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1 Contexte

L’IRM de diffusion permet d’imager in vivo et de manière non-invasive la microstruc-

ture des tissues en inférant les déplacements moléculaires induits par diffusion. La

matière blanche est une des deux composantes du système nerveux central; elle est

composée majoritairement de paquets d’axones de forme cylindrique, appelés fais-
ceaux, qui assurent la transmission des messages nerveux et (ii) de cellules gliales

de forme sphérique dont le rôle principal est de nourrir et protéger les axones. La

diffusion dans de tels environnements est contrainte par leur géométrie et son étude

est donc particulièrement pertinente dans les faisceaux où les directions de diffusion

correspondent aux directions des faisceaux.

La tâche n’est cependant pas aisée. En effet, la résolution spatiale des images

de diffusion est généralement basse, surtout en utilisation clinique, ce qui implique

que de multiples faisceaux et cellules gliales coexistent en chaque voxel. Il est donc

nécessaire de proposer une modélisation locale qui permette de dissocier la diffusion

dans ces différents environnements. Mathématiquement, cela revient à dire que la

distribution des déplacements moléculaires dans un voxel donné est un mélange de
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distributions qui caractérisent les déplacements moléculaires dans chaque environ-

nement (i.e., faiseaux et cellules gliales). Dans le contexte de l’imagerie de diffusion,

ces modèles sont souvent dénommés modèles à multiples compartiments (MCM).

Plusieurs MCMs ont été proposés au cours de ces dix dernières années. Le pre-

mier d’entre eux est intitulé Diffusion Tensor Imaging (DTI). Ce modèle repose sur

l’hypothèse qu’un voxel ne contient qu’un seul environnement microstructurel ce

qui n’est pas le cas dans 80% de la matière blanche. En conséquence, les biomar-

queurs dérivés du DTI ne sont pas spécifiques et les algorithmes de reconstruction

de faisceaux dépendant du DTI ne sont pas précis. D’autres MCMs ont été proposés

depuis pour pallier à ce défaut et ont donné lieu à des résultats prometteurs. Mal-

heureusement, ces modèles nécessitent des acquisitions spécifiques et longues qui ne

sont pas ou ne peuvent pas être pratique courante en utilisation clinique, à l’heure

actuelle.

Dans ce contexte, cette thèse propose une chaine de traitement qui permet une

reconstruction appropriée des faisceaux de matière blanche. Cette chaine inclut

principalement deux éléments:

• un nouvel MCM qui peut être estimé à partir d’images de diffusion cliniques

et qui fournit des biomarqueurs spécifiques et un algorithme de tractographie; ceci

contraste les MCMs actuels dont l’estimation à partir de données cliniques est un

problème mal posé;

• un algorithme de tractographie qui approxime une distribution de faisceaux

à partir d’un point donné dans la matière blanche; ceci contraste la plupart des algo-

rithmes traditionnels qui prennent en compte uniquement l’incertitude sur l’estimation

des directions locales de diffusion.

2 Etat de l’art

L’imagerie médicale a fait un bon en avant lors de l’avènement de l’IRM [Lauterbur 1973,

Damadian 1974, Mansfield 1977] dans les années soixante-dix. En effet, l’IRM est

une technique d’imagerie non-invasive qui peut être employée in vivo. L’IRM de

diffusion fut introduit dans les années quatre-vingt [Le Bihan 1985, Merboldt 1985,

Taylor 1985] et permet la quantification de la diffusion des molécules d’eau dans

un corps. Depuis les travaux de [Moseley 1990] qui ont prouvé l’anisotropie de la

diffusion dans la matière blanche, l’IRM de diffusion suscite un grand intérêt car il

semble être l’outil approprié pour étudier la microstructure et l’architecture de la

matière blanche. En témoignent les multiples projets internationaux actuels relat-

ifs à l’étude du cerveau par IRM: le projet “Brain Molecular Anatomy", le projet

CONNECT, le projet “Connectome", le projet “One Mind For Research initiative",

le projet “Human Brain", le projet “Projectome" ainsi que les deux projets “Hu-

man connectome" financés par le National Institute of Health (NIH) (NIH et NIH

Blueprint. Pour mieux comprendre la complexité de l’étude du cerveau, la prochaine

section est dédiée à une brève description du cerveau.

http://trans.nih.gov/bmap/intro/intro2.htm
http://www.brain-connect.eu/index.htm
http://cbs.fas.harvard.edu/science/connectome-project
http://1mind4research.org/about-one-mind
http://www.humanbrainproject.eu/why_the_human_brain.html
http://www.iconfoundation.net/?q=content/projectome
http://www.humanconnectomeproject.org
http://www.humanconnectome.org
http://www.humanconnectomeproject.org
http://www.humanconnectome.org
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2.1 Le cerveau et la matière blanche

Le cerveau, aussi appelé cerebrum, est une partie du système nerveaux central prin-

cipalement divisée en quatre régions appelées lobes:
• le lobe frontal responsable de la conscience;

• le lobe temporal responsable de la reconnaissance vocale;

• le lobe pariétal responsable du mouvement et de la perception des stimuli;

• le lobe occipital responsable de la vision.

Le cerveau comprend également le tronc cérébral responsable des fonctions vitales

de base et le cerebellum responsable de la coordination de mouvement. Un schéma

macroscopique du cerveau et proposé en fig. 1.

Figure 1: Schematic view of the Human CNS. Image courtesy of http://

climatereview.net/ChewTheFat/?attachment_id=1061.

Ces différentes régions contiennent des millions de neurones qui communiquent

entre eux par les faisceaux de matière blanche. Spécifiquement, un neurone est

composé d’un corps cellulaire, de multiples petites branches appelées dendrites qui

reçoivent les informations et d’un axone entouré d’une gaine de myéline qui trans-

met les informations (Figure 2). Ces axones sont regroupés par “paquets" appelés

faisceaux et l’ensemble des faisceaux constitue une des deux parties de la matière

blanche. Le second constituant de la matière blanche est la glie composée de cel-

lules gliales. Il y a trois types de cellules gliales: les astrocytes qui protègent les

axones, les oligodendrocytes qui produisent la myéline et les microglies qui réalisent

la phagocytose des cellules mortes. Enfin,l’ensemble du cerveau baigne dans le liq-

uide cérébro-spinal (CSF).

Les molécules d’eau dans la matière blanche sont donc réparties dans ces trois

types d’environnement et donc sujettes à différents profils de diffusion selon la

géometrie de ces environnements [Pfeuffer 1998]:

http://climatereview.net/ChewTheFat/?attachment_id=1061
http://climatereview.net/ChewTheFat/?attachment_id=1061
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Figure 2: Typical structure of a neuron. (© EnchantedLearning.com)

• la diffusion dans les faisceaux est anisotrope et principalement contrainte le

long des faisceaux;

• la diffusion dans les cellules gliales est isotrope et contrainte par la géométrie

sphérique de ces cellules;

• la diffusion dans le CSF est isotrope et soumise à aucune contrainte.

Le réseau de transmission neuronal qui comprend l’ensemble des faisceaux a été

beaucoup étudié [Catani 2002, Jellison 2004, Catani 2008, Thiebaut de Schotten 2011].

On s’accorde généralement pour classer les faisceaux en trois catégories:

• les faisceaux associatifs qui établissent des connections entre les régions corti-

cales d’un même hemisphère cérébral;

• les faisceaux de projection qui lient les régions corticales aux noyaux profonds,

tronc cérébral, cerebellum et moelle épinière;

• les faisceaux commissuraux qui interconnectent les régions corticales équiva-

lentes dans les deux hémisphères.

La connaissance de cette architecture est résumée par la fig. 3.

2.2 L’IRM de diffusion

Dans cette section, nous décrivons succintement le principe de l’IRM de diffusion

afin de comprendre quelles sont les données que nous manipulons et en quoi elles

sont liées au phénomène de diffusion.

Le principe de l’IRM de diffusion est de mesurer l’atténuation de signal provoquée

par l’application d’un gradient spatial de champ magnétique (DSG) par rapport

au signal mesuré en l’absence d’un tel gradient. Un DSG est caractérisé par sa

magnitude G, sa direction g et sa durée δ, ce qui conduisit [Callaghan 1991] à

introduire la notation compacte q = γδGg, où γ est la constante gyromagnétique du
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Figure 3: Global view of the WM fascicles. Illustrative coronal view of the

relationship between several WM fascicles. Image courtesy of [Jellison 2004].

proton, pour désigner un DSG.

Concrètement, une IRM de diffusion est un examen durant lequel on acquiert

une ou plusieurs images sans DSG et une collection d’images pour plusieurs DSGs

séparés d’un temps ∆, appelé temps de diffusion. L’atténuation de signal provo-

quée par chaque DSG est lié à la distribution des déplacements moléculaires in-

duits par diffusion. En effet, d’après [Einstein 1905], ces déplacements moléculaires

sont aléatoires et on peut définir une fonction de densité de probabilité (PDF)

px2∣x1=x1
(x2;∆), qui donne la probabilité pour qu’un proton, initialement localisé

en x1 se soit déplacé à la position x2 sous l’effet de la diffusion dans le temps ∆.

L’atténuation de signal observée est alors reliée à cette PDF par la relation suivante:

A(q,∆) = ∣∫
V
px1
(x1) (∫

R3

px2∣x1=x1
(x2;∆) exp{−i < q,x2 −x1 >}dx2)dx1∣ , (1)

où < ⋅, ⋅ > est le produit scalaire dans R
3, V est le volume du voxel et px1

(x1) est la

PDF qui donne la probabilité pour qu’un proton soit localisé en position x1 dans le

voxel.

L’eq. (1) peut être simplifiée par l’introduction d’un “ensemble-averaged propa-

gator" (EAP) dans le voxel:

px(x;∆) = ∫
V
px1
(x1)px1+x∣x1=x1

(x1 +x;∆)dx1 , (2)

où x = x2−x1 est le vecteur aléatoire représentant le déplacement moléculaires induit

par diffusion. L’atténuation de signal se simplifie alors de la manière suivante:

A(q,∆) = ∣∫
R3

px(x;∆) exp{−i < q,x >}dx∣ . (3)

Si aucun obstacle n’entrave le déplacement moléculaire, on dit que la diffusion

est libre. Dans ce cas, l’EAP est une PDF Gaussienne de moyenne 0 et matrice de
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covariance 2D(∆−δ/3)I3, où D est le coefficient de diffusivité [Stejskal 1965b]. Ceci

simplifie grandement l’eq. (3) qui devient:

A(G, δ,∆) = exp{−γ2δ2G2D(∆ − δ/3)} . (4)

Afin de simplifier encore plus cette équation, le concept de b-value fut introduit par

[Le Bihan 1991]:

b = γ2δ2G2(∆ − δ/3) . (5)

La b-value résume en une seule valeur la contribution de la magnitude G du DSG,

de sa direction g, de sa durée δ et de la durée ∆ entre 2 DSG successifs. L’eq. (1.11)

se lit donc:

A(b) = exp{−bD} . (6)

Une IRM de diffusion est déterminée par un nombre ng de directions de DSGs

et un nombre nb de b)values.

2.3 L’imagerie du tenseur de diffusion

L’imagerie du tenseur de diffusion, dénotée DTI [Basser 1994b], est une générali-

sation du modèle de diffusion libre à la diffusion dans un faisceau. Le modèle est

identique à l’exception de la matrice de covariance qui n’est plus proportionnelle

à l’identité mais se lit 2(∆ − δ/3)D, où D est un tenseur appelé tenseur de diffu-
sion. L’estimation de ce tenseur D donne accès à de nombreux indicateurs utiles

pour les cliniciens [Basser 1996a, Westin 2002]. Les deux principaux sont la diffu-

sivité moyenne (MD) et la fraction d’anisotropie (FA). La MD est définie comme la

moyenne des valeurs propres et la FA résume la déviation de chaque valeur propre à

la MD en un coefficient compris entre 0 et 1. Une FA proche de 1 indique une valeur

propre dominante et donc une orientation de diffusion prépondérante alors qu’une

FA proche de 0 indique que toutes les valeurs propres sont semblables et que la diffu-

sion est isotrope (dans ce cas, cela revient au modèle de diffusion libre). Ce modèle

a suscité beaucoup d’enthousiasme pour étudier l’architecture de la matière blanche.

Son estimation a été l’objet de nombreux travaux qui aboutirent au développement

du cadre log-euclidien qui fournit une estimation rapide et robuste du tenseur de dif-

fusion [Fillard 2007]. Beaucoup ont également étudié le nombre optimal de b-values

(nb) et de directions de DSGs (ng) pour que cette estimation soit effectivement ro-

buste. Dans une étude comparative, [Jones 2004] arrive à la conclusion qu’il suffit

de prendre nb = 1 et ng = 30, ce qui permet d’obtenir une estimation très robuste

du tenseur de diffusion à partir d’une acquisition qui ne dure que 5 minutes. Ce

temps d’acquisition et la qualité des résultats ont fait du DTI le modèle de référence

en utilisation clinique. En particulier, de nombreuses pathologies cérébrales ont été

étudiées sous un angle nouveau grâce au DTI, à la fois en terme de différences de MD

et FA par rapport à des sujets sains [Horsfield 2002, Sundgren 2004, Sexton 2009] et

en termes de tractographie [Ciccarelli 2008]. Devant les promesses d’un tel modèle,

de nombreuses bases de données ont donc été constituées par le passé spécifiquement
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pour l’estimation du DTI (i.e., avec une seule b-value et moins de 30 directions de

DSG).

Cependant, au fur et à mesure, les chercheurs et cliniciens se sont aperçus que la

MD et la FA ne sont pas des biomarqueurs spécifiques dans le sens où, par exemple,

une baisse de FA constatée chez des patients par rapport à des sujets sains ne

reflète pas forcément une cause pathologique [Pierpaoli 1996a]. Les deux marqueurs

sont également hautement corrélés [Shenton 2012]. La tractographie basée DTI

a aussi ses limites car elle semble créer des faisceaux qui n’existent pas vraiment

[Ciccarelli 2008]. Tous ces problèmes sont liés au fait que le DTI n’est valable que

dans un voxel homogène, c-à-d un voxel qui ne contient qu’un seul environnement

microstructurel tel qu’un faisceau ou un ensemble de cellules gliales identiques ou

des molécules d’eau diffusant libre. La résolution spatiale typique d’une IRM de

diffusion étant 2×2×2 mm3 et l’échelle d’un axone étant le µm, un voxel en général

contient plusieurs faisceaux, des cellules gliales et des molécules d’eau diffusant

librement. En d’autres termes, le DTI résume toutes ces contributions en une seule

PDF qui, par exemple, sera isotrope dans le cas où deux faisceaux orthogonaux

coexistent, résultant en une baisse de FA qui n’a pas lieu d’être. Le modèle Gaussien

pour la diffusion au sein d’un seul faisceau a également été récemment remis en

question par [Cheung 2009, Kunz 2011] qui ont observé des atténuations de signal

non-monoexponentielles dans des faisceaux.

Un bon modèle de diffusion est donc un MCM qui inclut plusieurs comparti-

ments pour prendre en compte les multiples environnements microstructurels dans

un voxel et ainsi fournir des biomarqueurs plus spécifiques et des orientations de

diffusion plus fidèles. De plus, la diffusion dans les faisceaux doit être modélisée

par une distribution non-Gaussienne. Chaque environnement microstructurel a une

forme géométrique particulière: les faisceaux sont cylindriques et les cellules gliales

sphériques. Ces propriétés géométriques doivent donc guider la modélisation de la

diffusion au sein de ces environnements. Par la suite, nous présentons succintement

les MCMs existants qui sont basés sur la géométrie des cellules et leurs limitations et

proposons un nouvel MCM qui permet de remédier à ces limitations. Nous élaborons

ensuite un nouvel algorithme de tractographie qui utilise ce nouveau modèle pour

reconstruire les faisceaux de matière blanche.

3 Modélisation locale de la diffusion

3.1 Les MCM existants

La façon la plus simplifiée de représenter un faisceau est de considérer que c’est

un cylindre de rayon nulle, appelé “stick". Par ailleurs, dans un cerveau non

pathologique, les membranes des cellules gliales sont perméables si bien que l’on

peut considérer que les molécules d’eau dans cet environnement diffusent librement.

Le modèle “ball-and-stick" [Behrens 2007] propose donc de considérer M faisceaux

non-collinéaires et un environnement spécifique pour les molécules d’eau diffusant

librement. La diffusion dans la direction des faisceaux ±µ est considérée libre et la



xiv Résumé en français

diffusivité dans ces directions est donc la même que la diffusivité de l’environnement

libre d. La distribution des déplacements moléculaires dans un faisceau est mod-

élisée par un tenseur de diffusion n’ayant qu’une seule valeur propre positive dans la

direction du faisceau (Dfascicle = dµµ) tandis que celle dans l’environnement libre est

modélisée par un tenseur de diffusion proportionnel à l’identité (Diso = dI3). Mal-

heureusement, ce modèle simplifie trop la géométrie des faisceaux. La diffusion n’est

pas autorisée dans une direction autre que celle du faisceau ce qui n’est pas réaliste.

Une version généralisée du modèle est proposée par [Hosey 2005] qui estime une dif-

fusivité non nulle dans les directions perpendiculaires à celles des faisceaux. Cepen-

dant, les MCMs de la famille exponentielle avec des tenseurs dont la partie isotrope

n’est pas nulle ne peuvent pas être estimés à partir de données à une seule b-value

[Scherrer 2010]. De plus, d’après les observations de [Cheung 2009, Kunz 2011], une

distribution Gaussienne n’est pas adéquate dans les faisceaux de toute manière.

Des modèles plus réalistes ont été proposés pour décrire la diffusion dans les

faisceaux. [Assaf 2004] proposent le “composite hindered and restricted model of

diffusion" (CHARMED) qui modélise de manière indépendente la diffusion le long

de l’orientation du faisceau et la diffusion dans l’espace perpendiculaire à cette orien-

tation. Spécifiquement, la diffusion le long de l’orientation du faisceau est modélisée

par une Gaussienne à 1 dimension et la diffusion dans l’espace perpendiculaire est

décrite par le modèle de Neumann [Neuman 1974], spécialement conçu pour décrire

la diffusion contrainte dans un cylindre de rayon donné. Ce modèle n’est valide que

lorsque le temps de diffusion ∆ est du même ordre que la durée δ d’un DSG (∆ ∼ δ),
ce qui n’est pas le cas en pratique. [Assaf 2005b] corrige ce problème en utilisant

le modèle de van Gelderen [van Gelderen 1994] valide pour δ < ∆, en lieu et place

de celui de Neumann. Le CHARMED original nécessite de préspécifier la valeur

du rayon des axones et n’intégre pas d’environnement pour la diffusion libre. La

première limitation est comblée par [Assaf 2008a] qui montrent comment estimer

une distribution de rayons d’axones en supposant qu’elle appartient à la famille des

distributions Gamma. La seconde limitation est comblée par [Barazany 2009] qui

montrent que l’on peut également incorporer un environnement de diffusion libre.

Différemment, [Zhang 2012] proposent “neurite orientation dispersion and density

imaging" (NODDI) qui modélise la diffusion dans un faisceau comme résultante de

l’intégration de la diffusion dans une infinité de “sticks" dont l’orientation serait

distribuée autour de celle du faisceau auquel ils appartiennent avec une certaine in-

certitude appelée dispersion en orientation (OD). Même si cela mène a une diffusion

non-Gaussienne au sein du faisceau, il n’en demeure pas moins que les axones sont

représentés comme des cylindres de rayon nul ce qui ne reflète pas la réalité. De

plus, que ce soit CHARMED ou NODDI, ces modèles nécessitent des acquisitions

spécifiques à multiples b-values qui sont pour l’instant trop longue pour un usage

clinique et ne peuvent donc pas non plus être utilisés pour des études rétrospectives.

Notre but est donc de proposer un MCM incluant un environnement pour la

diffusion libre et un environnement pour chaque faisceau dans lequel la diffusion est

modélisée par une distribution non-Gaussienne de sorte que l’ensemble soit physique-

ment plausible et mathématiquement estimable à partir d’acquisitions à une seule
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b-value et peu de directions de DSG.

3.2 Diffusion Directions Imaging

3.2.1 Diffusion with a fascicle

Dans un environnement microstructurel spécifique (e.g. faisceau ou molécules non

contraintes), l’atténuation de signal est traditionnellement décrite par une monoex-

ponentielle [Stejskal 1965b]:

A(b,g) = exp{−b < g,Dg >} .
Cela revient à modéliser les déplacements moléculaires x comme x = √2(∆ − δ/3)y,

où y suit une distribution Gaussienne de moyenne nulle et matrice de covariance D.

Pour décrire une atténuation non-monoexponentielle, nous proposons une nouvelle

distribution statistique non-Gaussienne pour modéliser y.

Un faisceau est caractérisé, entre autres, par son orientation ±µ. La diffusion

dans un faisceau possède la propriété de symmétrie antipodale, ce qui signifie que

les molécules diffusent dans les deux sens en proportions égales, ce qui s’écrit:

py(y∣ ±µ,Θ) = 1

2
pw(y∣ +µ,Θ) + 1

2
pw(y∣ −µ,Θ) , (7)

où py est la PDF de y, Θ est un ensemble de paramètres qui décrit le faisceau en

dehors de son orientation et w est un vecteur aléatoire qui décrit le déplacement

moléculaire dans une direction et un sens donnés.

Nous exprimons w comme la somme de deux variables aléatoires indépendantes,

w = v + z, où [5, 6]:

• v suit une distribution de von Mises & Fisher (cf. appendix A.2) sur la sphère

de rayon
√
νd (ν ∈ [0,1], d > 0) de direction moyenne +µ (∥µ∥ = 1) et paramètre de

concentration κ ≥ 0; sa norme est constante: ∥v∥2 = νd.
• z suit une distribution Gaussienne de moyenne nulle et de matrice de covari-

ance Σ = (1−ν)d
κ+1 (I3 + κµµ′); son orientation est constante pour κ → ∞ et est égale

à ±µ.

• v et z sont statistiquement indépendants.

Pour des valeurs grandes de κ, cette définition de w sépare complètement la

variability directionnelle (capturée par v) de la variabilité en amplitude (capturée

par z). La direction moyenne des déplacements s’identifie à +µ. Le paramètre κ ≥ 0
mesure la dispersion directionnelle (plus κ est grand, plus la dispersion est faible).

Le paramètre d > 0 mesure l’échelle des déplacements et le paramètre ν ∈ [0,1] est

un indice de non-Gaussianité (plus il est près de 0, plus la diffusion est Gaussienne).

La PDF des déplacements dans le faisceau peut ensuite être obtenue analytique-

ment et est égale à:

py(y;±µ, κ, d, ν) = C(κ, d, ν) exp{−(κ + 1)y2⊥ + y2�
2(1 − ν)d }

× ∫ 1

−1 exp{
rνκ

2
t2 + κt} cosh(rνy�t√

νd
) I0 (rν(κ + 1)√

νd
y⊥
√
1 − t2)dt ,

(8)
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quel que soit y ∈ R3, où:

rν ∶= ν

1 − ν ,

C(κ, d, ν) ∶= κ(κ + 1) exp{− rν(κ+1)
2
}

2 (2π(1 − ν)d)3/2 sinhκ ,

(y�, y⊥) ∶= (< µ,y >,√∥y∥2− < µ,y >2) ,
et I0 est la fonction de Bessel modifiée d’ordre 0 [Abramowitz 1972], avec la con-

vention < µ,y >= ∥y∥ quel que soit y ∈ R3 quand κ = 0.
Les paramètres de cette distribution ont une interprétation intuitive:

• ±µ est l’orientation du faisceau,

• κ est un indice de disperson en orientation, qui quantifie la concen-

tration de molécules autour de l’orientation du faisceau,

• d est la diffusivité libre le long du faisceau,

• ν est la fraction d’occupation de l’espace extra-axonal dans le faisceau.

Cette PDF peut être insérée dans l’eq. (3), dont l’intégrale peut alors être calculée

analytiquement. Nous obtenons l’atténuation de signal attendue en fonction des

paramètres du modèle:

A(b,g) = exp{−b(1 − ν)d
κ + 1 (1 + κ < µ,g >2)}

× κ

sinhκ

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∣sinc (√2bνd − κ2)∣ , if 2bνd ≥ κ2 and g ⊥ µ ,∣α sinhα cosβ + β coshα sinβ∣

α2 + β2
, otherwise,

(9)

where:

α =
√

Re (z) + ∣z∣
2

, β = Im (z)√
2(Re (z) + ∣z∣) and z = κ2 − 2bνd + 2iκ√2bνd < µ,g > .

La PDF donnée par l’eq. (8) permet également de calculer analytiquement tous

les moments de la distribution des déplacements moléculaires le long de l’orientation

du faisceau et dans l’espace perpendiculaire à cette orientation.

En particulier, la diffusivité parallèle dans le faisceau vaut Dfascicle

� = d [1 − 2νξ(κ)]
et n’est pas sensible au modèle de diffusion employé. En effet, [Pierpaoli 1996b]

rapportent D� = 1.7×10−3 mm2/s en utilisant le DTI et [Veraart 2011b] rapportent

D� = 1.71 × 10−3 mm2/s en généralisant le DTI avec une kurtosis non nulle. Nous

proposons donc la contrainte suivante que nous qualifions de physiquement plausible:

Dfascicle

� = d [1 − 2νξ(κ)] = 1.71 × 10−3 mm2/s . (10)

3.2.2 Modèle de diffusion complet

Pour prendre en compte de multiples environnements microstructurels, nous util-

isons un MCM dans lequel nous intégrons
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• un environnement de diffusion libre modélisée par une Gaussienne de moyenne

nulle et de matrice de covariance Diso = disoI3 donnant lieu à une atténuation de

signal attendue donnée par l’eq. (6);

• M faisceaux à l’intérieur desquels la diffusion est modélisée selon l’eq. (8)

donnant lieu à une atténuation de signal attendue donnée par l’eq. (9).

Afin de rendre le modèle estimable à partir d’acquisitions à une seule b-value,

nous appliquons quelques contraintes physiquement plausibles à ce modèle:

• nous appliquons la contrainte décrite par l’eq. (10);

• la diffusivité de l’environnement de diffusion libre est fixée à la valeur de

diffusivité libre à 37°C: diso = 3.0 × 10−3 mm2/s;

• la dispersion en orientation est entendue au niveau du voxel, ce qui implique

que le paramètre de concentration κ est identique dans tous les faisceaux;

• la proportion d’espace extra-axonal est supposée être la même dans tous les

faisceaux du voxel.

En résumé, nous proposons un nouvel MCM, appelé Diffusion Directions Imag-

ing (DDI), qui contient 3M + 2 paramètres indépendants, où M est le nombre de

faisceaux dans le voxel. Spécifiquement, les paramètres indépendants du modèle

sont:

• les angles (θi, φi) ∈ [0, π] × [0,2π] (i = 1, . . . ,M) qui définissent les

orientations des faisceaux,

• les proportions wi ∈ [0,1] (i = 1, . . . ,M) de chaque faisceau dans le

voxel,

• la dispersion moyenne en orientation κ ≥ 0 dans les faisceaux,

• la proportion moyenne ν ∈ [0,1] d’espace extra-axonal dans les fais-

ceaux.

Nous avons conçu, en utilisant le software Camino1, des données simulées de

croisement de faisceaux à différents angles de séparation, utilisant différentes b-

values, différents nombres de directions de DSG, différents rapports signal-sur-bruit

(SNR). Nous avons validé sur ces données le DDI et nous l’avons comparé au mod-

èle ball-and-stick et au modèle CHARMED tel qu’implémenté dans Camino. Les

résultats montrent que nous sommes capables d’estimer le DDI à partir d’une seule b-

value. La valeur de cette b-value ainsi que le nombre de directions de DSG importent

peu, pourvu que le SNR soit élevé. La proportion moyenne d’espace extra-axonal

dans les faisceaux est également estimée correctement.

Nous avons également estimé le DDI sur le cerveau d’un patient souffrant de

tumeurs. Nous montrons que notre modèle propose des biomarqueurs qui semblent

spécifiques et qui pourraient être d’un grand intérêt pour une étude plus détaillés

de la microstructure de l’espace péritumoral.

Il reste un problème à traiter qui est inhérent tout MCM: le nombre de faisceaux

dans un voxel donné est supposé être connu ce qui n’est pas le cas en pratique. Il

s’agit d’un problème de sélection de modèle qui fait l’objet de la section suivante.

1http://cmic.cs.ucl.ac.uk/camino/
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3.3 Détermination du nombre optimal de faisceaux

Deux types d’approches ont été envisagés pour répondre à la question du nombre

optimal de faisceaux dans un voxel: les approches dites “brute-force" et le moyen-

nage Bayesien. Dans la première approche, un ensemble de MCMs avec nombre de

faisceaux croissants (de 0 à Mmax) est estimé et le nombre de faisceaux du modèle

qui ajuste le mieux les atténuations de signal attendues à celles observées est retenu

comme nombre optimal. La comparaison entre modèles reposent généralement sur

un F-test [Alexander 2002, Kreher 2005, Scherrer 2012]. Puisque plus un modèle est

complexe, mieux il s’ajuste aux données, le F-test favorise trop souvent les MCMs

les plus complexes: cela s’appelle de l’“overfitting". Pour le limiter, [Schultz 2010]

utilisent le critère d’information de Bayes (BIC) pour pénaliser la complexité du

MCM qui croit avec le nombre de faisceaux. Récemment, [Scherrer 2013] proposent

d’utiliser l’erreur de généralisation pour choisir le MCM sur la base de sa capacité

à prédire de nouvelles données, ce qui contourne le problème de l’overfitting. Néan-

moins, toutes ces méthodes recherchent le meilleur MCM uniquement parmi ceux

estimés.

Le moyennage Bayésien, à l’inverse, consiste à intégrer la sélection de mod-

èle en même temps que l’estimation. L’idée est d’estimer directement le meilleur

MCM possible comme le MCM qui maximise une distribution a posteriori sur

les modèles. Cela repose sur un choix approprié de distribution a priori sur les

MCMs: [Poupon 2001, Demiralp 2011] utilisent des champs aléatoires de Markov

et [Behrens 2007] utilisent l’“automatic relevance detection" (ARD) qui affecte des

distributions a priori non informative à tous les paramètres du modèle sauf les poids

de mélange qui sont distribués selon une distribution Beta. Une composante du

mélange non supportée par les données est ainsi annulée du mélange. Ces méth-

odes ne sont cependant pas transférables en usage clinique car elles nécessitent des

temps de calculs extrêmement longs et requiert une grosse quantité de données pour

obtenir une distribution a posteriori qui ne dépende pas fortement de l’a priori.

Nous proposons donc une solution entre les deux précédentes options. A partir

d’un ensemble de MCMs estimés, nous calculons la probabilité de chaque MCM

d’être le modèle le plus proche du vrai modèle inconnu au sens de la divergence de

Kullback-Leibler. Cette approche est très efficace car elle ne nécessite de ne connaitre

que les critères d’information d’Akaike pour chaque modèle [Posada 2004]. Ces

probabilités sont ensuite utilisées pour produire moyenner chaque paramètre entre

les différents MCMs estimés et ainsi obtenir un modèle moyen avec des paramètres

qui ne dépendent plus du nombre de faisceaux initialement choisi.

Nous avons comparé notre approche à l’ARD. Dans cette étude, nous fournissons

une preuve empirique qu’il est peu utile de considérer des régions à 4 faisceaux

dans la matière blanche. Nous montrons également que nous identifions de manière

robuste les régions à 3 faisceaux telles que la corona radiata ou le centrum semi-ovale

à partir de données cliniques, là où l’ARD échoue.
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4 Tractographie de la matière blanche du cerveau

4.1 Algorithmes existants

Le dernier maillon de la chaine pour pouvoir reconstruire les faisceaux de matière

blanche à partir des images de diffusion est justement l’algorithm de reconstruc-

tion en lui-même qui utilise le modèle de diffusion estimé pour dépeindre les fais-

ceaux. C’est ce que l’on appelle la tractographie. Les premiers algorithmes de

tractographie, qui reposent principalement sur le DTI, reconstruisent un faisceau

en suivant, à partir d’un point donné, les orientations de diffusion localement es-

timées par un modèle de manière déterministe, c-à-d sans soucier de la variabilité

de cette estimation. Ce sont les reconstructions dites “déterministe streamline"

[Mori 1999, Xue 1999, Conturo 1999, Basser 2000].

Pour prendre en compte l’incertitude sur l’estimation des orientations locales de

diffusion, les algorithmes plus récents peuvent être classés selon deux approches:

• ceux qui reconstruisent un faisceau globalement optimal à partir d’un point

donné en minimisant une fonction de coût appropriée: parmi eux, les algorithmes de

type “fast-marching" [Parker 2002, Prados 2006, Staempfli 2006], ceux basés sur la

résolution de problèmes de type Hamilton-Jacobi-Bellman [Parker 2002, O’Donnell 2002,

Jackowski 2005], ceux de type “spin glass" [Mangin 2002, Kreher 2008, Fillard 2009,

Reisert 2011];

• ceux qui reconstruisent un faisceau en approximant localement une distri-

bution d’orientations autour des orientations estimées par le modèle de diffusion

[Parker 2003a, Parker 2003b, Parker 2005, Berman 2008].

Nous proposons une approche entre les deux solutions précédentes: nous cher-

chons un faisceau globalement optimal mais sans imposer de connaissances anatomiques

a priori qui peuvent biaiser la reconstruction mais nous souhaitons nous concentrons

sur l’incertitude au niveau du faisceau lui-même plutôt que sur l’incertitude locale de

chaque orientation estimée. Notre approche repose sur l’utilisation du filtrage par-

ticulaire, introduite dans ce contexte par [Brun 2002, Björnemo 2002, Zhang 2009,

Pontabry 2013].

Nous avons donc élaboré un filtre particulaire qui permet d’approximer une

distribution de faisceaux à partir d’un point donné. Il est aisé d’imaginer qu’une telle

distribution peut avoir de nombreux modes. Conséquemment, les filtres particulaires

traditionnels ne peut convenir car ils sont connus pour ne pas bien maintenir la multi-

modalité de la distribution de filtrage qu’ils essaient d’approximer. Nous avons donc

amélioré le filtre particulaire traditionnel.

4.2 Modélisation de la distribution de faisceaux

Un faisceau de longueur ρk, où k est un pas donné et ρ > 0 est la taille du pas

supposée constante, est une séquence Xk = [(x0,v−1), . . . , (xk,vk−1)] ∈ (Ω,S2)k+1 de

paires successives de positions et de directions d’arrivée, reliées par xk+1 = xk +ρvk.

L’espace d’état au pas k est l’ensemble des faisceaux possibles Xk initialisés à une

position donnée x0 avec une direction d’arrivée donnée v−1.
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La distribution de filtrage au pas k est la distribution de Xk, conditionnellement

aux données de diffusion Yk = {yx ∶ ∥x−x0∥ ≤ kρ} où yx = {Sx,i,Ψx,i}ni=1. Si désigne

une image d’atténuations de signal observées and Ψi une image d’atténuations de

signal attendues. Au pas k + 1, cette distribution est séquentiellement mise à jour

en calculant la distribution de prédiction p(Xk+1∣Yk) à partir de la distribution de

filtrage au pas précédent k et ensuite en utilisant la règle de Bayes pour obtenir

p(Xk+1∣Yk). Ces étapes de prédiction et de mise à jour nécessitent de spécifier

respectivement le modèle d’évolution p(Xk+1∣Xk) et la vraisemblance p(Yk+1∣Xk+1).
Nous faisons l’hypothèse que les faisceaux peuvent être modélisés par des chaîne

de Markov d’ordre 1. Conséquemment, le modèle d’évolution se simplifie en p(vk∣vk−1).
Suivant [Zhang 2009, Pontabry 2013], nous utilistons le modèle d’évolution suivant:

p(vk∣vk−1) = vMF(vk;vk−1, κ) = κ

4π sinhκ
exp{κ < vk−1,vk >} , (11)

où vMF(⋅;vk−1, κ) est la distribution de von Mises & Fisher [Jupp 1989] sur la sphère

unité ayant pour direction moyenne vk−1 ∈ S2 et pour paramètre de concentration

κ ≥ 0. Le paramètre κ du modèle d’évolution contrôle la régularité des faisceaux

reconstruits.

Désignons Bk = {x ∈ Ω ∶ ∥x−x0∥ ≤ kρ} et supposons que les données de diffusion

soient spatialement indépendantes conditionnellement au faisceau, la vraisemblance

p(Yk+1∣Xk+1) peut alors être décomposée comme suit:

p(Yk+1∣Xk+1) = ∏
x∈Bk+1∖x0∶k+1

p0(yx) k∏
j=0

p1(yxj+1 ∣vj)∝ k∏
j=0

p1(yxj+1 ∣vj)
p0(yxj+1) , (12)

où x0∶k+1 est la chaine polygonale définie par Xk+1, p1(⋅∣vj) est la distribution de

bruit de mesure en supposant que vj est la direction locale du faisceau et p0 est la

distribution du bruit de mesure.

Afin de mieux maintenir la multi-modalité de la distribution de filtrage, nous

empruntons les idées de [Vermaak 2003] et la formulons comme un mélange à Mk

composantes:

p(Xk∣Yk) = Mk∑
m=1

πm,kpm(Xk∣Yk) , (13)

où ∑Mk

m=1 πm,k = 1. Une telle formulation nous permet d’accomplir la récursion

de filtrage pour chaque composante pm séparément, à supposer que chaque poids

du mélange soit mis à jour comme la vraisemblance pondérée normalisée pour la

composante correspondante.

4.3 Filtre particulaire multi-modal

En régle général, il n’y a pas d’expression analytique pour les équations de la récur-

sion de filtrage. Une stratégie fréquente consiste à recourir aux filtres particulaires.

Ils approximent la distribution de filtrage par un ensemble d’échantillons appelés

particules à qui sont attribués des poids appropriés de façon à ce que l’ensemble

reflète la distribution de filtrage à chaque pas.
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Les filtres traditionnels approximent les distibutions comme celle donnée en

eq. (13) avec Mk = 1. La seule différence lorsque Mk > 1 est que les particules

sont regroupés dans des “clusters" et le ré-échantillonnage est fait dans chaque clus-

ter, ce qui donnent plus de chances aux faisceaux secondaires. Deux sortes de poids

sont donc calculés: ceux des particules et ceux des clusters, avec des règles de mises

à jour en adéquation avec le “sequential importance sampling". Ainsi, on peut voir

chaque cluster comme une super-particule. L’ensemble des particules dans un clus-

ter donné m a pour but d’approximer la composante pm de distribution de filtrage

donnée en eq. (13).

Utilisons les notations de [Vermaak 2003]. Soit Pk = {Mk,Πk,Xk,Wk,Ck} la

représentation en particules de la distribution de filtrage où Mk est le nombre de

composantes, Πk = {πm,k}Mk

m=1 l’ensemble des poids de composantes, Xk = {x(ℓ)k
}Nℓ=1

l’ensemble des N particules, Wk = {w(ℓ)k
}Nℓ=1 l’ensemble des poids de particules etCk = {c(ℓ)k

}Nℓ=1 l’ensemble des indicateurs d’appartenance aux composantes (i.e., c
(ℓ)
k
=

m si la particule ℓ apparient à la composante m). Etant donné Pk, la représentation

particulaire évolue au pas k + 1 en 5 étapes:

Proposition de nouveaux échantillons: Nous générons aléatoirement des nou-

velles directions pour prolonger les faisceaux, selon une densité de proposition q(⋅∣v(ℓ)
k−1,Yk)

qui dépend de la direction précédente et du modèle de diffusion au pas k:

v
(ℓ)
k
∼ q(vk∣v(ℓ)k−1,Yk) and x

(ℓ)
k+1 = x(ℓ)k

+ ρv(ℓ)
k

. (14)

Mise à jour des poids de particules: Les faisceaux sont prolongés et leur

poids sont mis à jour de sorte que le nouvel échantillon soit représentatif de la

distribution de filtrage au pas k + 1 [Doucet 2000]:

w̃
(ℓ)
k+1 = w

(ℓ)
k

p1(yx(ℓ)
k+1
∣v(ℓ)

k
)p(v(ℓ)

k
∣v(ℓ)

k−1)
p0(yx(ℓ)

k+1
)q(v(ℓ)

k
∣v(ℓ)

k−1,Y(ℓ)k
) . (15)

La normalisation de ces poids est faite dans chaque composante séparément:

w
(ℓ)
k+1 = w̃

(ℓ)
k+1∑j∈Im,k
w̃
(j)
k+1

, (16)

où Im,k = {ℓ ∈ J1,NK ∶ c(ℓ)
k
=m} est l’ensemble des indices des particles qui apparti-

ennent à la m-ième composante de la distribution de filtrage au pas k.

Mise à jour des poids de composantes: Les poids de composantes doivent

être mis à jour de manière correcte pour s’assurer que le filtre particulaire agit

toujours sur chaque composante individuellement:

πm,k+1 = πm,kw̃m,k+1∑M
i=1 πi,kw̃i,k+1

with w̃m,k+1 = ∑
ℓ∈Im,k

w̃
(ℓ)
k+1 . (17)

Ré-échantillonnage dans chaque composante: Afin d’éviter la dégénéres-

cence des poids de particules, un ré-échantillonnage peut être nécessaire [Doucet 2000].
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Cette étape peut être effectuée dans chaque sous-ensemble de particules associé à

une composante de la distribution de filtrage indépendemment, selon les poids des

particules de ce sous-ensemble [Vermaak 2003]: nous calculons le nombre effectif de

particules dans chaque sous-ensemble comme:

ESSm = ⎛⎝ ∑ℓ∈Im,k

(w(ℓ)
k+1)2⎞⎠

−1
, (18)

et nous déclenchons le ré-échantillonnage dans un sous-ensemble de particules si

ESSm est en-dessous d’un seuil fixé α∣Im,k∣, où ∣⋅∣ est l’opérateur taille d’un ensemble.
Dans ce cas, le ré-échantionnage est effectué à partir d’une distribution catégorique

comprenant ∣Im,k∣ catégories dont les probabilités d’événement sont données par

l’eq. (4.7).

Classification des particules “prolongées" dans de nouveaux clusters:

Le nombre de composantes Mk de la distribution de filtrage est inconnu. Ainsi, à

la fin de chaque pas, il est dynamiquement estimé en fusionnant et/ou en séparant

en deux certaines composantes: Mk, Ck et Im,k sont alors mis à jour en Mk+1, Ck+1
et Im,k+1 en conséquence.

Nous avons implémenté cet algorithme de tractographie avec le DDI mais aussi

avec le DTI pour comparaison. Dans la reconstruction du faisceau cortico-spinal,

nous concluons que notre algorithme permet de retracer toute son étendue. Nous

démontrons également par le biais de la tractographie que le DDI permet une recon-

struction plus détaillée des faisceaux que le DTI. Toutes ces conclusions sont une

nouvelle fois tirées sur des données cliniques.

5 Tractographie péri-tumorale préchirurgicale & Con-
clusions

Les outils développés dans cette thèse ont pour but d’être utilisés en pratique clin-

ique. Nous avons en particulier élaboré un nouveau modèle de diffusion, que nous

avons dénommé Diffusion Directions Imaging, qui permet d’estimer d’inférer de

manière détaillée et précise la microstructure de la matière blanche à partir d’images

de diffusion couramment acquises en clinique. Nous avons combiné ce modèle avec

un algorithme de tractographie qui effectue la reconstruction à proprement parler des

faisceaux de la matière blanche. Cet algorithme repose sur l’estimation d’une distri-

bution de faisceaux à partir d’un point donné qui prend donc compte l’incertitude

commise sur chaque faisceau généré. A partir de données simulées et d’images clin-

iques acquises surdes sujets sains, nous avons montré que l’ensemble de ces outils

offrent des biomarquers spécifiques et une très bonne reconstruction du CST.

Pour renforcer ces résultats, nous avons participé aux trois éditions du challenge

MICCAI intitulé “DTI Tractography Challenge". L’idée est d’étudier la disposition

des faisceaux de matière blanche dans les régions péri-tumorales pour le pré-planning

chirurgical. Dans ce contexte, les images de diffusion acquises en pré-op sont encore

plus contraintes qu’à l’accoutumée. Nous avons donc eu à travailler avec des images à
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très basse résolution angulaire (20 directions de DSG), très basse résolution spatiale

(1.2 × 1.2 × 5.2 mm3) et une seule b-value b = 1000 s/mm2. L’objectif pratique

était de reconstruire le CST à partir de telles données. Chaque année, nous avons

obtenus des résultats en accord avec l’anatomie connue de ce faisceau malgré la

mauvaise qualité inhérente aux images acquises en pré-op. De plus, nous montrons

l’amélioration de nos outils dans le temps en comparant les résultats de l’année

2012 avec les outils dans leur version de l’époque et les outils actuelles. Le résultat

de la comparaison montre que nous délivrons ajourd’hui des outils de qualité prêts

à l’utilisation clinique. Les temps de calculs sont aussi raisonnables puisqu’il faut

compter deux heures pour l’estimation du modèle de diffusion qui peut être effectuée

off-line et seulement cinq minutes pour la tractographie online.





Introduction

Context

Diffusion MRI (dMRI) is a modality in MRI that is able to depict the mi-

crostructure of the tissues in vivo and non-invasively. The key idea is to study how

the Diffusion-Induced Molecular Displacements (DIMD) are constrained by the ge-

ometry of the environment in which they occur. The White Matter (WM) is one

of the two components of the CNS and is mainly composed of glial cells that can

be thought as spheres and bundles of myelinated axons, referred to as fascicles,

that can be represented by cylinders. Diffusion in the WM has been proven to be

anisotropic, which mainly reflects diffusion in the fascicles. dMRI thus appears as a

particularly appealing tool for the study, reconstruction and analysis of the WM

fascicles.

These tasks are however non-trivial. On one hand, the study of WM fascicles

requires to extract the intra-fascicle DIMD out of the diffusion data. dMRI only

provides an undirect measure of the random DIMD through the magnetization of

water spins. Estimating the probability distribution of the random DIMD out of the

diffusion data is known as a local diffusion modeling problem. Many diffusion

models have been devised to this end. Microstructural parameters describing the

different environments in a given voxel such as fascicle orientations, fractions of

occupancy of the fascicles, proportion of free water or proportions of intra- and extra-

axonal spaces can now be quantified. On the other hand, the reconstruction of WM

fascicles uses inter alia the fascicle orientations locally identified by a diffusion model

as inputs to generate global tracts composing a given fascicle: this is often dubbed

tractography. Many tractography algorithms have been proposed in the literature.

While the first proposals merely reconstructed tracts from a single voxel by following

the local orientations provided by the underlying diffusion model, the most recent

alogrithms try to adequately account for the uncertainty on the estimated local

orientations using either global optimization methods or probabilistic frameworks.

Notwithstanding the recent promising diffusion models, dMRI is not a standard

modality in clinical MRI examination protocols. Clinicians are limited by acquisi-

tion time because they are dealing with real patients who cannot stay long in the

scanner, leading to low spatial and angular resolution diffusion data. Their expecta-

tions about local diffusion modeling are to find, from this low quality data, specific

biomarkers for brain disorders, i.e., microstructural parameters whose variations in

patients with respect to healthy subjects are only the reflection of the underlying

pathology and not the translation of a flaw in the model. Diffusion models that can

be fitted on such data reduce to Diffusion Tensor Imaging (DTI), which unfortu-

nately, has been shown to provide non-specific biomarkers. Some recent diffusion
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models provide specific biomarkers for some brain disorders but require diffusion

data that are not affordable in clinics. Moreover, resorting to such new models

prevents one from retrospectively analyzing already acquired clinical diffusion data.

Last but not least, clinicians are used to DTI. Most recent models depart quite a

lot from this modeling and would require some training for the medical staff, which

makes them hardly transferable to clinical practice. For its part, tractography led

to one of the biggest disappointments in the field. Even if it was impressive at first

glance, neurosurgeons are still not convinced of its benefits. WM fascicles are not

visible to the naked eye and, thus, we do not know the ground truth about their

structural organization. However, neurosurgeons do have some knowledge about it

and, at least, some known fascicles are expected to be accurately reconstructed from

tractography. Neurosurgeons thought they will learn more than they already know

about WM fascicles thanks to tractography. It turns out that, in fact, tractography

hardly confirmed, so far, what is already established.

Notations

Throughout the manuscript, the following notations and terminologies are adopted:

• Ω ⊆ R3 denotes the image spatial domain,

• An image over this domain is a set I = {ix,x ∈ Ω}; for sake of clarity, the

image signal ix at location x will be denoted by the entire image symbol I unless it

makes the discussion unclear,

• q = γδGg denotes a Diffusion-Sensitizing Gradient (DSG) applied in direction

g with magnitude G during a period δ (the pulse duration); γ is the gyromagnetic

ratio specific to the excited spin (γ = 2.68 × 108 rad/s/T for the proton spin),

• S = S(q) denotes a measured Diffusion-Weighted (DW) image or signal

under the application of a DSG q,

• Ψ = Ψ(q) denotes the corresponding predicted DW image or signal from

a specific diffusion model or in absence of measurement noise,

• S0 denotes a measured unweighted image or signal,

• Ψ0 denotes the true unweighted image or signal in absence of measurement

noise, which, in this work, is always the average of all the measured unweighted

images/signals,

• A = A(q) denotes the Signal Intensity Decay (SID) predicted by a specific

diffusion model or in absence of measurement noise under the application of a DSG

q.

Organization and contributions of the thesis

The work of this thesis aims at providing tools for analyzing clinical diffusion data

that yield specific biomarkers for brain disorders and faithful reconstruction of the

known WM fascicles. The contributions are twofold: (i) we worked on local diffu-

sion modeling to propose a diffusion model that provides as many microstructurally
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relevant parameters as possible given single-shell low angular resolution clinical dif-

fusion data and (ii) we developed tractography algorithms that are able to accurately

reconstruct complex known fascicles such as the Cortico-Spinal Tract (CST). Such

analysis tools could be then used to go beyond the known architecture of the WM

in clinics. The manuscript is divided into five chapters.

Chapter 1: State of the art

In this chapter, we first outline a brief historical introduction to dMRI from its

origin to the most recent developments. We motivate the growing enthusiasm that

this imaging technique generated towards the understanding of the human brain,

pointing out a number of ongoing research projects on the subject that have received

substantial financial supports from many medical care institutes. Then, in order to

better appreciate the ins and outs of the contributions of this thesis, we summarize

the necessary background about (i) the anatomy of the brain and the CNS and (ii)

the principles of dMRI from the very definition of the diffusion phenomenon to its

undirect measurement. Finally, we present the theory and practice behind DTI,

which is currently the means to analyze diffusion data in clinics. We explain what

has been learned so far on both healthy and pathological human brains thanks to

DTI. We also stress the limitations of such an approach and we discuss alternative

tractography-driven analysis tools.

Chapter 2: Local modeling of the diffusion

In this chapter, we discuss a particular class of diffusion models, termed Multi-

Compartment Models (MCMs), which seem to be well suited to characterize the

diffusion process within specific microstructural environments. Indeed, these models

express the voxelwise distribution of DIMD as a finite mixture of different distribu-

tions, each of them characterizing the DIMD in particular tissues, such as fascicles,

glial cells, etc. In particular, we focus on MCMs that constrain the DIMD by taking

into account the geometrical properties of the environment in which molecules are

trapped: we refer to these models as geometry-based MCMs. Geometrical constraints

can be set either by explicitly including parameters that describe the geometry of

the tissues (e.g., fascicles can be modeled as cylinders whose radius explicitly takes

part to the predicted DW signal) or by designing an appropriate shape for the dif-

fusion profile that fits within a specific tissue (e.g., cigar-shaped diffusion is suited

to fascicles modeled as cylinders, with no explicit intervention of the radius of the

cylinders). We describe the geometry-based MCMs proposed in the literature and

we discuss their advantages and drawbacks. We finally propose a new MCM for

the WM, which, under few physically plausible constraints, can be estimated from

single-shell low angular resolution dMRI. This model provides many microstructural

information regarding the fascicles: their orientation, their fraction of occupancy in

the voxel, the resulting global orientational dispersion in the voxel, the proportion

of surrounding Cerebro-Spinal Fluid (CSF) and, when supported by the data, the
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fraction of occupancy of extra-axonal space. We show that these parameters may

be good biomarkers for patients with tumors. For example, we demonstrate that

the usual Fractional Anisotropy (FA) is the result of the combination of a given ori-

entational dispersion, a given extra-axonal occupancy and a given CSF occupancy

and we show that the FA is low but homogeneous in the peritumoral region whereas

parameters defining the FA vary quite significantly.

Chapter 3: Selection-free estimation of Multi-Compartment Models

Despite their ability to model the diffusion at a sub-voxel scale, MCMs suffer from

a major drawback: they require one to know the right number of compartments in

each voxel. In the WM, the question often reduces to “how many non-collinear fas-

cicles coexist in a given voxel?" This is a model selection problem that precludes the

use of MCMs. In this chapter, we review the different approaches that have been em-

ployed in the dMRI literature to overcome this problem. Two main methods can be

distinguished: brute force approaches and averaging approaches. The first ones

aim at providing a map with the optimal number of fascicles in each voxel while the

second ones rather assign to each model of a candidate set its probability to fit the

data and they output an averaged model in each voxel given the data. Brute force

approaches have been widely used in the dMRI community and we briefly summa-

rize the different contributions. On the contrary, the only averaging approach to

date used for the selection of the optimal number of fascicles is Automatic Rele-

vance Detection (ARD). We discuss this method, which performs an implicit model

averaging within a fully Bayesian framework. We then propose an explicit way of

averaging models based on the Akaike Information Criterion (AIC) with no need

to resort to time-consuming Markov Chain Monte Carlo (MCMC) procedures. By

applying this explicit averaging approach to the model proposed in Chapter 2, we

show in particular that we do not need to depend on an ad-hoc b-value threshold

under which it is pointless to try to estimate proportions of intra- and extra-axonal

spaces: the averaging automatically prunes the extra-axonal spaces if the data do

not support their existence.

Chapter 4: Brain White Matter tractography

In the previous chapters, we designed a new MCM that provides many microstruc-

tural parameters even from single-shell low angular resolution dMRI (typical char-

acteristics of clinical data). In this chapter, we aim at presenting tractography

algorithms that are suited to multi-fascicle models (and, hence, to MCMs) and that

perform the actual reconstruction of the fascicles fast enough and accurately enough

to be translated to clinics. We review the plethora of tractography algorithms in

the literature. Most of them model a fascicle as a number of tracts that are suc-

cessive pairs of positions and arrival directions. We observe that (i) deterministic

streamline algorithms have mainly been defined for DTI but have hardly been ex-

tended to multi-fascicle models and (ii) the objects of interest in most algorithms are
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the local orientations of the tracts that are sometimes adjusted by global optimiza-

tion or probabilistic tools. As a consequence to point (i), we propose a deterministic

streamline algorithm based on the FACT algorithm. We extended it to multi-fascicle

models and we show its great ability to reconstruct the hand motor tracts of the

CST in conjunction with the MCM proposed in Chapter 2. As a consequence to

point (ii), we propose a probabilistic tractography algorithm that approximates the

distribution of all possible tracts of a fascicle. It relies on a particle filter in which

samples (“particles") from entire tracts are propagated. The objects of interest are

thus directly the tracts rather than their local orientations. This tractography algo-

rithm is not stricto sensu new in the dMRI community. However, previous published

algorithms have hard time dealing with the fact that this distribution of tracts can

have many modes (e.g., the CST can be seen as a multi-modal distribution of tracts

with one mode per different cortical areas). Traditional particle filters proposed in

the literature often keep only one of them, failing to reconstruct the full extent of

the CST. We demonstrate that, in conjunction to the MCM proposed in Chapter 2,

our particle filter proves better at maintaining the multi-modality of the distribution

of interest.

Chapter 5: MICCAI DTI Tractography Challenges

In this last chapter, we employ all the previously developed tools to reconstruct the

CST in patients with tumors of different natures. We volonteered to participate to

all three editions of the MICCAI DTI tractography challenge since 2011 to face the

problem of diffusion modeling and tractography on the field, with all the constraints

that it implies. The organizers provided us with diffusion data acquired in the

context of presurgical planning of tumor removal. At the proximity of the surgery,

the neuroradiologists can only afford short-time dMRI, resulting in single-shell low

angular resolution diffusion data. Spatial resolution is also limited with a trade-

off between in-plane resolution and slice thickness to achieve very short acquisition

times. We present the results that we obtained using such data for the reconstruction

of the CST. In the first edition, we used a very preliminary version of the MCM

introduced in Chapter 2 without model selection/averaging (we fitted two fascicles

everywhere). In the second edition, we proposed an ad-hoc model selection based

on the value of an index derived from the eigenvalues of the diffusion tensor. In

these first two editions, we used our deterministic streamline algorithm. In the

third edition, we used the complete MCM described in Chapter 2, we averaged it

according to the explicit averaging method proposed in Chapter 3 and we performed

the tractography using the adaptive multi-modal particle filter presented in Chapter

4. The quality of the diffusion data was even poorer for the third edition but the

use of the complete model with the probabilistic tractography yield the best results

over all three editions, providing the full extent of the CST away from the tumors

and depicting the rearrangement of the tracts in the vicinity of the tumor.
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1.1 Context

1.1.1 Advent and development of Magnetic Resonance Imaging

In vivo imaging of the human body was made possible by the discovery of X-rays

by [Rontgen 1896]. This gave rise, inter alia, to the cerebral angiography pioneered
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in 1927 by Egas Moniza at the university of Lisbon, which is an imaging technique

that provides images of blood vessels in the brain using a contrast agent and to

the Computed Tomography (CT) scan introduced by [Hounsfield 1973], which is an

imaging technique that aims at reconstructing images of anatomical structures of

the human body from the measure of X-rays absorption by the tissues. X-ray-based

imaging techniques remain however all invasive for the human body and rely on

ionizing radiations that happen to have adverse effects [De Oliveira 1987].

