
HAL Id: tel-01001647
https://theses.hal.science/tel-01001647v1

Submitted on 4 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The context-aware middleware in ambient intelligence
Tao Xu

To cite this version:
Tao Xu. The context-aware middleware in ambient intelligence. Other. Ecole Centrale de Lyon, 2013.
English. �NNT : 2013ECDL0047�. �tel-01001647�

https://theses.hal.science/tel-01001647v1
https://hal.archives-ouvertes.fr

 N° d’ordre : 2013-47

Thèse de l’Université de Lyon

The Context-aware Middleware in

Ambient Intelligence

Pour l’obtention du titre de
Docteur de l’Ecole Centrale de Lyon

Ecole Doctorale

Informatique et Mathématiques

Spécialité
Informatique

Par

XU Tao

Soutenue publiquement le 9 décembre 2013, devant la commission d’examen :

Christophe KOLSKI Professeur – Université de Valenciennes Rapporteur

Serge GARLATTI Professeur – Télécom Bretagne Rapporteur

Bertrand DAVID Professeur – Ecole Centrale de Lyon Directeur

René CHALON Maitre de Conférences – Ecole Centrale de Lyon Co-directeur

Jean-Paul BARTHES Professeur Emérite – U.T.C. Compiègne Président

Chuantao YIN Assistant Professor – Ecole Centrale de Pékin Examinateur

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 3

Acknowledgements

PhD for me was once a distant dream, and the studying processing was full

of hardships. Such a daunting task, if not many people guidance, support

and assistance, is impossible to successfully complete.

I owe my supervisor, Prof. Bertrand David, my eternal gratitude. He has

advised, encouraged, and inspired me through the arduous doctoral process.

He provided the precious opportunity to continue my PhD in France when I

was helpless. He introduced me to the field of Ubiquitous computing, guid-

ed me throughout my graduate work. He always believed in me and support

me do research in the field that I was interested in. I feel extremely lucky to

have worked under his guidance.

I am also indebted to my co-supervisor, Prof. René Chalon who has been

patient, helpful, and supportive during my research. He created a good en-

vironment to study and constantly motivated and encouraged me to perform

high quality research.

I’d like to thank the members of Silex group in Ecole Centrale de Lyon, in-

cluding Huiliang Jin, Bingxue Zhang, Chen Wang, and Florent Delomier

for all they helped me in life and research. Boyang Gao, Huibing Li, Tai-

ping Zhang, Chao Zhu, Zhe Li and all my friends in France, helped make

my time especially enjoyable and never feel alone even so far away from

my mother land.

I also gratefully acknowledge the financial support of China Scholarship

Council, which provide a great chance for me to study aboard.

I would like to thank my family who have inspired and supported me

throughout my life. I am very grateful to my parents for their constant en-

couragement and support. They bestowed me a love for learning, and

showed me the way. Finally, I would like to thank my girlfriend Yun Zhou,

(she has become my wife now), who help me greatly in both my life and re-

search, and has always supported me emotionally throughout my doctoral

studies.

Sommaire

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 5

Table des matières

Acknowledgements 3

1 Introduction 9

1.1 Ubiquitous Computing 9

1.2 Context-aware Computing 12

1.2.1 Definition of context 13

1.2.2 What is context awareness? 14

1.3 Challenges in Context-aware Computing 15

1.4 Context-aware System 17

1.5 Research Contributions 18

1.6 Organization of the dissertation 20

2 State of the Art in Context-aware

Computing 23

2.1 Introduction 23

2.2 Context-aware System 24

2.2.1 Context Toolkit 24

2.2.2 CASS 26

2.2.3 CoBrA 27

2.2.4 SOCAM 29

2.2.5 CA-SOA 30

2.3 Analysis and Comparison 32

6 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

2.3.1 Architecture of the context-aware system 32

2.3.2 Context representations 33

2.3.3 Context Sensing 34

2.3.4 Context Storage 36

2.3.5 Context Reasoning 37

2.3.6 Discussion 38

2.4 Conclusion 39

3 The Spatial-temporal Ontology-based

Model 41

3.1 Introduction 41

3.2 Context modeling 41

3.2.1 Context classification 42

3.2.2 Existing context modeling approaches 44

3.3 The Spatial-temporal Ontology-based Model 48

3.3.1 Ontology 49

3.3.2 Ontology description language 50

3.3.3 Spatial-temporal context model 54

3.3.4 Ontology-based model development tools 59

3.3.4.1 The Protégé editor 60

3.3.4.2 Jena 61

3.4 Conclusion 62

4 Context-aware Middleware in

Ambient Intelligence 63

4.1 Introduction 63

4.2 Street and Store Marketing Scenario (SSM) 64

4.3 Context-aware Middleware 65

4.3.1 Low layer: Enterprise Service Bus 66

Sommaire

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 7

4.3.2 High layer: The versatile context interpreter 69

4.3.2.1 Context Aggregator 70

4.3.2.2 Context Knowledge Base 71

4.3.2.3 Context Query Engine 75

4.3.2.4 Context Inference Engine 79

4.3.3 Context-aware middleware behavior workflow 81

4.4 Conclusion 83

5 The Intelligent Inference Engine 85

5.1 Introduction 85

5.2 Context and Activity Context Recognition 87

5.3 The Intelligent Inference Engine 89

5.3.1 Basic Structure of the Intelligent Inference Engine 90

5.3.1.1 The basic module 90

5.3.1.2 The intelligent module 92

5.3.1.2.1 Rules 92

5.3.1.2.2 Decision Tree (DT) 95

5.3.1.2.3 Hidden Markov Model (HMM) 97

5.3.2 Organization of Three Algorithms 101

5.3.3 The Invoking Mechanism 102

5.4 Conclusion 105

6 Implementations and Analysis 107

6.1 Introduction 107

6.2 General process for building a context-aware application 108

6.2.1 Context Modeling 108

6.2.2 Middleware Configuration 108

6.2.3 Application Development 109

6.3 Scenario and Implementation 110

6.3.1 Bus Stop Scenario 110

8 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

6.3.1.1 Implementation Process 111

6.3.1.1.1 Step one: Context Modeling 111

6.3.1.1.2 Step Two: Middleware Configuration 114

6.2.1.1.2.1 Context Aggregator Configuration 115

6.2.1.1.2.2 Context inference engine configuration 118

6.3.1.1.3 Step Three: Application Development 119

6.2.1.1.3.1 Training and setting rules for Reasoners 119

Setting rules for Reasoners 119

Training Reasoner 120

6.3.1.1.3.2 Define expressive query 124

6.3.2 Domestic Activity Application 125

6.4 Analysis and Summary 129

6.5 Conclusions 131

7 Conclusion and Future work 133

7.1 Introduction 133

7.2 Contributions 133

7.3 Future works 134

7.4 Conclusions 136

Bibliographie 137

Publications 147

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 9

1 Introduction

1.1 Ubiquitous computing

1.2 Context-aware computing

1.2.1 Definition of context

1.2.2 What is context awareness?

1.3 Challenges in context-aware computing

1.4 Context-aware System

1.5 Research Contributions

1.6 Organization of the dissertation

1.1 Ubiquitous Computing

“The most profound technologies are those that disappear. They

weave themselves into the fabric of everyday life until they are in-

distinguishable from it.”

Mark Weiser

Almost 20 years ago, Marc Weiser viewed the prospect of computing in the

21st century, and proposed the pioneering notion of ubiquitous computing,

also known as pervasive computing. The essence of Weiser’s vision is that
mobile and embedded processors can communicate with each other and the

surrounding infrastructure, seamlessly coordinating their operation to pro-

vide support for a wide variety of everyday work practices (Krumm, 2009).

When we review the history of computer developments, we find

that it encompasses three eras. The first era is the era of mainframe com-

puters beginning in the 1950s. Few users share one mainframe computer at

the same time. The second era is the era of personal computers. The emer-

gence of the first consumer computers (Scelbi & Mark-8 Altair & IBM

5100) marked a personal computer revolution throughout the world. Due to

the rapid development of hardware and software technologies and the sharp

decline in size and price of computers, use of personal computers became

widespread. One user owns and uses one personal computer.

10 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

Figure 1.1 Three computer development eras

Ubiquitous computing is considered as the third era following on

from mainframe computers and personal computers. According to Moore’s
Law: “the computer power available on a chip doubles every two years”,
chips will become much smaller and cheaper in the future. Chips can be

embedded in everything, not only computers, smartphones and tablets, but

also in objects of daily use such as glasses and watches. The numerous

computing devices become integrated into everyday life. Thus one user

owns and uses many computers (computing devices).

Ubiquitous computing (often abbreviated to “ubicomp”) refers to
the concept of “every-where” computing. It aims at a heterogeneous set of

devices, including invisible computers embedded in everyday objects such

as cars and furniture, mobile devices such as personal digital assistants

(PDAs) and smart phones, personal devices such as laptops, and very large

devices such as wall-sized displays and tabletop computers situated in the

environments and buildings we inhabit (Krumm, 2009). On the other hand,

ubiquitous computing strives to make computing and communication trans-

parent to users. Thus, Weiser also viewed ubiquitous computing as “The
coming age of calm technology”.

Because of its attractive prospect, Ubiquitous Computing drew

the attention of the science community right from the start. According to

statistics, almost all prestigious universities conducted research on Ubiqui-

tous Computing.

 CMU proposed a ubiquitous computing project Aura (Sousa et al., 2002)

providing each user with an invisible halo of computing and information

services that persists regardless of location. This focuses on the design and

development of pervasive computing middleware and its applications.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 11

 UC Berkeley developed Dust Networks and Tiny OS (Hill et al., 2000). The

former attempted to demonstrate that a complete sensor/communication

system could be made of sensors one cubic millimeter in size. This in-

volved progress in miniaturization, integration, and energy management:

the latter is an open-source operating system optimized for sensor networks,

which is widely used in sensor network research.

 MIT’s Oxygen project (Rudolph, 2001) involved a full range of software,

hardware and networks in ubiquitous computing. Their goal is that compu-

ting will be freely available everywhere, just like oxygen in the air we

breathe.

 The Portolano project (Esler et al., 1999) was an initiative of the University

of Washington. It established a test bed for investigation into the emerging

field of ubiquitous computing. Its goal is In-visible computing, a term in-

vented by Donald Norman to describe the coming age of ubiquitous task-

specific computing devices. Researchers attempt to infer user intentions

based on the behavior and habits of their daily life, and provide customer

satisfaction services.

 The Interactive Workspace project (Johanson et al., 2002) was started at

Stanford University. It studied intelligent space and aimed at investigating

the design and use of rooms containing one or more large displays with the

ability to integrate portable devices and to create applications integrating

the use of multiple devices in space.

 UIUC’s contribution to ubiquitous computing was Gaia (Román et al.,

2002), a distributed middleware infrastructure that coordinates software en-

tities and heterogeneous networked devices contained in a physical space.

Gaia exports services to query and utilize existing resources, and access

and use current context, and provides a framework to develop user -centric,

resource-aware, multi-device, context-sensitive, and mobile applications.

Besides the United States, the European Union also gave financial

support to a series of related research on ubiquitous computing, such as the

Disappearing Computer Program, TEA plans.

In the early days of ubiquitous computing research (circa 1990),

finding an appropriate journal to publish papers and discuss research was

challenging. In fact, no conferences at that time were at all suited to the

topic (Krumm, 2009). At present, the research community warmly embrac-

es ubiquitous computing. For papers more suitable to journals and maga-

12 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

zines, a number of peer reviewed publications have also been created over

the years, such as “Personal and Ubiquitous Computing” founded in 1997,
“IEEE Pervasive Computing” founded in 2001, and “IEEE Transactions on
Mobile Computing” founded in 2002. In contrast to the early 1990s, from
2009 onward there is a wealth of ubiquitous computing related conferences

available to researchers. Some have grown into the top-tier conferences in

this area, representing the highest level in ubiquitous computing, like

UbiComp (Intemational Conference on Ubiquitous Computing) founded in

1999, Pervasive (International Conference on Pervasive Computing) found-

ed in 2000, and PerCom (IEEE International Conference on Pervasive

Computing and Communications) founded in 2003.

Currently, Ubiquitous Computing is seen to comprise any num-

ber of mobile, wearable, distributed and context-aware computing applica-

tions (Pallapa, 2010).

Many aspects of Weiser’s visions have already become reality in
the past two decades. Furthermore, one of his primary ideas has recently

evolved into a more general paradigm known as context awareness. De-

tailed information about context-aware computing is given in the following

section.

1.2 Context-aware Computing

Today, context-aware computing has become a central research theme in

many other ubiquitous computing programs. It requires that systems adapt

their functionality to a user’s activity and situation in the environment.

(Satyanarayanan, 2001) and (Strang and Linnhoff-Popien, 2004) have con-

cluded the flow of computing evolution based on previous achievements , as

shown in Figure 1.2. They viewed context awareness as the core attribute

of ubiquitous computing.

Figure 1.2 the flow of computing evolution

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 13

The first context-aware system, Active Badge System (Want et al., 1992),

emerged in 1992. Since then, hundreds of context-aware systems and con-

text-aware applications have been proposed. Context-aware computing, as

the core research theme in ubiquitous computing, is increasingly attracting

the attention of researchers.

1.2.1 Definition of context

Understanding “What’s context?” is the first step toward using context eff i-

ciently. The Oxford English Dictionary provides a generic definition of

context in English:

“The circumstances that form the setting for an event, statement,

or idea, and in terms of which it can be fully understood.”

Context in ubiquitous computing is subtly different from that in

English. In literature, the term “context” first appeared in Schilit and
Theimer’s paper (Schilit and Theimer, 1994). They defined context as loca-

tion, identities of nearby people, and objects and changes to those objects.

In addition, they divided context into three categories: Computing context,

User context, Physical context. Since then, many researchers have made ef-

forts for defining context in Ubiquitous Computing. Brown et al. (Brown et

al., 1997) give context definition as location, identities of the people

around the user, the time of day, season, temperature, etc. Context as de-

fined by Ryan et al. (Ryan et al., 1998) is the user’s location, environment,
identity and time. Another way of defining context is to use its synonyms.

The definition of context given by Franklin and Flaschbart (Franklin and

Flachsbart, 1998) is the situation of the user. Similarly, Hull et al. (Hull et

al., 1997) describe context as the aspects of the current situation. These

kinds of definitions are vague and limited. Finally, Day and Abowd (Dey

and Abowd, 1999) summarize previous works and provide a definition of

context more generally with the following statement:

“Context is any information that can be used to characterize the

situation of an entity. An entity is a person, place, or object that is

considered relevant to the interaction between a user and an ap-

plication, including the user and application themselves.”

This definition of context is generally accepted by researchers. In this the-

sis, we also adopt this definition to define “context”. Making sense of the

definition of context means just beginning to study context-aware compu-

14 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

ting. In the following subsection, we will introduce another crucial concep-

tion in this research field.

1.2.2 What is context awareness?

As described earlier, the Active Badge System of 1992 is commonly con-

sidered to be the first research investigation into context awareness. How-

ever, the first definition of the term “context-aware” was given by Schilit

and Theimer two years later. They (Schilit and Theimer, 1994) described

context awareness as follows:

 “It adapts according to its location of use, the collection

of nearby people and objects, as well as changes to those

objects over time.”

From then on, there have been numerous attempts to define context aware-

ness.

Hull et al.(Hull et al., 1997) and Pascoe et al. (Pascoe et al., 1998)

have described context-aware computing to be the ability of computing de-

vices to detect and sense, interpret and respond to aspects of a user's local

environment and the computing devices themselves. Ryan (Ryan, 1997)

viewed context awareness as applications that monitor input from environ-

mental sensors and allow users to select from a range of physical and logi-

cal contexts according to their current interests or activities. In a similar

definition, Fickas et al. (Fickas et al., 1997) gave context-aware application

(known as environment-directed application) a definition that the applica-

tion can monitor changes in the environment and adapt their operation ac-

cording to predefined or user-defined guidelines. Context-aware application

defined by Brown (Brown, 1998) was the application that automatically

provides information and/or takes actions according to the user’s present
context as detected by sensors. Until 1999, Day and Abowd (Dey and

Abowd, 1999) have provided a widely acceptable definition of context

awareness:

“A system is context-aware if it uses context to provide

relevant information and/or services to the user, where

relevancy depends on the user’s task.”

The precise definition of context awareness is an efficient method

for identifying whether or not an application is context-aware, and has pro-

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 15

vided researchers with a useful way of determining what types of applica-

tions to focus on.

1.3 Challenges in Context-aware Computing

Context-aware applications are becoming increasingly more prevalent and

can be found in the areas of wearable computing, mobile computing, robot-

ics, adaptive and intelligent user interfaces, augmented reality, adaptive

computing, intelligent environments and context-sensitive interfaces

(Krumm, 2009). Given the focus on building context-aware applications, it

is important to understand what the main issues are in this research theme.

How to acquire context, how to perceive context and how to create context -

aware applications are all issues still faced with enormous challenges in

both research and practice. We will discuss four major challenges that re-

searchers need to consider when conducting research in context-aware

computing.

 Context Sensing

This is the first process for all context-aware applications. It refers to an

ability to detect contextual information from the diverse context sources,

which not only contains heterogeneous physical sensors/devices, but also

proliferating virtual web sources. The process includes understanding what

type of contextual information the sensors provide, communicating with

context sources by diverse communication protocols: HTTP, REST, SOAP

etc. The extracted raw data will be dispatched to different parts for further

processing at a later stage. In ubiquitous computing environments, there are

a variety of kinds of context with different data formats. Context acquire-

ment and context integration face many difficulties.

 Context Discovery

Context discovery allows context-aware applications to locate and exploit

resources and services that are relevant to the user’s context. The context
can be extracted by different context sources according to context sensing.

Context Discovery is responsible for providing the appropriate context

source for different context-aware applications

16 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

 Context Modeling

Context Modeling refers to defining and storing context data in a machine

processable form (Baldauf et al., 2007). As an important fundamental pro-

cess, it lays the ground work for the whole context-aware system. Raw con-

text information is obtained from various heterogeneous context sources,

and has its own expressions and models. It cannot be directly employed by

context-aware applications. The context model is in charge of presenting

and organizing context, and should provide a standardized model for facili-

tating the other component of context-aware systems to access and handle

context. To date there is no uniform standard for context modeling, and it is

difficult to exchange context information in context-aware systems. There

are six main methods for constructing context models: Key Value Models,

Markup Scheme Models, Graphical Models, Object Oriented Models, Logic

Based Models, and Ontology Based Models. The detailed description of

these will be presented in the following chapter. In context-aware compu-

ting, it is very important to know how to use a wide range of heterogeneous

context information to establish a unified abstract logical model that can

ensure context is easily expressed and shared.

 Context Interpretation

Context Interpretation is related to context management and context distr i-

bution. It has three main tasks: context aggregation, context query, and

context inference.

- Context aggregation:

Context is retrieved from the different context resources. The context-

aware system conceals the complexity of physical sensors or other context

resources by providing a high level of abstraction enabling context resource

independence. This should be a reusable architecture component, simplify-

ing integration and minimizing development efforts.

- Context query:

This is a query and notification mechanism, helping to find appropriate

context and returning the results to requesting clients. Context is different

from conventional data, and represents the situation of objects containing

not only data but also relationships between data. For example, the context -

aware application wants to know “who is the computer science professor in

Room 3”. So, the context query is necessary for looking for context with

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 17

its relationships. It needs high-level mechanisms or solutions to deal with

this issue, such as context query language and query optimization.

- Context Inference:

As the crucial part in context interpretation, its role is like a brain. Current-

ly, it has two main tasks: checking context consistency and using infer-

ring/learning techniques to deduce high-level, implicit context requested by

context-aware intelligence services from related, low-level, explicit context.

High-level context is defined as the context that cannot be directly extrac t-

ed from the context source: physical sensors or virtual sources. The solu-

tion for context consistency depends on the chosen context model. Inferring

high-level context (mainly refers to user’s activity) is a complex problem.
Many researchers have attempted to apply numerous methods to solve this

problem. According to their principles, these methods can be grouped into

two categories: Rules, and Machine learning algorithms. Rules can infer

user’s activity based on a set of first order logic rules . If low-level context

satisfies the condition, then high-level context (user’s activity) will be de-

termined. The machine learning algorithm learns the model parameters of

user’s activity from the historical context data and uses this model to rec-

ognize user’s activity. The detailed information will be presented in chapter

5. An intelligent support for context inference will simplify implementation

of the context-aware application.

1.4 Context-aware System

Researchers propose different architectures for implementing Context-

aware systems based on the specific requirements and conditions, such as

sensor position (local or remote), the number of possible users (one or more

users), the available device or the ability for system extension. When de-

signing context-aware systems, researchers always consider first the meth-

ods for accessing context data. In other words, these methods are prede-

fined system architecture types to some extent. In the existing studies, there

are two development stages for context-aware computing system architec-

tures:

 Context-aware system based on directly accessing the sensors

In the early days, context-aware systems were developed generally for a

specific application. These context-aware applications usually interacted

with sensors and hardware devices directly, and these applications and con-

18 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

texts were close-coupled. To some extent, this method improved system ef-

ficiency, but it limits system scalability, weakens adaptability to the envi-

ronment, and reduces system reusability.

 Middleware for Context-aware System

In ubiquitous computing environments, systems must perceive dynamic and

changing context information and take action accordingly. Therefore, to

meet these requirements, it is necessary to separate context awareness and

application development, that is, to separate the underlying sensing data

processing and high-level context-aware applications. What is needed is an

intermediate layer, namely context-aware middleware. Context-aware mid-

dleware introduces a hierarchical structure, used to hide the underlying

sensing detail, and to provide the necessary context-aware services to ap-

plications, such as: collecting raw data from a variety of context resources,

converting heterogeneous data to a uniform format, deducing high-level

context and delivering appropriate context to the required applications.

Compared with the approach directly accessing the sensors, middleware

can easily be extended. Since it is not necessary to modify the application

code, it also enhances hardware independence and improves system reusa-

bility. In contrast to client-server architecture, middleware effectively hides

heterogeneous underlying hardware and complex network communications.

As it enhances system portability and scalability, it provides more direct

and effective support to context-aware application developers. Middleware,

as an efficient and practical structure, is widely applied in Context -aware

computing.

1.5 Research Contributions

Context-aware computing, as the central research theme in ubiquitous com-

puting, is faced with enormous challenges from theory through to practice.

In this dissertation, we review the research path on context-aware compu-

ting, summarize the previous related work, and discuss the main challenges

in this field. Then we investigate in-depth some chosen key issues in con-

text awareness and develop a context-aware middleware. The main research

contributions are presented in three categories: a spatial-temporal context

representation model, a context-aware middleware, and an intelligence con-

text inference engine.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 19

 A spatial-temporal context representation model

The spatial-temporal context representation model is proposed to organize

context and relationships for the context-aware system. Context modeling

is the specification of all entities and relationships between these entities,

needed to describe the context as a whole. We apply the ontology-based

method to construct our model, supporting both knowledge sharing and re-

use as well as logic inference. This model adopts a two-layer hierarchy

structure for different situations. The higher layer covers the generic com-

mon context, while the lower layer focuses on various specific situations.

Differing from existing models, besides taking location factors into account,

it supports different historical context services depending on varying con-

text resources. These historical contexts may be used to predict and infer

context.

 A context-aware middleware

A context-aware middleware is designed as a platform associated with ser-

vice discovery, mobility, environmental changes, and context retrieval. It is

organized in two layers: the low layer is a sort of Enterprise Service Bus,

while the high layer is the versatile context interpreter. The low layer pro-

vides a solution for integrating sensors and actuators with a standardized

data representation and unified standard interface to achieve the core func-

tions of service interaction: service registry, service discovery, and service

consumption. The versatile context interpreter is in charge of context infer-

ences, expressive query, and persistent storage. It consists of four parts:

- The context aggregator is responsible for working with basic contextu-

al data collected by the low layer.

