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Introduction

This document describes the work I did since I obtained my Ph.D. in 2007. Fol-

lowing my Ph.D. thesis where I mainly worked on graph searching games and graph

decompositions [t-Nis07], my main contributions relate to pursuit-evasion games

and their relationship with graph structural properties.

The theoretical studies I am dealing with have applications for solving telecom-

munication problems, mainly related to routing. Such problems are generally dif-

ficult (NP-hard) but may become easier when restricted to classes of graphs with

specific structural properties1. Therefore, understanding graph structures became

one important topic of my research. Pursuit-evasion games - where mobile entities

try to capture other ones - are one of my main tools for this purpose. Indeed, sev-

eral variants of these games are closely related to graph structures. For instance,

graph searching is an algorithmic interpretation of graph decompositions and, there-

fore, it is an interesting (and fruitful) way to study them. Moreover (and somehow

surprisingly), pursuit-evasion games are again of a great help to study problems of

telecommunication networks, by providing new models.

Another important issue of my research is to deal with the increasing size of

nowadays networks (traffic, data, etc.) that makes unpractical most of the existing

solutions. In particular, centralized algorithms with a full knowledge of the envi-

ronment are no longer adequate to deal with current telecommunication problems

while achieving expected performance. Therefore, part of my research focuses on

simple local algorithms that may be used in real large-scale networks. I also study

models of distributed computation by themselves. I mainly focus on their limits:

what can be computed when nodes or mobile agents have very little knowledge

and/or few abilities?

The manuscript is divided into 4 chapters. Chapter 1 is dedicated to the study

of several variants of turn-by-turn Pursuit-Evasion Games, mostly to the Cops

and Robber games. Chapter 2 focuses on graph decompositions and their relation-

ship with graph searching. Chapter 3 treats another aspect of Pursuit-Evasion

games with a study of variants of Graph Searching games, both in centralized and

distributed settings. Finally, Chapter 4 deals with routing problems in various

environments and with distributed computing. In the whole manuscript, three

complementary aspects of my research are deeply interleaving:

• Characterization of graph structural properties. I study various graph

properties through new point of views that give rise to alternative definitions

and characterizations;

• Recognition of graph properties. I take advantage of the proposed cha-

racterizations to design efficient algorithms that either decide whether a graph

satisfies some property, or compute some structures in graphs.

1For basics notions on graphs, algorithms and computational complexity, see [CLRS01, BM08]
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• Application of my theoretical study on problems arising in telecommuni-

cation networks.

The work presented here is the result of collaborations with colleagues of the

“MASCOATI” project-team and with colleagues from various French or foreign

universities2. In particular, some of the work has been done during the Ph.D.

theses of Ronan P. Soares [Soa13] and Bi Li under my co-supervision.

Before describing more precisely the organization of the manuscript, I start with

a general introduction on Pursuit-Evasion games. Then, I present the context of

our work on telecommunication networks, focusing on the algorithmic challenges

that are arising nowadays.

Pursuit-evasion games

Pursuit-evasion refers to the problems in which one team of mobile entities, the cops

or searchers or hunters or pursuers etc. attempts to track down another group of

mobile entities, the robbers or fugitives or rabbits or evaders etc. The dual problem

for the evaders is to avoid being caught. These are natural games arising from a

wide range of applications, from the practical ones such as search and rescue (e.g.,

rescuing a speleologist in a cave, Breish (1967) [Bre12]), surveillance, monitoring,

military strategy to trajectory tracking, etc. to the handling of abstract mathema-

tical and theoretical computer science concepts (e.g., Graph Minor Theory, Robert-

son and Seymour (1983-2004)). Hence, Pursuit-evasion games have been studied in

various divergent disciplines, e.g., graph theory, differential games, robotics, control

theory, geometric algorithms, etc. (see [FT08, CHI11] for recent surveys).

One famous such game is the Lion-and-Man problem stated by Rado in 1930 [Lit53]

where a lion and a man with the same maximum speed are confined in a closed

arena. Surprisingly, Besicovitch showed that the man can indefinitely evade the

lion while the lion can get arbitrarily close to him [Lit53]. On the other hand, when

the man and the lion are moving within the non-negative quadrant of the plane

(both initial coordinates of the lion are larger than those of the man), then the

lion will eventually be sated [Sga01]. Many other variations of the problem have

been considered (e.g., [KR05, BBH08, KI09]). This simple example illustrates the

fact that many parameters (such as the environment where the game is played, or

whether the robber must be touched or only approached to be captured, etc.) may

impact the solution of the Pursuit-evasion games. Therefore, the studies of these

games can be categorized into many variants, approaches and techniques.

In the differential approach, the motions of the players are described by differ-

ential equations well reflecting the physical constraints of the players (embodied by

robots, drones, etc.). The solutions of these equations are used as control inputs to

achieve the objective of the game. Game theory and probabilistic approaches are

2Since most of the contributions presented in this manuscript is the result of collaboration with

other colleagues, I use “we” throughout the document. I will use “I” when personal opinions are

presented or when further work is described.
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widely used to address these games (see the textbook of Basar and Olsder [BO99b]).

The complexity of the differential equations generally limits the solutions to heuris-

tics. In this manuscript, I consider only combinatorial techniques and exact (i.e.,

achieving optimal solutions) or approximation algorithms.

In the combinatorial approach, research on Pursuit-evasion games falls into two

main categories depending on whether the environment is represented geometrically

using polygonal models or by graphs. In the former case, the space is continuous

and the complexity comes from obstacles (holes) that impede visibility. Some recent

results in this area can be found in [SY92, GLL+99, CHI11, KS12, BKIS12, KS13].

In my work, I consider only the graphical models, i.e., both players move in a graph.

Another important distinction that I would like to mention deals with the objec-

tive of the games. Pursuit-evasion problems have been addressed either regarding

the worst-case behavior of the evader or using an average-case approach. In the lat-

ter approach, the objective is generally to minimize the expected time of capture.

In all cases, the games highly depend on the assumptions about the knowledge of

the players. I consider only the worst-case approach, i.e., when the evader must be

captured regardless of its strategy.

To sum up, in Chapters 1 to 3, I address Pursuit-evasion games played on

graphs. I consider worst-case behavior of the evader, that is, I mainly consider

deterministic strategies ensuring that the pursuers eventually capture the evader

whatever it does. I survey the literature on two families of such games: the Cops and

Robber games (Sections 1.1 and 1.2) and the Graph Searching games (Sections 3.1

and 3.2, and Section 2.3 for directed graphs). My contributions on Pursuit-evasion

games mainly depend on the rules of the games considered, e.g., visibility of the

players, their speed, their knowledge of the graph, etc. and on the class of graphs

in which the games are played. This allows to provide new characterizations for

several structural properties of graphs that may be used for algorithmic purposes.

Another important aspect of my study of Pursuit-evasion games is that they al-

low us to model problems arising in telecommunication networks, e.g., prefetching

(Section 1.3) or routing reconfiguration problems (Section 2.3). Using the proposed

models and the studied graph structural properties allows the design of efficient

algorithms for several applications in telecommunication networks. As shown be-

low, structural properties of current large-scale telecommunication networks play a

crucial role for facing the applications efficiently.

Telecommunication networks and algorithmic perspectives

My work comes from problems arising in telecommunication networks. An impor-

tant aspect is to design efficient algorithms for solving these problems in networks

of large size.

Both the growth of (tele)communication networks and the changes in their us-

age lead to new algorithmic challenges. The size of large-scale networks (social

networks, the Internet) is exponentially growing and their dynamics is increasing.

For instance, recent telecommunication networks consist of several thousands or
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even millions of nodes and they are still growing. For example, more than 65, 000

Autonomous Systems (AS) compose the Internet [fIDAC]. On the other hand, due

to the growth of networks and the emergence of new applications and uses (video

streaming, data sharing, cloud computing, social networking (Facebook), etc.), the

traffic drastically grows. For instance, in optical networks the traffic is growing

exponentially and this trend is expected to continue [cis12]. Those evolutions lead

to new algorithmic challenges.

Solutions that have been proposed so far generally do not scale up to the mag-

nitude of today’s networks and cannot be straightly adapted to the dynamics of

both topologies and traffic. For instance, due to time or space constraints, most

polynomial-time algorithms cannot be used efficiently in large networks: A naive

implementation of an algorithm with running time O(n4) takes several months (on

a standard laptop) when n = 10, 000. One possible approach to design efficient

algorithms is to specialize the algorithms to particular network classes, that is, to

take advantage of the structural properties of real life networks in order to de-

sign algorithms with better practical performance on such networks. Indeed, it is

well known that most large-scale networks (the Internet, twitter, citation graphs,

youtube links) share structural properties such as logarithmic diameter, power-law

degree distribution and high clustering coefficient [BA99, AJB99, FFF99, SFFF03].

A lot of work has been done to discover/measure the specific properties of large-scale

networks and then use this information for the design of efficient algorithms. For

instance, distributed routing has been widely studied in various environments such

as greedy geometric routing in small-worlds [WS98, Kle00b, Kle00a, FG10, GS11]

or compact routing in power-law networks [KFY04, CSTW12] (see Section 4.2). In

Chapter 4, among other contributions on routing in several networking environ-

ments, we provide some new results on compact routing using graph structures.

On the theoretical side, difficult (NP-complete) problems have been studied in

order to design efficient algorithms solving them (almost) independently of the size

of the inputs. More formally, the Fixed Parameterized Tractability (FPT) complex-

ity paradigm aims at understanding where the difficulty of a problem lies if not in

the size of the instance [DF99, FG06, Nie06]. That is, given a difficult problem, the

question is to capture the “structure” (formalized by a parameter k) for which the

problem may be easy to solve. A typical example of such a parameter is the treewidth

of graphs that measures the proximity of a graph with a tree [Ros74, RS86a, Bod98,

Bod07]. Roughly, a graph with small treewidth “looks” like a tree, i.e., can be de-

composed in a tree-like manner using small separators. Hence, problems that can

be efficiently solved in trees are generally tractable in bounded treewidth graphs by

using dynamic programming on the tree-decomposition (e.g., [Cou90]). Importantly

and surprisingly, the algorithmic counterpart of tree-decompositions is precisely the

graph searching game where a team of searchers aims at capturing a visible and ar-

bitrarily fast fugitive in a graph. In addition to its importance in the Graph Minor

Theory [RS86a, RS90, RS91, RS03a, RS03b], treewidth plays a crucial role in many

recent breakthrough results in parameterized complexity (see Section 2.1). Chap-

ter 2 is devoted to our contributions on tree-decompositions that mainly rely on a
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graph searching approach.

Another aspect of large-scale networks is their high dynamicity (for instance,

peer-to-peer networks are characterized by an important churn: nodes arrive or

leave the network at any time, etc.). Hence, it is important to design algorithms

that can easily cope with the changes and that tolerate some faults, or at least can

recover quickly (back) to a normal behaviour. Moreover, recent networks are not

defined in a global way. For instance, a social network is emerging through local in-

teractions growing thanks to the acquaintances of each person, a priori without any

global structure. This aspect makes irrelevant several algorithms based on global

knowledge/structure (e.g., tree-decompositions for dynamic programming, path-

vector routing tables of the Border Gateway Protocol (BGP) in the Internet, etc.)

or intrinsically centralized. Hence, current research concentrates on distributed

or even local solutions, that is, solutions where nodes have limited memory and

local knowledge of the network. It is important to note that “simple” problems

(with polynomial or even linear complexity) may become difficult or even impos-

sible to solve when communication is restricted. In particular, efficient solutions

that have been proposed in a centralized setting highly rely on the knowledge of

some structures of the network that are intrinsically global (hyperbolicity, chordal-

ity, treewidth, etc.) and thus are difficult to compute in a distributed (and even

more in a local) way. For instance, most of the properties of the Internet have

been estimated by some heuristics on partial maps of CAIDA. Moreover, most of

the efficient algorithms that take advantage of them either are highly centralized

algorithms (e.g., FPT algorithms), or rely on a global and centralized structure

(tree-decompositions, sparse cover, etc.). The mobile agents paradigm is a natural

and interesting approach to understand how information is spread (or gathered) in

networks and to design distributed algorithms. In Chapters 3 and 4, we study sev-

eral tasks requiring the coordination of mobile agents in various distributed settings,

and we also investigate the computation of graph properties in a local setting.

Organization of the manuscript and personal contributions

In this document3, several topics such as pursuit-evasion games, graph decomposi-

tions, properties of graphs and applications to telecommunication networks (in par-

ticular routing) are deeply interleaving. The order chosen to present them mainly

depends on the computational setting: from the study of graph properties and of

several theoretical pursuit-evasion games in a centralized setting to the study of

routing in various distributed models. While our work mainly concerns theoretical

study of graphs and algorithms, several sections throughout the manuscript are

directly related to applications in telecommunication networks.

In the remaining of this section, I summarize our main contributions that are

structured in four chapters.

3
Notations. Throughout the document, my contributions are cited in the margins and with

some keys: [j-X] (international journals), [c-X] (international conferences), [s-X] (submitted papers)

and [t-Nis07] (Ph.D. thesis).
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Chapter 1: Turn-by-turn Two-Player Games in Graphs. This chapter is

dedicated to the study of several turn-by-turn two-player games in graphs: the

famous Cops and Robber games (Sections 1.1 and 1.2), the surveillance game that

we introduced as a model for Web-prefetching (Section 1.3), and a fractional game

that we introduced as a generic relaxation of many existing turn-by-turn two-player

games (Section 1.4).

Sections 1.1 and 1.2 focus on the Cops and Robber (C&R) games. In this

game, Player 1 first places k tokens (the cops) on some vertices of a graph, then

Player 2 places its token (the robber) at some vertex. Then, in turn, starting with

the cops, each player may move each of its tokens along an edge of the graph.

Player 1 wins if it manages to move one of its tokens on the node occupied by the

robber. Player 2 wins otherwise. The cop-number of a graph G is the minimum

integer k such that Player 1 using k cops wins in G whatever Player 2 does. The

famous Meyniel conjecture asks whether the cop-number of any n-node graph is

O(
√
n) [Fra87a]. In Section 1.1, we first propose a survey of the literature onsurvey on

C&R game this game. In particular, the Meyniel’s conjecture has been solved for many graph

classes. We prove it is asymptotically true in the class of graphs with bounded[c-KLNS12,
j-KLNS14] chordality (Th. 9). In Section 1.2, we introduce the variant in which each player

has a speed (i.e., a token with speed s ≥ 1 may move along at most s edges at each

turn). We fully characterize the cop-win graphs in this variant, i.e., the graphs in

which one cop with speed s wins against a robber with speed s′ (Th. 13 and 14).[j-CCNV11]

In the classical game, 3 cops are sufficient in any planar graph [AF84]. We prove

that, in contrast, when the robber is faster than the cops, the cop-number of planar

graphs becomes unbounded (Th. 15). We then survey some other variants of Cops[c-NS08,
j-FGK+10] and Robber games including one where the cops have no permanent visibility or

when the cops only need to be at some distance of the robber to capture it. We

provide partial characterization of the cop-win graphs in the latter two variants

(Th. 17-18 and Lemma 5).[j-CCNV11]

In Section 1.3, we introduce the surveillance game in which Player 2 starts

from a given marked node of a graph G. Alternatively, Player 1 may first mark

k nodes of G and then Player 2 may move to a neighbor of its position. Player 2

wins if it reaches an unmarked node, while Player 1 wins if it manages to mark all

nodes before this happens. The surveillance number of G from v0 ∈ V (G) is the

minimum k such that Player 1 marking at most k nodes at each turn wins whatever

Player 2 does starting from v0. This parameter is related to the minimum amount

of resources (e.g., bandwidth) required during a prefetching process (e.g., Web-

caching). We show that computing the surveillance number is not FPT and NP-

hard in many graph classes and even PSPACE-complete in DAGs (Th. 20-22). On

the other hand, we design polynomial-time algorithms for trees and interval graphs

(Th. 24 and 26). We then consider two restrictions of the surveillance game that are[c-FGJM+12,
j-FGJM+14] closer to the practical application of Web-prefetching: in the connected surveillance

game, the set of marked vertices must always induce a connected subgraph, and in

the online surveillance game, Player 1 discovers the graph as it marks the nodes.

We first study the cost of connectivity, i.e., give some upper and lower bound on the
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ratio between the connected and unrestricted surveillance numbers (Th. 27 and 28).

We then prove that the best online strategy is actually the trivial one that consists [c-GMN+13]

for Player 1 to mark all neighbors of Player 2 at each step (Th. 29).

Finally, Section 1.4 is devoted to some preliminary results on our on-going

work about fractional games. We define a framework generalizing and relaxing

many games (including the ones mentioned above) where Player 1 may mark or

move fraction of tokens at each turn while Player 2 may move fractions of its token

at each turn. We design an algorithm for solving the fractional games. In particular, [s-GNPS13]

our algorithm runs in polynomial-time when the length of the game is bounded by

2 (in contrast, computing the surveillance game is NP-hard even when the game

is limited to 2 turns). For some games, we also prove that the fractional variant

provides some good “approximation”. Unfortunately, this does not hold for Cops

and Robber games.

This research has been done in collaboration with J. Chalopin, V. Chepoi, F.

V. Fomin, F. Giroire, P. Golovach, A. Jean-Marie, A. Kosowski, J. Kratochvil, I.

Lamprou, B. Li, D. Mazauric, S. Pérennes, R. P. Soares, K. Suchan and Y. Vaxès.

Chapter 2: Tree Decomposition, Graph Searching and Applications.

This chapter focuses on graph decompositions (in particular tree-decompositions),

their algorithmic applications (Section 2.1) and their relationship with graph search-

ing games (Section 2.2). A directed graph decomposition is studied through the

problem of routing reconfiguration in networks (Section 2.3).

In Section 2.1, we first recall the formal definition of tree-decompositions and

give a brief overview of recent work using tree-decompositions for designing effi-

cient algorithms for various optimization problems. In particular, we detail several Brief survey

on algorithmic

applications

of treewidth

aspects of bidimensionality and of kernelization theories. We then focus on the

problem of computing the chordality of graphs. In particular, we prove that the

treewidth of a graph is at most its chordality times its maximum degree (Corol-

lary 2). This result follows our definition of a restriction of tree-decomposition that [c-KLNS12,
j-KLNS14]can be efficiently computed in a wide family of graphs (Th. 33).

Section 2.2 is devoted to the study of graph searching games and their rela-

tionship with tree-decompositions. In graph searching, a team of searchers aims at

capturing an arbitrarily fast fugitive which is either visible or invisible. Searchers’

strategies are equivalent to tree-decompositions (visible case) or to path-decomposi- [c-FFN05,
c-MN07,
j-MN08,
j-FFN09]

tions (invisible case). Non-deterministic graph searching (defined in [t-Nis07]) al-

lows us to establish a bridge between treewidth and pathwidth through the notion of

branched treewidth. We provide several results on non-deterministic graph search-

ing in trees. In particular, we design a polynomial-time algorithm for approximating [s-ACN07]

the branched treewidth of trees up to a factor of two (Th. 37). We then extend

the notion of branched tree-decomposition to the notion of partitioning-trees that

allows us to generalize many distinct width parameters of graphs. In particular, [j-AMNT09,
s-BBM+13]we generalize the duality results of Seymour and Thomas [ST93] (Th. 41) and the

FPT-algorithms to compute width parameters. We conclude the section by a survey
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on digraph decompositions which, unfortunately, do not fall into our generalizationSurvey on

digraph

decomposi-

tions

framework.

Section 2.3 addresses the problem of digraph decompositions through the pro-

cessing game (variant of digraph searching) introduced by Coudert et al. [CPPS05]

for modeling the routing reconfiguration problem in WDM networks. Given a net-Introduction

on routing

reconfigura-

tion

work with a given routing (paths and wavelengths) for a set of requests, the goal

is to reach a new routing configuration without disturbing too much the network’s

customers. The process number of the dependency digraph (w.r.t. to the initial and

final routings) is related to the number of interrupted requests during a routing

reconfiguration process. We show that the processing game is monotone and there-

fore is equivalent to a digraph decomposition (Th. 43). Then, we study the tradeoff[c-NS13]

between the total number and the maximum number of concurrent interruptions

during the reconfiguration process, which is equivalent to study the tradeoff be-

tween the number of pursuers and the number of nodes occupied by the pursuers[c-CCM+10,
j-CCM+11] during the processing game (Th. 44-46). We conclude this chapter by proving sev-
[c-CHM+09,
c-CMN09,
c-BCM+12]

eral complexity results in the reconfiguration problem when more realistic (physical)

constraints are considered.

This work has been done in collaboration with O. Amini, S. Belhareth, P.

Berthomé, N. Cohen, D. Coudert, F. Huc, D. Mazauric, F. Mazoit, N. Nepomuceno,

J.-S. Sereni, R. P. Soares, S. Thomassé, and I. Tahiri.

Chapter 3: Distributed Graph Searching. In this chapter, we address the

problem of “clearing” a network through several variants of graph searching games.

There, we turn ourselves toward the coordination of mobile agents in a distributed

setting. We propose various algorithms for mobile agents with very limited capa-

bilities (Sections 3.2 and 3.3).

In graph searching, capturing an invisible fugitive is equivalent to clearing aAbout graph

searching network. Section 3.1 briefly recalls the formal definition of graph searching using

the “clearing” terminology. We also give a brief overview of some of the main results

of the literature.Survey on

connected

searching
Section 3.2 starts with a survey of recent results on connected graph searching

where the clear part (i.e., the part of the graph that cannot be occupied by the

fugitive) is always connected. We then consider connected graph searching from a[c-BFNV06,
c-NS07,
c-INS07,
j-BFNV08,
j-NS09,
j-INS09]

distributed point of view. That is, the searchers are autonomous mobile entities

that must clear the network without having a global knowledge about it. Among

other things, we show that, in this setting, the number of searchers required to

clear a network drastically increases when compared with the number of searchers

needed in a centralized setting (Th. 50 and 51).

In Section 3.3, we introduce a new variant of graph searching, namely the

exclusive graph searching. In this variant, the nodes of the graph can be occupied[c-BBN12,
c-BBN13,
s-MNP14]

by at most one searcher at a time. We first give several results on this new vari-

ant such that the NP-hardness in the general case, the polynomiality in trees, etc.

(Th. 52-55). Finally, we study exclusive graph searching and other robots coordi-

nation problems in the Look-Compute-Move model (a.k.a. CORDA) [FPS12]. This
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distributed model allows us to explore the feasibility of several tasks using robots About

CORDA

[c-BBN12,
c-BBN13,
c-DDN+13b,
j-DDN+14b,
c-DNN14]

with very poor abilities. We design algorithms in several topologies such as trees

and rings (Th. 56-61).

This research has been done in collaboration with G. d’Angelo, L. Blin, J.

Burman, G. Di Stephano, D. Ilcinkas, E. Markou, A. Navarra, S. Pérennes, D.

Soguet and K. Suchan.

Chapter 4: Complexity of Locality: Routing and Graph Properties. In

this Chapter, we focus on routing problems. We consider various constraints that

depend on the environment considered (wireless networks, AS-network, etc.) and

that are mainly related to the degree of locality of the knowledge of the nodes that

must perform the routing. We also investigate the computation of graph properties

with new models of local computations.

Section 4.1 is devoted on information spreading in different contexts. For

wireless networks, i.e., in the presence of interference, we design a polynomial-

time approximation algorithm that computes schedules for gathering information

at some node in a grid (Th. 62). The computed schedules are optimal up to a small [c-BNRR09,
s-BLN+13]additive constant and the complexity of the problem remains open. Then, we focus

on routing in queuing networks where nodes have no routing tables (they have no

knowledge about the network). We propose a greedy algorithm that we prove to be

stable, i.e., the number of packets in the network remains bounded (Th. 63). Finally, [c-CHN+10]

we focus on streaming networks, for which we design a distributed algorithm for

maintaining a diffusion tree (Th. 64 and 65). [c-GMNP13]

Section 4.2 starts with the basics on compact routing. In distributed routing,

packets are routed toward their destination using the local information they meet

on their way. This information is stored locally by each node in a routing table. A

key challenge in large scale networks is to reduce the size of these routing tables,

i.e., to make the tables as compact as possible, without degrading the quality (the

length) of the routes. We give an overview on the results obtained in this area, Brief

overview on

compact

routing

focusing on the performance that may be achieved when considering structural

properties of graphs. We then present our contributions on compact routing in

graphs having no long induced cycles (Th. 66). It is worth to note that these [c-NRS09,
j-NRS12,
c-KLNS12,
j-KLNS14]

results deeply rely on the characterizations we obtained in Sections 1.1 and 2.1. To

conclude the section, we consider routing when routing tables may be faulty. We

design randomized algorithms that achieve good performance in grids and random [c-HIKN10]

regular graphs (Tables 4.2 and 4.3).

Finally, in Section 4.3, we define a new model of distributed computation in

which nodes have only local knowledge and can share only a compressed view of

it. In this setting, we investigate which graph properties can be computed through

the composition of this partial local information. By introducing a reduction-like

technique, we show that several problems such as detecting triangles or deciding

if the graph has a small diameter cannot be solved using only local information

(Th. 67). On the other hand, the complete knowledge can be recovered in this very [c-BMN+11,
j-BKM+14]simple model in the case of sparse graphs (Th. 68). We then derive other related
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models of computation where the information is shared sequentially and prove that

our models form a strict hierarchy in terms of computational power (Th. 69 and[c-BKN+12,
j-BKM+14] Table 4.4).

This work has been done with F. Becker, J.-C. Bermond, C. Caillouet, F. Giroire,

N. Hanusse, D. Ilcinkas, A. Kosowski, B. Li, M. Matamala, R. Modrzejewski, S.

Pérennes, I. Rapaport, H. Rivano, K. Suchan, I. Todinca and M.-L. Yu.

Appendix: Other contributions related to complexity and graph struc-

tures. In this Appendix, we present two additional contributions (that are a bit

marginal but still related with complexity and graph properties computation). We

first present several complexity results on the computation of the hull number in[j-ACG+13]

various graph classes (Section A.1). We then study the computational complexity

of weighted coloring in trees (Section A.2): we show that, unless the Exponential

Time Hypothesis fails, the problem cannot be solved in time no(logn) in n-node trees

(Th. 70).[c-ANP14]

This work has been done in collaboration with J. Araújo, V. Campos, F. Giroire,

S. Pérennes, L. Sampaio and R. P. Soares.



Chapter 1

Turn-by-turn Two-Player

Games in Graphs

Content

This chapter is devoted to present our contributions in the area of Cops and Robber

(C&R) games and, more generally, of some positional games played on graphs or

digraphs. These are two-player games where players alternatively move their token

along edges (arcs) of a (di)graph, or act on nodes/links of the (di)graph. The goal

is to compute winning strategies for one of the players, optimizing specific criteria.

Generally, strategies may take advantage of the structural properties of the

graph where the game is played. Therefore, studying these games offers an alter-

native point of view for understanding graph properties. Another motivation for

this study is that some of these games provide nice models for problems arising in

telecommunication networks. In particular, we introduce the Surveillance game for

modeling prefetching problems. Last but not least, these games are of theoretical

interest by themselves and are fun.

Section 1.1 presents the definition of the C&R games as initially defined by Win-

kler and Nowakowski [NW83] and Quilliot [Qui83, Qui86, Qui93]. Then, the main

results and techniques of C&R games are surveyed, focusing on their complexity

issues and how they relate to graph structural properties [c-KLNS12, j-KLNS14].

Section 1.2 is dedicated to the study of variations of C&R games [c-NS08, j-FGK+10,

j-CCNV11]. In section 1.3, We introduce the Surveillance game and present the re-

sults we obtained about it [c-FGJM+12, j-FGJM+14, c-GMN+13]. Finally, in sec-

tion 1.4, we present a new abstract game generalizing numerous positional games

and that looks promising for a better understanding of such games, and possibly

for designing approximation algorithms, using linear programming techniques.
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1.1 Cop-number in a nutshell

Cops and Robber (C&R) games have been initially introduced by Winkler and

Nowakowski [NW83] and independently by Quilliot [Qui83]. We try, in this sec-

tion, to give an exhaustive overview of the results obtained along thirty years in

this area. For further details, see the surveys [Als04, Hah07, BB12] and the recent

book [BN11].

The Cops and robber game is played on a n-node m-edge connected graph

G = (V,E) by two players. One player C controls a team of k ≥ 1 cops while the

second player R has one robber that must avoid to be caught by the cops. Initially,

C places its cops on vertices of G. Several cops may occupy the same node. Then,

R chooses a vertex to be occupied by its robber. Then, alternatively, C may move

each of its cops along an edge, and then the robber may move to an adjacent node

of its position. In particular, the players may pass. This is a full information game.

That is, at each step, the robber has the full information concerning the position(s)

of the cops and the other way around. Player C wins if at some step of the game,

one of its cops occupies the same vertex as the robber. If the robber perpetually

avoids this situation, then R wins.

Strategies: On the algorithmic point of view, the goal is therefore to design strate-

gies that allow one of the players to win. A strategy for one player define how it

must behave at each step. Because this is a full information game, deterministic

strategies do not depend on the past. Therefore, the way both players decide their

next move only depends on the current configuration, i.e., the multi-set of vertices

occupied by the cops and the position of the robber.

More formally, a (positional) strategy for Player C using k ≥ 1 cops is defined as

follows. A k-strategy for C is defined by a pair (I, σC) where I ⊆ V is the multi-set

of initial positions of the k cops (|I| = k) and σC : V k × V → V k is a function that

associates σC(S) = (c′1, · · · , c′k) to any configuration S = ((c1, · · · , ck), r) ∈ V k ×V ,

where c′i ∈ N [ci] represents the new position of the ith cop, for any i ≤ k.

Similarly, a strategy for R against k cops is defined as a pair (r0 ∈ V, σR :

V k × V → V ).

A strategy σ is winning for one player if this player following σ wins whatever

be the strategy followed by the other player.

Examples: As a warm-up, it is easy to see that Player C wins using one cop

(k = 1) in any tree T . Indeed, a winning strategy for C can be defined as follows.

The cop starts at any vertex of T . Then, at each step, the cop moves along the

(unique) path between its position and the one of the robber. Clearly, after a finite

number of steps, the robber is eventually caught whatever it does. On the other

hand, Player R can win in any cycle of length at least 4 against one cop. Indeed,

a winning strategy for R consists in, at each step, for the robber to reach a vertex

at distance at least 2 from the cop without being caught.
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1.1.1 Cop-number and Meyniel Conjecture

In this section, we present the main algorithmic and computational complexity

aspects of C&R games.

Cop-win graphs

The seminal work on C&R games has been the characterization of graphs in which

one single cop can always win [NW83, Qui83]. The cop-win graphs are the graphs

in which there exists a winning 1-strategy for C. Nowakowski and Winkler [NW83]

and Quilliot [Qui83] have provided a nice combinatorial characterization of cop-win

graphs. In section 1.2, we show how we have generalized this result for further

variants of C&R games [j-CCNV11]. Below, we briefly present the cop-win char-

acterization because on the one hand, it is very instructive for the study of C&R
games, and on the other hand some of our contributions presented throughout this

chapter take advantage of similar techniques.

Consider the last step of a game played by a single cop, before the capture of the

robber. At this step, a cop moves to a vertex y ∈ V , and then, the robber at x ∈ V

has no way to escape (otherwise it would do it and the game would continue).

Hence, N [x] ⊆ N(y), i.e., vertex y dominates the neighborhood of x1. Pushing

this argument a step forward, the cop arrives at some vertex z when the robber is

in w, such that for any node x in N [w], the neighborhood of x is dominated by

some yx ∈ N [z]. Then, whatever be the next move of the robber toward a vertex

x ∈ N [w], the cop will then move to yx and then capture the robber during the

next step. This naturally leads to the following definition. A graph is dismantable

if its vertices can be ordered (v1, · · · , vn) such that, for any i < n, there is j > i

with NXi
[vi] ⊆ N(vj), Xi = {vi, · · · , vn}.

Theorem 1 [NW83, Qui83] A graph is cop-win if and only if it is dismantable.

Before sketching some proofs of this result, let us mention some graph classes

that are dismantable such as chordal graphs (graphs without induced cycles of length

at least 4) and bridged graphs (graphs without isometric cycles of length at least

4) [Far87, AF88, Che97, LS04].

Several proofs have been proposed for the above result. One of them is by

induction on the number n of vertices. The induction consists in identifying a

particular vertex v and transforming a winning strategy in G[V \{v}] into a strategy

in G, and vice versa. We detail a bit and unformally how to show that a cop-win

graph is dismantable. Since G is cop-win, we can pick a vertex v occupied by

the robber one step before its capture. As mentionned above, there is a vertex

w dominating the neigborhood of v in G. Hence, it remains to prove that G′ =
G[V \ {v}] is cop-win, and then the induction hypothesis says that the vertices of

1Throughout the document, given a graph G, a subgraph H of G and a node v ∈ V (H), NH(v)

denotes the set of nodes of H that are adjacent to v. NH [v] = NH(v) ∪ {v} and the subscript is

omitted whenever H = G.
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G′ can be ordered in the desired way. Adding v as first vertex in this order gives

a dismantable ordering for G. To prove that G′ is cop-win, we consider a winning

strategy σ for the cop in G and, roughly, we define a strategy σ′ in G′ that is the

same as strategy σ, but each time the cop should go to v, following σ in G, it goes

to w instead remembering it is ‘virtually” on v. It is worth mentioning that the

defined strategy is not positionnal but should take advantage of one bit of memory.

We let the reader prove that such a strategy is winning in G′.
Assume that G is dismantable, then the dismantling ordering offers a winning

strategy for C (see, e.g., [IKK06]). Let T be the spanning tree of G rooted in vn
and such that, for any i < n, the parent of vi in the tree is the vertex vj , with

greatest index j > i, dominating the neighborhood of vi in G[Xi]. The cop starts

in vn. Then, its strategy consists of going to its neighbor that is an ancestor of

the current position of the robber in T , and that is closest to the robber. To prove

that this strategy is winning, we need to prove that (1) there always exists such a

vertex in the neighborhood of the cop, so that the cop always occupies an ancestor

of the position of the robber, and (2) the distance between the cop and vn never

decreases and strictly increases after a finite number of steps, so that the strategy

terminates.

