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Résumé

Résumé

Ce travail est consacré a I’étude de certaines propriétés spectrales des opérateurs de
Schrodinger aléatoires. 11 est divisé en deux parties :

1. Une étude de la localisation d’Anderson pour des systemes multi-particules sur un

graphe quantique.

2. Une formulation abstraite de quelques estimées de Wegner, suivie par une liste d’ap-

plications pour des modeles concrets.

Au Chapitre [T]on essaie d’introduire les probléemes et les résultats de la theése de fagon
élémentaire.

La premiere partie occupe les chapitres [2] et [3l Le Chapitre [2] consiste essentiellement
en notre article “Anderson Localization for a multi-particle quantum graph” [97] sur le
sujet. Au Chapitre [3] on discute quelques propriétés supplémentaires du modele, et on
donne surtout des démonstrations alternatives de certains résultats du Chapitre

La deuxiéme partie occupe les chapitres [4] et [f| Le Chapitre [d] reproduit essentielle-
ment notre article “Some abstract Wegner estimates with applications” [98]. Au Chapitre
on poursuit ’étude des estimées de Wegner, en donnant notamment quelques théoremes
abstraits supplémentaires dans la Section [5.2] et encore d’autres applications dans la Sec-
tion

On conclut avec deux annexes [A] et [B] Dans la premiére on expose de maniére tres dé-
taillée les développements en fonctions propres généralisées. Dans I’ Annexe[B] on démontre
quelques résultats classiques utilisés dans le texte.

Mots-clefs

Opérateurs de Schrodinger aléatoires, graphes quantiques, localisation d’Anderson,
estimées de Wegner.
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Study of Localization for Disordered Systems on Quantum
Graphs

Abstract

This work is devoted to the study of some spectral properties of random Schrédinger
operators. It is divided into two parts:

1. A study of localization for multi-particle systems on quantum graphs.

2. An abstract formulation of some Wegner estimates, followed by a list of applications
for concrete models.

In Chapter [1| we try to introduce the problems and the results of this thesis in an
elementary way.

The first part occupies chapters [2] and [3] Chapter [2] essentially reproduces our arti-
cle “Anderson Localization for a multi-particle quantum graph” [97] on this subject. In
Chapter [3] we discuss some additional properties of our model, and we give alternative
proofs to some results of Chapter

The second part occupies chaptersfdandf] Chapter 4 essentially reproduces our article
“Some abstract Wegner estimates with applications” [98]. In Chapter [5| we continue the
study of Wegner estimates by giving more abstract theorems in Section [5.2] and yet more
applications in Section [5.3

We conclude with two appendices [A] and [B] In the first one we explain the theory
of generalized eigenfunction expansions in great detail. In Appendix [B] we prove some
classical results used in the text.

Keywords

Random Schrédinger operators, quantum graphs, Anderson localization, Wegner esti-
mates.
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I nt ro d UCt iO 1n (version Francaise)

0.1 Généralités

0.1.1 Opérateurs de Schrodinger aléatoires

On étudie dans cette these quelques aspects de la théorie spectrale des opérateurs de
Schrodinger aléatoires. Un but de cette théorie est de comprendre la conductivité électro-
nique d’un point de vue mathématique. Une des découvertes fondamentales en physique
est que le désordre peut supprimer le transport électronique dans un semi-conducteur.
Plus précisément, il y a deux situations dans lesquelles on s’attend & ce qu'une onde ne se
propage plus a travers un matériau cristallin et devient piégée ou localisée :

e ou bien 'onde possede une faible énergie,

e ou bien le désordre ou les impuretés dans le solide ont dépassé une certaine valeur
critique.

La premiere interprétation théorique de ce phénomeéne a été donnée en 1958 par le
physicien P. W. Anderson [6], ce qui lui a valu le prix Nobel. D’autres physiciens ont aussi
largement contribué a I’étude de problémes analogues, parmi lesquels on cite N. F. Mott.

0.1.2 Localisation

D’un point de vue mathématique, on se donne un espace de Hilbert associé au modéle,
et le probleme est d’étudier les propriétés spectrales de certains opérateurs différentiels dé-
crivant la propagation de 'onde dans le solide. Plus précisément, un Laplacien (—A) modé-
lise I’énergie cinétique de la particule, un potentiel fixé V} représente le champ produit par
les ions du solide, et le désordre dans le milieu peut étre interprété comme une perturbation
aléatoire V(w). Ceci donne un opérateur de Schrodinger aléatoire H(w) := —A+Vy+V (w).

Sous certaines conditions d’ergodicité, on peut montrer que presque tous les H(w)
possédent le méme spectre ; on parle alors d’un spectre presque sir. Méme sans ergodicité,
on peut parfois montrer que le bas du spectre est le méme pour presque tous les H(w).
Soit I un intervalle qui contient presque siirement du spectre.

o Une premiere indication de la localisation est que H(w) posseéde presque siirement un
spectre purement ponctuel dans I. On parle alors de localisation spectrale dans 1.

o L’étape suivante est d’établir la localisation exponentielle, i.e. de montrer que presque
stirement, les fonctions propres qui correspondent & des énergies dans I décroissent de
fagon exponentielle.

o Enfin, pour comprendre 1’évolution des états de H(w), on peut considérer 1’équation
de Schrodinger dépendant du temps et établir la localisation dynamique. Grosso modo,
cela veut dire que si un état initial posseéde une énergie dans I, et s’il est localisé dans
un domaine borné, alors il ne quittera pas beaucoup ce domaine & mesure que le temps
passe.
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En supposant que les variables aléatoires modélisant le désordre sont i.i.d. avec une
distribution commune Holdérienne, les différents aspects de la localisation ont été établis
pour beaucoup de modeles sur £2(Z%) et L?(R?), comme prévu

e dans des intervalles proches du bas du spectre presque str de 'opérateur de Schrédinger
aléatoire (qui est la zone dans laquelle les fonctions propres ont de faibles énergies)

e dans le cas ou 'ampleur du désordre dans le potentiel aléatoire est tres grande.

L’historique de ces preuves est long ; mentionnons simplement les méthodes applicables
en toute dimension, a savoir l'analyse multi-échelle introduite par Frohlich et Spencer
dans [46] et améliorée plus tard dans une série de papiers, en particulier [I12] et [47], et
la méthode des moments fractionnaires introduite par Aizenmann et Molchanov dans [3]
pour des modeles discrets, et adaptée pour des modeles continus dans [2].

Si les variables aléatoires sont discretes (e.g. des variables de Bernoulli), la localisation
est beaucoup plus difficile & établir. En 2005, Bourgain et Kenig [I5] ont enfin réussi a
démontrer la localisation exponentielle au bord du spectre pour des modeéles de Bernoulli
sur L?(R%). Ce résultat a plus tard été renforcé par Germinet et Klein, qui ont démontré
entre autres la localisation dynamique pour ce modeéle dans [48]. Il n’y a toujours pas de
preuve de localisation pour des modeles de Bernoulli sur ¢2(Z%), d > 2.

0.1.3 Graphes Quantiques

Une question naturelle a présent, motivée entre autres par la nanotechnologie, est d’étu-
dier différentes formes du semi-conducteur. Les graphes quantiques apparaissent lorsqu’on
essaie de comprendre la propagation des ondes a travers un systéeme quasi unidimensionnel
qui ressemble & un graphe.

On appelle graphe quantique un triplet (£,V, H), ou (£,V) est un graphe, avec un
ensemble de sommets V et un ensemble d’arétes £. Une longueur [, est attribuée a chaque
aréte e, et H est un opérateur de Schrodinger opérant sur @ece L%(0,1.). Bien que le
terme “graphe quantique” semble d’introduction récente dans la littérature mathématique,
I’étude des équations différentielles sur un graphe date des années 80; on trouvera un
apergu dans [90].

Pour vérifier la localisation sur de telles structures, on peut interpréter les impure-
tés comme étant des sources d’aléa dans le graphe. Pour des graphes quantiques mono-
particules avec V = Z¢, la localisation au bas du spectre a été démontrée pour un modele
a potentiel aléatoire dans [42], pour un modele a constantes de couplage aléatoires dans
[71], et pour un modele a longueurs d’aréte aléatoires dans [72]. Quelques résultats ont
aussi été obtenus dans [4] et [55] pour des arbres aléatoires.

Décrivons un modele simple. Soit V = Z¢, (hj)?zl la base canonique de Z? et soit

E={(m,j):mezljec{l,... d}},

ou (m,j) désigne I'aréte entre m et m + h;. Ainsi, on a une aréte entre chaque paire de
sommets voisins. On regarde a présent chaque aréte comme un segment de longueur 1 :
notons [m,m+ h;| = {(1 —t)ym+t(m+h;) :t € [0,1]} = {m+th; : t € [0,1]}. On définit
F(l) = U [m, m + hj]
meZd,je{l,....d}
={reR:3Imeczjc{l,...,d},0<t<1, tels que x =m + th;}.
') représente simplement la structure géométrique sous-jacente au graphe (&,V). Si

d =1, alors ') = R. Une partie de (£,V) et de I'™) est donnée dans les Figures [1| et
respectivement, lorsque d = 2.
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[ J [ J
FIGURE 1 — Une partie de (£,V) quand d = 2.

C R?

FIGURE 2 — Une partie de 'Y quand d = 2.

En tant que partie de R%, ') hérite la métrique donnée par la norme sup de R?.

Soit H = @eee L?(0,1). La mesure de Lebesgue sur [0,1] induit une mesure natu-
relle sur ' qu'on note m™®. On verra au Chapitre [2| que H s’identife facilement A
LT, dmM). Soient ¢_,q; € R, ¢ < ¢4, et soit p une mesure de probabilité sur
R de support [q_,q.]. Considérons I'espace de probabilité (Q,P), ot Q := [¢_,q4]¢ et
P = ®cee p. Alors étant donné w = (we) € 2, on définit 'opérateur de Schrodinger H (w)
par

H(w) = (fe) = (—fd +wefe),
de domaine

2.2 pour tout v € V, f est continue en v,
D(H(w)) =1 f=(f) € aw (OD) et S fO)— 5 f/(1)=0.

EILE=V ETE=V

Ici o(m,j) = m et 7(m,j) = m + h; représentent les sommets de départ et d’arrivée
d’une aréte (m,j). Les conditions aux limites dans D(H (w)) sont connues sous le nom
de conditions auz limites de Kirchhoff. Noter que ce sont ces conditions qui refletent la
connectivité du graphe. Ce modele a été étudié en 2007 par Exner, Helm et Stollmann.
IIs ont démontré dans [42] que H(w) posseéde un spectre presque sir ¥ au bas duquel on
a localisation exponentielle et localisation dynamique.

0.2 Graphe quantique multi-particule

Dans la premiere partie de cette these, on étudie I'analogue multi-particule du modele
décrit dans la Section On parle d’un graphe quantique multi-particule pour souli-
gner le fait que non seulement l'opérateur H change dans ce cas, mais que la structure
géométrique I' change elle aussi, a savoir, on n’a plus de collection de sommets et d’arétes.
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0.2.1 Le modeéle

Pour étudier 'interaction entre deux particules, I'une sur une aréte e, ’autre sur une
aréte eg, on devrait intuitivement considérer le couple (e1,ez). Ainsi, au lieu d’étudier
une collection d’arétes £, on devrait a présent étudier une collection de couples d’arétes,
ou de rectangles par identification. On obtient ainsi une sorte de réseau de rectangles.
Plus généralement, pour étudier 'interaction entre N particules, on devrait considérer un
réseau de pavés droits de dimension N. Ceci est seulement I'image intuitivelﬂ

Plus formellement, si 'V ¢ R? est ’ensemble introduit dans la Section alors
I'espace de Hilbert & considérer pour I'étude d’un systéme mono-particule sur I'M) est
Hy = LW, dmM). La mécanique quantique nous dit alors que 'espace de Hilbert cor-
respondant a N particules distinguables, chacune vivant dans I'M, est le produit tensoriel
Hy =H1®...® Hi. En prenant le produit cartésien

M) .=1® x  xT® c (RHY

et la mesure produit m := mM @ ... @ m®, on peut identiﬁer Hy avec LZ(F(N), dm).
Tout point x = (z1,...,2N) € I'™) prend la forme z, = mk+tkhjk, avec my, € Z%, tF €
[0,1] et jr € {1,...,d}. Ainsi, si pour m = (my,...,my) € (ZYN et j = (j1,...,jn) €

{1,...,d}" on pose
Km,j = [ml,ml + hj1] X ... X [mN,mN + th],

ona TW) = Ume@d)~ jeqt,..dpN Fm,j- On peut donc voir '™ comme un couple (K,S),
ou K est une collection de cubes x de dimension N de volume 1 et S est I’ensemble des
bords o de ces cubes.

Pour d = 1 et N = 2, on a clairement I'® = R2. Le couple (K,S) correspondant a
I'®) est décrit dans la Figure |3} Pour d = 2, I'® est une collection infinie de plans qui
s’entrecroisent dans R*.

K K K
Y K K
K K K

FIGURE 3 — Le couple (K, S) correspondant a I'® pour d = 1. Il ’agit d’une collection de
carrés k dont les coins sont dans Z2 et qui recouvrent R2.

Chaque o est 'union fermée de 2N “faces ouvertes” o', i.e. ¢ = U;5". Par exemple, si
o est le bord de ki j, alors ot = {m1} x (mg,ma +hj,) X ... X (my,my + hj,) et sa face
opposée est o) = {my + hj, } x (ma,ma + hjy) X ... x (my, mn + hjy).

Le cube Ky j sera noté k = ((ma, j1),...,(mn,jn)). Avec la notation des arétes e, =
(mg, ji), ceci devient k = (e, ...,en).

1. Notons que Nicaise est probablement le premier & avoir étudié de fagon systématique les problemes
aux limites sur des réseaux polygonaux, voir [85]. On note aussi un article récent [I4] ou des interactions
singuliéres entre deux particules sur un graphe quantique compact ont été considérées.

2. Voir par exemple [93] Theorem II.10].
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Introduisons & présent notre opérateur de Schrodinger & N-particules H™) (w). Cela
nous donnera un graphe quantique N -particule (K, S, HN)).

Fixons ¢, ¢+ € R, gq— < ¢4 et prenons une mesure de probabilité p sur R de support
[g—, g+]. Considérons I'espace de Hilbert H = @xexc L2((0,1)V). 1l peut étre facilement
identifié & I'espace L2(T™) dm) décrit précédemment, comme on verra au Chapitre
Soit (Q,P) I’espace de probabilité donné par Q := [¢_,¢] et P := ®ccg p. Alors pour
w = (we) € €2, Popérateur de Schrodinger est défini via la forme

hc(uN) [fa g] = Z [<vfm v9n> + <Vl~:)fﬁ)gf€>}v

KEK

de domaine

D(h&N)) _ {f = (f.) € @K Wl,g((o’ 1)N) f est continue sur chaque o*, } .
KE

> okek HfHHI%VlE < o0

La continuité sur o* signifie que si o est une face commune a k1 et kg, alors fu,|,i = fiylyi
au sens des traces.

Iei V¥ = U,gN) + W, ouU (N) > 0 est un potentiel d’interaction non-aléatoire. L’hy-
pothése importante sur U est qu'il est de portée finie. Par exemple, si N = 2, cela
signifie qu’il existe ro > 0 tel que pour tous z1,zs € I'D, z, = my, + tkhjk on ait

o1 — @] > 10 = UP(w1,22) = UL (#,#) =0,

m,j

ot | - |:=| - ||oo est la norme sup de R%. Cela signifie qu'il n’y a pas d’interaction entre
deux particules en des positions respectives x1 et xo éloignées.
W est un potentiel multi-particule aléatoire. Si k = (ey,...,en), alors W := w,, +

...+ wey . Voyons le cas le plus simple d = 1 et N = 2 dans la Figure

Iil = (61, 62)

ey k' ey K>

K2 = (e3,€2)
€1 €3

FIGURE 4 — Deux carrés k' et k2 partageant une aréte es.

Ici f.1 est multipliée par we, + we, et f.2 est multipliée par we, + we,. Ainsi, il n’y a
pas d’indépendance & distance : si k! et k2 partagent une aréte es, on aura toujours le
terme we,, méme si k' et k2 sont treés éloignés.

11 est assez facile de voir que b&N) correspond & 'unique opérateur auto-adjoint H) (w)
donné par

HM(w) : (fo) = (FA+VE) )

sur un certain domaine D(H ™) (w)). La forme explicite de D(H ™) (w)) ne semble pas étre
une question facile ; voir le Chapitre 2]

0.2.2 Reésultats principaux

Voici les résultats principaux qu’on a obtenus dans [97] et qu’on reprend ici au Cha-
pitre [2l Tout d’abord, le bas du spectre est déterministe :
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Théoréme 0.2.1. Il existe Qo C Q avec P(Qg) =1 tel que pour tout w € Qp :
[Ng-,Ng] € o(H™M(w)) C [Ng-, +00).
En particulier, inf o (HN)(w)) = Nq_ presque sirement.
Ensuite, en supposant que p est Holdérienne, le bas du spectre est localisé :

Théoréme 0.2.2 (Localisation exponentielle). Il existe eg = eo(N, d,q—,19) > 0 et m > 0
tels que pour presque tout w le spectre de HN)(w) dans I = [Nq_, Nq_ +&o] soit purement
ponctuel et les fonctions propres qui correspondent d des valeurs propres dans I soient a
décroissance exponentielle de taux m.

Théoréme 0.2.3 (Localisation dynamique HS-forte). Il existe £g = eo(N,d,q—,r9) > 0
tel que pour I = [Nq_, Nq_ + £¢], on ait pour toute partie bornée K C I'N) et tout s > 0,

B{ sup 1X7 (@) PN < oo

ot (X)) (x) := |x|-p(x) pourp € L2(T'WN), dm), E,, est la projection spectrale de HN) (w)
et on prend le sup sur toutes les fonctions boréliennes, || f|| :== || f|loo-

Dans le cas particulier ou IV = 1, ces théoremes sont plus forts que le résultat principal
de [42], d’abord parce qu’on les établit sans la condition technique (37 > % s (lg—yg- +
h]) < h”™ pour h petit), ensuite parce que la localisation dynamique est démontrée en
norme Hilbert-Schmidt.

0.2.3 Idées de la preuve

La preuve de ces théorémes est basée sur 'analyse multi-échelle multi-particule dé-
veloppée par A. Boutet de Monvel, Chulaevsky et Suhov dans [27] et [19]. L’analyse
multi-échelle devient remarquablement plus compliquée dans le cas multi-particule car on
perd l'indépendance a distance. Le passage des bornes fournies par ’analyse multi-échelle
a la localisation s’appuie sur I’approche de Germinet et Klein [47].

Avant d’adapter ces méthodes aux graphes quantiques multi-particules, il y a une liste
de choses a vérifier. Voici les difficultés principales qu'on rencontre en passant de T'M) &
V),

Tout d’abord, pour 'estimée de Combes-Thomas, on a besoin de bien controéler I’expo-
sant de décroissance, car ici I'estimée de Combes-Thomas est utilisée non seulement pour
obtenir le pas initial, mais aussi dans la récurrence multi-échelle elle-méme. Grosso modo,
I'exposant doit dépendre (comme d’habitude) de la distance de I'énergie au spectre, mais
pas de la valeur absolue de I’énergie. On a réussi a obtenir une telle estimée en utilisant
les semi-groupes, via une estimée améliorée de Davies-Gaffney.

Ensuite, on a dii démontrer quelques estimées de trace nécessaires pour obtenir des
développement en fonctions propres généralisées.

Puis il y a l'inégalité de décroissance des fonctions propres (EDI) : dans la preuve
usuelle, on a besoin de savoir que les fonctions propres généralisées sont régulieres, disons
localement de classe W2, Cependant, pour utiliser 'approche de Germinet et Klein,
on a besoin du développement en fonctions propres généralisées attribué d’habitude a
Berezansky (voir [I1]), dont les fonctions ne sont pas forcément régulieres. Au lieu de
démontrer qu’elles sont bien réguliéreslﬂ on a réussi a prouver EDI en contournant ce

3. Plus tard on a démontré dans le Chapitre [3| que les fonctions propres généralisées sont régulieres.
Cependant, comme le lecteur verra, il est plus simple et plus naturel de raisonner directement avec des
approximations, sans faire usage de la régularité.
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probléme a aide d’approximations dans 1’espace de Hilbert négatif (i.e. celui dans lequel
les fonctions propres généralisées vivent).

Enfin, on avait besoin d’un pas initial pour H) plus fort que celui démontré dans [42],
c’est pourquoi on a démontré des asymptotiques de type Lifshitz. L’argument perturbatif
qu’on utilise pour les obtenir dans L?(R?) marche aussi ici, mais & un moment donné, on a
besoin de connaitre la largeur du trou spectral entre les deux premieres valeurs propres de
H® restreint & un graphe fini. Il se trouve que ce probléme a déja été étudié en géométrie
riemannienne, et une fagon d’estimer ce trou spectral est via I'inégalité de CheegerE]. Cette
inégalité a plus tard été démontrée par Nicaise pour les graphes quantiques finis [84], et
elle est aussi apparue dans un article de Post [91].

Cela concerne les principales difficultés. Il y a aussi d’autres détails a régler pour pou-
voir commencer ’analyse multi-échelle ; il faut notamment obtenir I’inégalité géométrique
de la résolvante (GRI), ainsi que l'estimée de Wegner. Pour GRI, noter qu’en plus de
I’inégalité habituelle dont on a besoin pour les mono-particules, on a aussi besoin d’une
nouvelle inégalité dans le cadre multi-particule, qui compare les fonctions de Green as-
sociées a certains N-cubes a celles associées aux n-cubes pour n < N. Pour Wegner, la
différence principale dans le cadre multi-particule, est qu’on a besoin d’étre siir que le po-
tentiel aléatoire est bien distribué dans n’importe quelle direction mono-particulaire. Plus
précisément, 'estimée de Wegner dont on a vraiment besoin n’est pas une espérance sur
tout l'espace {2, mais plutét une espérance conditionnelle. Ceci est nécessaire pour pouvoir
obtenir plus tard ’estimée de Wegner a deux volumes.

0.2.4 Variations

Au Chapitre [3| on propose quelques variations sur ces résultats. Notamment, on dé-
montre la localisation exponentielle et dynamique sans faire usage de fonctions propres
généralisées. Cependant, cette approche n’établit la localisation dynamique qu’en norme
d’opérateur. On explique aussi a quel point on peut étendre nos résultats lorsque la dis-
tribution p des variables aléatoires est seulement log-H&ldérienne. Enfin, on donne une
estimée de Combes-Thomas valable pour des énergies dans un trou spectral quelconque,
mais le prix & payer est que la preuve est assez compliquée.

0.3 Estimées de Wegner abstraites

Dans la deuxiéme partie de cette these, on formule quelques estimées de Wegner abs-
traites, puis on les applique a des modeles concrets.

0.3.1 Estimées de Wegner en général

Le but des estimées de Wegner est d’obtenir de bonnes bornes sur le nombre moyen
de valeur propres d’'un opérateur de Schrodinger aléatoire Hp(w) restreint & un cube A
dans un intervalle donné I. Plus précisément, si x7(Hj(w)) est la projection spectrale de
Hy (w) sur I, alors on cherche des estimées du type

E{tr[xr(Ha(w)]} < Ow - [A|* - |17

pour certains Cy > 0, o > 1 et 8 > 0. De telles estimées peuvent étre utilisées dans une
preuve de la localisation via ’analyse multi-échelle, ou dans 1’étude de la continuité de la
densité d’états intégrée (IDS) si a = 1.

4. On donne une approche différente dans 1’Annexe [B} qui s’appuie sur I'inégalité de Faber-Krahn.
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0.3.2 Motivation

La motivation pour ce travail est venue encore une fois des graphes quantiques. Une
particularité trés intéressante des graphes quantiques est qu’on peut considérer un aléa
non seulement dans le potentiel, mais aussi dans le graphe lui-méme. Cela donne naissance
a deux nouveaux modeles : les graphes quantiques & constantes de couplage aléatoires
(RCM, i.e. conditions aux limites aléatoires) et les graphes quantiques & longueurs d’aréte
aléatoires (RLM) ; voir [55], [T1] et [72] pour des résultats de localisation pour ces modeles.

Je me suis intéressé dans un premier temps aux articles [72] et [78] qui étudient les
RLM. Ces travaux établissent beaucoup de résultats y compris la localisation au bord du
spectre et la continuité de I'IDS. Je me suis concentré sur I'estimée de Wegner, qui m’est
parue trés intéressante car ces modeles dépendent du parameétre aléatoire de maniere assez
insolite.

La description précise de ces modeles prendrait trop de place, donc je vais simplement
mentionner deux astuces principales qui ont été appliquées dans ces travaux pour obte-
nir 'estimée de Wegner. Dans [72], I'idée était d’établir une relation entre 'opérateur de
Schrédinger H (I4) sur le graphe quantique @eee L2(0,1¢) et un homologue discret M (I, I)
qui agit sur 'ensemble des sommets, i.e. sur 'espace de Hilbert ¢2(V). Ici I est I'intervalle
ol on voudrait avoir une estimée de Wegner. Ceci a un peu simplifié la tache, car pour des
sous-graphes finis (Ex,Vy), Uespace £2(Vy) est de dimension finie. Cependant, la dépen-
dance de M (I1*,I) en [* = (I¢) devient difficile (des termes comme (sin [*)~! apparaissent),
donc il faut concevoir de nouveaux arguments.

Dans [78], I'idée était de travailler avec les variables aléatoires (Inl¥).ce au lieu des
variables (I%)cce. La dépendance en le parametre aléatoire devient alors plus simple, et
quelques relations précises entre les valeurs propres peuvent étre obtenues. L’espace de pro-
babilité doit évidemment étre modifié de facon analogue. Mais la conclusion n’est toujours
pas immédiate, car la dépendance en le parametre aléatoire reste inhabituelle.

Les deux travaux supposaient que les variables aléatoires (1) étaient i.i.d. avec une dis-
tribution commune absolument continue. Je me suis alors demandé si on pouvait affaiblir
cette condition et travailler avec une distribution Holdérienne.

Une autre motivation est venue des opérateurs de Schrodinger usuels sur ¢£2(Z%) et
L?(R?), mais dont le potentiel aléatoire ne recouvre pas l'espace. Pour ces opérateurs, les
preuves disponibles sont compliquées si on ne suppose pas que la mesure de probabilité a
une densité, voir e.g. [30].

0.3.3 Résultats

L’article [98] tente de donner un traitement simple et unifié pour les modeles précé-
dents.

Espaces de Hilbert de dimension finie

On donne d’abord une estimée de Wegner pour certains opérateurs auto-adjoints aléa-
toires sur un espace de Hilbert de dimension finie. On ne suppose pas que la distribution
a une densité.

Comme application, on donne des estimées de Wegner optimales pour le modele d’An-
derson discret multi-particule, et ceci pour trois cas différents :

— Si le potentiel aléatoire recouvre Z¢, i.e. s'il existe ¢ > 0 tel que V¥ = Y aezd Walla,

Uq > € O, On Obtient des estimées & un volume et a deux volumes valables pour un
intervalle d’énergie quelconque.
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— Sinon, si la perturbation est négative et portée par un demi-espace, on donne une
estimée de Wegner au bas du spectre. On montre qu’elle est non-triviale, i.e. que
I'intervalle considéré contient bien du spectre.

— Enfin, si la perturbation est positive, on a encore des bornes optimales, mais pour
montrer qu’elles sont non-triviales, on utilise un résultat de [37], ot les auteurs consi-
derent des perturbations positives portées par des ensembles de Delone (exemple de
potentiel sans recouvrement).

Notons que les demi-espaces qu’on a considérés dans le cas de perturbations négatives
ne sont pas des ensembles de Delone, et que les ensembles de Delone ne sont pas non plus
des demi-espaces. Ainsi on peut dire que notre article [98] d’une part, et les articles [37] et
[94] d’autre part, se complétent. Enfin, soulignons que toutes ces estimées supposent que
le potentiel en chaque site est positif (il est important qu’il ne change pas de signe).

Plus tard on donne au Chapitre [5| plusieurs variations sur le théoréme abstrait, y
compris une adaptation du résultat de [30] aux espaces de dimension finie.

Espaces de Hilbert séparables

On passe ensuite plus généralement aux espaces de Hilbert séparables et on donne
deux estimées. La premiere n’a presque pas de restriction sur 'intervalle d’énergie et sur
la forme du parametre aléatoire, mais elle suppose qu’on a une forme de monotonie et de
recouvrement. La deuxieéme est un peu plus restrictive sur I'intervalle et sur la forme du
parametre aléatoire, mais elle n’a pas besoin de recouvrement.

On applique la premiére estimée aux RLM de [72]. On obtient alors une réponse po-
sitive & notre question initiale concernant ce modeéle : l'estimée de [72] peut en effet étre
généralisée pour des distributions Holdériennes. En particulier, cela permet d’étendre les
résultats de localisation de cet article a de telles distributions (si la constante de couplage
est positive).

On applique notre deuxieme estimée aux RCM, ainsi qu’aux Hamiltoniens continus
multi-particules sans condition de recouvrement. Ici on a encore deux situations : pour
une perturbation négative portée par un demi-espace, on démontre une estimée de Wegner
au bord du spectre, et on montre qu’elle n’est pas triviale. Pour les perturbations positives,
on doit supposer que le bord du spectre est fluctuant. Cependant, la situation ici est bien
meilleure que dans le cas discret, car dans L?(R?), une grande classe d’opérateurs ont un
bord fluctuant, notamment les potentiels de Delone et de surface ; voir [62, Theorem 2.2],
[21, Sections 4,5] et [66, Lemma 4.2].

Notons que, contrairement au cas discret, les bornes qu’on obtient ici ne sont pas
optimales, car la dépendance en le volume |A| n’est pas linéaire. Ces estimées ne peuvent
donc pas étre utilisés pour étudier la densité d’états intégrée, mais elles sont néanmoins
suffisantes pour établir la localisation.

Comparons rapidement nos résultats a la littérature. Sauf erreur, les potentiels a demi-
espace n’ont pas été considérés avantﬂ ainsi notre résultat concernant les perturbations
négatives semble nouveau. Pour les perturbations positives, notre résultat est trés proche
de celui de [20]. Cependant, cet article utilise les résultats de [30], qui sont assez compliqués.
On prend une approche complétement différente pour démontrer notre théoréeme, et notre
preuve est assez élémentaire. Néanmoins, 'article [20] a ’avantage de fournir une estimée
de Wegner optimale, ce qui le rend utile pour I’étude de la densité d’états intégrée. Notre
estimée pour les RCM semble nouvelle.

5. Notons que ces potentiels entrent dans le cadre de l'article [63], mais ici on montre qu’il y a bien du
spectre dans l'intervalle d’énergie considéré, une question qui ne semble pas étre abordée dans [63].
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Enfin, pour les opérateurs de Delone sur L?(R?), les papiers récents [95] et [66] arrivent
a étendre les estimées de Wegner a des intervalles arbitraires, pas seulement au bord du
spectre. Ainsi, dans le cas de ces opérateurs, notre résultat donne un cas particulier de
ces papiers, mais notre preuve est trés différente (par exemple, [66] utilise les résultats de
[30], ainsi qu’un résultat récent [16]).

Soulignons encore une fois que tous ces théoremes supposent que le potentiel en chaque
site est positif. Cette hypotheése est légérement affaiblie dans [95], mais elle ne disparait
pas complétement.

Esquissons maintenant les preuves de nos théoremes généraux. La premiere estimée
suit d’une variation facile du lemme de Stollmann [I03]; il faut simplement faire attention
a des questions de mesurabilité. La deuxiéme borne est basée sur deux idées : d’abord
travailler avec les variables aléatoires (Inw;); au lieu de (w;); comme dans [78]. Ensuite,
modifier le lemme de Stollmann pour qu’il puisse traiter des dépendances diagonales plus
générales.

Il est assez curieux qu’on n’ait pas réussi a appliquer notre théoréme au modele de [78)]
qui nous a pourtant inspiré une partie de la preuve. Le probléme est que, pour ce modéle,
le domaine de l'opérateur H(4,) dépend de £,,. On explique en détail cette difficulté dans
la Section [5.4

0.4 Perspectives

Il y a beaucoup de questions qui devraient encore étre abordées dans les deux études.

0.4.1 Graphes quantiques

Ici on a seulement étudié le graphe quantique multi-particule le plus simple. Il y a deux
questions naturelles :

(i) d’abord la géométrie,
(ii) ensuite les conditions aux limites.

Pouvons-nous facilement adapter notre preuve pour traiter de cas plus généraux ? Ou est
ce qu’une situation vraiment difficile apparait ? Il semblerait que ces deux questions aient
été étudiées récemment dans le cas mono-particule dans le travail de Schubert [99], qui
pourrait fournir un bon point de départ.

Nous pensons qu’une simple généralisation de la géométrie, e.g. des pavés droits au
lieu de cubes, devrait étre immédiate. Nous pensons aussi qu’on pourrait donner des
volumes variés aux cubes élémentaires, voire leur donner des volumes croissants, peut-étre
qu’en contre-partie la localisation ne sera plus exponentielle mais polynomiale. Cependant,
des géométries trop générales pourraient détruire 'ergodicité. Il sera donc important de
déterminer des géométries qui nous donnent au moins un bas du spectre non-aléatoire.

Pour les conditions aux limites, on perdra peut-étre les Lifshitz-tails; il faut regarder
de plus pres. Il faudra aussi arranger quelques lemmes techniques.

Enfin, il y a le fait qu’on a utilisé dans plusieurs endroits le plongement dans ’espace
euclidien, mais ceci pourrait probablement étre évité sans trop de difficulté. En particulier,
il nous semble plausible que, pour étudier des systemes multi-particules sur un graphe
quantique quelconque, on devrait étudier un réseau de pavés droits. En effet, on a un
isomorphisme canonique entre L( My, duy) ® L?(Ma, dus) et L?(M;y x Ma, duy ® djz) pour
des espaces mesurés quelconques (M7, p1) et (Ma, p2), donc en particulier pour des réseaux
unidimensionnels munis de la mesure de Lebesgue.



0.4. PERSPECTIVES 23

Tout ceci concerne la localisation ; on pourrait aussi s’intéresser aux statistiques spec-
trales des valeurs propres.

0.4.2 Estimées de Wegner

Pour la deuxieme étude, il y a au moins trois questions.

D’abord, pouvons-nous modifier les théoréemes abstraits, ou en prouver d’autres, qui
soient capables de traiter les Hamiltoniens dont le potentiel aléatoire change de signe ? ou
plus généralement, des opérateurs qui ne dépendent pas de facon monotone du désordre ?
A notre connaissance, il n’existe pas a ce jour d’estimées de Wegner pour de tels modeles
si on ne suppose pas que la distribution des variables aléatoires possede une densité, du
moins pour L?(R%). Ceci nous semble donc un probléme trés intéressant & étudier. On tente
de le résoudre dans la Section Les articles [38], [69, 54, 11T, 110, [75, B9] pourraient
peut-étre nous permettre d’aller plus loin.

La deuxieme question concerne la non-linéarité des estimées de Wegner dans le cas
d’espaces de Hilbert séparables. Ce probléme apparait car on utilise une version modifiée
du lemme de Stollmann pour contréler les valeurs propres. Pouvons-nous nous débarrasser
de ce phénomene ? Faudrait-il d’abord manipuler la trace de la projection spectrale avant
d’utiliser ce lemme, un peu comme on a fait pour les espaces de dimension finie ? Faudrait-
il plutot modifier le lemme de Stollmann lui-méme ? Ce lemme est déja optimal, mais si
on a plus d’informations sur les valeurs propres, on pourrait peut-étre ajouter quelques
hypotheses a ce lemme qui nous donnerait alors une meilleure conclusion. Ou est-ce indis-
pensable de prendre une approche completement différente 7 Cette question vaut la peine
d’étre résolue, car elle pourrait ouvrir une nouvelle porte a 1’étude de la continuité de la
densité d’états intégrée.

La troisieme question est la suivante : nos estimées de Wegner dans le cas d’espaces de
Hilbert séparables s’appliquent a des potentiels trés généraux, mais elles ne sont valables
que pour des intervalles au bas du spectre. La question est de savoir si on peut donner une
preuve aussi élémentaire de 1'estimée de Wegner, mais cette fois en toute énergie, si on
considere une classe de potentiels sans recouvrement mais qui possede quelque périodicité
comme dans [30]. L’éventuelle non-linéarité serait sans doute un prix raisonnable & payer
si la preuve est élémentaire.






Chapter 1

Introduction

1.1 Background

1.1.1 Random Schrodinger operators

In this thesis we study some aspects of the spectral theory of random Schrédinger
operators. One aim of this theory is to get a mathematical comprehension of conductivity
in disordered solids. One of the fundamental findings of physics is that disorder can
suppress the transport properties of a medium. More precisely, there are two situations
in which one expects a wave to stop traveling through a crystalline material and become
trapped or localized:

e cither the wave has a low energy,
e or the disorder or impurities in the solid have passed a certain critical value.

The first theoretical interpretation of this phenomenon was given in 1958 by the physicist
P. W. Anderson [6], who was later awarded the Nobel Prize for his contributions to this
field. Other physicists have also largely contributed to related problems, in particular N.F.
Mott.

1.1.2 Localization

From a mathematical point of view one considers a Hilbert space associated to the
model, and the problem is to study the spectral properties of certain differential operators
describing the propagation of the wave in the solid. More precisely, a Laplace operator
(—A) models the kinetic energy of the particle, a fixed potential V| represents the field
given by the ions in the solid, and the disorder in the medium can be interpreted as a
random potential perturbation V' (w). This yields a random Schrédinger operator H(w) =
—A+Vo+ V(w).

Under some assumptions of ergodicity, it can be shown that almost all H(w) possess
the same spectrum; one then speaks of an almost sure spectrum. Even without ergodicity,
one can show sometimes that the lower part of the spectrum is the same for almost all
H(w). Let I be an interval that contains some spectrum almost surely.

o A first indication of localization is for H(w) to exhibit pure point spectrum almost surely
in I, in which case ones speaks of spectral localization in I.

o A step further is to establish exponential localization, i.e., to show that almost surely,
the eigenfunctions corresponding to energies in I decay exponentially fast.
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o Finally, to understand the evolution of the states of H(w), one may consider the time-
dependent Schrodinger equation and establish dynamical localization. Roughly speak-
ing, this means that if an initial state has an energy in I and if it is localized in a
bounded domain, then it will not leave this domain too much as time goes on.

Assuming the random variables modeling the disorder are i.i.d. with a common distri-
bution which is Holder continuous, the different aspects of localization have been proven
to hold for many models in ¢?(Z%) and L?(R?), as expected

e in intervals near the bottom of the almost sure spectrum of the random Schrédinger
operator (which is the zone in which the eigenfunctions have low energies)

e in the case where the disorder amplitude of the random potential is very large.

Such proofs have a long history; let us only mention the ones applicable in any dimension,
namely the multiscale analysis proof introduced by Frohlich and Spencer in [46] and later
improved in a series of paper, in particular [I12] and [47], and the fractional moments
method introduced by Aizenman and Molchanov in [3] for models on ¢?(Z?) and later
adapted to L2(R?) in [2].

If the random variables are discrete (e.g. Bernoulli random variables), a proof of
localization is much more difficult. It was proven in 2005 by Bourgain and Kenig [I5] that
exponential localization holds near the bottom of the spectrum for Bernoulli models on
L%(R%). This result was later extended by Germinet and Klein, who proved dynamical
localization for this model, among other results in [48]. A proof of localization is still
missing for Bernoulli models on ¢2(Z%) with d > 2.

1.1.3 Quantum graphs

A natural question now, motivated by nanotechnology among others, is to investigate
different shapes of the semiconductor. Quantum graphs arise when one wants to under-
stand the propagation of waves through a quasi-one-dimensional system that looks like a
thin neighborhood of a graph.

A quantum graph is a triple (£,V, H), where (£,V) is a graph, with a vertex set V
and an edge set £. Each edge e is assigned a length [, and H is a Schrodinger operator
acting on @.ce L2(0,1.). While the term “quantum graph” seems to have been introduced
quite recently in the mathematical literature, the study of differential equations on graphs
actually goes back at least to the early 1980s, see [90] for a review.

To verify localization on such structures, one may interpret the impurities as sources
of randomness in the quantum graph. For models with a Z¢ structure, localization near
the spectral edge has been established for a random potential model in [42], for a random
vertex coupling model in [71], and for a random edge length model in [72]. Related results
were obtained in [4] and [55] for random quantum tree graphs.

Let us describe a simple model. Let V = Z¢, (hj)?zl be the canonical basis of Z¢ and
let

E={(m,j):mezijec{l,... d}},

where (m, j) denotes the edge between m and m + hj. We thus have one edge between
each pair of neighbouring vertices. We now regard each edge as a segment of length 1: let
[m,m+ hj] :={(1 —t)m+t(m+h;):t€[0,1]} = {m +th;:tc[0,1]}. We define

r = U [m,m + h;]
meZd je{l,...,.d}

d d
={zeR":ImeZ%je{l,...,d},0 <t <1, such that z = m + th;}.
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Figure 1.1: Part of (£,V) when d = 2.

c R?

Figure 1.2: Part of ™) when d = 2.

I'M is simply the underlying geometric structure of the graph (&, V). If d = 1, then
') = R. A part of (£,V) and I'") is given in Figures and respectively, when
d=2.

As a subset of R?, T'M) inherits the metric given by the supremum norm of R%,

Let H = ®cee L?(0,1). The Lebesgue measure on [0, 1] induces a natural measure on
'™ which we denote by m). As shown in Chapter [2] it can easily be shown that H can
be identified with LQ(F(D, d’m(l)). Let ¢ < g+ € R and let i be a probability measure on
R with support [¢_,q.]. Consider the probability space (Q,P), where Q := [¢_, ¢, ]¢, and
P := ®cce . Then given w = (we)eee € 2, the Schrodinger operator H(w) is given by

H(w) : (fe) = (_ é/ +Wefe)7
with domain

22 for each v € V, f is continuous at v,
D(H(w))=1f=(f) € aw (O.D) ] and 5 0V = S f/(1)=0

€eLe=v EITE=V

Here «(m,j) = m and 7(m,j) = m + h; represent the initial and terminal vertices of
an edge (m,j). The boundary conditions in D(H (w)) are known as Kirchhoff boundary
conditions. Note that it is such boundary conditions that reflect the connectivity of the
graph. The above model was studied in 2007 by Exner, Helm and Stollmann, and they
proved in [42] that H(w) has an almost sure spectrum ¥, and that both exponential and
strong dynamical localization hold near the lower edge of .

1.2 Multi-particle quantum graphs

In the first part of this thesis, we study the N-particle analog of the model described
in Section [I.1.3] We call it a multi-particle quantum graph to emphasize the fact that not
only the Schrodinger operator H changes in this case, but also the geometric structure I,
namely it is no longer a collection of vertices and edges.
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1.2.1 The model

To study the interaction between two particles, one lying on an edge e; and the other
lying on an edge eg, one intuitively has to consider the couple (ej,e2). So instead of
studying a collection of edges £, one now has to study a collection of edge couples or rect-
angles by identification. So one obtains a kind of two-dimensional network of rectangles.
More generally, to study the interaction between N particles, one will have to consider an
N-dimensional network of rectangular boxes. This is just the intuitive picturelﬂ

More formally, if ') € R? is the set introduced in Sectionm7 then the Hilbert space
one considers for the study of 1-particle systems on T') is H; = LT (1),dm(1)). Now
quantum mechanics tells us that the Hilbert space corresponding to N distinguishable
particles, each living in T is the tensor product Hy = Hi ® ... ® Hi. Taking the
cartesian product

rM) =10 x xT® c (RHY

and the product measure m := m(V@...@mM, H may be identiﬁedwith L2(TWM) dm).
Each x = (z1,...,zx) € I'™) takes the form z;, = my + tkhjk, for some my, € Z¢,
je € {1,...,d} and t* € [0,1]. Hence, if for m = (mq,...,my) € (ZHN and j =

(j1,---,3n) €1{1,...,d}N we put
Kmj = [m1,m1 + hj] X ... x [my,mny + hjy],

we have T(V) = Ume@a)V,jeq,...a}V fmj- We may thus regard '™ as a couple (K,S),
where IC is a collection of N-dimensional cubes x of unit volume and S is the set of the
boundaries o of these cubes.

For d = 1 and N = 2, we clearly have I'® = R2. The couple (K,S) corresponding to
I'® is described in Figure For d = 2, I'® consists of an infinite collection of sheets
intersecting each other in R*.

K K K
K K K
K K K

Figure 1.3: The couple (K,S) corresponding to I'® for d = 1. It is an infinite collection
of squares x cornered in Z? and covering R?.

Each o is a closed union of 2N “open faces” ¢°, i.e. o = U;a'. For example, if o is
the boundary of i j, then o' = {mq} x (ma,ma + hj,) X ... X (my,my + hjy) and its
opposite face is g°t) = {mi 4+ hj } x (ma,ma + hj,) x ... x (mn,mn + hjy).

The cube kp,j will be denoted & = ((m1,41), ..., (mn,jn)). With the edge notation
er = (mg, ji), this becomes k = (e, ..., en).

1. Let us mention here that the first systematic study of boundary value problems on two-dimensional
polygonal networks probably appeared in the works of Nicaise, see [85]. We also record the recent article
[14] which considers compact quantum graphs with singular two-particle interactions.

2. See for example [93, Theorem II.10].
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Let us now introduce our N-particle Schrodinger operator H®V) (w). This will give us
a multi-particle quantum graph (K,S, HN)).

Fix g_,q+ € R, g < g4+ and let pu be a probability measure on R with support [g_, g].
Now consider the Hilbert space H := ®.cxc L? ((0, nHy ). This space can easily be identified
with L2(I'™), dm) as shown in Chapter 2l Let (Q,P) be the probability space given by
Q= [¢_,q:]¢ and P := ®cce . Then for w = (w.) € Q, the Schrodinger operator is
defined via the form

h((A;N) [fa g] = Z [<vfm v9n> + <V;)fl'€)g:‘€>}7

KEK

with domain

(N _ ) ¢ 12 Ny | f is continuous on each o,
D(b,") = {f— (fx) € oW ((0,1)M) }

Znelc an||12/vl2 <00

Continuity on ¢ means that if ¢ is a common face to k1 and kg, then Jrilgi = fralyi in
the trace sense.

Here V¥ := U,.gN) + W, where U™) > 0 is a non-random interaction potential. The
important assumption on U is that it has a finite range. For example, for N = 2, this
means that there exists an rg > 0 such that for any x1,z9 € F(l), T = My +tkhjk we have

|21 — @2 > 10 = U (21,20) = Ué?,ij(tl,ﬂ) =0,

where | - | := || - ||oo is the sup norm of RY. Thus, there is no interaction between two
particles at respective positions x1 and zo which are far apart.
W is a multi-particle random potential. If k = (e1,...,en), then W¥ :=we, + ...+

wey - Again look at the simplest case d =1 and N = 2 in Figure

k' = (e1,e2)

€9 /il €9 /{2

k2 = (e3,e2)
€1 €3

Figure 1.4: Two squares x' and 2 sharing an edge es.

Here f,1 is multiplied by we, 4+ we, while f,2 is multiplied by we, + we,. We thus see
there is no independence at a distance: if k! and x? share an edge e, then no matter how
far k! and x? are, one always has the term we,.

It is quite easy to see that f)SJN) corresponds to a unique self-adjoint operator H®) (w)
given by

HN (W) 1 (f) = (FA+VE) f)

on a certain domain D(H ™) (w)). The explicit form of D(H™)(w)) seems to be a subtle
question; see Chapter
1.2.2 Main results

Here are the main results we give in Chapter |2, which were obtained in [97]. First of
all, the lower part of the spectrum is deterministic:
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Theorem 1.2.1. There exists Qo C Q with P(Qo) = 1 such that for allw € Qq :
[Ng—, Ngy] C o(HM (w)) € [Ng_, +00).
In particular, inf o(H™N) (w)) = Nq_ almost surely.
Then, assuming p is Holder continuous, we have localization near the spectral bottom:

Theorem 1.2.2 (Exponential localization). There exists g = e9(N,d,q—,19) > 0 and
m > 0 such that for a.e. w the spectrum of HN)(w) in I = [Nq_, Nq_ + o] is pure point
and the eigenfunctions corresponding to eigenvalues in I decay exponentially with mass
m.

Theorem 1.2.3 (Strong HS-dynamical localization). There exists eg = o(N,d,q—,ro) >
0 such that for I = [Nq—, Nq— + e¢|, we have for any bounded K C I'™) and all s > 0,

E{ sup X721 (@) Eu(DxxI3} < oo,

where (X9)(x) 1= |x|-1(x) forp € L2(TWN) dm), E,, is the spectral projection of H) (w)
and the supremum is taken over bounded Borel functions, ||f|| := || f|lco-

In the special case where N = 1, these theorems are stronger than the main result
of [42], first because they hold without the technical disorder assumption (37 > % :
p([g—,q— + h]) < A" for small h), next because strong dynamical localization holds in the

Hilbert-Schmidt norm.

1.2.3 Ideas of the proof

The proof of these theorems is based on the multi-particle multi-scale analysis devel-
oped by A. Boutet de Monvel, Chulaevsky and Suhov in [27] and [I9]. The multi-scale
induction becomes significantly more involved in the multi-particle setting because one
loses the independence at a distance. The passage from multiscale analysis bounds to
localization is based on the approach of Germinet and Klein [47].