- The context knowledge base provides persistent storage for context

through the use of relational databases, as well as supplying a set of l i-

brary procedures for other components to query and modify context

knowledge.

- The context query engine has two main tasks: one is to handle queries

from the application. It supports SPARQL, which is an RDF query lan-

guage, able to retrieve and manipulate data stored in OWL. The other

is to invoke the context inference engine. When the application needs

high-level context, it will invoke the context inference engine to gen-

erate the inferred context.

20 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

- The intelligent inferent engine concerns main research contributions.

The details will be provided in the next section.

 An intelligent inference engine.

The intelligent inference engine is the central and intellectual component of

context-aware middleware. We review all the methods concerning activity

context recognition published in three premier conferences in the past dec-

ades and conclude that activity context recognition is divided into three

facets: basic activity inference, dynamic activity analysis, and future activi-

ty recommendation. Then we propose an intelligent inference engine based

on our context-aware middleware. This integrates the three most popular

methods of activity context recognition used in context-aware application,

and provides a solution for satisfying different requirements in activity con-

text recognition.

.

1.6 Organization of the dissertation

In this dissertation, we investigate a context-aware middleware integrating

heterogeneous sensors and various technologies to simplify the context-

aware application implementation process. The remainder of the disserta-

tion is structured as follows:

- In chapter 2, we review the state of the art and related research rele-

vant to context-aware computing. An in-depth discussion of existing

context-aware systems is presented. Following these discussions, these

systems are analyzed and compared.

- In chapter 3, we outline the main methods for constructing the context

representation model, and then propose our context model, which uses

ontology to organize context in a spatial-temporal manner and paves

the way for our context-aware middleware.

- In chapter 4, a context-aware middleware is proposed to provide an ef-

ficient platform for rapid prototyping of context-aware services in

ubiquitous computing environments. The infrastructure of context-

aware middleware is presented, along with a concise description of

each component. Following these descriptions, we use a scenario to in-

terpret its work flow.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 21

- In chapter 5, we propose an intelligent inference engine for context -

aware middleware, made up of a basic inference module and an intelli-

gent inference module. Besides satisfying requirements for checking

context consistency, our inference engine integrates the three most

popular methods for activity context recognition: Rules, Decision Tree,

and Hide Markov Model. It provides a solution for all facets of activity

context recognition based on our context-aware middleware.

- In chapter 6, two scenarios are designed and implemented to explain

how to use our context-aware middleware to build context-aware ap-

plications. We analyze and compare our middleware with five repre-

sentative context-aware systems in five aspects at the end of chapter.

- The conclusion and future works are provided in chapter 7. In this

chapter, we conclude as to our main contributions, and discuss our fu-

ture directions.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 23

2 State of the Art in Context-aware

Computing

2.1 Introduction

2.2 Context-aware system

2.2.1 Context Toolkit

2.2.2 CASS

2.2.3 CoBrA

2.2.4 SOCAM

2.2.5 CA-SOA

2.3 Analysis and comparison

2.3.1 Architecture of the context-aware system

2.3.2 Context representations

2.3.3 Context sensing

2.3.4 Context storage

2.3.5 Context reasoning

2.3.6 Discussion

2.4 Conclusion

2.1 Introduction

The Holy Grail of Ubiquitous Computing is to seek a manner that enables

humans to interact with computers naturally. Context-aware computing

provides an approach for using context as an implicit cue to enrich the im-

poverished interaction between humans and computers, making it easier to

interact with computers (Krumm, 2009). More than 20 years have elapsed

since Roy Want et al. developed the Active Badge System (Want et al.,

1992), generally considered as the first context-aware application. Today,

context-aware computing has become a prosperous emerging field and

draws increasing attention from researchers.

In this chapter, at first five representative existing context-aware

systems are reviewed. Then we analyze and compare those based on five

key features in context-aware computing: architecture, context representa-

tion, context sensing, context storage, and context reasoning. Finally, the

chapter ends with a summary and conclusion.

24 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

2.2 Context-aware System

The context-aware system, as the crucial component in Ubiquitous Compu-

ting, perceives context changes and adapts accordingly. It provides an im-

portant way to improve system intelligence, and comes up with a conven-

ient and efficient interaction method between the intelligence system and

the surrounding environment. The context-aware system has a general ar-

chitecture divided into three tiers: context-aware application, context-aware

service, and context sensors.

Physical and Logical Sensors

Context-aware Application

Context-aware Service

Interface of contextual inform ation

usage

Interface of contextual inform ation

collection

Figure.2.1.The general architecture for the context-aware system

The context sensors tier refers to generalized sensors containing

physical devices or software. Amongst these tiers, the context-aware ser-

vice tier separates context sensing from application development, providing

a universal interface for the higher level to develop context-aware applica-

tion and support to access diverse sensors in the lower level. This separa-

tion simplifies context information handling and management. The context-

aware service structure is often subject to a number of factors, such as the

user device, whether to support multi-users, or system scalability. Architec-

ture design will vary according to application requirements. We will outline

and analyze the five representative existing context-aware systems below.

2.2.1 Context Toolkit

The Context Toolkit (Dey, 2000), developed by Anind K. Dey, is a toolkit

supporting development of context-aware applications. It provides a plat-

form to obtain context-sensitive information and send context information

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 25

to context-aware applications. In addition, the Context Toolkit can be used

as a research test platform, supporting more complex studies of context

awareness, such as the development of high-level abstract programming,

processing of unconcerned context information, and accessing control of

user’s context information.

Context Toolkit architecture is shown below. It consists of three

main components: widget, aggregator and interpreter. Context widgets are

charged with retrieving context from sensors. Context aggregators combine

many widgets to collect the entire context concerning a given entity. Inter-

preters provide high-level context to applications based on low-level con-

text from widgets.

Figure.2.2. Context Toolkit architecture
(Image from (Dey, 2000))

The Context Toolkit has many advantages:

1. Provide a sensor package mechanism.

2. Provide a set of APIs, so that data can be accessed through the

network context information.

3. Abstract context data through interpreters.

4. Provide context of data storage including storage of historical

information.

5. Provide basic access control to protect privacy of information.

However, some Context Toolkit points and areas need to be im-

proved. Firstly, as an object-oriented modeling approach is used to organize

context information, this modeling approach does not provide a universal

26 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

context model, not supporting context knowledge sharing and context rea-

soning. Secondly, Context Toolkit’s widgets and aggregators contain their

own communication components rather than a middleware communication

module to provide communication support for all contexts on the Gateway.

Also, the Context interpreter implemented in the Context Toolkit function

is relatively simple, just converting one kind of context to another. In fact,

the interpreter component should be able to deduce the high-level context.

Some inference technology can be added to improve the interpreter compo-

nent. Finally, the Context Toolkit provides a discoverer for interpreters and

aggregators, to find and handle context by application. In reality, as inter-

preters, and aggregators change dynamically, the Context Toolkit discover-

er cannot meet these dynamically changing needs.

2.2.2 CASS

The Context-Awareness Sub-Structure middleware (CASS), developed by

Trinity College's Patrick, (Fahy and Clarke, 2004), is a server based con-

text-aware middleware. CASS is designed for context-aware application on

hand-held computing devices and other small mobile computing devices,

supporting low-level sensors and other context-sensitive input devices

while at the same time occupying fewer computing resources.

Figure.2.3. CASS architecture
(Image from (Fahy and Clarke, 2004))

CASS middleware contains four main components: Interpreter,

Context Retriever, Rule Engine, and Sensor Listener. The rule engine is

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 27

used to find a matching goal or goals when a change in context is detected

and to infer the high-level context based on the rules stored in the

Knowledge base. The Sensor Listener has a communication component, de-

signed to listen for updates from distributed sensor nodes and store context

information, while the Context Retriever retrieves stored context. The Con-

text Retriever is responsible for indexing and retrieving the stored context

information. The interpreter provides the services for the Sensor Listener

and Context Retriever.

CASS has two main contributions: one is supporting high-level

context data abstraction. The inference engine adopts the forward chaining

technique, a search technique useful for situations in which the search

space is wide with many potential goals. The other is separating the

knowledge base from the context inference engine. This separation makes it

possible to represent knowledge in a more natural fashion, particularly for

domain experts without any knowledge of software. The knowledge base

can be updated and changed without changing inference engine implemen-

tation. However, CASS also has some shortcomings. It does not provide a

common context model, as it is not conducive to context knowledge sharing.

CASS is not involved in system dynamical extension and context discovery,

so it is not easy to develop complex context-aware applications.

2.2.3 CoBrA

Context Broker Architecture (CoBrA), developed by (H. Chen et al., 2004),

is an agent-based architecture for supporting context-aware systems in

smart spaces. It adopts ontology to model context information, which is

suitable for knowledge sharing and high-level context reasoning. CoBrA

consists of four functional components: Context Knowledge Base, Context

Reasoning Engine, Context Acquisition Module, and Policy Management

Module. The architecture diagram of CoBrA is shown below.

28 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

Figure.2.4. CoBrA architecture
(Image from (Chen et al., 2004))

The Context Knowledge Base is a component designed to manage

storage of context knowledge. It proposes CoBrA Ontology (Harry Chen et

al., 2004) to describe contextual information and share context knowledge,

which defines concepts for representing actions, agents, devices, meetings,

time and space. Moreover, it provides a set of APIs for other components to

access context.

The Context Reasoning Engine is a logic inference engine based

on ontologies. The inference engine is used in both types of reasoning. Be-

sides detecting and resolving inconsistent knowledge, it can also infer con-

text knowledge that cannot be easily acquired from the physical sensors.

The Context Acquisition Module is a set of library procedures for

context acquisition. The function of this component is similar to Context

Toolkit’s widget, which hides the low-level context sensing implementa-

tions from the high-level functional component.

The Policy Management Module is a component managing the us-

er’s privacy policy and controlling the sharing of private information ac-

cording to the principle of proximity and locality. It extends the Rei lan-

guage to define policy rule. These rules are used to determine whether

other computing entities have permission to share some context information.

CoBrA is one of the earliest systems using semantic web technol-

ogy to support context-aware ubiquitous computing. This architecture uses

OWL language to model context and support context reasoning. The core of

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 29

this architecture is an intelligent agent known as the context broker that

maintains a shared model of context on the behalf of a community of agents,

services, and devices in the space. Moreover, it provides privacy protec-

tions for users in the space, including extension of a policy language used

to define rules to protect the user's private context information. However,

CoBrA’s context model is relatively simple, and does not take into account

connecting users and activities by temporal and spatial relationships .

2.2.4 SOCAM

Service-Oriented Context-Aware Middleware (SOCAM), developed by (Gu

et al., 2005b), is an architecture for building and rapid prototyping of con-

text-aware services. SOCAM is designed for context acquisition, context

discovery, context interpretation, and context dissemination based on a set

of independent services. The architecture is shown below. It consists of five

parts: context provider, context interpreter, context database, context -aware

services, and service locating services.

Figure.2.5. SOCAM architecture
(Image from (Gu et al., 2005))

Context providers have two main tasks: they can retrieve contexts

from virtual sensors and physical sensors, and can convert raw context to

OWL representations to be easily shared and reused by other service com-

ponents.

The context interpreter is a component that provides logic reason-

ing services to process context information, which includes inferring high-

30 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

level contexts from low-level contexts, querying context knowledge, main-

taining consistency of context, and resolving context conflicts. It consists

of two parts: a context reasoner and a context knowledge base. The context

reasoner supports two kinds of reasoning: ontology reasoning and user-

defined rule-based reasoning. Besides containing context ontology and their

instances, the context knowledge base provides a set of APIs for other ser-

vice components to query, add, delete or modify context knowledge.

The context database stores context ontologies and past contexts

for a sub-domain.

The context-aware services refer to applications and services mak-

ing use of different levels of contexts and adapting how they behave ac-

cording to the current context.

The service locating services propose the service locating service

mechanism (Gu et al., 2005a). They can track and adapt to dynamic chang-

es in context provider. They can also enable users or applications to locate

these services.

SOCAM provides efficient support for acquiring, discovering, in-

terpreting and accessing various contexts to build context-aware services.

SOCAM also uses ontology to model the context similar to CoBrA, but it

goes further than CoBrA. It adopts a two-layer hierarchical approach for

designing context ontologies, which are divided into the common upper on-

tology for general concepts and the domain-specific ontology for different

sub-domains, Moreover, it adds various characters of context information

to context models such as classification and dependency. However,

SOCAM merely adopts the rule based on first order logic to determine

high-level context, and is inadequate for dealing with complex activity con-

text recognition in Ubiquitous Computing.

2.2.5 CA-SOA

Context-Aware Service-Oriented Architecture (CA-SOA) was developed by

(Chen et al., 2006). CA-SOA consists of three components for ubiquitous

discovery and access of Web services based on surrounding contexts: an

agent platform, a service repository, and the semantic matchmaker. CA-

SOA architecture is shown in Figure 2.6.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 31

Figure.2.6. CA-SOA architecture
(Image from (Chen et al., 2006))

An agent platform contains three types of agents: service agents,

broker agents, and request agents. The agents have been implemented to

enhance the context-oriented service description, publication, registration,

discovery, and access.

 A service repository is designed to encompass a general UDDI

Registry associated with service profiles and service ontologies. If the re-

quired services are found by the capability matchmaker in the UDDI Regis-

try, the semantic matchmaker will proceed with context matching.

The semantic matchmaker consists of a context reasoner and a

service planner. The context reasoner breaks down the service request,

based on the requesters’ ontology sent along with the service request by the
request agent, into a set of sub-requests. The service planner performs a

context matching process in order to schedule an integrated composite ser-

vice based on the broken down request.

Unlike the aforementioned context-aware systems, CA-SOA is de-

veloped on the basis of web service. Its main contributions focus on: for-

32 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

malizing an ontology-based context model to formally describe and acquire

contextual information pertaining to service requesters and services;

providing a comprehensive real-time context acquisition method and em-

ploying a rule-based matching algorithm with truth maintenance to enhance

recall and precision; employing a rule-based matching algorithm with truth

maintenance to enhance recall and precision of context-aware service dis-

covery. However, CA-SOA adopts nevertheless a rule-based method to in-

fer high-level context similar to SOCAM, insufficient to deal with complex

situations.

2.3 Analysis and Comparison

In this section, we will analyze and compare the aforementioned context -

aware system based on five facets: the architecture of the context-aware

system, context representation, context sensing, context storage, and con-

text reasoning. The section ends with a conclusion.

 In the following section, we will use “+” to denote the kind of

characteristic to be supported, “-” to denote the kind of characteristic not to

be supported, and “o” to denote the kind of characteristic when it is not

clear whether or not it should be supported.

2.3.1 Architecture of the context-aware system

From the general system level viewpoint, we summarize these five archi-

tectures of representative context-aware systems based on five characteris-

tics in the table:

- Context Abstraction:

The context-aware system hides the complexity of physical sen-

sors or other context resources by providing a high level of abstraction,

which enables context resource independence and enhances reusability of

architecture components.

- Communication Model:

The context-aware system adopts the communication model able

to link all the system components working together.

- Basic Software Component:

The context-aware system uses the kind of basic software compo-

nent to achieve various kinds of required functions.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 33

- Extensibility:

Whether the device can be added or removed without affecting the

entire context-aware system.

- Reusability:

Whether the architecture of the context-aware system supports re-

using components, simplifying integration and reducing development com-

plexity.

Figure.2.7. Analysis and comparison in the context-aware system architecture

2.3.2 Context representations

Context representations pave the way for the context-aware system, includ-

ing two key facets: context modeling and type of context. An efficient

model for handling, sharing and storing contextual information is essential

for a working context-aware system. The detailed information for the con-

text model will be addressed in chapter 3. Giving a comprehensive list of

context types is a tough task, as it changes according to the specific situa-

tion. Location is commonly considered as the most important type of con-

text. We also compare other popular contexts used in context-aware sys-

tems, such as calendar, activity, user profile, and device. In addition, the

system is required to access historical data in some situations, such as pre-

dicting the future context. So we take temporal context into account and se-

34 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

lect historical context support as an important characteristic for evaluating

these context-aware systems.

Figure.2.8. Analysis and comparison in context representations

2.3.3 Context Sensing

Contextual information is extracted from context resources, containing

three main types: physical sensors, virtual sensors and form filling. Nor-

mally, sensors are distributed in a network, where each sensor can send the

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 35

collected context data to other components relying on low-level communi-

cation protocols. To evaluate the performance of context sensing, we focus

on five characteristics shown in the table:

- Type of Sensing:

The context-aware system adopts the type of context sensing,

which determines the basic performance of context sensing.

- Mode:

Two types of mode are concerned: manual and automation, de-

pending on the different types of context resource. In general, manual is

used by form filling, while automation is used by physical sensors and vir-

tual sensors.

- Resource Discovery:

This is concerned with how to search for and find an appropriate

context resource at runtime. This task is performed using different ap-

proaches for different context-aware systems.

- Data Retrieval:

There are two types of methods for data retrieval: push and pull.

When satisfying a condition, the context resource pushes the required con-

text data to the context-aware system, or when the application requires

some context, the context-aware system pulls the required context from the

context resource.

- Communication:

The context-aware system collects context data from the context

resource based on communication protocols. The communication protocol

varies according to the context-aware system.

36 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

Figure.2.9. Analysis and comparison in context sensing

2.3.4 Context Storage

Storage for context-aware systems does not resemble storage for traditional

software systems. Context data contain not only the value but also special

knowledge, which eases the application designer’s work enormously (Bal-

dauf et al., 2007). The traditional software system normally adopts the rela-

tional database to organize and manage data, whereas the context-aware

system seldom adopts the relational database. The type of storage database

depends on the type of context model adopted by the context-aware system,

and the same applies to the request specification.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 37

Figure.2.10. Analysis and comparison in context storage

2.3.5 Context Reasoning

Context reasoning, also known as context inference, is one of the most im-

portant parts of context processing as well as the intellectual component in

the context-aware system, designed to automatically further deduce previ-

ously implicit facts from explicitly given context information. It focuses on

two main tasks: the first is to check and solve inconsistencies in raw data.

Due to the widespread adoption of ontology in context-aware systems, it

provides an adequate solution for this task. The second task is to infer high-

level context information from low-level context data. Rules are always

used to achieve this goal, but are inadequate to deal with some complex sit-

uations: some specific reasoning methods, such as decision trees, Bayes

networks, are involved.

Figure.2.11. Analysis and comparison in context reasoning

38 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

2.3.6 Discussion

As described above, the context-aware system with respect to architecture

is broken down into three critical characteristics: context abstraction, ex-

tensibility, and reusability. These five representative context-aware systems

have chosen different types of communication models and basic software

components, respectively. However, almost all of them support characteris-

tics of context abstraction, extensibility and reusability. Since the ubiqui-

tous computing environment is changing more rapidly than before, support-

ing extensibility and reusability is even more important. Another trend of

the context-aware system is that, without exception, all recent systems sep-

arate context resources from context processing, contributing to rapid de-

velopment of context-aware applications in contrast with earlier context-

aware systems. Based on earlier analysis and comparison, we have summa-

rized the key characteristics for context-aware systems, which have become

important criteria. The detailed information is listed below:

 Widespread use of ontology-based models in context representation

The context-aware system has to support as many types of context

as possible to suit different situations. However, it is not possible to pro-

vide all types of context. The ontology-based model provides effective so-

lutions, supporting both knowledge reuse and sharing as well as context in-

ference, so that increasingly more context-aware systems adopt this model

to organize contextual information. Furthermore, researchers begin to draw

attention to historical context. These context data can be used to predict us-

ers’ behaviors. Apparently, this will be one of the new directions in the fu-

ture.

 Multi-functions

Diversity sensors require that the context-aware system supports

diverse context sensing technologies. The type of resource discovery de-

pends on the type of communication. Each context-aware system has its

own approach, while it is a trend for mode and data retrieval that context-

aware systems should support all kinds of mode and retrieval. Consequent-

ly, for context-aware systems, a multi-function context sensing component

is necessary.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 39

 Context Storage

Unlike other software systems, context-aware systems should

store not only data but also relationships. It also can be considered as one

kind of knowledge base. As described above, due to its good organizing

context features, the ontology-based model has been widely used in con-

text-aware systems recently. So, OWL is mainly used as a storage database,

replacing the rational database. Accordingly, the request specification

adopts SPARQL rather than SQL.

 Context reasoning

Context reasoning, also known as context inference, plays an in-

creasingly important role in context-aware systems. It is easily observed

that three recent context-aware systems in comparison (CoBrA, SOCAM

and CA-SOA) provide a support for ontology-based reasoning. This pro-

vides a solution for the partial task of context reasoning: check context

consistency. Nowadays, the context with which most researchers are con-

cerned has shifted from location to other high-level contexts, such as activi-

ty. This requires supporting by context reasoning. However, up to now,

there was no practical way to take advantage of this opportunity.

2.4 Conclusion

This chapter reviews the state of art in context-aware computing. After

concluding as to the general character of context-aware systems, the five

chosen representative context-aware systems are analyzed. We then provide

a more detailed analysis and comparison in five fundamental aspects in

context-aware systems: architecture, context representations, context sens-

ing, context storage, and context reasoning. This chapter ends with a dis-

cussion on the five aspects, indicating the future directions of our work.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 41

3 The Spatial-temporal Ontology-based

Model

3.1 Introduction

3.2 Context Modeling

3.2.1 Context classification

3.2.2 Existing context modeling approach

3.3 The Spatial-temporal Ontology-based Model

3.3.1 Ontology

3.3.2 Ontology description language

3.3.3 Spatial-Temporal model

3.3.4 Ontology-based model development tools

3.3.4.1 Protégé editor

3.3.4.2 Jena

3.4 Conclusion

3.1 Introduction

A context model is needed to define and store context data in a machine

processable form (Baldauf et al., 2007). A well designed model is a key ac-

cessor to the context in any context-aware system (Strang and Linnhoff-

Popien, 2004). The importance of context models for context-aware sys-

tems cannot be stressed enough.

In this chapter, firstly the existing context modeling approaches

will be surveyed, along with comparison and analysis. Secondly, the de-

tailed description of the ontology-based model is presented. Then, we pro-

pose a spatial-temporal context-aware model used to organize the context

for different situations. Following this model, the associated technical tools

are outlined as well. Finally, this chapter ends with a summary.

3.2 Context modeling

Multiplicity of context leads to many different methods of context repre-

sentation and different levels of inner links. It is still a challenge to build

an abstract logical model based on this complex heterogeneous information,

ensuring that context is easily expressed, reasoned and shared.

42 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

3.2.1 Context classification

In Ubiquitous Computing, it is necessary to classify context to meet the

need for numerous heterogeneous context information. Contextual classifi-

cation can help context-aware application designers and developers cover

the entire possible context and simplify operation of context, whilst contex-

tual classification would help to provide quality context information. In re-

al applications, some types of context are more important than others, such

as location, identification, activities and time. These types of context are

the main contexts used to characterize the situation of the entity, which not

only solve problems of “who” “what” “when” and “where”, but also pro-

vide an index for other type of context.

Many researchers have attempted to classify context from the dif-

ferent conceptual points of view. Gwizdkal (Gwizdka, 2000) extend the

definition of context from Schilit et al. (Schilit and Theimer, 1994), and

make a basic distinction between context that is internal or external to the

user. Internal context describes user states, which can be made up of work

context (e.g. current projects and their status, status of to-do things, project

team), personal events (i.e. events experienced by the user. These events

are internalized external events), communication context (i.e. state of inter-

personal e-mail communication), emotional state of the user. External con-

text describes the state of the environment, which can be made up of loca-

tion, proximity to other objects (both people and devices), and temporal

context. Elena (Elena et al., 2000) classifies context in material and social

circumstances. Material context refers to aspects such as the place of use

(in an office, at home, in a museum, in the open air), the device (a work-

station, a hand−held device) or the available infrastructure (networks, GPS,
infrared), while social context is equally important, related to aspects (be-

ing alone or not, who the others are, if this exerts pressure) and personal

traits (attitudes, preferences, interests).

