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Abstract: 

 Even though the understanding of cell-cycle regulators in plants has tremendously 

increased over the last years, still little is known about cell-cycle regulation in response to 

environmental signals like DNA damage. A ubiquitous stress for any organism is DNA stress 

that can either be caused by exogenous sources or internal processes like chromatid separation 

or DNA strands separation during replication. The posttranslational regulation of Cdk1-type 

kinases through inhibitory phosphorylation through Wee1-type kinases in the so-called P-loop 

at the residue Tyr15 or the analogous positions as been found to be of pivotal importance for 

the arrest of the cell cycle after DNA damage in yeast and animals. But this mechanism is 

apparently not conserved in plants, as suggested by the hypersensitivity analysis of CDKA;1 

dephospho-mutants. The first half of this study focus on possible regulation of CDKA;1 

through T-loop phosphorylation upon replication stress in Arabidopsis. The positively acting 

phosphorylation on T161 and analogous residues in the so-called T-loop of the kinase that is 

required for full CDK activity and serves in substrate recognition. Remarkably, a T-loop 

phospho-mimicry mutant of CDKA;1, was almost 100% resistant to hydroxyurea (HU) and 

can partially rescue the hypersensitivity of wee1 to HU. T-loop phosphorylation is catalysed 

by CDK activating kinases (CAKs) that are themselves CDKs with typical P- and T-loop 

regions. Evidence is obtained that WEE1 might inhibit CDKDs (Cdk-activating kinases) that 

would subsequently result in reduced CDKA;1 activity, and thus, cell-cycle arrest upon DNA 

damage. It is revealed that dephospho-mimicry mutants of CDKD;2 and 3, which can not be 

inhibited through WEE1 showed hypersensitivity to HU and not to bleomycin, suggesting 

their involvement in cell-cycle arrest specifically upon replication stress. Hypersensitivity of 

cdkd2cdkd3 to replication stress suggested possible activation of CDKA;1 through CDKD;1 

independent of WEE1. An essential role of CDKDs in stabilizing CDKA;1 kinase activity 

during gamete development has been suggested. Defects observed in cdka;1VFcdkd mutants 

during meiosis but not in cdka;1VF mutants emphasize on importance of CDKA;1 T-loop 

phosphorylation for appropriate meiotic division. 

In second part of this study interaction between cell-cycle and circadian has been studied. A 

feedback loop in which the cell cycle could potentially regulate the circadian clock was 

suggested as a number of circadian genes were found to be deregulated in a microarray 

experiment with holomorphic CDKA;1 mutants. Thus the circadian gating of cell division of 

wildtype and cdka;1 mutants was studied under diurnal growth conditions. The altered time of 
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division observed in cell-cycle mutants supported the idea of cell-cycle regulation in a time 

dependent manner. Expression profile of clock genes were analysed in cdka;1 mutants 

through luciferase assay system. An altered period and intensity of expression observed in 

these mutants compared to wild type plants suggested a direct or indirect effect of CDKA;1 

activity on clock gene expression. 
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1 INTRODUCTION 

1.1 Cell Cycle  

 Cell growth and division are the basis of biological life. Each dividing cell completes 

an ordered series of events collectively known as the "cell cycle". Typical mitotic cell cycles 

include the duplication of the genome during DNA synthesis phase (S phase), the segregation 

of complete sets of chromosomes to each of the daughter cells mitotic phase (M phase) and 

“gap" phases, known as G1, which connects the completion of M phase to initiation of S 

phase in the next cycle, and G2, which separates the S and M phases.  

 External, environmental and intrinsic, developmental and physiological signals 

together determine whether cells enter a division cycle. This decision is called “START” in 

yeast and “Restriction point” in mammalian cells. However, the cell-cycle can again come to 

an halt at so called cell-cycle checkpoints if the cellular conditions are unfavourable for a 

division. Checkpoints exist for the transition from G1 into S, from G2 into M, during S-phase 

and also in mitosis (Figure I1)  

 An important parameter that is assayed at these checkpoints is the integrity of the 

DNA. Various endogenous and environmental agents that can produce chromosomal 

aberrations, point mutations or block replication continuously threaten genome integrity. As a 

result, a sensing mechanism has evolved to delay or even arrest cell-cycle progression to 

provide time to allow the cell to repair damaged DNA before its entry into new round of DNA 

replication or mitosis. 

 The molecular machinery that controls progression through these checkpoints is highly 

conserved in all the eukaryotes. However, novel mechanisms of cell-cycle regulation in 

plants, involve plant-specific cyclin-dependent kinases, an unusually vast group of cyclins 

and plant-specific cell-cycle inhibitors such as the SIAMESE/SIAMESE-RELATED 

(SIM/SMR) (Vandepoele et al., 2002; Churchman et al., 2006; Peres et al., 2007).  
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Figure I1: A prototypical cell cycle 

Synthesis phase (S) and mitosis phase (M) are separated by two gap phases: G1 and G2. 
Endoreplication is a cell cycle variant in which nuclear DNA is replicated but division is skipped 
leading to polyploidy. Checkpoints exist at G1/S and G2/M transition as well as in S-phase and before 
anaphase. 

1.2 Cyclin dependent Kinases 

 The central regulators of the eukaryotic cell cycle are cyclin-dependent kinases 

(CDKs). They trigger not only mitosis and DNA replication but also have roles in many other 

cellular processes such as gene transcription, DNA repair and apoptosis. CDKs typically 

constitute a family of heterodimeric serine (Ser)/threonine (Thr) kinases that are regulated by 

binding of cyclins, post-translational modifications and CDK inhibitors (CKIs).  

 All eukaryotic organisms studied to date possess at least one CDK with the conserved 

N-terminal PSTAIRE cyclin binding domain (Figure I2). The only PSTAIRE containing CDK 

in yeast is Cdc2 (S. pombe) or Cdc28 (S. cerevisiae) homologue of main mammalian CDK: 

Cdk1 (Morgan, 1997; Solomon et al., 1988; Huang et al., 2007). Cdk1/cyclinA activity is 

required for the initiation of prophase whereas Cdk1/cyclin B complexes actively participate 

in and complete mitosis (Riabowol et al., 1989; Furuno et al., 1999). Cdk1 can also drive S 

phase in the in absence of Cdk2, another important kinase (containing PSTAIRE domain in 

human, mouse, Xenopus and Drosophila) (Aleem et al., 2005). 
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  Homozygous cdk1 mouse embryos die during early development indicating that Cdk1 

is essential for early embryonic development (Santamaría et al., 2007; Satyanarayana et al., 

2008). Whereas cdk2 knockout mutants in mice show reduced body size and male and female 

sterility, indicating a specific role for Cdk2 in meiosis (Berthet et al., 2003; Ortega et al., 

2003). Other important CDKs found in mammals are Cdk4 and Cdk6, specifically involved in 

S phase regulation (Hochegger et al., 2007; Hochegger et al., 2008; Krasinska et al., 2008). 

1.2.1 Arabidopsis CDKA;1 

 The plant cell cycle is also governed by CDKs as that of other eukaryotes. For 

instance, eight classes of CDKs (CDKA to CDKG, and CDK-like kinases—CKLs) have been 

identified in Arabidopsis. A-type CDKs are the best-characterized group in plants. Members 

of this group bear the highest sequence identity with Cdc2/Cdc28/Cdk1. CDKA;1 is the only 

PSTAIRE containing CDK identified so far in Arabidopsis. It has been found to partially 

complement the cdc2 mutant of S. pombe (Ferreira et al., 1991; Hirayama et al., 1991; 

Imajuku et al., 1992).  

 

Figure I2: Alignment of the Cdk1 homologue to Arabidopsis CDKA;1 

Protein alignment of yeast Cdc2/Cdc28 human Cdk1, Cdk2 and Arabidopsis CDKA;1 

 Heterozygous cdka;1 mutants fail to undergo the second mitotic division during pollen 

development  resulting in a single instead of a double fertilization that is typical for flowering 

plants (Iwakawa et al., 2006; Nowack et al., 2006). Subsequently, single-fertilized ovules 

abort. Occasionally, mutant pollen will execute a second mitotic division allowing double 

fertilization. When a mutant pollen fertilizes an egg cell that is also mutant for cdka;1, 

homozygous cdka;1 embryos are formed that are surprisingly viable and can germinate on 

agar plates. However, the resulting plants are severely compromised and show for instance no 

proper root, increased cell size, reduced vegetative growth, reduced trichome branching and 
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complete sterility (Nowack et al., 2012). These mutant accumulate cells in G1 and have a 

strong reduction in endoreplication, supporting an important role for CDKA;1 in S phase of 

the cell cycle (Nowack et al., 2012). Based on biochemical data that showed that CDKA;1 

activity also peaks immediately before entry into mitosis similar to human Cdk1, suggesting a 

likely role of CDKA;1 in mitosis as well (Weingartner et al., 2001). Thus CDKA;1 act as key 

regulator in plant cell cycle  

1.3 Posttranslational Regulation of CDK 

 Multi-site phosphorylation is an important regulatory feature of CDK-cyclin 

complexes. This process involves positive and negative regulatory inputs and can generate 

new protein-binding domains. Phosphorylation of CDK occurs on conserved residues in two 

regulatory loops called P-loop, also called the ATP-binding loop, and T-loop, also called 

activation loop. Although the phosphorylation sites and their regulators appear to be 

conserved between eukaryotes, differences between plants and other eukaryotic species have 

been observed.  

1.3.1 T-loop Phosphorylation 

 Phosphorylation of the T-loop is an important step involved in activation of CDK 

kinase activity since non-phosphorylated T-loop blocks the binding of protein substrate. 

Consequently, mutation of Thr167 as the phosphorylated residue in the T-loop of Cdc2 

hinders the kinase from being fully active (Ducommun et al., 1991; Krek et al., 1992; 

Solomon et al., 1992) (Figure I3). Similar mutations abolish the kinase activity of human 

Cdk1 and Cdk2 (Connell-Crowley et al., 1993; De Bondt et al., 1993; Jeffrey et al., 1995; 

Russo et al., 1996).   

 In Arabidopsis, CDKA;1 also carries a Thr at position 161 in T-loop, which is 

phosphorylated in vivo (Dissmeyer et al., 2007; Harashima et al., 2007). Mutants of CDKA;1 

having a phosphomimicry substitution of Thr161 with an aspartate, restored the generation of 

three-celled pollen and partially rescued homozygous cdka;1 mutants. Nevertheless, rescued 

mutants showed reduced kinase activity, larger cells, reduced trichome branching and 

complete sterility (Dissmeyer et al., 2007; Nowack et al., 2012; Bramsiepe et al., 2010). 
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Figure I3: Activation of CDK in association with 
cyclin subunit and phosphorylation by (CAK) 

Evidence from different model system indicates that 
phosphorylation can proceed independently of CDK-
cyclin complex, and conversely that complex 
assembly can occur either before or after 
phosphorylation. In either case the cyclin-bound Thr-
phosphorylated CDK represents the fully active 
kinase. 

