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Résumé

Résumé

Ce travail est consacré à l’étude de certaines propriétés spectrales des opérateurs de
Schrödinger aléatoires. Il est divisé en deux parties :

1. Une étude de la localisation d’Anderson pour des systèmes multi-particules sur un
graphe quantique.

2. Une formulation abstraite de quelques estimées de Wegner, suivie par une liste d’ap-
plications pour des modèles concrets.

Au Chapitre 1 on essaie d’introduire les problèmes et les résultats de la thèse de façon
élémentaire.

La première partie occupe les chapitres 2 et 3. Le Chapitre 2 consiste essentiellement
en notre article “Anderson Localization for a multi-particle quantum graph” [97] sur le
sujet. Au Chapitre 3 on discute quelques propriétés supplémentaires du modèle, et on
donne surtout des démonstrations alternatives de certains résultats du Chapitre 2.

La deuxième partie occupe les chapitres 4 et 5. Le Chapitre 4 reproduit essentielle-
ment notre article “Some abstract Wegner estimates with applications” [98]. Au Chapitre 5
on poursuit l’étude des estimées de Wegner, en donnant notamment quelques théorèmes
abstraits supplémentaires dans la Section 5.2 et encore d’autres applications dans la Sec-
tion 5.3.

On conclut avec deux annexes A et B. Dans la première on expose de manière très dé-
taillée les développements en fonctions propres généralisées. Dans l’Annexe B, on démontre
quelques résultats classiques utilisés dans le texte.

Mots-clefs

Opérateurs de Schrödinger aléatoires, graphes quantiques, localisation d’Anderson,
estimées de Wegner.
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Study of Localization for Disordered Systems on Quantum
Graphs

Abstract

This work is devoted to the study of some spectral properties of random Schrödinger
operators. It is divided into two parts:

1. A study of localization for multi-particle systems on quantum graphs.

2. An abstract formulation of some Wegner estimates, followed by a list of applications
for concrete models.

In Chapter 1 we try to introduce the problems and the results of this thesis in an
elementary way.

The first part occupies chapters 2 and 3. Chapter 2 essentially reproduces our arti-
cle “Anderson Localization for a multi-particle quantum graph” [97] on this subject. In
Chapter 3 we discuss some additional properties of our model, and we give alternative
proofs to some results of Chapter 2.

The second part occupies chapters 4 and 5. Chapter 4 essentially reproduces our article
“Some abstract Wegner estimates with applications” [98]. In Chapter 5 we continue the
study of Wegner estimates by giving more abstract theorems in Section 5.2 and yet more
applications in Section 5.3.

We conclude with two appendices A and B. In the first one we explain the theory
of generalized eigenfunction expansions in great detail. In Appendix B, we prove some
classical results used in the text.

Keywords

Random Schrödinger operators, quantum graphs, Anderson localization, Wegner esti-
mates.
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Introduction (version Française)

0.1 Généralités

0.1.1 Opérateurs de Schrödinger aléatoires

On étudie dans cette thèse quelques aspects de la théorie spectrale des opérateurs de
Schrödinger aléatoires. Un but de cette théorie est de comprendre la conductivité électro-
nique d’un point de vue mathématique. Une des découvertes fondamentales en physique
est que le désordre peut supprimer le transport électronique dans un semi-conducteur.
Plus précisément, il y a deux situations dans lesquelles on s’attend à ce qu’une onde ne se
propage plus à travers un matériau cristallin et devient piégée ou localisée :

• ou bien l’onde possède une faible énergie,

• ou bien le désordre ou les impuretés dans le solide ont dépassé une certaine valeur
critique.

La première interprétation théorique de ce phénomène a été donnée en 1958 par le
physicien P. W. Anderson [6], ce qui lui a valu le prix Nobel. D’autres physiciens ont aussi
largement contribué à l’étude de problèmes analogues, parmi lesquels on cite N. F. Mott.

0.1.2 Localisation

D’un point de vue mathématique, on se donne un espace de Hilbert associé au modèle,
et le problème est d’étudier les propriétés spectrales de certains opérateurs différentiels dé-
crivant la propagation de l’onde dans le solide. Plus précisément, un Laplacien (−∆) modé-
lise l’énergie cinétique de la particule, un potentiel fixé V0 représente le champ produit par
les ions du solide, et le désordre dans le milieu peut être interprété comme une perturbation
aléatoire V (ω). Ceci donne un opérateur de Schrödinger aléatoire H(ω) := −∆+V0+V (ω).

Sous certaines conditions d’ergodicité, on peut montrer que presque tous les H(ω)
possèdent le même spectre ; on parle alors d’un spectre presque sûr. Même sans ergodicité,
on peut parfois montrer que le bas du spectre est le même pour presque tous les H(ω).
Soit I un intervalle qui contient presque sûrement du spectre.

◦ Une première indication de la localisation est que H(ω) possède presque sûrement un
spectre purement ponctuel dans I. On parle alors de localisation spectrale dans I.

◦ L’étape suivante est d’établir la localisation exponentielle, i.e. de montrer que presque
sûrement, les fonctions propres qui correspondent à des énergies dans I décroissent de
façon exponentielle.

◦ Enfin, pour comprendre l’évolution des états de H(ω), on peut considérer l’équation
de Schrödinger dépendant du temps et établir la localisation dynamique. Grosso modo,
cela veut dire que si un état initial possède une énergie dans I, et s’il est localisé dans
un domaine borné, alors il ne quittera pas beaucoup ce domaine à mesure que le temps
passe.
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En supposant que les variables aléatoires modélisant le désordre sont i.i.d. avec une
distribution commune Höldérienne, les différents aspects de la localisation ont été établis
pour beaucoup de modèles sur ℓ2(Zd) et L2(Rd), comme prévu

• dans des intervalles proches du bas du spectre presque sûr de l’opérateur de Schrödinger
aléatoire (qui est la zone dans laquelle les fonctions propres ont de faibles énergies)

• dans le cas où l’ampleur du désordre dans le potentiel aléatoire est très grande.

L’historique de ces preuves est long ; mentionnons simplement les méthodes applicables
en toute dimension, à savoir l’analyse multi-échelle introduite par Fröhlich et Spencer
dans [46] et améliorée plus tard dans une série de papiers, en particulier [112] et [47], et
la méthode des moments fractionnaires introduite par Aizenmann et Molchanov dans [3]
pour des modèles discrets, et adaptée pour des modèles continus dans [2].

Si les variables aléatoires sont discrètes (e.g. des variables de Bernoulli), la localisation
est beaucoup plus difficile à établir. En 2005, Bourgain et Kenig [15] ont enfin réussi à
démontrer la localisation exponentielle au bord du spectre pour des modèles de Bernoulli
sur L2(Rd). Ce résultat a plus tard été renforcé par Germinet et Klein, qui ont démontré
entre autres la localisation dynamique pour ce modèle dans [48]. Il n’y a toujours pas de
preuve de localisation pour des modèles de Bernoulli sur ℓ2(Zd), d ≥ 2.

0.1.3 Graphes Quantiques

Une question naturelle à présent, motivée entre autres par la nanotechnologie, est d’étu-
dier différentes formes du semi-conducteur. Les graphes quantiques apparaissent lorsqu’on
essaie de comprendre la propagation des ondes à travers un système quasi unidimensionnel
qui ressemble à un graphe.

On appelle graphe quantique un triplet (E ,V, H), où (E ,V) est un graphe, avec un
ensemble de sommets V et un ensemble d’arêtes E . Une longueur le est attribuée à chaque
arête e, et H est un opérateur de Schrödinger opérant sur ⊕e∈E L2(0, le). Bien que le
terme “graphe quantique” semble d’introduction récente dans la littérature mathématique,
l’étude des équations différentielles sur un graphe date des années 80 ; on trouvera un
aperçu dans [90].

Pour vérifier la localisation sur de telles structures, on peut interpréter les impure-
tés comme étant des sources d’aléa dans le graphe. Pour des graphes quantiques mono-
particules avec V = Zd, la localisation au bas du spectre a été démontrée pour un modèle
à potentiel aléatoire dans [42], pour un modèle à constantes de couplage aléatoires dans
[71], et pour un modèle à longueurs d’arête aléatoires dans [72]. Quelques résultats ont
aussi été obtenus dans [4] et [55] pour des arbres aléatoires.

Décrivons un modèle simple. Soit V = Zd, (hj)dj=1 la base canonique de Zd et soit

E = {(m, j) : m ∈ Zd, j ∈ {1, . . . , d}} ,
où (m, j) désigne l’arête entre m et m + hj . Ainsi, on a une arête entre chaque paire de
sommets voisins. On regarde à présent chaque arête comme un segment de longueur 1 :
notons [m,m+ hj ] = {(1 − t)m+ t(m+ hj) : t ∈ [0, 1]} = {m+ thj : t ∈ [0, 1]}. On définit

Γ(1) =
⋃

m∈Zd,j∈{1,...,d}
[m,m+ hj ]

= {x ∈ Rd : ∃m ∈ Zd, j ∈ {1, . . . , d}, 0 ≤ t ≤ 1, tels que x = m+ thj} .

Γ(1) représente simplement la structure géométrique sous-jacente au graphe (E ,V). Si
d = 1, alors Γ(1) = R. Une partie de (E ,V) et de Γ(1) est donnée dans les Figures 1 et 2,
respectivement, lorsque d = 2.
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Figure 1 – Une partie de (E ,V) quand d = 2.

⊂ R2

Figure 2 – Une partie de Γ(1) quand d = 2.

En tant que partie de Rd, Γ(1) hérite la métrique donnée par la norme sup de Rd.
Soit H = ⊕e∈E L2(0, 1). La mesure de Lebesgue sur [0, 1] induit une mesure natu-

relle sur Γ(1) qu’on note m(1). On verra au Chapitre 2 que H s’identife facilement à
L2(Γ(1),dm(1)). Soient q−, q+ ∈ R, q− < q+, et soit µ une mesure de probabilité sur
R de support [q−, q+]. Considérons l’espace de probabilité (Ω,P), où Ω := [q−, q+]E et
P = ⊗e∈E µ. Alors étant donné ω = (ωe) ∈ Ω, on définit l’opérateur de Schrödinger H(ω)
par

H(ω) : (fe) 7→ (−f ′′
e + ωefe),

de domaine

D(H(ω)) =

{
f = (fe) ∈ ⊕

e∈E
W 2,2((0, 1)

)
∣∣∣∣∣

pour tout v ∈ V, f est continue en v,
et

∑
e:ιe=v

f ′
e(0) − ∑

e:τe=v
f ′
e(1) = 0.

}
.

Ici ι(m, j) = m et τ(m, j) = m + hj représentent les sommets de départ et d’arrivée
d’une arête (m, j). Les conditions aux limites dans D(H(ω)) sont connues sous le nom
de conditions aux limites de Kirchhoff. Noter que ce sont ces conditions qui reflètent la
connectivité du graphe. Ce modèle a été étudié en 2007 par Exner, Helm et Stollmann.
Ils ont démontré dans [42] que H(ω) possède un spectre presque sûr Σ au bas duquel on
a localisation exponentielle et localisation dynamique.

0.2 Graphe quantique multi-particule

Dans la première partie de cette thèse, on étudie l’analogue multi-particule du modèle
décrit dans la Section 0.1.3. On parle d’un graphe quantique multi-particule pour souli-
gner le fait que non seulement l’opérateur H change dans ce cas, mais que la structure
géométrique Γ change elle aussi, à savoir, on n’a plus de collection de sommets et d’arêtes.
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0.2.1 Le modèle

Pour étudier l’interaction entre deux particules, l’une sur une arête e1, l’autre sur une
arête e2, on devrait intuitivement considérer le couple (e1, e2). Ainsi, au lieu d’étudier
une collection d’arêtes E , on devrait à présent étudier une collection de couples d’arêtes,
ou de rectangles par identification. On obtient ainsi une sorte de réseau de rectangles.
Plus généralement, pour étudier l’interaction entre N particules, on devrait considérer un
réseau de pavés droits de dimension N . Ceci est seulement l’image intuitive 1.

Plus formellement, si Γ(1) ⊂ Rd est l’ensemble introduit dans la Section 0.1.3, alors
l’espace de Hilbert à considérer pour l’étude d’un système mono-particule sur Γ(1) est
H1 = L2(Γ(1),dm(1)). La mécanique quantique nous dit alors que l’espace de Hilbert cor-
respondant à N particules distinguables, chacune vivant dans Γ(1), est le produit tensoriel
HN = H1 ⊗ . . .⊗ H1. En prenant le produit cartésien

Γ(N) := Γ(1) × . . .× Γ(1) ⊂ (Rd)N

et la mesure produit m := m(1) ⊗ . . .⊗m(1), on peut identifier 2 HN avec L2(Γ(N),dm).
Tout point x = (x1, . . . , xN ) ∈ Γ(N) prend la forme xk = mk+tkhjk , avec mk ∈ Zd, tk ∈

[0, 1] et jk ∈ {1, . . . , d}. Ainsi, si pour m = (m1, . . . ,mN ) ∈ (Zd)N et j = (j1, . . . , jN ) ∈
{1, . . . , d}N on pose

κm,j := [m1,m1 + hj1 ] × . . .× [mN ,mN + hjN ] ,

on a Γ(N) =
⋃

m ∈(Zd)N , j ∈{1,...,d}N κm,j. On peut donc voir Γ(N) comme un couple (K,S),
où K est une collection de cubes κ de dimension N de volume 1 et S est l’ensemble des
bords σ de ces cubes.

Pour d = 1 et N = 2, on a clairement Γ(2) = R2. Le couple (K,S) correspondant à
Γ(2) est décrit dans la Figure 3. Pour d = 2, Γ(2) est une collection infinie de plans qui
s’entrecroisent dans R4.

κ

κ

κ

κ

κ

κ

κ

κ

κ

. . .

. . .

. . .

. . .

...
...

...
...

Figure 3 – Le couple (K,S) correspondant à Γ(2) pour d = 1. Il s’agit d’une collection de
carrés κ dont les coins sont dans Z2 et qui recouvrent R2.

Chaque σ est l’union fermée de 2N “faces ouvertes” σi, i.e. σ = ∪iσ̄i. Par exemple, si
σ est le bord de κm,j, alors σ1 = {m1} × (m2,m2 + hj2) × . . .× (mN ,mN + hjN ) et sa face
opposée est σo(1) = {m1 + hj1} × (m2,m2 + hj2) × . . .× (mN ,mN + hjN ).

Le cube κm,j sera noté κ =
(
(m1, j1), . . . , (mN , jN )

)
. Avec la notation des arêtes ek =

(mk, jk), ceci devient κ = (e1, . . . , eN ).

1. Notons que Nicaise est probablement le premier à avoir étudié de façon systématique les problèmes
aux limites sur des réseaux polygonaux, voir [85]. On note aussi un article récent [14] où des interactions
singulières entre deux particules sur un graphe quantique compact ont été considérées.

2. Voir par exemple [93, Theorem II.10].
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Introduisons à présent notre opérateur de Schrödinger à N -particules H(N)(ω). Cela
nous donnera un graphe quantique N -particule (K,S, H(N)).

Fixons q−, q+ ∈ R, q− < q+ et prenons une mesure de probabilité µ sur R de support
[q−, q+]. Considérons l’espace de Hilbert H := ⊕κ∈K L2

(
(0, 1)N

)
. Il peut être facilement

identifié à l’espace L2(Γ(N),dm) décrit précédemment, comme on verra au Chapitre 2.
Soit (Ω,P) l’espace de probabilité donné par Ω := [q−, q+]E et P := ⊗e∈E µ. Alors pour
ω = (ωe) ∈ Ω, l’opérateur de Schrödinger est défini via la forme

h(N)
ω [f, g] =

∑

κ∈K

[〈∇fκ,∇gκ〉 + 〈V ω
κ fκ, gκ〉],

de domaine

D(h(N)
ω ) =

{
f = (fκ) ∈ ⊕

κ∈K
W 1,2((0, 1)N

)
∣∣∣∣∣
f est continue sur chaque σi,∑

κ∈K ‖fκ‖2
W 1,2 < ∞

}
.

La continuité sur σi signifie que si σi est une face commune à κ1 et κ2, alors fκ1 |σi = fκ2 |σi

au sens des traces.
Ici V ω

κ := U
(N)
κ +Wω

κ , où U (N) ≥ 0 est un potentiel d’interaction non-aléatoire. L’hy-
pothèse importante sur U (N) est qu’il est de portée finie. Par exemple, si N = 2, cela
signifie qu’il existe r0 > 0 tel que pour tous x1, x2 ∈ Γ(1), xk = mk + tkhjk on ait

|x1 − x2| > r0 =⇒ U (2)(x1, x2) = U (2)
κm,j

(t1, t2) = 0 ,

où | · | := ‖ · ‖∞ est la norme sup de Rd. Cela signifie qu’il n’y a pas d’interaction entre
deux particules en des positions respectives x1 et x2 éloignées.

Wω
κ est un potentiel multi-particule aléatoire. Si κ = (e1, . . . , eN ), alors Wω

κ := ωe1 +
. . .+ ωeN . Voyons le cas le plus simple d = 1 et N = 2 dans la Figure 4.

. . . . . . . . .κ1

κ1 = (e1, e2)

κ2 = (e3, e2)
κ2e2

e1

e2

e3

Figure 4 – Deux carrés κ1 et κ2 partageant une arête e2.

Ici fκ1 est multipliée par ωe1 + ωe2 et fκ2 est multipliée par ωe3 + ωe2 . Ainsi, il n’y a
pas d’indépendance à distance : si κ1 et κ2 partagent une arête e2, on aura toujours le
terme ωe2 , même si κ1 et κ2 sont très éloignés.

Il est assez facile de voir que h(N)
ω correspond à l’unique opérateur auto-adjoint H(N)(ω)

donné par
H(N)(ω) : (fκ) 7→ ((−∆ + V ω

κ )fκ)

sur un certain domaine D(H(N)(ω)). La forme explicite de D(H(N)(ω)) ne semble pas être
une question facile ; voir le Chapitre 2.

0.2.2 Résultats principaux

Voici les résultats principaux qu’on a obtenus dans [97] et qu’on reprend ici au Cha-
pitre 2. Tout d’abord, le bas du spectre est déterministe :
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Théorème 0.2.1. Il existe Ω0 ⊆ Ω avec P(Ω0) = 1 tel que pour tout ω ∈ Ω0 :

[Nq−, Nq+] ⊂ σ(H(N)(ω)) ⊆ [Nq−,+∞).

En particulier, inf σ(H(N)(ω)) = Nq− presque sûrement.

Ensuite, en supposant que µ est Höldérienne, le bas du spectre est localisé :

Théorème 0.2.2 (Localisation exponentielle). Il existe ε0 = ε0(N, d, q−, r0) > 0 et m > 0
tels que pour presque tout ω le spectre de H(N)(ω) dans I = [Nq−, Nq− +ε0] soit purement
ponctuel et les fonctions propres qui correspondent à des valeurs propres dans I soient à
décroissance exponentielle de taux m.

Théorème 0.2.3 (Localisation dynamique HS-forte). Il existe ε0 = ε0(N, d, q−, r0) > 0
tel que pour I = [Nq−, Nq− + ε0], on ait pour toute partie bornée K ⊂ Γ(N) et tout s > 0,

E
{

sup
‖f‖≤1

‖Xs/2f(H(N)(ω))Eω(I)χK‖2
2

}
< ∞,

où (Xψ)(x) := |x| ·ψ(x) pour ψ ∈ L2(Γ(N),dm), Eω est la projection spectrale de H(N)(ω)
et on prend le sup sur toutes les fonctions boréliennes, ‖f‖ := ‖f‖∞.

Dans le cas particulier où N = 1, ces théorèmes sont plus forts que le résultat principal
de [42], d’abord parce qu’on les établit sans la condition technique (∃τ > d

2 : µ([q−, q− +
h]) ≤ hτ pour h petit), ensuite parce que la localisation dynamique est démontrée en
norme Hilbert-Schmidt.

0.2.3 Idées de la preuve

La preuve de ces théorèmes est basée sur l’analyse multi-échelle multi-particule dé-
veloppée par A. Boutet de Monvel, Chulaevsky et Suhov dans [27] et [19]. L’analyse
multi-échelle devient remarquablement plus compliquée dans le cas multi-particule car on
perd l’indépendance à distance. Le passage des bornes fournies par l’analyse multi-échelle
à la localisation s’appuie sur l’approche de Germinet et Klein [47].

Avant d’adapter ces méthodes aux graphes quantiques multi-particules, il y a une liste
de choses à vérifier. Voici les difficultés principales qu’on rencontre en passant de Γ(1) à
Γ(N).

Tout d’abord, pour l’estimée de Combes-Thomas, on a besoin de bien contrôler l’expo-
sant de décroissance, car ici l’estimée de Combes-Thomas est utilisée non seulement pour
obtenir le pas initial, mais aussi dans la récurrence multi-échelle elle-même. Grosso modo,
l’exposant doit dépendre (comme d’habitude) de la distance de l’énergie au spectre, mais
pas de la valeur absolue de l’énergie. On a réussi à obtenir une telle estimée en utilisant
les semi-groupes, via une estimée améliorée de Davies-Gaffney.

Ensuite, on a dû démontrer quelques estimées de trace nécessaires pour obtenir des
développement en fonctions propres généralisées.

Puis il y a l’inégalité de décroissance des fonctions propres (EDI) : dans la preuve
usuelle, on a besoin de savoir que les fonctions propres généralisées sont régulières, disons
localement de classe W 1,2. Cependant, pour utiliser l’approche de Germinet et Klein,
on a besoin du développement en fonctions propres généralisées attribué d’habitude à
Berezansky (voir [11]), dont les fonctions ne sont pas forcément régulières. Au lieu de
démontrer qu’elles sont bien régulières 3, on a réussi à prouver EDI en contournant ce

3. Plus tard on a démontré dans le Chapitre 3 que les fonctions propres généralisées sont régulières.
Cependant, comme le lecteur verra, il est plus simple et plus naturel de raisonner directement avec des
approximations, sans faire usage de la régularité.
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problème à l’aide d’approximations dans l’espace de Hilbert négatif (i.e. celui dans lequel
les fonctions propres généralisées vivent).

Enfin, on avait besoin d’un pas initial pour H(1) plus fort que celui démontré dans [42],
c’est pourquoi on a démontré des asymptotiques de type Lifshitz. L’argument perturbatif
qu’on utilise pour les obtenir dans L2(Rd) marche aussi ici, mais à un moment donné, on a
besoin de connaître la largeur du trou spectral entre les deux premières valeurs propres de
H(1) restreint à un graphe fini. Il se trouve que ce problème a déjà été étudié en géométrie
riemannienne, et une façon d’estimer ce trou spectral est via l’inégalité de Cheeger 4. Cette
inégalité a plus tard été démontrée par Nicaise pour les graphes quantiques finis [84], et
elle est aussi apparue dans un article de Post [91].

Cela concerne les principales difficultés. Il y a aussi d’autres détails à régler pour pou-
voir commencer l’analyse multi-échelle ; il faut notamment obtenir l’inégalité géométrique
de la résolvante (GRI), ainsi que l’estimée de Wegner. Pour GRI, noter qu’en plus de
l’inégalité habituelle dont on a besoin pour les mono-particules, on a aussi besoin d’une
nouvelle inégalité dans le cadre multi-particule, qui compare les fonctions de Green as-
sociées à certains N -cubes à celles associées aux n-cubes pour n < N . Pour Wegner, la
différence principale dans le cadre multi-particule, est qu’on a besoin d’être sûr que le po-
tentiel aléatoire est bien distribué dans n’importe quelle direction mono-particulaire. Plus
précisément, l’estimée de Wegner dont on a vraiment besoin n’est pas une espérance sur
tout l’espace Ω, mais plutôt une espérance conditionnelle. Ceci est nécessaire pour pouvoir
obtenir plus tard l’estimée de Wegner à deux volumes.

0.2.4 Variations

Au Chapitre 3, on propose quelques variations sur ces résultats. Notamment, on dé-
montre la localisation exponentielle et dynamique sans faire usage de fonctions propres
généralisées. Cependant, cette approche n’établit la localisation dynamique qu’en norme
d’opérateur. On explique aussi à quel point on peut étendre nos résultats lorsque la dis-
tribution µ des variables aléatoires est seulement log-Höldérienne. Enfin, on donne une
estimée de Combes-Thomas valable pour des énergies dans un trou spectral quelconque,
mais le prix à payer est que la preuve est assez compliquée.

0.3 Estimées de Wegner abstraites

Dans la deuxième partie de cette thèse, on formule quelques estimées de Wegner abs-
traites, puis on les applique à des modèles concrets.

0.3.1 Estimées de Wegner en général

Le but des estimées de Wegner est d’obtenir de bonnes bornes sur le nombre moyen
de valeur propres d’un opérateur de Schrödinger aléatoire HΛ(ω) restreint à un cube Λ
dans un intervalle donné I. Plus précisément, si χI(HΛ(ω)) est la projection spectrale de
HΛ(ω) sur I, alors on cherche des estimées du type

E{tr[χI(HΛ(ω))]} ≤ CW · |Λ|α · |I|β

pour certains CW ≥ 0, α ≥ 1 et β > 0. De telles estimées peuvent être utilisées dans une
preuve de la localisation via l’analyse multi-échelle, ou dans l’étude de la continuité de la
densité d’états intégrée (IDS) si α = 1.

4. On donne une approche différente dans l’Annexe B, qui s’appuie sur l’inégalité de Faber-Krahn.
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0.3.2 Motivation

La motivation pour ce travail est venue encore une fois des graphes quantiques. Une
particularité très intéressante des graphes quantiques est qu’on peut considérer un aléa
non seulement dans le potentiel, mais aussi dans le graphe lui-même. Cela donne naissance
à deux nouveaux modèles : les graphes quantiques à constantes de couplage aléatoires
(RCM, i.e. conditions aux limites aléatoires) et les graphes quantiques à longueurs d’arête
aléatoires (RLM) ; voir [55], [71] et [72] pour des résultats de localisation pour ces modèles.

Je me suis intéressé dans un premier temps aux articles [72] et [78] qui étudient les
RLM. Ces travaux établissent beaucoup de résultats y compris la localisation au bord du
spectre et la continuité de l’IDS. Je me suis concentré sur l’estimée de Wegner, qui m’est
parue très intéressante car ces modèles dépendent du paramètre aléatoire de manière assez
insolite.

La description précise de ces modèles prendrait trop de place, donc je vais simplement
mentionner deux astuces principales qui ont été appliquées dans ces travaux pour obte-
nir l’estimée de Wegner. Dans [72], l’idée était d’établir une relation entre l’opérateur de
Schrödinger H(lω) sur le graphe quantique ⊕e∈E L2(0, lωe ) et un homologue discret M(lω, I)
qui agit sur l’ensemble des sommets, i.e. sur l’espace de Hilbert ℓ2(V). Ici I est l’intervalle
où on voudrait avoir une estimée de Wegner. Ceci a un peu simplifié la tâche, car pour des
sous-graphes finis (EΛ,VΛ), l’espace ℓ2(VΛ) est de dimension finie. Cependant, la dépen-
dance de M(lω, I) en lω = (lωe ) devient difficile (des termes comme (sin lωe )−1 apparaissent),
donc il faut concevoir de nouveaux arguments.

Dans [78], l’idée était de travailler avec les variables aléatoires (ln lωe )e∈E au lieu des
variables (lωe )e∈E . La dépendance en le paramètre aléatoire devient alors plus simple, et
quelques relations précises entre les valeurs propres peuvent être obtenues. L’espace de pro-
babilité doit évidemment être modifié de façon analogue. Mais la conclusion n’est toujours
pas immédiate, car la dépendance en le paramètre aléatoire reste inhabituelle.

Les deux travaux supposaient que les variables aléatoires (lωe ) étaient i.i.d. avec une dis-
tribution commune absolument continue. Je me suis alors demandé si on pouvait affaiblir
cette condition et travailler avec une distribution Höldérienne.

Une autre motivation est venue des opérateurs de Schrödinger usuels sur ℓ2(Zd) et
L2(Rd), mais dont le potentiel aléatoire ne recouvre pas l’espace. Pour ces opérateurs, les
preuves disponibles sont compliquées si on ne suppose pas que la mesure de probabilité a
une densité, voir e.g. [30].

0.3.3 Résultats

L’article [98] tente de donner un traitement simple et unifié pour les modèles précé-
dents.

Espaces de Hilbert de dimension finie

On donne d’abord une estimée de Wegner pour certains opérateurs auto-adjoints aléa-
toires sur un espace de Hilbert de dimension finie. On ne suppose pas que la distribution
a une densité.

Comme application, on donne des estimées de Wegner optimales pour le modèle d’An-
derson discret multi-particule, et ceci pour trois cas différents :

– Si le potentiel aléatoire recouvre Zd, i.e. s’il existe c > 0 tel que V ω =
∑
α∈Zd ωαuα,

uα ≥ c · δα, on obtient des estimées à un volume et à deux volumes valables pour un
intervalle d’énergie quelconque.
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– Sinon, si la perturbation est négative et portée par un demi-espace, on donne une
estimée de Wegner au bas du spectre. On montre qu’elle est non-triviale, i.e. que
l’intervalle considéré contient bien du spectre.

– Enfin, si la perturbation est positive, on a encore des bornes optimales, mais pour
montrer qu’elles sont non-triviales, on utilise un résultat de [37], où les auteurs consi-
dèrent des perturbations positives portées par des ensembles de Delone (exemple de
potentiel sans recouvrement).

Notons que les demi-espaces qu’on a considérés dans le cas de perturbations négatives
ne sont pas des ensembles de Delone, et que les ensembles de Delone ne sont pas non plus
des demi-espaces. Ainsi on peut dire que notre article [98] d’une part, et les articles [37] et
[94] d’autre part, se complètent. Enfin, soulignons que toutes ces estimées supposent que
le potentiel en chaque site est positif (il est important qu’il ne change pas de signe).

Plus tard on donne au Chapitre 5 plusieurs variations sur le théorème abstrait, y
compris une adaptation du résultat de [30] aux espaces de dimension finie.

Espaces de Hilbert séparables

On passe ensuite plus généralement aux espaces de Hilbert séparables et on donne
deux estimées. La première n’a presque pas de restriction sur l’intervalle d’énergie et sur
la forme du paramètre aléatoire, mais elle suppose qu’on a une forme de monotonie et de
recouvrement. La deuxième est un peu plus restrictive sur l’intervalle et sur la forme du
paramètre aléatoire, mais elle n’a pas besoin de recouvrement.

On applique la première estimée aux RLM de [72]. On obtient alors une réponse po-
sitive à notre question initiale concernant ce modèle : l’estimée de [72] peut en effet être
généralisée pour des distributions Höldériennes. En particulier, cela permet d’étendre les
résultats de localisation de cet article à de telles distributions (si la constante de couplage
est positive).

On applique notre deuxième estimée aux RCM, ainsi qu’aux Hamiltoniens continus
multi-particules sans condition de recouvrement. Ici on a encore deux situations : pour
une perturbation négative portée par un demi-espace, on démontre une estimée de Wegner
au bord du spectre, et on montre qu’elle n’est pas triviale. Pour les perturbations positives,
on doit supposer que le bord du spectre est fluctuant. Cependant, la situation ici est bien
meilleure que dans le cas discret, car dans L2(Rd), une grande classe d’opérateurs ont un
bord fluctuant, notamment les potentiels de Delone et de surface ; voir [62, Theorem 2.2],
[21, Sections 4,5] et [66, Lemma 4.2].

Notons que, contrairement au cas discret, les bornes qu’on obtient ici ne sont pas
optimales, car la dépendance en le volume |Λ| n’est pas linéaire. Ces estimées ne peuvent
donc pas être utilisés pour étudier la densité d’états intégrée, mais elles sont néanmoins
suffisantes pour établir la localisation.

Comparons rapidement nos résultats à la littérature. Sauf erreur, les potentiels à demi-
espace n’ont pas été considérés avant 5, ainsi notre résultat concernant les perturbations
négatives semble nouveau. Pour les perturbations positives, notre résultat est très proche
de celui de [20]. Cependant, cet article utilise les résultats de [30], qui sont assez compliqués.
On prend une approche complètement différente pour démontrer notre théorème, et notre
preuve est assez élémentaire. Néanmoins, l’article [20] a l’avantage de fournir une estimée
de Wegner optimale, ce qui le rend utile pour l’étude de la densité d’états intégrée. Notre
estimée pour les RCM semble nouvelle.

5. Notons que ces potentiels entrent dans le cadre de l’article [63], mais ici on montre qu’il y a bien du
spectre dans l’intervalle d’énergie considéré, une question qui ne semble pas être abordée dans [63].
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Enfin, pour les opérateurs de Delone sur L2(Rd), les papiers récents [95] et [66] arrivent
à étendre les estimées de Wegner à des intervalles arbitraires, pas seulement au bord du
spectre. Ainsi, dans le cas de ces opérateurs, notre résultat donne un cas particulier de
ces papiers, mais notre preuve est très différente (par exemple, [66] utilise les résultats de
[30], ainsi qu’un résultat récent [16]).

Soulignons encore une fois que tous ces théorèmes supposent que le potentiel en chaque
site est positif. Cette hypothèse est légèrement affaiblie dans [95], mais elle ne disparaît
pas complètement.

Esquissons maintenant les preuves de nos théorèmes généraux. La première estimée
suit d’une variation facile du lemme de Stollmann [103] ; il faut simplement faire attention
à des questions de mesurabilité. La deuxième borne est basée sur deux idées : d’abord
travailler avec les variables aléatoires (lnωj)j au lieu de (ωj)j comme dans [78]. Ensuite,
modifier le lemme de Stollmann pour qu’il puisse traiter des dépendances diagonales plus
générales.

Il est assez curieux qu’on n’ait pas réussi à appliquer notre théorème au modèle de [78]
qui nous a pourtant inspiré une partie de la preuve. Le problème est que, pour ce modèle,
le domaine de l’opérateur H(ℓω) dépend de ℓω. On explique en détail cette difficulté dans
la Section 5.4.

0.4 Perspectives

Il y a beaucoup de questions qui devraient encore être abordées dans les deux études.

0.4.1 Graphes quantiques

Ici on a seulement étudié le graphe quantique multi-particule le plus simple. Il y a deux
questions naturelles :

(i) d’abord la géométrie,

(ii) ensuite les conditions aux limites.

Pouvons-nous facilement adapter notre preuve pour traiter de cas plus généraux ? Ou est
ce qu’une situation vraiment difficile apparaît ? Il semblerait que ces deux questions aient
été étudiées récemment dans le cas mono-particule dans le travail de Schubert [99], qui
pourrait fournir un bon point de départ.

Nous pensons qu’une simple généralisation de la géométrie, e.g. des pavés droits au
lieu de cubes, devrait être immédiate. Nous pensons aussi qu’on pourrait donner des
volumes variés aux cubes élémentaires, voire leur donner des volumes croissants, peut-être
qu’en contre-partie la localisation ne sera plus exponentielle mais polynomiale. Cependant,
des géométries trop générales pourraient détruire l’ergodicité. Il sera donc important de
déterminer des géométries qui nous donnent au moins un bas du spectre non-aléatoire.

Pour les conditions aux limites, on perdra peut-être les Lifshitz-tails ; il faut regarder
de plus près. Il faudra aussi arranger quelques lemmes techniques.

Enfin, il y a le fait qu’on a utilisé dans plusieurs endroits le plongement dans l’espace
euclidien, mais ceci pourrait probablement être évité sans trop de difficulté. En particulier,
il nous semble plausible que, pour étudier des systèmes multi-particules sur un graphe
quantique quelconque, on devrait étudier un réseau de pavés droits. En effet, on a un
isomorphisme canonique entre L2(M1, dµ1)⊗L2(M2, dµ2) et L2(M1 ×M2, dµ1 ⊗dµ2) pour
des espaces mesurés quelconques (M1, µ1) et (M2, µ2), donc en particulier pour des réseaux
unidimensionnels munis de la mesure de Lebesgue.
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Tout ceci concerne la localisation ; on pourrait aussi s’intéresser aux statistiques spec-
trales des valeurs propres.

0.4.2 Estimées de Wegner

Pour la deuxième étude, il y a au moins trois questions.
D’abord, pouvons-nous modifier les théorèmes abstraits, ou en prouver d’autres, qui

soient capables de traiter les Hamiltoniens dont le potentiel aléatoire change de signe ? ou
plus généralement, des opérateurs qui ne dépendent pas de façon monotone du désordre ?
A notre connaissance, il n’existe pas à ce jour d’estimées de Wegner pour de tels modèles
si on ne suppose pas que la distribution des variables aléatoires possède une densité, du
moins pour L2(Rd). Ceci nous semble donc un problème très intéressant à étudier. On tente
de le résoudre dans la Section 5.4.1. Les articles [38, 69, 54, 111, 110, 75, 39] pourraient
peut-être nous permettre d’aller plus loin.

La deuxième question concerne la non-linéarité des estimées de Wegner dans le cas
d’espaces de Hilbert séparables. Ce problème apparaît car on utilise une version modifiée
du lemme de Stollmann pour contrôler les valeurs propres. Pouvons-nous nous débarrasser
de ce phénomène ? Faudrait-il d’abord manipuler la trace de la projection spectrale avant
d’utiliser ce lemme, un peu comme on a fait pour les espaces de dimension finie ? Faudrait-
il plutôt modifier le lemme de Stollmann lui-même ? Ce lemme est déjà optimal, mais si
on a plus d’informations sur les valeurs propres, on pourrait peut-être ajouter quelques
hypothèses à ce lemme qui nous donnerait alors une meilleure conclusion. Ou est-ce indis-
pensable de prendre une approche complètement différente ? Cette question vaut la peine
d’être résolue, car elle pourrait ouvrir une nouvelle porte à l’étude de la continuité de la
densité d’états intégrée.

La troisième question est la suivante : nos estimées de Wegner dans le cas d’espaces de
Hilbert séparables s’appliquent à des potentiels très généraux, mais elles ne sont valables
que pour des intervalles au bas du spectre. La question est de savoir si on peut donner une
preuve aussi élémentaire de l’estimée de Wegner, mais cette fois en toute énergie, si on
considère une classe de potentiels sans recouvrement mais qui possède quelque périodicité
comme dans [30]. L’éventuelle non-linéarité serait sans doute un prix raisonnable à payer
si la preuve est élémentaire.





Chapter 1

Introduction

1.1 Background

1.1.1 Random Schrödinger operators

In this thesis we study some aspects of the spectral theory of random Schrödinger
operators. One aim of this theory is to get a mathematical comprehension of conductivity
in disordered solids. One of the fundamental findings of physics is that disorder can
suppress the transport properties of a medium. More precisely, there are two situations
in which one expects a wave to stop traveling through a crystalline material and become
trapped or localized:

• either the wave has a low energy,

• or the disorder or impurities in the solid have passed a certain critical value.

The first theoretical interpretation of this phenomenon was given in 1958 by the physicist
P. W. Anderson [6], who was later awarded the Nobel Prize for his contributions to this
field. Other physicists have also largely contributed to related problems, in particular N.F.
Mott.

1.1.2 Localization

From a mathematical point of view one considers a Hilbert space associated to the
model, and the problem is to study the spectral properties of certain differential operators
describing the propagation of the wave in the solid. More precisely, a Laplace operator
(−∆) models the kinetic energy of the particle, a fixed potential V0 represents the field
given by the ions in the solid, and the disorder in the medium can be interpreted as a
random potential perturbation V (ω). This yields a random Schrödinger operator H(ω) :=
−∆ + V0 + V (ω).

Under some assumptions of ergodicity, it can be shown that almost all H(ω) possess
the same spectrum; one then speaks of an almost sure spectrum. Even without ergodicity,
one can show sometimes that the lower part of the spectrum is the same for almost all
H(ω). Let I be an interval that contains some spectrum almost surely.

◦ A first indication of localization is for H(ω) to exhibit pure point spectrum almost surely
in I, in which case ones speaks of spectral localization in I.

◦ A step further is to establish exponential localization, i.e., to show that almost surely,
the eigenfunctions corresponding to energies in I decay exponentially fast.
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◦ Finally, to understand the evolution of the states of H(ω), one may consider the time-
dependent Schrödinger equation and establish dynamical localization. Roughly speak-
ing, this means that if an initial state has an energy in I and if it is localized in a
bounded domain, then it will not leave this domain too much as time goes on.

Assuming the random variables modeling the disorder are i.i.d. with a common distri-
bution which is Hölder continuous, the different aspects of localization have been proven
to hold for many models in ℓ2(Zd) and L2(Rd), as expected

• in intervals near the bottom of the almost sure spectrum of the random Schrödinger
operator (which is the zone in which the eigenfunctions have low energies)

• in the case where the disorder amplitude of the random potential is very large.

Such proofs have a long history; let us only mention the ones applicable in any dimension,
namely the multiscale analysis proof introduced by Fröhlich and Spencer in [46] and later
improved in a series of paper, in particular [112] and [47], and the fractional moments
method introduced by Aizenman and Molchanov in [3] for models on ℓ2(Zd) and later
adapted to L2(Rd) in [2].

If the random variables are discrete (e.g. Bernoulli random variables), a proof of
localization is much more difficult. It was proven in 2005 by Bourgain and Kenig [15] that
exponential localization holds near the bottom of the spectrum for Bernoulli models on
L2(Rd). This result was later extended by Germinet and Klein, who proved dynamical
localization for this model, among other results in [48]. A proof of localization is still
missing for Bernoulli models on ℓ2(Zd) with d ≥ 2.

1.1.3 Quantum graphs

A natural question now, motivated by nanotechnology among others, is to investigate
different shapes of the semiconductor. Quantum graphs arise when one wants to under-
stand the propagation of waves through a quasi-one-dimensional system that looks like a
thin neighborhood of a graph.

A quantum graph is a triple (E ,V, H), where (E ,V) is a graph, with a vertex set V
and an edge set E . Each edge e is assigned a length le, and H is a Schrödinger operator
acting on ⊕e∈E L2(0, le). While the term “quantum graph” seems to have been introduced
quite recently in the mathematical literature, the study of differential equations on graphs
actually goes back at least to the early 1980s, see [90] for a review.

To verify localization on such structures, one may interpret the impurities as sources
of randomness in the quantum graph. For models with a Zd structure, localization near
the spectral edge has been established for a random potential model in [42], for a random
vertex coupling model in [71], and for a random edge length model in [72]. Related results
were obtained in [4] and [55] for random quantum tree graphs.

Let us describe a simple model. Let V = Zd, (hj)dj=1 be the canonical basis of Zd and
let

E = {(m, j) : m ∈ Zd, j ∈ {1, . . . , d}} ,
where (m, j) denotes the edge between m and m + hj . We thus have one edge between
each pair of neighbouring vertices. We now regard each edge as a segment of length 1: let
[m,m+ hj ] := {(1 − t)m+ t(m+ hj) : t ∈ [0, 1]} = {m+ thj : t ∈ [0, 1]}. We define

Γ(1) =
⋃

m∈Zd,j∈{1,...,d}
[m,m+ hj ]

= {x ∈ Rd : ∃m ∈ Zd, j ∈ {1, . . . , d}, 0 ≤ t ≤ 1, such that x = m+ thj} .
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Figure 1.1: Part of (E ,V) when d = 2.

⊂ R2

Figure 1.2: Part of Γ(1) when d = 2.

Γ(1) is simply the underlying geometric structure of the graph (E ,V). If d = 1, then
Γ(1) = R. A part of (E ,V) and Γ(1) is given in Figures 1.1 and 1.2, respectively, when
d = 2.

As a subset of Rd, Γ(1) inherits the metric given by the supremum norm of Rd.
Let H = ⊕e∈E L2(0, 1). The Lebesgue measure on [0, 1] induces a natural measure on

Γ(1) which we denote by m(1). As shown in Chapter 2, it can easily be shown that H can
be identified with L2(Γ(1),dm(1)). Let q− < q+ ∈ R and let µ be a probability measure on
R with support [q−, q+]. Consider the probability space (Ω,P), where Ω := [q−, q+]E , and
P := ⊗e∈E µ. Then given ω = (ωe)e∈E ∈ Ω, the Schrödinger operator H(ω) is given by

H(ω) : (fe) 7→ (−f ′′
e + ωefe),

with domain

D(H(ω)) =

{
f = (fe) ∈ ⊕

e∈E
W 2,2((0, 1)

)
∣∣∣∣∣

for each v ∈ V, f is continuous at v,
and

∑
e:ιe=v

f ′
e(0) − ∑

e:τe=v
f ′
e(1) = 0.

}
.

Here ι(m, j) = m and τ(m, j) = m + hj represent the initial and terminal vertices of
an edge (m, j). The boundary conditions in D(H(ω)) are known as Kirchhoff boundary
conditions. Note that it is such boundary conditions that reflect the connectivity of the
graph. The above model was studied in 2007 by Exner, Helm and Stollmann, and they
proved in [42] that H(ω) has an almost sure spectrum Σ, and that both exponential and
strong dynamical localization hold near the lower edge of Σ.

1.2 Multi-particle quantum graphs

In the first part of this thesis, we study the N -particle analog of the model described
in Section 1.1.3. We call it a multi-particle quantum graph to emphasize the fact that not
only the Schrödinger operator H changes in this case, but also the geometric structure Γ,
namely it is no longer a collection of vertices and edges.
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1.2.1 The model

To study the interaction between two particles, one lying on an edge e1 and the other
lying on an edge e2, one intuitively has to consider the couple (e1, e2). So instead of
studying a collection of edges E , one now has to study a collection of edge couples or rect-
angles by identification. So one obtains a kind of two-dimensional network of rectangles.
More generally, to study the interaction between N particles, one will have to consider an
N -dimensional network of rectangular boxes. This is just the intuitive picture 1.

More formally, if Γ(1) ⊂ Rd is the set introduced in Section 1.1.3, then the Hilbert space
one considers for the study of 1-particle systems on Γ(1) is H1 = L2(Γ(1),dm(1)). Now
quantum mechanics tells us that the Hilbert space corresponding to N distinguishable
particles, each living in Γ(1) is the tensor product HN = H1 ⊗ . . . ⊗ H1. Taking the
cartesian product

Γ(N) := Γ(1) × . . .× Γ(1) ⊂ (Rd)N

and the product measure m := m(1)⊗. . .⊗m(1), HN may be identified 2 with L2(Γ(N),dm).
Each x = (x1, . . . , xN ) ∈ Γ(N) takes the form xk = mk + tkhjk , for some mk ∈ Zd,

jk ∈ {1, . . . , d} and tk ∈ [0, 1]. Hence, if for m = (m1, . . . ,mN ) ∈ (Zd)N and j =
(j1, . . . , jN ) ∈ {1, . . . , d}N we put

κm,j := [m1,m1 + hj1 ] × . . .× [mN ,mN + hjN ] ,

we have Γ(N) =
⋃

m ∈(Zd)N , j ∈{1,...,d}N κm,j. We may thus regard Γ(N) as a couple (K,S),
where K is a collection of N -dimensional cubes κ of unit volume and S is the set of the
boundaries σ of these cubes.

For d = 1 and N = 2, we clearly have Γ(2) = R2. The couple (K,S) corresponding to
Γ(2) is described in Figure 1.3. For d = 2, Γ(2) consists of an infinite collection of sheets
intersecting each other in R4.

κ

κ

κ

κ

κ

κ

κ

κ

κ

. . .

. . .

. . .

. . .

...
...

...
...

Figure 1.3: The couple (K,S) corresponding to Γ(2) for d = 1. It is an infinite collection
of squares κ cornered in Z2 and covering R2.

Each σ is a closed union of 2N “open faces” σi, i.e. σ = ∪iσ̄i. For example, if σ is
the boundary of κm,j, then σ1 = {m1} × (m2,m2 + hj2) × . . . × (mN ,mN + hjN ) and its
opposite face is σo(1) = {m1 + hj1} × (m2,m2 + hj2) × . . .× (mN ,mN + hjN ).

The cube κm,j will be denoted κ =
(
(m1, j1), . . . , (mN , jN )

)
. With the edge notation

ek = (mk, jk), this becomes κ = (e1, . . . , eN ).

1. Let us mention here that the first systematic study of boundary value problems on two-dimensional
polygonal networks probably appeared in the works of Nicaise, see [85]. We also record the recent article
[14] which considers compact quantum graphs with singular two-particle interactions.

2. See for example [93, Theorem II.10].
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Let us now introduce our N -particle Schrödinger operator H(N)(ω). This will give us
a multi-particle quantum graph (K,S, H(N)).

Fix q−, q+ ∈ R, q− < q+ and let µ be a probability measure on R with support [q−, q+].
Now consider the Hilbert space H := ⊕κ∈K L2

(
(0, 1)N

)
. This space can easily be identified

with L2(Γ(N),dm) as shown in Chapter 2. Let (Ω,P) be the probability space given by
Ω := [q−, q+]E and P := ⊗e∈E µ. Then for ω = (ωe) ∈ Ω, the Schrödinger operator is
defined via the form

h(N)
ω [f, g] =

∑

κ∈K

[〈∇fκ,∇gκ〉 + 〈V ω
κ fκ, gκ〉],

with domain

D(h(N)
ω ) =

{
f = (fκ) ∈ ⊕

κ∈K
W 1,2((0, 1)N

)
∣∣∣∣∣
f is continuous on each σi,∑

κ∈K ‖fκ‖2
W 1,2 < ∞

}
.

Continuity on σi means that if σi is a common face to κ1 and κ2, then fκ1 |σi = fκ2 |σi in
the trace sense.

Here V ω
κ := U

(N)
κ + Wω

κ , where U (N) ≥ 0 is a non-random interaction potential. The
important assumption on U (N) is that it has a finite range. For example, for N = 2, this
means that there exists an r0 > 0 such that for any x1, x2 ∈ Γ(1), xk = mk + tkhjk we have

|x1 − x2| > r0 =⇒ U (2)(x1, x2) = U (2)
κm,j

(t1, t2) = 0 ,

where | · | := ‖ · ‖∞ is the sup norm of Rd. Thus, there is no interaction between two
particles at respective positions x1 and x2 which are far apart.

Wω
κ is a multi-particle random potential. If κ = (e1, . . . , eN ), then Wω

κ := ωe1 + . . .+
ωeN . Again look at the simplest case d = 1 and N = 2 in Figure 1.4.

. . . . . . . . .κ1

κ1 = (e1, e2)

κ2 = (e3, e2)
κ2e2

e1

e2

e3

Figure 1.4: Two squares κ1 and κ2 sharing an edge e2.

Here fκ1 is multiplied by ωe1 + ωe2 while fκ2 is multiplied by ωe3 + ωe2 . We thus see
there is no independence at a distance: if κ1 and κ2 share an edge e2, then no matter how
far κ1 and κ2 are, one always has the term ωe2 .

It is quite easy to see that h
(N)
ω corresponds to a unique self-adjoint operator H(N)(ω)

given by
H(N)(ω) : (fκ) 7→ ((−∆ + V ω

κ )fκ)

on a certain domain D(H(N)(ω)). The explicit form of D(H(N)(ω)) seems to be a subtle
question; see Chapter 2.

1.2.2 Main results

Here are the main results we give in Chapter 2, which were obtained in [97]. First of
all, the lower part of the spectrum is deterministic:



30 Chapter 1. Introduction

Theorem 1.2.1. There exists Ω0 ⊆ Ω with P(Ω0) = 1 such that for all ω ∈ Ω0 :

[Nq−, Nq+] ⊂ σ(H(N)(ω)) ⊆ [Nq−,+∞).

In particular, inf σ(H(N)(ω)) = Nq− almost surely.

Then, assuming µ is Hölder continuous, we have localization near the spectral bottom:

Theorem 1.2.2 (Exponential localization). There exists ε0 = ε0(N, d, q−, r0) > 0 and
m > 0 such that for a.e. ω the spectrum of H(N)(ω) in I = [Nq−, Nq− + ε0] is pure point
and the eigenfunctions corresponding to eigenvalues in I decay exponentially with mass
m.

Theorem 1.2.3 (Strong HS-dynamical localization). There exists ε0 = ε0(N, d, q−, r0) >
0 such that for I = [Nq−, Nq− + ε0], we have for any bounded K ⊂ Γ(N) and all s > 0,

E
{

sup
‖f‖≤1

‖Xs/2f(H(N)(ω))Eω(I)χK‖2
2

}
< ∞,

where (Xψ)(x) := |x|·ψ(x) for ψ ∈ L2(Γ(N),dm), Eω is the spectral projection of H(N)(ω)
and the supremum is taken over bounded Borel functions, ‖f‖ := ‖f‖∞.

In the special case where N = 1, these theorems are stronger than the main result
of [42], first because they hold without the technical disorder assumption (∃τ > d

2 :
µ([q−, q− + h]) ≤ hτ for small h), next because strong dynamical localization holds in the
Hilbert-Schmidt norm.

1.2.3 Ideas of the proof

The proof of these theorems is based on the multi-particle multi-scale analysis devel-
oped by A. Boutet de Monvel, Chulaevsky and Suhov in [27] and [19]. The multi-scale
induction becomes significantly more involved in the multi-particle setting because one
loses the independence at a distance. The passage from multiscale analysis bounds to
localization is based on the approach of Germinet and Klein [47].

Before adapting these methods to multi-particle quantum graphs, there is a list of
input to verify. Here are the main difficulties that lie in the passage from Γ(1) to Γ(N).

First of all in the Combes-Thomas estimate, we need to have a good control on the
decay exponent, because here the Combes-Thomas estimate is used not only to derive the
initial length scale estimate, but also in the multiscale induction itself. Roughly speaking,
the exponent should depend (as usual) on the distance of the energy to the spectrum,
but not on the absolute value of the energy. We derived such a Combes-Thomas estimate
using semigroups, via an improved Davies-Gaffney estimate.

Next we had to derive some trace estimates which are necessary to obtain generalized
eigenfunction expansions.

Next there is the eigenfunction decay inequality (EDI): in the usual derivation, one
needs to be sure that the generalized eigenfunctions have some regularity, say they are
locally of class W 1,2. However, to use the approach of Germinet and Klein, we needed
the generalized eigenfunction expansion usually attributed to Berezansky (see [11]) whose
functions are not a priori regular. Instead of proving they are indeed regular 3, we were

3. We later proved in Chapter 3 that the generalized eigenfunctions are regular. But as the reader will
see, it is simpler and more natural to reason directly with approximations, without relying on regularity.
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able to derive EDI by means of approximations in the negative Hilbert space (that is, the
Hilbert space in which the generalized eigenfunctions live).

Finally we needed a stronger initial length scale estimate for H(1) than the one proved
in [42] and this is why we proved some Lifshitz-type asymptotics. The perturbation
argument used to derive them in the continuum also works here, but at some point one
needs to know the width of the gap between the first two eigenvalues of H(1) restricted to
a finite graph. It turns out that this problem had been studied in Riemannian geometry,
and one way to estimate this gap is by means of Cheeger Inequality 4. This inequality was
later proved for finite quantum graphs by Nicaise in [84] and it also appeared in an article
by Post [91].

These are the main difficulties. There are also some details to settle to obtain the rest
of the input, namely the geometric resolvent inequalities and the Wegner estimate. For the
former, note that besides the usual resolvent inequality needed for single-particle models,
one needs an additional one in the multi-particle setting, namely one that compares the
Green functions of a certain type of N -cubes to those of n-cubes for n < N . A Combes-
Thomas estimate with a good exponent enters again in the proof. For the latter, the
main difference in the N -particle setting is that one needs to make sure that the random
potential is well distributed in any 1-particle direction. More precisely, the Wegner bound
one really needs for localization is not one that estimates the probability on the whole
space Ω, but a stronger conditional one instead. This is needed to prove the two-volume
bound later on.

1.2.4 Variations

In Chapter 3, we give a variation of these results. Namely, we are able to prove
exponential localization and strong dynamical localization of any order without relying on
generalized eigenfunction expansions. However, using this approach, we cannot achieve it
in the Hilbert-Schmidt norm. We also explain how far our results can be generalized if
the distribution of the random variables is only log-Hölder continuous. Finally, we give
a Combes-Thomas estimate which is valid for energies in arbitrary spectral gaps, but the
price to pay is that the proof becomes quite complicated.

1.3 Abstract Wegner estimates

The second part of this thesis is concerned with the formulation of some abstract
Wegner estimates and their application to concrete models.

1.3.1 Wegner estimates in general

The objective of Wegner estimates is to derive good bounds on the average number
of eigenvalues of a random Schrödinger operator HΛ(ω) restricted to a cube Λ in a fixed
interval I. More precisely, if χI(HΛ(ω)) is the spectral projection of HΛ(ω) onto the
interval I, then one seeks estimates of the type

E{tr[χI(HΛ(ω))]} ≤ CW · |Λ|α · |I|β

for some CW ≥ 0, α ≥ 1 and β > 0. Such estimates can be used in a proof of localization
via multiscale analysis, or in the study of continuity properties of the integrated density
of states (IDS) if α = 1.

4. We give a different approach in Appendix B, which goes by the name of Faber-Krahn inequality.
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1.3.2 Motivation

The motivation for this work came again from quantum graphs. A very interesting
feature of quantum graphs is that one can study randomness not only in the potential,
but also in the graph itself. This gives rise to two new models: quantum graphs with
random vertex couplings (RCM, i.e. random boundary conditions) and quantum graphs
with random edge lengths (RLM); see [55], [71] and [72] for localization results for these
models.

I was first interested in the RLM, so I studied the articles [72] and [78]. These works
establish many results including localization near the spectral edge and continuity of the
IDS. I focused on the Wegner bound, which I found to be particularly interesting as the
dependence on the random parameter becomes quite unusual for such models.

The precise description of these models would be too long, so I will only discuss two
major tricks that were applied in these works to obtain the Wegner bound. In [72], the idea
was to establish a relationship between the Schrödinger operator H(lω) on the quantum
graph ⊕e∈E L2(0, lωe ) and a discrete counterpart M(lω, I) which acts on the set of vertices,
i.e. in the Hilbert space ℓ2(V). Here I is the interval where the Wegner bound is to be
established. This simplified the task a little bit, because for finite subgraphs (EΛ,VΛ),
the space ℓ2(VΛ) is finite-dimensional. However, the dependence of M(lω, I) on lω = (lωe )
becomes difficult (terms like (sin lωe )−1 arise), so new arguments have to be conceived.

In [78], the first idea was to work with the random variables (ln lωe )e∈E instead of the
random variables (lωe )e∈E . This makes the dependence on the random parameter simpler,
and some precise relationships between the eigenvalues can be derived. Of course the
probability space needs to be modified in a corresponding way. The conclusion is not
immediate because even with this, the dependence on the random parameter is unusual.

Both works assumed the random variables (lωe ) are i.i.d. with an absolutely continuous
distribution. So I asked myself how we could relax this condition and work with a Hölder
continuous distribution.

A second motivation came from the usual Schrödinger operators on ℓ2(Zd) and L2(Rd),
but which have no covering condition (i.e. the single site potentials do not cover all points
in Zd or all regions in Rd respectively). For these operators the available proofs of the
Wegner bound are complicated if one does not assume the probability measure has a
density, see e.g. [30].

1.3.3 Results

We attempt to give a simple and unified treatment for these models in the paper [98].

Finite-dimensional Hilbert spaces

We first derive a Wegner bound for some random self-adjoint operators on a finite-
dimensional Hilbert space. We do not assume the distribution of the random variables
has a density.

As an application, we give optimal Wegner bounds for the discrete multi-particle An-
derson model for three different cases:

– If there is a covering condition, i.e. if there exists c > 0 such that V ω =
∑
α∈Zd ωαuα,

uα ≥ c · δα, we obtain both one-volume and two-volume bounds for arbitrary energy
intervals.

– Otherwise, if the perturbation is negative and supported on a half-space, we give a
Wegner bound near the spectral bottom. We show it is non-trivial, i.e. the interval
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we consider does contain some spectrum.
– Finally, if the perturbation is positive, we still have an optimal bound, but to il-

lustrate that it is non-trivial, we use a result from [37], where the authors consider
positive perturbations supported on Delone sets (which are examples of random
potentials with no covering condition).

Let us mention here that the half-space potentials we considered in the case of negative
perturbations are not Delone potentials, and that Delone potentials are not half-space
potentials either. So one can say that our paper [98] on one hand and the papers [37]
and [94] on the other hand complement each other. Finally, let us mention that all these
bounds assume the single-site potential has a fixed sign.

Later on we give in Chapter 5 many variations of the abstract theorem, including an
adaptation of the result of [30] to finite-dimensional spaces.

Separable Hilbert space

Next we consider the more general framework of separable Hilbert spaces and give two
bounds. The first one has almost no restriction on the energy interval or the form of the
random parameter, but requires a form of monotonicity and covering. The second one is
a bit more restrictive on the interval and on the form of the random parameter, but does
not require covering.

We apply the first bound to the RLM of [72]. This gives us a positive answer to
our initial question concerning this model: the bound of [72] can indeed be generalized
to Hölder continuous distributions. In particular, this allows to extend the localization
results of this paper to such distributions (if the coupling constant is positive).

We apply the second bound to RCMs, and also to continuum multi-particle Hamilto-
nians with no covering condition. Here we have again two situations: for negative pertur-
bations supported on half-spaces, we prove a Wegner bound near the spectral bottom of
the random operator, and we show it is non-trivial. For positive perturbations, our bound
is only non-trivial for Schrödinger operators in the fluctuation boundary regime. However,
here the situation is much better than in the lattice, because a large class of operators
with no covering condition in the continuum satisfy this regime. Namely, potentials with
some periodicity [62, Theorem 2.2], surface potentials and Delone potentials [21, Sections
4,5] and the general crooked potentials [66, Lemma 4.2].

Let us note that in contrast to the lattice case, the bounds that we obtain here are
not optimal, namely the dependence on |Λ| is not linear. But this is still sufficient for
localization purposes.

