG and a vertexvg 2 V(G) such that [c-FGIM * 12,
k+1= csn(G;vg) >sn(G;vg) = k. j-FGIM * 14]
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Figure 1.5: A graph G and vg 2 V (G) such that csn(G; vg) = sn(G; vp) + 1.

However, nding a larger di erence has been much more di cult. In[ c-GMN™* 13]
we proved the following result which is currently the best knovn lower bound. Note
that the smallest graph in the family mentioned below has around 1650000 ver-
tices.

Theorem 27 There are graphsG, vg 2 V(G) such thatcsn(G;vp) = sn(G;vg)+2.

On the other hand, except the trivial upper bound csn(G; vp) sn(G; vo),
the best upper bound we have been able to prove is:

Theorem 28 Let G be any connectech-node graph andvg 2 V(G), then
p__
csn(G; vp) sn(G;vg) n:

To try to get deeper understanding of the cost of connectivity, we dened an even
more constrained variant of the surveillance game. We also studied thigariant for
its own interest since it is a much more realistic model for the Wépage prefetching.

Indeed, the connected surveillance game still seems unrealist&ince the web-
browser cannot be asked to have the full knowledge of the web digraphTherefore,
we de ne the online surveillance game In this game, the observer discovers the
considered graph while marking its nodes. That is, initially, the olserver only knows
the starting node vp and its neighbors. After the observer has marked the subset
M of nodes, it knowsM and the vertices that have a neighbor inM . The next set
of vertices to be marked depends only on this knowledge, i.e., theades at distance
at least two from M are unknown. In other words, anonline strategy is based on
the current position of the surfer, the set of already marked nodes andknowing
only the subgraphH of the marked nodes and their neighbors (see [c-GMNL13] for
more details). By de nition, the next nodes marked by such a strategy must be
known, i.e., adjacent to an already marked vertex. Therefore, an onlie strategy is
connected.

We are interested in the competitive ratio of winning online strategies. The
competitive ratio (S) of a winning online strategy S is de ned as

(S) = max M,

Gvo2V (G) SN(G; Vo)
where S(G;vp) denotes the maximum number of vertices marked byS in G at
each turn, when the surfer starts in vo. Note that, because any online winning
strategy S is connected,csn(G; vg) (S)sn(G; vp) for any graph G andvg 2 V(G).
Unfortunately, we show that
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Theorem 29 The best competitive ratio of online winning strategies is() , with  [c-FGIm * 12,
the maximum degree. JjFGIM * 14]

Hence, the gap between the surveillance number and its online courgart is
not bounded. Moreover, the previous result holds even when resiried to trees.
Since, for any treeT and for any vop 2 V(T), csn(T;Vvp) = sn(T;Vp), there might
be an arbitrary gap between the connected surveillance number and th@nline
surveillance number.

The question of bounding the gap between connected and not connectedrseil-
lance numbers remains open.

1.4 Fractional Combinatorial games

Motivated by the numerous remaining open questions related to both tke Cops and
Robber games and the Surveillance game, we propose a new way to investigat
them, namely through linear programming techniques [s-GNPS13]. Roughlywe
aim at designing Integer Linear Programs (ILP) to describe the games. Thenone
possible direction is to relax the integrality constraint and try to d erive approxima-
tion algorithms. In this section, we present a formal de nition of fractional games
and we give the preliminary results we obtained in this direction.

1.4.1 Fractional Cops and Robber and Surveillance Games
Cops and Robber game

Let us rst consider the classical Cops and Robber game where we relax then-
tegrality" of the cops. That is, we assume that each cop can divide itselfinto
arbitrary small pieces at each stefi. Formally, the moves of the cops can be de ned
as follows: at some turn when an amount 2 R* of cops is occupying a nodes
of a graph, then durf'gg its move, an amount of ,, cop can move tow, for any
w2 N[v], such that >\, w= . The robber is captured if an amount of at
least 1 cop is occupying the same vertex as it.

As an example, let us consider the cycl€, (with classical cop-numbercn(Cy) =
2) with 4 vertices fa; b; c; d). A fractional strategy may be to place one-half of cop
on each of the verticesa; b and c (then using % cops in total). Then, wherever be
the nodex chosen by the robber, during the next turn, two halves of cops can redc
x and then capture the robber. Hence, this example shows that, in therfctional
variant, it is possible to capture a robber in a graph G with strictly less than cn(G)
cops. We actually proved a more disappointing result:

Theorem 30 For any graph G and any > O, in the fractional variant, 1+ cops [s-GNPS13]
can capture any robber inG and in a linear (in jV(G)j) number of turns.

8Informally, if one cop is occupying a node then, during its turn, i t can move its left leg to one
neighbor, its right leg and arm to another neighbor, and keep the re maining of its body on its
current position.
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Indeed, consider 1 + cops used to capture a robber in an-node graph. First,
place 1% cops in each node. Wherever be the position of the robber% cops are
at the same node and can follow the robber at each step of the game. At some
step, assume that 0O< < 1 cop is \following" the robber. Then, the remaining
1+ cops can spread in the graph such that“n cop occupy each node.
Then, + ¥—— can now \follow" the robber, and the strategy goes on like this.
Eventually, at least one cop is following the robber and captures it.

We said that the above result is disappointing because it implies tlat fractional
variant of Cops and Robber game cannot provide an interesting approximationof
the classical variant. While we did not get any result in that direction yet, the
fractional variant might give some hint to study other \integral" variants of Cops
and Robber games such as the variant with fast robber.

Surveillance game

In the fractional surveillance game, the observer is allowed to partidy mark the
nodes. That is, at egch step, the observer marks an amountn, > 0 of any node
v2V(G), such that 5, Mv k.

Recall that the classical surveillance game is NP-hard even when the miber of
turns equals two [c-FGIM* 12, j-FGIM™* 14]. This is mainly because the surveillance
game is close to hitting set problems. For the same reason, it is poss#éto formulate
a strategy for the observer as a linear program. Indeed, consider the gamanrlited
to two turns in a graph G and starting from vg 2 V(G). That is, the fugitive
rst moves to a neighbor w of vy then to a neighbor of w. To decide whether the
observer usingk marks per turn can win, it is sucient to nd the nodes that
must be marked during the rst turn: during the second turn, it i s necessary and
su cient for the observer to mark the unmarked neighbors of w. Therefore, we use
one variable my per nodev 2 V(G) nN [vo] that is set to 1 if v must be marked
during the rst turn and to O otherwise. The surveillance number of G starting
in vo and limiting the number of turn to two is then the solution of the foll owing
linear program.

Minimize k
Subject to: 5y (Gynn o] Mv k J N[Voli
, . P
JN [w] n N [vo]j K+ | oN [WInN [vo] MV 8w 2 N (vo)
my, 2 fO0;1g 8v 2 V(G) nN|[vg]

(1.1)
Clearly, the fractional relaxation of the above program provides a polynomal-
time algorithm to compute the solution for the fractional surveillance game. Moreover,
set-cover admits a polynomial-time approximation scheme with logaribmic ratio via
LP-rounding [Vaz01]. Therefore, we hope proving that fractional survellance game
also provides such approximation scheme.
In next section, we show how we can extend these ideas to more genegames.
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1.4.2 General fractional Games
[s-GNPS13]

We conclude this Chapter on Combinatorial games by presenting some on-gain
work that we expect to have promising consequences. We don't give he all tech-
nical details but focus on the main ideas of our new approach.

Not fully formal description of the game

We de ne a general game played by two players, denoted byC and R, on some
subset of R?". A con guration of the game consists of two vectors: the vector
c 2 R? of Cand the oner 2 R! of R. For instance, in Cops and Robber or in
Surveillance games played in a-node graph,r; represents the amount of the robber
at node i, and ¢ represents the amount of cops (or of marks) at node, for any
i n.

The game is then de ned thanks to various polytopes ofR?". The setV R?"
is a polytope de ning the valid con gurations for Player C, i.e., if Player R wins
if it manages to reach a vector inR?" nV. The setl V is the set of initial
con gurations, and W V is the polytope of winning con gurations for C. For
instance, W = f(c;r) 2 R® j¢ ri; 8i ngis the set of winning set forC in
Cops and Robber game and it is the set of valid con gurations in the surveilhnce
game. The set of winning con gurations isW = f(c;r) 2 R® j¢ 1, 8 ngin
the surveillance game.

Starting from any con guration in | and turn-by-turn, each player can modify
its own vector v 2 R} by applying it some linear transformation: the player may
go to a new vector v+ X, wherex belong to a given convexX set containing O,
and 2 g where

8 . 9
< 81 h‘,] n, i 0; and =
E=. [l n 8 n 4, i =1, and
' if fi;jg2E then ;; =0 '

Note that the set g is a set of stochastic matrices that can be de ned through
a graph G = (V;E). Intuitively, forany 1 i;j n, j; represents the fraction of
tokens initially present in j 2 V that moved along fj;ig 2 E to reachi 2 V. The
set X represents some amount of tokens that may be added at the player's turtn

The goal of Cis to eventually reach a con guration in W, and the goal ofR is
either to perpetually avoid it, or to eventually reach a con guration i n R® nV.

Preliminary results and on-going work
[s-GNPS13]

Without entering more into the details, mainly based on the convexity of the win-
ning states and of the allowed moves, we design an algorithm that computethe set
of valid con gurations from which C can win after some number of turns. Roughly,
we start by the set of winning con gurations which can be described bya polytope.
Then, by a backward induction, from the set of con gurations from which Player
Cwins after i turns, we compute the polytope describing the set of con gurations
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from which Player C wins after i + 1 turns. Unfortunately, our generic algorithm
takes an exponential-time even when the number of turns is xed. The complexity
of our algorithm only comes from some projection-step that exponentially mcreases
the number of constraints de ning the polytope at each step. Howevermany such
constraints seem redundant and there is still some hope to reduce #ir number.
The time-complexity of deciding which Player may win is still open.

Another important result we obtained is that, under some extra hypothesis on
the convex sets de ning the game, PlayelR can be restricted to play integrally, i.e.,
we can impose that the vectorr 2 N" always remains integral without making C
more powerful (if R wins in R" then it wins also in N"). In particular, this implies
that our game provides a fractional relaxation of the Cops and Robber games and
of the Surveillance game.

One advantage of this new formalization is that it allows us to model various
games, not restricted to the Cops and Robber and of the Surveillance game#\n-
other example of game that ts into our framework is the famous Angels and Devils
problem de ned in [BCG82, Con96, BL06, Klo07]. We are also currently investigat-
ing the Eternal games In the Eternal Dominating Set game Player C rst places
its k 1 tokens on vertices of a graphG. Then, at each turn, R chooses one node
and C may move one or (depending on the variants) several tokens such that at
least one token goes to the chosen node [BC®4, KM09, GHHO5]. The Eternal
Vertex Cover gameis de ned similarly but Player R attacks an edge along which
at least one token ofC must slide (e.g., [ABB* 07, FGG* 10]).



Chapter 2
Tree Decomposition, Graph
Searching and Applications

Content

One important aspect of pursuit-evasion games is the equivalence beegn a vari-
ant of these games, namely graph searching games, and tree-decompositiorig.
this chapter, we present our contributions related to this equivaknce and to some
applications of it.

In Section 2.1, we rst present several algorithmic applications of treedecomposi-
tions. More generally, this section is devoted to the description of kassical or
more recent techniques of parameterized complexity and their apptiations. Among
other, it is question of color coding, cut and count method, meta-kernézation,
graph minor theory, bidimensionality, etc. Very recent results (based both on
kernelization and dynamic programming) show that many problems can be deal
with using these approaches. We then focus on the problem of computinthe
chordality of a graph (that have further applications in Section 4.2.2) and describe
a particular kind of tree-decomposition, related to treelength (and mehow to our
study of Cops and Robber games), and its application to compute chordality of
graphs [c-KLNS12, j-KLNS14].

Then, we present our contributions on graph searching. Section 2.2 is st
devoted to the study of non-deterministic graph searching (de ned in [t-Nis07,
j-FFNO09]) which provides a general approach for graph decompositions [s-AR07].
Through the notions of partitioning-trees and partition functions, we obtain ge-
neral duality results [FAMNTO09] and a uni ed algorithm to compute decomp osi-
tions [s-BBM™ 13]. Section 2.2 is also devoted to survey directed graph decomposi-
tions which, unfortunately, seem not fall into our general framework.

On the other hand, a nice directed graph searching variant, namely thgrocess-
ing game has been de ned to model therouting recon guration problem [CPPSO05].
In Section 2.3, we present our contributions on this variant [c-CCM' 10, j-CCM* 11,
c-NS13] and give some evidences that it might lead to a \good" de nition of drected
tree-decomposition. We nally study the routing recon guration probl em itself by
considering various \real-networks" constrains [c-CHM" 09, c-CMNO09, c-BCM* 12].
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2.1 Algorithmic applications of tree-decompositions

This section is devoted to present some related work on treewidth anttee-decompo-
sitions. In particular, we focus on their applications for computing properties of
graphs, via xed parameterized tractable (FPT) algorithms.

2.1.1 Treewidth

Our aim here is not to survey the huge amount of previous work on treewidh but
to mention some important results that are closely related to our main togc, the
computation of graph properties. For nice surveys on treewidth, see g. [Bod98,
Bod07].

Given a graph G = (V; E), a tree-decomposition(T; X) of G consists of a treeT
and a family X = ( Xt)i2v (r) of subsets ofV such that

[ ovmXe=V;
forany e2 E, there ist 2 V(T) such that the bagX; contains both ends ofe;
foranyv2 V,ft 2 V(T)jv 2 X(ginduces a subtree ofT.

The width of (T;X) is maxy(1)jXtj 1, the maximum size of a bag minus
one. The treewidth! of G, denoted by tw(G), is the minimum width among all
tree-decompositions ofG [RS86a]. If T is restricted to be a path, (T;X) is a path-
decompositionof G, and the pathwidth pw(G) of G is the minimum width among
all path-decompositions of G [RS83].

A fundamental result related to treewidth is that many NP-complete problems
can be solved \e ciently” in the class of graphs with bounded treewidt h. Indeed,
given a tree-decomposition of a graph, many problems can be solved by dynaen
programming on the decomposition in a time (mainly) depending on the wilth of
this decomposition. In particular, the famous Courcelle's theorem sates that all
problems expressible in monadic second order logic can be solved indir-time in
the class of graphs with bounded treewidth [Cou90]. That is, the algorithmis linear
in the size of the input graph G but may be exponential in tw(G).

The second interest of treewidth that is worth to be mentioned hereis its im-
plication in the Graph Minors theory of Robertson and Seymour. In particular,
they proved that the set of bounded treewidth graphs is well-quasierdered [RS90]
and that the class of graphs excluding a xed planar graph as a minor has boundk
treewidth [RS84, RS86b] which is an important step in their proof of the Wagner
conjecture [RS04]. The fact that excluding a planar graph as minor implis having
bounded treewidth mainly relates on the so called grid-theorem sayig that any
graph either has bounded treewidth or admits a large grid as minor [RST94]. W
will see later the role played by the following recent improvemat of Robertson-

Seymour and Thomas theorem in the bidimensionality theory.
!Note that, while the term treewidth has been de ned by Robertson and Seymour in their work
on Graph Minors, similar notions already appeared in previous work , e.g., [Ros74].
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Theorem 31 Letr> 0. Let G be a graph with nor r-grid as minor, then
tw(G) 20(r*logr) [KK12]2
if G is H-minor free, then 9¢cy > 0 such thattw(G) c¢yr [DHO8b, KK12]

There are graphs with treewidth ( r?logr) and no! (r) ! (r)-grid as minor [RST94].

Deciding if the treewidth, respectively the pathwidth, of a graph is at mostk is
NP-complete whenk is part of the input [ACP87, MHG * 88]. However, since in most
applications, computing a tree-decomposition with \small" width is d esired, many
work has been devoted to this task. Fork xed, several polynomial-time algorithms
(exponential in k) have been proposed that either decide if the input graph has
treewidth > k or compute a tree-decomposition of width at mostO(k) (e.g., [MT91,
Ree92, Lag96] that are based on nding \good" balanced separators). Bodlaender
and Kloks designed an algorithm that, given a tree-decomposition with widh O(Kk)
of a graph G, either decides that tw(G) > k or computes a tree-decomposition
(resp., path-decomposition) with width  k for G in time k°&*)n [BK96]. Bod-
laender and Thilikos used similar approach for graph searching [BT97a]. Usin
the Bodlaender-Kloks algorithm and improving the computation of an approxi-
mate decomposition (based on a pre-processing considering vertgeavith \low"
degree), Bodlaender designed a linear-time algorithm that decided itw (G) k
in time k°&*n in any n-node graph G [Bod96]. Very recently, Bodlaender et
al. designed an algorithm that, for any input n-node graph G and an integer
k > 0 being xed, either outputs that tw(G) > k, or gives a tree decomposition
of G of width at most 5k + 4, in time 2°(n [BDD* 13]. To conclude this para-
graph on treewidth computation, let us mention that the best (as far as we kiow)
known polynomial—tinbe approximation algorithm for computing the treew idth has
approximation ratio ~ logOPT [FHLO5a] (based on Semide nite Programming),
that treewidth can be approximated in polynomial-time up to a constant ratio in
planar graphs [ST94] (algorithm for computing the branch-decomposition) andthat
several heuristics that compute lower or upper bounds on treewidtthave been pro-
posed, e.g., in [BB0O5, BKO7, BK10, BK11]. Note that the complexity of computing
the treewidth of planar graphs is a longstanding open problem.

Other aspects on tree-decompositions (duality results, case of dioted graphs)
are postponed to Section 2.2.

2.1.2 Applications to parameterized complexity

Since many interesting problems are known to be NP-complete in gemal, a huge
amount of research is devoted to obtain e cient algorithms in particular gr aph
classes. For instance, for any xed integerk > 0, there is an algorithm that,
given an input n-node graph G, decides iftw(G)  k in time O(nk*2) [ACP87].
Following this result, computing the treewidth is polynomial in t he class of graphs

2A very recent unpublished result improves this bound to a polynom ial in r [CC13].
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with bounded treewidth. However, it is desired to optimize the dependence on the
parameter k. For this purpose, the k°k*)n-time Bodlaender algorithm mentioned

above [BK96] is better in the sense that it allows to understand that the complexity

of the problem does not come from the size of the graph but from its struatre.

Parameterized complexity theory provides a framework for such a rened analysis
of hard algorithmic problems [DF99, FG06, Nie06].

A parameterized problem takes an input instance | and a xed non-negative
integer k (the parameter). is Fixed Parameter Tractable (FPT) if it can be solved
by an algorithm with running time f (k)nlo(l), where n, is the size of the instance
and f is a function depending only onk. The typical parameter is the size of the
solution, but when graph problems are concerned, using the treewidit of the input

graph as parameter has allowed to achieve numerous interesting resaslt

In particular, as already mentioned, many graph problems can be solved, by
\simple" dynamic programming approach, in time c®™)nOM) in the class ofn-node
graphs, when a tree-decomposition of widthtw is given, for some constantc. For
instance, vertex cover and independent set can be solved in time®2" () nOM) jn n-
node graphsG [Nie06], dominating set can be solved in time 2(W(G) nO(1) [Nie06],
g-coloring and odd cycle traversal (minimum number of nodes to be nmoved to
obtain a bipartite graph) can be solved in time cP((G)nCM) for some constants
¢ [FGO06, Nie06]. Moreover, such running times are essentially optimal uess the
Exponential Time Hypothesis fails [LMS11]. The fact that, for these problems,
the dependence intw is single exponential comes from the fact that solutions are
\locally checkable". Roughly, for each bag of the tree-decomposition, thedynamic
programming process can only keep the partial solutions (sets of2™) nodes) that
can be checked using a constant number of bits by testing only neighirhoods.

On the other hand, for many problems involving more \global constraints" such
as connectivity, a similar approach leads to running timetw©™)n°@) | For instance,
in problems like connected vertex cover, connected dominating $@r hamiltonian
cycle, the dynamic programming process have to keep track of all the ays (order-
ings, connected components, etc.) in which the (partial) solution cantraverse the
corresponding bag of the tree-decomposition. Finding algorithms for sth prob-
lems with running time depending only (single) exponentially in tw has been a
long-standing challenge. Dornet al. rst solved it for Hamiltonian cycle, TSP
and longest cycle in planar graphs [DPBF10]. Their approach is based on the
sphere-cuts of Seymour and Thomas [ST94]. basically, in planar graph a brahe
decomposition can be found such that all separators correspond to \cycle"n the
graph. Therefore, the number of ways the solution can traverse the bagss re-
lated to Catalan number which gives a single exponential in the size oftlte bag
(see also [ST10]). Later on, Dorn, Fomin and Thilikos generalized these sailts to
bounded-genus graphs [DFTO06] and then toH -minor free graphs [DFT12]. Very
recently, Bodlaenderet al. proved that similar results can be obtained in general
graphs by using clever techniques to keep track of the connected cqunents of
the partial solutions [BCKN13]. The latter result improves (by de-randomizing it
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and extending it to counting and weighted problems) the cut-and-count method
proposed in [CNP" 11].

The bidimensionality theory takes use of several algorithms described above to
obtain FPT sub-exponential time algorithms for many problems (see [DH08a] ad
references therein). Consider the problem of deciding if some grapparameter p
is at most k2. Moreover, assume that (1)p is large in ak k-grid Gy , say
P(Gk «k) > k?, and (2) p is closed under taking minor. Then an algorithm consists
of the following: rst run on the input n-node graphG a polynomial time algorithm
that either computes a tree-decomposition of widthO(k) or states tw(G) > k; in
the rst case, use above dynamic programming algorithms to decide in tine 2n°®
(i.e., sub-exponential in the parameter); in the latter case, if G admits a \good"
structure (e.g., exclude a given minor), by Theorem 31G contains Gx ¢ as minor
and sop(G) > k 2 by the properties of p [DHT05, DH08a]. This technique has then
been extended for parameter with less constrained properties (e.gcontraction-
closed and large in \grid-like" graphs) but reducing a bit the considered classes of
graphs: planar, bounded genus, excluding a xed graph as minor [DFHT05, DH08a].

Another aspect of parameterized complexity is that it provides a frameavork
to study the pre-processing of instances of hard problems [GNO7, BodQ9Given a
problem with parameter Kk, a kernelization algorithm transforms inputs (I; k) of
to other instances ( % k9 of in time polynomial in jlj+ k and such that (I; k) 2
if and only if (1%k9 2 (i.e., without modifying the value of the solution), and
k9 kandjl§ f(k) wheref is any function depending onk. f (k) is the size
of the kernel. Clearly, if is decidable and admits such a kernelization algorithm,
then it is FPT since, after having computed the kernel, an exhausive search can
be done in time depending only inf (k). It is part of the folklore that:

Theorem 32  [Bod09] A parameterized problem is FPT if and only if is
decidable and has a kernelization algorithm.