About complexity

Next to the seminal work of Winkler and Nowakovski and Quilliot, Player C has

been allowed to use more than one cop by Aigner and Fromme [AF84]. Clearly,

using n cops2 makes the task easy for C. Therefore, the question is to minimize the

number of cops that C has to use to ensure its victory in a given graph. Given a

graph G, the cop-number of G, denoted by cn(G), has been defined in [AF84] as

the minimum number of cops required to capture a robber in G. The question of

the complexity of computing the cop-number of a graph arises naturally. As seen

above, whether a graph G is cop-win, i.e., whether cn(G) = 1, can be decided in

quadratic time: it is sufficient to decide whether G is dismantable. This section is

devoted to summarize the complexity results related to the cop-number of graphs.

In the early eighties, the complexity of several other variants on pursuit problems

on directed graphs was investigated in [CS76, KAI79, Rei79, CKS81, Joh83, AIK84,

Rei84, FG87]. For instance, in some variants, the robber does not need to be

caught but it must be prevented to reach a particular vertex. Following this work,

Goldstein and Reingold proved that deciding if cn(G) ≤ k (k part of the input)

is EXPTIME-complete when initial positions are given [GR95]. Their reduction

uses the Alternating Boolean Formula, where two players alternatively modify the

variables of a conjunctive normal boolean formula and the goal of the first player is

the formula to become true. Using a similar argument, they proved that deciding

if cn(G) ≤ k is EXPTIME-complete in strongly connected digraphs.

On the other hand, k being fixed, deciding whether the cop-number of an n-node

graph is at most k can be decided in polynomial time nO(k) [BI93, HM06]. One

2Unless state otherwise, n always denotes the number of nodes of the considered graph.
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important ingredient for this result is the notion of configurations graph. Recall

that a configuration represents the set of vertices occupied by the cops and the

robber. When k cops are playing, there are O(nk+1) configurations. The graph of

configurations has as vertex-set the set of all configurations and two configurations

(c1, · · · , ck, r) and (c′1, · · · , c′k, r′) are adjacent if it is possible to go to one from the

other during one step of the game, i.e., r′ ∈ N [r] and c′i ∈ N [ci] for any i ≤ k. The

configurations (c1, · · · , ck, r) with r ∈ N [ci] for some i ≤ k are called final and are

labelled with 0. Now, a configuration (c1, · · · , ck, r) is labelled with i > 0 if for any

r′ ∈ N [r] there is (c′1, · · · , c′k), c′i ∈ N [ci] for any i ≤ k, such that (c′1, · · · , c′k, r′)
is labelled at most i − 1. With such a labeling, it is easy to see that k cops can

win in G if and only if there are {c1, · · · , ck} ∈ V k such that for any r ∈ V , the

configuration (c1, · · · , ck, r) has received a finite label. This can clearly be checked

in time polynomial in the size nO(k) of the configurations graph. The problem of

generalizing the characterization of cop-win graphs to graphs with cop-number k

has been extensively studied (e.g., [Bea04]). Recently, graphs with cop-number at

most k ≥ 1 have been characterized in [CM12]. I confess that I don’t understand

what brought this recent result compared to the ones in [BI93, HM06].

Surprisingly, a long time went by before further complexity results appeared.

The problem of computing the cop-number of graphs has been shown to be NP-

hard, and even W[2]-hard in [FGK08, j-FGK+10]. In particular, the problem is [j-FGK+10]

not FPT (no algorithm in running time f(k)nO(1) to decide if an n-node graph has

cop-number at most k) unless the complexity hierarchy collapses. Also, [FGK08,

j-FGK+10] proved that the cop-number of n-node graphs cannot be approximated

up to a ratio O(log n) in polynomial time. The question of approximate it up to

a ratio O(n1−ǫ) for ǫ > 0 is still open. Contrary to many “classical” optimization

problems, proving that the computation of the cop-number is NP-hard is not the

last step. Indeed, what about the NP membership? In other words, the question to

know whether this problem belongs to NP is quite difficult. It has been first proved

that the C&R game is PSPACE-complete when each cop is allowed to move a

bounded number of times [FGL10]. Then, Mamino proved recently that the C&R
game is PSPACE-hard [Mam13]. The key point of Mamino’s proof is the definition

of a generalized game on edge-labelled graphs where edges are labelled protected

or unprotected and the robber is captured if a cop reaches its position through an

unprotected edge [Mam13]. The protected edges allow to give more freedom to

the robber, which was the missing element to obtain this complexity result (until

then, most of the complexity results were in directed graphs because it allowed to

“control” the trajectory of the robber). Very recently, Bill Kinnersley proved that

the problem is XPTIME-complete [Kin13].

From minimum degree, girth and Lower bounds, to Meyniel conjecture

While previously mentioned results show that computing the cop-number of graphs

is difficult in general, the cop-number highly depends on the structural properties

of the considered graph. In the next subsection, we survey the results showing
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that graph properties allow to give upper bounds on the cop-number. Firstly, we

describe the lower bounds on the cop-number derived from graph properties. That

is, we show how the structure of a graph may make the life of the robber easier.

Recall that the girth of a graph is the minimum length of its induced cycles.

Clearly, the greater the minimum degree of a graph is, the more ways to escape

the robber has. If moreover, there are no short cycles in the graph, the cops

cannot ‘surround” the robber easily. Hence, minimum degree and girth are natural

parameters that determine whether lots of cops are needed to capture the robber.

More formally,

Theorem 2 [AF84] Let G be a graph with minimum degree δ and girth ≥ 5,

cn(G) ≥ δ.

We sketch the proof of the above theorem. Consider any graph G with minimum

degree δ and girth at least 5. First, the size of any dominating set in graphs with

no short cycles is at least its minimum degree. Hence, the robber has a safe initial

position v. Now, let v be the current position of the robber at the robber’s turn.

Then, because G contains no triangles nor squares, N(v) is a stable set and v is the

unique common neighbor of any two nodes in N(v). Hence, if strictly less than δ

cops are available, a simple calculation implies that there is a neighbor w of v such

that no cops occupy a node in N [w]: the robber can safely go to w.

The result of Aigner and Fromme has been later generalized by Frankl. His

idea is that in a graph with large girth, a ball with large radius around any node

v looks like a tree Tv. Roughly, if the robber starts from a node v with a branch

of Tv containing no cops, then the robber can reach in a finite number of steps and

without being captured another node satisfying the same property. Going on in

this way provides an escape strategy for the robber.

Theorem 3 [Fra87a] Let G be a graph with minimum degree at least δ and with

girth at least 8t− 3. Then, cn(G) > δt.

Theorems 2 and 3 are important because they show that the cop-number in

not bounded in general. Indeed, for any δ ∈ N, there exists a graph with minimum

degree δ and girth at least 5. In particular, for arbitrary large n, there exist Ω(
√
n)-

regular graphs with girth at least 5. For instance, in [AFLN08], a family of (pm+2)-

regular graphs of girth 5 and of order 2p2m, p ≥ 5 prime, is described. Hence,

Corollary 1 For arbitrary large n, there are n-node graphs G with cn(G) = Ω(
√
n).

Other graph classes achieve the same order of magnitude for the cop-number.

For instance, the projective plane viewed as the bipartite graph with 2(q2 + q +

1) vertices (points and lines) and where the edges correspond to the incidence

relation, is q + 1-regular and has girth at least 5, hence it has cop-number at least

q + 1 [BKL13, LP12].
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As shown in the next subsection, the cop-number of many classes of graphs

appears to be bounded. The case of graphs with small order (at most 10 nodes)

has been studied in [BBB+13]. However, bounding the cop-number of any graph

still remains a challenging problem. Hence, while the cop-number of any graph G

is trivially bounded by the minimum size of a dominating set of G, a general upper

bound of the cop-number of G in terms of its order is a thirty years outstanding

problem. In 1987, Frankl mentioned the following conjecture of Henri Meyniel:

Conjecture 1 (Meyniel) [Fra87a] For any n-node graph G, cn(G) = O(
√
n).

During the last few years, many other variants of Cops and Robber games have

been studied, mainly to bring new evidence and techniques to try to prove the

Meyniel’s conjecture (see Section 1.2 and, e.g., [BB12]).

1.1.2 Beyond Meyniel conjecture: when graph structure helps

In this section, we survey the work showing that the cop-number is bounded in

many graph classes. Mainly, the cop-number has been bounded in terms of other

graph parameters (e.g., genus, treewidth, chordality, etc.). Therefore, in the class of

graphs where the considered graph invariant is bounded, the cop-number is bounded

too and, in particular, its computation is polynomial. For instance, in graphs with

dominating set of size at most k, the cop-number is trivially at most k.

Maximum degree and diameter don’t help

We first recall that the cop-number is not bounded even in graph with maximum

degree at most three or with diameter at most two.

Andreae answers a question in [AF84] by showing that the maximum degree is

not a general upper bound on the cop number. To do so, Andreae is using the fact

that there are regular graphs with arbitrary large girth and then the result holds

by Theorem 3.

Theorem 4 [And84] For any ∆, k ≥ 3, there is a ∆-regular graph G with cn(G) ≥
k.

Even for graphs with diameter 2, the cop-number cannot be bounded by some

constant. This result seems to be well known as folklore. With J. Chalopin, V.

Chepoi and Y. Vaxès, we proved it by considering the following family of graphs:

Let us consider a set S = {1, · · · , 3k} and let G be the graph with vertex set V ,

the set of all subsets of S with k elements, and such that x, y ∈ V are adjacent if

and only if x ∩ y = ∅.

Lemma 1 (folklore(?)) For any k ≥ 1, there is a (3kk )-node (2kk )-regular graph G

with diameter 2 and cn(G) ≥ k.
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While diameter and maximum degree are useless to upper bound the cop-

number, there are many rich graph classes in which few cops are required to capture

the robber. As already mentioned, the class of bounded size dominating set graphs

is an example.

Graphs with bounded genus and graphs excluding some fixed minor

Aigner and Fromme were the first to use several cops to capture the robber. For this

purpose, they made cops collaborating as follows: one cop “controling” a subgraph

separating the graph, while the other cops can go toward the component occupied

by the robber. More formally, some cops control a subgraph H of the graph G, if

there is a strategy, such that, after a finite number of steps, these cops ensure that

the robber cannot go to a vertex of H without being captured immediately at the

next cops’ move. For instance, one cop can control any arbitrarily large star. The

main idea of Aigner and Fromme is that one cop is sufficient to control any shortest

path in a graph [AF84].

Controling a shortest path. This result is the cornerstone of most of the capture

strategies described in what follows. Therefore, we give more details about it. The

idea of the proof is that, given a shortest path P in a graph, if, at some step when

the robber occupies a vertex r, the cop is occupying a vertex c ∈ V (P ) that satisfies

d(r, z) ≥ d(c, z) for all z ∈ V (P ), then, whatever be the next move of the robber to

r′ ∈ N [r], there exists a neighbor of c′ ∈ N [c] preserving the property. Such a vertex

c of P is called the shadow of the position r of the robber on P . In other words,

once the cop has reached the shadow of the robber, then it can always follow the

shadow of the robber. Clearly, if the robber reaches a vertex of P when the cop is

occupying its shadow, then the robber is captured during the next step. Moreover,

it is easy to show that the cop can reach the shadow of the robber in a finite number

of steps.

Grids. As an example, consider a grid where a cop occupies the same row as the

robber, then this cop may remain on the same column (the shortest path) and

ensure that if the robber reaches this column it will be captured at the next step.

Using this property, it is easy to prove that two cops are enough to capture one

robber in any grid: a possible winning strategy is for one cop to control one column

while the second cop reaches the next column (in the direction of the robber) until

he controls it. Then, the role of the two cops are reversed. Since one cop is obviously

not sufficient to capture the robber in any grid, then cn(G) = 2 for any grid G.

Bounded genus graphs. The main result of Aigner and Fromme is that three

cops are sufficient to capture one robber in any planar graph. This surprising result

follows the facts that one cop can control any shortest path and that there always is

a separator consisting of three shortest paths in planar graphs [LT80]. Roughly, in

any planar graph, two shortest paths forming a cycle (separator) can be controlled

by two cops that therefore isolate the robber in a smaller part of the graph. Then

a third cop is sent to control a new shortest path to separate the zone accessible by

the robber, and so on, recursively. Hence,
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Theorem 5 [AF84] For any planar graph G, cn(G) ≤ 3.

Moreover this bound is tight because the dodecahedron is a planar graph with

minimum degree 3 and girth at least 5, and therefore 3 cops are necessary [AF84].

Using the fact that removing an uncontractible cycle lets the genus g of a graph

decreasing, Quilliot uses at most 2g cops to recursively reduce the genus of the

component where the robber stands. Then, 3 remaining cops are used to capture

the robber in the planar component where it stands. Hence, 2g+3 cops are sufficient

to capture a robber in any graph with genus at most g [Qui85]. By studying more

carefully how to deal with shortest path separators to gradually reduce the genus

of the zone accessible by the robber, Schröder improved this bound:

Theorem 6 [Sch01] For any graph G with genus g, cn(G) ≤ ⌊32g⌋+ 3.

The case of non-orientable surfaces has been considered in [CFJT12]. However,

the best lower bound for graphs with bounded genus is far from the upper bound.

For instance, the projective plane has genus g = Ω(n) (because of its number of

edges) and therefore, its cop-number is Θ(
√
g). Hence, the following conjecture is

still open3 even for graphs with genus g = 2:

Conjecture 2 For any graph G with genus g, cn(G) ≤ g + 3.

Another large class of graphs has bounded cop-number: any graph excluding

a minor with bounded number of edges. Recall that a minor of a graph G is any

subgraph of a graph obtained from G after sequentially contracting some edges.

Given aH-minor-free graph G, Andreae uses shortest paths to somehow “represent”

the edges of the graph H in G. Since H is not a minor of G, at some point, this

set of paths separates the graph, and this can be done recursively.

Theorem 7 [And86] Let H be any graph and v be any non isolated vertex in H.

Then, for any graph G excluding H as a minor, cn(G) ≤ |E(H \ v)|.

Note that, recently, this result has been used to compute some particular de-

composition for Minor-free graphs [AGG+13].

Using similar arguments, Andreae gived explicit graphsH for which any graphG

excluding H as minor is such that cn(G) ≤ 3 [And86]. Moreover, cn(G) ≤ ⌈n/3⌉+1

for any graph G with no wheel Wn as minor [And86].

Treewidth, chordality, bipartite graphs and others

The cop-numbers of many graph classes have been studied such as the cop-number

of Cayley graphs [Fra87b, Ham87, Ham87], of various products of graphs [Tos88,

MM87, NN98], of graphs with strong isometric dimension two [FN01]. Also, series-

parallel graphs have cop-number at most two [The08]. More generally, it is not

3Note that for g = 1, above theorem prove the conjecture. However, it is not known whether it

is tight: are there toroidal graphs with cop-number 4?
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difficult to show that graphs G with bounded treewidth tw(G) have cop-number

at most tw(G)/2 + 1 [JKT10, BCF+13]. Also, it is at most k in any graph of

clique-width at most k [FGK08, j-FGK+10].

More recently, Lu and Peng proved the Meyniel conjecture for graphs with di-

ameter at most 2 and for bipartite graphs with diameter at most 3 [LP12]. More

precisely, Lu and Peng proved by induction on |V (H)| that, if the robber is con-

strained to move on the vertices of a k-degenerate subgraph H of G, then k cops

can capture the robber [LP12]. Hence, if there is S ⊆ V such that G \ N(S) is

k-degenerate, then cn(G) ≤ |S| + k. The cops are placed uniformly at random on

the vertices of the k-core K of G (maximum subgraph of G with all vertices having

degree at least k+1) until the cops dominate all vertices in K. Then, k extra cops

can capture the robber in G \ K. The expected number of cops to dominate the√
n-core of G is at most

√
n [LP12]. Hence:

Theorem 8 [LP12] For any n-node graph G with diameter at most 2, or which is

bipartite with diameter 3, cn(G) ≤ 2
√
n− 1.

While the smallest induced cycle leads to a lower bound on the cop-number,

strangely, little is known related to the largest induced cycle (chordality). A graph

is k-chordal if its greatest induced cycle has length at most k. In [AF84], it is shown

that cn(G) ≤ 3 for any 2-connected 5-chordal graph G. We generalize this result.

Theorem 9 Let k ≥ 3. For any k-chordal connected graph G, cn(G) ≤ k − 1, and[c-KLNS12,
j-KLNS14] there exists a strategy where all k − 1 cops always occupy a chordless path.

Proof. Let v ∈ V be any vertex and place all cops at it. Then, the robber chooses

a vertex. Now, at some step, assume that the cops are occupying {v1, · · · , vi} which

induce a chordless path, i ≤ k − 1, and it is the turn of the cops (initially i = 1).

Let N =
⋃

j≤iN [vj ], and if the robber occupies a vertex in N , it is captured during

the next move. Else, let R 6= ∅ be the connected component of G \N occupied by

the robber. Finally, let S be the set of vertices in N that have some neighbor in R.

Clearly, while R is not empty, then so does S.

Now, there are two cases to be considered.

• IfN(v1)∩S ⊆ ⋃

1<j≤iN [vj ]. This case may happen only if i > 1. Then,“remove”

the cop(s) occupying v1. That is, the cops occupying v1 go to v2. Symmetri-

cally, ifN(vi)∩S ⊆ ⋃

1≤j<iN [vj ], then the cops occupying vi go to vi−1. Then,

the cops occupy a shorter chordless path while the robber is still restricted to

R.

• Otherwise, there is u ∈ (N(v1) ∩ S) \ (
⋃

1<j≤iN [vj ]) and v ∈ (N(vi) ∩ S) \
(
⋃

1≤j<iN [vj ]). First, we show that this case may happen only if i < k − 1.

Indeed, otherwise, let P be a shortest path between such u and v with all

internal vertices in R (possibly, P is reduced to an edge). Such a path exists

by definition of S. Then (v1, · · · , vi, v, P, u) is a chordless cycle of length at

least i+ 2. Since G is k-chordal, this implies that i+ 2 ≤ k.
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Then one cop goes to vi+1 := v while all the vertices in {v1, · · · , vi} remain

occupied. Since v ∈ S, it has some neighbor in R, and then, the robber is

restricted to occupy R′, the connected component of G \ (N ∪N [v]) which is

strictly contained in R.

Therefore, proceeding as described above strictly reduces the area of the robber

(i.e., R) after < k steps, R decreases progressively and the robber is eventually

captured. �

Note that previous Theorem somehow extends the model in [CN05], where the

authors consider the game when two cops always remaining at distance at most 2

from each other must capture a robber. It is possible to improve the previous result

in the case of 4-chordal graphs, i.e. for k = 4. More precisely:

Lemma 2 For any 4-chordal connected graph G, cn(G) ≤ 2 and there always exists [c-KLNS12,
j-KLNS14]a winning strategy for the cops such that they are always at distance at most one

from each other.

Theorem 9 relies on chordless paths P in G such that N [P ] is a separator of

G, i.e., there exist vertices a and b of G such that all paths between a and b

intersect N [P ]. In Section 2.1, we show how to adapt this to compute particular

tree-decompositions.

Random graphs

Recently, the cop-number of random graphs has been intensively investigated. Be-

sides the fact that many real networks share important structural properties of

particular classes of random graphs (and therefore, studying the cop-number of

such classes gives hints on the cop-number of real networks), some of these studies

have provided new techniques that have been used for bounding the cop-number of

general graphs (see below).

Erdös-Rényi graphs have been first investigated in [BHW07] (see also [BKP12]).

In such a graph G(n, p), each edge has independent and fixed (independent of the

number n of nodes) probability 0 < p < 1 to exist. In that case, it is proved that the

cop-number is Θ(log n) asymptotically almost surely (a.a.s.), i.e., with probability

tending to one when n goes to infinity. This result (clearly, the upper bound) is

mainly based on similar results on the dominating number of such graphs. More

precisely,

Theorem 10 [BHW07] For any fixed 0 < p < 1 and for any ǫ > 0, a.a.s:

(1− ǫ) log 1
1−p

n ≤ cn(G(n, p)) ≤ (1 + ǫ) log 1
1−p

n.

Then, sparse random graphs (where p = d/n, 0 < d < 1) have been studied

in [BPW07]. Roughly, such n-node graphs consist of the union of trees or unicyclic

graphs with at most log log n vertices a.a.s. Since the authors of [BPW07] define the
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cop-number of a not connected graph as the sum of the cop-number of its connected

components, sparse random graphs have large cop-number a.a.s.

The case of denser graphs, for which pn = nα, 0 < α < 1, has been first studied

in [BKL13]. Then, Luczak and Pralat proved that the cop number of dense random

graphs has an intriguing “zig-zag” behavior:

Theorem 11 [LP10] Let 0 < α < 1 and d = n · p = nα+o(1), then

• if 1
2j+1 < α < 1

2j for some j ≥ 1, then a.a.s. cn(G(n, p)) = Θ(dj).

• if 1
2j < α < 1

2j−1 for some j ≥ 1, then a.a.s. Ω( n
dj
) = cn(G(n, p)) =

Θ( n
dj

log n).

Finally, random graphs with given degree distribution have been investigated

in [BPW07]. Given a sequence w = (w1, · · · , wn) where wi is the expected degree

of node vi:

Lemma 3 [BPW07] Let G be a random graph with expected degree distribution w.

Let p0 ≥ maxi w
2
i∑

i wi
. For any ǫ > 0, with probability at least 1− e−Θ(nǫ)

:

cn(G) ≥ (1− ǫ) log 1
1−p0

n.

The case w being a power law distribution is particularly interesting since many

real networks have this property. Because such graphs have many isolated vertices,

[BPW07] concludes that their cop-number is Θ(n), where n is the number of nodes.

On the other hand, regular-random graphs are considered in [PVW11]. Recently, it

has been proved that Meyniel Conjecture holds for binomial random graphs [PW13].

In particular, it is proved that the conjecture holds for a general class of graphs

with some specific expansion-type properties [PW13].

Many questions remain open in this area. Indeed, my point of view is that

the cop-number of a graph should be defined as the maximum cop-number of its

connected components (not the sum). Following this definition, most of the above

questions should be revisited.

General graphs

We showed above that Meyniel conjecture holds in many graph classes. However,

the question is still open, in general graphs.

The first upper bound for general graphs has been proposed by Frankl who

showed that cn(G) = O(n log logn
logn ) in any n-node graph G [Fra87a]. This bound

has then been improved to O( n
logn) in [Chi08] by recursively finding long minimum

distance caterpillar between the root and a leaf of some arbitrary BFS-tree of G.

More precisely, a subgraph T of G is a minimum distance caterpillar if it consists

of a shortest (in G) path P and some vertices adjacent to P . Generalizing the

fact that one cop can control one shortest path, Chiniforooshan showed that 5 cops

are sufficient to control any minimum distance caterpillar in a graph. Then, using



1.2. Variants of Cops and Robber games 27

any BFS-tree, it is possible to compute a minimum distance caterpillar (from the

root to a leaf of the BFS-tree) with size O(log n) in any n-node graph. Going

on recursively, any graph can be partitioned into O(n/ log n) minimum distance

caterpillars. Hence, cn(G) = O( n
logn) in any n-node graph G [Chi08].

Recently, several groups improved independently this result to obtain the best

current bound:

Theorem 12 [SS11, LP12] For any connected n-node graph G, cn(G) = O( n
2(1−o(1))

√
logn

).

To conclude this section, we try to summarize the structural properties of a

minimal counter example for the Meyniel conjecture. From previous results, it

follows that:

Assertion 1 Any minimal counter example n-node graph G to the Meyniel conjec-

ture would have:

• maximum degree o(
√
n);

• diameter at least 3 (or at least 4 if G is bipartite) and o(
√
n);

• minimum hitting set of the induced cycles of length ω(
√
n) with size at least

ω(
√
n);

• genus, clique-width and treewidth ω(
√
n), and

• any graph with O(
√
n) edges as a minor.

For completeness, we also like to mention that the cop-number of infinite graphs

has also been studied [CLP00, HLSW02, BHW07, BHT10].

1.2 Variants of Cops and Robber games

The previous section shows that new techniques or approaches must be invented to

solve the Meyniel conjecture. Therefore, many variants and generalizations of the

Cops and Robber game have been proposed to handle this problem.

1.2.1 Fast Cops and Robber.

A first natural generalization of C&R games is the one where the cops and the

robber are faster [FGK08]. We say that the cops have speed s ≥ 1 if, at its turn, a

cop can move along a path of length at most s. The speed s′ of the robber is defined
similarly. Clearly, if one cop is faster than the robber, then it will eventually catch

the robber by decreasing their relative distance at each step. Hence, we may assume

that s′ ≥ s. Let cns,s′(G) be the smallest number of cops with speed s required to

capture a robber with speed s′ in a graph G.

On the one hand, this variant seems to behave as the original one. For instance,

the graphs that are cop-win in this variant, i.e., graphs where one cop with speed
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(a) (b)

Figure 1.1: (a) A big brother graph. (b) A big two-brother graph.

s can capture a robber with speed s′, can also be characterized by a kind of dis-

mantling ordering. For any i ≥ 0, H subgraph of a graph G and x ∈ V (H), let

Ni(x,H) be the set of nodes at distance at most i from x in H. If H = G, we note

Ni(x,H) = Ni(x). Finally, Ni[x] = Ni(x) ∪ {x}.

Theorem 13 Let s′ ≥ s and G be a graph. cns,s′(G) = 1 if and only if the vertices

of G can be ordered {v1, · · · , vn} such that, for any i < n, there is j > i with[j-CCNV11]

Ns′(vi, G \ vj) ∩ {vi, · · · , vn} ⊆ Ns[vj ]. Moreover, this can be decided in polynomial

time.

When s = 1, we achieve a stronger characterization. A graph is dually chordal

if its line graph is chordal and its clique hypergraph is an hypertree. A graph G is

a big brother graph, if its block4-decomposition can be represented in the form of

a rooted tree T in such a way that each block of G has a dominating vertex and

for each block B distinct from the root, the articulation point between B and its

father-block dominates B (see Figure 1.1(a)).

Theorem 14 Let G be a graph and s′ > 0. cn1,s′(G) = 1 if and only if:[j-CCNV11]

• Case s′ = 1: G is dismantable. (see also [NW83, Qui83, AF84])

• Case s′ = 2: G is a dually-chordal graph

• Case s′ > 2: G is a big brother graph

The speed of the robber being fixed, the speed that one cop must achieve to

be able to capture the robber seems related to the hyperbolicity of the graph: the

smaller the hyperbolicity is (somehow, the closer to a metric of a tree, the metric

4A block is a maximal 2-connected component
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of the graph is), the easier it is for the cop. A graph G is called a Helly graph if

its family of balls (1-neighborhood) satisfies the Helly property: any collection of

pairwise intersecting balls has a common vertex.

Lemma 4

• Let s′ ≥ 4δ ≥ 0, s′ even. For any δ-hyperbolic graph G, cn s′
2
+2δ,s′

(G) = 1. [j-CCNV11]

• If s′ ≥ 2s, then if cns,s′(G) = 1 then the graph G is (s′ − 1)-hyperbolic.

• If s′ > s, then any bridged graph or Helly graph G with cns,s′(G) = 1 is

s′2-hyperbolic.

The previous lemma suggests that there is a function f such that, for s′ > s, any

graph G such that cns,s′(G) = 1 is f(s′)-hyperbolic. Such a result would give a new

characterization of hyperbolicity of graphs. Chalopin, Chepoi and others recently

closed this question [CCPP13].

On the complexity point of view, this variant also behaves similarly as the

original one. More precisely, the proof that computing the cop-number of a graph

is W [2]-hard works for the general case s′ ≥ s = 1 [FGK08, j-FGK+10]. The case

of interval graphs has been considered in [FGK08, j-FGK+10] where a polynomial

time algorithm is presented that computes cn1,s′(G) for any interval graph G and

any s′ ≥ 1 fixed. Gavenciak designed a polynomial time algorithm in the case s′

is unbounded [Gav11]. In that case, an upper bound of O(
√
n) has been proved

in [Meh10]. The case of unbounded s′ has recently been studied in [Mar14].

When s′ ≥ s = 1, it has been shown that the cop number of a connected n-node

graph can be as large as Ω(n
s′

s′+1 ) [AM11, Meh11], hence generalizing the Meyniel

conjecture for larger speeds. However, even in this case, the conjecture remains

open: the best general upper bound on the cop-number of n-node graphs being
n

α(1−o(1))
√

logα n
where α = 1+1/s′ [FKL12]. This latter result generalizes the results

of [LP12, SS11] in the case s′ = 1.

On the other hand, we proved that capturing a fast robber may be very different

than the original game. Indeed, all results concerning bounded genus graphs in the

original variant fail as soon as the speed of the robber increases5. Specifically, we

proved:

Theorem 15 For any n× n square-grid G, cn1,2(G) ∈ Ω(
√

log(n)). [c-NS08,
j-FGK+10]

This result must be put in contrast with the fact that cn(G) ≤ 2 for any square-

grid G. Moreover, we did not manage to apply the previous techniques for lower

bounds. To prove Theorem 15, we propose an evasion strategy for a robber with

5Thanks to F.V. Fomin who asked me, in a forest of Puerto Varas during LAGOS 2007, whether

capturing a fast robber could be done with a constant number of cops in a planar graph.
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Figure 1.2: (a) a graph G with cnv
k(G) = 1 < cn1,k(G) for all k ≥ 2, and (b) a

graph G with cnv
4(G) = 1 < cnv

5(G).

speed 2 against k ≥ 1 cops in any n× n square-grid, where n ∈ Ω(2k
2
). Intuitively,

the strategy we designed for the robber is defined recursively. There are k + 1

levels in our strategy. For any 0 < i ≤ k, the level-i strategy uses the level-(i − 1)

strategy as a subroutine. The key point is that the level-i strategy only deals with

i cops: cop1, . . . , copi, and maintains as an invariant the fact that copi remains “far

enough” from the robber.

The above result can be generalized to any s′ > s where the ratio between the

speeds appears in the basis of the logarithm. Moreover,

Theorem 16 Let H be a planar graph containing an n × n square-grid G with[c-NS08,
j-FGK+10] n ∈ Ω(2k

2
) as an induced subgraph, then cn1,2(H) ≥ k.

Surprisingly, the best known upper bound for cn1,2(G) in n × n square-grid

G is O(n). Therefore, capturing a fast robber is not fully understood even in

simple topologies. New techniques are required for achieving new progress in this

direction. In particular, establishing a link with similar games in other metric spaces

(Euclidean or hyperbolic spaces) could be a good approach (e.g., see [BI93, Ben01,

BLW09, AR10]).

Recently, the technique of Aigner and Fromme has been applied to polygonal

environments [BKIS12]: more precisely, it is shown that 3 cops are sufficient to

capture a visible robber in any polygonal environment with arbitrary complexity.

In [KS12, KS13], the case of an invisible evader is studied: O(
√
h+ log n) cops are

sufficient when the speed of all players is at least the minimum distance between

nodes (n is the number of nodes of the polygon and h the number of holes) [KS12]

while Ω(n2/3) may be required for arbitrary speed [KS13]; Θ(
√
n) cops are necessary

and sufficient when h = 0 and a general upper bound of O(n5/6) is proven [KS13].
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Figure 1.3: (a) 2-bidismantlable graph G with cnv
2(G) > 1 (b) Graph G with

cnv
2(G) = 1 that is not strongly 2-bidismantlable.

1.2.2 Visibility, radius of capture and other variants

When the robber can hide

Another natural generalization of C&R games is the one proposed by Clarke [Cla09].

In this variant, the robber is visible only every w ≥ 1 turns. Let cnv
w(G) be the

smallest number of cops that can capture in G a robber that shows up only every w

steps and is hidden the remaining turns. Note that, if a cop reaches the same node

as the robber, it is captured even if it is invisible. By definition, cnv
1(G) = cn(G) is

the classical cop-number.

Note that it is not clear that, for a fixed graph G, cnv
w(G) is a non decreasing

function of w. In [j-CCNV11], we proved that, for all w ≥ 2, there are graphs G

such that 1 = cnv
w(G) < cnv

w+1(G) (see Figure 1.2(b)). However, the question to

know whether cnv
w+1(G) = 1 implies cnv

w(G) = 1 for any G and w is still open.

In the case when the robber can hide (w > 1) classical dismantling orders are

not sufficient anymore to characterize cop-win graphs. No full characterization has

been found until now. However, a characterization of some necessary or sufficient

conditions have been proved in some other cases.

A graph G is called a big two-brother graph if G can be represented as an ordered

union of subgraphs G1, · · · , Gr in the form of a tree T rooted at G1 such that G1

has a dominating vertex and any Gi , i > 1, contains one vertex or two adjacent

vertices disconnecting Gi from its father and one of these two vertices dominates

Gi (see Figure 1.1(b)).

Theorem 17 cnv
w(G) = 1 for all w ≥ 1 if and only if G is a big two-brother graphs. [j-CCNV11]

For particular values of w, we prove several necessary or sufficient conditions,

but none of them provides a full characterization. A graph G = (V,E) is w-

bidismantlable if the vertices of V can be ordered (v1, · · · , vn) in such a way that,
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Figure 1.4: A graph G with cnv
w(G) = 1 that is not w-bidismantlable

for any 1 ≤ i < n, there exist two adjacent or coinciding vertices xi, yi with

yi = vj ,xi = vℓ and j, ℓ > i such that Nw(vi, G \ {xi, yi}) ∩ Xi ⊆ N1(yi), where

Xi = {vi, vi+1, · · · , , vn}. A graph G is strongly 2-bidismantlable if G admits a 2-

bidismantling order such that, for any vertex vi, i < n, yi = xi or N2(vi, G \ {yi})∩
Xi ⊆ N(xi, G \ {yi}).

Lemma 5 • Any graph G with cnv
2(G) = 1 is 2-bidismantable. There are 2-

bidismantable graphs G with cnv
2(G) > 1 (see Fig 1.3(a)).[j-CCNV11]

• Any strongly 2-bidismantable graph G satisfies cnv
2(G) = 1. There are graphs

G with cnv
2(G) = 1 that are not strongly 2-bidismantable (see Fig 1.3(b)).

• Let w > 1 be an odd integer. Any w-bidismantable graph G satisfies cnv
w(G) =

1. There are graphs G with cnv
w(G) = 1 that are not w-bidismantable (see

Fig 1.4).

A way to obtain a full characterization of cop-win graphs in this variant would

probably be to study the case when the robber can remain hidden at most w − 1

steps. However, it seems more difficult to analyze.

Numerous results have also been dedicated to the case when all players are

always invisible (hunter-and-rabbit game). In that case, some work allows the pur-

suer to be faster than the robber [SD13], or probabilistic strategies for the cops

have been proposed [ARS+03, IKK06, IK08, KMP13, DDTY13]. In particular, in

the all-invisible case, a single cop can catch the robber in Θ(n log n) expected time

in any n-node graph [ARS+03]. Some cases when visibility is limited depending on

the distance is studied in [IKK06, IK08].