Let us briefly compare our results with the literature. It seems that half-space and
related potentials were not considered before 5, so our result for negative perturbations
seems to be new. For positive perturbations, our result is very close in spirit to [20].
However this paper builds on the results of [30], which are technically involved. We take
a completely different approach to prove our theorem, and our proof is quite elementary.
Still, the paper [20] has the advantage of providing a linear dependence on |Λ|, which
makes it suitable for the study of the integrated density of states. Our estimate for the
RCMs appears to be new.

Finally, let us mention that in the case of Delone operators in the continuum, the
very recent papers [95] and [66] were able to extend Wegner estimates to arbitrary small
intervals, not just intervals near the spectral bottom. Thus, in the case of continuum

5. Such potentials fall within the framework of [63], but here we show that there is indeed some spectrum
in the considered energy interval, a question which does not appear to be addressed in [63].
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Delone operators, our result is a special case of these papers, but our proof is very different
(for example, [66] builds on the results of [30] and uses a recent result [16]).

Let us emphasize again that all these results assume the single-site potential has a
fixed sign. This assumption is relaxed a little bit in [95], but does not disappear.

Let us discuss the proofs of our general theorems. The first bound follows from an easy
variation of Stollmann’s Lemma [103]; one should just pay attention to some measurability
issues. The proof of the second bound is based on two tricks: first as in [78] work with
the random variables (lnωj)j instead of (ωj)j , next modify Stollmann’s Lemma to make
it work for more general diagonal dependencies.

It is quite curious that we could not apply this theorem to the model of [78] which
inspired us part of the proof: the problem of this model is that the domain of the random
operator H(ℓω) depends on ℓω. We explain this issue in detail in Section 5.4.

1.4 Perspectives

There are many questions which are still waiting for an answer in both works.

1.4.1 Quantum graphs

Here we only studied the most simple multi-particle quantum graph. There are two
natural questions:

(i) first the geometry,

(ii) second the boundary conditions.

Can the proof be easily modified if they are generalized? Or does a really difficult situation
occur? It seems both questions are explored for single-particle models in the recent work
of Schubert [99], which could provide a good starting point.

We think that simple generalizations of the geometry, e.g. rectangular boxes instead of
cubes, should be straightforward. We also think one could assign many different volumes
for the elementary cubes, perhaps even make them grow; maybe as a compromise the
decay of the eigenfunctions would no longer be exponential but polynomial. Note however
that too general geometries may destroy the ergodicity. So it will be important to search
for geometries which give us at least a spectral bottom which is not random.

For the boundary conditions, we might lose the Lifshitz tails; one should take a closer
look at the proof. A few technical lemmas will also need to be modified.

Finally there is the fact that we used the embedding in the Euclidean space in many
situations, but this can probably be avoided without much difficulty. In particular, it seems
plausible that, to study multi-particle systems on any quantum graph, one should work
with a network of rectangular boxes. Indeed, we have a canonical isomorphism between
L2(M1, dµ1) ⊗L2(M2, dµ2) and L2(M1 ×M2, dµ1 ⊗ dµ2) for any measure spaces (M1, µ1)
and (M2, µ2), so in particular for networks with the 1-dimensional Lebesgue measure.

All this concerns localization; one could also investigate the spectral statistics of the
eigenvalues.

1.4.2 Wegner estimates

For the second work there are at least three questions.
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First, can we modify the abstract theorems, or prove new ones, which are capable of
treating Hamiltonians with sign-changing potentials? or more generally, operators with
non-monotone dependence on the random variables? To the best of our knowledge, the
problem of deriving a Wegner bound for such models without assuming the distribution
has a density is still open, at least in the continuum. So that’s a question which we think
will be very interesting. We attempt to solve it in Section 5.4.1. The papers [38, 69, 54,
111, 110, 75, 39] may allow us to go further.

The second question concerns the non-linearity issue in the Wegner bound for separable
Hilbert spaces. This problem arose because we make use of a modified version of Stoll-
mann’s Lemma to control the eigenvalues. Can we get rid of this phenomenon? Should
we first manipulate the trace of the spectral projection before using this lemma, like we
did in the case of finite-dimensional spaces? Should we modify Stollmann’s lemma itself?
This lemma is already optimal, but maybe if we find better properties of the eigenvalues
in question, we could add more hypotheses to the lemma and obtain a linear bound. Or
should we think of a totally different approach? Solving this question is worth the effort
because it can open a new road to the study of the continuity of the integrated density of
states.

The third question is the following: our Wegner bound for separable Hilbert spaces is
valid for very general potentials, but only holds for intervals near the spectral edge. So
the question is whether we can give a similarly short proof of a Wegner bound, but this
time at all energies, if we consider potentials that have some periodicity as in [30]. The
eventual non-linearity in |Λ| will certainly be a reasonable price to pay if the new proof is
elementary.





Chapter 2

Localization for a Multi-Particle
Quantum Graph

2.1 Multi-particle Quantum Graphs

In this chapter we study localization for (K,S, H(N)), the multi-particle quantum graph
introduced in Section 1.2. We shall construct it again in this section and recall the main
results, because we omitted some details in Chapter 1 to simplify the exposition.

2.1.1 1-Graphs

Our building block is the quantum graph (E ,V) of [42], given by the vertex set V = Zd

and the edge set E of all line segments of length 1 between two neighbouring vertices.
This graph is naturally embedded in Rd and we denote by Γ(1) ⊂ Rd the image of the
embedding. To describe Γ(1) explicitly, let (hj)dj=1 be the standard basis of Zd. Then

Γ(1) := {x ∈ Rd : x = m+ thj for some m ∈ Zd, j ∈ {1, . . . , d} and t ∈ [0, 1]} .

We denote the edge between m and m + hj by e = (m, j). Such an edge is identified
with the interval [0, 1] by sending x = m+ thj ∈ e to the point t. The Lebesgue measure
on [0, 1] then induces a natural measure 1 on Γ(1) which we denote by m(1).

A function f on Γ(1) induces a sequence (fe), fe : (0, 1) → C by setting f(x) =: f(m,j)(t)
when x = m+ thj , for some m ∈ Zd and t ∈ (0, 1). As equality in L2 is a.e., this in turn
identifies L2

(
Γ(1),dm(1)

)
with ⊕e∈E L2(0, 1).

Now fix q−, q+ ∈ R, q− < q+ and let µ be a probability measure on R with support
[q−, q+]. Consider the Hilbert space H := ⊕e∈E L2(0, 1), the probability space (Ω,P),
where Ω := [q−, q+]E and P = ⊗e∈E µ, and given ω = (ωe) ∈ Ω, define the form

h(1)
ω [f, g] =

∑

e∈E

[〈f ′
e, g

′
e〉 + 〈ωefe, ge〉

]
, D(h(1)

ω ) = W 1,2(Γ(1)),

where

W 1,2(Γ(1)) :=

{
f ∈ ⊕

e∈E
W 1,2(0, 1)

∣∣∣∣∣
f is continuous at each v ∈ V,∑

e∈E ‖fe‖2
W 1,2 < ∞

}
.

1. If A ⊂ Γ(1), then A =
⋃

Aej
for some disjoint Aej

⊂ ej . Each Aej
≡ Bej

⊂ [0, 1] and we set

m(1)(A) :=
∑

|Bej
|.
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This form corresponds to the self-adjoint operator H(1)(ω) : (fe) 7→ (−f ′′
e +ωefe) with

Kirchhoff boundary conditions (i.e. if f ∈ D(H(1)(ω)) and v ∈ V, then f is continuous at
v and satisfies

∑d
j=1 f

′
(v,j)(0) −∑d

j=1 f
′
(v−hj ,j)

(1) = 0). It is shown in [42] that H(1)(ω) has
an almost sure spectrum Σ = [q−,+∞) and that localization holds near q−.

2.1.2 n -Graphs

Let us emphasize that throughout this chapter and the next one, the number of par-
ticles

N is fixed.

We will need to consider Hamiltonians H(n)(ω) for 1 ≤ n ≤ N because we will later deduce
some spectral properties of H(N)(ω) from those of H(n)(ω).

So let us fix 1 ≤ n ≤ N and consider n-particle systems. Formally, quantum mechanics
tells us that the Hilbert space corresponding to n distinguishable particles, each living in
Γ(1), is the tensor product L2(Γ(1),dm(1)) ⊗ . . .⊗ L2(Γ(1),dm(1)). Taking

Γ(n) := Γ(1) × . . .× Γ(1) and m(n) := m(1) ⊗ . . .⊗m(1) ,

this space may be identified with L2
(
Γ(n),dm(n)

)
.

If (hj)dj=1 is the canonical basis of Zd, then each point x = (x1, . . . , xn) ∈ Γ(n) takes
the form xk = mk + tkhjk for some mk ∈ Zd, tk ∈ [0, 1] and jk ∈ {1, . . . , d}. By varying tk

from 0 to 1, we thus obtain a cube κ which may be identified with [0, 1]n by sending such
an x to (t1, . . . , tn). Thus, we may regard Γ(n) as a couple (K,S), where K is a collection
of n-dimensional cubes κ and S is the collection of the boundaries σ of κ.

For d = 1, Γ(2) = R2. If we regard it as a couple (K,S), then it consists of unit squares
covering R2 and cornered in Z2. For d = 2, let x, y, z, t be the coordinate axes of R4. Then
Γ(2) lives in the planes xz, xt, yz and yt, and all their Z4-translates, and consists of unit
squares cornered in Z4. Squares in the planes xy and zt (and their Z4-translates) are not
allowed 2. More generally, Γ(2) lives in the translates of d2 planes in R2d and each affine
plane is an infinite collection of κ.

For n = 3, the only case that can be visualized is that of d = 1, in which case Γ(3) = R3,
and is regarded as the set of all cubes of unit volume cornered in the lattice Z3.

If the points of κ take the form (x1, . . . , xn) with xk = mk + tkhjk for some mk ∈ Zd,
tk ∈ [0, 1] and jk ∈ {1, . . . , d}, we will denote κ =

(
(m1, j1), . . . , (mn, jn)

)
. Hence, any

κ ∈ K may be written as κ = (e1, . . . , en) for some ej ∈ E .
A function f on Γ(n) induces a sequence (fκ), fκ : (0, 1)n → C by setting f(x) =:

f((m1,j1),...,(mn,jn))(t1, . . . , tn) when xk = mk + tkhjk , for some mk ∈ Zd and tk ∈ (0, 1).
As equality in Lp is a.e., this in turn identifies Lp

(
Γ(n),dm(n)

)
with ⊕κ∈K Lp(0, 1)n for

1 ≤ p < ∞, where ‖(fκ)‖pLp :=
∑
κ∈K ‖fκ‖pLp(0,1)n .

Each σ is the closed union of 2n “open faces” σi which may be identified with (0, 1)n−1.
Given x = (x1, . . . , xn) ∈ Γ(n) ⊂ Rnd and a partition {1, . . . , n} = J ∪ J c, we put

xJ := (xj)j∈J , xJ c := (xj)j∈J c and define

dist(xJ , xJ c) := min{|xi − xj | : i ∈ J , j ∈ J c}, where |y| := ‖y‖∞ for y ∈ Rd .

2. Here we identified (R2)2 with R4 via ((a, b), (c, d)) 7→ (a, b, c, d). If (a, b, c, d) ∈ Γ(2), then (a, b) ∈ Γ(1),
so (a, b) = (m1, m2)+s1(1, 0) or (a, b) = (m1, m2)+s1(0, 1) for some m1, m2 ∈ Z and s1 ∈ [0, 1]. Similarly,
for (c, d), so we may find mj ∈ Z and sk ∈ [0, 1] such that (a, b, c, d) = (m1 + s1, m2, m3 + s2, m4) or
(m1, m2 + s1, m3 + s2, m4) or (m1 + s1, m2, m3, m4 + s2) or (m1, m2 + s1, m3, m4 + s2). By varying sk from
0 to 1, we obtain squares in the planes xz, yz, xt and yt respectively, but never in the planes xy or zt.
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Now fix q−, q+ ∈ R, q− < q+, and let µ be a probability measure on R with support
[q−, q+]. Consider the probability space (Ω,P) with Ω := [q−, q+]E , P := ⊗e∈E µ, the
Hilbert space H := ⊕κ∈K L2(0, 1)n, and given ω = (ωe) ∈ Ω, define the form

h(n)
ω [f, g] =

∑

κ∈K

[〈∇fκ,∇gκ〉 + 〈V ω
κ fκ, gκ〉], D(h(n)

ω ) = W 1,2(Γ(n)),

where

W 1,2(Γ(n)) :=

{
f ∈ ⊕

κ∈K
W 1,2((0, 1)n)

∣∣∣∣∣
f is continuous on each σi,∑

κ∈K ‖fκ‖2
W 1,2 < ∞

}
.

By continuity on σi we mean that whenever σi is a common face to κ1 and κ2, then
fκ1 |σi = fκ2 |σi in the trace sense 3. The potential is given by V ω

κ := U
(n)
κ + Wω

κ , where
Wω
κ is an n-particle random potential, Wω

κ := ωe1 + . . . + ωen if κ = (e1, . . . , en). The
sequence (U (n)

κ ) is induced from a non-random interaction potential U (n) : Γ(n) → R with
the following properties:

(1) U (n) is bounded and non-negative: there exists u0 > 0 such that

0 ≤ U (n)(x) ≤ u0 for x ∈ Γ(n) .

(2) U (n) has finite range 4: there exists r0 > 0 such that

dist(xJ , xJ c) ≥ r0 =⇒ U (n)(x) = U (n′)(xJ ) + U (n′′)(xJ c)

for any partition {1, . . . , n} = J ∪ J c with |J | = n′ and |J c| = n′′.

(3) There is no one-particle potential:

U (1) ≡ 0.

For n = 2, U (2) is thus function satisfying for (x1, x2) ∈ Γ(2) ⊂ (Rd)2

0 ≤ U (2)(x1, x2) ≤ u0 and |x1 − x2| ≥ r0 =⇒ U (2)(x1, x2) = 0.

Notice that if |xi − xj | ≥ r0 for all i 6= j, then U (n)(x) = U (1)(x1) + . . . + U (1)(xn) = 0.
Condition (2) says that more generally, if xJ and xJ c are far apart, then U (n) decouples
as prescribed.

We may assume that r0 ∈ N; if this is not the case, we just consider ⌊r0⌋ + 1, where
⌊x⌋ denotes the integer part of x ∈ R.

Theorem 2.1.1. Given ω ∈ Ω, h
(n)
ω is closed, densely defined and bounded from below.

The unique self-adjoint operator H(n)(ω) associated with h
(n)
ω is given by

H(n)(ω) : (fκ) 7→ (−∆fκ + V ω
κ fκ), for (fκ) ∈ D(H(n)(ω)).

Proof. See the Appendix, Theorem 2.11.1.

3. This means that if γ : W 1,2((0, 1)n) → L2((0, 1)n−1) is the trace operator, then γ(fκ1 )(x) = γ(fκ2 )(x)
for a.e. x ∈ σi.

4. This includes the 2-body interaction potentials U (n)(x) =
∑

1≤i<j≤n
F (xi −xj), where F : Γ(1) → R

satisfies F (y) = 0 if |y| ≥ r0. Indeed, if dist(xJ , xJ c ) ≥ r0, then we will have F (xi − xj) = 0 whenever

i ∈ J and j ∈ J c, so that U (n)(x) indeed decouples into U (n′)(xJ ) + U (n′′)(xJ c ).
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We did not provide the explicit domain of H(n)(ω) as it is not needed in the sequel.
It is a subtle question to know exactly how regular the functions (fκ) ∈ D(H(n)) are; in
particular, it is not clear if the normal derivatives of fκ have a trace on σi. For n = 1, it
is easy to see that if (fe) ∈ D(H(1)), then fe ∈ W 2,2(0, 1) for each e. This gives a meaning
in particular to the Kirchhoff conditions. Once n ≥ 2 however, corner singularities appear
which, in general, destroy the regularity of the fκ, see e.g. [51]. If we had asked each fκ to
satisfy Dirichlet or Neumann conditions, we would have fκ ∈ W 2,2((0, 1)n) (see [51, Section
3.2]). However, as we ask fκ to be continuous on σi, this regularity result is no longer
clear. See [85, Section 2.3.2] for some results when n = 2 and [14] for some boundary
conditions ensuring regularity also when n = 2. For general n-dimensional polyhedral
interface problems, we record the result of [7].

Given x ∈ ZNd put C(x) := {y ∈ RNd : |y − x| < 1}, where |z| := ‖z‖∞ and let
χx := χΓ(N)∩ C(x). We say that ψ ∈ L2(Γ(N)) decays exponentially with mass m > 0 if

lim sup
|x|→∞

log ‖χxψ‖
|x| ≤ −m.

We now state our main results. First of all, the lower part of the spectrum is deterministic:

Theorem 2.1.2. There exists Ω0 ⊆ Ω with P(Ω0) = 1 such that for all ω ∈ Ω0 :

[nq−, nq+] ⊂ σ(H(n)(ω)) ⊆ [nq−,+∞).

In particular, inf σ(H(n)(ω)) = nq− almost surely.

Proof. See the Appendix, Theorem 2.11.2.

Next, if µ is Hölder continuous, we have localization near the spectral edge of H(N)(ω).

Theorem 2.1.3 (Exponential localization). There exist ε0 = ε0(N, d, q−, r0) > 0 and
m > 0 such that for a.e. ω the spectrum of H(N)(ω) in I = [Nq−, Nq− + ε0] is pure point
and the eigenfunctions corresponding to eigenvalues in I decay exponentially with mass
m.

Theorem 2.1.4 (Strong HS-dynamical localization). There exists ε0 = ε0(N, d, q−, r0) >
0 such that for I = [Nq−, Nq− + ε0], we have for any bounded K ⊂ Γ(N) and all s > 0,

E
{

sup
‖f‖≤1

‖Xs/2f(H(N)(ω))Eω(I)χK‖2
2

}
< ∞ ,

where (Xψ)(x) := |x| · ψ(x) for ψ ∈ L2(Γ(N)), Eω is the spectral projection of H(N)(ω)
and the supremum is taken over bounded Borel functions, ‖f‖ := ‖f‖∞.

Theorems 2.1.3 and 2.1.4 are proved in Sections 2.9 and 2.10 respectively, using the
multi-particle multiscale analysis introduced by Chulaevsky and Suhov in [27], and adapted
to the continuum by A. Boutet de Monvel et al. in [19]. The traditional single-particle
multiscale analysis was introduced by Fröhlich and Spencer in [46].

Let us note that for N = 1 our theorems improve the main result of [42], first by
removing the technical assumption (∃τ > d

2 : µ([q−, q− + h]) ≤ hτ for small h), next by
establishing strong dynamical localization in the HS norm. We are able to remove the
assumption on µ by proving Lifshitz-type asymptotics for this model in Section 2.6, which
to the best of our knowledge, were not proven in earlier papers.
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2.2 Finite-volume operators and geometry of cubes

2.2.1 Finite-volume operators

Fix 1 ≤ n ≤ N . Throughout the chapter we use the sup norm of Rnd :

|x| := ‖x‖∞, |x| := ‖x‖∞

for x ∈ Rd and x ∈ Rnd. Given L ∈ N∗, we define 1-cubes with center u ∈ Zd by

Λ(1)
L (u) = {x ∈ Rd : |x− u| < L}, |Λ(1)

L (u)| = (2L)d .

Given u = (u1, . . . , un) ∈ Znd and L = (L1, . . . , Ln) ∈ Nn with Lj ≥ 1, we define n-
rectangles and n-cubes by

Λ(n)
L (u) =

n∏

j=1

Λ(1)
Lj

(uj), Λ(n)
L (u) = Λ(n)

(L,...,L)(u) =
n∏

j=1

Λ(1)
L (uj) .

Note that a cube is always open. We take u ∈ Znd and L ∈ Nn above to ensure that
the closure 5 of Γ(n) ∩ Λ(n)

L (u) is a subgraph of Γ(n). Abusing notation, we also denote this

closure by Γ(n) ∩ Λ(n)
L (u). For 1-graphs, taking the closure means that we add the vertices

lying on ∂Λ(1)
L (u) that belong to inner edges. This should not be confused with the larger

subgraph Γ(1) ∩ Λ
(1)
L (u).

Lemma 2.2.1. The following estimates hold:

#{E(Γ(1) ∩ Λ(1)
L )} = d(2L)(2L− 1)d−1 ≤ d · |Λ(1)

L | ,(NB.1)

#{K(Γ(n) ∩ Λ(n)
L )} =

n∏

j=1

(
d(2Lj)(2Lj − 1)d−1

)
≤ dn · |Λ(n)

L | .(NB.n)

Proof. See the Appendix, Lemma 2.11.3.

We define the discrete cubes B
(n)
L (u) and the cells C(u) by

B
(n)
L (u) = Λ(n)

L (u) ∩ Znd, C(u) = Λ(n)
1 (u) ⊂ Rnd .

A finite union of cells will be called a cellular set. For L ≥ 7, we denote

Λout
L (u) = Λ(n)

L (u) \ Λ(n)
L−6(u), Bout

L (u) = Λout
L (u) ∩ Znd .

We define the restriction of H(n)(ω) to a rectangle Λ = Λ(n)
L to be the operator H(n)

Λ (ω)
associated with the form

h
(n)
ω,Λ[f, g] =

∑

κ∈K(Γ∩Λ)

[〈∇fκ,∇gκ〉 + 〈V ω
κ fκ, gκ〉], D(hωΛ) = W 1,2(Γ(n) ∩ Λ) ,

where W 1,2(Γ(n) ∩ Λ) is the set of f ∈ ⊕κ∈K(Γ∩Λ)W
1,2((0, 1)n) which are continuous on

inner σi. For n = 1, the functions f ∈ D(H(1)
Λ (ω)) satisfy Kirchhoff conditions at each

vertex in Λ. Note that for boundary vertices, Kirchhoff conditions are just Neumann
conditions.

5. The closure here is with respect to the metric induced on Γ(n) from the sup norm of Rnd. Taking
the closure means that we add the σi lying on ∂Λ

(n)
L

that belong to inner κ.
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Lemma 2.2.2. H
(n)
ΛL

(ω) has a compact resolvent. Its discrete set of eigenvalues denoted

by Ej(H
(n)
ΛL

(ω)) counting multiplicity satisfies the following Weyl law:

(WEYL.n) ∀S ∈ R ∃C = C(n, d, S − nq−) : j > C|Λ(n)
L | =⇒ Ej(H

(n)
ΛL

(ω)) > S .

Moreover, C is independent of ω, and if S > S∗(n, q−), then C ≤
⌊
dn(S−nq−)n/2

(4π)n/2Γ(n/2)

⌋
+ 1.

Proof. See the Appendix, Lemma 2.11.4.

In the rest of this chapter, for a bounded volume K ⊂ Rnd we put

χK := χΓ(n) ∩K , χx := χΓ(n) ∩ C(x) .

Given ω ∈ Ω, E /∈ σ(H(n)
Λ (ω)) and i, j ∈ Λ(n) ∩ Znd, we define 6

GΛ(n)(E) := (H(n)
Λ (ω) − E)−1, GΛ(n)(i, j;E) := χiGΛ(n)(E)χj .

2.2.2 Geometry of cubes

This subsection gives a slight modification of some geometric arguments introduced in
[24] and [19], which are relevant to us because Γ(n) ⊂ Rnd.

Definition 2.2.3. Given n ≥ 2 and a partition {1, . . . , n} = J ∪ J c, we say that Λ(n)
L (u)

is J -decomposable if
dist(uJ , uJ c) ≥ 2L+ r0 .

We say that Λ(n)
L (u) is decomposable if there exists a partition {1, . . . , n} = J ∪ J c such

that Λ(n)
L (u) is J -decomposable.

A J -decomposable cube Λ(n)
L (u) will henceforth be denoted by

Λ(n)
L (u) = Λ(n′)

L (uJ ) × Λ(n′′)
L (uJ c), where n′ = |J | and n′′ = |J c| .

Remark 2.2.4. Suppose Λ(n)
L (u) is J -decomposable and identify L2(Γ(n) ∩ Λ(n)

L (u)) ≡
L2(Γ(n′)∩Λ(n′)

L (uJ ))⊗L2(Γ(n′′)∩Λ(n′′)
L (uJ c)). Any x ∈ Λ(n)

L (u) satisfies dist(xJ , xJ c) > r0,

hence U (n)(x) = U (n′)(xJ ) + U (n′′)(xJ c). Consequently, H(n)
ΛL(u) = H

(n′)
ΛL(uJ ) ⊗ I + I ⊗

H
(n′′)
ΛL(uJ c ). If now {(ϕa, λa)}a and {(ψb, µb)}b are orthonormal bases of eigenfunctions of

H
(n′)
ΛL(uJ ) andH(n′′)

ΛL(uJ c ) respectively, then Ψa,b(x) := ϕa(xJ )⊗ψb(xJ c) form an orthonormal

basis of eigenfunctions for H(n)
ΛL(u) with corresponding eigenvalues Ea,b = λa + µb. Since

Pa,b := 〈·,Ψa,b〉Ψa,b = 〈·, ϕa ⊗ ψb〉ϕa ⊗ ψb =
(〈·, ϕa〉ϕa

)⊗ (〈·, ψb〉ψb
)

:= Pa ⊗ Pb ,

by the functional calculus, we get for any Borel function η : σ(H(n)
ΛL(u)) → C

(2-1) η(H(n)
ΛL(u)) =

∑

a,b

η(Ea,b)Pa,b =
∑

a

Pa ⊗
(∑

b

η(Ea,b)Pb
)
.

6. We should write Gω
Λ(n) to be very precise, but we follow the established custom of omitting ω.
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Definition 2.2.5. Let D := {x = (x, . . . , x) : x ∈ Zd} ⊂ Znd. A cube Λ(n)
L (u) is partially

interactive (PI) if dist(u,D) ≥ (n− 1)(2L+ r0), and fully interactive (FI) otherwise.

Lemma 2.2.6. A partially interactive cube is decomposable.

Proof. See the Appendix, Lemma 2.11.6.

For n ≥ 1, j = 1, . . . , n, we define projections of n-rectangles on Rd by

ΠjΛ
(n)
L (u) = Λ(1)

Lj
(uj), ΠΛ(n)

L (u) =
n⋃

j=1

Λ(1)
Lj

(uj) .

We define Π∅Λ(n)
L (u) := ∅ and put for ∅ 6= J ⊆ {1, . . . , n},

ΠJ Λ(n)
L (u) =

⋃

j∈J
ΠjΛ

(n)
L (u) =

⋃

j∈J
Λ(1)
Lj

(uj) .

Definition 2.2.7. We say Λ(n)
L (u) is J -pre-separable from Λ(n)

K (v) if

ΠJ Λ(n)
L (u) ∩ (ΠJ cΛ(n)

L (u) ∪ ΠΛ(n)
K (v)

)
= ∅ .

Λ(n)
L (u) and Λ(n)

K (v) are said to be pre-separable if there exists ∅ 6= J ⊆ {1, . . . , n} such

that Λ(n)
L (u) is J -pre-separable from Λ(n)

K (v) or Λ(n)
K (v) is J -pre-separable from Λ(n)

L (u).

Two cubes Λ(n)
L (u) and Λ(n)

L (v) are said to be separable if they are pre-separable and
if |u − v| ≥ rn,L, where

rn,L := 4(n− 1)(2L+ r0) + 2L .

Finally, they are said to be completely separated if they are separable with J = {1, . . . , n},
i.e. if ΠΛ(n)

L (u) ∩ ΠΛ(n)
L (v) = ∅ and |u − v| ≥ rn,L.

Notice that if two cubes are completely separated, the corresponding Hamiltonians
H

(n)
ΛL(u) and H

(n)
ΛL(v) have independent spectra (because ΠΛ(n)

L (u) ∩ ΠΛ(n)
L (v) = ∅).

Let us give some criteria for separability. Given x ∈ Znd, put kx := #{x1, . . . , xn}.
Then each x ∈ Znd gives rise to knx related points denoted by x(j) = (x(j)

1 , . . . , x
(j)
n ), with

x
(j)
k ∈ {x1, . . . , xn} for all k. For example, for d = 1, the point (1, 5) ∈ Z2 gives rise to

(1, 1), (1, 5), (5, 1) and (5, 5). Taking

K(n) := nn,

we have knx ≤ K(n) and the following lemmas hold.

Lemma 2.2.8. Let x,y ∈ Znd, L ∈ N∗ and take rn,L as in Definition 2.2.7. Then

1) If y /∈ ⋃K(n)
j=1 Λ(n)

2nL(x(j)), then Λ(n)
L (y) and Λ(n)

L (x) are pre-separable.

2) If y /∈ ⋃K(n)
j=1 Λ(n)

rn,L(x(j)), then Λ(n)
L (y) and Λ(n)

L (x) are separable.

3) If y /∈ Λ(n)
2rn,L

(0), then Λ(n)
L (y) is separable from any Λ(n)

L (x) satisfying x ∈ Λ(n)
rn,L(0).

Proof. See the Appendix, Lemma 2.11.7.

Lemma 2.2.9. Separable FI cubes are completely separated.

Proof. See the Appendix, Lemma 2.11.8.
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2.2.3 MSA strategy

We summarize here the multiscale analysis (MSA) strategy which we follow to prove
localization in an interval I. Let us start with 1-particle systems:

1. Find L0 > 0 and m0 > 0 such that the probability of having one “good” cube among
any disjoint pair ΛL0(u),ΛL0(v) is high. Here ΛL0 is good if for any E ∈ I and i, j far
apart, ‖GΛL0

(i, j;E)‖ ≤ e−m0L0 . This is the initial length scale estimate (ILS).

2. Find an increasing sequence of length scales Lk → ∞ for which a similar decay property
holds, with an increasingly good probability (typically 1 − L−2p

k for some p > 0). This
is done by induction on k and is the heart of multiscale analysis.

3. Use this sequence to show that the generalized eigenfunctions of H(1) corresponding to
generalized eigenvalues in I exhibit an exponential decay.

4. Deduce exponential localization by proving that generalized eigenfunctions of H(1) exist
spectrally almost everywhere.

5. Establish dynamical localization.

For step 1, one shows that if a cube Λ is “bad”, then dist(σ(H(1)
Λ ), inf σ(H(1))) must be

very small. This is done ad absurdum using a Combes-Thomas estimate. Then one proves
this distance cannot be too small using Lifshitz tails (one can also prove step 1 without
Lifshitz tails in some cases). For step 2, one first relates GΛ′(x, y;E) to GΛ(z, y;E) for
Λ′ ⊃ Λ to deduce the decay of GΛLk

(x, y;E) from the decay of GΛLk−1
(z, y;E). This is

done using the Geometric resolvent inequality. However, in this inequality the decay term
from GΛLk−1

(z, y;E) gets multiplied by ‖GΛLk
(x,w;E)‖. So to make sure the product

remains very small, it is necessary to show that ‖GΛLk
(x,w;E)‖ is not too big. This is

done using Wegner estimates. The remaining steps will be explained in more detail later.
The main difficulty in adapting the previous scheme to multi-particle systems is the

fact that Hamiltonians restricted to disjoint cubes are no longer independent. A natural
idea is then to restrict the scheme to completely separated cubes, since the corresponding
Hamiltonians will then be independent. Unfortunately this cannot work, as there is no
analog of Lemma 2.2.8 for such cubes (e.g. [0, 1] × [1, 2] and [0, 1] × [r, r + 1] are not
completely separated, no matter how big r is) and consequently no analog of Lemma 2.7.4
either. This is why one is forced to work with the larger class of separable cubes. As Hamil-
tonians restricted to such cubes are not independent, a new strategy must be conceived
especially in the induction step; see Section 2.7.2.

2.3 Combes-Thomas estimate

We prove our Combes-Thomas estimate by deriving good bounds on the Schrödinger
semigroup. This was done before in [43] using the Feynman-Kac formula and the explicit
form of the heat kernel. We shall instead prove our bound via a Davies-Gaffney estimate.
This method has several advantages: it does not presuppose a heat kernel estimate, it
proves the Combes-Thomas estimate for any energy below the spectral bottom, not just
below the infimum of the potential, and the resulting upper bound is easier to control.

Let us mention that the idea of proving Combes-Thomas estimates via semigroups
appeared much earlier in [100, Lemma B.7.11]. Compared to our proof and the proof of
[43], the method of [100] requires much more input, but it has the advantage of being valid
for arbitrary energies outside the spectrum 7.

7. We prove an estimate which is valid for energies in spectral gaps above the spectrum in Section 3.2
using the method of [9], which was adapted to quadratic forms in [104].
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We start with a technical lemma.

Lemma 2.3.1. Let Λ(n) be a cube or Λ(n) = Rnd. If u ∈ W 1,2(Γ(n) ∩ Λ(n)) and ϕ is a
bounded Lipschitz continuous function on Γ(n) ∩ Λ(n), then ϕu ∈ W 1,2(Γ(n) ∩ Λ(n)) and
∇(ϕu) = u∇ϕ+ ϕ∇u.

Here ϕu := (ϕκuκ), where (ϕκ) is obtained from ϕ as in Section 2.1.2.

Proof. By [104, Proposition 4.1.27] we have ϕκuκ ∈ W 1,2((0, 1)n) and ∇(ϕκuκ) = uκ∇ϕκ+
ϕκ∇uκ for all κ. So it remains to show ϕu is continuous on inner σi. By the density
of C∞([0, 1]n) in W 1,2((0, 1)n) (see [82, Section 1.1.6]) and the continuity of the trace
operator γ : W 1,2((0, 1)n) → L2((0, 1)n−1), we may assume all uκ ∈ C([0, 1]n). Since each
ϕκ is bounded and uniformly continuous on (0, 1)n, it has a unique bounded continuous
extension ϕ̃κ on [0, 1]n. Thus, ϕ̃κuκ ∈ C([0, 1]n) and γ(ϕκuκ) is just the restriction of
ϕ̃κuκ to ∂κ. Now if σi is a common face to κ1 and κ2, the extensions ϕ̃κ1 and ϕ̃κ2 must
coincide on σi since ϕ is Lipschitz continuous. Hence,

γ(ϕκ1uκ1) = (ϕ̃κ1uκ1)|σi = (ϕ̃κ2uκ2)|σi = γ(ϕκ2uκ2) ,

since u is continuous on σi. Hence ϕu is continuous on σi.

In the following dist(·, ·) refers to the distance induced by the sup norm of Rnd.

Lemma 2.3.2 (Improved Davies-Gaffney estimate). Let Λ(n) be a cube or Λ(n) = Rnd.
Let A1, A2 ⊂ Λ(n) be cellular sets such that dist(A1, A2) =: δ ≥ 1 and suppose f, g ∈
L2(Γ(n) ∩ Λ(n)), supp f ⊂ A1 and supp g ⊂ A2. Then if sω := inf σ(H(n)

Λ (ω)), we have

∀t > 0 : |〈e−tH(n)
Λ

(ω)f, g〉| ≤ e−tsωe− δ2

4t ‖f‖‖g‖ .

Proof. We first assume Λ(n) is a cube. Put H := H
(n)
Λ (ω) − sω. Given x ∈ Λ(n), let

w̃(x) := dist(x, A1). Then |w̃(x)−w̃(y)| ≤ |x−y|, hence ‖∇w̃‖∞ ≤ 1 and eζw̃(·) is bounded,
Lipschitz continuous on Λ(n) for ζ > 0. Let w be the restriction of w̃ to Γ(n) ∩ Λ(n). Then
by Lemma 2.3.1, if h is the form associated to H, then eζwu ∈ D(h) whenever u ∈ D(h).
Now given f ∈ D(H), t > 0 put ft := e−tHf and note that ft ∈ D(H). Fix β > 0 and as
in [33, Theorem 3.3] consider

E(t) = 〈ft, fteβw〉 = ‖fteβw/2‖2.

Then
E′(t) = −2 Re〈Hft, fteβw〉 = −2 Re h[ft, fteβw]

and thus

E′(t)
2

= − Re
(〈∇ft,∇(fteβw)〉 + 〈(V ω − sω)ft, fteβw〉)

= − Re〈∇ft,∇(fteβw)〉 − 〈V ωft, fte
βw〉 + sω‖fteβw/2‖2 .

Now by min-max for forms we have

sω = inf
f∈D(h

(n)
ω,Λ

),‖f‖=1

h
(n)
ω,Λ[f, f ] ≤ ‖fteβw/2‖−2 · h(n)

ω,Λ[fteβw/2, fte
βw/2] ,
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where h
(n)
ω,Λ is the form associated to H(n)

Λ (ω). Thus,

sω‖fteβw/2‖2 ≤ 〈∇(fteβw/2),∇(fteβw/2)〉 + 〈V ωfte
βw/2, fte

βw/2〉
= 〈(∇ft)eβw/2, (∇ft)eβw/2〉 + 2 Re〈(∇ft)eβw/2, ft(

β
2 ∇w)eβw/2〉

+ 〈ft(β2 ∇w)eβw/2, ft(
β
2 ∇w)eβw/2〉 + 〈V ωft, fte

βw〉
= 〈∇ft, (∇ft)eβw〉 + Re〈∇ft, ft(β∇w)eβw〉

+ β2

4 ‖ft(∇w)eβw/2‖2 + 〈V ωft, fte
βw〉

= Re〈∇ft,∇(fteβw)〉 + 〈V ωft, fte
βw〉 + β2

4 ‖ft(∇w)eβw/2‖2 ,

where we used Lemma 2.3.1. We thus have

E′(t)
2

≤ β2

4
‖ft(∇w)eβw/2‖2 ≤ β2

4
‖fteβw/2‖2 =

β2E(t)
4

.

Hence, E(t) ≤ eβ
2t/2E(0). Moreover,

‖χA2ft‖2 ≤ ‖χA2e
−βw/2‖2

∞‖eβw/2ft‖2 ≤ e−βδE(t) .

Since supp f ⊂ A1 and w = 0 on A1, we have E(0) = ‖eβw/2f‖2 = ‖f‖2. Hence,

‖χA2ft‖2 ≤ e−βδE(t) ≤ exp
(β2t

2
− βδ

)
E(0) = exp

(β2t

2
− βδ

)
‖f‖2 .

Choose β = δ/t. Since supp g ⊂ A2 we finally get

|〈e−tHf, g〉|2 = |〈χA2ft, g〉|2 ≤ ‖χA2ft‖2 · ‖g‖2 ≤ e−δ2/2t‖f‖2‖g‖2 .

The assertion follows (if Λ(n) is a cube) by noting that H is densely defined and that

e−tH = exp(−t(H(n)
Λ (ω) − sω)) = etsωe−tH(n)

Λ
(ω) .

Finally, all the arguments remain valid if Λ(n) = Rnd, except that eζw is no longer
bounded. We thus consider a large cube Ξ containing A1 and A2 and replace w̃ by
a Lipschitz function ρ of compact support such that ρ(x) = dist(x, A1) if x ∈ Ξ and
‖∇ρ‖∞ ≤ 1, then take w to be the restriction of ρ to Γ(n).

Theorem 2.3.3 (Combes-Thomas estimate). Let Λ(n) be a cube or Λ(n) = Rnd and
let A,B ⊂ Λ(n) be cellular sets such that dist(A,B) =: δ ≥ 1. Then for E < sω :=
inf σ(H(n)

Λ (ω)) and η := sω − E we have

‖χA(H(n)
Λ (ω) − E)−1χB‖ ≤

√
π

2

( √
δ

η3/4
+

3

8
√
δη5/4

)
e−δ√η .

Proof. Put H = H
(n)
Λ (ω). Given f, g ∈ L2(Γ(n) ∩ Λ(n)) with ‖f‖ = ‖g‖ = 1 we have

|〈χAe−tHχBf, g〉| = |〈e−tHχBf, χAg〉| ≤ e−tsωe− δ2

4t ‖χBf‖‖χAg‖ ≤ e−tsωe− δ2

4t

by Lemma 2.3.2. Thus

‖χAe−tHχB‖ ≤ e−tsωe− δ2

4t .
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Now for E < sω we have (H − E)−1 =
∫∞

0 etEe−tH dt. Hence

‖χA(H − E)−1χB‖ ≤
∫ ∞

0
e−tηe− δ2

4t dt =
δ√
η
K1(δ

√
η)

where K1 is the modified Bessel function 8 and we used [49, Formula 3.324] to evaluate
the integral. Now by [1, Formula 9.7.2] and the remark after it, we have for real z > 0 the

estimate K1(z) ≤
√

π
2z e

−z
(
1 + 3

8z

)
. This proves the assertion.

2.4 Geometric Resolvent Inequalities

In this section we follow [104] to prove Theorems 2.4.2 and 2.4.4 and use arguments
from [17] to prove Theorem 2.4.5.

Throughout this section, Γ := Γ(n). If Q ⊂ Rnd is a cellular set and 1 ≤ k ≤ ∞, put

C̃kc (Γ ∩Q) := {f |Γ : f ∈ Ckc (Q)}, W 1,2
0 (Γ ∩Q) := {f ∈ W 1,2(Γ ∩Q) : f |∂Q = 0}

where f |∂Q is understood in the trace sense. We start with a lemma which has to be
justified in the context of multi-particle quantum graphs.

Lemma 2.4.1. Let Λ ⊂ Rnd be a cube. Then for all h ∈ (W 1,2
0 (Γ ∩ Λ))n and w ∈

W 1,2(Γ ∩ Λ) :
〈∇ · h,w〉 = −〈h,∇w〉 .

Proof. Let h = ((h(1)
κ ), . . . , (h(n)

κ )) and w = (wκ). Fix κ ∈ K(Γ ∩ Λ) and let σ = ∂κ. Using
the notation ∂

∂xi ≡ ∂i, we have by Green’s formula (see e.g. [51, Theorem 1.5.3.1])

(4-1) 〈∂ih(i)
κ , wκ〉 = −〈h(i)

κ , ∂iwκ〉 +
∫

σ(κ)
h(i)
κ w̄κν

(i) dσ ,

where the values of h(i)
κ w̄κ on σ := σ(κ) are understood in the trace sense and ν :=

(ν(1), . . . , ν(n)) is the outward unit vector normal to σ, well defined on each σj . Identify
κ ≡ [0, 1]n as in Section 2.1.2 and denote points in κ by (x1, . . . , xn), with xi ∈ [0, 1]. If σj

is the face with points (x1, . . . , xj−1, 0, xj+1, . . . , xn) := x̂j0 and if σo(j) is the face opposite
to it with points (x1, . . . , xj−1, 1, xj+1, . . . , xn) := x̂j1, then ν|σj = (0, . . . , 0,−1, 0, . . . , 0)
and ν|σo(j) = (0, . . . , 0, 1, 0, . . . , 0). Hence

∫

σ(κ)
h(i)
κ w̄κν

(i)dσ =
∫

σo(i)(κ)
h(i)
κ (x̂i1)w̄κ(x̂i1) dx̂i −

∫

σi(κ)
h(i)
κ (x̂i0)w̄κ(x̂i0) dx̂i ,

where dx̂i := dx1 . . .dxi−1dxi+1 . . .dxn. Now consider
∑

κ∈K(Γ∩Λ)

( ∫

σo(i)(κ)
h(i)
κ (x̂i1)w̄κ(x̂i1) dx̂i −

∫

σi(κ)
h(i)
κ (x̂i0)w̄κ(x̂i0) dx̂i

)
.

Since h|∂Λ = 0, this sum may be re-arranged as

∑

inner σi

d∑

j=1

∫

σi

{
h

(i)

κ−
j (σi)

(x̂i1)w̄κ−
j (σi)(x̂

i
1) − h

(i)

κ+
j (σi)

(x̂i0)w̄κ+
j (σi)(x̂

i
0)
}

dx̂i ,

8. The modified Bessel functions I±ν(z) and Kν(z) are the solutions of the differential equation z2 d2w
dz2 +

z dw
dz

− (z2 + ν2)w = 0.
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where κ−
j (σi) and κ+

j (σi), j = 1, . . . , d are the 2d cubes containing σi as a common face.

But by hypothesis h(i)w̄ are continuous on σi, i.e. h(i)

κ−
j

(x̂i1)w̄κ−
j

(x̂i1) = h
(i)

κ+
j

(x̂i0)w̄κ+
j

(x̂i0) a.e.

Hence the sum vanishes and
∑
κ∈K(Γ∩Λ)

∫
σ(κ) h

(i)
κ w̄κν

(i)dσ = 0. The assertion thus follows
by summing in (4-1) over κ ∈ K(Γ ∩ Λ) and i = 1, . . . , n.

Theorem 2.4.2 (Geometric Resolvent Equation). Let Λ(n)
1 ⊆ Λ(n)

2 ⊂ Rnd be two cubes,

ψ ∈ C̃∞
c (Γ ∩ Λ(n)

1 ) real-valued, and E ∈ ρ(H(n)
Λ1

) ∩ ρ(H(n)
Λ2

). Then

(GRE) G
Λ

(n)
1

(E)ψ = ψG
Λ

(n)
2

(E) +G
Λ

(n)
1

(E)
(
(∇ψ) · ∇ + ∇ · (∇ψ)

)
G

Λ
(n)
2

(E)

as operators on L2(Γ ∩ Λ(n)
2 ).

Proof. Let g ∈ L2(Γ ∩ Λ(n)
2 ), u :=

[
ψG

Λ
(n)
2

+ G
Λ

(n)
1

((∇ψ) · ∇ + ∇ · (∇ψ))G
Λ

(n)
2

]
g, where

G
Λ

(n)
i

:= G
Λ

(n)
i

(E) and put h
Λ

(n)
i

:= h
(n)
ω,Λi

. It suffices to show that u ∈ D(h
Λ

(n)
1

) and

(h
Λ

(n)
1

− E)[u,w] = 〈ψg,w〉 for all w ∈ D(h
Λ

(n)
1

) .

Since ψ ∈ C̃∞
c (Γ ∩ Λ(n)

1 ) and G
Λ

(n)
2

g ∈ W 1,2(Γ ∩ Λ(n)
2 ), we have ψG

Λ
(n)
2

g ∈ D(h
Λ

(n)
1

) by

Lemma 2.3.1. Similarly (∇ψ)G
Λ

(n)
2

g ∈ (W 1,2(Γ∩Λ(n)
1 ))n, so ∇·(∇ψ)G

Λ
(n)
2

g ∈ L2(Γ∩Λ(n)
1 )

and G
Λ

(n)
1

[∇ · (∇ψ)G
Λ

(n)
2

g] ∈ D(H(n)
Λ1

). Finally (∇ψ) · ∇G
Λ

(n)
2

g ∈ L2(Γ ∩ Λ(n)
1 ), hence

G
Λ

(n)
1

[(∇ψ) · ∇G
Λ

(n)
2

g] ∈ D(H(n)
Λ1

). Thus, u ∈ D(h
Λ

(n)
1

) and

(h
Λ

(n)
1

− E)[u,w] = (h
Λ

(n)
1

− E)[ψG
Λ

(n)
2

g, w] + 〈((∇ψ) · ∇ + ∇ · (∇ψ))G
Λ

(n)
2

g, w〉
= (h

Λ
(n)
1

− E)[ψG
Λ

(n)
2

g, w] + 〈(∇ψ) · ∇(G
Λ

(n)
2

g), w〉 − 〈(∇ψ)G
Λ

(n)
2

g,∇w〉
= 〈ψ∇(G

Λ
(n)
2

g),∇w〉 + 〈(V ω − E)ψG
Λ

(n)
2

g, w〉 + 〈∇(G
Λ

(n)
2

g), (∇ψ)w〉
= (h

Λ
(n)
2

− E)[G
Λ

(n)
2

g, ψw] = 〈g, ψw〉 = 〈ψg,w〉

where we used Lemma 2.4.1 in the second equality.

Lemma 2.4.3. Let Λ(n) be a cube or Λ(n) = Rnd, let Q̃ ⊂ Q ⊂ Λ(n) be cellular sets with
dist(∂Q, ∂Q̃) ≥ 1 and let E+ ∈ R. Then there exists C = C(E+, n, d, q−) > 0 such that

for any E ≤ E+, if f ∈ D(H(n)
Λ ), then

(SOL) ‖χQ̃∇f‖ ≤ C · (‖χQ(H(n)
Λ − E)f‖ + ‖χQf‖) .

Proof. Since dist(∂Q, ∂Q̃) ≥ 1, we may choose a real ψ ∈ C̃∞
c (Γ ∩ Q), 0 ≤ ψ ≤ 1 with

ψ ≡ 1 on Γ ∩ Q̃ and ‖∇ψ‖∞ ≤ C1(nd). If w := fψ2, then w ∈ D(hΛ) by Lemma 2.3.1 and

〈∇f,∇w〉 = 〈ψ∇f, ψ∇f〉 + 2〈ψ∇f, f∇ψ〉 .

Denoting g := (H(n)
Λ − E)f we thus get

‖ψ∇f‖2 = 〈∇f,∇w〉 − 2〈ψ∇f, f∇ψ〉
= 〈g, w〉 − 〈(V ω − E)f, w〉 − 2〈ψ∇f, f∇ψ〉
= 〈gψ, fψ〉 − 〈V ωfψ, fψ〉 + E‖fψ‖2 − 2〈ψ∇f, f∇ψ〉
≤ ‖g‖Q‖f‖Q + C2‖f‖2

Q + 2C1‖ψ∇f‖‖f‖Q ,
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where ‖φ‖Q := ‖χQφ‖ and C2 := |E+ − nq−|. Hence

(‖ψ∇f‖ − C1‖f‖Q
)2 ≤ ‖g‖Q‖f‖Q + (C2

1 + C2)‖f‖2
Q ≤

(
C3‖f‖Q +

1
2C3

‖g‖Q
)2
,

where C3 :=
√
C2

1 + C2. The assertion follows by taking square roots.

Theorem 2.4.4. Let Λ(n)
l ⊂ Λ(n)

L be cubes with l ≥ 7, let A ⊆ Λ(n)
l−6, B ⊆ Λ(n)

L \ Λ(n)
l be

cellular sets and let E+ ∈ R. Then there exists C = C(E+, n, d, q−) > 0 such that for all

E ∈ ρ(H(n)
ΛL

) ∩ ρ(H(n)
Λl

) ∩ (−∞, E+] :

(GRI.1) ‖χAGΛ
(n)
L

(E)χB‖ ≤ C · ‖χAGΛ
(n)
l

(E)χΛout
l

‖ · ‖χΛout
l
G

Λ
(n)
L

(E)χB‖ .

In particular, if u ∈ Λ(n)
l−7 and Λ(n)

l ⊂ Λ(n)
L−7, then given y ∈ Bout

L , we have

(GRI.2) ‖G
Λ

(n)
L

(u,y;E)‖ ≤ C · |Bout
l |2 max

w∈Bout
l

‖G
Λ

(n)
l

(u,w;E)‖ max
z∈Bout

l

‖G
Λ

(n)
L

(z,y;E)‖ .

Proof. Let GΛ := GΛ(E), Q = int Λout
l and choose a real ψ ∈ C̃∞

c (Γ ∩ Λ(n)
l ) such that

ψ = 1 on Γ ∩ Λ(n)
l−4, suppψ ⊂ Λ(n)

l−2 and ‖∇ψ‖∞ is bounded independently of Λ(n)
l . Then

‖χAGΛ
(n)
L

χB‖ = ‖χA(ψG
Λ

(n)
L

−G
Λ

(n)
l

ψ)χB‖ (ψ|Γ∩A = 1, ψ|Γ∩B = 0)

= ‖χA(G
Λ

(n)
l

((∇ψ) · ∇ + ∇ · (∇ψ))G
Λ

(n)
L

)χB‖ (GRE)

≤ ‖χAGΛ
(n)
l

(∇ψ) · ∇G
Λ

(n)
L

χB‖ + ‖χAGΛ
(n)
l

∇ · (∇ψ)G
Λ

(n)
L

χB‖ .

Now let Q̃ = int(Λ(n)
l−1 \ Λ(n)

l−5), so supp ∇ψ ⊂ Q̃ and dist(∂Q, ∂Q̃) = 1. Hence given

f1, f2 ∈ L2(Γ ∩ Λ(n)
L ), ‖f1‖ = ‖f2‖ = 1, we have

|〈χAGΛ
(n)
l

(∇ψ) · ∇G
Λ

(n)
L

χBf1, f2〉| = |〈∇G
Λ

(n)
L

χBf1, (∇ψ)G
Λ

(n)
l

χAf2〉|

≤ ‖∇ψ‖∞‖χQ̃∇G
Λ

(n)
L

χB‖‖χQ̃GΛ
(n)
l

χA‖ .

Furthermore, using Lemma 2.4.1 we have

|〈χAGΛ
(n)
l

∇ · (∇ψ)G
Λ

(n)
L

χBf1, f2〉| = |〈f1, χBGΛ
(n)
L

(∇ψ) · ∇G
Λ

(n)
l

χAf2〉|

≤ ‖∇ψ‖∞‖χBGΛ
(n)
L

χQ̃‖‖χQ̃∇G
Λ

(n)
l

χA‖ .

Noting that for a bounded operator T we have ‖T‖ = ‖T ∗‖, we thus get

‖χAGΛ
(n)
L

χB‖ ≤ ‖∇ψ‖∞(‖χAGΛ
(n)
l

χQ̃‖‖χQ̃∇G
Λ

(n)
L

χB‖ + ‖χQ̃∇G
Λ

(n)
l

χA‖‖χQ̃GΛ
(n)
L

χB‖).

Now by Lemma 2.4.3, we can find C1 such that

‖χQ̃∇G
Λ

(n)
L

χB‖ ≤ C1 · ‖χQGΛ
(n)
L

χB‖ .

Indeed, given u ∈ L2(Γ ∩ Λ(n)
L ), we apply (SOL) to f = G

Λ
(n)
L

χBu. Noting that (H(n)
ΛL

−
E)f = χBu = 0 on Q we get ‖χQ̃∇G

Λ
(n)
L

χBu‖ ≤ C1 · ‖χQGΛ
(n)
L

χBu‖. As u is arbitrary,

the assertion follows. In the same way we find C2 such that

‖χQ̃∇G
Λ

(n)
l

χA‖ ≤ C2 · ‖χQGΛ
(n)
l

χA‖ = C2 · ‖χAGΛ
(n)
l

χQ‖ .
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Noting that Q̃ ⊂ Q, we finally get

‖χAGΛ
(n)
L

χB‖ ≤ C · ‖χAGΛ
(n)
l

χQ‖ · ‖χQGΛ
(n)
L

χB‖

for C = max(2C1‖∇ψ‖∞, 2C2‖∇ψ‖∞). We thus have (GRI.1).
For (GRI.2), note that Λout

l ⊆ ⋃
w∈Bout

l
C(w), so (GRI.1) gives us

‖χuGΛ
(n)
L

(E)χy‖ ≤ C
∑

w,z∈Bout
l

‖χuGΛ
(n)
l

(E)χw‖‖χzGΛ
(n)
L

(E)χy‖.

We now give a resolvent inequality which is special to multi-particle systems 9.

Theorem 2.4.5. Let Λ(n)
L (u) be a J -decomposable cube, let x,y ∈ B

(n)
L (u) and suppose

that E ∈ ρ(H(n)
ΛL(u)). There exists S∗ = S∗(n, q−, E) such that for S > S∗, and under the

notations of Remark 2.2.4, if δ1 := |xJ c − yJ c | > 2, then

(GRI.3) ‖G
Λ

(n)
L (u)

(x,y;E)‖ ≤ M1 · max
a≤M1

‖G
Λ

(n′′)
L (uJ c )

(xJ c , yJ c ;E − λa)‖ + |Λ(n′)
L |e−δ1S

for M1 =
(⌊

dn′
((4S)2+E−nq−)n′/2

(4π)n′/2Γ(n′/2)

⌋
+ 1

)
· |Λ(n′)

L |, and if δ2 := |xJ − yJ | > 2, then

(GRI.3’) ‖G
Λ

(n)
L (u)

(x,y;E)‖ ≤ M2 · max
b≤M2

‖G
Λ

(n′)
L (uJ )

(xJ , yJ ;E − µb)‖ + |Λ(n′′)
L |e−δ2S

for M2 =
(⌊

dn′′
((4S)2+E−nq−)n′′/2

(4π)n′′/2Γ(n′′/2)

⌋
+ 1

)
· |Λ(n′′)

L |.

Proof. We only prove the first bound; the second one is similar. Put Λ(n) := Λ(n)
L (u),

Λ(n′)
1 := Λ(n′)

L (uJ ) and Λ(n′′)
2 := Λ(n′′)

L (uJ c). Using (2-1) with η(t) := (t− E)−1 we get

GΛ(n)(E) =
∑

a

Pa ⊗
(∑

b

1
µb − (E − λa)

Pb
)

=
∑

a

Pa ⊗G
Λ

(n′′)
2

(E − λa) .

Hence noting that GΛ(n)(x,y;E) := χxGΛ(n)(E)χy, we get

‖GΛ(n)(x,y;E)‖ ≤
∑

a

‖χxJ PaχyJ ⊗ χxJ cG
Λ

(n′′)
2

(E − λa)χyJ c ‖

≤
∑

a

‖χxJ cG
Λ

(n′′)
2

(E − λa)χyJ c ‖ .

Now given Sj ≫ 1, by (WEYL.n′) the constants Cj =
⌊
dn′

(Sj+E−nq−)n′/2

(4π)n′/2Γ(n′/2)

⌋
+ 1 satisfy

a > Cj |Λ(n′)
1 | =⇒ λa > Sj + E − n′′q− =⇒ ηa > Sj ,

where ηa := n′′q− − (E − λa). Hence if δ1 > 2, taking δ := dist(C(xJ c), C(yJ c)) = δ1 − 2
and Sj := (4Sj)2, we get by Combes-Thomas estimate,

Cj+1|Λ(n′)
1 |∑

a=Cj |Λ(n′)
1 |+1

‖G
Λ

(n′′)
2

(xJ c , yJ c ;E − λa)‖ ≤ (Cj+1 − Cj)|Λ(n′)
1 |e−δ

√
Sj
2 ≤ |Λ(n′)

1 |e−δ
√

Sj

2

9. Let us mention that, just as the preceding geometric resolvent inequalities allow one to perform an
induction on k, the following inequality allows us to perform an induction on n. The error term |Λ| · e−δj S

in (GRI.3) does not appear for discrete Anderson models on ℓ2(Znd).
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provided S is large enough. Hence

∑

a>C1|Λ(n′)
1 |

‖G
Λ

(n′′)
2

(xJ c , yJ c ;E − λa)‖ ≤ |Λ(n′)
1 |

∞∑

j=1

e−δ
√

Sj

2 .

But
∞∑

j=1

e−δ
√

Sj

2 =
∞∑

j=1

e−(2δS)j =
e−2δS

1 − e−2δS
≤ 2e−2δS ≤ e−δ1S .

We thus obtain the first bound with M1 := C1|Λ(n′)
1 |.

2.5 Wegner Estimates

To establish Wegner estimates we use some ideas of [26], but we rely entirely on
measure-theoretic arguments. For a probability measure µ on R we put

s(µ, ε) := sup {µ[a, b] : b− a ≤ ε} .

Given J ⊂ E(Γ(1)) and ω ∈ Ω, we denote ω = (ωJ , ωJ
c
), where ωJ := (ωe)e∈J . If A ⊆ Ω

is measurable and ωJ
c

is fixed, we define the section AωJc := {ωJ : (ωJ , ωJ
c
) ∈ A} and put

PJ := ⊗e∈J µ. Then by definition of a product measure, we have P(A) = EJc{PJ(AωJc )},
where EJc denotes the integration over ωJ

c
.

Theorem 2.5.1. Let E ∈ R and ε > 0. There exists a non-random C = C(n, d,E + ε−
nq−) such that for any Λ(n)

L (u) and any 1 ≤ i ≤ n, if J := E(Γ(1) ∩ ΠiΛ
(n)
L (u)

)
, then

PJ
({dist(σ(H(n)

ΛL(u)(ω)), E) < ε
}
ωJc

) ≤ C · |Λ(n)
L (u)| · |ΠiΛ

(n)
L (u)| · s(µ, 2ε)

for any ωJ
c
.

Proof. Put Λ := Λ(n)
L (u) and fix ωJ

c
. By Lemma 2.2.2, we may find C ′ = C ′(n, d,E + ε−

nq−) such that Ej(ω) := Ej(H
(n)
Λ (ω)) > E + ε if j > C ′ · |Λ|. Hence,

(5-1) PJ
({dist(σ(H(n)

Λ (ω)), E) < ε}ωJc
) ≤

∑

j≤C′|Λ|
PJ
({|Ej(ω) − E| < ε}ωJc

)
.

Given κ = (e1, . . . , en) ∈ K(Γ ∩ Λ) we have

Wω
κ = ωe1 + . . .+ ωen =

∑

e∈E
cκ(e)ωe, where cκ(e) :=

{
1 if e = ej for some j,

0 otherwise.

Hence
Wω
κ =

∑

e∈J
cκ(e)ωe +

∑

e∈Jc

cκ(e)ωe = WωJ (κ) +WωJc (κ) .

Now
H

(n)
Λ (ω) = −∆ + U +WωJc +WωJ = KωJc +WωJ ,

where the operator KωJc does not depend on ωJ . Let (fκ) ∈ L2(Γ ∩ Λ) with ‖(fκ)‖ = 1,
let t ≥ 0 and denote 1 := (1, . . . , 1) ∈ RJ . Then

H
(n)
Λ (ωJ + t · 1, ωJ

c
)(fκ) = (KωJc +WωJ +t·1)(fκ) = (KωJc +WωJ )(fκ) + t(nκfκ),
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where nκ :=
∑
e∈J cκ(e). Since every κ ∈ K(Γ ∩ Λ) takes the form (e1, . . . , en) with

ei ∈ E(Γ ∩ ΠiΛ) = J , we have 1 ≤ nκ ≤ n. Hence

〈H(n)
Λ (ωJ + t · 1, ωJ

c
)(fκ), (fκ)〉 ≥ 〈H(n)

Λ (ωJ , ωJ
c
)(fκ), (fκ)〉 + t .

By the min-max principle, it follows that Ej(ωJ + t · 1, ωJ
c
) ≥ Ej(ωJ , ωJ

c
) + t. Finally, if

ve ≤ we for all e ∈ J , then H(vJ , ωJ
c
) ≤ H(wJ , ωJ

c
) and thus Ej(vJ , ωJ

c
) ≤ Ej(wJ , ωJ

c
).