The above-mentioned types of contextual classification make an

effort towards creating a context model, but these classifications are in-

complete and not very clear on context information. Taking into account

different requirements of context awareness, we take Day and Abowd’s

definition of context (Dey and Abowd, 1999a) as a starting point and at-

tempt to classify context based on two dimensions: spatial and temporal.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 43

Figure 3.1 The relationship between context, location and time

The spatial context attempts to describe the entity’s situation
along the space axis. The location context is the central context surrounded

by the others. In a different space, location could determine the type of

context, for example: in class, user’s status comes in two types: student and

teacher, while in the office, user’s status is totally different.

The temporal context is responsible for storing all contexts in one

place during periods or for recording all the contexts on one activity during

periods. It provides not only the historical context to context-aware appli-

cations, but also a resource to analyze the users’ activity, which will be ex-

plained in chapter five.

Classification of context on spatial and temporal dimensions clear-

ly defines context in different situations and supports historical context.

Meanwhile, it raises a problem, i.e. it is also impossible to provide an ex-

haustive context list for context-aware designers. For one important entity,

the person, he/ she does not stay in one place all the time but moves con-

tinuously. To describe his/ her situation requires organizing the entire con-

text according to his/ her changeable locations. A context modeling method

is required to model different scenarios and to allow developers to add any

new context to this model easily, or even to provide the ability to import

and reuse some existing context from another context model. After compar-

44 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

ing the existing context modeling approaches, we will provide our own so-

lution.

3.2.2 Existing context modeling approaches

As described earlier, the context model plays a fundamental role in context-

aware systems. Due to its collection from heterogeneous context resources,

raw contextual information cannot be utilized directly by context -aware ap-

plications. Therefore, it requires an approach that can define and organize

context in order to be understood by context-aware systems. The context

model refers to the approach for describing and organizing contextual data.

How efficiently the system uses context largely depends on which type of

context model the system adopts. A well designed context model should

provide an appreciable interpretation of all kinds of context, easily shared

with the required component and conveniently handled by designers.

Currently, there are two main approaches for context modeling:

the non-formal and the formal context model. In early research, context-

aware systems generally adopt non-formal models, such as Xerox ParcTab

(Want et al., 1995) and Olivetti's Active Badge (Want et al., 1992). The

Context Toolkit (Salber et al., 1999) uses an object-oriented method to de-

scribe context, modeling each type of context as a class. Cooltown (Kind-

berg et al., 2000) projects made a model for real-world objects such as peo-

ple, locations and devices using an HTML Web-based method. Each

context has an associated Web description. Since the non-formal context

model does not support context sharing, reasoning and other functions, it

has gradually been replaced by the formal context model in recent years.

Entity Relationship (ER) is leveraged to model context. Henricksen et al.

(Henricksen et al., 2003) proposed a context model approach combining ER

with UML. First-order logic is used to model context in Gaia (Román et al.,

2002). CoBra (Chen et al., 2004) and SOCAM (Gu et al., 2005) have

adopted ontology to build the context model, and Ranganathan (Ranga-

nathan and Campbell, 2003) designed a middleware for context-aware

agents using ontology to define different types of contextual information as

well. Due to its good performance on knowledge sharing, context reasoning

and context reuse, the ontology-based model is gradually being used exten-

sively.

Strang and Linnhuff-Popien (Strang and Linnhoff-Popien, 2004)

have summarized existing context modeling approaches and classified these

context models into six types, as follows: Key Value (pairs) Models,

Markup Scheme Models, Graphical Models, Object-Oriented Models, Log-

ic-Based Models and Ontology-based Models.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 45

 Key Value Models

The key-value model uses a simple data structure: key-value pairs to repre-

sent context, which provides contextual data to applications in the form of

variables. The advantage of the key-value model is that it is relatively sim-

ple and allows easy data management. However, it is inadequate for pro-

cessing complex context in sophisticated environments and lacks support-

ing contextual information retrieval algorithms. The key-value model is

used in early context-aware systems, such as (Schilit et al., 1994).

 Markup Scheme Models

Markup scheme models adopt an hierarchical data structure to express con-

textual information using markup language, such as XML or RDF. Com-

pared with the key-value model, the markup scheme model provides a bet-

ter context representation, but does not describe relationships between

contextual information, and lacks an effective resolution mechanism for

processing incomplete, dynamic contextual data.

 Graphical Models

Graphical models are commonly used graph-oriented modeling tools such

as UML to describe contextual information. Henricksen et al (Henricksen et

al., 2003) have adopted the graphical model to organize context. This mod-

el is intuitive and has powerful presentation skills for relational databases

in information management systems.

 Object-Oriented Models

Object-oriented models leverage object-oriented technologies: encapsula-

tion and reusability to express contextual information. The context details

are packaged in objects. The other components must be accessed through a

specific interface to handle context information. A typical project is TEA

(Schmidt and Laerhoven, 2001).

 Logic-Based Models

Logic-based models express context as a set of facts, expressions and rules.

These models were used for the first time to formalize contextual infor-

mation in early 1993 by McCarthy and his group (McCarthy, 1993). In gen-

eral, logic-based models adopt a higher formal representation, but are lim-

ited to reusability and applicability.

 Ontology-based Models

Ontology-based models use ontology to represent conceptions of contextual

information and relationships between context information. They provide a

46 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

unified terminology and concepts, conducive to knowledge sharing. They

also adopt the formal representation of knowledge domains, supporting the

reasoning mechanism. In addition, they can import the other existing ontol-

ogy databases for easy reuse of knowledge.

Thomas Strang and Claudia Linnhoff-Popien (Strang and Lin-

nhoff-Popien, 2004) then compared the six types of context modeling on

six main requirements in ubiquitous computing systems:

1. Distributed composition (dc):

Any ubiquitous computing system is a derivative of a distributed computing

system which lacks a central instance responsible for creation, deployment

and maintenance of data and services, and in particular context descriptions.

Instead, composition and administration of a context model and its data

vary with notably high dynamics in terms of time, network topology and

source.

2. Partial validation (pv):

 It is highly desirable to be able to partially validate contextual knowledge

on a structure as well as on an instance level against a context model in use

even if there is no single place or point in time where the contextual

knowledge is available on one node as a result of distributed composition.

This is particularly important due to the complexity of contextual interrela-

tionships, which make any modeling intention error-prone.

3. Quality of information and richness (qua):

Quality of information delivered by a sensor varies over time. Also, the

richness of information provided by different kinds of sensors, characteriz-

ing an entity in a ubiquitous computing environment, may differ. Thus, a

context model appropriate for usage in ubiquitous computing should inher-

ently support quality and richness indications.

4. Incompleteness and ambiguity (inc):

The set of contextual information available at any point in time, character-

izing relevant entities in ubiquitous computing environments, is usually in-

complete and/or ambiguous, in particular if this information is gathered

from sensor networks. This should be covered by the model, for instance by

interpolation of incomplete data on the instance level.

5. Level of formality (for):

It is always a challenge to describe contextual facts and interrelationships

in a precise and traceable manner. For instance, to perform the task “print

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 47

document on printer near to me”, you need to have a precise definition of

the terms used in the task, for instance what “near” means to “me”. It is
highly desirable that each participating party in a ubiquitous computing in-

teraction should share the same interpretation of the data exchanged and the

meaning “behind” it (so- called “shared understanding”).

6. Applicability to existing environments (app):

From the implementation viewpoint, it is important that a context model is

applicable within the existing infrastructure of ubiquitous computing envi-

ronments, e.g. a service framework such as Web Services.

They use “++” “+” “-” “—” to denote the level of support for a

characteristic, “++” meaning the highest supported and “—“ meaning the

lowest supported. The results are shown in the table below. The ontology-

based model shows better performances in the six requirements than the

other five context modeling approaches, fulfilling all the requirements and

fully supporting distributed composition (dv), partial validation (pv) and

level of formality (for).

 Figure 3.2 Context Modeling Approach preference

(Image from (Strang and Linnhoff-Popien, 2004))

Continuing their work, we study the twenty existing popular con-

text-aware systems over the past two decades: CASS (Fahy and Clarke,

2004), CoBra (Chen et al., 2004), Context Management Framework (Flo-

réen et al., 2005), Context Toolkit (Dey and Abowd, 1999b), CORTEX

(Sørensen et al., 2004), Gaia (Román et al., 2002), Hydrogen (Hofer et al.,

2003), SOCAM (Gu et al., 2005), CMF (Van Kranenburg et al., 2006),

STU21 (Singh and Conway, 2006), Akogrimo(Akogrimo Salerno, 2008),

Anyserver (Han et al., 2005), CA-SOA (Chen et al., 2006), ContextUML

(Sheng and Benatallah, 2005), CoWSAMI (Athanasopoulos et al., 2008),

ESCAPE (Truong et al., 2007), Keidl&Kemper’ context framework (Keidl

and Kemper, 2004), inContext (Melchiorre et al., 2008), Omnipresent (de

48 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

Almeida et al., 2006) and SiWS (Matsumura et al., 2006). According to

analysis of their context model, half of them adopt ontology technology to

organize contextual data. Especially in recent years, the ontology-based

model is extensively used in context-aware systems.

Figure 3.3 Comparisons in Context Modeling Approaches

As analyzed above, ontology is a promising instrument for repre-

senting a description of concepts and relationships, and is particularly suit-

able for project parts of the information describing and being used in our

daily life on a data structure utilizable by computers. It provides high and

formal expressiveness and the possibilities for applying ontology reasoning

techniques. The ontology-based context model is a compelling approach for

modeling contextual information. Therefore, our context-aware middleware

uses ontologies as an underlying context model technology.

3.3 The Spatial-temporal Ontology-based Model

The context model is one of the most important components in the context-

aware system. Diversity of context resources leads to different types of

context expressed in their own ways with internal interrelationships. How

to establish a unified abstract logical model for this complex heterogeneous

information, making this information easily expressed, reasoned and shared,

is a very important issue in the context-aware system. According to our ear-

lier analysis, we present a context model based on ontology for both spatial

and temporal aspects. This model adopts an hierarchical structure to meet

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 49

the different requirements of ubiquitous computing. Besides characterizing

the entity’s current situation, it stores the historical context data, which can
be used to analyze users’ activities and provide predictions and recommen-

dations. The ontology-based modeling approach is adopted to organize our

context model. It enables a context of information sharing in a specific area

by defining a common vocabulary, as well as providing basic concepts for

the field and the relationship between these concepts. Context expressed in

ontology can be used by users, devices and services. In addition, the ontol-

ogy-based model allows reuse of domain knowledge, helping a large ontol-

ogy model to be built by several small ones. We will define ontology and

the ontology description language below.

3.3.1 Ontology

Ontology stems from an old philosophical concept, meaning an objective

existing system from the philosophy category, and concerns the abstract na-

ture of objective reality (Fu et al., 2009). Over the past decade, research in-

to ontology has increasingly matured and gone beyond the scope of philos-

ophy, concerning many fields, such as artificial intelligence and

information technology.

In 1991, Neches, Fikes, et al. (Neches et al., 1991) defined ontol-

ogy for the first time in the domain of artificial intelligence: “An ontology

defines the basic terms and relations comprising the vocabulary of a topic

area as well as the rules for combining terms and relations to define exten-

sion to vocabulary.” According to this definition, ontology states that terms

are not only defined explicitly but also derived from rules. A popular defi-

nition of ontology is given by Gruber (Gruber, 1993): “ontology is the clear
specification on a conceptual model”, involving two meanings: first, it re-

fers to abstraction, induction, conceptualized in a field; second, it provides

a conceptualization of the results expressed in unified form which can be

understood by humans and computers. Based on this definition, Borst

(Borst, 1997) took it a step further:” ontology is the clear specification on a
sharing conceptual model.” In 1998, Studer et al. (Studer et al., 1998) pro-

posed a more detailed alternative, including four aspects:

 Conceptualization: models obtained by abstracting some related phenom-

ena in the objective world, which take place independently from the specif-

ic state of the environment. Explicit: explicit definitions for concepts used and their restriction Formal: the ontology model can be processed by computer Share: ontology aims at group consensus instead of individual consensus.

50 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

From the above definition of ontology, we find that “ontology” is
involved: terminology (Glossary), relationships, rules, formal specification,

domain knowledge, expression and sharing. In fact, ontology lays down the

basic knowledge structure for a domain by the concepts, terminology, and

standardized description of relationships.

3.3.2 Ontology description language

Recently, industry and research institutions have developed a variety of on-

tology description languages based on different representation forms,

shown in Figure 3.4(a). The description language is based on XML (Exten-

sible Markup Language) syntax including: RDFS (“Resource Description
Framework,” 2004), DAML + OIL (DARPA Agent Markup Language +

Ontology Interchange Language) (“DAML+OIL,” 2001), OWL (“OWL
Web Ontology Language,” 2004), etc. The relationship between these lan-

guages is shown in Figure 3.4(b). W3C (World Wide Web Consortium) has

recommended three of these languages as standard models related to ontol-

ogy: XML, RDF/RDFS and OWL.

(a) Ontology language family

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 51

(b) Relationship between main ontology languages

Figure 3.4 Ontology description languages

 XML

XML is a markup language that defines a set of rules for encoding docu-

ments in a unified format (“XML,” 2013). It is a textual data format with

strong support via Unicode for the world’s languages, emphasizing simplic-

ity, generality, and usability over the Internet. XML technology is a collec-

tion of standards and protocols recommended and approved by W3C, rang-

ing from the underlying network to the application layer involving data

representation, data processing, message exchanging and delivering etc. It

contains several other related specifications, gratis open standards, such as

underlying standards: DTD (Document Type Definitions), style standards:

CSS (Cascading Style Sheets), query criteria: XQL (XML Query Language),

and parsing standard: DOM (Document Object Model). XML paves the

way for other ontology description languages, providing a well-structured

base.

 RDF/RDF Schema

RDF (Resource Description Framework) locates above on the XML in the

ontology language stack. RDF is a language for representing information

about resources in the World Wide Web, containing Resources, Properties

and Statements. Statements consist of three components: Subject, Predicate

and Object. RDF provides a data model to express web metadata, using ob-

jects and their relationships. RDF defines not only a triple pattern, consist-

ing of object, attribute and value, as basic modeling primitives, but also a

standard syntax representing a triple pattern. According to a characteristic

of RDF, any complex relationship can be expressed as a composition of

several simple dual-relationships. Therefore, the RDF data model can be

52 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

used to describe all the resources on the web. RDF provides a human-

readable and machine-readable format to exchange between system and ap-

plication, overcoming XML‘s shortcoming of lack of semantics.

RDFS (RDF Schema) completes RDFS. It adds some new seman-

tic primitives based on XML, extending the data semantic description.

RDFS provides a simple machine-readable semantic model and forms the

basis for other ontology description languages. However, it does not take

semantic conflict into account.

 DAML-OIL

XML and RDF can provide a simple solution for ontology description but

have only a limited ability in expression. Therefore, researchers have

sought to develop a more expressive model language. OIL (Ontology Inter-

change Language) is one of them, developed by the on-To-Knowledge pro-

gram in Europe. This model language extends syntax and description logic

of RDF and joint description logic, framework language and web standards

all together for the first time.

The DAML (DARPA Agent Markup Language) was the name of a

US funding program at the US Defense Advanced Research Projects Agen-

cy (DARPA) started in 1999. Many United States research institutions were

involved in this study. It is an extension of RDF based on object -oriented

technology. DAML’s earliest version was called DAML-ONT, before it

changed to DAML+OIL. It is a language following on from DAML and

OIL that combines the best features of both. DAML + OIL describe the

domain structure by classes and attributes, enhancing the ability of lan-

guage description. Unlike RDF, DAML+OIL is not a data model but a

structure language for describing the RDF data model. To some extent it

can be considered as another RDF language, so it inherits RDF’s weakness
as well.

 OWL

OWL (Web Ontology Language) is a family of knowledge representation

languages for authoring ontologies. It has been endorsed by the director of

W3C as a W3C Recommendation (“OWL Web Ontology Language,” 2004),

located at the top of the ontology language stack. OWL started as an im-

provement of DAML-OIL, drawing on its design and application experi-

ence to enrich the semantic definition mechanism. OWL, in the abstract

syntax, contains a sequence of annotations, axioms, and facts. Annotations

on OWL ontologies can be used to record authorship and other information

associated with ontology, including import references to other ontologies.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 53

The main content of OWL ontology is conveyed in its axioms and facts,

which provide information about classes, properties, and individuals in the

ontology (“OWL Web Ontology Language,” 2004).

OWL provides more means of expression than XML, and

RDF/RDFS in semantic expression, adding more vocabulary for describing

properties and classes: among others, relationships between classes (e.g.

disjointness), cardinality (e.g. "exactly one"), equality, richer typing of

properties and characteristics of properties (e.g. symmetry), and enumerat-

ed classes. Therefore, OWL provides a strong expressive power of ontology.

Focusing on different requirements, OWL provides three increas-

ingly expressive sublanguages: OWL Lite, OWL DL, and OWL Full.

OWL Lite: provides the primary and basic functional subset of OWL for

users. It supports simple constraint functions and is relatively easy to imply.

W3C uses a simple example to interpret this: OWL Lite supports cardinali-

ty, but only permits cardinality values of 0 or 1. There are more develop-

ment tools supporting OWL lite than the other two sublanguages. Develop-

ing the process is relatively easy.

OWL DL: an extension of OWL Lite, more expressive than OWL Lite.

OWL DL contains all OWL language constructs, but they can be used only

under certain restrictions. W3C uses a simple example to interpret this: a

class may be a subclass of many classes, a class cannot be an instance of

another class. OWL DL provides a description logic reasoning for applica-

tions requiring maximum expressiveness while retaining computational

completeness and decidability, but its vocabulary is limited.

OWL Full: possesses the most expressive OWL sublanguage, considered as

an extension of OWL DL. It is designed for users requiring maximum ex-

pressiveness and the syntactic freedom of RDF with no computational

guarantees. W3C uses a simple example to interpret this: a class can be

treated simultaneously as a collection of individuals and as an individual in

its own right. It allows new ontology to be added to predefined RDF, OWL

RDFS vocabulary. Therefore, no reasoning software could support com-

plete reasoning for every feature of OWL Full.

As analyzed above, OWL has been chosen to construct our spatial - tem-

poral context model. As the latest knowledge representation language en-

dorsed by W3C, it derives advantages from previous ontology description

languages, building on XML’s ability to define customized tagging schemes

and RDF’s flexible approach to representing data. OWL provides a com-

mon understanding of contextual information to facilitate context modeling

54 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

and reasoning on imperfect and ambiguous contextual information and to

enable context knowledge sharing and reuse.

3.3.3 Spatial-temporal context model

The spatial and temporal context model describes the entity’s situation in
space and time. Context-aware research has taken account of spatial de-

pendence among different scenarios: meeting room, living room, office.

However, context is not only connected in the spatial aspect, but also de-

pendent in the form of a time series. At all times context-aware systems ob-

tain contextual information from the heterogeneous context resource, which

is a description of the situation of entities at any one time. Context-aware

applications always require a description of the situation of entities at all

times. In other words, the context model must take account of temporal cor-

relations as well as special correlations. Both the spatial and temporal mod-

els are necessary when context is collected across space as well as time.

Location

User

Time Device

Activity LocatedIn

Lo
ca

te
d

In

U
sedw

ith

LocatedIn
EngagedIn

at

at

Temperal

S
p

a
tia

l

at

Basic

Specific

Individual

Figure 3.5 The Spatial-temporal Ontology-based Model

Spatial context refers to a geographical area where data were collected, a

place which is the subject of a collection, or a location which is the focus

of an activity. Spatial context can be either a point location or an area for a

specific scenario, such as a smart room, office room or hospital. From the

spatial dimension, we employ an hierarchical structure to describe the us-

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 55

er’s situation and circumstance based on OWL. The structure is shown in

Figure 3.5. In this context model, the ontology context is broken down into

two layers: the basic model and the specific model. The basic model de-

fines generic conceptions and relationships in AmI, which comes up with a

basic context structure. It has five interrelated basic classes: user, location,

time, activity, and device, and eight properties (relationships) between clas-

ses are identified, which represent who, where, when, what, and how:

 Who: the user communicating with the context-aware system. Where: refers to location information that is a crucial context in context-

aware computing. What: the context-aware system needs to know what activity users are in-

volved in. When: refers to time, which can be used as an index to capture information:

we will discuss this more thoroughly in the next section. How: how the system can acquire this context, in other words, which de-

vices are involved in this situation.

In ubiquitous computing environments, context-aware applications or ser-

vices are typically used for different groups of sub-fields of intelligent en-

vironment collections, such as residential domain, office domain and

transport domain. Each domain uses the same basic ontology for the com-

mon concept, but they have a huge difference in detail. General context-

aware ontology can be completed and upgraded by more precise infor-

mation related to a particular application or application area, known as spe-

cific ontology. This is used to define the details and attributes of the sub-

domain, which can be reused by different applications. The new specific

ontology will be added to the basic model to construct the new context

model when the environment changes. To give an example: when a user

leaves his/ her residence for driving, the transport domain ontology needs

to be added to the context model. Figure 3.6 shows the relationships be-

tween basic ontology, specific ontology, and applications. Easily observed,

the specific ontologies can be shared in different context-aware applica-

tions, while a context-aware application can use multiple specific ontolo-

gies to build the context model. To conclude, this hierarchical structure en-

ables flexible and extensible context models.

56 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

Figure 3.6 Relationship between context model and application

This context model uses OWL to provide a description of each

physical or conceptual object, including users, activities, computing device

location information, as well as virtual entities: users’ profiles. The “class”
in OWL is used to represent a type of entity. The relationship between the

entities and their attributes can be described as “owl: DatatypeProperty”,
while the relationship between entities can be represented as “owl: Ob-

jectproperty”. The OWL property (owl: subClassof) is used to indicate the

subclass entity in the hierarchical structure, allowing a new specific ontol-

ogy to be added to basic ontology as an extension. A simple example is

shown in Figure 3.7. “Student” is a sub-class of the class: “User”, and is
disjointed with the class “Teacher” in Figure 3.7(a). The individual “Tao”
with student ID “UL0601” is an instance of the class “Student” shown in
Figure 3.7(b). Figures 3.7 (c) and (d) show how Datatype properties and

Object properties are represented. Restrictions can also be defined to con-

strain the Classes.

(a) Class

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 57

(b) Individual (instance)

(c) Datatype Property

(d) Object Property

Figure 3.7 Class, Individual and Property in OWL format

In the ubiquitous computing environment, each object is viewed as

an entity in the context model, for example: a person, meeting room and

campus. Meanwhile, there are some physical relationships between them.

Therefore, context is represented as a triple pattern: {entity (subject), pred-

icate, entity (object)} with OWL format in the context model. This is moti-

vated by human language, used as an analogy of the English sentence. This

can be simply explained: {Tao, Locatedin, Classroom 3}, “Tao” is an entity,

belonging to Class: Person; “Classroom 3” is an entity, belonging to Class:

Location, and “Locatedin” is a predicate, connecting the entity “Tao” and

the entity “Classroom 3”. “Predicate” is a property representing a directed

binary relationship that specifies class characteristics. It may possess logi-

cal capabilities such as being transitive, symmetric, inverse and functional .

We take the situation “Tao LocatedIn Classroom 3” as an example again.

The “LocatedIn” is a predicate, with the logical feature: transitive. The sys-

58 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

tem can know “Tao Located in Building 2”, because “Classroom 3” is in

“Building 2” and “LocatedIn” is transitive. Another example: the context is

“Tao TalkTo Yun”. The system can know “Yun TalkTo Tao” as well, be-

cause the predicate “TalkTo” has the logical capability: symmetric. By

means of the triple pattern, a complex smart space can be modeled with

ample simple connected contextual information.

