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 Aprendizado Ativo surge como um importante tópico em diversos cenários de 

aprendizado supervisionado onde obter dados é barato, mas rotulá-los é custoso. Em 

geral, este consiste em uma estratégia de consulta, uma heurística gulosa baseada em 

algum critério de seleção, que busca pelas observações potencialmente mais 

informativas para serem rotuladas a fim de formar um conjunto de treinamento. Uma 

estratégia de consulta é portanto um procedimento de amostragem com viés, visto que 

esta favorece sistematicamente algumas observações, gerando um conjunto de 

treinamento enviesado, ao invés de realizar sorteios independentes e identicamente 

distribuídos. A principal hipótese desta tese recai na redução do viés oriundo do critério 

de seleção. A proposta principal consiste em reduzir o viés através da seleção de um 

conjunto mínimo de treinamento, a partir do qual a distribuição de probabilidade 

estimada será a mais próxima possível da distribuição do total de observações. Para tal, 

uma nova estratégia geral de consulta de aprendizado ativo foi desenvolvida utilizando 

um arcabouço de Teoria da Informação. Diversos experimentos foram realizados com o 

objetivo de avaliar o desempenho da estratégia proposta. Os resultados obtidos 

confirmam a hipótese sobre o viés, mostrando que a proposta é superior às estratégias 

de referência em diferentes conjuntos de dados.  
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 Active Learning arises as an important issue in several supervised learning 

scenarios where obtaining data is cheap, but labeling is costly. In general, this consists 

in a query strategy, a greedy heuristic based on some selection criterion, which searches 

for the potentially most informative observations to be labeled in order to form a 

training set. A query strategy is therefore a biased sampling procedure since it 

systematically favors some observations by generating biased training sets, instead of 

making independent and identically distributed draws. The main hypothesis of this 

thesis lies in the reduction of the bias inherited from the selection criterion. The general 

proposal consists in reducing the bias by selecting the minimal training set from which 

the estimated probability distribution is as close as possible to the underlying 

distribution of overall observations. For that, a novel general active learning query 

strategy has been developed using an Information-Theoretic framework. Several 

experiments have been performed in order to evaluate the performance of the proposed 

strategy. The obtained results confirm the hypothesis about the bias, showing that the 

proposal outperforms the baselines in different datasets.  
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 L'apprentissage actif apparaît comme un problème important dans différents 

contextes de l'apprentissage supervisé pour lesquels obtenir des données est une tâche 

aisée mais les étiqueter est coûteux. En règle générale, c’est une stratégie de requête, 

une heuristique gloutonne basée sur un critère de sélection qui recherche les données 

non étiquetées potentiellement les plus intéressantes pour former ainsi un ensemble 

d'apprentissage. Une stratégie de requête est donc une procédure d'échantillonnage 

biaisée puisqu'elle favorise systématiquement certaines observations s'écartant ainsi des 

modèles d'échantillonnages indépendants et identiquement distribués. L'hypothèse 

principale de cette thèse s'inscrit dans la réduction du biais introduit par le critère de 

sélection. La proposition générale consiste à réduire le biais en sélectionnant le sous-

ensemble minimal d'apprentissage pour lequel l'estimation de la loi de probabilité est 

aussi proche que possible de la loi sous-jacente prenant en compte l’intégralité des 

observations. Pour ce faire, une nouvelle stratégie générale de requête pour 

l'apprentissage actif a été mise au point utilisant la théorie de l'Information. Les 

performances de la stratégie de requête proposée ont été évaluées sur des données 

réelles et simulées. Les résultats obtenus confirment l'hypothèse sur le biais et montrent 

que l'approche envisagée améliore l'état de l'art sur différents jeux de données. 



 

 

 

xi 

!"#$%&'()( !"#$%&'(#)%"*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*,(

,+,( -%#)./#)%"*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*,(

,+0( 12"2$/3*4$%5%6/3*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*7(

,+7( 8%"#$)9'#)%"6*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*:(

,+:( ;<26)6*%$=/")>/#)%"*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*?(

!"#$%&'(*( @(#).2*A2/$")"=B*@*C$)2D*A)#2$/#'$2*E2.)2F*+++++++++++++++++++++++++++++++++++++++++*G(

0+,( !"#$%&'(#)%"*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*G(

0+0( !33'6#$/#).2*HI/J532*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*K(

0+7( @(#).2*A2/$")"=*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*L(

0+:( 4$%52$#)26*%D*&/#/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*,M(

0+?( N(2"/$)%6*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*,,(

0+O( 4$%932J*P%$J'3/#)%"*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*,7(

0+G( Q'2$R*6#$/#2=)26*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*,?(

*+,+)( -./&'%#0.%1(2#3$40.5(+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++()6(

*+,+*( 2&#'/"0.5(7"'895"(%"&(:1$8%"&;0;(2$#/&(+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++(*<(

*+,+=( >0.030?0.5(@A$&/%&B(@''8'(#.B(C#'0#./&(+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++(*D(

*+,+D( C#'0#./&('&B9/%08.(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++(*E(

0+K( HI53%)#)"=*N#$'(#'$2*)"*S/#/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*0G(

*+F+)( G&.;0%1HI&05"%&B(;%'#%&51(+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++(*,(

*+F+*( !49;%&'HJ#;&B(;%'#%&51(+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++(*F(

*+F+=( 2&30H;9$&'K0;&B(4&#'.0.5(+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++(=)(

0+L( @&&)#)%"/3*(%"6)&2$/#)%"6*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*70(

*+L+)( G0MM&'&.%(N#J&40.5(!8;%(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++(=*(

*+L+*( -.J#4#./&B(/4#;;&;(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++(=*(

*+L+=( O80;1(8'#/4&;(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++(==(

*+L+D( 2%8$$0.5(/'0%&'0#(+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++(==(

0+,M( N'JJ/$R*/"&*8%"(3'6)%"6*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*7:(

!"#$%&'(=( ;<2*4$%5%62&*@(#).2*A2/$")"=*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*7O(

7+,( 12"2$/3*-%#)./#)%"*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*7O(

7+0( 12"2$/3*4$%5%6/3*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*:M(

7+7( 4$%5%6/3*P%$J/3)>/#)%"*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*:,(

7+:( ;<2%$2#)(/3*D%'"&/#)%"*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*:0(

7+?( ;<2*5$%5%62&*=2"2$/3*T'2$R*6#$/#2=R*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*:G(

7+O( U2$"23*S2"6)#R*H6#)J/#)%"*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*:L(

7+G( S).2$=2"(2*-2#$)(6*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*?M(



 

 

 

xii 

7+K( !NHV9/62&*Q'2$R*N#$/#2=R*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*?,(

=+F+)( P.%&5'#%&B(2Q9#'&B(@''8'(8M(R&'.&4(G&.;0%1(@;%03#%08.(++++++++++++++++++++++++++++++++++++++++++(E*(

=+F+*( 2&4&/%0.5(#(.&I(8J;&'K#%08.(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++(E=(

=+F+=( S&83&%'1(8M(P2@HJ#;&B(T9&'1(2%'#%&51(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++(E,(

=+F+D( 79.&B(03$4&3&.%#%08.(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++(6<(

7+L( N'JJ/$R*/"&*8%"(3'6)%"6*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*O7(

!"#$%&'(D( HI52$)J2"#6*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*OO(

:+,( N)J'3/#2&*S/#/62#6*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*OO(

D+)+)( 203$4&(B#%#;&%;(+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++(66(

D+)+*( !49;%&'&B(B#%#;&%;(+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++(6,(

D+)+=( O8.H/8.K&A(B#%#;&%;(+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++(6L(

:+0( Q'/3)#/#).2*@"/3R6)6*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*OL(

D+*+)( @A$&'03&.%#4(2&%9$(+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++(,<(

D+*+*( 2&4&/%0.5()<(8J;&'K#%08.;(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++(,<(

D+*+=( 2&4&/%0.5(*<(8J;&'K#%08.;(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++(,=(

D+*+D( 2&4&/%0.5()<<(8J;&'K#%08.;(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++(,6(

:+7( Q'/"#)#/#).2*@"/3R6)6*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*GL(

D+=+)( @A$&'03&.%#4(2&%9$(+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++(,L(

D+=+*( U&;94%;(0.(%"&(;0394#%&B(B#%#;&%;(+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++(F=(

D+=+=( U&;94%;(0.('&#4(B#%#;&%;(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++(F6(

:+:( N'JJ/$R*/"&*8%"(3'6)%"6*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*KG(

!"#$%&'(E( 8%"(3'6)%"*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*LM(

?+,( N'JJ/$R*/"&*S)6('66)%"*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*LM(

?+0( P'#'$2*F%$W*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*L,(

C)93)%=$/5<R*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*L7(

 



 

 

 

1 

Chapter 1 Introduction 

1.1 Motivation 

Since the last two decades, large amounts of data have been stored. These are daily 

generated by information systems, Internet, social networks, mobile applications and so 

on. These data may hide potential useful patterns for several applications such as 

information filtering, fraud detection, content recommendation, market segmentation, 

medical diagnosis aid, DNA sequence analysis, social network analysis, among 

others(HAN et al., 2006).  

In this context, Machine Learning and Data Mining provide frameworks, techniques, 

methods, and algorithms in order to allow pattern discovery and learning models from 

data(BISHOP, 2007, DUDA et al., 2000, HAN et al., 2006). For instance, clustering 

algorithms, such as k-means or k-medoids, are able to find underlying group structures 

in data(BISHOP, 2007, DUDA et al., 2000, HAN et al., 2006).  

Unfortunately, there are data available that may not be completely useful for all 

Machine Learning tasks. Despite the abundance of data, the majority of these are not 

useful for an important category of learning algorithms, namely supervised learning. 

This class of learning algorithms requires annotated datasets, composed of labeled 

observations, a.k.a. training sets, for training their models. 

For instance, although Internet is plenty of webpages about different categories of 

subject, very few of these are explicitly labeled with their correspondent categories. So, 

to build a webpage classifier according to such categories, it is required a training set 

containing a considerable number of webpages assigned to their correspondent 

categories, i.e., a training set of labeled observations. 

In this way, Active Learning arises as a Machine Learning field to tackle this labeling 

issue in scenarios where obtaining data is cheap, but labeling is very costly(SETTLES, 

2012). For instance, in the case of the webpage classifier, a human annotator would 

label the webpages by reading and assigning them to their correspondent categories. 
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However, labeling these data incurs cost or time (often done by a human annotator), 

since a considerable number of categorized webpages are often required for training a 

classifier(BALDRIDGE & OSBORNE, 2004, SETTLES, 2012).  

Active Learning aims at providing a framework of techniques for selecting the 

potentially most informative observations to be labeled so as to generate a training set. 

Based on this set, one should be able to train accurate supervised learning models. 

Therefore, an active learner (i.e., active learning algorithm/system) should reduce the 

labeling cost, since only informative observations are queried, thereby avoiding 

unnecessary labeling costs(RUBENS et al., 2011, SETTLES, 2012). 

Several active learning algorithms, methods and techniques have been proposed in the 

literature along the past decade(RUBENS et al., 2011, SETTLES, 2012). These mostly 

consists in query strategies that perform a greedy heuristic based on assumptions about 

the data distribution and the supervised learning model(DASGUPTA, 2009). As a 

heuristic, this is only guaranteed to work if their assumptions hold in the played 

scenario. Otherwise, it may perform very badly, even worse than the average 

performance of the simple random sampling, a.k.a. passive learning. 

From a sampling perspective, active learning is in fact a biased sampling procedure, in 

which observations are drawn according to the inherent probability distribution of the 

selection heuristic. This distribution is usually different from the underlying distribution 

of the population, as the selection usually favors observations according to some rule, 

instead of randomly choosing them. 

Therefore, active learning conducts to the overexploitation of regions in the space of 

observations (the input space), resulting in biased training sets. In case the selection 

heuristic relies on some mistaken assumption about the data or the model, the generated 

training set may result in very poor supervised models. The active learner generates 

training sets that are both uninformative and unrepresentative of the population. 

In this way, the philosophy behind active learning lies in intentionally introducing bias 

in the training set in an attempt to pick the most informative observations for improving 

the learning model, even taking the risk to select the wrong ones. The more biased the 

training set is, the higher the risk to fail. In other words, a training set becomes less 

representative of the population distribution as it gets more biased, thereby augmenting 

its chance to produce poor models. 
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1.2 General Proposal 

This thesis concerns a novel general active learning query strategy, which relies on the 

selection of observations according to their representativeness of the population 

distribution. The main hypothesis behind this proposal is that unbiased or little biased 

training sets are more likely to generate accurate supervised learning models than biased 

ones. 

The key idea of this proposal is to look for observations that are most representative of 

the population distribution by keeping the underlying sample distribution as close as 

possible to the underlying population distribution. In this way, the query strategy should 

be careful not only with the selected sample, but also with its estimated probability 

distribution.  

A selection criterion is designed as a greedy heuristic to choose the observations that 

minimize the distance between the estimated probability distribution of sample (training 

set) and the underlying distribution of the population (pool of unlabeled observations). 

For that, an information-theoretic framework is used to handle the probability density 

estimation and the distance measure between probability density functions. 

The theoretical foundation behind the proposed general query strategy lies in the 

reduction of the sample space related to the input variables (unlabeled observations). 

This increases the probability of obtaining accurate estimators for the input distribution. 

Consequently, the proposed strategy has theoretical lower bounds of performance, 

which are superior to the simple random sampling, a.k.a. passive learning.  In other 

words, the proposed active learning is more likely to provide more accurate models than 

passive learning. 

A query strategy based on the proposed general strategy is developed, namely ISE-

based query strategy. This implements the general proposal by taking the Integrated 

Squared Error(BISHOP, 2007) as the distance measure between probability density 

functions. This measure leads to an analytical expression as a selection criterion of 

observations in a straightforward fashion. As a consequence, one is able to design a 

polynomial time active learning algorithm on the number of selected observations. 

Several experiments in both simulated and real datasets were done in order to evaluate 

the performance of the proposed query strategy. The simulated datasets exploit different 

properties, which allows the evaluation of the query strategy behavior faced on such 
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properties. The experiments provide both qualitative and quantitative analyses in order 

to understand the results deeply. Moreover baselines were defined in order to establish a 

comparative analysis with empirical upper and lower bounds of performance. 

1.3 Contributions 

The general contributions of this thesis are as follows: 

• General Active Learning Query Strategy: this is the core of the thesis. This 

general query strategy allows the development of a whole new family of specific 

active learning query strategies based on the idea of reducing the bias in the 

training sets. This general strategy may be even used without handling 

probability distributions in a straightforward way, instead estimators of 

parametric functions may be considered. 