One critical question is then to reduce the size of the kernel of FFP problems.
For instance, a linear kernel (i.e., of sizeO(k)) leads to FPT algorithms that are
\only" single exponential in k. Recent results provide techniques to show that
some problems have no polynomial kernel (unlesSP  coNP=poly, or other prop-
erties making the complexity hierarchy collapse) [BDFH09, FS11]. On tle other
hand, powerful techniques have been introduced that provide plynomial kernel
for large classes of parameterized problems [BFL09, FLMS12, KLP* 13]. Once
again, treewidth plays an important role: these results are mainly base on protu-
sion decompositionsthat roughly consist in partitioning a graph: one part having
bounded (in the parameter) treewidth and the other part being composé with
bounded number of components of bounded diameter and with bounded borde
Moreover, because of properties of the considered problems, the cauted com-
ponents of the second part can be replaced (without modifying the soliion) by
bounded size gadgets.

This section has presented several powerful applications of treedth and tree-
decompositions. However, computing \good" tree-decompositions in an eient
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way (especially, with e cient implementations) remains a challenge. A way to
bypass it would be to propose other structures easier to compute and tit provide
nice algorithmic applications. In the next section, we present some geliminary
research in this direction.

2.1.3 Computing chordality and \caterpillar" tree-decompositions

We focus on the particular problem of computing the chordality of graphs. The
chordality of a graph is the length of its largest induced (chordless) cycle. A graph
is k-chordal if its chordality is at most k. In Section 4.2.2, we will present some
applications of the results we obtained on chordality for compact routing.

Computing longest cycles or paths in graphs are natural problems that havbeen
studied a lot. As a generalization of the Hamiltonian cycle/path problems, these
problems are NP-complete [GJ90]. FPT-algorithms have been proposed inavious
graph classes (planar, bounded genus{ minor free for xed H, etc.). Maybe the
most famous one is thecolor coding method by Alon et al. [AYZ95]. Roughly,
given a graph G excluding some xedH as minor, randomly color the nodes with
k colors and give acyclic orientation with bounded out-degree to the edgestiis
is possible sinceG excludesH xed and then has bounded degeneracy). Then,
by dynamic programming, it is possible in \FPT-time" to search for a dir ected
path of length k (number of vertices) and usingk distinct colors. If G has a path
of length k, then the algorithm nds it with constant probability. Using hash
functions, it is nally possible to de-randomized the algorithm [AYZ95]. Other
FPT algorithms have been designed to decide if a graph contains some graptith
k nodes as subgraph. Among other, let us mention the linear algorithm of Epgein
in bounded genus graphs [Epp99] which, as far as | understand, is a kind of aastor
of the kernelization algorithms based on protusion (see also [Bak94]).

The problem of deciding whether the chordality of a graphG is at most k is
NP-complete if k is as part of the input. Indeed, if G°is obtained by subdividing
all the edges inG once, then there is an induced cycle of length at least|¥ (G)j
in GCif and only if G has a Hamilton cycle. It is coNP-hard to decide whether
an n-node graph G is k-chordal for k = ( n) [Ueh99]. Several problems related
to chordality have been considered. Finding the longest induced ath is W[2]-
complete [CFO7]. In [KKQ9], the problem of deciding whether there isan induced
cycle passing throughk given nodes is studied. This problem is NP-Complete in
planar graphs whenk is part of the input and in general graphs even fork = 2.
However, a FPT algorithm based on the Graph Minors machinery exists in panar
graphs [KK09]. Finding an induced cycle of size exacthk in d-degenerate graph is
FPT if k and d are xed parameters [CCCO06]. On the other hand, the chordality
is closed under contraction and large in planar triangulated grids and, theefore, it
can take advantage of the bi-dimensionality framework: Sau and Thilikos deigned
a FPT-algorithm for chordality in planar graphs [ST10].

Our approach has been di erent. Our study of Cops and Robber games irk-
chordal graphs (see Theorem 9 in Section 1.1.2) led us to the following algtiim.
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Let us de ne a k-caterpillar as a graph that has a dominating set which induces a
chordless path of order at mostk 1.

Theorem 33 There is an algorithm that takes am-edge-graphG and k 3 as

input and, in time O(m?) (independent onk), [c-KLNS12,
j-KLNS14]

either returns an induced cycle of length at leask + 1;

or returns a tree-decomposition ofG in which each bag induces &-caterpillar.

By de nition of k-chordal graph and Theorem 33, anyk-chordal graph admits a
caterpillar tree-decomposition i.e., a tree-decomposition in which each bag induces
a k-caterpillar. The next corollary follows easily, improving exponertially the upper
bound on treewidth of k-chordal graphs in [BT97b].

Corollary 2 Any k-chordal graphG with maximum degree has treewidth at most
(k1) 1) + 2, tree-length at mostk and hyperbolicity at mostb%kc.

There is an algorithm that, given am-edge graphG and k 3, states that either
G has chordality at leastk +1 or G has hyperbolicity at mostbgkc, in time O(m?3).

Our caterpillar-decomposition seems to be a promising restrictiorof treelength
(see [DGO7, Lok10]). We are currently investigating algorithmic applications of it.

2.2 From pursuit-evasion games' point of view

Graph searching games provide a powerful tool for studying graph decopositions
(e.g., see [KP86, Bie91, Bod98, Bod07]). In [t-Nis07], we de ned a non-deteinistic

graph searching that provides a generalized approach for both path-decongsitions
and tree-decompositions. In this section, we present the receniesults we obtained
on this variant and their applications to the understanding of graph deconpositions.

2.2.1 Non-deterministic Graph Searching, branched decomposi-
tions

In graph searching’, a team of searchersaims at capturing a fugitive running in a
connected undirected simple graphG [KP86]. The searchers and the fugitive occupy
the nodes ofG. The fugitive is arbitrary fast and can goes through the paths of
G as long as it does not meet a searcher. It is captured if a searcher oquas the
same vertex as it and if the fugitive cannot escape, i.e., all neighbors dfs position
are also occupied. Searchers can be placed at or removed from the noddss. A
strategy for the searchers is a sequence sfeps(placement or removal) that results
in capturing the fugitive whatever it does*. The number of searchersused by a

3The variant presented in this section is referred to as node graph searching[KP86].
“Note that an important di erence with the games presented in Cha pter 1 is that, in graph
searching, both players play simultaneously, not turn-by-turn .
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strategy is the maximum number of searchers simultaneously occupgg nodes of
the graph.

The corresponding optimization problem is to minimize the number ofsearchers
needed to capture a fugitive in a graphG. If the fugitive is invisible, this number
is the node search numberof G, denoted by ns(G). For visible fugitive (i.e., the
strategy of the searchers may be guided by the current position of theugitive), this
number is the visible node search numbeof G, denoted by vns(G).

A strategy is said monotoneif each node is occupied at most once by a searcher.
A crucial property is that both variants visible and invisible are monotone That
is, in any graph G, there is a monotone strategy capturing the invisible, resp.
the invisible, fugitive using ns(G), resp., vns(G), searchers [BS91, LaP93, ST93].
The main consequences of the monotonicity property is, rst, that the problems of
computing the search numbers are in NP and, second, that these paramate are
equivalent to pathwidth and treewidth respectively because monobne strategies are
equivalent to path- and tree-decompositions. More precisely:

Theorem 34 [KP86, Bie91, ST93, Bod98] For any graphG, ns(G) = pw(G) +1
and vns(G) = tw(G) + 1.

From above theorem, it follows that computing visible or invisible search num-
bers are NP-hard problems. However, they can be solved in polynomialtie in
several graph classes among which the class of trees. Precisely, treasch num-
ber (and corresponding strategy) of trees can be computed in lineard#he [EST94,
PHsH* 00, Sko03, CHM12], while visible search number trivially equals 2 in treg
For more related work on graph searching, we refer to [t-Nis07, FT08, BY11] and
to Chapter 3 of this thesis.

In [c-FFNO5, j-FFNQ9, t-Nis07], we introduced non-deterministic graph sarch-
ing as a unied version of visible and invisible graph searching games.In non-
deterministic graph searching with parameterq2 N[flg , the fugitive is a priori
invisible, but the searchers have the ability to see it a limited number g of times.
More precisely, in a hon-deterministic strategy in a graphG = (V;E), the allowed
steps are: to place a searcher at a node, to remove a searcher from adeoor to
perform a query. When occupying the nodes inX  V and performing a query,
the searchers learn the \position" of the fugitive, i.e., the conneced component of
V nX occupied by the fugitive. The g-limited search numberof a graph G, denoted
by nsq(G), is the smallest number of searchers required to capture a fugite in G
in this setting (i.e., using at most g query-steps) [c-FFNO5, j-FFNO09, t-Nis07]. In
particular, nsg(G) = ns(G) and ns; (G) = vns(G) for any graph G.

In [FMNO8, c-MNOQ7], we proved that non-deterministic graph searching 8 mono-
tone. In [c-FFNO5, j-FFN09], we have shown that computing the g-limited search
number is NP-hard in star-like graphs, for any xed g2 N[flg , and we designed
exact exponential algorithm for computing it. The monotonicity result on ce again
allows us to prove the equivalence between non-deterministic gph searching and
a particular tree-decomposition, namely theg-branched decomposition
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Given a rooted tree T, with root r, a branching node of T is a node with at
least two children. Let g 0. A tree T is g-branched if it can be rooted in a node
r and every path in T from (root) r to a leaf contains at mostq branching nodes.
A tree-decomposition (T; X) of a graph G is g-branched if T is g-branched. The
g-branched treewidth of a graph G, denoted by twq(G), is the minimum width of
any g-branched tree decomposition ofG.

[c-FFNOS5,

Theorem 35 Letq O, and G a graph,twq(G) = nsq(G) 1. J:-'\FAF’\IF\E)%&
j- :

. . . . c-MNO7]
Motivated by the fact that pathwidth of trees are well characterized, we inves-

tigated non-deterministic graph searching in trees to get a better mderstanding of
g-branched decompositions. First let us recall the known results:

Theorem 36 [Sko03, MHG' 88] For any tree T on n vertices, nso(T) 1+
logz(n 1) and nsp(T) can be computed in time linear inn.

We design a polynomial-time two-approximation algorithm to compute snq(T)
in any tree T and for any q2 N[flg . Our algorithm is exact for g 2 f 0; 1g.

Theorem 37 There is an algorithm that, for any tree T and any integerq > 0O,

returns an integer k 2 nsq(T)+ 1 and a correspondingg-limited search strategy

using k searchers, in time polynomial injV(T)j (independent of g). [s-ACNO7]
Moreover, if g2 0;1g, k = nsq(T).

Our algorithm proceeds by intricate dynamic programming on the tree andis
based on two main technical results. First, we show how to computen polynomial-
time a node strategy in a graphG when the initial positions of some searchers are
imposed, and using the smallest nhumber of searchers needed in thégtting. In
other words, given a graphG and X V(G), our subroutine computes a path-
decomposition with rst bag X and with minimum width among all the path-
decompositions starting from X. Second, we de ne a restricted version of non-
deterministic graph searching where, once a searcher is placed on sernontami-
nated vertex, it cannot be removed as long as the next query has not begrerformed
(unless no query remains). We show that this constraint requiresat most twice the
number of searchers of the initial variant and we prove that the correspnding
search-number can be computed in polynomial time using the subroultig.

After considering the minimization of the number of searchers given axed
amount of queries, we study the \dual" problem of minimizing the number of queries
that are required for a xed number of searchers to clear a tree. More pecisely, for
anytreeT andk 2, let «(T) be the smallest number of queries required to clear
T using at most k searchers. First, we design an algorithm that computesp(T)
for any tree T in time quadratic in the size of T. Then, we derive some lower and
upper bounds:

Theorem 38 For any tree T, ip(T) dj V(T)j=8e, and this bound is tight. [s-ACNO7]
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(@ T, @(T1)=1 (b) T, (Tq) = djV(Tq)j=8e

Figure 2.1: TreeTg, 9 1, with 8q 1 nodes such thatop(Tg) = g= djV(Tg)j=8e.

The lower bound of the previous theorem is achieved by the trees dégied in
Figure 2.1.

Theorem 39 For any tree T on n nodes, and for anyk 3, o(T) 2dog, ne.
Moreover, for any xed k the bound is asymptotically tight: for anyng, there exists
n np and a tree T, on n nodes such thaty(Tn) = (log ,n).

Our main result concerning trees is a polynomial-time 2-approximaton algo-
rithm for computing sq(T) for any tree T and g 1. However, for any xed q > 1,
the complexity of the problem to decide whethernsq(T) k (k > 2 being part of
the input) remains open. The fact that the parameter nsq is minor-closed implies
that the problem is Fixed Parameter Tractable, i.e., there is an algorithm which
decides in time f (k) poly(jV(T)j) whether nsq(T) k, where f is some func-
tion depending only on k. Since, nsy(T) nso(T) = O(logjV (T)j) [MHG * 88],
f (k) = c©&) for some constantc would lead to a polynomial-time algorithm.

In next section, we present general results on graph decompositions & some-
how follow from our techniques to prove monotonicity of non-determiristic graph
searching.

2.2.2 Partitioning trees and general set decompositions
Duality treewidth/bramble

The monotonicity result that we provide in [FMNO8, c-MNOQ7] is actually a u ni ca-
tion of the di erent techniques given in [BRST91, BS91, RS91, ST93]. Onempor-
tant consequence of these techniques is the characterization of \duaktructures for
various decompositions: blockagesfor path-decompositions [BRST91], tangles for
branch-decompositions [RS91], obramblesfor tree-decompositions [ST93].

As an example, abramblein a graph G = (V; E) is a setB of pairwise touching®
subsets ofV. The order of B is the minimum size of a hitting set, i.e., the smallest
number of vertices inV that intersect each set inB.

The min-max theorem for treewidth of Seymour and Thomas can be stated as:

Theorem 40 [ST93] In any graph G, the maximum order of a bramble inG equals
tw(G) +1.

5Two sets X;Y  V(G) are touching if either they intersect or if there is an edge xy 2 E(G)
with x2 X andy2 Y.
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Intuitively, a bramble of order k provides an escape strategy for a visible fugitive
against k 1 searchers. Indeed, leff By; ;Brg be a bramble of orderk in a
graph G. It is proved in [ST93] that it can be taken such that each B; induces a
connected subgraph ofG. Using at mostk 1 searchers, there is always a subgraph
G[Bi] for somei r that is free of searcher. Because the elements of the bramble
are connected and are pairwise touching, the fugitive can always safelyeach the
element of the bramble that is free of searcher.

Therefore, the maximum order of a bramble in G equals the visible search
number of G. On the other hand, the monotone visible search number of5 equals
its treewidth plus one. Hence, we get directly that the maximum orde of a bramble
in G is at most tw(G) + 1. Seymour and Thomas proved the other inequality by a
technical work on tree-decomposition and derived the monotonicity of vsible graph
searching from this. On the opposite, our proof of the monotonicity []-MNOS,
¢c-MNOQ7] allows us to derive their result.

In what follows, we explained how we generalized our technigue to o#tr decom-
positions, not restricted to graphs.

Note, however, that other duality results related to graph searching gane seem
not to be related to our approach, namely the LIFO-search (searchers haylabels
and a searcher can be removed only if it is the smallest searcher pex#t at a some
node) is monotone and leads to a min-max theorem between tree-depth dncycle-
rank in (di)graphs [GHT12].

Partitioning-trees and Partition functions

A partition function of a setE is a function from P (E), the set of partitions of E®,
to R[flg . A partitioning-tree (T; ) of E is a tree T together with a one-to-one
mapping from E to the set of leaves ofT. Hence, every internal nodev or edge
e of T corresponds to the partition T, (or to the bipartition T,) of E whose parts
are the set of leaves of the subtrees obtained by deleting (or €). Given a partition
function of E, the -width of a partitioning-tree ( T; ) of E is the maximum of
( Tv), ( Te) over all internal nodesv of T and edgese of T. The -width of E is
the minimum width of the partitioning-trees of E [FAMNTO9].

Using the appropriated partition functions, partitioning-trees generalize most of
the graph-decompositions. For instance, in a graphG = (V; E), for any patrtition
P=(E1; ;E;)ofE,let (P)bethenumber of vertices that are adjacent to edges
in at least two parts of P. The -width of E is equivalent to the treewidth of G, and
any partitioning-tree of E corresponds to a tree-decomposition ofs [[FAMNTO09].
Some graph decompositions also require to add restrictions on the tregtructure:
any partitioning-tree (T; ) of E (resp., of V) where internal nodes ofT have degree
three is a branch-decomposition (resp., a carving decomposition) db.

We also abstract the notion of brambles for any partition function . A k-
bramble B of E is a set of pairwise intersecting subsets oE such that for any

8 A partition of E is a set (Py; ; Pr) of pairwise disjoint non-empty subsets of E with [ (P =
E.
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partiion P = (E1; ;E;) of E with ( P) k, thereisi r suchthat E; 2 B.
In [[FAMNTOQ9], we give a min-max theorem linking the -width of a set wi th the
existence of particular brambles, when satis es some properties.

Let X = fX3;:::;Xng be a partition of E andlet F E and F®= E nF. Let

of the following holds:

1. There existsF such that X; F (Y] nXij)®and ( X)> ( Xx;1 )

2. (Y) (Yyr xe)

Using similar techniques as in []FMNO8] to transform partitioning-trees, we get:

Theorem 41 Let be a weakly submodular partition function on a sett and
k 2 R*. All k-brambles contain a singleton if and only ifE has -width at most k.

The above theorem actually generalizes all previous duality results ash extends
it to new decompositions such as the treewidth of matroids [[FAMNTO09]. Late on,
this result has been improved in [LMT10] where the shown duality result does not
rely on the submodularity of partition functions but on a combinatorial p roperty
of the partitions. Moreover, based on the results of [LMT10], an exponentl-time
algorithm to compute brambles has been designed in [CMT09].

In [s-BBM* 13], we investigate su cient conditions for a partition function
such that there exists a polynomial time algorithm that decides if a sé¢ has -width
at most k, k being a xed parameter. Basically, these properties abstract the fat
that corresponding parameters are close under taking minor and that theycan be
computed by dynamic programming only remembering some bounded inforation
concerning the \border" of the subgraphs. Our algorithm is based on dynami pro-
gramming and generalize all algorithms in [BK96, BT97a, TSB00, BT04, TSB05a,
TSBO5b]. Moreover, our algorithm allows to take into account the structure of the
partitioning trees and, therefore, provides the rst FPT algorithm for computing
the g-branched treewidth or the special treewidth [Coul0b].

Hence, the notions of partition function and partitioning tree allow us to unify
and generalize several results on graph decompositions. While our FPT algitihm
has some theoretical interest (in particular, it is su cient to che ck that a partition
function satis es some properties to directly get an explicit FPT algorithm), it is
far to be practical. Therefore, designing e cient FPT algorithms (e. g., that are
\only" exponential in the parameter) for computing graph decompositions is still
a challenge, even in very restricted graph classes. For instance, ¢hbest known
algorithm that computes optimal path-decompositions of outerplanar graphs has
complexity O(n't) [CHSO07, FTO7].

Moreover, our duality result does not cope with rooted tree-decompdtions such
as branched tree-decompositions and all decompositions of directed graphin next
section, we brie y discuss about the case of decompositions of direalegraphs.
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2.2.3 Related work on decompositions of directed graphs

During the last decade, several digraph decompositions have been proged in order
to try to bring to directed graphs the same algorithmic power as treedecompositions
provide in undirected graphs. Interestingly, most of these attemps have been de-
ned through graph searching games. An important di erence between directed
graph searching games and undirected ones arises via the notion of monotoityc In
the directed case, there are two distinct de nitions of monotonicity: a game iscop-
monotoneif each node is occupied at most once by a searcher, it isbber-monotone
if the area reachable by the robber never increases. Clearly a cop-motone game
is robber-monotone. However, as shown below, the converse is not alvajrue.

Johnsonet al. rst de ned the directed tree-decompositionwhich roughly \trans-
lates" the connectivity properties of tree-decomposition into strong connectivity
properties in directed graphs [JRSTO1]. Their variant is closely reated to the
graph searching game where the visible fugitive has the extra constrai that it can
move only in strongly connected components free of searchers. That ithe fugitive
can go from nodesu to v if there is a directed path from u to v free of searchers
and a directed path from v to u free of searchers. It has been shown that, in this
game, the non-monotone, the cop-monotone and the robber-monotone variants may
di er [JRSTOL1, AdIO7]. Adler also show that directed treewidth is not c losed under
taking butter y minors [AdIO7]. Because of the non-monotonicity result, no min-
max theorem can be expected via graph searching. However, [JRSTO1] pred a
weaker result: if k searchers have a winning strategy in a digraptD, then 3k 1
searchers have a robber-monotone winning strategy iD, which leads to a min-max
theorem up to a constant ratio between directed treewidth andhavens[JRSTO1].
In [EHS13], it is proved that the cop-monotone version of this game is actuajl
equivalent to the D-width de ned by Safari [Saf05] leading to an exact agorithm for
computing this variant. Moreover, they show that D-width and direc ted treewidth
are actually equivalent (in the sense that one is bounded if and only if he other is
bounded) [EHS13]. On the algorithmic applications side, Johnsort al. proved that
hamiltonian path, hamiltonian circuit and k-disjoint paths (k xed) problems can be
solved in polynomial time for digraphs with bounded directed treewidh [JRSTO1].

For tackling other problems, other digraph decompositions have been mposed.
The DAG-decomposition is weaker than directed tree-decompositiontfounded DAG-
width implies bounded directed treewidth) [BDH* 12]. It corresponds to the cop-
monotone version of the game where the visible fugitive is constraint tofollow
the direction of arcs. While robber-monotone and cop-monotone variants coin
cide [BDH* 12], this game is not monotone [KO11]. The winner of parity game is
polynomially solvable in digraphs of bounded DAG-width [BDH* 12]. However, a
drawback of DAG-decomposition is that the best known upper bound of tte size
of such decomposition with width k in a n-node digraph isO(n¥) (it is not known
whether deciding if a digraph has DAG-width at most k is in NP). Another decom-
position weaker than directed tree-decomposition is the Kelly-deomposition that
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corresponds to the robber-monotone variant of the the game where an ineftfugi-
tive forced to follow the arcs [HKO08]. Again, this game is not monotone [KO11].
A polynomial-time algorithm to recognize digraphs with Kelly-width at m ost 2 is
given in [MTV10]. Approximation algorithms for computing directed treew idth,
Dag- and Kelly-width, with approximation ratio O(log®?n) have been designed
in [KKK11].

