O social network platforms such as Twitter, Facebook, LinkedIn and many others have become so pervasive today (featuring several hundred million users worldwide) that youngsters may have a hard time imagining the world without them. Even adults may be surprised to realize that the three mentioned platforms were invented less than a decade ago. Indeed, expressions like viral marketing, meme, post, and hashtag have become part of our vocabulary in recent years. Mobile phones and Internet access, which directly and indirectly permeate countless aspects of our daily lives, have also quickly become ubiquitous since their commercialization two decades ago. Simultaneously, the costs of telecommunications and information technologies decreased sharply, allowing real-time information processing and massive tracking of user activity in an e ort to create an intelligent and personalized interaction with this omnipresent technology.

User tracking data may be mined by corporations to optimize their operations, to learn customer preferences and o er product recommendations [START_REF] Leskovec | Patterns of cascading behavior in large blog graphs[END_REF]; it may be used by governments to gather intelligence and monitor crime [START_REF] Latapy | Quantifying paedophile activity in a large p2p system[END_REF] and by the general public to obtain detailed information on disasters and riots [Ball, 2011, Doan et al., 2012]. This increasing digital presence and information sharing also raises novel issues regarding the relationship of individuals and their data, notably in terms of intellectual property law and privacy [Lessig, 2002, Fertik and[START_REF] Fertik | [END_REF]. In addition to the highly valuable practical implications mentioned, massive user tracking o ers a unique opportunity to study large-scale networks and emerging complex collective behavior from local interactions therein.

The interest in emergent behavior and complex pattern formation has a long history in philosophy and natural sciences, being discussed notably by Aristotle [Tredennick, 1933], John Stewart Mill [Mill, 1843], the economist Frederick Hayek [Hayek, 1948] and the evolutionary biologist Julian Huxley [START_REF] Huxley | Evolution and ethics[END_REF] among other renowned thinkers. The challenge of dealing with complexity is inherent in scienti c inquiry, although conventional scienti c elds focus on particular "scales of reality". For example, although in theory animal behavior could be studied in terms of atom interactions -since organisms are composed of cells, which can be described in terms of molecule interactions, which are ultimately made up of atoms -in practice the study of each of these scales is done by specialized elds, namely ethology, cell biology, biochemistry and molecular physics. Nonetheless, as the applied mathematician-turned-social scientist Duncan Watts points out: "Increasingly, the questions scientists nd more interesting -from the genomics revolution to the preservation of ecosystems to cascading failures in power grids -are forcing them to consider more than one scale at the time, and so to confront the problem of emergence head-on" [Watts, 2011]. This micro-macro issue is not restricted to the natural sciences: it is fundamental to economics [Smith, 1789[START_REF] Schumpeter | On the concept of social value[END_REF], Klein, 2012] and social sciences [Granovetter, 1978, Ritzer, 2007]. Indeed, individuals are embedded in social networks and interactions occur in within this network. However, characterizing and analyzing social ties in detail has been historically laborious and generally impractical to implement at large-scale. Hence the possibility to leverage the information technology and the on-line social interaction data to shed light on micro-macro questions has interested a growing number of researchers. Interestingly, these researchers are not only social scientists, but also mathematicians, computer scientists, physicists and others. See [Freeman, 2004] for a comprehen-sive account of social network analysis development.

Among the various instances of micro-macro issues in the intersection of natural and social sciences is the phenomenon of di usion and cascading behavior: this phenomenon is characterized by the spread of information through a process of individual-to-individual contagion. Though contagion and social in uence were a concern since ancient times, the systematic analysis of these phenomena was ignited in the late 19th and early 20th century with contributions from social sciences [Le Bon, 1895, de Tarde andParsons, 1903] and epidemiology [START_REF] Kermack | A contribution to the mathematical theory of epidemics[END_REF]. Since then, new models and re nements appeared along with new empirical data. However, until recently su ciently detailed large-scale data was lacking to validate the micro foundations of di usion models.

Di usion phenomena are a class of propagation phenomena characterized by the spread of information or physical objects through some process of individualto-individual contagion: classics examples are biological viruses such as HIV/AIDS. In this case, starting with a small number of infected individuals, this virus spread to thousands of individuals in a relatively small amount of time. This bursty behavior is common to many viruses, but it is also possible that di usion spreads slowly or that it dies out before reaching a signi cant portion of the population. See example in Figure 1.1.

Figure 1.1 -A spreading cascade example: early, middle and nal stages. This was an on-line experiment where an applet called "Happy u" spread among users. [START_REF] Friggeri | A realworld spreading experiment in the blogosphere[END_REF].

This thesis consists of a data-driven investigation of a real-world information di usion on a large-scale social network using on-line le sharing traces. More precisely, we identify key real spreading cascade properties and examine the capability of standard models to reproduce these properties.

In the following, we present a survey on di usion and cascading behavior studies and we end with an overview of the thesis and its contributions.

Context and Survey

Complex networks

A common feature in the micro-macro issues mentioned in the previous section is the presence of pairwise relations between parts of a system, which can be modeled in terms of networks. Examples include food webs and ecological networks, power grids and the World Wide Web, friendship and collaboration networks, which are instances of biological, technological and social networks. These networks are rich objects in their own right and often constitute the structure on which interesting dynamic takes place, such as "viral" di usion and content search. More formally, we can represent these networks with the mathematical notion of graph, denoted G = (V, E) and characterized by a set of nodes V and a set of links between nodes E, which can be directed or undirected (undirected links are also called edges). Although the term "network" may occasionally imply more information than "graph" in certain scienti c communities, in this work we consider both terms as synonyms and use them interchangeably. See [Bollobás, 1998, Diestel, 2010] for modern references on graph theory and [START_REF] Easley | Networks, Crowds, and Markets -Reasoning About a Highly Connected World[END_REF] for applications.

Real-world networks

In recent years a growing number of empirical studies of real-world large-scale networks have been developed, particularly taking advantage of on-line platforms. Wikipedia is a case in point: this open, collaborative on-line encyclopedia has tracked the activity of each editor and each entry since its inception. This allowed the study of the collaboration network of editors, connected if they worked on the same entry [Crandall et al., 2008, Kittur andKraut, 2008]. On-line games also provide novel instances of such networks, e.g., the graph of World of Warcraft players who have taken part in common raids or activities [START_REF] Wotal | Wow!: The dynamics of knowledge networks in massively multiplayer online role playing games (mmorpg[END_REF]. Scienti c collaboration has attracted attention before the Internet, notably with the works of Derek de Solla Price -who developed a theory of the growth of citation networks, based on what would now be called a preferential attachment process [Price, 1976]. This theme was echoed and expanded with the advent of on-line indexing platforms [Newman, 2001].

Another class of real-world networks, similar to citation networks and loosely termed information linkage graphs are characterized by massive and diverse datasets, typically from the World Wide Web: nodes are pieces of information linked together. Examples include the network of web pages connected by hyperlinks [Kleinberg et al., 1999, Huberman andAdamic, 1999], blogs and linkages among bloggers [START_REF] Kumar | Structure and evolution of blogspace[END_REF], Leskovec et al., 2007, Salah Brahim et al., 2011], product reviews and users on shopping sites [START_REF] Guha | Propagation of trust and distrust[END_REF] and Twitter accounts and followers [START_REF] Sharma | Inferring who-is-who in the twitter social network[END_REF]. An important example of networks which reveal social ties and infrastructure are communication networks, which represent individuals who have had a recorded conversation. Evidently, the content of the conversations is generally private and therefore inaccessible or hidden on purpose to preserve anonymity; instead, researchers generally work with metadata concerning these interactions, particularly who-contacted-whom, occasionally associated with a time stamp. Empirical studies of these networks include long-range communications, such as mobile phone [START_REF] Onnela | Structure and tie strengths in mobile communication networks[END_REF], students exchanging emails [START_REF] Kossinets | Empirical analysis of an evolving social network[END_REF]] and instant-messaging [START_REF] Leskovec | Planetary-scale views on a large instant-messaging network[END_REF] as well as short range communications, such as the contact networks of participants in a conference [START_REF] Isella | What's in a crowd? analysis of face-to-face behavioral networks[END_REF] and in a roller skate event [START_REF] Neiger | On the structure of changes in dynamic contact networks[END_REF].

We close this section with an important class of real-world networks: natural networks, particularly from biology. Examples include the structure of neural connections within an organism's brain [START_REF] Sporns | Organization, development and function of complex brain networks[END_REF], food webs -nodes represent species and links prey-predator relations [Dunne, 2006] -and metabolic networks -nodes are functional compounds and links chemical interaction between them [START_REF] Barabási | Network biology: understanding the cell's functional organization[END_REF].

Structural properties

Despite the generality of the characterization of networks and the diversity of contexts they are found, the empirical works mentioned previously found a set of non-trivial structural (or topological) properties common to a wide-range of observed real-world graphs, mainly: small diameter, heavy-tailed node degree distribution and global sparsity/local density. Thus, these networks were generally labeled complex networks.

A graph is said to feature a small diameter if for each pair of nodes there exists a path connecting with whose length smaller than some small constant. In the context of social networks this property has a relatively long story, beginning with the 1929 play Chains by Hungarian author Frigyes Karinthy, where the concept appeared stylized as "six degrees of separation,": i.e., that any two individuals could be connected through at most ve acquaintances generally. In academia, this concept was echoed in a landmark experiment by Stanley Milgram in 1967: he sent several packages to 160 random people living in Omaha, Nebraska, asking them to forward the package to an acquaintance who they thought would bring the package closer to a nal individual in Boston, Massachusetts. He reported that chains varied in length from two to ten intermediate acquaintances, with a median of ve intermediate acquaintances [START_REF] Travers | An experimental study of the small world problem[END_REF]. A recent study reported a similar value: the average chain of contacts between users of Microsoft instant-messaging system was 6.6 people [START_REF] Leskovec | Planetary-scale views on a large instant-messaging network[END_REF]. The same property was observed in citation networks [Newman, 2001], the collaboration network of actors [START_REF] Watts | Collective dynamics of 'small-world'networks[END_REF]] and elsewhere [Kleinberg, 2006].

In terms of node connectivity, recent studies have observed heavy-tailed 1 node degree distribution, i.e., the frequency of the number of node neighbors in 1. Heavy-tailed distributions are probability distributions whose tails are heavier than the exponential distribution. More precisely, let X be a random variable with distribution F on R and tail function F (x) = P(X > x), x ∈ R. The distribution F is heavy-tailed if lim sup x→∞ F (x)e λx = ∞ for all λ > 0. See [START_REF] Foss | An Introduction to Heavy-Tailed and Subexponential Distributions[END_REF] for further properties.

the graph [Newman, 2010]. In particular, some studies have reported power-law degree distributions 2 in real-world graphs such as the autonomous system of the internet [START_REF] Faloutsos | On power-law relationships of the internet topology[END_REF] and the Web [START_REF] Kleinberg | The web as a graph: Measurements, models, and methods[END_REF], Barabási and Albert, 1999, Adamic and Huberman, 2001]. Power-law distributions -sometimes referred to as "scale-free" distributions -had been found in di erent contexts, notably counting the frequency of in natural languages [Zipf, 1948] and examining income distributions [Pareto, 1897]. Despite universal character, a number of studies in network analysis have been questioning the empirical methods used to t such distribution [START_REF] Clauset | Powerlaw distributions in empirical data[END_REF], Kolaczyk, 2009]. In particular, Jackson and Rogers show how some allegedly scale-free degree distributions are better tted by other heavy-tailed distributions [START_REF] Jackson | The economics of small worlds[END_REF]. In sum, though heavy-tailed degree distributions have been observed consistently, well tted power-law distributions have been shown to be rarer.

Complex networks have also been reported to be globally sparse -meaning that nodes are typically connected to few other nodes -, but featuring high local density, measured in terms of a clustering coe cient [START_REF] Watts | Collective dynamics of 'small-world'networks[END_REF] 3 . More precisely, these networks feature a high clustering coe cient relative to what would emerge if links were determined by an independent random process [Newman, 2001]. Ideas behind clustering have been important in social sciences since Simmel [START_REF] Gurcel | Éléments actuels de modélisation sociale[END_REF], who pointed out the interest in triads (triples of multiple connected nodes). Empirical results have found high local clustering in actor collaboration networks [START_REF] Watts | Collective dynamics of 'small-world'networks[END_REF], in the Web [Adamic, 1999], in dating networks [START_REF] Liljeros | The web of human sexual contacts[END_REF] and other places. In connection to this property is the question of community detection, which spawned an entire eld of research dedicated to develop methods to cluster nodes in terms of their connection patterns (See [Fortunato, 2010] for a comprehensive account of the eld).

2. A (positive) power law distribution is a heavy-tailed distribution featuring a tail function which is asymptotically given by a power-law, that is: F (x) ∼ (x min /x) α as x → ∞, with a scale parameter x min > 0 and a shape parameter α > 0. It has all moments of order γ < α nite, while all moments of order γ ≥ α are in nite.

3. The local clustering coe cient C i for a vertex v i ∈ V is then given by the proportion of links between the vertices within its neighborhood divided by the number of links that could possibly exist between them. Let N i is the set of neighbors of v i and

d i = |N i | its degree. The corresponding local clustering is C i = |{(v j , v k ) ∈ E : v j , v k ∈ N i }|/(d i (d i -1)).

Di usion and cascading behavior

Researches have been trying to characterize and model epidemic dynamics systematically since the early 20th century. Other individual-to-individual spreading phenomena have attracted the attention of researchers, namely the spread of ideas and social norms. More recently, a number of works reported the di usion of on-line information such as links, les and memes. Asserting the in uence of individuals and the detailed mechanisms of contagion in such contexts is challenging. The rst issue is to decompose the evolution as a result of multiple individual interactions. Secondly, even when we can model the spread in terms of individual actions, it is not obvious how to model individual behavior. Nevertheless, researchers developed epidemically inspired models to describe general features of social di usion phenomena.