Hence the Ej( · , ωJc
) : RJ → R satisfy the hypotheses of Stollmann’s lemma (see [103]

and [98]) for any ωJ
c
, so we get

PJ
({ωJ : |Ej(ωJ , ωJ

c
) − E| < ε}) ≤ |J | · s(µ, 2ε) ≤ d · |ΠiΛ| · s(µ, 2ε)

by (NB.1). The theorem follows by (5-1).

Theorem 2.5.2. Let I = [a, b] be a bounded interval and let ε > 0. There exists C =
C(n, d, b+ ε− nq−) such that for any pre-separable Λ(n)

L (u) and Λ(n)
K (v) we have

P{dist(σI(H
(n)
ΛL(u)), σI(H

(n)
ΛK(v))) < ε} ≤ C · |Λ(n)

L (u)| · |Λ(n)
K (v)| · |Π0Λ| · s(µ, 2ε),

where σI(H
(n)
Λ ) := σ(H(n)

Λ (ω)) ∩ I and |Π0Λ| := maxi,j
(|ΠiΛ

(n)
L (u)|, |ΠjΛ

(n)
K (v)|).

Proof. Suppose Λ(n)
K (v) is J -pre-separable of Λ(n)

L (u) for some ∅ 6= J ⊆ {1, . . . , n}, i.e.

ΠJ Λ(n)
K (v) ∩ (ΠJ cΛ(n)

K (v) ∪ ΠΛ(n)
L (u)

)
= ∅. Fix i ∈ J and put J := E(Γ(1) ∩ ΠiΛ

(n)
K (v)).

Since the eigenvalues E(u)
j (ω) of H

Λ
(n)
L

(u)
(ω) do not depend on ωJ , we may apply Theo-

rem 2.5.1 with E = Eu
j = Eu

j (ωJ
c
) to get

P{dist(σI(H
(n)
ΛL(u)), σI(H

(n)
ΛK(v))) < ε}

= EJc

{
PJ{dist(σI(H

(n)
ΛL(u)), σI(H

(n)
ΛK(v))) < ε}ωJc

}

= EJc

{
PJ

{
min

a≤E(u)
j ≤b

dist(E(u)
j , σI(H

(n)
ΛK(v))) < ε

}

ωJc

}

≤ EJc

∑

j≤C1|Λ(n)
L

(u)|

PJ
({dist(E(u)

j , σI(H
(n)
ΛK(v))) < ε}ωJc

)

≤ C · |Λ(n)
L (u)| · |Λ(n)

K (v)| · |ΠiΛ
(n)
K (v)| · s(µ, 2ε)

where we used Lemma 2.2.2 to obtain C1 = C1(n, d, b − nq−). If however Λ(n)
L (u) was

J -pre-separable of Λ(n)
K (v), we would get for i ∈ J ,

P{dist(σI(H
(n)
ΛL(u)), σI(H

(n)
ΛK(v))) < ε} ≤ C · |Λ(n)

L (u)| · |Λ(n)
K (v)| · |ΠiΛ

(n)
L (u)| · s(µ, 2ε) .

2.6 Initial Length Scale Estimate

In this section we follow the ideas of [104] and use a Cheeger inequality from [91] to
prove Lifshitz-type asymptotics for 1-particle systems. We then deduce the Initial Length
Scale estimate (ILS) for our model. We speak of Lifshitz-type asymptotics because our
result is not formulated in terms of the integrated density of states N(E), as it is not
needed here. Theorem 2.6.1 easily implies bounds of the form N(E) ≤ e−γ′(E−q−)−1/2

for
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E near q− if one knows that N(E) ≤ 1
|Λ| E

{
tr[χ(−∞,E)(H

(1)
Λ )]

}
; see [104, Theorem 2.1.4].

The existence of N(E) was established in [53], see also [52].
In the following for l ∈ N∗ we put

nl := #E(Γ(1) ∩ Λ(1)
l ) = d(2l)(2l − 1)d−1 .

Theorem 2.6.1. There exist b > 0 and γ > 0 such that for any u ∈ Zd,

P{E1(H(1)
Λl(u)(ω)) ≤ q− + bn−2

l } ≤ e−γnl .

Proof. Put H̃(1)
Λl

(ω) = H
(1)
Λl(u)(ω) − q−. Then

P{E1(H(1)
Λl(u)(ω)) ≤ q− + bn−2

l } = P{E1(H̃(1)
Λl

(ω)) ≤ bn−2
l } .

Now H̃
(1)
Λl

(ω) = (−∆ + W̃ω)
Λ

(1)
l

, where W̃ω : (fe) 7→ ((ωe − q−)fe). We may assume

W̃ω ≤ 1 for all ω, since if W̃ω is larger, E1(H̃(1)
Λl

(ω)) gets larger and the probability gets
smaller. Define for t ∈ [−1, 1],

H(ω, t) := (−∆ + t · W̃ω)
Λ

(1)
l

, Ej(ω, t) := Ej(H(ω, t)) .

Since the normalized ground state φ0 of the Kirchhoff Laplacian H(ω, 0) = −∆
Λ

(1)
l

is the

constant function (n−1/2
l ), we have by the Feynman-Hellmann theorem

(6-1) E1(ω, 0)′ = 〈W̃ωφ0, φ0〉 =
1
nl

∑

e∈E(Γ(1)∩Λ
(1)
l

)

qe(ω) =: fl(ω) ,

where qe(ω) = ωe − q− ≥ 0. By [104, Lemma 2.1.1] we can find s0, γ > 0 such that

P{fl(ω) ≤ s0} ≤ e−γnl .

We now estimate the distance between 0 = E1(ω, 0) and the rest of the spectrum of H(ω, 0)
using Cheeger inequality. Let X := Γ(1)∩Λ(1)

l and O := {Y ⊂ X : Y open, Y 6= X,Y 6= ∅}.
For Y ∈ O, let |∂Y | be the number of points on the boundary of Y , vol1 Y be the total
length of Y and put Y c := X \ Y . Then any Y ∈ O satisfies min(vol1 Y, vol1 Y c) ≤
1
2(vol1X) = nl

2 , hence the Cheeger constant of X satisfies

h(X) := inf
Y ∈O

|∂Y |
min(vol1 Y, vol1 Y c)

≥ 2
nl
.

By [91, Theorem 6.1], it follows that E2(ω, 0) ≥ 1
4h(X)2 ≥ n−2

l . A similar estimate can
also be obtained using the Faber-Krahn inequality; see [84] 10.

We may now apply [104, Theorem 4.1.31], to find c1, c2 > 0 such that

|E1(ω, t) − t · E1(ω, 0)′| ≤ c2n
2
l t

2 ∀ 0 ≤ t ≤ c1n
−2
l .

Since E1(ω, t) ≤ E1(ω, 1) = E1(H̃(1)
Λl

(ω)), this gives by (6-1)

fl(ω) = E1(ω, 0)′ ≤ c2n
2
l t+ E1(H̃(1)

Λl
(ω))t−1 ∀ 0 ≤ t ≤ c1n

−2
l .

10. or Appendix B.
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Choose 0 < c3 ≤ c1 such that c2c3 ≤ 1
2s0. Then for t = c3n

−2
l we get

fl(ω) ≤ (s0/2) + E1(H̃(1)
Λl

(ω))c−1
3 n2

l .

Hence, choosing b > 0 such that bc−1
3 ≤ 1

2s0 we finally obtain

P{E1(H̃(1)
Λl

(ω)) ≤ bn−2
l } ≤ P{fl(ω) ≤ s0} ≤ e−γnl .

Theorem 2.6.2. There exist b > 0 and γ > 0 such that for any u ∈ Znd,

(6-2) P{E1(H(n)
Λl(u)(ω)) ≤ nq− + nbn−2

l } ≤ e−γnl .

Consequently, for all ξ > 0 and β ∈ (0, 1), we may find L0 = L0(N, d, β, ξ) as large as
necessary such that for any u ∈ Znd,

P{dist(σ(H(n)
ΛL0

(u)(ω)), nq−) ≤ Lβ−1
0 } ≤ L−ξ

0 .

Proof. Let Ĥ(n)
Λl(u)(ω) := H

(n)
Λl(u) − U

(n)
Λl(u) = (−∆ + Wω)

Λ
(n)
l

(u)
. Since U (n) ≥ 0, we have

H
(n)
Λl(u) ≥ Ĥ

(n)
Λl(u), hence E1(H(n)

Λl(u)) ≥ E1(Ĥ(n)
Λl(u)) and

P{E1(H(n)
Λl(u)(ω)) ≤ nq− + nbn−2

l } ≤ P{E1(Ĥ(n)
Λl(u)(ω)) ≤ nq− + nbn−2

l } .

But Ĥ(n)
Λl(u) = H

(1)
Λl(u1) ⊗ In−1 + . . .+ Ik−1 ⊗H

(1)
Λl(uk) ⊗ In−k + . . .+ In−1 ⊗H

(1)
Λl(un), where

H
(1)
Λl

= Ĥ
(1)
Λl

: (fe) 7→ (−f ′′
e +ωefe). Thus E1(Ĥ(n)

Λl(u)) =
∑n
j=1E1(H(1)

Λl(uj)) ≥ nE1(H(1)
Λl(uj0

)),

where E1(H(1)
Λl(uj0

)) := min1≤j≤nE1(H(1)
Λl(uj)). Hence

P{E1(H(n)
Λl(u)(ω)) ≤ nq− + nbn−2

l } ≤ P{E1(H(1)
Λl(uj0

)(ω)) ≤ q− + bn−2
l }.

The existence of b and γ now follows from Theorem 2.6.1. So take these b, γ, and given
ξ > 0, β ∈ (0, 1), choose L∗(n, d, β, ξ) such that for L ≥ L∗, we have

(6-3) 6ndb−n/2dnLnd+
n(β−1)

2 e−γ2−d(bL1−β)1/2 ≤ (2L)−ξ .

Let L∗ := max1≤n≤N L∗(n, d, β, ξ). Given L ≥ L∗, let l :=
⌊

1
2( bL

1−β

d2 )1/2d
⌋

and choose L ≤
L0 ≤ 2L such that L0 = rl for some r ∈ N. Then Λ(n)

L0
:= Λ(n)

L0
(u) may be divided into M =

Lnd0 l−nd disjoint cubes Λkl . Since H(n)
ΛL0

≥ ⊕kH
(n)

Λk
l

, we get E1(H(n)
ΛL0

) ≥ mink E1(H(n)

Λk
l

).

But n2
l ≤ d2(2l)2d ≤ bL1−β and thus Lβ−1 ≤ bn−2

l . So using (6-2) we get

P{dist(σ(H(n)
ΛL0

), nq−) ≤ Lβ−1
0 } ≤ P{E1(H(n)

ΛL0
) − nq− ≤ Lβ−1}

≤ P{E1(H(n)

Λk
l

) − nq− ≤ bn−2
l for some k} ≤ Me−γnl .

Noting that M ≤ (2L)ndl−nd ≤ (2L)nd(1
3( bL

1−β

d2 )1/2d)−nd = 6ndb−n/2dnLnd+
n(β−1)

2 and
nl ≥ d(2l − 1)d ≥ d(l + 1)d ≥ 2−d(bL1−β)1/2, then using (6-3) we may bound the RHS by
(2L)−ξ ≤ L−ξ

0 , which completes the proof.
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Definition 2.6.3. Let E ∈ R, m > 0 and ω ∈ Ω. A cube Λ(n)
L (u) is said to be (E,m)-Non

Singular ((E,m)-NS) if E ∈ ρ(H(n)
ΛL(u)(ω)) and

max
y∈Bout

L (u)
‖G

Λ
(n)
L (u)

(u,y;E)‖ ≤ e−mL ,

otherwise it is said to be (E,m)-Singular ((E,m)-S).

Corollary 2.6.4 (ILS estimate). For any p > 0 and β ∈ (0, 1), we may find L0 =

L0(N, d, p, β) as large as necessary such that for ε0 = Lβ−1
0
2 , In = [nq− − 1

2 , nq− + ε0],

mL0 = L
(β−1)/2
0

3 and any cube Λ(n)
L0

(u), we have

(6-4) P{∃E ∈ In : Λ(n)
L0

(u) is (E,mL0)-S } ≤ L−2p
0 .

Proof. Given 2p ≡ ξ > 0, β ∈ (0, 1), we find L0 as large as needed satisfying Theorem 2.6.2.

Now let y ∈ Bout
L0

(u), so L0 − 8 ≤ dist(C(u),C(y)) ≤ L0. Let ε0 = Lβ−1
0
2 and suppose

sω −nq− > Lβ−1
0 , where sω := inf σ(H(n)

ΛL0
(u)(ω)). Then every E ∈ In satisfies E < sω and

η := sω − E ≥ Lβ−1
0
2 . So by Theorem 2.3.3,

‖G
Λ

(n)
L0

(u)
(u,y;E)‖ ≤

√
π

2

(
L

1/2
0

(Lβ−1
0 /2)3/4

+
3

8(L0 − 8)1/2(Lβ−1
0 /2)5/4

)
e−(L0−8)

√
L

β−1
0
2

≤ e−mL0
L0

for L0 large enough. Hence Λ(n)
L0

(u) is (E,mL0)-NS. We thus showed that

P{∃E ∈ In : Λ(n)
L0

(u) is (E,mL0)-S} ≤ P{sω − nq− ≤ Lβ−1
0 } .

The claim follows by Theorem 2.6.2, since sω − nq− = dist(σ(H(n)
ΛL0

(u)(ω)), nq−).

2.7 Multi-Particle Multiscale Analysis

We now introduce a multi-particle multiscale analysis following the main ideas of [19],
providing modifications as necessary. Throughout this section we fix

α = 3/2, β = 1/2 ,

and given 1 ≤ n ≤ N , we denote K(n) := nn. We also assume that

µ is Hölder continuous.

Definition 2.7.1. We say that a cube Λ(n)
L (u) is E-Non Resonant (E-NR) if

dist(σ(H(n)
ΛL(u)), E) ≥ e−Lβ

.

We say it is E-Completely Non-Resonant (E-CNR) if any cube Λ(n)
ℓ ⊆ Λ(n)

L (u) with ℓ ∈ N∗,

L1/α ≤ ℓ ≤ L is E-NR. In this case, Λ(n)
L (u) is thus E-NR in particular.
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Definition 2.7.2. Let l ∈ N, put

L = ⌊lα⌋ + 1,

and let J ∈ N. We say that a cube Λ(n)
L (x) is (E,ml, J)-good if it contains at most J

pairwise separable cubes Λ(n)
l which are (E,ml)-S. Otherwise, we say it is (E,ml, J)-bad;

in this case, there are at least J + 1 separable cubes Λ(n)
l which are (E,ml)-S.

We start by adapting [112, Lemma 4.2] to n-graphs. For this, we first prove the
following geometric argument: given a collection of cubes, either they are already pairwise
disjoint, or we can construct larger cubes around each cluster, such that the larger cubes
are disjoint. For technical reasons, we consider ǫ-enlargements of the cubes, with ǫ = 7.

Lemma 2.7.3. Given k cubes Λ(n)
L (u(r)), r = 1, . . . , k, there exists k̃ ≤ k disjoint cubes

Λ(n)
lj

, j = 1, . . . , k̃ such that
⋃k̃
j=1 Λ(n)

lj−7 ⊇ ⋃k
r=1 Λ(n)

L (u(r)), lj = nj(L+7) for some nj ∈ N∗

and
∑k̃
j=1 lj = k(L+ 7).

Proof. If the cubes Λ(n)
L+7(u(r)) are disjoint, we put Λ(n)

lj
= Λ(n)

L+7(u(j)). Otherwise, divide
⋃k
r=1 Λ(n)

L+7(u(r)) into k′ connected components with 1 ≤ k′ ≤ k and order them. If the i-th
component contains ni cubes, find a cube Λ′

li
containing it with li := ni(L + 7). If these

k′ cubes are disjoint, then we are done. If not, divide them into k′′ connected components
and again find cubes Λ′′

li
around each component with li = ni(L + 7), where ni is the

number of the original cubes Λ(n)
L+7(u(r)) which this component contains. Repeating this

procedure we finally obtain the assertion.

Lemma 2.7.4. Let l ∈ N∗, J ∈ N, ml >
8NJK(N)
l1−β , E+ ∈ R and E ≤ E+. Let L =

⌊lα⌋ + 1 and suppose that Λ(n)
L (x) is E-CNR and (E,ml, J)-good. Then there exists l∗ =

l∗(E+, N, d, J, q−, r0) such that, if l > l∗, then Λ(n)
L (x) is (E,mL + Lβ−1)-NS, where

mL := ml −
(

16NJK(N)
lα−1

ml +
3

lα(1−β)

)
>

8NJK(N)
L1−β .

Proof. By hypothesis there are at most J pairwise separable cubes Λ(n)
l (u(s)) ⊂ Λ(n)

L (x)
which are (E,ml)-S. Applying Lemma 2.2.8 to each of them, we may find JK(n) cubes
Λ(n)
rn,l(z

(k)) such that if v /∈ ⋃JK(n)
k=1 Λ(n)

rn,l(z
(k)), then Λ(n)

l (v) is separable from all the

Λ(n)
l (u(s)). Now applying Lemma 2.7.3 to the JK(n) cubes Λ(n)

rn,l(z
(k)), we may construct

disjoint cubes Λ(n)
lj

such that
⋃
j Λ(n)

lj−7 ⊇ ⋃
k Λrn,l

(z(k)), lj = nj(rn,l + 7) for some nj ∈ N∗

and
∑
lj ≤ JK(n)(rn,l + 7) ≤ JK(N)(rN,l + 7) =: lN,J . Thus, Λ(n)

l (v) is (E,ml)-NS

whenever v ∈ Λ(n)
L−l(x) \⋃j Λ(n)

lj−7.

We first assume all the “bad cubes” Λ(n)
lj

are inside Λ(n)
L−l−7(x). Note that if v ∈ B

(n)
L−l(x)

satisfies v ∈ Bout
lj

= B
(n)
lj

\ B
(n)
lj−6 for some j, then Λ(n)

l (v) is (E,ml)-NS since v /∈ Λ(n)
lj−7

and v /∈ Λ(n)
lr−7 for r 6= j (because v ∈ Λ(n)

lj
and Λ(n)

lj
is disjoint from the other Λ(n)

lr
).

Now fix y ∈ Bout
L (x) and let u ∈ B

(n)
L−l−7(x). We have 2 cases:

(a) Λ(n)
l (u) is (E,ml)-NS. Then applying (GRI.2) to Λ(n)

l := Λ(n)
l (u),

‖G
Λ

(n)
L (x)

(u,y;E)‖ ≤ C · |Bout
l |2 max

k∈Bout
l

‖G
Λ

(n)
l

(u,k;E)‖ max
k′∈Bout

l

‖G
Λ

(n)
L (x)

(k′,y;E)‖

≤ C1(2l − 1)2(nd−1)e−mll‖G
Λ

(n)
L (x)

(w1,y;E)‖
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for some w1 ∈ Bout
l (u).

(b) Λ(n)
l (u) is (E,ml)-S. In this case, u ∈ Λ(n)

lj−7 for some j, so applying (GRI.2) to Λ(n)
lj

,

‖G
Λ

(n)
L (x)

(u,y;E)‖ ≤ C · |Bout
lj |2 max

k∈Bout
lj

‖G
Λ

(n)
lj

(u,k;E)‖ max
k′∈Bout

lj

‖G
Λ

(n)
L (x)

(k′,y;E)‖

≤ C2(2lN,J − 1)2(nd−1)el
β
N,J ‖G

Λ
(n)
L (x)

(w,y;E)‖

for some w ∈ Bout
lj

because Λ(n)
L (x) is E-CNR. But then Λ(n)

l (w) is (E,ml)-NS, so
applying (GRI.2) once more we get

‖G
Λ

(n)
L (x)

(u,y;E)‖ ≤ C3((2lN,J − 1)(2l − 1))2(nd−1)el
β
N,J −mll‖G

Λ
(n)
L (x)

(w1,y;E)‖

for some w1 ∈ Bout
l (w). Hence

‖G
Λ

(n)
L (x)

(u,y;E)‖ ≤ e−m′
ll‖G

Λ
(n)
L (x)

(w1,y;E)‖,

where

m′
l = ml − l−1{lβN,J + 2(nd− 1) log((2lN,J − 1)(2l − 1)) + logC3

}
> 0

because for large l,

lN,J = JK(N)(2(4N − 3)l + 4(N − 1)r0 + 7) ≤ (8N − 5)JK(N)l

so that m′
l ≥ ml − 8NJK(N)

l1−β > 0 for l large enough.

Hence starting at u = w0 := x, we may iterate the procedure p times as long as wp−1 ∈
B

(n)
L−l−7(x). If (a) occurs n+ times and (b) occurs n0 = p− n+ times, we obtain

‖G
Λ

(n)
L (x)

(x,y;E)‖ ≤ (
C1(2l − 1)2(nd−1)e−mll

)n+e−n0m′
ll‖G

Λ
(n)
L (x)

(wp,y;E)‖.

Now Λ(n)
L (x) is E-NR and e−n0m′

ll ≤ 1 since m′
l > 0. Hence

‖G
Λ

(n)
L (x)

(x,y;E)‖ ≤ (
C1(2l − 1)2(nd−1)e−mll

)n+eL
β ≤ e−(m̃L+Lβ−1)L,

where
(m̃L + Lβ−1)L = −n+

(
logC1 + 2(nd− 1) log(2l − 1) −mll

)− Lβ.

In case (a), wk ∈ Bout
l (wk−1), so each step cuts a length between l − 6 and l − 1.

We thus have
⌊L−2lN,J −l−7

l−1

⌋ ≤ n+ ≤ ⌊
L−l−7
l−6

⌋
. Indeed, the lower bound represents the

worst scenario in which the iteration met all the bad cubes in its way, a total length
of 2lN,J . The upper bound occurs when it meets no bad cube. In particular, we have
L−2lN,J −l−7

l − 1 ≤ n+ ≤ L
l−6 , so we get

m̃LL ≥ ml(L− 2lN,J − 2l − 7) − L

l − 6
(logC1 + 2(nd− 1) log(2l − 1)) − 2Lβ.

But 2lN,J + 2l + 7 = ((16N − 12)JK(N) + 2)l + C(r0, N, J) ≤ 16NJK(N)l. Hence

m̃LL ≥ mlL− 16NJK(N)mll − 2ndL log(2l − 1)
l − 6

− 2Lβ

≥ mlL− 16NJK(N)mll − L

lα(1−β)
− 2Lβ
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for large l, because α(1 − β) = 3/4 < 1. Noting that L ≥ lα, we finally get

m̃L ≥ ml − 16NJK(N)
lα−1

ml − 3
lα(1−β)

= mL .

Thus, ‖G
Λ

(n)
L (x)

(x,y;E)‖ ≤ e−(m̃L+Lβ−1)L ≤ e−(mL+Lβ−1)L and Λ(n)
L (x) is (E,mL+Lβ−1)-

NS. For the lower bound on mL, note that for large l,

(7-1)
(
1 − 16NJK(N)

lα−1

)
ml ≥ 1

2
ml ≥ 4NJK(N)

l1−β >
3

lα(1−β)
+

8NJK(N)
L1−β .

Finally, if a bad cube lies completely outside F := Λ(n)
L−l−7(x), the situation is obviously

better. If a bad cube is not contained in F but intersects F , we stop the iteration if we
reach this bad cube. Then again the situation is better (because here only part of the
length 2lj of this cube is counted as bad).

We define for n ≥ 2,

pn :=
pn−1

α2(1 + θ)
− (2n− 1)d

2α
− nd− 1,

where θ := 1
2p1

. We then choose p1 sufficiently large to make sure that

pN ≥ 3Nd+ 1.

In particular, 0 < θ < 1.
Fix

E+ := max
1≤n≤N

(nq− + 1), J = 6 ,

and let l∗ be as in Lemma 2.7.4. Then by Corollary 2.6.4, we may find L0 > l∗ as

large as necessary such that (6-4) is satisfied for all 1 ≤ n ≤ N , with ε0 = Lβ−1
0
2 , In =

[nq− − 1
2 , nq− + ε0], mL0 = 1

3L
(1−β)/2
0

and p := p1. We then define the sequences

Lk+1 := ⌊Lαk ⌋ + 1 ,

mLk+1
:= mLk

−
(

96NK(N)
Lα−1
k

mLk
+

3

L
α(1−β)
k

)
.

Note that mLk
> 48NK(N)

L1−β
k

. Indeed, mL0 = 1

3L
(1−β)/2
0

> 48NK(N)

L1−β
0

since L0 is large, hence

mLk
> 48NK(N)

L1−β
k

by induction, using (7-1). We now introduce the property

(DS : n, k,mLk
, In)




For all pairs of separable cubes Λ(n)
Lk

(u) and Λ(n)
Lk

(v) :

P{∃E ∈ In : Λ(n)
Lk

(u) and Λ(n)
Lk

(v) are (E,mLk
)-S} ≤ L

−2pn(1+θ)k

k .

The term (1 + θ)k in the exponent was introduced in [19] and is new in comparison
with the usual multiscale analysis. While it complicates a few estimates, it has a powerful
advantage, namely it allows to prove dynamical localization of any order s in IN , with ε0

independent of s. This result (among others) was previously obtained for single-particle
systems in the continuum using the bootstrap multiscale analysis of [47].

To prove this property, we shall need Lemma 2.7.4 and the following Wegner bound:

(W2 : n, k, In)





For all pairs of separable cubes Λ(n)
Lk

(u) and Λ(n)
Lk

(v) :

P{∃E ∈ In : Λ(n)
Lk

(u) and Λ(n)
Lk

(v) are not E-CNR} ≤ 1
4L

−2p1(1+θ)k

k .



2.7. Multi-Particle Multiscale Analysis 59

Lemma 2.7.5. The property (W2 : n, k, In) holds for all k ≥ 0 and 1 ≤ n ≤ N .

Proof. Let Λ(n)
Lk

(u) and Λ(n)
Lk

(v) be separable. If Λ(n)
ℓ1

⊆ Λ(n)
Lk

(u) and Λ(n)
ℓ2

⊆ Λ(n)
Lk

(v), then

Λ(n)
ℓ1

and Λ(n)
ℓ2

are pre-separable. Hence by Theorem 2.5.2,

P{∃E ∈ In : dist(σ(H(n)
Λℓ1

), E) < ε and dist(σ(H(n)
Λℓ2

), E) < ε}

≤ P{dist(σJn(H(n)
Λℓ1

), σJn(H(n)
Λℓ2

)) < 2ε} ≤ C(2Lk)2nd+ds(µ, 4ε) ,

where Jn = [nq− − 1
2 − ε, nq− + ε0 + ε]. Bounding the number of cubes in Λ(n)

Lk
by

|B(n)
Lk

| ≤ (2Lk)nd and the number of ℓ ∈ N∗ satisfying L
1/α
k ≤ ℓ ≤ Lk by Lk, we get for

ε := max(e−ℓβ1 , e−ℓβ2 ) ≤ e−Lβ/α
k ,

P{∃E ∈ In : Λ(n)
Lk

(u) and Λ(n)
Lk

(v) are not E-CNR} ≤ C(2Lk)4nd+d+2s(µ, 4e−Lβ/α
k ) .

Since µ is Hölder continuous, there exist cµ and b > 0 such that

C(2Lk)4nd+d+2s(µ, 4e−Lβ/α
k ) ≤ Ccµ(2Lk)4nd+d+2(4e−Lβ/α

k )b ≤ e−Lζ
k

for some ζ > 0, since L0 is large. Now for any k ≥ 0,

− log(1/4) + 2p1(1 + θ)k logLk ≤ log(4) + 2p12k logLk ≤ CN,d2kαk logL0 ≤ Lα
kζ

0

since αk ≥ logC
ζ logL0

+ k log 2α
ζ logL0

+ log logL0

ζ logL0
for large L0, independently of k. But Lα

kζ
0 ≤ Lζk.

We thus showed that e−Lζ
k ≤ exp(log(1/4) − 2p1(1 + θ)k logLk) = 1

4L
−2p1(1+θ)k

k .

2.7.1 Single-particle case

For n = 1, separable cubes are just disjoint cubes; see Definition 2.2.7.

Theorem 2.7.6. (DS : 1, k,mLk
, I1) implies (DS : 1, k + 1,mLk+1

, I1).

Proof. Put L = Lk+1, l = Lk and let Λ(1)
L (u) and Λ(1)

L (v) be a pair of disjoint cubes. Since
ε0 < 1, any E ∈ I1 satisfies E ≤ E+ = maxn(nq− + 1), so applying Lemma 2.7.4 with
J = 6, noting that l > l∗ because L0 > l∗, we have

P{∃E ∈ I1 : Λ(1)
L (u) and Λ(1)

L (v) are (E,mL)-S}
≤ 3 max

x=u,v
P{∃E ∈ I1 : Λ(1)

L (x) is (E,ml, 6)-bad}

+ P{∃E ∈ I1 : Λ(1)
L (u) and Λ(1)

L (v) are not E-CNR} ,

since an (E,mL)-S cube is a fortiori (E,mL + Lβ−1)-S. Now by (W2 : 1, k + 1, I1),

P{∃E ∈ I1 : Λ(1)
L (u) and Λ(1)

L (v) are not E-CNR} ≤ 1
4
L−2p1(1+θ)k+1

.

Moreover, given J ∈ 2N∗, if Λ(1)
L is (E,ml, J − 1)-bad then it contains at least J separable

cubes which are (E,ml)-S. Since n = 1, Hamiltonians on disjoint cubes are independent.
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So by grouping these J cubes two by two, using (DS : 1, k,mLk
, I1) and bounding the

number of pairs of cubes in Λ(1)
L by |B(1)

L |2 ≤ (2L)2d, we get

P{∃E ∈ I1 : Λ(1)
L is (E,ml, J)-bad} ≤ P{∃E ∈ I1 : Λ(1)

L is (E,ml, J − 1)-bad}(7-2)

≤ P{∃E ∈ I1 : Λ(1)
L is (E,ml, 1)-bad}J/2

≤ ((2L)2dl−2p1(1+θ)k
)J/2

≤ cL(d− p1(1+θ)k

α
)J ≤ cL(

p1−1

3
− 2p1(1+θ)k

3
)J

because α = 3/2 and d ≤ pN −1
3 ≤ p1−1

3 . Now

cL
Jp1

3
(1−2(1+θ)k− 1

p1
) ≤ 1

4
L

Jp1
3

(1−2(1+θ)k−θ)

and since (1 − θ) ≤ (1 − θ)(1 + θ)k = (1 + θ)k − θ(1 + θ)k, we have

(7-3) 1 − 2(1 + θ)k − θ ≤ −(1 + θ)k − θ(1 + θ)k = −(1 + θ)k+1 .

Hence,

P{∃E ∈ I1 : Λ(1)
L is (E,ml, J)-bad} ≤ 1

4
L− Jp1

3
(1+θ)k+1

.

The claim now follows by taking J = 6 11.

2.7.2 Multi-particle case: Strategy

The deduction of (DS : 1, k + 1,mLk+1
, I1) from (DS : 1, k,mLk

, I1) was fairly simple.
Once n ≥ 2 however, we face a difficulty when trying to estimate the probability that a cube
is (E,mLk

, J)-bad. Indeed, Hamiltonians on separable sub-cubes are not independent, so
we can no longer multiply the probabilities as in the previous subsection.

To overcome this, we reason as follows: if a cube Λ(N)
Lk+1

is (E,mLk
, J)-bad, then it

contains at least J + 1 pairwise separable cubes Λ(N)
Lk

which are (E,mLk
)-S. Hence, either

it contains 2 separable (E,mLk
)-S PI cubes, or it contains at least J separable (E,mLk

)-S
FI cubes. Now separable FI cubes are completely separated by Lemma 2.2.9, so taking
J = 6, we can again multiply the probabilities. The main difficulty is in assessing the
probability that a cube contains 2 separable (E,mLk

)-S PI cubes. The idea is as follows:
on PI cubes, the interaction potential decouples by Lemma 2.2.6, so the corresponding
Hamiltonians take the form H

(N)
ΛLk

(u) = H
(n′)
ΛLk

(uJ ) ⊗ I + I ⊗ H
(n′′)
ΛLk

(uJ c ), where n′, n′′ < N .

Now using the new resolvent inequality (GRI.3), we may deduce that Λ(N)
Lk

(u) is non-

singular if both projections Λ(n′)
Lk

(uJ ) and Λ(n′′)
Lk

(uJ c) are non-singular for an array of
energies. To show both projections are indeed non-singular, we show that they cannot
contain a lot of bad sub-cubes Λ(n)

Lk−1
, n = n′, n′′.

Notice that in the above scheme, we reduced the decay problem on PI N -cubes to that
on n-cubes for n < N , which indicates that an induction on n will be performed. Also
notice that unlike single-particle systems, here we will need good decay bounds on both
orders k − 1 and k to finally deduce the decay for k + 1.

11. Obviously, we could have taken J = 5 by avoiding inequality (7-2), which gives an even better mLk

than we need. We took J = 6 to be in accordance with the multi-particle situation later.
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2.7.3 Pairs of PI cubes

We assume through this subsection that 2 ≤ n ≤ N .
Recall that if Λ(n)

Lk
(u) is a PI cube, it is J -decomposable for some J by Lemma 2.2.6.

We then denote Λ(n)
Lk

(u) = Λ(n′)
Lk

(uJ ) × Λ(n′′)
Lk

(uJ c), where n′ = #J and n′′ = n− n′. We

also denote by Σ′ and Σ′′ the spectra of H(n′)
ΛLk

(uJ ) and H
(n′′)
ΛLk

(uJ c ), respectively.

Definition 2.7.7. Let Λ(n)
Lk

(u) = Λ(n′)
Lk

(uJ ) × Λ(n′′)
Lk

(uJ c) be a PI cube. We say that

Λ(n)
Lk

(u) is (E,mLk−1
)-Non Tunneling ((E,mLk−1

)-NT) if

(i) ∀µb ∈ Σ′′ : Λ(n′)
Lk

(uJ ) is (E − µb,mLk−1
, 1)-good.

(ii) ∀λa ∈ Σ′ : Λ(n′′)
Lk

(uJ c) is (E − λa,mLk−1
, 1)-good.

Otherwise, we say it is (E,mLk−1
)-Tunneling ((E,mLk−1

)-T).

The following definition is taken from [68, Definition 3.16].

Definition 2.7.8. Let Λ(n)
Lk

(u) = Λ(n′)
Lk

(uJ ) × Λ(n′′)
Lk

(uJ c) be a PI cube. We say that

Λ(n)
Lk

(u) is E-Highly Non-Resonant (E-HNR) if

(i) ∀µb ∈ Σ′′ : Λ(n′)
Lk

(uJ ) is (E − µb)-CNR.

(ii) ∀λa ∈ Σ′ : Λ(n′′)
Lk

(uJ c) is (E − λa)-CNR.

Lemma 2.7.9. Let Λ(n)
Lk

(u) be a PI cube, k ≥ 1, and let E ∈ In. If Λ(n)
Lk

(u) is E-HNR

and (E,mLk−1
)-NT, then Λ(n)

Lk
(u) is (E,mLk

)-NS.

Proof. Since µb ≥ n′′q− for all µb ∈ Σ′′, given E ∈ In and µb ∈ Σ′′ we have

(7-4) E − µb ≤ E − n′′q− ≤ (nq− + ε0) − n′′q− = n′q− + ε0.

As ε0 < 1, E − µb ≤ E+ = maxn(nq− + 1). By hypothesis, Λ(n′)
Lk

(uJ ) is (E − µb)-CNR

and (E − µb,mLk−1
, 1)-good for all µb ∈ Σ′′, hence Λ(n′)

Lk
(uJ ) is (E − µb,mLk

+ Lβ−1
k )-NS

by Lemma 2.7.4. Similarly, Λ(n′′)
Lk

(uJ c) is (E − λa,mLk
+ Lβ−1

k )-NS for any λa ∈ Σ′.
Now let v ∈ Bout

Lk
(u). Then |uJ c − vJ c | ≥ Lk − 6 or |uJ − vJ | ≥ Lk − 6. In the first

case, we take a large S > 2mL0 ≥ 2mLk
and apply (GRI.3) to obtain

‖G
Λ

(n)
Lk

(u)
(u,v;E)‖ ≤ cLn

′d
k e−(mLk

+Lβ−1
k

)Lk + c′Ln
′d
k e−(Lk−6)S ≤ e−mLk

Lk

since L0 is large. The second case is similar, using (GRI.3’).

Lemma 2.7.10 (cf. [68], Lemma 3.18). Let Λ(n)
Lk

(u) = Λ(n′)
Lk

(uJ ) × Λ(n′′)
Lk

(uJ c) be a PI

cube. If Λ(n)
Lk

(u) is not E-HNR, then

a. either there exists a cube Λ(n′)
ℓ ⊆ Λ(n′)

Lk
(uJ ) with ℓ ∈ N∗, L

1/α
k ≤ ℓ ≤ Lk such that for

Λ(n)
L := Λ(n′)

ℓ × Λ(n′′)
Lk

(uJ c) we have dist(σ(H(n)
ΛL

), E) < e−ℓβ ,

b. or there exists a cube Λ(n′′)
ℓ ⊆ Λ(n′′)

Lk
(uJ c) with ℓ ∈ N∗, L

1/α
k ≤ ℓ ≤ Lk such that for

Λ(n)
L := Λ(n′)

Lk
(uJ ) × Λ(n′′)

ℓ we have dist(σ(H(n)
ΛL

), E) < e−ℓβ .
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Proof. Suppose condition (i) of Definition 2.7.8 is not satisfied. Then there exist µ ∈ Σ′′

and Λ(n′)
ℓ ⊆ Λ(n′)

Lk
(uJ ), L1/α

k ≤ ℓ ≤ Lk such that dist(σ(H(n′)
Λℓ

), E − µ) < e−ℓβ . Thus, there

exists η ∈ σ(H(n′)
Λℓ

) such that |E − µ− η| < e−ℓβ .

But Λ(n′)
Lk

(uJ ) × Λ(n′′)
Lk

(uJ c) is PI and Λ(n′)
ℓ ⊆ Λ(n′)

Lk
(uJ ), so the interaction U (n) also

decouples on Λ(n)
L := Λ(n′)

ℓ × Λ(n′′)
Lk

(uJ c) and we get H(n)
ΛL

= H
(n′)
Λℓ

⊗ I + I ⊗ H
(n′′)
ΛLk

(uJ c ).

In particular, the eigenvalues of H(n)
ΛL

take the form Ea,b = ηa + µb for ηa ∈ σ(H(n′)
Λℓ

) and

µb ∈ Σ′′. We thus showed that dist(σ(H(n)
ΛL

), E) ≤ |(η + µ) − E| < e−ℓβ .
If instead (ii) of Definition 2.7.8 is not satisfied, we reason similarly and obtain b.

Lemma 2.7.11. Let Λ(n)
Lk

(u), k ≥ 1 be a PI cube and suppose (DS : n′, k − 1,mLk−1
, In′)

holds for all n′ < n. Then there exists C1 = C1(n, d, q−) such that

P{∃E ∈ In : Λ(n)
Lk

(u) is (E,mLk−1
)-T} ≤ C1L

(2n−1)d− 2pn−1(1+θ)k−1

α
k .

Proof. Let Λ(n)
Lk

(u) = Λ(n′)
Lk

(uJ ) × Λ(n′′)
Lk

(uJ c) be PI and Σ′′ := σ
(
H

(n′′)
ΛLk

(uJ c )

)
. By (7-4),

given E ∈ In and µb ∈ Σ′′, either E−µb ∈ [n′q− − 1
2 , n

′q− +ε0] = In′ , or E−µb < n′q− − 1
2 .

Suppose E − µb < n′q− − 1
2 , let Λ(n′)

Lk−1
(v1),Λ(n′)

Lk−1
(v2) ⊂ Λ(n′)

Lk
(uJ ) be two separable cubes

and let ηb := n′q− − (E − µb) > 1
2 . Then by Theorem 2.3.3 given yi ∈ Bout

Lk−1
(vi),

‖G
Λ

(n′)
Lk−1

(vi)
(vi, yi;E − µb)‖ ≤

√
π

2

(√Lk−1

η
3/4
b

+
3

8
√
Lk−1 − 8η5/4

b

)
e−(Lk−1−8)

√
ηb

≤ e−mLk−1
Lk−1

because
√
ηb >

1√
2

≥ 2mLk−1
(in fact 1√

2
≫ c

L
(1−β)/2
0

= 2mL0 ≥ 2mLk−1
for L0 large

enough). Thus both cubes are (E,mLk−1
)-NS in this case. On the other hand,

P{∃E − µb ∈ In′ : Λ(n′)
Lk−1

(v1) and Λ(n′)
Lk−1

(v2) are (E − µb,mLk−1
)-S} ≤ L

−2pn′ (1+θ)k−1

k−1

by (DS : n′, k − 1,mLk−1
, In′). But by Lemma 2.2.2 there exists C > 0 such that

b > C · |Λ(n′′)
Lk

(uJ c)| =⇒ µb > E − n′q− + 1
2 =⇒ E − µb < n′q− − 1

2 .

As the number of pairs of cubes in Λ(n′)
Lk

(uJ ) is bounded by |B(n′)
Lk

(uJ )|2, we finally obtain

P{∃E ∈ In,∃µb ∈ Σ′′ such that Λ(n′)
Lk

(uJ ) is (E − µb,mLk−1
, 1)-bad}

≤ |B(n′)
Lk

(uJ )|2
∑

b≤C|Λ(n′′)|
L

−2pn′ (1+θ)k−1

k−1

≤ C̃L2n′d+n′′d
k L

−2pn′ (1+θ)k−1

α
k = C̃L

(n+n′)d− 2pn′ (1+θ)k−1

α
k ≤ C1

2
L

(2n−1)d− 2pn−1(1+θ)k−1

α
k

because pn′ ≥ pn−1 for n′ = 1, . . . , n − 1. The same reasoning with Λ(n′′)
Lk

(uJ c) and the

spectrum Σ′ of H(n′)
ΛLk

(uJ ) yields the theorem.

From now on we declare that

(DS : n′,−1,mL−1 , In′) = no assumption.
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Theorem 2.7.12. Let k ≥ 0. Suppose that (DS : n′, k− 1,mLk−1
, In′) holds for all n′ < n

and let Λ(n)
Lk

(u) and Λ(n)
Lk

(v) be separable PI cubes. Then there exist C2 = C2(n, d, q−) such
that

P{∃E ∈ In : Λ(n)
Lk

(u) and Λ(n)
Lk

(v) are (E,mLk
)-S} ≤ C2L

(2n−1)d− 2pn−1(1+θ)k−1

α
k .

Proof. If k = 0, recall that L0 is chosen so that for mL0 = L
(β−1)/2
0

3 ,

P{∃E ∈ In : Λ(n)
L0

(u) and Λ(n)
L0

(v) are (E,mL0)-S} ≤ L−2p1
0 ≤ C2L

(2n−1)d− 2pn−1
α(1+θ)

0 .

So suppose k ≥ 1. By Lemma 2.7.9,

P{∃E ∈ In : Λ(n)
Lk

(u) and Λ(n)
Lk

(v) are (E,mLk
)-S}

≤ 3 max
x=u,v

P{∃E ∈ In : Λ(n)
Lk

(x) is (E,mLk−1
)-T}

+ P{∃E ∈ In : Λ(n)
Lk

(u) and Λ(n)
Lk

(v) are not E-HNR} .

For x = u,v, taking C2 := 4C1, we have by Lemma 2.7.11

P{∃E ∈ In : Λ(n)
Lk

(x) is (E,mLk−1
)-T} ≤ C2

4
L

(2n−1)d− 2pn−1(1+θ)k−1

α
k .

Since both cubes are PI, they are decomposable, say Λ(n)
Lk

(u) = Λ(n′)
Lk

(uJ ) × Λ(n′′)
Lk

(uJ c)

and Λ(n)
Lk

(v) = Λ(r′)
Lk

(vI)×Λ(r′′)
Lk

(vIc), where n′ +n′′ = r′ +r′′ = n. If Λ(n′)
ℓ1

⊆ Λ(n′)
Lk

(uJ ) and

Λ(r′)
ℓ2

⊆ Λ(r′)
Lk

(vI), where L1/α
k ≤ ℓ1, ℓ2 ≤ Lk, then the rectangles Λ(n)

L := Λ(n′)
ℓ1

× Λ(n′′)
Lk

(uJ c)

and Λ(n)
K := Λ(r′)

ℓ2
× Λ(r′′)

Lk
(vIc) are pre-separable. Let Jn = [nq− − 1

2 − ε, nq− + ε0 + ε] be
an ε-enlargement of In. Then by Theorem 2.5.2, we may find C = C(n, d, q−) such that

P{∃E ∈ In : dist(σ(H(n)
ΛL

), E) < ε and dist(σ(H(n)
ΛK

), E) < ε}
≤ P{dist(σJn(H(n)

ΛL
), σJn(H(n)

ΛK
)) < 2ε} ≤ C(2Lk)2nd+nds(µ, 4ε) .

Reasoning similarly for Λ(n′′)
ℓ3

⊆ Λ(n′′)
Lk

(uJ c) and Λ(r′′)
ℓ4

⊆ Λ(r′′)
Lk

(vIc), using Lemma 2.7.10,

bounding the number cubes in Λ(s)
Lk

by |B(s)
Lk

| ≤ (2Lk)nd for s = n′, n′′, r′, r′′, and the

number of ℓ ∈ N∗ satisfying L1/α
k ≤ ℓ ≤ Lk by Lk, we get for ε := maxj e

−ℓβj ≤ e−Lβ/α
k ,

P{∃E ∈ In : Λ(n)
Lk

(u) and Λ(n)
Lk

(v) are not E-HNR} ≤ 4C(2Lk)4nd+d+2s(µ, 4e−Lβ/α
k ) ,

where 4C appear because we apply the above argument 4 times, since Lemma 2.7.10
provides 2 cases for Λ(n)

Lk
(u) and 2 cases for Λ(n)

Lk
(v). As estimated in Lemma 2.7.5,

4C(2Lk)4nd+d+2s(µ, 4e−Lβ/α
k ) ≤ L

−2p1(1+θ)k

k ≤ C2

4
L

(2n−1)d− 2pn−1(1+θ)k−1

α
k .

We thus obtain the theorem for k ≥ 1.
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2.7.4 General pairs of cubes

We assume through this subsection that 2 ≤ n ≤ N .

Lemma 2.7.13. Let k ≥ 0. Suppose (DS : n, k,mLk
, In) and (DS : n′, k − 1,mLk−1

, In′)

hold for n′ < n. Then for any cube Λ(n)
Lk+1

(z) and J ∈ 2N∗,

P{∃E ∈ In : Λ(n)
Lk+1

(z) is (E,mLk
, J)-bad } ≤ 1

8
(L−2pn(1+θ)k+1

k+1 + L
−Jpn(1+θ)k+1/3
k+1 ) .

Proof. Put L = Lk+1, l = Lk. If Λ(n)
L (z) is (E,ml, J)-bad, then it contains at least J + 1

pairwise separable cubes which are (E,ml)-S. Hence, either it contains 2 separable (E,ml)-
S PI cubes, or it contains at least J separable (E,ml)-S FI cubes. By Theorem 2.7.12,

P{∃E ∈ In : Λ(n)
L (z) contains 2 separable (E,ml)-S PI cubes}

≤ C2(2L)2ndl(2n−1)d− 2pn−1(1+θ)k−1

α ≤ cL2nd+
(2n−1)d

α
− 2pn−1(1+θ)k−1

α2 ,

where we bounded the number of pairs of cubes in Λ(n)
L by |B(n)

L |2 ≤ (2L)2nd. Now

2pn(1 + θ)k+1 = (2pn + 2θpn)(1 + θ)k

< (2pn + 2)(1 + θ)k

=
( 2pn−1

α2(1 + θ)
− (2n− 1)d

α
− 2nd

)
(1 + θ)k

≤ 2pn−1(1 + θ)k−1

α2
− (2n− 1)d

α
− 2nd .

Hence,

P{∃E ∈ In : Λ(n)
L (z) contains 2 separable (E,ml)-S PI cubes} ≤ 1

8
L−2pn(1+θ)k+1

.

Next, by Lemma 2.2.9, pairs of separable FI cubes are completely separated, so the
corresponding Hamiltonians H(n)

Λl
are independent. Thus, bounding again the number of

pairs of cubes in Λ(n)
L by (2L)2nd, we get by (DS : n, k,ml, In),

P{∃E ∈ In : Λ(n)
L (z) contains at least J separable (E,ml)-S FI cubes}

≤ P{∃E ∈ In : Λ(n)
L (z) contains at least 2 separable (E,ml)-S FI cubes}J/2

≤ (
(2L)2ndl−2pn(1+θ)k)J/2 ≤ cL(nd− pn(1+θ)k

α
)J ≤ cL( pn−1

3
− 2pn(1+θ)k

3
)J

because α = 3/2 and nd ≤ pN −1
3 ≤ pn−1

3 . Moreover,

cL
Jpn

3
(1−2(1+θ)k− 1

pn
) ≤ 1

8
L

Jpn
3

(1−2(1+θ)k−θ) .

We thus showed that

P{∃E ∈ In : Λ(n)
L (z) is (E,ml, J)-bad} ≤ 1

8
L−2pn(1+θ)k+1

+
1
8
L

Jpn
3

(1−2(1+θ)k−θ) ,

which completes the proof by (7-3).
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Theorem 2.7.14. Let k ≥ 0. Then the properties (DS : n′, k − 1,mLk−1
, In′) for n′ < n

and (DS : n, k,mLk
, In) imply (DS : n, k + 1,mLk+1

, In).

Proof. Put L = Lk+1, l = Lk and let Λ(n)
L (u) and Λ(n)

L (v) be a pair of separable cubes.
Since ε0 < 1, any E ∈ In satisfies E ≤ E+ = maxn(nq− + 1), so applying Lemma 2.7.4
with J = 6, noting that l > l∗ because L0 > l∗, we have

P{∃E ∈ In : Λ(n)
L (u) and Λ(n)

L (v) are (E,mL)-S}
≤ 3 max

z=u,v
P{∃E ∈ In : Λ(n)

L (z) is (E,ml, 6)-bad}

+ P{∃E ∈ In : Λ(n)
L (u) and Λ(n)

L (v) are not E-CNR} ,

since an (E,mL)-S cube is a fortiori (E,mL + Lβ−1)-S. Now by Lemma 2.7.13,

P{∃E ∈ In : Λ(n)
L (z) is (E,ml, 6)-bad} ≤ 1

4
L−2pn(1+θ)k+1

for z = u,v. The assertion follows, using (W2 : n, k + 1, In).

2.7.5 Conclusion

Theorem 2.7.15. There exists m > 0 such that (DS : N, k,m, IN ) holds for all k ≥ 0.

Proof. By construction L0 is a large integer such that (DS : n, 0,mL0 , In) holds for all
1 ≤ n ≤ N , with mL0 = 1

3L
(1−β)/2
0

> 48NK(N)

L1−β
0

. We prove the theorem by induction on n.

For n = 1, we know that (DS : 1, k,mLk
, I1) holds for all k ≥ 0 by Theorem 2.7.6 and

induction on k.
Now fix n ≥ 2 and suppose that (DS : n′, k,mLk

, In′) holds for all k ≥ 0 and all
n′ < n. We may then apply Theorem 2.7.14 to obtain (DS : n, k,mLk

, In) for all k ≥ 0, by
induction on k. (Recall that (DS : n′,−1,mL−1 , In′) means no assumption).

This completes the induction and we obtain (DS : N, k,mLk
, IN ) for all k ≥ 0. Now

S :=
∞∑

j=0

(mLj −mLj+1) ≤ 96NK(N)
∞∑

j=0

mLj

Lα−1
j

+ 3
∞∑

j=0

1

L
α(1−β)
j

.

Since mLj ≤ mL0 , we have

S ≤ 96NK(N)mL0

∞∑

j=0

1

L
(α−1)αj

0

+ 3
∞∑

j=0

1

L
α(1−β)αj

0

≤ mL0

2
≤ mL0 −m

for any 0 < m ≤ mL0
2 , assuming L0 is large enough. Now given k ≥ 1, put Sk :=∑∞

j=k(mLj −mLj+1). Again the mLj are decreasing, so Sk ≥ 0 for all k. Since

mL0 −m ≥ S = mL0 −mLk
+ Sk ,

we get
m ≤ mLk

− Sk ≤ mLk
,

so in particular, (DS : N, k,m, IN ) holds for all k ≥ 0.
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2.8 Generalized Eigenfunctions

In this section we prove a generalized eigenfunction expansion for H(n)(ω) which plays
an important role in the proof of localization. For this we show that our model satisfies
the hypotheses of [67, Theorem 3.1] 12.

Given a bounded potential v = (vκ) ≥ 0, we define Hv to be the operator associated
with the form

hv[f, g] =
∑

κ∈K
avκ [fκ, gκ], D(hv) = W 1,2(Γ(n)),

where
avκ [φ, ψ] := 〈∇φ,∇ψ〉 + 〈vκφ, ψ〉, D(avκ) = W 1,2((0, 1)n).

We first show that hv is a Dirichlet form and that (e−tH(n)(ω))t≥0 is ultracontractive. For
this we follow [87], as it covers the case where the Hilbert space is over C.

Lemma 2.8.1. hv is a Dirichlet form.

Proof. Combine [87, Corollary 4.3], [87, Corollary 4.10] and [87, Theorem 2.25] to see
that p(D(avκ)) ⊆ D(avκ) and avκ [p ◦ f ] ≤ avκ [f ] for every f ∈ D(avκ) and every normal
contraction p. Now let u = (uκ) ∈ D(hv) such that uκ ∈ C([0, 1]n) for all κ and let
p be a normal contraction. If σi ≡ (0, 1)n−1 is a common face to κ1 and κ2 and if
γ : W 1,2(0, 1)n → L2(0, 1)n−1 is the trace operator, then

‖γ(p(uκ1)) − γ(p(uκ2))‖2
L2(0,1)n−1 = ‖γ(p(uκ1) − p(uκ2))‖2

L2(0,1)n−1

=
∫

(0,1)n−1
|p(uκ1(x)) − p(uκ2(x))|2dx

≤
∫

(0,1)n−1
|uκ1(x) − uκ2(x)|2dx

= ‖γ(uκ1) − γ(uκ2)‖2
L2(0,1)n−1 = 0 ,

where the last equality holds since u is continuous on σi. By the density of C∞([0, 1]n)
in W 1,2((0, 1)n) and the continuity of γ and p, the same is true for all u ∈ D(hv). Hence
p ◦ u is continuous on σi for all u ∈ D(hv). Thus p(D(hv)) ⊆ D(hv) . Furthermore,

hv[p ◦ u] =
∑

κ∈K
avκ [p ◦ uκ] ≤

∑

κ∈K
avκ [uκ] = hv[u] .

Hence by [87, Theorem 2.25], (e−tHv )t≥0 is sub-Markovian. Thus hv is a Dirichlet form.

Lemma 2.8.2. There exists c = c(n) > 0 such that for all ω ∈ Ω,

∀t > 0 : ‖e−tH(n)(ω)‖L2(Γ)→L∞(Γ) ≤ ct−n/4e−(nq−−1)t .

Proof. Let Q := (0, 1)n. By the Gagliardo-Nirenberg interpolation inequality 13 (see [86]),

12. The reader is encouraged to check Appendix A, in which we collected all the facts we need here.
13. Alternatively, one could use Nash inequality: by [102, Theorem 5, p. 181], there exists an extension

operator E : W k,p(Q) → W k,p(Rn) such that (Eu)|Q = u and ‖Eu‖k,p,Rn ≤ ck,p‖u‖k,p,Q for all k ≥ 0
and 1 ≤ p ≤ ∞. Here ‖g‖k,p,X =

∑
|α|≤k

‖Dαg‖Lp(X). Hence, using Nash inequality on Rn [79, Theorem

8.13], we have for any u ∈ W 1,2(Q),

‖u‖0,2,Q ≤ ‖Eu‖0,2,Rn ≤ cn‖∇Eu‖a
0,2,Rn ‖Eu‖1−a

0,1,Rn

≤ cn‖Eu‖a
1,2,Rn ‖Eu‖1−a

0,1,Rn ≤ C‖u‖a
1,2,Q‖u‖1−a

0,1,Q

for C = cnc1,2c0,1. We used above that Eu ∈ L1(Rn), since u ∈ L2(Q) ⊂ L1(Q). Noting that ‖g‖1,2,Q ≤

(n + 1)1/2
(∑

|α|≤1
‖Dαg‖2

L2(X)

)1/2
, we get (8-1)
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we have for any u ∈ W 1,2(Q),

‖u‖L2(Q) ≤ C(‖∇u‖aL2(Q) + ‖u‖aL1(Q))‖u‖1−a
L1(Q) ,

where a = n
n+2 . By Hölder inequality, we have ‖u‖L1(Q) ≤ ‖u‖L2(Q). Using Hölder

inequality again, with p = 2
a and q = 2

2−a , we get (xa + ya) ≤ 21/q(x2 + y2)a/2. Thus,

(8-1) ‖u‖L2(Q) ≤ C̃(‖∇u‖2
L2(Q) + ‖u‖2

L2(Q))
a/2‖u‖1−a

L1(Q) ≤ C̃(avκ [u])a/2‖u‖1−a
L1(Q)

for any bounded potential vκ ≥ 1. Hence, for any f ∈ D(hv) ∩ L1(Γ) we have

‖f‖2
L2(Γ) =

∑

κ∈K
‖fκ‖2

L2(Q) ≤ C̃2
∑

κ∈K
(avκ [fκ])a‖fκ‖2(1−a)

L1(Q) .

Using Hölder inequality with p = 1
a and q = 1

1−a we get

‖f‖2
L2(Γ) ≤ C̃2

(∑
avκ [fκ]

)a(∑
‖fκ‖2

L1(Q)

)(1−a)

≤ C̃2
(∑

avκ [fκ]
)a(∑

‖fκ‖L1(Q)

)2(1−a)
= C̃2(hv[f ])a‖f‖2(1−a)

L1(Γ) .

Using Lemma 2.8.1 and applying [87, Theorem 6.3], it follows that

∀t > 0 : ‖e−tHv ‖L1(Γ)→L2(Γ) ≤ ct−n/4 .

But ‖e−tHv ‖L1→L2 = ‖e−tHv ‖L2→L∞ by duality. So the assertion follows by taking v :=
V ω − (nq− − 1) ≥ 1 and noting that

e−tHv = exp(−t(H(n)(ω) − (nq− − 1))) = e(nq−−1)te−tH(n)(ω) .

Let T be the self-adjoint operator on L2(Γ(n)) given by

Tf(x) := w(x)f(x), where w(x) = (1 + ‖x‖2
2)γ/4

for some fixed γ > nd+ 1. We now establish

Lemma 2.8.3. There exists C = C(n) such that for all ω ∈ Ω and t > 0 :

tr(T−1e−2tH(n)(ω)T−1) ≤ Ct−n/2e−2(nq−−1)t‖w−1‖2
L2 < ∞ .

Furthermore, if Eω is the spectral projection of H(n)(ω), then the set function νω on R

given by 14

νω(J) := tr(T−1Eω(J)T−1) = ‖Eω(J)T−1‖2
2

is a spectral measure for H(n)(ω) which is finite on bounded Borel sets J .

Proof. Divide Γ(n) into annuli Γ(n) ∩ (Λ(n)
k+1(0) \ Λ(n)

k (0)). Then by (NB.n),

∫

Γ(n)
|w−1|2 dm ≤

∑

k

m(Γ(n) ∩ Λ(n)
k+1(0))

(1 + k2)γ/2
≤ C

∑

k

(k + 1)nd

(1 + k2)γ/2
< ∞ .

14. Recall that the trace is well defined for any positive operator and has values in [0, ∞].
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Thus w−1 ∈ L2 and T−1 is an operator from L∞ → L2. Put H := H(n)(ω). Then by
Lemma 2.8.2, T−1e−tH : L2 → L2 factorizes through L∞. It is thus Hilbert-Schmidt with

‖T−1e−tH‖2 ≤ ‖w−1‖L2‖e−tH‖L2→L∞ ≤ ct−n/4e−(nq−−1)t‖w−1‖L2

(see Appendix B). Thus e−tHT−1 = (T−1e−tH)∗ is also a Hilbert-Schmidt operator with
the same norm. Hence,

tr(T−1e−2tHT−1) = ‖e−tHT−1‖2
2 ≤ Ct−n/2e−2(nq−−1)t‖w−1‖2

L2 .

Now let J be a bounded Borel set and put b := sup{λ ∈ J}. Then

0 ≤ e−2bEω(J) ≤
∫

J
e−2λ dEω(λ) ≤

∫

σ(H)
e−2λ dEω(λ) = e−2H .

Hence νω(J) ≤ e2b tr(T−1e−2HT−1) ≤ CJ‖w−1‖2
L2 and νω is finite on bounded Borel sets.

It is easy to see that νω is a Borel measure 15. Finally, νω(J) = 0 ⇐⇒ Eω(J) = 0, so νω
is a spectral measure for H.

We note in passing that given a bounded interval I, the previous proof yields a constant
C = C(I, n, q−) > 0 independent of ω such that

(8-2) sup
ω
νω(I) ≤ C‖w−1‖2

L2 := Ctr .

Let H+ be the space D(T ) equipped with the norm ‖φ‖+ = ‖Tφ‖ and H− the comple-
tion of H in the norm ‖ψ‖− = ‖T−1ψ‖. By construction H+ ⊂ H ⊂ H− is then a triple of
Hilbert spaces 16 with natural injections ι+ : H+ → H and ι− : H → H− continuous with
dense range. The inner product 〈 , 〉H extends to a sesquilinear form on H+ × H− which
turns H+ and H− into conjugate duals (see [89, Lemma 1] and [11]). The adjoint of an
operator O with respect to this duality is denoted by O†.