Until now, no powerful enough digraph decomposition has been found. In-
deed, many NP-hard problems remain untractable in class of graphs with booded
Dag-,Kelly- or directed tree-width, e.g., feedback arc/vertex setor digraph grundy
coloring [KO11]. Unfortunately, Ganian et al. give evidence that such a \good"
digraph decomposition is unexpected to be substantially di erent than the tree-
decomposition of the underlying undirected graph [GHK" 10]. A width digraph
measure is powerful if any MSO; de nable decision problem can be solved in
polynomial time in digraphs with bounded -width. More precisely, Ganian et al.
show that, if is a digraph width measure that is (1) not treewidth-bounding (there
is no computable functionb such that (D) k implies that tw(UD) (k) where
UD is the underlying undirected graph of digraph D), (2) monotone under taking
directed topological minors and (3) e ciently orientable (roughly, the -widths of
two digraphs with same underlying graph cannot di er too much), then P = NP
or is not powerful [GHK™ 10]. They also show that relaxing the second condition
by \monotone under taking subdigraphs" makes possible the existence gfowerful
widths.

To conclude, let us mention that several directed path-decompositins and di-
rected invisible graph searching have also been proposed [Bar06, Yan07, ¥T,
YCO08b, YCO08a]. Contrary to their visible counterparts, all are monotone. In next
section, we study another such a variant (coming from routing problem$, prove its
monotonicity and its equivalence with a digraph decomposition. It would be in-
teresting to study the algorithmic applications of such a decompositbn. Moreover,
the visible variant of this game could provide a \powerful" decomposition.

2.3 Application to Routing Recon guration: Process-
Ing game

In previous section, we have seen that no \good" decomposition of dir¢ed graphs
have been de ned yet. In this section, we study a directed graph sarching game,
namely the processing gameintroduced by Coudert et al. to model routing re-
con guration problem [CPPSO05]. While our study mainly focus on applications to
routing recon guration, we also give some hints that pocessing game coulttad to
a \good" decomposition of directed graphs.

A fugitive is inert if it is invisible but can move only when a sea rcher is going to land on the
same node. This version has been introduced for undirected graphsin [ST99].
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2.3.1 Routing recon guration in WDM networks

In connection oriented networks such as Wavelength Division Multigexing (WDM),
SONET (Synchronous optical networking), or MPLS (Multiprotocol Label Swi tch-
ing) networks, each connection requestl 2 is assigned a lightpath under the wave-
length continuity constraint, that is to say a path in the topology and an end-to-end
wavelength. The Routing and wavelength assignmen{RWA) problem consists in
assigning such a lightpath for each request under the constraint that wo optical
paths sharing a ber have distinct wavelengths [Muk92, JMTO7] (see aso Chapter
5 in [Coul0a] and references therein). The set of lightpaths, or routegbtained in
that way is called a con guration .

Current such networks are becoming more exible, o ering new on-denand ser-
vices (on-demand TV, mobile Internet, peer-to-peer) which leads ¢ a constant
evolution of the tra c pattern. Moreover, these networks also allow better ma-
nagement of maintenance operations (requiring to switch o equipmens) and equip-
ments failures { due to earthquake, tsunami, or a backhoe unfortunatéy breaking
a pipe containing some bers. A building block for exibility and r eliability is the
possibility to recon gure the routing, that is to compute new optical paths for some
connection requests and then to switch the tra ¢ from former to new optical paths.
Such process may however a ect the quality of service by inducig potential tra c
disruptions. Moreover, due to physical layer impairments [SS09]recon guring the
routing { setting up the new lightpaths { induces some cost for the ndwork oper-
ator, in particular if service level agreements are not ful lled. Thus, the routing
recon guration process must be carefully optimized.

A classical approach for recon guring the routing is based on theMove-to-
Vacant (MTV) scheme [LL96, MM99, CBLO7]. Basically, the MTV scheme con-
sists in sequentially choosing a lightpath, computing a new route ging available
resources for the corresponding request, and then switching theeguest from its
current lightpath to its new route in a make-before-breakfashion as standardized
for MPLS networks [MPO06]. This process is repeated sequentially urltthe reached
con guration achieves the desired constraints (e.g., overall usage of seurces, avail-
ability of a desired route). However, such a greedy policy leads to agor usage of
resources and so to higher blocking probability: new connection ragests might be
rejected although the network has enough resources to serve all the trac, up to
the rerouting of some existing connections. The main issues when ing the MTV
approach are to guarantee the convergence of such a process and to controéthum-
ber of route changes. Moreover, such solutions are not su cient and interuptions
may be necessary [JS03].

To ensure both a fast termination and that the nal con guration satises t he
desired performance criteria, another approach consists in pre-comping the tar-
get con guration and then to focus on the recon guration itself, that is de ciding in
which ordering the existing lightpaths should be switched to acheve the nal con-
guration. More formally, the recon guration problem is to determine the \best"
sequence (order) of connections rerouting to move from the currenton guration
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(a) Initial set of routes R;. (b) Final set of routes R». (c) Dependency digraph D
from S; to S,.
Figure 2.2 Instance of the reconguration problem consisting

of a network with 10 nodes and symmetric arcs, 8 connections
(h;1);(h;0);(d; 0); (d;b); (e;bB;(e;j); (15 ); (g;1) to be reestablished. Figure 2.2(a)
depicts the initial set of routes R 1, Figure 2.2(b) the nal set R, and Figure 2.2(c)
the dependency digraph fromR1 to Ro.

to a predetermined target con guration, under the constraint that the connections
are moved one by one [JS03]. However, the nal lightpath of a requesti 2 may
use resources (e.g., a wavelength on a ber) that are used by the in#l lightpath
of another requestd®2 . This latter request d° must then be moved before the
connectiond. The di culty of the recon guration problem lies mainly in the exis-
tence of dependency cycles that require to temporarily suspendosne connections
to allow switching the other requests. Such an interruption corresponds to the
concept of break-before-makestandardized for MPLS networks [MPO6]. A break-
before-make starts by interrupting the lightpath of a request before establishing
the new route. Several recent studies have considered the framevk proposed by
Jose and Somani [JS03] to minimize either the total number of interrupions, or
the maximum number of requests that are simultaneously interrupted, during a
recon guration [CPPS05, Sol09, SP10].

Formal description

More formally, the physical network is modeled by a digraphG = (V;E) whose
arcs have capacity one. Given an instancd 2V V' of connection requests, a
routing R is a set of arc-disjoint directed paths associated to the requestspne
directed path from x to y in G for each requestr = (x;y) 2 1 . SoR(r) is the

route of requestr in G. The routing recon guration problem consists in switching
connection requests one after the other from an initial routingR ; to a precomputed

routing R» in such a way that the smallest number of requests are simultaneougl
interrupted. An important assumption is that, once a request has been(re)routed,

it cannot be moved anymore. In this model, each link ofG has capacity one, i.e.,
each directed link may be used by at most one request. In [CS11], theegpendency
digraph D = (W;A) of R; and R is de ned as follows. W is the set of requests
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r 2 1 with dierent routes in R1 and R,. Moreover, there is an arc from request
u to request v if there exists a link e of G that belongs to both paths R,(u) and
Rl(V).

As an example, Figure 2.2 presents a physical network with 10 nodes and 8
connection requests. Figures 2.2(a) and 2.2(b) describe the initial andhal routing
respectively. Finally, the corresponding dependency digraph idepicted in Fig-
ure 2.2(c). A way to recon gure the instance depicted in Figure 2.2 mg be to
interrupt connections (h; c); (d; b; (e;j), then set up the new paths of all other con-
nections, tear down their old routes, and nally, set up the new pathsof connections
(h;c); (d;b); (e;j). Such a strategy interrupts a total of 3 connections and these ones
are interrupted simultaneously. Another strategy may consist of interupting the
connection (h;i), then sequentially: interrupt connection (h;c), recon gure (d;c)
without interruption for it, set up the new route of ( h;c), then recon gure in the
same way rst (d;b) and (e; b without interruption for these two requests, and
then (e;j) and (i;j ). Finally, set up the new route of (h;i). The second strategy
implies the interruption of 4 connections, but at most 2 connections ae interrupted
simultaneously.

The process numberof D, denoted by pn(D), is a digraph invariant that equals
the smallest number of requests that have to be simultaneously irrupted during
the recon guration phase. In particular, pn(D) = 0 if and only if D is a DAG.
Using this formulation, polynomial-time algorithms have been designedio decide
whether a digraph has process number 1 or 2 [CS11]. A polynomial-time andis-
tributed algorithm that computes the process number of symmetric trees is given
in [CHM12]. However, the problem of computing the process number of aigraph
has been shown NP-complete and di cult to approximate [CS11]. This isa bad
news concerning the routing recon guration problem because there igo hope that
the real instances of this problem lead to restricted classes of depdency digraph.
A hope would have been to show that dependency digraphs of real instaes would
belong to particular digraph classes where the problem would be polynoial. How-
ever, we proved:

Theorem 42 Any digraph D is the dependency digraph of an instance of the rout- [-ccm * 11,
ing recon guration problem where the physical network is a grid. c-CCM ™ 10]

Actually, the routing recon guration problem can be reformulated as a graph
searching problem in the dependency digraph. In what follows, we deribe the
results that we obtained on the recon guration problem and on this graph seaching
game.

2.3.2 Processing Game and digraph decomposition

The processing gamehas been de ned in [CPPS05] as it models the routing re-
con guration problem. Recall that, in a dependency digraph of an instanceof the

recon guration problem, the nodes represents to the requests andhe arcs model
dependency between ressources.
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In the processing gamethe searchers aim atprocessingall nodes of a digraph.
A node is saidsafe if all its out-neighbors are either occupied or already processed.
Given D = (V;A) where all nodes are initially unoccupied and not processed, a

nodes ofD. Each steps; is one of the following moves: place a searcher at a node,
process a safeinoccupied node, or process a safeccupied vertex and remove the
searcher from it. The process numberof D, denoted by pn(D), is the minimum
number of searchers that are needed to proceds.

In this game, the placement of a searcher at a node models the interption of
the corresponding request. The processing of a safe node repretsethe re-routing
of the corresponding request because the resources it requires aagailable (be-
cause the node is safe, all requests corresponding to its out-neights have already
been rerouted or interrupted). Hence, minimizing the number of garchers is then
equivalent to minimizing the number of simultaneous interruptions in the recon-
guration problem. For instance, in the dependency digraph of Figure 2.2€), the
two strategies corresponding to the two recon guration processes deribed in the
example above are the following. A rst strategy consists of rst placing searchers
at the nodes in X = f(h;c);(d;b);(e;j)g, then processing all other nodes, and -
nally processing the nodes inX. Another strategy would be to place one searcher
at (h;i) and sequentially, place a second searcher at an unprocessed neighboof
(h; 1), process the unoccupied neighbor ok, then processx and nally remove the
searcher atx. After all nodes but (h;i) have been processedh(i) can be processed
which concludes the strategy.

This initial variant of processing game is inherently monotone. Indeé, once
they have been rerouted, the requests are not considered anymoregi, processed
nodes are not recontaminated.

A new monotone digraph searching game

In [c-NS13], we extend the de nition of the Processing game to allow reontamina-
tion: a processed node becomes unprocessed as soon as it has an ungieduand
unprocessed out-neighbor. Our main result is that recontamination des not help,
i.e., pn(D) searchers are still su cient to process any digraphD in this variant.

Theorem 43 The processing game is monotone.

This result has interesting side-e ects. It allows us to prove that process-
ing strategies are the algorithmic counter-part of a particular digraph decompo-
sition and that the process number is invariant when reversing all acs of a di-
graph [c-NS13].

All together, these results show that the processing game is the falving graph
searching game. In a digraphD, searchers may be placed at or removed from the
nodes ofD. An invisible fugitive is running with arbitrary speed along the arcs of
D while it does not meet any searcher. The fugitive has the additional costraint
that it must always move. The fugitive is captured if a searcher lands at the same
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node and the fugitive cannot escape, or if the fugitive runs into a seather (because
of the constraint of always moving), or if it cannot move anymore. The proess
number of D is the minimum number of searchers that are needed to capture the
fugitive.

Note that, in symmetric directed graphs, the process number di ers by at most
one from the pathwidth of the underlying undirected graph [CPPS05]. t would
be very interesting to study the variant of this game when the fugitive is visible.
Indeed, it is a variant of the game de ned by Johnsonet al. (the fugitive is more
constrained) corresponding to the directed tree-decompositionsJIRSTO01]. Hence,
as pointed out in previous section, it might o er new algorithmic perspectives.

Tradeo : from Minimum Feedback Vertex Set to Process number

A trivial upper bound for the process number of a digraphD is the minimum size of
a feedback vertex set (FVS) ofD8, denoted by mfvs (D). Indeed, placing searchers
at each node of a feedback vertex set db allows to capture the fugitive. While
such a strategy may use a lot of searchers (compared with the processimber of
D), such a strategy usingmfvs (D) searchers will capture the fugitive by occupying
the smallest number of nodes.

We then tried to establish tradeo s between these two objectives minimizing
the number of vertices that are occupied during a process strateggnd minimizing
the number of searchers used by a strategy. In terms of the routing @n guration
problem, these objectives correspond respectively (1) to mininzie the total num-
ber of disrupted connections [JS03], and (2) to minimize the maximum omber of
concurrent interruptions [CPPS05, Sol09, SP10].

A (p;0g)-process strategy denotes a process strategy foD using at most p
searchers and covering at mosty vertices. Given an integerq mfvs (D), we
denote by png(D) the minimum p such that a (p; g)-process strategy forD exists.
On the other hand, foranyp pn(D), let mfvs (D) be the minimum q such that a
(p; 9-process strategy forD exists. These parameters are illustrated in Figure 2.3.

We rst give some complexity results.

Theorem 44 Letp pn(D), q mfvs(D) be xed integers, andD a digraph.

Computing png(D), pp”nq((g)) is NP-complete and cannot be approximated up to an

additive constant. Computing mfvs (D), %‘}(gf is not in APX.

Then, we show that no good tradeo s can be expected in general. That is,
restricting the number of occupied vertices may arbitrarily increase the number of
searchers:

Theorem 45 Forany C > 0, q2 N, there exists a digraphD s.t. p”m;“;(igg(m >C.

8F V(D) is a FVS of a digraph D if the digraph induced by V(D) nF is acyclic.

[iFCCM * 11,
c-CCM * 10]

[iFCCM * 11,
¢c-CCM * 10]



[IFCCM * 11,

¢c-CCM * 10]

[iFCCM * 11,

c-CCM * 10]

64 Chapter 2. Tree Decomposition, Graph Searching and Applications
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Figure 2.3: Representation of the tradeo 's parameters. In abscissap denotes the
number of searchers. In ordinate,q denotes the number of occupied vertices.
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Figure 2.4: Digraph D used in proof of Theorem 46

Similarly, restricting the number of searchers may arbitrarily increase the num-
ber of occupied vertices. To prove the next Theorem (settingn = p+ 2 and
k > 45-3), we de ne the digraph D of Fig. 2.4. K },, is a symmetric clique ofn+1

and the independent sets form the patternP (see Fig. 2.4). BetweenK 2., and
KL, the same pattern is built.

Theorem 46 For any C > 0 and any integerp 0, there exists a digraphD such

mfvs pn+p(D)
that W(Dp) >C.

For p = 0, the digraphs D of previous theorem have process number 3 (indepen-
dently of C). We then addressed the behaviour of"':;"hslsi"”(é[;) for symmetric digraphs
D. In contrast, the ratio is not arbitrary large anymore when the process mumber

is bounded.

mfvs pn (D)

Lemma 9 For any symmetric digraph D, “mfvs (D) pn(D).

It would be interesting to know if the ratio %”QEB) is bounded by a constant

in symmetric digraphs D. Such a constant would be at least 3 as shown in next



2.3. Application to Routing Recon guration: Processing game 65

o o °
] X Y1 N
S S ° o |-
ﬁ Tl % N Ye | Z |- k
o |[---- ® [---- .
« >f'

Nkl ol o [0 ke

c | o-o L AN - e

x
° <o
N

1 2
K1,2 Isr\ A Isn K2,1

Kan Ko Knz

(a) Symmetric digraph D of Lemma 10 (b) Same digraph D when n =5.

Figure 2.5: Symmetric digraphD of Lemma 10 (a) andD whenn =5 (b).

lemma. The digraph used in this lemma can be built as follows. LetD be the
symmetric digraph of Fig. 2.5(a). Let IS} and IS2 be two independent sets ofn

nodes each: respectivelxs;:::;x, and z1;:::;z5. Let K41 be a symmetric clique
of n+1 nodesyy;:::;yn,V. In D, there are two symmetric arcs betweerx; and y;,
and betweenz; andy;, i =1;:::;n,j =1;:::;n,ifand only if j  i. Furthermore

the two right nodes of K 1., and nodes oflS} form a complete symmetric bipartite
subgraph (the same construction forK.; and 1S2). The symmetric digraph of
Fig. 2.5(b) representsD whenn = 5.

mfvs pn (D) 3

Lemma 10 8"> 0, there exists a symmetric digraphD s.t. =4 )

[iFCCM * 11,
¢c-CCM * 10]

2.3.3 Adding constraints from telecommunication networks

In previous subsection, we have presented our study of routing re@n guration with
the graph searching point of view. On the other hand, we have also invéigated
this problem by introducing constraints arising in real networks. Not surprisingly,
the problems become much more di cult. Moreover, it appears that, unfortunately,
the graph searching perspective is not adapted anymore to study seval of these
problems (at least, we did not manage to use graph searching paradigm for obtaiimg
interesting results).

Priority connexions
[c-CHM * 09]
In [c-CHM™ 09], we propose a model to handle several classes of service. During
the recon guration process as described above, any connection may berted to be
interrupted, and so this induces some tra c perturbations that cli ents may not ac-
cept. Moreover, some clients may sign a speci ¢ contract forbiddig interruptions,
and so the operator o ers two classes of services. To cope with these twclasses, we
introduce the new constraint that imposed some particular connectios, called the
priority connections, not to be interrupted. In the process number game formula-
tion, this constraint is modeled by a speci ¢ subset (given as inpt of the problem)
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of the nodes of the dependency digraph that cannot host searchers. Thas, the
single way to process thesgriority nodes is to deal with all their outneighbors rst.
Given a setQ V(D) of priority nodes, let png(D) be the minimum number of
searchers required to process the digrapld without placing any searchers at the
nodes inQ. Note that a direct cycle of priority nodes in the dependency digraph
makes the recon guration impossible, in which case, we sghng(D) = 1 .

We show that this problem is actually equivalent to the problem without priority
connections. More precisely, when recon guration is possible (ipng(D) < 1),
we present a simple transformation of any digraphD with a set Q V(D) of
priority nodes into another digraph D (with size polynomial in the size of D)
without priority nodes such that pn(D ) = png(D) [c-CHM™ 09]. Moreover, we
proved that, for every digraph D and setQ V(D) of priority nodes, if png(D) <
1, then png(D) pn(D) + jN*(Q)j. Moreover, this bound is asymptotically
tight [c-CHM * 09]. We also gave an heuristic, based on random walks (similar to
Pagerank), that computes an upper bound of the process number. Simul&ns show
that our heuristic is e cient in some graph classes (circular arc graphsand digraphs
with process number 2) but far to be optimal in graphs with a lot of symmeries
(grids) [c-CHM ™ 09].

Shared bandwidth
[c-CMNO9]

One clear limitation of the model studied in previous subsection ighe fact that links
are supposed to have capacity 1. That is, this model considers that a corection
request uses all the bandwidth of a link (e.g. wavelength) and it is 0o limited to
handle cases in which a request uses only a fraction of the bandwidth af link (e.g.
MPLS, SONET and so tra ¢ grooming).

In [c-CMNOQ9], we proposed a model generalizing [CS11, JS03] to handle cases
in which a request uses only a fraction of the bandwidth of a link. Themain
di culty of the recon guration problem comes from the fact that the nal r outing
only gives the links used by the requests but not the unit of capacity Therefore, we
have some choice when performing the scheduling of the recon gurain phase. We
have shown that the routing recon guration problem becomes much more dcult.
Precisely, we proved that, when the requests have bandwidth muirement 1 and
that links have capacity at least 3, the problem of deciding whether trere exists a
scheduling of the rerouting without tra c interruption is NP-compl ete [c-CMNO9].
In contrast, when arc's capacities are equal to 1, this problem correspats to decide
whether the dependency digraph is acyclic.

Physical cost

[c-BCM * 12]
Finally, we addressed the problem of recon guration in a di erent way, which is the
inclusion of physical constraints to the establishment of an optical pah [c-BCM* 12].
We aim at optimizing the recon guration cost which is induced by physical layer
impairments. Indeed, the transmission of an optical signal in a ber issubject to
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many parameters: bandwidth, transmission power, signal attenuation rguiring the

use of ampli ers every 50-80 km, phase shifts associated the imperfian of the laser

and the distortion of the ber, and various electro-magnetic e ects (see [SS09] for
more details). This requires extremely ne adjustments to ensue good transmission
quality, but everything has to be redone (or adapted) when a new waviength is

used in the ber. Thus, setting up a new lightpath in a network has a cost (energy,
time and/or man power) due to the recalibration on all bers used by the path

which depends (non-linearly) on the number of wavelengths already i@sent. In

addition, these changes can a ect the entire network by spreading coections to

be made. See [MCK 09] for an example of the inclusion of these e ects in the
computation of optical routing.

We presente a rst theoretical study of the routing recon guration pr oblem
including physical layer impairments. We model the cost of rerouing a request in
a con guration as a simple non linear function depending on theload of the links
used by the lightpath to be established, where the load of a link is tle number of
lightpaths crossing it in the current con guration. Our cost function also depends
on a tunable parameter 0 which is an exponent, e.g., =1 corresponds to a
linear cost function. While simple, the cost function we proposed abbws to capture
several constraints due to physical layer impairments as the non-iearity.

Assuming that the recon guration is possible without interruptions, our objec-
tive is to compute a scheduling of the requests that achieves a mimum global cost.
We prove that this problem is NP-complete even in a physical networkwith two
nodes (and parallel links) and when = 0 [c-BCM * 12]. We then characterize a
particular class of instances where the problem can be solved in linedime, for any

0. In the particular case of a ring topology and =1, we give a simple linear
algorithm for solving the problem. Finally, we design several heurisics and report
on numerical simulations [c-BCM* 12].