When the robber can shoot

The last variant we would like to insist on is the one where the cops can capture

the robber at some distance [BCP10]. In other words, in this variant, the robber

is captured as soon as she is at distance at most r ≥ 0 from a cop. r is called

the radius of capture of the cops. Let cnd
r(G) be the smallest number of cops with

radius capture r that can capture a robber in G. Note that cnd
0(G) = cn(G) is the

classical cop-number.
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Bonato et al. proved that computing cnd
r(G) is NP-hard in general graphs and

gave an algorithm that decides whether cnd
r(G) ≤ k in time O(n2k+3) [BCP10]. The

analogous of the Meyniel conjecture has also been studied: there are graphs G for

which cnd
r(G) ≥ (nr )

1/2+o(1) and cnd
r(G) = O( n

log 2n
r+1

log(r+2)
r+1 ) in any n-node graph

G [BCP10].

Surprisingly, the characterization of cop-win graphs in this variant seems much

harder. As far as we know, almost nothing is known to characterize cop-win graphs

for r > 0, but in the following very restricted case:

Theorem 18 A bipartite graph G is such that cnd
1(G) = 1 if and only if V can be

ordered (v1, · · · , vn), with {vn−1, vn} ∈ E and, for any i < n − 1, there is j > i, [j-CCNV11]

N1(vi, Xi) \ {vi} ⊆ N1(vj).

Miscellaneous

To conclude this section, we should mention other variants that have been studied:

when the goal of the cops is not to capture the robber but to avoid that she reaches

some given subgraph [FGH+08, FGL09, FGH+11, SSV11], when each cop has a

limited number of moves [FGL10, FGL12], when cops may be helped by traps or

radars [CN00, CN01, CC06], when the robber can attack the cops [BFG+13] etc.

Also, other objectives are considered such as the capture time [BGHK09, BGKP13,

KW13].

We also like to mention that almost nothing is known about the Cops and

Robber games in directed graphs. For instance, a characterization of cop-win graphs

in this variant, say when only the robber is constrained to follow the arcs, seems

much more difficult to obtain (if any). We started investigated this topic during

the internship of Mélanie Ducoffe.

1.3 Web-page prefetching and Surveillance game

The games mentioned above are natural variants of Cops and Robber games and

they all are very interesting from the theoretical point of view, in particular because

they offer new ideas for solving Meyniel conjecture. In this section, we study a

similar game that, for once (?), has been introduced mainly because it models a

practical problem. More precisely, we defined the surveillance game to study the

prefetching problems [c-FGJM+12, j-FGJM+14].

Prefetching.

Prefetching is a basic technique in computer science. It exploits the parallelism

between the execution of one task and the transfer of information necessary to the

next task, in order to reduce waiting times. Consider the execution of some program

by a CPU, some future instruction of the program makes reference to a memory

block. When this instruction is being processed, the CPU must wait until this
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memory block is loaded into the registers to be able to proceed. Hence, one way to

speed up the execution of such program is to fetch this memory block before said

instruction is being processed [God09]. The possibility to preemptively load data

necessary for the execution of some task is called prefetching in computer science

domains. A modern instance occurs in the Web, where browsers may download

documents connected to the currently viewed document (Web page, video, etc.)

while it is being read or viewed. If the browser can anticipate which web page

the web-surfer would like to read, the web-surfer will be given the impression of a

greater download speed. For these reasons link prefetching has been proposed as an

Internet Draft standard by Mozzila [FS04, Inc99]. As of this work, several browsers

attempt to use some kind of prefetching to lessen the waiting time of its users [wik].

Unfortunately, some difficulties arise when dealing with prefetching. In general,

the amount of available space to store the documents (web pages, memory block,

instructions, etc.) might be small, making it necessary to choose which documents

are going to be prefetched. Moreover, the speed of the prefetching mechanism might

not be arbitrarily big, restricting the amount of documents that can be prefetched

before some task has to wait. Lastly, the prefetching mechanism might be a resource

that we would like to minimize. In the case of web pages, the bottleneck resource

is the bandwidth. Hence, every page that is prefetched and never seen by the user

is a wasted resource.

The execution digraph of a prefetching problem is a graph in which vertices

represents all the tasks involved in the problem and arcs represent dependencies

between the prefetching of such tasks, meaning that if there is an arc between two

vertices, then one must be prefetched before the other. In prefetching web pages,

vertices represent web pages and arcs hyperlinks from one web page to another.

Some studies [JG97, GCD02, MJM10], use a markovian model with a transitioning

function over the arcs of the execution digraph to model the behaviour of the web

surfer. However, the exact solution of such a model requires an exponential time in

the number of vertices of the execution digraph. Such a model also constraints the

web surfer to access web pages through a predetermined specific random manner.

It worths also mentioning more “technical” studies of prefetching. There are

mainly three types of prefetching. In local prefetching [WLZC12], the client has no

aid from the server when deciding which documents to prefetch. In the server based

hints prefetching [AEFP98, AZN99, Mog96], the server can aid the client to decide

which pages to prefetch. Lastly, in the proxy based prefetching [FCLJ99], a proxy

that connects its clients with the server decides which pages to prefetch. Moreover,

some studies consider that the prefetching mechanism has perfect knowledge of

the web-surfer’s behaviour [PM96, KLM97]. In these studies, the objective is to

minimize the waiting time of the web-surfer with a given bandwidth, by designing

good prediction strategies for which pages to prefetch.

We are concerned with perfect prefetching, i.e., ensuring that the Web surfer

never accesses a document that has not been prefetched yet. In other words, the

surfer is “impatient” in the sense that she does not tolerate waiting for informa-

tion. Due to network’s capacity (bandwidth) limitation, it is important to limit the
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number of Web pages that can be prefetched at each step: We aim at determining

its minimum value. In addition to being simpler than a fully specified optimization

problem, this question does not need specific assumptions on the behavior of the

Web surfer as in [GCD02, MJM10].

Surveillance game.

We introduced the surveillance game which is a model to study a local prefetching

scheme to guarantee that a websurfer never has to wait a web-page to be down-

loaded, whilst minimizing the bandwidth necessary to achieve this [c-FGJM+12,

j-FGJM+14]. This two-player game involves one Player moving a mobile agent,

called surfer, along the edges of a graph, while a second Player, called observer,

marks the vertices of the graph. The surfer wins if it manages to reach an un-

marked vertex. The observer wins otherwise.

More formally, let G = (V,E) be an undirected simple n-node graph, v0 ∈ V ,

and k ∈ N∗. Initially, the surfer stands at v0 which is marked and all other nodes

are not marked. Then, turn-by-turn, the observer first marks k unmarked vertices

and then the surfer may move to a neighbor of her current position. Once a node

has been marked, it remains marked. The surfer wins if, at some step, she reaches

an unmarked vertex; and the observer wins otherwise. Note that the game lasts at

most ⌈nk ⌉ turns (after which all nodes are marked). When the game is played on

a directed graph, the surfer has to follow arcs when it moves. A k-strategy for the

observer from v0, or simply a k-strategy from v0, is a function σ : V ×2V → 2V that

assigns the set σ(v,M) ⊆ V of vertices, |σ(v,M)| ≤ k, that the observer should

mark in the configuration (v,M), where M ⊆ V , v0 ∈ M , is the set of already

marked vertices and v ∈ M is the current position of the surfer. We emphasize the

fact that σ depends implicitly on the graph G, i.e., it is based on the full knowledge

of G (this will always be the case but for Theorem 29 below). A k-strategy from v0
is winning if it allows the observer to win whatever be the sequence of moves of the

surfer starting in v0. The surveillance number of a graph G with initial node v0,

denoted by sn(G, v0), is the smallest k such that there exists a winning k-strategy

starting from v0.

Discussion on the hypothesis.

In the surveillance game, the fugitive plays the role of the Web surfer moving in

the execution (di)graph while the observer must prefetch the Web pages before the

fugitive reaches them. Before going further, we aim at discussing some hypotheses

of our model.

First, in our model, we assume a constant prefetching time for all the Web pages.

It is however not a strong assumption since the surveillance game may also model

the fact that some Web pages are heavier than others. Indeed, let us assume that

each Web page u has a proper size W(u) and so a proper prefetching time. Consider

the graph Gp obtained by replacing any node u of G by a clique Ku of size W(u)
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and any edge {u, v} by a complete bipartite graph between Ku and Kv. Thus, the

surveillance problem for the weighted graph G is equivalent to the problem in Gp.

We also assume that the step duration is the minimum visiting time among

all pages. If there exists a perfect prefetching strategy with this constant duration

time, then this strategy is also a perfect prefetching strategy with the initial visiting

times for all the pages. This hypothesis corresponds to studying the worst case in

which the visiting time of all pages is constant (and so corresponds to the minimum

visiting time among all the pages).

The strongest assumption is probably the infinite memory, that is when a Web

page is prefetched, then it remains prefetched. In other words, a vertex that is

marked remains marked for all the following steps of the surveillance game. That

is, we assume that the amount of local memory available is, usually, much bigger

than what a web surfer can browse in a given time, making the network resources

(bandwidth) the principal concern in designing good prefetching strategies. This

is motivated by the fact that memory in modern computers is not scarce anymore,

which makes network resources the critical ones. However, local storage memory is

also a potential issue, and prefetching is classically associated with the question of

cache management. We plan to investigate two more realistic models corresponding

to two cache management policies. The first variant assumes that a marked vertex

becomes unmarked after a constant number of steps. The second model allows the

observer to unmark some vertices, respecting the constraint that the total number

of nodes that are marked never exceeds a given threshold corresponding to the

maximum number of Web pages that can be prefetched simultaneously.

1.3.1 Complexity and algorithms in several graph classes

This section is devoted to the study of the computational complexity of the surveil-

lance game. All these results can be found in [c-FGJM+12, j-FGJM+14].

As a warm-up, let us describe a simple basic strategy σB: at each step, the

observer simply marks all unmarked neighbors of the current position of the fugitive.

Note that, the surfer always arrives to any vertex (but v0) by an already marked

neighbor. This allows us to derive simple general bounds.

Assertion 2 For any graph G with maximum degree ∆ and for any v0 with degree

d0,[c-FGJM+12,
j-FGJM+14] d0 ≤ sn(G, v0) ≤ max{∆− 1, d0}.

From Assertion 2, it is almost straightforward that the surveillance number of

graphs with maximum degree 3 or with a universal vertex can be easily computed.

Lemma 6 Let G be a connected undirected graph with maximum degree at most

three and at least one edge. Then, 1 ≤ sn(G, v0) ≤ 3 and[c-FGJM+12,
j-FGJM+14]

• sn(G, v0) = 1 iff G is a path, where v0 has degree one;

• sn(G, v0) = 3 iff v0 has degree 3.
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Lemma 7 Let G be an undirected graph with a universal vertex. For any v0 ∈ V (G)[c-FGJM+12,
j-FGJM+14] with degree d0, sn(G, v0) = max{d0,

⌈

n−1
2

⌉

}.

One important and useful result is that we can restrict our study to simpler

trajectories of the surfer. That is, when computing the surveillance number of a

graph, we don’t need to consider all possible moves of the surfer. More precisely,

in the monotone variant of the surveillance game, the surfer is restricted to move

at every step and to follow only induced paths in G. That is, for all ℓ > 0, after

having followed a path (v0, · · · , vℓ), the surfer is not allowed reaching a vertex

in N [{v0, · · · , vℓ−1}]. Note that if the surfer cannot move, then she loses. Let

msn(G, v0) be the smallest k such that there is a winning monotone k-strategy in

G when the surfer starts from v0, i.e., the observer can win, marking at most k

vertices at each step, against a surfer constrained to follow induced paths.

Theorem 19 For any (di)graph G and v0 ∈ V (G), sn(G, v0) = msn(G, v0). [c-FGJM+12,
j-FGJM+14]

We give the intuition of the proof. Assume that the observer may win the monotone

game in G by marking at most k nodes at each step. Then, a strategy for the non-

monotone game can be defined as follows. As long as the fugitive follows an induced

path, the observer just plays according to its monotone strategy. It is “clear” that if

the fugitive does not move in some step, that does not hurt the observer at all. Now

consider the first time that the robber breaks the rule of moving along an induced

path. Say her trajectory is v0, v1, · · · , vm and then she moves to vm+1 which is a

neighbour of vj for 0 ≤ j ≤ m − 1. Then the observer can imagine that time has

gone backwards, and consider the time j, when the fugitive has moved along the

trajectory v0, v1, · · · , vj , and then she is moving to vm+1 in the next step. The

observer just plays according to the strategy that he would have played if the robber

had taken the trajectory v0, v1, · · · , vj , vm+1. Intuitively, the only difference with

the real game is that some additional vertices are marked in the real game, which

does not hurt the observer. Hence the observer can still win by marking k vertices

in each step in the original variant.

Previous result means that we can always consider that the fugitive follows

induced paths, and so that the fugitive has to move at every step because an induced

path is necessarily a simple path. This assumption is very important in the proofs

of next results since it simplifies them a lot.

Complexity

We have shown that the problem of computing the surveillance number is actu-

ally very difficult in “simple” graph classes. By reducing the 3-Hitting Set Prob-

lem [GJ90], we proved the following theorems. The intuition is that when marking

the nodes, the observer has to choose few nodes that cover all possible neighborhood

of the next position of the surfer.

In particular, the problem is not FPT when parameterized by its solution:

Theorem 20 Deciding if sn(G, v0) ≤ 2 is NP-hard in chordal graphs. [c-FGJM+12,
j-FGJM+14]



38 Chapter 1. Turn-by-turn Two-Player Games in Graphs

The game is also difficult, when the number of turns is bounded. In particular,

in split graphs, the game is limited to two turns since there are no induced paths

of length > 2.

Theorem 21 Deciding whether sn(G, v0) ≤ k is NP-hard in split graphs.[c-FGJM+12,
j-FGJM+14]

Next, we show that the problem of deciding whether sn(G, v0) ≤ 4 is PSPACE-

complete in DAGs. Following the ideas in [FGL10], it is done by reducing the

3-QSAT problem [GJ90]. Intuitively, the choice of which nodes must be marked

by the observer at each step corresponds to the existential quantifiers, while each

move of the surfer corresponds to a universal quantifier.

Theorem 22 Deciding whether sn(G, v0) ≤ 4 is PSPACE-complete in DAGs.[c-FGJM+12,
j-FGJM+14]

An interesting question is to know if the problem remains PSPACE-hard in

undirected graphs. In comparison, Mamino recently proved that the Cops and

Robber game is PSPACE-hard in undirected graphs [Mam13].

Algorithms

Besides the bad news above, we obtained some positive results by designing a general

exponential algorithm for computing the surveillance number and polynomial time

algorithms in the case of trees and interval graphs.

The general algorithm consists of a classical backward labeling of the configu-

ration digraph, a.k.a. arena digraph (e.g., see [ACP87, HM06, j-FFN09]).

Theorem 23 sn(G, v0) can be computed in time O∗(4n) on n-node graphs.[c-FGJM+12,
j-FGJM+14]

The case of trees can be dealt with by using a slight generalization of the game.

In this generalization, v0 is initially marked and the observer can mark at most

k0 ≥ 0 other vertices before the fugitive’s first step. Let k ≥ 0 and T be a rooted

tree. We define the function fk : V (T ) → N in the following recursive way:

• fk(v) = 0 for any leaf v of T ;

• for any v ∈ V (T ) with d children, fk(v) = max{0, d+∑

w∈C fk(w)−k}, where
C is the set of children of v.

We prove that, in any tree T rooted at v0, fk(v0) = 0 if and only if sn(T, v0) ≤ k.

Hence, by a simple dynamic programming algorithm:

Theorem 24 For any tree T and any v0, sn(T, v0) can be computed in time O(n ·
log n).[c-FGJM+12,

j-FGJM+14]

We moreover give a combinatorial characterization of the surveillance number

of trees.
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Theorem 25 For any graph G and v0 ∈ V (G), sn(G, v0) ≥ max
⌈

|N [S]|−1
|S|

⌉

, where[c-FGJM+12,
j-FGJM+14]

the maximum is taken over all S ⊆ V (G) inducing a connected subgraph of G

containing v0. Moreover, there is equality in the case of trees.

In [c-GMN+13], we showed that the inequality may be strict.

Finally, we prove that, in interval graphs, the observer wins if it is able to

protect some particular paths, whose number is polynomial in the size of the graph.

Intuitively, the hardest case for the observer is when the surfer first chooses a

direction, left or right (with respect to the realization of the interval graph), and

then always goes to its neighbor with leftest (or rightest) end. Hence, to compute

the surveillance number of an interval graph it is sufficient to check, for all integers

k, if the observer can protect these paths.

Theorem 26 sn(G, v0) can be computed in time O(n ·∆3) in the class of n-node [c-FGJM+12,
j-FGJM+14]interval graphs with maximum degree ∆.

Regarding the prefetching motivation, it would be interesting to study the be-

havior of the surveillance number in the Web graph. That is, we would like to study

this problem in random graphs and more specifically in such a graph with power

law degree distribution.

1.3.2 Connected and online Surveillance Game

By nature of the web-page prefetching problem, in particular because of the huge

size of the web digraph, it is not realistic to assume that a strategy may mark

any node of the network, even nodes that are “far” from the current position of

the surfer. For this reason, in [c-FGJM+12, j-FGJM+14] we also introduced the

connected variant of the surveillance game.

A strategy σ is said connected if σ(v,M) ∪ M induces a connected subgraph

of G for any M , v0 ∈ M ⊆ V (G). In other words, a node may be marked only if

it has an already marked neighbor. Note that the basic strategy σB is connected.

The connected surveillance number of a graph G with initial node v0, denoted by

csn(G, v0), is the smallest k such that there exists a winning connected k-strategy

starting from v0.

All the results of the previous section extend to the connected variant of the

surveillance game [c-FGJM+12, j-FGJM+14]. In particular, the surveillance number

and its connected counterpart are equal in the class of trees and of interval graphs.

Therefore, a natural question is to know how both parameters may differ one from

the other. By definition, csn(G, v0) ≥ sn(G, v0) for any graph G and v0 ∈ V (G).

Moreover, it is easy to find a graph where the two parameters differ (see Figure 1.5).

More generally,

Lemma 8 Let k ≥ 2. There exist a graph G and a vertex v0 ∈ V (G) such that [c-FGJM+12,
j-FGJM+14]k + 1 = csn(G, v0) > sn(G, v0) = k.
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v0

Figure 1.5: A graph G and v0 ∈ V (G) such that csn(G, v0) = sn(G, v0) + 1.

However, finding a larger difference has been much more difficult. In [c-GMN+13]

we proved the following result which is currently the best known lower bound. Note

that the smallest graph in the family mentioned below has around 1.650.000 ver-

tices.

Theorem 27 There are graphs G, v0 ∈ V (G) such that csn(G, v0) = sn(G, v0)+2.[c-FGJM+12,
j-FGJM+14]

On the other hand, except the trivial upper bound csn(G, v0) ≤ ∆ · sn(G, v0),

the best upper bound we have been able to prove is:

Theorem 28 Let G be any connected n-node graph and v0 ∈ V (G), then[c-FGJM+12,
j-FGJM+14]

csn(G, v0) ≤
√

sn(G, v0) · n.

To try to get deeper understanding of the cost of connectivity, we defined an even

more constrained variant of the surveillance game. We also studied this variant for

its own interest since it is a much more realistic model for the Webpage prefetching.

Indeed, the connected surveillance game still seems unrealistic since the web-

browser cannot be asked to have the full knowledge of the web digraph. Therefore,

we define the online surveillance game. In this game, the observer discovers the

considered graph while marking its nodes. That is, initially, the observer only knows

the starting node v0 and its neighbors. After the observer has marked the subset

M of nodes, it knows M and the vertices that have a neighbor in M . The next set

of vertices to be marked depends only on this knowledge, i.e., the nodes at distance

at least two from M are unknown. In other words, an online strategy is based on

the current position of the surfer, the set of already marked nodes and knowing

only the subgraph H of the marked nodes and their neighbors (see [c-GMN+13] for

more details). By definition, the next nodes marked by such a strategy must be

known, i.e., adjacent to an already marked vertex. Therefore, an online strategy is

connected.

We are interested in the competitive ratio of winning online strategies. The

competitive ratio ρ(S) of a winning online strategy S is defined as

ρ(S) = max
G,v0∈V (G)

S(G, v0)

sn(G, v0)
,

where S(G, v0) denotes the maximum number of vertices marked by S in G at

each turn, when the surfer starts in v0. Note that, because any online winning

strategy S is connected, csn(G, v0) ≤ ρ(S)sn(G, v0) for any graph G and v0 ∈ V (G).

Unfortunately, we show that
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Theorem 29 The best competitive ratio of online winning strategies is Θ(∆), with [c-FGJM+12,
j-FGJM+14]∆ the maximum degree.

Hence, the gap between the surveillance number and its online counterpart is

not bounded. Moreover, the previous result holds even when restricted to trees.

Since, for any tree T and for any v0 ∈ V (T ), csn(T, v0) = sn(T, v0), there might

be an arbitrary gap between the connected surveillance number and the online

surveillance number.

The question of bounding the gap between connected and not connected surveil-

lance numbers remains open.

1.4 Fractional Combinatorial games

Motivated by the numerous remaining open questions related to both the Cops and

Robber games and the Surveillance game, we propose a new way to investigate

them, namely through linear programming techniques [s-GNPS13]. Roughly, we

aim at designing Integer Linear Programs (ILP) to describe the games. Then, one

possible direction is to relax the integrality constraint and try to derive approxima-

tion algorithms. In this section, we present a formal definition of fractional games

and we give the preliminary results we obtained in this direction.

1.4.1 Fractional Cops and Robber and Surveillance Games

Cops and Robber game

Let us first consider the classical Cops and Robber game where we relax the “in-

tegrality” of the cops. That is, we assume that each cop can divide itself into

arbitrary small pieces at each step6. Formally, the moves of the cops can be defined

as follows: at some turn when an amount α ∈ R+ of cops is occupying a node v

of a graph, then during its move, an amount of αw cop can move to w, for any

w ∈ N [v], such that
∑

w∈N [v] αw = α. The robber is captured if an amount of at

least 1 cop is occupying the same vertex as it.

As an example, let us consider the cycle C4 (with classical cop-number cn(C4) =

2) with 4 vertices {a, b, c, d}. A fractional strategy may be to place one-half of cop

on each of the vertices a, b and c (then using 3
2 cops in total). Then, wherever be

the node x chosen by the robber, during the next turn, two halves of cops can reach

x and then capture the robber. Hence, this example shows that, in the fractional

variant, it is possible to capture a robber in a graph G with strictly less than cn(G)

cops. We actually proved a more disappointing result:

Theorem 30 For any graph G and any ǫ > 0, in the fractional variant, 1+ ǫ cops [s-GNPS13]

can capture any robber in G and in a linear (in |V (G)|) number of turns.

6Informally, if one cop is occupying a node then, during its turn, it can move its left leg to one

neighbor, its right leg and arm to another neighbor, and keep the remaining of its body on its

current position.
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Indeed, consider 1 + ǫ cops used to capture a robber in a n-node graph. First,

place 1+ǫ
n cops in each node. Wherever be the position of the robber, 1+ǫ

n cops are

at the same node and can follow the robber at each step of the game. At some

step, assume that 0 < β < 1 cop is “following” the robber. Then, the remaining

1 + ǫ − β cops can spread in the graph such that 1+ǫ−β
n cop occupy each node.

Then, β + 1+ǫ−β
n can now “follow” the robber, and the strategy goes on like this.

Eventually, at least one cop is following the robber and captures it.

We said that the above result is disappointing because it implies that fractional

variant of Cops and Robber game cannot provide an interesting approximation of

the classical variant. While we did not get any result in that direction yet, the

fractional variant might give some hint to study other “integral” variants of Cops

and Robber games such as the variant with fast robber.

Surveillance game

In the fractional surveillance game, the observer is allowed to partially mark the

nodes. That is, at each step, the observer marks an amount mv > 0 of any node

v ∈ V (G), such that
∑

v∈V (G)mv ≤ k.

Recall that the classical surveillance game is NP-hard even when the number of

turns equals two [c-FGJM+12, j-FGJM+14]. This is mainly because the surveillance

game is close to hitting set problems. For the same reason, it is possible to formulate

a strategy for the observer as a linear program. Indeed, consider the game limited

to two turns in a graph G and starting from v0 ∈ V (G). That is, the fugitive

first moves to a neighbor w of v0 then to a neighbor of w. To decide whether the

observer using k marks per turn can win, it is sufficient to find the nodes that

must be marked during the first turn: during the second turn, it is necessary and

sufficient for the observer to mark the unmarked neighbors of w. Therefore, we use

one variable mv per node v ∈ V (G) \ N [v0] that is set to 1 if v must be marked

during the first turn and to 0 otherwise. The surveillance number of G starting

in v0 and limiting the number of turn to two is then the solution of the following

linear program.

Minimize k

Subject to:
∑

v∈V (G)\N [v0]
mv ≤ k − |N [V0]|

|N [w] \N [v0]| ≤ k +
∑

v∈N [w]\N [v0]
mv ∀w ∈ N(v0)

mv ∈ {0, 1} ∀v ∈ V (G) \N [v0]

(1.1)

Clearly, the fractional relaxation of the above program provides a polynomial-

time algorithm to compute the solution for the fractional surveillance game. Moreover,[s-GNPS13]

set-cover admits a polynomial-time approximation scheme with logarithmic ratio via

LP-rounding [Vaz01]. Therefore, we hope proving that fractional surveillance game

also provides such approximation scheme.

In next section, we show how we can extend these ideas to more general games.
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1.4.2 General fractional Games
[s-GNPS13]

We conclude this Chapter on Combinatorial games by presenting some on-going

work that we expect to have promising consequences. We don’t give here all tech-

nical details but focus on the main ideas of our new approach.

Not fully formal description of the game

We define a general game played by two players, denoted by C and R, on some

subset of R2n. A configuration of the game consists of two vectors: the vector

c ∈ Rn
+ of C and the one r ∈ Rn

+ of R. For instance, in Cops and Robber or in

Surveillance games played in a n-node graph, ri represents the amount of the robber

at node i, and ci represents the amount of cops (or of marks) at node i, for any

i ≤ n.

The game is then defined thanks to various polytopes of R2n. The set V ⊆ R2n

is a polytope defining the valid configurations for Player C, i.e., if Player R wins

if it manages to reach a vector in R2n \ V. The set I ⊆ V is the set of initial

configurations, and W ⊆ V is the polytope of winning configurations for C. For

instance, W = {(c, r) ∈ R2n | ci ≥ ri, ∀i ≤ n} is the set of winning set for C in

Cops and Robber game and it is the set of valid configurations in the surveillance

game. The set of winning configurations is W = {(c, r) ∈ R2n | ci ≥ 1, ∀i ≤ n} in

the surveillance game.

Starting from any configuration in I and turn-by-turn, each player can modify

its own vector v ∈ Rn
+ by applying it some linear transformation: the player may

go to a new vector δ · v + x, where x belong to a given convex X set containing 0,

and δ ∈ ∆E where

∆E =







[αi,j ]1≤i,j≤n

∣

∣

∣

∣

∣

∣

∀1 ≤ i, j ≤ n, αi,j ≥ 0, and

∀j ≤ n,
∑

1≤i≤n αi,j = 1, and

if {i, j} /∈ E then αi,j = 0







Note that the set ∆E is a set of stochastic matrices that can be defined through

a graph G = (V,E). Intuitively, for any 1 ≤ i, j ≤ n, δi,j represents the fraction of

tokens initially present in j ∈ V that moved along {j, i} ∈ E to reach i ∈ V . The

set X represents some amount of tokens that may be added at the player’s turn.

The goal of C is to eventually reach a configuration in W, and the goal of R is

either to perpetually avoid it, or to eventually reach a configuration in R2n \ V .

Preliminary results and on-going work
[s-GNPS13]

Without entering more into the details, mainly based on the convexity of the win-

ning states and of the allowed moves, we design an algorithm that computes the set

of valid configurations from which C can win after some number of turns. Roughly,

we start by the set of winning configurations which can be described by a polytope.

Then, by a backward induction, from the set of configurations from which Player

C wins after i turns, we compute the polytope describing the set of configurations
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from which Player C wins after i + 1 turns. Unfortunately, our generic algorithm

takes an exponential-time even when the number of turns is fixed. The complexity

of our algorithm only comes from some projection-step that exponentially increases

the number of constraints defining the polytope at each step. However, many such

constraints seem redundant and there is still some hope to reduce their number.

The time-complexity of deciding which Player may win is still open.

Another important result we obtained is that, under some extra hypothesis on

the convex sets defining the game, Player R can be restricted to play integrally, i.e.,

we can impose that the vector r ∈ Nn always remains integral without making C
more powerful (if R wins in Rn then it wins also in Nn). In particular, this implies

that our game provides a fractional relaxation of the Cops and Robber games and

of the Surveillance game.

One advantage of this new formalization is that it allows us to model various

games, not restricted to the Cops and Robber and of the Surveillance games. An-

other example of game that fits into our framework is the famous Angels and Devils

problem defined in [BCG82, Con96, BL06, Klo07]. We are also currently investigat-

ing the Eternal games. In the Eternal Dominating Set game, Player C first places

its k ≥ 1 tokens on vertices of a graph G. Then, at each turn, R chooses one node

and C may move one or (depending on the variants) several tokens such that at

least one token goes to the chosen node [BCG+04, KM09, GHH05]. The Eternal

Vertex Cover game is defined similarly but Player R attacks an edge along which

at least one token of C must slide (e.g., [ABB+07, FGG+10]).



Chapter 2

Tree Decomposition, Graph

Searching and Applications

Content

One important aspect of pursuit-evasion games is the equivalence between a vari-

ant of these games, namely graph searching games, and tree-decompositions. In

this chapter, we present our contributions related to this equivalence and to some

applications of it.

In Section 2.1, we first present several algorithmic applications of tree-decomposi-

tions. More generally, this section is devoted to the description of classical or

more recent techniques of parameterized complexity and their applications. Among

other, it is question of color coding, cut and count method, meta-kernelization,

graph minor theory, bidimensionality, etc. Very recent results (based both on

kernelization and dynamic programming) show that many problems can be dealt

with using these approaches. We then focus on the problem of computing the

chordality of a graph (that have further applications in Section 4.2.2) and describe

a particular kind of tree-decomposition, related to treelength (and somehow to our

study of Cops and Robber games), and its application to compute chordality of

graphs [c-KLNS12, j-KLNS14].

Then, we present our contributions on graph searching. Section 2.2 is first

devoted to the study of non-deterministic graph searching (defined in [t-Nis07,

j-FFN09]) which provides a general approach for graph decompositions [s-ACN07].

Through the notions of partitioning-trees and partition functions, we obtain ge-

neral duality results [j-AMNT09] and a unified algorithm to compute decomposi-

tions [s-BBM+13]. Section 2.2 is also devoted to survey directed graph decomposi-

tions which, unfortunately, seem not fall into our general framework.

On the other hand, a nice directed graph searching variant, namely the process-

ing game, has been defined to model the routing reconfiguration problem [CPPS05].

In Section 2.3, we present our contributions on this variant [c-CCM+10, j-CCM+11,

c-NS13] and give some evidences that it might lead to a “good” definition of directed

tree-decomposition. We finally study the routing reconfiguration problem itself by

considering various “real-networks” constrains [c-CHM+09, c-CMN09, c-BCM+12].
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2.1 Algorithmic applications of tree-decompositions

This section is devoted to present some related work on treewidth and tree-decompo-

sitions. In particular, we focus on their applications for computing properties of

graphs, via fixed parameterized tractable (FPT) algorithms.

2.1.1 Treewidth

Our aim here is not to survey the huge amount of previous work on treewidth but

to mention some important results that are closely related to our main topic, the

computation of graph properties. For nice surveys on treewidth, see e.g. [Bod98,

Bod07].

Given a graph G = (V,E), a tree-decomposition (T,X ) of G consists of a tree T

and a family X = (Xt)t∈V (T ) of subsets of V such that

• ∪t∈V (T )Xt = V ;

• for any e ∈ E, there is t ∈ V (T ) such that the bag Xt contains both ends of e;

• for any v ∈ V , {t ∈ V (T ) | v ∈ Xt} induces a subtree of T .

The width of (T,X ) is maxt∈V (T ) |Xt| − 1, the maximum size of a bag minus

one. The treewidth1 of G, denoted by tw(G), is the minimum width among all

tree-decompositions of G [RS86a]. If T is restricted to be a path, (T,X ) is a path-

decomposition of G, and the pathwidth pw(G) of G is the minimum width among

all path-decompositions of G [RS83].

A fundamental result related to treewidth is that many NP-complete problems

can be solved “efficiently” in the class of graphs with bounded treewidth. Indeed,

given a tree-decomposition of a graph, many problems can be solved by dynamic

programming on the decomposition in a time (mainly) depending on the width of

this decomposition. In particular, the famous Courcelle’s theorem states that all

problems expressible in monadic second order logic can be solved in linear-time in

the class of graphs with bounded treewidth [Cou90]. That is, the algorithm is linear

in the size of the input graph G but may be exponential in tw(G).

The second interest of treewidth that is worth to be mentioned here is its im-

plication in the Graph Minors theory of Robertson and Seymour. In particular,

they proved that the set of bounded treewidth graphs is well-quasi-ordered [RS90]

and that the class of graphs excluding a fixed planar graph as a minor has bounded

treewidth [RS84, RS86b] which is an important step in their proof of the Wagner

conjecture [RS04]. The fact that excluding a planar graph as minor implies having

bounded treewidth mainly relates on the so called grid-theorem saying that any

graph either has bounded treewidth or admits a large grid as minor [RST94]. We

will see later the role played by the following recent improvement of Robertson-

Seymour and Thomas theorem in the bidimensionality theory.
1Note that, while the term treewidth has been defined by Robertson and Seymour in their work

on Graph Minors, similar notions already appeared in previous work, e.g., [Ros74].
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Theorem 31 Let r > 0. Let G be a graph with no r × r-grid as minor, then

• tw(G) ≤ 2O(r2 log r) [KK12]2

• if G is H-minor free, then ∃cH > 0 such that tw(G) ≤ cHr [DH08b, KK12]

There are graphs with treewidth Ω(r2 log r) and no ω(r)×ω(r)-grid as minor [RST94].