The context temporal model is an attempt to organize context ac-

cording to a temporal dimension, including a time period during which con-

text was collected, or a time period that an activity or a collection is linked

to intellectually or thematically. It relates to two primary classes: time and

device. The time class provides three subclasses to describe the temporal

relationship between user and activity. The device class uses the subclass:

the historical sensed to record the historical context data, which can be

used to analyze users’ activities and provide predictions and recommenda-

tions.

Time

StartTime

EndTime

Schedule

Device

Historical

Sensed

Sensed

Figure 3.8 partial classes in temporary model

Besides storing the historical context for context-aware applica-

tion, but also provides a context extracting mechanism based on temporal

view.

Depend on different sources, the context is divided into three cat-

egories: 1. pre-defined context.2 detected context: 3.inferred context. Pre-

defined context refer to context that is put in directly by end-users or appli-

cation designers, such as user’s profile context, specific environment con-

text; Detected context is get from sensors or web, as well namely low-level

context; inferred context is deduced by inference engine, considered as

high-level context.

We design a context extracting mechanism based on temporal

view, including three approaches: 1.required context; 2.high-frequency

context; 3.long-term context. Required context refers that the context is

pulled from context resource when context-aware system requiring, mainly

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 59

used for inferred context and some detected context not changing frequent-

ly, like: temperature. High-frequency context is pushed to context-aware

system when the context- is changed, mainly used for detected context,

such as: location. Long-term context refers that the context is relative static,

updated by user or application, mainly used for predefine context, like: user

profile.

Finally, We use the simple Figure 3.9 to explain the relationship

between the different developer and ontology model. The basic model is

defined by Middleware developer. The application developer can propose

specific model to extend basic model for different and complex situation.

Application instances are yielded by end user, which are with basic model

and specific model to describe the user’s situation in the ubiquitous env i-

ronments.

Figure 3.9 Different contributors in context modeling

3.3.4 Ontology-based model development tools

As described above, we have chosen an ontology description language,

OWL, to construct the spatial-temporal context model. Though OWL is an

XML-based language, development of OWL is different from a conven-

tional XML. Facing heterogeneous sensor environment, we employ the Pro-

tégé Ontology editor and Jena to develop OWL in Java. Generally, the Pro-

tégé Ontology editor provides a feasible platform supporting WYSIWYG to

construct the initial context model. Jena provides a set of APIs that enable

developers to handle the context in JAVA. Detailed information will be

provided below.

60 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

3.3.4.1 The Protégé editor

The Protégé editor, developed by the Stanford Center for Biomedical In-

formatics Research, is a free, open source ontology editor and knowledge-

based framework (framework “Protégé,” 2004). The Protégé platform sup-

ports modeling ontologies via a web client or a desktop client, which is

based on Java, is extensible, and provides a plug-and-play environment

making it a flexible base for rapid prototyping and application development .

The Protégé platform supports two main modeling ontology meth-

ods: the Protégé-Frames editor and the Protégé-OWL editor.

The Protégé-Frames editor enables users to build and handle on-

tologies that are frame-based, in accordance with the Open Knowledge

Base Connectivity protocol (OKBC). In this model, ontology consists of a

set of classes organized in a subsumption hierarchy to represent a domain's

salient concepts, a set of slots associated with classes to describe their

properties and relationships, and a set of instances of those classes - indi-

vidual exemplars of the concepts that hold specific values for their proper-

ties.

The Protégé-OWL editor enables users to build ontologies for the

Semantic Web. It implements a rich set of knowledge-modeling structures

and actions that support the creation, visualization, and handling of ontolo-

gies in various representation formats including OWL, RDF(S), and XML

Schema. It can be customized to provide domain-friendly support for creat-

ing knowledge models and entering data. The Protégé-OWL editor enables

users to:

- Load and save OWL and RDF ontologies.

- Edit and visualize classes, properties, and SWRL rules.

- Define logical class characteristics such as OWL expressions.

- Execute reasoners such as description logic classifiers.

- Edit OWL individuals for Semantic Web markup.

Protégé-OWL's flexible architecture makes it easy to configure

and extend the tool. Protégé-OWL is tightly integrated with Jena and has an

open-source Java API for the development of custom-made user interface

components or arbitrary Semantic Web services. In addition, Protégé is

supported by a strong community of developers and academic, government

and corporate users, who use Protégé for knowledge solutions in areas as

diverse as biomedicine, intelligence gathering, and corporate modeling. In

our system, it is used to construct our initial context model.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 61

3.3.4.2 Jena

Jena, supported by the Apache Software Foundation, is a Java framework

for building Semantic Web applications providing a collection of tools and

Java libraries to help develop semantic web and linked-data apps, tools and

servers (“Apache Jena,” 2010) .

Via the Ontology API, Jena aims to provide a consistent pro-

gramming interface for ontology application development, independent ly

from which ontology language is used in programs.

Jena can be used to create and handle RDF graphs. Jena has object

classes to represent graphs, resources, properties and literals. The interfaces

representing resources, properties and literals are called Resource, Property

and Literal respectively. In Jena, a graph is called a model and is represent-

ed by the model interface. An ontology model is an extension of the Jena

RDF model, providing extra capabilities for handling ontologies. Ontology

models are created via the Jena ModelFactory. The fundamental concept in

ontology is class, property, and individual. Jena provides a feasible solution

to handle these in Java.

Classes are the basic building blocks of ontology. A simple class

is represented in Jena by an OntClass object. An ontology class is a facet of

an RDF resource. One way, therefore, to obtain an ontology class is to con-

vert a plain RDF resource into its class facet.

Property denotes the name of a relationship between resources, or

between a resource and a data value in ontology. It corresponds to a predi-

cate in logic representations. Ontology applications need to store, retrieve

and make assertions about properties directly. So, Jena has a set of Java

classes that allow users to conveniently handle the properties represented in

an ontology model. A property in an ontology model is an extension of the

core Jena API class Property and allows access to the additional infor-

mation that can be asserted about properties in an ontology language. The

common API super-class for representing ontology properties in Java is

OntProperty.

In OWL Full, any value can be an individual – and thus the sub-

ject of triples in the RDF graph are ontology declarations. In OWL Lite and

DL, the language terms and the instance data that the application is work-

ing with are kept separate, by definition of the language. Jena therefore

supports a simple notion of an Individual, which is essentially an alias for a

Resource. While Individuals are largely synonymous with Resources, they

provide a programming interface that is consistent with the other Java clas-

ses in the ontology API.

62 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

Furthermore, Jena supports another good feature: ontology infer-

ence, the details of which will be given in chapter five on intelligent con-

text inference.

3.4 Conclusion

In this chapter, the study focuses on the context model. This model organ-

izes context in machine readable format, laying the groundwork for the

context-aware system. After reclassifying context and analyzing the exist-

ing context model approach, we propose a spatial-temporal ontology-based

model. This model provides a solution to organize context characterizing

the entity’s situation along a temporal and spatial axis. Developers can

easily use this model to define specific scenarios and obtain historical sup-

port. The model adopts an hierarchical structure, thus enabling different

developers to create and modify different levels of model. The ontology

technique allows support of context share, context reuse, and context infer-

ence.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 63

4 Context-aware Middleware in Ambient

Intelligence

4.1 Introduction

4.2 Street and store marketing scenario (SSM)

4.3 Context-aware Middleware

4.3.1 Low layer: Enterprise Service Bus

4.3.2 High Layer: The Versatile Context Interpreter

4.3.2.1 Context Aggregator

4.3.2.2 Context Knowledge Base

4.3.2.3 Context Query Engine

4.3.2.4 Context Inference Engine

4.3.3 Context-aware middleware behavior workflow

4.4 Conclusion

4.1 Introduction

Ambient intelligence (AmI) refers to a numerically augmented real envi-

ronment that is sensitive and responsive to the presence of people (“Ambi-

ent intelligence,” 2013). In an ambient intelligence world, communication

objects and devices work together to support people in carrying out their

everyday (or professional) life activities and tasks in an easy, natural way

using information and intelligence hidden in the network of connecting ob-

jects and devices. AmI corresponds to a new vision of daily (or profession-

al) life, consisting of different kinds of sensors, actuators, communication

objects and computing devices, which lead to pervasive intelligence in the

surrounding environment supporting users’ activities and interactions. This

means that computing technology will exist in everything that surrounds us

(devices, appliances, objects, clothes, materials) , and that everything will

be interconnected by a ubiquitous network. The system formed by all these

interconnected intelligent things (also called the Internet of Things) inte r-

acts with humans by means of advanced interfaces, which are natural, flex-

ible and adaptable to the needs and preferences of each user. The final goal

is to acquire an adaptive and "intelligent" system that assists humans in

their daily (or professional) activities.

To attain AmI, first you need to integrate all sensors, actuators,

communication objects and computing devices to the system. Low level

mechanisms and drivers are necessary, but must be encapsulated in a more

common and higher level view making it possible to collect, process and

64 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

propagate information between these components in an appropriate manner,

i.e. take into account changes in context, and propagate appropriate deci-

sions. In computing, this kind of concern is known as “context -aware com-

puting” (Kjær, 2007), which was first discussed by Schilit and Theimer in

1994 (Schilit and Theimer, 1994). This kind of system that is related to its

physical environment needs to adapt its behavior according to context man-

agement and adaptation to deal with the different resources present in the

environments (Baldauf et al., 2007). Overall middleware characteristics

(multiple sources and multiple destination information management) must

be adapted to context-aware computing in order to create an appropriate

and efficient environment. To find a solution to develop context-aware ap-

plication, we propose a context-aware middleware to support AmI. Unlike

traditional middleware, our context-aware middleware is designed in a two-

layer structure. This consists of a low layer based on a sort of ESB (Enter-

prise Service Bus), in charge of communicating in standard manner with in -

environment sensors and actuators and of managing their dynamic discov-

ery. Then a high layer, known as the VCI (Versatile Context Interpreter),

provides higher and semantic data interpretations. Our context-aware mid-

dleware ensures rapid development of new context-aware applications.

In the remainder of this chapter, an AmI situation scenario is pre-

sented, allowing contextualization following a technical explanation. Then,

several aspects of our middleware are explained, starting with a low layer

satisfying context collecting requirements. The next step is a description of

a high layer, focusing on context processing. The general structure and

main components of the VCI are described and related to our scenario. Fi-

nally, the chapter ends with the conclusion.

4.2 Street and Store Marketing Scenario (SSM)

Up-to-date ubiquitous computing with in-environment distributed sensors,

actuators and user devices can create an Ambient Intelligence environment

in a shopping area. The main goal is to detect potential shoppers and pro-

pose them appropriate goods, i.e. goods in relation to their shopping pro-

files and identified present needs. To do this, we need first to capture po-

tential consumer presence by appropriate sensor(s), then to study his/ her

profile and determine what kind of information it seems appropriate to pre-

sent him/ her with in order to attract his/ her attention. The first stage in

this capture process occurs in the street. Data collected by the sensors pro-

vide the system with information about the potential consumer, data that

can be more or less precise: a young man or woman at least, or a store

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 65

regular client, etc. With respect to this profile, the system could display in

the shop window an appropriate advertisement. In the shop window display,

it seems important to display advertising information not only for one

passer-by and potential client but for several. Display strategy can be orga-

nized by applying the proxemics user interface policy i.e. give more infor-

mation to shop windows near located client(s) and less to distant ones. It

may prove interesting to take two additional behaviors into account: in-

shop continuation of consumer tracking, in order to provide more precise

information in relation to his/ her movement in the store, and also in-the-

street movement, in-the-street walking and shop window watching. In the

first case, increasingly detailed information can be given to the potential

consumer with respect to his/ her location in the store (suit, shirt, pants de-

partment, or kitchen furniture department) with detailed knowledge of his /

her situation (just married, etc.). The system can collect, store and use the

information collected from previous purchases in the store or elsewhere

(his/ her Facebook profile). In the second situation (in-the-street walking),

it could be interesting to propagate the discovered profile of the potential

consumer to other stores to allow them to use this information to provide

him/ her with increasingly detailed and appropriate advertising.

4.3 Context-aware Middleware

Context-aware applications are becoming increasingly prevalent and can be

found in the areas of wearable computing, intelligent environments, con-

text-sensitive interfaces, etc. (Krumm, 2009). A now generally accepted

definition of context, as mentioned earlier, is given by Abowd and Dey

(Abowd et al., 1999): “Any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that is consid-

ered relevant to the interaction between a user and an application, including

the user and application themselves”. The context-aware system is defined

as the system that uses context to provide relevant information and/or ser-

vices to the user, where relevancy depends on the user’s task.
Development of context-aware applications is inherently complex.

These applications adapt to changed context information: physical context,

computational context, and user context/tasks (Bettini et al., 2010). To

achieve this aim, we need to integrate all sensors, actuators, communication

objects and computing devices into the system. Low-level mechanisms and

drivers are necessary. Then, either we have to create only one standalone

application within which high-level context reasoning takes place, or we

propose a set of applications or a system and propose creation of an appli-

cation-independent common high-level of contextualization making it pos-

66 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

sible to collect, process, interpret and propagate information with the con-

text model and reasoning mechanisms (Xu et al., 2011).

To implement this more in-depth approach to context-aware ser-

vices in AmI, we designed a context-aware middleware, organized in two

layers: the low layer is a sort of Enterprise Service Bus, which provides a

solution to integrate sensors and actuators with a standardized data repre-

sentation and unified standard interface to achieve the core functions of

service interaction: service registry, service discovery, and service con-

sumption.

The versatile context interpreter is our high layer, which is

charged with context inferences, expressive query, and persistent storage.

Detailed information will be provided in the following sections.

Context-aware

Service

Context-aware

Service

Context

Provider

Context

Provider

Context

Provider

……

... ...

SensorSensor Actuator

Enterprise Service Bus

Inference

Engine

Query Engine

Context Knowledge Base

Context Aggregator
 Versatile Context

Interpreter

High Layer

Low Layer

Context-aware Middleware

Context-aware

Service

Context-aware

Service

Context

Provider

Context

Provider

Context

Provider

……

... ...

SensorSensor Actuator

Figure.4.1 Two context-aware architectures

4.3.1 Low layer: Enterprise Service Bus

The low layer of our context-aware middleware is designed on a sort of

ESB (Enterprise Service Bus), in charge of communicating in standard

manner with in-environment sensors and actuators and of managing their

dynamic discovery.

ESB is the increase prevalent structure in service-oriented archi-

tecture (SOA). Before detailing the ESB, we will review SOA. In a typical

SOA environment, there is a service provider and a service consumer. In

order to work, we also need a mechanism allowing them to communicate

with each other and also describe and discover one another. The fundamen-

tal structure of SOA is shown in Figure.4.2. W3C has defined an open

standard for web services in order to make SOA work. A web service uses

the XML-based Simple Object Access Protocol (SOAP) for communication

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 67

between service provider and service consumer. The service provider de-

scribes the services as interfaces defined by Web Service Definition Lan-

guage (WSDL). Universal Description, Discovery and Integration (UDDI),

a platform-independent, XML-based registry, is used for looking up the

services.

Service Provider

Describe and

Discover
Service Consumer

CommunicationDescribes

Discovers

Figure.4.2 The fundamental structure of SOA

The first time the term “Enterprise Service Bus” appeared in the

literature was in the book "The Enterprise Service Bus" by David Chappell

(Chappell, 2004). The concept was developed in analogy to the Bus concept

found in computer hardware architecture, and its goal is to describe imple-

mentation of loosely-coupled software components (known as services) that

are expected to be independently deployed, running, heterogeneous and

disparate within a network. It provides an infrastructure to implement this

SOA concept. Instead of returning to point to point integration to imple-

ment SOA, ESBs extend knowledge gained in Enterprise Application Inte-

gration (EAI) work that simplifies the integration and flexible use of busi-

ness components. ESBs facilitate standards-based integration, but are not

limited only to web services-based integration, e.g. messages are not re-

quired to use only the http protocol for communication. It needs to be sup-

ported for transparent translation between communication protocols (e.g.,

HTTP, FTP, REST, SOAP, JSON, DCOM, CORBA, SAP RFC, etc.) A ser-

vice consumer can send his/ her request via the http protocol, but the ser-

vice provider provides data using JMS. The ESBs make this communication

possible. In general, they support message-based transport as in EAI, and

also provide a described and discover facility for the service provider and

68 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

service consumer. ESB allows services to be easily plugged in and out of

the network without impact on other components and without the need to

restart the system or even stop running applications. It is centered on a bus

which provides a common backbone through which services can interoper-

ate with a standardized format of data representation. ESB also provides

mechanisms for security, mechanisms for implementing some level of ser-

vice level agreements (SLA), routing and transformation capabilities, all of

which vary to some extent from vendor to vendor.

Web

Service

S
e

cu
rity

T
ra

n
sfo

m
a

tio
n

R
e

g
istry

R
o

u
tin

g

M
o

n
ito

rin
g

Web

Service

Legacy

App

Custom

App

JMS Http

ESB

Figure.4.3 The basic structure of ESB

(Image from (Bhat, 2008))

Consequently, ESB is an efficient and practical software architec-

ture model used for designing and implementing interaction and communi-

cation between mutually interacting software applications in a service -

oriented architecture (SOA). In our paper, it is used to connect VCI and the

context provider, which is the service used to obtain context from sensors,

the web or other sources, and dispatch commands to actuators. It helps the

low layer to achieve three main tasks: communication, integration , and ser-

vice interaction.

To better communicate with services is one of the major goals of

ESB: communication support is thus necessary for ESB, which must deal

not only with routing and locating services, but also with services concern-

ing locating and naming. In communication processing, EBS allows many

message delivery models, such as request/response, publish/subscribe, and

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 69

a large number of transport protocols as well as synchronous and asynchro-

nous mechanisms.

ESB, via the bus mode, integrates all the services needed for con-

text-aware application, enabling developers no longer to consider each oth-

er's message format or protocol between services, and improve system

adaptability and scalability. The integrated services include context -aware

providers, databases, service aggregation, and legacy systems, etc. Context-

aware providers are related to various kinds of sensors and actuators devel-

oped in different programming languages (such as Java and c / c / c #) and

in different application server environments (such as J2EE and. NET).

Service interaction is implemented in ESB when all the services

are connected. It provides an open, implementation-independent messaging

service and interface model, allowing the application code to be separated

from the routing services and transport protocols. Service providers will

post service description documents on the ESB platform for convenient ac-

cess and use by service consumers. Furthermore, ESB helps to parse the

message when required by the service.

The low layer, via ESB, provides a unified standard interface to

achieve the core functions of service interaction: service registry, dynamic

service discovery, and service consumption. It also integrates interaction

devices and a set of APIs for different interaction modalities to support de-

velopment of interaction approaches. In our SSM scenario, it manages all

the context resources: physical sensors, such as: camera and Kinect; virtual

resources: user profile, and sends these raw contexts to the high layer: the

versatile context interpreter for the next process step.

4.3.2 High layer: The versatile context interpreter

The versatile context interpreter (VCI) is a high layer of context -aware

middleware, as shown in Figure 4.1, made up of four parts: Context Aggre-

gator, Inference Engine, Context Knowledge Base, and Query Engine. It

leverages basic service results from the low layer to deliver and manage

context-aware views and interpretations in order to deliver high-level in-

formation to the application.

As described in chapter three, our context-aware middleware

adopts an ontology-based approach for context modeling and interpretation.

General context-aware ontology can be completed and upgraded by more

precise information related to a particular application or application area. In

our case, the general context-aware model for AmI context-aware systems

is considered to be the basic model. For a new application area such as the

70 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

“Street and Store Marketing” application (SSM application), we propose a
more precise and specific context-aware model. According to our build

methodology, the general context-aware model is developed as the whole

system by context-aware middleware designers and developers. The “Street
and Store Marketing” application is developed in the scope of the context -

aware system by application developers. Most recent adaptation options can

be implemented directly and dynamically during the application by the sys-

tem (and its reasoning on collected data) or by the users (experienced us-

ers). According to different context sources, we divide context into two

categories: the low-level context and the high-level context. Context that

can be extracted directly from sensors and devices such as location, time ,

etc. is considered to be low-level context. High-level context is issued from

inference treatment based on low-level context data and semantic rules

stored in the knowledge base or using the inference engine.

After reviewing the context model used in our system, the detailed

information of four parts in the VCI will be introduced as follows.

4.3.2.1 Context Aggregator

The context aggregator, a bridge between the low layer and the high layer,

is responsible for working with basic contextual data collected by the low

layer. Its structure diagram is shown in Figure 4.4. According to its func-

tion and position in the system, the context aggregator has one input and

two outputs. It collects data from the low layer, converts them to OWL

form and updates to the context knowledge base. Then this contextual in-

formation can be shared and reused by other service components. In addi-

tion, the context aggregator allows the VCI to send commands to the low

layer.

Context Aggregater

Enterprise Service Bus

Knowledge Base

Update

Get
Send

Figure.4.4 The context aggregator structure

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 71

Since contextual information is heterogeneous, one of the context

aggregator’s main tasks is to gather diverse raw information from the low

layer in a single point. Each context aggregator component handles specific

information source information respectively. Some of the context aggrega-

tor components work with the corresponding physical sensors in the smart

space. For example, the location context aggregator is related to camera,

QRcode, etc. while the proxemics context aggregator works with Kinect ,

used to measure the distance between device and end-users. The component

can also extract contextual information from virtual sources. Users’ sched-

ules and profiles can be retrieved from the internet source by the virtual

context components.

Another main task of the context aggregator is to convert raw con-

textual information extracted from low layers to information described in

OWL format and to update to the context knowledge base. As contexts in

the ubiquitous computing environment change frequently, the context ag-

gregator needs to update regularly the Context Knowledge Base with new

arrival contexts described in OWL. To ensure proper understanding, the lo-

cation context aggregator is taken as an example. The location information

gathered from sensors is converted to OWL-represented contextual infor-

mation by the location context aggregator.

For example: “Tao locates in Shop” is represented in OWL format:

Figure.4.5 The example represented in OWL format

Context aggregators are self-contained and self-configured com-

ponents. Our context-aware middleware provides a universal interface for

all context aggregator components. It enables a scalable and extensible con-

text aggregator, thus simplifying development processing.

4.3.2.2 Context Knowledge Base

The context knowledge base provides persistent storage for context. As

shown in Figure 4.6, the context knowledge base is located in the center of

VCI, interacting with three other components. It has three inputs and one

output from the inference engine, query engine and context aggregator, re-

72 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

spectively. Inputs from the inference engine and the context aggregator are

used to add and to update context with proper date format to the knowledge

base. The remaining inputs require execution by the query engine, helping

context-aware applications find what they need. Its output returns the re-

quested context to the context-aware application

Inference

Engine

Query Engine

Context Aggregater

Get

Results

Execution

Require

Execution

Update

Knowledge Base

Figure.4.6 The knowledge base structure

The context knowledge base is different from the conventional re-

lational database that purely supports storage and query. The main differ-

ence between database and knowledge base is in what is stored. We adopt-

ed the aforementioned ontology-based context model to build the

environment and the user model. In ontology, the context knowledge base

is made up of ABox and TBox. ABox and TBox are used to describe two

different types of statements. TBox statements describe a conceptualization,

a set of concepts, and properties for these concepts (“Tbox,” 2009). ABox

are TBox-compliant statements about individuals belonging to those con-

cepts (“Abox,” 2009). In OWL, ABox refers to Scheme, and TBox refers to

Data. We use Figure 4.7 to show the relationships between OWL and the

knowledge base.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 73

Figure.4.7 The relationship between knowledge base and OWL

The entire context is stored as the triple pattern including subject,

predicate and object. It refers not to the data but the relationship, which can

characterize the entity’s situation to answer “who”, “when”, “what” and
“where” of context, for example “where is the customer?”, “who is in the

shop?” and “when will the activity start” Besides storing the context, the
ontology-based context model paves the way for the inference engine.