It is a bit disappointing to see that adding more realistic constraints makes the
problems become very di cult even when restricted to simple topologies. One hope
here is therefore to use our study of graph structures in order to propse e cient
pre-processing to reduce the size of the instances, or to desigrtter heuristics.






Chapter 3
Graph Searching: Connectivity,
Exclusivity, Distributed settings

Content

As mentioned in previous chapters, graph searching has been studiedebause it
provides an alternative de nition of graph decompositions and also becaus it al-
lows to model and study telecommunication networks' problems suchas routing
recon guration. In this chapter, we investigate graph searching from anoter point
of view. Namely, the clearing of graphs is a natural application to study the com-
putational power of mobile agents. We study the minimum abilities that mobile
agents must be endowed for clearing a graph in a distributed way.

In Section 3.1, we recall the de nitions of the di erent \classical" var iants of
graph searching and their relationship with graph decompositions studad in previ-
ous chapters.

Section 3.2 focuses omonnected graph searchingvhere the strategies must en-
sure that the clear part of the graph must always induce a connected sujraph. This
property has been initially de ned because it ensures safe commuaoations between
the searchers in a distributed environment. We rst survey the recent results on
this area, the main of which being that the connected search number of graph is at
most twice its pathwidth [Der12b], answering one of the main open quesbns of my
Ph.D. thesis. Then we present our contributions on the cost of the montonicity in
a distributed setting where searchers explicitty communicateusing whiteboards on
the nodes [c-INSO7, j-INS09]. This contribution concludes some work int{Nis07].

In Section 3.3, we present our contributions onexclusive graph searching We
have introduced this variant because it solves two serious limitaibns of classical
graph searching as far as practical applications are concerned: the fact tha node
can be simultaneously occupied by several searchers and the fact thaearchers can
jump from one node to any other one. On the other hand, the exclusivityproperty
(that stated that two searchers can never occupy the same node simtaneously)
allows to study the graph searching problem in the distributed Look-Compute-Move
model which somehow provides an approach of fault-tolerant graph searchg. We
start by presenting the general centralized results we obtained onxelusive graph
searching [c-BBN12, c-BBN13, s-MNP14], then we describe algorithms to savthis
problem in the Look-Compute-Move model in various graph topologies [c-BBI13,
c-DDN™ 13b, j-DDN* 14b, c-DNN14].
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3.1 Quick reminder on Graph Searching

In this section, we recall the basic de nitions of search strategiesand search numbers
and the main known results. Our goal is not to be exhaustive but rather b focus
on the new results that have been developed since my Ph.D. thesisFor a more
complete overviews on graph searching, we refer to [t-Nis07, FT08, BY11] anche
recent book [Brel2].

Graph searching and search numbers

Graph searching[Par78a] aims at clearing the nodes and edges of a graph using a
team of mobile agents, calledsearchers Actually, this is equivalent to the capture of
an invisible fugitive in G as considered in Section 2.2. For instance, Breish initially
introduced this problem to model the rescue of a lost person in thenetwork of
caves [Bre67]. In this chapter, we refer to the clearing semantic écause it ts
better with the considered applications.

Initially all nodes and edges of a graphG = (V; E) are contaminated. A node is
clearedwhen it is occupied by a searcher. An edge 2 E is clearedif either searchers
occupy simultaneously both its ends, or a searcher slides along However, an
unoccupied clear node isecontaminated as soon as there is a path free of searchers
from it to a contaminated node. Similarly, an edge is recontaminated if o of its
ends is recontaminated.

A strategy consists of a nite sequence obteps or moves that results in a state
where all nodes and edges are clear, where each step consists in aitbliding a
searcher along an edge, or placing a searcher at some node of the graph, or reing
a searcher from a node ofc. The number of searchersused by a strategy is the
maximum number of searchers present in the graph among all its steps. He search
number, denoted by s(G), of a graph G is the smallest integerk such that there is
a strategy that clears G using k searchers.

The variant of graph searching de ned above is usually refer to asnixed graph
searching [BS91]. Two other equivalent variants have also been de ned. Innode
graph searching[Bie91] (see also Section 2.2), a strategy is de ned as above but the
only possible moves are the placement and the removal of a searcher étsearchers
don't slide along edges). On the other hand, in theedge searchvariant [Par78a],
the strategies are de ned similarly as mixed strategies (allowed moss are place,
remove and slide) but the edges can be cleared only by sliding a seasr along
it. The corresponding graph invariants are respectively thenode search number
denoted by ns, and the edge search humberdenoted by es.

These three variants are very close one from each other (note that both edgand
node strategies are mixed strategies). In particular, for any graphG, ns(G) 1
es(G) ns(G)+1land s(G) ns(G) s(G)+1 (allinequalities are tight) [KP86].
Simple (and polynomial-time) transformations allow to go from one of thesevari-
ants to another one [KP86]. For instance, Kirousis and Papdimitriou proved that
s(G*) = es(G) for any graph G where G* is obtained from G by subdividing each
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edge once [KP86]. Since the problem of computing the edge-search nuntis NP-
hard in general graphs [MHG' 88], this result also holds for other variants. Note
however that the complexity of computing the di erence between two variants of
search numbers in a graph is still unknown.

Link with graph decompositions and complexity

An important property of graph searching is the monotonicity. Namely, for any
graph G, if there is a node strategy that clearsG using k searchers, then there is a
node strategy that clearsG using k searchers and without any recontamination. A
strategy is saidmonotoneif no recontamination occurs during it. The monotonicity
property can be reformulated as follows:

Theorem 47 [BS91] For any graph G, there is a monotone mixed (resp., node,
resp., edge) strategy that clearss using s(G) (resp., ns(G), resp., s(G)) searchers.

The above property is very important. First, it ensures the polynomial length of
optimal strategies and therefore, it shows that the corresponding ddsion problems
are in NP. Second, it is the corner stone of the following theorem that esiblishes a
link between the node search number of a graph and itpathwidth pw(G).

Theorem 48 [Bie91] For any graph G, ns(G) = pw(G) + 1.

Because path decompositions o er nice algorithmic tools (see Chapter 2) ah
because of the above equivalence, many work has been devoted to compugti-
mal search strategies in various graph classes. Let us mention some resulibout
complexity of graph searching.

A graph is cubicif its maximum degree is at most 3. The problem of computing
the edge search number has been shown to be NP-hard in the class of calyla-
nar graphs [MS88]. Moreover, the reduction from edge search to mixed sezr of
Kirousis and Papadimitriou preserves planarity and maximum degree [KRB6]. More
precisely, the transformation in [KP86] consists in subdividing one each edge, there-
fore, in the resulting graph, the set of vertices with degree exacyl three induces
an independent set. All together, it gives the following result that we will use in
Section 3.3:

Theorem 49 [MS88, KP86] The problem of computing the (mixed) search number
is NP-hard in the class of cubic planar graphs where the set of verticestiv degree
exactly three induces an independent set.

On the other hand, search problems can be solved in various graph classes i
polynomial time. Among other, the mixed search number can be computedn
polynomial time in interval and split graphs [FHM10a, FHM10b] and permuta-
tion graphs [HMO08]; a polynomial time algorithm has been designed for the edge
search number in cographs [HM09, GHM12]; the pathwidth is polynomial-time om-
putable in circular arc graphs [STO7] unicyclic graphs [EMO04], Biconvex Bpartite
Graphs [PY07] some subclasses of chordal graphs [PTHO] etc.
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As discussed in Section 3.2.2, trees are very important structures wan graph
searching is concerned, hence, the case of trees has been particlylatudied [Par78a,
MHG* 88, EST94, PHsH 00]. In particular, Skodinis designed a linear-time algo-
rithm for computing the pathwidth of trees [CHM12]. A generic and distributed
algorithm for computing in time O(nlogn) any of the search numbers inn-node
trees (only the initial setting of the algorithm di er) has been designed in [CHM12],
where the interesting notion of hierarchical decomposition of treess introduced.

3.2 Distributed connected Graph Searching

In this section, we focus onconnected graph searchingn a distributed setting. That
is we focus on edge graph searching with the additional constraint of conmévity:
an edge search strategy is saidonnectedif the clear area (the subset of clear nodes)
always induces a connected subgraph. First, we recall what conneategraph sear-
ching is and we survey the recent advances in this area.

3.2.1 Recent progress on Connected Graph Searching

The connectivity constraint has been introduced in [BFFS02, BFSTO03]

A connected search strategyS in a graph G = (V;E) and usingk 1 searchers
can be de ned as follows. First, a nodevg 2 V is chosen and all thek searchers are
placed at it. Then, S is a sequence of moves, where each move consists in sliding
a searcher atu 2 V along an edgee = fu;vg 2 E and such a move is allowed only
if, after the sliding, there is path of clear edges fromvg to v. In other words, either
the edgee is cleared by the move (and remains clear) or node was already clear
before this move. Theconnected search numbepf a graph G, denoted by cs(G),
is the smallestk such that there exists a connected search strategy that clear&
using k searchers.

The previous de nition clearly allows recontamination. Monotone conneded
search strategies are de ned in a similar way: rst, a nodevg 2 V is chosen and all
the k searchers are placed at it, then, the strategy consists of a sequencerobves,
where each move consists in sliding a searcher at2 V along an edgee= fu;vg 2 E
only if either u is still occupied by a searcher after the move, or all incident edgeof
u but possibly e were already clear before the move. One important and surprising
result is that, contrary to the classical graph searching, in the conneted variant,
recontamination may help [YDA09]. Hence, themonotone connected search number
of a graph G, denoted by mcs(G), may be strictly larger than its connected search
number cs(G). A consequence of this result is that it is not known whether the
problem of computing the connected search number of a graph is in NP. Anotér
di erence between the search number and its (monotone or not) conneed counter
part is that it is not minor-closed. Hence, it is not clear whether the problem
of computing the (monotone) connected search number of graphs admits a ed
parameter tractable algorithm. However, both parameters are closed undetaking
contraction (folklore?).
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Recontamination does not help for connected graph searching in trees,ei,
mcs(T) = cs(T) in any tree T [BFFS02]. In the same paper, it is shown that
computing the connected search number can be done in polynomial timenitrees.
Recently, it has been shown that recontamination does not help in theclass of
graphs with connected search number at most twé. That is, for any graph G,
mcs(G) = 2 if and only if ¢s(G) = 2. The result follows the characterization of this
class of graphs by exhibiting the family of 177 minimal-contraction obstrictions.

On the other hand, connectivity has some price: in [BFSTO03], it has bee
proved that cs(T) 2s5(T) 2 in any tree T and this bound is tight in trees.
Therefore, the question of the cost of connectivity then arises natually: how far
the connected search number of a graph is from its pathwidth? In other wrds,
does there exist a constantc 2 bounding the ratio between connected search
number and search number in any graph? During my Ph.D., we investigatd further
this question, proving that ¢ logn in any n-node graphs [c-FN06a, j-BFF 12]
and that c is bounded in the class of graphs with bounded maximum degree and
chordality [j-Nis09]. We also proved that, in n-node graphs, the ratio is (log n)
in the variant that aims at capturing a visible fugitive in a connected way [j-FNO8,
c-FNO6Db].

Recently, Dereniowski closed the question by showing thatcs(G)  2s(G) in
any graph G [Derl12b]. In particular, he designed a polynomial time algorithm that
transforms any monotone search strategy using searchers into a connected one
using at most X searchers. His result also shows that the ratio between monotone
connected search number and connected search number is bounded by 2.

To conclude this section, let us mention that Dereniowski also inestigated the
weighted variant of connected graph searching. In this setting the wajht w(v) of a
vertex v determines the number of searchers needed to guard it, i.e. if Isshan w(v)
searchers occupy, then recontamination may spread through this node. Similarly,
the weight of an edgee determines the minimum number of searchers that have to
simultaneously slide alonge to clear it. Following the work of Mihai and Todinca
who proved that weighted graph searching is NP-hard in trees [MT09], Desniowski
proved that weighted connected graph searching is also NP-hard in tree[Der11].
On the positive side, a polynomial time approximation with approximation ratio
3 is designed for this problem in [Derl2a]. Similar results were prad while with
di erent terminology (speaking about edge-width instead of weight) [BTK11].

3.2.2 Distributed Graph Searching in unknown graphs

A major reason for which the connectivity constraint has been introdwed is that
it ensures safe communications between the searchers during theexution of the
strategy. For instance, when the searchers have to coordinate themas/es but have
no way to communicate when they are far from each others, possible solighs would
be either to leave some messages on the nodes or to use a searcher foryiag

10On-going work of Micah J. Best, Arvind Gupta, Dimitrios M. Thilik os and Dimitris Zoros.
Personal communication of D. Thilikos.
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instructions between other searchers. In both cases, the conneetly constraint
helps since it allows to avoid that messages are let on contaminated nodgéehat the
searcher crosses when moving in the contaminated area to transferstructions.

In this section, we study the clearing of graphs in such environmenthere the
searchers have only a local vision of their environment and must comnmicate to
coordinate the clearing.

Distributed model.

More precisely, the k searchers are modeled by synchronous autonomous mobile
computing entities (automata) with distinct IDs from 1 to k. Otherwise searchers
are all identical, run the same program and use at mostO(log n) bits of memory,
where n is the number of nodes of the network. A network is modeled by an undi
rected connected graphG . A priori, the network is asynchronous and anonymous,
that is, the nodes are not labelled. The edges incident to any node are labelled
from 1 to its degree, so that the searchers can distinguish the di eent edges incident
to a node. Every node of the network has a zone of local memory, thehiteboard
in which searchers can read, erase, and write symbols. It is moreovassumed that
searchers can access these whiteboards in fair mutual exclusion. Theal is then to
design an algorithm, calledsearch protoco| such that the fewest number of searchers
running this algorithm achieves the clearing of the graph. More precisly, the team
of searchers must execute a connected edge search strategy @r In these settings,
the searchers do not know in advance in which graph they are launched. Hat is,
when occupying some nodel, a searcher executes the algorithm only based on its
current state (the memory of the searcher), on the content of the whiteboard atu
and on the degree ofu.

Contributions.

Distributed algorithms for achieving connected search strategies hae been designed
for several specic graph classes such as trees [BFFS02], grids [FLSO5)ypler-
cubes [FHLO5b, FHLO8], etc. (see also [FHLO6, FHLO7, Luc07, Luc09]).

During my Ph.D., we attack this problem for general graphs. We rst designed a
general algorithm allowing mcs(G)+1 to connectedly clear any graph G [j-BFNV08,
c-BFNVO06]. Since, the extra searcher (compared to the centralized ca$ cannot be
avoided due to the asynchronicity of the network, this is optimal. On the positive
side, the required memory for the searchers is only logarithmic in te number of
searchers. On the other hand, the size of the whiteboards must be patpmial in
the size of the graph and, more importantly, the executed strategy is hotmonotone:
the execution time may be exponential.

To face this problems, we investigated the minimum amount of global infoma-
tion on the graph G that the searchers must have in such a way thatmcs(G) + 1
searchers can cleaG in a monotone (and connected) way. We show that, using
searchers with memory ofO(log n) bits and whiteboards of sizeO(logn), ( nlogn)
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bits of information are necessary and su cient in any n-node graphs [j-NSQ9,
c-NS07]. For doing this, we used the framework of computation withadvice as
de ned in [FIP10]: searchers are given a priori some string of bits thatcan be used
by the algorithm. Intuitively, this extra information encodes a spanning tree of G

\along" which the connected search is done.

After my Ph.D., we consider the same question on another angle: what is th
smallest number of searchers that are required to achieve a monotone aoected
search strategy without any global information. Again, searchers have memory
of O(logn) bits and whiteboards are of sizeO(logn). We then show that mono-
tonicity has an important cost (in terms of number of searchers) in a digributed
setting [j-INS09, c-INSO7].

More precisely, the cost of a search protocolP in a graph G with homebasevg
is measured by the ratio between the number of searchers it uses tear G and
the search numbermcqG;vp) of G. This ratio, maximized over all graphs and
all starting nodes, is called the competitive ratio r(P) of the protocol P. We rst
showed that:

Theorem 50 Any search protocol for clearingn-node graphs has competitive ratio

( |03 ). [-INS09,
c-INS07]

Actually, we prove that the above result holds even restricted to the class of trees
with maximum degree 3. The intuition is that, since the tree is disover online, we
may ensure that, whatever be the protocol, the searchers progress ithe \wrong"
direction. That is, they clear rst a long path, of length ( n), while all nodes of it
must be protected by one searcher to avoid recontamination. Hence, theost of any
protocol will be ( n) in an n-node tree while it is known that mcqT;vp) = O(log n)
for any tree T and any homebase/y 2 V(T) [BFFS02, BFSTO3].

Then, we showed that this lower bound is actually tight.

Theorem 51 There is a search protocolP such that, for any connectedn-node

graph G and any vg 2 V(G), Protocol P enablesO(% mcYG; Vvp)) searchers to [j-INS09,

clear G in a monotone connected way, starting fromvy. c-INS07]
In other words, P has competitive ratio O(%).

This protocol P maintains a subtree of the (connected) clear part, spanning the
clear node that are incident to contaminated edges (in particular, sub nodes are
occupied). The rst goal of T is that it is used for the searchers to communicate
and its root is used to host all the currently \unused" searchers. The main goal of
T is to help the protocol to determine the next edge to be cleared at edcphase.
For this purpose, the protocol also maintains a minorS of T (obtained roughly by
contracting the unoccupied node with degree two inT). The choice of the next edge
to be cleared is done by maintainingS as close as possible to a complete ternary
tree. Moreover, the new clear edge increases the depth &fonly if no other choice
is available. The intuitive reason of this choice is that the completeternary tree is
the tree requiring the (asymptotic) largest number of searchers coipared to the size
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of the tree, even for a centralized algorithm. Therefore, looking for sch a minor in
T, i.e., in G, allows to keep some control on the search number d& and, hence, it
avoids to use too many searchers.

Our technique let think that it would be interesting to compute t he pathwidth
of a graph using some substructure (for which path decomposition can beasily
computed) of this graph. We discuss this idea further to conclude his section.

Further questions.

Besides its practical motivation, this study of graph searching with limited knowl-
edge has been useful to identify some structures that are simple engh to be
computed locally and that allow the clearing of the graph. More preciseg), in both
works where we impose the monotonicity, the clearing is done using agpticular
spanning tree of the graphG. The case with advice shows that there exists a span-
ning tree T such that the clearing of the graph can be done optimally by \following"
T [[-NSQ9, c-NS07]. Clearly, the complexity of the computation of such a trees hid-
den in the advice used in [[FNS09, c-NS07]. On the other hand, in [j-INS09,-tNS07],
we show that we can somehow greedily (and, a priori, without the knowddge of
the whole graph) compute a spanning treeS such that clearing the graph usingS
gives an approximation algorithm for clearing G using o(n)s(G) searchers. | think
it would be particular interesting to identify other structures (or \better" spanning
trees) that could be polynomially computable and would allow an e cient clearing
of the graph.

In other words, | would like to investigate the design of approximation algorithm
for computing the pathwidth 2 of a graph using path-decompositions of simpler
substructures of the graph (e.g., spanning trees).

It is also worth to mention that recent work investigates new variants of (cen-
tralized or distributed) graph searching. For instance, natural variants are the
ones where recontamination is not instantaneous but takes some xed amounof
steps [FMS08, DJS13] or when more than one contaminated neighbor is requie
to recontaminate nodes [LPS07]. Also, the length of the strategy has been ceid-
ered [BHO6, BTK11, DKZ13]. In next section, we de ne and study another variant
where no two robots can meet in a node or in an edge.

3.3 Exclusive and Perpetual graph Searching
The distributed algorithms described in previous section have seeral drawbacks.

First, the searchers are endowed powerful abilities such as no cstant memory.
Moreover, the algorithms work in static networks when no faults occur Hence, we

2Note that pathwidth is not approximable up to an additive cons tant in general [DKL87]. In
planar n-node graphs, it can be approximate up to ratio O(log n), using the polynomial algo-
rithm for branchwidth [ST94]. | am not aware of any other result con cerning approximation for
pathwidth.
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are interested in investigating graph searching in faulty environmat and to pro-
pose self-stabilizing algorithms for it. We should mention that some si-stabilizing
algorithms for graph searching have been proposed in [MM09, BMM10]. However
in this work, it is assume that the searchers can detect which nodeand edges are
dirty. To overpass this assumption, we proposed a model foperpetualgraph search-
ing where searchers have to clear a network in nitely often. For ths purpose, we
investigated graph searching in the CORDA model where searchers ka very weak
capabilities but are able to always \see" the current positions of all sarchers. This
model naturally led us to de ne exclusivegraph searching where no two searchers
can share a node.

3.3.1 Exclusive graph searching

In this section, we de ne the exclusivevariant of graph searching and present the
results we obtained about it. The exclusivity constraint states that each node can be
occupied by at most one searcher at a time. Also, an edge cannot be simultanesly
crossed by several searchers, even in di erent directionsExclusive graph searching
is de ned as mixed graph searching with extra exclusivity constrant and such that
searchers cannot jump from one node to another one, i.e., searchers canlyslide
along edges [c-BBN12, c-BBN13].

More formally, given a connectedn-node graph G, an exclusive search strategy
in G, using k n searchers consists in (1) placing the&k searchers atk di erent
nodes ofG, and (2) performing a sequence omoves A move consists in sliding one
searcher from one extremityu of an edgee = fu;vg to its other extremity v. Such
a move can be performed only ifv is free of searchers. That is, exclusive-search
limits the strategy to place at most 1 searcher at each node, at any point irtime.
The edges of graphG are supposed to be initially contaminated. An edge becomes
clear whenever either a searcher slides along it, or one searcher iged at each of
its extremities. An edge becomes recontaminated whenever there & path free of
searchers from that edge to a contaminated edge. A search strategy winning if
its execution results in all edges of the graphG being simultaneously clear. The
exclusive-search number ofG, denoted by xs(G) is the smallestk for which there
exists a winning search strategy inG.

Exclusive graph searching addresses two serious limitations of clasal variants
(node-, edge- and mixed-graph searching) as far as practical applications eircon-
cerned.

First, classical variants assume that any node can be simultaneously capied
by several searchers. This assumption may be unrealistic in sewarcontexts.
Typically, placing several searchers at the same node may simply bienpossi-
ble in a physical environment in which, e.g., the searchers are magding phys-
ical searchers moving in a network of pipes. In the case of software agent
deployed in a computer network, maintaining several searchers at th same
node may consume local resources (e.g., memory, computation cyclesc.).
The exclusivity constraint aims at dealing with this problem.
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B e

Figure 3.1: Graph S (center) is a star with maximum degree = 6 which is an
induced subgraph of G (right) and such that s(S) =2 <s(G) = xs(G) =3 <
Xs(S) =5 = 1. Tree T (left) has xs(T) = 2 but any monotone exclusive
strategy requires at least 3 searchers.