At the same time, empirical studies have documented a wide range of di usion phenomena with increasingly more detail. Indeed, the punctual spread of information from individual to individual has been di cult to observe until recently. This picture has changed with the emergence of on-line platforms: one may observe the spreading in greater detail. In the following, we will present a survey of theoretical and empirical results on di usion and the main open challenges in the domain.

Di usion models

The rst di usion model formalized in mathematical terms, which captures the spreading as described above, was proposed by [START_REF] Kermack | A contribution to the mathematical theory of epidemics[END_REF], Anderson and May, 1991, Andersson and Britton, 2000], focusing on the global evolution of the infected population. In its simpler setting, the model partitioned the population in two groups, a susceptible and an infected group, and made a few assumptions on the spreading behavior, namely that the number of infected individuals growth is initially proportional to the current number of infected individuals, reaching saturation point as most individuals become infected. These relations were formalized in terms of deterministic di erential equations which could be used to determine the long term behavior of the disease. Extensions of this model considered supplementary population partitions corresponding to other classes of individuals such as exposed or recovered individuals (or removed individuals if the disease is lethal). This compartmental models are globally known in the literature as compartmental models or simply SIR models, in reference to the widest-known model in this category.

Outside the context of epidemiology, a landmark model was proposed by Bass in 1969 [Bass, 1969] for the adoption of innovations. The analogy with epidemic models is explicit: an infectious agent (an idea, a product or a behavior) is assumed to spread from infected to susceptible. The goal of this model is also to capture the global dynamic of the population in terms of these classes of individuals, similarly to the SIR models. The evolution of one compartment depends on the relative size of the other compartments, and it is formalized with di erential equations. The key feature of this model is the adoption curve, a S-shaped curve which tracks the fraction of adopters relative to the total population over time.

Both models were formulated with limited support from empirical observations and thus assumed a quite general spreading behavior. Indeed, an underlined hypothesis of both models is that individuals in one compartment have the same in uence on another compartment, that is in uence is distributed uniformly in the population. Social network analysis, however, has shown that certain individuals are much more connected than others. In addition, we know that the behavior of individuals can be quite heterogeneous: for example, in the context of sexually transmitted diseases, some individuals have much more partners and are more active than others. To account for these heterogeneities, in recent years these models were adapted to feature the underline network structure of individuals: in this case, the spreading behavior is centered on the individual and his or her neighborhood in the network.

Epidemic di usion was adapted to the network setting, drawing from percolation theory: in this case, it is assumed that an individual can only infect its neighbors on the network. With these models it is possible to describe the same quantities as those of previous models, namely the fraction of infected individuals, aggregating the local behavior of every individual of the population. Since the adaptation of these models to this context, a number of studies was performed investigating the global asymptotic behavior of the epidemic in terms of the network topology. In particular, this was simulated on a number of real world networks. Novel questions were addressed such as, given a certain network, what is the optimum vaccination strategy or how to select the best set of initial nodes to ignite an epidemic [START_REF] Pastor-Satorras | Epidemic spreading in scale-free networks[END_REF], Kempe and Kleinberg, 2002, Leskovec et al., 2007].

An alternative model based on local dynamics was introduced in 1978 by Granovetter [Granovetter, 1978] and improved upon recently [START_REF] Kempe | [END_REF]Kleinberg, 2002, Dodds andWatts, 2005]. Like the network version of the SIR models, Watts and Dodds' model also makes an assumption on the spreading behavior of individuals. However, instead of assuming that one individual may infect its neighbors, this model assumes that each individual adopts a piece of information if a certain number (or fraction) of its neighbors adopted it as well -i.e., an individual's decision is triggered by its surrounding. These adoption/threshold models also yield cascading behavior, but they are not equivalent to epidemic models [START_REF] Dodds | A generalized model of social and biological contagion[END_REF]).

Empirical studies

Until recently, empirical data on di usion phenomena, mainly epidemic outbursts and product adoption, consisted of aggregated data like the number of infected individuals on a given time. As mentioned previously, identifying punctual individual to individual transmissions is challenging at large scale. In some cases, like for the in uence exerted by individuals, this is not directly accessible, so empirical studies have focused on proxy measurements and assumptions about the link between these measurements and in uence itself.

Recent technology, particularly on-line platforms, allowed the observation of detailed large-scaled di usion phenomena, namely di usion on blogs [START_REF] Adar | Tracking information epidemics in blogspace[END_REF]], e-commerce [START_REF] Leskovec | Patterns of in uence in a recommendation network[END_REF], mobile phone networks [START_REF] Onnela | Structure and tie strengths in mobile communication networks[END_REF], on-line gaming [START_REF] Bakshy | Social in uence and the di usion of user-created content[END_REF] and social networking [START_REF] Sun | Gesundheit! modeling contagion through facebook news feed[END_REF], Bakshy et al., 2011, Goel et al., 2012]. These new datasets also uncovered the di usion trail that is not only the information of who received an information at a given time, but also by whom this information is sent. Hence, for a given spreading information, one can construct the corresponding spreading cascade, a directed graph connecting infected individuals with whom they obtained the information. In particular one can compute the length of the path connecting the original source of information to any given node in this graph and related measurements such as the maximum path length between two nodes of the graph, termed the cascade depth, and the internal density of the cascade.

Another important aspect of these new data is the possibility to compare and improve di usion models. As mentioned previously, these models have local spreading rules, which depend upon the underlying network. Therefore, in order to test the local spreading assumptions, it is necessary to know both the underlying network and the spreading trace. Until recently, there have been few examples in the literature of open data sets of large scale di usion phenomena featuring the di usion trace and the underlying network. In some cases you may know the network but miss the complete di usion trace. An example is the di usion of content in blogs: in a highly heterogeneous media environment, content di usion is likely a combination of interpersonal spreading and more traditional media channels. In other words, people may post something on a blog after seeing it on a friend's blog or after seeing it on television or somewhere else. In other cases, on the contrary, you may miss the network, but know the entire di usion trace -e.g. e-mail spreading [START_REF] Liben-Nowell | Tracing information ow on a global scale using Internet chain-letter data[END_REF] and the Happy u experiment [START_REF] Friggeri | A realworld spreading experiment in the blogosphere[END_REF]. See Figure 1.2 for a schematic illustration of empirical shortcomings observing spreading cascades.

Parallel to the advent of newer and more detailed (albeit not generally open) datasets featuring the spreading cascade and the underlying network, a novel line of research focused in the reconstruction of the underlying network, using the spreading cascade and maximum of likelihood optimization techniques [START_REF] Gomez-Rodriguez | Inferring networks of di usion and in uence[END_REF]. Important research e ort has also been dedicated to the characterization of on-line di usion in terms of spreading cascades: recently Goel et al. proposed di erent structural metrics to di erentiate di usion spreading to media broadcast in on-line social networks [START_REF] Goel | The structural virality of online di usion[END_REF].

Finally, despite the variety of di usion models available, considerably little attention has been devoted to the development of estimation methods to calibrate those models. These techniques are fundamental for applications and to assess the pertinence of the models, given empirical datasets. In this sense, we have identi ed two main papers on the subject: one proposing a maximum likelihood techniques to estimate SIR and adoption models [START_REF] Saito | Prediction of information di usion probabilities for independent cascade model[END_REF], but whose framework is costly and not scalable and [START_REF] Goyal | Learning in uence probabilities in social networks[END_REF] which propose an interesting framework for epidemic models.

Summary and contributions

As discussed in the literature survey, the understanding of di usion phenomena has undergo major improvements since its beginnings. A key improvement came with the introduction of network analysis, which integrated social and technological networks with the spreading process. More recently, with the advent of large-scale on-line platforms which keep track of user activity in great detail, the empirical focus has gradually been shifting from simple aggregated statistics, such as number of infected individuals, to more complex objects, such as spreading cascades, which encode the di usion trail. Improvements in di usion models followed, but most theoretical results rely on asymptotic analysis and equilibrium / steady state conditions. Given the complexity of di usion phenomena, challenges exist in numerous fronts: identify the most relevant structural metrics for spreading cascades, determine the individual in uence and spreading behavior, establish compatible models capable of producing realistic spreading cascades. This thesis presents the following contributions in this context. In Chapter 2, we identify and obtain a large-scale di usion trace with a detailed information of who transmitted the information to whom: le sharing logs in peer-to-peer (P2P) network. This level of information is key to assess the hypothesis of standard di usion models. Another crucial information is the underlying network where the di usion takes place: to this end, we present a framework to reconstruct the social network of users in this system, related by common interests. We compute structural statistics for this network and report the same properties featured by typical complex networks, as discussed in the previous section.

In Chapter 3, we analyze the most standard di usion model in the literature and in the context of P2P networks, the SIR model. Supposing the observed spreading cascades were essentially generated by a process with the dynamic of this epidemic model, we calibrate the model parameters with the data, perform model simulations and compare them to the real cascades. We show that this model is unable to reproduce key topological features of spreading cascades. Moreover, this observation remains true for natural extensions of this model, featuring peer and le heterogeneities. We also propose an a nity measure to re ne the underlying network and analyze spreading cascades in this re ned graph.

In Chapter 4 we demonstrate the importance of taking into account temporal patterns both in our framework and in the spreading process. We show how the dynamic interest graph can be reconstructed from the original interest graph and the connection pattern from users and that it is a key ingredient to generate realistic cascades in terms of size.

In addition to this empirical study, in Chapter 5 we analyze the impact of the underlying network structure on the models examined previously. In the literature there are analytical results relating common topological features of complex networks and asymptotic results in epidemic spreading simulations. However, in our study (and in other real-world applications) the observed cascades were constrained in time, typically far from an asymptotic regime approximation, so we could not rely on the theoretical predictions. Hence, performing simulations we assessed the impact of these common topological properties in time-bounded epidemic and identi ed that the distribution of neighbors of nodes who are the initial providers of les had the most impact among the tested properties.

We conclude in Chapter 6, summarizing the results obtained and discussion the perspectives opened by this study. In particular, we explore new avenues in empirical analysis of spreading cascades, improvements to the framework used and general questions related to the study of information di usion. I years on-line platforms have registered a vast amount of detailed interaction data. This rich data enticed scientists interested in information di usion to better characterize large-scale di usion and examine the long held assumptions and models on the subject. We subscribe to this move, studying the di usion of les in a peer-to-peer (P2P) le sharing system. In this chapter we present the dataset used throughout this thesis, describe how it was obtained and the framework to reconstruct from it the spreading trail and the underlying network.

Dataset and Framework

Measuring real-world information di usion

As we have discussed in the previous chapter, standard contagion models are based on local transmission rules which depend upon the structure of the underlying network, so in order to study it empirically the data must features both the spreading trail (who spread what to whom at what time) and the underlying network. Since the beginning of this thesis, a number of datasets meeting this criteria appeared in the literature, particularly in the context of on-line social networks [START_REF] Bakshy | Everyone's an in uencer: quantifying in uence on twitter[END_REF], Dow et al., 2013, Goel et al., 2013]. Some rich datasets existed previously, but were typically proprietary [START_REF] Leskovec | Planetary-scale views on a large instant-messaging network[END_REF]. However, at the beginning of this thesis, a lot of attention was given to the study of information di usion on the web, particularly the citation links in blogs, which were publicly accessible to anyone in the scienti c community. However, reconstructing the di usion trail from citation links has its shortcomings as the following example illustrates: a blogger views a video link on blog X and posts it on his blog Y with reference to blog X; another blogger sees the post on blog B and decides to post the video link on his blog Z with reference to the original post on blog X. That is, the blog Y was "shortcut" in the observed spreading trail, giving the impression that the author of blog Z obtained the information directly form X, when in fact the information spread through Y . This measurement issue undermines the empirical analysis of information di usion, so to overcome it we decided to study di usion on a peer-to-peer le sharing systems, setting up a novel large-scale di usion dataset which we make publicly available on-line 1 .

Peer-to-peer le sharing systems

Peer-to-peer le sharing systems have evolved into a large tra c source in the Internet and established themselves as an important platform for content distribution [Sen andWang, 2004, Ban et al., 2011]. They constitute a remarkable case of interaction between a technological layer (network of computers) where the tra c occurs, and a social layer (overlay network of peers, structured by related interests) where the content spreading occurs. In eDonkey le sharing systems, one of the main P2P le sharing systems, peers connect to a server to query for les of other connected peers and to provide les to fellow peers upon request [START_REF] Kulbak | The emule protocol speci cation. eMule project[END_REF]. More precisely, le sharing can be divided in three steps, which we denote, respectively, textual query, le request and P2P le exchange. First, the client makes a textual query to the server, which returns a list of available les in the system (each represented by a unique hash code) whose description matches the textual query. Next, the peer will choose a subset of les in this list and make a second query to the server requesting the unique id of potential providers for each selected le. Finally, the client contacts the providers directly and transmission between them ensues.

In this system, the rst two steps described above can be observed at the eDonkey server level, as all le requests are intermediated by the server. Evidently, the le exchange step itself cannot, as the communication is done peer-to-peer. Nonetheless, it is possible to track the le di usion in the system monitoring the corresponding requests preceding each P2P le exchange since users and les are uniquely identi ed by the server. Each le request is decomposed in individual events which are encoded as 4-tuples in the following format: (t, P, C, F ), where capital letters represent unique ids. Such a tuple accounts for a request made at time t of the le F by the peer C, satis ed by the peer P . In other words, P is a provider of the le F pointed out by the server to the peer C at time t. The spreading trace is composed of all these individual events, as the example in Table 2 The trace is comprised of 17 events, displayed in chronological order. Each event represented by a 4-tuple composed of a timestamp in seconds, two peers (a provider and a client) and a le. Files are represented by letters and peers are numbered from 1 to 12. Any peer can be a client, but only peers who possess a le can be its provider (either the peer possessed it before entering the P2P system or acquired it by sharing in the system).