• Theoretical bounds of performance: we provide a theoretical proof that, any 

sampling procedure that generates !-sized samples !!, from a joint distribution 

! !" , so that the estimation error on its marginal ! !  is minimized, also 

minimizes the estimation error on the joint distribution ! !" . As we shall see 

in section 3.4, this assures that the proposed general query strategy has lower 

bounds of variance compared to the passive learning. 

• ISE-based Query Strategy: this query strategy based on the proposed general 

strategy provides a very successful heuristic not only for active learning, but also 

for the general problem of sampling design. This heuristic may be applied to 

reduce the amount of data by maintaining the underlying distribution still 

representative in the sample. 

The specific contributions of this thesis are as follows: 

• Model and label independent active learning: as the proposed query strategy is 

only concerned with the input space, it requires neither the supervised model nor 

the labels. The independence of both model and labels avoids limitations such as 

time to re-training the model. 

• Sequential and batch mode: as a consequence of the latter, the proposed query 

strategy works in either sequential or batch mode. As it is label independent, one 

is able to proceed with the selection strategy without knowing the real labels. 
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• Noisy and Unbalanced label distributions: Another consequence of label 

independence lies in the performance faced a large amount of noise in the label 

distribution. The proposed general query strategy is able to handle either noisy 

or unbalanced label distributions. 

1.4 Thesis organization 

This thesis is organized in 5 chapters, where this is the first.  

Chapter 2 presents an overview of the state-of-the-art of Active Learning. The main 

active learning strategies are discussed along this chapter.  

In chapter 3, the proposed general query strategy is described. This is the key chapter of 

this thesis, containing all developments and the methodology for the proposed query 

strategy and the ISE-based query strategy. 

Chapter 4 presents the experimental setup used to evaluate and compare the 

performance of the proposal. The experiments were conducted with simulated and real 

datasets.  

Finally, chapter 5 concludes the thesis with a discussion about the main achievements as 

well as the future work. 
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Chapter 2 Active Learning: 

A Brief Literature Review 

In this chapter we present a literature review of Active Learning, providing a short 

overview of the state-of-the-art and the work related to this thesis. This chapter is 

inspired in (SETTLES, 2012), where readers can find further material on the subject. 

2.1 Introduction 

There are many ways of colleting data from different sources such as Internet, e-mails, 

and social networks, among others(HAN et al., 2006). In order to discover information 

or patterns from these data, Machine Learning (ML) has been largely used for several 

purposes such as Natural Language Processing (NLP)(MANNING & SCHÜTZE, 

1999), Speech Recognition(JURAFSKY & MARTIN, 2008), Handwritten 

Recognition(BISHOP, 2007), information filtering(RICCI et al., 2010), goods 

recommendation(RICCI et al., 2010) etc. These applications usually consist in 

classification, i.e., a supervised learning algorithm that aims at learning a model (a 

classifier) from a training set of labeled data(DUDA et al., 2000). 

Generally, the majority of the available data is unlabeled, requiring to be labeled by an 

‘oracle’ so as to be used for classification. Despite these unlabeled data can be relatively 

cheap to gather, labeling them might be costly and time-consuming in many scenarios. 

For instance, an oracle might be a human annotator with specific expertise on some 

domain for labeling each observation. Another example could be an experimental 

analysis as an oracle, which incurs in time and cost to obtain enough experimental 

results (labeled observations) to build an accurate classifier. In fact, there are several 

different sorts of settings in which the expense with labeling is very important. 

In order to reduce this annotation cost, Active Learning arises providing a framework 

for selecting the most informative observations to be labeled, thereby generating 

training sets from which accurate classifiers might be learned.  

A classic and simple example in (SETTLES, 2012, DASGUPTA, 2009) illustrates the 
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idea of active learning, as presented in section 2.2. 

2.2 Illustrative Example 

Suppose one has, initially, a dataset of unlabeled one-dimensional continuous 

observations (a.k.a. instances or points) ! ! !, each associated with a hidden label ! 

coming from the set ! ! !!! . Labels are assigned to observations according to a 

hidden threshold ! on !, which perfectly splits observations into two continuous sets: 

positive labels !  for ! ! ! and negative otherwise. Thus there is no noise in labels 

and hence this setting is linearly separable. 

Let us define a classifier (a hypothesis) as a function mapping !!!! ! !, parameterized 

by an estimated threshold !: 

 

! !!! !
! !"!! ! !!

! !"!!"#$%!!
 Eq. 1 

 

We aim at classifying observations as accurately as possible with ! !!!  for all domain 

! by obtaining the estimated threshold !, from the labeled data, as close as possible to 

the actual threshold !. 

A way to build this classifier might be by randomly drawing a large number ! of 

unlabeled observations in order to subject them to the evaluation of an ‘oracle’ able to 

correctly label them. From these ! labeled observations one learns a threshold ! by 

seeking the cut point of label signal change alongside the axis !, as illustrated in Figure 

2.1. 

 

Figure 2.1 

This scheme is known as passive learning and has been widely used in ML. 

Nevertheless, it turns out that obtaining accurate thresholds may get prohibitively 
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costly, since this scheme requires too many observations to be labeled.  

As described in (DASGUPTA, 2009), according to the Probably Approximately Correct 

(PAC) learning framework (VALIANT, 1984), in a noiseless setting, the number of 

labeled observations in the training set to yield at most a generalization error ! has order 

! ! ! . These observations are randomly drawn from the underlying data 

distribution(COHN et al., 1994).  

A desired scheme of selecting observations to be labeled should estimate a model with 

the same generalization error ! , but requiring fewer labeled observations. In the 

described example, a binary search could be performed so as to estimate the threshold 

!(DASGUPTA, 2009). Thus, this would reduce the number of observations required for 

labeling to ! !"#! ! ! , far better the passive learning(SETTLES, 2012, 

DASGUPTA, 2009).  

2.3 Active Learning 

As shown in the example presented in the previous section, the passive learning scheme 

draws independent and identically distributed observations (iid.) to be labeled by an 

oracle. In a linearly separable environment, the general accuracy improves linearly, as 

the number of labeled observations increases. In order to obtain an exponential 

improvement of accuracy, the learning algorithm (i.e. the learner) should actively query 

for label those observations that are potentially more informative, acting as an active 

learner(RUBENS et al., 2011). 

Generally speaking, Active Learning (a.k.a. Query Learning, Query Strategy, Active 

Query, or Optimal Experimental Design) aims at developing a framework to smartly 

select observations for training accurate supervised models(SETTLES, 2012). The main 

hypothesis of Active Learning concerns to learn accurate models from few informative 

selected observations, unlike passive learning, which draws observations at random.  

Accordingly, the Active Learning process consists in deciding whether an observation 

should be labeled or not. This process might be in batch mode, in which a set of 

observations are queried for labels at once, or sequential, in which observations are 

queried for label sequentially(RUBENS et al., 2011, DASGUPTA, 2009, SETTLES, 

2012). In the latter, after labeling an observation, the training set is updated and the 

model is re-trained so as to select again another observation to be labeled. This process 
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proceeds until no more unlabeled observation is available or to reach some stopping 

criterion(VLACHOS, 2008). 

There are several applications in which Active Learning would play an important hole, 

since unlabeled data are often abundant and labeled data are rare and expensive (or 

time-consuming) to obtain. For instance, we have classification and filtering of text 

documents (e.g. webpages, articles) or other sorts of medias (e.g. image, audio, and 

video files). These applications often require human annotation in order to build up 

training datasets for the supervised learning. In recommender systems, classifiers are 

built according to users’ tastes on products. Then, the system should be wise when 

asking a user about its preferences and tastes, since users may get tedious and often 

answer very few queries(HARPALE & YANG, 2008, CARENINI et al., 2003). In 

Computational Biology, for instance, learning a model to classify peptide chains needs a 

biology study carried out by a specialist so as to obtain labeled chains for training 

sets(BALDI & BRUNAK, 2001). Consequently, each peptide chain should be carefully 

chosen for analysis as it occurs cost and time. 

2.4 Properties of data 

Three interesting properties of observations should be taken into account by an active 

learner in order to maximize the selection effectiveness(RUBENS et al., 2011). Figure 

2.2 illustrates these properties, described as follows: 

• Represented: when selecting a candidate observation to be labeled, one should 

consider if this observation is already represented in the input space, i.e. if this 

observation has already labeled observations in its neighborhood. The 

observation (b) in Figure 2.2 is an example of data already represented by the 

labeled observation of its group. 

• Representative: this is complementary to the previous property; one should take 

into account how representative the candidate observation is, in the sense of how 

many unlabeled observations are represented by such candidate in the training 

set. For instance, the observations (d) and (c) in Figure 2.2 are good candidates 

to represent their groups. 

• Results: one should care for the impact on the classification result in terms of 

accuracy or any other accomplishment with the addition of a labeled candidate 
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in the training set. The observation (a) in Figure 2.2, for instance, does not 

provide much information to help classify the other observations, since this is an 

outlier. 

These properties provide a simple but useful way to identify the pros and cons of active 

learning strategies. 

 

Figure 2.2 

2.5 Scenarios 

Active learning may not be worth in some scenarios, depending on the relative value of 

the labeling cost compared to the cost of developing and deploying the Active Learner 

(Active Learning system/algorithm). For instance, in a scenario in which to learn an 

accurate model requires a training set with few labeled observations, the cost of 

implementing and deploying an Active Learning system might be not worth. Also, there 

are scenarios where observations can be labeled almost ‘for free’ as the ‘spam’ flag in e-

mail filtering or as in conversational systems, in which users receive some sort of 

incentive to label thousands of observations for free(CARENINI et al., 2003). 

Therefore, Active Learning usually suits properly scenarios where a large amount of 

data (unlabeled) is available and it is necessary to label a considerable number of these 

in order to learn an accurate supervised model. It is also generally assumed that there is 

an ‘oracle’ able to label any observation in these data, and the learning technique is 

previously defined, though these assumptions may not always hold. 
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In addition to these scenarios, there are many ways an Active Learner might query for 

labels. The three main query types considered in the literature are as follows(SETTLES, 

2012):  

• Query Synthesis: this is one of the first scenarios where Active Learning has 

been investigated. Here, active learner produces membership queries based only 

on the input space(ANGLUIN, 1988). Queries are synthesized de novo, 

generating never seen observations. Although this seems reasonable, it may not 

be feasible to get all these observations labeled. For instance, in image 

classification setting a synthetized query could be an awkward image, 

impossible to be labeled, though potentially informative for the learning model. 

Nevertheless, Query Synthesis still remains often required in settings where 

procedures are performed according to any possibility of query. For instance, in 

Biology studies, one synthetizes a substance from some possible combination of 

proteins by labeling it according to the presence of some target 

characteristic(KING et al., 2004). The major issue related to this query type is 

that the underlying (unlabeled) data distribution cannot be exploited, which 

could be very informative for the learning model. The stream-based sampling 

and pool-based sampling tackle this problem. 

• Stream-based selective sampling: this query type, unlike Query Synthesis, 

consists in a selective sampling in which unlabeled observations are drawn from 

the underlying distribution of the data(COHN et al., 1994). When an unlabeled 

observation is sampled, the Active Learner decides whether to query or not for 

label such observation. This is also known as stream-based Active Learning as 

unlabeled observations are drawn one at a time as a stream. In case the 

underlying data distribution is uniform, Stream-based selective sampling may 

not present any advantage over Query Synthesis. Nevertheless, non-uniform 

distributions would provide important information to decide whether query or 

discard an observation. This decision is usually taken by using a utility function 

as a selection criterion. One may also define an uncertainty region, where only 

the observations that fall within it are queried. Most of the theoretical work in 

the literature concerns this query type as well as several real-world tasks have 

been used(SETTLES, 2012). 
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• Pool-based sampling: largely used in real applications, this query type selects 

observations to be labeled from a pool(LEWIS & GALE, 1994). Unlabeled data 

can be gathered without (or with low) cost by generating a pool of unlabeled 

observations from which Pool-based sampling selects which observations should 

be labeled. This usually proceeds in a sequential fashion, where each 

observation is sequentially picked from the pool, labeled by the oracle, and 

moved to the training set. The model is usually re-trained at each step.  The 

observation selection is often carried out sorting observations in the pool 

according to a utility function. The main advantage of this query type is the 

possibility of exploiting the unlabeled data structure, which is often informative 

for the selection(DASGUPTA & HSU, 2008). Pool-based sampling is the most 

popular query type for applied research in Active Learning, whereas Query 

Synthesis and Stream-based selective sampling are mostly taken into account in 

theoretical works. This query type is assumed in our discussions in the 

remainder of this thesis. 

2.6 Problem Formulation 

As there are many different scenarios to be considered for Active Learning and many 

query types in the literature, in this section we define the active learning formulation of 

interest in this thesis.  

We assume that unlabeled observations are abundant and that none, or very few, labeled 

observations are provided. We also consider that there is always an oracle able to 

correctly label any observation. Furthermore, we assume that the active learner queries 

observations in a Pool-based sampling way. We formalize these definitions as follows: 

Let ! be an unlabeled observation (or a data vector) from an input space ! and ! its 

correspondent label from a finite output space ! . Let !  be a set of unlabeled 

observations, the pool. Let ! be the training set of labeled observations defined by 

!!! ! !. 

We define ! ! ! ! as the target function and ! ! ! ! ! ! !!a model (hypothesis) 

learned from the set !. The generalization error can be defined by the expectation: 
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! ! ! ! ! ! ! ! ! ! ! ! ! !

!!

!!

! Eq. 2 

 

where ! is a loss-function as the Squared Error(BISHOP, 2007): 

 

!!" ! ! ! ! ! ! ! ! ! ! !
!

! Eq. 3 

 

The active learning problem consists in finding the smallest training set ! such that the 

generalization error ! is minimized. In other words, for a fixed number of observations 

the active learner should find ! that provides the minimum generalization error !. When 

it is possible to obtain ! equals to zero, we say that the data is separable, otherwise non-

separable. 

One should note that the challenge lies in find !  that produces the smallest !  by 

handling two important issues: 

• The error ! cannot be directly computed since one does not know ! at all, 

neither one has labeled enough observations to estimate a confident test error, 

otherwise one would use them to learn !. 

• Even if one was able to get a good test error, it would still be difficult to choose 

observations for !, since one would not know its actual label and estimating 

them would be very risky as long as the current model ! could not be reliable. 

In short, Active Learning algorithms consist in heuristics, which intend to establish a 

utility function for observations by selecting those with the highest utility. A utility 

function is mostly based on some theoretical selection criteria, which intend to exploit 

properties of observations that can be potentially informative for the supervised 

learning. In a Pool-based sampling setting, a selection criterion might take into account 

the current available data in the training !, in the pool !, as well as the current model !. 

In (DASGUPTA, 2009), a general active learning procedure is provided for the Pool-

based sampling scenario as shown in Algorithm 2.1. 

  



 

 

 

15 

Algorithm General Active Learning Procedure 

Input: ! - pool of unlabeled observations  

Output: ! - training set of labeled observations  

Randomly select few observations from ! 

