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Abstract

Thermo-acoustic instabilities in combustion chambers are generated by the in-
teractions between a flame and the combustor acoustics, leading to a resonant
coupling. These self-sustained oscillations may be observed in many practical
systems such as domestic boilers, industrial furnaces, gas turbines or rocket
engines. Although this phenomenon has already been the topic of many in-
vestigations, there is yet no generalized robust framework to predict the onset
of these self-sustained oscillations and to determine the evolution of the flow
variables within the combustor during unstable operation. This work builds on
previous models and experiments to improve the description of the response
of laminar conical flames to flow perturbations and the prediction of thermo-
acoustic instability in burners operating with conical flames.
In the first part of the manuscript, an extensive review of conical flame dynam-
ics modeling is undertaken and a general framework for the modeling of their
Flame Transfer Function (FTF) is presented. The experimental setup and the
diagnostics used to characterize their response to flow disturbances are then
described. They are used to measure the FTF when the flames are submitted
to harmonic flow perturbations. A novel experimental technique is also pro-
posed to control the flow perturbation level at the burner outlet. It enables to
modulate the flow with random white noise perturbations and to measure the
FTF with a better frequency resolution. Results with this alternative technique
compare well with results from the classical method using harmonic signals for
small disturbances. Limits of this technique are also highlighted when the per-
turbation level increases.
Different analytical expressions for the FTF of conical flames are derived in
the second part of the thesis by progressively introducing more physics into
the models. Models based on convected flow disturbances are extended by
taking into account the incompressible nature of the perturbed velocity field.
It is shown that the prediction of the FTF phase lag of a conical flame is
greatly improved and collapses well with measurements. Then, a thorough
investigation of the flame base dynamics interacting with the anchoring device
is conducted by considering unsteady heat loss from the flame to the burner.
This mechanism is shown to drive the motion of the flame base and the flame
dynamics at high frequencies. It is also shown that this contribution to the
FTF rules the high frequency behavior of the FTF as well as the nonlinear
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evolution of the FTF when the perturbation level increases. Finally, an analysis
is conducted on the dynamics of a single conical flame placed into cylindrical
flame tubes featuring different diameters. It is shown that confinement effects
need to be taken into account when the burnt gases cannot fully expand. Large
differences are observed between FTF measured for different confinement tube
diameters. A new dimensionless number is derived to take these effects into
account and make all the FTF collapse on a single curve. These different
models are then used to model the response of a collection of small conical
flames stabilized on a perforated plate. It is shown that by sorting out the
different contributing mechanisms to the FTF, the expressions proposed in this
work may be combined to capture the main behavior and correct phase lag
evolution of these flames in the frequency range of interest for thermo-acoustic
instability prediction.
Finally, methods for thermo-acoustic instability prediction are considered in
the last part of this manuscript. A nonlinear stability analysis relying on the
Flame Describing Function (FDF) is coupled to a numerical Helmholtz solver
(AVSP) to analyze the different limit cycles observed in a configuration featur-
ing a multipoint injection system with small laminar conical flames. This type
of acoustic solver enables the prediction of thermo-acoustic instabilities over 3D
complex combustor geometries and the analysis of the unstable system evolu-
tion to limit cycle. It is shown that this combination enables to predict linearly
unstable modes that reach a limit cycle as the perturbation level increases.
The amplitude and the frequency of limit cycles observed in the experiments
are fairly well retrieved by the simulations. It is also shown that some typ-
ical nonlinear phenomena such as mode triggering or mode switching can be
also anticipated with the method developed. These different tools and models
enable to improve the prediction of thermo-acoustic instabilities.



Résumé

Les instabilités thermo-acoustiques présentes dans les chambres de combustion
sont générées par des interactions entre une flamme et l’acoustique du foyer.
Ces oscillations auto-entretenues peuvent être observées dans de nombreux sys-
tèmes industriels tels que des chaudières domestiques, des fours industriels, des
turbines à gaz ou des moteurs fusée. Bien que ce phénomène ait fait l’objet
de nombreux travaux, il n’existe toujours pas de cadre d’étude assez général
et robuste pour prédire le déclenchement de ces oscillations auto-entretenues
et pour déterminer l’évolution des variables de l’écoulement à l’intérieur de la
chambre de combustion. Ce travail s’appuie à la fois sur des modèles et des
expériences. L’objectif est d’améliorer la description de la réponse de flammes
coniques laminaires prémélangées à des perturbations de l’écoulement et les
prédictions d’instabilités thermo-acoustiques dans des foyers alimentés par des
flammes coniques.
Dans la première partie du manuscrit, une revue des modèles décrivant la dy-
namique de flammes coniques est entreprise et un cadre général d’étude pour
la modélisation de la Fonction de Transfert de Flamme (FTF) est présenté.
Le dispositif expérimental ainsi que les diagnostics utilisés sont ensuite décrits.
Ces systèmes sont utilisés pour mesurer la FTF de flammes coniques lami-
naires prémélangées soumises à des perturbations harmoniques de l’écoulement.
Une nouvelle technique expérimentale est proposée pour contrôler les pertur-
bations de l’écoulement à la sortie du brûleur. Elle est utilisée pour moduler
l’écoulement avec un bruit blanc aléatoire et déterminer la FTF avec une ré-
solution fréquentielle bien meilleure. Pour de faibles niveaux d’excitation, les
résultats obtenus avec cette technique sont en accord avec ceux obtenus par
la méthode classique utilisant des perturbations harmoniques. Les limites de
cette technique sont décrites lorsque le niveau de perturbation augmente.
Plusieurs expressions analytiques de la FTF de flammes coniques sont établies
dans la seconde partie de cette thèse en introduisant progressivement plus de
phénomènes physiques dans le modèle. Les modèles basés sur des perturba-
tions convectées par l’écoulement sont étendus en tenant compte de la nature
incompressible du champ de perturbation de vitesse. La prévision de la phase
de la FTF de flamme conique est améliorée et présente un bon accord avec les
mesures. Ensuite, une étude détaillée des interactions de la base de la flamme
avec le bord du brûleur est conduite en tenant compte des pertes thermiques
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instationnaires de la flamme vers le brûleur. Ce mécanisme contrôle le mouve-
ment de la base de la flamme et la dynamique de flamme à haute fréquence.
Cette contribution à la FTF détermine le comportement haute fréquence de la
FTF ainsi que l’évolution non-linéaire de la FTF lorsque le niveau de pertur-
bation augmente. Enfin, une analyse de la dynamique des flammes coniques
est entreprise pour des flammes placées dans des tubes de différents diamètres.
Il est montré que les effets de confinement doivent être pris en compte lorsque
les gaz brûlés ne peuvent se dilater complètement. Des différences importantes
sont observées entre des FTF mesurées pour des tubes de confinement de di-
amètres différents. Un nouveau nombre sans dimension est établi pour prendre
en compte ces effets. Ces différents modèles sont ensuite utilisés pour mod-
éliser la réponse d’une collection de petites flammes coniques stabilisées sur
une plaque perforée. Il est montré qu’une combinaison de ces modèles permet
de capturer le comportement de ces flammes ainsi que l’évolution de la phase de
la FTF couvrant le spectre fréquentiel pertinent pour la prédiction d’instabilités
thermo-acoustiques.
Finalement, la dernière partie de ce manuscrit traite des méthodes de prévision
d’instabilités thermo-acoustiques. Une analyse de stabilité non-linéaire basée
sur la méthode de l’équivalent harmonique (FDF) est couplée à un solveur
numérique de l’équation de Helmholtz dans le but d’analyser les différents cycles
limites observés dans une configuration présentant un système d’injection multi-
point avec de petites flammes coniques et laminaires. Ce type de solveur acous-
tique permet la prévision d’instabilités thermo-acoustiques dans des géométries
3D complexes de foyers et l’analyse de l’évolution d’un système instable jusqu’au
cycle limite. Cette combinaison permet de prévoir le déclenchement de modes
linéairement instables qui atteignent un cycle limite lorsque le niveau de per-
turbation augmente. L’amplitude et la fréquence de ces cycles limites sont cor-
rectement retrouvées par les simulations. Il est montré que certains phénomènes
non-linéaires peuvent être également prédits grâce à cette méthode, tels que
des déclenchements à partir d’un seuil ou une commutation de modes. Ces
différents outils et modèles permettent d’améliorer la prévision d’instabilités
thermo-acoustiques.
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Introduction

Over the last two centuries, combustion became the most widely used and
the most affordable technology to generate thermal energy. It represented in
2010 more than 80 % of the worldwide primary energy consumption including
energy generated from fossil fuels (oil, natural gas and coal), waste and bio-
fuels (see Fig. 1-left), and its use is still growing (International Energy Agency,
www.iea.org). Combustion technology prevails in the power generation indus-
try (fossil fuel power plants, gas turbines), in the transport industry (automo-
tive, aeronautical and aerospace propulsion), for industrial material processing
(glass furnaces, steel furnaces, radiant burners), for industrial boilers and for
household devices (domestic boilers, gas stoves). This predominant position
for thermal energy generation is mainly due to the high energy density of the
fuels used as well as their easy storage and transport. These fuels can also be
burnt quickly on demand, a feature which is especially important for power
generation during load peaks.

Figure 1: (left) World total primary energy supply in 2010 from the International
Energy Agency. “Other*” includes geothermal, solar and wind. (right) CO and NOx

concentrations as a function of the combustion zone temperature, from Lefebvre and
Ballal (2010).
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Figure 2: (left) Multiple swirled injector combustor. Reproduced from Goy et al.

(2006). (middle) Damaged system. Perforates in the back plane chamber have melted.
Reproduced from Goy et al. (2006). (right) Photograph of combustor damage caused
by high frequency thermo-acoustic instabilities. Material was removed from the area
around the dilution holes with several crack propagations. Reproduced from Sewell and
Sobieski (2006).

During the past two decades, concerns about the impact of combustion on
the environment and global climate change have raised. It lead to more re-
strictive regulations on the emission of green house gases such as CO2 and
the emission of pollutants like nitrogen oxides NOx and carbon monoxide CO
[Lefebvre and Ballal (2010)]. In order to decrease CO2 emission, the efficiency
of the combustion process has to be improved. In the case of CO and NOx

emissions, the problem is more complex. NOx are generated by high temper-
atures in the combustor and CO are created by dissociation of the CO2 at
high temperatures or by incomplete combustion. These two constraints define
an optimum temperature range that minimizes pollutant emissions, as shown
in Fig. 1-right. One of the technological solutions that has been developed is
based on lean premixed prevaporized (LPP) burners. In these burners, the
reactants are premixed ahead of the combustion zone to obtain a more uni-
form temperature field compared to non-premixed flames. The use of an excess
of air compared to stoichiometric conditions enables to decrease the adiabatic
flame temperature. When liquid fuel is injected, the fuel is prevaporized before
combustion. These burners ultimately lead to significantly lower temperatures
in the combustor and enabled to drastically reduce NOx pollutant emissions
[Correa (1998)].

However, it is known that this technology makes the combustors more prone
to unsteadiness, reducing the operating range of industrial facilities. Flame sta-
bilization is greatly deteriorated and this is accompanied by several undesired
phenomena such as global or local flame extinctions, flame blow-off, flashback
and thermo-acoustic instabilities (see the collection of articles edited by Lieuwen
and Yang (2005)). Combustion dynamics coupled to the combustor acoustics
cause recurrent serious problems in many installations such as flame extinc-
tion, increased heat fluxes at the wall and large pressure oscillations leading to
structural vibrations. These undesirable phenomena induce possible damages
or even the destruction of the combustor as exemplified in Fig. 2.
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Figure 3: (left) 2D premixed laminar conical flame. Reproduced from Selle et al.

(2011). (center) Axisymmetric laminar premixed conical flame. Reproduced from
Durox et al. (2004). (right) Premixed laminar conical flames of a burner placed
inside a domestic boiler. Reproduced from www.lovekin.co.uk.

Thermo-acoustic instabilities are one of the research topic at EM2C. Over
the last two decades, a systematic investigation of these phenomena was con-
ducted by considering well-controlled experiments and simplified configurations
to study fundamental mechanisms. Work was initiated with laminar premixed
flames in order to isolate the different mechanisms triggering thermo-acoustic
instabilities and to understand their coupling. The present work is in direct
line with these previous Ph.D. theses. One of the main objectives is to improve
the flame dynamics modeling. A generic inclined flame configuration is con-
sidered here. The work is focused on the response of laminar conical flames to
flow perturbations and their coupling with the combustor acoustics. This type
of flame is of fundamental and of technological interests (see Figs. 3-left and
-center for examples on academic burners). It is also used in some industrial
burners such as radiant burners for paper drying. Many burners in domestic
boilers or in preheaters feature a series of regularly spaced holes to stabilize
small conical flames as shown in Fig. 3-right. The thesis objective is two folds:

• The first objective is to improve the description of the fundamental physi-
cal mechanisms controlling the response of an inclined conical flame when
submitted to flow perturbations. This work builds on previous analyses
at EM2C by Ducruix (1999), Schuller (2003) and Birbaud (2006). The
present work extends these analyses by taking into account a better repre-
sentation of velocity perturbations in the fresh reactant stream, by includ-
ing effects of unsteady heat loss taking place at the burner rim and those
associated with confinement of the burnt gases. Effects of the perturba-
tion level are considered as well. This has led to a unified representation
of the dynamics of conical flames perturbed by velocity disturbances.

• The second objective concerns the prediction of thermo-acoustic insta-
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Hydrodynamic 

Perturbations

Combustion

Dynamics

q1

u1 , ϕ1u1 , p1

Burner 

Acoustics

Figure 4: Representation of the resonant coupling leading to thermo-acoustic instabil-
ities. The acoustic waves are characterized by their velocity and pressure perturbations
u1, p1 that satisfy the wave equation. Acoustic perturbations produce hydrodynamic
perturbations u1, φ1. The unsteady combustion leads to delayed heat release rate per-
turbations q̇1 that act as a source term in the wave equation.

bilities by taking into account the nonlinear response of these flames.
This work builds on previous works by LeHelley (1994), Schuller (2003),
Noiray (2007) and Boudy (2012). It extends a nonlinear stability analysis
methodology recently developed to practical and complex 3D combustor
geometries by using a numerical Helmholtz solver. This method is vali-
dated on a multipoint injection generic combustor featuring a collection
of conical flames. The nonlinear dynamics of this configuration was thor-
oughly characterized by [Boudy (2012)]. The different linearly and non-
linearly unstable modes observed provide reference solutions to validate
the numerical solver.

General background on thermo-acoustic instabilities

Thermo-acoustic instabilities have been identified in early investigations of
sound produced by flames [Rayleigh (1878)]. Extensive reviews of this prob-
lem can be found in the monographs from Crocco and Cheng (1956), Putnam
(1970) and Culick (2006), in more recent publications by Candel (1992), Can-
del (2002) and de Goey et al. (2011), in the books by Williams (1985) and
Poinsot and Veynante (2012), or in a recent collection of articles edited by
Lieuwen and Yang (2005). Early investigations on thermo-acoustic instabilities
concerned liquid propellant rocket engines due to several spectacular failures
[Crocco (1951); Tsien (1952); Crocco and Cheng (1956); Culick (2006)] but



Introduction 5

the focus recently moved also towards gas turbines due to recurrent problems
in LPP systems [Lieuwen and Yang (2005)]. These instabilities are the most
damaging in confined combustion systems and are characterized by a resonant
coupling between the combustor acoustics and the unsteady combustion (see
Fig. 4). Acoustic waves that are propagating in the combustion chamber inter-
act with the system boundaries and the shear layers, generating hydrodynamic
perturbations in the flow. These perturbations can be either velocity, vortical
or mixture composition disturbances [Ducruix et al. (2003)]. Together, these
acoustic and hydrodynamic perturbations combine leading to flame unsteadi-
ness, resulting in heat release rate perturbations that act as sound sources. If
properly synchronized, these disturbances can couple and turn into resonance.
A thermo-acoustic instability is often characterized by oscillations of the flow
variables at a well-defined frequency that can range from a few Hertz to sev-
eral thousands Hertz, depending on the size of the combustor and the type of
coupling.

Rayleigh (1878) first looked into this phenomenon. He found that this
resonant coupling occurs only when the flame is feeding energy back into the
acoustic field, i.e. when pressure and heat release rate perturbations are in
phase. This necessary condition reduces in a mathematical form to [Putnam
(1970)]:

∫

Vf

∫ T

0
q̇1(t)p1(t) dtdV > 0 (1)

where q̇1(t) stands for volumetric heat release rate perturbations, p1(t) for pres-
sure perturbations, Vf for the flame volume and T = 1/f for the period of the
acoustic oscillations. A modern version may be derived from an acoustic en-
ergy budget that also takes into account acoustic losses at the boundaries due to
sound radiation and non-ideal reflection [Candel (1992); Poinsot and Veynante
(2012)]:

dE1

dt
=

∫ T

0

[
γ − 1

γp0

∫

Vf

q̇1(t)p1(t) dV −

∫

Ab

p1(t)v1(t) · nb dA

]
dt > 0 (2)

where E1 is the period-averaged acoustic energy in the combustor, Ab is the
surface area of the system boundaries and v1(t) · nb is the normal acoustic
velocity flux at the boundaries. Equations (1) and (2) give a necessary condition
to trigger a thermo-acoustic instability, but these expressions do not provide
any information on the coupling between combustion dynamics and acoustics,
i.e. between q̇1(t) and p1(t) (see Fig. 4). Modern analyses rely on a more
detailed description of the system dynamics. They also aim at developing a
better understanding of the flame dynamics and its coupling with the combustor
acoustics, at designing new prediction methods for thermo-acoustic instabilities
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and at developing passive or active control solutions to hinder these instabilities
[Docquier and Candel (2002); Candel (2002); Richards et al. (2003); Dowling
and Morgans (2005)] .

Prediction of thermo-acoustic instabilities

The prediction of thermo-acoustic instabilities is an active field of research
[Candel (2002)]. Combustion chamber design methods still mainly rely on ex-
perimental tests. They are however costly and numerical methods become more
affordable and more accurate. Recently, progress in numerical methods [Poinsot
and Veynante (2012); Gicquel et al. (2012)] and computational resources lead
to the generalization of the use of Large Eddy Simulations (LES) to simulate
thermo-acoustic instabilities. LES codes solve the Navier-Stokes equations in
reactive flows within complex combustor geometries. Only the large turbulent
scales are simulated and the smaller ones are modeled using sub-grid models
[Poinsot and Veynante (2012)]. These large scales are essential to reproduce
the unsteady motions executed by the flame. Solver based on Reynolds Aver-
aged Navier-Stokes (RANS) equations are not well adapted to reproduce flame
unsteadiness. Direct Numerical Simulations (DNS) that solve all the scales
can also be used in simple geometrical configurations, but they still require
much too large computational resources to envisage calculations of practical
configurations. LES simulations were successfully used to determine the flame
response to flow perturbations in generic laminar configurations [Birbaud et al.
(2008); Duchaine et al. (2011)]. Recent works also demonstrate that this type
of simulation may be used to determine the flame response for a few forcing fre-
quencies on practical configurations such as in a combustion chamber equipped
with a single swirler [Giauque et al. (2005)] or in a full annular combustion
chamber of an helicopter [Wolf et al. (2012)]. Using specific forcing signals,
LES was recently shown to be able to capture the flame response over the whole
frequency range of interest in a generic combustor equipped with a swirler [Tay-
Wo-Chong et al. (2012)]. Simulations were also conducted to determine the
stability of practical combustors with respect to thermo-acoustic oscillations
[Roux et al. (2005); Selle et al. (2006)]. However, these calculations only yield
information on a relatively limited set of flow and geometrical configurations
due to the resources needed for each calculation. Therefore, the computational
cost of the simulations still prohibits combustor design based on these numeri-
cal tools, even if progress is rapid.

For this purpose, low-order models and associated numerical tools were devel-
oped. These methods are generally based on the linearized Euler equations
that allow to determine the acoustic eigenmodes of the combustor. Acoustics
in reacting flows is ruled by a heterogeneous wave equation for the pressure
perturbations p1. Under the assumptions of low Mach number mean flow, non
viscous flow and linear acoustics, this equation writes [Crighton et al. (1992);
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Poinsot and Veynante (2012)]:

∇ ·

(
1

ρ0
∇p1

)
−

1

γp0

∂2p1

∂t2
= −

γ − 1

γp0

∂q̇1
∂t

(3)

where ρ0 is the mean flow density that depends on the flow temperature and
the gas composition, p0 denote the mean flow pressure, p1 is the pressure per-
turbations and q̇1 denote local heat release rate disturbances. Solutions of
Eq. (3) may be determined using different numerical methods. They can be
divided into two groups: time domain methods and frequency domain methods.

Low-order time domain simulations have been used for a long time to analyze
the stability of liquid propellant rocket engines [Culick (2006)]. They rely on
a Galerkin projection of the acoustic pressure perturbations on an orthogonal
basis that is related to the system acoustic eigenmodes. Many early analyses
used this description to examine nonlinear gas dynamics phenomena that are
significant in the case of rocket engines [Culick (2006)]. The flame response
to flow perturbation appearing in the right hand side of Eq. (3) is generally
represented by a sensitive time lag model introduced by Crocco and Cheng
(1956). Time domain methods were also examined to analyze thermo-acoustic
instabilities in gas turbines. Nonlinear stability analyses in the time domain
are carried out in order to fully take into account flame nonlinearities and in-
teractions between unstable modes [Stow and Dowling (2009); Kashinath et al.
(2012); Noiray and Schuermans (2012)], a feature that is difficult to describe
with frequency domain methods. However, stability analyses in the frequency
domain remain the most widely used approach.

Frequency domain methods generally rely on a separation of the differ-
ent physical phenomena involved in thermo-acoustic instabilities (see Fig. 4).
One may distinguish the burner acoustics from combustion dynamics and from
acoustic-induced hydrodynamic perturbations. This separation is done by dis-
criminating spatial zones following the characteristic wavelength of the domi-
nant physical phenomenon present in that zone. The first region regroups the
combustor ducts where only acoustic waves are propagating. Sound waves have
a wavelength λa = 2πc0/ω where ω is the angular frequency and c0 is the speed
of sound. In these regions of the flow, there is no flame, thus q̇1(t) = 0 and
Eq. (3) reduces to the homogeneous wave equation. The second region of in-
terest is the region of the flow where unsteady combustion and hydrodynamic
perturbations take place. In this region, flow perturbations feature a much
smaller length scale than λa and are related to hydrodynamic or chemistry
length scales. Low-order models for thermo-acoustic instabilities have been
developed in order to draw stability maps and design stable combustors [Sat-
telmayer and Polifke (2003)]. They are all based on a stability analysis that
discriminates stable from unstable eigenmodes of the combustor. The three
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Figure 5: (left) Acoustic network method applied to a two-cavity combustor with
the feeding lines. Reproduced from Richecoeur et al. (2013). (right) First azimuthal
mode in an annular chamber simulated with the Helmholtz solver AVSP. Reproduced
from Sensiau (2008).

different physical phenomena that need to be taken into account are described
in the following sections.

Burner acoustics

In the frequency domain, the heterogeneous wave equation reduces to the
Helmholtz equation:

∇ ·

(
1

ρ0
∇p̃1

)
+

ω2

γp0
p̃1 = iω

γ − 1

γp0

˜̇q1 (4)

where ã indicates the Fourier transform of a flow variable a = ã exp(−iωt)
at the angular frequency ω. This equation has to be coupled with relevant
boundary conditions described by specific impedances:

Z(ω) =
ζ(ω)

ζ0
=

p̃1

ρ0c0ṽ1 · n
(5)

where ω is the angular frequency, ρ0 is the density and n is the unit vector nor-
mal to the boundary. These boundary conditions may be fixed by analytical
expressions in a few cases. They may also be measured or determined numeri-
cally in more complex configurations [Lamarque and Poinsot (2008); Tran et al.
(2009)].

Acoustic analysis in the frequency domain may be conducted analytically or
numerically. Numerical integration of the Helmholtz equation Eq. (4) is now
possible with solvers for 3D complex geometries. This integration is performed
with either a finite element or a finite volume numerical method. These numer-
ical tools can be used to determine the acoustic eigenmodes of the combustor
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[Roux et al. (2005); Selle et al. (2006)] or more recently to perform linear
stability analyses of the combustor [Nicoud et al. (2007); Camporeale et al.
(2011)] (see Fig. 5-right). It was also recently used to perform a nonlinear sta-
bility analysis on a swirling flame combustor [Silva et al. (2013)] by including
in the solver a nonlinear description of the flame response to flow perturbations.
These numerical tools enable to take into account the spatial distribution of the
heat release rate and thus to consider non-compact flames [Wolf et al. (2012)],
to consider simulations with realistic speed of sound fields determined from
LES or RANS simulations [Roux et al. (2005); Selle et al. (2006); Martin
et al. (2006)] and more importantly, to perform stability analysis on practical
configurations featuring complex 3D geometries [Wolf et al. (2012); Gullaud
and Nicoud (2012)]. Linear stability analyses yield the eigenfrequency f and
the growth rate ωi for each mode investigated. Ultimately, the system stability
may be determined by looking at the sign of the growth rate for each mode.
This method is described in details in Chapter 7 of the present work.

The second type of method is based on a low-order representation of the
combustor acoustics by using a network of compact elements which are inter-
connected [LeHelley (1994); Keller (1995); Hubbard and Dowling (1998); Lawn
et al. (2004); Poinsot and Veynante (2012)]. The system is divided in a set
of cavities including the plenum and the combustion chamber (see Fig. 5-left).
The feeding lines can eventually be included in that description [Richecoeur
et al. (2013)]. Acoustic waves are assumed to be propagating in each cavity
at a constant speed of sound that depends on the cavity flow temperature.
Volume flow rate and pressure continuity at the interface between cavities link
the acoustic variables of each cavity. Inlet and outlet impedances are also
necessary to obtain a closed system of equations. Unsteady combustion may

also be included in this description. Unsteady heat release rate ˜̇Q1 produces
an acoustic volume source at the interface between the ith and the (i + 1)th

cavities where compact combustion takes place:

Si+1ṽ1(xi+1) − Siṽ1(xi) =
γ − 1

ρic2i

˜̇Q1 (6)

where Si, ρi and ci are the cross section area, density and speed of sound

of the ith cavity, and ˜̇Q1 is the global heat release rate perturbation. The
flame is thus considered compact with respect to the acoustic wavelength in
this representation of the combustor acoustics. The resolution of this system
of equations usually leads to an eigenvalue problem or to a dispersion relation
D(ω) = 0 where D is the determinant of the system which is a function of
the complex angular frequency ω = 2πf + iωi. Results of that dispersion
relation give the eigenfrequencies f and the growth rates ωi of the different
eigenmodes of the system. This method was successfully applied to gas turbine
combustors to retrieve the main frequencies of unstable modes and to determine
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the combustor stability regions [Krebs et al. (2002); Schuermans et al. (2010)].

Combustion dynamics modeling

For both direct numerical integration of the Helmholtz equation and low-
order representation of the combustor acoustics, heat release rate perturbations
need to be prescribed in Eqs. (4) or (6). These perturbations constitute the
driving source of instabilities. One objective of combustion dynamics studies
is to characterize the flame response when submitted to flow perturbations in
order to determine the delayed heat release rate fluctuation with respect to the
input disturbances. Numerous experiments, numerical simulations and theoret-
ical developments in simplified configurations have allowed to understand and
to characterize the different physical mechanisms controlling the dynamics of
laminar flames [Baillot et al. (1992); Baillot et al. (1996); Durox et al. (2005);
Birbaud et al. (2006)] and swirled flames [Kulsheimer and Buchner (2002);
Bellows et al. (2007); Kim et al. (2010); Palies et al. (2010)]. The flame
frequency response to flow perturbations may be characterized by its Flame
Transfer Function (FTF) that links the incoming perturbations to the resulting
heat release rate perturbations. In the case of a perturbation of a field a, it is
defined as:

˜̇Q1

Q̇0

= Fa(ω)
ã1

a0
(7)

where a can be the velocity a = v or the equivalence ratio a = φ for example.
The flame response to equivalence ratio perturbations are difficult to charac-
terize experimentally [Zimmer and Tachibana (2007); Schwarz et al. (2010);
Kim et al. (2011)] but they can be studied numerically [Birbaud et al. (2008);
Graham and Dowling (2011); Hemchandra (2012); Hermeth et al. (2013)] or
theoretically [Hubbard and Dowling (2001); Cho and Lieuwen (2005); Shree-
krishna et al. (2010)]. Regarding velocity perturbations, the FTF can be
derived theoretically as revisited in Chapter 1. Semi-analytical models cal-
ibrated on experiments may be used as well. FTF can also be determined
numerically based on unsteady RANS simulations [Armitage et al. (2006)],
LES simulations [Giauque et al. (2005); Tay-Wo-Chong et al. (2012)] or level-
set tracker simulations [Schuller et al. (2002); Preetham et al. (2007)]. For
perfectly premixed flames, the FTF can be determined experimentally by mea-
suring the heat release rate with the chemiluminescence emitted by the flame
[Hurle et al. (1968)], and measuring the velocity perturbations by hot-wire or
laser doppler anemometry [Ducruix et al. (2000); Hirsch et al. (2005); Kim
et al. (2010)]. Due to the limited optical access on many combustor, this ex-
perimental determination is however more difficult in practical configurations.
Alternatively, purely acoustic methods can be applied to determine the flame
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frequency response. The Transfer Matrix (TM) is defined by [Polifke et al.
(2001); Paschereit et al. (2002); Schreel et al. (2002)]:

(
p̃1d

ũ1d

)
= T

(
p̃1u

ũ1u

)
=

(
T11 T12

T21 T22

)(
p̃1u

ũ1u

)
(8)

where p̃1d and ũ1d (resp. p̃1u and ũ1u) are the acoustic pressure and velocity
perturbations at a location downstream of the flame (resp. upstream of the
flame). For a compact flame and under the assumption of a low Mach number
flow in the fresh and hot gas streams, the matrix elements reduce to: T11 = 1,
T12 = T21 = 0 and T22 = 1 + (T2/T1 − 1)F(ω) where T2 is the burnt gas tem-
perature, T1 is the fresh gas temperature and F(ω) is the FTF. In this case,
the determination of the TM reduces to the determination of the link between
upstream and downstream velocity perturbations. Both TM and FTF deter-
mination methods have advantages and drawbacks. On one hand, the FTF is
difficult to determine for non-perfectly premixed flames because the heat release
rate is no longer directly proportional to some chemiluminescent radical emit-
ted by the flame in these cases. The TM solely relies on acoustic measurements
and may in principle be used to determine the flame response in non-premixed
combustion regimes. The TM method requires however that the microphones
are set close to the flame region [Truffin and Poinsot (2005)] and that the flame
is not too sensitive to a modification of the combustor acoustics on upstream
and downstream sides of the combustor. For non-compact flames, it is easier
to handle the FTF that can take into account the spatial distribution of the
flame response [Kim et al. (2010)].

The FTF represents the flame frequency response to vanishingly small acous-
tic perturbations. Methods based on the FTF allow to predict linearly unstable
modes but they fail to describe the evolution of the system up to the limit cycle
in the nonlinear regime. In the case of gas turbines, the relative pressure pertur-
bation oscillation level |p1/p0| is usually less than 10%. Propagation of acoustic
waves thus remain largely linear while the combustion dynamics constitutes the
main source of nonlinearity in the system [Dowling (1997); Bourehla and Bail-
lot (1998); Lieuwen and Neumeier (2002); Balachandran et al. (2005); Bellows
et al. (2007); Durox et al. (2009)]. To overcome that issue, the FTF concept
has been extended to take into account nonlinearities and lead to the concept of
Flame Describing Function (FDF) [Dowling (1997); Noiray et al. (2008); Palies
et al. (2011); Boudy et al. (2011); Schimek et al. (2011)]. When considering
velocity perturbations, the FDF is defined as a set of flame frequency response
gathered for different perturbation levels |v1/v0|. The FDF is thus a function
of the frequency and the perturbation amplitude:

F(ω, |v1/v0|) = G(ω, |v1/v0|)e
iϕ(ω,|v1/v0|) =

˜̇Q1/Q̇0

ṽ1/v0
(9)
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This nonlinear description of the flame response was used to conduct stability
analyses with analytical [Noiray et al. (2008); Boudy et al. (2011); Palies
et al. (2011)] or numerical [Silva et al. (2013)] tools. They can be used to
investigate the system evolution up to the limit cycle and to predict both the
limit cycle amplitude and frequency. They were also shown to retrieve some
nonlinear phenomena such as mode switching, mode triggering and hysteresis
phenomena [Noiray et al. (2008)].

Acoustic-induced hydrodynamic perturbations

FTF and FDF are used to link heat release rate perturbations to acoustic ve-
locity modulations. However, the link between these quantities is generally
not direct. Heat release rate disturbances produced by acoustic fluctuations
often involve numerous physical mechanisms, especially in complex turbulent
flows. In order to understand the mechanisms that drive the flame dynamics,
it is important to look into some hydrodynamic and heat transfer unsteady
phenomena that are triggered by the acoustic waves and that modify greatly
the flame dynamics. Figure 6 shows four examples where a mode conversion is
taking place and where acoustic waves are generating hydrodynamic perturba-
tions, i.e. perturbations that are transported by the mean flow:

(a) In the case of V-shaped flames, acoustic waves can excite the shear layers
behind the injection unit [Birbaud et al. (2007b)] and thus trigger the shed-
ding of vortices that roll up the flame front [Schuller (2003); Durox et al.
(2005); Bellows et al. (2007)]. Vortical structures are convected in the fresh
gas zone from the burner lip to the flame front. These perturbations gen-
erate strong flame front deformations and heat release rate perturbations
that can drive thermo-acoustic instabilities [Poinsot et al. (1987)].

(b) In the case of swirled flames, the interaction between incoming acoustic
waves and the swirler yields an azimuthal vorticity wave that is convected
at the mean flow speed towards the flame and modifies its dynamics [Hirsch
et al. (2005); Komarek and Polifke (2010); Palies et al. (2010); Palies et al.
(2011)].

(c) Unsteady heat loss can drive unsteady flame-wall interactions when the
flame anchoring regions lies close to solid components of the burner or
when the flame tail is stabilized close to the combustion chamber walls.
These interactions produce enthalpy perturbations that are convected by
the mean flow and generate heat release rate disturbances [Joulin (1982);
McIntosh and Clarke (1984); Rook et al. (2002); de Goey et al. (2011)].

(d) In combustion systems where the reactants are not premixed far ahead of
the combustion chamber, acoustic waves can interact with the air or fuel



Introduction 13

S
w

ir
le

r

v1

p1

p1

(b)

ϕ1

p1

p1

Fuel line

(d)(c)

h1

p1

v0
v0 v0v0

p1

(a)

v1

mf

Figure 6: (a) Vortices are generated in the shear layer above the burner exit by the
acoustic perturbations (b) Transverse hydrodynamic velocity perturbations v1 are gen-
erated at a swirler submitted to acoustic perturbations. (c) Enthalpy perturbations h1

are generated when acoustic perturbations induce a motion of a planar flame stabilized
above a porous burner. (d) Equivalence ratio perturbations φ1 are generated when a
fuel line (with a fuel mass flow rate ṁf ) is submitted to acoustic perturbations.

feeding lines and produce fluctuations of the mixture composition. Equiv-
alence ratio fluctuations are convected at the mean flow speed towards the
flame front. They have a significant impact on thermo-acoustic instabili-
ties [Baade (1978); Keller (1995); Lieuwen and Zinn (1998)] by modifying
the flame burning rate and the flame surface area. These perturbations
may produce large heat release rate perturbations [Hubbard and Dowling
(2001)].

These phenomena were identified in numerous experiments and are known to
induce strong flame disturbances that may alter greatly the thermo-acoustic
coupling. From a practical point of view, these hydrodynamic perturbations
are generally taken into account in the system modeling by including them in
the flame frequency response. This is usually done by determining the FTF
with a velocity signal measured at a location ahead of any hydrodynamic per-
turbation, where only acoustic perturbations are present.

Although considerable work has already been conducted on thermo-acoustic
instabilities, much remains to be investigated in order to design better predic-
tive tools. This thesis aims at tackling some of the remaining problems, as
described in the next section.
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Thesis objectives and contents

This Ph.D. thesis was funded by the European Community Seventh Framework
Programme (FP7/2007-2013) via the KIAI project.

The objectives of KIAI (Knowledge for Ignition, Acoustics and Instabilities,
see www.kiai-project.eu/ for further details) consist in providing reliable low
NOx methodologies for combustors to predict their stability and their ignition
process from spark to annular combustor. When used at an early stage in the
conception cycle of low NOx combustors, KIAI CFD methodologies will play
a key role and considerably accelerate the delivery process of lean combustion
technology. The objective of KIAI is to reach the 80% NOx emissions reduction
required for introduction into service before 2020 with a proven capability and
the necessary reliability, safety and economical viability.

KIAI focuses on a better understanding and prediction of unsteady phenomena
caused by low NOx technologies which are not yet fully controlled or predictable.
Therefore, the scientific objectives of this Ph.D. in the Work Packages 2.1 and
2.3 in the KIAI project are to:

- Develop the determination and the modeling of the FTF.

- Validate the FDF methodology on a generic confined configuration.

KIAI is a European funded research programme involving 18 partner organi-
zations from major European engine manufactures, universities, research insti-
tutes and companies from the combustion area. KIAI was launched in May
2009 for duration of 4 years under the leadership of Snecma.

Flame dynamics (Parts I)

An extensive review on laminar flame dynamics and FTF modeling is first
carried out in Chapter 1. Early FTF models and modern analytical techniques
based on level-set descriptions of the flame motion (G-equation) are revisited.
The work then focuses on premixed inclined flames submitted to acoustic per-
turbations. A general expression of the FTF is derived as a function of the
velocity perturbations in the fresh stream and the flame base motion. Differ-
ent physical mechanisms are then reviewed including kinematic effects, flame
base motion, heat loss to the burner rim, stretch effects, collective flame effects
and nonlinearities of the flame response to flow perturbations. A discussion
is carried out to highlight the remaining challenges concerning flame dynamics
modeling.

In Chapter 2, the experimental setup used in this work is presented. This
description includes the burner geometry, the actuation system and the diag-
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nostics used to measure the velocity and the heat release rate. The system used
to record flame images is also described.

Finally, two experimental methods for FTF determination are examined in
Chapter 3. FTF are first determined using harmonic velocity perturbations.
Then, a method is presented to create random velocity perturbations with a
nearly white noise spectrum at the burner outlet. Cross-correlation and sys-
tem identification methods are described and used to determine the FTF with
random velocity perturbations. Comparisons between harmonic and random
perturbation techniques are carried out for different perturbation levels. The
influence of the number of coefficients used to determine the FTF with the
system identification technique is also studied in the last section of the chapter.

Flame Transfer Function modeling (Parts II)

The next three chapters constitute the second part of this manuscript. They
deal with premixed conical flame dynamics and the developments made to ob-
tain an improved description of their FTF. Chapter 4 concerns the velocity
perturbation field that needs to be modeled to solve the G-equation. A model
featuring incompressible convected perturbations is used to derive a new ex-
pression for the flame front perturbations and the FTF. It is compared with
previously derived models and experimental data. This improved FTF model
yields a better match with measurements, especially concerning the FTF phase
lag in the low and intermediate frequency ranges. An axially decaying velocity
perturbation model is also considered and shows great improvements on the
FTF gain prediction. Finally, the same study is carried out in the time domain
to derive the unit impulse response of a conical premixed flame.

A second contribution to the FTF, related to the flame base motion, is derived
in Chapter 5. Flame front disturbances at the flame base are convected along
the steady flame front and produce additionnal heat release rate perturbations.
It is shown that the flame base motion results from the incoming acoustic veloc-
ity perturbations. Heat loss to the burner rim is modeled to retrieve the flame
base displacement frequency response. This model relies on enthalpy pertur-
bations that propagate from the burner rim to the flame front. Predictions are
compared to measurements in terms of flame base motion frequency response
and FTF. This contribution controls the high frequency behavior of the FTF.
By combining this contribution to that of velocity disturbances, it is possible
to explain the nonlinear behavior of the FTF of a premixed conical flame sub-
mitted to acoustic perturbations. The nonlinear response is controlled by a
modification in the relative magnitude of the two contributions (from velocity
disturbances and from flame base oscillations) to the FTF.

Finally, the case of a confined conical flame is considered in Chapter 6.
An experimental investigation shows that the FTF of these flames is stretched
to higher frequencies when the burnt gases cannot fully expand. The flame
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response features in these cases large differences compared to unconfined flames.
These differences are explained by a change in the mean time lag between
heat release rate and velocity disturbances due to changes taking place in the
fresh reactant steady velocity field. These modifications are modeled and are
used to explain the changes observed on the steady flame shape when the
flame is confined. It is then shown how to take this phenomenon into account
to characterize the FTF of flames that are confined by different flame tubes,
using a new dimensionless reduced frequency. These different models are then
combined to explore the response of small premixed conical flames stabilized
on a perforated plate. It is shown that this frequency response to acoustic
disturbances may be fairly well captured.

Thermo-acoustic instability predictions (Part III)

This last part deals with the prediction of thermo-acoustic instabilities by
performing a nonlinear stability analysis. A combination of the Flame Describ-
ing Function (FDF) methodology and the numerical Helmholtz solver AVSP
developed by CERFACS and Université Montpellier II is used to determine the
nonlinear dynamics of the combustor studied by Boudy (2012). In Chapter 7,
the nonlinear stability analysis method based on the FDF methodology is first
described. The method considers a FDF that is a set of FTF determined for
different perturbation levels. Successive stability analyses are carried out for
each FTF, i.e. for each perturbation level. These calculations yield the eigen-
frequencies and the growth rates associated to the eigenmodes of the system as
a function of the perturbation level. This method is coupled to the Helmholtz
solver AVSP which is briefly described. This numerical tool allows to solve
the Helmholtz equation over 3D combustor geometries with relevant complex
boundary conditions and unsteady combustion effects.

The coupled FDF/AVSP methodology is carried out in Chapter 8 on a generic
configuration featuring two cavities and a flame anchored on a perforated plate.
The experimental configuration is first presented. The numerical setup is then
introduced along with the boundary conditions and the FDF used for the sta-
bility analysis. The acoustic eigenmodes are computed and predictions are
compared to measurements. A nonlinear stability analysis is then carried out
for different cases depending on the length of the feeding manifold. First cases
feature linearly unstable modes that reach limit cycle as the perturbation level
is increased. Other cases considered feature linearly and nonlinearly unstable
modes that interact and lead to a mode switching phenomena. It is shown that
the numerical solver may be use to reproduce this phenomena.
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Conical flame dynamics





Chapter 1

Combustion dynamics modeling

The dynamics of premixed flames submitted to acoustic perturbations
is a central issue for the prediction of thermo-acoustic instabilities. As
such, the case of premixed laminar flames and their Flame Transfer
Function (FTF) have been extensively studied both theoretically and ex-
perimentally, and only recently numerically. This chapter aims at pro-
viding an overview of the different models describing the response of
conical premixed flames to flow perturbations. Some remaining issues
are identified and are tackled later in the following chapters.

1.1 Introduction

The flame response to flow perturbations is often characterized by its Flame
Transfer Function (FTF). For perfectly premixed flames kept at constant equiv-
alence ratio, the FTF is defined as the linear relationship between dimen-
sionless harmonic heat release rate perturbations and dimensionless incoming
velocity modulations at some location upstream of the flame front [Blacks-
hear (1953); Merk (1957); Matsui (1981); Ducruix et al. (2003); Truffin and
Poinsot (2005)]. At this point, it is necessary to define the notations in order
to clarify this review. The following notation convention will be used all over
the manuscript. Harmonic time varying quantities are considered in the form
a(x, t) = a0 + ã1(x) exp(−iωt), where a is a flow quantity and ω the angular
frequency. All FTF analytical expressions presented in this chapter are written
with this convention even though some expressions were originally derived by
considering harmonic perturbations of the form exp(iωt). Subscripts 0 and 1 re-
spectively refer to the steady state and to first-order perturbations. The Fourier
transform of the perturbation a1(x, t) examined at the angular frequency ω is
noted ã1(x). Using these conventions the FTF can be written as:

˜̇Q1

Q̇0

= F (ω)
ṽ1
v0

(xref) (1.1)
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Figure 1.1: Three color Schlieren images of CH4/air conical flames. (left) Steady
flame for v0 = 0.96 m.s−1 and φ = 0.95. (center) Perturbed flame at f = 25 Hz.
(right) Perturbed flame at f = 75 Hz. Reproduced from Ducruix et al. (2000).

where ˜̇Q1/Q̇0 is the delayed relative heat release rate perturbation and ṽ1/v0
denotes the relative velocity fluctuation at a reference point xref that is usu-
ally taken at the injection outlet. The FTF is a complex function F (ω) =
G(ω) exp(iϕ(ω)) where the gain G(ω) and the phase lag ϕ(ω) depend on fre-
quency, mean flow properties [Mehta et al. (2005); Durox et al. (2009)], com-
bustor geometry [Duchaine et al. (2011); Tay-Wo-Chong and Polifke (2012)],
heat fluxes at the walls [Rook and de Goey (2003); Duchaine et al. (2011);
Tay-Wo-Chong and Polifke (2012)] and flame shape [Durox et al. (2009)]. This
expression is also generally a function of the modulation level [Dowling (1997);
Noiray et al. (2008); Durox et al. (2009)].