Deciding if the treewidth, respectively the pathwidth, of a graph is at most k is

NP-complete when k is part of the input [ACP87, MHG+88]. However, since in most

applications, computing a tree-decomposition with “small” width is desired, many

work has been devoted to this task. For k fixed, several polynomial-time algorithms

(exponential in k) have been proposed that either decide if the input graph has

treewidth > k or compute a tree-decomposition of width at most O(k) (e.g., [MT91,

Ree92, Lag96] that are based on finding “good” balanced separators). Bodlaender

and Kloks designed an algorithm that, given a tree-decomposition with width O(k)

of a graph G, either decides that tw(G) > k or computes a tree-decomposition

(resp., path-decomposition) with width ≤ k for G in time kO(k3)n [BK96]. Bod-

laender and Thilikos used similar approach for graph searching [BT97a]. Using

the Bodlaender-Kloks algorithm and improving the computation of an approxi-

mate decomposition (based on a pre-processing considering vertices with “low”

degree), Bodlaender designed a linear-time algorithm that decides if tw(G) ≤ k

in time kO(k3)n in any n-node graph G [Bod96]. Very recently, Bodlaender et

al. designed an algorithm that, for any input n-node graph G and an integer

k > 0 being fixed, either outputs that tw(G) > k, or gives a tree decomposition

of G of width at most 5k + 4, in time 2O(k)n [BDD+13]. To conclude this para-

graph on treewidth computation, let us mention that the best (as far as we know)

known polynomial-time approximation algorithm for computing the treewidth has

approximation ratio
√
logOPT [FHL05a] (based on Semidefinite Programming),

that treewidth can be approximated in polynomial-time up to a constant ratio in

planar graphs [ST94] (algorithm for computing the branch-decomposition) and that

several heuristics that compute lower or upper bounds on treewidth have been pro-

posed, e.g., in [BB05, BK07, BK10, BK11]. Note that the complexity of computing

the treewidth of planar graphs is a longstanding open problem.

Other aspects on tree-decompositions (duality results, case of directed graphs)

are postponed to Section 2.2.

2.1.2 Applications to parameterized complexity

Since many interesting problems are known to be NP-complete in general, a huge

amount of research is devoted to obtain efficient algorithms in particular graph

classes. For instance, for any fixed integer k > 0, there is an algorithm that,

given an input n-node graph G, decides if tw(G) ≤ k in time O(nk+2) [ACP87].

Following this result, computing the treewidth is polynomial in the class of graphs

2A very recent unpublished result improves this bound to a polynomial in r [CC13].
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with bounded treewidth. However, it is desired to optimize the dependence on the

parameter k. For this purpose, the kO(k3)n-time Bodlaender algorithm mentioned

above [BK96] is better in the sense that it allows to understand that the complexity

of the problem does not come from the size of the graph but from its structure.

Parameterized complexity theory provides a framework for such a refined analysis

of hard algorithmic problems [DF99, FG06, Nie06].

A parameterized problem Π takes an input instance I and a fixed non-negative

integer k (the parameter). Π is Fixed Parameter Tractable (FPT) if it can be solved

by an algorithm with running time f(k)n
O(1)
I , where nI is the size of the instance

and f is a function depending only on k. The typical parameter is the size of the

solution, but when graph problems are concerned, using the treewidth of the input

graph as parameter has allowed to achieve numerous interesting results.

In particular, as already mentioned, many graph problems can be solved, by

“simple” dynamic programming approach, in time cO(tw)nO(1) in the class of n-node

graphs, when a tree-decomposition of width tw is given, for some constant c. For

instance, vertex cover and independent set can be solved in time 2O(tw(G))nO(1) in n-

node graphs G [Nie06], dominating set can be solved in time 4O(tw(G))nO(1) [Nie06],

q-coloring and odd cycle traversal (minimum number of nodes to be removed to

obtain a bipartite graph) can be solved in time cO(tw(G))nO(1) for some constants

c [FG06, Nie06]. Moreover, such running times are essentially optimal unless the

Exponential Time Hypothesis fails [LMS11]. The fact that, for these problems,

the dependence in tw is single exponential comes from the fact that solutions are

“locally checkable”. Roughly, for each bag of the tree-decomposition, the dynamic

programming process can only keep the partial solutions (sets of 2O(tw) nodes) that

can be checked using a constant number of bits by testing only neighborhoods.

On the other hand, for many problems involving more “global constraints” such

as connectivity, a similar approach leads to running time twO(tw)nO(1). For instance,

in problems like connected vertex cover, connected dominating set or hamiltonian

cycle, the dynamic programming process have to keep track of all the ways (order-

ings, connected components, etc.) in which the (partial) solution can traverse the

corresponding bag of the tree-decomposition. Finding algorithms for such prob-

lems with running time depending only (single) exponentially in tw has been a

long-standing challenge. Dorn et al. first solved it for Hamiltonian cycle, TSP

and longest cycle in planar graphs [DPBF10]. Their approach is based on the

sphere-cuts of Seymour and Thomas [ST94]: basically, in planar graph a branch-

decomposition can be found such that all separators correspond to “cycle” in the

graph. Therefore, the number of ways the solution can traverse the bags is re-

lated to Catalan number which gives a single exponential in the size of the bag

(see also [ST10]). Later on, Dorn, Fomin and Thilikos generalized these results to

bounded-genus graphs [DFT06] and then to H-minor free graphs [DFT12]. Very

recently, Bodlaender et al. proved that similar results can be obtained in general

graphs by using clever techniques to keep track of the connected components of

the partial solutions [BCKN13]. The latter result improves (by de-randomizing it
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and extending it to counting and weighted problems) the cut-and-count method

proposed in [CNP+11].

The bidimensionality theory takes use of several algorithms described above to

obtain FPT sub-exponential time algorithms for many problems (see [DH08a] and

references therein). Consider the problem of deciding if some graph parameter p

is at most k2. Moreover, assume that (1) p is large in a k × k-grid Gk×k, say

p(Gk×k) > k2, and (2) p is closed under taking minor. Then an algorithm consists

of the following: first run on the input n-node graph G a polynomial time algorithm

that either computes a tree-decomposition of width O(k) or states tw(G) > k; in

the first case, use above dynamic programming algorithms to decide in time 2knO(1)

(i.e., sub-exponential in the parameter); in the latter case, if G admits a “good”

structure (e.g., exclude a given minor), by Theorem 31, G contains Gk×k as minor

and so p(G) > k2 by the properties of p [DHT05, DH08a]. This technique has then

been extended for parameter with less constrained properties (e.g., contraction-

closed and large in “grid-like” graphs) but reducing a bit the considered classes of

graphs: planar, bounded genus, excluding a fixed graph as minor [DFHT05, DH08a].

Another aspect of parameterized complexity is that it provides a framework

to study the pre-processing of instances of hard problems [GN07, Bod09]. Given a

problem Π with parameter k, a kernelization algorithm transforms inputs (I, k) of Π

to other instances (I ′, k′) of Π in time polynomial in |I|+k and such that (I, k) ∈ Π

if and only if (I ′, k′) ∈ Π (i.e., without modifying the value of the solution), and

k′ ≤ k and |I ′| ≤ f(k) where f is any function depending on k. f(k) is the size

of the kernel. Clearly, if Π is decidable and admits such a kernelization algorithm,

then it is FPT since, after having computed the kernel, an exhaustive search can

be done in time depending only in f(k). It is part of the folklore that:

Theorem 32 [Bod09] A parameterized problem Π is FPT if and only if Π is

decidable and Π has a kernelization algorithm.

One critical question is then to reduce the size of the kernel of FPT problems.

For instance, a linear kernel (i.e., of size O(k)) leads to FPT algorithms that are

“only” single exponential in k. Recent results provide techniques to show that

some problems have no polynomial kernel (unless NP ⊆ coNP/poly, or other prop-

erties making the complexity hierarchy collapse) [BDFH09, FS11]. On the other

hand, powerful techniques have been introduced that provide polynomial kernel

for large classes of parameterized problems [BFL+09, FLMS12, KLP+13]. Once

again, treewidth plays an important role: these results are mainly based on protu-

sion decompositions that roughly consist in partitioning a graph: one part having

bounded (in the parameter) treewidth and the other part being composed with

bounded number of components of bounded diameter and with bounded border.

Moreover, because of properties of the considered problems, the connected com-

ponents of the second part can be replaced (without modifying the solution) by

bounded size gadgets.

This section has presented several powerful applications of treewidth and tree-

decompositions. However, computing “good” tree-decompositions in an efficient
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way (especially, with efficient implementations) remains a challenge. A way to

bypass it would be to propose other structures easier to compute and that provide

nice algorithmic applications. In the next section, we present some preliminary

research in this direction.

2.1.3 Computing chordality and “caterpillar” tree-decompositions

We focus on the particular problem of computing the chordality of graphs. The

chordality of a graph is the length of its largest induced (chordless) cycle. A graph

is k-chordal if its chordality is at most k. In Section 4.2.2, we will present some

applications of the results we obtained on chordality for compact routing.

Computing longest cycles or paths in graphs are natural problems that have been

studied a lot. As a generalization of the Hamiltonian cycle/path problems, these

problems are NP-complete [GJ90]. FPT-algorithms have been proposed in various

graph classes (planar, bounded genus, H minor free for fixed H, etc.). Maybe the

most famous one is the color coding method by Alon et al. [AYZ95]. Roughly,

given a graph G excluding some fixed H as minor, randomly color the nodes with

k colors and give acyclic orientation with bounded out-degree to the edges (this

is possible since G excludes H fixed and then has bounded degeneracy). Then,

by dynamic programming, it is possible in “FPT-time” to search for a directed

path of length k (number of vertices) and using k distinct colors. If G has a path

of length k, then the algorithm finds it with constant probability. Using hash

functions, it is finally possible to de-randomized the algorithm [AYZ95]. Other

FPT algorithms have been designed to decide if a graph contains some graph with

k nodes as subgraph. Among other, let us mention the linear algorithm of Eppstein

in bounded genus graphs [Epp99] which, as far as I understand, is a kind of ancestor

of the kernelization algorithms based on protusion (see also [Bak94]).

The problem of deciding whether the chordality of a graph G is at most k is

NP-complete if k is as part of the input. Indeed, if G′ is obtained by subdividing

all the edges in G once, then there is an induced cycle of length at least 2|V (G)|
in G′ if and only if G has a Hamilton cycle. It is coNP-hard to decide whether

an n-node graph G is k-chordal for k = Θ(n) [Ueh99]. Several problems related

to chordality have been considered. Finding the longest induced path is W [2]-

complete [CF07]. In [KK09], the problem of deciding whether there is an induced

cycle passing through k given nodes is studied. This problem is NP-Complete in

planar graphs when k is part of the input and in general graphs even for k = 2.

However, a FPT algorithm based on the Graph Minors machinery exists in planar

graphs [KK09]. Finding an induced cycle of size exactly k in d-degenerate graph is

FPT if k and d are fixed parameters [CCC06]. On the other hand, the chordality

is closed under contraction and large in planar triangulated grids and, therefore, it

can take advantage of the bi-dimensionality framework: Sau and Thilikos designed

a FPT-algorithm for chordality in planar graphs [ST10].

Our approach has been different. Our study of Cops and Robber games in k-

chordal graphs (see Theorem 9 in Section 1.1.2) led us to the following algorithm.
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Let us define a k-caterpillar as a graph that has a dominating set which induces a

chordless path of order at most k − 1.

Theorem 33 There is an algorithm that takes a m-edge-graph G and k ≥ 3 as

input and, in time O(m2) (independent on k), [c-KLNS12,
j-KLNS14]

• either returns an induced cycle of length at least k + 1;

• or returns a tree-decomposition of G in which each bag induces a k-caterpillar.

By definition of k-chordal graph and Theorem 33, any k-chordal graph admits a

caterpillar tree-decomposition, i.e., a tree-decomposition in which each bag induces

a k-caterpillar. The next corollary follows easily, improving exponentially the upper

bound on treewidth of k-chordal graphs in [BT97b].

Corollary 2 Any k-chordal graph G with maximum degree ∆ has treewidth at most

(k − 1)(∆− 1) + 2, tree-length at most k and hyperbolicity at most ⌊32k⌋.
There is an algorithm that, given a m-edge graph G and k ≥ 3, states that either

G has chordality at least k+1 or G has hyperbolicity at most ⌊32k⌋, in time O(m2).

Our caterpillar-decomposition seems to be a promising restriction of treelength

(see [DG07, Lok10]). We are currently investigating algorithmic applications of it.

2.2 From pursuit-evasion games’ point of view

Graph searching games provide a powerful tool for studying graph decompositions

(e.g., see [KP86, Bie91, Bod98, Bod07]). In [t-Nis07], we defined a non-deterministic

graph searching that provides a generalized approach for both path-decompositions

and tree-decompositions. In this section, we present the recent results we obtained

on this variant and their applications to the understanding of graph decompositions.

2.2.1 Non-deterministic Graph Searching, branched decomposi-
tions

In graph searching3, a team of searchers aims at capturing a fugitive running in a

connected undirected simple graph G [KP86]. The searchers and the fugitive occupy

the nodes of G. The fugitive is arbitrary fast and can goes through the paths of

G as long as it does not meet a searcher. It is captured if a searcher occupies the

same vertex as it and if the fugitive cannot escape, i.e., all neighbors of its position

are also occupied. Searchers can be placed at or removed from the nodes of G. A

strategy for the searchers is a sequence of steps (placement or removal) that results

in capturing the fugitive whatever it does4. The number of searchers used by a

3The variant presented in this section is referred to as node graph searching [KP86].
4Note that an important difference with the games presented in Chapter 1 is that, in graph

searching, both players play simultaneously, not turn-by-turn.
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strategy is the maximum number of searchers simultaneously occupying nodes of

the graph.

The corresponding optimization problem is to minimize the number of searchers

needed to capture a fugitive in a graph G. If the fugitive is invisible, this number

is the node search number of G, denoted by ns(G). For visible fugitive (i.e., the

strategy of the searchers may be guided by the current position of the fugitive), this

number is the visible node search number of G, denoted by vns(G).

A strategy is said monotone if each node is occupied at most once by a searcher.

A crucial property is that both variants visible and invisible are monotone. That

is, in any graph G, there is a monotone strategy capturing the invisible, resp.

the invisible, fugitive using ns(G), resp., vns(G), searchers [BS91, LaP93, ST93].

The main consequences of the monotonicity property is, first, that the problems of

computing the search numbers are in NP and, second, that these parameters are

equivalent to pathwidth and treewidth respectively because monotone strategies are

equivalent to path- and tree-decompositions. More precisely:

Theorem 34 [KP86, Bie91, ST93, Bod98] For any graph G, ns(G) = pw(G) + 1

and vns(G) = tw(G) + 1.

From above theorem, it follows that computing visible or invisible search num-

bers are NP-hard problems. However, they can be solved in polynomial-time in

several graph classes among which the class of trees. Precisely, the search num-

ber (and corresponding strategy) of trees can be computed in linear-time [EST94,

PHsH+00, Sko03, CHM12], while visible search number trivially equals 2 in trees.

For more related work on graph searching, we refer to [t-Nis07, FT08, BY11] and

to Chapter 3 of this thesis.

In [c-FFN05, j-FFN09, t-Nis07], we introduced non-deterministic graph search-

ing as a unified version of visible and invisible graph searching games. In non-

deterministic graph searching with parameter q ∈ N ∪ {∞}, the fugitive is a priori

invisible, but the searchers have the ability to see it a limited number q of times.

More precisely, in a non-deterministic strategy in a graph G = (V,E), the allowed

steps are: to place a searcher at a node, to remove a searcher from a node or to

perform a query. When occupying the nodes in X ⊆ V and performing a query,

the searchers learn the “position” of the fugitive, i.e., the connected component of

V \X occupied by the fugitive. The q-limited search number of a graph G, denoted

by nsq(G), is the smallest number of searchers required to capture a fugitive in G

in this setting (i.e., using at most q query-steps) [c-FFN05, j-FFN09, t-Nis07]. In

particular, ns0(G) = ns(G) and ns∞(G) = vns(G) for any graph G.

In [j-MN08, c-MN07], we proved that non-deterministic graph searching is mono-

tone. In [c-FFN05, j-FFN09], we have shown that computing the q-limited search

number is NP-hard in star-like graphs, for any fixed q ∈ N∪ {∞}, and we designed

exact exponential algorithm for computing it. The monotonicity result once again

allows us to prove the equivalence between non-deterministic graph searching and

a particular tree-decomposition, namely the q-branched decomposition.
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Given a rooted tree T , with root r, a branching node of T is a node with at

least two children. Let q ≥ 0. A tree T is q-branched if it can be rooted in a node

r and every path in T from (root) r to a leaf contains at most q branching nodes.

A tree-decomposition (T,X ) of a graph G is q-branched if T is q-branched. The

q-branched treewidth of a graph G, denoted by twq(G), is the minimum width of

any q-branched tree decomposition of G.

[c-FFN05,
j-FFN09,
j-MN08,
c-MN07]

Theorem 35 Let q ≥ 0, and G a graph, twq(G) = nsq(G)− 1.

Motivated by the fact that pathwidth of trees are well characterized, we inves-

tigated non-deterministic graph searching in trees to get a better understanding of

q-branched decompositions. First let us recall the known results:

Theorem 36 [Sko03, MHG+88] For any tree T on n vertices, ns0(T ) ≤ 1 +

log3(n− 1) and ns0(T ) can be computed in time linear in n.

We design a polynomial-time two-approximation algorithm to compute snq(T )

in any tree T and for any q ∈ N ∪ {∞}. Our algorithm is exact for q ∈ {0, 1}.

Theorem 37 There is an algorithm that, for any tree T and any integer q > 0,

returns an integer k ≤ 2 · nsq(T ) + 1 and a corresponding q-limited search strategy

using k searchers, in time polynomial in |V (T )| (independent of q). [s-ACN07]

Moreover, if q ∈ {0, 1}, k = nsq(T ).

Our algorithm proceeds by intricate dynamic programming on the tree and is

based on two main technical results. First, we show how to compute in polynomial-

time a node strategy in a graph G when the initial positions of some searchers are

imposed, and using the smallest number of searchers needed in this setting. In

other words, given a graph G and X ⊆ V (G), our subroutine computes a path-

decomposition with first bag X and with minimum width among all the path-

decompositions starting from X. Second, we define a restricted version of non-

deterministic graph searching where, once a searcher is placed on some contami-

nated vertex, it cannot be removed as long as the next query has not been performed

(unless no query remains). We show that this constraint requires at most twice the

number of searchers of the initial variant and we prove that the corresponding

search-number can be computed in polynomial time using the subrouting.

After considering the minimization of the number of searchers given a fixed

amount of queries, we study the “dual” problem of minimizing the number of queries

that are required for a fixed number of searchers to clear a tree. More precisely, for

any tree T and k ≥ 2, let qk(T ) be the smallest number of queries required to clear

T using at most k searchers. First, we design an algorithm that computes q2(T )

for any tree T in time quadratic in the size of T . Then, we derive some lower and

upper bounds:

Theorem 38 For any tree T , q2(T ) ≤ ⌈|V (T )|/8⌉, and this bound is tight. [s-ACN07]
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(b) Tq, q2(Tq) = ⌈|V (Tq)|/8⌉

Figure 2.1: Tree Tq, q ≥ 1, with 8q − 1 nodes such that q2(Tq) = q = ⌈|V (Tq)|/8⌉.

The lower bound of the previous theorem is achieved by the trees depicted in

Figure 2.1.

Theorem 39 For any tree T on n nodes, and for any k ≥ 3, qk(T ) ≤ 2⌈log2 n⌉.
Moreover, for any fixed k the bound is asymptotically tight: for any n0, there exists[s-ACN07]

n ≥ n0 and a tree Tn on n nodes such that qk(Tn) = Ω(log2 n).

Our main result concerning trees is a polynomial-time 2-approximation algo-

rithm for computing sq(T ) for any tree T and q ≥ 1. However, for any fixed q > 1,

the complexity of the problem to decide whether nsq(T ) ≤ k (k > 2 being part of

the input) remains open. The fact that the parameter nsq is minor-closed implies

that the problem is Fixed Parameter Tractable, i.e., there is an algorithm which

decides in time f(k) · poly(|V (T )|) whether nsq(T ) ≤ k, where f is some func-

tion depending only on k. Since, nsq(T ) ≤ ns0(T ) = O(log |V (T )|) [MHG+88],

f(k) = cO(k) for some constant c would lead to a polynomial-time algorithm.

In next section, we present general results on graph decompositions that some-

how follow from our techniques to prove monotonicity of non-deterministic graph

searching.

2.2.2 Partitioning trees and general set decompositions

Duality treewidth/bramble

The monotonicity result that we provide in [j-MN08, c-MN07] is actually a unifica-

tion of the different techniques given in [BRST91, BS91, RS91, ST93]. One impor-

tant consequence of these techniques is the characterization of “dual” structures for

various decompositions: blockages for path-decompositions [BRST91], tangles for

branch-decompositions [RS91], or brambles for tree-decompositions [ST93].

As an example, a bramble in a graph G = (V,E) is a set B of pairwise touching5

subsets of V . The order of B is the minimum size of a hitting set, i.e., the smallest

number of vertices in V that intersect each set in B.
The min-max theorem for treewidth of Seymour and Thomas can be stated as:

Theorem 40 [ST93] In any graph G, the maximum order of a bramble in G equals

tw(G) + 1.

5Two sets X,Y ⊆ V (G) are touching if either they intersect or if there is an edge xy ∈ E(G)

with x ∈ X and y ∈ Y .
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Intuitively, a bramble of order k provides an escape strategy for a visible fugitive

against k − 1 searchers. Indeed, let {B1, · · · , Br} be a bramble of order k in a

graph G. It is proved in [ST93] that it can be taken such that each Bi induces a

connected subgraph of G. Using at most k−1 searchers, there is always a subgraph

G[Bi] for some i ≤ r that is free of searcher. Because the elements of the bramble

are connected and are pairwise touching, the fugitive can always safely reach the

element of the bramble that is free of searcher.

Therefore, the maximum order of a bramble in G equals the visible search

number of G. On the other hand, the monotone visible search number of G equals

its treewidth plus one. Hence, we get directly that the maximum order of a bramble

in G is at most tw(G) + 1. Seymour and Thomas proved the other inequality by a

technical work on tree-decomposition and derived the monotonicity of visible graph

searching from this. On the opposite, our proof of the monotonicity [j-MN08,

c-MN07] allows us to derive their result.

In what follows, we explained how we generalized our technique to other decom-

positions, not restricted to graphs.

Note, however, that other duality results related to graph searching game seem

not to be related to our approach, namely the LIFO-search (searchers have labels

and a searcher can be removed only if it is the smallest searcher present at a some

node) is monotone and leads to a min-max theorem between tree-depth and cycle-

rank in (di)graphs [GHT12].

Partitioning-trees and Partition functions

A partition function of a set E is a function from P(E), the set of partitions of E6,

to R ∪ {∞}. A partitioning-tree (T, σ) of E is a tree T together with a one-to-one

mapping σ from E to the set of leaves of T . Hence, every internal node v or edge

e of T corresponds to the partition Tv (or to the bipartition Te) of E whose parts

are the set of leaves of the subtrees obtained by deleting v (or e). Given a partition

function Φ of E, the Φ-width of a partitioning-tree (T, σ) of E is the maximum of

Φ(Tv), Φ(Te) over all internal nodes v of T and edges e of T . The Φ-width of E is

the minimum width of the partitioning-trees of E [j-AMNT09].

Using the appropriated partition functions, partitioning-trees generalize most of

the graph-decompositions. For instance, in a graph G = (V,E), for any partition

P = (E1, · · · , Er) of E, let δ(P) be the number of vertices that are adjacent to edges

in at least two parts of P. The δ-width of E is equivalent to the treewidth of G, and

any partitioning-tree of E corresponds to a tree-decomposition of G [j-AMNT09].

Some graph decompositions also require to add restrictions on the tree-structure:

any partitioning-tree (T, σ) of E (resp., of V ) where internal nodes of T have degree

three is a branch-decomposition (resp., a carving decomposition) of G.

We also abstract the notion of brambles for any partition function Φ. A k-

bramble B of E is a set of pairwise intersecting subsets of E such that for any

6A partition of E is a set (P1, · · · , Pr) of pairwise disjoint non-empty subsets of E with ∪i≤rPi =

E.
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partition P = (E1, · · · , Er) of E with Φ(P) ≤ k, there is i ≤ r such that Ei ∈ B.
In [j-AMNT09], we give a min-max theorem linking the Φ-width of a set with the

existence of particular brambles, when Φ satisfies some properties.

Let X = {X1, . . . , Xn} be a partition of E and let F ⊆ E and F c = E \ F . Let

us define the following notation. XXi→F c := {X1 ∩F, . . . , Xi−1 ∩F,Xi ∪F c, Xi+1 ∩
F, . . . , Xn ∩ F}.A partition function Φ is weakly submodular if for every pair of

partitions X = {X1, . . . , Xn} and Y = {Y1, . . . , Yl}, and for all i 6= j, at least one

of the following holds:

1. There exists F such that Xi ⊆ F ⊆ (Yj \Xi)
c and Φ(X ) > Φ(XXi→F );

2. Φ(Y) ≥ Φ(YYj→Xc
i
).

Using similar techniques as in [j-MN08] to transform partitioning-trees, we get:

Theorem 41 Let Φ be a weakly submodular partition function on a set E and

k ∈ R+. All k-brambles contain a singleton if and only if E has Φ-width at most k.[j-AMNT09]

The above theorem actually generalizes all previous duality results and extends

it to new decompositions such as the treewidth of matroids [j-AMNT09]. Later on,

this result has been improved in [LMT10] where the shown duality result does not

rely on the submodularity of partition functions but on a combinatorial property

of the partitions. Moreover, based on the results of [LMT10], an exponential-time

algorithm to compute brambles has been designed in [CMT09].

In [s-BBM+13], we investigate sufficient conditions for a partition function Φ

such that there exists a polynomial time algorithm that decides if a set has Φ-width

at most k, k being a fixed parameter. Basically, these properties abstract the fact[s-BBM+13]

that corresponding parameters are close under taking minor and that they can be

computed by dynamic programming only remembering some bounded information

concerning the “border” of the subgraphs. Our algorithm is based on dynamic pro-

gramming and generalize all algorithms in [BK96, BT97a, TSB00, BT04, TSB05a,

TSB05b]. Moreover, our algorithm allows to take into account the structure of the

partitioning trees and, therefore, provides the first FPT algorithm for computing

the q-branched treewidth or the special treewidth [Cou10b].

Hence, the notions of partition function and partitioning tree allow us to unify

and generalize several results on graph decompositions. While our FPT algorithm

has some theoretical interest (in particular, it is sufficient to check that a partition

function satisfies some properties to directly get an explicit FPT algorithm), it is

far to be practical. Therefore, designing efficient FPT algorithms (e.g., that are

“only” exponential in the parameter) for computing graph decompositions is still

a challenge, even in very restricted graph classes. For instance, the best known

algorithm that computes optimal path-decompositions of outerplanar graphs has

complexity O(n11) [CHS07, FT07].

Moreover, our duality result does not cope with rooted tree-decompositions such

as branched tree-decompositions and all decompositions of directed graphs. In next

section, we briefly discuss about the case of decompositions of directed graphs.
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2.2.3 Related work on decompositions of directed graphs

During the last decade, several digraph decompositions have been proposed in order

to try to bring to directed graphs the same algorithmic power as tree-decompositions

provide in undirected graphs. Interestingly, most of these attempts have been de-

fined through graph searching games. An important difference between directed

graph searching games and undirected ones arises via the notion of monotonicity. In

the directed case, there are two distinct definitions of monotonicity: a game is cop-

monotone if each node is occupied at most once by a searcher, it is robber-monotone

if the area reachable by the robber never increases. Clearly a cop-monotone game

is robber-monotone. However, as shown below, the converse is not always true.

Johnson et al. first defined the directed tree-decomposition which roughly “trans-

lates” the connectivity properties of tree-decomposition into strong connectivity

properties in directed graphs [JRST01]. Their variant is closely related to the

graph searching game where the visible fugitive has the extra constraint that it can

move only in strongly connected components free of searchers. That is, the fugitive

can go from nodes u to v if there is a directed path from u to v free of searchers

and a directed path from v to u free of searchers. It has been shown that, in this

game, the non-monotone, the cop-monotone and the robber-monotone variants may

differ [JRST01, Adl07]. Adler also show that directed treewidth is not closed under

taking butterfly minors [Adl07]. Because of the non-monotonicity result, no min-

max theorem can be expected via graph searching. However, [JRST01] proved a

weaker result: if k searchers have a winning strategy in a digraph D, then 3k − 1

searchers have a robber-monotone winning strategy in D, which leads to a min-max

theorem up to a constant ratio between directed treewidth and havens [JRST01].

In [EHS13], it is proved that the cop-monotone version of this game is actually

equivalent to the D-width defined by Safari [Saf05] leading to an exact algorithm for

computing this variant. Moreover, they show that D-width and directed treewidth

are actually equivalent (in the sense that one is bounded if and only if the other is

bounded) [EHS13]. On the algorithmic applications side, Johnson et al. proved that

hamiltonian path, hamiltonian circuit and k-disjoint paths (k fixed) problems can be

solved in polynomial time for digraphs with bounded directed treewidth [JRST01].

For tackling other problems, other digraph decompositions have been proposed.

The DAG-decomposition is weaker than directed tree-decomposition (bounded DAG-

width implies bounded directed treewidth) [BDH+12]. It corresponds to the cop-

monotone version of the game where the visible fugitive is constraint to follow

the direction of arcs. While robber-monotone and cop-monotone variants coin-

cide [BDH+12], this game is not monotone [KO11]. The winner of parity game is

polynomially solvable in digraphs of bounded DAG-width [BDH+12]. However, a

drawback of DAG-decomposition is that the best known upper bound of the size

of such decomposition with width k in a n-node digraph is O(nk) (it is not known

whether deciding if a digraph has DAG-width at most k is in NP). Another decom-

position weaker than directed tree-decomposition is the Kelly-decomposition that
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corresponds to the robber-monotone variant of the the game where an inert7 fugi-

tive forced to follow the arcs [HK08]. Again, this game is not monotone [KO11].

A polynomial-time algorithm to recognize digraphs with Kelly-width at most 2 is

given in [MTV10]. Approximation algorithms for computing directed treewidth,

Dag- and Kelly-width, with approximation ratio O(log3/2 n) have been designed

in [KKK11].

Until now, no powerful enough digraph decomposition has been found. In-

deed, many NP-hard problems remain untractable in class of graphs with bounded

Dag-,Kelly- or directed tree-width, e.g., feedback arc/vertex set or digraph grundy

coloring [KO11]. Unfortunately, Ganian et al. give evidence that such a “good”

digraph decomposition is unexpected to be substantially different than the tree-

decomposition of the underlying undirected graph [GHK+10]. A width digraph

measure δ is powerful if any MSO1 definable decision problem can be solved in

polynomial time in digraphs with bounded δ-width. More precisely, Ganian et al.

show that, if δ is a digraph width measure that is (1) not treewidth-bounding (there

is no computable function b such that δ(D) ≤ k implies that tw(UD) ≤ b(k) where

UD is the underlying undirected graph of digraph D), (2) monotone under taking

directed topological minors and (3) efficiently orientable (roughly, the δ-widths of

two digraphs with same underlying graph cannot differ too much), then P = NP

or δ is not powerful [GHK+10]. They also show that relaxing the second condition

by “monotone under taking subdigraphs” makes possible the existence of powerful

widths.

To conclude, let us mention that several directed path-decompositions and di-

rected invisible graph searching have also been proposed [Bar06, Yan07, YC07,

YC08b, YC08a]. Contrary to their visible counterparts, all are monotone. In next

section, we study another such a variant (coming from routing problems), prove its

monotonicity and its equivalence with a digraph decomposition. It would be in-

teresting to study the algorithmic applications of such a decomposition. Moreover,

the visible variant of this game could provide a “powerful” decomposition.

2.3 Application to Routing Reconfiguration: Process-

ing game

In previous section, we have seen that no “good” decomposition of directed graphs

have been defined yet. In this section, we study a directed graph searching game,

namely the processing game, introduced by Coudert et al. to model routing re-

configuration problem [CPPS05]. While our study mainly focus on applications to

routing reconfiguration, we also give some hints that pocessing game could lead to

a “good” decomposition of directed graphs.

7A fugitive is inert if it is invisible but can move only when a searcher is going to land on the

same node. This version has been introduced for undirected graphs in [ST99].
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2.3.1 Routing reconfiguration in WDM networks

In connection oriented networks such as Wavelength Division Multiplexing (WDM),

SONET (Synchronous optical networking), or MPLS (Multiprotocol Label Switch-

ing) networks, each connection request d ∈ Π is assigned a lightpath under the wave-

length continuity constraint, that is to say a path in the topology and an end-to-end

wavelength. The Routing and wavelength assignment (RWA) problem consists in

assigning such a lightpath for each request under the constraint that two optical

paths sharing a fiber have distinct wavelengths [Muk92, JMT07] (see also Chapter

5 in [Cou10a] and references therein). The set of lightpaths, or routes, obtained in

that way is called a configuration.

Current such networks are becoming more flexible, offering new on-demand ser-

vices (on-demand TV, mobile Internet, peer-to-peer) which leads to a constant

evolution of the traffic pattern. Moreover, these networks also allow better ma-

nagement of maintenance operations (requiring to switch off equipments) and equip-

ments failures – due to earthquake, tsunami, or a backhoe unfortunately breaking

a pipe containing some fibers. A building block for flexibility and reliability is the

possibility to reconfigure the routing, that is to compute new optical paths for some

connection requests and then to switch the traffic from former to new optical paths.

Such process may however affect the quality of service by inducing potential traffic

disruptions. Moreover, due to physical layer impairments [SS09], reconfiguring the

routing – setting up the new lightpaths – induces some cost for the network oper-

ator, in particular if service level agreements are not fulfilled. Thus, the routing

reconfiguration process must be carefully optimized.

A classical approach for reconfiguring the routing is based on the Move-to-

Vacant (MTV) scheme [LL96, MM99, CBL07]. Basically, the MTV scheme con-

sists in sequentially choosing a lightpath, computing a new route using available

resources for the corresponding request, and then switching the request from its

current lightpath to its new route in a make-before-break fashion as standardized

for MPLS networks [MP06]. This process is repeated sequentially until the reached

configuration achieves the desired constraints (e.g., overall usage of resources, avail-

ability of a desired route). However, such a greedy policy leads to a poor usage of

resources and so to higher blocking probability: new connection requests might be

rejected although the network has enough resources to serve all the traffic, up to

the rerouting of some existing connections. The main issues when using the MTV

approach are to guarantee the convergence of such a process and to control the num-

ber of route changes. Moreover, such solutions are not sufficient and interruptions

may be necessary [JS03].