Repeat: 

Query for labels the selected observations  

Add the labeled observations into the training set ! 

Train the model ! from the training set ! 

Select observations from ! that minimize, or maximize, the utility ! !  

Algorithm 2.1 – General Active Learning Procedure 

One should note that this greedy procedure selects observations to be labeled according 

to the utility function ! ! , which implements a selection criterion. There are different 

utility function proposals in the literature in order to produce better training sets by 

exploiting different properties of data. In the next subsections we present the main 

approaches of these query strategies. 

2.7 Query strategies 

There are several proposed active learning algorithms, also named query strategies or 

active learning heuristics, which aims to improve the training set by selecting 

observations according to some proposed selection criterion.  

A recently work entitled ‘Two faces of Active Learning’ describes a useful analysis and 

organization of existent active learning strategies through out a theoretical 

standpoint(DASGUPTA, 2009). For that, two distinct narratives are provided: efficient 

search through the hypothesis space and exploiting cluster structure in data. The first 

concerns in shrinking the version space -consistent hypotheses with the training set- as 

fast as possible(MITCHELL, 1997). The second is based on the idea of using 

unsupervised learning like clustering in an attempt to select those most representative 

observations, thus avoiding a myopic view on the data. 

Nevertheless, this two-fold organization does not embrace all heuristics, since many are 

empirical and lacks theoretical foundations. For this reason, in addition to these two 

categories, one still has uncertainty sampling and minimizing expected error and 
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variance. The former is concerned with the model and the latter with the direct 

minimization of the generalization error and the variance of the model output. 

2.7.1 Uncertainty Sampling 

Uncertainty sampling (also named query by uncertainty, uncertainty reduction, or 

SIMPLE) is probably the most popular active learning approach(LEWIS & CATLETT, 

1994). This strategy exploits the uncertainty of the current hypothesis about its label 

prediction on a candidate observation. The idea is to ask the oracle to label those 

observations whose current hypothesis is least confident about. In this way, the strategy 

aims to avoid redundant observations for the model, as the observations with confident 

predictions are supposedly less informative. 

 

Figure 2.3 

In Figure 2.3, a toy example illustrates the performance of an uncertainty sampling 

strategy compared to a simple random sampling in a binary classification task where 

400 observations are represented in a 2D space as shown in (a). In (b), 30 observations 

are labeled by simple random sampling from the original data. A logistic regression 

model is trained and represented by the line. In (c), the uncertainty sampling strategy 

actively selected 30 observations by obtaining a more accurate hypothesis. 

Uncertainty sampling is straightforward for probabilistic models, since these models 

provide probabilities associated with each label output. Thus, one can directly use the 

posterior distribution of a probabilistic model output !"! !!!!!!, where ! is the set of 

current model parameters, as a measure of uncertainty for each observation !. For 

instance, in binary classification settings, the active learner should select the observation 
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whose !"!!!!!!  is closest to !!! , where ! ! !!!!  is the label output, i.e. ! !

!"#$!%! !"! !!!!!!. 

Revisiting the illustrative example in subsection 2.2, the binary search used to guide the 

selection of observations to be labeled is in fact an uncertainty sampling strategy. In that 

example, the current hypothesis is given by the threshold !. The closer the observation 

to !, the less confident the classifier is. A measure to perform this uncertainty sampling 

strategy would be given by ! ! ! . Therefore, the observation ! with the smallest 

! ! !  should be queried for a label. After the observation labeled and added in the 

training set, one updates the current hypothesis (the threshold !), and the procedure re-

starts. 

In Algorithm 2.2, a generic uncertainty sampling strategy is described for the pool-

based sampling scenario(SETTLES, 2012). 

Algorithm Uncertainty Sampling Strategy 

Input:  ! - pool of unlabeled observations  

 ! - initial training set of labeled observations  

Output: ! - training set of labeled observations 

For ! ! !!!! do 

 ! ! !"#$%!!!  

Select !! ! !, the most uncertainty observation according to model ! 

Query the oracle to obtain label !! 

Add !!!!!  to ! 

Remove !! from ! 

End for 

Algorithm 2.2 – Uncertainty Sampling Strategy 

As one should obviously note, the key component of the uncertainty sampling is the 

measures of uncertainty. The design of such measures has been largely studied in order 

to handle multi-class classification and output structures as those for text 

classification(CULOTTA & MCCALLUM, 2005). Among the measures of uncertainty 

we highlight: 
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• least confident selects the observation !!  with the lowest output label 

probability: !! ! !"#$%&! !"! ! ! ; 

• margin uses the difference of the probability between the two most likely label 

outputs so as to select the observation !! with the smallest divergence between 

both classes: !! ! !"#$%&! !"! !! ! ! !"! !! ! ; and 

• entropy selects the observation !! whose the overall posterior output distribution 

of the current model has the highest entropy value, given by: 

!
!
! !"#$!%! ! !"! !! ! !"#!"! !! !! . 

As one should note, all these measures lead to querying for the observations closest to 

the decision boundary, despite they may result in distinct performances since the rest of 

the probability space significantly differs one from another, as shown in Figure 2.4.  

For instance, the entropy measure would select an observation whose label prediction is 

not the least confident, but, compared to the entire posterior output distribution, this 

observation is the most uncertain. Empirical results suggest that a measure may perform 

better than other depending to the played setting(KÖRNER & WROBEL, 2006, 

SCHEIN & UNGAR, 2007, SETTLES & CRAVEN, 2008). 

 

Figure 2.4 

The main advantage of the Uncertainty sampling is its simplicity and the ability to 

handle different models as a ‘black-box’. Even non-probabilistic models can be used 

with this heuristic, provided that they give any measure of uncertainty. For instance, in 

Nearest-Neighbors Classifiers(FUJII et al., 1998), one may consider the proportion of 

sum of similarities between the labeled observations as an uncertainty measure. In 

Support Vector Machines(SCHOHN & COHN, 2000, TONG & KOLLER, 2002), one 

may select the observations according to their distance to the decision margin.  
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Uncertainty sampling strategies may also be appropriate not only for Pool-based 

sampling, but also for Stream-based selective sampling. A threshold of uncertainty 

should be set establishing a region of uncertainty. Those observations falling within this 

region should be queried. The concept of region of uncertainty is deeply exploited in 

searching through the hypothesis space strategies. 

The main drawback of uncertainty sampling arises from the uncertainty scores based on 

the output of a single hypothesis. Hypotheses are often learned from very few 

observations, which may generate controversial uncertainty scores (see Figure 2.5). 

Thus unexploited regions in the input space might be overlooked, leading the strategy to 

a poor resulting training set. Moreover, uncertainty sampling is sensitive to outliers and 

noise (see Figure 2.6), conducting to an overexploitation of a noisy region, while other 

regions are overlooked. As this procedure introduces an inherent bias in the training set, 

it may even perform worse than a simple random sampling(WALLACE et al., 2010).  

 

Figure 2.5 

 

 

Figure 2.6 
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2.7.2 Searching Through the Hypothesis Space 

Searching through the hypothesis space relies on the idea of selecting those 

observations that are good candidates to shrink the version space as fast as 

possible(DASGUPTA, 2009). Many theoretical results provide asymptotic upper 

bounds on the number of observations for this active learning framework(DASGUPTA, 

2009, SETTLES, 2012). 

A hypothesis ! !  is a particular model learned from the training set ! in order to 

generalize for unknown function ! ! . A learning algorithm aims at providing a 

hypothesis from a set of possible hypotheses ! !!, called hypothesis space, in order to 

generalize the unknown function ! ! . By training a learning algorithm arises the 

version space, a subset of hypothesis ! !!, which are consistent with the training set 

!  from where the output hypothesis comes(MITCHELL, 1997). A hypothesis ! is 

consistent if ! ! ! ! ! for all ! ! !. The shadow area represents the version space 

for a linear classifier in Figure 2.7. Therefore, the version space may be reduced when a 

new observation is added in the training set, since the hypotheses ! ! ! are subject not 

to be consistent with the new data.  

 

Figure 2.7 

Region of disagreement 

The definition of the version space arises the notion of region of disagreement in the 

input space, where any two hypotheses !! ! ! and !! ! ! disagree with the labeled 

prediction on an observation !, i.e. !"# ! ! ! !!!! !!! !! ! ! !! ! . Figure 2.8 

illustrates an example for a square hypothesis model. Thus observations with positive 

labels should be inside the square and observations labeled as negative should be 

outside. The area of the difference between the most external square and the most 

internal defines the region of uncertainty !"# ! . 
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Figure 2.8 

Relaxing the definition of consistent hypothesis for version space, one can also deal 

with noisy and non-separable data. One can assume a tolerance ! for error in the 

training set defined by !" ! ! ! ! ! ! ! for all observations ! ! !.  

Now that we have defined the version space, we are able to discuss about the approach 

searching through the hypothesis space. In fact, this approach aims at searching for 

observations, which reduces as fast as possible the version space. This goal emerges 

from the idea of reducing the probability of obtaining a hypothesis ! ! ! with high 

generalization error. As defined in the Probably Accurately Correct – PAC – learning 

framework(MITCHELL, 1997, VALIANT, 1984), for a low probability !, a PAC 

classifier should satisfy 

 

!" !""#" ! ! !!!! ! ! ! !! Eq. 4

 

where !""#" ! ! !" ! ! ! ! ! !!! and ! is a given error threshold. Thus, 

reducing the version space as fast as possible guides the learning algorithm to obtain a 

hypothesis with low generalization error(TONG & KOLLER, 2002, DASGUPTA, 

2009). 

This theoretical framework is the basis of many works towards active learning 

algorithms aiming to reduce the version space. However, there are many practical 

difficulties in representing the version space, especially for higher dimensionality, non-

separable and noisy settings.  

Despite uncertainty sampling approach is conceptually different from searching 

observations to reduce the hypothesis space, for classifiers of max-margin such as 
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Support Vector Machines querying for observations closest to the margin can be 

equivalent to query for the observation, which is in the middle of the version 

space(SETTLES, 2012). In (TONG & KOLLER, 2002), the proposed active learner 

selects observations, which are closest to the margin. As long as the version space is 

symmetrical, the choice of observations closest to the margin bisects the version space. 

Hence, this active learning strategy works in fact as a binary search in the version space 

by exponentially reducing the label complexity upper bound on the number of 

observations. In addition, margin-based active learning has shown good results for 

practical applications(VIJAYANARASIMHAN et al., 2013, SCHOHN & COHN, 

2000, TONG & KOLLER, 2002). 

Another active learning strategy that aims to shrink as fast as possible the version space 

is proposed in (COHN et al., 1994), namely Query by Disagreement(QBD). This active 

learner was firstly proposed for Stream-based selective sampling. The idea is to only 

query for label those observations that fall within the region of disagreement !"# ! . 

The algorithm is described in Algorithm 2.3. 

Algorithm Query By Disagreement Strategy 

Input:  ! - pool of unlabeled observations  

 ! - initial training set of labeled observations  

Output: ! - training set of labeled observations 

Set ! !! is the set of all “legal” hypotheses 

For ! ! !!!! do 

Draw an observation ! ! ! 

If !! ! ! !! !  for !!!! !! ! ! then 

Query label ! for instance ! 

 ! ! ! ! !! !   

 ! ! !!! !! ! !!!! !!! !! ! !!   

Else 

Do nothing; discard ! 

End if 

End for 

Algorithm 2.3 – Query By Disagreement Strategy 
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A major practical drawback of this algorithm is to maintain the current version space, as 

it may be infinite. In order to tackle this problem, one can keep the version space in an 

implicit way by training speculative consistent hypotheses !! with ! ! !!!!  for each 

possible !! ! !  (if one exists). Then, one should query for an observation !  if 

!! ! ! !! ! !!!! !!! ! !, otherwise do not. This alternative may be unpractical in 

case the training procedure of the learning algorithm is computationally expensive. 

Other alternative to tackle this problem, in case of binary classification, is to keep only 

the most general and the most specific hypothesis,!!! !  and !! ! . For that, the region 

of disagreement should be re-defined as !"# ! ! ! !! ! ! !! ! . The hypotheses 

!! !  and !! !  can be obtained by imputing artificial labels in the training set, 

creating conservative hypotheses for each class. 

Another attempt to represent the version space in a feasible way is tackled by the 

strategy Query by Committee (QBC)(FREUND et al., 1997). The idea consists in 

creating a committee of hypotheses drawn from the version space in order to evaluate 

whether an observation falls within a region of disagreement or not. Observations 

whose hypotheses of the committee highly disagree are queried, otherwise ignored. 

However, sampling hypotheses from the current version space is not feasible for many 

learning algorithms and even it would not work in noisy data. Alternatives to overcome 

this issue come from the idea of using ensemble methods such as bagging and boosting 

to build a committee of hypotheses(IYENGAR et al., 2000, FREUND & SCHAPIRE, 

1997, ABE & MAMITSUKA, 1998, MUSLEA et al., 2000, MELVILLE & MOONEY, 

2004). There are also several heuristics for measuring disagreement of hypotheses in the 

committee based on entropy(SHANNON, 2001), Kullback-Leiber 

divergence(KULLBACK & LEIBLER, 1951), and Jensen-Shannon 

divergence(MELVILLE et al., 2005).  

The QBC provides an alternative to search for observations that reduces the version 

space by keeping a committee of hypothesis, instead of the entire version space. 

However, the main drawback of QBC lies in the computational cost of training the 

committee each time a new observation is added in the training set. In addition, QBC 

can perform badly in the presence of outliers and noise. 



 

 

 

24 

2.7.3 Minimizing Expected Error and Variance 

2.7.3.1 Expected Error Reduction 

An active learning approach with strong theoretical foundation is based on the expected 

error reduction(ROY & MCCALLUM, 2001). Instead of reducing the version space, 

this active learning strategy aims to directly reduce the classification error. To perform 

such task, however, one would need to know which labels the oracle would set for each 

candidate observation as well as its future error produced by its correspondent updated 

hypotheses. In order to do that, the decision under uncertainty framework arises to 

estimate those values as expectations(BISHOP, 2007, SETTLES, 2012).  

According to the statistical decision theory(BISHOP, 2007), the expected value is the 

less risky decision under uncertain one can take as this is a weighted sum over all 

possible outcomes !! ! ! and their correspondent probabilities(BISHOP, 2007, DUDA 

et al., 2000). In this way, to compute the expected classification error, one needs the 

unknown probability distributions of both the output and the probability distribution of 

the future error. One reasonable solution for that is to use the posterior distribution of 

the model output as an approximation for those distributions. In addition, one might 

assume the unlabeled pool ! available as representative of the underlying probability 

distribution of the data so as to estimate the test set. 

Thus, the active learner should select the observation !! that minimizes the expected 

classification or 0/1-loss by using the decision-theoretic measure as follows: 

 

!
!
! !"#

!