Before adapting these methods to multi-particle quantum graphs, there is a list of
input to verify. Here are the main difficulties that lie in the passage from I'D) to (V).

First of all in the Combes-Thomas estimate, we need to have a good control on the
decay exponent, because here the Combes-Thomas estimate is used not only to derive the
initial length scale estimate, but also in the multiscale induction itself. Roughly speaking,
the exponent should depend (as usual) on the distance of the energy to the spectrum,
but not on the absolute value of the energy. We derived such a Combes-Thomas estimate
using semigroups, via an improved Davies-Gaffney estimate.

Next we had to derive some trace estimates which are necessary to obtain generalized
eigenfunction expansions.

Next there is the eigenfunction decay inequality (EDI): in the usual derivation, one
needs to be sure that the generalized eigenfunctions have some regularity, say they are
locally of class W12, However, to use the approach of Germinet and Klein, we needed
the generalized eigenfunction expansion usually attributed to Berezansky (see [11]) whose
functions are not a priori regular. Instead of proving they are indeed regularﬂ we were

3. We later proved in Chapter that the generalized eigenfunctions are regular. But as the reader will
see, it is simpler and more natural to reason directly with approximations, without relying on regularity.
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able to derive EDI by means of approximations in the negative Hilbert space (that is, the
Hilbert space in which the generalized eigenfunctions live).

Finally we needed a stronger initial length scale estimate for H(!) than the one proved
in [42] and this is why we proved some Lifshitz-type asymptotics. The perturbation
argument used to derive them in the continuum also works here, but at some point one
needs to know the width of the gap between the first two eigenvalues of H() restricted to
a finite graph. It turns out that this problem had been studied in Riemannian geometry,
and one way to estimate this gap is by means of Cheeger Inequalityﬂ This inequality was
later proved for finite quantum graphs by Nicaise in [84] and it also appeared in an article
by Post [91].

These are the main difficulties. There are also some details to settle to obtain the rest
of the input, namely the geometric resolvent inequalities and the Wegner estimate. For the
former, note that besides the usual resolvent inequality needed for single-particle models,
one needs an additional one in the multi-particle setting, namely one that compares the
Green functions of a certain type of N-cubes to those of n-cubes for n < N. A Combes-
Thomas estimate with a good exponent enters again in the proof. For the latter, the
main difference in the N-particle setting is that one needs to make sure that the random
potential is well distributed in any 1-particle direction. More precisely, the Wegner bound
one really needs for localization is not one that estimates the probability on the whole
space (1, but a stronger conditional one instead. This is needed to prove the two-volume
bound later on.

1.2.4 Variations

In Chapter we give a variation of these results. Namely, we are able to prove
exponential localization and strong dynamical localization of any order without relying on
generalized eigenfunction expansions. However, using this approach, we cannot achieve it
in the Hilbert-Schmidt norm. We also explain how far our results can be generalized if
the distribution of the random variables is only log-Hélder continuous. Finally, we give
a Combes-Thomas estimate which is valid for energies in arbitrary spectral gaps, but the
price to pay is that the proof becomes quite complicated.

1.3 Abstract Wegner estimates

The second part of this thesis is concerned with the formulation of some abstract
Wegner estimates and their application to concrete models.

1.3.1 Wegner estimates in general

The objective of Wegner estimates is to derive good bounds on the average number
of eigenvalues of a random Schrédinger operator Hy(w) restricted to a cube A in a fixed
interval I. More precisely, if x7(Hx(w)) is the spectral projection of Hj(w) onto the
interval I, then one seeks estimates of the type

E{tr[xr(Ha(w)]} < Cw - A% - |17

for some Cy > 0, @ > 1 and 8 > 0. Such estimates can be used in a proof of localization
via multiscale analysis, or in the study of continuity properties of the integrated density
of states (IDS) if o = 1.

4. We give a different approach in Appendix [B} which goes by the name of Faber-Krahn inequality.
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1.3.2 Motivation

The motivation for this work came again from quantum graphs. A very interesting
feature of quantum graphs is that one can study randomness not only in the potential,
but also in the graph itself. This gives rise to two new models: quantum graphs with
random vertex couplings (RCM, i.e. random boundary conditions) and quantum graphs
with random edge lengths (RLM); see [55], [71] and [72] for localization results for these
models.

I was first interested in the RLM, so I studied the articles [72] and [78]. These works
establish many results including localization near the spectral edge and continuity of the
IDS. I focused on the Wegner bound, which I found to be particularly interesting as the
dependence on the random parameter becomes quite unusual for such models.

The precise description of these models would be too long, so I will only discuss two
major tricks that were applied in these works to obtain the Wegner bound. In [72], the idea
was to establish a relationship between the Schrodinger operator H(I*) on the quantum
graph @ece L?(0,1%) and a discrete counterpart M (I, I) which acts on the set of vertices,
i.e. in the Hilbert space ¢2(V). Here I is the interval where the Wegner bound is to be
established. This simplified the task a little bit, because for finite subgraphs (Ex, Vy),
the space £2(V,) is finite-dimensional. However, the dependence of M (I, I) on [* = (I¥)
becomes difficult (terms like (sin{%)~! arise), so new arguments have to be conceived.

In [78], the first idea was to work with the random variables (Inl¥).ce instead of the
random variables (I%)cce. This makes the dependence on the random parameter simpler,
and some precise relationships between the eigenvalues can be derived. Of course the
probability space needs to be modified in a corresponding way. The conclusion is not
immediate because even with this, the dependence on the random parameter is unusual.

Both works assumed the random variables (I¥') are i.i.d. with an absolutely continuous
distribution. So I asked myself how we could relax this condition and work with a Holder
continuous distribution.

A second motivation came from the usual Schrodinger operators on ¢2(Z%) and L?(R%),
but which have no covering condition (i.e. the single site potentials do not cover all points
in Z¢ or all regions in R? respectively). For these operators the available proofs of the
Wegner bound are complicated if one does not assume the probability measure has a
density, see e.g. [30].

1.3.3 Results

We attempt to give a simple and unified treatment for these models in the paper [9§].

Finite-dimensional Hilbert spaces

We first derive a Wegner bound for some random self-adjoint operators on a finite-
dimensional Hilbert space. We do not assume the distribution of the random variables
has a density.

As an application, we give optimal Wegner bounds for the discrete multi-particle An-
derson model for three different cases:

— If there is a covering condition, i.e. if there exists ¢ > 0 such that V¥ = 3" 74 wata,

Uq > € Oq, We obtain both one-volume and two-volume bounds for arbitrary energy
intervals.

— Otherwise, if the perturbation is negative and supported on a half-space, we give a

Wegner bound near the spectral bottom. We show it is non-trivial, i.e. the interval
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we consider does contain some spectrum.

— Finally, if the perturbation is positive, we still have an optimal bound, but to il-
lustrate that it is non-trivial, we use a result from [37], where the authors consider
positive perturbations supported on Delone sets (which are examples of random
potentials with no covering condition).

Let us mention here that the half-space potentials we considered in the case of negative
perturbations are not Delone potentials, and that Delone potentials are not half-space
potentials either. So one can say that our paper [98] on one hand and the papers [37]
and [94] on the other hand complement each other. Finally, let us mention that all these
bounds assume the single-site potential has a fixed sign.

Later on we give in Chapter [5| many variations of the abstract theorem, including an
adaptation of the result of [30] to finite-dimensional spaces.

Separable Hilbert space

Next we consider the more general framework of separable Hilbert spaces and give two
bounds. The first one has almost no restriction on the energy interval or the form of the
random parameter, but requires a form of monotonicity and covering. The second one is
a bit more restrictive on the interval and on the form of the random parameter, but does
not require covering.

We apply the first bound to the RLM of [72]. This gives us a positive answer to
our initial question concerning this model: the bound of [72] can indeed be generalized
to Holder continuous distributions. In particular, this allows to extend the localization
results of this paper to such distributions (if the coupling constant is positive).

We apply the second bound to RCMs, and also to continuum multi-particle Hamilto-
nians with no covering condition. Here we have again two situations: for negative pertur-
bations supported on half-spaces, we prove a Wegner bound near the spectral bottom of
the random operator, and we show it is non-trivial. For positive perturbations, our bound
is only non-trivial for Schrédinger operators in the fluctuation boundary regime. However,
here the situation is much better than in the lattice, because a large class of operators
with no covering condition in the continuum satisfy this regime. Namely, potentials with
some periodicity [62, Theorem 2.2], surface potentials and Delone potentials [21] Sections
4,5] and the general crooked potentials [66, Lemma 4.2].

Let us note that in contrast to the lattice case, the bounds that we obtain here are
not optimal, namely the dependence on |A| is not linear. But this is still sufficient for
localization purposes.

Let us briefly compare our results with the literature. It seems that half-space and
related potentials were not considered beforeEL so our result for negative perturbations
seems to be new. For positive perturbations, our result is very close in spirit to [20].
However this paper builds on the results of [30], which are technically involved. We take
a completely different approach to prove our theorem, and our proof is quite elementary.
Still, the paper [20] has the advantage of providing a linear dependence on |A|, which
makes it suitable for the study of the integrated density of states. Our estimate for the
RCMs appears to be new.

Finally, let us mention that in the case of Delone operators in the continuum, the
very recent papers [95] and [66] were able to extend Wegner estimates to arbitrary small
intervals, not just intervals near the spectral bottom. Thus, in the case of continuum

5. Such potentials fall within the framework of [63], but here we show that there is indeed some spectrum
in the considered energy interval, a question which does not appear to be addressed in [63].
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Delone operators, our result is a special case of these papers, but our proof is very different
(for example, [66] builds on the results of [30] and uses a recent result [16]).

Let us emphasize again that all these results assume the single-site potential has a
fixed sign. This assumption is relaxed a little bit in [95], but does not disappear.

Let us discuss the proofs of our general theorems. The first bound follows from an easy
variation of Stollmann’s Lemma [103]; one should just pay attention to some measurability
issues. The proof of the second bound is based on two tricks: first as in [78] work with
the random variables (Inw;); instead of (wj);, next modify Stollmann’s Lemma to make
it work for more general diagonal dependencies.

It is quite curious that we could not apply this theorem to the model of [78] which
inspired us part of the proof: the problem of this model is that the domain of the random
operator H (¢,) depends on {,. We explain this issue in detail in Section

1.4 Perspectives

There are many questions which are still waiting for an answer in both works.

1.4.1 Quantum graphs

Here we only studied the most simple multi-particle quantum graph. There are two
natural questions:

(i) first the geometry,
(ii) second the boundary conditions.

Can the proof be easily modified if they are generalized? Or does a really difficult situation
occur? It seems both questions are explored for single-particle models in the recent work
of Schubert [99], which could provide a good starting point.

We think that simple generalizations of the geometry, e.g. rectangular boxes instead of
cubes, should be straightforward. We also think one could assign many different volumes
for the elementary cubes, perhaps even make them grow; maybe as a compromise the
decay of the eigenfunctions would no longer be exponential but polynomial. Note however
that too general geometries may destroy the ergodicity. So it will be important to search
for geometries which give us at least a spectral bottom which is not random.

For the boundary conditions, we might lose the Lifshitz tails; one should take a closer
look at the proof. A few technical lemmas will also need to be modified.

Finally there is the fact that we used the embedding in the Euclidean space in many
situations, but this can probably be avoided without much difficulty. In particular, it seems
plausible that, to study multi-particle systems on any quantum graph, one should work
with a network of rectangular boxes. Indeed, we have a canonical isomorphism between
L?(My,duy) ® L?(Ms, dus) and L?(My x Ma, du1 ® dys) for any measure spaces (My, 1)
and (Ma, u2), so in particular for networks with the 1-dimensional Lebesgue measure.

All this concerns localization; one could also investigate the spectral statistics of the
eigenvalues.

1.4.2 Wegner estimates

For the second work there are at least three questions.
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First, can we modify the abstract theorems, or prove new ones, which are capable of
treating Hamiltonians with sign-changing potentials? or more generally, operators with
non-monotone dependence on the random variables? To the best of our knowledge, the
problem of deriving a Wegner bound for such models without assuming the distribution
has a density is still open, at least in the continuum. So that’s a question which we think
will be very interesting. We attempt to solve it in Section The papers [38], (69, 54,
1111, [1T0, [75, [39] may allow us to go further.

The second question concerns the non-linearity issue in the Wegner bound for separable
Hilbert spaces. This problem arose because we make use of a modified version of Stoll-
mann’s Lemma to control the eigenvalues. Can we get rid of this phenomenon? Should
we first manipulate the trace of the spectral projection before using this lemma, like we
did in the case of finite-dimensional spaces? Should we modify Stollmann’s lemma itself?
This lemma is already optimal, but maybe if we find better properties of the eigenvalues
in question, we could add more hypotheses to the lemma and obtain a linear bound. Or
should we think of a totally different approach? Solving this question is worth the effort
because it can open a new road to the study of the continuity of the integrated density of
states.

The third question is the following: our Wegner bound for separable Hilbert spaces is
valid for very general potentials, but only holds for intervals near the spectral edge. So
the question is whether we can give a similarly short proof of a Wegner bound, but this
time at all energies, if we consider potentials that have some periodicity as in [30]. The
eventual non-linearity in |A| will certainly be a reasonable price to pay if the new proof is
elementary.






Chapter 2

Localization for a Multi-Particle
Quantum Graph

2.1 Multi-particle Quantum Graphs

In this chapter we study localization for (K, S, H (N )), the multi-particle quantum graph
introduced in Section We shall construct it again in this section and recall the main
results, because we omitted some details in Chapter [1| to simplify the exposition.

2.1.1 1-Graphs

Our building block is the quantum graph (£, V) of [42], given by the vertex set V = Z¢
and the edge set £ of all line segments of length 1 between two neighbouring vertices.
This graph is naturally embedded in R? and we denote by I'D) ¢ R? the image of the
embedding. To describe I'") explicitly, let (hj);l:l be the standard basis of Z¢. Then

TV = {z € RY: & = m + th; for some m € Z%,j € {1,...,d} and t € [0,1]} .

We denote the edge between m and m + hj by e = (m, j). Such an edge is identified
with the interval [0, 1] by sending & = m + th; € e to the point ¢. The Lebesgue measure
on [0,1] then induces a natural measure on I'D which we denote by m().

A function f on ') induces a sequence (f.), fe : (0,1) — C by setting f(z) =: fim) ()
when x = m + th;, for some m € Z% and t € (0,1). As equality in L? is a.e., this in turn
identifies L?(T™M, dm®) with @.ce L(0,1).

Now fix ¢—,q+ € R, g— < g+ and let p be a probability measure on R with support
[¢_,q;]. Consider the Hilbert space H := @.ce L?(0,1), the probability space (,P),
where Q := [¢_, ¢;]¢ and P = ®cc¢ i, and given w = (w,) € , define the form

bDf, 9] = D (L gh) + (wefe,ge)], DY) = whAr W),

ecf

where

wh2(rWy .= {f €& W1’2(071)‘ d

is continuous at each v € V,
eef ‘

Peee I fellfyra < 00

1.If A cT®, then A = UAej for some disjoint Ae; C ej. Each Ae; = Be; C [0,1] and we set
mM(A4) =3 |B,|.
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This form corresponds to the self-adjoint operator H(w) : (f.) = (—f" 4+ wefe) with
Kirchhoff boundary conditions (i.e. if f € D(H™M(w)) and v € V, then f is continuous at
v and satisfies Z;lzl flo.)(0) = Z?:l f(’v_hj’j)(l) = 0). It is shown in [42] that H(")(w) has
an almost sure spectrum ¥ = [¢_, 4+00) and that localization holds near ¢_.

2.1.2 n-Graphs

Let us emphasize that throughout this chapter and the next one, the number of par-
ticles
N is fixed.

We will need to consider Hamiltonians H (™ (w) for 1 < n < N because we will later deduce
some spectral properties of H™)(w) from those of H™ (w).

So let us fix 1 < n < N and consider n-particle systems. Formally, quantum mechanics
tells us that the Hilbert space corresponding to n distinguishable particles, each living in
M is the tensor product L2(T'M dmM) ... ® L2(TM, dm"). Taking

r.=1® x  xT®W and m™ =mWe...eom,

this space may be identified with L?(T'), dm().

If (hj)?zl is the canonical basis of Z%, then each point x = (z1,...,z,) € ['™ takes
the form xy, = my, +t*h;, for some my, € Z%, t* € [0,1] and ji € {1,...,d}. By varying t*
from 0 to 1, we thus obtain a cube x which may be identified with [0, 1]™ by sending such
an x to (t',...,t"). Thus, we may regard I'™ as a couple (K, S), where K is a collection
of n-dimensional cubes k and S is the collection of the boundaries o of k.

For d =1, T'® = R2. If we regard it as a couple (K,S), then it consists of unit squares
covering R? and cornered in Z2. For d = 2, let z,y, 2, t be the coordinate axes of R*. Then
I'® lives in the planes zz, xt, yz and yt, and all their Z*-translates, and consists of unit
squares cornered in Z*. Squares in the planes xy and zt (and their Z*-translates) are not
allowed More generally, I'® lives in the translates of d? planes in R?? and each affine
plane is an infinite collection of .

For n = 3, the only case that can be visualized is that of d = 1, in which case I'®) = R3,
and is regarded as the set of all cubes of unit volume cornered in the lattice Z3.

If the points of k take the form (z1,...,z,) with xp = my + tkhjk for some my, € Z9,

k€ 0,1] and jx € {1,...,d}, we will denote x = ((m1,751), ..., (Mn,jn)). Hence, any
k € K may be written as k = (e, ..., ey,) for some e; € £.

A function f on T'™ induces a sequence (f,{) fre + (0,1)" — C by setting f(x) =:
f((m1,j1),...,(mn,jn))(tl’ ..., t") when x), = my, + tFh;,, for some my € Z¢ and t* € (0,1).
As equality in LP is a.e., this in turn identifies LP (T, dm(™) with @.cx LP(0,1)" for
1< p < og, where | (fo)lh = S el %oy

Each ¢ is the closed union of 2n “open faces” o which may be identified with (0, 1)"~!

Given x = (z1,...,2,) € '™ c R™ and a partition {1,...,n} = J U J¢, we put
g = (zj)jes, vge = (z;)jese and define

dist(z7,27¢) := min{|z; — x;] :i € J,j € T}, where |y| := [|y||loo for y € RY.

2. Here we identified (R?)? with R* via ((a,b), (¢,d)) — (a,b,¢,d). If (a,b, ¢,d) € T® then (a,b) € TV,
so (a,b) = (m1,m2)+s1(1,0) or (a,b) = (m1,m2)+s1(0, 1) for some m1, ma € Z and s; € [0,1]. Similarly,
for (¢,d), so we may find m; € Z and s € [0,1] such that (a,b,¢,d) = (m1 + s1,m2, m3 + s2,m4) or
(m1, ma+ s1,m3 + s2, mq) or (M1 + s1, ma, M3, M4+ s2) or (M1, M2+ s1, m3, ma + s2). By varying si from
0 to 1, we obtain squares in the planes zz, yz, xt and yt respectively, but never in the planes xy or zt.
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Now fix ¢_,q+ € R, g_ < ¢y, and let u be a probability measure on R with support
[q_,q+]. Consider the probability space (2, P) with Q := [¢_,q.]¢, P := ®ecce p, the
Hilbert space H := @rex L2(0,1)", and given w = (w.) € €, define the form

b9 =Y (Ve Vge) + (VE farge)],  DOW) = wh2(rM),
rEK

where

i tinuous on each o*
wh2(rm)y .— e @ Wh2((0,1) f is con ’
( ) f reK (( ) ) ZI{E’C ||f:‘€”?}[]12 < 00

By continuity on ¢’ we mean that whenever ¢ is a common face to x; and ks, then
Jrilpi = fralyi in the trace sense The potential is given by V¥ := U™ + W, where
WY is an n-particle random potential, W& := we, + ... + we,, if & = (e1,...,e,). The
sequence (Ué")) is induced from a non-random interaction potential U™ : T'(®) — R with
the following properties:

(1) U™ is bounded and non-negative: there exists ug > 0 such that
0<UM™(x)<uy  forxel™ .
(2) U™ has finite range there exists 19 > 0 such that
dist(z7,27¢) > rg = UM (x) = U™ (z5) +U") (2 50)

for any partition {1,...,n} = J U J° with |J| =n' and |JT¢| =n".

(3) There is no one-particle potential:
v =o.
For n = 2, U® is thus function satisfying for (x1,z2) € T(® c (R%)?
0<UP(2y,20) Sup and oy — 2| 219 = UP(21,20) = 0.

Notice that if |[x; — 2| > 7o for all i # j, then UM (x) = UM (z1) + ... + UD(x,) = 0.
Condition (2) says that more generally, if 7 and z s are far apart, then U decouples
as prescribed.

We may assume that ro € N; if this is not the case, we just consider |rg| + 1, where
|z | denotes the integer part of x € R.

Theorem 2.1.1. Given w € Q, b&") is closed, densely defined and bounded from below.
The unique self-adjoint operator H™ (w) associated with h&") is given by

HM (W) (fo) = (“Afa +VEF),  for (fo) € DIH™ (w)).

Proof. See the Appendix, Theorem O

3. This means that if v : Wh2((0,1)™) — L?*((0,1)" ") is the trace operator, then v(fu; ) (%) = (fis ) ()
for a.e. z € 0.

4. This includes the 2-body interaction potentials U™ (x) = Zl<i<j<n F(z;—x;), where F : T 5 R
satisfies F(y) = 0 if |y| > ro. Indeed, if dist(zs,z7¢) > ro, then we will have F(x; — ;) = 0 whenever
i€ Jand j € J° so that U™ (x) indeed decouples into U(”/)(a:j) + UW/)(chc).
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We did not provide the explicit domain of H( (w) as it is not needed in the sequel.
It is a subtle question to know exactly how regular the functions (f,.) € D(H™) are; in
particular, it is not clear if the normal derivatives of f, have a trace on o*. For n = 1, it
is easy to see that if (f.) € D(HWM), then f. € W22(0,1) for each e. This gives a meaning
in particular to the Kirchhoff conditions. Once n > 2 however, corner singularities appear
which, in general, destroy the regularity of the f, see e.g. [51]. If we had asked each f, to
satisfy Dirichlet or Neumann conditions, we would have f,, € W22((0,1)") (see [51], Section
3.2]). However, as we ask f. to be continuous on o', this regularity result is no longer
clear. See [85) Section 2.3.2] for some results when n = 2 and [I4] for some boundary
conditions ensuring regularity also when n = 2. For general n-dimensional polyhedral
interface problems, we record the result of [7].

Given x € ZV9 put C(x) := {y € RY? : |y — x| < 1}, where |z| := |z||s and let
Xx = X1V C(x)- We say that ¢ € L2(F(N)) decays exponentially with mass m > 0 if

1
lim sup 208 IXx ¥l Dol < -—-m
|x|—o00 x|

We now state our main results. First of all, the lower part of the spectrum is deterministic:
Theorem 2.1.2. There exists Qo C Q with P(y) = 1 such that for all w € Q :
[n_,nqs] C o(H™(w)) € [nq_, +o).
In particular, inf o (H™ (w)) = ng_ almost surely.
Proof. See the Appendix, Theorem [2.11.2 O
Next, if x is Holder continuous, we have localization near the spectral edge of H™) (w).

Theorem 2.1.3 (Exponential localization). There exist g = eo(N,d,q—,r9) > 0 and
m > 0 such that for a.e. w the spectrum of HN)(w) in I = [Nq_, Nq_ + o] is pure point
and the eigenfunctions corresponding to eigenvalues in I decay exponentially with mass
m.

Theorem 2.1.4 (Strong HS-dynamical localization). There exists eg = €o(N,d, q—,ro) >
0 such that for I = [Nq—, Nq_ + €], we have for any bounded K C I'™) and all s > 0,

B{ s X F(H @) )} < e

where (X9)(x) = |x| - (x) for o € L2(TW), E,, is the spectral projection of H™N)(w)
and the supremum is taken over bounded Borel functions, ||f|| := || f|lco-

Theorems [2.1.3] and [2.1.4] are proved in Sections [2.9] and [2.10] respectively, using the
multi-particle multiscale analysis introduced by Chulaevsky and Suhov in [27], and adapted
to the continuum by A. Boutet de Monvel et al. in [I9]. The traditional single-particle
multiscale analysis was introduced by Frohlich and Spencer in [46].

Let us note that for N = 1 our theorems improve the main result of [42], first by
removing the technical assumption (37 > % : w([g—,q— + h]) < A7 for small h), next by
establishing strong dynamical localization in the HS norm. We are able to remove the
assumption on u by proving Lifshitz-type asymptotics for this model in Section [2.6], which
to the best of our knowledge, were not proven in earlier papers.
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2.2 Finite-volume operators and geometry of cubes

2.2.1 Finite-volume operators
Fix 1 <n < N. Throughout the chapter we use the sup norm of R .
2] = lzlloo, X[ = lIx[loo
for z € R? and x € R™. Given L € N*, we define 1-cubes with center u € Z% by
Ay ={zerR?: jz—u/ <L}, AP ()] =2L).
Given u = (uy,...,u,) € Z™ and L = (L1,...,L,) € N* with L; > 1, we define n-

rectangles and n-cubes by

n

AP =TT AV @), AP @) =AY @) = TTAY ().

j=1 7=1

Note that a cube is always open. We take u € Z" and L € N” above to ensure that
the closure of '™ N A]g") (u) is a subgraph of I'™. Abusing notation, we also denote this
closure by T'™ N A]é")(u). For 1-graphs, taking the closure means that we add the vertices
lying on 8A(Ll)(u) that belong to inner edges. This should not be confused with the larger

subgraph (M) N K(Ll)(u).

Lemma 2.2.1. The following estimates hold:

(NB.1) #{e@D AW =d(2L)2L — 1)* 1 < d- AW,
(NB.n) #UC™ 1AM} =TT (deLy)eL; — 1)) <dm- AP
j=1
Proof. See the Appendix, Lemma O

We define the discrete cubes Bgn)(u) and the cells C(u) by
B (u) =AM @) Nz, Cu)=A"(u) cR™.
A finite union of cells will be called a cellular set. For L > 7, we denote
AP (w) = AP () \ A (w), B (w) = AP (w) Nz

We define the restriction of H™ (w) to a rectangle A = A]én) to be the operator H/(Xn) (w)
associated with the form

00Nfgl = Y UVfe V) + (VEfaga)], DY) = WHTW A A),
KEK(TNA)

where Wh2(I'(™) N A) is the set of f € Brercrna) WH((0,1)™) which are continuous on

inner o. For n = 1, the functions f € D(H/(\l)(w)) satisfy Kirchhoff conditions at each
vertex in A. Note that for boundary vertices, Kirchhoff conditions are just Neumann
conditions.

5. The closure here is with respect to the metric induced on '™ from the sup norm of R™®. Taking
the closure means that we add the o' lying on 8A](Ln> that belong to inner .
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Lemma 2.2.2. H/(\TLL) (w) has a compact resolvent. Its discrete set of eigenvalues denoted

by Ej(H/(Q) (w)) counting multiplicity satisfies the following Weyl law:

(WEYLn)  ¥S€R3C=C(nd,S—ng): j>CIA"| = Ej(H"(w)) >S.

al"(anq_)"/2

Moreover, C is independent of w, and if S > S*(n,q-), then C < {WJ + 1.

Proof. See the Appendix, Lemma [2.11.4] O
In the rest of this chapter, for a bounded volume K C R™ we put
XK = Xrmnk> Xx ‘= XT(M) nC(x)
Givenw € Q, E ¢ O'(H[(Xn) (w)) and i,j € A NZ™, we deﬁne|§|
Gy (B) = (H (@) = E)™Y, G (1.5 E) = xiGao (B)y;

2.2.2 Geometry of cubes

This subsection gives a slight modification of some geometric arguments introduced in
[24] and [19], which are relevant to us because I'™ ¢ R",

Definition 2.2.3. Given n > 2 and a partition {1,...,n} = J U J, we say that A(Ln)(u)
is J-decomposable if
dist(ug,uzye) > 2L + 19 .

We say that A(Ln) (u) is decomposable if there exists a partition {1,...,n} = J U J€ such
that A(Ln)(u) is J-decomposable.

A J-decomposable cube A(L") (u) will henceforth be denoted by

AP (a) = AT (ug) x AP (uge),  where ' = | 7] and n = [T

Remark 2.2.4. Suppose A(Ln) (u) is J-decomposable and identify L?(T'(™ N A(Ln)(u))
LQ(F(”’)OA(LHI)(u;))@LZ(I‘("”)ﬂA(Ln//)(UJc)). Anyx € A(Ln)(u) satisfies dist(z 7, z 7¢) > 70,
hen(,:,e UM (x) = U™ (z7) + U (z 7). Consequently, HI(C)(U) = H/(\Z()uj) I+1®
H/(\TZL(LJC). If now {(a, Aa)}a and {(¢p, )}y are orthonormal bases of eigenfunctions of
H/((;,guj) and HI(\T;H(LJC) respectively, then W, (%) := @q(27)®Yp(x 7¢) form an orthonormal
basis of eigenfunctions for H/(\Z)(u) with corresponding eigenvalues E,j, = A\, + 1. Since

Pa,b = <'a \Ija,b>\]?a,b = <'7 Pa & ¢b>90a ® ﬂ)b = (<7 Spa>80a) & (<a wb>wb) = Pa ® Pb>

by the functional calculus, we get for any Borel function 7 : J(HI(Q)(U)) - C

(2-1) n(HYY ) = S n(Eap)Pap =Y P ® (;nwa,b)Pb) .

6. We should write G/ (.., to be very precise, but we follow the established custom of omitting w.
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Definition 2.2.5. Let D := {x = (z,...,2) : 2 € Z¢} C Z". A cube A(Ln)(u) is partially
interactive (PI) if dist(u,D) > (n — )(2L +70), and fully interactive (FI) otherwise.

Lemma 2.2.6. A partially interactive cube is decomposable.
Proof. See the Appendix, Lemma [2.11.6] O

Forn>1, j =1,...,n, we define projections of n-rectangles on R? by

AN (uy).

J

=

AP (W) =AY (), TAM () =
1

J

We define H@A]En)(u) =0 and put for 0 #J C{1,...,n},

M A" () = | A () = A
JjeET JjeT

Definition 2.2.7. We say A]én) (u) is J-pre-separable from Aﬁg) (v) if
My A () N (T7e AT () UTIARY (v) = 0.

A]gn) (u) and A(n)( ) are said to be pre-separable if there exists 0 # J C {1,...,n} such
that A]én)( ) is J-pre-separable from A(n)( ) or Aﬁg ) (v) is J-pre-separable from Aﬁn)(u).
Two cubes A(Ln)( ) and A(Ln) (v) are said to be separable if they are pre-separable and

if lu —v| > ry, 1, where
o, =4(n —1)(2L 4+ rg) + 2L.

Finally, they are said to be completely separated if they are separable with 7 = {1,...,n},
ie. if TAY (u) NTIAY (v) = 0 and [u—v| > rpz.

Notice that if two cubes are completely separated, the corresponding Hamiltonians
H/(\Z)(u) and H/(\Z)(v) have independent spectra (because HA(Ln) (u) N HA(Ln) (v) =10).

Let us give some criteria for separability. Given x € Z" put ky := #{z1, S Tn )

Then each x € Z"™¢ gives rise to k3 related points denoted by x) = (a:gj ), . ,:1:%] )), with

m](cj) € {x1,...,2,} for all k. For example, for d = 1, the point (1,5) € Z? gives rise to
(1,1), (1,5), (5,1) and (5,5). Taking

we have kY < K(n) and the following lemmas hold.
Lemma 2.2.8. Let x,y € Z", L € N* and take Tn, 6 in Definition . Then

1) Ify ¢ UK(n) A(n) ) (x9), then A(Ln) (y) and A(Ln) (x) are pre-separable.

2) Ify ¢ UK(n Aﬁ:)L( @), then A(Ln) (y) and A(Ln) (x) are separable.

3) Ify ¢ AZ,, . (0), then A%n) (y) is separable from any AS—Jn) (x) satisfying x € AgZ?L(O).
Proof. See the Appendix, Lemma [2.11.7] O
Lemma 2.2.9. Separable FI cubes are completely separated.

Proof. See the Appendix, Lemma [2.11.§] O
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2.2.3 MSA strategy

We summarize here the multiscale analysis (MSA) strategy which we follow to prove
localization in an interval I. Let us start with 1-particle systems:

1. Find Lo > 0 and mg > 0 such that the probability of having one “good” cube among
any disjoint pair Ar,(u), Ar,(v) is high. Here Ay, is good if for any E € I and i, j far
apart, |Gy, (i,5;E)| < e~moLo This is the initial length scale estimate (ILS).

2. Find an increasing sequence of length scales L — oo for which a similar decay property
holds, with an increasingly good probability (typically 1 — lezp for some p > 0). This
is done by induction on k£ and is the heart of multiscale analysis.

3. Use this sequence to show that the generalized eigenfunctions of H") corresponding to
generalized eigenvalues in I exhibit an exponential decay.

4. Deduce exponential localization by proving that generalized eigenfunctions of H() exist
spectrally almost everywhere.

5. Establish dynamical localization.

For step 1, one shows that if a cube A is “bad”; then dist(a(H/(\l)), inf o(HM)) must be
very small. This is done ad absurdum using a Combes-Thomas estimate. Then one proves
this distance cannot be too small using Lifshitz tails (one can also prove step 1 without
Lifshitz tails in some cases). For step 2, one first relates G/ (z,y; E) to Ga(z,y; E) for
A’ D A to deduce the decay of GALk (z,y; F) from the decay of GALkil(z,y; E). This is
done using the Geometric resolvent inequality. However, in this inequality the decay term
from Gy, (z,y; E) gets multiplied by HGALk (z,w; E)||. So to make sure the product
remains very small, it is necessary to show that [[Ga, (z,w;E)| is not too big. This is
done using Wegner estimates. The remaining steps will be explained in more detail later.

The main difficulty in adapting the previous scheme to multi-particle systems is the
fact that Hamiltonians restricted to disjoint cubes are no longer independent. A natural
idea is then to restrict the scheme to completely separated cubes, since the corresponding
Hamiltonians will then be independent. Unfortunately this cannot work, as there is no
analog of Lemma for such cubes (e.g. [0,1] x [1,2] and [0,1] x [r,r + 1] are not
completely separated, no matter how big r is) and consequently no analog of Lemma
either. This is why one is forced to work with the larger class of separable cubes. As Hamil-
tonians restricted to such cubes are not independent, a new strategy must be conceived
especially in the induction step; see Section [2.7.2

2.3 Combes-Thomas estimate

We prove our Combes-Thomas estimate by deriving good bounds on the Schrodinger
semigroup. This was done before in [43] using the Feynman-Kac formula and the explicit
form of the heat kernel. We shall instead prove our bound via a Davies-Gaffney estimate.
This method has several advantages: it does not presuppose a heat kernel estimate, it
proves the Combes-Thomas estimate for any energy below the spectral bottom, not just
below the infimum of the potential, and the resulting upper bound is easier to control.

Let us mention that the idea of proving Combes-Thomas estimates via semigroups
appeared much earlier in [I00, Lemma B.7.11]. Compared to our proof and the proof of
[43], the method of [100] requires much more input, but it has the advantage of being valid
for arbitrary energies outside the spectrumﬂ

7. We prove an estimate which is valid for energies in spectral gaps above the spectrum in Section
using the method of [9], which was adapted to quadratic forms in [104].
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We start with a technical lemma.

Lemma 2.3.1. Let A™ be a cube or A = R™. Ifu € WH2(T™ N AM) and ¢ is a
bounded Lipschitz continuous function on T N AM | then pu € WLQ(F(") NA™)Y and
V(pu) = uVe + pVu.

Here gu := (p.ux), where () is obtained from ¢ as in Section [2.1.2]

Proof. By [104], Proposition 4.1.27] we have @, u, € W2((0,1)") and V(@uty) = e Vo +
¢V, for all k. So it remains to show ou is continuous on inner o'. By the density
of C*°([0,1]") in W2((0,1)") (see [82, Section 1.1.6]) and the continuity of the trace
operator v : W12((0,1)") — L2((0,1)" 1), we may assume all u,, € C([0,1]"). Since each
¢y is bounded and uniformly continuous on (0, 1)", it has a unique bounded continuous
extension ¢, on [0,1]". Thus, ¢su, € C([0,1]") and v(p.ux) is just the restriction of
Prly to Ok. Now if o' is a common face to x; and kg, the extensions P, and @, must
coincide on ¢ since ¢ is Lipschitz continuous. Hence,

7(90!41“%1) = (‘ﬁmum)’ai = (95/42%62)‘02' = 7(‘»0142“%2)7

since u is continuous on ¢*. Hence (pu is continuous on o*. O

In the following dist(-, ) refers to the distance induced by the sup norm of R™?.

Lemma 2.3.2 (Improved Davies-Gaffney estimate). Let A™ be a cube or A = R,
Let A1, Ay € A™ be cellular sets such that dist(Ay, Ay) =: 6 > 1 and suppose f,g €

LA™ N AM™), supp f € Ay and suppg C Ay. Then if s, := ian(H/(\”) (w)), we have
7tH(n>(w) sy, — 92
VE>0: (e W g) < e et || flllgll -

Proof. We first assume A(™ is a cube. Put H := H/(\n)(w) — 5,. Given x € A let
(x) := dist(x, A1). Then |w(x)—(y)| < |x—y], hence | Vid|s < 1and e¢?0) is bounded,
Lipschitz continuous on A™ for ¢ > 0. Let w be the restriction of @ to I'™ N A™. Then
by Lemma if b is the form associated to H, then e¢“u € D(h) whenever u € D(b).
Now given f € D(H), t > 0 put f; := e f and note that f; € D(H). Fix > 0 and as
in [33, Theorem 3.3] consider

E(t) = (fi, fie™) = || ™.

Then
E,(t) = -2 Re(Hft, ft66w> = -2 Re h[ft, fteﬁw]
and thus

E'(t)

2 =—Re (<Vft’ v(fteﬁw» + <(Vw - Sw)fta ft€6w>)

= —Re(V [, V(™)) — (V¥ fr, £1) + s, || fre7V2| .

Now by min-max for forms we have

so= b OUNL ] < (e 00N [ e, fre®
FeDOD, 1 fll=1
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where bi}n/)\ is the form associated to H/(\n) (w). Thus,

swll fre® 22 < (V(fi?72), Y (fr?12)) + (V¥ P2, frefvr?y
= ((Vf)eP 2, (V f)e? ) + 2Re((V fr)e™/?, fi(§Vw)e/2)
+ <ft(§Vw)eﬁw/2, ft(QVw)eﬁw/z) + (V¥ fy, freP®)
= (V i, (V)Y + Re(V fy, f1(BVw)e™™)
+ B o (Vw) PO |2 4+ (V fy, fre®)
= Re(Vfi, V(fi®)) + (V¥ fi, fie™) + 5| fo(Vw)err2|2,

where we used Lemma 2.3.11 We thus have

Bt 2 . 2 . 2E(¢
O < B puwmpernp < T pesorzy = 2O
Hence, E(t) < e%*t/2E(0). Moreover,

Ixan fell® < e ™22 f? < e ().
Since supp f C A; and w = 0 on Aj, we have E(0) = ||e?®/2f||> = ||f||*>. Hence,

B2t Bt

s fill” < e B(t) < exp (55 — B5) B(0) = exp (5 - 83) 171

Choose 8 = §/t. Since supp g C Ay we finally get

— _ 52
(e 90 = [(xanfes )P < Ixan fill? - Mgl < =21 F 1P gl

The assertion follows (if A is a cube) by noting that H is densely defined and that
n )
e tH = exp(—t(H/(\ )(w) — 5y)) = elfwe A @)

Finally, all the arguments remain valid if A = R except that e¢* is no longer
bounded. We thus consider a large cube = containing A; and As and replace @w by
a Lipschitz function p of compact support such that p(x) = dist(x,A4;) if x € = and

[Vplloo < 1, then take w to be the restriction of p to T'(™. O

Theorem 2.3.3 (Combes-Thomas estimate). Let A™ be a cube or A™ = R™ and
let A,B C A" be cellular sets such that dist(A,B) =: 6 > 1. Then for E < s, :=

info’(H/(\n) (w)) and n := s, — E we have

(n) -1 i \/g 3 =0/
Ixa(Hy" (w) = E) "xB| < \/g (773/4 + 8\6775/4> e oV,

Proof. Put H = HI(\n)(w). Given f,g € L*(I'™ N A™) with || f|| = |lg]| = 1 we have

- - L2 s
[(xae " xpf,9) = (e xpf.xag)| < e e 5 ||xpfll|xagl < e e @

by Lemma Thus

2
Ixae ™ yp| < e .
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Now for E < s, we have (H — E)™! = [{° e!PeH dt. Hence

[e'e) 2 5
H—E)"! </ M=% At = - K (8
Ixal( ) 'xall < e 7 1(6v/1)

where K is the modified Bessel functionlﬂ and we used [49, Formula 3.324] to evaluate
the integral. Now by [I, Formula 9.7.2] and the remark after it, we have for real z > 0 the

estimate Ki(z) < ,/;—Zefz(l + 8%) This proves the assertion. O

2.4 Geometric Resolvent Inequalities

In this section we follow [104] to prove Theorems [2.4.2| and [2.4.4] and use arguments
from [I7] to prove Theorem [2.4.5
Throughout this section, I' := '™, If Q c R™ is a cellular set and 1 < k < oo, put

CEINQ) = {flr: fECHQ)},  We*(T'NQ):={feWT'NQ): flag = 0}

where f|pg is understood in the trace sense. We start with a lemma which has to be
justified in the context of multi-particle quantum graphs.

Lemma 2.4.1. Let A C R™ be a cube. Then for all h € (Wol’Q(F NA)" and w €
WH2(I'NA) :
(V- h,w) =—(h,Vw).

Proof. Let h = ((h,(.il)), e (h,(in))) and w = (wy). Fix k € K(I'NA) and let 0 = 9k. Using
the notation -2; = 9;, we have by Green’s formula (see e.g. [51, Theorem 1.5.3.1))

ozt —
(4-1) (0 ) = — (D, dyw) + / WO, do
o (k)
where the values of h,(.f)ﬁ)n on o := o(k) are understood in the trace sense and v :=
(V(l), - y(”)) is the outward unit vector normal to o, well defined on each ¢7. Identify
k = [0,1]™ as in Section and denote points in x by (z!,...,2"), with 2* € [0,1]. If o7
is the face with points (z!,...,2771,0,29"!, ... 2") := 2] and if o°U) is the face opposite
to it with points (z!,...,2771, 1,27 ... 2") := 2], then v|; = (0,...,0,—1,0,...,0)

and v|_.;) = (0,...,0,1,0,...,0). Hence
[ mwade = [ wO@he. e - [ rO@hma) i,
o(k) o) (k) ai(r)
where dz? := da!...dz" " 1dzit ... da™. Now consider

> ([, MG — [ rO () i),
goi(n)

KEX(TNA) Q)
Since hlgy = 0, this sum may be re-arranged as

>y

. o ot
inner o¢ j=1

{h(?(gi)(fi)@g(gi)(ﬁ) — h@(gi)(:ﬁé)wn;(ai)(%)} it

K K
J

8. The modified Bessel functions I+, (z) and K, (z) are the solutions of the differential equation 22% +
29 — (2 + %) w =0.
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where /ﬂlj_(di) and /ﬂ?j(di), j =1,...,d are the 2d cubes containing o’ as a common face.

But by hypothesis h()w are continuous on o, i.e. h’(jz (555)@5 (#%) = hSJ)r (fé)@n; (2) ae.

J
Hence the sum vanishes and },.cxrna) fa(n) h,(ﬁ )wnu(i)da = 0. The assertion thus follows

by summing in (4-1)) over k € K(I'N'A) and i =1,...,n. O

Theorem 2.4.2 (Geometric Resolvent Equation). Let A( " Ag") C R™ be two cubes,
Y eCRIN A(n)) real-valued, and E € p(H( )) N p(H(n)). Then

(GRE) Gy (BN = 9G, o0(E) + G oo (BE)((VY) - V4V - (V)G ) (E)

as operators on L*(T' N Aén)).

Proof. Let g € LAT N A, u = [0G o + Gy (V) -V + V- (V) Gy ]9, where

G\ = Gy (E) and put b ) = h\").. Tt suffices to show that u € D(h aw) and
(hym = B, w] = (bg,w)  forallw € D(h,w).

Since 1 € C®(I'N Aﬁ")) and G, g € Wh2(T'n Aé”)), we have YG g € D(hA(n)) by
2 2 1
Lemma|2.3.1] Similarly (V)G g € (WS(TNA))", 50 V-(VY)G g € LATNALY)
2 2
and G, [V - (V)G mg] € DHL). Finally (V¢) - VG, (wg € LT N A™), hence
1 2 2

Gywl(V) - VG, 0ng] € D(H{"). Thus, u € D(h ) and

(o = B)[u,w] = (b = E)YG g, w] + (V) -V + V- (V)G 0 g, w)
=y = B)WG v g, wl + (V) - V(G g), w) = (V)G g, Vw)
= (WV(G ), Vw> (V¥ = EYG  ong,w) + V(G m9), (Vi)w)
=y = B)[G g, Y] = (g, Yw) = (g, w)

where we used Lemma in the second equality. O

Lemma 2.4.3. Let A be a cube or AW =R Jet Q ¢ Q € A™ be cellular sets with
dist(0Q,0Q) > 1 and let E4 € R. Then there exists C = C(E4+,n,d,q—) > 0 such that
forany E<E,, if f € D(H/(\n)), then

(SOL) IxgV A1 < C- (xe(HY = E)fll + IIxaf1) -

Proof. Since (118’6(8@,8@) > 1, we may choose a real ¥ € C*(I'NQ), 0 < ¢ < 1 with
Yp=1onT'NQ and ||[VY)]|eo < C1(nd). If w:= f1p?, then w € D(hy) by Lemmaand

(Vf,Vw) = @V, oV f) + 20V, fVY).

Denoting g := (H f we thus get

E)
[PV f1? = (Vf,Vw) = 20V f, fV)

= (g, w) — (V¥ = E)f,w) — 24V f, fV)

= (g, f) — (V¥ [, o) + B\ ol — 200V f, fV)
<lgloliflq + Call£I5 +2C1 10V £l fllq
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where ||¢|g = [Ixq¢| and Cs := |E4+ — ng_|. Hence
2 2 2 1 2
VAl = Cillfle)” < liglellfll + (CF + Co)lI£113 < (Callfllo + 2703\\9\\@) :

where C3 := 1/C? + Cy. The assertion follows by taking square roots. O

Theorem 2.4.4. Let A C AP be cubes with 1 > 7, let A € A"}, B < A\ A pe
cellular sets and let Ey € R. Then there exists C = C(E4+,n,d,q—) > 0 such that for all
E € p(HyY) N p(H) N (—00, By :

(GRL1) IXAG o0 (E)xBIl < C - [[XaAG o) (E)xpout || - IXaoue Gy o) (E)x B -
L l L

In particular, if u € Al(f)7 and Al(n) C A(L"_)7, then given y € B, we have
. out |2 . .
(GRI2) HGA(L")(u7y7 E)H < C- ‘Bl ‘ wrél]g‘?“t HGAZ(") (u,w, E)H zrél]%))ﬁt ”GAYL) (Z7y7 E)” .
Proof. Let Gy := GA(FE), Q = int AY"* and choose a real ¢ € C°(I' N Al(n)) such that
p=1onITnN Al(ﬁzl, supp vy C Al(ﬁ)g and | V|« is bounded independently of Al("). Then
IXaG o xBl = [Ixa@WG ) — G m¥)xsll  (¥lrna =1,¢[rnE = 0)
L L 1
= IXA(Cy0 ((V4) -V + V- (V)G )xsll (GRE)
< [IxaGym (V) - VG oo xsll + [xaGyw V- (V)G oo x5l -
Now let Q = int(Al(f)l \Al(ﬁ)s), so supp Vb € Q and dist(aQ,aQ) = 1. Hence given
fiof2 € L2 NAD), il = f2] = 1, we have
[XAG o0 (V) - VG oo x fr, f2)| = (VG ooxs fr, (V)G yomXxaf)l
< IV¥lloolixg VG yowxEllIXg G yomxall -
Furthermore, using Lemma we have
[XAG 0 V- (V)G oo xBS15 f2)l = [{f1:XBG o0 (V) - VG oy XA S2)]
< IVPlloollxsG yom x5 llIXg VG yoo xall-
Noting that for a bounded operator T' we have ||T|| = ||T*||, we thus get
IxaGyxal < V¥l (IXaG 0 xglllIXGVE yom Xl + X VE s xallliXgGym xal)-
Now by Lemma [2.4.3] we can find C such that
IXgVG exal < C1 - lIxQGymxsll-
Indeed, given u € L2(I'N A(Ln)), we apply (SOL) to f = GA(Ln)XBu. Noting that (HI((? -

E)f = xpu =0 on @Q we get HXQVGA(L”)XBUH <(Cy- HXQGA(L”)XBUH' As u is arbitrary,

the assertion follows. In the same way we find Cs such that

IXgVG ymxall < C2 - IxQG ymxall = C2 - IxaGymxell -



50 CHAPTER 2. LOCALIZATION FOR A MULTI-PARTICLE QUANTUM GRAPH

Noting that Q C Q, we finally get
IXAG o xBll < C - IxaG ymxell - [XQG yow xBll
L ! L

for C' = max(2C1||VY| s, 2C2||VY||so). We thus have (GRI.1).
For (GRI.2), note that AP"* C Uwemgnt C(w), so (GRI.1) gives us

PGy Byl <€ 30 IxuGyon (B)xwllaG y oo (B)xyl- O

w,zEBM
We now give a resolvent inequality which is special to multi-particle systemsﬂ

Theorem 2.4.5. Let AS—J")(u) be a J-decomposable cube, let X,y € BE—Jn)(u) and suppose
that E € p(H/(\nL)(u)). There exists S* = S*(n,q—, E) such that for S > S*, and under the
notations of Remark if 01 = |xge —yge| > 2, then

(GRL.3) ||@ (@7, y7e; E = Aa)|| + |AY ) |em015

A oY E)| < My max G, (')

(uge)

n’ 2 FBna_ " /2 n' .
for My = Qd (((jf))nf;i‘(ng/zi J + 1) : |A(L )], and if 62 :=|vg —yg| > 2, then

, . n'')| —828
. n < . n/ ; ’
(GRL3)  IG ym (33 E)II < Mo Q%HGA; ) 2T YT E = o)l + AT e

_ (| 4V ((48)2+E—ng_)"" /2 (n")
for My = (| T — | 1) - AE).