 

 

 

1.3.1.1 CAKs 

 T-loop phosphorylation of CDKs is catalyzed by CDK-activating kinases (CAKs), 

which are also members of the CDK family. Consequently, the loss of CAK activity causes 

cell-cycle arrest (Espinoza et al., 1996; Kaldis et al., 1996; Thuret et al., 1996; Larochelle et 

al., 1998; Lee et al., 1999). In addition to CDKs, CAKs also phosphorylate the carboxyl 

terminal domain (CTD) of the largest subunit of RNA polymerase II (Serizawa et al., 1995; 

Shiekhattar et al., 1995; Schwartz et al., 2003). 

 Cak1/Civ1 is the sole essential CAK identified in budding yeast that possesses Cdc28 

activating kinase activity but no direct CTD kinase activity (Table I1). Cak1 is a considerably 

divergent from other CDKs as it is fully active without a cyclin partner or activating 

phosphorylation. Furthermore, it lacks the consensus GXGXXG motif that is implicated in 

nucleotide binding for all classes of protein kinase (Hanks et al., 1995; Solomon et al., 1996; 

Thuret et al. 1996; Espinoza et al. 1998; Kaldis 1999).  

 The mammalian CAK comprise Cdk7 that is activated by binding to cyclin H and 

(Devault et al., 1995; Tassan et al., 1995). The cdk7 null mutants of Drosophila die before or 

soon after the initiation of pupation (Larochelle et al., 1998). Similarly, depletion of Cdk7 in 

Caenorhabditis elegans resulted in an embryonic lethal phenotype (Wallenfang et al., 2002; 

Rossi et al., 2001) indicating that Cdk7 activity is indispensable during early developmental 

stages in animals.  
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Table I1: Protein kinase activation of CDK and basal transcription (Table taken from Umeda et 
al., 2005) 

 

1.3.1.2 Arabidopsis CAKs 

 In plants, two gene classes have been identified as member of CAK family. CDKD 

and CDKF exhibit CAK activity in rice and Arabidopsis (Chao et al., 2007; Umeda et al., 

1998; Yamaguchi et al., 1998) (Table I1). CDKF;1 is a plant-specific CAK that has been 

identified as a suppressor of the cak1 mutation in budding yeast. It shows similarity to Cdk7 

and can phosphorylate human Cdk2 in vitro but unlike vertebrate-type CAKs, it has no CTD 

kinase activity in vitro (Umeda et al., 1998). In Arabidopsis, CDKF;1 can phosphorylate 

CDKA;1 in root protoplasts, and this activity was dependent on T-loop phosphorylation of 

CDKF;1 (Shimotohno et al., 2006). CDKF;1 also functions as a CAK activating kinase as it 

phosphorylates CDKD;2 and CDKD;3 and, thereby regulates basal transcription and CDK 

activation (Shimotohno et al., 2004; Umeda et al., 2005). Significant reduction in kinase 

activity of CDKD;2  and developmental defects after embryogenesis in cdkf;1 mutants 

suggests that CDKF;1 plays an important role in postembryonic development by regulating 

the protein stability of CDKD;2 in Arabidopsis. 

 

Figure I4: Alignment of N-terminal segment of human CAK to plant CAKs  

The conserved Thr (T) and Tyr (Y) residues in the ATP-binding loop are found only in CAKs in 
plants. Numbers indicate amino acid positions. Dashes represent gaps introduced to give maximal 
identity.  

 

   

         

         

       

       

         

       

   

    

         

        

          

            

          

          

         

         

          

        

         

        

          

         

         

      

      

        

         

          

        

        

       

         

            

         

       

         

           

          

          

       

         

  

         

Organism Catalytic subunit Regulatory subunit Assembly subunit CAK activity CTD kinase activity

Human CDK7 Cyclin H MAT1 + +

p42 – – + –

Sch. pombe Mcs6/Crk1/Mop1 Mcs2 Pmh1 + +

S. cerevisiae Kin28p Ccl1p Rig2p/Tfb3p – +

Cak1p/Civ1p – – + –

Rice Os;CDKD;1 Os;CycH;1 ? + +

Arabidopsis At;CDKD;1 At;CycH;1 ? – –

At;CDKD;2 At;CycH;1 ? Low High

At;CDKD;3 At;CycH;1 ? High Low

At;CDKF;1  ? ? Very high –
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 CDKD is an orthologue of vertebrate CAK. It is activated by its regulatory partner 

cyclin H and has both CAK and CTD kinase activities. Arabidopsis has three CDKD genes, 

namely AtCDKD;1, AtCDKD;2, AtCDKD;3. These three CDKDs share a PSTAIRE-like 

domain: CDKD;1 (NVTALRE), CDKD;2 (NFTALRE) and CDKD;3 (NITALRE) (Figure I4) 

and CDKD;2 and CDKD;3 have conserved T-loop site that can be phosphorylated by 

CDKF;1. Plant CDKDs also have phosphorylatable Thr and tyrosine (Tyr) residues in P-loop, 

which appears to be a unique characteristic of the species as vertebrate CAK, lack these 

residues (Figure I4). P-loop of CDKD;2 and CDKD;3 can be phosphorylated by WEE1 in 

vitro. CDKD;2 and CDKD;3 phosphorylate human Cdk2 and Arabidopsis CTD in vitro. The 

kinase activity of CDKD;3 is higher than that of CDKD;2 in vitro whereas CDKD;2 had 

higher CTD kinase activity than CDKD;3. CDKD;1 was found to be neither phosphorylated 

by CDKF;1 nor did it show kinase activity towards CDKA;1 in vitro, therefore it was 

suggested as an inactive CAK (Serizawa et al., 1995; Shiekhattar et al., 1995; Shimotohno et 

al., 2003, 2004, 2006; Takatsuka et al., 2009). However, it has been recently shown that 

CDKD;1 similarly to CDKD;2 and CDKD;3, phosphorylates all Ser residues of Arabidopsis 

RNAPII CTD (Hajheidari et al., 2012).  

 Whereas single mutants of cdkd;1 cdkd;2 and cdkd;3 show no change in development 

compared with the wildtype, the double mutants cdkd;1 cdkd;3, cdkd;1 cdkd;2 and cdkd;2 

cdkd;3 are reduced in size and develop curly and serrated leaves. The triple mutants of all 

three CDKD genes are lethal. However, a hypomorphic triple mutant has been identified that 

is severely affected in growth and development. These results emphasize the role of CDKD;1 

as an active member of CAK family, and its role in cell-cycle regulation (Hajheidari et al., 

2012). 

1.3.2 P-loop Phosphorylation 

 P-loop phosphorylation of CDKA;1 leads to conformational changes, which reduce 

the affinity for ATP. This interferes with proper substrate binding, and inhibiting CDKA;1 

kinase activity (Endicott et al., 1999).  

 Early studies in S. pombe demonstrated that Cdc2 Tyr15 phosphorylation directly 

regulates entry into mitosis and is an important element in the control of the unperturbed cell 

cycle. In animals, phosphorylation at either or both of P-loop Thr/Tyr residues abrogates 
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Cdk1 kinase activity, and plays a major role in controlling passage through the G2/M 

transition point. The P-loop of human Cdk1 and Cdk2 comprises of residues 10-17 containing 

the glycin rich loop (11-GxGxxG-16). Inactivation of CDK is reversed by the 

dephosphorylation by phosphatases. This mechanism is common in all model organisms so 

far, except for plants. 

 Arabidopsis CDKA;1 also contains a glycine rich loop carrying conserved 

phosphorylatable Thr14 and Tyr15 residues. Substitution of Thr14 and Tyr15 with Asp and 

Glu respectively mimic P-loop phosphorylation thus results in constitutively restricted 

CDKA;1 activity. These variants can partially rescue homozygous cdka;1 mutants and result 

in smaller plants with larger cells, reduced kinase activity and sterility (Dissmeyer et al., 

2009). De-phosphomimicry version of CDKA;1 (T14V; Y15F) can also rescue cdka;1 

homozygous mutants and these plants are indistinguishable from WT plants, suggesting under 

standard greenhouse conditions phosphorylation of the P-loop is dispensable to arrest the cell 

cycle.  

1.3.2.1 Wee1 

 Wee1 is an evolutionarily conserved Tyr kinase, which executes the inhibitory 

phosphorylation in the P-loop of CDKs in animals and yeast. It is a key regulator of cell-cycle 

progression that is markedly active during the G2/M phase of the cell cycle. In S. pombe 

Wee1 and its homologue Mik1 dual-specific (Thr/Tyr) kinase repress Cdc2. Yeast wee1 cells 

enter prematurely entry into mitosis resulting progressively smaller cells (Nurse, 1990; 

Russell, 1991; Muller et al., 1995). In mammals, Wee1 and the related kinase Myt1 catalyze 

the phosphorylation of Thr14 and Tyr15 of Cdk1 (Figure I5, A). Wee1 deletion causes 

premature entry into mitosis in cells that are still too small for division (Krek and Nigg, 1991; 

Lundgren et al., 1991; Lee et al., 1994; Muller et al., 1995; Nurse, 2004; Morgan, 2007). Cell 

cycle arrest during G2 upon DNA damage is Wee1 dependent in mammals and S. pombe. 

This allows the cell to repair the damage before a new cell cycle round (Michael and 

Newport, 1998; Rhind and Russell, 2001). 

 In maize, a partial WEE1 homologue was cloned that inhibits CDK activity in vitro 

(Sun et al., 1999) whilst a full-length WEE1 has been identified in the Arabidopsis genome, 

which is highly expressed in meristems. However, no homolog of Mik1 or Myt1 has been 

identified in Arabidopsis (Sorrell et al., 2002). AtWEE1 can regulate cell size when inducibly 



  Introduction 

 9 

expressed in fission yeast hence is capable of regulating G2/M transition in fission yeast 

(Sorrel et al., 2002, 2005). Furthermore, WEE1 might be involved in endoreplication given 

that its transcript levels is high in the endosperm of Z. mays and in tomato fruit, two 

endoreplicating tissues (Sun et al., 1999; Gonzalez et al., 2004, 2007).  

 In Arabidopsis, Tyr15 in the P-loop of CDKA;1 can be phosphorylated by WEE1 in 

vitro, suggesting a similar specificity as in yeast and vertebrates (Shimotono et al., 2006; 

Schutter et al., 2007) (Figure I5, B) . A distinct feature of Arabidopsis WEE1 is that it can 

inhibit CDKD;2 kinase activity in root protoplast and also phosphorylates the P-loop of 

CDKD;3 in vitro (Shimotono et al., 2006). 