Early work in rocket engine instabilities established a link between pressure and
heat release rate fluctuations using a time lag model. Based on causality argu-
ments, Crocco (1951) proposed to link these two quantities by an interaction
index n and a time lag τ . The same type of model may be used to link heat
release rate and velocity disturbances. A velocity perturbation v1 produces a
perturbation of the heat release rate Q̇1 after a certain time lag τ and the co-
efficient n characterizes the strength of this coupling. In the time domain, it
leads to the following phenomenological relation:

˜̇Q1(t)

Q̇0

= n
ṽ1(xref, t− τ)

v0
(1.2)

The corresponding FTF in the frequency domain writes:

F (ω) = neiωτ (1.3)

Expressions for the parameters n and τ are often based on semi-empirical for-
mulations using a wide range of parameters [Tsien (1952); Crocco and Cheng
(1956)]. The quality of the model predictions depends strongly on the guess
of the main physical mechanisms controlling the flame response to incoming
disturbances.
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Figure 1.2: (left) FTF gain and phase lag from Eq. (1.4) as a function of the dimen-
sionless frequency ωτ . (right) Phase of the FTF as a function of the dimensionless
frequency ωτ , plotted for different values of βτ (see Eq. (1.7)) [Sugimoto and Matsui
(1982)]. The FTF phase lag decreases because the “exp(iωt)” convention was adopted
in this article.

The response of conical flames to flow perturbations was thoroughly investi-
gated. Figure 1.1 shows the shape taken by the flame when submitted to
acoustic excitation. It is interesting to start by examining early descriptions of
the corresponding FTF. First theoretical attempts to derive exact expressions
for the n-τ parameters were conducted by Blackshear (1953) and Merk (1957)
for laminar premixed conical flames. These authors obtained the following FTF
for an axisymmetric conical flame:

F (ω) =
1 + iωτ

1 + (ωτ)2
(1.4)

where:

τ =
R

3SL

[
1 −

(
SL

v0

)2
]− 1

2

=
1

3

R

SL cosα
(1.5)

In these expressions, R is the injection tube radius, α = arcsin(SL/v0) is the
flame tip half-angle and SL is the laminar burning velocity. The gain and phase
lag of this FTF model are plotted in Fig. 1.2-left. The gain is a low-pass filter
and the phase increases up to ωτ = π/2 before saturating around ϕ = π/2.
Experiments show however that the validity of this model is limited to very low
frequencies and does not cover the entire useful frequency range for instability
purpose [Ducruix et al. (2000)]. It is however worth noting that the time lag τ
in Eq. (1.5) is a function of the burner outlet radius, laminar burning velocity
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and the flame aspect ratio.

Later, an experimental and theoretical investigation of the conical flame dynam-
ics was performed by Matsui (1981) and Sugimoto and Matsui (1982). These
authors measured the FTF of a conical flame and found that the FTF phase
lag features a regular increase with frequency at low and intermediate frequen-
cies before a phase saturation estimated around ϕ ≃ π/2. The gain curve was
shown to behave like a low-pass filter with values above unity at low frequencies
and a jagged behavior at higher frequencies. Thanks to LDV measurements,
these authors found that velocity disturbances in the fresh reactant stream are
convected at a speed close to the mean flow velocity. A model for the FTF
was proposed assuming that the fluctuations of the CH∗ emission per unit area
i1(y, t) are convected at a constant velocity Ui and grow exponentially along
the steady flame front with a growth rate σ:

i1(y, t) = i01 e
σy e−iω(t−y/Ui) (1.6)

Sugimoto and Matsui (1982) derived the following expression for the FTF:

F (ω) =
2

(iω + β)2τ2
1

[
−1 − (iω + β)τ1 + e(iω+β)τ1

]
(1.7)

where β = σUi and τ1 = H/Ui is a time lag with H = R/ tanα being the
steady flame height. This model was shown to match their experimental data
when τ1 was taken equal to 13 ms and when the quantity β = σUi was modified
by assuming linearly increasing values for f < 50 Hz and constant values for
f ≥ 50 Hz. In particular, the authors showed that the FTF phase slope scaled
with H/(3v0) in the low frequency range (where βτ1 = σUiτ1 ≃ 0) and with
H/v0 for higher frequencies (where βτ1 = σUiτ1 ≃ 3) as indicated by Fig 1.2-
right.

In this early description, the flame front wrinkles were prescribed from experi-
mental observations. To overcome that issue, modern theoretical developments
use a level-set description to model the flame front kinematic response to flow
perturbations.

1.2 Level-set description of flame wrinkling

1.2.1 Transport equation for flame wrinkles

The following theoretical developments will make use of the G-equation to es-
timate flame front disturbances and resulting flame surface area perturbations.
The flame front is here considered as an infinitely thin interface separating
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Figure 1.3: Schematic of the configuration investigated. (a) Steady conical flame
along with the different frames used in this chapter. (b) Acoustically perturbed conical
flame, with a focus on the flame base region and the flame front displacement far from
the burner lip.

fresh and burnt gases. This interface is modeled by a scalar function G so
that G(x, t) = 0 at the interface. Considering a constant flame speed Sd, the
G-equation is expressed as [Markstein et al. (1964); Williams (1985)]:

∂G

∂t
+ v.∇G = Sd|∇G| (1.8)

The steady flow field is here assumed to be axial and uniform. The flow ve-
locity is equal to a constant value v0. Changes in the mean flow properties
will be tackled later in Chap. 6. We will further assume vanishingly velocity
perturbations compared to the mean flow velocity. The perturbed flow field in
the burner frame writes:

v(x, t) = u1(x, t)ex + (v0 + v1(x, t))ey (1.9)

In the frame attached to the steady flame front, this perturbed flow field has
two components (see Fig. 1.3-a):

V(X, t) = [U0 + U1(X, t)] eX + [V0 + V1(X, t)] eY (1.10)

where U0 = v0 cosα is the mean flow velocity component tangential to the
flame front, V0 = v0 sinα is the mean flow velocity component normal to the
flame front and α is the flame tip half-angle.
In this case, the G-equation expressed in the frame attached to the steady
conical flame position reduces to [Boyer and Quinard (1990); Schuller et al.
(2003a)]:

∂ξ

∂t
+ U0

∂ξ

∂X
= V1(X, t) (1.11)
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where ξ(X, t) = ξ̃(X)e−iωt is the harmonic perturbation of the flame front
position in the normal direction with respect to its steady position and V1(X, t)
is the velocity perturbation component normal to the steady flame front and
taken at the flame front i.e. along the axis Y = 0 in Fig. 1.3. The solution of
this partial derivative equation can be found with the characteristics method
[Baillot et al. (1992); Baillot et al. (1996)] or can be given by the following
telegraph integral [Boyer and Quinard (1990); Schuller et al. (2003a); Preetham
and Lieuwen (2004)]:

ξ(X, t) =
1

U0

∫ X

0
V1

(
X ′, t−

X −X ′

U0

)
dX ′ + ξ

(
0, t−

X

U0

)
(1.12)

In the frequency domain, it leads to:

ξ̃(X) =
eiKX

U0

∫ X

0
Ṽ1(X

′)e−iKX′

dX ′ + ξ̃(0)eiKX (1.13)

where K = ω/U0 is the wave number associated to the convection of the flame
wrinkles along the steady flame front and ξ̃(0) is the flame front displacement
amplitude at the flame base, i.e. at X = 0 (see Fig. 1.3).
Equation (1.13) exhibits two main contributions to flame wrinkling. The first
contribution results from the velocity perturbation component that is normal
to the steady flame front in the fresh stream, which is acting as a forcing term
in Eq. (1.11). The second contribution results from the flame base motion at
X = 0 that produces perturbations convected along the steady flame front.

1.2.2 Flame surface area perturbations

Flame wrinkles must be integrated over the flame surface area to determine the
corresponding heat release rate perturbations. This integration is carried out
in the frame associated to the steady flame front:

A = A0 + Ã1e
−iωt =

∫ L

0
dA =

∫ L

0
2πr(X)dl (1.14)

where dA is an infinitesimal flame surface area ring, dl is the infinetisimal
flame front length, L = R/ sinα is the steady flame front length and r(X) is
the unsteady local flame front radius.
The steady axisymmetric flame surface area is given by:

A0 =

∫ L

0
2π(R−X sinα)dX =

πR2

sinα
(1.15)
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Perturbations in both the local flame front radius and infinitesimal flame ele-
ment need to be taken into account up to the first order:

r(X) = r0(X) + r̃1(X)e−iωt = (R−X sinα) + ξ̃(X) cosαe−iωt (1.16)

dl =
[
dX2 + dξ2

]1/2
=

[
1 +

(
dξ

dX

)2
]1/2

dX ≃ dX (1.17)

The perturbed flame surface area contribution to Eq. 1.14 then reduces to

Ã1 =

∫ L

0
2π cosαξ̃(X)dX (1.18)

The corresponding dimensionless flame surface area perturbations may be de-
duced:

Ã1

A0
=

2 cosα sinα

R2

∫ L

0
ξ̃(X)dX (1.19)

It is well known that, in the case of premixed flames and in the absence of
mixture composition inhomogeneities, the flame surface area is proportional to
the heat release rate [Hurle et al. (1968)]. One may thus write:

Ã1

A0
=

˜̇Q1

Q̇0

(1.20)

The two contributions to flame wrinkling identified in Eq. (1.12) may also be
separated when examining flame surface area perturbations. It is thus interest-
ing to expand the FTF as the sum of these two contributions:

F (ω) =
˜̇Q1/Q̇0

ṽ1/v0
= FA(ω) + FB(ω) (1.21)

where Q̇ = Q̇0 + Q̇1 is the heat release rate. The first component FA stands
for the velocity contribution to the FTF and the second component FB stands
for the contribution from the flame base motion.
This last equation shows that both the perturbed velocity field and the an-
choring point dynamics need to be determined to capture the FTF of conical
premixed flames submitted to acoustic perturbations. Several studies over the
years have looked into these mechanisms. The main conclusions are synthesized
in the next section.
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Figure 1.4: Mechanisms contributing to the conical flame dynamics when submitted
to acoustic perturbations. u′a: acoustic velocity perturbations of wavelength λa. u′c:
convective velocity perturbations of wavelength λc. Sd1(X): flame speed disturbances.
ξ(X): flame front wrinkle. X = 0: flame base location. Red numbers in between
parentheses refer to the mechanisms listed in Section 1.3 below.

1.3 FTF modeling related to acoustic perturbations

The level-set description of flame front motion has motivated rapid develop-
ments to fill the gap between theory and experiments. Numerous phenomena
were experimentally explored and analytical models were developed. The main
ones are listed below:

(1) Effects of the type of velocity perturbation impinging the flame [Baillot
et al. (1992); Baillot et al. (1996); Schuller et al. (2002); Schuller et al.
(2003a); Preetham and Lieuwen (2004)],

(2) The flame feedback upon the perturbed flow field [Birbaud et al. (2006)],
(3) Effects induced by exothermicity and confinement of the burnt gases [Mehta

et al. (2005); Birbaud et al. (2007a)],
(4) The dynamics of the anchoring point [Kornilov et al. (2007); Karimi et al.

(2009); Shin and Lieuwen (2012)]
(5) Unsteady heat loss to the burner rim [Rook et al. (2002); Schreel et al.

(2002); Rook and de Goey (2003); Altay et al. (2009); Kedia et al. (2011)],
(6) Stretch effects [Wang et al. (2009); Preetham et al. (2010); Shin and

Lieuwen (2012)],
(7) Time domain representation of the flame response [Blumenthal et al. (2013)],
(8) Multiple flame effects [Kornilov et al. (2009); Duchaine et al. (2011)],
(9) Nonlinear effects [Schuller et al. (2002); Lieuwen (2005); Preetham et al.

(2008)].
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Each of these mechanisms is examined in the following sections. Figure 1.4 gives
a block diagram highlighting the main interactions for an unconfined premixed
conical flame submitted to small amplitude disturbances.

(1) Flow perturbations

Depending on the type of flow perturbation imposed in the fresh stream, the
flame executes a different motion. Fleifil et al. (1996) used a kinematic de-
scription of the perturbed flame front motion to determine the FTF of conical
flames submitted to axial and uniform disturbances in the fresh reactants:

ũ1 = 0 (1.22)

ṽ1 = v1 (1.23)

These authors derived an expression for the FTF for elongated conical flames
stabilized in a Poiseuille flow. They found that the FTF may be expressed in
terms of a single dimensionless number corresponding to a reduced frequency
or a Strouhal number St = ωR/SL, where SL is the laminar burning velocity
and R the burner radius. The generalization of this model to a flame stabilized
in a uniform steady flow featuring an arbitrary flame angle with respect to the
flow direction was conducted by Ducruix et al. (2000). In this case, the FTF
depends only on the reduced frequency ω∗ = ωR/(SL cosα), where α is the
flame tip half-angle:

FA(ω∗) =
2

ω2
∗

(1 − exp(iω∗) + iω∗) (1.24)

It is interesting to notice that this model corresponds to the model by Sugimoto
and Matsui (1982) if one takes σ = 0 and Ui = v0 cos2 α in Eq. (1.7). In this
case, Ui is the steady velocity component tangential to the flame front, projected
on the burner axis. Experiments from Ducruix et al. (2000) conducted with
large and small tip half-angle conical flames show a good collapse of data with
predictions for the gain of the FTF, but the model rapidly fails in predicting
the FTF phase lag for increasing frequencies (see Fig. 1.5-left). A FTF model
that retrieves a regular phase increase was proposed by Schuller et al. (2003a).
It is based on experimental observations that velocity perturbations in the
fresh reactant stream are not uniform, but are convected by the mean flow
[Sugimoto and Matsui (1982); Baillot et al. (1992); Baillot et al. (1996)] with
a wavenumber k = ω/v0:

ũ1 = 0 (1.25)

ṽ1 = v1 exp(iky) (1.26)
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Figure 1.5: (center) PIV measurements of an acoustically perturbed conical flame,
from Birbaud et al. (2006). The fresh gas zone is colored with the axial velocity field.
(left and right) Comparisons between experimentally determined FTF and the FTF
component FA gain (top) and phase (bottom) from the models derived by Ducruix et al.

(2000) (left) and by Schuller et al. (2003a) (right). The FTF gain and phase lag are
plotted as a function of the reduced frequency ω∗.

By prescribing such a convective pattern to the perturbed flow, it was possible
to derive a new expression for the FTF of conical flames [Schuller et al. (2003a)]:

FA(ω∗, α) =
2

ω2
∗(1 − cos2 α)

[
1 − exp(iω∗) +

exp(iω∗ cos2 α) − 1

cos2 α

]
(1.27)

This new model captures correctly the gain of the FTF and a regularly increas-
ing behavior for the phase lag (see model 2 in Fig.1.5-right). However, a gap
between the model and the experimental data is still observable. In particular,
it was shown that phase lag measurements lie between predictions with the uni-
form model (model 1 in Fig.1.5-right) that saturates at π/2 and the convective
model that features a regular increase of the phase lag with the frequency (see
model 2 in Fig.1.5-right). In this new description, the flame transfer function
depends on two dimensionless numbers ω∗ and the steady flame front angle
with respect to the flow direction α.

It is interesting to compare the different models by examining their behaviors
at low and high frequencies. By examining the FTF phase lag evolution from
different experiments, the best approximation is given by a constant time lag
τ = (1/3)H/(v0 cos2 α) in the low frequency limit that is well captured by the
uniform model Eq. (1.24). The convective model Eq. (1.27) gives a time lag
τ = (1/3)H(1 + 1/ cos2 α)/v0 in the low frequency approximation that is twice
as large as the right one for elongated flames. However, at higher frequen-
cies the phase evolves with a different time lag [Sugimoto and Matsui (1982);
Schuller et al. (2003a)] that is well captured by the convective model and which



Part I - Conical flame dynamics 29

is equal to τ = H/(v0 cos2 α) for elongated conical flames. The time lag τ thus
triples in the high frequency limit. However, reproducing these asymptotic be-
haviors does not enable to fully reproduce the FTF because the phase is poorly
predicted over most of the frequency band of interest for combustion instabili-
ties. Moreover, the convective origin of the velocity perturbations in the fresh
reactant flow field remains unclear. Some studies have conjectured vortices
at the origin of the convective waves observed in the fresh reactant flow field
of conical flames, but large coherent structures are however absent as shown
by PIV measurements [Schuller et al. (2002); Noiray et al. (2006a)] or more
recently by smoke visualizations [Kornilov et al. (2007)]. These observations
were confirmed by many experiments for different flame angles, equivalence ra-
tios, flames of different sizes and for different perturbation levels [Ducruix et al.
(2000); Durox et al. (2009); Karimi et al. (2009)].

(2) Flame feedback

Convective waves observed even at very low frequencies [Baillot et al. (1992);
Birbaud et al. (2006)] are in appearance in contradiction with acoustic laws.
When submitting a burner to a low frequency flow modulation, one intu-
itively expects a perturbation with a wavelength λc based on the sound celerity
λc = c/f . For the low frequencies of interest, conical flames are compact
with respect to these acoustic wavelengths. However experiments have shown
that the associated perturbed flow field cannot be considered uniform even for
very small conical flames modulated at relatively low frequencies [Noiray et al.
(2006a); Kornilov et al. (2009)]. The flow in the reactant stream of perturbed
conical flames is dominated by a convective wave and the uniform perturbation
approximation is only valid for compact flames with respect to these convective
wavelengths λc = v0/f : λc/H ≪ 1, where H is the flame height. This dras-
tically reduces the validity of the uniform flow perturbation model Eq. (1.24)
to the very low frequency band. The origin of the flow dominated convec-
tive wave pattern at low frequencies was partly elucidated by Birbaud et al.
(2006) using detailed particle image velocimetry and laser doppler velocimetry
measurements in the fresh reactants and spectral analysis (see Fig. 1.5-center).
Their conclusion is that undulations along the flame generate a feedback onto
the fresh reactant flow field over a distance of the order of the undulation
wavelength. It was also found that the region of influence obeys to a velocity
potential. Three regimes are identified. The first regime at low frequencies
corresponds to a purely convective wave because the undulation wavelength
is large and thus the feedback influence zone covers the entire fresh reactant
region. The last regime at high frequencies is dominated by an acoustic wave
because the wavelength of the undulations along the flame front is short. The
hydrodynamic zone of influence of flame undulations is thus reduced and flow
perturbations are essentially uniform in the fresh flow field. The intermedi-
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ate regime is dominated by an acoustic wave near the burner outlet and by
a convective wave near the flame tip region. This mechanism is confirmed by
velocity measurements [Baillot et al. (1992); Baillot et al. (1996)] and by the
smoke visualization from Kornilov et al. (2007), where undulations along the
flame are shown to deform fresh reactant streamlines in the neighborhood of
the flame front.

These observations may be used to introduce a new velocity perturbation model.
As shown by Boyer and Quinard (1990), Baillot et al. (1992) and later by oth-
ers [Schuller et al. (2002); Kornilov et al. (2007)], harmonic flow oscillations
at the burner outlet produces flame wrinkles of wavelength λ ≃ v0/f . This
purely kinematic mechanism is well predicted by using the telegraph equation
Eq. (1.12) [Boyer and Quinard (1990)]. The feedback flow perturbations result-
ing from flame front undulations obey to a velocity potential and correspond
thus to an incompressible velocity field. The perturbed velocity field in the
neighborhood of the flame front should thus be (1) divergence free and (2) of
convective type. The simplest harmonic perturbed flow field satisfying these
conditions was proposed by Baillot et al. (1992) and was later confirmed by
Schuller et al. (2002) with PIV measurements on an axisymmetric burner:

ũ1 = ik
(R− x)

2
v1 exp(iky) (1.28)

ṽ1 = v1 exp(iky) (1.29)

where R denotes the burner radius. The mean flow field is assumed to be uni-
form and axial (u0 = 0, v0 =Cte) and k = ω/v0 corresponds to the convective
wavenumber based on the mean flow velocity. Numerical integration of the
G-equation Eq. (1.8) was carried out by Schuller et al. (2002) to determine the
FTF corresponding to this new perturbed field. Simulations showed a good
agreement for the phase of the FTF with experimental data obtained for a
large modulation level. This perturbed flow model was later used to derive an
analytical expression for the FTF [Preetham et al. (2008)] but these authors
found no clear differences with the FTF obtained by only considering an axi-
ally convected disturbances Eqs. (1.25) and (1.26). This model is revisited in
Chap. 4 to obtain an analytical expression of the FTF for vanishingly small
velocity perturbations. It will be shown that it features several important dif-
ferences with a purely convected disturbances that may be use to reduce the
gap between predicitions and experiments.

(3) Exothermicity and confinement effects

The level-set description of the flame sheet response to flow disturbances pre-
sented in the previous section does not consider effects of the burnt gas ex-
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Figure 1.6: Exothermicity effects on the FTF gain (left) and phase lag (right) of a
ducted V-flame. The different curves are a function of the parameter µ = ρu/ρb − 1.
Reproduced from Mehta et al. (2005). The FTF phase decreases at low frequencies
because the “exp(iωt)” convention was adopted in this article.

pansion on the flame dynamics. When the burnt gases cannot fully expand,
they exert an overpressure on the stream of the fresh reactants that modifies
the shape of the steady flame. Effects of exothermicity were mainly studied
for V-flames stabilized in a flame tube in the wake of a bluff-body. This phe-
nomenon was for example described by Poinsot and Candel (1988). Mehta
et al. (2005) found a strong dependence of the FTF on the ratio of burnt to
unburnt gas density ρb/ρu. They first studied the mean flow field around a
confined rod-stabilized V-flame and found both analytically and numerically
that the spatial variations of the mean velocity field has a significant impact
on the flame dynamics. By assuming a uniform velocity perturbation, they de-
rived an analytical expression of the FTF of a ducted V-flame featuring strong
variations with the parameter µ = ρu/ρb − 1:

F (ω) =

[
1 + µeff

(
1 −

a

b

)]1+iωτe/2
− 1

µeff

(
1 −

a

b

)(
1 +

iωτe
2

) (1.30)

where µeff = µ/(1 + µ)
1

2 , a is the bluff-body radius, b is the flame tube radius,
τe = b/(µeffST ) and ST is the turbulent flame speed. This expression shows
that the flame frequency response is stretched out to higher frequencies when
µ is increased as shown in Fig. 1.6. In particular, the FTF phase lag features
deviation up to π when µ is varied compared to predictions obtained for µ = 0.
Birbaud et al. (2007a) conducted an experimental study on effects of confine-
ment on the response of a ducted V-flame. By changing the flame tube radius,
they observed strong modifications of the FTF. These differences were mainly
due to modifications of the vortex shedding at the burner lip.
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Figure 1.7: (left) Image of a V-flame which rim is undergoing a transverse motion.
Reproduced from Petersen and Emmons (1961). (center) Comparison between shapes
taken by conical flames with a longitudinal rim perturbation and an acoustic flow
modulation. Reproduced from Kornilov et al. (2007). (right) Comparison of different
FTFs: 1-Experimental FTF of an acoustically perturbed flame. 2-Experimental FTF
of a flame with a longitudinal rim excitation. 3-Theoretical FTF from Ducruix et al.

(2000). 4-Theoretical FTF from Schuller et al. (2003a). 5-Experimental FTF of a
flame with a transverse rim excitation. Reproduced from Kornilov et al. (2007).

(4) Dynamics of the anchoring point

The flame response to flow perturbations is very sensitive to the anchoring point
dynamics as it is a source of wrinkling (see Eq. 1.13). It was shown by Petersen
and Emmons (1961) (see Fig. 1.7-left) and then analyzed theoretically by Boyer
and Quinard (1990) that by imposing an oscillatory motion of the anchoring
point of an inclined premixed flame, a convective undulation develops along the
flame front even in a steady uniform flow field. This wave convected along the
flame front was also observed for a conical flame attached to a vibrating rim
[Kornilov et al. (2007)]. In this study, the authors have compared the response
of conical flames anchored to a fixed rim and submitted to flow oscillations and
the response of the same flames to a vibration of the anchoring rim in a uniform
flow field. It is striking that the same kind of undulations develop along the
flame front (see Fig. 1.7-center), but different phase behaviors were observed
for the corresponding FTFs. In Fig. 1.7-right, one can observe that the phase
lag of the rim excited flames rapidly reaches an asymptotic value and oscillates
between ϕ = π/2 and ϕ = π (see the black curve #2 in Fig. 1.7-right). Fur-
ther experimental investigation using TiO2 smoke visualizations indicated that
flame wrinkles generated by the rim oscillation are inducing in turn perturba-
tions in the fresh gas flow, where the streamlines are deviated. This mechanism
was described in the previous section.

A theoretical analysis conducted by Lee and Lieuwen (2003) shows indeed that
the flame base motion is a source of flame wrinkling. To study the impact of
the flame base motion on the FTF, the link between the flame base motion
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and velocity perturbations must be considered. An attempt was made by Lee
and Lieuwen (2003) but their flame base motion model is not realistic as it
features a singularity at low frequencies. Thus, no use of that formulation is
used in their work. Shin and Lieuwen (2012) recently conducted a theoretical
study of stretch effects on a V-flame which base was harmonically perturbed. A
recent experimental analysis conducted on a ducted conical flame submitted to
acoustic forcing of increasing level [Karimi et al. (2009)] has demonstrated the
existence of a flame base motion up to the order of 1 mm for a flame anchored
on a rim of 25 mm diameter. These authors also found that the mean value
of the flame base diameter is found equal to its steady value for perturbation
amplitudes up to |v1/v0| = 1 and that the dimensionless flame base diameter
perturbations scales linearly with |v1/v0|. This means that the flame base re-
sponds linearly to flow perturbations, even for strong forcing levels. Kornilov
et al. (2007) and de Goey et al. (2011) assumed, without a clear justification,
that this flame base motion induces an offset component in the FTF that causes
the FTF phase lag to saturate at high frequencies. The physical mechanism
associated to the flame base motion is assumed to be linked to unsteady heat
transfer between the flame and the burner rim. Several theories have looked
into that phenomenon and they are synthesized in the next section.

(5) Unsteady heat loss to the burner rim

Unsteady heat loss is one important element for the FTF determination in cer-
tain configurations. This is the case when examining the response to acoustic
perturbations of a planar flame sheet stabilized close to a porous burner. This
configuration has been studied experimentally [Schreel et al. (2002); Schreel
et al. (2005)], numerically [Rook and de Goey (2003); Schreel et al. (2005)]
and analytically [McIntosh and Clarke (1984); Rook et al. (2002); Schreel et al.
(2002)]. It was shown that a planar flame close to a solid boundary can be per-
turbed in two ways. Firstly, acoustic velocity perturbations produce regular
oscillations of the flame front stand-off distance with respect to the burner out-
let. Secondly, these perturbations in the flame position may lead to a resonant
coupling in certain circumstances [Rook et al. (2002)]. Heat transfer from the
flame to the burner lip is here of significant importance. This problem may be
tackled by examining the transport of enthalpy h = ∆h0

f Yf + cpT between the
flame front and the burner lip, where ∆h0

f is the heat value per unit mass of
fuel, Yf is the fuel mass fraction in the mixture, cp is the mixture specific heat
at constant pressure and T is the mixture temperature. This mechanism iden-
tified by making use of asymptotic analysis [Margolis (1980); Joulin (1982)] has
been thoroughly investigated by McIntosh and co-workers in a series of articles
(see for examples [McIntosh and Clarke (1984); Mclntosh (1990)]) yielding a
complete theoretical framework to analyze the dynamics of planar premixed
flames stabilized in the vicinity of solid boundaries. This configuration was
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Figure 1.8: (left) Scheme of the resonant coupling that can occur between the flame
holder and the flame front involving enthalpy fluctuation and flame front motion.
(center and right) Velocity Transfer Function gain and phase for two different
burner materials. Experimental data are plotted with circles while the theoretical model
is plotted with lines. All the figures are reproduced from [Schreel et al. (2002)]. A
exp(iωt)-convention was adopted in this article.

recently examined in the review by de Goey et al. (2011).

The physical mechanism is the following [Rook et al. (2002)] (see Fig.1.8-left).
In this simplified description, it is assumed that the temperature of the burner
is fixed and the fuel mass fraction consumed by the flame is fixed as well. A
perturbation in the flame front location, where the fuel mass fraction is fixed
Yf1 = 0, induces a perturbation of the thermal flame zone location and thus
a perturbation in the fuel mass fraction at the burner rim. As the tempera-
ture is assumed to be fixed at the burner rim Ts = Cte, enthalpy disturbances
are generated at the burner rim and are further transported by convection and
diffusion processes towards the flame front where they induce temperature fluc-
tuations (as the fuel mass fraction is constant there). When these disturbances
reach the flame front, they induce in turn perturbations in flame speed, leading
to perturbations of the flame front position. These phenomena can couple and
lead to resonance when the enthalpy disturbance wavelength is of the order of
4ψf0

[Rook et al. (2002); Rook and de Goey (2003)], where ψf0
is the flame

stand-off distance with respect to the burner outlet.

It is possible to model the transfer function linking flame speed perturbations
Sd1 and incoming acoustic velocity disturbances in the unburnt gases uu1

at
the flame base [Rook et al. (2002)]. A planar flame stablized over a porous
burner is considered here. One-step chemistry with all species having a unit
Lewis number and constant and equal specific heat are considered here. The
mass fraction Yf and enthaly h = ∆h0

f Yf + cpT balance equations then reduce
to:
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∂ρYf

∂t
+
∂ρuYf

∂y
−

∂

∂y

(
λ

cp

∂Yf

∂y

)
= ω̇f (1.31)

∂ρh

∂t
+
∂ρuh

∂y
−

∂

∂y

(
λ

cp

∂h

∂y

)
= 0 (1.32)

where ρ is the density, λ is the heat conductivity of the mixture, ω̇f is the
consumption rate of methane and cp is the mixture specific heat at constant
pressure. These equations are solved along with the following boundary con-
ditions: T = Tu = Cte inside the burner, Yf = Yu for y → −∞, Yf = 0 and
∂T/∂y = 0 at the flame front. Rook et al. (2002) found an expression for the
transfer function betwen velocity perturbations in the fresh stream and in the
burnt gases:

ũb1

ũu1

= 1 +
Tb − Tu

Tu
A(ω̂)

−
1

2

Tad − Tu

Tu
exp

(
−
ψf0

δf

)(
1 + (1 − 4iω̂)

1

2

) 1 −A(ω̂)

iω̂
(1.33)

where ω̂ = ωδf/Sd0 is the acoustic frequency made dimensionless by a thermal
diffusion time scale. In this expression, δf = λ/(ρuSd0cp) is the thermal flame
thickness, cp is the mixture specific heat at constant pressure, λ is the heat
conductivity of the mixture, Tu is the fresh gas temperature, Tb is the burnt gas
temperature, Tad is the adiabatic flame temperature and A(ω̂) is the frequency
response between flame speed and acoustic velocity perturbations:

A(ω̂) =
S̃d1

ũu1

=

[
1 −

2iω̂

Ze

Tb − Tu

Tad − Tb
exp

(
−
ψf0

2δf

(
1 − (1 − 4iω̂)

1

2

))]−1

(1.34)

where Ze is the Zeldovich number and ψf0
is the stand-off distance defined by:

ψf0
= δf log

(
Tad − Tu

Tad − Tb

)
(1.35)

An extension of this model was proposed by Schreel et al. (2002) and Schreel
et al. (2005) in order to take into account the temperature of the porous burner
surface. Heat transfer mechanisms such as heat conduction and radiation were
considered to determine this surface temperature as a function of the thickness,
the heat capacity, the heat conductivity and the emissivity of the flame holder.
Predictions from Eq. (1.34) are reproduced from Schreel et al. (2002) in Fig. 1.8
in terms of gain (center figure) and phase (right figure), along with experimental
data obtained for flames stabilized above two burners made of different burner
materials. The model shows a good agreement with measurements, especially
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concerning the resonant peak location. This problem will be further considered
in the present work in Chapter 5.

(6) Stretch effect modeling

Besides physical mechanisms producing flame wrinkles, other mechanisms mod-
ify existing wrinkles on the flame front. One of them is the stretch exerted on a
wrinkled flame front. It was shown that stretch, including curvature and hydro-
dynamic strain, may have an important influence on laminar flame dynamics
and on FTF for conical and wedge flames stabilized in a uniform mean flow
[LeHelley (1994); Wang et al. (2009); Preetham et al. (2010)] or a Poiseuille
mean flow [Wee et al. (2012)]. It is also known that flame front curvature and
hydrodynamic strain may alter the fuel consumption rate. These phenomena
have a direct effect on the laminar flame speed [Chung and Law (1988); Law
and Sung (2000)]:

Sd1 = Sd0 [1 − δf∇ · n] +
Ze

2

(
1

Le
− 1

)
δfκ (1.36)

where Ze stands for the Zeldovich number, δf is the thermal flame thickness,
Le denotes the Lewis number and κ stands for the flame stretch rate [Markstein
et al. (1964); Matalon and Matkowsky (1982); Chung and Law (1984)].

Stretch effects may be included in the level-set description of the flame motion.
Wang et al. (2009) and Preetham et al. (2010) proposed the following transport
equation for flame wrinkles:

ΣC
∂2ξ1
∂x2

+
∂ξ1
∂x

+ iω∗ξ1 = f(v1/v0) (1.37)

where

ΣC =

[
1 −

Ze

2

(
Le−1 − 1

)] δf cosα

R
tan2 α (1.38)

The right hand side f(v1/v0) of Eq. (1.37) depends on the velocity perturbation
model considered. The G-equation is now a second-order equation in space
requiring the use of two boundary conditions. In the case of a wedge flame, its
base is here assumed to be steadily anchored at the burner rim and the flame
tail is set free to move:

ξ(r = 0, t) = 0 (1.39)

∂2ξ

∂y2
(r = R, t) = 0 (1.40)
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The stretch-modified G-equation was solved by assuming uniform [Wang et al.
(2009)] or convected [Preetham et al. (2010)] velocity perturbations. The
FTF of stretched flames features two contributions. The first is due to mass
burning rate fluctuations ρuS̃d1. The second is associated to flame surface area
perturbations Ã1:

˜̇Q1

Q̇0

=

∫
A0
S̃d1dA

Sd0A0
+
Ã1

A0
(1.41)

These authors found that flame wrinkles are damped along the steady flame
front and this effect increases as the Markstein length σc = (1 − Ze(Le−1 −
1)/2)(δf/R) increases. They also found that the FTF is essentially unsensitive
to stretch up to ω∗ = 2π. For higher frequencies, stretch effects are more signifi-
cant. The gain of the FTF now features humps which are smoothened compared
to the FTF derived without taking into account stretch effects. The phase lag
is however barely modified. No comparison to experiments has been carried out
yet to validate these models. However, a numerical integration of the stretch-
dependent G-equation was performed by LeHelley (1994) for a conical flame
stabilized in a uniform flow and submitted to both uniform and incompressible
convective velocity perturbations. Results in terms of flame wrinkles and FTF
were compared to DNS simulation results and a good agreement was found.

(7) Time domain representation

The expressions derived for the FTF contribution FA(ω∗, α) in the frequency
domain by Ducruix et al. (2000) and by Schuller et al. (2003a) have been
recently extended to the time domain by Blumenthal et al. (2013). The time
domain representation provides interesting insight on the different time lags
controlling the flame response to flow perturbations. Starting from the G-
equation Eq. (1.11), the impulse response (IR) may be derived by considering
two types of perturbations. The first is a uniform impulse perturbation in the
direction of the flow: v1(t) = ǫδ(t). The second corresponds to a convective im-
pulse perturbation travelling along the axial direction at the mean flow velocity:
v1(t) = ǫδ(t− y/v0). Blumenthal et al. (2013) found two different expressions
for the impulse response of a conical axisymmetric flame:

hU (t) =





2

τr

(
1 −

t

τr

)
for t ∈ [0; τr]

0 for t ≥ τr

(1.42)
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t/τr

Figure 1.9: Flame response (left) and dimensionless impulse response of a conical
flame hU (t)τr (right) in the case of a uniform velocity perturbation. Reproduced from
[Blumenthal et al. (2013)].

hC(t) =





2t

τrτc
for t ∈ [0; τc]

2

τr

τr − t

τr − τc
for t ∈ [τc; τr]

0 for t ≥ τr

(1.43)

where the time scales τr and τc are defined below.

The impulse response obtained in Eq. (1.42) for a uniform velocity perturbation
hU (t) is a function of time t and the characteristic time scale τr = L/(v0 cosα)
which may be associated to the reduced frequency ω∗ in the frequency domain.
This time scale is called the “restoration” time scale. This response is obtained
by assuming that, at the initial instant, the flame front is uniformly displaced
from its steady position and comes back to its steady position after a restoration
time τr (see Fig. 1.9-left). The impulse response exhibits a jump at initial time
before decreasing linearly towards zero up to t = τr (see Fig. 1.9-right).
The impulse response obtained for a convective velocity perturbation hC(t) in
Eq. (1.43) depends on two characteristic time scales. The first is the restora-
tion time scale identified previously and the second is a “convection” time
scale τc = H/v0 = τr cos2 α that may be associated to the reduced frequency
k∗ = ω∗ cos2 α in the frequency domain that is defined in Chapter 4. This
impulse response exhibits a linear increase from t = 0 and t = τc before linearly
decreasing between t = τc and t = τr. This impulse response is further studied
in Chapter 4.
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(8) Extension to a collection of conical flames with multiple
flame effects

The previous models were derived for the response of single conical or planar
flames. A collection of conical flames is often used in practical and industrial
burners, such as those used in domestic boilers, burners for material processing
like paper drying or for glass heating, and these combustion systems are prone
to thermo-acoustic instabilities. Different investigations have considered over
the past few years the FTF of a collection of small conical flames stabilized on
burners featuring circular injection holes [Noiray et al. (2006b); Durox et al.
(2009); Altay et al. (2009); Boudy et al. (2011); Kedia et al. (2011); Duchaine
et al. (2011)] or 2D rectangular slits [Kornilov et al. (2009); Kornilov et al.
(2009); Coats et al. (2010); Coats et al. (2011); Duchaine et al. (2011)].

The configuration studied at MIT [Altay et al. (2009); Kedia et al. (2011);
Kedia and Ghoniem (2013)] corresponds to a collection of conical flames fea-
turing planar and inclined flame fronts (see the diagram in Fig. 1.10-top-left).
The flame height is significantly smaller than the acoustic and hydrodynamic
perturbation wavelengths. The flame response was modeled by discriminating
the planar part of the flame from its inclined part. First, the planar flame
contribution to the FTF was modeled by considering velocity perturbations
and the unsteady heat loss from the flame to the perforated plate using the
model Eq. (1.34) from Rook et al. (2002). The conical flame contribution to
the FTF was also modeled by considering a uniform velocity perturbations in
the fresh stream and flame speed perturbations that are generated by unsteady
heat loss. The heat release rate mean value and perturbations were divided
into two components, one related to the combustion generated power Q̇gen and
the other to the heat loss to the burner Q̇loss:

Q̇rel
0 = Q̇gen

0 − Q̇loss
0 (1.44)

˜̇Qrel
1 (ω) = ˜̇Qgen

1 (ω) − ˜̇Qloss
1 (ω) (1.45)

These different components were modeled as:

Q̇gen
0 = ρuSd0∆H(Ac0 +Ap) (1.46)

˜̇Qgen
1 (ω) = ρu∆H

[
(Ac0 +Ap)S̃d1(ω) + Sd0Ãc1(ω)

]
(1.47)

where ρu stands for the unburnt gas density, ∆H for the heat value per unit
mass of fuel, Sd for the flame speed, Ac for the flame surface area of the conical
part, Ap for the flame surface area of the planar reaction layer. These authors
found:
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Q̇loss
0

ρuSd0∆HAp
= exp

(
−
ψf0

δf

)
(1.48)

˜̇Qloss
1 (ω)

ρuSd0∆HAp
= − exp

(
−
ψf0

δf

) 1 +

(
1 −

4iωδf
Sd0

) 1

2

2δf iω

Sd0

[
S̃d1(ω)

Sd0
−
ũu1(ω)

uu0

]

(1.49)
where

Ãc1(ω) =
2πNSd0β

2

(iω)2
(uc0 − Sd0)

[
ũu1(ω)

uu0
−
S̃d1(ω)

Sd0

]

[
exp

(
iωR

Sd0β

)
−
iωR

Sd0β
− 1

]
(1.50)

The function S̃d1(ω) is defined by the model derived by Rook et al. (2002)
corresponding to Eq. (1.34). In the previous expressions, ψf0 represents the
flame stand-off distance with respect to the solid burner outlet, δ the thermal
flame thickness, uu the unburnt gas velocity, uc the fresh gas velocity in the
conical flame, N the number of holes of the perforated plate, R the hole radius
and β = cosα is a parameter related to the flame tip half-angle α. The total
FTF is finally defined by:

F (ω) =
˜̇Qrel

1 (ω)/Q̇rel
0

ũu1(ω)/uu0
(1.51)

Predictions were compared to experimental data (see Fig. 1.10-bottom-left).
An overall reasonable match was found. The model retrieves the frequency
location of the FTF gain peak [Rook et al. (2002); Schreel et al. (2002); Rook
and de Goey (2003)]. The FTF phase is also captured by the model. This
model is thus adapted to configurations where the conical flames are compact
with respect to the hydrodynamic wavelength. Further studies have looked into
effects of heat loss with numerical tools [Kedia et al. (2011)]. An investigation
of the conical flame base stabilization mechanism has lead to an improvement
of the FTF model [Altay et al. (2010); Kedia and Ghoniem (2012)]. The model
proposed by Altay et al. (2009) relies on values of different parameters such as
the burner plate temperature and the flame stand-off distance. To obtain these
informations, Kedia and Ghoniem (2013) derived a heat transfer model for the
perforated plate. Their results are then used as inputs to the FTF model. This
methodology enables to take into account the steady heat transfer coupling
between the burner plate and the flame.

Flame visualization of the response to flow perturbations of small conical flames
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anchored on a perforated plate reveal however that the flames may not be com-
pact with respect to the hydrodynamic wavelength and this phenomenon needs
to be considered to model the FTF. PIV measurements of such a configuration
were carried out by Noiray et al. (2006a) and have revealed that convective
velocity perturbations are present in the fresh gases. This has a significant im-
pact on both the FTF gain and phase. One can observe that the FTF measured
for small flames stabilized on rectangular slits (see Fig. 1.10-center) [Kornilov
et al. (2009); Kornilov et al. (2009)] or on circular holes (see Fig. 1.10-right)
[Noiray et al. (2006b); Boudy et al. (2011)] has a behavior quite similar to
the one measured for single conical flames. The gain features several humps
and the phase lag exhibits a convective behavior associated to the convection
of perturbations at the mean flow velocity over a distance of the order of the
flame height. This behavior differs from the one calculated for a “quasi-planar”
configuration where the time lag is only related to the flame stand-off distance.
It is also worth noting that the FTF gain might exceed unity in the low fre-
quency range.

Recently, this configuration was calculated by direct numerical simulations
(DNS) and a sensitivity analysis was conducted to determine the sensitivity
of the FTF to different physical parameters [Duchaine et al. (2011)]. The au-
thors investigated the configurations from Boudy et al. (2011) and Kornilov
et al. (2009) by simulating only one conical flame with lateral periodic bound-
ary conditions to take into account the influence of surrounding flames. They
showed that DNS simulations retrieve with a good accuracy both the FTF gain
and phase if a relevant confinement angle of the numerical domain is taken
into account in the simulations. In particular, the almost constant slope of
the FTF phase observed in the experiments is reproduced by the simulations.
However, a sensitivity analysis revealed that the FTF is very sensible to some
of the parameters of the problem, such as the laminar burning velocity SL, the
confinement angle as well as upstream flow and perforated plate temperatures.

Kornilov et al. (2009) investigated experimentally the impact of the hole di-
ameter and the hole pitch on the FTF. They found that both have a strong
influence on the FTF gain and phase as shown in Fig. 1.10-center-bottom. The
authors found that the frequency response is shifted to higher frequencies as
the hole pitch is decreased. The slope of the FTF phase lag also reduces when
the hole pitch is decreased. An expression was also proposed to determine the
FTF of a multi-injection plate configuration featuring holes of different sizes,
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by linking the global FTF to the FTF of each single conical flame taken alone:

F (ω) =

N∑
i=1

Fi(ω)Aiv0i

N∑
i=1

Aiv0i

(1.52)

where N is the number of hole in the perforated plate, Fi(ω) stands for the
FTF of a single conical flame anchored over a hole of cross-section area Ai

where the mean velocity at the hole exit is equal to v0i
. It will be shown in

Chapter 6 that an additional phenomenon has to be considerd when the hole
pitch is decreased to describe collective effects.