 Another function: the Context Knowledge Base supplies a set of

library procedures for other components to query and modify context

knowledge as well. In relation to different sources, the context is divided

into three categories: pre-defined context, detected context, and inferred

context. Pre-defined context refers to context expressed in the application

context model elaborated by application designers, such as user’s profile
context and specific environment context. Detected context is obtained

from sensors, viewed as low-level context. Inferred context is determined

from collected data and knowledge rules by inference engine, and is con-

sidered as high-level context. In order to facilitate development, we have

defined six types of models to deal with different situations in application ,

as shown in Figure 4.8.

OWL

Schema

Data
Assertional axioms

(ABox): Data

• Individual (instance)

Terminological axioms

(TBox): Schema

• Concept (class)

• Property (role, relation)

Knowledge Base

Consumer

Person

Tao

Tao is a comsumer

Every consumer is a person

Legend:

class instance

74 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

Figure.4.8 The partial knowledge base code

We design API for updating context from different resources as

appropriate. Context-aware application developers can use them to modify

ontology class, individuals and properties. The fundamental function, as an

example, is provided in Figure 4.9, and is used to add new context to the

ontology-based model.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 75

Figure.4.9 One of the fundamental functions in the knowledge base

4.3.2.3 Context Query Engine

The context query engine is used to handle expressive queries from con-

text-aware applications and to respond to context-aware applications with

up-to-date query results. It is the main component for communicating con-

text-aware service in the VCI. Its structure diagram is shown in Figure 4.10.

The crucial input is from the context-aware service for sending queries to

the knowledge base, while the crucial output also uses the context -aware

service to obtain results from the knowledge base. Besides the basic func-

tion, it can be also used to invoke the context inference engine. Two main

tasks are explained below:

76 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

Application Context-aware Service

Inference

Engine

Query Engine

Require

Invoking

Results

Knowledge Base

Require

Execution

Get

Results

Figure.4.10 The query engine structure

Handling queries from the context-aware application is the main

task of the context query engine. As mentioned earlier, our context-aware

middleware uses the knowledge base to store context in OWL format: its

query format is also different from that of the conventional SQL. We use a

query language, SPARQL, to retrieve and handle data stored in the context

knowledge base in OWL format. SPARQL, a recursive acronym for

SPARQL Protocol and RDF Query Language, is a standardized query lan-

guage for RDF data with multiple implementations, offering developers and

end-users a way to write and consume the results of queries across this

wide range of information.

For different purposes, the SPARQL language specifies four dif-

ferent query variations for queries that read data from the database.

- SELECT query: used to extract raw values from a SPARQL end-

point, the results are returned in a table format.

- CONSTRUCT query: used to extract information from the

SPARQL endpoint and convert the results into valid RDF.

- ASK query: used to provide a simple True/False result for a query

on a SPARQL endpoint.

- DESCRIBE query: used to extract an RDF graph from the

SPARQL endpoint, the contents of which are left to the endpoint to

decide, based on what the maintainer considers to be useful infor-

mation.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 77

Each of these query forms takes a WHERE block to restrict the

query, although, in the case of the DESCRIBE query, the WHERE is op-

tional.

The notable advantage of SPARQL is that it allows a query to

consist of triple patterns, conjunctions, disjunctions, and optional patterns .

It is thus recognized as one of the key technologies of the semantic web,

becoming an official W3C Recommendation on 15th January 2008

(“SPARQL Query Language for RDF,” 2008). It allows the context-aware

application to:

- Pull values from structured and semi-structured data.

- Explore data by querying unknown relationships.

- Perform complex joins of disparate databases in a single, simple que-

ry.

- Convert RDF data from one vocabulary to another.

A simple example is shown in Figure 4.11, which helps understand

SPARQL language. Its aim is to find “who is in Shop XXX?” A result
clause followed by the keyword “select” identifies the information to be

returned from the query. The query pattern in the brace after the keyword

“where” specifies what to query for in the underlying dataset.

Figure.4.11. The example for query in SPARQL format

In reality, we define several functions for handling queries from context-

aware applications. The two basic functions are shown in Figure 4.12 as an

example. Function one, shown in Figure 4.12(a), aims at reading query in-

formation from the target resource and returning a processable string. Func-

tion two, shown in Figure 4.12(b), aims at running a query for the ontology

model and returning the results.

78 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

 (a) The read query function

(b) The model run query function

Figure.4.12 The Query Engine functions

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 79

The Context Query Engine also has another function: invoking the context

inference engine. When the application needs high-level context, it pro-

vides a method to invoke the context inference engine to generate the in-

ferred context. The partial code is shown below, trying to invoke the infer-

ence engine according to the query string.

Figure. 4.13 The partial code for invoking the inference engine

4.3.2.4 Context Inference Engine

The context inference engine is an important part of the context -aware sys-

tem. It is the intelligent component in context-aware middleware, aiming at

deducing high-level context from low-level context retrieved directly from

context resources, as well as checking context consistency when new con-

text arrives. As shown in Figure 4.14, context-aware services are able to

handle the inference engine directly. Inference engine functions depend on

the situations, invoked by different mechanisms (Is this the meaning here?).

The inferred results will be added to the knowledge base, and used by other

components.

80 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

Application Context-aware Service

Inference

Engine

Query Engine

Knowledge Base
Execution

Invoking

Pre-set

Figure.4.14. Inference engine structure

The context inference engine consists of two modules: the basic

inference module and the predictive module. These modules are responsible

for two main tasks of the context inference engine, shown in Figure 4. 15.

The Basic

Module

The Intelligent

Module

OWL

Reasoner

Inference Engine

DT

Reasoner

HMM

Reasoner

Rules

Reasoner

Figure.4.15. The two different inference modules and their use

The basic inference module consists of the OWL Reasoner. Its

main task focuses on checking context consistency. Consistency checking

of the context model is an important action, activated by changing contex-

tual information or by the developer modifying the context-aware basic

model. The OWL Reasoner is a built-in reasoner in OWL language, per-

forming competently for this purpose. Based on the ontology model, it pro-

vides a set of described logic rules to accomplish this task.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 81

The intelligent module consists of three reasoners: Rules Reasoner,

Decision Tree (DT) Reasoner, and Hidden Markov Models (HMM) Rea-

soner. It is in charge of the other main task performed by the context infer-

ence engine: inferring high-level context. High-level context refers to the

type of context that cannot be collected directly from context resources. In

our studies, we investigate activity context. According to analysis of activi-

ty context recognition studies over the last decade, we summarize activity

context into three facets: basic activity inference, dynamic activity analysis ,

and future activity recommendation. These three reasoners help the context

inference engine meet the requirements of the three facets of activity con-

text recognition.

The Rules reasoner works on basic activity inference based on

first-order logic rules. Context-aware application designers could freely de-

fine different rule sets to deal with different basic activities in smart spaces,

such as meeting, working, studying, and so on.

The HMM reasoner is designed to solve the problems of dynamic

activity of analysis. In HMM, dynamic activity is divided into a serious

continues slices. After the training process, it infers on-going activity by

calculating the probability model of activity.

The DT reasoner provides a practical solution for future activity

recommendation based on a decision tree algorithm. According to analysis

of the user’s previous activities, the decision tree can be built to provide the

customized recommendation for an individual.

The three reasoners provide a solution for three facets of activity

context recognition, respectively. In the inference engine, different reason-

ers have different invoking mechanisms to make them work at the right

time. Once the reasoner is invoked, the knowledge base should be updated

accordingly. This enables the context-aware application to provide coordi-

nated services according to inferred results. The context inference engine is

one of my main contributions to this thesis and will be detailed in the next

chapter.

4.3.3 Context-aware middleware behavior workflow

To summarize our proposal of a user-centric context-aware middleware in

ambient intelligence, we comment on the global workflow as shown in Fig-

ure 4.16: in the overall architecture we have 3 main components: an appli-

cation layer with high-level context-aware services related to the applica-

tion, a high-level middleware known as VCI (Versatile Context Interpreter),

and a low-level middleware based on an ESB (Enterprise Service Bus). As

82 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

stated earlier, two levels of behavior and their modeling are supported: a

basic level related to general problems of AmI and context modeling, and a

more specific level related to an application area. In particular, the applica-

tion layer informs the VCI layer of the application area to take into account,

while the ESB layer is mainly application area independent. With this in

mind, the overall workflow functions as follows: (1) The application must

inform the VCI of the context (specific model) to use. This model will be

used by the Inference Engine, Query Engine, Context KB, and Context Ag-

gregator. (2) Application Context-Aware Services ask to receive contextual

evolution from the VCI. (3) ESB collects the data from different sensors

and propagates them to the context aggregator. (4) When the Context Ag-

gregator is able to aggregate the received data, it does so, and places them

in Context KB. (5) Arrival of new data in Context KB generates the notif i-

cation to the Context Query Engine. (6) The Query Engine calls on the

Context Inference Engine to apply context inference. (7) The Context In-

ference engine introduces inferred data to Context KB. (8) When the Infer-

ence Engine terminates the inference process, the Context Query Engine

collects new data from Context KB. (9) The Context Query Engine sends

these data to the application. (10) The application context-aware services

can also decide to update actuator states. They send new data to the Context

Aggregator, which propagates the data to the appropriate actuator using

ESB.

Application Context-aware Service

Inference

Engine

Query Engine

Context Aggregater

Enterprise Service Bus

(2)

(3)

(5)

(6)

(7)

(8)

(9)

(10)

Versatile Context

interpreter

(1)

(4)

Knowledge Base

Figure.4.16. Context-aware middleware behavior workflow

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 83

4.4 Conclusion

Nowadays, context awareness has become an increasingly prevalent term in

the area of ambient intelligence. This concept is widespread and imple-

mented in a variety of fields. And yet development of context-aware appli-

cations is still a tough task. In this chapter, context-aware middleware is

proposed as an efficient solution. As context resources (physical sensors

and virtual services) become increasingly diverse and complex, managea-

bility is frequently a concern. To limit difficulty of context-aware applica-

tion development, we adopt two-layer structure middleware to deal with

context collecting and context processing, respectively.

The low layer, based on EBS, provides a solution to communicate

in standard manner with in-environment sensors and actuators and a unified

standard interface to achieve the core functions of service interaction: ser-

vice registry, service discovery, and service consumption.

The high layer is the versatile context interpreter, consisting of

four parts: Context Aggregator, Inference Engine, Context Knowledge Base,

and Query Engine, dealing with context inferences, persistent storage, and

expressive queries.

This platform provides methods for solving the issues relating to

service discovery, mobility, and environmental changes. It also provides a

rapid prototyping of new context-aware applications in ambient intelligence.

In addition, to ensure proper understanding, the chapter provides a Street

and Store Marketing scenario at the beginning, and context-aware middle-

ware behavior workflow at the end.

The content of this chapter was published in:

Xu, T., Hui, L.J., David, B., Chalon, R., Zhou, Y., A context-ware

middleware for interaction devices deployment in AmI, the 15th

International Conference on Human-Computer Interaction

(HCI’13), Las Vegas, Nevada, USA

Xu, T., David, B., Chalon, R., Zhou, Y., A Context-aware Middleware for

Ambient Intelligence. ACM/IFIP/USENIX 12th International

Middleware Conference, Lisbon, Portugal. Middleware

Posters'2011

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 85

5 The Intelligent Inference Engine

5.1 Introduction

5.2 Context and Activity Context Recognition

5.3 The Intelligent Inference Engine

5.3.1 Basic Structure of the Intelligent Inference Engine

5.3.1.1 the basic module

5.3.1.2 the intelligent module

5.3.1.2.1 Rule

5.3.1.2.2 Decision Tree

5.3.1.2.3 Hidden Markov Models

5.3.2 Organization of Three Algorithms

5.3.3 The Invoking Mechanism

5.4 Conclusion

5.1 Introduction

The context-aware system is an answer to challenges associated with ser-

vice discovery, mobility, environmental changes, and context retrieval

(Romero et al., 2008). Context inference plays the role of the brain in the

context-aware middleware, which contains two main tasks: one is checking

context consistency; the other is determining or inferring the user’s situa-

tion. Once the user’s situation has been inferred, the application can take an

appropriate action (Krumm, 2009). In recent years, most context-aware

middleware has adopted the ontology-based model. In this model, OWL is

responsible for checking context consistency. The research focuses are

shifted to infer the user’s situation (commonly referring to activity). The

existing context-aware middleware usually employs the rule-based method

to solve this problem. This method is relatively easy to build and relatively

intuitive to work with. However, it is fragile, not flexible enough, and is in-

adequate to support diverse types of tasks. The holy grail of context aware-

ness is to divine or understand human intent (Krumm, 2009). It requires a

much smarter “brain” to deal with various issues. Based on this point, con-

text inference is expected to support versatile activity context recognition

in context-aware computing.

The Active Badge System (Want et al., 1992) is commonly con-

sidered to be the first research investigation into context awareness. In this

work, context information refers to location primarily. From then on, nu-

merous infrastructures have provided services for handling context. The

86 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

context inference part always plays an important role in these systems. The

Context Toolkit, developed by (Dey et al., 2001), is a toolkit supporting the

development of context-aware applications. A context interpreter is used to

deduce the high-level context information from the low-level information.

CASS (Fahy and Clarke, 2004) supports context-aware applications on

hand-held computing devices, and other small mobile computing devices.

The important feature of CASS is that it supports to abstract the high-level

context and separate context based on inferences and behaviors from the

application code. CoBrA (Chen et al., 2003) is one of the earliest systems

using semantic web technology to support context-aware pervasive compu-

ting. The inference engine of CoBrA is used in the two types of reasoning.

Besides detecting and resolving inconsistent knowledge, it can also infer

context knowledge that cannot be easily acquired from the physical sensors.

The context reasoner in SOCAM (Gu et al., 2004) supports two kinds of

reasoning: ontology reasoning and user-defined rule-based reasoning. Tru-

ong and Dustdar have summarized inference technique support in the exist-

ing system (Truong and Dustdar, 2009). However, they found that context

inference is inadequate and that most systems are just based on semantic

reasoning.

 With the emergence of various location sensors, “location” is no
longer the context with which researchers’ are most concerned, and is being

gradually replaced by "activity". Wang et al. leverage rules based on first -

order logic to infer user’s activity (Wang et al., 2004). To better recognize

user’s activity, a large number of artificial intelligence methods are used in

context-aware computing. Panu Korpipaa et al. (Korpipaa et al., 2003) use

a naïve Bayes classifier to recognize higher-level contexts from lower-level

contexts. The Hidden Markov Model is employed to recognize activities in

the work of (van Kasteren et al., 2008). Pollack et al. use the decision tree

to make decisions about whether and when it is most appropriate to issue

reminders for prescribed activities (Pollack et al., 2003). However, these

approaches only provide a possibility to solve part of the problem in activi-

ty context recognition, and none of them takes into account how to inte-

grate these approaches in the context-aware system and work well together

with other parts of the system.

In this chapter, we review all the methods on activity context

recognition published in three premier conferences in the past decade, and

conclude that activity context recognition is divided into three facets: basic

activity inference, dynamic activity analysis, and future activity recom-

mendation. Then we propose an intelligent inference engine based on our

context-aware middleware. This integrates the three most popular methods

of activity context recognition used in context-aware application, and pro-

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 87

vides a solution to meet different requirements in activity context recogni-

tion.

5.2 Context and Activity Context Recognition

Context is one of the critical concepts in context-aware computing. With

respect to the latter, they focus on who, where, when and what (that is,

what activities are occurring) of entities and use this information to deter-

mine why a situation is occurring (Krumm, 2009). The research work on

context awareness is simplified to achieve the five "w". Among these "w",

the "why" is the destination, and the other four "w" (who, where, when,

what) represent four kinds of fundamental context: user, location, time, and

activity. With the rapid development of technology and widespread use of

smart mobile devices and sensors, the first three fundamental contexts (user,

location and time) are now relatively easily captured directly from the con-

text sources. However, recognizing user's activities is still a tough task.

Activity context recognition aims to infer a user's behavior from

observations such as sensor data (Hu et al., 2011), and has various applica-

tions including medical care (Pollack et al., 2003), logistics service (Lin,

2006), robot soccer (Vail et al., 2007), plan recognition (Geib et al., 2008),

etc. Many researchers make great attempts to find the most efficient way to

recognize user's activities. Continuing Lim and Dey's work (Lim and Dey,

2010), we reviewed literatures from three top-tier conferences on context-

aware computing in recent years: the ACM Conference on Human Factors

in Computing Systems (CHI) from 2003 to 2012, the ACM International

Conference on Ubiquitous Computing (Ubicomp) from 2004 to 2012, and

the International Conference on Pervasive Computing (Pervasive) from

2004 to 2012. There are 59 papers related to user's activity recognition,

which involve seven algorithms: Rules, Decision Tree (DT), Naïve Bayes

(NB), Hidden Markov Model (HMM), Support Vector Mechanic (SVM), k-

Nearest Neighbor Algorithm (kNN), and Artificial Neural Networks

(ANNs). The detailed statistical results are shown in Figure.5.1.

88 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

Figure.5.1.The Statistical Results of the Activity Recognition Algorithm

 We conclude research on recognizing user's activity in three fac-

ets shown in Figure 5.2: basic activity inference, future activity recommen-

dation, and dynamic activity analysis.

 Basic activity inference focuses on recognizing the basic types of activity,

such as working, sleeping, and shopping. User’s activity can be de termined

directly based on low-level context obtained from diverse context sources

containing physical context sensors and virtual context source (web ser-

vice). The method based on Rules is used to infer basic activity. Future activity recommendation usually refers to recommending or pre-

dicting the user’s future activity or choices. To this aim, besides taking into

consideration the user’s current situation (context), it requires analyzing the

context of the user’s previous similar behaviors (training data). The deci-

sion tree is adequate to tackle this problem. It can be viewed as a type of

context-aware recommendation. Dynamic activity analysis is responsible for analyzing fine-grained activi-

ty compared with basic activity inference. There are two main solutions:

one employs the State-Space Model, which partitions the activity into state

sequences and infers the type of activity (state sequence) based on proba-

bility of an observed sequence such as Bayesian Networks and the Hidden

Markov Model. The other relies on pattern recognition techniques, which

extract patterns from activities and infer the type of activity based on di f-

ferent activity patterns, like the Vector Support Machine, Artificial Neural

Network, etc. As it is similar to the future activity recommendation, it also

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 89

requires learning the process parameters from the previous activity infor-

mation.

It can be easily observed that the top three most popular methods

are Rules, DT, and HMM. Each method has its own advantages and charac-

teristics. We analyzed them (the detailed information will be provided in

the following section) and found that the three methods can be leveraged to

deal with these three facets respectively. Also, these three methods mostly

represent the mainstream solution on their actual facets. We integrate the

three methods, Rules, DT, and HMM, into our context-aware middleware

as our research goal.

Activity Context

Recognition

Basic Activity

Inference

Dynamic Activity

Analysis

Future Activity

Recommendation

Figure 5.2. The Three Main Facets of Activity Context Recognition

5.3 The Intelligent Inference Engine

The current user’s context is made up of an undefined number of contextual

values. Each value is described by two elements: an unambiguous ID and a

probability value. We divide contextual values into two categories: con-

crete contexts and abstract contexts. Concrete contexts, also considered as

low-level context, represent the information obtained by a set of sensors.

These contexts can be read from the surrounding environment through

physical sensors (e.g., temperature sensor) or can be obtained by other

software (e.g., calendar) through logical sensors. Some examples are:

“temperature: 20°C,” “12:30,” “meeting at 14:30” and so on. Concrete con-

texts are returned by the sensors and represent the input of the inferential

mechanism. Abstract contexts, also viewed as high-level context, represent

everything that can be inferred from concrete contexts, for example, “user
at home,” “user is shopping,” etc. The problem we are facing is, therefore,
the definition of an inferential system able to derive the abstract contexts

90 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

from the concrete contexts. Concrete and abstract contexts are the inferen-

tial system input and output, respectively. From a theoretical point of view,

this difference is small since the contexts cannot be unambiguously as-

signed to one or the other category: the context “temperature 45 °C” can be
a concrete context as it is obtained from a sensor or it can be inferred by

other contexts (e.g., “user in sauna”). The aim of the inferential system is to

combine concrete contexts to determine abstract contexts and to combine

abstract contexts to obtain new, more abstract contexts. The purpose of our

study is the activity context.

5.3.1 Basic Structure of the Intelligent Inference Engine

For a better understanding of human intent, we propose an intelligent infer-

ence engine for our context-aware middleware, consisting of a basic mod-

ule and an intelligent module as shown in Figure 5.3. Besides satisfying the

basic requirements, it can provide appropriate methods for different facets

of activity context recognition.

The Basic

Module

The Intelligent

Module

OWL

Reasoner

Inference Engine

DT

Reasoner

HMM

Reasoner

Rules

Reasoner

Figure.5.3 The Inference Engine structure

5.3.1.1 The basic module

The basic module’s main task is checking context consistency. We adopt
the ontology-based context model to construct our context-aware system.

This model has good features for developing context-aware systems, such

as knowledge sharing, knowledge reuse, and logic inference. Also it paves

the way for the basic inference module. For the context model, we employ

a hierarchical structure to describe the user’s situation and circumstance

based on OWL. This structure is shown in chapter 3. In ontology, the con-

text knowledge base is made up of ABox and TBox. As described in chap-

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 91

ter 3, ABox and TBox are used to describe two different types of state-

ments. TBox describes a conceptualization, a set of concepts, and proper-

ties for these concepts, while ABox concerns instances belonging to those

concepts. In OWL, ABox refers to Data, and TBox refers to Scheme. The

context knowledge base enables the reasoner to work. Consistency check-

ing operations check that instances of data are consistent with a given

schema.

The Basic Module

Knowledge Base

 TBox: Schema Class Property

ABox: Data Instance

Figure.5.4 The relationship of the knowledge base inference engine

 OWL has a built-in reasoner based on the description logic. This

reasoner can satisfy most logical requirements, which comprise class sub-

sumption, class consistency, concept satisfaction ability and instance

checking.

 Check the consistency of the ontology and knowledge: assume we have de-

clared x to be an instance of class A. Further assume that

- A is a subclass of B C

- A is a subclass of D

- B and D are disjoints

Then we have an inconsistency because A should be empty, but has the in-

stance x. This is an indication of an error in the ontology.

 Check for unintended relationships between classes. Class membership: if x

is an instance of a class C, and C is a subclass of D, then we can infer that x

is an instance of D. Equivalence of classes: if class A is equivalent to class

B, and class B equivalent to class C, then A is equivalent to C, too.

 Classify instances in classes. If we have declared that certain property-

value pairs are a sufficient condition for membership of a class A, then if

92 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

an individual x satisfies such conditions, we can conclude that x must be an

instance of A.

The basic module enables developers to design large ontologies,

where multiple authors are involved, and to integrate and share ontologies

from various sources. Besides context consistency, it also provides func-

tions concerning properties and their values. The figure below shows a part

of basic reasoning properties. In addition, it helps facilitate development of

context-aware applications.

Figure.5.5. The partial basic reasoning properties for OWL

5.3.1.2 The intelligent module

In our intelligent inference engine, the intelligent module is responsible for

supporting activity context recognition. According to aforementioned re-

views on methods of activity recognition, we integrate the most popular

methods, Rules, DT, and HMM, to provide a solution for three facets of ac-

tivity context recognition: basic activity inference, dynamic activity analy-

sis, and future activity recommendation.

5.3.1.2.1 Rules

“Rules” is the early attempt to infer user's activity in context-

aware computing. “Rules” refers to the first-order logic, also known as

first-order predicate calculus or first-order functional calculus, symbolized

reasoning in which each sentence, or statement, is broken down into a sub-

ject and a predicate. For activity context recognition, “Rules” is a method

using a set of “if-then rules” to infer user's activity: if the devices sense a

particular situation, they can deduce user's activity. “Rules” is based on

general features of activity. These chosen features of activity, namely low-

level context, should be able to be obtained by physical sensors or other

context sources.