 

Figure I5: Scheme of posttranslational modifications of CDKs 

 (A) In mammals, following CDK-cyclin subunit binding, Myt1/ Wee1 phosphorylates the P-loop in 
order to inhibit the CDK kinase activity. CAK phosphorylate the T-loop for activation. Cdc25 
phosphatases remove phosphate groups in the P-loop and active CDKs. (B) Plant specific circuits of 
posttranslational CDK modifications. It appears that P-loop phosphorylation by WEE1 is not of great 
importance in plants. CDKDs activate CDKA;1 via T-loop phosphorylation and are activated through 
CDKF;1..CDC25 is not involved in mitotic cell-cycle regulation in Arabidopsis. 



  Introduction 

 10 

 Arabidopsis wee1 mutants display no growth defects under green house conditions. 

(De Schutter et al., 2007; Spadafora et al., 2011). However, wee1 mutants are hypersensitive 

to replication blocking agents suggesting a role of WEE1 in S-phase. By contrast, 

overexpression of WEE1 results in phenotypes consistent with permanent activation of cell 

cycle checkpoints, including cell-cycle arrest, differentiation of stem cells and shrinkage of 

the meristem (De Schutter et al., 2007; Ricaud et al., 2007).  

1.3.2.2 Cdc25 

 Cdc25 is highly conserved protein with dual phosphatase specificity that activates 

CDKs by dephosphorylating P-loop residues. Only one Cdc25 phosphatase has been 

identified in yeast. In mammals, three isoforms of Cdc25 have been identified: Cdc25A, 

Cdc25B and Cdc25C2–4, whereas X. laevis and G. gallus each have two orthologues of 

Cdc25. The catalytic domains of Cdc25 proteins are conserved among the different species 

(Bell et al., 1993; Orchard et al., 2005). 

  In Arabidopsis, only a presumptive homologue of Cdc25 has been identified. 

However, a large N- terminal region usually found in cell-cycle related Cdc25-like 

phosphatases is missing (Landrieu et al., 2004a; Landrieu et al., 2004b; Boutros et al., 2006). 

Surprisingly, Arabidopsis knockout mutants of AtCDC25 showed no phenotype under 

greenhouse conditions and none after DNA damage induction (Dissmeyer et al., 2009, 2010). 

CDC25 overexpressing plants do not show susceptibility to genotoxic stress even though it 

can be expected due to a faster cell cycle and reduced checkpoint control resulting in 

premature entry into mitosis (Dissmeyer et al., 2010).  

 These results suggest that plants might lack a phosphatase for activating the P-loop.  

1.4 Cell cycle regulation by internal and external Signals 

1.4.1 Cell cycle regulation upon DNA damage 

 To survive during various changes in the environment, organisms need to adapt their 

growth behavior through altering the rate of cell proliferation and differentiation. Therefore, 

expression of many cell-cycle regulators is affected by internal or external cues.  
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 Living organisms are continuously exposed to genotoxic threats, induced by 

environmental conditions, for example UV radiation) or by endogenous factors, for example, 

replication errors and reactive oxygen intermediates (Ciccia and Elledge, 2010). Cells 

coordinate DNA-repair machinery with cell-cycle regulators through DNA damage 

checkpoints to delay or even arrest the cell cycle until the damage is repaired.  

 Upon damage detection, a signaling cascade of checkpoint protein gets activated 

which transmit the damage signal to the downstream targets such as the DNA-repair 

apparatus and the cell-cycle machinery. The activation of these targets is achieved by 

different phosphorylation events that regulate the cell-cycle transitions by activating or 

inhibiting the proteins involved in checkpoint maintenance and cell-cycle progression. The 

importance of these checkpoints is highlighted by the fact that they are present in almost all 

the eukaryotes, playing their role to delay cell cycle progression in response to DNA stress. 

Due to the sessile nature of plants cannot skip the environmental threats to DNA and they 

might have developed specific adjustments of these checkpoints. 

1.4.1.1 Activation of signalling cascade 

 In eukaryotes, DNA replication is initiated at numerous origins along chromosomes, 

and many obstacles to the progressing fork appear during each S-phase. Any hindrance to 

fork progression can be caused by DNA lesions, by non-histone proteins tightly bound to 

DNA, by nucleotide pool imbalance or by conflicts with the transcription machinery. This can 

lead to accumulation of stalled forks structures pausing of DNA replication. At this point intra 

S-phase checkpoint stops the cell cycle. 

 The ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3-related) kinases 

are triggered in response to different types of DNA stress in mammals and plants. Double-

strand breaks (DSBs) activate ATM, whereas activation of ATR occurs upon the generation 

of lesions containing single-stranded DNA (ssDNA), which evolve at stalled replication forks.  

 In mammals, DNA damage activated ATM and ATR phosphorylate and activate Chk2 

and Chk1 kinases, respectively (Figure I6, A) . Chk1 is an essential Ser/Thr kinase involved 

in S- and G2/M-phase checkpoints, replication initiation and fork stability, homologous 

recombination repair, and entry into mitosis in normal cycling cells. Importantly, Chk1 is 

necessary for unperturbed DNA replication and cell-cycle coordination even in the absence of 

any exogenous insult. ATR phosphorylates Chk1 on Ser residues and stimulates its auto-
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phosphorylation. Phosphorylated Chk1 can dissociate from chromatin and ATR regulation of 

Chk1 may thereby control transition of DNA damage signals from chromatin to its targets. 

The molecular events in DNA damage response are governed by p53 transcription factor 

(Rozan and El-Deiry, 2007). 

 Although starting and end point of signaling cascade are conserved among yeast 

mammals and plants however the inner frame- work of the pathway seems to be distinct 

appears to be vastly different. In plants, no homologs of Chk1, CHK2 and p53 have been 

identified. However, plants have a specific central regulator of the DNA damage checkpoint, 

“SOG1”, a NAC-domain-containing transcription factor that appears to function analogously 

to p53 (Yoshiyama et al., 2009) (Figure I6, B).  

 Another striking difference between animals and plants is that checkpoint genes are 

not essential during normal growth in plants. Except for partial sterility of atm mutants, 

checkpoint mutants are phenotypically normal under non-stressed conditions in Arabidopsis. 

However, atm mutants show hypersensitivity to gamma irradiation and other DNA-damaging 

agents such as DNA-alkylating chemicals. Furthermore, they show defects in meiosis (Garcia 

et al., 2003). Whereas atr mutants are hypersensitive to hydroxyurea (HU), aphidicolin, and 

UV-B, which block DNA replication but it shows only mild sensitivity to gamma irradiation 

(Culligan et al., 2004). A sog1 mutant fails to arrest leaf development after gamma irradiation, 

and atr but not atm mutants have a similar phenotype.  
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Figure I6: DNA damage checkpoint pathways in mammals and plants upon replication stress 

(A) Activation of DNA damage checkpoint through a signaling cascade involves the kinases ATR 
Chk1 Wee1 which leads to cell cycle arrest in mammals (B) In Arabidopsis, ATR presumably 
activates SOG1 and WEE1 however many intermediate regulator are absent like Chk1 and the detailed 
mechanism leading to cell cycle arrest remains unclear. 

1.4.1.2 Cell cycle arrest upon DNA damage 

 Once the DNA damage signaling cascade is activated in animals, it leads to cell-cycle 

inhibition to provide the time for repair. Downstream of CHK kinases are Wee1 and Cdc25 

phosphatase, which are also ultimately controlled by Cdk1-mediated multi-site 

phosphorylation. Following its activation ATM-CHK2 and ATR-Chk1 kinase phosphorylate 

Cdc25 phosphatase, leading to its inhibition or ubiquitin dependent degradation. The 

degradation of Cdc25A interferes with the dephosphorylation of the CDK Tyr15 residue. This 

results in inhibition of CDK activity thus leading to cell cycle arrest. Chk1 can also 

phosphorylate Cdc25B and Cdc25C, which may also contribute to restrain CDK activity.  

 Cdc25 and Wee1 act as respective ‘‘on’’ and ‘‘off’’ switches on CDK activity. Thus, 

CHK kinases prevent the degradation of Wee1 kinase at the same time until DNA repair is 

completed so that CDKs are inactivated by inhibitory phosphorylation (Harper and Elledge, 
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2007). Wee1 directly phosphorylates and inhibits Cdk1 and Cdk2 effecting entry into mitosis 

as well as coordination of DNA replication events. Wee1 is therefore critical for properly 

timing cell division in unperturbed cells, and loss of Wee1 results in chromosomal aneuploidy 

and accumulated DNA damage. Wee1 is inhibited both by phosphorylation and degradation 

allowing rapid increase in CDK activity at entry into mitosis or upon repair completion.  

 The loss of each of ATR Chk1 and Wee1 leads to increased CDK activity resulting in 

loss of control of the replication coordination. Inhibition of Chk1 leads to an increased 

loading of replication factor Cdc45L onto chromatin, which is followed by a dramatic 

increase in replication initiation. Deletion of ATR, Chk1 or Wee1 in mice causes embryonic 

lethality demonstrating that these checkpoint kinases are essential for embryonic 

development. 

1.4.1.3 What is different in plants? 

 Even though plants have no functional CDC25 homolog, cell cycle inhibition in 

response to DNA damage apparently involves phospho control. Down-regulation of CDK in 

response to DNA stress is controlled by the Cdc25-counteracting WEE1 kinase. WEE1 

functions downstream of ATR and is transcriptionally upregulated in response to DNA 

replication stress in Arabidopsis (De Schutter et al., 2007; Takahashi et al., 2008). Cell cycle 

arrest is affected in wee1 upon HU treatment (Cools et al., 2011).  

 In plants, WEE1 is an essential intra-S-phase checkpoint gene as demonstrated by the 

accumulation of the gene product in replicating nuclei of mutant roots upon HU treatment, 

leading to their accumulation in S-phase in Arabidopsis (Cools et al., 2011). Dissmeyer et al., 

2009 analyzed CDKA;1 P-loop variants in which conserved residues were substituted to 

either mimic phosphorylation or prevent phosphorylation under replication stress. It was 

shown that DE mutants grew slightly better on HU than wee1, suggesting that slower cell 

cycle might provide time to repair the stalled replication fork. wee1 DE  mutants resembled 

DE under green house condition. However, wee1 DE showed shorter root lengths than DE but 

root growth was slightly better than wee1 on HU suggesting that wee1 is epistatic over DE 

under replicative stress condition (Dissmeyer et al., 2009). 

 Surprisingly, plants having Thr14 and Tyr15 of CDKA;1 substituted with Val and Phe, 

respectively, to mimic dephosphorylation of CDKA;1 (VF), did not show the wee1 phenotype 

on HU. These results demonstrated that WEE1 probably arrest the cell-cycle upon DNA 
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replication stress independently of the inhibitory phosphorylation of CDKA;1 in Arabidopsis. 