Second, most variants of graph searching also su er from another unrealigt
assumption: searcher are enabled to \jump" from one node of the graph,
to another, potentially far away, node (e.g., see the classical mixegearch,
de ned above). We restrict ourselves to the more realisticinternal search
strategies [BFFS02, BFSTO03], in which searchers are limited to move ahg
the edges of the graph, that is, restricted to satisfy theinternality constraint .

Contrary to classical variants that are somehow equivalent since the caespond-
ing search numbers di er by at most 2, exclusive graph searching behas di erently
from previous graph searching models. These dierences are mainlyug to the
combination of the two restrictions introduced in exclusive searb: two searchers
cannot occupy the same node (exclusivity) and a searcher cannot \jump(internal-
ity). Therefore, intuitively, the di culty occurs when a sear cher has to go from one
nodeu to a far away nodev, and all paths from u to v contain an already occupied
node. Figure 3.1 illustrates these di erences that are formally staed below.

Consider a simple example of a star with central nodec and n leaves. In the
classical graph searching, one searcher can occupywhile a second searcher will
sequentially clear all leaves, either by jumping from one leaf to andter, or by sliding
from one leaf to another, and therefore occupying several times the aady occupied
nodec. In exclusive graph searching, such strategies are not allowed. Inttively, if a
searcherry has to cross a noder that is already occupied by another searcher, the
latter should step aside for lettingr; pass. Howevery, may occupyv to preserve the
graph from recontamination, and moving away fromv could lead to recontaminate
the whole graph. To avoid this, it may be necessary to use extra seahners (compared
to the classical graph searching) that will guard several neighbors of to prevent
from recontamination when r, gives way tor;. It follows that, as opposed to
all classical search numbers, which di er by at most some constant mulplicative
factor, the exclusive search number may be arbitrary large compared téhe mixed-
search number, even in trees. For instance, it is easy to check thats(Sp) = n 2
for any n-node star S, n 3. More generally,

[c-BBN13] Fact 1 For any tree T with maximum degree 2, xs(T) > 2.
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This result shows an exponential increase in the number of search&used to clear
a graph since the mixed-search number afi-node trees is at mostO(log n) [Par78b].

We now turn our attention to the monotonicity property. Indeed, anothe r im-
portant di erence of exclusive search compared to classical graph sedring is that
it is not monotone. As explained in the example of a star, when a searcheraeds
to cross another one, letting the former searcher pass may lead to rectminate
some edges. In spite of that, the goal of the winning strategy is to prevenan
\uncontrolled" recontamination (e.g., see tree T in Figure 3.1).

Fact 2 Exclusive graph searching is not monotone, even in trees or i2-star-like

graphs. [c-BBN13,
S-MNP14]

Last, but not least, contrary to classical graph searching, exclusive graplsearch-
ing is not closed under minor. Indeed, even taking a subgraph can deease the
connectivity which, surprisingly, may not help the searchers (due to the exclusiv-
ity constraint). That is, there exist a graph G and a subgraphH of G such that
xs(H) > xs (G) (cf. Figure 3.1). Nevertheless, exclusive-search is closed unde
subgraph in trees:

Lemma 11 For any tree T and any subtreeT%of T, xs(T9  xs(T). [c-BBN13]

Contrary to classical graph searching, the proof of this result is not trivial because
of the exclusivity property. To prove it, we have to transform an exclusive strategy
S for T into a strategy S°for T%using the same number of searchers, and without
violating the exclusivity property. The fact that S may be not monotone (i.e., some
recontamination may occur during S) makes the proof technical, because one has
to \control" the recontamination of T%in S°

On the positive side, we show that,

Theorem 52 For any graph G with maximum degree , [c-BBN13]
s(G) xs(G) (  1(s(G)+1):

To prove it, we consider a node strategyS for G using s(G) searchers. To build an
exclusive strategy forG, we mimic S using a team of 1 searchers to \simulate"
each searcher inS. By Fact 1, this upper bound is asymptotically tight.

The above theorem let us some hope to obtain approximation algorithms for
the pathwidth of graphs. Unfortunately, we proved that

Theorem 53 The problem of computing the exclusive search number is NP-hard [s-MNP14]
in the class of cubic planar graphs.

3A connected graph G = (V; E) is a star-like graph if V can be covered by cliquesCo; C1; ; Cr
such that, for any i;j r with i 6 j, Ci\ C; Co. Said dierently, a graph is a star-like graph
if it is chordal and its clique-tree is a star. A graph is k-star-like if ¢ = jCi nCoj k for any
1 i r.
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Figure 3.2: Planar cubic graph G where degree-3 nodes (in grey) induce an inde-
pendent set (left) and Graph G* where nodes with degree 3 ofs are \replaced"
by triangles (right).

Intuitively, exclusive search di ers from mixed search becauseearchers can only
slide and therefore, because of the exclusivity property, the seahers have to avoid
to met other searchers at the same node. The reduction consists in pving that,
for any planar graph G with maximum degree at most 3 (cubic) and such that no
two nodes with degree three are adjacents(G) = xs(G* ) where G* is obtained by
replacing any node with degree three by a triangle (see Fig. 3.2). Intitively, the
triangles allow the searchers to bypass each other.

While computing the exclusive search number is NP-hard, designig a polyno-
mial approximation algorithm for this parameter would imply a polynomial-t ime
approximation of the pathwidth in bounded degree graphs.

Naturally, we turn our attention toward particular graph classes. It is very
surprising that computational complexities of monotone Exclusive Graph Searching
and Pathwidth cannot be compared. Indeed, we show that monotone Exclusie
Graph Searching is NP-complete in split graphs where Pathwidth is kiown to be
solvable in polynomial time [Gus93]. On the other hand, we prove that monobne
Exclusive Graph Searching is in P in a subclass of star-like graphs véte Pathwidth
is known to be NP-hard [Gus93]. Let us focus now in trees:

Theorem 54 The problem of computing the exclusive search numbess(T), and
corresponding exclusive strategy, is polynomially computable iolass of treesT.

The above theorem is proved by designing a dynamic programming algoritim
based on the following characterization that is similar to the one of Parsos in the
case of classical graph searching [Par78b]. Given a nodein a tree T, a connected
component of T n fvg is called a branch at v. Our characterization establishes
a relationship between the exclusive-search number of and the exclusive-search
number of some of the branches adjacent to any node if. More precisely, we
prove that:

Theorem 55 Letk 1. Foranytree T, xs(T) Kk if and only if, for any node v,
the following three properties hold:

1. v has degree at mosk + 1;

2. for any branchB at v, xs(B) k;
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/k> xs(T])  xs(Ty)  xs(TH)  xs(T, o) xs(Tly ) xs(Tl,,)

Figure 3.3: A tree T with avenue A = (uy;  ;up). For any subtree X of T nA,
xs(X) <k.

3. for any eveni> 1, at mosti branchesB at v havexs(B) k i=2+1.

The fact that the rst property is necessary directly follows from Fact 1. The
second property is necessary by Lemma 11. For proving that the third poperty
is necessary, we rst have to prove that, for any treeT, any branch B of T, and
any exclusive strategy forT, there is a step of the strategy where at leasixs(B)
searchers are occupying the nodes @&. While such a result is trivial in classical
graph searching, it is not the case anymore subject to exclusivity andnternality
properties. In particular, in classical graph searching, the result $ true for any
subtree (not necessarily a branch) while it is not the case for the edusive variant
(see [c-BBN13]). Indeed, let us consider a sub-tre@? of tree T. If T%is given
independently of T, the movements of searchers are more constrained because the
searchers have less \space" im% On the contrary, when TOis inside the treeT, the
searchers can use the \extra space" provides by to clear T®. Therefore, we have
to prove that, for any tree T, if there exist v 2 V(T) and an even integeri > 1 such
that there is a setB = fT; : xs(T;) k =2+ 1g of branches atv and jBj > i,
then xs(T) > k.

On the other hand, we show that any tree satisfying the conditions of abwe
theorem can be decomposed in a particular way, depending ok (see Fig. 3.3).
Following [MHG * 88], we prove that there is a unique pathA = (u1; ;up)in T
called avenuesuch that p 1 and, for any component (subtree)T?of T nA, there
is an exclusive strategy that clearsTC using < k searchers, i.e..xs(T9 < k (see
bold line in Fig. 3.3). Next, we describe an exclusive search strategysing at most
k searchers, that clears any tree decomposed in such a way. The strategpnsists
in clearing the subtrees of T n A, starting with the subtrees that are adjacent to
uy, then the ones adjacent tou, and so on, nishing in u,. To clear a subtreeT?
of T nA, we proceed in a recursive way. That is, we recursively use our gbrithm
on T using k% < k searchers. The rst diculty is to ensure that no subtrees
that have been cleared are recontaminated. For this purpose, when ceing T
the remaining k  k° searchers that are not needed to clear it are used to prevent
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recontamination. The second di culty is to ensure exclusivity: w hile thesek  k°
searchers are protecting from recontaminationk® searchers should be able to enter
TOto clear it.

To conclude this section, let us mention that the exclusivity congraint may be
generalized as follows. Consider a graph with weighted nodes. The vggit k of node
v means that v can be occupied by at mostk searchers simultaneously. Clearly,
all nodes having weight 1 corresponds to the exclusive case. On ttaher hand, if
all nodes have weight 2, then the number of searchers needed to cletlae graph is
the classical mixed search number. It would be interesting to stdy the variant in
which a subset of nodes have weight 1 while others have weight 2.

Finally, since the complexities of Pathwidth and monotone Exclusive Graph
Searching cannot be compared and since they are equivalent in boundeckgree
graphs, it would be very interesting whether there would exist a gaph class in
which one variant is polynomially computable while the other one is NP-had.

3.3.2 Perpetual graph searching in CORDA model

In this section, we present our study of exclusive graph searchingnithe CORDA
model and in various network topologies. When the considered network ig ring,
our algorithms are more general since they also address other coordinatiomgblems
such as perpetual exploration and gathering.

CORDA model

In the eld of searcher-based computing systems, we considér 1 searchers placed
on the nodes of an input graph. searchers are equipped with visibilt sensors and
motion actuators, and operate in Look-Compute-Movecycles in order to achieve a
common task (see [FPS12]).

The Look-Compute-Move model considers that in each cycle a searchéakes a
snapshot of the current global con guration (Look), then, based on the perceved
con guration, takes a decision (deterministically) to stay idle or t o move to one of its
adjacent nodes (Compute), and in the latter case it moves to this nejhbor (Move).
Cycles are performed asynchronously, i.e., the time between Look, d@npute, and
Move operations is nite but unbounded, and it is decided by the advesary for
each searcher. Hence, searchers that cannot communicate may move basedout-
dated perceptions. From the practical viewpoint, the Look-Compute-Move model
faithfully describes the behavior of some real searchers.

In the continuous plane, this model is referred in the literature also as the
CORDA model [Pre07]. The inaccuracy of the sensors used by searchers to scan
the surrounding environment motivates its discretization. Moreower, searchers can
model software agents moving on a computer network. Various problems ve been
studied in this setting and several algorithms have been proposed foparticular
topologies such as lines, rings, trees and grids.

We consider a minimalist variant of the Look-Compute-Move model whid has
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very weak hypothesis. Neither nodes nor edges of the graph are labeled and local
memory is available on nodes. Searchers a@nonymous asynchronous uniform
(i.,e. they all execute the same algorithm), oblivious (memoryless) and have no
common sense of orientation. Apart for the gathering problem, guided by phgical
constraints, the searchers may also satisfy theexclusivity property, according to
which at most a node can be occupied by at most one searcher [BBMR08a]. In
contrast to the CORDA model in the continuous plane, we assume that mues
are instantaneous, and hence any searcher performing a Look operation seai
other searchers at nodes and not on edges. Note that, in a discrete asyncimous
environment this does not constitute a limitation to the model. In fact, an algorithm
cannot take advantages from seeing searchers on the edges as the adversary can
decide to perform the Look operations only when the searchers are on theodes.
On the other hand, if an algorithm takes advantage from the assumption that the
searchers always occupy nodes, the same algorithm can be applied by aodigl the
rule that if a searcher sees another searcher on an edge, it just don't me (i.e. it
waits until all the searchers occupy only nodes). In the following,we denote such
model as thediscrete CORDA model

Related work.

The discrete CORDA model received a lot of attention in the recentyears. Most of
the proposed algorithms consider that the starting con guration is exclusive i.e.,
any node is occupied by at most one searcher. Moreover, in case of syntnie
topologies (e.g., paths, rings and grids), the starting con guration is somémes
assumed to berigid, i.e., asymmetric and aperiodic w.r.t. the positions of the
searchers.

In the following, we review the literature concerning the CORDA model on
various graph topologies. Two main problems have been considered: expétion
(e.g., see [CFf 08, AGP* 11]) and gathering (e.g., see [CGP09, BCG10, Pel12)).
Main results are summarized in Table 3.1.

In the problem of graph exploration with terminaison problem, a team of mobile
agents is spread in a graph and each node must be visited at least once by an
agent, then agents must be able to decide that all vertices have beenisited at
least once [FIPSO7, DPT09, FIPS10, CFMS10, FIPS11, FIPS13]. On the other
hand, the exclusive perpetual graph exploratiorrequires that each searcher visits
each node of the graph in nitely many times. Moreover, it adds the exdusivity
constraint [BBMR08a, BBMR08b, BMPBT10, BMPBT11] . In [BMPBT10], rst
results on n-node rings are given. In detail, the paper gives algorithms fok = 3
andn 10,fork = n 5 (if n modk 6 0), and shows that the problem is infeasible
fork=3 and n 9, and for some symmetric con gurations wherek n 4.

The gathering problem consists in moving all the searchers in the sasmnode
and remain there. In [DDKN12] and [DDN13a], a full characterization of the gath-
ering on grid and tree topologies, respectively, without any multiplicity detection is
given. On rings, it has been proven that the gathering is unsolvable ithe searchers
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Table 3.1: Non exhaustive survey on coordination problems in CORDA model

+local mult. detection

[IIKO10, KLOT11]

[KLOT12]
[c-DDN * 13b]
[[-DDN * 14b]

Paths Trees Rings Grids Arbitrary
graphs
Exploration [FIPS11] [FIPS10] [FIPSO07] [CFMS10]
with stop + multiplicity detection + local edge
labeling
[BMPBT10] [BBMRO8a]
Exclusive Perpetual + orientation
Exploration [c-DDN * 13b] [BMPBT11]
[-DDN * 14b] no orientation
Gathering
+global mult. detection [DDN12] [DN13]

Exclusive Perpetual
Graph Searching

[c-BBN12]
[c-BBN13]

[c-BBN12]
[c-BBN13]

[c-DDN * 13p]
[i-DDN * 14b]
[c-DNN14]

are not empowered by the so-callednultiplicity detection capability [KMPO08], ei-
ther in its global or local version. In the former type, a searcher is able to perceive
whether any node of the graph is occupied by a single searcher or moredh one
(i.e., a multiplicity occurs). In the latter type, a searcher is able to perceive the
etection capa-
bility, in [KMP08], some impossibility results have been proven Then, several
algorithms have been proposed for di erent kinds of exclusive inital con gurations
in [DDN11, KKN10, KMPO8]. These papers left open some cases which have been
closed in [DDN12] where a uni ed strategy for all the gatherable con gurations has
been provided. With local multiplicity detection capability, an algorithm starting
from rigid con gurations where the number of searchersk is strictly smaller than

3 has been designed in [IIKO10]. In [KLOT11], the case wheré is odd and

multiplicity only if it is part of it. Using the global multiplicity d

strictly smaller than n

3 has been solved.
an algorithm for the case wheren is odd, k is even, and 10 k n

In [KLOT12], the authors provide
5. Pa-

pers [KLOT11] and [KLOT12] do not assume that the initial con guration is rigid .
The remaining cases with local multiplicity detection are left open and a the design
of a uni ed algorithm for all the cases is still not known.

Exclusive graph searching in CORDA model in trees

We study (perpetual) exclusive graph searching in discrete CORDB in trees. We
denote by fs (G) the set of integersk such that k searchers can clear a grapl® in
this way. That is, k 2 fs (G) if there is a distributed protocol allowing k searchers
to clear G in discrete CORDA whatever be the starting exclusive positions ofthe

k searchers inG. By de nition, if k 2 fs (G) then xs(G)

k J V(G)j.
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Figure 3.4: An empty square represents one agent, an empty circle repgents one

node without agent, a rectangle with label” represents’ searchers on consecutive

vertices and a line with label h representsh consecutive vertices without searchers.
In con gurations C and C% h 1, and in Con gurations F and FC h 2,

As a warm-up, we fully characterizefs (P,) for any n-node path P,. The dis-
tributed protocols are described in Figures 3.4(a) and 3.4(b). To give a avor of
the di culties that arise in this model, we give the following res ult.

Assertion 3 LetP =(v1; ;Vzp+1) be ann-node path for some odd®p+1=n 3
and let2 2r<n. 2r searchers cannot perpetually cleaP .

Indeed, if the searchers are initially placed atf v; VriVn o141 VnQ, then,
Vp+1 can never be occupied by a searcher. Indeed, the adversary can sdhie the
moves such that, at any step whenv; is occupied fori p, then vy j4+1 is also
occupied. In particular, if a searcher occupyingv, moves tovp.1, then the searcher
occupyingVvp+2 Will do the same and two searchers will occupy simultaneouslyp.1 ,
a contradiction. So, 2 2 ps(P) for any 2r <n in any n-node path P with n odd.

Theorem 56 Let P, be an anonymousn-node path.
fs (P1) = f1lg and fs (P2) = f1;2g;
fs(Pn)=f3; ;ngforanyn 3even;

fs (Pn) = f3;5;..;2k+1;..;ng, n 3 odd.

[c-BBN12,
c-BBN13]



[c-BBN12,
c-BBN13]

[c-BBN12,
c-BBN13]

[c-BBN12,
c-BBN13]
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Our main result consists in a characterization offs (T), for any asymmetric tree
T. We prove that, if T has no symmetries (i.e., has no non-trivial automorphisms),
then fs (T) = fxs(T); ;jV(T)jg. In words, in the case of asymmetric trees,
we surprisingly prove that the minimum number of searchers need# in discrete
CORDA does not increase in comparison with the one needed in a poweif cen-
tralized setting. This result is based on the explicit design of a dstributed protocol
enabling perpetual graph searching byk searchers, for anyk  xs(T). This proto-
col widely uses the structure of the strategy given for centralized stting described
in Theorem 55. The main idea is to adapt the centralized strategy such tht all the
obtainable positions of searchers are pairwise distinct and that all the rmoves are
uniquely de ned. This classical method being powerful still emands a technically
di cult work.

We strongly use the fact that, in any asymmetric tree, each searcher caassign
distinct labels to the nodes such that each node of the tree is alwaygiven the same
label, by all searchers and at any Compute action. Therefore, in discr&t CORDA,
an anonymous asymmetric tree can be seen asumiquely labeled tree(lwhose nodes
are given distinct identi ers).

Theorem 57 For any anonymous asymmetric tree or any uniquely labeled tre&,
there exists an algorithm to clearT in the discrete CORDA model, either using
k xs(T) searchers, ork 2 if T is a labeled line with 3 nodes.

When T possesses symmetries (i.e., has non-trivial automorphisms), theom-
putation of fs (T) becomes more complex. Following [FIPS10], two distinct nodes
u and v are said to beisomorphic if there exists an automorphisnf of G which
carriesu to v. We show that then fs (T) depends on the setSy of isomorphic nodes
separated by a path of even length inT. Our impossibility results are mainly due to
the exclusivity property and symmetries (rather than due to the perpetual nature
of the problem).

Lemma 12 For any tree T,
fs(T)\f i2N : jStj i< |Stj+xs(TnSr)g=;:

AsetS S 7 isfully-isomorphic in the tree T, if there is a non-trivial automor-
phism f of T such that f (S) = S, and, for any u 2 S, the distance betweenu and
f (u) is even.

Lemma 13 Let T be a tree andS V(T) be fully-isomorphic in T. Then jSj 2
fs (T).

Atree T is very symmetric if there is an edgee = fu;vg 2 E(T) such that there
is an automorphism from one subtree ofl ne to the other, carrying u to v. In that

4An automorphism of G is a one-to-one mappingf : V(G) ! V(G) s.t. fu;vg 2 E(G) if and
only if ff (u);f (v)g2 E(G).
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case, each such a subtree is called dralf of T. To conclude this section, we extend
our results in asymmetric trees and in paths to a larger class of treesOur results
are constructive since we design the corresponding algorithms.

Theorem 58 Let T be any anonymous tree. Either nodes ofg = T nSt can be
assigned distinct labels, orTy is very symmetric with half T. Let x = jStj+ xs(To)  [c-BBN12,
in the former case, andx = jStj+2 xs(T9) otherwise. There is an algorithm in ¢-BBN13l
the discrete CORDA model that allows to cleaiT perpetually usingk searchers, for

any k, x k j V(T)j.

Coordinating searchers in Rings for various tasks in CORDA model

Here, we propose a uni ed approach to solve the exclusive perpetual pioration,
the exclusive perpetual graph searching, and the gathering problems orings. The
relevance of the ring topology is motivated by its completely symmetrcal structure.
It means that algorithms for rings are more di cult to be devised as they cannot
exploit any topological structure, as all nodes look the same. In particur, perio-
dicity and symmetry arguments must be carefully handled. In fact, ou algorithms
are only based on searchers' disposal and not on topology.

Note that, contrary to our study on trees, here we are interested in theinitial
con gurations of the searchers for which the tasks are feasible (that iswe do not
look for the number of searchers required to accomplish the task whater be the
initial con guration).

For presenting our positive results, we need the following notatios. We consider
a ring with n 3 nodesf vp; iVn 10, Wherev; is connected tOVj+1 mog n for any
0 i< n. Moreover, let k 1 searchers occupyk distinct nodes of the ring.
Given a con guration C, and for any i n, let S = (r}; ;rl ;) 2 f0;,1g" be
the sequence such thairji = 0 if Vi+j mod n IS OCcupied inC and rji = 1 otherwise,
1 n. Intuitively, S; represents the positions of searchers, starting at;. A
supermin of Cis any representation ofCthat is minimum in the lexicographical order
(among all representations ofC, i.e., starting from any node and either clockwise
or anti-clockwise).