To ensure both a fast termination and that the final configuration satisfies the

desired performance criteria, another approach consists in pre-computing the tar-

get configuration and then to focus on the reconfiguration itself, that is deciding in

which ordering the existing lightpaths should be switched to achieve the final con-

figuration. More formally, the reconfiguration problem is to determine the “best”

sequence (order) of connections rerouting to move from the current configuration
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Figure 2.2: Instance of the reconfiguration problem consisting

of a network with 10 nodes and symmetric arcs, 8 connections

(h, i), (h, c), (d, c), (d, b), (e, b), (e, j), (i, j), (g, i) to be reestablished. Figure 2.2(a)

depicts the initial set of routes R1, Figure 2.2(b) the final set R2, and Figure 2.2(c)

the dependency digraph from R1 to R2.

to a predetermined target configuration, under the constraint that the connections

are moved one by one [JS03]. However, the final lightpath of a request d ∈ Π may

use resources (e.g., a wavelength on a fiber) that are used by the initial lightpath

of another request d′ ∈ Π. This latter request d′ must then be moved before the

connection d. The difficulty of the reconfiguration problem lies mainly in the exis-

tence of dependency cycles that require to temporarily suspend some connections

to allow switching the other requests. Such an interruption corresponds to the

concept of break-before-make standardized for MPLS networks [MP06]. A break-

before-make starts by interrupting the lightpath of a request before establishing

the new route. Several recent studies have considered the framework proposed by

Jose and Somani [JS03] to minimize either the total number of interruptions, or

the maximum number of requests that are simultaneously interrupted, during a

reconfiguration [CPPS05, Sol09, SP10].

Formal description

More formally, the physical network is modeled by a digraph G = (V,E) whose

arcs have capacity one. Given an instance I ⊆ 2V×V of connection requests, a

routing R is a set of arc-disjoint directed paths associated to the requests, one

directed path from x to y in G for each request r = (x, y) ∈ I. So R(r) is the

route of request r in G. The routing reconfiguration problem consists in switching

connection requests one after the other from an initial routing R1 to a precomputed

routing R2 in such a way that the smallest number of requests are simultaneously

interrupted. An important assumption is that, once a request has been (re)routed,

it cannot be moved anymore. In this model, each link of G has capacity one, i.e.,

each directed link may be used by at most one request. In [CS11], the dependency

digraph D = (W,A) of R1 and R2 is defined as follows. W is the set of requests
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r ∈ I with different routes in R1 and R2. Moreover, there is an arc from request

u to request v if there exists a link e of G that belongs to both paths R2(u) and

R1(v).

As an example, Figure 2.2 presents a physical network with 10 nodes and 8

connection requests. Figures 2.2(a) and 2.2(b) describe the initial and final routing

respectively. Finally, the corresponding dependency digraph is depicted in Fig-

ure 2.2(c). A way to reconfigure the instance depicted in Figure 2.2 may be to

interrupt connections (h, c), (d, b), (e, j), then set up the new paths of all other con-

nections, tear down their old routes, and finally, set up the new paths of connections

(h, c), (d, b), (e, j). Such a strategy interrupts a total of 3 connections and these ones

are interrupted simultaneously. Another strategy may consist of interrupting the

connection (h, i), then sequentially: interrupt connection (h, c), reconfigure (d, c)

without interruption for it, set up the new route of (h, c), then reconfigure in the

same way first (d, b) and (e, b) without interruption for these two requests, and

then (e, j) and (i, j). Finally, set up the new route of (h, i). The second strategy

implies the interruption of 4 connections, but at most 2 connections are interrupted

simultaneously.

The process number of D, denoted by pn(D), is a digraph invariant that equals

the smallest number of requests that have to be simultaneously interrupted during

the reconfiguration phase. In particular, pn(D) = 0 if and only if D is a DAG.

Using this formulation, polynomial-time algorithms have been designed to decide

whether a digraph has process number 1 or 2 [CS11]. A polynomial-time and dis-

tributed algorithm that computes the process number of symmetric trees is given

in [CHM12]. However, the problem of computing the process number of a digraph

has been shown NP-complete and difficult to approximate [CS11]. This is a bad

news concerning the routing reconfiguration problem because there is no hope that

the real instances of this problem lead to restricted classes of dependency digraph.

A hope would have been to show that dependency digraphs of real instances would

belong to particular digraph classes where the problem would be polynomial. How-

ever, we proved:

Theorem 42 Any digraph D is the dependency digraph of an instance of the rout- [j-CCM+11,
c-CCM+10]ing reconfiguration problem where the physical network is a grid.

Actually, the routing reconfiguration problem can be reformulated as a graph

searching problem in the dependency digraph. In what follows, we describe the

results that we obtained on the reconfiguration problem and on this graph searching

game.

2.3.2 Processing Game and digraph decomposition

The processing game has been defined in [CPPS05] as it models the routing re-

configuration problem. Recall that, in a dependency digraph of an instance of the

reconfiguration problem, the nodes represents to the requests and the arcs model

dependency between ressources.
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In the processing game, the searchers aim at processing all nodes of a digraph.

A node is said safe if all its out-neighbors are either occupied or already processed.

Given D = (V,A) where all nodes are initially unoccupied and not processed, a

process strategy is a sequence (s1, . . . , sn) of steps that results in processing all

nodes of D. Each step si is one of the following moves: place a searcher at a node,

process a safe unoccupied node, or process a safe occupied vertex and remove the

searcher from it. The process number of D, denoted by pn(D), is the minimum

number of searchers that are needed to process D.

In this game, the placement of a searcher at a node models the interruption of

the corresponding request. The processing of a safe node represents the re-routing

of the corresponding request because the resources it requires are available (be-

cause the node is safe, all requests corresponding to its out-neighbors have already

been rerouted or interrupted). Hence, minimizing the number of searchers is then

equivalent to minimizing the number of simultaneous interruptions in the recon-

figuration problem. For instance, in the dependency digraph of Figure 2.2(c), the

two strategies corresponding to the two reconfiguration processes described in the

example above are the following. A first strategy consists of first placing searchers

at the nodes in X = {(h, c), (d, b), (e, j)}, then processing all other nodes, and fi-

nally processing the nodes in X. Another strategy would be to place one searcher

at (h, i) and sequentially, place a second searcher at an unprocessed neighbor x of

(h, i), process the unoccupied neighbor of x, then process x and finally remove the

searcher at x. After all nodes but (h, i) have been processed, (h, i) can be processed

which concludes the strategy.

This initial variant of processing game is inherently monotone. Indeed, once

they have been rerouted, the requests are not considered anymore, i.e., processed

nodes are not recontaminated.

A new monotone digraph searching game

In [c-NS13], we extend the definition of the Processing game to allow recontamina-

tion: a processed node becomes unprocessed as soon as it has an unoccupied and

unprocessed out-neighbor. Our main result is that recontamination does not help,

i.e., pn(D) searchers are still sufficient to process any digraph D in this variant.

Theorem 43 The processing game is monotone.[c-NS13]

This result has interesting side-effects. It allows us to prove that process-

ing strategies are the algorithmic counter-part of a particular digraph decompo-

sition and that the process number is invariant when reversing all arcs of a di-

graph [c-NS13].

All together, these results show that the processing game is the following graph

searching game. In a digraph D, searchers may be placed at or removed from the

nodes of D. An invisible fugitive is running with arbitrary speed along the arcs of

D while it does not meet any searcher. The fugitive has the additional constraint

that it must always move. The fugitive is captured if a searcher lands at the same
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node and the fugitive cannot escape, or if the fugitive runs into a searcher (because

of the constraint of always moving), or if it cannot move anymore. The process

number of D is the minimum number of searchers that are needed to capture the

fugitive.

Note that, in symmetric directed graphs, the process number differs by at most

one from the pathwidth of the underlying undirected graph [CPPS05]. It would

be very interesting to study the variant of this game when the fugitive is visible.

Indeed, it is a variant of the game defined by Johnson et al. (the fugitive is more

constrained) corresponding to the directed tree-decompositions [JRST01]. Hence,

as pointed out in previous section, it might offer new algorithmic perspectives.

Tradeoff: from Minimum Feedback Vertex Set to Process number

A trivial upper bound for the process number of a digraph D is the minimum size of

a feedback vertex set (FVS) of D8, denoted by mfvs(D). Indeed, placing searchers

at each node of a feedback vertex set of D allows to capture the fugitive. While

such a strategy may use a lot of searchers (compared with the process number of

D), such a strategy using mfvs(D) searchers will capture the fugitive by occupying

the smallest number of nodes.

We then tried to establish tradeoffs between these two objectives: minimizing

the number of vertices that are occupied during a process strategy and minimizing

the number of searchers used by a strategy. In terms of the routing reconfiguration

problem, these objectives correspond respectively (1) to minimize the total num-

ber of disrupted connections [JS03], and (2) to minimize the maximum number of

concurrent interruptions [CPPS05, Sol09, SP10].

A (p, q)-process strategy denotes a process strategy for D using at most p

searchers and covering at most q vertices. Given an integer q ≥ mfvs(D), we

denote by pnq(D) the minimum p such that a (p, q)-process strategy for D exists.

On the other hand, for any p ≥ pn(D), let mfvsp(D) be the minimum q such that a

(p, q)-process strategy for D exists. These parameters are illustrated in Figure 2.3.

We first give some complexity results.

Theorem 44 Let p ≥ pn(D), q ≥ mfvs(D) be fixed integers, and D a digraph.

Computing pnq(D),
pnq(D)
pn(D) is NP-complete and cannot be approximated up to an

additive constant. Computing mfvsp(D),
mfvsp(D)
mfvs(D) is not in APX. [j-CCM+11,

c-CCM+10]

Then, we show that no good tradeoffs can be expected in general. That is,

restricting the number of occupied vertices may arbitrarily increase the number of

searchers:

Theorem 45 For any C > 0, q ∈ N, there exists a digraph D s.t.
pnmfvs+q(D)

pn(D) > C. [j-CCM+11,
c-CCM+10]

8F ⊆ V (D) is a FVS of a digraph D if the digraph induced by V (D) \ F is acyclic.
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p

q

mfvs(D)

pn(D)

(D)pnmfvs

(D)q = mfvs p

(D)qp = pn pn mfvs(D)

Figure 2.3: Representation of the tradeoff’s parameters. In abscissa, p denotes the

number of searchers. In ordinate, q denotes the number of occupied vertices.
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Similarly, restricting the number of searchers may arbitrarily increase the num-

ber of occupied vertices. To prove the next Theorem (setting n = p + 2 and

k > 4C−3
2 ), we define the digraph D of Fig. 2.4. K1

n+1 is a symmetric clique of n+1

nodes x1, . . . , xn, u. IS
1
n and IS2

n are two independent sets of n nodes each: respec-

tively y1, . . . , yn and z1, . . . , zn. In D, there is an arc from xi to yj , i = 1, . . . , n,

j = 1, . . . , n, if and only if j ≥ i. There is an arc from yi to zj , i = 1, . . . , n,

j = 1, . . . , n, if and only if i ≥ j. The other arcs of D are built in such a way for

other independent sets IS3
n, . . . , IS

2k−1
n and the symmetric clique K2

n+1. These arcs

and the independent sets form the pattern P (see Fig. 2.4). Between K2
n+1 and

K1
n+1, the same pattern is built.

Theorem 46 For any C > 0 and any integer p ≥ 0, there exists a digraph D such[j-CCM+11,
c-CCM+10] that

mfvspn+p(D)
mfvs(D) > C.

For p = 0, the digraphs D of previous theorem have process number 3 (indepen-

dently of C). We then addressed the behaviour of
mfvspn(D)
mfvs(D) for symmetric digraphs

D. In contrast, the ratio is not arbitrary large anymore when the process number

is bounded.

Lemma 9 For any symmetric digraph D,
mfvspn(D)
mfvs(D) ≤ pn(D).[j-CCM+11,

c-CCM+10]

It would be interesting to know if the ratio
mfvspn(D)
mfvs(D) is bounded by a constant

in symmetric digraphs D. Such a constant would be at least 3 as shown in next
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(a) Symmetric digraph D of Lemma 10 (b) Same digraph D when n = 5.

Figure 2.5: Symmetric digraph D of Lemma 10 (a) and D when n = 5 (b).

lemma. The digraph used in this lemma can be built as follows. Let D be the

symmetric digraph of Fig. 2.5(a). Let IS1
n and IS2

n be two independent sets of n

nodes each: respectively x1, . . . , xn and z1, . . . , zn. Let Kn+1 be a symmetric clique

of n+1 nodes y1, . . . , yn, v. In D, there are two symmetric arcs between xi and yj ,

and between zi and yj , i = 1, . . . , n, j = 1, . . . , n, if and only if j ≥ i. Furthermore

the two right nodes of K1,2 and nodes of IS1
n form a complete symmetric bipartite

subgraph (the same construction for K2,1 and IS2
n). The symmetric digraph of

Fig. 2.5(b) represents D when n = 5.

Lemma 10 ∀ε > 0, there exists a symmetric digraph D s.t.
mfvspn(D)
mfvs(D) ≥ 3-ǫ. [j-CCM+11,

c-CCM+10]

2.3.3 Adding constraints from telecommunication networks

In previous subsection, we have presented our study of routing reconfiguration with

the graph searching point of view. On the other hand, we have also investigated

this problem by introducing constraints arising in real networks. Not surprisingly,

the problems become much more difficult. Moreover, it appears that, unfortunately,

the graph searching perspective is not adapted anymore to study several of these

problems (at least, we did not manage to use graph searching paradigm for obtaining

interesting results).

Priority connexions
[c-CHM+09]

In [c-CHM+09], we propose a model to handle several classes of service. During

the reconfiguration process as described above, any connection may be forced to be

interrupted, and so this induces some traffic perturbations that clients may not ac-

cept. Moreover, some clients may sign a specific contract forbidding interruptions,

and so the operator offers two classes of services. To cope with these two classes, we

introduce the new constraint that imposed some particular connections, called the

priority connections, not to be interrupted. In the process number game formula-

tion, this constraint is modeled by a specific subset (given as input of the problem)
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of the nodes of the dependency digraph that cannot host searchers. That is, the

single way to process these priority nodes is to deal with all their outneighbors first.

Given a set Q ⊆ V (D) of priority nodes, let pnQ(D) be the minimum number of

searchers required to process the digraph D without placing any searchers at the

nodes in Q. Note that a direct cycle of priority nodes in the dependency digraph

makes the reconfiguration impossible, in which case, we set pnQ(D) = ∞.

We show that this problem is actually equivalent to the problem without priority

connections. More precisely, when reconfiguration is possible (if pnQ(D) < ∞),

we present a simple transformation of any digraph D with a set Q ⊆ V (D) of

priority nodes into another digraph D∗ (with size polynomial in the size of D)

without priority nodes such that pn(D∗) = pnQ(D) [c-CHM+09]. Moreover, we

proved that, for every digraph D and set Q ⊆ V (D) of priority nodes, if pnQ(D) <

∞, then pnQ(D) ≤ pn(D) + |N+(Q)|. Moreover, this bound is asymptotically

tight [c-CHM+09]. We also gave an heuristic, based on random walks (similar to

Pagerank), that computes an upper bound of the process number. Simulations show

that our heuristic is efficient in some graph classes (circular arc graphs and digraphs

with process number 2) but far to be optimal in graphs with a lot of symmetries

(grids) [c-CHM+09].

Shared bandwidth
[c-CMN09]

One clear limitation of the model studied in previous subsection is the fact that links

are supposed to have capacity 1. That is, this model considers that a connection

request uses all the bandwidth of a link (e.g. wavelength) and it is too limited to

handle cases in which a request uses only a fraction of the bandwidth of a link (e.g.

MPLS, SONET and so traffic grooming).

In [c-CMN09], we proposed a model generalizing [CS11, JS03] to handle cases

in which a request uses only a fraction of the bandwidth of a link. The main

difficulty of the reconfiguration problem comes from the fact that the final routing

only gives the links used by the requests but not the unit of capacity. Therefore, we

have some choice when performing the scheduling of the reconfiguration phase. We

have shown that the routing reconfiguration problem becomes much more difficult.

Precisely, we proved that, when the requests have bandwidth requirement 1 and

that links have capacity at least 3, the problem of deciding whether there exists a

scheduling of the rerouting without traffic interruption is NP-complete [c-CMN09].

In contrast, when arc’s capacities are equal to 1, this problem corresponds to decide

whether the dependency digraph is acyclic.

Physical cost
[c-BCM+12]

Finally, we addressed the problem of reconfiguration in a different way, which is the

inclusion of physical constraints to the establishment of an optical path [c-BCM+12].

We aim at optimizing the reconfiguration cost which is induced by physical layer

impairments. Indeed, the transmission of an optical signal in a fiber is subject to
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many parameters: bandwidth, transmission power, signal attenuation requiring the

use of amplifiers every 50-80 km, phase shifts associated the imperfection of the laser

and the distortion of the fiber, and various electro-magnetic effects (see [SS09] for

more details). This requires extremely fine adjustments to ensure good transmission

quality, but everything has to be redone (or adapted) when a new wavelength is

used in the fiber. Thus, setting up a new lightpath in a network has a cost (energy,

time and/or man power) due to the recalibration on all fibers used by the path

which depends (non-linearly) on the number of wavelengths already present. In

addition, these changes can affect the entire network by spreading corrections to

be made. See [MCK+09] for an example of the inclusion of these effects in the

computation of optical routing.

We presente a first theoretical study of the routing reconfiguration problem

including physical layer impairments. We model the cost of rerouting a request in

a configuration as a simple non linear function depending on the load of the links

used by the lightpath to be established, where the load of a link is the number of

lightpaths crossing it in the current configuration. Our cost function also depends

on a tunable parameter α ≥ 0 which is an exponent, e.g., α = 1 corresponds to a

linear cost function. While simple, the cost function we proposed allows to capture

several constraints due to physical layer impairments as the non-linearity.

Assuming that the reconfiguration is possible without interruptions, our objec-

tive is to compute a scheduling of the requests that achieves a minimum global cost.

We prove that this problem is NP-complete even in a physical network with two

nodes (and parallel links) and when α = 0 [c-BCM+12]. We then characterize a

particular class of instances where the problem can be solved in linear time, for any

α ≥ 0. In the particular case of a ring topology and α = 1, we give a simple linear

algorithm for solving the problem. Finally, we design several heuristics and report

on numerical simulations [c-BCM+12].

It is a bit disappointing to see that adding more realistic constraints makes the

problems become very difficult even when restricted to simple topologies. One hope

here is therefore to use our study of graph structures in order to propose efficient

pre-processing to reduce the size of the instances, or to design better heuristics.





Chapter 3

Graph Searching: Connectivity,

Exclusivity, Distributed settings

Content

As mentioned in previous chapters, graph searching has been studied because it

provides an alternative definition of graph decompositions and also because it al-

lows to model and study telecommunication networks’ problems such as routing

reconfiguration. In this chapter, we investigate graph searching from another point

of view. Namely, the clearing of graphs is a natural application to study the com-

putational power of mobile agents. We study the minimum abilities that mobile

agents must be endowed for clearing a graph in a distributed way.

In Section 3.1, we recall the definitions of the different “classical” variants of

graph searching and their relationship with graph decompositions studied in previ-

ous chapters.

Section 3.2 focuses on connected graph searching where the strategies must en-

sure that the clear part of the graph must always induce a connected subgraph. This

property has been initially defined because it ensures safe communications between

the searchers in a distributed environment. We first survey the recent results on

this area, the main of which being that the connected search number of a graph is at

most twice its pathwidth [Der12b], answering one of the main open questions of my

Ph.D. thesis. Then we present our contributions on the cost of the monotonicity in

a distributed setting where searchers explicitly communicate using whiteboards on

the nodes [c-INS07, j-INS09]. This contribution concludes some work in [t-Nis07].

In Section 3.3, we present our contributions on exclusive graph searching. We

have introduced this variant because it solves two serious limitations of classical

graph searching as far as practical applications are concerned: the fact that a node

can be simultaneously occupied by several searchers and the fact that searchers can

jump from one node to any other one. On the other hand, the exclusivity property

(that stated that two searchers can never occupy the same node simultaneously)

allows to study the graph searching problem in the distributed Look-Compute-Move

model which somehow provides an approach of fault-tolerant graph searching. We

start by presenting the general centralized results we obtained on exclusive graph

searching [c-BBN12, c-BBN13, s-MNP14], then we describe algorithms to solve this

problem in the Look-Compute-Move model in various graph topologies [c-BBN13,

c-DDN+13b, j-DDN+14b, c-DNN14].
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3.1 Quick reminder on Graph Searching

In this section, we recall the basic definitions of search strategies and search numbers

and the main known results. Our goal is not to be exhaustive but rather to focus

on the new results that have been developed since my Ph.D. thesis. For a more

complete overviews on graph searching, we refer to [t-Nis07, FT08, BY11] and the

recent book [Bre12].

Graph searching and search numbers

Graph searching [Par78a] aims at clearing the nodes and edges of a graph using a

team of mobile agents, called searchers. Actually, this is equivalent to the capture of

an invisible fugitive in G as considered in Section 2.2. For instance, Breish initially

introduced this problem to model the rescue of a lost person in the network of

caves [Bre67]. In this chapter, we refer to the clearing semantic because it fits

better with the considered applications.

Initially all nodes and edges of a graph G = (V,E) are contaminated. A node is

cleared when it is occupied by a searcher. An edge e ∈ E is cleared if either searchers

occupy simultaneously both its ends, or a searcher slides along e. However, an

unoccupied clear node is recontaminated as soon as there is a path free of searchers

from it to a contaminated node. Similarly, an edge is recontaminated if one of its

ends is recontaminated.

A strategy consists of a finite sequence of steps, or moves, that results in a state

where all nodes and edges are clear, where each step consists in either sliding a

searcher along an edge, or placing a searcher at some node of the graph, or removing

a searcher from a node of G. The number of searchers used by a strategy is the

maximum number of searchers present in the graph among all its steps. The search

number, denoted by s(G), of a graph G is the smallest integer k such that there is

a strategy that clears G using k searchers.

The variant of graph searching defined above is usually refer to as mixed graph

searching [BS91]. Two other equivalent variants have also been defined. In node

graph searching [Bie91] (see also Section 2.2), a strategy is defined as above but the

only possible moves are the placement and the removal of a searcher (the searchers

don’t slide along edges). On the other hand, in the edge search variant [Par78a],

the strategies are defined similarly as mixed strategies (allowed moves are place,

remove and slide) but the edges can be cleared only by sliding a searcher along

it. The corresponding graph invariants are respectively the node search number,

denoted by ns, and the edge search number, denoted by es.

These three variants are very close one from each other (note that both edge and

node strategies are mixed strategies). In particular, for any graph G, ns(G)− 1 ≤
es(G) ≤ ns(G)+1 and s(G) ≤ ns(G) ≤ s(G)+1 (all inequalities are tight) [KP86].

Simple (and polynomial-time) transformations allow to go from one of these vari-

ants to another one [KP86]. For instance, Kirousis and Papdimitriou proved that

s(G+) = es(G) for any graph G where G+ is obtained from G by subdividing each
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edge once [KP86]. Since the problem of computing the edge-search number is NP-

hard in general graphs [MHG+88], this result also holds for other variants. Note

however that the complexity of computing the difference between two variants of

search numbers in a graph is still unknown.

Link with graph decompositions and complexity

An important property of graph searching is the monotonicity. Namely, for any

graph G, if there is a node strategy that clears G using k searchers, then there is a

node strategy that clears G using k searchers and without any recontamination. A

strategy is said monotone if no recontamination occurs during it. The monotonicity

property can be reformulated as follows:

Theorem 47 [BS91] For any graph G, there is a monotone mixed (resp., node,

resp., edge) strategy that clears G using s(G) (resp., ns(G), resp., s(G)) searchers.

The above property is very important. First, it ensures the polynomial length of

optimal strategies and therefore, it shows that the corresponding decision problems

are in NP. Second, it is the corner stone of the following theorem that establishes a

link between the node search number of a graph and its pathwidth pw(G).

Theorem 48 [Bie91] For any graph G, ns(G) = pw(G) + 1.

Because path decompositions offer nice algorithmic tools (see Chapter 2) and

because of the above equivalence, many work has been devoted to compute opti-

mal search strategies in various graph classes. Let us mention some results about

complexity of graph searching.

A graph is cubic if its maximum degree is at most 3. The problem of computing

the edge search number has been shown to be NP-hard in the class of cubic pla-

nar graphs [MS88]. Moreover, the reduction from edge search to mixed search of

Kirousis and Papadimitriou preserves planarity and maximum degree [KP86]. More

precisely, the transformation in [KP86] consists in subdividing once each edge, there-

fore, in the resulting graph, the set of vertices with degree exactly three induces

an independent set. All together, it gives the following result that we will use in

Section 3.3:

Theorem 49 [MS88, KP86] The problem of computing the (mixed) search number

is NP-hard in the class of cubic planar graphs where the set of vertices with degree

exactly three induces an independent set.

On the other hand, search problems can be solved in various graph classes in

polynomial time. Among other, the mixed search number can be computed in

polynomial time in interval and split graphs [FHM10a, FHM10b] and permuta-

tion graphs [HM08]; a polynomial time algorithm has been designed for the edge

search number in cographs [HM09, GHM12]; the pathwidth is polynomial-time com-

putable in circular arc graphs [ST07] unicyclic graphs [EM04], Biconvex Bipartite

Graphs [PY07] some subclasses of chordal graphs [PTK+00] etc.
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As discussed in Section 3.2.2, trees are very important structures when graph

searching is concerned, hence, the case of trees has been particularly studied [Par78a,

MHG+88, EST94, PHsH+00]. In particular, Skodinis designed a linear-time algo-

rithm for computing the pathwidth of trees [CHM12]. A generic and distributed

algorithm for computing in time O(n log n) any of the search numbers in n-node

trees (only the initial setting of the algorithm differ) has been designed in [CHM12],

where the interesting notion of hierarchical decomposition of trees is introduced.

3.2 Distributed connected Graph Searching

In this section, we focus on connected graph searching in a distributed setting. That

is we focus on edge graph searching with the additional constraint of connectivity:

an edge search strategy is said connected if the clear area (the subset of clear nodes)

always induces a connected subgraph. First, we recall what connected graph sear-

ching is and we survey the recent advances in this area.

3.2.1 Recent progress on Connected Graph Searching

The connectivity constraint has been introduced in [BFFS02, BFST03].

A connected search strategy S in a graph G = (V,E) and using k ≥ 1 searchers

can be defined as follows. First, a node v0 ∈ V is chosen and all the k searchers are

placed at it. Then, S is a sequence of moves, where each move consists in sliding

a searcher at u ∈ V along an edge e = {u, v} ∈ E and such a move is allowed only

if, after the sliding, there is path of clear edges from v0 to v. In other words, either

the edge e is cleared by the move (and remains clear) or node v was already clear

before this move. The connected search number of a graph G, denoted by cs(G),

is the smallest k such that there exists a connected search strategy that clears G

using k searchers.

The previous definition clearly allows recontamination. Monotone connected

search strategies are defined in a similar way: first, a node v0 ∈ V is chosen and all

the k searchers are placed at it, then, the strategy consists of a sequence of moves,

where each move consists in sliding a searcher at u ∈ V along an edge e = {u, v} ∈ E

only if either u is still occupied by a searcher after the move, or all incident edges of

u but possibly e were already clear before the move. One important and surprising

result is that, contrary to the classical graph searching, in the connected variant,

recontamination may help [YDA09]. Hence, the monotone connected search number

of a graph G, denoted by mcs(G), may be strictly larger than its connected search

number cs(G). A consequence of this result is that it is not known whether the

problem of computing the connected search number of a graph is in NP. Another

difference between the search number and its (monotone or not) connected counter

part is that it is not minor-closed. Hence, it is not clear whether the problem

of computing the (monotone) connected search number of graphs admits a fixed

parameter tractable algorithm. However, both parameters are closed under taking

contraction (folklore?).



3.2. Distributed connected Graph Searching 73

Recontamination does not help for connected graph searching in trees, i.e.,

mcs(T ) = cs(T ) in any tree T [BFFS02]. In the same paper, it is shown that

computing the connected search number can be done in polynomial time in trees.

Recently, it has been shown that recontamination does not help in the class of

graphs with connected search number at most two1. That is, for any graph G,

mcs(G) = 2 if and only if cs(G) = 2. The result follows the characterization of this

class of graphs by exhibiting the family of 177 minimal-contraction obstructions.

On the other hand, connectivity has some price: in [BFST03], it has been

proved that cs(T ) ≤ 2s(T ) − 2 in any tree T and this bound is tight in trees.

Therefore, the question of the cost of connectivity then arises naturally: how far

the connected search number of a graph is from its pathwidth? In other words,

does there exist a constant c ≥ 2 bounding the ratio between connected search

number and search number in any graph? During my Ph.D., we investigated further

this question, proving that c ≤ log n in any n-node graphs [c-FN06a, j-BFF+12]

and that c is bounded in the class of graphs with bounded maximum degree and

chordality [j-Nis09]. We also proved that, in n-node graphs, the ratio is Θ(log n)

in the variant that aims at capturing a visible fugitive in a connected way [j-FN08,

c-FN06b].

Recently, Dereniowski closed the question by showing that mcs(G) ≤ 2s(G) in

any graph G [Der12b]. In particular, he designed a polynomial time algorithm that

transforms any monotone search strategy using k searchers into a connected one

using at most 2k searchers. His result also shows that the ratio between monotone

connected search number and connected search number is bounded by 2.

To conclude this section, let us mention that Dereniowski also investigated the

weighted variant of connected graph searching. In this setting the weight w(v) of a

vertex v determines the number of searchers needed to guard it, i.e. if less than w(v)

searchers occupy v, then recontamination may spread through this node. Similarly,

the weight of an edge e determines the minimum number of searchers that have to

simultaneously slide along e to clear it. Following the work of Mihai and Todinca

who proved that weighted graph searching is NP-hard in trees [MT09], Dereniowski

proved that weighted connected graph searching is also NP-hard in trees [Der11].

On the positive side, a polynomial time approximation with approximation ratio

3 is designed for this problem in [Der12a]. Similar results were proved while with

different terminology (speaking about edge-width instead of weight) [BTK11].

3.2.2 Distributed Graph Searching in unknown graphs

A major reason for which the connectivity constraint has been introduced is that

it ensures safe communications between the searchers during the execution of the

strategy. For instance, when the searchers have to coordinate themselves but have

no way to communicate when they are far from each others, possible solutions would

be either to leave some messages on the nodes or to use a searcher for carrying

1On-going work of Micah J. Best, Arvind Gupta, Dimitrios M. Thilikos and Dimitris Zoros.

Personal communication of D. Thilikos.
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instructions between other searchers. In both cases, the connectivity constraint

helps since it allows to avoid that messages are let on contaminated nodes that the

searcher crosses when moving in the contaminated area to transfer instructions.

In this section, we study the clearing of graphs in such environment where the

searchers have only a local vision of their environment and must communicate to

coordinate the clearing.

Distributed model.

More precisely, the k searchers are modeled by synchronous autonomous mobile

computing entities (automata) with distinct IDs from 1 to k. Otherwise searchers

are all identical, run the same program and use at most O(log n) bits of memory,

where n is the number of nodes of the network. A network is modeled by an undi-

rected connected graph G . A priori, the network is asynchronous and anonymous,

that is, the nodes are not labelled. The edges incident to any node u are labelled

from 1 to its degree, so that the searchers can distinguish the different edges incident

to a node. Every node of the network has a zone of local memory, the whiteboard

in which searchers can read, erase, and write symbols. It is moreover assumed that

searchers can access these whiteboards in fair mutual exclusion. The goal is then to

design an algorithm, called search protocol, such that the fewest number of searchers

running this algorithm achieves the clearing of the graph. More precisely, the team

of searchers must execute a connected edge search strategy for G. In these settings,

the searchers do not know in advance in which graph they are launched. That is,

when occupying some node u, a searcher executes the algorithm only based on its

current state (the memory of the searcher), on the content of the whiteboard at u

and on the degree of u.

Contributions.

Distributed algorithms for achieving connected search strategies have been designed

for several specific graph classes such as trees [BFFS02], grids [FLS05], hyper-

cubes [FHL05b, FHL08], etc. (see also [FHL06, FHL07, Luc07, Luc09]).

During my Ph.D., we attack this problem for general graphs. We first designed a

general algorithm allowingmcs(G)+1 to connectedly clear any graph G [j-BFNV08,

c-BFNV06]. Since, the extra searcher (compared to the centralized case) cannot be

avoided due to the asynchronicity of the network, this is optimal. On the positive

side, the required memory for the searchers is only logarithmic in the number of

searchers. On the other hand, the size of the whiteboards must be polynomial in

the size of the graph and, more importantly, the executed strategy is not monotone:

the execution time may be exponential.

To face this problems, we investigated the minimum amount of global informa-

tion on the graph G that the searchers must have in such a way that mcs(G) + 1

searchers can clear G in a monotone (and connected) way. We show that, using

searchers with memory of O(log n) bits and whiteboards of size O(log n), Θ(n log n)
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bits of information are necessary and sufficient in any n-node graphs [j-NS09,

c-NS07]. For doing this, we used the framework of computation with advice as

defined in [FIP10]: searchers are given a priori some string of bits that can be used

by the algorithm. Intuitively, this extra information encodes a spanning tree of G

“along” which the connected search is done.

After my Ph.D., we consider the same question on another angle: what is the

smallest number of searchers that are required to achieve a monotone connected

search strategy without any global information. Again, searchers have memory

of O(log n) bits and whiteboards are of size O(log n). We then show that mono-

tonicity has an important cost (in terms of number of searchers) in a distributed

setting [j-INS09, c-INS07].