It is possible that WEE1 phosphorylates proteins other than CDKA;1 to preserve genome 

integrity after DNA replication stress. Analysis of Arabidopsis CDKA;1 T-loop variants 

having Thr161 substituted by Asp (D) for hypersensitivity to replication stress. Theses 

mutants were 100% resistant to HU. Unexpectedly when introgressed in a wee1 background 

D mutants were able to rescue hypersensitivity of wee1 mutants to HU (Annika Weimer, 

personal communications).  

1.4.2 Cell cycle and circadian clock interaction 

1.4.2.1 The circadian clock 

 To anticipate daily environmental changes, especially light-dark cycle and temperature 

oscillations, most organisms including plants, have developed an internal timing system, 

called circadian clock. External signals like light play a major role in the synchronization of 

the circadian clock with the diurnal (day-night) cycle. These signals entrain or set the pace of 

the clock, which in turn has the capacity to drive self-sustained oscillations with a near 24- 

hour periodicity (Pittendrigh, 1960).  

 The general principle of a circadian clock is its composition of three modules: a 

central clock, an internal oscillator that generates body time, an input unit that keeps the clock 

in phase with environmental cues, foremost the light-dark cycle, and an output module that 

couples the clock to biological processes. This basic scheme appears to apply to all known 

circadian clocks, regardless of the species involved (Pittendrigh, 1960; Stephan and Zucker, 

1972; Moore and Eichler, 1972). 

 In Arabidopsis, the central feedback loop is based on the regulation between of two 

morning- expressed transcription factors CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) 

and LATE ELONGATED HYPO- COTYL (LHY). CCA1 and LHY directly activate the 

transcription of PSEUDO-RESPONSE REGULATOR9 (PRR9) and PRR7 in the morning. At 

the same time, CCA1 and LHY directly repress TIMING OF CAB EXPRESSION1 (TOC1) 

by binding a motif within its promoter region, called the EVENING ELEMENT (EE). CCA1 

and LHY simultaneously suppress the expression of the other clock genes with afternoon to 

evening peaks, such as CCA1 HIKING EXPEDITION (CHE), GIGANTEA (GI), LUX 
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ARRHYTHMO (LUX), and EARLY FLOWERING4 (ELF4) (Farré EM 2005; Harmer SL 

2009; Imaizumi T 2010) (Figure I7). 

 

Figure I7: Model of the circadian clock in Arabidopsis.  

The core feedback loop consists of two transcription factors, CCA1 and LHY, which negatively 
regulate the expression of TOC1. TOC1 has been proposed to activate the expression of CCA1 and 
LHY. An additional module within this loop includes the reciprocal repression between CCA1 and 
CCA1 HIKING EXPEDITION (CHE). TOC1 probably antagonizes CHE through direct interaction. 
Two additional phase-specific feedback loops have been proposed. In the morning loop, CCA1 and 
LHY activate the expression of PSEUDORESPONSE REGULATORS 7 and 9 (PRR7 and PRR9), 
which in turn repress CCA1 and LHY. In the evening loop, TOC1 represses an unknown component 
generically named Y [GIGANTEA (GI) appear to be part of Y], which in turn activates the expression 
of TOC1. TOC1 levels are controlled by proteasomal degradation mediated by the F-box protein 
ZEITLUPE (ZTL). GI and the competitive interaction between ZTL and PRR3 with TOC1 modulate 
this mechanism. The interaction between TOC1 and PRR3 is probably favored by the phosphorylation 
of these proteins (Figure taken from Jose et al., 2010). 

1.4.2.2 Cell cycle interaction with circadian clock 

 There is substantial evidence in metazoans and unicellular algae that the circadian 

clock controls cell-cycle progression (Goto and Johnson, 1995; Smaaland, 1996; Mori and 

Johnson, 2000; Dekens et al., 2003). The first evidence of circadian influence onto cell 
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division came from unicellular dinoflagellate G. polyedra, which divides at the end of 

darkness in a 12hrs light/12hrs dark cycle. Strikingly, the periodicity of cell division remained 

in continuous light for several days indicating that this rhythm is under circadian control 

(Sweeney et al., 1958). 

 Obviously, the situation in multicellular organisms is much more complicated, as the 

timetable of physiological events and cell division is not necessarily synchronous among 

various tissues. None-the-less, circadian influence of cell cycle division was reported in cats 

already more than a century ago, and followed by reports in a wide range of mammalian 

species (including humans) and single-cell organisms (Fortuyn-van Leyden, 1917; Pilgrim et 

al., 1963; Edmunds, 1964; Scheving et al., 1978; Brown, 1991; Smaaland et al., 1991; Goto 

and Johnson, 1995; Mori et al., 1996; Bjarnason and Jordan, 2000; Dekens et al., 2003; 

Tamai et al., 2008; D’Autilia et al., 2010).   

 Many of the core clock genes have also been linked to cell-cycle related phenotypes, 

both in vitro and in vivo. When exposed to ionizing radiation (IR), clock gene Period2 

mutants (per2) of mouse displayed higher tumor formation, impaired DDR in thymocytes and 

altered cell-cycle gene expression (Fu et al., 2002; Gauger et al., 2005; Miller et al., 2007). In 

rodents, regularly scheduled meal hours synchronize the timing of S-phase in the cornea, bone 

marrow, lymphoid system and intestine (Canaple et al., 2003; Li et al., 2009). 

 The first direct link between the circadian clock and the cell cycle was found in 

mammals when it was shown that molecular components of the circadian clock directly 

regulate the expression of the cell-cycle gene WEE1 (Matsuo et al., 2003). The expression of 

Wee1 is controlled through E-box elements in its promoter, leading to circadian oscillations 

of Wee1 kinase activity and resulting in circadian phosphorylation of its constitutively 

expressed target proteins (Matsuo et al., 2003). In zebrafish, there is data indicating that the 

cell cycle is gated through a systemic mechanism involving circadian glucocorticoid secretion 

(Dickmeis et al., 2007).  

 Many aspects of plant physiology exhibit circadian behavior including leaf movement, 

flower opening, stomata opening, metabolic pathways and gene expression (Engelmann et al., 

1992; Jouve et al., 1998; Dowson-Day et al., 1999; Webb et al., 2003). In Arabidopsis, a 

computer-based identification of potential cis elements in promoter region of CDK genes 
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showed that almost all promoters have several copies of light responsive and circadian 

rhythms elements (Inzé., 2008). 

Table I2: Putative cis-element in the 2-kb-long promoter region of Rice and Arabidopsis CDK 
genes 

Genes Light Response Circadian Rhythms 

OsCDKA;1 1367 335, 366, 1783 

OsCDKD1;1 524, 556, 629, 1612, 1858, 1991 1156 

OsCDKF1;1 1020, 1315, 1380, 1539  

AtCDKA;1 49, 308, 890, 1180 73,255,109 

AtCDKB1;1 24, 1134, 1072, 1079, 1769 532, 541, 638, 1238, 1359, 
1484 

AtCDKB1;2 21,162,243,772,819,1528 1709 

AtCDKB2;1 65, 890, 1072, 1570, 1575, 1611 1413 

AtCDKB2;2 64,263, 1831 1725 

AtCDKC;1 948, 1376, 1800, 1848  

AtCDKC;2  876, 1940, 1986 

AtCDKD;1  1139,1235, 1868 

AtCDKD;2  70,87,1189 

AtCDKD;3 376 101, 1679 

AtCDKE;1  1136, 1435 

AtCDKF;1 299, 508, 649 286, 536, 941, 1269, 1701 

Number and position of potential transcription factor-binding sites are provided. The position is 
indicated as base pairs from the ATG start in 5´direction. Light response: INRNTPSADB 
(YTCANTYY); Circadian rhythm: CIACADIANLEHC (CAANNNNATC), EVENINGAT 
(AAAATATCT). 

 In microarray data analyses of Arabidopsis, circadian fluctuations in the expression 

levels of TOC1 with two peaks at 36 and 60h were observed. The Arabidopsis CDKG;1 gene 

displayed a very similar expression pattern, with moderate amplitude. CDKA;1 expression 

was elevated, however, expression pattern were different from TOC1 (Inzé, 2008) (Figure I8). 
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Figure I8: Expression of Arabidopsis CDK gene during circadian rhythms 

Circadian microarray analysis showed that expression of TOC1 and CDKG;1 peaks at two different 
time points in Arabidopsis seedlings. CDKA;1 showed higher level of expression. However, its 
expression pattern differs from TOC1 whereas CDKB2;1 gene expression was reduced. (Circadian 
Microarray data analysis NASCArray experiment, De Kireon Edwards, University of Warwick, UK). 

 The core circadian oscillator is dependent on light perception and a feed-back system 

by the clock genes (CCA1, LHY and TOC1). Expression of cell-cycle regulated genes such as 

histone H4 and of central cell-cycle genes such as CYCLIN B1;1 occurs at the end of the day 

and is under circadian control in the Arabidopsis shoot apical meristem (Bouget and Boudolf, 

2004; Inzé, 2008). 

 A proposal for the coupling of the circadian and cell-division cycle is supported by 

data pointing to the diurnal variation of plant hormones or metabolites known to influence the 

cell cycle in plants directly. Nováková et al., 2005 reported diurnal changes in the level of 

cytokinins indole-acetic acid and abscisic acid. In Arabidopsis rosettes, the sucrose glucose 

fructose and starch levels follow diurnal cycle in coordination with the diurnal expression 

patterns of sugar responsive genes (Blasing et al., 2005). However, until now no data is 

available about a possible circadian regulation of the cell cycle in plants. 
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2 OBJECTIVES 

Even though plants contain homologs of CDKs that have important roles in cell cycle 

regulation, little is known about the regulatory pathways through which CDKs interact with 

other cellular processes. In this work regulation of CDKs in response to environmental signal 

like DNA damage or circadian gene regulation has been studied. 

 In the first part of this study, the interconnection between cell cycle and DNA damage 

response is explored. DNA damage response has been intensively studied in animals however 

many regulators of this pathway still remains to be found in plants. A number of studies have 

shown that plants control their cell cycle differently after DNA damage compared to yeast and 

animals. Thus the objective of this study is to investigate these differences in detail. The 

major objectives of this work were:  

1) To explore the alternative pathway of CDKA;1 regulation through WEE1 upon DNA 

damage induction and the involvement of CAKs, that control T-loop phosphorylation of 

CDKA;1, in this regulation. 

2) To find out the interaction of P- and T-loop phosphorylation of CDKA;1 during 

meiosis and effect of CDKDs in this division. 