(9) Nonlinear effects on the Flame Transfer Function

In order to predict the amplitude and frequency reached by thermo-acoustic
instabilities at limit cycle, several studies looked into the effect of the pertur-
bation level on the flame frequency response. Dowling (1997) introduced the
Describing Function concept to take into account the effects of the perturbation
level on the gain of the FTF. Later, it was extended to the Flame Describing
Function (FDF) to take also into account modifications of the FTF phase lag
with the modulation level [Noiray et al. (2008)]. The FDF is defined by intro-
ducing the perturbation level in the flame frequency response description:

˜̇Q1

Q̇0

= F (ω, |v1/v0|)
ṽ1
v0

(xref) (1.53)

Numerous experimental studies [Lieuwen and Neumeier (2002); Balachandran
et al. (2005); Bellows et al. (2007)] have highlighted the effects of the pertur-
bation level on flame dynamics. In many configurations, both the FTF gain
and phase are function of the input level [Durox et al. (2009); Boudy et al.
(2011); Schimek et al. (2011); Kim and Hochgreb (2011)]. In the case of a
single conical flame, the FTF gain decreases for increasing perturbation levels.
The phase lag regularly increases at low frequency but the saturation appearing
at high frequency is triggered at lower frequency as the perturbation level is
increased. The saturation frequency, defined as the frequency where the phase
lag stops increasing regularly, decreases as the perturbation level is increased.
In the case of a collection of conical flames [Noiray et al. (2008); Boudy et al.
(2011)], the FDF gain decreases rapidly to zero when the perturbation ampli-
tude increases. The FDF phase lag is also impacted but on a limited frequency
range. No saturation of the FDF phase lag were observed in these cases.

Theoretical studies on perturbation level effects are more seldom. Lieuwen
(2005) listed different cases where nonlinearities need to be considered for the



44 Chapter 1 - Combustion dynamics modeling

Figure 1.11: (left) Nonlinear kinematic restoration process induced by the flame
front propagation normal to itself. Reproduced from Preetham and Lieuwen (2004).
(center) FTF gain as a function of the Strouhal number and the velocity perturba-
tion level ǫ, in the case of a wedge flame. Reproduced from Preetham and Lieuwen
(2004). (right) Comparison between an experimental image of an acoustically per-
turbed flame (left-half) and the result from a G-equation solver (right-half). Repro-
duced from Schuller et al. (2002).

response of acoustically perturbed flames. Nonlinearities appear to be stronger
at high Strouhal number, i.e. in the high frequency range. Nonlinear effects
on flame front perturbations are more important for small flames compared
to elongated flames. Wedge flames have a stronger nonlinear behavior than
conical flames. This last point results from the "kinematic restoration“ pro-
cess [Lieuwen (2005); Hemchandra et al. (2011)]. The flame front propagates
in a direction normal to itself. Cusps and nonlinearities develop along the
flame front (see Fig. 1.11-left and Baillot et al. (1996)). This phenomenon is
more pronounced for axisymmetric wedge flames than for axisymmetric coni-
cal flames. The reason is that most of the flame surface area is located near
the flame tail for wedge flames. A large fraction of the flame surface area is lo-
cated near the flame base for conical flames. This mechanism was also observed
with numerical simulations based on level-set trackers [Schuller et al. (2003a)].
These numerical solvers were designed to solve the G-equation while releasing
the small perturbation assumption. Inputs in terms of fresh gas velocity field
and flame front displacement speed are needed. For a specific forcing frequency,
they allow to simulate the evolution of the flame front position. Post-processing
is then used to determine the flame surface area perturbation and the resulting
FTF. Schuller et al. (2002), Schuller et al. (2003a) studied the influence of
the velocity perturbation model on the resulting FTF in the cases of a con-
ical and a wedge flame. For the conical flame, an incompressible convective
perturbation model that linearly decays along the axial direction allowed to
retrieve the flame front deformations observed experimentally (cf Fig. 1.11-
right). The correct evolution of the FTF gain and phase also compared well
with measurements. Nonlinear effects on the FTF were more explicitly studied
by Preetham and Lieuwen (2004), Preetham et al. (2008). Analytical expres-
sions for a perturbation-level-dependent FTF were given. Similar results were
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found concerning the FTF gain and phase (see Fig. 1.11-center for the FTF
gain of a wedge flame) that are shown to be coherent with measurements from
Durox et al. (2009) in the case of wedge flames. Later, G-equation solvers were
extended to turbulent flows. The case of turbulent conical flames was treated
by Preetham et al. (2007). FTF of turbulent flames were compared to FTF of
laminar flames. Turbulent wedge flames were also considered by Hemchandra
and Lieuwen (2010).

1.4 Discussion

Theoretical modeling of FTF has progressed rapidly in the last few years, but
several issues remain to be investigated. The present section aims at providing
some new leads in the conical flame dynamic modeling that will be considered
in the next chapters.

The mode conversion from acoustic to hydrodynamic perturbation taking place
in the fresh stream of conical flames remains unclear. Despite the recent ex-
perimental investigations highlighting the incompressible nature of the velocity
perturbations in this region (this topic is adressed in Chapter 4) as well as
the feedback from flame front perturbations onto the fresh reactant stream,
this problem is generally not considered to describe the response of inclined
flames. In cases where flames are perturbed by an acoustic field, this issue
maybe overcome by considering that the convective velocity perturbation am-
plitude is equal to the acoustic velocity perturbation amplitude at the burner
exit. However, in cases where the flame is only submitted to equivalence ratio
perturbations or to a flame base oscillation, this substitution can no longer be
used. Convective velocity perturbations are still present and partly rules the
flame dynamics [Kornilov et al. (2007); Hemchandra (2012)]. Convected ve-
locity disturbances need thus to be included in the modeling of the flame front
wrinkles.

Secondly, the interaction between the unsteady flame and solid elements from
the burner needs further modeling to be fully understood. Because the model
by Altay et al. (2009) takes only into account uniform velocity perturbations in
the conical flame fresh gases, it is only valid for conical flames that are close to
the planar flame configuration. An extension towards elongated conical flames
that are not compact with respect to the hydrodynamic wavelength has to be
adressed to understand the competition between thermal and kinematic mech-
anisms. This issue is considered in Chapter 5.

Progress in the study of strech effects on FTF has shown that it can have a
substantial impact in the high frequency range and for high perturbation levels.
However, none of these FTF models have been backed-up by any experiments.
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A careful experimental validation of these models is thus to be designed and
performed. This problem will not be treated in this work.

To extend models for the response of single conical flames to treat the response
of collections of conical flames, the interaction between neighbouring flames
has to be taken into account. Different type of interactions can be present in
the system. First, direct interactions between flame fronts can take place and
thus have an impact on the flame dynamics and the FTF [Worth and Dawson
(2012)]. Secondly, undirect interactions can take place when the burnt gases
cannot fully expand. The burnt gas expansion acts as a confinement to neigh-
bouring flames. This problem is studied here in Chapter 6.

Finally, a complete description of the conical flame dynamics should also in-
clude the influence of the perturbation level on the conical flame frequency
response. Previous experiments showed that the FTF phase lag saturates at
high frequency when the perturbation level is increased [Durox et al. (2009)].
This particular observation is considered in Chapter 5 by considering the com-
petition between thermal and kinematic mechanisms in the nonlinear regime.
From a numerical point of view, G-equation solvers could also be used to tackle
this problem.

1.5 Conclusion

A current state of art concerning conical flame dynamics has been established
in this chapter. This topic received a lot of attention over the past 20 years.
The use of the G-equation enabled great progresses in the theoretical flame dy-
namics modeling while a considerable amount of experimental data have been
used for mechanism identification and validation. Lately, accurate numerical
simulations allowed to investigate new phenomena that are difficult to study
with experiments. However, some discrepancies remain between theory and ex-
periments. The problems raised in this chapter are studied in the next chapters
of the present thesis.



Chapter 2

Experimental setup

The experimental setup used to analyze the conical flame dynamics is
introduced in this chapter. The burner geometry is first described, de-
tailing the different geometrical configurations investigated in the next
chapters. The diagnostics are then presented, with a focus on the mea-
surements of velocity and heat release rate time-resolved signals that
are used to determine the Flame Transfer Function. Finally, the flame
front imaging setup is described as well as the post-processing used to
detect the flame front and the flame base positions.

2.1 Burner description

The configuration studied in this work is presented in Fig. 2.1. The methane/air
mixture is realized upstream of the burner. The flow is perfectly premixed be-
fore entering the manifold. Two mass flow controllers set the methane and air
mass flow rates injected in the burner as well as the mixture equivalence ratio.
The burner is composed of different pieces:

- The bottom of the burner is closed air-tightly by a loudspeaker and the
methane/air mixture is injected in the plenum above the loudspeaker
through two pipes.

- It then features a cylindrical feeding manifold equipped with a laminar-
ization grid and a honeycomb to break the coherent structures and reduce
remaining turbulent fluctuations.

- A convergent nozzle is then used to get a nearly uniform top-hat velocity
profile at the burner exit. A cooling system with water circulation is
installed around the nozzle to keep the flow temperature constant.

- A flame anchoring piece is installed above the convergent nozzle. The
burner exit is a cylinder of inner radius R0 = 11 mm. Three burner exit
configurations may be used. The first one (noted "a" in Fig. 2.1) features
a 1 mm-wide beveled edge. The second one (noted "b" in Fig. 2.1) is
equipped with an external plateau of outer radius Rp = 18 mm. In



48 Chapter 2 - Experimental setup

φ=22mm

29Burner exit

Convergent 
nozzle

Honeycomb

Loudspeaker Grid used 
to impose a 

pressure drop

CH4 / Air
mixture

CH4 / Air
mixture

a
φ=22mm

29

22

b

22

φ=22mm

29

φ=35mm
Quartz
tube35

d
22

Quartz
tube

Laminarization 
grid

φ=22mm

29

φ=35mm
Quartz
tube

c
22

Quartz
tube26

φ=22mm

29

φ=35mm
Quartz
tube

e
22

Quartz
tube

50

Experimental configuration
featuring different burner exits

29

29

29

29

29

Figure 2.1: Burner geometry used for the experimental investigation. The reactive
mixture is injected at the bottom and outflows the burner through a cylindrical exit.
Three burner exit configurations were used: (a) a cylindrical piece with a beveled edge,
(b) a cylindrical piece with a plateau and (c,d,e) a cylindrical piece with a plateau
supporting a quartz tube.

the third configuration (noted "c","d" and "e" in Fig. 2.1), the external
plateau supports a confinement quartz tube. Three quartz tubes of length
L = 0.3 m and of radius R1 = 13.55 mm (case “c”), R1 = 18.55 mm (case
“d”) and R1 = 25 mm (case “e”) were used to confine the flame.

2.2 Equipments and Diagnostics

The different diagnostics used to study the flame dynamics are sketched in
Fig. 2.2 and are described in the following paragraphs.

Flow modulation

The bottom of the burner is equipped with a loudspeaker to impose acoustic
velocity perturbations in the feeding manifold that are propagating towards
the burner exit and the base of the flame. A home-made LabVIEW@ program
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Figure 2.2: Setup with diagnostics. A signal is generated to trigger the ICCD camera
and to drive the loudspeaker. The loudspeaker generates acoustic velocity perturbations
measured with a LDV system at the burner outlet. These perturbations produce flame
front wrinkles that are captured by the camera and heat release rate perturbations that
are recorded by a photomultiplier equipped with an OH* filter.

was designed to modulate the flow and to easily sweep the perturbation fre-
quency and amplitude. The program generates a harmonic or random signal,
sampled at 4096 Hz, that is sent to an amplifier and to the loudspeaker thanks
to a National Instrument analog-to-digital converter board. The program is
also acquiring the velocity signal measured from a Laser Doppler Velocimeter
described in the next section. A real-time control algorithm was implemented
into the LabVIEW@ program to control the dimensionless velocity perturba-
tion amplitude vrms

1 /v0 and keep it at a chosen value (with an error of less than
5%) during the duration of experiments.
The loudspeaker input, velocity and heat release rate signals are all recorded
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with the LabVIEW@ software at a sampling frequency of 4096 Hz. Further post-
processing techniques are explained in the next chapter for the determination
of the FTF by different methods.

Laser Doppler Velocimetry

A Laser Doppler Velocimeter (LDV) is used in this setup to measure the lo-
cal axial velocity and provides a time-resolved signal. The system is briefly
described in the following. The laser beam first exits the Argon laser system
with a power of 4 W before entering a Bragg cell. In this optical device, the
beam is divided into two beams by diffraction. The zeroth order and the first
order beams are gathered to eventually obtain two beams including one that is
shifted in frequency by 40 MHz. Then, the beams enter a color separation de-
vice where they are split into different colors. One can thus recover the 514-nm
green beam (with a power of about 300 mW). A blue beam is also available to
measure another velocity component but it was not used in this work. At the
exit of the color separation device, the beams enter an optical fibre and prop-
agate into it until they reach the optical emission device. Then, the beams are
crossed in the region of interest thanks to an achromatic converging lens. The
flow is seeded with oil particles (∼ 2 µm in diameter) by means of a perfume
atomizer [Durox et al. (1999)]. A photomultiplier (PM) located in the forward
direction receives the light diffused by the droplets that are crossing the inter-
ference fringes, with an inter-fringe distance of 3.704 µm. The particle velocity
is then computed by a counter from the frequency of the signal received by the
PM. The counting rate is kept above 17, 000 data per second to ensure that the
signal is well sampled in time.
The axial flow velocity is measured for two purposes. First, the axial velocity
is measured at the base of the flame, about 2 mm above the burner exit on the
burner axis. This was done to determine the FTF when the flow is submitted
to harmonic (see Section 3.2.1) or random (see Section 3.2.2) velocity distur-
bances. The axial velocity component is also measured along the burner axis to
investigate the evolution of the mean and rms velocity in the fresh gases when
the flow is submitted to harmonic acoustic excitations.
Examples of time-resolved measurements when the loudspeaker is driven by
harmonic excitations are presented in Fig. 2.3, for different forcing frequencies
f = 20, 100 and 200 Hz and for different dimensionless perturbation ampli-
tudes |v1/v0| = 0.1 and 0.3. The curves exhibit a periodic time-dependence
that is sinusoidal with a clear influence of background noise, especially at low
perturbation levels (see Fig. 2.3-top). This phenomenon can also be observed
in Figs. 2.4 and 2.5 where the power spectral density (PSD) of two signals are
shown, for forcing frequencies of f = 20 and 100 Hz, respectively, and for two
perturbation levels. An energy transfer from the base forcing tone to its har-
monics (at 40 and 200 Hz) is observed when the perturbation level is increased.
However, a gap larger than 20 dB is still observed between the main peak and
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Figure 2.3: Dimensionless heat release rate perturbations Q̇1/Q0 (blue line) and
velocity modulations v1/v0 (red line) are plotted as a function of the time that is
made dimensionless by the period T = 1/f associated to the forcing frequency. Upper
row: f = 20 Hz. Middle row: f = 100 Hz. Lower row: f = 200 Hz. Left column:
|v1/v0| = 0.1. Right column: |v1/v0| = 0.3.

the different harmonics. The harmonics can thus be considered as filtered out
by the system and the response can be considered as harmonic for all forcing
frequencies investigated.
A small peak around 10 Hz is also observed on the PSD presented in Figs. 2.4
and 2.5. It corresponds to the phenomenon of flame flickering [Durox et al.
(1990); Yuan et al. (1994); Kostiuk and Cheng (1994); Bédat and Cheng
(1996)], resulting from the unsteady motion of the flame tip due to a buoyancy-
induced instability taking place between burnt gases and ambient air.

Heat release rate measurements

The heat release rate ca be estimated using spontaneous OH*, CH* or C2*
radical emission measurements. In the case of premixed flames, with a fixed
equivalence ratio, it was shown that the emission intensity of these radicals is
proportional to the flame surface area [Hurle et al. (1968); Schuller (2003)].
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Figure 2.4: Power spectral density of the velocity signal (red line) and the heat
release rate signal (bue line) for a forcing frequency f = 20 Hz and perturbation levels
of |v1/v0| = 0.1 (left) and 0.3 (right).

This is well verified for lean and stoichiometric conical flames where all the
reactive mixture is consumed.
A photomultiplier (PM) equipped with an OH* filter is used to collect the
chemiluminescence emission from the flame. It is located about 50 cm away
from the flame, so that the sensor captures the light emitted by the whole flame.
The current delivered by the PM is proportional to the photon flux collected by
the detector and emitted from the flame. This signal is converted in a voltage
which is acquired through LabVIEW@ for further processing.
Time-resolved signals of the heat release rate are shown in Fig. 2.3 in solid blue
lines, for different forcing frequencies f = 20, 100 and 200 Hz and for different
dimensionless perturbation amplitudes |v1/v0| = 0.1 and 0.3. The amplitude
of the signal decreases as the forcing frequency is increased, highlighting the
low-pass filter behavior of the flame. The ratio between the dimensionless
amplitudes of the heat release rate and velocity harmonic disturbances defines
the FTF gain. It also can be seen that the heat release rate signal is out of
phase compared to the velocity signal. This phase difference defines the FTF
phase lag.
The heat release rate signals are further studied by determining their PSD.
Spectra are shown in Fig. 2.4 for f = 20 Hz and in Fig. 2.5 for f = 100 Hz,
for two different perturbation levels. They exhibit a strong component at the
forcing frequency, with some harmonics as the perturbation level is increased.
The nonlinearity appears to be stronger in the heat release rate signal than in
the velocity signal with contributions up to the fourth harmonic of the forcing
frequency. This emphasizes the fact that the flame can be considered as the
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Figure 2.5: Power spectral density of the velocity signal (red line) and the heat release
rate signal (bue line) for a forcing frequency f = 100 Hz and perturbation levels of
|v1/v0| = 0.1 (left) and 0.3 (right).

main nonlinearity in many thermo-acoustic processes [Dowling (1997); Dowling
(1999)].
It has to be noted that the contribution around 10 Hz, coming from the buoy-
ancy instability, is more important here than in the velocity signal. This phe-
nomenon can even couple with the acoustic perturbations to create harmonic
components at 30 and 50 Hz in Fig. 2.4-right and several peaks around 100 Hz
and its harmonics in Fig. 2.5-right.

Flame front visualization

In addition to measurements of velocity and heat release rate signals, flame
visualization is used to examine the motion executed by the flame when it is
perturbed. An intensified charge-coupled device (ICCD) camera is equipped
with a 60 mm Nikkon objective and placed at a distance of 50 cm away from
the burner. This camera represented in Fig. 2.2 is used to take 512-by-512
pixel images of both steady and acoustically perturbed flames. The ICCD
camera is controlled with a programmable timing generator that is coupled to
the WinView 32 software in order to tune the settings and to externally trigger
the camera. The camera is used under a repetitive (continuous) gating mode.
The following parameters were set for the experiments conducted in this work:

- Gate width: 25 µs.
- Gate delay: 25 ns.
- Exposure time: 50 µs.
- Gain: 100.
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Figure 2.6: Images of a steady (left) and acoustically perturbed (right) conical flame.
φ = 1.03. v0 = 1.56 m.s−1. Right figure: f = 100 Hz.

A signal generator or the LabVIEW@ software that is used to drive the Hi-Fi
amplifier and the loudspeaker at the bottom of the burner, generates a TTL
signal synchronized with the forcing signal. This TTL signal is sent to a delay
generator BNC 555 from Berkeley Nucleonics Corporation (BNC). The delayed
signal is then used to externally trigger the camera to obtain phase-conditioned
images of the flame motion during the modulation cycle. The delay is calculated
to obtain equally-spaced phase conditioned images:

∆t =
n

Nf
(2.1)

where ∆t is the time delay with respect to the beginning of the modulation
cycle, N the number of images and n ∈ [0 : N − 1]. The images are averaged
over more than a hundred snapshots per phase to improve the signal-to-noise
ratio.
Typical images of steady and perturbed flames are shown in Fig. 2.6. The
left figure shows a perfectly conical steady flame and the right figure shows
an acoustically perturbed flame that features regular wrinkles along its front.
These measurements are used to investigate the dynamics of confined and un-
confined flames in Chapters 4 and 6. An extensive set of images are also taken
by zooming on the flame base to investigate and characterize the flame base
motion in Chapter 5.

Different post-processing of these images can be realized. The images of the
steady flames are the first treated. Knowing the burner exit mean velocity v0,
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Figure 2.7: Images of a steady (left) and acoustically perturbed (center) conical
flames. A zoomed image of the perturbed flame base is also shown (right). On each
image, a dashed red line shows the result of the flame front detection algorithm, with
a flame base and tip detection threshold of 60 % of the maximum value. φ = 1.03.
v0 = 1.56 m.s−1.

measurement of the flame front slope enables to determine the flame speed,
defined as Sd = v0 sinα where α stands for the flame tip half-angle. A flame
front detection algorithm was designed to this purpose. It finds the maximum
pixel value on each row of the image, and discard every points which value
is lower than 60% of the maximum pixel value over the whole image. This
threshold level is chosen to determine the flame base location. An example of
result of that detection algorithm is shown in Fig. 2.7 for a steady (left figure)
and perturbed (center figure) flames. These figures indicate that the flame front
is well detected, even when the flame is wrinkled by acoustic perturbations.
The only difficulty lies in the determination of the flame tip location, where the
luminosity emitted by the flame is not high enough to be properly detected.
This algorithm is also applied on the zoomed images of the flame base, as
shown in Fig. 2.7-right. It enables a more accurate identification of the flame
base location. The use of that algorithm on phase-conditioned zoomed images
allows to obtain the location of the flame base as a function of the phase of the
periodic excitation, i.e. as a function of time. This time-resolved signal is thus
sampled at a rate of 1/(Nf), where f is the acoustic forcing frequency and
N is the number of phase-conditioned images per acoustic period. This signal
is further used in Chapter 5 to determine experimentally the transfer function
relating the incoming velocity perturbation to the induced flame base motion.

2.3 Conclusion

The different burner configurations that are investigated in this work and the
diagnostics used were briefly presented in this chapter. This instrumented setup
enables to gather data on conical flame dynamics with the possibility of char-
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acterizing the unsteady velocity field in the fresh gases and the heat release
rate generated by the flame (from which the FTF may be deduced) as well
as images of both steady and perturbed flames. In the next chapters, mea-
surements are systematically compared to predictions from analytical models
or from numerical simulations to improve our understanding of the response of
laminar premixed conical flames to flow perturbations.



Chapter 3

Experimental FTF
determination

This chapter focuses on the experimental determination of the Flame
Transfer Function (FTF). In the present work, both harmonic and ran-
dom non-harmonic velocity perturbations are generated to modulate the
flame. The first method based on harmonic signals is widely used. The
use of random disturbances enables to rapidly determine the FTF com-
pared to the former technique and improves the frequency resolution.
A system identification (SI) technique is used to model the frequency
response of the different components of the test bench. This model is
then used to impose a white noise velocity signal at the burner exit, with
a tunable perturbation level. Random flow disturbances combined with
SI tools and spectral analysis are used to reconstruct the FTF of lam-
inar conical flames. Experiments are conducted for different operating
conditions and forcing levels. Results obtained with the two excitation
techniques are compared. Differences are finally examined when the
modulation amplitude is increased.

3.1 Introduction

The FTF is generally determined by imposing harmonic velocity modulations.
The velocity fluctuations may be determined by Laser Doppler Velocimetry
[Durox et al. (2009)] or with a hot wire probe [Palies et al. (2010)]. A photo-
diode or a photomultiplier equipped with a CH* or OH* filter is generally used
to determine the resulting heat release rate fluctuations [Hurle et al. (1968);
Ducruix et al. (2000); Paschereit et al. (2002); Balachandran et al. (2005);
Kim et al. (2010)]. These signals are gathered and post processed by calculat-
ing the cross- and auto-power spectra to obtain the FTF. The FTF may also be
deduced from a multiple microphone techniques. The same type of procedure
can be used to determine the Flame Describing Function (FDF) when the per-
turbation level needs to be considered. In this case, the velocity perturbation
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Figure 3.1: Different input signals can be used to determine the FTF, such as har-
monic signals, unit impulse or random signals.

level is first fixed to a small value and kept constant over the forcing frequency
range investigated. Measurements are then repeated to obtain a set of FTF at
different forcing levels [Noiray et al. (2008); Durox et al. (2009); Palies et al.
(2010); Schimek et al. (2011)].

Recently, alternatives to determine transfer functions in aeroacoustics have been
tested to reconstruct this frequency response with numerical simulations. Fol-
lowing the theory of system identification (see [Ljung (1999)] for example),
these methods require the use of broadband frequency signals or unit impulse
signals to perturb the system as shown in Fig. 3.1. The resulting velocity
and heat release rate signals recorded by the sensors are used to retrieve the
coefficients of a filter approximating the FTF. In the simulations from Polifke
et al. (2001), the auto- and cross-correlation matrices between velocity and
heat release rate signals were numerically computed and an inversion of the
Wiener-Hopf equation was performed:

Γh = c (3.1)

where Γ is the auto-correlation matrix of the velocity signal and c is the cross-
correlation matrix of the heat release rate and velocity perturbation signals.
Equation 3.1 was used to determine the unit impulse response h, which z-
transform is the acoustic transfer function that can be approximated as a Finite
Impulse Response (FIR) filter. The same type of tool were used, but coupled
to several broadband noisy signals to modulate a swirling flame and retrieve
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the FTF with a good accuracy [Huber and Polifke (2009a); Huber and Polifke
(2009b)]. A space-dependent FTF was numerically approximated by Zhu et al.
(2005) using a sum of random-phase sinusoids to modulate the flow and an
auto-regressive exogeneous model to compute the filter coefficients of the flame
Infinite Impulse Response (IIR).
Recently, these techniques have been put to work in several numerical investi-
gations of the response of swirl stabilized flames to flow perturbations. These
methods were validated by comparisons with FTF obtained experimentally
[Tay-Wo-Chong et al. (2010)]. They were then used to examine the influence
of several parameters on the FTF, such as the width of the combustion chamber
confining the flame and effects of heat loss [Tay-Wo-Chong and Polifke (2012)].
Differences between results obtained with LES and URANS simulations were
also analyzed [Tay-Wo-Chong et al. (2012)].

In the present work, these alternative methods of flow perturbations and anal-
ysis of flame response are tested experimentally. They are used to determine
the FTF of a conical flame. It is shown that random velocity perturbations can
be used instead of harmonic signals to obtain results with a better frequency
resolution in a shorter time. The theoretical framework for FTF determination
with harmonic or non-harmonic signals is first presented. The procedure de-
veloped in this work to control the velocity forcing signal at the burner nozzle
outlet is then presented. This method enables to generate a nearly white noise
velocity perturbation signal at the burner outlet. Spectral analysis is then used
to compare results for the FTF obtained with harmonic and random velocity
perturbations. Effects of the input level are examined at the end of the chapter.
A sensitivity analysis is also conducted to determine the influence of the number
of coefficients used to built the IIR filter that models the flame response.

3.2 Flame Transfer Function determination

The FTF relates velocity perturbations at the burner outlet to heat release rate
perturbations. The type of forcing signal used to determine this response is an
important aspect of the methodology and can take different forms as shown in
Fig. 3.1. Two kinds of forcing signal are tested here: harmonic and random
signals.

3.2.1 Harmonic perturbation technique

To analyze the flame response in the Fourier space, a set of harmonic velocity
perturbations v1(t) may be produced at different forcing frequencies as de-
scribed in Chapter 2. These signals are defined by an amplitude |v1| and a
real angular frequency ω so that v1(t) = ℜ{|v1|e

−iωt} where ℜ, |v1| and ω re-
spectively stands for the real part of a complex number, the amplitude and the
angular frequency of the velocity perturbation. The flame response to this har-
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monic perturbation is not necessarily a harmonic signal [Schuller et al. (2003b)]
(see also Chapter 2). The heat release rate is thus filtered around the forcing
frequency and one obtains a harmonic signal that is delayed compared to the
velocity signal: Q̇1(t) = ℜ{|Q̇1|e

−iω(t−ϕ)} where |Q̇1| is the amplitude of the
heat release rate signal and ϕ is the phase difference between velocity and heat
release rate signals examined at the forcing frequency. The FTF may then be
determined at the forcing frequency. It corresponds to the ratio of the com-
plex heat release rate disturbance divided by the complex velocity perturbation.
This complex numbers are generally expressed in terms of a gain G and a phase
difference ϕ between heat release rate and velocity fluctuations. To improve
the signal to noise ratio, one possibility is to determine the FTF by calculating
the cross-spectral density Sv1,Q̇1

of heat release rate and velocity perturbations
and the power spectral density Sv1,v1

of the velocity perturbations. This oper-
ation is repeated for a set of discrete forcing frequencies covering the range of
frequency where the FTF gain differs from zero. One obtains:

F(ω) =
Sv1,Q̇1

(ω)

Sv1,v1
(ω)

= G(ω)eiϕ(ω) (3.2)

Long windowed time series can be used along with averaging techniques in order
to reach statistical convergence:

F(ω) =
1

N

N∑

k=1

Sk
v1,Q̇1

(ω)

Sk
v1,v1

(ω)
(3.3)

where Sk
v1,Q̇1

(ω)/Sk
v1,v1

(ω) is the FTF determined over the kth window and N

is the number of windows used to average the flame frequency response.

Examples of FTF determined with this method are shown in Figs. 3.2 and 3.3.
These FTF were measured by acquiring velocity and chemiluminescence signals
with a sampling frequency fs = 16384 Hz during an acquisition time equal to
2 s. The corresponding number of samples is equal to 32768. No averaging
methods were used here. The FTF presented in Fig. 3.2 were determined with
the beveled burner shown in Fig. 2.1. Results in Fig. 3.2-left are compared for
two different flow velocities, all other parameters being kept constant. The FTF
gain features a low-pass filtering behavior while the FTF phase lag features
a regular increase with the forcing frequency associated to a hydrodynamic
convective process before reaching an almost constant value at high frequencies.
Figure 3.2 shows that the inlet flow velocity has a weak influence on the FTF
at low frequencies in the cases investigated. The reason is that the FTF only
depends on ω∗ = ωR/(Sd cosα) for elongated flame (when α≪ 1). One can also
assume that cosα ≃ 1 and thus ω∗ weakly depends on the inlet flow velocity.
Only small differences appear for frequencies higher than 100 Hz, where the
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Figure 3.2: Flame Transfer Function gain (top) and phase (bottom) as a function of
the acoustic perturbation frequency. (a) FTF measured on the 22 mm-diameter beveled
burner exit. φ = 1.1. Black line: v0 = 1.3 m.s−1 Grey line: v0 = 2.5 m.s−1 (b) FTF
measured on the 30 mm-diameter beveled burner exit. Black line: v0 = 1.27 m.s−1.
φ = 0.8 Grey line: v0 = 1.3 m.s−1. φ = 1.1.

FTF gain extrema and the FTF phase oscillations slightly differ between the
two cases explored in Fig. 3.2-left.
The same behaviors are observed on the 30 mm-diameter beveled burner where
the equivalence ratio is used as a varying parameter (see Fig. 3.2-right). A
small difference in the FTF phase slope is observed, due to the difference in the
equivalence ratio φ and thus on the flame speed Sd. This observation results
from the dependence of ω∗ on Sd. The reduced frequency ω∗ is proportional
to the inverse of the flame speed Sd. FTFs measured with a plateau-shaped
burner are plotted in Fig. 3.3-left. Measurements obtained with a plateau
show no major differences compared to those obtained with the beveled edge
burner, except for the FTF phase lag at high frequencies. In Fig. 3.3-right,
FTF measured with a confinement tube are plotted. This figure shows that a
difference in phase slope appears between the FTFs determined with different
inlet flow velocities. A significant phase difference of about 0.4π is observed
around 100 Hz between the two cases. This problem is treated in Chapter 6.

3.2.2 Random perturbation techniques

Measurements of the FTF with harmonic signals are fairly long. One difficulty
is that experiments must be repeated for each forcing frequency investigated.
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Figure 3.3: Flame Transfer Function gain (top) and phase (bottom) as a function of
the acoustic perturbation frequency. (a) FTF measured on the 22mm-diameter burner
exit with a 35 mm-diameter plateau. φ = 1.1. Black line: v0 = 1.3 m.s−1 Grey
line: v0 = 2.5 m.s−1 (b) FTF measured on the 22 mm-diameter burner exit with a
35mm-diameter confinement tube. φ = 1.1. Black line: v0 = 1.34 m.s−1 Grey line:
v0 = 2.27 m.s−1

Multi-tone signals have been proposed as an alternative technique to excite the
flame. Imposing random multi-tone velocity perturbations enables to modu-
late the flame over a large frequency range. This can be used to obtain the
whole FTF at once, but also to increase the frequency resolution of the FTF
determination. In the following, a white noise signal is used as a random multi-
tone excitation signal to determine the flame response. This excitation signal
is defined by:

v1(t) = |v1| rand[−1,1] (3.4)

where |v1| is the velocity perturbation amplitude and rand[−1,1] stands for a
random number generator which results are statistically uniformly distributed
over the interval [-1,1]. With such a white noise signal, it is possible to excite
the flame with an equally distributed power over a large range of frequencies.
This synthetic signal may be easily generated and was already used in nu-
merical simulations [Huber and Polifke (2009b)]. Its generation raises some
experimental difficulties which must be overcome as further described in this
study.
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Adapted post-processing techniques were developed to compute the FTF from
random velocity modulations. Cross-power spectral density analysis is a natural
first choice to examine the flame response. The use of a random input signal
enables to determine the FTF over a wide frequency range. The auto and
cross-power spectral densities of the input v1 and output Q̇1 signals can easily
be computed by making use of Eq. (3.3).
When only a limited number of time samples are available (as for the results
of LES simulations for example), System Identification (SI) methods can also
be used to compute the linear FTF from time series of the input (incoming
velocity perturbations) and output (heat release rate perturbations) signals. A
SI method based on the reconstruction of an IIR model of the flame is used in
the following to determine the system impulse response. This impulse response
h(t) completely defines a linear process:

Q̇1(t) =

∫ +∞

−∞
h(τ)v1(t− τ)dτ (3.5)

where v1(t) and Q̇1(t) are the input and output signals of the process. This
equation can be approximated in a discrete form by an IIR discrete filter:

Q̇
(n)
1 + a1Q̇

(n−1)
1 + ...+ anaQ̇

(n−na)
1

= b0v
(n)
1 + b1v

(n−1)
1 + ...+ bnb

v
(n−nb)
1 + e(t) (3.6)

where v(i)
1 and Q̇(i)

1 are the sampled input and output signals, ai and bi stand for
the reverse and forward coefficients of the IIR filter, na and nb define the order
of the model and e(t) denotes the background noise disturbance. A sufficient
number of coefficients na and nb have to be chosen to take into account the
largest time lag involved in the system. This point will be further examined for
the FTF determination in Section 3.5. By taking the z-transform of Eq. (3.6),
one obtains an approximation of the FTF as an IIR filter of the form:

F(ω) =

nb∑
k=0

bkz
−k

na∑
k=0

akz−k

(3.7)

where z = exp(iω), ω being the angular frequency.
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3.3 Loudspeaker, amplifier and burner transfer func-
tion

Random velocity disturbances with a white noise spectrum must be generated
at the burner outlet to keep the velocity modulation level constant over the
frequency range investigated. The white noise electrical signal can be gener-
ated with the LabVIEW@ software. This signal is sent to the amplifier followed
by the loudspeaker to modulate the flow in the burner cavity as represented
in Fig. 3.4-left. It is interesting to first characterize the resulting velocity per-
turbation signal at the burner exit. When the flow is acoustically forced with
a harmonic signal, it was shown in Chapter 2 that the flow is also responding
harmonically. In this case, the amplitude of the velocity modulation can be
measured by LDV and tuned to keep the same forcing level for each frequency
investigated. When random broadband velocity fluctuations are synthesized,
the situation is different. The response can be first examined by plotting the
power spectral density of the velocity signal measured at the burner outlet
and can be compared with the power spectral density of the random signal
generated by the signal synthesizer.
Figure 3.5-top shows large differences between the perturbation level reached
by the resulting velocity modulations over the frequency range of interest. This
signal does not correspond to a white noise signal, but features a colored spec-
trum. This is due to the combined responses of the loudspeaker, amplifier and
burner which filter the perturbations. This response can be characterized by
the transfer function H(ω) represented in Fig. 3.4 that must be determined.
A system identification is conducted to characterize the transfer function H(ω)
of the elements formed by the amplifier, the loudspeaker and the burner. By
using the white noise signal L1(t) generated with LabVIEW@ and gathering the
velocity disturbances produced at the burner exit, it is possible to determine
the transfer function H(ω) defined as follows :

H(ω) =
ṽ1/v0

L̃1

(3.8)

where L1 stands for the LabVIEW@-generated white noise signal used as an
input to drive the amplifier. This signal was measured with a sampling fre-
quency of 4096 Hz. A total of na = 50 and nb = 50 filter coefficients were used
to reach a good estimation of H(ω). As shown in Fig. 3.5-top, this frequency
response corresponds to a pass band filter where frequencies lower than 80 Hz
and higher than 200 Hz are greatly damped. A correction needs to be applied
to compensate the effects of the amplifier and the loudspeaker and flatten this
frequency response.

To generate a white noise velocity signal at the burner outlet, the inverse trans-
fer function H−1(ω) was first applied to the LabVIEW@ white noise electrical
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Figure 3.4: Diagram of the setup used to obtain uncontrolled (left side) and controlled
(right side) flow modulations v1 at the burner exit.

signal. The resulting signal, not shown here, clearly exhibited that H−1(ω) was
unstable. Some of the zeros of the function H(ω) were out of the unit circle. To
cope with that issue, we choose to compute the minimum-phase inverse transfer
function H−1

mp(ω), which is a stable transfer function that has the same exact
gain as H−1(ω), but has a different phase [Oppenheim et al. (1998)]. As we are
here dealing with random phase signals, inverting the magnitude of H(ω) to
obtain a nearly-white-noise velocity disturbance signal at the burner outlet is
essential whereas the phase of the resulting velocity signal is of less importance.
This new filter H−1

mp(ω) features now a stable response with smooth transitions
between frequencies but the resulting signal still contains high frequencies with
significant power spectral densities. This can easily be removed by low pass
filtering this response. We choose a 20th order Butterworth filter with a cut-off
frequency of 500 Hz to this purpose. These successive operations were used to
produce velocity disturbances with an almost constant frequency response up
to 500 Hz and remove the upper frequencies well above the cut-off frequency
of the flame response. The PSD of the resulting velocity signal is shown in
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Fig. 3.5-bottom. It has a nearly uniform power density over the frequency
range of interest. The difference between the maximum and the minimum of
the PSD is reduced to less than 5 dB. This value can be compared to the 18
dB difference observed for a velocity signal generated by driving the amplifier
with a white electrical noise without correction (see Fig. 3.5-top). This pre-
processing procedure can now be used to generate random velocity fluctuations
at the burner outlet and compare the flame response to the ones obtained for
harmonic flow modulations. The entire procedure is schematically shown in
Fig. 3.4-right.

3.4 FTF determination using random signals

The flame response is first examined for small amplitude velocity perturba-
tions. Results for the FTF determined with random and harmonic velocity
modulations are presented in Fig. 3.6. Measurements were carried out on a
22 mm-radius burner corresponding to the configuration (b) in Fig. 2.1 and a
flame with the following parameters: v0 = 1.56 m.s−1 and φ = 1.03. For har-
monic perturbations, the FTF is measured between 20 and 250 Hz, with a 5 Hz
frequency resolution. The harmonic signals were sampled at a rate fs = 4096
Hz over 20 s, what lead to the acquisition of 81920 samples for each frequency.
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Figure 3.6: FTF obtained with harmonic and random velocity modulations and power
spectral analysis, for a relative rms velocity perturbation of vrms

1
/v0 = 0.04.

An averaging technique with 20 windows was used. For random perturbations,
data were collected and averaged over 600 windows of 4096 samples each. The
sampling frequency was also fixed to 4096 Hz yielding a 1 Hz frequency resolu-
tion for the FTF measured with random disturbances.
In this case, the results collapse well with both methods of excitation. The
random signal method retrieves the main characteristics of the response of this
conical flame. The FTF gain is well captured up to 45 Hz, where the flame
response is strong. For higher excitation frequencies, the random modulation
technique shows some differences on the gain, but it still captures the correct
evolution of the gain, as well as the position of the minima and maxima of
the FTF gain. For the FTF phase, both methods give the same results. Both
random and harmonic modulation techniques show that the phase increases
regularly with the frequency up to about 200 Hz. This evolution highlights the
convective nature of the flame response. This behavior ceases at higher frequen-
cies when the phase reaches a constant value [Kornilov et al. (2007); Durox
et al. (2009); Karimi et al. (2009)]. This saturation is also well predicted by
both techniques. This is in agreement with previous theoretical and experimen-
tal results on conical flame transfer functions, where the nearly constant slope
of the phase can be linked to a convection time lag [Schuller et al. (2003a)].
The saturation phenomenon observed at higher frequencies is suspected to be
induced by the contribution of the flame base dynamics to the FTF response
[Kornilov et al. (2007); Karimi et al. (2009)]. This issue is considered in detail
in Chapter 5.
It is now interesting to briefly examine some advantages of using random flow
perturbations. It is first worth noticing that the harmonic modulation method
take about 30 mn to determine a FTF, with a 5 Hz frequency resolution, while
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the cross-correlation technique was carried out in 10 mn, with a 1 Hz frequency
resolution. If it represents some improvement on the reduction of duration of ex-
periments, the main advantage is to improve the frequency resolution. Window
overlap could also be used for the average cross-correlation technique, which
again could divide by 2 (for a 50% overlap) the number of samples needed to
reach statistical convergence of the method. This technique was used here on a
specific configuration where the flame response vanishes for frequencies above
250 Hz. There are many configurations where flames feature a significant re-
sponse at much higher frequencies. The determination of the FTF would require
about the same duration with the random modulation technique, but a consid-
erable additional time to conduct the experiments with harmonic modulations
at higher forcing frequencies, if the frequency resolution were kept constant.
Another advantage is that the better frequency resolution reduces significantly
ambiguities about critical points of the FTF near maxima and minima for the
gain and for frequencies where the phase lag approaches π (modulo 2π) if no
attempt is made to unwrap results. It is known that the FTF may feature large
and sudden changes in gain or phase as a function of frequency that may be dif-
ficult to capture with harmonic forcing. The alternative technique used herein
avoids having an a-priori knowledge of the FTF where these critical points are
located and avoids refining the investigation in these frequency bands.
SI tools were also used to post-process the time resolved data obtained with
random broadband disturbances. The FTF gain and phase curves (not shown
here) obtained with those tools were compared to the FTF determined with
averaged cross-spectral density. The FTF gain and phase curves obtained with
both post-processing methods collapse for all configurations investigated.

Modulation level effects

FTF determination with multi-tone methods work well for vanishingly small
perturbations when the flame response remains linear. It is now interesting to
examine effects of the perturbation amplitude. The FTF has been determined
for different velocity fluctuation levels. Results for the same configuration,
v0 = 1.56 m.s−1 and φ = 1.03, are presented in Fig. 3.7 when the overall
perturbation level is increased. Measurements with harmonic and random ex-
citation methods are also compared in Figs. 3.8, 3.9 and 3.11, for increasing
rms velocity perturbations vrms

1 /v0 = 0.07, 0.12 and 0.18, respectively.
As indicated in Fig. 3.7, both methods result in the same type of curves for
the FTF when the velocity perturbation level increases. When the velocity
amplitude increases, the gain decreases and an early saturation of the phase is
observed. This is in agreement with previous experimental data obtained on
the same type of configuration when submitted to harmonic disturbances of
increasing perturbation levels [Durox et al. (2009); Karimi et al. (2009)].
For a modulation level of vrms

1 /v0 = 0.07, both methods yield the same response
as shown in Fig. 3.8. There are some differences in the FTF gain values, but



Part I - Conical flame dynamics 69

0.2

0.4

0.6

0.8

1

F
T

F
 G

a
in

HARMONIC MODULATION

 

 

0.2

0.4

0.6

0.8

1

RANDOM MODULATION

0 50 100 150 200 250

−π

−π/2

0

π/2

π

Frequency (Hz)

F
T

F
 P

h
a
se

 (
ra

d
)

0 50 100 150 200 250

−π

−π/2

0

π/2

π

Frequency (Hz)

 

 

v
1rms

 / v
0
 = 0.04

v
1rms

 / v
0
 = 0.08

v
1rms

 / v
0
 = 0.12

Figure 3.7: Gain and phase of the FTF obtained for different velocity perturbation
levels. Left: results obtained with harmonic modulation. Right: results obtained with
random disturbances.

the global shape of the gain curve and the locations of extrema are still well
retrieved. The FTF phase also exhibits a very good match between the two
excitation techniques. Results are presented in Fig. 3.9 for a higher perturbation
level vrms

1 /v0 = 0.12. The phase curves feature large differences between 50 and
200 Hz. For larger frequencies, the saturation of the phase lag is again retrieved
with the two techniques, but the saturation value at high frequencies is different.
It is however found that these asymptotic values match modulo 2π.
The main differences observed in the measurements essentially lie in the com-
bined effects of the phase dependence to the perturbation level, and of un-
wrapping the phase across π where the phase is difficult to define precisely
for small values of the gain. At intermediate forcing levels, the phase evolu-
tion may switch between a regular increase and a saturation with frequency.
This behavior is very sensitive to the perturbation level. A small difference in
the rms value of velocity perturbations between harmonic and random excita-
tion methods may trigger the transition between these two regimes at different
frequencies. The phase evolution wrapped between 0 and 2π is presented in
Fig. 3.10. This figure shows that the saturation frequency shifts from about 170
Hz when the flame is submitted to harmonic modulations to 140 Hz when the
flame is submitted to random velocity modulations with the same rms value.
Outside of this frequency range, the main behavior and the saturation value
are well retrieved.
For a perturbation level of vrms

1 /v0 = 0.18, presented in Fig. 3.11, the FTF
gain is underestimated by the random modulation technique between 50 and
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Figure 3.8: FTF obtained with harmonic and random velocity modulation and cross-
correlation techniques, for a relative rms velocity perturbation of vrms

1
/v0 = 0.07.
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Figure 3.9: FTF obtained with harmonic and random velocity modulation and cross-
correlation techniques, for a relative rms velocity perturbation of vrms

1
/v0 = 0.12.