Lemma 2.8.4. For all ω ∈ Ω, the space

D+ = {f ∈ D(H(n)(ω)) ∩ H+ : H(n)(ω)f ∈ H+}

is dense in H+ and is an operator core for H(n)(ω) 17.

Proof. Set H := H(n)(ω) and let C∞
c (Γ) := (⊕κC

∞
c (0, 1)n) ∩Cc(Γ). Clearly D+ ⊇ C∞

c (Γ)
(see the definition of D(H) in the Appendix, Section 2.11). Moreover, C∞

c (Γ) is dense in
L2(Γ). Now let f ∈ H+, then Tf ∈ L2(Γ) may be approximated by gj ∈ C∞

c (Γ), hence
‖f − T−1gj‖+ → 0 and clearly T−1gj ∈ C∞

c (Γ). Hence D+ is dense in H+.
To show D+ is a core we follow [22, Proposition 2.4]: let E < nq− and consider

D0 = (H − E)−1Cc(Γ). Since Cc(Γ) is dense in L2(Γ), D0 is a core for H. By Combes-
Thomas estimate, each f ∈ D0 is exponentially decreasing. Hence f ∈ H+ and

Hf = (H − E)f + Ef = ϕ+ Ef ∈ H+

since f = (H − E)−1ϕ for some ϕ ∈ Cc(Γ). This proves the claim.

15. If (Ji) are disjoint Borel sets, then νω(
⋃

Ji) = tr[T −1Eω(
⋃

Ji)T
−1] =

∑
j
〈T −1Eω(

⋃
Ji)T

−1ej , ej〉 =∑
j

∑
i
〈T −1Eω(Ji)T

−1ej , ej〉 =
∑

i

∑
j
〈T −1Eω(Ji)T

−1ej , ej〉 =
∑

i
tr[T −1Eω(Ji)T

−1] =
∑

i
νω(Ji). The

previous interchange of summations is valid because all terms are positive (even if some series have an
infinite value), see e.g. [96, Theorem 1.27].

16. By identifying H+ ≡ ι+H and H ≡ ι−H. We prefered to keep the distinction in Appendix A.

17. We prove a stronger statement in Lemma 3.4.3, namely functions of compact support in D(H(n)(ω))
form an operator core.
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By [67, Lemma 3.1], H(n)(ω) regarded as an operator on H− is thus closable and
densely defined. We denote its closure by H(n)

− (ω). We then say ψ ∈ H− is a generalized
eigenfunction of H(n)(ω) with corresponding generalized eigenvalue λ ∈ C if ψ is an
eigenfunction of H(n)

− (ω) with eigenvalue λ, i.e. if ψ ∈ D(H(n)
− (ω)) and H

(n)
− (ω)ψ = λψ.

By [67, Lemma 3.2], we have H(n)
− (ω)ψ = H(n)(ω)ψ for any ψ ∈ D(H(n)

− ) ∩ H. In
particular, if a generalized eigenfunction lies in H, then it is an eigenfunction.

We may now state the main result of this section. Here T1(H+,H−) and T1,+(H+,H−)
are the spaces of trace class and positive trace class operators from H+ to H− respectively
(see [67] for details).

Theorem 2.8.5. Let νω be the spectral measure of H(n)(ω) introduced in Lemma 2.8.3.
There exists a νω-locally integrable function Pω : R → T1,+(H+,H−) such that

ι−f(H(n)(ω))Eω(J)ι+ =
∫

J
f(λ)Pω(λ)dνω(λ)

for all bounded Borel sets J and all bounded Borel functions f , where the integral is the
Bochner integral of T1(H+,H−)-valued functions. Furthermore, for νω-a.e. λ ∈ R,

Pω(λ) = Pω(λ)†, trPω(λ) = 1

and Pω(λ)φ ∈ H− is a generalized eigenfunction of H(n)(ω) with generalized eigenvalue λ
for any φ ∈ H+.

Proof. Applying [67, Theorem 3.1] and [67, Corollary 3.1], it only remains to show that
Pω(λ) = Pω(λ)† νω-a.e. This follows from [67, Eq.(46)] and the fact that ι†+ = ι− 18.

2.9 Exponential Localization

The fundamental link between mutiscale analysis and localization is provided by the
following eigenfunction decay inequality. Since we will not rely on regularity of generalized
eigenfunctions, the proof is a bit longer than in [104].

Lemma 2.9.1. Let E+ ∈ R. There exists C = C(E+, n, d, q−) such that, if x0 ∈ Znd

and C(x) ⊂ Λ(n)
L−6(x0), then every generalized eigenfunction ψ of H(n)(ω) corresponding

to λ ∈ ρ(H(n)
ΛL(x0)) ∩ (−∞, E+] satisfies

‖χxψ‖ ≤ C · |Bout
L (x0)| max

y∈Bout
L (x0)

‖G
Λ

(n)
L (x0)

(x,y;λ)‖ · ‖χΛout
L (x0)ψ‖.

Proof. Let Λ := Λ(n)
L (x0) and ϕ ∈ C̃1

c (Γ ∩ Λ) such that ϕ = 1 on a neighborhood of

Γ(n) ∩ C(x), supp ∇ϕ ⊂ Q̃ := int(Λ(n)
L−2(x0) \ Λ(n)

L−4(x0)), and ‖∇ϕ‖∞ ≤ C1(nd). Then

‖χxψ‖2 = 〈ϕψ, χxψ〉 = 〈ϕψ, (HΛ − λ)GΛ(λ)χxψ〉.

Put H := H(n)(ω). Since ψ ∈ D(H−) and H− is the closure of H, there exists (fj) in
D(H) such that ‖fj − ψ‖− → 0 and ‖Hfj − H−ψ‖− → 0 as j → ∞. Now for any χ of
compact support we have

(9-1) ‖χfj − χψ‖ ≤ ‖χw‖ · ‖fj − ψ‖− → 0

18. See Section A.3 for details.
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(recall that Tg := wg). Hence taking v := GΛ(λ)χxψ we have

‖χxψ‖2 = lim
j→∞

〈ϕfj , (HΛ − λ)v〉 = lim
j→∞

(hΛ − λ)[ϕfj , v]

since ϕfj ∈ D(hΛ) = W 1,2(Γ(n) ∩ Λ) by Lemma 2.3.1. Now

(hΛ − λ)[ϕfj , v] = 〈∇(ϕfj),∇v〉 + 〈(V ω − λ)ϕfj , v〉
=
[〈∇fj ,∇(ϕv)〉 + 〈(V ω − λ)fj , ϕv〉]+ 〈fj∇ϕ,∇v〉 − 〈∇fj , v∇ϕ〉.

Since ϕv ∈ W 1,2(Γ(n) ∩ Λ) has compact support in Λ, we may extend it by zero to a
function g in D(h) ∩ Cc(Γ). Hence

(9-2) (hΛ − λ)[ϕfj , v] = 〈(H − λ)fj , g〉 + 〈fj∇ϕ,∇v〉 − 〈∇fj , v∇ϕ〉.

Now H−ψ = λψ, so by the choice of fj

(9-3) ‖(H − λ)fj‖− ≤ ‖Hfj − λψ‖− + |λ| · ‖fj − ψ‖− → 0.

Thus
|〈(H − λ)fj , g〉| ≤ ‖(H − λ)fj‖−‖g‖+ → 0.

The second term in (9-2) tends to 〈ψ∇ϕ,∇v〉 by (9-1). For the third term, note that by
Lemma 2.4.3, taking Q := int Λout

L (x0), we can find c1 such that

‖χQ̃∇fj‖ ≤ c1(‖χQ(H − λ)fj‖ + ‖χQfj‖)

≤ c1(‖χQw‖ · ‖(H − λ)fj‖− + ‖χQfj‖) → c1‖χQψ‖

using (9-1) and (9-3).
Recalling that supp ∇ϕ ⊂ Q̃, the above derivation finally yields

‖χxψ‖2 ≤ ‖∇ϕ‖∞‖χQ̃ψ‖‖χQ̃∇v‖ + c1‖∇ϕ‖∞‖χQψ‖‖χQ̃v‖

By Lemma 2.4.3, we can find c2 such that

‖χQ̃∇v‖ ≤ c2‖χQv‖

(note that (HΛ − λ)v = χxψ = 0 on Q). Taking C = max(2c1‖∇ϕ‖∞, 2c2‖∇ϕ‖∞) and
noting that Q̃ ⊂ Q ⊂ Λout

L (x0) we thus get

‖χxψ‖2 ≤ C · ‖χΛout
L (x0)ψ‖ · ‖χΛout

L (x0)v‖.

Since ‖χΛout
L (x0)v‖ ≤ ‖χΛout

L (x0)GΛ(λ)χx‖‖χxψ‖, we get

‖χxψ‖ ≤ C · ‖χΛout
L (x0)GΛ(λ)χx‖ · ‖χΛout

L (x0)ψ‖.

The assertion now follows by the triangle inequality.

We now prove exponential localization by adapting [112, Theorem 2.3].

Proof of Theorem 2.1.3. Choose m and ε0 such that (DS : N, k,m, IN ) holds for all k ≥ 0
in IN = [Nq− − 1

2 , Nq− + ε0], as guaranteed by Theorem 2.7.15. Let σωgen be the set
of generalized eigenvalues of H(N)(ω). By Theorem 2.8.5 there exists Aω0 ⊆ R of full
νω-measure such that Aω0 ⊆ σωgen. If we show that every λ ∈ σωgen ∩ I is an eigenvalue,
Aω0 ∩ I will be countable (as L2(Γ(N)) is separable), so νω|I will be concentrated on a
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countable set and σ(H(N)(ω)) ∩ I will be pure point. It thus suffices to show that with
probability one the generalized eigenfunctions of H(N)(ω) corresponding to λ ∈ σωgen ∩ I
decay exponentially with mass m.

Let b ∈ N∗ to be chosen later and define

Ak+1 = B
(N)
2brk+1

(0)
∖

B
(N)
2rk

(0),

where rk := rN,Lk
. Then by Lemma 2.2.8, any x ∈ Ak+1 satisfies that Λ(N)

Lk
(x) is separable

from Λ(N)
Lk

(y) for any y ∈ B
(N)
rk (0). Now define the event

Ek = {∃λ ∈ I,x ∈ Ak+1,y ∈ B(N)
rk

(0) : Λ(N)
Lk

(x) and Λ(N)
Lk

(y) are (λ,m)-S}.

Then by Theorem 2.7.15, we have

P(Ek) ≤ (4brk+1 − 1)Nd(2rk − 1)NdL−2pN (1+θ)k

k ≤ cL
2Nαd−2pN (1+θ)k

k

Hence
∑∞
k=0 P(Ek) < ∞. So by the Borel-Cantelli Lemma, if we define the event

Ω1 = {Ek occurs finitely often},

we have P(Ω1) = 1. Now let ω ∈ Ω1 and λ ∈ σωgen ∩ I correspond to a generalized
eigenfunction ψ. If ‖χxψ‖ = 0 for all x ∈ ZNd, then ψ = 0 and the theorem holds.
So suppose ‖χyψ‖ 6= 0 for some y ∈ ZNd. Then by Lemma 2.9.1 we may find C1 =
C1(N, d, q−, γ, ‖ψ‖−) such that

‖χyψ‖ ≤ C1 · |Bout
Lk

(y)| max
z∈Bout

Lk
(y)

‖G
Λ

(N)
Lk

(y)
(y, z;λ)‖ · (1 + (|y| + Lk)2)γ/4.

Now if Λ(N)
Lk

(y) is (λ,m)-NS, we get

‖χyψ‖ ≤ C ′
1L

Nd−1
k e−mLk(1 + (|y| + Lk)2)γ/4.

Since ‖χyψ‖ 6= 0, there exists k0 such that Λ(N)
Lk

(y) is (λ,m)-S for all k ≥ k0. But there

exists k1 such that y ∈ B
(N)
rk (0) for all k ≥ k1. Finally, since ω ∈ Ω1, we may find k2 such

that Ek does not occur if k ≥ k2. Let k3 = max(k0, k1, k2). Then for k ≥ k3, we conclude
that Λ(N)

Lk
(x) is (λ,m)-NS for all x ∈ Ak+1.

Now given 0 < ρ < 1, we choose b > 1+ρ
1−ρ and define

Ãk+1 = B
(N)

2b
1+ρ

rk+1
(0)

∖
B

(N)
2

1−ρ
rk

(0).

Then Ãk+1 ⊂ Ak+1 and for any x ∈ Ãk+1, we have

dist(x, ∂Ak+1) ≥ ρ · |x|.

Indeed, if x ∈ Ãk+1, then

d(x, ∂B
(N)
2brk+1

(0)) ≥ 2brk+1 − 2b
1 + ρ

rk+1 = ρ
2b

1 + ρ
rk+1 ≥ ρ · |x|,

d(x, ∂B
(N)
2rk

(0)) = |x| − 2rk ≥ |x| − (1 − ρ)|x| = ρ · |x|.
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Now for x ∈ Ãk+1 with k ≥ k3, Λ(N)
Lk

(x) is (λ,m)-NS, so by Lemma 2.9.1,

‖χxψ‖ ≤ C2L
2(Nd−1)
k e−mLk‖χw1ψ‖

for some w1 ∈ Bout
Lk

(x). We may iterate at least
⌊ ρ·|x|
Lk−1

⌋
times and obtain

‖χxψ‖ ≤ (C2L
2(Nd−1)
k e−mLk)

⌊
ρ·|x|

Lk−1

⌋
C3‖ψ‖−(1 + (2brk+1)2)γ/4

≤ e−mρ′ρ·|x|

for any 0 < ρ′ < 1, provided k ≥ k4 for some k4 ≥ k3. But if x /∈ B
(N)

2
1−ρ

rk4

(0), then

x ∈ Ãk+1 for some k ≥ k4 (since 2b
1+ρrk+1 >

2
1−ρrk+1) and the bound is satisfied. Thus,

log ‖χxψ‖ ≤ −mρ′ρ · |x|

whenever x /∈ B
(N)

2
1−ρ

rk4

(0). Hence

lim sup
|x|→∞

log ‖χxψ‖
|x| ≤ −mρ′ρ

for all ρ, ρ′ ∈ (0, 1), which completes the proof of the theorem.

2.10 Dynamical Localization

We finally establish dynamical localization for H(N)(ω) using the approach of [47]. In
the following we consider the event

R(m,L, I,x,y) := { ∀λ ∈ I : Λ(N)
L (x) or Λ(N)

L (y) is (λ,m)-NS }
for x, y such that the corresponding cubes are separable. We start with the following key
lemma.

Lemma 2.10.1. Let m > 0, I ⊂ R and assume ω ∈ R(m,L, I,x,y). Then

‖χxPω(λ)χy‖2 ≤ Ce−mL/2(1 + |x|)γ/2(1 + |y|)γ/2

for νω-a.e. λ ∈ I and large L, with C = C(I,m,N, d, γ, q−) < ∞.

Proof. Let Aω0 be the set of full νω-measure such that Theorem 2.8.5 holds for all λ ∈ Aω0 .
Given λ ∈ I ∩ Aω0 , either Λ(N)

L (x) or Λ(N)
L (y) is (λ,m)-NS. Since Pω(λ) = Pω(λ)†, we

have ‖χxPω(λ)χy‖2 = ‖χyPω(λ)χx‖2, so we may assume that Λ(N)
L (x) is (λ,m)-NS. Now

if φ ∈ H, then by Theorem 2.8.5, the vector Pω(λ)χyφ is a generalized eigenfunction of
H(N)(ω), hence by Lemma 2.9.1,

‖χxPω(λ)χyφ‖ ≤ C1(2L− 1)Nd−1e−mL‖χΛout
L (x)Pω(λ)χyφ‖ .

Hence by definition of the HS norm,

‖χxPω(λ)χy‖2 ≤ C1(2L− 1)Nd−1e−mL‖χΛout
L (x)Pω(λ)χy‖2 .

But

‖χΛout
L (x)Pω(λ)χy‖1 ≤ ‖χΛout

L (x)‖H−→H‖Pω(λ)‖T1(H+,H−)‖χy‖H→H+

≤ c(1 + (|x| + L)2)γ/4(1 + (|y| + 1)2)γ/4

since trPω(λ) = 1 and Pω(λ) ≥ 0. The claim follows since ‖ · ‖2 ≤ ‖ · ‖1.
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We now establish the decay of the operator kernel. Given a bounded K as in the
statement of Theorem 2.1.4, we find k0 > 0 such that K ⊂ Γ ∩ Λ(N)

rN,Lk0
(0). For j ≥ k0 put

Fj = Λ(N)
2rN,Lj

(0), F̃j = B
(N)
2rN,Lj

(0),

Mj = Fj+1 \ Fj , M̃j = F̃j+1 \ F̃j .

In the following, we choose m and ε0 such that (DS : N, k,m, IN ) holds for all k ≥ 0 in
IN = [Nq− − 1

2 , Nq− + ε0], as guaranteed by Theorem 2.7.15.

Lemma 2.10.2. There exists c = c(N, d, q−, r0, γ) such that for x ∈ M̃j and y ∈ B
(N)
rN,Lj

(0)
with j large enough, we have for I = [Nq−, Nq− + ε0] :

E
(

sup
‖f‖≤1

‖χxf(H(N)(ω))Eω(I)χy‖2
2

)
≤ c(e−mLj/2 + L

−2pN (1+θ)j+γ
j ).

Proof. Given a bounded Borel function f put fI := fχI and Hω := H(N)(ω). By Theo-
rem 2.8.5 and standard properties of the Bochner integral in the space of HS operators we
have

‖χxfI(Hω)χy‖2 ≤
∫

I
|f(λ)|‖χxPω(λ)χy‖2dνω(λ).

Since x ∈ M̃j and y ∈ B
(N)
rN,Lj

(0), we know by Lemma 2.2.8 that Λ(N)
Lj

(x) and Λ(N)
Lj

(y) are
separable. Hence if ω ∈ Bj := R(m,Lj , I,x,y), we have by Lemma 2.10.1

‖χxPω(λ)χy‖2 ≤ C1L
γ/2
j+1L

γ/2
j e−mLj/2 ≤ e−mLj/4

for νω-a.e. λ ∈ I and j large enough. Hence

‖χxfI(Hω)χy‖2 ≤ ‖f‖∞e−mLj/4νω(I) ≤ Ctr‖f‖∞e−mLj/4

where Ctr = Ctr(N, d, q−, γ) is given by (8-2). For ω ∈ Bc
j we have the bound

‖χxfI(Hω)χy‖2
2 ≤ ‖f‖2

∞‖Eω(I)χy‖2
2

≤ ‖f‖2
∞‖χyT‖2‖Eω(I)T−1‖2

2 ≤ C2‖f‖2
∞L

γ
j νω(I)

for C2 = C2(γ,N, d, r0). Again νω(I) ≤ Ctr, so we finally get

E
(

sup
‖f‖≤1

‖χxfI(Hω)χy‖2
2

)
≤ C2

tre
−mLj/2 P(Bj) + C2CtrL

γ
j P(Bc

j ).

Using Theorem 2.7.15 to estimate P(Bc
j ), we obtain the assertion.

We are finally ready to prove our main result. Note that if R is a Hilbert-Schmidt
operator on L2(Γ) and if A,B ⊂ RNd are disjoint, then

(10-1) ‖χA∪BR‖2
2 = tr[R∗χA∪BR] = tr[R∗χAR] + tr[R∗χBR] = ‖χAR‖2

2 + ‖χBR‖2
2,

(10-2) ‖RχA∪B‖2
2 = ‖χA∪BR

∗‖2
2 = ‖χAR∗‖2

2 + ‖χBR∗‖2
2 = ‖RχA‖2

2 + ‖RχB‖2
2.
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Proof of Theorem 2.1.4. Let k ≥ k0 be sufficiently large so that Lemma 2.10.2 holds for
j ≥ k. Given s > 0 and a bounded Borel function f put fI := fχI and Hω := H(N)(ω).
Since Fk ∪ ( ∪j≥kMj

)
= RNd, we have by (10-1)

E
{

sup
‖f‖≤1

‖Xs/2fI(Hω)χK‖2
2

}
≤ E

{
sup

‖f‖≤1
‖χFk

Xs/2fI(Hω)χK‖2
2

}

+ E
{∑

j≥k
sup

‖f‖≤1
‖χMjX

s/2fI(Hω)χK‖2
2

}
.

Let us estimate the first term. We have

‖χFk
Xs/2fI(Hω)χK‖2

2 ≤ c1‖f‖2
∞L

s
k‖Eω(I)χK‖2

2

≤ c1‖f‖2
∞L

s
k‖χKT‖2‖Eω(I)T−1‖2

2.

Since ‖Eω(I)T−1‖2
2 = νω(I) ≤ Ctr by (8-2), we get

E
{

sup
‖f‖≤1

‖χFk
Xs/2fI(Hω)χK‖2

2

}
≤ c2L

s+γ
k < ∞.

For the second term, note that χMjX
s/2g = Xs/2χMjg for g ∈ D(Xs/2), so using (10-1)

and (10-2),

E
{∑

j≥k
sup

‖f‖≤1
‖χMjX

s/2fI(Hω)χK‖2
2

}

≤
∑

j≥k
c3L

s
j+1

∑

x∈M̃j ,y∈B
(N)
rN,Lk0

(0)

E
{

sup
‖f‖≤1

‖χxfI(Hω)χy‖2
2

}
.

Estimating |M̃j | ≤ cLNdj+1, |B(N)
rN,Lk0

| ≤ c′LNdk0
and using Lemma 2.10.2, the series converges.

This completes the proof of the theorem.

2.11 Appendix

In this section we prove various results used in the text. We shall repeat the statements
of the theorems for the reader’s convenience.

Theorem 2.11.1. Given ω ∈ Ω, h
(n)
ω is closed, densely defined and bounded from below.

The unique self-adjoint operator H(n)(ω) associated with h
(n)
ω is given by

H(n)(ω) : (fκ) 7→ (−∆fκ + V ω
κ fκ), for (fκ) ∈ D(H(n)(ω)).

Proof. As a direct sum of Hilbert spaces, the space

( ⊕
κ∈K

W 1,2((0, 1)n), ‖ · ‖W 1,2(Γ)

)
, ‖f‖2

W 1,2(Γ) :=
∑

κ∈K
‖fκ‖2

W 1,2((0,1)n)

is a Hilbert space. By the trace theorem for W 1,2((0, 1)n) (see e.g. [83, Theorem 1.1.2]),(
W 1,2(Γ), ‖·‖W 1,2(Γ)

)
is a closed subspace of

(⊕κW
1,2((0, 1)n), ‖·‖W 1,2(Γ)

)
, hence a Hilbert

space. Finally, h
(n)
ω ≥ nq−. If for f ∈ D(h(n)

ω ), we define ‖f‖2

h
(n)
ω

:= h
(n)
ω [f ] + (−nq− +

1)‖f‖2
L2(Γ), then ‖ ‖

h
(n)
ω

is equivalent to ‖ ‖W 1,2(Γ). Hence, h(n)
ω is closed.
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Let C∞
c (Γ) := (⊕κC

∞
c (0, 1)n)∩Cc(Γ). Since D(h(n)

ω ) ⊃ C∞
c (Γ), h(n)

ω is densely defined.
By [104, Theorem 4.1.5], the associated operator H(n)(ω) is given by

D(H(n)(ω)) = {f ∈ D(h(n)
ω ) | ∃g ∈ H : ∀v ∈ D(h(n)

ω ), h(n)
ω [f, v] = 〈g, v〉},

H(n)(ω)f := g.

So let f ∈ D(H(n)(ω)). Then in particular, given v ∈ C∞
c (Γ), we have

〈∇f,∇v〉 = 〈g − V ωf, v〉.

Hence −∆f = g − V ωf in the sense of distributions. As g, V ωf ∈ L2(Γ) and as C∞
c (Γ)

is dense in L2(Γ), the equality holds in the L2 sense 19. Hence H(n)(ω)f = g = −∆f +
V ωf .

Theorem 2.11.2. There exists Ω0 ⊆ Ω with P(Ω0) = 1 such that for all ω ∈ Ω0 :

[nq−, nq+] ⊂ σ(H(n)(ω)) ⊆ [nq−,+∞).

In particular, inf σ(H(n)(ω)) = nq− almost surely.

Proof. Since U (n)
κ ≥ 0 and Wω

κ ≥ nq−, then H(n)(ω) ≥ nq− and σ(H(n)(ω)) ⊆ [nq−,+∞)
for all ω ∈ Ω. To prove that σ(H(n)(ω)) ⊃ [nq−, nq+] almost surely, let E ∈ [nq−, nq+],
put IEm = [En − 1

nm ,
E
n + 1

nm ] for m ∈ N∗ and let

Bm :=
{
(x1, . . . , xn) ∈ (Zd)n : min

i6=j
|xi − xj | ≥ 2m+ r0

}
,

where r0 is the interaction range. Given k ∈ N∗, consider the event

ΩE
m(k) :=

{
ω ∈ Ω : ωe ∈ IEm ∀e ∈ E(Γ(1) ∩ ΠΛ(n)

m (xk,m)
)}
,

where xk,m := 2kn(2m + r0)(1, 2, . . . , n). Then xk,m ∈ Bm for each k, P(ΩE
m(k)) =

µ(IEm)#{E(Γ(1)∩ΠΛ
(n)
m )} is the same for all k and it is strictly positive since E

n ∈ [q−, q+] =

suppµ. Hence,
∑
k≥1 P(ΩE

m(k)) = ∞. Moreover, ΠΛ(n)
m (xk,m) ∩ ΠΛ(n)

m (xk′,m) = ∅ for
k 6= k′, so the events {ΩE

m(k)}k∈N∗ are independent. Thus, by Borel-Cantelli lemma II, if
ΩE
m := ∩k′≥1 ∪k≥k′ ΩE

m(k), then P(ΩE
m) = 1. Let ΩE := ∩m∈N∗ΩE

m, then P(ΩE) = 1.
Fix ω ∈ ΩE and letm ∈ N∗. Then ω ∈ ΩE

m, so we may find k ∈ N∗ such that ω ∈ ΩE
m(k).

We finally construct a Weyl sequence: choose gm ∈ D(H(n)) such that 0 ≤ gm ≤ 1, gm = 1
on Γ ∩ Λ(n)

m−1(xk,m), gm = 0 on Γ ∩ Λ(n)
m (xk,m)c and ‖∆gm‖∞ ≤ C, for some C = C(nd).

Let fm := cmgm, where cm := ‖gm‖−1. Then ‖fm‖ = 1, ‖∆fm‖∞ ≤ Ccm and

‖(H(n)(ω) − E)fm‖ = ‖χ
Λ

(n)
m (xk,m)

(−∆ + U (n) +Wω − E)fm‖ .

But xk,m ∈ Bm, so U (n) = 0 on Λ(n)
m (xk,m). Also ω ∈ ΩE

m(k), so |Wω
κ − E| ≤ 1

m for all

κ ∈ K(Γ ∩ Λ(n)
m (xm)). Thus

‖(H(n)(ω) − E)fm‖ = ‖χ
Λ

(n)
m

(−∆ +Wω − E)fm‖ ≤ ‖∆fm‖ +
1
m

‖fm‖ → 0 .

19. It is this part that distinguishes the difficulty of the domain for multi-particles: for n = 1, the fact
that −f ′′ ∈ L2 means that f ∈ W 2,2, but for n > 1, the fact that −∆f ∈ L2 does not imply that f ∈ W 2,2.
For f to be in W 2,2, we should have ∂i∂jf ∈ L2 for all i, j = 1, . . . , n.
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Indeed, note that

1 = ‖fm‖2 ≥ ‖χ
Λ

(n)
m−1

fm‖2 = c2
m(#{K(Γ ∩ Λ(n)

m−1)}),

hence c2
m ≤ (#{K(Γ ∩ Λ(n)

m−1)})−1 and using (NB.n),

‖∆fm‖2 = ‖χ
Λ

(n)
m \Λ

(n)
m−1

∆fm‖2 ≤ ‖∆fm‖2
∞
(
#{K(Γ ∩ Λ(n)

m )} − #{K(Γ ∩ Λ(n)
m−1)}

)

≤ C2 (2m)n(2m− 1)nd−n − (2m− 2)n(2m− 3)nd−n

(2m− 2)n(2m− 3)nd−n −−−−→
m→∞ 0.

Thus, for any ω ∈ ΩE we have E ∈ σ(H(n)(ω)). Let Ω0 :=
⋂
E∈[nq−,nq+]∩Q ΩE . Then

P(Ω0) = 1 and for any ω ∈ Ω0 we have σ(H(n)(ω)) ⊃ [nq−, nq+] ∩ Q. Since the spectrum
is closed, the proof is complete.

Lemma 2.11.3. The following estimates hold:

#{E(Γ(1) ∩ Λ(1)
L )} = d(2L)(2L− 1)d−1 ≤ d · |Λ(1)

L |,(NB.1)

#{K(Γ(n) ∩ Λ(n)
L )} =

n∏

j=1

(
d(2Lj)(2Lj − 1)d−1

)
≤ dn · |Λ(n)

L |.(NB.n)

Proof. For d = 1, it is obvious that #{E(Γ(1) ∩ Λ(1)
L )} = 2L since in this case Λ(1)

L is just
an open segment of length 2L and each edge has length 1.

So let us suppose the estimate is true for d = m and calculate the number of edges in
a 1-cube in Rm+1, with coordinate axes x1, . . . , xm+1. Since this number is invariant by
translations, we may suppose the cube is Λ(1)

L (0). By hypothesis, the hyperplane {xm+1 =

L − 1} ∩ Λ(1)
L (0) contains m(2L)(2L − 1)m−1 edges. The same holds for the hyperplane

{xm+1 = L−2}∩Λ(1)
L (0) and so on, by calculating the number of edges in the hyperplanes

xm+1 = L−1, L−2, . . . ,−L+1, we obtain (2L−1)(m(2L)(2L−1)m−1) = m(2L)(2L−1)m

edges. It remains to calculate the number of “vertical” edges, i.e. edges that lie in the
translates of the axis xm+1 in Λ(1)

L (0). There are (2L − 1)m such translates (since each
xj , j = 1, . . . ,m varies from L − 1 to −L + 1), and each axis contains 2L edges by the
case d = 1. Hence we get (2L− 1)m(2L) vertical edges. The total number of edges is thus
m(2L)(2L− 1)m + (2L− 1)m(2L) = (m+ 1)(2L)(2L− 1)m. Thus (NB.1) holds ∀d ≥ 1.

Since Γ(n) = Γ(1) × . . .× Γ(1), (NB.n) follows directly from (NB.1).

Lemma 2.11.4. H
(n)
ΛL

(ω) has a compact resolvent. Its discrete set of eigenvalues denoted

by Ej(H
(n)
ΛL

(ω)) counting multiplicity satisfies the following Weyl law:

(WEYL.n) ∀S ∈ R ∃C = C(n, d, S − nq−) : j > C|Λ(n)
L | =⇒ Ej(H

(n)
ΛL

(ω)) > S.

Moreover, C is independent of ω, and if S > S∗(n, q−), then C ≤
⌊
dn(S−nq−)n/2

(4π)n/2Γ(n/2)

⌋
+ 1.

Proof. Put Λ = Λ(n)
L and define the Neumann-decoupled Laplacian −∆N, dec

Λ via the
form h dec

Λ [f, g] =
∑
κ∈K(Γ∩Λ)〈∇fκ,∇gκ〉, with D(h dec

Λ ) = ⊕κ∈K(Γ∩Λ)W
1,2((0, 1)n). Then

D(h(n)
ω,Λ) ⊂ D(h dec

Λ ) and h
(n)
ω,Λ[f ] ≥ h dec

Λ [f ] + nq−‖f‖2, hence

H
(n)
Λ (ω) ≥ −∆N, dec

Λ + nq− . (⋆)
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Since ∆N, dec
Λ = ⊕κ∈K(Γ∩Λ(n)) ∆N

(0,1)n , the eigenvalues Ej(−∆N, dec
Λ ) are just the eigenvalues

Ek(−∆N
(0,1)n) with multiplicity #{K(Γ ∩ Λ(n))} ≤ dn|Λ(n)|. In particular, Ej(−∆N, dec

Λ ) →
∞ as j → ∞, so by (⋆) and [92, Theorem XIII.64], H(n)

Λ has a compact resolvent and
thus a discrete spectrum. Now by Weyl law for Ek(−∆N

(0,1)n) ([92, Section XIII.15]),

there exists C1 such that k > C1 =⇒ Ek(−∆N
(0,1)n) > S − nq−, and if S is large,

C1 ≈ (S−nq−)n/2

(4π)n/2Γ(n/2)
. Thus j > C1d

n|Λ(n)| =⇒ Ej(−∆N, dec
Λ ) > S − nq−. But by (⋆),

Ej(H
(n)
Λ (ω)) ≥ Ej(−∆N, dec

Λ ) + nq−. Thus j > dnC1|Λ(n)| =⇒ Ej(H
(n)
Λ (ω)) > S. We get

(WEYL.n) with C = dnC1 and C ≤
⌊
dn(S−nq−)n/2

(4π)n/2Γ(n/2)

⌋
+ 1 if S > S∗(n, q−).

Before proceeding further, we need the following notion.

Definition 2.11.5. Given y ∈ Znd and ∅ 6= J ⊆ {1, . . . , n}, we say that P = {yj : j ∈ J }
is R-connected if Z =

⋃
j∈J Λ(1)

R (yj) ⊂ Rd is connected. In this case, if #J ≥ 2, then 20

∀i, j ∈ J : |yi − yj | < (#J − 1)(2R) ≤ 2(n− 1)R .

Lemma 2.11.6. A partially interactive cube is decomposable.

Proof. Suppose Λ(n)
L (u) is not decomposable. Then ∃ i 6= 1 such that |u1 − ui| < 2L+ r0

(otherwise J = {1} would give a possible partition). Let J2 = {1, i}. Since J2 is not
a possible partition, ∃ i2 /∈ J2 such that |u1 − ui2 | < 2L + r0 or |ui − ui2 | < 2L + r0.
Taking J3 = {1, i, i2}, the set {uk : k ∈ J3} is thus (L + r0/2)-connected. As J3 is not
a possible partition, we may repeat the procedure and finally obtain Jn = {1, . . . , n} and
{uk : k ∈ Jn} is (L+ r0/2)-connected. Consequently,

∀1 ≤ j ≤ n : |uj − u1| < (n− 1)(2L+ r0)

Hence
dist(u,D) ≤ |u − (u1, . . . , u1)| = max

1≤j≤n
|uj − u1| < (n− 1)(2L+ r0)

The lemma now results by contraposition.

Lemma 2.11.7. Let x,y ∈ Znd, L ≥ 1 and take rn,L as in Definition 2.2.7. Then

1) If y /∈ ⋃K(n)
j=1 Λ(n)

2nL(x(j)), then Λ(n)
L (y) and Λ(n)

L (x) are pre-separable.

2) If y /∈ ⋃K(n)
j=1 Λ(n)

rn,L(x(j)), then Λ(n)
L (y) and Λ(n)

L (x) are separable.

3) If y /∈ Λ(n)
2rn,L

(0), then Λ(n)
L (y) is separable from any Λ(n)

L (x) satisfying x ∈ Λ(n)
rn,L(0).

Proof. 1) Decompose {y1, . . . , yn} into maximal L-connected subsets

Pk = {yj : j ∈ Jk}, k = 1, . . . ,m,

and let Zk =
⋃
j∈Jk

Λ(1)
L (yj). Then (Zk)k forms a partition of ΠΛ(n)

L (y). Suppose now

that Λ(n)
L (x) and Λ(n)

L (y) are not pre-separable. Then

∀ ∅ 6= J ⊆ {1, . . . , n} : ΠJ Λ(n)
L (y) ∩ (ΠJ cΛ(n)

L (y) ∪ ΠΛ(n)
L (x)

) 6= ∅

20. If #J = 2, i.e. J = {i, j}, it is clear that |yi − yj | < 2R. Suppose the property holds for any J with
#J = k. Given J with #J = k + 1, let i, j ∈ J . We may find i1 ∈ J , i1 6= i such that |yi − yi1 | < 2R.
But then #(J \ {i}) = k, so |yi1 − yj | < (k − 1)(2R) by the induction hypothesis. Thus, |yi − yj | < k(2R).
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Since (Zk)k forms a partition of ΠΛ(n)
L (y), we have in particular

∀ 1 ≤ k ≤ m : Zk ∩ ΠΛ(n)
L (x) 6= ∅,

hence
∀ 1 ≤ k ≤ m,∃ yj ∈ Pk,∃xi : |yj − xi| < 2L.

But Pk are L-connected, hence ∀i, j ∈ Jk : |yi − yj | < 2(n− 1)L. Thus,

∀ yj ∃xi : |yj − xi| < 2nL,

so that y ∈ Λ(n)
2nL(x(k)) for some k. The claim follows by contraposition.

2) This follows from 1) by noting that rn,L ≥ 2nL and that |y − x(j)| ≥ rn,L for all j
implies |y − x| ≥ rn,L (since x is one of the x(j)).

3) Let

F =
⋃

x∈Λ
(n)
rn,L

(0)

K(n)⋃

j=1

Λ(n)
rn,L

(x(j)).

Then by 2), if y /∈ F , then Λ(n)
L (y) is separable from any Λ(n)

L (x) with x ∈ Λ(n)
rn,L(0).

Thus it suffices to show that Λ(n)
2rn,L

(0) = F . For this note that if x ∈ Λ(n)
rn,L(0), then

|xk| < rn,L for all k, so by definition of x(j), |x(j)| < rn,L for all j and so x(j) ∈ Λ(n)
rn,L(0)

for all j. Thus F =
⋃

x∈Λ
(n)
rn,L

(0)
Λ(n)
rn,L(x) = Λ(n)

2rn,L
(0).

Lemma 2.11.8. Separable FI cubes are completely separated.

Proof. Since Λ(n)
L (u) and Λ(n)

L (v) are FI, there exists x,y ∈ D such that |u − x| < (n −
1)(2L+ r0) and |v − y| < (n− 1)(2L+ r0). Hence for all j, k = 1, . . . , n :

(⋆) ΠjΛ
(n)
L (u) ⊆ ΠjΛ

(n)
(n−1)(2L+r0)+L(x) and ΠkΛ

(n)
L (v) ⊆ ΠkΛ

(n)
(n−1)(2L+r0)+L(y).

Now
|u − v| ≤ |u − x| + |x − y| + |y − v| < 2(n− 1)(2L+ r0) + |x − y|.

Moreover, Λ(n)
L (u) and Λ(n)

L (v) are separable, so by definition |u − v| ≥ rn,L = 4(n −
1)(2L+ r0) + 2L. We thus get

|x − y| > |u − v| − 2(n− 1)(2L+ r0) ≥ 2(n− 1)(2L+ r0) + 2L.

Since x,y ∈ D, this implies

(⋆⋆) ΠjΛ
(n)
(n−1)(2L+r0)+L(x) ∩ ΠkΛ

(n)
(n−1)(2L+r0)+L(y) = ∅

for all j, k = 1, . . . , n. By (⋆) and (⋆⋆), we see that ΠjΛ
(n)
L (u) ∩ ΠkΛ

(n)
L (v) = ∅ for all j, k.

Hence ΠΛ(n)
L (u) ∩ ΠΛ(n)

L (v) = ∅, as asserted.
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Chapter 3

Additional properties and
alternative proofs

This chapter is a complement to Chapter 2 and discusses more properties of the oper-
ator H(n)(ω), as well as some alternative proofs.

In Section 3.1, we show that if the interaction potential U (n) is invariant under diagonal
translations, then H(n)(ω) is ergodic and has an almost sure spectrum. However, this does
not help us to locate the spectral edge of H(n)(ω), so it is not a substitute to Theorem 2.1.2.

In Section 3.2, we give a Combes-Thomas estimate which is valid not only below the
spectral edge, but also for arbitrary spectral gaps. The price to pay is that the proof
becomes much more involved.

In Section 3.3 we show that the generalized eigenfunctions constructed in Section 2.8
are regular, i.e. locally in W 1,2(Γ). This can simplify the proof of Lemma 2.9.1, but it
takes more effort to prove regularity than to avoid it. In any case, regularity can be of
independent interest.

In Sections 3.4 and 3.5, we establish localization without using generalized eigenfunc-
tions. This makes the proof of localization conceptually more elementary. There are two
facts to keep in mind however. First, this approach does not allow us to establish dynami-
cal localization in the Hilbert-Schmidt norm, but only in the operator norm. And it seems
to us that this cannot be improved. The second fact is that this approach needs essen-
tially the same trace estimates needed to derive generalized eigenfunction expansions. So
in conclusion, we believe that it is interesting in principle that one can derive localization
without relying on generalized eigenfunctions, but for the time being, it seems better to
just work in the usual way.

We conlude the chapter with Section 3.6, in which we explain to what extent our
localization results can be extended to log-Hölder continuous distributions.

3.1 Ergodicity and almost sure spectrum

In this section we prove that if the interaction U (n) is invariant under diagonal transla-
tions, then the operator H(n)(ω) is ergodic with respect to a certain family of translations.
This will imply that H(n)(ω) has an almost sure spectrum.

We shall follow the definitions of [104, Section 1.2]. Let (Ω,F ,P) be a probability
space. A family (Ti)i∈I is called measure preserving if P(T−1

i (A)) = P(A) for all A ∈ F .
It is called ergodic if, moreover, every set that is invariant under (Ti) is trivial; i.e. if any
A ∈ F satisfying T−1

i (A) = A for all i ∈ I must satisfy P(A) ∈ {0, 1}.



82 Chapter 3. Additional properties and alternative proofs

In our setting, Ω := [q−, q+]E . Recall that every edge e takes the form m → m + hj
for some m ∈ Zd, j ∈ {1, . . . , d}, where (hj)dj=1 is the standard basis of Zd, and that we
denote such e by e = (m, j). Now consider the family (Ti)i∈Zd , Ti : Ω → Ω defined by

Ti : (ω(m,j)) 7→ (ω(m−i,j)) .

Then we have the following lemma (which is quite classic, not yet dependent of the multi-
particle context).

Lemma 3.1.1. The family Ti : Ω → Ω, i ∈ Zd is ergodic.

Proof. Let A = {ω : ω(m1,j1) ∈ A1, . . . , ω(mk,jk) ∈ Ak} be a cylinder set. Then

T−1
i A = {ω : Ti(ω) ∈ A} = {ω : ω(m1−i,j1) ∈ A1, . . . , ω(mk−i,jk) ∈ Ak} .

Hence P(T−1
i A) = µ(A1) . . . µ(Ak) = P(A). Thus, L = {A : P(A) = P(T−1

i A) ∀ i ∈ I} is a
λ-system that contains all cylinder sets. Since cylinder sets are a π-system, we get L = F
and the (Ti) are measure preserving (for a proof of the π-λ theorem, see [12]).

Now let R be the set of cylinder sets and take

C = {A | ∀B ∈ R : P(T−1
i A ∩B) → P(A)P(B) as ‖i‖∞ → ∞} .

Then C is a λ-system 1 which clearly contains the cylinder sets, so L = F by the π-λ
theorem. Hence

Y = {B | ∀A ∈ F : P(T−1
i A ∩B) → P(A)P(B) as ‖i‖∞ → ∞}

is a λ-system containing R, so Y = F . Finally, if A is invariant under all Ti, then
P(A) = P(A ∩ A) = P(T−1

i A ∩ A) → P(A)2, so that P(A) = 0 or 1. Thus, the (Ti) are
ergodic 2.

Let (Ω,F ,P) be a probability space and let H : Ω → S(H) be measurable. H is
called ergodic if there exists an ergodic family (Ti)i∈I on (Ω,F ,P) and a family of unitary
operators (Si)i∈I on H such that

H(Ti(ω)) = S∗
iH(ω)Si for all ω ∈ Ω, i ∈ I

Theorem 3.1.2. Suppose that U (n) is invariant under diagonal translations, that is

U (n)(x1 − i, . . . , xn − i) = U (n)(x1, . . . , xn)

for all i ∈ Zd and (x1, . . . , xn) ∈ Γ(n). Then H(n)(ω) is ergodic.

Proof. Since any e takes the form (m, j), any κ ≡ (m, j1, . . . , jn) for some m ∈ Znd and
jk = 1, . . . , d. In this case, we shall use the notation fκ ≡ fm,j1,...,jn .

By Lemma 3.1.1, (Ti)i∈Zd is an ergodic family on Ω. Furthermore, for each Ti, there
exists a unitary operator Si on H such that H(n)(Ti(ω)) = S∗

iH
(n)(ω)Si. Indeed, define

Si : (f(m1,...,mn),j1,...,jn) 7→ (f(m1+i,...,mn+i),j1,...,jn), then

S∗
iH

(n)(ω)Si(f(m1,...,mn),j1,...,jn) = S∗
iH

(n)(ω)(f(m1+i,...,mn+i),j1,...,jn)

= −∆f + (V ω
(m1−i,...mn−i),j1,...,jnf(m1,...,mn),j1,...,jn) .

1. To see that C is closed under complements, first note that if A ∈ C, then P(T −1
i A ∩ B) → P(A)P(B)

if B is a disjoint union of sets in R. Now if B ∈ R, then Bc is a disjoint union of sets in R. Thus,
P(T −1

i Ac ∩ B) = 1 − P(T −1
i A ∪ Bc) = 1 − [P(T −1

i A) + P(Bc) − P(T −1
i A ∩ Bc)] = 1 − [P(A) + P(Bc) −

P(T −1
i A ∩ Bc)] → −P(A) + P(B) + P(A)P(Bc) = P(Ac)P(B).
2. Actually we showed more: the (Ti) are mixing.
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Now V ω = U (n) + Wω, and by definition (cf. Section 2.1.2), if x ∈ Γ(n) takes the form
(x1, . . . , xn) with xk = mk + tkhjk , then U (n)(x) = U

(n)
(m1,...,mn),j1,...,jn

(t1, . . . , tn) and if

i = (i, . . . , i), then U (n)(x− i) = U
(n)
(m1−i,...,mn−i),j1,...,jn(t1, . . . , tn). So using the hypothesis,

we get U (n)
(m1−i,...,mn−i),j1,...,jn = U

(n)
(m1,...,mn),j1,...,jn

. Next,

Wω
(m1−i,...,mn−i),j1,...,jn = ω(m1−i,j1) + . . .+ ω(mn−i,jn) = W

Ti(ω)
(m1,...,mn),j1,...,jn

.

Hence,

S∗
iH

(n)(ω)Si(f(m1,...,mn),j1,...,jn) = −∆f + (V Ti(ω)
(m1,...,mn),j1,...,jn

f(m1,...,mn),j1,...,jn)

= H(n)(Ti(ω))(f(m1,...,mn),j1,...,jn) .

Thus, H(n)(ω) is an ergodic operator.

Corollary 3.1.3 (Almost sure spectrum). If the interaction U (n) is invariant under di-
agonal translations, then there exists a set Σ ⊂ R such that

σ(H(n)(ω)) = Σ

almost surely. Similar statements hold for σac(H(n)(ω)), σsc(H(n)(ω)) and σpp(H(n)(ω)).

Proof. This follows from Theorem 3.1.2 and [104, Theorem 1.2.5].

3.2 Combes-Thomas estimate for general energies

The aim of this section is to prove the following estimate. We denote by dist(·, ·) the
distance induced by the sup norm of Rnd.

Theorem 3.2.1. Let Λ(n) be an open cube or Λ(n) = Rnd and A,B ⊆ Λ(n) be cellular sets

such that dist(A,B) := δ ≥ 1. Let E ∈ ρ(H(n)
Λ (ω)), and put v0 = nq−.

a. If E < v0, put η := v0 − E. Then

‖χA(H(n)
Λ − E)−1χB‖ ≤ max(

4
η
, 1) · e−δ

√
η
2 .

b. If there exists r ≥ v0 − 1 and s > v0 such that E ∈ (r, s) ⊂ ρ(H(n)
Λ (ω)) with η :=

dist(E, (r, s)c) > 0, then

‖χA(H(n)
Λ − E)−1χB‖ ≤ 1

cη
· e−cδ

√
η(s−r)

2 ,

where c = 1
4(s−v0+2) .

Compared to the Combes-Thomas estimate we proved in Section 2.3, this one has the
advantage of being valid for energies above the spectral bottom, which could be useful in
the study of band-edge localization. The proof however is much more involved. Note that
we formulated our bound for H(n)

Λ (ω) = −∆ + V ω, but the same proof is valid for more
general V ω by replacing v0 = nq− above by vω := infx∈Λ(n) V ω(x).

Our proof follows the strategy outlined in [104], which has its roots in [9]. Note however
that our bounds contain explicit constants. This is important to us because, in contrast to
single-particle theory, we need a Combes-Thomas estimate that remains efficient not only
for energies close to the spectrum, but also for those lying far below the spectral edge.
The constants that appear in [104] are not suited for the latter study.

We start with two lemmas that hold in any separable Hilbert space H.
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Lemma 3.2.2. Let p ≥ 0 be a closed densely defined symmetric form with associated
operator P . Suppose q is a symmetric form relatively form bounded w.r.t. p satisfying

|q[u]| ≤ γ · p[u]

for some γ > 0. Fix β > 0 and define r := p + iβq. Then the unique m-sectorial operator
R associated with r takes the form

R = P 1/2(I + iβS)P 1/2

for some self-adjoint operator S with ‖S‖ ≤ γ.

Note that the hypotheses of the lemma ensure that r is sectorial, so the existence and
uniqueness of R are guaranteed by [57, Theorem VI.2.1].

Proof. The argument is contained in [57, Theorem VI.3.2]. By [57, Lemma VI.3.1], there
exists a bounded operator S with ‖S‖ ≤ γ such that

q[u, v] = 〈SP 1/2u, P 1/2v〉

for all u, v ∈ D(p). Note that S is symmetric: given f, g ∈ H, put u := P−1/2f and
v := P−1/2g, then u, v ∈ D(p) and

〈Sf, g〉 = q[u, v] = q̄[v, u] = 〈f, Sg〉 .

Thus S is self-adjoint. Finally, given u, v ∈ D(p) we have

r[u, v] = (p + iβq)[u, v] = 〈(I + iβS)P 1/2u, P 1/2v〉.

But if u ∈ D(R), we have r[u, v] = 〈Ru, v〉. Since P 1/2 is self-adjoint, it follows that
R ⊂ P 1/2(I + iβS)P 1/2. But P 1/2(I + iβS)P 1/2 is easily seen to be accretive. Since R is
m-accretive, we thus have R = P 1/2(I + iβS)P 1/2.

Lemma 3.2.3. Let T be an invertible self-adjoint operator, S be bounded self-adjoint and
put d± := dist(0, σ(T ) ∩ R±)

a. If σ(T ) ∩ R+ = ∅, then T + iβS is invertible ∀β ∈ R, and ‖(T + iβS)−1‖ ≤ 1
d−

.

b. If σ(T ) ∩ R− = ∅, then T + iβS is invertible ∀β ∈ R, and ‖(T + iβS)−1‖ ≤ 1
d+

.

c. In the general case, if ‖S‖ ≤ 1, then T + iβS is invertible ∀ |β| ≤ 1
2

√
d+d−, and

‖(T + iβS)−1‖ ≤ 2 max( 1
d+
, 1
d−

).

Proof. Start like [9, Lemma 3.1]: let P± be the spectral projections of T on σ(T )∩R±, for
f ∈ D(T ) put P±f := f±, so that f = f+ +f− and ‖f‖ = ‖f+ −f−‖ by orthogonality of f+

to f−. Hence ‖f‖ · ‖(T + iβS)f‖ ≥ Re〈f+ − f−, (T + iβS)(f+ + f−)〉. Using orthogonality
again with self-adjointness of T and S, this becomes

‖f‖ · ‖(T + iβS)f‖ ≥ 〈f+, Tf+〉 − 〈f−, T f−〉 − 2β Im〈f+, Sf−〉.

a. In case a., f+ = 0, so f = f− and the RHS becomes −〈f−, T f−〉 ≥ d−‖f−‖2 because
f− ∈ Ran(χ(−∞,−d−)(T )). Thus ‖(T + iβS)f‖ ≥ d−‖f‖ and T + iβS is injective. Since
this is true ∀β ∈ R, we also have Ran(T + iβS)⊥ = ker(T − iβS) = 0, so T + iβS is
invertible with the given bound.
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b. In case b., f− = 0, so f = f+ and the RHS becomes 〈f+, Tf+〉 ≥ d+‖f+‖2 because
f+ ∈ Ran(χ(d+,∞)(T )). Thus ‖(T + iβS)f‖ ≥ d+‖f‖. Conclude as in (a.).

c. In case c., since ‖S‖ ≤ 1, the above reasoning gives us

‖f‖ · ‖(T + iβS)f‖ ≥ d+‖f+‖2 + d−‖f−‖2 − 2β‖f+‖‖f−‖ ≥ 1
2

(d+‖f+‖2 + d−‖f−‖2)

because |β| ≤ 1
2

√
d+d− and 1

2(d+‖f+‖2 + d−‖f−‖2 − 2
√
d+d−‖f+‖‖f−‖) ≥ 0. Hence

‖(T + iβS)f‖ ≥ 1
2 min(d+, d−)‖f‖. Conclude as in (a.).

We now prove our main result.

Proof of Theorem 3.2.1. We first assume Λ(n) is a cube, put H := H
(n)
Λ , and for x ∈ Rnd,

let w̃(x) := dist(x, B). By the triangle inequality, |w̃(x) − w̃(y)| ≤ ‖x − y‖, hence
‖∇w̃‖∞ ≤ 1 and ew̃(x), e−w̃(x) are uniformly Lipschitz continuous in Λ(n). Let w be
the restriction of w̃ to Γ. Then by Lemma 2.3.1, ϕu := ew(·)u and ψu := e−w(·)u satisfy
ϕu, ψu ∈ D(h) whenever u ∈ D(h). Hence for u, v ∈ D(h), we may define

hβ [u, v] := h[e−βwu, eβwv] .

Now

hβ [u, v] = 〈∇(e−βwu),∇(eβwv)〉 + 〈V ωu, v〉
= 〈e−βw∇u− uβ(∇w)e−βw, eβw∇v + vβ(∇w)eβw〉 + 〈V ωu, v〉
= h[u, v] − β{〈u∇w,∇v〉 − 〈∇u, v∇w〉} − β2〈mu, v〉,

where m(x) := ∇w(x) · ∇w(x) ≥ 0. Note that ‖m‖∞ ≤ 1 since ‖∇w‖∞ ≤ 1. Taking

k[u, v] := i{〈u∇w,∇v〉 − 〈∇u, v∇w〉},
we see that k is a symmetric form and that hβ takes the form

hβ [u, v] = h̃[u, v] + iβ k[u, v], where h̃[u, v] = h[u, v] − β2〈mu, v〉.
Let us show that hβ is sectorial. First note that

|k[u]| ≤ 2‖∇u‖ · ‖u‖ ≤ ‖∇u‖2 + ‖u‖2 .

Next, denoting by H̃ = H − β2m the operator associated with h̃,

‖(H̃ + C)1/2u‖2 = 〈∇u,∇u〉 + 〈(V ω − β2m+ C)u, u〉
≥ ‖∇u‖2 + (v0 − β2 + C)‖u‖2 ≥ ‖∇u‖2 + ‖u‖2(2-1)

for C := β2 − v0 + 2. Thus

|k[u]| ≤ ‖(H̃ + C)1/2u‖2 = (h̃ + C)[u]

and hβ = h̃+ iβ k is indeed sectorial for all β ∈ R, so there exists an associated m-sectorial
operator Hβ which is the formal realization of the expression eβwHe−βw. Moreover, taking
p = h̃ + C and r = hβ + C, we have by Lemma 3.2.2

Hβ + C = (H̃ + C)1/2(I + iβS)(H̃ + C)1/2

for some self-adjoint operator S with ‖S‖ ≤ 1. So given E ∈ R,

(2-2) Hβ − E = (H̃ + C)1/2(T + iβS)(H̃ + C)1/2,

where T := (H̃−E)(H̃+C)−1 = φ(H̃), for φ(t) := t−E
t+C . Note that σ(H̃) ⊆ [v0 −β2,+∞).

To apply Lemma 3.2.3, we need T to be invertible, i.e. we need E ∈ ρ(H̃).
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a. In case (a.), E < v0. If we want E ∈ ρ(H̃), it suffices that E < v0 − β2, i.e. β2 <
(v0 − E) = η. We thus take β :=

√
η/2. Now by the spectral mapping theorem,

σ(T ) = {φ(λ) : λ ∈ σ(H̃)} =
{
λ− E

λ+ C
: λ ∈ σ(H̃)

}
.

If λ ∈ σ(H̃), then λ−E ≥ v0−β2−E = η−β2 = η/2 > 0. Also λ+C ≥ v0−β2+C = 2.
Thus, σ(T ) ⊂ R+. Let us estimate d+ = inf σ(T ). Since φ′(λ) = C+E

(λ+C)2 = β2−v0+2+E
(λ+C)2 =

2−(η/2)
(λ+C)2 , we have 2 cases:

(i) If E ≥ v0 − 4, then η ≤ 4 and 2 − (η/2) ≥ 0. Thus φ is increasing, so φ(λ) ≥
φ(v0 − β2) for any λ ∈ σ(H̃), since σ(H̃) ⊆ [v0 − β2,+∞). Thus

d+ ≥ v0 − β2 − E

v0 − β2 + C
=
η − β2

2
=
η

4
.

By Lemma 3.2.3, T + iβS is thus invertible with ‖(T + iβS)−1‖ ≤ 1
d+

≤ 4
η .

(ii) If E < v0 − 4, then η > 4, so 2 − (η/2) < 0. Thus φ is decreasing, so φ(λ) ≥
limt→∞ φ(t) for any λ ∈ σ(H̃). Hence, d+ ≥ lim

t→∞
t−E
t+C = 1. By Lemma 3.2.3,

T + iβS is invertible, ‖(T + iβS)−1‖ ≤ 1
d+

≤ 1.

b. In case (b.), E ∈ (r, s) ⊂ ρ(H), and η := dist(E, (r, s)c) > 0. Put β0 :=
√
η/2. Then

for |β| ≤ β0, we have ‖β2m‖∞ ≤ η
2 , which ensures that (r + η

2 , s − η
2 ) ⊂ ρ(H̃). Let

r′ = r + η
2 and s′ = s− η

2 . Then E ∈ (r′, s′) and min{E − r′, s′ − E} = η
2 .

Since C + r ≥ C + v0 − 1 = β2 + 1 ≥ 1, we have ρ(T ) ⊃ φ(r′, s′) = ( r
′−E
r′+C ,

s′−E
s′+C ). In

particular, 0 ∈ ρ(T ). Taking d± = dist(0, σ(T ) ∩ R±), we have

d+ ≥ s′ − E

s′ + C
and d− ≥ E − r′

r′ + C
.

But s′ + C ≤ s − η
2 + η

2 − v0 + 2 = s − v0 + 2 and r′ + C ≤ r + η
2 + η

2 − v0 + 2 =
r + η − v0 + 2 ≤ s− v0 + 2. Hence,

d+ ≥ s′ − E

s− v0 + 2
≥ η

2(s− v0 + 2)
and d− ≥ E − r′

s− v0 + 2
≥ η

2(s− v0 + 2)
.

Furthermore,

d+d− ≥ (s′ − E)(E − r′)
(s− v0 + 2)2

=
η

2
(s′ − r′ − η/2)
(s− v0 + 2)2

.

Indeed, if η
2 = s′ − E, then (s′ − E)(E − r′) = η

2 (E − r′) = η
2 (s′ − r′ − η

2 ). The case
η
2 = E−r′ is similar. Now (s′−r′− η

2 ) = (s−r− 3η
2 ). But we know that η ≤ 1

2(s−r), with

equality iff E = 1
2(s+r) is the midpoint of (r, s). Hence s−r− 3η

2 ≥ s−r− 3(s−r)
4 = s−r

4 .
Thus,

d+d− ≥ 1
8(s− v0 + 2)2

η(s− r) .

Now take β1 := 1
4(s−v0+2)

√
η(s−r)

2 and note that |β1| =
√

η
2

√
s−r

4(s−v0+2) ≤
√

η
2 = β0

(because s− r ≤ s− v0 + 1). Moreover, β1 ≤ 1
2

√
d+d−. T + iβ1S is thus invertible by

Lemma 3.2.3, with ‖(T + iβ1S)−1‖ ≤ 2 max( 1
d+
, 1
d−

) ≤ 4(s−v0+2)
η .



3.3. Regularity of generalized eigenfunctions 87

To conclude, for either (a.) or (b.), take the β that makes T + iβS invertible. Then by
(2-2), Hβ − E is invertible with

(Hβ − E)−1 = (H̃ + C)−1/2(T + iβS)−1(H̃ + C)−1/2 .

By (2-1), ‖(H̃ + C)1/2v‖ ≥ ‖v‖ for v ∈ D(h), hence ‖(H̃ + C)−1/2‖ ≤ 1 and

‖(Hβ − E)−1‖ ≤ ‖(T + iβS)−1‖ .

Finally, (Hβ − E)−1 = eβw(H − E)−1e−βw, so

‖χA(H − E)−1χB‖ ≤ ‖χAe−βw‖∞ · ‖(Hβ − E)−1‖ · ‖eβwχB‖∞

Since w = 0 on B, ‖eβwχB‖∞ ≤ 1. For x ∈ A, w(x,B) = dist(x,B) ≥ dist(A,B) = δ.
Hence ‖χAe−βw‖∞ ≤ e−δβ. Thus,

‖χA(H − E)−1χB‖ ≤ ‖(T + iβS)−1‖ · e−δβ

The statement then follows directly from our estimates for cases (a.) and (b.) above.
Finally, all the arguments remain valid if Λ(n) = Rnd, except that eζw is no longer

bounded. We thus consider a large cube Ξ containing A1 and A2 and replace w̃ by a
uniformly Lipschitz function ρ of compact support such that ρ(x) = dist(x, A1) if x ∈ Ξ
and ‖∇ρ‖∞ ≤ 1, then take w to be the restriction of ρ to Γ(n).