More precisely, the cost of a search protocol P in a graph G with homebase v0
is measured by the ratio between the number of searchers it uses to clear G and

the search number mcs(G, v0) of G. This ratio, maximized over all graphs and

all starting nodes, is called the competitive ratio r(P) of the protocol P. We first

showed that:

Theorem 50 Any search protocol for clearing n-node graphs has competitive ratio

Ω( n
logn). [j-INS09,

c-INS07]

Actually, we prove that the above result holds even restricted to the class of trees

with maximum degree 3. The intuition is that, since the tree is discover online, we

may ensure that, whatever be the protocol, the searchers progress in the “wrong”

direction. That is, they clear first a long path, of length Ω(n), while all nodes of it

must be protected by one searcher to avoid recontamination. Hence, the cost of any

protocol will be Ω(n) in an n-node tree while it is known that mcs(T, v0) = O(log n)

for any tree T and any homebase v0 ∈ V (T ) [BFFS02, BFST03].

Then, we showed that this lower bound is actually tight.

Theorem 51 There is a search protocol P such that, for any connected n-node

graph G and any v0 ∈ V (G), Protocol P enables O( n
logn mcs(G, v0)) searchers to [j-INS09,

c-INS07]clear G in a monotone connected way, starting from v0.

In other words, P has competitive ratio O( n
logn).

This protocol P maintains a subtree of the (connected) clear part, spanning the

clear node that are incident to contaminated edges (in particular, such nodes are

occupied). The first goal of T is that it is used for the searchers to communicate

and its root is used to host all the currently “unused” searchers. The main goal of

T is to help the protocol to determine the next edge to be cleared at each phase.

For this purpose, the protocol also maintains a minor S of T (obtained roughly by

contracting the unoccupied node with degree two in T ). The choice of the next edge

to be cleared is done by maintaining S as close as possible to a complete ternary

tree. Moreover, the new clear edge increases the depth of S only if no other choice

is available. The intuitive reason of this choice is that the complete ternary tree is

the tree requiring the (asymptotic) largest number of searchers compared to the size
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of the tree, even for a centralized algorithm. Therefore, looking for such a minor in

T , i.e., in G, allows to keep some control on the search number of G and, hence, it

avoids to use too many searchers.

Our technique let think that it would be interesting to compute the pathwidth

of a graph using some substructure (for which path decomposition can be easily

computed) of this graph. We discuss this idea further to conclude this section.

Further questions.

Besides its practical motivation, this study of graph searching with limited knowl-

edge has been useful to identify some structures that are simple enough to be

computed locally and that allow the clearing of the graph. More precisely, in both

works where we impose the monotonicity, the clearing is done using a particular

spanning tree of the graph G. The case with advice shows that there exists a span-

ning tree T such that the clearing of the graph can be done optimally by “following”

T [j-NS09, c-NS07]. Clearly, the complexity of the computation of such a tree is hid-

den in the advice used in [j-NS09, c-NS07]. On the other hand, in [j-INS09, c-INS07],

we show that we can somehow greedily (and, a priori, without the knowledge of

the whole graph) compute a spanning tree S such that clearing the graph using S

gives an approximation algorithm for clearing G using o(n)s(G) searchers. I think

it would be particular interesting to identify other structures (or “better” spanning

trees) that could be polynomially computable and would allow an efficient clearing

of the graph.

In other words, I would like to investigate the design of approximation algorithm

for computing the pathwidth2 of a graph using path-decompositions of simpler

substructures of the graph (e.g., spanning trees).

It is also worth to mention that recent work investigates new variants of (cen-

tralized or distributed) graph searching. For instance, natural variants are the

ones where recontamination is not instantaneous but takes some fixed amount of

steps [FMS08, DJS13] or when more than one contaminated neighbor is required

to recontaminate nodes [LPS07]. Also, the length of the strategy has been consid-

ered [BH06, BTK11, DKZ13]. In next section, we define and study another variant

where no two robots can meet in a node or in an edge.

3.3 Exclusive and Perpetual graph Searching

The distributed algorithms described in previous section have several drawbacks.

First, the searchers are endowed powerful abilities such as no constant memory.

Moreover, the algorithms work in static networks when no faults occur. Hence, we

2Note that pathwidth is not approximable up to an additive constant in general [DKL87]. In

planar n-node graphs, it can be approximate up to ratio O(log n), using the polynomial algo-

rithm for branchwidth [ST94]. I am not aware of any other result concerning approximation for

pathwidth.
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are interested in investigating graph searching in faulty environment and to pro-

pose self-stabilizing algorithms for it. We should mention that some self-stabilizing

algorithms for graph searching have been proposed in [MM09, BMM10]. However,

in this work, it is assume that the searchers can detect which nodes and edges are

dirty. To overpass this assumption, we proposed a model for perpetual graph search-

ing where searchers have to clear a network infinitely often. For this purpose, we

investigated graph searching in the CORDA model where searchers have very weak

capabilities but are able to always “see” the current positions of all searchers. This

model naturally led us to define exclusive graph searching where no two searchers

can share a node.

3.3.1 Exclusive graph searching

In this section, we define the exclusive variant of graph searching and present the

results we obtained about it. The exclusivity constraint states that each node can be

occupied by at most one searcher at a time. Also, an edge cannot be simultaneously

crossed by several searchers, even in different directions. Exclusive graph searching

is defined as mixed graph searching with extra exclusivity constraint and such that

searchers cannot jump from one node to another one, i.e., searchers can only slide

along edges [c-BBN12, c-BBN13].

More formally, given a connected n-node graph G, an exclusive search strategy

in G, using k ≤ n searchers consists in (1) placing the k searchers at k different

nodes of G, and (2) performing a sequence of moves. A move consists in sliding one

searcher from one extremity u of an edge e = {u, v} to its other extremity v. Such

a move can be performed only if v is free of searchers. That is, exclusive-search

limits the strategy to place at most 1 searcher at each node, at any point in time.

The edges of graph G are supposed to be initially contaminated. An edge becomes

clear whenever either a searcher slides along it, or one searcher is placed at each of

its extremities. An edge becomes recontaminated whenever there is a path free of

searchers from that edge to a contaminated edge. A search strategy is winning if

its execution results in all edges of the graph G being simultaneously clear. The

exclusive-search number of G, denoted by xs(G) is the smallest k for which there

exists a winning search strategy in G.

Exclusive graph searching addresses two serious limitations of classical variants

(node-, edge- and mixed-graph searching) as far as practical applications are con-

cerned.

• First, classical variants assume that any node can be simultaneously occupied

by several searchers. This assumption may be unrealistic in several contexts.

Typically, placing several searchers at the same node may simply be impossi-

ble in a physical environment in which, e.g., the searchers are modeling phys-

ical searchers moving in a network of pipes. In the case of software agents

deployed in a computer network, maintaining several searchers at the same

node may consume local resources (e.g., memory, computation cycles, etc.).

The exclusivity constraint aims at dealing with this problem.



78
Chapter 3. Graph Searching: Connectivity, Exclusivity, Distributed

settings

c

G S
T

Figure 3.1: Graph S (center) is a star with maximum degree ∆ = 6 which is an

induced subgraph of G (right) and such that s(S) = 2 < s(G) = xs(G) = 3 <

xs(S) = 5 = ∆ − 1. Tree T (left) has xs(T ) = 2 but any monotone exclusive

strategy requires at least 3 searchers.

• Second, most variants of graph searching also suffer from another unrealistic

assumption: searcher are enabled to “jump” from one node of the graph,

to another, potentially far away, node (e.g., see the classical mixed-search,

defined above). We restrict ourselves to the more realistic internal search

strategies [BFFS02, BFST03], in which searchers are limited to move along

the edges of the graph, that is, restricted to satisfy the internality constraint.

Contrary to classical variants that are somehow equivalent since the correspond-

ing search numbers differ by at most 2, exclusive graph searching behaves differently

from previous graph searching models. These differences are mainly due to the

combination of the two restrictions introduced in exclusive search: two searchers

cannot occupy the same node (exclusivity) and a searcher cannot “jump” (internal-

ity). Therefore, intuitively, the difficulty occurs when a searcher has to go from one

node u to a far away node v, and all paths from u to v contain an already occupied

node. Figure 3.1 illustrates these differences that are formally stated below.

Consider a simple example of a star with central node c and n leaves. In the

classical graph searching, one searcher can occupy c, while a second searcher will

sequentially clear all leaves, either by jumping from one leaf to another, or by sliding

from one leaf to another, and therefore occupying several times the already occupied

node c. In exclusive graph searching, such strategies are not allowed. Intuitively, if a

searcher r1 has to cross a node v that is already occupied by another searcher r2, the

latter should step aside for letting r1 pass. However, r2 may occupy v to preserve the

graph from recontamination, and moving away from v could lead to recontaminate

the whole graph. To avoid this, it may be necessary to use extra searchers (compared

to the classical graph searching) that will guard several neighbors of v to prevent

from recontamination when r2 gives way to r1. It follows that, as opposed to

all classical search numbers, which differ by at most some constant multiplicative

factor, the exclusive search number may be arbitrary large compared to the mixed-

search number, even in trees. For instance, it is easy to check that xs(Sn) = n− 2

for any n-node star Sn, n ≥ 3. More generally,

Fact 1 For any tree T with maximum degree ∆ ≥ 2, xs(T ) > ∆− 2 .[c-BBN13]
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This result shows an exponential increase in the number of searchers used to clear

a graph since the mixed-search number of n-node trees is at most O(log n) [Par78b].

We now turn our attention to the monotonicity property. Indeed, another im-

portant difference of exclusive search compared to classical graph searching is that

it is not monotone. As explained in the example of a star, when a searcher needs

to cross another one, letting the former searcher pass may lead to recontaminate

some edges. In spite of that, the goal of the winning strategy is to prevent an

“uncontrolled” recontamination (e.g., see tree T in Figure 3.1).

Fact 2 Exclusive graph searching is not monotone, even in trees or in 2-star-like

graphs3. [c-BBN13,
s-MNP14]

Last, but not least, contrary to classical graph searching, exclusive graph search-

ing is not closed under minor. Indeed, even taking a subgraph can decrease the

connectivity which, surprisingly, may not help the searchers (due to the exclusiv-

ity constraint). That is, there exist a graph G and a subgraph H of G such that

xs(H) > xs(G) (cf. Figure 3.1). Nevertheless, exclusive-search is closed under

subgraph in trees:

Lemma 11 For any tree T and any subtree T ′ of T , xs(T ′) ≤ xs(T ). [c-BBN13]

Contrary to classical graph searching, the proof of this result is not trivial because

of the exclusivity property. To prove it, we have to transform an exclusive strategy

S for T into a strategy S ′ for T ′ using the same number of searchers, and without

violating the exclusivity property. The fact that S may be not monotone (i.e., some

recontamination may occur during S) makes the proof technical, because one has

to “control” the recontamination of T ′ in S ′.
On the positive side, we show that,

Theorem 52 For any graph G with maximum degree ∆, [c-BBN13]

s(G) ≤ xs(G) ≤ (∆− 1)(s(G) + 1).

To prove it, we consider a node strategy S for G using s(G) searchers. To build an

exclusive strategy for G, we mimic S using a team of ∆− 1 searchers to “simulate”

each searcher in S. By Fact 1, this upper bound is asymptotically tight.

The above theorem let us some hope to obtain approximation algorithms for

the pathwidth of graphs. Unfortunately, we proved that

Theorem 53 The problem of computing the exclusive search number is NP-hard [s-MNP14]

in the class of cubic planar graphs.

3A connected graph G = (V,E) is a star-like graph if V can be covered by cliques C0, C1, · · · , Cr

such that, for any i, j ≤ r with i 6= j, Ci ∩ Cj ⊆ C0. Said differently, a graph is a star-like graph

if it is chordal and its clique-tree is a star. A graph is k-star-like if ci = |Ci \ C0| ≤ k for any

1 ≤ i ≤ r.
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Figure 3.2: Planar cubic graph G where degree-3 nodes (in grey) induce an inde-

pendent set (left) and Graph G△ where nodes with degree 3 of G are “replaced”

by triangles (right).

Intuitively, exclusive search differs from mixed search because searchers can only

slide and therefore, because of the exclusivity property, the searchers have to avoid

to met other searchers at the same node. The reduction consists in proving that,

for any planar graph G with maximum degree at most 3 (cubic) and such that no

two nodes with degree three are adjacent, s(G) = xs(G△) where G△ is obtained by

replacing any node with degree three by a triangle (see Fig. 3.2). Intuitively, the

triangles allow the searchers to bypass each other.

While computing the exclusive search number is NP-hard, designing a polyno-

mial approximation algorithm for this parameter would imply a polynomial-time

approximation of the pathwidth in bounded degree graphs.

Naturally, we turn our attention toward particular graph classes. It is very

surprising that computational complexities of monotone Exclusive Graph Searching

and Pathwidth cannot be compared. Indeed, we show that monotone Exclusive[s-MNP14]

Graph Searching is NP-complete in split graphs where Pathwidth is known to be

solvable in polynomial time [Gus93]. On the other hand, we prove that monotone

Exclusive Graph Searching is in P in a subclass of star-like graphs where Pathwidth

is known to be NP-hard [Gus93]. Let us focus now in trees:

Theorem 54 The problem of computing the exclusive search number xs(T ), and[c-BBN13]

corresponding exclusive strategy, is polynomially computable in class of trees T .

The above theorem is proved by designing a dynamic programming algorithm

based on the following characterization that is similar to the one of Parsons in the

case of classical graph searching [Par78b]. Given a node v in a tree T , a connected

component of T \ {v} is called a branch at v. Our characterization establishes

a relationship between the exclusive-search number of T and the exclusive-search

number of some of the branches adjacent to any node in T . More precisely, we

prove that:

Theorem 55 Let k ≥ 1. For any tree T , xs(T ) ≤ k if and only if, for any node v,

the following three properties hold:[c-BBN13]

1. v has degree at most k + 1;

2. for any branch B at v, xs(B) ≤ k;
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Figure 3.3: A tree T with avenue A = (u1, · · · , up). For any subtree X of T \ A,

xs(X) < k.

3. for any even i > 1, at most i branches B at v have xs(B) ≥ k − i/2 + 1.

The fact that the first property is necessary directly follows from Fact 1. The

second property is necessary by Lemma 11. For proving that the third property

is necessary, we first have to prove that, for any tree T , any branch B of T , and

any exclusive strategy for T , there is a step of the strategy where at least xs(B)

searchers are occupying the nodes of B. While such a result is trivial in classical

graph searching, it is not the case anymore subject to exclusivity and internality

properties. In particular, in classical graph searching, the result is true for any

subtree (not necessarily a branch) while it is not the case for the exclusive variant

(see [c-BBN13]). Indeed, let us consider a sub-tree T ′ of tree T . If T ′ is given

independently of T , the movements of searchers are more constrained because the

searchers have less “space” in T ′. On the contrary, when T ′ is inside the tree T , the
searchers can use the “extra space” provides by T to clear T ′. Therefore, we have

to prove that, for any tree T , if there exist v ∈ V (T ) and an even integer i > 1 such

that there is a set B = {Tj : xs(Tj) ≥ k − i/2 + 1} of branches at v and |B| > i,

then xs(T ) > k.

On the other hand, we show that any tree satisfying the conditions of above

theorem can be decomposed in a particular way, depending on k (see Fig. 3.3).

Following [MHG+88], we prove that there is a unique path A = (u1, · · · , up) in T

called avenue such that p ≥ 1 and, for any component (subtree) T ′ of T \A, there

is an exclusive strategy that clears T ′ using < k searchers, i.e., xs(T ′) < k (see

bold line in Fig. 3.3). Next, we describe an exclusive search strategy using at most

k searchers, that clears any tree decomposed in such a way. The strategy consists

in clearing the subtrees of T \ A, starting with the subtrees that are adjacent to

u1, then the ones adjacent to u2 and so on, finishing in up. To clear a subtree T ′

of T \ A, we proceed in a recursive way. That is, we recursively use our algorithm

on T ′ using k′ < k searchers. The first difficulty is to ensure that no subtrees

that have been cleared are recontaminated. For this purpose, when clearing T ′,
the remaining k − k′ searchers that are not needed to clear it are used to prevent
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recontamination. The second difficulty is to ensure exclusivity: while these k − k′

searchers are protecting from recontamination, k′ searchers should be able to enter

T ′ to clear it.

To conclude this section, let us mention that the exclusivity constraint may be

generalized as follows. Consider a graph with weighted nodes. The weight k of node

v means that v can be occupied by at most k searchers simultaneously. Clearly,

all nodes having weight 1 corresponds to the exclusive case. On the other hand, if

all nodes have weight 2, then the number of searchers needed to clear the graph is

the classical mixed search number. It would be interesting to study the variant in

which a subset of nodes have weight 1 while others have weight 2.

Finally, since the complexities of Pathwidth and monotone Exclusive Graph

Searching cannot be compared and since they are equivalent in bounded degree

graphs, it would be very interesting whether there would exist a graph class in

which one variant is polynomially computable while the other one is NP-hard.

3.3.2 Perpetual graph searching in CORDA model

In this section, we present our study of exclusive graph searching in the CORDA

model and in various network topologies. When the considered network is a ring,

our algorithms are more general since they also address other coordination problems

such as perpetual exploration and gathering.

CORDA model

In the field of searcher-based computing systems, we consider k ≥ 1 searchers placed

on the nodes of an input graph. searchers are equipped with visibility sensors and

motion actuators, and operate in Look-Compute-Move cycles in order to achieve a

common task (see [FPS12]).

The Look-Compute-Move model considers that in each cycle a searcher takes a

snapshot of the current global configuration (Look), then, based on the perceived

configuration, takes a decision (deterministically) to stay idle or to move to one of its

adjacent nodes (Compute), and in the latter case it moves to this neighbor (Move).

Cycles are performed asynchronously, i.e., the time between Look, Compute, and

Move operations is finite but unbounded, and it is decided by the adversary for

each searcher. Hence, searchers that cannot communicate may move based on out-

dated perceptions. From the practical viewpoint, the Look-Compute-Move model

faithfully describes the behavior of some real searchers.

In the continuous plane, this model is referred in the literature also as the

CORDA model [Pre07]. The inaccuracy of the sensors used by searchers to scan

the surrounding environment motivates its discretization. Moreover, searchers can

model software agents moving on a computer network. Various problems have been

studied in this setting and several algorithms have been proposed for particular

topologies such as lines, rings, trees and grids.

We consider a minimalist variant of the Look-Compute-Move model which has
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very weak hypothesis. Neither nodes nor edges of the graph are labeled and no local

memory is available on nodes. Searchers are anonymous, asynchronous, uniform

(i.e. they all execute the same algorithm), oblivious (memoryless) and have no

common sense of orientation. Apart for the gathering problem, guided by physical

constraints, the searchers may also satisfy the exclusivity property, according to

which at most a node can be occupied by at most one searcher [BBMR08a]. In

contrast to the CORDA model in the continuous plane, we assume that moves

are instantaneous, and hence any searcher performing a Look operation sees all

other searchers at nodes and not on edges. Note that, in a discrete asynchronous

environment this does not constitute a limitation to the model. In fact, an algorithm

cannot take advantages from seeing searchers on the edges as the adversary can

decide to perform the Look operations only when the searchers are on the nodes.

On the other hand, if an algorithm takes advantage from the assumption that the

searchers always occupy nodes, the same algorithm can be applied by adding the

rule that if a searcher sees another searcher on an edge, it just don’t move (i.e. it

waits until all the searchers occupy only nodes). In the following, we denote such

model as the discrete CORDA model.

Related work.

The discrete CORDA model received a lot of attention in the recent years. Most of

the proposed algorithms consider that the starting configuration is exclusive, i.e.,

any node is occupied by at most one searcher. Moreover, in case of symmetric

topologies (e.g., paths, rings and grids), the starting configuration is sometimes

assumed to be rigid, i.e., asymmetric and aperiodic w.r.t. the positions of the

searchers.

In the following, we review the literature concerning the CORDA model on

various graph topologies. Two main problems have been considered: exploration

(e.g., see [CFI+08, AGP+11]) and gathering (e.g., see [CGP09, BCG+10, Pel12]).

Main results are summarized in Table 3.1.

In the problem of graph exploration with terminaison problem, a team of mobile

agents is spread in a graph and each node must be visited at least once by an

agent, then agents must be able to decide that all vertices have been visited at

least once [FIPS07, DPT09, FIPS10, CFMS10, FIPS11, FIPS13]. On the other

hand, the exclusive perpetual graph exploration requires that each searcher visits

each node of the graph infinitely many times. Moreover, it adds the exclusivity

constraint [BBMR08a, BBMR08b, BMPBT10, BMPBT11] . In [BMPBT10], first

results on n-node rings are given. In detail, the paper gives algorithms for k = 3

and n ≥ 10, for k = n−5 (if n mod k 6= 0), and shows that the problem is infeasible

for k = 3 and n ≤ 9, and for some symmetric configurations where k ≥ n− 4.

The gathering problem consists in moving all the searchers in the same node

and remain there. In [DDKN12] and [DDN13a], a full characterization of the gath-

ering on grid and tree topologies, respectively, without any multiplicity detection is

given. On rings, it has been proven that the gathering is unsolvable if the searchers
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Table 3.1: Non exhaustive survey on coordination problems in CORDA model
Paths Trees Rings Grids Arbitrary

graphs

Exploration [FIPS11] [FIPS10] [FIPS07] [CFMS10]

with stop + multiplicity detection + local edge

labeling

[BMPBT10] [BBMR08a]

Exclusive Perpetual + orientation

Exploration [c-DDN+13b] [BMPBT11]

[j-DDN+14b] no orientation

Gathering

+global mult. detection [DDN12] [DN13]

+local mult. detection [IIKO10, KLOT11]

[KLOT12]

[c-DDN+13b]

[j-DDN+14b]

Exclusive Perpetual [c-BBN12] [c-BBN12] [c-DDN+13b]

Graph Searching [c-BBN13] [c-BBN13] [j-DDN+14b]

[c-DNN14]

are not empowered by the so-called multiplicity detection capability [KMP08], ei-

ther in its global or local version. In the former type, a searcher is able to perceive

whether any node of the graph is occupied by a single searcher or more than one

(i.e., a multiplicity occurs). In the latter type, a searcher is able to perceive the

multiplicity only if it is part of it. Using the global multiplicity detection capa-

bility, in [KMP08], some impossibility results have been proven. Then, several

algorithms have been proposed for different kinds of exclusive initial configurations

in [DDN11, KKN10, KMP08]. These papers left open some cases which have been

closed in [DDN12] where a unified strategy for all the gatherable configurations has

been provided. With local multiplicity detection capability, an algorithm starting

from rigid configurations where the number of searchers k is strictly smaller than
⌊

n
2

⌋

has been designed in [IIKO10]. In [KLOT11], the case where k is odd and

strictly smaller than n − 3 has been solved. In [KLOT12], the authors provide

an algorithm for the case where n is odd, k is even, and 10 ≤ k ≤ n − 5. Pa-

pers [KLOT11] and [KLOT12] do not assume that the initial configuration is rigid.

The remaining cases with local multiplicity detection are left open and a the design

of a unified algorithm for all the cases is still not known.

Exclusive graph searching in CORDA model in trees

We study (perpetual) exclusive graph searching in discrete CORDA in trees. We

denote by fs(G) the set of integers k such that k searchers can clear a graph G in

this way. That is, k ∈ fs(G) if there is a distributed protocol allowing k searchers

to clear G in discrete CORDA whatever be the starting exclusive positions of the

k searchers in G. By definition, if k ∈ fs(G) then xs(G) ≤ k ≤ |V (G)|.
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Figure 3.4: An empty square represents one agent, an empty circle represents one

node without agent, a rectangle with label ℓ represents ℓ searchers on consecutive

vertices and a line with label h represents h consecutive vertices without searchers.

In configurations C and C ′, h ≥ 1, and in Configurations F and F ′, h ≥ 2.

As a warm-up, we fully characterize fs(Pn) for any n-node path Pn. The dis-

tributed protocols are described in Figures 3.4(a) and 3.4(b). To give a flavor of

the difficulties that arise in this model, we give the following result.

Assertion 3 Let P = (v1, · · · , v2p+1) be an n-node path for some odd 2p+1 = n ≥ 3

and let 2 ≤ 2r < n. 2r searchers cannot perpetually clear P .

Indeed, if the searchers are initially placed at {v1, · · · , vr, vn−r+1, · · · , vn}, then,

vp+1 can never be occupied by a searcher. Indeed, the adversary can schedule the

moves such that, at any step when vi is occupied for i ≤ p, then vn−i+1 is also

occupied. In particular, if a searcher occupying vp moves to vp+1, then the searcher

occupying vp+2 will do the same and two searchers will occupy simultaneously vp+1,

a contradiction. So, 2r /∈ ps(P ) for any 2r < n in any n-node path P with n odd.

Theorem 56 Let Pn be an anonymous n-node path. [c-BBN12,
c-BBN13]

• fs(P1) = {1} and fs(P2) = {1, 2};

• fs(Pn) = {3, · · · , n} for any n ≥ 3 even;

• fs(Pn) = {3, 5, .., 2k + 1, .., n}, n ≥ 3 odd.
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Our main result consists in a characterization of fs(T ), for any asymmetric tree

T . We prove that, if T has no symmetries (i.e., has no non-trivial automorphisms),

then fs(T ) = {xs(T ), · · · , |V (T )|}. In words, in the case of asymmetric trees,

we surprisingly prove that the minimum number of searchers needed in discrete

CORDA does not increase in comparison with the one needed in a powerful cen-

tralized setting. This result is based on the explicit design of a distributed protocol

enabling perpetual graph searching by k searchers, for any k ≥ xs(T ). This proto-

col widely uses the structure of the strategy given for centralized setting described

in Theorem 55. The main idea is to adapt the centralized strategy such that all the

obtainable positions of searchers are pairwise distinct and that all the moves are

uniquely defined. This classical method being powerful still demands a technically

difficult work.

We strongly use the fact that, in any asymmetric tree, each searcher can assign

distinct labels to the nodes such that each node of the tree is always given the same

label, by all searchers and at any Compute action. Therefore, in discrete CORDA,

an anonymous asymmetric tree can be seen as a uniquely labeled tree (whose nodes

are given distinct identifiers).

Theorem 57 For any anonymous asymmetric tree or any uniquely labeled tree T ,

there exists an algorithm to clear T in the discrete CORDA model, either using[c-BBN12,
c-BBN13] k ≥ xs(T ) searchers, or k ≥ 2 if T is a labeled line with ≥ 3 nodes.

When T possesses symmetries (i.e., has non-trivial automorphisms), the com-

putation of fs(T ) becomes more complex. Following [FIPS10], two distinct nodes

u and v are said to be isomorphic if there exists an automorphism4 of G which

carries u to v. We show that then fs(T ) depends on the set ST of isomorphic nodes

separated by a path of even length in T . Our impossibility results are mainly due to

the exclusivity property and symmetries (rather than due to the perpetual nature

of the problem).

Lemma 12 For any tree T ,[c-BBN12,
c-BBN13]

fs(T ) ∩ {i ∈ N : |ST | ≤ i < |ST |+ xs(T \ ST )} = ∅.

A set S ⊆ ST is fully-isomorphic in the tree T , if there is a non-trivial automor-

phism f of T such that f(S) = S, and, for any u ∈ S, the distance between u and

f(u) is even.

Lemma 13 Let T be a tree and S ⊂ V (T ) be fully-isomorphic in T . Then |S| /∈[c-BBN12,
c-BBN13] fs(T ).

A tree T is very symmetric if there is an edge e = {u, v} ∈ E(T ) such that there

is an automorphism from one subtree of T \ e to the other, carrying u to v. In that

4An automorphism of G is a one-to-one mapping f : V (G) → V (G) s.t. {u, v} ∈ E(G) if and

only if {f(u), f(v)} ∈ E(G).
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case, each such a subtree is called an half of T . To conclude this section, we extend

our results in asymmetric trees and in paths to a larger class of trees. Our results

are constructive since we design the corresponding algorithms.

Theorem 58 Let T be any anonymous tree. Either nodes of T0 = T \ ST can be

assigned distinct labels, or T0 is very symmetric with half T ′
0. Let x = |ST |+xs(T0) [c-BBN12,

c-BBN13]in the former case, and x = |ST | + 2 · xs(T ′
0) otherwise. There is an algorithm in

the discrete CORDA model that allows to clear T perpetually using k searchers, for

any k, x ≤ k ≤ |V (T )|.

Coordinating searchers in Rings for various tasks in CORDA model

Here, we propose a unified approach to solve the exclusive perpetual exploration,

the exclusive perpetual graph searching, and the gathering problems on rings. The

relevance of the ring topology is motivated by its completely symmetrical structure.

It means that algorithms for rings are more difficult to be devised as they cannot

exploit any topological structure, as all nodes look the same. In particular, perio-

dicity and symmetry arguments must be carefully handled. In fact, our algorithms

are only based on searchers’ disposal and not on topology.

Note that, contrary to our study on trees, here we are interested in the initial

configurations of the searchers for which the tasks are feasible (that is, we do not

look for the number of searchers required to accomplish the task whatever be the

initial configuration).

For presenting our positive results, we need the following notations. We consider

a ring with n ≥ 3 nodes {v0, · · · , vn−1}, where vi is connected to vi+1 mod n for any

0 ≤ i < n. Moreover, let k ≥ 1 searchers occupy k distinct nodes of the ring.

Given a configuration C, and for any i ≤ n, let Si = (ri0, · · · , rin−1) ∈ {0, 1}n be

the sequence such that rij = 0 if vi+j mod n is occupied in C and rij = 1 otherwise,

1 ≤ j ≤ n. Intuitively, Si represents the positions of searchers, starting at vi. A

supermin of C is any representation of C that is minimum in the lexicographical order

(among all representations of C, i.e., starting from any node and either clockwise

or anti-clockwise).

An exclusive configuration is called symmetric if the ring admits a geometrical

axis of symmetry with respect to the positions of the searchers. An exclusive con-

figuration is called periodic if it is invariable under non-trivial (i.e., non-complete)

rotations. A configuration which is aperiodic and asymmetric is called rigid. A key

property that allows us to deal with aperiodic configurations is that:

Lemma 14 [DDN12] Given a configuration C,

• C has a unique supermin representation if and only if C is either rigid or it

admits only one axis of symmetry passing through the supermin;

• C has two supermin representations iff C is either aperiodic and symmetric

with the axis not passing through any supermin or it is periodic with period n
2 ;
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• C has at least 3 supermin representations iff C is periodic, with period at most
n
3 .

Impossibility results. First, we gave some impossibility results for the exclusive

perpetual graph searching in rings. The proofs are complicated cases analysis where

we explicitly design the behavior of an adversary (the asynchronous scheduler of

the searchers) in all cases, ensuring that the ring cannot be cleared whatever be

the algorithm. Note these impossibility results hold even if a particular initial

configuration is specified. More precisely, we proved that:

Theorem 59 For any initial configuration C, there is no algorithm, in the CORDA

model, that solves the exclusive perpetual clearing problem in a n-node ring using k

searchers starting from C, if[c-DDN+13b,
j-DDN+14b]

• n > 2 and k ≤ 2 or k = n− 2 or k = n− 1, or

• n > 3 and k ≤ 3, or

• 2 ≤ k < n ≤ 9.

It is easy to see that graph searching is also not feasible for any k even starting

from any configuration with an axis of symmetry passing through an empty node.

Indeed, any synchronous execution of any algorithm would either cause a collision

in the node lying on the axis or does not allow to search the edges incident to such

node.

For the gathering problem, it was known that the problem is not feasible for

k < 3 or k ≥ n − 4 or starting from a symmetric configuration with one axis of

symmetry passing through two edges.

In the following, a configuration is allowed if it is rigid or if it is aperiodic and

its symmetry is not the ones excluded by above impossibility results. That is, for

graph searching, the symmetric allowed configurations are all aperiodic ones with

k odd and those with k even where the axis does not pass through an empty node,

provided that 3 < k < n − 2 and n > 9. For gathering, the symmetric allowed

configurations are all aperiodic ones with the axis of symmetry not passing through

two edges and 3 ≤ k < n− 4.

Algorithms for graph searching, perpetual exploration and gathering.

We now briefly present the algorithms we design to solve the above-mentioned

problems. Our algorithms consist of two phases. The first phase is common to all

problems and allows k > 2 searchers to achieve a particular exclusive configuration

in an n-node ring, k < n − 2. The second phase depends on the task: we give

an algorithms for solving the exclusive perpetual graph searching problem that,

in addition, solves the perpetual exploration problem, then another algorithms is

designed for solving the gathering problem. In a first work, we dealt only with rigid

configurations [c-DDN+13b, j-DDN+14b], then we managed to extent this work to

aperiodic configurations [c-DNN14]. Our results can be summarized in the following

two theorems.
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Theorem 60 There is an algorithm solves both the exclusive perpetual clearing and

exploration problems using k robots in any n-node ring, starting from any exclusive [c-DDN+13b,
j-DDN+14b,
c-DNN14]

and allowed configuration, n > 9 and 4 < k < n−3 (but for (n, k) ∈ {(10, 5); (10, 6)}
when the configuration is symmetric).

Theorem 61 There exists an algorithm performing the gathering of k > 2 robots

on rings of n > k + 2 nodes starting from any exclusive and allowed configuration, [c-DDN+13b,
j-DDN+14b,
c-DNN14]

when the robots are empowered with the local multiplicity detection.

The core of the algorithms in [c-DDN+13b, j-DDN+14b] is a procedure, called

Asym, allowing to achieve some particular configuration. Let 4 ≤ k < n − 2 and

let Ca = (0k−1, 1, 0, 1n−k−1) be the configuration with k − 1 consecutive searchers,

one empty node and one searcher.

Lemma 15 Let 4 ≤ k < n − 2 searchers standing in an n-node ring and forming

a rigid exclusive configuration, Algorithm Asym eventually terminates achieving [c-DDN+13b,
j-DDN+14b]configuration Ca and all intermediate configurations obtained are exclusive and rigid.

Basically, Algorithm Asym ensures that, from any rigid exclusive configuration,

one searcher, that can be uniquely distinguished, moves to an unoccupied neighbor,

achieving another rigid configuration while strictly decreasing the supermin. Then,

in [c-DNN14], we designed Algorithm Align, generalizing Asym, that handles all

allowed configurations (not only rigid). Difficulties are multiple.

First, in allowed symmetric configurations, we cannot ensure that a unique

searcher will move. In such a case, the algorithm may allow a searcher r to move,

while r is reflected by the axis of symmetry to another searcher r′. Since r and

r′ are indistinguishable and execute the same algorithm, r′ should perform the

same (symmetric) move. Hence, r may move while the corresponding move of r′

is postponed because of asynchronicity (i.e. r′ has performed the Look phase but

not yet the Move phase). The configuration reached after the move of r has a

potential so-called pending move (the one of r′ that will be executed eventually).