It contains two main methods of reasoning with inference rules:

forward chaining and backward chaining. Forward chaining starts with the

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 93

available data and uses inference rules to extract more data until a goal is

reached. In contrast, backward chaining starts with a list of goals and works

backwards from the consequent to antecedent to see if there is data availa-

ble that will support any of these consequences. We try to use a simple ex-

ample to explain both of them.

There is an existing knowledge clause, using “if-then” representa-

tion. Also, two known facts are provided. They are shown below:

Figure.5.6.The sample knowledge clause and facts

With forward chaining, it can infer that “Ming is Tao’s father” in

three steps:

1. Ming is Tao’s parent and Ming is a male.

2. Based on logic, it can infer: Ming is Tao’s parent and a male.

3. Based on rules, it can infer: Ming is Tao’s father.

The detailed pseudo code of the forward chaining method is pro-

vided in Figure 5.7.

94 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

Figure.5.7.The pseudo code of the forward chaining method

With backward chaining, it can answer the question “Who’s Tao’s
father ?” according to the knowledge cause and facts mentioned in Figure

5.8. in four steps:

1. “?” is Tao’s father.
2. Based on rules, it can derive: “?” is Tao’s parent and a male.

3. Based on logic, it can infer: “?” is Tao’s parent and ? is a male.
4. Based on the facts, it can derive: Ming is Tao’s parent and Ming
is a male.

This derivation will cause it to produce Ming as the answer to the

question “Who is Tao’s father?”.
The detailed pseudo code of the backward chaining method is pro-

vided in the Figure below.

Figure 5.8. The detailed pseudo code of the backward chaining method

Rules require sentences to be in a standard form, known as Horn

clauses named after the mathematician Alfred Horn (Horn, 1951). A Horn

clause is a sentence of the form：

1 2 ... nq and q and and q r

where each nq and r is an atomic sentence and all variables are

universally quantified. In implementation, there is a similar format with the

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 95

Horn clause, which can work with OWL in Jena. We employ a simple ex-

ample as shown below to interpret how to infer a person is working with

machine-readable format. It images a scenario on working in lab, which

means that “If the current time is after 9 am, the person is in lab, lab light is

on and lab door is open, then it can infer that the person is working.”

Figure.5.9.This is an Example of Rules

 “Rules” has a wide range of adaptabilities, which is usually de-

signed to provide inference for almost all users. Furthermore, it is relatively

intuitive and easy to work with. However, rules are rigid, meaning that they

are also brittle (Krumm, 2009). Even trifling exceptions will cause some er-

rors. Since this method is easy to be implemented in context-aware applica-

tions, it is an effective and widespread method used to infer user's activity.

We leverage it to work on basic activity inference.

 Besides Rules, the common alternative approaches involve artif i-

cial intelligence algorithms. DT and HMM both belong to this category.

Each has its own features, focusing on different facets.

5.3.1.2.2 Decision Tree (DT)

The Decision Tree is a classic algorithm in the field of artificial intell i-

gence. It is a predictive model which maps observations on an item to con-

clude as to the item’s target value. Decision trees are learned by recursively

partitioning training data into subgroups until those subgroups contain only

instances of a single class. The processing for partitioning data runs on the

values of item attributes. The choice of the item attribute on which to oper-

ate the partition is generally made according to the entropy criterion and

the information gain. The entropy of S can be described below, which is a

measurement of the expected encoding length measured in bits.

96 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

2(S) (s) log (s)Entropy p p

The information gain is the expected reduction in entropy caused

by partitioning the examples according to this attribute. The information

gain, Gain(S, A) of an attribute A, relative to a collection of examples S, is

defined as:

(A)

(S, A) (S) (S)v
v

v Value

S
Gain Entropy Entropy

S

where Values (A) is the set of all possible values for attribute A,

and is the subset of for which attribute A has value. The information gain

is used to select the best attribute at each step in growing the tree.

We provide the pseudo code to show implementation of the deci-

sion tree in Figure 5.10.

Figure 5.10.The pseudo code of the Decision Tree

 The Decision Tree is simple to understand and interpret. Users

are able to understand decision tree models after a brief explanation. More

clearly, the classic example is shown in Figure 5.11. The example shows

whether to play tennis depending on the weather condition. Decision trees

are popular for their simplicity of use, interpretability, and good runtime

performance. They are commonly adopted in the content-based recom-

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 97

mender system (Pollack et al., 2003) (Pazzani et al., 1996), which can be

employed to give a recommendation for user's activity.

Outlook

RainSunny Overcast

Humidity Windy
Play

Play Not Play Play

High Normal True False

Not Play

Figure 5.11. A Classic Example of a Decision Tree

5.3.1.2.3 Hidden Markov Model (HMM)

The HMM is the most accepted algorithm in temporal recognition tasks in-

cluding speech, gesture, activity, etc. The HMM is a statistical Markov

model, which can recover a data sequence that is not immediately observa-

ble. In human activity recognition, complex activities have a temporal

structure. The time series data obtained by sensors is divided into time sli c-

es of constant length, where each slice is labeled with a state of activity. A

generic HMM for activity is illustrated as shown in Figure 5.12.

A(t)

O(t)

A(t-1)

O(t-1)

A(t+1)

O(t+1)

……. …….

Markov process

Observation

P P

Q Q Q

Figure.5.12 The Simple Example of HMM for Activity Recognition

The shaded nodes represent observable variables (data from sen-

sors), while the white nodes represent hidden ones (state of activity). P is

the state transition probabilities, Q is observation probability.

98 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

The Hidden Markov Model (HMM) is a generative probabilistic

model consisting of a hidden variable and an observable variable at each

time step (Baum et al., 1970). In activity context recognition, the hidden

variable is a slice of activity, and the observable variable is extracted by

sensors. There are two dependency assumptions for this model, represented

with the directed arrows in Figure 5.12.

 The observable variable at time t , namely O()t , depends only on the hid-

den variable yt at that time slice.

 The hidden variable at time t , namely ()A t , depends only on the previous

hidden variable O()t .

To explain this clearly, we provide notations below

T observation times: 0,....,T 1t

N states: 0 1,...., NQ Q

M observation symbols: 0 1,...., Mv v

State transition probabilities: Pr(Q at time t 1| Q at time t)ij j ia

Symbol probabilities: (k) Pr(v at time t | Q at time t)j j jb

Initial state probabilities: Pr(Q at time t)i i

Observation sequence: 0 1 1, ,...., tO o o o

State sequence: 0 1 1,, tA a a a

One of the most important and difficult problems in HMMs is to

estimate model parameters { , , }A B from data. HMMs are trained

with a Maximum Likelihood criterion: seek model parameters that best

explain the observations, as measured by Pr(|)O . This problem is solved

with an iterative procedure known as Baum-Welch (Baum et al., 1970),

which is an implementation of the EM algorithm. The main idea is to esti-

mate i , ija and ()jb k by formulas as follows:

1= i
i

Expected number of q

Number of training sequences

ij

Expected number of transitions from state i to state j
a

Expected number of transitions from state i

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 99

" "
(o)j k

Expected number of k in state j
b

Expected number of times in state j

The Baum-Welch algorithm is one of the most popular methods in

leaning phrase for HMM, and we adopt it in the HMM reasoner. The pseu-

do code is provided to show the basic process of the Baum-Welch algo-

rithm in Figure 5.13.

Figure.5.13 The pseudo code of the Baum-Welch algorithm

The learned HMM model can be used to recognize the dynamic activity. It

means that inference which best labeled sequence explaining the new com-

ing data from the sensors. It depends on calculating a maximum of the con-

ditional probability:

1 2 3

1 2 3 1 2 3 1 2 3
, , ...

, , ... (, , ... | o ,o ,o ...)
all a a a

a a a ArgMax P a a a

where ia presents a state of activity, and io refers to observable variables

from the sensors. The Viterbi algorithm is preformed efficient in the infer-

ence phrase, which was proposed by Andrew Viterbi in 1967 as a decoding

100 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

algorithm for convolutional codes over noisy digital communication links

(Viterbi, 1967). The Viterbi algorithm can be simply described as an algo-

rithm which finds the most likely path through a trellis, i.e. the shortest

path, given a set of observations.

It contains four main steps:

1. Initialization (0t) :

0 0(i) (O), 0 1i ib i N

1(i) 0

2. Time Recursion:

1 1, 0 1For t T j N

1 0(j) max[(i) a] (O)t t ij ib

1(j) arg max[(i) a]t t ij

3. Termination:

max 1max[(i)]TP

1 1arg max[(i)]T Ti

4. State sequence backtracking:

2, 3,...0For t T T

1 1(i)t t ti

The Viterbi algorithm is an efficient approach for finding the most

probable state path through the model generating sequences. We provide

the pseudo code to show the implementation process of the Viterbi algo-

rithm in Figure 5.14.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 101

Figure.5.14 The pseudo code of the Viterbi algorithm

The HMM has become a popular tool in many recognition tasks, due to its

powerful representation and tractability. As the focus of this dissertation is

not the study of HMM but its utilization, we merely provide a simple ex-

planation of HMM in mathematics: detailed information can be found in

(Quinlan, 1986). In our intelligent inference engine, we adopt the HMM

reasoner to take charge of dynamic activity analysis.

5.3.2 Organization of Three Algorithms

Our context-aware middleware enables application designers to concentrate

on the development of application logic. The intelligent inference engine

takes into account two aspects of design: expandability and scalability.

Rules, DT, and HMM play important roles in basic activity inference, fu-

ture activity recommendation, and dynamic activity analysis , respectively.

The three algorithms are related to various implementation methods. For

example, besides ID3 (Iterative Dichotomiser 3) (Quinlan, 1986) that we

adopt, there are many specific decision-tree algorithms. Notable ones in-

clude: C4.5 (successor of ID3) (Quinlan, 1993), CART (Classification and

Regression Tree) (Breiman, 1984), CHAID (CHi-squared Automatic Inter-

action Detector)(Kass, 1980). Different algorithms have different ad-

vantages to meet requirements. A mechanism is required to support ex-

pandability and scalability for the intelligent inference engine.

102 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

We adopt the strategy pattern (Freeman et al., 2004) to organize

the three algorithms. This encapsulates the algorithm into separate classes,

which enable the context-aware application developer to vary the algorithm

independently from the context and to plug in a new one at runtime. The

strategy pattern offers an alternative to conditional statements for selecting

desired behavior, which makes the three algorithms interchangeable. It

gives this module flexibility, so that context-aware application developers

can alter and extend the module, such as adding other algorithms without

affecting the originals, as long as the algorithms employ the correct inter-

face.

We define a universal interface “InferBehavior” and a class “In-

ferenceEngine”, which contains three subclasses: “BasicInference”, “Rec-

ommendationInference”, and “DynamicAnalysis” supported by Rules, the

Decision Tree and the Hidden Markov Model. If context-aware application

developers want to adopt different inference methods to deal with different

situations, they just invoke the function with the same name based on this

interface, and do not need to use the actual algorithm. The partial UML

model is shown in Figure 5.15.

Figure.5.15 The Partial UML of the Inference Engine

5.3.3 The Invoking Mechanism

The invoking mechanism refers to how and when the context-aware mid-

dleware runs the inference engine. According to different tasks of reasoners

in the intelligent inference engine, we present different methods for the rea-

soners.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 103

 In the basic module, the OWL reasoner’s main task is to check
context consistency. It is invoked when the new context model is added to,

such as adding a new specific model. In the intelligent module, due to the

different methods of activity context recognition, the invoking mechanism

is more complex than the basic module.

 Concerning the Rules reasoner, we design a query invoking

mechanism that enables the rules reasoner to work when receiving the que-

ry from an external service, such as context-aware applications. There is a

very interesting phenomenon, i.e. the property exists in almost all the query

statements. For example: “?s ex:hasLocated ex:Room3”, furthermore, the
property is like a linking point of the objects, the amount of which is much

less than the object itself. So these properties are defined as the keywords,

which are used to trigger the specific users’ rules set in the Rules reasoner.

When a query statement arrives, the context-aware middleware reacts: it

parses the query statement, then tries to match keywords. If it succeeds, the

basic inference engine is invoked, while if it fails, it searches for the con-

text database directly. The entire flow is shown in Figure 5.16.

Service Query

QueryString

Parser Keywords

Match?

Trigger Reasoner

Run Query

Return Results

No

Update DataBase

Yes

QueryString:

select ?man

where {?man ex:hasLocatedIn

ex:ClassRoom3}

Keywords: hasLocatedIn

User Rule set:

[study:(?s ex:hasStudy ex:French)

 ->(?s ex:hasLocatedIn ex:ClassRoom3)]

[teach:(?t ex:hasTeach ex:French)

 ->(?t ex:hasLocatedIn ex:ClassRoom3)]

DataBase:

Tao ex:hasLocatedIn ex:ClassRoom3

Bertrand ex:hasLocatedIn ex:ClassRoom3
Results:

Tao, Bertrand

Figure.5.16 The flow chart of the query invoking mechanism

The Rules reasoner works as the basic inference used most frequently. Con-

text-awareness application developers formulate the different rule sets for

different activities. Based on efficiency considerations, the Rules reasoner

104 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

will work on the different rule sets according to queries relating to types of

activities.

With respect to the DT reasoner, we present a schedule invoking

mechanism, which invokes the DT reasoner based on the user’s schedule.
The DT reasoner is in charge of future activity recognition, which works

with the user’s schedule. When the system finds that the user is not in the

place where the user is scheduled, the system reminds the user and gives a

suggested choice based on the user’s current location. In the bus stop sce-

nario, we focus on providing the user with an appropriate restaurant located

nearby. Figure 5.17 explains the flow of schedule of the trigger mechanism.

Start

End

Schedule Listener

Check Location

Match?

Trigger Reasoner

Search Place

Return Results

Yes

No

The reasoning engine

2) Decision Tree
reasoning

1) Ontology reasoning

Context:
Name: Xu
Time: 7pm
Location: Bus stop
……

Activity: Dinner

Dinner

Cooked Flavor

Bee
f Fi
sh

Ra
re

M
ed

iu
m

G
ril

le
d

YESNO YES NO

NO

NO

Chi
ck

en
s

W
el

l d
on

e

O
rig

in
al

 R
ec

ip
e

Figure.5.17 The flow chart of the schedule invoking mechanism

For the HMM reasoner, we enable it to work always when the

middleware system is operating, due to the requirements of the reasoner’s
algorithm and task. As it provides the activity sequence inference based on

sequence sensor data, it requires time series data from sensors. The infer-

ence results and the historical results can be stored in the context

knowledge base. The context-aware application can employ the results di-

rectly based on different requirements.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 105

5.4 Conclusion

In this chapter, since research work revolves increasingly around the “ac-

tivity” context instead of the “location” context, we reviewed literatures on
activity context recognition in three premier conferences in context aware-

ness over the past ten years, summarized all the methods, and divided re-

search on activity context recognition into three main facets: basic activity

inference, dynamic activity analysis, and future activity recommendation.

 Based on our previous work, we proposed an intelligent inference

engine for context-aware middleware, consisting of a basic inference mod-

ule and an intelligent inference module. Besides satisfying requirements for

checking context consistency, our inference engine integrates the three

most popular methods for activity context recognition: Rules, the Decision

Tree, and the Hidden Markov Model. It provides a solution for all facets of

activity context recognition based on our context-aware middleware. How-

ever, intelligent inference did not take into consideration the context ambi-

guity problem, i.e. that contexts from the sensors are not always correct.

The context inference engine will reach the conclusion based on inaccurate

information, which will lead to taking incorrect actions of application, es-

pecially in the Rules reasoner. We will improve context inference in this

field to make our system more robust and intelligent.

The content of this chapter was published in:

Xu, T., Zhou, Y., David, B., Chalon, R., Supporting Activity Context

Recognition in Context-aware Middleware, Workshops at the

Twenty-Seventh AAAI Conference on Artificial Intelligence

(AAAI’13), Bellevue, Washington, USA.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 107

6 Implementations and Analysis

6.1 Introduction

6.2 General Process for Building a context-aware application

6.2.1 Context Modeling

6.2.2 Middleware Configuration

6.2.3 Application Development

6.3 Scenario and Implementation

6.3.1 Bus Stop Scenario

6.3.1.1 Implantation Process

6.3.1.1.1 Step one: Context Modeling

6.3.1.1.2 Step two: Middleware Configuration

6.3.1.1.3 Step three: Application Development

6.3.2 Domestic Activity Application

6.4 Analysis and Summary

6.5 Conclusion

6.1 Introduction

Although some solutions already exist, developing a context-aware applica-

tion is still a tough task. This chapter explains how to use our context-

aware middleware to build a context-aware application: how to build the

context representation model, how the context-aware middleware works, as

well as how the intelligent inference engine deals with three facets of prob-

lems concerning user activity recognition via two scenarios (applications).

First, it provides an instruction of the general process to build a

context-aware application in ambient intelligence. Then, the bus stop sce-

nario will be presented for interpreting context modeling and different de-

signers’ contributions to the context model, and for describing each com-

ponent’s tasks in context-aware middleware in which the intelligent

inference engine is related to the Rules reasoner and the DT reasoner. Next,

the domestic activity application is used to verify the HMM reasoner. Fi-

nally, we compare our middleware with five representative context -aware

systems and conclude as to its advantages and disadvantages.

108 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

6.2 General process for building a context-aware application

This section will illustrate the general process for developing a context-

aware application by our context-aware middleware. It is related to three

steps: context modeling, middleware configuration, and application devel-

opment.

6.2.1 Context Modeling

As different context-aware applications work for different situations, dif-

ferent types of context are required. In our context representation model,

the generic model uses four interrelated base classes: user, location, time,

and activity, representing who, where, when and what for activities of enti-

ties. The device class is used to organize different devices used in the envi-

ronment. This is just a general description and can be extended by more

precise contextual information via specific models. There are two general

steps to define the user’s context model to meet different requirements:

1. Figure out what types of context are required by the application.

In ubiquitous computing, the context used in health-care applications is

very different from those used in mobile learning applications.

2. Extend the context representation context by new required context.

The spatial-temporal model provides a large amount of type context but this

is not sufficient to model all information used in applications. Thanks to

adoption of ontology technology, application developers can add new on-

tology classes and properties directly as required. Furthermore, the existing

suitable context model can be imported to the users’ context model as well.

6.2.2 Middleware Configuration

Our context-aware middleware provides a solution for developing context-

aware applications. Application developers can use it directly or modify

some functions according to application requirements. Two main compo-

nents (context aggregator and context intelligent inference engine) in con-

text-aware middleware are scalable and extensible. They can be configured

before developing applications.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 109

1. Context aggregator configuration

The context aggregator’s main task is to convert raw information extracted

from the low layer to information described in OWL format. How it works

depends on the corresponding context resource, such as physical sensors.

The middleware provides some basic context aggregator components, such

as the location context aggregator component, and defines a universal inter-

face for extension. Before developing applications, developers can add new

aggregator components to meet new requirements. Following this universal

interface, any new user-defined aggregator components will work well with

other components in context-aware middleware.

2. Context inference engine configuration

The context inference engine is an intelligent component in our context-

aware middleware. One of its most important tasks is to deduce user’s ac-

tivity from some low-level context. It integrates three reasoners: Rules rea-

soner, DT reasoner and HMMs reasoner to deal with three facets of prob-

lems concerning user activity recognition. The three reasoners can satisfy

the basic requirements. Resembling the context interpreter, context infer-

ence also defines a universal interface for extension. Application develop-

ers can modify the algorithm in the reasoner according to requirements, and

can even add a new reasoner following the universal interface.

6.2.3 Application Development

Our context-aware middleware can hide the complex details of context re-

trieving and context processing, helping developers focus on designing the

application logic. Context-aware middleware provides basic functions for

handling context inference, expressive query and context storage. Besides

considering the application function, developers should set context infer-

ence and context query.

1. Training and setting rules for Reasoners

As context-aware applications increasingly focusing on user’s activity are
developed, our middleware improves system intelligence by supporting ac-

tivity context recognition. The three reasoners in the intelligent context in-

ference engine are responsible for this task. The Rules reasoner uses first-

order logic to deduce user’s activities by rule sets, so developers need to

110 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

define rule sets for the relevant activity in advance. The DT reasoner and

HMM reasoner have adopted artificial intelligence algorithms. To function

properly, they need training data (user’s previous activity) to calculate the
parameters. If the application needs this kind of high-level context, the de-

veloper should train related reasoners first. Collecting users’ previous ac-

tivity data is not an easy task: we provide a solution that extracts training

data on a specific activity from the user’s social networks. The process will
be interpreted in the bus stop scenario.

2. Define expressive query

Since the knowledge base is used to store contexts, it differs from the con-

ventional database, requiring utilization of semantics query language

(SPARQL) to handle the expressive query. It requires application develop-

ers to specify context queries in the form of SPARQL. Furthermore, anoth-

er function of the query engine is to invoke the Rule reasoner. Application

developers should take into account the relationship between query and rule

set in advance.

6.3 Scenario and Implementation

In this section, we propose two scenarios (applications) to illustrate the de-

velopment process. For the intelligent inference engine, the bus stop sce-

nario involves the Rules reasoner and the DT reasoner, while the domestic

activity application is used to verify the HMM reasoner.

6.3.1 Bus Stop Scenario

The bus stop application is a typical application in the Smart City. In our

previous work, we organized all activities around or in relation to the bus

stop. The bus stop can provide hot spot services and location-based services.

To explain more clearly how the context-aware middleware works, we pre-

sent the bus stop scenario as follows: after an international conference, Tao

is taking the bus back to his hotel. He is tired, hungry and only wishes to

have his favorite meal: roast chicken. However, he has never been to this

city before and knows nothing about it. While he is fantasizing about this

food, the bus arrives at the bus stop. “Oh-la-la!” Tao gets off the bus and

shouts out with excitement. An avatar, recognizing him (by the collection

of his identification data) in the large public screen speaks his native lan-

guage to him with the subtitles popping up: “Welcome! The roast chicken

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 111

restaurant is about 300m away from this bus stop. If you want to book a

seat, please wave your hand to me…

Figure.6.1 The bus stop scenario

6.3.1.1 Implementation Process

6.3.1.1.1 Step one: Context Modeling

As described earlier, context modeling is the first step in develop-

ing context-aware applications. The generic model pre-defines the funda-

mental ontology classes: location, activity, user, time and device, and the

main properties between ontology classes. Figure 6.2 (a) shows the archi-

tecture of the generic model, developed in protégé; the partial basic ontolo-

gy class with OWL format is shown in Figure 6.2 (b), while the partial

main properties with OWL format is shown in Figure 6.2 (c). The generic

model is developed by context-aware middleware designers. The applica-

tion cannot directly modify it but can extend it by adding specific models

or importing some existing context models.

(a) The generic model

112 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

(b) The partial classes in generic with OWL

(c) The partial object properties in generic with OWL

Figure.6.2 Our context model

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 113

For the bus stop scenario, some subclass is added as the specific

model to complete the generic class. As the purpose of the study is the de-

velopment process, this specific model is just built for activities around

conference buildings, bus stops and restaurants. If necessary, the other on-

tology-based specific models can be added easily. As mentioned earlier, the

specific model is developed by context-aware application designers. They

can freely define new subclasses to refine the generic model. Our partial

specific model is shown in Figure 6.3. This scenario is related to two types

of users: professor and student, shown in Figure 6.3 (a); Figure 6.3 (b)

shows some related activities; the partial devices used in this scenario are

shown in Figure 6.3 (c); the partial location place involved in the scenario

is presented in Figure 6.3 (d).

(a) Specific subclass for User

(b) Specific subclass for Activity

(c) Specific subclass for Device (d) Specific subclass for Location

Figure.6.3 The bus stop scenario

114 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

The individuals (instances) come from users or context-aware en-

vironments. They can be pre-defined or obtained from the sensors or other

context resources. There are some examples of important individuals used

in the bus stop scenario, shown in Figure 6.4. Figure 6.4 (a) shows an indi-

vidual of the “Student” class: Tao, which provides the user’s profile via
“datatype” such as male, home address. An individual of the “Chinese res-

taurant” class is shown in Figure 6.4 (b). It contains the detailed infor-

mation of the restaurant that can be used in the inference engine, such as

flavor, service and price.