Proof. We only prove the first bound; the second one is similar. Put A® := Agn) (u),
A(ln,) = A(Ln,)(UJ) and Agn”) = A(Ln”)(ujc). Using 1' with n(t) == (t — E)~! we get

1
GA(”)(E) :ZPa@) (;IL%_(E,_)\G)Pb) :ZPa@)GAgnu)(E—Aa).

Hence noting that G ) (X, y; E) = xxG ) (E)xy, we get
1G oo (x93 BN < 3 IXa s PaXyy ® Xage Gy (B = Aa)xXyge |
a

< Z ”XIJCGAé”N) (E - )‘G)ijc ” :
a

" (S;+E—ng_ )" /?
(4m)™ /2T (n’ /2)

Now given S; > 1, by (WEYL.n') the constants C; = { J + 1 satisfy

a> N = N> S+ E—n'"g. = 1,> 5,

where 7, :=n"q_ — (E — \,). Hence if 61 > 2, taking § := dist(C(x7¢), C(yze)) = d1 — 2
and S; := (455)?, we get by Combes-Thomas estimate,

J+1|A1 | S \/?
n' 4 v n' o J
> G (@geure B = Aol < (Cra = CHIAT e Ve < A}z

G;:Cj ‘Agnl) |+1

9. Let us mention that, just as the preceding geometric resolvent inequalities allow one to perform an
induction on k, the following inequality allows us to perform an induction on n. The error term |A] ce7%%
in (GRI.3) does not appear for discrete Anderson models on £%(Z"™%).
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provided S is large enough. Hence

! -5 J
> G (age vz B Al < A7 e

a>Cl\A§"/)‘ =1
But JE

9] 55 oo ) —248

Zeﬂs  _ 267(255)1 = - i — < 928 < o018

j=1 j=1
We thus obtain the first bound with M; := Cl\Agn/)]. O

2.5 Wegner Estimates

To establish Wegner estimates we use some ideas of [26], but we rely entirely on
measure-theoretic arguments. For a probability measure p on R we put

s(u,€) :=sup{pla,b] :b—a < e}.

Given J C £(TMW) and w € Q, we denote w = (w’,w’"), where w’ = (we)ees. If A C Q

is measurable and w’ is fixed, we define the section A e := {w” : (w’,w’") € A} and put

Pj := ®eecgp. Then by definition of a product measure, we have P(A) = Eje{P;(A )},
where E e denotes the integration over w”’".

Theorem 2.5.1. Let E € R and € > 0. There exists a non-random C = C(n,d,E + ¢ —
ng—) such that for any A]En)(u) and any 1 <i <n, if J:= E(TWM N HiAﬁn)(u)), then

P ({dist(c(H} 1y (@), B) < £} se) < O+ (A ()] [ILAL ()] - 5(u, 22)

for any w’”.

Proof. Put A := Aﬁn)(u) and fix w/°. By Lemma we may find C' = C'(n,d,E +¢—
ng_) such that Ej(w) := E;(H\" (w)) > E + ¢ if j > C’ - |A|. Hence,

(5-1) P ({dist(o(H{" (@), E) < e}yre) < > Py ({|Bj(w) — B| < e}yre) .
J<CIA]

Given k = (e1,...,e,) € K(I'N A) we have

WY =we, + ...+ we, = Y cu(e)we, where cy(e) =

{1 if e = e; for some j,
ecf

0 otherwise.

Hence

W("’:) = Z Cﬁ(e)we + Z cfﬂ(e)we = WwJ ("0) + Wch (KJ) .
ecJ ecJ¢

Now
HM (W)= —A+U+Woe + Wy = K e + Wy,

where the operator K does not depend on w”’. Let (f,) € L*(I' N A) with ||(f.)] = 1,
let ¢ > 0 and denote 1 := (1,...,1) € R/. Then

H/(\n)(wJ +t- 1?WJC)(fH) = (Kch + WwJ+t~1)(fl€) = (KwJC + WwJ)(fH) + t(nﬁfli)v
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where n, := Y . cjcq(e). Since every k € K(I' N A) takes the form (ei,...,e,) with
e; € E(C'NILA) = J, we have 1 < n, < n. Hence

H @7+t 1w”) (fe), (£)) 2 (HY (@7, w0 ) (£, (f)) + 1

By the min-max principle, it follows that E;(w’ +t-1,w’") > Fj(w’,w’") + t. Finally, if
ve < we for all e € J, then H(v/,w’) < H(w’,w’") and thus E;(v7,w’") < E;(w’,w’).
Hence the F;(-,w’") : R’ — R satisfy the hypotheses of Stollmann’s lemma (see [103]
and [98]) for any w’*, so we get

Py ({w |By(w” ") — Bl < 2}) < 1] s(1,22) < d- [TTA| - s(1,2¢)
by (NB.1). The theorem follows by (/5-1]). O

Theorem 2.5.2. Let I = [a,b] be a bounded interval and let € > 0. There exists C' =

C(n,d,b+ e —nq_) such that for any pre-separable A]én)(u) and A]%) (v) we have

P{dist (o7 (Hy ), o1(Hyr,) < €} < C (A7 ()] - [AL (V)] - [TToA| - s(p, 2¢),
where o (H") := o(H (w)) N T and |TTpA| := max; ; (JTLA™ (w)], TAL (v))]).

Proof. Suppose A]%) (v) is J-pre-separable of A]é") (u) for some ) # J C {1,...,n}, ie.
AP (v) N (e A (v) UTIAM™ (u)) = 0. Fix i € J and put J := XD N ILAL (v)).

J

Since the eigenvalues E](-u) (w) of H A () (w) do not depend on w”, we may apply Theo-
L

rem with E = Bt = EJI-‘(OJJC) to get
P{dist(or(Hy ")), or(H{" ) < e}
= EJC { ]P)J{dlst(U[(H/(\z)(u)), O-I(HI({H?(V))) < E}ch }

_ . . (u) (n)
=Ey. {IP’J { a<I;1(hr§<bdlst(Ej ,O‘[(HAK(V))) < E}wJC}
<E;"W<

<Eje Y By ({dist(BM, o (HY ) < eloe)
J<C1IA™ ()|

< C- A )] - AL )] - TLAY (v)] - s(p, 2¢)

where we used Lemma to obtain C; = Ci(n,d,b — nq_). If however Aﬁ”)(u) was

J-pre-separable of A]gg ) (v), we would get for i € J,

P{dist(o(Hy ")), 01(Hy ) < b < O A ()] AL ()] ALY (u)] - 51, 22) . O

Ag(v)

2.6 Initial Length Scale Estimate

In this section we follow the ideas of [104] and use a Cheeger inequality from [91] to
prove Lifshitz-type asymptotics for 1-particle systems. We then deduce the Initial Length
Scale estimate (ILS) for our model. We speak of Lifshitz-type asymptotics because our
result is not formulated in terms of the integrated density of states N(E), as it is not

needed here. Theorem easily implies bounds of the form N(E) < e~ "'(F —a-)"? for
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E near ¢_ if one knows that N(E) < ﬁ E{ tr[x(,ooyE)(H[(xl))}}; see [104, Theorem 2.1.4].
The existence of N(E) was established in [53], see also [52].
In the following for I € N* we put

g o= #ETM N AWY) = d(21)(21 — 1)L
Theorem 2.6.1. There exist b > 0 and v > 0 such that for any u € Z°,

PUE(H iy, (@) < g +bn 7} < e

Proof. Put ﬁ/(xll)(w) = H/(\Il)(u) (w) — g—. Then

P{E(H{\), (@) < g +bn; %} = P{Ey(H) (@) < b2}

Now Flj(\ll)(w) = (-A + Ww)Al“)’ where W« : (fo) = ((we — ¢_)f.). We may assume

W« < 1 for all w, since if W is larger, E; (ﬁ/(\ll)(w)) gets larger and the probability gets
smaller. Define for ¢ € [—1, 1],

H(w,t) = (A +t-W*) Ej(w,t) := Ej(H(w,t)).

A
Since the normalized ground state ¢g of the Kirchhoff Laplacian H(w,0) = —A AW is the
constant function (nl_l/ 2), we have by the Feynman-Hellmann theorem
(6-1) Biw,0) = (Weondo) == 3 aw) = fiw),
ec€@MNAM)
where ¢.(w) = we — ¢— > 0. By [104, Lemma 2.1.1] we can find sg,y > 0 such that
P{fi(w) < so} <e 7M.

We now estimate the distance between 0 = Fj(w, 0) and the rest of the spectrum of H (w, 0)
using Cheeger inequality. Let X := I‘(l)ﬁAgl) and O :={Y C X : Y open,Y # X,Y # 0}.
For Y € O, let |0Y| be the number of points on the boundary of Y, vol; Y be the total
length of Y and put Y¢ := X \'Y. Then any Y € O satisfies min(vol; Y, vol; Y¢) <
(vol; X) = "L hence the Cheeger constant of X satisfies

. |0Y | 2
h(X) := inf > —.
(X) yeo min(vol; Y,vol; Y¢) = n

By [91, Theorem 6.1], it follows that Ea(w,0) > $h(X)? > n; 2. A similar estimate can
also be obtained using the Faber-Krahn inequality; see [84]@
We may now apply [104, Theorem 4.1.31], to find ¢1,co > 0 such that

|E1(w,t) —t - By(w,0)| <eanft>  YO<t<cin 2
Since By (w,t) < E(w,1) = By (A} (w)), this gives by (6-1)

filw) = Bi(w,0) < eanft+ Ey(HY @) Y0 <t <emp®.

10. or Appendix
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Choose 0 < ¢3 < ¢1 such that cocs < %so. Then for t = 03"1_2 we get

filw) < (50/2) + B (Y (w))ez '

Hence, choosing b > 0 such that bc3 %so we finally obtain
P{EA(AL) (@) < bn; 2} < P{filw) < so} < e s

Theorem 2.6.2. There exist b > 0 and v > 0 such that for any u € Z"?,
(6-2) P{El(H/((;zu) (W) < ng— +nbn; 2} <e MM,

Consequently, for all € > 0 and B € (0,1), we may find Ly = Lo(N,d, 3,§) as large as
necessary such that for any u € Z"9,

P{dist((H}" ) ()),ne-) < L§ '} < L5

Proof. Let ﬁ(n) (w) = Hz(\?z

Ay(u) Since U™ > 0, we have

(n) _ w
)~ Uhw) = (CA+ W) 00

) - fn n) (n
H{"\ > H",, hence Ey(HY') ) > Ey(H"),) and

BB (H ) () < ng- + nbny *} < B{EL(H} ), (@) < ng +nbny ).
But Hﬁ"{u) HY o=t 4 e HY @k 4 4 L HY ) where

H/(\l) - (1) (fE) ( N+Wefe) Thus E]_(H(n) )) = ‘;.7’:1 El(‘Hj(\l)uJ)) Z nEl(HA/(\l) . ))’

Ay(u 1 l(uJo

where El(H[(\ )(u )) = minj<j<n El(H/(\l)(uj)). Hence

PLE(Hy ) () < na- -+ by} < PLEV(HYY, (@) < g+ b %),

The existence of b and  now follows from Theorem |2 So take these b, v, and given
£>0,8€(0,1), choose L*(n,d, 3,&) such that for L 2 L , we have

(6-3) G2 gn a5 2 LY g€

Let L, := maxi<p<y L*(n,d, 3,€). Given L > L,, let [ := L%(Z’L;%ﬂ)lﬂdj and choose L <
Lo < 2L such that Ly = rl for some r € N. Then Ag;) = A(LT))( ) may be divided into M =

L2344 disjoint cubes Af. Since H/(\Z)O > @ H(k), we get E1(H(z)0) > miny El(H/(\TZ))
!
But le < d2(2l)2d < bL'*P and thus LP~1 < bn, 2. So using we get

P{dist(o(H\" ),ng_) < Ly '} < P{E\(H ))—nq <If 1
0

< P{Ei( /(\k)) —ng_ < bn;? for some k} < Me ™.
1
Noting that M < (2L)"d]~"d < (2L)nd(L (bl )1/2d)=nd — gndpn/2gnpnd+*5H 45
ng > d(2l —1)* > d(l + 1) > 2=4(bL'~#)1/2, then using (6-3) we may bound the RHS by
(2L)~¢ < Lag, which completes the proof. O
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Definition 2.6.3. Let £ € R, m > 0 and w € Q. A cube A%n)(u) is said to be (E, m)-Non
Singular ((E,m)-NS) if E € p(H/(\nL)(u) (w)) and

max

yeBout(u (u7 Y7 E) H S e_mL Y
L

) H GA(Ln) (u)

otherwise it is said to be (E, m)-Singular ((E,m)-S).

Corollary 2.6.4 (ILS estimate). For any p > 0 and § € (0,1), we may find Ly =
B—1

Lo(N, d,]()ﬂ, B))/ as large as mecessary such that for g9 = LOT, I, = [ng- — %,nq_ + eol,
—1)/2

mr, = Ly 3 and any cube A(LZ)(U)’ we have

(6-4) P{3E € I, : Ay (u) is (E,mp,)-S } < Ly™.

Proof. Given2p=¢ >0, 8 € (0,1), we find Ly as large as needed satisfying Theoremm
61
Now let y € B (u), so Ly — 8 < dist(C(u), C(y)) < Lo. Let go = L02 and suppose

S —Ng— > Lg_l, where s, := infa(H/(\rz) (u) (w)). Then every E € I, satisfies E < s,, and
Q

B—-1
ni=s5,—LE> LUT So by Theorem [2.3.3

T L(l)/2 3 (Lo—8) O
G n , ’E < \/7 — 0—
10w B =5 ((L§1/2>3/4 ! 8(Lo—8)1/2(Lgl/2)5/4>e 2

< e MLy Lo

for Ly large enough. Hence A(LZ) (u) is (E,mr,)-NS. We thus showed that

P{3E € I, : Ay (u) is (E,mp,)-S} < P{s, —ng_ < L§ '}.

The claim follows by Theorem [2.6.2, since s, — ng— = dist(a(H[(&) () (w)),ng—). O
0

2.7 Multi-Particle Multiscale Analysis

We now introduce a multi-particle multiscale analysis following the main ideas of [19],
providing modifications as necessary. Throughout this section we fix

a=3/2, g=1/2,
and given 1 < n < N, we denote K (n) := n". We also assume that
1 is Holder continuous.
Definition 2.7.1. We say that a cube A(Ln)(u) is E-Non Resonant (E-NR) if

dist(a(H/(\z)(u)), E) > e

We say it is E-Completely Non-Resonant (E-CNR) if any cube Aén) C A%n)(u) with £ € N*,
LY* < ¢ < L is E-NR. In this case, AS:”) (u) is thus E-NR in particular.
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Definition 2.7.2. Let [ € N, put

L=|I"+1
and let J € N. We say that a cube A(Ln) (x) is (E,my,J)-good if it contains at most J
pairwise separable cubes Al(n) which are (E, m;)-S. Otherwise, we say it is (E, my, J)-bad;
in this case, there are at least J + 1 separable cubes Al(n) which are (E,my)-S.

We start by adapting [112, Lemma 4.2] to n-graphs. For this, we first prove the
following geometric argument: given a collection of cubes, either they are already pairwise
disjoint, or we can construct larger cubes around each cluster, such that the larger cubes
are disjoint. For technical reasons, we consider e-enlargements of the cubes, with ¢ = 7.
Lemma 2.7.3. Given k cubes A(n)( ug)), r= 1 .., k, there exists k < k disjoint cubes
Al(?),j~: 1,...,k such thatU A(n DU ( u(,)), lj = nj(L+7) for some n; € N*
and Y51 1 = k(L + 7).

Proof. If the cubes Aglnl7(u(r)) are disjoint, we put A(n) A(Lnl7( u(;)). Otherwise, divide

Uk, AS—ZZ?(u(T)) into k' connected components with 1 S k' < k and order them. If the i-th
component contains n; cubes, find a cube A;Z_ containing it with l; := n;(L 4+ 7). If these
k' cubes are disjoint, then we are done. If not, divide them into &” connected components
and again find cubes AZ around each component with [; = n;(L + 7), where n; is the

number of the original cubes A(Lnl7(u(r)) which this component contains. Repeating this
procedure we finally obtain the assertion. O

Lemma 2.7.4. Let | € N*, J e N, my > KN "B ¢ R and E < BE,. Let L =

[1*] + 1 and suppose that A(Ln) (x) is E-CNR and (E,my,J)-good. Then there exists I* =
I*(E+,N,d,J,q—,19) such that, if | > 1*, then A(L")(x) is (E,mp, + LP~1)-NS, where
<16NJK(N) 3 ) SNJK(N)
Li=my— | — 3

ja—1 my+ ja(1-8 1-8

Proof. By hypothesis there are at most J pairwise separable cubes Al(n)(u(s)) C A(Ln) (x)
which are (E, m;)-S. Applying Lemma [2.2.8| to each of them, we may find JK(n) cubes

Aﬁ{j?l (z®) such that if v ¢ Ugfl(n) A&Zﬂl(z(@), then Al(n)(v) is separable from all the
Al(n) (u(s))- Now applying Lemma [2. 7 3/ to the JK(n) cubes A&Z’)l (z(F), we may construct
disjoint cubes Al(j) such that U; A ;2 Uk Ar ( M), 1 = nj(rn; +7) for some n; € N*
and Y1 < JK( ) rns +7) < JK( Yrng 4+ 7) =: Iy.y. Thus, A" (v) is (E,m;)-NS
whenever v € A ( )\ Uj Al 2

We first assume all the “bad cubes” Al(j) are inside A(Lnf)lq(x). Note that if v e B(Lnll(x)
satisfies v € B?jut = Bl(?) \ BZ(?ZG for some j, then Al(n) (v) is (E,my)-NS since v ¢ AZ(J@7
and v ¢ Al(:lz7 for r # j (because v € Al(;l) and Al(;l) is disjoint from the other Al(:l)).

Now fix y € B9"(x) and let u € B2n2177(x). We have 2 cases:
(a) Al(n)(u) is (E, m;)-NS. Then applying (GRI.2) to A(n) A(n)( ),

1G yo o (@ ¥ E) < €'+ IB?“t\leggggt 1Gppm (ks B} max, I1G y o0 o (K 5 B

(n)
Ay



2.7. MULTI-PARTICLE MULTISCALE ANALYSIS 57

for some wy € B{"(u).

(b) Al(n) (u) is (E,m;)-S. In this case, u € Al(]@? for some j, so applying (GRI.2) to Al(;l),

. . out |2 I o
G o3 B < € B g, 16y (1, s )] g, 16y (033 B
B
< Ca(2ly,g = 1PV |Gy o (w33 B)|
L

for some w € BOut because A( )( ) is E-CNR. But then Al(n) (w) is (E,my)-NS, so
applying (GRI.2) once more we get

Gy gy (033 )| < Gl (2l = (2= D056 (w3 )|
for some w; € B{"*(w). Hence
1G p (03 BN < efmngGA(Lm(x)(Wl,y; B,
where
mj =my — 115 N +2(nd —1)log((2ln,7 — 1)(21 — 1)) +1og C3} > 0
because for large I,

Ing = JE(N)(2(4N — 3)l + 4(N — 1)rg +7) < (8N — 5)JK(N)L

M > 0 for [ large enough.

so that mj > m; —
Hence starting at u = wq := x, we may iterate the procedure p times as long as w,_1 €

B2n2177(x). If (a) occurs n times and (b) occurs ng = p — ny times, we obtain

Gy g (5033 BN < (G121 = 120 Demmiy s cmnamil| Gy (v, 3 )|

Now A(Ln) (x) is B-NR and e~""! < 1 since mj > 0. Hence

Gy o (6,33 E)| < (G121 = 120Dyl < =(mut k270,

where
(mr 4+ LPYL = —ny (log Cy 4 2(nd — 1) log(2l — 1) —myl) — LP.

In case (a), wy € BY"(wy_1), so each step cuts a length between | — 6 and [ — 1.
We thus have [%j < ny < [L;fg7j. Indeed, the lower bound represents the
worst scenario in which the iteration met all the bad cubes in its way, a total length

of 2ly . The upper bound occurs when it meets no bad cube. In particular, we have
L—2ly j—1-T
l

—1§n+§ﬁ,soweget

L
mpl > my(L = 2y, = 21 = 7) = ;= (log C1 + 2(nd — 1) log(2l — 1)) — 2L”.

l
But 2y + 20+ 7= (16N — 12)JK(N) + 2) + C(ro, N, J) < 16NJK (N)I. Hence

2ndLlog(20 — 1)
-6

—9IB

mrL > myL — 16N JK(N)myl — —2L”

L
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for large [, because a(1 — ) = 3/4 < 1. Noting that L > [*, we finally get

16N JEK(N) 3
- Jo—1 my— la(l—ﬁ)

mr =

=my, .

ThuS, HGA(H)(X)(X7y7 E)H S e_(mL“rLB_l)L S e_(mL‘FLﬁ_l)L and AE”/)(X) is (E’ mL+LB_1>_
L
NS. For the lower bound on mp, note that for large [,
16NJK(N) 1 ANJK(N) 3 8NJK(N)
(7—1) (1 - laf)’ﬂll > iml > llfﬁ > la(lfﬂ) + Llfﬁ .

Finally, if a bad cube lies completely outside F' := A(an ;_7(x), the situation is obviously

better. If a bad cube is not contained in F' but intersects F', we stop the iteration if we
reach this bad cube. Then again the situation is better (because here only part of the
length 21; of this cube is counted as bad). O

We define for n > 2,

D1 (2n —1)d
n +— - - - 17
P a0y 2a M

where 0 := ﬁ. We then choose p; sufficiently large to make sure that
pN > 3Nd + 1.

In particular, 0 < 0 < 1.
Fix
E, = 1I<I}1a<xN(nq +1), J =6,

and let [* be as in Lemma [2 Then by Corollary 2.6.4, we may find Lo > [* as
large as necessary such that 1.' is satisfied for all 1 < n < N, with ¢g = LOT, I, =
[ng— — nq + o], mrL, = S OF2 and p := p;. We then define the sequences
0
L1 = [Li] +1,
" - (96N K(N )m n 3 )
Lt = MLy =\ 7 7a=1 ML T —40-5)
+1 Lg Lz(l 8)

48NK(N)
L"?

1
3L

N . .
77z > 18 IEE;N) since Lg is large, hence
O

Note that mp, >

48NK(N)
L=
(DS cn, k,mp,, In)

For all pairs of separable cubes A(LTZ)(u) and A(LT;) (v):
P{3E € I, : Ay (w) and A} (v) are (B,mp,)-S} < L7007,

Indeed, mpr, =

mr, > by induction, using 1.} We now introduce the property

The term (1 4 #)* in the exponent was introduced in [I9] and is new in comparison
with the usual multiscale analysis. While it complicates a few estimates, it has a powerful
advantage, namely it allows to prove dynamical localization of any order s in Iy, with g
independent of s. This result (among others) was previously obtained for single-particle
systems in the continuum using the bootstrap multiscale analysis of [47].

To prove this property, we shall need Lemma and the following Wegner bound:

For all pairs of separable cubes A( )( ) and A( )( ):

W2:n,k, I, )
( ) { P{3IFE € I, : Agk)( ) and Agk)( ) are not E-CNR} < 1L 2p1 (1+0)*
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Lemma 2.7.5. The property (W2:n,k,I,) holds for all k>0 and 1 <n < N.

Proof. Let A(LT;)(u) and A(LT;) (v) be separable. If Agf) C A(Lnk)(u) and Aég) - ASL”) (v), then

k

AZL) and Agg) are pre-separable. Hence by Theorem [2.5.2]

P{3E € I, : dist(o(H}" ), E) < € and dist(o(H{"), E) < ¢}
1 2

< P{dist(aJn(ng),aJn(HI((Z)) < 26} < C(2L,) 2 s, de)

where J, = [ng_ — % —e,nq— + €9 + ¢|. Bounding the number of cubes in A(LZ) by
]B(Lr;)\ < (2L;)™ and the number of £ € N* satisfying L,lg/a < ¢ < Lg by Ly, we get for
€= max(e_ﬁfls, e‘zg) < e_Lf/a»

B/
-L,

P{3IE €I, : A(LT;)(u) and AS-Z) (v) are not E-CNR} < C(2Ly) T2 5(yy, 4 ).

Since p is Holder continuous, there exist ¢, and b > 0 such that

B/ B/«
C(2L) M+ 25y de= 50" ) < Oy (2L )2 (461" ) < oLk

for some ¢ > 0, since Lo is large. Now for any k& > 0,

—log(1/4) 4 2p1(1 + 0)* log Ly, < log(4) + 2p12¥ log Ly, < Cn.a2%a*log Ly < Lg‘kc

since of > glfégg %O +k Cl‘ff;fo + l(zgi(l)‘;gLLOO for large Lo, independently of k. But Lg‘kC < Li.
_ k
We thus showed that e~ L% < exp(log(1/4) — 2p1(1 + 0)Flog Ly,) = 1L, 21 (1+6)" O

2.7.1 Single-particle case

For n = 1, separable cubes are just disjoint cubes; see Definition [2.2.7]

Theorem 2.7.6. (DS: 1,k,mp,, I1) implies (DS: 1,k +1,mg,  ,I1).

Proof. Put L = Ly11, 1 = Lj and let A(Ll)(u) and A(Ll)(v) be a pair of disjoint cubes. Since
g0 < 1, any F € I satisfies £ < F. = max,(ng_ + 1), so applying Lemma with
J = 6, noting that [ > [* because Ly > [*, we have

P{(3E € I, : AV (u) and AV (v) are (E,my)-S}
< 3max P{3E € I, : A (a) is (B, my, 6)-bad}

T=u,v

+P{3E €] : A(Ll)(u) and A(Ll)(v) are not E-CNR},

since an (E,mz)-S cube is a fortiori (E, mp, + L?~1)-S. Now by (W2: 1,k + 1, I1),

k+1

P{3E € I, : A(Ll)(u) and Ag)(v) are not E-CNR} < 3172”1(1“9)

Moreover, given J € 2N*, if A(Ll) is (E, my, J —1)-bad then it contains at least J separable

cubes which are (F,m;)-S. Since n = 1, Hamiltonians on disjoint cubes are independent.
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So by grouping these J cubes two by two, using (DS: 1,k,mp,,I;) and bounding the

number of pairs of cubes in A(Ll) by \B(LI)P < (2L)%, we get

(7-2)  P{EE e I : AV is (B, my, J)-bad} < P{3E € I, : AV is (E,my, J — 1)-bad}
<P{3E €I, : AW is (B, my, 1)-bad}’/2
< ((2L)2dl_2p1(1+0)k)‘]/2

1+0)k —1  2p;(1+0)F
SCL(d_pl((j‘) )JSCL(PIS _ p1(3+) )J

because a = 3/2 and d < % < %. Now

oL 1204050 %L%(l—Q(l—&-H)’“—e)

and since (1 —6) < (1 —60)(1+60)* = (1 +60)F —0(1 + 0)*, we have
(7-3) 1-204+0)fF—0<—-(1+0F 001 +6)F=—-(1+6)F1.

Hence,

1
P{3E e I, : AY is (B, my, J)-bad} < ZL*%(”WC“.

The claim now follows by taking J = GE O

2.7.2 Multi-particle case: Strategy

The deduction of (DS: 1,k + 1,mz,,, 1) from (DS: 1,k,mp,, ;) was fairly simple.
Once n > 2 however, we face a difficulty when trying to estimate the probability that a cube
is (E,mr,,J)-bad. Indeed, Hamiltonians on separable sub-cubes are not independent, so
we can no longer multiply the probabilities as in the previous subsection.

To overcome this, we reason as follows: if a cube A(L]Zil is (E,mr,,J)-bad, then it
contains at least J + 1 pairwise separable cubes A(L]Z) which are (E,mr, )-S. Hence, either
it contains 2 separable (E,mp, )-S PI cubes, or it contains at least J separable (E,mp, )-S
FI cubes. Now separable FI cubes are completely separated by Lemma [2.2.9] so taking
J = 6, we can again multiply the probabilities. The main difficulty is in assessing the
probability that a cube contains 2 separable (E,mp, )-S PI cubes. The idea is as follows:
on PI cubes, the interaction potential decouples by Lemma , so the corresponding

Hamiltonians take the form H/(\JZ) (w) = H/(\TZ)(UJ) RQI+I® H/((; )(UJC), where n/,n” < N.
k k k
(N)

Now using the new resolvent inequality (GRI.3), we may deduce that A} ’(u) is non-
singular if both projections A(Li)(u 7) and Ag;//)(u 7¢) are non-singular for an array of
energies. To show both projections are indeed non-singular, we show that they cannot
contain a lot of bad sub-cubes A(Lnk),p n=n',n".

Notice that in the above scheme, we reduced the decay problem on PI N-cubes to that
on n-cubes for n < N, which indicates that an induction on n will be performed. Also
notice that unlike single-particle systems, here we will need good decay bounds on both

orders k — 1 and k to finally deduce the decay for k + 1.

11. Obviously, we could have taken J = 5 by avoiding inequality (7-2)), which gives an even better mr,
than we need. We took J = 6 to be in accordance with the multi-particle situation later.
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2.7.3 Pairs of PI cubes

We assume through this subsection that 2 <n < N.

Recall that if A(LZ)(u) is a PI cube, it is J-decomposable for some J by Lemma [2.2.6
We then denote Aﬁ)(u) = A(LZ/)(’LLJ) X Ag:l)/(UJC), where 7/1/’ =#J and n” =n—n'. We
also denote by ¥/ and X" the spectra of H/(\Tiz(uj) and H/(\T;k)(ujc)’ respectively.

Definition 2.7.7. Let Aﬁ)(u) = Ag:)(uj) X A(LZ”)(UJC) be a PI cube. We say that
A(LTZ) (u) is (E,mg,_,)-Non Tunneling ((E,mg,_,)-NT) if

(i) Yup € X" A(Li)(uj) is (E' — wp, mr, _,,1)-good.

(i) YAq € X/ AV (uge) is (B — Agymy,_,, 1)-good.
Otherwise, we say it is (E,my, _,)-Tunneling ((E,mg, _,)-T).

The following definition is taken from [68, Definition 3.16].

Definition 2.7.8. Let A(Lr;)(u) = Ag:)(uj) X A(LZ”)(UJC) be a PI cube. We say that
A(LT;) (u) is E-Highly Non-Resonant (E-HNR) if

(i) Yup € X Aﬁl)(uJ) is (F — up)-CNR.

(i) YAq € X/ AT (uge) is (E — Aq)-CNR.
Lemma 2.7.9. Let AYY(u) be a PI cube, k > 1, and let E € I,. If AY"(u) is E-HNR
and (E,my,_,)-NT, then A} (u) is (E,mz,)-NS.
Proof. Since pp > n"q_ for all p, € X", given E € I, and pp, € X" we have

(7-4) E—p <E—n"q < (ng- +eo) —n"q- =n'q_ + <.

As ey <1, E— up < E4 = maxy(ng— + 1). By hypothesis, A(LZ/)(uj) is (E — up)-CNR
and (E — pp,mr,_,,1)-good for all 1, € X", hence A(LZ/)(uJ) is (B — up, mr, + Lg_l)—NS
by Lemma [2.7.4] Similarly, Aﬁ”)(u‘yc) is (E — A\g,mp, + L’g_l)—NS for any A\, € ¥'.

Now let v € B¢ (u). Then |uge —vge| > Ly — 6 or [ug —vg| > Ly — 6. In the first
case, we take a large S > 2mp,, > 2my, and apply (GRI.3) to obtain

B—1
HGA(")(u)(u’V; E)| < CLZlde_(mLk+Lk )Lk + C/Lz/de_(Lk_G)S < e~ MLy, Lk
Ly

since Ly is large. The second case is similar, using (GRI.3"). O

Lemma 2.7.10 (cf. [68], Lemma 3.18). Let A(Li)(u) = A(Lr:)(’l,Lj) X Ag:l)(’U,jc) be a PI

cube. If A(LT;)(u) is not E-HNR, then

a. either there exists a cube Aén/) - A%T;/)(Uj) with £ € N*¥, L,lc/a < ¢ < Ly such that for
A = AT % AT (uge) we have dist(o(HY), B) < e,

b. or there exists a cube Aén”) - AS{:/)(UJC) with ¢ € N*, L,lg/a < ¢ < Ly, such that for
A](Ln) = A(LT:)(UJ) X Ay”) we have dist(a(Hf\z)), E)<e?.
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Proof. Suppose condition (i) of Definition is not satisfied. Then there exist u € 3"
and Agn) - A(LZ)(U ), L l/a < ¢ < Ly, such that dlst( (H/(\Z )), E—p) < e ¥, Thus, there
exists ) € O’(HI({;/)) such that E—p—nl<e?

But Ag:)(uj) X A(n//)(ujc) is PI and A(n/) - A(n/)( 7), 8o the interaction U™ also

decouples on AE‘) A(n) X A(Lk )(UJC) and we get H(n) H/(\Z/) QI+I® H( )(ujc)
(n)

In particular, the eigenvalues of H," A, take the form Eqp = e + pp, for n, € O'(H/(\Z/)) and

wp € X", We thus showed that dist(a(HXlL)),E) <|n+p) —E|<e?
If instead (ii) of Definition [2.7.8]is not satisfied, we reason similarly and obtain b. [

Lemma 2.7.11. Let A(Lnk)(u), k > 1 be a PI cube and suppose (DS:n',k—1,mp, ., L)
holds for all n' < n. Then there exists C1 = Ci(n,d,q_) such that

e 2pp 1 (140)F 1
P{3FE € I, : A(LZ)( ) is (E,mp, ,)-T} < ClL(2 td- >

Proof. Let A(LZ)(u) = Aﬁ)(u\y) X A(LZ )('I,ch) be PI and ¥/ := or(H[(\nL )(ujc)). By 1 ,
given F € I, and p, € X, either E— py, € [n/q- —i,n 'q_+eo) =Ty, or E—pp <nq_—
Suppose E — pp, < n'q_ — 3, let A(LT:L (v1), Ag:zl (v2) C A(LZ/)(UJ) be two separable cubes
and let n, :==n'q_ — (E — pp) > % Then by Theorem W given y; € Bﬁt L (vi),

Ly 3 _ _
HGA('”,) (’U )<'Uu yu E ,ub)H < \/;( \/I + 5/4)6 (kal 8)\/775
L1 m, 8\/m77b

< e MLy Lr—1

because /m, > % > 2mp, , (in fact 7 ﬁ = 2mpr, > 2myg, , for Lo large

enough). Thus both cubes are (E,mp, ,)-NS in thls case. On the other hand,
P{3IE — pp € Iy : A(Lr:z (v1) and A( z (vo) are (E — py,mr, ,)-S} < Ly, 2p" (+6)"
by (DS:n',k —1,myg, ,,Iy). But by Lemma there exists C' > 0 such that
b>C- |A(LT:/)(UJC)| = w>E-n'¢_+5 = E—p<nqg —1i.
As the number of pairs of cubes in A(Lnk/)(u 7) is bounded by ]B(Lr:)(u 7)|?, we finally obtain

P{3E € I, 3u € £" such that Ay (ugz) is (B — py, mp,_,,1)-bad}

! -2 n, 1+0)k—1
<BM (g Y L%
b<C|A)]

_ k-1 k—1 k—1
C’ 2n d+n”dL% AL (nJrn) w < ﬁLl(fn,l)d,M
- 2
because p,; > pn_1 for n’ = 1,...,n — 1. The same reasoning with A(LT; )(ch) and the
/ (n") :
spectrum >’ of H A (ur) yields the theorem. O

From now on we declare that

(DS :n',—1,m_,,I,y) = no assumption.
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Theorem 2.7.12. Let k > 0. Suppose that (DS:n',k—1,myg, ,,ILy) holds for alln’ <n

and let A(LZ)(u) and A(LT;) (v) be separable PI cubes. Then there exist Cy = Ca(n,d, q_) such
that

2p, 1 (1460)F 1

P(IE € Ly: AL, (w) and AJ)(v) are (B,me,)-8y < GoL"
. L(B—l)/2
Proof. If k = 0, recall that Lg is chosen so that for mp, = 05—,
(n) (n) 2 (2n—1)d— %
P{3E € I,,: Ay /(u) and A} '(v) are (E,mp,)-S} < Ly PU< OyLy '

So suppose k > 1. By Lemma [2.7.9

P{3E €I, : A(")(u) and A(n) (v) are (E,mp, )-S}
<3max P{AE €I, : A" )( ) is (E,mp,_,)-T}

X=u,v

+P{3E € I, : Ay (u) and A" (v) are not E-HNR}.
For x = u, v, taking Cs := 4C, we have by Lemma [2.7.11

n C e 2pp_1 (140)F !
PE € I, : AV (x) s (B,mu, ,)-T} < ZQL,E? A==

Since both cubes are PI, they are decomposable, say A(Lﬂ;) (u) = A(LZ,)( 7) X Ag:/)(u 7¢)

and A(LT;) (v) = A(er)(vz) X Agk )(vzc), where n/ +n" =1"+r" =n. If AET) C A(n )( 7) and

AZ ) ¢ A(er)(vz), where Ll/a < 1,03 < Ly, then the rectangles A(n) = Aé ") x A(Lk )(Uj0>

and A]gg) = Ag,) X A(LT; )(vzc) are pre-separable. Let J, = [ng- — 3 —e,ng_ + ¢ + ¢ be

an e-enlargement of I,,. Then by Theorem we may find C' = C’ (n,d,q_) such that

P{3E € I,, : dist(o(H}"), E) < e and dist(o(H{"), E) < £}
< P{dist(0, (HY"), 05, (Hy")) < 26} < C2Ly) " s (p, 4e)

Reasoning similarly for A(n ) c A( )(u 7¢) and A(TN) - A(Tﬁ)(vzc), using Lemma [2.7.10
bounding the number cubes in A . by |B | < (2Lk)”d for s = n/,n” r' v and the

] a

number of ¢ € N* satisfying Lk/ < E < Ly by Lyj, we get for € := max;e 4 < e‘Lg/ ,
B/

P{3E € I, : A" (u) and A" (v) are not E-HNR} < 4C/(2Ly,) "+ 0+25 (1, de =17,

where 4C appear because we apply the above argument 4 times, since Lemma [2.7.10
provides 2 cases for A(LT;)(u) and 2 cases for A(LZ) (v). As estimated in Lemma [2.7.5

b/a - C _Zppa (0T
AC(2L) 4 25y 4Bk ) < Lk2m(1+0> < f L(2n 1)d .

We thus obtain the theorem for k > 1. O
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2.7.4 General pairs of cubes

We assume through this subsection that 2 <n < N.

Lemma 2.7.13. Let k > 0. Suppose (DS: n,k,mp,,I,) and (DS: n',k —1,mg, ,, L)
hold for n' < n. Then for any cube Agn) (z) and J € 2N*,

k41

n . 1, _op. k+1 —Jpn k1
P{IE € I, : AY") (2) is (E,my,, J)-bad } < g(L,ﬁi WHOT g, o (HOT 8y

Proof. Put L = Lgyq1, 1 = L. If A(Ln)(z) is (E, my, J)-bad, then it contains at least J + 1
pairwise separable cubes which are (E,m;)-S. Hence, either it contains 2 separable (E, m;)-
S PI cubes, or it contains at least J separable (F,m;)-S FI cubes. By Theorem [2.7.12

P{IFE € I, : A(Ln)(z) contains 2 separable (E,m;)-S PI cubes}

2p, 1 (1+6)F 1 (2n-1)d_ 2pp_1(14+0)F 1
< 02(2L)2ndl(2n71)d7f < CL2nd+ = —

where we bounded the number of pairs of cubes in A(Ln) by \B(LN)P < (2L)*". Now

2pn (14 0)"*! = (2p, + 20pn) (1 + )"
< (2pn +2)(1 4 6)F
2pn—1 (2n —1)d i

= — —2nd)(1

(a2(1+9) - nd)( +0)

2p,_1(1+60)*1  (2n—1)d
S 2 -

o (6%

—2nd.

Hence,

k+1

1
P{3IF € I, : A(Ln) (z) contains 2 separable (E, m;)-S PI cubes} < gL_Qp"(HG)

Next, by Lemma pairs of separable FI cubes are completely separated, so the
corresponding Hamiltonians H/({Z) are independent. Thus, bounding again the number of

pairs of cubes in A(Ln) by (2L)*"?, we get by (DS: n, k,my, I,,),

P{3IFE € I, : A(Ln) (z) contains at least J separable (E,m;)-S FI cubes}
<P{IE€I,: Ag;n)(z) contains at least 2 separable (E,m;)-S FI cubes}”/?

< ((2L)2ag=2on (0 YT/ < (pna=UEn) g (e 2

because o = 3/2 and nd < pN;l < p”—gl. Moreover,

o200k —Ly 1 Ie i oapp)kog)
We thus showed that
1 1 sp
P{3E € I, : AY"(z) is (E,my, J)-bad} < gL”pn(”@)’““ + gL"%ﬂf?(H@)’“f@) ,

which completes the proof by ([7-3)). O
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Theorem 2.7.14. Let k > 0. Then the properties (DS: n',k —1,mg, ,,Iy) forn’ <n
and (DS:n,k,mp,, I,) imply (DS:n,k+1,mp, ., In).

Proof. Put L = Lyy1, | = Ly and let A(Ln)(u) and A(Ln) (v) be a pair of separable cubes.
Since g9 < 1, any E € I, satisfies F < E; = max,(ng- + 1), so applying Lemma
with J = 6, noting that [ > [* because Ly > [*, we have

P{3E € I,, : A" (u) and A (v) are (E,my)-S}
< 3 max P{3E € I, : A{"(z) is (E,m,, 6)-bad}

z=u,v

+P{3Fe€,: A(L”)(u) and A(Ln) (v) are not E-CNR},

since an (E,mz)-S cube is a fortiori (£, my, + L?~1)-S. Now by Lemma [2.7.13

k+1

n . 1 _
P{3E € I, : A(L )(z) is (E,my,6)-bad} < ZL 2pn (140)
for z = u,v. The assertion follows, using (W2: n,k + 1, 1,). O

2.7.5 Conclusion

Theorem 2.7.15. There exists m > 0 such that (DS: N, k,m,Ixn) holds for all k > 0.

Proof. By construction Ly is a large integer such that (DS: n,0,mr,,I,) holds for all

. . 1 48N K(N)
1 S n S N, Wlth mLO = SL(()l_B)/Q > Lé,ﬁ

For n =1, we know that (DS: 1,k,mp,,I) holds for all k > 0 by Theoremand
induction on k.

Now fix n > 2 and suppose that (DS: n',k,mp,, I, ) holds for all & > 0 and all
n’ < n. We may then apply Theoremm to obtam (DS n,k,mr,, I,) for all k > 0, by
induction on k. (Recall that (DS: n/,—1,my_,, I,/) means no assumption).

This completes the induction and we obtain (DS: N, k,my,,In) for all £ > 0. Now

. We prove the theorem by induction on n.

> © mr,; e 1
= Z(ij - ]+1) < 96NK(N) Z Lafl +3 Z a(1-6)
=0 =0 *j j=0 L
Since mr; < mg,, we have
o0 mL
S <96NK(N Zj +3Z a(l G S o Smig —m

for any 0 < m < mZL 0 assuming Lg is large enough. Now given k£ > 1, put S; =

Z;’;k(mL mLJH) Again the mp,; are decreasing, so Sk > 0 for all k. Since
mr, —m >9S5 =mp, —mpg, + Sk,

we get
m < mpg, — Sy <mp,,

so in particular, (DS: N, k,m, Iy) holds for all k£ > 0. O
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2.8 Generalized Eigenfunctions

In this section we prove a generalized eigenfunction expansion for H (™ (w) which plays
an important role in the proof of localization. For this we show that our model satisfies
the hypotheses of [67, Theorem 3.1]E

Given a bounded potential v = (v,) > 0, we define H, to be the operator associated
with the form

bolf, 9] = Z o, [frs Il D(h,) = WLQ(I"("))’

KEK
where

Ay, [0, 9] = (V). V) + (vxd, ), D(ay,) = WH((0,1)").

We first show that b, is a Dirichlet form and that (e*tH <n)(w))t20 is ultracontractive. For
this we follow [87], as it covers the case where the Hilbert space is over C.

Lemma 2.8.1. b, is a Dirichlet form.

Proof. Combine [87, Corollary 4.3], [87, Corollary 4.10] and [87, Theorem 2.25] to see
that p(D(ay,)) € D(ay,) and a,, [po f] < a,.[f] for every f € D(a,,) and every normal
contraction p. Now let u = (uy) € D(bh,) such that u, € C([0,1]") for all x and let
p be a normal contraction. If o' = (0,1)"! is a common face to x; and k2 and if
v WH2(0,1)" — L?(0,1)"! is the trace operator, then

3 s1)) = 7Pt Byt = [ Patny) = Pl 017
= [ b (@) = Pl (@)
0,1)n=1

<[ @) - (@)
(0’1)n71

= ||y (u,) — 7(“%2)”%2(071)714 =0,

where the last equality holds since u is continuous on . By the density of C*°([0,1]")
in W12((0,1)") and the continuity of v and p, the same is true for all u € D(b,). Hence
pow is continuous on o¢ for all u € D(h,). Thus p(D(h,)) € D(h,) . Furthermore,

bolpou] = Z Ay, [P 0w < Z Ay, [u] = b u].

KEK KEK

Hence by [87, Theorem 2.25], (e~t7v),5 is sub-Markovian. Thus b, is a Dirichlet form. [
Lemma 2.8.2. There exists ¢ = c(n) > 0 such that for all w € Q,
Wt >0 e | papy ooy < et A (a0

Proof. Let Q := (0,1)". By the Gagliardo-Nirenberg interpolation inequalityE (see [86]),

12. The reader is encouraged to check Appendix in which we collected all the facts we need here.

13. Alternatively, one could use Nash inequality: by [I02, Theorem 5, p. 181], there exists an extension
operator E : W*P(Q) — W*P(R") such that (Fu)|g = u and ||Fullsprr < ckpllt|kpo for all k >0
and 1 < p < co. Here ||g]|k,p,x = ZIaKk |D%gllLr(x)- Hence, using Nash inequality on R™ [79, Theorem

8.13], we have for any u € W"2(Q),

lullo.z.q < [1Bullo2rn < callVBullg 2,mn | Bullg

_ 1—
< enll Bulli 2 [|Bullo e < Cllullfz0llullonle

for C' = cpci,2c0,1. We used above that Eu € L'(R™), since v € L*(Q) C L*(Q). Noting that ||g|l1.2.0 <
1/2
(n+ 1)1/2(Z|a\§1 HDagHQL?(x)) , we get 1'
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we have for any v € W2(Q),
lull 2@y < CUIVullZag) + lullg@)llull g -

where a = By Holder inequality, we have |ul[z 1) < |lullz2(g). Using Holder

s
inequality again, with p = % and g = QTQCL, we get (2% 4 y%) < 21/9(22 4 y?)%/2. Thus,

1) lullz@) < CUVulEag) + lulldag)lulkify < Clau, ) ull,

for any bounded potential v, > 1. Hence, for any f € D(h,) N L(T") we have

1FZ2) = 2 1ellEa) < €2 3 (@A) Il Frg)

KEK KEK

Using Holder inequality with p = % and ¢ = ﬁ we get

1B < (X anlfid) (S 1)
< (Y anltd) (Shhlng) "

Using Lemma and applying [87, Theorem 6.3], it follows that

a)

C2(0ul NI

Vit >0: He_tH”|’L1(F)_>L2(F) S Ct_n/4 .