150 Hz, while the phase curves still fit well between both measurement tech-
niques. It is however worth noticing that the slope of the phase curve takes
a smaller value compared to measurements performed at a lower input level.
This phenomenon is due to a shortening of the conical flame when submitted
to large velocity perturbations. A reduction in flame height induces a decrease
of the average time for a velocity disturbance to produce a heat release rate
perturbation. This in turn modifies the slope of the phase of the FTF.
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1
/v0 = 0.12 when the flame is submitted to harmonic (-)
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Figure 3.11: FTF obtained with harmonic and random velocity modulation and cross-
correlation techniques, for a relative rms velocity perturbation of vrms

1
/v0 = 0.18.

These results clearly show the limits of the random modulation technique for
large velocity disturbances. It is known that the flame response is nonlinear
[Dowling (1997)]. Using harmonic perturbations, the gain and the phase lag of
the flame response with respect to the incoming perturbations are only analyzed
at the forcing frequency. This yields the FTF in the first harmonic approxima-
tion while higher harmonics are discarded in this description. Measuring the
FTF with random broadband velocity perturbations includes in addition the
flame response at different harmonics. The FTF determined with this latter
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technique and examined at a certain frequency includes information on the non-
linearity of the flame response at others frequencies than the forcing frequency
[Moeck and Paschereit (2012)]. This, along with the sensitivity of the phase
lag to the velocity input level, explains the differences observed between results
for the gain and the phase of the FTF obtained with the two techniques. New
techniques must then be developed to characterize the flame frequency response
when the input level needs to be considered.

3.5 SI parameter optimization

A sensitivity analysis is carried out in this section on the parameters of the
SI method, to emphasize their influence on the determination of the FTF. As
mentioned in Section 3.2.2, an important set of parameters that need to be
considered for the flame response model in the identification step is the number
of forward and reverse filter coefficients na and nb appearing in Eq. (3.7). In this
study, na and nb were chosen equal n = na = nb. By increasing the number
n, more samples in the time series are considered to build an IIR model of
the flame response. This number must be chosen to capture the slowest time
scale controlling in the flame dynamics. As a first approximation, it can be
considered that this number is mainly linked to the largest time lag of the
flame response. In the case of a conical flame, this time lag corresponds to the
time for a flame front perturbation to travel from the flame base to the flame
tip. This time lag is given by [Baillot et al. (1992); Blumenthal et al. (2013)]:

τmax =
L

v0 cosα
=

R

Sd cosα
(3.9)

where v0 and L respectively stand for the mean flow velocity and the flame
front length. In this expression, α denotes the flame angle with respect to
the main flow direction. In the case presented here, v0 = 1.56 m.s−1, and
L = R/ sinα where R = 0.011 m is the burner radius and sinα = Sd/v0 where
Sd = 0.44 m.s−1 is the flame speed determined by matching the theoretical
and experimental steady flame heights. One finds here τmax = 26 ms. The
minimum number of coefficients can be deduced: n = τmax/∆t where ∆t is the
sampling time step. For a sampling frequency of 4096 Hz, this yields a value
n = 107.
A parametric study is conducted to analyze the effect of the number of co-
efficients n considered in the determination of the gain of the FTF with SI
tools. The difference between the gain GSI obtained with the SI method and
the gain GCC determined with the cross-correlation technique is calculated for
the conical flame v0 = 1.56 m.s−1, φ = 1.03 submitted to random small ve-
locity disturbances when vrms

1 /v0 = 0.04, all other parameters in the signal
post-processing remaining identical. Results are shown in Fig. 3.12. They in-
dicate that the difference computed as |GCC −GSI | converges towards zero as
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Figure 3.12: Convergence of the SI method. The gain difference |GCC − GSI | is
plotted as a function of the number of coefficients n = na = nb used to model the IIR
flame response. vrms

1
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n increases. Results do not improve for a number of coefficients larger than
120, indicating that the estimation in Eq. (3.9) of the minimum number of
coefficients required to compute the flame IIR model is a good indicator.

3.6 Conclusion

Different techniques were examined to determine the flame transfer function
of laminar conical flames submitted to flow rate disturbances. When random
broadband excitation is considered, the flow modulation at the nozzle outlet
must be characterized and controlled to obtain a nearly white noise velocity
perturbation signal instead of a colored signal filtered by the different responses
of the electrical and mechanical elements present in the actuation line. This
broadband random velocity signal was then used to determine the FTF with
averaged cross-correlation or system identification techniques.
The results were compared to FTF measured with harmonic velocity modula-
tions, when the modulation level was kept constant. The FTF gain and phase
curves match well between the different methods for small amplitude pertur-
bations. As the perturbation level amplitude is increased, the FTF gain is
underestimated when random perturbations are considered. A general agree-
ment is obtained for the FTF phase lag evolution, even though the FTF phase
lag features complex transitions between different behaviors at low and high
frequencies. The transition between these two regimes is very sensitive to the
velocity perturbation level. This phenomenon was shown to be the cause of
the main differences observed between the harmonic and random forcing tech-
niques.
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A sensitivity analysis on the number of samples that has to be considered in
the SI technique to capture the FTF was conducted. This analysis emphasized
the link existing between the largest time lag of the flame response and the
optimized SI parameters. The method has to be further tested on flows with
higher Reynolds-numbers in the future, but the same type of pre- and post-
treatment is thought to be suited also for turbulent flows to separate incoherent
disturbances induced by turbulence from coherent perturbations induced by the
flow modulation. Moreover, nonlinear system identification techniques has to
be designed in order to overcome the issues observed when the perturbation
level is increased.
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Combined mechanisms
governing the FTF





Chapter 4

Effects of the velocity
perturbation model on the FTF

The Flame Transfer Function (FTF) of an axisymmetric conical flame
is studied in this chapter using a kinematic description of the flame
motion. A new FTF model is derived by taking into account the incom-
pressible and convective natures of the flow perturbations in the fresh
stream. This type of perturbation is responsible for the regular increase
of the phase lag with the forcing frequency observed in experiments when
the flame aspect ratio characterized here by the flame angle with respect
to the mean flow direction is not too small. It is shown that the FTF
phase lag cannot be approximated by a purely convected one dimen-
sional perturbed flow field and cannot be approximated by assuming a
constant time lag delay over the whole frequency range as considered in
many previous models. A systematic comparison of predictions is car-
ried out with models that are already available in the literature and with
measurements. Analytical developments are also conducted in the time
domain to derive the linear unit impulse response of the flame when
these incompressible convected perturbations are considered.

4.1 Introduction

Progress has been achieved in experimental determination and numerical sim-
ulation of FTF, but theoretical approaches have failed yet in modeling the
correct phase lag evolution between flow and heat release rate disturbances
over the frequency band of interest for thermo-acoustic instability prediction
(see Chapter 1 for a review of the available models). FTF predictions are rarely
compared to measurements even in a relatively simple configuration such as a
conical axisymmetric flame submitted to flowrate disturbances. This type of
laminar flames may be found in some burners for domestic boilers, material
processing or multi-port preheaters. A combined theoretical and experimental
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Figure 4.1: Schematic of the configuration investigated. (a) Steady conical flame
along with the different frames used in this article. (b) Acoustically perturbed conical
flame, with a focus on the flame base region and the flame front displacement far from
the burner lip.

approach is used here to show that the correct evolution of the FTF phase lag
can be predicted by including two essential features of the reactive flow dynam-
ics. The first one is the feedback from the wrinkled flame front on the fresh
reactant gas dynamics and the second one is the dynamics of the anchoring
point. This second contribution is treated in Chapter 5. The first mechanism
is examined here. It is first shown in section 4.2 that it can be well captured
by imposing a divergence free convective flow perturbation to the fresh reac-
tant velocity field. Predictions for flame wrinkles and FTF are compared to
available data in the literature and to complementary measurements in sec-
tion 4.3. In section 4.4, the unit impulse response of the flame is examined
with a two-dimensional divergence-free convective perturbations and compared
to experimental data from Chapter 3.

4.2 Incompressible convective velocity perturbation
model

4.2.1 Velocity model

For a conical premixed flame that is compact with respect to the acoustic wave-
lengths, the perturbed flow resulting from acoustic modulation in the vicinity
of the flame front is essentially of incompressible type [Baillot et al. (1992);
Schuller et al. (2002); Birbaud et al. (2006)] and velocity perturbations are
convected from the burner outlet to the flame front [Sugimoto and Matsui
(1982); Baillot et al. (1992); Baillot et al. (1996); Birbaud et al. (2006)]. The
perturbed velocity field in the fresh reactants can then be well approximated
by:
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ũ1 = ik
(R− x)

2
v1 exp(iky) (4.1)

ṽ1 = v1 exp(iky) (4.2)

where R denotes the burner radius, R−x is the radial coordinate in the burner
frame and k = ω/v0 indicates the wavenumber of flow disturbances convected
along the burner axis (see Fig. 4.1-a). These expressions represent a more
detailed modeling of the velocity perturbations in the fresh stream than the
uniform model (ũ1 = 0, ṽ1 = v1) studied by Ducruix et al. (2000) and the con-
vective model (ũ1 = 0, ṽ1 = v1 exp(iky)) investigated by Schuller et al. (2003a)
and Preetham et al. (2008). The starting point is to determine the resulting
normal flame front displacement ξ̃ from its steady state due to this incoming
perturbation (see Fig. 4.1-b).

The local velocity perturbation component normal to the steady front needs
first to be determined. In the burner frame, this perturbation takes the follow-
ing form:

Ṽ1(x) = ṽ1 sinα− ũ1 cosα

= v1

[
sinα− i

k

2
(R− x) cosα

]
exp(iky) (4.3)

In the reference frame attached to the steady flame front, this expression be-
comes:

Ṽ1(X) = v1 sinα

[
1 − i

1

2
k∗

(
1 −

X

L

)]
exp

(
ik∗

X

L

)
(4.4)

where L = R/ sinα is the steady flame front length. This expression is a
function of the dimensionless frequency k∗ = ω∗ cos2 α, where α is the half-tip
flame angle and ω∗ = ωR/(Sd cosα) denotes the reduced frequency identified
by Ducruix et al. (2000). These dimensionless numbers can also be interpreted
by considering the different interfering mechanisms controlling flame wrinkling
[Lieuwen (2003); Lee and Lieuwen (2003); Blumenthal et al. (2013)]. The
reduced frequency ω∗ = ωR/(Sd cosα) is related to the convection of flame
wrinkles along the flame length L at the mean flow velocity component tan-
gential to the steady flame front U0 = v0 cosα. The reduced frequency k∗ is
related to the convection of velocity disturbances in the fresh gases along the
burner axis over a distance H corresponding to the flame height at the mean
axial velocity v0:

ω∗ =
ωR

Sd cosα
=

ω

U0
L (4.5)

k∗ = ω∗ cos2 α =
ω

v0
H (4.6)
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Figure 4.2: Flame shapes predicted with (a) a uniform velocity perturbation [Ducruix
et al. (2000)]; (b) a convected velocity disturbance [Schuller et al. (2003a)]; (c) the
model derived in the present chapter. The flame is presented for four different phases
of the acoustic period, namely 0, π/2, π and 3π/2. Flame motions are calculated for
α = π/12, |v1/v0| = 0.1 and ω∗ = 5.

These two quantities are related by the flame aspect ratio cos2 α = k∗/ω∗.
Schuller et al. (2003a) use the first description with ω∗ and the flame angle
α with respect to the flow direction as independent parameters to analyze
the response of conical flames, while Lieuwen and co-workers [Lieuwen (2003);
Lee and Lieuwen (2003); Preetham et al. (2008)] use two Strouhal numbers
corresponding to the last expressions in Eqs. (4.5) and (4.6) to analyze flame
wrinkling. While equivalent, the first description is preferred here to emphasize
effects of the flame aspect ratio cosα = H/L on the FTF, where H = R/ tanα
is the steady flame height and L = R/ sinα is the steady flame front length.

4.2.2 Flame front perturbation and FTF model

Using the expression Eq. (4.4) for the normal velocity perturbation Ṽ1(X
′) and

assuming that the flame is steadily anchored on the burner rim ξ̃(0) = 0, the
normal flame displacement ξ̃ given by Eq. (1.13) may be written:

ξ̃(X) =
exp

(
iω∗

X
L

)

U0

∫ X

0
Ṽ1

(
X ′
)
exp

(
−iω∗

X ′

L

)
dX ′ (4.7)

By introducing X∗ = X/L, one finally obtains an expression for the dimension-
less flame front displacement as a function of the relative input perturbation
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Figure 4.3: Flame shapes predicted with (a) a uniform velocity perturbation [Ducruix
et al. (2000)], (b) a convected velocity disturbance [Schuller et al. (2003a)], and (c) the
model derived in the present chapter. The flame is presented for four different phases
of the acoustic period, namely 0, π/2, π and 3π/2. Flame motions are calculated for
α = π/12, |v1/v0| = 0.1 and ω∗ = 10.

ṽ1/v0 applied at the burner exit:

ξ̃(X) cosα

R
=
ṽ1
v0

exp (iω∗X∗)

∫ X∗

0

[
1 −

ik∗
2

(
1 −X ′

∗

)]
exp

[
i (k∗ − ω∗)X

′
∗

]
dX ′

∗

(4.8)

Integration is straightforward and one gets:

ξ̃(X∗) cosα

R
=
ṽ1
v0

1

i(k∗ − ω∗)[(
1 −

ik∗
2

−
1

2

k∗
k∗ − ω∗

)
(exp(ik∗X∗) − exp(iω∗X∗))

−
ik∗
2
X∗ exp(ik∗X∗)

]
(4.9)

This expression shows that the flame front displacement is controlled by the
two dimensionless numbers ω∗ and k∗ = ω∗ cos2 α identified previously. The
predicted flame shapes submitted to velocity modulations are presented in
Figs. 4.2-4.4 for different values of the reduced frequency ω∗ = 5, 10 and 20
and for a relatively elongated flame α = π/12. Four phases of the acoustic
period are shown in these figures. Predictions (a) with a uniform velocity per-
turbation and (b) with a unidimensional convected disturbance are compared
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Figure 4.4: Flame shapes predicted with (a) a uniform velocity perturbation [Ducruix
et al. (2000)]; (b) a convected velocity disturbance [Schuller et al. (2003a)]; (c) the
model derived in the present chapter. The flame is presented for four different phases
of the acoustic period, namely 0, π/2, π and 3π/2. Flame motions are calculated for
α = π/12, |v1/v0| = 0.1 and ω∗ = 20.

to the present model (c) for an input level |v1/v0| = 0.1. In all cases explored,
predictions from model (a) feature tiny imperceptible wrinkles in Figs. 4.2-4.4
(a). The shapes taken by the unsteady flame lie very close to the steady flame
front position. The bulk oscillation imposed to the flow is strongly filtered by
the flame at these forcing frequencies. This is in contrast with observations
for the same reduced frequency [Bourehla and Baillot (1998); Ducruix et al.
(2000); Schuller et al. (2002); Karimi et al. (2009)]. Predictions obtained with
model (b) feature larger wrinkles around the steady flame shape for the same
perturbation level |v1/v0| = 0.1. Wrinkles convected along the flame front are
here clearly visible with a shorter wavelength as the reduced frequency ω∗ in-
creases.

Predictions from the incompressible convective model (c) are plotted in the
bottom frames of Figs. 4.2-4.4. At low reduced frequency ω∗, the shape taken
by the flame closely follows that predicted with the purely convective model
(b). The radial component ũ1 in Eq. (4.1) of the incompressible perturba-
tion convected by the flow is proportional to k∗ and thus vanishes at very low
frequency. For larger values of ω∗, flame wrinkles are amplified. These large si-
nusoidal perturbations of the flame front are convected along the steady flame,
from the flame base to the flame tip, with the release of pockets of unburnt
gases at the flame tip due to the collapse of neighboring flame fronts [Joulin
and Sivashinsky (1991); Baillot and Bourehla (1997)]. This phenomenon will
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Figure 4.5: FTF component FA gain (top) and phase lag (bottom) evolution as a
function of the reduced frequency ω∗ for different values of the flame angle α = π/3,
π/4, π/6 and π/12 with respect to the flow direction. The darkness is associated to
decreasing values of α: α = π/12 (black). α = π/3 (light gray).

not be taking into account in the FTF derivation, where only small perturba-
tions in the linear regime are considered.

The expression Eq. (4.9) for flame wrinkles is now integrated to determine the
flame surface area evolution and the FTF. One obtains:

˜̇Q1

Q̇0

=
Ã1

A0
= FA

ṽ1
v0

(4.10)

where the transfer function FA is given by:

FA =
1

i(k∗ − ω∗)[(
2 − ik∗ −

k∗
k∗ − ω∗

)(
exp(ik∗) − 1

ik∗
−

exp(iω∗) − 1

iω∗

)

+ exp(ik∗) −
exp(ik∗) − 1

ik∗

]
(4.11)
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Table 4.1: FTF obtained for different flow perturbation models and their low frequency approximation.

FA limω∗→0 FA limα→0
ω∗→+∞ FA

Uniform model
2

ω2
∗

(1 − exp(iω∗) + iω∗) 1 +
iω∗

3

2i

ω∗

[Ducruix et al. (2000)]

Convective model
2

ω2
∗(1 − cos2 α)

[
1 − exp(iω∗) +

exp(iω∗ cos2 α) − 1

cos2 α

]
1 +

iω∗

3
(1 + cos2 α)

exp(iω∗)

iω∗

[Schuller et al. (2003a)]

Incompressible
convective model

1

i(k∗ − ω∗)

[
2

(
1 −

ik∗
2

−
1

2

k∗
k∗ − ω∗

)(
exp(ik∗) − 1

ik∗ 1 +
iω∗

3
−

exp(iω∗)

2

−
exp(iω∗) − 1

iω∗

)
+

(
exp(ik∗) −

exp(ik∗) − 1

ik∗

)]
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The gain and phase of FA(ω∗, k∗) are plotted in Fig. 4.5 as a function of the
reduced frequency ω∗ for different values of the flame angle α = π/3, π/4, π/6
and π/12 with respect to the flow direction. The FTF gain behaves as a low-
pass filter with a set of secondary humps. The gain curves almost collapse for
all flame angles investigated at low reduced frequencies ω∗ ≤ 2π. Differences
appear for ω∗ > 2π. The gain is in this region a strong function of the flame
aspect ratio. For a fixed reduced frequency, the gain and phase rapidly drop
for increasing values of the flame angle α. The FTF phase lag is regularly in-
creasing with the reduced frequency for elongated flames and saturates around
the value ϕ = π/2 for large flame angles.

This last behavior can be retrieved by expanding Eq. (4.11) around the value
α = π/2 or equivalently by considering the limit k∗ = 0:

lim
k∗→0

FA =
2

ω2
∗

(1 + iω∗ − exp(iω∗)) (4.12)

For large flame angles or small k∗ values, FA(ω∗, k∗) reduces to the expression
derived by Ducruix et al. (2000) for uniform flow perturbations where the FTF
phase lag was shown to saturate around the asymptotic value ϕ = π/2.

Predictions are further compared to previous FTF models synthesized in Tab. 4.1.
Model (a) [Ducruix et al. (2000)] considers uniform flow perturbations and
model (b) [Schuller et al. (2003a)] describes the flame response to a convected
unidimensional wave. Model (c) denotes the FTF expression found in this study
including a two dimensional incompressible convective perturbation. Compar-
isons are first conducted in Fig. 4.6-left for a large flame angle α = π/3. The
gain collapses in this case roughly on the same curve for the three models tested.
The main differences between the model predictions are observed for the phase
lag evolution. It regularly increases with frequency for the convective model
(b), while the phase lag of model (c) is shown to saturate at nearly the same
value as predictions from the uniform model (a) at high frequencies. For flames
with a small aspect ratio cosα = H/L≪ 1, the wavelength of velocity pertur-
bations convected by the mean flow λ = v0/f is relatively large compared to
the flame height H and the flame may be considered compact with respect to
hydrodynamic velocity perturbations. In this limit case, a correct description
of the FTF reduces to predictions of model (a) obtained for uniform flow oscil-
lations.

Predictions between the different models are further compared when the flame
angle is reduced to α = π/6 and π/12 in Fig. 4.6-center and right respectively.
The flame aspect ratio H/L = cosα regularly increases from left to right.
When α = π/6, the gain predicted by model (c) takes slightly higher values
than model (a) and (b) predictions. The main difference is again observed on
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the phase lag evolution. Predictions from model (c) closely follow those from
the uniform model (a) at low reduced frequencies ω∗ ≤ π and then deviate for
larger frequencies to follow the same trend as model (b) predictions at high
frequencies with a regularly increasing phase lag. The same behavior can be
noticed for a longer flame when α = π/12 in Fig. 4.6-right. In this case, large
differences may be observed for the predicted gain. Model (a) and (b) col-
lapse on the same curve, but predictions from model (c) indicate that the flame
strongly responds to flow perturbations over a wide range of frequencies. This
overestimation of the gain with model (c) will be examined in further detail in
the next section, but it is first worth analyzing the evolution of the phase lag
at low frequency.

The three different models are now compared when the reduced frequency ω∗

takes small values. A development in Taylor series around the value ω∗ = 0
yields the expressions presented in the third column in Tab. 4.1. The expression
found show that the uniform model (a) and the present model (c) have the same
limit at low reduced frequencies while the unidimensional convective model (b)
features a higher value of the phase slope around ω∗ = 0. FTF measurements
[Ducruix et al. (2000); Durox et al. (2009)] indicate that predictions from
model (a) are more accurate at low frequency than those from model (b). The
reason indicated by Schuller et al. (2003a) is that the convective model (b)
violates mass balance, but enables to capture a regularly increasing phase lag
at high frequency. Model (c) developed in this study satisfies mass balance
and improves predictions of the FTF phase lag. The incompressible convected
wave satisfying the continuity equation enables to retrieve the correct phase lag
behavior at low frequency and the convective behavior is still captured at higher
frequency. It is also worth noting that, although they look close, the phase lag
curves in Fig. 4.6-right calculated with models (b) and (c) are separated by
about π/2 over a large frequency range. This observation is supported by
the expression presented in the fourth column of Tab. 4.1. These expressions
indicate the approximation of the FTF of elongated flames (α≪ 1) in the high
frequency limit for the three different models. The phase lag of model (b) is
about φb = ω∗ − π/2 while the phase lag of model (c) is about φc = ω∗ − π. It
is thus shown that the phase lag slope is equal to unity in both models but a
constant gap of π/2 is predicted between the two phase lags. This difference is
significant for a phase lag which values are defined between 0 and 2π. It is well
known that small differences on the FTF phase lag may lead to large deviations
in the predictions of stability margins of a combustor [Schuller et al. (2003b);
Noiray et al. (2006b); Wolf et al. (2012)].

4.2.3 Spatial decay of fresh gas velocity perturbations

One difficulty with model (c) predictions is the large values taken by the FTF
gain even at relatively high reduced frequencies which are not observed in ex-
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periments. This difference may result from a too crude description of the per-
turbed flow field or of the flame front dynamics. Laser Doppler velocimetry
[Baillot et al. (1992)] and particle imaging velocimetry [Schuller et al. (2002)]
measurements realized in the fresh reactants show that the amplitude of the
velocity perturbations is decreasing with the distance above the burner along
its centerline. A numerical integration of the G-equation showed that such an
accurate description of the decay of the velocity perturbation is an important
feature that needs to be considered to retrieve the measured FTF [Schuller et al.
(2002)]. In the experiments conducted by Durox et al. (2004) and by Birbaud
et al. (2006), the axial velocity perturbation field along the vertical axis was
examined in detail in the fresh reactant stream. It was found that velocity
perturbations decay exponentially with the distance to the burner nozzle, with
an increasing decay rate as the forcing frequency is increased.

Birbaud et al. (2006) indicated in their experimental analysis that the feedback
from flame wrinkling on the fresh reactant dynamics is the origin of the incom-
pressible convected velocity disturbance observed in the experiments. The re-
gion of influence is a function of the amplitude and frequency of flame wrinkling.
Model (c) in Eq. (4.11) does not consider flame wrinkles that are attenuated
due for example to curvature or stretch effects [Wang et al. (2009); Preetham
et al. (2010)] or because the region of influence is reduced when the frequency
increases [Birbaud et al. (2006)]. The radial velocity perturbation imposed at
the burner outlet in Eq. (4.1) near the burner rim is also probably too large,
because the flow perturbation inside the injection tube is unidirectional. These
different mechanisms highlight the limits of model (c) and contribute to the de-
cay of flow perturbations when the frequency increases and when the distance
to the nozzle outlet increases. One possibility to reproduce these observations is
to modify the reduced frequency k∗ describing velocity disturbances convected
by the mean flow and introduce a complex component:

k∗ =
ω

v0
H(1 + ib) (4.13)

The real part ωH/v0 still describes the convection of velocity disturbances
along the burner axis at the mean flow speed v0. The imaginary component
characterized by the decay rate −bω/v0 enables to reproduce the exponential
decrease of flow perturbations along the vertical axis observed in experiments.
It is also worth noting that in the model proposed in Eq. (4.13), the decay rate
increases with the forcing frequency as noted in experiments [Birbaud et al.
(2006)]. Using Eq. (4.13), the symbolic expression for the FTF with model
(c) remains unchanged except for the different definition of k∗. Schuller et al.
(2002) chose to represent the perturbation decay by a linear approximation
that was determined experimentally for a premixed methane/air flame with an
equivalence ratio φ = 1.05 stabilized in a flow of mean velocity v0 = 0.97m.s−1:
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|v1(y)| = 2
1

2a0

(
1 −

a1

a0
y

)
(4.14)

where a0 = 0.20 m.s−1 and a1 = 5 m.s−1 were measured for a forcing frequency
f = 10.5 Hz and a relatively large perturbation level |v1/v0| = 0.29. This leads
to the following value for b = a1v0/(a0ω) ≃ 0.4 at low frequency.

FTF predictions with model (c) are shown in Fig. 4.7 for different values of
the decay parameter b = 0, 0.1 and 0.4 and flame angle. For short flames,
when the aspect ratio is relatively small α = π/3 (H/L = 0.5), the decay pa-
rameter barely modifies the gain and phase of the flame response because the
fresh reactant region is not large enough for the velocity perturbation to decay
significantly before reaching the flame tip. For longer flames, when the flame
aspect ratio increases α = π/6 (H/L = 0.87) and α = π/12 (H/L = 0.97), the
decay parameter again barely modifies the phase lag evolution except that small
undulations appear around the curve obtained for b = 0. These undulations
were also observed in recent experiments [Cuquel et al. (2011a)]. The main
effect of the decay parameter is on the FTF gain. When the factor b increases,
the gain rapidly drops, particularly for elongated flames.

Model (c) combined with a complex representation of k∗ offers a suitable frame-
work to analyze the response of conical flames submitted to flow disturbances
when the dynamics of the flame anchoring point can be neglected. It was
shown that the decay factor b barely modifies the FTF phase lag, but enables
to reproduce the perturbation decay observed in experiments conducted with
elongated flames and leading to a strong attenuation of the FTF gain when
the forcing frequency increases. These different predictions are validated in the
next section with experiments.

4.3 Experimental validation

The experimental results presented in this section were carried out on a burner
of radius R = 11 mm with a mean flow velocity v0 = 1.56 m.s−1 at the burner
outlet when the burner is fed by a methane/air mixture with a fixed equivalence
ratio φ = 1.03. The flame displacement speed is set to Sd = 0.44 m.s−1 by
matching the experimental and theoretical flame heights as in Schuller et al.
(2002).

4.3.1 Analysis of flame wrinkling

Flame images are first compared with the flame shapes predicted by the G-
equation with an incompressible convective velocity perturbation model, with
or without axial decay. The flame shapes are first compared in Fig. 4.8 (a)
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1)

2)

3)

(a) ω∗ = 6.55.

1)

2)

3)

(b) ω∗ = 16.37.

Figure 4.8: (1) Images of the conical flame submitted to a modulation at f = 40 Hz
(top figures) and f = 100 Hz (bottom figures) for a perturbation level vrms

1
/v0 = 0.1.

(2) and (3) Flame shapes predicted with the incompressible convective model with (2)
b = 0 and (3) b = 0.4. Flow conditions: v0 = 1.56 m.s−1, Sd = 0.44 m.s−1. Flame
geometry: R = 0.011 m, α = 0.286 rad.
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and (b) for a forcing level of vrms
1 /v0 = 0.1 at two different forcing frequencies

f = 40 Hz and f = 100 Hz, respectively corresponding to reduced frequency
values of ω∗ = 6.55 and ω∗ = 16.37. In both figures, the shape taken by the
flame is presented at six successive phases of the periodic excitation, each be-
ing separated by a constant phase difference of π/3 rad. Experimental images
presented in Fig. 4.8 in inverted black and white colors are presented in the top
row (1), followed by predictions with the incompressible convective model in the
second row (2). Shapes predicted with the decaying incompressible convective
model are presented in bottom row (3) when the decay rate b is fixed to b = 0.4.
At relatively low frequency ω∗ = 6.5, the flame is executing a quasi-uniform
bulk oscillation in the vertical direction because the flame is almost compact
with respect to the hydrodynamic velocity perturbation wavelength λ = v0/f .
Predictions with models (2) and (3) retrieve well the flame shape and in partic-
ular, the correct amplitude and phase lag of wrinkles observed along the flame
fronts. However, a few differences persist near the flame tip, where the models
feature very thin zones of fresh gases. These regions are not observed in the
experiments, because curvature effects modify the flame speed near the flame
tip and its dynamics [Poinsot et al. (1992)]. It is however expected that these
small differences do not affect the global response of the flame because only a
small part of the flame surface area is located at the flame tip.

At higher reduced frequency ω∗ = 16.37, images highlight important flame
wrinkles, convected from the flame base to the flame tip. Model (2) retrieves
this phenomenon, but the amplitude of the flame front deformation is over es-
timated. These wrinkles provoke the shedding of large unburnt gas pockets
above the flame tip, a feature that has not been observed in experiments con-
ducted for these forcing conditions. These large flame surface fluctuations are
responsible of the over prediction of the FTF gain observed in Fig. 4.5. Predic-
tions with the decaying velocity perturbation model (3) match better with the
observed shapes, especially in terms of flame front perturbation amplitude. Ex-
periments however indicate that the flame wrinkles form cusps for this forcing
level, a nonlinear phenomenon that cannot be anticipated by the linear models
considered in this chapter.

4.3.2 Analysis of Flame Transfer Function

The comparison between predictions and measurements of the shapes taken by
the flame during the modulation cycle is now completed by analyzing the cor-
responding FTF. For a fixed perturbation level vrms

1 /v0 = 0.04, the FTF was
determined between 20 and 250 Hz, with a frequency resolution of 5 Hz. Exper-
imental results (red line) are presented in Fig. 4.9, along with predictions from a
uniform (thin black line) and purely convective (dashed black lines) models and
the divergent-free convective model derived in the present study (thick black
line). These predictions were obtained with the following set of parameters
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Figure 4.9: (left) FTF gain (top) and phase lag (bottom) as a function of the
forcing frequency. Predictions with the non-decaying incompressible convective veloc-
ity perturbation model FA(ω) (thick black line) are compared to predictions obtained
with a uniform flow oscillation (thin black line), with a purely convective perturbation
(dashed black line), and to measurements (red line). (right) FTF gain (top) and
phase lag (bottom) as a function of the forcing frequency. Predictions from the decay-
ing incompressible convective velocity perturbation model FA(ω, b), with b = 0.4 (thick
black line) are compared to measurements (red line).

R = 0.011 m, v0 = 1.56 m.s−1 and Sd = 0.44 m.s−1, where the value chosen
for the flame speed Sd does not correspond to the laminar burning velocity
SL = 0.39 m.s−1 for this mixture equivalence ratio φ = 1.03 [Vagelopoulos and
Egolfopoulos (1998)]. This value was fixed in order to match the observed and
theoretical steady flame heights [Schuller et al. (2002); Cuquel et al. (2013b)].
Predictions with a uniform modulation (thin black line in Fig. 4.9-left) re-
produce the correct phase lag evolution observed in experiments at very low
frequency, but rapidly fail in predicting the phase lag at higher frequencies.
The purely convective model (dashed black line in Fig. 4.9-left) retrieves the
regular increase of the phase lag but yields too large phase lags at low frequency.
Predictions of the FTF gain with these two models are very close. Predictions
from Eq. (4.11) derived in this study, with the incompressible convected veloc-
ity perturbation field (thick black line in Fig. 4.9-left), retrieve both the right
low frequency behavior and the regular increase of the phase lag in the interme-
diate frequency range. This model however largely over-estimates the measured
values of the gain, but it is worth noticing that it reproduces well the correct
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frequencies of the secondary extrema observed in the FTF gain measurements.

This problem identified in the prediction of the gain may be overcome by taking
into account the decrease of the amplitude of the velocity perturbation observed
along the vertical axis. Using a decay rate b = 0.4 in Eq. (4.13), predictions with
this decaying incompressible convective velocity model are shown to collapse
well with experimental results over a large frequency range in Fig. 4.9-right.
This improved model enables to reproduce the gain evolution as well as the
different humps observed in experiments. Predictions of the phase lag are also
slightly improved. The small oscillations superimposed on the phase curve are
observed in the measurements as well. This model yields now a satisfactory
representation of the FTF in the low and intermediate frequency ranges, but it
still fails to reproduce the phase lag saturation observed in the high frequency
limit. This features is important for thermo-acoustic instability prediction be-
cause it controls the flame response over a wide range of frequencies for high
perturbation levels [Durox et al. (2009)]. This problem is tackled in Chapter 5
by examining the flame base dynamics.

4.4 Impulse response

Recently, the impulse response of conical and wedge flames has been studied
theoretically by Blumenthal et al. (2013). Analytical expressions were derived
based on two different velocity perturbation models. The uniform flow per-
turbation model used by Ducruix et al. (2000) may be described in the time
domain by: v1(x, y, t) = v1δ(t) where δ is the Dirac delta function. It repre-
sents a spatially uniform impulse in the time domain corresponding to a sudden
increase and decrease of the axial velocity. The convective disturbance consid-
ered by Schuller et al. (2003a) takes in the time domain the form of a spatially
convected velocity impulse: v1(x, y, t) = v1δ(t − y/v0). The impulse response
of conical flames submitted to these disturbances writes:

hU (t) =
2

τr

(
1 −

t

τr

)
(H(t) −H(t− τr)) (4.15)

hC(t) =
2

τr − τc

[(
1 −

t

τr

)
(H(t) −H(t− τr))

−

(
1 −

t

τc

)
(H(t) −H(t− τc))

]
(4.16)

where H(t) is the Heaviside step function. Equation (4.15) corresponds to
the flame response hU (t) to the uniform flow impulse. Equation (4.16) de-
notes the flame response to the convected impulse. The uniform impulse re-
sponse only depends on the time variable t and on the “restoration” time scale
τr = L/(v0 cosα) which is linked to the convection of flame wrinkles along the
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steady flame front of length L at a speed v0 cosα equal to the steady velocity
component tangential to the steady flame front. This impulse response de-
creases linearly with time as shown in Fig. 4.10-top, from the initial instant
where hU (0+) = 2/τr and vanishes for t ≥ τr. The impulse response obtained
for a convected disturbance depends on two time scales: the “restoration” time
scale τr = L/(v0 cosα) and the “convection” time scale τc = H/v0 = τr cos2 α.
The convection characteristic time is linked to velocity perturbations in the
fresh gases that are convected by the mean flow at a speed v0 over a distance
equal to the flame height H = R/ tanα. This impulse response is growing lin-
early from zero at t = 0+ to a maximum value defined by hC(τc) = 2/τr. From
that maximum value, the impulse response decreases linearly for longer times
to reach zero for times larger than the restoration time τr: hC(t > τr) = 0.

4.4.1 Unit response to an incompressible convected impulse

The unit response to an incompressible convected disturbance is examined be-
low. The model relies on a convective axial velocity perturbation defined by:

v1(r, y, t) = v1δ(t− y/v0) (4.17)

The radial velocity perturbation component u1(r, y, t) is deduced from a local
mass balance in the fresh gases:

∂v1
∂y

+
1

r

∂ru1

∂r
= 0 (4.18)

This leads to the following expression for the radial velocity perturbation com-
ponent:

u1(r, y, t) = −v1
r

2v0

δ(t− y/v0)

t− y/v0
(4.19)

The velocity perturbation component normal to the steady flame front, taken
at the flame front location for Y = 0, now writes:

V1(X, t) = v1δ(t−X cosα/v0)

[
sinα−

cosα

2v0

R−X sinα

t−X cosα/v0

]
(4.20)

The resulting flame wrinkles in a frame attached to the flame front are given
by:

ξ(X, t) =
1

U0

∫ X

0
V1

(
X ′, t−

X −X ′

U0

)
dX ′ (4.21)
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Figure 4.10: Impulse response of a conical flame. The impulse response is plotted as
a function of time, both made dimensionless with the restoration time scale τr. The
uniform and convective models derived by Blumenthal et al. (2013) are plotted on the
upper and middle figures. Results from the incompressible convective model are plotted
in the bottom figure. Different curves are associated to different values of α = π/3
(light grey), π/4, π/6 and π/12 (black).
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Integration of this equation yields:

ξ(X∗, t) =
v1
v0

1

2

τc
τr − τc

[
2

τc

(
1 +

1

2

τc
τr − τc

)
(H(t/τc −X∗) −H(t/τr −X∗))

+ (1 −X∗) δ(t/τc −X∗) − δ(t/τc −X∗)] (4.22)

where X∗ = X/L is the dimensionless variable along the steady flame front.
The resulting flame surface area perturbations may be obtained by integration
(see Eq. (1.19) in Chapter 1):

A1

A0
=

2 sinα cosα

R2

∫ L

0
ξ(X, t)dX (4.23)

One finally obtains:

hIC =
1

τr − τc

[
τr

τr − τc

(
1 −

t

τc

)
(H(t− τc) −H(t))

+

(
τc
τr

−

(
1 +

1

1 − τc/τr

)(
1 −

t

τr

))
(H(t− τr) −H(t))

]
(4.24)

This impulse response is plotted in Fig. 4.10-bottom for different values of
the flame tip half-angle α = π/3;π/4;π/6;π/12. Like the impulse response
obtained for a uniform perturbation, the impulse response features first a jump
at initial instant t = 0 when hIC(0+) = τr. The response then increases linearly
until t = τc where hIC(τc) = 2τr before decreasing linearly down to the value:

hIC(τ−r ) = −
τc/τr
τr − τc

= −
1

τr tan2 α
(4.25)

This development around t = τ−r explains why the negative values of the im-
pulse response strongly increases when the flame tip half-angle is close to zero
for elongated flames. It is worth noting that these large negatives values of the
impulse response are found for elongated flames. In this case, FTF gain over-
predictions were observed with the incompressible convective model. For larger
times when t ≥ τr, the incompressible convective impulse response vanishes.
This new incompressible convective model appears as a compromise between
the two previous models. It reproduces the jump at initial time from the uni-
form model but also exhibits a non-monotonic behavior as the purely convective
model. However, the negative values taken close to t = τr by the model derived
here constitute a significant difference compared to previously derived models.
These negative values are a consequence of the unity constraint imposing that
the impulse response time-integral is equal to unity.



98 Chapter 4 - Effects of the velocity perturbation model on the FTF

−0.05 0 0.05 0.1 0.15
−50

0

50

Time (s)

Im
p

u
ls

e 
re

sp
o
n

se
 (

s−
1
)

−0.05 0 0.05 0.1 0.15
−50

0

50

Time (s)

Im
p

u
ls

e 
re

sp
o
n

se
 (

s−
1
)

−0.05 0 0.05 0.1 0.15
−50

0

50

Time (s)

Im
p

u
ls

e 
re

sp
o
n

se
 (

s−
1
)

Figure 4.11: The experimentally determined impulse response (red curves) is plotted
as a function of time and compared to predictions from different models (black curves):
uniform model (top), convective model (center) and incompressible convective model
(bottom). τr = 0.261 s−1.τc = 0.240 s−1.
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Figure 4.12: Flame Transfer Function determined with random flow perturbation as
a function of the forcing frequency.

4.4.2 Comparison with experimental data

In Chapter 3, the response of conical flames to random flow perturbations was
determined experimentally. These data are used here to determine the im-
pulse response. Matlab is first used to convert the random time signal into a
state space model. This model is then used to determine the unit impulse re-
sponse. Results are compared to predictions for the different models examined
in Fig. 4.11. The measured impulse response increases rapidly around t = 0
s, then oscillates between t = 0 s and t ∼ 0.02 s and rapidly decreases before
vanishing around t = 0.03 s. Predictions with the uniform model (top figure)
retrieve the jump at initial time but does not capture the later time behavior.
The impulse response determined with the convective model (center figure)
misses the initial time jump but retrieves the strong decrease of the response
around t = 0.02 s. Calculations with the incompressible convective model (bot-
tom figure) catch both the sudden increase at t = 0 s and the sudden decrease
at t = 0.02 s, as well as negative values around t = 0.03 s.

Differences observed between experimental and theoretical impulse responses
can partly be explained by looking more closely at the FTF. By determining
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Figure 4.13: The filtered experimental impulse response (red curves) is plotted as
a function of time and compared to predictions from different filtered models (black
curves): uniform model (top), convective model (center) and incompressible convective
model (bottom). τr = 0.261 s−1.τc = 0.240 s−1. Cut-off frequency of the high-pass
filter: fc = 20 Hz.
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the FTF with random signals, one gather information about all the frequencies
comprised between 0 and fs/2, where fs = 4096 Hz stands for the sampling
frequency. As explained in Chapter 2, the burnt gases on the top of the flame
undergo a shear-layer instability which is associated to buoyant effects and
which is not directly related to the acoustic velocity forcing. This instability
produces a feedback on the flame front dynamics and generates low frequency
coherent heat release rate disturbances and velocity perturbations in the fresh
reactants with a characteristic frequency of about 10 Hz [Durox et al. (1990);
Baillot et al. (1992); Li et al. (2012)]. This additional phenomenon is an arti-
fact that cannot be eliminated using random velocity disturbances to determine
the FTF as shown in Fig. 4.12. When the flame is submitted to harmonic per-
turbations, velocity and heat release rate large fluctuations are produced at a
single frequency. The contribution from the flame flickering to the heat release
rate perturbations is thus negligible at that frequency compared to the contri-
bution induced by the acoustic perturbation. When random perturbations are
used, the power is distributed over a wide range of frequencies. In that case,
the contribution from the flame flickering can be larger than the contribution
from the acoustic perturbations around 10 Hz and strongly impact the FTF
measured with random velocity modulations. This instability is not included in
the unit impulse response models examined in this work. To get rid of that low
frequency hydrodynamic instability, both experimental and theoretical impulse
responses are filtered using a 5th order Butterworth low-pass filter with a cut-
off frequency of 20 Hz. This operation is combined with a zero phase shift filter
to ensure that no phase difference is introduced by the filtering operation. The
results are shown in Fig. 4.13 for the uniform model (top figure), the convective
model (center figure) and the incompressible convective model (bottom figure).
The incompressible convective model features the best fit with experiments for
the conical flame impulse response. However, large negative values are pre-
dicted in the time interval between t = τr and t = τc. This behavior does not
match well with experimental data. This feature may probably be improved by
accounting for the axial decrease of the velocity impulse along the burner axis,
as shown in section 4.2.3 in the frequency domain.

4.5 Conclusion

The FTF of conical flames submitted to different velocity perturbations has
been studied in the case of an axisymmetric conical flame. It was shown that
the FTF phase lag may be captured by considering an incompressible convec-
tive velocity perturbation model with a constant decay rate along the burner
axis in the frequency domain. This was emphasized by several comparisons
with predictions from different models and with experimental data. An analy-
sis was also carried out in the time domain to determine the flame unit impulse
response. Including a two-dimensional incompressible convected disturbance
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was shown to greatly improve the FTF or unit impulse response, but the high
frequency evolution of the FTF phase lag is still not well modeled. The FTF
phase lag features a saturation at high frequency that is promoted as the per-
turbation level increases. This phenomenon is studied in the next chapter by
considering the flame base contribution FB(ω) to the FTF.