(a) The individual for “Tao”

(b) The individual “hotpot”

Figure.6.4 The individual examples

6.3.1.1.2 Step Two: Middleware Configuration

As described earlier, middleware configuration involves two main process-

es: context aggregator configuration, context inference engine configura-

tion.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 115

6.2.1.1.2.1 Context Aggregator Configuration

Location context is one of the most important contexts in ubiquitous com-

puting. We will take the location context aggregator as an example to inter-

pret context aggregator configuration.

In the bus stop scenario, the main purpose of the study is to test

our context-aware middleware. GPS devices work for the location infor-

mation outside. For location in the building, we design a very simple indoor

location system by using QRcode and camera to test middleware. The basic

idea is that the room information is encoded into QRcode, and users can

scan the code to locate themselves in the building by wearable camera or

camera fixed in their mobile phone. A simple example is shown in Figure

6.5.

(a) “Meeting Room 2”in QRcode (b) the basic idea

Figure.6.5 The indoor location system

One of the main functions of the indoor location system is shown

in Figure 6.6 (a), which is responsible for decoding the QRcode and return-

ing the results in string format via ZXing and JavaCV. It is published as a

web service, which can be invoked by different functions directly. The par-

tial wsdl file is presented in Figure 6.6 (b). The raw location context that is

gotten from the ubiquitous environments cannot be used directly by the ap-

plication. To be used by other components in context-aware middleware, it

will be sent to be processed by the location context aggregator first.

116 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

(a) One main function of the indoor location system

(b) The partial wsdl file for the “qrcodeReader” function

Figure.6.6 The sample code of the indoor location system

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 117

The context aggregator’s main task is to convert raw contextual

information gotten from the low layer to context described in OWL format

and update to the context knowledge base. Context is stored in the context

knowledge base with a triple pattern, representing a relationship between

entities. In the bus stop scenario, the location context aggregator is de-

signed to combine the device holder and his location information gotten

from the indoor location system to form a triple pattern and upload to the

knowledge base. Also, application developers can define their own location

context aggregator by implementing the interface: “ContextAggregator”.
The sample code of our location context aggregator is shown in Figure 6.7

(a), which contains one of the main functions in the “LocationContextAg-

gregator” class for the bus stop scenario. The results generated in OWL

format are shown in Figure 6.7 (b)

(a) The sample function in the location context aggregator

(b) The results generated in OWL format

Figure.6.7 The sample code for the location context aggergator

118 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

6.2.1.1.2.2 Context inference engine configuration

The context inference engine is the intelligent component in context-aware

middleware, and can be configured and modified by application developers

according to requirements. As described in chapter five, context intelligent

inference consists of two parts with four reasoners, dealing with two main

tasks: checking context consistency and deducing users’ activities. For

convenient configuration, we organize the reasoners by strategy pattern.

Context-aware application developers can easily extend and replace the

reasoner by implementing the universal interface.

In the bus stop scenario, this involves two activity reasoners:

Rules reasoner and DT Reasoner. The Rules reasoner provides the basic

inference for user’s activities based on the user’s current context, such as

meeting, dining, taking the bus, and so on. The DT Reasoner recommends

the user’s future activities based on analysis of the user’s previous activi-

ties. The Rules reasoner is developed based on Jena (“Apache Jena,” 2010),

which supports both forward chaining inference and backward chaining in-

ference. The DT reasoner uses J48 implementation of the C4.5 decision tree

in Weka (Hall et al., 2009), which is an open source on data mining in Java

to provide a collection of machine learning algorithms. All the reasoners

are implemented in the interface “InferenceBehavior”. The sample code for

one of the functions in the Rules reasoner is shown in Figure 6.8. If neces-

sary, developers can modify or add new algorithms according to require-

ments.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 119

Figure.6.8 The sample code for the Rules reasoner

6.3.1.1.3 Step Three: Application Development

As described in the previous section, development of the context-aware ap-

plication is different from conventional applications. Developers should

take into account training the context inference and defining context query

besides designing the application function.

6.2.1.1.3.1 Training and setting rules for Reasoners

Setting rules for Reasoners

The intelligent inference engine plays an important role in the bus stop sce-

nario. To obtain the user’s activity context, it uses two reasoners: Rules

reasoner and DT reasoner. The Rules reasoner is responsible for inferring

Tao’s activity based on a rule set. Therefore, application designers should

define the first-order logic rules for specific activities respectively, based

on related low-level contexts that can be easily gotten from ubiquitous

computing. To simplify understanding, Figure 6.9 lists some rules that we

define for the bus stop scenario.

120 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

Figure.6.9 The sample rules

Training Reasoner

The decision tree focuses on recommending the potential favorite

restaurant to Tao. To achieve this recommendation, the three following

steps are required: collecting the training data, building the decision tree,

providing the predictive recommendation.

Collecting the training data is one of the foremost tasks for the DT

reasoner. It requires collecting accurate and available information on the

previous activities of every user. It has been considered a tough task in the

past, since it is hard to let the user wear diverse sensors to travel around for

a long time only to collect raw training data. The prevalence of social net-

works provides a possible solution to this. Increasingly people are posting

their daily activities on their own social networks as part of life. This ap-

plies in particular to the microblog, whose content is typically smaller in

both actual and aggregate file size. It is a convenient way for users to post

their activity by mobile devices anywhere and anytime.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 121

We chose the “weibo”, as a data source to collect information on

users’ activities. (The “weibo”, teeming with more than 300 million users,

is the biggest twitter-like microblogging service in China). After analysis,

we chose dinner activity as a research object. We collected available weibo

microblogs by a keyword filter, which contains two keyword subsets: one

refers to the specific restaurant’s name: KFC, Mcdonalds, etc. , while the

other refers to the set of words usually appearing in the restaurant name:

hot pot, restaurant, etc. An example in “weibo” is shown below. It contains

the restaurant’s name, address, user’s preference and visiting time.

Figure.6.10 An example of User’s Weibo

Detailed quantitative information is necessary for each restaurant,

such as price, flavor, and environment. The site: www.dianping.com is

opted for as the restaurant’s detailed quantitative data source. This is an

online independent third-party consumer service rating sites, which con-

tains eight sorts of restaurant information: name, price, flavor, service, type,

etc., as shown in Figure 6.11. For convenience, the type of restaurant is re-

defined based on nationality and fast food.

Figure.6.11 The Restaurant Information from www.dianping.com

122 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

 The user’s favorite restaurants from “weibo”, along with their de-

tailed quantitative information, construct the training set for choosing a res-

taurant.

 In this scenario, a real weibo user’s microblog information is
used with his permission. We collect the data from May 12th, 2011 to May

2nd, 2012. The clawer has collected 14 available weibo’s micro blogs about

restaurants. These chosen restaurants construct a set of training data, as

shown in Figure 6.12.

Figure.6.12 Training dataset

.

 To build the decision tree, we use J48 implementation of the

C4.5 decision tree in Weka (Hall et al., 2009), which is an open source on

data mining in Java providing a collection of machine learning algorithms.

The learned decision tree provides a profitable suggestion to help the user

make a decision based on the training dataset. As shown in Figure 6.13, this

tree is built to recommend restaurants for the chosen user.

 The DT reasoner can be invoked based on Tao’s schedule. In this
scenario, when our context-aware middleware finds that Tao is not in the

place where he is scheduled (he is not in a restaurant), it will remind Tao

and suggest a choice (a favorite restaurant) based on his current location.

The learned decision tree is used to select the favorite restaurant from the

list of restaurants located nearby.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 123

Flarvors?

Price?

No

Type?

Japan China Korea

>19<=19

>24 <=24

Yes

Yes

No

No

Fast food

Yes

Figure.6.13 The Learned Decision Tree for Choosing Restaurants

The detailed information of the recommended restaurant is written

into an xml file shown in Figure 6.14(a), and used in the Google map. In

this way, the user gets a restaurant recommendation on the Google map,

which helps him find this restaurant, as shown in Figure 6.14(b). Various

devices, like smart phone, pad etc., can directly access the recommended

restaurant on the map via internet.

124 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

 (a) Detailed information in xml

(b) Recommended results in Google map

Figure.6.14 The Results for the DT Reasoner

6.3.1.1.3.2 Define expressive query

Define expressive query involves two main tasks: one is to query the con-

text required by the context-aware application, and the other to invoke the

Rules reasoner. As it is different from the conventional querying data, the

querying context focuses on searching for sets of triples which describe si t-

uations of entities. The SPARQL query language adopted in our middle-

ware provides competent support. Application developers can query any

triples via the following SPARQL grammar rules. The latter task is the im-

portant point in defining expressive query. We have designed a query in-

voking mechanism that enables the rules reasoner to work when receiving

the query from context-aware applications. The main idea is to parse the

property in query statement and then invoke the corresponding rule set

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 125

based on this “property”. The detailed information about the query invok-

ing mechanism is described in chapter 5.5.3. We provide a simple example

of this scenario in Figure 6.15. Based on this idea, context-aware applica-

tion developers can freely define their queries and their invoked rule sets

according to their application or environment requirements.

Figure.6.15 The sample for query and corresponding rule set

6.3.2 Domestic Activity Application

As a supplement, this subsection will focus on explaining how the HMM

reasoner trains and works, and the detail of other steps will not be repeated.

We use the domestic activity dataset from (van Kasteren et al., 2008) to

verify the HMM reasoner. They employed 14 binary input sensors to record

a user’s seven kinds of daily activities: leaving the house, using the toilet,

taking a shower, going to bed, preparing breakfast, preparing dinner and

having drinks in an apartment as shown in Figure.6.16 from 25 Feb 2008 to

21 Mar 2008,

Property

Query

Corresponding
Rule set

126 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

Figure.6.16 The Floor Plan of the Test Apartment

 This annotated real world dataset contains 245 activities and cor-
responding states of binary inputs, as shown in Figure 6.17.

(a) The State of 14 Binary Input Sensors

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 127

(b) User’s Activities

Figure.6.17 Domestic Activity Dataset

The task is split into two parts: estimating the process parameters

from previous data (training data) and using these parameters to infer the

real-world process by looking at the novel sensor reading. Based on Lim

and Dey’s work (Lim and Dey, 2010), we trained a HMM with a sequence

length of 5 min, and 1 min per sequence step. The Baum-Welch algorithm

(Baum et al., 1970) is used for training. In this subsection, we will not de-

tail the mathematic train process. Detailed information on HMM can be

consulted in (Rabiner, 1989).

The application takes 14 binary input sensors and infers which ac-

tivity (out of seven) the user is performing. We focus only on verifying the

HMM reasoner, thus sensor information is simulated in this example. We

simulate a test sensor data sequence, which is represented by a 15 14 ma-

trix. The row represents the situation of 14 sensors: “1” means that the sen-

sor is sensed, while “0” means that the sensor is not sensed; the column

represents the time slice. The data sequence is put in context-aware mid-

dleware successively. Then the learned HMM (parameters determined) rea-

soner infers the activity sequence by calculating its probability given an

observation sequence (sensor data sequence). The Viterbi algorithm

(Viterbi, 1967) is used to infer. The entire HMM process is implemented

based on jhmm in Java. To make it easier to understand, the final result is

128 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

shown in Figure 6.18. As mentioned above, the HMM reasoner should work

all the time. These results and historical results are stored in the context

knowledge base, which can be used by various context-aware applications

via context-aware middleware.

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1

 (a) The simulated input data

 (b) The printed results

Figure.6.18 The Results of HMM for Domestic Activity.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 129

6.4 Analysis and Summary

In chapter two, the five representative five aspects of context-aware sys-

tems are provided, analyzed, and compared: architecture, context represen-

tation, context sensing, context storage, and context reasoning. We chose

the main features for five aspects and compared our context-aware middle-

ware with another five. The results are shown in Figure 6.19. The last row

gives our middleware’s performance.

Figure.6.19 Analysis and comparison with others

130 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

To be understood easily, we provide a quantitative analysis be-

tween the six context-aware systems shown in Figure 6.20. This analysis is

based on a method that evaluates each feature as “weak, medium or strong”
represented by the value: “1, 2, 3”, then sums up all values of sub features

as the final value. SOCAM’s context representation is taken as an example
to explain how to compute the feature’s value. Context representation con-

sists of three sub features: context model, type of context, and historical

support. In the context model, it adopts the ontology-based model that is

considered as “Strong” represented by value ”3”. It supports five main
types of context, which is the maximum in six systems, considered as

“Strong” represented by value ”3”. It provides historical context support
viewed as “Strong” represented by value “3”. The total value of context
representation is “9”, summed up by three sub features.

Figure.6.20 The quantitative analysis

In quantitative analysis, our middleware performs well with re-

spect to architecture, supporting context abstraction, extensibility and reus-

ability in a satisfactory manner. With respect to context representation, our

middleware adopts the ontology-based model and supports historical con-

text, but slightly fewer numbers of supported types of context than SOCAM

and CA-SOA, so overall performance is a little weaker than SOCAM. With

respect to context sensing, our middleware performs better than others

since it supports more types of commutation by ESB. With respect to con-

text storage, the main stream technology (OWL) is used in our middleware,

Context Toolkit

CASS

CoBrA

SOCAM

CA-SOA

Ours

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 131

so its performance is no weaker than others. With respect to context reason-

ing, because we have designed an intelligent engine to support activity con-

text recognition, it is much better than others.

To conclude, our middleware shows a good performance in five

main aspects of context-aware systems, and especially in context reasoning.

We will try to tackle this problem in a future study. As the application

mainly involves user activities, our middleware will play an important role

in context-aware application deployment.

However, these five aspects just represent the basic and funda-

mental requirements in context-aware systems. Many other aspects are in-

volved and should be covered in terms of actual development, such as the

issue of privacy protection that we have not taken into account for our mid-

dleware. We will try to tackle this problem in a future study. Through con-

tinuous improvement, our goal is to provide developers with a better plat-

form for developing context-aware applications in ubiquitous computing

environments.

6.5 Conclusions

In this chapter, the general process for building a context-aware application

is provided first. Then, we proposed two scenarios (applications) to explain

how to build a context-aware application, focusing on explaining how the

inference engine is to be trained and work. Finally, we compare our con-

text-aware middleware with another five representative context-aware sys-

tems described in chapter two. As our context-aware middleware benefits

from good features from existing context-aware systems, we focus our re-

search on improving intelligence of context-aware systems via supporting

activity context recognition. Its performance is thus superior to others in

context reasoning.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 133

7 Conclusion and Future work

7.1 Introduction

7.2 Contributions

7.3 Future works

7.4 Conclusion

7.1 Introduction

In this last chapter we summarize the contributions of the thesis and then

briefly discuss future directions.

7.2 Contributions

The goal of this research is to propose a system architecture that facilitates

the development of context-aware applications. The main research contri-

butions are presented in three categories: a spatial-temporal context repre-

sentation model, a context-aware middleware, and an intelligence context

inference engine.

 The spatial-temporal context representation model

With respect to context representation, a spatial-temporal context represen-

tation model is proposed for our context-aware middleware via ontology.

This model adopts a two-layer hierarchy structure for modeling context in

both spatial dimension and temporal dimension. The higher layer deals with

the generic common context, consisting of five interrelated basic classes:

user, location, time, activity, and device, while the lower layer is used to

complete and upgrade the higher layer by more precise information related

to a particular application or application area. Unlike existing models, be-

sides taking location factors into account, our context model also ranges

contextual information during periods. These historical contexts may be

used to predict and infer the context. In addition, the ontology-based mod-

eling approach facilitates development of the context-aware system, such as

knowledge sharing, knowledge reuse, and logic inference.

134 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

 A context-aware middleware in Ambient Intelligence

To implement this more in-depth approach to context-aware services in

AmI, we designed a context-aware middleware based on a spatial-temporal

context representation model, organized in two layers. The low layer is an

Enterprise Service Bus, which provides a solution for integrating sensors

and actuators with a standardized data representation and unified standard

interface to achieve the core functions of service interaction: service regis-

try, service discovery, and service consumption. The high layer is a versa-

tile context interpreter in charge of context inference, expressive query, and

persistent storage. It consists of four parts: the context aggregator, the con-

text knowledge, the context query engine, and the intelligent inference en-

gine that, in its role as the brain for context-aware middleware, is another

focus of research.

 The intelligence context inference engine

The third contribution in this dissertation focuses on designing a context in-

ference engine, supporting activity context recognition to improve context-

aware middleware intelligence. We review all the methods for activity con-

text recognition published in three premier conferences in the past decade

and conclude that activity context recognition is divided into three facets:

basic activity inference, dynamic activity analysis, and future activity rec-

ommendation. We propose an intelligent inference engine based on our

context-aware middleware. This engine integrates the three most popular

methods for activity context recognition used in context-aware applications:

Rules, the Decision Tree, and the Hidden Markov Model, via a strategy pat-

tern. Along with the inference engine, an associated invoking mechanism is

designed to cope with different tasks. This intelligent inference engine not

only provides a solution to meet current requirements in activity context

recognition, but also has the extension ability to deal with future require-

ments.

7.3 Future works

My future work plans to investigate the cross-domain combination of ubiq-

uitous computing and big data research based on our system via machine

learning. “Big Data” is currently one of the most popular terms in Comput-

er Science, considered as the next frontier for innovation. To some extent,

Big Data are growing thanks to ubiquitous computing. Advances in digital

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 135

sensors, communications, computation, and storage have created huge col-

lections of data, capturing information from business, science and society

(Bryant et al., 2008) The remainder of this section describes two potential

research directions.

Ubiquitous Analytics

The rise of big data increasingly requires that we are able to access data re-

sources anytime and anywhere. These massive data volumes are gathered

from multiple heterogonous resources in various forms, including diversity

sensors, retailers and even billions of individuals’ social networks. Before

benefiting from the full profits of big data, many issues must be dealt with,

such as data access, data fusion and integration. Our system can provide

some efficient solutions for this.

Activity prediction based on Big Data

As the central theme in ubiquitous computing, Context Awareness’s Holy
Grail is to divine or understand human intent. Thanks to massive amounts

of data about users, researchers are able to predict users’ behavior trends.
Moreover, aggregating and analyzing individual data can provide personal-

ized service, targeted recommendation and prediction. One of the most in-

teresting stories to come out of the presidential election was the use of big

data analytics to help campaign workers bring out the vote. As mentioned

in chapter 5, we have made attempts, employing individuals’ activity in-

formation gathered from their social networks, to construct the intelligent

inference engine.

Figure.7.1. The new ubiquitous computing technologies

136 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

7.4 Conclusions

This dissertation has investigated and implemented a context-aware mid-

dleware for developing context-aware applications in ambient intelligence.

Research work focuses on three aspects: context model, middleware archi-

tecture, and context inference. The spatial-temporal context representation

model paves the way for the whole system. The context-aware middleware

provides a feasible solution for rapid development of new applications in

ambient intelligence. The intelligent inference engine improves context-

aware middleware intelligence by supporting activity context recognition.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 137

Bibliographie

Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P., 1999. Towards a

Better Understanding of Context and Context-Awareness, in: Proceedings

of the 1st International Symposium on Handheld and Ubiquitous Compu-

ting, HUC’99. Springer-Verlag, London, UK, UK, pp. 304–307.

Abox, 2009. . Wikipedia Free Encycl. Available from: http://en.wikipedia.org/wiki/Abox

Ambient intelligence, 2013. . Wikipedia Free Encycl. Available from:

http://en.wikipedia.org/wiki/Ambient_intelligence

Apache Jena, 2010. Available from: http://jena.apache.org/

Athanasopoulos, D., Zarras, A.V., Issarny, V., Pitoura, E., Vassiliadis, P., 2008. CoWSAMI:

Interface-aware context gathering in ambient intelligence environments.

Pervasive Mob Comput 4, 360–389.

Baldauf, M., Dustdar, S., Rosenberg, F., 2007a. A survey on context-aware systems. Int J Ad

Hoc Ubiquitous Comput 2, 263–277.

Baldauf, M., Dustdar, S., Rosenberg, F., 2007b. A survey on context-aware systems. Int J Ad

Hoc Ubiquitous Comput 2, 263–277.

Baum, L., Petrie, T., Soules, G., Weiss, N., 1970. A Maximization Technique Occurring in

the Statistical Analysis of Probabilistic Functions of Markov Chains. Ann.

Math. Stat. 41, 164–171.

Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., Riboni,

D., 2010. A survey of context modelling and reasoning techniques. Perva-

sive Mob. Comput. 6, 161–180.

Bhat, M., 2008. SOA? ESB? What is all this? [WWW Document]. Available from:

http://software.intel.com/en-us/articles/soa-esb-what-is-all-this

Borst, W., 1997. Construction of Engineering Ontologies for Knowledge Sharing and Reuse.

Ph.D thesis, University of Twente, Netherlands

Breiman, L., 1984. Classification and regression trees. Wadsworth International Group.

http://en.wikipedia.org/wiki/Abox
http://jena.apache.org/

138 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

Brown, P.J., 1998. Triggering information by context. Pers. Technol. 2, 18–27.

Brown, P.J., Bovey, J.D., Chen, X., 1997. Context-aware applications: from the laboratory

to the marketplace. IEEE Pers. Commun. 4, 58–64.

Bryant, R., Katz, R.H., Lazowska, E.D., 2008. Big-Data Computing: Creating Revolutionary

Breakthroughs in Commerce, Science and Society. In Computing Research

Initiatives for the 21st Century. Available from http:

//www.cra.org/ccc/initiatives

Chen, H., Finin, T., Joshi, A., 2003. An Intelligent Broker for Context-Aware Systems. Adjun.

Proc. Ubicomp, 12–15.

Chen, Harry, Finin, T., Joshi, A., 2004. A Context Broker for Building Smart Meeting

Rooms. Proceedings of the AAAI Symposium on Knowledge Representation

and Ontology for Autonomous Systems Symposium, 2004 AAAI Spring Sym-

posium, 53–60

Chen, H., Finin, T., Joshi, A., Kagal, L., Perich, F., Chakraborty, D., 2004. Intelligent

agents meet the semantic Web in smart spaces. IEEE Internet Comput. 8,

69–79.

Chen, I.Y.L., Yang, S.J.-H., Zhang, J., 2006. Ubiquitous Provision of Context Aware Web

Services, in: IEEE International Conference on Services Computing, 2006.

SCC’06. Presented at the IEEE International Conference on Services Com-

puting, 2006. SCC’06, 60–68.

DAML+OIL, 2001. Available from: http://www.w3.org/TR/daml+oil-reference

De Almeida, D.R., de Souza Baptista, C., da Silva, E.R., Campelo, C.E.C., de Figueiredo,

H.F., Lacerda, Y.A., 2006. A context-aware system based on service-

oriented architecture, in: 20th International Conference on Advanced In-

formation Networking and Applications, 205-210.

Dey, A.K., 2000. Providing architectural support for building context-aware applications.

Ph.D thesis, Georgia Institute of Technology, Atlanta, GA, USA.

Dey, A.K., Abowd, G.D., 1999a. Towards a better understanding of context and context -

awareness, in: In HUC ’99: Proceedings of the 1st International Sympos i-

um on Handheld and Ubiquitous Computing. Springer-Verlag, 304–307.

http://www.w3.org/TR/daml+oil-reference

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 139

Dey, A.K., Abowd, G.D., 1999b. The Context Toolkit: Aiding the Development of Context-

Aware Applications. Proc. Workshop Software Eng. for Wearable and Per-

vasive Computing, ACM Press, New York, 434–441

Dey, A.K., Abowd, G.D., Salber, D., 2001. A conceptual framework and a toolkit for sup-

porting the rapid prototyping of context-aware applications. Hum-Comput

Interact 16, 97–166.