A major leap forward in-vivo non-invasive imaging of the human body has been

the introduction of MRI by [Lauterbur 1973, Damadian 1974, Mansfield 1977], for

which both Paul Lauterbur and Sir Peter Mansfield received the 2003 Nobel price

in Physiology or Medicine. This imaging technique is based on the phenomenon of

resonance of the protons in presence of a magnetic field [Bloch 1946, Purcell 1946].

MRI has the advantage, with respect to Xrays and CT scans, to be non-invasive and

there are no known scientific evidence of harmful effects of a magnetic field on the

human body at the current range (until now always less than 3T). It also provides

a spatial resolution comparable to the previous invasive imaging techniques with a

far better contrast resolution due to the large number of different modalities that

have been devised since its advent: T1-weighted, T2-weighted, FLuid Attenuated

Inversion Recovery (FLAIR), proton density, functional and diffusion MRI are some

examples of possible modalities (see [Kastler 2011] for a review on the different

MRI modalities). Each modality has been developed to obtain a good contrast for

a specific pathology: for instance, T2-weighted MRI is particularly sensitive to the

development of edemas in patients with tumors.

1.1.2 Diffusion MRI & Human Brain

Although it will be described in depth in section 1.3, we would like here to spend

a few words on the origin of dMRI. It has been introduced by [Le Bihan 1985,

Merboldt 1985, Taylor 1985] to quantify the diffusion of water in a body. It became

rapidly of great interest for its very good contrast resolutions for various pathologies

therefore providing valuable complementary information to other MRI modalities.

For example, it helps in better delineating lesions in patients with acute stroke

(fig. 1.1,right), providing additional contrasts with respect to the traditional FLAIR

sequence (fig. 1.1,left), which, said briefly, images the tranverse relaxation time of the

tissues. dMRI also supports the diagnosis of many other cerebral pathologies such

as tumors [Kono 2001], abscesses [Chang 2002], Creutzfeldt-Jakob Disease (CJD)

[Shiga 2004], Multiple Sclerosis disease [Larsson 1992] and so on.

It also became tremendously popular and can be considered as an MRI modality

of reference for the study and analysis of the microstructure of the brain tissues

when [Moseley 1990] showed that diffusion in the brain is anisotropic, i.e., that it

is constrained by the geometry of the tissues. This means that dMRI is a tool of

choice for inferring brain tissues microstructure [Le Bihan 2003].

Due to the lack of appropriate imaging techniques, the brain remains one of the

most enigmatic organ of the human body. The work of [Moseley 1990] has stimu-
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Figure 1.1: Comparison of FLAIR and dMRI. Comparison of FLAIR and

dMRI (DWI stands for diffusion-weighted imaging) modalities in the detection of

tissue changes in a patient with acute stroke (image courtesy of [Bokkers 2012]):

dMRI (right) provides additional valuable contrasts with respect to the traditional

FLAIR sequence (left).

lated the scientific community for understanding its architecture. Many progresses

towards this goal have been achieved over the past two decades. So far, the sci-

entific community managed to gather enough information on the brain in order to

design the appropriate analysis tools. This knowledge together with the advent and

constant evolution of the MRI scanners have triggered a series of projects that aim

at solving the mysteries of the human brain, among which:

The Brain Molecular Anatomy project. This project includes many differ-

ent projects and has two main goals: (i) catalog all genes in both the healthy and

pathological nervous systems and (ii) identify the different types of neurons in the

brain.

The CONNECT project (2010). This project aims at studying the struc-

tural connectivities at both the micro- and macroscropic levels in the brain. The

underlying hypothesis is that micro-structural and macro-structural parameters ex-

tracted using dMRI can help in charaterizing brain morphology and connectivity.

The Connectome project (2010). This project focuses on mapping neuron

connectivity in different species. Using two imaging modalities that are laser-

scanning light microscopy and semi-automated electron microscpopy, they seek to

http://trans.nih.gov/bmap/intro/intro2.htm
http://www.brain-connect.eu/index.htm
http://cbs.fas.harvard.edu/science/connectome-project
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obtain high-resolution imaging of the neural network.

The One Mind For Research initiative (2011). The idea here is to gather

data and knowledge for the understanding of brain disorders. It is an effort to reduce

the social and economic effects of brain injury and mental illness.

The Human Brain project (2012). This project encourages a better study

of brain pathologies by attempting to create new biologically grounded classifica-

tions, based on key similarities and differences between previously published isolated

studies of individual disorders. The main goal of the project is to provide the sci-

entific community with a brain simulation platform.

The Projectome project (2012). This project proposes to set up high per-

formance computational infrastructure to process brain data and to design the cor-

responding processing tools for analyzing and visualizing the data.

The NIH Human Connectome project (2013). This is one of the two most

recent projects that put efforts in providing a compilation of neural data together

with a graphical interface to navigate this data.

The NIH Blueprint Human Connectome Project (2013). This project is

similar to its homonym and aims at mapping the human connectome as accurately as
possible in a large number of normal adults and at making this data freely available
to the scientific community using a powerful, user-friendly informatics platform.

All of these projects were financed substantially by various institutes, which

hightlights the importance that is granted to this field of research. In this context,

the content of this manuscript aims at playing a part in this important and challeng-

ing initiative that gather many scientists and we hope that it will make a significant

contribution towards brain microstructure understanding.

In the remainder of this chapter, we will give a more in-depth description of

the brain (Section 1.2) and we will go into details regarding the dMRI modality

(Section 1.3). We will also explain how the acquired dMRI datasets are processed

in order to be feasible for understanding the microstructure of brain tissues (Sec-

tion 1.4). We will see that this approach not only provided new insights into brain

disorders but also yielded big collections of data that are shared in the community to

try to understand even better some pathologies. Finally, we will expose the limita-

tions of the current way of analyzing dMRI datasets and some convenient solutions

for the reconstruction of the neural network (Section 1.5).

1.2 Description of the brain

The brain along with the spinal cord form what is called the CNS (see fig. 1.2),

which is the part of the nervous system that coordinates the activity of the different

part of the human body. It receives and treats the information, which is then sent

to the various parts of the body by the Peripheral Nervous System (PNS).

The brain, or cerebrum, is one part of the CNS. Its outermost sheet of neural

tissues is the cerebral cortex, which is made of four main lobes:

• the frontal lobe responsible for the consciousness,

http://1mind4research.org/about-one-mind
http://www.humanbrainproject.eu/why_the_human_brain.html
http://www.iconfoundation.net/?q=content/projectome
http://www.humanconnectomeproject.org
http://www.humanconnectome.org
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Figure 1.2: Schematic view of the Human CNS. Image courtesy of http:

//climatereview.net/ChewTheFat/?attachment_id=1061.

• the temporal lobe responsible for speech recognition,

• the parietal lobe responsible for movement and stimulus perception,

• the occipital lobe responsible for vision.

Other parts of the brain include the brain stem responsible for basic vital functions

like breathing and the cerebellum responsible for movement coordination. This

structure is illustrated in the upper part of fig. 1.2.

This section is dedicated to a brief presentation of the CNS. The interested

reader can refer to [Duvernoy 1999] for a more in-depth description. The CNS

can be depicted either at the microscopic level (Section 1.2.1), which describes the

different cells composing it or at the macroscopic level (Section 1.2.2), which consists

in classifying the cells into two categories whether they are meant to transmit or

process messages. The brain neural transmission network is rather complicated in

the brain and will be detailed in section 1.2.3.

1.2.1 Microscopic description

There are two types of cells that compose the CNS: the neurons and the glial cells.

The neurons are responsible for the transmission of nerve impulses whereas glial

cells have more a supporting and protecting role. There are a lot more of glial cells

than neurons in the brain (factor of 3).

The neuron. The main function of a neuron is the transmission of nerve im-

pulses. To this purpose, its typical structure is given by fig. 1.3 and comprises:

• a cell body at the heart of which lies a nucleus,

• multiple short branches called the dendrites, the role of which is to receive the

information,

http://climatereview.net/ChewTheFat/?attachment_id=1061
http://climatereview.net/ChewTheFat/?attachment_id=1061
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• one (or two in some cases when there are no dendrites) long branch called the

axon, which is the conducting fiber between different neurons,

• in some cases, a myelin sheath that surrounds the axon, which is a thick layer

of a greasy substance (the myelin) that speeds up the transmission,

• axon terminals that transmit the nerve impulses across a synapse, which is a gap

between an axon terminal and the receiving dendrites of another neuron.

Figure 1.3: Typical structure of a neuron. (© EnchantedLearning.com)

Bundles of axons form the nerves, which are often termed nerve tracts or pathways

within the CNS. The dendrites form a very large population of small fibers due to

their numerous ramifications (up to 100000 per neuron). The dimension of the cell

body varies from a diameter of 5 to 120µm whereas the axon is much smaller with a

diameter that is generally between 0.5 and 3µm. However, axons that are surrounded

with a myelin sheath can reach diameters up to 20µm [Bossy 1990]. Axons length

has a very large range of variations from 1mm to 1m. The myelin sheath is produced

by some glial cells: the Schwann’s cells in the peripheral nervous system (i.e., the

nervous system outside of the brain and the spinal cord) as illustrated by fig. 1.3

or the oligodendrocytes in the CNS. Nodes of Ranvier correspond to the periodic

absences of myelin sheath along the axon.

We can distinguish three types of neurons:

• sensory neurons that ensure the transmission from sense receptors such as eyes

or ears to the CNS (1% of all neurons),

• motor neurons the ensure the transmission from the CNS towards muscles (9% of

all neurons),

• interneurons cells have no dendrites but two axons: one related to the spinal cord

and the other to the muscle (90% of all neurons).

The glial cells. Their main function is to support, feed and protect the neu-

rons. In particular, they are responsible for the phagocytosis of dead cells and
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myelinogenesis. Their are three main types of glial cells in the CNS:

• The astroglia are the bulkiest cells. Their role is to support neurons: they can,

to some extent, heal damaged nerve tissues as shown in fig. 1.5 and they create

ramifications towards blood vessels to feed nerve cells as illustrated by fig. 1.4.

• The oligodendrocytes are satellite cells to the neuron. They are aligned between

the nerve tracts and product the myelin (see fig. 1.4).

• The microglia are the smallest glial cells in the CNS, which allows them to cir-

cumnavigate in and between nerve tissues and thus to perform the phagocytosis of

dead cells (see fig. 1.5).

Figure 1.4: Astroglia and Oligodendrocytes. Illustration of the role of astroglia

as energy suppliers to neurons and the role of oligodendrocytes as myelin producers

(image courtesy of [De Keyser 2008]).

A recent study performed forebrain engraftment of human glial cells into neonatal

immunodeficient mice and concluded that these mice learned faster and had a greater

memory capability, which demonstrates that the elaborated cognitive capacities of

the human brain are not only due to our complex neural network but also, and
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Figure 1.5: Astroglia and Microglia. Illustration of the protecting role of as-

troglia and the cleaning role of microglia (image courtesy of [Monk 2006]).

maybe mainly, to the huge number and diversity of our glial cells with respect to

the other species [Han 2013].

1.2.2 Macroscopic description

A practical way to describe the CNS from a macroscopic point of view can be

found in histology, which studies the anatomy of cells and tissues by sectioning and

staining. Macroscopic histology divides the CNS into three parts: (i) the CSF, (ii)

the Gray Matter (GM) and (iii) the WM, which are illustrated by fig. 1.6.

The Cerebro-Spinal Fluid. The CNS is immersed in the CSF. This fluid

navigates through communicative cavities called the ventricles (Figure 1.7). It

contributes to absord traumatisms and also decreases the pressure in the brain.

The CSF is producted by internal membranes of the ventricles, called the choroid

plexi. There are 4 ventricles in the human brain: two lateral ventricles, a third

ventricle under the previous two, related to them via the interventricular foramen

and a fourth ventricle under the thrid one, related to it via the cerebral aqueduct

also called Sylvius’ aqueduct.

The Gray Matter. It essentially contains the body cells of the neurons with

their dendrites, the unmyelinated axons and a part of all three types of glial cells.

This particular composition confers the GM a grey color.

The White Matter. The main cells composing the WM are myelinated axons
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(a) (b) (c)

Figure 1.6: Cerebro-Spinal Fluid, Gray Matter and WM in the Human

brain. Illustration of the location of the CSF (a), the GM (b) and the WM (c) in

the human brain on a coronal view (image courtesy of [Ciofolo 2009]).

Figure 1.7: Ventricles. Schematic views of the position of the four ventricles in

the human brain (© 2001 Benjamin Cummings, an imprint of Addison Wesley

Longman, Inc.)

along with all three types of glial cells. The latter however have a slightly different

function than in the GM. For instance, astroglia in the GM are coined protoplasmic
astroglia and have little ramifications whereas astroglia in the WM are coined fibrous
astroglia and have many ramifications that allow them to better protect and feed

myelinated axons. Also, oligodendrocytes within the GM do not produce myelin

as the GM axons are unmyelinated. The predominance in the WM of myelinated

axons confers it a white color.

1.2.3 Brain neural transmission network

The brain neural transmission network resides in the WM. In this section, we aim at

reviewing the normal anatomy of the WM nerve tracts, grouped into fascicles. The
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following review is based on the works of [Catani 2002, Jellison 2004, Catani 2008,

Thiebaut de Schotten 2011] that the reader wishing to delve deeper into the orga-

nization of the brain neural transmission network should refer to.

A global coronal view illustrating the currently known anatomic relationships

between different fascicles is given in fig. 1.8. Circled fascicles correspond to the

ones that the scientific community has been able to consistently identify. The other

fascicles have only been occasionally identified but the current knowledge on the

brain anatomy suggests their existence. The fascicles within the WM can be divided

into three categories:

• the association fascicles that establish the connection between areas of the

cerebral cortex (cortical areas) in each hemisphere of the brain,

• the projection fascicles that link the cortical areas to the deep nuclei (rep-

resented in fig. 1.8), brain stem, cerebellum and spinal cord (represented in fig. 1.2),

• the commissural fascicles that interconnect equivalent cortical areas be-

tween the two hemispheres.

Figure 1.8: Global view of the WM fascicles. Illustrative coronal view of the

relationship between several WM fascicles. Image courtesy of [Jellison 2004].

The association fascicles are illustated in fig. 1.9. They include the cingulum

fascicle (fig. 1.9,a) that interconnects portions of the frontal, parietal and temporal

lobes, the superior and inferior occipitofrontal fascicles (fig. 1.9,b-c) that intercon-

nect the occipital and frontal lobes, the uncinate fascicle (fig. 1.9,b-c) that inter-

connects the frontal and temporal lobes, the superior and inferior arcuate fascicles

(fig. 1.9,a-c) that connect the frontal lobe to the other three lobes.

The commissural fascicles are the Corpus Callosum (CC) fascicle illustrated in

fig. 1.9(d), which is the largest of all fascicles and interconnects anterior and posterior

poles of the hemispheres and the anterior commissure fascicle.

The projection fascicles are illustrated in fig. 1.10. They include the CST

(fig. 1.10,a) that interconnects the motor cortex to the brain stem and spinal cord
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(a) (b)

(c) (d)

Figure 1.9: Principal association and commissural fascicles. Sagittal view of

the cingulum association fascicle (a), the superior and inferior occipitofrontal asso-

ciation fascicles (b) and the uncinate and superior longitudinal association fascicles

(c), axial view of the CC commissural fascicle (d). Image courtesy of [Jellison 2004].

(see fig. 1.2 for reference anatomy), the optic radiation fascicle (fig. 1.10,b) that

connects the lateral geniculate nucleus to the occipital cortex, the internal capsule

fascicle (fig. 1.10,c) that is a major access for in- and out-messages of the cerebral

cortex and the corona radiata (fig. 1.10,d), which is not a fascicle but rather a

structure in which fascicles from and to cortical areas get through.

This section was a brief introduction to the known anatomy of the brain as a

part of the CNS. The reader should be convinced by now about the complexity

of the architecture of the human brain. In particular, the WM that vehicules the

information in and out the brain is composed of many different crossing fascicles

that have not all been yet consistently identified. Also, the myelinated axons are not

the only cells that constitute the WM. Since the work of [Moseley 1990] on dMRI

applied to the analysis of the brain, many researchers focused on quantifying the

microstruture of both WM and GM and on reconstructing the fascicles within the

WM, which are invisible to the naked eye. The work presented in this manuscript

goes in this direction too. In the next section, we will introduce the basics of dMRI.



12 Chapter 1. State of the art

(a) (b)

(c) (d)

Figure 1.10: Principal projection fascicles. Illustration of the CST (a), axial

view of the geniculocalcarine tract or optic radiation (b) and the internal capsule

(c), medial view of the corona radiata (d). Image courtesy of [Jellison 2004].

1.3 Principles of Diffusion MRI

This section is dedicated to a simple introduction to dMRI and its application

to measure diffusion of water in the human body. It is based on the works of

[Basser 2009, Pipe 2009] that the reader can refer to for a deeper immersion into

dMRI.
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1.3.1 What is the diffusion?

Diffusion is a natural phenomenon of mass transportation that occurs in nature.

The macroscopic idea behind the diffusion process is that, in a body that contains

molecules that are distributed in several regions with different concentrations, a

mass transport process will arise creating a diffusive flux that will tend to migrate

the molecules from the most concentrated regions to the less concentrated regions

as illustrated by fig. 1.11. In the physics community, this is known as Fick’s first

law [Fick 1855a, Fick 1855b]. It is an equation that links the diffusive flux J to any

concentration difference C through

J = −D∇C , (1.1)

where D is termed the diffusion coefficient and depends on (i) the size of diffusing

molecules, (ii) the temperature in the medium in which the molecules are and (iii)

the geometry of the medium. The sensitivity of the diffusion coefficient to the

microstructure of the considered environment (cells in the medium and geometry

of the medium) makes it very appealing for the study of the brain, which is full of

water molecules subject to the diffusion process.

Figure 1.11: Illustrative example of Fick’s first law. (image courtesy of

[Basser 2009]).

The work of [Brown 1828] characterized the diffusion process at the microscopic

level. It turns out that, contrary to what one may think, even in absence of a

concentration difference, molecules can be subject to the diffusion process but the

DIMD, in this case, will be invisible to the naked eye because, on average, there

is indeed no net diffusive flux. Robert Brown observed at the microscope these

displacements, successively on pollen grains and dust. The notion of a diffusion
displacement distribution with zero mean (no net displacement on average) was



14 Chapter 1. State of the art

pioneered by [Einstein 1905] to quantify the probability for a given molecule to

undergo a specific displacement.

1.3.2 How can it be measured using Magnetic Resonance Imaging?

MRI exploits the magnetization property of the hydrogen nuclei, also called the

protons. Any proton exhibits a non zero magnetic dipole known as spin. Spins

align themselves under the effect of an external magnetic field B0. The magnitude

of a magnetic field is measured in tesla (T). First generation of clinical MRI scan-

ners produced 0.5T (or even less) magnetic fields, current generation achieves 3T

and, very recently, some MRI scanners for research purposes can generate 7 to 11T

magnetic fields. To give an idea, the current clinical scanners achieve a magnetic

field that is 60000 times stronger than the natural magnetic field that everyone

experiences everyday without feeling it.

Spins under the effect of a magnetic field can undergo a phenomenon called

Larmor precession if they are excited, for a brief period of time, by a Radio

Frequency (RF) pulse with a frequency equal to the Larmor frequency of the

spins given by

ω = γB0 , (1.2)

where γ is the gyromagnetic ratio, which is specific to the excited spin. In our case,

the gyromagnetic ratio of the protons spin is γ = 2.68 × 108rad/s/T. Such an RF

pulse is called excitation RF pulse. The excited spins are suddenly tilted in the

plane of normal B0 where they start precessing (i.e., rotating around the axis de-

fined by B0) at the Larmor frequency. Precessing spins generate a net magnetization

that is measured as a current by receiver coils of the MRI scanner. The magneti-

zation, and thus the measured signal, will be stronger if spins are in phase (i.e.,

all aligned together even if not with the magnetic field). Phase shifts will decrease

the magnetization. Once the brief excitation RF pulse stops, the spins will tend

to progressively realign themselves with the magnetic field B0. During the process,

the magnetization in normal plane of B0, termed the transverse magnetization,

decreases exponentially with a time constant T2 called the spin-spin relaxation

time (≈ 100ms, depending on the tissue in which the molecules are).

However, the magnetic field B0 is not strictly homogeneous due to various factors

[Abragam 1961]. The excitation RF pulse being computed according to eq. (1.2)

thus results in excited spins at different precessing frequencies which provokes a loss

in phase coherence and therefore, a faster decay of the transverse magnetization.

In order to bypass the problems induced by inhomogeneities of the magnetic field,

[Hahn 1950] proposed to apply, at some time t after the excitation RF pulse, a

second RF pulse, termed refocusing RF pulse, to eliminate spin dephasing by

flipping the spins in the plane of normal −B0 where they will precess the other way

around. At time 2t precisely, the so-called spin echo will occur, that is spins will

have regain total phase coherence. With the spin echo principle, the magnetic field

B0 can then be considered as spatially homogeneous.
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This is interesting as now one can volontarily make the magnetic field spatially

varying by applying magnetic field spatial gradients G that create linear changes

in the magnetic field as follows:

B(x, y, z) = B0 +Gxx +Gyy +Gzz . (1.3)

This is the basis of slice selection, image encoding and diffusion weighting. For

example, let say that one aims at exciting the spins that are located at particular

slice z of the brain. The application of a magnetic field spatial gradient in the z-

direction modifies the magnetic field to B(z) = B0 +Gzz. Spins of protons located

in the plane (x, y) at slice z will then be the only ones excited by an excitation

RF pulse of frequency given by eq. (1.2): ω(z) = γ(B0 +Gzz). The prodecure for

image encoding is not detailed here and we refer the reader to [Pipe 2009] for further

details.

The spin-echo sequence was modified by [Carr 1954] who applied a DSG after

the excitation RF pulse to make it sensitive only to the DIMD: this was the origin

of DW MRI or dMRI. Consequently, spins of protons that were not subject to

diffusion motion will have precessed at the same frequency all along the sequence

(fig. 1.12,a), whereas protons that underwent diffusion motion will have changed

location and thus their spins will have precessed at different frequencies, resulting,

at the end of the sequence, in a persistent phase incoherence (fig. 1.12,b) and thus

a decay of the measured signal which is only due to the DIMD.

Despite the great promises of this approach, it lacked clinical feasibility. Indeed,

keeping a DSG active during the entire sequence is impractical. A feasible sequence

was thus needed to fully exploit the spin-echo principle.

1.3.3 Pulse Gradient Spin Echo sequence

The Pulse Gradient Spin Echo (PGSE) sequence was exactly designed to make

the most out of the spin-echo principle described in the previous section. It is

due to [Stejskal 1965b]. They replaced the application of a single DSG during the

entire sequence by the successive application of two DSGs of short pulse duration

δ, with equal magnitude G and direction g and separated by a time ∆, called the

diffusion time. One DSG is applied immediately after the excitation RF pulse

and the other one immediately after the subsequent refocusing RF pulse. The

sequence is illustrated in fig. 1.13. The time to reach the spin echo is called the

Echo Time (TE). The time between two successive excitation RF pulses is called

the Replication Time (TR).

Let then consider a molecule that is at location x1 during and after the appli-

cation of the first DSG and at location x2 during and after the application of the

second DSG. The magnitude of the magnetic field is thus B1 = B0 + G < g,x1 >
at location x1, which makes spins at x1 precess at the frequency ω(x1) = γB1, and

B2 = B0+G < g,x2 > at location x2, which makes spins at x2 precess at the frequency

ω(x2) = γB2. Note that < ⋅, ⋅ > denotes the inner product in R
3.
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(a)

(b)

Figure 1.12: Spin phase changes during the spin-echo sequence. Top row

image (a) represents the evolution of spin phase changes for molecules that do not

undergo diffusive motion. The excitation pulse aligns all spins (first image). When

the first DSG ends, the spins precess at the same frequencies but with different

phases (middle image). When the second DSG ends, spins are in phase (last image).

Bottom row image (b) represents the evolution of spin phase changes for diffusing

molecules. The excitation pulse aligns all spins (first image). When the first DSG

ends, the spins precess at different frequencies because of the location changes and

thus have different phases (middle image). When the second DSG ends, most of the

dephasing is removed but spins still are dephased due to the DIMD (last image).

Image courtesy of [Pipe 2009].

Assuming that the pulse duration δ of the DSGs is negligible with respect to the

diffusion time ∆ and that the magnitude of the DSGs is constant over its application
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Figure 1.13: Illustration of the PGSE sequence. (Image courtesy of

[Basser 2009])

pulse, which is known as the narrow pulse regime, the phase change of the

molecule spins induced by the application of the first (respectively, second) DSG is

then given by φ1 = −ω(x1)δ (respectively, φ2 = −ω(x2)δ). The remaining phase shift

after the application of the two DSGs can thus be quantified and amounts to:

φ2 − φ1 = −γδG < g,x2 − x1 > . (1.4)

Equation (1.4) implies that the remaining phase shift is proportional to the

DIMD that occurred between the application of the first and second DSG. In par-

ticular, if the molecule did not undergo diffusive motion, the phase shift is null and

the measured magnetization does not experience a decay. This is the fondamental

relation that explains how diffusion can be measured using dMRI.

1.3.4 Relation between the magnetization and the random diffu-
sion process

Even if the spin echo principle compensates for the spatial inhomogeneities of the

static magnetic field B0 generated by the MRI scanner, the exponential decay of

the transverse magnetization with time constant T2 (spin-spin relaxation time) still

occurs and affects the magnetization in the same manner, whether or not DSGs

are applied. Let M0 be the magnetization immediately after the application of the

excitation RF pulse. In absence of DSG, the magnetization S⋆0 that we measure at

time TE does not match M0, but is given by:

S⋆0 =M0 exp{−TE

T2

} + measurement noise . (1.5)

The upperscript ⋆ indicates that corresponding quantities are complex. The mea-

sured unweighted signal S0 is given by S0 = ∣S⋆0 ∣ and the true unweighted signal Ψ0

in absence of noise is assumed to be the average of all the measured unweighted

signals.

When a DSG q = γδGg [Callaghan 1991] of magnitude G and direction g is

applied during a period δ to measure the DIMD, a way to bypass the influence
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of the spin-spin relaxation time on the magnetization is to focus on the diffusion-

induced magnetization decay A⋆ = A⋆(q) rather than the magnetization S⋆ = S⋆(q)
itself, defining A⋆ = S⋆

S⋆
0

. However, eq. (1.5) highlights the importance of choosing the

lowest possible TE for the PGSE sequence to ensure that the magnetization decay

will mainly be due to diffusive motion and not to T2 relaxation [Scherrer 2012].

From now on, we will refer to random quantities with a sanserif type font and to

realizations of random quantities or deterministic quantities with curvilinear type

font. Following [Einstein 1905], the DIMD are seen as not deterministic but ran-

dom and one can define a Probability Density Function (PDF) px2∣x1=x1
(x2;∆),

which gives the probability that a given proton at location x1 will undergo a dif-

fusive motion towards location x2 after a diffusion time ∆. The diffusion-induced

magnetization decay A⋆ in a given voxel (3-dimensional pixel) is then given by:

A⋆(q,∆) = ∫
V
px1
(x1) (∫

R3

px2∣x1=x1
(x2;∆) exp{−i < q,x2 −x1 >}dx2)dx1 ,

(1.6)

where < ⋅, ⋅ > denotes the inner product in R
3, V is the volume of the voxel and

px1
(x1) is the PDF that gives the probability for a proton in the voxel to be located

at x1.

Equation (1.6) can be simplified by introducing the Ensemble Average Propaga-

tor (EAP) in the voxel, given by:

px(x;∆) = ∫
V
px1
(x1)px1+x∣x1=x1

(x1 +x;∆)dx1 , (1.7)

where x = x2 − x1 is the random vector representing the DIMD. The complex

diffusion-induced magnetization decay then reads:

A⋆(q,∆) = ∫
R3

px(x;∆) exp{−i < q,x >}dx . (1.8)

Often in dMRI, the focus is on the magnitude of the complex diffusion-induced

magnetization decay, hereafter referred to as the SID, which reads:

A(q,∆) = ∣A⋆(q,∆)∣ = ∣∫
R3

px(x;∆) exp{−i < q,x >}dx∣ . (1.9)

The integral involved in eq. (1.9) is, by definition, the characteristic function ϕx of

the distribution of the DIMD x. The SID thus simply reads:

A(q,∆) = ∣ϕx(q;∆)∣ . (1.10)

The magnitude of the magnetization S⋆(q,∆) is referred to as the measured

DW signal and denoted S(q,∆). The predicted DW signal under a specific diffu-

sion model or in absence of measurement noise is denoted Ψ(q,∆) and amounts

to Ψ(q,∆) = Ψ0A(q,∆), where A(q,∆) is given by eq. (1.10) and Ψ0 is the true

unweighted signal.

The problem of mathematically defining the relationship between the magne-

tization and the random diffusion process was tackled differently in [Torrey 1956].

In this work, Bloch equations that describe the behaviour of the magnetization un-

der relaxation phenomena [Bloch 1946] are generalized to integrate the effects of

diffusion. We will not detail these equations here.
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1.3.5 Summary

We have introduced the principles of dMRI. In section 1.3.1, we described the phe-

nomenon of diffusion highlighting its great sensitivity for the study of microstruc-

tural environments in which it occurs. We illustrated in sections 1.3.2 and 1.3.3

how dMRI can be used to measure the magnetization of proton spins reflecting the

underlying diffusive motions and we mathematically derived, in section 1.3.4, the

relationship between this measured magnetization and the EAP that defines the

random distribution of the DIMD.

The key relation is given by eq. (1.10), which shows that the magnitude of the

magnetization is the magnitude of the Fourier transform of the EAP. In the next

section, we will explain how the EAP is actually computed from the magnitude of

the magnetization using this relationship in the MRI scanner.

1.4 Diffusion Tensor Imaging

1.4.1 Description of the model

If there are no obstacles that may hindered the diffusion, then we say that the

diffusion is free. In this case, the EAP is a zero-mean isotropic Gaussian PDF

whose covariance matrix is given by 2D∆I3 where D is the diffusivity coefficient

in the voxel and I3 is the 3 × 3 identity matrix. The expression of the covariance

matrix derives from [Einstein 1905] who proved that the mean-squared displacement

of the ensemble is 2D∆. With the PGSE sequence, [Stejskal 1965b] indicate that

this definition needs a correction to account for the duration δ of the DSGs: they

show that the correct covariance matrix is 2D(∆−δ/3)I3. Assuming such a diffusion

profile leads to a very elegant simplification of eq. (1.10):

A(G, δ,∆) = exp{−γ2δ2G2D(∆ − δ/3)} . (1.11)

In order to simplify eq. (1.11), the concept of b-value has been introduced in [Le Bihan 1991].

For a given DSG q = γδGg in a PGSE sequence in which it is applied twice with

pulse duration δ and diffusion time ∆ between its two applications, the b-value is

defined as follows:

b = γ2δ2G2(∆ − δ/3) . (1.12)

The b-value summarizes in one value the contribution of the DSG strength G, the

DSG duration δ and the diffusion time ∆. Equation (1.11) then reads:

A(b) = exp{−bD} . (1.13)

In particular, the diffusivity of freely diffusing water at the normal human body tem-

perature 37°C has been shown to be approximately D = 3.0×10−3mm2/s [Le Bihan 2006].

This description of the diffusion process is however only valid for free diffusion in

isotropic media. The work of [Stejskal 1965a] extends eq. (1.13) to account for free

anistropic diffusion and is the object of this section. A simple way to account for
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anisotropic diffusion is to generalize the EAP to a zero-mean 3-dimensional Gaussian

PDF with covariance matrix Σ = 2(∆− δ/3)D, where D is not a scalar anymore but

a DT, i.e. a 3 × 3 symmetric definite positive matrix. In other words, the EAP is

assume to take the following form:

px(x;∆, δ) = ((4π(∆ − δ/3))3 detD)−1/2 exp{−< x,D−1x >
4(∆ − δ/3) } ,

where < ⋅, ⋅ > denotes the inner product in R
3. Without loss of generality, the DIMD

x are often rescaled and confounded with the random variable y defined as:

y = (2(∆ − δ/3))−1/2 x , (1.14)

such that the covariance matrix of the distribution of y matches the DT D. Indeed,

the PDF of the distribution of the random variable y amounts to:

py(y) = ((2π)3 detD)−1/2 exp{−1
2
< x,D−1x >} . (1.15)

Equation (1.10) then reads:

A(q,∆) = ∣ϕx(q;∆)∣ = ∣ϕy (√2(∆ − δ/3)q)∣ = ∣ϕy (√2γ2δ2G2(∆ − δ/3)g)∣ ,
which, using eq. (1.12), simplifies to:

A(b,g) = ∣ϕy(√2bg)∣ . (1.16)

Modeling the random variable y in eq. (1.16) with eq. (1.15) yield the Stejskal &

Tanner equation [Stejskal 1965b]:

A(b,g) = exp{−b < g,Dg >} . (1.17)

This modeling of the diffusion is known as Diffusion Tensor Imaging (DTI)

and is able to describe the diffusion in anisotropic media, through the eigensys-

tem {ei, di}i=1,...,3 of the DT (d1 ≥ d2 ≥ d3 > 0). The orientation of diffusion is given

by ±µ = ±e1 and one can compute the Apparent Diffusion Coefficient (ADC) D(c)
in any given orientation ±c, ∥c∥ = 1 as D(c) = c′Dc. Many diffusivity-based scalar

maps can be then produced from the DT, as, for instance, the ADC parallel to the

orientation of diffusion, termed parallel diffusivity D� and the mean ADC over the

plane orthogonal to the orientation of diffusion, termed perpendicular diffusivity D⊥:

D� = d1 and D⊥ = (d2 + d3)/2 , (1.18)

or the mean ADC over the unit 2-sphere, termed the Mean Diffusivity (MD):

MD = tr (D)
3

. (1.19)
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Anisotropy measures can also be derived from the DT. The two most popular

rotationally invariant anisotropy indices were introduced in [Basser 1996a], namely

the FA and the Relative Anisotropy (RA), and are defined as:

FA =
¿ÁÁÀ3

2
⋅ tr ((D −MD ⋅ I3)2)

tr (D2) and RA =
¿ÁÁÀ1

3
⋅ tr ((D −MD ⋅ I3)2)(tr (D))2 . (1.20)

The same authors also proposed the Volume Ratio (VR) and Lattice Index (LI),

which are less commonly used [Pierpaoli 1996a]. Finally, shape indices have been

proposed to distinguish between prolate (cigar-shaped), oblate (Smarties-shaped)

and spherical (ball-shaped) tensors. In details, they are respectively termed linear

coefficient (cℓ), planar coefficient (cp) and spherical coefficient (cs) and are defined

as [Westin 2002]:

cℓ = d1 − d2
tr (D) , cp = 2(d2 − d3)

tr (D) and cs = 3d3

tr (D) . (1.21)

Note that, sometimes, these three coefficients are normalized by
√

tr (D2) instead

of tr (D).
Assuming that this description of the diffusion process is an appropriate diffusion

model, the problem of designing an optimal dMRI sequence to accurately estimate

the DT is needed and will be the object of the next section.

1.4.2 Optimal DT-MRI acquisition strategy and estimation frame-
work

1.4.2.1 Acquisition strategy

A dMRI sequence is defined by several parameters: its TR and TE and parameters

that define the DSGs, namely the b-value given by eq. (1.12) and the direction g

of the DSG. The TR determines, together with the number of applied DSGs, the

duration of the entire dMRI examination that should be under the 10 minutes for

enabling its use in routine clinical practice. The sampling of the DSGs is thus very

important. Two sampling strategies have been mainly used in the literature: carte-

sian sampling and spherical sampling. Cartesian sampling is generally referred

to as Diffusion Spectrum Imaging (DSI) [Wedeen 2000, Wedeen 2005], which is an

imaging technique designed to numerically compute the inverse Fourier transform

of eq. (1.10) to obtain the EAP but requires a number of measurements in the range

200 - 512, which makes it impractical in the clinical routine practice. A popular

sampling strategy for the DSGs has thus been adopted by the community, namely

spherical sampling. It consists in radially sampling the DSGs on a few different

spheres called the shells using a few number of different b-values and in sampling

the directions of the DSGs on these shells. Single b-value sequences are often called

single-shell acquisitions while multiple b-value sequences are called multi-shell

acquisitions.
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Since the TE is the time of spin echo and the TR is the time between two

excitation RF pulses, the greater the TE the greater the TR. Consequently, larger

TEs will lead to longer acquisitions. We detailed in section 1.3.4, and particularly

with eq. (1.5), that the TE needs to be as small as possible to minimize confounding

effects from T2 relaxation of the tissues. Also, from the general definition of the

b-value given by eq. (1.12), we can define the nominal b-value, i.e. the b-value for

a unit-norm DSG:

bnominal = γ2δ2(∆ − δ/3) . (1.22)

It has been shown that the minimum achievable TE, which leads to the shortest

acquisition and to negligible T2 relaxation effects, is linked to this nominal b-value via

a complex relationship that can be approximated by [Mattiello 1994, Jones 2004]:

TEmin ≈ (12bnominal

γ2
)1/3 . (1.23)

In a spherical shell sampling strategy for the DSGs, we shall thus choose the sequence

parameters so that the highest nominal b-value is kept relatively small.

Assuming that the diffusion process is well represented by the DT and adopting

a spherical sampling of the DSGs for designing the appropriate acquisition scheme,

we still need to decide how many DSGs directions and how many shells (b-values)

are needed to accurately estimate the DT. Estimating the DT requires the esti-

mation of six independent parameters since it is a 3 × 3 symmetric definite positive

matrix. Theoretically, since the SID measured by the MRI scanner is orientation-

ally dependent, if the measurements were not corrupted by noise, one could then

use only six non-collinear DSG directions and a single b-value. Unfortunately, the

measured SIDs do not match the theoretical one due to the presence of measure-

ment noise [Gudbjartsson 1995] and thus [Basser 1994a] proposed a first acquisition

scheme that involves many more non-collinear DSG directions with a single b-value.

This is known as DT-MRI and this is the current way to analyse the diffusion in

clinics thanks to the patent filed by [Basser 1996b]. Many studies have been carried

out since the work of [Basser 1994a, Basser 1994b] to try to determine the optimal

number of non-collinear DSGs directions and of b-values to obtain the best estimate

of the DT [Correia 2009].

Optimal number of non-collinear DSG encoding directions. The dMRI

community first focused on understanding how many DSG directions were needed.

The work of [Papadakis 2000] pioneered in this direction. They concluded that, us-

ing a single nominal b-value of 1570s/mm2, the optimal number of DSGs directions

is between 18 and 21 to obtain the lowest variance on the estimate of the anisotropy

indices FA, RA and VR. In 2004, a study performed by [Jones 2004] confirmed the

conclusions of Papadakis: a robust estimation of anisotropy measures requires at

least 20 non-collinear DSG directions and a robust estimation of the DT orientation

requires at least 30 non-collinear DSG directions.

Optimal number of encoding b-values. At the infancy of DT-MRI, [Papadakis 1999]

evaluated the total variance of the DT estimated by (i) repeating twice a dMRI
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sequence with a single b-value at 1570s/mm2 or (ii) using 2 distinct b-values of

1570s/mm2 and 785s/mm2 (half the first one). The comparison was performed for

two sets of 6 DSG encoding directions differently distributed over the north hemi-

sphere. Conclusions favored the multi-shell acquisition. However, a recent study

[Jones 2007] just concluded the contrary. He showed that any scalar maps derived

from the DT present a lower bias and a better precision in presence of noise when

a single-shell acquisition is repeated M times rather than when a multi-shell acqui-

sition with M different shells is used. Ten years after the work of [Papadakis 1999],

[Correia 2009] published a study that is in accordance with Papadakis’ findings:

increasing the number of b-values seems to decrease the bias in ADC and FA esti-

mates and allows a better discrimination of fascicles with different diffusivities by

homogenizing their estimated FAs.

Using non-unit-norm DSGs to get more b-values. Tetrahedrally arranged√
3-norm DSGs have been used within a single-shell acquisition at a given nomi-

nal b-value [Conturo 1996]. They showed that this strategy enables the estima-

tion of the MD given by eq. (1.19) using only 4 DSG directions. The same year,

[Pierpaoli 1996b] proposed to use hexahedrally arranged
√
2-norm DSGs instead and

perform an accurate estimation of the DT using only 7 DSG directions. These two

types of DSG arrangements served recently as the foundations for CUbe Rays to Ver-

tices and Edges (CURVE)-Ball DTI proposed by [Peled 2009] that enables, from a

single nominal b-value, to image the signal on three different shells at bnominal, 2bnominal

and 3bnominal, while keeping the TE reasonably low since its minimum achievable

value is proportional to b
1/3
nominal form eq. (1.23). Using a single nominal b-value around

1000s/mm2, [Hasan 2001, Batchelor 2002] showed that six icosahedrally arranged

DSGs, which have
√
5-norm and thus result in a b-value at around 5000s/mm2

without increasing the duration of the acquisition or the effects of T2 relaxation,

are optimal for the estimation of the DT. Recently, [Scherrer 2012] introduced and

showed the great promises of the CUbe and SPhere (CUSP) acquisition scheme that

makes use of the DSGs that are in-between a single shell at b = 1000s/mm2 and its

enclosing cube, achieving many different b-values in the range 1000-3000.

Conclusions regarding the benefits of using multi-shell acquisitions over single-

shell acquisitions are rather contradictory in the literature. Even if the right range

and/or number of b-values is not yet clear, recent literature tends to show that we

should move towards hybrid acquisition schemes with a single nominal b-value but

DSGs not necessarily distributed on this shell to gain more effective b-values. These

strategies are however very recent and were not available at the time of Basser’s

patent and the integration of DTI in MRI scanners. Back then, however, it seemed

that there was a consensus on using a single b-value and on the optimal number

of non-collinear DSG encoding directions on this shell. The optimal sequence in

clinics for DT-MRI therefore consists in a single encoding b-value usually in the

range 800 − 1500s/mm2 to avoid too low TEs and 30 non-collinear DSG encoding

directions uniformly distributed on the north hemi-sphere. In a recent review of DTI

computational methods, [Hasan 2010] report the parameters of a typical isotropic

DTI protocol, which consists, on a 3T MRI scanner, in the application of 42 DSGs
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in 42 non-collinear directions (which is slightly more than the optimal number of

30 proposed by [Jones 2004]) on a single spherical shell (typically b = 1000s/mm2),

with TR = 12s and TE = 65ms, achieving a full human brain coverage in 7 min with

a spatial resolution of 2mm3 and Signal-to-Noise Ratio (SNR) near 50.

1.4.2.2 Estimation framework

DT computation requires the estimation of only six independent parameters. One

can see that the logarithm of the SID in eq. (1.17) is a linear function of the co-

efficients of the DT, which is very handy to encompass within a fast and robust

estimation framework. From the original idea of DTI in [Basser 1994b], many re-

searchers have been working on improving DT estimation. The advance in this

particular topic are well summarized in [Fillard 2007] that proposes a complete log-

Euclidean framework for the estimation of the DT. It consists in (i) reparametrizing

the DT as the exponential of a matrix termed the log-tensor, on which usual oper-

ations (addition, subtraction and so on) can be employed at will without risking to

lose the definite positivity of the original DT and (ii) minimizing a criterion that

includes a data attachement term and an anisotropic regularization term. They re-

viewed three different data attachement terms, showing that one should build that

term on the likelihood for Rician-corrupted data that corrects for the shrinking effect
(underestimation of the true volume of the tensors). Very recently, [Liu 2013] intro-

duced a robust variational framework that simultaneously performs the estimation

and smoothing of the DTs.

1.4.3 Clinical applications of DT-MRI

Since most MRI scanner on the market are equipped with the analysis tools for

DT-MRI [Basser 1996b], the literature carries an incredibly long list of publications

on the use of DTI for the study of the human brain (mainly of its WM). DTI

has indeed first been applied on healthy adult subjects (mean age 31 years old)

[Pierpaoli 1996b] to gain knowledge about the values of the different scalar maps

available from the eigenvalues of the estimated DT (section 1.4.1). After this study,

DTI has been widely and successfully employed to study DT scalar metrics changes

due to development (brain maturation, aging) and cerebral pathologies. In general,

studies aimed at assessing changes in one diffusivity-based metric (often the MD

given by eq. (1.19)) and one anisotropy metric (often the FA given by eq. (1.20)).

In this section, we will give an insight into the wide range of successful clinical

applications of DT-MRI to make the reader sensitive to (i) the importance of DTI

to the clinicians and thus to why it is important that a candidate diffusion model

for replacing DTI can reproduce all the usual DTI-derived scalar maps.

The dMRI community first focused on understanding the diffusivity and anisotropy

patterns in the brain of adult healthy subjects through the work of [Pierpaoli 1996b].

In this founding paper, for each well-established fascicle of the WM (see section 1.2.3

for the list of these fascicles) as well as for the CSF and the GM, the authors have
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reported the mean values and standard deviations of all the eigenvalues of the es-

timated DT. We refer the reader to the paper for a detailed knowledge on these

values. The authors’ findings reveal that (figure 3 of the paper):

• the WM is characterized by a high anisotropy and a low diffusivity,

• the GM is characterized by a low anisotropy and a low diffusivity,

• the CSF is characterized by a low anisotropy and a high diffusivity.

We report here only the summarizing table of this work (table 1.1) produced and

published in [Le Bihan 2001], which gives the mean values and standard deviations

of MD and of 1 −VR in some of the most important regions of the brain.

MD (×10−3mm2/s) 1 −VR

CSF 3.19 ± 0.10 0.02 ± 0.01
GM (frontal cortex) 0.83 ± 0.05 0.08 ± 0.05
Caudate nucleus 0.67 ± 0.02 0.08 ± 0.03
WM

CST 0.71 ± 0.04 0.93 ± 0.04
CC (splenium) 0.69 ± 0.05 0.86 ± 0.05
Internal capsule 0.64 ± 0.03 0.70 ± 0.08
Centrum semiovale 0.65 ± 0.02 0.27 ± 0.03

Table 1.1: Mean value and standard deviation of MD and 1−VR for various

regions of the brain. Table reproduced from [Le Bihan 2001].

These values along with the mean values of the other scalar maps constitute the

ground truth for the healthy adult brain. After this work, many publications arose

on diffusivity and/or anisotropy changes in development and aging and in different

brain pathologies by comparing a control group of healthy subjects with a group

of patients matched in age and gender. In the following, we will list the different

clinical applications of DT-MRI and summarize for each application the findings

due to DTI. Cited publications are reviews of DTI findings on each subject. All

individual studies are cited inside these works and we invite the interested reader

to refer to these reviews for details on the individual analyses.

Developing brain, maturation and aging [Neil 2002, Sundgren 2004]. The

study of changes in diffusivity and anisotropy measured via DTI in the development

of normal and injured human brain revealed that, in normal brain development,

diffusivity is higher in children than in adults, which is believed to be due to a

decreasing total water content and anisotropy increases thanks to the myelination

and re-organization of WM fascicles. In GM, modifications of the dendritic network

seem to cause the variations of anisotropy. Brain injuries are shown to provoke a

significant decrease of both diffusivity and anisotropy, the latter providing proof of

WM alterations that none of the other MRI modalities had revealed.

Aging [Moseley 2002, Sundgren 2004]. Several studies evaluated the influence

of aging using DTI. Conclusions were that the WM loses coherence from 20 years of

age, which means that globally the anisotropy decreases with age. This phenomenon
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is gender-independent. Possible given explanations are that axons progressively

lose their myelin sheath with age and some axons may also disappear, which is

corroborated by histological studies. Also, diffusivities are higher after 40 years of

age. These findings must be kept in mind when studying brain pathologies with

DTI, especially in the elderly.

Brain ischemia [Le Bihan 2001, Sotak 2002, Sundgren 2004]. Brain ischemia

designates a decrease in cerebral blood flow that creates a flux from the extracellular

space towards the intracellular space, resulting in a edema. There are two stages

in brain ischemia: the acute phase in which the edema is cytotoxic (i.e., toxic to

cells) and the chronic phase in which the edema is vasogenic (i.e., rapidly spread-

ing edema). The MD decreases in the first phase (more severely in the WM) but

increases to value higher than the normals in the second phase. During the first

phase, there is also an acute elevation of FA in the WM only, which is followed in

the second phase by a reduction. In the second phase, the architecture of the WM

is indeed disrupted and loses coherence.

Multiple Sclerosis (MS) [Le Bihan 2001, Horsfield 2002, Sundgren 2004]. It

is an inflammatory autoimmune disease that mainly affects the WM. There are

several stages in MS. After the first symptoms (optic neuritis, pain in the limbs), a

period of remission with occasional acute attacks starts (relapsing-remitting phase)

and then either acute attacks accumulate leading to severe disability (secondary

progessive phase) or acute attacks stabilize leading to limited disability. Lesions -

alteration and/or destruction of the myelinated axons - are provoked in the WM

during the attacks. The resulting MD has shown to be inflated and the resulting FA

to be deflated. Increased diffusivity has also been observed away from the lesions

in the WM, suggesting either that MS is a diffuse disease or that WM undergoes

Wallerian degeneration.

Wallerian degeneration [Le Bihan 2001, Sundgren 2004]. It is a process of

both axon and myelin degeneration that occurs when axons are injured or cells die

after a cerebral infarct. Most often, it involves the CST. DTI reveals a reduction of

FA both in the lesions provoked by the infarct and wherever the Wallerian degenera-

tion started. Differently, the MD is almost not increased by Wallerian degeneration

but significantly increased in the lesions, which makes MD a good candidate marker

to distinguish lesions from areas that undergo Wallerian degeneration.

Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD) [Le Bihan 2001,

Horsfield 2002, Sundgren 2004, Chua 2008]. MCI is diagnosed when cognitive de-

cline is greater than normal aging decline but with little functional impairment. It

is considered as an early phase of AD, which is the most common form of dementia.

AD is a neurogenerative disorder that mainly affects the GM and, to a less extent,

the WM axons and oligodendrocytes. The early symptom is the loss of short-term

memory and progressively confusion, irritability, trouble with language and loss of

long-term memory. It provokes general brain atrophy (decreased volume). Earliest

studies on MCI and AD mainly focused on the changes in anisotropy induced by the

disease. It has been shown that the genu and splenium of the CC presented a lower

FA and that the integrity measure via the LI was preserved in the CST but altered
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in fascicles involved with cognitive functions. This decay in anisotropy is thought

to be due to axonal loss and/or demyelination. More recent studies consistently

identified an increase in MD and a decrease in FA in the centrum semiovale and

in posterior cingulum fascicles. A very recent study [Douaud 2011] shows that in

fact the only consistent difference between MCI and/or AD patients with healthy

subjects is the FA reduction in the centrum semiovale. Unfortunately, they point

out that this region is also a location of crossing fascicles with a decreased FA as

already observed with DTI in healthy subjects.

Brain tumors [Sundgren 2004]. The MD has proven to be very successful in

differentiating tumors, lesions, edema, necrotic and/or cystic regions from normal

brain. There are generally three regions surrounding a tumor: the necrotic and/or

cystic part, the edema and a region identified as contrast-enhancing. The formation

of a tumor translates in an increase in MD and a decrease of FA, which is particularly

marked in the necrotic and edema parts. These changes are generally attributed to

increased water content and tumor infiltration.

CADASIL (Cerebral Autosomal Dominant Arteriopathy with Sub-

cortical Infarcts and Leucoenuphalopathy) [Le Bihan 2001, Horsfield 2002]. It

is an hereditary disease, which generates subcortical ischemic episodes and progres-

sive dementia. Significant increase in diffusivity were observed in regions identified

by other MRI modalities but not only, suggesting that either CADASIL is a diffuse

disease or it leads to Wallerian degeneration. The MD and the mean VR was assessed

as a measure of diffusivity and anisotropy respectively and found to be higher (higher

VR implies less anisotropy) in the WM, not only in T2-hyperintense regions. The

variations were however found to be much more severe in T2-hyperintense regions

than in the rest of the WM. Proposed explanations suggest that T2-hyperintense

regions experienced a loss of axons whereas the rest of the WM could have only

experienced myelin loss. DTI parameters therefore seems to be good markers of the

clinical severity.

Ischemic leukoaraiosis [Horsfield 2002, Sundgren 2004]. Ischemic leukoaraio-

sis designates diffuse changes in the periventricular WM due to the proliferation of

glial cells within the WM. In this case, DTI shows an increased MD and a decreased

FA, which is usually explained by the fact that unexpected glial cells hinder water

diffusion.

Amyotrophic Lateral Sclerosis (ALS) [Horsfield 2002]. Also known as the

motor neuron disease or Lou Gehrig disease, ALS is a fatal progressive disease that

atrophies muscles by attacking the motor neurons, i.e., mainly the CST. The disease

has two forms depending on its onset: bulbar-onset patients will experience speaking

and swallowing difficulties whereas limb-onset patients will first suffer from muscle

weakness. Significant rises of MD were found along the CST for the two forms of

ALS while significant drops of FA were only observed for bulbar-onset ALS. MD has

been shown to be an indicator of disease duration: the higher the MD, the longer

the disease. FA was found to indicate disease severity: the lower the FA, the more

severe the disease.

Metabolic disorders [Horsfield 2002, Sundgren 2004]. Metabolic disorders in-
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clude Krabbe disease or adrenoleukodystrophy, which are rare and often fatal au-

tosomal recessive disorders occuring most often in young children. They are known

to mainly affect the myelin sheath in the WM, with adrenoleukodystrophy creating

brain lesions. DTI studies on these pathologies detected an increase in MD and a

decrease in FA, once again explained by an increasing proportion of free water and

by an alteration of axons and their myelin sheath in the WM.

Schizophrenia and affective disorders [Lim 2002, Kanaan 2005, Buchsbaum 2006,

Kubicki 2007, Sexton 2009]. DTI analysis for the study of psychopathological disor-

ders has been widely employed since the advent of DTI. In particular, schizophrenia

is a mental disorder characterized by perturbed thoughts and emotions, resulting in

delusions, disorganized speech and so on. No study has evidenced that MD could

help in studying this disease. However, all published studies showed that FA de-

creases in many different regions of the WM. Patients with hallucinations also seem

to experience an abnormal increase of FA in the CC. The FA was shown to increase

inter alia with neuroleptic dosage, which is encouraging if one sees an increase of

FA as a step towards cure. Roughly similar conclusions were drawn when studying

other affective disorders.

Epilepsy [Arfanakis 2002, Assaf 2003, Sundgren 2004]. Epilespy groups the set

of chronic neurological disorders characterized by seizures. The most common form

of epilepsy arises in the temporal lobe with hippocampal sclerosis. Here again, DTI

analysis revealed an increased MD and reduced FA in sclerotic hippocampi, which

is usually explained by a destructuration of the WM that favors the expansion of

the extracellular space.

Traumatic Brain Injury (TBI) [Sundgren 2004, Niogi 2010, Shenton 2012].

It occurs when an external force traumatically injures the brain. There is a lot of

variability in the conclusions drawn by the many DTI analyses performed on TBI.

Often no differences in MD is reported but this is not consistent across the studies.

Similarly, FA is reported to decrease in the WM, but still not consistently. This can

be due to the cross-sectional character of the designed studies and thus to the lack

of longitudinal studies. [Shenton 2012] also suggest that, in the end, neither MD

nor FA are specific biomarkers.

Overall, DT-MRI has been proven in the past decade to be the only MRI modal-

ity to be sensitive to diffuse axonal injuries. The study of mainly MD and FA differ-

ences between controls and patients suffering from various neurological pathologies

often resulted in striking breakthroughs missed by conventional MRI or CT. How-

ever, these markers are non-specific in that their variations can be due to different

still indistinguishable phenomena such as alteration of axonal membranes or myelin

sheath or increase of glial cells proportion or other factors.

1.4.4 DTI Tractography

In addition to the multiple DTI-derived scalar maps of diffusivity and/or anisotropy

indices, DT-MRI also provides information on the orientational organization of the

fascicles within the WM. Following the voxelwise local orientation of diffusion iden-
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tified by the principal eigenvector of the DT (the one with the largest associated

eigenvalue), it is possible to reconstruct the tracts that compose the different fasci-

cles in the WM. This is known as tractography. This technique enables for the

first time in-vivo virtual dissections of the WM fascicles. Before the advent of trac-

tography, knowledge about the network formed by the fascicles was established by

post-mortem histological studies. Tractography thus generated a lot of enthusiasm.

Indeed, it appeared as a tool of choice to confirm in-vivo the knowledge acquired on

post-mortem studies and maybe to discover new fascicles that post-mortem studies

missed. Also, neurosurgeons saw in tractography the means to detect which and

how fascicles are damaged by a given pathology.