Measurement and analysis

We have obtained a di usion trace recording these events at the eDonkey server level, akin to [START_REF] Aidouni | Ten weeks in the life of an edonkey server[END_REF], anonymized due to privacy concerns. We have parsed the raw measurements in XML and ltered to the format described previously. Monitoring a contiguous time window of T = 170353 seconds (approximately 48 hours) we have observed 5 380 616 peers, 1 986 588 les and 471 411 593 le request events. The requests (represented by the tuples described previously) can be grouped in terms of peers or les, as illustrated in Figure 2.1, revealing temporal patterns which will be explored in further detail in Chapter 4.

Request profile for some selected peers ??? ??? ??? ??? ???

?? time ? ?

Request profiles for some selected files The estimation methods and simulations proposed in the following chapters are numerically expensive in terms of resources, so we have decided to work with a subsample of this dataset, corresponding to the rst 8 hours of measurements, which is still large-scale in terms of the number of peers, les and transmission events, but that could be manageable without an enormous engineering infrastructure. Indeed, let P be the set of all peers and F the set of all les exchanged in our subsample. We have |P| = 1 908 500 peers, |F| = 801 280 les and 22 944 800 le transfer events.

The Figure 2.2 shows, events (individual le requests) arise almost linearly with time and the number of registered peers and les follows a trend with uctuations which may be due to circadian cycle patterns. Thus, the subsample in question preserves important characteristics of the original dataset in terms of rate of observations of new events, peers and les. Circadian patterns, however, are likely unobservable in the subsample, but the shorter time window may o er counterbalancing advantages. Namely, it reinforces the likelihood that essentially all the spreading of les in the period were due to le sharing on the network. Indeed, peers receive and share les not only through P2P le sharing systems but they also do it through other non-observable means, such as using physical devices. However, le sharing in di erent channels is not done in the same speed nor with the same frequency, and though we cannot guarantee that there was no interference due to o -line sharing, it seems reasonable to neglect it in this time window. Let D be the set of all recorded tuples in the subsample (henceforth denoted simply dataset). Before we begin a more structured study of di usion in the next section we highlight some basic le sharing statistics of the trace D. First, we present two statistics related to the typical number of interested peers per le: the median number of interested peers per le, 5, and the average number of interested peers per le, 14.73, with standard deviation 34.74. Second, we estimate the number of les commonly shared by peers: median number of les shared by peers is 3 and the average is 6.19, with corresponding standard deviation 12.66. These values suggest an heterogeneous distribution for both properties, as we shall see later in the following sections. Another important aspect of our P2P trace in terms of le sharing statistics is the abundance of free-riders -that is, peers who bene t of shared les in the system, but who do not share back. In our dataset, while 99.63% of the peers are clients (i.e., have requested a least one le) only 4.33% of them have supplied les.

Heterogeneous le sharing behavior and high proportion of free-riders have been observed in the literature, in P2P le sharing systems. A measurement study of the Gnutella le sharing system [START_REF] Adar | Free riding on gnutella[END_REF] found that approximately 70% of peers provide no les and that the top 1% of the peers provide approximately 37% of the total les shared. Similar patterns have been observed in subsequent studies of Napster and Gnutella system [START_REF] Saroiu | An analysis of internet content delivery systems[END_REF]. In 2005, [START_REF] Hughes | Free riding on gnutella revisited: the bell tolls? Distributed Systems Online[END_REF] found free-riders have increased to 85% of all Gnutella users. Similar patterns were also observed in the eDonkey system [START_REF] Handurukande | Peer sharing behaviour in the edonkey network, and implications for the design of server-less le sharing systems[END_REF].

Spreading trace

The focus of this work is the study of real-world di usion, in terms of its spatiotemporal structure. In oder to make this notion precise, be begin de ning the main object of analysis, namely the spreading cascade, which represents the di usion trail of each le in the P2P system, as recorded in the spreading trace. We also identify the initial providers or seeds for each le, which will be necessary in later chapters.

Spreading cascades

For a le F , the spreading cascade is a directed graph featuring the set P F of peers who have participated in the spread of F (as clients and/or providers) and links P → C, connecting each client C with the rst peer(s) who provided F to it. More formally, let τ F (C) = inf{t : (t, •, C, F ) ∈ D} be the rst instant C obtained F and let the directed graph K F = (P F , L F ) be the spreading cascade of F , with

P F = {P ∈ P : (•, P, •, F ) ∈ D ∨ (•, •, P, F ) ∈ D} L F = ∪ C∈P F {(P, C) ∈ P F × P F : (τ F (C), P, C, F ) ∈ D}
A client requesting a le may receive a response from potentially several providers simultaneously, which implies that nodes in the cascade graph not only have multiple outgoing links, but also multiple incoming links in general The causality induced by the fact that we only consider the links corresponding to the rst time a node received F prevents the appearance of cycles. Hence the cascade is in fact a directed acyclic graph (DAG). As an example, in Figure 2.3 we construct a spreading cascade for each le in the spreading trace in 2.1, with events rearranged, sorting by le, in chronological order (above) and corresponding spreading cascades (below). Each peer is represented by a node in the graph and each event is represented by a dotted arrow, connecting provider to client. Each le is represented by a color and arrows are colored accordingly. Timestamps are not directly represented in this directed acyclic graph, though the chronology of the events can be found following the edges of the cascade.

The rst key property encoded in the spreading cascade of a given le F is the number of nodes who possess it at the end of the observed period, which is given by the size of the cascade |P F |. We also explore two other key topological properties of the cascade, namely its depth and number of links. The former is de ned as the length of the longest path on the cascade and captures the maximum number of hops from peer to peer that the le has undergone before it was relayed from a provider to a client. The number of links, given by |L F |, combined with the size of the cascade gives information on the sharing pattern of the network. For example, in Figure 2.3, the corresponding cascade to the le A has size 6, depth 2 and 5 links.

From the P2P trace log we have constructed the spreading cascades for each observed le and computed the above mentioned features. The distribution of these cascade features is presented in Figure 2.4. First, we observe that the cascade depth distribution is well tted by a power-law. Examining individual cascades with high depth we realize that they are not typically big in terms of size. Second, most spreading cascades are quite small, featuring one or few nodes and links -these cascades are essentially trivial trees. The cascades with higher number of links, however, display a richer structure. In fact, the ones with the highest number of links cannot be tree-like, since their number of links exceeds (by far) the maximum cascade size observed in our dataset. 

Initial providers

Another relevant spreading data concerns the initial providers or seeds for each le F , namely the set of peers that possessed it prior to any transfer activity on the observed trace. These nodes are the origin of the spreading cascades, triggering the di usion of the le F . This information can also be inferred from the request log and be determined in the following way. Let C F (t) = {C ∈ P : (t ′ , •, C, F ) ∈ D, t ′ < t} be the set of peers who requested F prior to t. We de ne the set of initial providers of F as the set of peers P who have provided F at some time t, without having obtained it before t from another peer in the network:

I F = {P ∈ P : (t, P, •, F ) ∈ D, P / ∈ C F (t)}
To illustrate this concept, consider the spreading trace in Plotting the complementary cumulative distribution of the number of initial providers for the spreading cascades (Figure 2.5) we obtain an interesting curve, revealing a scale-free distribution. This means that although most spreading cascades in our observation have few initial providers, there is a non negligible fraction of cascades with a large number of initial providers. 

Underlying network

As discussed in the introduction, our goal is to investigate and model spreading cascades on the social network of peers participating in the P2P system in question. In order to analyze the empirical spread of les among peers in the light of detailed network di usion models mentioned, we need not only the detailed chronological data of who transmitted the information to whom (observable in the trace) but also the social network on which the di usion takes place. As pointed out in [START_REF] Gomez-Rodriguez | Inferring networks of di usion and in uence[END_REF] it is challenging to reconstruct the network on which the di usion takes place.

Focusing on content di usion among peers, it is natural to consider the interest graph in which each node represents a peer and each edge joining two peers stand for common interest. Interests connecting peers may include broad subjects such as open source software, folk rock or French literature or narrower ones such as movies by Quentin Tarantino, a particular computer game or pictures of Beijing. It is reasonable to suppose that peers store and share content related to their interests and, likewise, peers will search for content matching their interests. Hence the di usion of les among peers takes place on the interest graph and occurs from neighbor to neighbor. Indeed, if a peer P provides a le F (corresponding to a music album for example) to another peer P ′ then there is a link between them in the interest graph, since both are interested in the same content, namely F .

One strategy to unfold this network in our context is to explore relations among peers and their common shared les. Such strategy was hinted in [START_REF] Handurukande | Peer sharing behaviour in the edonkey network, and implications for the design of server-less le sharing systems[END_REF] and developed more substantially in [START_REF] Latapy | Basic notions for the analysis of large two-mode networks[END_REF], Iamnitchi et al., 2011, Bernardes et al., 2012]. We follow this approach to reconstruct the underlying social network as well.

Bipartite structure of the data

The trace D captures directly a relationship between les and peers who share them. A natural way to organize these relationships is through a bipartite graph B = (P, F, A), a graph de ned by two disjoint sets of nodes P and F and a set of links A ⊂ P × F between a node in one set and a node in the other set. In our case, we construct the bipartite graph with the disjoint sets of all peers and all les in our data and for each recorded event in (t, P, X, F ) ∈ D we add a link to A, connecting the le F to the peers P and X, that is:

A = {(P, F ) ∈ P × F : (•, P, •, F ) ∈ D ∨ (•, •, P, F ) ∈ D}
where (•, •, P, F ) ∈ D represents a recorded event in which some peer provided the le F to the peer P at some point in time and, likewise, (•, P, •, F ) ∈ D represents a recorded event in which P provided the le F to some peer at some point in time.

In other words, B is the bipartite graph in which peers are linked to the les which they have provided or sought. The degree of peers and les in this bipartite graph represents the number of les transfered by a peer and the number of peers who shared a le, respectively.

As mentioned in the previous section, the degree of peers and les in this bipartite graph represents the number of les transfered by a peer and the number of peers who shared a le, respectively. Thus, we can relate it to the le sharing observations made in the beginning of the chapter. Indeed, as Figure 2.6 con rms, the degree distribution of both peers and les is heterogeneous and mostly concentrated on small values with all degree values for peers and les remain below 10 4 . 

Interest graph

It is beyond doubt extremely di cult in a large scale interaction network to know precisely whether any two individuals have a common interest. From the information encoded in B it is possible to draw relationships between the peers, projecting the bipartite graph on the set P [Diestel, 2010]. The projected graph G = (P, E) consists of a set of nodes P (the set of peers) and a set of links between these nodes E, de ned in the following way: two peers are connected if they have at least one neighbor in common (in F) in the bipartite graph, that is:

E = {(P, P ′ ) ∈ P × P : ∃F ∈ F, (P, F ) ∈ A ∧ (P ′ , F ) ∈ A}
This projection provides an approximation of interest graph described in the introduction of the section2 , for it connects any two peers who have manifested a common interest during our observations. We give in Figure 2.7 an illustration of this method applied to the sample trace given in Table 2.1. We rst construct the bipartite graph of peers and les using the trace. Secondly, we obtain the interest graph projecting the bipartite graph in the set of peers. Notice that, by construction, the spreading of les takes place in the interest graph and occurs from neighbor to neighbor.

The interest graph obtained from the observed bipartite graph (as explained above and in Figure 2.7) has a single giant connected component containing essentially all nodes (99.99%), density 2.62 × 10 -4 and diameter 13. In Figure 2.8a we have plotted the degree distribution for the peers: considering the set of all peers, the median degree is 118 and the mean value is 500.11, with corresponding standard deviation of 1271.42. We proceed to a ner analysis of the degree distribution, grouping peers in categories (Figure 2.8a). Let us consider rst the set of clients C ∈ P such that (•, •, C, •) ∈ D: i.e., peers having requested les during our measurements. Their degree distribution superposes the degree distribution of all nodes. This is due to the fact that 99.63% of peers in our observations have requested at least one le, so the clients degree distribution is essentially the global degree distribution. A much more restrictive category is the set of providers P such that (•, P, •, •) ∈ D, i.e., peers having supplied les during our measurements. Their degree distribution has a similar shape, but it is concentrated on larger values, indicated by a median of 1821 and an average degree of 2906.54 -with corresponding standard deviation of 3471.80. The last curve, superposing the curve corresponding to the providers, represents the degree distribution of the initial providers. We have also computed the clustering coe cient (See chapter I for a discussion and de nition) of the peers in the interest graph (Figure 2.8b): we observe a wide range of clustering values, each represented by a signi cant fraction of peers. Also, the distribution shows a relatively high fraction of peers with a high clustering coe cient -which is a feature of real complex networks, in contrast to random graphs. 

Summary

We close this chapter with a brief summary: we obtained an open dataset containing a large-scale di usion trace from le sharing in P2P systems. First we reported le sharing properties of this dataset found in peer-to-peer literature, namely a heterogeneous le sharing behavior among peers and an overwhelming presence of free-riders [START_REF] Handurukande | Peer sharing behaviour in the edonkey network, and implications for the design of server-less le sharing systems[END_REF]. Secondly, we examined the di usion cascades obtained from the trace and observed that spreading cascades are mostly trivial with a small proportion cascades featuring complex topological structure, also in agreement with the literature [START_REF] Leskovec | Patterns of cascading behavior in large blog graphs[END_REF],Liben-Nowell and Kleinberg, 2008, Goel et al., 2012]. In particular, key properties of spreading cascades are heavy-tailed, with cascade depth distribution featuring a scale free distribution.

Third, we have introduced a framework to infer the interest graph of peers, on which the spreading of les takes place. This graph connects essentially all peers, which can be grouped in two categories: providers and clients. Most peers in our observations are clients, but only a small fraction supply les and there is a sharp distinction between clients and providers in terms of their degree distribution. The structural properties of the interest graph -namely diameter, degree distribution and local clustering -are congruent with the literature on complex networks, as discussed in the previous chapter.