Elena, D.P., Not, E., Stock, O., Zancanaro, M., 2000. Modeling Context Is Like Taking Pic-

tures. In Proc. of the What, Who, Where, When, Why and How of Context-

Awareness Workshop

Esler, M., Hightower, J., Anderson, T., Borriello, G., 1999. Next century challenges: Data-

centric networking for invisible computing – The Portolano Project at the

University of Washington, 256–262.

Fahy, P., Clarke, S., 2004. CASS – a middleware for mobile context-aware applications, in:

Workshop on Context Awareness, MobiSys, USA.

Fickas, S., Kortuem, G., Segall, Z., 1997. Software organization for dynamic and adaptable

wearable systems, in: First International Symposium on Wearable Comput-

ers, 56–63.

Floréen, P., Przybilski, M., Nurmi, P., Koolwaaij, J., Tarlano, A., Wagner, M., Luther, M.,

Bataille, F., Boussard, M., Mrohs, B., Lau, S., 2005. Towards a Context

Management Framework for MobiLife, in: In IST Mobile & Wireless Com-

munications Summit. Germany.

Franklin, D., Flachsbart, J., 1998. All gadget and no representation makes Jack a dull env i-

ronment. In AAAI Spring Symposium on Intelligent Environments, 155–160

Freeman, Eric, Freeman, Elizabeth, Sierra, K., Bates, B., 2004. Head first design patterns.

O’Reilly, Sebastopol.

Fu, Z., Yue, J., Li, Z., 2009. Ontology and Its Application in Supply Chain Information

Management, in: Huo, Y., Ji, F. (Eds.), Supply Chain the Way to Flat Or-

ganisation. InTech.

Geib, C.W., Maraist, J., Goldman, R.P., 2008. A New Probabilistic Plan Recognition Algo-

rithm Based on String Rewriting, in: ICAPS. 91–98.

140 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

Gruber, T.R., 1993. A translation approach to portable ontology specifications. Knowl. Ac-

quis. 5, 199–220.

Gu, T., Pung, H.K., Yao, J.K., 2005a. Towards a Flexible Service Discovery. Elsevier J.

Netw. Comput. Appl. JNCA 28, 233–248.

Gu, T., Pung, H.K., Zhang, D.Q., 2004. A middleware for building context-aware mobile

services, in: Vehicular Technology Conference. 2656–2660.

Gu, T., Pung, H.K., Zhang, D.Q., 2005b. A service-oriented middleware for building con-

text-aware services. J Netw Comput Appl 28, 1–18.

Gwizdka, J., 2000. What’s in the context? Modeling Context-Aware Systems, 1–4

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H., 2009. The

WEKA data mining software: an update. SIGKDD Explor Newsl 11, 10–18.

Han, B., Jia, W., Shen, J., Yuen, M.-C., 2005. Context-Awareness in Mobile Web Services, in:

Cao, J., Yang, L.T., Guo, M., Lau, F. (Eds.), Parallel and Distributed Pro-

cessing and Applications, Lecture Notes in Computer Science. Springer

Berlin Heidelberg, 519–528.

Henricksen, K., Indulska, J., Rakotonirainy, A., 2003. Generating Context Management In-

frastructure from High-Level Context Models, in: In 4th International Con-

ference on Mobile Data Management (MDM) - Industrial Track. 1–6.

Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K., 2000. System architecture

directions for networked sensors, in: Architectural Support for Program-

ming Languages and Operating Systems. 93–104.

Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G., Altmann, J., Retschitzegger, W.,

2003. Context-awareness on mobile devices - the hydrogen approach, in:

Proceedings of the 36th Annual Hawaii International Conference on System

Sciences, 292–302

Horn, A., 1951. On Sentences Which are True of Direct Unions of Algebras. J. Symb. Log.

16, 14–21.

Hu, D.H., Zheng, V.W., Yang, Q., 2011. Cross-domain activity recognition via transfer

learning. Pervasive Mob Comput 7, 344–358.

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 141

Hull, R., Neaves, P., Bedford-Roberts, J., 1997. Towards situated computing, in: , First In-

ternational Symposium on Wearable Computers, 1997. Digest of Papers.

Presented at the , First International Symposium on Wearable Comput-

ers,146–153.

Johanson, B., Fox, A., Winograd, T., 2002. The Interactive Workspaces Project: Experienc-

es with Ubiquitous Computing Rooms. IEEE Pervasive Comput. 1, 67–74.

Kass, G.V., 1980. An Exploratory Technique for Investigating Large Quantities of Categor i-

cal Data. Appl. Stat. 29, 119–127.

Keidl, M., Kemper, A., 2004. Towards context-aware adaptable web services, in: Proceed-

ings of the 13th International World Wide Web Conference on Alternate

Track Papers &, 55–65.

Kindberg, T., Barton, J., Morgan, J., Becker, G., Caswell, D., Debaty, P., Gopal, G., Frid,

M., Krishnan, V., Morris, H., Schettino, J., Serra, B., Spasojevic, M., 2000.

People, places, things: Web presence for the real world, in: Mobile Compu-

ting Systems and Applications, Third IEEE Workshop On. Presented at the

Mobile Computing Systems and Applications, 19–28.

Kjær, K.E., 2007. A survey of context-aware middleware, in: Proceedings of the 25th Con-

ference on IASTED International Multi-Conference: Software Engineering,

SE’07. ACTA Press, Anaheim, CA, USA, 148–155.

Korpipaa, P., Mantyjarvi, J., Kela, J., Keranen, H., Malm, E.-J., 2003. Managing Context

Information in Mobile Devices. IEEE Pervasive Comput. 2, 42–51.

Krumm, J. (Ed.), 2009. Ubiquitous Computing Fundamentals. Chapman and Hall/CRC.

Lim, B.Y., Dey, A.K., 2010. Toolkit to support intelligibility in context-aware applications,

in: Proceedings of the 12th ACM International Conference on Ubiquitous

Computing, Ubicomp’10. ACM, New York, NY, USA, 13–22.

Lin, L., 2006. Location-based activity recognition, Ph.D thesis, University of Washington.

McCarthy, J., 1993. Notes on formalizing context, in: Proceedings of the 13th International

Joint Conference on Artifical Intelligence - Volume 1, IJCAI’93. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 555–560.

142 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

Melchiorre, C., Reiff-Marganiec, S., Yu, H.Q., Shall, D., Dustdar, S., 2008. InContext - In-

teraction and Context-based Technologies for Collaborative Teams. IOS

Press, Amsterdam.

Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T., Swartout, W.R., 1991. En-

abling technology for knowledge sharing. AI Mag 12, 36–56.

OWL Web Ontology Language, 2004. Available from: http://www.w3.org/TR/owl-features/

Pallapa, G.V., 2010. A privacy enhanced situation-aware middleware framework for ubiqui-

tous computing environments. Ph.D thesis, University of Texas at Arlington,

Arlington, TX, USA.

Pascoe, J., Ryan, N.S., Morse, D.R., 1998. Human Computer Giraffe Interaction: HCI in the

Field, in: Workshop on Human Computer Interaction with Mobile Devices,

University of Glasgow, United Kingdom, 21- 23 May 1998, GIST Technical

Report G98-1

Pazzani, M., Muramatsu, J., Billsus, D., 1996. Syskill & Webert: Identifying interesting web

sites, in: Proceedings of the Thirteenth National Conference on Artificial

Intelligence - Volume 1, AAAI’96. AAAI Press, 54–61.

Pollack, M.E., Brown, L., Colbry, D., McCarthy, C.E., Orosz, C., Peintner, B., Ramakrish-

nan, S., Tsamardinos, I., 2003. Autominder: An Intelligent Cognitive Or-

thotic System for People with Memory Impairment. Robotics and Autono-

mous Systems, Volume 44, Issues 3–4, 273–282

Protégé, 2004. Available from: http://protege.stanford.edu/

Quinlan, J.R., 1986. Induction of decision trees. Mach. Learn. 1, 81–106.

Quinlan, J.R., 1993. C4.5: programs for machine learning. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA.

Rabiner, L., 1989. A tutorial on hidden Markov models and selected applications in speech

recognition. in Proc. IEEE , Volume 77, Issue 2, 257–286.

Ranganathan, A., Campbell, R.H., 2003. A Middleware for Context-Aware Agents in Ubiqui-

tous Computing Environments, in: Endler, M., Schmidt, D. (Eds.), Middle-

ware 2003, Lecture Notes in Computer Science. Springer Berlin Heidelberg,

143–161.

http://www.w3.org/TR/owl-features/
http://protege.stanford.edu/

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 143

Resource Description Framework, 2004. Available from: http://www.w3.org/RDF/

Román, M., Hess, C., Cerqueira, R., Campbell, R.H., Nahrstedt, K., 2002a. Gaia: A Mid-

dleware Infrastructure to Enable Active Spaces. IEEE Pervasive Comput. 1,

74–83.

Román, M., Hess, C., Cerqueira, R., Campbell, R.H., Nahrstedt, K., 2002b. Gaia: A Mid-

dleware Infrastructure to Enable Active Spaces. IEEE Pervasive Comput. 1,

74–83.

Romero, D., Parra, C., Seinturier, L., Duchien, L., Casallas, R., 2008. An SCA-Based Mid-

dleware Platform for Mobile Devices, in: Enterprise Distributed Object

Computing Conference Workshops, 2008 12th. Presented at the Enterprise

Distributed Object Computing Conference Workshops, 2008 12th, pp. 393–
396.

Rudolph, L., 2001. Project Oxygen: Pervasive, Human-Centric Computing - An Initial Expe-

rience, in: Proceedings of the 13th International Conference on Advanced

Information Systems Engineering, CAiSE ’01. Springer-Verlag, London,

UK, UK, pp. 1–12.

Ryan, N., 1997. MCFE metadata elements, version 0.2. Working document. Available from:

http://www.cs.kent.ac.uk/projects/mobicomp/Fieldwork/Notes/mcfemeta.ht

ml

Ryan, N., Pascoe, J., Morse, D., 1997. Enhanced Reality Fieldwork: the Context-aware Ar-

chaeological Assistant, in: British Archaeology Report, Oxford.

Salber, D., Dey, A.K., Abowd, G.D., 1999. The context toolkit: aiding the development of

context-enabled applications, in: Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, CHI’99. ACM, New York, NY,

USA, 434–441.

Salerno, S., 2008. The Learning Grid Handbook: Concepts, Technologies and Applications.

IOS Press.

Satyanarayanan, M., 2001. Pervasive computing: vision and challenges. IEEE Pers. Com-

mun. 8, 10–17.

http://www.w3.org/RDF/
http://www.cs.kent.ac.uk/projects/mobicomp/Fieldwork/Notes/mcfemeta.html
http://www.cs.kent.ac.uk/projects/mobicomp/Fieldwork/Notes/mcfemeta.html

144 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon

Schilit, B., Adams, N., Want, R., 1994. Context-Aware Computing Applications, in: In Pro-

ceedings of the Workshop on Mobile Computing Systems and Applications.

IEEE Computer Society, pp. 85–90.

Schilit, B.N., Theimer, M.M., 1994. Disseminating active map information to mobile hosts.

IEEE Netw. 8, 22–32.

Schmidt, A., Laerhoven, K.V., 2001. How to build smart appliances? IEEE Pers. Commun. 8,

66–71.

Sheng, Q.Z., Benatallah, B., 2005. ContextUML: A UML-Based Modeling Language for

Model-Driven Development of Context-Aware Web Services Development,

in: Proceedings of the International Conference on Mobile Business,

ICMB ’05. IEEE Computer Society, Washington, DC, USA, 206–212.

Singh, A., Conway, M., 2006. Survey of Context aware Frameworks - Analysis and Criticism

(Technical report). University of North Carolina.

Sørensen, C.-F., Wu, M., Sivaharan, T., Blair, G.S., Okanda, P., Friday, A., Duran-Limon,

H., 2004. A context-aware middleware for applications in mobile Ad Hoc

environments, in: Proceedings of the 2nd Workshop on Middleware for

Pervasive and Ad-hoc Computing, MPAC ’04. ACM, New York, NY, USA,

107–110.

Sousa, J.P., Sousa, J.P., Garlan, D., Garlan, D., 2002. Aura: an architectural framework for

user mobility in ubiquitous computing environments, in: In Proceedings of

the 3rd Working IEEE/IFIP Conference on Software Architecture. Kluwer

Academic Publishers, 29–43.

SPARQL Query Language for RDF, 2008. Available from: http://www.w3.org/TR/rdf-

sparql-query/

Strang, T., Linnhoff-Popien, C., 2004. A Context Modeling Survey, in: In: Workshop on Ad-

vanced Context Modelling, Reasoning and Management, The Sixth Interna-

tional Conference on Ubiquitous Computing, Nottingham/England.

Studer, R., Benjamins, V.R., Fensel, D., 1998. Knowledge engineering: Principles and meth-

ods. Data Knowl. Eng. 25, 161–197.

Tbox, 2009. Wikipedia Free Encycl. Available from: http://en.wikipedia.org/wiki/Tbox

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://en.wikipedia.org/wiki/Tbox

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 145

Truong, H., Juszczyk, L., Manzoor, A., Dustdar, S., 2007. Escape - an adaptive framework

for managing and providing context information in emergency situations, in:

Second European Conference, EuroSSC 2007, Kendal, England, 207–222.

Truong, H.-L., Dustdar, S., 2009. A survey on context-aware web service systems. Int. J.

Web Inf. Syst. 5, 5–31.

Vail, D.L., Veloso, M.M., Lafferty, J.D., 2007. Conditional random fields for activity recog-

nition, in: Proceedings of the 6th International Joint Conference on Auton-

omous Agents and Multiagent Systems, 235:1–235:8.

Van Kasteren, T., Noulas, A., Englebienne, G., Kröse, B., 2008. Accurate activity recogni-

tion in a home setting, in: Proceedings of the 10th International Confer-

ence on Ubiquitous Computing, UbiComp’08. ACM, New York, NY, USA,
1–9.

Viterbi, A.J., 1967. Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm. IEEE Trans. Inf. Theory 13, 260–269.

Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.K., 2004. Ontology Based Context Modeling and

Reasoning using OWL, in: Proceedings of the Second IEEE Annual Confer-

ence on Pervasive Computing and Communications Workshops, 18–23.

Want, R., Hopper, A., Falcão, V., Gibbons, J., 1992a. The active badge location system.

ACM Trans Inf Syst 10, 91–102.

Want, R., Schilit, B.N., Adams, N.I., Gold, R., Petersen, K., Goldberg, D., Ellis, J.R., Weiser,

M., 1995. An overview of the PARCTAB ubiquitous computing experiment.

IEEE Pers. Commun. 2, 28–43.

XML, 2013. . Wikipedia Free Encycl. Available from: http://en.wikipedia.org/wiki/XML

Xu, T., David, B., Chalon, R., Zhou, Y., 2011. A context-aware middleware for ambient in-

telligence, in: Proceedings of the Workshop on Posters and Demos Track,

10:1–10:2.

http://en.wikipedia.org/wiki/XML

 Tao Xu, Thèse en Informatique / 2013, Ecole Centrale de Lyon 147

Publications

Xu, T., Zhou, Y., David, B., Chalon, R., Supporting Activity Context Recognition in Context -

aware Middleware, Workshops at the Twenty-Seventh AAAI Conference on

Artificial Intelligence (AAAI’13), Bellevue, Washington, USA. (2013)

Xu, T., Jin, H., David, B., Chalon, R., Zhou, Y., A context-ware middleware for interaction

devices deployment in AmI, the 15th International Conference on Human-

Computer Interaction (HCI’13), Las Vegas, Nevada, USA (2013)

Xu, T., David, B., Chalon, R., Zhou, Y., A Context-aware Middleware for Ambient Intelli-

gence. ACM/IFIP/USENIX 12th International Middleware Conference

(Middleware 2011), Poster session, Lisbon, Portugal, 2011.

[Journal] Zhou, Y., Xu, T., David, B., Chalon, R., Innovative Wearable Interfaces: An Ex-

ploratory Analysis of Paper-based Interfaces with Camera-glasses Device

Unit, Journal of Personal and Ubiquitous Computing, to appear, 2013.

(SCI IF: 0.938)

David, B., Xu, T., Jin, H., Zhou, Y., Chalon, R., Zhang, B., Yin, C., Wang, C., User-oriented

System for Smart City approaches, HMS 2013, Las Vegas, Nevada, USA

(2013)

Jin, H., Xu, T., David, B., Chalon, R., Zhou, Y., Proxemic Interaction Applied to Public

Screen in Lab, HCI’13, Las Vegas, Nevada, USA (2013 Accepted)

David, B., Yin, C., Zhou, Y., Xu, T., Zhang, B., Jin, H., Chalon, R., SMART-CITY: problem-

atic, techniques and case studies. 8th International Conference on Compu-

ting Technology and Information Management (ICCM 12), Korea. (2012)

David, B., Zhou, Y., Xu, T., Chalon, R., Mobile User Interfaces and their Utilization in a

Smart City, ICOMP’11, Las Vegas, Nevada, USA. pp. 383-388. (2011)

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6260079

Abstract
Almost 20 years ago, Marc Weiser envisioned the prospect of computer in 21st century, and pr o-

posed the pioneering notion of ubiquitous computing. One of Weiser’s primary ideas has recently evolved
to a more general paradigm known as context awareness, becoming a central research theme in many other

ubiquitous computing programs. From Active Badge considered as the first context -aware application,

there are numerous attempts to build effective context-aware systems. However, how to acquire context,

how to process context and how to create context-aware applications is still faced with enormous chal-

lenges in the both of research and practice.

This dissertation investigates deeply some chosen key issues in context awareness and develops a

context-aware middleware. The main research contributions are presented in three categories: a spatial -

temporal context represent model, a context-aware middleware and an intelligence context inference en-

gine.

The spatial-temporal context representation model is proposed to organize context and relations for

context-aware system. Ontology-based method is adopted to construct our model, supporting both

knowledge sharing and reuse as well as logic inference. This model adopts two -layer hierarchy structure

for different situation. The higher layer comes up with the generic common context, while the lower layer

focuses on various specific situations. Differing from existing models, besides taking locational factors i n-

to account, it supports different historical context service depending on different context resource. These

context histories may be used to predict and infer the context.

A context-aware middleware is designed as a platform associated with context retrieval and context

processing. It is organized in two layers: the low layer provides a solution to integrate sensors and actu a-

tors with a standardized data representation; the high layer: versatile context interpreter focuses on context

processing, which is made up of four parts: Context Aggregator, Inference Engine, Context Knowledge

Base, and Query Engine in charge of context inferences, expressive query, and persistent storage. This

middleware provides an environment for rapid prototyping of context aware services in ambient intellig ent.

The intelligent inference engine is the central and intellectual component of context -aware middle-

ware. We review all the methods on activity context recognition published in three premier conferences in

past decade and conclude that activity context recognition is divided into three facets: basic activity infe r-

ence, dynamic activity analysis and future activity recommendation. Then we propose an intelligent infe r-

ence engine based on our context-aware middleware. Beside satisfying requirements of checking the con-

text consistency, our inference engine integrates the three most popular methods on activity context

recognition: Rules, Decision Tree, and Hide Markov Model. It provides a solution for all facets of activity

context recognition based on our context-ware middleware. The individuals’ information collecting from
their social networks under permission are leveraged to train intelligent inference engine.

We finally use two scenarios (applications) to explain the generic process to develop applicatio n via

our middleware, and compare and analyze the main aspects of our middleware with other five represent a-

tive context-aware applications. Our middleware profits good features from existing context -aware sys-

tems and improve intelligence via supporting activity context recognition. It provides an efficient platform

for a rapid developing of new context-aware applications in ambient intelligence.

Key words: Ubiquitous Computing, Context Awareness, Ambient Intelligence, Middleware

Résumé
Il y a près de 20 ans, Marc Weiser a imaginé l'ordinateur du 21ème siècle et a proposé le concept de

l’informatique ubiquitaire. Une des idées principales de Weiser a récemment évolué vers un paradigme
plus général connu comme la sensibilité au contexte qui est devenu un thème très important en informa-

tique ubiquitaire. Depuis Active Badge considéré comme la première application sensible au contexte, de

nombreuses tentatives pour construire des systèmes sensibles au contexte efficaces ont vu le jour. Cepen-

dant la problématique comment acquérir contexte, comment le traiter et comment créer des applications

sensibles au contexte est encore aujourd’hui un défi suscitant de nombreuses recherches.

Cette thèse étudie en profondeur certaines questions clés liées à la sensibilité au contexte et au dé-

veloppement d’intergiciels sensibles au contexte. Les principales contributions de notre recherche conce r-

nent la prise en compte du contexte spatio-temporel et sa modélisation, la conception et l’implémentation

d’un intergiciel sensible au contexte et d’un moteur intelligent d'inférence de contexte.

Le modèle de représentation du contexte spatio-temporel proposé vise à organiser le contexte et ses

relations pour un système sensible au contexte. La méthode basée sur les ontologies est adoptée pour cons-

truire notre modèle, supportant à la fois le partage des connaissances et leur réutilisation ainsi que la d é-

duction logique. Ce modèle adopte une structure hiérarchique à deux couches pour modéliser les situations

à prendre en compte. La couche supérieure s’occupe du contexte commun générique, tandis que la couche
inférieure se concentre sur les caractéristiques plus spécifiques. A la différence des modèles existants, en

plus de prendre en compte l’aspect localisation, notre modèle prend également en charge la gestion

d’historique des de contextes en s’appuyant sur différentes ressources. Ces historiques de contexte peuvent
être utilisées pour prévoir et inférer le contexte.

Un middleware sensible au contexte a été conçu comme une plate-forme permettant la récupération

et le traitement du contexte. Elle est organisée en deux couches : La couche basse apporte une solution à

l’intégration des capteurs et actionneurs avec une représentation de données normalisée ; la couc he haute

propose un interpréteur de contexte polyvalent qui s’appuie sur quatre éléments : un agrégateur de con-

texte, un moteur d'inférence, une base de connaissance de contextes et un moteur de recherche en charge

de la déduction de contexte, de l’interrogation et du stockage persistant.

Ce middleware fournit un environnement pour le prototypage rapide de services sensibles au co n-

texte pour l’intelligente ambiante.

Le moteur intelligent d’inférence est le composant central de notre middleware. Pour le co ncevoir

nous avons d’abord étudié toutes les méthodes publiées pendant les dix dernières années dans les trois
conférences de premier plan du domaine. Nous en avons retiré que la reconnaissance du contexte

d’activité peut être obtenue par trois catégories de traitements : par l’activité de l’inférence de base, par
l’analyse dynamique de l’activité et par la recommandation d’activités futures. Nous proposons alors un
moteur d'inférence intelligent basé sur notre middleware sensible au contexte. Outre les ex igences liées à

la vérification de la cohérence du contexte, notre moteur d'inférence intègre les trois méthodes les plus p o-

pulaires concernant la reconnaissance de contexte : des règles, des arbres de décision, et les Modèles de

Markov Cachés. Ceci constitue une solution intéressante couvrant toutes les facettes de l'activité de reco n-

naissance de contexte dans notre middleware sensible au contexte. Les informations collectées à partir des

réseaux sociaux sont utilisées pour éduquer le moteur d'inférence intelligent.

Nous utilisons deux scénarios (applications) pour concrétiser le processus générique et pour dév e-

lopper des applications à l’aide de notre middleware, notamment pour comparer et pour analyser les pri n-

cipaux aspects de notre middleware avec cinq autres applications représentatives sensibles au contexte.

Notre middleware intègre des bonnes caractéristiques issues des systèmes existants et améliore

l'intelligence en soutenant l'activité de reconnaissance de contexte. Il fournit une plate -forme efficace pour

un développement rapide de nouvelles applications sensibles au contexte dans le domaine de l'intelligence

ambiante.

Mots clés : Informatique Ubiquitaire, Sensibilité au Contexte, Intelligence Ambiante, Middleware