!!!!!! !
!!!!!!!!! ! !!

!!!!

! ! Eq. 5 

 

!
!
! !"#

!

!"! !!!! !! !"!! !!!!

!!!!!!!!

! Eq. 6 

 

where !!  is the model parameters after training with ! ! !!!!  and !!!!!!  is the 

expectation of ! conditioned on the current hypothesis ! and on the observation !. 

Other loss functions may be used, e.g. the log-loss: 
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!
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! !"#

!

!"! !!!! ! !"!! !!!!! !"#!"!! !!!!!

!!!!!!!!!!!!

! Eq. 7 

 

As one should note, this framework is intensively computationally costly, since for each 

candidate observation the model should be re-trained each time an observation is 

queried as well as computing the expected future error over the unlabeled pool for each 

query. To reduce this cost one may sample the unlabeled pool.  

An optimistic variant of this active learner is based on using the most likely label 

according to the model, instead of the expected value(GUO & GREINER, 2007). 

Interestingly, it has shown good results besides reducing the computational cost. 

The expected reduction approach is nearly optimal as it performs a myopic search to 

directly reduce the classification error. However, it may proceeds badly since noise and 

outliers are present in data. As its utility function is based on speculative hypotheses, 

the active learner might stick in certain regions of the input space by increasing the cost 

without information gain.  

Although the error reduction strategy has a strong theoretical foundation since it directly 

reduces the error, it is very prohibitive to implement due to the need of re-training the 

model twice for each observation in the pool. 

2.7.4 Variance reduction 

An alternative strategy to directly reduce the expected error is to focus on reducing the 

output variance of the model. Unlikely the expected error, the output variance can be 

written in a closed-form for some models by avoiding the need of retraining (ZHANG 

& OLES, 2000, COHN et al., 1996, 1994, COHN, 1996, MACKAY, 1992). 

The key idea is to exploit the result provided in (GEMAN et al., 1992), where the 

generalization error for the squared-loss function decomposes as follows: 

 



 

 

 

26 

! ! !!! ! ! !
!

!!! ! !!!! ! ! ! ! !!! !

! !! ! !!! ! !!!! !!!
!

! !! ! !!! ! !! ! !!! !
! 

Eq. 8 

 

The expectations !!!! !  and !! !  are over the distribution of !!!  and the dataset 

distribution ! and the expectation ! !  is over both. The first parcel in the right side is 

noise from the original data, the second is the model bias, and the last one is the 

variance. The Figure 2.9 illustrates the generalization error decomposition. 

 

Figure 2.9 

As one cannot reduce the parcel of noise and assuming that the model is unbiased, the 

error arises in the parcel corresponding to the output variance. In order to reduce the 

output variance, the well-known statistical framework of optimal experimental design 

provides a methodology to establish a closed-form for the output variance for many 

supervised learning models(COHN et al., 1994). 

Although Eq. 8 is concerned with the generalization error over both dataset distribution 

!  and the unknown distribution !!! , the proposals in the literature approach the 

variance reduction with ! fixed, which may drive the model to overfitting(ZHANG & 

OLES, 2000, COHN et al., 1996, 1994, COHN, 1996, MACKAY, 1992).  

The main advantage of this strategy over the direct expected error reduction is to 

compute the expected future variance without knowing the actual labels of the candidate 

observations. In this way, it is not necessary retraining the model for each possible label 

in order to compute the expected variance(COHN et al., 1994, 1996). As a 

consequence, variance reduction strategy allows query in batch as one may query for a 

fixed number of observations independently of their actual labels(MACKAY, 1992, 
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HOI et al., 2006). In order to reach closed-forms for model variance, (ZHANG & 

OLES, 2000) uses the Fisher information and the Fisher score of the output variable 

conditioned by the training set distribution, which is related to the variance by the 

Cramer-Rao inequality(PRINCIPE, 2010).  

The main drawback of the variance reduction strategy is the computational cost 

involved to compute the expected variances. Even with tuned implementations, it 

becomes prohibitive to compute these expectations for complex models and in high-

dimensionality. Another important drawback is how to apply this strategy to non-

statistical methods such as nearest-neighbors, decision trees and so on. As statisticians 

designed this strategy, most of its framework relies on statistical properties, which are 

not present in many models of Machine Learning(SETTLES, 2012). Furthermore, 

empirical results reported that this strategy framework has presented mixed 

performance among other active learners(SETTLES, 2012). 

2.8 Exploiting Structure in Data 

2.8.1 Density-weighted strategy 

In the last sections, we described active learning strategies based on criteria that aim at 

reducing the model uncertainty, the version space, the expected error, and the output 

variance. However, none of these strategies explicitly take into account the data 

structure. Besides that, many of these strategies are sensible to outliers. For instance, in 

the uncertainty sampling strategy, unlabeled observations are myopic selected according 

to their closeness to the decision boundary, thus their representativeness is not 

considered in the strategy. Figure 2.10 shows a classic example where the observation ! 

should be picked for labeling, as this is the closest to the decision boundary. However, 

labeling the observation ! provides very poor information to the model, since it is an 

outlier. 
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Figure 2.10 

In order to take into account the data structure and input distribution while unlabeled 

observations are selected, density-weighted strategies were developed(SETTLES, 2012, 

XU et al., 2007, FUJII et al., 1998, MCCALLUM & NIGAM, 1998, SETTLES & 

CRAVEN, 2008, ROY & MCCALLUM, 2001). The key idea is to weight the utility 

function with the density of the input space. The general idea is given by  

 

!
!
! !"#

!

! !
!

!
!"# !! !!

!

!!!

!

! Eq. 9 

 

where ! is an utility function like the uncertainty or the expected error reduction, and 

!"# !! !!  is a similarity measure between an observation !! of the pool ! and the 

candidate observation !. This formula can also be changed to consider the inverse of the 

similarity between the candidate observations and the observations in the training set. In 

this way, we could either consider the representative and the represented properties of 

the data (see subsection 2.4). 

The main advantage of this strategy is its simple use. This can be easily combined with 

most of the strategies so far discussed in this chapter, incurring no greater increase in 

the computational cost, since one may cache the density weights(SETTLES & 

CRAVEN, 2008). 

2.8.2 Cluster-based strategy 

Another active learning strategy that aims to exploit the input data structure is the 

cluster-based active learner. In this strategy framework, clustering algorithms are used 
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to organize unlabeled observations of the pool into groups (clusters), so that the 

selection might be conducted according to their representativeness in the clusters. 

This strategy assumes that both label and data structure are closely related such that 

clusters can provide rich information about which observations are supposedly more 

representative candidates, thus avoiding redundancy in the training set(DASGUPTA & 

HSU, 2008). Clustering has been also used for initially selecting the first observations 

to be labeled in the “warm starting” phase, i.e., before starting with any active learning 

strategy(NGUYEN & SMEULDERS, 2004). 

A hierarchical sampling is proposed based on hierarchical clustering structure in 

(DASGUPTA & HSU, 2008). The idea is to sequentially split clusters top down the 

clustering hierarchy as their labeled observations become heterogeneous within a 

cluster. Figure 2.11 illustrates the clustering cut: on the left side the second cluster 

becomes heterogeneous of labels. Then, this cluster is split out into two clusters with 

more homogeneity. 

 

Figure 2.11 

The hierarchical sampling is one of the few cluster-based strategies reported in the 

literature. Algorithm 2.4 describes this strategy procedure to select observations, where 

the function !"#$%&' returns a hierarchical tree of the cluster structure ready to be 

pruned and the function !"#"$% selects the sub-tree ! ! ! in the hierarchy in which an 

observation should be queried for label. This latter function is essential for the 

procedure and basically two strategies are provided for that:  

• selects the sub-tree ! with probability proportional to its cardinality – similar to 

random sampling; 
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• selects the sub-tree ! with probability proportional to its cardinality and variance 

of the labels inside – this strategy overexploits more controversial clusters in 

terms of their labels. 

As the clusters get impure, in the sense of the labels inside becomes mixed, the 

algorithm prunes the tree by splitting out into clusters with more homogeneous labels. 

This process can be viewed as a clustering with constraints(HAN et al., 2006). This 

procedure provides an asymptotic upper bound on the order of !
! !! !

!
 for the 

labeled observations to reach a generalization error !(DASGUPTA & HSU, 2008). 

Although cluster-based strategies provide a different standpoint for Active Learning, its 

successful performance depends on whether exists a cluster structure in the data and 

these clusters are strongly related to the labels. When these assumptions hold in the 

data, this strategy outperforms random sampling and other active learning 

strategies(DASGUPTA & HSU, 2008, DASGUPTA, 2009). 

  



 

 

 

31 

Algorithm Hierarchical Sampling Strategy 

Input:  ! - pool of unlabeled observations  

 ! - initial training set of labeled observations  

Output: ! - training set of labeled observations 

Do hierarchical clustering ! ! !!"#$%&' !  

Pruning ! ! !""# !  

For ! ! !!!! do 

Cluster node ! ! !"#"$% !  

Pick a random observation ! from the subtree !! and query its label 

Update the label count for all cluster nodes ! on a path from ! ! ! 

Choose the best pruning !!! and labeling !!! for !! 

! ! ! ! ! ! !!!  

! ! ! !!! !  for all ! ! !!! 

End for 

For all ! ! ! do 

Add !! ! !  to labeled set ! for all ! ! !! 

End for 

Algorithm 2.4 – Hierarchical Sampling Strategy 

2.8.3 Semi-supervised learning 

Another way of exploiting the information hidden in the unlabeled data is to use semi-

supervised learning techniques such as self-training, co-training, and multi-view 

learning(CARLSON et al., 2010, TOMANEK & HAHN, 2009, TUR et al., 2005, ZHU 

et al., 2003).  

Semi-supervised learning and active learning share the same goal – build supervised 

models with fewer supervised data. However, semi-supervised learning struggles with 

this issue by automatically labeling observations, whereas active learning queries an 

oracle for more labels.  

For instance, in semi-supervised learning like self-training, observations whose model 

is most certain about the prediction are labeled with that value, as long as an active 

learner as uncertainty sampling picks the most uncertainty observations to be labeled by 
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an oracle(TOMANEK & HAHN, 2009). In an active learning strategy as query-by-

committee, observations with most disagreement of the committee should be queried for 

labels, whereas in semi-supervised learning the co-training technique labels those 

observations with high agreement within committee of models(MCCALLUM & 

NIGAM, 1998). 

Consequently, active learning and semi-supervised learning are somehow 

philosophically complementary. Therefore, many active learning and semi-supervised 

learning strategies arise in the literature in an attempt to improve generalization 

accuracy in classification as much as possible(SETTLES, 2012, RUBENS et al., 2011). 

2.9 Additional considerations 

In this section, we briefly point out some additional considerations for active learners 

such as different labeling cost, unbalanced label classes, noisy oracles, and stopping 

criteria. 

2.9.1 Different Labeling Cost 

None of the aforementioned active learning strategies approached in this chapter 

consider different labeling cost. However, in many scenarios one needs to take into 

account different costs when labeling observations. For instance, a certain experiment 

may be more expensive for some sort of setting than another, or there are users who are 

more likely to provide their personal information than another.  So, in order to minimize 

the total labeling cost involved, the active learner should not only consider the potential 

information of a certain observation, but also the expense of labeling it. This motivates 

cost-sensitive active learning strategies(BALDRIDGE & OSBORNE, 2004, CULOTTA 

& MCCALLUM, 2005, KING et al., 2004, KAPOOR et al., 2007). These strategies 

take the label cost of each observation into consideration, providing a training set, 

which is most informative in a limited budget. 

2.9.2 Unbalanced classes 

In many applications and datasets, label classes might be very unbalanced such as fraud 

detection, spam filtering, and so on. A skewed label distribution introduces an especial 

difficulty for both the supervised learner and the active learner.  
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Skewed label distribution may lead the active learner to a performance no better than a 

random sampling, or even worse, since this usually performs biased sampling based on 

some assumptions about the label and model distribution. In order to struggle with this 

issue, (ATTENBERG & PROVOST, 2010, LOMASKY et al., 2007) provides a guide 

strategy, namely active class selection, in which the oracle is queried for observations of 

a certain label, instead of labeling a given observation.  This approach has been shown 

complementary to the active learning, offering a new perspective for the supervised data 

acquisition problem. 

2.9.3 Noisy oracles 

An important issue concerning the active learning setting is the reliability of the oracles. 

Active learning strategies are supposed to obtain ‘correct’ labels when queried an 

oracle. However, this may not hold in some scenarios where oracles are humans who 

might get bored, distracted or tired with the annotation task by mistakenly labeling 

observations. In order to avoid this issue, one may query different experts about the 

same observation(CARLSON et al., 2010, MINTZ et al., 2009, SNOW et al., 2008). In 

this way, one hopes to produce gold-standard quality training sets by averaging out the 

different labels obtained from different experts (oracles). Other strategies consist in re-

labeling so as to clean up the noise in labels(AMATRIAIN et al., 2009).  

2.9.4 Stopping criteria 

Another key issue in the active learning process is how to stop. The generalization error 

decreases as the size of the training set rises. However after an exponential growth of 

accuracy, the learning algorithm reaches a plateau where no greater improvement on the 

generalization error happens, see Figure 2.12.  
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Figure 2.12 

The idea of the stopping criterion is to provide a way of detecting when the learning 

algorithm has reached this stopping point. Several stopping criterion has been proposed 

in the literature(BLOODGOOD & VIJAY-SHANKER, 2009, OLSSON & 

TOMANEK, 2009, VLACHOS, 2008). Nevertheless, these are all very similar, usually 

based on some measure of model stability or confidence. As many of them are based on 

the model, their main drawback is to prematurely stop due to the active learning strategy 

gets stuck in a region of the input space.  

2.10 Summary and Conclusions 

In this chapter, a brief review of the state-of-the-art of Active Learning was presented. 

The application scenarios of active learning and the principle type of queries were 

described. The main active learning strategies based on different frameworks, 

assumptions and models were discussed by presenting their motivation and theoretical 

foundation. These are usually concerned with reducing or maximizing some selection 

criterion (a heuristic) such as the expected error, variance, version space, model 

uncertainty and so on. As a consequence, the active learner introduces a strong bias in 

the training set so as to avoid uninformative, redundant or noisy observations.  

All active learning strategies relies on either the current model or label distribution to 

decide which observations should be labeled next. Therefore, all active learning 

strategies are subject to fail as the current model and the label distribution might be 

mistaken. Moreover, many active learners are computationally expensive and those, 

which are not, may have no theoretical guarantee of better performance even against 

random sampling. 
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Chapter 3 The Proposed Active 

Learning 

In this chapter we present the methodology of this thesis, which provides support for the 

proposal of a novel general query strategy. The main contributions of this chapter are 

twofold: 1) the general active learning query strategy, which provides the theoretical 

foundation of this thesis as well as theoretical performance bounds over passive 

learning, and 2) a novel specific active learning query strategy and its tuned 

implementation based on the general proposal. We start with a general motivation, and 

follow, in more specific mode, with the novel active strategy and its developments. 