 In second half of this study the interaction of cell cycle regulators with circadian clock 

regulators is studied. Circadian clock regulation is very well understood in mammals and 

recent studies have shown an interaction of circadian clock and cell cycle processes. The aim 

of this work was  

3) To reveal the existence of feedback loop between cell-cycle regulators and circadian clock 

regulators in Arabidopsis. 
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3 DISCUSSION 

3.1 Regulation of CDKA;1 upon DNA damage 

 Cell-cycle regulation in response to DNA damage has been extensively studied in 

eukaryotes. The major cellular response upon DNA damage is not only the activation of the 

DNA repair machinery but also the inhibition of the cell cycle to provide cells sufficient time 

to repair the damage. Due to its role in diseases, especially cancer, the understanding of DNA 

damage control pathways is much further advanced in animal model systems and yeast than in 

plants. In mammals and yeast the activation of Wee1-type kinases by a DNA damage-

signalling cascade represents a direct link of DNA damage to cell-cycle regulation (Perry and 

Kornbluth, 2007; Yata and Esashi, 2009). Wee1-type kinases phosphorylate Cdk1-type 

kinases in the P-loop at Thr and Tyr residues leading to the inhibition of Cdk kinase activity. 

 However, observations from yeast and plants open the possibility for the existence of 

alternative functions of WEE1. S. cerevisiae Swe1, a Wee1 homologue, acts in a 

morphogenesis checkpoint monitoring actin cytoskeleton integrity during bud formation. 

Mutations impairing actin organization or affecting septin organization lead to Swe1-

mediated cell-cycle delays (Barral et al. 1999; Longtine et al. 2000; Lew, 2003). In some 

strains HU treatment also promote Swe1-dependent bud elongation (Jiang and Kang 2003; 

Liu and Wang 2006), possibly indicating that replication stress activates Swe1. However, in 

other strains, it appears that DNA checkpoint proteins prevent Swe1 from causing bud 

elongation in response to replication stress (Enserink et al. 2006). S. cerevisiae Cdc28 variants 

deprived of Tyr19 phosphorylation (equivalent to Tyr15) do not show any problem in cell-

cycle arrest in response to DNA damage (Amon et al., 1992 ; Sorger et al., 1992).  

 Similarly, the current data on CDKs regulation through WEE1 in plants does not lead 

to a coherent model. Arabidopsis WEE1 appears to be involved in an intra-S phase 

checkpoint seen by the hypersensitivity of wee1 mutants to HU and the accumulation of 

mutant cells in S phase with incompletely replicated or damaged DNA (De Schutter et al., 

2007; Cools et al., 2011). However, the mechanism of the WEE1 dependent cell-cycle arrest 

in response to this replication stress is not well understood. On the one hand, WEE1 can 

efficiently phosphorylate Tyr15 in the ATP-binding loop of monomeric CDKA;1 in vitro 

(Shimotono et al., 2006; De Shutter et al., 2007). 
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 Phosphoproteomics data from Arabidopsis suggest that P-loop phosphorylation of 

CDKA;1 is not generally employed during cell proliferation since no phosphorylated Tyr 15 

on CDKA;1 has been identified while T-loop phosphorylation is readily observed (de la 

Fuente van Bentem et al., 2008; Sugiyama et al., 2008). Importantly, P-loop dephospho-

variant of CDKA;1, designated VF (T14V;Y15F), can completely rescue cdka;1 mutants and 

do not mimic wee1 mutants on HU, i.e., they are not more sensitive to replication stress than 

the wildtype (Dissmeyer et al., 2009). Better growth of CDKA;1 phospho-mimicry mutants 

DE on HU compared to wee1, but hypersensitivity of wee1DE stressed on role of WEE1 in an 

alternative pathway of cell-cycle inhibition upon replication stress, than in CDKA;1 P-loop 

inhibition (Dissemeyer et al., 2009). 

 One possibility is that WEE1 could regulate cell-cycle progression in plants by 

targeting other CDKs than CDKA;1. One target could be B1-type CDKs, a plants specific 

class of CDKs. CDKB family members also contain conserved P- and T-loop segments and 

show high sequence similarities to CDKA;1. CDKB1s are expressed in a cell-cycle dependent 

manner: CDKB1 transcript accumulates in late S, G2 and M phase whereas CDKB2 seems to 

be specific for G2/M transition. Since CDKB1s are expressed during S phase they can be 

possible candidate for WEE1 phosphorylation. The rescue of cdka;1 by PROCDKA;1:CDKB1;1 

(Nowack et al., 2012) and the hypersensitivity of cdkb1;1 cdkb1;2 double mutants to the Cdk 

inhibitor roscovotine showed that CDKB1;1 and CDKA;1 have at least some overlapping 

functions.  

 Through analyzing the growth of plants expressing CDKB1 phosphomimicry mutants 

in a wee1 mutant background on HU this hypothesis can be tested. Rescue of wee1 phenotype 

can be expected in wee1 CDKB;1T14D:Y15E mutants if CDKB1 is a downstream target of WEE1 

upon DNA damage. Also CDKA;1VF CDKB;1VF can be combined and tested on HU. Given 

that WEE1 cannot inhibit both CDKA;1 and CDKB;1 in these mutants, a severe 

hypersensitivity can be expected.  
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3.2 Role of T-loop in regulating CDKA;1 upon DNA damage 

 The resistance of the CDKA;1 T-loop phosphomimicry mutant D (T161D) to 

genotoxic stress and the partial rescue of the wee1 phenotype on HU suggested a possible role 

of T-loop regulation in DNA damage response. The root-growth rate of homozygous D plants 

remained unaffected on HU versus MS without HU. Since these mutants have reduced 

CDKA;1 activity, one possible explanation of the observed rescue of wee1 by D was that cells 

in this mutant combination may have more time to repair and reinitiate stalled replication 

forks. However, the P-loop phosphomimicry mutant DE has similarly reduced kinase activity 

levels and slow cell proliferation rates, but fails to rescue wee1 mutants (Dissmeyer et al., 

2009). Growth analyses of wee1 in combination with another weak allele of CDKA;1 (F80G) 

conducted in this study showed that the rescue of the wee1 phenotype on HU is specific to the 

T-loop phospho-mimicry variant of CDKA;1.  

 Based on these observations, CDKDs might be another target of WEE1 action after 

DNA damage. Arabidopsis CDKDs have Tyr residues in their P-loops, which is a specific 

feature of CAKs in plants but not in animals or yeast. Indeed, Arabidopsis WEE1 can 

efficiently phosphorylate these residues in vitro (Shimotono et al., 2006). Consequently, the 

inhibition of CDKD kinase activity through WEE1 mediated phosphorylation of their P-loops 

should result in the arrest of T-loop phosphorylation of CDKA;1. 

 To test this, dephospho-variants of CDKDs were constructed with non-

phosphorylatable P-loop residues. These should mimic wee1 mutants and indeed the here-

analyzed CDKD;2Y24F and CDKD;3Y23F variants showed hypersensitivity to HU. At least in in 

vitro assays, the kinase activity of CDKD;3 on CDKA;1 is higher than that of CDKD;2 

(Shimotono et al., 2003) which may explain the stronger hypersensitivity of CDKD;3Y23F 

compared to CDKD;2Y24F on HU. In contrast, the dephospho-variant of CDKD;1, 

CDKD;1Y22F, did not show hypersensitivity to HU. However, CDKD;1 was not shown to be 

phosphorylated by WEE1, thus suggesting that CDKD;2 and in particular CDKD;3 have 

majors role in cell-cycle inhibition upon replication stress.  

 The hypersensitivity of CDKD dephospho-variants was shown to be not simply due to 

promotion of cell-cycle activity since the expression of the full length CDKD version did not 

result in hypersensitivity to HU. The absence of a wee1–like severe hypersensitive phenotype 

in single CDKD P-loop variants may be due to a dosage effect. If so an increased sensitivity can 
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be expected in plants carrying increased number of copies of CDKD dephospho variants. 

Indeed combined effect of CDKD;2Y24F and CDKD;3Y23F when studied under replication 

stress, was stronger hypersensitivity compared to single CDKD P-loop mutants. Thus the 

regulation of the cell cycle through CDKDs appears to be a dose-dependent effect as 

increased number of copies of mutated gene resulted in stronger reduction of CDKA;1 

activation, leading to much lower kinase activity. 

  T-loop phosphorylation of Cdks appears to be highly dose-dependent in other 

organisms. In yeast, Cak1 has been shown to repress defect caused by deletion of Smk1, a 

MAP kinase required for response to environmental stimuli. Increased copies of Cak1 

suppress the developmental defect of smk1 mutants (Wagner et al., 1997). The 

phosphorylation of both Cdk1 on Thr161 and Cdk2 on Thr 160 decreased after Cdk7 

inhibition in dose-dependent fashion (Ramanathan et al., 2001). Also Cdk9 activating-

phosphorylation through Cdk7 was shown to be dosage dependent. Immuno-blot experiments 

showed that T-loop phosphorylation of Cdk9 decreases upon inhibition of Cdk7 activity in a 

dose-dependent manner (Larochelle et al., 2012). In Arabidopsis, single mutants of CDKD do 

not show any defects. However, growth defects observed in double mutants and heterozygous 

triple mutants suggested an overlapping function of these genes. This can explain increased 

hypersensitivity of mutants having increased copies of dephospho-variants of CDKD. 

 Hypersensitivity of CDKD dephospho-mutants to HU suggests that WEE1 can repress 

CDKA;1 activity to delay/arrest cell-cycle progression upon replication stress by inhibition 

CDKD through inhibitory phosphorylation. This can be verified by comparing P-loop 

phosphorylation levels of CDKD in wild-type plants versus wee1. Whereas in wild-type 

plants an increase of inhibitory P-loop phosphorylation levels of CDKDs is expected 

following HU treatment, such an increase should not occur in wee1 mutants. The laboratory 

of Masaaki Umeda in NAIST has generated CDKD antibodies that could be used to test these 

predictions in future. 

 Conversely, CDKA;1 T-loop phosphorylation should diminish following replication 

stress whereas in wee1 mutant the phosphorylation should remain at the same level as seen in 

plants grown on MS media without HU. This can also be tested now by Western blots using 

an antibody that recognizes phospho-Thr160 of Cdk1 and that cross-reacts with the 

phosphorylated Thr161 in Arabidopsis (Harashima et al. 2007).  
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 Finally, if the hypersensitivity observed in the CDKD;2 and CDKD;3 P-loop variants 

is caused by constitutive active CDKA;1, the growth of these dephospho-variants should be 

rescued by expressing D similarly to the rescue observed of wee1 by T161D. For this purpose, 

I have introgressed D into CDKD;2Y22F and CDKD;3Y23F and these plants are ready now for 

growth analyses on HU media. 

 Assuming that CDKDP-loop variants are hypersensitive to HU due to the constitutive 

phosphorylation of the CDKA;1 T-loop, cdkd null mutants can be used as negative control 

due to presumable reduce T-loop phosphorylation activity. Single mutants of cdkd;1 and 

cdkd;3 showed no hypersensitivity to replication stress. The wild-type like growth of these 

mutants on HU indicated no significant alteration T-loop phosphorylation. Similarly, the rate 

of growth reduction of the cdkd;1 cdkd;2 double mutants was not more than the control plants 

on HU. Surprisingly, cdkd;2 cdkd;3 double mutants showed stronger reduction in root length 

compared to wild-type plants on HU. However, the reduction in root length of cdkd;2 cdkd;3 

mutants was not as severe as observed in CDKD;2Y24FCDKD;3Y23F (Figure D1). 