But [[e=*v|| ;112 = [[e""||;2_, 1~ by duality. So the assertion follows by taking v :=

V¥ — (ng- — 1) > 1 and noting that
et — exp(—t(H(”) (w) = (ng— —1))) = e(na-—Dto—tH™ (w) O
Let T be the self-adjoint operator on L2(I'™)) given by
Tf(x):=w(x)f(x),  where w(x) = (1+|[|x[3)"*
for some fixed v > nd + 1. We now establish
Lemma 2.8.3. There exists C = C(n) such that for allw € Q andt > 0:
tr(T—16—2tH(”)(w)T—1) < Ct—n/26—2(nq,—1)tHw—1”%2 < 00,

Furthermore, if E,, is the spectral projection of H™ (w), then the set function v, on R

given bylﬂ
v (J) = tr(Tile(J)Til) = HEw(J)Ting

is a spectral measure for H™ (w) which is finite on bounded Borel sets J.
Proof. Divide I'™ into annuli I N (A,(ﬁr)l(O) \A,E:n)(O)). Then by (NB.n),

(n) (n) nd
L m(T™ 0 A, (0) (k+1)
/m) w [P dm < Xk: +mpr = cgk: A+ ryn =

14. Recall that the trace is well defined for any positive operator and has values in [0, co].
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Thus w~! € L? and T~' is an operator from L[> — L2. Put H := H™(w). Then by
Lemma [2.8.2) T-'e *# : [2 — L? factorizes through L>. It is thus Hilbert-Schmidt with

T e 2 < Jlw™ |2 lle™ | oy poe < et e =D ™1 12

(see Appendix . Thus e *HT~1 = (T~e~tH)* is also a Hilbert-Schmidt operator with
the same norm. Hence,

tr(Tflef%HTfl) — ||eftHT71||g < Crtfn/2672(nq_71)t||,w71”%2 )

Now let J be a bounded Borel set and put b := sup{\ € J}. Then

0<e ®E,(J) < /

e" P dE,(\) < / e" P AE, (\) = e 2,
J

o(H)

Hence v, (J) < e tr(Tte 2HT1) < Cy|lw™!||2; and v, is finite on bounded Borel sets.
It is easy to see that v, is a Borel measureE Finally, v,(J) =0 < E,(J) =0, so v,
is a spectral measure for H. O

We note in passing that given a bounded interval I, the previous proof yields a constant
C =C(I,n,q-) > 0 independent of w such that

(8-2) supv,(I) < Cllw 32 := Cy .

Let H4 be the space D(T') equipped with the norm ||¢||+ = |[|T¢|| and H_ the comple-
tion of H in the norm ||¢||— = ||T~1¢||. By construction H, C H C H_ is then a triple of
Hilbert spaceslﬂ with natural injections ¢y : Hy — H and ¢~ : H — H_ continuous with
dense range. The inner product (, )3 extends to a sesquilinear form on H x H_ which
turns H4 and H_ into conjugate duals (see [89, Lemma 1] and [II]). The adjoint of an
operator O with respect to this duality is denoted by OF.

Lemma 2.8.4. For all w € Q, the space
Dy ={f e DHM (W) NHy : HM(w)f € Hy}
is dense in Hy and is an operator core for H™ (w)|'7]

Proof. Set H := H"™ (w) and let C°(T') := (@, C°(0,1)")NC,(T). Clearly D, D C(I)
(see the definition of D(H) in the Appendix, Section [2.11)). Moreover, C:°(I') is dense in
L*(T). Now let f € Hy, then Tf € L*(T') may be approximated by g; € C>°(T'), hence
|f —T g+ — 0 and clearly T-1g; € C2°(T'). Hence D is dense in H-.

To show Dy is a core we follow [22, Proposition 2.4]: let F < ng_ and consider
Dy = (H — E)71C.(T"). Since C.(T) is dense in L*(T), Dy is a core for H. By Combes-
Thomas estimate, each f € Dg is exponentially decreasing. Hence f € ‘H, and

Hf=(H—E)f+Ef =¢p+Ef €1,

since f = (H — E) !¢ for some ¢ € C.(I'). This proves the claim. O

15. If (J;) are disjoint Borel sets, then v, (| Ji) = tr[T " E(J Ji) T '] = > (TT'E,(UJ)T ej,e5) =
D (T B (J)T e e5) = 20, 20 AT Bu(J)T ejye5) = 30 e[ T Eu(Ji)T™ 1] = 37, vu(Ji). The
previous interchange of summations is valid because all terms are positive (even if some series have an
infinite value), see e.g. [96] Theorem 1.27].

16. By identifying H4 = ¢4+ H and H = ¢—H. We prefered to keep the distinction in Appendix

17. We prove a stronger statement in Lemma namely functions of compact support in D(H 2 (w))
form an operator core.
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By [67, Lemma 3.1], H™(w) regarded as an operator on H_ is thus closable and

densely defined. We denote its closure by am (w). We then say ¢ € H_ is a generalized
eigenfunction of H™ (w) with corresponding generalized eigenvalue A 6 (C if ¢ is an

eigenfunction of g (w) with eigenvalue A de if € D(H( )( )) and at" ( ) = .

By [67, Lemma 3.2], we have q™ (w)p = HM(w)y for any ¢ € D(H( )) NH. In
particular, if a generalized eigenfunction lies in H, then it is an eigenfunction.

We may now state the main result of this section. Here Ty (H,H_) and Tq 4+ (Hy, H—)
are the spaces of trace class and positive trace class operators from H to H_ respectively
(see [67] for details).

Theorem 2.8.5. Let v, be the spectral measure of H™ (w) introduced in Lemma 2.8.9,
There exists a v,-locally integrable function P, : R — Ty 4 (H4,H_) such that

i F(H™ (W) Ey(J) ey —/f A)dv,(N)

for all bounded Borel sets J and all bounded Borel functions f, where the integral is the
Bochner integral of Ti(H4, H_)-valued functions. Furthermore, for v,-a.e. A € R,

P,(\) =P\,  trP,(\) =

and P,(\)¢ € H_ is a generalized eigenfunction of H™ (w) with generalized eigenvalue A
for any ¢ € H.

Proof. Applying [67, Theorem 3.1] and [67, Corollary 3.1], it only remains to show that
P,(\) = P,(\)T v-a.e. This follows from [67, Eq.(46)] and the fact that L:_ = L_ O

2.9 Exponential Localization

The fundamental link between mutiscale analysis and localization is provided by the
following eigenfunction decay inequality. Since we will not rely on regularity of generalized
eigenfunctions, the proof is a bit longer than in [104].

Lemma 2.9.1. Let By € R. There exists C = C(Ey,n,d,q_) such that, if xo € Z"*
and C(x) C A(anﬁ(xo), then every generalized eigenfunction v of H™ (w) corresponding
to A € p(H[(:z)(xO)) N (—oo, E4] satisfies

out . . .
Ix<¥ll < C-[BY (X0)|y€]§n%§‘3§xo) 1G A (50) & 33 M- lxages o) -

Proof. Let A := Agn)(x()) and p € CHT'N A) such that ¢ = 1 on a neighborhood of
'™ N C(x), supp Vo C Q := int(A(Ln)2(x0) \AL 4(%0)), and [|V¢| < Ci(nd). Then
||Xx¢||2 <SD¢7 Xx¢> <90'¢7 (HA - A)GA(A)XX@Z))

Put H := H™(w). Since ¢ € D(H_) and H_ is the closure of H, there exists (f;) in
D(H) such that ||f; —¢||- = 0 and |Hf; — H_%|- — 0 as j — oo. Now for any x of
compact support we have

(9-1) Ixf; = xvll < lixwll - If; —¢ll- —0
18. See Section for details.
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(recall that T'g := wg). Hence taking v := G (\)xxy we have
ot |* = lim {5, (Ha = AJv) = lim (hx = N)[pf;, ]
j—oo j—oo
since ¢ f; € D(hy) = WH3(T'(™ N A) by Lemma Now

(ba — Nlefj vl = (V(efj), Vo) + (V¥ = Nefj,v)
= [(V £, V(pv)) + (V¥ = A) fj, e0)] + (i Ve, Vv) = (V f;,0V ).

Since v € WLQ(F(") N A) has compact support in A, we may extend it by zero to a
function ¢g in D(h) N C.(T"). Hence

(9-2) (ba = Nlefj, o] = ((H = N fj,9) + {f;iVe, Vv) = (Vf;,vVp).
Now H_1 = A1), so by the choice of f;
(9-3) [(H =N fill- < Hfj = Mpll- + [Al - | f; = &ll- — 0.

Thus
[((H = NS5 < I(H =) fl-llgll+ — 0.
The second term in tends to (¥Ve, Vu) by (0-1). For the third term, note that by
Lemma taking Q := int A9™*(x0), we can find ¢; such that
Ixa Vil < exllixq(H = M) fill + lIxe £l
< alllxqull - I(H = N fill- + lIxafil) = cllxel

using (0-1) and (9-3).

Recalling that supp Ve C Q, the above derivation finally yields

I ll” < [IVellooIxg?lllixg Voll + el Vellslixav llxgvl
By Lemma [2.4.3] we can find ¢2 such that

Ixa Vol < callxqul

(note that (Hy — A)v = xxtp = 0 on Q). Taking C' = max(2¢1(|V¢||eo, 2¢2[|Veplloo) and
noting that Q C Q C A" (xg) we thus get

X l1* < C - [[xagu ey P11 - X agut (o) 0l
Since [[Xagut(xg) VIl = [[Xagut(x0) GA (M) XX ||, we get

X<l < C - Ixagut () GA (M) X+ [ X A2t () Pl
The assertion now follows by the triangle inequality. O
We now prove exponential localization by adapting [112, Theorem 2.3].

Proof of Theorem[2.1.3 Choose m and ey such that (DS: N, k,m, In) holds for all k > 0
in Iy = [Nqg- — %,Nq_ + €o], as guaranteed by Theorem [2.7.15] Let 0%, be the set

gen
of generalized eigenvalues of H™)(w). By Theorem there exists Af C R of full

v,,-measure such that Ay C ox, . If we show that every A € o0&, NI is an eigenvalue,

gen* gen

A% N T will be countable (as L>(T™) is separable), so v,|; will be concentrated on a
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countable set and o(H ™) (w)) N I will be pure point. It thus suffices to show that with
probability one the generalized eigenfunctions of H")(w) corresponding to A € Ogen N1
decay exponentially with mass m.
Let b € N* to be chosen later and define
Arr1 =B (0)\B5Y(0),

2b7‘k+1 27”k

where 71, := ry 1, Then by Lemma [2.2.8, any x € Ay satisfies that A(L]Z) (x) is separable
from A(L]Z) (y) for any y € Bgiv)(O). Now define the event

B = {3\ € I,x € Ajpr,y € BY(0) : AV (x) and ALY (y) are (A, m)-S}.
Then by Theorem we have
P(Ey) < (4bryyy — 1)V4(2ry, — 1)NAL 0" o p2Nad=2x(040)"
Hence > ;2o P(Ek) < co. So by the Borel-Cantelli Lemma, if we define the event
Oy = {E}y, occurs finitely often},

we have P(€2;) = 1. Now let w € 1 and A € oy, NI correspond to a generalized
eigenfunction ¢. If ||xx¢| = 0 for all x € ZN? then ¢y = 0 and the theorem holds.
So suppose ||xy|| # 0 for some y € ZN4. Then by Lemma we may find C; =

Cl(Na da q—7,; H@ZJH*) such that

X out . . 2\v/4
Ixy?ll < C1- |BE, (y)\zegligiy)HGA<LJZ>(y)(y7ZJ)H (L4 (lyl + Lg)™)""

Now if A(L]Z) (y) is (A\,m)-NS, we get

b wll < CLLY e ™ bk (L (Jy | + Li) )7,

Since ||xy¥|| # 0, there exists ko such that A(L]Z) (y) is (A\,m)-S for all k > ko. But there

exists k1 such that y € ng)(O) for all k£ > k1. Finally, since w € 21, we may find ks such

that Ej does not occur if k > ky. Let k3 = max(ko, k1, k2). Then for k > k3, we conclude

that Ay (x) is (A, m)-NS for all x € Aj1.

Now given 0 < p < 1, we choose b > ?_L—Z and define

A =BY)  (0)\BY (o).

Tip k1 Tk
Then Ak+1 C Agy1 and for any x € Ak+1, we have
dist(x, 0Ak+1) > p - |x/.
Indeed, if x € Ak+1, then

N 2b
gbr)kﬂ(o)) > 2brp41 — 1+

d(x78B Tk+1 = Pl Tk+1 > P |X|7

+p

d(x, 9B5Y) (0)) = [x| — 2k > |x| — (1= p)[x| = p-|x].

2ry
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Now for x € Apyq with k > ks, AS:]Z) (x) is (A\,m)-NS, so by Lemma [2.9.1]

2(Nd—1) —
x| < CoLy ™4 DemmEx |y 9|

prlx|
La-1

for some w; € By (x). We may iterate at least | | times and obtain

polx|
Ixtl] < (CoL2V 4D emiiy LEZE] o1 1 @by y1)2)7/4

< e~ p-[x|

for any 0 < p/ < 1, provided k > k4 for some ky > k3. But if x ¢ B(Ni)rk (0), then

~ 1—p F4
x € Apy for some k > ky (since %T;@H > %prkﬂ) and the bound is satisfied. Thus,

log [ xacthl| < —mp'p - [x]

whenever x ¢ BY (0). Hence

Tk
1 x
Jim sup 228l )
|x|—o0 ‘X’
for all p, p’ € (0,1), which completes the proof of the theorem. O

2.10 Dynamical Localization

We finally establish dynamical localization for H™)(w) using the approach of [47]. In

the following we consider the event
R(m, L, 1,x,y) = {VA e I: A (x) or AN (y)is (A\,m)-NS}

for x, y such that the corresponding cubes are separable. We start with the following key
lemma.

Lemma 2.10.1. Let m >0, I C R and assume w € R(m, L,I,x,y). Then
P (WX ll2 < Ce™™ 2 (14 [x )72 (1 + [y])7/?
for vy-a.e. X € I and large L, with C = C(I,m,N,d,v,q-) < 0.

Proof. Let Ag be the set of full v,-measure such that Theorem holds for all A € Af.
Given A\ € I N Af, either A(LN)(X) or A(LN)(y) is (\,m)-NS. Since P,(\) = P,(\)f, we
have ||xxPo(N)xyll2 = [[XyPu(X)Xxx||2, 50 we may assume that A(LN) (x) is (A, m)-NS. Now
if € H, then by Theorem the vector P,(\)xy¢ is a generalized eigenfunction of
HWM)(w), hence by Lemma [2.9.1

X Po (M xy@ll < C1r(2L = 1)¥ e [y pout ) P (M) Xy 8 -
Hence by definition of the HS norm,
X< PN xyllz < C1(20 = DN e™™ || x jour ) P (A Xy [l2 -
But
X aet (o) P (M) Xy 11 < XAt o) 1= 2t 1P (M) 175 314 20 Xy 12
< e(L+ (x| + L)1+ (ly[ + 1))/
since tr P,(A\) = 1 and P, (A) > 0. The claim follows since || - ||2 < || - |1 O
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We now establish the decay of the operator kernel. Given a bounded K as in the

statement of Theorem [2.1.4} we find ko > 0 such that K C I'n A,@X)Lk (0). For j > ko put
]

N = N
Fj = Ay, (0), j =By, (0),
Mj = Fj1\ Fy, Mj = Fj1\ Fj.

In the following, we choose m and &g such that (DS: N, k,m, Ix) holds for all £ > 0 in
In =[Ng- — %, Ngq_ + eg], as guaranteed by Theorem [2.7.15

Lemma 2.10.2. There exists c = ¢(N,d, q—,ro,7) such that for x € Mj andy € ngj\vly)Lj (0)
with j large enough, we have for I = [Nq_, Nq_ + &q] :

E( sup e (H™ (@) Eu(Dxyll3) < efeEs/? 4 L2074,
1<t

Proof. Given a bounded Borel function f put f; := fx; and H, := H™)(w). By Theo-
rem [2.8.5] and standard properties of the Bochner integral in the space of HS operators we
have

exfr(HD 2 < [ 17OV exPul0x ladva (V).

Since x € M; and y € B7(«]]:,]7)Lj (0), we know by Lemma [2.2.8| that Ag) (x) and Agj) (y) are

separable. Hence if w € B; := R(m, L;,I,x,y), we have by Lemma [2.10.1

P (M)xyll2 < CLLYA LY e mbil? < emmli/4

for v,-a.e. XA € I and j large enough. Hence
i (X ll2 < [1F oo™ ™55/, (1) < Cil| e/

where Cy = Cix(N, d, q—,7) is given by (8-2)). For w € Bf we have the bound

e fr(Heo)xy 13 < 11361 (1) xy |13
<N IBMXy TP E (DT HE < Coll I3 LT (1)

for Cy = Co(~, N,d,r9). Again v,(I) < Cy;, so we finally get

E( sup locfi(Ho)xyl) < Cie™ /2 B(By) + CoCiaL] P(E).

Using Theorem [2.7.15( to estimate P(Bf), we obtain the assertion. O

We are finally ready to prove our main result. Note that if R is a Hilbert-Schmidt
operator on L?(I") and if A, B C RV are disjoint, then

(10-1)  [IxauBR[3 = tr[R"xaupR] = tr[R*XAR] + tr[R*xpR] = | xaR|3 + | x5RIf3,

(10-2) 1Rxausll3 = lIxauR*(13 = IXAR" (3 + [x5R*|3 = | Rxall3 + | Rxsl3-
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Proof of Theorem[2.1.]]. Let k > ko be sufficiently large so that Lemma [2.10.2] holds for
j > k. Given s > 0 and a bounded Borel function f put f; := fx; and H, := H™ (w).

Since Fj, U (Uj>; M;) = RV, we have by (|10-1)
EﬁﬁgﬂX”ﬁ( MKM}SEtﬁﬁﬂmeﬂﬁ( 2xxl3}

FE{Y sup lxar X fr(Ho)xx3}
AES!

Let us estimate the first term. We have

I X2 fr(Ho)xc I3 < enll FIRLRIEL (D xx |13
< el I Lillxx T2 Ea (DT 5.

Since | E,(I)T~ 3 = v,(I) < Cy; by (8-2), we get

B{ s b XV (R E) < el <o
fl<

For the second term, note that XM].XS/Qg = XS/QXMjg for g € D(X*/?), so using l)

and (03).

E{S sup [xan X2 1 (Ho)xxl3)
AL

<Y 3Ly, > B { sup [hofi(Ho)xy 3}

; - N FlI<
jzk XEMj,yEB(TN)Lk (0) 11
0

Estimating |M;| < cL, +1’ \BSJJX)LIC | < c’Lé\gd and using Lemma [2.10.2} the series converges.
TTRQ

This completes the proof of the theorem. O

2.11 Appendix

In this section we prove various results used in the text. We shall repeat the statements
of the theorems for the reader’s convenience.

Theorem 2.11.1. Given w € €2, f)&n) is closed, densely defined and bounded from below.
The unique self-adjoint operator H™ (w) associated with bfun) is given by

HM (W) (fo) = (“Afa +VEF),  for (fo) € DIH™ (w)).

Proof. As a direct sum of Hilbert spaces, the space

(& WO, lwraw)s I ey = D Islfeqonn

KEK KEK

is a Hilbert space. By the trace theorem for W2((0,1)") (see e.g. [83, Theorem 1.1.2]),
(W), [|-[lwr2(ry) is a closed subspace of (&, W2((0,1)™), ||-[lw.2(r)), hence a Hilbert

space. Finally, b > ng_. If for fe D(h&n)), we define Hsz(n) = f)((u )[f] + (—ng- +

)HfHLQ () then I Hh(n) is equivalent to || |lyy1.2(r). Hence, ba(un) is closed.
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Let C®(T) = (@, C°(0,1)") NC,(T). Since D(§”) > C=(T), b is densely defined.
By [104, Theorem 4.1.5], the associated operator H™ (w) is given by

D(H™(w)) ={f € D(6{")|3g € H: Vv € D(OJ"), bV [f.0] = (g,0)},

H™(w)f :=g.
So let f € D(H™ (w)). Then in particular, given v € C2°(T), we have

(Vf, V’U> = <g - wa,’l)>.

Hence —Af = g — V¥ in the sense of distributions. As g, V¥ f € L?(T') and as C°(T)
is dense in L?(T), the equality holds in the L? sensel Hence HM(w)f = g = —Af +
Ve f. O

Theorem 2.11.2. There exists Qy C Q with P(Qy) = 1 such that for all w € Q :
[ng-,ng4] C o(H™(w)) C [ng-, +00).
In particular, inf o (H™ (w)) = ng_ almost surely.

Proof. Since U™ >0 and W > ng_, then H™(w) > ng_ and o(H™ (w)) C [ng_,4+00)
for all w € Q. To prove that o(H™ (w)) D [ng_,nq,] almost surely, let E € [ng_,nq,],
putlgz[%—— —+f] for m € N* and let

nm’n

By = {(x1,...,2) € (Z)" min |2; — x| 2 2m + ro},

where 7( is the interaction range. Given k € N*, consider the event
QE (k) ={weQ:w. eI Vee @M NIAW (x5,m))},

where Xj, = 28(2m + 10)(1,2,...,n). Then x4,, € B, for each k, P(QL(k)) =

(n)
u([,ﬁ)#{g(r(l)mm‘m )} is the same for all k and it is strictly positive since % €lg-,q4] =

supp . Hence, 3 ;-1 P(QE(k)) = oo. Moreover, HAg)(xk,m) N HA%L)(xk/’m) = () for
k # k', so the events {QF (k)}ren+ are independent. Thus, by Borel-Cantelli lemma II, if
QF = Npr>1 Uksi QE (), then P(QE) = 1. Let QF := Npen+QE, then P(QF) = 1.

Fix w € QF and let m € N*. Thenw € QZ so we may find k € N* such that w € QF (k).
We finally construct a Weyl sequence: choose g, € D(H (")) such that 0 < g, <1, 9m =1
on T'nA™ (Xgm)s gm =0 on I'N Af,(ﬁ)(xk m)¢ and ||Agmlle < C, for some C = C(nd).

m—1 , —

Let fi = cmgm, where ¢, := ||gm|| 1. Then ||fnll = 1, |Afmlloo < Cep and

I @) = B) il = Iy, (A + U+ W = ) ]

But Xjm € B, so U™ =0 on A%)(Xk’m). Also w € QE(k), so [We — E| < L for all
k€ KT N AW (x,)). Thus

IO @) = B) forll = Do (=8 4+ W = B fll < 1A fnll + - fmll =0

19. It is this part that distinguishes the difficulty of the domain for multi-particles: for n = 1, the fact
that —f” € L? means that f € W22, but for n > 1, the fact that —Af € L? does not imply that f € W22,
For f to be in W2, we should have 8;0;f € L* for all i,j =1,...,n
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Indeed, note that
L=l = Iy il = KT NAT D)),
hence c2, < (#{K(T'N A( ") D}t and using (NB.n),

1A fml? = uxw\w Aful < 1A% (#ET AL} - #ET N ARL)})

) (2m _ 1)nd n __ (2m _ 2) (2m _ 3)nd n
(2m — 2)7(2m — 3)nd—n — =

7

Thus, for any w € QF we have E € o(H™ (w)). Let Qg := NEeng_ ngs N0 QF. Then

P(€p) = 1 and for any w € Q we have o(H™ (w)) D [ng_,ng.] N Q. Since the spectrum
is closed, the proof is complete. ]

Lemma 2.11.3. The following estimates hold:

(NB.1) #HE@W N AN} = d@L)2L - )T <d- AV,
(NB.n) A{K@™ A AM)} ﬁ( d(2L)(2L; — 1)) < dm - (ALY

Proof. For d = 1, it is obvious that #{&(I'™M) N A(Ll))} = 2L since in this case A(Ll) is just
an open segment of length 2L and each edge has length 1.

So let us suppose the estimate is true for d = m and calculate the number of edges in
a l-cube in R™*! with coordinate axes z1,..., 2,4+ 1. Since this number is invariant by

translations, we may suppose the cube is A(Ll)(O). By hypothesis, the hyperplane {z,,+1 =
L—-1}n Ag)(O) contains m(2L)(2L — 1)™~! edges. The same holds for the hyperplane

{m+1=L—-2} ﬂA(Ll) (0) and so on, by calculating the number of edges in the hyperplanes
@mi1=L—1,L—2,...,—L+1, we obtain (2L —1)(m(2L)(2L—1)""1) = m(2L)(2L — 1)™
edges. It remains to calculate the number of “vertical” edges, i.e. edges that lie in the
translates of the axis ,,+1 in A(Ll) (0). There are (2L — 1)™ such translates (since each
xj, j =1,...,m varies from L —1 to —L + 1), and each axis contains 2L edges by the
case d = 1. Hence we get (2L —1)™(2L) vertical edges. The total number of edges is thus
m(2L)(2L — 1)™ + (2L — 1)™(2L) = (m + 1)(2L)(2L — 1)™. Thus (NB.1) holds Vd > 1.
Since T™ =T x . x TM (NB.n) follows directly from (NB.1). O

Lemma 2.11.4. HI(Q) (w) has a compact resolvent. Its discrete set of eigenvalues denoted
by Ej(H/(Q) (w)) counting multiplicity satisfies the following Weyl law:

(WEYLn)  V¥S€R3IC=C(n,d,S—ng-): j>CA"| = E;(H{(w)) > 8.

fo ; * d"(S—ng_)"/?
Moreover, C' is independent of w, and if S > S*(n,q-), then C < {WJ + 1.

Proof. Put A = A]é") and define the Neumann-decoupled Laplacian —Ai’dec via the
form h[f, 9] = T recrrn) (Vs Vin), with D(53%) = @uecrnny WH?((0,1)"). Then
D(®)) € D(h) and b\ [f] = b3*[f] + ng_| f|[%, hence

H/(\n) (w) > —Aj\v’ ¢ 4 ng_ . (%)
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Since AN’deC = Bpek(rnAam) A?(I) 1)n» the eigenvalues Ej(—Ai’deC) are just the eigenvalues
E(— A(o 1y») With multiplicity #{K(I"N AM)} < d*AM)]. In particular, E;(—AY %) —

00 as j — 00, so by (x) and [92] Theorem XIII.64], HI((Z) has a compact resolvent and
thus a discrete spectrum. Now by Weyl law for Ek(—AI(\[I) 1) ([92, Section XIII.15]),

there exists C7 such that k > C7 — Ek(—AI(\(I) 1)n) > S — ng_, and if S is large,
S—ng_)n/2 . n n N, dec
C) ~ W. Thus j > C1d"|AW| = Ej(-A“C) > S —ng_. But by (x),
E;(HM(w)) > Bj(—AY %) 4+ ng_. Thus j > d"Cy|AM| = E;(H"(w)) > 5. We get
(WEYL.n) with C' = d"Cy and C < [%J +1if S > S*(n,q). 0
Before proceeding further, we need the following notion.
Definition 2.11.5. Giveny € Z™ and § # J C {1,...,n}, we say that P = {y; : j € j}
is R-connected if Z =J;cs A Al )(yj) C R? is connected. In this case, if #J > 2, then

Vi,j € T lyi -yl < (T — D)(2R) < 2(n — DR,
Lemma 2.11.6. A partially interactive cube is decomposable.

Proof. Suppose AS—Jn)(u) is not decomposable. Then 34 # 1 such that |u; — u;| < 2L + ro
(otherwise J = {1} would give a possible partition). Let J> = {1,i}. Since J> is not
a possible partition, Jiy ¢ Jo such that |ug — uiy| < 2L 4+ 79 or |u; — uiy| < 2L 4 719.
Taking J3 = {1,4,i2}, the set {uy : k € J3} is thus (L + r¢/2)-connected. As J3 is not
a possible partition, we may repeat the procedure and finally obtain 7, = {1,...,n} and
{ug : k € Jn} is (L + ro/2)-connected. Consequently,

Vi<j<mn:|uj—u| < (n-—1)2L+ry)
Hence
dist(u,D) < |u— (u1,...,u1)| = nax luj —ui] < (n—1)(2L + ro)

The lemma now results by contraposition. O
Lemma 2.11.7. Let x,y € Z", L > 1 and take Tn,, as in Definition . Then

1) Ify ¢ UK(n) A n) ) (x9), then Agn) (y) and A(Ln) (x) are pre-separable.

2) Ify ¢ UK(n) Ay ”) | (xU)), then A(Ln) (y) and A(Ln) (x) are separable.

3) Ify ¢ A(QZ L( ), then A(Ln) (y) is separable from any A%”) (x) satisfying x € A&Z?L(O).
Proof. 1) Decompose {yi,...,y,} into maximal L-connected subsets

'Pk:{yj:jéjk}, k=1,...,m,

and let Z; = Ujez, A(Ll)(yj). Then (Z); forms a partition of HA(Ln) (y). Suppose now
that A(Ln) (x) and A(L") (y) are not pre-separable. Then

VO£ C L. n} TyA (y) 0 (gAY (y) UTIAYY (x) # 0

20. If #£J = 2,i.e. J ={i,7}, it is clear that |y; —y;| < 2R. Suppose the property holds for any J with
#J = k. Given J with #7 =k + 1, let i,j € J. We may find i1 € J, i1 # 4 such that |y; — ys,| < 2R.
But then #(J \ {i}) =k, so |yi; —y;j| < (k—1)(2R) by the induction hypothesis. Thus, |y; —y;| < k(2R).
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Since (Z)y, forms a partition of HA(Ln) (y), we have in particular

V1<k<m: Z,nTAM (x) £ 0,

hence
V1<k<m,3y; € Py, 3z, : |y; — ;| <2L.

But Py, are L-connected, hence Vi,j € Ji : |yi — y;| < 2(n —1)L. Thus,
Vy; 3z, : |y; — x| < 2nL,

so that y € Ag?L (x(®)) for some k. The claim follows by contraposition.

2) This follows from 1) by noting that r, ; > 2nL and that |y — x(j)\ > 1y, for all j
implies |y — x| > r,, 1, (since x is one of the x(7)).

3) Let

F= U UL

xeAl"  (0) I=1

Then by 2), if y ¢ F, then A(Ln) (y) is separable from any A(Ln) (x) with x € A7(~Z7)L (0).
Thus it suffices to show that A{"” (0) = F. For this note that if x € AEZ?L (0), then

2rp L
|z)| < rp 1, for all k, so by definition of x), |x(j)| < 1p,r, for all j and so xU) e A$~Z?L(0)
for all j. Thus F = A&:?L (x) = ASY (0).

xeA | (0) o

O]

Lemma 2.11.8. Separable FI cubes are completely separated.

Proof. Since A(Ln)(u) and A(Ln) (v) are FI, there exists x,y € D such that [u — x| < (n —
1)(2L +1p) and |[v —y| < (n —1)(2L + ro). Hence for all j,k=1,...,n:

(x) and HkA(Ln)(V) c 1AM

(6 IGAY(u) C ;ALY (ne1)@Lro)+L(Y)-

(n—1)(2L+ro)+L

Now
u—v[<|lu—x[+|x—y|+]y—v|<2(n—1)2L+r) +[x -yl

Moreover, A(Ln)(u) and Agn)(v) are separable, so by definition |u —v| > r, 1 = 4(n —

1)(2L + 7o) + 2L. We thus get
x —y|>u—v|]—=2(n—1)(2L 4+ ro) > 2(n —1)(2L + r¢) + 2L.
Since x,y € I, this implies
(n) (n) _
(%) WA 1y r0)+2 ) VAR 1y 0y £ (V) = 0

for all j,k=1,...,n. By () and (xx), we see that HjA(Ln)(u) N HkA(Ln) (v) =0 for all j, k.
Hence HA(Ln) (u) N HA(Ln) (v) =0, as asserted. O
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Chapter 3

Additional properties and
alternative proofs

This chapter is a complement to Chapter [2| and discusses more properties of the oper-
ator H(™(w), as well as some alternative proofs.

In Section we show that if the interaction potential U(™ is invariant under diagonal
translations, then H( (w) is ergodic and has an almost sure spectrum. However, this does
not help us to locate the spectral edge of H (n) (w), so it is not a substitute to Theoremm

In Section we give a Combes-Thomas estimate which is valid not only below the
spectral edge, but also for arbitrary spectral gaps. The price to pay is that the proof
becomes much more involved.

In Section [3.3] we show that the generalized eigenfunctions constructed in Section [2.8
are regular, i.e. locally in W12(I'). This can simplify the proof of Lemma but it
takes more effort to prove regularity than to avoid it. In any case, regularity can be of
independent interest.

In Sections [3.4 and [3.5], we establish localization without using generalized eigenfunc-
tions. This makes the proof of localization conceptually more elementary. There are two
facts to keep in mind however. First, this approach does not allow us to establish dynami-
cal localization in the Hilbert-Schmidt norm, but only in the operator norm. And it seems
to us that this cannot be improved. The second fact is that this approach needs essen-
tially the same trace estimates needed to derive generalized eigenfunction expansions. So
in conclusion, we believe that it is interesting in principle that one can derive localization
without relying on generalized eigenfunctions, but for the time being, it seems better to
just work in the usual way.

We conlude the chapter with Section in which we explain to what extent our
localization results can be extended to log-Holder continuous distributions.

3.1 Ergodicity and almost sure spectrum

In this section we prove that if the interaction U™ is invariant under diagonal transla-
tions, then the operator H (™ (w) is ergodic with respect to a certain family of translations.
This will imply that H™ (w) has an almost sure spectrum.

We shall follow the definitions of [I04, Section 1.2]. Let (2, F,P) be a probability
space. A family (T;)ies is called measure preserving if P(T; '(A)) = P(A) for all A € F.
It is called ergodic if, moreover, every set that is invariant under (7;) is trivial; i.e. if any
A € F satisfying T, '(A) = A for all i € I must satisfy P(A) € {0,1}.
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In our setting, Q := [¢_, ¢+]¢. Recall that every edge e takes the form m — m + h;
for some m € Z4, j € {1,...,d}, where (hj)?zl is the standard basis of Z%, and that we
denote such e by e = (m, j). Now consider the family (7});czq, T : 2 — Q defined by

T - (Wim,j)) = (Wim—ij)) -

Then we have the following lemma (which is quite classic, not yet dependent of the multi-
particle context).

Lemma 3.1.1. The family T; : Q@ — Q, i € Z¢ is ergodic.

Proof. Let A= {w:w(m, ;) € A1,...,w ) € A} be a cylinder set. Then

Mk,Jk
TZ-_IA = {w : Tz(w) S A} = {w P Wimi—ig) € A, ... » W(my—ige) € Ak} .

Hence P(T; 1 A) = (A1) ... u(Ay) = P(A). Thus, £ = {A:P(A) =P(T,; 'A)Vic I} isa

A-system that contains all cylinder sets. Since cylinder sets are a w-system, we get £L = F

and the (7;) are measure preserving (for a proof of the m-A theorem, see [12]).
Now let R be the set of cylinder sets and take

C={A|VBER:P(T;'ANB) - P(A)P(B) as ||i]joc — o0} .

Then C is a )\—systemlﬂ which clearly contains the cylinder sets, so L = F by the m-A
theorem. Hence

Y={B|VYAc F:P(T;*AN B) - P(A)P(B) as |||l — o0}

is a A-system containing R, so J = F. Finally, if A is invariant under all T;, then
P(A) = P(ANA) = P(T; *AN A) — P(A)?, so that P(A) = 0 or 1. Thus, the (T}) are
ergodicf] O

Let (Q,F,P) be a probability space and let H : Q — S(H) be measurable. H is
called ergodic if there exists an ergodic family (7;);c; on (2, F,P) and a family of unitary
operators (5;);er on H such that

H(T;(w)) = S;H(w)S; foralwe Q,iel
Theorem 3.1.2. Suppose that U™ is invariant under diagonal translations, that is
UM (2 —i,... xn—i) = U™ (zy,...,2)
for alli € Z% and (x1,...,x,) € T, Then H™ (w) is ergodic.

Proof. Since any e takes the form (m,j), any & = (m, j1,...,j,) for some m € Z" and
Jr = 1,...,d. In this case, we shall use the notation fi = fmji, .. .-

By Lemma (T3);eza is an ergodic family on €. Furthermore, for each Tj, there
exists a unitary operator S; on H such that H"(T;(w)) = S H™ (w)S;. Indeed, define
Si (f(ml,...,mn),jl,...,jn) = (f(m1+i,...,mn+i)7j1,...,jn)7 then

S;H™(W)Si (i) jroin) = STH™ (W) (Foms i mn i) 1)
= _Af + (‘/(‘:)’Ll—i,...mn—i),jl,...,jnf(m17-~~7mn)7j1y~-~7jn) .

1. To see that C is closed under complements, first note that if A € C, then P(T,' AN B) — P(A)P(B)
if B is a disjoint union of sets in R. Now if B € R, then B¢ is a disjoint union of sets in R. Thus,
P(T;7'A°NB) =1 -P(T; P AU B®) = 1 — [P(T;71A) + P(B°) — P(T; AN BY)] = 1 — [P(A) + P(B°) —
P(T; ' AN B°)] — —P(A) + P(B) + P(A) P(B°) = P(A°) P(B).

2. Actually we showed more: the (7;) are mizing.
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Now V¥ = U™ + W%, and by definition (cf. Section [2.1.2)), if x € '™ takes the form
(z1,...,o,) with o = myg + t*hj,, then UM (x) = U (tL,...,t") and if

Tk (m17"'7mn)7j17"'7]n

i=(i,...,1), then UM (x—i) = U t"). So using the hypothesis,

1
- (ml7i7"'7mn7i)7j17"'7jn (t L

(n) _ 77
We get (ml7i7"'7mn7i)7j17"'7‘jn - U(ml"“?mn)7j17"'7jn. NeXt’
w _ _ Ti(w)
W(m1—i,...,mn—i),jl,...,jn = Wimy—i,j) +...t Wimn—i,jn) = W(ml,...,mn),jl,...,jn :

Hence,

* n Ti w
S’i H( )(W)Si(f(ml7---7mn)7j17---7jn) = _Af + (‘/(mg,.?.,mn),jl,...,jnf(ml,---,mn),j17---7jn)
= HO (L) Sy on) i) -
Thus, H™(w) is an ergodic operator. O

Corollary 3.1.3 (Almost sure spectrum). If the interaction U™ is invariant under di-
agonal translations, then there exists a set X C R such that

c(H™(w) =%
almost surely. Similar statements hold for ou.(H™ (w)), ose(H™(w)) and op,,(H™ (w)).
Proof. This follows from Theorem and [104, Theorem 1.2.5]. O

3.2 Combes-Thomas estimate for general energies

The aim of this section is to prove the following estimate. We denote by dist(-,-) the
distance induced by the sup norm of R,

Theorem 3.2.1. Let A" be an open cube or A™ =R gnd A, B C A" be cellular sets
such that dist(A,B) :=d > 1. Let E € p(Hj(Xn) (w)), and put vy = nq_.
a. If E <wq, putn:=vg— E. Then

n

Ixa(H - By Ixp) < max<f,, 1) e V3.

b. If there exists > vy — 1 and s > vy such that E € (r,s) C p(H/(\n)(w)) with n =
dist(E, (1, 8)¢) > 0, then

1 s/ nG=n
Ixa(HY — By xpll < — e V2

cn

where ¢ = m.

Compared to the Combes-Thomas estimate we proved in Section this one has the
advantage of being valid for energies above the spectral bottom, which could be useful in
the study of band-edge localization. The proof however is much more involved. Note that
we formulated our bound for Hj(xn) (w) = —=A 4+ V¥, but the same proof is valid for more
general V* by replacing vg = ng— above by v, := inf_ ) V¥ (z).

Our proof follows the strategy outlined in [104], which has its roots in [9]. Note however
that our bounds contain explicit constants. This is important to us because, in contrast to
single-particle theory, we need a Combes-Thomas estimate that remains efficient not only
for energies close to the spectrum, but also for those lying far below the spectral edge.
The constants that appear in [104] are not suited for the latter study.

We start with two lemmas that hold in any separable Hilbert space H.
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Lemma 3.2.2. Let p > 0 be a closed densely defined symmetric form with associated
operator P. Suppose q is a symmetric form relatively form bounded w.r.t. p satisfying

la[u]| < - plu]

for some v > 0. Fiz 8 > 0 and define vt := p + i8q. Then the unique m-sectorial operator
R associated with v takes the form

R = PY*(I +iBS)P'/?
for some self-adjoint operator S with ||S|| < 7.

Note that the hypotheses of the lemma ensure that t is sectorial, so the existence and
uniqueness of R are guaranteed by [57, Theorem VI.2.1].

Proof. The argument is contained in [57, Theorem VI1.3.2]. By [57, Lemma VI.3.1], there
exists a bounded operator S with ||S|| < v such that

qlu, v] = (SPY2u, PY/%y)

for all u,v € D(p). Note that S is symmetric: given f,g € H, put u := P~Y/2f and
v := P~Y2g, then u,v € D(p) and

(Sf,9) = alu,v] = q[v,u] = (f,Sg) .
Thus S is self-adjoint. Finally, given u,v € D(p) we have
tfu, v] = (p +iBa)[u,v] = (I +iBS)P'/*u, P'/?v).

But if u € D(R), we have t[u,v] = (Ru,v). Since PY/? is self-adjoint, it follows that
R c PY2(I 4+i3S)P'Y2. But PY?(I +i3S)P'/? is easily seen to be accretive. Since R is
m-accretive, we thus have R = P'/2(I +iBS)P'/2. O

Lemma 3.2.3. Let T be an invertible self-adjoint operator, S be bounded self-adjoint and
put dy = dist(0, o0 (T) N RF)

a. If o(T)NRT =0, then T + i3S is invertible V3 € R, and ||(T + i3S)~

b. If o(T)NR™ =0, then T 4 i3S is invertible V3 € R, and ||(T + i5S)~ i.

c. In the general case, if ||S|| < 1, then T + i8S is invertible ¥V || < %\/d+d,, and
(T +iBS)~1|| < 2max(i, d%)

<z
=

Proof. Start like [9, Lemma 3.1]: let Py be the spectral projections of T on o(T) NR*, for
f € D(T)put Pyf := fy,sothat f = f++f_ and || f|| = || f+— f—|| by orthogonality of f
to f_. Hence || f| - (T +i8S)f|| > Re(f+ — f—, (T +i8S)(f+ + f-)). Using orthogonality
again with self-adjointness of 7" and S, this becomes

LA (T +iBS) Nl = {frs Tfy) = (f=. Tf~) = 28 Im{f, Sf-).

a. In case a., fy =0, so f = f_ and the RHS becomes —(f_,Tf_) > d_| f_||* because
f- € Ran(X(—oo,—q_y(T)). Thus |[(T'+iBS)f|| = d—| f|| and T'+ i3S is injective. Since
this is true V3 € R, we also have Ran(T + i3S)* = ker(T —i8S) = 0, so T + i3S is
invertible with the given bound.
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b. In case b., f- = 0, so f = f, and the RHS becomes (f,Tfy) > di||f+]|*> because
f+ € Ran(x(q, 00)(T)). Thus |[(T +iBS)fl| > d+||f||- Conclude as in (a.).

c. In case c., since ||S]| < 1, the above reasoning gives us

1
I 1T+ 8BS)FIl = dill £ * + ANl F-117 = 281 4l £l = 5 (dll £ l* + Al £-1%)

because | < gv/drd_ and g(di||fol* + d|lf-|]* = 2/dpd_][|f+ ][l f/~]]) > 0. Hence
(T +iBS) f|| > 3 min(d4,d_)|| f||. Conclude as in (a.). O

We now prove our main result.

Proof of Theorem[3.2.1. We first assume A" is a cube, put H := H/(\"), and for x € R™?,
let w(x) := dist(x,B). By the triangle inequality, |@(x) — w(y)| < ||x — y||, hence
[Vib||oo < 1 and e®®) e=®X) are uniformly Lipschitz continuous in A, Let w be
the restriction of @ to I'. Then by Lemma pu = Oy and Yu = e Oy satisfy
ou,Ypu € D(h) whenever u € D(h). Hence for u,v € D(h), we may define

halu,v] := hle P Pu, o).
Now
halu, v] = (V(e Pu), V(e"v)) + (V¥u,v)
= (e PUVu — uB(Vw)e P, PV + vf(Vw)e’?) + (V¥u, v)
= blu,v] — B{(uVw, Vv) — (Vu,vVw)} — £%(mu,v),
where m(x) := Vw(z) - Vw(z) > 0. Note that ||m||s < 1 since |[Vwl||s < 1. Taking
t[u, v] ;== i{ (uVw, Vv) — (Vu,vVw)},
we see that £ is a symmetric form and that hg takes the form
hglu, v] = G[U,’U] + S €[u, v], where E[u, v] = blu,v] — ﬁ2<mu,v>.
Let us show that hg is sectorial. First note that
[e[u]l < 2/Vull - Jull < [Vl + [lul®.
Next, denoting by H = H — 3%m the operator associated with B,
I(H + C)2ul|? = (Vu, Vu) + (V¥ = B*m + C)u, u)
(2-1) > [[Vul® + (vo = 52 + O)|[ull® = [|Vull* + [|u]|?
for C := B2 — vg + 2. Thus
[€u]] < |(H + C)2ull® = (b + O)[u]

and hg = b+ i8¢ is indeed sectorial for all 8 € R, so there exists an associated m-sectorial
operator Hgz which is the formal realization of the expression ePv He=P% Moreover, taking
p="b+Candr=hg+ C, we have byLemma

Hg+C = (H + C)Y2(I +iBS)(H + C)*/?

for some self-adjoint operator S with ||.S|| < 1. So given F € R,

(2-2) Hg — E = (H + C)Y*(T +i8S)(H + C)Y2,
where T := (H — E)(H+C)~! = ¢(H), for ¢(t) := % Note that o(H) C [vg— 8%, +00).

To apply Lemma we need T to be invertible, i.e. we need E € p(H).
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a. In case (a.), F < vg. If we want E € p(H), it suffices that E < vy — (2, i.e. 5% <
(vo — E) = n. We thus take § := y/n/2. Now by the spectral mapping theorem,

dﬂ:{ﬂ»:xedﬁn:{i;gzxedﬁﬁ.

If\ € o(H),then \—E > vg—f%>—E =n—p3>=1/2> 0. Also \+C > vy—>4+C = 2.

Thus, o(T) C RT. Let us estimate d = inf o(7T'). Since ¢/()\) = (S:C%Q = ’BQEA”J(;E?E =
2—(n/2)

Oz We have 2 cases:

(i) If E > vg — 4, then n < 4 and 2 — (

1 ~/2) > 0. Thus ¢ is increasing, so ¢(\) >
d(vg — B?) for any X € o(H), since o(H) C

[vg — 8%, +00). Thus
w-p-E _n-p

n
dy > = =-.
+_’U0—62—|—C 2 4

By Lemma 3l T+ i3S is thus invertible with ||(T +i38S)~!|| <z < %.

(ii) If B < vg — 4, then n > 4, so 2 — (n/2) < 0. Thus <Z> is decreasmg, so ¢(A) >
limy o0 ¢(t) for any A € o(H). Hence, d; > hm = 1. By Lemma [3.2.3

T +iBS is invertible, (T +ifS) | < - < 1.

b. In case (b.), E € (r,s) C p(H), and n = dist(E, (r,5)¢) > 0. Put fy := \/77% Then
for |8] < Bo, we have ||°m|o < %, which ensures that (r + %,s — 1) C p(H). Let
r=r+3and s’ =s— 1. ThenEE (r',s") and min{E —+',s' — E} = 1.

Since C +7r > C+wvg—1=2+1> 1, we have p(T) D ¢(1',s") = (::Ig,‘::%) In
particular, 0 € p(T). Taking d+ = dist(0,o0(T) NR*), we have

t+C

s —FE E—7
d d_ > .
s+ C an —r'+C

L >

But s +C<s—2+23—-v+2=s—v+2andr” +C <r+23+3—-v+2=
r+n—v9+2<s—1vy+ 2. Hence,

! !
i, >_2—F 5 i and d > > il :
s—vo+2 ~ 2(s—wv+2) s—vo+2 7 2(s—uvy+2)

Furthermore,

/ o I

s B DE= 0 =i =)

(s —vp +2)2 2 (s—wvo+2)?
Indeed, if 3 = s’ — E, then (s’ — E)(E — ') = 3(E — ") = 2(s' =’ — 3). The case
4 = E—r'is similar. Now (s'—7'—2) = (s— r——) But we know that n < 3(s—r), with

2
equality iff E = $(s+7) is the midpoint of (r, s). Hence s— r—3—” > g—p— 36 1 r) = s=r

1
Thus,

1
D ————— —7r).
drd- =2 21—

Now take (1 := = vo+2)\/ﬁ and note that |f1| = \[#12) < \/g = B

(because s —r < s — vg + 1). Moreover, 81 < 3\/dyd_. T + 315 is thus invertible by

Lemma [3.2.3) with ||(T +i319) 7| < Qmax(dl , ) < W.
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To conclude, for either (a.) or (b.), take the 5 that makes T+ i3S invertible. Then by
(2-2)), Hg — E is invertible with

(Hg — E) ' = (H+C)" YT +ipS)"Y(H +C)~V/2.
By , |(H 4+ C)Y2v| > ||v|| for v € D(b), hence ||(H + C)~'/?|| <1 and
I(Hg — E)7H < (T +iBS) 1]
Finally, (Hs — E)"! = ?*(H — E) e "%, so
Ixa(H — B)"'xsll < llxae ™ lloo - (s = E) ' - l” x5l

Since w = 0 on B, ||e®*xB|lec < 1. For z € A, w(z, B) = dist(x, B) > dist(A, B) = 4.
Hence ||x4e 7|00 < €795, Thus,

Ixa(H — B)"xpll < (T +iBS) |- e~

The statement then follows directly from our estimates for cases (a.) and (b.) above.
Finally, all the arguments remain valid if A = R except that e¢* is no longer
bounded. We thus consider a large cube = containing A; and A, and replace @ by a
uniformly Lipschitz function p of compact support such that p(x) = dist(x, A1) if x € =
and |Vp|lso < 1, then take w to be the restriction of p to I'™). O

3.3 Regularity of generalized eigenfunctions

We showed in Section [2.9] that one can avoid relying on the regularity of generalized
eigenfunctions by making use of approximations in the negative Hilbert space H_. Actu-

ally the same approach shows that the generalized eigenfunctions are locally in W12(I').