3.3 Regularity of generalized eigenfunctions

We showed in Section 2.9 that one can avoid relying on the regularity of generalized
eigenfunctions by making use of approximations in the negative Hilbert space H−. Actu-
ally the same approach shows that the generalized eigenfunctions are locally in W 1,2(Γ).

We have the following result. Here Λ(n)
L ⋑ B means that Λ(n)

L−2 ⊃ B.

Lemma 3.3.1. Let ψ ∈ D(H−) and ϕ ∈ C̃1
c (Γ). Then ϕψ ∈ D(hΛ) for any cube Λ(n)

⋑

suppϕ (including Λ(n) = Rnd).

Moreover, there exists a function ϕ∇ψ ∈ Hn such that

hΛ[ϕψ, v] = 〈ϕ∇ψ + ψ∇ϕ,∇v〉 + 〈V ωϕψ, v〉 for any v ∈ D(hΛ) .

Proof. Put H := H(n)(ω). Since ψ ∈ D(H−), we may find (fj) ⊂ D(H) such that
‖ι−fj − ψ‖− → 0 and ‖ι−Hfj − H−ψ‖− → 0. Hence, for any χ of compact support we
have

(⋆) ‖χfj − χψ‖ ≤ ‖χ‖+ · ‖ι−fj − ψ‖− → 0 .

Hence, ‖ϕfj − ϕψ‖ → 0 and ϕfj ∈ D(hΛ) by Lemma 2.3.1. Now assume Λ(n) = Λ(n)
L , we

know that suppϕ ⊂ Q̃ := Λ(n)
L−2. Hence

hΛ[ϕfj − ϕfk] = ‖∇(ϕ(fj − fk))‖2 + 〈V ωϕ(fj − fk), ϕ(fj − fk)〉
≤ (‖∇ϕ‖∞ · ‖χQ̃(fj − fk)‖ + ‖ϕ‖∞ · ‖χQ̃∇(fj − fk)‖)2

+ ‖V ω‖∞ · ‖ϕ‖2
∞ · ‖χQ̃(fj − fk)‖2 .
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The first and third term tend to zero by (⋆). To estimate the second, put Q := Λ(n)
L−1.

Then by Lemma 2.4.3, we may find C > 0 such that

‖χQ̃∇(fj − fk)‖ ≤ C · (‖χQH(fj − fk)‖ + ‖χQ(fj − fk)‖) .

But
‖χQH(fj − fk)‖ ≤ ‖χQ‖+‖H(fj − fk)‖− → 0

since ‖Hfj − H−ψ‖− → 0. We thus showed that hΛ[ϕfj − ϕfk] → 0. Since hΛ is closed,
it follows that ϕψ ∈ D(hΛ) and hΛ[ϕψ, v] = limj→∞ hΛ[ϕfj , v] for any v ∈ D(hΛ).

Finally, note that ‖ϕ∇(fj − fk)‖ ≤ ‖ϕ‖∞‖χQ̃∇(fj − fk)‖ → 0 as we showed above, so
the sequence (ϕ∇fj) is Cauchy in H and converges to some element which we denote by
ϕ∇ψ. Then for v ∈ D(hΛ) we have

hΛ[ϕψ, v] = lim
j→∞

hΛ[ϕfj , v] = lim
j→∞

〈ϕ∇fj + fj∇ϕ,∇v〉 + 〈V ωϕfj , v〉

= 〈ϕ∇ψ + ψ∇ϕ,∇v〉 + 〈V ωϕψ, v〉 ,

where we used (⋆) again.

This still doesn’t really allow us to simplify the proof of Lemma 2.9.1, so we record
the following result.

Lemma 3.3.2. Let ψ be a generalized eigenfunction of H(n) corresponding to λ ∈ I.
Given ϕ ∈ C̃1

c (Γ) and Λ(n)
⋑ suppϕ, we may find a function ∇ϕ · ∇ψ ∈ H such that

[hΛ − λ][ϕψ, v] = 〈ψ∇ϕ,∇v〉 − 〈∇ϕ · ∇ψ, v〉 for any v ∈ D(hΛ) .

Moreover, if supp ∇ϕ ⊂ Q̃ ⊂ Q ⊂ Λ(n) for some cellular sets Q̃ and Q such that
dist(∂Q, ∂Q̃) ≥ 1, then there exists c = c(I, n, d, q−) such that

‖∇ϕ · ∇ψ‖ ≤ c1‖∇ϕ‖∞‖χQψ‖ .

Sketch of proof. The proof is contained in Lemma 2.9.1. As we showed there, we may find
(fj) ⊂ D(H) such that

[hΛ − λ][ϕψ, v] = lim
j→∞

{〈(H − λ)fj , g〉 + 〈fj∇ϕ,∇v〉 − 〈∇fj , v∇ϕ〉} .

Again the first term tends to zero, the second to 〈ψ∇ϕ,∇v〉. For the third, note that
‖∇ϕ ·∇(fj −fk)‖ ≤ ‖∇ϕ‖∞‖χQ̃∇(fj −fk)‖ → 0 using the same arguments of this lemma,
so (∇ϕ · ∇fj) is Cauchy and converges to some ∇ϕ · ∇ψ ∈ H. For the bound, note that
‖∇ϕ · ∇ψ‖ = lim ‖∇ϕ · ∇fj‖ ≤ lim inf ‖∇ϕ‖∞‖χQ̃∇fj‖ ≤ c1‖∇ϕ‖∞‖χQψ‖ as we showed
there.

This result does allow us to simplify the proof, however it is certainly more natural to
reason directly as in Lemma 2.9.1 if one doesn’t already have it.

3.4 Localization without generalized eigenfunctions: pre-
lude

In this section we want to establish three properties concerning our random operator
H(n)(ω). First, we would like to prove that χΛ(H(n)(ω) − z)−1 is compact for some
z ∈ ρ(H(n)(ω)) and any bounded Λ ⊂ Rnd. This will follow from Theorem 3.4.1 below.
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Next we want to prove the eigenfunction decay inequality, Lemma 3.4.2, which relates the
decay of the resolvent operator kernel to that of the eigenfunction. Finally we wish to
prove that if Λj ⊂ Rnd is an increasing sequence of cubes to Rnd, then H

(n)
Λj

(ω) converge

to H(n)(ω) in the strong resolvent sense. All these properties will be used in the next
section to deduce dynamical and exponential localization from multiscale analysis, without
relying on generalized eigenfunction expansions. The price to pay is that strong dynamical
localization is established in the operator norm, not in the Hilbert-Schmidt norm.

Theorem 3.4.1. Let Ξ be a cube or Ξ = Rnd and Tf be the operator of multiplication by
a function f . Then

1) If f ∈ L2(Γ ∩ Ξ), the operators Tfe
−tH(n)

Ξ (ω) and TfχI(H
(n)
Ξ (ω)) are Hilbert-Schmidt

operators for any t > 0 and any bounded interval I ⊂ R. Furthermore,

‖TfχI(H(n)
Ξ (ω))‖2 ≤ c · ‖f‖L2

for some c = c(I, n, q−) independent of ω and Ξ.

2) If f ∈ L∞(Γ ∩ Ξ) and g : R → C are bounded Borel functions vanishing at infinity,

then Tfg(H(n)
Ξ (ω)) is a compact operator.

Proof. 1) It is easy to see that the proofs of Lemma 2.8.1 and Lemma 2.8.2 remain valid
if the operator H(n)(ω) is replaced by H(n)

Ξ (ω). Hence we have the following bound

(SG) ∀t > 0 : ‖e−tH(n)
Ξ (ω)‖L2→L∞ ≤ ct−n/4e−(nq−−1)t

for some c = c(n) independent of ω and Ξ. Now put H := H
(n)
Ξ (ω). Since f ∈ L2, Tf

is an operator from L∞ → L2, thus by (SG), Tfe−tH : L2 → L2 factorizes through L∞.
It is thus Hilbert-Schmidt with

‖Tfe−tH‖2 ≤ ‖f‖L2‖e−tH‖L2→L∞ ≤ c′t−n/4e−(nq−−1)t · ‖f‖L2 ,

(see Appendix B). Hence e−tHTf̄ is also Hilbert-Schmidt with the same norm. But
given an orthonormal basis (ej) of L2, if ρf̄ej

is the spectral measure of H in the state

f̄ ej , then for any bounded interval I = [a, b] we have

‖χI(H)Tf̄ej‖2 =
∫ b

a
dρf̄ej

(λ) ≤ e2b
∫ b

a
e−2λdρf̄ej

(λ) ≤ e2b · ‖e−HTf̄ej‖2

for all j, so χI(H)Tf̄ is Hilbert-Schmidt. Hence TfχI(H) is also Hilbert-Schmidt. The
estimate on the norm follows from the above estimates.

2) Let Tm be the multiplication by fm := χ
Λ

(n)
m (0)

f and let gm(H) := χ[−m,m](H)g(H).

Then by 1) the operator Tmχ[−m,m](H) is Hilbert-Schmidt, hence Tmgm(H) is a se-
quence of Hilbert-Schmidt operators. By the spectral theorem,

‖Tfg(H) − Tmgm(H)‖ ≤ ‖f‖∞‖g − gm‖∞ + ‖f − fm‖∞‖gm‖∞ → 0

because f and g vanish at infinity. Hence Tfg(H) is compact.

Lemma 3.4.2. Let Ξ be a cube or Ξ = Rnd. Let E+ ∈ R. There exists C = C(E+, n, d, q−)
such that, if x0 ∈ Znd, C(x) ⊂ Λ(n)

L−6(x0) and Λ(n)
L (x0) ⊂ Ξ, then every eigenfunction u of

H
(n)
Ξ corresponding to E ∈ ρ(H(n)

ΛL(x0)) ∩ (−∞, E+] satisfies

‖χxu‖ ≤ C · |Bout
L (x0)| max

y∈Bout
L (x0)

‖G
Λ

(n)
L (x0)

(x,y;E)‖ · ‖χΛout
L (x0)u‖
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Strictly speaking this does not follow from Lemma 2.9.1 because of Ξ. In any case, the
proof is a bit simpler now that we deal with innocent eigenfunctions.

Proof. Let Λ := Λ(n)
L (x0) and hΛ be the form corresponding to H(n)

Λ (ω). Let ϕ ∈ C̃1
c (Γ∩Λ)

such that ϕ = 1 on a neighborhood of Γ∩C(x), supp ∇ϕ ⊂ Q̃ := int(Λ(n)
L−2(x0)\Λ(n)

L−4(x0))
and ‖∇ϕ‖∞ ≤ C1(nd). Then

‖χxu‖2 = 〈ϕu, χxu〉 = 〈ϕu, (HΛ − E)GΛ(E)χxu〉 = (hΛ − E)[ϕu, v]

where v := GΛ(E)χxu. Now

(hΛ − E)[ϕu, v] = 〈∇(ϕu),∇v〉 + 〈(V ω − E)ϕu, v〉
=
[〈∇u,∇(ϕv)〉 + 〈(V ω − E)u, ϕv〉]+ 〈u∇ϕ,∇v〉 − 〈∇u, v∇ϕ〉

Since u is an eigenfunction of H(n)
Ξ (ω) with energy E, the term in square brakets vanishes.

We thus showed that

‖χxu‖2 ≤ ‖∇ϕ‖∞‖χQ̃u‖‖χQ̃∇v‖ + ‖∇ϕ‖∞‖χQ̃∇u‖‖χQ̃v‖

Now by Lemma 2.4.3, taking Q := int Λout
L (x0), we can find c1 and c2 such that

‖χQ̃∇u‖ ≤ c1‖χΛout
L (x0)u‖ and ‖χQ̃∇v‖ ≤ c2‖χΛout

L (x0)v‖

(for the first bound take f = u and H = H
(n)
Ξ , for the second take f = v and H = H

(n)
Λ

and note that (HΛ − E)v = χxu = 0 on Q).
Taking C = max(2c1‖∇ϕ‖∞, 2c2‖∇ϕ‖∞) and noting that Q̃ ⊆ Λout

L we thus get

‖χxu‖2 ≤ C · ‖χΛout
L (x0)u‖ · ‖χΛout

L (x0)v‖.

Since ‖χΛout
L (x0)v‖ ≤ ‖χΛout

L (x0)GΛ(E)χx‖‖χxu‖, we get

‖χxu‖ ≤ C · ‖χΛout
L (x0)GΛ(E)χx‖ · ‖χΛout

L (x0)u‖.

The assertion now follows by the triangle inequality.

Lemma 3.4.3. If Λ(n)
j ⊂ Rnd is an increasing sequence of cubes to Rnd, then the operators

H
(n)
Λj

(ω) converge to H(n)(ω) in the strong resolvent sense as j → ∞.

Proof. Let D0 be the set of functions in D(H(n)(ω)) of compact support. We first show
that D0 is a core for H(n)(ω). Let f ∈ D(H(n)(ω)) and ψm = (ψm,κ) such that ψm = 1 on

Γ∩Λ(n)

m+ 1
4

(0) and ψm = 0 on Γ∩Λ(n)

m+ 3
4

(0)c. In the layer Λ(n)

m+ 3
4

(0)\Λ(n)

m+ 1
4

(0), we take ψm,κ
a smooth continuation such that ‖∇ψm‖∞ ≤ C and ‖∆ψm‖∞ ≤ C for some C = C(nd).
Let fm = ψmf . It is clear that fm ∈ D(h(n)

ω ) (eventually use Lemma 2.3.1). To see that
fm ∈ D(H(n)(ω)), note that for v ∈ D(h(n)

ω ) we have

h(n)
ω [ψmf, v] = h(n)

ω [f, ψmv] + 〈f∇ψm,∇v〉 − 〈∇f, v∇ψm〉

Since ψm is smooth and constant in the neighborhood of each σi, we have f∇ψm ∈
W 1,2

0 (Γ ∩ Λ(n)
m+1(0)), so we may apply Lemma 2.4.1 to the second term and obtain

h(n)
ω [ψmf, v] = 〈H(n)(ω)f, ψmv〉 − 〈∇ · (f∇ψm), v〉 − 〈∇f · ∇ψm, v〉

= 〈ψmH(n)(ω)f − 2∇ψm · ∇f − (∆ψm)f, v〉
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Hence fm ∈ D(H(n)(ω)) (see e.g. Section 2.11). Finally, we have fm → f in L2(Γ) and

H(n)(ω)fm = ψmH
(n)(ω)f − 2∇ψm · ∇f − (∆ψm)f → H(n)(ω)f

since ∇ψm and ∆ψm are uniformly bounded and supported in Λ(n)
m+1(0) \ Λ(n)

m (0). Hence
D0 is a core for H(n)(ω). Finally, if f ∈ D0 and if j is sufficiently large, we have
f ∈ D(H(n)

Λj
(ω)) and H

(n)
Λj

(ω)f = H(n)(ω)f . The claim now follows from [57, Corollary
VIII.1.6].

3.5 Localization

We first establish dynamical localization by adapting the approach of [47] to finite
volumes and passing to the limit. Then we deduce spectral localization by showing that
the RAGE theorem is valid in our setting. Finally, we prove exponential localization.

We start by fixing a large cube Λ(N) := Λ(N)
2rN,Lk∗+1

(0) such that K ⊂ Γ ∩ Λ(N)
2rN,Lk∗

(0).

In the following we consider the event

R(m,L, I,x,y) := { ∀E ∈ I : Λ(n)
L (x) or Λ(n)

L (y) is (E,m)-NS }

for x, y in Λ(N) such that the corresponding cubes are separable and contained in Λ(N).
We start with the following key lemma. Here Pn(ω)ψ := 〈ψ,ϕn(ω)〉ϕn(ω), where

{ϕn(ω)} is an orthonormal basis of eigenvectors of H(N)
Λ (ω).

Lemma 3.5.1. Let m > 0, I ⊂ R and assume ω ∈ R(m,L, I,x,y). Then

‖χxPn(ω)χy‖2 ≤ CLNd−1e−mL‖χΛout
L (x)Pn(ω)χy‖2

for any n, where C = C(I,N, d, q−) < ∞.

Proof. Given an eigenvalue λn ∈ I, either ΛN)
L (x) or Λ(N)

L (y) is (λn,m)-NS for H(N)(ω).

Since ‖χxPn(ω)χy‖2 = ‖χyPn(ω)χx‖2, we may assume that Λ(n)
L (x) is (λn,m)-NS. Now

given ψ ∈ L2(Γ ∩ Λ(N)), Pn(ω)χyψ is an eigenfunction of H(N)
Λ (ω) with eigenvalue λn,

hence by Lemma 3.4.2,

‖χxPn(ω)χyψ‖ ≤ c(2L− 1)Nd−1e−mL‖χΛout
L (x)Pn(ω)χyψ‖.

The assertion follows by definition of the HS norm.

Before proving dynamical localization, we establish the following decay of the kernel.
Let k0 be the smallest integer such that K ⊂ Γ ∩ Λ(N)

rN,Lk0
(0) and for j ≥ k0 put

Fj = Λ(N)
2rN,Lj

(0), F̃j = B
(N)
2rN,Lj

(0)

Mj = Fj+1 \ Fj , M̃j = F̃j+1 \ F̃j
In the following, we choose m and ε0 such that (DS : N, k,m, IN ) holds for all k ≥ 0 in
IN = [Nq− − 1

2 , Nq− + ε0], as guaranteed by Theorem 2.7.15.

Lemma 3.5.2. There exists c = c(m,N, d, q−) such that for x ∈ M̃j and y ∈ B
(N)
rN,Lj

(0)
with j large enough, we have for I = [Nq−, Nq− + ε0] :

E
(

sup
‖f‖≤1

‖χxf(H(N)
Λ (ω))χI(H

(N)
Λ (ω))χy‖2

)
≤ c

(
e−mLj/2 + L

−2pN (1+θ)j

j

)
.
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Proof. Given a bounded Borel f put fI := χIf . By the functional calculus we have
fI(H

(N)
Λ (ω)) =

∑
λn∈I f(λn)Pn(ω). Hence

‖χxfI(H
(N)
Λ (ω))χy‖2 ≤

∑

λn∈I
|f(λn)|‖χxPn(ω)χy‖2

Since x ∈ M̃j and y ∈ B
(N)
rN,Lj

(0), we know by Lemma 2.2.8 that Λ(N)
Lj

(x) and Λ(N)
Lj

(y) are
separable. Hence if ω ∈ Bj := R(m,Lj , I,x,y) we have by Lemma 3.5.1

‖χxfI(H
(N)
Λ (ω))χy‖2 ≤ C‖f‖∞L

Nd−1
j e−mLj

∑

λn∈I
‖χΛout

Lj
(x)Pn(ω)χy‖2 .

Since
∑

λn∈I
‖χΛout

Lj
(x)Pn(ω)χy‖2 ≤

∑

λn∈I
‖χΛout

Lj
(x)Pn(ω)‖2‖Pn(ω)χy‖2

≤ 1
2

∑

λn∈I

(‖χΛout
Lj

(x)Pn(ω)‖2
2 + ‖Pn(ω)χy‖2

2

)

=
1
2
(‖χΛout

Lj
(x)χI(H

(N)
Λ (ω))‖2

2 + ‖χyχI(H
(N)
Λ (ω))‖2

2

)
,

then using Theorem 3.4.1 we obtain

‖χxfI(H
(N)
Λ (ω))χy‖2 ≤ C1‖f‖∞L

Nd−1
j e−mLj (‖χΛout

Lj
(x)‖2

L2 + ‖χy‖2
L2)

≤ C2‖f‖∞L
3(Nd−1)
j e−mLj

for some C2 = C2(N, d, q−) independent of ω. For ω ∈ Bc
j we have

‖χxfI(H
(N)
Λ (ω))χy‖2

2 ≤ ‖f‖2
∞‖χI(H(N)

Λ (ω))χy‖2 ≤ C3‖f‖∞

where we used again Theorem 3.4.1. We thus showed that

E
(

sup
‖f‖≤1

‖χxf(H(N)
Λ (ω))χI(H

(N)
Λ (ω))χy‖2

)
≤ C2L

3(Nd−1)
j e−mLj P(Bj) + C3 P(Bc

j ).

Using Theorem 2.7.15 to estimate P(Bc
j ), we obtain the assertion.

Corollary 3.5.3. There exists c = c(m,N, d, q−) such that for x ∈ M̃j and y ∈ B
(N)
rN,Lj

(0)
with j large enough, we have for I = [Nq−, Nq− + ε0] :

E
(

sup
‖f‖≤1

‖χxf(H(N)(ω))Eω(I)χy‖
)

≤ c
(
e−mLj/2 + L

−2pN (1+θ)j

j

)

Proof. By Lemma 3.4.3, H(N)
Λ (ω) converge to H(N)(ω) in the strong resolvent sense, so

by [93, Theorem VIII.20], g(H(N)
Λ (ω)) converge strongly to g(H(N)(ω)) for any bounded

continuous function g. Thus

‖χxg(H(N)(ω))χy‖ ≤ lim inf
k∗→∞

‖χxg(H(N)
Λ (ω))χy‖.

Now sup
g

lim inf
k∗→∞

‖·‖ ≤ lim inf
k∗→∞

sup
g

‖·‖ since ‖·‖ ≤ sup
g

‖·‖ for any k∗. Thus, taking suprema

and applying Fatou’s lemma yields

E
{

sup
‖g‖≤1

‖χxg(H(N)(ω))χy‖
}

≤ lim inf
k∗→∞

E
{

sup
‖g‖≤1

‖χxg(H(N)
Λ (ω))χy‖

}
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where the supremum is initially taken over continuous g supported in I, but may be
extended to all Borel g without changing its value (see the proof of [2, Theorem 1.1.]).
Since ‖A‖ ≤ ‖A‖2 for an HS operator A, the claim follows from Lemma 3.5.2.

Remark 3.5.4. Unfortunately, although we have strong HS decay of the kernel for any
H

(N)
Λ (ω), strong resolvent convergence alone is not sufficient to deduce the same is true for

H(N)(ω). The problem is that, given an orthonormal basis (ej) of L2(Γ), while we know
that for ej , given ε > 0 we may find a large mj such that

‖χxg(H(N)(ω))χyej‖ ≤ ε+ ‖χxg(H(N)
Λ (ω))χyej‖,

for k∗ ≥ mj , we cannot deduce a similar bound on the HS norm of the operators because
the mj are not uniform, i.e. there is no largest mj . We could have deduced such a bound
if we had a norm resolvent convergence, i.e., if GΛ(z) → G(z) for all non-real z. However,
this is certainly not true for Schrödinger operators. Indeed, all HΛ have compact resolvent,
so if we had GΛ(z) → G(z), then G(z) would be compact, so H would have a compact
resolvent, which is of course not true.

We are finally ready to prove strong dynamical localization of any order.

Theorem 3.5.5. There exists ε0 = ε0(N, d, q−, r0) > 0 such that for I = [Nq−, Nq− +ε0],
we have for any bounded K ⊂ Γ(N) and all s > 0,

E
{

sup
‖f‖≤1

‖Xsf(H(N)(ω))Eω(I)χK‖
}
< ∞,

where (Xψ)(x) := |x| · ψ(x) for ψ ∈ H, Eω is the spectral projection of H(N)(ω) and the
supremum is taken over bounded Borel functions, ‖f‖ := ‖f‖∞.

Proof. Let k ≥ k0 be sufficiently large so that Corollary 3.5.3 holds for j ≥ k. Now

E{ sup
‖f‖≤1

‖XsχFk
f(H(N)(ω))Eω(I)χK‖} ≤ c1(d,N)Lsk

Furthermore, by the triangle inequality

E
{∑

j≥k
sup

‖f‖≤1
‖XsχMjf(H(N)(ω))Eω(I)χK‖

}

≤
∑

j≥k
c2L

s
j+1

∑

x∈M̃j ,y∈B
(N)
rN,Lk0

(0)

E
{

sup
‖f‖≤1

‖χxf(H(N)(ω))Eω(I)χy‖}

Estimating |M̃j | ≤ cLNdj+1, |B(N)
rN,Lk0

(0)| ≤ c′LNdk0
and using Corollary 3.5.3, the series

converges.

We may now deduce spectral localization:

Theorem 3.5.6. With probability one, the spectrum of H(N)(ω) in I = [Nq−, Nq− + ε0]
is pure point.

Proof. Put Hω := H(N)(ω). Let φ ∈ L2(Γ) be compactly supported and let k0 be the
smallest integer with K := suppφ ⊂ Λ(N)

rN,Lk0
(0). Then for any k ≥ k0, by repeating the

calculations in the proof of Theorem 3.5.5, we have

(⋆) E
{‖χF c

k
e−itHωEω(I)χK‖} ≤ cLNdk0

∑

j≥k
L
αNd−2pN (1+θ)j

j ≤
∑

j≥k
LαNd−2pN
j .
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Recall that α = 3
2 and pN ≥ 3Nd+ 1. Now for j ≥ k we have

Lj
Lk

≥ Lα
j−k

k

Lk
≥ 2α

j−k

2

since (Lk
2 )α

j−k ≥ Lk
2 . Hence for c′ := 22pN −αNd

1−2α(αNd−2pN ) , (⋆) is bounded by

LαNd−2pN
k

∑

j≥k

(Lj
Lk

)αNd−2pN ≤ LαNd−2pN
k

2αNd−2pN

∑

r≥0

(
2α(αNd−2pN ))r = c′LαNd−2pN

k .

For k < k0, the expectation may of course be bounded by 1. Now let Pc(Hω) be the
projection onto the continuous spectrum ofHω. By Theorem 3.4.1, the operators χFk

(Hω−
i)−1 are compact for all k and clearly χFk

converge strongly to the identity. Hence it follows
from the RAGE theorem (see [107, Corollary 5.9]) that

‖Pc(Hω)χI(Hω)φ‖2 = lim inf
k→∞

lim inf
T→∞

1
T

∫ T

0
‖χF c

k
e−itHωχI(Hω)φ‖2dt

≤ lim inf
k→∞

lim inf
T→∞

1
T

∫ T

0
‖χF c

k
e−itHωχI(Hω)χK‖2‖φ‖2dt

Taking expectation, Fatou’s lemma and Fubini theorem yield

E{‖Pc(Hω)χI(Hω)φ‖2} ≤ lim inf
k→∞

lim inf
T→∞

1
T

∫ T

0
g(k)‖φ‖2dt = 0

where g(k) = 1 for k < k0 and g(k) = c′LαNd−2pN
k for k ≥ k0. In particular, we have

Pc(Hω)χI(Hω)φ = 0 almost surely. Since this is valid for arbitrary φ of compact support,
the assertion follows.

We finally conclude with exponential localization.

Theorem 3.5.7. There exists m > 0 such that for a.e. ω, any eigenfunction of H(N)(ω)
corresponding to an eigenvalue in I = [Nq−, Nq− + ε0] decays exponentially with mass m.

Sketch of proof. The proof follows the same strategy outlined in Theorem 2.1.3 using
Lemma 3.4.2 instead of Lemma 2.9.1. The paragraph on generalized eigenfunctions is
of course no longer needed here since we already know that the spectrum is almost surely
pure point.

3.6 Log-Hölder continuous distributions

In this section we briefly mention how our localization results change if the distribution
µ is only log-Hölder continuous.

We say that µ is log-Hölder continuous with parameter ζ if there exists cµ ≥ 0 and
ζ > 0 such that

s(µ, ε) ≤ cµ · 1
| log ε|ζ

for all 0 < ε < 1.
Recall that we only needed to speak of the regularity of µ when we needed to prove

Lemma 2.7.5. Now as mentioned there, the event in (W2 : n, k, In) may be estimated by

P(A) ≤ C(2Lk)4nd+ds(µ, 4e−Lβ/α
k ) ≤ C̃

L4nd+d
k

(Lβ/αk − log 4)ζ
.
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Hence if ζ is sufficiently large, we may bound this event by 1
4L

−2p1

k . So what we lose when
we pass from a Hölder continuous µ to a log-Hölder continuous one is the term (1 + θ)k

in the exponent. Consequently, we must remove the term (1 + θ)k in all Section 2.7 and
work in the more classical setting where the events in (DS : n, k,mLk

, In) are bounded by
L−2pn

k , where we now choose

pn =
pn−1

α2
− (2n− 1)d

2α
− nd− 1 .

Such weaker bounds on the events in (DS : n, k,mLk
, In) still imply exponential localiza-

tion. However, strong HS-dynamical localization becomes weaker, namely one first needs
to fix a power s > 0 and then choose an ε0(s,N, d, q−, r0) accordingly. In other words, the
interval of dynamical localization gets smaller as s gets larger.

Here are the statements.

Theorem 3.6.1. There exists ε0 = ε0(N, d, q−, r0) > 0 and m > 0 such that for a.e.
ω the spectrum of H(N)(ω) in I = [Nq−, Nq− + ε0] is pure point and the eigenfunctions
corresponding to eigenvalues in I decay exponentially with mass m.

Theorem 3.6.2. For any s > 0, there exists ε0 = ε0(s,N, d, q−, r0) > 0 such that for
I = [Nq−, Nq− + ε0], we have for any bounded K ⊂ Γ(N)

E
{

sup
‖f‖≤1

‖Xs/2f(H(N)(ω))Eω(I)χK‖2
2

}
< ∞,

where (Xψ)(x) := |x| · ψ(x) for ψ ∈ H, Eω is the spectral projection of H(N)(ω) and the
supremum is taken over bounded Borel functions, ‖f‖ := ‖f‖∞.

To prove Theorem 3.6.2, given s > 0, we choose p1 sufficiently large to ensure that
2pN ≥ max(6Nd+ 2, αs+αNd+ γ + 1) and follow the same strategy (recall that γ is the
parameter from generalized eigenfunctions). Since p1 now depends on s, ε0 also depends
on s (see Corollary 2.6.4).





Chapter 4

Abstract Wegner estimates with
applications

4.1 Introduction

Wegner estimates for random Schrödinger operators have been the subject of active
research for the last three decades. Given a random self-adjoint operator A(ω) with a
discrete spectrum {Ej(ω)} and a fixed interval I, the aim is to obtain good bounds on
the average number of eigenvalues Ej(ω) in I. These estimates are named after Wegner’s
work [113].

Let us give a typical Wegner bound. Consider the Hilbert space H = L2(Rd), let
D ⊂ Rd be a discrete non-empty set, and consider a probability space (Ω,P), where
Ω = [q−, q+]D for some q−, q+ ∈ R. Given ω = (ωα)α∈D ∈ Ω, let

H(ω) = −∆ + V0 +
∑

α∈D
ωαuα .

Here V0 and all uα are bounded real potentials.
Let I ⊂ R be an interval. Then a Wegner estimate, when valid, asserts the existence

of some C > 0, a ≥ 1 and 0 < b ≤ 1 such that for any cube Λ ⊂ Rd, we have

(1-1) E{tr[χI(HΛ(ω))]} ≤ C · |Λ|a · |I|b .

Such estimates can be used in a proof of Anderson localization via multiscale analysis.
If a = 1, they can also be used to study the continuity of the integrated density of states.

A large body of literature has been devoted to the proof of (1-1) under weaker and
weaker assumptions on the model, i.e. on D, uα and ωα. Let us mention [58, 103, 56, 30,
20, 95, 66] in case uα ≥ 0 for all α, and [69, 54, 111, 110, 88, 75, 38, 39] in case the uα may
change sign. A common assumption for all these papers is that the ωα have continuous
distributions.

4.2 Outline

The aim of this chapter is to derive some abstract Wegner bounds for some random
self-adjoint operators on a Hilbert space, and to apply them afterwards for specific models.
This approach proves to be rewarding, if only because it considerably shortens the proof of
a Wegner bound for the model at hand. This is not the first attempt to provide abstract
bounds; see [31] for a previous one.
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Results. The abstract Wegner estimates are stated in Section 4.3 and applied in Sec-
tion 4.4. We first obtain optimal bounds on the lattice and non-optimal bounds in the
continuum. We allow the potential to be sparse, i.e. make no covering assumption. This
includes models with surface and Delone potentials. We then give Wegner bounds for
quantum graphs with random edge lengths or random vertex couplings. In each applica-
tion, we allow the coupling constants entering the randomness to be correlated and only
assume that their distributions have no atoms. A comparison with previous results is
provided for each application. We conclude the paper with an appendix describing the
spectra of Anderson models with half-space potentials. This illustrates the non-triviality
of some of our bounds.

Notations. We assume the probability space has the form (Ω,F,P), where Ω = BI for
some Borel set B ⊆ R and some countable index set I. Here P is a probability measure on
Ω and F = ⊗α∈I B, where B is the Borel σ-algebra of B. By definition, F is generated by
cylinder sets of the form {ω = (ωα) : ωα1 ∈ A1, . . . , ωαn ∈ An}, with αj ∈ I and Aj ∈ B.
Any product space BI is assumed to be endowed with the σ-algebra F = ⊗α∈I B, which
we shall often omit 1.

Fix α ∈ I, let Yα := BI\{α}, Yα := ⊗β 6=αB and denote ω̂α := (ωβ)β 6=α. Define
τα : Ω → B × Yα by τα : ω 7→ (ωα, ω̂α). Then applying [13, Corollary 10.4.15] to (B ×
Yα,B⊗ Yα,P ◦τ−1

α ), we may find for each ω̂α ∈ Yα a probability measure µω̂α on (B,B)
such that, if A ∈ F and Aω̂α := {ωα : (ωα, ω̂α) ∈ τα(A)}, then the map ω̂α 7→ µω̂α(Aω̂α) is
Yα-measurable and P(A) =

∫
Yα
µω̂α(Aω̂α)dPYα(ω̂α). Here PYα := P ◦π−1

Yα
, where πYα : ω 7→

ω̂α. The measures µω̂α(B), for B ⊂ R, are essentially regular versions of the conditional
probability P

{
ωα ∈ B

∣∣ω̂α
}
. We will usually omit the identification map τα and simply

regard elements of Ω as ordered pairs (ωα, ω̂α), so that Aω̂α is a section of A, Aω̂α = {ωα :
(ωα, ω̂α) ∈ A}.

Now fix a finite set IF ⊆ I (e.g. I = Zd and IF ⊂ Zd a cube). We express our Wegner
bounds in terms of the following modulus of continuity

(2-1) sF (P, ε) = max
α∈IF

EYα

{
sup
E∈R

µω̂α(E,E + ε)
}
.

We show in Section 4.6.2 that for any probability measure µ on R,

(2-2) sup
E∈R

µ(E,E + ε) = sup
E∈Q

µ(E,E + ε) .

In particular, ω̂α 7→ supE∈R µω̂α(E,E + ε) is Yα-measurable, so sF (P, ε) is well defined.
We also verify that in the special case where P = ⊗α∈I µα for some probability measures
µα on R, we have sF (P, ε) = maxα∈IF

supE∈R µα(E,E + ε).

Remark. Our bounds are useful if the probability measure P is continuous. If P =
⊗α∈I µ, it is sufficient for localization to have µ Hölder (or even log-Hölder) continuous.
This, of course, encompasses the case where µ has a bounded density µ = ρ(λ)dλ.

We will not treat here random Schrödinger operators with sign-indefinite single-site
potentials. The reader can find some Wegner estimates for such models in [69], [54], [111],
[110], [88] and [75], assuming the distribution µ of the (ωα) has a density. See also the
recent survey [38]. For sign-indefinite models on the lattice, the density assumption on µ

1. Note that if Vω(α) is a real-valued random field on I, it can always be realized on this probability
space in such a way that Vω(α) = ωα, i.e. there is no loss of generality in considering the coordinate
process (ωα), as we do here. See [34, Pages 165-166] and [23, Chapter 2].
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can be relaxed if the disorder is large; see [39, Theorem 1.2] and [40, Proposition 5.1] for a
related result. For sign-indefinite models in the continuum however, there are to the best
of our knowledge no Wegner bounds without the hypothesis that µ has a density.

Further developments. More abstract theorems appear in Chapter 5. In particular,
we give in Section 5.5 an adaptation of the result of [30] to finite-dimensional spaces (which
thus applies to discrete models). We believe this is instructive as the proof greatly simplifies
in this context and provides explicit constants. We also give a few more applications in
Section 5.3 and explain some difficulties in Section 5.4.

4.3 Abstract Theorems

In the following we give three abstract Wegner estimates. Theorem 4.3.2 is optimal,
but is only valid for finite-dimensional spaces. It can be applied for example to discrete
Schrödinger operators on finite cubes Λ, acting on ℓ2(Λ). Theorems 4.3.3 and 4.3.4 on the
other hand are valid in an arbitrary separable Hilbert space, but they are not optimal.

4.3.1 Finite-dimensional Hilbert spaces

Hypotheses (A)

1) We fix a probability space (Ω,F,P) with Ω = BI for some Borel set B ⊆ R, some
countable index set I, and fix a finite-dimensional Hilbert space H.

2) H(ω) is a self-adjoint operator on H for each ω ∈ Ω.

3) Fix a bounded interval I. There exist a constant γ > 0 and a self-adjoint operator W
such that P-almost surely,

χI(H(ω))WχI(H(ω)) ≥ γχI(H(ω)) .

4) The operator W takes the form

W =
∑

α∈IF

Uα ,

for some finite set IF ⊆ I, where the Uα are self-adjoint operators.

5) Fix an orthonormal basis {ej}j∈J for H. We define Ij := {α ∈ IF : Uαej 6= 0},
Cfin := maxj∈J |Ij | and Jeff := {j ∈ J : Uαej 6= 0 for some α ∈ IF }.

Note that one may take I = IF = J and W =
∑
j∈J Pj = Id, where Pjf := 〈f, ej〉ej ,

in which case conditions 3 and 4 hold trivially on any interval with γ = 1 and Cfin = 1.
For random Schrödinger operators, the Uα can be the single-site potentials. Condition 3
is sometimes called an uncertainty principle, and an efficient criterion to check its validity
was established in [20]. The constant γ often depends on I.

The following proposition is the key idea for obtaining optimal Wegner bounds without
covering assumptions. It decomposes the trace into local contributions of the Uα. The
proof is given in Section 4.5.1.

Proposition 4.3.1. Suppose that H(ω) satisfies Hypotheses (A) in the interval I. Then
P-almost surely,

tr[χI(H(ω))] ≤ γ−2Cfin

∑

j∈Jeff

∑

α∈Ij

〈UαχI(H(ω))Uαej , ej〉 .

For our first Wegner bound, we need one more hypothesis:
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Hypothesis (B) H(ω) satisfies Hypotheses (A). Moreover, given ω = (ωα)α∈I ∈ Ω,
H(ω) has the form

H(ω) = H1 +
∑

α∈IF

ωαUα,

where H1 is self-adjoint, Uα ≥ 0 and ‖Uα‖ ≤ CU for all α.
Hence, randomness must appear as an additive perturbation and the Uα must be

positive operators. The proof of the next theorem is given in Section 4.5.2.

Theorem 4.3.2. Suppose that H(ω) satisfies Hypotheses (A) and (B) in the interval I.
Then tr[χI(H(ω))] is measurable and

E{tr[χI(H(ω))]} ≤ CW · |Jeff | · sF (P, |I|),

where CW := 6γ−2C2
UC

2
fin and sF (P, ε) is defined in (2-1).

The fact that uncertainty principles imply Wegner bounds was first realized in [29] and
[30]. There however, the authors considered the spectral projectors χI(H1). It was later
noticed in [105] that the arguments become simpler if one considers χI(H(ω)), and this
idea was used again in [66] and [37].

It is worthwile to note that if H1 has the special form H1 =
∑
α∈IF

cαUα, that is, if
H(ω) =

∑
α∈IF

(cα + ωα)Uα for some bounded non-random constants cα, then analogs of
Proposition 4.3.1 and Theorem 4.3.2 hold for intervals not containing 0, without the need
for an uncertainty principle 2. Such models arise when studying discrete acoustic operators
on ℓ2(Zd). We refer the reader to [65] for details.

4.3.2 Separable Hilbert spaces

We now work in the general setting.
Given C ⊆ R, we say that f : CI → R is monotone increasing (resp. monotone

decreasing) if vα ≤ wα for all α ∈ I implies f(v) ≤ f(w) (resp. f(v) ≥ f(w)).

Hypotheses (C)

1) We fix a probability space (Ω,F,P) with Ω = CI for some interval C ⊆ R and some
countable index set I. We assume P has no atoms, more precisely sF (P, ε) → 0 as
ε → 0. We also fix a separable Hilbert space H.

2) H(ω) is a self-adjoint operator on H for each ω ∈ Ω. It is bounded from below and has
an orthonormal basis of eigenvectors, with eigenvalues λ1(ω) ≤ λ2(ω) ≤ . . . .

3) Fix an open interval I. There exists a number K independent of ω such that

n > K =⇒ λn(ω) /∈ I.

4) Either D := D(H(ω)) or D := D(hω) is independent of ω, where hω is the form
associated with H(ω). In the first case we define fu(ω) := 〈H(ω)u, u〉, in the second
case we define fu(ω) := hω[u], for u ∈ D.

5) There exists a finite set IF ⊆ I such that fu(ω) only depends on (ωα)α∈IF
. We denote

by 1F the element 1F := (xα) ∈ RI with xα = 1 for α ∈ IF and xα = 0 otherwise.
We also assume that there exists γ > 0 such that for every u ∈ D, fu(ω) satisfies one
of the following properties for every ω ∈ Ω and t ≥ 0 such that ω − t · 1F ∈ Ω :

2. We prove this and much more in Section 5.2.
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a. fu is monotone increasing and fu(ω) − fu(ω − t · 1F ) ≥ tγ‖u‖2.

b. fu ∈ C1(Ω), ∂fu(ω)
∂ωα

≥ 0 ∀α ∈ IF and
∑
α∈IF

∂fu(ω)
∂ωα

≥ γ‖u‖2.

c. fu is monotone decreasing and fu(ω) − fu(ω − t · 1F ) ≤ −tγ‖u‖2.

d. fu ∈ C1(Ω), ∂fu(ω)
∂ωα

≤ 0 ∀α ∈ IF and
∑
α∈IF

∂fu(ω)
∂ωα

≤ −γ‖u‖2.

By fu ∈ C1(Ω), we mean that the map (ωα)α∈IF
7→ fu((ωα)α∈IF

, 0) is continuous on
CIF and continuously differentiable on C̊IF (recall that fu only depends on (ωα)α∈IF

).
Note that Wegner bounds formulated in terms of sF (P, ε) are useful precisely when P

has no atoms. We need this assumption for technical reasons in Section 4.6.2. Condition
3 typically holds for any bounded I ⊂ R. If H is finite-dimensional, it is satisfied with
K = dim H (since there is no eigenvalue with n > K). For infinite-dimensional spaces, it
is satisfied if H(ω) is bounded from below by a non random operator H0 with a compact
resolvent. In this case, K usually depends on I. The only “real” conditions are 4 and
5. Condition 5 assumes monotonicity and “diagonal covering” for H(ω). We remove the
latter restriction in Theorem 4.3.4.

In the applications, it will be convenient that H(ω) is not supposed to have the form
H(ω) = H1 +

∑
α∈I ωαUα, and that Hypothesis (C.5.b) is still sufficient to conclude. Let

us state the theorem, see Section 4.5.3 for a proof, which is based on ideas from [103].

Theorem 4.3.3. Suppose that H(ω) satisfies Hypotheses (C) in the interval I. Then
tr[χI(H(ω))] is FP-measurable, where FP denotes the P-completion of F, and

E{tr[χI(H(ω))]} ≤ 2K · |IF | · sF
(
P,

|I|
γ

)
,

where E denotes the extension of E to FP and sF (P, ε) is defined in (2-1).

Note that we have sF (P, · ) in the RHS; the quantity sF (P, · ) has not been defined.
For the applications, classic arguments from [61] show that tr[χI(H(ω))] is actually F-
measurable, so that E reduces to E in the LHS.

For a random Schrödinger operator restricted to a cube Λ, the constant K comes, e.g.
from a Weyl law and takes the form C · |Λ|. The term |IF | measures the contribution
of the random potential in Λ, and will be approximately |Λ| for standard single-particle
systems. Hence, the upper bound is not linear in |Λ|.

There are mainly two applications for Wegner estimates: the first to prove localization
via multiscale analysis, the second to study the continuity of the integrated density of
states (IDS) of H(ω). For the first purpose, Theorem 4.3.3 is satisfactory because the
term sF (P, |I|

γ ) will be very small assuming P = ⊗µ with µ (log-)Hölder continuous, so it
will completely outweight the terms K and |IF |. For the study of the IDS however, this
theorem is not satisfactory.

It seems the “bad” term here is K. Indeed, for discrete models with sparse potentials
supported in a set G, one expects |Λ ∩G| in the upper bound (see Section 4.4.1), and this
is precisely the term |IF | in this case, not K which arguably will be |Λ|.

Theorem 4.3.2 also has the advantage of avoiding the diagonal cover in Hypothesis
(C.5) by means of the uncertainty principle. As we show in Section 4.5.3, there is a
related counterpart of this idea for Theorem 4.3.3. Namely, if one can prove that the
eigenvalues λn(ω) of H(ω) are monotone increasing and satisfy

(
λn(ω) − λn(ω − t · 1F )

)
χI(λn(ω)) ≥ tγ · χI(λn(ω)),

then Theorem 4.3.3 is still valid if we only assume Hypotheses (C.1) to (C.3).
We finally give our last abstract theorem, which is probably the most original result

of this section.
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Theorem 4.3.4. Suppose that H(ω) satisfies Hypotheses (C.1) to (C.4) in the interval
I = (E1, E2), where E2 < 0. Assume moreover that Ω = [q−, q+]I , fix q > q+, and suppose
that there exists ζ 6= 0 such that for any u ∈ D,

(3-1) fu(ω) = a(u) −
∑

α∈IF

(q − ωα)ζbα(u)

for some finite set IF ⊆ I and some constants a(u) ≥ 0 and bα(u) ≥ 0. Then tr[χI(H(ω))]
is FP-measurable and

E{tr[χI(H(ω))]} ≤ 2K · |IF | · sF
(
P, (q − q−)

(
(1 +

|I|
|E2|)

1
|ζ| − 1

))
.

In particular, if ζ = ±1, we have

E{tr[χI(H(ω))]} ≤ 2K · |IF | · sF
(
P,
q − q−
|E2| |I|

)
.

The proof is given in Section 4.5.4. It uses an idea from [78], who roughly considered
the case a(u) ≡ 0 and P = ⊗µα with µα = ρα(λ)dλ. Both hypotheses were important to
their proof, and we overcome this difficulty by generalizing ideas from [103]. Note however
that we need (C.4), the argument of [78] holds under a weaker assumption on D(H(ω)).

Of course, the main advantage here in comparison with Theorem 4.3.3 is that we only
suppose bα(u) ≥ 0. Theorem 4.3.3 would need a condition like

∑
α∈IF

bα(u) ≥ γ‖u‖2 for
all u. The price to pay is that the bound only holds for specific intervals.

In the applications we shall only need the case ζ = 1. However the greater general-
ity does not require additional effort, and we believe it could be useful for models not
considered here. For example, the case ζ = −2 appears in the model of [78] 3.

4.4 Applications

4.4.1 Discrete multi-particle models

Consider the Hilbert space ℓ2(Znd), where n ∈ N∗ represents the number of particles
living in Zd. Let B ⊆ R be a Borel set and consider a probability space (Ω,P), where
Ω = BZd

. Given ω = (ωα) ∈ Ω, let

H(ω) := H0 + V ω, H0 := −∆ + V0 ,

where −∆ is the discrete Laplace operator on ℓ2(Znd), V0 is a real non-random potential
(possibly an interaction) and for x = (x1, . . . , xn) ∈ (Zd)n ≡ Znd,

V ω(x) =
∑

1≤i≤n
vω(xi) =

∑

1≤i≤n

∑

α∈Zd

ωαuα(xi) .

Since P is arbitrary, the ωα are allowed to be correlated. We assume V0 is bounded and
the uα : Zd → R satisfy 0 ≤ uα ≤ Cu for some uniform Cu ≥ 0. We also assume the uα
are compactly supported, that is, if for j ∈ Zd, j ∈ Znd and L ∈ N we define the cubes

Λ(1)
L (j) := {x ∈ Zd : ‖x− j‖∞ ≤ L}, and Λ(n)

L (j) := {x ∈ Znd : ‖x − j‖∞ ≤ L},

then we assume there exists an R ≥ 0 such that uα(j) = 0 for all j /∈ Λ(1)
R (α).

As suppuα is compact, we may interchange the sums and write

V ω =
∑

α∈Zd

ωαUα, with Uα(x1, . . . , xn) =
∑

1≤i≤n
uα(xi).

3. There is an additional difficulty in this model however, namely Hypothesis (C.4) is not satisfied. See
Section 5.4 for details.
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Example. A simple and interesting case is when n = 1, a non-empty set G ⊂ Zd is given,
and uα = δα for α inside G and uα ≡ 0 for α outside G, where δα is the characteristic
function of {α}. In this case,

H(ω) = H0 +
∑

α∈G
ωαδα .

For instance, we may take G = Zd \ {0}, which gives rise to a non-covering situation.
More generally, G could be a Delone set (i.e. ∃K ≥ 0 such that ∀j ∈ Zd, the cube Λ(1)

K (j)
contains at least one point of G) or a subspace Zd1 × {0} of Zd, 0 < d1 < d, in which case
one speaks of surface potentials.

Discussion of the results.

• In the case of covering, i.e. uα ≥ c · δα for some c > 0 and for all α, we have an optimal
Wegner bound in any interval I. This extends [60, Theorem 2.1] and [68, Theorem
2.3] (because we neither assume that uα = δα nor that P = ⊗µ with µ = ρ(t)dt) and
improves [26, Theorem 1] (because our bound is linear in |Λ|). Note that the arguments
of [68] actually allow for P as general as ours. The multiscale analysis also requires
two-volume Wegner bounds (cf. [68, Corollary 2.4]); we prove these in Section 5.3.2.

• If we have no covering and Ω = [q−, q+]Z
d

with q− < 0, i.e. the perturbation can be
negative, we obtain Wegner bounds below E0 := inf σ(H0). This extends [63, Theorems
8,13], first because we make no regularity assumption on P, second because our bound
is optimal and valid for multi-particles. Our result also extends the optimal bound [64,
Theorem 4.1] because we allow for general uα and n.
But is there any spectrum below E0? We show in Section 4.6.1 that if n = 1, if G ⊆ Zd

contains a half-space, if V0 is periodic and if H(ω) = H0 +
∑
α∈G ωαδα, then H(ω) has

a spectral interval below E0 almost surely, provided that P = ⊗µ and suppµ ⊇ [a, b],
a < b ≤ 0. This illustrates that our bound is indeed non-trivial 4. The advantage here
compared to the first item is, of course, the fact that we allow G 6= Zd.

• If we have no covering and Ω = [q−, q+]Z
d

with 0 ≤ q−, i.e. the perturbation is positive,
we obtain optimal Wegner bounds below Eq := inf σ(H0 + qW ) for any q > q−, where
W :=

∑
α Uα. But again, is there any spectrum below Eq?

The recent preprints [37] and [94] have the advantage of giving a complete Wegner
bound for some operators in this situation. Namely, the paper [37] assumes that n = 1,
H(ω) = H0+

∑
α∈G ωαδα, where G ⊆ Zd is a Delone set, P = ⊗µα and suppµα ⊂ [0,M ].

Under some condition (cf. [37, Eq.(1.13)]), the authors establish Wegner bounds for
intervals near E0, and in contrast to our result, they show that these intervals contain
some spectrum of H(ω) almost surely. A different proof for this Delone Wegner bound
can be found in [94], in the special case where V0 ≡ 0.
To conclude, let us mention that we can actually use the results of [37] to illustrate
that our Wegner bound for positive perturbations is indeed interesting. Namely, if we
take t := q sufficiently large, then [37, Theorem 1.3] combined with [37, Proposition
1.5] asserts that the above Delone operator has Eq > E0 and some spectrum in [E0, Eq)
almost surely. Our Wegner bound is thus nontrivial for I ⊆ [E0, Eq).

4. Note that a single nonzero ωαuα actually suffices to create a spectral point below E0 if q+ < q∗,
q∗ = q∗(‖H0‖, uα). So our Wegner bound is also useful when the perturbation is highly negative and the
spectral bottom is not an isolated point. This is likely to be the case if the operator is ergodic, e.g. n = 1
and H(ω) = H0 +

∑
α∈G

ωαδα, with G = (MZ)d and V0 M -periodic.
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Boundary conditions. Let Λ := Λ(n)
L (x) ⊂ Znd be a cube. The simple boundary

conditions are obtained by restricting the matrix of H(ω) to Λ, i.e. if (ej)j∈Znd is the
standard basis of ℓ2(Znd), then HS

Λ(ω)(i, j) = 〈H(ω)ei, ej〉 if both i, j ∈ Λ and HS
Λ(ω)(i, j) =

0 otherwise. Next, there are the Dirichlet HD
Λ (ω) and Neumann HN

Λ (ω) realizations,
which were introduced in [101] to provide analogs for the lattice of the Dirichlet-Neumann
bracketing; see [59, Section 5.2] for details. The only identity we need is [59, Eq. (5.42)],
which asserts that if H = −∆ + V , then H ≤ HD

Λ ⊕HD
Λc . In particular, if E0 := inf σ(H),

EΛ,D
0 := inf σ(HD

Λ ) and g ∈ ℓ2(Λc) is identically zero, then

EΛ,D
0 = inf

f∈ℓ2(Λ),‖f‖=1
〈HD

Λ f, f〉 + 〈HD
Λcg, g〉 ≥ inf

ϕ∈ℓ2(Znd),‖ϕ‖=1
〈Hϕ,ϕ〉 = E0 ,

i.e. Dirichlet boundary conditions shift the spectrum up.

The result. Let x = (x1, . . . , xn) ∈ (Zd)n and Λ(n)
L (x) ⊂ Znd. Consider the Hilbert

space H := ℓ2
(
Λ(n)
L (x)

)
with standard basis (ej)j∈Λ

(n)
L (x)

and the operator H•
Λ

(n)
L (x)

(ω),

where • = S, D or N. Let

W :=
∑

α∈Zd

Uα, and W
Λ

(n)
L (x)

:=
∑

α∈IF

Uα, where IF :=
n⋃

i=1

Λ(1)
L+R(xi) .

We first show in Theorem 4.4.1 that uncertainty principles imply Wegner bounds, then
we give in Lemma 4.4.2 concrete cases in which the uncertainty principle holds.

Theorem 4.4.1. Let Λ := Λ(n)
L (x) be a cube and suppose H•

Λ(ω) satisfies

(4-1) χI(H•
Λ(ω))WΛχI(H

•
Λ(ω)) ≥ γχI(H•

Λ(ω)) P -a.s.

in an interval I, for some γ > 0. Then

E{tr[χI(H•
Λ(ω))]} ≤ CW ·

∣∣Λ̃(n)
L

∣∣ · sF (P, |I|),

where CW = 6n4γ−2C2
u(2R+ 1)2d and Λ̃(n)

L := {j ∈ Λ(n)
L (x) : Uαej 6= 0 for some α ∈ IF }.

If uα = cαδα with cα ≥ 0, then Cu = supα∈I cα and R = 0. If, moreover n = 1 and

H(ω) = H0 +
∑
α∈G ωαδα, then Λ̃(1)

L = Λ(1)
L (x) ∩G.

Proof. H•
Λ(ω) is a self-adjoint operator given by H•

Λ(ω) = H1 +
∑
α∈IF

ωαUα, with H1 =
H•

0,Λ self-adjoint. Moreover, Uα ≥ 0, ‖Uα‖ ≤ CU := nCu and Ij := {α : Uαej 6= 0} ⊆
⋃n
k=1 Λ(1)

R (jk), hence Cfin := max |Ij| ≤ n(2R + 1)d. The claim now follows from Theo-
rem 4.3.2.

Lemma 4.4.2. Fix η > 0. The uncertainty principle (4-1) holds in any interval

(1) I ⊂ R, if ∃c > 0 such that uα ≥ c · δα for all α, with γ = nc.

(2) I ⊂ (−∞, Eq − η], if Ω = [q−, q+]Z
d
, q > q− and Eq := inf σ(H0 + qW ), for the

Dirichlet restriction HD
Λ , with γ ≥ η

q−q−
.

Theorem 4.4.1 combined with Lemma 4.4.2 thus provides a Wegner bound in either
situation. If q− < 0, we may take q = 0 and obtain a Wegner bound below E0 := inf σ(H0).
Otherwise, 0 ≤ q− < q, and the bound is interesting if Eq > E0, for I ⊆ [E0, Eq).
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Proof. For (1), note that if uα ≥ c · δα, then for any y ∈ Λ(n)
L (x),

WΛ(y) ≥ c
∑

1≤i≤n

∑

α∈IF

δα(yi) = c
∑

1≤i≤n
1 = nc,

so that WΛ ≥ nc and (4-1) holds trivially in any interval with γ = nc.
For (2), let Hq := H0 + qW and given ω ∈ Ω, let λω(t) := inf σ(HD

Λ (ω) + tWΛ). Then
for any t ≥ q − q− we have

λω(t) = inf σ(HD
q,Λ + V ω

Λ + (t− q)WΛ) ≥ inf σ
(
Hq +

∑

α∈Zd

(ωα + t− q)Uα
)

≥ Eq

where we used the fact that Dirichlet boundary conditions shift the spectrum up 5. Thus,
if I ⊂ (−∞, Eq − η], we get λω(q − q−) − max I ≥ η. By [20, Theorem 1.1], (4-1) thus
holds in I with γ ≥ η

q−q−
.

4.4.2 Continuum multi-particle models

Consider the Hilbert space L2(Rnd), where n ∈ N∗ represents the number of particles
living in Rd. Let G ⊂ Rd be a discrete non-empty set such that #{Λ ∩ G} < ∞ for any
bounded Λ ⊂ Rd and consider a probability space (Ω,P), where Ω := [q−, q+]G and P has
no atoms. Given ω = (ωα) ∈ Ω, let

H(ω) = H0 + V ω, H0 := −∆ + V0 ,

where V0 is a bounded real non-random potential. We can consider more general H0; we
only need H0,Λ to satisfy a Weyl law, and this is true for H0 = (−i∇−A)2 +V0 with weak
conditions on A and V0; see [56, Lemma 5]. Given x = (x1, . . . , xn) ∈ (Rd)n ≡ Rnd,

V ω(x) =
∑

1≤i≤n
vω(xi) =

∑

1≤i≤n

∑

α∈G
ωαuα(xi) .

Let Λ(n)
L (x) := {y ∈ Rnd : ‖y − x‖∞ < L}. We assume the uα : Rd → R satisfy

0 ≤ uα ≤ Cu for some uniform Cu > 0 and suppuα ⊂ Λ(1)
R (α) for some R > 0 independent

of α. This model encompasses sparse potentials such as Delone and surface potentials.
Now put

Uα(y1, . . . , yn) :=
n∑

i=1

uα(yi) and W :=
∑

α∈G
Uα .

Given z = (z1, . . . , zn) ∈ (Rd)n and a cube Λ(n)
L (z) ⊂ Rnd, let H•

Λ
(n)
L (z)

(ω) be a restric-

tion of H(ω) acting on H := L2
(
Λ(n)
L (z)

)
, with • = D, N, per. Note that without a growth

condition on G, H(ω) may not be self-adjoint (cf. [63]), but here we are only concerned
with its restriction, which is self-adjoint.

Discussion of the results. Our bounds are not linear in |Λ|, but may be used for
localization.

5. To see this in detail, let f ∈ ℓ2(Λ), ‖f‖ = 1 and g ∈ ℓ2(Λc), g identically zero. Then 〈(V ω
Λ +

tWΛ)f, f〉 = 〈(V ω + tW )f ⊕ g, f ⊕ g〉, so by the bracketing, 〈HD
Λ (ω)f, f〉 + t〈WΛf, f〉 ≥ 〈H0f ⊕ g, f ⊕ g〉 +

〈(V ω + tW )f ⊕ g, f ⊕ g〉 ≥ 〈Hqf ⊕ g, f ⊕ g〉 ≥ Eq.
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• The covering situation, i.e. when G = Zd and uα ≥ cχα for all α, where χα is the
characteristic function of [α − 1

2 , α + 1
2 ]d, has already been analyzed in [18] and [73].

There the authors proved Wegner bounds in any interval I ⊂ R and for arbitrary P. We
do the same here, simply to illustrate Theorem 4.3.3.

• For negative perturbations, we have a Wegner bound below E0 := inf σ(H0). This
extends [63, Theorems 8,13] because we do not impose any regularity on P, but [63] has
some Wegner bounds which depend linearly on |Λ|. In the case of surface potentials,
i.e. when G = Zd1 × {0}, [64, Theorem 2.1] provides an optimal bound.
As in the lattice, there is the issue of whether H(ω) has some spectrum below E0.
We show in the Appendix (Section 4.6.1) that continuum single-particle operators with
half-space potentials are good examples of operators which have no covering condition
and to which we have a non-trivial Wegner bound.

• For positive perturbations, we obtain a Wegner bound below Eq := inf σ(H0 + qW ), for
any q > q+. This result is very close in spirit to [20, Theorem 2.1], because both are
interesting when E0 is a weak fluctuation boundary, i.e. when E0 < Eq. Besides the
fact that we allow for multi-particles 6, note that our proof is quite elementary. On the
other hand, [20] builds on the results of [30], which are technically involved, but they
provide an optimal bound.
In contrast to the lattice, the question of whether there are interesting operators for
which E0 < Eq is well established in the continuum when n = 1. Already in [62,
Theorem 2.2], it is shown that if E(t) := inf σ(H0 + tW ), then E(t) −E0 grows linearly
in t, even if the uα have small support, provided G = Zd and V0 is periodic. It was later
shown in [21, Sections 4,5] that Eq > E0 for more general operators with surface or
Delone potentials, assuming V0 is periodic. In the case of Delone potentials, this result
was very recently improved in [66, Lemma 4.2], namely, it is shown that E(t)−E0 grows
linearly in t, and V0 is no longer assumed to be periodic.

Much stronger results are known if n = 1, G is a Delone set, each uα > 0 in an open
set and P = ⊗α∈G µα. Namely, the Wegner bound of [95], which was improved in [66], is
valid for any small interval, not just intervals near the spectral bottom. The result of [66]
also extends the one of [30] who considered G = Zd, but relies on it.