Chapter 5

Impact of flame-wall unsteady
heat transfer on FTF

Effects of heat loss on the Flame Transfer Function (FTF) of an axisym-
metric premixed conical flame is studied in this chapter. It is shown that
unsteady heat transfer from the flame to the burner rim determines the
dynamics of the anchoring point. A model for the contribution FB(ω) to
the FTF from the flame base displacement is derived. It takes into ac-
count unsteady heat losses from the flame base to the burner rim and the
convection of the resulting flame wrinkles along the steady flame front.
A model for enthalpy waves traveling between the flame base and the
burner rim is used to derive the flame base motion frequency response
and ultimately, the contribution to the FTF. This contribution to flame
wrinkling becomes predominant at high frequencies and is responsible
for saturation of the FTF phase lag at a nearly constant value. Experi-
ments indicate that this phase lag saturation occurs at lower frequencies
when the velocity modulation level is increased. Predictions from mod-
els including the flame base motion and the FTF phase lag saturation
are compared to measurements. It is in particular shown that the flame
anchoring point dynamics is responsible for the nonlinear response of
the FTF phase lag when the perturbation level increases.

5.1 Introduction

Significant progresses were achieved in the previous chapter concerning the
theoretical modeling of the phase lag between flow and heat release rate dis-
turbances in the case of a premixed laminar conical flames. The FTF phase
lag was shown to be well reproduced in the low and intermediate ranges of
frequencies. However, the high frequency behavior of the FTF phase lag was
not captured. It was also shown in Chapter 1 (see Eq. (1.21)) that the FTF
can be split into two different contributions corresponding to two features of
the reactive flow dynamics. The first one is the feedback from the wrinkled
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flame front on the fresh reactant gas dynamics. This mechanism examined
in the previous chapter can be well captured by imposing a divergence free
convective flow perturbation to the fresh reactant velocity field. This type of
perturbation is responsible for the regular increase of the phase lag with the
forcing frequency observed in experiments when the flame aspect ratio is not
too small. In this chapter, a second mechanism associated to the dynamics of
the anchoring point is examined. It was shown that the flame base motion is
controlled by unsteady heat losses from the flame to the burner rim. Pertur-
bations of the flame anchoring point are further convected along the flame front.

The contribution of the flame base motion to flame front wrinkling is often
neglected in theoretical models of conical FTF [Fleifil et al. (1996); Ducruix
et al. (2000); Schuller et al. (2003a); Preetham and Lieuwen (2004)] by as-
suming that the flame is fixed to the anchoring device ξ(X = 0, t) = 0 (see
Eq. 1.13 in Chapter 1). Experiments [Kornilov (2006); Karimi et al. (2009)]
however indicate that this is a crude approximation. Kornilov et al. (2007)
designed an experiment to control the flame motion at its base and analyzed
its effects on FTF. They showed that perturbations from the flame base are
convected along the flame front (as indicated by Eq. (1.13) and that the flame
front, perturbed by the flame base motion, produces as a feedback a velocity
perturbation in the fresh reactants around the flame. These authors also found
that in this configuration, the corresponding FTF exhibits a saturation at high
frequencies. This problem was also examined theoretically. Lee and Lieuwen
(2003) used a kinematic description of the flame motion to derive an expression
of the FTF as a function of flame base perturbations. The link between these
perturbations and the incoming acoustic velocity perturbations was however
not properly addressed and thus no results from that modeling were presented
in their study. In the case of a ducted V-flame, Dowling (1999) also found that
the motion at the flame base needs to be considered and was responsible of
the nonlinear saturation of the FTF gain. It is shown here that in the case of
a conical flame, the flame base motion mainly modifies the phase lag of the FTF.

In their FTF model of small conical flames anchored on a perforated plate,
Altay et al. (2009) combined the kinematic description of the flame motion
from Fleifil et al. (1996) to treat regions where the flame front is inclined, with
a dynamic model for fluctuations of the mass burning rate where planar flame
elements lie in front of the burner [Rook et al. (2002); Rook and de Goey
(2003)]. It is shown in this chapter that the motion at the flame base needs
also to be considered to describe the response of larger flames, a priori weakly
interacting with the anchoring device. This feature will be shown to be essential
to reproduce the high frequency and nonlinear evolutions of the FTF phase lag
of single conical flames.
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5.2 Flame base motion and its link to the FTF

Heat release rate fluctuations produced by perturbations at the flame base
correspond to the contribution FB(ω) appearing in Eq. (1.21) in Chapter 1.
This contribution results from flame wrinkles, described by the second term in
Eq. (1.13), which are generated at the flame origin X = 0 and are convected
along the flame front towards the flame tip by the mean flow velocity compo-
nent tangential to the steady flame front v0 cosα (see Section 1.2.1). These
wrinkles integrated over the flame surface produce in turn surface area pertur-
bations and thus heat release rate disturbances.

The starting point to model this contribution is to examine the resulting flame
surface area fluctuations. Considering only the contribution from flame base
disturbances in Eq. (1.13), one obtains (see Chapter 1 for more details):

Ã1B = 2π

∫ L

0
ξ̃(X) cosαdX = 2π cosα

eiKL − 1

iK
ξ̃(0) (5.1)

By dividing this expression by the steady flame surface area A0, it is possible
to determine the flame transfer function FB component:

FB(ω) =
Ã1B/A0

ṽ1/v0
=
Ã1B/A0

ξ̃(0)/R

ξ̃(0)/R

ṽ1/v0
= FC(ω∗, α) Ξ(ω) (5.2)

that can be decomposed as a product of two contributions Fc(ω∗, α) and Ξ(ω),
where:

FC(ω∗, α) = 2 cosα
eiω∗ − 1

iω∗
(5.3)

is a filter which is a function of the flame angle α and of the reduced frequency
ω∗ = ωR/(Sd cosα), and

Ξ(ω) =
ξ̃(0)/R

ṽ1/v0
(5.4)

which links the flame base motion normal to the flame front to the axial veloc-
ity modulation at the burner outlet.

Equation 5.2 describes how small displacements at the flame base are filtered
by the flame and produce heat release rate disturbances. The frequency re-
sponse of the flame base motion with respect to the velocity modulation at
the burner outlet is represented here by Ξ(ω) as a function of the forcing fre-
quency. Flame displacements at the flame foot are then convected along the
flame front and their contribution to heat release rate perturbations is filtered
by FC(ω∗, α) = GC(ω∗, α) exp(iϕC(ω∗)) plotted in Fig. 5.1 with respect to the
reduced frequency ω∗ for different values of the flame tip half-angle α = π/3,
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Figure 5.1: Transfer function FC(ω∗, α) plotted as a function of reduced frequency
ω∗ for different angles α = π/12 (black), π/6 (dark grey), and π/3 (light grey).

π/6 and π/12. The gain GC is a low-pass filter with decreasing amplitudes for
increasing flame angles α. The unwrapped phase lag ϕC is independent of the
flame angle and is characterized by oscillating values comprised between 0 and
π when the reduced frequency increases, without any values between π and 2π.
This feature indicates that, although wrinkles produced at the flame base are
convected along the flame front, the resulting heat release rate disturbances
do not feature a regular increase of the phase lag with the reduced frequency.
The remaining problem is to model the flame base displacement induced by
the velocity modulation at the burner outlet to determine Ξ(ω). This issue is
addressed in the next section.

5.3 Modeling the flame base displacement frequency
response Ξ(ω)

To model Ξ(ω), it is natural to examine the motion of a planar premixed flame
stabilized close to a solid boundary and submitted to acoustic perturbations.
Away from the solid elements, one may reasonably consider that the flame dy-
namics obey to an adiabatic evolution. In the vicinity of the anchoring device,
heat transfer between the flame and the solid wall is of significant importance.
The dynamics of a planar flame front interacting with a solid permeable in-
jection unit has already been treated theoretically [Joulin (1982); McIntosh
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and Clarke (1984); Mclntosh (1990)]. Models derived in these studies were
used to determine the corresponding transfer function of planar and inclined
flames stabilized above porous burners [Rook et al. (2002); Altay et al. (2009)].

It was shown that planar flame elements stabilized on the top of the burner
are perturbed in two ways. Firstly, acoustic velocity perturbations produce
regular flame front displacements with respect to the burner position. These
perturbations in the flame position modify in turn the injection conditions at
the burner outlet. When synchronized they may lead to a resonant coupling
in certain circumstances [Rook et al. (2002)]. Enthalpy h = ∆h0

fYf + cpT
disturbances between the flame front and the burner control this interaction,
where ∆h0

f is the heat value per unit mass of fuel, Yf is the fuel mass fraction
in the mixture, cp is the mixture specific heat at constant pressure and T is the
mixture temperature.

In Rook et al. (2002) analysis, the fuel mass fraction Yf is fixed at the flame
front and the temperature T remains constant at the burner outlet and equal
to Tu. Fluctuations of the flame front distance with respect to the burner
outlet induce enthalpy disturbances that are transported by both convection
and diffusion processes, from the burner to the flame resulting in temperature
fluctuations. When these disturbances reach the flame front, they induce in
turn perturbations in flame speed producing a displacement of the flame front.
These phenomena can couple and lead to resonance when the enthalpy distur-
bance wavelength is of the order of 4ψf0

[Rook et al. (2002); Rook and de Goey
(2003)], where ψf0

is the flame stand-off distance with respect to the burner
outlet (see Fig. 1.3). Using this mechanism, Rook et al. (2002) obtained an
expression for the transfer function linking flame speed perturbations S̃d1 to
acoustic velocity disturbances Ṽ1(X = ψf0

) at the flame base. This relation
is rewritten here in a slightly modified form with compact notations to high-
light the main dimensionless numbers controlling the flame anchoring point
dynamics:

A(Ze, ω̂,Ψf ) =
S̃d1

Ṽ1(X = ψf0
)

=

[
1 −

iω̂

Ze
sinh (Ψf ) exp

(
Ψf (1 − iω̂)1/2

)]−1

(5.5)

where

ω̂ = 4ω
δ

Sd0

Ze =
Ta

Tb

Tb − Tu

Tb
and Ψf =

ψf0

2δ
=

1

2
log

(
Tad − Tu

Tad − Tb

)
(5.6)

In these expressions, ω denotes the angular forcing frequency, δ indicates the
thermal flame thickness, Sd0 is the steady flame speed, Ta is the activation
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temperature, Tb is the burnt gas temperature, Tu is the fresh mixture gas
temperature, also taken here equal to the burner temperature, ψf0

corresponds
to the steady flame stand-off distance above the burner and Tad is the adiabatic
flame temperature.
Dimensional analysis indicates that the problem can be fully described by only
three dimensionless numbers, namely the Zeldovich number Ze, a reduced fre-
quency associated with a flame time scale ω̂, and the dimensionless flame stand-
off distance Ψf with respect to the flame thickness. It is here interesting to
further introduce the ratio δ∗ between the thermal flame thickness projected
along the horizontal direction δ cosα divided by the burner radius R:

δ∗ =
δ cosα

R
and ω̂ = 4δ∗ω∗ (5.7)

This new ratio enables as a first approximation to take into account the fact
that the flame front near the anchoring device is not parallel to the burner
lip but features an angle α with respect to the axial direction [Cuquel et al.
(2013a)]. It also clarifies the link between the reduced frequencies ω∗ controlling
the dynamics of the inclined flame far from the solid boundary and ω̂ control-
ling the flame base motion near solid elements. As the flame angle α does not
appear explicitly in the expression of ω̂, relations in Eq. (5.7) only yield approx-
imate estimates of the influence of the flame angle. They are however useful
to sort out the different mechanisms controlling the flame dynamics depending
on the size of the injector. These relations indicate that for small burner outlet
radius which dimension is of the same order of magnitude as the thermal flame
thickness δ∗ ≃ 1, and ω̂ ∼ ω∗. This is for example the case in porous burners
used to stabilize planar or small conical flames [Schreel et al. (2002); Rook
and de Goey (2003); Schreel et al. (2005); Altay et al. (2009); Kedia et al.
(2011)]. In many situations, the flame thickness is however much smaller than
the injection tube radius and δ∗ ≪ 1, indicating that the reduced frequencies
ω̂ and ω∗ are well separated for larger flames. This analysis emphasizes that in
many practical burners, flame wrinkling resulting from velocity and anchoring
point disturbances produce contributions to heat release rate disturbances in
different frequency bands.

It is now possible to use Eq. (5.5) to determine the motion imparted to the
flame base of a conical flame using a local kinematic description. The flame
base lies close to the burner rim shear layer where the mean flow velocity is
significantly reduced. Therefore, the convective term appearing in Eq. (1.11)
in Chapter 1 may be neglected. In this case, this equation reduces to:

∂ξ(0)

∂t
= V1(ψf0

, t) − Sd1(t) (5.8)

where V1(ψf0
, t) indicates the velocity perturbation normal to the flame front

at the flame base X = ψf0
and Sd1(t) denotes disturbances of the flame speed
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at the same location. The Fourier transform of Eq. (5.8) yields the following
model for the flame base motion transfer function:

Ξ(ω) = −
v0
iωR

(
1 −

S̃d1

Ṽ1(ψf0
)

)
Ṽ1(ψf0

)

ṽ1
(5.9)

An expression for the remaining term Ṽ1(ψf0
)/ṽ1, linking the normal velocity

perturbation at the flame base at X = ψf0
to the axial velocity modulation at

the burner outlet ṽ1, was proposed in Chapter 4:

Ṽ1(ψf0
)

ṽ1
= sinα

[
1 −

ik∗
2

(
1 −

ψf0

L

)]
exp

(
ik∗

ψf0

L

)
(5.10)

where L = R/ sinα is the steady flame front length and k∗ = ωH/v0 = ω∗ cos2 α
denotes the wavenumber associated to flow perturbations convected along the
axial direction. By combining Eqs. (5.9) and (5.10), one finally obtains the
desired expression linking perturbations at the flame base due to incoming
velocity disturbances:

Ξ(Ze, ω̂,Ψf , α, δ∗) =
ξ̃(0)/R

ṽ1/v0

= −4δ∗
1 −A(Ze, ω̂,Ψf )

iω̂ cosα
exp

(
i
1

2
ω̂Ψf cosα sinα

)

(
1 − i

1

8

ω̂

δ∗
cos2 α (1 − 2δ∗Ψf tanα)

)
(5.11)

For a given mixture and operating conditions, the Zeldovich number is fixed,
the transfer function Ξ is then a function of the reduced frequency ω̂ and its
geometrical characteristics α, Ψf and δ∗. Predictions for Ξ(Ze, ω̂,Ψf , α, δ∗) are
plotted in Fig. 5.2 as a function of ω̂, in terms of gain and phase for different
values of the remaining parameters. The Zeldovich number is kept constant
in all figures: Ze = 10. This value corresponds to the order of magnitude of
Zeldovich numbers for methane/air flames at atmospheric pressure [Gu et al.
(2000)]. In the left figure, the flame tip half angle is changed α = π/12;π/6;π/3
for fixed values of the normalized stand-off distance Ψf = 1 and of the dimen-
sionless flame thickness δ∗ = 0.05. In the center figure, the dimensionless flame
stand-off distance is changed Ψf = 0.5; 1; 2 for fixed values of α = π/12 and
δ∗ = 0.05. In the right figure, the dimensionless flame thickness is changed
δ∗ = 0.005; 0.05; 0.5 for fixed values of α = π/12 and Ψf = 1. The response
corresponds to a frequency passband filter with a resonance-like behavior which
frequency peak location is strongly dependent on the dimensionless flame stand-
off distance Ψf . The gain reaches an almost constant value as the reduced fre-
quency ω̂ is increased. This asymptotic behavior mainly depends on the flame
tip half-angle. The phase lag decreases at low frequencies, before increasing
again and reaching a very small but constant slope at high reduced frequencies
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ω̂. The resonance frequency shifts to higher frequencies as Ψf decreases. All
other parameters remaining constant, a drop in the flame stand-off distance cor-
responds to a shorter resonance wavelength and a larger peak frequency. The
phase lag minimum is also shifted to higher frequencies when Ψf decreases.
The maximum value of the gain depends on the dimensionless flame thickness
δ∗. When the flame thickness is of the order of the burner outlet radius, the
gain maximum value almost doubles compared to a situation where the flame
thickness is much smaller than the burner radius. The phase lag keeps the
same global trends when δ∗ is modified but does not feature the same asymp-
totic value at high frequencies when δ∗ is increased. A modification in the
flame tip half-angle has a significant impact on both the gain and the phase
lag, especially at high frequencies.

This analysis shows that the contribution FB(ω) = FC(ω∗, α) Ξ(Ze, ω̂,Ψf , α, δ∗)
to the FTF F (ω) resulting from wrinkles induced by the flame base motion
features a saturation of the phase lag at high frequencies originating from
Ξ(Ze, ω̂,Ψf , α, δ∗) which is modulated by the oscillation of FC(ω∗, α). An ex-
perimental validation of these predictions is presented in the next section. The
flame base motion is first examined. Its frequency response is measured and is
compared to the predictions from the model derived in the present section.

5.4 Experimental determination of the flame base mo-
tion

The following measurements were conducted on a burner exit featuring a plateau
shape without quartz tube to confine the flame (see Fig. 2.1 in Chapter 2). A
methane/air mixture was used to stabilize a premixed flame above that burner
with the following parameters: R = 0.011 m, φ = 1.03 and v0 = 1.56 m.s−1.
Two modulation levels were investigated: vrms

1 /v0 = 0.1 and 0.05.

5.4.1 Analysis of the flame base motion

Six phase conditioned average images, separated by a constant phase lag, are
presented in Fig. 5.3 over a modulation cycle for a forcing frequency f = 100
Hz and a velocity perturbation level fixed to vrms

1 /v0 = 0.1. The steady flame
position is also plotted in these figures as dashed-dotted white lines to provide
a reference. These images clearly show that the flame base is not motionless,
but undergoes a periodic oscillation around its steady position. These pertur-
bations are then convected along the flame front. Figures 5.4-a and -b plot
the displacement of the flame base around its mean position during one forcing
period, for two different forcing frequencies f = 100 and 200 Hz. This periodic
motion of the flame base is roughly oriented along a main direction, support-
ing the fact that the perturbations at the flame base can effectively be well
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Figure 5.3: Images of the flame base motion taken at six regularly spaced phases
during a modulation cycle for a forcing frequency f = 100 Hz and a velocity fluctuation
level vrms

1
/v0 = 0.1. The steady flame position is indicated as white dashed-dotted

lines. The burner edge is represented in white in the bottom left part of the images.
A premixed methane/air mixture flows out of the burner with at a velocity v0 = 1.56
m.s−1 and an equivalence ratio φ = 1.03.
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Figure 5.4: Flame base motion for a modulation amplitude of vrms
1

/v0 = 0.1 (grey +)
Steady flame base location. (black +) Mean location of the flame base displacement.
(black line) Flame base motion determined experimentally. (black dashed line) Mea-
sured direction normal to the flame front at the flame base, defined by αbase. (grey solid
line) Theoretical direction normal to the flame front, defined by α = arcsin(Sd0/v0).
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Figure 5.5: Flame base displacement as a function of the phase in the excitation
cycle for a modulation amplitude of vrms

1
/v0 = 0.1. The horizontal (△) and vertical

displacements (◦) with respect to the steady flame location are represented, as well as
the displacement in the normal direction with respect to the flame front (�).

described only by a displacement normal to the mean flame front. It was also
found that the mean and steady flame front positions coincide well.

These observations are further supported by Fig. 5.5-a and -b where the flame
base displacement is plotted with respect to the phase of the forcing signal.
The three curves represent the horizontal, vertical and normal to the steady
flame front displacement components. They all feature a periodic signal which
is nearly a harmonic function of time. The amplitude of this displacement is
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Figure 5.6: Scheme of a conical flame with a zoom on the flame base showing the
difference between the flame tip half-angle α and the flame base angle αbase.
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Figure 5.7: Evolutions of the (black curve and circles) phase difference between the
horizontal and the vertical flame front displacement at its base, (grey line) flame tip
half-angle defined by α = arcsin(Sd/v0) and (grey circles) angle αbase between the
flame front at the flame base and the vertical axis. Perturbation level vrms

1
/v0 = 0.1.

of the order of 1 mm, a value which is consistent with other studies conducted
with similar flames in the same flow and forcing conditions [Kornilov (2006);
Karimi et al. (2009)]. Moreover, the phase differences between the horizon-
tal and vertical displacements, shown in Fig. 5.7 (black lines) as a function of
the forcing frequency, are very close to phase opposition (π). This observation
further supports the assumption used in the model that the flame base oscil-
lation is mainly oriented along a single direction. The measured amplitudes of
the horizontal and vertical displacements of the flame base are used to identify
the principal direction of the flame base motion. This information enables to
determine the angle αbase formed by the flame front and the vertical axis near
the flame base (see Fig. 5.6 for the difference with the flame tip half-angle α).
This direction is indicated as black dashed lines in Fig. 5.4-a and -b.
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Figure 5.8: Transfer function Ξ(ω) gain (left) and phase (right) as a function of
the forcing frequency. The theoretical transfer function (black curve) is compared to
measurements for two input levels vrms

1
/v0 = 0.05 (grey curve with square symbols)

and vrms
1

/v0 = 0.1 (black curve with circle symbols).

The normal direction with respect to the theoretical flame front direction de-
fined by the half-angle at the flame tip α = arcsin(Sd0/v0) is also indicated as
black dashed dotted lines for comparison in Fig. 5.4. Predictions largely devi-
ate from measurements because the flame angle αbase at the flame base differs
significantly from the one at the flame tip α. The value of the angle at the flame
base is determined by a balance between the flow velocity and the flame burning
velocity at this location. The burning velocity at the flame base is reduced due
to heat loss to the burner rim and the flow velocity in the wake of the burner
edge takes also small values. These effects combine and modify the flame angle
with respect to its value far from the burner edges [Altay et al. (2010); Kedia
et al. (2011); Kedia and Ghoniem (2013)]. In Fig. 5.7 (grey lines), the values
taken by the angles α (plain line) and αbase (circles) are plotted as a function
of the forcing frequency. It is shown that the difference between the two angles
is significant on all the frequency range of interest. This phenomenon is also
highlighted in the images of the steady flame, where the flame front is slightly
bent close to the burner edge (dashed-dotted lines in Fig. 5.3).

Measurements of the flame base motion are now post-processed to determine
the transfer function Ξexp(ω). These data are compared to predictions from
Eq. (5.11). The flame stand-off distance was determined using images of the
steady flame. In the configuration explored, it was found that ψf0

= 1 mm
(Fig. 5.3). For the methane/air flame investigated stabilized on a plateau-
shaped burner with a outlet radius R = 0.011 m and a for a methane/air
mixture with φ = 1.03 and v0 = 1.56 m.s−1, the following parameters were
used to compute Ξ(ω̂): Tad = 2234 K, Tb = 2000 K, Tu = 300 K, Ta = 24000
K, S̄d0 = 0.44 m.s−1 and δ = 0.47 mm.
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The corresponding dimensionless numbers are Ze = 10.2 [Gu et al. (2000)],
δ∗ = 0.037 and Ψf = 1.056. Measurements were conducted for two velocity
modulation levels vrms

1 /v0 = 0.05 and vrms
1 /v0 = 0.10 over the frequency range

30 to 250 Hz with a frequency resolution of 10 Hz. Results are presented in
Fig. 5.8. The measured gain shows a resonance-like behavior with a peak fre-
quency reached at about 100 Hz and an amplitude of almost 0.6. Data for the
two modulation levels collapse on the same curve except in the region near the
peak value of the gain, which slightly increases with the perturbation level. The
flame base response remains linear for these modulation levels except near res-
onance. This observation is in agreement with previous measurements [Karimi
et al. (2009)], where the mean value of the flame base diameter was found to
be equal to its steady value up to a very high forcing level |v1/v0| ≃ 1. The
authors also found that the amplitude of the dimensionless flame base diame-
ter perturbations scaled linearly with the perturbation level |v1/v0|, even when
|v1/v0| approaches unity. The phase lag plotted in Fig. 5.8 decreases first with
increasing frequencies before reaching an almost constant value for frequencies
higher than 170 Hz. This behavior is in good agreement with predictions, ex-
cept that the predicted gain exceeds by far measurements. The global behavior
is however well retrieved including the correct location of the peak frequency
for the gain of the flame base response. The phase lag is well reproduced by
the model.

5.4.2 Analysis at high frequency

It is now possible to examine the evolution of the phase lag at high frequency.
Expressions from Eqs. (5.3) and (5.11) for FC(ω) and Ξ(ω) are combined and
used to estimate the contribution FB(ω) = FC(ω) Ξ(ω) to the conical flame
response. Results are plotted in Fig. 5.9-left, where predictions for FB(ω)
(grey solid lines) are compared to the FTF F (ω) (black circles) determined
experimentally. The phase lags of the functions FB and F match well at high
frequency and are characterized by a saturation. The gains have the same
behavior in this frequency range as well. This demonstrates that saturation
of the FTF phase lag at high frequency may be captured by including the
description of the flame base motion in the analysis. This motion at the flame
base determines the high frequency behavior of the flame response to velocity
perturbations.

5.5 Nonlinear behavior of the FTF of conical flames

It is now worth examining effects of the perturbation level. For small ampli-
tudes, it was shown that the FTF of conical flames may be captured over the
frequency range of interest by including two main features:
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• The first is the interaction of the flame front with velocity perturbations
convected in the fresh gases. This mechanism was thoroughly analyzed
in Chapter 4. This interaction controls the dynamics of the conical flame
in the low and intermediate frequency ranges. It determines the shape of
the FTF gain as well as the regular increase of the FTF phase lag with the
forcing frequency. It was also shown that the perturbed flow field needs
to satisfy the continuity equation to reproduce the correct FTF behav-
ior observed in experiments at low frequency. These features cannot be
captured by prescribing a uniform bulk oscillation or a one dimensional
convective wave to the perturbed flow field. One possibility is to use an
incompressible convected wave to improve the description of the FTF at
low and intermediates frequencies. This has led to the derivation of an
expression for the FTF component FA.

• The second mechanism was examined in the previous sections and con-
siders the interaction of the flame base with the local perturbed flow field
and unsteady heat loss to the burner. Disturbances originating from the
motion of the flame base are convected along the flame front and result
in additional contributions to the FTF gain and phase lag. It was shown
that this contribution is responsible for the FTF phase lag saturation
at high frequency. By coupling the velocity disturbance model proposed
in Chapter 4 with a description of enthalpy waves originating from the
burner rim and traveling to the flame base, it was possible to capture
the correct flame base motion and retrieve the FTF behavior observed in
experiments at high frequency. This analysis has led to an expression for
the FTF component FB.

These features are not specific to this configuration and can be identified by
examining the different data set of responses to flow perturbations gathered
on single conical flames [Ducruix et al. (2000); Kornilov et al. (2007); Karimi
et al. (2009)] and multiple conical flames [Kornilov et al. (2009); Duchaine
et al. (2011)] stabilized on various burners with different injector sizes. In
several cases, it is found that the FTF phase lag features a saturation at high
frequency, but this is not always the case [Noiray et al. (2008); Kornilov et al.
(2009); Boudy et al. (2011)]. It is also known from studies considering effects
of the input level that the frequency at which this FTF phase lag saturation
occurs strongly depends on the perturbation amplitude [Durox et al. (2009)].
When the perturbation amplitude increases, the FTF gain decreases and satu-
ration of the FTF phase lag is triggered at a lower forcing frequency.

Effects of the input level may be interpreted with the model devised in this
study. The two contributions FA and FB to the FTF feature distinct responses
to the amplitude of incoming velocity disturbances. The gain of the component
FA decreases rapidly as the velocity modulation level increases at the burner
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outlet [Preetham et al. (2008); Durox et al. (2009)], whereas it was shown
by Karimi et al. (2009) and confirmed in this study that the amplitude of
the flame base motion features a linear response even at very large forcing
levels |v1/v0| ≃ 1. This indicates that the component FB can take over FA

on a larger frequency range as the velocity modulation level increases. The
influence of the motion at the flame base on the FTF is becoming increasingly
predominant at lower frequencies over effects of flame wrinkling resulting from
velocity perturbations when the disturbance level increases. This behavior may
be reproduced using the following approximation, where the nonlinear FTF
component FA is modeled with an increasing value of the parameter b when
the perturbation level increases and the FTF component FB is supposed to be
unchanged:

Fnl(ω, b) = FA(ω, b) + FB(ω) (5.12)

It was shown in Section 4.2.3 that when the decay rate b increases the gain of
FA drops while the phase lag remains merely unaffected. This ad-hoc descrip-
tion of effects of the input level cannot be used to fully describe the nonlinear
response of FA, but it features some similarities with measured flame describ-
ing functions [Durox et al. (2009); Boudy et al. (2011)]. The coefficient b is
used here to modify the relative magnitudes of the two terms FA and FB in
Eq. (5.12) to simulate their responses as the velocity modulation is increased.
The function FA(ω, b) considered here uses the decaying incompressible convec-
tive velocity disturbance model derived in Section 4.2.3. The function FB(ω)
is that derived in the Section 5.2.

Predictions from Eq. (5.12) are plotted in Fig. 5.9-center for different values of
the decay rate b = 0.4, 0.45, 0.5, 2.0 (solid black and grey curves), which are
compared to the measured FTF for a small perturbation level vrms

1 /v0 = 0.04
(black circles). The modeled FTF shows different saturation levels for differ-
ent values of b. The frequency where the phase lag saturates decreases as b
decreases, i.e. when |v1/v0| increases. One may also note that the phase lags
reached at saturation are all the same, modulo 2π. This feature is also con-
sistent with previous experimental observations [Durox et al. (2009); Kornilov
et al. (2009)]. Measurements from Durox et al. (2009) are plotted as dark cir-
cles and grey triangles in Fig. 5.9-right for two disturbance levels |v1/v0| = 0.04
and |v1/v0| = 0.07 where they are compared with predictions from Eq. (5.12)
for b = 0.4 and b = 6.0. These values were tuned to reproduce the experi-
ments. This figure clearly confirms that saturation of the phase lag occurs at
lower frequencies when the contribution FA to the FTF is reduced and that it
is possible to match the FTF gain and phase evolutions over the full frequency
range of interest for different perturbation levels with Eq. (5.12) by tuning the
velocity disturbance decay rate b.
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This analysis highlights the nonlinear response of conical flames submitted to
flow perturbations and shows that this behavior results from a competition
between flame wrinkling resulting from velocity and flame base motion distur-
bances, the former mechanism being strongly altered by the disturbance level
while the latter one remains essentially insensitive to the perturbation ampli-
tude. The dynamics at the flame anchoring device is pointed here as controlling
the nonlinear response of the flame to flow perturbations. This was already rec-
ognized by Dowling (1999) in her analysis of the response of a ducted V-flame
to flow perturbations. When the perturbation level reached a certain thresh-
old level, the amplitude of the flame response saturated due to flashback at the
flame anchoring device. In the case of conical flames, it was shown in this study
that the anchoring point dynamics triggered an abrupt change of the phase lag
when the perturbation amplitude increased. In more complex configurations,
it may be inferred that the dynamics of the flame near anchoring devices is
an important element to consider to understand the nonlinear dynamics of the
combustor.

5.6 Conclusion

The heat loss contribution FB(ω) to the FTF has been studied in the case of
an axisymmetric conical flame submitted to acoustic flow perturbations. It was
shown that these perturbations produce disturbances of the flame base motion.
This motion can be modeled by taking into account enthalpy waves traveling
between the flame base and the burner rim. These disturbances wrinkle the
flame front and lead to additional heat release rate perturbations. Their con-
tribution FB(ω) to the global FTF may be deduced. This expression features
a phase lag that saturates at an almost constant value. Measurements were
carried out to determine the flame base motion and the FTF. Predictions were
compared to these data. The model reproduces the resonant peak location of
the flame base disturbance frequency response. Furthermore, the phase lag of
the FTF contribution FB(ω) matches well with the measured FTF phase lag in
the high frequency range where the phase lag saturates. This saturation of the
FTF phase lag occurs at lower frequencies as the perturbation level is increased.
This behavior can be reproduced by a description including a change in the rel-
ative magnitude of the two contributions FA(ω) and FB(ω). Increasing in the
perturbation levels are here modeled by higher decay rates of axial velocity
perturbations. This model enables to reproduce measurements and to observe
a change of the FTF phase lag in the high frequency range as the perturbation
level is increased.



Chapter 6

Confinement effects on the FTF

The influence of confinement side walls on the response of a premixed
conical flame submitted to velocity disturbances is investigated experi-
mentally and theoretically in this chapter. In that case, the confinement
ratio defined here by Cr = R0/R1, where R0 and R1 denote the burner
and flame tube radii and the burnt to unburnt gas volumetric expansion
ratio E = ρu/ρb need to be taken into account in the description of
the FTF. The main effect of confinement is an acceleration of the fresh
stream of reactants induced by the over-pressure of the confined burnt
gases when they cannot fully expand. Experiments on steady flames re-
veal that the flame height increases for increasing confinement ratios
Cr, leading to a gain shift and a phase drop for the FTF. A theoretical
analysis is conducted to model this acceleration and examine its impact
on the steady flame shape and flame response to flow disturbances. The
change in the FTF phase is shown to be related to a reduction of the
mean time lag for perturbations to reach the flame front. An expression
to scale the FTF of confined flames is derived based on a modification
of the reduced frequency ω∗ used to analyze the response of unconfined
flames. This new reduced frequency includes explicitly the confinement
ratio Cr and the volumetric expansion ratio E. This relation may be
used to transpose the FTF determined on a burner with a certain flame
tube to a configuration with a different flame tube or to transpose results
determined on single burners to multiple injection configurations when
the burnt gases cannot fully expand due to the presence of neighboring
flames. Finally, the FTF models derived in the previous chapters are
used to simulate the response of a collection of small laminar premixed
conical flames and these predictions are compared to measurements.

6.1 Introduction

In many laboratory scale experiments and numerical simulations, the flame
response to flow perturbations is analyzed on a single burner or on a limited
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numerical domain, which generally does not exactly coincide with the flow and
geometrical arrangement of the real configuration investigated. Practical com-
bustors often feature multiple injectors with a limited space for the flame to
expand due to the presence of neighboring flames, but in many simulations
and experiments, the analysis of flame dynamics is often limited to a single
burner. The location of the combustion chamber walls with respect to the
burner position may also vary between generic and real configurations to ease
instrumentation for diagnostics, reduce computational cost in simulations, or
because of limitations in admissible power rate or due to other flow and thermal
restrictions.

Fanaca et al. (2010) have recently shown that a turbulent swirling flame
does not take the same shape in a single burner and in an annular combus-
tor equipped with the same injectors. It is well known that for the same flow
conditions, the flame frequency response also strongly depends on the steady
flame shape [Durox et al. (2009)]. Duchaine et al. (2011) conducted numerical
simulations on a single laminar conical flame with periodic lateral boundaries
to reproduce the response of a collection of small conical flames stabilized over
a perforated plate and submitted to flow disturbances [Boudy et al. (2011)]. It
was necessary to take into account a diverging angle of the numerical domain
on the burnt gas side to reproduce measurements. A modification of only a
few degrees led to a significant change of both the axial velocity profile and
the flame response to acoustic perturbations. These examples indicate that it
is difficult to transpose results obtained for the flame dynamics with a certain
geometrical arrangement to situations with different boundaries or geometries.

The present investigation aims at characterizing effects of confinement of the
burnt gases on the dynamics of flames operated under the same flow conditions.
The objective is to show that the expansion of the burnt gases with respect
to confinement is an important parameter that should be taken into account
when examining FTF. It is well known that confinement strongly modifies the
flow and flame structures of turbulent swirling flames [Beltagui and Maccallum
(1976); Rao et al. (1983)], but measurements or numerical determinations of
FTF with different confinements are more seldom [Hauser et al. (2011); Tay-
Wo-Chong and Polifke (2012)]. One important element considered by Mehta
et al. (2005) in an analysis of the dynamics of a ducted V-flame is the effect
of exothermicity. Due to the fixed density jump across the flame front, the
confined burnt gases induce an acceleration of the mean flow field in the fresh
reactant stream, which modifies the FTF with respect to its unconfined response
to flow perturbations. The presence of side walls also strongly modifies the
motion of the flame tip near the solid wall resulting in large deviations of the
FTF when the confinement is modified [Birbaud et al. (2007a)]. The impact
of the first mechanism is studied here in a situation where there is no direct
interaction between the flame tip and solid walls. This problem is examined for
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R0

Rb R1

α

Figure 6.1: Scheme of a conical flame showing the different notations needed in this
study. The injection unit radius R0 has to be compared to the burnt gas plume radius
Rb occupied by the flame if it would be unconfined (left side of the figure) and to the
radius of the flame tube R1 confining the burnt gases (right side of the figure). The
flame tip half-angle α is also indicated in this figure.

conical flames submitted to velocity disturbances, the FTF being defined by:

F (ω) =
˜̇Q1/Q̇0

ṽ1/v0
= G exp(iϕ) (6.1)

where ˜̇Q1/Q̇0 is the dimensionless heat release rate disturbance caused by the
dimensionless velocity fluctuation ṽ1/v0 at the burner outlet, G denotes the
FTF gain and ϕ the FTF phase lag.

The response of laminar unconfined conical flames to velocity disturbances has
already received considerable attention and was reviewed in Chapter. 1. Effects
of the confinement side walls were not documented yet. Successive theoretical
expressions for the FTF of unconfined flames were proposed [Schuller et al.
(2003a); Preetham et al. (2008); Cuquel et al. (2011b)] based on two inde-
pendent dimensionless numbers. One generally uses the flame tip half-angle
α = arcsin(Sd/v0) [Schuller et al. (2003a)], where Sd is the flame speed and v0
denotes the mean bulk velocity in the fresh gases, and the reduced frequency
ω∗ = ωR0/(Sd cosα), where R0 stands for the burner exit radius and ω is the
forcing angular frequency [Fleifil et al. (1996); Ducruix et al. (2000)].
When the flame is confined, the burnt gases may be in contact with the com-
bustor walls depending on the value taken by the ratio between the unconfined
flame plume radius Rb and the confinement tube radius R1 as shown in Fig. 6.1.
For a conical flame, this ratio is defined by [Remie et al. (2006)]:

Cb =
Rb

R1
= Cr

[
1 −

E − 1

E
cosα

]− 1

2

(6.2)
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where E = ρu/ρb is the burnt to unburnt gas volumetric expansion ratio and
Cr = R0/R1. It was recently demonstrated that a change of velocity in the
stream of fresh reactants needs to be considered to describe the shape of uncon-
fined conical flames for large injection velocities and large gas expansion ratios
E due to an adverse pressure gradient exerted by the burnt gases [Higuera
(2009)]. This effect is strongly amplified when the burnt gases cannot fully
expand due to confinement for Cb ≥ 1. This acceleration of the fresh reactant
stream represents one important difference between unconfined and confined
flame configurations [Mehta et al. (2005)]. The flame response to flow pertur-
bations was not fully documented yet in these situations. It is shown in this
study how to take this phenomenon into account to scale the FTF obtained for
different confinements.

The experimental setup and results for the flame shape and FTF are presented
in section 6.2. A theoretical analysis is then conducted to model the acceleration
of the flow as a function of the confinement ratio Cr. It is used in section 6.4
to model the steady shape taken by a confined conical flame. An analysis of
the travel time of flow and flame front disturbances convected along the mean
shape is then carried out to define a new dimensionless reduced frequency that
explicitly accounts for confinement effects. This parameter is finally used to
rescale the FTF of conical flames gathered for different confinements.

6.2 Experimental setup

The configuration studied here features a cylindrical feeding manifold equipped
with a set of laminarization grids and a convergent nozzle used to reduce re-
maining velocity fluctuations and to get a nearly uniform top-hat velocity pro-
file at the burner exit. The burner outlet is circular with a radius R0 = 11
mm. More details about this burner can be found in Chapter 2. By chang-
ing the mixture flow rate, the mean bulk velocity at the burner outlet can be
varied. In these experiments methane and air are perfectly premixed before
entering the manifold with a fixed equivalence ratio φ = 0.86. The mixture is
injected at Tu = 300 K and flows out of the confinement tube at a temperature
Tb = 1800 K, corresponding to a burnt to unburnt gas volumetric expansion ra-
tio E = 6. When the flame is not confined, the flame speed is taken here equal
to Sd = 0.37 m.s−1. This value is obtained by matching predicted and mea-
sured flame heights assuming a perfect conical shape (see Schuller et al. (2002)
and Fig. 6.8-right row). The flow and the geometrical parameters modified in
these experiments are indicated in Tab. 6.1. Measurements are carried out for
three different mass flow rates. The radius of the hot gas plume generated by
the unconfined flame is given by Eq. (6.2), and one finds Rb = 23.8, 25.2 and
26.0 mm respectively, for the three mass flow rates explored.
Three quartz tubes of length L = 0.3 m with different radius R1 were used
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Figure 6.2: (top) Image of an axisymmetric confined conical flame with Cr = 0.44
and Cb = 0.95.
(bottom) Schematic of the axisymmetric confined conical flame considered in this
study.
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Table 6.1: Table of experimental parameters considered in this study. The different
values of the flame tube radius R1 and the mass flow rate ṁ are used to determine the
confinement ratios Cr = R0/R1 and Cb = Rb/R1.

ṁ (g.s−1)

0.396 0.566 0.792

R1(mm) Cr Cb Cb Cb

+∞ 0 0 0 0
25.00 0.44 0.95 1.01 1.04
18.35 0.60 1.30 1.37 1.42
13.55 0.81 1.76 1.86 1.92

to confine the flame. The confinement ratio is defined here as Cr = R0/R1

where Cr = 0 corresponds to the limiting case of an unconfined flame when
R1 → +∞. It is interesting to first look at values of Cb characterizing the ratio
of the burnt gas plume radius Rb of the same but unconfined flame and the
flame tube radius R1 (see Tab. 6.1). The largest flame tube R1 = 25 mm is
expected to have a limited impact on the burnt gas expansion because Cb ≈ 1.
For the two other tested tubes, Cb > 1, the burnt gases cannot fully expand
and the confinement tube is expected to have an impact on the flame and its
response to flow perturbations.

The bottom of the burner is equipped with a loudspeaker to modulate the
flow and perturb the flame. The loudspeaker is driven by a harmonic signal
generated with LabVIEW@, which feeds a HiFi-amplifier that is connected to
the loudspeaker as described in Chapter 2. Harmonic velocity perturbations
are produced at the burner outlet and are measured by LDV at the base of
the flame, 2.8 mm above the burner outlet on the burner axis. A photodiode
equipped with an OH* filter is used to collect the chemiluminescence emission
from the flame, which is roughly proportional to the heat release rate in this
case [Hurle et al. (1968)].

The velocity and heat release rate time records are all sampled at once with a
National Instrument analog-to-digital converter board controlled by LabVIEW@.
The sampling frequency is fs = 4096 Hz. These signals are further post-
processed to determine the cross- and auto-power spectrum densities and obtain
the FTF as a function of frequency for a fixed velocity modulation level at the
burner exit |v1/v0| = 0.1. LDV was also used to measure the axial velocity
distribution v0u(y) along the burner axis in the unburnt gases. Flame images
were gathered with an intensified CCD camera (ICCD). The signal-to-noise ra-
tio was improved through an averaging method by taking over 50 snapshots for
each image.
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Figure 6.3: Flame images for different confinement tubes and flow conditions. From
left to right : Cr = 0, 0.44, 0.60 and 0.81. Upper row: ṁ = 0.396 g.s−1. Middle row:
ṁ = 0.566 g.s−1. Lower row: ṁ = 0.792 g.s−1.
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6.3 Experimental results for steady confined conical
flames

Confining the burnt gases modifies the shape of the steady conical flames as
shown in Fig. 6.3 for the three different mass flow rates ṁ = 0.396, 0.566 and
0.792 g.s−1 investigated when the confinement ratio Cr is modified. The un-
confined flame takes a conical shape with a straight flame front for all mass
flow rates explored (first column in Fig. 6.3). As the confinement ratio is in-
creased, the flame shape remains unchanged up to Cr = 0.44 (second column)
and its height starts to increase for higher confinement ratios Cr = 0.60 (third
column), up to a flame that has grown by almost a third of its initial height
for Cr = 0.81 (fourth column). For this last confinement ratio, the flame fronts
are bent towards the fresh gases. A better interpretation can be given if one
looks at the steady flame shapes shown with the confinement tube dimensions
in Fig. 6.4. For ṁ = 0.369 and 0.792 g.s−1, the flame height increases as the
flame tube radius is decreased. In these situations, it is interesting to compare
the maximal width taken by the burnt gas plume of the unconfined flame Rb

(shown in the first column in Fig. 6.4 and reproduced with a black arrow in
the other columns) with the confinement tube radius R1. The ratio of these
two quantities is Cb = Rb/R1. As long as the hot gases can fully expand in the

2Rb

2Rb

Figure 6.4: Flame images for different confinement tubes and flow conditions. From
left to right : Cr = 0, 0.44, 0.60 and 0.81. Upper row: ṁ = 0.396 g.s−1. Lower
row: ṁ = 0.792 g.s−1. The plume of burnt gases is represented schematically by the
white dashed lines in the left images. The burner exit and the confinement tubes are
represented with white plain lines. The width of the unconfined flame plume radius Rb

is shown as a black arrow on the top of each image. This quantity can be compared to
the width of the flame tube.
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confinement tube, i.e. Cb ≤ 1, the flame shape remains unchanged. This is the
situation in the unconfined case when Cr = 0 and in the slightly confined case
when Cr = 0.44. When the confinement further increases (Cr = 0.60, third
column in Fig. 6.4), the burnt gases are in contact with the quartz tube and
the flame height slightly increases. This effect is more noticeable for the highest
flow rate ṁ = 0.792 g.s−1. For an even larger confinement ratio Cr = 0.81, the
ratio Cb approaches 2 as indicated in Table 6.1. The hot gases are compressed
by the lateral walls. The flame height is considerably increased and the flame
front bends towards the fresh gases. These effects are more important for elon-
gated flames, indicating an influence of the flame tip half-angle α.