In sum, the obtained dataset is a legitimate candidate to study large-scale di usion and it allows us to assess the pertinence of di usion models since it provides detailed information on the spreading process and the underlying social network of peers. As discussed in the rst chapter, epidemic/contagion models are ubiquitous in the literature to describe empirical data (from epidemic to viral marketing to P2P le spreading) and to generate arti cial di usion. In particular the network version of the SIR model has been used since it is relatively simple and analytic tractable asymptotically. However, though some studies have used SIR models and derivatives to reproduce realistic cascades in their data [START_REF] Leskovec | Patterns of cascading behavior in large blog graphs[END_REF], Goel et al., 2012], their framework to select the parameters for the model relies on an extensive exploration of the parameter space. In other words, they show that it is possible to generate realistic cascades in terms of their data for a well-chosen set of parameters. Our approach is di erent: we develop a framework to estimate the parameters from the data, using maximum of likelihood methods, and simulate the calibrated model to compare with the data. In particular, if we suppose that the observed di usion was a result of an epidemic contagion process, we may estimate the unknown parameters and test it against the data. Instead of extensively searching the parameter space of the models for interesting values, we therefore ask if the SIR model and extensions are compatible with this robust estimation framework.

SIR Model and extensions

In this chapter being examining the standard, simple SIR model as a baseline model and explore natural extensions of this model which capture heterogeneities, particularly in terms of peer behavior and le popularity. We also introduce an a nity measure among peers and examine an extensions of this model which take this measure into account.

Simple SIR model

We begin examining simple SIR model, generating simulated cascades and comparing them with real ones to assess how realistic this model performs on the interest graph, in terms of the following cascade properties: size, depth and number of links. Note that by realistic, we mean able to reproduce the characteristics of the data as we measured. 1 In our setting the SIR model dynamic is as follows: each le spreading corresponds to an independent epidemic in the interest graph, in which each node is in one of the following states: susceptible, infected or non-interacting (sometimes named removed, hence the acronym SIR). Susceptible nodes do not possess the le and may receive it from an infected node, thus becoming infected. Each infected node, in turn, spreads the le to each of its neighbors, independently, with probability p and becomes promptly non-interacting thereafter. Although non-interacting 1. The problem of improving the measurement process is di erent from the one of identifying relevant models able to capture the features observed in the data, which is our focus. Indeed, our goal is to assess the ability of the models to reproduce (or not) the characteristics of real traces as observed in the dataset, reproducing the eventual shortcomings of the data. Sampling improvements include the application of detection techniques (such as [Secan et al 2011]) in order to remove abnormal events from the raw data before using the modeling techniques discusses in this chapter. Although they could potentially improve the data, they are not essential at this point, thus, we leave this approach for further work. nodes remain in this state, infected nodes may unsuccessfully try to infect them.

Supposing the observed di usion trace is the result of such a simple SIR epidemic we may estimate the spreading parameter p. Each neighbor-to-neighbor transmission trial can be seen as a Bernoulli random variable, whose value is 1 in case of success and 0 otherwise and whose expected value is p. Assuming each trial is independent and the parameter p is homogeneous for each P and F , we may estimate it by the empirical proportion of successes over all trials. Since each tuple in D accounts for a successful neighbor-to-neighbor transmission, |D| is the number of successful trials for all di usion cascades. The total number of trials, in turn, is given by the sum of the degrees of all nodes involved in the spreading of each le. Hence, we obtain the following estimate, with a 95% con dence interval p ± 10 -6 :

p = |D| / F ∈F P ∈P F d(P ) = 1.063 × 10 -3
Since the simple SIR model depends on a single parameter, namely the spreading probability p, we have fully characterized it with the preceding estimation.

Calibration

In this Section we use the reconstructed underlying network and the initial condition information (the list of initial providers I F computed for each le F ), obtained in the previous chapter, and the SIR model with calibrated spreading parameter p, as described above, to simulate le spread di usion. For each F , we begin with the initial providers in an infected state and the other nodes in a susceptible state. At each step, infected nodes infect each of their neighbors with probability p, becoming non-interacting afterwards. The epidemic continues as long as there are interacting infected nodes.

The rst observation concerning the model simulation is that the observed time (measured in seconds) has no direct relation with the simulation time (number of steps). Furthermore, our dataset corresponds to an observation in a bounded window of time of eight hours, so that we have no reason to suppose that the le spreading cascades we observe correspond to the whole spreading cascade of a le. In other words, if we had measured a longer time window we would likely observe bigger cascades (in terms of size and depth) for the same lesdue to, among other reasons, new users who could eventually request the same les. This is also true for our SIR model: we observe increasingly bigger cascades as simulation time increases. In fact, performing unconstrained simulations we have obtained a distribution of signi cantly bigger cascades than the ones we have observed in the real trace. Thus, in order to perform a suitable comparison with the observed cascades, we have decided to hold one property xed and compare the other properties. More precisely, for each le we generate a simulated cascade with the same size (resp. depth) as the corresponding observed cascade and compare the depth (resp. size) and number of links. In practice, for each le we simulate the SIR epidemic as described earlier and halt it when it reaches the size (resp. depth) of the corresponding observed cascade. We have performed 801 280 le spreading simulations in total (one for each le in F).

Results

In Figure 3.1a we plotted the complementary cumulative distribution of the size of cascades with comparable depth. We observe a divergence of the cascade size from the observed cascades: simulated cascades are typically much bigger in size for a given depth compared to real cascades. The range of values in both categories is also striking: the biggest real cascade is at least two orders of magnitude smaller than the biggest simulated ones. In Figure 3.1c we plot the complementary cumulative distribution of the depth of cascades with xed size. Real cascades feature a much higher depth compared to simulations, holding cascade size constant. In particular there is a cuto on the cascade depth for the simulations: we do not observe any simulated cascade with depth bigger than 11. As for the number of links, we have two interesting situations. If we x the depth (Figure 3.1b) the number of links distribution resembles closely the size distribution (Figure 3.1a). This is not completely surprising, since the two quantities are related. In this case we observe a larger number of links for all simulations compared to the number of links in the real cascades since the simulated cascades themselves are bigger. If, in contrast, we x the cascade size to t the observed cascades size (Figure 3.1d), we observe a typically smaller number of links. Combining these observations on both plots we conclude that real spreading cascades are denser than simulated ones, a clear qualitative feature not captured by the simple SIR model. Finally we note that most cascades are trivial, featuring depth equal to one and correspondingly small size.

To sum up, we have compared simple topological properties of real spreading cascades and simulated cascades from a calibrated SIR model, with comparable depth and size. We have observed that simulated cascades are relatively "wider" whereas real cascades are relatively "elongated", that is, real cascades have a smaller size per depth ratio. Moreover, real cascades are typically denser than simulated ones.

Heterogeneous SIR models

In the previous section we have examined the adequacy of the simple SIR model to generate realistic le spreading cascades. Given the generality and simplicity of the homogeneous model, it is not entirely surprising that it does not capture key properties of real spreading cascades in our data. In order to fairly assess the relevance of the SIR dynamic in our context, in this Section we consider natural extensions of the SIR model considered previously, which take into account heterogeneous aspects found in the observed data. More precisely, we perform a complementary analysis, focusing on the interest graph and examining two heterogeneous versions of the SIR model, characterized by a distribution of spreading probabilities, instead of a single homogeneous parameter. These models take into account the le popularity and peer behavior heterogeneity and are, thus, presumably better equipped to mimic real spreading cascades.

File popularity

A rst re nement of the simple SIR model consists in introducing di erent spreading probabilities according to the le being spread. The rationale in this case is to account for di erent levels of popularity depending on the le. Exogenous reasons -such as a movie release or the death of an artist -can change the supply and demand of a given le and consequently alter its spreading probability. If we know the spreading probabilities for each le, i.e., {p(F ) : F ∈ F}, the knowledge of the actual reasons that explain the heterogeneity in le popularity are irrelevant to the characterization of this model. An estimate of these probabilities, in turn, can be obtained from the trace D if we suppose it was generated by a process following this extended SIR model. Indeed, since each le spreading is independent of the others, it is possible to estimate p(F ) for each F separately, with the same method used to derive the homogeneous parameter. Restricting the calculations to the spreading cascade of F , p(F ) will be given by the empirical proportion of successful transmissions of F over all possible transmissions of F :

p(F ) = |{(•, •, •, F ) ∈ D}| / P ∈P F d(P )
In Figure 3.2a we plot the distribution of the heterogeneous spreading parameters depending on the les. The values of p are concentrated on the range 10 -5 to 10 -2 , indicating that there is a considerable fraction of cascades with a signi cantly di erent spreading regime (bigger than one order of magnitude). This distribution characterizes the extended SIR model we use in the following simulations.

Peer behavior

A second possible re nement is motivated by the fact that peers might have intrinsically distinct levels of "generosity" regarding le sharing. Under this hypothesis we extend the standard SIR model assigning an heterogeneous spreading probability to each peer, regardless of which le it is sharing. Thus, we do not need any other information but the spreading probability distribution to characterize the model. In this context altruistic peers, who typically spread les to a large proportion of their neighbors, would feature a bigger spreading probability compared to the homogeneous spreading probability corresponding to the di usion aggregates of all peers. By the same token, the extreme case of free-riders would have their spreading probability assigned to zero. Again we can study transmissions as outcomes of Bernoulli trials to estimate the spreading probabilities. Let F P = {F ∈ F : (P, F ) ∈ A} be the les carried by the peer P ; for each such le the number of transmission trials P could perform corresponds to its degree in the interest graph, namely d(P ). Hence, to obtain p(P ) for each peer P we divide the number of successful transmissions of P to other peers (of any le carried by P ) over the total number of potential trials:

p(P ) = |{(•, P, •, •) ∈ D}| |F P | × d(P )
We have plotted the distribution of the positive spreading probabilities estimates in this case (Figure 3.2b). They account for small fraction of all the peers, since the only peers who have a positive spreading probability are those who provided a le at least once -namely 4.33% (cf. observations made in Chapter 2). Conversely, a large fraction of the peers do not share the le in this model. We observe a marked range of values, which is signi cantly greater than the one computed for the homogeneous SIR. 

Results

Our aim is to generate simulated cascades following both extensions of the SIR model presented -with heterogeneous spreading probability depending on the les and on the peers -and compare their properties with simulated cascades of the simple SIR model and the real observed cascades. In this sense, we apply the same methodology as in previous simulations: we x the depth (resp. size) for the simulated cascades and examine the other two properties -the idea is to compare similar spreading cascades in terms of the chosen property. As discussed previously, the great majority of the cascades is simple, with depth equal to one and a small size. Hence the simulated cascades corresponding to the simple observed cascades will likely correspond in terms of depth, size and number of links. For this reason, we have decided in this Section to focus on the spreading cascades with depth greater than one.

The simulation results are plotted in Figure 3.3: we have plotted the complementary cumulative distributions of the spreading cascade depth, size and number of links. Imposing a constraint on the depth for the simulated cascades and comparing their size (Figure 3.3a) we observe the contrast between the simulated and the real observed cascades with the same depth: the former have a typically bigger size compared to the latter. What is remarkable, however, is the agreement among all the simulated cascade distributions -curves superposed in Figure 3.3a. Next, if we x the size for the simulated cascades and examine their depth (Figure 3.3c), we face the same qualitative similarity among simulated curves. Indeed, the curves corresponding to the heterogeneous SIR models also feature a cuto in depth, failing to reproduce the scale-free curve representing the depth of the observed real cascades. Finally, the cascade links distribution plotted in Figure 3.3b and Figure 3.3d con rms the pattern observed previously, namely that the observed spreading cascades are typically denser than corresponding simulated cascades.

In spite of the improvements in the SIR model, introducing an heterogeneous spreading parameter to account for di erent pro le of les (respectively peers), simulations indicate that this re nement does not change qualitatively the basic properties of simulated spreading cascades. Indeed we observe a surprising similarity between the three compared SIR models, notwithstanding the particularities of each model.

SIR model with a nity measure

In the previous Section we have examined SIR model extensions that take into account heterogeneous aspects of peers and les with the goal of generating more realistic spreading cascades. Another approach is to keep the simple SIR model and enrich the social network inference. In this Section we address this question, proposing a way to re ne the interest graph taking into account the a nity among peers. The rationale is that peers are more likely to interact with other peers with whom they have greater a nity. In the following we describe a method to quantify this relation. 

Weighted interest graph

In concrete terms, our a nity score between two peers will be de ned by the number of common les peers shared or provided. Indeed, instead of approximating the interest graph by the simple projection of B on P, we consider a richer inferred interest graph G =(P, E, W), given by the weighted projection of B on P such that E = {(P, P ′ ) ∈P×P : ∃F ∈F, (P, F ) ∈A∧(P ′ ,F) ∈ A} W(P, P ′ )=|{F ∈F:(P, F ) ∈A∧(P ′ ,F) ∈ A}| In other words, peers belonging to the neighborhood of a common le in B are connected in G. If a peer P provides a le F (corresponding to a music album for example) to another peer P ′ , then there is a link between them in the interest graph since both are interested in the same content, namely F . Furthermore, each edge (P, P ′ ) ∈ E has an integer weight given by the number of common les they have manifested interest in. As an example, consider the trace sample from Chapter 2: the corresponding weighted interest graph, reproduced in Figure 3.4, will take into account the "multiple" colored edges connecting two nodes in the Figure 2.8a, reproduced below. Thus, the edges (1, 4), (1, 5), (1, 9), (2, 3), (4, 9), (7, 9) have weight 2 and the other edges have weight 1. In Figure 3.5a we have plotted the distribution of weight values in the interest graph: it is heterogeneous, with the vast majority of edges featuring small weights. Finally, note that the weight scheme we have introduced is by no means the only way to assign an a nity index to each edge of the interest graph. One could assign a greater a nity to two peers who are both interested in rarer les than two peers interested to common les for instance; another possibility is the Jaccard index of similarity. That said, our choice is quite natural and is motivated by the hypothesis that peers will likely spread les to the neighbors with whom they have greater a nity, as we explain below. 