Theorem 4.4.3. For any I = (E1, E2), there exists CW > 0 such that for any cube

Λ(n)
L (x),

(1) If G = Zd and ∃c > 0 with uα ≥ c · χα for all α, where χα := χ[α− 1
2
,α+ 1

2
]d, then

E{tr[χI(H•
Λ

(n)
L (x)

)]} ≤ CW · |Λ(n)
L (x)| · |IF | · sF

(
P,

|I|
nc

)
,

where IF :=
(⋃n

j=1 Λ(1)
L+R(xj)

)⋂
G and sF (P, ε) is defined in (2-1).

(2) Otherwise, for any q > q+, if E2 < Eq := inf σ(H0 + qW ), then

E{tr[χI(HD

Λ
(n)
L (x)

)]} ≤ CW · |Λ(n)
L (x)| · |IF | · sF

(
P,

q − q−
Eq − E2

|I|
)
.

Here CW = CW (nd,E2, v0) if q− ≥ 0 and CW = CW (nd,E2, v0, nq−CuR) otherwise,
where v0 = inf V0.

If q+ < 0, i.e. the perturbation is negative, we may take q = 0 and obtain a Wegner
bound below E0 := inf σ(H0). Otherwise, 0 ≤ q+ < q and Eq > E0, for many models.

6. Let us mention here that there is a work in progress by Hislop and Klopp in which an optimal Wegner
estimate is derived for some non-covering multi-particle Hamiltonians.
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Proof. Let Λ := Λ(n)
L (x). For (1), note that H•

Λ(ω) is a self-adjoint operator given by
H•

Λ(ω) = H1+
∑
α∈IF

ωαUα, whereH1 := H•
0,Λ. Given u ∈ D(H•

Λ), if fu(ω) = 〈H•
Λ(ω)u, u〉,

then fu is monotone increasing since Uα ≥ 0. Moreover, if y ∈ Λ(n)
L (x), then WΛ(y) :=∑

α∈IF
Uα(y) ≥ c

∑
1≤i≤n

∑
α∈IF

χα(yi) = nc. Hence, fu(ω+t ·1F )−fu(ω) = t〈WΛu, u〉 ≥
nct‖u‖. Hypotheses (C) are thus satisfied with γ = nc, a Weyl constant K = C|Λ|, and
the claim follows from Theorem 4.3.3.

For (2), let A(ω) := HD
Λ (ω)−Eq and I ′ = (E1−Eq, E2−Eq). Then χI(λ) = χI′(λ−Eq),

hence E{tr[χI(HD
Λ (ω))]} = E{tr[χI′(A(ω))]}.

Now A(ω) is self-adjoint and A(ω) = H1 +
∑
α∈IF

(ωα − q)Uα, where H1 := HD
0,Λ +

qWΛ − Eq. Since Dirichlet boundary conditions shift the spectrum up, we have H1 ≥ 0.
Thus, A(ω) satisfies the hypotheses of Theorem 4.3.4 in I ′ with ζ = 1, a Weyl constant
K = C|Λ|, and the claim follows since |I ′| = |I|.

4.4.3 Quantum graphs with random edge length

Consider the metric graph (E ,V) with vertex set V = Zd and edge set E = {(m,m+hj) :
m ∈ Zd, j = 1, . . . , d}, where (hj)dj=1 is the standard basis of Zd. Each edge e = (v, v′)
has an initial vertex ιe = v and a terminal vertex τe = v′. Now fix 0 < lmin < lmax < ∞
and let (Ω,P) be a probability space, where Ω := [lmin, lmax]E and P has no atoms. Given
lω = (lωe ) ∈ Ω, we identify each edge e with [0, lωe ], such that ιe and τe correspond to 0
and lωe , respectively, and consider the Hilbert space H := ⊕e∈E L2[0, lωe ]. Fix α ∈ R and
define the operator

H(lω, α) : (fe) 7→ (−f ′′
e ) ,

D(H(lω, α)) :=

{
f = (fe) ∈ ⊕

e∈E
W 2,2(0, lωe )

∣∣∣∣∣
f is continuous at each
v ∈ V and f ′(v) = αf(v).

}
.

By continuity at v, we mean that if τe = ιb = v, then fe(lωe ) = fb(0) =: f(v). Here
f ′(v) :=

∑
e:ιe=v

f ′
e(0) − ∑

e:τe=v
f ′
e(l

ω
e ).

Given L ∈ N∗, let ΛL := {e ∈ E : ‖ιe‖∞ ≤ L or ‖τe‖∞ ≤ L} be a cube and put
VΛL

:= {ιe : e ∈ ΛL} ∪ {τe : e ∈ ΛL}. This yields a graph (ΛL,VΛL
) and a corresponding

operator HΛL
(lω, α). We denote Hω

ΛL
(α) := HΛL

(lω, α).

Theorem 4.4.4. Let I ⊂ (0,∞) be an interval such that Ī ∩ D0 = ∅, where D0 :=
⋃
k∈Z

[
π2k2

l2max
, π

2k2

l2min

]
. Then there exists c1 = c1(d) and c2 = c2(I) > 0 such that for any

interval J ⊂ I and any cube Λ we have

P{σ(Hω
Λ(α)) ∩ J 6= ∅} ≤ c1 · |Λ|2 · sF

(
P, c2|J |),

where |Λ| is the number of edges in IF := Λ and sF (P, ε) is as in (2-1).

Previous estimates appeared in [78] and [72], both assumed that P = ⊗e∈E µe, with
µe = he(λ)dλ, but their bounds were linear in |Λ|. Our proof heavily relies on the analysis
of [72]. Our point here is twofold: first, if one makes use of the black box Theorem 4.3.3,
then a large part of the proof of [72] can be omitted, second this allows to extend their
localization results in case α > 0 to measures µe which are (log-)Hölder continuous.

Proof. It is proved in [72, Eq. (9)-(14)], by spectral analytic arguments and without any
assumption on P, that if EJ is the midpoint of J , then there exists a discrete random
self-adjoint operator MΛ(lω, EJ) acting on ℓ2(VΛ) and b > 0 such that

P{σ(Hω
Λ(α)) ∩ J 6= ∅} ≤ P

{
dist

(
σ(MΛ(lω, EJ)), α

) ≤ b|J |} .
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Moreover, given u ∈ ℓ2(VΛ), the map lω 7→ fu(lω) := 〈MΛ(lω, EJ)u, u〉 is in C1(Ω),
only depends on (lωe )e∈Λ and there exists β > 0 such that

(i) ∂MΛ(lω ,EJ )
∂lωe

≥ β · Ie for all e ∈ Λ, where Ief(v) = f(v) if v ∈ {ιe, τe} and Ief(v) = 0
otherwise,

(ii) and
∑
e∈Λ

∂MΛ(lω ,EJ )
∂lωe

≥ β ·∑e∈Λ I
e ≥ β · Idℓ2(VΛ).

Thus, ∂fu(lω)
∂lωe

≥ β(|u(ιe)|2 + |u(τe)|2) ≥ 0 for e ∈ Λ and
∑
e∈Λ

∂fu(lω)
∂lωe

≥ β · ‖u‖2. Hence

MΛ(lω, EJ) satisfies Hypothesis (C.5.b). Since ℓ2(VΛ) is finite-dimensional, the rest of
Hypotheses (C) are clearly satisfied with IF = Λ and K = |VΛ| ≤ cd|Λ|. We may thus
apply Theorem 4.3.3 and Markov inequality to get

P
{

dist
(
σ(MΛ(lω, EJ)), α

) ≤ b|J |} = P
{

trχ[α−b|J |,α+b|J |](MΛ(lω, EJ)) ≥ 1
}

≤ 2cd|Λ|2sF
(
P,

2b
β

|J |
)
.

4.4.4 Quantum graphs with random vertex coupling

We finally show that Theorem 4.3.4 can tackle random vertex coupling models without
any analytic effort. It seems there are no previous Wegner estimates for such models.

For simplicity consider the graph (E ,V) given by V = Zd and E the set of segments
e = (v, v′) between neighbouring vertices, assigned lengths le with lmin ≤ le ≤ lmax. More
general structures can be treated similarly. Given e = (v, v′), we put ιe = v and τe = v′.

Fix α−, α+ ∈ R, α− < α+ and ∅ 6= G ⊆ V. Let (Ω,P) be a probability space, where
Ω = [α−, α+]G, P has no atoms and let H = ⊕e∈E L2[0, le]. Let V = (Ve) be a bounded
real potential, c0 := inf V , and given αω = (αωv ) ∈ Ω, consider the operator

H(αω) : (fe) 7→ (−f ′′
e + Vefe) ,

acting on (fe) ∈ ⊕e∈E W 2,2(0, le) which are continuous at all vertices, i.e. fe(le) = fb(0) =:
f(v) if τe = ιb = v, and which satisfy

f ′(v) :=
∑

e:ιe=v

f ′
e(0) −

∑

e:τe=v

f ′
e(le) =

{
αωv f(v) if v ∈ G,

0 otherwise.

The authors in [71] studied the case G = V and established localization for high
disorder and near spectral edges using the fractional moments method (which does not
rely on Wegner bounds). Their idea was to reduce the problem to one on ℓ2(V), for an
associated discrete operator. Below we prove a direct Wegner bound instead.

Given Λ ⊆ E , let VΛ := {ιe : e ∈ Λ} ∪ {τe : e ∈ Λ} and ∂Λ := VΛ ∩ VΛc . Consider the
form

h
ω,D
Λ [f ] =

∑

e∈Λ

(‖f ′
e‖2
L2(0,le) + 〈Vefe, fe〉L2(0,le)

)
+

∑

v∈G∩VΛ

αωv |f(v)|2

acting on (fe) ∈ ⊕e∈ΛW
1,2(0, le) which are continuous at v ∈ VΛ \ ∂Λ and vanish at

v ∈ ∂Λ. Note that ∂Λ is empty if Λ = E . It is known (see [76] or [78, Lemma 4.1]) that
h
ω,D
Λ is closed and bounded from below, and thus corresponds to a self-adjoint operator
HD

Λ (αω). Moreover, H(αω) = HD
E (αω), so we denote hω := h

ω,D
E .

Lemma 4.4.5. For any Λ ⊆ E, H(αω) ≤ HD
Λ (αω) ⊕HD

Λc(αω). If Λ is finite, HD
Λ (αω)

has a compact resolvent. Its eigenvalues, denoted EΛ,D
1 ≤ EΛ,D

2 ≤ . . . counting mul-
tiplicity, satisfy the following Weyl law: for any S ∈ R, there exists a non-random
C = C(S, c0, α−, lmin, lmax) such that EΛ,D

j > S if j > C · |Λ|, where |Λ| is the num-
ber of edges in Λ.
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Proof. The bracketing result follows [78, Lemma 4.2], namely, D(hω,DΛ ) ⊕D(hω,DΛc ) ⊂ D(hω)
since a function in D(hω,DΛ ) ⊕D(hω,DΛc ) is automatically continuous at all v. Moreover, if
f = f1 ⊕ f2 ∈ D(hω,DΛ ) ⊕D(hω,DΛc ), then h

ω,D
Λ [f1] + h

ω,D
Λc [f2] = hω[f ] because f(v) = 0 on

boundary vertices. Thus, H ≤ HD
Λ ⊕HD

Λc .
Now suppose Λ is finite and as in [42], consider the Neumann-decoupled Laplacian

−∆dec,N
Λ defined via the form k[f ] =

∑
e∈Λ ‖f ′

e‖2
L2[0,le] with D(k) = ⊕e∈ΛW

1,2(0, le). Then

D(hω,DΛ ) ⊂ D(k) and h
ω,D
Λ [f ] ≥ k[f ] + c0‖f‖2 + α−

∑
v∈G∩VΛ

|f(v)|2 ≥ 1
2((k + C)[f ]) for

some C = C(lmin, lmax, α−, c0) by standard trace estimates, see e.g. [76, Lemma 8]. Thus,
HD

Λ (αω) ≥ 1
2(−∆dec,N

Λ +C). But since −∆dec,N
Λ = ⊕e∈Λ −∆N

(0,le), its eigenvalues Edec,Λ
j are

just the eigenvalues Ek(−∆N
(0,le)) = π2k2

4l2e
with multiplicity |Λ|. In particular, Edec,Λ

j → ∞
as j → ∞, hence EΛ,D

j → ∞ as j → ∞ and HD
Λ (αω) has a compact resolvent by [92,

Theorem XIII.64]. Moreover, we have EΛ,D
j ≥ 1

2(Edec,Λ
j + C). By the explicit form of

Edec,Λ
j , we know that Edec,Λ

j > 2S − C if j > C2|Λ| for some C2 = C2(lmax, S, C). Thus,

EΛ,D
j > S if j > C2|Λ| and we are done.

We may now state our Wegner bound. Fix q > α+ and let H0, Hq be the operators
corresponding to h0[f ] =

∑
e∈E

(‖f ′
e‖2
L2[0,le] + 〈Vefe, fe〉

)
and hq[f ] = h0[f ] + q

∑
v∈G |f(v)|2

respectively, with D(h0) = D(hq) = D(hω). Let IF := G ∩ VΛ and sF (P, ε) as in (2-1).

Theorem 4.4.6. Let I = (E1, E2) be an open interval.
There exists CW = CW (E2, c0, α−, lmin, lmax) > 0 such that for any finite Λ ⊂ E and

any q > α+, if E2 < Eq := inf σ(Hq), then

E{tr[χI(HD
Λ (αω))]} ≤ CW · |Λ| · |IF | · sF

(
P,

q − α−
Eq − E2

|I|
)
.

If α+ < 0, we may take q = 0 and obtain a Wegner bound below E0 := inf(σ(H0)).
This result is non-trivial at least when G = Zd and the disorder is high, because H(αω)
will have some spectrum below E0 in this case almost surely; see [71, Theorem 12] and
the remark thereafter. If α+ ≥ 0, the non-triviality will be ensured if E0 < Eq.

Proof. Let A(ω) := HD
Λ (αω) −Eq and I ′ = (E1 −Eq, E2 −Eq). Then χI(λ) = χI′(λ−Eq),

hence E{tr[χI(HD
Λ (αω))]} = E{tr[χI′(A(ω))]}. Moreover, A(ω) corresponds to the form

aω[f ] = (hω,DΛ − Eq)[f ] with D := D(aω) = D(hω,DΛ ) non-random, and we have aω[f ] =
h1[f ]+

∑
v∈G∩VΛ

(αωv −q)|f(v)|2, where h1 := hD
q,Λ −Eq. By the bracketing in Lemma 4.4.5,

we have h1 ≥ 0. Thus, A(ω) satisfies Hypotheses (C.1) to (C.4) in I ′, with a Weyl constant
K = C|Λ| from Lemma 4.4.5, and the claim follows from Theorem 4.3.4.

4.5 Proofs of the general theorems

4.5.1 Proof of Proposition 4.3.1

Proof. Put χI := χI(H(ω)). By hypothesis, for a.e. ω,

(5-1) tr[χI ] ≤ γ−1 tr[χIWχI ] = γ−1 tr[χIW ] .

Given j ∈ J we have

〈χIWej , ej〉 = 〈χIWej , χIej〉 ≤ ‖χIWej‖ · ‖χIej‖

≤ c

2
‖χIWej‖2 +

1
2c

‖χIej‖2 =
c

2
〈WχIWej , ej〉 +

1
2c

〈χIej , ej〉
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for any c > 0. Summing over j ∈ J and choosing c = γ−1 we get by (5-1)

tr[χI ] ≤ γ−1
(γ−1

2
tr[WχIW ] +

1
2γ−1

tr[χI ]
)
.

Thus,

tr[χI ] ≤ γ−2 tr[WχIW ]

= γ−2
∑

j∈J

∑

α,α′∈IF

〈UαχIUα′ej , ej〉

= γ−2
∑

j∈J

∑

α,α′∈Ij

〈χIUα′ej , χIUαej〉

≤ γ−2

2

∑

j∈J

∑

α,α′∈Ij

(‖χIUα′ej‖2 + ‖χIUαej‖2)

≤ γ−2Cfin

∑

j∈J

∑

α∈Ij

‖χIUαej‖2 .

This completes the proof, since ‖χIUαej‖2 = 〈UαχIUαej , ej〉, and the terms with
j /∈ Jeff are zero.

4.5.2 Proof of Theorem 4.3.2

We first recall [105, Theorem 3.2]:

Spectral Averaging. Let µ be a probability measure on R and H a Hilbert space. If A
is a self-adjoint operator and 0 ≤ B is a bounded operator on H, then for any interval I
and any φ ∈ H we have

∫

R

〈B1/2χI(A+ tB)B1/2φ, φ〉dµ(t) ≤ 6‖B‖‖φ‖2s(µ, |I|) ,

where s(µ, ε) := supE∈R µ(E,E + ε).

Note that we could use instead the spectral averaging of [30]; in this case the upper
bound should be replaced by 4‖B‖(1 + ‖B‖)‖φ‖2s(µ, |I|).

The proof in [105] actually gives s(µ, ε) = supE∈R µ[E,E + ε), but since

(5-2) sup
E∈R

µ[E,E + ε) = sup
E∈R

µ(E,E + ε] = sup
E∈R

µ(E,E + ε)

(see Section 4.6.2), the above bound holds.

Proof of Theorem 4.3.2. To show that χI(H(ω)) is weakly measurable, it suffices to show
that H(ω) is weakly measurable; see [61]. Let ϕ,ψ ∈ H and let g(ω) = 〈H(ω)ϕ,ψ〉 =
〈H0ϕ,ψ〉 +

∑
α∈IF

ωα〈Uαϕ,ψ〉. Then g only depends on (ωα)α∈IF
, i.e. {ω : g(ω) ≥ a} =

A× BI\IF for some A ⊆ BIF , so by definition of F, it suffices to show that A ∈ ⊗α∈IF
B.

In turn, it suffices to show that the map g0 : BIF → R given by g0 : (ωα)α∈IF
7→

〈H0ϕ,ψ〉 +
∑
α∈IF

ωα〈Uαϕ,ψ〉 is Borel measurable, but this is obvious since it is affine.
Hence, χI(H(ω)) is weakly measurable and tr[χI(H(ω))] is measurable.

We may thus integrate in Proposition 4.3.1 to get

E{tr[χI(H(ω))]} ≤ γ−2Cfin

∑

j∈Jeff

∑

α∈Ij

E{〈UαχI(H(ω))Uαej , ej〉} .
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Fix j ∈ Jeff, α ∈ Ij and put φ := U
1/2
α ej . Then by [36, Theorem 10.2.1],

E{〈UαχI(H(ω))Uαej , ej〉} = EYα

{∫

B
〈U1/2

α χI(H(ω))U1/2
α φ, φ〉dµω̂α(ωα)

}
.

Using the spectral averaging with A = H1 +
∑
β 6=α ωβUβ , B = Uα and t = ωα, we get

E{〈UαχI(H(ω))Uαej , ej〉} ≤ 6‖Uα‖‖U1/2
α ej‖2 EYα{s(µω̂α , |I|)} ≤ 6C2

U EYα{s(µω̂α , |I|)}.

Since EYα{s(µω̂α , |I|)} ≤ sF (P, |I|), the proof is complete.

4.5.3 Proof of Theorem 4.3.3

Throughout this subsection (Ω,F,P) is a probability space with Ω := CI , where C ⊆ R

is an interval and I is a countable index set. FP denotes the P-completion of F. We fix
a finite set IF ⊆ I and denote by 1F the element 1F = (xα) ∈ RI such that xα = 1 if
α ∈ IF and xα = 0 otherwise.

We will use the fact that monotone functions ϕ : Ω → R which depend on finitely many
ωα are FP-measurable; this is proved in Lemma 4.6.2. Note that for any fixed x ∈ RI , the
map ϕ(ω − x) is also monotone increasing, hence FP-measurable. We may thus state the
following lemma 7, whose basic idea stems from [103], see also [25] and [18].

Lemma 4.5.1. Suppose ϕ : Ω → R is monotone increasing and depends on finitely many
ωα. Given c ∈ R and η > 0, define A := {ω : ϕ(ω) ≤ c}, Aη := {ω : ω − η · 1F ∈
Ω and ϕ(ω − η · 1F ) ≤ c}, B := {ω : ϕ(ω) ≥ c} and Bη := {ω : ω + η · 1F ∈ Ω and ϕ(ω +
η · 1F ) ≥ c}. Then

P(Aη \A) ≤ |IF | · sF (P, η) and P(Bη \B) ≤ |IF | · sF (P, η) ,

where P denotes the extension of P to FP and sF (P, η) is as in (2-1).

Proof. We prove the second bound; the first is similar. Let IF = {α1, . . . , αm} and
Ik = {α1, . . . , αk} for 1 ≤ k ≤ m. Let 1j be the element 1j = (xα) ∈ RI with xα = 1 if
α ∈ Ij and xα = 0 otherwise, so that 1m = 1F . Set

Bη
0 := B and Bη

j := {ω : ω + η · 1j ∈ Ω and ϕ(ω + η · 1j) ≥ c}

for 1 ≤ j ≤ m. Note that if B0, . . . , Bm is any collection of sets, then one checks by
induction that Bm \B0 ⊆ ⋃m

j=1(Bj \Bj−1) 8, so we have in particular

(5-3) P(Bη
m \B0) ≤

m∑

j=1

P(Bη
j \Bη

j−1) .

Now fix j ∈ {1, . . . ,m}, let ω̂j = (ωβ)β 6=αj
∈ CI\{αj} and denote by (x, ω̂j) the element

(xα) ∈ RI with xαj = x and xβ = ωβ for β 6= αj . Define the section

Cω̂j := {x ∈ C : (x, ω̂j) ∈ Bη
j \Bη

j−1} = (Bη
j \Bη

j−1)ω̂αj
.

7. In contrast to [103], here we avoided to speak of sums of sets, because such sums are not measurable
in general; see [41] and [28], so a justification would be needed.

8. If m = 1, then B1 \ B0 = B1 \ B0. Suppose that Bm \ B0 ⊆
⋃m

j=1
(Bj \ Bj−1) and let ω ∈ Bm+1 \ B0.

If ω /∈ Bm \ B0, then ω /∈ Bm, since ω /∈ B0. But ω ∈ Bm+1, hence ω ∈ Bm+1 \ Bm. Thus, Bm+1 \ B0 ⊆
(Bm \ B0) ∪ (Bm+1 \ Bm) ⊆

⋃m+1

j=1
(Bj \ Bj−1) by the induction hypothesis.
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We show that Cω̂j is contained in an interval of length η. If Cω̂j = ∅, this is clear,
so suppose x ∈ Cω̂j . Fix δ ≥ η. If x − δ ∈ Cω̂j , then (x − δ, ω̂j) ∈ Bη

j and thus
ϕ
(
(x − δ, ω̂j) + η · 1j

) ≥ c. But ϕ is monotone increasing, so ϕ
(
(x − δ, ω̂j) + η · 1j

)
=

ϕ
(
(x − δ + η, ω̂j) + η · 1j−1

) ≤ ϕ
(
(x, ω̂j) + η · 1j−1

)
< c, since (x, ω̂j) /∈ Bη

j−1
9. This

contradiction shows that x − δ /∈ Cω̂j for any δ ≥ η, i.e. Cω̂j is contained in a semi-open
interval 10 Iω̂j of length η. Let Dη

j be the set Bη
j \Bη

j−1 with each section Cω̂j replaced by
Iω̂j . Then Bη

j \ Bη
j−1 ⊆ Dη

j and Iω̂j is a Borel set for any ω̂j . So applying [13, Corollary
10.4.15] to Dη

j , taking Yj := CI\{αj} and using (5-2), we may find µω̂j
such that

(5-4) P(Bη
j \Bη

j−1) ≤ EYj {µω̂j
(Iω̂j )} ≤ EYj

{
sup
E∈R

µω̂j
(E,E + η)

}
.

But EYj {µω̂j (E,E + η)} = P{ωαj ∈ (E,E + η)} = P{. . .} = EYj {µω̂j
(E,E + η)}, hence

µω̂j (E,E + η) = µω̂j
(E,E + η) outside a PYj -null set ΩE . Let Ω∗ = ∪E∈QΩE . Then

PYj (Ω∗) = 0 and supE∈Q µω̂j (E,E+ η) = supE∈Q µω̂j
(E,E+ η) for any ω̂j /∈ Ω∗. So using

(2-2),

EYj

{
sup
E∈R

µω̂j
(E,E + η)

}
= EYj

{
sup
E∈R

µω̂j (E,E + η)
}

≤ sF (P, η) ,

and the claim follows by (5-3) and (5-4).

We may now prove a first extension of Stollmann’s Lemma from [103]. Namely, we allow
intervals C and relax the diagonal condition by adding cutoffs χI(ϕ(ω)). The inclusion of
cutoffs is actually immediate and will not be used in the proof of Theorem 4.3.3. However,
this idea plays a major role in the proof of Theorem 4.3.4.

Lemma 4.5.2. Let I ⊂ R be an open interval. Suppose ϕ : Ω → R is monotone increasing,
depends on finitely many ωα and satisfies

(5-5)
(
ϕ(ω) − ϕ(ω − t · 1F )

)
χI(ϕ(ω)) ≥ tγ · χI(ϕ(ω))

for some γ > 0 and all t ≥ 0 such that ω − t · 1F ∈ Ω. Then

P{ϕ(ω) ∈ I} ≤ δ · |IF | · sF
(
P,

|I|
γ

)
, where δ =

{
1 if inf C = −∞,

2 otherwise.

This bound is also true if ϕ is monotone decreasing and satisfies

(5-6)
(
ϕ(ω) − ϕ(ω − t · 1F )

)
χI(ϕ(ω)) ≤ −tγ · χI(ϕ(ω)) .

Proof. Let I = (a, b), ε := b− a and η := ε
γ . We have

P{ϕ(ω) ∈ I} ≤ P{ϕ(ω) ∈ I and ω − η · 1F ∈ Ω} + P{ω − η · 1F /∈ Ω} .

Put A := {ω : ϕ(ω) ≤ a}, Aη := {ω : ω − η · 1F ∈ Ω and ϕ(ω − η · 1F ) ≤ a} and let
ω ∈ A := {ω : ϕ(ω) ∈ I and ω − η · 1F ∈ Ω}. Then by (5-5),

ϕ(ω − η · 1F ) ≤ ϕ(ω) − γη = ϕ(ω) − ε ≤ b− ε = a .

9. Note that if ω + η · 1j ∈ Ω, then ωα + η ∈ C for any α ∈ Ij , so in particular for any α ∈ Ij−1 and
thus ω + η · 1j−1 ∈ Ω.

10. Set aj := inf Cω̂j
. If aj ∈ Cω̂j

, then we proved that aj +δ /∈ Cω̂j
for any δ ≥ η, i.e. Cω̂j

⊆ [aj , aj +η).
If aj /∈ Cω̂j

, then if x > aj + η, we may find y ∈ Cω̂j
such that y < aj + (x − aj − η) = x − η, so we cannot

have x ∈ Cω̂j
. Thus, Cω̂j

⊆ (aj , aj + η].
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Hence ω ∈ Aη. Furthermore, ϕ(ω) ∈ I implies ϕ(ω) > a and thus ω /∈ A. Hence A ⊆ Aη\A
and P(A) ≤ |IF | · sF (P, η) by Lemma 4.5.1.

If inf C = −∞, then P{ω − η · 1F /∈ Ω} = 0, since C is an interval. Otherwise, let
q− := inf C. If q− ∈ C, then using (5-2),

P{ω − η · 1F /∈ Ω} = P{ωα ∈ [q−, q− + η) for some α ∈ IF } ≤ |IF | · sF (P, η)

since P{ωα ∈ [q−, q− + η)} = EYα{µω̂α [q−, q− + η)}. If q− /∈ C, replace [q−, q− + η) by
(q−, q− + η].

Finally, if ϕ is decreasing and satisfies (5-6), then ψ := −ϕ is increasing and χI(ϕ(ω)) =
χI′(ψ(ω)), where I ′ := (−b,−a), hence ψ satisfies (5-5) in I ′. Applying the first part we

obtain P{ϕ(ω) ∈ I} = P{ψ(ω) ∈ I ′} ≤ δ · |IF | · sF
(
P, |I′|

γ

)
.

Proof of Theorem 4.3.3. Let {ϕn(ω)} be an orthonormal basis of eigenvectors of H(ω)
with eigenvalues λn(ω). Then 〈χI(H(ω))ϕn(ω), ϕn(ω)〉 = χI(λn(ω)). So using (C.3), we
get

tr[χI(H(ω))] =
∑

n

〈χI(H(ω))ϕn(ω), ϕn(ω)〉 =
∑

n≤K
χI(λn(ω)) .

By (C.4), (C.5) and min-max, each λn : Ω → R is monotone (see below for (C.5.b) and
(C.5.d)) and only depends on (ωα)α∈IF

. So by Lemma 4.6.2, each λn is FP-measurable,
hence χI(λn(ω)) = χλ−1

n (I)(ω) is FP-measurable, and we may integrate to get

E{tr[χI(H(ω))]} =
∑

n≤K
E{χI(λn(ω))} =

∑

n≤K
P{λn(ω) ∈ I} .

Now assume (C.5.a) holds. Then by min-max, λn(ω) is monotone increasing and satisfies
λn(ω) ≥ λn(ω − t · 1F ) + tγ for all t ≥ 0 such that ω − t · 1F ∈ Ω. So by Lemma 4.5.2,

P{λn(ω) ∈ I} ≤ 2 · |IF | · sF
(
P,

|I|
γ

)
,

as asserted. The case (C.5.c) is similar. Let us show that (C.5.b) implies (C.5.a) and
(C.5.d) implies (C.5.c).

Let f : Ω → R be a function only depending on (ωα)α∈IF
and suppose f ∈ C1(Ω).

Given v, w ∈ Ω, we have v+ t(w− v) ∈ Ω for any t ∈ [0, 1]. Moreover, t 7→ f(v+ t(w− v))
is continuous on [0, 1] and continuously differentiable on (0, 1), hence

f(w) − f(v) =
∫ 1

0

d
dt
f(v + t(w − v)) dt =

∫ 1

0

∑

α∈IF

(wα − vα)
∂f

∂ωα
(v + t(w − v)) dt.

If ∂f
∂ωα

≥ 0 on Ω ∀α ∈ IF and wα ≥ vα, then f(w)−f(v) ≥ 0, i.e. f is monotone increasing.

Similarly, if ∀α ∈ IF , ∂f
∂ωα

≤ 0 on Ω, then f is monotone decreasing. Finally, for w = ω
and v = ω − ν · 1F we get

f(ω) − f(ω − ν · 1F ) = ν

∫ 1

0

∑

α∈IF

∂f

∂ωα
(ω − ν · 1F +t(ν · 1F )) dt,

hence
∑
α∈IF

∂f
∂ωα

≥ c on Ω implies f(ω) − f(ω − ν · 1F ) ≥ νc and
∑
α∈IF

∂f
∂ωα

≤ −c on Ω
implies f(ω) − f(ω − ν · 1F ) ≤ −νc.
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4.5.4 Proof of Theorem 4.3.4

The proof of Theorem 4.3.4 uses two ideas: the first one is roughly to consider the
change of variables vα = lnωα, so that E{f(ω)} =

∫
f(ω)P(dω) =

∫
f((evα))P̃(dv). This

idea was used before in [78, Theorem 2.9]. The new measure P̃ is easily described if P

is a product measure; the general case is given in Lemma 4.5.3. The second idea is to
generalize Stollmann’s lemma to include cutoffs χI(ϕ(ω)) (as we did in Lemma 4.5.2) and
also extend the diagonal growth condition. This is done in Lemma 4.5.4.

Lemma 4.5.3. Let Ω = [q−, q+]I , fix q > q+ and let Ω̃ := [v−, v+]I , where v− = ln(q−q+)
and v+ = ln(q − q−). Define T : Ω → Ω̃ by T : (ωα) 7→ (ln(q − ωα)) and let P̃ := P ◦T−1.
Then

sF (P̃, ε) ≤ sF (P, (q − q−)(eε − 1)) .

Here sF (P̃, ε) is defined as before, i.e. if Zα := [v−, v+]I\{α}, πZα : Ω̃ → Zα is defined by
πZα : v 7→ v̂α and if P̃Zα = P̃ ◦π−1

Zα
, then sF (P̃, ε) = maxα∈IF

ẼZα

{
supE∈R µ̃v̂α(E,E+ ε)

}
.

Proof. First recall that by [36, Theorem 4.1.11], if T : (X,X ,P) → (Y,Y) is any measur-
able map, and if PT = P ◦T −1, then for any measurable g : Y → R, we have

(5-7) ET {g(y)} = E{(g ◦ T )(x)} ,

whenever either side exists. Fix α ∈ IF and let G := {vα ∈ (E,E + ε)}. Then

ẼZα{µ̃v̂α(E,E + ε)} = P̃(G) = P(T (ω) ∈ G) = P{ln(q − ωα) ∈ (E,E + ε)}
= P{ωα ∈ (q − eE+ε, q − eE)} = EYα{µω̂α(q − eE+ε, q − eE)} ,

where Yα := [q−, q+]I\{α}. Define T̂2 : Zα → Yα by T̂2 : (vα) 7→ (q − evα). Then

T̂2 ◦ πZα ◦ T = πYα , so P̃
T̂2

Zα
= PYα and using (5-7) we get EYα{µω̂α(q − eE+ε, q − eE)} =

ẼZα{µT̂2(v̂α)(q − eE+ε, q − eE)}. Hence µ̃v̂α(E,E + ε) = µT̂2(v̂α)(q − eE+ε, q − eE) outside

a P̃Zα-null set ΩE . Let Ω∗ = ∪E∈QΩE . Then P̃Zα(Ω∗) = 0 and supE∈Q µ̃v̂α(E,E + ε) =
supE∈Q µT̂2(v̂α)(q − eE+ε, q − eE) for any v̂α /∈ Ω∗. So using (2-2) and (5-7),

ẼZα

{
sup
E∈R

µ̃v̂α(E,E + ε)
}

= ẼZα

{
sup
E∈R

µT̂2(v̂α)(q − eE+ε, q − eE)
}

= EYα

{
sup
E∈R

µω̂α(q − eE+ε, q − eE)
}
.

If q−eE < q−, the RHS is zero, since µω̂α is supported in [q−, q+]. So suppose eE ≤ q−q−.
Then (q− eE) − (q− eE+ε) = eE(eε − 1) ≤ (q− q−)(eε − 1). This completes the proof.

Lemma 4.5.4. Let (Ω,P) be a probability space, Ω = [c−, c+]I and I ⊂ R an open interval.
Suppose ϕ : Ω → R is monotone increasing, depends on finitely many ωα and satisfies

(5-8)
(
ϕ(ω + t · 1F ) − ϕ(ω)

)
χI(ϕ(ω)) ≥ γ(eζt − 1) · χI(ϕ(ω))

for some ζ > 0, γ > 0 and all t ≥ 0 such that ω + t · 1F ∈ Ω. Then

P{ϕ(ω) ∈ I} ≤ 2 · |IF | · sF
(
P,

1
ζ

ln(1 +
|I|
γ

)
)
.

This bound is also true if ϕ is monotone decreasing and satisfies for all t ≥ 0 such that
ω − t · 1F ∈ Ω the bound

(5-9)
(
ϕ(ω) − ϕ(ω − t · 1F )

)
χI(ϕ(ω)) ≤ γ(1 − eζt) · χI(ϕ(ω)) .
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Proof. Let I = (a, b), ε := b − a and η := 1
ζ ln(1 + ε

γ ). Suppose first that ϕ is monotone
increasing and satisfies (5-8). We have

P{ϕ(ω) ∈ I} ≤ P{ϕ(ω) ∈ I and ω + η · 1F ∈ Ω} + P{ω + η · 1F /∈ Ω} .

For the first term, let ω ∈ A := {ϕ(ω) ∈ I and ω + η · 1F ∈ Ω}. Then by (5-8),

ϕ(ω + η · 1F ) ≥ ϕ(ω) + γ(eζη − 1) = ϕ(ω) + ε ≥ a+ ε = b ,

hence if Bη := {ω : ω + η · 1F ∈ Ω and ϕ(ω + η · 1F ) ≥ b}, we have ω ∈ Bη. Moreover,
ϕ(ω) ∈ I implies ϕ(ω) < b and thus ω /∈ B := {ω : ϕ(ω) ≥ b}. Hence, A ⊆ Bη \ B and
P(A) ≤ |IF | · sF (P, η) by Lemma 4.5.1.

For the second term, P{ω + η · 1F /∈ Ω} = P{ωα ∈ (c+ − η, c+] for some α ∈ IF } ≤
|IF | · sF (P, η) by (5-2). This proves the first claim.

Now suppose ϕ is decreasing and satisfies (5-9). Again,

P{ϕ(ω) ∈ I} ≤ P{ϕ(ω) ∈ I and ω − η · 1F ∈ Ω} + P{ω − η · 1F /∈ Ω} .

The second term is assessed as before. For the first term, let ψ(ω) := −ϕ(ω) and put
A := {ω : ψ(ω) ≤ −b}, Aη := {ω : ω − η · 1F ∈ Ω and ψ(ω − η · 1F ) ≤ −b} and let
ω ∈ A′ := {ϕ(ω) ∈ I and ω − η · 1F ∈ Ω}. Then by (5-9),

ϕ(ω − η · 1F ) ≥ ϕ(ω) − γ(1 − eζη) = ϕ(ω) + ε ≥ a+ ε = b ,

hence ψ(ω−η·1F ) ≤ −b and ω ∈ Aη. Moreover, ϕ(ω) ∈ I implies ϕ(ω) < b, i.e. ψ(ω) > −b
and thus ω /∈ A. Hence, A′ ⊆ Aη \A and the claim follows from Lemma 4.5.1.

Proof of Theorem 4.3.4. Let A(ω) = −H(ω) and I ′ = (−E2,−E1). Then tr[χI(H(ω))] =
tr[χI′(A(ω))]. Moreover, if ru(ω) = −fu(ω) = −a(u) +

∑
α∈IF

(q − ωα)ζbα(u), then using
min-max for H(ω), we obtain the formula

(5-10) µn(ω) = inf
ϕ1,...,ϕn−1

sup
u∈D,‖u‖=1,

u∈{ϕ1,...,ϕn−1}⊥

ru(ω)

for the decreasing set µ1(ω) ≥ µ2(ω) ≥ . . . of eigenvalues of A(ω) (here µj(ω) = −λj(ω)).
Since bα(u) ≥ 0 for any u, each µn(ω) is monotone and only depends on (ωα)α∈IF

by (5-
10), hence each is FP-measurable by Lemma 4.6.2. Thus, as in the proof of Theorem 4.3.3,
tr[χI′(A(ω))] is FP-measurable and we may integrate to get

(5-11) E{tr[χI′(A(ω))]} =
∑

n≤K
P{µn(ω) ∈ I ′} =

∑

n≤K
P̃{µn(T2(v)) ∈ I ′} ,

where, using the notations of Lemma 4.5.3, T2 : Ω̃ → Ω is given by T2 : (vα) 7→ (q − evα),
and we applied (5-7) to g(v) := χI′(µn(T2(v))), noting that (T2 ◦ T )(ω) = ω.

Suppose now that (3-1) holds with ζ > 0 and fix u ∈ D. Since ru ◦ T2(v) = −a(u) +∑
α∈IF

eζvαbα(u), given v ∈ Ω̃ and t ≥ 0 such that v + t · 1F ∈ Ω̃, we have

(ru ◦ T2)(v + t · 1F ) = −a(u) +
∑

α∈IF

eζ(vα+t)bα(u)

= −a(u) + eζt
∑

α∈IF

eζvαbα(u) ≥ eζt(ru ◦ T2)(v)
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since −a(u) ≥ −eζta(u). Thus, if νn(v) := µn(T2(v)), we get by (5-10)

νn(v + t · 1F ) ≥ eζtνn(v).

Now note that if νn(v) ∈ I ′, then νn(v) ≥ −E2 = |E2| > 0. Hence,

(
νn(v + t · 1F ) − νn(v))χI′(νn(v)) ≥ (

eζtνn(v) − νn(v))χI′(νn(v))

≥ (eζt − 1)|E2|χI′(νn(v)).

As ζ > 0, νn(v) is monotone increasing in v, so using Lemma 4.5.4 we get

P̃{νn(v) ∈ I ′} ≤ 2 · |IF | · sF
(
P̃,

1
ζ

ln
(
1 +

|I ′|
|E2|

))

≤ 2 · |IF | · sF
(
P, (q − q−)

((
1 +

|I|
|E2|

) 1
ζ − 1

))
,

where we applied Lemma 4.5.3 with ε := 1
ζ ln

(
1+ |I′|

|E2|
)
. Using (5-11), the proof is complete

for ζ > 0. Now suppose that ζ < 0 and put θ := −ζ > 0. Then

(ru ◦ T2)(v) = −a(u) +
∑

α∈IF

e−θvαbα(u)

= −a(u) + e−θt ∑

α∈IF

e−θ(vα−t)bα(u) ≤ e−θt(ru ◦ T2)(v − t · 1F )

for any t ≥ 0 such that v − t · 1F ∈ Ω̃, since −a(u) ≤ −e−θta(u). Hence,

νn(v) ≤ e−θtνn(v − t · 1F ),

and thus, noting that (1 − eθt) ≤ 0 we get

(
νn(v) − νn(v − t · 1F ))χI′(νn(v)) ≤ (

νn(v) − eθtνn(v))χI′(νn(v))

≤ (1 − eθt)|E2|χI′(νn(v)).

Furthermore, νn(v) is monotone decreasing. The claim of Theorem 4.3.4 for ζ < 0 now
follows as before using Lemma 4.5.4.

4.6 Appendix

4.6.1 Spectra of some Schrödinger operators

Let G ⊂ Zd be non-empty, B ⊆ R a Borel set and consider the probability space (Ω,P),
where Ω = BG and P = ⊗α∈G µ, for some probability measure µ on R with suppµ ⊆ B.
Define

Hω = H0 + V ω on ℓ2(Zd), where H0 = −∆ + V 0, V ω =
∑

α∈G
ωαδα,

Hω = H0 + Vω on L2(Rd), where H0 = −∆ + V0, Vω =
∑

α∈G
ωαχα .

Here δα and χα are the characteristic functions of {α} and [α− 1
2 , α+ 1

2 ]d respectively and
V 0, V0 are Zd-periodic bounded real potentials. We denote points in Rd by (x1, . . . , xd).



4.6. Appendix 117

We now suppose that G contains a half-space of Zd, i.e., there exists r ∈ Z and
i ∈ {1, . . . , d} such that (x1, . . . , xd) ∈ G whenever xi > r. Examples are half-spaces of
Zd, and sets with a finite number of holes, i.e. with Zd \G finite. We can actually consider
more general sets like quarter-spaces or rotated half-spaces. The only thing we need is
that G should contain arbitrarily large cubes of Zd. This excludes (2Z)d and thus excludes
Delone sets. On the other hand, half-spaces are not Delone sets either since we allow for
arbitrarily large cubes with no points of G. So the sets we consider here are neither a
special case nor a generalization of Delone sets.

Lemma 4.6.1. If G contains a half-space of Zd, then σ(Hω) ⊇ σ(H0) + suppµ and
σ(Hω) ⊇ σ(H0) + suppµ almost surely.

Proof. We only prove the claim for Hω; the proof is similar for Hω. All the arguments
actually go back to [77], [62]; one simply needs to choose Ωλ,q

k (n) carefully below.
Assume (x1, . . . , xd) ∈ G whenever xi > r. Let E = λ + q ∈ σ(H0) + suppµ. By

Weyl’s criterion [114, Theorem 7.22], we may find fk ∈ C∞
c (Rd), ‖fk‖ = 1 such that

‖(H0 − λ)fk‖ → 0 as k → ∞. Choose lk = lk(λ) ∈ N∗ such that supp fk ⊂ Λlk(0), put
Iqk := [q − 1

k , q + 1
k ] and consider the event

Ωλ,q
k (n) :=

{
ω ∈ Ω : ωα ∈ Iqk ∀α ∈ Λlk(xn,k)

}
,

where xn,k := (3nlk + r)ei and ei ∈ Zd has 1 in the ith coordinate and 0 otherwise. First
note that Λlk(xn,k) ∩ G = Λlk(xn,k), so that the above event is well defined. Moreover,
Λlk(xn,k) ∩ Λlk(xm,k) = ∅ for n 6= m, so the events {Ωλ,q

k (n)}n∈N∗ are independent and
P(Ωλ,q

k (n)) = µ(Iqk)|Λlk
| is the same for all n and strictly positive since q ∈ suppµ. It

follows by Borel-Cantelli lemma II that if Ωλ,q
k := ∩m≥1 ∪n≥m Ωλ,q

k (n), then P(Ωλ,q
k ) = 1.

Let Ωλ,q := ∩k∈N∗Ωλ,q
k , then P(Ωλ,q) = 1.

Now fix ω ∈ Ωλ,q and let k ∈ N∗. Then ω ∈ Ωλ,q
k , so we may find n ∈ N∗ such that

ω ∈ Ωλ,q
k (n). But

‖(Hω − E)fk( · − xn,k)‖ ≤ ‖(H0 − λ)fk( · − xn,k)‖ + ‖(Vω − q)fk( · − xn,k)‖ .

Since V0 is periodic, ‖(H0 − λ)fk( · − xn,k)‖ = ‖(H0 − λ)fk‖ → 0. Moreover ω ∈ Ωλ,q
k (n),

so ωα ∈ Iqk for all α ∈ Λlk(xn,k). Recalling that Λlk(xn,k) ∩G = Λlk(xn,k), we get

‖(Vω − q)fk( · − xn,k)‖2 =
∑

α∈Λk(xn,k)

(ωα − q)2‖χαfk‖2 ≤ 1
k2

‖fk‖2 → 0 .

Hence (fk) is a Weyl sequence for E. We thus showed that for any ω ∈ Ωλ,q we have
λ+ q ∈ σ(Hω). Let Ω0 :=

⋂
λ∈σ(H0)∩Q,q∈suppµ∩Q Ωλ,q. Then P(Ω0) = 1 and for any ω ∈ Ω0

we have σ(Hω) ⊇ σ(H0)∩Q+suppµ∩Q. Since σ(Hω) is closed, the proof is complete.

4.6.2 Technical details

We give here the details of some claims we made in Sections 4.2 and 4.5. Let µ be a
probability measure on R. To prove (2-2), let E ∈ R and Ek := ⌊10kE⌋

10k , where ⌊x⌋ is the
integer part of x. Then Ek ր E and c < E + ε iff c < Ek + ε for some k. Hence

µ(E,E + ε) = µ
( ∪k (E,Ek + ε)

)
= lim

k→∞
µ(E,Ek + ε)

≤ lim
k→∞

µ(Ek, Ek + ε) ≤ sup
F∈Q

µ(F, F + ε) .
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Thus, supE∈R µ(E,E + ε) ≤ supF∈Q µ(F, F + ε). This proves (2-2).
Suppose P = ⊗µα for some probability measures µα on R. Then given A ∈ F, we

have P(A) =
∫
Yα
µα(Aω̂α)dPYα(ω̂α), so by [13, Corollary 10.4.15], µω̂α = µα PYα-a.s., so

sF (P, ε) = maxα∈IF
supE∈R µα(E,E + ε) using (2-2). Next, note that

µ(E,E + ε] = µ
( ∪k (E + 1

k , E + ε]
)

= lim
k→∞

µ(E + 1
k , E + ε]

≤ lim
k→∞

µ(E + 1
k , E + ε+ 1

k ) ≤ supF∈R µ(F, F + ε) ,

so supE∈R µ(E,E+ε] ≤ supF∈R µ(F, F +ε) and this proves equality. Similarly, one checks
that supE∈R µ[E,E + ε) ≤ supF∈R µ(F, F + ε), which proves (5-2).

We finally prove the following. Here Ω = BI with B ⊆ R a Borel set and I is countable.

Lemma 4.6.2. If P has no atoms, then any monotone ϕ : Ω → R which depends on
finitely many ωα is FP-measurable, where FP is the P-completion of F.

Proof. Suppose ϕ is monotone increasing and only depends on (ωα)α∈Im . For notational
simplicity, assume Im = {1, . . . ,m}. Put Ik := {1, . . . , k} for 1 ≤ k ≤ m and let Fk be the
σ-algebra generated by

(⊗α∈Ik
B
)⋃Nk(P), where Nk(P) := {M ⊆ BIk : P∗(M × BIc

k) =
0}. Here P∗ is the outer measure defined by P and Ick = I \ Ik. Then A ∈ Fk implies
A× BIc

k ∈ FP.
Since ϕ : BI → R only depends on (ωα)α∈Im , then given a ∈ R, {ω : ϕ(ω) ≥ a} =

A′ × BIc
m for some A′ ⊆ BIm . So to show that ϕ is measurable, it suffices to show that

A′ ∈ Fm. But if we define ϕ0 : BIm → R by ϕ0(ωm) := ϕ(ωm, 0) for ωm = (ωα)α∈Im ,
then ϕ0 is increasing and {ωm : ϕ0(ωm) ≥ a} = A′. Thus, it suffices to show that any
monotone increasing f : BIm → R is Fm-measurable. For this, we proceed by induction,
adapting an argument of Nathaniel Eldredge showing that monotone functions on Rm are
Lebesgue-measurable, following [50, Theorem 4.4].

For k = 1 the assertion is clear: if f : B → R is increasing and A = {t : f(t) ≥ a},
then A = ∅ or A = I ∩ B for some interval I. Thus, A ∈ B ⊂ F1.

Now suppose f : BIk+1 → R is increasing, fix a ∈ R and define g : BIk → R by
g(ωk) = inf{t ∈ B : f(ωk, t) ≥ a}. Then g is monotone decreasing, hence Fk-measurable
by the induction hypothesis. So by [13, Proposition 3.3.4], we have E := {(ωk, ωk+1) :
g(ωk) < ωk+1} ∈ Fk ⊗ B and G := {(ωk, ωk+1) : g(ωk) = ωk+1} ∈ Fk ⊗ B. Moreover,
for any ωk ∈ BIk and y ∈ BIc

k+1 , we have Gωk,y := {ωk+1 : (ωk, ωk+1, y) ∈ G × BIc
k+1} =

{ωk+1 : ωk+1 = g(ωk)} = {g(ωk)}. We may find F ⊆ G × BIc
k+1 such that F ∈ F and

P(G× BIc
k+1) = P(F ). The section Fωk,y of such F is either a singleton or empty. Thus,

P(G× BIc
k+1) = P(F ) = EYk+1

{µω̂k+1
(Fωk,y)} ≤ EYk+1

{
sup
E∈R

µω̂k+1
(E,E + ε)

}

for any ε > 0. Since sF (P, ε) → 0 as ε → 0, it follows that P(G× BIc
k+1) = 0.

Finally, if M = M ′ × B with M ′ ∈ Nk(P) and B ⊆ B, then P∗(M × BIc
k+1) ≤

P∗(M ′ × BIc
k) = 0, hence Fk ⊗ B ⊂ Fk+1 and E,G ∈ Fk+1. But if A = {(ωk, ωk+1) :

f(ωk, ωk+1) ≥ a}, then E ⊆ A and (A\E) ⊆ G. Since E ∈ Fk+1 and P∗((A\E)×BIc
k+1) ≤

P∗(G× BIc
k+1) = P(G× BIc

k+1) = 0, A ∈ Fk+1 and the proof is complete.

It is worthwile to note that the completeness of (Ω,FP,P) is not only sufficient for
the above argument to work, but also necessary. Indeed, following [50, Section 4], let us
construct a monotone increasing map ϕ : R2 → R which is not Borel-measurable. Suppose
M ⊆ R is not Borel measurable. Define

N := {(x, y) : x+ y > 0} ∪ {(x,−x) : x ∈ M}
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and consider the map h : x 7→ (x,−x). Then h is continuous, hence Borel measurable. If N
were Borel-measurable, then so would be N ′ = N∩{(x,−x) : x ∈ R} = {(x,−x) : x ∈ M}.
This would imply that h−1(N ′) = M is Borel-measurable, a contradiction.

Now define ϕ : R2 → R by ϕ = 1N . Then ϕ is monotone increasing: it suffices to show
that if (x, y) ∈ N and if x′ ≥ x, y′ ≥ y, then (x′, y′) ∈ N . So suppose (x, y) ∈ N :

– If x+ y > 0, then x′ + y′ ≥ x+ y > 0, so (x′, y′) ∈ N .
– If y = −x with x ∈ M , then x′ + y′ ≥ x + y = 0. If x′ + y′ > 0 then (x′, y′) ∈ N .

Otherwise, x′ + y′ = 0, so y′ = −x′. Moreover, y′ ≥ y = −x ≥ −x′, so x′ = x ∈ M .
Thus, (x′, y′) ∈ N .

Thus, ϕ is monotone increasing, but it is not Borel-measurable, since ϕ−1({1}) = N .
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More results on Wegner bounds

5.1 A refinement of the discrete bounds

In Section B.4 below we prove a refinement of the spectral averaging estimate. Using
this estimate, the proofs of the previous chapter directly yield the following result.

Theorem 5.1.1. Suppose H(ω) satisfies Hypotheses (A) and (B) in the interval I. Then
tr[χI(H(ω))] is measurable, and for any 0 < λ ≤ 1

CU
we have

E{tr[χI(H(ω))]} ≤ CW · |Jeff | · sF (P, λ|I|) ,

where CW := 4
λγ

−2C2
finCU and sF (P, ε) is defined in (4-2-1).

This refinement improves our result on multi-particle models, Theorem 4.4.1, a lit-
tle bit. For definiteness, suppose we are in situation (1) of Lemma 4.4.2, so that the
uncertainty principle holds with γ = nc. Then taking λ = 1

nCu
, we obtain the bound

E{tr[χI(HΛ
(n)
L (x)

(ω))]} ≤ CW ·
∣∣Λ(n)
L (x)

∣∣ · sF
(
P,

|I|
nCu

)
,

where CW = 4n2C2
u(2R+ 1)2d.

The advantage is that for the special case where P = ⊗µ, with µ = gdx, the upper
bound becomes linear in n, which is somehow more natural. We do not know if this has
a theoretical importance however.

Another advantage of Theorem 5.1.1 is that it allows one to shrink the quantity λ|I| by
choosing an arbitrarily small λ. Of course this is accompanied by a growth in the constant
CW , but it seems to be useful in some situations; see e.g. [65, Eq.(2.11) and Eq.(3.9)].

5.2 Discrete bounds without UP

5.2.1 Special unperturbed operators

Here we prove the remark we gave in the previous chapter, namely that our discrete
bounds hold without the need for an uncertainty principle if the unperturbed operator has
a special form. We list our hypotheses.

Hypotheses (D)

1) We fix a probability space (Ω,F,P) with Ω = [q−, q+]I for some q−, q+ ∈ R, q− < q+,
some countable index set I, and fix a finite-dimensional Hilbert space H.
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2) H(ω) is a self-adjoint operator on H for each ω ∈ Ω.

3) The exist some non-random constants cα with |cα| ≤ M such that

H(ω) =
∑

α∈IF

(cα + ωα)Uα ,

for some finite set IF ⊆ I, where 0 ≤ Uα ≤ CU are non-negative self-adjoint operators.

4) Fix an orthonormal basis {ej}j∈J for H. We define Ij := {α ∈ IF : Uαej 6= 0},
Cfin := maxj∈J |Ij | and Jeff := {j ∈ J : Uαej 6= 0 for some α ∈ IF }.

Theorem 5.2.1. Suppose H(ω) satisfies Hypotheses (D). Then tr[χI(H(ω))] is measurable
for any interval I. If I = [a, b] with a > 0, then for any 0 < λ ≤ 1

CU
we have

E{tr[χI(H(ω))]} ≤ CW · |Jeff | · sF (P, λ|I|) ,

where CW := 4
λa2 (M + q)2C2

finCU and q := max(|q−|, |q+|).
Again, the importance of this theorem lies in the fact that we do not assume that the

Uα cover H, that is, we do not asssume that
∑
α Uα ≥ c > 0. Operators of this form arise

when studying discrete acoustic models on ℓ2(Zd). In this case, CU = 2d and Cfin = d+ 1.
As the proof will show, the estimate is also true if I = [a, b] with b < 0, in which case

the term a−2 in CW is to be replaced by b−2. However, the bound cannot be true for
intervals around 0 without additional hypotheses. Indeed, if H(ω) = ωkδk on ℓ2(Λ) for
some k ∈ Λ, then 0 is an eigenvalue of multiplicity |Λ|−1 for any ω. Moreover, Jeff = {ek},
and we have E{tr[χ(−ε,ε)(H(ω))]} ≥ |Λ| − 1 > CW · sF (P, 2λε), if Λ is large.

Proof. For the weak measurability of χI(H(ω)), see Section 4.5.2. For the Wegner bound,
we follow [65, Lemma 2.1]. Let I = [a, b] and put χI := χI(H(ω)). We have tr[χI ] =∑
j∈J〈χIej , ej〉. Since

〈χI(H(ω))ej , ej〉 =
∫

I
dρej (λ) ≤ 1

a2

∫ b

a
λ2dρej (λ) = a−2〈H(ω)χI(H(ω))H(ω)ej , ej〉 ,

where ρ is the spectral measure of H(ω) in the state ej , it follows that

tr[χI ] ≤ a−2
∑

j∈J

∑

α,α′∈IF

(cα + ωα)(cα′ + ωα′)〈UαχIUα′ej , ej〉

≤ a−2(M + q)2
∑

j∈J

∑

α,α′∈Ij

|〈χIUα′ej , χIUαej〉|

≤ a−2(M + q)2

2

∑

j∈J

∑

α,α′∈Ij

(‖χIUα′ej‖2 + ‖χIUαej‖2)

≤ a−2(M + q)2Cfin

∑

j∈J

∑

α∈Ij

‖χIUαej‖2

= a−2(M + q)2Cfin

∑

j∈Jeff

∑

α∈Ij

〈UαχIUαej , ej〉 .

Thus,
E{tr[χI ]} ≤ a−2(M + q)2Cfin

∑

j∈Jeff

∑

α∈Ij

E{〈UαχIUαej , ej〉} .

Now fix j ∈ Jeff, α ∈ Ij and put φ := U
1/2
α ej . Then by [36, Theorem 10.2.1], we have

E{〈UαχI(H(ω))Uαej , ej〉} = EYα

{∫

[q−,q+]
〈U1/2

α χI(H(ω))U1/2
α φ, φ〉dµω̂α(ωα)

}
,
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where Yα = [q−, q+]I\{α}. Using the spectral averaging of Section B.4 with A =
∑
β cβUβ+∑

β 6=α ωβUβ, B = Uα and t = ωα, we have for any 0 < λ ≤ 1
CU

,

E{〈UαχIUαej , ej〉} ≤ 4
λ

‖U1/2
α ej‖2 EYα{s(µω̂α , λ|I|)} ≤ 4

λ
CU EYα{s(µω̂α , λ|I|)} .

Since EYα{s(µω̂α , |I|)} ≤ sF (P, |I|), the proof is complete.

5.2.2 General unperturbed operators

We now prove a Wegner bound for general unperturbed operators, again without UP
and without covering assumptions. Here are the hypotheses 1.

Hypotheses (E)

1) We fix a probability space (Ω,F,P) with Ω = [q−, q+]I for some q−, q+ ∈ R, q− < q+,
some countable index set I, and fix a finite-dimensional Hilbert space H.

2) H(ω) is a self-adjoint operator on H for each ω ∈ Ω.

3) H(ω) has the form
H(ω) = H0 +

∑

α∈IF

ωαUα

for some finite set IF ⊆ I, where H0 and all Uα are self-adjoint operators.

4) Fix an orthonormal basis {ej}j∈J for H. We define Ij := {α ∈ IF : Uαej 6= 0},
Cfin := maxj∈J |Ij | and Jeff := {j ∈ J : Uαej 6= 0 for some α ∈ IF }.

Theorem 5.2.2. Suppose H(ω) satisfies Hypotheses (E). Then tr[χI(H(ω))] is measurable
for any interval I. If I ⊂ R \ σ(H0) and δ := dist(I, σ(H0)), then

tr[χI(H(ω))] ≤ q2δ−2Cfin

∑

j∈Jeff

∑

α∈Ij

〈UαχIUαej , ej〉 .

If moreover the Uα satisfy 0 ≤ Uα ≤ CU for all α, then for any 0 < λ ≤ 1
CU

we have

E{tr[χI(H(ω))]} ≤ CW · |Jeff | · sF (P, λ|I|) ,

where CW := 4
λδ2 q

2C2
finCU and q := max(|q−|, |q+|).

The trivial choice Uα = 0 for all α shows that this estimate cannot hold for intervals
intersecting σ(H0) without additional hypotheses.

Proof. For the weak measurability of χI(H(ω)), see Section 4.5.2. Let {ϕn(ω)} be an
orthonormal basis of eigenfunctions for H(ω) with corresponding eigenvalues {λn(ω)}.
Then

tr[χI(H(ω))] =
∑

λn(ω)∈I
〈ϕn(ω), ϕn(ω)〉 .

But if λn(ω) ∈ I, then λn(ω) /∈ σ(H0) and ‖(H0 − λn)−1‖ ≤ δ−1. Thus, taking Vω :=∑
α∈IF

ωαUα we have

〈ϕn, ϕn〉 = 〈(H0 − λn)−2(H0 − λn)ϕn, (H0 − λn)ϕn〉
= 〈(H0 − λn)−2Vωϕn, Vωϕn〉
≤ δ−2‖Vωϕn‖2 = δ−2〈V 2

ωϕn, ϕn〉 ,
1. The result of this subsection is generalized in Section 5.5, but the proof is harder.
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where we used the fact that (H(ω) − λn(ω))ϕn(ω) = 0 in the second equality. Hence, for
χI := χI(H(ω)) we have

tr[χI ] ≤ δ−2
∑

λn(ω)∈I
〈V 2
ωϕn(ω), ϕn(ω)〉

= δ−2
∑

n

〈V 2
ωχIϕn(ω), ϕn(ω)〉

= δ−2 tr[V 2
ωχI ]

= δ−2 tr[VωχIVω]

= δ−2
∑

j∈J

∑

α,α′∈Ij

ωαωα′〈UαχIUα′ej , ej〉

≤ q2δ−2

2

∑

j∈J

∑

α,α′∈Ij

(‖χIUα′ej‖2 + ‖χIUαej‖2)

≤ q2δ−2Cfin

∑

j∈J

∑

α∈Ij

‖χIUαej‖2

= q2δ−2Cfin

∑

j∈Jeff

∑

α∈Ij

〈UαχIUαej , ej〉 .