To deal with this problem, our algorithm ensures that reached configurations that

might have a pending move are asymmetric, distinguishable and the pending move

is unique. Therefore, in such a case, our algorithm forces the pending move. That

is, contrary to [c-DDN+13b, j-DDN+14b] where Algorithm Asym ensures to only go

through rigid configurations, the subtlety is here consists in possibly going from an

asymmetric configuration to a symmetric one. To distinguish such a configuration,

we define the notion of adjacent configurations. An asymmetric configuration C is

adjacent to a symmetric configuration C′ with respect to a move M (one searcher

moving to one of its unoccupied adjacent neighbor) if C can be obtained from C′ by
applying M to only one of the searchers permitted to move by M. Another difficulty

is to ensure that all met configurations are allowed for the considered problem.

Further work

Continuing our study of what is possible in the discrete CORDA model using robots

with weak capabilities, we currently investigate the exclusive graph searching prob-
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lem in grids with Euripides Markou and Christos papageorgakis. It would be inter-

esting to address this problem in general graphs.

Other problems are of interest: perpetual exploration seems surprisingly difficult

in trees, we are working on it with Gianlorenzo d’Angelo, Lélia Blin and Janna

Burman. Motion planning of robots that must go from several initial positions to

personalized destinations without colliding is another practical problem we address

with Gianlorenzo d’Angelo and Xavier Defago. For addressing this problem, we

first dealt with exchange of information between robots.[s-DDN14a]

Last but not least, I would be interested by considering this class of problem

in more realistic setting. For instance, real robots are not so stupid as the extreme

cases we are considering. Therefore, using the techniques we developed above but

with stronger robots should lead to efficient practical solutions.



Chapter 4

Complexity of Locality:

Routing and Graph Properties

Content

This chapter deals with routing, broadcasting and connectivity1 in various environ-

ments. As communication networks are concerned, the different constraints that

appear in wireless networks, Internet networks, Peer-to-peer networks, etc., imply

various difficulties and techniques to address these problems. The common point

of all the considered environments is that the current networks are becoming al-

ways larger and, therefore, distributed and even local algorithms are required. The

difference between distributed and local is mainly related to the time that is al-

lowed to the nodes to exchange messages. Indeed, the less exchanges are allowed

and the less the information can spread through the network, and the more the

knowledge the nodes have about the network is partial. Most of our studies focus

on distributed setting where network’s nodes have knowledge with various levels

of locality. On the other hand, in a distributed setting, it is helpful to have more

global knowledge about the structural properties of the considered network. We

both use such a structural knowledge for efficient routing distributed algorithms

and provide distributed algorithms to compute such properties.

Section 4.1 consists of a melting-pot on several routing problems we studied in

wireless and peer-to-peer networks. Since I am far to be an expert on these kind of

networks, I focus on the models and techniques we used in these specific problems.

First, the personalized broadcasting and, equivalently, the gathering (many sources,

one sink) problems are considered in grid radio networks in presence of interferences

(Section 4.1.1). Here, the optimization problems consists in finding paths and

schedules (sequences of matchings, induced matchings, etc.) to route messages

as fast as possible and avoiding interference [c-BNRR09, s-BLN+13]. Second, we

study the problem of routing packets between undifferentiated sources and sinks

in a network (Section 4.1.2). We provide a purely local algorithm that transmits

packets hop by hop in the network and study its behavior [c-CHN+10]. Finally,

motivated by video streaming problems, we investigate broadcasting (one to all) in

Peer-to-peer networks (Section 4.1.3). Here, the objective is to maintain an efficient

broadcasting tree, both minimizing the delay and maximizing the bandwidth, in a

purely local model [c-GMNP13].

1Contrary to previous chapters, this chapter does not deal at all with pursuit-evasion games.
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Section 4.2 focuses on compact routing motivated by the increase of Inter-

net network’s size. The main question is the design of routing tables that are

zone of local memory allowing to guide messages routing. We first survey the

literature on compact routing in various graph classes. Then, we present our

results obtained in the case of graphs with bounded chordality or hyperbolic-

ity [c-NRS09, j-NRS12, c-KLNS12, j-KLNS14]. These results rely on structural

characterizations presented in previous chapters. We also proposed a randomized

fault-tolerant routing algorithm. We prove it achieves good performances in grids

and expanders [c-HIKN10].

Finally, Section 4.3 presents a new model of distributed computing that al-

lows nodes of a graph to gather only local knowledge [c-BMN+11, c-BKN+12,

j-BKM+14]. We investigate the computation of various graph structural prop-

erties in this model, providing several impossibility results such as algorithms that

actually compute some non-trivial properties. This study mainly aims at deciding

which connectivity properties (connectivity, spanning trees, BFS trees, etc.) may

be computed with local knowledge.
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4.1 Routing in various telecommunication networks

This eclectic section presents three different problems, related to routing, that we

studied in wireless and peer-to-peer networks. The first one is an optimization

problem that consists in finding routes and schedules of messages in a centralized

setting [c-BNRR09, s-BLN+13]. The next two works are the design of purely local

algorithms and the study of their convergence and performances: one for mul-

ticast [c-CHN+10] and the other one for maintaing an efficient diffusion tree in

dynamic networks [c-GMNP13]. Since the kind of networks studied in this section

is a bit far from the main topic of this thesis, the related work is minimalist and

the interested reader can see the references therein for more information.

4.1.1 Data Gathering in Wireless Grids with Interferences

We first study a problem that was motivated by designing efficient strategies to

provide internet access using wireless devices [BBS05]. Typically, several houses in

a village need access to a gateway (for example a satellite antenna) to transmit and

receive data over the Internet. To reduce the cost of the transceivers, multi-hop

wireless relay routing is used. We formulate this problem as gathering information

in a Base Station of a wireless multi-hop network when interferences constraints are

present. This problem is also known as data collection and is particularly important

in sensor networks and access networks.

Model of communication

We adopt the network model considered in [BGK+06, BGR10, BKK+10, FFM04,

RS08]. The network is represented by a node-weighted symmetric digraph G =

(V,E). More specifically, each node in V represents a device (sensor, station, . . . )

that can transmit and receive data. The network is assumed to be synchronous.

We suppose that each device is equipped with an half duplex interface: a node

cannot both receive and transmit during a step. This models the near-far effect of

antennas: when one is transmitting, it’s own power prevents any other signal to be

properly received. There is a special node called the Base Station (BS), which is the

final destination of all data possessed by the nodes of the network. Each node may

have any number of pieces of information, or messages, to transmit, including none.

There is an arc from u to v if u can transmit a message to v. We suppose that the

digraph is symmetric; so if u can transmit a message to v, then v can also transmit

a message to u. Therefore G represents the graph of possible communications.

Calls (transmissions) are directed: a call (s, r) is defined as the transmission of one

message from the node s, the sender, to node r, the receiver, where (s, r) ∈ E.

We use a binary asymmetric model of interference based on the distance in the

communication graph. Let d(u, v) denote the distance between u and v in G and

dI be an nonnegative integer. We assume that when a node u transmits, all nodes

v such that d(u, v) ≤ dI are subject to the interference from u’s transmission. We

assume that all nodes of G have the same interference range dI . Two calls (s, r)
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and (s′, r′) do not interfere if and only if d(s, r′) > dI and d(s′, r) > dI . Otherwise

calls interfere (or there is a collision). These hypotheses are strong and under

the assumption of a centralized view. Moreover the binary interference model is a

simplified version of the reality, where the Signal-to-Noise-and-Interferences Ratio

has to be above a given threshold for a transmission to be successful. However,

our results will give upper bounds on the maximum possible number of users in the

network.

Following [FFM04, GR09, RS07, RS08, ZTG05] we assume that no buffering is

done at intermediate nodes and each node forwards a message as soon as it receives

it. One of the rationales behind this assumption is that it frees intermediate nodes

from the need to maintain costly state information and message storage.

Gathering and Personalized broadcasting

We focus on grids as they model well both access networks and also random net-

works [KLNP09]. The gathering problem consists in computing a multi-hop schedule

for each message to reach the BS under the constraint that during any step any two

calls do not interfere within the interference range dI . Actually, we will describe

the gathering schedule by illustrating the schedule for the equivalent personalized

broadcasting problem since this formulation allows us to use a simpler notation and

simplify the proofs. In this problem, the base station BS has initially a set of per-

sonalized messages and they must be sent to their destinations, i.e., each message

has a personalized destination in V , and possibly several messages may have the

same destination. The problem is to find a multi-hop schedule for each message to

reach its corresponding destination node under the same constraints as the gath-

ering problem. The completion time or makespan of the schedule is the number

of steps used for all messages to reach their destination and the problem aims at

computing a schedule with minimum makespan.

Gathering problems have received much recent attention. The papers most

closely related to our work are [BGP+11, BGR10, FFM04, GR09, RS07]. [FFM04]

firstly introduced the data gathering problem in a model for sensor networks similar

to the one adopted in this paper. It deals with dI = 0 and gives optimal gathering

schedules for trees. Under the same hypothesis, an optimal efficient algorithm for

general networks is presented in [GR09] in the case each node has exactly one

message to deliver. In [BGR10] (resp [BGP+11]) optimal gathering algorithms for

tree networks in the same model considered in the present paper, are given when

dI = 1 (resp.,dI ≥ 2). In [BGP+11] it is also shown that the Gathering Problem

is NP-complete if the process must be performed along the edges of a routing tree

for dI ≥ 2 (otherwise the complexity is not known). Furthermore, for dI ≥ 1 a

(1 + 2
dI
) factor approximation algorithm is given for general networks. The case

of open-grid where BS stands at a corner and no messages have destinations in

the first row or first column, called axis in the following, is considered in [RS07],

where a 1.5-approximation algorithm is presented. Other related results can be

found in [BCY09, BGK+06, BP12, BY10](see [BKK+10] for a survey). There are
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Interference Additional hypothesis Performances

without buffering with buffering

dI = 0 +2-approximation

open grid +1-approximation

dI = 1 1-open grid +3-approx. ×1.5-approx.

2-open grid ×1.5-approximation

dI = 2 2-open grid +4-approx. ×2-approx.

Table 4.1: Performances of our gathering and personalized broadcasting algorithms.

articles in which data buffering is allowed at intermediate nodes, achieving a smaller

makespan. In [BGK+06], a 4-approximation algorithm is given for any graph. In

particular the case of grids is considered in [BP12], but with exactly one message

per node.

Contributions

We have proposed algorithms to solve the personalized broadcasting problem (and

so the equivalent gathering problem) in a grid with the model described above

(synchronous, no buffering, one message transmitted by step and binary asymmetric

model interference with a parameter dI). Initially all messages stand at the base

station BS and each message has a particular destination node (possibly several

messages may be sent to the same node). Our algorithms compute in linear time

(in the number of messages) schedules with no calls interfering, with a makespan

differing from the lower bound by a small additive constant. The main results are

summarized in Table 4.1.

More precisely, our results vary a little bit depending on the positions of the

destinations with respect to the base station. The grid is endowed natural coordi-

nates with the base station as origin, i.e., with coordinates (0, 0). A corner of the

grid is a node with degree 2. The row and column of the base station are called

the axis of the grid. A grid with arbitrary base station is said to be an open-grid if

no destination nodes are on the axes. A grid with arbitrary base station is said to

be an 2-open-grid if no destination nodes are at distance at most 1 from any axis.

Finally, an instance is called 1-open grid if the base station is in a corner and at

least one of the following conditions is satisfied: (1) All messages have destination

nodes in the set {(x, y) : x ≥ 2 and y ≥ 1}; (2) All messages have destination nodes

in the set {(x, y) : x ≥ 1 and y ≥ 2}.

Theorem 62 There are linear-time (in the number of messages) algorithms that

solve the gathering and the personalized broadcasting problems in any grid, achieving

an optimal makespan up to an additive constant c where: [c-BNRR09,
s-BLN+13]

c = 2 when dI = 0; c = 1 in open-grid when dI = 0;

c = 3 in 1-open-grid when dI = 1; c = 4 in 2-open-grid when dI = 2.

Our algorithms are based on greedy ordering of the messages (by non-increasing

distance to BS) sent along simple (with at most one “turn”) shortest paths, which
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gives a lower bound on the makespan but may induce collisions. Then, we prove

that, by dynamic programming, we can slightly modify the position of the messages

(by local exchanges) in this ordering and add some small detour to achieve a valid

schedule (without collision) and obtaining a makespan close to the optimal one.

Note that the complexity of computing an optimal schedule is not known in our

setting.

4.1.2 Stability of a local and greedy routing algorithm

In this short section, we study the problem of routing packets between undifferen-

tiated sources and sinks in a network modeled by a multigraph [c-CHN+10]. We

consider a distributed and local algorithm that transmits packets hop by hop in the

network and study its behavior. At each step, a node transmits its queued packets

to its neighbors in order to optimize a local gradient. This protocol is greedy since it

does not require to record the history about the past actions, and local since nodes

only need informations about their neighborhood. We study the protocol stability

region, i.e., the packet arrival rates such that the number of packets stored at the

nodes of the network keeps bounded.

In previous work, Srikant et al.[WS05] studied distributed and local algorithms

to transmit packets in a network (see also [TE92]). In this work, packets are injected

into the network following a stochastic process that respects a strict feasibility

constraint, meaning that the number of added packets at each time is always strictly

lower than the value of the maximum flow. In case of a single destination, other

work has considered processes in which packets are generated by an adversary who

wants to make the protocol fail [Tsa97, ABBS01]. In this work, we consider the

case of multicast (many-to-many).

Let G = (V,E) be a n-node multigraph modeling the considered network. S
is the set of sources and D the one of destinations. To each vertex is associated

a queue length which represents the number of packets waiting to be transmitted

at this node. We represent this queue length by qt(v) for v ∈ V and a given time

step t. The network is synchronous and at each time step: (1) each source s ∈ S
injects in(s) packets in its queue, (2) each link can transmit at most 1 packet, and

this packet can be lost without any notification, and (3) each sink d ∈ D extracts

min{out(d), qt(d)} packets of its queue. All links can transmit at the same time, so

we do not consider interference constraints.

We are interested in the total number of stored packets at a given time in the

network. We propose and study the very simple following algorithm called Local

greedy gradient (LGG): each node u transmits 1 packet through each of its outgoing

arcs uv if v as a smaller queue length, as long as u still has packets in its queue.

In particular, if u has more than qt(u) neighbors with smaller queue length, then it

chooses to send to its qt(u) neighbors of smallest queue length.

Our study can be related to the distributed algorithm for the maximum flow

problem proposed by Goldberg and Tarjan [GT88]. Let G∗ be the multigraph

obtained from G by adding a virtual source s∗ and a virtual sink d∗, with a link
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of infinite capacity between s∗ and s for all s ∈ S, and a link of capacity out(d)

between d and d∗ for all d ∈ D. The network G is unsaturated if it exists a fractional

s∗-d∗-flow Φ in G∗ such that in(s) < Φ(s∗, s) for each source s ∈ S. We show that,

Theorem 63 In unsaturated networks, LGG is stable. [c-CHN+10]

For this purpose, we show that, for all t, Pt =
∑

v∈V q2t (v) is bounded by some

polynomial function of n, the maximum degree of G and the value of a maximum

flow from s∗ to d∗. The case of saturated networks, i.e., if it exists a fractional

s∗-d∗-flow Φ in G∗ such that in(s) ≤ Φ(s∗, s) for each source s ∈ S, is still open.

4.1.3 Maintaining efficient diffusion trees for streaming systems

In this section, we propose and analyze a simple local algorithm to balance a

tree [c-GMNP13]. The motivation comes from live distributed streaming systems

in which a source diffuses a content to peers via a tree, a node forwarding the data

to its children. Such systems are subject to a high churn, peers frequently joining

and leaving the system. It is thus crucial to be able to repair the diffusion tree to

allow an efficient data distribution. In particular, due to bandwidth limitations, an

efficient diffusion tree must ensure that node degrees are bounded. Moreover, to

minimize the delay of the streaming, the depth of the diffusion tree must also be

controlled.

Context

Trees are inherent structures for data dissemination in general and particularly in

peer-to-peer live streaming networks. Indeed, the dissemination of a single piece of

information generally defines a tree structure. Even in unstructured networks, whose

main characteristic is lack of defined structure, many systems look into perpetuat-

ing such underlying trees, e.g. the second incarnation of Coolstreaming [LQK+08]

or PRIME [MR09]. Unsurprisingly, early efforts into designing peer-to-peer video

streaming concentrated on defining tree-based structures for data dissemination.

However, such structures suffer two drawbacks. First, they lead to unused band-

width at the leaves of the tree. To fix this problem, it has been proposed to maintain

multiple concurrent trees to tolerate failures, and internal nodes in a tree are leaf

nodes in all other trees to optimize bandwidth [CDK+03, VYF06]. Second, these

structures are fragile because of the important node churn in live streaming net-

works [LQK+08]. To ensure churn-resiliency, several approaches have been proposed

such as maintaining redundancy within the network structure [PTT09, LXHL11].

However, proposed solutions to maintain balanced trees are generally to periodical

rebuild the whole tree from scratch. The analysis of these systems focus on the

feasibility, construction time and properties of the established overlay network, see

for example [CDK+03, VYF06] and [DFC07] for a theoretical analysis. But this

work usually abstracts over the issue of tree maintenance. Generally, in this work,

when some elements (nodes or links) of the networks fail, the nodes disconnected
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from the root execute the same procedure as for initial connection. To the best of

our knowledge, there are no theoretical analysis on the efficiency of tree mainte-

nance in streaming systems, reliability is estimated by simulations or experiments

as in [CDK+03].

Balancing a tree

The problem setting is as follows. A single source provides live media to some nodes

in the network. This source is the single reliable node of the network, all other peers

may be subject to failure. Each node may relay the content to further nodes. Due to

limited bandwidth, both source and any other node can provide media to a limited

number k ≥ 2 of nodes. The network is organized into a logical tree, rooted at

the source of media. That is, we assume that the overlay is already a spanning

tree. However, it may have an arbitrary shape, e.g. be a path or a star (all nodes

connected directly to the root). Note that the delay between broadcasting a piece

of media by the source and receiving by a peer is given by its distance from the root

in the logical tree. Hence our goal is to minimize the tree depth, while following

degree constraints. It is easy to see that such a tree T is any k-balanced tree, i.e.,

any k-ary tree2 such that, for each node v ∈ V (T ), the sizes of the subtrees rooted

in the children of v differ by at most one.

In this work (following e.g., [HLP+07, CDPT08, BCH+09]), we assume that

nodes can reliably communicate, form connections and detect failures. We assume

a reconnection process: when a node leaves, its children reattach to its parent. This

can be done locally if each node stores the address of its grandfather in the tree.

Note that this process is performed independently of the bandwidth constraint,

hence after multiple failures, a node may become the parent of many nodes. The

case of concurrent failures of father and grandfather can be handled by reattaching

to the root of the tree. Other more sophisticated reconnection processes have been

proposed, see for example [HLP+07].

This process can leave the tree in a state where either the bandwidth constraints

are violated (the degree of a node is larger than k) or the tree depth is not optimal.

Thus, we propose a distributed balancing process, where based on information about

its degree and the subtree sizes of its children, a node may perform a local operation

at each turn. We show that this balancing process, starting from any tree, converges

to a balanced tree and we evaluate the convergence time.

Distributed model, algorithm and analysis

Nodes are autonomous entities running the same algorithm. Each node v has a

local memory where it stores the size nv of its subtree, the size of the subtrees of

its children and the size of the subtrees of its grand-children, i.e., for any child x

of v and for any child y of x, v knows nx and ny. Computations performed by the

nodes are based only on the local knowledge, i.e., the information present in the

local memory and that concerns only nodes at distance at most 2. We consider a

2A rooted tree is a k-ary tree if each node has k children or less if its children are all leaves.
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synchronous setting. That is, the time is slotted in turns. At each turn, any node

may run the algorithm based on its knowledge and, depending on the computation,

may do one of the following operations. In the algorithm we present below, each

operation done by a node v consists of rewiring at most two edges at distance at

most 2 from v. Moreover, each operation may be done using a constant number of

messages of size O(log n).

In this setting, at every turn, all nodes sequentially run the algorithm. In order

to consider the worst case scenario, the order in which all nodes are scheduled

during one turn is given by an adversary. The algorithm must ensure that after a

finite number of turns, the resulting tree is k-balanced. We are interested in time

complexity of the worst case scenario of the repair. That is, the performance of

the algorithm is measured by the maximum number of turns after which the tree

becomes k-balanced, starting from any n-node tree.

At each turn, a node v executes the algorithm described on Figure 4.1. It is

important to emphasis that the balancing process requires no memory of the past

operations.

Algorithm executed by a node v in a tree T . If v is not a leaf, let (v1, v2, · · · , vd) be

the d ≥ 1 children of v ordered by subtree-size, i.e., nv1 ≥ nv2 ≥ · · · ≥ nvd .

1. If v is underloaded (i.e., d < k), let a be a child of v1 with biggest subtree size.

Then a becomes a child of v.

2. Else if v is overloaded (i.e., d > k), then vk+1 becomes a child of vk.

3. Else if v is imbalanced (i.e., d = k and v has two children x and y of v such

that |nx − ny| > 1) and if v1 and vk are not overloaded, let a and b be two

children of v1 and vk respectively such that |nv1 − na + nb − (nvk − nb + na)|

is minimum.

Then a and b exchange their parent.

Figure 4.1: Balancing Process

Theorem 64 Starting from any n-node rooted tree, the balancing process (k = 2)

reaches a 2-balanced tree in O(n2) turns. [c-GMNP13]

To prove the above theorem, we define a (non-trivial) potential function and

show that: (1) the initial value of the potential function is bounded; (2) its value

may raise due to pull operations (operation 1), but in a limited number of turns

and by a bounded amount; (3) a swap operation (operation 3) may not increase its

value; (4) if no push nor pull operations (operations 2 or 3) are done, there exists

at least one node doing a swap operation, strictly decreasing the potential function.

Unfortunately, we don’t know whether this analyze is tight since the best lower

bound we found is the following. If the initial tree is a n-node star, then at least

Ω(n) turns are needed before the resulting tree is k-balanced [c-GMNP13].

To get a better understanding, we assume an extra global knowledge: each node

knows whether it has a descendant that is not balanced. This extra information
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is updated after each operation. Then, our algorithm is modified by adding the

condition that any node v executing the balancing process can do a pull or swap

operation only if all its descendants are balanced. Adding this property allows to

prove better upper bounds on the number of steps, by avoiding conflict between

an operation performed by a node and an operation performed by one of its not

balanced descendant. We moreover prove that this upper bound for our algorithm

is asymptotically tight, reached when input tree is a path.

Theorem 65 Starting from any n-node rooted tree, the balancing process with

global knowledge reaches a 2-balanced tree in O(n log n) turns. This bound is tight.[c-GMNP13]

Because of the significant gap in our worst case analysis of the Balancing process,

we also investigated the performance of the algorithm running an implementation

under a discrete event simulation. From these simulations, the number of turns

spent to balance a random tree progresses logarithmically in regard to the tree size.

An interesting continuation of our work would be the examination of our algorithm’s

average behavior, which as hinted by simulations should yield O(log n) bound on

balancing time.

4.2 Compact routing

In previous Section, we have considered two extreme models for routing messages

in a network. In Section 4.1.1, the computation was fully centralized and the

objective was to achieve an optimum delay, i.e., mainly routing via shortest paths.

On the other hand, in Section 4.1.2, nodes had no knowledge at all about the

network and the objective was to ensure some throughput without any guaranties

on messages delivery and delay. Moreover, in both cases, there were either a single

or undistinguished destinations. Such approaches cannot be used in networks such

as the Internet where a certain level of guaranty is required while nodes cannot

have a full knowledge of the topology.

In this section, we consider distributed communication networks where messages

must be efficiently delivered between pairs of processors. Any source or intermediary

node must be able to fast route messages to their destination nodes with only limited

knowledge. More precisely, each node is an autonomous computing entity. When

a message arrives at some node, the node can read the header of the message

that contains information including the message’s destination. Then, using this

information and its local information, stored in its routing table, the node decides

the out-port by which the message must be transferred to eventually reach its

destination. The distributed algorithm executed by the node to direct the traffic

is called routing scheme. If the designer of the routing scheme is allowed to define

the identifiers of the nodes (then, the name of the destination may bring some

information for the routing) then the scheme is said labelled. Otherwise, i.e., if the

routing scheme must work whatever be the identifiers, it is said name independent.
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When investigating routing schemes, several complexity measures arise. On the

one hand, it is desirable to use as short paths as possible for routing messages.

Efficiency of a routing scheme is measured in terms of its multiplicative stretch

factor (resp., additive stretch factor), i.e., the maximum ratio (resp., difference)

between the length of a route computed by the scheme and that of a shortest path

connecting the same pair of nodes. On the other hand, as the amount of storage

at each processor is limited, the routing information stored in the processors’ local

memory (the routing tables) must not require too much space with respect to the

size of the network. As it is shown below, acceptable tradeoff can only been achieved

when considering networks with specific structural properties. A routing scheme

that works in any graph is said universal.

Last but not least, designing a routing algorithm requires not only to define

the routing scheme but also to give an algorithm for computing and updating the

routing tables. Because of the dynamicity of networks, it is important to be able

to compute the routing information in an efficient distributed way. While many

works propose good tradeoffs between the stretch and the size of routing tables,

the algorithms that compute those tables are often impracticable because they

are centralized or because of their time-complexity (e.g., require to compute some

good decomposition or parameter of the graph). However, in the context of large

scale networks like social networks or Internet, even polynomial time algorithms

are inefficient. Below, we insist on the tradeoff between the length of the computed

routes and the time complexity of computing “compact”3 routing tables.

4.2.1 Tradeoff knowledge/performance/graph structures

The problem of designing routing schemes with small routing tables (RT) size as

been introduced at the very beginning of the Internet [KK77, PU89]. It is well-

known that no universal routing scheme can achieve shortest paths with compact

routing tables. More formally, for any such scheme achieving routes with opti-

mal length, there are graphs where routing tables with Ω(n log n) bits per node

are required [FG97]. Following the work in [TZ01, AGM+04, TZ05, AGM06b],

a universal name-independent routing scheme with stretch linear in k and space

n1/kpolylog(n) space is provided [AGM+08]. Surprisingly, this achieves the same

performances as the ones of labelled schemes [TZ01, TZ05]. Lower bounds are pro-

vided in [AGM06a] where Abraham et al. prove that there are weighted trees for

which every name-independent routing scheme with space less than n1/k requires

stretch at least 2k + 1 and average stretch at least k/4.

Subsequently, the interest of the scientific community was turned toward specific

properties of graphs. Dedicated routing scheme have been proposed for trees [FG01]

and planar graphs [Tho04], and more generally for graphs excluding some fixed

minor [AGM05, AG06]. Several universal routing schemes have been proposed that

have good performance when the graph has some bounded parameter.

3By compact, people generally mean that routing tables have size logarithmic in the network’s

size.
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Bounded doubling dimension.

The doubling dimension of a graph G, and more generally of a metric space (X, d),

is the least k such that any ball of radius R can be covered by 2k balls of radius

R/2 [GKL03]. The problem of determining the doubling dimension of a graph is

NP-complete. Fraigniaud et al. [FLV08] studied the doubling dimension of the

Internet and they verified that the doubling dimension of the Internet is large.

It has also been considered in the context of small world and augmented graphs

[FLL06, FLL10]. Efficient compact routing schemes have been proposed for static

graphs with bounded doubling dimension, both in the labelled and in the name-

independent models. In the labelled model, routing schemes with multiplicative

stretch depending on the doubling dimension and using logarithmic routing tables

have been proposed in [CGMZ05, AGGM06]. More precisely, [CGMZ05] shows how

to perform (1+ x)-stretch routing on metrics for any 0 < x < 1 with routing tables

of size at most (d/x)O(d) log2(D) bits with at most (d/x)O(d) log(D) entries in any

graph with doubling dimension d and diameter D. The tables can be computed

in a distributed way using a distributed breadth-first-search algorithm; this result

has been extended in [Sli07]. A name-independent routing scheme for graphs with

doubling dimension d is provided in [AGGM06, KRX06]. It achieves constant mul-

tiplicative stretch and requires tables of size 2O(d) log n bits. Moreover, it has been

proven that any name-independent routing scheme using o(dn) bits has stretch at

least 3.

Bounded growth.

A weighted undirected network is ∆ growth-bounded if the number of nodes at dis-

tance 2r around any given node is at most ∆ times the number of nodes at distance

r around the node. G has growth dimension s if G is 2s growth-bounded. An alter-

native definition is the following: an undirected graph G = (V,E) is called growth-

bounded if there exists a polynomial bounding function f(r) such that for every

v ∈ V and r ≥ 0, the size of any maximal independent set in the r-neighborhood

Γr(v) is at most f(r). The problem of determining the value ∆ bounding the

growth of a graph is NP-complete. In [FLV08] it is shown that the ball growth of

the Internet is large. We remark that any metric with constant growth-bound has

constant doubling dimension, while the opposite is not always true [GKL03]. Abra-

ham and Mahlki [AM05] proposed a name-independent compact routing scheme

for graphs with bounded growth. Given a weighted undirected network and ǫ > 0,

their routing scheme allows routing along paths of stretch 1 + ǫ and uses routing

tables of only O(1/ǫO(log∆) log5 n) bits per node with high probability. Duchon et

al. [DHLS06] proved that if a graph has moderate growth, i.e., the size of the balls

of radius r is bounded by rO(1/(r log r)), then it can be turned into a navigable small

world (augmented by the addition of some “long links”).
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General approach.

There is a general approach where actually all known graph-specific name-indepen-

dent routing scheme belongs to. A (s, δ)-sparse cover [AP90] for a graph G is

a set of clusters C ⊂ 2V (G) such that, for any r ≥ 0: (1) ∀u ∈ V (G), ∃C ∈
C such that B(u, r) ⊆ C, (2) ∀C ∈ C, the diameter of G[C] is ≤ sr, and (3)

∀u ∈ V (G), |{C ∈ C : u ∈ C}| ≤ δ. If graph G with diameter D has a (s, δ)-

sparse cover, then it also admits a name-independent routing scheme with space

δ logD ·polylog(n) and stretch O(s) [TZ05, AGMW10]. The sparse cover technique

applies on unweighted minor-free graphs (see also [AGG+13]), but also on weighted

bounded growth/doubling dimension graphs. What is interesting in this approach is

that the corresponding routing schemes are generic, i.e., universal, and they do not

need the pre-computation of some parameter of graphs. However, as a drawback,

some sparse cover must be either known in advance or discovered.

Internet-like topologies.

Recent studies have applied compact routing schemes on Internet-like topologies

by taking advantage of their topological properties (network diameter growing log-

arithmically in the number of nodes and node degree distribution following power

law). In [KFY04], Krioukov et al. showed that the average performance of the

stretch-3 compact routing scheme of Thorup on Internet-like topologies is much

better than its worst case, it achieves an average stretch = 1.1 (up to 70% of all

pair-wise paths being stretch-1 shortest paths). Recently, it has been shown that

the general name-dependant routing scheme of Thorup and Zwick performs quite

well for scale-free networks [CSTW12]: RT size are proved to be in O(nt) where t is

a small constant less than 1/3 depending on the power-low coefficient of the node

degree distribution.

Challenging issues.

The above mentioned techniques have two main drawbacks when large-scale and

dynamic networks are concerned. The first is that large scale networks like the

Internet do not behave well with respect to the above parameters (doubling dimen-

sion, bounded growth, etc.). For instance, the AS network is far from having a small

treewidth since it is highly connected and, hence, exhibits a high clustering coeffi-

cient. The second challenge stems from that the efficiency of these routing schemes

mainly follows from the fact that they use some global view/representation/decom-

position of graphs that are difficult to compute even in a static and centralized

setting. In particular, drawbacks resulting from the name-dependence of the rout-

ing scheme remain unaddressed and limit their applicability to static topologies

(thus inapplicable for dynamic and evolutive topologies such as the Internet).
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4.2.2 Routing in k-chordal graphs

In order to deal with this problems, we have focused on another structural prop-

erty of graphs, namely the chordality. Our main objective is to provide universal

routing scheme for which routing tables are easy to compute and that achieve inter-

esting performances in graphs with small chordality [c-NRS09, j-NRS12, c-KLNS12,

j-KLNS14].

Large scale networks are known to have low (logarithmic) diameter and to have

high clustering coefficient. Therefore, their chordality (the length of the longest

induced cycle) is expected to be somehow limited (e.g., see [Fra05]). Hence, we

focus on the class of k-chordal graphs. A graph G is called k-chordal if it does not

contain induced cycles longer than k. The chordality of a graph is the smallest k such

that the graph is k-chordal. A 3-chordal graph is simply called chordal. This class of

graphs received particular interest in the context of compact routing. Dourisboure

and Gavoille proposed routing tables of at most log3 n/ log log n bits per node,

computable in time O(m+n log2 n), that give a routing scheme with additive stretch

2⌊k/2⌋ in the class of k-chordal graphs [DG02, DG07]. Also, Dourisboure proposed

routing tables computable in polynomial time, of at most log2 n bits, but that give

an additive stretch k+1 [Dou05]. Using a Lexicographic Breadth-First Search (Lex-

BFS) ordering (resp., BFS-ordering) of the vertices, Dragan designed a O(n2)-time

algorithm to approximate the distance between all pairs of nodes up to an additive

constant of 1 in n-node chordal graphs, and up to k− 1 in, more general, k-chordal

graphs [Dra05]. All these time complexity results consider the centralized model of

computation.

Contributions

In [c-NRS09, j-NRS12], we present a simple universal routing scheme based on

spanning trees of graphs. Once computing a rooted spanning tree of the graph, the

messages have just to be rooted in the tree unless a neighbor w (not necessarily in

the tree) of their current position is an ancestor of the destination. In the latter

case, the message is routed to w. Our main contribution is to show that, using[c-NRS09,
j-NRS12] particular spanning trees (using BFS-orderings of the vertices of the graph), this

routing scheme achieves good performances in k-chordal graphs.