 

Figure D1: Percentage of the reduction in root growth of WT, CDKDP-loop and cdkd mutants 

The bars represent the reduction of root growth between MS and 1mM HU in %.  

 Unaltered growth of cdkd single mutants and cdkd;1 cdkd2 on control plates suggested 

that T-loop activity of CDKA;1 is not significantly reduced in these mutants to effect the 

growth. No hypersensitivity of these mutants to HU can be attributed to this unaltered T-loop 

phosphorylation level. Reduced root growth of cdkd;2 cdkd;3 mutants on HU could be due to 

the activity of CDKD;1. CDKD;1 has been found to be an active CAK as it can phosphorylate 
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all Ser residues of Arabidopsis RNAPII CTD (Hajheidari et al., 2012). An essential role of 

CDKD;1 in cell-cycle regulation can be perceived by the fact that cdkd;2 cdkd;3 double 

mutants are viable but triple homozygous mutants of cdkd are lethal. CDKD;1 could also not 

be phosphorylated by WEE1 in vitro. Thus, it can be assumed that in single cdkd mutants and 

cdkd;1 cdkd;2 and cdkd;1 cdkd;3 double mutants at least one CDKD gene, which can still be 

inhibited through WEE1, is present. Inhibition of this CDKD gene upon replication stress can 

reduce CDKA;1 activity as the proper response to replication stress. However, in cdkd;2 

cdkd;3, activation of the CDKA;1 T-loop might still be possible through CDKD;1, which can 

not or perhaps less efficiently be inhibited through WEE1. This can result in reduced root 

growth of these double mutants on HU (Figure D2).   

 

Figure D2: Proposed model for CDKA;1 inhibition via CDKDs through WEE1 

 This can be further investigated by checking the T-loop phosphorylation level of 

CDKA;1 in cdkd;2 cdkd;3. If CDKD;1 is involved in CDKA;1 activation, CDKA;1 T-loop 

phosphorylation should still be detected in these mutants. By expressing T161D in triple cdkd 

mutants it can be decided whether phosphorylated T-loop residues can rescue lethality of 

these mutants.  

Interestingly, Ostapenko et al., (2003, 2005) showed that deletion of Cak1 in yeast can 

indirectly disturb DNA damage response. Ctk1, a kinase associated with RNAPII, has been 
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shown to be involved in DNA damage induced transcription.  Ctk1 is phosphorylated by Cak1 

and cak1 mutants are sensitive to DNA damage due to the failure of Ctk1 phosphorylation.  

 Even though plants and animals have some regulators of DNA damage response 

pathway in common, many key regulators like Chk1, Chk2, and p53 are absent in plants. Also 

due to their inability to avoid many constantly damaging influences, plants need to utilize 

efficient ways to cope with these stresses. Thus, they might have evolved alternative 

pathways to respond to external and internal stresses. 

In mammals and fission yeast, Cdk7 and Mcs6 kinases, respectively, have dual CAK activity. 

This single CAK functions in regulating CDK kinase activity, and phosphorylating CTD of 

RNAPII. In budding yeast, on the other hand, two different orthologs of CAK, Cak1 shows 

kinase activity toward Cdc28 and Kin28, which is involved in phosphorylation of CTD of 

RNAPII. However, a special feature of Arabidopsis CAK is that instead of acting in distinct 

pathways they are involved in phosphorylation of CDK and CTD together (Shimotono et al., 

2004; Takatsuka et al., 2009).  

 A possible involvement of T-loop phospho-regulation in DNA damage response has 

also been found in animals. Liang et al., (2003) suggested that Cdk7 could act as an inducible 

G2 checkpoint by arresting the cell cycle under stress conditions. It was shown that an 

artificially induced inhibition of Cdk7 through drugs can arrest the cell cycle, thus preventing 

tumor formation in mammals. This negative regulation was shown to be independent of P-

loop inhibition. This inhibition was very potent since even in the absences of P-loop 

phosphorylation of Cdk1, the cell cycle could be blocked through inhibition of Cdk7. 

It has also been suggested in a number of studies that induction of the CDK inhibitor p21 in 

mammals upon DNA damage, inhibits T161 phosphorylation of Cdk1/Cdc2 and Cdk2 

rendering the Cdk/cyclin complex inactive (Ohta et al., 1998; Smits et al., 2000; Bipin et al., 

2005). Expression of p21 is activated by p53, a transcription factor acting downstream 

ATM/ATR in DNA damage signaling cascade (Dulic et al., 1994; el-Deiry et al., 1994). In 

plants, a NAC-domain-containing transcription factor, called SOG1, has been identified that 

may function analogously to p53. SOG1 has been found to act downstream ATM/ATR and 

upstream WEE1 (Yoshiyama et al., 2009). Even though regulatory relationship between 

SOG1 and WEE1 kinase is not clear yet, one can extrapolate that SOG1 activates WEE1 that 

than inhibit CDK activity by inhibiting T-loop phosphorylation by inhibiting CAKs. 
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 However, p21 does not affect CAK activity rather it blocks access of CAK by binding 

to Cdk/cyclin complex. This block in G2 is maintained for up to 24 h, indicating that p21 can 

sustain a G2 arrest for a significant amount of time (Aperlikova et al., 1995; Hitomi et al., 

1998; Smits et al., 2000). Still, it has not been suggested to be the sole pathway regulating this 

arrest, rather it function appear to be secondary i.e., to ensure or sustain the arrest caused via 

P-loop phosphorylation (Bunz et al., 1998; Smits et al., 2000).  

 Taken into account that WEE1 can phosphorylate the P-loop of monomeric CDKA;1 

at least in vitro, and CDKDP-loop mutants are not as sensitive as wee1 mutants to HU, it might 

still be possible that WEE1 has dual function by regulating both P- and T-loop To explore the 

interaction between P- and T-loop phosphorylation, if any dephospho variants of VF in cdkd 

mutant background can serve as an important tool Triple cdkd;3-cdka;1VF and cdkd;1-

cdka;1VF mutants have un-phosphorylatable P-loop residues and null cdkd mutation that can 

play a role in T-loop activation. Thus, in these mutants CDKA;1 activity was expected to be 

unaltered. Homozygous cdka;1 null mutants can not only be fully rescued by VF but can also 

grow like wild-type plants under green house conditions (Dissmeyer et al., 2009). However, 

the absence of double homozygous cdka;1VF cdkd;3 and cdka;1VF cdkd;1 in segregating 

progeny implies that CDKA;1 activity is significantly altered especially T-loop 

phosphorylation. This was illustrated by the fact that mutant CDKA;1 with non-

phosphorylatable Val at Thr161 (T161V) can not rescue the homozygous cdka;1 mutant 

(Dissmeyer et al., 2007).  

3.3 Role of CDKA;1 activity in meiosis 

 The combination of null cdka;1 mutants carrying the VF variant in a cdkd mutant 

background did not result in defects during vegetative growth. Dissmeyer et al., 2007 showed 

that reduced T-loop phosphorylation in T161D results in sterility due to meiotic defects. 

Similar sterile phenotype observed in cdka;1VF cdkd;3+/- and cdka;1VF cdkd;1+/-. Impaired 

male meiosis observed in cdka;1VF cdkd mutants emphasize that certain levels of CDKA;1 T-

loop activation are required for proper regulation and progression through meiosis but 

vegetative cell division is not sensitive enough to altered level of CDKA;1 activity.  

 Bulankova et al., 2010 showed that CDKA;1 is present in meiosis in Arabidopsis. It 

was shown that the activating phosphorylation in CDKA;1 T-loop oscillates during meiosis, 

with peaks in metaphases I and II. Crossover formation between non-homologous 
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chromosomes and the occasional segregation of univalents at metaphase-I cdka;1VF  cdkd;3+/- 

but not in VF mutants, is consistent with role of T-loop activation in proper progression 

through meiosis. 

 Cell wall formation in interkinesis was observed in D mutants due to reduced T-loop 

activity (Dissmeyer et al., 2007). Presence of the phosphorylated and hence likely active 

CDKA;1 at the organelle band that separates the two cell poles suggested that active CDKA;1 

is required to inhibit cytokinesis after meiosis-I. High kinase activity was shown to be 

required to prevent premature exit from meiosis (Bulankova et al. 2010; Zhao et al. 2011 ; 

Cromer et al. 2012; Nowack et al. 2012). Thus, formation of dyads due to cytokinesis during 

first meiosis division in cdka;1VF cdkd;3+/-meiocytes can be explained due to reduced 

phosphorylation of CDKA;1 in these mutants. Similar phenotypes observed in cdka;1VF 

cdkd;1+/- mutants suggest the involvement of CDKD;1 in T-loop regulation of CDKA;1 in 

meiosis. However, this activity might not be as strong as CDKD;3 as suggested by reduced 

frequency of dyads in cdka;1VF cdkd;1-/- compared to cdka;1VF cdkd;3+/-. 

 Meiotic defects observed in cdka;1VF cdkd;3+/- and cdka;1VFcdkd;1+/- occurred only in 

plants having no wild-type allele of CDKA;1. Whereas VF variants having either one or two 

wild type CDKA;1 alleles, even in a homozygous cdkd background, did not show sterility, 

suggests that the VF mutation is in particular sensitive to T-loop phosphorylation. This is 

consistent with the observation that CDKA;1 triple phospho-site mutants VFD which have a 

non phosphorylatable P-loop and constitutively active T-loop, showed severe growth defects 

(Annika Weimer and Nico Dissmeyer, personal communication). 

 The production of triploid and especially tetraploid plants in the progeny of cdka;1VF 

cdkd indicates that female meiosis is also affected. Thus, a detailed analysis of the female 

meiosis in these mutants might shed new light on the role of CDKA;1 T-loop phosphorylation 

in reproduction. Analysis of wee1 cdka;1VF for these meiotic defect will also be interesting. If 

the regulation of both the P- and T-loop of CDKA;1 is downstream of WEE1, a cdka;1VF cdkd 

like phenotype can be expected in wee1 cdka;1VF. Analysis of the meiosis in cdkd double and 

triple mutants will also be conducted in near future to investigate the reasons of sterility 

observed in these mutants.  
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3.4 Interaction between CDKA;1 and circadian clock 

DNA damage is only one out of many stresses and environmental conditions to which the cell 

cycle has to respond and that need to be integrated with physiological and developmental 

responses at the organisms level. Especially for plants as photosynthetically active organisms, 

day and night cycles are one of the major environmental parameters. To ensures that 

responses to the environment occur at the precise time of the day, even if primary light cues 

are absent or delayed, plants as most other organisms have developed a circadian clock that 

can generate oscillation with an approximately 24 hour rhythmicity. In this work, I have 

explored whether the circadian clock also controls the cell cycle in Arabidopsis and especially 

whether there exist a feedback mechanism from the cell cycle to the circadian clock. 