A nity measure and spreading dynamic

The di usion models we have used so far require adaptation to take into account the enhanced network topology. We keep the main hypotheses of the SIR model, that is, that each individual is in one of the following states: susceptible, infected or non-interacting (sometimes denoted removed). Susceptible nodes do not possess the le and may receive it from an infected node, thus becoming infected. Infected nodes, in turn, try to spread the le to each of its neighbors, independently, and become promptly non-interacting thereafter. Each infection attempt from an infected node P to the node P ′ is successful with probability σ(w) ∈ [0, 1], depending on the weight w of the edge connecting P and P ′ .

It is reasonable to assume that a peer P is more successful in spreading a le to the neighbors with whom he or she has a greater common interest. In terms of the spreading probability σ, this assumption translates itself as supposing σ(w) is increasing with w. Indeed, the weight connecting P and its neighbors is a measure of how similar are their interests. Hence the more similar two peers are in terms of interest, the greater the weight of the edge connecting them and, in turn, the greater the spreading probability. To verify this hypothesis we have estimated the value of σ(w) for each value of w, adapting estimation methods used in Sections 3.1, 3.2. Each observed spreading cascade of a le F in the trace provides a set of estimated values {σ F (w)}: as expected, we have found that the median values of σ are increasing with w up to w = 25 (with the exception of two values), after which they essentially reach a plateau at σ(w) = 0.5. In Figure 3.5 (right) we have plotted the estimator values for all weights from 1 to 25 in terms of box plots.

Following the approach in [START_REF] Onnela | Structure and tie strengths in mobile communication networks[END_REF], we have used a linear function to model the spreading probability on the weighted graph, namely σ 1 (w) = a 1 w + b 1 , with a 1 = 3.07 × 10 -3 and b 1 = 1.54 × 10 -3 obtained with a least squares calibration. The number of edges with small weights is much greater than the number of edges with big weights in this graph -cf. Figure 3.5a. Indeed we observe a greater number of transmissions between peers connected by edges with smaller weight. Hence, the quality of the estimators is greater for small values of w and we have taken into account primarily these values in this model. We have also examined an alternative model for σ, which captures qualitatively the stagnation of σ for large values of w. In this case we have σ 2 (w) = a 2 log(w) + b 2 with a 2 = 14.10×10 -3 and b 2 = 0.58×10 -3 obtained with the same calibration method.

Results

Equipped with the reconstructed social network of peers (the weighted interest graph) and models for the di usion of les (described above) we have simulated the spreading of all the les and compared the corresponding spreading cascades with the real, observed, spreading cascades. Simulated traces corresponding to the spreading of each le F ∈ F contains the same number of transfers as the real observed trace of F .

In Figure 3.6 we have plotted the complementary cumulative distributions of cascade properties from real cascades, compared to the simulated cascades using the di usion models described above. The rst general remark is that simulated cascades generated by both models are quite similar in terms of these metrics. Indeed, the curves of both simulations are superposed for the three plots. Compared to the distribution of real cascades, the sharpest contrast is in terms of depth: the distribution for simulated cascades features only small values of depth, whereas the depth distribution for real cascades is remarkably scale-free. We also nd a discrepancy between simulated and real cascades in terms of size and number of links: in the former the gap is sharper and in the latter both distributions follow globally the same trend. Considered together the curves make clear that these models face a challenge to capture key topological properties simultaneously. Indeed, real cascades have a shape closer to chain-email cascades [Liben-Nowell and Kleinberg, 2008], in the sense that they are relatively elongated compared to simulated cascades obtained with these contagion models.

Summary

We have assessed the pertinence of SIR model and extensions, using a maximum of likelihood estimation framework. Assuming the observed di usion was a product of an epidemic contagion process, we have calibrated the models and generated simulated cascades which we compared to real ones. We concluded that simulated le di usions do not capture key qualitative properties of the observed spreading cascades.

Simulated cascades from extensions of the SIR model (which take into account the heterogeneity in le popularity and peer behavior) show similar properties as the simple homogeneous SIR model. In addition to these extensions, we have enriched the reconstruction of the interest graph, introducing a measure of a nity among peers. Again, simulations reveal another unexpected point: despite the enhanced social network topology, the model simulations did not reproduce qualitative features of real spreading cascades.

The reason behind these results may be that the SIR model is too simple to account for the di usion mechanism. Although this is a likely possibility and as [START_REF] Goel | The structure of online di usion networks[END_REF] argue, real di usion are a combination of contagion processes and broadcast-like processes, it is remarkable that taking into account the above mentioned heterogeneities did not improve the model signi cantly. This suggests that the key component to improve the model is other. As we shall see in the next chapter, integrating time patters into this process is a hopeful strategy to improve models. 

I

the previous chapter we have developed a model calibration and evaluation framework and began assessing the simple SIR model. Once we concluded it was incapable of reproducing key spreading cascade properties, we examined several extensions of the model which explored several properties found in the data, both in terms of the di usion process (taking into account le popularity and peer behavior) and in terms of the underlying network (weighted interest graph). In particular, in the latter extension peers who were not much active in the network, exchanging only a few les, had a small a nity score with their neighbors (since their a nity score is limited by the number of les). Thus, les spread more di cultly to these peers, relative to more active/present peers in the system. As the introduction of the a nity measure did not led to any signi cant qualitative improvement, we concluded it failed to capture heterogeneity of node presence in the network properly.

With the goal to take into account the node presence directly, we consider the dynamic interest graph of peers, which is obtained from the structure of the original interest graph in addition to the intervals of presence of each node. As mentioned in Chapter 2 we do not dispose of the peer connection data in our dataset. Thus we begin this chapter describing a method to infer the connection instants for each peer using their activity pattern (which contains temporal data, in terms of timestamps). Next, in order to study di usion on the dynamic interest graph, we need to departure from the simple SIR dynamic and examine models capable of taking into account this temporal information in the spreading mechanism. More precisely, since the interval connections are given in terms of seconds, we need a di usion model whose evolution is given in a compatible time scale. We motivate the choice of such a model and corresponding adaptations it entails in our framework. Similarly to the previous chapter, we perform simulations to assess the capability of this model (in two variations) to reproduce realistic cascade properties.

Peer connection data

Although we do not dispose of connection events for each peer in our dataset, we know the activity pattern of each peer (in time), as our dataset consists of a collection of le exchange records among peer with timestamps. We summarize peers' behavior in the le sharing system in Figure 4.1: since we only record transmission events, each observed peer has connected at least once into the system and remained a certain time on-line during our measurements. Intuitively, given the activity pro le, such as the examples in Figure 4.2, we would like to place connection and disconnection events in the timeline. In order to do so in a systematic way we rst have to make a few assumptions on peer behavior concerning connection events. A simple model is to suppose that connection and disconnection times occur after exponential times and that the time elapsed between two le request events is relatively short when users are on-line and longer if users went o -line. In this case, given the activity pattern of a node, we can infer if the time elapsed between two le requests are of long type or short type using an expectation-maximization algorithm, as well as the exponential rates [Jewell, 1982]. If we dispose of this information and we know that peers likely wait a "typical" amount of time from the moment they connect into the system and the rst le request we can obtain a likely connection instant. Analyzing a similar dataset of P2P request collected in our lab we have determined that the typical time in this context was 5 minutes. In Figure 4.2 we illustrate the method, showing the inferred connection events for the peers featured in Figure 2.1. With this procedure we estimated the distributions for the login and logout rates: Figure 4.3 shows the complementary cumulative distributions for the estimated peer login and logout rates and observe they are heavy tailed.
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Integrating time patterns

Once the connection data for the peers has been obtained, in the following we use the data to improve the interest graph of peers, de ning the dynamic interest graph, where peers interaction is only taken into account if peers are simultaneously present in the system. This new interest graph also calls for new spreading models, which are able to take into account the connection data, thus we examine an adapted version of the network SI model, in two variations: one which considers a homogeneous peer spreading behavior and another which features an individual spreading behavior for each peer. 

Dynamic interest graph

The interest graph is a comprehensive synthesis of peers' interest relations revealed in the observed time window. These relations are key to di usion, since the spread of les occurs on the interest graph, as pointed out previously. However, even if the spread of les between neighbors in the interest graph is likely, the actual transfer of les may not occur concretely because they may never be simultaneously connected to the P2P system or have a small co-presence time -i.e., the amount of time on-line in the presence of each other in the system is small. Hence, in order to make simulations more realistic, in the sense of reproducing observed le spreading cascades, we used temporal information to enhance the social network reconstruction.

A strategy to use temporal information, integrating the connection data estimated in the previous section is to reconstruct a dynamic interest graph. In this graph, two peers will be connected at time t>0 if they share a common interest (as in the interest graph) and if they are both online at time t. More formally, let P t be the set of nodes on-line at time t>0 and let the dynamic interest graph be de ned as G t = (P t , E t ), with E t = {(P, P ′ ) ∈ P t × P t : ∃F ∈ F, (P, F ) ∈ A and (P ′ , F ) ∈ A}.

Intuitively, the dynamic interest graph is built similarly to the original interest graph, but evolves with the addition/suppression of connecting/disconnecting nodes and the respective links between these nodes and their neighbors. The dynamic interest graph is a subgraph of the interest graph G = (P, E) de ned previously, in the sense that for all t > 0, P t ⊂ P and E t ⊂ E. In the following, we examine the dynamic interest graph as the underlying social network on which we perform le spreading simulations.

Spreading dynamic with inter-contagion time

In the previous chapter we have modeled the spread of les using a SIR model in which nodes are in one of the following states: susceptible, infected and removed. A node in the latter state is permanently inactive and cannot infect other neighbors. In this chapter, where we explore and take into account peers' temporal patterns, the inactive periods correspond to the o -line periods, encoded in the dynamic graph. Thus, to simulate the le spreading, we use the SI model, a contagion model similar to the SIR model. In this model, each individual is either susceptible or infected. Susceptible nodes do not possess the le and may receive it from an infected node, thus becoming infected. Infected nodes, in turn, try to spread the le to each of their neighbors in the network, one at a time.

In this model we also introduce a new feature: the time between two infections takes a random number of seconds following an exponential distribution, which we refer to as the inter-contagion time (ICT). Node latency given by exponential time is a common assumption and was proposed previously in the context of P2P le sharing systems [START_REF] Leibnitz | Modeling of epidemic di usion in peer-to-peer le-sharing networks[END_REF]. The ICT is characterized by a rate or, alternatively, by the mean (expected) ICT, since in the case of exponential random variables the mean time is the inverse of the rate. Moreover, if P possesses the le F , the number of peers who received the le F from P (after P obtained it) is a Poisson process characterized by the inter-contagion time rate (or the mean ICT). We will examine SI models with homogeneous and heterogeneous inter-contagion time. In other words, in the rst case we suppose all nodes have the same spreading behavior (global ICT rate) and in the second, an individual one (a di erent ICT rate for each node).

The introduction of contagion model featuring inter-contagion times allows us to adjust the simulation in terms of the chronological time (in seconds), as we observe in the di usion trace. This represents a key contrast to the spreading models from the previous chapter, whose evolution happened in a simulation intrinsic time (given by the number of steps in the algorithm). This is precisely the reason why we had to hold one cascade property constant and analyze the remaining properties in the previous chapter: in this way we would have a comparable set of cascades with respect to a property. In contrast, the time bound of the simulations using the model presented above is given in seconds, so there is a more straight-forward and natural way to obtain a comparable set of simulated cascades: we impose the same time scale observed in the di usion trace to the simulated cascades. That is, we simply simulate the di usion of the cascades up to the time T (last time observed in the trace) and compare the three key properties of the simulated cascades to the corresponding real ones.

With the methodology presented above, we proceed to the model calibration, using the temporal data in our trace. The estimation process takes into account the number of les provided by each node and how long the node was on-line. Therefore, it yields di erent estimates for the average inter-contagion time in the static and dynamic settings -i.e., if we suppose nodes were continuously on-line during the whole period or not. Considering the homogeneous SI model rst, we estimate average inter-contagion times of 10 064 seconds (2h48min) in the static setting and 4 926 seconds (1h22min) in the dynamic setting.

Next, considering the heterogeneous SI model, we also have di erent average inter-contagion time estimates for di erent settings: similarly to the homogeneous model, individual estimates are also generally greater in the static setting. Indeed, nodes seem less active if we suppose they were continuously on-line in the whole observation period (since the number of transfers remains the same). An important di erence in this model, compared to the homogeneous one, is the following: individual average inter-contagion times imply that observed free riders (clients who do not provide les) have null ICT rate estimates. Hence they will also behave as free riders in simulations of this model. The estimated complementary cumulative distributions in both settings (static and dynamic) are plotted in Figure 4.4. As noted in Chapter 2, more than 95% of the peers in the system are free riders, and thus, are not represented in the plot. 

File spreading simulation

We have simulated the SI model with homogeneous and heterogeneous spreading behavior as outlined above on the dynamic interest graphs for each le present in the trace. The pro les of real and simulated cascades are summarized in Fig- ure 4.5: we have plotted the complementary cumulative distributions of cascades' size, number of links and depth. For each cascade property, we plot the same distribution in lin-log and log-log (inset) scales, which highlight respectively smaller/short cascades (most cascades) and bigger/deeper cascades (rare cascades). 