3.1 General Motivation 

The key idea behind the general active learning procedure is to perform a greedy query 

strategy, which selects, according to a specific criterion, the potentially ‘most 

informative’ unlabeled observations out of a pool(DASGUPTA, 2009). Once labeled, 

this ensemble of observations forms a training set from which supervised models can be 

learned. The goal is then to obtain training sets as informative as possible for supervised 

learning. Hence, a key ingredient and major concern for a successful query strategy is 

an appropriate choice of the selection criterion. 

As detailed in chapter 2, there exist several works in the literature proposing different 

approaches for selection criteria. These are mostly heuristics that select observations 

according to a given utility function. This usually relies on assumptions (or hypotheses) 

about the played setting such as the data distribution and the current supervised 

model(SETTLES, 2012). The candidate observations with highest utility are selected 

for labeling. 

For instance, the uncertainty sampling query strategy (for details see chapter 2) selects 

observations according to the model uncertainty on label predictions. The hypothesis 

behind this strategy relies on the idea that regions of the input space where the model 

output is most uncertain should be the most informative. Analogously, observations in 
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regions with confident model predictions might be supposed to be redundant for 

learning. 

Figure 3.1 illustrates an example in which the uncertainty sampling selects the 

observations closest to the model decision boundary (b), reaching a accurate model (c). 

 

Figure 3.1 

Note that the uncertainty sampling strategy strongly depends on the current supervised 

model. Thus, an inappropriate model may lead the uncertainty sampling to selecting 

uninformative observations, as depicted in Figure 3.2. 

 

Figure 3.2 

Therefore, the general performance of active learners may vary widely, since the 

assumptions behind the selection criteria may not hold in all played scenarios. In cases 

where the selection criterion does not work properly due to inappropriate assumptions, 

the correspondent query strategy may generate very poor training sets. Hence, the 

associated active learner may yield a general performance even worse than one would 

obtain with the simple random sampling (SRS), i.e. passive learning. This happens 
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because the query strategy generates biased training sets, i.e. samples with distribution 

different from the population. 

Note that, from the sampling standpoint, active learning is actually a biased sampling 

procedure since it systematically favors some observations over others through the 

selection criterion. This leads to an overexploitation of some regions of the input space, 

which results in a sample with underlying density distribution different from the 

distribution the samples are drawn, i.e. the actual population.  

In this way, biased samples are hereby considered as those that the underlying 

distribution of the input variables differs from the original population distribution. As 

labels are supposedly unknown at the moment of the selection, these are therefore 

independent and identically distributed, i.e. drawn according to the label population 

distribution. 

Accordingly, active learning generates biased training sets in order to generalize 

supervised models for the entire input space(DASGUPTA, 2009). The philosophy 

behind it lies in intentionally introducing bias in the training set according to a heuristic 

so as to obtain the most informative observations for learning models with great 

generalization ability. Thus, active learning draws observations from a distribution 

different from the original population.  

Nevertheless, the presence of bias in the training set may also conduct to bad models, 

whenever the selection criterion is mistaken. A query strategy may form training sets 

with regions without representativeness in the input space, leading to poor models for 

these regions. This occurs because uninformative observations are selected and the 

informative ones are left behind. Hence, the introduced bias increases the risk of loosing 

informative observations as the underlying distribution of the sample differs from the 

population.  

Therefore, the amount of bias in the training set reflects how much aggressive the active 

learning strategy is. The more risky the bet, the higher the reward is. In this way, there 

is an inherently tradeoff between the reward (i.e. the general model accuracy) and the 

chance to fail by favoring uninformative observations due to mistaken assumptions 

about the scenario. 

In Figure 3.3, an example is illustrated where the uncertainty sampling query strategy, 

based on a mistaken model, overexploits a cluster of observations. 
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Figure 3.3 

Figure 3.4 depicts the resulting densities of both population and the training set 

generated by uncertainty sampling. Note that, the underlying distribution of the training 

set is away different from the population. 

Figure 3.4 

In this context, a major motivation for the proposed general query strategy of this thesis 

concerns the bias in the training set. As generating biased training sets is associated with 

the risk of failing, our proposal is to provide a general query strategy that avoids bias. In 

this way, the risk of overexploiting regions of uninformative observations and leaving 

behind others with informative ones is minimized. Moreover, this is a key benefit in the 

proposed strategy, since no assumption about data and model is required.  

This proposal may seem controversial as the philosophy behind active learning relies on 

the tradeoff between bias and informative observations. However, this proposal of 
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active learning aims at selecting informative observations and, at the same time, 

maintaining the training set unbiased. 

3.2 General Proposal 

Part of this thesis methodological contribution consists in proposing a novel general 

active learning query strategy based on the aforementioned motivation, i.e. avoiding 

bias in training sets. As the bias increases the chance to obtain poor models, our 

proposal aims at producing unbiased training sets by selecting observations that better 

reproduces the original population distribution. For that, the selection criterion should 

favor observations that generate training sets with the best fit to the population 

distribution of the input space. In other words, the proposed query strategy aims at 

selecting the observations that keep the sample distribution as close as possible to the 

original population distribution. Thus, the choice of a candidate observation is done 

according to how representative the training set is of the population distribution, 

resulting in a sample as distributed as the population. 

At a first glance, this proposal reminds a simple random sampling (SRS), which 

generates a set of independent and identically distributed observations from the 

population. However, the SRS procedure is subject to sampling error due to the 

randomness of the selection. As a consequence, its performance varies widely for small 

samples. To obtain a robust training set, the SRS requires a large number of 

observations so as to minimize the randomness of the estimation (WASSERMAN, 

2003). Notice that, a large set may become prohibitive by taking into account the 

labeling cost. 

For instance, let us consider a sample obtained by independent launches of a fair coin 

(i.e. probability of 0.5 for head and tail). Let us suppose that one draws a sample of size 

10 by SRS. It would be perfectly acceptable, for this small number of launches, to get, 

for instance, 3 tails and 7 heads, whose proportion is far away from the expected 

population distribution. Of course, as the sample size grows, the estimated proportion of 

heads and tails tends to the expected (0.5-0.5).  

Accordingly, the proposed query strategy will be concerned with both the sampling bias 

and the sampling error. To do so, this query strategy provides samples from which the 

estimated distribution is as close as possible to the underlying distribution of the 
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population. In this way, this proposal minimizes both the sampling bias and sampling 

error. 

In this context, a utility function is provided to measure how close the shape of the 

estimated distribution of the sample is to the population distribution. Hence, one is able 

to look for those observations that shorten the distance between both distributions. For 

that, distance measures between probability density functions are considered, namely 

divergences.  

In order to handle the sample and the population distributions, one estimates their 

correspondent probability density functions (pdf) from the observations in the current 

sample and in the initial pool, respectively. As new observations are picked for the 

sample, its estimated pdf changes due to these new observations. Kernel density 

estimation methods and the information-theoretic framework are used to estimate both 

pdfs (sample and population) and to handle the distance between them.  

Query strategies based on this proposed general strategy may be time consuming and 

computationally costly, as it requires to re-estimate pdfs and to compute their distance 

from all observations of the pool at each time one is selected. To avoid this issue, a 

query strategy has been proposed based on an analytical solution that yields a 

straightforward mathematical expression as a utility function, simplifying the proposal 

complexity. In addition, this utility function allows an interesting geometric 

interpretation for the selected observations. 

In the next sections, we present the proposed general strategy, some measures to 

compare probability distributions (divergences), probability density estimation methods, 

and finally the active learning query strategy based on the proposed general query 

strategy. 

3.3 Proposal Formalization 

In this section, we formally describe the general active learning query strategy.  

The key idea is to reduce as much as possible the distance between the probability 

density functions (pdfs) of the training set (sample) and the pool (population).  

Let ! ! !! ! !! ! !!!!  be a set of observations drawn from a population that obeys a 

pdf ! ! .  
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We denote by ! ! ! ! ! ! !a distance measure between two pdfs ! !  and ! ! . 

Let ! ! !!be a sample of size !! ! !! generated by a pdf ! ! . 

The goal is therefore to find a set of observations ! such that  

o !! ! !!, where ! denotes the cardinality, and 

o the distance ! ! ! ! ! !  is minimized. 

In this way, the proposed query strategy aims at searching for a sub-set ! from a pool of 

observations !, such that !! is as small as possible and at the same time the pdfs ! !  

and ! !  are as close as possible.  

This proposal can be seen as finding the sample with the best goodness-of-fit of 

probability distribution of a finite population(WASSERMAN, 2003). The proposal is 

therefore approaching the estimated pdf of ! to the pdf of !, aiming at producing a 

sample with the best goodness-of-fit for the pdf of the population. In this way, one 

hopes to obtain a training set ! containing the most representative observations for the 

entire population !. 

3.4 Theoretical foundation 

The theoretical foundation behind the proposed query strategy relies on the reduction of 

the sample space for estimating supervised models. The proposed strategy indeed cuts 

off the sample space of all possible training sets by eliminating samples that do not lead 

to learning accurate models. Consequently, this increases the probability of obtaining 

training sets from which accurate models can be learned.  

In order to provide a theoretical support for this proposal, we use the statistical learning 

framework, where a supervised model consists in a joint probability distribution of 

input and output variables.  

Let us consider the continuous random variable ! ! !! with pdf ! !  as input and the 

discrete random variable ! ! !!!!!!! !!!  with probability mass function (pmf) 

!" !  as output.  

Let !! be a sample of ! independent and identically distributed observations !!!  

drawn from the joint pdf ! !!! , i.e.!!! is drawn by the SRS.  
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Let !! be the sample space of all possible outcomes of training sets !! and let !! and 

!!" be the unbiased estimators of the population parameters !! and !!" of ! !  and 

! !!! , respectively.  

As !! and !!" are functions of !!, these are associated with different elements of the 

sample space !! , and hence are random variables with probability distributions 

! !!!!!  and ! !!!"!!! , respectively, and joint distribution given by ! !! !!!"!!! . 

A classifier (or hypothesis) ! !  assigns a label ! ! ! to a given observation ! ! ! 

according to the following rule: 

 

! ! ! !"#$!%
!!!

!" ! ! !!!! ! ! ! 
Eq. 10 

 

By applying the Bayes rule to the conditional pmf !" !!!  in Eq. 10, one obtains 

 

! ! ! !"#$!%
!!!

! ! ! !!! ! !!

! ! ! !
! Eq. 11 

 

Note that, ! ! ! ! !!! ! !!!!!!!
 and hence the distribution !" !!! , the core of 

the supervised model, in fact relies only on the estimation of the joint pdf of the input 

and output variables, i.e. ! !!! . 

In this context, the major issue of active learning consists in developing query strategies 

so as to generate training sets !!
!  from which one is able to estimate as accurate as 

possible the joint pdf ! !!! . The goal is to define selection criteria that favor training 

sets !!
!
! !! in which the estimator !!" of ! !!!  is as close as possible to the ‘true’ 

population parameter !!". This implies that the distribution ! !!"!!!
!  should be as 

sharp as possible on !!".  

Accordingly, our objective is to prove that the proposed general query strategy of this 

thesis selects training sets !!
!  so that the distribution ! !!"!!!

!  is sharper on the 

correspondent ‘true’ parameter !!" than ! !!"!!! , provided by the SRS. We want to 
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show that the variability of the estimator !!" obtained from !!
!  is smaller than the 

variability obtained with !!. 

As the proposed selection criterion consists in minimizing the distance measure 

! ! ! ! ! !  between the distributions of the sample and the pool, this generates sets 

!!
!  in which the associated estimator !! is as close as possible to the ‘true’ population 

parameter !! . Hence, the proposed criterion produces training sets !!
!  with an 

underlying distribution of !!  sharp on !! , since !!  is unbiased (i.e. ! !! ! !! ). 

Consequently, the variance of !! is equal or smaller than the variance of !! obtained by 

the SRS. 

In this context, we propose the following theorem: 

 

Theorem 1: Let !!
!  and !! be random sets of the sample space !! with underlying 

probability distributions of the estimator !! such that 

 

!"# !!!!!
!
! !"# !!!!!  Eq. 12 

 

Then, it turns out that 

 

!"# !!"!!!!!
!
! !"# !!"!!!!! ! Eq. 13 

 

Proof: Let !
!

!
! ! ! !

!

 be the squared error of an estimator ! . Hence, by the 

definition of variance, one has that 

 

!"# ! ! ! ! ! !
!

! ! !
!

!
! !

!

!
!! !

!!

!!

!!! Eq. 14 
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By using Eq. 14 for !! obtained from !!
! , one gets 

 

!"# !!!!!!!
!
! !

!!

!
!! !!!!!!

!

!!

!!

!!! ! Eq. 15 

 

By using Eq. 15 in Eq. 12, one obtains the inequality 

 

!
!!

!
!! !!!!!!

!

!!

!!

!!! ! ! !
!!

!
!! !!!!!!

!!

!!

!!! ! Eq. 16 

 

According to Eq. 16, the density of ! !!!!!!
! , compared with ! !!!!!! , is higher for 

small values of !
!!

!  and lower for larges !
!!

! . Therefore, the area under the curve 

! !!!!!
!  is more concentrated (sharper) on the population parameter !!  than 

! !!!!! , as !
!!

!
! !! ! !!

!

. 

Analogous to Eq. 15, the variance of !!" can be written as 

 

!"# !!"!!!!!
!
! !

!!"

!
!! !!"!!!!

!

!!

!!

!!!" ! Eq. 17 

 

As the estimators !!" and !! are associated with the same !!
! , it turns out that 

 

! !!"!!!!!
!
! ! !!" !!!!!!!!

!

!!

!!

!!! ! Eq. 18 

 

By re-writing Eq. 17 with Eq. 18, one gets 
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!"# !!"!!!!!
!
! !

!!"

!
!! !!" !!!!!!!!

!
!!!

!!

!!

!!!"

!!

!!

! Eq. 19 

 

By applying the Bayes rule in Eq. 19, one obtains 

 

!"# !!"!!!!!
!
! !

!!"

!
!! !!"!!!! !!!

!
!! !!!!!!!

!
!!!!

!!

!!

!!!"

!!

!!

! Eq. 20 

 

As ! !!!!!!!
!  gets sharper, ! !!" !!!!!!

!  also changes, becoming sharper toward the 

axis !! . Hence, ! !!"!!!!
!  may also become shaper if there is any dependence 

between !!" and !!. Consequently, the integral in Eq. 20 must be equal or smaller for 

!!
!  than for !! since ! !!!!!!!