This proves the first claim. Finally,

E{tr[χI ]} ≤ q2δ−2Cfin

∑

j∈Jeff

∑

α∈Ij

E{〈UαχIUαej , ej〉} ,

so the second claim now follows using the spectral averaging as in the previous theorem,
with A = H0 +

∑
β 6=α ωβUβ, B = Uα, t = ωα and φ = U

1/2
α ej .

5.2.3 Alternative proofs

In this subsection we give two alternative proofs to the theorem of the previous sub-
section. The statements are weaker, specially for the second proof. However, we chose to
include them here as we think the methods used in the proofs can be interesting elsewhere.

Theorem 5.2.3. Suppose H(ω) satisfies Hypotheses (E) and that 0 ≤ Uα ≤ CU for all
α. Let I ⊂ R \ σ(H0) be an interval, put δ := dist(I, σ(H0)) and assume |I| ≤ δ

2 . Then
for any 0 < λ ≤ 1

CU
we have

E{tr[χI(H(ω))]} ≤ CW · |Jeff | · sF (P, λ|I|) ,

where CW := 8
λδ2 q

2C2
finCU and q := max(|q−|, |q+|).

Proof. The first part of the proof goes like [64, Theorem 4.1]. Before we begin, let us men-
tion that we will frequently use the inequality tr[AχIB] ≤ ‖A‖‖B‖‖χI‖1 = ‖A‖‖B‖ tr[χI ]
for bounded operators A,B, which is true because χI ≥ 0.

Let E ∈ I be the midpoint of I. Then E /∈ σ(H0), so taking R0 := (H0 − E)−1 and
Vω =

∑
α∈IF

ωαUα, we may write

χI(H(ω)) = R0(−Vω)χI(H(ω)) +R0(H(ω) − E)χI(H(ω)) ,

so that

tr[χI(H(ω))] = tr[R0(−Vω)χI(H(ω))] + tr[R0(H(ω) − E)χI(H(ω))] .
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To estimate the second term, note that if f ∈ H then taking ε := |I| we have

|〈(H(ω) − E)χI(H(ω))f, f〉| ≤
∫

I
|λ− E|dρf ≤ ε

2

∫

I
dρf ≤ ε

2
‖f‖2

since E is the mid-point of I. Hence ‖(H(ω) − E)χI(H(ω))‖ ≤ ε
2 and we get

tr[R0(H(ω) − E)χI(H(ω))] ≤ ‖R0‖‖(H(ω) − E)χI(H(ω))‖ tr[χI(H(ω))]

≤ ε

2δ
tr[χI(H(ω))] ≤ 1

4
tr[χI(H(ω))]

since dist(E, σ(H0)) ≥ δ and ε ≤ δ
2 .

We now need a different argument than the one used in [64, Theorem 4.1]. Recall that
for any two Hilbert-Schmidt operators A and B we have

tr[B∗A] = 〈A,B〉HS ≤ ‖A‖HS‖B‖HS
≤ c

2
‖A‖2

HS +
1
2c

‖B‖2
HS =

c

2
tr[A∗A] +

1
2c

tr[B∗B]

for any c > 0. Now tr[R0(−Vω)χI ] = tr[χIR0(−Vω)χI ], so applying this to B∗ = χIR0

and A = (−Vω)χI we get

tr[χIR0(−Vω)χI ] ≤ c

2
tr[χIV 2

ωχI ] +
1
2c

tr[χIR2
0χI ]

=
c

2
tr[VωχIVω] +

1
2c

tr[χIR2
0]

≤ c

2
tr[VωχIVω] +

δ−2

2c
tr[χI ]

Choosing c := 2δ−2, we thus showed that

tr[χI ] ≤ δ−2 tr[VωχIVω] +
1
4

tr[χI ] +
1
4

tr[χI ] ,

and thus
tr[χI ] ≤ 2δ−2 tr[VωχIVω] .

The rest of the proof now goes as in Theorem 5.2.2.

Theorem 5.2.4. Suppose H(ω) satisfies Hypotheses (E), and assume moreover that 0 ≤
Uα ≤ CU for all α. Let E ∈ (−∞, inf σ(H0)) and put δ := dist(σ(H0), E). Then for any
0 < ε < δ and for any 0 < λ ≤ 2

CU
we have

P{dist(E, σ(H(ω))) < ε} ≤ CW · |IF |2 · |J | · sF (P, λε) ,

where CW := 8
λ(δ−ε)2 q

2CU and q := max(|q−|, |q+|).

Proof. We simply reduce the problem to an auxiliary diagonal operator. This idea ap-
peared before in the paper [54], where a continuous model with sign indefinite potential
was considered.

Let V ω :=
∑
α∈IF

ωαUα. Given E < inf σ(H0) we have (H0 − E) > 0, so taking
R0 := (H0 − E)−1, we may define the operator

Dω := R
1/2
0 V ωR

1/2
0 =

∑

α∈IF

ωαR
1/2
0 UαR

1/2
0 .



126 Chapter 5. More results on Wegner bounds

Now notice that E /∈ σ(H(ω)) iff −1 /∈ σ(Dω), in which case

Rω := (H(ω) − E)−1 = R
1/2
0 (1 +Dω)−1R

1/2
0 .

Thus,
‖Rω‖ ≤ δ−1‖(1 +Dω)−1‖

and
P{‖Rω‖ > ε−1} ≤ P{‖(1 +Dω)−1‖ > δε−1} .

We thus showed that

P{dist(E, σ(H(ω))) < ε} = P{E ∈ σ(H(ω))} + P{‖Rω‖ > ε−1}
≤ P{−1 ∈ σ(Dω)} + P{‖(1 +Dω)−1‖ > δε−1}
= P{dist(−1, σ(Dω)) < δ−1ε}

Let I := [−1 − δ−1ε,−1 + δ−1ε] = [a, b]. Since ε < δ, we have I ⊂ R−. Now by Markov
inequality,

P{dist(−1, σ(Dω)) < δ−1ε} = P{tr[χI(Dω)] ≥ 1} ≤ E{tr[χI(Dω)]} .

But Dω =
∑
α∈IF

ωαSα, where 0 ≤ Sα ≤ δ−1CU satisfies Hypotheses (D). Hence, using
Theorem 5.2.1, we have for any 0 < ζ ≤ 1

δ−1CU
,

E{tr[χI(Dω)]} ≤ C̃W · |J̃eff | · s(P, ζ|I|) ,

where C̃W = 4
b2ζ
q2δ−1CU C̃

2
fin, C̃fin ≤ |IF | and |J̃eff | ≤ |J |. Take λ = 2δ−1ζ, then C̃W ≤

8
λδ2b2 q

2CU |IF |2. Recalling that b = −1 + δ−1ε we obtain the claim.

5.3 More applications

5.3.1 Discrete multi-particle models

In this subsection we give a result complementing Theorem 4.4.1 and Lemma 4.4.2.
We use the same notations of Section 4.4.1. We assume moreover that Ω = [q−, q+]Z

d
for

some q−, q+ ∈ R, q− < q+.

Theorem 5.3.1. Let I ⊂ R\σ(H•
0,ΛL

) be an interval and set η = dist(I, σ(H•
0,ΛL

)). Then

for any 0 < λ ≤ 1
nCu

,

E{tr[χI(H•
ΛL

(ω))]} ≤ CW · |Λ̃(n)
L | · sF (P, λ|I|) ,

where CW = 4
λη2n

3q2(2R+ 1)2dCu, q := max(|q−|, |q+|) and Λ̃(n)
L := {j ∈ Λ(n)

L (x) : Uαej 6=
0 for some α ∈ IF }.

Proof. H•
Λ(ω) is a self-adjoint operator given by H•

Λ(ω) = H1 +
∑
α∈IF

ωαUα, with H1 =
H•

0,Λ self-adjoint. Moreover, Uα ≥ 0, ‖Uα‖ ≤ CU := nCu and Ij := {α : Uαej 6= 0} ⊆
⋃n
k=1 Λ(1)

R (jk), hence Cfin := max |Ij| ≤ n(2R + 1)d. The claim now follows from Theo-
rem 5.2.2.
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5.3.2 Two-volume bounds

In this section we prove a two-volume Wegner bound for the discrete multi-particle
model of Section 4.4.1, which is needed for localization. If n = 1, such bounds are an
easy consequence of the one-volume bound given in Theorem 4.4.1, see e.g. [59, Lemma
5.28]. This is no longer the case once n > 1, essentially because in the multi-particle mul-
tiscale analysis, it is not sufficient to consider pairs of fully separated cubes, i.e. satisfying
ΠΛ(n)

L+R(x) ∩ ΠΛ(n)
L+R(y) = ∅, where ΠΛ(n)

S (u) =
⋃n
i=1 Λ(1)

S (ui), but one must consider more
generally pairs of pre-separable cubes to be defined below. Consequently, one needs to
consider a smaller W in Theorem 4.4.1 and integrate only on part of Ω.

The results of this section improve the upper bound of [26, Theorem 2] and extend the
recent [68, Corollary 2.4] because we do not assume that P = ⊗µ with µ = ρ(t)dt, and we
allow for more general single-site potentials uα. Note however that the arguments of [68]
allow for probabilities P as general as the ones we consider here.

We use the notations of Section 4.4.1. We assume moreover that P := ⊗α∈Zd µα for
some probability measures µα on R, and that there is a constant c > 0 such that uα ≥ cδα
for all α. This means we assume the {ωα} are independent and the single-site potentials
cover all lattice points.

Given ∅ 6= D ⊆ Zd, f ∈ L1(Ω,F ,P), we define

ED{f(ω)} :=
∫

BD
f(ω) dPD((ωα)α∈D), where PD := ⊗

α∈D
µα

which depends on (ωβ)β/∈D.

Given x = (x1, . . . , xn) ∈ (Zd)n, L = (L1, . . . , Ln) ∈ Nn, define rectangles Λ(n)
L (x) :=

∏n
i=1 Λ(1)

Li
(xi), and given ∅ 6= J ⊆ {1, . . . , n}, put ΠJ Λ(n)

L (x) :=
⋃
i∈J Λ(1)

Li
(xi). Now define

L + R := (L1 + R, . . . , Ln + R) and put H
Λ

(n)
L

(x)
(ω) = H•

Λ
(n)
L

(x)
(ω). Then we have the

following

Theorem 5.3.2. For any interval I ⊂ R, any ∅ 6= J ⊆ {1, . . . , n} and any Λ(n)
L (x), taking

G(J ) := ΠJ Λ(n)
L+R(x), we have

EG(J )

{
tr[χI(HΛ

(n)
L

(x)
(ω))]

} ≤ CW · |Λ(n)
L (x)| · sF

(
P,

|I|
nCu

)

for any (ωβ)β/∈G(J ), where CW := 4c−2n2C2
u(2R+ 1)2d.

Proof. Let WJ
Λ

(n)
L

(x)
:=
∑
α∈ΠJ Λ

(n)
L

(x)
Uα. We first notice that for any y ∈ Λ(n)

L (x),

WJ
Λ

(n)
L

(x)
(y) ≥ c

∑

1≤i≤n

∑

α∈ΠJ Λ
(n)
L

(x)

δα(yi) ≥ c
∑

i∈J
1 = c · |J | ,

so if (ej) is the canonical basis of ℓ2(Λ(n)
L (x)), we have for any ω ∈ Ω,

tr[χI(HΛ
(n)
L

(x)
(ω))] ≤ c−2|J |−2Cfin

∑

j∈Λ
(n)
L

(x)

∑

α∈ΠJ Λ
(n)
R (j)

〈UαχI(HΛ
(n)
L

(x)
(ω))Uαej, ej〉

by Proposition 4.3.1, where Cfin = max
j∈Λ

(n)
L

(x)
|ΠJ Λ(n)

R (j)| ≤ |J | · (2R + 1)d. Now given

j ∈ Λ(n)
L (x) and α ∈ ΠJ Λ(n)

R (j) put φ := U
1/2
α ej. Then

EG(J )

{〈UαχI(HΛ(ω))Uαej, ej〉} = EG(J )\{α}
{∫

B
〈U1/2

α χI(HΛ(ω))U1/2
α φ, φ〉dµα(ωα)

}
.
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Fix (ωβ)β 6=α. Using the spectral averaging of Section B.4 with A = H0,Λ +
∑
β 6=α ωβUβ,

B = Uα, t = ωα and λ = 1
nCu

we get

EG(J )

{〈UαχI(HΛ(ω))Uαej, ej〉} ≤ 4‖Uα‖‖U1/2
α ej‖2s(µα, λ|I|) ≤ 4C2

Us(µα, λ|I|),

where CU ≤ nCu. This completes the proof.

Given ∅ 6= J ⊆ {1, . . . , n}, we say that Λ(n)
L (x) is J -pre-separable from Λ(n)

K (y) if

ΠJ Λ(n)
L+R(x) ∩ (ΠJ cΛ(n)

L+R(x) ∪ ΠΛ(n)
K+R(y)

)
= ∅.

We say that Λ(n)
L (x) and Λ(n)

K (y) are pre-separable if there exists ∅ 6= J ⊆ {1, . . . , n} such

that Λ(n)
L (x) is J -pre-separable from Λ(n)

K (y) or Λ(n)
K (y) is J -pre-separable from Λ(n)

L (x).

Note that if J = {1, . . . , n}, this means that ΠΛ(n)
L+R(x) ∩ ΠΛ(n)

K+R(y) = ∅, i.e. the cubes
are fully separated. We now have the following

Theorem 5.3.3. If Λ(n)
L (x) and Λ(n)

K (y) are pre-separable, then

P
{

dist(σ(H
Λ

(n)
L

(x)
), σ(H

Λ
(n)
K

(y)
)) < ε

}
≤ CW · |Λ(n)

L (x)| · |Λ(n)
K (y)| · sF

(
P,

2ε
nCu

)
,

where CW := 4c−2n2C2
u(2R+ 1)2d.

Note that for the model studied in [26], uα = δα for all α, so c = 1, Cu = 1, R = 0 and
CW reduces to CW = 4n2.

Proof. Suppose ΠJ Λ(n)
L+R(x)∩(ΠJ cΛ(n)

L+R(x)∪ΠΛ(n)
K+R(y)

)
= ∅ for some ∅ 6= J ⊆ {1, . . . n}.

Then denoting the eigenvalues of H
Λ

(n)
K

(y)
by Ey

j we have for G(J ) := ΠJ Λ(n)
L+R(x),

P
{

dist(σ(H
Λ

(n)
L

(x)
), σ(H

Λ
(n)
K

(y)
)) < ε

}

= EG(J )c

{
PG(J )

{
min

1≤j≤|Λ(n)
K

(y)|
dist(σ(H

Λ
(n)
L

(x)
), Ey

j ) < ε
}}

.

Now the Ey
j do not depend on (ωα)α∈G(J ) since G(J ) ∩ ΠΛ(n)

K+R(y) = ∅. Hence, using the
conditional Markov inequality and Theorem 5.3.2 we have

PG(J )

{
min

1≤j≤|Λ(n)
K

(y)|
dist(σ(H

Λ
(n)
L

(x)
), Ey

j ) < ε
}

≤ |Λ(n)
K (y)| · sup

λ∈R

PG(J )

{
dist(σ(H

Λ
(n)
L

(x)
), λ) < ε

}

= |Λ(n)
K (y)| · sup

λ∈R

PG(J )

{
tr[χ(λ−ε,λ+ε)(HΛ

(n)
L

(x)
)] ≥ 1

}

≤ |Λ(n)
K (y)| · sup

λ∈R

EG(J )

{
tr[χ(λ−ε,λ+ε)(HΛ

(n)
L

(x)
)]
}

≤ CW · |Λ(n)
L (x)| · |Λ(n)

K (y)| · sF
(
P,

2ε
nCu

)

for any (ωβ)β/∈G(J ), so the claim follows. If instead Λ(n)
K (y) is J -separable from Λ(n)

L (x),

then we repeat the same argument, taking G(J ) := ΠJ Λ(n)
K+R(y) instead.
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Remark 5.3.4. 1. Theorem 5.3.2 may be seen as a conditional Wegner estimate. More
precisely, for our probability space (Ω,F,P), where Ω = BZd

and P = ⊗α∈Zd µα, if
D ⊆ Zd is non-empty and if f ∈ L1(Ω,F ,P), f ≥ 0, then

E{f(ω)|(ωβ)β/∈D} = ED{f(ω)} a.s.

To see this, simply note that if G is the σ-algebra generated by (ωβ)β/∈D, then the
RHS is G-measurable (see [96, Theorem 8.8]), and its integral on any G ∈ G yields∫
G f(ω)dP(ω) (since any G ∈ G takes the form BD × C for some C ⊆ BZd\D).

2. Theorem 5.3.2 actually holds for arbitrary P, i.e. we can avoid the assumption that
P is a product measure. In this case, instead of estimating EG(J ){·}, one has to es-
timate E{·|(ωβ)β/∈G(J )}, and this may be done using the same arguments, bypassing
the independence by using regular conditional distributions as in Section 4.5.2. We
only assumed in this section that P = ⊗α∈Zd µα to prove Theorem 5.3.3.

5.3.3 Discrete Delone operators

As a final application, we consider Wegner bounds near the spectral bottom of a
discrete Delone operator. Such operators are already included in Section 4.4.1. How-
ever, here we are concerned with positive perturbations, which correspond to case (3) of
Lemma 4.4.2, and there we had to rely on [37, Theorem 1.3] to illustrate that our bound is
non-trivial. In the special case where the background potential vanishes, we describe here
a different argument that appears in [94]. There the author proved a deterministic UP
(cf. Section 5.5) and concluded using the results of [30]. We shall instead prove a random
UP and conclude using Theorem 4.3.2. The advantage is that, on one hand the constant
in the Wegner bound becomes explicit, and on the other hand the proof Theorem 4.3.2 is
extremely simple compared to the one of [30].

Consider the Hilbert space H = ℓ2(Zd), let D ⊂ Zd be a Delone set, i.e. there exists
K ≥ 1 such that, for any n ∈ Zd, the cube ΛK(n) contains at least one point of D. Now
consider the probability space (Ω,P), where Ω = [0,M ]D and given ω ∈ Ω, define

H(ω) = −∆ +
∑

α∈D
ωαδα .

Assume for simplicity that P = ⊗µ, for some probability measure µ on R with suppµ ⊆
[0,M ]. Assuming moreover that 0 ∈ suppµ, we have that

[0, 4d] ⊆ σ(H(ω)) ⊆ [0, 4d+M ] almost surely.

The second inclusion is easy, for the first one, the arguments of [104, Lemma 1.4.1] or [60,
Theorem 3.9] essentially work. Namely,

– Given E ∈ [0, 4d], take a Weyl sequence ϕn for −∆. This sequence may be chosen
to have compact support, say suppϕn ⊂ Λln(0) for some ln ∈ N.

– With probability one, there exists a sequence Λln(xn) ∩ D in which the potential
Vω =

∑
α ωαδα is very small.

– Translate the Weyl sequence ϕn around the cubes Λln(xn). The translated sequence
is still a Weyl sequence for −∆, moreover Vω is very small in Λln(xn), since it is very
small in Λln(xn) ∩ D and zero in Λln(xn) ∩ Dc. Hence the translated sequence is a
Weyl sequence for H(ω).

Let HΛL
(ω) be the restriction of H(ω) to a cube ΛL = ΛL(x), x ∈ Zd, with Neumann

boundary conditions. Let W (n) :=
∑
α∈D∩ΛL

δα(n). Then
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Lemma 5.3.5 (cf. [94]). There exists E∗ > 0 such that in I = [0, E∗], we have for any
cube ΛL ⊂ Zd with L > K, and for any ω ∈ Ω,

χI(HΛL
(ω))WχI(HΛL

(ω)) ≥ γχI(HΛL
(ω)) ,

where γ := 1
2(5K)−d. Moreover, E∗ = c(d)K−2d−2.

Now instead of using the results of [30], we use our theorems and deduce

Corollary 5.3.6. There exists E∗ > 0 such that in I = [0, E∗], we have for any cube
ΛL ⊂ Zd with L > K,

E{tr[χI(HΛL
(ω))]} ≤ CW · |D ∩ ΛL| · s(µ, |I|) ,

where CW = 24(5K)2d. Moreover, E∗ = c(d)K−2d−2.

Let us mention that Elgart and Klein prove a stronger result in [37] using different
methods. In particular, they can allow for background potentials.

Proof of Corollary 5.3.6. HΛL
(ω) is a self-adjoint operator given by HΛL

(ω) = −∆ΛL
+∑

α∈D∩ΛL
ωαδα. It satifies Hypotheses (A) and (B) by Lemma 5.3.5, with Cfin = CU = 1

and γ = 1
2(5K)−d. The claim thus follows from Theorem 4.3.2, since Jeff = D ∩ ΛL.

For completeness, we now prove Lemma 5.3.5.

Proof of Lemma 5.3.5. We repeat the arguments of [94, Lemma 2.1], which still work to
establish the random UP. Define the average W of W by

W (n) =
1

|Λ2K(0)|
∑

j∈Λ2K(0)

W (n− j) .

Let n ∈ ΛL, then we may find m ∈ ΛL−K such that ΛK(m) ⊂ Λ2K(n). But D is a Delone
set, so we may find mD ∈ D ∩ ΛK(m) ⊂ D ∩ ΛL. Thus,

W (n) = |Λ2K |−1
∑

j∈Λ2K(n)

W (j) ≥ |Λ2K |−1W (mD) = |Λ2K |−1 .

We thus showed that W ≥ |Λ2K |−1χΛL
.

Now let I = [0, E∗] with E∗ to be chosen later, fix ω ∈ Ω, and let f ∈ RanχI(HΛL
(ω))

with ‖f‖ = 1. Then

〈Wf, f〉 = 〈Wf, f〉 + 〈(W −W )f, f〉 ≥ |Λ2K |−1 − 〈(W −W )f, f〉 .

But
〈(W −W )f, f〉 = |Λ2K |−1

∑

j∈Λ2K(0)

〈(W (· − j) −W )f, f〉 ,

and

|〈(W (· − j) −W )f, f〉| = |〈Wf(· + j), f(· + j)〉 − 〈Wf, f〉|
= |〈Wf(· + j), (f(· + j) − f)〉 + 〈W (f(· + j) − f), f〉|
≤ 2‖W‖∞‖f(· + j) − f‖ ,
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since ‖f(· + j)‖ = ‖f‖ = 1. But ‖W‖∞ = 1, so it follows that

|〈(W −W )f, f〉| ≤ 2 |Λ2K |−1
∑

j∈Λ2K(0)

‖f(· + j) − f‖ .

Now for j ∈ Λ2K(0), we have ‖j‖1 ≤ d ‖j‖∞ ≤ 2Kd, so there exists a path of length 2Kd,
say (a0, . . . , a2Kd) joining 0 to j, i.e. with a0 = 0, a2Kd = j and ‖ar+1 − ar‖1 = 1. Thus,

‖f(· + j) − f‖ ≤
2Kd−1∑

r=0

‖f(· + ar+1) − f(· + ar)‖ .

But since ‖ar+1 − ar‖1 = 1, we have

‖f(· + ar+1) − f(· + ar)‖2 =
∑

k∈ΛL

|f(k + ar+1) − f(k + ar)|2

≤
∑

n∈ΛL

∑

‖m−n‖1=1

|f(m) − f(n)|2 = 2〈(−∆)N
Λf, f〉

(see [60, Section 5.2] for Neumann conditions). Since Vω ≥ 0, it follows that

‖f(· + j) − f‖ ≤ 2Kd
√

2〈HΛL
(ω)f, f〉

for any j ∈ Λ2K(0), and consequently

|〈(W −W )f, f〉| ≤ 4Kd
√

2〈HΛL
(ω)f, f〉 .

Summarizing, we showed that

〈Wf, f〉 ≥ |Λ2K |−1 − 4Kd
√

2〈HΛL
(ω)f, f〉 .

Since f = χ[0,E∗](HΛL
(ω))f , it follows from the functional calculus that 〈HΛL

(ω)f, f〉 ≤
E∗‖f‖2 = E∗. Since |Λ2K | = (4K + 1)d ≤ (5K)d, we obtain

〈Wf, f〉 ≥ (5K)−d − 4Kd
√

2E∗ .

Taking q ∈ (0, 1) and choosing E∗ = q2(4
√

2Kd)−2(5K)−2d, we finally obtain

〈Wf, f〉 ≥ (5K)−d − (4
√

2Kd)q(4
√

2Kd)−1(5K)−d = (1 − q)(5K)−d .

Choosing q = 1
2 and noting that f was arbitrary, it follows that

χI(HΛL
(ω))WχI(HΛL

(ω)) ≥ γχI(HΛL
(ω))

with γ := 1
2(5K)−d.

5.4 Some difficulties

5.4.1 Sign-indefinite potentials

If we suppose that our bounds in Theorems 4.3.3 and 4.3.4 are formulated in terms
of the following modulus of continuity

(4-1) sF (P, ε) = max
α∈IF

sup
E∈R

P(ωα ∈ [E,E + ε]) ,
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then we can tackle sign-indefinite potentials and obtain quite important results. This
modulus is just sF (P, ε), but with the supE∈R interchanged with EYα . Unfortunately,
there is no justification for such an interchange; all we can say is that sF (P, ε) ≤ sF (P, ε),
and that sF (P, ε) = sF (P, ε) if P is a product measure.

Consider the Hilbert space L2(Rd). Let G ⊂ Rd be a discrete set such that #{Λ∩G} <
∞ for any bounded Λ ⊂ Rd. Assume, moreover that (G,+) is a group (e.g. G = Zd,
(MZ)d, Zd1 × {0}, ...etc) and consider the probability space (Ω,P), where Ω := [q−, q+]G,
q−, q+ ∈ R, q− < q+, and P = ⊗α∈G µα, for some probability measures µα on R supported
in [q−, q+]. Given ω = (ωα) ∈ Ω, let

H(ω) = H0 + V ω, H0 := −∆ + V0 ,

where V0 ≥ v0 is a bounded real non-random potential. Again we can consider more
general H0. Given x ∈ Rd, we assume

V ω(x) =
∑

α∈G
ωαu(x− α), where u(x) =

∑

β∈G
cβw(x− β)

for some cβ ∈ R. We assume 0 ≤ w ≤ Cw. Since the cβ are not required to have a fixed
sign, the potential u is not sign-definite. This model was introduced in [108] for G = Zd,
w ≥ κχ[0,1]d , and following that paper we will represent V ω as V ω(x) =

∑
ζ∈G ηζ(ω)w(x−ζ)

for some ηζ(ω). Unlike [108], [111] however, we will not need to invert any matrices, and
this gives us more freedom on the choice of the cβ. In fact, we will only assume that cβ = 0
outside a finite Γ ⊂ G, and that ‖c‖∞ := maxβ∈Γ |cβ| 6= 0. We also assume w : Rd → R is
compactly supported, with suppw ⊂ ΛR(0) for some R > 0.

Discussion of the results. Assuming that Theorems 4.3.3 and 4.3.4 hold with
sF (P, ε) instead of sF (P, ε), which we cannot prove, we provide Wegner bounds for sign-
indefinite potentials in the continuum and on the lattice, without any regularity assump-
tion on P. To the best of our knowledge, these would be the first results with such
generality, and they would imply new localization results; see [70], [69], [54], [108]. For
example, if P = ⊗µ, then our estimates would allow to extend [70, Theorem 0.4] to dis-
tributions µ which are merely log-Hölder continuous with a large exponent. The weakest
regularity assumption so far is for lattice models in the large disorder limit, see [39], where
the authors prove localization if µ is Hölder continuous. For continuous models, the only
available results assume that µ admits a density µ = ρ(λ)dλ, with ρ of bounded variation.
Note that a Wegner bound for sign-indefinite potentials is also mentioned in [30], but since
it relies on the method of [108], it has the same restrictions on cβ and P.

On the other hand, our bounds are not linear in |Λ| and thus have no direct application
for the integrated density of states (IDS). This in contrast to the results of [54], [111], [110],
[88], [75] and [39], all of which have applications for the IDS. See also the survey [38]. We
said “direct” because one might hope to linearize the Wegner bound by combining it with
multiscale analysis; see [75, Appendix B].

Our results would somehow unify the approaches of [108], [69] and [54], in the sense
that, if we have a “generalized covering”, then our bound holds in any interval, otherwise
it holds for intervals below the spectral bottom of the unperturbed operator.

The hypothesis P = ⊗µα is only used to prove the following simple lemma. This
lemma is the key to pass from monotone correlated potentials to sign-indefinite ones, and
it replaces the arguments of inversion of Toeplitz matrices in [108], [111]. This is the
reason why we have almost no hypotheses on the cβ and do not need µα to have a density.

Lemma 5.4.1. Let (Ω,P) be a probability space, with Ω = CI , where C ⊆ R is an interval,
I is a countable index set, and P = ⊗α∈I µα for some probability measures µα on R.
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Let Γ ⊆ I be finite and consider the map ϕ : Ω → R given by

ϕ(ω) = r +
∑

α∈Γ

cαωα

for some r, cα ∈ R. Then if ‖c‖∞ := maxα∈Γ |cα| 6= 0, we have for any interval I,

P{ϕ(ω) ∈ I} ≤ sΓ

(
P, ‖c‖−1

∞ |I|) ,

where sΓ(P, ε) := maxα∈Γ supE∈R µα[E,E + ε].

Proof. Assume I = [a, b]. We have ‖c‖∞ = |cα| for some α ∈ Γ, which we fix. Given x ∈ C
and ω̂α := (ωβ)β 6=α ∈ CI\{α} denote by (x, ω̂α) the element (xβ) ∈ Ω with xα = x and
xβ = ωβ for β 6= α. Now let Q := {ω : ϕ(ω) ∈ I}, let ω̂α ∈ CI\{α} and consider the section
Qω̂α := {x ∈ C : (x, ω̂α) ∈ Q}. Then by definition of a product measure,

(4-2) P(Q) =
∫

ω̂α∈CI\{α}
µα(Qω̂α) dP̂(ω̂α) ,

where P̂ := ⊗β 6=α µβ. But for any fixed ω̂α,

Qω̂α = {x ∈ C : ϕ(x, ω̂α) ∈ I} =
{
x ∈ C : a ≤ r +

∑

β 6=α
cβωβ + cαx ≤ b

}
.

Let Σ :=
∑
β 6=α cβωβ. Then if cα > 0 we get Qω̂α = [a−r−Σ

cα
, b−r−Σ

cα
], and if cα < 0 we

get Qω̂α = [ b−r−Σ
cα

, a−r−Σ
cα

]. In any case, Qω̂α is an interval of length b−a
|cα| = |I|

‖c‖∞
. Thus

µα(Qω̂α) ≤ supE∈R µα[E,E + |I|
‖c‖∞

] for any ω̂α, and the claim follows by (4-2).

Conjecture 5.4.2. For any I = (E1, E2), there exists CW (d,E2, v0, q±, Cw, ‖c‖∞, |Γ|)
such that for any cube ΛL(x),

(1) If G = Zd and ∃κ > 0 with w ≥ κ · χ0, where χ0 := χ[− 1
2
, 1

2
]d, then

E{tr[χI(H•
ΛL(x))]} ≤ CW · |ΛL(x)| · |ΛL+R(x)| · s(P, κ−1‖c‖−1

∞ |I|) ,

for • = D,N,per, where s(P, ε) = supα∈G supE∈R µα[E,E + ε].

(2) In the general case, for any q > q∗(q±, ‖c‖∞, |Γ|), if E2 < Eq := inf σ(H0 + qW ),
where W (x) :=

∑
β∈Gw(x − β), then there exists cW = cW (q, q±, ‖c‖∞, |Γ|, Eq − E2)

such that

E{tr[χI(HD
ΛL(x))]} ≤ CW · |ΛL(x)| · #{ΛL+R(x) ∩G} · s(P, cW |I|) .

Note that E0 ≤ Eq for any q ≥ 0, so if E2 < E0, then E2 < Eq and we have in
particular a Wegner bound below E0.

Proof. Note that V ω(x) =
∑
α∈G ωαu(x−α) =

∑
α∈G ωα

∑
β∈G cβw(x−α−β). As β runs

over G, ζ := α+ β also covers G because (G,+) is a group. So we get

V ω(x) =
∑

ζ∈G
w(x− ζ)

∑

α∈G
cζ−αωα =

∑

ζ∈G
ηζ(ω)w(x− ζ) ,

where ηζ(ω) :=
∑
α∈G cζ−αωα. This representation of V ω(x) appeared before in [108],

[111]. Now the (ηζ(ω)) live in some Ω̃ = [v−, v+]G, for some v± = v±(q−, q+, ‖c‖∞, |Γ|).
Define the random self-adjoint operator A : Ω̃ → S(L2(Rd)) by A(η) = H0+

∑
ζ∈G ηζw(x−
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ζ), for η = (ηζ) ∈ Ω̃. Then if T : Ω → Ω̃ is given by T : ω 7→ (ηζ(ω)), we have
H(ω) = A ◦ T (ω).

Now define P̃ on Ω̃ by P̃(B) := P(T−1(B)). Then by [36, Theorem 4.1.11], P̃ is
a probability measure on Ω̃, and for any measurable function g : Ω̃ → R, we have
Ẽ{g(η)} = E{(g ◦ T )(ω)} whenever either side exists. In particular, E{tr[χI(HΛ(ω))]} =
E{tr[χI(AΛ(T (ω)))]} = Ẽ{tr[χI(AΛ(η))]}.

Now note that A : Ω̃ → S(L2(Rd)) is sign-definite. For case (1), if G = Zd and
w ≥ κχ0, then wζ(x) := w(x− ζ) ≥ κχζ , so 2 by Theorem 4.4.3, for any interval I we have

Ẽ{tr[χI(AΛ(η))]} ≤ CW · |ΛL(x)| · |IF | · sF
(
P̃, κ−1|I|) ,

where IF := ΛL+R(x) ∩ Zd and sF (P̃, ε) = supζ∈IF
supE∈R P̃{ηζ ∈ [E,E + ε]}. Let

B := {ηζ ∈ [E,E + ε]}. Then by definition of P̃,

P̃(B) = P(T (ω) ∈ B) = P(ηζ(ω) ∈ [E,E + ε]) .

But ηζ(ω) =
∑
α∈G cζ−αωα, so by Lemma 5.4.1, P(ηζ(ω) ∈ [E,E + ε]) ≤ sΓ+ζ(P, ε‖c‖−1

∞ ).
Thus, sF (P̃, ε) ≤ s(P, ε‖c‖−1

∞ ), which completes the proof of (1).
The same argument proves case (2), for q > v+ =: q∗.

Now consider the lattice. Let G ⊆ Zd be a subgroup and consider the probability
space (Ω,P), with Ω = [q−, q+]G and P = ⊗α∈G µα for some probability measures µα on
R. Given ω = (ωα) ∈ Ω, let

H(ω) = H0 + V ω, H0 := −∆ + V0 ,

where −∆ is the discrete Laplace operator and V0 is a bounded real non-random potential.
Given x ∈ Zd, we assume

V ω(x) =
∑

α∈G
ωαu(x− α) ,

with suppu ⊆ G ∩ ΛM (0) and u not identically zero. Now any such u may be written as
u =

∑
β∈G u(β)δβ =

∑
β∈G u(β)δ0( · − β). In other words, in the lattice we automatically

have a partial cover (the condition w ≥ χ0 is satisfied), and it becomes a total cover if
G = Zd. Let us denote ‖u‖∞ = maxβ∈G |u(β)|; it is a max since u(β) = 0 outside ΛM (0).
Since Theorems 4.3.3 and 4.3.4 apply to the lattice with K = dim ℓ2(Λ) = |Λ|, and since
W :=

∑
β∈G δβ = χG, the above arguments would prove the following result.

Conjecture 5.4.3. In the case of the lattice, for any I = (E1, E2) and any cube ΛL(x),

(1) If G = Zd, then for • = S,D,N,

E{tr[χI(H•
ΛL(x))]} ≤ 2 · |ΛL(x)|2 · s(P, ‖u‖−1

∞ |I|) .

(2) Otherwise, for any q > q∗(q±, ‖u‖∞,M), if E2 < Eq := inf σ(H0 + qχG), then there
exists cW = cW (q, q±, ‖u‖∞,M,Eq − E2) such that

E{tr[χI(HD
ΛL(x))]} ≤ 2 · |ΛL(x)| · |ΛL(x) ∩G| · s(P, cW |I|) .

2. This is the conjectural part.
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5.4.2 A different approach to quantum graphs with random edge length

In this subsection we explain why we could not apply our theorems to the model
considered in [78].

We will only sketch the model; the reader is referred to the article for details. One
fixes a vertex set V (for example Zd), an edge set E (defined in terms of V , for example
e = (m,m′) for m,m′ ∈ Zd) then consider the probability space Ω = [ℓmin, ℓmax]E , where
0 < ℓmin < ℓmax < ∞ and P = ⊗µe for some probability measures µe on R supported on
[ℓmin, ℓmax]. For each ℓω ∈ Ω one obtains a Hilbert space H = ⊕e∈E L2[0, ℓω(e)] and defines
the Laplacian H(ω) = −D2

ℓω
, where (Dℓωf)e(x) := f ′

e(x) for f ∈ ⊕e∈EW 1,2(0, ℓω(e)) with
Kirchhoff boundary conditions.

There are two ideas in the approach of [78]: the first one is to remove the randomness
from the Hilbert spaces and put it in the operators, the second one is to rescale the
probability space Ω by considering the random variables ln ℓω(e) instead of ℓω(e). We
already used the second idea when proving Theorem 4.3.4. The first idea is only sketched
in [78], so let us describe it precisely to expose the difficulty.

Given ℓω ∈ Ω, define the operator Uω : ⊕e∈E L2[0, ℓω(e)] → ⊕e∈E L2[0, 1] by Uωfe(x) :=√
ℓω(e)fe(xℓω(e)) for x ∈ [0, 1]. Then

〈Uωf, Uωg〉 =
∑

e∈E
ℓω(e)

∫ 1

0
f(xℓω(e))ḡ(xℓω(e))dx =

∑

e∈E

∫ ℓω(e)

0
f(y)ḡ(y)dy = 〈f, g〉 .

Hence Uω is an isometry, in particular it is injective, and it is obviously bijective since it
has an inverse U−1

ω fe(x) = 1√
ℓω(e)

fe( x
ℓω(e)). Thus Uω is a unitary isomorphism, so it is

equivalent to study the operator G(ω) = UωH(ω)U−1
ω on the Hilbert space ⊕e∈E L2[0, 1].

Let us first check how this operator acts then we will describe its domain. We have

(G(ω)f)e(x) = − 1√
ℓω(e)

· Uω
d2

dx2
fe
( x

ℓω(e)

)
= − 1

ℓ2ω(e)
f ′′
e (x) .

Notice that f ′′
e is now independent of ω, i.e. if ℓ0(e) := 1 for all e, then G(ω)f =

(−ℓω(e)−2D2
ℓ0
fe), so it looks like we could apply Theorem 4.3.4 with ζ = −2. How-

ever, the real trouble is in the domain. Recall that for Kirchhoff conditions a function
must be continuous at the vertices, and the sum of its derivatives must vanish there. For
the first condition, suppose τe = ιb, where ιe and τe denote the initial and terminal vertex
of an edge. Then (U−1

ω f)e(ℓω(e)) = (U−1
ω f)b(0) means that

(i)
fe(1)√
ℓω(e)

=
fb(0)√
ℓω(b)

.

Next,

(U−1
ω f)′

e(x) =
d

dx

1√
ℓω(e)

fe
( x

ℓω(e)

)
=

1

ℓ
3/2
ω (e)

f ′
e

( x

ℓω(e)

)
,

so we must have at any v,

(ii)
∑

ιe=v

1

ℓ
3/2
ω (e)

f ′
e(0) −

∑

τe=v

1

ℓ
3/2
ω (e)

f ′
e(1) = 0 .

Summarizing, we showed that

D(G(ω)) = {f = (fe) ∈ ⊕
e∈E

W 2,2(0, 1) : f satisfies (i) when τe = ιb and (ii) at any v} .
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One can easily check that for f ∈ D(G(ω)) we have 〈G(ω)f, f〉 =
∑
e∈E ℓω(e)−2‖Dℓ0fe‖2.

Since D(G(ω)) depends on ω via (i) and (ii), we cannot apply Theorem 4.3.4 to it.
The reason why [78] still succeed to work with this operator is that they only need

D(G(ω)) to be indepedent of ω in the diagonal direction, and this is indeed the case
after rescaling Ω. Indeed, if Ω̃ = [ω−, ω+], where ω− = ln ℓmin and ω+ = ln ℓmax, then if
1 = (1, . . . , 1), we have (ℓω+t·1(e))e∈E = (exp(ωe + t))e∈E = et(ℓω(e))e∈E . Hence D(G(ω+
t ·1)) = D(G(ω)), since one simply multiplies all ℓω(e) by a scalar et, which does not affect
Kirchhoff conditions.

It is also visible from this that Kirchhoff conditions are really crucial to this approach.
If one had the slightly more general condition

∑
ιe=v f

′
e(0) −∑τe=v f

′
e(ℓe) = αf(v), α 6= 0,

then the proof would break down because in condition (ii) above, the LHS and RHS would
get multiplied by e−3t/2 and e−t/2, respectively, so the domain is no longer the same. The
approach of [72] thus has an advantage here, as it still works in this situation.

5.4.3 Two volume bounds: the non-covering case

In this subsection we expose a difficulty concerning two-volume bounds in the non-
covering case. We use the notations of Section 5.3.2. We assume moreover that Ω =
[q−, q+]Z

d
for some q− < q+ ≤ 0.

To state our Wegner bound, fix Λ(n)
L (x) ⊂ Znd, let ΠjΛ

(n)
L (x) := Λ(1)

Lj
(xj), and for

n ≥ 2, define the operator

W̃Λ(n)(x)(y) = max
1≤j≤n

∑

α/∈ΠjΛ
(n)
L+R(x)

Uα(y) where Uα(y1, . . . , yn) =
∑

1≤i≤n
uα(yi).

For n = 1 we put W̃ = 0. Now we have the following result

Theorem 5.4.4. Let EΛ
0 = inf σ(HΛ,0 + q−W̃Λ) and suppose I ⊂ (−∞, EΛ

0 − η) is an

interval. Then for any ∅ 6= J ⊆ {1, . . . , n} and any Λ(n)
L (x), taking G(J ) := ΠJ Λ(n)

L+R(x),
we have

EG(J )

{
tr[χI(HΛ

(n)
L

(x)
(ω))]

} ≤ CW · |Λ(n)
L (x)| · sF

(
P,

|I|
nCu

)

for any (ωβ)β/∈G(J ), where CW := 4η−2n2C2
u(2R+ 1)2d.

Proof. Fix any ω ∈ Ω and let H1 = HΛ,0 +
∑
α/∈ΠJ Λ

(n)
L+R(x)

ωαUα. Then H(ω) = H1 +
∑
α∈ΠJ Λ

(n)
L+R(x)

ωαUα and the claim follows from Theorem 5.2.2.

We do not know if this theorem is useful. The first question is whether there is any
spectrum left below EΛ

0 . Note that there is no spectrum below inf σ(HΛ,0 + q−WΛ), where
WΛ =

∑
α∈ΠΛ

(n)
L+R

Uα, so is there a big difference between W̃Λ and WΛ? Yes when n = 1

since W̃ = 0, but for n ≥ 2? If n = 2 and uα = δα for all α, then one can see that
W̃Λ(y) = 0 or 1 for y ∈ Λ, while WΛ(y) = 2.

The second issue is that one studies localization near the lower edge of σ(H), not
σ(HΛ), so it would be more convenient to have a bound formulated in terms of inf σ(H0 +
q−W̃ ) for example, instead of EΛ

0 . But how should we define W̃?
Hence, although we could prove a (normal) Wegner bound below inf σ(H0) in Sec-

tion 4.4.1, we were not able to do the same for the conditional bound. The reason why
we stumbled upon the condition in Theorem 5.4.4 is that we tried to prove the Wegner
bound outside the spectrum of the unperturbed operator. It seems that this approach is
not convenient here and that one needs more sophisticated arguments.
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Note that we did not speak about the case of positive perturbations here, i.e. when
q− ≥ 0. This is mainly because it is not clear how to define W̃ .

Concerning the two-volume bound itself, one cannot hope to have an analog of The-
orem 5.3.3 since the Wegner bound is only valid in low-energy intervals. However, this
is not really problematic: it suffices to study instead dist(σI(HΛ(x)), σI(HΛ(y))) for a low
energy I, where σI(A) := σ(A) ∩ I, just as we did in Theorem 2.5.2.

5.5 A deterministic variant of the UP

We conclude this chapter with a general theorem. Let us first give the hypotheses; we
will then discuss its relation to the results established previously.

Hypotheses (F)

1) We fix a probability space (Ω,F,P) with Ω = [q−, q+]I for some q−, q+ ∈ R, q− < q+,
some countable index set I, and fix a finite-dimensional Hilbert space H.

2) H(ω) is a self-adjoint operator on H for each ω ∈ Ω.

3) H(ω) has the form
H(ω) = H0 +

∑

α∈IF

ωαUα

for some finite set IF ⊆ I, where H0 and all Uα are self-adjoint operators.

4) Fix an orthonormal basis {ej}j∈J for H. We define Ij := {α ∈ IF : Uαej 6= 0},
Cfin := maxj∈J |Ij | and Jeff := {j ∈ J : Uαej 6= 0 for some α ∈ IF }.

5) There exist an interval I0 and a constant γ > 0 such that

χI0(H0)WχI0(H0) ≥ γχI0(H0) ,

where W :=
∑
α∈IF

Uα and χI0(H0) is the spectral projection of H0 onto I0.

Notice that these are just Hypotheses (E) plus the fifth item, which is a deterministic
version of the uncertainty principle discussed in Chapter 4. This version also goes by the
name of a quantitative unique continuation principle (QUCP) in the context of Schrödinger
operators. The constant γ often depends on I0. It is not clear if this property is stronger or
weaker than the random one we used in Chapter 4, in fact they are probably incomparable.
However, this version has a nice feature, namely it holds trivially in any interval I0 ⊂
R \ σ(H0) for any γ > 0, since in this case there is no condition at all.

Let us now state our theorem, which is an adaptation of the result of [30] to finite
dimensions.

Theorem 5.5.1. Suppose H(ω) satisfies Hypotheses (F). Then tr[χI(H(ω))] is measurable
for any interval I. If I ⊂ I0 with dist(I, Ic0) =: δ > 0, then

tr[χI(H(ω))] ≤ C1

∑

j∈J

∑

α∈Ij

〈UαχI(H(ω))Uαej , ej〉 ,

where

C1 :=
(
4γ−2 +

(
1 + 2γ−2‖W‖2)δ−2q2)Cfin , q := max(|q−|, |q+|) .

If moreover the Uα satisfy 0 ≤ Uα ≤ CU for all α, then for any 0 < λ ≤ 1
CU

we have

E{tr[χI(H(ω))]} ≤ CW · |Jeff | · s(P, λ|I|) ,
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where

CW :=
4
λ
C2

finCU ·
(

4
γ2

+
(
1 +

2‖W‖2

γ2

)
δ−2q2

)
.

The constant here is quite ugly; we have only displayed it to emphasize that it is
explicit and to prove the following lemma.

Lemma 5.5.2. Theorem 5.5.1 is stronger than Theorem 5.2.2. That is, if H(ω) satisfies
the hypotheses of Theorem 5.2.2, then Theorem 5.5.1 yields the same conclusion.

Proof. Given I = [a, b], I ⊂ R \ σ(H0) with δ := dist(I, σ(H0)), take I0 ⊃ I such that
I0 ⊂ R \ σ(H0) and dist(I, Ic0) = δ. Then Hypotheses (F) are satisfied in the interval I0

for any γ > 0. Applying Theorem 5.5.1 and taking γ → ∞ yields the result.

It turns out that Theorem 5.5.1 is strictly better than Theorem 5.2.2, since it can be
used to prove a Wegner bound for intervals intersecting σ(H0) for the model in [94], while
Theorem 5.2.2 cannot. This is one motivation to give the proof. Another motivation comes
from the fact that this theorem is a discrete version of the result of [30], but simplifies
substantially 3 due to the finite dimensionality. So we think it is also useful to better
understand some key ideas in the proof of [30].

Before we prove the theorem, let us note that if the Uα are multiplication operators
on an ℓ2(Γ) space, then ‖W‖ in C1 and CW can be estimated by ‖W‖ ≤ CfinCU . Indeed,
if (ej) is the canonical basis one has for f ∈ ℓ2(Γ)

‖Wf‖2 =
∑

j∈J
|〈Wf, ej〉|2

=
∑

j∈J

∣∣∣
∑

α∈Ij

〈f, Uαej〉
∣∣∣
2

=
∑

j∈J

∣∣∣
∑

α∈Ij

Uα(j)〈f, ej〉
∣∣∣
2

=
∑

j∈J
|〈f, ej〉|2

∣∣∣
∑

α∈Ij

Uα(j)
∣∣∣
2

≤ C2
finC

2
U

∑

j∈J
|〈f, ej〉|2 = C2

finC
2
U‖f‖2 .

For the discrete acoustic operator on ℓ2(Zd) considered in [65], one has ‖W‖ ≤ 4d 4.

Proof of Theorem 5.5.1. Let I ⊂ I0 with 0 < δ := dist(I, Ic0). In the following we denote
χI := χI(H(ω)), χI0 := χI0(H0) and χIc

0
:= χIc

0
(H0). We have

(†) tr[χI ] = tr[χIχI0 ] + tr[χIχIc
0
] .

3. Compared to our previous results, our proof here may seem long. However, without counting spectral
averaging, the continuum required a 7+3 pages proof, so the situation here is clearly simpler.

4. Indeed, following [65, P. 445], we have W δj =
∑

α
∇∗Πα∇δj = (dδj −

∑d

k=1
δj−ek

) +
∑d

k=1
(δj −

δj+ek
), so that 〈f, W δj〉 = 2df(j) −

∑d

k=1
f(j − ek) −

∑d

k=1
f(j + ek) = (−∆f)(j) and thus ‖W f‖2 =∑

j
|(−∆f)(j)|2 = ‖ − ∆f‖2 ≤ (4d)2‖f‖2.
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Let us control the first term. Using the UP we have 5

tr[χIχI0 ] = tr[χIχI0χI ](††)

≤ γ−1 tr[χIχI0WχI0χI ]

= γ−1 tr[χIχI0WχI0 ]

= γ−1( tr[χIWχI0 ] − tr[χIχIc
0
WχI0 ]

)

≤ γ−1(| tr[χIWχI0 ]| + | tr[χIχIc
0
WχI0 ]|) .

We first control the second term. We have, using Hölder inequality for HS operators,

| tr[χIχIc
0
WχI0 ]| = | tr[χIχIc

0
WχI0χI ]|

≤ ‖χIχIc
0
‖2‖WχI0χI‖2

≤ c

2
tr[χIc

0
χIχIc

0
] +

1
2c

tr[χIχI0W
2χI0χI ]

for any c > 0. Recalling that tr[b∗a∗ab] ≤ ‖a∗a‖ tr[b∗b] for HS operators a and b, we have

tr[χIχI0W
2χI0χI ] ≤ ‖W 2‖ tr[χIχI0χI0χI ] = ‖W 2‖ tr[χIχI0 ] ,

so that

| tr[χIχIc
0
WχI0 ]| ≤ c

2
tr[χIχIc

0
] +

‖W‖2

2c
tr[χIχI0 ] .

Inserting this into (††), we thus see that

(
1 − γ−1‖W‖2

2c

)
tr[χIχI0 ] ≤ γ−1

(
| tr[χIWχI0 ]| +

c

2
tr[χIχIc

0
]
)
.

Choosing c := γ−1‖W‖2 we thus get

(†††) tr[χIχI0 ] ≤ 2γ−1| tr[χIWχI0 ]| + γ−2‖W‖2 tr[χIχIc
0
] .

The second term is already in (†), so let us focus on the first term. Using Hölder inequality
for HS operators once again, we have

| tr[χIWχI0 ]| = | tr[χIWχI0χI ]|
≤ ‖χIWχI0‖2‖χI0χI‖2

≤ c

2
tr[χI0WχIWχI0 ] +

1
2c

tr[χIχI0χI ]

=
c

2
tr[WχIWχI0 ] +

1
2c

tr[χIχI0 ]

for any c > 0. Choosing c := 2γ−1 and noting that

tr[WχIWχI0 ] ≤ ‖WχIW‖1‖χI0‖ = tr[WχIW ]

because WχIW ≥ 0, we thus get

| tr[χIWχI0 ]| ≤ γ−1 tr[WχIW ] +
γ

4
tr[χIχI0 ] .

5. Compared to Proposition 4.3.1, one of the main difficulties of this proof is that there is no simple
way to get rid of the χI0 that appear in the first inequality of (††).
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Inserting this into (†††) and moving a term to the LHS we get

1
2

tr[χIχI0 ] ≤ 2γ−2 tr[WχIW ] + γ−2‖W‖2 tr[χIχIc
0
] .

So by (†) we get

tr[χI ] ≤ 4γ−2 tr[WχIW ] +
(
1 + 2γ−2‖W‖2) tr[χIχIc

0
] .

We now estimate the second term. Let {ϕn(ω)} be an orthonormal basis of eigenfunctions
of H(ω) with eigenvalues {λn(ω)}. Then

tr[χIχIc
0
] =

∑

λn(ω)∈I
〈χIc

0
ϕn(ω), ϕn(ω)〉 .

Now notice that the operator f(H0) = (H0−λn)−1χIc
0
(H0) is well defined, with ‖f(H0)‖ ≤

δ−1 since λn ∈ I. Thus, taking Vω :=
∑
α∈I ωαUα we have

〈χIc
0
ϕn, ϕn〉 = 〈(H0 − λn)−2χIc

0
(H0)(H0 − λn)ϕn, (H0 − λn)ϕn〉

= 〈(H0 − λn)−2χIc
0
(H0)Vωϕn, Vωϕn〉

≤ δ−2‖Vωϕn‖2 = δ−2〈V 2
ωϕn, ϕn〉 ,

where we used the fact that (H(ω) − λn(ω))ϕn(ω) = 0 in the second equality. Hence,

tr[χIχIc
0
] ≤ δ−2

∑

λn(ω)∈I
〈V 2
ωϕn(ω), ϕn(ω)〉

= δ−2
∑

n

〈V 2
ωχIϕn(ω), ϕn(ω)〉

= δ−2 tr[V 2
ωχI ] = δ−2 tr[VωχIVω] .

We thus finally get

tr[χI ] ≤ 4γ−2 tr[WχIW ] +
(
1 + 2γ−2‖W‖2)δ−2 tr[VωχIVω] .

Now

tr[WχIW ] =
∑

j∈J

∑

α,α′∈Ij

〈UαχIUα′ej , ej〉

≤ 1
2

∑

j∈J

∑

α,α′∈Ij

(‖χIUα′ej‖2 + ‖χIUαej‖2)

≤ Cfin

∑

j∈J

∑

α∈Ij

‖χIUαej‖2

= Cfin

∑

j∈J

∑

α∈Ij

〈UαχIUαej , ej〉 ,

Similarly,
tr[VωχIVω] ≤ q2Cfin

∑

j∈J

∑

α∈Ij

〈UαχIUαej , ej〉 ,

so we obtain the first claim. Finally,

E{tr[χI ]} ≤ C1

∑

j∈J

∑

α∈Ij

E{〈UαχIUαej , ej〉} ,

so the second claim now follows using the spectral averaging of Section B.4 with A =
H0 +

∑
β 6=α ωβUβ, B = Uα, t = ωα and φ = U

1/2
α ej ; see Section 4.5.2 for details.



Appendix A

Generalized Eigenfunction
Expansions

A.1 Introduction

In this appendix we derive a generalized eigenfunction expansion for self-adjoint op-
erators on abstract Hilbert spaces, a result that was needed in Sections 2.8 - 2.10. We
follow the approach taken in [67, Section 3], but we provide much more details; we hope
this will be helpful to (some) readers 1.

It is an elementary fact that if H is a self-adjoint operator with a finite trace, then it
has an eigenfunction expansion; in fact this is true for any compact self-adjoint operator
by the Hilbert-Schmidt theorem. It is well known that this result is not true for a general
self-adjoint operator, even if it is bounded, since it may not have any eigenvalue.

Still, let us look at the operator p corresponding to the closure of C∞
0 (R) ∋ u 7→ −iu′(t).

It may be shown e.g. using the Fourier transform that σ(p) = R. If p had an eigenvector
ψ, this would mean that −iψ′ = λψ, i.e. ψ(x) = ceiλx. This is not an L2 function, so p
has no eigenvector. However, this gives us the impression that p does have eigenvectors
that live in a larger Hilbert space, for instance H− = L2

(
R, (1 + x2)−γdx

)
, γ > 1

4 .
Suppose we have fixed a larger Hilbert space H− in which H has eigenvalues and let us

denote them by σgen(H), the generalized spectrum of H. The same example tells us that
the larger Hilbert space must be chosen carefully if we would like to have σgen(H) ≈ σ(H).
For instance, in one takes H− = L2(R, e−x2

dx), then for any λ ∈ C, we have eiλx ∈ H−,
in other words σgen(p) = C although σ(p) = R. The problem is clear: the space H− was
chosen too large. On the other hand, if one takes H− = L2(R, dx), then σgen(p) = ∅ since
p has no eigenvalues. So it is desirable to have somehow minimal sufficient conditions that
guarantee that H− contains just enough eigenvectors.

The main result of this appendix is the following: let H be a self-adjoint operator
and suppose there exists a “good” self-adjoint operator T with a bounded inverse and a
bounded function f strictly positive on σ(H) such that tr(T−1f(H)T−1) < ∞. Then H
has an eigenfunction expansion in the completion of

(H, ‖ ‖−
)
, where ‖f‖− := ‖T−1f‖.

We call this a generalized eigenfunction expansion.
We shall only need the results of Sections A.2 and A.3. We have included Sections A.4

and A.5 for completeness, and to show that generalized eigenfunctions can also be defined
“by duality”, which is the approach taken in [89] and [11].

1. We have also modified some arguments; in particular, our proofs give as a byproduct a unitary
equivalence between the generalized operator H− and the operator (T HT −1)∗.
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We end this section by recalling some elementary properties of closable operators.

Lemma A.1.1. Let H1 and H2 be Hilbert spaces and suppose A : H1 → H2 is a bounded
operator which is densely defined. Then A is closable and its closure Ã satisfies D(Ã) =
H1. Moreover, ‖Ã‖ = ‖A‖ and if ‖Af‖H2 ≥ γ · ‖f‖H1 for some γ > 0 and all f ∈ D(A),
then Ã has a closed range.

Proof. We denote the norms on H1 and H2 by ‖ ‖1 and ‖ ‖2 respectively. To see that A
is closable, let (fj) ⊂ D(A) such that ‖fj‖1 → 0 and ‖Afj − v‖2 → 0. Then it suffices to
show that v = 0. But ‖v‖2 ≤ ‖Afj − v‖2 + ‖Afj‖2 ≤ ‖Afj − v‖2 + ‖A‖ · ‖fj‖1 → 0. Thus
v = 0 and A is closable. Now let f ∈ H1. As D(A) is dense, we may find (fj) ⊂ D(A)
such that ‖fj − f‖1 → 0. But then ‖A(fj − fk)‖2 ≤ ‖A‖‖fj − fk‖1, so (Ãfj) = (Afj)
is Cauchy in H2 and thus converges to some ψ ∈ H2. Since Ã is closed, it follows that
f ∈ D(Ã) and Ãf = ψ. Thus, D(Ã) = H1.

Let f ∈ H1, and take (fj) ⊂ D(A) such that ‖f −fj‖1 → 0. Then the above argument
tells us that Afj converges to Ãf , i.e. ‖Ãf − Afj‖2 → 0. Hence ‖Ãf‖2 = lim ‖Afj‖2 ≤
lim inf ‖A‖‖fj‖1 = ‖A‖‖f‖1. Hence ‖Ã‖ ≤ ‖A‖, so equality obviously holds.

Finally, let f ∈ H1 and (fj) ⊂ D(A) with ‖f − fj‖1 → 0. Then

γ · ‖f‖1 = γ lim ‖fj‖1 ≤ lim inf ‖Afj‖2 = ‖Ãf‖2 ,

since ‖Ãf − Afj‖2 → 0. Hence the property extends to Ã. Now if (Ãfj) is a sequence in
R(Ã) which converges to some ψ ∈ H2, then ‖fj − fk‖1 ≤ γ−1‖Ã(fj − fk)‖2, so (fj) is
Cauchy and thus converges to some f ∈ H1. Noting that ‖Ãf − ψ‖2 ≤ ‖Ãf − Ãfj‖2 +
‖Ãfj − ψ‖2, we see that Ãf = ψ. Thus R(Ã) is closed.

A.2 Main results

Hypothesis I. T is a self-adjoint operator on a Hilbert space H with a bounded inverse.
Recall that by definition, a self-adjoint operator must be densely defined.
Let H+ be the space D(T ) equipped with the norm ‖φ‖+ = ‖Tφ‖ and H− the

completion of H in the norm ‖ψ‖− = ‖T−1ψ‖. By construction the natural injections
ι+ : H+ → H and ι− : H → H− are continuous with dense range. Moreover, ι−1

+ is
well defined on D(T ) and ι−1

− is well defined on ι−H. We define T+ : H+ → H and
T− : D(T ) → H− by T+ = Tι+ and T− = ι−T .