One of the first in-vivo virtual dissections obtained by tractography was proposed

in [Catani 2002] on a healthy 39 year-old male: they provided reconstructions of the

arcuate fascicle, the inferior longitudinal fascicle, the superior and inferior fronto-

occipital fascicles, the uncinate fascicle, the cingulum, the anterior commissure, the

corpus callosum, the internal capsule and the fornix, that are consistent with post-

mortem studies. These reconstructions however relied on an accurate anatomical

knowledge to define their starting Region Of Interest (ROI)s. To circumvent this

issue, a DTI tractography template is provided in [Catani 2008], which helps in

delineating ROIs to reconstruct the major fascicles in the WM. In the same work, the

authors propose an atlas of 3D reconstructed fascicles as anatomical reference, which

is further improved in [Thiebaut de Schotten 2011] by atlasing location, asymmetry

and inter-subject variability. They show that this in vivo atlas is fairly consistent

with previous histological atlases and enables the correct identification of fascicles

affected by lesions.

In the meantime, DTI tractography has been widely used to study the WM

architecture of pathological brains [Ciccarelli 2008]:

Neurogenerative disorders: (e.g., ALS, Parkinsonian disorders) DTI trac-

tography revealed correlations between disconnecting lesions and clinical symp-

toms [Catani 2006];

Schizophrenia: the application of DTI tractography in schizophrenia led to

inconsistent results until the work of [Jones 2006] that innovated by measuring tract-

specific diffusivity and anisotropy indices. In this work, they found that tract-specific

indices vary significantly with age, which might explain previous contradictory find-

ings in schizophrenia;

Strokes: a decreased integrity of the CST has been shown to be associated to

poorer outcome;

Multiple Sclerosis: MS patients present an overall significantly lower FA in

the WM with respect to healthy subjects with a particularly pronounced drop in

lesional regions. In order to avoid to prematurely terminate the reconstruction of the

tracts, probability map of a fascicle of interest is computed from control subjects and

registered on MS patients, in which FA is measured in highest probability regions.

The FA along the CST, inter alia, was found to be significantly decreased in patients

that experienced motor symptoms but not in others;

Epilepsy: malformed cortical areas seem not to be connected to the spinal cord
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in patient with focal cortical dysplasia who experience epilepsy. Fornix and cingulum

near the hippocampus seem to be subject to Wallerian degeneration. Language-

involved regions are reorganized with functional plasticity in patients suffering from

temporal lobe epilepsy;

Neurosurgical planning: (e.g., tumor ressections) neurosurgeons begin to use

DTI tractography in presurgical planning.

1.4.5 Available databases

The advent and appeal of DTI over the past decade has convinced the dMRI commu-

nity to conduct many studies on both normal and pathological brains which required

careful designs of experiments and led to the public or on-demand availability of an

incredibly large number of databases. For example, in their review of DTI studies

in schizophrenia [Kubicki 2007], the authors report 18 different databases all con-

structed with single-shell acquisitions with a number of DSG directions that does

not exceed 25. These databases are typical DT-MRI data. Also, over 27 databases

constructed to study affective disorders with DTI, [Sexton 2009] report only data

acquired using a single b-value and a number of DSG encoding directions most often

under 32. They found only 3 databases using 41 or 51 encoding directions for the

acquisition, still on a single shell.

A number of projects including those introduced in section 1.1.2 have also made

large databases available for the study of both normal and pathological brains. For

instance,

• Two DTI databases are available from the laboratory of brain anatomical MRI

of the John Hopkins Medical Institute, which aim at facilitating the development of

DTI analysis tools by providing control data. The diffusion protocol includes one

b-value of 700 s/mm2 and 32 non-collinear DSG directions,

• For the study of normal brain development, the Pediatric MRI project made

available two databases: one with a single shell b = 1000s/mm2 and 6 DSG directions

and the other with the same DSG directions but applied on two shells at b = 500

and b = 1000s/mm2.

• The large multi-site pediatric MRI and genetics data has been freely shared

by the Pediatric Imaging, Neurocognition and Genetics (PING) project. It includes

DTI datasets of about 1400 children between 3 and 20 years of age that can help

in understanding genetic variations and developing patterns of brain connectivity.

The diffusion protocol is again single low shell with few DSG directions,

• The Laboratory Of NeuroImaging (LONI) hosts a number of DTI databases:

(i) the International Consortium for Brain Mapping (ICBM) continuously extends

DTI data from John Hopkins Medical Institute to “generate a large normal DTI

database and a probabilistic WM atlas", (ii) the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) acquired a large DTI database using a single low shell (b = 1000
s/mm2) protocol with 21 non-collinear DSG directions, in-plane resolution of 2.96

mm2 and slice thickness of 3.3 mm to study Alzheimer’s disease and (iii) the

Parkinson’s Progression Markers Initiative (PPMI) acquired a similar DTI database

http://lbam.med.jhmi.edu
http://pediatricmri.nih.gov/nihpd/info/index.html
http://pingstudy.ucsd.edu
http://www.loni.ucla.edu
http://www.loni.ucla.edu/ICBM/Research/Research_Structure_DTI.shtml
http://adni.loni.ucla.edu
http://adni.loni.ucla.edu
http://www.ppmi-info.org
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to study Parkinsonian disorders,

• For normal brain connectivity purposes, the NIH Blueprint Human Connec-

tome Project plans to make available a database with 3 different shells at b = 1000,
2000 and 3000s/mm2 with 90 different but isotropically distributed DSG directions

over each shell, with spatial resolution 1.25 mm3,

• In the scope of obtaining the better possible reconstruction of WM fascicles

in the normal brain, the NIH Human Connectome Project plans to make available

a database with multiple shells up to b = 10000s/mm2 and 200 DSG directions with

spatial resolution of 1.5 mm3.

The current available datasets were all designed for DTI analyses and, as a result,

were often conducted with acquisition schemes that contain few DSG directions most

often distributed on a single shell. We will see in the next section 1.5, that DTI

presents some major limitations that raise the need for a better modeling of the

diffusion. Research in this direction should however keep in mind that it would

be of great importance to be able to retrospectively analyse each of the previously

published data to go deeper in our understanding of normal and pathological brain

development and of neurological disorders. Although very rich datasets will soon

be available to achieve a better understanding of the normal human brain, they

propose dMRI acquisition schemes that are far from being applicable in routine

clinical practice, which precludes the possibility of disposing of similar databases for

patients and thus limits their use to the normal human brain.

1.5 Limitations of Diffusion Tensor Imaging

1.5.1 A model at the voxel level

DTI is based under the assumption that the DIMD follow a Gaussian distribution

described in eq. (1.15), resulting in a mono-exponential SID given by eq. (1.17).

While the DT has been proven to model correctly single fascicles in the WM when

using single-shell acquisitions with b ≤ 3000s/mm2 [Assaf 2005a, Ozarslan 2006,

Caan 2010], several studies (including those validating the use of DTI for single

fascicle voxels) in the last decade however observed non-monoexponential SID at

b-values little more than the usual 1000s/mm2 [Alexander 2002, Ozarslan 2006,

Cheung 2009, Caan 2010], faulting the DTI Gaussian assumption. Investigations

to understand the causes of this non-monoexponential behaviour have been carried

out and it turns out that, at such low b-values, it is mainly due to two factors: CSF

contamination (we recall that the entire brain stews in the CSF) [Kwong 1991] and

presence of multiple non-collinear fascicles within single voxels [Alexander 2001].

The reason why DTI is not able to capture these effects lies into the definition

of the true EAP eq. (1.7). In details, for each spatial location x1 in the voxel,

a diffusion propagator px1+x∣x1=x1
(x1 + x;∆), giving the probability of a molecule

being at location x1 to move to x1 +x under the effect of diffusion after time ∆, is

defined. The true EAP then performs a weighted average of these different diffusion

propagators with weights determined by the probability of presence of a molecule at

http://www.humanconnectome.org/documentation/Q1/imaging-protocols.html
http://www.humanconnectome.org/documentation/Q1/imaging-protocols.html
http://www.humanconnectomeproject.org
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location x1. In DTI, the estimated EAP is a 3-dimensional Gaussian PDF, which

implies two important simplifications:

• before undergoing diffusive motion, molecules are uniformly distributed over

the voxel,

• no matter its location in the voxel, a molecule will always undergo the same

diffusion motion governed by the 3-dimensional Gaussian PDF.

These two simplifications prevent DTI from assessing partial volume effects.

Also, despite the sensitivity of MD and FA to tissue microstructure [Bodini 2009,

Salat 2009] for which we also report the reader to the previous section, these mark-

ers are non-specific [Pierpaoli 1996a]. For instance, a drop in FA can be attributed

either to some brain pathology or to an increased orientational dispersion (due to

the presence of crossing, diverging, kissing or fanning fascicles) or to other mi-

crostructural changes [Beaulieu 2009]. Also, as pointed out by [Shenton 2012], FA

and MD often highly correlate (see section 1.4.3), making only useful one the two

measures. These unfortunate consequences on DTI-derived scalar metrics are also

the results of summarizing within a single PDF multiple diffusion processes arising

from multiple different microstructural environments: any DTI-derived scalar will

not be tissue-specific.

More specific measures have been proposed [Assaf 2008b, Niogi 2010]. In partic-

ular, the mode of anisotropy [Ennis 2006] is a more precise definition of anisotropy

that better characterizes the shape of the diffusion and helps in distinguishing cross-

ing fascicles from pathologies for which classic FA is low in both cases. The inter-

voxel coherence [Pfefferbaum 2000] is a similarity measure between anisotropic

DTs in a neighborhood. Finally, parallel (respectively, perpendicular) diffusivity

given by eq. (1.18) has been shown to be a better marker for the study of axonal- (re-

spectively, myelin-) related pathologies [Song 2002, Song 2003, Budde 2007, Budde 2011].

Yet, they are still derived from the DT which, by definition, approximates the EAP

by a single PDF.

DTI tractography is of course also affected by DTI limitations [Ciccarelli 2008].

The low spatial resolution of DTI data (typically around 2.5 mm3) yields voxel

sizes that are far larger than the diameter of the axons composing the fascicles

that tractography proposes to reconstruct. Noise and image artifacts, in addition

to CSF contamination and orientational heterogeneity might yield reconstructed

fascicles that do not truly exist (false positives) or true fascicles that are not properly

reconstructed (false negatives).

Despite the plethora of DTI databases that are available upon request online (see

section 1.4.5), dMRI is not a standard modality in clinical MRI examination pro-

tocols because doctors lack evidence of clear benefits of dMRI for the patient, over

other MRI modalities. Indeed, the short acquisition time affordable in clinics with

real patients who cannot stay long in the scanner provides low spatial and angular

resolution diffusion data that, currently, can only be analyzed through DTI, which

unfortunately has been shown to yield non-specific biomarkers and erroneous recon-

structed fascicles. These facts raise the urgent demand for new diffusion analyzing

tools that can overcome these limitations.
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1.5.2 Voxelwise alternative diffusion models

Many alternative ways of analyzing the diffusion data that better represent multiple

fascicles in a given voxel have been devised in the recent dMRI literature. Some of

them focus on estimating the entire EAP, others on estimating the angular profile of

the EAP known as the Diffusion Orientation Distribution Function (dODF), which

is the integration of the EAP over its radial spherical coordinate, and finally others

on estimating the Fiber Orientation Distribution Function (fODF), which is the

distribution of the fascicles in the voxel. The maxima of the fODF can then be

extracted [Ghosh 2013b] and used for tractography purposes.

A first way of analyzing the diffusion data is to resort to non-parametric tech-

niques, in the sense that they estimate one of the three previous functions without as-

suming that it belongs to a parametric class of functions. Non-parametric estimation

of the EAP is the basis of DSI [Wedeen 2000, Wedeen 2005], which tries to estimate

the EAP by numerically computing the inverse Fourier transform of eq. (1.10). How-

ever, in order to satisfy the Nyquist conditions, a very large number of DSGs needs

to be sampled on a Cartesian lattice as explained in section 1.4.2. Multiple shell

Diffusion Propagator Imaging (DPI) [Descoteaux 2011] is another way to obtain an

estimation of the EAP from multiple spherical samplings rather than a Cartesian

sampling but still requires a large number of DSGs. As a result, many researchers

focused on estimating the dODF out of the diffusion data. First, Q-Ball Imag-

ing (QBI) [Tuch 2004] proposes a way to estimate an appoximation of the dODF,

with no need to compute the EAP. However, at moderate b-values, it turns out that

the local maxima of this approximated dODF do not match those of the true dODF

[Zhan 2006]. This problem was corrected by [Canales-Rodríguez 2009] who pro-

posed exact QBI, finding a relationship between the true dODF and the SID under

the assumption of Gaussian diffusion. As one of the first diffusion models to account

for multiple fascicles in a voxel, QBI gained a great popularity and its estimation has

been improved over the past decade [Descoteaux 2007, Deriche 2009]. Also, estimat-

ing the angular profile of the EAP is just one step towards finding the orientations

of the fascicles. It then requires to compute the fODF [Descoteaux 2009], with a

possible accumumation of errors. Indeed, in practice, we are limited in the number

of measured SIDs by the acquisition scan time, which decreases the contrast and

angular resolution of these methods and providing blurred versions of the functions

being estimated [Canales-Rodríguez 2010].

A second way of analyzing the diffusion data is to resort to parametric tech-

niques, i.e. looking for the EAP or dODF or fODF into a class of parametric

functions, which requires a less fine sampling of the DSGs. For example, general-

ized DTI [Ozarslan 2003, Liu 2004] captures multiple fascicles using higher-order

tensors in addition to the usual second-order DT. In particular, [Ghosh 2010]

approximate the EAP as the usual exponential multiplied by a correction poly-

nomial term depending on the 4-th order diffusion tensor components. Spheri-

cal deconvolution approaches [Frank 2002, Tournier 2004, Tournier 2007, Jian 2007]

directly estimate the fODF assuming a fixed usually Gaussian diffusion profile
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for all the fascicles in the entire brain that have the same orientation. Diffusion

Orientation Transform (DOT) [Ozarslan 2006] proposes to estimate isoradius sur-

faces of the EAP by expanding the Fourier-Bessel transform of the SID by means

of the Spherical Harmonics (SH) basis under the assumption of monoexponen-

tial SIDs. Expressing the SID as a truncated spherical polar Fourier series also

yield fast analytical EAP estimation [Cheng 2010]. These methods originally re-

quired long acquisition times as well but the recent introduction of compressed

sensing [Merlet 2010, Merlet 2011, Merlet 2012, Deriche 2013] and dictionary learn-

ing [Merlet 2013] in dMRI analysis brings the methods closer to a possible clinical

application.

All these analysis tools for dMRI (see the excellent review of [Assemlal 2011])

suffer from two major drawbacks:

• While they enable to some extent the characterization of multiple fascicles,

they assume that all the fascicles share the same given microstructure throughout

the brain therefore allowing only the accurate estimation of their orientations,

• They focus on describing the diffusion profile at the voxel level which results

in poor representations of the true EAP given by eq. (1.7) and recalled here:

px(x;∆) = ∫
V
px1
(x1)px1+x∣x1=x1

(x1 +x;∆)dx1 ,

since molecules at different locations in the voxel (x1) could undergo different dif-

fusion processes px1+x∣x1=x1
(x1 + x;∆) according to the tissue which they move

into. For instance, if a voxel is composed of M fascicles, the molecules in the voxel

will be at least distributed either in one of the M fascicles or outside the fascicles.

Molecules in each of these M +1 different media may undergo very different diffusion

processes that DSI, DPI, QBI, exact QBI, generalized DTI, spherical deconvolution,

DOT and other similar methods will average at the voxel level, without assessing

the proportions of these different media in the voxel.

The WM tissue microstructure is thus not taken into consideration: for instance,

the generalized FA of two crossing fascicles proposed in [Tuch 2003, Campbell 2004]

presents variations on synthetic data [Ozarslan 2005] and cannot therefore be a spe-

cific marker for the study of brain diseases. Also, even if these diffusion models shall

improve tractography, previously exposed limitations pose the problem of validation

and experimental confirmation as well as the need to optimize the currently too long

acquisition protocols required for these methods [Dell’Acqua 2012]. Also, tractog-

raphy performances could benefit from the estimation of the fractions of occupancy

of the different fascicles in the voxel.

1.5.3 Tissue-specific diffusion models

Diffusion models outlined in section 1.5.2 improve DTI but still provide estimates

of the EAP (or dODF or fODF) at the voxel level, averaging the true different

diffusion processes arising from multiple environments/tissues in the voxel. In order

to circumvent this problem, MCMs are a particularly appealing alternative. They
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are based on a parametric diffusion model for the EAP that reflects more closely

eq. (1.7) in the sense that the EAP is assumed to be a finite mixture of other PDFs,

each one of them characterizing the diffusion in a particular environment/tissue (e.g.,

a fascicle or CSF), termed compartment. The weights of the mixture represent

the fractions of occupancy of the different compartments, i.e. their relative

proportions in the voxel.

A straightforward generalization of DTI into a MCM can be easily achieved by

assuming that the EAP is a finite mixture of M zero-mean 3-dimensional Gaussian

PDFs with associated DTs Di (i = 1, . . . ,M). This M compartments are assumed

to be representative of M putative non-collinear fascicles in the voxel. It is useful to

incorporate in this mixture an additional compartment to account for CSF contam-

ination: indeed, characterizing the proportion of free water - originally known as

the free-water model [Pasternak 2009] - provides corrected MD and FA that are

less correlated and thus more tissue-specific [Metzler-Baddeley 2012]. Under such

assumptions, the SID for a given DSG (b,g) has the following expression:

A (b,g;{Di,wi}i=1,...,M ,Diso) = (1 − M∑
i=1

wi) exp{−bDiso} + M∑
i=1

wi exp{−b < g,Dig >} ,
(1.24)

where w1 to wM are the occupancies of each fascicle in the voxel. This is known as

the multi-tensor model. A full and comprehensive framework for the estimation

of this model has been recently published [Scherrer 2012], in which the authors

propose the CUSP acquisition scheme for sampling the DSGs, that they found to be

currently optimal for the subsequent estimation of the multi-tensor model. Using the

CUSP acquisition scheme, they show that they are capable of accurately estimating

the full multi-tensor model with the only constraint that Diso = 3.0 × 10−3 mm2/s,

which is its typical value at 37°C.

However, recent literature on the characterization of diffusion within the fas-

cicles shows evidence that molecules in the fascicles undergo two distinct types of

diffusion processes whether they are inside the axons or outside but close to the ax-

ons [Assaf 2005a]. In particular, recent dMRI analyses at b ≈ 2000s/mm2 show that

water experiences non-Gaussian diffusion in the CC and the CST [Kunz 2011], which

are brain areas known to contain uni-oriented fascicles. These findings support the

idea that a non-monoexponential SID is not only due to orientational heterogeneity.

Designing appropriate MCMs to account for these evidences is therefore crucial.

The rest of this manuscript is outlined as follows. In chapter 2, we go into details

regarding the current available MCMs for modeling diffusion data putting the em-

phasis on MCMs that represent fascicles as geometrically constrained environments,

hereafter referred to as geometry-based MCMs. We propose a new geometry-

based MCM that generalizes some of them accounting for possible non-Gaussian

DIMD. Using Monte-Carlo simulations, we generate simulated SIDs that we use

to validate the proposed MCM and compare it to the existing ones. In chapter 3,

we address the major limitation of MCMs that is: “how do we select a priori the

right number of compartments in the mixture?" We review the existing solutions
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for this model selection problem and propose a new approach based on model av-

eraging that does not answer the question but rather assign probabilities to each

model of being the right model to fit a given data. Chapter 4 is dedicated to trac-

tography in which we briefly summarize the existing tractography algorithms and

propose new deterministic and probabilistic algorithms that makes the most out of

the information provided by MCMs and manage to perform faithful reconstructions

of major fascicles in the brain. In chapter 5, we validate both the MCM proposed

in chapter 2 and the tractography algorithms proposed in chapter 4 by presenting

the results we obtained on the reconstruction of the CST from clinical data at the 3

DTI Tractography Challenges organized during the Medical Image Computing and

Computer-Assisted Intervention (MICCAI) conference in 2011, 2012 and 2013.
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Local modeling of the diffusion
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The usual protocol in dMRI consists in applying a series of DSGs

qjk = γδGkgj , j ∈ J1, ndK , , k ∈ J1, nbK ,

in nd non-collinear directions gj , using nb different magnitude Gk. Each applied

DSG yields a measured DW image Sjk that contains, in each voxel, the magnitude

of the magnetization of all contributing spins [Alexander 2006]. A series of measured

unweighted images S0 are also acquired and averaged to obtain the true unweighted

image Ψ0 (or, to be precise, an approximation thereof). The predicted DW images

Ψjk from a specific diffusion model or in absence of measurement noise are then

reconstructed as Ψjk = Ψ0Ajk, where Ajk is the SID given by eq. (1.10) with q = qjk.
Former and present clinical dMRI protocols only set a single magnitude G for

all the DSGs (nb = 1) and few DSG directions (typically at most nd = 30). These

are optimal protocols for subsequent DTI analyses (see section 1.4.2). Multi-shell

acquisitions and/or High Angular Resolution Diffusion Imaging (HARDI) are not

used in clinical practice yet, mainly due to acquisition time constraints, but also

because of the lack of scientific and medical evidences of their real benefits for the

patients.
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2.1 Diffusional Kurtosis Imaging reveals non-Gaussian
diffusion

As described in section 1.4.1, DTI describes a monoexponential SID, which, for a

given DSG qjk = γδGkgj , is given by:

Ajk = A(qjk) = A(bk,gj) = exp{−bk < gj ,Dgj >} , (2.1)

where bk is the b-value given by eq. (1.12) with G = Gk. It is theoretically straightfor-

ward to evaluate the departure of the DIMD from Gaussian displacements. Indeed,

eq. (2.1) can be viewed as an expansion of the characteristic function of the dis-

tribution of the DIMD in terms of its cumulants, truncated at the second-order

cumulant. Quantifying simultaneously the second- and fourth-order cumulants can

thus characterized non-Gaussian displacements and is the basis of Diffusional Kur-

tosis Imaging (DKI).

2.1.1 Diffusional Kurtosis Imaging

Some researchers focused on explaining the departure from a Gaussian diffusion

profile in the framework of mono-fascicle models. In this category of models lie

those that expand the logarithm of the signal decay as a series of cumulants of

the distribution of molecular displacements. Under the assumption of narrow dis-

tribution of molecular displacements, [Yablonskiy 2003] propose to limit the se-

ries to the first two even cumulants and thus exhibit estimates of the second-

and fourth-order tensors. [Liu 2004] show that the real (respectively, imaginary)

part of the logarithm of the signal decay is solely governed by the even-order

(respectively, odd-order) cumulants and exhibit estimates of the second-, third-,

and fourth-order tensors. However, these models suffer from a lack of physical

interpretation of the estimated parameters. In particular, the second-order ten-

sor is related to the variance properties of the distribution of molecular displace-

ments that have been widely studied in the literature, as this is the basis of DTI

[Pierpaoli 1996b, Le Bihan 2001, Basser 2002, Hasan 2010], but the fourth-order

tensor is related to the kurtosis properties of the distribution and none of these

works does establish that link. A similar approach that links kurtosis with the

fourth-order tensor is DKI.

Local diffusion modeling. DKI is a biophysical model-free approach that was

described in [Jensen 2005] to quantify the excess kurtosis of the distribution of the

DIMD due to diffusion in the brain. It relies on the expansion of the logarithm of

the SID in terms of the cumulants of the distribution of the DIMD, truncated to

the fourth-order cumulant, which reads:

log (Ajk) = −bkDapp(gj) + 1

6
b2kD

2
app(gj)Kapp(gj) , (2.2)

where Dapp(g) and Kapp(g) are respectively the apparent diffusivity and apparent

kurtosis in orientation g. Similarly to the usual DT, which is a fully symmetric 3×3
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matrix D with 6 independent elements, it is possible to exploit eq. (2.2) to derive

the Kurtosis Tensor (KT), which is a fully symmetric 3× 3× 3× 3 tensor W with 15

independent elements. Indeed, the following relations hold for any g = (g1, g2, g3) ∈
S
2:

Dapp(g) = 3∑
i=1

3∑
j=1

gigjDij and Kapp(g) = MD2

D2
app(g) ⋅

3∑
i=1

3∑
j=1

3∑
k=1

3∑
ℓ=1

gigjgkgℓWijkℓ . (2.3)

Estimation framework. The DT and KT are estimated in two steps: (i)

the apparent diffusivity and apparent kurtosis is estimated for each DSG direc-

tion using all data acquired along this direction with multiple different b-values and

(ii) eq. (2.3) is fitted to the previously estimated apparent diffusivities and kur-

toses. Both steps were first achieved by means of least squared error estimators

[Jensen 2005]. However, these estimators rely on the assumption that the measure-

ment noise in dMRI is normally distributed, which is not the case in practice: the

SID measured by a single coil in an MRI scanner is known to be affected by Rician

noise [Gudbjartsson 1995] due to the nonlinear operation needed to compute the

magnitude of the measured complex signal. Recently, [Veraart 2011b] introduced

a constrained maximum-likelihood framework for the estimation of the apparent

diffusivities and kurtoses that assumes a Rician noise model. They noticed that

two types of constraints on kurtosis needed to be set in addition to the definite

positivity of the DT: (i) the kurtosis has a mathematical lower bound of −2 and

the authors even increased this bound to 0 stating that MCM always predict posi-

tive kurtosis and referring to [Jensen 2005, Jensen 2010] and (ii) the kurtosis needs

not exceed 3
Dappb

in order for eq. (2.2) to be a decreasing function of the b-value,

as proven in [Jensen 2010]. This maximum-likelihood framework has been recently

improved by the introduction of ternary quartics in the parametrisation of the kur-

tosis tensor [Ghosh 2013a]. Differently, [Sperl 2012] propose the use of compressed

sensing theory to perform DKI estimation and assert that the denoising properties

of compressed sensing enable linear least squares fitting to be more robust and could

avoid the necessicity to resort to complicated frameworks like maximum-likelihood

approaches.

Derived diffusion metrics. The 3D kurtosis properties of the distribution of

the DIMD are contained in Kapp. It is important for clinicians to resort to scalar

maps to facilitate interpretation. [Lu 2006] proposed the spherical harmonics expan-

sion up to the 4-th order, which allows the capture of the directional distribution of

Kapp with only three parameters C0, C2 and C4 related to the spherical harmonics

theory. An easy interpretation of the C2 and C4 coefficients is not straightfoward.

[Hui 2008] propose more intuitive scalar metrics by introducing a suitable orthogo-

nal transformation of the KT that enables the estimation of the diffusion kurtoses

along the three eigenvectors of the DT, which leads to more easily interpretable in-

dices such as Mean Kurtosis (MK) and kurtosis FA. They also propose a definition

of parallel (K�) and perpendicular (K⊥) kurtoses: the first one is defined as the ap-

parent kurtosis in the principal eigenvector of the DT and the second one is defined
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as the average of the apparent kurtoses in the other two eigenvectors of the DT. A

slightly different definition of perpendicular kurtosis is adopted in [Jensen 2010].

Data acquisition requisites. Most of the studies involved with DKI recom-

mend the use of six b-values ranging from 0 to 2500s/mm2 and 30 DSG directions

per b-value. The upper bound of the range of b-values is confirmed by theory: since

typical values in the human brain are roughly Dapp ≃ 1.0×10−3mm2/s and Kapp ≃ 1,
this leads to b ≤ 3000s/mm2. [Jensen 2010] states that quantifying the DT and

the KT requires the estimation of 21 parameters, which, in turn, requires at least

three distinct b-values and at least 15 DSG directions per b-value. Specifically, they

recommend to utilize three b-values of 0, 1000 and 2000s/mm2 only and 30 gradient

directions per b-value, which is sufficient to obtain accurate estimates together with

a reasonable acquisition time.

Main reported results. A positive MK is revealed from previously published

data on both rat and human brains using relatively high b-values in [Jensen 2003],

along with large variations of the value in WM structures, suggesting deep dif-

ferences in tissue structure. This was confirmed later in [Jensen 2005], in which

they estimated the apparent diffusivity (Dapp) and apparent kurtosis (Kapp) in

three orthogonal orientations in cortical GM and frontal WM and came to the

same conclusion. Estimation of DKI-related scalar metrics was performed suc-

cessfully on rat brains [Hui 2008, Cheung 2009] and revealed that quantifying the

kurtoses brings additional information with respect to the diffusivities. The same

group of researchers also analyzed changes in MK in the human brain due to

age [Falangola 2007] or to various pathologies such as schizophrenia [Ramani 2007]

or Attention-Deficit/Hyperactivity Disorder (ADHD) [Helpern 2007]. A thorough

study also documents reference values of MD and MK derived from DKI in normal

human brains [Minati 2007]. Overall, DKI was shown to be more sensitive to tissue

microstructural changes than DTI is.

Limitations. The precision of diffusional kurtosis estimates is very poor with

DTI data in which a single b-value of 1000s/mm2 is used [Jensen 2005]. In general,

the kurtosis estimation is very sensitive to the range of b-values chosen for data ac-

quisition [Jensen 2005]. Indeed, the upper bound needs to be large enough in order

for the effect of the b2 term to be non-negligible with respect to the noise but also

small enough to prevent greater powers of b in the expansion from contaminating

the kurtosis estimate. This is also related to the fact that the estimated kurto-

sis, termed diffusional kurtosis, is just an approximation of the apparent kurtosis

of the distribution of the DIMD: indeed, it is likely that the distribution presents

other non-zero higher-order cumulants and that using higher b-values could allow to

quantify them and robustify the kurtosis estimate just like considering a non-zero

kurtosis robustifies the diffusivity estimates [Veraart 2011a]. The use of multiple

b-values is very time-consuming: even if [Lu 2006] claims that DKI is clinically fea-

sible (they propose a 10 minute acquisition), their acquisition (only 13 slices with

2.5mm thickness) would not cover an entire human brain. Interpolating from their

acquisition time, a full human brain coverage can be estimated at approximately 37

minutes, which is not feasible in clinics. Also, it is admitted as solid ground truth
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that the kurtosis has to be positive [Veraart 2011b] for any MCM whereas earlier

mathematical background only proves that multi-tensor models always predict pos-

itive kurtosis [Jensen 2005, Jensen 2010]. Furthermore, this constraint is violated

more than 80% of the time and mainly in deep WM structures such as the genu

and the splenium of the CC [Veraart 2011b], suggesting that the distribution of

DIMD within a single fascicle (which is typically the case in the CC) might present

physically plausible negative kurtoses. Additionally, it is misleading to constraint

parameters that define the diffusion process itself with parameters related to the

measurement process.

Despite its promising results, DKI-derived scalar metrics, in the same line as

DTI, lack specificity as they do not directly quantify tissue microstructure. To this

purpose, diffusion models based on the tissue microstructure geometry are emerging

in the recent dMRI literature.

2.2 Geometry-based Multi-Compartment Models

Due to the discrete nature of the voxel-based measurements in dMRI, the SID may

result from water molecules diffusing in different tissues with possibly different mi-

crostructures, especially in the WM. A particularly suitable class of models to

account for such an heterogeneity within a voxel is the class of MCMs, which as-

sumes that water molecules are divided into several compartments (with or without

authorizing exchange between them) that can exhibit different diffusion processes.

An appealing way to model an intra-compartment diffusion process is to assume

that it will be constrained by the geometry of the compartment: this is the basis of

geometry-based MCMs.

In the context of dMRI, it was pioneered by [Stanisz 1997], which proposed a

model of WM mictrostructure comprising three different compartments that account

for glial cells, axons and extra-cellular space. The DIMD in all the compartments

are assumed to follow a 3-dimensional Gaussian distribution [Pfeuffer 1998]. The

intra-cellular compartments are assumed to undergo restricted diffusion within a

sphere for glial cells and within 1-dimensional infinite parallel membranes for axons,

with intra-cellular apparent diffusion coefficients computed accordingly. The extra-

cellular compartment is assumed to undergo hindered diffusion, with extra-cellular

apparent diffusion coefficient computed according to a tortuosity model. Exchange

between intra- and extra-cellular spaces is also modeled, with exchange ratios that

also depend on the geometry of the intra-cellular compartments (permeability and

radius of the sphere for glial cells, permeability and distance between the membranes

for axons).

This is an alternative model to DTI that directly measures tissue microstructure

and proposes an analytical non-mono-exponential SID based on a weighted sum of

three different mono-exponential SIDs in each compartment. However, Stanisz et al.

model (i) does not account for the effects of orientation heterogeneity, (ii) describes

the intra-compartment SID as mono-exponential and (iii) relies on a highly simplified
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geometric representation of the axons.

Several subsequent geometry-based MCMs have been proposed that represent

the axon geometry in a more plausible way as rigid or flexible cylinders and will

be discussed in the following, namely the ball-and-stick model [Behrens 2003] (Sec-

tion 2.2.1), the Composite Hindered And Restricted ModEl of Diffusion (CHARMED)

[Assaf 2004] (Section 2.2.2) and the NODDI model [Zhang 2012] (Section 2.2.3).

2.2.1 The ball-and-stick model

Local diffusion modeling. The ball-and-stick model [Behrens 2003] describes

the tissue microstructure as an extra-cellular space consisting of free water in which

diffusion is assumed isotropic and unrestricted and an intra-cellular space contain-

ing the axons in which diffusion is restricted within cylinders of zero radius. In the

original ball-and-stick model [Behrens 2003], the DIMD in the extra-cellular (re-

spectively, intra-cellular) compartment follows a 3-dimensional centered Gaussian

distribution with DT equal to De = dI3 (respectively, Di = dµµ′), where d is the dif-

fusivity assumed identical in the intra- and extra-compartments and ±µ is the axons

orientation. The fraction of occupancy of the intra-cellular compartment is f ∈ [0,1].
These assumptions lead to the following expression of the SID [Behrens 2003]:

Ajk = (1 − f) exp{−bkd} + f exp{−bkd < µ,gj >2} , (2.4)

for voxels in which all axons are orientated along a single orientation ±µ. Later, the

authors extended eq. (2.4) to the case of multiple axons orientations [Behrens 2007]:

Ajk = (1 − M∑
i=1

fi) exp{−bkd} + M∑
i=1

fi exp{−bkd < µi,gj >2} . (2.5)

Limiting the number of axons orientations to two, [Hosey 2005] proposes a ball-

and-zeppelin model as an alternative to the ball-and-stick model, in which axons

are represented by cylinders with positive radius. To do so, they assume that the

DT that represents a single axon orientation is given by D =D⊥I3 + (D� −D⊥)µµ′.
Furthermore, they let compartments have their own diffusivity. These assumptions

yield the following expression of the SID:

Ajk = (1 − 2∑
i=1

fi) exp{−bkDisotropic}
+ 2∑

i=1
fi exp{−bkD⊥,i} exp{−bk(D�,i −D⊥,i) < µi,gj >2} ,

(2.6)

where one can observe that the radius of the cylinders does not explicitly appear in

the SID, but play an important role through the diffusivities D⊥,i that the ball-and-

stick models set to zero. Both models assume no exchange between compartments.

Estimation framework. The measurement noise is assumed to be Gaussian

N (Ψ0Ajk, σ
2) and samples are asssumed to be independent. In the original model,

[Behrens 2003] fit a ball-and-stick model that includes six independent parameters:
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the two angles θ and φ that defines the axons orientation, the true unweighted sig-

nal Ψ0, the fraction of occupancy f of the axons compartment, the diffusivity d and

the measurment noise variance σ2. The estimation is performed within a Bayesian

framework by means of a MCMC algorithm choosing adequate priors for the param-

eters. Differently, [Hosey 2005] assume Rician measurement noise R (Ψ0Ajk, σ) and

estimate τ = 1/σ2 rather than σ2 itself. In addition, they observe that the MCMC

algorithm fails to consistently identify the two axons orientations and found that

the following constraint stabilizes the Markov chain:

1

η
> f1 exp{−(∆ − δ/3)D⊥,1}
f2 exp{−(∆ − δ/3)D⊥,2} < η , (2.7)

where η was chosen to 0.3.

Derived diffusion metrics. The ball-and-stick model directly quantifies (i)

the axons fractions of occupancy (fj), which allows the computation of the fraction

of occupancy of freely diffusing water (1 −∑M
j=1 fj), (ii) the axons orientations (µj)

and (iii) the MD (d). The ball-and-zeppelin model is richer as it includes non-zero

diffusivities in the orientations perpendicular to axons orientations.

Limitations. Despite its low number of independent parameters, the ball-and-

stick model over-simplifies the geometry of the axons by representing them as zero-

radius cylinders, which prevents the model from describing other important tissue

microstructure related features such as anisotropy or the distinction between intra-

and extra-cellular spaces. It only provides information about the axons orienta-

tion. This problem is partially solved in [Hosey 2005], which estimate a non-zero

diffusivity in orientations perpendicular to the axon orientation. However, estima-

tion of these diffusivities require the authors to put a constraint on the parameters

given by eq. (2.7), which has no physical meaning and depends on a thresold that

is chosen rather arbitrarily. Also, both models still describe a mono-exponential

SID for both restricted and unrestricted compartments, making its use inappropri-

ate at least at b > 2000s/mm2, given the recent findings on non-mono-exponential

intra-compartment SIDs at such b-values [Cheung 2009, Kunz 2011].

2.2.2 The Composite Hindered And Restricted ModEl of Diffusion

The non mono-exponential SID has been successfully explained at the voxel level

by geometry-based MCMs that propose a compartmentalization of water molecules

into freely diffusing water molecules and water molecules trapped into axons (Sec-

tion 2.2.1). The DIMD in each compartment is assumed to follow a 3-dimensional

Gaussian distribution. However, if some of the compartments are subject to non-

Gaussian diffusion, these models result inappropriate [Boss 1965, Assaf 2000]. q-

Space theory [Callaghan 1991] is an appealing alternative in such cases, since it

does not make any assumption on the diffusion process itself. This theory assumes

that the duration δ of the pulse, during which each DSG is applied, is very short

and negligible with respect to the diffusion time ∆ between two successively applied

DSGs, referred to as the Narrow Pulse Approximation (NPA). Under the NPA,
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each DSG q is considered as constant over its application pulse. In practice, q-space

analysis then follows five steps:

1. Choose a DSG direction,

2. Acquire measured DW images for multiple different b-values along this direc-

tion,

3. Extract for each voxel the corresponding SIDs and zero-fill the array for b-

values higher than the maximal b-value used for acquisition (in order to increase

Fourier transform resolution),

4. Perform the Fourier transform on the SIDs to obtain the PDF of the DIMD

along the chosen DSG direction according to eq. (1.9),

5. Compute (i) the mean displacement as the full width at maximum height

(i.e., the absolute difference between the two locations at which the PDF amounts to

0.5) and (ii) the probability for zero displacement as the value of the obtained

PDF at zero,

6. Repeat the previous steps for other choices of the DSG direction.

The Fourier transform requires a large range of b-values to be accurate, which

is why this method of analysis is often termed high b-value q-space dMRI. An im-

portant finding of this method was to demonstrate that diffusion observed at high

b-values is mainly restricted. q-Space anaysis has also been employed for the study

of normal and pathological human brains [Tuch 2002, Assaf 2002b, Assaf 2002a,

Assaf 2002c, Mayzel-Oreg 2007]. However, it is very demanding in terms of acqui-

sition time. In an application to multiple sclerosis, [Assaf 2002a] reported an entire

MRI examination of 70 min with an included diffusion protocol of 28 min. In an

application to vascular dementia and Alzeihmer’s disease, the same group reported

an entire MRI examination of 50 min with an included diffusion protocol of 20 min

[Mayzel-Oreg 2007]. In both applications, clinical routine cannot afford such acqui-

sition times. Also, dMRI is not a conventional MRI modality in clinics, which means

that spending 40% of the examination time with the diffusion protocol is not yet

conceivable in clinical practice. Finally, high b-value q-space dMRI does not provide

microstructural parameters, which are the physical parameters of interest to ease

the interpretation.

Local diffusion modeling. The CHARMED [Assaf 2004] is a biophysical dif-

fusion model that combines ideas from DTI and q-space theory to provide easily

interpretable microstructural parameters. The original model describes the tissue

microstructure as a set of axons with possibly different orientations represented

as impermeable cylinders with a fixed biologically plausible distribution. For each

distinct axons orientation, the CHARMED assumes that the intra-axonal space is

subject to restricted diffusion whereas the extra-axonal space is subject to hindered

diffusion. Extra-axonal space is further reduced to a single compartment based on

considerations about diffusion at low-q regime. The resulting SID reads:

Ajk = (1 − M∑
i=1

f r
i )Ah(qjk) + M∑

i=1
f r
i A

r
i (qjk) . (2.8)

The hindered compartment is modeled exactly as in DTI, which assumes that the
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DIMD follow a 3-dimensional Gaussian distribution, leading to:

Ah(qjk) = exp{−bkg′jDgj} , (2.9)

where D is 3 × 3 fully symmetric tensor. Each restricted compartment along a

given axons orientation is modeled by decoupling the diffusion processes parallel

and perpendicular to the axons orientation. Using q-space theory, it is shown that

the resulting SID in a restricted compartment then reads:

Ar(qjk) = Ar
�(qjk)Ar⊥(qjk) . (2.10)

For each axons orientation, the DSG can be decomposed into the sum of two vectors

q = q� +q⊥, where the first (respectively, the second) vector is parallel (respectively,

perpendicular) to the axons orientation ±µ. The DIMD parallel to the axons orien-

tation are assumed to follow a 1-dimensional Gaussian distribution with zero mean

and variance D�, leading to:

Ar
�(qjk) = exp{−bkD� < µ,gj >2} . (2.11)

The contribution of the DIMD perpendicular to the axons orientation to the SID

is given by Neumann’s model for restricted diffusion within a cylinder of radius R

[Neuman 1974]:

Ar⊥(q) = exp⎧⎪⎪⎨⎪⎪⎩−
7R4bk (1− < µ,gj >2)
48 (∆ − δ/3)D⊥TE

(2 − 99R2

56D⊥TE
)⎫⎪⎪⎬⎪⎪⎭ , (2.12)

where TE is the echo time of the acquisition. Equation (2.12) is valid only for ∆ ∼ δ
that rarely matches regular clinical practice. As a consequence, the modeling of the

restricted diffusion in the CHARMED has been improved [Assaf 2005b] by using a

modified formula for restricted diffusion in cylinders proposed in [?], valid for δ <∆.

The authors of the CHARMED later showed how to estimate the distribution of

axons radii, assuming that it follows a Gamma distribution [Assaf 2008a]. An im-

provement of the CHARMED has also been proposed by adding a free-water com-

partment necessary for in vivo dMRI analysis [Barazany 2009]. The representation

of the axons used by the CHARMED has also been simplified to cylinders with a

single radius and extra-cellular space characterized by a cylindrically symmetric DT

whose parallel diffusivity was constrained to match the intra-axonal parallel diffu-

sivity [Alexander 2008]. In the same vein as in [Stanisz 1997], tortuosity models

that set the perpendicular diffusivity in the hindered compartment as a function

of the parallel diffusivity have been subsequently introduced to obtain the Minimal

Model of White Matter Diffusion (MMWMD) [Alexander 2010]. A taxonomy of

MCMs constructed from the ball-and-stick and ball-and-zeppelin models and the

CHARMED and the MMWMD, can be found in [Panagiotaki 2012].

Estimation framework. The estimation of the parameters of the CHARMED

is performed approximating the Rician measurement noise R(S(q), σ) by a Gaussian

noise N (√S2(q) + σ2, σ2) [Assaf 2004, Assaf 2005a], which is valid for high SNR.



46 Chapter 2. Local modeling of the diffusion

The non-linear least squares cost function is then minimized using the Levenberg-

Marquardt minimization algorithm. The axons radius and the perpendicular diffu-

sivity of the restricted compartments are kept fixed. The latter are also identical

for all axons orientations. The estimation of the parameters of the MMWMD is

performed by means of an MCMC algorithm described in [Alexander 2008], keeping

the parallel and isotropic diffusivities fixed (D� = 1.7 × 10−3mm2/s and Disotropic =
3.0 × 10−3mm2/s). The tortuosity is not a free parameter but computed as the

extra-axonal fraction of occupancy within the WM, i.e., without considering the

CSF isotropic compartment. To initialize the MCMC procedure with a good start-

ing point, a gradient descent scheme on a Rician-likelihood based cost function is

previously performed [Alexander 2010].

Derived diffusion metrics. The CHARMED directly quantifies the axons den-

sity (1 − fh), the axons orientations (one can see q� as < q,µ > µ, where µ is

an axons orientation) and the diffusivities parallel and perpendicular to each ax-

ons orientation. In addition, [Assaf 2008a] also provide an estimate of the axons

radii and [Barazany 2009] subsequently quantify the CSF fraction of occupancy.

[Alexander 2010] propose to define an index of axon density as the ratio of the

intra-axonal fraction of occupancy within the WM over the cross-sectional axon

area. Also, the PDF of the DIMD involved in Neuman’s model has an analyt-

ical expression [Neuman 1974, formula 15], which allows one to express the mo-

ments of the distribution of the DIMD as 3-dimensional integrals, which can be

numerically computed, giving access to the kurtosis properties of the CHARMED

in the case of restricted diffusion within a cylinder characterized by Neuman’s model

[Assaf 2004, Assaf 2005a].

Data acquisition requisites. To perform the analysis of the CHARMED on

human brain, [Assaf 2005a] propose to acquire 169 measured DW images along 169

different DSG (10 different b-values up to 10000s/mm2) with an increasing number

of DSG directions as the b-value increases, for a total acquisition time of 17 min

for 10 slices of 3mm thickness, which leads to more than an hour to cover an entire

human brain with a 3mm3 spatial resolution. This protocol was further improved in

[De Santis 2011] using sampling scheme optimization and model parsimony testing.

By further constraining the parameters of the CHARMED (estimating only one

intra-axonal volume fraction and associated diffusivity and the volume fraction of a

CSF compartment with fixed diffusivity), [Kunz 2011] report an aquisition time of

8 min for 44 slices of 2mm thickness, achieving a full brain coverage in 11 min with

a spatial resolution of 2mm3. An in vivo human brain imaging protocol has also

been optimized for the estimation of the MMWMD [Alexander 2010]: it consists in

the measurement of 360 measured DW images and 4 measured unweighted images

distributed on 4 different shells with b = 530, 700, 2720 and 2780s/mm2. The

acquisition time is about one hour for an in-plane spatial resolution of 1.8mm2 and

a total of 10 slices of 3.9mm thickness. This would lead to an acquisition time of

about 3 hours to cover an entire human brain.

Main reported results. The hindered compartment provides diffusivities that

are very similar to the one obtained by DTI. The restricted compartments are much
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more discriminative between GM, WM and CSF [Assaf 2005a]. The latter is mainly

dominant in the extra-axonal space (hindered compartment) and is not found in

intra-axonal space where the diffusion is restricted. The CHARMED also demon-

strates a great ability to estimate crossing fascicles with a better robustness to noise

with respect to a two-tensor model [Assaf 2005a]. Recent dMRI analyses using the

CHARMED at b > 2000s/mm2 also show that water experiences non-Gaussian diffu-

sion in the CC and the CST [Kunz 2011]. These regions are orientationally homoge-

neous, which supports that non-mono-exponential SID is not only due to orientation

heterogeneity. Results on the kurtosis of the distribution of the DIMD estimated

with the CHARMED are consistent with those presented in [Fieremans 2011], where

a two-tensor model was used to capture the kurtosis and derive other microstruc-

tural parameters. The model shows good agreement with previous reported results

using DKI [De Santis 2012].

Limitations. As mentioned in [Assaf 2005a], the CHARMED presents some

drawbacks that, at the moment, shall preclude its use in clinical practice. It is indeed

time-consuming for acquisition: the standard protocol for fitting the CHARMED

requires one hour for a full human brain coverage. This is due to several facts

[Assaf 2005a]: (i) the more b-values, the better the estimates of the restriced com-

partment parameters, (ii) the higher the b-value, the lower the SNR, which demands

then more samples to re-increase the SNR and (iii) accurate elucidation of crossing

fascicles requires at least 20 DSG directions. Also, the moments of the distribu-

tion of the DIMD as given by the CHARMED cannot be analytically related to

the model parameters, which limits their use. Moreoever, kurtosis properties of the

distribution of the DIMD can only be assessed under Neuman’s model for restricted

diffusion within a cylinder, whereas [Assaf 2005b] pointed out that it is preferable to

use van Gelderen’s model. Lastly, neither the CHARMED nor the MMWMD quan-

tify the axonal-orientation dispersion which is useful for an accurate elucidation of

bending, fanning or crossing axons that appear in the human brain [Bürgel 2006].

2.2.3 Neurite Orientation Dispersion and Density Imaging (NODDI)

All the models presented so far aimed at modeling the diffusion within the WM by

representing axons with simplified restricted geometries (mostly, cylinders). Each

model addresses one or more problems of the DTI, which is the current clinical

reference for the analysis of dMRI, but none of them addresses them all. The

non monoexponential SID is explained by all MCMs at the voxel level, but only

the CHARMED and the MMWMD quantify non-Gaussian diffusion within com-

partments. Associated imaging protocols also still remain impractical for clinical

translation and none of these models account for axonal-orientation dispersion.

The latter point has been addressed by new emerging models that introduce

orientation dispersion by means of spherical deconvolution. To this end, they use

appropriate directional distributions that enable analytical expressions of the de-

convolution: [Kaden 2007] and [Sotiropoulos 2012] use the Bingham distribution

[Mardia 1972] to deconvolve a Gaussian kernel for each axon-representative com-
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partment yielding the ball-and-racket model and [Zhang 2011] model an intracellular

compartment with Gaussian kernel deconvolved by a Watson distribution and an

extracellular compartment with Gaussian kernel too, the DT of which is in turn de-

convolved by the same Watson distribution. Despite the fact that these models are

able to estimate the axonal-orientation dispersion, spherical deconvolution makes it

difficult to turn back to the PDF of the DIMD from the resulting analytical expres-

sion of the SID, preventing one from understanding the underlying physical diffusion

process. Morever, performing spherical deconvolution rather than full 3-dimensional

R
3-deconvolution requires to assume that the diffusion within an axon only depends

on the axon orientation, which somehow deviates from geometry-based MCMs. In

the same vein as the ball-and-stick and ball-and-zeppelin models, the use of the

ball-and-racket model is thus limited to connectivity purposes.

In order to extend the use of such models, [Jespersen 2007] propose a neurite
model that accounts for both moderately dispersed axons in the WM and highly dis-

persed dendrites at the frontier between WM and GM with a geometry-based MCM.

The parameters of the neurite model have been shown to correlate more strongly

with previous independent measures from histology than DTI-derived parameters

[Jespersen 2010] and extracted neurite orientation distributions match those de-

termined by Golgi analysis [Jespersen 2012]. Yet, analyses were conducted on ex
vivo imaging of a baboon brain and the associated protocol was still prohibitively

time-consuming for an in vivo translation. A very recent diffusion imaging analysis,

termed NODDI, aims at proposing a geometry-based diffusion model that represents

the neurites organization under an acquisition time constraint of 30 min.

Local diffusion modeling. The NODDI model assumes that the SID results

from three impermeable compartments, namely the intracellular, extracellular and

CSF compartments, which yields [Zhang 2012]:

Ajk = (1 − νiso) (νicAic(qjk) + (1 − νic)Aec(qjk)) + νisoAiso(qjk) , (2.13)

where Aic(qjk), Aec(qjk) and Aiso(qjk) are the SIDs produced by diffusion in the

intracellular, extracellular and CSF compartments, respectively, and (1 − νiso)νic,(1 − νiso)(1 − νic) and νiso are their respective fractions of occupancy.

Differently from [Jespersen 2007], which approximate the orientation distributions

by means of a truncated spherical harmonics series and thus, fails to accurately

estimate lowly dispersed orientation distributions [Zhang 2011], the NODDI model

expresses the intracellular SID as a Gaussian kernel spherically deconvolved by a

Watson distribution [Zhang 2012]:

Aic(qjk) =M (12 , 32 , κ)
−1∫

S2
exp{(κ < µ,n >2 −bkD� < gj ,n >2)}dn , (2.14)

where M is a confluent hypergeometric function, µ is the axons orientation, κ mea-

sures the orientation dispersion and D� is the parallel diffusivity along the axons

orientation. Note that the NODDI currently estimates only one orientation per voxel

with its associated dispersion. Even if the geometry of the axons is not explicitly
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specified in eq. (2.14), this intracellular compartment models cylindrically restricted

diffusion and thus implicitly assumes that the axons are cylindrically-shaped. We

refer to this cylindrical shape in the following as a pseudo-cylinder. The difference

with the classic cylinder is that its radius is not explicitly given or estimated as such,

but is rather proportional to
√
D⊥∆, with D⊥ measuring the apparent diffusivity in

the space orthogonal to the axon orientation ±µ.

The DIMD in the extracellular compartment are assumed to follow an anisotropic

3-dimensional centered Gaussian distribution with covariance matrix proportional

to the following DT:

Dµ,κ,D�,D⊥ =M (12 , 32 , κ)
−1∫

S2
exp{κ < µ,n >2}(D⊥I3 + (D� −D⊥)nn′)dn ,

(2.15)

which yields the following extracellular SID:

Aec(qjk) = exp{−bkg′jDµ,κ,D�,D⊥gj} , (2.16)

where Dµ,κ,D�,D⊥ is given by eq. (2.15). Note that the parallel diffusivity is the

same in intra- and extracellular compartments. The perpendicular diffusivity D⊥
is assumed to be related to the parallel diffusivity D� via the following tortuosity

model:

D⊥ =D�(1 − νic) , (2.17)

which relies on the assumption that diffusing water molecules within the extracel-

lular space have to circumnavigate between several obstacles (the axons). A few

axons (small νic) imply that extracellular water is almost free and eq. (2.17) leads

to an isotropic extracellular DT in that case.

The DIMD in the CSF compartment are unrestricted and are assumed to follow an

isotropic 3-dimensional centered Gaussian distribution, which leads to:

Aiso(qjk) = exp{−bkDiso} , (2.18)

where Diso is free-water diffusivity.

Estimation framework. The NODDI model requires the estimation of 7 in-

dependent parameters, namely the two angles (θ, φ) of the axons orientation µ, the

diffusivity parallel to the axons orientation D�, the concentration parameter κ of

the Watson distribution, intracellular fraction of occupancy νic, the free-water frac-

tion of occupancy νiso and the free-water diffusivity Diso. As in [Alexander 2008,

Alexander 2010, Zhang 2011], the diffusivities are then kept fixed to typical values

in vivo: D� = 1.7×10−3 mm2/s and Diso = 3.0×10−3 mm2/s. The 5 remaining param-

eters are estimated [Zhang 2012]. The estimation is performed by maximizing the

likelihood of the parameters given the measured SIDs assumed to be corrupted with

Rician noise [Gudbjartsson 1995], using a Gauss-Newton non-linear programming

algorithm. The MCMC procedure employed in [Alexander 2010] to fit a similar

model is not necessary for the NODDI model that does not explicitly incorporate

the axons radius.
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Derived diffusion metrics. The NODDI model directly estimates microstructure-

related parameters: the intracellular fraction of occupancy νic that gives the axons

density, the mean axons orientation ±µ and the free-water fraction of occupancy νiso.

In addition, an index of orientation dispersion can be defined from the estimated κ

parameter as:

OD = 2

π
arctan(1

κ
) ∈ [0,1] . (2.19)

This index is more suited than κ itself to measure the orientation dispersion to which

it is directly proportional. Also, the extracellular compartment has apparent paral-

lel (D′�) and perpendicular (D′⊥) diffusivities that not only depend on the parallel

diffusivity D� but also on the intracellular fraction of occupancy and orientation

dispersion as follows:

D′� =D� (1 − νic(1 − τ1)) and D′⊥ =D� (1 − νic

1 + τ1
2
) , (2.20)

where

τ1 = − 1

2κ
+ 1

2F (√κ)√κ , with F (x) = √π
2

exp{−x2} erfi (x) , (2.21)

measures the effect of orientation dispersion on the apparent diffusivities.

Data acquisition requisites. The optimized NODDI protocol [Zhang 2012,

Tariq 2012] for the estimation of the NODDI model consists in the acquisition of

90 measured DW images and 9 measured unweighted images as follows: 30 DSG

directions on a b = 711 s/mm2 spherical shell and 60 DSG directions on a b = 2855
s/mm2 spherical shell, TR of 12.5 s and TE of 78 ms with a spatial resolution of 2

mm3. The acquisition of 50 slices takes 25 min, thus a full brain coverage (120 mm)

can be scanned in 30 min.

Limitations. Despite the effort to decrease substantially the acquisition time

towards a clinically feasible one, a dMRI protocol of 30 min remains impracti-

cal in clinical daily routine. Also, even if [Zhang 2012] discuss that the NODDI

model is easily extendable to capture multi-modal orientation distributions, the

current implementation and validation do not exhibit such properties. Given the

computational time of three hours to recover mono-modal orientation distributions

[Zhang 2012], it is likely that also computational time will be an issue for the esti-

mation of multi-modal orientation distributions. Finally, the model strongly relies

on spherical deconvolution and thus presents the same drawback as the models pro-

posed in [Kaden 2007, Sotiropoulos 2012, Zhang 2011]: it lacks an expression of the

PDF of the DIMD in terms of the NODDI microstructure-related parameters that

would give an insight into the nature of the diffusion process itself.