!  is sharper than ! !!!!!!! . Therefore, one has that 

 

!
!!"

!
!! !!"!!!! !!!

!
!! !!!!!!!

!
!!!!

!!

!!

!!!"

!!

!!

! !
!!"

!
!! !!"!!!! !!! !! !!!!!!! !!!!

!!

!!

!!!"

!!

!!

! 

Eq. 21 

 

Consequently, one obtains that 

 

!"# !!"!!!!!
!
! !"# !!"!!!!! ! Eq. 22 

 

The equality in Eq. 22 only holds whenever !!" and !! are independent.  However, 

supervised learning relies on the hypothesis that ! and ! are dependent, and hence !!" 

and !! are dependent. Therefore, under this assumption, one gets 
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!"# !!"!!!!!
!
! !"# !!"!!!!! ! Eq. 23 

 

In addition, the higher the dependence between !!" and !!, the more information !! 

transfers to !!" . In case of total dependence, one has that knowing !!  implies to 

completely know !!". 

Therefore, the smaller the !"# !!!!!!!
! , the smaller the !"# !!"!!!!!

! . However, 

depending on how dependent !!" is of !!, !"# !!"!!!!!
!  can be even smaller. 

In subsection 3.5, the proposed query strategy is described. This strategy selects 

observations in order to generate training sets !!
!  such that theorem 1 holds.  

3.5 The proposed general query strategy  

In this section we describe the general procedure that allows the implementation of the 

proposed query strategy. Therefore, this procedure aims to discover the smallest subset 

! of a given pool ! of observations such that the distance between their correspondent 

pdfs is minimized. This procedure is described as follows: 
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Algorithm General Query Strategy Proposal 

Input:  ! - pool of unlabeled observations  

Output: ! - training set of labeled observations 

Set ! ! !. 

Estimate the pdf ! using the set!! of observations. 

Repeat 

For each !! ! ! ! ! do 

      Estimate the pdf ! using the set ! ! !!  

      Compute ! !!!  

      ! !! ! ! !!!  

End 

!! ! !"#!!"#!! ! !!   

! ! ! ! !!   

Estimate the pdf ! using the new !. 

Until ! !!! ! !! 

Algorithm 3.1 – General Query Strategy Proposal 

Note that this is a greedy procedure independent of knowledge about the labels of the 

observations added into ! and of any associated supervised model. The proposed query 

strategy relies only on the distance measure ! !!!  between the pdfs ! and !. Neither 

the labeled observations nor the classification model are required in the selection 

process.  

A tolerance value ! for the distance between the pdfs is defined as a stopping criterion, 

otherwise it would stop when ! ! !. However, one could alternatively establish a 

maximum number of observations in the set !, without taking ! !!!  into account to 

stop. 

There are two important issues concerned with the implementation of this procedure: 1) 

the estimation of the involved probability densities, and 2) the computation of the 

distance between them.  

Furthermore, note that this procedure is time consuming and computationally costly. A 

pair of nested loops constitutes this procedure. First, for each observation !! ! !, the 
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procedure forms a new set ! ! !! , estimates its pdf !, and calculates the distance 

! !!!  to choose the optimal observation, which is transferred from ! to !. The second 

loop repeats the first one but with the updated set !. Therefore, the proposed procedure 

complexity is ! !
! . 

In order to handle these computing issues, a feasible query strategy using the proposed 

general strategy is provided by using the Information Theoretic Learning framework 

(PRINCIPE, 2010) for analytically building an utility function that implements the 

target selection criterion. In the next sections, we describe this framework. 

3.6 Kernel Density Estimation 

There are several nonparametric methods for probability density estimation available in 

the literature. Among them is the widely used Kernel Density Estimation (KDE), also 

known as Parzen windowing (DUDA et al., 2000). This method empirically estimates 

the probability density function by taking into account the local density of each 

observation in the feature space !. 

For a given set of iid observations !!!!! ! !!! drawn from an unknown pdf !, the KDE 

provides a pdf estimate !!!! given by: 

 

! ! !
!

!
!! !! !!

!

!!!

! Eq. 24 

 

where !! is a Kernel function (or Kernel, for simplicity), which is a symmetric function 

that integrates one (DUDA et al., 2000).  

The key idea is to evaluate the density ! !  for a given observation ! by computing the 

average proportion of the number of observations falling in a hyper-volume in the 

feature space !, a.k.a. Kernel space. The hyper-volume shape is intrinsically related to 

the Kernel function !!, where ! is a scale factor that acts as a smoother parameter for 

the KDE. The larger the ! value, the smoother the pdf estimate is. The value of this 

parameter should be carefully chosen, since it might lead to over-fitting or under-fitting 

of the pdf estimate(BISHOP, 2007, DUDA et al., 2000). 
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The Kernel function !! !! !!  can be expressed as an inner product in the feature space 

!  in the form !! !! ! !! ! ! !!
!! !! ! ! !! !! !!  (here !!!  denotes the 

inner product), where the function ! defines the mapping !!!! ! !. This is known as 

‘Kernel trick’, a way to measure the similarity between two points !! and !! of the 

input space ! in the much higher dimensionality feature space !, without explicitly 

computing the mapping ! (DUDA et al., 2000). This technique is widely used in many 

Machine Learning algorithms, particularly in Support Vector Machines 

(SVM)(BISHOP, 2007, DUDA et al., 2000). 

Although several Kernels could be chosen, we opted for a Gaussian kernel defined by 

!! !! !! !
!

! !!
!
!
!

!

!!!!

!

!

. This is indeed a Gaussian pdf with standard deviation !, 

centered at the observation !!. This function is especially interesting due to the property 

of the convolution of Gaussians, which will be described shortly (PRINCIPE, 2010, 

JENSSEN et al., 2006). 

3.7 Divergence Metrics 

There are several measures of ‘distance’ between probability distributions known as 

divergences(PRINCIPE, 2010). These measures are pseudo-metrics since they do not 

satisfy some of the metrics axioms, such as symmetry and triangle inequality. In this 

section, we present two divergences based on information theory concepts that are used 

in the query strategy proposed in this thesis. 

The Cauchy-Schwarz divergence is a symmetric measure that allows the comparison 

between two probability distributions ! and !. It can be directly derived from the 

Cauchy-Schwarz (CS) inequality  

 

! ! ! ! !"

!!

!!

!

! ! ! !
!"

!!

!!

! ! ! !
!"

!!

!!

! Eq. 25 

 

Clearly, in Eq. 25, the equality holds if and only if ! ! ! ! !  for all the domain of !.  

The CS divergence(JENSSEN et al., 2006) is then defined as 
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!!" !! ! ! !! !"#
! ! ! ! !"

!!

!!

!! ! !"
!!

!!
! !! ! !"
!!

!!

! 
Eq. 26 

 

In this way, the divergence !!" !! !  vanishes as ! approaches !. One should note that 

! ! !!" !! ! . 

The Integrated Squared Error (ISE) (BISHOP, 2007, JENSSEN et al., 2006, 

PRINCIPE, 2010) is also an alternative of measure the distance between two pdfs. It 

computes the total area under the function that represents the squared difference 

between the two pdfs as follows: 

 

!"# !! ! ! ! ! ! ! ! ! !
!!"

!!

!!

! ! !!!!!!!"
!!

!!

! ! ! ! ! ! !!"

!!

!!

! ! !!!!!!!"
!!

!!

! 
Eq. 27 

 

As one should note, the !"# !! !  is a non-negative symmetric function and shrinks to ! 

as !  approaches ! . This measure allows an analytical solution to implement the 

proposed query strategy, providing a trick for fast computing the utility function 

compared with the !!". 

3.8 ISE-based Query Strategy 

In this section, we propose the ISE-based Query Strategy, which is a query strategy 

based on the proposed general query strategy by using the ISE as the distance measure 

between pdfs, i.e. ! !!! ! !"# !! ! . In order to handle the estimated pdfs, the 

Information Theoretic framework described in (PRINCIPE, 2010) is used by allowing 

an analytical solution for the proposed query strategy. We start by describing some 

theoretical foundations introduced in (PRINCIPE, 2010) and follow by presenting the 

developments proposed in this thesis aiming to provide a feasible implementation of the 

proposed query strategy.  
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3.8.1 Integrated Squared Error of Kernel Density Estimation 

By the Kernel definition of Eq. 24, we have the following estimates for the pdfs from 

the sample sets ! and !, respectively: 

 

! ! ! !
!

!!

!!! !! !!

!!

!!!

! Eq. 28 

and 

! ! ! !
!

!!

!!! !! �!

!!

!!!

! Eq. 29 

 

where !!is the Gaussian kernel. 

By substituting the densities estimates ! !  and ! !  in Eq. 27, one obtains the 

following !"# estimator: 

 

!"# !! ! ! !
!

!!

!!! !! !!

!!

!!!

!

!"

! !! !
!

!!

!!! !! !!

!!

!!!

!

!!

!!! !! !!

!!

!!!

! !" !

!
!

!!

!!! !! !!

!!

!!!

!

!

!"! 

Eq. 30 

 

where the bounds of the integrals are omitted for simplicity as each one integrates over 

!!!!! . 

Re-writing Eq. 30 with summations of integrals and expanding the squares, one gets the 

following expression: 
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!"# !! ! ! !
!

!
!

!
!!! !! !! !!! !! !!! !!"

!!!!!

!!!!!!

! !!
!

!!

!

!!

!!! !! !! !!! !! !! !"

!!!!!

!!!!!

!

!
!

!
!

!
!!! !! !! !!! !! !!! !!"

!!!!!

!!!!!!

! 

Eq. 31 

 

The convolution theorem for Gaussians (PRINCIPE, 2010) states that 

 

!!! !! !! !!! !! !! !!" ! !!!!!!! !! ! !! ! Eq. 32 

 

and by applying Eq. 32 into Eq. 31, one gets the expression(JENSSEN et al., 2006) 

 

!"# !! ! ! !
!

!
!

!
!!!! !! ! !!!

!!!!!

!!!!!!

! !!
!

!!

!

!!

!!!!!! !! ! !!

!!!!!

!!!!!

!

!
!

!
!

!
!!!! !! ! !!!

!!!!!

!!!!!!

! 

Eq. 33 

 

Interestingly, one should highlight that Eq. 33 provides an analytic expression for the 

!"# as a function exclusively of the observations in ! and !. 

3.8.2 Selecting a new observation  

Here, the key idea is to use the estimate !"# as the measure ! !!! . Therefore the ISE-

based Query Strategy aims to minimize the !"# as observations of ! are added into !. 

Let !! ! ! be a candidate observation to be added into !. We should therefore analyze 

the impact of !! on !"# !! ! .  
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The estimate !  in Eq. 29 should be updated by the addition of this hypothetical 

observation !!. Hence, this in fact means to add a new parcel in the summation as 

follows: 

 

! ! ! !
!

!! ! !
!!! !! !!

!!

!!!

! !!!! !! !! ! Eq. 34 

 

By updating Eq. 31 with Eq. 34 and propagating this new parcel up to Eq. 33, one 

obtains 

 

!"# !! ! ! !
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!

!
!!!! !! ! !!!

!!!!!

!!!!!!

! !!
!

!!

!

!! ! !
!!!!!! !! ! !!

!!!!!

!!!!!

! !!!!!! !! ! !!

!!

!!!

!

!
!

!! ! !
!

!!!! !! ! !!!

!!!!!

!!!!!!

! ! !!!! !! ! !!

!!

!!!

! !!!! !!! !! ! 

Eq. 35 

 

By eliminating the brackets, one gets 
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!"# !! ! ! !
!
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!

!
!!!! !! ! !!!
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!!!!!!

! !!
!

!! !! ! !
!!!!!! !! ! !!

!!!!!

!!!!!

! !!
!

!! !! ! !
!!!!!! !! ! !!

!!

!!!
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!
!

!! ! !
!

!!!! !! ! !!!

!!!!!

!!!!!!

! !
!

!! ! !
!

!!!! !! ! !!

!!

!!!

!
!

!! ! !
!
!!!! !!! !! ! 

Eq. 36 

 

Re-organizing the parcels, one gets the following expression: 
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!
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!! !! ! !
!!!!!! !! ! !!

!!!!!

!!!!!
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!

!! ! !
!

!!!! !! ! !!!
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!! !! ! !
!!!!!! !! ! !!
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!!!! !! ! !!
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!
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!
!!!! !!! !! ! 

Eq. 37 

 

One can note that the first three parcels of Eq. 37 do not depend on !!. A quantity 

! !" , called ‘Information Potential’, is defined in (PRINCIPE, 2010) as the potential 

energy between two pdfs ! and !.  

The estimator of ! !"  is defined by 
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! !" !
!

!!!!

!!!!!! !! ! !!

!!!!!

!!!!!

! Eq. 38 

 

Let us define 

 

! !
!!

!! ! !
! Eq. 39 

 

And by applying Eq. 38 and Eq. 39 into Eq. 37, one obtains 

 

!"# !! ! ! !! !! ! !!!!!! !" ! !
!
!! !!

! !! !! !
!

!!

!!!!!! !! ! !!

!!

!!!

!

!

! ! !! ! !!
!

!!

!!!! !! ! !!

!!

!!!

!

! !! ! !!!!!! !!! !!

!

! 

Eq. 40 

 

Now, we revisit the KDE definition of Eq. 24, and apply it in Eq. 40. In addition, one 

can note that !!!! !!! !! ! ! is constant, as the value ! is defined by the variance of 

the Gaussian. In this way, we obtain the following expression: 

 

!"# !! ! ! !! !! ! !!!!!! !" ! !
!
!! !! ! !!! !! ! !! !!

!

!

! !! !! ! !!!! !!

!

! !! ! !!

!

! 

Eq. 41 

 

Re-organizing the terms by isolating the constants, one gets 
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!"# !! ! ! !! !! ! !!!!!! !" ! !
!
!! !! ! !! !

!
!

! !! !! ! !!! !! ! ! !! ! 
Eq. 42 

 

By Eq. 42, the observation !! that minimizes the !"# is the one that also minimizes 

!!!! !! ! !!!!!!. Thus the ISE-based Query Strategy should use the utility function 

!!"# !!  given by 

 

!!"! !! ! !!! !! ! !!!!! Eq. 43 

 

Hence, this provides a heuristic that selects the observation !! ! ! ! !, which is the 

most likely according to the pdf ! and also the most unlikely according to the pdf !, 

taking into account the coefficient !. 

In Eq. 42, one can clearly note that, as ! approaches one, the addition of a new 

observation into ! minimizes less the !"#, since the coefficient of the last parcel tends 

to zero. Therefore, the more observations added in ! according to the utility function 

!!"#, the less impact a new observation has on the !"#. 

3.8.3 Geometry of ISE-based Query Strategy 

As aforementioned, the Kernel function !! is represented as the inner product between 

the observations mapped in the feature space by the function !, i.e. 