We have the following result. Here A(Ln) 5 B means that A(Ln_)2 D B.

Lemma 3.3.1. Let ¢» € D(H_) and ¢ € CHT"). Then o € D(hy) for any cube A 5
supp ¢ (including AW = R™®).
Moreover, there exists a function oV € H™ such that

balpy,v] = (Vi + Ve, Vo) + (V¥pih,v)  for any v € D(hy).

Proof. Put H := H™(w). Since ¢ € D(H_), we may find (f;) € D(H) such that
le—fj — |- — 0 and |.—H f; — H_¢||- — 0. Hence, for any x of compact support we
have

(%) Ixfi = xoll < lIxll+ - le—f =&l = 0.

Hence, |lof; — ¢¢|| — 0 and ¢f; € D(h,) by Lemma Now assume A = A(Ln), we
know that suppy C Q := A(Ln_)Q. Hence

balefi — efel = IV (e(fi = fi)lI? + (Vo fj — fu),o(fi — fr))
< (IVelloo - Ixg(f5 = Fll + lelloo - Ixa V(S5 = fr)l)?
+ V<00 - el - Ixa (fi = )l
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The first and third term tend to zero by (x). To estimate the second, put @ := AS—Jn_) 1
Then by Lemma [2.4.3] we may find C' > 0 such that

IxaV(f5 = fll < C - (IxeH(f5 = f)ll + [Ixo(f5 = fe)ll) -
But
IxQH (fj = o)l < lIxQll+I[H(f; — fe)ll- =0

since || H f; — H_t||- — 0. We thus showed that hp[pf; — ¢ fr] — 0. Since by is closed,

it follows that ¢ € D(hy) and hp[py), v] = limj_o ha[pf;, v] for any v € D(hy).

Finally, note that [V (f; — f)ll < [l¢lleollxgV (f; — fk)l| = 0 as we showed above, so
the sequence (¢V f;) is Cauchy in H and converges to some element which we denote by
©V1p. Then for v € D(hy) we have

balw,v] = jlgr& balefs,v] = jlggo@vfj + [V, Vo) +(V¥pf;, v)
= (V1 + YV, Vo) +(V¥p1h, v),
where we used (%) again. O

This still doesn’t really allow us to simplify the proof of Lemma [2.9.1] so we record
the following result.

Lemma 3.3.2. Let ¢ be a generalized eigenfunction of H™ corresponding to A € I.
Given ¢ € CHT') and A™ 3 supp @, we may find a function Vo - Vip € H such that

[ha = My, v] = (¥V, Vv) = (Vo - Vip,v)  for any v € D(hy).

Moreover, ~if suppVe € Q ¢ Q < A" for some cellular sets Q and Q such that
dist(0Q, 0Q) > 1, then there exists ¢ = ¢(I,n,d,q—) such that

Ve - V| < el Vellwolixevll -

Sketch of proof. The proof is contained in Lemma [2.9.1] As we showed there, we may find
(fj) € D(H) such that

(o = Al o] = lim {(H = N fy.9) + (;Ve. Vo) = (V1;,07)}

Again the first term tends to zero, the second to ()V, Vv). For the third, note that
V-V (fi = fu)ll < [IVellolixgV(fj — fe)|l = 0 using the same arguments of this lemma,
so (Vg - Vf;) is Cauchy and converges to some Vo - Vi) € H. For the bound, note that
Ve - V|| = 1im [V - V]| < liminf [Vellwlxg Vil < allVellcollxqill as we showed
there. O

This result does allow us to simplify the proof, however it is certainly more natural to
reason directly as in Lemma [2.9.1] if one doesn’t already have it.

3.4 Localization without generalized eigenfunctions: pre-
lude

In this section we want to establish three properties concerning our random operator
H®™(w). First, we would like to prove that x(H(w) — 2z)~! is compact for some
z € p(H™(w)) and any bounded A € R™. This will follow from Theorem below.
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Next we want to prove the eigenfunction decay inequality, Lemma [3.4.2] which relates the
decay of the resolvent operator kernel to that of the eigenfunction. Finally we wish to
prove that if A; C R™ is an increasing sequence of cubes to R™, then H/(\T;) (w) converge

to H™(w) in the strong resolvent sense. All these properties will be used in the next
section to deduce dynamical and exponential localization from multiscale analysis, without
relying on generalized eigenfunction expansions. The price to pay is that strong dynamical
localization is established in the operator norm, not in the Hilbert-Schmidt norm.

Theorem 3.4.1. Let = be a cube or = = R™ and T be the operator of multiplication by
a function f. Then

1) If f € LAT' NE), the operators Tfe_tHén)(w) and TfXI(Hén) (w)) are Hilbert-Schmidt

operators for any t > 0 and any bounded interval I C R. Furthermore,

ITpxr(HE @))ll2 < e 1|1l 2

for some ¢ = c¢(I,n,q_) independent of w and =.
2) If f € L*°(I'NE) and g : R — C are bounded Borel functions vanishing at infinity,
then ng(Hén) (w)) is a compact operator.

Proof. 1) It is easy to see that the proofs of Lemma and Lemma remain valid
if the operator H( (w) is replaced by Hén) (w). Hence we have the following bound

(56) VE>0: ||6_tHén)(w)||L2aLoo < ot WAe(na-—1)t

for some ¢ = ¢(n) independent of w and E. Now put H := Hén) (w). Since f € L?, Ty
is an operator from L* — L2, thus by (SG), Tye * : L? — L? factorizes through L.
It is thus Hilbert-Schmidt with

I Tre™ l2 < | £ll2lle™ ™ oy poe <t A7 =7D0 £ 2,

see Appendix [B)). Hence e T is also Hilbert-Schmidt with the same norm. But
f
given an orthonormal basis (e;) of L?,if Pfe, is the spectral measure of H in the state

f e;, then for any bounded interval I = [a, b] we have

b b
() Tyes 2 = [ dpe, ) < e [ Pdpp, (3) < - e Ty |
a a

for all j, so x7(H)Ty is Hilbert-Schmidt. Hence Tyx(H) is also Hilbert-Schmidt. The
estimate on the norm follows from the above estimates.

2) Let T,, be the multiplication by f,, = XA(")(O)f and let gy, (H) := X[—m,m](H)g(H).
Then by 1) the operator Ty, X[—m,m)(H) is Hilbert-Schmidt, hence Tp,gm (H) is a se-
quence of Hilbert-Schmidt operators. By the spectral theorem,

[Tyg(H) = Tongm(H)|| < [ fllocllg = gmlloo +1If = fnllscllgmlloc =0
because f and g vanish at infinity. Hence Ttg(H) is compact. O
Lemma 3.4.2. Let E be a cube or 2 = R™. Let E, € R. There exists C = C(Ey,n,d,q_)
such that, if xo € Z™, C(x) C A(Lnlﬁ(xo) and A(Ln) (x0) C E, then every eigenfunction u of
Hén) corresponding to E € p(H/(\z)(XO)) N (—oo, E4] satisfies

out . .
ocull < € B o)l _mix 1 0y (5,35 B - g
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Strictly speaking this does not follow from Lemma because of =. In any case, the
proof is a bit simpler now that we deal with innocent eigenfunctions.

Proof. Let A := A(Ln) (x0) and b be the form corresponding to Hj(xn) (w). Let ¢ € CHTNA)
such that ¢ = 1 on a neighborhood of 'NC(x), supp Vi C Q := int(Agn_)Q(xo) \AS:"_)4(X0))
and |V¢|leo < Ci(nd). Then

Ixxul|? = {pu, xxu) = (pu, (Ha — E)GA(E)xxu) = (ha — E)[pu, 0]
where v := G (F)xxu. Now

(ba — E)pu,v] = (V(pu), Vv) + (V¥ — E)pu,v)
= [(Vu, V(ov)) + (V¥ — E)u, ov)] + (uVp, Vv) — (Vu, vV p)

Since u is an eigenfunction of Hé") (w) with energy F, the term in square brakets vanishes.
We thus showed that

Ixxull? < [IVellsollxgullllxg Vol + IV ellollxg Vulllxgol
Now by Lemma taking @ := int A9"*(x), we can find ¢; and cy such that

IxgVaull < erllxagr el and — [xgVoll < eallxagm el

(for the first bound take f = v and H = Hén), for the second take f = v and H = H/(\n)
and note that (Hy — E)v = xxu = 0 on Q). )
Taking C' = max(2¢1 ||V¢||oos 2¢2|| V| ) and noting that Q@ C A9 we thus get

Iextl® < € - xagus gyl - Ieagss ey 11
Since [[xaeu ()2 | < a0t eg) G (E) Pl we et

oxttll < €+ xasnt iy Ga (E) X - I eyl

The assertion now follows by the triangle inequality. O

Lemma 3.4.3. Ing-n) C R™ s an increasing sequence of cubes to R™, then the operators

H/(C) (w) converge to H™ (w) in the strong resolvent sense as j — oc.

Proof. Let Dy be the set of functions in D(H ™ (w)) of compact support. We first show
that Dy is a core for H™(w). Let f € D(H™(w)) and t,, = (¢m,) such that ¢, = 1 on
rNAY™ , (0) and ¢ =0 on TAA™ 4 (0)°. Tn the layer A™) ,(0)\ A", (0), we take iy, s
a smooth continuation such that vabmﬂoo < (C and HAlﬁmH; <C for some C = C(nd).
Let f, = ¥mf. It is clear that f,, € D(b&n)) (eventually use Lemma . To see that

fm € D(H™ (w)), note that for v € D(f)&n)) we have

60 [ f, 0] = B [, ¥ v] + (f Ve, VU) — (V f, 0V )

Since 1),, is smooth and constant in the neighborhood of each o°, we have fVi,, €
i

WOI’2(I‘ N Ag:ll(O)), so we may apply Lemma 1| to the second term and obtain

00 [ fo 0] = (H™ (W) f,hmv) = (V- (fVm),0) = (Vf - Vi, v)
= W H (W) f = 2V, - Vf — (At f,0)
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Hence f,,, € D(H™(w)) (see e.g. Section . Finally, we have f,, — f in L?(T') and
H® (@) fin = YmH ™ (@) f = 2V - Vf = (Ap) f = H™(w) f

since Vi, and At), are uniformly bounded and supported in Agﬁrl(O) \ A (0). Hence
Dy is a core for H™(w). Finally, if f € Dy and if j is sufficiently large, we have
fe D(H/(C,) (w)) and H/(C) (w)f = H™(w)f. The claim now follows from [57, Corollary
VIIL1.6]. 0

3.5 Localization

We first establish dynamical localization by adapting the approach of [47] to finite
volumes and passing to the limit. Then we deduce spectral localization by showing that
the RAGE theorem is valid in our setting. Finally, we prove exponential localization.

We start by fixing a large cube A .= AN (0) such that K Cc I'N ALY (0).

2rN Lps g 27N, Ly«
In the following we consider the event

R(m,L,I,x,y) = {VE € I : A\ (x) or A{"(y) is (E,m)-NS }

for x, y in A®) such that the corresponding cubes are separable and contained in AW,
We start with the following key lemma. Here P,(w)y = (¢, ¢n(w))pn(w), where

{¢n(w)} is an orthonormal basis of eigenvectors of H/(\N (w).

Lemma 3.5.1. Let m > 0, I C R and assume w € R(m, L, I,x,y). Then
X P (@) Xy ll2 < CLY ™™ [y pgut ) P (@) xy |12

for any n, where C = C(I,N,d,q-) < oc.

Proof. Given an eigenvalue \,, € I, either Ag) (x) or A(LN) (y) is (An, m)-NS for HMN)(w).

Since || xxPn(w)xyll2 = Xy Pn(w)xx|l2, we may assume that A(Ln)(x) is (An, m)-NS. Now
given 1) € L*(I' N A(N)), P, (w)xy is an eigenfunction of HI(XN) (w) with eigenvalue A,
hence by Lemma [3.4.2]

s Pa(@)xy | < (2L = DN e ™™ x pout (3 P (@) Xy 9[-
The assertion follows by definition of the HS norm. O

Before proving dynamical localization, we establish the following decay of the kernel.

Let ko be the smallest integer such that K C I' N A%X)Lk (0) and for j > ko put
RO

N ~ N
Fj= Ay, (0), F; =By, (0)
M; = Fj1 \ Fj, Mj = Fii \ F
In the following, we choose m and &g such that (DS: N, k,m,Ix) holds for all £ > 0 in

In =[Ng- — %, Ngq_ + €g], as guaranteed by Theorem [2.7.15
Lemma 3.5.2. There exists ¢ = ¢(m, N,d,q_) such that for x € Mj andy € B,(n];,[,)Lj (0)
with j large enough, we have for I = [Nq_, Nq_ + €] :

E <||§“51 P f CHR @) (HY @)y lla) < efemm B/ 4 L7207,
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Proof. Given a bounded Borel f put fr := x7f. By the functional calculus we have
N
Fr(H () = zxnamn)zﬂn(w» Hence

ot HY @)yl < 37 1F O Pal@)xylla

An€l

Since x € M; and y € Bfnl,:,[)Lj (0), we know by Lemma [2.2.8| that A(LN) (x) and A(L];[) (y) are
separable. Hence if w € B; := R(m, L;,I,x,y) we have by Lemma

e fr(HSY @)xyllz < Cllf o LN TemE 3 g0 P ) 2

An€l
Since
> HXAout (W)xyllz < Y IIXAout<x)P( M2l Po(w)xyll2
An€l )\nel
<= Z HXAout (W5 + [ Pa(w)xyl3)

AHEI

(N)

:i(HXA%‘;“(x)XI(H @)I3 + Iy xr (HYY @)I3)

then using Theorem [3.4.1] we obtain
N 1 —mL:
e fr (H™Y (@) xyll2 < Cill fllse LY e mLJ(HXA%‘;t(x)”%Q + lIxyllZ2)
< O flloo LN DemEs

for some Cy = C3(N, d, q-) independent of w. For w € Bf we have

N N
o fr(HS @) 13 < 1A I (HY @) xyll2 < Csllflloo
where we used again Theorem We thus showed that

E (Hj}lgl e (S @) (S (@)xgll2) < Coi N Demmbi B(B)) + C5 B(BS).

Using Theorem [2.7.15( to estimate P(Bf), we obtain the assertion. O

Corollary 3.5.3. There exists ¢ = c¢(m, N,d,q_) such that for x € Mj andy € B%,)Lj (0)
with j large enough, we have for I = [Nq_, Nq_ + ¢o] :

E( sup o (HO @) Euo(Nxy|) < e(e™5/2 4 172807
lfl<1

Proof. By Lemma H/(XN) (w) converge to H () (w) in the strong resolvent sense, so

by [93, Theorem VIII.20], g(H/(\N)(w)) converge strongly to g(H™")(w)) for any bounded
continuous function g. Thus

g () @))xy |l < limin g (5™ (@) xy
—00

Now sup liminf ||- || < liminf sup |- || since ||-|| < sup]||-|| for any £*. Thus, taking suprema
g k*—o0 k*—o00 g

and applying Fatou’s lemma yields

E{ sup [xxg(HN (@)xyll} <liminfE{ sup [Pxg(H™ (@))xyll}
llgll<1 kr—o0 llgll<1
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where the supremum is initially taken over continuous g supported in I, but may be
extended to all Borel g without changing its value (see the proof of [2, Theorem 1.1.]).
Since || A < ||Al]2 for an HS operator A, the claim follows from Lemma [3.5.2] O

Remark 3.5.4. Unfortunately, although we have strong HS decay of the kernel for any
H/(\N) (w), strong resolvent convergence alone is not sufficient to deduce the same is true for
HW)(w). The problem is that, given an orthonormal basis (e;) of L*(T"), while we know
that for e;, given € > 0 we may find a large m; such that

N
g (N (@) xyes]l < & + [xxg(H (@) xyesl,

for k* > mj, we cannot deduce a similar bound on the HS norm of the operators because
the m; are not uniform, i.e. there is no largest m;. We could have deduced such a bound
if we had a norm resolvent convergence, i.e., if Go(z) — G(z) for all non-real z. However,
this is certainly not true for Schrédinger operators. Indeed, all H have compact resolvent,
so if we had G (z) — G(z), then G(z) would be compact, so H would have a compact
resolvent, which is of course not true.

We are finally ready to prove strong dynamical localization of any order.

Theorem 3.5.5. There exists eg = eo(N,d, q—,r9) > 0 such that for I = [Nq_, Nq_ +¢y),
we have for any bounded K ¢ TW) and all s > 0,

E{ sup X" FHO@)EMDxxl} < oo,

where (X1p)(x) := |x| - (x) for ¢ € H, E,, is the spectral projection of HN)(w) and the
supremum is taken over bounded Borel functions, || f| := ||f|lcc-

Proof. Let k > ko be sufficiently large so that Corollary holds for j > k. Now

B sp X S (OO ) B} < (@, N

Furthermore, by the triangle inequality

E{>" sup |13 xa, F(H™ (@) Eu(I)xill}

>k <1
<N eLi, 3 E{ sup |xaf (H™ (W) Eu(T)xyll}
>k - () lFl<1
J XEM;,y€B Ly (0)
RO

Estimating |M;| < ch-\ffll, |B£JJ\V[7)L,CO (0)] < ¢Ly* and using Corollary [3.5.3 the series
converges. ]

We may now deduce spectral localization:

Theorem 3.5.6. With probability one, the spectrum of HN)(w) in I = [Nq_, Nq_ + &¢]

18 pure point.

Proof. Put H, :== HN)(w). Let ¢ € L*(I") be compactly supported and let ko be the

smallest integer with K := supp¢ C A%\V’)Lk (0). Then for any k& > ko, by repeating the
]

calculations in the proof of Theorem we have

—i Nd— 6)7 -
(*) E{HXFlge 'LtHwEw(I)XKH} < CL;Q\([]dZL? 2pN (1+0) < ZL?Nd 2pN ]
j=k Jzk
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Recall that oo = % and py > 3Nd + 1. Now for j > k we have

J—k i—k
A
Ly — Ly — 2

22pN7aNd

. Jj—k
s1ice (Lk )a 2 Ly . Hence for C/ = 1_9a(aNd—2py)

2 2
7 aNd=2py Lj

For k < ko, the expectation may of course be bounded by 1. Now let P.(H,) be the
projection onto the continuous spectrum of H,,. By Theorem the operators x g, (Hw—
i)~ are compact for all k and clearly x F, converge strongly to the identity. Hence it follows
from the RAGE theorem (see [107, Corollary 5.9]) that

(%) is bounded by

LOcNd—QpN
k. a(aNd—2pnN)\" _ traNd—2pN
= 2aNd—2pNn Z (2 ) - CLk :
r>0

>aNd—2pN

e e i
| Pe(Hoo)xr(H.) | =hk{gggthH;ng/0 IxFee™ " Heoxy (Hy)gl*dt

1 (T ;
< liminfliminff/o ||XF,§6_ZtH“X1(Hw)XKH2||¢||2dt

k—oo T—o0

Taking expectation, Fatou’s lemma and Fubini theorem yield
PP
E{|Po(Hu )i (HL)6|*} < liminf lnint - [ ()]0l =0
k—oo T—oo T Jo

where g(k) = 1 for k < ko and g(k) = c’LZNd*QpN for k > ko. In particular, we have
P.(H,)x1(Hy)® = 0 almost surely. Since this is valid for arbitrary ¢ of compact support,
the assertion follows. O

We finally conclude with exponential localization.

Theorem 3.5.7. There exists m > 0 such that for a.e. w, any eigenfunction of HW) (w)
corresponding to an eigenvalue in I = [Nq_, Nq_ + o] decays exponentially with mass m.

Sketch of proof. The proof follows the same strategy outlined in Theorem [2.1.3] using
Lemma [3.4.2] instead of Lemma [2.9.1] The paragraph on generalized eigenfunctions is
of course no longer needed here since we already know that the spectrum is almost surely
pure point. ]

3.6 Log-Holder continuous distributions

In this section we briefly mention how our localization results change if the distribution
1 is only log-Holder continuous.

We say that p is log-Ho6lder continuous with parameter ¢ if there exists ¢, > 0 and
¢ > 0 such that .

) = Tiogepe

forall 0 <e < 1.

Recall that we only needed to speak of the regularity of p© when we needed to prove
Lemma Now as mentioned there, the event in (W2: n, k, I,,) may be estimated by

dnd-+d —Ly/e 5 L
B(4) < C(2L) " s(p 40 ") < €

(L ~loga)¢
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Hence if ¢ is sufficiently large, we may bound this event by %L;Qp '. So what we lose when
we pass from a Holder continuous p to a log-Hélder continuous one is the term (1 + 6)*
in the exponent. Consequently, we must remove the term (1 4 6)* in all Section and
work in the more classical setting where the events in (DS: n, k,mr,, I,,) are bounded by
L,:Qp " where we now choose

_ 2n — 1)d
pn:anI_(n ) —nd—1.
a 2ae

Such weaker bounds on the events in (DS: n, k,my,, I,) still imply exponential localiza-
tion. However, strong HS-dynamical localization becomes weaker, namely one first needs
to fix a power s > 0 and then choose an y(s, N, d, q—, o) accordingly. In other words, the
interval of dynamical localization gets smaller as s gets larger.

Here are the statements.

Theorem 3.6.1. There exists g = eo(N,d,q—,r9) > 0 and m > 0 such that for a.e.
w the spectrum of HN)(w) in I = [Nq_, Nq_ + €] is pure point and the eigenfunctions
corresponding to eigenvalues in I decay exponentially with mass m.

Theorem 3.6.2. For any s > 0, there exists eg = eo(s, N,d,q—,19) > 0 such that for
I =[Nq_,Nq_ + ], we have for any bounded K ¢ TN)

B{ sup |X72 (@) PN < oo

where (X9)(x) := |x| - (x) for ¢ € H, B, is the spectral projection of HN)(w) and the
supremum 1s taken over bounded Borel functions, ||f|| := ||f|lco-

To prove Theorem [3.6.2] given s > 0, we choose p; sufficiently large to ensure that
2pn > max(6Nd+ 2, as+aNd+~+ 1) and follow the same strategy (recall that ~ is the
parameter from generalized eigenfunctions). Since p; now depends on s, g also depends

on s (see Corollary [2.6.4]).






Chapter 4

Abstract Wegner estimates with
applications

4.1 Introduction

Wegner estimates for random Schrodinger operators have been the subject of active
research for the last three decades. Given a random self-adjoint operator A(w) with a
discrete spectrum {FE;(w)} and a fixed interval I, the aim is to obtain good bounds on
the average number of eigenvalues Ej(w) in I. These estimates are named after Wegner’s
work [I13].

Let us give a typical Wegner bound. Consider the Hilbert space H = L%(R%), let
D c R¢ be a discrete non-empty set, and consider a probability space (Q,P), where
Q= [q_,qs]” for some q_,q; € R. Given w = (wWg)aep € Q, let

Hw)=-A+Vo+ > walla.
a€D

Here Vj and all u, are bounded real potentials.
Let I C R be an interval. Then a Wegner estimate, when valid, asserts the existence
of some C' >0, a > 1 and 0 < b < 1 such that for any cube A C R%, we have

(1-1) E{tr{xr(Ha(w)]} < O A" |1

Such estimates can be used in a proof of Anderson localization via multiscale analysis.
If a = 1, they can also be used to study the continuity of the integrated density of states.

A large body of literature has been devoted to the proof of under weaker and
weaker assumptions on the model, i.e. on D, u, and w,. Let us mention [58, 103], 56) B30,
20), 95 [66] in case uq > 0 for all o, and [69) 54, [TTT], 110, 88, [75, B8], [39] in case the u, may
change sign. A common assumption for all these papers is that the w, have continuous
distributions.

4.2 Outline

The aim of this chapter is to derive some abstract Wegner bounds for some random
self-adjoint operators on a Hilbert space, and to apply them afterwards for specific models.
This approach proves to be rewarding, if only because it considerably shortens the proof of
a Wegner bound for the model at hand. This is not the first attempt to provide abstract
bounds; see [31] for a previous one.
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Results. The abstract Wegner estimates are stated in Section and applied in Sec-
tion [4:4] We first obtain optimal bounds on the lattice and non-optimal bounds in the
continuum. We allow the potential to be sparse, i.e. make no covering assumption. This
includes models with surface and Delone potentials. We then give Wegner bounds for
quantum graphs with random edge lengths or random vertex couplings. In each applica-
tion, we allow the coupling constants entering the randomness to be correlated and only
assume that their distributions have no atoms. A comparison with previous results is
provided for each application. We conclude the paper with an appendix describing the
spectra of Anderson models with half-space potentials. This illustrates the non-triviality
of some of our bounds.

Notations. We assume the probability space has the form (Q,F,P), where Q = B for
some Borel set B C R and some countable index set Z. Here P is a probability measure on
Q and § = ®qaecz B, where B is the Borel o-algebra of B. By definition, § is generated by
cylinder sets of the form {w = (wq) : wa, € A1,...,Wa, € An}, with a; € 7 and A; € B.
Any product space BZ is assumed to be endowed with the o-algebra § = ®qcz B, which
we shall often omit[l

Fix a € Z, let Y, := BIMe} y, = ®p+a B and denote Wy := (wg)g.q. Define
Ta : Q= BXxY, by 74 : W+ (Wa,@a). Then applying [13, Corollary 10.4.15] to (B x
Yo, B ® Vo, Por ), we may find for each &, € Y, a probability measure pg, on (3,5)
such that, if A € § and Ay, = {wa : (Wa, Do) € Ta(A)}, then the map & — g, (Aw,) is
Ya-measurable and P(A) = [y s, (Az, )d Py, (©q). Here Py, := IP’OW;:, where 1y, 1 w
Dq. The measures pg, (B), for B C R, are essentially regular versions of the conditional
probability P {w, € B|@s}. We will usually omit the identification map 7, and simply
regard elements of Q) as ordered pairs (wa,@a), so that Ay, is a section of A, A, = {wq :
(Wa, Wa) € A}

Now fix a finite set Zp C T (e.g. Z = Z% and Zp C Z% a cube). We express our Wegner
bounds in terms of the following modulus of continuity

a€lp

(2-1) sp(P,e) = max Ey, {;u%u@a(E, E+ 5)} .
€

We show in Section [4.6.2] that for any probability measure ;1 on R,

(2-2) sup u(E,E+¢) = sup u(E,E +¢).
EeR EeQ

In particular, &y — SUpgcr flo, (B, E + €) is Vo-measurable, so sp(P,e) is well defined.
We also verify that in the special case where P = ®,c7 1o for some probability measures
to on R, we have sp(PP,e) = maxqecz, Supger ta(E, E +€).

Remark. Our bounds are useful if the probability measure P is continuous. If P =
®aeT 1, it is sufficient for localization to have p Holder (or even log-Hélder) continuous.
This, of course, encompasses the case where p has a bounded density p = p(A)dA.

We will not treat here random Schrodinger operators with sign-indefinite single-site
potentials. The reader can find some Wegner estimates for such models in [69], [54], [111],
[110], [88] and [75], assuming the distribution p of the (wy) has a density. See also the
recent survey [38]. For sign-indefinite models on the lattice, the density assumption on p

1. Note that if V;,(a) is a real-valued random field on Z, it can always be realized on this probability
space in such a way that Vi, (&) = wa, i.e. there is no loss of generality in considering the coordinate
process (wa), as we do here. See [34] Pages 165-166] and [23] Chapter 2].
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can be relaxed if the disorder is large; see [39, Theorem 1.2] and [40), Proposition 5.1] for a
related result. For sign-indefinite models in the continuum however, there are to the best
of our knowledge no Wegner bounds without the hypothesis that p has a density.

Further developments. More abstract theorems appear in Chapter |5l In particular,
we give in Section [5.5]an adaptation of the result of [30] to finite-dimensional spaces (which
thus applies to discrete models). We believe this is instructive as the proof greatly simplifies
in this context and provides explicit constants. We also give a few more applications in
Section [5.3] and explain some difficulties in Section

4.3 Abstract Theorems

In the following we give three abstract Wegner estimates. Theorem [£.3.2] is optimal,
but is only valid for finite-dimensional spaces. It can be applied for example to discrete
Schrédinger operators on finite cubes A, acting on £2(A). Theorems and on the
other hand are valid in an arbitrary separable Hilbert space, but they are not optimal.

4.3.1 Finite-dimensional Hilbert spaces

Hypotheses (A)

1) We fix a probability space (Q2,§,P) with Q@ = B? for some Borel set B C R, some
countable index set Z, and fix a finite-dimensional Hilbert space H.

2) H(w) is a self-adjoint operator on H for each w € Q.

3) Fix a bounded interval I. There exist a constant v > 0 and a self-adjoint operator W
such that P-almost surely,

xr(H(w)Wxr(H(w)) = yx1(H(w)) .

4) The operator W takes the form

W= > U,

aElp

for some finite set Zrp C Z, where the U, are self-adjoint operators.

5) Fix an orthonormal basis {e;};cs for H. We define Z; := {a € Zp : Uqe; # 0},

Chn := maxjcy|Z;| and Jog := {j € J : Une; # 0 for some o € Zp}.

Note that one may take T = Zp = J and W = 37, ; P; = Id, where P;f := (f,ej)e;,
in which case conditions 3 and 4 hold trivially on any interval with v = 1 and Cq, = 1.
For random Schrédinger operators, the U, can be the single-site potentials. Condition 3
is sometimes called an uncertainty principle, and an efficient criterion to check its validity
was established in [20]. The constant 7 often depends on 1.

The following proposition is the key idea for obtaining optimal Wegner bounds without
covering assumptions. It decomposes the trace into local contributions of the U,. The
proof is given in Section [4.5.1

Proposition 4.3.1. Suppose that H(w) satisfies Hypotheses (A) in the interval I. Then
P-almost surely,

trlxs(H(w)] <7 2Con Y > (Uaxi(H(w))Uaej €;) -
j€Jem a€L;

For our first Wegner bound, we need one more hypothesis:
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Hypothesis (B) H(w) satisfies Hypotheses (A). Moreover, given w = (wq)acz € 2,
H(w) has the form
Hw)=Hi+ Y wala,
a€lp
where H; is self-adjoint, U, > 0 and ||U, || < Cy for all a.
Hence, randomness must appear as an additive perturbation and the U, must be
positive operators. The proof of the next theorem is given in Section [£.5.2]

Theorem 4.3.2. Suppose that H(w) satisfies Hypotheses (A) and (B) in the interval I.
Then tr[x;(H(w))] is measurable and

E{trpr(H(w))} < Cw - e | - s (P, 1),
where Cyy 1= 6y 2CZCE, and sp(P,e) is defined in .

The fact that uncertainty principles imply Wegner bounds was first realized in [29] and
[30]. There however, the authors considered the spectral projectors xy(Hi). It was later
noticed in [105] that the arguments become simpler if one considers x7(H(w)), and this
idea was used again in [66] and [37].

It is worthwile to note that if Hy has the special form Hy = 3,7, caUa, that is, if
H(w) = > 47, (ca +wa)Uq for some bounded non-random constants c,, then analogs of
Proposition and Theorem hold for intervals not containing 0, without the need
for an uncertainty principleﬂ Such models arise when studying discrete acoustic operators
on (2(Z%). We refer the reader to [65] for details.

4.3.2 Separable Hilbert spaces

We now work in the general setting.
Given C C R, we say that f : C — R is monotone increasing (resp. monotone
decreasing) if vo, < wq for all o € 7 implies f(v) < f(w) (resp. f(v) > f(w)).

Hypotheses (C)

1) We fix a probability space (Q,§,P) with Q = CT for some interval C C R and some
countable index set Z. We assume P has no atoms, more precisely sp(P,e) — 0 as
e — 0. We also fix a separable Hilbert space H.

2) H(w) is a self-adjoint operator on H for each w € Q. It is bounded from below and has
an orthonormal basis of eigenvectors, with eigenvalues A\;(w) < Ag(w) < ....

3) Fix an open interval I. There exists a number K independent of w such that

n>K = A\(w)¢1.

4) Either D := D(H(w)) or D := D(h*) is independent of w, where h* is the form
associated with H(w). In the first case we define f,(w) := (H(w)u,u), in the second
case we define f,(w) := h¥[u], for u € D.

5) There exists a finite set Zp C Z such that f,(w) only depends on (wq)aez,. We denote
by 1 the element 15 := (z,) € R? with z, = 1 for a € T and z, = 0 otherwise.
We also assume that there exists v > 0 such that for every u € D, f,(w) satisfies one
of the following properties for every w €  and t > 0 such that w —¢-1p € Q:

2. We prove this and much more in Section
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. fu is monotone increasing and f,(w) — fu(w —t-1p) > ty||ul|.
fu € CHQ), 2 > 0Va € Tp and Y0z, 22 > y|lul?.

W -

T o

. fu is monotone decreasing and f,(w) — fu(w —t-1p) < —t7y|jul/?.
fu € CHQ), Y <0Va € Tp and ¥ ez, 2 < —lul?.

By fu € C1(Q), we mean that the map (wa)aezp + fu((Wa)aeczy,0) is continuous on
CZr and continuously differentiable on CZF (recall that f, only depends on (wa)aezy)-

Note that Wegner bounds formulated in terms of sp(IP,¢) are useful precisely when P
has no atoms. We need this assumption for technical reasons in Section [£.6.2] Condition
3 typically holds for any bounded I C R. If H is finite-dimensional, it is satisfied with
K = dim# (since there is no eigenvalue with n > K). For infinite-dimensional spaces, it
is satisfied if H(w) is bounded from below by a non random operator Hy with a compact
resolvent. In this case, K usually depends on I. The only “real” conditions are 4 and
5. Condition 5 assumes monotonicity and “diagonal covering” for H(w). We remove the
latter restriction in Theorem [£.3.4]

In the applications, it will be convenient that H(w) is not supposed to have the form
H(w) = Hi + Y 4e7waUa, and that Hypothesis (C.5.b) is still sufficient to conclude. Let
us state the theorem, see Section m for a proof, which is based on ideas from [103].

Theorem 4.3.3. Suppose that H(w) satisfies Hypotheses (C) in the interval I. Then
tr[x7(H (w))] is Fp-measurable, where Fp denotes the P-completion of §, and

Bulu(H)]) < 2K - (2] -se(P1)

(oS

where E denotes the extension of E to Fp and sp(P,¢) is defined in (2-1]).

Note that we have sp(P, -) in the RHS; the quantity sp(P, -) has not been defined.
For the applications, classic arguments from [61] show that tr[y;(H (w))] is actually F-
measurable, so that E reduces to E in the LHS.

For a random Schrédinger operator restricted to a cube A, the constant K comes, e.g.
from a Weyl law and takes the form C - |A|. The term |Zr| measures the contribution
of the random potential in A, and will be approximately |A| for standard single-particle
systems. Hence, the upper bound is not linear in |A|.

There are mainly two applications for Wegner estimates: the first to prove localization
via multiscale analysis, the second to study the continuity of the integrated density of
states (IDS) of H(w). For the first purpose, Theorem is satisfactory because the
term sp(P, %) will be very small assuming P = ® p with p (log-)Holder continuous, so it
will completely outweight the terms K and |Zp|. For the study of the IDS however, this
theorem is not satisfactory.

It seems the “bad” term here is K. Indeed, for discrete models with sparse potentials
supported in a set G, one expects |[A NG| in the upper bound (see Section , and this
is precisely the term |Zr| in this case, not K which arguably will be |A].

Theorem also has the advantage of avoiding the diagonal cover in Hypothesis
(C.5) by means of the uncertainty principle. As we show in Section there is a
related counterpart of this idea for Theorem [£.3.3] Namely, if one can prove that the
eigenvalues \,(w) of H(w) are monotone increasing and satisfy

()‘n(w) — Ap(w—t- 1F))XI(>‘n(W)) >ty - xr(An(w)),

then Theorem is still valid if we only assume Hypotheses (C.1) to (C.3).
We finally give our last abstract theorem, which is probably the most original result
of this section.
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Theorem 4.3.4. Suppose that H(w) satisfies Hypotheses (C.1) to (C.4) in the interval
I = (Ey, Ey), where Ey < 0. Assume moreover that Q = [q_, q1]%, fix ¢ > q4, and suppose
that there exists ( # 0 such that for any u € D,

(3'1) fu(w) = a(u) - Z (q - Woc)cba(u)
aclp

for some finite set Zr C T and some constants a(u) > 0 and by (u) > 0. Then tr[x;(H(w))]
is §p-measurable and

Bl (H@)]) <26 (2] -sr (G- o) (04 b - 1)),
In particular, if ( = +1, we have
Efurlr(H @)} < 2K - [Ze] -5 (P, o).

The proof is given in Section It uses an idea from [78], who roughly considered
the case a(u) = 0 and P = ® p, with pg = po(A)dA. Both hypotheses were important to
their proof, and we overcome this difficulty by generalizing ideas from [I03]. Note however
that we need (C.4), the argument of [78] holds under a weaker assumption on D(H (w)).

Of course, the main advantage here in comparison with Theorem is that we only
suppose by (u) > 0. Theorem would need a condition like 3" e7, ba(u) > ~vlul/? for
all u. The price to pay is that the bound only holds for specific intervals.

In the applications we shall only need the case ( = 1. However the greater general-
ity does not require additional effort, and we believe it could be useful for models not
considered here. For example, the case ( = —2 appears in the model of [78]|ﬂ

4.4 Applications

4.4.1 Discrete multi-particle models

Consider the Hilbert space ¢2(Z"?), where n € N* represents the number of particles
living in Z¢. Let B C R be a Borel set and consider a probability space (Q,P), where
Q = B%. Given w = (wa) € O, let

H(w) :=Hy+ V", Hy:=-A+1Vp,

where —A is the discrete Laplace operator on ¢%(Z"?), V, is a real non-random potential

(possibly an interaction) and for x = (x1,...,,) € (Z9)" = Z",
V¥(x) = Z v (x;) = Z Z Wale (i) .
1<i<n 1<i<n aeZd

Since P is arbitrary, the w, are allowed to be correlated. We assume V| is bounded and
the ug : Z¢ -5 R satisfy 0 < uqo < Cy for some uniform C, > 0. We also assume the u,
are compactly supported, that is, if for j € Z%, j € Z" and L € N we define the cubes

AVGY={z €2 |z - jll <L}, and AP(G):={x€Z":|x—j|ls <L},

then we assume there exists an R > 0 such that u,(j) =0 for all j ¢ A ( ).
As supp u,, is compact, we may interchange the sums and write

= Z walUy, with Uy(z1,...,2,) = Z Ua(T7)-

YA 1<i<n

3. There is an additional difficulty in this model however, namely Hypothesis (C.4) is not satisfied. See
Section [5.4 for details.
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Example. A simple and interesting case is when n = 1, a non-empty set G C Z? is given,
and u, = 0, for « inside G and u, = 0 for « outside GG, where ¢, is the characteristic
function of {a}. In this case,

H(w)=Ho+ Y _ wala.
aceG

For instance, we may take G = Z% \ {0}, which gives rise to a non-covering situation.

More generally, G could be a Delone set (i.e. 3K > 0 such that Vj € Z¢, the cube A%) (7)
contains at least one point of G) or a subspace Z% x {0} of Z¢, 0 < d; < d, in which case
one speaks of surface potentials.

Discussion of the results.

e In the case of covering, i.e. u, > ¢, for some ¢ > 0 and for all o, we have an optimal
Wegner bound in any interval I. This extends [60, Theorem 2.1] and [68, Theorem
2.3] (because we neither assume that u, = d, nor that P = ® p with p = p(t)dt) and
improves [26, Theorem 1] (because our bound is linear in |A|). Note that the arguments
of [68] actually allow for P as general as ours. The multiscale analysis also requires
two-volume Wegner bounds (cf. [68, Corollary 2.4]); we prove these in Section

e If we have no covering and Q = [q,,qu]Zd with ¢ < 0, i.e. the perturbation can be
negative, we obtain Wegner bounds below FEy := inf o(Hj). This extends [63, Theorems
8,13], first because we make no regularity assumption on P, second because our bound
is optimal and valid for multi-particles. Our result also extends the optimal bound [64,
Theorem 4.1] because we allow for general u,, and n.

But is there any spectrum below Ey? We show in Section that if n = 1, if G C Z¢
contains a half-space, if Vj is periodic and if H(w) = Hy + > cq Wada, then H(w) has
a spectral interval below Ey almost surely, provided that P = ® u and supp u 2 [a, b],
a < b < 0. This illustrates that our bound is indeed non-trivialf] The advantage here
compared to the first item is, of course, the fact that we allow G # Z.

e If we have no covering and Q = [¢_, q+]Zd with 0 < ¢_, i.e. the perturbation is positive,
we obtain optimal Wegner bounds below Ej := inf o(Hy + ¢W) for any ¢ > g_, where
W =3, U,. But again, is there any spectrum below E,?

The recent preprints [37] and [94] have the advantage of giving a complete Wegner
bound for some operators in this situation. Namely, the paper [37] assumes that n = 1,
H(w) = Ho+3 e Wala, where G C Z% is a Delone set, P = ® 1, and supp 1o C [0, M].
Under some condition (cf. [37, Eq.(1.13)]), the authors establish Wegner bounds for
intervals near Fj, and in contrast to our result, they show that these intervals contain
some spectrum of H(w) almost surely. A different proof for this Delone Wegner bound
can be found in [94], in the special case where Vj, = 0.

To conclude, let us mention that we can actually use the results of [37] to illustrate
that our Wegner bound for positive perturbations is indeed interesting. Namely, if we
take t := ¢ sufficiently large, then [37, Theorem 1.3] combined with [37, Proposition
1.5] asserts that the above Delone operator has £, > Ej and some spectrum in [Ey, Ey)
almost surely. Our Wegner bound is thus nontrivial for I C [Ey, E).

4. Note that a single nonzero wau. actually suffices to create a spectral point below FEy if ¢+ < gx,
g+« = g« (||Ho||, ua). So our Wegner bound is also useful when the perturbation is highly negative and the
spectral bottom is not an isolated point. This is likely to be the case if the operator is ergodic, e.g. n =1
and H(w) = Ho+ ) . Wala, with G = (M7Z)* and Vi M-periodic.
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Boundary conditions. Let A := A%n) (x) € Z" be a cube. The simple boundary
conditions are obtained by restricting the matrix of H(w) to A, ie. if (ej)jezna is the
standard basis of £2(Z"9), then HY (w)(i,j) = (H(w)e;, ¢;) if both i,j € A and H3 (w)(i,j) =
0 otherwise. Next, there are the Dirichlet HY(w) and Neumann Hj (w) realizations,
which were introduced in [101] to provide analogs for the lattice of the Dirichlet-Neumann
bracketing; see [59, Section 5.2] for details. The only identity we need is [59, Eq. (5.42)],
which asserts that if H = —A+V, then H < HY & HY.. In particular, if Ey := inf o(H),
Eé\’D ;= info(HY) and g € £2(A°) is identically zero, then

AD

EM = inf  (HRf )+ (HRg,g) >

_ Ho. o) = E
fee(A),|fl=1 {He ) = Eo,

inf
PEL2(Zm?),|lpll=1
i.e. Dirichlet boundary conditions shift the spectrum up.
The result. Let x = (21,...,2,) € (ZY)" and A(Ln) (x) € Z™. Consider the Hilbert

space H = (> (A(Ln) (x)) with standard basis (e;)
where ¢ =S, D or N. Let

o
A () and the operator HA(L")(x) (w),

"o
W = Z Uy, and WA(L“)(x) = Z Uy, where Zp := U A(LJ)FR(Q:Z)

a€Zd a€lp i=1

We first show in Theorem [£.4.1] that uncertainty principles imply Wegner bounds, then
we give in Lemma [£.4.2] concrete cases in which the uncertainty principle holds.

Theorem 4.4.1. Let A := AS-Jn) (x) be a cube and suppose Hy(w) satisfies
(4-1) X1 (H (@))Waxi(HR (w)) = vx1(HR(w))  P-a.s.

in an interval I, for some v > 0. Then
E{tr(xr(H3 ()]} < Cw - [A]"] - sp(P. 1)),

where Cyy = 6n*y~2C2(2R + 1)%? and [\(Ln) ={je A(Ln) (x) : Unaej # 0 for some o € Ip}.

If uy = cado with c¢o > 0, then C, = sup,c7co and R = 0. If, moreover n = 1 and
H(w) = Hy + Y qeq Waba, then A(Ll) = Ag)(a:) NG.
Proof. H}(w) is a self-adjoint operator given by Hj(w) = H1 + 3 ez, WalUa, with Hy =
H§ y self-adjoint. Moreover, Uy > 0, |Us| < Cuy = nC,y and Zj := {a : Usej # 0} C

Ur=1 A%)(jk), hence Chy := max |Z;| < n(2R + 1)¢. The claim now follows from Theo-
rem [4.3.2)

O

Lemma 4.4.2. Fiz n > 0. The uncertainty principle (4-1)) holds in any interval
(1) I C R, if dc > 0 such that uq > c¢- o for all o, with v = nc.
(2) I C (—00,Eq—n), if @ = [¢-,4+]*", ¢ > q— and E, = info(Ho + qW), for the

Dirichlet restriction HY, with v > s

Theorem combined with Lemma thus provides a Wegner bound in either
situation. If g— < 0, we may take ¢ = 0 and obtain a Wegner bound below Ej := inf o(Hy).
Otherwise, 0 < g— < ¢, and the bound is interesting if £, > Ey, for I C [Ey, E;).
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Proof. For (1), note that if uy > ¢ - d,, then for any y € Aén) (x),

Waly) 2 Y, D dalyi)=c D, 1=nc

1<i<n a€lp 1<i<n

so that W > nc and (4-1)) holds trivially in any interval with v = nc.
For (2), let H, := Ho + ¢W and given w € Q, let A, (t) := inf o(HY (w) + tW,). Then
for any t > g — q— we have

No(t) = inf o (HPy + VE + (t— q)Wy) > info (Hy + Y (wa +1 - q)Ua) > E,
a€Zd

where we used the fact that Dirichlet boundary conditions shift the spectrum upﬂ Thus,
if I C (—o0, Eq —nl, we get A\y(¢ — ¢—) —maxI > n. By [20, Theorem 1.1}, (4-1) thus

holds in I with v > q_”qi. O

4.4.2 Continuum multi-particle models

Consider the Hilbert space L?(R™?), where n € N* represents the number of particles
living in R%. Let G C R? be a discrete non-empty set such that #{A NG} < oo for any
bounded A C R? and consider a probability space (Q,P), where Q := [¢_, ¢,]“ and P has
no atoms. Given w = (wy) € Q, let

H(w):Ho—i—V“, Hy:=—-A+ 1V,

where Vj is a bounded real non-random potential. We can consider more general Hy; we
only need Hy 5 to satisfy a Weyl law, and this is true for Hy = (—iV — A4)? +V{ with weak

conditions on A and Vp; see [56, Lemma 5]. Given x = (z1,...,z,) € (RY)" = R™,
V¥ (x) = Z v (x;) = Z Z Wa e (T;) .
1<i<n 1<i<n a€G

Let A(Ln)(x) ={y € R : |ly — x|[|ooc < L}. We assume the u, : R? — R satisfy
0 < uq < Cy for some uniform C,, > 0 and supp u, C Ag)(a) for some R > 0 independent
of a. This model encompasses sparse potentials such as Delone and surface potentials.

Now put

Ua(y1, - yn) ;:Zua(yi) and W .= Z Uy .
i=1 acG

Given z = (z1,...,2,) € (RY)™ and a cube A(Ln) (z) C R™, let H/'\(n) (w) be a restric-
L

(2)
tion of H(w) acting on H := L? (A(Ln) (z)), with e = D, N, per. Note that without a growth
condition on G, H(w) may not be self-adjoint (cf. [63]), but here we are only concerned
with its restriction, which is self-adjoint.

Discussion of the results. Our bounds are not linear in |A|, but may be used for
localization.

5. To see this in detail, let f € £2(A), ||fll = 1 and g € £*(A°), g identically zero. Then ((Vy +
tWA)f, f) = (V< +tW)f &g, f &), so by the bracketing, (HY(w)f, f) +t{Waf. f) > (Hof & g,f & 9) +
(VE+tW)fDg, f@g) = (Hof ©g,fDg) = Ey.
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e The covering situation, i.e. when G = 7% and u, > cxq for all a, where y, is the
characteristic function of [ — %, a + 1], has already been analyzed in [I8] and [73].
There the authors proved Wegner bounds in any interval I C R and for arbitrary P. We
do the same here, simply to illustrate Theorem [4.3.3]

e For negative perturbations, we have a Wegner bound below Ey := info(Hjy). This

extends [63, Theorems 8,13] because we do not impose any regularity on P, but [63] has
some Wegner bounds which depend linearly on |A|. In the case of surface potentials,
i.e. when G = Z% x {0}, [64, Theorem 2.1] provides an optimal bound.
As in the lattice, there is the issue of whether H(w) has some spectrum below Ejy.
We show in the Appendix (Section that continuum single-particle operators with
half-space potentials are good examples of operators which have no covering condition
and to which we have a non-trivial Wegner bound.

e For positive perturbations, we obtain a Wegner bound below E, := inf o(Hy + ¢WW), for

any ¢ > ¢4+. This result is very close in spirit to |20, Theorem 2.1], because both are
interesting when Ej is a weak fluctuation boundary, i.e. when Ey < E,. Besides the
fact that we allow for multi—particlesﬂ note that our proof is quite elementary. On the
other hand, [20] builds on the results of [30], which are technically involved, but they
provide an optimal bound.
In contrast to the lattice, the question of whether there are interesting operators for
which Ey < E; is well established in the continuum when n = 1. Already in [62]
Theorem 2.2], it is shown that if E(t) := inf o(Hy +tW), then E(t) — Ep grows linearly
in t, even if the u, have small support, provided G = Z? and Vj is periodic. It was later
shown in [21, Sections 4,5] that E;, > Ej for more general operators with surface or
Delone potentials, assuming V is periodic. In the case of Delone potentials, this result
was very recently improved in [66, Lemma 4.2], namely, it is shown that E(t) — Ey grows
linearly in ¢, and Vj is no longer assumed to be periodic.