We shall denote the inner products on H+, H and H− by (·, ·)+, (·, ·) and (·, ·)− respec-
tively 2. By construction, for u, v ∈ H+ and f, g ∈ D(T ), we have (u, v)+ = (T+u, T+v)
and (T−f, T−g)− = (f, g).

We now define a sesquilinear form 〈·, ·〉 on H+ × H− as follows: given φ ∈ H+ and
ψ ∈ H−, let (fj) ⊂ H be a sequence such that ‖ι−fj − ψ‖− → 0 and put

〈φ, ψ〉 := lim
j→∞

(ι+φ, fj)

Lemma A.2.1. (cf. [89, Lemma 1])

(1) The sesquilinear form 〈·, ·〉 is well defined.

(2) T− is closable. Its closure T̃− is an isomorphism of the Hilbert spaces H and H−, i.e.
D(T̃−) = H, R(T̃−) = H− and

(f, g) = (T̃−f, T̃−g)− for any f, g ∈ H .

2. This differs from our convention in the previous chapters, where we denoted the inner product on H
by 〈·, ·〉.
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(3) Given φ ∈ H+ and ψ ∈ H−, we have

〈φ, ψ〉 = (T̃−T+φ, ψ)− .

Proof. (1) Let φ ∈ H+, ψ ∈ H− and (fj) ⊂ H with ‖ι−fj − ψ‖− → 0. First note that
(ι+φ, fj) is a Cauchy sequence since

|(ι+φ, fj − fk)| = |(T+φ, T
−1
− ι−(fj − fk))| ≤ ‖φ‖+‖ι−(fj − fk)‖− ,

hence (ι+φ, fj) converges. To see that its value is independent of the choice of the
sequence (fj), suppose (gj) is another sequence in H with ‖ι−gj − ψ‖− → 0. Then

|(ι+φ, fj − gj)| ≤ ‖φ‖+‖ι−(fj − gj)‖− ≤ ‖φ‖+(‖ψ − ι−fj‖− + ‖ψ − ι−gj‖−) → 0

which completes the proof.

(2) Given f ∈ D(T ) we have ‖T−f‖− = ‖f‖, in particular T− is bounded. As D(T−) =
D(T ) is dense in H, it follows from Lemma A.1.1 that T− is closable and D(T̃−) = H.
Since ‖T−f‖− = ‖f‖ for f ∈ D(T ), this lemma tells us that R(T̃−) is closed in H−.
But R(T̃−) is dense in H− since it contains ι−H (indeed, any ψ ∈ ι−H = D(T−1

− ) may
be written as ψ = T−T

−1
− ψ). Hence R(T̃−) = H−. Finally, given f, g ∈ H = D(T̃−),

let (fj), (gj) ⊂ D(T ) such that ‖fj − f‖ → 0 and ‖gj − g‖ → 0. Then the argument
in Lemma A.1.1 tells us that ‖T−fj − T̃−f‖− → 0 and ‖T−gj − T̃ g‖− → 0, hence

(f, g) = lim
j→∞

(fj , gj) = lim
j→∞

(T−fj , T−gj)− = (T̃−f, T̃−g)− .

(3) Given φ ∈ H+ and ψ ∈ H−, let (fj) ⊂ H such that ‖ι−fj − ψ‖− → 0. Then

〈φ, ψ〉 = lim
j→∞

(ι+φ, fj) = lim
j→∞

(T+φ, T
−1fj) = lim

j→∞
(T̃−T+φ, T̃−T−1fj)− ,

where we used (2). But T−1fj ∈ D(T ) = D(T−), so T̃−T−1fj = T−T−1fj = ι−fj .
Thus,

〈φ, ψ〉 = lim
j→∞

(T̃−T+φ, ι−fj)− = (T̃−T+φ, ψ)− .

We now make an important observation.

Lemma A.2.2. The sesquilinear form 〈·, ·〉 turns the spaces H+ and H− into conjugate
duals, that is

H− = (H+)′ .

Proof. Any ψ ∈ H− defines a linear functional on H+ via 〈·, ·〉. Conversely, let F ∈ (H+)′.
By the Riesz representation theorem, we may find a unique vF ∈ H+ such that F (φ) =
(φ, vF )+. Now put ψ := T̃−T+vF ∈ H−. Then by Lemma A.2.1,

〈φ, ψ〉 = (T̃−T+φ, ψ)− = (T̃−T+φ, T̃−T+vF )− = (T+φ, T+vF ) = (φ, vF )+

which completes the proof.
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Hypothesis II. H is a self-adjoint operator on H such that

D+ = {φ ∈ H+ : ι+φ ∈ D(H) and Hι+φ ∈ D(T )}

is dense in H+.
This allows us to define an operator H+ on H+ by D(H+) = D+ and H+ = ι−1

+ Hι+.
By hypothesis H+ is then densely defined.

Lemma A.2.3. The operator H+ is closed.

Proof. Let (φj) ⊂ H+ be a sequence such that ‖φj − φ‖+ → 0 and ‖H+φj − u‖+ → 0 for
some φ, u ∈ H+, then

‖ι+φj − ι+φ‖ ≤ ‖T−1‖ · ‖φj − φ‖+ → 0, ‖Hι+φj − ι+u‖ ≤ ‖T−1‖ · ‖H+φj − u‖+ → 0,

and since H is self-adjoint, it is closed, so ι+φ ∈ D(H) and Hι+φ = ι+u ∈ D(T ). Hence
φ ∈ D+ and H+φ = ι−1

+ Hι+φ = u. Thus, H+ is closed.

We may also try a similar construction on H− and we obtain the following

Lemma A.2.4. The operator ι−Hι
−1
− on H− with domain ι−D(H) is densely defined and

closable.

Proof. Since D(H) is dense in H and since ι− is continuous with dense range, ι−Hι−1
− is

densely defined.
To see that ι−Hι−1

− is closable, let (fj) ⊂ D(H) such that ‖ι−fj‖− → 0 and suppose
there exists v ∈ H− such that ‖ι−Hfj − v‖− → 0. Then v = 0. Indeed, if φ ∈ D+, then

〈φ, v〉 = lim
j→∞

(ι+φ,Hfj) = lim
j→∞

(Hι+φ, fj) .

But |(Hι+φ, fj)| ≤ ‖H+φ‖+‖ι−fj‖− → 0, hence 〈φ, v〉 = 0 for every φ ∈ D+. Since D+ is
dense in H+, the same holds for every φ ∈ H+. Finally, by Lemma A.2.2, H− = (H+)′,
so it follows that v = 0.

The closure of ι−Hι−1
− in H−, which we denote by H−, may be described as follows

(see e.g. [11, Section 12.2.2])

D(H−) =
{
ψ ∈ H− | ∃(fj) ⊂ D(H), η ∈ H− : ‖ι−fj − ψ‖− → 0 and ‖ι−Hfj − η‖− → 0

}
,

H−ψ := η.

Lemma A.2.5. For any φ ∈ D+ and ψ ∈ D(H−) we have

〈H+φ, ψ〉 = 〈φ,H−ψ〉 .

Proof. Let (fj) ⊂ D(H) with ‖ι−fj − ψ‖− → 0 and ‖ι−Hfj −H−ψ‖− → 0. Then

〈H+φ, ψ〉 = lim
j→∞

(Hι+φ, fj) = lim
j→∞

(ι+φ,Hfj) = 〈φ,H−ψ〉

by definition of 〈·, ·〉.

Definition. We say that ψ ∈ H− is a generalized eigenfunction of H if it is an eigen-
function of H−, i.e. if ψ ∈ D(H−) and there exists λ ∈ C such that H−ψ = λψ. In this
case, we say that λ is a generalized eigenvalue of H.
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Hypothesis III. The set

D+ = {f ∈ D(H) ∩D(T ) : Hf ∈ D(T )}

is an operator core for H.
Note that if f ∈ D+, then ι−1

+ f ∈ D+.
Let (H−)H be the restriction of H− to ι−H, i.e.

D((H−)H) = {ψ ∈ D(H−) ∩ ι−H : H−ψ ∈ ι−H} ,

and (H−)Hψ = H−ψ. Then the following holds.

Lemma A.2.6. We have ι−Hι
−1
− = (H−)H.

Proof. Since H− is the closure of ι−Hι−1
− , if ψ ∈ D(ι−Hι−1

− ) = ι−D(H), then ψ ∈
D(H−) ∩ ι−H and H−ψ = ι−Hι

−1
− ψ ∈ ι−H. Hence ψ ∈ D((H−)H) and (H−)Hψ =

H−ψ = ι−Hι
−1
− ψ. Thus, ι−Hι−1

− ⊂ (H−)H.
Conversely, given ψ ∈ D((H−)H) and f ∈ D+, we have by Lemma A.2.5

(Hf, ι−1
− ψ) = (ι+H+ι

−1
+ f, ι−1

− ψ) = 〈H+ι
−1
+ f, ψ〉 = 〈ι−1

+ f,H−ψ〉 = (f, ι−1
− H−ψ)

by definition of 〈·, ·〉, by approximating ψ and H−ψ with constant sequences. Since D+ is
a core for H, we conclude that ι−1

− ψ ∈ D(H∗) = D(H) and ι−Hι
−1
− ψ = H−ψ.

This yields the following corollary. It roughly says that if a generalized eigenfunction
lives in H, then it is an eigenfunction.

Corollary A.2.7. ψ ∈ ι−H is a generalized eigenfunction if and only if ι−1
− ψ is an

eigenfunction.

Proof. If ι−1
− ψ is an eigenfunction, then ι−1

− ψ ∈ D(H) and Hι−1
− ψ = λι−1

− ψ for some
λ ∈ C, hence H−ψ = ι−Hι

−1
− ψ = λψ.

Conversely, if ψ ∈ ι−H is a generalized eigenfunction, then ψ ∈ D(H−) ∩ ι−H and
H−ψ = λψ, so H−ψ ∈ ι−H, i.e. ψ ∈ D(H−)H. So using Lemma A.2.6 we get Hι−1

− ψ =
ι−1
− (ι−Hι−1

− )ψ = ι−1
− (H−)Hψ = λι−1

− ψ.

In the following we denote by E(J) the spectral projection of H onto a Borel subset
J . The usual trace on H is denoted by tr.

Hypothesis IV. There exists a Borel set O and a bounded continuous function f ,
strictly positive on the spectrum of H, such that

tr(T−1E(O)f(H)T−1) < ∞ .

For our purposes, O will be R, so that T−1E(O)f(H)T−1 = T−1f(H)T−1. Allowing
a general O requires no additional effort, and is useful when considering wave operators;
see [67].

Lemma A.2.8. The set function ν(J) = tr(T−1E(J ∩ O)T−1) is a spectral measure for
the restriction of H to E(O)H which is finite for all bounded Borel sets J .



146 Appendix A. Generalized Eigenfunction Expansions

Proof. Since T−1E(J∩O)T−1 ≥ 0 for any Borel J , we have ν(J) ≥ 0. Moreover, E(∅) = 0,
so ν(∅) = 0. If {Ji} are pairwise disjoint Borel sets, then E(∪iJi) =

∑
iE(Ji) strongly, so

countable additivity follows from the linearity of the trace. Hence ν is a measure. Finally,
ν(J) = 0 ⇐⇒ E(J∩O) = 0, so ν is a spectral measure for the restriction of H to E(O)H.
To conclude, let J be a bounded Borel set. Then we may find ε > 0 such that f(λ) ≥ ε
for λ ∈ σJ,O(H) := σ(H) ∩ J ∩O. Hence

0 ≤ εE(J ∩O) ≤
∫

σJ,O(H)
f(λ)dE(λ) ≤

∫

σ(H)∩O
f(λ)dE(λ) = E(O)f(H) .

Thus, ν(J ∩O) ≤ ε−1 tr(T−1E(O)f(H)T−1) < ∞.

Any bounded operator C on H induces a bounded operator from H+ → H− given
by T̃−CT+. Inversely, given a bounded operator D : H+ → H−, the operator C =
T̃−1

− DT−1
+ defined on D(T ) is bounded, hence its closure is a bounded operator on H

(see Lemma A.1.1). Hence the map τ : B(H) → B(H+,H−) given by τ(C) = T̃−CT+ is
bijective. Moreover, it is a Banach space isomorphism since T̃− and T+ are unitary. This
motivates us to define for 1 ≤ q < ∞

Tq(H+,H−) := τ(Tq(H)), Tq,+(H+,H−) := τ(Tq,+(H)) ,

where Tq(H) is the Banach space of bounded operators Y on H with ‖Y ‖q = | tr |Y |q|
1
q < ∞

and Tq,+(H) is the subset of positive operators in Tq(H).
By construction, Tq(H+,H−) equipped with the norm ‖B‖q = ‖τ−1(B)‖q is a Banach

space isomorphic to Tq(H), a separable dual Banach space. Note that if B = τ(C) then

(A-1) 〈φ,Bφ〉 = 〈φ, T̃−CT+φ〉 = (T+φ,CT+φ) .

In particular, B ∈ Tq,+(H+,H−) iff B ∈ Tq(H+,H−) and 〈φ,Bφ〉 ≥ 0 for all φ ∈ H+ (note
that Ran(T+) = D(T−1

+ ) = ι+H+ = D(T ) is dense in H).
For B ∈ T1(H+,H−) we set

trB := tr τ−1B = tr T̃−1
− BT−1

+ .

If φn is an orthonormal basis of H+, then T+φn is an orthonormal basis for H, so using
(A-1) with C = τ−1B we have

trB = tr τ−1B =
∑

n

(T+φn, (τ−1B)T+φn) =
∑

n

〈φn, Bφn〉 .

Moreover, for B ∈ T2(H+,H−), ‖B‖2 is the usual Hilbert-Schmidt norm:

‖B‖2
2 =

∑

n

‖τ−1(B)T+φn‖2 =
∑

n

‖T̃−1
− Bφn‖2 =

∑

n

‖Bφn‖2
− .

Now note that if C ∈ B(H) and T−1CT−1 ∈ T1(H), we have

tr ι−Cι+ = tr τ−1(ι−Cι+) = tr(T̃−1
− ι−Cι+T

−1
+ ) = trT−1CT−1 .

Hence the spectral measure ν of Lemma A.2.8 may be written as ν(J) = tr ι−E(J ∩O)ι+.
Noting that J → T−1E(J ∩ O)T−1 is a T1,+(H)-valued measure, it also follows that
J → ι−E(J ∩O)ι+ is a T1,+(H+,H−)-valued measure.

We are finally ready to state the main result of this section.
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Theorem A.2.9. There exists a ν-locally integrable function P : R → T1,+(H+,H−) such
that

ι−f(H)E(J ∩O)ι+ =
∫

J
f(λ)P (λ)dν(λ)

for all bounded Borel sets J and all bounded Borel functions f , where the integral is
the Bochner integral of T1(H+,H−)-valued functions. Furthermore, for ν-almost every
λ ∈ R, trP (λ) = 1 and P (λ)φ ∈ H− is a generalized eigenfunction of H with generalized
eigenvalue λ, for any φ ∈ H+.

Proof. Since J → ι−E(J ∩ O)ι+ is a T1,+(H+,H−)-valued Borel measure and ν(J) =
tr ι−E(J ∩O)ι+ is finite on bounded Borel sets, it follows from an operator-valued Radon-
Nikodym theorem that there exists a ν-locally integrable function P : R → T1,+(H+,H−),
called the Radon-Nikodym derivative of ι−E(J ∩O)ι+, such that

ι−E(J ∩O)ι+ =
∫

J
P (λ)dν(λ)

for bounded Borel J . Moreover, P (λ) satisfies trP (λ) = 1 for ν-a.e. λ. The proof of these
properties may be found in [10, Theorem V.1.1], see also [11, Theorem 15.1.1].

Using this form of ι−E(J ∩O)ι+ and taking limits of Borel step functions, we obtain
the required expansion for ι−f(H)E(J ∩O)ι+.

Now fix λ ∈ R and assume λ ∈ supp ν. Then if Iλ,δ := [λ−δ, λ+δ], we have ν(Iλ,δ) 6= 0.
Now observe that if f is a bounded Borel function, then using the expansion we get

ι−f(H)E(Iλ,δ ∩O)ι+ − f(λ)P (λ) =
∫

Iλ,δ

{
f(λ′)P (λ′) − f(λ)P (λ)

ν(Iλ,δ)

}
dν(λ′) .

Thus, by standard properties of the Bochner integral we get as δ → 0

∥∥∥
ι−f(H)E(Iλ,δ ∩O)ι+

ν(Iλ,δ)
− f(λ)P (λ)

∥∥∥
1

≤ 1
ν(Iλ,δ)

∫

Iλ,δ

‖f(λ′)P (λ′) − f(λ)P (λ)‖1dν(λ′) → 0

for ν-a.e. λ, by Lebesgue differentiation theorem (see [81, Corollary 2.14]). Note that ν
is indeed a Radon measure on R by [81, Corollary 1.11]. Applying this to f(x) ≡ 1 and
f(x) = xχ[λ−1,λ+1](x), we thus get in particular

(A-2) P (λ) = lim
δ↓0

ι−E(Iλ,δ ∩O)ι+
ν(Iλ,δ)

in T1(H+,H−), for ν-a.e.λ ,

(A-3) λP (λ) = lim
δ↓0

ι−HE(Iλ,δ ∩O)ι+
ν(Iλ,δ)

in T1(H+,H−), for ν-a.e.λ .

Finally, let φ ∈ H+ and fix λ ∈ R such that (A-2) and (A-3) hold. Let Ij = [λ −
j−1, λ + j−1]. Then if fj = 1

ν(Ij)E(Ij ∩ O)ι+φ, we have fj ∈ D(H) since ‖Hfj‖2 =
1

ν(Ij)2

∫
Ij∩O x

2dρι+φ(x) ≤ (max Ij)2‖fj‖2. By (A-2) and (A-3) we have ‖ι−fj−P (λ)φ‖− →
0 and ‖ι−Hfj − λP (λ)φ‖− → 0. By definition of D(H−) we get P (λ)φ ∈ D(H−) and
H−P (λ)φ = λP (λ)φ.
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A.3 A word on adjoints

Recall that if X and Y are Banach spaces with duals X ′ and Y ′ respectively, and if
B : X → Y is a bounded operator, we define its Banach adjoint B† : Y ′ → X ′ by

(B†f)(u) = f(Bu) for all u ∈ X and f ∈ Y ′ .

Let us describe what this means for our Hilbert spaces. In the following all operators are
assumed to be bounded.

1. If R : H+ → H, then by Lemma A.2.2 any ψ ∈ H′
+ ≡ H− takes the form ψ(φ) = 〈φ, ψ〉.

Thus, (R†f)(φ) = 〈φ,R†f〉 for any φ ∈ H+ and f ∈ H′ ≡ H. On the other hand, any
f ∈ H′ takes the form f(u) = (u, f) for u ∈ H. Hence R† : H → H− is defined by

〈φ,R†f〉 = (Rφ, f) for all φ ∈ H+ and f ∈ H .

2. If S : H → H−, let us show that H′
− = H+ and that any φ ∈ H′

− takes the form
φ(ψ) = 〈φ, ψ〉. It is clear that this defines a linear functional on H−. Conversely,
by the Riesz representation theorem, for any F ∈ H′

− the exists a unique uF ∈ H−
such that F (ψ) = (ψ, uF )−. Now let (uj) ⊂ ι−H such that ‖uj − uF ‖− → 0. Then

F (ψ) = lim(ψ, uj)− = lim (uj , ψ)− = lim 〈T−1
+ T−1

− uj , ψ〉. Now ‖T−1
+ T−1

− (uj − uk)‖+ =
‖uj − uk‖−, hence (T−1

+ T−1
− uj) is Cauchy and converge to some φ ∈ H+, so that

F (ψ) = 〈φ, ψ〉. This proves the claim.
Now for φ ∈ H+, S†φ ∈ H′ takes the form S†φ(f) = (f, S†φ). Moreover, by the above
argument, φ(Sf) = 〈φ, Sf〉. Thus, we have

(f, S†φ) = 〈φ, Sf〉 for all f ∈ H and φ ∈ H+ .

In other words,

〈φ, Sf〉 = (S†φ, f) for all f ∈ H and φ ∈ H+ .

3. If U : H− → H, then U † : H → H+ is given by

〈U †f, ψ〉 = (Uψ, f) for all ψ ∈ H− and f ∈ H .

In other words,

〈U †f, ψ〉 = (f, Uψ) for all ψ ∈ H− and f ∈ H .

4. If V : H → H+, then V † : H− → H is given by

(f, V †ψ) = 〈V f, ψ〉 for all f ∈ H and ψ ∈ H− .

5. If W : H+ → H−, then W † : H′
− → H′

+. So for φ ∈ H+ ≡ H′
−, W †φ ∈ H′

+ and thus
W †φ(u) = 〈u,W †φ〉. But for φ ∈ H′

−, φ(Wu) = 〈φ,Wu〉. Thus W † : H+ → H− is
defined by

〈u,W †φ〉 = 〈φ,Wu〉 for all φ, u ∈ D(H+) .

Since by definition we have for φ ∈ H+ and f ∈ H
(ι+φ, f) = 〈φ, ι−f〉 ,

we see that ι†+ = ι− and ι†− = ι+. Moreover,

(T+φ, f) = (T̃−T+φ, T̃−f)− = 〈φ, T̃−f〉

so that T †
+ = T̃− and T̃ †

− = T+.
We now have the following result, which is used in Section 2.10.
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Lemma A.3.1. We have P (λ)† = P (λ) for ν-a.e. λ ∈ R.
If U : H− → H and V : H → H+ are bounded operators, then UP (λ)V ∈ T1(H) and

‖UP (λ)V ‖1 ≤ ‖U‖ · ‖V ‖ .

Moreover, we have (UP (λ)V )∗ = V †P (λ)U †, where (UP (λ)V )∗ : H → H is the usual
Hilbert adjoint. In particular, ‖UP (λ)V ‖2 = ‖V †P (λ)U †‖2.

Proof. Let φ, u ∈ H+ and fix a λ such that (A-2) is true. We have for any δ > 0 and for
E := E(Iλ,δ ∩O),

〈φ, ι−Eι+u〉 = (ι+φ,Eι+u) = (Eι+φ, ι+u) = (ι+u,Eι+φ) = 〈u, ι−Eι+φ〉 .

Thus,

〈φ, P (λ)u〉 = lim
δ↓0

1
ν(Iλ,δ)

〈φ, ι−Eι+u〉 = lim
δ↓0

1
ν(Iλ,δ)

〈u, ι−Eι+φ〉 = 〈u, P (λ)φ〉

for any φ, u ∈ H+. This proves the first claim. Next, we have

‖UP (λ)V ‖1 = ‖UT̃−τ−1(P (λ))T+V ‖1 ≤ ‖UT̃−‖ · ‖τ−1(P (λ))‖1 · ‖T+V ‖

by the usual properties of ‖ ‖1 in T1(H). Now P (λ) ≥ 0, so ‖τ−1(P (λ))‖1 = trP (λ) = 1
by Theorem A.2.9. Moreover, ‖T̃−‖ = ‖T+‖ = 1, so the second claim follows. For the
third, let f, g ∈ H. Then

(UP (λ)V f, f) = 〈U †f, P (λ)V f〉 = 〈V f, P (λ)†U †f〉 = 〈V f, P (λ)U †f〉 = (f, V †P (λ)U †f) .

The proof is complete by noting that ‖UP (λ)V ‖2 = ‖(UP (λ)V )∗‖2.

A.4 A characterization of generalized eigenfunctions

In this section we prove that the generalized eigenfunctions may equally well be defined
in terms of the operator H+. This is the point of view taken in [89] and [11].

Let us continue the study of adjoints which we started in the previous section. Recall
that if X and Y are Banach spaces and if A : D(A) ⊂ X → Y is densely defined, its
Banach adjoint A† : Y ′ → X ′ is defined as follows

D(A†) = {f ∈ Y ′ | ∃g ∈ X ′ : g(u) = f(Au) for all u ∈ D(A)},

A†f := g .

In particular, if A : H+ → H+ is densely defined, then its adjoint is an operator
A† : H′

+ → H′
+. So for ψ ∈ D(A†), ψ ∈ H− ≡ H′

+, we have A†ψ ∈ H′
+ and thus A†ψ(φ) =

〈φ,A†ψ〉. Moreover, ψ ∈ H′
+ so ψ(Aφ) = 〈Aφ,ψ〉. It follows that A† : H− → H− is

defined by

D(A†) = {ψ ∈ H− | ∃θ ∈ H− : 〈Aφ,ψ〉 = 〈φ, θ〉 for all φ ∈ D(A)} ,

A†ψ = θ .

With this language, Lemma A.2.5 tells us that H− ⊂ H†
+. To prove the desired charac-

terization for generalized eigenfunctions, we prove in this section that actually H− = H†
+.

We start with the following observation.
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Lemma A.4.1. We have H†
+ = T̃−(THT−1)∗T̃−1

− , where (THT−1)∗ : H → H is the usual
Hilbert adjoint.

Proof. Let ψ ∈ D(H†
+). If f ∈ D(THT−1), then T−1f ∈ D(H) ∩ D(T ) and HT−1f ∈

D(T ). Thus, T−1f ∈ D+ and ι−1
+ T−1f ∈ D+. Hence,

(THT−1f, T̃−1
− ψ) = (T+H+ι

−1
+ T−1f, T̃−1

− ψ)

= (T̃−T+H+ι
−1
+ T−1f, ψ)−

= 〈H+ι
−1
+ T−1f, ψ〉

= 〈ι−1
+ T−1f,H†

+ψ〉
= (T̃−T+ι

−1
+ T−1f,H†

+ψ)−

= (T̃−f,H
†
+ψ)− = (f, T̃−1

− H†
+ψ)

Thus, T̃−1
− ψ ∈ D((THT−1)∗) and (THT−1)∗T̃−1

− ψ = T̃−1
− H†

+ψ. We thus showed that
H†

+ ⊂ T̃−(THT−1)∗T̃−1
− .

Conversely, let ψ ∈ D(T̃−(THT−1)∗T̃−1
− ). Note that any φ ∈ D+ satisfies ι+φ ∈ D(T )

and Tι+φ ∈ D(THT−1), hence

〈H+φ, ψ〉 = (T+H+φ, T̃
−1
− ψ)

= (THι+φ, T̃−1
− ψ)

= (THT−1Tι+φ, T̃
−1
− ψ)

= (T+φ, (THT−1)∗T̃−1
− ψ)

= (T̃−T+φ, T̃−(THT−1)∗T̃−1
− ψ)− = 〈φ, T̃−(THT−1)∗T̃−1

− ψ〉 .

Thus, ψ ∈ D(H†
+) and H†

+ψ = T̃−(THT−1)∗T̃−1
− ψ. Thus T̃−(THT−1)∗T̃−1

− ⊂ H†
+ and we

are done.

Theorem A.4.2. We have H− = H†
+.

Proof. We already know by Lemma A.2.5 that H− ⊂ H†
+. To prove the converse, we show

that T̃−(THT−1)∗T̃−1
− ⊂ H−. The claim will then follow from Lemma A.4.1.

Let ψ ∈ D(T̃−(THT−1)∗T̃−1
− ) and suppose that {ψ, T̃−(THT−1)∗T̃−1

− ψ} is orthogonal
to the graph G(ι−Hι−1

− ). Recalling that D(ι−Hι−1
− ) = ι−D(H) by definition, this means

that for any f ∈ D(H) we have

0 = (ι−f, ψ)− + (ι−Hι−1
− (ι−f), T̃−(THT−1)∗T̃−1

− ψ)−

= (T−1f, T̃−1
− ψ) + (T−1Hf, (THT−1)∗T̃−1

− ψ)

= (f, T−1T̃−1
− ψ) + (Hf, T−1(THT−1)∗T̃−1

− ψ) .

Thus, T−1(THT−1)∗T̃−1
− ψ ∈ D(H∗) = D(H) and HT−1(THT−1)∗T̃−1

− ψ = −T−1T̃−1
− ψ ∈

D(T ). Hence, (THT−1)(THT−1)∗T̃−1
− ψ = −T̃−1

− ψ. But (THT−1)(THT−1)∗ ≥ 0, so
T̃−1

− ψ = 0 and thus ψ = 0.
We thus showed that if {ψ, T̃−(THT−1)∗T̃−1

− ψ} is orthogonal to the graph G(ι−Hι−1
− ),

then {ψ, T̃−(THT−1)∗T̃−1
− ψ} must be zero. It follows that {ψ, T̃−(THT−1)∗T̃−1

− ψ} ∈
G(ι−Hι−1

− ) = G((ι−Hι−1
− )) = G(H−). This completes the proof of the theorem.

Corollary A.4.3. ψ ∈ H− is a generalized eigenfunction if and only if there exists λ ∈ C

such that
〈H+φ, ψ〉 = λ〈φ, ψ〉 for any φ ∈ D+ .
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Proof. If ψ ∈ H− is a generalized eigenfunction, then ψ ∈ D(H−) and the claim follows
from Lemma A.2.5.

Conversely, if this property holds, then ψ ∈ D(H†
+) and H†

+ψ = λ̄ψ. The claim now
follows from Theorem A.4.2.

Remark A.4.4. Note that as a byproduct of Lemma A.4.1 and Theorem A.4.2, we
proved that H− is unitarily equivalent to (THT−1)∗. Moreover, as a consequence of
Theorem A.2.9, we have for ν-almost every λ ∈ R, and every φ ∈ H+,

(THT−1)∗T̃−1
− P (λ)φ = T̃−1

− H−P (λ)φ = λT̃−1
− P (λ)φ .

Hence, with respect to the spectral measure ν of H, almost every λ ∈ R is an eigenvalue
of (THT−1)∗, with eigenvector T̃−1

− P (λ)φ.

A.5 A characterization of cores

In this section we give two results concerning the core ι−Hι
−1
− of H− (recall that

D(ι−Hι−1
− ) = ι−D(H)).

Lemma A.5.1. Suppose there exists ψ ∈ ι−H and λ ∈ C such that

(A-1) 〈H+φ, ψ〉 = λ〈φ, ψ〉 for all φ ∈ D+ .

Then ψ ∈ ι−D(H) and ι−Hι
−1
− ψ = λ̄ψ.

To prove this, one may combine Corollary A.4.3 with Lemma A.2.6. However, the
situation is really simpler as we show below; one may simply repeat the argument of
Lemma A.2.6.

Proof. Given ψ ∈ ι−H, let f ∈ D+. Then

(Hf, ι−1
− ψ) = (ι+H+ι

−1
+ f, ι−1

− ψ) = 〈H+ι
−1
+ f, ψ〉 = λ〈ι−1

+ f, ψ〉 = (f, λ̄ι−1
− ψ)

SinceD+ is a core forH, we conclude that ι−1
− ψ ∈ D(H∗) = D(H) and ι−Hι−1

− ψ = λ̄ψ.

Next we have the following characterization.

Lemma A.5.2. We have ι−Hι
−1
− = T−T+H

∗
+T

−1
+ T−1

− , where H∗
+ : H+ → H+ is the usual

Hilbert adjoint of H+.

Proof. Let H0
− := ι−Hι

−1
− . First note that D(T−1

− ) = ι−H and D(T−1
+ ) = ι+H+ = D(T ),

so that D(T−1
+ T−1

− ) = ι−H. Thus, given ψ ∈ ι−D(H) we have ψ ∈ D(T−1
+ T−1

− ), and for
any φ ∈ D+,

(H+φ, T
−1
+ T−1

− ψ)+ = (T+H+φ, T
−1
− ψ)

= (THι+φ, T−1ι−1
− ψ)

= (ι+φ,Hι−1
− ψ)

= (T+φ, T
−1Hι−1

− ψ)

= (T+φ, T
−1
− H0

−ψ) = (φ, T−1
+ T−1

− H0
−ψ)+ .

It follows that T−1
+ T−1

− ψ ∈ D(H∗
+) and H∗

+T
−1
+ T−1

− ψ = T−1
+ T−1

− H0
−ψ ∈ D(T−T+). Hence

ψ ∈ D(T−T+H
∗
+T

−1
+ T−1

− ) and T−T+H
∗
+T

−1
+ T−1

− ψ = H0
−ψ. Thus H0

− ⊂ T−T+H
∗
+T

−1
+ T−1

− .
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Conversely, let ψ ∈ D(T−T+H
∗
+T

−1
+ T−1

− ). Then ψ ∈ D(T−1
− ) = ι−H. Given f ∈

D(H), since D+ is a core for H, we may find (fj) ⊂ D+ such that ‖fj − f‖ → 0 and
‖Hfj −Hf‖ → 0. Thus,

(Hf, ι−1
− ψ) = lim

j→∞
(Hfj , ι−1

− ψ)

= lim
j→∞

(T+H+ι
−1
+ fj , T

−1
− ψ)

= lim
j→∞

(H+ι
−1
+ fj , T

−1
+ T−1

− ψ)+

= lim
j→∞

(ι−1
+ fj , H

∗
+T

−1
+ T−1

− ψ)+

= lim
j→∞

(Tfj , T+H
∗
+T

−1
+ T−1

− ψ)

= (f, TT+H
∗
+T

−1
+ T−1

− ψ)

Thus, ι−1
− ψ ∈ D(H∗) = D(H) and Hι−1

− ψ = TT+H
∗
+T

−1
+ T−1

− ψ. Thus, ψ ∈ ι−D(H) and
H0

−ψ = T−T+H
∗
+T

−1
+ T−1

− ψ. Hence T−T+H
∗
+T

−1
+ T−1

− ⊂ H0
−.



Appendix B

Miscellaneous results

B.1 Spectra of compact metric graphs

In Section 2.6 we needed to estimate the spectral gap between the ground eigenvalue
of the Kirchhoff Laplacian on the compact graph Γ(1) ∩ Λ and the rest of the spectrum.
For this we relied on a Cheeger inequality and obtained the lower bound E2 ≥ L−2, where
L is the total length of Γ(1) ∩ Λ.

Actually much more is true. The following remarkable characterization holds.

Theorem B.1.1 (Nicaise-Friedlander). Let (Γ,−∆) be a connected metric graph of total
length L, where −∆ is the Laplace operator with Kirchhoff boundary conditions. Then the
eigenvalues Ej(Γ) satisfy

Ej(Γ) ≥ π2j2

4L2
for any j ≥ 2 .

Moreover, equality occurs if and only if Γ is an interval of length L for j = 2 and Γ is a
star graph with j + 1 vertices and j edges of length L/j for j ≥ 3.

Friedlander proved this theorem in [44]. Actually Nicaise had proven the estimate on
Ej much earlier in [84], for j = 2, and he also proved a slightly weaker estimate for any j
in the case of trees (namely, Ej ≥ 4πj2

e2L2 ). As we show below, one can always assume the
graph is a tree. Friedlander was surely unaware of this paper; in any case the second part
concerning equality did not appear in the paper of Nicaise.

We already know that E1(Γ) = 0 of course, since a constant function on Γ provides
an eigenvector. So a byproduct of Theorem B.1.1 is that the ground eigenvalue is never
degenerate; a result that was obtained using cohomology methods in [91] and positivity-
improving techniques in [74]. A natural question now is whether the rest of the spectrum
Ej(Γ) is also simple. This cannot be true in general: as we show below, the spectrum of
the Laplacian on the circle has all its eigenvalues Ej of multiplicity 2 for j ≥ 2. As the
Kirchhoff Laplacian on a polygon is equivalent to a Kirchhoff Laplacian on a circle of the
same circumference (by removing all the vertices, since they all have degree 2), we see
that the answer is negative. However, Friedlander showed the following result in another
article.

Theorem B.1.2 (See [45]). Let (Γ,−∆) be a connected metric graph of total length L,
where −∆ is the Laplace operator with Kirchhoff boundary conditions. If Γ is different
from the circle, and if it has no vertex of degree 2, then the spectrum of Γ is generically
simple.
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Finally one may ask if a complement of Theorem B.1.1 holds, that is, if there are upper
bounds on the eigenvalues of a metric graph with a fixed total length. Here is the answer:

Theorem B.1.3. There can be no upper bounds on the eigenvalues of a metric graph.
More precisely, for any L > 0 and M > 0, one may construct a Kirchhoff metric graph
(Γ,−∆) of total length L such that E2(Γ) > M .

Sketch of proof. The example is given by a star graph with k + 1 vertices and k edges of
length L/k. One may prove that E2(Γ) = π2k2

4L2 , so taking a sufficiently large k, we see
that E2(Γ) > M . For details, see [44, Example 3].

We now give a complete proof of a special case of Theorem B.1.1, which is all that we
needed for Section 2.6.

Theorem B.1.4 (Faber-Krahn inequality). Let (Γ,−∆) be a connected metric graph of
total length L, where −∆ is the Laplace operator with Kirchhoff boundary conditions. Then

E2(Γ) ≥ π2

L2
.

Proof. Our argument is a variation of the proof of Nicaise [84]; we think this variation
is necessary if we do not wish to use the fact that the ground energy is simple. We also
provide more details concerning the reduction to a tree which we found in [44].

To see why we may assume Γ is a tree, suppose Γ is a metric graph and let Γ′ be the
graph that is obtained from Γ by cutting an edge e at some point x0. Then if hΓ, hΓ′ are
the forms associated with −∆Γ, −∆Γ′ , we have D(hΓ′) = W 1,2(Γ′) ⊃ W 1,2(Γ) = D(hΓ)
and hΓ′ [f ] = hΓ[f ] for f ∈ D(hΓ), hence Ej(Γ′) ≤ Ej(Γ). Thus, if Γ is not a tree, one can
cut several edges of Γ to make a connected tree out of it, and the j-th eigenvalue of that
tree will not exceed Ej(Γ).

So suppose Γ is a connected tree, let C be a circle of circumference 2L and let R : C → Γ
be the function that “explores” Γ, that is, R is a path in Γ that crosses each edge exactly
once in the forward direction and once in the backward direction. Now since we have
Kirchhoff conditions, the min-max principle tells us that

(⋆) E2(Γ) = sup
φ∈L2(Γ)

inf
ψ∈W 1,2(Γ),
‖ψ‖=1,ψ⊥φ

∫

Γ
|ψ′|2 ≥ inf

ψ∈W 1,2(Γ),
‖ψ‖=1,ψ⊥1Γ

∫

Γ
|ψ′|2 .

So let ψ ∈ W 1,2(Γ) with ‖ψ‖ = 1 and ψ⊥1Γ. Then (ψ◦R)⊥1C since
∫
C(ψ◦R) = 2

∫
Γ ψ = 0.

Now note that we know exactly the spectrum of the Laplacian on C; it is given by

(⋆⋆) E1(C) = 0, E2k(C) = E2k+1(C) =
4π2k2

(2L)2
, k ≥ 1 .

Indeed, the exponentials ej(x) = e
2πijx

2L , j ∈ Z provide an orthogonal basis of L2(R/2LZ),
and they are also eigenvectors of the Laplacian with eigenvalues 4π2j2

(2L)2 ; this is just the
Parseval theorem. So arranging them in an increasing order we get (⋆⋆). So let (fk)∞

k=1

be the corresponding rearranged orthonormal basis of eigenvectors of the Laplacian on C,
then ψ ◦ R =

∑
αkfk, and since f1 is a constant and (ψ ◦ R)⊥1, the sum is on k ≥ 2.

Thus,
∫
C |(ψ ◦R)′|2∫
C |ψ ◦R|2 =

∑
k≥2 |αk|2Ek(C)
∑
k≥2 |αk|2

≥
∑
k≥2 |αk|2E2(C)
∑
k≥2 |αk|2

= E2(C) =
π2

L2

by (⋆⋆). The claim now follows from (⋆) since
∫

Γ
|ψ′|2∫

Γ
|ψ|2 =

∫
C

|(ψ◦R)′|2∫
C

|ψ◦R|2 .
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B.2 Factorization of Hilbert-Schmidt operators

This section collects some useful factorization results for Hilbert-Schmidt operators;
we needed one of them in Section 2.8.

In the following we fix an arbitrary measure space (S, µ) and denote Lp(µ) := Lp(S, µ)
for 1 ≤ p ≤ ∞. These spaces include Lp(Rd) and ℓp(Zd) by taking the Lebesgue measure
and the counting measure respectively.

Given 1 ≤ p < ∞, the space of p -summing operators between two Banach spaces X
and Y will be denoted by Πp(X,Y ), and the p -summing norm of u ∈ Πp(X,Y ) will be
denoted by πp(u). We have the following facts.

Theorem B.2.1. 1. Let X0, X, Y and Y0 be Banach spaces. Suppose u : Y → Y0 and
w : X0 → X are bounded operators and let v ∈ Πp(X,Y ). Then uvw ∈ Πp(X0, Y0)
and πp(uvw) ≤ ‖u‖ · πp(v) · ‖w‖.

2. Let H1 and H2 be Hilbert spaces. Then u : H1 → H2 is Hilbert-Schmidt if and only
if it is 2-summing. In this case, we have ‖u‖2 = π2(u).

3. Given 1 ≤ p < ∞ and ϕ ∈ Lp(µ) denote by Mϕ : L∞(µ) → Lp(µ) the induced
multiplication operator Mϕ(f) := ϕf . Then Mϕ is p-summing and πp(Mϕ) = ‖ϕ‖Lp.

4. Suppose B : L2(µ) → L∞(µ) is a bounded operator and Mϕ : L∞(µ) → L2(µ)
is the operator of multiplication by ϕ ∈ L2(µ). Then MϕB : L2(µ) → L2(µ) is
Hilbert-Schmidt and ‖MϕB‖2 ≤ ‖ϕ‖L2‖B‖L2→L∞.

Proof. The first three items are given in [35, Theorem 2.4, Page 37], [35, Theorem 4.10,
Page 84] and [35, Examples 2.9, Page 40] respectively. The fourth item follows by com-
bining them.

An alternative proof of the fourth item can probably be extracted from the proof of
[100, Proposition B.9.4].

The previous theorem is all that we needed for Section 2.8. Nevertheless, let us now
extend this theorem to arbitrary operators A : L∞ → L2, not just multiplications.

Given 1 ≤ p ≤ ∞ and λ > 1, a Banach space X is said to be an Lp,λ-space if every
finite dimensional subspace E of X is contained in a finite dimensional subspace F of X
for which there is an isomorphism v : F → ℓdimF

p with ‖v‖ · ‖v−1‖ < λ. We say that X is
an Lp-space if it is an Lp,λ-space for some λ > 1.

Theorem B.2.2. 1. If (S, µ) is any measure space and 1 ≤ p ≤ ∞, then Lp(µ) is an
Lp,λ-space for all λ > 1.

2. Let 1 ≤ p ≤ 2, let X be an L∞,λ-space and let Y be an Lp,λ′-space. Then any
bounded operator u : X → Y is 2-summing with π2(u) ≤ KGλλ

′‖u‖, where KG is a
universal constant called the Grothendieck constant.

3. We have KG ≤ 2.

4. Suppose B : L2(µ) → L∞(µ) and A : L∞(µ) → L2(µ) are bounded operators. Then
AB : L2(µ) → L2(µ) is Hilbert-Schmidt and ‖AB‖2 ≤ KG · ‖A‖L∞→L2‖B‖L2→L∞.

5. Let H1 and H2 be Hilbert spaces. Then u : H1 → H2 is Hilbert-Schmidt if and only
if it factors through an L∞-space.

The fourth item is stated in [104, Section 4.1.11], and this result is even more general
than what we needed in Section 2.8. We only gave the fifth item for completeness.
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Proof. The first three items are given in [35, Theorem 3.2, Page 61], [35, Theorem 3.7,
Page 64] and [35, Page 29] respectively. For the fourth, note that by combining these items,
A is 2-summing with π2(A) ≤ KGλλ

′‖A‖ for any λ, λ′ > 1. By the preceding theorem,
AB is also 2-summing, hence Hilbert-Schmidt, with ‖AB‖2 = π2(AB) ≤ π2(A)‖B‖ ≤
KGλλ

′‖A‖‖B‖. Since this holds for any λ, λ′ > 1, we get the bound. The last item is
given in [35, Corollary 4.12, Page 85], see also [80, Theorem 6.3].

B.3 Self-adjoint dilations of dissipative operators

In this section we derive some results concerning self-adjoint dilations of maximal
dissipative operators in a complex separable Hilbert space. These results are applied in the
following section to prove a spectral averaging estimate for general probability measures.

We shall use the notation

C+ = {z ∈ C : Im z > 0} and C− = {z ∈ C : Im z < 0} .

For two bounded operators B and B on Hilbert spaces H and G, we say that

B = pr B

if H is a subspace of G, and

(Bf, g) = (Bf, g) for all f, g ∈ H .

An operator L, not necessarily bounded, on a Hilbert space H is dissipative if

Im(Lf, f) ≥ 0 for all f ∈ D(L) .

It is maximal dissipative if it has no proper dissipative extension.
An operator Q on a Hilbert space H is said to be accretive 1 if

Re(Qf, f) ≥ 0 for all f ∈ D(Q) .

It is said to be maximal accretive if it has no proper accretive extension.
We now state an important result. This result is basically known among specialists,

but it took us some effort to find good references.

Theorem B.3.1. Let L be a maximal dissipative operator on a Hilbert space H. Then
there exists a Hilbert space G containing H and a self-adjoint operator L on G such that

(L− z)−1 = pr (L − z)−1 and eitL = pr eitL

provided z ∈ C− and t ≥ 0.

Proof. We fill the details of the sketch given in [5, Section 4]. Let Q := −iL, then Q is
maximal accretive. Define T , the Cayley transform of Q by

T := (Q− 1)(Q+ 1)−1 .

By [106, Section IV.4], it follows that T is a contraction which is defined everywhere on
H, that T does not have the eigenvalue 1 and that Q = (1 + T )(1 − T )−1.

1. We caution the reader that we follow the definitions of [106], which differ from the definitions of [105]
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Now by [106, Theorem I.4.2], T has a unitary dilation U , i.e. there exists a Hilbert
space G containing H and a unitary operator U on G such that

Tn = prUn for all n ≥ 1.

Moreover, since 1 is not an eigenvalue of T , 1 is not an eigenvalue of U (see [106, Proposition
II.6.1]). Now by [106, Theorem III.2.3.(g)], we have more generally a functional calculus
for T given by

g(T ) = pr g(U) for all g ∈ H∞
T ,

in a certain class H∞
T ⊂ H∞, see [106, Section III.2] for details (recall that the Hardy

space H∞ is the set of bounded holomorphic functions in D = {ζ : |ζ| < 1}).
Now since 1 is not an eigenvalue of T , the one-point set {1} is of measure 0 with

respect to the spectral measure ET corresponding to the unitary part of T . Therefore, by
the same [106, Theorem III.2.3], the class H∞

T contains the functions g ∈ H∞ that are
continuous on D̄ \ {1}. Now observe that Q = ω(T ), where ω(ζ) = 1+ζ

1−ζ . Since ω maps

D̄ \ {1} onto the closed half plane ∆̄ = {λ : Reλ ≥ 0}, the point z = ∞ not included,
it follows that f ◦ ω ∈ H∞

T for any bounded continuous f on ∆̄ which is holomorphic in
∆ = {λ : Reλ > 0}. In particular, if Im z < 0, then the relation holds for g = f ◦ω, where
f(λ) := 1

λ+iz and we get

(Q+ iz)−1 = f ◦ ω(T ) = pr f ◦ ω(U) = pr (Q + iz)−1 ,

where Q := (1 + U)(1 − U)−1. Thus,

(L− z)−1 = pr (L − z)−1 ,

where L := iQ.
Finally, since U is unitary and 1 is not an eigenvalue of U , we have by [32, Corollary

X.3.5] that L is self-adjoint. This completes the proof of the first assertion.
For the second one, given t ≥ 0, take f(λ) = e−tλ, which is bounded and continuous

on ∆̄ and holomorphic in ∆.

We note in passing that the above proof yields more generally a functional calculus for
maximal dissipative operators given by

f(L) = pr f(L) for any f ∈ H∞(C+) ,

where H∞(C+) is the set of bounded continuous functions on upper half plane C+ which
are holomorphic in C+.

We now describe the maximal dissipative operators to which we want to apply the
previous theorem. Note that if B ≥ δ > 0 is a bounded operator, then B is invertible:
injectivity is obvious, for surjectivity, note that Ran(B)⊥ = ker(B∗) = ker(B) = {0}.

Lemma B.3.2. Let R be a self-adjoint operator and let S ≥ 0 be a bounded operator.
Define L0 := R + iS and suppose B ≥ δ > 0 is a bounded operator. Then (L0 − zB) is
invertible for any z ∈ C−. Moreover, if L := B−1/2L0B

−1/2, then L is maximal dissipative
and

(L− z)−1 = B1/2(L0 − zB)−1B1/2 for any z ∈ C− .
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Proof. Let z = x− iy ∈ C−, where y > 0. Then (L0 − zB) = R̃+ iS̃, where R̃ = R− xB
and S̃ = S + yB are self-adjoint. Hence, given f ∈ D(L0),

‖(L0 − zB)f‖‖f‖ ≥ Im((L0 − zB)f, f) = Im((R̃f, f) + i(S̃f, f)) = (S̃f, f) ≥ yδ‖f‖2 .

Hence, (L0 − zB) is injective. Moreover, (Ran(L0 − zB))⊥ = ker(R̃− iS̃). But

‖(R̃− iS̃)f‖‖f‖ = ‖(iS̃ − R̃)f‖‖f‖ ≥ Im(((iS̃ − R̃)f, f)) ≥ yδ‖f‖2 ,

so ker(R̃− iS̃) = {0}. Thus, (L0 −zB) is invertible with ‖(L0 −zB)−1‖ ≤ (yδ)−1. Finally,

B1/2(L0 − zB)−1B1/2(L− z) = B1/2(L0 − zB)−1B1/2B−1/2(L0 − zB)B−1/2

= I = (L− z)B1/2(L0 − zB)−1B1/2 ,

so (L− z) is invertible for any z ∈ C− with the given relation. In particular, for z = −i,
we get that Ran(L + i) = H so that L is maximal dissipative by [106, Theorem IV.4.1]
(note that L is dissipative since ImL = B−1/2SB−1/2 ≥ 0).

Note that if B ≥ 0 is invertible, then B ≥ δ > 0 for δ = ‖B−1/2‖−2. Indeed,

(Bf, f) = (B1/2f,B1/2f) = ‖B1/2f‖2 ≥ ‖B−1/2‖−2‖B−1/2B1/2f‖2 = δ‖f‖2 .

A variant of the previous lemma appears in [2, Appendix B]. Namely, one can assume
instead that S ≥ δ > 0 and B ≥ 0. The proof becomes a bit more complicated, and the
conclusion only holds in (kerB)⊥.

B.4 Spectral averaging for general probability measures

We may now prove the spectral averaging estimate. We follow here the approach of
[105], but we slightly improve the upper bound.

We start with the following lemma. Recall that for a probability measure µ on R, we
denote by s(µ, ε) = supE∈R{µ(E,E + ε)}.

Lemma B.4.1. Let µ be a probability measure on R, λ > 0 and a ∈ R. Then for any
ε > 0, ∫

R

λε2

(t− a)2 + λ2ε2
dµ(t) ≤ π tanh π

λ
· s(µ, λε) .

Note that tanh π < 1.

Proof. We first note that R =
⋃
k∈Z Ik, where Ik :=

[
kλε+ a− λε

2 , kλε+ a+ λε
2

)
. Indeed,

given t ∈ R, we have for k := ⌊ t−aλε + 1
2⌋,

kλε+ a− λε

2
≤ (

t− a

λε
+

1
2

) · λε+ a− λε

2
= t

< (k + 1) · λε+ a− λε

2
= kλε+ a+

λε

2
.

Hence, using (4-5-2),
∫

R

λε2

(t− a)2 + λ2ε2
dµ(t) ≤ 1

λ

∑

k∈Z

∫

Ik

λ2ε2

(t− a)2 + λ2ε2
dµ(t)

≤ 1
λ
s(µ, λε)

∑

k∈Z

1
(k − 1

2)2 + 1
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since |Ik| = λε and (t− a) ≥ (k − 1
2)λε in Ik. Let f(z) = 1

(z− 1
2

)2+1
. Then f has no poles

in Z, so by the residue theorem (see e.g. [8, Section 11.2]), if zj are the complex poles of
f , we have ∑

k∈Z

f(k) = −
∑

zj

Res(f(z)π cot(πz); zj) .

For our f we have two poles, namely z1 = 1
2 + i and z2 = 1

2 − i. Now

Res(f(z)π cot(πz); z1) = lim
z→z1

(z − z1)π cot(πz)f(z) = lim
z→z1

π cot(πz)
z − z2

=
π cotπz1

2i
.

Similarly, Res(f(z)π cot(πz); z2) = π cotπz2
−2i . Hence,

−
∑

zj

Res(f(z)π cot(πz); zj) =
π

2i
(cotπz2 − cotπz1) .

Now observe that for z ∈ C, we have e2iz̄ = e−2iz, so that

cot z̄ = i
e2iz̄ + 1
e2iz̄ − 1

= −ie
−2iz + 1
e−2iz − 1

= −i1 + e2iz

1 − e2iz
= cot z

so noting that z2 = z̄1 we get

∑

k∈Z

f(k) =
π

2i
(cotπz1 − cotπz1) = −π Im cotπz1 .

Finally, if z = x+ iy, x, y ∈ R, then Re e2iz = cos(2x)e−2y and Im e2iz = sin(2x)e−2y, so

cot z = i
e2iz + 1
e2iz − 1

= i
(e2iz + 1)(e−2iz̄ − 1)
(e2iz − 1)(e−2iz̄ − 1)

= i
e−4y − 2i sin(2x)e−2y − 1
e−4y − 2 cos(2x)e−2y + 1

,

so for x = π
2 and y = π we get

cotπz1 = i
e−4π − 1

e−4π + 2e−2π + 1
= i

(e−2π − 1)(e−2π + 1)
(e−2π + 1)2

= i
e−2π − 1
e−2π + 1

= i
e−π − eπ

e−π + eπ
= −i tanh π .

Theorem B.4.2 (Spectral Averaging). Let µ be a probability measure on R, A a self-
adjoint operator and B ≥ 0 a bounded operator on H. Fix λ > 0 such that λB ≤ 1. Then
for any bounded interval I and any φ ∈ H we have

∫

R

(B1/2χI(A+ tB)B1/2φ, φ) dµ(t) ≤ 4
λ

‖φ‖2s(µ, λ|I|) .

By λB ≤ 1, we mean that (λBf, f) ≤ ‖f‖2 for all f . If ‖B‖ ≤ 1, we may take λ = 1,
otherwise we may take λ = 1

‖B‖ . Leaving the statement in terms of λ is more convenient

for applications because in general we have no upper bound on 1
‖B‖ .

Note that λ may be taken arbitrarily small to shrink the quantity λ|I|, which could
be useful. Moreover, our RHS is more or less independent of B, which is the estimate one
expects; see e.g. [109, Lemma 5.3.2] for the special case where dµ = g(x)dx.



160 Appendix B. Miscellaneous results

Proof. First note that for x ∈ I = (a, b) and ε := |I| = b− a we have

f(x) :=
∫

I
Im

1
x− E − iε

dE =
∫

I

ε

(x− E)2 + ε2
dE = tan−1(

b− x

ε
) − tan−1(

a− x

ε
) .

Writing x = ta+(1−t)b for some 0 ≤ t ≤ 1, this becomes (tan−1(t)+tan−1(1−t)) := g(t).
Since g′(t) = 1

1+t2
− 1

1+(1−t)2 = −2t+1
(1+t2)(1+(1−t)2)

, we see that g increases from 0 to 1
2 and

decreases from 1
2 to 1. Thus, g(t) ≥ min(g(0), g(1)) for all t ∈ [0, 1]. Since g(0) = g(1) =

tan−1(1) = π
4 , we finally get f(x) ≥ π

4 for any x ∈ I. By the functional calculus, this
implies that

χI(A+ tB) ≤ 4
π

∫

I
Im(A+ tB − E − iε)−1dE ,

thus

(B1/2χI(A+ tB)B1/2φ, φ) ≤ 4
π

∫

I
Im(B1/2(A+ tB − E − iε)−1B1/2φ, φ) dE .

Fix 0 < λ̃ < λ such that tanh π ≤ λ̃
λ , fix δ > 0 and let Bδ := B+ δ. Since λB ≤ 1, we may

choose δ small enough to ensure λ̃Bδ ≤ 1. Now if LE0 = −(A−E − iε(1 − λ̃Bδ)), then by
Lemma B.3.2, the operator LE0 − (t− iλ̃ε)Bδ is invertible and

(B1/2
δ (A+ tBδ − E − iε)−1B

1/2
δ φ, φ) = −(B1/2

δ (LE0 − (t− iλ̃ε)Bδ)−1B
1/2
δ φ, φ)

= −((LE − t+ iλ̃ε)−1φ, φ) ,

where LE = B
−1/2
δ LE0 B

−1/2
δ is maximal dissipative. So we may apply Theorem B.3.1 to

find a Hilbert space G containing H and a self-adjoint operator LE on G such that

((LE − t+ iλ̃ε)−1φ, φ) = ((LE − t+ iλ̃ε)−1φ, φ) =
∫

R

1
x− t+ iλ̃ε

dρEφ (x) ,

where ρEφ is the spectral measure of LE in the state φ. Hence, using Fubini Theorem and
Lemma B.4.1, we get

4
π

∫

R

∫

I
Im(B1/2

δ (A+ tBδ − E − iε)−1B
1/2
δ φ, φ) dEdµ(t)(⋆)

≤ 4
π

∫

R

∫

I

∫

R

λ̃ε

(x− t)2 + λ̃2ε2
dµ(t)dρEφ (x)dE

≤ 4 tanh π
λ̃

s(µ, λ̃ε)
1
ε

∫

I

∫

R

dρEφ (x)dE ≤ 4
λ

‖φ‖2s(µ, λε)

as 1
ε cancels |I|. Finally, as δ → 0 we have

‖B1/2
δ −B1/2‖ ≤ ‖Bδ −B‖‖(B1/2

δ +B1/2)−1‖ ≤ δδ−1/2 → 0,

since (B1/2
δ +B1/2) ≥ δ1/2. Moreover, by the second resolvent identity,

‖(A+tBδ−E−iε)−1−(A+tB−E−iε)−1‖ = ‖(A+tBδ−E−iε)−1(tδ)(A+tB−E−iε)−1‖ → 0

for any t ∈ R. So it follows from Lebesgue dominated convergence theorem that the
estimate (⋆) holds with B

1/2
δ replaced by B1/2 and we are done.
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B.5 A criterion to establish UP

We prove here the simple criterion that was derived in [20] to test uncertainty princi-
ples. We used this in Section 4.4.

Theorem B.5.1. Let H be a Hilbert space and H a self-adjoint operator on H which is
bounded below. Suppose W is a bounded self-adjoint operator and define

λ(t) := inf σ(H + tW ), t ≥ 0 .

Suppose that λ(t0) > ζ for some t0 > 0 and ζ ∈ R. Then for any interval I ⊂ (−∞, ζ] we
have

χI(H)WχI(H) ≥ γχI(H), γ :=
λ(t0) − ζ

t0
.

Proof. Let g ∈ D(H), I = [E1, E2] with E2 ≤ ζ and put gI := χI(H)g. Then

〈χI(H)WχI(H)g, g〉 =
1
t0

{〈(H + t0W )gI , gI〉 − 〈HgI , gI〉
}

≥ 1
t0

{
λ(t0) · ‖gI‖2 − 〈HgI , gI〉

}
.

But if ρg is the spectral measure of H in the state g, then

〈HgI , gI〉 =
∫ E2

E1

xdρg(x) ≤ E2

∫ E2

E1

dρg(x) ≤ ζ · ‖gI‖2 .

Hence
〈χI(H)WχI(H)g, g〉 ≥ γ · ‖gI‖2 = γ · ‖χI(H)g‖2

for any g ∈ D(H). As D(H) is dense, the same holds for any g ∈ H and we are done.

For completeness we give the following converse which was also derived in [20], never-
theless we give a different argument for the proof.

Lemma B.5.2. Let H be a Hilbert space and H a self-adjoint operator on H which is
bounded below and has a discrete spectrum. Suppose W ≥ 0 is bounded and define

λ(t) := inf σ(H + tW ), t ≥ 0 .

Suppose that in the interval I = [λ(0), E2] we have

χI(H)WχI(H) ≥ γχI(H)

for some γ > 0. Then λ(t) > λ(0) for all t > 0 2.

Proof. Let f ∈ D(H), put f1 = χI(H)f and f2 = χIc(H)f . Note that f2 = χ(E2,+∞)(H)f
since H has no spectrum below λ(0). Hence, if ρf is a spectral measure for H in the state
f , we have

〈Hf2, f2〉 =
∫ ∞

E2

xdρf (x) ≥ E2 · ‖f2‖2 ,

2. The reader may notice that compared to the article [20], we imposed the additional condition that
H has a discrete spectrum. Actually we also needed this condition to conclude the argument in [20], but
perhaps this is not necessary. In any case, this assumption is always satisfied in applications since H is
typically a Schrödinger operator restricted to a cube.
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and thus,

〈(H + tW )f, f〉 ≥ 〈Hf, f〉
= 〈Hf1, f1〉 + 〈Hf2, f2〉
≥ λ(0)‖f1‖2 + E2‖f2‖2

= λ(0)‖f‖2 + (E2 − λ(0))‖f2‖2 > λ(0)‖f‖2

provided f2 6= 0. On the other hand, if f2 = 0, then

〈(H + tW )f, f〉 = 〈Hf, f〉 + t〈Wf1, f1〉 ≥ λ(0)‖f‖2 + tγ‖f1‖2 = (λ(0) + tγ)‖f‖2 .

We thus showed that for any t > 0 and any f ∈ D(H), we have 〈(H+tW )f, f〉 > λ(0)‖f‖2.
In particular, if f is a normalized eigenvector of H + tW corresponding to E1(H + tW )
we get

λ(t) = E1(H + tW ) = 〈(H + tW )f, f〉 > λ(0)‖f‖2 = λ(0) .
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