2.3 Diffusion Directions Imaging

2.3.1 Motivations

Wherever the Gaussianity assumption of the diffusion process is met, the mea-

sured DW signal decay is monoexponential. Conversely, if one observes a non-
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monoexponential measured DW signal decay in a voxel, then it would be misleading

to maintain the Gaussianity assumption. Several works in the literature observed

that the measured DW signal decay is actually non-monoexponential in some parts

of the brain, both at low b-values [Alexander 2002, Ozarslan 2006, Cheung 2009,

Caan 2010] and at high b-values [Mulkern 2000, Norris 2001, Bennett 2003, Yablonskiy 2003,

Maier 2004, Schwarcz 2004, Sehy 2004, Assaf 2005a, Jensen 2005, Mulkern 2009],

suggesting that the Gaussianity assumption is not supported by the data. The

underlying responsible biophysical mechanisms are complex.

Clinical dMRI currently involves a single low b-value. At such large diffusion

scales (low b-values), it is likely that this observed non-monoexponential decay is due

to (i) intra-voxel orientation heterogeneities and/or (ii) free water contamination.

Solutions to point (i) have been proposed in [Jbabdi 2012, Scherrer 2012] by resort-

ing to multi-tensor models. However, they require multi-shell acquisitions, which are

not yet available in clinics. To cirvumvent the issue, [Behrens 2007] earlier proposed

a constrained version of the model of [Jbabdi 2012] but the constraints are somewhat

arbitrary. Conversely, [Scherrer 2012] showed that the full multi-tensor model can be

accurately estimated using a new sequence called CUSP imaging that they designed,

which enables to perform multi-shell acquisitions within a clinically acceptable time.

However, this strategy prevents one from carrying out a retrospective analysis of for-

mer dMRI data sets. Solutions to point (ii) have also been proposed and consist in

including an isotropic compartment in addition to the fascicle compartment(s) to

account for free water [Latour 2002, Metzler-Baddeley 2012, Scherrer 2012]. How-

ever, recently, NODDI experiments [Zhang 2012] suggested that the fraction of oc-

cupancy of such an isotropic compartment cannot be accurately estimated using

clinical dMRI that involves only one non-zero b-value.

While the focus of this work is clinical dMRI, which can only afford to mea-

sure the diffusion at a large scale (low b-value), research dMRI at smaller diffusion

scales (high b-values) reveals a great deal of how the diffusion should not be mod-

eled. In particular, using high b-values, non-monoexponential measured DW signal

decays have been observed within a single fascicle due to the presence of intra-

and extra-cellular compartments [Assaf 2005a], which makes monoexpentional com-

partmentalization quite ineffective. Whether or not such a non-monoexponential

behavior in individual fascicles has to be considered at low b-values is still a debate:

on the one hand, [Assaf 2005a, Ozarslan 2006, Caan 2010] suggest that it is neg-

ligible for clinically acceptable b-values (b ≤ 3000s/mm2) and, on the other hand,

[Cheung 2009], for example, have measured a significantly non-zero kurtosis term

considering a single fascicle with b = 2500 s/mm2: “does the non-zero kurtosis term

reflect the lack of other fascicle and/or free water compartments in the model or is

it simply that there is indeed a single fascicle with non-Gaussian diffusion?" In our

opinion, since it has been observed that, even in a single fascicle, the Gaussianity as-

sumption does not hold, we cannot pretend it does just because we are working with

clinical acquisitions that are not able to detect the non-monoexponential behavior.

Instead of focusing on such an unclear b-value threshold under which the Gaus-

sianity assumption could possibly be valid to model the diffusion in a single fascicle,



52 Chapter 2. Local modeling of the diffusion

we rather propose in the following an MCM in which each compartment features

a non-monoexponential SID that converges to monoexponential as the b-value de-

creases. In addition, the non-monoexponential behavior in a single fascicle stems

from the use of a non-Gaussian probability distribution that we came up with on

purpose and of which we can analytically compute all the moments. This allows us

to apply clinically plausible constraints to our MCM to make it tractable in clinical

practice. We coined this diffusion modeling Diffusion Directions Imaging (DDI),

since we design it to accurately identify the different non-collinear fascicle orienta-

tions in a voxel.

In a single compartment (which can represent a fascicle or free water), the usual

mono-exponential SID is described by the Stejskal & Tanner equation [Stejskal 1965b]

given in eq. (2.1) and recalled here for sake of clarity:

Ajk = A(qjk) = A(bk,gj) = exp{−bk < gj ,Dgj >} .
It boils down to assuming that the DIMD x are given by x = √2(∆ − δ/3)y, where

y follows a zero-mean trivariate Gaussian distribution with covariance matrix D.

In order to describe a non mono-exponential behavior in a compartment, we pro-

pose a new distribution for the random vector y that departs from the Gaussian

distribution.

A fascicle is characterized, inter alia, by its orientation ±µ. The diffusion within

a fascicle is antipodally symmetric, which means that water molecules diffuse in the

forward direction +µ and in the backward direction −µ in equal proportions, which

reads:

py(y∣ ±µ,Θ) = 1

2
pw(y∣ +µ,Θ) + 1

2
pw(y∣ −µ,Θ) , (2.22)

where py is the PDF of y, Θ is a set of parameters that characterizes the fascicle out

of its orientation and w is a random vector that describes a 3-dimensional random

displacement along a specific direction.

Note that this formalism generalizes any parametric diffusion model that has

been proposed so far in the literature: indeed only antipodally symmetric distribu-

tions have been used, for which pw(y∣ + µ,Θ) = pw(y∣ − µ,Θ) = py(y∣ ± µ,Θ). In

addition, it offers more flexibility since asymmetric distributions may be used as

well to model the diffusion while preserving the antipodal symmetry of the latter.

In the following subsections, we describe DDI, which involves (i) the introduction

of a new distribution for characterizing non-Gaussian 3-dimensional displacements

in a specific direction (Section 2.3.2), (ii) the use of such a distribution to model

the diffusion within a given fascicle (Section 2.3.3) and (iii) the design of an appro-

priate MCM that can be estimated from clinical diffusion data and that accounts

for the contribution of the different fascicles and the CSF environment to the SID

(Section 2.3.4).

2.3.2 Non-Gaussian 3D displacements in a specific direction

In this section, we introduce a novel distribution for characterizing non-Gaussian

3-dimensional displacements in a specific direction (Section 2.3.2.1). We derive its
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PDF (Section 2.3.2.2) that allows us to compute all the moments of the introduced

distribution (Section 2.3.2.3).

2.3.2.1 Definition

A 3-dimensional random displacement w along a specific direction µ results from

the combination of a random 2-dimensional direction (directional variability) and a

random 1-dimensional displacement along that direction (variability in amplitude)
that the Gaussian distribution alone tries to capture altogether in its covariance

matrix. Conversely, we aim at better separating these two sources of variability.

Ideally, one could think of expressing the random variable w in spherical coordinates

as w = rv so that both the radial component (r) and the angular component (v) are

explicitly modeled. However, to the best of our knowledge, there is no pair of known

parametric probability distributions (a univariate one on R
+ and a directional one

on the 2-dimensional unit sphere to model r and v respectively) that leads to an

analytic PDF for modeling the diffusion in the fascicle.

To circumvent this issue, we express the random variable w as the sum of two

independent random variables, w = v + z, where [5, 6]:

• v follows a Von-Mises & Fisher (vMF) probability distribution (see ap-

pendix A.2) on the sphere of radius
√
νd (ν ∈ [0,1], d > 0) with mean direction +µ

(∥µ∥ = 1) and concentration parameter κ ≥ 0; it has a constant norm: ∥v∥2 = νd.

The vMF probability distribution admits a PDF on the 2-sphere of radius
√
νd.

Its expression is given in [Jupp 1989] for νd = 1 and can easily be extended on the

sphere of radius
√
νd > 0 by affine transformation:

pv(v;+µ, κ, d, ν) = 1

(νd)3/2
κ

4π sinhκ
exp{ κ√

νd
µ
′
v} , (2.23)

for any v ∈ R3 such that ∥v∥2 = νd.
• z follows a zero-mean trivariate Gaussian distribution with covariance matrix

Σ = (1−ν)d
κ+1 (I3 + κµµ′); it has a constant orientation ±µ for κ → ∞. The trivari-

ate Gaussian probability distribution admits a PDF on R
3. Using the Sherman-

Morrison-Woodbury identity [Hager 1989] to invert D, it reads:

pz(z;±µ, κ, d, ν) = κ + 1
(2π(1 − ν)d)3/2 exp{−

(κ + 1)∥z∥2 − κ(µ′z)2
2(1 − ν)d } , (2.24)

for any z ∈ R3.

• v and z are statistically independent.

For large values of κ, this definition of the random vector w completely separates

the directional variability (captured by v) and the variability in amplitude (captured

by z). The mean direction of the displacements is identified by +µ. The parameter

κ ≥ 0 measures the directional dispersion (the higher κ, the lower the dispersion),

the parameter d > 0 measures the displacement scale and the parameter ν ∈ [0,1] is a

non-Gaussianity index of the compartment (the closer to zero ν, the more Gaussian

the diffusion).
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2.3.2.2 Probability Density Function

The PDF of the random displacements w then amounts to the convolution of a vMF

PDF defined on a 2-dimensional manifold of R3 given by eq. (2.23) and a Gaussian

PDF defined on R
3 given by eq. (2.24). The proof of its existence and the details of

its derivation are given in appendix A.3.3. It reads:

pw(w;µ, κ, d, ν) = C(κ, d, ν) exp{−(κ + 1)w2⊥ +w2
�

2(1 − ν)d }
× ∫ 1

−1 exp{rνκ2 t2 + (κ + rνw�√
νd
) t} I0 (rν(κ + 1)√

νd
w⊥
√
1 − t2)dt ,

(2.25)

for any w ∈ R3, where:

rν ∶= ν

1 − ν ,

C(κ, d, ν) ∶= κ(κ + 1) exp{− rν(κ+1)
2
}

2 (2π(1 − ν)d)3/2 sinhκ ,

(w�,w⊥) ∶= (< µ,w >,√∥w∥2− < µ,w >2) ,
and I0 is the 0-th order modified Bessel function [Abramowitz 1972], with the con-

vention that < µ,w >= ∥w∥ for any w ∈ R3 when κ = 0.
The PDF of the distribution of w naturally involves the two following random

variables:

w� ∶=< µ,w > and w⊥ ∶= √∥w∥2− < µ,w >2 . (2.26)

They have a straightforward interpretation: w� is the random displacement along

direction +µ and w⊥ is the modulus of the random displacement in the plane or-

thogonal to direction +µ. One can then show (proof given in appendix A.3.4) that

the joint PDF of (w�,w⊥) is given by:

p(w�,w⊥)(w�,w⊥) = κ

2 sinhκ
∫ 1

−1 e
κtpnt(w�)prt(w⊥)dt , (2.27)

where nt is a univariate Gaussian random vector with mean
√
νdt and variance (1−

ν)d and rt is a univariate Rice random vector with distance parameter
√
νd(1 − t2)

and scale parameter
√ (1−ν)d

κ+1 .

2.3.2.3 Moments

The joint PDF allows us to analytically compute all the moments of w� and w⊥. We

focus on (i) the mean of the distribution, (ii) the second-order non-central moments,

which are related to the variance properties of the distribution and are the basis to

define diffusivity indices and (iii) the fourth-order non-central moments, which are

related to the kurtosis properties of the distribution and are a direct measure of the

departure from Gaussianity.
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The mean of the distribution of the random vector w can be easily computed

using eq. (2.23). Let P be the unitary matrix that rotates µ to e3 = (0,0,1)′, i.e.,

Pµ = e3. We can write:

E [w] = E [v] +E [z] = E [v]
=√νd κ

4π sinhκ
P ′∫

A2

exp{κ cos θ}⎛⎜⎜⎝
sin θ cosφ

sin θ sinφ

cos θ

⎞⎟⎟⎠ sin θdθdφ

=√νd κ

2 sinhκ
(∫ π

0
cos θ exp{κ cos θ} sin θdθ)P ′e3

=√νd κ

2 sinhκ
(∫ 1

−1 t exp{κt}dt)µ =
√
νdB1(κ)µ ,

(2.28)

where E [⋅] is the expected value operator, A2 = [0, π]× [0,2π] and B1(κ) is defined

by eq. (A.19) for p = 1.
The expressions of the second and fourth raw moments of the distribution of w�

and w⊥ can be found using the equations of appendix A.3.4.2. Simple derivations

yield:
E [w2

�] = d [1 − 2νξ(κ)]
E [w2⊥] = 2d [1 − νκ + 1 + νξ(κ)]
E [w4

�] = d2 [3 − 2ν2 − 4ν(3 − 2ν)ξ(κ) + 8ν2ζ(κ)]
E [w4⊥] = 8d2 [(1 − ν)2(κ + 1)2 +

2ν(1 − ν)ξ(κ)
κ + 1 + ν2ζ(κ)] ,

(2.29)

where

ξ(κ) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

cothκ

κ
− 1

κ2
, for κ > 0 ,

1

3
− κ2

45
, for small κ ,

and ζ(κ) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 − 3ξ(κ)
κ2

, for κ > 0 ,
1

15
− κ2

315
, for small κ .

(2.30)

2.3.3 Fascicle diffusion model in DDI

Recent findings revealed that water within axons is subject to restriced diffusion

where a Gaussian distribution appears inappropriate to model the DIMD [Assaf 2005a,

Kunz 2011]. Accordingly, we characterize separately the intra-axonal and extra-

axonal spaces. Previous geometry-based MCMs that distinguish intra-axonal and

extra-axonal spaces [Assaf 2004, Alexander 2010, Zhang 2012] assume no exchange

between these spaces. As a result, the extra-axonal space is confounded with the

extra-cellular space, which is the sum of the extra-axonal spaces of each axon. It

allows one to simplify the MCM to only one extra-cellular compartment, in which

diffusing water has to circumnavigate between the axons, which can be nicely cap-

tured by tortuosity models [Stanisz 1997, Alexander 2010, Zhang 2012]. The diffu-

sion within each (intra-)axonal compartment needs then to be modeled according

to a non-Gaussian distribution.
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We attempt to describe the axonal space a bit differently. We assume that

the axonal space is a pseudo-cylinder (i.e., a cylinder whose geometry is defined

through the shape of the diffusion) at the heart of which lies the intra-axonal space

and in which the extra-axonal space is a fine layer over the intra-axonal space that

closely fits the geometry of the latter. Hence, water diffusing in the extra-axonal

space mainly follows the orientation of the axon (depending on the orientational dis-

persion) given by the intra-axonal space so that the extra-axonal diffusion process

evolves in a dimensionally reduced space with respect to the intra-axonal diffusion.

With such a description of the axonal space, the diffusion within the entire axonal

space (intra- and extra-axonal spaces) needs to be modeled by a non-Gaussian dis-

tribution to meet the recent findings in the literature. In addition, the assumed

geometry of the axonal space is not strictly a cylinder but a pseudo-cylinder, which

shall precludes the use of Neuman’s model [Neuman 1974] or van Gelderen’s model

[?], valid only for restricted diffusion within a cylinder.

We thus designed a distribution that can characterize the diffusion within such

an axonal space, authorizing yet not quantifying exchange between extra- and intra-

axonal spaces. The distribution introduced in section 2.3.2 is particularly well suited

for this purpose. Indeed, in general, the DIMD will be the sum of two independent

displacements: one occurring in the 3-dimensional intra-axonal space (represented

by z) with associated PDF given in eq. (2.24) whose diffusivity is weighted by

the fraction of occupancy of the corresponding space and one occurring in the 2-

dimensional extra-axonal space (represented by v) with associated PDF given in

eq. (2.23) whose diffusivity is weighted by the fraction of occupancy of the corre-

sponding space. This yields an analytic expression of the PDF of the DIMD in the

axonal space given by eq. (2.25).

The 3-dimensional diffusion occurs in the intra-axonal space and is assumed

to follow a Gaussian distribution given by eq. (2.24). The corresponding DT is

assumed to be cylindrically symmetric as in [Alexander 2010, Zhang 2012]. The 2-

dimensional diffusion in the extra-axonal space is however mismodeled by eq. (2.23):

indeed, it is not an antipodally symmetric PDF and, consequently, neither is the re-

sulting PDF given by eq. (2.25). In the following, we thus introduce an antipodally

symmetric 3-dimensional distribution, based on the PDF given by eq. (2.25), which

we use to model the diffusion within our proposed representation of the axonal space

(Section 2.3.3.1). We derive its expected value (Section 2.3.3.2), its second-order

moments which are related to the concept of diffusivity (Section 2.3.3.3) and its

fourth-order moments which are related to the kurtosis properties of the distribu-

tion (Section 2.3.3.4). We propose a clinically plausible constraint for the diffusion

within fascicle (Section 2.3.3.5). We show how the classic FA and MD and other

scalar metrics vary with the parameters of our model (Section 2.3.3.6). Finally, we

analytically derive the expression of the SID in terms of the parameters of the pro-

posed distribution that characterizes the diffusion in the fascicle (Section 2.3.3.7).
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2.3.3.1 Definition and Probability Density Function

Let ±µ be the orientation of the axon and let w+ and w− be the 3-dimensional

random displacements along the directions +µ and −µ, respectively. We assume

that the PDFs of the random vectors w+ and w− are given by eq. (2.25) with mean

directions +µ and −µ respectively, and equal remaining parameters (κ, d and ν).

We define the PDF of the DIMD y along the axon orientation ±µ as an equally

weighted mixture of the two PDFs of w+ and w−, as proposed by eq. (2.22). It

reads:

py(y;±µ, κ, d, ν) = C(κ, d, ν) exp{−(κ + 1)y2⊥ + y2�
2(1 − ν)d }

× ∫ 1

−1 exp{rνκ2 t2 + κt} cosh(rνy�t√
νd
) I0 (rν(κ + 1)√

νd
y⊥
√
1 − t2)dt ,

(2.31)

for any y ∈ R3, where:

rν ∶= ν

1 − ν ,

C(κ, d, ν) ∶= κ(κ + 1) exp{− rν(κ+1)
2
}

2 (2π(1 − ν)d)3/2 sinhκ ,

(y�, y⊥) ∶= (< µ,y >,√∥y∥2− < µ,y >2) ,
and I0 is the 0-th order modified Bessel function [Abramowitz 1972], with the con-

vention that < µ,y >= ∥y∥ for any y ∈ R3 when κ = 0.
In this context, the parameters of the resulting distribution have an intuitive

interpretation:

• ±µ is the orientation of the axon,

• κ is an orientation dispersion index, which quantifies the concentra-

tion of water molecules around the orientation of the axon,

• d is the free diffusivity along the axon,

• ν is the fraction of occupancy of the extra-axonal space.
In a given voxel, there are multiple axons that are aligned with the same orien-

tation, forming a bundle of axons hereafter referred to as a fascicle. If we assume:

- no exchange between the different axons composing the fascicle (which does

not prevent water inside an axon from exchanging between intra- and extra-axonal

spaces),

- equal contribution of each axon to the diffusion in the fascicle,

- identical distributions of the DIMD in each axon composing the fascicle,

the PDF of the DIMD within the fascicle is then simply an equally weighted sum of

many PDFs given by eq. (2.31) that share the same parameters. The resulting PDF

is thus given by eq. (2.31) and, in the following, we shall confound the distribution

of the DIMD within an axon with the distribution of the DIMD within a fascicle

and only use the fascicle terminology.
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The PDF given by eq. (2.31) naturally involves the two following random vari-

ables:

y� ∶=< µ,y > and y⊥ ∶= √∥y∥2− < µ,y >2 , (2.32)

which are of primary importance since they provide an insight into the diffusion

parallel (y�) and perpendicular (y⊥) to the orientation of the fascicle.

2.3.3.2 Fascicle apparent mean displacements

The means of the distribution of w+ and w− can be easily derived from eq. (2.28)

and amount to E [w+] = +√νdB1(κ)µ and E [w−] = −√νdB1(κ)µ, respectively.

Consequently, the mean of the distribution of the DIMD y in the fascicle reads:

E [y] = E [w+] +E [w−]
2

= 0 , (2.33)

which implies, in particular, that

E [< c,y >] =< c,E [y] >= 0 , ∀c ∈ R3 . (2.34)

2.3.3.3 Fascicle apparent diffusivities

The apparent diffusivity, also commonly termed ADC, in a given direction c ∈ R3,∥c∥ = 1, is defined as

D(c) = V [< c,y >] eq. (2.34)= E [< c,y >2] , (2.35)

where V [⋅] is the variance operator. Generally, three diffusivities are of particular

interest, namely the MD, the parallel diffusivity D� and the perpendicular diffusivity

D⊥. They are defined as follows [Jensen 2010]:

D� =D(±µ) ,
D⊥ = 1

2π
∫
c∈(span{±µ})⊥⋂S2

D(c)dS(c) ,
MD = 1

4π
∫
c∈R3⋂S2

D(c)dS(c) ,
(2.36)

where dS denotes integration with respect to the spherical measure and S
2 is the

2-sphere of R3. In other words, the MD is the spherical mean of D(c) over the entire

3-dimensional space R
3, D� is the diffusivity along orientation ±µ and D⊥ is the

spherical mean of D(c) over the plane (span{±µ})⊥, orthogonal to the orientation

±µ. It can be shown (see the proof in appendix B.2) that these three diffusivities

are related by the following equation:

MD = D� + 2D⊥
3

. (2.37)

In order to compute D� and D⊥, the random vector y can be conveniently

rewritten as follows:

y = y�µ + y⊥u , with u = y − y�µ

y⊥
∈ (span{µ})⊥ ⋂ S

2 , (2.38)
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where y� and y⊥ are given in eq. (2.32). The parallel diffusivity then reads:

D� = E [< µ,y >2] = E [y2�] ,
and the following equation holds for any c ∈ (span{±µ})⊥ ⋂ S

2:

D(c) = E [< c,y >2] = E [y2⊥ < c,u >2] . (2.39)

Since the two smallest eigenvalues of the covariance matrix of the distribution of

z are equal (see eq. (2.24)), the distribution of y satisfies the cylindrical symmetry

property, i.e., the distribution of u is uniform on the unit 1-sphere, and thus, y⊥
and u are statistically independent. Consequently, eq. (2.39) simplifies to:

D(c) = E [y2⊥]E [< c,u >2] .
Furthermore, since u is uniform on the unit 1-sphere, the equality < c,u >d= cos θ,

with θ ∼ U[0,2π], holds in distribution and we can thus write:

E [< c,u >2] = 1

2π
∫ 2π

0
cos2 θdθ = 1

2
. (2.40)

For any c ∈ (span{µ})⊥ ⋂ S
2, we thus obtain that D(c) = 1

2
E [y2⊥] which does

not depend on c. Therefore, the perpendicular diffusivity reads:

D⊥ = 1

2
E [y2⊥] .

Since the distribution of y is a mixture distribution, we have, for any function

h(⋅) such that both E [h(w+)] and E [h(w−)] exist:

2E [h(y)] = E [h(w+)] +E [h(w−)] . (2.41)

Applying eq. (2.41) with the functions x ↦< µ,x > and x ↦√∥x∥2− < µ,x >2 and

observing that the non-central moments of w+� and w−� (respectively, w+⊥ and w−⊥)
are equal, we obtain the following expressions for the diffusivities:

D� = E [w2
�] and D⊥ = 1

2
E [w2⊥] ,

where E [w2
�] = E [(w+�)2] = E [(w−�)2] and E [w2⊥] = E [(w+⊥)2] = E [(w−⊥)2] are given

by eq. (2.29). The final expression of the parallel and perpendicular diffusivities are

then:
Dfascicle

� = d [1 − 2νξ(κ)] ,
Dfascicle⊥ = d [1 − ν

κ + 1 + νξ(κ)] ,
(2.42)

where the ξ function is defined in eq. (2.30), and thus the MD reads:

MDfascicle = d

3
(1 + 21 − ν

κ + 1) . (2.43)
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In the same vein as the NODDI model [Zhang 2012], eq. (2.42) expresses the

fascicle apparent axial and radial diffusivities as functions of the free diffusivity

d along the fascicle orientation, the orientation dispersion index κ and the extra-

axonal fraction of occupancy ν in a physically plausible way and not as independent

free parameters as in the multi-tensor [Tuch 2002, Scherrer 2012], ball-and-stick

[Behrens 2003, Jbabdi 2012] and CHARMED [Assaf 2005a] models. In particular,

the FA of the fascicle [Basser 1996a] does not simply depend on the radial/axial

diffusivity ratio but is rather determined by the orientation dispersion and the extra-

axonal fraction of occupancy as follows:

FAfascicle = 1 −R(ν, κ)√
1 + 2R2(ν, κ) , with R(ν, κ) ∶= 1−ν

κ+1 + νξ(κ)
1 − 2νξ(κ) . (2.44)

It has been pointed out in [Zhang 2012] that κ is not an intuitive orientation

dispersion index for two reasons: (i) it does not admit an upper bound, which makes

difficult to set a good contrast for an optimal visualization of this index and (ii) it is

in fact inversely proportional to the orientation dispersion. Consequently, we adopt

the Orientation Dispersion (OD) index proposed in the same work and reported in

this manuscript by eq. (2.19).

2.3.3.4 Fascicle apparent kurtoses

Similarly to the apparent diffusivities, we can define the apparent kurtosis in a given

orientation c ∈ R3 ⋂ S
2 as the kurtosis of the distribution of the random variable< c,y >:

K(c) = K [< c,y >] eq. (2.34)= E [< c,y >4]
E [< c,y >2]2 − 3 , (2.45)

where K [⋅] is the kurtosis operator. In particular, the MK and the axial (K�) and

radial (K⊥) kurtoses can be specified. In the context of dMRI, these quantities were

first defined (and studied) in [Hui 2008, Wu 2010] and later generalized into DKI as

follows [Jensen 2010]:

K� ∶=K(±µ) ,
K⊥ ∶= 1

2π
∫
c∈(span{±µ})⊥⋂S2

K(c)dS(c) ,
MK ∶= 1

4π
∫
c∈R3⋂S2

K(c)dS(c) ,
(2.46)

where dS denotes integration with respect to the spherical measure and S
2 is the

2-sphere of R
3. In other words, the MK is the spherical mean of K(c) over R

3,

K� is the kurtosis along orientation ±µ and K⊥ is the spherical mean of K(c) over

the plane (span{±µ})⊥, orthogonal to the orientation ±µ. Note that, originally,

the radial kurtosis was defined in a different way in [Hui 2008]. By analogy with

the diffusivities, they extract an orthonormal basis of (span{±µ})⊥, compute the

apparent kurtoses in the two extracted orientations and average them to obtain
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a radial kurtosis. Even if it is less general than the one in [Jensen 2010] since

it does not average over all the orientations in (span{±µ})⊥ but only over the

basis orientations, the two definitions are in fact equivalent under the assumption

of cylindrical symmetry that we adopted. In particular, the definition introduced

by [Hui 2008] allows the definition of a kurtosis FA (FAK), in a very similar way to

the classic FA:

FAK = ∣K� −K⊥∣√
K2

� + 2K2⊥
, (2.47)

which is not defined for Gaussian diffusion profiles for which K� =K⊥ = 0.
In order to compute K� and K⊥, we use the decomposition of the random vector

y proposed in eq. (2.38). The parallel kurtosis then reads:

K� = E [< µ,y >4]
E [< µ,y >2]2 − 3 =

E [y4�]
E [y2�]2 − 3 ,

and the following equation holds for any c ∈ (span{±µ})⊥ ⋂ S
2:

K(c) = E [< c,y >4]
E [< c,y >2]2 − 3 =

E [y4⊥ < c,u >4]
E [y2⊥ < c,u >2]2 − 3 . (2.48)

Since the distribution of y satisfies the cylindrical symmetry property, the distri-

bution of u is uniform on the unit 1-sphere, and thus, y⊥ and u are statistically

independent. Consequently, eq. (2.39) simplifies to:

K(c) = E [y4⊥]E [< c,u >4]
E [y2⊥]2 E [< c,u >2]2 − 3 .

Furthermore, since u is uniform on the unit 1-sphere, the equality < c,u >d= cos θ,
with θ ∼ U[0,2π], holds in distribution and we can thus write:

E [< c,u >4] = 1

2π
∫ 2π

0
cos4 θdθ = 3

8
.

Using this equation in addition with eq. (2.40), we obtain that:

K(c) = 3

2

E [y4⊥]
E [y2⊥]2 − 3 ,∀c ∈ (span{±µ})

⊥ ⋂ S
2 ,

which does not depend on c. Therefore, the perpendicular kurtosis reads:

K⊥ = 3

2

E [y4⊥]
E [y2⊥]2 − 3 .

Applying eq. (2.41) with the functions x ↦< µ,x > and x ↦√∥x∥2− < µ,x >2 and

observing that the non-central moments of w+� and w−� (respectively, w+⊥ and w−⊥)
are equal, we obtain the following expressions for the kurtoses:

K� = E [w4
�]

E [w2
�]2 − 3 and K⊥ = 3

2

E [w4⊥]
E [w2⊥]2 − 3 ,
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where E [wj
�] = E [(w+�)j] = E [(w−�)j] and E [wj⊥] = E [(w+⊥)j] = E [(w−⊥)j], j =

{1,2}, are given by eq. (2.29). The final expression of the parallel and perpendicular

kurtoses are then:

K fascicle

� = −2ν2 (1 − 4ξ(κ) − 4ζ(κ) + 6ξ2(κ))(1 − 2νξ(κ))2 ≤ 0 ,
K fascicle⊥ = −3ν2 (ξ2(κ) − ζ(κ))( 1−ν

κ+1 + νξ(κ))2 ≤ 0 , (2.49)

where the ξ and ζ functions are defined in eq. (2.30). In particular, for isotropic

diffusion (κ = 0), we have that:

K fascicle

� =K fascicle⊥ = −6
5
( ν

3 − 2ν )
2

.

2.3.3.5 Physically plausible constraint

One advantage of our proposed fascicle diffusion model is that analytical expres-

sions of apparent parallel and perpendicular diffusivities and kurtoses are available,

enabling to set physically plausible constraints on some parameters that will help

to fit the model with clinical data. Any diffusion model, in the limit of its as-

sumptions, is able to accurately quantify the fascicle apparent diffusivities in the

Corpus Callosum (CC) and at the basis of the Cortico-Spinal Tract (CST), which

are highly orientationally homogeneous regions that contain a single fascicle. A

physically plausible constraint is a constraint that has been validated experimen-

tally by several different diffusion models. In particular, the value of the fascicle

apparent perpendicular diffusivity cannot be set to some previously estimated value

of the literature as different models yield different values (for instance, DTI and

DKI do not agree on its value). On the other hand, considering a non-null kurtosis

in the fascicle diffusion model does not affect the estimated value of the fascicle

apparent parallel diffusivity: [Pierpaoli 1996b] report D� = 1.7 × 10−3 mm2/s using

DTI and [Veraart 2011b] report D� = 1.71 × 10−3 mm2/s using DKI. We thus set

the following constraint on the parameters of our fascicle diffusion model:

Dfascicle

� = d [1 − 2νξ(κ)] = 1.71 × 10−3 mm2/s . (2.50)

2.3.3.6 Illustrations

Figures 2.1 and 2.2 illustrate how the FA given by eq. (2.44) and MD given by

eq. (2.43) respectively vary with the orientation dispersion index OD and the extra-

axonal fraction of occupancy ν. In fig. 2.2, we also applied the constraint given by

eq. (2.50). No matter the value of the extra-axonal fraction of occupancy ν, we

observe that our model will inflate the MD and deflate the FA in orientationally

heterogeneous regions, i.e. in regions where the OD is important. Interestingly,

non-Gaussian diffusion will tend to accelerate the FA deflation and MD inflation.

In other words, our model is able to explain an abnormal drop in FA (or, similarly,
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an abnormal rise in MD) by a number of situations that lie in-between the two

following scenari:

• a non-Gaussian diffusion profile resulting from heterogeneities in orientation,

with Gaussian diffusion profiles along each orientation of diffusion,

• a non-Gaussian diffusion profile resulting from a single orientation of diffusion

along which the diffusion profile is actually non-Gaussian.

Figure 2.1: Fascicle Fractional Anisotropy. Variations of the FA with the OD

and the extra-axonal fraction ν from eq. (2.44) according to the proposed DDI

model.

Figures 2.3 to 2.5 illustrate how K� and K⊥ given by eq. (2.49) and FAK given

by eq. (2.47) respectively vary with the orientation dispersion index OD and the

extra-axonal fraction of occupancy ν. No matter the ν value, we observe that our

model will inflate K� in orientationally heterogeneous regions, i.e. in regions where

the OD is important. Interestingly, the more non-Gaussian the diffusion, the lower

K�, independently from the OD. Also, except for the extreme values of the extra-

axonal fraction of occupancy ν (when ν = 0, the diffusion profile is Gaussian whereas

when ν = 1, the diffusion profile is bimodal), K⊥ is not a monotonic function of the

OD. For low OD, it undergoes a decrease which is accelerated and more important

as ν increases. Then, for a specific OD value, which is proportional to ν, it reaches a
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Figure 2.2: Fascicle Mean Diffusivity. Variations of the MD with the OD and

the extra-axonal fraction ν from eqs. (2.43) and (2.50) according to the proposed

DDI model.

minimum and for high OD, it increases at approximately constant speed no matter

the ν value. As a consequence, FAK undergoes three different phases of variation

with OD. For low OD, it decreases from 1 to 0 rapidly, with a speed that is inversely

proportional to the ν value. For moderate OD, it increases (at constant speed for

all ν values) and then it decreases again to 0.

2.3.3.7 Associated SID

Using q-space theory, the SID measured by dMRI experiments is related to the

distribution of the DIMD y via eqs. (1.9) and (1.10). Assuming that the PDF of

the distribution of the DIMD y is given by eq. (2.31) yields the following expression

of the SID (see appendix B.1):

Ajk = exp{−bk(1 − ν)d
κ + 1 (1 + κ < µ,gj >2)}

× κ

sinhκ

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∣sinc (√2bkνd − κ2)∣ , if 2bkνd ≥ κ2 and gj ⊥ µ ,∣α sinhα cosβ + β coshα sinβ∣

α2 + β2
, otherwise,

(2.51)
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Figure 2.3: Fascicle axial kurtosis. Variations of the axial kurtosis with the

OD and the extra-axonal fraction ν from eq. (2.49) according to the proposed DDI

model.

where:

α =
√

Re (z) + ∣z∣
2

, β = Im (z)√
2(Re (z) + ∣z∣) and z = κ2 − 2bkνd + 2iκ√2bkνd < µ,gj > .

In order to measure exclusively the diffusion along the orientation ±µ of the

fascicle, one can apply a DSG with gj = µ. This yields the following expression of

the SID:

Ajk = exp{−bk(1 − ν)d} ∣cos√2bkνd∣ ∣1 +
√
2bkνd

cothκ
κ

tan
√
2bkνd∣

1 + 2bkνd
κ2

. (2.52)

In order to measure exclusively the diffusion perpendicular to the orientation ±µ
of the fascicle, one can apply a DSG in a direction perpendicular to ±µ. For low

b-values (bk < κ2/(2νd)), this yields the following expression of the SID:

Ajk = exp{−bk(1 − ν)d
κ + 1 }(1 − 2bkνd

κ2
)−1/2 sinh(κ

√
1 − 2bkνd

κ2 )
sinhκ

, (2.53)
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Figure 2.4: Fascicle radial kurtosis. Variations of the radial kurtosis with the

OD and the extra-axonal fraction ν from eq. (2.49) according to the proposed DDI

model.

and, for high b-values (bk ≥ κ2/(2νd)):
Ajk = exp{−bk(1 − ν)d

κ + 1 } κ

sinhκ
∣sinc (√2bkνd − κ2)∣ . (2.54)

The detailed derivation of the three previous expressions are given in appendix B.1.1.

As shown in appendix B.1.2, eq. (2.51) takes a simple form under the assumption

of low orientational dispersion (κ→∞), which leads to an anisotropically restricted

compartment whose SID reads:

Ajk = exp{−bk(1 − ν)d < µ,gj >2} ∣cos (√2bkνd < µ,gj >)∣ . (2.55)

It also takes a simple form under the assumption of high orientational dispersion

(κ → 0), as detailed in appendix B.1.3, which leads to an isotropically restricted

compartment whose SID reads:

Ajk = exp{−bk(1 − ν)d} ∣sinc (√2bkνd)∣ . (2.56)
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Figure 2.5: Fascicle kurtosis Fractional Anisotropy. Variations of the kurtosis

FA with the OD and the extra-axonal fraction ν from eq. (2.47) according to the

proposed DDI model.

2.3.4 Voxel diffusion model in DDI

The model presented in section 2.3.3 allows one to characterize anisotropic diffusion

within a single fascicle or isotropically restricted diffusion (for instance, within glial

cells) based on a simplified yet physically plausible geometry of the tissue (axons or

glial cells). In order to account for the presence of multiple fascicles with different

orientations, which was first brought to light by [Tuch 1999, Tuch 2002], MCMs are

particularly well suited. They assume that the voxel contains several populations of

water molecules: some of them are within fascicles, others within glial cells and the

remainders are free, outside of these restricted areas. The DIMD of each population

is characterized by a PDF and the global PDF of the distribution of the DIMD in

the voxel is given as a mixture of all the individual PDFs, weighted according to

the fraction of occupancy of the corresponding population in the voxel.

In section 2.3.4.1, we emcompass our fascicle diffusion model into an uncon-

strained MCM, referred to as the full DDI MCM. In section 2.3.4.2, we show that it

is possible to derive any scalar maps at the fascicle or voxel level, leading to corrected

maps of, for example, FA or MD. In section 2.3.4.3, we apply a number of physi-
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cally plausible constraints to the full DDI MCM to obtain a constrained DDI MCM

feasible in clinics. In section 2.3.4.4, we express the SID in terms of the independent

parameters of the constrained DDI MCM. Finally, we show in section 2.3.4.5 that

our model boils down to some well known models under some assumptions.

2.3.4.1 The full DDI MCM

We assume that in a given voxel, water molecules are divided into M + 2 popula-

tions. A first population, characterized by its DIMD y0, contains water in the CSF,

subject to isotropically unrestricted diffusion, with fraction of occupancy w0. A

second population, characterized by its DIMD ys, contains water trapped into glial

cells, subject to isotropically restricted diffusion, with fraction of occupancy ws. The

remaining M populations, characterized by the DIMD yi, i ∈ J1,MK, contain wa-

ter trapped within axons distributed in M distinct fascicles, subject to anisotropic

diffusion, with associated fractions of occupancy wi, i ∈ J1,MK.

In order to describe the diffusion in such an heterogenous medium, the following

model is adopted:

• The DIMD y0 are assumed to follow an isotropically centered Gaus-

sian distribution with DT D0 = d0I3, whose PDF reads:

py0
(y∣d0) = (2πd0)−3/2 exp{− ∥y0∥2

2d0
} . (2.57)

• The DIMD ys are assumed to follow a distribution whose PDF is

given by eq. (2.31) with κ = 0 and thus reads:

pys(y∣ds, νs) = (2π(1 − νs)ds)−3/2 exp{−1
2
( ∥y∥2
(1−νs)ds + rνs)} sinh( rνs ∥y∥√

νsds
)

rνs ∥y∥√
νsds

.

(2.58)

• The DIMD yi in the i-th fascicle are assumed to follow a distribution

whose PDF is given by eq. (2.31) with orientation µi and geometry(κi, di, νi), i ∈ J1,MK.

• The fractions of occupancy of the M + 2 compartments that are as-

sume to compose the voxel sum to one:

w0 +ws + M∑
i=1

wi = 1 . (2.59)

Such a composition in the voxel yields the following PDF that defines the dis-

tribution of the DIMD y at the voxel level (and has thus zero mean):

py(y) = w0py0
(y∣d0) +wspys(y∣ds, νs) + M∑

i=1
wipyi

(y ∣µi, κi, di, νi ) . (2.60)
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2.3.4.2 Voxel-based scalar metrics

Section 2.3.3.3 was dedicated at showing how one can analytically derive the parallel

and perpendicular apparent diffusivities from the PDF given in eq. (2.31). The MCM

offers the possibility to compute these quantities at the voxel level as follows:

Dvoxel

� = w0d0 +wsD
glial cells + M∑

i=1
wiD

fascicle,i

� ,

Dvoxel⊥ = w0d0 +wsD
glial cells + M∑

i=1
wiD

fascicle,i⊥ ,

(2.61)

where the quantities Dfascicle,i

� and Dfascicle,i⊥ are given by eq. (2.42) and the quantity

Dglial cells is obtained by letting κ→ 0 in eq. (2.42), which leads to:

Dglial cells = ds (1 − 2νs

3
) . (2.62)

Equations (2.42) and (2.62) can be inserted into eq. (2.61) to obtain the com-

plete expressions of the parallel and perpendicular apparent diffusivities at the voxel

level. Once the parallel and perpendicular diffusivities are known, one can analyti-

cally compute all the usual scalar maps proposed by DTI such as the MD given by

eq. (1.19), the FA and RA given by eq. (1.20) or the shape coefficients cℓ, cp and cs
given by eq. (1.21), by taking d1 = D� and d2 = d3 = D⊥. Note that in our model,

we will always have cp = 0 since we assume cylindrical symmetry for the diffusion

perpendicular to the fascicle orientation. Our model, like any MCM, is very handy

as each of these scalar maps can be computed either at the compartment level using

the apparent diffusivities given by eqs. (2.42) and (2.50) or at the voxel level using

the apparent diffusivities given by eqs. (2.42), (2.61) and (2.62). In particular, the

physically plausible constraint described by eq. (2.50) that we adopted sets the par-

allel apparent diffusivity at the compartment level Dfascicle

� to a fixed value for any

fascicle but this does not prevent the parallel apparent diffusivity at the voxel level

Dvoxel

� to be estimated: for instance, Dvoxel

� will increase towards d0 as the fraction

of occupancy of the free-water compartment w0 increases. In a word, voxel-based

versions of the usual scalar maps obtained by means of an MCM are corrected values

that account for tissue environment heterogeneity. Voxel-based kurtoses can be an-

alytically derived as well. Their expressions are however complex and not reported

here.

2.3.4.3 The constrained DDI MCM

In order to easily translate the DDI MCM to clinics, we adopt the following four

assumptions:
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• The diffusivity in the CSF compartment is fixed and set to its value

at 37°C: d0 =DCSF = 3.0 × 10−3 mm2/s;

• The work of [Stanisz 1997] suggests that part of the departure from

Gaussian DIMD can be explained by the inclusion of a compartment to

model diffusion within glial cells, in which water is subject to isotropi-

cally restricted diffusion. However, [Alexander 2010] explain that, while

postmortem data show this effect important, it is in fact negligible in
vivo. We thus set ws = 0;
• The parallel diffusivity in all the fascicle compartments is known and

set according to prior knowledge using eq. (2.50);

• The OD indices defined through the κi’s and the extra-axonal frac-

tions of occupancy νi are identical for all the fascicle compartments;

in other words, we view the OD and extra-axonal occupancy as global

quantities at the voxel level; in conjunction with the previous assump-

tion, it boils down to assuming that, in a voxel, the different fascicles can

have different orientations but all share the same geometry described

by (κ, d, ν).
Under such assumptions, the PDF of the DIMD at the voxel level simplifies to:

py(y) = w0py0
(y∣DCSF) + M∑

i=1
wipyi

(y ∣µi, κ,
Dfascicle

�

1 − 2νξ (κ) , ν ) , (2.63)

where ∑M
i=0wi = 1, DCSF = 3.0 × 10−3 mm2/s and Dfascicle

� = 1.71 × 10−3 mm2/s.

Subsequently, the voxel-based corrected diffusivities read:

Dvoxel

� = w0D
CSF + (1 −w0)Dfascicle

� ,

Dvoxel⊥ = w0D
CSF + (1 −w0)Dfascicle

�

1 − 2νξ (κ) (1 − ν
κ + 1 + νξ (κ)) .

(2.64)

The PDF given by eq. (2.63) can be visualized as multiple iso-radius surfaces,

for different values of radius. In detail, for a fixed radius r, each point at coordinates(θ, φ) ∈ [0, π]×[0,2π] on the 2-sphere is dilated according to the value of the PDF at(r, θ, φ). The surface at a point with a high PDF value will be stretched out whereas

the surface at a point with a low PDF value will grow hollow. Figure 2.6 gives an

example where three fascicles in equal proportions oriented along the principal axes

cross with a concentration κ = 10 and a free water fraction of occupancy w0 = 0.15.
Figures 2.6(a,c,e) were produced assuming no extra-axonal space (ν = 0) (which

can be seen as a ball-and-zeppelin diffusion model) whereas figs. 2.6(b,d,f) were

produced with a proportion ν = 0.9 of extra-axonal space. Figures 2.6(a,b) were

generated with r = 0.02, (c,d) with r = 0.04 and (e,f) with r = 0.08. Regardless of

the radius, dividing the axonal space within an intra- and an extra-axonal space

seems to better delineate each fascicle.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.6: Representation of iso-radius surfaces of the PDF of the DDI

MCM. Common parameters were the orientations set to the three reference axes,

κ set to 10, w0 set to 0.15 and fascicle occupancies set to 0.85/3. On the left column,

no extra-axonal space (ν = 0) and, on the right column, strong extra-axonal space

(ν = 0.9). Increasing radii from top to bottom: r = 0.02, 0.04 and 0.08.

2.3.4.4 Associated SID

Using q-space theory, the SID measured by dMRI experiments is related to the

distribution of the DIMD y via eqs. (1.9) and (1.10). Assuming that the PDF of

the distribution of the DIMD y is given by eq. (2.63) yields the following expression
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of the SID:

Ajk = ∣M∑
i=0

wiA
(i)
jk
∣ , (2.65)

where A
(0)
jk

is given by eq. (2.56) with d = DCSF = 3.0 × 10−3 mm2/s and ν = 0 and

A
(i)
jk

(i = 1, . . . ,M) is given by eq. (2.51) with d depending on κ and ν via eq. (2.50).

In summary, the proposed constrained DDI model comprises 3M+2 independent

parameters, where M is the assumed number of fascicles in the voxel. In details,

the independent parameters of the DDI model are:

• the angles (θi, φi) ∈ [0, π] × [0,2π] (i = 1, . . . ,M) that define the

orientations of the M fascicles,

• the fractions of occupancy wi ∈ [0,1] (i = 1, . . . ,M) of each fascicle,

• the concentration κ ≥ 0 of water molecules around the orientation of

the fascicle, which measures the orientational dispersion,

• the extra-axonal fraction of occupancy ν ∈ [0,1].
Under such a model, the PDF of the DIMD in the voxel is given by eq. (2.63)

and yields a SID given by eq. (2.65).

2.3.4.5 Relationship to other MCMs

The contribution to the SID of the diffusion within a fascicle is given by eq. (2.51).

When the extra-axonal fraction of occupancy drops to zero (ν → 0), it reads:

Ajk = exp{− bkd

κ + 1 (1 + κ < µ,gj >2)} . (2.66)

At this point, assuming the same free diffusivity in all the compartments (fascicles

and CSF), the SID predicted by the DDI MCM boils down to the SID predicted

by the ball-and-zeppelin MCM [Hosey 2005]. If we further assume low orientational

dispersion (κ→∞), eq. (2.66) simplifies to:

Ajk = exp{−bkd < µ,gj >2} , (2.67)

and the SID predicted by the DDI MCM boils down to the SID predicted by the

ball-and-stick Multi-Compartment Model (MCM) [Behrens 2003].

2.3.5 Summary of the geometry-based MCMs

Table 2.1 summarizes both the discussed state-of-the-art geometry-based MCMs and

the the geometry-based MCMs introduced in this manuscript. The table regroups

the independent parameters, constraints and model equations of each MCM and

classifies them whether their estimation require single- or multi-shell acquisitions.

In particular, the constrained DDI model introduced in section 2.3.4.3 is identified

as DDID to emphasize that diffusivities of the different compartments are fixed.

In section 2.3.4.5, we showed that without eq. (2.50) and assuming that the diffu-

sivities of the different compartments are identical, the DDI MCM can reduce to the



2.4. Validation through simulations 73

ball-and-zeppelin and ball-and-stick model by setting some parameters adequately.

We thus introduced in table 2.1 a variant of the constrained DDI MCM identified as

DDI, in which the diffusivities of the different compartments are assumed identical

and estimated. This variant allows for a direct comparison with the ball-and-stick

(BS) and ball-and-zeppelin (BZ) models. In turn, variants of the latter models with

fixed diffusivities, identified as BSD and BZD, are introduced as well, in order to al-

low for a direct comparison with the fixed diffusivities DDI MCM (DDID) proposed

in section 2.3.4.3.

2.4 Validation through simulations

2.4.1 Material & Methods

2.4.1.1 Objectives

The goals of this section, which is the last section of this chapter, is to compare

the behaviour of the fixed diffusivities DDI model proposed in section 2.3 (DDID

in table 2.1) with respect to other widely employed geometry-based MCMs. Using

single-shell simulated diffusion data (which corresponds to what clinicians may af-

ford), we focused on evaluating the influence of (i) the SNR, (ii) the b-value (iii)

and (iii) the number of DSGs directions over the fascicle orientation(s), the free

water fraction of occupancy and the extra-axonal fraction of occupancy.

In the list presented in table 2.1, we chose to compare the fixed diffusivities

DDI model mainly to its estimated diffusivity variant (DDI in table 2.1) and to

the ball-and-stick and ball-and-zeppelin models (BS and BZ in table 2.1) and their

fixed diffusivities variants (BSD and BZD in table 2.1), because these are all diffusion

models adapted to single-shell diffusion data. However, neither the ball-and-stick nor

the ball-and-zeppelin model exhibits an extra-axonal compartment. Consequently,

even if it would require multi-shell diffusion data, we additionally fitted for single

fascicle cases the MMWMD to allow for the comparison of its extra-axonal fraction

of occupancy with the one obtained via DDI modeling. We chose the MMWMD

over the CHARMED or NODDI because it is the only one currently implemented in

the Camino software [Cook 2006]. It can thus be fitted with a very fast procedure

similar to ours without resorting to a long MCMC procedure.

The experimental setup also allowed us, to some extent, to understand the effects

of fixing diffusivities in the different compartments of an MCM.

2.4.1.2 Simulated data

Simulations were performed using the Monte-Carlo diffusion simulator [Hall 2009] in

the Camino software [Cook 2006]. The simulator requires to set the number of spins

Ns and the temporal resolution of the simulation through a number of timesteps Nt

into which the simulation is divided. In accordance to the Camino guidelines, we

set Ns = 100000 and Nt = 3200. The simulator assumes that each fascicle is made

of a number of axons that can be represented as cylinders with a given radius and
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a given distance between two cylinders: simulations were done with fixed radius

cylinders with a radius set to 2 × 10−3mm and a separation of 4.1 × 10−3mm. The

permeability of the membranes of the cylinders was set to zero. Finally, the free

diffusivity along the orientation of each fascicle was set to 1.71 × 10−3mm2/s.

We synthetized 105 noise-free dMRI data sets without free water compartment

(w0 = 0) using a TE of 90ms, time ∆ between two successively applied DSG of

40ms and pulse duration δ of 30ms, which reflects clinical conditions. We generated

various configurations of fascicles and various diffusion sequences by varying the

intensity of the DSGs (b-value) and the number of DSG directions. Specifically, we

used:

• 1 fascicle always oriented along the z-axis with orientation ±(0,0,1),
• 7 different configurations for the second fascicle: we progressively separated it

from the first one towards the x-axis with separation angle a ∈ {0,15,30,45,60,75,90}
(in degrees), such that the second fascicle is oriented along ±(− sina,0, cosa),

• 5 different b-values b ∈ {1000,2000,3000,4000,5000} (in s/mm2),

• 3 different sets of DSG directions uniformly distributed over the 2-sphere with

n ∈ {16,30,61} directions for each set.

For each data set we added five B0 images where no DSG were applied.

Finally, we corrupted each of the 105 noise-free generated data sets with 6 de-

creasing SNRs ρ ∈ {36,30,24,18,12,6} (in decibels), leading to the synthesis of a

total of 630 dMRI datasets, each one containing 1000 replicates.

For a given SNR, a given b-value and a given number of DSG directions, we

assessed the quality of the estimated parameters (fascicle orientation(s), free wa-

ter occupancy, extra-axonal occupancy) visually by their median and inter-quartile

range and we compared the estimates provided by DDID to the estimates provided

by the other models by means of paired Wilcoxon tests. Specifically, we evaluated

the quality of the estimated fascicle orientation(s) by computing the angular error

between the estimated fascicle orientation and the true fascicle orientation. For

two-fascicle cases, we first matched each estimated orientation to the corresponding

ground truth and then compute the average of the angular errors commited on each

fascicle.

2.4.1.3 Estimation framework

The estimation framework is identical for the models BS, BSD, BZ, BZD, DDI and

DDID. It is based on a cost function, a derivative-free optimization algorithm and an

initialization step. We shall abandon here the subscript k used to identify multiple

b-values as all data sets were synthetized with a single shell.

Cost function. The measured DW signal Sj under the application of a DSG

qj = γδGgj is the magnitude of Gaussian-corrupted data with standard deviation

Ψ0/ρ and is therefore Rician-corrupted with scale parameter Ψ0/ρ. Ψ0 is the true

unweighted signal estimated as the average over all measured unweighted signals S0.
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[Gudbjartsson 1995] showed that, for moderate to high SNRs ρ, the noise can be

well approximated by an offset Gaussian distribution with mean
√

Ψ2
j +Ψ2

0/ρ2 and

standard deviation Ψ0/ρ. Following [Panagiotaki 2012], we use this approximation

and thus define our cost function as:

J = n∑
j=1

⎛⎜⎝Sj −
¿ÁÁÀΨ2

j + Ψ2
0

ρ2

⎞⎟⎠
2

, (2.68)

where Ψj is the predicted DW signal from a given diffusion model.

For the estimation of the MMWMD, the same cost function was available in the

Camino software and was therefore used.

Optimization algorithm The cost function given by eq. (2.68) needs to be min-

imized. Depending on the underlying diffusion model, this can be a very complex

non-linear least squares problem and the derivative of the cost function may or may

not be trivial. We thus resort to derivative-free optimization algorithms and use the

ones implemented in the NLOpt optimization library [Johnson 2013]. Specifically,

we use the Constrained Optimization BY Linear Approximations (COBYLA) de-

scribed in [Powell 1994], which linearly approximates the cost function. At the cost

of computational time, it outperforms the other derivative-free optimization algo-

ritms when the cost function is not twice differentiable since all the other algorithms

rely on quadratic approximations of the cost function. In order to reduce the com-

putational time, we found more efficient to limit the number of function evaluations

to a rather low number Neval = 200 and to restart Nr = 10 times the optimization

from the last found position. Lastly, the number of restarts was allowed to be less

than Nr if the decrease of the cost function was less than 0.1.

The optimization of the cost function for estimating the MMWMD was however

not performed with COBYLA since it is not an available option in the Camino

software. Choices were the Levenberg-Marquardt algorithm [Levenberg 1944] or an

MCMC procedure. We chose the Levenberg-Marquardt algorithm with Nr multiple

restarts, which is closer to the procedure used to fit the other diffusion models and

much faster.

Initialization. A derivative-free optimization algorithm like COBYLA requires

a good starting point to improve its efficiency. We estimated the different mod-

els by increasing degrees of freedom given in table 2.1. Following the ideas in

[Panagiotaki 2012], we initialized the orientation(s) of the fascicles for the differ-

ent models as follows:

• the ball-and-stick model was initialized with a rough DTI estimation of the

principal orientation of diffusion,

• the ball-and-zeppelin model was initialized with the previously estimated ball-

and-stick fascicle orientation(s),

• the DDI model was initialized by the previously estimated ball-and-zeppelin

fascicle orientation(s).
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This sequential fitting was applied independently to the fixed diffusivities models and

to the estimated diffusivity models. As suggested in [Scherrer 2012], for searching

M = 2 fascicles, the initial DT principal eigenvector was rotated around its minor

eigenvector by an angle of d⊥
d�

π
4
, with d� and d⊥ being its parallel and perpendicular

diffusivities. The other parameters, when estimated, were initialized to the following

fixed values: κ = 5, d = 1.71 × 10−3 mm2/s, ν = 0.5 and w0 = 0.5.
The initialization for the MMWMD was performed directly and in a blind way

by the Camino software.

2.4.2 Results

We compared the angular error and estimated free water fraction of occupancy

between models. The ground truth free water occupancy was 0 in the simulations.

The first true fascicle orientation was (0,0,1) and the second one was in the plane(x, z), moved away from the first one with increasing angles in the range [0°,90°]
with a step of 15°.

We also qualitatively compared the estimated extra-axonal fraction of occupancy

between DDID, DDI and MMWMD. The ground truth extra-axonal occupancy was

0.19 in the simulations.