 

!! !! ! !! ! ! !! !! !! ! Eq. 44 

 

By substituting Eq. 44 into Eq. 24 (pdf estimation), one obtains the following 

expression: 

 



 

 

 

58 

! ! ! !
!

!
! !! !! !

!

!!!

 Eq. 45 

 

By the property of linearity of the inner product in the first argument, 

 

!! ! ! !! ! ! ! ! !! ! ! Eq. 46 

 

one can re-write Eq. 45 as: 

 

! ! ! !
!

!
! !!

!

!!!

!! ! ! Eq. 47 

 

The mean of the observations !! in the Kernel space is expressed by  

 

! !
!

!
! !!

!

!!!

! Eq. 48 

 

Hence, the pdf estimation !  for an observation !  consists in computing the inner 

product between ! and mean vector of the observations in the Kernel space, i.e. 

 

! ! ! ! !!! ! ! Eq. 49 

 

By applying the pdf estimate of Eq. 49 into Eq. 43, and defining  
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!! !
! !!

!!

!!!

!!

 Eq. 50 

 

and  

 

!! !

! !!
!!

!!!

!!

! Eq. 51 

 

the heuristic !!"# !!  can be written as  

 

!!"# !! ! !! !! !! !! ! !!!! !! ! Eq. 52 

 

 One should note that, Eq. 52 allows an interesting geometric interpretation. By using 

the property of linearity of the inner product in the first argument in Eq. 46, one obtains:  

 

!!"# !! ! !!! !!!!! !! ! Eq. 53 

 

As the ISE-based Query Strategy should select the observation with the smallest 

!!"# !! , it means, from the Geometric point of view, we are searching for the 

observation that is orthogonal to the vector !!! !!! in the Kernel space. Figure 3.5 

depicts this geometric interpretation of !!"#. 
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Figure 3.5 

3.8.4 Tuned implementation 

As described in the previous subsection, the ISE-based Query Strategy depends on the 

computation of the function !!"# !! , which requires the estimation of ! and ! for all ! 

observations in ! by the KDE described in Eq. 24. Hence, the complexity for estimating each 

pdfs is of ! !
! . Consequently, the complexity of the ISE-based Query Strategy for adding 

! observations from the pool is ! !
!
! !!

!  as we estimate ! just once. 

In order to speed up the ISE-based Query Strategy, we propose an implementation of 

complexity ! !
!
! !" , where ! is the number of observations to be selected and ! is 

the initial number of observations in the pool. This implementation is based on a 

recursive trick, which avoids estimating the pdf ! by the KDE whenever ! is updated. 

Instead of the KDE, the update of the pdf ! for a new observation added in ! is performed with 

linear complexity of ! ! . In this way, the general complexity of ISE-based Query 

Strategy is given by ! !
!
! !" . Note that, the first parcel of the complexity, !!, is 

related to the complexity of the KDE for estimating ! , performed once and 

independently of the number of observations to be selected. 
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Algorithm ISE-based Query Strategy 

Input:  ! vector of ! unlabeled observations 

! Parzen-window 

 ! number of observations to be selected 

Output: ! vector of selected observations 

Set ! !!! ! ! and ! ! !; 

Set ! !!! ! !"# !!!!! ; 

While ! ! ! do 

! !
!

! !!
 ; 

!"# ! !"# ! ! ! ! ! ; 

!! ! ! !"# ; 

! ! !!! ! !! ! !!! !! !! ; 

! ! ! ! !! ; 

End while 

Algorithm 3.2 – ISE-based Query Strategy 

The function !"# !!!!!  computes the probability density of the ! observations in !. 

For that, each observation is taken as the Kernel center, and its density is computed 

using ! as the kernel bandwidth. This function is time consuming as it implements Eq. 

24, i.e., its complexity is ! !
! . The probability densities of each element of ! are then 

stored in the vector ! of size !.  

The vector ! stores the probability densities of all unlabeled observations in ! with 

Kernels centered in the observations in !. As ! is supposed to be initially empty, the 

vector ! initiates with all components null. 

At each step of the loop, an observation !! of ! is added in !. The observation !! is 

chosen according to its correspondent !!"# !! . For that, the function !"# returns the 

index of the observation !! ! !, which has the least !!"#. 

The pdf ! estimated from ! is updated with linear complexity ! ! . Therefore, the 

KDE is avoided reducing the complexity of the algorithm. This reduction is due to a 

recursive trick provided by the following equation: 
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!!!! ! ! !!!! ! ! !! ! !! !! !!!! ! Eq. 54 

 

where !! !  is the current estimated pdf of ! and !!!! !  is the updated pdf of ! by 

the addition of the observation !!!! in !, now with ! ! ! observations. This equation 

allows us to update ! by one pass over the ! observations in the pool, instead of 

performing all the KDE procedure for the new set !. As follows we provide the proof 

for Eq. 54. 

 

Proof of Eq. 54: By the definition of the KDE, we have that 

 

!! ! !
!

!
!! !! !!

!

!!!

! Eq. 55 

 

and, therefore 

 

!!!! ! !
!

! ! !
!! !! !!

!!!

!!!

! Eq. 56 

 

By splitting the term corresponding to the observation !!!!, one gets 

 

!!!! ! !
!

! ! !
!! !! !!

!

!!!

! !! !! !!!! ! Eq. 57 

 

By re-organizing the terms and applying !! !  in the expression, one obtains 
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!!!! ! !
!

! ! !
!! ! !

!

! ! !
!! !! !!!! ! Eq. 58 

 

By applying ! !
!

!!!
 in the last expression, one finally gets 

 

!!!! ! ! !!! ! ! !! ! !! !! !!!! ! Eq. 59 

3.9 Summary and Conclusions 

In this chapter we described a novel general query strategy, which relies on selecting 

observations in order to generate the most informative training sets free of bias. For 

that, a general procedure was developed to select observations by forming training sets 

from which the estimated pdf of the input variables, ! ! , is as close as possible to the 

underlying pdf ! !  of the pool.  

A specific query strategy based on this general strategy was proposed by using the 

Integrated Square Error (ISE) as the distance measure between pdfs, a key ingredient of 

the proposed general procedure. This measure allowed reaching an analytical expression 

that provides a straightforward utility function for the selection criterion used by this 

query strategy.  

A tuned implementation of the ISE-based query strategy was developed with linear 

complexity on the number of observations to be labeled. The main disadvantage of this 

query strategy is to adjust the kernel bandwidth in KDE, a well-known tough task that 

gets harder as the dimensionality grows.  

In addition, the theoretical foundation that supports the proposed query strategy was 

provided. A formal proof was presented by giving guaranties of better generalization 

performance of the proposed general query strategy compared with the passive learning. 

This proof allows the development of a novel family of query strategies based on the 

idea of bias reduction in the input variables. Also, the proposed general query strategy 

allows us to propose specific query strategies for different divergence measures 
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provided by the information theory literature (PRINCIPE, 2010). The more precise the 

distance measure used, the better the query strategy. 

Although the query strategy was developed for continuous variables, one is able to 

apply it for discrete variables as well. However, adaptions should be necessary in order 

to handle probability mass functions (pmf) instead of probability density functions 

(pdf). Besides, distance measures between pmfs should be necessary.  
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Chapter 4 Experiments 

In this section we present the experiments in order to evaluate the proposed query 

strategy empirically. These experiments were performed in two parts: 1) a qualitative 

analysis of the proposed query strategy in simulated datasets and 2) a quantitative 

analysis comparing the query strategy with the passive learning both in simulated and 

real datasets. The ISE-based Query Strategy is considered in all experiments, since it 

implements the proposed query strategy.  

We start with a brief description of our experimental setup and the simulated datasets 

and follow by providing a qualitative analysis and its correspondent quantitative results. 

We conclude this chapter by providing a performance comparison over two publically 

available real datasets. 

4.1 Simulated Datasets 

For examining the proposed strategy, eleven simulated datasets were designed. These 

datasets are 2 dimensional in order to allow the visualization of the results and to keep 

control of interest properties. Each dataset consists of 10.000 observations, in which 

half constitutes the initial pool for the quantitative analysis. 

Although the datasets look simple for supervised learning, these allow us to examine 

and understand how the query strategy behaves as observations are labeled. Moreover, 

each dataset illustrates a set of properties of interest alive in any real dataset. Thus one 

is able to analyze the proposal from different standpoints, one by one. 

The simulated datasets are organized in three categories: simple, cluster, and non-

convex.  In the next subsection, we describe each one. 

4.1.1 Simple datasets 

The simple datasets are composed of observations drawn at random from one or a 

mixture of Gaussian distributions. In these datasets, the goal is to simulate very simple 

distributions and their overlaps in the input space by generating a little of noise for the 

classification. Moreover, one aims to simulate nonlinearly separable datasets. 
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Figure 4.1, Figure 4.2 and Figure 4.4 illustrates these synthetic datasets, generated by 

separated Gaussian distributions. The dataset in Figure 4.3 was generated by two 

overlap Gaussian distributions. The number of observations drawn from each Gaussian 

was the same, keeping the classes balanced. 

Figure 4.1 

 

Figure 4.2 

 

Figure 4.3 

 

Figure 4.4 

 

4.1.2 Clustered datasets 

In this category, the simulated datasets are more complex, generated by a mixture of 

Gaussian distributions with different covariance. The number of Gaussian distributions 

and of observations drawn from each one is varied, by simulating cluster structure.  

In Figure 4.5, the dataset was drawn from 4 Gaussian distributions with the same 

covariance matrix. The number of observations drawn from the two closest distributions 
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is a quarter the number of observations drawn from the farthest pair of Gaussian 

distributions. 

Figure 4.6 depicts the dataset drawn from 2 pairs of Gaussian distributions with the 

same covariance matrix. The number of observations drawn from the distributions with 

the smaller covariance was a quarter the number drawn from the pair with larger 

covariance. 

In Figure 4.7, the dataset was generated by 6 Gaussian distributions. Each Gaussian 

distribution presents the same covariance matrix and composes clusters of very close 

pairs and far away from one another. The number of observations drawn from each 

distribution is the same. 

In Figure 4.8 the dataset is generated by 5 Gaussian distributions. There are 4 of them 

positioned as satellites around the fifth central Gaussian. Each satellite has a quarter the 

number of observations in the center distribution. The satellites have the same 

covariance, which is smaller than the covariance of the central Gaussian. 

Figure 4.5 

 

Figure 4.6 
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Figure 4.7 

 

Figure 4.8 

 

4.1.3 Non-convex datasets 

These datasets aims to exploit difficulties related to the properties of datasets with non-

convex shapes. Figure 4.9 and Figure 4.10, there are 2 half moons with the equal 

number of observations. However, the label distributions are different in both figures. 

Figure 4.9 

 

Figure 4.10 

 

4.2 Qualitative Analysis 

The qualitative analysis aims at examining the behavior of the proposed query strategy 

in the simulated datasets. We start by describing the experimental setup for the analysis 

and follow by the obtained results. 
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4.2.1 Experimental Setup 

The experiment consists in performing the ISE-based Query Strategy in each simulated 

dataset. One starts with a pool of observations and an empty sample. The query strategy 

then selects observations one by one from the pool to the sample.  

The pool is initially set with all 10.000 observations of the dataset. Although the 

observations are moved to the sample one by one, one is interested in analyzing 

snapshots of the current sample for 10, 20 and 100 observations. In this way, one is able 

to verify whether the selected observations are in agreement with expected behavior of 

query strategy. 

To perform the ISE-based Query Strategy, one needs to set up the kernel bandwidth ! 

for the Kernel Density Estimation method. This parameter was arbitrarily set as 

! !
!!!" !

! !!!"
 for all simulated datasets. The choice of this parameter implicates the 

estimation error. Thus fixing the parameter for all simulated datasets eliminates any 

doubt about the provenience of the result. 

4.2.2 Selecting 10 observations 

By selecting 10 observations with the proposed strategy, we found samples of 10 

observations that are very representative for the full dataset. These selected observations 

are marked in red on the original datasets.  

4.2.2.1 Simple datasets 

One should note that the selected observations provide the position and the extent of the 

Gaussian distributions in the datasets. In Figure 4.12, there is one observation at the 

mean of the Gaussian, providing their position, and other observations at the extremes 

of the Gaussian, providing the extent of the deviation in each dimension. Figure 4.11, 

Figure 4.13, and Figure 4.14 do not illustrate it so well, as the Gaussian distributions are 

not properly represented by the selected observations. This is probably due to the 

number of observations in the selection or the error incurred in the probability 

estimation. However, one is still able to realize that the selection remains quite 

representative of the datasets.  

 



 

 

 

71 

 

 

Figure 4.11 

 

 

Figure 4.12 

 

 

Figure 4.13 

 

 

Figure 4.14 

 

4.2.2.2 Clustered datasets 

Here, one should note that each Gaussian contains at least one representative selected 

observation, see for instance Figure 4.17 and Figure 4.18. One can verify that 

observations from the same Gaussian distribution are selected in such way to provide 

the position of the mean and the extent of the distributions in each dataset, see Figure 

4.15, Figure 4.16, Figure 4.17, and Figure 4.18. 

Interestingly, the proportion of the number of observations generated by each Gaussian 

distribution was preserved in the sample. In Figure 4.15 and Figure 4.16 one clearly 
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sees that the number of the selected observations in each Gaussian obeys the proportion 

of a quarter as in the original datasets.  

 

Figure 4.15 

 

 

Figure 4.16 

 

 

Figure 4.17 

 

 

Figure 4.18 

 

4.2.2.3 Non-convex datasets 

Here, the selected observations seems to present the shape of the original dataset.  
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Figure 4.19 

 

 

Figure 4.20 

 

4.2.3 Selecting 20 observations 

The samples of 20 observations selected by the proposed query strategy are extremely 

representative of its correspondent datasets. These samples are depicted in red on the 

original datasets.  

4.2.3.1 Simple datasets 

Here, one confirms that the proposed query strategy selects observations, which clearly 

represent the shape of the original pool. Now, even in the last dataset (Figure 4.24), the 

Gaussian distributions have their shapes well depicted. 

Interestingly, the selected observations are equally far way one another according to the 

density of observations in the pool. This provides evidences that the distributions of the 

pool and the sample are getting closer. 
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Figure 4.21 

 

 

Figure 4.22 

 

 

Figure 4.23 

 

 

Figure 4.24 

 

4.2.3.2 Clustered datasets 

In these datasets, the addition of 20 observations by the proposed query strategy clearly 

improved the representativeness of the selection for the datasets. The shapes of the 

Gaussian distributions are slightly better than the sample of 10-sized, providing a better 

representative sample of the pool. 
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Figure 4.25 

 

 

Figure 4.26 

 

 

Figure 4.27 

 

 

Figure 4.28 

 

4.2.3.3 Non-convex datasets 

In the non-convex datasets, the addition of 20 observations by the query strategy 

improves even further the shape of the clusters. In Figure 4.29 and Figure 4.30 

illustrates the ‘two moons’, where their arcs clearly depicted by the selected 

observations. 
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Figure 4.29 

 

 

Figure 4.30 

 

4.2.4 Selecting 100 observations 

Now, the proposed strategy selects 100 observations from the pool. Once more, one 

should note that these selected observations are still in agreement with the shape of the 

original dataset.  