Result

In terms of the variations examined, the dichotomy static/dynamic graph changes has an overall impact, but a ects particularly the distribution of trivial cascades. Compared to simulations on the static graph, simulations on the dynamic graph yielded a bigger proportion of small cascades which is what we observe in out measurements. The dichotomy homogeneous/heterogeneous SI model impacts mostly the properties' distribution tail, particularly in terms of size and number of links. All other things equal, in our setting, the homogeneous SI model yielded simulations with smaller proportion of large cascades, which is closer to the observed cascades in terms of size, but more distant in terms of number of nodes. In terms of depth distribution we note that none of the proposed models was able to reproduce the scale-free depth distribution featured by the real cascades: simulated cascades exhibit, in contrast to real ones, a sharp decrease in the proportion of cascades with depth greater than 10, revealing a cuto .

In sum, in terms of size and number of links, we nd encouraging results: both homogeneous and heterogeneous models perform relatively well in the dynamic setting, in the sense that simulations on the dynamic graph feature a proportion of small cascades similar to the real ones (most cascades). In terms of larger (and infrequent) cascades, the homogeneous model reproduces well the size distribution of real cascades; in terms of number of links, the heterogeneous model is superior. Although this model cannot generate arti cial cascades similar to real ones in terms of all key properties, we have shown the importance of taking into account the temporal data in contagion models which aim to generate realistic cascades.

Impact of on-line presence

With respect to the previous approach, in Chapter 3 we have changed both the underlying network and the spreading dynamic, since it had to be compatible with the dynamic graph in terms of time scale. The converse, however, is not true: the new spreading dynamic we have used can be simulated in static graphs, particularly the original interest graph. Hence, we decided to simulate it also in this graph to isolate the impact of the new spreading dynamic from the the impact of the improved underlying graph. We denote in this chapter the original interest graph static, in contrast to the dynamic one. The results are quite di erent as we observe in Figure 4.5: comparing simulated cascade pro les on the static and dynamic interest graphs we note that cascades are generally smaller and feature a smaller number of links in the dynamic graph. As expected there are no properties for which the simulations on the least realistic graph were superior, though we insist that no model was able to reproduce the cascade depth distribution.

This can be due to the fact that this graph is static or that it simply ignores the fact that many connections could not the used in the real-world since peers were never simultaneously on-line. In our case, these "arti cial" links which do not respect the co-presence in the graph amount to 29% of the links in the static interest graph. So, in order to evaluate their impact, we have also simulated our models on the static interest graph without these links (not shown) and found that the impact was minor: simulated cascades in this new static graph featured the same pro le of simulated cascades on the original static interest graph. Thus, we conclude that the di erence in cascade pro les simulated on static and dynamic graphs is primarily due to the reduction of the co-presence time (and not simply the co-presence) among neighbors in the dynamic graph and potential causality e ects. Indeed, in the static interest graph the co-presence times correspond to the whole observation period. This cascade pro le di erence is not trivial given the possibility that the co-presence time reduction could have been compensated (or overcompensated) by the fact that nodes in the dynamic graph are more active than nodes in the static graph, as discussed previously.

Summary

In this chapter we have explored the peer temporal patterns and their implications for epidemic contagion models such as those described in the previous chapter. First, given the activity pro le, we have inferred the connection events of each user with a maximum of likelihood approach. Even though we were working with fairly simple starting assumption, namely that the connection intervals and the intervals between two requests followed an exponential distribution, with a rate per peer, we found that the rate distribution is heavy-tailed. This is due, in part, to the cuto in the measurement in the end of our time window.

Secondly, we have adapted the interest graph to incorporate the connection data, thus constructing a dynamic interest graph. In addition to re ning the underlying network, we have also improved the di usion process, integrating the notion of inter-event times. In contrast to the models from previous chapter, this model add a latency in the information spread for each node. We have estimated the parameters for this model using the static and the dynamic interest graphs, supposing that peers have an homogeneous and heterogeneous behavior regarding this latency time. Simulation with these variants revealed that the most important variation was the improvement in the interest graph. The di erence between the static and dynamic interest graphs was key to reproduce realistic small cascades. Bigger cascades remain challenging to reproduce, specially in terms of depth.

In sum, the results of this chapter emphasize the value of integrating time patterns into the models, in order to generate realistic spreading cascades. In particular, we have highlighted the positive impact of considering dynamic graphs which integrate node connection data. 

H

analyzed the ability of contagion spreading models to reproduce key features of real le spreading cascades in the previous chapters, we turn to the question of the sensibility of these models to the underlying network structure. As we have mentioned in Chapter 1, there are a number of results in relating topological structures of random graphs and asymptotic results, i.e., when the epidemic is allowed to evolve with no duration constraints. In particular, studies have highlighted the importance of node degree distribution in random graphs to predict the probability of the epidemic extinction in the case of SIR models [START_REF] Vespignani | [END_REF]Vespignani, 2001, Newman, 2003]. Similar results were also given in terms of graph spectral analysis [START_REF] Wang | Epidemic spreading in real networks: An eigenvalue viewpoint[END_REF], Prakash et al., 2012]. The analysis of asymptotic behavior of contagion models on random graphs featuring structural properties similar to real-world graphs is is an active research camp, particularly sparse random graphs with local clustering [START_REF] Coupechoux | How clustering a ects epidemics in random networks[END_REF]. In spite of the great interest and important results obtained in this area, the analysis of "out of the equilibrium" spreading, that is, in non-asymptotic regimes remains remarkably scarce -which is in part due to the challenges in devising theoretical results without asymptotic analysis tools.

In this chapter we analyze the impact of interest graphs' key structural properties in terms of spreading cascades generated by the previous models. In particular we consider our baseline model, the simple SIR model and the best model examined, the SI model with homogeneous/heterogeneous inter-contag~ion time.

Methodology

As we have seen in Chapter 2, the interest graph was constructed from the measurements of real peer-activity and features key properties of complex networks, namely small diameter, heavy-tailed degree distribution and sparsity/local clustering. A priori, each of these properties (and perhaps other non-identi ed properties) may play a key role in contagion spreading. Moreover, it is possible that one property may have a much greater impact than another, independently of the other properties mentioned. For this reason these properties have to be analyzed separately. Strictly speaking this is not possible, since these properties are correlated. However, in the following we present a methodology to analyze these properties individually using random graphs.

We have considered the spreading of les in a sequence of random networks derived from the interest graph, with increasing topological complexity (Figure 5.1). More precisely we begin considering an Erdös-Rényi (ER) random graph with the same density and size as our interest graph, the simplest random graph in our sequence. Then we have chosen a random graph with the same density and degree distribution using the Con guration Model (CM) approach [Molloy andReed, 1995, Newman, 2003]. Next we have generated a random bipartite graph, with the same density and degree distribution as our original bipartite graph B of peers and les [START_REF] Guillaume | Bipartite structure of all complex networks[END_REF]. Compared to the interest graph, the projection of this random bipartite graph (RB) has similar density, degree distribution and clustering coe cient. In sum, for each new element of this sequence of (uniformly chosen) random graphs we introduce a new constraint to make it more realistic -in the sense that its topological properties will be closer to the interest graph. In section 5.3, in which we simulate the best model investigated in the previous chapters, we examine an extra property in this section, in addition to the network structure variations provided by the sequence of random graphs: the degree distribution of the initial providers (sometimes also referred as epidemic "seeds"). As we have seen in Chapter 2, the observed degree distribution in the trace is di erent from the overall degree distribution of all nodes. Indeed, providers are typically more connected than regular nodes cf. Hence, to assess the impact of the initial provider degree distribution we perform additional simulations on each random graph, holding this property constant. In the case of the ER graph, this extra simulation is not pertinent, since in these graphs not even the node degree distribution is conserved. In the case of the CM graph, it is possible to simulate the model using precisely the same distribution observed in the trace. Finally, in the case of the RB graph, although the node degree distribution is similar to the interest graph's, one cannot guarantee a perfect match for each node. For this reason we ranked the nodes in the interest graph and in the RB graph in terms of their degree distribution and matched these nodes. The result is a similar and consistent degree distribution, suitable for to the simulation of all cascades.

Erdős Rényi

Simple SIR model on interest graph

As we pointed out in the beginning of this chapter, we are interested in investigating the impact of the key topological properties for contagion models in non-asymptotic regimes. Recall that in Chapter 3, we saw that the simple SIR model evolves in discrete simulation steps which have no direct relation with the the real time (measured in seconds) of real traces. Out of simplicity, we wish to compare the sets of spreading cascades similar to the real, observed cascades, so we will follow the strategy presented in Chapter 3: we identify the properties of each the observed cascades and generate simulated cascades with similar properties. In particular, we have decided to hold one property xed and compare the other properties. More precisely, for each le we generate a simulated cascade with the same size (resp. depth) as the corresponding observed cascade and compare the depth (resp. size) and number of links. In practice, for each le we simulate the SIR epidemic as described earlier and halt it when it reaches the size (resp. depth) of the corresponding observed cascade.

We have generated populations of simulated cascades for each underlying network and constraint (on depth and size). We have performed 801 280 le spreading simulations (one for each le in F) for each network and have selected every simulated le spreading cascade which attained the depth (resp. size) of the real spreading cascade for the same le -and have rejected the others for purpose of comparison. With this procedure, each underlying network yields a di erent population of le spreading cascades, since the rejected cascades may be di erent in each case. However 93.80% of the les have generated simulated cascades with the same depth as the corresponding real cascades, for all networks. Similarly, 85.64% of the les have generated simulated cascades with the same size as the corresponding real cascades, for all networks -except the ER network. Indeed, only 21.76% of the les have generated the contemplated size in the ER graph. Furthermore the properties of these simulated cascades on the ER graph deviated signi cantly from the properties of the cascades on the other graphs. Hence, in the following analysis we do not include the simulations for the ER graph. Rather, we focus on the properties of the les with comparable spreading cascade depth (resp. size) on all networks but ER.

In Figure 5.3a we plotted the complementary cumulative distribution of the size of cascades with comparable depth. We observe a divergence of the cascade size from the observed cascades: simulated cascades are typically much bigger in size for a given depth compared to real cascades. The range of values in both categories is also striking: the biggest real cascade is at least two orders of magnitude smaller than the biggest simulated ones. Among the simulated cascades, there is a remarkable matching in size values for the simulation on the CM and the interest graph (curves are superposed). In Figure 5.3c we plot the complementary cumulative distribution of the depth of cascades with xed size. Real cascades feature a much higher depth compared to simulations, holding cascade size constant. In particular there is a cuto on the cascade depth for the simulations: we do not observe any cascade depth bigger than 11 in the simulations. As for the number of links, we have two interesting situations. If we x the depth (Figure 5.3b) the number of links distribution resembles closely the size distribution (Figure 5.3a). This is not completely surprising, since the two quantities are correlated. In this case we observe a larger number of links for all simulations compared to the number of links in the real cascades since the simulated cascades themselves are bigger. If, in contrast, we x the cascade size to t the observed cascades size (Figure 5.3d), we observe a typically smaller number of links. Combining these observations on both plots we conclude that real spreading cascades are denser than simulated ones, a clear qualitative feature not captured by the simple SIR model. Finally we note that most cascades are trivial, featuring depth equal to one and correspondingly small size. To sum up, we have compared simple topological properties of real spreading cascades and simulated cascades from a calibrated SIR model, with comparable depth and size. We have observed that simulated cascades are relatively "wider" whereas real cascades are relatively "elongated", that is, real cascades have a smaller size per depth ratio. Moreover, real cascades are typically denser than simulated ones. In terms of interplay between underlying network structure and the simple SIR spreading cascades, we have observed that respecting the interest graph degree distribution was the only property that caused a striking change in simulations behavior on the considered random networks. Indeed we have observed sharp qualitative dissimilarities between the simulations on the ER graph (di erent degree distribution) and no sensible dissimilarities between the simulations on the CM, RB and the interest graphs.

SI model on the dynamic interest graph

In our analysis, we proceed as in section 5.1, where we de ned a sequence of increasingly realistic random graphs, in the sense that they have a topology increasingly similar to the interest graph. Recall the schematic representation of this graphs in Figure 5.1: we begin with an Erdös-Rényi (ER) random graph with the same density and size as our interest graph, the simplest random graph in our sequence. This graph is followed by a Con guration Model (CM) random graph with the same density and degree distribution. Next we have generated a random bipartite graph with degree distribution as our original bipartite graph, whose projection in the set of peers (RB) yields a graph with similar density, degree distribution and local clustering as the interest graph. In sum, for each new element of this sequence of (uniformly chosen) random graphs we introduce a new structural constraint to make it closer to the interest graph.

In the following, we simulate the spread of the les F on the random graphs described in the previous paragraph using the models examined in the Chapter 4, namely the SI with homogeneous and heterogeneous node behaviors (in terms of inter-contagion time distributions). For each SI model we perform two simulations: the rst with the (static) random graphs and a second simulation in which we consider dynamic versions of the random graphs in the rst simulation. More precisely, we have used the methodology to generate a dynamic interest graph from the static interest graph using the connection data, presented in section 4.2.1. At each instant t > 0 each node is present in the random graph if it was on-line at this instant in the P2P system (or equivalently, if it is present at this instant in the dynamic interest graph).

Homogeneous node behavior

We begin simulating the spread of the les F on the random graphs using the simplest model explored in this chapter, namely the SI with homogeneous inter-contagion time. The rst batch of simulated cascades was generated using the following static graphs: ER, CM and RB graphs, with shu ed initial providers and CM, RB and the interest graph with matching initial providers. The results are plotted in Figure 5.4, where we see the six curves superposed for each property distributions plot. This indicates that the model is insensitive to all the variations we examined, which suggests that it is not a realistic model to capture user interaction. Surprising as this result may seem, it is not so di erent from the results obtained in the previous chapter, when we have investigated the impact of the topology for key cascade properties. Indeed, in that experiment, simulations on random graphs yielded similar sets of cascades for all graphs, except the ER graph, which failed to produce a comparable set of cascades in that framework. Compared to the models examined in the previous chapter, these models are di erent in the following aspects: it features an inter-contagion time and users remain active until they disconnect at the nal time T . These are important di erences, but when considered in isolation, they were insu cient to generate di erent sets of cascades. The same is true for heterogeneity: this change had no signi cant impact on the structure of the generated cascades.