2.4.2.1 Influence of the SNR

We evaluated the influence of the SNR on the angular error and the estimated free

water fraction of occupancy for each model. In this scope, we fixed the b-value to

1000 s/mm2 and the number of DSG directions to 30, which are clinically relevant

values. Figure 2.7 qualitatively summarizes the results. Solid lines represent the

median over the 1000 replicates for a specific SNR, while long and short dashed

lines represent respectively the lower and upper quartile. The over-simplified repre-

sentation of the fascicle in the ball-and-stick models (BSD and BS) forces the model

to compensate by estimating a large free water occupancy. For all the other models,

the estimated occupancy converges to the ground truth value and the angular error

decreases as the SNR increases. Interestingly, except for the ball-and-stick model,

it seems that estimating a common diffusivity for all the compartments yields free

water occupancy estimates that are more robust to noise than those provided with

fixed diffusivities. However, if the differences seem to be large for the ball-and-

zeppelin model, DDID and DDI produce very similar estimates. Finally, the DDI

models seem to provide lower angular errors.

We performed a quantitative analysis of these results for the 60°-crossing fasci-

cle case. We aimed at comparing the estimated free water occupancies and angular

errors of each model to the ones obtained by our proposed model (DDID). Ta-

bles 2.2 and 2.3 give the mean value over the 1000 replicates for each SNR of the

estimated free water occupancies and angular errors, respectively. The results of

paired Wilcoxon tests are also reported by adding the superscript ∗ to values that

are statistically different from the DDID value (orange column). The quantitative
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analysis confirms the conclusions of the qualitative analysis regarding the free water

occupancy (Table 2.2): BSD and BS provide strongly biased free water occupancies,

BZ provides estimated free water occupancies that are significantly more robust to

noise than those provided by BZD and the same trend can be observed for the DDI

model but it is not statistically significant. In terms of mean values, BZ seems to be

the best one for estimating the free water occupancy but DDID provides significantly

better estimated fascicle orientations compared to all other models (Table 2.3).

2.4.2.2 Influence of the b-value

We evaluated the influence of the b-value on the angular error and the estimated

free water fraction of occupancy for each model. In this scope, we fixed the SNR to

30 dB and the number of DSG directions to 30, which are clinically relevant values.

Figure 2.8 qualitatively summarizes the results. Solid lines represent the median over

the 1000 replicates for a specific b-value, while long and short dashed lines represent

respectively the lower and upper quartile. The over-simplified representation of the

fascicle in the ball-and-stick models (BSD and BS) forces the model to compensate

by estimating a large free water occupancy that increases with the b-value. For

all the other models, the estimated occupancy is very close to the ground truth

value and the angular error decreases as the b-value increases. Interestingly, except

for the ball-and-stick model, it seems that estimating a common diffusivity for all

the compartments yields free water occupancy estimates that are more robust to

noise than those provided with fixed diffusivities. However, the difference is larger

between BZD and BZ than between DDID and DDI. Finally, for large separation

angles between fascicles, fixing the diffusivities provides lower angular errors and, for

small separation angles, it is the contrary: estimating a common diffusivity provides

lower angular errors. DDID or DDI (according to the separation angle) outperforms

the other models for estimating fascicle orientations.

We performed a quantitative analysis of these results for the 60°-crossing fascicle

case. We aimed at comparing the estimated free water occupancies and angular er-

rors of each model to the ones obtained by our proposed model (DDID). Tables 2.4

and 2.5 give the mean value over the 1000 replicates for each b-value of the esti-

mated free water occupancies and angular errors, respectively. The results of paired

Wilcoxon tests are also reported by adding the superscript ∗ to values that are sta-

tistically different from the DDID value (orange column). The quantitative analysis

confirms the conclusions of the qualitative analysis regarding the free water occu-

pancy (Table 2.4): BSD and BS provide strongly biased free water occupancies,

BZ (resp. DDI) provides estimated free water occupancies that are significantly

more robust to noise than those provided by BZD (resp., DDID) except at the clin-

ical b-value of 1000 s/mm2 for which there is no statistical difference between DDI

and DDID. In terms of mean values, BZ seems to be the best one for estimating

the free water occupancy but DDID provides significantly better estimated fascicle

orientations compared to all other models (Table 2.5).
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2.4.2.3 Influence of the number of DSG directions

We evaluated the influence of the number of DSG directions on the angular error

and the estimated free water fraction of occupancy for each model. In this scope, we

fixed the b-value to 1000 s/mm2 and the SNR to 30 dB, which are clinically relevant

values. Figure 2.9 qualitatively summarizes the results. Solid lines represent the

median over the 1000 replicates for a specific number of DSG directions, while long

and short dashed lines represent respectively the lower and upper quartile. The

number of DSG directions does not seem to affect the estimation of the free water

occupancy. The over-simplified representation of the fascicle in the ball-and-stick

models (BSD and BS) forces the model to compensate by estimating a large free

water occupancy. For all the other models, the estimated occupancy is close to the

ground truth value and the angular error decreases as the number of DSG directions

increases. Interestingly, except for the ball-and-stick model, it seems that estimating

a common diffusivity for all the compartments yields estimates that are more robust

to noise than those provided with fixed diffusivities. However, if the differences

seem to be large for the ball-and-zeppelin model, DDID and DDI produce very

similar estimates. Finally, for large separation angles between fascicles, fixing the

diffusivities provides lower angular errors and, for small separation angles, it is the

contrary: estimating a common diffusivity provides lower angular errors. DDID or

DDI (according to the separation angle) outperforms the other models for estimating

fascicle orientations.

We performed a quantitative analysis of these results for the 60°-crossing fascicle

case. We aimed at comparing the estimated free water occupancies and angular er-

rors of each model to the ones obtained by our proposed model (DDID). Tables 2.6

and 2.7 give the mean value over the 1000 replicates for each number of DSG direc-

tions of the estimated free water occupancies and angular errors, respectively. The

results of paired Wilcoxon tests are also reported by adding the superscript ∗ to

values that are statistically different from the DDID value (orange column). The

quantitative analysis confirms the conclusions of the qualitative analysis regarding

the free water occupancy (Table 2.6): BSD and BS provide strongly biased free

water occupancies, BZ provides estimated free water occupancies that are signifi-

cantly more robust to noise than those provided by BZD and the same trend can be

observed for the DDI model but it is not statistically significant. In terms of mean

values, BZ seems to be the best one for estimating the free water occupancy but

DDID provides significantly better estimated fascicle orientations compared to all

other models (Table 2.7).

2.4.2.4 Estimation of the extra-axonal fraction of occupancy

We evaluated the influence of the SNR, the b-value and the number of DSG directions

on the estimated extra-axonal fraction of occupancy for DDID, DDI and MMWMD.

Figure 2.10 summarizes the results. Solid lines represent the median over the 1000

replicates for a specific number of DSG directions, while long and short dashed

lines represent respectively the lower and upper quartile. Figure 2.10(a) shows the
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influence of the SNR at b = 1000 s/mm2 with 30 DSG directions (clinical conditions).

As the SNR increases, both DDID and MMWMD converge to the ground truth with

a reduced variability in the estimates. The convergence is faster with DDID than

with MMWMD. DDI provides a biased estimate of the extra-axonal occupancy

even with very high SNRs. Figure 2.10(b) shows the influence of the b-value at

SNR = 30 dB with 30 DSG directions (clinical conditions). The b-value does not

influence the estimation of the extra-axonal occupancy. DDI provides a positively

biased estimate, MMWMD provides a negatively biased estimate and DDID provides

an unbiased estimate. Figure 2.10(c) shows the influence of the number of DSG

directions at SNR = 30 dB with b = 1000 s/mm2 (clinical conditions). For the DDI

models, increasing the number of DSG directions slightly reduces the variance of the

estimated extra-axonal occupancy but does not affect the mean estimate, while, for

the MMWMD, it does not affect the variance of the estimate but the mean estimate

increases and converges to the ground truth value. DDI provides a positively biased

estimate, MMWMD provides a negatively biased estimate whose bias reduces as

the number of DSG directions increases and DDID always provides an unbiased

estimate.

2.4.2.5 Conclusions from the simulation study

The simulation study allows us to reach the following conclusions:

• BZ and DDI outperform the other models for estimating the free water fraction

of occupancy,

• DDID still provides estimates of the free water occupancy that are very close

to the ground truth value,

• When the separation angle between fascicles is small, DDI outperforms the

other models for estimating fascicle orientations,

• When the separation angle between fascicles is large, DDID outperforms the

other models for estimating fascicle orientations,

• DDID is the only model able to accurately (unbiasness) estimate the extra-

axonal fraction of occupancy from clinical diffusion data (b = 1000 s/mm2 and 30

DSG directions),

• It is recommended to achieve the best SNR possible to increase the estimates

precision (inverse of variance), in particular the precision on the estimated extra-

axonal occupancy.

In summary, we introduced a novel diffusion model coined Diffusion Directions

Imaging (DDI) that outperforms existing geometry-based diffusion models for esti-

mating the fascicle orientations in clinical conditions (b = 1000 s/mm2 and 30 DSG

directions). Moreover, if we set the diffusivity in the fascicle compartments with

eq. (2.50) and the diffusivity of free water to its typical value at 37°C, we are able,

under clinical conditions (b = 1000 s/mm2 and 30 DSG directions), to achieve an un-

biased estimate of the extra-axonal fraction of occupancy whose precision increases

with the SNR and to accurately estimate the free water fraction of occupancy.
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We also need to validate our proposed diffusion model on real clinical diffusion

data. However, with real data, the exact number of fascicles per voxel is not known.

We must first address the model selection problem inherent to any MCM. This will

be the object of the next chapter, at the end of which we will provide a validation

of the DDI model on real clinical diffusion data.
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Intra-axonal SID
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Deg.
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free-
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BSD µi(θi, φi) ∞ d from
eq. (2.50)

NA NA 0 wi 1−∑M
i=1 wi 3.0 eq. (2.67) none 3M

BS
[Behrens 2003]

µi(θi, φi) ∞ d NA NA 0 wi 1−∑M
i=1 wi d eq. (2.67) none 3M+1

BZD µi(θi, φi) κ
d from

eq. (2.50)
NA NA 0 wi 1−∑M

i=1 wi 3.0 eq. (2.66) none 3M+1
BZ [Hosey 2005] µi(θi, φi) κ d NA NA 0 wi 1−∑M

i=1 wi d eq. (2.66) none 3M+2

DDID µi(θi, φi) κ

(1 − ν)d,
with d

from
eq. (2.50)

νd, with
d from

eq. (2.50)
NA νwi (1 − ν)wi 1−∑M

i=1 wi 3.0 eq. (2.51) 3M+2

DDI µi(θi, φi) κ (1 − ν)d νd NA νwi (1 − ν)wi 1−∑M
i=1 wi d eq. (2.51) 3M+3

CHARMED
[Assaf 2004]

µi(θi, φi) NA di di fixed 1−∑M
i=1 f

r
i fr

i 0 NA eqs. (2.10) to (2.12)
eq. (2.9) with

full DT D
4M+6

CHARMED
[Assaf 2005a]

µi(θi, φi) NA di di fixed 1−∑M
i=1 f

r
i fr

i 0 NA [?]
eq. (2.9) with

full DT D
4M+6

CHARMED
[Alexander 2008]

µi(θi, φi) NA d d R 1−∑M
i=1 f

r
i fr

i 0 NA [?]
eq. (2.9) with

D = de
⊥I3+(d − de
⊥)µµ

′
3M+3

MMWMD
[Alexander 2010]

µ1(θ1, φ1) NA d = 1.7 d R νic(1 − ν0) (1 − νic)
⋅ (1 − ν0) ν0 3.0 [?]

eq. (2.9) with
D = d(1−νic)I3
+dνicµµ

′
5

NODDI
[Zhang 2012]

µ1(θ1, φ1) κ d = 1.7 d NA νic(1 − ν0) (1 − νic)
⋅ (1 − ν0) ν0 3.0 eq. (2.14)

eqs. (2.15)
to (2.17)

5

Table 2.1: Summary of the geometry-based MCMs. Independent parameters, constraints and link to corresponding model equations.

NA means that the parameter is not an output of the model. A parameter written solely with its letter is an independent parameter to be

estimated. Models in the green part of the table require single shell acquisitions while those in the orange part require multi-shell acquisitions.

BS: ball-and-stick, BZ: ball-and-zeppelin, BSD/BZD/DDID: BS/BZ/DDI with fixed diffuvities. Unreferenced models are introduced in this

manuscript.
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Figure 2.7: Influence of the SNR (dB) for different separation angles between

fascicles. 0° (1st row), 30° (2nd row), 60° (3rd row), 90° (4th row). Left column: estimated

free water occupancy. Right column: angular error on the estimated orientations. Solid,

long and short dashed lines represent median, lower and upper quartile, respectively.



2.4. Validation through simulations 83

SNR (dB) BSD BS BZD BZ DDID DDI

36 0.15∗ 0.18∗ 0.026∗ 7.3e − 5∗ 3.8e − 3 4.9e − 4
30 0.15∗ 0.18∗ 0.027∗ 6.3e − 5∗ 6.1e − 3 3.9e − 4
24 0.15∗ 0.17∗ 0.033∗ 5.5e − 5∗ 9.5e − 3 5.1e − 4
18 0.15∗ 0.14∗ 0.048∗ 6.6e − 5∗ 0.012 9.9e − 4
12 0.15∗ 0.032∗ 0.078∗ 4.1e − 5∗ 0.019 2.3e − 4∗
6 0.18∗ 1.3e − 5∗ 0.15∗ 3.3e − 5∗ 0.011 7.3e − 5∗

Table 2.2: Quantitative comparison of the estimated free water occupan-

cies for the 60°-crossing fascicle case at different SNRs. Values are the mean

over the 1000 replicates for each SNR. Paired Wilcoxon tests have been performed

between each model and our proposed model (DDID, identified by the orange col-

umn). Statistically significant (p < 0.05) differences are indicated by the superscript
∗.

SNR (dB) BSD BS BZD BZ DDID DDI

36 3.9∗ 6.0∗ 3.9∗ 4.7∗ 3.0 4.5∗
30 4.3∗ 5.7∗ 4.2∗ 4.9∗ 4.0 4.6∗
24 6.3∗ 6.7∗ 6.4∗ 6.3∗ 6.1 6.1

18 11.4 11.8∗ 11.7∗ 11.6∗ 11.6 11.3

12 21.6∗ 21.2∗ 21.6∗ 21.4∗ 21.1 20.9

6 35.2∗ 36.3∗ 35.7∗ 36.4∗ 34.7 35.2∗

Table 2.3: Quantitative comparison of the angular errors (°) for the 60°-

crossing fascicle case at different SNRs. Values are the mean over the 1000

replicates for each SNR. Paired Wilcoxon tests have been performed between each

model and our proposed model (DDID, identified by the orange column). Statisti-

cally significant (p < 0.05) differences are indicated by the superscript ∗.

b-value (s/mm2) BSD BS BZD BZ DDID DDI

1000 0.15∗ 0.18∗ 0.027∗ 6.3e − 5∗ 6.1e − 3 3.9e − 4
2000 0.22∗ 0.23∗ 0.013∗ 2.9e − 5∗ 0.025 2.3e − 4∗
3000 0.25∗ 0.26∗ 0.029∗ 2.6e − 5∗ 0.021 1.2e − 4∗
4000 0.27∗ 0.28∗ 0.018∗ 2.7e − 5∗ 7.1e − 3 9.9e − 5∗
5000 0.28∗ 0.28∗ 7.8e − 3∗ 2.8e − 5∗ 9.8e − 3 1.6e − 4∗

Table 2.4: Quantitative comparison of the estimated free water occupan-

cies for the 60°-crossing fascicle case at different b-values. Values are the

mean over the 1000 replicates for each SNR. Paired Wilcoxon tests have been

performed between each model and our proposed model (DDID, identified by the

orange column). Statistically significant (p < 0.05) differences are indicated by the

superscript ∗.
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Figure 2.8: Influence of the b-value for different separation angles between fas-

cicles. 0° (1st row), 30° (2nd row), 60° (3rd row), 90° (4th row). Left column: estimated

free water occupancy. Right column: angular error on the estimated orientations. Solid,

long and short dashed lines represent median, lower and upper quartile, respectively.
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b-value (s/mm2) BSD BS BZD BZ DDID DDI

1000 4.3∗ 5.7∗ 4.2∗ 4.9∗ 4.0 4.6∗
2000 2.5 3.0∗ 2.6∗ 2.9∗ 2.5 2.7∗
3000 2.1∗ 2.3∗ 2.1∗ 2.2∗ 1.9 2.5∗
4000 2.0∗ 2.2∗ 1.9∗ 2.3∗ 1.6 2.3∗
5000 2.0∗ 2.1∗ 1.7∗ 2.2∗ 1.5 1.9∗

Table 2.5: Quantitative comparison of the angular errors (°) for the 60°-

crossing fascicle case at different b-values. Values are the mean over the 1000

replicates for each SNR. Paired Wilcoxon tests have been performed between each

model and our proposed model (DDID, identified by the orange column). Statisti-

cally significant (p < 0.05) differences are indicated by the superscript ∗.

Nb. DSG grads BSD BS BZD BZ DDID DDI

16 0.15∗ 0.16∗ 0.035∗ 3.6e − 5∗ 8.5e − 3 1.7e − 4∗
30 0.15∗ 0.18∗ 0.027∗ 6.3e − 5∗ 6.1e − 3 3.9e − 4
61 0.15∗ 0.18∗ 0.026∗ 6.4e − 5∗ 5.7e − 3 6.9e − 4

Table 2.6: Quantitative comparison of the estimated free water occupan-

cies for the 60°-crossing fascicle case at different numbers of DSG direc-

tions. Values are the mean over the 1000 replicates for each SNR. Paired Wilcoxon

tests have been performed between each model and our proposed model (DDID,

identified by the orange column). Statistically significant (p < 0.05) differences are

indicated by the superscript ∗.

Nb. DSG grads BSD BS BZD BZ DDID DDI

16 6.2∗ 6.4∗ 4.9∗ 5.1∗ 4.5 4.8∗
30 4.3∗ 5.7∗ 4.2∗ 4.9∗ 4.0 4.6∗
61 3.5∗ 4.7∗ 3.4∗ 4.2∗ 3.1 4.1∗

Table 2.7: Quantitative comparison of the angular errors (°) for the 60°-

crossing fascicle case at different number of DSG directions. Values are

the mean over the 1000 replicates for each SNR. Paired Wilcoxon tests have been

performed between each model and our proposed model (DDID, identified by the

orange column). Statistically significant (p < 0.05) differences are indicated by the

superscript ∗.
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Figure 2.9: Influence of the number of DSG directions for different separation

angles between fascicles. 0° (1st row), 30° (2nd row), 60° (3rd row), 90° (4th row). Left

column: estimated free water occupancy. Right column: angular error on the estimated

orientations. Solid, long and short dashed lines represent median, lower and upper quartile,

respectively.
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Figure 2.10: Estimated extra-axonal fraction of occupancy for single fascicle

voxel. Influence of the SNR (top left), b-value (top right) and number of DSG directions

(bottom left). Compared models are DDID (purple), DDI (orange) and MMWMD (gray).

Solid, long and short dashed lines represent median, lower and upper quartile, respectively.
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In chapter 2, we showed that MCMs can be inferred from the measured DW

images and are of great interest to study the microstructure of the WM. These

models assume that, in a given voxel of an imaged brain, water molecules can be

divided into several compartments, each of them contributing to the predicted

DW signal in its own way. We reviewed the geometry-based MCMs proposed in

the recent dMRI literature, namely the ball-and-stick model, the ball-and-zeppelin

model, the CHARMED, the MMWMD and NODDI. We analyzed their strengths

and weaknesses and proposed a new geometry-based MCM, coined DDI, that shows

promising results on single-shell low angular resolution measured DW images. The

main difference between these models stems from how diffusion is modeled in the

fascicle(s).

Yet, they share a number of commonalities: (i) they include a specific com-

partment to model free isotropic diffusion, (ii) the other compartments always aim

at describing the diffusion in the fascicle(s), (iii) the fraction of occupancy of each

compartment weights the contribution of the compartment to the overall predicted

DW signal and (iv) they require the number of compartments to be fixed a pri-

ori. The last point is the major drawback of MCMs and often precludes their use

in practice. Determining how many fascicles populate a given voxel constitutes a

model selection problem, which can be tackled in two very different ways. Brute

force approaches, detailed in section 3.1, attribute to each voxel an optimal number
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of fascicles. Differently, averaging approaches evaluate the relative likelihood of a

set of models given the data and output an averaged model in each voxel. These

approaches are the object of section 3.2, in which we review the averaging meth-

ods used in dMRI for the estimation of the number of fascicles and we propose a

novel method. Finally, we apply in section 3.3 the new proposed approach to the

DDI model introduced in section 2.3, which enables its validation on real clinically

acquired diffusion data.

For the remainder of this chapter, as usual, we denote by Sjk the measured

DW image/signal in response to a b-value bk (k = 1, . . . , nb) and a DSG direction

gj (j = 1, . . . , ng) and by Ψjk the corresponding predicted DW image/signal under

a given generative MCM. The true unweighted image/signal Ψ0 is taken to be

the average of all the measured unweighted images/signals S0 in all our fitting

procedures. Finally, let N = ngnb and SN = {Sj}j=1,...,ng ,ng+1,...,N be the set of all

measured DW images.

3.1 Brute force approaches

Brute force approaches select the optimal diffusion model among a set of models as

the diffusion model that best fits the data. The goodness of fit of each model is

generally assessed by the fitting error, which reads:

Êfit

g = 1

N

N∑
j=1
(Sj −Ψj)2 .

Related methods usually rely on an F-test to determine whether the fitting error

of a model is significantly lower than the fitting error of another one [Alexander 2002,

Kreher 2005, Scherrer 2012]. The fitting error is however computed from the same

data that was used for the estimation of the MCM. As a result, complex models

are often favored since it is always possible to find a model that procudes Êfit

g = 0,
which yields an overfitting of the data, especially in the case of nested models like,

for instance, MCMs in dMRI. A number of criteria have thus been proposed to

assess the goodness of fit of a model while penalizing its complexity [Raftery 1992].

To date, only the Bayesian Information Criterion (BIC) has been introduced for

selecting the optimal number of fascicles but has been shown to yield suboptimal

results [Schultz 2010].

Recently, [Scherrer 2013] recommended to compare the performances of diffu-

sion models by assessing their generalization error, which measures the ability of

the model to predict new unseen data. The generalization error depends on the

distribution F of the diffusion data, which is usually unknown. Using the empiri-

cal distribution yields the fitting error, which is therefore a biased estimate of the

generalization error. Bias can be lowered by leave-one-out cross-validation estimate

of F at the cost of a high variance. The variance can in turn be lowered by K-fold

cross-validation at the cost of increased bias. There is thus a trade-off to make

between bias and variance when estimating the generalization error. [Efron 1983]
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introduced the 632 bootstrap estimator, which, in essence, computes the general-

ization error as the weighted sum of the fitting error and a bootstrap estimate that

lower the variance of the cross-validation estimate by computing the distribution

F via a bootstrap smoothing method. The fitting error presents a negative bias

whereas the bootstrap estimate presents a high positive bias. [Efron 1983] demon-

strated, under the assumption of low overfitting, that imputing a weight of 0.632

to the bootstrap estimate balances the bias of the two estimates while keeping an

overall low variance thanks to the bootstrap estimate. However, if overfitting is

important, the fitting error bias might outweigh the bootstrap estimate bias. A

correction to the weight 0.632 has thus been introduced by [Efron 1997] in order

to give more weight to the bootstrap estimate of the generalization error when the

fitting error presents substantial overfitting.

Model selection based on the assessment of the generalization error produces non-

monotonically decreasing generalization errors as the number of fascicles increases.

[Scherrer 2013] show on simulated data that a global minimum of the generalization

error occurs for the ground truth number of fascicles. Also, they demonstrate on

real data that this method is much less sensitive to common artifacts (e.g. head

motion) than the F-test method proposed by [Alexander 2002] and implemented in

the Camino software1.

3.2 Averaging approaches

3.2.1 Automatic Relevance Detection: implicit model averaging

Averaging approaches rely on the idea that there is no such thing as a best model

that strictly gives a number of fascicles within a voxel. Models with different number

of fascicles rather have a relative likelihood given the data. If these likelihoods are

known, they can be used to average the different models. In practice however,

they are not known. To circumvent this issue, one can use a Bayesian trick known

as Automatic Relevance Detection (ARD). To the best of our knowledge, this is

the only averaging approach that has been applied for the estimation of MCMs.

The method is employed to estimate only the more complex (i.e., the one with the

highest desired number of fascicles) ball-and-stick model (see section 2.2.1). Fascicle

compartments that are not supported by the data are then automatically pruned

by ARD, performing an implicit model averaging [Behrens 2007].

ARD relies on the marginalisation over hyperparameters performed in a fully

Bayesian estimation framework. It can be applied to any parameters of a given

model. The key idea is to design an appropriate prior distribution for the parameter

of interest, such that it will take a value zero with very low variance in the posterior

distribution if it is not supported by the data. Usually, such a prior is a zero mean

Gaussian distribution with unknown variance. A conjugate prior is subsequently

assigned to the unknown variance parameter, which enables the marginalization

1http://cmic.cs.ucl.ac.uk/camino/

http://cmic.cs.ucl.ac.uk/camino/
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over the variance hyperparameter.

Let us recall here the ball-and-stick model that needs to be estimated:

Ψj = Ψ0 ((1 − M∑
i=1

fi) exp{−bjd} + M∑
i=1

fi exp{−bjd < µi,gj >2}) , (3.1)

where Ψ0 > 0 is the unweighted predicted signal, d > 0 is the diffusivity, µi and

fi are respectively the orientation and fraction of occupancy of the i-th fascicle

compartment and M is the desired number of fascicles to be estimated. Noise is

modeled independently in each voxel by a zero mean Gaussian distribution with

variance σ2.

When M = 1, ARD is not used and no averaging is performed. When M > 1,
ARD is applied to the fractions of occupancy of the fascicle compartments, except for

the first fascicle compartment (the one with highest occupancy). Prior distributions

on the other parameters are motivated in [Behrens 2003] and only reported here for

sake of clarity:

P (Ψ0) ∼ U(0,∞) , P (f1) ∼ U(0,1) , P (d) ∼ Γ(a, b) , P (σ) ∼ σ−1 ,
P (θi) ∼ sin θ , P (φi) ∼ U(0,2π) ,∀i ∈ J1,MK .

(3.2)

Briefly, priors on θi and φi are chosen to uniformly cover the 2-sphere S
2, priors

on variance parameters are conjugate priors and the other priors are chosen to be

noninformative and adapted to the boundaries of each parameter.

In the Bayesian framework proposed by [Behrens 2003], the prior distribution of

the fractions of occupancy f2∶M were also uniform on [0,1]. In order to perform ARD

on them, their prior needs to be redefined. The Gaussian distribution is not suited

to the fractions of occcupancy since they are bounded to [0,1]. [Behrens 2007] thus

propose to use a Beta distribution with mode at zero and unknown width η > 0,

with subsequent conjugate prior. Mathematically, this reads:

P (fi∣η) ∼ β(1, η) and P (η) ∼ η−1 ,∀i ∈ J2,MK . (3.3)

Marginalization over the width hyperparameter leads to:

P (fi) = − 1

(1 − fi) log(1 − fi) ,∀i ∈ J2,MK . (3.4)

The model is finally estimated using Metropolis Hastings MCMC sampling,

which generates samples of all the parameters of the model from the posterior distri-

bution. The i-th fascicle is subsequently discarded if its mean fraction of occupancy

is below 0.05.

When translated to clinics, this method however presents some limitations. From

a computational point of view, the estimation needs to be fast on a single computer.

Unfortunately, [Behrens 2007] resort to MCMC simulations and lowering the number

of burnin and/or effective jumps is not often compatible with the level of accuracy

needed to get a usable posterior distribution. Moreover, from a practical point of

view, clinical exams result in few measured DW images. This is an issue since a
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small sample size introduces a strong dependence of the posterior distribution on

the priors and thus makes the Bayesian information updating quite ineffective.

Following this idea of model averaging, we therefore propose to directly estimate

the relative likelihood of the models given the data. The resulting method does not

need a Bayesian framework and is quite effective even with small sample sizes. In

the following, (i) we explain how the relative likelihood of a model (with respect to

a set of models) given the data can be estimated without resorting to a Bayesian

estimation scheme (Section 3.2.2); (ii) we apply the idea to the estimation of the ball-

and-stick model recalled in eq. (3.1) for futher comparison with the ARD method

proposed by [Behrens 2007] (Section 3.2.3). We present the results in section 3.2.4

and discuss the approach in section 3.2.5.

3.2.2 Proposed approach: explicit model averaging

3.2.2.1 Principle

The approach that we are proposing is only suited to explicitly average nested mod-

els. Consequently, it is appropriate for averaging the same model with different

levels of complexity, e.g., with different numbers of fascicle compartments. How-

ever, care should be taken if one wants to use this method for averaging two different

models (e.g. CHARMED and NODDI) with same or different levels of complexity.

A parameter can be averaged following the proposed approach only if it shares the

same physical interpretation in both models. Two models can thus be averaged if

and only if each parameter of one model shares the same physical interpretation

than one parameter of the other model.

For simplicity and since the goal is more to determine the correct averaged fas-

cicle compartments rather than comparing two distinct models, we assume that we

are working with the same diffusion model with an increasing number of fascicle

compartments from 1 to M . Let {Mm}m=1,...,M be a set of M nested MCMs with

parameter set Θ. Our fitting procedure with real diffusion data consists in mini-

mizing eq. (2.68) assuming an infinite SNR ρ →∞, which yields the following least

square estimator of Θ provided by model Mm:

Θ̂m (SN) = argmin
Θ

N∑
j=1
(Sj −Ψ(m)j (Θ))2 , (3.5)

where Ψ
(m)
j (Θ) is the predicted DW signal from modelMm with parameter set Θ.

We obtain a model-independent estimation of Θ with the following estimator:

Θ̂M (SN) = M∑
m=1

Θ̂m (SN)p(Mm∣SN) , with
M∑
m=1

p(Mm∣SN) = 1 , (3.6)

where p(Mm∣SN) is the relative likelihood of model Mm given data SN , where

relative means that likelihoods depend on the number of nested models included in

the set of candidate models. Yet, we can observe that the estimator proposed in

eq. (3.6) still depends on the maximum assumed number of possible distinct fascicles
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in a given location in the brain. We unravel this issue in the following by showing

that M = 3 is sufficient for the human brain, which is consistent with the current

anatomical knowledge about WM fascicles [Catani 2002, Jellison 2004, Catani 2008,

Thiebaut de Schotten 2011].

The estimator defined by eq. (3.6) can only be used if the relative likelihood

p(Mm∣SN) of each model Mm given data SN is known, which is not the case in

practice. We propose to estimate it using the AIC, which is a model selection

criterion similar to the BIC, as described in [Posada 2004]. In the following, we first

define the AIC and outline its differences with the BIC. Then, we show how the

AIC can be used to estimate the relative likelihood of the models given the data.

Model selection criteria. Like the BIC, the AIC assesses the appropriateness of

a model from its goodness of fit (evaluated by the fitting error) and a penalization

term that increases with the complexity of the model. Both belong to the class of

model selection criteria, which are essentially penalized log-likelihoods of the form:

− 2 log p (SN ∣Θ̂m (SN)) + penalty . (3.7)

Assuming that the underlying errors between the measured DW signals Sj and

the predicted DW signals Ψ
(m)
j from model Mm are independent and normally

distributed with zero mean and variance σ2, eq. (3.7) simplifies to:

N log(SSE (SN ,Mm)
N

) + penalty , (3.8)

where SSE (SN ,Mm) = ∑N
j=1 (Sj −Ψ(m)j (Θ̂m (SN)))2 is the sum of the squared er-

rors.

AIC [Akaike 1974] stems from information theory. It is related to the idea of

maximizing the expected likelihood for a new observation. It reads:

AIC (SN ,Mm) = N log(SSE (SN ,Mm)
N

) + 2Km , (3.9)

where Km is the number of free parameters of model Mm. The difference in AIC

between two models M1 and M2 quantifies how much more (or less) information

is lost from using M1 than from using M2 instead of the true unknown model.

This is however only valid asymptotically, i.e., when the sample size is virtually

infinite. Indeed, the penalty term in eq. (3.9) is linear in Kℓ, which often produces

overfitting when sample sizes are small. The corrected AIC has been introduced

by [Burnham 2002] to circumvent this issue and reads:

AICc (SN ,Mm) = N log(SSE (SN ,Mm)
N

) + 2Km + 2Km(Km + 1)
N −Km − 1 . (3.10)

When the sample size N is small, the penalty is amplified with a quadratic term

in Km. [Burnham 2002] strongly recommend AICc over AIC when the sample size
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is small and, since the two criteria are asymptotically equivalent, AICc should be

employed regardless. Note that the AIC is asymtotically equivalent to the N -fold

cross-validation estimate of the generalization error.

BIC [Schwarz 1978] is related to the idea of maximizing the posterior probability

of a model given the data. Generally, this problem involves the computation of

complex integrals of which Laplace approximations yield the BIC that reads:

BIC (SN ,Mm) = N log(SSE (SN ,Mm)
N

) + log(N)Km . (3.11)

Despite the similarity between the AIC and the BIC, they are of two very dif-

ferent natures. Only the BIC is asymptotically consistent, i.e., the probability of

choosing the right model tends to one as N →∞. However, model selection criteria

give no information on the performance of a model in an absolute sense (if all can-

didate models fit poorly, they still propose an optimal one). The AIC can also be

derived in the same Bayesian framework as the BIC by using a prior distribution

which is a decreasing function of Kℓ instead of the non-informative prior 1/M used

for BIC derivation. Additionally, [Burnham 2002] presented a simulation study that

favors AICc with respect to BIC from a practical point of view.

Another advantage of AIC/AICc is that it can be used to obtain an estimate of

the relative likelihood p(Mm∣SN) of each modelMm given data SN [Posada 2004].

AIC and relative likelihood of the models. The relative likelihood p(Mm∣SN)
of each model Mm given data SN can then be approximated by [Posada 2004]:

p(Mm∣SN) ≈ exp (−∆m (SN) /2) , m ∈ J1,MK , (3.12)

where ∆m (SN) = AICc (SN ,Mm)−AIC⋆c (SN) and AIC⋆c (SN) is the smallest AICc.

One can then normalize these estimates over the set of candidate models to obtain

the so-called Akaike’s weights:

am(SN)∝ exp (−AICc (SN ,Mm) /2) , m ∈ J1,MK and ∑M
m=1 am(SN) = 1 , (3.13)

which represents the probability that model Mm is the expected best model in the

sense of the Kullback-Leibler divergence.

We can thus propose our selection-free estimator of Θ by replacing p(Mm∣SN)
in eq. (3.6) by am(SN), leading to:

Θ̂M (SN) ≃ M∑
m=1

aℓ(SN)Θ̂m (SN) . (3.14)

3.2.2.2 Application to the ball-and-stick model

The principle described in section 3.2.2.1 can be adapted to any MCM discussed

in chapter 2. In the following, we apply our model averaging approach to the ball-

and-stick model, which enables direct comparison with the ARD method proposed

in [Behrens 2007].

The parameters of the ball-and-stick model with m fascicle compartments are:
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• the orientation µ
(m)
i of each fascicle (i = 1, . . . ,m) parametrized by its polar

angle θ
(m)
i ∈ [0, π] and its azimuth angle φ

(m)
i ∈ [0,2π];

• the fraction of occupancy f
(m)
i of each fascicle (i = 1, . . . ,m);

• the free diffusivity d(m);

• the fraction of occupancy f
(m)
0 = 1 −∑m

i=1 f
(m)
i of free water.

We first estimate the ball-and-stick models for m = 0,1, . . . ,M by minimizing

eq. (2.68) (assuming ρ→∞). Note that, for m = 0, the fraction of occupancy of free

water is obviously f0 = 1. Second, we compute the AICc for each model according

to eq. (3.10). Finally, we generate two sets of Akaike’s weights from eq. (3.13):

• a set {aWM

m }m=1,...,M of Akaike’s weights normalized using the AICc from m = 1
to m =M , in which aWM

m is the probability that the ball-and-stick model with

m fascicle compartments is the best model to fit the data in the sense of the

Kullback-Leibler divergence, compared to all the ball-and-stick models that

include at least one fascicle compartment (which are WM models);

• a set {am}m=1,...,M of Akaike’s weights normalized using the AICc from m = 0
to m =M , in which am is the probability that the ball-and-stick model with

m fascicle compartments is the best model to fit the data in the sense of

the Kullback-Leibler divergence, compared to all the ball-and-stick models

including the one with no fascicle compartment (which is a simple free water

model).

The collection of ball-and-stick models for m = 0, . . . ,M is a set of nested mod-

els. Parameters θ
(m)
i , φ

(m)
i and f

(m)
i , i ∈ J1,mK, only appear in models with

m = 1, . . . ,M . To free these parameters from the dependency upon m, we shall

therefore focus on averaging only models for m = 1, . . . ,M , i.e., models that include

at least one fascicle compartment. For sake of clarity, let M = 3.
The difficulty with these parameters (θ

(m)
i , φ

(m)
i and f

(m)
i ) is that their number

differs in the different models: the m-fascicle ball-and-stick model contains m such

parameters. Averaging a fascicle occupancy consists in picking one in each model

and performing the mean weighted by the Akaike’s weights: the 1-fascicle model

offers a unique value, the 2-fascicle model offers 2 values and the 3-fascicle model

offers 3 values. The same reasoning applies to the angles θ
(m)
i and φ

(m)
i .

As a result, the averaging approach provides 3! = 6 averaged fascicle orien-

tations with corresponding fractions of occupancy. In other words, averaging M

ball-and-stick models with an increasing number m = 1, dots,M of fascicle compart-

ments yields a big M !-fascicle averaged ball-and-stick MCM. This averaged model

comprises M ! averaged fascicle orientations µi and corresponding occupancies fi
(i = 1, . . . ,M !), an averaged free diffusivity d and an averaged free water fraction of

occupancy f0. In details, these parameters are obtained as follows:
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• Free diffusivity and free water occupancy: selection-free estimates d and f0 of

the free diffusivity and the fraction of occupancy of free water respectively are

easily obtained from the set {am}m=1,...,M of Akaike’s weights that includes

the free water isotropic model; they read:

d = M∑
m=0

amd(m) and f0 = a0 + M∑
m=1

am (1 − m∑
i=1

f
(m)
i ) , (3.15)

• Fascicle orientations: we compute the 6 following weighted direction cosine

matrices:

DCM1 = aWM

1 µ
(1)
1 µ

(1)T
1 + aWM

2 µ
(2)
1 µ

(2)T
1 + aWM

3 µ
(3)
1 µ

(3)T
1 ,

DCM2 = aWM

1 µ
(1)
1 µ

(1)T
1 + aWM

2 µ
(2)
1 µ

(2)T
1 + aWM

3 µ
(3)
2 µ

(3)T
2 ,

DCM3 = aWM

1 µ
(1)
1 µ

(1)T
1 + aWM

2 µ
(2)
1 µ

(2)T
1 + aWM

3 µ
(3)
3 µ

(3)T
3 ,

DCM4 = aWM

1 µ
(1)
1 µ

(1)T
1 + aWM

2 µ
(2)
2 µ

(2)T
2 + aWM

3 µ
(3)
1 µ

(3)T
1 ,

DCM5 = aWM

1 µ
(1)
1 µ

(1)T
1 + aWM

2 µ
(2)
2 µ

(2)T
2 + aWM

3 µ
(3)
2 µ

(3)T
3 ,

DCM6 = aWM

1 µ
(1)
1 µ

(1)T
1 + aWM

2 µ
(2)
2 µ

(2)T
2 + aWM

3 µ
(3)
3 µ

(3)T
3 .

(3.16)

The principal eigenvector e1 (i.e., the one with the largest eigenvalue λ1) of the

DCMs yields the averaged fascicle orientations µi (i = 1, . . . ,6). However, two

orthogonal orientations cannot be uniquely averaged if the first two eigenvalues

of the DCM are equal λ1 = λ2. We therefore retain only the DCMs for which

λ2/λ1 < 0.95.
• Fraction of occupancy: the corresponding fractions of occupancy are then

averaged accordingly:

f ′1 ∝ aWM

1 f
(1)
1 + aWM

2 f
(2)
1 + aWM

3 f
(3)
1 ,

f ′2 ∝ aWM

1 f
(1)
1 + aWM

2 f
(2)
1 + aWM

3 f
(3)
2 ,

f ′3 ∝ aWM

1 f
(1)
1 + aWM

2 f
(2)
1 + aWM

3 f
(3)
3 ,

f ′4 ∝ aWM

1 f
(1)
1 + aWM

2 f
(2)
2 + aWM

3 f
(3)
1 ,

f ′5 ∝ aWM

1 f
(1)
1 + aWM

2 f
(2)
2 + aWM

3 f
(3)
2 ,

f ′6 ∝ aWM

1 f
(1)
1 + aWM

2 f
(2)
2 + aWM

3 f
(3)
3 ,

(3.17)

and normalized. These occupancies are further corrected to account for free

water proportion f0, yielding the final fascicle fractions of occupancy:

fi = (1 − f0)f ′i , i ∈ J1,6K , (3.18)

where f0 is the averaged free water fraction of occupancy computed according

to eq. (3.15).

In the following, we compare this new proposed approach to the ARD method

on real clinical data.
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3.2.3 Material & Methods

3.2.3.1 Description of the data

Raw data. We conducted a pilot study consisting of one normal adult brain, on

which a clinical diffusion sequence was performed 10 times by the same operator

on the same Siemens 3T Verio MR scanner. It comprised a single measured un-

weighted image B0 and 30 measured DW images acquired at the same low b-value

(b = 1000 s/mm2) using 30 non-collinear DSG directions uniformly distributed over

the unit north hemisphere. The following parameters were used: 128×128×60 image

resolution with 2× 2× 2 mm3 isotropic spatial resolution, TR= 11 s and TE= 99 ms.

Preprocessing. We preprocessed the data as follows:

1. For each scan, we performed (i) a rigid registration of the measured DW

images on the B0 to correct for subject motion and rotated the gradient tables

accordingly and (ii) an affine registration of the measured DW images on the B0,

initializing with the previously estimated rigid transformation, to correct for distor-

tions.

2. We performed a rigid registration of the B0 images of the different scans on

the B0 image of the first scan and applied the corresponding transformation to the

subsequent measured DW images. We rotated the gradient tables accordingly. We

used the FLIRT algorithm [Jenkinson 2012] for all the registration steps.

3. We filtered the data of each scan to reduce the noise in the images, using the

Rician-adapted non-local means filter [Wiest-Daesslé 2008].

4. We extracted the brain in all the images using the BET algorithm [Jenkinson 2012].

3.2.3.2 Experimental setup

First, we aimed at confirming that M = 3 is actually sufficient in real data. In

the WM, it has been shown that the fraction of occupancy of free water is very

low [Zhang 2012]. In general, the AICc favors the simplest model unless more com-

plex models accurately fit the data. This means that our approach greatly favors the

isotropic model (m = 0) with respect to any WM models (m > 0) if the true number

of fascicles exceeds the maximum assumed number of fascicles M . Therefore,

regions in the WM where f0 is close to 1 indicate that M should be increased. On

our experiments, we observed that such regions do not appear with M = 4. We thus

performed the selection-free estimation of the ball-and-stick model with M ranging

from 1 to 4. Regions with high f0 values in the WM are expected to be rarer as M

increases. Our goal is to show that the f0 map obtained with M = 3 is very close

to the one obtained with M = 4. To this purpose, we computed the Dice scores

between the f0 map obtained with M = 4 and those obtained with M = 1,2,3. The

maps were binarized with ones when f0 = 1 and zeros otherwise. Dice scores close

to 1 indicate high similarity between the maps.

Next, we propose to compare our approach to the BEDPOSTX (BPX) algorithm,

which is the implementation of the ARD method proposed in [Behrens 2007]. In
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this method, only one ball-and-stick model is estimated assuming M fascicles and

the ARD is performed on the fractions of occupancy fBPX

i , i ∈ J2,MK. The resulting

averaged model is an M -fascicle ball-and-stick MCM, where fBPX

1 ≥ ⋯ ≥ fBPX

M ≥ 0

are the fascicle occupancies. BPX only requires to fit the more complex model and,

consequently, cannot provide the probability for the m-fascicle MCM to be the best

model, except for the M -fascicle MCM, which is actually the only fitted one. We can

thus directly compare the fraction of occupancy fBPX

M of the fascicle compartment

with lowest occupancy obtained with BPX to the Akaike’s weight aM of the M -

fascicle ball-and-stick MCM. We also provide visualization of the other fractions of

occupancy obtained by BPX and of the other Akaike’s weights to give an insight

into how the model averaging is performed by each method.

We therefore generated 100 bootstrap measured DW images out of the original

10 and computed these indices for M = 3. We then averaged them over the 100

bootstrap volumes and additionally performed an FDR-corrected t-test of nullity on

fBPX

3 and a3. We also computed the estimated orientations for both methods and

propose a visualization of them for qualitative assessment.

3.2.4 Results

Figure 3.1 shows the f0 maps obtained assuming a maximum number of expected

fascicles equal to M = 1 (fig. 3.1a), M = 2 (fig. 3.1b), M = 3 (fig. 3.1c) and M = 4
(fig. 3.1d). We qualitatively see that M = 3 and M = 4 produce very similar maps,

while those obtained with M = 1 or M = 2 contain substantial differences (more

regions with high f0 in the WM). The Dice scores between the thresholded f0 map

obtained with M = 4 and those obtained with M = 1,2,3 are respectively equal to

6.0 × 10−3, 0.30 and 0.88, which quantitatively demonstrates that M < 3 yields to

an positively biased estimates of f0 while from M = 3 the f0 does not change much

and contains very few regions of high f0 in the WM. Assuming a maximum number

of expected fascicles M = 3 is thus sufficient, at least for clinical data.

Figure 3.2 shows the fascicle fractions of occupancy obtained by BPX with

ARD (1st row) and the Akaike’s weights output by our approach (2nd row). fBPX

3

(fig. 3.2c) and a3 (fig. 3.2g) can be directly compared as they both quantify the

presence of 3 fascicles. Qualitatively, there are few regions where fBPX

3 is not null

but its value is always very small. On the contrary, much more regions are iden-

tified by a3 and are in concordance with anatomical knowledge. We statistically

assessed (by means of FDR-corrected paired t-tests of nullity) whether these coeffi-

cients, when not null, were significantly non-null. Figure 3.2d (resp. fig. 3.2h) shows

statistically significant 3-fascicle regions detected by BPX (resp. by our approach).

No such regions are detected by BPX showing that it does not robustly identify

the same 3-fascicle regions from one bootstrap image to another. On the contrary,

our approach shows significant 3-fascicle regions that were expected by previous

anatomical knowledge. We can also observe that our approach detects few voxels

where the single fascicle compartment model is predominant because the orientation

averaging method is able to preserve even very small angles between them.
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(a) (b)

(c) (d)

Figure 3.1: Maps of ball-and-stick free water fraction of occupancy. Coronal

view of the f0 map obtained applying our method to average ball-and-stick models

up to M = 1 (a), M = 2 (b), M = 3 (c) and M = 4 (d) fascicle compartments. The

value of f0 is color-coded: from 0 to 1 (purple-blue-cyan-green-yellow-red). Cases

M = 3 and M = 4 exhibit the same blue pattern in the WM (low f0) while cases

M = 1 and M = 2 exhibit larger f0 values.

Figure 3.3 shows an example of visualization of the fascicle compartments. Each

fascicle is represented by a cone whose axis lies on the fascicle orientation and

whose angle is proportional to the corresponding fraction of occupancy. Fascicles

obtained by BPX are shown in fig. 3.3a,c. Fascicles obtained by our averaging

approach are shown in fig. 3.3b,d. Results are very similar, which demonstrates the

appropriateness of our averaging method. Overall, our averaging approach produces

more orientationally homogeneous results and better delineates 3-fascicle regions.

3.2.5 Discussion

Reliable selection of the number of fascicles in a voxel is still not a solved issue, which

precludes the extensive use of MCMs in dMRI. In this section, we have proposed

an explicit averaging method that proceeds in two steps: (i) estimating the relative

likelihoods of the models given the data using the AIC corrected to account for
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.2: Model averaging weights. Coronal view of the mean fascicle fractions

of occupancy fBPX

1 (a), fBPX

2 (b), fBPX

3 (c) and statistically significant fBPX

3 (d)

produced by BPX and of the mean Akaike’s weights a1 (e), a2 (f), a3 (g) and

statistically significant a3 (h) produced by our approach. Our approach robustly

detects 3-fascicle regions (h), contrary to BPX (d).

overfitting with small sample sizes and (ii) using these likelihoods to obtain model-

independent estimates of the parameters. We successfully applied the method on

clinical data and managed to identify regions with 3 fascicles with strong statistical

support. Explicit averaging also able to keep very small angles between orientations

when this is relevant. Last but not least, the computation time for M = 3 is about

five hours for BPX and only two hours for our approach on an 8-core computer,

which makes it closer to a clinically acceptable running time.

A slight limitation is that the estimated orientations in regions with more than

two fascicles are strongly dependent on the initialization. In these cases, we currently

perform 4 multiple restarts with a random initialization of the fascicle orientations.

Increasing the number of restarts improves the detection of 3-fascicle regions at the

cost of computational time.

3.3 Model averaging applied to Diffusion Directions Imag-
ing

3.3.1 Averaging procedure

Our model averaging approach is very generic and can be applied to any MCM.

Consequently, we aim at showing how it can be applied to the DDI MCM that

we proposed in chapter 2, section 2.3 and how the averaging improves the results,

leading to corrected versions of the usual MD and FA maps as well as correct iden-

tification of 3-fascicle regions.

The parameters of the m-fascicle DDI model with fixed diffusivities are:
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(a) (b)

(c) (d)

Figure 3.3: Fascicle representation. Coronal view of the estimated orientations

produced by BPX (first column) and our approach (second column): global view

(a,b) and zoom on the Corpus Callosum and its extremities (c,d) where 3-fascicle

regions are expected. Each fascicle is represented by a cone whose axis lies on the

fascicle orientation and whose angle is proportional to the corresponding fraction of

occupancy.

• the orientation µ
(m)
i of each fascicle (i = 1, . . . ,m);

• the fraction of occupancy w
(m)
i of each fascicle (i = 1, . . . ,m);

• the orientational dispersion index κ(m) in the fascicle compartments;

• the extra-axonal fraction of occupancy ν(m) within fascicle compartments;

• the free diffusivity along the fascicles d(m) given by eq. (2.50);

• the free diffusivity in the CSF d
(m)
0 =Diso = 3.0 × 10−3 mm2/s;

• the fraction of occupancy w
(m)
0 = 1 −∑m

i=1w
(m)
i of free water.

Before applying the averaging procedure detailed in section 3.2.2.2, we first apply

it between the DDI MCM with extra-axonal fraction of occupancy constrained to
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ν = 0 (which is basically a ball-and-zeppelin model) and the full DDI MCM. Indeed,

when dealing with clinical data at low b-value, it might be the case that we cannot

observe the effect of intra- and extra-axonal diffusion on the measured DW images.

In such a case, taking ν = 0 is as good as any other value but enables a more accurate

estimation of the remaining parameters.

Consequently, for a given number m of fascicle compartments (m > 0), we fit

the DDI MCM with and without (ball-and-zeppelin model) extra-axonal fraction of

occupancy, compute the corresponding AICc from eq. (3.10) and the two correspond-

ing Akaike’s weights from eq. (3.13). We average the two models accordingly (all

the parameters). Since they share the same number m of fascicle compartments,

the resulting averaged model also contains m fascicle compartments that are the

averaged compartments obtained by matching pairwise the different fascicle com-

partments of the two input models. This first step is performed for each assumed

number of fascicle compartments from m = 1 to m =M .

The second step consists in averaging these resulting models between m = 0,1, . . . ,M
to obtain a single big DDI MCM with M ! fascicle compartments. The averaging is

accomplished with a procedure very similar to the one described in section 3.2.2.2.

The only differences are that (i) diffusivities are now set to fixed values and thus do

not need to be averaged and (ii) the orientational dispersion index κ and the extra-

axonal fraction of occupancy ν are both parameters that are involved in WM DDI

MCMs, i.e., m-fascicle DDI MCMs with m > 0 and are thus averaged using the set of

WM Akaike’s weights {aWM

m }m=1,...,M (see section 3.2.2.2). In details, selection-free

estimates of κ and ν read:

κ = M∑
m=1

aWM

m κ(m) and ν = M∑
m=1

aWM

m ν(m) . (3.19)

In the following section, we present some results provided by the combinated use

of the DDI model estimation described in chapter 2 and the model averaging proce-

dure detailed in this chapter on both an healthy subject (diffusion data introduced

in section 3.2.3) and a patient with a tumor in presurgical planning scanned a few

days before the surgery (diffusion data courtesy of 2013 MICCAI DTI Challenge).

3.3.2 Results

In section 3.2.4, we showed that, under the ball-and-stick model, it is sufficient to

assume M = 3. In this section, since we are analyzing the diffusion data under the

DDI model, we performed a similar analysis to validate that M = 3 is also sufficient

with our proposed model. Figure 3.4 gives the free water fraction of occupancy

estimated by the 1-fascicle averaged DDI model (a), the 2-fascicle averaged DDI

model (b) and the 3-fascicle averaged DDI model (c). There is almost no inflated

free water occupancies in the WM in the case M = 3 with respect to the other cases,

which qualitatively demonstrates that M = 3 is also sufficient with the DDI model.
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(a) (b) (c)

Figure 3.4: Maps of DDI-derived free water fraction of occupancy. Coronal

view of the free water fraction of occupancy estimated by the DDI model after

model averaging with M = 1 (a), M = 2 (b) and M = 3 (c). Large values in the

WM progressively disappear in the WM and are almost absent for M = 3, which

demonstrates that a maximum expected number M = 3 of fascicles is sufficient for

the human brain.

3.3.2.1 Results on healthy subject

In this section, we aim at showing results obtained with the diffusion data described

in section 3.2.3, which was acquired on an heathy volonteer. We performed the

estimation of the m-fascicle DDI MCM, with m = 0,1,2,3 (we thus choose M = 3)
and subsequently averaged these models using the averaging approach proposed in

section 3.2.2.

Figure 3.5 offers a visual comparison of the reconstructed fascicles provided by

the ball-and-stick model and the DDI model. Both models have been estimated up

to 3 fascicles and averaged according to section 3.2.2.2. Each fascicle is represented

by a cone whose axis lies on the fascicle orientation and whose angle is proportional

to the corresponding fraction of occupancy. Focus is on the extremities of the CC

where 3-fascicle regions are expected since projection, association and commissural

fascicles cross. We qualitatively see that DDI provides much more orientationally

homogeneous 3-fascicle regions where expected than the ball-and-stick. Also, cone

angles are systematically bigger with DDI, which reflects the fact that DDI accu-

rately estimates a small free water occupancy in the WM unlike the ball-and-stick

model that overestimates it to compensate for the over-simplified assumed geometry

of the fascicles.

MCMs also provide corrected maps of all the usual scalar markers used in clinics

such as MD or FA. Figure 3.6 shows some of these maps derived from the DDI

model. The first row corresponds to the MD, the second row to the FA, the third

row to the OD computed from eq. (2.19) and the fourth row to the extra-axonal

occupancy. The last two are new indices provided by the DDI model. The first

column shows the scalar maps obtained estimating the model only up to M = 1

while M = 2 in the second column and M = 3 in the third column. Values are

color-coded from blue (smallest values) to red (largest values). We see the benefits

of fitting up to M = 3 on the MD, FA and OD maps: MD estimates are smooth over

the entire WM only for M = 3, FA drops to 0 (blue) in orientationally heterogeneous
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(a) (b)

(c) (d)

Figure 3.5: Conic representation of fascicles in the healthy Human brain.

Coronal view of the estimated orientations using ball-and-stick modeling (first col-

umn) and DDI modeling (second column) including averaging post-processing with

M = 3: global view (a,b) and zoom on the Corpus Callosum and its extremities

(c,d) where 3-fascicle regions are expected. Each fascicle is represented by a cone

whose axis lies on the fascicle orientation and whose angle is proportional to the

corresponding fraction of occupancy.

regions when M < 3 where a strong Orientation Dispersion (OD) is also observed,

the OD is greatly reduced and corresponding FA well corrected when M = 3. The

estimated extra-axonal occupancy is noisier but one can observe that it shows a

large value (leading to negative kurtoses) in deep WM structures, corroborating the

findings of [Veraart 2011b] who claimed that these negative kurtoses were due to

wrong estimations.