4.2.4.1 Simple datasets 

Now, one should note that, in addition to the ability of reproducing with a small 

selection of observations the position and the shape of original clusters, now the set of 

selected observations starts to reveal the frequency distributions of the original datasets. 

For instance, one notes that there are more selected observations closer to the mean of 

the Gaussian distribution than on border. This evidences that the more observations the 

proposed strategy selects, the more similar to the original distribution the selected 

sample becomes. 
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Figure 4.31 

 

 

Figure 4.32 

 

 

Figure 4.33 

 

 

Figure 4.34 

 

4.2.4.2 Clustered datasets 

Here, all the clusters are fully represented by the selected observations. We could even 

perform a clustering algorithm(BISHOP, 2007) and found out the same cluster structure 

of the original dataset without actually using it.  
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Figure 4.35 

 

Figure 4.36 

 

Figure 4.37 

 

Figure 4.38 

4.2.4.3 Non-convex datasets 

Here, we can see that the densities become to be well represented. In Figure 4.40 and 

Figure 4.39 the tight of the moons are represented by selected observations, by allowing 

for accurate classification. 
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Figure 4.39 

 

 

Figure 4.40 

 

4.3 Quantitative Analysis 

In this subsection, we present a quantitative analysis of performance comparing the 

proposed query strategy with passive learning. The goal is to evaluate the classification 

accuracy along the active learning procedure on both synthetic and real datasets. In this 

way, one is able to establish a benchmark of accuracy for the proposed query strategy 

with passive learning as a baseline. 

4.3.1 Experimental Setup 

The experiment consists in performing the ISE-based Query Strategy in both simulated 

and real datasets. The goal is to evaluate the prediction accuracy of a supervised model 

as the number of observations in its training set grows. In this way, a performance 

comparison between the proposed query strategy and the passive learning may be 

established. 

The pool is initially set with half of the number of observations of the original dataset. 

The other half of observations is used as test set in order to measure the model accuracy.  

The observations are then selected one by one from the pool to the training set by the 

query strategy. The model is re-trained each time the training set is updated and its 

accuracy on the test set is computed. This is also performed for the baselines we 

established for comparing the proposed query strategy. 

The experiment produce is described as follows: 
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Algorithm: Experiment Procedure 

Input:  ! dataset 

 ! maximum size of the training set 

Output: !""#$%&, !""#$%&%'(&!'%)*+%, !""#$%&%!'(!)%*+'%,  

 !""#$%&'()*+!)%,-.%  

Set!!!!!"#$%"$! = !"#$% ! ; %split the dataset into half for pool and the other for test set 

!"#$%&'( ! !; 

For i = 1 to ! do 

%ISE-based query strategy selects an observation of the pool 

!! ! !"#$%&'( ! ;  

Assigns !! to !!; 

!"#$%&'( = !"#$%&'( ! !!!!! ; 

%Training the supervised model ! from !"#$%&'( 

! ! !"#$% !"#$%&'( ;  

%Computing the accuracy of the model ! on !"#$%"$ 

!""#$%& ! ! !""#$!"%!!"#$%"$!!!;  

%Computing the baselines 

!"#$#%!! !"#$#%&! !"#$%&'! ! !"#$%&'$#!!! !!!"#$%"$!;  

!""#$%&%'(&!'%)*+% ! ! !"#$#%!; 

!""#$%&%!'(!)%*+'% ! ! !"#$#%&; 

!""#$%&'()*+!)%,-.% ! ! !"#$%&'!; 

End for 

Algorithm 4.1 – Experiment Procedure 

The ISE-based Query Strategy is performed with the Kernel covariance matrix 

arbitrarily set as ! ! !!!" !

! !!!"
 for all simulated datasets. For the real datasets, a 

further discussion is provided shortly. 

The experiments were performed by varying the number of observations in the training 

set from 1 up to 100 observations, i.e. ! ! !"".  
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4.3.1.1 Supervised model 

In all experiments, the supervised learning model consists in a Bayesian classifier, 

where the posterior probability density functions are estimated by the Kernel density 

estimation (KDE) with multivariate Gaussian kernel.  

Although the Bayesian classifier may be simple compared with other models, it does 

not require tuning so many parameters. Actually, as it uses KDE with multivariate 

Gaussian kernel for computing the posterior probabilities, one needs to set only the 

kernel covariance matrix. This parameter is fixed along the experiment and is set with 

the same covariance matrix used in the KDE to estimate the underlying pdf of the pool 

in the proposed query strategy. 

The goal is to evaluate the active learning query strategy, instead the supervised model. 

Therefore, the supervised model setting is kept fixed along the experiment in order to 

guarantee as much as possible that the provenience of the results are due to the choice 

of the training sets. Otherwise, one is not be able to assign the performance to the 

training sets, generated by the active learners. 

4.3.1.2 Performance metrics 

For measuring the classification accuracy, a test set !"#$%"$ with the same number of 

observations as the initial pool is randomly selected from the dataset. As the datasets are 

quite large, this test set allows the estimation of the generalization accuracy of the 

model ! ! , instead of more expensive scheme such as k-fold cross validation. The 

estimated accuracy on the test set is given by 

 

!"" ! ! ! ! ! ! !

!!!!!!"#$%!"

! 
Eq. 60 

 

where ! ! ! ! ! !  is the 0/1 loss-function 

 

! ! ! ! ! ! !
!!!"!! ! ! ! !

!!!"!! ! ! ! !
! Eq. 61 
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As the observations classes are balanced, we judge unnecessary to use other measures 

such as the ROC curve once these experiments are time consuming. 

4.3.1.3 Baselines 

In order to establish baselines of accuracy for the proposed query strategy, we opted for 

using the following procedure.  

For each one observation selected from the pool to the training set by the ISE-based 

Query Strategy, one randomly draws 1.000 sets of observations with the same size of 

the current training set. These sets are then used for training an ensemble of 1.000 

classifiers and accuracy rate of each classifier is also computed.  

Thus, for each size of training set, there will be the accuracy rate of 1.000 classifiers 

associated with equal number of training sets.  

Metrics from each ensemble of classifiers are defined as baselines:  

1) the mean baseline takes the average of accuracy of all classifiers in the 

ensemble, being fair empirical generalization accuracy for the classifier; 

2) the worst baseline takes the worst accuracy of all classifiers in the ensemble, 

providing a fair empirical lower bound of performance; and 

3) the best baseline takes the best accuracy of all classifier in the ensemble, 

providing a fair empirical upper bound of performance  

The procedure for these baselines is described as follows: 
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Algorithm Computing Baselines  

Input:  ! pool 

 ! number of observations in the training set 

 !"#$%"$ test set 

Output: MeanBaseline, BestBaseline, WorstBaseline 

For i = 1 to 1000 do 

Draw at random ! observations from ! and add into !"#$%&'(; 

Label all observations in !"#$%&'(; 

 ! ! !"#$% !"#$%&'( ; 

 !"" ! ! !""#$!"%!!"#$%"$!!!; 

End for 

MeanBaseline = !"#$!!""!; 

BestBaseline = !"#!!""!; 

WorstBaseline = !"#!!""!. 

Algorithm 4.2 – Computing Baselines 

The key idea of these baselines is to exhaustively exploit the possible training sets one 

may obtain from the pool, instead of comparing with several query strategies of the 

literature. For instance, the best existent query strategy in the literature cannot be much 

better than a random exhaustive search in the sample space, i.e., the best baseline. 

Moreover, the mean baseline represents the theoretical lower bound of performance of 

the proposed query strategy. 

4.3.2 Results in the simulated datasets 

In this subsection, the results obtained from the experiments on the simulated datasets 

are discussed.  

The results clearly show the advantage of the ISE-based query strategy over the worst 

case and the average case in all synthetic datasets. This confirms the idea that our 

selection criterion is less subject to either sampling error or bias, as it yielded 

classification accuracies nearly close to the best possible accuracy during all the 

experimental procedure. 
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The results were not so good for proposed strategy along the 10-first observations in the 

dataset of Figure 4.41. This happened due to the label classes of the observations are 

unknown in the 10-first observations. In fact, though the proposed query strategy 

reduces the variance on the input space variables, for the output variable it is still there. 

In other words, the proposed query strategy takes around 10 observations before starts 

to select observations with labels in the outer border. However, after it starts to select 

them, the classification accuracy fast grows for a value close to the best case. 

The results are depicted in the figures as follows: 

 

Figure 4.41 

 

 

Figure 4.42 

 

 

Figure 4.43 

 

 

Figure 4.44 
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Figure 4.45 

 

 

Figure 4.46 

 

 

Figure 4.47 

 

 

Figure 4.48 
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Figure 4.49 

 

 

Figure 4.50 

 

4.3.3 Results in real datasets 

In this subsection, real datasets are considered for the evaluation of the proposed active 

learner. 

The datasets known as ALEX and IBN_SINA are public available datasets for 

download. Both ones are part of the Active Learning challenge launched by Pascal2 

challenges(GUYON et al., 2011). 

ALEX is a dataset for binary classification containing 11 features. In this dataset, there 

are 5.000 observations for the pool and 5.000 observations for the test set.  

IBN_SINA is a handwriting recognition dataset formatted in a feature representation of 

92 variables divided into two classes(FARRAHI MOGHADDAM et al., 2010). It is 

used 10.361 observations for the pool and 10.361 observations for the test set.  

Different from the simulated datasets, the number of observations in the training set was 

increased up to 1.000 for ALEX and up to 500 for the IBN_SINA. These amounts were 

set up by empirical evaluation. Besides that, the parameter of the Gaussian kernel was 

manually tuned in order to provide a good estimation of the underlying pdf of the pool. 

The results are depicted in Figure 4.51 and Figure 4.52. As one should note, the ISE-

based query strategy reached accuracy very close to the best-case baseline, especially of 

the IBN_SINA. Thus, our method has proved to work well in both real datasets in large 

dimensionalities. 
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Figure 4.51 

 

Figure 4.52 

4.4 Summary and Conclusions 

In this chapter, we presented the experiments performed in order to evaluate the 

proposed query strategy by performing and comparing the ISE-based query strategy 

with baselines based on the passive learning. 

The results in both qualitative and quantitative analyses are in agreement with the 

theoretical foundation of the proposed query strategy. The proposed query strategy was 

able to provide training sets from which accurate models were learned. 
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The experiments performed in real datasets also presented better results in favor to the 

ISE-based query strategy. In these datasets, one notes that the proposed strategy is able 

to handle high dimensionality spaces. 
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Chapter 5 Conclusion 

5.1 Summary and Discussion 

In this thesis, the active learning issue has been studied and a novel active learning 

query strategy has been proposed.  

The majority of existent active learning strategies in the literature consist in greedy 

heuristics. These select unlabeled observations of a pool in order to maximize (or 

minimize) some utility function based on assumptions about either data or the 

supervised model. Consequently, the training sets generated by these procedures may 

have the underlying probability distributions different from the population, since the 

observations are not independent and identically distributed. Therefore, an active 

learning query strategy is in fact a biased sampling procedure, which systematically 

favors observations among others according to its selection criterion. 

Although many active learning query strategies perform successfully in several 

scenarios, there is always an inherent risk to fail associated with the choice of the 

selection criterion. As this is a heuristic based on assumptions about the played 

scenario, whenever such assumptions do not hold, the query strategy may obtain very 

poor training sets. This occurs because the generated training sets are little 

representative of the population distribution as these are generated by a biased sampling 

procedure. 

In this context, the main hypothesis of thesis concerns the bias introduced in the training 

set. The key idea consists in selecting the most representative observations of the 

underlying distribution of the pool in order to reduce as much as possible the amount of 

bias in the training set. In this way, a general query strategy is developed in order to 

tackle such goal. 

The general query strategy proposed in this thesis aims at keeping the probability 

distributions of the sample and the pool as close as possible. A general procedure is 

defined for that, in which the key idea consists in measuring, for each candidate 

observation, the distance between the estimated probability distribution of the sample 

(i.e. the training set) and the estimated probability distribution of the initial pool. An 
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information-theoretical framework has been used to handle the probability density 

estimation and the distance measure between probability density functions (pdf).  

A specific query strategy based on the proposed general procedure has been developed, 

namely ISE-based Query Strategy. This strategy uses the Integrated Squared Error (ISE) 

as a distance measure between pdfs. This measure allows the development of an 

analytical expression to the selection heuristic, then providing a tuned algorithm 

implementation of the general procedure. 

A theoretical discussion is provided about the proposed query strategy, resulting in a 

theoretical lower bound of performance upon the passive learning. Thus, the proposed 

heuristic is statistically guaranteed of performing better than the passive learning. This 

means that the variance of the estimators of the supervised learning model is smaller 

than those generated by passive learning. 

In order to evaluate the proposed query strategy, experiments were conducted with the 

ISE-based Query Strategy in simulated and real datasets. Such experiments performed 

both a qualitative and quantitative analysis, providing an investigation of the behavior 

of the proposed query strategy. Baselines were built by carrying on a random exhaustive 

search in the sample space, in order to establish empirical upper, average, and lower 

bounds of performance. The results in both qualitative and quantitative analyses have 

shown favorable performance to the proposal. Moreover, the proposed query strategy 

has outperformed the average baseline and has been close to the upper bound baseline 

along almost all the experiment in both simulated and real datasets.  

The main disadvantage of the proposed query strategy based on the ISE is to handle the 

estimation of pdfs. The Kernel Density Estimation (KDE) method requires adjusting the 

kernel bandwidth, which is tough task. As the dimensionality grows, the bandwidth 

tuning becomes harder. 

Therefore, the general query strategy proposed in this thesis presented both theoretical 

and empirical advantages.  

5.2 Future work 

The proposed query strategy of this thesis may be exploited in several different ways. 

These are some of them: 
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• Developing a new family of unbiased query strategies by using different 

distance measures available in the literature of information theory; 

• Developing specific query strategies for parametric probability models such as 

Hidden Markov Models(BISHOP, 2007); 

• Developing hybrid strategies mixing the proposed strategy with others; 

• Developing a stopping criterion based on the distance between the pdfs of the 

sample and the population; 

• Adapting the proposed general query strategy for other frameworks different 

from the statistical one. For instance, to consider using a quad-tree(CORMEN et 

al., 2009) for fast computing densities; 

• Developing a data compression algorithm based on the ISE-based Query 

Strategy; and 

• Exploiting different applications, where either active learning or sampling 

design is required. 
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