An exclusive con guration is called symmetric if the ring admits a geometrical
axis of symmetry with respect to the positions of the searchers. An exclusive con-
guration is called periodic if it is invariable under non-trivial (i.e., non-complete)
rotations. A con guration which is aperiodic and asymmetric is called rigid. A key
property that allows us to deal with aperiodic con gurations is that:

Lemma 14 [DDN12] Given a con guration C,

C has a unique supermin representation if and only ifC is either rigid or it
admits only one axis of symmetry passing through the supermin;

C has two supermin representations i C is either aperiodic and symmetric
with the axis not passing through any supermin or it is periodic Wwh period J;
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C has at least3 supermin representations i Cis periodic, with period at most
n
§.

Impossibility results. First, we gave some impossibility results for the exclusive
perpetual graph searching in rings. The proofs are complicated cases agals where
we explicitly design the behavior of an adversary (the asynchronous seduler of
the searchers) in all cases, ensuring that the ring cannot be clearedhatever be
the algorithm. Note these impossibility results hold even if a partiaular initial
con guration is speci ed. More precisely, we proved that:

Theorem 59 For any initial con guration C, there is no algorithm, in the CORDA
model, that solves the exclusive perpetual clearing problem inrenode ring using k
searchers starting fromC, if

n>2andk 2ork=n 2ork=n 1, or
n>3andk 3, or

2 k<n 9.

It is easy to see that graph searching is also not feasible for arly even starting
from any con guration with an axis of symmetry passing through an empty node
Indeed, any synchronous execution of any algorithm would either cause aotlision
in the node lying on the axis or does not allow to search the edges inaiht to such
node.

For the gathering problem, it was known that the problem is not feasible for
k< 3ork n 4 orstarting from a symmetric con guration with one axis of
symmetry passing through two edges.

In the following, a con guration is allowedif it is rigid or if it is aperiodic and
its symmetry is not the ones excluded by above impossibility reslis. That is, for
graph searching, the symmetric allowed con gurations are all aperiodic oas with
k odd and those with k even where the axis does not pass through an empty node,
provided that 3 < k < n 2 and n > 9. For gathering, the symmetric allowed
con gurations are all aperiodic ones with the axis of symmetry not passinghrough
two edgesand 3 k<n 4.

Algorithms for graph searching, perpetual exploration and gathering.

We now brie y present the algorithms we design to solve the above-mationed
problems. Our algorithms consist of two phases. The rst phase is commoto all
problems and allowsk > 2 searchers to achieve a particular exclusive con guration
in an n-node ring, K < n 2. The second phase depends on the task: we give
an algorithms for solving the exclusive perpetual graph searching proleim that,
in addition, solves the perpetual exploration problem, then another algoithms is
designed for solving the gathering problem. In a rst work, we dealt only with rigid
con gurations [c-DDN * 13b, j-DDN* 14b], then we managed to extent this work to
aperiodic con gurations [c-DNN14]. Our results can be summarized in thefollowing
two theorems.
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Theorem 60 There is an algorithm solves both the exclusive perpetual clearing and
exploration problems usingk robots in any n-node ring, starting from any exclusive
and allowed con guration,n > 9and4<k<n 3 (butfor (n;k) 2 f (10;5); (10; 6)g
when the con guration is symmetric).

Theorem 61 There exists an algorithm performing the gathering ofk > 2 robots
on rings of n > k +2 nodes starting from any exclusive and allowed con guration,
when the robots are empowered with the local multiplicity detectio

The core of the algorithms in [c-DDN* 13b, j-DDN™ 14b] is a procedure, called
Asym, allowing to achieve some particular con guration. Let4 k<n 2 and
let G =(0k 1:1;0;1" ¥ 1) be the con guration with k 1 consecutive searchers,
one empty node and one searcher.

Lemma 15 Let4 k<n 2 searchers standing in ann-node ring and forming
a rigid exclusive con guration, Algorithm Asym eventually terminates achieving
con guration C? and all intermediate con gurations obtained are exclusive and rigil.

Basically, Algorithm Asym ensures that, from any rigid exclusive con guration,
one searcher, that can be uniquely distinguished, moves to an unogpied neighbor,
achieving another rigid con guration while strictly decreasing the supermin. Then,
in [c-DNN14], we designed Algorithm Align , generalizing Asym, that handles all
allowed con gurations (not only rigid). Di culties are multiple.

First, in allowed symmetric con gurations, we cannot ensure that a unique
searcher will move. In such a case, the algorithm may allow a searcherto move,
while r is re ected by the axis of symmetry to another searcherr®. Sincer and
rO are indistinguishable and execute the same algorithmy© should perform the
same (Symmetric) move. Hences may move while the corresponding move of ©
is postponed because of asynchronicity (i.er® has performed the Look phase but
not yet the Move phase). The con guration reached after the move ofr has a
potential so-called pending move (the one ofr? that will be executed eventually).
To deal with this problem, our algorithm ensures that reached con gurations that
might have a pending move are asymmetric, distinguishable and the gnding move
is unique. Therefore, in such a case, our algorithm forces the pendinmove. That
is, contrary to [c-DDN* 13b, j-DDN™ 14b] where Algorithm Asym ensures to only go
through rigid con gurations, the subtlety is here consists in possibly going from an
asymmetric con guration to a symmetric one. To distinguish such a conguration,
we de ne the notion of adjacent con gurations. An asymmetric con guration Cis
adjacent to a symmetric con guration C°with respect to a move M (one searcher
moving to one of its unoccupied adjacent neighbor) ifC can be obtained fromC° by
applying M to only one of the searchers permitted to move byM. Another di culty
is to ensure that all met con gurations are allowed for the considered poblem.

Further work

Continuing our study of what is possible in the discrete CORDA modé using robots
with weak capabilities, we currently investigate the exclusive gaph searching prob-
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lem in grids with Euripides Markou and Christos papageorgakis. It would beinter-
esting to address this problem in general graphs.

Other problems are of interest: perpetual exploration seems surpsingly di cult
in trees, we are working on it with Gianlorenzo d'Angelo, lelia Blin and Janna
Burman. Motion planning of robots that must go from several initial position s to
personalized destinations without colliding is another practical prodem we address
with Gianlorenzo d'Angelo and Xavier Defago. For addressing this problem we
rst dealt with exchange of information between robots.

Last but not least, | would be interested by considering this class of poblem
in more realistic setting. For instance, real robots are not so stupid ashe extreme
cases we are considering. Therefore, using the techniques we deyed above but
with stronger robots should lead to e cient practical solutions.



Chapter 4
Complexity of Locality:
Routing and Graph Properties

Content

This chapter deals with routing, broadcasting and connectivity® in various environ-
ments. As communication networks are concerned, the di erent constaints that

appear in wireless networks, Internet networks, Peer-to-peer reorks, etc., imply

various di culties and techniques to address these problems. Thecommon point
of all the considered environments is that the current networks are lecoming al-
ways larger and, therefore, distributed and even local algorithms areequired. The
di erence between distributed and local is mainly related to the time that is al-

lowed to the nodes to exchange messages. Indeed, the less exchargesallowed
and the less the information can spread through the network, and the more he
knowledge the nodes have about the network is partial. Most of our studés focus
on distributed setting where network's nodes have knowledge wh various levels
of locality. On the other hand, in a distributed setting, it is help ful to have more
global knowledge about the structural properties of the considered netork. We

both use such a structural knowledge for e cient routing distribu ted algorithms

and provide distributed algorithms to compute such properties.

Section 4.1 consists of a melting-pot on several routing problems we gtlied in
wireless and peer-to-peer networks. Since | am far to be an expert omése kind of
networks, | focus on the models and techniques we used in theseesp ¢ problems.
First, the personalized broadcasting and, equivalently, the gathemg (many sources,
one sink) problems are considered in grid radio networks in presena# interferences
(Section 4.1.1). Here, the optimization problems consists in nding pahts and
schedules (sequences of matchings, induced matchings, etc.) toute messages
as fast as possible and avoiding interference [c-BNRRO09, s-BL'NL3]. Second, we
study the problem of routing packets between undi erentiated sources and sinks
in a network (Section 4.1.2). We provide a purely local algorithm that transmits
packets hop by hop in the network and study its behavior [c-CHN 10]. Finally,
motivated by video streaming problems, we investigate broadcastingdgne to all) in
Peer-to-peer networks (Section 4.1.3). Here, the objective is to matain an e cient
broadcasting tree, both minimizing the delay and maximizing the bardwidth, in a
purely local model [c-GMNP13].

LContrary to previous chapters, this chapter does not deal at all w ith pursuit-evasion games.
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Section 4.2 focuses orcompact routing motivated by the increase of Inter-
net network's size. The main question is the design of routing tableghat are
zone of local memory allowing to guide messages routing. We rst surveyhe
literature on compact routing in various graph classes. Then, we presénour
results obtained in the case of graphs with bounded chordality or hyperblic-
ity [c-NRSQ9, |-NRS12, c-KLNS12, j-KLNS14]. These results rely on structural
characterizations presented in previous chapters. We also proposedrandomized
fault-tolerant routing algorithm. We prove it achieves good performances in grids
and expanders [c-HIKN10].

Finally, Section 4.3 presents a new model of distributed computig that al-
lows nodes of a graph to gather only local knowledge [c-BMN11, c-BKN* 12,
j-BKM * 14]. We investigate the computation of various graph structural prop-
erties in this model, providing several impossibility results such as algorithms that
actually compute some non-trivial properties. This study mainly aims at deciding
which connectivity properties (connectivity, spanning trees, BFS trees, etc.) may
be computed with local knowledge.
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4.1 Routing in various telecommunication networks

This eclectic section presents three di erent problems, relagd to routing, that we
studied in wireless and peer-to-peer networks. The rst one is an ofimization
problem that consists in nding routes and schedules of messages in &wtralized
setting [c-BNRRO9, s-BLN* 13]. The next two works are the design of purely local
algorithms and the study of their convergence and performances: one for nhu
ticast [c-CHN* 10] and the other one for maintaing an e cient di usion tree in
dynamic networks [c-GMNP13]. Since the kind of networks studied in his section
is a bit far from the main topic of this thesis, the related work is minimalist and
the interested reader can see the references therein for more amfnation.

4.1.1 Data Gathering in Wireless Grids with Interferences

We rst study a problem that was motivated by designing e cient strat egies to
provide internet access using wireless devices [BBS05]. Tyjailty, several houses in
a village need access to a gateway (for example a satellite antenna) toansmit and
receive data over the Internet. To reduce the cost of the transceiers, multi-hop
wireless relay routing is used. We formulate this problem agjathering information
in a Base Station of a wireless multi-hop network when interference constraints are
present. This problem is also known aslata collectionand is particularly important
in sensor networks and access networks.

Model of communication

We adopt the network model considered in [BGK' 06, BGR10, BKK* 10, FFMO04,
RS08]. The network is represented by a node-weighted symmetricigraph G =
(V; E). More speci cally, each node inV represents adevice (sensor, station, ...)
that can transmit and receive data. The network is assumed to be synchlonous.
We suppose that each device is equipped with an half duplex interfac a node
cannot both receive and transmit during a step. This models the neafar e ect of
antennas: when one is transmitting, it's own power prevents any othe signal to be
properly received. There is a special node called thBase Station (BS), which is the
nal destination of all data possessed by the nodes of the network. Eachade may
have any number of pieces of information, omessagesto transmit, including none.
There is an arc fromu to v if u can transmit a message tov. We suppose that the
digraph is symmetric; so ifu can transmit a message tov, then v can also transmit
a message tou. Therefore G represents the graph of possible communications.
Calls (transmissions) are directed: a call §;r) is de ned as the transmission of one
message from the node, the sender, to noder, the receiver, where (s;r) 2 E.

We use a binary asymmetric model of interference based on the distae in the
communication graph. Let d(u;v) denote the distance betweenu and v in G and
di be an nonnegative integer. We assume that when a node transmits, all nodes
v such that d(u;v) d, are subject to the interference fromu's transmission. We
assume that all nodes ofG have the same interference range,. Two calls (s;r)
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and (s%r9 do not interfere if and only if d(s;r% >d; and d(s®r) > d,. Otherwise
calls interfere (or there is a collision). These hypotheses are sing and under
the assumption of a centralized view. Moreover the binary interfeence model is a
simpli ed version of the reality, where the Signal-to-Noise-and-Interferences Ratio
has to be above a given threshold for a transmission to be successfuHowever,
our results will give upper bounds on the maximum possible number of sers in the
network.

Following [FFM04, GR09, RS07, RS08, ZTG05] we assume that no bu ering is
done at intermediate nodes and each node forwards a message as soon as ienets
it. One of the rationales behind this assumption is that it frees intermediate nodes
from the need to maintain costly state information and message storage.

Gathering and Personalized broadcasting

We focus on grids as they model well both access networks and also randonetn
works [KLNPQ9]. The gathering problemconsists in computing a multi-hop schedule
for each message to reach thBS under the constraint that during any step any two
calls do not interfere within the interference ranged,. Actually, we will describe
the gathering schedule by illustrating the schedule for the equialent personalized
broadcasting problemsince this formulation allows us to use a simpler notation and
simplify the proofs. In this problem, the base stationBS has initially a set of per-
sonalizedmessages and they must be sent to their destinations, i.e., each nsege
has a personalized destination inV, and possibly several messages may have the
same destination. The problem is to nd a multi-hop schedule for eachmessage to
reach its corresponding destination node under the same constraintas the gath-
ering problem. The completion time or makespanof the schedule is the number
of steps used for all messages to reach their destination and the probleaims at
computing a schedule with minimum makespan.

Gathering problems have received much recent attention. The paps most
closely related to our work are [BGP 11, BGR10, FFM04, GR09, RS07]. [FFMO04]
rstly introduced the data gathering problem in a model for sensor networks similar
to the one adopted in this paper. It deals with d; = 0 and gives optimal gathering
schedules for trees. Under the same hypothesis, an optimal e cient aorithm for
general networks is presented in [GR0O9] in the case each node has exgctne
message to deliver. In [BGR10] (resp [BGP 11]) optimal gathering algorithms for
tree networks in the same model considered in the present paper, argiven when
d =1 (resp.,d  2). In [BGP*11] it is also shown that the Gathering Problem
is NP-complete if the process must be performed along the edges ofrauting tree
for d 2 (otherwise the complexity is not known). Furthermore, for d la
a+ 5) factor approximation algorithm is given for general networks. The case
of open-grid where BS stands at a corner and no messages have destinations in
the rst row or rst column, called axis in the following, is consider ed in [RS07],
where a 15-approximation algorithm is presented. Other related results can be
found in [BCY09, BGK * 06, BP12, BY10](see [BKK' 10] for a survey). There are
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Interference Additional hypothesis Performances
without bu ering \ with bu ering
d =0 +2-approximation
open grid +1-approximation
d=1 1-open grid +3-approx. \ 1:5-approx.
2-open grid 1:5-approximation
d =2 2-open grid +4-approx. \ 2-approx.

Table 4.1: Performances of our gathering and personalized broadcasting algorithms.

articles in which data bu ering is allowed at intermediate nodes, achieving a smaller
makespan. In [BGK" 06], a 4-approximation algorithm is given for any graph. In

particular the case of grids is considered in [BP12], but with exactly oe message
per node.

Contributions

We have proposed algorithms to solve the personalized broadcasting prabh (and
so the equivalent gathering problem) in a grid with the model descibed above
(synchronous, no bu ering, one message transmitted by step and binargsymmetric
model interference with a parameterd,). Initially all messages stand at the base
station BS and each message has a particular destination node (possibly several
messages may be sent to the same node). Our algorithms compute in limetime
(in the number of messages) schedules with no calls interfering, ith a makespan
di ering from the lower bound by a small additive constant. The main r esults are
summarized in Table 4.1.

More precisely, our results vary a little bit depending on the postions of the
destinations with respect to the base station. The grid is endowed atural coordi-
nates with the base station as origin, i.e., with coordinates (Q0). A corner of the
grid is a node with degree 2. The row and column of the base station are catle
the axis of the grid. A grid with arbitrary base station is said to be an open-grid if
no destination nodes are on the axes. A grid with arbitrary base station issaid to
be an 2open-grid if no destination nodes are at distance at most 1 from any axis.
Finally, an instance is called 1-open grid if the base station is in a corner and at
least one of the following conditions is satis ed: (1) All messages haveeastination
nodes in the setf (x;y): x 2 andy 1g; (2) All messages have destination nodes
inthe setf(x;y):x landy 2g.

Theorem 62 There are linear-time (in the number of messages) algorithms that
solve the gathering and the personalized broadcasting problems imyagrid, achieving

an optimal makespan up to an additive constant where: [c-BNRRO9,
s-BLN * 13]
c=2 whend, =0; c=1 in open-grid whend, =0;
c =3 in 1l-open-grid whend, = 1; c=4 in 2-open-grid whend, = 2.

Our algorithms are based on greedy ordering of the messages (by non-increas
distance to BS) sent along simple (with at most one \turn") shortest paths, which
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gives a lower bound on the makespan but may induce collisions. Then, avprove
that, by dynamic programming, we can slightly modify the position of the messages
(by local exchanges) in this ordering and add some small detour to achieva valid
schedule (without collision) and obtaining a makespan close to the opthal one.

Note that the complexity of computing an optimal schedule is not known in our
setting.

4.1.2 Stability of a local and greedy routing algorithm

In this short section, we study the problem of routing packets betwen undi eren-
tiated sources and sinks in a network modeled by a multigraph [c-CHN10]. We
consider a distributed and local algorithm that transmits packets hop by hop in the
network and study its behavior. At each step, a node transmits its qieued packets
to its neighbors in order to optimize a local gradient. This protocol isgreedy since it
does not require to record the history about the past actions, and localisce nodes
only need informations about their neighborhood. We study the protocolstability
region, i.e., the packet arrival rates such that the number of packets storedat the
nodes of the network keeps bounded.

In previous work, Srikant et al.[WS05] studied distributed and local algorithms
to transmit packets in a network (see also [TE92]). In this work, packéds are injected
into the network following a stochastic process that respects astrict feasibility
constraint, meaning that the number of added packets at each time is alwgs strictly
lower than the value of the maximum ow. In case of a single destination,other
work has considered processes in which packets are generated by an adesy who
wants to make the protocol fail [Tsa97, ABBS01]. In this work, we consider tle
case of multicast (many-to-many).

Let G = (V;E) be an-node multigraph modeling the considered network. S
is the set of sources and the one of destinations. To each vertex is associated
a queue length which represents the number of packets waiting to é transmitted
at this node. We represent this queue length byg(v) for v 2 V and a given time
step t. The network is synchronous and at each time step: (1) each source2 S
injects in (s) packets in its queue, (2) each link can transmit at most 1 packet, and
this packet can be lost without any noti cation, and (3) each sink d 2 D extracts
minf out(d); g (d)g packets of its queue. All links can transmit at the same time, so
we do not consider interference constraints.

We are interested in the total number of stored packets at a given time m the
network. We propose and study the very simple following algorithm caléd Local
greedy gradient LGG): each nodeu transmits 1 packet through each of its outgoing
arcs uv if v as a smaller queue length, as long as still has packets in its queue.
In particular, if u has more thang (u) neighbors with smaller queue length, then it
chooses to send to itgx(u) neighbors of smallest queue length.

Our study can be related to the distributed algorithm for the maximum ow
problem proposed by Goldberg and Tarjan [GT88]. LetG be the multigraph
obtained from G by adding a virtual source s and a virtual sink d , with a link
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of in nite capacity between s and s for all s 2 S, and a link of capacity out(d)
betweend andd for all d 2 D. The network G is unsaturatedif it exists a fractional
s-d-ow in G suchthatin(s) < ( s ;s) for each sources 2 S. We show that,

Theorem 63 In unsaturated networks, LGG is stable. [c-CHN * 10]

For this purpose, we show that, for allt, P; = P VoV o?(v) is bounded by some
polynomial function of n, the maximum degree ofG and the value of a maximum
ow from s to d. The case ofsaturated networks, i.e., if it exists a fractional
s-d-ow in G suchthatin(s) ( s;s)for each sources?2 S, is still open.

4.1.3 Maintaining e cient di usion trees for streaming systems

In this section, we propose and analyze a simple local algorithm to balanca
tree [c-GMNP13]. The motivation comes from live distributed streaming systems
in which a source di uses a content to peers via a tree, a hode forarding the data
to its children. Such systems are subject to a high churn, peerfrequently joining
and leaving the system. It is thus crucial to be able to repair the dusion tree to
allow an e cient data distribution. In particular, due to bandwidth limitations, an
e cient di usion tree must ensure that node degrees are bounded. Moreover, to
minimize the delay of the streaming, the depth of the di usion tree must also be
controlled.

Context

Trees are inherent structures for data dissemination in general and articularly in
peer-to-peer live streaming networks. Indeed, the disseminadin of a single piece of
information generally de nes a tree structure. Even inunstructured networks, whose
main characteristic is lack of de ned structure, many systems look into perpetuat-
ing such underlying trees, e.g. the second incarnation of Coolstreaimg [LQK * 08]
or PRIME [MRO09]. Unsurprisingly, early e orts into designing peer-t o-peer video
streaming concentrated on de ning tree-based structures for data dsemination.
However, such structures su er two drawbacks. First, they leadto unused band-
width at the leaves of the tree. To x this problem, it has been proposed to maintain
multiple concurrent trees to tolerate failures, and internal nodes in a tree are leaf
nodes in all other trees to optimize bandwidth [CDK* 03, VYF06]. Second, these
structures are fragile because of the important node churn in live seaming net-
works [LQK™ 08]. To ensure churn-resiliency, several approaches have been poged
such as maintaining redundancy within the network structure [PTT 09, LXHL11].
However, proposed solutions to maintain balanced trees are generally toapiodical
rebuild the whole tree from scratch. The analysis of these systems€us on the
feasibility, construction time and properties of the established @erlay network, see
for example [CDK* 03, VYF06] and [DFCO07] for a theoretical analysis. But this
work usually abstracts over the issue of tree maintenance. Generallyn this work,
when some elements (nodes or links) of the networks fail, the nodedisconnected
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from the root execute the same procedure as for initial connection. Tdhe best of
our knowledge, there are no theoretical analysis on the e ciency of tre& mainte-
nance in streaming systems, reliability is estimated by simulatons or experiments
as in [CDK™* 03].