Much stronger results are known if n = 1, GG is a Delone set, each u, > 0 in an open
set and P = ®,eq 1t Namely, the Wegner bound of [95], which was improved in [66], is
valid for any small interval, not just intervals near the spectral bottom. The result of [66]
also extends the one of [30] who considered G = Z%, but relies on it.

Theorem 4.4.3. For any [ = (E1, Es), there exists Cyy > 0 such that for any cube
A7 (x),
(1) If G = Z% and e > 0 with ug > ¢+ Xa for all o, where Yo := Xa—1 at iy then

o (n) 1]
E{trlxr (Hy o, )1} < Ow - (A GO [Zr] - sp (P, )

where g := ( Ja A(Ll_)FR(xj)> NG and sp(P,¢) is defined in (2-1).
(2) Otherwise, for any q > q4, if E2 < E, :=inf o(Hy + ¢W), then

E{tr[X](HD

n q—q-
R} < Cw - I T - (B, o 1T)

E, — Ey

Here Cy = Cw(nd, E,vp) if ¢ > 0 and Cy = Cw(nd, Ea, v, ng—CyR) otherwise,
where vy = inf Vj.

If ¢4 < 0, i.e. the perturbation is negative, we may take ¢ = 0 and obtain a Wegner
bound below Ey := inf o(Hp). Otherwise, 0 < ¢4 < ¢ and E; > Ej, for many models.

6. Let us mention here that there is a work in progress by Hislop and Klopp in which an optimal Wegner
estimate is derived for some non-covering multi-particle Hamiltonians.
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Proof. Let A := Asln) (x). For (1), note that Hj(w) is a self-adjoint operator given by
H}(w) = Hi+} qez1, waUa, where Hy := Hj ,. Givenu € D(HY), if fu(w) = (H (w)u,u),
then f, is monotone increasing since U, > 0. Moreover, if y € A(n)( ), then Wy (y) :=
ZaEIF aly) = CZlgzgn ZaeIF Xa(yi) = nc. Hence, fy(w+t-1p)— fu(w) = t(Wru,u) >
nct|lu||. Hypotheses (C) are thus satisfied with v = ne, a Weyl constant K = C|A|, and
the claim follows from Theorem [£3.3]

For (2), let A(w) := HY (w)—Ey and I = (E1— Ey, Ex—E,). Then x1(\) = xpr(A\—E,),
hence E{tr[x(HE (@)} = E{trbu (Aw))]}.

Now A(w) is self-adjoint and A(w) = Hi + 3,7, (Wa — q)Us, where Hy 1= H(])?A +
gWn — E,. Since Dirichlet boundary conditions shift the spectrum up, we have H; > 0.
Thus, A(w) satisfies the hypotheses of Theorem in I’ with ¢ = 1, a Weyl constant
K = CJA|, and the claim follows since [I'| = |I|. O

4.4.3 Quantum graphs with random edge length

Consider the metric graph (£, V) with vertex set V = Z¢ and edge set £ = {(m, m+h;) :
m € Z%j =1,...,d}, where (hj);lzl is the standard basis of Z?. Each edge e = (v,v’)
has an initial vertex te = v and a terminal vertex 7e = v’. Now fix 0 < ljpin < lmax < 00
and let (Q,P) be a probability space, where Q := [lnin, lmax)¢ and P has no atoms. Given
¥ = (I¥) € Q, we identify each edge e with [0,¥], such that te and e correspond to 0
and 1%, respectively, and consider the Hilbert space H := @cce L?[0,1¢]. Fix a € R and
define the operator

H(1%,a) : (fe) = (=),

w ,_ _ 2.2/ wy | J i continuous at each
D(H(l ,Ct)) T {f_(fe)eeeeagw (0716) veVandf/ —af }

By continuity at v, we mean that if 7e = b = v, then fe(I¥) = f,(0) =: f(v). Here
f)= S R0)- % ),

Given L € N¥, let AL ={e €& :|eloc < Lor|rellcc < L} be a cube and put
Vi, ={e:ec AL} U{re:e e Ap}. This yields a graph (A, V,, ) and a corresponding
operator Hy, (I, ). We denote HY () := Hy, (I, ).

Theorem 4.4.4. Let I C (0,00) be an interval such that I N Dy = O, where Dy :=
Ukez[ 2k2, l;kz}. Then there ezists ¢c1 = ci1(d) and ca = ca(I) > 0 such that for any

min

interval J C I and any cube A we have
P{o(HY () NJ # 0} <ep-|A? - sp(P,cal])),
where |A| is the number of edges in Zp := A and sp(P,¢) is as in (2-1)).

Previous estimates appeared in [78] and [72], both assumed that P = ®ccp e, with
fte = he(A)dA, but their bounds were linear in |A|. Our proof heavily relies on the analysis
of [72]. Our point here is twofold: first, if one makes use of the black box Theorem [4.3.3]
then a large part of the proof of [72] can be omitted, second this allows to extend their
localization results in case o > 0 to measures p. which are (log-)Ho6lder continuous.

Proof. 1t is proved in [72, Eq. (9)-(14)], by spectral analytic arguments and without any
assumption on P, that if £ is the midpoint of J, then there exists a discrete random
self-adjoint operator My (I, Ej) acting on £2(V,) and b > 0 such that

P{o(HY(a)) NJ # 0} < P{dist (o(Mp (¥, E)), 0) < bJ|} .
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Moreover, given u € £?(V,), the map ¥ +— f,(I) := (Mx(I*, Ej)u,u) is in C1(9),
only depends on ({¥).ca and there exists 8 > 0 such that
(i) %;’EJ) > - 1¢for all e € A, where I°f(v) = f(v) if v € {te, e} and I¢f(v) =0
otherwise,
(i) and Y ep 2B > 850 ) 16> 8- Tdpagy, ).
Thus, 2507 > B(lu(ee) | + [u(re)?) > 0 for e € A and Y,y 250 > B [|ul2. Hence
My (I, Ey) satisfies Hypothesis (C.5.b). Since ¢2(V,) is finite-dimensional, the rest of

Hypotheses (C) are clearly satisfied with Zp = A and K = |Vy| < ¢4q|A|. We may thus
apply Theorem [4.3.3] and Markov inequality to get

P {dist (o(Ma(I*, Ey)), @) < b|J|} = P{tr Xjap|p.atel) (Ma(?, Ey)) > 1}

2b
< 24 APsp (P, E|J\) . 0

4.4.4 Quantum graphs with random vertex coupling

We finally show that Theorem [£.3.4] can tackle random vertex coupling models without
any analytic effort. It seems there are no previous Wegner estimates for such models.

For simplicity consider the graph (€,V) given by V = Z¢ and & the set of segments
e = (v,v") between neighbouring vertices, assigned lengths I, with Iy < lo < lpax. More
general structures can be treated similarly. Given e = (v,v’), we put te = v and Te = v'.

Fix a_,ay € R, a_ < ay and ) # G C V. Let (Q,P) be a probability space, where
Q = [a_,ay]% P has no atoms and let H = Pece L2[0,1.]. Let V = (V.) be a bounded
real potential, ¢p := inf V', and given o® = () € 2, consider the operator

H(a®) : (fe) = (= f + Vefe),

acting on (f.) € @ece W22(0,1.) which are continuous at all vertices, i.e. f.(l.) = f,(0) =
f(v) if Te = b = v, and which satisfy

o .
- Y o - Y A { #fle) ived,
o eromy otherwise.

The authors in [7I] studied the case G = V and established localization for high
disorder and near spectral edges using the fractional moments method (which does not
rely on Wegner bounds). Their idea was to reduce the problem to one on ¢?(V), for an
associated discrete operator. Below we prove a direct Wegner bound instead.

Given A C &, let V) :={te:e€ A} U{re:e € A} and OA := Vy N Vpe. Consider the
form

UUX’D[f] => (||féH%2(01€ (Vefe, fe)r2oa.)) + > ol f(v
eEA veEGNVp
acting on (f.) € @eep WH2(0,1.) which are continuous at v € V, \ A and vanish at
v € OA. Note that OA is empty if A = £. It is known (see [76] or [78, Lemma 4.1]) that
f)X’D is closed and bounded from below, and thus corresponds to a self-adjoint operator

HP(a*). Moreover, H(a*) = HP (a®), so we denote h* := hg’D.

Lemma 4.4.5. For any A C €, H(a*) < HY(a®)® HY.(a®). If A is finite, HY (a®)
has a compact resolvent. Its eigenvalues, denoted E{\D < EQ’D < ... counting mul-
tiplicity, satisfy the following Weyl law: for any S € R, there exists a non-random
C = C(S, co, —, lmin, lmax) such that EJA’D > S if 5 > C - |A|, where |A| is the num-
ber of edges in A.
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Proof. The bracketing result follows [78, Lemma 4.2], namely, D(hX’D) @ D(hX’cD) C D(p¥)
since a function in D(f)X’D) @D(UX;D) is automatically continuous at all v. Moreover, if
f=hofeDO")oDOY), then b5 [fi] + b5 [f2] = b¥[f] because f(v) = 0 on
boundary vertices. Thus, H < HE ®HP..

Now suppose A is finite and as in [42], consider the Neumann-decoupled Laplacian
_Ajl\ec,N defined via the form ¢[f] = >eea HféH%Q[OJE] with D(€) = ®eep W1,2(0, le). Then

D(h3")  D(¥) and b3P[f] = €[] + collfII? + am Sypegry, [f(@)1* = 5((E + O)[f]) for
some C' = C(lmin, lmax, @—, ¢p) by standard trace estimates, see e.g. [76, Lemma 8]. Thus,

HR(a¥) > %(‘A?\ec’N +C). But since —AieC’N = Becp —Al(\g) 1,)» its eigenvalues E;-iec’A are
Just the eigenvalues Ek(—Al(\g) le)) = —”42/32 with multiplicity |A|. In particular, E;lec’A — 00

as j — 00, hence EJA’D — o0 as j — oo and H/]?(a“’) has a compact resolvent by [92]

Theorem XIII.64]. Moreover, we have EJA’D > %(E?BC’A + C). By the explicit form of

Egdec’A, we know that E;'iec’A > 28 = Cif j > CofAf for some Cy = Co(lmax, S, C). Thus,

EJ/.\’D > S if j > C3|A| and we are done. O

We may now state our Wegner bound. Fix ¢ > a4 and let Hy, H, be the operators

corresponding to holf] = Yee (11212210, + (Velor £)) and bylf] = Bolf]+q S ye LF(0)]2
respectively, with D(ho) = D(hq) = D(h*). Let Zr := G NV, and sp(P,¢) as in (2-1)).

Theorem 4.4.6. Let I = (E1, Es) be an open interval.
There exists Cyy = Cyw(Es2, co, a—, lmin, lmax) > 0 such that for any finite A C € and
any q > oy, if By < E,:=info(H,), then

E{trb (HR @)} < Cw - IA] Tr o (P g — 1 1)

If ay < 0, we may take ¢ = 0 and obtain a Wegner bound below Ej := inf(o(Hy)).
This result is non-trivial at least when G = Z¢ and the disorder is high, because H(a®)
will have some spectrum below Fj in this case almost surely; see [71, Theorem 12] and
the remark thereafter. If o > 0, the non-triviality will be ensured if Ey < Ej,.

Proof. Let A(w) := HY(a®) — E, and I' = (Ey — Ey, By — E;). Then x1(\) = x1r(A — Ey),
hence E{tr[x;(HY(a*))]} = E{tr[x;(A(w))]}. Moreover, A(w) corresponds to the form
a[f] = (02° — E,)[f] with D := D(a®) = D(h%") non-random, and we have a*[f] =
b1[f]+ 2 vecny, (a5 — q)|f(v)|?, where by := th — E,. By the bracketing in Lemma @},
we have h; > 0. Thus, A(w) satisfies Hypotheses (C.1) to (C.4) in I, with a Weyl constant
K = CJA| from Lemma and the claim follows from Theorem [4.3.4] O

4.5 Proofs of the general theorems
4.5.1 Proof of Proposition
Proof. Put x7 := x7(H(w)). By hypothesis, for a.e. w,
(5-1) trlxr] <y el W] =y e[ W]
Given j € J we have
(x1Wej, ej) = (xiWej, xre;) < |IxiWesl| - [Ixre;ll

c 9 1 9 C 1
< §HXIW6’J'|| + ?C”XIGJ'H = §<WXIW€jvej> + 27<x1€j,€j>
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for any ¢ > 0. Summing over j € J and choosing ¢ = v~ we get by (5-1))

-1

-1 L 1
trixs] <~ ( 5 tr[Wx W] + 21 tr[;g]) .
Thus,
trlxr] <472 te[Wx W]
=773 Y (UaxaUaejse))
jeJ a,d'€lp
= 7_2 Z Z <X1Ua/ej7 XIUaej>
jed a,ol €T
-2
Y
<52 X (Ixalael + xiUags )
j€J a0/ €L}
< 7_2Cﬁn Z Z ||X1Ua€j||2 .
jEJ OLEI]'

This completes the proof, since ||xUacjl|*> = (UaxiUaej,e;), and the terms with
J & Jem are zero. O

4.5.2 Proof of Theorem [4.3.2]
We first recall [105, Theorem 3.2]:

Spectral Averaging. Let o be a probability measure on R and H a Hilbert space. If A
is a self-adjoint operator and 0 < B is a bounded operator on H, then for any interval I
and any ¢ € H we have

/R<BI/QXI(A +tB)BY2¢, ¢)du(t) < 6] B[ ]|*s (. 111) ,

where s(p,€) == supger W(E, E +¢).

Note that we could use instead the spectral averaging of [30]; in this case the upper
bound should be replaced by 4||B||(1 + || B|)||#||*s(u, |1]).
The proof in [105] actually gives s(u,e) = supger plE, E + €), but since

(5-2) sup u[E,E +¢) = sup u(E,E +¢] = sup u(E,E + ¢)
EeR EeR EeR

(see Section [4.6.2)), the above bound holds.

Proof of Theorem[].3.3. To show that x;(H (w)) is weakly measurable, it suffices to show
that H(w) is weakly measurable; see [61]. Let ¢,1 € H and let g(w) = (H(w)p,¥) =
(How, V) + > nerpy WalUaw, ). Then g only depends on (wa)aczy i-e. {w:g(w) > a} =
A x BEVIF for some A C BEF , 50 by definition of §, it suffices to show that A € ®qcz, B.
In turn, it suffices to show that the map go : B — R given by go : (Wa)aczp —
(Hop, V) + > nezy WalUap, ) is Borel measurable, but this is obvious since it is affine.
Hence, x7(H (w)) is weakly measurable and tr[x;(H (w))] is measurable.
We may thus integrate in Proposition [£.3.1] to get

E{tr[xi(H(W))]} <772Can Y D E{{Uaxi(H(w))Uaej, )} -

jeJeﬁ C!GIJ'
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1/2

Fix j € Jor, @ € Z; and put ¢ := Us' “e;. Then by [36, Theorem 10.2.1],

E{(Uas(H(@))Uaey. )} = Bx, { [ (U2 (H@)UY6,6)dpa, (w0)}
Using the spectral averaging with A = Hy + 3 3., wgUp, B = Uy and ¢ = wq, we get

E{(Uax1(H(w))Uat;, ¢;)} < 6| UallllUa?¢;]1* By, {s(naq. 1)} < 6CF By, {s(pa,, )}

Since Ey, {s(pa,, [I])} < sp(P,|I]), the proof is complete. O

4.5.3 Proof of Theorem

Throughout this subsection (£, §, P) is a probability space with  := CZ, where C C R
is an interval and Z is a countable index set. §p denotes the P-completion of §. We fix
a finite set Zr C Z and denote by 1 the element 15 = (z4,) € RZ such that z, = 1 if
o € Irp and x, = 0 otherwise.

We will use the fact that monotone functions ¢ : £ — R which depend on finitely many
weo are gp-measurable; this is proved in Lemma, . Note that for any fixed z € RZ, the
map ¢(w — x) is also monotone increasing, hence Fp-measurable. We may thus state the
following lemmaﬂ whose basic idea stems from [103], see also [25] and [18].

Lemma 4.5.1. Suppose ¢ : 2 — R is monotone increasing and depends on finitely many
wo. Given ¢ € R and n > 0, define A := {w : p(w) < ¢}, A" :={w:w—-—n-1p €
Qand p(w—n-1p) <c}, B:i={w:pw) >c} and B" :={w :w+n-1p € Q and p(w +
n-1r) > c}. Then

P(AT\ A) < |Zp| - sp(P,n) and P(B"\B) < |Zp|-sp(P,n),
where P denotes the extension of P to Fp and sp(P,n) is as in (2-1).

Proof. We prove the second bound; the first is similar. Let Zp = {aq,...,a,} and
Tr = {ou,...,ag} for 1 <k < m. Let 1, be the element 1; = (z,) € R? with z, = 1 if
a € Z; and z, = 0 otherwise, so that 1,, = 1p. Set

Bj:=B and B]:={w:w+n-1;€Qand p(w+n-1;) >c}
for 1 < 7 < m. Note that if By,..., B, is any collection of sets, then one checks by
induction that By, \ Bo C UL (B; \ Bj_l)ﬂ, so we have in particular
m

(5-3) P(By, \ By) < Z (B \ B

Now fix j € {1,...,m}, let ©; = (wg)pa; € € ¢T\Me5} and denote by (z,&;) the element
(xa) € RZ with To; = v and xg = wp for B # ;. Define the section

Coy i={z € C: (2,&;) € B\ B]_;} = (B]\ B )a,

7. In contrast to [I03], here we avoided to speak of sums of sets, because such sums are not measurable
in general; see [4I] and [28], so a justification would be needed.

8 Ifm= 1, then B1 \Bo Bl \Bo Suppose that B \BO C U B \BJ 1) and let w S Bm+1 \Bo
If w ¢ Bm \ Bo, then w ¢ By, since w ¢ Byo. But w € Bpy1, hence w E Bit1 \ Bm. Thus, Bmt1 \ Bo €
(B \ Bo) U (Bnt1\ Bm) € U7 (B; \ Bj-1) by the induction hypothesis.
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We show that Cy, is contained in an interval of length 1. If Gy, = (), this is clear,
so suppose © € Cp;. Fix 6 > 0. If 2 — 46 € Gy, then (z — 6,0;) € B] and thus
o((x — 0,;) +n-1;) > c. But ¢ is monotone increasing, so ¢((x — §,0;) +1n-1;) =
o((x =0+ n,0)+n-1j-1) < o((z,0;) +n-1,1) < ¢, since (z,0;) ¢ B?_lﬂ This
contradiction shows that x —d ¢ Cp, for any § > 7, i.e. Cp, is contained in a semi-open
intervallﬂ I, of length 1. Let D;] be the set B;] \ B?_l with each section Cy; replaced by
I;;. Then B} \ B! | C DI and I, is a Borel set for any &;. So applying [I3, Corollary
10.4.15] to D7, taking Y := cT\2} and using , we may find 7, such that

(5-4) B(B]\ Bl,) < By, {7z, (Is,)} < Ey;{ sup i, (F, B + n}.

But Ey,{ue,(E,E+n)} = P{lws, € (E,E+n)} =P{...} = Eyj{ﬁwj(E,E + 1)}, hence
po; (B, E +n) = g, (E, E 4+ n) outside a Py,-null set Qp. Let Q, = UpcgQp. Then
Py, (%) = 0 and suppeq e, (B, E41) = supgcg B, (E, E+mn) for any &; ¢ Q.. So using

2-2).

By, { sup iz, (B, E +n)} = By, { sup e, (B, E+ ) } < sp(P,m),
EerR E€R

and the claim follows by (5-3|) and (5-4]). O

We may now prove a first extension of Stollmann’s Lemma from [I03]. Namely, we allow
intervals C and relax the diagonal condition by adding cutoffs x(¢(w)). The inclusion of
cutoffs is actually immediate and will not be used in the proof of Theorem[4.3.3] However,
this idea plays a major role in the proof of Theorem [4.3.4]

Lemma 4.5.2. Let I C R be an open interval. Suppose ¢ : 3 — R is monotone increasing,
depends on finitely many w, and satisfies

(5-5) (p(w) —pw —t-1p))xr(ew)) >ty - xr(ew))

for some v >0 and allt > 0 such that w —t-1p € Q. Then

- I 1 4f infC = —
P{W(w) S I} S d- |IF| : SF(]P)a U)) where § = {2 loft}zj,)nwise %

This bound is also true if v is monotone decreasing and satisfies
(5-6) (o(w) = plw =t 1) xr(e(w)) < =ty x1(p(w))-
Proof. Let I = (a,b),e:=b—a and n:= % We have
Blp(w) € I} < Plp(w) € Tand w — - 1p € O} + Plw—n - 1p ¢ O}

Put A:={w:pw)<a}, AT:={w:w—-n-1p € Qand p(w—1n-1p) < a} and let
weA:={w:p(w)eTland w—n-1p € Q}. Then by (5-5),

pw—n-1p) <pw)—m=pw)—c<b—c=a.

9. Note that if w+n-1; € Q, then wa +n € C for any a € Z;, so in particular for any a € Z;_; and
thus w+mn-1;_1 € Q.
10. Set a; :=inf Cy;. If a; € Cy;, then we proved that a;+6 ¢ Cy; for any § > n, i.e. Co; C [aj,a;+1).
If a; ¢ Co,, then if x > a; +n, we may find y € Cy; such that y < a; + (z —a; —n) =  —1n, so we cannot
have x € Cy;. Thus, Cs; C (aj,a; + 7).
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Hence w € A". Furthermore, ¢(w) € I implies ¢(w) > a and thusw ¢ A. Hence A C A"\ A
and P(A) < |Zp| - sp(P,n) by Lemma

If infC = —o0, then P{w —n - 1p ¢ Q} = 0, since C is an interval. Otherwise, let
q— :=infC. If q_ € C, then using ,

Plw—n-1p ¢ Q} = P{wa € [g-, q- + ) for some o € Ip} < |Tp| - sp(P,n)

since P{wa € [g-,q- +n)} = Ev, {pa.la-,9- +n)}. If ¢- & C, replace [g—,q- +n) by
(- q— +mn].

Finally, if ¢ is decreasing and satisfies (5-6]), then ¢ := —¢ is increasing and x (¢ (w)) =
X1 (¥(w)), where I' := (—b, —a), hence 1 satisfies in I'. Applying the first part we

obtain P{p(w) € I} =P{y(w) € I'} <4 - |ZF|- 3F<IP’, %) O

Proof of Theorem[[.3.3 Let {¢n(w)} be an orthonormal basis of eigenvectors of H(w)
with eigenvalues A, (w). Then (x;(H(w))pn(w), vn(w)) = x1(An(w)). So using (C.3), we
get

tr{xr(H(@)] = Y_{x1(H(w))gn(w), on(w)) = D xr(A

n n<K

By (C.4), (C.5) and min-max, each A\, : @ — R is monotone (see below for (C.5.b) and
(C.5.d)) and only depends on (wq)aez,- So by Lemma each )\, is §p-measurable,
hence x;(A\p(w)) = Xoz1 () (w) is §p-measurable, and we may integrate to get

E{trlxi(HW)]} = > Elxr(n(w)} = > P{n(w) € I}

n<K n<K

Now assume (C.5.a) holds. Then by min-max, A,(w) is monotone increasing and satisfies
(W) > Ap(w—t-1p) 4ty for all t > 0 such that w —t- 1p € Q. So by Lemma

> 1]
P{n(w) € I} < 2 [Tp] 'sF(IP’, 7),

as asserted. The case (C.5.c) is similar. Let us show that (C.5.b) implies (C.5.a) and
(C.5.d) implies (C.5.c).

Let f : © — R be a function only depending on (wa)aezy and suppose f € CH(Q).
Given v,w € Q, we have v+ t(w —v) € Q for any ¢ € [0,1]. Moreover, ¢t — f(v+t(w —v))
is continuous on [0, 1] and continuously differentiable on (0, 1), hence

1
fw)— f(v) = ; gf(v—i—t w—v))dt = / > (w ;j (v+t(w —wv))dt.

a€lp

If ;ZTJ; > 0on QVa € I and wy, > vq, then f(w)— f(v) > 0,1i.e. fis monotone increasing.

Similarly, if Va € Zp, % < 0 on €2, then f is monotone decreasing. Finally, for w = w
and v=w —v - 1p we get

f@)~ fw—van=v [ ¥

a€lp

&ua (w—v-1p+t(v-1p))dt,

hence 3 ,c7,. aan > con Q implies f(w) — f(w —v-1p) > vecand 3,7, 8(?7]; < —con )

implies f(w) — jg(w —v-1p) < —ve. O
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4.5.4 Proof of Theorem [4.3.4]

The proof of Theorem uses two ideas: the first one is roughly to consider the
change of variables v, = Inw,, so that B{f(w)} = [ f(w)P(dw) = [ f((e"*))P(dv). This
idea was used before in [78, Theorem 2.9]. The new measure P is easily described if P
is a product measure; the general case is given in Lemma [£.5.3] The second idea is to
generalize Stollmann’s lemma to include cutoffs x7(¢(w)) (as we did in Lemma and
also extend the diagonal growth condition. This is done in Lemma |4.5.4

Lemma 4.5.3. Let Q = [q_,q,]%, firq > q; and let Q := [v_,v,]%, where v_ = In(g—qy)
and vy =In(g—q_). Define T :Q — Q by T : (wa) — (In(q — wy)) and let P :=PoT 1.
Then 3

sp(P,e) < sp(P, (¢ —q-)(e" —1)).

Here sz (P, ¢) is defined as before, i.e. if Zq := [v_, v+]z\{°‘}~, 7z, : Q — Z, is defined by
Tz, 10— 0q and if Py, = ]P’o7r§i, then sp(P,¢) = maxaez, Ez, { supger fuo, (E, E+¢)}.

Proof. First recall that by [36, Theorem 4.1.11], if 7 : (X, X,P) — (Y,)) is any measur-
able map, and if P7 = Po7 !, then for any measurable g : ¥ — R, we have

(5-7) E" {g(y)} =E{(go T)(@)},
whenever either side exists. Fix a € Zp and let G := {v, € (E,E +¢)}. Then
Ez,{fi5.(E, E +¢)} = P(G) = P(T(w) € G) = P{ln(q — wa) € (E, E +¢)}
=P{wa € (¢— "7 g ")} = By, {na, (¢ — ", g — ")},
where Y, = [¢_, q+]1\{‘)i}. Define Ty : Zy — Yo by Tb : (va) — (g — €”). Then

1:“2 omy, oT =Ty, S0 If”?a = Py, and using 1} we get By, {ug, (¢ — eFe,q — eP)} =
Ez, {,UTQ(@Q)(Q — e, q — eP)}. Hence fi;, (B, E +¢) = ng(@a)(q —ePte, g — eP) outside

a Py -null set Qp. Let Q. = UpcgQp. Then Pz () = 0 and supgeg fio, (B, E +¢) =
SUPgeg /‘TQ({;Q)(Q —ePre g —eP) for any 04 ¢ Q.. So using (D and 1}
D o _ TR . _ _E+e , ___E
Eza{ zlé%uva(E, E+ 6)} Eza{ %%u;pz(@a)(q et g —e )}
= By, { sup s, (g — "%, — ")}
E€R
If g—e? < g_, the RHS is zero, since e, is supported in [¢—, g+]. So suppose e <qg—q_.
Then (¢ —e¥) — (¢ — %) = eP(e —1) < (¢ —q_)(ef —1). This completes the proof. [

Lemma 4.5.4. Let (Q,P) be a probability space, Q = [c_,cy]* and I C R an open interval.
Suppose p : Q0 — R is monotone increasing, depends on finitely many w, and satisfies

(5-8) (pw+1t-1p) = o) xr(pw) 2 v = 1) - x1(pW))

for some ( >0,v>0 and all t > 0 such that w+1t-1p € Q. Then

P 1 1]

P{p(w) € I} <2-|Zp|- sF(P,zln(l n 7)) ,
This bound is also true if ¢ is monotone decreasing and satisfies for all t > 0 such that
w—t-1p € Q the bound

(5-9) (p(w) = (w—1t-1p))xr(pw)) < (1 =) x1(pw)).
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Proof. Let I = (a,b), e :=b—a and n := %ln(l + %) Suppose first that ¢ is monotone
increasing and satisfies (5-8)). We have

Plow) eI} <P{pw)elandw+n-1p e Q}+P{w+n-1p ¢ Q}.
For the first term, let w € A:={p(w) € [ and w+n-1p € Q}. Then by (5-8)),
pw+n-1p) 2 pw) + (e = 1) =pw) +e2a+e=b,

hence if B" :={w:w+n-1p € Q and p(w+1n-1p) > b}, we have w € B". Moreover,
¢(w) € I implies p(w) < b and thus w ¢ B := {w : p(w) > b}. Hence, A C B"\ B and
P(A) < |Zp| - sp(P,n) by Lemma

For the second term, P{w +n-1p ¢ Q} = P{w, € (¢4 — n,c4] for some a € I} <
IZp| - sp(P,n) by (5-2)). This proves the first claim.

Now suppose ¢ is decreasing and satisfies . Again,

P{p(w) eI} <P{p(w)elandw—n-1p € Q} +P{w—n-1r ¢ Q}.

The second term is assessed as before. For the first term, let 1(w) := —¢(w) and put
A={w:YPw) < -b}, A" ={w:w—-—n-1p € Qand Y(w —n-1p) < —b} and let
weA :={pw)eland w—n-1p € Q}. Then by (5-9),

plw=1-1r) 2 p(w) =71 =) = p(w) +e>a+e=b,

hence Y(w—n-1p) < —band w € A". Moreover, ¢(w) € I implies p(w) < b, i.e. P(w) > —b
and thus w ¢ A. Hence, A" C A7\ A and the claim follows from Lemma O

Proof of Theorem[{.53.4 Let A(w) = —H(w) and I' = (—E3, —E4). Then tr[x;(H(w))] =
tr{xr (A(w))]. Moreover, if ry(w) = —fu(w) = —a(u) + Xpez, (¢ — wa)*ba(u), then using
min-max for H(w), we obtain the formula

(5-10) fin(w) = inf sup_+ ru(w)
PloPn—1  yeD |u||=1,
u€{@1,pn—1}+

for the decreasing set pi(w) > pa(w) > ... of eigenvalues of A(w) (here pj(w) = —Aj(w)).
Since b (u) > 0 for any u, each p,(w) is monotone and only depends on (wq)aez, by
, hence each is §p-measurable by Lemma m Thus, as in the proof of Theorem m
tr[xr(A(w))] is Fp-measurable and we may integrate to get

(5-11) E{trlxr (AW))} = > Plun(w) € I't = 3 B{pn(Ta(v)) € I'},

n<K n<K

where, using the notations of Lemma Ty : Q — Qs given by Th : (va) — (g — e¥),

and we applied (5-7)) to g(v) := xp (pn(T2(v))), noting that (T2 0 T')(w) = w.
Suppose now that (3-1)) holds with ¢ > 0 and fix u € D. Since r,, 0 T(v) = —a(u) +
> oIy eSVaby(u), given v € Q and ¢t > 0 such that v+t - 1 € €2, we have

(ruoTo)(v+t-1p) = —a(u) + > ot p,(u)
aelp

= —a(u) + e Z €% by (1) > €St (ry 0 To) (v)
a€lp
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since —a(u) > —eSa(u). Thus, if v, (v) = p,(Ta(v)), we get by (5-10)
Un(v+1t-15) > Sty (v).
Now note that if v, (v) € I', then v,(v) > —Es = |E3| > 0. Hence,

(Wn(v +t-1p) = vn(0)x1 (Vn(0)) = (€vn(v) = vn(v)X1 (Vn(v))
> (e — 1) | Ea|xp (va(v)).

As ¢ > 0, v, (v) is monotone increasing in v, so using Lemma we get

Plvn(v) € I'y <2 |Zp|- SF(fP’véln (1+ ||Jg2’!))
1|

< 2.‘IF\-3F(P, (q—q_)((1+‘E2|)é N 1))’

where we applied Lemma |4.5.3|with € := % In (1+ “é—g') Using ([5-11)), the proof is complete

for ¢ > 0. Now suppose that ( < 0 and put ¢ := —( > 0. Then
(ruoT2)(v) = —a(u) + > e "by(u)
a€lp
= —a(u) +e ¥ Z e 0Dy (u) < e (ry o Ty)(v —t-1p)
aElp

for any ¢ > 0 such that v —t - 1p € Q, since —a(u) < —e~?a(u). Hence,
vn(v) < e v (v —t-1p),
and thus, noting that (1 — ) < 0 we get

(n(v) = vn(v —t - 1p))X1 (v (v) < (va(v) — v (V) X1 (Vn(v))
< (1 — )| Ba|xp (v (v)).

Furthermore, v,(v) is monotone decreasing. The claim of Theorem for ¢ < 0 now
follows as before using Lemma O

4.6 Appendix

4.6.1 Spectra of some Schrodinger operators

Let G C Z¢ be non-empty, B C R a Borel set and consider the probability space (2, P),
where = B% and P = ®qeq pt, for some probability measure p on R with supp u C B.
Define

HY = H*+V* on *(Z%), where H* = —A+V°, V¥ = " wqda,
aeG
H, = Hy+V, on L*(R?), where Hy= -A+ V), Vo= Y WaXa-
aeG
Here d,, and x,, are the characteristic functions of {a} and [ — %, a+ %]d respectively and
VO Vj are Z%periodic bounded real potentials. We denote points in R? by (:pl, ... ,:L‘d).
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We now suppose that G contains a half-space of Z¢, i.e., there exists r € Z and
i € {1,...,d} such that (z',...,2%) € G whenever z' > r. Examples are half-spaces of
7%, and sets with a finite number of holes, i.e. with Z¢\ G finite. We can actually consider
more general sets like quarter-spaces or rotated half-spaces. The only thing we need is
that G should contain arbitrarily large cubes of Z¢. This excludes (2Z)? and thus excludes
Delone sets. On the other hand, half-spaces are not Delone sets either since we allow for
arbitrarily large cubes with no points of G. So the sets we consider here are neither a
special case nor a generalization of Delone sets.

Lemma 4.6.1. If G contains a half-space of Z¢, then o(H¥) D o(H°) + supp u and
o(Hy) 2 o(Hy) + supp p almost surely.

Proof. We only prove the claim for H,; the proof is similar for H“. All the arguments
actually go back to [77], [62]; one simply needs to choose Qg’q(n) carefully below.

Assume (z',...,2%) € G whenever 2' > 7. Let E = A+ ¢ € o(Hp) + suppp. By
Weyl’s criterion [IT4, Theorem 7.22], we may find f; € C(R?), ||fx]| = 1 such that
|(Ho — A) fxl] = 0 as k — oo. Choose Il = l(A) € N* such that supp fi C Ay, (0), put
Il :=[q— %,q+ 1] and consider the event

O(n) ={weQ:w, eIl Yae Ay (zor)},

where z,, 1, := (3nl; + r)ei and e € Z% has 1 in the ith coordinate and 0 otherwise. First
note that Ay, (z, 1) NG = Ay, (zn), so that the above event is well defined. Moreover,
Ay (i) VA (2 ) = 0 for n # m, so the events {Q;’q(n)}neN* are independent and
P2y (n)) = u(ID) 4! is the same for all n and strictly positive since ¢ € supp p. It
follows by Borel-Cantelli lemma II that if 29 := Nyy>1 Upsm Q29(n), then P(Q9) = 1.
Let QM = Njep- Q)% then P(QM) = 1.

Now fix w € QM and let k € N*. Then w € 2, so we may find n € N* such that
wE Qz’q(n). But

[(He — E) fe(+ = znp) |l < [(Ho = A) fr(+ — 2l + 1 (Vo — @) fe(- — znp)l-
Since Vp is periodic, ||(Ho — A) fx(+ — zn k)l = ||(Ho — A) fxl]| = 0. Moreover w € 927'1(71),
S0 wy € I} for all @ € Ay, (z,1). Recalling that Ay, (z,5) NG = Ay, (zn k), We get
1
Vo =) fi(- —zni)lP = D (wa = @)[Ixalfsll® < ﬁ”fk:“Z — 0.
Q€A (T, k)

Hence (f;) is a Weyl sequence for E. We thus showed that for any w € QM we have
A+q € o(Hy). Let Qo = N\co(ty)n0,gesupp N0 QM. Then P(€)) = 1 and for any w € Qg
we have 0(H,) 2 o(Hy)NQ+supp pNQ. Since o(H,) is closed, the proof is complete. [

4.6.2 Technical details

We give here the details of some claims we made in Sections [4.2] and Let u be a
(10" E]

probability measure on R. To prove 1| let £ € R and Ey, := ‘57—, where [z is the
integer part of x. Then E, /' FE and ¢ < E + ¢ iff ¢ < Ej, + € for some k. Hence

WEE+¢e)=p(Uy (E,Ep+¢)) = leIIolo/J,(E, Ei+¢)

< lim pu(Eg, By, +¢) < sup p(F, F +¢).
k—o0 FeQ
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Thus, supger u(E, £ +¢) < suppeg u(F, F' + ¢). This proves (2-2).
Suppose P = ® pu, for some probability measures p, on R. Then given A € §, we
have P(A) = [y pta(As,)d Py, (@a), so by [I3| Corollary 10.4.15], g, = pa Py,-a.s., so

sp(P,e) = maxoez, SUPper ta(E, E + €) using (2-2). Next, note that
WEE +e] = p(Ug (B + 3, E+e]) = lim p(E+ 5, B +é]
o0
< lim p(E + %,E%—a—i—%) < suppegp W(F, F +¢),

k—o0
so supger U(E, E+4¢] < suppep u(F, F'+¢) and this proves equality. Similarly, one checks
that suppep u[E, E 4 ¢) < suppeg u(F, F' + ¢), which proves ((5-2)).
We finally prove the following. Here Q = B with B C R a Borel set and Z is countable.

Lemma 4.6.2. If P has no atoms, then any monotone ¢ :  — R which depends on
finitely many wq is §p-measurable, where §p is the P-completion of §.

Proof. Suppose ¢ is monotone increasing and only depends on (wq)aez,,. For notational
simplicity, assume Z,, = {1,...,m}. Put Z, := {1,... ,k} for 1 < k < m and let §x be the
o-algebra generated by (®qez, B) UNi(P), where Ni(P) := {M C BT+ : P*(M x B%) =
0}. Here P* is the outer measure defined by P and Zf = Z \ Zy. Then A € §j implies
A x B € Fp.

Since ¢ : B — R only depends on (wa)acz,,, then given a € R, {w : ¢(w) > a} =
A" x BLm for some A’ C BT, So to show that ¢ is measurable, it suffices to show that
A" € T But if we define g : Bf™ — R by pg(w™) := o(w™,0) for w™ = (Wa)aeT,,s
then g is increasing and {w™ : po(w™) > a} = A’. Thus, it suffices to show that any
monotone increasing f : BXm — R is §,-measurable. For this, we proceed by induction,
adapting an argument of Nathaniel Eldredge showing that monotone functions on R™ are
Lebesgue-measurable, following [50, Theorem 4.4].

For k = 1 the assertion is clear: if f : B — R is increasing and A = {t : f(t) > a},
then A =0 or A = I N B for some interval I. Thus, A € B C §i.

Now suppose f : BZ+1 — R is increasing, fix a € R and define g : B — R by
g(wF) = inf{t € B : f(w",t) > a}. Then g is monotone decreasing, hence Fj-measurable
by the induction hypothesis. So by [I3, Proposition 3.3.4], we have E := {(w¥ wpy1) :
g(WF) < wps1} € T @B and G = {(W*, wrr1) : g(WF) = wps1} € Tk @ B. Moreover,
for any w* € B% and y € BX+1, we have Gk y = {Wk1 (W*, wrr1,y) € G x Bh+1} =
{wrt1 : Wi = 9(W)} = {g(w¥)}. We may find F C G x B+ such that F € § and
P(G x BY+1) = P(F). The section F i, of such F is either a singleton or empty. Thus,

F(G X BI;“) = P(F) = IEYk+1 {Uuﬁkﬂ (Fw’“,y)} < EYk+1 {Elgl)% Hiéope 1 (Ev E+ 5)}

for any € > 0. Since sp(P,e) — 0 as & — 0, it follows that P(G x BX+1) = 0.

Finally, if M = M’ x B with M’ € Ny(P) and B C B, then P*(M x Bf+1) <
P*(M' x B%) = 0, hence §, @ B C Fry1 and E,G € Fryr. But if A = {(WF,wpy1) -
f(w*, wis1) > a}, then E C Aand (A\E) C G. Since E € Fy1 and P*((A\ E) x Bf+1) <
P*(G x BEk+1) = P(G x BX+1) =0, A € 11 and the proof is complete. O

It is worthwile to note that the completeness of (€2, Fp,P) is not only sufficient for
the above argument to work, but also necessary. Indeed, following [50), Section 4], let us
construct a monotone increasing map ¢ : R — R which is not Borel-measurable. Suppose
M C R is not Borel measurable. Define

N:={(z,y):x+y>0}U{(z,—x): 2z € M}
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and consider the map h : z — (x, —x). Then h is continuous, hence Borel measurable. If N
were Borel-measurable, then so would be N' = NN{(z,—z) : z € R} = {(z, —z) : x € M }.
This would imply that h=1(N’) = M is Borel-measurable, a contradiction.
Now define ¢ : R? — R by ¢ = 1. Then ¢ is monotone increasing: it suffices to show
that if (z,y) € N and if 2’ > z, y >y, then (2/,y') € N. So suppose (z,y) € N:
~Ifx+y>0,thena’+y >x+y>0,s0 («,y) € N.
~Ify=—zwithz € M, thena’ +y >z+y=0. Iif 2/ +3y > 0 then (2/,¢y') € N.
Otherwise, 2’ + 3 = 0, so y = —2’. Moreover, vy >y = —x > —2',s0 2/ =z € M.
Thus, («/,y') € N.
Thus, ¢ is monotone increasing, but it is not Borel-measurable, since ¢~ 1({1}) = N.






Chapter 5

More results on Wegner bounds

5.1 A refinement of the discrete bounds

In Section below we prove a refinement of the spectral averaging estimate. Using
this estimate, the proofs of the previous chapter directly yield the following result.

Theorem 5.1.1. Suppose H(w) satisfies Hypotheses (A) and (B) in the interval I. Then
tr[xr(H(w))] is measurable, and for any 0 < A < CLU we have

E{tr[x:(H(w)]} < Cw - [Jerr | - sp (P, A1])
where Cyy := 37 2CE,Cy and sp(P, ) is defined in (4-2-1).

This refinement improves our result on multi-particle models, Theorem [4.4.1] a lit-
tle bit. For definiteness, suppose we are in situation (1) of Lemma [4.4.2) so that the
uncertainty principle holds with v = nc. Then taking A = ﬁ, we obtain the bound

B (g ()1} < Co - AL 005 (B,
where Cy = 4n2C2(2R + 1),

The advantage is that for the special case where P = ® u, with p = gdz, the upper
bound becomes linear in n, which is somehow more natural. We do not know if this has
a theoretical importance however.

Another advantage of Theorem [5.1.1]is that it allows one to shrink the quantity A|I| by
choosing an arbitrarily small A. Of course this is accompanied by a growth in the constant
Cw, but it seems to be useful in some situations; see e.g. [65, Eq.(2.11) and Eq.(3.9)].

5.2 Discrete bounds without UP

5.2.1 Special unperturbed operators

Here we prove the remark we gave in the previous chapter, namely that our discrete
bounds hold without the need for an uncertainty principle if the unperturbed operator has
a special form. We list our hypotheses.

Hypotheses (D)

1) We fix a probability space (2, F,P) with Q = [¢_, ¢, ] for some ¢_,q; € R, ¢_ < ¢4,
some countable index set Z, and fix a finite-dimensional Hilbert space H.
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2) H(w) is a self-adjoint operator on H for each w € Q.
3) The exist some non-random constants ¢, with |c,| < M such that
H(w) = Z (Ca + wa)Uq,
OZGIF
for some finite set Zp C Z, where 0 < U, < Cp are non-negative self-adjoint operators.
4) Fix an orthonormal basis {ej}jcs for H. We define Z; := {a € Ip : Use; # 0},
Chn := maxjcy|Z;| and Jog := {j € J : Une; # 0 for some o € Zp}.

Theorem 5.2.1. Suppose H(w) satisfies Hypotheses (D). Then tr[xr(H (w))] is measurable
for any interval I. If I = [a,b] with a > 0, then for any 0 < A < c% we have

E{trDxr(H(W)]} < Cw - [Jesr | - 57 (P, A1),
where Cyy = %(M +¢)?C2. Cy and q := max(|q_|, |q+])-

Again, the importance of this theorem lies in the fact that we do not assume that the
U, cover H, that is, we do not asssume that ), U, > ¢ > 0. Operators of this form arise
when studying discrete acoustic models on ¢2(Z%). In this case, Cyy = 2d and Cgp, = d+ 1.

As the proof will show, the estimate is also true if I = [a,b] with b < 0, in which case
the term a2 in Cyy is to be replaced by b~2. However, the bound cannot be true for
intervals around 0 without additional hypotheses. Indeed, if H(w) = widy, on £2(A) for
some k € A, then 0 is an eigenvalue of multiplicity |A| —1 for any w. Moreover, Jog = {ey},
and we have E{tr[x(_. ) (H(w))]} > [A| =1 > Cw - sp(P,2)\e), if A is large.

Proof. For the weak measurability of x;(H (w)), see Section For the Wegner bound,
we follow [65, Lemma 2.1]. Let I = [a,b] and put x; := x7(H(w)). We have tr[x;] =

> jeslxrej, ej). Since

1 b _
CarlH@)eses) = [ dp, ) < = [ Ndp, () = a2 (H ) (H@)H@)ey.¢5).
where p is the spectral measure of H(w) in the state e;, it follows that

tr[XI] < a2 Z Z (Coz + wa)(ca’ + Wa’)<UocXIUo/€ja ej>

jeJ a,d' €Il
<a*(M+aY. Y [aUaej xiUac))|
j€J a,a’ €T}
-2 2
a “(M +q)
<————2 > (bhaUael® + IxilUae;|*)
j€J a,0/ €L}
< G_Q(M + Q)2Cﬁn Z Z HXIUaej||2
jeJ OCEIJ'
= a72(M + Q)Qcﬁn Z Z <UaXIUa€j, 6]'> .
jEJeff CMEZj

Thus,
E{tr[x7]} < a ?(M + q)*Chn Z Z E{(Uax1Ua€j,€;)} -

jeJeﬂ OZGI]'

Now fix j € Jegr, o € Z; and put ¢ := Uol/er. Then by [36, Theorem 10.2.1], we have

E{Uaxi(H@)Waesse)} =By, { [ O xi(H@)UY6, 0)dua, (wa) }

l[9—,q+]
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where Y, = [¢_, q+]Z\{°‘}. Using the spectral averaging of Sectionwith A=35c3Up+
> prawplUs, B =Uy and t = w,, we have for any 0 < A < C—lU,

4 4
E{(Uax1Uatj: €;)} < U 251> By, {s(nar, AN} < 5 Cu By, {s(na AL}
Since Ey, {s(pa,, [I])} < sp(P,|I]), the proof is complete. O

5.2.2 General unperturbed operators

We now prove a Wegner bound for general unperturbed operators, again without UP
and without covering assumptions. Here are the hypotheseslﬂ

Hypotheses (E)

1) We fix a probability space (Q,§,P) with Q = [¢_, ¢, ]* for some ¢_,q; € R, ¢_ < q.,
some countable index set Z, and fix a finite-dimensional Hilbert space H.

2) H(w) is a self-adjoint operator on H for each w € .

3) H(w) has the form
H(w)=Ho+ Y wala

a€lp
for some finite set Zp C Z, where Hj and all U, are self-adjoint operators.
4) Fix an orthonormal basis {e;j}jcs for H. We define Z; := {a € Ir : Use; # 0},
Chn := maxjcy|Z;| and Jeg := {j € J : Une; # 0 for some o € Zp}.

Theorem 5.2.2. Suppose H(w) satisfies Hypotheses (E). Then tr[x1(H (w))] is measurable
for any interval I. If I C R\ o(Hy) and 6 := dist(I,0(Hyp)), then

tr[xr(H(w))] < q26_2cﬁn Z Z (UaxtUaej, €5) .
JE€Jerr OéEIj

If moreover the U, satisfy 0 < Uy < Cy for all o, then for any 0 < A < C%J we have
E{tr[xr(H(w))l} < Cw - |Jest | - sp (P, A]),
where Cy = 542q*CE,Cu and q := max(|q—|, |q+]).
The trivial choice U, = 0 for all o shows that this estimate cannot hold for intervals

intersecting o(Hy) without additional hypotheses.