In order to compute the routing tables of any n-node graph with diameter

D we propose a distributed algorithm which uses messages of size O(log n) and

takes O(D) time. The corresponding routing scheme achieves the stretch of k −
1 on k-chordal graphs [c-NRS09, j-NRS12]. We then propose a routing scheme

that achieves a better additive stretch of 1 in chordal graphs. In this case, the

distributed computation of the routing tables takes O(min{∆D,n}) time, where

∆ is the maximum degree of the graph. Our routing schemes use addresses of size

log n bits and local memory of size 2(d−1) log n bits per node of degree d. The main

advantage of our routing scheme is that the routing tables of this scheme can be

(re)built from scratch in a efficient way, i.e., spreading a small amount of messages

through the network.
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We then continued investigating compact routing schemes in chordal graphs to

achieve better tradeoffs [c-KLNS12, j-KLNS14]. Our idea has been to take use of

the caterpillar tree-decomposition introduced in Chapter 2. Indeed, in such tree-

decomposition, it is not the size of the “bags” that are important but the structure

of the subgraphs induced by the bags (caterpillars). Such a structure is actually

very useful for routing. Moreover, recall that the algorithm we presented (see

Section 2.1) to compute such decompositions is greedy which makes it amenable to

a distributed implementation. Using caterpillar tree-decompositions, we obtained

the following result.

Theorem 66 For any n-node m-edge graph G with maximum degree ∆ and with

a k-good tree-decomposition, there is a labelled routing scheme R with the following

properties. R uses addresses of size O(log n) bits, port-numbers of size O(log∆) bits [c-KLNS12,
j-KLNS14]and routing tables of size O(k · log∆+log n) bits. The routing tables, addresses and

port-numbers can be computed in time O(m2). Except the address of the destination

(not modifiable), the header of a message contains O(k · log∆) modifiable bits. The

header and next hop are computed in time O(1) at each step of the routing. Finally,

the additive stretch is ≤ 2k(⌈log∆⌉+ 5
2)− 2⌈log∆⌉ − 4.

Since the Internet is thought to have few long induced cycles (because of its high

clustering), this approach seems promising and it would be nice to point out other

properties satisfied by the Internet and that could fit in this framework (dealing

with the structure of the bags). A possible direction is to introduce some graph

embeddings into metric spaces and see if that would provide more tools or structures

(like e.g., the triangular inequality) to improve the behaviour and the analysis of our

scheme. In particular, introducing the hyperbolicity in this framework is our next

step. Since computing the hyperbolicity in huge networks is already a challenging

issue, we have started working on attempts to provide a new characterization of

this property. Thanks to the Cops and Robber games, we have established a link

between such an ordering of the vertices and the hyperbolicity of the graph. This

gives an algorithmic approach and a new (partial) characterization for the graph

with bounded hyperbolicity (see Section 1.2).

4.2.3 Fault tolerant routing

Compact routing has also been studied in dynamic environment. More precisely,

Courcelle and Twigg introduced compact routing with forbidden sets where the

routing tables must ensure efficient routing even if any bounded number of nodes

fail [CT07] (see also [ACGP10, ACG12]). In [c-HIKN10], we study the problem of

finding a destination node t by a mobile agent in an unreliable network where a

bounded number of unknown nodes have a byzantine behavior.

We consider the problem of locating an item hosted by some node of the network

when each of the nodes maintains a database storing the first edge on a shortest path

to the node hosting the desired item (the destination). The search is performed by

a mobile agent with a limited perception of the environment and with little memory
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which starts from some initial node, the source. When occupying a node, the mobile

agent can perform a query to the node’s database that reveals to it an edge that

is the beginning of a shortest path from the current node to the item. We assume,

however, that some nodes may provide wrong information, that is, a node v may

be a liar and indicate an edge that does not belong to any shortest path from v

to the destination. This is motivated by the fact that inaccuracies occur in the

nodes’databases because nodes may malfunction or be malicious, or may store out-

of-date information due to the movement of items or the dynamicity of the network.

The problem is then to deal with the potentially incorrect information and to

find the desired item. That is, the mobile agent can decide to follow the edge

pointed by its current node’s database or not. The performance of the search is

measured by comparing the searching time (a.k.a. hitting time), i.e., the length of

the walk followed by the agent from the source to the destination, with the length

d of a shortest path between these nodes.

Related Work

The search problem in the presence of liars was first investigated by Kranakis and

Krizanc [KK99]. In this seminal work, they designed algorithms for searching in

distributed networks with ring or torus topology, when a node has a constant prob-

ability of being a liar [KK99]. The case when the number k of liars is bounded

was first considered in [HKK04], where deterministic algorithms were designed for

particular topologies like the complete graph, ring, torus, hypercube, and bounded

degree trees. In particular, in bounded degree trees, it is proved that the search

time is lower-bounded by Ω(d+2min{k,d}) [HKK04]. Simple randomized and memo-

ryless algorithms are designed in [HKKK08] for the case of bounded degree graphs,

where the mobile agent follows the advice with some fixed probability p > 1/2. In

this class of graphs, the authors showed that the expected distance covered before

reaching the destination is upper-bounded by O(d+ rk), where r = q
1−q [HKKK08].

Moreover, this bound is tight since they proved a lower bound of Ω(d + rk) in the

torus [HKKK08]. While this bound is a bit disappointing, it can be improved for

particular graph classes.

Roughly speaking, the algorithms we present in this paper consist of alternation

of phases of given duration: either the agent keeps on following the advice provided

by the nodes or it walks choosing the next visited node uniformly at random in

the neighborhood of the current position. This is closely related to biased random

walks (BRW) which are random walks in which nodes have a statistical preference

to shift the walker towards the target, or more generally, prevent the walker from

staying too long in one vicinity [ABK+96]. More formally, biased random walks are

used in network exploration in order to speed up the time required to visit the whole

network without an a-priori knowledge of the topology and without an edge/node

labeling requirement. For instance, Ikeda et al. proved in [IKOY03] that, assuming

the knowledge of the degrees of the neighbors, a biased random walk can explore

any graph within O(n2 log n) edge traversals whereas a uniform random walk takes
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Table 4.2: Searching in a path with liars. The listed strategies have no knowledge

of inbound ports used by the agent.

Strategy Expected searching time Memory Reference

BRW [p < 1/2] 2Ω(d) −
[Lov93]

BRW [p = 1/2] Ω(dn) −
BRW [p > 1/2] Ω(d+ 2Ω(k)) − [HKKK08]

R/A 2d+ kΘ(1) + o(d) timer [c-HIKN10]

Table 4.3: Searching with liars in random ∆-regular graphs. Results marked with

(∗) allow the agent to make use of labels of inbound ports and to have knowledge

of n and k.

Strategy Expected searching time (a.a.s.) Memory Reference

∗ lower bound Ω(min{(∆− 1)k, (∆− 1)d, logd n}) [c-HIKN10]

BRW [p > 1/2] Θ(min{(∆− 1)k, nΘ(1)}) −
BRW [p = 1/2] Ω(log2d n) − [CF05]

BRW [p < 1/2] nΘ(1) −
∗ R/A/E O(k log n) Θ(log k + log logd n) [c-HIKN10]

R/A O(k3 log3 n) timer [c-HIKN10]

Θ(n3) steps for some graphs. In our context, however, the bias may be erroneous

due to the presence of liars.

In our work, we focus on some particular and widely used topologies. Expanders

and random regular graphs have been extensively studied for the design of optimal

networks and algorithms for routing [NPSY94, KR96, Fri00]. Because of their low

diameter and high connectivity, random regular graphs are also of interest in Peer-

to-Peer networks (e.g., see [GHW08]). More generally, it can be observed that many

interaction networks like peer to peer overlay networks, small worlds and scale-

free networks are expanders despite this is not proved in the original papers. For

instance, Bourassa and Holt [BH03] proposed a fully decentralized protocol based

on random walks for the nodes to join and leave the network. They conjectured

that their protocol produces random regular graphs, which was proved formally

in [CDG07]. On the other hand, Cooper [CF05] et al. show that random regular

graphs are expanders.

Contributions
[c-HIKN10]

In [c-HIKN10], we investigate the search problem in the class of regular graphs in

the presence of a bounded number of liars. Our main contribution is the design

and study of a randomized algorithm, called R/A that alternates phases of pure

random walk (R) with phases in which the agent follows the advice (A). We show
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that Algorithm R/A improves upon previous algorithms for the search problem in

paths and random ∆-regular graphs. In particular, in these classes, we prove that

the Algorithm R/A achieves searching time much smaller than Ω(d+ 2k), which is

the lower bound for general regular graphs [HKKK08]. Note that the graph classes

we consider capture the two extreme types of behavior in terms of expansion, since

random ∆-regular graphs are good expanders, while the other classes are highly

symmetric graphs with poor expansion. Note, however, that Algorithm R/A is

generic and works for any topology. We also introduce Algorithm R/A/E in which,

in addition of the phases random (R) and advice (A), there is a phase where the

agent explores (E) some bounded ball around its current position. This latter

algorithm requires more memory for the agent.

Tables 4.2 and 4.3 establish a comparison between the performances of Algo-

rithm R/A, and the performances of the Biased Random Walk (BRW).

4.3 Local models and Property testing

We conclude this chapter by discussing an important issue that is related to both

graph property measurements and the potential exploitation of these measurements

by routing algorithms. Centralized solutions for property testing/measurements do

not allow efficiently facing the dynamicity of the Internet networks (variations of

both the topology and the traffic). Hence, it is natural to propose distributed or

even local solutions. That is, solutions where the nodes have bounded memory and

only local knowledge of the network topology. The difference between distributed

and local algorithms is mainly relative to the time that is allowed to the nodes to

exchange messages. Indeed, the less exchanges are allowed, the less the information

can spread through the network and the more partial the knowledge the nodes

have about the network is. However, the notion of distributed or local algorithms

is not well formalized since numerous models exist. Among other difficult points,

one of our objectives is to determine relevant distributed models to be considered.

That is, most of the properties that are relevant for routing schemes have very little

chance to be computable with a pure local view of the topology. On the other hand,

gathering all the information in one node and then spreading the result would not

be realistic in the Internet (it would imply too much control traffic).

Some theoretical and over-simplified models were conceived for studying partic-

ular aspects of distributed protocols such as fault-tolerance, synchronism, locality,

congestion, etc. In the model CONGEST (see the book of Peleg [Pel00]) a network

is represented by a graph whose nodes correspond to network processors and edges

to inter-processor links. The communication is synchronous and occurs in discrete

rounds. In each round every processor can send a message of size O(log n) through

each of its outgoing links (where n is the number of nodes).

Some variations to the CONGEST model have been proposed. The general

idea is to remove some restrictions (making it more powerful) in order to focus

on some particular issues. In that spirit, Linial [Lin92] introduced in a seminal
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paper the free model (also called LOCAL [Pel00]). The only difference with the

CONGEST model is that the restriction on the size of the messages is removed

so that every vertex is allowed to send unbounded size messages in every round.

By relaxing the constraint on the size of the messages, this model focuses on the

issue of locality in distributed systems. For that reason, the answer to the question

What cannot be computed locally? [KMW04] (in the LOCAL model) appears to be a

crucial one. In this context, Kuhn et al. [KMW04] show that difficult problems like

minimum vertex cover and minimum dominating set cannot be approximated well

when processors can exchange arbitrary long messages during a bounded number of

rounds. Frischknecht et al. prove that Ω(n2) bits must be exchanged to determine

the girth of a graph or to decide if the graph has diameter at most 4 [FHW12].

Grumbach and Wu [GW09] also use the CONGEST model. They are interested

in frugal computations, i.e., computations where the total amount of information

traversing each edge is O(log n). Their motivation was to understand the impact

of locality. In fact, they show that for planar networks or networks of bounded

degree, any first order logic formula can be evaluated frugally (in their setting).

More recently, an important research effort is done to formalize local models of

computation [Fra10, FRT11].

Since we need to face both locality and dynamicity issues, we are developing

new techniques allowing to obtain global structural information from local (partial)

views of the network. We have investigated the question of determining which graph

properties can or cannot be computed using only local information. The distributed

model we consider is a restriction of the classical CONGEST (distributed) model

and it is close to the simultaneous message model defined by Babai, Kimmel and

Lokam [BKL95]. More precisely, each of these n nodes only knows its own ID and

the IDs of its neighbours and is allowed to send a message of O(log n) bits to some

central entity, called the referee. We then investigate whether the referee is able

to decide some basic structural properties of the network topology G or not. More

formally:

Definition 1 A one-round protocol Γ is a family (Γl
n,Γ

g
n)n∈N, where:

• Γl
n : {1, . . . , n}×P({1, . . . , n}) → {0, 1}∗ is the local function of Γ for graphs

of size n,

• Γg
n : ({0, 1}∗)n → {0, 1}∗ is the global function of Γ for graphs of size n.

Given G = (V = {1, . . . , n}, E), the message vector of Γ on G is:

Γl(G) =
(

Γl
n(1, NG(1)), . . . ,Γ

l
n(n,NG(n))

)

. (4.1a)

The output of Γ on G is:

Γ(G) = Γg
n(Γ

l(G)). (4.1b)

We define

|Γl(G)| = max
1≤i≤n

|Γl
n(i, NG(i))|. (4.1c)
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Γ is said to be frugal if:

max
G graph of n nodes

|Γl(G)| = O(log n). (4.1d)

Notice that function Γl
n can be evaluated in any pair (i, N) where i ∈ {1, . . . , n}

and N ⊆ {1, . . . , n}. Then, Γl
n(i, N) corresponds to the message sent to the referee

by node i in a graph of n nodes when its neighborhood is N .

In [c-BMN+11, j-BKM+14], we show that even simple questions cannot be solved

in general.

Theorem 67 There is no one-round frugal protocol allowing the referee to decide

whether an arbitrary graph G contains a square or a triangle as a subgraph, or has[c-BMN+11,
j-BKM+14] diameter at most 3.

On the other hand, the referee can decode the messages in order to have full

knowledge of G when G belongs to graph classes like planar graphs, bounded-

treewidth graphs and, more generally, bounded-degeneracy graphs.

Theorem 68 There exists a one-round frugal protocol allowing the referee to re-[c-BMN+11]

construct graphs of bounded degeneracy.

Questions related to the connectivity of arbitrary graphs are still open. We have

continued our investigation by proposing variations of our distributed model. Fol-

lowing our framework, we have exhibited a hierarchy of problems and distributed

models of computation. Without elaborating on the details, we have proposed four

models of distributed computation, called SimAsync,SimSync,FreeAsync and

FreeSync. SimAsync is exactly the model described in Definition 1. The remain-

ing three models are more powerful since nodes are allowed to send sequentially their

message to the referee and may have access to previous messages. In particular,

FreeAsync allows us to simulate asynchronicity of the network. For any model

X, we denote by X[f(n)] the set of problems that can be solved in n-node graphs

in the model X when the nodes are allowed to send messages of size O(f(n)) bits.

Theorem 69 For any f(n) = o(n) we have that[c-BKN+12,
j-BKM+14] SimAsync[f(n)] ( SimSync[f(n)] ( FreeAsync[f(n)] ⊆ FreeSync[f(n)].

In the following table, we summarize our results. no (respectively, yes) in row

i and column j means that property i cannot (respectively, can) be computed in

Model j.

The SimAsync Model is very constrained and so offers very limited power of

computation to nodes. On the other hand, the FreeSync Model is very powerful

but it requires too many computational resources and so is not realistic for practical

applications. Hence, one crucial question for the EULER project is to design an

intermediate local model that would be realistic enough while allowing to compute

basic properties such as connectivity, and possibly more elaborate properties.
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SimAsync SimSync FreeAsync FreeSync

Build k-degenerate yes yes yes yes

rooted MIS no yes yes yes

Square no no ? ?

EOB-BFS no no yes yes

BFS ? ? ? yes

Table 4.4: Classification of communication models. Build k-degenerate is the problem of deciding

whether a graph is k-degenerate and to build its adjacency matrix if it is the case. Rooted MIS

is the problem to compute a maximal independent set containing a predetermined node. Square

is the problem of deciding whether a graph contains a square. EOB-BFS aims at computing a

BFS-tree in particular bipartite labelled graphs where the bipartition is defined by the parity of

the labels of the nodes.

Up to now, our study has focused on the case of static networks and it should

be extended in order to include dynamicity. This requires the understanding of this

dynamics and the introduction of suitable models of dynamicity. For this purpose,

new algorithmic tools that take timing into account should be developed.





Appendix: Other contributions

on complexity and graph

structures

Content

In the last chapter of this thesis, we present our study of two optimization problems

in graphs. These studies are in marge of previous chapters of this thesis, on the

one hand because they are mainly centralized, on the other hand because their

motivation is mainly theoretical. However, the general guideline is again to study

the complexity of these problems depending of the structural properties of the

considered graphs.

First, we study the complexity of computing the hull number of graphs in various

graph classes [j-ACG+13]. This parameter somehow extends the notion of classical

convexity to graphs.

Second, we prove that the max-coloring problem cannot be solved in sub-expo-

nential time in trees unless the Exponential Time Hypothesis (ETH) is wrong [c-ANP14].
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A.1 Convexity: hull number of some graph classes
We study the geodetic convexity of graphs focusing on the problem of the complexity

to compute inclusion-minimum hull set of a graph in several graph classes [j-ACG+13].

For any two vertices u, v ∈ V of a connected graph G = (V,E), the closed interval

I[u, v] of u and v is the the set of vertices that belong to some shortest (u, v)-path.

For any S ⊆ V , let I[S] =
⋃

u,v∈S I[u, v]. A subset S ⊆ V is geodesically convex

if I[S] = S. In other words, a subset S is convex if, for any u, v ∈ S and for any

shortest (u, v)-path P , V (P ) ⊆ S. This clearly generalizes Euclidean convexity to

graphs. Given a subset S ⊆ V , the convex hull Ih[S] of S is the smallest convex

set that contains S. We say that S is a hull set of G if Ih[S] = V . The size of

a minimum hull set of G is the hull number of G, denoted by hn(G). The Hull

Number problem is to decide if hn(G) ≤ k, for a given graph G and an integer k.

In the seminal work [ES85], the authors present some upper and lower bounds

on the hull number of general graphs and characterize the hull number of some

particular graphs. The corresponding minimization problem has been shown to

be NP-complete [DGK+09]. Dourado et al. also proved that the hull number of

unit interval graphs, cographs and split graphs can be computed in polynomial

time [DGK+09]. Bounds on the hull number of triangle-free graphs are shown

in [DPRS10]. The hull number of the cartesian and the strong product of two

connected graphs is studied in [CCJ04, CHM+10]. Recently, the case of chordal

graphs have been considered in [KN13]. In [HJM+05], the authors have studied the

relationship between the Steiner number and the hull number of a given graph. An

oriented version of the Hull Number problem is studied in [CFZ03, Far05]. Other

parameters related to the geodetic convexity have been studied in [CHZ02, CWZ02].

For work in other graph convexities than the geodetic convexity, the reader may

refer to [CMS05, DPS10, FJ86, CM99] and to Chapter 5 in [Soa13].

Contributions. We first answer an open question in [DGK+09] by showing that[j-ACG+13]

theHull Number problem is NP-hard even when restricted to the class of bipartite

graphs (reduction of 3-SAT). Then, we design polynomial time algorithms to solve

the Hull Number problem in several graphs’ classes: the class of complements

of bipartite graphs, the class of (q, q − 4)-graphs4. The latter result, generalizing

some results in [ACG+11], consists into a FPT algorithm parametrized by q and

obtained by using Primeval Decomposition [BO99a] (generalization of modular de-

composition). Finally, we prove tight upper bounds on the hull number of graphs.

In particular, we show that the hull number of an n-node graph G without simpli-

cial vertices is at most ⌈3(n−1)
5 ⌉ in general, at most ⌈n−1

2 ⌉ if G is regular or has no

triangle, and at most ⌈n−1
3 ⌉ if G has girth at least 6.

Among the remaining interesting questions, I should mention the complexity

of computing the hull number in planar graphs (in contrast, for any set S of a d-

dimensional euclidean space, the gift wrapping algorithm computes the convex hull

and a minimum-inclusion hull set of S in polynomial-time in |S|, d being fixed).

4A graph G = (V,E) is a (q, q− 4)-graph, for a fixed q ≥ 4, if for any S ⊆ V , |S| ≤ q, S induces

at most q − 4 paths on 4 vertices [BO95].
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A.2 Weighted Coloring in trees
In [GZ97], Guan and Zhu generalizedGraph Coloring to vertex-weighted graphs.

A (vertex) weighted graph (G,w) consists of a loop-less graph G = (V,E) and a

weight function w : V → R+ over the vertices of G. Given a proper k-coloring

c = (S1, . . . , Sk)
5 of a weighted graph (G,w), the weight of color i (1 ≤ i ≤ k) is

defined by w(i) = maxv∈Si
w(v). The weight of coloring c is w(c) =

∑k
i=1w(i). The

weighted chromatic number of (G,w), denoted by χw(G), is the minimum weight

of a proper coloring of (G,w). The Weighted Coloring Problem (also known

as Max-coloring [PRV11, PPR05, PR05, PRV04, PPR04]) takes a weighted graph

(G,w) as input and looks for χw(G) [GZ97].

As it generalizesGraph Coloring to weighted graphs, this problem is NP-hard

in general graphs. Moreover, it has been shown NP-hard in bipartite graphs [DdWMP02],

where Graph Coloring is trivial. Weighted Coloring has been shown to

be NP-hard in the classes of split graphs, interval graphs and triangle-free planar

graphs with bounded degree [DdWMP02, PRV04, dWDE+09, EMP06, PRV11]. On

the other hand, the weighted chromatic number of cographs and of some subclasses

of bipartite graphs can be found in polynomial-time [DdWMP02, dWDE+09]. Con-

stant-factor approximation algorithms have been designed for various graph classes

such as interval graphs, perfect graphs, etc. [PRV04, PPR04, PPR05, PR05, EL12].

In particular, it is known that Weighted Coloring can be approximated by a

factor 8
7 in bipartite graphs and cannot be approximated by a factor 8

7 − ǫ for any

ǫ > 0 in this graph class unless P = NP [PR05].

Guan and Zhu showed that, given a fixed parameter r ∈ N, the minimum weight

of a coloring using at most r colors can be computed in polynomial-time (exponen-

tial in r) in the class of bounded treewidth graphs (a.k.a. partial k-trees) [GZ97].

They left open the question of the time-complexity of the Weighted Color-

ing Problem in this class (partial k-trees) and, in particular, in trees. In [PR05],

a sub-exponential algorithm and a polynomial-time approximation scheme to com-

pute the weighted chromatic number of trees are presented. Later on, Escoffier et

al. proposed a polynomial-time approximation scheme to compute the weighted

chromatic number of bounded treewidth graphs [EMP06]. Kavitha and Mestre re-

cently presented polynomial-time algorithms for subclasses of trees [KM12]. They

show that computing the weighted chromatic number can be done in linear time in

the class of trees where nodes with degree at least three induce a stable set [KM12].

In the last years, many studies have tackled the Weighted Coloring Prob-

lem, however its complexity was still unknown on trees. We answer this question.

Theorem 70 If ETH is true, then the best algorithm to compute the weighted chro-

matic number of an n-node tree T has time-complexity nΘ(logn). [c-ANP14]

The reduction we found is quite intricate. In particular, as an intermediary

step, we define and use a variant of 3-SAT where we introduce some dependencies

between valid assignments of subgroup of variables.

5A proper k-coloring of G is a partition c = (S1, . . . , Sk) of V such that, for any 1 ≤ i ≤ k, Si

is a non-empty independent set of vertices that have the same color i.





Conclusion and Perspectives

Recap of open problems. Rather than repeating once again our contribu-

tions, we prefer to list here some of the open problems mentioned throughout this

manuscript. We don’t give the exhaustive list of all questions already mentioned

but focus on the problems that seem difficult (i.e., open for a long time) and on

some intriguing questions that may be easier.

Chapter 1. We naturally start with the Meyniel’s conjecture (1985) that asks

whether the cop-number of any n-node graph is O(
√
n) (page 21). A possible

next step toward its solution would be to prove the conjecture for new graph

classes, in order to refine Assertion 1. More anecdotic but still very intriguing

is the question of determining the minimum number of cops with speed one

that are needed to capture a robber with speed two in a n×n grid (page 29).

A bit further from Cops and Robber games, many problems remain open in

the Surveillance game. In particular, what is the cost of connectivity? In

other words, does there a constant c > 0 exist such that, for any graph G,

the connected surveillance number of G is at most c times (or differs of at

most c from) the surveillance number of G (page 39)? Finally, concerning

turn-by-turn games, what is the complexity of the fractional game and does

it provide an approximation for known integral games (page 43)?

Chapter 2. Even though we did not work on it, it is worth mentioning here the

question of whether computing the treewidth of planar graphs can be solved

in polynomial time (page 47). Also, while the treewidth problem has no

polynomial kernel (unless NP ⊆ coNP/poly), is there a better (single expo-

nential?) FPT algorithm for the treewidth problem? Since non-deterministic

graph searching allowed us to get new results on tree-decomposition, further

understanding of this graph searching variant is expected. Here are some

questions. What is the complexity of non-deterministic graph searching in

trees (page 53)? Moreover, is there a dual structure for branched treewidth,

similar to brambles for treewidth or blockage for pathwidth (page 54)? More

generally, can some digraph decomposition be defined that fit in our partion

function framework (page 54)? In other words, can we extend our duality

result (Th. 41) and/or our FPT algorithm (page 56) to some digraph de-

composition? More generally, is there a “good” digraph decomposition (Sec-

tion 2.2.3)?

Chapter 3. Here, the remaining questions are interesting for the new techniques

that are required to answer them. In particular, the classical graph search-

ing problem belongs to NP because it satisfies the monotonicity property

(page 71). What about non-monotone variants such as connected or exclusive

graph searching? Also, the study of graph searching in a distributed setting
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led to an interesting perspective on how to compute polynomial-time approx-

imation for computing the pathwidth of graphs (page 76). Can this problem

be approximated up to a constant ratio? In the context of mobile agents co-

ordination, many open problems remain, such as tasks that can be executed

by a team of mobile robots. Since we mainly consider the feasibility of few

tasks (Section 3.3.2), the question of achieving them while optimizing some

objective function (for instance, minimizing the maximum number of moves

of each robot for saving energy) remains open.

Chapter 4. For once, let us start with an anecdotic open problem: what is the

complexity of computing the optimal scheduling (with minimum makespan)

for the information gathering problem in grids (page 95)? More impor-

tantly/interestingly, most clever compact routing schemes rely on centralized

algorithms that compute routing tables with a global knowledge of the graphs

(Section 4.2.1). Is it possible to achieve the same performance as existing al-

gorithms by manipulating only local structural knowledge? In other words,

can we design local algorithms for computing routing tables that allow effi-

cient compact routing schemes in some particular graph classes? The last very

intriguing question we would like to mention is: is there a one-round frugal

protocol (Definition 1) that decides if an input graph is connected? Finally,

pursuing the study of the hierarchy of distributed models as in Theorem 69

seems interesting for designing efficient local algorithms that compute graph

properties.

Some perspectives. The question of designing efficient distributed algorithms

to cope with the increasing size of large-scale communication networks remains

widely open. On the centralized point of view, recent results brought new break-

through for the design of “efficient” (i.e. single exponential) FPT algorithms (see,

e.g., Section 2.1). However, most (all?) of the proposed solutions rely on highly

centralized methods such as the pre-computation of tree-decompositions (e.g., bidi-

mensionality) or the use of hash functions for de-randomization (e.g., color coding).

Moreover, such algorithms are difficult to implement efficiently, not only because

of their exponential (in the parameter) components (unavoidable because of the

NP-hardness of the problems), but also because of some omitted polynomial (in

the size of the instance) parts. Hence, pursuing theoretical studies on the design of

efficient algorithms for NP-complete problems is a necessary direction of research.

For this purpose, I will continue my studies of new algorithms to compute tree-

and path-decompositions of graphs. As already mentioned, few heuristics and ap-

proximation algorithms exist and this is an approach that I want to investigate.

In our study of routing reconfiguration, we have designed an heuristic algorithm

to compute the process number of dependency digraphs (page 66). We currently

continue in this direction by adding pre-processing steps and this gives promising

results for new heuristic for computing the pathwidth of graphs. Extending our[c-CMN14]

approach to treewidth seems quite challenging.
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A different approach is to focus on different graph decompositions. For in-

stance, it is interesting to look at tree-decompositions whose bags satisfy particular

structures instead of bounding their size. We have started this study by proposing

a polynomial-time algorithm that computes “caterpillar decompositions” (Theo-

rem 33) and we expect this kind of tree-decomposition to have nice algorithmic

applications.

Of course, it would be ideal to discover a particular structure that would be

computable efficiently in a distributed (local?) setting and that could help for

algorithmic purpose as well. I aim at continuing my study on the hierarchy of

distributed models in order to understand what can be expected.

Finally, I would also be interested in other applications than telecommunication

networks. Recently, some members of COATI have used their expertise in opti-

mization in the domain of bio-informatics. It is clearly an area where my study of

efficient algorithms in large-scale graphs has applications.

To conclude, Pursuit-evasion games remain one of my favorite topics which is

an inexhaustible (?) source of questions.
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[BL06] Béla Bollobás and Imre Leader. The angel and the devil in three dimensions.

J. Comb. Theory, Ser. A, 113(1):176–184, 2006.
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balls and bins to points and vertices. Algorithmic Operations Research

(AlgOR), 4(2):133–143, 2009.

[Klo07] Oddvar Kloster. A solution to the angel problem. Theoretical Computer

Science, 389(1-2):152–161, 2007.



146 Bibliography

[KLOT11] Sayaka Kamei, Anissa Lamani, Fukuhito Ooshita, and Sebastien Tixeuil.

Asynchronous mobile robot gathering from symmetric configurations. In

18th Int. Coll. on Structural Information and Communication Complexity

(SIROCCO), volume 6796 of Lecture Notes in Computer Science, pages 150–

161, 2011.

[KLOT12] Sayaka Kamei, Anissa Lamani, Fukuhito Ooshita, and Sebastien Tixeuil.

Gathering an even number of robots in an odd ring without global multi-

plicity detection. In 37th Int. Symp. on Math. Foundations of Computer

Science (MFCS), volume 7464 of Lecture Notes in Computer Science, pages

542–553, 2012.

[KLP+13] Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Ross-

manith, Ignasi Sau, and Somnath Sikdar. Linear kernels and single-exponential

algorithms via protrusion decompositions. In 40th International Colloquium

on Automata, Languages, and Programming (ICALP (1)), volume 7965 of

Lecture Notes in Computer Science, pages 613–624. Springer, 2013.

[KM09] William F. Klostermeyer and Gary MacGillivray. Eternal dominating sets

in graphs. J. Combin.Math.Combin.Comput., 68, 2009.

[KM12] Telikepalli Kavitha and Julián Mestre. Max-coloring paths: tight bounds

and extensions. J. Comb. Optim., 24(1):1–14, 2012.

[KMP08] Ralf Klasing, Euripides Markou, and Andrzej Pelc. Gathering asynchronous

oblivious mobile robots in a ring. Theoretical Computer Science, 390:27–39,

2008.

[KMP13] Athanasios Kehagias, Dieter Mitsche, and Pawel Pralat. Cops and invisible

robbers: The cost of drunkenness. Theoretical Computer Science, 481:100–

120, 2013.

[KMW04] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. What cannot

be computed locally! In 33rd Annual ACM Symposium on Principles of

Distributed Computing (PODC), pages 300–309. ACM, 2004.
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Complexité algorithmique: entre structure et connaissance.
Comment les jeux de poursuite peuvent apporter des solutions.

Résumé : Ce document présente les travaux que j’ai réalisés depuis ma thèse de doctorat.

Outre la présentation de mes contributions, j’ai essayé de présenter des survols des domaines

dans lesquels mes travaux s’inscrivent et d’indiquer les principales questions qui s’y posent.

Mes travaux visent à répondre aux nouveaux challenges algorithmiques que posent la

croissance des réseaux de télécommunications actuels ainsi que l’augmentation des données

et du trafic qui y circulent. Un moyen de faire face à la taille de ces problèmes est de s’aider

de la structure particulière des réseaux. Pour cela, je m’attache à définir de nouvelles

caractérisations des propriétés structurelles des graphes pour les calculer et les utiliser

efficacement à des fins algorithmiques. Autant que possible, je propose des algorithmes

distribués qui ne reposent que sur une connaissance locale/partielle des réseaux.

En particulier, j’étudie les jeux de poursuite - traitant de la capture d’une entité mobile

par une équipe d’autres agents - qui offrent un point de vue intéressant sur de nombreuses

propriétés de graphes et, notamment, des décompositions de graphes. L’approche de ces

jeux d’un point de vue agents mobiles permet aussi l’étude de modèles de calcul distribué.

Le chapitre 1 est dédié à l’étude de plusieurs variantes des jeux de gendarmes et voleur.

Le chapitre 2 traite des décompositions de graphes et de leur relation avec les problèmes

d’encerclement dans les graphes. Le chapitre 3 se concentre sur les problèmes d’encerclement

dans des contextes à la fois centralisé et distribué. Finalement, le chapitre 4 traite de

problèmes de routage dans différents contextes, ainsi que de modèles de calcul distribué.

Mots-clés : Algorithmes, Théorie des Graphes, Jeux de Poursuite-Évasion, Gendarmes et

voleur, Encerclement dans les graphes, Décompositions de graphes, Propriétés structurelles

de graphes, Agents Mobiles, Réseaux de télécommunication, Routage, Calcul distribué

Algorithmic complexity: Between Structure and Knowledge
How Pursuit-evasion Games help.

Abstract: This manuscript describes the work I did since I obtained my Ph.D. in 2007. In

addition to the presentation of my contributions, I tried to give overviews of the scientific

areas my work takes part of and some of the main issues that arise here.

My work deals with new algorithmic challenges posed by the growth of nowadays net-

works and by the increased data and traffic arising in it. One way to cope with the size

of these problems is to use the particular network structures. For this, I strive to develop

new characterizations of graph structural properties in order to calculate and use them effi-

ciently for an algorithmic perspective. Whenever possible, I propose distributed algorithms

that are based only on a local/partial knowledge of networks.

In particular, I study the Pursuit-Evasion games - dealing with the capture of a mobile

entity by a team of other agents - that offer an interesting perspective on many properties

of graphs and, in particular, decompositions of graphs. This approach from mobile agents

point of view also allows the study of various applications in telecommunication networks

and of some distributed computing models.

Chapter 1 is dedicated to the study of several variants of turn-by-turn Pursuit-Evasion

Games, mostly to the Cops and Robber games. Chapter 2 focuses on graph decompositions

and their relationship with graph searching. Chapter 3 treats another aspect of Pursuit-

Evasion games with a study of variants of Graph Searching games, both in centralized and

distributed settings. Finally, Chapter 4 deals with routing problems in various environments

and with distributed models of computation.
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