3.3.2.2 Results on patient with a tumor

In this section, we briefly shows how the scalar maps of MD, FA, OD and extra-

axonal occupancy are affected in peritumoral regions. The diffusion data has been

provided by the organizers of the 2013 MICCAI DTI Tractography challenge and
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.6: DDI-derived scalar maps in the healthy Human brain. Coronal

view of some DDI-derived scalar maps obtained after model averaging with M = 1
(1st column), M = 2 (2nd column) and M = 3 (3rd column). 1st row: MD, 2nd row:

FA, 3rd row: OD and 4th row: extra-axonal occupancy. Values are color-coded

from blue (smallest values) to red (largest values).

consists in a presurgical scan with one b-value at 1000 s/mm2 and only 20 DSG

directions with a slice thickness of 5 mm. This is a typical example of low spatial

and angular resolution diffusion data acquired in clinical settings. We performed

the estimation of the DDI MCM up to M = 3 and averaged the models using M = 3.
Figure 3.7 shows the MD (a), the FA (b), the OD (c) and the extra-axonal

occupancy (d) provided by the averaged DDI MCM with M = 3. In the peritumoral

region, MD is inflated (≈ 1.67 × 10−3 mm2/s, green area in the peritumoral region)
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with respect to the usual expected MD in the WM (≈ 0.8 × 10−3 mm2/s, blue-cyan

areas). The FA is also uniformly reduced to values close to 0 (blue-cyan area in the

peritumoral region) whereas, in normal appearing WM, it exhibits values greater

than 0.7 (green-yellow-red areas). The FA is a combined function of OD and extra-

axonal occupancy (see eq. (2.44)). It is interesting to see that the uniformly reduced

FA in the peritumoral region is the result of two very different combinations of these

values: a very high OD (close to 1, red areas) and a low but non null extra-axonal

occupancy (≈ 0.03, green areas) produce the same reduced FA as a moderate OD

(≈ 0.5, green areas) and a high extra-axonal occupancy (≈ 0.3 − 0.5, red areas).

The intuition is that maybe OD and extra-axonal occupancy may be better specific

biomarkers than the FA.



108 Chapter 3. Determination of the number of fascicles

MD (a) FA (b)

OD (c) Extra-axonal occupancy (d)

Figure 3.7: DDI-derived scalar maps in peritumoral region. Axial view of

some DDI-derived scalar maps obtained after model averaging with M = 3. Fig.(a):

MD (blue: ≈ 0.8 × 10−3 mm2/s, green: ≈ 1.67 × 10−3 mm2/s), fig.(b): FA (blue:

close to 0, red: close to 1, fig.(c): OD (blue: close to 0, red: close to 1) and fig.(d):

extra-axonal occupancy (blue: close to 0, red: ≈ 0.3 − 0.5).
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The advent of dMRI and the development of DT-MRI [Basser 1994b] and sub-

sequent more complex diffusion models to make the most out of the measured DW

images offer a unique non-invasive way to study the neural processes in the human

brain, including

• depicting the microstructure of the brain (geometry, size and proportion of its

different component cells),

• assessing the existing interconnections between different anatomical regions in

the brain.

The first application has proven to be very prolific since the beginning of the 90′
when DTI was found to be a good description of diffusion within anisotropic media.

Many scalar metrics to quantify diffusivity (e.g. MD, parallel and perpendicular

diffusivities) and anisotropy (e.g. FA, RA, VR) were derived from DTI analysis.

Consistent maps of these scalar metrics were first obtained on the healthy human

brain and, subsequently, clinical researchers found that some of these maps were

really good biomarkers for a number of neurological disorders (see section 1.4.3).

The second application is often dubbed tractography and aims at providing a 3-

dimensional reconstruction of the different WM fascicles that drive the information

between the different neural centers in the CNS. Despite the ability of DTI to

provide an average local orientation of diffusion, DTI tractography gained little

interest at first because of its inherent complexity. For instance, if a fascicle leaving

from point A reaches point B, then “should we not also find a fascicle (the same
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one) leaving from B that reaches A?" In practice, it is not always the case and this

simple question highlights the problem of computational cost: indeed, if one wants

to ensure this symmetry property for instance, it requires a complex combination of

forward and backward trackings.

After a time lag to overcome these problems, the first tractography algorithms,

based on DTI at that time, appeared in the literature and generated a lot of enthu-

siasm and expectations. Many DTI tractography studies were published on both

healthy and pathological brains (see section 1.4.4). Indeed, tractography can be very

helpful to understand how exactly a specific neurological disorder affects the WM

fascicles that carry the nervous information: in addition to understand whether or

not the WM integrity is preserved (which is quantified by anisotropy and/or diffusiv-

ity measures), tractography could enable the identification of the damaged fascicle

and quantify the severity of this alteration, or it could help to understand whether

the presence of a tumor makes the measured DW signals uninterpretable in terms of

fascicles or simply alters the measured DW signals to reflect a relocalization of the

tracts. All these information would be of great help for further medical decisions

(e.g. medications or surgical planning).

The basic idea behind tractography is to represent a fascicle as successive pairs of

positions and arrival directions (xk,vk−1) starting from an initial position x0 known

as the seed voxel (see fig. 4.1). The arrival directions, and subsequent positions

Figure 4.1: Schematic representation of a fascicle. A fascicle is a sequence of

successive pairs of positions (xk) and arrival directions (vk).

visited by the fascicle, are determined by following the local orientations of diffusion

provided by a diffusion model that approximates the distribution of the DIMD (or

its angular profile, which suffices to extract orientations of diffusion). Two strategies

are then possible: one can be interested either in connections between two voxels or

ROIs, in which case only fascicles that start from one of them and end in the other

are reconstructed or in understanding which areas of the brain are connected to a

particular seed region. Tractography relies on three generally admitted assumptions

that (i) fascicles present low curvature, (ii) they are smooth and (iii) they evolve

within the WM but interconnect regions of the GM and thus should not end in the

middle of the WM.

Tractography algorithms can be roughly divided into four categories: stream-

line tractography, energy-based tractography, locally filtered streamline trac-

tography and probabilistic streamline tractography. Deterministic streamline

algorithms reconstruct a fascicle in a stepwise fashion from a seed voxel by fol-

lowing the orientations identified by an underlyling diffusion model. Energy-based

algorithms reconstruct a globally optimal fascicle from a seed voxel to any other
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voxel by minimizing appropriate cost functions. Roughly speaking, locally filtered

streamline algorithms regularize streamline fascicles by perturbing the position or

orientation at each step and by keeping the more consistent one. Probabilistic

streamline algorithms generalize locally filtered streamline algorithms by keeping

all perturbed positions or orientations but assigning weights to the corresponding

fascicle.

Deterministic streamline tractography algorithms: These algorithms were

the first to appear in the literature. They reconstruct a fascicle in a stepwise fashion

from a seed voxel by following the orientations identified by an underlyling diffusion

model. The reconstruction is usually stopped when one of the following criteria is

met:

• the fascicle reaches an area outside the brain;

• the fascicle reaches an area of low anisotropy (e.g. low FA in DTI). In this case,

either it reaches an isotropic area meaning that the fascicle does end here or the

local orientation mainly reflects the measurement noise and should therefore not be

taken into consideration;

• the next step of the fascicle involves too much evoluation of its curvature. In this

case, it may reflect the fact that another fascicle is crossing the one that is being

reconstructed and the local orientation should not be considered as reliable. Indeed,

it is either an orientation associated to the crossing fascicle or a powder average of

the local orientations of the two crossing fascicles.

Deterministic streamline tractography algorithms can be regrouped into two general

algorithms:

• The FACT algorithm: Starting with a voxelwise map of local orientation(s) of

diffusion provided by an underlying diffusion model (e.g. the principal eigenvector

of the DT) and a seed voxel, the basic concept is to follow the local orientation of

diffusion from the seed voxel. The key parameter of this process is the distance that

the fascicle will be allowed to travel in the direction vk from the current position

xk to the next position xk+1. This distance is called the step length and its value

determines both the curvature and smoothness of the reconstructed fascicle: the

smaller the step length, the smoother the fascicles but the larger their curvature.

In order to obtain a continuous tracking, [Mori 1999, Xue 1999] proposed a method,

that they coined FACT, in which the local orientation of diffusion vk is followed

linearly from the current position xk until the fascicle quits the voxel in which xk

belongs by one of its faces. Such a process results in (i) successive positions of the

reconstructed fascicle that always lie on the faces of the voxels and not inside of

the voxels and (ii) step lengths that are varying. This technique produces fascicles

that are only piecewise linear, which reflects poorly the assumed smoothness of the

fascicle.

Smoother fascicles can be produced with the same streamline strategy by defining

the step length differently: it is set either to a fixed constant [Conturo 1999] or

inversely proportional to the local curvature of the fascicle [Basser 2000], i.e., when

the curvature is low, large steps are authorized because the local shape is mostly lin-

ear whereas high curvature indicates more complex shapes that are better captured
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using small steps.

Positions lying on the faces of the voxels make it easy to select the next local

orientation to follow. The definitions of the step length proposed in [Conturo 1999,

Basser 2000] allows for smaller steps that result in smoother trajectories less prone

to discretization error. However, small step lengths lead to positions that are inside

the voxels and not on the their faces where diffusion information is generally not

available. They thus resolve the issue by interpolating the needed information from

the diffusion information available in the surrounding voxels. Depending on the

underlying diffusion model, the interpolation can be performed either directly on

the diffusion model or on the measured DW images, in which case online estimation

of the diffusion model is required at each step of the tractography algorithm. There

are several methods of interpolation in the literature, the effect of which has been

studied in [Lori 2002] who showed that, the noisier the measured DW images, the

more dependent the tractography on interpolation.

It is often the case that WM fascicles are made of many branches that DTI misses

because it can only identify one local orientation per voxel. Moreover, from a compu-

tational point of view, even if branches could be identified as well, we could not afford

exploring all of them. A way to circumvent this issue while still using the DTI model

to provide the local orientations has been proposed in [Conturo 1999, Stieltjes 2001].

In these works, the streamline tractography is performed from all the voxels in the

brain and resulting fascicles are filtered in order to keep only those that visited the

voxel of interest.

• The TENsor Deflection (TEND) algorithm: The major drawback of FACT al-

gorithms is that they reconstruct the fascicles by following the local orientation

of diffusion estimated by a diffusion model. This estimated orientation is however

corrupted by various sources of noise such as inherent measurement noise in the

measured DW images or crossing, kissing, merging or splitting fascicles in a single

voxel. As a result, it does not always match the orientation of the fascicle. Follow-

ing exclusively this estimated orientation can thus generate accumulations of errors

and send a fascicle to an unexpected ending position. Also, local irregularities in

the diffusion data can dramatically change the shape of the reconstructed fasci-

cles. A first improvement has been proposed by the TEND algorithm [Lazar 2003],

in which arrival direction vk is deflected at each step by the entire DT D, which

means that a tensor-deflected arrival direction is computed as Dvk. Following the

tensorline algorithm proposed in [Weinstein 1999], the next direction to follow (vk+1)
is computed as a weighted linear combination of the local orientation of diffusion

(e.g. the principal eigenvector e1 of the DT), the arrival direction (vk) and the

tensor-deflected arrival direction (Dvk). The weights of this combination are com-

puted based on scalar metrics that differentiate prolate, oblate and spherical DT

shapes [Weinstein 1999, Westin 2002, Zhang 2004].

Even if the TEND algorithm indeed reduces the accumulation of errors with respect

to the FACT algorithm, the deflection is based on the estimated DT, the uncertainty

of which is not taken into consideration. All the following presented algorithms aim

at either circumventing the problem of accumulated errors due to noisy local orien-



113

tations of diffusion (energy-based algorithms) or accounting for it (locally filtered

and probabilistic streamline algorithms).

Energy-based tractography algorithms. These algorithms reconstruct a glob-

ally optimal fascicle from a seed voxel to any other voxel by minimizing appropriate

cost functions, which circuments to some extent the problem of accumulated errors.

• Tractography as a fast marching problem: The purpose of fast marching tech-

niques is to generate three-dimensional time of arrival maps starting from a seed

voxel by propagating a 3D wave front though a given volume: in essence, the front

is a surface of propagation determined by a velocity function. In the context of

tractography, direction and speed of such a velocity function are determinged based

on the DT [Parker 2002, Prados 2006, Staempfli 2006]. Any voxel can be set as seed

voxel to propagate the wave front. An optimal fascicle that connects two voxels can

then be reconstructed by minimizing the travel time from one voxel to the other.

Fast marching-based tractography algorithms also provide indices of connectivity

between any two voxels. The use of fast marching techniques for tractography was

pioneered in [Parker 2002], who used the principal eigenvector of the DT to define

the direction and speed of the propagation front. The front evolves voxelwise and

therefore suffers from discretization errors that [Tournier 2003] proposed to over-

come with an adaptive sub-voxel evolution grid. [Prados 2006] further compute

geodesic distances between two voxels in a Riemannian framework, which also en-

ables to reconstruct optimal fascicles connecting the two voxels. Interestingly, their

method does not require to actually reconstruct the fascicles to access the indices

of connectivity, the computation of which is performed during the propagation of

the 3D wave front. Finally, [Staempfli 2006] account for the possible presence of

multiple fascicles in a voxel by defining the velocity function of the propagation

front differently whether the current and next position in a fascicle reconstruction

contain prolate or oblate DTs. Prolate/oblate classification of the DTs is based on

the shape coefficients defined in [Westin 2002].

• Tractography as a Hamilton-Jacobi-Bellman (HJB) problem: The HJB framework

has also been emcompassed within a tractography algorithm to robustify the tractog-

raphy algorithms in presence of noise [Parker 2002, O’Donnell 2002, Jackowski 2005].

The principle of these methods is to compute the shortest fascicle that minimizes a

cost function from a seed voxel to any other voxel in the brain. This cost is evalu-

ated based on the integration of the positions visited by the fascicle and the arrival

directions followed by the fascicle. The cost further penalizes fascicles that followed

directions different from the ones identified by the DTs. Such a formulation leads to

partial differential equations that are usually solved using propagation front meth-

ods. Consequently, fast marching-based tractography algorithms can be seen as

HJB-based algorithms as well. In [Parker 2002], the propagation front is defined by

a speed that increases (respectively, decreases) as the normal of the front gets closer

(respectively, farther) to the principal eigenvector of the DT. In [O’Donnell 2002],

the front is propagated in such a way to obtain geodesics. The DTs is used to further

define a Riemannian metric that is used to penalize a connectivity index defined as

the geodesic length over the Riemannian distance between the seed voxel and any
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other voxel. [Jackowski 2005] further improve the algorithm of [Parker 2002], by

integrating the parallel diffusivity (i.e., the largest eigenvalue of the DT) into the

definition of the speed function of the front. [Pichon 2005] determine optimal fas-

cicles between two voxels by solving the Hamilton-Jacobi-Bellman equation using

dynamic programming, with an orientationally dependent cost function particularly

well suited to HARDI. [Fletcher 2007] noticed that all previous HJB-based trac-

tography algorithms dealt with the reconstruction of optimal fascicles from a single

seed voxel or region. They propose an alternative algorithm that identifies fasci-

cles interconnecting two regions, which results in a volumetric representation of the

fascicles rather than in individual fascicles.

• Tractography as a spin glass problem: [Mangin 2002, Kreher 2008, Fillard 2009,

Reisert 2011] propose to adapt the spin glass model introduced in statistical physics

to the tractography problem. The word spin here needs not to be confounded

with the spin of protons. In a spin glass problem, a spin is an oriented particle

defined by its position and orientation. A spin glass is a set of spins in a closed

domain. A fascicle is modeled as a chain of spins, which is equivalent to the repre-

sentation proposed in fig. 4.1. Spins can thus be interpreted as pieces of fascicles.

The work of [Fillard 2009] can be viewed as a improvement over the algorithms

proposed by [Mangin 2002, Kreher 2008]. In this improved algorithm, each spin

is endowed with three energy functions: (i) a diffusion one that tells the spin to

align itself to the local orientation of diffusion, (ii) an interaction one that favors

long chains of spins with low curvature and (iii) a generative one that allows dupli-

cation of spins to prevent a fascicle from ending within the WM. The previously

estimated diffusion model defines the diffusion energy function and, although the

authors used QBI [Tuch 2004], any diffusion model can be employed. In the recent

work of [Reisert 2011], energy functions are defined differently to adapt the problem

to HARDI data and to remove the necessity of boundary conditions to stop the

reconstruction of the fascicles (like low FA).

• Tractography as a genetic global optimization problem: Another way to identify

globally optimal fascicles connecting two regions is to cast the tractography prob-

lem into a genetic global optimization problem [Wu 2009], borrowing ideas from

evolutionary biology, which proceeds in three stages: selection, recombination and

mutation. The fascicles are assumed to be 4D curves, in which each of their three co-

ordinates are 1D functions that are represented as a truncated Fourier series. Their

Fourier coefficients are initialized randomly. First, they undergo a selection step,

which retains optimal fascicles based on a trade-off between geometric smoothness

and consistency with the DT field. In a second recombination step, a subset of best

fascicles is kept and the rest is recombined. The resulting fascicles are slightly per-

turbed in a third mutation step. These three processes are repeated several times

to obtain globally optimal fascicles connecting the two voxels.

• Tractography as a network problem: Innovately, [Lifshits 2009] use combinato-

rial tracking, which sees the brain as a graph in which each voxel has 26 weighted

connections (the neighbouring voxels) and reconstruct fascicles by a random walk

on this graph. For each voxel, the weights of its 26 connections are evaluated as



115

the probability of each neighbour to be connected with the current voxel. This is

achieved by generating samples from the distribution of 3D molecular displacements

from the center of the current voxel under DTI that assumes this distribution is a 3D

centered Gaussian. Each sample is further classified as belonging to the neighboor

towards which the displacement was the most collinear. Finally, the probability of

each neighbour to be connected to the current voxel is estimated as the propor-

tion of samples assigned to the corresponding neighbour over the total number of

samples. In a second step, globally optimal fascicles are reconstructed either by in-

tegrating prior connectivity knowledge within a shortest path algorithm or by using

an estimate of the hitting time matrix.

Tractography algorithms based on fast marching, HJB or spin glass frameworks

reduce the accumulation of errors induced by following sequentially the estimated

local orientations of diffusion by producing globally optimal solutions. However,

diffusion information estimated from the measured DW images is still used in a

deterministic way. These methods thus circumvent the issue of accumulated errors

rather than accounting for orientational uncertainty. Tractography algorithms based

on genetic global optimization represent the fascicles as 4D curves parametrized

by the coefficients of a truncated Fourier series. The genetic global optimization

framework accounts for uncertainty but on the Fourier coefficients rather than on the

fascicles themselves, which lacks interpretability of such uncertainty and subsequent

sources.

Locally filtered streamline tractography algorithms. These algorithms grossly

regularize deterministic streamline fascicles by perturbing the position or orienta-

tion at each step and keeping the more consistent one. We term this strategy local

filtering. [Gössl 2002] were the first to propose the use of a classic linear Kalman

filter to locally filter streamline fascicles. At each step of the reconstruction of a

fascicle, a current observed position is computed as the last position prolongated

by the principal eigenvector of the DT. The current observed position is then seen

as a noisy realization of the current expected position, which is further updated

using the error between its observed value and the previous position, weighted by

the Kalman gain.

Approaches based on locally filtering the arrival directions at each step have also

been proposed recently [Malcolm 2010, Savadjiev 2010, Rowe 2013]. At each step of

a streamline reconstruction, a number of successive directions are proposed accord-

ing to a local filtering distribution and the most consistent one(s) is (are) followed.

In [Malcolm 2010], the SID is represented by a finite mixure of Watson distributions

(which is equivalent to a ball-and-stick model [Behrens 2007]). Parameters of the

model are the orientations of diffusion with associated concentration parameter that

measures the orientational dispersion. Using an unscented Kalman filter in which

these parameters define the state vector, they propose perturbed versions of the

state that they use to predict new SIDs. Errors between these new SIDs and the

measured one, weighted by the Kalman gain, are finally used to update the estimates

of the state and the direction with highest concentration is selected to proceed the

fascicle to its next position. Similarly, [Savadjiev 2010, Rowe 2013] employ a particle
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filter to approximate the local filtering distribution. In [Savadjiev 2010], local filter-

ing is defined on the distribution of so-called 3D streamline flows, which are locally

spatially-varying according to a given differential geometry that defines the local

orientation and shape of the flow. At each step of a streamline reconstruction, the

maximum a posteriori streamline flow is computed and a local deterministic stream-

line tractography is performed from the resulting flow in a small neighborhood. In

[Rowe 2013], particle filtering is locally performed on orientations generated from

the orientations of diffusion provided by the NODDI model.

The idea of a filtering distribution to obtain more reliable fascicles is very appealing

but such local approaches focus on locally filtering either the positions or the arrival

directions. The quantities of interest in these algotihms are thus more the individual

positions visited by the fascicle or the directions it followed rather than the fascicle

itself.

Probabilistic streamline algorithms. A common problem of deterministic

streamline tractography algorithm is that they do not account for the orienta-

tional uncertainty inherent to the estimation of the local orientations of diffu-

sion [Jones 2003]. This uncertainty can be due to measurement noise [Gudbjartsson 1995]

and/or partial volume averaging (e.g., crossing, kissing, diverging, bifurcating fasci-

cles or CSF contamination in a single voxel) [Alexander 2001]. Energy-based trac-

tography algorithms cope with this problem by finding globally optimal fascicles.

This circumvents the problem but does not really account for the orientational un-

certainty. Locally filtered tractography algorithms introduce a filtering distribution

that allows one to locally identify directions or positions that are more consistent

than the ones provided by the diffusion model. However, the filtering is not per-

formed on the fascicles themselves, which means that such algorithms do not pro-

duce fascicles that represent the distribution of all possible fascicles emanating from

a single voxel.

On the contrary, probabilistic streamline algorithms are particularly appealing for

integrating this uncertainty. The prefix probabilistic stems from the fact that result-

ing fascicles are weighted, which measures the strength of that specific connection

to the seed voxel. These methods proceed in two stages. First, the uncertainty

in local orientations of diffusion (and/or of other diffusion parameters) is modeled

using an appropriate PDF, which is referred to as the model uncertainty PDF in

the following. Then, the model uncertainty PDF is used to sample many orienta-

tions of propagation and streamline reconstruction of fascicles is carried out for each

sampled orientation, assigning suitable weights to each fascicle.

The first work that formulated the model uncertainty PDF was [Behrens 2003]. The

posterior PDF of the DT parameters given the measured DW images is theoretically

computed according to Bayes’ rule. Facing the intractability of the involved inte-

grals, they propose a complete Bayesian framework for the estimation of the under-

lying diffusion model. The framework is solved by resorting to an MCMC procedure

that produces samples of each diffusion parameter according to its marginal posterior

distribution using a Gibbs sampler. The diffusion model is a ball-and-stick model

with one fascicle compartment. The framework is first improved in [Behrens 2007] by
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estimating a ball-and-stick model with several fascicle compartments and retaining

only those supported by the data according to automatic relevance detection. A sec-

ond improvement over the framework of [Behrens 2007] is achieved in [Jbabdi 2007]

by incorporating global connectivity knowledge in addition to local diffusion in-

formation to perform tractography. The idea is that, wherever the local diffusion

model fitting performs poorly and provides inconsistent diffusion information (e.g.

biased local orientations of diffusion), global connectivity knowledge will substi-

tute local diffusion information and robustify the reconstruction of the fascicles. In

[Jbabdi 2007], a complete Bayesian framework for the estimation of a ball-and-stick

MCM is derived, in which priors on the parameters are different whether the tan-

gent direction of the fascicle lies on a pathway known to connect the two regions of

interest or not. A Metropolis-Hasting MCMC algorithm is then used to compute the

posterior distribution of the parameters. Finally, they use the orientations obtained

in the posterior distribution to sample similar orientations according to a proposal

distribution built in a pre-processing step without integrating the global connectiv-

ity knowledge. Fascicles are then reconstructed from these orientations. To avoid

the use of a computationally heavy MCMC procedure, [Friman 2006] proposed a

similar Bayesian framework in which the model uncertainty PDF is evaluated on a

set of uniform samples on the 2-sphere.

Efficient sampling according to the model uncertainty PDF is crucial in these meth-

ods. MCMC procedures were considered but require unaffordable computational

time. Evaluation of the PDF on a small sample on the 2-sphere provides too

low angular resolution. Alternative algorithms have thus been proposed to cir-

cumvent these problems by formulating the tractography problem in such a way

that the Gaussian PDF can be used to generate appropriate samples [Parker 2003b,

Parker 2005, Berman 2008]. In the first step, these algorithms start by estimat-

ing the local orientations of diffusion, using an adequate diffusion model such as

DTI [Parker 2003b], Persistent Angular Structure (PAS)-MRI [Parker 2005] or QBI

[Berman 2008]. The second step consists in generating samples (simulated measured

DW images) by simulating the SID using a perturbed diffusion model. [Parker 2003b]

define a zero-mean 1-dimensional Gaussian PDF whose standard deviation is a func-

tion of the DT parameters that they use to generate slightly perturbed orientation

samples around the local orientation of diffusion. The rotation that align the local

orientation of diffusion to the sampled one is then applied to the DT and the ro-

tated DT is used to generate SIDs. The work is further improved in [Parker 2003a]

to account for multiple fascicles. [Parker 2005] come up with a mixture of Gaussian

PDFs with cylindrically symmetric fixed-shape DTs aligned on the local orientations

found by the PAS and use it to generate the SID, which is further corrupted by ar-

tifical Rician noise. A single component is used in the mixture if the underlying DT

is prolate and two components are used when the DT is oblate. [Berman 2008] use

the estimated dODF SH coefficients from QBI and the residuals of their estimation

to generate bootstrap samples (simulated measured DW images). In a third step,

diffusion models are estimated for each sampled measured DW image and the final

step performs a deterministic streamline tractography for each sampled measured
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DW image. The strength of connectivity of given voxel is evaluated as the number

of tracts that visited it over the number of sampled measured DW images.

However, previous algorithms employed the Gaussian distribution to produce orien-

tation samples because it is very handy to sample from it but it poorly models the

uncertainty on orientations of diffusion. Indeed, when sampling from the Gaussian

distribution, only perturbed SIDs can theoretically be generated, since orientations

are not evolving in the 3-dimensional Euclidean space. Distributions suited to orien-

tational data analysis have thus been proposed: [Cook 2004] captures the orientation

uncertainty by a Watson distribution, [Kaden 2007] uses a mixture of Bingham dis-

tributions estimated by spherical deconvolution and [Jeurissen 2011] uses a fODF,

whose SH coefficients are estimated using constrained spherical deconvolution as

proposed in [Tournier 2008].

Nevertheless, all the previously described probabilistic streamline tractography al-

gorithms assume that the ten of thousands of generated fascicles have the same

weight and a probability index of connectivity is defined between any voxel and

the seed voxel as the number of fascicles that visited the voxel over the num-

ber of trials. The generated fascicles are thus still not a representative sample

of the distribution of all possible fascicles emanating from the seed voxel. This

distribution is usually called the filtering distribution and can be well approxi-

mated by particle filters. The use of particle filters for tractography was pioneered

by [Brun 2002, Björnemo 2002] and enables the reconstruction of fascicles by sequen-

tial importance sampling. After [Brun 2002] introduced the idea that particle filter-

ing might help in obtaining a reliable reconstruction of fascicles, [Björnemo 2002]

implemented a particle filter in which orientations of diffusion are sampled accord-

ing to a Gaussian distribution and fascicle weights are assumed constant thoughout

the sequential sampling. As a result, this first proposed particle filter for trac-

tography presents the same drawbacks as the other probabilistic streamline algo-

rithms. Recently, more elaborate particle filters have been proposed in the litera-

ture [Zhang 2009, Pontabry 2013]. The common foundation of these algorithms is

that they resort to the vMF distribution to model uncertainty on the local orienta-

tions of diffusion, which is a suitable distribution for directional data that can be

efficiently sampled fast [Ulrich 1984, Wood 1994, Jakob 2012]. The two algorithms

differ by the choice of the diffusion model that is used to extract the diffusional

information out of the measured DW images. In [Zhang 2009], the DT model is

used, distinguishing prolate from oblate DTs based on the linear coefficient of the

tensor given in eq. (1.21) [Westin 2002]. The weights of the fascicles are updated at

each step of their reconstruction, with different update equations whether the DT

is prolate or oblate. The particle filter proposed by [Pontabry 2013] relies on QBI

[Tuch 2004]. When fitted to adequate diffusion data (high b-value and HARDI),

such a diffusion model is able to locally detect multiple orientations of diffusion.

Consequently, a single update equation is defined for the fascicle weights and the

local detection of multiple orientations help in capturing the multi-modality of the

filtering distribution.

However, a common problem of classical particle filters is that, they have hard
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time in maintaining the multi-modality of the filtering distribution. In the context

of tractography, this means that they will hardly be able to track multiple fascicles

over extended volumes, regardless of the capability of the underlying diffusion model

to identify correctly multiple orientations locally. This effect is stressed by the

resampling of the fascicles that is occasionnally performed in the process. Indeed,

in order to avoid degeneracy of the particle weights, a resampling step is sometimes

necessary to keep only the most relevant particles [Doucet 2000]. After this step,

bifurcating sub-fascicles are often discarded.

In the tractography literature on deterministic streamline algorithms, we no-

ticed that, since these algorithms (namely FACT and TEND) were developed when

only DTI was available to extract local orientations of diffusion, there has been no

attempt to combine diffusion models that are capable of identifying multiple ori-

entations with FACT or TEND algorithms. This could be very promising since it

could avoid having to perform full brain tractography, which is prohibitively time-

consuming, even with fast DTI estimation. In section 4.1, we will therefore propose

an adapated FACT algorithm to account for multiple local orientations of diffusion.

The behavior of the proposed algorithm will then be compared using three different

diffusion models, namely DTI, QBI and our proposed DDI MCM.

Among the most recent tractography algorithms, it seems that particle filtering

on the distribution of all possible fascicles emanating from a seed voxel is one of the

most promising techniques to account for orientational uncertainty while focusing

on the fascicles themselves. However, even if [Pontabry 2013] made significant im-

provements, classic particle filters intrinsically have hard time maintaing the multi-

modality and thus are unlikely to depict well all the birfucations of many fascicles

in the brain [Catani 2002, Jellison 2004, Catani 2008, Thiebaut de Schotten 2011].

In section 4.2, we will thus describe how the particle filter works and how it can be

improved to better maintain the multi-modality of the filtering distribution. The

adapative multi-modal particle filter for tractography is implemented with both

DTI and QBI, which allows for a comparison with their mono-modal counterparts

proposed respectively by [Zhang 2009] and [Pontabry 2013]. The benefits of our

proposed DDI MCM will also be shown through this probabilistic tractography al-

gorithm.

4.1 Multi-modal FACT algorithm

4.1.1 Introduction

dMRI [Le Bihan 2003] allows in vivo and non-invasive imaging of tissue structure.

It is based on the facts that i) the diffusion of water molecules is constrained by the

micro-structure of the tissues (such as, typically, the WM fascicles in the brain), and

ii) MRI can be made sensitive to this diffusion, using specific diffusion sequences.

Diffusion models can then be devised, and their parameters can be estimated for

further study and analysis of tissue architecture. The simplest model is that of a

Gaussian EAP, which amounts to characterizing the diffusion with a tensor (i.e. a
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3×3 symmetric definite positive matrix), giving its name to DTI [Basser 2002].

Tractography has been developed to “reconstruct” or “dissect” the fascicles in

vivo, and then infer brain anatomy [Mori 2002]. Many of the association (e.g. un-

cinate fasciculus, cingulum) and commissural (e.g. transverse fascicles of the cor-

pus callosum) fascicles have been successfully reconstructed using i) clinical dMRI

sequences (with few gradient directions and low b-values), ii) the simple Gaus-

sian diffusion model and iii) simple deterministic streamline tractography algor-

tihms [Mori 2005]. On the contrary, it has proved much more difficult to recon-

struct projection fascicles, and especially the motor tracts of the CST using such

standard protocols. On one side, the anatomy of these tracts between the spinal cord

and the internal capsule has been well-studied using DTI [Holodny 2005, Kim 2008,

Hong 2010]. On the other side, the study of these tracts between the internal

capsule and the cortex, and in particular of those dedicated to a specific motor

function [Han 2010, Seo 2012], is much more challenging using DTI, mostly due to

the numerous crossings, kissing, merging or diverging fascicles in the corona ra-

diata. A particularly difficult tract to reconstruct within the CST is the portion

corresponding to the motor hand area, because it is located laterally on the motor

cortex [Yousry 1997] (as shown by the homunculus of Penfield & Rasmussen), com-

pared to the leg or the trunk areas for instance. In the following, we call this tract

the Hand Motor Tract (HMT).

The HMTs are a crucial part of the CST to investigate, in the context of normal

anatomy, within the more general study of handedness, cerebral dominance, and

brain asymmetry [Toga 2003]. More generally, the development of diffusion models

and tractography methods for the CST in general, and the HMTs in particular,

which could be used in clinical routine, is key for a better understanding of patholo-

gies of the CST such as, typically, ALS [Iwata 2008], Wallerian degeneration of the

CST after ischemic stroke [Yu 2009], motor dysfunctions in infants [Ludeman 2008]

or in patients with relapsing-remitting MS [Lin 2007].

New types of image acquisition schemes (e.g. HARDI sequences), diffusion mod-

els (e.g. multiple tensors, QBI, etc.) [Lenglet 2009, Assemlal 2011] and tractog-

raphy methods [Mori 2002, Mukherjee 2008a, Mukherjee 2008b] have been intro-

duced to account for intricate tract configurations, but these techniques i) have

been reported to often miss entirely the lateral portions of the CST, and thus the

HMTs [Behrens 2007] and ii) are not applicable at hand in a clinical setting, mostly

due to long acquisition times.

In this section, we propose to investigate the usefulness of our proposed diffusion

model, termed DDI and introduced in section 2.3, to reconstruct the HMTs on

clinical data, using a deterministic streamline tractography algorithm. This model

allows the capture of several diffusion directions within a voxel, with a low number

of parameters.

The two goals of this section are: 1) to evaluate the ability of this new diffusion

model and of two other standard models (DTI/QBI) to reconstruct the left and

right HMTs, using a common tractography algorithm, in a clinical setting, i.e. with

few diffusion gradients (typically, less than 15) and low b-values (typically, less
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that 1000 s/mm2), and 2) to study whether the number of reconstructed HMTs

in one hemisphere is different from that in the contralateral hemisphere, for right-

handed and left-handed subjects. Note that we do not test multi-tensor models, as

these have been shown to be unable to provide a unique solution in the context of

single-shell (one unique b-value) acquisitions [Scherrer 2010], as is the case here and

in most standard clinical protocols.

In section 4.1.2.1, we present the three tested models, and we outline our im-

plementation thereof. In section 4.1.2.2, we describe the common multi-modal de-

terministic streamline tractography algorithm we use for these three models. The

same algorithm is used to make sure that the subsequently reported results can

be interpreted as differences between models, rather than differences in dMRI

sequences or tractography algorithms. The data are described in section 4.1.2.3,

and we perform statistical tests and numerical evaluation in section 4.1.3, before

discussing these results, concluding and giving some perspectives in section 4.1.4.

4.1.2 Material & Methods

4.1.2.1 Diffusion models

DT model : It assumes that the diffusion process can be captured by a tensor

(6 parameters), which is proportional to the covariance matrix of the unknown

Gaussian PDF. The DT D is parametrized as D = exp(M), where M is an unknown

3 × 3 symmetric matrix, and its estimation is done using a least square fitting on

the measured DW signals [Fillard 2007]. The least square criterion is optimised

numerically using the NEW Unconstrained Optimization Algorithm (NEWUOA)

algorithm [Powell 2006]. Within a given voxel, the single putative fascicle orientation

is considered to be aligned with the orientation of the eigenvectors associated to the

largest eigenvalue of the DT. The tractography algorithm uses a log-Euclidean

interpolation scheme [Arsigny 2006].

Q-ball model : The dODF describes the orientational structure of the EAP

[Tuch 2004]. The measured DW signals are modeled with a modified basis of spher-

ical harmonics, whose c coefficients are estimated using a least square fitting includ-

ing a Laplace-Beltrami regularisation term. The number of unknown coefficients

depends on the order l of the basis: c = (l + 1)(l + 2)/2. This least square problem

has a closed-form solution, from which the optimal dODF (or to be precise, an

approximation thereof) can be computed analytically using the Funk-Hecke theo-

rem [Descoteaux 2007]. Then, dODF sharpening is performed using spherical de-

convolution to compute the fODF [Descoteaux 2009]. Within a given voxel, the pu-

tative fascicle orientations are selected as the local maxima of the normalized fODF

for which the fODF value is above a user-specified threshold set here to 0.1. These

local maxima are computed using NEWUOA (with starting points homogeneously

distributed on the unit sphere), and they are sorted according to their fODF value.

The tractography algorithm uses a trilinear interpolation scheme [Lenglet 2009].

DDI model : The EAP is modeled by the full DDI MCM introduced in sec-
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tion 2.3.4.1, to which we applied some constraints that are however different from

those applied to the constrained DDI MCM proposed in section 2.3.4.3. The number

of mixture components is equal to the number m of different fascicle orientations

within the voxel. The extra-axonal occupancy in each fascicle compartment is set

to νi = 0.5. The free diffusivity along each fascicle di is assumed to be related to the

concentrations κi via di = (κi + 1)λ, where λ is a diffusivity common to all fascicle

compartments. The diffusivity in the CSF is assumed to be equal to λ and finally the

fractions of occupancy of the fascicle compartments are given by wi = FAapprox

i /m,

with FAapprox

i being:

FAapprox

i = κi√(κi + 1)2 + 2 , (4.1)

based on the exponential part of the DDI PDF, which resembles a Gaussian distri-

bution with DT eigenvalues λ1 = d and d/(κ+1) yielding the FA expression given by

eq. (4.1). Therefore, to allow for m fascicles, this constrained DDI model requires

3m+1 parameters. The approximated FA given by eq. (4.1) is akin to the FA (resp.

the generalized FA [Tuch 2004]) in the DT (resp. Q-ball) model. The 3m + 1 un-

known parameters are estimated using a least square fitting on the measured DW

signals, and this optimization is performed using NEWUOA. Within a given voxel,

the putative fascicle orientations are a natural output of this model, sorted accord-

ing to their EAP values. Note that, as of now, the number of fascicles m in this

model is set to 2, since the model averaging tool described in section 3.2.2 was not

available at this moment. The tractography algorithm uses a trilinear interpolation

scheme.

4.1.2.2 The common multi-modal deterministic streamline tractography

algorithm

Our goal is to reconstruct the fascicles connecting two ROIs. Our deterministic

streamline algorithm can be viewed as an extension of the original FACT algo-

rithm [Mori 1999], adapted to QBI and DDI, using a breadth-first-type search. It

must be made clear that for DTI, the tractography is led without considering

multiple orientations; we omit this important detail below for the sake of clarity.

Starting from one of the two ROIs, we define n starting points within each

voxel of the ROI. The DT, Q-ball and DDI models at these starting points are

estimated using the previously described interpolation schemes. For each of these

starting points, we compute the two principal putative orientations (defined using

the previously described sorting out procedures), we follow the first orientation with

a step size of l millimeters and we record the second one for future use, as it can

be indicative of crossing, kissing, merging or diverging tracts. We then reestimate

the DT, Q-ball and DDI models at this new spatial position (using the previously

described interpolation schemes), and we compute all the putative orientations for

each model. Among these, we follow the one closest (i.e. with minimal angular

difference) to the previously estimated first orientation. A second orientation, having

the highest fODF/EAP value among the remaining putative fascicle orientations, is
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recorded for future use. The reconstruction of the main tract is achieved when i) the

angle between two successively estimated first orientations is higher than α, or when

ii) FA/generalized FA/ξ is lower than β, or when iii) the tract reaches the border

of a precomputed brain mask [Smith 2002]. The algorithm for the reconstruction of

the main tract can be summarized as follows:

Starting from one of the ROIs, we define n starting point(s) at each voxel of

the ROI. Given one point along its path, we build the main tract iteratively

as follows:

1. If the number of putative fascicle orientations m = 0, we stop the

reconstruction.

2. If m = 1, we compute FA1 and the angle α1 between the input direc-

tion and orientation ±µ1. We ensure the inner product between the

input direction and µ1 is positive: if not, we apply a 180° rotation

to µ1. If α1 < αt and FA1 > FAt, then we follow the single putative

fascicle direction µ1 with a step size of l millimeters. Else, we stop

the reconstruction.

3. If m = 2, we compute FA1, FA2, the angle α1 (resp. α2) between

the input direction and µ1 (resp. µ2). We ensure the inner product

between the input direction and µ1 (resp. µ2) is positive: if not, we

apply a 180° rotation to µ1 (resp. µ1). If:

• αt < α1, α2: we stop the reconstruction.

• α1 < αt < α2: cf. the case m = 1.
• α2 < αt < α1: if FA2 > FAt, then we follow the direction µ⃗2 with

a step size of l millimeters, else we stop the reconstruction.

• α1, α2 < αt: if FA2 < FAt, then cf. the case m = 1; else if κ2 > r×κ1
then we sort the two tracts in ascending order according to the

angles αi. We follow the new direction µ1 with a step size of l

millimeters and we record the second putative fascicle direction

µ2 (branch) for future use, as it can be indicative of crossing,

kissing, merging or diverging tracts.

This is the global description of the algorithm, in which the switch on the number

m of putative fascicle orientations is used to generalize the algorithm to any diffusion

model. For instance, with the DT model, only the case m = 1 is relevant. With the

Q-ball model, cases m = 1,2 can occur. With the DDI model, only the case m = 2
is relevant since no model selection is performed in this analysis.

Figure 4.2 illustrates the process described above for reconstructing a tract with

bifurcations. Starting from a single starting point in a given voxel, the main tract is

followed as long as the diffusion model proposes a single (m = 1) fascicle orientation

(Figure 4.2a). At some point, the tract reaches a location at which the model pro-

poses two fascicles orientations (Figure 4.2b). The main tract is first prolongated
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by following the green one, which is more collinear to the incoming direction than

the orange one (Figure 4.2c). Later, the main tract reaches another location at

which the model proposes two fascicle orientations (Figure 4.2d). Since no stopping

criterion has yet been met, the main tract is still prolongated by following the green

one, which is more collinear to the incoming direction than the orange one (Fig-

ure 4.2e). At some point, one or more of the stopping criteria is/are met and the

reconstruction of the main tract stops. Bifurcating directions previously recorded

along the main tract are then explored in order of appearance (Figure 4.2f). If

all locations explored during the reconstruction of a bifurcation contain only one

fascicle orientation then the bifurcation is stopped when a stopping criterion is met

(Figure 4.2g). Else, if, during the reconstruction, a bifurcation reaches a location

with two fascicle orientations, the green one is followed (more collinear to incoming

direction) and the orange one is not recorded anymore since it is not a bifurcating

direction along the main tract (Figure 4.2h). Figure 4.2i shows the complete recon-

struction using our adapted multi-modal FACT algorithm and fig. 4.2j shows the

complete reconstruction using the original FACT algorithm.

Once this main tract has been reconstructed, we perform the same reconstruction

from all the possible crossing, kissing, merging or diverging points that have been

recorded along its path. Importantly, for these reconstructions, the stepping rule

and stopping criteria are identical as those for the main tract, but we do not record

any possible mixed tract configuration along these secondary paths, for which we

only follow the first orientation at each step. The same reconstruction pattern is

then led on the second ROI, and only the tracts linking the two ROIs are kept for

further analysis. In practice, we choose the parameters n = 1, l = 1, α = 60°, β = 0.15
and r = 0.8.
4.1.2.3 Data

The data consist of dMRI, Anatomical MRI (aMRI) and Functional MRI (fMRI) on

14 right-handed (8 males, 6 females) and 9 left-handed (6 males, 3 females) healthy

volunteers. The mean age was 30.3 (21 to 45). Handedness was determined using

the Oldfield questionnaire [Oldfield 1971]. The aMRI, dMRI and fMRI data were

acquired using standard sequences on a Philips Achieva 3T system:

• aMRI: T1-w 3D Turbo Field Echo (TFE), 184 sagittal slices of size 256× 256
(1 × 1mm2) and 1mm thickness.

• fMRI: gradient echo Echo Planar Imaging (EPI) using Blood Oxygen Level

Dependent (BOLD) contrast, 24 contiguous axial slices of size 128×128 (1.8×
1.8mm2) and 4mm thickness. The hand motor task consisted in opening and

closing the hand, and was implemented in a standard block design. Motion

correction, slice-timing and detection of the activation areas for both right and

left hands were performed within SPM5.

• dMRI: single shot EPI, 60 contiguous axial slices of size 128×128 (2×2 mm2)

and 2mm thickness. DSGs were applied in 15 non-collinear directions with b =
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.2: Illustrative example of the multi-modal FACT reconstruction.

Reconstructed tract with bifurcations from our multi-modal FACT algorithm (a-i)

and from the original FACT algorithm (j).

800 s/mm2. Each measured DW image was corrected for eddy current-induced

geometric distortions [Netsch 2004] and denoised using the Rician non-local

means algorithm [Wiest-Daesslé 2008]. Given this low number of directions,

the (modified) spherical harmonics basis of order 4 (15 parameters) was used

for dODF estimation, while 6 parameters (resp. 7) were to be estimated for

DTI (resp. DDI).

For each subject, the images from aMRI and fMRI were rigidly registered to the

B0 image of the dMRI sequence [Maes 1997]. A first ROI was manually delineated
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by an expert neuroanatomist in an axial slice on the aMRI data through the superior

part of the mesencephalum, both on left and right sides. Tractography was then

performed between these two anatomical ROIs and the two (left and right) cortical

functional ROIs to reconstruct the HMTs using the three above-mentioned diffusion

models and the previously described tractography algorithm.

4.1.3 Results

4.1.3.1 Connections between the ROIs

Our objective here was to evaluate whether the three diffusion models, coupled with

the tractography algorithm, were able to connect fully, partially, or not at all, the

anatomical and functional ROIs. First of all, we split each functional ROI into a

medial and a lateral area, the latter corresponding to the extremity of the hand

representation on the motor homunculus, i.e. the thumb. Then for each model

(DTI/QBI/DDI), each hemisphere, and each of the 23 subjects, we evaluated the

strength (subjectively based on the number of tracts) of the connection between the

anatomical ROI and the medial part of the functional ROI by a discrete score of 0

(almost no tracts), 1 or 2 (lots of tracts); in a word, we estimated 3 × 2 × 23 = 138
scores. Similarly, we computed another set of 138 scores for the connection with the

lateral part of the functional ROI. At last, the overall number of tracts composing

the reconstructed HMTs, i.e. connecting the two (anatomical and functional) ROIs,

was also computed.

The Pearson χ2 test is particularly adequate to handle such qualitative, discrete

scores. We performed pairwise Pearson χ2 tests with a significance level of 0.05,

corrected for multiple comparisons (Bonferroni) to compare DTI vs QBI, QBI vs

DDI, and DDI vs DTI for the medial and lateral areas. To compare the overall

number of tracts, we first showed that the data were not Gaussian-distributed using

the Jarque-Bera test, and then we performed pairwise sign rank tests (which allows

the test of differences in medians) with a significance level of 0.05, corrected for

multiple comparisons (Bonferroni).

The p-values are reported in table 4.1, left, and mainly show that i) the Q-

ball model was able to reconstruct more medial tracts than the DT model, but as

many lateral tracts, and that ii) the DDI model did not reconstruct more medial

tracts than the Q-ball model, but did reconstruct more lateral tracts, at the 0.05

significance level. These two results are confirmed by the sign rank test on the

overall number of tracts.

4.1.3.2 Asymmetry of the hand motor tracts

Our objective was to evaluate whether the three diffusion models, coupled with the

tractography algorithm, were able to show significant differences (in terms of number

of tracts) between the left and right reconstructed HMTs, in right-handed (14)

and left-handed (9) subjects. We pooled males and females for increased statistical
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Medial Lateral # Tracts

DTI vs QBI < 0.001 0.340 < 0.001
QBI vs DDI 0.037 < 0.001 < 0.001
DDI vs DTI < 0.001 < 0.001 0.001

RH LH

DTI 0.092 1.000

QBI 0.581 0.180

DDI 0.019 0.508

Table 4.1: p-values of the statistical tests. Left table: “Is there a significant

difference (level=0.05) between the 3 models in recovering tracts reaching the medial

and lateral areas of the functional ROI, in each hemisphere, for the 23 subjects?

And in the overall number of tracts?”. Right table: “Are the 3 models able to show

significant differences (level=0.05), in terms of number of tracts, between the left and

right HMTs, for the 14 right-handed (RH) and the 9 left-handed (LH) subjects?”.

Figure 4.3: Tractography of the HMTs in the left and right hemispheres.

From left to right: DTI, QBI and DDI. Note that we use the neurological convention,

i.e. the left (resp. right) hemisphere is displayed on the left (resp. right). The DDI

model is the only one able to consistently reach the lateral area within the functional

ROI.

power. After showing that the data were not Gaussian-distributed using the Jarque-

Bera test, we performed pairwise sign rank tests with a significance level of 0.05,

corrected for multiple comparisons (Bonferroni).

The p-values are reported in table 4.1, right, and mainly show that i) none of

the models is able to show differences in left-handed subjects, but that ii) the DDI

model is the only model showing that the bundle of HMTs is larger (in terms of

number of tracts) in the left hemisphere than in the right for right-handed subjects.

4.1.4 Conclusive remarks

In this section, we showed that i) the DDI model outperforms both the DT and

the Q-ball models to reconstruct the HMTs (see fig. 4.3), and, maybe more im-

portantly, that ii) it is the only model able to show that the number of HMTs in

the left hemisphere is larger than in the contralateral hemisphere for right-handed

subjects. The latter finding meets the intuition that the hand motor tracts in the

hemisphere contralateral to the dominant hand should be somewhat more developed
than those in the other hemisphere. Interestingly, the DDI model, as the other

two models, failed to find such a difference for left-handed subjects, which may
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suggest that left-handedness is not simply a mirrored right-handedness. This is al-

ready known from e.g. the notoriously differing patterns of hemispheric dominance

for language between left and right-handed subjects, but to our knowledge, this is

the first time such results are reported on white matter tracts, at least on clinical

data. These results must now be further investigated in light of the huge literature

on brain asymmetry and cerebral dominance [Toga 2003]. In particular, recruiting

more males/females and right/left-handed subjects for increased statistical power

and population-specific analysis would be necessary to confirm these first results, of

potentially important anatomical significance.

As expected, the DT model performs very poorly when reconstructing the HMTs.

Importantly, we stress here that we do not state that the DDI model outperforms

the Q-ball model in general, but only in this particular experimental setting. Low

angular resolution of the order-4 dODF model can explain why it is outperformed

here. It would be of high interest to try to replicate our experiments on HARDI data

using higher-order dODF models and improved (e.g. probabilistic) tractography

methods, to further support our first findings.

We adapted to the FACT algorithm to account for the multiple fascicle orienta-

tions provided by MCMs and shows that it leads to interesting findings. However,

it still suffers from two main limitations: (i) it strictly follows the one or several

orientations provided by the MCM so that the reconstructed tract may be subject

to accumulated errors due to the uncertainty on these estimated orientations and

(ii) exploring all the orientations provided by the MCM at each voxel is prohibitively

time- and space-consuming. We therefore moved towards probabilistic algorithms

and, in particular, those based on the use of particle filters that try to approximate

the distribution of all possible tracts from a single voxel which, at least theoretically,

precisely answer the question raised by the tractography problem.

4.2 Multi-modal particle filtering

Particle filters are a common way to approximate a filtering distribution. One

can define WM tractography as a filtering problem, where the filtering distribution

is defined for some fixed tract length, as the distribution of all possible tracts of

this length emanating from a single seed voxel. The use of particle filters to approx-

imate such a filtering distribution has been pioneered by [Zhang 2009], where the

diffusion information is estimated through DTI. The particle filter is improved in

[Pontabry 2013] by using the Q-ball model to locally account for multiple fascicle

orientations. However, particle filters often fail at consistently capturing the multi-

modality of the filtering distribution [Vermaak 2003]. Multiple fascicles are thus

unlikely to be tracked over extended volumes. We propose an adaptive multi-modal

particle filter for WM tractography that improves the multi-modality capture. We

apply it to both DTI and QBI (Section 4.2.1). We then design an experimental

framework for validation of the proposed methods (Section 4.2.2) and show results

on both synthetic data with an extensive comparison to their traditional particle
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filter counterparts and real clinical data (Section 4.2.3). Another contribution is

that the number of modes of the filtering distribution is dynamically estimated. We

show that our proposed algorithm greatly improves WM tractography and, when

the associated diffusion model accurately captures multiple fascicle orientations, it

is able to distinguish crossings from bifurcations.

4.2.1 Proposed algorithm

4.2.1.1 Tractography as a mixture filtering problem

At step k, a tract is a sequence Xk = [(x0,v−1), . . . , (xk,vk−1)] ∈ (Ω,S2)k+1 of

successive pairs of positions and arrival directions, related by xk+1 = xk+ρvk, where

ρ > 0 is the step size, which is assumed to be constant. The state space at step k is

the set of all possible fiber pathways Xk originated from a specified position x0 and

a specified arrival direction v−1.
The filtering distribution at step k is the distribution of Xk, given the diffusion

data Yk = {yx ∶ ∥x − x0∥ ≤ kρ} where yx = {Sx,i,Ψx,i}ni=1. Si designates a measured

DW image/signal and Ψi the corresponding predicted DW image/signal from some

given diffusion model. At step k + 1, this distribution is sequentially determined by

successively computing the prediction distribution p(Xk+1∣Yk) out of the previous

filtering distribution (at step k) and then using Bayes’ rule to obtain p(Xk+1∣Yk).
These prediction and update stages require to specify respectively the evolution

model p(Xk+1∣Xk) and the likelihood p(Yk+1∣Xk+1).
We assume that the tracts are first-order Markov chains. Consequently, the

evolution model simplifies to p(vk∣vk−1). Following [Zhang 2009, Pontabry 2013],

we use the evolution model defined as:

p(vk∣vk−1) = vMF(vk;vk−1, κ) = κ

4π sinhκ
exp{κ < vk−1,vk >} , (4.2)

where vMF(⋅;vk−1, κ) is the vMF distribution [Jupp 1989] on the 2-dimensional

sphere with mean direction vk−1 ∈ S
2 and concentration parameter κ ≥ 0. The

concentration parameter κ of the evolution model controls the smoothness of the

reconstructed tracts.

Denoting Bk = {x ∈ Ω ∶ ∥x − x0∥ ≤ kρ} and assuming that the diffusion data are

spatially independent given a tract, the likelihood p(Yk+1∣Xk+1) can be decomposed

as follows:

p(Yk+1∣Xk+1) = ∏
x∈Bk+1∖x0∶k+1

p0(yx) k∏
j=0

p1(yxj+1 ∣vj)∝ k∏
j=0

p1(yxj+1 ∣vj)
p0(yxj+1) , (4.3)

where x0∶k+1 is the polygonal chain defined by Xk+1 and p1(⋅∣vj) (distribution of

the measurement noise if vj is the true diffusion orientation) and p0 (distribution

of the measurement noise) depend on the diffusion model and will be defined in

section 4.2.1.4.

In order to better capture the possible multi-modality of the filtering distribu-

tion, we follow the idea of [Vermaak 2003] and formulate it as a mixture of Mk
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components:

p(Xk∣Yk) = Mk∑
m=1

πm,kpm(Xk∣Yk) , (4.4)

where ∑Mk

m=1 πm,k = 1. Such a formulation allows us to perform the filtering recursion

for each component pm individually, provided that each mixture weight is updated

as the normalized weighted likelihood for the associated component.

4.2.1.2 Mixture particle filter

In general, there is no closed-form expressions for the filtering recursion equations.

A popular strategy is to resort to particle filters. They approximate the filtering

distribution by a set of sample (the particles) that are properly weighted to represent

the filtering distribution at each step.

Traditional particle filters approximate distributions of the type of eq. (4.4)

with Mk = 1 at each step k. The only difference that occurs when accounting

for Mk > 1 is that particles are grouped into clusters and resampling is performed

within the clusters, which gives better chances to secondary leads. Weighting is thus

provided at two levels, the particles and the clusters, with adequate updating rules

for compliance with sequential importance sampling. Consequently, one can see

each cluster as a super-particle. The set of particles within a given cluster m aims

at approximating the component pm of the filtering distribution given in eq. (4.4).

Using the notations in [Vermaak 2003], let Pk = {Mk,Πk,Xk,Wk,Ck} be the

particle representation of the filtering distribution where Mk is the number of com-

ponents, Πk = {πm,k}Mk

m=1 the set of mixture weights, Xk = {x(ℓ)k
}Nℓ=1 the set of N

particles, Wk = {w(ℓ)k
}Nℓ=1 the set of particle weights and Ck = {c(ℓ)k

}Nℓ=1 the set of

component indicators (i.e., c
(ℓ)
k
= m if particle ℓ belongs to component m). GivenPk, the particle approximation with mixture filtering distribution proceeds to step

k + 1 in five stages:

Proposition of new samples: New samples are generated according to a pro-

posal density q(⋅∣v(ℓ)
k−1,Yk) which depends on the previous direction and the diffusion

information at step k:

v
(ℓ)
k
∼ q(vk∣v(ℓ)k−1,Yk) and x

(ℓ)
k+1 = x(ℓ)k

+ ρv(ℓ)
k

. (4.5)

Update of particle weights: The weights of the new particles are updated in

order to be representative of the filtering distribution according to [Doucet 2000]:

w̃
(ℓ)
k+1 = w

(ℓ)
k

p1(yx(ℓ)
k+1
∣v(ℓ)

k
)p(v(ℓ)

k
∣v(ℓ)

k−1)
p0(yx(ℓ)

k+1
)q(v(ℓ)

k
∣v(ℓ)

k−1,Y(ℓ)k
) . (4.6)

The normalization of these weights is performed within each component:

w
(ℓ)
k+1 = w̃

(ℓ)
k+1∑j∈Im,k
w̃
(j)
k+1

, (4.7)
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where Im,k = {ℓ ∈ J1,NK ∶ c(ℓ)
k
= m} is the set of indices of the particles that belong

to the m-th mixture component at step k.