It is now worth examining the velocity field in the fresh reactants to understand
changes in flame shapes when the flame is confined. The dimensionless axial
velocity v0u(r = 0, y)/v0 was determined with LDV along the burner axis r =
0 under steady flow conditions as a function of y/H0, where v0u(r, y) is the
axial velocity component in the unburnt gases at a distance y from the burner
outlet, v0 = v0u(y = 0) indicates the axial velocity at the burner outlet and
H0 = R0/ tanα is the unconfined steady flame height. These data are plotted
in Fig. 6.5 (circles), for three mass flow rates ṁ = 0.392, 0.566 and 0.792 g.s−1,
and for three different confinement ratios Cr = 0.44, 0.60 and 0.81. The same
changes in the axial velocity field may be observed when the mass flow rates
is varied. For Cr = 0.44, the axial velocity remains almost constant along the
burner centerline up to the flame tip as in the unconfined case (not represented
here). This again emphasizes the small influence of the flame tube when Cb ≤ 1.
For higher confinement ratios, the axial velocity increases roughly linearly along
the burner centerline up to the flame tip. This velocity gradient in the fresh
gases increases for higher confinement ratios. For the highest confinement ratio
presented here, the axial velocity has almost doubled between the burner exit
and the flame tip. These observations may be used to explain the evolution
of the flame images presented in Fig. 6.3. First, an increase of the mean axial
velocity leads to longer flames compared to a flame with a uniform velocity
field. The flame front then necessarily bends towards the fresh gases when the
confinement ratio increases because, for a constant injected mass flow rate and
a constant flame speed, the heat release rate and flame surface area are fixed
as shown in Fig. 6.6.

6.4 Modeling the steady conical flame shape

The observations made in the previous sections are here predicted by theoretical
means, starting by modeling the velocity field in the fresh gases to ultimately
retrieve the shape of confined conical flames.
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Figure 6.5: Dimensionless fresh gas axial velocity v0u(r = 0, y)/v0 as a function of
the axial coordinate y/H0, where v0 = v0u(y = 0) is the mean flow velocity at the exit
of the burner and H0 = R0/ tanα is the unconfined steady flame height. Results are
plotted for three mass flow rates (top-left) ṁ = 0.396 g.s−1, (top-right) ṁ = 0.566
g.s−1 and (bottom-left) ṁ = 0.792 g.s−1 and for three confinement ratios: Cr = 0.44
(light grey), 0.60 (dark grey) and 0.81 (black). Circles stand for measurements and
lines represent model predictions from Eq. (6.10). In the bottom right figure, results
for ṁ = 0.792 g.s−1 are superimposed with the linear approximation from Eq. (6.16).
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Figure 6.6: Evolution of the flame surface area A0 as a function of the confinement
ratio. Measurements for three different mass flow rates: ṁ = 0.396 g.s−1 (red cross);
0.566 g.s−1 (blue circles); 0.792 g.s−1 (black cross). The flame surface area is made di-
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6.4.1 Modeling the steady velocity field

A conical flame is considered here and effects of confinement are analyzed using
the simplified flow model presented in Fig 6.2, when the confinement tube
downstream the flame front is filled with burnt gases, i.e. Cb > 1. The first
objective is to derive an expression for the increase of the axial velocity in the
stream of fresh reactants during steady operation. The reactive mixture flows
out the burner in section (0) at y = 0 with a uniform velocity v0 and the burnt
gases leave the confinement tube in section (1) also with a uniform velocity v1
that satisfy mass balance:

v1/v0 = C2
rE (6.3)

where Cr = R0/R1 is the confinement ratio and E = ρu/ρb is the unburnt to
burnt gas volumetric expansion ratio. A momentum balance for the control
volume comprised between sections (0) and (1) in Fig. 6.2 then yields:

(
p1 + ρbv

2
1

)
R2

1 =
(
p0 + ρuv

2
0

)
R2

0 + pR

(
R2

1 −R2
0

)
(6.4)

where pR is the pressure exerted on the combustor back plane located at y = 0
between R0 < r < R1. The flow around the flame is supposed here in a first
approximation to be described by two axial velocity fields v0u(y) in the unburnt
gases and v0b(y) in the burnt gases that are only a function of the distance y to
the injection plane y = 0. Assuming a conical shape of the flame front, mass
and momentum balances between the injection plane y = 0 and a horizontal
plane at a height y can be written:

ρuv0R
2
0 = ρbv0b(y)

[
R2

1 − r2f (y)
]
+ ρuv0u(y)r2f (y) (6.5)

[
ρuv

2
0u(y) + pu(y)] r2f (y) +

[
ρbv

2
0b(y) + pb(y)

] [
R2

1 − r2f (y)
]

=
(
ρuv

2
0 + p0

)
R2

0 + pR

(
R2

1 −R2
0

)
(6.6)

where the flame front position rf is given by rf = R0(1 − y tanα/R0). The
pressure jump across the flame is constant and fixed by:

pu(y) − pb(y) = ρuS
2
d(E − 1) (6.7)

The pressure pR acting on the back plane is taken here as the pressure right
behind the base of the flame:

pR = p0 − ρuS
2
d(E − 1) (6.8)

In the fresh stream, the flow is assumed incompressible and unidirectional. The
Bernoulli equation along a streamline starting from the injection plane writes:

1

2
ρuv

2
0 + p0 =

1

2
ρuv

2
0u(y) + pu(y) (6.9)
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This system of equations leads after a few manipulations to a second-order
algebraic equation for v0u(y)/v0:

a1

(
v0u(y)

v0

)2

+ a2
v0u(y)

v0
+ a3 = 0 (6.10)

where the coefficient ai are functions of Cr = R0/R1, E = ρu/ρb, r∗f (y) = rf/R0

and sinα = Sd/v0, and are given by:

a1(y) =
(
Crr

∗
f

)2
+ E

(
Crr

∗
f

)4 (
1 −

(
Crr

∗
f

)2)−1
−

1

2
(6.11)

a2(y) = −2EC2
r

(
Crr

∗
f

)2 (
1 −

(
Crr

∗
f

)2)−1
(6.12)

a3(y) =
1

2
− C2

r

[
C2

rE
(
1 −

(
Crr

∗
f

)2)−1
− sin2 α(E − 1)

(
1 − r∗f

2
)]

(6.13)

This lengthy expression is solved with Matlab and the predictions for the axial
velocity are plotted in Fig. 6.5 in terms of the evolution of dimensionless axial
velocity v0u(y)/v0 as a function of the dimensionless length y/H0, where H0

is the unconfined flame height. These predictions match well measurements
for the different confinement ratios Cr explored, even if the velocity is slightly
over-predicted with this model near the flame tip when Cr = 0.81. This is
due to the crude assumption on the flow field in this region. Comparisons for
data gathered for all mass flow rates injected give similar results. These results
indicate that the axial velocity gradient in the reactant stream may be suitably
reproduced by the proposed model when the confinement and mass flow rates
are modified.

It is interesting to determine the velocity at the height y = H0. This quantity
will be used later. By considering that r∗f = 0 at this location, Eq. (6.10)
reduces to:

(
v0u

v0

)2

y=H0

= 1 − 2C2
r

[
1 + sin2 α (E − 1) − EC2

r

]
(6.14)

It is important to remind that the expressions developed in this section are only
valid when the flame tube is filled with burnt gases, i.e. when Cb = Rb/R1 ≥ 1.
The domain of validity of these expressions is delimited by (see Eq. 6.2):

Cr ≥

[
1 −

E − 1

E
cosα

] 1

2

(6.15)
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Figure 6.7: Evolution of γ∗ as a function of the confinement ratio Cr for values of
Cr satisfying Eq. (6.15). Different flame tip half-angles are considered: α = π/12
(black), π/6 (dark grey) and π/4 (light grey). E = 6.

In Fig. 6.7, the function γ∗ = (v0u(H0) − v0) /v0 is plotted as a function of the
confinement ratio Cr for values satisfying Eq. (6.15) for three flame tip half-
angles corresponding to α = π/12;π/6 and π/4. One observes that γ∗ increases
significantly with the confinement ratio, meaning that the fresh reactant stream
is more and more accelerated as the confinement ratio is increased. This is con-
sistent with measurements. Moreover, negative values of γ∗ are found for large
flame tip half-angles and for moderate confinement ratios. In these cases, the
axial velocity in the fresh gases decreases with the distance y to the burner exit
and the flame would be shorter. These configurations were not investigated
in the experiments conducted in this work. For the different mass flow rates
explored, the flame tip angle was relatively small and it is probably difficult to
stabilize conical flames with larger flame angles and to observe these regimes
where confined flames would shorten.

To simplify the problem, the axial velocity component v0u(y) is approximated
by a linearly increasing function of the coordinate y, which is equal to v0 at
y = 0. A radial component u0u(r) is added to obtain an incompressible steady
flow field satisfying continuity:

v =





v0u(y) = v0

(
1 + γ∗

y

H0

)

u0u(r) = −v0γ∗
r

2H0

(6.16)

The expression for the dimensionless velocity slope γ∗ is deduced from the
expression of the axial velocity at y = H0 obtained in Eq. (6.14). One finds:
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γ∗(Cr, α,E) =
v0u(H0) − v0

v0

=
[
1 − 2C2

r

(
1 + sin2 α (E − 1) − EC2

r

)] 1

2 − 1 (6.17)

Predictions from Eq. (6.16) are plotted in Fig. 6.5-bottom-right for different
confinement ratios and a mass flow rate ṁ = 0.792 g.s−1. This model gives a
good overall approximation of the axial velocity in the fresh gases of a confined
conical flame. This model is used in the next section to examine the shape
taken by the flame.

6.4.2 Modeling the shape of confined flames

The steady flame front position is given by y = η0(r) (Fig. 6.2) and is deter-
mined by the steady G-equation that reduces to:

Sd = v · n (6.18)

where Sd is the flame speed that is assumed here to be constant for a given
equivalence ratio, v is the velocity vector in the fresh gases, n = ∇G0/|∇G0|
the unit vector normal to the flame front and G0(y, r) = y − η0(r) is the level
set variable. It is now possible to obtain an expression for the slope taken
by steady confined conical flames. The following developments are derived in
the elongated flame approximation when α≪ 1. The acceleration γ∗ is then a
positive increasing function of the confinement ratio Cr. The steady G-equation
determining the flame position may be written:

v0u − u0u
∂η0

∂r
= Sd

[
1 +

(
∂η0

∂r

)2
] 1

2

(6.19)

In the limit of elongated flames α≪ 1, i.e. |∂η0/∂r| ≫ 1, one may writes:

[
1 +

(
∂η0

∂r

)2
] 1

2

≃

∣∣∣∣
∂η0

∂r

∣∣∣∣ = −
∂η0

∂r
(6.20)

This approximation finally leads to:

v0u − u0u
∂η0

∂r
= −Sd

∂η0

∂r
(6.21)
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Figure 6.8: Flame images for different confinement tubes and flow conditions. From
left to right : Cr = 0, 0.44, 0.60 and 0.81. Upper row: ṁ = 0.396 g.s−1. Middle
row: ṁ = 0.566 g.s−1. Lower row: ṁ = 0.792 g.s−1. Predictions with Eq. (6.23) are
plotted in red.
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It is interesting to make this expression dimensionless:

1 + γ∗η
∗
0 = −

(
∂η0

∂r

)∗ [
γ∗
r∗

2
+ cosα

]
(6.22)

where η∗0 = η0/H0 and r∗ = r/R0. Spatial integration of Eq. (6.22) up to the
zeroth order in α leads to the following expression for the position of the steady
flame front:

η∗0(r
∗) =

1

γ∗

[(
1 −

1 − r∗

1 + 2/γ∗

)−2

− 1

]
(6.23)

A comparison between the predicted shapes obtained with this expression and
flame images is presented in Fig. 6.8 for the different mass flow rates and con-
finement ratios studied. The predicted flame front bends towards the burner
axis and the flame height H increases compared to the unconfined flame height
H0 when the confinement ratio increases. Predictions match well with flame
images, except in some cases near the flame tip, where the constant flame dis-
placement speed assumption is too crude to capture the flow field when the
flame fronts are close to each other. Flame curvature also modifies the prop-
agation of the flame front near the tip [Poinsot et al. (1992)], a phenomenon
which is not included in the present description. For the highest confinement
ratio Cr = 0.81, the flame height is slightly over-predicted. These small dif-
ferences near the flame tip have a limited impact on the flame surface area of
axisymmetric flames. This might be an issue to deal with for two-dimensional
conical flames.

These modifications of the steady flame shape have an impact on the response
of these confined flames to flow perturbations. It is well known that flames with
different shapes feature different frequency responses [Durox et al. (2009)]. It
is also known that flow perturbations are convected by the mean flow in the
fresh reactants [Sugimoto and Matsui (1982); Baillot et al. (1992); Baillot
et al. (1996); Birbaud et al. (2006)], the slope of the FTF being related, in the
low frequency range, to the mean time lag taken by flame front disturbances
originating at the flame base to produce a flame surface area perturbation.
When the flame is confined, the resulting distortions of the mean flow field and
the shape taken by the flame also modify the travel time of these disturbances.
This problem is first examined experimentally and then theoretically in the
next sections.
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Figure 6.9: Images of acoustically perturbed confined conical flames for four equidis-
tant phases during the forcing period. Left column: Cr = 0.44. Right column:
Cr = 0.81. f = 10 Hz. ṁ = 0.792 g.s−1. |v1/v0| = 0.1. φ = 0.86.
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Figure 6.10: Images of acoustically perturbed confined conical flames for four equidis-
tant phases during the forcing period. Left column: Cr = 0.44. Right column:
Cr = 0.81. f = 80 Hz. ṁ = 0.792 g.s−1. |v1/v0| = 0.1. φ = 0.86.
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Figure 6.11: Images of acoustically perturbed confined conical flames for four equidis-
tant phases during the forcing period. Left column: Cr = 0.44. Right column:
Cr = 0.81. f = 80 Hz. ṁ = 0.396 g.s−1. |v1/v0| = 0.1. φ = 0.86.
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6.5 Experimental investigation of the response of con-
fined flames to flow perturbations

In this section, effects of the confinement are investigated first by analyzing im-
ages of acoustically perturbed confined conical flames and then by determining
their FTF.

6.5.1 Confined flame dynamics

Phase-conditioned images of confined conical flames have been taken for two
mass flow rates (ṁ = 0.396 and 0.792 g.s−1), two confinement ratios (Cr =
0.44 and 0.81), two forcing frequencies (f = 10 and 80 Hz) and one input
level |v1/v0| = 0.1. Images for a mass flow rate ṁ = 0.792 g.s−1 and an
excitation frequency f = 10 Hz are presented in Fig. 6.9. At low frequency, the
flame features a quasi-steady response to the imposed perturbations. For both
confinement ratios, the flame undergoes a bulk oscillation with a flame tip that
is successively stretched and compressed during the modulation cycle. At low
frequency, the flame motion is similar to that observed for unconfined flames
and results for both confinements are close. Images for the same mass flow rate
are presented in Fig. 6.10 but with a different perturbation frequency f = 80 Hz.
Significant differences between images obtained for both confinement ratios may
now be underlined. For Cr = 0.44, the flame front exhibits large wrinkles and
several cusps. For Cr = 0.81, the flame front features smaller wrinkles without
cusps. Moreover, for that confinement ratio, the flame wrinkle wavelength is
larger, due to the higher mean velocity component tangential to the flame front.
This emphasizes the increasing axial velocity in the fresh reactant flow when
the confinement ratio is increased. The same observations can be made for a
flame with a mass flow rate ṁ = 0.396 g.s−1 and perturbed at 80 Hz, as shown
in Fig. 6.11.

6.5.2 FTF of confined conical flames

The FTF are measured for the different confinement ratios and mass flow rates
explored. Results are plotted in terms of the FTF gain G and phase lag ϕ as
a function of the reduced frequency ω∗ = ωR0/(Sd cosα). The analysis is first
conducted by comparing FTF measured for different mass flow rates for a fixed
confinement ratio: Cr = 0 (Fig. 6.12-left), 0.44 (Fig. 6.12-right), 0.60 (Fig. 6.13-
left) and 0.81 (Fig. 6.13-right). For all confinements, the gain features a low-
pass filter behavior with several secondary humps and a slight excess to unity
at low frequency. The phase lag regularly increases with frequency, indicating
that flow perturbations are convected by the mean flow. This behavior ceases at
high frequencies, except for Cr = 0.81 in Fig. 6.13-right. For each confinement,
the FTF collapse roughly on the same curve when plotted as a function of the
reduced frequency ω∗ for data gathered at different injection velocities. These
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ṁ = 0.396 gs−1
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Figure 6.12: FTF gain (top) and phase (bottom) as a function of the reduced fre-
quency ω∗, for three different inlet mass flow rates and for two confinement ratios:
Cr = 0 (left) and Cr = 0.44 (right).

results indicate that the reduced frequency ω∗ is still a relevant dimensionless
number that characterizes the frequency response of a conical flame for a fixed
confinement ratio. It is however worth mentioning that these experiments at
fixed Cr values were also conducted by keeping the dimensionless parameter Cb

roughly constant as well (see Tab. 6.1). It would be interesting to investigate
effects of changes in the value of Cb while keeping Cr constant. That can be
achieved by either changing the mixture equivalence ratio or the fuel used.
The measured FTF are now further studied for different confinement ratios
Cr by keeping the inlet mass flow rates constant. Results are examined for
ṁ = 0.396 g.s−1 in Fig. 6.14-left, ṁ = 0.566 g.s−1 in Fig. 6.14-center and ṁ =
0.792 g.s−1 in Fig. 6.14-right. These figures indicate that the slope of the FTF
phase lag as well as the location of the extrema of the FTF gain are modified
when the confinement ratio Cr is changed. For the two largest mass flow rates,
the frequency responses of the unconfined flame obtained for Cr = 0 and the
weakly confined flame Cr = 0.44 collapse on a single curve at low frequency,
emphasizing the limited influence of confinement when Cb ≤ 1. For higher
confinement ratios, both gain and phase curves feature the same trends as the
unconfined configuration, but the response is stretched out to higher reduced
frequencies as the confinement ratio is increased. By examining for example the
measurements for the reduced frequency ω∗ = 3π, where the gain still takes high
values, differences larger than π for the phase lag may be observed between the
different responses. Such a phase distortion can make the difference between
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ṁ = 0.792 gs−1

Figure 6.13: FTF gain (top) and phase (bottom) as a function of the reduced fre-
quency ω∗, for three different inlet mass flow rates and for two confinement ratios:
Cr = 0.60 (left) and Cr = 0.81 (right).

a stable and an unstable combustor regarding thermo-acoustic instabilities.
Differences are also observed on the FTF gain. Values of the secondary gain
peaks increase when the confinement ratio increases in the case of a flame with
a small aspect ratio (see Fig. 6.14-left). This effect disappears in the case of
elongated flames (see Fig. 6.14-right). It is also worth noting that the FTF
phase lag saturates at high frequency in all cases explored, except for the two
largest confinement ratios and the two most elongated flames.
These observations motivate further analysis and indicate that the reduced fre-
quency ω∗ needs to be corrected to explicitly take into account the confinement
ratio. This problem is investigated in the next section.

6.6 Reduced frequency for the FTF of confined con-
ical flames

Knowing the steady flame front location in a confined configuration, it is now
possible to determine an approximate expression for the time lag between heat
release rate and flow perturbations controlling the FTF of a confined conical
flame. It is known that for an unconfined axisymmetric elongated conical flame
stabilized in a uniform velocity field, this time lag is about τ = (1/3)H0/v0
[Sugimoto and Matsui (1982); Durox et al. (2009)] at low frequency. The
exact expression was derived for any flame angle. This time lag is given
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by τ = (1/3)R0/(Sd cosα) = (1/3 cos2 α)H/v0 [Merk (1957); Ducruix et al.
(2000)]. At high frequencies, this time lag is modified. In particular, it was
shown to be equal to τ = H0/v0 in the case of elongated flame [Schuller et al.
(2003a); Cuquel et al. (2011b)] (see also Tab. 4.1 in Chapter 4). The FTF of
an unconfined premixed conical flame depends on two time scales [Baillot et al.
(1992); Blumenthal et al. (2013)] associated to the convection of either velocity
or flame front perturbations. The first time scale is given by τr = L/(v0 cosα)
and is associated to the convection of flame front perturbations at a speed
v0 cosα along the steady flame front over a distance L = R0/ sinα corre-
sponding to the steady flame front length. The second time scale is equal
to τc = H0/v0 and is associated to the convection of flow disturbances by the
mean flow v0 over a length H = R0/ tanα corresponding to the flame height.
These two time scales can be retrieved analytically by determining the averaged
time that perturbations take to travel from the flame base to the flame tip. At
low frequency, one may write:

τξ1 =
1

πR2
0

∫ R0

0
2πr τ loc

ξ1 (r) dr with τ loc
ξ1 (r) =

L− r/ sinα

v0 cosα

(6.24)

τv1
=

1

πR2
0

∫ R0

0
2πr τ loc

v1
(r) dr with τ loc

v1
(r) =

H0 − r/ tanα

v0
(6.25)

These expressions give the following results linking the time lags τξ1 and τv1
to

the two time scales τr and τc :

τξ1 =
1

3

L

v0 cosα
=
τr
3

(6.26)

τv1
=

1

3

H0

v0
=
τc
3

(6.27)

For a confined flame, these travel times are modified due to the increase of the
mean axial velocity v0u(y) and the change of the location of steady flame front
η0(r). The starting point is to examine resulting changes on the average time
taken by either flow or flame front disturbances originating from the burner
outlet to induce a flame surface area perturbation. In the elongated flame
approximation, these local time lags are given by:

τ loc
v1

(r) =

∫ η0(r)

0

dy

v0u(y)
τ loc
ξ1 (r) =

∫ r

R0

1

v0u(η0(r))

∂η0

∂r
dr (6.28)
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Figure 6.15: Evolution of the ratio of the time lag derived for elongated confined
conical flames (Eq. 6.32) divided by the time lag τ = (1/3)H0/v0 of an elongated
unconfined conical flame as a function of the parameter γ∗.

The first expression τ loc
v1

(r) stands for the time lag needed by a flow perturba-
tion originating from the burner outlet and being convected vertically towards
the flame front at a speed v0u(y) to cover a distance η0(r). The second ex-
pression τ loc

ξ1
(r) represents the time lag induced by a flame front disturbance

originating from the flame base and being convected along the steady flame
front at a speed equal to the velocity component tangential to the steady flame
front v0t(η0(r)) = v0u(η0(r)) cosαl − u0u(η0(r)) sinαl, where αl(r) is the lo-
cal angle between the flame front and the burner axis. This speed reduces
to v0t(η0(r)) = v0u(η0(r)) in the elongated flame approximation. These flame
front disturbances are being convected over an infinitesimal distance equal to
dl = dη0(r)/ cosαl. This distance reduces to (∂η0/∂r)dr for an elongated flame.
These quantities need to be integrated over the flame surface to determine their
average values:

τ c
v1

=
1

πR2
0

∫ R0

0
2πr

∫ η0(r)

0

dy

v0u(y)
dr (6.29)

τ c
ξ1 =

1

πR2
0

∫ R0

0
2πr

∫ r

R0

1

v0u(η0(r′))

dη0

dr′
dr′dr (6.30)

(6.31)

After a series of calculations, one obtains the same result for τ c
v1

and τ c
ξ1

in the
elongated flame approximation:

τ c = τ c
v1

= τ c
ξ1 =

1

3

H0

v0

[
6

γ∗

(
1

2
−

2

γ∗
+

(
2

γ∗

)2

ln
(
1 +

γ∗
2

))]
(6.32)

The time lag τ c of a confined flame is reduced compared to its value τ =
(1/3)H0/v0 for an elongated unconfined flame by the factor indicated between
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the square brackets in Eq. (6.32). It is then natural to consider a modified
expression for the reduced frequency ω∗ = ωR0/(Sd cosα) used to rescale un-
confined FTF by accounting for the reduced mean time lag when the flame
is confined. This can be done by replacing ω∗ with the following modified
expression:

ωc
∗ = ω∗

6

γ∗

[
1

2
−

2

γ∗
+

(
2

γ∗

)2

ln
(
1 +

γ∗
2

)]
(6.33)

The scaling factor ωc
∗/ω∗ = τ c/τ is a function of γ∗ and is plotted in Fig. 6.15.

This figure shows that when the confinement ratio is taken into account (i.e.
when γ∗ 6= 0), the scaling factor takes values between 0 and 1 for positive values
of γ∗.

This new reduced frequency takes into account the flow acceleration in the fresh
reactants γ∗(Cr, E, α) when the flame is confined and can be used to rescale
FTF measured for different confinement ratios as shown in Fig. 6.16. For the
highest mass flow rate investigated, the flames are elongated (see Fig. 6.16-
right). The gain curves obtained for different confinements collapse well on
each other up to ωc

∗ = 3π. The first local minimum value of the gain response
is also well retrieved even if at higher reduced frequencies some deviations can
be observed for the case Cr = 0.81, i.e. when the flame is strongly confined. The
phase lag evolutions also collapse on a single curve for all confinement ratios up
to ωc

∗ = 3π. There are however some differences at high frequencies. The phase
lag for Cr = 0.81 still features a regular increase for frequencies larger than
ωc
∗ ≥ 3π and diverges from other data exhibiting a saturation like behavior in

this frequency range. It is clear that this phenomenon cannot be anticipated
with the model proposed herein and additional physics must be included in the
analysis to investigate the high frequency behavior of confined conical flames.
For the smallest flames investigated, when the mass flow rate is reduced to ṁ =
0.396 g.s−1, the curves for the FTF gain and phase lag still collapse but results
are not as good as for the elongated flame case. This emphasizes the limit of the
present time lag model that was derived in the elongated flame approximation
when α ≪ 1. In Fig. 6.16, the FTF expression Eq. (4.11) derived with an
incompressible convective velocity perturbation model is also plotted in red
lines on top of the experimental data. This model captures the correct phase
lag evolution of the FTF for all confinement ratios when the reduced frequency
ωc
∗ is taken into account. This analytical expression can then be used to model

the frequency response of confined conical flames up to ωc
∗ = 3π.
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d1

R0

ψf0
Tu

Tb

α

Figure 6.17: (left) Collection of conical flames anchored on a perforated plate: steady
flames (top) and a snapshot of acoustically perturbed flames (bottom). (right) Zoomed
image of the central flame used to determine some of the parameters used in the the-
oretical models.

6.7 FTF of a collection of conical flames

The FTF models developed in the Chapters 4, 5 and 6 are used in this section
to compare predictions with FTF measurements carried out on a collection of
small premixed laminar conical flame anchored on a perforated plate. This con-
figuration is presented in Fig. 6.17. These experiments were conducted during
the Ph.D. work of F. Boudy [Boudy et al. (2011); Boudy et al. (2011); Boudy
et al. (2013); Boudy (2012)]. The experimental setup features a perforated
plate where the flames are anchored, with 129 holes of radius rh = 1 mm that
are distributed over a square mesh with a hole pitch d1 = 1.5 mm. Zoomed
images of the steady flames presented in Fig. 6.17-right are used to determine
some quantities such as the flame base radius R0, the flame front slope related
to the flame tip half-angle α and the flame quenching distance ψf0 to model
the flame response. In the following, different combinations of the models de-
rived in the present work are envisaged. Measurements of FTF from Boudy
(2012) are compared to predictions with five different degrees of approximation.
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6.7.1 FTF model FA(ω∗, α)

The FTF model FA(ω∗, α) given by Eq. (4.11) is first considered with the fol-
lowing parameters. The mean flow velocity at the burner exit and on the
burner axis was measured by Boudy (2012). This velocity is equal here to
v0 = 4.8 m.s−1. The flame front angle with respect to the vertical axis was
determined from the image shown in Fig. 6.17-right. The value found for the
flame tip half-angle is α = 0.174 rad. These values are used to determine
the corresponding flame speed Sd = v0 sinα = 0.83 m.s−1. Finally, images in
Fig. 6.17-left shows that the flame bases from neighboring injectors are in con-
tact. No planar flame front is present in between the conical flames, contrary to
the configuration studied by Altay et al. (2009). Thus, the flame base radius is
taken here equal to the hole pitch and one has R0 ≃ d1 = 1.5 mm. Predictions
from this model are plotted in Fig. 6.18-top (black line) and compared to FTF
measurements (red circles). The model retrieves the global trend of the FTF
gain and phase lag. However, it does not yield the correct frequencies of the
extrema of the FTF gain measurements. The modeled FTF gain also features
much smaller values than experimental data. The modeled FTF phase lag col-
lapses on measurements at low frequencies, but predictions rapidly diverge from
experiments at higher frequencies. Large phase lag differences of about π may
be observed in certain frequency range.

6.7.2 FTF model FA(ω∗, α) + FB(ω∗, α, Ψf , δ∗, Ze)

The contribution from the flame base motion FB is added to the previous model.
The same values for v0, R0 and Sd are considered. The flame quenching dis-
tance is estimated from the zoomed image in Fig. 6.17-right. The value found is
of the order of ψf0 = 0.5 mm. The fresh gas temperature is taken here equal to
Tu = 300 K and the burnt gas temperature is taken equal to Tb = 900 K. This
last quantity was tuned to obtain a good fit with FTF measurements. These
values lead to the following dimensionless numbers Ψf = 0.225 and δ∗ = 0.73
needed to determine the contribution FB from Eq. (5.11). The activation tem-
perature was taken equal to Ta = 20000 K corresponding to a Zeldovich number
equal to Ze = 14. Predictions with this model are plotted in Fig. 6.18-center
(black line) and compared to FTF measurements (red circles). This new model
exhibits only small differences on the FTF phase lag compared to the previous
model. The predicted gain now features slightly larger values than with FA(ω)
and thus compares slightly better with measurements. However, the frequen-
cies of the extrema are still not correctly reproduced.
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Figure 6.18: Comparisons between FTF measurements (red circles) and dif-
ferent FTF models (black lines). (top) FA(ω∗, α). (center) FA(ω∗, α) +
FB(ω∗, α,Ψf , δ∗, Ze).(bottom) FA(ωc

∗
, α).
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6.7.3 FTF model FA(ωc
∗, α)

The previous models do not take into account the fact that the burnt gases can-
not fully expand due to the presence of neighboring flames. This phenomenon
is here taken into account by using the modified reduced frequency ωc

∗ into the
FTF expression FA instead of ω∗. The confinement ratio is here defined by the
square root of the ratio between the cross-section area of the flame base πR2

0

and the cross-section of the volume occupied by the burnt gases (2d1)
2:

Cr =
π

1

2R0

2d1
= 0.89 (6.34)

A burnt to unburnt gas volume expansion ratio E = ρu/ρb = 6 is considered.
Using these parameters, the dimensionless acceleration is equal to γ∗ = 1.57.
Results from model FA(ωc

∗, α) are plotted in Fig. 6.18-bottom as a function of
the forcing frequency. This new model reproduces the correct frequencies of the
extrema of the FTF gain, but the gain is globally underestimated. The model
does not match FTF phase lag measurements. It features the same trend as
the FTF measurements and the change in the slope of the FTF phase lag near
800 Hz corresponding to a local minimum of the gain is well retrieved.

6.7.4 FTF model FA(ωc
∗, α) + FB(ωc

∗, α, Ψf , δ∗, Ze)

The last two models are now combined to take into account two important
features of the flame response to flow perturbations:

(1) Effects due to the confinement of the burnt gases,
(2) Effects of unsteady losses from the flame to the burner rim.

Predictions from this model are plotted in Fig. 6.19-top. Results match well
experiments for the FTF gain. The frequencies and the values of the gain ex-
trema are well reproduced. Predictions for the FTF phase lag show differences
with measurements. However, the global trend is well retrieved, including the
frequency corresponding to a change of the slope of the phase lag. It is also
interesting to note that the difference between the modeled FTF phase lag and
experimental data increases with the forcing frequency. This observation is
used to improve the model in the next section.

6.7.5 FTF model [FA(ωc
∗, α) + FB(ωc

∗, α, Ψf , δ∗, Ze)] exp(iωτ1)

In order to match phase lag measurements, an additional time lag τ1 = 4.10−4 s
is added to the previous model. Results are presented at the bottom of Fig. 6.19.
The gain curve is not modified by this correction and thus still compares well
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Figure 6.19: Comparisons between FTF measurements (red circles) and differ-
ent FTF models (black lines). (top) FA(ωc

∗
, α) + FB(ωc

∗
, α,Ψf , δ∗, Ze). (bottom)

[FA(ωc
∗
, α) + FB(ωc

∗
, α,Ψf , δ∗, Ze)] exp(iωτs) .

with measurements. This correction corresponding to an additional phase lag
ωτ1 modifies the slope of the phase lag and enables to collapse predictions on
the experimental data over the whole range of frequencies explored. The phys-
ical mechanism associated to this time lag remains to be elucidated. Different
conjectures can be made that were not checked experimentally. It is interesting
to indicate an associated length scale δτ1 = v0τ1 = 1.9 mm based on the mean
flow velocity.

A combination of the different models derived in this thesis shows that it is
possible to model the FTF of a collection of small laminar premixed conical
flames anchored on a perforated plate by taking into account different important
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features: (1) the incompressible nature of the velocity perturbations in the fresh
stream of reactants, (2) the unsteady heat losses from the flame base to the
perforated plate and (3) the effects of confinement taking place when the burnt
gases cannot fully expand. To obtain these predictions, different parameters
need to be determined and fixed. A sensitivity analysis of the FTF to these
parameters has to be carried out but the results presented in this section already
show that the FTF can be reasonably approximated by carefully taking into
account the different physical mechanisms controlling the response of these
flames.

6.8 Conclusion

It was shown that effects of the confinement of the burnt gases must be taken
into account to transpose data for FTF gathered for premixed unconfined coni-
cal flames or for FTF of flames obtained with a certain geometrical confinement
to a situation with a different confinement. This is necessary when the burnt
gases cannot fully expand. This situation takes place when the confinement ra-
tio identified in this study Cb exceeds the threshold value of unity. In this case,
the FTF is a function of the confined reduced frequency ωc

∗ and flame angle α.
This dimensionless frequency ωc

∗ is the product of the unconfined flame reduced
frequency ω∗ and a correction that accounts for a change in the mean time lag
between heat release rate and velocity disturbances. These modifications result
from the acceleration of the fresh stream of reactants and the deformation of
the flame shape when the flame is confined. In this work, these two phenomena
were explicitly linked to the confinement ratio Cr = R0/R1 and volumetric
burnt to unburnt gas expansion ratio E = ρu/ρb. These phenomena are also
present in situations where the flames are not confined by walls, but when the
hot gases of neighboring flames are in contact as in many multiple injection
systems. One example was considered in the last section of this chapter by
examining the response of a collection of small conical flames anchored on a
perforated plate. The models derived in the present thesis were tested and
compared to experiments gathered on this multiple flame burner. It is shown
that the global shape of the FTF can be reproduced correctly with a model
taking into account incompressible velocity perturbations, heat losses from the
flame to the burner and the fact that the burnt gases cannot fully expand.
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Chapter 7

The Helmholtz solver AVSP and
the FDF methodology

It has been recently shown that the Flame Describing Function (FDF),
an extension of the Flame Transfer Function (FTF) including effects
of perturbation amplitude, can be used in combination with low-order
acoustic network models to predict a wide range of nonlinear behaviors
such as limit cycle amplitudes and frequencies, mode triggering, mode
switching and hysteresis observed during unstable operation of a com-
bustor. This nonlinear description of the flame response to flow pertur-
bations is used in this chapter in a finite element solver that solves the
inhomogeneous Helmholtz equation on multidimensional unstructured
grids. This combination enables to perform simulations of the nonlin-
ear stability analysis of a combustor in complex geometries with complex
impedances. The FDF methodology is first introduced before introduc-
ing the multidimensional Helmholtz solver AVSP. The way unsteady
heat release rate is included in the solver, the response of the perforated
plate used to stabilize conical flames is modeled and the treatment at the
combustor boundaries are described.

7.1 Introduction

Thermo-acoustic instability prediction has for a long time relied on the determi-
nation of the acoustic eigenmodes of the combustor coupled to a linear stability
analysis through the use of the Flame Transfer Function (FTF) [Krebs et al.
(2002); Schuller et al. (2003b); Noiray et al. (2006b); Nicoud et al. (2007);
Schuermans et al. (2010)]. Such linear methods yield the set of modes that
might grow at the instability onset but in many cases, these methods fail to de-
termine the right mode or the right frequency that was reached by the thermo-
acoustic instability. In addition, these methods lead to the prediction of an
exponential instability growth and thus are unable to determine the limit cycle
amplitude, due to the nonlinear nature of the saturation mechanisms involved
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[Balachandran et al. (2005); Bellows et al. (2007)].

7.2 The FDF methodology

7.2.1 Nonlinear flame dynamics

While nonlinear acoustics can be of significant importance in the case of thermo-
acoustic instabilities in rocket engines [Culick (1994)], it was shown that the
flame is often the main nonlinear component of the system in the case of gas tur-
bines [Dowling (1999); Balachandran et al. (2005); Durox et al. (2009); Palies
et al. (2011); Schimek et al. (2011)]. Various experiments have been carried
out to investigate the effects of perturbation amplitude on the FTF. Images of
the perturbed flame shapes and FTF were measured in generic laminar flame
configurations by sweeping the perturbation level [Durox et al. (2009)]. The
most noticeable effects is a continuous decrease of the FTF gain for increas-
ing perturbation levels. In many premixed configurations where the mixture
composition remains homogeneous, the FTF phase remains almost unchanged,
except in the case of single conical flames. The same conclusions were drawn
for turbulent bluff body stabilized flames [Balachandran et al. (2005)] and tur-
bulent swirling flames [Bellows et al. (2007); Palies et al. (2011); Schimek et al.
(2011)]. LES simulations were recently carried out by Krediet et al. (2012),
Krediet et al. (2013) to retrieve the FDF measured by Schimek et al. (2011)
but significant differences between experiments and simulations were observed.
In particular, differences between experiments and simulations of about π/2
were noticed on the phase lag between heat release rate and velocity distur-
bances. It is well known that instability predictions are very sensitive to small
phase lag mismatch.

A novel method borrowed from control theory was developed to extend the
linear stability analysis based on the FTF to nonlinear stability analysis based
on the FDF. The Describing Function (DF) was first introduced in combustion
dynamics analysis by Dowling (1999) in a theoretical study where the gain was
considered to saturate at some constant value above a certain perturbation
level threshold. It enabled to model the saturation of the flame response to
flow perturbation so that the instability reached a limit cycle. This method
was then generalized to the Flame Describing Function (FDF) and first put to
use by Noiray et al. (2008) by considering a set of experimentally determined
FTF that depend on both the frequency and perturbation level:

F(ω, |ṽ1|) = G(ω, |ṽ1|)e
iϕ(ω,|ev1|) =

˜̇Q1/Q̇0

ṽ1/v0
(7.1)

where |ṽ1| denotes the velocity perturbation amplitude. Each FTF in this de-
scription is determined for a fixed input level as shown in Fig. 7.1. The FDF
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Figure 7.1: Flame Describing Function gain G and phase ϕ as a function of frequency
f and perturbation level urms/ū. Reproduced from Noiray et al. (2008).

was used by Noiray (2007), Noiray et al. (2008) in combination with an analyt-
ical low order acoustic network model of a combustor (see Fig. 7.2) to predict
instabilities in a single cavity burner featuring small conical flames anchored at
one extremity of a perforated plate. It enabled the authors to retrieve a wide
range of nonlinear phenomena often observed in practical configurations. First,
predictions of the limit cycle frequency and amplitude were possible thanks to
modifications of either the FDF gain or phase lag. Secondly, it was also shown
that mode triggering or mode switching can occur and be predicted in generic
thermo-acoustic systems. Finally, this method enabled to predict a hysteresis
phenomenon that was observed experimentally.
This nonlinear methodology was extended to confined systems by Boudy et al.
(2011), Boudy et al. (2011), Boudy (2012). A second cavity was added on top

Figure 7.2: Scheme of the acoustic network method. Reproduced from Poinsot and
Veynante (2012).
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of the perforated plate. In addition to the previous studies, the influence of
the boundary condition at the flame tube outlet and at the plenum inlet was
thoroughly investigated. The same nonlinear phenomena were observed and it
was possible to anticipate them for small confinement tube lengths. For longer
flame tubes, more complex behaviors appeared during experiments featuring
limit cycle destabilizations by different mechanisms [Boudy et al. (2012); Boudy
et al. (2013)]. This raises the problem of multi-frequency interactions that can
not be taken into account for now in the FDF framework.
Stability analysis based on FDF was also conducted with turbulent flames by
Palies et al. (2011) in a combustor featuring a confined swirling flame. Limit
cycle amplitude were also successfully predicted for several geometrical con-
figurations of the combustor. This configuration was further studied with the
numerical code AVSP by Silva et al. (2013) and the results also compared well
with experimental data. In addition, the use of a numerical solver allowed to
investigate the effects of modifications in the combustor geometry and the flame
spatial distribution within the combustor chamber. Only the former was found
to have a significant influence on the combustor stability.

7.2.2 Methodology for nonlinear stability analysis using the
FDF

The nonlinear stability analysis making use of the Flame Describing Function
(FDF) is based on several stability analyses that are each performed for a dif-
ferent perturbation level. The acoustic velocity and pressure are first developed
as normal modes with the following form:

p1(x, t) = p̃1(x)e−iωt (7.2)

v1(x, t) = ṽ1(x)e−iωt (7.3)

where the angular frequency is a complex number ω = ωr+iωi, where ωr stands
here for the real part of the angular frequency and is linked to the instability
frequency f by ωr = 2πf and ωi represents the imaginary component of the an-
gular frequency and the growth rate of the instability. These normal modes are
then injected in the linearized acoustic equations leading to either a dispersion
relation if one uses a relatively simple low-order acoustic network representa-
tion of the combustor dynamics (see for example [Noiray et al. (2008); Kim
et al. (2010); Boudy et al. (2011); Palies et al. (2011)]) or an eigenvalue
problem if one uses a numerical solver (see the next section or [Nicoud et al.
(2007); Camporeale et al. (2011)] for more details). As a result, one can obtain
values for the angular frequency ωr of the oscillation. One can also conclude on
the system stability following the sign of ωi − δ where δ indicates the acoustic
damping rate in the system. If this difference is negative (resp. positive), the
acoustic variables will decay (resp. grow) exponentially and the system is thus
stable (resp. unstable). In the cases where ωi−δ goes from positive to negative,
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it means that a limit cycle is reached for ωi − δ = 0.

The methodology that is used in the present work slightly differs than those used
in the previous analyses and is synthesized in Fig. 7.3. The matricial equations
considered here are solved with an iterative procedure. As such, one needs to
choose a first approximation of the result for the first iteration. Thus, at each
step, one has to consider an initial frequency value, an equation to solve and
the result of that equation. The first step usually consists in the determination
of the acoustic eigenmode of the system. In that case, no unsteady flame effects
are considered. Therefore, the equation to consider is homogeneous:

M(ω)P = 0 (7.4)

whereM(ω) is a matrix that is frequency dependent and P is the pressure eigen-
vector. The solution of that equation is the acoustic eigenfrequency ωA that is a
real number if no damping is considered (through perfectly reflective boundary
conditions for example) or a complex number if damping is added in the model.

The next steps consider unsteady flame effects. The same equation than Eq. (7.4)
is solved but with a right-hand side source term including the response by the
flame to flow perturbation and modeled by a FDF. In this description, the FDF
depends only on the real part of the angular frequency ωr because it is deter-
mined with constant amplitude harmonic acoustic waves as the input signal.
One is now left with the following inhomogeneous system:

M(ω)P = F (ωr, v
k
1 ) (7.5)

where the different velocity perturbation levels considered here are noted vk
1

for k ∈ [1,N] and with vN
1 > ... > vk

1 > ... > v1
1. At this stage, the method

developed to solve the problem slightly differs from previous work. In the second
step, the flame frequency response determined for the highest perturbation level
F (ωr, v

N
1 ) is used in the stability analysis instead of the smallest value as in

the studies of Noiray et al. (2008) and Palies et al. (2011). The reason is that
at high perturbation level, heat release rate perturbations correspond to very
low FDF gain values and thus the inhomogeneous equation Eq. (7.5) almost
reduces to the homogeneous acoustic equation Eq. (7.4) without source term.
Results from the first step are thus used as an initial frequency for the second
step. Next steps consider the equation with frequency responses corresponding
to decreasing velocity perturbation levels. The initial frequency considered
is taken from the result of the previous step. By covering all perturbation
amplitudes, one obtains the values of the real angular frequency and growth
rate for the set of perturbation levels considered:
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ωr = ωr(v
k
1 ) (7.6)

ωi = ωi(v
k
1 ) (7.7)

(7.8)

These trajectories are plotted as a function of the perturbation level and the
stability of the system can be deduced from these trajectories as shown by
Noiray et al. (2008). This nonlinear stability analysis allows to determine the
evolution of the growth rate with the perturbation level and thus to determine
if a mode is either:

- stable, i.e. ωi(v
k
1 ) < 0 for all k.