Proof. For the weak measurability of x;(H(w)), see Section Let {¢n(w)} be an
orthonormal basis of eigenfunctions for H(w) with corresponding eigenvalues {\,(w)}.
Then

tr[xs(H(w))] = Z {(n(w), pn(w)) -

An(w)eT

But if A\,(w) € I, then \,(w) ¢ o(Hp) and ||(Hp — A\y) Y| < 671 Thus, taking V,, :=
> aczy Wala we have

<90n7 ‘Pn> = <(H0 - )‘n)_Q(HO - )‘n)SDna (HO - )\n)Qan>

= <(H0 - )\n)72vw§0n7 Vw%@n>
<82 Vapnll® = 672V n, on)

1. The result of this subsection is generalized in Section but the proof is harder.
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where we used the fact that (H(w) — Ay (w))@n(w) = 0 in the second equality. Hence, for
X1 = x1(H(w)) we have

trixs] <072 Y (VZen(w), on(w))
An(w)el

=52 Z<V3X1Wn(w)v Pn(w))

=6 2tx[V2x1)
=6 2 tr[Vioxs Vi
=623 Y wawar(UaxiUnes, e5)

Jj€J a0/ €T
¢’ 2 2
< TZ > (IxitUxell? + Ix1Uasl?)
J€J o, €L}

<@0%Chn Y Y IIxtUagyl?

j€J a€l;

= q2(5—20ﬁn Z Z <UaXIUa€j7 €j> :

JEJerr OéEIj

This proves the first claim. Finally,

E{tr[x1]} < *6 *Chn Y > E{{UaxiUaej,e))},
JE€Jest €L}

so the second claim now follows using the spectral averaging as in the previous theorem,
with A= Ho+ Y520 wsUs, B =Us, t = we and ¢ = Us'%e;. O
5.2.3 Alternative proofs

In this subsection we give two alternative proofs to the theorem of the previous sub-
section. The statements are weaker, specially for the second proof. However, we chose to
include them here as we think the methods used in the proofs can be interesting elsewhere.

Theorem 5.2.3. Suppose H(w) satisfies Hypotheses (E) and that 0 < U, < Cy for all
a. Let I C R\ o(Hy) be an interval, put § := dist(I,0(Hp)) and assume |I| < g. Then
forany 0 < A < % we have

E{trDxr(H(@)]} < Cw - [Jest | - sp (P, A1),
where Cyy = %QZCH%HC’U and q := max(|qg_|, |g+|)-

Proof. The first part of the proof goes like [64, Theorem 4.1]. Before we begin, let us men-
tion that we will frequently use the inequality tr[Ax;B] < ||A||||Blllxzll1 = ||Alll|B]| tr[x:]
for bounded operators A, B, which is true because x; > 0.

Let E € I be the midpoint of I. Then E ¢ o(Hy), so taking Ry := (Hp — E)~! and
Vo, = ZaGIF waUq, we may write

x1(H(w)) = Ro(=Vo)x1(H(w)) + Ro(H(w) — E)x1(H(w)),
so that

trlxr(H(w))] = tr[Ro(=Vi)xr(H (w))] + tr[Ro(H(w) = E)x1(H(w))]-
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To estimate the second term, note that if f € H then taking e := |I| we have

{(H@) ~ Bpa (@A) < [ I8 Bldog < 5 [ dog < 1517
since E is the mid-point of I. Hence ||(H(w) — E)xr(H(w))|| < § and we get
tr[Ro(H(w) — E)xr(H(w))] < [|Rol[l| (H (w) — E)x1(H (w))| tr[xr(H (w))]

<%tr[ xr(H(w))] < ~ tr[xr(H(w))]

~

=

since dist(E, o(Hp)) > d and € < g.
We now need a different argument than the one used in [64, Theorem 4.1]. Recall that
for any two Hilbert-Schmidt operators A and B we have

tl"[B*A} = <A, B>HS S ||A||HS”B||HS
< — — [

for any ¢ > 0. Now tr[Ro(—V,)x1] = tr[xsRo(—V,)x1], so applying this to B* = xRy
and A = (=V,,)x1 we get

C
tr[xrRo(—Vo)x1] < §tr[fo3xf] + — tr[xs Rxi]

2¢
SV Vo) + — e[ B2
- 2 wXIVw %2 X1ity

< Sulv, V]+Etr[ ]
9 wXIVw % XTI

Choosing ¢ := 2672, we thus showed that

_ 1 1
trixs] < 672 tr[VoxrVi] + 7 trhal + 3 el
and thus
tr[xs] < 262 tr[Vioxs Vi) -
The rest of the proof now goes as in Theorem [5.2.2 O

Theorem 5.2.4. Suppose H(w) satisfies Hypotheses (E), and assume moreover that 0 <
Uy < Cy for all . Let E € (—oo,inf o(Hp)) and put 0 := dist(o(Hy), E). Then for any
0<5<6andf07“any0<)\§6% we have

P{dist(E, o (H(w))) < €} < Cw - [Zp[2 - |J] - sp(B, Ae) ,

where Cyy = ﬁfC’U and q := max(|q_|, |g+])-

Proof. We simply reduce the problem to an auxiliary diagonal operator. This idea ap-
peared before in the paper [54], where a continuous model with sign indefinite potential
was considered.

Let V¥ := Y 7, Wala. Given E < info(Hp) we have (Hg — E) > 0, so taking
Ry := (Ho — E)~!, we may define the operator

R1/2 1/2 Z R1/2 1/2

aElp
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Now notice that F ¢ o(H(w)) iff —1 ¢ o(D,,), in which case

R, = (H(w)— E)"' = Ry*(1+ D) 'Ry/*.
Thus,
Rl <67 H1(1+ Do)~}
and

P{|Ro|| > ™'} <P{(1+ Dy,)~'[| > 6™}
We thus showed that
P{dist(E, 0 (H(w))) < ¢} = P{E € o(H(w))} + P{||Ro|| > ¢}

<P{-1€a(D,)} +P{||(1+ D,)"|| > s~}
= P{dist(—1,0(D,)) < 6 e}

Let [ :=[-1—-0"'e,~1+ 0] = [a,b]. Since ¢ < §, we have I C R™. Now by Markov
inequality,

P{dist(—~1,0(D,)) < 0~ 'e} = P{tr[xs(Du)] > 1} < E{tr[x1(Do)]} -

But Dy = 3 ez, WaSa, where 0 < 5, < §~1Cy satisfies Hypotheses (D). Hence, using
Theorem 5.2.1F we have for any 0 < { < ﬁ,

E{tr[x1(D)l} < Cw - [ Jeer| - s(P, C|11),

where Cyy = ﬁqz(S*lCU(’j’én, Cpn < |Zr| and |jeff] < |J|. Take A\ = 261¢, then Cw <
ﬁfC’U\IFF. Recalling that b = —1 + §~!e we obtain the claim. O

5.3 More applications

5.3.1 Discrete multi-particle models

In this subsection we give a result complementing Theorem and Lemma
We use the same notations of Section We assume moreover that Q = [¢_, ¢+
some ¢—,q+ € R, ¢— < gy

1% for

Theorem 5.3.1. Let I C R\ o(HS ) be an interval and set n = dist({,o(Hg ). Then
forcmy0<)\§ﬁ,

E{tr[x;(HY, )]} < Cw - [AP] - sp (B A1),

where Cy = Aiqﬂn3q2(2R+ 1)24C,, q¢ = max(|q_|,|q+|) and ]X%n) ={je Asln) (x) : Uney #
0 for some a € Ip}.

Proof. H}(w) is a self-adjoint operator given by Hj(w) = Hy + 3 ez, WalUa, with Hy =
H§ y self-adjoint. Moreover, Uy > 0, |Ua| < Cuy = nC, and Zj := {a : Uaej # 0} C

Ur=1 Ag)(jk), hence Chy := max |Z;| < n(2R + 1)¢. The claim now follows from Theo-
rem [H.2.2)

O
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5.3.2 Two-volume bounds

In this section we prove a two-volume Wegner bound for the discrete multi-particle
model of Section [£.4.1] which is needed for localization. If n = 1, such bounds are an
easy consequence of the one-volume bound given in Theorem see e.g. [59, Lemma
5.28]. This is no longer the case once n > 1, essentially because in the multi-particle mul-
tiscale analysis, it is not sufficient to consider pairs of fully separated cubes, i.e. satisfying
HA%”_E r(x) ﬂHA(LnJZ r(y) =0, where HAgn)(u) =U, Ag)(ui), but one must consider more
generally pairs of pre-separable cubes to be defined below. Consequently, one needs to
consider a smaller W in Theorem [£.4.1] and integrate only on part of Q.

The results of this section improve the upper bound of [26, Theorem 2] and extend the
recent [68, Corollary 2.4] because we do not assume that P = ® p with u = p(t)dt, and we
allow for more general single-site potentials u,. Note however that the arguments of [68]
allow for probabilities I as general as the ones we consider here.

We use the notations of Section We assume moreover that P := ®,czd fto for
some probability measures o on R, and that there is a constant ¢ > 0 such that us > ¢d,
for all @. This means we assume the {w,} are independent and the single-site potentials
cover all lattice points.

Given ) # D C Z%, f € LY(Q, F,P), we define

Ep{f(@)} = [ f@)dBp((wa)acp),  where Bpi= © o

which depends on (wg)sgp-
Given x = (z1,...,2,) € (ZY", L = (L4,...,L,) € N", define rectangles A]gn)(x) =
A A(Lli)(xi), and given ) # J C {1,...,n}, put HJA]Y’) (x) :=Ujes A(Lli) (z;). Now define
L+R:=(Li+R,...,L, + R) and put HAn(,n>(x) (w) = H/‘\I(Lm(x) (w). Then we have the
following
Theorem 5.3.2. For any interval I C R, any® # J C {1,...,n} and any A]én) (x), taking

G(J):= HJAEQR(X), we have

1|
t H, < A P
o) {elr (H o o @)1} < Cw - ALY ()] - s (B, — )
Jor any (wg) ey, where Cy = 4¢*n*C2(2R + 1)24

Proof. Let WY, A U,. We first notice that for any y € A]&") (x),

(x) = ZO&EHJA]E’L)(X)

W% y)>c >, Y Saly) >ced 1=c-|T],

1<i<n acll A(n)( ) i€J

so if (e;) is the canonical basis of EQ(A]&n) (x)), we have for any w € €,

Ul (Hyo o @ AT 20 Y Y UaXa(H o oy @)Vae )
jeA™ (x) aetriz Al ()

by Proposition [4.3.1}, where Cg, = max,

5eA™ (x \HJA ()\ <|J|- (2R + 1)¢. Now given
J EA]@( )andaEHjA( )( ) put ¢ = / . Then

Eci(7) {{Uaxs(Hp (@) Uaej, €5)} = Eg(g)\fa) { /B<Ui/2>a(HA(w))Ué/2¢, 0)dptalwa) }
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Fix (wg)g+a- Using the spectral averaging of Section with A = Hox + > g2 wpUs,
B=U,, t=w, and)\:n—(ljuweget

Ec(7) { (Uaxi(Ha(w)Uaes, €5)} < 4l|Uall[Us"?e1][*5(ttas AlT1) < 4CF5(ptas A1),
where Cy < nCy,. This completes the proof. O

Given 0 # J C {1,...,n}, we say that A]é") (x) is J-pre-separable from A%)(y) if

A (%) N ([7e A" 5 (%) UTIARY 1(y) = 0.

We say that A]én) (x) and A]gg) (y) are pre-separable if there exists 0 # J C {1,...,n} such
that A]En) (x) is J-pre-separable from Aﬁg ) (y) or A]%n )( ) is J-pre-separable from A(n)( ).

Note that if 7 = {1,...,n}, this means that HA&ZR( )N HA]%J)FR( ) =0, i.e. the cubes
are fully separated. We now have the following

Theorem 5.3.3. If A]én) (x) and A]%) (y) are pre-separable, then
. A (50 A ()] - 2
P{dist(o(H o ) o (Hyo ) < e} < Cw - AL ()] 1A ()]s (B o).

where Cyy 1= 4c¢ 2n?C2(2R + 1)%.
Note that for the model studied in [26], uq = d, for all @, soc =1, C, =1, R = 0 and
Cyw reduces to Cyy = 4n?.

Proof. Suppose HJAEA?R(X)Q(HJCA]E(QR( )UHA%lR(y)) = () for some ) # J C {1,...n}.

Then denoting the eigenvalues of H by E;y we have for G(J) =11 jA]g? r(x),

AP (y)

_ ; : y
=Eq(7)e {Pg(j) { 1§j§r\I}\1§‘)(y)| dlst(a(HAan)(x)), E7) < 5}} .

Now the EY do not depend on (wa)aeq(s) since G(J)N HA]%_)FR(y) = (). Hence, using the
conditional Markov inequality and Theorem we have

P min dist(o(H (), ), EY) < €
G(j){ﬁjﬁAE(")(y)l o A (x)) j) }

(n) . .
< A (y)] ilelg P {dlSt(O'(HA(n) }
RN
= 147 (¥)] - sup Po) {tr[x@,s,mﬂﬂw( =1}

(n)
< ’A]K ()| SgﬁEG(J){ [X()\—s,)\+s)(HA£">(x))]}

< Cw - AL 9] 1AL (3] s (B )

for any (wg)gga(g), so the claim follows. If instead Aﬁg ) (y) is J-separable from A]gn) (x),
then we repeat the same argument, taking G(J) := HjAgJ)rR(y) instead. O
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Remark 5.3.4. 1. Theorem|5.3.2may be seen as a conditional Wegner estimate. More
precisely, for our probability space (2,§,P), where Q = BZ and P = Oaezd fas if
D C 74 is non-empty and if f € L'(Q, F,P), f > 0, then

E{f(w)l(wg)ggp} = Ep{f(w)}  as.

To see this, simply note that if G is the o-algebra generated by (wg) s¢p, then the
RHS is G-measurable (see [96, Theorem 8.8]), and its integral on any G € G yields
Jo f(w)dP(w) (since any G € G takes the form B x C for some C' C BZd\D).

2. Theorem [5.3.2] actually holds for arbitrary P, i.e. we can avoid the assumption that
P is a product measure. In this case, instead of estimating E¢(7){-}, one has to es-
timate E{-|(ws)s¢c(7)}, and this may be done using the same arguments, bypassing
the independence by using regular conditional distributions as in Section We
only assumed in this section that P = ®,cz4 fta to prove Theorem [5.3.3]

5.3.3 Discrete Delone operators

As a final application, we consider Wegner bounds near the spectral bottom of a
discrete Delone operator. Such operators are already included in Section [£.4.1] How-
ever, here we are concerned with positive perturbations, which correspond to case (3) of
Lemma[.4.2] and there we had to rely on [37, Theorem 1.3] to illustrate that our bound is
non-trivial. In the special case where the background potential vanishes, we describe here
a different argument that appears in [94]. There the author proved a deterministic UP
(cf. Section and concluded using the results of [30]. We shall instead prove a random
UP and conclude using Theorem [£.3.2] The advantage is that, on one hand the constant
in the Wegner bound becomes explicit, and on the other hand the proof Theorem is
extremely simple compared to the one of [30].

Consider the Hilbert space H = (*(Z%), let D C Z% be a Delone set, i.e. there exists
K > 1 such that, for any n € Z%, the cube Ax(n) contains at least one point of D. Now
consider the probability space (2, P), where Q = [0, M]? and given w € 2, define

Hw) = -A+ Y waba.

aeD

Assume for simplicity that P = ® u, for some probability measure p on R with supp u C
[0, M]. Assuming moreover that 0 € supp u, we have that

[0,4d] C o(H (w)) C [0,4d + M] almost surely.

The second inclusion is easy, for the first one, the arguments of [104, Lemma 1.4.1] or [60,
Theorem 3.9] essentially work. Namely,

— Given E € [0,4d], take a Weyl sequence ¢,, for —A. This sequence may be chosen
to have compact support, say supp ¢, C Ay, (0) for some [,, € N.

— With probability one, there exists a sequence A;, (x,,) N D in which the potential
Vo = 24 Wala is very small.

— Translate the Weyl sequence ¢,, around the cubes A, (x,,). The translated sequence
is still a Weyl sequence for —A, moreover V,, is very small in Ay, (zy,), since it is very
small in Ay, (z,) N D and zero in Ay, (z,) N D. Hence the translated sequence is a
Weyl sequence for H(w).

Let Hy, (w) be the restriction of H(w) to a cube A;, = Az (), x € Z4, with Neumann

boundary conditions. Let W (n) := > ,cpna, da(n). Then
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Lemma 5.3.5 (cf. [94]). There exists E, > 0 such that in I = [0, E,], we have for any
cube A C Z with L > K, and for any w € Q,

X1(Ha, (W)Wxi(Ha, (W) = yxr(Ha, (W),
where v := $(5K)~%. Moreover, E, = c(d)K 2?72
Now instead of using the results of [30], we use our theorems and deduce

Corollary 5.3.6. There exists E, > 0 such that in I = [0, E,], we have for any cube
A CZ% with L > K,

E{tr[xs(Hp, (w)]} < Cw - |IDNOAL| - s(p, |1]),
where Cyy = 24(5K)%¢. Moreover, E, = c¢(d)K 2172,

Let us mention that Elgart and Klein prove a stronger result in [37] using different
methods. In particular, they can allow for background potentials.

Proof of Corollary[5.3.6, Hy, (w) is a self-adjoint operator given by Hy, (w) = —Ap, +
> aeDnA, Wala- It satifies Hypotheses (A) and (B) by Lemma with Cap = Cpy =1
and v = %(5K)_d. The claim thus follows from Theorem m since Jog=DNA;,. O

For completeness, we now prove Lemma

Proof of Lemma[5.3.5. We repeat the arguments of [94, Lemma 2.1], which still work to
establish the random UP. Define the average W of W by

_ 1 .

Let n € Az, then we may find m € Ar_g such that Axg(m) C Aax(n). But D is a Delone
set, so we may find mp € DN Ag(m) C DN Ap. Thus,

W(n) = Aorc |7 D W) = [Aak| ™ W (mp) = [Aare| 7.
JEA2k (1)

We thus showed that W > |A2K|71XAL-
Now let I = [0, E,] with E, to be chosen later, fix w € €2, and let f € Ranx;(Hy, (w))
with || f|| = 1. Then

But
(W=W)f, f) =Mo"t D (W(—=35)=W)S, ),
J€A2K (0)
and
(W =3)=W)ED=IWEC+5), f(+5) — W], £
=|(WF(+7),(f(+5) =)+ W +5) = 1)l

<2[Wlooll £ +5) = Il
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since ||f(-+7)|| = [|f]| = 1. But |W|e = 1, so it follows that

WV =W Ol <200k D0 IFC+5) = Fll-

JEAK (0)

Now for j € Aok (0), we have ||7]l1 < d||j||co < 2Kd, so there exists a path of length 2Kd,

say (ag,...,a2kq) joining 0 to j, i.e. with ag =0, asgq = j and ||a,+1 — a||1 = 1. Thus,
2Kd—1
1FC+5) =< D0 IFC+ara) = f-+an)l-
r=0

But since ||ay4+1 — a,||1 = 1, we have

1fC+arn) = FC+an)|? = D [f(k+arp) = f(k+a))

keAr

<> Y fm) = f@)P =2(=A)XF 5

neAr |lm—n|1=1

(see [60), Section 5.2] for Neumann conditions). Since V,, > 0, it follows that

1F(+35) = fIl < 2Kd\/2{Hp, (@), ])

for any j € A2k (0), and consequently

(W =W)f, /) <4Kd\J2(Hp, ()], f)-

Summarizing, we showed that

<Wf7 f> > |A2K|71 - 4Kd\/ 2<HAL(w)f7 f> .

Since f = X[O,E*](HAL (w))f, it follows from the functional calculus that (Hy, (w)f, f) <
E.||f||?> = E.. Since |Asx| = (4K +1)? < (5K)?, we obtain

(Wi, f) > (B5K)™* - 4Kd\/2E. .
Taking ¢ € (0,1) and choosing E, = ¢?(4v/2Kd) 2(5K)~2¢, we finally obtain
(Wf f) = (6K)™ = (4V2Kd)g(4V2Kd) "' (5K) ™" = (1 - q) (5K) .
Choosing ¢ = % and noting that f was arbitrary, it follows that
X1(H, (W)Wxir(Hy,, (w) 2 yxr(Ha, (@)

(5K)~1. O

with v := %

5.4 Some difficulties

5.4.1 Sign-indefinite potentials

If we suppose that our bounds in Theorems [4.3.3] and [£.3.4] are formulated in terms
of the following modulus of continuity

(4-1) sp(P,e) = max sup P(w, € [E, E +¢]),
a€lr EeR
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then we can tackle sign-indefinite potentials and obtain quite important results. This
modulus is just sp(P,e), but with the supgcp interchanged with Ey,. Unfortunately,
there is no justification for such an interchange; all we can say is that sp(P, &) < sp(P, ¢),
and that sp(P,e) = sp(P,¢) if P is a product measure.

Consider the Hilbert space L?(R%). Let G C R? be a discrete set such that #{ANG} <
oo for any bounded A C R?. Assume, moreover that (G, +) is a group (e.g. G = Z¢,
(MZ)¢, Z% x {0}, ...etc) and consider the probability space (Q, P), where Q := [¢_, ¢4]%,
G-, q+ € R, g— < g4, and P = ®,eq ha, for some probability measures p, on R supported
in [¢g—,q+]. Given w = (wq) € £, let

H(w):Ho—l—V“’, Hy:=-A+V,

where Vy > wg is a bounded real non-random potential. Again we can consider more
general Hy. Given z € R%, we assume

V¥(z) = Z wau(r —a), where wu(x)= Z cgw(x — )

aclG BeG

for some cg € R. We assume 0 < w < C,. Since the cg are not required to have a fixed
sign, the potential u is not sign-definite. This model was introduced in [I08] for G = Z¢,
w > KX[oqy¢, and following that paper we will represent V< as V¥(z) = 3= nc(w)w(z—()
for some 7¢(w). Unlike [I08], [ITI] however, we will not need to invert any matrices, and
this gives us more freedom on the choice of the cg. In fact, we will only assume that cg = 0
outside a finite I' C G, and that ||¢||oo := maxger |cg| # 0. We also assume w : RT — R is
compactly supported, with suppw C Ag(0) for some R > 0.

Discussion of the results. Assuming that Theorems and hold with
sp(P,e) instead of sp(P,e), which we cannot prove, we provide Wegner bounds for sign-
indefinite potentials in the continuum and on the lattice, without any regularity assump-
tion on P. To the best of our knowledge, these would be the first results with such
generality, and they would imply new localization results; see [70], [69], [54], [108]. For
example, if P = ® p, then our estimates would allow to extend [70, Theorem 0.4] to dis-
tributions p which are merely log-Holder continuous with a large exponent. The weakest
regularity assumption so far is for lattice models in the large disorder limit, see [39], where
the authors prove localization if y is Holder continuous. For continuous models, the only
available results assume that p admits a density u = p(A)d\, with p of bounded variation.
Note that a Wegner bound for sign-indefinite potentials is also mentioned in [30], but since
it relies on the method of [108], it has the same restrictions on ¢z and P.

On the other hand, our bounds are not linear in |A| and thus have no direct application
for the integrated density of states (IDS). This in contrast to the results of [54], [IT1T], [110],
[88], [75] and [39], all of which have applications for the IDS. See also the survey [38]. We
said “direct” because one might hope to linearize the Wegner bound by combining it with
multiscale analysis; see [75, Appendix BJ.

Our results would somehow unify the approaches of [I08], [69] and [54], in the sense
that, if we have a “generalized covering”, then our bound holds in any interval, otherwise
it holds for intervals below the spectral bottom of the unperturbed operator.

The hypothesis P = ® u, is only used to prove the following simple lemma. This
lemma is the key to pass from monotone correlated potentials to sign-indefinite ones, and
it replaces the arguments of inversion of Toeplitz matrices in [I08], [III]. This is the
reason why we have almost no hypotheses on the cg and do not need p, to have a density.

Lemma 5.4.1. Let (2, P) be a probability space, with Q@ = CT, where C C R is an interval,
T is a countable index set, and P = Rue1 o for some probability measures po, on R.



5.4. SOME DIFFICULTIES 133

Let I' C T be finite and consider the map ¢ : Q@ — R given by

olw)=r+ Z CaWa

acl
for some r,cq € R. Then if ||c|loc := maxaer |ca| # 0, we have for any interval I,
P{p(w) € I} < sp(P, [lell 11,
where sp(P, e) := max,er supger ol E, E + €.

Proof. Assume I = [a,b]. We have ||c||cc = |¢a| for some a € T', which we fix. Given z € C
and @y = (ws)ara € CPM denote by (z,0,) the element (v5) € Q with z, = = and
x5 = wg for B # a. Now let Q := {w : p(w) € I}, let &, € CTM} and consider the section
Qo, :={r €C: (x,04) € Q}. Then by definition of a product measure,

(4-2) PQ) = [ o Qo) AP(24)
DaeCT\{a}
where P := ®pa g But for any fixed Wq,

Q@a:{xGC:cp(:):,dja)EI}:{:):EC:aST—i—Zcﬁc%—i—caxgb}.
pa

Let ¥ = 375, cpws. Then if cn > 0 we get Qu, = [a=r=% bi’:z], and if ¢, < 0 we

Ca c

get Qu, = [%, %] In any case, @, is an interval of length % = % Thus
ta(Qu,) < SUPger talE, E + %] for any @, and the claim follows by l) O

Conjecture 5.4.2. For any I = (E1, E2), there exists Cyw(d, E2,v0, ¢+, Cuw, ||¢]|co, |T'])
such that for any cube Ap(x),

(1) If G = Z% and Ik > 0 with w > k - xo, where xo := X[—1 jd: then
272

Etr[x1(H}, )]} < Cw - [AL(@)] - [ALsr(@)] - s(P s~ e LHT)

for ¢ =D, N, per, where s(P, &) = sup,cq Supger talE, E + €].

(2) In the general case, for any q > ¢*(q+, ||cllco, |T']), if B2 < Eq := info(Hp + qW),
where W (z) := Y gcqw(x — B), then there exists cw = cw (q, 4+, ||clloo, [T'], Eq — E2)
such that

E{tr[x(H}, ()]} < Ow - [AL(2)] - #{AL+r(x) NG} - s(P ewl]).

Note that Fy < E, for any ¢ > 0, so if Ea < Ejp, then Er < E; and we have in
particular a Wegner bound below Ej.

Proof. Note that V¥(x) = 3 e Watl(z — ) = 3" hcq Wa Y_peq caw(r —a—3). As B runs
over G, ( := o+ (3 also covers G because (G, +) is a group. So we get

VE(@) =) wl@—¢) D cc—ata = D ne(w)w(z — (),

ceqG@ aeG ceG

where n¢(w) = Y eq C—aWa- This representation of V¥ (z) appeared before in [10§],
[IT1]. Now the (n¢(w)) live in some €2 = [v~_,v+}G, for some vy = vi(q—, g+, ||c]|oo, |T])-
Define the random self-adjoint operator A : Q — S(L?(R%)) by A(n) = Ho+3 e new(z—
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), for n = (n¢) € Q. Then if T : Q@ — Q is given by T : w = (n¢(w)), we have
H(w)=AoT(w).

Now define P on Q by P(B) := P(T~'(B)). Then by [36, Theorem 4.1.11], P is
a probability measure on Q, and for any measurable function ¢ : O — R, we have
E{g(n)} = E{(g o T)(w)} whenever either side exists. In particular, E{tr[x;(Hx(w))]} =
E{tr s (Ax(T(w)]} = E{trer(Ax(n))]}.

Now note that A : Q — S(L?(R%)) is sign-definite. For case (1), if G = Z% and
w > KXo, then we () == w(r —¢) > KXx¢, s0E| by Theorem for any interval I we have

E{tr[xr(An(m)]} < Cw - [Ar(@)] - |Zp| - sp (B, s I])

where Zr := A p(x) N Z* and sp(P,e) = SUPcez, supger P{nc € [E,E + €]}. Let
B :={n; € [E,E +¢|}. Then by definition of P,

P(B) = P(T(w) € B) = P(n¢(w) € [E,E +¢]).

But n¢(w) = X aeq cc—aWas s0 by Lemma [5.4.1}) P(n¢(w) € [E, E +¢]) < srrc(Pyelle]l5d)-
Thus, 57(P,¢) < s(P,¢l|c|l5}), which completes the proof of (1).
The same argument proves case (2), for ¢ > vy =: ¢*. O

Now consider the lattice. Let G C Z? be a subgroup and consider the probability
space (Q,P), with Q = [¢_,¢.]% and P = ®aeq fta for some probability measures ju, on
R. Given w = (wq) € Q, let

H(w):Ho—i—V“, Hy:=-A+V,

where —A is the discrete Laplace operator and 1} is a bounded real non-random potential.
Given z € Z%, we assume

Ve(2) = ) waulz - a),

aeG

with suppu € G N Ap(0) and u not identically zero. Now any such v may be written as
u=73gecu(B)is =D gecu(B)do(- — B). In other words, in the lattice we automatically
have a partial cover (the condition w > xq is satisfied), and it becomes a total cover if
G = Z4. Let us denote |ul|oc = maxgeq [u(B)]; it is a max since u(B) = 0 outside Ajs(0).
Since Theorems and apply to the lattice with K = dim ¢?(A) = |A|, and since
W =3 3c¢ 05 = XG, the above arguments would prove the following result.

Conjecture 5.4.3. In the case of the lattice, for any I = (F1, E2) and any cube Ap(z),
(1) If G = Z2, then for ¢ =S,D,N,

E{tr[xr(HY, ()]} < 2 [AL(2) - s(P, [[ull 1) -

(2) Otherwise, for any q > q*(q+, ||t]|co, M), if B2 < E, := info(Hy + qxa), then there
exists cw = cw (¢, ¢+, ||ul|oo, M, Eq — E2) such that

E{tr[xr(HY, )]} <2 |[AL(@)] - [AL(@) NG| s(PawlI]) .

2. This is the conjectural part.
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5.4.2 A different approach to quantum graphs with random edge length

In this subsection we explain why we could not apply our theorems to the model
considered in [78].

We will only sketch the model; the reader is referred to the article for details. One
fixes a vertex set V (for example Z%), an edge set E (defined in terms of V, for example
e = (m,m') for m,m’ € Z?) then consider the probability space Q = [lmin, lmax]®, where
0 < lin < lmax < 00 and P = ® p, for some probability measures p. on R supported on
[lmin, fmax]. For each £, € © one obtains a Hilbert space H = @ecr L2[0, £, (e)] and defines
the Laplacian H(w) = —Dj , where (Dy, f)c(x) := fl(z) for f € @ecp W2(0,4,(e)) with
Kirchhoff boundary conditions.

There are two ideas in the approach of [78]: the first one is to remove the randomness
from the Hilbert spaces and put it in the operators, the second one is to rescale the
probability space Q by considering the random variables In/,(e) instead of £,(e). We
already used the second idea when proving Theorem [£.3.4] The first idea is only sketched
n [78], so let us describe it precisely to expose the difficulty.

Given £, € ©, define the operator U,, : @ecg L2[0, £y (e)] = @eer L?[0,1] by U, fo(x) :=
Ve (e)fe(xly(e)) for z € [0,1]. Then

(Uof Uug) = lu(e /fxf d:z—Z/ y)dy = (f,g).

eck eck

Hence U, is an isometry, in particular it is injective, and it is obviously bijective since it
. 1 . 1 . . . . o
has an inverse U] " fe(x) = Wone) fe(%). Thus U, is a unitary isomorphism, so it is

equivalent to study the operator G(w) = U, H (w)U,* on the Hilbert space ®ep L2[0,1].
Let us first check how this operator acts then we will describe its domain. We have

1 d? T 1
G = Uy,=——5fel—=) =— "(z).
(C@N@) = === Vol (75) =~ /4 @
Notice that f/' is now independent of w, i.e. if fo(e) := 1 for all e, then G(w)f =
(—Kw(e)_gD%Ofe), so it looks like we could apply Theorem [4.3.4] with ( = —2. How-
ever, the real trouble is in the domain. Recall that for Kirchhoff conditions a function
must be continuous at the vertices, and the sum of its derivatives must vanish there. For

the first condition, suppose 7e = tb, where te and Te denote the initial and terminal vertex
of an edge. Then (U, 1f)c(¢y(e)) = (U;1f)p(0) means that

0 CUNEEUN
2L

Next,

1y d 1 x 1 (T
U Del@) = = (@)= 3/2(e)fe(£ )

so we must have at any v,
1 / 1 /

(11) Z fe(o) - Z 3/2

e=v 52/2(6) re=v i (6)
Summarizing, we showed that

D(Gw))={f=(f) € @E W22(0,1) : f satisfies (i) when 7e = b and (i) at any v} .
ec
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One can easily check that for f € D(G(w)) we have (G(w)f, f) = Y cep lw(e) 2| Dy fell?-
Since D(G(w)) depends on w via (i) and (ii), we cannot apply Theorem to it.

The reason why [78§] still succeed to work with this operator is that they only need
D(G(w)) to be indepedent of w in the diagonal direction, and this is indeed the case
after rescaling Q. Indeed, if Q = [w_,w4], where w_ = In/lyi, and wy = In .y, then if
1=(1,...,1), we have ({,111(€))ecr = (exp(we +1))ecr = €' (Ly(€))ecr. Hence D(G(w +
t-1)) = D(G(w)), since one simply multiplies all £, (e) by a scalar €', which does not affect
Kirchhoff conditions.

It is also visible from this that Kirchhoff conditions are really crucial to this approach.
If one had the slightly more general condition Y,._, f2(0) = > .o, fi(le) = af (v), a # 0,
then the proof would break down because in condition (ii) above, the LHS and RHS would
get multiplied by e3%/2 and e~%/2, respectively, so the domain is no longer the same. The
approach of [72] thus has an advantage here, as it still works in this situation.

5.4.3 Two volume bounds: the non-covering case

In this subsection we expose a difficulty concerning two-volume bounds in the non-
covering case. We use the notations of Section We assume moreover that ) =
lq—, q+]Zd for some ¢— < g4 <0.

To state our Wegner bound, fix A]&n)(x) C 7" let HjA]én) (x) = A%) (x;), and for
n > 2, define the operator ’

WA(H)(X)(y) = max Z Ua(y) where Ua(yla ce. 7yn) = Z Ua(yi)'

1<j<n »
agIA™ (%) 1<isn

For n =1 we put W = 0. Now we have the following result

Theorem 5.4.4. Let B} = info(Hp g+ q-Wa) and suppose I C (—oo, EY —n) is an
interval. Then for any ) # J C{1,...,n} and any A]én) (x), taking G(J) = HJA]gﬁzR(x),
we have

n I
e (il (Hyo g (@)1} < G IASG0) s (B, 121 )

for any (wg) p¢c(r), where Cyy = 4n~*n*CZ(2R + 1)
Proof. Fix any w € Q and let H; = Hy + Za&HJA[(L’QR(x) waUy. Then H(w) = Hy +

wa Uy and the claim follows from Theorem [5.2.2 O

ECMGH]A]EZ_)R(X)

We do not know if this theorem is useful. The first question is whether there is any
spectrum left below E{}. Note that there is no spectrum below inf o(H o+ ¢-Wpy), where
Wy = ZaeHA(") U,, so is there a big difference between W, and W) ? Yes when n =1

L+R

since W = 0, but for n > 27 If n = 2 and uy = J, for all o, then one can see that
Wa(y) =0or 1 for y € A, while Wy(y) = 2.

The second issue is that one studies localization near the lower edge of o(H), not
o(Hy), so it would be more convenient to have a bound formulated in terms of inf o(Hy +
q- W) for example, instead of E{)\. But how should we define W?

Hence, although we could prove a (normal) Wegner bound below info(Hp) in Sec-
tion we were not able to do the same for the conditional bound. The reason why
we stumbled upon the condition in Theorem is that we tried to prove the Wegner
bound outside the spectrum of the unperturbed operator. It seems that this approach is
not convenient here and that one needs more sophisticated arguments.
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Note that we did not speak about the case of positive perturbations here, i.e. when
¢— > 0. This is mainly because it is not clear how to define W.

Concerning the two-volume bound itself, one cannot hope to have an analog of The-
orem since the Wegner bound is only valid in low-energy intervals. However, this
is not really problematic: it suffices to study instead dist(o7(Ha(x)), 0r(Ha(y))) for a low
energy I, where o7(A) := o(A) NI, just as we did in Theorem [2.5.2

5.5 A deterministic variant of the UP

We conclude this chapter with a general theorem. Let us first give the hypotheses; we
will then discuss its relation to the results established previously.

Hypotheses (F)

1) We fix a probability space (Q,§,P) with Q = [¢_, ¢, ]* for some ¢_,q; € R, ¢_ < q.,
some countable index set Z, and fix a finite-dimensional Hilbert space H.

2) H(w) is a self-adjoint operator on H for each w € .

3) H(w) has the form
H(w) = Hp+ Z waUqy
aElp
for some finite set Zp C Z, where Hy and all U, are self-adjoint operators.
4) Fix an orthonormal basis {ej}jcs for H. We define Z; := {a € Ip : Use; # 0},
Chn := maxjcy|Z;| and Jeg := {j € J : Une; # 0 for some o € Zr}.

5) There exist an interval Iy and a constant v > 0 such that

X1o(Ho)Wx1,(Ho) > vx1,(Ho)

where W := 3" .7 U, and xy,(Ho) is the spectral projection of Hy onto Ip.

Notice that these are just Hypotheses (E) plus the fifth item, which is a deterministic
version of the uncertainty principle discussed in Chapter [4 This version also goes by the
name of a quantitative unique continuation principle (QUCP) in the context of Schrodinger
operators. The constant v often depends on Iy. It is not clear if this property is stronger or
weaker than the random one we used in Chapter [4] in fact they are probably incomparable.
However, this version has a nice feature, namely it holds trivially in any interval Iy C
R\ o0(Hp) for any v > 0, since in this case there is no condition at all.

Let us now state our theorem, which is an adaptation of the result of [30] to finite
dimensions.

Theorem 5.5.1. Suppose H(w) satisfies Hypotheses (F). Then tr[x1(H (w))] is measurable
for any interval I. If I C Iy with dist(I, I§) =: 0 > 0, then

trlxr(HW))] < C1)_ D (Uaxi(H(w)Uacej, €5)

j€J a€l;

where
Cri= (472 + (1+ 2y WI*)62¢*) Cin, ¢ :=max(lg], g1 ).

If moreover the U, satisfy 0 < Uy < Cy for all «, then for any 0 < A < C%J we have

E{tr[xr(H (W)} < Cw - [ e | - s(B; AlT])
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where
4, 4 2[WIP\ 2 o
Cw = CiuCu- (72 + (14 > )62

The constant here is quite ugly; we have only displayed it to emphasize that it is
explicit and to prove the following lemma.

Lemma 5.5.2. Theorem is stronger than Theorem[5.2.2 That is, if H(w) satisfies
the hypotheses of Theorem [5.2.9, then Theorem[5.5.1] yields the same conclusion.

Proof. Given I = [a,b], I C R\ o(Hy) with ¢ := dist(I,o(Hy)), take Iy D I such that
Iy C R\ 0(Hp) and dist(I, I§) = 0. Then Hypotheses (F) are satisfied in the interval Iy
for any v > 0. Applying Theorem [5.5.1] and taking v — oo yields the result. O

It turns out that Theorem [5.5.1] is strictly better than Theorem [5.2.2] since it can be
used to prove a Wegner bound for intervals intersecting o(Hp) for the model in [94], while
Theorem [5.2.2 cannot. This is one motivation to give the proof. Another motivation comes
from the fact that this theorem is a discrete version of the result of [30], but simplifies
substantiallylﬂ due to the finite dimensionality. So we think it is also useful to better
understand some key ideas in the proof of [30].

Before we prove the theorem, let us note that if the U, are multiplication operators
on an £2(T) space, then ||W|| in C1 and Cy can be estimated by |W|| < Cq,Cp. Indeed,
if (e;) is the canonical basis one has for f € ¢2(T)

W A2 =3 (W f,e))]
Jjed
2
=3 | 3 (. Uee)
JjeJ OcEIj
= Z’ Z U f) €;j ‘
jeJ a€l;
2
=Y [(fren)P?| X Ual)]
jGJ OZEI]'
< CR.CE Y- Uf en)® = CR.CEIIFIP.
Jj€J

For the discrete acoustic operator on ¢2(Z%) considered in [65], one has ||[W|| < 4d|ﬂ

Proof of Theorem [5.5.1 Let I C Iy with 0 < ¢ := dist(Z, I§). In the following we denote
xr = xr(HW)), x1, = x1,(Ho) and x1¢ := x15(Ho). We have

(1) tr[xs] = trxrxn] + trlxoxig] -

3. Compared to our previous results, our proof here may seem long. However, without counting spectral
averaging, the continuum required a 743 pages proof, so the situation here is clearly snnpler
4. Indeed, following [65], P. 445], we have W5 = Z V1. Vé; = (dd; Zk 10i—e) + Zk e

Oj+er)s so that (f,W&;) = 2df(j) — > — Y4y FG + ex) = (~Af)(j) and thus I\Wfll2 =
2 EANGIP =1 = Af) < ()£
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Let us control the first term. Using the UP we have[]

(1) tr[xrx1,] = tr{xrxiox1]
<yt erxrxn Wxn i)
= v r[xrx W)
=y (W] — trlxrxzsWxa))
<y (el Woxao)| + TerDeaxas Wxn)|) -
We first control the second term. We have, using Holder inequality for HS operators,
|tr[xrxieWxil| = [ trxrxaeWxr x|
< Ixrxagll2Wxro xrll2
c 1
< 5 telxg ) + 5o B W2xi il
for any ¢ > 0. Recalling that tr[b*a*ab] < ||a*a|| tr[b*b] for HS operators a and b, we have
trxrxiWxnoxi] < IIW2N trxrxnxnxi] = W] trlxrxa)
so that

W
2c

C
[ tDxrxrgWxnll < 5 trlxrxg] + tr{xrX1,] -

Inserting this into (f1), we thus see that

-1 2

W] L .

(1= ) whexa] <57 (Teba ol + 5wl
Choosing ¢ := 7—1|’WH2 we thus get

(t11) trlxrxz,) < 277 W)l + v 2 IW 1 trlxrxe] -

The second term is already in (1), so let us focus on the first term. Using Holder inequality
for HS operators once again, we have

[t rW x| = [ trxaWxao x|
< xaWxao ll2llxzox1ll2

c 1
< 5 el WxrWixn] + % tr[Xrx1ox1]
c 1
= 5 uWxaWixa] + o trlxrxa]
for any ¢ > 0. Choosing ¢ := 2y~! and noting that
tr[WxiWixi,] < [WxiW x| = te[Wx W]
because Wx ;W > 0, we thus get

B 5
D WXl <A™ WX W]+ o trlxax, ] -

5. Compared to Proposition one of the main difficulties of this proof is that there is no simple
way to get rid of the x1, that appear in the first inequality of (7).
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—~

Inserting this into (ff) and moving a term to the LHS we get

trlxrxz,) <272 te[Wxs W]+~ 72| W1 trlxrxg] -

N | =

So by () we get
trxs] < 4y 2t [Wxs W]+ (14292 W12) trlxaxae) -

We now estimate the second term. Let {¢,(w)} be an orthonormal basis of eigenfunctions
of H(w) with eigenvalues {A,(w)}. Then

trixrxzel = > (xagen(w), on(w)) .
An(w)el

Now notice that the operator f(Ho) = (Ho—An) ™ x1¢(Ho) is well defined, with || f (Ho)]| <
57! since A, € I. Thus, taking V,, := > et Wala we have

(XI5, n) = ((Ho — M) "*x15(Ho)(Ho — An)@n, (Ho — An)@n)
= <(H0 - )‘n)_2XI§ (HO)Vw(Pru Vw@n>
< 5_2||Vw<,0n“2 = 5_2<V¢390m90n> )

where we used the fact that (H(w) — A\p(w))pn(w) = 0 in the second equality. Hence,

trxrxzg] <672 Y (Vien(w), on(w))
An(w)eT

=072 (VIxren(w), en(w))
— 52 t:[VjX[] =62 tr[Vioxs Vi -
We thus finally get
trlxr) < 4y 2t [Wx W+ (142972 [W%)6 te[Vaxs Vi -

Now
tr(Wx W] =Y > (UaxiUuej,e;)
je€J a0’ €T
1
< 3 Z Z (HXIUa’ejH2 + HXIUaejH2)
jeJ a0l €T
< Chn Y Y IIx1Uag)l?
Jj€J a€l;
= Cﬁn Z Z <UaXIUaej7 e]> ’
jGJ C!GIJ'
Similarly,

tr[VwXIVw] < qzcﬁn Z Z <UaX]Ua€ja €j> ,
jeJ aEIj

so we obtain the first claim. Finally,
Ef{tr[x/]} < 1) > E{{UaxiUacj. €5)}
j€J a€l;

so the second claim now follows using the spectral averaging of Section B4 with A =
Ho+ 3 p20wsUs, B=Uqs, t =wy and ¢ = Uol/zej; see Section 4.5.2[ for details. O




Appendix A

Generalized Eigenfunction
Expansions

A.1 Introduction

In this appendix we derive a generalized eigenfunction expansion for self-adjoint op-
erators on abstract Hilbert spaces, a result that was needed in Sections - We
follow the approach taken in [67, Section 3], but we provide much more details; we hope
this will be helpful to (some) readersm

It is an elementary fact that if H is a self-adjoint operator with a finite trace, then it
has an eigenfunction expansion; in fact this is true for any compact self-adjoint operator
by the Hilbert-Schmidt theorem. It is well known that this result is not true for a general
self-adjoint operator, even if it is bounded, since it may not have any eigenvalue.

Still, let us look at the operator p corresponding to the closure of C§°(R) 3 u — —iu/(t).
It may be shown e.g. using the Fourier transform that o(p) = R. If p had an eigenvector
1, this would mean that —iy)’ = \ip, i.e. ¥(z) = ce®_ This is not an L? function, so p
has no eigenvector. However, this gives us the impression that p does have eigenvectors
that live in a larger Hilbert space, for instance H_ = L*(R, (1 4+ z%)~7dz), v > 1.

Suppose we have fixed a larger Hilbert space H_ in which H has eigenvalues and let us
denote them by ogen(H), the generalized spectrum of H. The same example tells us that
the larger Hilbert space must be chosen carefully if we would like to have ogen(H) ~ o(H).
For instance, in one takes H_ = L?(R, e*IQdm), then for any A € C, we have e € H_,
in other words ogen(p) = C although o(p) = R. The problem is clear: the space H_ was
chosen too large. On the other hand, if one takes H_ = L*(R,dz), then ogen(p) = 0 since
p has no eigenvalues. So it is desirable to have somehow minimal sufficient conditions that
guarantee that H_ contains just enough eigenvectors.

The main result of this appendix is the following: let H be a self-adjoint operator
and suppose there exists a “good” self-adjoint operator T" with a bounded inverse and a
bounded function f strictly positive on o(H) such that tr(T-'f(H)T~!) < co. Then H
has an eigenfunction expansion in the completion of (H, || ||-), where || f]|— := || T f].
We call this a generalized eigenfunction expansion.

We shall only need the results of Sections and We have included Sections
and for completeness, and to show that generalized eigenfunctions can also be defined
“by duality”, which is the approach taken in [89] and [11].

1. We have also modified some arguments; in particular, our proofs give as a byproduct a unitary
equivalence between the generalized operator H_ and the operator (THT ™ *)*.
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We end this section by recalling some elementary properties of closable operators.

Lemma A.1.1. Let Hq1 and Ho be Hilbert spaces and suppose A : H1 — Ho is a bounded
operator which is densely defined. Then A is closable and its closure A satisfies D(fl) =
Hy. Moreover, ||A|| = ||A|| and if ||Af|#, > v - | fll3, for some v >0 and all f € D(A),
then A has a closed range.

Proof. We denote the norms on H; and Hg by || |1 and || ||2 respectively. To see that A
is closable, let (f;) C D(A) such that ||f;]l1 — 0 and [|Af; — v[[2 = 0. Then it suffices to
show that v = 0. But |[u]ls < [[Af; — vl + [ 45l < [|Af; — olls + 1Al | £l — 0. Thus
v =0 and A is closable. Now let f € Hy. As D(A) is dense, we may find (f;) C D(A)
such that |1£; — flly — 0. But then [|A(; — follz < IAI15; — fellr, s0 (Af;) = (Af;)
is Cauchy in Hy and thus converges to some ¢ € Hy. Since A is closed, it follows that
f e D(A) and Af =1. Thus, D(A) = H,.

Let f € Hi, and take (f;) C D(A) such that || f — f;|l1 — 0. Then the above argument
tells us that Af; converges to Af, i.e. |[Af — Af;|j2 — 0. Hence ||Af|j2 = lim [|Af;[l2 <
lim inf || A || f;]l1 = | Al f|l1. Hence ||A|| < ||A]|, so equality obviously holds.

Finally, let f € H; and (f;) C D(A) with ||f — fj]l1 — 0. Then

v Il = ylim |5l < liminf [|Afll2 = | Af]l2,

since ||Af — Afj||2 — 0. Hence the property extends to A. Now if (Af;) is a sequence in
R(A) which converges to some ¢ € Ha, then ||f; — filli < v YA = fi)llas so (f5) is
Cauchy and thus converges to some f € H;. Noting that |Af — |2 < [|Af — Afj2 +
|Af; — ]2, we see that Af = ). Thus R(A) is closed. O

A.2 Main results

Hypothesis I. T is a self-adjoint operator on a Hilbert space H with a bounded inverse.

Recall that by definition, a self-adjoint operator must be densely defined.

Let H4 be the space D(T) equipped with the norm ||¢|+ = ||T¢| and H_ the
completion of H in the norm ||¢||- = ||T~!¢|. By construction the natural injections
ty * Hy — H and «— : H — H_ are continuous with dense range. Moreover, L_T_l is
well defined on D(T) and (="' is well defined on (_H. We define T : H, — H and
T_:D(T)—H_by Ty =Tiy and T_ = T.