Update of mixture weights: The mixture weights need to be updated prop-

erly to ensure that the filter still acts on each component individually:

πm,k+1 = πm,kw̃m,k+1∑M
i=1 πi,kw̃i,k+1

with w̃m,k+1 = ∑
ℓ∈Im,k

w̃
(ℓ)
k+1 . (4.8)

Resampling within each component: To avoid the degeneracy of the parti-

cle weights, occasional resampling is necessary [Doucet 2000]. The resampling stage

can be performed within each subset of particles associated to a mixture compo-

nent independently, according to the component particle weights [Vermaak 2003]:

we compute the effective number of particles in a mixture component as:

ESSm = ⎛⎝ ∑ℓ∈Im,k

(w(ℓ)
k+1)2⎞⎠

−1
, (4.9)

and perform within-cluster resampling from a categorical distribution with ∣Im,k∣
categories and event probabilities given by eq. (4.7), if ESSm is below a threshold

α∣Im,k∣, where ∣ ⋅ ∣ denotes the set size operator.

Reclustering of the particles within new components: The number of com-

ponents Mk in the mixture is not known. At the end of each step, it is dynamically

estimated by merging and/or splitting some of the components: Mk, Ck and Im,k

are updated to Mk+1, Ck+1 and Im,k+1 accordingly.

In section 4.2.1.3, we describe how the reclustering of the mixture filtering dis-

tribution is performed. In section 4.2.1.4, we define the proposal density and the

likelihood for the DT and Q-ball models following respectively [Zhang 2009] and

[Pontabry 2013].

4.2.1.3 Reclustering of the particle set

After the resampling stage, we characterize each cluster by

1. the weighted mean of the cluster particles, referred to as the global cluster
mean particle;

2. a vMF distribution, referred to as the local cluster directional distribution,

with mean direction µm,k and concentration κm,k. The parameters of the distribu-

tion are estimated using the following equations:

rm,k ∶= ∑ℓ∈Im,k
v
(ℓ)
k∣Im,k∣ , µm,k = rm,k∥rm,k∥ , κm,k = ∥rm,k∥(3 − ∥rm,k∥2)

1 − ∥rm,k∥2 . (4.10)

These estimators have been proposed in [Banerjee 2006] and have been introduced

for dMRI in [Bhalerao 2007] for their unbiasedness and robustness.

We first test the clusters pairwise for merging. The decision to merge two clusters

shall be based on the difference in shape between the global cluster mean particles.
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Consequently, we merge two clusters if the Hausdorff distance [Rockafellar 1998]

between the global cluster mean particles drops below a threshold ht.

We then test each cluster for splitting. The decision to split a cluster shall be

based on some local measure of directional dispersion. Consequently, we split a clus-

ter if the concentration parameter κm,k of the local cluster directional distribution

drops below a threshold κt.

Finally, the number of mixture components is updated to Mk+1, the component

indicators to Ck+1 and the set of indices to Im,k+1. In order to maintain a properly

weighted sample from the filtering distribution and thus to preserve the convergence

properties of the particle filter, we perform the following update of mixture and

particle weights [Vermaak 2003]:

π⋆m,k+1 = ∑
ℓ∈Im,k+1

π
c
(ℓ)
k

,k+1w
(ℓ)
k+1 , w

(ℓ)⋆
k+1 = π

c
(ℓ)
k

,k+1w
(ℓ)
k+1

π⋆
c
(ℓ)
k+1,k+1

. (4.11)

4.2.1.4 Diffusion models: associated proposal densities and likelihoods

The DT model. It provides a 2nd order DT represented by its eigensystem{d1, d2, d3,e1,e2,e3}, of which we extract the FA (eq. (1.20)), the linear coefficient

cl (eq. (1.21)), the MD D (eq. (1.19)), the perpendicular diffusivity D⊥ (eq. (1.18),

the principal eigenvector e1 and the minor eigenvector e3.

Noise in dMRI is known to be Rician [Gudbjartsson 1995]. The logarithm of the

measured DW signal is thus approximately normally distributed around the pre-

dicted DW signal in absence of noise with standard deviation equal to the inverse

SNR [Salvador 2005]. Following [Zhang 2009], the likelihood p1(yxk+1 ∣vk) at posi-

tion xk+1 given the local diffusion direction vk thus reads:

p1(yxk+1 ∣vk) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∏
i=1

Ψ⋆xk+1,i

σi
√
2π

exp

⎧⎪⎪⎨⎪⎪⎩−
(Ψ⋆xk+1,i)2(logSxk+1,i − logΨ⋆xk+1,i)2

2σ2
i

⎫⎪⎪⎬⎪⎪⎭, cl > τ ,
1

σ
√(2π)3 exp{−

(arccos < vk,e3 > −π/2)2
2σ2

} , cl ≤ τ ,
(4.12)

where the diffusion tensor is estimated at position xk+1, σi and gi are the standard

deviation and the DSG direction of the i-th gradient image respectively, estimated

by LS! (LS!) estimation and pseudo-residuals [Gasser 1986], σ is a user-defined

standard deviation and Ψ⋆xk+1,i = Ψxk+1,0 exp{−b(D⊥ +3 < vk,gi >2 (D−D⊥))} is the

predicted DW signal from the DT model cylindrically constrained along the sampled

direction vk.
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Similarly, the likelihood p0(yxk+1) at position xk+1 can thus be expressed as follows:

p0(yxk+1) =⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n∏
i=1

Ψxk+1,i

σi
√
2π

exp{−(Ψxk+1,i)2(logSxk+1,i − logΨxk+1,i)2
2σ2

i

}, cl > τ ,
1

σ
√(2π)3 , cl ≤ τ ,

(4.13)

where Ψ⋆xk+1,i = Ψxk+1,0 exp{−b(D⊥ + 3 < e1,gi >2 (D −D⊥))} is the predicted DW

signal from the DT model.

We define the proposal density as:

q(vk∣vk−1, yxk
) = ⎧⎪⎪⎨⎪⎪⎩

vMF(vk;e1,k, νk) , cl > τ ,
p(vk∣vk−1) , cl ≤ τ , (4.14)

where the DT is estimated at xk and νk is a function of FA [Zhang 2009].

The Q-Ball model. It provides an estimate of the fODF of which we extract

the set Λ of maxima µ, the value of the fODF at its maxima M(µ) and the mean

curvature of the fODF at its maxima H(µ). Borrowing ideas from [Pontabry 2013],

we define the likelihood p1(yxk+1 ∣vk) at position xk+1 given the local diffusion direc-

tion vk as follows:

p1(yxk+1 ∣vk) = n∏
i=1

1

σi
√
2π

exp

⎧⎪⎪⎨⎪⎪⎩−
(Sxk+1,i −Ψ⋆xk+1,i)2

2σ2
i

⎫⎪⎪⎬⎪⎪⎭, (4.15)

where the fODF is estimated at position xk+1 and Ψ⋆xk+1,i is the diffusion signal

simulated according to [Aganj 2010] from the fODF that has been rotated to align

the sampling direction to the sampled one.

Similarly, the likelihood p0(yxk+1) at position xk+1 can thus be expressed as follows:

p0(yxk+1) = n∏
i=1

1

σi
√
2π

exp{−(Sxk+1,i −Ψxk+1,i)2
2σ2

i

}, (4.16)

where Ψxk+1,i is the diffusion signal simulated from the fODF according to [Aganj 2010].

We define the proposal density as:

q(vk∣vk−1, yxk
) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑
µ∈Λ

ωµvMF(vk;µ, κµ) , Λ ≠ ∅ ,
p(vk∣vk−1) , Λ = ∅ , (4.17)

where the fODF is estimated at position xk, ωµ ∝M(µ) (normalized) and κµ ∝H(µ).
4.2.1.5 Summarized algorithm

The proposed algorithm has the following user-defined parameters:
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• FAt is the threshold on FA: tracts reaching a voxel with too low FA are

stopped,

• ρ is the step length: at each step, we update the tracts one step of such length

ahead,

• N is the size of the particle set,

• Lmax is the common maximum length of the tracts: tracts that reach this

maximum length are stopped,

• Nmin is the minimum allowed cluster size: particle clusters that reach this size

are not allowed to be splitted anymore,

• α is the relative resampling threshold: if the effective sample size within cluster

drops below this relative threshold, particles are resampled according to their weights

in the cluster,

• κ is the concentration of the prior vMF distribution: the higher κ, the smoother

the tracts,

• ht is the threshold on the Hausdorff distance between the global cluster mean

particles: clusters are merged if this distance drops below the treshold,

• κt is the threshold on the concentration of the local cluster directional distri-

bution: a cluster is splitted if this concentration drops below the threshold.

A summary of the proposed tractography algorithm is given in algorithm 1. We

used the following stopping criteria for generated tracts: (i) the maximum number

Lmax of steps is reached, (ii) the anisotropy becomes too low or (iii) it reaches

a position outside the brain. Other model-specific stopping criteria may also be

included in the algorithm. For instance, if the diffusion model is an MCM, the

CSF fraction of occupancy wCSF

0 is often available. It is then reasonable to stop the

generation of a tract that reaches a voxel in which wCSF

0 ≥ wCSF

t , where a typical

value for the threshold is wCSF

t = 0.8.
An important algorithmic issue arises with the use of the vMF distribution. Its

PDF and the sampling procedure described in [Ulrich 1984] indeed involve exponen-

tials of the concentration parameter κ that make the method numerically unstable

for large κ. We circumvent this issue using some tricks proposed in [Jakob 2012],

who provides numerically stable variants.

4.2.2 Experimental setup & evaluation metrics

4.2.2.1 Phantom data

Two synthetic DW phantoms were created for validation and are illustrated in

fig. 4.4: a case of two crossing fascicles at a 90° angle and a case of one bifur-

cating fascicle at a 60° angle. For both phantoms, one measured unweighted image

S0 and 81 measured DW images with a single b-value of 3000 s.mm−2 were simulated

using an equally weighted multi-tensor model at each voxel. Rician noise was then

added on the noise-free images with a relative standard deviation of 5%, to generate

50 samples of each phantom.
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Algorithm 1: Multi-modal particle filter for WM tractography

Require: A set of n measured DW images {Si}ni=1 and corresponding

predicted DW images {Ψi}ni=1 from a diffusion model, one true

unweighted image Ψ0, one diffusion model image M and a seed

voxel x0.

Output : Clustered tract samples originated from x0.

initialize stepCount = 0, stoppingCriteria = 0, M0 ← n° of principal diffusion

directions (PDD) in Mx0

for ℓ = 1 to N do v
(ℓ)
−1 ← PDD given by Mx0

; w
(ℓ)
0 ← 1/N ; x

(ℓ)
0 ← x0

while not stoppingCriteria do

update Xk with eq. (4.5)

update Wk with eqs. (4.2), (4.6) and (4.7) and section 4.2.1.4

update Πk with eqs. (4.6) and (4.8)

for m = 1 to Mk do

compute effective sample size ESSm with eq. (4.9)

if ESSm ≤ α∣Im,k∣ then within-cluster resampling from eq. (4.7)

compute global cluster mean particle

compute local cluster directional distribution with eq. (4.10)

compute Hausdorff distance dH between global cluster mean particles

if dH < ht then merge compared clusters and update Mk

for m = 1 to Mk do if κm,k < κt then split cluster

update Mk, Ck and Im,k

update Πk and Wk with eq. (4.11)

update stoppingCriteria and increment stepCount

(a) (b) (c) (d)

Figure 4.4: Noise-free DW Phantoms. fODF visualization of the crossing fasci-

cles (a) with close-up view (b), and the bifurcating fascicle (c) with close-up view

(d).
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4.2.2.2 Evaluation measures for phantom data

Four methods were utilized: DTI-based “mono-modal" (i.e., without particle clus-

tering mechanism) tractography (DTI mono), DTI-based multi-modal tractogra-

phy (DTI multi), QBI-based mono-modal tractography (QBI mono) and QBI-based

multi-modal tractography (QBI multi). For each phantom, a single seed voxel was

placed in the upper branch. The initial direction of propagation was set towards the

bottom. The following common parameters were used in all algorithms: resampling

threshold α = 0.4, number of particles N = 1000, step length ρ = 1 mm, prior con-

centration κ = 30, and merge and split thresholds ht = 0.5 mm and κt = 40. Tensors

were considered as oblate for τ = 0.25. The output tracts are the final component

mean particles (a single one in mono-modal versions).

The tractography results were evaluated visually and with 3 different quantita-

tive measures: (i) the proportion of tracts branching from the main direction, which

is an indicator of branching capacity (ii) the root-mean-square error between the

end point (after Lmax iterations of the particle filter) of each tract following the

main path and the expected arrival position (known in the phantoms), which gives

an idea of how spread the tracts are around the true one and (iii) the local curvature

along each branching tract for the bifurcation phantom, which translates how each

branch was created from the main direction (either by an uncertain turn or by a

sharper local turn).

The expected arrival position in the bifurcation phantom is not obvious. In this

phantom, tracts going straight follow the inaccurate diffusion orientations given by

the diffusion model in the heterogeneous region and are thus expected to deviate

exclusively towards the right border of the vertical band. Therefore, we have chosen

the end position for the bifurcation phantom at the center of the segment joining

the center of the vertical band and its right border (red point in figs. 4.5e-h).

4.2.2.3 Clinical diffusion acquisition

The 4 algorithms were also applied on real clinical scans, acquired on a Siemens 3T

scanner with a matrix size of 128 × 128, 60 slices (voxel size 2 × 2 × 2 mm3). The

diffusion acquisition consisted of one measured unweighted image and 30 measured

DW images with a b-value of 1000 s.mm−2. Seed ROIs were placed by a radiologist

at the basis of the left and right CSTs in the mesencephalon, with filtering ROIs

in the posterior limb of the internal capsule to retain only the tracts belonging to

the CST. The same parameters as for synthetic data were utilized for real data.

A particle filter was initiated at each voxel of the seed regions and the displayed

fascicles are the final component mean particles.



4.2. Multi-modal particle filtering 137

4.2.3 Results

4.2.3.1 Experiments on Synthetic Data

We present a representative example of the results achieved by each method in

fig. 4.5. We clearly notice that the 2 mono-modal methods fail to capture the

multi-modality of the bifurcation phantom and therefore follow only one of the two

directions. On the contrary, the 2 multi-modal methods are visually well able to

capture the two branching fascicles, thanks to the adaptive clustering based on the

proposed directions. It may be noted that DTI multi tends to obtain more fanning

tracts, because the observation model is wide for oblate tensors. These visual results

are valid for both crossing and bifurcation phantoms. However, in the crossing one,

tracts are only expected to go straight since crossing tracts are not part of the same

fascicle. Therefore, QBI mono and multi are performing well while DTI multi tends

to capture too many branches.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.5: Tractography results on phantom data. First row: crossing phan-

tom, Second row: bifurcation phantom. Methods used were DTI mono (a,e), DTI

multi (b,f), QBI mono (c,g), QBI multi (d,h).

We report in table 4.2 the proportion of branching tracts for each phantom and

each method. These quantitative results confirm the visual ones. When utilizing the

mono-modal methods, only one of the two branches of each phantom is explored.

On the contrary, multi-modal methods capture much better the 2 modes in the

bifurcation phantom, with QBI multi being the closest to the half/half ground truth

in each branch.

In addition, table 4.2 displays the RMSE towards the expected arrival point of

the straight tracts only for those tracts which go in the straight branch of each

phantom. For both phantoms, DTI mono and multi perform worse as DTI does not

handle multiple directions. QBI multi outperforms the other methods, being able

to better recover the final positions of the tracts.
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DTI mono DTI multi ODF mono ODF multi

Crossing Phantom

Fiber proportion straight (%) 0 ± 0 8.75 ± 3.06 100 ± 0 98.76 ± 6.14

Fiber proportion branch (%) 100 ± 0 91.25 ± 3.06 0 ± 0 1.24 ± 6.14

RMSE (mm) N/A 9.71 ± 3.71 2.09 ± 1.35 2.05 ± 1.15

Bifurcation Phantom

Fiber proportion straight (%) 93.88 ± 24.22 66.53 ± 4.06 100 ± 0 56.63 ± 4.59

Fiber proportion branch (%) 6.12 ± 24.22 33.47 ± 4.06 0 ± 0 43.37 ± 4.59

RMSE (mm) 20.16 ± 6.07 15.36 ± 1.28 12.94 ± 0.29 9.08 ± 0.41

Table 4.2: Evaluation of tracts on phantom data. Proportion of branching

and straight tracts and RMSE of tracts going straight with respect to true expected

position, for each phantom.

(a) (b)

Figure 4.6: Local curvature of branching tracts. Evaluation of local curvature

for the branching tracts of the bifurcation phantom. (a): Local curvature on one

single fiber (blue: DTI-based, multimodal, red: QBI-based, multimodal), (b): box-

plot representation of inter-quantile range for DTI and QBI over all tracts and

repetitions.
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The last metric, only for the bifurcation phantom, is the local curvature of each

mean tract that deviates from the main vertical path. We report one representative

example of the obtained curves as well as a box-plot of inter-quantile ranges of the

curvatures along each mean tract for all repetitions (Figure 4.6). The curves of local

curvatures clearly show a more peaked behavior for QBI multi (red curve), indicating

that it branches more sharply. This was expected as the Q-ball model captures the

2 diffusion orientations in the splitting region, whereas the DT model inaccurately

estimates the diffusion orientations and thus the particle filter is mainly driven by

the previous direction with a wide observation model. Also, a one-way ANOVA

quantitatively shows a significant difference (p≪ 10−3) between the standard devi-

ations of the curvature of the 2 methods: away from the peaks, the curvature varies

less with QBI multi than with DTI multi.

4.2.3.2 Experiments on real data

To illustrate the capacities of the proposed algorithms on real clinical datasets, we

report in fig. 4.7 the left and right CSTs obtained on a normal control subject. The

results obtained here are consistent with those obtained on synthetic data. While

the mono-modal methods do not capture branchings to lateral parts of the CST,

both DTI multi and QBI multi are able to capture branches to the hand area or

even sometimes the face area. Interestingly, DTI multi seems a bit more able to

capture branches than QBI multi especially on the right side of the brain (left in

the images). Since the data was acquired with only 30 DSG directions and a single

low b-value of 1000 s.mm−2, it might indeed not be enough for the Q-ball model

to identify accurately multiple orientations. However, QBI mono and multi seem

overall able to capture more accurate directions of the main tract.

4.2.4 Discussion

We have presented a new adaptive multi-modal particle filter algorithm for WM

probabilistic tractography. It relies on the adaptive clustering of the filtering distri-

bution through a new scheme for splitting and merging clusters based on clusters

shape and directional dispersion. This strategy is applied after each step of the

filtering recursion. We have implemented this algorithm with two different diffusion

models: the DT model and the Q-ball model.

We have demonstrated through experiments on synthetic and real data that our

proposed algorithms outperform more traditional particle filtering approaches avail-

able in the literature, being more able to capture branching and crossing fascicles.

In addition, the Q-ball multi-modal algorithm produces more accurate branchings

and differentiates crossing fasiclces from bifurcating fascicles, thanks to the diffusion

model that already locally accurately captures multiple orientations.

The proposed algorithm is very generic and can thus easily be extended to new

diffusion models: only the proposal and the observation densities require to be

modified to reflect the underlying diffusion model. As noted in section 4.2.3.2, it
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(a) (b)

(c) (d)

Figure 4.7: Tractography of the left and right CSTs. Coronal view of both

CSTs using the four proposed methods: (a): DTI mono, (b): DTI multi, (c): QBI

mono, (d): QBI multi. Tracts are overlaid on the T2-w volume from the diffusion

acquisition, red bars indicate the seeding regions.
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will be interesting to apply this algorithm using other diffusion models such as the

geometry-based MCMs reviewed in chapter 2 or our proposed DDI MCM. These

models are indeed more adapted to data with a small number of DSG directions

and a single low b-value and particularly well suited to define proposal densities.

In the next section, we briefly demonstrate how the we can easily adapt it to our

proposed DDI MCM and how the use of such a model qualitatively improves the

tractography results on the reconstruction of the CST of a healthy subject. Future

work will include evaluation on more real data cases, also with HARDI, as well as an

in-depth study of the user-defined parameters of the algorithm and their influence

on the results.

4.2.5 DDI-based multi-modal particle filter

As mentioned in section 4.2.4, the multi-modal particle fiter can be easily adapted

to any diffusion model, provided that one can define the observation and proposal

densities.

Following the ideas of [Pontabry 2013], the proposal density is modeled by a mix-

ture of vMF PDFs, where the mean direction of each mixture component is one of

the diffusion orientations identified by the diffusion model (with occasional 180° rota-

tion to ensure that the inner product with the arrival direction is positive). Weights

and concentration parameters required to completely define the proposal density are

however not a natural output of the Q-ball model, which forced [Pontabry 2013] to

define them from the fODF value and mean curvature respectively.

MCMs are particularly well suited to define the proposal densities. The weights

of each compartment can indeed directly be used as the weights for the vMF mixture

proposal density. In addition, the DDI MCM introduced in section 2.3 outputs

a concentration parameter for each compartment that can be directly (or, to be

precise, up to a scaling factor) used as concentration parameter for the corresponding

vMF distribution in the mixture defining the proposal density.

The setting of this scaling factor is however not obvious. We propose to compute

the FA of each fascicle using eq. (2.44) and then transform it into a suitable con-

centration parameter for the proposal density according to the fitting rule defined

in [Zhang 2009]. As a result, we define the proposal density as:

q(vk∣vk−1, yxk
) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

M∑
i=1

wivMF(vk;µi, κi) , M > 0 ,
p(vk∣vk−1) , M = 0 ,

(4.18)

where the DDI MCM is estimated at position xk, wi and µi are respectively the

weight and the diffusion direction (obtained from the appropriately rotated orien-

tation) of the i-th compartment, κi is the concentration parameter obtained from

the FA of the i-th compartment according to [Zhang 2009] and M is the number of

fascicle compartments of the DDI MCM whose κi is greater than the concentration

parameter κ of the prior density.
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We define the likelihood p1(yxk+1 ∣vk) at position xk+1 given the local diffusion

direction vk as follows:

p1(yxk+1 ∣vk) = n∏
i=1

1

σi
√
2π

exp

⎧⎪⎪⎨⎪⎪⎩−
(Sxk+1,i −Ψ⋆xk+1,i)2

2σ2
i

⎫⎪⎪⎬⎪⎪⎭, (4.19)

where the DDI MCM is estimated at position xk+1 and Ψ⋆xk+1,i is the predicted DW

signal computed from eq. (2.65), after applying to all the directions of the model

the rotation that aligns the sampling direction to the sampled one.

The likelihood p0(yxk+1) at position xk+1 is the same as for the QBI-based algo-

rithm:

p0(yxk+1) = n∏
i=1

1

σi
√
2π

exp{−(Sxk+1,i −Ψxk+1,i)2
2σ2

i

}, (4.20)

where Ψxk+1,i is the predicted DW signal computed from eq. (2.65).

We used the adaptive multi-modal particle filter for tractoagraphy proposed in

this section in conjunction to the constrained DDI MCM detailed in section 2.3.4.3

to reconstruct the CST in patients suffering from tumors of various grades. This was

in the context of the three editions of the DTI Tractography challenge organized at

the MICCAI conference these last three years and will be the object of the following

chapter.
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The advent of dMRI and the subsequent development of analysis tools provide

unique new information about the brain architecture: so-called tractography en-

ables to gain insights into the organization of white matter fascicles as well as their

microstructure. A targeted application is neurosurgical planning, which could be

improved with such valuable information. In particular, having an accurate recon-

struction of the CST might be of great help for the surgeon for better preparing,

for example, the removal of a tumor without damaging the remaining surrounding

tissues.

Since 2011, a DTI Tractography Challenge is organized each year at the MICCAI

conference, aiming at encouraging researchers to deal with the poor quality of the
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measured DW images in the neurosurgical context. We participated at each of these

three events which we believe to be a good evaluation of all the tools developed in

this thesis. In this chapter, we first give a detailed description of the CST and

its importance in neurosurgical planning (section 5.1). Then, we present the data

that the organizers of the challenge provided each year (section 5.2). Methods and

reconstructed CSTs for the three editions of the challenge are given in sections 5.3

to 5.5. Finally, we outline in section 5.6 a discussion about our participation and

results.

5.1 The Cortico-Spinal Tract

The Cortico-Spinal Tract (CST) is a projection fascicle that connects the spinal cord

to the primary motor cortex [Catani 2002, Jellison 2004, Catani 2008, Thiebaut de Schotten 2011].

The primary motor cortex is located at the posterior portion of the frontal lobe (see

fig. 5.1a). It extends from the top of the brain to the lateral part and is divided

into areas of non-equal sizes that controls the volontary movement of different parts

of the body. The primary motor cortex can thus be seen as a projection of the
body within the brain. Identification of the function of the different areas of the

primary motor cortex in the human brain has been established in [Penfield 1937] by

using electrical stimulations on patients that underwent surgery for epilepsy. This

is known as Penfield’s motor homonculus, which is illustrated in fig. 5.1b. Observe

that areas are actually not proportional to the size of the body part they are con-

trolling but to the complexity of the movements that the body part can achieve.

This explains why the hand and face areas are so large compared to the other areas,

reflecting our great abilities to manipulate things and speak.

(a) (b)

Figure 5.1: The primary motor cortex. Localization in the brain (a) and il-

lustration of the function of its different areas (b). Image courtesy of the online

encyclopedia The brain from top to bottom.

In patients undergoing surgery, the neurosurgeon sometimes has no choice but

http://thebrain.mcgill.ca/intermediaire.php
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to get through the CST. For example, to access a tumor, it might be his/her best

shot. In this case, he/she is facing a quite hard dilemma: finding a new access

(which might not be optimal and result in a more dangerous surgery), cancelling

the surgery (which prevents the patient from being treated) or going through the

CST at the risk of disrupting connections that may lead to partial paralysis. An

accurate reconstruction of the CST, especially in the vicinity of the tumor, could

therefore help the surgeon in taking the right decision. However, as we will see in

the next section, the available diffusion data for neurosurgical planning has very

low spatial and angular resolution, making it difficult to provide such an accurate

reconstruction of the CST.

5.2 Presentation of the data provided by the organizers

In neurosurgical planning, there is no time for long or even moderately long diffusion

acquisition schemes. Better yet, the patient often cannot stay long in the MRI

scanner and choices need to be made whether or not performing dMRI. Arguments

in favor of using it could be the possibility to provide an accurate reconstruction of

the CST from very short diffusion acquisition schemes.

In each edition, two patients, each time suffering from tumors of various forms

and grades, underwent dMRI. Patients were not the same for each edition. In

addition to dMRI, T1, T2 weighted or FLAIR images were available along with the

delineation of the tumors (including edematous region too) so that joint views of

anatomical and tractography information could be created to help the surgeon, for

example, to plan a tumor removal surgery. In the following, Year 1 refers to 2011,

which is the year of the 1st challenge. Similarly, Year 2 refers to 2012 and Year 3

to 2013. Subsequently, Patient 1.1 refers to Year 1 Patient 1, Patient 1.2 to Year 2

Patient 1 and Patient 1.3 to Year 3 Patient 1 (same thing for the Patients 2).

In the first and second edition of the DTI tractography challenge, the character-

istics of the dMRI data were the following:

• the in-plane spatial resolution of the measured DW images was high (256×256)
and the slice thickness relatively small leading to voxels of size 1 × 1 × 2.6 mm3,

• the acquisition time was shortened using a single-shell acquisition scheme at b =
1000 s/mm2 on which only 31 DSGs uniformly distributed over the north hemisphere

were sampled.

In the first edition of the challenge, the organizers also provided us with two

healthy subjects scanned with a multi-shell acquisition scheme at bmax = 1000 s/mm2

with 31 DSGs. For each, dMRI data were acquired repeatedly (ten repetitions) so

that the reproducibility of the tractography method may be evaluated.

In the third edition, two patients underwent dMRI as well and the same shell at

b = 1000 s/mm2 was also adopted. However, the number of sampled DSG directions

was reduced to 20 and the slice thickness increased to 5 mm in order to save acqui-

sition time. This yielded very low spatial and angular resolution diffusion data that

are of very poor quality.
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We applied the following pre-processing pipeline to all challenge datasets. An

expert neuroanatomist delineated two ROIs on each side (left and right) of the

original T1-weighted images. One is located in the posterior limb of the internal

capsule and the other in the superior part of the mesencephalon. In addition, since

crossing fascicles such as the association or commissural fascicles may be considered

as bifurcations of the CST by the tractography algorithm, the same expert also

delineated regions through which the tracts were not allowed. All datasets were

then pre-processed according to the following two steps:

1. Diffusion-weighted MRI denoising: dMRI is subject to random noise yield-

ing measures that are different from their real values, and thus biasing the subse-

quently estimated diffusion models. We filtered the measured DW images with the

Rician-adapted non-local means filter [Wiest-Daesslé 2008], which has been shown

to efficiently denoise such images while preserving fine anatomical structures.

2. ROI alignment on B0 images: we registered the ROIs on the B0 images

according to the following steps:

• global affine registration of the T1-weighted images to the B0 images [Ourselin 2000];

• cropping of the affine-registered T1-weighted images using the mask of the B0

images;

• constrained non-rigid registration [Garcia 2010] of the masked T1-weighted images

to the B0 images;

• application of the obtained transformations to the ROIs.

Note that when the T1w image was not available, the T2w or the FLAIR image

was used instead.

The subsequent tractography pipeline involves three diffusion tools: diffusion

modeling, identification of the most appropriate model and tractography algorithm.

Throughout my thesis, these tools underwent some improvements. Before presenting

our results for each edition of the challenge, we shall thus briefly make a status report

of our diffusion tools at that time.

For each edition of the challenge, the DDI MCM introduced in section 2.3.4.1

was used. However, facing different problems in its elaboration, we did not apply

the same constraints on the parameters each year. In its most general form, the

M -fascicle model has the following 6M + 2 parameters:

• the polar angles θi of the orientation of each fascicle,

• the azimuth angles φi of the orientation of each fascicle,

• the orientational dispersion indices κi in each fascicle,

• the free diffusivity di in each fascicle,

• the extra-axonal fraction of occupancy νi in each fascicle,

• the fraction of occupancy wi of each fascicle,

• the diffusivity d0 in the CSF,

• the fraction of occupancy w0 of the CSF.

For each edition, we will then explain which constraints were applied to these

parameters and which optimization algorithm was used to solve the least square

problem given by eq. (2.68). Our choices will be discussed in the last section.
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5.3 2011 Challenge Results

5.3.1 Status report of our diffusion tools

By the time of the first edition of the DTI Tractography Challenge, the status of

different tools was the following:

• Diffusion Modeling. At that time, we constrained the parameters as follows:

– νi = 1/2: we account for intra- and extra-axonal spaces in equal proportions in

modeling the diffusion within a fascicle,

– di = (κi + 1)λ: the perpendicular diffusivity λ was estimated but identical in

all fascicles and the free diffusivity di in each fascicle was set dependent on the

orientational dispersion index κi and the common perpendicular diffusivity λ,

– w0 = 1 − ∑M
i=1wi: the CSF fraction of occupancy was set from the fractions of

occupancy of the fascicles so that the different mixture weights to sum to one,

– wi = FAapprox

i /M : the fraction of occupancy of each fascicle was set proportional

to its approximated FA computed according to eq. (4.1).

These constraints yielded a 3M + 1 DDI MCM. The parameters were transformed

into unbounded parameters leading to a nonlinear unconstrained minimization prob-

lem given by eq. (2.68) that we solved using NEWUOA [Powell 2006]. This optimiza-

tion algorithm is indeed designed for unconstrained optimization when derivatives

are not analytically available.

• Identification of the most appropriate model. No model selection and/or av-

eraging was performed: a 2-fascicle non-averaged DDI MCM was estimated in each

voxel of the brain.

• Tractography Algorithm. At that time, we only managed to re-implemented

the FACT deterministic streamline algorithm [Mori 1999], adapted to account for

multiple non-collinear orientations of diffusion provided by MCMs. The following

parameters were used:

– N = 2: number of starting points per voxel of the seed region,

– FAt = 0.5: tracts reaching a voxel with too low FA are stopped,

– l = 1 mm: at each step, we update the tract one step of such length ahead,

– r = 0.8: relative threshold on orientational dispersion indices above which the less

orientationally dispersed orientation of diffusion is favored upon the most collinear

one,

– αt = 60°: threshold to stop the tract if the new direction is not sufficiently collinear

with the previous one.

5.3.2 Tractography on Healthy Subjects

For each of repetition of each subject, the left and right CSTs were computed using

the aligned ROIs delineated according to the process described in section 5.2. We

display the tractography of one volume of each of the two subjects in fig. 5.2.

This figure illustrates that we are able to cover the full extent of the CST for

these healthy subjects, from the face and hand areas to the medial part. This

demonstrates that our diffusion model enables the tractography algorithm to follow
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(a) (b)

Figure 5.2: Illustration of reconstructed CSTs on Year 1 Healthy Subjects.

Representative examples of obtained CSTs for healthy subject 1 (a) and 2 (b) (T1

images are in radiological conventions, i.e. the left hemisphere is on the right side of

the image). To see the full extent of the CST spreading, all 3D tracts are displayed.

This explains why they may not seem to match exactly the background T1 image.

bifurcations in the WM. For each subject, estimating the DDI models from the

measured DW images took approximately 40 minutes (single-threaded), while the

tractography of the left and right CSTs took less than 10 minutes.

5.3.3 Tractography on Patients

We also reported results for the CST of each patient on the side of the tumor. The

images processed here had a larger spatial resolution than for the healthy subjects

and the estimation of the DDI models from the measured DW images took approxi-

mately 3 hours (single-threaded). However, it is possible to compute this stage of the

processing pipeline offline, leaving only the tractography to perform online (about

5 minutes for each CST) when performing the tractography for surgical planning.

We focus on the qualitative evaluation of the obtained fascicles and their close-

ness to the tumor (it should be noted that the tumor regions were not used in any

way to constrain the tractography algorithm), and on providing the neurosurgeon

with helpful views for neurosurgery planning. To this end, we present in fig. 5.3 views

combining the reconstructed CSTs, the tumor ROIs provided by the organizers, all

on top of the patient’s T1 image.

We can observe on this figure that, although the tumor delineation was not used

in the algorithm, no tracts are going through the tumor area on patient 1 but some

are going through the most central part of the edema (fig. 5.3b,c). This indicates

that the tracts were pushed by the tumor mass effect, which is a valuable indication

when planning the surgery. Overall, this figure demonstrates the close proximity of

the tumors and of the CST for both patients. This is an important insight as the
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: Illustration of reconstructed CSTs on Year 1 Patients. Combined

views of the obtained CSTs for Patient 1.1 (a,b,c) and Patient 1.2 (d,e,f), illustrating

the proximity of the tumor to crucial motor pathways. Surfaces for Patient 1.1

correspond to the necrotic part of the tumor (red), the active part of the tumor

(yellow) and the edema (orange). For Patient 1.2, each ROI corresponds to a specific

tumor. Images (a,d) show overall 3D views and (b,c,e,f) show the tracts and ROIs

going through a specific 2D slice to better illustrate their proximity.

neurosurgeon will be able to plan the tumor removal in the optimal way, so as to

minimize the possible handicap for the patient after surgery.

5.4 2012 Challenge Results

5.4.1 Status report of our diffusion tools

By the time of the second edition of the DTI Tractography Challenge, the status of

different tools was the following:

• Diffusion Modeling. At that time, we constrained the parameters as follows:

– νi = 1/2: we account for intra- and extra-axonal spaces in equal proportions in

modeling the diffusion within a fascicle,

– w0 = 1 − ∑M
i=1wi: the CSF fraction of occupancy was set from the fractions of

occupancy of the fascicles so that the different mixture weights sum to one,

– d0 = d0(M = 0): the diffusivity in the CSF was estimated with the 0-fascicle DDI

MCM and then fixed to its estimated value for estimating any M -fascicle DDI MCM
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with M > 0.
These constraints yielded a 5M DDI MCM. The parameters were directly estimated

by defining a nonlinear constrained minimization problem from eq. (2.68) that we

solved using Bound Optimization BY Quadratic Approximation (BOBYQA) [Powell 2009].

This optimization algorithm is indeed designed for constrained optimization when

derivatives are not analytically available. Approximated FA was still computed from

eq. (4.1) for further use in the tractography algorithm.

• Identification of the most appropriate model. A first model selection approach

was used. The estimation of free-water diffusivity was performed using a 0-fascicle

DDI model. Subsequent 1-fascicle and 2-fascicle DDI MCMs were estimated fixing

the free water diffusivity to its previously estimated value. In each voxel, the 1-

fascicle or 2-fascicle MCM was selected based on the value

κDTI ∶= 2λ1/(λ2 + λ3) − 1 , (5.1)

where (λ1, λ2, λ3) are the eigenvalues of the DT: if 0.3 < κDTI < 1.2, the 2-fascicle

model was selected whereas κDTI ≤ 0.3 was found to relatively well indicate isotropic

diffusion and κDTI ≥ 1.2 was found to relatively well indicate sufficiently strong

anisotropy to assume the presence of only 1 fascicle.

• Tractography Algorithm. At that time, we kept using our re-implemention of

the FACT deterministic streamline algorithm [Mori 1999], adapted to account for

multiple non-collinear orientations of diffusion provided by MCMs. Slightly different

parameters were used though:

– N = 1: number of starting points per voxel of the seed region,

– FAt = 0.2: tracts reaching a voxel with too low FA are stopped,

– l = 1 mm: at each step, we update the tract one step of such length ahead,

– r = 0.8: relative threshold on orientational dispersion indices above which the less

orientationally dispersed orientation of diffusion is favored upon the most collinear

one,

– αt = 60°: threshold to stop the tract if the new direction is not sufficiently collinear

with the previous one.

On both patients, the estimation of the DDI volume took about 10 minutes on

an 8-core Xeon 3 GHz computer while the tractography of each CST took about 1

to 2 minutes on the same machine. The model estimation step is longer but still

reasonably short and can be performed offline in a clinical context.

5.4.2 Tractography on Patient 2.1

Figure 5.6 presents axial and coronal views of the left and right CST extracted on

Patient 2.1, superimposed on the T1w image or the T2w image. In addition, we

superimposed the manual delineations and provide 3D combined visualizations to

evaluate the relative positions of the tumor and motor pathways.

Several things may be noticed for this patient. First, the left reconstructed CST,

which is not affected by the tumor, is able to reach the different motor cortical areas

(fig. 5.6b,e,f). On the contrary, the right CST is going neither through the cavity
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(a) (b) (c)

(d) (e) (f)

Figure 5.4: Illustration of the reconstructed CSTs on Patient 2.1. Combined

views of the obtained CSTs overlayed on T1 (a,b,c) and T2 (d,e,f), illustrating the

proximity of the tumor to crucial motor pathways. ROIs correspond to the tumor

(red), the resection cavity (blue) and gliosis (yellow). (a,d,b,e) are respectively axial

and coronal views, while (c,f) are 3D views.
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(which was expected) nor through the tumor. Therefore, the number of tracts found

on the right side is lower than on the left side of the brain as shown in fig. 5.6f. Some

tracts in the right CST are going through the gliosis. Finally, the 3D views clearly

highlight a very close proximity between the tumor and the motor pathways, and

therefore provide crucial information to the surgeon in case another surgical resection

is planned.

5.4.3 Tractography on Patient 2.2

The tumor for Patient 2.2 is different as it is an infiltrating tumor. As for Patient

2.1, we present in fig. 5.5 axial and coronal views of the left and right reconstructed

CSTs, superimposed on the T1w image or the T2w image, as well as 3D combined

visualizations to evaluate the relative positions of the tumor and motor pathways.

As for Patient 2.1, the left CST is well reconstructed, showing some bifurcations

towards several regions of the motor cortex. The number of tracts in the right CST

is lower than in the left CST (fig. 5.5b,e,f), which is due to the presence of the

edema. However, contrary to patient 1, the right CST is not completely blocked by

the tumor as the latter is of different nature. The most central part of the right CST

is indeed still visible in our tractography (see axial and coronal views on fig. 5.5b,d).

However the outer parts (e.g. corresponding to the hand or face areas) are much

sparser or even not found by our tractography algorithm. Again, both 3D views

provide an important insight on the relative positions of the tumor, the edema and

the CST, which can help the neurosurgeon in his/her decisions.

5.5 2013 Challenge Results

5.5.1 Status report of our diffusion tools

By the time of the third edition of the DTI Tractography Challenge, the status of

different tools was the following:

• Diffusion Modeling. At that time, we constrained the parameters as follows:

– d0 = 3.0 × 10−3 mm2/s: the diffusivity in the CSF was fixed to its value at 37°C

except for the isotropic model (m = 0) in which it is estimated,

– the diffusivity parallel to the orientation of the fascicle was set to 1.71 × 10−3
mm2/s, which is the only quantity that has been consistently estimated by several

diffusion models (e.g. DTI, DKI); it yields a relationship between the free diffusivity

di, the orientational dispersion index κi and the extra-axonal fraction of occupancy

νi in each fascicle given by eq. (2.50),

– the concentration parameters κi and extra-axonal occupancies νi were assumed

to be identical in all the fascicle compartments.

This yielded the constrained DDI MCM with 3M + 2 independent parameters in-

troduced in section 2.3.4.3. The parameters were directly estimated by defining a

nonlinear constrained minimization problem from eq. (2.68) that we solved using



5.5. 2013 Challenge Results 153

(a) (b) (c)

(d) (e) (f)

Figure 5.5: Illustration of the reconstructed CSTs on Patient 2.2. Combined

views of the obtained CSTs overlayed on T1 (a,b,c) and T2 (d,e,f), illustrating the

relative positions of the tumor and the motor pathways. ROIs correspond to the

solid tumor (red) and the infiltrating tumor (green). (a,d,b,e) are respectively axial

and coronal views, while (c,f) are 3D views.
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COBYLA [Powell 1994]. Like BOBYQA, this optimization algorithm is indeed de-

signed for constrained optimization when derivatives are not analytically available.

The difference is that BOBYQA progresses towards minima by quadratic approxi-

mations of the cost function while COBYLA uses linear approximations. As a result,

BOBYQA is faster but may lead to fictitious minimas. We thus adopt COBYLA.

For each fascicle, the real FA of the distribution was computed according to eq. (2.44)

for further use in the tractography algorithm.

• Identification of the most appropriate model. The DDI MCMs with 0, 1, 2 and

3 fascicles were estimated and our model averaging approach was used to obtain a

3-fascicle averaged DDI MCM.

• Tractography Algorithm. We used our adaptive multi-modal particle filter that

approximates the distribution of the fascicles arising from a specific region given

the diffusion data while maintaining the multi-modal property of this distribution,

which allowed us to track multiple fascicles over extended volumes. A summary of

the algorithm and its parameters is given in section 4.2.1.5. In this specific case, the

following parameters were used:

– FAt = 0.5: tracts reaching a voxel with too low FA are stopped,

– ρ = 1 mm: at each step, we update the tracts one step of such length ahead,

– N = 5000: this is the number of particles used to approximate the true distribution

of the tracts in the CST (the more particles, the more clusters and thus the more

tracts on the lateral parts),

– Lmax = 20 cm: tracts that reach this maximum length are stopped,

– Nmin = 10: particle clusters of this size are not allowed to be splitted anymore,

– α = 0.8: if the effective sample size in each cluster drops below this relative

threshold, particles are resampled according to their weights,

– wCSF

t = 0.8: tracts reaching a voxel too strongly contaminated by CSF, character-

ized by a CSF fraction of occupancy greater than this threshold, are stopped,

– κ = 30: tracts are supposed to be smooth enough, which can be controlled by this

parameter (concentration of the prior vMF distribution),

– ht = 0.5 mm: clusters are merged if the Hausdorff distance between the global

cluster mean particles drops below this treshold,

– κt = κ = 30: clusters can be splitted if their particles lose orientational coherence,

characterized by the concentration of the local cluster directional distribution.

On both patients, the estimation and averaging of the DDI volumes took about

150 minutes on a 8-core Xeon 3 GHz computer while the tractography of each CST

took about 25 minutes on the same machine for N = 5000 initial particles (the

computational time is proportional to N). The model estimation step is longer but

still reasonably short and can be performed offline in a clinical context.

5.5.2 Tractography Results

Figure 5.6 presents axial and coronal views of the left and right CSTs extracted on

both patients, superimposed on the T1w image for Patient 3.1 and on the FLAIR

image for Patient 3.2. In addition, we superimposed the manual delineations and
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provide 3D visualizations to evaluate the relative positions of the tumor and motor

pathways.

(a) (b) (c)

(d) (e) (f)

Figure 5.6: Illustration of the reconstructed CSTs on the Year 3 Patients.

Integrated views of the obtained CSTs of Patient 3.1 overlayed on T1 (a,b,c) and

of Patient 3.2 overlaid on FLAIR (d,e,f), illustrating the proximity of the tumor to

crucial motor pathways. ROIs on Patient 3.1 correspond to the solid tumor (green),

the tumor (red) and edema (yellow). The ROI on Patient 3.2 corresponds to the

tumor (red). (a,d,b,e) are respectively axial and coronal views, while (c,f) are 3D

views.

Several facts may be noticed for Patient 3.1. First, the left CST, which is

not affected by the tumor, is able to spread into the different cortical motor areas

(fig. 5.6a,b). On the contrary, the right CST is not going into the tumor part (red

and green, fig. 5.6a,b) while it still is able to capture some bifurcations and goes a

little in the edema area (fig. 5.6a-c). Therefore, the number of tracts found on the

right side is lower than on the left side of the brain. Finally, the 3D view highlights

a close proximity between the tumor and the motor pathways, and therefore provide

crucial information to the surgeon in case another surgical resection is planned.

The second row of fig. 5.6 presents results for Patient 3.2. Both CSTs are well

extracted, showing some bifurcations towards several areas of the motor cortex. The

number of tracts in the right CST is lower than in the left CST (fig. 5.6d,e), which

is due to the presence of the tumor. The tracts are indeed not going through this

specific area and therefore spread less than on the left side. Again, the 3D view

provides an important insight on the relative positions of the tumor and the CST,

showing a very close proximity of the interior part or the tumor with the CST which
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will help the neurosurgeon in his/her decisions.

Figure 5.7 shows the reconstructed CSTs on both patients overlayed on the FA

map. For Patient 3.1 (fig. 5.7a), we can see that the tumor completely prevents the

CST from reaching the cortical motor areas except for the most lateral areas. For

Patient 3.2 (fig. 5.7b,c), we observe that the CST covers all the areas of the motor

cortex away from the tumor (fig. 5.7b) but the most lateral parts are not reached

in the vicinity of the tumor (fig. 5.7c).

(a) (b) (c)

Figure 5.7: Reconstructed CSTs overlayed on the FA map. Coronal view of

the reconstructed CSTs overlayed on FA map for Patient 3.1 (a) and Patient 3.2

(b,c). In particular, on Patient 3.2, we observe that the CST covers all the areas

of the motor cortex away from the tumor (b) but the most lateral parts are not

reached in the vicinity of the tumor (c).

5.6 Synthesis of our participation

Table 5.1 summarizes the diffusion tools that were used for the different editions of

the DTI challenge. In this table, we recall the constraints applied for DDI estima-

tion, the number of fascicle compartment used in the DDI MCM, the optimization

algorithm used to minimize eq. (2.68), the tractography algorithm used to perform

the CSTs reconstruction and the running times for both model estimation and trac-

tography steps. Each year, we improved part of the process. Between Year 1 and

Year 2, constraints on the model were relaxed and an hybrid model selection was

performed between 1-fascicle and 2-fascicle DDI MCMs. Also, the optimization

problem was greatly simplified by the use of BOBYQA, which is adpated to bound

constraints. Between Year 2 and 3, we conducted a thorough study of the constraints

applied to the model that led us to estimate for each fascicle only its orientation and

fraction of occupancy. From our experiments, in order for the estimation problem to

be well-posed, it was then required to estimate a single orientation dispersion index

kappa and extra-axonal occupancy ν for all the fascicle compartments. We also used

our explicit model averaging and estimated the DDI MCM up to 3 fascicles. We

understand that progressing towards minima of the cost function given in eq. (2.68)

by quadratic approximations sometimes led to values that are in fact not minima of
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the cost functions, which might be explained by the cost function not being twice

differentiable or by a non-smooth second derivative. We thus perform optimiza-

tion using COBYLA. Last but not least, we developed a probabilistic tractography

algorithm that accounts for uncertainty on the estimated fascicle orientations and

explore possible tracts much more efficiently than our deterministic multi-modal one

used for the first two years.

All the improvements were motivated by the will to provide clinically appli-

cable diffusion tools that can bring more information than DTI without requiring

additional training for the medical staff. In clinical applications, time is crucial.

Since the advent of dMRI, time has been saved in the data acquisition step by

using large slice thickness and by using few DSGs whose directions are sampled on

a single shell and uniformly distributed (often on the north hemisphere). Clinicians

want at least to keep it that way, if not to further reduce the scan time in situa-

tions like neurosurgical planning. In these cases, we might very well obtain very low

spatial (very large slice thickness) and angular resolution (very few DSGs encoding

directions on a single shell) diffusion data. Saving time on the second step rely on

optimally constraining the diffusion models. By optimal we mean finding appro-

priate constraints that are physically plausible but not constraining too much in

order to still be able to describe the different populations of cells in the WM voxels,

which are believed to be very good biomarkers for numerous neurological disorders

(see section 1.4.3). In summary, following the MMWMD [Alexander 2010], we shall

understand which biomarkers are crucial and which parameters can be constrained

to obtain a fast (the less independent parameters to be estimated, the faster the

estimation) and accurate (the less independent parameters to be estimated, the

less sensitive the estimation procedure to local optima) estimation of the diffusion

model. Finally, the last tractography step is usually fast because it uses the dif-

fusion models previously estimated as input and interpolate them when necessary

without performing the model estimation at each step of the reconstruction of the

fascicles. Still, it can be speeded up by either decreasing the number of starting

points per voxel of the seed regions in deterministic streamline algorithms or de-

creasing the number of particles used to approximate the true distribution of tracts

in the reconstructed fascicle in particle filter-based probabilistic algorithms.

In the following sections, we discuss our proposed diffusion tools and their clinical

applicability compared to the ones in the literature. When time is of the essence, we

need to save it as much as possible. Three diffusion tools have been developed in this

work and their efficiency tested concretely on the ground in the very constraining

case of neurosurgical planning. In the following, we analyze the choices we made

to save time from the data acquisition to the actual reconstructed CSTs for each

edition of the challenge. The reconstruction of WM fascicles involves the following

steps that are (i) data acquisition (discussed in section 5.6.1, diffusion modeling and

subsequent estimation (discussed in section 5.6.2), (iii) model selection/averaging

(discussed in section 5.6.3) and (iv) tractography (discussed in section 5.6.4.
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5.6.1 Data acquisition

Diffusion data were provided by the organizers of the challenge and consisted over

the years of poorer and poorer image quality. We had to deal with data from 31

DSGs repeated 10 times and with 2.6 mm slice thickness (first edition) to 20 DSGs

repeated 4 times and with 5 mm slice thickness (third edition). Our decision to

confront our diffusion tools to this kind of data demonstrates our intention to make

tractography feasible to basic clinical constraints.

5.6.2 Diffusion modeling and subsequent estimation

The DDI model is an MCM. The advantage of using MCMs with respect to other

diffusion models is that not only they try to identify the correct orientations of

the fascicles but they also characterize the populations of cells which compose the

fascicles. However, [Scherrer 2010] mathematically demonstrated that any MCMs

belonging to the exponential family - hereafter referred to as exponential MCMs -

require diffusion data obtained with multi-shell acquisition schemes, otherwise the

model estimation problem is ill-posed: in essence, several sets of parameters exist

for exponential MCMs that all yield the same SID on a single shell and thus result

indistinguishable. For this reason, the DDI MCM is based on a mixture of PDFs

that does not belong to the exponential family, which enables its estimation from

single-shell acquisition schemes. On another hand, the estimation of MCMs relies on

the minimization of a cost function, which is quite handy in the case of exponential

MCMs but becomes much more complex with the DDI MCM. In the first edition

of the challenge, we faced this problem and the constraints that we applied back

then were mainly designed to simplify the cost function. For instance, setting the

extra-axonal fraction of occupancy to ν = 1/2 has no particular physical meaning

but has the merit to account for intra- and extra-axonal spaces without favoring

one with respect to the other. Also, setting the fascicle fractions of occupancy pro-

portional to their FA does not exactly reflect the volume occupied by the fascicle in

the voxel but tends to retain only fascicles with low orientational dispersion, which

is not out of sense. Finally, estimating a common perpendicular diffusivity for all

fascicles could be seen as a strange constraint but is in fact based on [Scherrer 2010],

which showed that the perpendicular diffusivity is responsible for the exponential

MCM identificability issue. For the second edition of the challenge, we partially

solved our optimization problems using a better implementation of the BOBYQA

algorithm and could free most of the constraints. In particular, the constraint on the

perpendicular diffusivity appeared useless since the DDI MCM is not an exponential

MCM and fascicle fractions of occupancy were not constrained anymore. Our exper-

iments however revealed the necessity to fix the diffusivity in the CSF, which plays

a leverage role in the estimation in the sense that if it is not correctly estimated,

then all the other parameters will be biased too. We thus naively fixed it to its es-

timated value using a previously estimated isotropic diffusion model. For the third

edition, we noticed that the cost function involved in the model estimation cannot
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always be approximated by a quadratic function, in which cases the BOBYQA al-

gorithm performs poorly. We thus replaced it with the COBYLA algorithm that

relies on linear approximations. This solved all the remaining optimization issues

at the cost of computational time. To speed up the estimation process, we thus

initialized the orientations of the fascicles in the model by a previously estimated

ball-and-stick model [Behrens 2003], which is an asymptotic DDI MCM (for κi →∞
and νi → 0). All previous constraints were also freed and replaced with physically

meaningful constraints: we fixed the diffusivity in the CSF to its known value at

37°C, we also fixed the parallel diffusivity in the fascicles to a fixed value, since it

is the only metric that has been consistently estimated by several different diffusion

models and we were able to analytically express the volume occupied by a fascicle

in the voxel according to the parameters that characterize it, which allowed us to

set the fractions of occupancy of the fascicles proportional to this volume. This

constrained DDI MCM is, to the best of our knowledge, the best compromise to

obtain a fine description of tissues microstructure from single-shell low spatial and

angular resolution measured DW images.

5.6.3 Model selection/averaging

This additional step before tractography is a specificity of MCMs, in which one

has to decide a priori the number M of fascicles to estimate in a given voxel. It

usually relies on estimating several M -fascicle MCMs and choosing the one that

best fits the data. Differently, our approach consists in arguing that the question

“how do we choose a priori the right number of fascicles in a given voxel?" does not

have an answer. We rather quantify probabilities that a voxel contains 1, 2,..., M

fascicles based on the diffusion data and average the different corresponding MCMs

accordingly. This step takes less than half a minute when averaging the models up

to 3 fascicles.

5.6.4 Tractography

This is the actual reconstruction of the fascicles based on previously estimated dif-

fusion models. It is generally the fastest step. In the first two editions of the

challenge, we used a deterministic streamline tractography algorithm. The reason

of such a choice was that using an MCM that has been accurately estimated pro-

vides orientations of diffusion that present very low bias: as a consequence, following

these orientations should not result in an important accumulation of errors. How-

ever, MCMs are known to often overfit the data. Even if the model averaging step

is meant to reduce this overfitting, the estimation of the probability that a given

model is well adapted to fit the data is based on measures that are sensitive to

overfitting, which means that overfitting could still persist.

Also, we adapted the streamline algorithm to account for multiple fascicle ori-

entations provided by MCMs as follows: (i) starting from a single voxel, we first

reconstruct the main tract by locally choosing as outcoming orientation the ori-
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entation the more collinear to the incoming orientation among the set of all the

orientations provided the MCM and record the other identified orientations for fu-

ture use, (ii) when the main tract is reconstructed, we start from scratch to explore

the closest bifurcation and (iii) when a bifurcation is reconstructed, we repeat stage

(ii). If one wanted, for instance, to cover the full extent of the CST, this would be of

an impressive complexity and would lead to such huge tract files that we are not sure

to be able to stock. This is visible from fig. 5.2 where the tracts going straight to the

top of the head are well represented (main path) and the tracts to the hand and face

area also (first explored bifurcations). Tracts in the middle of the motor cortex are

absent because the algorithm does not even explore the recorded bifurcations that

would lead to these areas. To overcome this issue, our multi-modal probabilistic

algorithm is smarter as it does not explore the bifurcations on a first-come, first

served basis but rather explore them all sequentially and assign them a probability

of existing given the diffusion data. When such a probability is too low they are

suppressed, so that the algorithm finally focused on the most probable tracts given

the data. This strategy is very promising since, together with the DDI MCM, it

manages to cover the full extent of the CST, as shown in fig. 5.7. One might have

the impression that the results of the second edition (figs. 5.5 and 5.6) are worse

than those of the first edition (fig. 5.3). This is in fact an optical effect due to the

fact that, for the first edition, we initialized 2 tracts per voxel of the seed region

while we initialized only 1 tract per voxel of the seed region the second year. This

has in fact a really low impact on the extent of the reconstructed CST but yields

much manageable file sizes. On the contrary, with our probabilistic tractography

algorithm, using N = 5000 of particles to approximate the true distribution of tracts

within the CST allows us to better cover the full extent of the CST than if we had

used a smaller number. The explanation is quite simple. The algorithm sequentially

classifies the tracts in clusters (that ideally would represent sub-fascicles reaching a

specific cortical area), which need to have a minimum size (i.e., a minimum number

of tracts inside) for their average tract to actually mean something. We set the

minimal size of the clusters to 10 particles. This implies that a maximum of 100

bifurcating tracts will be retained if N = 1000. This maximum increases to 500 if

N = 5000, which allows the algorithm to find more bifurcating tracts that still have

high probability of existence given the diffusion data.