In the following we examine the SI model and variations in the same random graphs tested previously, taking into account the connection patterns of the nodes. That is, each random graph is rendered dynamic, considering the connection/disconnection times for each node, as computed in the beginning of this chapter. We have generated a set of cascades using the homogeneous model and plotted the results in gure Figure 5.5. The generated sets of cascades remain similar to the sets of cascades generated in the previous trial, albeit with slight more variance between curves. Spreading model is insensible to variations on network topology and initial providers. All curves superposed in the three graphs.

Heterogeneous node behavior

Now, we consider the same setting as the rst trial, but using a SI model with a heterogeneous behavior of nodes. More precisely, we consider rst the static random graphs (Figure 5.6), followed by the dynamic random graphs (Figure 5.7), as we did previously. In contrast to the previous simulations, we see a sharp distinction between two types of cascade pro les, indicated by the superposition of two sets of curves. That is, in the interest graph and in the random graphs where we have matched the degree distribution of the initial providers, the simulations yield sets of cascades with similar pro le. This heterogeneous SI model with ICT is sensitive enough to highlight a topological di erence between the variations considered, namely the degree distribution of the seeds. Additionally, it shows that in the context of time-bounded simulations like ours, the impact of local clustering might be negligible compared to the degree distribution. Spreading model features the essentially same behavior on all graphs if the degree distribution of initial providers is shu ed and likewise a similar behavior on graphs with similar initial provider degree distribution.

Summary

We have inspected the interplay between the underlying network and the model simulating le spreading in di erent networks. In particular, we have simulated the simple SIR model in a sequence of uniformly random graphs derived from the random graph, with increasing complexity. Furthermore, in terms of the studied properties, the simple SIR model generates similar cascades on random networks having the same degree distribution as the interest graph. We have also found that (inset). Spreading model features the essentially same behavior on all graphs if the degree distribution of initial providers is shu ed and likewise a similar behavior on graphs with similar initial provider degree distribution.

in our setting (with simulation time constraints) the addition of clustering on the random graph did not change the properties of the spreading cascades qualitatively.

Given the improvement in performance brought about integrating temporal patterns into the models, we have tested the impact of the underlying network structure in the di usion process, using the framework introduced in the previous chapter. More precisely, we have simulated this model on a series of increasingly realistic random graphs derived from the interest graph. In this case, as throughout the chapter, our simulations have a time-span constraint, to t the observed time window, in contrast with the usual asymptotic analysis found in the literature. In this "out of the equilibrium" regime, we found that models with homogeneous peer behavior are essentially insensible to all the canonical properties examined. In contrast, models featuring heterogeneous peer behavior were sensible to selected topological properties. More precisely, the topological property with the biggest impact on the simulated cascades was the initial providers degree distribution. Moreover, common graph properties with a demonstrated impact in asymptotic analysis have a minor impact in our simulated cascades. This nding highlights the importance of a frequently overlooked albeit important property in spreading cascade simulations. Also, this result reinforces the rationale to examine models featuring heterogeneous peer behavior. I thesis we set out to study quantitatively real-world di usion, focusing particularly on spreading cascades as our central object of study. The importance of this topologically rich object emerged in recent years, with the advent of several empirical works examining on-line di usion. Though these works have undoubtedly advanced our knowledge of spreading dynamics, we barely scratched the surface. On the empirical side, it has proven challenging to characterize cascade structure in terms of simple measures, as they generally feature a complex structure. In particular, various cascade properties have been investigated, but to this day there is no consensus on which properties make a satisfactory synthesis of the cascade structure. Moreover, since the focus on spreading cascades is fairly recent, as discussed in the introduction, there is no general taxonomy organizing classes of spreading cascades in di erent groups. On the theoretical side, one typically manipulates contagion and percolation-like models on a random graph. In the last decade we have accumulated a number of results concerning relatively simple models in asymptotic regimes. These results have considerable merit since the analytical treatment of discrete structures can be extremely di cult, but the scope of application of these models remains somewhat limited, as real-world graphs feature complex topology and the di usion process occurs within a bounded time window (which is not generally large enough for an asymptotic approximation). Hence, a better understanding of the empirical data, the theoretical models and, particularly, the link between both is also crucial to the characterization of information di usion in large real-world networks.

Contributions and perspectives

Evidently this ambitious scienti c quest, which has interested scientists for years, has various "attack fronts". In this thesis we have decided to examine the most popular family of network di usion models, comparing it to real-world spreading data. Similarly, other studies (discussed in the rst chapter) have set out to validate the popular di usion models exploring the parameter space in the search of parameters capable of generating realistic cascades. Instead, we have supposed those models were able to account for the key properties of the observed di usion and calibrated the models accordingly, using standard parameter inference techniques. We then compared simulations of the calibrated model to the real-world data. This distinctive data-driven approach has proven interesting and we have been able to provide relevant contributions in this context, as we discuss in the following.

Summary and contributions

In this section we summarize the contributions of this thesis in context and discuss the challenges we have faced and the the decisions we have made in the course of this work.

Framework and empirical characterization

Our rst contribution was to identify a rich dataset for the study of di usion and propose a framework to do so. As we have discussed in detail in Chapter 3, standard di usion models are based upon local transmission rules, which take into account the structure of the underlying graph. Therefore, in order to calibrate the spreading model parameters we needed both the underlying graph and the set of spreading cascades. We reconstructed the directed acyclic graphs representing the spreading cascades from the spreading trace. To obtain the interest graph of peers, we proposed a methodology to reconstruct it from the bipartite graph of peers and shared les.

In terms of empirical exploration, we have characterized the spreading cascades in terms of three key structural properties -size, depth and number of links. Standard topological properties of the interest graph were analyzed and we have observed a small diameter, an heterogeneous node degree distribution, low global density and high local clustering. Hence, we have shown that the interest graph topological properties are consistent with the empirical literature on complex networks, and thus, suited for our analysis of di usion on complex networks. As discussed in Chapter 1, publicly available datasets su ered with missing data regarding the di usion trace or the underlying network until recently. But, since the beginning of this thesis a number of large-scale rich datasets have been published, typically from proprietary social networks. So it made sense to gather our own dataset, which we have made publicly available 1 . The dataset description and the empirical ndings are summarized in [START_REF] Bernardes | Relevance of sir model for real-world spreading phenomena: Experiments on a large-scale p2p system[END_REF].

Inadequacy of the simple SIR and extensions

Turning to the question of the model examination, we have decided to focus our analysis on the most popular family of epidemic di usion models: the SIR models, adapted to networks (in particular we begin our analysis with the simplest SIR model). We have compared the real-world data with simulations from model in question, set up to behave as closely as possible to the real le spreading if we assume the le spreading followed the model dynamic. Indeed we have calibrated the parameters with parameter which maximize the likelihood, in agreement with the framework discussed in [START_REF] Goyal | Learning in uence probabilities in social networks[END_REF]. In addition to the 1. Dataset available at: http://www-complexnetworks.lip6.fr/ ~bernardes/p2pdata2d spreading parameters of the model, we have also identi ed the initial providers or "seeds" in our dataset to use them as a simulation input. As we remark in the rst chapter, despite the numerous papers dealing with the theoretic/asymptotic analysis of these models or their applications, there are surprisingly few papers devoted to the calibration of such network di usion models with real-world data. Moreover, the question of time bounds in the observed data and its potential impacts is hardly discussed, even though data gathering is frequently bounded in time.

An important methodological challenge in the comparison of simulated and real spreading traces concerned the time bounds of the real-world data: the evolution of the simple SIR model is given in terms of an intrinsic time (namely, the number of steps in the simulation algorithm), which is not comparable with the duration of the real di usion trace (measured in "real" time, e.g., seconds). Thus, in order to compare the simulated and real spreading cascades, we have decided to hold one property constant, say size (or depth) and, for each le, generate a simulated cascade with the same size (or depth) as the corresponding real cascade and compare the remaining properties. In other words, let the SIR model spreading parameters be calibrated and a set of seeds for each le be given. If we generate a set of cascades in which each le has the same size (or depth) as the corresponding real cascade, how does the distribution of the other properties for the set of generated cascades compare with the real ones? The simulation results revealed that the simulated cascades were qualitatively di erent from the real ones. Indeed, real-world cascades were typically more "elongated" and with a greater number of links compared to generated cascades. This nding naturally raised an alarm against the common assumption that di usion phenomena closely resemble simple epidemic models.

In fairness, the fact that the simple SIR model was unable to generate realistic cascades in the framework considered does not imply that this model is invaluable. Indeed, it is based upon few and simple assumptions, but enough to yield an interesting dynamic. This is positive in and of itself and su cient to be a potential archetype for the observed di usion phenomenon. That said, before we conducted the experiment we thought this model would likely be too simple to capture the observed spreading structure so, in this sense, the divergent results were expected. However, we also expected that two natural SIR model extensions, which take into account heterogeneities found in our data (namely le popularity and peer behavior), might generate substantially more realistic cascades. Surprisingly enough, subsequent experiments with these model extensions yielded cascades which remained substantially divergent from the real-world cascades (they were as divergent as the cascades generated with the simple SIR model). In sum, the simplest SIR and two considered extensions (natural as they were, given the data) were insu cient to generate realistic spreading cascades.

At this point it became clear that in order to improve the model, we had to explore other re nements. Going back to the data, we had observed in Chapter 2 that there is a substantial number of nodes with small degree, which have participated in the P2P system shortly and which have exchanged les with a small number of nodes (which typically feature a high degree). From the perspective of an infecting peer -i.e., a node which has just become infected and is about to infect its neighbors -the probability of infecting any of its neighbors is homogeneous in all the models considered until that point2 . Therefore, star-like nodes in the graph -i.e., highly connected nodes having a lot of small degree "satellites" connected to it -might contribute to the generation of cascades with bigger size-to-depth ratio. In other words, the interplay of the examined models and the underlying graph might generate cascades less elongated than the ones we observe in the data. Hence, we hypothesized that the missing ingredient in the spreading models examined up to that point might have been a notion of a nity between infecting nodes and their target, which would in uence the infection probability between this pair of nodes.

We proposed a straightforward measure of a nity between each pair of peers in the context of P2P le spreading, namely the interest a nity, given by the number of les both peers have been interested in. With this extra information the original interest graph becomes a weighted interest graph. Next, we adapted the di usion dynamics to the weighted graph, assuming that les spread easier between nodes with greater a nity in the spirit of [START_REF] Onnela | Structure and tie strengths in mobile communication networks[END_REF], a study of real-world di usion of information on weighted graphs. Hence, the spreading probability in the adapted di usion process became a function not only on the infected node, but also in its target through the a nity measure. In other words, it depended on the weight of the edge connecting both nodes. Once these modi cations were made, we have calibrated the new model and generated a set of spreading cascades. The new simulated cascades revealed a persistent divergence in cascade shape pattern found previously: they are also typically much shorter and wider compared to the real spreading cascades. Since the impact of the introduction of the a nity measure was qualitatively insigni cant we concluded that the absence of this parameter was not the primary shortcoming of the original model.

To sum up, we recall that we are interested in evaluating the pertinence of epidemic contagion models to reproduce key structural properties of real-world spreading cascades. We began examining a simple and arguably the most popular network di usion model in the literature and established its inadequacy to generate realistic spreading cascades, in terms of the patterns found in le spreading cascades on P2P systems. Given the exibility/generality of the spreading dynamic and the multitude of factors which may have an impact on the di usion dynamic, it is hard to categorically reject the SIR model as inadequate di usion model in practice, so we decided to investigate natural extensions to the model, which explore key properties found in the data. We have examined improvements both in terms of the spreading dynamic (heterogeneous models according to peer behavior or le popularity) and in terms of the underlying network structure (interest a nity measure) and found they did not bring about, separately, major changes in the shape of the simulated cascades. These results combined weaken the case for the simple SIR model as a pertinent spreading dynamic in the context of real-world di usion, particularly in the case of P2P systems. The complete account of these ndings was published in [START_REF] Bernardes | Inadequacy of sir model to reproduce key properties of real-world spreading cascades: experiments on a large-scale p2p system[END_REF].

Temporal patterns analysis and integration

Although the introduction of the a nity measure did not improve the simple SIR model sensibly, we had an intuition this distinguishing the interaction of peer sharing occasional les and more present peers was a key element missing in the model. Hence we thought about integrating the interaction time directly into the model, namely transforming the original interest graph into a dynamic graph. In this way, the spreading impact of transient nodes would be signi cantly diminished compared to more present nodes, with a more steady presence in the network. Evidently this signi cant change in the interest graph presupposes, rst, the connection times of each node and an adapted spreading model which would evolve in seconds -that is in "real" time, as opposed to an intrinsic simulation time. Indeed, the spreading process is supposed to interact with the graph, taking into account the nodes and links present in the system at time t > 0 measured in seconds and the process is supposed to evolve in the same time scale.

As we discussed in Chapter 4, although our dataset features temporal data in terms of time stamps for request events, but not the connection events for all peers, we had to reconstruct connection times from the data we had. Using statistical methods we have inferred likely connection and disconnection times for each node in the graph, which in turn we used to reconstruct the dynamic interest graph.

In terms of the di usion process, we decided to abandon the simple SIR and use instead a SI model with a latency between the time a node becomes infected and the time it infects each of its neighbors, namely the "inter-contagion time" (ICT). Again making a fairly standard assumption that these times are also distributed according to exponential times, we were able to calibrate them using the available data and embed the process with a time scale evolution in terms of seconds, as we wanted. Furthermore, we decided to examine two variants of these models: one in which the ICTs follows the same distribution for all nodes, that is, the node behavior is homogeneous and another in which each node has his own exponential distribution, to account for the heterogeneous behavior of peers. Finally, we adapted the calibrating methods to this new model as we did throughout the model examination.