We shall denote the inner products on H4, H and H_ by (-, )+, (+,-) and (-, -)_ respec-
tivelyﬂ By construction, for u,v € Hy and f,g € D(T), we have (u,v)y = (T1u,Tyv)
and (T_f,T-g)- = (£, 9)

We now define a sesquilinear form (-,-) on H4 x H_ as follows: given ¢ € Hy and
Y e H_, let (f;) C H be a sequence such that || f; — |- — 0 and put

(6.4) = lim (116, f,)

Lemma A.2.1. (cf. [89, Lemma 1))

(1) The sesquilinear form (-,-) is well defined.

(2) T- is closable. Its closure T_ is an isomorphism of the Hilbert spaces H and H_, i.e.
D(T_)=H, R(T-) =H_ and

(f,9)=(T_f,T_g)—  forany f,g€H.

2. This differs from our convention in the previous chapters, where we denoted the inner product on H

by <7>




A.2. MAIN RESULTS 143

(3) Given ¢ € Hy and ¢ € H_, we have
(6:9) = (T-T:.6,9).

Proof. (1) Let ¢ € H4, ¢ € H_ and (f;) C H with [[c—f; — ¢||- — 0. First note that
(149, f;) is a Cauchy sequence since

(0, f5 = f)l = (T, T e (f5 = fi)) < Nl lle=(f5 = fo)ll-

hence (t4¢, f;) converges. To see that its value is independent of the choice of the
sequence (f;), suppose (g;) is another sequence in H with [[._g; —¢||- — 0. Then

(10, fi = 93)| < MMl lle— (5 = gpll= < M@l (e — e Fill- + 1 = e—gjll-) = 0

which completes the proof.

(2) Given f € D(T) we have | T_ f||= = || f]|, in particular 7_ is bounded. As D(T_) =
D(T) is dense in H, it follows from Lemma that T_ is closable and D(T_) = H.
Since ||[T_f|l— = ||f|| for f € D(T), this lemma tells us that R(7T_) is closed in H_.
But R(T_) is dense in #_ since it contains :_H (indeed, any ¢ € ._H = D(T~') may
be written as ¢ = T_T~'4)). Hence R(T_) = H_. Finally, given f,g € H = D(T_),
let (fj),(g;) € D(T) such that || f; — f|| = 0 and ||g; — g|| = 0. Then the argument
in Lemmatells us that |T_f; — T_f|- — 0 and ||T_g; — Tg||—~ — 0, hence

(f.9) = lim (f3,9;) = lim (T f;, T_g;)- = (T-f. T-g)- .
(3) Given ¢ € Hy and v € H_, let (f;) C H such that ||c_f; — || — 0. Then
<¢7 ¢> = jlig.lo(ldrqbv f]) = jlig.lo(TJran T_lfj) = JE)IEO(T*TJrqsv TfT_lfj)* 5

where we used (2). But T7'f; € D(T) = D(T-), so T-T7'f; = T_-T7'f; = 1_f;.
Thus,

(6,0) = Hm (T-T16,0-f;)- = (T-T:-6, ). O

We now make an important observation.

Lemma A.2.2. The sesquilinear form (-,-) turns the spaces Hy and H_ into conjugate
duals, that is

H_ - (H+)/ .

Proof. Any 1) € H_ defines a linear functional on H4 via (-,-). Conversely, let F' € (Hy)'.
By the Riesz representation theorem, we may find a unique vp € H such that F(¢) =
(¢,vr)+. Now put ¢ :=T_T,vr € H_. Then by Lemma IA.2.1|7

<¢7¢> - (T—T-i-(bv 1/})— = (T—T+¢7T—T+UF)— = (T+¢7T+UF) = (¢7 UF)-F

which completes the proof. O
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Hypothesis II. H is a self-adjoint operator on H such that
D+ = {¢ € 7‘[.{. : L+¢ S D(H) and HL+¢ S D(T)}

is dense in H.
This allows us to define an operator Hy on Hy by D(H,) =D, and H; = L_T_IHL+.
By hypothesis Hy is then densely defined.

Lemma A.2.3. The operator Hy is closed.

Proof. Let (¢;) C H4 be a sequence such that ||¢; — ¢||; — 0 and ||Hi¢; — u||+ — 0 for
some ¢, u € Hy, then

lesds = e dll < NT7H - Nlds = 0l = 0, [ Hewdj — equll < |T7Y| - | Hi ¢y — ully — 0,

and since H is self-adjoint, it is closed, so ty¢ € D(H) and Hiy¢ = v4u € D(T). Hence
pe€Dyand Hiop = L_T_IHL+¢ = u. Thus, H; is closed. O

We may also try a similar construction on H_ and we obtain the following

Lemma A.2.4. The operator . Hi=' on H_ with domain t—D(H) is densely defined and
closable.

Proof. Since D(H) is dense in H and since +_ is continuous with dense range, .- H. ! is
densely defined.

To see that « H:~" is closable, let (f;) € D(H) such that [|c—f;||- — 0 and suppose
there exists v € H_ such that |¢(—H f; — v||- — 0. Then v = 0. Indeed, if ¢ € D, then

<¢a U> = jliglo(b+¢7 Hf]) = jll{go(HLHb’ fj) .

But [(Hit ¢, f)| < |H4 0| +|le—fj]|= — 0, hence (¢, v) = 0 for every ¢ € D. Since D is
dense in Hy, the same holds for every ¢ € H4. Finally, by Lemma [A.2.2) H_ = (H),
so it follows that v = 0. O

The closure of «_ H:~! in #_, which we denote by H_, may be described as follows
(see e.g. [11l Section 12.2.2])

D(H-) ={¢eH_|3(f;) C D(H),neH_: e f;j —¢|- — 0and .- Hf; —nl- — 0},
H_o:=n.
Lemma A.2.5. For any ¢ € D4 and 1 € D(H_) we have
(Hy¢,9) = (¢, H) .
Proof. Let (f;) C D(H) with |ji_f; — ||~ — 0 and |t Hf; — H_t||_ — 0. Then
(He, ) = lim (Hewo, £;) = Jim (10, H;) = (6, H-v)

by definition of (-, -). O

Definition. We say that ¢y € H_ is a generalized eigenfunction of H if it is an eigen-
function of H_, i.e. if v» € D(H_) and there exists A € C such that H_1¢ = A¢. In this
case, we say that A is a generalized eigenvalue of H.
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Hypothesis ITII. The set
D,={feDH)NDT):Hf € D(T)}

is an operator core for H.
Note that if f € D, then (' f € D4
Let (H_)3 be the restriction of H_ to t_H, i.e.

D(H-)y)={veDH_)Nt_H:H_yp € _H},
and (H_)yv = H_1p. Then the following holds.
Lemma A.2.6. We have o Hi~' = (H_)y.

Proof. Since H_ is the closure of « Hi=', if ¢y € D(_H.Z") = +_D(H), then 1 €
DH_)N:t_H and H_p = «_Hi"") € +_H. Hence ¥p € D((H_)y) and (H_)ytp =
H_ o =1 Hi"%). Thus, cHi=' C (H_)y.

Conversely, given ¢ € D((H_)y) and f € D4, we have by Lemma

(Hf 1 Z') = (e Hyo ' fr2') = (Hy 0 fop) = (5 f, Hog) = (f 2V H- o)

by definition of (-,-), by approximating ¢ and H_1) with constant sequences. Since D, is
a core for H, we conclude that :~'¢ € D(H*) = D(H) and ¢ H.=' = H_4). O

This yields the following corollary. It roughly says that if a generalized eigenfunction
lives in ‘H, then it is an eigenfunction.

Corollary A.2.7. ¢ € «_H is a generalized eigenfunction if and only if 1=Y1 is an
etgenfunction.

Proof. If 1= is an eigenfunction, then (=4 € D(H) and H.= = M”14 for some
A€ C, hence H_vp = _H1=1p = M.
Conversely, if 1 € «_H is a generalized eigenfunction, then ¢» € D(H_) N t_H and

H_ ¢ = Xp,s0 H.op € 1_H, ie. Y € D(H_)y. So using Lemma we get Hi"lp =
o Ho oYy = TN H O Y = M O

In the following we denote by E(J) the spectral projection of H onto a Borel subset
J. The usual trace on H is denoted by tr.

Hypothesis IV. There exists a Borel set O and a bounded continuous function f,
strictly positive on the spectrum of H, such that

tr(T ' E(O)f(H)T™!) < .
For our purposes, O will be R, so that T-'E(O)f(H)T~! = T-1f(H)T~!. Allowing
a general O requires no additional effort, and is useful when considering wave operators;

see [67].

Lemma A.2.8. The set function v(J) = tr(T"'E(J N O)T~1) is a spectral measure for
the restriction of H to E(O)H which is finite for all bounded Borel sets J.
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Proof. Since T"1E(JNO)T~! > 0 for any Borel J, we have v(J) > 0. Moreover, E(()) = 0,
so v(0) = 0. If {J;} are pairwise disjoint Borel sets, then E(U;J;) = >, E(J;) strongly, so
countable additivity follows from the linearity of the trace. Hence v is a measure. Finally,
v(J) =0 < E(JNO) =0, so v is a spectral measure for the restriction of H to E(O)H.
To conclude, let J be a bounded Borel set. Then we may find € > 0 such that f(\) > ¢
for X € 0;0(H) :=0o(H)NJNO. Hence

0<eB(JNO) < /U g TAEQ) < /U o TOVE) = BO) (1),

Thus, v(J NO) < e 1tr(TLE(O)f(H)T) < oo. O

Any bounded operator C' on H induces a bounded operator from H, — H_ given
by T_CT,. Inversely, given a bounded operator D : H, — H_, the operator C' =
T-'DT ;1 defined on D(T') is bounded, hence its closure is a bounded operator on H
(see Lemma . Hence the map 7 : B(H) — B(H,H_) given by 7(C) = T_CT, is
bijective. Moreover, it is a Banach space isomorphism since 7 and T are unitary. This
motivates us to define for 1 < ¢ < 00

T(HisHo) = 7(Ty(H)),  Tor(His He) = 7(To+(H))

where 7,(H) is the Banach space of bounded operators Y on H with ||Y||, = | tr ]Y|q|% < o0
and 7, 4 (H) is the subset of positive operators in 7,(H).

By construction, 74(H+,H_) equipped with the norm || B||, = ||7~!(B)||, is a Banach
space isomorphic to 74(H), a separable dual Banach space. Note that if B = 7(C') then

(A-1) (¢, Bg) = (¢, T_CT+¢) = (T+¢,CT19) .

In particular, B € Ty 4 (H4,H-) iff B € To(H+,H-) and (¢, Bp) > 0 for all ¢ € H (note
that Ran(T}) = D(T_;l) =1+Hy = D(T) is dense in H).
For B € Ti(H+,H-) we set

wB:=tr7 'B=tT_'BT; .

If ¢, is an orthonormal basis of H, then T'{ ¢, is an orthonormal basis for H, so using
(A-1) with C = 77! B we have

twB=trr 'B=> (Ti¢n, (7' B)T¢n) =D (b, Bon) .

n

Moreover, for B € To(Hy,H_), ||B||2 is the usual Hilbert-Schmidt norm:

1813 —ZIIT‘1 )T ¢ = ZHT 'Bon* = lequnll2

Now note that if C € B(H) and T~'CT~! € T;(H), we have
tee_Ciy =tr7 1 (1—Cuy) = tr(T- 1Oy TLY) = e T POT .

Hence the spectral measure v of Lemma may be written as v(J) =ttt E(JNO)eq.
Noting that J — T 1E(J N O)T! is a T; 4+ (H)-valued measure, it also follows that
J = 1_E(JNO)y is a Ti 4 (H4, H-)-valued measure.

We are finally ready to state the main result of this section.
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Theorem A.2.9. There exists a v-locally integrable function P : R — Ti 1 (Hy, H-_) such
that

L f(H)E(J N Oy = /J FOVP()dv(N)

for all bounded Borel sets J and all bounded Borel functions f, where the integral is
the Bochner integral of Ti(H4,H-)-valued functions. Furthermore, for v-almost every
A€ER, tt P(\) =1 and P(\)¢ € H_ is a generalized eigenfunction of H with generalized
etgenvalue X\, for any ¢ € H .

Proof. Since J — +-E(J N O)iy is a T+ (Hy,H_)-valued Borel measure and v(J) =
tvt_E(JNO)uy is finite on bounded Borel sets, it follows from an operator-valued Radon-
Nikodym theorem that there exists a v-locally integrable function P : R — T 4 (H4, H-),
called the Radon-Nikodym derivative of «_ E(J N O)i4, such that

L E(J N0y = /J POV dv(\)

for bounded Borel J. Moreover, P(\) satisfies tt P(\) = 1 for v-a.e. A. The proof of these
properties may be found in [10, Theorem V.1.1], see also [I1, Theorem 15.1.1].

Using this form of «_ E(J N O)c4+ and taking limits of Borel step functions, we obtain
the required expansion for ¢« f(H)E(J NO)i4.

Now fix A € R and assume A € suppv. Then if I) 5 := [A—3J, A+0], we have v(I) 5) # 0.
Now observe that if f is a bounded Borel function, then using the expansion we get

I B 10}y = JVPOY) = [ {1000 = H2—

Iys V(I)\ﬁ)

Thus, by standard properties of the Bochner integral we get as § — 0

H L fH)E(IsNO)y

OV FOPO|

1= V) /1 [FX)PX) = FOVPON) 1dw(X) = 0

for v-a.e. A, by Lebesgue differentiation theorem (see [81], Corollary 2.14]). Note that v
is indeed a Radon measure on R by [8I, Corollary 1.11]. Applying this to f(z) = 1 and
f(z) = 2xp—1241)(2), we thus get in particular

o L,E(I)\ﬁ N O)L+
(A_Q) P(A) - ltsligl VUA,&)

in Ti(Hy,H-), forv-a.el,

L HE(I\sNO)y
A-3 AP(N) =1 :
(A-3) (A) = lim V()

in Ti(H4,H-), forv-a.e.

Finally, let ¢ € Hy and fix A € R such that (A-2) and (A-3) hold. Let I; = [\ —
i HA+ 574, Then if f; = ﬁE(IJ N O)i+¢, we have f; € D(H) since ||Hf;|> =
o7 Jino @2 dpuo(x) < (max Ij)?[ f5]|*. By (A-2) and (A-3) we have [[e—f; — P(\)o] - —
0 and [[t—Hfj — AP(N\)¢||- — 0. By definition of D(H_) we get P(\)¢ € D(H_) and
H_P(\)é = A\P(\)o. O
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A.3 A word on adjoints

Recall that if X and Y are Banach spaces with duals X’ and Y’ respectively, and if
B: X — Y is a bounded operator, we define its Banach adjoint B : Y/ — X’ by

(BT f)(u) = f(Bu) forallue X and f €Y’

Let us describe what this means for our Hilbert spaces. In the following all operators are
assumed to be bounded.

L. If R:Hy — H, then by Lemmal[A.2.2any ¢ € H/, = H_ takes the form 1(¢) = (¢, 1)).
Thus, (RTf)(¢) = (¢, RTf) for any ¢ € H, and f € H' = H. On the other hand, any
f € H' takes the form f(u) = (u, f) for u € H. Hence R' : H — H_ is defined by

(¢, RTf) = (Ro,f) forallpeH, and feH.
2. 1f S : H — H_, let us show that H" = H, and that any ¢ € H" takes the form

#(¥) = (¢,4). Tt is clear that this defines a linear functional on H_. Conversely,
by the Riesz representation theorem, for any F' € H' the exists a unique up € H_
such that F'(¢) = (¢,up)—. Now let (u;) C «—H such that ||u; — up||- — 0. Then
F() = lim(y, uy)— = lim (uj,¥)— = im (T T g, o). Now ||T0 T (uj — ug) ||+ =
|uj — ugl|-, hence (T 'T='w;) is Cauchy and converge to some ¢ € H,, so that
F(v¢) = (¢, ). This proves the claim.

Now for ¢ € H, ST¢p € H' takes the form STo(f) = (f,ST¢). Moreover, by the above

argument, ¢(Sf) = (¢, Sf). Thus, we have
(f,57¢) = (6, 5F) for all f € H and ¢ € H .

In other words,
(p,Sf) = (STp,f)  forall feHand ¢ € H .
3. fU:H_ — H, then U : H — H is given by
(Utf, ) = (U, f) forallyp e H_and f e H.
In other words,
(UTf,) = (f,Uy) forallyp e H_and feH.
4. ¥V :H — Hy, then VT : H_ — H is given by
(f, V)= (Vfp)  forall feHandpeH_.

5 If W :Hy — H_, then Wi :H — H'.. Sofor ¢ € Hy =H', Wi¢ € H and thus
Wig(u) = (u, Wig). But for ¢ € H, ¢(Wu) = (¢, Wu). Thus W : H, — H_ is
defined by

(u, Wi¢) = (¢, Wu)  forall p,u € D(Hy).

Since by definition we have for ¢ € Hy and f € H
(b4, f) = (¢ f),
we see that LL_ = and . = t4+. Moreover,
(Tyo, ) = (T-Ty$, T_f)- = (¢, T_f)

so that Tl =T and T! = T,.
We now have the following result, which is used in Section [2.10
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Lemma A.3.1. We have P(\)f = P(\) for v-a.e. A € R.
IfU:H_ —H and V : H — Hy are bounded operators, then UP(N\)V € Ti(H) and

TPV < IU] -V

Moreover, we have (UP(A\)V)* = VIP(A\)UT, where (UP(A\)V)* : H — H is the usual
Hilbert adjoint. In particular, |[UP(N)V |2 = [|[VIP(N)UT|5.

Proof. Let ¢,u € H4 and fix a A such that (A-2) is true. We have for any 6 > 0 and for
E = E(IsNO),

(¢, t-Eriu) = (146, Etyu) = (Eiy ¢, 1yu) = (Lpu, By d) = (u,1-Eii ¢) .

Thus,

i — lim u, Bt = (u
(¢, P(MNu) = 15%1 m(ﬁb, L-Eviu) = 1511{)1 z/(I,\75)< s i—Eu¢) = (u, P(\))

for any ¢,u € H. This proves the first claim. Next, we have
[UPMNV |1 = [UT-r{(P(A) T4V 1 < [UT-|| - |7~ (PO |1 - I+ V]|

by the usual properties of || [[1 in 71(#H). Now P(A) > 0, so 771 (PO\)|1 = e P(\) =1
by Theorem Moreover, ||[T_| = ||T%]|] = 1, so the second claim follows. For the
third, let f,g € H. Then

(UPWNVf, f) = U, PNV ) =V, PNUTf) = (VF,PNU'f) = (£, VIPOWUTf).

The proof is complete by noting that |[UP(A)V |2 = [[(UP(AN)V)*||2. O

A.4 A characterization of generalized eigenfunctions

In this section we prove that the generalized eigenfunctions may equally well be defined
in terms of the operator Hy. This is the point of view taken in [89] and [I1].

Let us continue the study of adjoints which we started in the previous section. Recall
that if X and Y are Banach spaces and if A : D(A) C X — Y is densely defined, its
Banach adjoint AT : Y/ — X' is defined as follows

DAY ={feY'|3g e X": g(u) = f(Au) for all u € D(A)},

Alf.=g.

In particular, if A : Hy — H, is densely defined, then its adjoint is an operator
AT H! — H',. Sofory € D(AT), v € H_ = H',, we have ATy € H/, and thus ATy(¢) =
(¢, ATy). Moreover, ¥ € H', so ¥(Ag) = (Ap,v). It follows that AT : H_ — H_ is
defined by

DAY ={p e H_|30 € H_: (A, ) = (¢,0) for all ¢ € D(A)},

Alp=0.
With this language, Lemma tells us that H_ C H_JL To prove the desired charac-
terization for generalized eigenfunctions, we prove in this section that actually H_ = Hi

We start with the following observation.
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Lemma A.4.1. We have H. = T_(THT Y)*T~Y, where (THT~')* : H — H is the usual
Hilbert adjoint.

Proof. Let ¢ € D(H'). If f € D(THT™"), then T~'f € D(H) N D(T) and HT ' f €
D(T). Thus, T~'f € Dy and Lfrlelf € D, . Hence,
(THT ' f, T=") = (Ty Huo ' T, T2 1)
= (T-Ty Hy ' T )
<H+L—T—1T 1f,17[}>
= (3T HLY)
= (T_T T, ij)
= (T f Hiy)- = (1,7 Hly)
Thus, T~ € D((THTY)*) and (THT')*T~ 1y = T__lerw. We thus showed that
HU c T_(THT )*T~*.
Conversely, let ¢ € D( (THT-Y*T~'). Note that any ¢ € D, satisfies 1,¢ € D(T)
and Tty ¢ € D(THT 1), hence
<H+¢,¢> ( H+¢’T ¢)
= (THuy, TZ')
= (THT 'Tuy ¢, T='y)
= (Tvo, (THT™ DT hy)
= (I-Ty ¢, T(THT ') TZ 1) = (¢, T-(THT )T 1)

Thus, ¢ € D(H) and Hio = T_(THTY)*T=Y%. Thus T_(THT)*T=' C H! and we
are done. O

Theorem A.4.2. We have H_ = Hl

Proof. We already know by Lemma that H. C H _JL To prove the converse, we show
that T_(THT~ ) T-'cH_. The claim will then follow from Lemma

Let ¢ € D(T- (THT D*7~1) and suppose that {1, T_(THT~')*T } is orthogonal
to the graph G(._ H.~b). Recalhng that D(._H.~') = «_D(H) by deﬁnltlon this means
that for any f € D(H) we have

0= (—fo))— + (-HZ (o f), T-(THT )" T= )

= (T, T2N) + (T Hf (THT ') T- 1)

= (f,T'T=") + (Hf, T-Y(THT ') T- ')
Thus, T~Y(THT')*T~"¢ € D(H*) = D(H) and HT-YTHT ')*T~'¢ = -T"'T"'¢ €
D(T). Hence, (THTY)(THT ')*T~'y = —T~%. But (THT-Y)(THT ")* > 0, so
T-1 =0 and thus 1 = 0. i

We thus showed that if {¢,T_(THT-")*T~14} is orthogonal to the graph G(L:HLZI),

then {4, T_(THT')*T~'4} must be zero. It follows that {y, T_(THT )*T~ 'y} €

G(_H.™') = G((t_H.~")) = G(H_). This completes the proof of the theorem. O

Corollary A.4.3. ¢ € H_ is a generalized eigenfunction if and only if there exists A € C
such that

(Hi¢,0) = Mo,¥)  forany ¢ € D,
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Proof. If ¢ € H_ is a generalized eigenfunction, then ) € D(H_) and the claim follows
from Lemma

Conversely, if this property holds, then ) € D(H_JL) and le = M. The claim now
follows from Theorem O

Remark A.4.4. Note that as a byproduct of Lemma and Theorem we
proved that H_ is unitarily equivalent to (THT~!)*. Moreover, as a consequence of
Theorem we have for v-almost every A € R, and every ¢ € H,

(THT Y)'T='P(\)p =T-"H_P(\)p = N\T-'P(\)¢.
Hence, with respect to the spectral measure v of H, almost every A € R is an eigenvalue

of (THT~')*, with eigenvector T~ P()\)¢.

A.5 A characterization of cores

In this section we give two results concerning the core ._ Hu~' of H_ (recall that
D(._H.Z") = 1_D(H)).

Lemma A.5.1. Suppose there exists ¥ € t_H and \ € C such that

(A-1) (Hy6,0) = Mo,0)  for all € Dy .
Then 1 € L_D(H) and o Hi " ) = M.

To prove this, one may combine Corollary with Lemma [A:2.6] However, the
situation is really simpler as we show below; one may simply repeat the argument of

Lemma [A.2.6]
Proof. Given ¢ € t_H, let f € D,. Then

(Hfa Clw) = (L+H+L~_}1fa L:1'¢> <H+L f7 > <LJ_rlfa ¢> = (fa /_\Clw
Since D is a core for H, we conclude that t~'¢) € D(H*) = D(H)and ¢ Hi='p = \p. O
Next we have the following characterization.

Lemma A.5.2. We have . Hi™' = T_T+H_’;T;1T:1, where HY : Hy — Hy is the usual
Hilbert adjoint of H.

Proof. Let HO := - H.~'. First note that D(T-') = «_H and D(T;') = L+H+ = D(T),
so that D(T;'T~") = «_H. Thus, given ¢ € _D(H) we have 1) € D(T'T-"), and for
any ¢ € D+7

(Hyo, T T- ) = (Ty Hy g, T-')

= (THuy o, T~ 1Z1)

= (140, HiZ'ep)

= (Ty ¢, T "H.Z'y)

= (T4¢, T2 H2Y) = (6, T ' T2 H2 )
It follows that Ty 1T 1¢ € D(H%) and HYT'T~ = T T- H € D(T_T). Hence
Y € D(T_T+H*T 7Y and T_T, HiT; 1T_ = HO. Thus H cT-T H:T'T
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Conversely, let ¢ € D(T_-TyH T 'T~"). Then ¢ € D(T-') = «_H. Given f €
D(H), since Dy is a core for H, we may find (f;) C D4 such that ||f; — f|| = 0 and
|Hf; — Hf|| — 0. Thus,

= (f,TTyH; T T~ 4p)

Thus, 1= € D(H*) = D(H) and HiZ'¢ = TT H:T7'T="4). Thus, ¢ € ¢ D(H) and
HY =T T H{T'T~". Hence T_TyHXT;'T-' c HY. O



Appendix B

Miscellaneous results

B.1 Spectra of compact metric graphs

In Section we needed to estimate the spectral gap between the ground eigenvalue
of the Kirchhoff Laplacian on the compact graph '™ N A and the rest of the spectrum.
For this we relied on a Cheeger inequality and obtained the lower bound Ey > L~2, where
L is the total length of T} N A.

Actually much more is true. The following remarkable characterization holds.

Theorem B.1.1 (Nicaise-Friedlander). Let (I', —A) be a connected metric graph of total
length L, where —A is the Laplace operator with Kirchhoff boundary conditions. Then the
eigenvalues E;(I") satisfy

2.2
E,(T) > 2

2 a2 forany j > 2.

Moreover, equality occurs if and only if I' is an interval of length L for j =2 and I’ is a
star graph with j + 1 vertices and j edges of length L/j for j > 3.

Friedlander proved this theorem in [44]. Actually Nicaise had proven the estimate on
E; much earlier in [84], for j = 2, and he also proved a slightly weaker estimate for any j

in the case of trees (namely, E; > %) As we show below, one can always assume the
graph is a tree. Friedlander was surely unaware of this paper; in any case the second part
concerning equality did not appear in the paper of Nicaise.

We already know that E;(I') = 0 of course, since a constant function on I' provides
an eigenvector. So a byproduct of Theorem is that the ground eigenvalue is never
degenerate; a result that was obtained using cohomology methods in [91] and positivity-
improving techniques in [74]. A natural question now is whether the rest of the spectrum
E;(T') is also simple. This cannot be true in general: as we show below, the spectrum of
the Laplacian on the circle has all its eigenvalues E; of multiplicity 2 for j > 2. As the
Kirchhoff Laplacian on a polygon is equivalent to a Kirchhoff Laplacian on a circle of the
same circumference (by removing all the vertices, since they all have degree 2), we see
that the answer is negative. However, Friedlander showed the following result in another
article.

Theorem B.1.2 (See [45]). Let (I',—A) be a connected metric graph of total length L,
where —A 1is the Laplace operator with Kirchhoff boundary conditions. If ' is different
from the circle, and if it has no vertex of degree 2, then the spectrum of I' is generically
stmple.
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Finally one may ask if a complement of Theorem [B.I.1]holds, that is, if there are upper
bounds on the eigenvalues of a metric graph with a fixed total length. Here is the answer:

Theorem B.1.3. There can be no upper bounds on the eigenvalues of a metric graph.
More precisely, for any L > 0 and M > 0, one may construct a Kirchhoff metric graph
(T, —A) of total length L such that Eo(T') > M.

Sketch of proof. The example is given by a star graph with k + 1 vertices and k edges of

length L/k. One may prove that Es(T") = %, so taking a sufficiently large k, we see
that Eo(I') > M. For details, see [44, Example 3]. O

We now give a complete proof of a special case of Theorem [B.1.1] which is all that we
needed for Section 2.6

Theorem B.1.4 (Faber-Krahn inequality). Let (I', —A) be a connected metric graph of
total length L, where —A is the Laplace operator with Kirchhoff boundary conditions. Then

Proof. Our argument is a variation of the proof of Nicaise [84]; we think this variation
is necessary if we do not wish to use the fact that the ground energy is simple. We also
provide more details concerning the reduction to a tree which we found in [44].

To see why we may assume I is a tree, suppose I' is a metric graph and let I be the
graph that is obtained from I' by cutting an edge e at some point xy. Then if hr, by, are
the forms associated with —Ar, —Ar, we have D(hp) = WH2(I") > WH3(T') = D(br)
and b/ [f] = br[f] for f € D(br), hence E;(I'') < E;(T'). Thus, if T is not a tree, one can
cut several edges of I' to make a connected tree out of it, and the j-th eigenvalue of that
tree will not exceed Ej;(T).

So suppose I' is a connected tree, let C' be a circle of circumference 2L andlet R : C — T’
be the function that “explores” I', that is, R is a path in I" that crosses each edge exactly
once in the forward direction and once in the backward direction. Now since we have
Kirchhoff conditions, the min-max principle tells us that

(%) B = sup i / W2 > it / o
¢EL2 ) peW3( YeWL2(I),
ol Ls lol=16-L1r

So let ¢p € W2(T') with [|¢|| = 1 and ¢ L1p. Then (¢poR)L1¢ since [ (poR) =2 [ = 0.
Now note that we know exactly the spectrum of the Laplacian on C; it is given by

472 k2
k>1.
(2L)?”  ~

(%%) Ey(C) =0, Ey(C)= Ey41(C) =
Indeed, the exponentials e;(x) = eQZZLJI, j € Z provide an orthogonal basis of L*(R/2LZ),
?2L)2’ this is just the
Parseval theorem. So arranging them in an increasing order we get (%%). So let (fx)52,
be the corresponding rearranged orthonormal basis of eigenvectors of the Laplacian on C,
then » o R = > ay fx, and since f; is a constant and (1) o R) L1, the sum is on k > 2.
Thus,

and they are also eigenvectors of the Laplacian with eigenvalues

Jo l(@ o R)? _ k2 o |* Ey,(C) > Sz |k Ea(C) — - ™
Jo v o RJ? k2 o ]? T Yise logf?

S WP Jo @Ry
J ol Jo lgoR2

by (%%). The claim now follows from (x) since
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B.2 Factorization of Hilbert-Schmidt operators

This section collects some useful factorization results for Hilbert-Schmidt operators;
we needed one of them in Section 2.8

In the following we fix an arbitrary measure space (S, 1) and denote LP(u) := LP(S, u)
for 1 < p < co. These spaces include LP(R?) and ¢?(Z?) by taking the Lebesgue measure
and the counting measure respectively.

Given 1 < p < oo, the space of p-summing operators between two Banach spaces X
and Y will be denoted by II,(X,Y’), and the p-summing norm of u € II,(X,Y) will be
denoted by mp,(u). We have the following facts.

Theorem B.2.1. 1. Let Xo, X, Y and Yy be Banach spaces. Suppose u:Y — Yy and
w: Xg = X are bounded operators and let v € II,(X,Y"). Then vvw € II,(Xo, Yp)
and mp(uvw) < lul - mp(v) - [Jw]].

2. Let Hy and Hy be Hilbert spaces. Then u : Hy — Ho is Hilbert-Schmidt if and only
if it is 2-summing. In this case, we have ||u|y = ma(u).

3. Given 1 < p < oo and ¢ € LP(u) denote by M, : L>(u) — LP(u) the induced
multiplication operator M, (f) := ¢f. Then M, is p-summing and 7p(My) = ||| e

4. Suppose B : L*(u) — L®(u) is a bounded operator and My, : L®(u) — L*(w)
is the operator of multiplication by ¢ € L*(u). Then My,B : L*(u) — L*(u) is
Hilbert-Schmidt and ||M,Bll2 < ||¢|| 2| Bl L2— -

Proof. The first three items are given in [35, Theorem 2.4, Page 37], [35, Theorem 4.10,
Page 84] and [35, Examples 2.9, Page 40] respectively. The fourth item follows by com-
bining them. 0

An alternative proof of the fourth item can probably be extracted from the proof of
[100, Proposition B.9.4].

The previous theorem is all that we needed for Section [2.8f Nevertheless, let us now
extend this theorem to arbitrary operators A : L> — L2, not just multiplications.

Given 1 < p < oo and A > 1, a Banach space X is said to be an £, y-space if every
finite dimensional subspace F of X is contained in a finite dimensional subspace F' of X
for which there is an isomorphism v : F' — KgimF with ||| - [[v™t]] < A\. We say that X is
an Ly,-space if it is an £, y-space for some A > 1.

Theorem B.2.2. 1. If (S, p) is any measure space and 1 < p < oo, then LP(u) is an
Ly x-space for all X > 1.

2. Let 1 < p < 2, let X be an L x-space and let Y be an L, y-space. Then any
bounded operator u : X —'Y is 2-summing with ma(u) < Kg N ||u||, where K¢ is a
universal constant called the Grothendieck constant.

8. We have Kg < 2.

4. Suppose B : L?(p) — L®(pn) and A : L>®(u) — L?(u) are bounded operators. Then
AB : L?(u) — L*(p) is Hilbert-Schmidt and || AB|l2 < Kg - || Al oo 2| Bl L2 o -

5. Let Hy and Hy be Hilbert spaces. Then u : Hy — Ho is Hilbert-Schmidt if and only
if it factors through an L -space.

The fourth item is stated in [104} Section 4.1.11], and this result is even more general
than what we needed in Section We only gave the fifth item for completeness.
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Proof. The first three items are given in [35, Theorem 3.2, Page 61], [35, Theorem 3.7,
Page 64] and [35], Page 29] respectively. For the fourth, note that by combining these items,
A is 2-summing with ma(A) < KgAN|[|A| for any A\, ) > 1. By the preceding theorem,
AB is also 2-summing, hence Hilbert-Schmidt, with ||ABll2 = m(AB) < m(A4)||B]| <
Ke N | A||||B||. Since this holds for any A\, \' > 1, we get the bound. The last item is
given in [35, Corollary 4.12, Page 85], see also [80, Theorem 6.3]. O

B.3 Self-adjoint dilations of dissipative operators

In this section we derive some results concerning self-adjoint dilations of maximal
dissipative operators in a complex separable Hilbert space. These results are applied in the
following section to prove a spectral averaging estimate for general probability measures.

We shall use the notation

Ci={2€C:Imz>0} and C_={z€C:Imz<0}.
For two bounded operators B and B on Hilbert spaces H and G, we say that
B=prB
if H is a subspace of G, and

(Bf,g) = (Bf,g)  forall f,gecH.

An operator L, not necessarily bounded, on a Hilbert space H is dissipative if
Im(Lf, ) >0 for all f e D(L).

It is mazimal dissipative if it has no proper dissipative extension.
An operator Q on a Hilbert space H is said to be accretiveE] if

Re(Qf, f) >0 for all f € D(Q).

It is said to be maximal accretive if it has no proper accretive extension.
We now state an important result. This result is basically known among specialists,
but it took us some effort to find good references.

Theorem B.3.1. Let L be a maximal dissipative operator on a Hilbert space H. Then
there exists a Hilbert space G containing H and a self-adjoint operator L on G such that

(L—2)t=pr(L—2"" and e =preitr
provided z € C_ and t > 0.

Proof. We fill the details of the sketch given in [0, Section 4]. Let @ := —iL, then @ is
maximal accretive. Define T', the Cayley transform of Q) by

T=(Q-1)@Q+1)"

By [106, Section IV.4], it follows that T is a contraction which is defined everywhere on
#H, that T' does not have the eigenvalue 1 and that Q = (1+7)(1 —T)~L.

1. We caution the reader that we follow the definitions of [106], which differ from the definitions of [105]
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Now by [106, Theorem 1.4.2], T has a unitary dilation U, i.e. there exists a Hilbert
space G containing ‘H and a unitary operator U on G such that

" =pr U™ for all n > 1.

Moreover, since 1 is not an eigenvalue of T', 1 is not an eigenvalue of U (see [L06], Proposition
I11.6.1]). Now by [106, Theorem III.2.3.(g)], we have more generally a functional calculus
for T' given by

g(T) =prg(U) for all g € H",

in a certain class H® C H*, see [106, Section II1.2] for details (recall that the Hardy
space H* is the set of bounded holomorphic functions in D = {( : |¢| < 1}).

Now since 1 is not an eigenvalue of T, the one-point set {1} is of measure 0 with
respect to the spectral measure Ep corresponding to the unitary part of T'. Therefore, by
the same [106, Theorem II1.2.3], the class H?° contains the functions g € H* that are
continuous on D\ {1}. Now observe that Q = w(T), where w(() = % Since w maps
D\ {1} onto the closed half plane A = {\ : Re A > 0}, the point z = co not included,
it follows that f ow € H?® for any bounded continuous f on A which is holomorphic in
A = {X:Re)\ > 0}. In particular, if Im z < 0, then the relation holds for g = f ow, where

f(A) = )\iiz and we get

(Q+i) = fow(T) = pr fow(U) = pr(Q-+i2) ",
where Q := (14 U)(1 — U)~L. Thus,
(L—z)t=pr(-2)",

where £ := Q.

Finally, since U is unitary and 1 is not an eigenvalue of U, we have by [32, Corollary
X.3.5] that L is self-adjoint. This completes the proof of the first assertion.

For the second one, given t > 0, take f(\) = e~**, which is bounded and continuous
on A and holomorphic in A. O

We note in passing that the above proof yields more generally a functional calculus for
maximal dissipative operators given by

f(L)y=prf(£)  forany fe H*(Cy),

where H*(C) is the set of bounded continuous functions on upper half plane C; which
are holomorphic in Cy.

We now describe the maximal dissipative operators to which we want to apply the
previous theorem. Note that if B > § > 0 is a bounded operator, then B is invertible:
injectivity is obvious, for surjectivity, note that Ran(B)* = ker(B*) = ker(B) = {0}.

Lemma B.3.2. Let R be a self-adjoint operator and let S > 0 be a bounded operator.
Define Ly := R+ iS and suppose B > 6 > 0 is a bounded operator. Then (Lo — zB) is
invertible for any z € C_. Moreover, if L := B~Y2LoB~Y/2, then L is mazimal dissipative
and

(L—2)"t=BY?(Ly— 2B)"'BY/? forany z € C_.
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Proof. Let z =z —iy € C_, where y > 0. Then (Ly — 2B) = R+1iS, where R=R — zB
and S = S + yB are self-adjoint. Hence, given f € D(Lyg),

(Lo = zB)fIIlfIl = Im((Lo — 2B) f, f) = Im((Rf, f) + (S, f)) = (S, ) = yol f|*.
Hence, (Lo — zB) is injective. Moreover, (Ran(Lg — 2B))* = ker(R — iS). But
I(R=aS)FIfIN = (1S = R)FNfI = Im(((iS = R)f, ) = ol f11?,
so ker(R—iS) = {0}. Thus, (Lo — 2B) is invertible with ||(Lo — 2B) || < (y)~'. Finally,
BY2(Ly — 2B)"'BY?(L — z) = BY*(Ly — 2B)"'BY2B~Y2(Ly — 2B)B~'/?
=1 =(L—2)BY*(Ly—2B)"'BY?,

so (L — z) is invertible for any z € C_ with the given relation. In particular, for z = —i,
we get that Ran(L + i) = H so that L is maximal dissipative by [106, Theorem IV.4.1]
(note that L is dissipative since Im L = B~128B-1/2 > 0). O

Note that if B > 0 is invertible, then B > § > 0 for § = ||[B~/2||~2. Indeed,
(Bf,f) = (BY2f,BY2f) = | BV2f|? = | B~V 72| BT2BY2 1P = 6| £

A variant of the previous lemma appears in |2, Appendix B]. Namely, one can assume
instead that S > § > 0 and B > 0. The proof becomes a bit more complicated, and the
conclusion only holds in (ker B)™.

B.4 Spectral averaging for general probability measures

We may now prove the spectral averaging estimate. We follow here the approach of
[105], but we slightly improve the upper bound.

We start with the following lemma. Recall that for a probability measure p on R, we
denote by s(u,e) = supper{p(E, E+¢)}.

Lemma B.4.1. Let p be a probability measure on R, A > 0 and a € R. Then for any
e >0,

2
/ e < mtanh sl Ne)
R

—————du(t
(t —a)? + \2e? Ht) < A
Note that tanh 7 < 1.

Proof. We first note that R = ¢z Iy, where Iy, := [kAe +a — %, ke +a+ %) Indeed,
given ¢ € R, we have for k := [ 52 + 1],

t—a 1 e

Ae
_ = < Y. _ =
kXe +a 5 <( e +2) e +a 5 =1
A A
<(k:+1)~As+a—§:k:As+a+7€.
Hence, using (4-5-2),
Ae? 1 \2e?
——=du(t) < - ————=—=du(t
/R(t—a)Q—&-/\QsQ M()_)\%/jk(t—aP%—/\QsZ u(t)
1 1
< sl Ae) ) — 17
Y s
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since |Iy| = Ae and (t —a) > (k — 3)Ae in Iy. Let f(z) = (Z_%ﬁ Then f has no poles

in Z, so by the residue theorem (see e.g. [8, Section 11.2]), if z; are the complex poles of
f, we have

Z f(k) = —ZRes(f(z)ﬂ cot(mz); z5) .

keZ

For our f we have two poles, namely z; = % + ¢ and zp = % — 1. Now

Res(f(z)mcot(mz); 21) = lim (2 — 2z1)mcot(mwz) f(2) = lim m cot(r2) _ Teotma :

z—21 =21z — 29 21

T cot mze

Similarly, Res(f(z)m cot(nz); 22) = . Hence,

- ZRes(f(z)ﬂ cot(mz); zj) = %(cot Tzg — cot mzy) .
Zj

Now observe that for z € C, we have e** = e—2i#_ 50 that

e2iz +1 B 'e—Qiz +1 B 1 + e2iz
o2z _ 1 le—2iz _71 "1 _ 2z

cotz =1 =cotz

so noting that zo = 21 we get

Z f(k) = g(cot w21 —cotmzy) = —mwlmcot wzy .
kez !

Finally, if z = = + iy, 2,y € R, then Ree?”* = cos(2x)e~?¥ and Im e%* = sin(2z)e~%Y, so

; e 41 (@41 (e —1) e W —2isin(2x)e” — 1
cot z = i—- =i — =1
ez —1 (€22 —1)(e72% —1) e %W —2cos(2x)e ¥ +1"

so for z = § and y = m we get

‘ , e 4 —1 (e —1)(e?" +1)
cot Tz =1 =1
L= Y e=ar {9e—27 11 (=27 + 1)2
_6_2Tr—1 .e—ﬂ'_err

i =1 = —itanhw. O
e 2 4+ 1 e~ +e”

Theorem B.4.2 (Spectral Averaging). Let u be a probability measure on R, A a self-
adjoint operator and B > 0 a bounded operator on H. Fix X > 0 such that A\B < 1. Then

for any bounded interval I and any ¢ € H we have

[ B2+ 1B)B20,) dut) < S ols(u, 1)

By AB < 1, we mean that (ABf, f) < ||f||* for all f. If | B|| < 1, we may take \ = 1,
otherwise we may take A = ||T£||' Leaving the statement in terms of A is more convenient

for applications because in general we have no upper bound on ”—é”.

Note that A may be taken arbitrarily small to shrink the quantity A|I|, which could
be useful. Moreover, our RHS is more or less independent of B, which is the estimate one
expects; see e.g. [109, Lemma 5.3.2] for the special case where du = g(z)dz.
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Proof. First note that for z € I = (a,b) and € := |I| = b — a we have

b— a—x

1 € T
=[/Im———dF= | —————— dE = tan }(——=) — tan"* .
/Im:v—E—iz—: /j(x—E)2+€2 an " ( € )~ tan™( £ )

Writing x = ta+( —1t)b for some 0 < t < 1, this becomes (tan~!(t) +tan~=!(1—1)) := g(¢).

Since ¢'(t) = 1+t2 - 1+(11 ok 1+t2)_(?€:r(1 —y7)> We see that g increases from 0 to % and

T
decreases from 3 to 1. Thus, g(t) > mln( (0),g(1)) for all ¢ € [0,1]. Since ¢g(0) = g(1) =
tan~t(1) = 7, we finally get f(x) > 7 for any = € I. By the functional calculus, this
implies that

Xr(A+tB) < /ImA+tB E—ie) \dE,

thus

(B2x (A + tB)BY2¢, 6) < /Im BY(A+tB — E —ic)"'B/2$,$)dE

Fix 0 < X < X such that tanh §~§, fix § > 0 and let Bs := B+ 4. Since AB <1, we may
choose ¢ small enough to ensure ABs < 1. Now if LY = —(A— E —ie(1 — \By)), then by
Lemma the operator LE — (t — i\e)B; is invertible and

(By*(A+tBs — E — i)' By%¢,¢) = —(By*(L§ — (t —iXe) B5) "' By/*6, ¢)
—((LP —t+ike) o, 9),

where LF = Bé_l/ QL(')E Bé_l/ ? is maximal dissipative. So we may apply Theorem to
find a Hilbert space G containing H and a self-adjoint operator LE on G such that

(LF —t+ike)0,0) = (LF —t+ide) "0, 0) = / L),

RT —t+id\e

where pg is the spectral measure of £F in the state ¢. Hence, using Fubini Theorem and

Lemma we get

(%) / /1 (By*(A+tBs — E — ic) ' BY*¢, ¢) dEdpu(t)

Ae
< 2 du(t)dpP(x)dE
7T/R/I/]R(1:t2+)\22 p(t)dpg (x)

4tanh ~
< M50 L / / dpE(2)dE < S|6]2s(u, Ae)

as 1 cancels |I|. Finally, as § — 0 we have

HB;/2 . BI/QH < ||Bs — BHH(B(;/Q +B1/2)_1H < 5512 0,
since (B§ 4 BY 2) > §Y/2. Moreover, by the second resolvent identity,
|(A+tBs—E—ic) ' —(A+tB—E—ic) Y| = ||(A+tBs— E—ie) "} (t6)(A+tB—E—ic) || = 0

for any t € R. So it follows from Lebesgue dominated convergence theorem that the
estimate (%) holds with B§/ ? replaced by BY/2 and we are done. O
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B.5 A criterion to establish UP

We prove here the simple criterion that was derived in [20] to test uncertainty princi-
ples. We used this in Section [4.4]

Theorem B.5.1. Let H be a Hilbert space and H a self-adjoint operator on H which is
bounded below. Suppose W is a bounded self-adjoint operator and define

A(t) :==info(H +tW), t>0.
Suppose that \(tg) > ¢ for some tg > 0 and ( € R. Then for any interval I C (—o0,(] we

have
A(to) — ¢
to '

Proof. Let g € D(H), I = [E1, E5] with Es < ¢ and put g7 := x;(H)g. Then

Xt(H)Wxr(H) > yxi(H), 7=

(xr(H)Wxi(H)g,g) = ;(){((H +toW)gr,91) — (Hgr, g1) }
> tlo{)\(to) Norll* = (Hgr, g1)} -

But if p, is the spectral measure of H in the state g, then

E2 E2 9
(Horg1) = [ " adpy@) < By [ doy(@) <C- .
1 1

Hence
xt(HYWxi(H)g,g) >~ lgrll> =7 - |x1(H)g|?

for any g € D(H). As D(H) is dense, the same holds for any g € H and we are done. [

For completeness we give the following converse which was also derived in [20], never-
theless we give a different argument for the proof.

Lemma B.5.2. Let H be a Hilbert space and H a self-adjoint operator on H which is
bounded below and has a discrete spectrum. Suppose W > 0 is bounded and define

A(t) :=inf o(H + tW), t>0.
Suppose that in the interval I = [X(0), E2] we have
x1(H)Wxi(H) = yxr(H)
for some v > 0. Then A(t) > X(0) for allt > 0E|.

Proof. Let f € D(H), put fi = x;(H)f and fo = xs<(H)f. Note that fo = X(g,,4+00)(H)f
since H has no spectrum below \(0). Hence, if py is a spectral measure for H in the state
f, we have

(Hpofo) = [ wdog(a) = Bo- Lo

E>

2. The reader may notice that compared to the article [20], we imposed the additional condition that
H has a discrete spectrum. Actually we also needed this condition to conclude the argument in [20], but
perhaps this is not necessary. In any case, this assumption is always satisfied in applications since H is
typically a Schrédinger operator restricted to a cube.
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and thus,

(H+tW)f, f) = <Hf f)
= (H f1, fr) + (H fa, f2)
> A0 )”fl||2‘|'E2Hfz||2

= MO FI” + (B2 = AMO)[[ 21 > AO) [ £1I?
provided fo # 0. On the other hand, if fo = 0, then

(H+tW)f, f) = (Hf, ) + W1, f1) > MNO)FI? + ]| £l = (AO0) + )| £

We thus showed that for any ¢ > 0 and any f € D(H), we have ((H+tW)f, f) > X(0)| f|*
In particular, if f is a normalized eigenvector of H + tW corresponding to Ej(H + tW)
we get

At) = Bu(H +tW) = (H + tW)f, f) > MO)||f|I* = X(0). 0
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