- linearly unstable, i.e. ωi(v
1
1) > 0.

- nonlinearly unstable, i.e. ωi(v
1
1) < 0 but ωi(v

k
1 ) > 0 for at least a value

of k > 1.

Limit cycles are identified by examining the evolution of the growth rate with
the perturbation level. The limit cycle is reached when the growth rate goes
from positive values to ωi = 0 in systems where the damping can be neglected
[Noiray et al. (2008); Boudy et al. (2011)]. In systems where the damping
is significant, the limit cycle condition is modified. In [Palies et al. (2011)], a
damping rate of δ = 55±10 s−1 was determined in a set of separate experiments
and was used to retrieve the limit cycle amplitude by using the relation: ωi = δ.

The FDF methodology may be used to predict different nonlinear behaviors.
Nonlinearly unstable modes can be triggered by external perturbations [Noiray
et al. (2008); Boudy et al. (2011)] or external noise [Jegadeesan and Sujith
(2013)]. Comparison of the growth rate evolutions of each mode also enables
to delineate regions where mode switching occurs, i.e. when a linearly unsta-
ble mode triggers a nonlinearly unstable mode. Finally, drawing the stability
map of a combustor can reveal domains where the system can undergo a bi-
furcation, inducing a hysteresis phenomenon. This problem was highlighted
for example in a two-cavity combustor where the plenum length was modified
and used as a bifurcation parameter [Noiray et al. (2008); Boudy et al. (2011)].

After this brief introduction on FDF-based stability analysis methodology, it
is now worth describing the numerical Helmholtz solver which will be used to
perform that nonlinear stability analysis.

7.3 The Helmholtz solver ASVP

Stability analyses based on network of compact elements are difficult to conduct
when the combustor geometry features many details. In these situations, one
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possibility is to rely on a numerical solver to determine the structure of the
acoustic field in the chamber. This can be realized with a Helmholtz solver
such as ASVP, a solver developed at CERFACS and Université Montpellier
II [Benoit (2005); Sensiau (2008); Gullaud (2010)]. This type of code was
developed to determine the solution of the Helmholtz equation in cavities with
sophisticated geometries and with complex boundaries. These equations are
first presented before introducing the way the boundary conditions are treated.
The way unsteady combustion is introduced in the solver is then presented.
The method used to solve the eigenvalue problem is finally described.

7.3.1 The Helmholtz equation

The Helmoltz equation is derived from the first principles and rules the propa-
gation of acoustic waves in a quiescent flow. If one considers the decomposition
of the different fields as the sum of a steady and a perturbation components,
such as a(x, t) = a0(x)+a1(x, t), linearization of mass and momentum balances
yields:

∂ρ1

∂t
+ v1 · ∇ρ0 = 0 (7.9)

ρ0
∂v1

∂t
= −∇p1 (7.10)

where the contributions from viscous stress and body forces are neglected. Ne-
glecting heat diffusion and the dissipation terms in the energy equation also
yields:

1

γ
ρ0
∂p1

∂t
− p0

∂ρ1

∂t
− p0v1 · ∇ρ0 =

γ − 1

γ
ρ0q̇1 (7.11)

where q̇1 stands for the heat release rate perturbations and γ denotes the spe-
cific heat capacity ratio.

By combining these three equations, one obtains the wave equation describing
the propagation of sound waves:

∇(c20∇p1) −
∂2p1

∂t2
= −(γ − 1)

∂q̇1
∂t

(7.12)

This equation shows that heat release rate disturbances are the source of sound
waves and that propagation may be altered by the gradient of the speed of
sound within the flow. By considering acoustic waves developed as normal
modes in the frequency domain, one may write:
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p1(x, t) = ℜ(p̃1(x)e−iωt) (7.13)

v1(x, t) = ℜ(ṽ1(x)e−iωt) (7.14)

ρ1(x, t) = ℜ(ρ̃1(x)e−iωt) (7.15)

q̇1(x, t) = ℜ( ˜̇q1(x)e−iωt) (7.16)

This leads to the Helmholtz equation defined in the frequency domain:

∇(c20∇p̃1) + ω2p̃1 = iω(γ − 1) ˜̇q1 (7.17)

This equation shows that some parameters are necessary to compute the sound
pressure distribution. The specific heat capacity ratio must be fixed. It is
chosen here as constant and equal to γ = 1.4. The speed of sound that may
deduced from the gas temperature and composition needs also to be specified.
On the right hand side, the heat release rate perturbation ˜̇q1 distribution needs
to be fixed. This information can be provided from different sources using nu-
merical simulations, experimental data or theoretical models.

This equation is solved by the AVSP code with a set of possibilities for the
acoustic boundary conditions at the system limits [Nicoud et al. (2007)].

7.3.2 Boundary and jump conditions

The AVSP solver allows different type of boundary conditions that can be used:

- A pressure node:
This condition is used to enforce a pressure node at the boundary to
simulate an atmospheric outlet for example where:

p̃1 = 0 (7.18)

- A velocity node:
This condition is used to enforce a velocity node at the boundary. It sim-
ulates the presence of a rigid wall where the acoustic velocity component
normal to the wall vanishes. Using the momentum conservation equation,
it goes down to a condition on the pressure gradient:

∇p̃1 · n = 0 (7.19)

where n is the unit vector normal to the wall.

- An acoustic impedance condition:
This condition is used when the system studied is connected to other cav-
ities with a complex acoustic response. In that case, the specific acoustic
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impedance of the boundary is defined as the dimensionless ratio between
the acoustic pressure and the acoustic velocity component normal to the
boundary.

Z =
ζ

ζ0
=

p̃1

ρ0c0ṽ1 · n
(7.20)

where ζ0 = ρ0c0 is the specific impedance of the medium considered. The
complex value of the impedance becomes then an input of the code. It
can be either provided by an analytical model or by measurements and
is usually a function of the angular frequency ω. Knowing the specific
impedance, the boundary condition goes down to a mixed condition:

∇p̃1 · n −
iω

c0Z
p̃1 = 0 (7.21)

- A pressure jump condition:
This function of the AVSP code allows to link two boundaries by a pres-
sure jump. This type of model may be used for example to describe the
response of a small element compact with respect to the acoustic wave-
length considered like perforations in a rigid wall without solving either
hydrodynamic equations or the Helmholtz equation in the small cavities
formed by the perforations. In this case, the continuity of the acoustic
volume flowrate is imposed on both sides of the plate with a jump in the
pressure acoustic field:

ṽ
+
1 (x+) · npp = ṽ

−
1 (x−) · npp = ṽ1(x) · npp (7.22)

[
p̃+
1 (x+) − p̃−1 (x−)

]
=
iωρ0

Ka
d2

ṽ1(x) · npp (7.23)

where x
− is a location on the upstream side of the perforations, x

+ is
the corresponding location on the downstream side of the perforations,
npp is the unit vector normal to the perforated plate, d is the perforated
plate hole radius and Ka is the Rayleigh conductivity. Different models
can be used for the Rayleigh conductivity depending on the situation
investigated.
In [Gullaud et al. (2009); Gullaud (2010); Gullaud and Nicoud (2012)],
the Rayleigh conductivityKa was linked to the perforated plate character-
istics using the expression derived by Howe (1979). This model enables to
reproduce sound production through the perforation traversed by a bias
flow in the absence of combustion. This model was for example used to
compute the eigenmodes of a full helicopter annular chamber to simulate
the presence of multiperforations around the combustion chamber.
In the present work, the presence of small conical flames anchored on
the perforated plate prevent the flow from generating vortex shedding



Part III - Instability prediction using a Helmholtz solver and the FDF
methodology

167

that are responsible for sound emission or attenuation. It thus makes the
Howe model not valid for the present configuration. We used here an
alternative model to take into account the inertia of the unsteady flow in
the small channels and viscous effects. This model leads to the following
expression for the pressure jump [Melling (1973)]:

[
p̃+
1 (x+) − p̃−1 (x−)

]
= iωρ0h

[
1 +

lν
a

(1 + i)

]
ṽ1(x) · npp

σ
(7.24)

=
h
(
1 + lν

a (1 + i)
)

σ
∇p̃1(x) · npp (7.25)

where h is the perforated plate thickness, lν = (2ν/ω)1/2 is the viscous
acoustic boundary layer thickness in the perforations, ν is the kinematic
viscosity, a is the perforated plate hole radius and σ is the perforated
plate porosity.

The solutions of the Helmholtz equation coupled with this set of conditions
enable to determine the eigenmodes of cavities in the absence of unsteady com-
bustion. Combustion dynamics may now be included as well using the following
description.

7.3.3 Unsteady flame modeling

Steady combustion modifies the distribution of the speed of sound in the com-
bustion chamber and thus alters sound propagation. Unsteady flame effects
appear in the right hand side of Eq. (7.17) through perturbations in heat re-
lease rate ˜̇q1. These perturbations need to be modeled. It is usually done by
linking the heat release rate perturbations to the acoustic velocity perturbations
determined at a reference point xref upstream of the flame.

∇(c20∇p̃1) + ω2p̃1 = iω(γ − 1) ˜̇q1 (7.26)

= iω(γ − 1)

[
˜̇q1/q̇0

ṽ1(xref )/v0(xref )

]
q̇0
ṽ1(xref )

v0(xref )
(7.27)

The term between brackets is defined as a local Flame Transfer Function :

Floc(ωr, |ṽ1(xref )/v0(xref )|) =
˜̇q1/q̇0

ṽ1(xref )/v0(xref )
(7.28)

while the velocity perturbation at the reference point is related to the pressure
gradient at the reference point using the momentum balance :

ṽ1(xref ) =
1

ρrefiω
∇ref p̃1(xref ) · nref (7.29)
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where nref is a unit vector. Its direction is the same as the velocity component
considered for the velocity perturbation determination. In the present case, it
corresponds to the axial direction. Equation (7.27) may then be rewritten as:

∇(c20∇p̃1) + ω2p̃1 =
(γ − 1)q̇0
ρrefv0(xref )

Floc∇ref p̃1(xref ) · nref (7.30)

The remaining issue is to link the local FTF Floc to the global FTF F that
is measured in experiments. The global FTF is constructed with the global
heat release rate, which is the local heat release rate integrated over the flame
volume Vf :

F(ωr, |ṽ1(xref )/v0(xref )|) =
˜̇Q1/Q̇0

ṽ1(xref )/v0(xref )
(7.31)

where the integrated heat release rate perturbations ˜̇Q1 and mean value Q̇0 are
defined by the following expressions:

˜̇Q1 =

∫

VF

˜̇q1dV (7.32)

Q̇0 =

∫

VF

q̇0dV (7.33)

Starting from Eq. (7.28) that is rewritten as:

˜̇q1 = Floc(ωr, |ṽ1(xref )/v0(xref )|)q̇0
ṽ1(xref )

v0(xref )
(7.34)

One finds after integration over the flame volume Vf :

˜̇Q1 =
ṽ1(xref )

v0(xref )

∫

Vf

Floc(ωr, |ṽ1(xref )/v0(xref )|)q̇0dV (7.35)

For a compact flame, i.e. a flame which dimensions are much smaller than the
acoustic wavelength, the local FTF Floc can be considered as constant over the
flame volume. It then leads to:

˜̇Q1 = Floc(ωr, |ṽ1(xref )/v0(xref )|)
ṽ1(xref )

v0(xref )

∫

Vf

q̇0dV (7.36)

= Floc(ωr, |ṽ1(xref )/v0(xref )|)
ṽ1(xref )

v0(xref )
Q̇0 (7.37)
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By comparing Eq. (7.37) with Eq. 7.31, one deduces that:

Floc(ωr, |ṽ1(xref )/v0(xref )|) = F(ωr, |ṽ1(xref )/v0(xref )|) (7.38)

The local and global flame transfer functions are then considered equal for a
compact flame. These developments show that in the case of compact flames,
the global FTF determined experimentally may directly be used in the numer-
ical solver.

7.3.4 The AVSP solver

The discretization of the Helmholtz equation Eq. (7.30) along with the bound-
ary conditions over an unstructured grid with a finite volume method leads to
an eigenvalue problem that reduces to the following form [Nicoud et al. (2007)]:

AP + ωB(ω)P + ω2CP = D(ω)P (7.39)

where P is a vector containing the eigenvector values, A and C are matri-
ces containing coefficients coming from the discretization of the homogeneous
Helmholtz equation, B(ω) contains the information about the boundary condi-
tions (see Eqs. (7.18) to (7.25) ) and D(ω) represents the unsteady flame source
term including the FDF.
When using frequency dependent boundary or jump conditions (such as an
impedance condition or pressure jump through a perforated plate) or a fre-
quency dependent heat release rate perturbation field (when using a FTF or a
FDF for example), the matrices B(ω) and D(ω) are a function of the angular
frequency. This results in a nonlinear eigenvalue problem that is resolved with
a fixed-point iterative method [Nicoud et al. (2007)]. Equation (7.39) is first

reduced to a linear eigenvalue problem that is defined for the kth iteration, by:

[A + ΩkB(Ωk)) −D(Ωk)]P + ω2
kCP = 0 (7.40)

where Ωk = f(ωk−1) is a function of the previous iteration result. This linear
eigenvalue problem is solved by an Arnoldi iterative method. More details
about that procedure can be found in [Sensiau (2008); Nicoud et al. (2007);
Gullaud (2010)]. The fixed-point method is pursued until the error defined by
ǫ = |ωk − Ωk|/ωk is lower than a specified value, typically of the order of 1%.
Two fixed-point algorithms were tested here. The simplest algorithm possible
states that Ωk = ωk−1. It uses the result from the previous iteration to compute
the acoustic variables at the boundaries and to estimate unsteady flame effects.
This method is effective when it comes to find attractive fixed points but it is
not able to retrieve repulsive fixed points. To tackle that problem, a second
algorithm was developed by introducing a relaxation coefficient β and stating



170 Chapter 7 - The Helmholtz solver AVSP and the FDF methodology

that Ωk = (1 − β)ωk−1 + βΩk−1 [Silva et al. (2013)]. When using the relax
value β = 0, this algorithm reduces to the first fixed point method. In cases
where the first algorithm does not converge, a value of β = 0.5 is usually used
with the second algorithm.

7.4 Conclusion

The Flame Describing Function (FDF) methodology, an extension of the Flame
Transfer Function (FTF) including the perturbation level, has been presented
in this chapter. It relies on measuring a set of FTF for different fixed pertur-
bation levels and performing successive quasi-linear analyses for each pertur-
bation level investigated. It enables to retrieve some nonlinear characteristics
of thermo-acoustic instabilities such as their limit cycle frequency and ampli-
tude, mode switching and hysteresis phenomena. This nonlinear method will
be used in the next chapter in combination with the Helmholtz solver AVSP.
This solver was already validated on numerous configurations and successively
implemented with numerous features. It is able to take into account complex
boundary conditions, to model the response of perforated plates to acoustic
disturbances and to include a description of the unsteady heat release rate in
the calculations of thermo-acoustic eigenmodes. This type of solver enables to
take into account the complexity of practical 3D geometrical configurations.
The combination of this numerical tool and the FDF methodology is validated
on a generic configuration in the next chapter.



Chapter 8

Validation of the AVSP/FDF
methodology

A generic configuration is considered to validate the methodology de-
scribed in the previous chapter. The system comprises an adjustable
injection tube, a perforated plate to stabilize small conical flames and
different quartz tubes to confine the flames. This configuration was ex-
tensively studied by Boudy (2012) with detailed experiments. A thorough
theoretical investigation of the stability of this setup was also conducted
with low-order acoustic network models. The corresponding numerical
setup is first described in terms of numerical domain, mesh and neces-
sary inputs to the AVSP code. The acoustic eigenmodes of the burner
determined experimentally are presented for different feeding manifold
lengths and perforated plate thicknesses. They are compared to a nu-
merical estimates by solving the homogeneous Helmholtz equation with
the AVSP code. Finally, a nonlinear stability analysis is performed on
the same configuration using the AVSP solver in combination with the
Flame Describing Function ( FDF) methodology. Simulations for dif-
ferent plenum lengths are investigated. Various nonlinear behaviors are
predicted and compared to experimental data gathered at limit cycles.

8.1 Experimental configuration

8.1.1 Experimental setup

The burner considered here is sketched in Fig. 8.1. The experimental setup
includes a feeding manifold with an adjustable length, a perforated plate on top
of which small laminar premixed conical flames are anchored and a confinement
quartz tube [Boudy et al. (2011); Boudy et al. (2011); Boudy (2012)]. Methane
and air are premixed upstream of the burner. The mixture is injected in the
plenum through six small apertures drilled in the piston head. The mixture
then flows through the perforated plate and burns on top of it. The reaction
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Figure 8.1: Experimental setup used to characterize self-sustained thermo-acoustic
oscillations involving combustion [Boudy (2012)]. Reactants are premixed upstream
and a piston is used to modify the feeding manifold length L1. A perforated plate of
thickness l and hole radius rp acts as an anchoring device for a collection of small
laminar conical flames. The flame tube, made out of quartz and of length L2 + l,
allows the confinement of the combustion zone.

forms a collection of small conical flames that are anchored on the perforated
plate. A quartz tube is also placed on the top of the perforated plate and acts
as a combustion chamber by confining the flames and the burnt gases.
The piston can be moved to adjust the feeding manifold length from L1 = 100
to 750 mm, allowing to vary the acoustic response of the burner. The piston
head is flat to provide a nearly perfectly reflective surface to sound waves. More
details are given in the next sections on the burner inlet impedance. The plenum
diameter is constant and equal to 69 mm. The perforated plate is composed of
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421 circular holes with a radius rp = 1 mm that are regularly distributed over
a 3 mm square mesh pattern. It results in a global porosity of 0.34. Two plates
with different thicknesses are available: l = 3 and 15 mm. The combustion
chamber is a 65 mm radius quartz tube with different lengths: 100, 200, 300
and 400 mm. The investigation is conducted here only with the 100 mm tube.
In these experiments, the mass flow rate and the equivalence ratio are fixed
to ṁ = 4.71 g.s−1 and φ = 1.03, resulting in a thermal power of 13.3 kW.
The quartz tube outer temperature was measured and averaged over its length
to yield an estimation of the temperature in the combustion chamber. It was
found that Tb = 900, 1100, 1300 and 1400 K for the flame tube of length 100,
200, 300 and 400 mm, respectively [Boudy (2012)].
The thermo-acoustic behavior of the burner was characterized in terms of pres-
sure, heat release rate and velocity records at limit cycles. These measurements
were performed by F. Boudy and are reported in details in his Ph.D. thesis
[Boudy (2012)]. The plenum velocity is determined by a hot wire anemometer
and the heat release rate was deduced from a photomultiplier. The pressure
signals are measured by three microphones, located in the plenum, on the com-
bustion chamber backplane and outside of the combustion chamber. All signals
were recorded simultaneously at limit cycles of unstable regimes. These data
will be compared to numerical results in the next sections in terms of limit
cycle frequencies and amplitudes.

8.2 Numerical setup

The geometrical configuration explored by F. Boudy was first included in a
design software and meshed with tetrahedral elements. An example of one of
the geometries investigated numerically is presented in Fig. 8.2. It features
two cavities corresponding to the plenum and the combustion chamber. These
domains are separated but their boundaries may communicate. The geometri-
cal details of the piston (ring cavity, injection holes, airtight joint...) are not
included in the numerical design and the plenum is thus represented by a cylin-
drical manifold. The plenum upper boundary represents the perforated plate
lower side which is exchanging information with the corresponding boundary
at the bottom of the combustion chamber. The combustion chamber is also
modeled with a cylindrical domain, except at its bottom where a cylindrical
zone of height l = 3 mm and of diameter 78 mm was removed to model the
presence of a protruding perforated plate. The numerical domain thus includes
the ring cavity formed between the perforated plate and the flame tube as int
he experiments. An example of mesh is shown in Fig. 8.2-right. All the meshes
used are composed of about 100, 000 nodes. They are however not distributed
regularly over the whole numerical domain. The region above the perforated
plate has been refined to easily introduce the distribution of heat release rate.
As explained in Chapter 7, the AVSP solver needs as an input the distribution
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Figure 8.2: Numerical domain for L1 = 0.12 m, L2 = 0.088 m and l = 0.003 m.
Left: Half of the numerical domain. Middle: 2D vertical slice of the numerical
domain. Right: The mesh is superimposed on a fourth of the numerical domain.

Figure 8.3: Left: Field of the speed of sound modeling effects of steady combus-
tion (in m.s−1). Middle: Corresponding field of density (in g.m−3). Right: Field
of magnitude of the source term appearing in the right-hand side of the Eq. (7.17)
corresponding to a compact flame location above the perforated plate.
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of the speed of sound, density and heat release rate in the entire numerical do-
main. Two different fields for the speed of sound are used here. A constant field
c0 = 347 m.s−1, corresponding to a temperature of Tu = 300 K, is first used
to retrieve the acoustic eigenmodes of the burner without combustion. A dif-
ferent speed of sound field was used to compute the eigenmodes of the burner
when combustion is considered as shown in Fig.8.3-left. It includes a region
where c0 = 601 m.s−1, corresponding to a burnt gas temperature Tb = 900 K
uniformly distributed over the tube length L2 + l = 0.091 m. It is important
to mention that a small region (about 1 mm high) over the perforated plate
has been kept at Tu = 300 K, to enforce the correct pressure drop through the
perforated plate and to model the presence of fresh gases between the flame
and the downstream side of the perforated plate. The corresponding density
field is also shown in Fig. 8.3-center. This field follows the temperature distri-
bution defined by the fresh and burnt gas temperatures. The flame location is
highlighted by a jump in density above the perforated plate.
The flame region lies here above the perforated plate, as indicated in Fig. 8.3-
right. The heat release rate is distributed over a cylindrical zone, of radius
Rf = 345 mm and height l = 2 mm. This zone is located 1 mm above the per-
forated plate. Heat release rate perturbations are distributed uniformly over
that volume. The flame being compact with respect to the acoustic wavelengths
considered in this work, the real shape of the flame does not need to be repro-
duced with accuracy to retrieve the thermo-acoustic instability characteristics.

8.3 Flame Describing Function and boundaries con-
ditions

Several inputs are needed to properly describe the thermo-acoustic properties
observed with this combustor [Boudy (2012)]. The main elements are:

- A Flame Transfer Function or a Flame Describing Function to represent
the flame response to flow perturbations.

- A reflection coefficient representing the piston head as a non-perfectly
reflective surface.

- A reflection coefficient modeling acoustic losses and sound radiation at
the flame tube outlet.

- An unsteady pressure drop associated to the unsteady flow going through
the perforated plate.

These elements were shown to have a significant influence on the acoustic re-
sponse of the combustor and its nonlinear dynamics [Boudy (2012)]. The FDF
was measured by Boudy (2012) on a separate experiment. This burner fea-
tures a smaller diameter with a collection of conical flames that are anchored
on a 129 hole perforated plate, all the other parameters remaining the same.
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These measurements are plotted in Fig. 8.4-left for a plate thickness l = 3
mm as a function of the acoustic forcing frequency up to 1600 Hz. The FDF
gain exhibits a low-pass filter behavior with several humps. The FDF phase
lag increases almost linearly with the frequency. These features are commonly
observed for single [Ducruix et al. (2000); Schuller et al. (2002); Schuller et al.
(2003a); Kornilov et al. (2007); Cuquel et al. (2013b)] and multiple [Noiray
et al. (2006b); Noiray et al. (2008); Kornilov et al. (2009); Kornilov et al.
(2009)] conical flame responses to flow perturbations. The FDF also features
changes with the velocity perturbation level. The phase lag is shifted when
the amplitude increases and the gain drops. These modifications need to be
considered to predict the limit cycles reached by thermo-acoustic instabilities.

The reflection coefficient of the piston head was also characterized on a sepa-
rate experiment [Boudy (2012)] and is plotted in Fig. 8.4-center. The reflection
coefficient with (black dashed line with circles) and without (gray line with
square signs) flow exhibits strong deviations from a perfectly reflective surface
characterized by |R| = 1 and ∠(R) = 0, especially in the low frequency range.

The reflection coefficient of the confinement tube outlet is modeled here by a
radiation impedance for an unflanged open pipe [Levine and Schwinger (1948);
Rienstra and Hirschberg (2012)]:

Z(ω) =
1

4

(
ωR

c

)2

− i0.61
ωR

c
(8.1)

The real part describes the acoustic power radiated out of the tube and the
imaginary part represents the inertia of the flow in the region near the tube
outlet. This last contribution is often modeled by an end correction, taken here
as δ = 0.61R, that represents the location of the pressure node downstream of
the tube exit. The resulting impedance is plotted in Fig. 8.4-right for different
gas temperatures corresponding to the case without combustion (Tb = 300)
and the case with combustion (Tb = 900) for L2 = 0.088 m. This figure reveals
that, in the frequency range of interest, the reflection coefficient strongly differs
from an acoustic pressure node, for which |R| = 1 and ∠(R) = π.

8.4 Determination of the acoustic eigenmodes

Simulations with AVSP are first conducted in the absence of combustion. The
objective is to determine the acoustic eigenmodes of the numerical domain
simulated and compare these results with measurements. An acoustic network
analysis is also performed to compare the numerical and experimental data with
results from a low-order acoustic model (LOM). These results were obtained
with the code developed by F. Boudy in his Ph.D. thesis [Boudy (2012)].
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Burner configuration Experiments ∆f α

L1 = 0.12 m 462 Hz 4 Hz -12.6 s−1

l = 0.003 m 882 Hz 42 Hz -131.9 s−1

L1 = 0.12 m 456 Hz 8.5 Hz -26.7 s−1

l = 0.015 m 882 Hz 38 Hz -119.4 s−1

L1 = 0.35 m 225 Hz 8 Hz -25.1 s−1

l = 0.003 m 604 Hz 12 Hz -37.7 s−1

792 Hz 30 Hz -94.2 s−1

1190 Hz 32 Hz -100.5 s−1

L1 = 0.35 m 221 Hz 8.5 Hz -26.7 s−1

l = 0.015 m 604 Hz 11 Hz -34.6 s−1

792 Hz 30 Hz -94.2 s−1

1155 Hz 20 Hz -62.8 s−1

Table 8.1: Measurements of the first acoustic eigenfrequencies and damping rates for
the different geometrical configurations investigated.

8.4.1 Experimental determination

The burner presented in Fig. 8.1 was equipped with a loudspeaker and two
microphones to determine the eigenmodes for two different plenum lengths
L1 = 120 and 350 mm, and for two plate thicknesses l = 3 and 15 mm. In these
experiments, the loudspeaker is placed outside the burner, close to the confine-
ment tube exit. A reference microphone is located between the loudspeaker and
the burner exit to measure the external acoustic modulation pe. The second
microphone is installed at the bottom of the plenum to measure the internal
acoustic pressure fluctuation pi inside the burner plenum. The frequency re-
sponse of the system is investigated by determining the quantity (p̃i/p̃e)

2 where
(̃.) denotes the Fourier transform of the signal. This response is a function of
the excitation frequency and exhibits strong peaks when resonance is reached.
The frequency of these peaks depends on the burner dimensions as shown in
Fig. 8.5. The measured frequencies of the first eigenmodes are summed up in
Table 8.1 for all the geometrical configurations investigated. The resonant fre-
quencies are smaller for longer plenum lengths. For a fixed plenum length, the
resonance frequencies are weakly impacted by the perforated plate thickness.
The peak frequency decreases by only a few Hertz when the plate thickness is
increased for the configurations considered here.

The damping rate of the acoustic system can also be determined by this method.
It is done here by assuming that the system behaves like a second order oscil-
lator with a forcing term. The damping rate can then be deduced from a
measurement of the quality factor Q = f/∆f that is defined as the ratio be-
tween the resonance frequency f and the frequency width ∆f of the resonance
curve taken at half height of the resonance peak [Durox et al. (2009); Palies
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Plenum length Exp. AVSP LOM
L1 = 0.12 m 462 Hz 472 Hz 482 Hz

882 Hz 881 Hz 909 Hz
L1 = 0.35 m 225 Hz 219 Hz 228 Hz

604 Hz 608 Hz 609 Hz
792 Hz 814 Hz 844 Hz

1190 Hz 1194 Hz 1225 Hz

Table 8.2: Acoustic eigenmodes of the combustor determined experimentally, numer-
ically with the AVSP solver and with a low-order model (LOM). In the simulations,
the following temperatures were considered: Tu = Tb = 300 K. l = 3 mm.

(2010); Palies et al. (2011)]. The damping rate α is thus defined by:

α = −π∆f (8.2)

Measurements of ∆f and α are summarized in Table 8.1. The damping rate of
the system strongly increases as the resonance frequency increases.

8.4.2 Numerical determination

Simulations with AVSP are carried out here to determine the acoustic eigen-
modes of the configuration investigated without combustion. The acoustic
eigenfrequencies were determined numerically with a constant temperature of
Tu = Tb = 300 K in the whole combustor. This temperature was also used
to determine the corresponding outlet boundary condition fixed by Eq. (8.1)
which is plotted in Fig. 8.4-right with a black line. The piston reflection coef-
ficient measured without flow is used as an inlet boundary condition (grey line
in Fig. 8.4-center) in these simulations. The numerical results from these sim-
ulations and the predictions from the LOM are compared to the experimental
data in Table 8.2 for two different geometrical configurations corresponding to
two plenum lengths L1 = 0.12 and 0.35 m. The calculated eigenfrequencies of
the combustor match well those measured, with relative differences lower than
3 %. The numerical results obtained with AVSP also exhibit an improvement
compared to LOM results.

8.5 Nonlinear stability analysis

Simulations with AVSP are now carried out with unsteady combustion. A
temperature of Tu = 300 K is considered in the plenum and the burnt gas tem-
perature in the confinement tube is set to Tb = 900 K (see Fig. 8.3-center for
the corresponding mixture density field.). This last temperature was also used
to determine the outlet boundary condition from Eq. (8.1) which is plotted in
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Figure 8.6: Left: Pressure evolution in the plenum at limit cycle. Right: Power
spectral density of the pressure signal measured at limit cycle. L1 = 0.12 m and
l = 0.003 m.

Fig. 8.4-right with a grey line. The piston reflection coefficient measured with
flow is used as an inlet boundary condition (black line in Fig. 8.4-center). The
Flame Describing Function (FDF) measured on a perforated plate featuring a
thickness h = 3 mm is used in this section to model the nonlinear response of
the conical flames to acoustic perturbations. The nonlinear stability analysis
described in the previous chapter is carried out by calculations with the thir-
teen FTF composing that FDF (see Fig. 8.4-left). Results are examined for
increasing plenum lengths.

8.5.1 First case: L1 = 0.12 m

A first geometrical configuration is considered here for a plenum length of
L1 = 0.12 m with a perforated plate of thickness l = 0.003 m. Experimen-
tal data reveal that the system gets unstable and reaches a limit cycle with a
constant amplitude (Fig. 8.6-left) and a frequency of 552 Hz (Fig. 8.6-right).
Calculations with the LOM indicate that only the first acoustic mode of the
plenum is linearly unstable, i.e. this mode features a positive growth rate
ωi > 0 for small amplitude disturbances. The LOM further predicts that the
system reaches a limit cycle when ωi = 0 with a frequency equal to f = 550 Hz
and an amplitude equal to vrms

1 /v0 = 0.55 as indicated by Fig. 8.7-left (black
solid line). Results from AVSP simulations are presented in Fig. 8.7-left (cir-
cles) in terms of the first eigenfrequency f and its growth rate ωi as a function
of the perturbation level vrms

1 /v0. This mode is linearly unstable (ωi > 0 for
small perturbation levels) but the growth rate decreases as the perturbation
level increases until it reaches a zero value when vrms

1 /v0 = 0.55. This value
determines the limit cycle amplitude and allows one to read the predicted limit
cycle frequency that is roughly equal to 550 Hz. Results from AVSP simula-
tions (black circles) are very close to LOM predictions (black line), especially
when considering the frequency evolution. For small perturbation levels, a dif-
ference between numerical and LOM results can be observed on the growth
rate evolution. However, it does not impact the limit cycle amplitude predic-
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Figure 8.7: Left: Oscillation frequency f and growth rate ωi are plotted as a function
of the perturbation level vrms

1
/v0. Numerical results from AVSP (◦) are compared to

results from LOM (-). Right: Pressure modulus distribution calculated by AVSP
indicating the structure of the corresponding eigenmode at limit cycle. L1 = 0.12 m
and l = 0.003 m.

tion. Numerical simulations with AVSP also yield the corresponding eigenmode
structure as shown in Fig. 8.7-right. The mode structure corresponds here to
the 1/4-wavelength eigenmode of the combustor.

The first other eigenmodes of the combustor were also determined with the
AVSP solver. Results are not presented here, but these modes were all found
stable over the perturbation level range investigated. This is in agreement with
experimental data and with LOM results. The 1/4-wavelength eigenmode of
the combustor is the only unstable mode when the plenum length is set to
L1 = 0.12 m.

8.5.2 Second case: L1 = 0.35 m

A second geometrical configuration is investigated for a longer plenum when
L1 = 0.35 m. Experimental data reveal that the system gets unstable and
reaches a limit cycle with a constant amplitude of vrms

1 /v0 = 0.4 (Fig. 8.8-
left) and a frequency of 676 Hz (Fig. 8.8-right). Simulations with AVSP are
presented in Fig. 8.9 as circles. A mode with a frequency of about 660 Hz
is found unstable with a positive growth rate (ωi > 0) for small perturbation
levels. This mode is linearly unstable. The growth rate decreases as the per-
turbation level increases until reaching a zero value for a perturbation level of
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about vrms
1 /v0 = 0.4. This value determines the limit cycle amplitude. When

the oscillation amplitude increases, the oscillation frequency is modified but
reaches a value at limit cycle close to the one observed in experiments. It is
worth noticing that results from AVSP simulations (blue circles) are close to
the LOM predictions (blue line). A comparison between the different predic-
tions and experimental data measured at the limit cycle (red squares) show
that the AVSP solver retrieves correctly the limit cycle found experimentally
at vrms

1 /v0 = 0.4 and f = 676 Hz. The corresponding calculated modal struc-
ture, presented in Fig. 8.9-right, corresponds to the 3/4-wavelength eigenmode
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Figure 8.8: Left: Pressure evolution in the plenum at limit cycle. Right: Power
spectral density of the pressure signal measured at limit cycle. L1 = 0.35 m and
l = 0.003 m.
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Figure 8.9: Left: Oscillation frequency f and growth rate ωi are plotted as a function
of the perturbation level vrms

1
/v0. Numerical results from AVSP (◦) and from LOM (-)

are compared to experimental data (�) from [Boudy et al. (2011)]. Right: Pressure
modulus distribution calculated by AVSP indicating the structure of the corresponding
eigenmode at limit cycle. L1 = 0.35 m and l = 0.003 m.
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of the combustor.

The two previous cases investigated demonstrate that AVSP combined with
an FDF and appropriate boundary conditions may be used confidently to ana-
lyze the dynamics of linearly unstable modes for small disturbances to a finite
amplitude level at limit cycles. These validations were conducted with the 1/4-
wavelength and the 3/4-wavelength eigenmodes of the combustor. The last case
investigated envisages a configuration featuring a nonlinearly unstable mode.

8.5.3 Third case: L1 = 0.54 m

A third validation is carried out with a different geometrical configuration for
a longer plenum length L1 = 0.54 m. Experimental data reveal that the
system gets unstable and reaches a limit cycle with a constant amplitude of
vrms
1 /v0 = 0.7 (Fig. 8.8-left) and a frequency of 472 Hz (Fig. 8.8-right). Anal-

ysis of the transient signal during growth of the instability reveals a mode
switching phenomenon occurring shortly after ignition. The system is unstable
and oscillate first with a frequency equal to 750 Hz, but it rapidly switches to
a lower frequency equal to 472 Hz (see Fig. 8.11-top). By filtering the dimen-
sionless velocity signal v1(t)/v0 with a 4th-order passband Butterworth filter
around 750 Hz, it is possible to isolate the onset and the decrease of the initial
high frequency instability that is plotted in Fig. 8.11-bottom. The maximum
amplitude reached by this mode can thus be determined and is roughly equal
to |v1/v0| = 0.45 corresponding to a perturbation level vrms

1 /v0 = 0.32.

This transient behavior was already explored by Boudy et al. (2011). The same
simulations are performed here, the only difference lying in the use of complex
boundary conditions instead of real reflection coefficients. Results from LOM
and AVSP simulations are compared to experimental data in the following. The
third mode is first considered and the second mode is investigated later.
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Figure 8.10: Left: Pressure evolution in the plenum at limit cycle. Right: Power
spectral density of the pressure signal measured at limit cycle. L1 = 0.54 m. l = 0.003
m.
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Figure 8.11: Top: Temporal signals of the self-sustained instability. The two upper
plots show the normalized velocity and the pressure oscillations in the plenum. The
lower plot corresponds to the short-time Fourier spectral density of the pressure signal.
Reproduced from Boudy et al. (2011). Bottom: Dimensionless velocity perturbation
signal filtered around the high frequency of the instability. L1 = 0.54 m. l = 0.003 m.
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Figure 8.12: Left: Oscillation frequency f and growth rate ωi of the third eigenmode
are plotted as a function of the perturbation level vrms

1
/v0. Numerical results from

AVSP (◦) and from LOM (-) are compared to experimental data (�) from Boudy
et al. (2011). Right: Pressure modulus distribution calculated by AVSP indicating
the structure of the third eigenmode at limit cycle. L1 = 0.54 m and l = 0.003 m.

Simulations with the LOM indicate that the third acoustic mode of the plenum
is linearly unstable (ωi > 0 for small perturbation levels). The oscillation fre-
quency and growth rate of this mode are plotted in Fig. 8.12. This growth
rate rapidly decreases to reach ωi = 0 when vrms

1 /v0 = 0.35. Results from the
AVSP simulations are plotted in Fig. 8.12 as circles for the third eigenmode
of the combustor. These results show that this mode is linearly unstable and
that the instability grows until the perturbation amplitude reaches a value of
vrms
1 /v0 = 0.35. If the instability amplitude is further increased, the growth

rate becomes negative and higher fluctuation levels cannot be sustained for this
mode. The amplitude of the third mode determined when ωi = 0 represents
the maximum amplitude reached by this mode, before its amplitude decreases
as the perturbation level increases when the system switches to another mode.
In Fig. 8.12 -left, results from AVSP are compared to LOM predictions and
experimental data. Predictions from AVSP or LOM are very close, with differ-
ences limited to 20 Hz. The measurements presented in Fig. 8.12-left are deter-
mined from the velocity signal plotted in Fig. 8.11-bottom. These experimental
data match predictions very closely. The value obtained with AVSP and LOM
vrms
1 /v0 = 0.35 is in good agreement with the one measured vrms

1 /v0 = 0.32.
The simulations with AVSP also yield the eigenmode spatial structure. The
initial eigenmode appearing around 750 Hz corresponds to the 5/4-wavelength
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Figure 8.13: Left: Oscillation frequency f and growth rate ωi of the second eigen-
mode are plotted as a function of the perturbation level vrms

1
/v0. Numerical results

from AVSP (◦) and from LOM (-) are compared to experimental data (�) from Boudy
et al. (2011). Right: Pressure modulus distribution calculated by AVSP indicating
the structure of the second eigenmode at limit cycle. L1 = 0.54 m and l = 0.003 m.

eigenmode of the combustor and is represented in Fig. 8.12-right.

Considering now the results for the second mode in Fig. 8.13, simulations with
the LOM indicate that this mode is linearly unstable but with a growth rate
much smaller than the one of the third mode for small perturbation levels. The
growth rate of the second mode increases as the perturbation level increases
before decreasing towards the limit cycle condition ωi = 0. The LOM thus pre-
dicts that the system reaches a limit cycle with a frequency equal to f = 470 Hz
and an amplitude equal to vrms

1 /v0 = 0.6. Simulations with ASVP are shown
as circles in Fig. 8.13 and indicate that the second mode is triggered only for
perturbation levels larger than vrms

1 /v0 = 0.3. This mode is thus nonlinearly
unstable in the intermediate range of perturbation levels. Its growth rate de-
creases for higher oscillation amplitudes and reaches zero when vrms

1 /v0 = 0.65,
yielding the limit cycle amplitude predicted by these simulations. Oscillations
at the limit cycle that have a frequency of about 470 Hz are associated to the
3/4-wavelength eigenmode of the combustor, as shown in Fig.8.13-right.

Predictions for the second mode and experimental data are compared in Fig. 8.13-
left. A first difference can be observed between predictions from AVSP and
LOM. For small perturbation amplitudes, calculations from the LOM indi-
cate a very small growth rate but the AVSP solver does not detect any mode.
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At intermediate perturbation levels comprised between vrms
1 /v0 = 0.3 and

vrms
1 /v0 = 0.5, the growth rates calculated with the LOM and AVSP slightly

differ, but the oscillation frequencies match well. At high perturbation levels,
predictions from AVSP and LOM collapse leading to the same limit cycle with
a frequency of 460 Hz and an amplitude vrms

1 /v0 = 0.65. The limit cycle fre-
quency observed in experiments is well retrieved. The limit cycle amplitude is
however slightly underestimated compared to the measured one vrms

1 /v0 = 0.7.

Boudy et al. (2011) studied the same case where the third mode oscillation
starts to grow and then naturally switches to the second mode oscillation for
a certain oscillation threshold level. This phenomenon was well retrieved by
the LOM predictions. By comparing the growth rate evolutions in Figs. 8.12
and 8.13, the AVSP results show that the third mode is linearly unstable. The
situation changes for a certain threshold level when the oscillation reaches an
amplitude vrms

1 /v0 = 0.35. At that amplitude, the growth rate of the third
mode drops to zero, meaning that this mode has reached a maximum ampli-
tude. Simultaneously, the growth rate of the second mode features a large
positive value for this perturbation level. The second mode amplitude thus
keeps increasing. At higher amplitudes, the growth rate of the third mode be-
comes negative and this mode is damped. Therefore, only the second mode
remains because its growth rate remains positive up to a larger perturbation
amplitude vrms

1 /v0 = 0.65. This mode switching phenomenon is thus retrieved
by AVSP even though slight differences were observed in the way the system
reaches the limit cycle.

8.6 Conclusion

A nonlinear stability analysis combining the AVSP multidimensional Helmholtz
solver with the FDF methodology was conducted by examining the dynam-
ics of a generic multipoint injection combustor. The experimental setup and
the corresponding numerical configuration were first introduced. The acoustic
eigenmodes of the burner were characterized experimentally and numerically
for different geometrical configurations. A good overall agreement was found
for the first acoustic eigenfrequencies of the combustor. Simulations were con-
ducted with unsteady flames modeled by the FDF. A nonlinear stability anal-
ysis was then carried out to determine the system unstable frequencies and the
corresponding growth rates as a function of the perturbation level. Predictions
were compared to measurements gathered at limit cycles. A good agreement
was found between experimental data, numerical results and simulations with
a low-order model of the burner acoustics for linearly unstable modes. It was
shown that the AVSP solver catches the correct oscillation frequencies and
perturbation levels of the limit cycles reached by these modes. Another con-
figuration featuring a nonlinearly unstable mode was investigated as well. The
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FDF/AVSP was shown to retrieve the mode switching phenomenon that was
observed experimentally.





Conclusion and Perspectives

The present work deals with the dynamics of laminar premixed conical flames
that are submitted to flow perturbations and their interactions with the burner
acoustics. This investigation builds on a considerable work conducted at EM2C
on this configuration [LeHelley (1994); Ducruix (1999); Schuller (2003); Bir-
baud (2006); Noiray (2007); Boudy (2012)]. The objective was to improve the
description of the flame response by modeling new mechanisms and by using
a combination of experimental methods, numerical simulations and theoretical
developments. The main results of this work are summed up here:

• A novel method for the experimental determination of the Flame Transfer
Function (FTF) was developed. The method uses random flow modula-
tions to perturb a single laminar premixed conical flame. Measurements
with this alternative technique compared well with measurements con-
ducted with harmonic signals for low perturbation levels. These compar-
isons enabled to delineate the limits of this method when the perturbation
level is increased.

• Modeling of the FTF of a single conical laminar flame was improved
by considering incompressible convective velocity perturbations. It was
shown that this is an important feature that needs to be taken into ac-
count to satisfy the continuity equation and retrieve the correct phase lag
evolution of the FTF observed in experiments at low and intermediate
frequencies. The decay of the velocity perturbation amplitude along the
burner axis was also shown to be an important feature that needs to be
considered to correctly describe the FTF gain evolution.