5.6.5 Conclusive remarks

In summary, we would like to acknowledge the efforts that the organizers made to

open our minds to real-life application and not only to our well-designed and long

experiments. Neurosurgeons in particular are constantly in a race against time, in

which the data quality will not improve if not impoverishes more. Mathematicians

and computer scientists should therefore work together to make the most out of

what they can get, rather than making the right data to acommodate their tools.

In this perspective, we designed a diffusion model, the DDI MCM and a multi-

modal probabilistic tractography algorithm that are coping well with clinical data,
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at least in the reconstruction of the CST. The model estimation step is still quite

long (150 minutes) but could be performed offline, leaving the surgeon with only the

tractography to perform online. Using N = 1000 particles leads to a very reasonable

computational time (5 minutes). If there is more time, we recommend to increase

N to at least 5000, keeping in mind that the computational time varies linearly

with N . Figures 5.8 and 5.9 show the reconstructed CSTs for the two patients of

Year 2 using the most recent elaborated diffusion tools that are the constrained DDI

MCM proposed in section 2.3.4.3 and the adaptive multi-modal particle filter for

tractography proposed in section 4.2. They can be compared to figs. 5.5 and 5.6 and

one can conclude, at least qualtatively, that we did make a significant improvement

over our diffusion tools available one year ago. The current diffusion tools seem

to be able to reconstruct the full extent of the CST, contrary to the tools at Year

2 and provide interesting information in the peritumoral regions that need further

evaluation.
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(a) (b)

(c) (d)

Figure 5.8: Year-3 diffusion tools applied on Year-2 data: 3D view of the

CST. Illustration of the reconstructed CSTs in 3D, displayed in coronal view. 1-st

row: patient 2.1 (tracts are overlayed on T1 image), 2-nd row: patient 2.2 (tracts

are overlayed on B0 image). Front views on (a,c) and back views on (b,d). These

results are to be compared to those obtained at Year 2 and given in figs. 5.5 and 5.6.
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Year
Data

characteristics
Constraints on DDI

Number of fascicle
compartments (m)

Optimization algorithm
Tractography

algorithm
Running time for
estimation (min)

Running time for
tractography (min)

1

b = 1000
s/mm2, 31

DSG
directions,

1 × 1 × 2.6 mm3

voxel size.

• νi = 1/2;
• di = (κi + 1)λ;

• dCSF = λ;

• wi = FAapprox
i

/m, with
FAapprox

i
from eq. (4.1).

3m + 1 DoF: θi, φi, κi and λ.

Always m = 2
NEWUOA [Powell 2006]
(with transformations of
diffusion parameters into
unbounded parameters)

Multi-modal
FACT

(Section 4.1)
5

2 (exploring only
bifurcations adjacent
to the main tract)

2

b = 1000
s/mm2, 31

DSG
directions,

1 × 1 × 2.6 mm3

voxel size.

• νi = 1/2;
• dCSF set to pre-

estimated value from
0-fascicle model.

5m DoF: θi, φi, κi, di and wi.

m = 0 if κDTI < 0.3,
m = 1 if κDTI > 1.2

and m = 2 otherwise,
where κDTI is given by

eq. (5.1).

BOBYQA [Powell 2009]
(quadratic approx. of the

cost function)

Multi-modal
FACT

(Section 4.1)
10

2 (exploring only
bifurcations adjacent
to the main tract)

3

b = 1000
s/mm2, 20

DSG
directions,

1 × 1 × 5 mm3

voxel size.

• dCSF = 3.0× 10−3 mm2/s
except for m = 0 in which
case it is estimated;

• κi = κ;

• νi = ν;

• di given by eq. (2.50).

3m + 2 DoF: θi, φi, wi, κ and ν.

m = 0, 1, 2 and 3 and
explicit model

averaging
(Section 3.2.2)

COBYLA [Powell 1994]
(linear approx. of the cost

function)

Adaptive
multi-modal
particle filter
(Section 4.2)

150
5 (for N = 1000

particles)

Table 5.1: Synthetic View of the Diffusion Tools used for each Edition of the MICCAI DTI Tractography Challenge.

Running times are given for an 8-core Xeon 3 GHz computer.
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(a) (b) (c)

(d) (e) (f)

Figure 5.9: Year-3 diffusion tools applied on Year-2 data: CST in the

peritumoral regions. Illustration of the reconstructed CSTs in the vicinity of the

tumor using our Year-3 (most recent) diffusion tools on the diffusion data provided

at Year 2. 1-st row: patient 2.1 (tracts are overlayed on T1 image), 2-nd row:

patient 2.2 (tracts are overlayed on B0 image). Segmentation of the tumor provided

by the organizers is also overlayed for patient 2.1. Axial views on (a,d), coronal

views on (b,e) and sagittal views on (c,f). These results are to be compared to those

obtained at Year 2 and given in figs. 5.5 and 5.6.
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The main objective of the work presented in this manuscript was to achieve a

high resolution reconstruction of White Matter (WM) fascicles from low angular

resolution Diffusion MRI (dMRI).

The WM is one of the two components that constitute the Central Nervous

System (CNS), in great part responsible for the transmission of the nervous infor-

mation. In a normal adult Human brain, it is mainly composed of glial cells and

myelinated axons and it is immersed in the Cerebro-Spinal Fluid (CSF). Axons

are cigar-shaped cells whose function is precisely the transmission of the nervous

information. A myelin sheath generally surrounds them to make the transmission

faster. Glial cells are spherically-shaped cells whose goal is to feed and protect

the axons. Myelinated axons are grouped into bundles of axons, termed fascicles,

having locally a common orientation. In a child Human brain or a Human brain

suffering from a given brain disorder, some WM fascicles may be degraded and their

identification are of great interest for the understanding of brain maturation or for

diagnosis/treatment of a brain disorder.

The reconstruction of the WM fascicles, often referred to as a “virtual dissec-

tion" of the WM, is usually achieved in three steps:

• a data acquisition step that consists in collecting measured Diffusion-Weighted

(DW) images by the application of a series of magnetic field spatial gradients, re-

ferred to as Diffusion-Sensitizing Gradients (DSGs), that are defined by their mag-

nitude through the so-called b-value, their direction and their duration;

• a diffusion modeling step that consists in inferring the unobserved water dif-

fusion random process from the measured DW images;

• a tractography step that consists in performing the actual reconstruction of

the WM fascicles assuming that orientations of diffusion identified in the diffusion

modeling step correspond to the fascicle orientations.
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A fascicle is not observable to the naked eye. To date, researchers have been

able to perform reconstructions of simple fascicles without ramifications, referred to

as low resolution reconstructions, that are in accordance with previous histological

studies [Catani 2002, Jellison 2004, Catani 2008, Thiebaut de Schotten 2011]. How-

ever, many WM fascicles present an important number of ramifications (e.g., the

Cortico-Spinal Tract (CST)) and/or cross in different parts of the brain. Their recon-

struction, qualified as high resolution, proves much more difficult [Dell’Acqua 2012].

There are two ways of tackling this issue:

• The acquisition-based strategy: this is based on the idea that the more data,

the better the understanding of a random process. In a first step, one can thus collect

a huge amount of measured DW images in the data acquisition step to achieve the

most accurate and precise estimation of the distribution of the Diffusion-Induced

Molecular Displacements (DIMD) [Wedeen 2000, Wedeen 2005]. In a second step,

one can propose shorter data acquisition steps that lead to similar performances in

the diffusion modeling step. For example, [Tuch 1999, Tuch 2002] advice to collect

the measured DW images using a few b-values but an important number of DSG

directions, which is known as High Angular Resolution Diffusion Imaging (HARDI).

[Scherrer 2012] propose the CUbe and SPhere (CUSP) acquisition scheme that yields

a collection of measured DW images with multiple b-values at the cost of a single b-

value acquisition. Future data acquisition protocols in dMRI could thus be modified

to account for these proposals.

• The theory-based strategy: this is based on the idea that we often collected

measured DW images using a single b-values and few DSG directions, which is re-

ferred to as low angular resolution dMRI. With this data, “can we do better

than a low resolution reconstruction of WM fascicles?" Moving towards this direc-

tion, [Merlet 2010, Merlet 2011, Merlet 2012, Deriche 2013] are investigating the use

of compressed sensing and [Merlet 2013] propose an interesting dictionary learning

approach.

The strategy we adopted in this work is theory-based but quite different with re-

spect to compressed sensing or dictionary learning methods. We focused on propos-

ing a new statistical distribution for characterizing the DIMD. In addition, we

also observe that current tractography algorithms do not optimally exploit multiple

fascicle orientations identified at the diffusion modeling step. We thus design trac-

tography algorithms in this purpose. We summarize our contributions in section 6.1

and we give a number of perspectives around this work in section 6.2.

6.1 Summary of the contributions

The contributions of this thesis are three-fold: (i) we propose a new Multi-Compartment

Model (MCM) to study, from low angular resolution dMRI, the diffusion at the sub-

voxel scale (summarized in section 6.1.1), (ii) we provide a means to overcome the

model selection issue posed by the use of MCMs, which, in dMRI, boils down to

selecting the optimal number of fascicle compartments to be included into the MCM
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(summarized in section 6.1.2) and (iii) we successively design two tractography al-

gorithms to efficiently use multiple fascicle orientations when provided by the MCM

(summarized in section 6.1.3). All our diffusion tools have been implemented in

C++ and the binaries will be available online soon. All the screenshots in the dif-

ferent chapters have been made with the MedINRIA multi-platform medical image

processing and visualization software.

6.1.1 Contributions on diffusion modeling

The simplest way of studying the distribution of the DIMD is to assume that it is

a centered 3-dimensional Gaussian distribution: this is the basis of Diffusion Ten-

sor Imaging (DTI). When the voxelwise Probability Density Function (PDF) of

the distribution of the DIMD, termed the Ensemble Average Propagator (EAP),

is a single Gaussian PDF, the Signal Intensity Decay (SID), given by eqs. (1.9)

and (1.10), is predicted as monoexponential (eq. (2.1)). However, non monoexpo-

nential measured DW signal decays have been observed in the literature that fault

the Gaussian assumption. Efforts have been put to understand the causes of such a

non monoexponential behavior. At low b-values, it is believed to be mainly due to

the presence of multiple non-collinear fascicles and CSF contamination whereas, as

the b-value increases, the effects of restricted diffusion in geometrically constrained

environments (e.g., the axons) become non negligible and are also believed to be

responsible for the non monoexponential measured DW signal decays.

As a result, at low b-values, MCMs based on exponential PDFs have been pro-

posed to explain the non monoexponential behavior. Particularly efficient MCMs

that rely on geometrical constraints for the fascicles are the ball-and-stick model

[Behrens 2003, Behrens 2007] (in which fascicles are represented as cylinders of zero

radius) or the ball-and-zeppelin model [Hosey 2005] (in which fascicles are repre-

sented as cylinders with non-zero radius but not explicitly included in the model). At

high b-values, MCMs based on exponential PDFs for the extra-axonal space and non

monoexponential PDFs for the intra-axonal space (taken from [Neuman 1974] or [?]

who modeled restricted diffusion within a cylinder), without exchange between the

two spaces, were proposed. This is known as Composite Hindered And Restricted

ModEl of Diffusion (CHARMED), which was originally proposed in [Assaf 2004]

modeling restricted diffusion within axons via Neuman’s model. The assumptions

behind Neuman’s model are often not satisfied in dMRI, which led [Assaf 2005a]

to modify the CHARMED by modeling restricted diffusion within axons via van

Gelderen’s model. In these two versions, the radius of the axons is explicitly included

in the model but fixed. [Alexander 2008] propose another version of the CHARMED

that allows one to estimate this radius. Subsequently, [Alexander 2010] fixed the

diffusivities of the different compartments and estimated both intra-axonal and CSF

occupancies in the voxel: this is known as the Minimal Model of White Matter Dif-

fusion (MMWMD). Finally, recently, [Zhang 2012] introduced Neurite Orientation

Dispersion and Density Imaging (NODDI), which is an MCM (currently with a sin-

gle fascicle compartment) in which the non monoexponential measured DW signal

http://med.inria.fr
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decay is modeled as a spherical deconvolution of a monoexponential SID with a

Watson distribution to account for the fascicle orientation dispersion. Table 2.1

summarizes all these MCMs.

Our contributions on diffusion modeling are based on two observations: (i) pre-

viously proposed MCMs that account for intra- and extra-axonal spaces all require

multiple b-value acquisitions whereas the long held tradition in DTI provided the

community with tons of single b-value clinical data and (ii) the b-value threshold

above which restricted diffusion is non negligible is unclear and, in any case, rather

arbitrary. In section 2.3.3, we thus introduced a novel 3-dimensional statistical

distribution whose PDF is based on the convolution between a 2-dimensional Von-

Mises & Fisher (vMF) PDF and a 3-dimensional Gaussian PDF and is given by

eq. (2.31). It yields an anisotropic distribution of the DIMD within a fascicle that

is described by 5 parameters: the polar angle θ ∈ [0, π] of the fascicle orientation,

the azimuth angle φ ∈ [0,2π] of the fascicle orientation, the concentration κ ≥ 0 of

water molecules along the fascicle orientation (measure of orientation dispersion),

the free diffusivity d > 0 along the fascicle orientation and the extra-axonal occu-

pancy ν ∈ [0,1] in the fascicle. We encompass this PDF within an MCM with m

fascicle compartments and an additional compartment to account for CSF contam-

ination, which is assumed to be well represented by an isotropic centered Gaussian

PDF (Section 2.3.4.1). We coin this modeling Diffusion Directions Imaging (DDI),

of which we propose a motivated parametrization (Section 2.3.4.3) that allows us to

estimate it from single b-value clinical acquisitions. We show that the DDI MCM

yields an analytic expression of the SID (Section 2.3.4.4), which (i) is asymptotically

monoexponential as the b-value decreases and (ii) can be seen as a ball-and-stick or

ball-and-zeppelin MCM under some constraints on the parameters. We evaluated

the performances of the proposed constrained DDI MCM in comparison to the other

MCMs that can be estimated with single b-value acquisitions, namely the ball-and-

stick and ball-and-zeppelin model. We added the MMWMD to the comparison for

evaluation of the estimated extra-axonal occupancy. Results (see section 2.4) show

that our constrained DDI MCM most of the time outperforms the other models in

terms of angular error on the estimated fascicle orientations (which decreases as the

b-value, the number of DSG directions and the Signal-to-Noise Ratio (SNR) increase)

and outputs unbiased estimates of both the CSF and extra-axonal occupancies in

the voxel. The variance of the estimated extra-axonal occupancy is influenced nei-

ther by the b-value nor by the number of DSG directions but is greatly reduced at

very high SNRs. The MMWMD provides a biased and highly variable estimate of

the extra-axonal occupancy except at very high SNRs, b-value and number of DSG

directions.

In conclusion, the constrained DDI MCM can be estimated from low angular

(and spatial) resolution dMRI. It provides very accurate estimated fascicle orienta-

tions together with unbiased estimates of the CSF and extra-axonal occupancies in

the voxel. With this modeling, we showed that all these parameters can be extracted

correctly even at b = 1000 s/mm2 as far as the SNR is very high.

Publications related to this model are [1] (technical report), [2, 5] (patents),
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[6, 7] (peer-reviewed international conferences) and [11] (peer-reviewed journal).

6.1.2 Contributions on model selection

Geometry-based MCMs are adapted to model the EAP because the latter is the con-

tribution of diffusion processes arising from different geometrically constrained envi-

ronments (e.g., the axons). However, choosing the optimal number of fascicle com-

partments in a given voxel is a tricky question that may not even have a clear answer.

This is a model selection problem. We reviewed in sections 3.1 and 3.2.1 the different

approaches that have been adopted so far in the dMRI community. We distinguished

in particular two classes of methods. First, brute force approaches output a map with

the “optimal" number of fascicles per voxel, where “optimal" can be intended in the

sense of minimizing the fitting error [Alexander 2002, Kreher 2005, Scherrer 2012]

or, for the most recent works, the generalization error [Scherrer 2013]. Alterna-

tives are averaging approaches. To the best of our knowledge, only the Automatic

Relevance Detection (ARD) technique has been employed in the estimation of the

ball-and-stick MCM [Behrens 2007]. It requires the estimation of the ball-and-stick

MCM with the maximum assumed number of fascicles and performs an implicit

model averaging by putting appropriate priors on the fascicle occupancies that shrink

them towards 0 with very low variance if not supported by the data.

We proposed instead a solution that consists in explicitly averaging different

MCMs (Section 3.2.2). The approach consists in estimating a given geometry-based

MCM with 0,1, . . . ,M fascicles and computing the probability of each of them to

be the best model to fit the data. At the cost of running time, we obtain a set of

weights, termed the Akaike’s weights, that quantify these probabilities relatively to

the size of the candidate set. This approach offers much more flexibility with respect

to ARD. Indeed, not only we can quantify the probability of each model but we can

derive probabilities that a subset of these models are the “best model" together to

fit the data. We compared the ARD approach to ours using the same ball-and-stick

MCM to ensure that differences can be interpreted in terms of differences between

averaging methods and not between diffusion models (Section 3.2.3). We show that

ARD identifies few 3-fascicle regions that are not statistically significant whereas our

method robustly identify 3-fascicle regions where expected by previous histological

studies (figs. 3.2 and 3.3). We then compared the ball-and-stick MCM and our

proposed constrained DDI MCM, both averaged using our approach up to M = 3,
showing that the DDI MCM further improves the detection and reconstruction of

3-fascicle regions (Figure 3.5).

We finally performed the estimation of our constrained DDI MCM with further

model averaging up to M = 3 fascicle compartments on both a healthy subject and

a patient suffering from a tumor (Section 3.3.2). The diffusion data were acquired

with a single b-value of 1000 s/mm2 and 30 DSG directions for the healthy subject

and 20 DSG directions for the patient. We showed that we can provide corrected

maps of the usual scalar metrics used by clinicians (e.g., Mean Diffusivity (MD)

or Fractional Anisotropy (FA)). The DDI MCM additionally outputs the CSF and
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extra-axonal occupancies and an orientation dispersion index in the voxel. These

maps are also interested as we showed that the same drop in FA can be characterized

by various configurations of these scalars in different part of the peritumoral region.

These new scalar maps may thus be better specific biomarkers but this needs further

evaluation.

Articles related to this model averaging method are in preparation.

6.1.3 Contributions on tractography

Diffusion modeling, and subsequent model selection/averaging approaches for the

case of MCMs, is just one step towards the reconstruction of WM fascicles. The final

stage consists in using the geometrical information gathered by the diffusion model

to perform the actual reconstruction of the fascicles: this is known as tractography.

In chapter 4, we reviewed (non exhaustively) a great part of tractography algo-

rithms available in the literature, of which we proposed the following classification:

• Deterministic streamline algorithms: these algorithms reconstruct a fascicle in

a stepwise fashion from a seed voxel by following locally the orientations identified

by the diffusion model;

• Energy-based algorithms: these algorithms reconstruct a globally optimal fas-

cicle from a seed voxel to any other voxel by minimizing appropriate cost functions;

• Locally filtered streamline algorithms: these algorithms regularize streamline

fascicles by perturbing the position or orientation at each step and by keeping the

more consistent one;

• Probabilistic streamline algorithms: these algorihms generalize locally filtered

streamline algorithms by keeping all perturbed positions or orientations but assign-

ing weights to the corresponding fascicle.

We focused on two existing algorithms. The first one is one of the very first in-

troduced tractography algorithm. It is the deterministic streamline algorithm called

Fiber Assignement by Continuous Tracking (FACT) introduced by [Mori 1999]. This

algorithm was developed to perform DTI tractography and, as such, supports only

diffusion models that provide a single fascicle orientation per voxel. In section 4.1,

we generalized it to account for multiple fascicle orientations per voxel. We applied it

on clinical data with b = 800 s/mm2 and 15 DSG directions using the DT model, the

Q-ball model and the DDI MCM. The objectives were two-fold: (i) to evaluate the

ability of the models to reconstruct the left and right Hand Motor Tracts (HMTs)

and (ii) to study handedness asymmetry. The results showed that the DDI MCM

is the only model (among the 3 evaluated) to robustly reconstruct the HMTs and

it supports the idea of an asymmetry in the number of tracts between the left and

right HMTs for right-handed individuals.

Our multi-modal FACT tractography algorithm however remains a determinis-

tic algorihm. As such, it does not account for the uncertainty on the estimated

fascicle orientations. Also, it suffers from a huge computational burden if one wants

to explore all the fascicle orientations provided by the diffusion model. The sec-

ond algorithm we focused on is thus a probabilistic streamline algorithm. We
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chose to use the theory of particle filtering and thus started with the works of

[Zhang 2009, Pontabry 2013] that introduced the use of particle filters to approx-

imate the distribution of all possible tracts of a given length emanating from a

single voxel. Traditional particle filters however have a hard time maintaining the

multi-modal distribution of a filtering distribution. To circumvent this issue, we

designed an adaptive multi-modal particle filter (Section 4.2). The only difference

with the traditional one is that particles are grouped into clusters and resampling

is performed within the clusters, which gives better chances to secondary leads.

Weighting is thus provided at two levels, the particles and the clusters, with ad-

equate updating rules for compliance with sequential importance sampling. One

can see each cluster as a super-particle. The entire chapter 5 is dedicated to the

application of this algorithm, coupled with our proposed constrained DDI MCM, for

the reconstruction of the CST on patients suffering from tumors at various grades.

The data was provided by the organizers of the DTI Tractography challenges on

peritumoral WM anatomy for neurosurgical decision-making that were proposed for

the last three years at the MICCAI conference. It consisted in low angular and

spatial resolution measured DW images (b = 1000 s/mm2 and 30 (years 1 and 2)

and 20 (year 3) DSG directions). Results show that the current tools (constrained

DDI MCM and multi-modal particle filter) enables to reconstruct the full extent of

the CST away from the tumor and proposes a modified structure of the CST in the

peritumoral regions that need further validation.

Publications related to this model are [3, 4, 8, 9, 10] (peer-reviewed international

conferences).

6.2 Perspectives around this thesis

Clinical dMRI mainly consists in the application of a single low b-value with few

DSG directions. These choices lead to low angular resolution measured DW images

that, to date, were analyzed by DTI and subsequent tractography. These tools

however have been shown to provide non-specific biomarkers (e.g., MD and FA) and

misleading tractography results.

In this manuscript, we developed new tools for the analysis of such low angular

resolution data. The objectives were two-fold: (i) to provide more specific biomark-

ers for brain pathologies and (ii) to achieve high resolution reconstruction of the

WM fascicles. Throughout the experiments in the different chapters, we showed

that the tools we proposed establish a solid basis towards these goals. Yet, a num-

ber of things can now be envisaged with these analysis tools regarding both the

diffusion modelingand tractography steps. For instance:

• In diffusion modeling, we proposed the constrained DDI MCM for clinical use.

– Influence of the b-value: We studied the influence of the b-value on the esti-

mated parameters. However, the b-value depends on (i) the magnitude of the

DSG, (ii) the diffusion time between two successively applied DSGs and (iii)

the duration of a DSG, through eq. (1.12). Researchers often confound b-value
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with magnitude of the DSG but [Scherrer 2012] pointed out that studying the

influence of the diffusion time and DSG duration is very important.

– Estimation framework: In this manuscript, we always estimated our MCM

by minimizing eq. (2.68), which is a simple least square fitting. This criterion

relies on the assumption that the measurement noise is Gaussian, which, in the

case of dMRI, is an approximation valid only at high SNRs. [Gudbjartsson 1995]

showed that single-coil measured DW images are in fact corrupted with Rice-

distributed noise and [Constantinides 1997] showed that multi-coil measured

DW images are corrupted with Chi-distributed noise.

– Influence of the SNR: Our experiments led to the conclusion that the DDI

MCM can provide valuable information even at b = 1000 s/mm2 and few

DSG directions (e.g., 30). The only thing that matters is to keep the SNR

as high as possible. We thus advice repetitions of a standard clinical pro-

tocol rather than adding b-values and DSG directions if there is more time,

in order to improve the SNR. Also, we recommend to reduce the TE as

much as possible to achieve a high SNR. Finally, in all our experiments (ex-

cept for simulated data of course), we filtered the measured DW images with

the Rician-adapted non-local means filter introduced by [Wiest-Daesslé 2008].

Some more advanced denoising methods have been proposed recently in the

literature [Aja-Fernández 2012, Rajan 2012] and, since achieving high SNR is

crucial for an accurate estimation of the DDI MCM, may be employed as well.

– Similarity measure: If we want to use the DDI MCM to study pathologies

(e.g., differences between a group of patients and a group of controls), we need

to carefully define a similarity measure between two DDI MCMs to be able to

register all the subjects on a common reference. Such similarity measures do

exist for DTI [Fillard 2007] and multi-tensor models [Taquet 2012b] and need

to be defined for DDI.

– Study of pathologies (retrospective and future): once defined a similarity

measure between models, the DDI MCM offers the possibility to re-analyze

former DTI datasets (see non exhaustive list proposed in section 1.4.5) and,

more generally, to analyze any dMRI data. In particular, it would be inter-

esting to further investigate the changes in CSF and extra-axonal occupancies

and in orientation dispersion due to a given brain disorder. Indeed, both our

experiments and other works (e.g., [Zhang 2012]) suggest that these parame-

ters could be better biomarkers than MD and FA.

• In tractography, we proposed an adaptive multi-modal particle filter to ap-

proximate the distribution of all possible tracts of a given length emanating

from a single voxel. We made a significant improvement by modifying the

traditional particle filter to better maintain the multi-modality of the filtering

distribution.

– Weights of the tracts: Since the algorithm better maintain the multi-modality,

it is able to reconstruct multiple tracts over extended volumes and to assign
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them non negligible weights. At the moment, we did not study these weights in

any way. These corrected weights may be a good starting point for connectiviy

studies [Lazar 2010].

– Region Of Interests (ROIs): For all the tractography results presented in

this manuscript, ROIs were delineated manually and sometimes yielded the

partial reconstruction of other fascicles close to the CST. In these cases, we

filtered these tracts. However, some researchers developed automated tools

for ROI delineation [Shenton 1995] and atlases also exist to help in manual

delineation (e.g., [Catani 2008, Mori 2008]), which could help us obtain even

better tractography results.

– Interpolation: Currently, in the tractography process, when we reach a point

between voxels, we interpolate by concatenating all the compartments of all

the DDI MCMs of the surrounding voxels weighted according to their distance

to the current point. This is sub-optimal since many of these compartments

probably represent the same fascicles. [Taquet 2012a] introduced recently an

interpolation scheme for multi-tensor models, which are a particular class of

MCMs. The scheme strongly depends on the assumption that the diffusion

in each fascicle is Gaussian so that its application to the DDI MCM is not

straightforward. Yet, a similar approach could certainly improve the tractog-

raphy results.





Appendix A

The distribution behind Diffusion

Directions Imaging

A.1 Definitions from probability theory

Let us recall some probability theory basics that are required in Appendix A.2.

• Given two measurable spaces (E1,F1) and (E2,F2), a measurable function

h ∶ E1 → E2 and a measure ρ ∶ F1 → [0,+∞], the pushforward measure h ⋆ ρ ∶F2 → [0,+∞] of ρ induced by h is defined as (h⋆ρ)(B) = ρ (h−1(B)), for any B ∈ F2;

• a real p-dimensional random variable x is a measurable function from the

probability space (Λ,F , P ) to the measurable space (Rp,Bp), where Bp is the Borel

σ-algebra of Rp;

• the probability distribution, often shorten to distribution, of the real

p-dimensional random variable x is the pushforward measure of P induced by x;

• the Characteristic Function (CF) ϕx ∶ Rp → C of the real p-dimensional

random variable x reads

ϕx(t) = ∫
Rp
exp{i < t,x >}d(x ⋆ P )(x) = ∫

Rp
exp{i < t,x >}dP (x−1(x))

= ∫
Λ
exp{i < t,x(ω) >}dP (ω) , for any t ∈ Rp .

• the Probability Density Function (PDF) px ∶ Rp → [0,+∞] of the real p-

dimensional random variable x is the Radon-Nikodym derivative of its distribution.

Note that the CF of the real p-dimensional random variable x always exists

whereas its PDF exists if and only if the distribution of x is absolutely continuous

with respect to the Lebesgue measure. In the latter case, the CF and the PDF are

related by ϕx(t) = ∫Rp exp{i < t,x >}px(x)dx, for any t ∈ Rp.

A.2 The von Mises & Fisher probability distribution

A.2.1 Definitions

It is a 4-parameter probability distribution. Here is the list of the notations used

throughout this section:

• A2 = [0, π]×[0,2π[ is the 2-dimensional space of spherical coordinates; equipped

with its corresponding Borel σ-algebra BA2
, it is a measurable space;

• (θ0, φ0, κ,R) ∈ A2 × [0,+∞]×]0,+∞] are the parameters of the vMF distribu-

tion Fθ0,φ0,κ,R;
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• Denoting µ = (sin θ0 cosφ0, sin θ0 sinφ0, cos θ0)′, the vMF distribution can also

be denoted by Fµ,κ,R;

• sµ,κ ∶ BA2
→ [0,+∞] is the vMF measure on the 2-dimensional unit sphere

whose density with respect to the Lebesgue measure reads:

dsµ,κ(θ, φ) = κ sin θ

4π sinhκ
exp{κ (µ1 sin θ cosφ

+µ2 sin θ sinφ + µ3 cos θ)}dθdφ ,

(A.1)

for any (θ, φ) ∈ A2 so that (A2,BA2
, sµ,κ) is a probability space;

• TR is the real 3D random variable from (A2,BA2
, sµ,κ) to (R3,B3) such that

TR(θ, φ) = (R sin θ cosφ,R sin θ sinφ,R cos θ)′ , for any (θ, φ) ∈ A2 . (A.2)

The vMF distribution in R
3 is the pushforward measure Fµ,κ,R of sµ,κ induced

by TR; µ (unit vector) is the mean direction, κ ≥ 0 is the concentration parameter
which controls the dispersion of the distribution around the mean direction µ and

R > 0 is the radius of the sphere on which the distribution has positive value.

A.2.2 Characteristic Function

Let v be a real 3D random variable following the vMF distribution Fµ,κ,R. Then,

for any t ∈ R3, its CF is given by:

ϕv(t;µ, κ,R) = ∫
A2

exp{i < t, TR(θ, φ) >}dsµ,κ(θ, φ) ,
which, combined with eq. (A.1), becomes:

ϕv(t;µ, κ,R) = κ

4π sinhκ
∫
A2

exp{< iRt + κµ, T1(θ, φ) >} sin θdθdφ . (A.3)

The derivation of this integral is carried out in [Dégerine 1979] for the case R = 1.
It is straightforward to generalize the expression for any R > 0:

ϕv(t;µ, κ,R) = κ

sinhκ

+∞∑
n=0

zn(2n + 1)! ,∀t ∈ R3 , (A.4)

with z = z(t;µ, κ,R) = κ2 −R2∥t∥2 + 2iκRµ′t. Introducing

α = α(t;µ, κ,R) =
√

Re z + ∣z∣
2

,

β = β(t;µ, κ,R) = Im z√
2 (Re z + ∣z∣) ,

Ω = {t ∈ R3 s.t. ∥t∥ ≥ κ/R and t ⊥ µ} ,
(A.5)

in which α and β are well-defined only when Re (z)+ ∣z∣ > 0, eq. (A.4) simplifies to:

ϕv(t;µ, κ,R) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

κ

sinhκ

sin
√
R2∥t∥2 − κ2√

R2∥t∥2 − κ2 , t ∈ Ω ,

κ

sinhκ

sinh(α + iβ)
α + iβ , t ∉ Ω .

(A.6)
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When κ = 0, the vMF distribution coincides with the uniform distribution on the

2-dimensional sphere of radius R. Besides, the vMF distribution is not absolutely

continuous with respect to the Lebesgue measure in R
3 as, for example, A2 has null

Lebesgue measure while Fµ,κ,R(A2) = 1. Therefore, it does not admit a PDF on R
3.

A.3 Sum of independent vMF & 3D Gaussian variables

A.3.1 Definitions

Let w = v + z be the sum of two independent random variables, where:

• v follows a vMF distribution on the sphere of radius
√
νd (ν ∈ [0,1], d > 0)

with mean direction +µ (∥µ∥ = 1) and concentration parameter κ ≥ 0. It admits a

PDF on the 2-sphere of radius
√
νd. Its expression is given in [Jupp 1989] for νd = 1

and can easily be extended on the sphere of radius
√
νd > 0 by affine transformation:

pv(v;+µ, κ, d, ν) = 1(νd)3/2 κ

4π sinhκ
exp{ κ√

νd
µ
′
v} , (A.7)

for any v ∈ R3 such that ∥v∥2 = νd.
• z follows a zero-mean 3D Gaussian distribution with covariance matrix Σ =

(1−ν)d
κ+1 (I3 + κµµ′). It admits a PDF on R

3. Using the Sherman-Morrison-Woodbury

identity [Hager 1989] to invert D, the latter reads:

pz(z;±µ, κ, d, ν) = κ + 1
(2π(1 − ν)d)3/2 exp{−

(κ + 1)∥z∥2 − κ(µ′z)2
2(1 − ν)d } , (A.8)

for any z ∈ R3.

• v and z are statistically independent.

A.3.2 Characteristic Function

The statistical independence of the random variables v and z implies that the CF

of the random variable w reads:

ϕw(t;µ, κ, d, ν) = ϕv(t;µ, κ,√νd)ϕz(t;µ, κ, d, ν) ,∀t ∈ R3 ,

where ϕv(t;µ, κ,√νd) is given by eq. (A.6) with R =√νd and ϕz(t;µ, κ, d, ν) is the

CF of the distribution of the random variable z, which is given by [Anderson 2003]:

ϕz(t;µ, κ, d, ν) = exp{−(1 − ν)d
2(κ + 1) (∥t∥2 + κ(< µ, t >2)} .

The CF of the random variable w has thus the following expression:

ϕw(t;µ, κ, d, ν) = exp{−(1 − ν)d
2(κ + 1) (∥t∥2 + κ < µ, t >2)}

× κ

sinhκ

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sinc (√νd∥t∥2 − κ2) , if νd∥t∥2 ≥ κ2 and t ⊥ µ ,

sinh(α + iβ)
α + iβ , otherwise ,

(A.9)



178 Appendix A. The distribution behind Diffusion Directions Imaging

where α and β are given by eq. (A.5) with R = √νd:
α =
√

Re (z) + ∣z∣
2

,

β = Im (z)√
2 (Re (z) + ∣z∣) ,

z = κ2 − νd∥t∥2 + 2iκ√νd < µ, t > .

A.3.3 Probability Density Function

Theorem 1. The random variable w admits a PDF on R
3, which is given by:

pw(w;µ, κ, d, ν) = C(κ, d, ν) exp{−(κ + 1)w2⊥ +w2
�

2(1 − ν)d }
× ∫ 1

−1 exp{rνκ2 t2 + (κ + rνw�√
νd
) t} I0 (rν(κ + 1)√

νd
w⊥
√
1 − t2)dt ,

for any w ∈ R3, where:

rν ∶= ν

1 − ν ,

C(κ, d, ν) ∶= κ(κ + 1) exp{− rν(κ+1)
2
}

2 (2π(1 − ν)d)3/2 sinhκ ,

(w�,w⊥) ∶= (< µ,w >,√∥w∥2− < µ,w >2) ,
and I0 is the 0-th order modified Bessel function [Abramowitz 1972], with the con-
vention that < µ,w >= ∥w∥ for any w ∈ R3 when κ = 0.
Proof. Let Fµ,κ,d,ν , Gµ,κ,d,ν and Hµ,κ,d,ν be the probability distributions of the real

3-dimensional random variables v, z and w respectively. The density of Hµ,κ,d,ν

with respect to Gµ,κ,d,ν reads

dHµ,κ,d,ν(w) = ∫
R3

dGµ,κ,d,ν(w − v)dFµ,κ,d,ν(v) ,∀w ∈ R3 .

Now, Gµ,κ,d,ν is absolutely continuous with respect to the Lebesgue measure, so

does Hµ,κ,d,ν . The PDF of w thereby exists and is given by:

pw(w;µ, κ, d, ν) = ∫
R3

pz(w − v;µ, κ, d, ν)dFµ,κ,d,ν(v) ,∀w ∈ R3 . (A.10)

Since Fµ,κ,d,ν is a vMF distribution, it is the pushforward measure of νµ,κ defined

in eq. (A.1) induced by the random variable T√
νd

defined as in eq. (A.2), with

R = √νd. We thus have:

dFµ,κ,d,ν(v) = dsµ,κ (T−1√νd
(v)) ,∀v ∈ R3 . (A.11)
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Inserting eqs. (A.1) and (A.11) into eq. (A.10) leads to:

pw(w;µ, κ, d, ν) = κ

4π sinhκ
∫
A2

pz(w −√νdT1(θ, φ);µ, κ, d, ν)
× exp{κ < µ, T1(θ, φ) >} sin θdθdφ ,∀w ∈ R3 .

(A.12)

The expression of pz given by eq. (A.8) simplifies eq. (A.12) to:

pw(w;µ, κ, d, ν) = C(κ, d, ν)
2π

exp{−(κ + 1)w2⊥ +w2
�

2(1 − ν)d }Q(w;µ, κ, d, ν) , (A.13)

where Q is defined as follows:

Q(w;µ, κ, d, ν) ∶= ∫
A2

exp{rνκ
2
< µ, T1(θ, φ) >2 +κ(1 − rν < µ,w >√

νd
) < µ, T1(θ, φ) >

+rν(κ + 1)√
νd

<w, T1(θ, φ) >} sin θdθdφ .
Let P be the unitary matrix that rotates µ to e3 = (0,0,1)′, i.e., Pµ = e3.

Defining w⋆ = Pw, we have

Q(w;µ, κ, d, ν) = ∫
A2

exp{rνκ
2

cos2 θ + κ(1 − rνw
⋆
3√

νd
) cos θ}

× exp{rν(κ + 1)√
νd

(w⋆1 sin θ cosφ +w⋆2 sin θ sinφ +w⋆3 cos θ)} sin θdθdφ ,
= ∫ π

0
exp{rνκ

2
cos2 θ + (κ + rνw

⋆
3√

νd
) cos θ}h(w, θ) sin θdθ ,

(A.14)

where h(w, θ) ∶= ∫ 2π+φ0

φ0
exp{ rν(κ+1)√

νd
sin θ
√(w⋆1)2 + (w⋆2)2 sinφ}dφ and φ0 = arctan w⋆

1

w⋆
2

+
π(w⋆2 ≤ 0). Because sin is a 2π-periodic function and thanks to the relation ∫ 2π

0 ez sinxdx =
2πI0(z), for any z ∈ R, which can be deduced from [Abramowitz 1972, p. 376], we

can simplify h(w, θ) to:

h(w, θ) = 2πI0 (rν(κ + 1)√
νd

sin θ

√(w⋆1)2 + (w⋆2)2) . (A.15)

Substituting eq. (A.15) into eq. (A.14) and observing that w⋆3 =< e3,w
⋆ >=<

e3, Pw >=< µ,w >= w� and (w⋆1)2 + (w⋆2)2 = ∥w⋆∥2 − (w⋆3)2 = ∥w∥2− < µ,w >2= w2⊥
yields the following single-integral representation of Q:

Q(w;µ, κ, d, ν) = 2π∫ 1

−1 exp{rνκ2 t2 + (κ + rνw�√
νd
) t}

× I0 (rν(κ + 1)√
νd

w⊥
√
1 − t2)dt .

(A.16)

Inserting eq. (A.16) into eq. (A.13) ends the proof.
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A.3.4 Projections parallel and perpendicular to the mean direction

For any t ∈ [−1,1], let us define the following two random variables:

• nt ∼ N1 (√νdt, (1 − ν)d) is a univariate Gaussian random variable with mean√
νdt and variance (1 − ν)d,

• rt ∼ R(√νd(1 − t2),√ (1−ν)d
κ+1 ) is a univariate Rician random variable with

mean
√
νd(1 − t2) and scale

√ (1−ν)d
κ+1 .

Manipulating the expression of the PDF of the distribution of w given in theo-

rem 1, one can obtain:

pw(w;µ, κ, d, ν) = 1

2πw⊥
κ

2 sinhκ
∫ 1

−1 exp{κt}pnt(w�)prt(w⊥)dt ,∀w ∈ R3 .

Expressing w in cylindrical coordinates leads to:

pw(w;µ, κ, d, ν)dw = 1

2π

κ

2 sinhκ
[∫ 1

−1 exp{κt}pnt(w�)prt(w⊥)dt]dw⊥dw�dβ ,

for any (w⊥,w�, β) ∈ R+ ×R × [0,2π]. This allows us to state the following

Corollary 1. The joint PDF of (w�,w⊥) is given by:

p(w�,w⊥)(w�,w⊥) = κ

2 sinhκ
∫ 1

−1 exp{κt}pnt(w�)prt(w⊥)dt ,
and, thus, the marginal PDFs of w� and w⊥ are respectively given by:

pw�
(w�) = κ

2 sinhκ
∫ 1

−1 exp{κt}pnt(w�)dt ,
pw⊥(w⊥) = κ

2 sinhκ
∫ 1

−1 exp{κt}prt(w⊥)dt .
A.3.4.1 Raw moments of univariate Gaussian and Rice distributions

The Gaussian distribution. Let n ∼ N1(µ,σ2) be a univariate Gaussian random

variable with mean µ and variance σ2. The non-central moments of its distribution

are then given, for any p ≥ 0, by:

E [np] = ( σ

i
√
2
)pHp ( iµ

σ
√
2
) ,

where Hp (⋅) are Hermite’s polynomials. In particular, the second and fourth order

raw moments are given by:

E [r2] = σ2 + µ2 ,

E [r4] = 3σ4 + 6σ2µ2 + µ4 .
(A.17)
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The Rice distribution. Let r ∼ R(ν, σ) be a univariate Rician random variable

with location ν and scale σ. The non-central moments of its distribution are then

given, for any p ≥ 0, by:

E [rp] = σp2
p

2Γ(1 + p

2
)L p

2

(− ν2

2σ2
) ,

where Lq (⋅) are Laguerre functions. In particular, the second and fourth order raw

moments are given by:

E [r2] = 2σ2 + ν2 ,
E [r4] = 8σ2 + 8σ2ν2 + ν4 .

(A.18)

A.3.4.2 Raw moments of the distribution of w� and w⊥

Corollary 1 allows one to easily compute all the raw moments of the distributions of

the random variables w� and w⊥, knowing those of univariate Gaussian and Rician

distributions. Indeed, for any p ∈ N⋆, we have:

E [wp
�] = κ

2 sinhκ
∫ 1

−1 exp{κt}E [npt ]dt ,
E [wp⊥] = κ

2 sinhκ
∫ 1

−1 exp{κt}E [rpt ]dt .
The odd order raw moments are of little interest since these distributions are

meant to be encompassed within an antipodally symmetric distribution for which

the odd raw moments are zero. On the other hand, the second and fourth order

raw moments are of particular interest since they are related to the variance and

kurtosis properties of the distribution. Since nt ∼ N1 (√νdt, (1 − ν)d) and rt ∼
R(√νd(1 − t2),√ (1−ν)d

κ+1 ), we have:

E [n2t ] = νd( 1rν + t2) ,
E [n4t ] = (νd)2 ( 3

r2ν
+ 6t2

rν
+ t4) ,

E [r2t ] = (1 − ν)d(rν + 2

κ + 1 − rνt
2) ,

E [r4t ] = (1 − ν)2d2 [r2ν + 8rν

κ + 1 +
8(κ + 1)2 − 2rν (rν + 4

κ + 1) t2 + r2νt4] .
Defining, for any p ≥ 0, the following integral:

Bp(κ) ∶= κ

2 sinhκ
∫ 1

−1 t
p exp{κt}dt , (A.19)

of which we can trivially compute B0(κ) = 1, we can express the second and fourth
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raw moments of the distributions of the random variables w� and w⊥ as follows:

E [w2
�] = νd( 1rν +B2(κ)) ,

E [w4
�] = (νd)2 ( 3

r2ν
+ 6

rν
B2(κ) +B4(κ)) ,

E [w2⊥] = (1 − ν)d(rν + 2

κ + 1 − rνB2(κ)) ,
E [w4⊥] = (1 − ν)2d2 [r2ν + 8rν

κ + 1 + 8(κ + 1)2 − 2rν (rν + 4

κ + 1)B2(κ) + r2νB4(κ)] .
Now, observe that eq. (A.19) can be rewritten as follows:

Bp(κ) = E [cosp θ] ,
where θ follows a vMF distribution as defined in [Mardia 1972]. In the same book,

the expression of Bp(κ) is given as λp (p.232, Eq.8.5.24) and reads:

Bp(κ) = Ip+ 1

2

(κ)
I 1

2

(κ) , (A.20)

where Iq (⋅) is the q-th order modified Bessel function of the first kind.



Appendix B

The signal predicted by Diffusion

Directions Imaging

B.1 DDI-derived Signal Intensity Decay

Theorem 2. Consider a fascicle represented as a pseudo-cylinder characterized
inter-alia by its orientation ±µ. Assume that the DIMD y within this fascicle follow
a probability distribution whose PDF is an equally weighted mixture of two PDFs as
given by theorem 1, one in the direction +µ and the other in the opposite direction−µ, the remaining parameters κ, d, ν being the same for the two PDFs.

Under this assumption, the expression of the SID induced by the application of
a DSG with b-value bk and direction gj is given by:

Ajk = exp{−bk(1 − ν)d
κ + 1 (1 + κ < µ,gj >2)}

× κ

sinhκ

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∣sinc(√2bkνd − κ2)∣ , if 2bkνd ≥ κ2 and gj ⊥ µ ,∣α sinhα cosβ + β coshα sinβ∣

α2 + β2
, otherwise,

where

α =
√

Re (z) + ∣z∣
2

and β = Im (z)√
2(Re (z) + ∣z∣) ,

with z = κ2 − 2bkνd + 2iκ√2bkνd < µ,gj >.
Proof. According to q-space theory, the expression of the SID in terms of the distri-

bution of the DIMD is given by eqs. (1.9) and (1.10) and reads, for a given b-value

bk and a given DSG direction gj :

Ajk = ∣ϕy (√2bkgj)∣ , (B.1)

where ϕy is the CF of the random variable y.

By definition of the DIMD y, the CF of their distribution is given by

ϕy(t;±µ, κ, d, ν) = 1

2
ϕw(t;µ, κ, d, ν) + 1

2
ϕw(t;−µ, κ, d, ν) ,

where ϕw(t;µ, κ, d, ν) is the CF of the distribution of a random variable w with PDF

as stated in theorem 1 and is given by eq. (A.9). Moreover, it follows from eq. (A.5)
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that α(t;−µ, κ,R) = α(t;µ, κ,R) = α and β(t;−µ, κ,R) = −β(t;µ, κ,R) = −β. We

thus obtain:

ϕy(t;µ, κ, d, ν) = exp{−(1 − ν)d
2(κ + 1) (∥t∥2 + κ < µ, t >2)}

× κ

sinhκ

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
sinc (√νd∥t∥2 − κ2) , if νd∥t∥2 ≥ κ2 and t ⊥ µ ,

1

2
(sinh(α + iβ)

α + iβ + sinh(α − iβ)
α − iβ ) , otherwise ,

(B.2)

Finally, simple derivations yield:

1

2
(sinh(α + iβ)

α + iβ + sinh(α − iβ)
α − iβ ) = Re(sinh(α + iβ)

α + iβ )
= α sinhα cosβ + β coshα sinβ

α2 + β2
,

and inserting eq. (B.2) into eq. (B.1) ends the proof.

B.1.1 SID measured along particular directions

Along the orientation of the fascicle. When the DSG is applied in a direction

gj parallel to the orientation ±µ of the fascicle, α and β take a simpler form. Indeed,

from z = κ2 −2bkνd+2iκ√2bkνd < µ,gj > with ∣< µ,gj >∣ = 1, it is trivial to see that∣z∣ = κ2 + 2bkνd, which leads to:

α = κ and β =√2bkνd ⋅ sgn< µ,gj > ,
and the expression of the SID given in theorem 2 reads:

Ajk = exp{−bk(1 − ν)d} ∣cos√2bkνd∣ ∣1 +
√
2bkνd

cothκ
κ

tan
√
2bkνd∣

1 + 2bkνd
κ2

.

Perpendicularly to the orientation of the fascicle. When the DSG is applied

in a direction gj perpendicular to the orientation ±µ of the fascicle, α and β also take

a simpler form. Indeed, from z = κ2 −2bkνd+2iκ√2bkνd < µ,gj > with < µ,gj >= 0,
it is trivial to see that ∣z∣ = ∣κ2 − 2bkνd∣.

As a consequence, for low b-values bk < κ2

2νd
, we obtain α = √κ2 − 2bkνd and

β = 0, which yields the following simplified SID:

Ajk = exp{−bk(1 − ν)d
κ + 1 }(1 − 2bkνd

κ2
)−1/2 sinh(κ

√
1 − 2bkνd

κ2 )
sinhκ

.

Differently, for high b-values bk ≥ κ2

2νd
, we use the first form given in theorem 2 which

yields:

Ajk = exp{−bk(1 − ν)d
κ + 1 } κ

sinhκ
∣sinc (√2bkνd − κ2)∣ .
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B.1.2 SID in lowly orientationally dispersed media

Low orientational dispersion is characterized by κ→∞. In order to understand how

does the SID described by theorem 2 behave at such a regime, we can rearrange the

expressions of α and β as follows. First, from z = κ2 − 2bkνd + 2iκ√2bkνd < µ,gj >,
it is trivial to see that ∣z∣2 ∼ κ4 when κ is large. Thus, we get Re (z) + ∣z∣ ∼ 2κ2 for

large κ. As a consequence, we obtain the following limiting behaviors for α and β:

α
κ→∞ÐÐÐ→ κ and β

κ→∞ÐÐÐ→√2bkνd < µ,gj > , (B.3)

and the expression of the SID given in theorem 2 reads, for large κ:

Ajk ∼ exp{−bk(1 − ν)d < µ,gj >2} ∣ cosβ∣ ∣1 + β cothκ
κ

tanβ∣
1 + β2

κ2

.

The expression can be further simplified to:

Ajk
κ→∞ÐÐÐ→ exp{−bk(1 − ν)d < µ,gj >2} ∣cos (√2bkνd < µ,gj >)∣ ,

where β has been replaced by its limit given by eq. (B.3).

B.1.3 SID in highly orientationally dispersed media

High orientational dispersion is characterized by κ→ 0. In order to understand how

does the SID described by theorem 2 behave at such a regime, we can rearrange the

expressions of α and β as follows. First, from z = κ2 − 2bkνd + 2iκ√2bkνd < µ,gj >,
we can derive:

∣z∣2 = (2bkνd)2 ⎛⎝1 + (2 < µ,gj >2 −1) κ2

bkνd
+ ( κ2

2bkνd
)2⎞⎠ ,

which leads to the following approximations for κ→ 0:

∣z∣ = 2bkνd+(2 < µ,gj >2 −1)κ2+o(κ2) and thus Re (z)+∣z∣ = 2 < µ,gj >2 κ2+o(κ2) .
We thus obtain the following limiting behaviors for α and β:

α
κ→0ÐÐ→ 0 and β

κ→0ÐÐ→ sgn< µ,gj >√2bkνd , (B.4)

and the expression of the SID given in theorem 2 reads:

Ajk = exp{−bk(1 − ν)d}
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∣sinc (√2bkνd)∣ , if gj ⊥ µ ,∣β∣ ⋅ ∣ sinβ∣

β2
, otherwise .

Now observe that ∣β∣⋅∣ sinβ∣
β2 = ∣sinc (β) ∣ = ∣sinc (√2bkνd)∣ thanks to eq. (B.4), which

yields:

Ajk
κ→0ÐÐ→ exp{−bk(1 − ν)d} ∣sinc (√2bkνd)∣ .
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B.2 Mean Diffusivity

Let y be a zero-mean 3-dimensional random vector and µ be a direction on the

2-sphere S
2. First of all, observe that:

∀c ∈ R3 ⋂ S
2 , ∃(a,c⊥) ∈ [−1,1] × (span{µ})⊥ ⋂ S

2 ∶ c = aµ +√1 − a2c⊥ .
If we decompose y as follows:

y = y�µ + y⊥u , with u = y − y�µ

y⊥
∈ (span{µ})⊥ ⋂ S

2 ,

where y� =< µ,y > and y⊥ =√∥y∥2− < µ,y >2, we can compute the apparent diffu-

sivity in a direction c ∈ R3 ⋂ S
2 as:

D(c) = V [< c,y >] = E [< c,y >2] = a2E [y2�] + (1 − a2)E [y2⊥ < c⊥,u >2] ,
and the expression of the MD simplifies to:

MD = 1

4π
∫
c∈R3⋂S2

D(c)dS(c)
= 1

4π
∫ 1

−1(∫c⊥∈(span{µ})⊥⋂S2
D(a,c⊥)dS(c⊥))da

= 1

4π
∫ 1

−1 [a2E [y2�] (∫c⊥∈(span{µ})⊥⋂S2
dS(c⊥))

+(1 − a2) (∫
c⊥∈(span{µ})⊥⋂S2

E [y2⊥ < c⊥,u >2]dS(c⊥))]da
= 1

2
∫ 1

−1 [a2D� + (1 − a2)D⊥]da = D� + 2D⊥
3

.
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Diffusion Directions Imaging: High resolution reconstruction of white matter

fascicles from low angular resolution diffusion MRI

Abstract: The objective of this thesis is to provide a complete pipeline that achieves an

accurate reconstruction of the white matter fascicles using clinical diffusion images charac-

terized by a low angular resolution. This involves (i) a diffusion model inferred in each voxel

from the diffusion images and (ii) a tractography algorithm fed with these local models to

perform the actual reconstruction of fascicles.

Our contribution in diffusion modeling is a new statistical distribution, the properties of

which are extensively studied. We model the diffusion as a mixture of such distributions,

for which we design a model selection tool that estimates the number of mixture compo-

nents. We show that the model can be accurately estimated from single shell low angular

resolution diffusion images and that it provides specific biomarkers for studying tumors.

Our contribution in tractography is an algorithm that approximates the distribution of fas-

cicles emanating from a seed voxel. We achieve that by means of a particle filter better

adapted to multi-modal distributions than the traditional filters. To demonstrate the clin-

ical applicability of our tools, we participated to all three editions of the MICCAI DTI

Tractography challenge aiming at reconstructing the cortico-spinal tract from single-shell

low angular and low spatial resolution diffusion images. Results show that our pipeline

provides a reconstruction of the full extent of the CST.

Keywords: Multi-fiber model, non-Gaussian diffusion, particle filter, tractography

Diffusion Directions Imaging: Reconstruction haute résolution des faisceaux

de matière blanche par IRM de diffusion basse résolution angulaire

Abstract: L’objectif de cette thèse est de fournir une chaine de traitement complète pour

la reconstruction des faisceaux de la matière blanche à partir d’images pondérées en diffu-

sion caractérisées par une faible résolution angulaire. Cela implique (i) d’inférer en chaque

voxel un modèle de diffusion à partir des images de diffusion et (ii) d’accomplir une “trac-

tographie", i.e., la reconstruction des faisceaux à partir de ces modèles locaux.

Notre contribution en modélisation de la diffusion est une nouvelle distribution statistique

dont les propriétés sont étudiées en détail. Nous modélisons le phénomène de diffusion par

un mélange de telles distributions incluant un outil de sélection de modèle destiné à estimer

le nombre de composantes du mélange. Nous montrons que le modèle peut être correcte-

ment estimé à partir d’images de diffusion “single-shell" à faible résolution angulaire et qu’il

fournit des biomarqueurs spécifiques pour l’étude des tumeurs.

Notre contribution en tractographie est un algorithme qui approxime la distribution des

faisceaux émanant d’un voxel donné. Pour cela, nous élaborons un filtre particulaire

mieux adapté aux distributions multi-modales que les filtres traditionnels. Pour démon-

trer l’applicabilité de nos outils en usage clinique, nous avons participé aux trois éditions

du MICCAI DTI Tractography challenge visant à reconstruire le faisceau cortico-spinal à

partir d’images de diffusion “single-shell" à faibles résolutions angulaire et spatiale. Les

résultats montrent que nos outils permettent de reconstruire toute l’étendue de ce faisceau.

Mots-clé: Modèle multi-fibres, diffusion non-Gaussienne, filtre particulaire, tractographie
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