A direct regulation of cell cycle by the circadian clock has been demonstrated in animals 

(Matsuo et al., 2003; Fu et al., 2005). Daily patterns of cell divisions are tightly tied to the 

endogenous time provided by the circadian clock in Euglena, Synechococcus and various 

animal such as mouse and zebrafish (Schevingt al., 1998; Cardone et al., 2003; Matsuo et al., 

2003; Dekens et al., 2003). A possible advantage that has been proposed for the observed 

connection between the time of the day and the cell cycle is the prevention of DNA damage, 

e.g., cell division would be timed so that cells are in a G2 phase when UV radiation is the 

highest and hence DNA damage could be repaired though rather error-free homologous DNA 

recombination. Little is known about the existence of such a co-ordination in plants. 

Moulager et al., (2007) even showed that cell division in Chlamydomonas is regulated in a 

time-dependent manner. 

 To explore a diurnal control of the cell cycle in Arabidopsis, DNA profiles of young 

seedlings were obtained at different times of the day. Wild-type plants showed a significant 

increased in the percentage of cells residing in G1 six hours after dawn, suggesting that 

divisions are preferably executed in the morning. This pattern is different from the one 

observed in other organisms. In mouse liver, for example, Wee1 mRNA displayed a peak at 

eight hours after dawn with a subsequent decrease. Similar patterns were observed in 

regenerated liver, where Wee1 trancript levels increase till ZT8 (ZT light turn on) suggesting 

a maximum occurrence of mitosis during these hours (Matsuo, et al., 2003; Fu et al., 2005). 

Similarly, a peak of Cdc2 activity, indicative for the maximum of mitotic activity, was 

observed at ZT8 (ZT light turn on) in cells of regenerated livers cultured under light and dark 

cycle (Matsuo et al., 2003). In mice neurogenic region number of S-phase cells were 
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quantified by BrdU staining and a no alterations were observed during the day and but an 

increase was observed preferably during night (Tamai et al., 2008). It can be suggested as an 

internal mechanism to avoid enhanced environmental threats during sunlight and thus 

preventing damages during replication. 

 The timing of the cell cycle appeared to be altered in cca1 compared to wild type. 

cca1 mutants showed a shift of mitoses towards evening since the largest fraction of cells 

residing in G1 was found around dusk. Similarly cdka;1 mutants showed a shift in time of 

division, as in cdka;1 2C contents were comparable in morning and evening, with maximum 

2C content around dawn. Thus suggesting that cell division time is altered either by disturbing 

cell regulators or clock players. These results can now be verified by quantification of the 

mRNA levels of cell-cycle-phase specific genes at various time points of day in wild-type 

plants versus cdka;1 mutants. 

 Microarray analysis of an allelic series of cdka;1 mutants showed altered expression 

level of clock genes in these mutants compared to wild-type plants. Not only the expression of 

core clock regulators like CCA1, LHY and CCR2 was down regulated but also expression of 

a number genes related to circadian responses like flowering time were also altered in cdka;1 

mutants. To test whether indeed circadian genes are deregulated in these mutants, the 

expression pattern of CCA;1 and GI genes was investigated in weak loss-of-function mutants 

of CDKA;1. To this end, luciferase markers for both theses genes were introgressed in D and 

DE mutant version and the luminescence was analyzed in constant light conditions. The 

luminescence profile of CCA1:LUC in D and DE showed that this gene is still still 

rhythmically expressed in cdka;1 mutants but has a reduced amplitude. Remarkably, the 

period of CCA1 rhythmicity was decreased in these mutants compared to wildtype. Reduced 

period length observed is in in consistence with down regulation of CCA1, as found in the 

microarray experiments. The reduced phase amplitude of CCA1 in cdka;1 mutants suggest a 

possible positive regulation of the clock gene through cell-cycle kinase. CCA1 has been 

shown to be direct target of phosphorylation and can interact with casein kinase 2 (CK2) 

(Sugano et al., 1999).  

 On the other hand, GI:LUC expression profiles showed an increase in period length in 

cdka;1 mutants, suggesting that expression of central and evening-phased-loop regulators are 

decoupled in cell-cycle mutants. Such phenomena have already been described in 

Arabidopsis. In shoots, the period of CCA1 and LHY was longer in constant dark compared to 
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constant light whereas in roots, the period length was the same under both conditions. This 

suggested that genes of the core loop could be decoupled from oscillation in roots. Dalchau et 

al., (2010) showed that period length of GI:LUC rhythms was slightly decreased after sucrose 

treatment in Arabidopsis plants whereas similar treatment resulted in longer period for 

TOC1:LUC, suggesting the existence of uncoupled oscillators. However in this cases 

observed decoupling was attributed to induced sucrose stress. But how the mutation in cell-

cycle regulator function can lead to decoupling can be an interesting area to explore. Also 

despite the decoupling of morning and evening genes, these mutants still seem to maintain 

rhythms for both factors. It would be interesting to investigate how this can be possible. 

 These preliminary data indicate that cell-cycle kinases can have an effect on the 

regulation and expression of clock genes. Whether this effect is direct or indirect needs to be 

addressed in the future.  
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4 MATERIALS AND METHODS 

4.1 Materials 

Table M1: List of primers used for genotyping 

Gene Primer Sequence 5’ to 3’ 

Salk_LB S.7 GCGTGGACCGCTTGCTGCAACTCTCTCAGG 

cdka;1 T-DNA S.27 CCAGATTCTCCGTGGAATTGCG 

CDKA;1 ss S.29 TGTACAAGCGAATAAAGACATTTGA 

CDKA;1 as S.38 TTTGGCTGGCTGCATTCCTTA 

Gabi T-DNA S.61 CCCATTTGGACGTGAATGTAGACAC 

WEE1 ss S.59 TCAATAAGGCTTGGTTTCTTCAGT 

WEE1 as S.60 AGGCATGTAACGTGCATCTC 

Ku70 ss S.62 AACCCTTACTTAGATATGATTTAC 

KU70 as S.63 AGGGTGTTATTCCGAGGCTTACT 

CDKD1WT as S.79 GATGTGGCCGTACATTGGTCTTTAGAA 

CDKD1 WT/mut ss S.77 GTTGTGGCAATTTGTAGAATGG 

Cdkd1-5 mut as S.78 CTGGGAATGGCGAAATCAAGGCATC 

Cdkd3-3 WT as S.80 GCATTTGGAAACAGAGCTCAC 

Cdkd3-3 WT/mut ss S.81 GAGTCGTCTTCAAAG CCA CTG 

Cdkd3-3 mut as S.82 GCGTGGACCGCTTGCTGCAACTCTCTCAGG 

CDKA;1 ss1 S.326 CCGAGCACCAGAGATACTCCTAGG 

CDKA;1 ss2 S.327 GAATTTGTTGATTGATCGCCGC 

CDKA;1 as S.328 CTAAGGCATGCCTCCAAGATCC 

Fetch CDKA;1 S.324 TCAGCTGGCTTGTTTGATTG 

Fetch CDKA;1 S.325 AACGGAGGATCACCACTTTG 

CDKD1 Y22F ss S.311 GATAATATATGAGTTCGCTGCTCTGG 

CDKD1 Y22F as S.312 GAGTTTACTTCAGCTTTATTATTCAGG 

CDKD2 Y24F ss1 S.205 GAAGCAGTGATTCGTGATCG 

CDKD2 Y24F ss2 S.206 GAAGGAACATTCGGTGTCGT 

CDKD2 Y24F as S.207 GGGGGTCAAGTGAATCCTTC 

CDKD3 Y23F ss S.201 CCACGATAAATGGGTTTTGC 

CDKD3 Y23F as S.203 CCCCCTTACTGGAACTCAAGAT 
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Table M2: T-DNA insertion lines used for study 
 

Gene Locus T-DNA lines AGI code Ecotype 

CDKA;1 SALK_106809 At3G48750 Col-0 

WEE1 GABI_270E05 At1G02970 Col-0  

KU70 ku-70 At1g16970 Col-0 

CDKD;1 Salk_114643 At1G73690 Col-0 

CDKD;2 Salk_065163 

Salk_053029 

At1G66750 Col-0 

CDKD3 Salk_120536 

Salk_007756 

At1G18040 Col-0 

 
Table M 3: List of Crosses generated and used for this study 
Crosses Crosses 

wee1-1 X CDKA;1 F80G VF X CDKD3 Y23F(cdkd1-1) 

wee1-1 X cdkd;1-1 VF X CDKD2 Y24F(cdkd3-1) 

wee1-1 X cdkd;3-1 VF X CDKD3 Y23F(cdkd1-1) 

cdkd1-1 X cdkd3-1  CDKD2 Y24F X CDKD3 Y23F 

cdkd2-1 X cdkd3-1  CDKD2 Y24F(cdkd1-1) X CDKD3 Y23F(cdkd3-1) 

cdkd1-1X cdkd2-1cdkd3-1  D7 X CDKD2 Y24F 

VF X cdkd1-1 D7 X CDKD3 Y23F 

VF X cdkd3-1 D7 X CCA1:LUC 

VF X CDKD2 Y24F D7 X CCR2:LUC 

VF X CDKD3 Y23F D7 X GI:LUC 

VF X CDKD2 Y24F(cdkd3-1)  

4.1.1 Plant material 

Arabidopsis thaliana (L.) Heynh plants were used for this study. All experiments were done 

in the ecotype Columbia (Col-0) background. 

4.1.2 Soil mixture 

Soil mixture for Arabidopsis cultivation, selection and propagation: 8 bags of MiniTray (70 

L/bag, Balster Einheitserdewerk); added 50L water containing 800mL Osmocote Start (Scotts 

International BV) and 250 g BioMükk (Sautter & Stepper). 
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4.1.3 Plant Growing Media 

0.5% MS: 2,16 g Murashige and Skoog Basal Salt (Sigma Alderich), 5 g Sucrose, pH 5.7 

adjusted with 1M KOH, added H2O up to 1L, 8 g Bactoagar,. 

MS3: 4.4g Murashige and Skoog Basal Salt (MS), 30g sucrose, 5g 2-(N-morpholino) 

ethanesulfonic acid (MES), pH 5.7 adjusted with KOH, added H2O up to 1L,15g Phytoagar. 

Media was sterilized by autoclaving at 1200C for 30 min. 

4.1.4 Buffers for DNA work 

Extraction buffer for genomic plant DNA (“Magic buffer”): 50 mL 1 M Tris-Cl pH 7.5 

(for 50 mM), 60 mL of 5 M NaCl (for 300 mM), 100 g sucrose (for 300 mM), added H2O up 

to 1L. Sterilized by autoclaving. 