Balancing a tree

The problem setting is as follows. A single source provides live nika to some nodes
in the network. This source is the single reliable node of the netwdk, all other peers
may be subject to failure. Each node may relay the content to furber nodes. Due to
limited bandwidth, both source and any other node can provide media ¢ a limited
number k 2 of nodes. The network is organized into a logical tree, rooted at
the source of media. That is, we assume that the overlay is already a spaing
tree. However, it may have an arbitrary shape, e.g. be a path or a star (alhodes
connected directly to the root). Note that the delay between broadcasing a piece
of media by the source and receiving by a peer is given by its distamcfrom the root
in the logical tree. Hence our goal is to minimize the tree depth, whilefollowing
degree constraints. It is easy to see that such a tre& is any k-balancedtree, i.e.,
any k-ary tree? such that, for each nodev 2 V(T), the sizes of the subtrees rooted
in the children of v di er by at most one.

In this work (following e.g., [HLP * 07, CDPT08, BCH* 09]), we assume that
nodes can reliably communicate, form connections and detect failuresNVe assume
a reconnection process when a node leaves, its children reattach to its parent. This
can be done locally if each node stores the address of its grandfather itné tree.
Note that this process is performed independently of the bandwidthconstraint,
hence after multiple failures, a hode may become the parent of manyodes. The
case of concurrent failures of father and grandfather can be handled by retiching
to the root of the tree. Other more sophisticated reconnection procsses have been
proposed, see for example [HLPQ7].

This process can leave the tree in a state where either the banddih constraints
are violated (the degree of a node is larger thaik) or the tree depth is not optimal.
Thus, we propose a distributedbalancing processwhere based on information about
its degree and the subtree sizes of its children, a node may perfora local operation
at each turn. We show that this balancing process, starting from any tiee, converges
to a balanced tree and we evaluate the convergence time.

Distributed model, algorithm and analysis

Nodes are autonomous entities running the same algorithm. Each node has a
local memory where it stores the sizen, of its subtree, the size of the subtrees of
its children and the size of the subtrees of its grand-children, ., for any child x
of v and for any child y of x, v knows ny and ny. Computations performed by the
nodes are based only on the local knowledge, i.e., the information prest in the
local memory and that concerns only nodes at distance at most 2. We considex

2A rooted tree is a k-ary tree if each node hask children or less if its children are all leaves.
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synchronous setting. That is, the time is slotted in turns. At each turn, any node
may run the algorithm based on its knowledge and, depending on the comgation,
may do one of the followingoperations. In the algorithm we present below, each
operation done by a nodev consists of rewiring at most two edges at distance at
most 2 from v. Moreover, each operation may be done using a constant number of
messages of siz&(log n).

In this setting, at every turn, all nodes sequentially run the algorithm. In order
to consider the worst case scenario, the order in which all nodes are hseduled
during one turn is given by an adversary. The algorithm must ensure thatafter a
nite number of turns, the resulting tree is k-balanced. We are interested in time
complexity of the worst case scenario of the repair. That is, the perfamance of
the algorithm is measured by the maximum number of turns after which the tree
becomesk-balanced, starting from any n-node tree.

At each turn, a node v executes the algorithm described on Figure 4.1. 1t is
important to emphasis that the balancing process requires no memorpf the past
operations.

Algorithm executed by a node v in atree T. If v is not a leaf, let (v1;v2;  ;vq) be
the d 1 children of v ordered by subtree-size, i.e.,ny; ny, Nyg.

1. If vis underloaded (i.e.,d < k), let a be a child of vi with biggest subtree size.
Then a becomes a child ofv.

2. Else if v is overloaded (i.e., d > k), then .1 becomes a child ofv.

3. Else if v is imbalanced (i.e., d = k and v has two children x and y of v such
that jnx nyj> 1) and if vy and vk are not overloaded, let a and b be two
children of vi and vi respectively such that jny, na+ny, (ny, N+ Na)j
is minimum.

Then a and b exchange their parent.

Figure 4.1: Balancing Process

Theorem 64 Starting from any n-node rooted tree, the balancing processk(= 2)
reaches a2-balanced tree inO(n?) turns. [c-GMNP13]

To prove the above theorem, we de ne a (non-trivial) potential function and
show that: (1) the initial value of the potential function is bounded; (2) its value
may raise due to pull operations (operation 1), but in a limited number of turns
and by a bounded amount; (3) a swap operation (operation 3) may not increase its
value; (4) if no push nor pull operations (operations 2 or 3) are done, there»asts
at least one node doing a swap operation, strictly decreasing the poteial function.

Unfortunately, we don't know whether this analyze is tight since the best lower
bound we found is the following. If the initial tree is a n-node star, then at least
( n) turns are needed before the resulting tree ik-balanced [c-GMNP13].

To get a better understanding, we assume an extra global knowledge: eactode
knows whether it has a descendant that is not balanced. This extra iformation
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is updated after each operation. Then, our algorithm is modi ed by adding the
condition that any node v executing the balancing process can do a pull or swap
operation only if all its descendants are balanced. Adding this propertyallows to
prove better upper bounds on the number of steps, by avoiding condt between
an operation performed by a node and an operation performed by one of its not
balanced descendant. We moreover prove that this upper bound for our gbrithm
is asymptotically tight, reached when input tree is a path.

Theorem 65 Starting from any n-node rooted tree, the balancing process with
global knowledge reaches 2-balanced tree inO(nlogn) turns. This bound is tight.

Because of the signi cant gap in our worst case analysis of the Balancing press,
we also investigated the performance of the algorithm running an implerantation
under a discrete event simulation. From these simulations, the nmber of turns
spent to balance a random tree progresses logarithmically in regard to th&ee size.
An interesting continuation of our work would be the examination of our algorithm's
average behavior, which as hinted by simulations should yieldO(logn) bound on
balancing time.

4.2 Compact routing

In previous Section, we have considered two extreme models for rbng messages
in a network. In Section 4.1.1, the computation was fully centralized andthe
objective was to achieve an optimum delay, i.e., mainly routing via $iortest paths.
On the other hand, in Section 4.1.2, nodes had no knowledge at all about the
network and the objective was to ensure some throughput without any guaraties
on messages delivery and delay. Moreover, in both cases, there welither a single
or undistinguished destinations. Such approaches cannot be used in m@rks such
as the Internet where a certain level of guaranty is required while ndes cannot
have a full knowledge of the topology.

In this section, we consider distributed communication networks vhere messages
must be e ciently delivered between pairs of processors. Any soute or intermediary
node must be able to fast route messages to their destination nodesthionly limited
knowledge. More precisely, each node is an autonomous computing entit When
a message arrives at some node, the node can read theader of the message
that contains information including the message's destination. Then, using this
information and its local information, stored in its routing table, the node decides
the out-port by which the message must be transferred to eventuallyreach its
destination. The distributed algorithm executed by the node to direct the trac
is called routing scheme If the designer of the routing scheme is allowed to de ne
the identi ers of the nodes (then, the name of the destination may lring some
information for the routing) then the scheme is saidlabelled Otherwise, i.e., if the
routing scheme must work whatever be the identi ers, it is said name independent
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When investigating routing schemes, several complexity measureaise. On the
one hand, it is desirable to use as short paths as possible for routing mesges.
E ciency of a routing scheme is measured in terms of its multiplicative stretch
factor (resp., additive stretch factor), i.e., the maximum ratio (resp., di erence)
between the length of a route computed by the scheme and that of a shorst path
connecting the same pair of nodes. On the other hand, as the amount of storage
at each processor is limited, the routing information stored in the piocessors' local
memory (the routing tables) must not require too much space with respect to the
size of the network. As it is shown below, acceptable tradeo can only ben achieved
when considering networks with speci ¢ structural properties. A routing scheme
that works in any graph is said universal.

Last but not least, designing a routing algorithm requires not only to de ne
the routing scheme but also to give an algorithm for computing and updatirg the
routing tables. Because of the dynamicity of networks, it is important to be able
to compute the routing information in an e cient distributed way. W hile many
works propose good tradeo s between the stretch and the size of routingables,
the algorithms that compute those tables are often impracticable becausehey
are centralized or because of their time-complexity (e.g., requirédo compute some
good decomposition or parameter of the graph). However, in the context of lage
scale networks like social networks or Internet, even polynomial tine algorithms
are ine cient. Below, we insist on the tradeo between the length of the computed
routes and the time complexity of computing \compact" 2 routing tables.

4.2.1 Tradeo knowledge/performance/graph structures

The problem of designing routing schemes with small routing tables RT) size as
been introduced at the very beginning of the Internet [KK77, PU89]. It is well-
known that no universal routing schemecan achieve shortest paths with compact
routing tables. More formally, for any such scheme achieving routes wh opti-
mal length, there are graphs where routing tables with (nlogn) bits per node
are required [FG97]. Following the work in [TZ01, AGM* 04, TZ05, AGMO06b],
a universal name-independent routing scheme with stretch linar in k and space
n¥polylog(n) space is provided [AGM' 08]. Surprisingly, this achieves the same
performances as the ones of labelled schemes [TZ01, TZ05]. Lower bounds pre-
vided in [AGMO6a] where Abraham et al. prove that there are weighted tres for
which every name-independent routing scheme with space lessah n¥™ requires
stretch at least 2k + 1 and average stretch at leastk=4.

Subsequently, the interest of the scienti c community was turned toward speci ¢
properties of graphs. Dedicated routing scheme have been proposed toees [FGO1]
and planar graphs [Tho0O4], and more generally for graphs excluding some xed
minor [AGMO05, AGO06]. Several universal routing schemes have been proged that
have good performance when the graph has some bounded parameter.

3By compact, people generally mean that routing tables have size logarithmic in the network's
size.
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Bounded doubling dimension.

The doubling dimensionof a graph G, and more generally of a metric spaceX;d),
is the leastk such that any ball of radius R can be covered by ® balls of radius
R=2 [GKLO3]. The problem of determining the doubling dimension of a graph $
NP-complete. Fraigniaud et al. [FLVO08] studied the doubling dimension ofthe
Internet and they veri ed that the doubling dimension of the Inter net is large.
It has also been considered in the context of small world and augmented gréus
[FLLO6, FLL10]. E cient compact routing schemes have been proposed for statc
graphs with bounded doubling dimension, both in the labelled and in tre name-
independent models. In the labelled model, routing schemes i multiplicative
stretch depending on the doubling dimension and using logarithmic outing tables
have been proposed in [CGMZ05, AGGMO06]. More precisely, [CGMZ05] shahow
to perform (1 + x)-stretch routing on metrics for any 0 < x < 1 with routing tables
of size at most @=x)°(D log?(D) bits with at most ( d=x)°(¥ log(D) entries in any
graph with doubling dimension d and diameter D. The tables can be computed
in a distributed way using a distributed breadth- rst-search algorithm; this result
has been extended in [SIi07]. A name-independent routing schemerfgraphs with
doubling dimensiond is provided in [AGGMO06, KRX06]. It achieves constant mul-
tiplicative stretch and requires tables of size £(9 logn bits. Moreover, it has been
proven that any name-independent routing scheme using(dn) bits has stretch at
least 3.

Bounded growth.

A weighted undirected network is  growth-boundedif the number of nodes at dis-
tance 2 around any given node is at most times the number of nodes at distance
r around the node. G has growth dimensions if G is 2 growth-bounded. An alter-
native de nition is the following: an undirected graph G = (V;E) is called growth-
bounded if there exists a polynomial bounding functionf (r) such that for every
v2V andr 0, the size of any maximal independent set in ther-neighborhood

r(v) is at most f(r). The problem of determining the value bounding the
growth of a graph is NP-complete. In [FLVO08] it is shown that the ball growth of
the Internet is large. We remark that any metric with constant growth- bound has
constant doubling dimension, while the opposite is not always true [&KL03]. Abra-
ham and Mahlki [AMO5] proposed a name-independent compact routing scheme
for graphs with bounded growth. Given a weighted undirected networkand > O,
their routing scheme allows routing along paths of stretch 1 + and uses routing
tables of only O(1= ©(°9) |og®n) bits per node with high probability. Duchon et
al. [DHLSO06] proved that if a graph has moderate growth, i.e., the size of the balls
of radius r is bounded by r©@=(r1091) 'then it can be turned into a navigable small
world (augmented by the addition of some \long links").
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General approach.

There is a general approach where actually all known graph-speci ¢ haméxdepen-
dent routing scheme belongs to. A §; )-sparse cover[AP90] for a graph G is
a set of clustersC  2Y(®) such that, for any r  0: (1) 8u 2 V(G), 9C 2
C such that B(u;r) C, (2) 8C 2 C, the diameter of G[C] is  sr, and (3)
8u2V(G),jfC2C : u2Cg . If graph G with diameter D has a (; )-
sparse cover, then it also admits a name-independent routing schee with space

logD polylog(n) and stretch O(s) [TZ05, AGMW10]. The sparse cover technique
applies on unweighted minor-free graphs (see also [AGGL3]), but also on weighted
bounded growth/doubling dimension graphs. What is interesting in this approach is
that the corresponding routing schemes are generic, i.e., univea and they do not
need the pre-computation of some parameter of graphs. However, as a drawbac
some sparse cover must be either known in advance or discovered.

Internet-like topologies.

Recent studies have applied compact routing schemes on Interndike topologies
by taking advantage of their topological properties (network diameter growng log-
arithmically in the number of nodes and node degree distribution folowing power
law). In [KFYO04], Krioukov et al. showed that the average performance of the
stretch-3 compact routing scheme of Thorup on Internet-like topologis is much
better than its worst case, it achieves an average stretch = 1.1 (up to 70%of all
pair-wise paths being stretch-1 shortest paths). Recently, it fas been shown that
the general name-dependant routing scheme of Thorup and Zwick perforequite
well for scale-free networks [CSTW12]: RT size are proved to be i®(n') where t is
a small constant less than 1/3 depending on the power-low coe cient ofthe node
degree distribution.

Challenging issues.

The above mentioned techniques have two main drawbacks when largeeale and
dynamic networks are concerned. The rst is that large scale networksike the
Internet do not behave well with respect to the above parameters oubling dimen-
sion, bounded growth, etc.). For instance, the AS network is far from haing a small
treewidth since it is highly connected and, hence, exhibits a lgh clustering coe -
cient. The second challenge stems from that the e ciency of these roting schemes
mainly follows from the fact that they use some global view/representaton/decom-
position of graphs that are dicult to compute even in a static and central ized
setting. In particular, drawbacks resulting from the name-dependnce of the rout-
ing scheme remain unaddressed and limit their applicability to satic topologies
(thus inapplicable for dynamic and evolutive topologies such as the Intenet).
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4.2.2 Routing in  k-chordal graphs

In order to deal with this problems, we have focused on another struiral prop-
erty of graphs, namely the chordality. Our main objective is to provide universal
routing scheme for which routing tables are easy to compute and that acleive inter-
esting performances in graphs with small chordality [c-NRSO09, ]-NRS12, &LNS12,
j-KLNS14].

Large scale networks are known to have low (logarithmic) diameter and to hve
high clustering coe cient. Therefore, their chordality (the le ngth of the longest
induced cycle) is expected to be somehow limited (e.g., see H®5]). Hence, we
focus on the class ok-chordal graphs. A graphG is called k-chordal if it does not
contain induced cycles longer thark. The chordality of a graph is the smallestk such
that the graph is k-chordal. A 3-chordal graph is simply calledchordal. This class of
graphs received particular interest in the context of compact routing. Dourisboure
and Gavoille proposed routing tables of at most logn=loglogn bits per node,
computable in time O(m+ n log? n), that give a routing scheme with additive stretch
2bk=2c in the class ofk-chordal graphs [DG02, DGO07]. Also, Dourisboure proposed
routing tables computable in polynomial time, of at most log? n bits, but that give
an additive stretch k+1 [Dou05]. Using a Lexicographic Breadth-First Search (Lex-
BFS) ordering (resp., BFS-ordering) of the vertices, Dragan desigre a O(n?)-time
algorithm to approximate the distance between all pairs of nodes up to aradditive
constant of 1 in n-node chordal graphs, and up tok 1 in, more general,k-chordal
graphs [Dra05]. All these time complexity results consider the centalized model of
computation.

Contributions

In [c-NRSO09, j-NRS12], we present a simple universal routing schemeabed on
spanning trees of graphs. Once computing a rooted spanning tree of thgraph, the
messages have just to be rooted in the tree unless a neighbar (not necessarily in
the tree) of their current position is an ancestor of the destination. In the latter
case, the message is routed tov. Our main contribution is to show that, using
particular spanning trees (using BFS-orderings of the vertices of tte graph), this
routing scheme achieves good performances kxchordal graphs.
In order to compute the routing tables of any n-node graph with diameter

D we propose a distributed algorithm which uses messages of sif&logn) and
takes O(D) time. The corresponding routing scheme achieves the stretch ok
1 on k-chordal graphs [c-NRS09, ]-NRS12]. We then propose a routing scheme
that achieves a better additive stretch of 1 in chordal graphs. In this case, the
distributed computation of the routing tables takes O(minf D;ng) time, where

is the maximum degree of the graph. Our routing schemes use addresseof size
logn bits and local memory of size 24 1) logn bits per node of degreal. The main
advantage of our routing scheme is that the routing tables of this schemean be
(re)built from scratch in a e cient way, i.e., spreading a small am ount of messages
through the network.
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We then continued investigating compact routing schemes in chordal gaphs to
achieve better tradeo s [c-KLNS12, j-KLNS14]. Our idea has been to take usef
the caterpillar tree-decomposition introduced in Chapter 2. Indeal, in such tree-
decomposition, it is not the size of the \bags" that are important but the st ructure
of the subgraphs induced by the bags (caterpillars). Such a structu is actually
very useful for routing. Moreover, recall that the algorithm we preseried (see
Section 2.1) to compute such decompositions is greedy which makes it amable to
a distributed implementation. Using caterpillar tree-decompositions, we obtained
the following result.

Theorem 66 For any n-node m-edge graphG with maximum degree and with
a k-good tree-decomposition, there is a labelled routing schent® with the following
properties. R uses addresses of siz8(log n) bits, port-numbers of sizeO(log ) bits

[c-KLNS12,

and routing tables of sizeO(k log +log n) bits. The routing tables, addresses and 1X-NS14l

port-numbers can be computed in timeD(m?). Except the address of the destination
(not modi able), the header of a message contain®©(k log ) modi able bits. The
header and next hop are computed in tim&(1) at each step of the routing. Finally,
the additive stretch is 2k(dog e+ %) 2dog e 4.

Since the Internet is thought to have few long induced cycles (because of its high
clustering), this approach seems promising and it would be nice to pat out other
properties satis ed by the Internet and that could t in this framew ork (dealing
with the structure of the bags). A possible direction is to introduce some graph
embeddings into metric spaces and see if that would provide more toslor structures
(like e.g., the triangular inequality) to improve the behaviour and the analysis of our
scheme. In particular, introducing the hyperbolicity in this f ramework is our next
step. Since computing the hyperbolicity in huge networks is alreagl a challenging
issue, we have started working on attempts to provide a new charact&ation of
this property. Thanks to the Cops and Robber games, we have establiskea link
between such an ordering of the vertices and the hyperbolicity of te graph. This
gives an algorithmic approach and a new (partial) characterization for the graph
with bounded hyperbolicity (see Section 1.2).

4.2.3 Fault tolerant routing

Compact routing has also been studied in dynamic environment. More pcisely,
Courcelle and Twigg introduced compact routing with forbidden setswhere the
routing tables must ensure e cient routing even if any bounded number of nodes
fail [CTO7] (see also [ACGP10, ACG12]). In [c-HIKN10], we study the problemof
nding a destination node t by a mobile agent in an unreliable network where a
bounded number of unknown nodes have a byzantine behavior.

We consider the problem of locating an item hosted by some node of the tveork
when each of the nhodes maintains a database storing the rst edge on a shast path
to the node hosting the desired item (thedestination). The search is performed by
a mobile agent with a limited perception of the environment and with little memory
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which starts from some initial node, the source When occupying a node, the mobile
agent can perform a query to the node's database that reveals to it an edgehat
is the beginning of a shortest path from the current node to the item We assume,
however, that some nodes may provide wrong information, that is, a nde v may
be aliar and indicate an edge that does not belong to any shortest path fromv
to the destination. This is motivated by the fact that inaccuracies occur in the
nodes'databases because nodes may malfunction or be malicious, or magre out-
of-date information due to the movement of items or the dynamicity of the network.

The problem is then to deal with the potentially incorrect informati on and to
nd the desired item. That is, the mobile agent can decide to follow the edge
pointed by its current node's database or not. The performance of the s&ch is
measured by comparing thesearching time (a.k.a. hitting time), i.e., the length of
the walk followed by the agent from the source to the destination, withthe length
d of a shortest path between these nodes.

Related Work

The search problem in the presence of liars was rst investigated by Kanakis and
Krizanc [KK99]. In this seminal work, they designed algorithms for searting in
distributed networks with ring or torus topology, when a node has a contant prob-
ability of being a liar [KK99]. The case when the numberk of liars is bounded
was rst considered in [HKKO04], where deterministic algorithms were designed for
particular topologies like the complete graph, ring, torus, hypercube,and bounded
degree trees. In particular, in bounded degree trees, it is provedhat the search
time is lower-bounded by ( d+2™Mnfkidg) [HKK04]. Simple randomized and memo-
ryless algorithms are designed in [HKKKO8] for the case of bounded degree grap,
where the mobile agent follows the advice with some xed probabilityp > 1=2. In
this class of graphs, the authors showed that the expected distance eered before
reaching the destination is upper-bounded byO(d+ rK), wherer = liq [HKKKO8].
Moreover, this bound is tight since they proved a lower bound of (d+ r¥) in the
torus [HKKKO08]. While this bound is a bit disappointing, it can be impro ved for
particular graph classes.

Roughly speaking, the algorithms we present in this paper consist of altmation
of phases of given duration: either the agent keeps on following the adwécprovided
by the nodes or it walks choosing the next visited node uniformly atrandom in
the neighborhood of the current position. This is closely related tobiased random
walks (BRW) which are random walks in which nodes have a statistical peference
to shift the walker towards the target, or more generally, prevent the walker from
staying too long in one vicinity [ABK * 96]. More formally, biased random walks are
used in network exploration in order to speed up the time required b visit the whole
network without an a-priori knowledge of the topology and without an edge/node
labeling requirement. For instance, Ikedaet al. proved in [IKOYO03] that, assuming
the knowledge of the degrees of the neighbors, a biased random walk can éoxe
any graph within O(n?logn) edge traversals whereas a uniform random walk takes
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Table 4.2: Searching in a path with liars. The listed strategies have o knowledge
of inbound ports used by the agent.