• New physical mechanisms considering unsteady heat losses from the flame
base to the burner rim were taken into account to model the FTF of a
single conical premixed laminar flame. Unsteady heat loss was shown to
control the motion of the flame base determining the high frequency be-
havior of the FTF. This mechanism is also responsible for the saturation
of the FTF phase lag observed in experiments at high frequencies.

• Transition to nonlinearity was shown to be controlled by a competition
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between the flame response to oscillations of the flame base and the flame
response resulting from velocity disturbances. These observations were
used to guide modeling of the FDF and propose a first analytical semi-
heuristic description of effects of the input level on FTF.

• Interactions between walls and burnt gases were investigated by consid-
ering a single conical laminar flame placed into a cylindrical flame tube.
It was shown that confinement effects need to be taken into account to
capture the correct shape of the flame when the burnt gases cannot fully
expand. Large differences were observed between FTF measured for dif-
ferent flame tube diameters. These differences were explained by a modi-
fication of the averaged time lag taken by flame and flow disturbances to
generate heat release rate perturbations. A new reduced frequency was
proposed to rescale FTF obtained with different confinements. It was
shown that this model may be used to capture the response of a collec-
tion of small conical flames stabilized on a perforated plate.

• The Flame Describing Function (FDF) methodology was combined to a
numerical tool (AVSP) to solve the Helmholtz equation over 3D combus-
tor geometries. This combination was here validated on a generic mul-
tipoint injection combustor by performing a nonlinear stability analysis.
It revealed that this numerical method enables to predict linearly unsta-
ble modes and their evolution to limit cycle. It was also shown that the
FDF/AVSP combination may be used to retrieve some nonlinear features
such as nonlinearly unstable modes which are triggered above a certain
amplitude threshold and mode switching.

This series of conclusions lead to the following perspectives. On the experi-
mental side, the method developed for FTF determination with non-harmonic
signals improves significantly the frequency resolution of the FTF. This method
also reduces the amount of time required to determine a FTF. However, more
work is required to improve this technique based on system identification tools:

- The technique using random perturbations has to be further tested and
validated on other burner configurations, especially in the case of turbu-
lent flames where effects of the turbulence background noise that were
not considered here may interact with the forcing signal.

- A complete description of flame nonlinearities in the frequency domain
is difficult and can become untractable if more than one single frequency
has to be considered simultaneously [Moeck and Paschereit (2012)]. More
work should thus be envisaged in the time domain. For example, a gen-
eralization of the impulse response including effects of the input level has
to be designed in order to extend random perturbation techniques to the
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measurement of nonlinear flame response. This can be done for exam-
ple by considering Volterra series as recently suggested by Selimefendigil
et al. (2012).

On the modeling side, significant improvements on the response of premixed
laminar conical flames submitted to flow disturbances were achieved in this
thesis in terms of flame front perturbations and Flame Transfer Function (FTF).
In particular, it was shown how to reproduce the FTF of a single conical flame
accurately over the whole frequency range of interest. All these models were
validated by systematic comparisons with experiments for a single premixed
laminar conical flame by detailed velocimetry, chemiluminescence and flame
imaging measurements.
These models were also shown to reproduce the observed FTF of a collection
of conical flames that are anchored above a perforated plate. By taking into
account a correct description of the fresh gas velocity perturbation, the interac-
tion of the flame base with the perforated plate and effects of the confinement
due to neighboring flames, a relative good agreement was found between ex-
periments and predictions.

This work leads to new perspectives in flame dynamics modeling:

- A general framework for FTF modeling was proposed. It lead to expres-
sions of the FTF as a function of the fresh stream velocity perturbations
at the burner outlet and of the flame base motion. The case of laminar
premixed conical flames was examined, but this framework can easily be
extended to other premixed flame configurations such as V-flames, M-
flames and swirling flames in the future.

- In the present work, the feedback from the flame front perturbations onto
the fresh gas flow was modeled by an incompressible convected velocity
wave. These velocity perturbations were related here to incoming acoustic
perturbations. It was shown by Birbaud et al. (2006) that these distur-
bances originate from the flame front perturbations. To further improve
the premixed flame dynamics predictions, this link should be addressed
for inclined flames. This problem becomes especially important for flames
that are only submitted to mixture composition disturbances or to a mo-
tion of the flame base. In these cases, convective velocity perturbations
have to be considered [Kornilov et al. (2007); Hemchandra (2012)], but
they cannot be related to any incoming acoustic perturbations.

- The interaction between the flame base and the burner rim was examined
in this work. The same type of model may be used to analyze the inter-
actions of the unsteady flame front with the combustion chamber walls.
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- Motions at the flame base were shown to result in large heat release rate
disturbances that were linked to heat losses from the flame base to the
burner rim. In the case of aerodynamically stabilized flames, the flame
base can also execute a periodic motion [Borghesi et al. (2009); Stohr
et al. (2011)] in the absence of unsteady heat losses. There is a wide field
of investigation that needs to be conducted to understand the motion of
the flame base and its impact on the FTF for aerodynamically stabilized
flames.

- Different new physical mechanisms (incompressible convective velocity
perturbations, unsteady heat losses, confinement effects) were included to
improve the FTF description in the linear regime. Interactions between
these mechanisms in the nonlinear regime still need to be investigated.
Level set tracker solvers based on the G-equation are probably one natu-
ral way to perform these studies.

- Analysis of the impact of the confinement on conical flames can be ex-
tended to other premixed flame configurations. For example, in the case
of unconfined V-flames, the burnt gases are deviated toward the burner
centerline and exert an overpressure on the fresh gases. The streamlines
in the fresh gases are thus deviated. The shape of the steady flame is in
turn modified [Schuller (2003)]. This has also a great impact on the flame
dynamics. A thorough analysis of the steady configuration, similar to the
one carried in this work for confined conical flames, should be performed
to model the mean flow in the fresh gases and the mean flame shape. This
may be used to examine the impact of that overpressure on the FTF of
V-flames.

- It was previously shown that confinement effects have a strong impact on
steady and perturbed swirling flames [Tay-Wo-Chong and Polifke (2012)]
resulting in large modifications of the FTF [Hauser et al. (2011); Tay-Wo-
Chong and Polifke (2012)]. The same type of analysis that was devised
here may be used to understand these changes in FTF and identify the
correct dimensionless numbers needed to transpose FTF of swirling flames
from one configuration to a burner with different flame tubes.

Finally, a significant step has been achieved by extending and validating a non-
linear stability methodology based on the FDF. It is here combined with a
numerical solver of the Helmholtz equation capable to handle complex 3D ge-
ometries with complex boundaries. Several issues remain to tackle for thermo-
acoustic instability prediction:

- The FDF/AVSP methodology was only validated on generic configura-
tions featuring laminar (the present work) or turbulent flames [Silva et al.
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(2013)]. The next step should be to apply this type of methodology to
a practical combustor featuring a 3D complex geometry. The main dif-
ficulty remains to determine the FDF in such a configuration at high
pressure and high temperature.

- Another challenge is to improve the nonlinear stability analysis method-
ology by using Describing Functions not only for the flame response but
also for the damping rate and for boundary conditions. The damping
rate often depends on the input level [Tran et al. (2009); Schuller et al.
(2009)]. There are also a few work initiated regarding the determination
of the damping rate. This may be obtained experimentally [Palies et al.
(2011)] or numerically by solving the linearized Euler equations [Gikadi
et al. (2013)]. These features are essential to obtain a complete nonlinear
description of the system and accurately predict limit cycles on practical
combustors which are characterized by a balance between acoustic energy
production and damping.

- Other issues recently emphasized by experiments like limit cycle with
variable amplitude and multifrequency galloping modes remain difficult
to capture [Kabiraj and Sujith (2012); Boudy et al. (2013)]. A model-
ing effort based on the interaction between multiple unstable modes is
necessary to better predict these phenomena.





Appendix A

Heat release rate perturbations
induced by a flame base motion

It was shown in Chapter 5 that when a conical flame anchored on the rim
of a burner is submitted to harmonic flow disturbances, the flame base is not
motionless and undergoes a periodic motion. These perturbations of the flame
position at its base are convected along the flame front. The resulting flame
wrinkles produce flame surface area perturbations and ultimately, heat release
rate disturbances. In Chapter 1, this link was only considered for a flame base
that moves along a direction normal to the steady flame front. It was also
confirmed by experiments in Chapter 6. In a different configuration, Kornilov
et al. (2007) explored the flame response when the flame base is submitted to
either an horizontal or a vertical oscillating motion. It is shown in this appendix
that the flame response changes when submitted to oscillations of different di-
rections at the flame base. The different expressions obtained for the FTF are
compared for normal, horizontal and vertical disturbances of the flame base
position.

The analysis is conducted for a straight laminar conical flame anchored on a
circular burner of outlet radius R and in a uniform axial flow of velocity v0.
The flame speed Sd fixes the flame position (see Fig. A.1-a). The following
developments make use of the G-equation:

∂G

∂t
+ v · ∇G = Sd|∇G| (A.1)

A.1 Flame base motion normal to the steady flame
front

The conical flame is submitted to harmonic disturbances of the flame base
ξ(X = 0, t) in a direction normal to the steady flame front (see Fig. A.1-b).
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Figure A.1: Different configurations explored. (a) Steady laminar conical flame. (b)
Unsteady flame perturbed by a flame base displacement along a direction normal to
the steady flame front ξ(X = 0). (c) Unsteady flame perturbed by a horizontal flame
base displacement ζ1(y = 0). (d) Unsteady flame perturbed by a vertical flame base
displacement η1(r = R).

These disturbances are convected along the flame front resulting in flame wrin-
kles ξ(X, t) and flame surface area perturbations A1(t). In the frame attached
to the flame front, the G-equation reduces to:

∂ξ

∂t
+ v0 cosα

∂ξ

∂X
= 0 (A.2)

where G(X,Y, t) = ξ(X, t) − Y . In the case of harmonic perturbations of the
form ξ(X, t) = ξ̃(X) exp(−iωt), the solution of Eq. (A.2) is:

ξ̃(X) = ξ̃(0) exp

(
iωX

v0 cosα

)
(A.3)

The link between normal flame front perturbations and flame surface area dis-
turbances is given by:

Ã1

A0
=

sinα

πR2

∫ L

0
2πξ̃(X) cosαdX (A.4)

It finally comes:

FCN
=
Ã1/A0

ξ̃(0)/R
= 2 cosα

eiω∗ − 1

iω∗
(A.5)
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This transfer function is plotted in Fig. A.2-left as a function of the reduced
frequency ω∗ and for three flame tip half-angles α = π/12 (black line), π/4
(dark grey line) and π/3 (light grey line). This figure shows that the gain of
FCN

has a low-pass filter behavior featuring several humps. This gain reduces
as α increases. The phase lag of FCN

is increasing linearly from 0 to π when ω∗

increases from 2kπ to 2(k+ 1)π, k = 1, 2..., without taking any values between
π and 2π. The phase lag does not depend on the flame tip half-angle α.

A.2 Horizontal flame base motion

The flame is now submitted to harmonic horizontal disturbances of the flame
base ζ(y = 0, t) as in Fig. A.1-c. These disturbances are convected along the
flame front and result in flame front wrinkles ζ1(y, t) and flame surface area
perturbations A1(t). In the frame attached to the burner rim, the G-equation
reduces now to:

∂ζ1
∂t

+ v0 cos2 α
∂ζ1
∂y

= 0 (A.6)

whereG(r, y, t) = ζ(y, t)−r. For harmonic perturbations ζ1(y, t) = ζ̃1(y) exp(−iωt),
the solution of Eq. (A.6) is:

ζ̃1(y) = ζ̃1(0) exp

(
iωy

v0 cos2 α

)
(A.7)

The resulting flame surface area disturbances are given by:

Ã1

A0
=

sinα

πR2

∫ H

0
2π

[
ζ̃1(y) − (R− y tanα) sinα cosα

∂ζ̃1
∂y

]
dy

cosα
(A.8)

It finally comes:

FCH
=

Ã1/A0

ζ̃1(0)/R
= 2

[
eiω∗ − 1

iω∗
− sin2 α

eiω∗ − 1 − iω∗

iω∗

]
(A.9)

It is important to note that FCH
reduces to FCN

when the flame tip half-angle α
tends to 0. This transfer function FCH

is plotted in Fig. A.2-center as a function
of the reduced frequency ω∗ and for three flame tip half-angles α = π/12 (black
line), π/4 (dark grey line) and π/3 (light grey line). The gain of FCH

is equal to
2 at low frequency and decreases before oscillating around an almost constant
value at high frequencies. This constant value decreases when the flame tip
half-angle α decreases. The phase lag of FCH

is oscillating between 0 and π
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and the amplitude of these oscillations is reduced as α increases. It is interesting
to note that these oscillations of the phase lag are smaller than the ones of the
phase lag of FCN

and that the gain of FCH
takes larger values than the gain

of FCN
. The flame response to disturbances at the flame base is thus a strong

function of the disturbance direction. It is interesting to explore a last case
when perturbations of the flame base position are vertical.

A.3 Vertical flame base motion

The flame is now submitted to harmonic vertical flame base oscillations η1(r =
R, t) as shown in Fig. A.1-d. These disturbances are convected along the flame
front. They produce flame wrinkles η1(r, t) and flame surface area perturbations
A1(t). In the frame attached to the burner rim, the G-equation reduces to:

∂η1

∂t
− v0 cosα sinα

∂η1

∂r
= 0 (A.10)

where G is now given by G(r, y, t) = η1(r, t) − y. For harmonic perturbations
η1(r, t) = η̃1(r) exp(−iωt), the solution of Eq. (A.10) writes:

η̃1(r) = η̃1(R) exp

(
iω(R− r)

v0 sinα cosα

)
(A.11)

The resulting flame surface area disturbances are given by:

Ã1

A0
=

sinα

πR2

∫ R

0
2πr

(
− sinα cosα

∂η̃1

∂r

)
dr

sinα
(A.12)

It finally comes:

FCV
=

Ã1/A0

η̃1(R)/R
= 2 sinα cosα

eiω∗ − 1 − iω∗

iω∗
(A.13)

This transfer function FCV
is plotted in Fig. A.2-right as a function of the

reduced frequency ω∗ and for three flame tip half-angles α = π/12 (black line),
π/4 (dark grey line) and π/3 (light grey line). This figure shows that the
gain of FCV

is equal to 0 at low-frequency and decreases before oscillating
around an almost constant value at high frequencies. The transfer function FCV

corresponds here to a high-pass filter. This constant value is highly dependent
on the flame tip half-angle α. The phase lag of FCV

is equal to π/2 at low
frequencies and is oscillating around π at higher frequencies. The phase lag of
FCV

does not depend on the flame tip half-angle α.
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A.4 Synthesis

These different analytical developments show that flame surface area and heat
release rate disturbances resulting from the perturbations imposed at the base
of a conical flame strongly depend on the direction of these oscillations of the
flame base. In modeling the response of conical flames to flow disturbances,
it is important to examine the motion at the flame base and in particular its
direction in order to capture the correct contribution to the FTF.



Appendix B

FTF as a function of a complex
angular frequency

Flame Transfer Function are usually determined experimentally or numerically
by perturbing the flow with a harmonic signal featuring a constant amplitude.
The FTF is thus generally determined for real forcing angular frequencies. How-
ever, in order to predict thermo-acoustic instabilities, FTF or FDF should in
principle be introduced in dispersion relations or numerical acoustic solvers as
quantities that depend on a complex frequency. Because the FTF is only known
for real frequencies, it is generally introduced as real-frequency-dependent quan-
tities in thermo-acoustic stability analysis. Two problems are considered in this
appendix. The first one is:

M(ω)P = F (ωr) (B.1)

where ωr is the real part of the complex frequency ω. The second one is:

M(ω)P = F (ωr + iωi) (B.2)

where ωi is the imaginary part of the complex frequency ω. In these expres-
sions, M denotes a matrix that depends on the angular frequency and P is the
pressure eigenvector. The source term F includes the unsteady flame frequency
response to flow perturbations and depends on the angular frequency.

These two problems are used to investigate the influence of FTF with a complex
frequency in the determination of thermo-acoustic eigenmodes of a combustor.
Analytical expressions of the FTF that were derived in Chapter 4 are first
considered and plotted as a function of both the real component ωr and the
imaginary component ωi of the angular frequency. Analytical calculations are
then considered in a generic case with a n − τ sensitive time lag model to
emphasize effects of complex angular frequencies ω = ωr + iωi. A method to
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compute complex frequency dependent FTF from experimental data is finally
described before using it in combination with low-order acoustic network for
the determination of the oscillation modes of a generic combustor.

B.1 Effects of ωi on analytical FTF models

To illustrate this problem, analytical FTF models derived for incompressible
convective velocity perturbations and for unidimensional convective velocity
perturbations (see Chapter 4) are considered in this study when the real reduced
frequency ω∗

r is replaced by a complex frequency ω∗ = ω∗
r + iω∗

i . Results are
plotted in Fig. B.1 as a function of the reduced frequency ω∗ = ωR/(Sd cosα) =
ω∗

r + iω∗
i . One can observe that the main effect of taking into account finite
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Figure B.1: Flame Transfer Function gain (left) and phase (right) as a function of
the reduced real frequency ω∗

r and the reduced growth rate ω∗

i . The models used are
derived from an incompressible convective model (top figures) and from a convective
model [Schuller et al. (2003a)]. The FTF values derived for ω∗

i = 0 are highlighted as
a thick black curve. α = π/12.
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Figure B.2: Flame Transfer Function as a function of the reduced frequency ω∗

r for
different values of the dimensionless reduced growth rate ω∗

i . α = π/6 (left figure) and
α = π/12 (right figure).

values for ω∗
i is a strong increase of the FTF gain for large negative values

of the reduced growth rate. For large positive values of the growth rate, the
FTF gain reduces to zero. Effects of the growth rate ωi on the FTF phase are
less obvious. Only some differences can be observed with a jump of 2π for the
unwrapped phase.

The effect of the growth rate ω∗
i is further studied by examining FTF deter-

mined for different flame tip half-angles α in the case of incompressible con-
vective perturbations. The FTF are plotted in Fig. B.2 as a function of the
reduced real frequency for different growth rates and for two flame tip half-
angles α = π/6 and π/12. One can see that the sensitivity of the FTF to
changes in the reduced growth rate differs when the flame tip half-angle α is
varied. For negative values of the growth rate, the FTF gain increases when the
flame tip half-angle decreases. The FTF phase weakly depends on the flame tip
half-angle. A phase saturation phenomenon appears for large positive values of
the growth rate for the two flame tip half angles considered.

Large differences can be observed between F(ωr) and F(ωr + iωi). However,
the impact of these differences on the prediction of thermo-acoustic instability
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Figure B.3: Open-close double-duct system where a compact flame is located in be-
tween the ducts (red line). Adapted from Poinsot and Veynante (2012).

has to be assessed. This is achieved in the next section by means of a simplified
analytical model.

B.2 Effect of F(ωr+iωi) on thermo-acoustic instability
prediction

In this section, a simplified combustor model is considered. This configuration
represents an acoustic system comprising two cavities of different lengths and
section areas (see Fig. B.3). It represents an open-close double-duct system
that models a generic combustor where a compact flame is located in between
the two cavities. The eigenmodes of this combustor are determined with a low-
order model. This method leads to a dispersion relation which solutions are
the eigenfrequencies f = ωr/(2π) and the growth rates ωi. Different stability
analyses are conducted to investigate the influence of the growth rate ωi on the
system dynamics.
First, calculations are carried out without taking into account the growth rate
in the description of the flame response:

cos(ωa/c1) cos(ωb/c2) − Γ sin(ωa/c1) sin(ωb/c2)

[
1 +

(
T2

T1
− 1

)
F(ωr)

]
= 0

(B.3)

Then, calculations are conducted on the same configuration but by also con-
sidering the growth rate in the FTF:
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cos(ωa/c1) cos(ωb/c2) − Γ sin(ωa/c1) sin(ωb/c2)

[
1 +

(
T2

T1
− 1

)
F(ω)

]
= 0

(B.4)

Γ = (ρ2S2c1)/(ρ1S1c2) is a cavity coupling index and T1, a, S1, ρ1 and c1 (resp.
T2, b, S2, ρ2 and c2) are the temperature, length, cross section area, density and
speed of sound relative to the upstream cavity (resp. the downstream cavity)
(see Fig. B.3).

The linear stability analysis is performed with a n-τ sensitive time lag model.
In the frequency domain, one may write: F(ω) = neiωτ . Different stability
analyses are conducted by sweeping both the flame/acoustic interaction index
n, over four values n = 10−5, 10−2, 10−1 and 1, and the time lag in a range
from τ = 0 to τ = 0.03. Eqs. (B.3) and (B.4) are solved for the following
values: a = b = 0.5 m, S2 = 2S1, T2 = 6T1, c1 = 340 m.s−1, c2 = 61/2c1,
ρ2 = ρ1/6. Results are plotted in Fig. B.4, in blue for the solution of Eq. (B.3)
(when F(ωr) = neiωrτ is considered). They are plotted in red for the solution of
Eq. (B.4) (when F(ωr + iωi) = ne−ωiτeiωrτ is considered). The influence of the
growth rate ωi on the results of a linear stability analysis appears to be limited
for very small values of n (left figures in Fig. B.4). As the coupling parameter
n increases, differences appear if one takes into account the growth rate in the
FTF expression. For n = 0.1, one can see that the frequency of the instability
is significantly modified. The system linear stability is also modified for large
time lags τ . If the growth rate is not considered in the FTF formulation, the
system alternates between stability and instability (depending on the sign of
the growth rate) as the time lag τ increases. If the growth rate is considered in
the FTF expression, the system features a wider range of stable regimes over
the range of time lags investigated. For the last case where n = 1, the system
stability and the mode frequency are not modified but it is interesting to notice
that the resulting growth rates are greatly reduced in the case where they are
taken into account in the FTF expression.

Including the growth rate in the FTF was shown to have a strong impact on
the stability of the eigenmodes of the system. However, available experimental
FTF are only limited to real forcing frequencies where ωi = 0. A procedure to
extend these data to the whole complex frequency plane has to be designed. It
is the topic of the next section.
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B.3 From F(ωr) to F(ωr + iωi)

B.3.1 Theoretical method

In practical cases, the FTF is measured or numerically determined using har-
monic waves of constant amplitude, i.e. with a growth rate ωi = 0. These
experiments yield F(ωr). However, as shown in the previous section, strong
differences can appear between stability analyses that use a FTF that depends
or not on the growth rate ωi. Therefore, a specific algorithm has to be designed
and applied to determine F(ωr + iωi) from discrete measurements of F(ωr).
This can be done for example by transforming the experimental data from the
frequency domain to the time domain, and then apply a Laplace transform.
The first step consists in applying an inverse Fourier transform to the FTF
determined for real frequencies F(ωr), what results in the impulse response
(IR):

h(t) = Re

[∫ +∞

−∞
F(2πf)e2iπftdf

]
(B.5)

where Re[] denotes the real part of a complex number. An experimental FTF
is only determined for a limited number of frequencies with a discrete set of
values for the FTF F(2πfn) measured for a set of real frequencies (fn)0≤n≤N

equally spaced by ∆f where f0 = 0 Hz, fN = fs/2 is the Nyquist frequency
and fs is the sampling frequency of the discrete IR. The previous expression
thus reduces to:

h(tk) = Re

[
F(0)∆f + 2

N∑

n=1

F(2πfn)e2iπfnk∆t∆f

]
(B.6)

where ∆f = fn+1 − fn, ∆t = 1/fs and tk = k∆t. To obtain a FTF that
depends on the complex angular frequency ω = ωr + iωi, a Laplace transform
is used:

F(s) =

∫ +∞

0
h(t)e−stdt (B.7)

In the case of a discrete-value IR, this corresponds to:

F(s) =

N∑

k=0

h(tk)e
−stk∆t (B.8)

where tk = k∆t and ∆t = 1/fs = tk+1 − tk is the sampling period. The FTF
is obtained by setting s = i(ωr + iωi).
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Figure B.5: Impulse response of a single premixed laminar conical flame. (black
line) Analytical model that considers incompressible convective perturbations. (red
line) Impulse response determined from a discrete set of samples of an analytical FTF
and the application of the reconstruction algorithm.

B.3.2 Validation of the method

This method is tested by comparison with an analytical expression of the FTF
of a single laminar premixed conical flame that was derived in Chapter 4 by
considering incompressible convective velocity perturbations. The following
parameters are used: the mean velocity is equal to v0 = 1 m.s−1 and the flame
speed is equal to Sd = 0.44 m.s−1. It leads to a flame tip half-angle α = 0.45
rad. A burner exit radius R = 0.011 m is also considered. The continuous FTF
expression is plotted as a function of the reduced frequency ω∗

r in Fig. B.6-
top-left as a black line. To simulate discrete values corresponding to FTF
measurements, the model is then sampled between ω∗

r = 0 and ω∗
r = 30 with

a reduced frequency resolution ∆ω∗
r = 1. To improve the sampling frequency

of the impulse response, the flame response is padded with zero up to ω∗
r =

150. The result is plotted in Fig. B.6 as black circles. The reconstruction
algorithm presented in Section B.3.1 is applied to that discrete-value FTF and
the resulting impulse response is plotted in Fig. B.5 (red line) along with the
model derived in Section 4.4 (black line). The reconstruction algorithm retrieve
well the trend of the analytical IR. Some differences can be observed because the
frequency response above ω∗ = 30 is not taken into account. Some additional
tests (not shown here) showed that, by taking into account the whole frequency
response up to a frequency where the gain is negligible, the reconstruction
algorithm retrieve the IR almost perfectly. The full reconstruction algorithm
is then applied for s = iωr (with ωi = 0). Results are plotted in Fig. B.6-
bottom-left. One can see that the FTF is perfectly retrieved after applying
reverse and forward Fourier Transforms. The same algorithm is then applied
for different values of ωi. Results from calculations carried out with six values of
the growth rate ωi are plotted in Fig. B.6 and the comparison between analytical
predictions (plain black lines) and results of the FTF reconstruction (dashed
red lines) shows a good match. The FTF discrete samples (black circles) are
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Figure B.7: Impulse response of a collection of small premixed laminar conical
flames. These data are determined from FDF measurements where vrms

1
/Ub = 0.06

(black solid line), 0.26 (black dashed line), 0.46 (blue solid line) and 0.66 (blue dashed
line).

also plotted for reference. In the case of positive growth rates, the analytical
model is well retrieved. For small negative values of the growth rates, the
results collapse as well. Some differences appear in the FTF gain, but only at
very large negative growth rates. The order of magnitude is well retrieved but
no exact match is reached.

B.3.3 Results of the method on a measured FDF

The method is further applied to an experimental FDF that was measured
during the Ph.D. thesis of Boudy (2012) (see Fig. B.8 (circles)). This set
of flame frequency response was measured for a collection of small premixed
laminar conical flames with a mass flow rate ṁ = 4.71 g.s−1 and an equivalence
ratio φ = 1.03. The flames were anchored on a perforated plate of thickness
l = 3 mm, hole radius rp = 1 mm and hole pitch d = 3 mm. This FDF was
determined by perturbing the flow with constant-amplitude harmonic signals.
It was measured between 0 and 1600 Hz with a constant frequency resolution
∆f = 20 Hz. First, these data are linearly interpolated to reduce the frequency
resolution to ∆f = 2 Hz and are padded with zeros up to 10 kHz in order to
increase the sampling frequency fs without modifying the frequency content
of the measurements. This last operation enables to calculate the impulse
response from Eq. (B.6) with a much better time resolution.
The time domain response derived from the FTF (i.e. the frequency response
determined at low perturbation level vrms

1 /Ub = 0.06 where v1 is the velocity
perturbation and Ub stands for the bulk velocity) is plotted as a black solid
line in Fig. B.7. This response is called the impulse response in the following
even though, strictly speaking, it is important to notice that this is not exactly
the impulse response. As no frequency content above 1600 Hz is taken into
account (the FTF gain differs from zero above f = 1600 Hz), it thus represents
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Figure B.8: FTF as a function of the frequency. (black ◦) Experimental FTF mea-
sured with constant amplitude harmonic signals for vrms

1
/Ub = 0.06 (top row) and

vrms
1

/Ub = 0.26 (bottom row). (red line) FTF for different growth rates ωi = −100
(left), 0 (center) and 100 rad.s−1 (right), determined with the reconstruction based on
the experimental data measured for ωi = 0.

the result of a filtering operation of the impulse response with a low-pass filter
which cut-off frequency is 1600 Hz. This filtered impulse response has an oscil-
latory behavior between 0 and 5 ms before vanishing. The initial value of the
impulse response is not zero at initial times, because some frequency content
was removed. The same operation is performed for other flame frequency re-
sponse taken from the same FDF, for other perturbation levels vrms

1 /Ub = 0.26,
0.46 and 0.66. As a general trend, one can observe in Fig. B.7 that the time
response decreases in amplitude with the perturbation level used to determine
the FTF, but the time duration of the IR does not change much and remains
about 5 ms. However, these observations must be interpreted carefully. The
time response is here derived from a FDF which is only an approximation of the
nonlinear flame frequency response to harmonic flow perturbations. The flame
is perturbed with a harmonic signal at a single frequency. Only the principal
spectral component of the response is kept and all the harmonics are discarded.
This time response is thus not related to the impulse response, but it still can
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be used to extend the FDF concept to the complex angular frequency plane.

This is done by using Eq. (B.8). The results are plotted in Fig. B.8 for two
different perturbation levels vrms

1 /Ub = 0.06 (top) and 0.26 (bottom), and three
values of the growth rate ωi = −100, 0 and 100. It is shown that the method
yields a good estimate of the FTF for ωi = 0 (central column) and gives similar
results than with an analytical FTF for other values of the growth rate. The
FTF gain values decrease for positive growth rates and increases for negative
growth rates. The FTF phase is barely modified in these figures. For larger
growth rates (not shown here), the phase lag can be modified.

A method to extend the FTF from the real angular frequency axis to the
complex angular frequency plane was presented in this section. It was validated
by comparing predictions with an analytical expression for the FTF of a single
premixed laminar conical flame and applied to the FDF of a collection of a
small premixed laminar conical flames. This last result enables now to perform
a full nonlinear stability analysis where the flame frequency response is allowed
to also depend on the growth rate ωi. This is performed in the next section.

B.4 Nonlinear stability analysis performed with F(ωr+
iωi)

B.4.1 Results from the nonlinear stability analysis

The method derived in the previous section is used to perform a nonlinear sta-
bility analysis based on the FDF methodology (see Chapter 7). This method
is here extended by considering flame frequency responses that also depend
on the imaginary part of the angular frequency ω = ωr + iωi (see Eq. (B.2)).
The system considered here is briefly described in Chapter 8 and was more
thoroughly investigated by Boudy (2012). A low-order acoustic network solver
is used to perform the nonlinear stability analysis (see [Boudy et al. (2011);
Boudy et al. (2011); Boudy (2012); Boudy et al. (2013)] for more details). Only
one geometrical configuration is analyzed here. It features a feeding manifold
length L1 = 0.54 m, a flame tube length L2 = 0.087 m and a perforated plate
of thickness l = 3 mm. This last value corresponds to the FDF presented in
the previous section (Section B.3.3). The same boundary conditions that were
used in Chapter 8 are used here. The inlet reflection coefficient was measured
and the outlet reflection coefficient is modeled with the radiation impedance of
an unflanged open pipe [Levine and Schwinger (1948); Rienstra and Hirschberg
(2012)]

Calculations are first performed without taking the growth rate into account
in the FDF formulation. Then, a calculation is carried by allowing the FDF
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to depend on the growth rate ωi. Finally, a last calculation is performed by
also considering that the boundary conditions depend on a complex angular
frequency. For the outlet boundary condition, the reflection coefficient is de-
termined with the value of an analytical model for an unflanged open pipe (see
Eq. (8.1) in Chapter 8) taken at ω = ωr +iωi. For the inlet boundary condition,
the reflection coefficient was measured for ωi = 0 and the method described
in the previous section is applied to extend these measurements to complex
angular frequencies.

Results from that nonlinear stability analysis are shown in Fig. B.9 for the
three first eigenmodes of the combustor. The first combustor mode lies be-
tween 130 Hz and 150 Hz. Its growth rate is always negative and thus features
a stable mode. No changes are observed when the growth rate ωi is taken
into account in the FDF and the boundary conditions. The third mode is pre-
sented in Fig. B.9-bottom. It represents the most unstable mode in the linear
regime (i.e. for small perturbation levels) and features large growth rates in
this regime. However, the value of this growth rate is modified if one takes
into account the growth rate (blue and green lines) or not (red line) in the
description of the flame response to acoustic perturbations. The growth rates
are significantly reduced if one allows the FDF or the boundary conditions
to depend on ωi. However, the predicted limit cycle oscillation amplitude is
not modified because when ωi = 0, the FDF F(ωr + iωi) and the boundary
conditions R(ωr + iωi) reduce then to the analytical or experimental functions
F(ωr) and R(ωr). The prediction is thus only modified when the growth rate
takes large values. This observation is emphasized by the frequency prediction
that shows slight differences but only in regions corresponding to large growth
rates. Finally, results for the second mode are presented in Fig. B.9-center.
One identifies the mode switching phenomenon described in Chapter 8. The
third mode reaches stability for perturbation levels larger than vrms

1 /v0 = 0.35
while the second mode takes over and reach a limit cycle at a perturbation level
vrms
1 /v0 = 0.6. The prediction of the limit cycle amplitude is not modified and

the three methods yield the same value vrms
1 /v0 = 0.6 for the limit cycle am-

plitude. However, for intermediate perturbation levels, when the growth rate
takes large positive values, a large difference is observed between predictions
obtained with (blue and green lines) and without (red line) taking into account
the growth rate in the FDF and the boundary condition expressions in the
simulations.

Results presented here show that no modification of the predicted limit cycle
amplitude are observed in this case. However, simulations show that the pre-
dicted growth rate differs, altering in turn the time that the instability takes
to reach limit cycle. This problem is studied in the next subsection.
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Figure B.9: Results from a nonlinear stability analysis combining a low-order acous-
tic network solver and the FDF methodology, for the first (top), second (center) and
third (bottom) eigenmode. (red line) The flame frequency response and the inlet and
outlet reflection coefficients are taken as F(ωr) and R(ωr). (green line) F(ω) and
R(ωr). (blue line) F(ω) and R(ω).
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Figure B.10: Filtered dimensionless velocity measurements as a function of time.
Colored lines represents the instability amplitude time evolution determined from the
results of the nonlinear stability analysis: (red line) The flame frequency response and
the inlet and outlet reflection coefficients are taken as F(ωr) and R(ωr). (green line)
F(ω) and R(ωr). (blue line) F(ω) and R(ω).

B.4.2 Time evolution of the instability amplitude

Measurements of the velocity signal shown in Fig.8.11 from Chapter 8 indicate
that a mode switching occurs when the plenum length is set to L1 = 0.54 m.
This signal is here filtered around the third mode frequency to extract the time
evolution of that mode. The results are plotted in Fig. B.10. The amplitude
of the third mode first increases before reaching a maximum corresponding to
the condition ωi = 0 and then decreases before almost vanishing.

In the following, the dimensionless rms amplitude of a mode is defined as a1 =
vrms
1 /Ub. The time evolution of the instability amplitude is determined by the

following differential equation:

da1

dt
= ωi(a1)a1 (B.9)

A comparison between results from simulations with the FDF and the velocity
time signal is conducted by determining the time evolution of the instability
amplitude a1(t). It relies on the integration of Eq. (B.9) performed from the
lowest perturbation level investigated a11 = 0.06 to a perturbation level a1k,
where k ∈ [1 : N ] and N is the number of amplitudes investigated in the
nonlinear stability analysis:

tk =

∫ a1k

a11=0.06

da1

ωi(a1)a1
(B.10)

Results for the discrete time evolution of the instability amplitude a1k(tk) are
plotted along with the instability velocity filtered signal in Fig. B.10. Results
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show that simulation with the FDF with or without including the growth rate
ωi in the calculations does not reproduce the exact time evolution of the third
mode amplitude. However, differences appear in the slope of the time evolu-
tion of this amplitude. Due to smaller growth rates, the new method exhibits
a slower increase towards its maximum amplitude (blue line in Fig. B.10) com-
pared to the previous method (red line in Fig. B.10). Although the result is
still far from measurements, the new method still represents an improvement
compared to the classical FDF method.

B.5 Synthesis

A study conducted with analytical FTF expressions showed that including the
growth rate ωi in the FTF expression can change drastically the predicted
flame response to incoming perturbations. A theoretical study showed that,
if the growth rate is taken into account in the FTF used for a linear stabil-
ity analysis, the prediction of the stability of a combustor can be significantly
modified. A reconstruction technique was proposed to extend FTF measured
for real angular frequencies to build a frequency response representation of the
FTF over the whole complex angular frequency plane. Analytical expressions
and results from this technique were shown to match well as long as the growth
rate does not take large negative values. Finally, this technique was coupled to
a nonlinear stability analysis that showed that limit cycle predictions are not
modified in the configuration investigated in this work. In that case, only the
time evolution of the instability amplitude is modified due to smaller growth
rates, but the system reaches the same oscillation state at limit cycle.

These problems were used to emphasize that more work is necessary on the way
FTF and FDF may be coupled to acoustics to conduct stability analyses. This
point needs to be addressed in more details, especially in configurations with
larger damping rates, in order to fully assess the impact of the growth rate ωi

on thermo-acoustic instability prediction methods.
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Validation of the Melling model
for perforates in AVSP

The Helmholtz solver AVSP allows to take into account perforated plate mod-
els as a jump condition between two coupled boundaries (see [Gullaud et al.
(2009); Gullaud (2010); Gullaud and Nicoud (2012)]. The model developed by
Howe (1979) was included in AVSP to model the response of small perforations
traversed by a bias flow to sound waves without describing all flow and geomet-
rical details within these perforations in combustion chambers. It is well known
that in these situations, sound waves may interact with vortices shed from the
perforates resulting in sound absorption. The Howe model reproduces quite
well this dissipation of acoustic energy that needs to be taken into account to
determine limit cycles of thermo-acoustic instabilities in combustion chambers
equipped with perforates [Tran et al. (2009)]. In the case considered in this
study where a collection of conical flames are anchored on a perforated plate,
there are no vortices shed from the plate holes [Noiray et al. (2006b); Noiray
et al. (2007)]. For low frequency sound waves, the motion within the perfo-
rations may be considered in bulk oscillation mode. The model proposed by
Melling (1973) reproduces well this behavior [Noiray (2007); Boudy (2012)]. An
implementation of this model in the AVSP Helmholtz solver is here validated
by different simulations.

C.1 Low-order model (LOM)

A low-order acoustic network model is used to obtain a reference solution to
validate simulations with AVSP and the Melling model. A generic configura-
tion is considered with two cylindrical cavities (of length L1 and L2) that are
separated by a perforated plate of thickness h (see Fig. C.1). In each cavities,
longitudinal acoustic waves are propagating:
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Figure C.1: Scheme of the theoretical validation case investigated. It comprise two
cavities separated by a perforated plate of thickness h. The first (resp. the second)
cavity is of temperature T1 (resp. T2) and of length L1 (resp. L2). Both cavities are
of cross-section area S.

p1,n(zn) = A+
n e

iknzn +A−
n e

−iknzn (C.1)

ρncnu1,n(zn) = A+
n e

iknzn −A−
n e

−iknzn (C.2)

where n = 1 or 2 in the first and the second cavity, cn, kn = ω/cn and ρn are

the speed of sound, the acoustic wavelength and the density in the nth cavity.
A velocity node is fixed at the inlet and a pressure node is used at the outlet:

u1,1(z1 = 0) = 0 (C.3)

p1,2(z2 = L2) = 0 (C.4)

The model proposed by Melling (1973) is used to model the response of a
perforated plate linking the two cavities. In this model, the acoustic pressure
difference between the two extremities of the perforated plate is linked to the
acoustic velocity on the upstream side of the perforated plate and the acoustic
volume flowrate remains constant:

p1,2(z2 = 0) − p1,1(z1 = L1) =
iωρ1h

σ

(
1 +

lν
a

(1 + i)

)
u1,1(z1 = L1)

(C.5)

S2u1,2(z2 = 0) − S1u1,1(z1 = L1) = 0 (C.6)
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where h is the perforated plate thickness, lν = (2ν/ω)1/2 is the viscous acoustic
boundary layer thickness in the perforations, ν is the kinematic viscosity, a is
the perforated plate hole radius, σ is the perforated plate porosity and S1 =
S2 = S is the cross section area of the cavities. By combining these different
expressions Eq. (C.1) to Eq. (C.6), one finds the following dispersion relation:

S1ρ2c2
S2ρ1c1

sin(ωL1/c1) sin(ωL2/c2) − cos(ωL1/c1) cos(ωL2/c2)

+
ωh

c1σ

(
1 +

lν
a

(1 + i)

)
cos(ωL2/c2) sin(ωL1/c1) = 0 (C.7)

This equation is solved by an iterative method in Matlab for the following
parameters: h = 0.003 or 0.015 m, T1 = 300 K, T2 = 300 or 900 K, L1 = L2 =
0.5 m, S = S1 = S2 = 0.031 m2 (corresponding to a radius of 0.1 m), a = 0.001
m, d = 0.003 m, σ = 0.34, ν = 15.6 · 10−6 m2s−1. The ratio ρ2/ρ1 is given by
T1/T2 and the speed of sound is determined in each cavity with the following
relation: cn = (γrTn)

1

2 where γ = 1.4 and r = 287 J.kg−1.K−1.

C.2 AVSP model validation

The same system is simulated using AVSP. A mesh is generated for two geomet-
rical configurations with two different perforated plate thicknesses h = 0.003
or 0.015 m (see Fig. C.2). For each geometrical configuration, simulations are
carried out with two different temperature fields. Simulations are first carried
out with a uniform speed of sound field corresponding to air at Tu = 300 K.
Simulations are then conducted with the first cavity filled with air at Tu = 300
K and the second cavity filled with air at Tb = 900 K. These two configurations
are shown in Fig. C.3 for the thicker perforated plate h = 15 mm. Then, the

Figure C.2: 2D slices of the meshes used for the calculations. Top figure: thin plate
h = 3 mm. Bottom figure: thick plate h = 15 mm.
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Figure C.3: Distribution of the speed of sound used for the calculations. Top figure:
c0 = 347m.s−1. Bottom figure: c0 = 347m.s−1 in the upstream cavity corresponding to
T1 = 300 K and c0 = 601m.s−1 in the downstream cavity, corresponding to T2 = 900
K.

acoustic eigenmodes are determined in terms of real frequencies and growth
rates of the modes. These simulations also give the corresponding structure
of the modes in terms of the pressure fluctuation modulus spatial distribution.
Typical results are shown in Figs. C.4 and C.5 for the first and the second acous-
tic eigenmodes when the whole setup is filled with air at a constant temperature
T1 = T2 = 300 K and for the two different perforated plates investigated. These
figures show that the pressure distributions correspond to a 1/4-wave mode and
a 3/4-wave mode that are distributed over the whole length of the combustor
L1 + L2 + h. One can also observe that the perforated plate has only a very
weak effect on the modal structure. Simulations performed with different tem-
peratures in the cavities, T1 = 300 K and T2 = 900 K, are not shown here. The
resulting pressure distributions still feature a 1/4-wave and a 3/4-wave modal
distribution.

C.3 Comparison between AVSP and LOM simula-
tions

Results from simulations with AVSP and the LOM are presented in Table C.1,
for different plate thicknesses, temperature differences between cavities 1 and
2, and different modes. Results appear to match extremely well in terms of real
frequency f and growth rates ωi/(2π). One can also observe that an increase in
the plate thickness leads to a significant increase in the damping of the system
while the frequency does not change much. A change of temperature in the
second cavity results in a strong modification of the acoustic eigenfrequency
due to the modification of the speed of sound.
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Figure C.4: Pressure modulus distribution of the first acoustic eigenmode of the
system. Top figure: h = 3 mm. Bottom figure: h = 15 mm.

Figure C.5: Pressure modulus distribution of the second acoustic eigenmode of the
system. Top figure: h = 3 mm. Bottom figure: h = 15 mm.

These simulations show that the model of Melling can now be used with confi-
dence in AVSP to represent the acoustic response of perforated plate (without
flow separation and acoustic dissipation taking place at the perforation out-
let). This model is used in the generic combustor configuration investigated in
Chapters. 8.



Plate thickness ∆2
1T Mode AVSP LOM

h (mm) (K) number

3 0 1 86.3236 -0.090872i 86.3245 -0.090886i
3 600 1 125.2989 -0.24892i 125.3002 -0.24908i
3 0 2 259.0709 -0.15736i 259.089 -0.15741i
3 600 2 323.8776 -0.015498i 323.9026 -0.015512i

15 0 1 84.4787 -0.43916i 84.4814 -0.44016i
15 600 1 119.5956 -1.1348i 119.604 -1.1399i
15 0 2 254.0098 -0.75442i 254.0289 -0.75557i
15 600 2 323.3162 -0.077135i 323.3407 -0.077218i

Table C.1: Acoustic eigenmodes and growth rates of the combustor determined with
AVSP and with the LOM.
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