10x direct PCR buffer (with gel-tracking dyes): 24.23 g Tris (for 200 mM), 37.275 g KCl 

(for 500 mM), 4.07 g MgCl2 hexahydrate (for 20 mM), pH 8.7 adjusted with  HCl. 1.5 g/L 

xylene cyanol FF and 1.5 g/L Orange G added H2O up to 1L. Sterilized by autoclaving. 

10X TBE Buffer (Tris-borate): 108 g Tris and 55 g boric acid in 900 mL H2O. pH adjusted 

up to 8.0 with 40 mL 0.5M Na2EDTA, added H2O up to 1L. 

Alexander stain: 10mL of Ethanol 95%, 1mL Malachite green (1% in 95% Ethanol), 5mL 

Fuchsin acid (1% in water), 0.5 mL Orange G (1% in water), 5g Phenol, 5g Chloral hydrate, 

2mL Glacial acetic acid, 25mL Glycerol, 50 mL dH2O. 

DAPI solution : 2.5 µg/ml DAPI in 50 mM PBS pH 7.2 with 0.01 % Tween20 and 5 % 

DMSO 

4.1.5 Buffers used for Luciferase imaging 

0.1M Triphosphate Buffer for Luciferin : 3.56g of Na2HPO4, 2.76g of NaH2PO4, pH 8.0 

adjusted with Na2HPO4, added H2O up to 200mL. 

 50 mM Luciferin stock solution: 1g of firefly D-luciferin, 71.3mL of 0.1M of the 

triphosphate Buffer, 100µL of 0.01%Triton X-100, up to 1L of dH2O. 

 5 mM Luciferin working solution: 1.5mL of 50 mM luciferin stock, 13.5mL of Triton-X 
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solution. Filter sterilized. 

4.2 Methods 

All the bench work was performed according to Standard laboratory techniques (Sambrook 

and Russell, 2001). 

4.2.1 Plant work  

Plant growth conditions 

Plants were grown on soil under 16hr light and 8hr dark conditions for crossings, pollen 

analysis and seed propagation. For in vitro analysis plants were grown under 14hr light and 

10hr dark conditions on 0.5 % MS media. For periodicity assays  plants were grown under 

12hr light and 12hr dark conditions on MS3 media.  

Seed sterilization 

The seeds were sterilized in a small vacuum container. Of the different seed stocks 50 to 100 

seeds were provided in opened 2 mL round- bottom micro-centrifuge tubes (eppendrof) in a 

desiccator or similar container, provided with a small beaker containing approx. 30 mL 

Bleach (FLOREAL Haagen). Under the fume hood, 3mL concentrated HCL was added and 

the lid immediately closed to keep the produced chlorine gas in the compartment. The 

chlorine produced by this reaction, was used to surface sterilize the seeds for three to four 

hours. The dry seeds were either directly plated or aseptically stored for further use. 

Plant selection 

For selection of transformed plants in T1, plants were sprayed with 0.001 % BASTA as soon 

as the two cotyledons were visible. Spraying of BASTA was repeated two to three times. For 

establishing of T2 and T3 lines seeds of from individual plants were sown on MS plates 

containing PPT (Phosphinothricin-N-acetyltransferase)  

Crossing 

At a stage when the flowers were closed and the pollen were not mature, the anthers of the 

receptor flowers were carefully opened and emasculated with fine forceps (Dumont). All 

remaining older and younger flowers were also removed. After two days the stigma of the 
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carpels were pollinated with pollen from the donor plant and separately bagged after the 

siliques had formed. Then, approx. two weeks after crossing, watering was terminated. Plants 

were transferred to a much warmer greenhouse where maturation takes place much faster, 

seeds for the F1 generation were collected, dried for a couple of days at 37°C and cleaned. 

Root measurements 

For root growth measurements 12-15 seeds were sown in line at equal distance, in square 

plates and were placed at 4oC for three to four days for stratification. The plates were then put 

in growth chamber vertically. Measurements of root growth rates were started one day after 

the germination of seeds. Each day a small scratch at the back of the plate perpendicular to the 

growth direction of the root marking the position of the tip was made during 10 days. 

The plates were scanned on a Toshiba E scanner. The scanned images of plates were opened 

with image-analysis software ImageJ (rsb.info.nih.gov/ij). For calibration of the scale image 

of ruler taken under same settings was used. The ‘Freehand’ tool was used to measure the 

distance between two marks. Root length was measured from the root tip to the root-

hypocotyl border. Three biological replicates, each containing at least 12 plants, were 

analysed. The mean of the root lengths of each individual experiment was determined and 

again averaged for three biological replicates. 

Plant treatments for root growth analysis 

All the experiments with various drugs were additionally performed on control plates (0.5 % 

MS) and control plants at the same time under the same light conditions. 

For preparing media containing 1mM HU, 1000 ml of 1M HU (Sigma-Alderich) stock 

solution was dissolved in 1L hand warm 0.5% MS media. For plates containing media with 

0.6 µg/mL Bleomycin (Duchefa), 1000 ml of 0.6 mg Bleo stock solution was added per 1L of 

0.5% MS media. 

4.2.2 DNA work 

Genomic DNA preparation 

To determine the presence of the respective T-DNA insertions, a quick method (Berendzen et 

al., 2005) was carried out. One or two young leaves were harvested and put into a 2 ml deep 

well of a 96 well storage plate (Abgene). The plant samples were treated directly with 500 µl 
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of DNA extraction buffer and small stainless steel beads (3.175 mm, Mühlmeier) were added 

to facilitate homogenisation. After closing the storage plate with collection microtube caps 

(Qiagen), the plant tissues were homogenised at a high frequency in the Tissue Lyser II 

(Qiagen) for 2-3 min. The plates were centrifuged for 3 min to spin down the liquid from the 

microtube caps to avoid cross contamination. For liquid transfer in case of low volumes 

within the storage plates used pipette tips with extended length (Starlab TipOne). For long-

term storage at -20°C, used 96- well silicone sealing mats (Abgene). 1.5 µL of the suspension 

were directly used as a template in a 20 µL PCR reaction  

Polymerase chain reaction 

PCR for high-throughput genotyping was directly performed using 1.5 µl genomic DNA to 

make 20 µl PCR reactions. PCRs were done with homemade Taq polymerase and the 

following protocol 

 Master Mix for 10 samples  µl  

 H2O     660 
 10x direct PCR buffer  25 
 2.5mM dNTPs (Promega)  25 
 BSA (10mg/ml)   25 
 PVP-40 (5%)    50 
 Primer 1 (100mM)   10 
 Primer 2 (100mM)   10 
 Homemade Taq   70  
 
A detailed protocol is described in (Dissmeyer and Schnittger, 2011). 

Gel-electrophoresis 

20 µl pf the PCR reaction was used for gel electrophoresis with 1.5 % agarose in 0.5 X TBE. 

250 bp DNA ladder was used from Invitrogen, Life Technologies. 

4.2.3 Cytology and Microscopy 

Flow cytometry/ Ploidy Analysis 

For Flow cytometry analysis, plant material (seedlings or flower buds) were chopped up 

finely with a razor blade in nuclear extraction buffer (CyStain UV-precise kit by Partec 
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GmbH, Muenster, Germany). All preparations were filtered through a 30 µm nylon mesh and 

stained with nuclear staining solution (CyStain UV- precise kit by Partec GmbH, Muenster, 

Germany) containing 4’,6- Diamidino-2-phenylindole (DAPI). Flow cytometry was 

performed on a Cy Flow® Ploidie Analyser (PARTEC) using the 405 nm solid state laser for 

excitation and a 440/40 nm band pass filter for recording of DAPI fluorescence. The ploidy 

level, represented by the mean peak position in a DAPI fluorescence intensity histogram, was 

calibrated against the 2C nuclear DNA content peak derived from a preparation of young 

flowers of Col-0 plants.  

Pollen Size Measurements: 

For pollen size measurements unopened flower buds were used to stain the pollen. Imaging of 

mature pollen were done using Axiophot microscope (Zeiss). For size measurement, pollen 

surface area was measured using ImageJ/pollen. Data was analysed using StatPlus software. 

Meiotic Cell Spread: 

Meiotic cell spreads were made from whole flower buds, using standard protocols (Ross et al. 

1997). Young flower buds were collected in the morning and fixed in Ethanol +Acetic Acid 

mix (3:1 v/v) and stored at 4OC for 24 hours. After 24 hours mix was changed to 70% ethanol 

and material was stored at 4OC. A Zeiss Axiophot microscope equipped with Apotome was 

used for imaging. Images were analysed with ImageJ and Adobe PhotoShop. 

4.2.4 Periodicity assay 

Entrainment Conditions 

 Around 100 seeds were sterilized and plated on the MS3 media containing appropriate 

antibiotics. The seeds were then stratified for 3 days at 4° and transferred to the growth 

cabinet under light dark. For LD entrainment, the growth cabinet was set for 12 hour light and 

12 hour darkness (12h:12h LD) cycles under constant 22°C. The plants were entrained for ten 

days under these conditions. On 10th day plants were prepared for imaging. 

Bioluminescence Imaging : 

 Tend ays after germination seedlings were transferred to black 96-well Microplates 

(OPTIPLATE TM- 96F, PerkinElmer) containing 200 µl of MS3 agar. 15 µl of 5mM 
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Luciferin was added to each well and the plates were sealed with transparent film (Packard 

Topseal). Finally, each well was perforated using a needle. Plates were transferred back to 

their respective cabinet for an additional day of entrainment before plates were transferred to 

the TOPCOUNT® scintillation counter (PerkinElmer), at subjective dusk. Luminescence 

values were recorded as the average count of 5 second and monitored every 30-60 min for 5-6 

days. When using constant-light conditions, reflector plates were placed in between the 

seedling plates, and an additional count delay of one minute was applied before the start of 

the luminescence measurements. The light source was tri-chromatic LED panels (Mark 

Darby, MD Electronics, UK) attached to the TOPCOUNT® stackers. A minimum of 49 

plants per genotype was used for each experiment. 

Period estimation: 

 Luminescence values obtained by TOPCOUNT were visualized using EXCEL macro 

TOPTEMP II (http://millar.bio.ed.ac.uk/Downloads.html). Rhythmic traces were analysed by 

the Biological Rhythms Analysis Software System (BRASS) macro (Southern and Millar, 

2005) in EXCEL that uses the FAST FOURIER TRANSFORMATION NONLINEAR 

LEAST SQUARES (FFT-NLLS) method to estimate period (Plautz et al., 1997). A 90 h 

window starting from the beginning of the free-running condition was selected to calculate 

period. All period values with a weighted real amplitude error (RAE) below 0.45 were 

considered. R.A.E. defines the extent to which the mathematic model of FFT-NLLs analysis 

for a perfect curve fits to the actual data. Hence, R.A.E estimates the precision of rhythmicity 

ranging from 0 (a perfect oscillation) to 1 (arrhythmic oscillation). 
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