Strategy Expected searching time Memory  Reference
BRW [p < 1=2] 2049

BRW [p=1=2] ( dn) [Love3]
BRW [p > 1=2] (d+2 (k) [HKKKO8]
RIA 2d+ k@ + o(d) timer  [c-HIKN10]

Table 4.3: Searching with liars in random -regular graphs. Results marked with
() allow the agent to make use of labels of inbound ports and to have knowlagk
of n and k.

Strategy Expected searching time (a.a.s.) Memory Reference
lower bound  (min f( 1)K; ( 1)9;logy ng) [c-HIKN10]
BRW [p > 1=2] (min f( 1);n@ g)
BRW [p=1=2] (log 3n) [CFO05]
BRW [p < 1=2] n®
R/IA/E O(k logn) (log k+loglogyn) [c-HIKN10]
RIA O(k®log®n) timer [c-HIKN10]

( n3) steps for some graphs. In our context, however, the bias may be errones
due to the presence of liars.

In our work, we focus on some particular and widely used topologies. Exparafs
and random regular graphs have been extensively studied for the desigsf optimal
networks and algorithms for routing [NPSY94, KR96, Fri00]. Because of their low
diameter and high connectivity, random regular graphs are also of interesin Peer-
to-Peer networks (e.g., see [GHWO08]). More generally, it can be observatat many
interaction networks like peer to peer overlay networks, small wolds and scale-
free networks are expanders despite this is not proved in the origal papers. For
instance, Bourassa and Holt [BHO3] proposed a fully decentralized protocdbased
on random walks for the nodes to join and leave the network. They conjectred
that their protocol produces random regular graphs, which was proved famally
in [CDGO7]. On the other hand, Cooper [CF05]et al. show that random regular
graphs are expanders.

Contributions
[c-HIKN10]

In [c-HIKN10], we investigate the search problem in the class of regular graps in
the presence of a bounded number of liars. Our main contribution is tle design
and study of a randomized algorithm, called R=A that alternates phases of pure
random walk (R) with phases in which the agent follows the advice (A). We show
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that Algorithm R=A improves upon previous algorithms for the search problem in
paths and random -regular graphs. In particular, in these classes, we pove that
the Algorithm R=A achieves searching time much smaller than @+ 2%), which is
the lower bound for general regular graphs [HKKKO08]. Note that the graph classes
we consider capture the two extreme types of behavior in terms of gpansion, since
random -regular graphs are good expanders, while the other classes are bhly
symmetric graphs with poor expansion. Note, however, that Algorithm R=A is
generic and works for any topology. We also introduce AlgorithmR=A=E in which,
in addition of the phases random (R) and advice (A), there is a phase wher¢he
agent explores (E) some bounded ball around its current position. This dtter
algorithm requires more memory for the agent.

Tables 4.2 and 4.3 establish a comparison between the performances of Algo-
rithm R/A, and the performances of theBiased Random Walk (BRW).

4.3 Local models and Property testing

We conclude this chapter by discussing an important issue that is rated to both
graph property measurements and the potential exploitation of these meagements
by routing algorithms. Centralized solutions for property testing/measurements do
not allow e ciently facing the dynamicity of the Internet networks (variations of
both the topology and the tra c). Hence, it is natural to propose distribut ed or
even local solutions. That is, solutions where the nodes havieounded memoryand
only local knowledgeof the network topology. The di erence between distributed
and local algorithms is mainly relative to the time that is allowed to the nodes to
exchange messages. Indeed, the less exchanges are allowed, the lesgriformation
can spread through the network and the more partial the knowledge the nods
have about the network is. However, the notion of distributed or local aborithms
is not well formalized since numerous models exist. Among other di alt points,
one of our objectives is to determine relevant distributed modeldo be considered.
That is, most of the properties that are relevant for routing schemes hae very little
chance to be computable with a pure local view of the topology. On the othehand,
gathering all the information in one node and then spreading the resultwould not
be realistic in the Internet (it would imply too much control trac ).

Some theoretical and over-simpli ed models were conceived for stlying partic-
ular aspects of distributed protocols such as fault-tolerance, syndnism, locality,
congestion, etc. In the model CONGEST (see the book of Peleg [Pel00]) r@etwork
is represented by a graph whose nodes correspond to network processand edges
to inter-processor links. The communication is synchronous and oags in discrete
rounds. In each round every processor can send a message of $i{tog n) through
each of its outgoing links (wheren is the number of nodes).

Some variations to the CONGEST model have been proposed. The general
idea is to remove some restrictions (making it more powerful) in oder to focus
on some particular issues. In that spirit, Linial [Lin92] introduced in a seminal
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paper the free model (also called LOCAL [Pel00]). The only di erence vith the

CONGEST model is that the restriction on the size of the messages is neoved
so that every vertex is allowed to send unbounded size messages inveey round.

By relaxing the constraint on the size of the messages, this model fases on the
issue of locality in distributed systems. For that reason, the answeto the question
What cannot be computed locallyZKMWO04] (in the LOCAL model) appears to be a
crucial one. In this context, Kuhn et al. [KMWO04] show that di cult pr oblems like
minimum vertex cover and minimum dominating set cannot be approximated well
when processors can exchange arbitrary long messages during a boundednber of
rounds. Frischknechtet al. prove that ( n?) bits must be exchanged to determine
the girth of a graph or to decide if the graph has diameter at most 4 [FHW12].
Grumbach and Wu [GWO09] also use the CONGEST model. They are interesia
in frugal computations, i.e., computations where the total amount of information

traversing each edge i0(logn). Their motivation was to understand the impact

of locality. In fact, they show that for planar networks or networks of bounded
degree, any rst order logic formula can be evaluated frugally (in their stting).

More recently, an important research e ort is done to formalize local malels of
computation [Fral0, FRT11].

Since we need to face both locality and dynamicity issues, we are deloping
new techniques allowing to obtain global structural information from local (partial)
views of the network. We have investigated the question of determimg which graph
properties can or cannot be computed using only local information. The ditributed
model we consider is a restriction of the classical CONGEST (distthuted) model
and it is close to the simultaneous message model de ned by Babai, Kimei and
Lokam [BKL95]. More precisely, each of thesen nodes only knows its own ID and
the IDs of its neighbours and is allowed to send a message 6f(log n) bits to some
central entity, called the referee. We then investigate whetherthe referee is able
to decide some basic structural properties of the network topologyG or not. More
formally:

De nition 1 A one-round protocol is a family ( L; #)n2n, where:

L :f1;:::;ng P (f1;:::;ng) ! f 0;1g is the local function of for graphs
of sizen,

B:(fo;1g)" I'f 0:;1g is the global function of for graphs of sizen.

"(G)= L(LNc@);:::; L(mNg(n) : (4.1a)
The output of on G is:
(G)= 3 '(©): (4.1b)

We de ne
i '(G)i= max j n(i:Nc(i)i: (4.1¢)
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is said to befrugal if:

max j '(G)j = O(logn): (4.1d)
G graph of n nodes

Notice that function ! can be evaluated in any pair ;N ) wherei 2 1;:::;ng

by nodei in a graph of n nodes when its neighborhood isN .
In[c-BMN * 11, j-BKM * 14], we show that even simple questions cannot be solved
in general.

Theorem 67 There is no one-round frugal protocol allowing the referee to dede
whether an arbitrary graph G contains a square or a triangle as a subgraph, or has
diameter at most 3.

On the other hand, the referee can decode the messages in order to lkeafull
knowledge of G when G belongs to graph classes like planar graphs, bounded-
treewidth graphs and, more generally, bounded-degeneracy graphs.

Theorem 68 There exists a one-round frugal protocol allowing the referee to re-
construct graphs of bounded degeneracy.

Questions related to the connectivity of arbitrary graphs are still open. We have
continued our investigation by proposing variations of our distributed model. Fol-
lowing our framework, we have exhibited a hierarchy of problems and tributed
models of computation. Without elaborating on the details, we have propoed four
models of distributed computation, called SimAsync ; SimSync; FreeAsync and
FreeSync . SimAsync is exactly the model described in De nition 1. The remain-
ing three models are more powerful since nodes are allowed to seselquentially their
message to the referee and may have access to previous messages. Iiqdar,
FreeAsync allows us to simulate asynchronicity of the network. For any model
X, we denote by X [f (n)] the set of problems that can be solved inn-node graphs
in the model X when the nodes are allowed to send messages of s@¢ (n)) bits.

Theorem 69 For any f (n) = o(n) we have that
SimAsync [f (n)] ( SimSync[f (n)] ( FreeAsync [f(n)] FreeSync [f (n)].

In the following table, we summarize our results. no (respectivly, yes) in row
i and columnj means that property i cannot (respectively, can) be computed in
Model j.

The SimAsync Model is very constrained and so o ers very limited power of
computation to nodes. On the other hand, theFreeSync Model is very powerful
but it requires too many computational resources and so is not realist for practical
applications. Hence, one crucial question for the EULER project is to dsign an
intermediate local model that would be realistic enough while allowhg to compute
basic properties such as connectivity, and possibly more elaborate prapties.
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SimAsync | SimSync | FreeAsync FreeSync
Build k-degenerate yes yes yes yes
rooted MIS no yes yes yes
Square no no ? ?
EOB-BFS no no yes yes
BFS ? ? ? yes

Table 4.4: Classi cation of communication models. Build

the labels of the nodes.

k-degenerate is the problem of deciding
whether a graph is k-degenerate and to build its adjacency matrix if it is the case. R ooted MIS

is the problem to compute a maximal independent set containin g a predetermined node. Square
is the problem of deciding whether a graph contains a square. EOB-BFS aims at computing a
BFS-tree in particular bipartite labelled graphs where the bipart ition is de ned by the parity of

Up to now, our study has focused on the case of static networks and it shodl
be extended in order to include dynamicity. This requires the inderstanding of this
dynamics and the introduction of suitable models of dynamicity. For this purpose,
new algorithmic tools that take timing into account should be developed






Appendix: Other contributions
on complexity and graph
structures

Content

In the last chapter of this thesis, we present our study of two optimization problems
in graphs. These studies are in marge of previous chapters of this thesion the
one hand because they are mainly centralized, on the other hand becausheir
motivation is mainly theoretical. However, the general guideline is againto study
the complexity of these problems depending of the structural propgies of the
considered graphs.

First, we study the complexity of computing the hull number of graphs in various
graph classes [j-ACG 13]. This parameter somehow extends the notion of classical
convexity to graphs.

Second, we prove that themax-coloring problemcannot be solved in sub-expo-
nential time in trees unless the Exponential Time Hypothesis (ETH)is wrong [c-ANP14].



114 Appendix: Other contributions

A.1 Convexity: hull number of some graph classes

We study the geodetic convexity of graphs focusing on the problem of th complexity
to compute inclusion-minimum hull set of a graph in several graph classs []-FACG* 13].
For any two vertices u;v 2 V of a connected graphG = (V; E), the closed interval
I [u;v] of u and v is the the §t of vertices that belong to some shortesty; v)-path.
Forany SV, letI[S]= ,,,s![u;v]. A subsetS V is geodesically convex
if 1[S] = S. In other words, a subsetS is convex if, for any u;v 2 S and for any
shortest (u;v)-path P, V(P) S. This clearly generalizes Euclidean convexity to
graphs. Given a subsetS V, the convex hullly[S] of S is the smallest convex
set that contains S. We say that S is a hull setof G if I4[S] = V. The size of
a minimum hull set of G is the hull humber of G, denoted by hn(G). The Hull
Number problem is to decide ifhn(G) Kk, for a given graph G and an integerk.

In the seminal work [ES85], the authors present some upper and lower bods
on the hull number of general graphs and characterize the hull number of ame
particular graphs. The corresponding minimization problem has been sbwn to
be NP-complete [DGK* 09]. Dourado et al. also proved that the hull number of
unit interval graphs, cographs and split graphs can be computed in polynomnal
time [DGK ™ 09]. Bounds on the hull number of triangle-free graphs are shown
in [DPRS10]. The hull number of the cartesian and the strong product oftwo
connected graphs is studied in [CCJ04, CHM 10]. Recently, the case of chordal
graphs have been considered in [KN13]. In [HIMO5], the authors have studied the
relationship between the Steiner number and the hull number of a given graph. An
oriented version of theHull Number  problem is studied in [CFZ03, Far05]. Other
parameters related to the geodetic convexity have been studied ifCHZ02, CWZ02].
For work in other graph convexities than the geodetic convexity, the reader may
refer to [CMSO05, DPS10, FJ86, CM99] and to Chapter 5 in [Soal3].

[-FACG * 13] Contributions.  We rst answer an open question in [DGK* 09] by showing that
the Hull Number  problem is NP-hard even when restricted to the class of bipartite
graphs (reduction of 3-SAT). Then, we design polynomial time algorithms b solve
the Hull Number problem in several graphs' classes: the class of complements
of bipartite graphs, the class of @:q 4)-graphs’. The latter result, generalizing
some results in [ACG' 11], consists into a FPT algorithm parametrized by q and
obtained by using Primeval Decomposition [BO99a] (generalization of modwar de-
composition). Finally, we prove tight upper bounds on the hull number of graphs.
In particular, we show that the hull number of an n-node graphG without simpli-
cial vertices is at most d%e in general, at most d”—zle if G is regular or has no
triangle, and at most d”Tle if G has girth at least 6.

Among the remaining interesting questions, | should mention the corplexity
of computing the hull number in planar graphs (in contrast, for any set S of a d-
dimensional euclidean space, thgift wrapping algorithm computes the convex hull
and a minimum-inclusion hull set of S in polynomial-time in |Sj, d being xed).

“Agraph G=(V;E)isa(q;q 4)-graph,fora xed q 4, ifforany S V,jSj g, Sinduces
at most q 4 paths on 4 vertices [BO95].
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A.2 Weighted Coloring in trees

In [GZ97], Guan and Zhu generalizedsraph Coloring  to vertex-weighted graphs.
A (vertex) weighted graph(G;w) consists of a loop-less graphG = (V;E) and a
weight function w : V ! R4 over the vertices of G. Given a proper k-coloring
c = (Sy1;:::;S¢)° of a weighted graph G;w), the weight of color iP(l i k)is
de ned by w(i) = maxyz2s, w(v). The weight of coloringcis w(c) = :(=1 w(i). The
weighted chromatic numberof (G;w), denoted by (G), is the minimum weight
of a proper coloring of G;w). The Weighted Coloring Problem (also known
as Max-coloring [PRV11, PPRO0O5, PR0O5, PRV04, PPRO04]) takes a weighted graph
(G;w) as input and looks for ,(G) [GZ97].

As it generalizesGraph Coloring  to weighted graphs, this problem is NP-hard
in general graphs. Moreover, it has been shown NP-hard in bipartite grapk [DdWMP02],
where Graph Coloring is trivial. Weighted Coloring has been shown to
be NP-hard in the classes of split graphs, interval graphs and triangle-fge planar
graphs with bounded degree [DdAWMP02, PRV04, dWDE 09, EMP06, PRV11]. On
the other hand, the weighted chromatic number of cographs and of some suladses
of bipartite graphs can be found in polynomial-time [DdWMP02, dWDE * 09]. Con-
stant-factor approximation algorithms have been designed for various grapltlasses
such as interval graphs, perfect graphs, etc. [PRV04, PPR04, PPRO5, PRO5, EL12].
In particular, it is known that Weighted Coloring can be approximated by a
factor % in bipartite graphs and cannot be approximated by a factor% for any

> 0 in this graph class unles® = NP [PRO5].

Guan and Zhu showed that, given a xed parameterr 2 N, the minimum weight
of a coloring using at mostr colors can be computed in polynomial-time (exponen-
tial in r) in the class of bounded treewidth graphs (a.k.a. partialk-trees) [GZ97].
They left open the question of the time-complexity of the Weighted Color-
ing Problem in this class (partial k-trees) and, in particular, in trees. In [PR05],
a sub-exponential algorithm and a polynomial-time approximation schemeto com-
pute the weighted chromatic number of trees are presented. Later on, &o er et
al. proposed a polynomial-time approximation scheme to compute the weghted
chromatic number of bounded treewidth graphs [EMPO06]. Kavitha and Medre re-
cently presented polynomial-time algorithms for subclasses of treegKM12]. They
show that computing the weighted chromatic number can be done in linar time in
the class of trees where nodes with degree at least three induce abte set [KM12].

In the last years, many studies have tackled theWeighted Coloring Prob-
lem, however its complexity was still unknown on trees. We answethis question.

Theorem 70 If ETH is true, then the best algorithm to compute the weighted chro-
matic number of an n-node tree T has time-complexityn (°9 M) [c-ANP14]

The reduction we found is quite intricate. In particular, as an intermediary
step, we de ne and use a variant of 3-SAT where we introduce some depdencies
between valid assignments of subgroup of variables.

SA proper k-coloring of G is a partition ¢=(S1;:::;Sk) of V such that, forany 1 i k, S
is a non-empty independent set of vertices that have the same olor i.






Conclusion and Perspectives

Recap of open problems. Rather than repeating once again our contribu-
tions, we prefer to list here some of the open problems mentioned tloughout this
manuscript. We don't give the exhaustive list of all questions alreadymentioned
but focus on the problems that seem di cult (i.e., open for a long time) and on
some intriguing questions that may be easier.

Chapter 1. We naturally start with the Meyniel's conjecture (1985) that asks

whether the cop-number of anyn-node graph isO(" n) (page 21). A possible
next step toward its solution would be to prove the conjecture for nev graph
classes, in order to re ne Assertion 1. More anecdotic but still very ntriguing
is the question of determining the minimum number of cops with sped one
that are needed to capture a robber with speed two in an  n grid (page 29).
A bit further from Cops and Robber games, many problems remain open in
the Surveillance game. In particular, what is the cost of connectivity? In
other words, does there a constanc > 0 exist such that, for any graph G,
the connected surveillance number ofG is at most c times (or diers of at
most ¢ from) the surveillance number of G (page 39)? Finally, concerning
turn-by-turn games, what is the complexity of the fractional game and does
it provide an approximation for known integral games (page 43)?

Chapter 2. Even though we did not work on it, it is worth mentioning here the

question of whether computing the treewidth of planar graphs can be sokd
in polynomial time (page 47). Also, while the treewidth problem has no
polynomial kernel (unlessNP  coNP=poly), is there a better (single expo-
nential?) FPT algorithm for the treewidth problem? Since non-deterministic
graph searching allowed us to get new results on tree-decompositionyrther
understanding of this graph searching variant is expected. Here are soen
guestions. What is the complexity of non-deterministic graph searcing in
trees (page 53)? Moreover, is there a dual structure for branched treeidth,
similar to brambles for treewidth or blockage for pathwidth (page 54)? More
generally, can some digraph decomposition be de ned that t in our partion
function framework (page 54)? In other words, can we extend our duality
result (Th. 41) and/or our FPT algorithm (page 56) to some digraph de-
composition? More generally, is there a \good" digraph decomposition (Sec
tion 2.2.3)?

Chapter 3. Here, the remaining questions are interesting for the new techniges

that are required to answer them. In particular, the classical graph sarch-
ing problem belongs to NP because it satis es the monotonicity property
(page 71). What about non-monotone variants such as connected or exclusive
graph searching? Also, the study of graph searching in a distributed s¢ing
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led to an interesting perspective on how to compute polynomial-time approx-
imation for computing the pathwidth of graphs (page 76). Can this problem
be approximated up to a constant ratio? In the context of mobile agents co-
ordination, many open problems remain, such as tasks that can be executed
by a team of mobile robots. Since we mainly consider the feasibility ofdw
tasks (Section 3.3.2), the question of achieving them while optimizig some
objective function (for instance, minimizing the maximum number of moves
of each robot for saving energy) remains open.

Chapter 4. For once, let us start with an anecdotic open problem: what is the
complexity of computing the optimal scheduling (with minimum make span)
for the information gathering problem in grids (page 95)? More impor-
tantly/interestingly, most clever compact routing schemes rely on @ntralized
algorithms that compute routing tables with a global knowledge of the graphs
(Section 4.2.1). Is it possible to achieve the same performance as exigj al-
gorithms by manipulating only local structural knowledge? In other words,
can we design local algorithms for computing routing tables that allow e -
cient compact routing schemes in some particular graph classes? The tagery
intriguing question we would like to mention is: is there a one-rourd frugal
protocol (De nition 1) that decides if an input graph is connected? Finally,
pursuing the study of the hierarchy of distributed models as in Theorem 69
seems interesting for designing e cient local algorithms that compue graph
properties.

Some perspectives.  The question of designing e cient distributed algorithms
to cope with the increasing size of large-scale communication networkeemains
widely open. On the centralized point of view, recent results broght new break-
through for the design of \e cient" (i.e. single exponential) FPT algorit hms (see,
e.g., Section 2.1). However, most (all?) of the proposed solutions rely onighly
centralized methods such as the pre-computation of tree-decomposiins (e.g., bidi-
mensionality) or the use of hash functions for de-randomization (e.g., cor coding).
Moreover, such algorithms are di cult to implement e ciently, not  only because
of their exponential (in the parameter) components (unavoidable becase of the
NP-hardness of the problems), but also because of some omitted polynomidin
the size of the instance) parts. Hence, pursuing theoretical studis on the design of
e cient algorithms for NP-complete problems is a necessary directionof research.

For this purpose, | will continue my studies of new algorithms to compue tree-
and path-decompositions of graphs. As already mentioned, few heuristicand ap-
proximation algorithms exist and this is an approach that | want to investi gate.
In our study of routing recon guration, we have designed an heuristic agorithm
to compute the process number of dependency digraphs (page 66). We cantly
continue in this direction by adding pre-processing steps and tfs gives promising
results for new heuristic for computing the pathwidth of graphs. Extending our
approach to treewidth seems quite challenging.
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A dierent approach is to focus on dierent graph decompositions. For in-
stance, it is interesting to look at tree-decompositions whose bags saty particular
structures instead of bounding their size. We have started this sudy by proposing
a polynomial-time algorithm that computes \caterpillar decompositions" ( Theo-
rem 33) and we expect this kind of tree-decomposition to have nice algdtimic
applications.

Of course, it would be ideal to discover a particular structure that would be
computable e ciently in a distributed (local?) setting and that ¢ ould help for
algorithmic purpose as well. | aim at continuing my study on the hierarchy of
distributed models in order to understand what can be expected.

Finally, | would also be interested in other applications than telecommunication
networks. Recently, some members of COATI have used their expése in opti-
mization in the domain of bio-informatics. It is clearly an area where my $udy of
e cient algorithms in large-scale graphs has applications.

To conclude, Pursuit-evasion games remain one of my favorite topics wbh is
an inexhaustible (?) source of questions.
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