Once we adapted all parts of the framework we have simulated the temporal SI models on the dynamic interest graph: in terms of cascade size, the results were strikingly improved with respect to the previous simulations. Indeed, we reproduce a set of cascades with similar size as the real-world distribution. The distribution of the number of links was also improved, to a lesser extent. The sole property we could not improve qualitatively was the depth of the simulated cascades, which remained small compared to the real ones. Since we changed two major factors with respect to previous experiments (underlying network and di usion process), we decided to assess the individual impact of each improvement. Since the dynamic graph presupposes a temporal di usion process, but not the converse, we decided to simulate the same model on the original (i.e., static) graph and compare with the simulation of the same model in the dynamic graph. Comparing both simulations we conclude that the change in the model alone did not bring about the improvement in simulated cascade properties found previously. Hence, we conclude that the key improvement is due to the dynamic graph or the combination of the dynamic graph associated with the temporal SI model.

Impact of the undelying network structure

In our quest to identify the relevant factors taken into account by the di usion model, we have developed an experiment to investigate the impact of the underlying network structure on the simulated spreading cascades. As we have mentioned in the rst chapter, there are theoretical results in the literature linking graph properties and the asymptotic behavior of epidemic spreading models such as the SIR model family -summarized for instance in [START_REF] Barrat | Dynamical Processes on Complex Networks[END_REF]. In this sense we expected a priori that the empirical properties of the underlying network would play a role in the spreading simulation, even though our framework of simulation is outside the scope of these theorems. Indeed, one key contribution of our work is precisely analyzing di usion models in more realistic settings, comparing with real datasets, which are naturally bounded in time. In this regime, we do not dispose of theoretical tools that relate graph properties and dynamics. Even the few asymptotic theorems available do not focus on spreading cascade properties; rather they focus on the overall fraction of infected nodes and probability of epidemic extinction. Hence, the interest to uncover the impact of these properties in our framework.

As a real-world complex network, the interest graph has a rich topological structure, which evolved organically through the interaction of peers sharing les. As pointed out in Chapter 2, it also features properties common to other complex networks, particularly low density, heterogeneous node degree distribution, and local clustering. Evidently these properties are not independent from one another, so in order to assess the impact of these properties individually, we decided to generate a sequence of random graphs, beginning with a baseline graph derived from the interest graph and incrementally adding the properties in question; monitoring the behavior of the simulations from one graph in the series to the other one can identify the impact of each property. Fortunately, in the last decade, methods have been developed to generate uniform random graphs closely matching the target properties mentioned.

We began this analysis using the simple SIR as we describe in Chapter 3. Using the model input computed in our framework (that is, same seeds, spreading parameters and bounds in time) we have simulated this model on all graphs and obtained essentially the same results for all graphs except the baseline graph. That is, all graphs having same degree distribution yielded the same cascade pro les, which suggest that this graph property had a primary impact on the simulation and that the other properties were unimportant. Next we have performed the same analysis with the temporal SI models (i.e., featuring an inter-contagion time), with two extra variations to measure the impact of the connection patterns and of the seeds' degree distribution. Again using the model inputs obtained in our corresponding framework we have concluded that temporal SI model with homogeneous peer behavior is insensitive to the increment of complex networks' topology properties. In other words, simulated cascades feature the same pro le, despite the increment in complex topology properties given by the random graph sequence. In contrast, examining the temporal SI model with heterogeneous peer behavior we found that this model is highly sensitive to the seeds' degree distribution. Indeed, this property was the single most important factor in this case; the other properties of the graph were secondary or unimportant. Given that this temporal SI model was the most realistic model tested, this draws attention to a relevant though overlooked parameter for epidemic di usion models in time-bounded simulations, the seed nodes degree distribution.

Perspectives

The analysis done in this thesis opens numerous perspectives, which we present in the following. We have grouped them in terms of empirical works and modeling (di usion and general framework), given that the work presented here is in the intersection of those two domains.

Empirical

On the empirical side, our analysis was founded on the analysis of spreading cascades in terms of their structural pro le, characterized by their size, depth and number of links. Though these measures provided a valuable information and made for a rich analysis, they remain very simple compared to the spreading cascade as an object, a directed acyclic graph. Indeed, it would be interesting to explore other measures which capture overlooked aspects in our analysis (such as motif frequency, cascade clustering, spectrum, etc) or which better represent the spreading cascade. In this sense, [START_REF] Goel | The structure of online di usion networks[END_REF] have proposed a new measure for information cascades, the Weiner coe cient, to quantify the virality of the cascade. It would be interesting to characterize the observed cascades in terms of these measures and integrate them to our framework. Also in terms of empirical approaches, given that most cascades are trivial or quite small, an interesting strategy to better understand the di usion mechanisms to focus on the rare but most interesting cascades featuring a reasonable number of nodes. Also, it would make clearer the correlation study among di erent spreading cascade properties. Such move could facilitate the identi cation of more relevant patterns, potentially in conjunction with the new measures in the previous paragraph, and simplify the identi cation of more pertinent (albeit specialized) characteristics.

Finally, a major perspective concerning this analysis would be to apply it to other datasets and compare to the results obtained here. Evidently, we acknowledge that many of the di culties in modeling information spreading we have faced can be the result of data speci city. However, in our defense, it has been argued in [START_REF] Leibnitz | Modeling of epidemic di usion in peer-to-peer le-sharing networks[END_REF]] that spreading of les in P2P follows a SIR-like dynamic: though this claim was purely theoretical and not data-driven, it was still a good additional reason (in addition to the intrinsic qualities of the model and its widespread use) to make a throughout examination of this model and its extensions. In the case the framework yields di erent assessments of the same model to di erent data, it will be no doubt interesting to identify the relevant characteristics which justify the di erence. If, on the contrary, epidemic models remain unsuitable to other datasets, it will make stronger the case against the careless use of these models when dealing with real-world data.

Di usion model

In terms of di usion models, one of the most direct perspectives is to adapt some of the simple SIR model extensions to the temporal SI model and examine the impact of those. Indeed, once established a major factor impacting cascade pro les, one can test the impact of other pertinent factor, which had a second-order impact previously. Namely, it would be interesting to verify the impact of di erent le popularity in the spreading behavior. The same is true for the weighted graph. Indeed, it would be interesting to assess the impact of the a nity measure in the dynamic graph, since it is possible to combine the weighted graph de ned in Chapter 3 with the node connection data to generate a weighted dynamic graph. In terms of weight, we could also try other weight functions, such as considering that very popular les contribute little to the a nity score of a pair of peers, since numerous users possess the le in question; in this sense, rarer les provide more information about the true a nity between two peers. It is hard to guess a priori if this would be a better a nity measure, but no doubt it is worth investigating the impact of other weighted graphs.

Another perspective consists in incorporating tools and results from related elds. In this regard, we have already bene ted from a collaboration with col-leagues from Université Catholique de Louvain (UCL): we have submitted a joint paper where we proposed a Markovian model to mimic a non-trivial property in the le request pro les in P2P systems (more precisely this study exploited the same dataset we described in this thesis). In particular, our method generates arti cial requests trace, similar to our dataset, which can be analyzed as synthetic datasets. We decided to perform the same analysis we have done throughout the thesis to a generated di usion trace. We have shown that although the le request patterns of peers and the di usion models are related, the link between the two remains uncovered. In fact, although the arti cial trace in question reproduces some realistic request patterns, the corresponding cascades are also qualitatively di erent from the cascades observed in practice in the real-world data. The analysis which remains to be done is to assess the exact correlation between the two properties, namely spreading cascades and le request patterns.

Finally, an important research perspective is to re-examine the fundamental spreading assumption underlying all the models examined so far. As we have discussed previously, we have examined the most widespread used family of models, the epidemic-inspired SIR model and variations, which assume that the spread of information from one node to the other depends on the in uence of the spreader or on the receptivity of the receiver (or on a combination of both). This is not the only possible di usion mechanism available in the literature. Indeed, another important class of models, threshold or adoption models, assumes that the spread of information depends primarily on the social circle of the receiver. In network terms, the neighboring nodes of the potential receiver node play a key role in the likelihood that he or she "adopts" the information. In this case, nodes are typically more likely to adopt an information if there is a large number (or fraction) of their neighbors which have the information already.

As we mentioned in the rst chapter, perhaps the most famous paper associated with this model is [Granovetter, 1978], a sociological study of crowd behavior. In the context of network di usion, these models were popularized, among others, by Dodd and Watts [START_REF] Dodds | A generalized model of social and biological contagion[END_REF]. These works consisted of numerical experiments which explored di erent scenarios assuming this spreading mechanism. However, despite the interest this approach attracted, very few papers apply it in conjunction with a parameter estimation framework to study of real world cascades as it was done for SIR models in this thesis and elsewhere [START_REF] Saito | Prediction of information di usion probabilities for independent cascade model[END_REF], Goyal et al., 2010].

One of these infrequent works, which models the di usion with an adoption model whose parameters are calibrated using real-world data, is [START_REF] Bakshy | Social in uence and the di usion of user-created content[END_REF]. The model they use is not the typical model popularized by Dodds and Watts, where the node's neighborhood directly a ects the adoption outcome. Rather, they consider a continuous-time model of adoption with stochastic rates of adoption instead of adoption probabilities. The dynamics of this model is as follows: a node enters into state k at the moment that their kth neighbor adopts the information being spread. The model assumes that once an individual is in state k, the time until they adopt, T k , is exponentially distributed, i.e. they draw an exponentially distributed random variable T k with mean 1/λ k where λ k will be referred to as the adoption rate for state k. If a node state changes before they reach their adoption time, they discard that time and draw a new time from the next exponential distribution corresponding to their new state. If one of their existing neighbor adopts, they advance to state k + 1.

This model admits extensions that take into account various heterogeneities, is also compatible with dynamic graphs and its parameters can be estimated using a maximum of likelihood. Hence, it would be no doubt interesting to develop the same study conducted in this thesis using this alternative di usion model instead of the epidemic models suggested so far. As we mentioned in the Empirical perspectives section above, theoretical works on information di usion models in the context of P2P le sharing systems wagered on epidemic models, particularly the SIR model, as the best candidate to describe information di usion in these networks, so it made sense to investigate these models exhaustively with priority.

General

In a more theoretical note, the rst general perspective opened with this study, particularly as a consequence of the study of the network topology impact, is to extend the analysis using other model inputs. As discussed previously, the set of seeds, spreading parameters and time bounds were determined as a function of our framework, which in turn dealt with a real dataset. Ideally, for each input parameter it would be interesting to vary the values considered to have a better sense how these important di usion models behave in constrained time. This is both an important and straightforward perspective, given what has already been developed in this thesis.

Still regarding the question of better understanding the behavior of these models in particular settings, examining other kinds of underlying networks would be interesting, particularly other kinds of dynamic graphs. The dynamic graphs we have studied consisted essentially of static graphs made dynamic following the connection and disconnection of peers; thus, if any two peers remain on-line, no changes in the corresponding link between the two nodes will change. In contrast, other kinds of dynamic graphs, such as contact networks, are such that the evolution of graphs is usually given by the appearance and disappearance of links between individuals. This di erent "evolution nature" would likely impact the models di erently. Indeed, we have seen recently a growing interest in the interplay between epidemic contagion models and this kind of dynamic graph in the literature from a theoretical angle [Karimi andHolme, 2013, Lambiotte et al., 2013].

In conclusion, once we have accumulated su cient information on the evolution of these models in all the aspects listed so far, we will be able to identify a representative enough behavior of these models to develop a direct way to test the hypothesis that a certain empirical di usion trace can be explain by such models. In this sense, a Bayesian statistics approach may prove interesting, as the evaluation process involves calibrating the model with the most realistic parameters given the data and we might have some a priori knowledge of the parameters.

In any case, many research directions remain open and, although characterizing information on complex networks is no doubt challenging, the relevance of this subject remains great, from a purely scienti c perspective as well as from an

A.1 Résumé

Dans cette thèse, nous avons étudié la di usion de l'information dans les grands graphes de terrain (des réseaux d'interaction complexes réels), en se focalisant particulièrement sur les patterns structurels de la propagation. Plus précisément, notre objet d'étude central est la cascade de di usion, i.e., le graphe qui relie les noeuds du réseau (qui représentent des individus, machines, etc) par où l'information est passée, en mettant en évidence "qui a transmis l'information à qui". Cet objet topologiquement riche a reçu beaucoup d'attention depuis quelques années grâce à la disponibilité de traces numériques détaillées sur des événements de di usion en ligne (email, chiers, tweets, etc.). Sur le plan empirique, il s'est avéré di cile de capturer la structure des cascades de di usion en termes de mesures simples. Diverses propriétés des cascades ont été étudiées, mais l'on n'a pas encore trouvé un ensemble de propriétés simples permettant de synthétiser la structure des cascades. Sur le plan théorique, l'approche classique consiste à étudier des modèles stochastiques de contagion et de percolation sur des graphes aléatoires ou réguliers. Le traitement analytique de ce type de modèle sur des structures discrètes s'avère di cile, mais malgré la di culté, plusieurs résultats concernant le comportement asymptotique de modèles simples ont apparu dans la littérature. Néanmoins, le champ d'application de ces modèles reste limité, car les cascades réelles ont généralement une topologie complexe et le processus de di usion se produit dans une fenêtre de temps limitée (généralement pas assez grande pour l'analyse asymptotique). Par conséquent, une meilleure compréhension des données empiriques, des modèles théoriques et du lien entre les deux est également cruciale pour la caractérisation de la di usion dans les grands graphes de terrain.

Ce document est organisé de la manière suivante : nous commençons, au premier chapitre, par un état de l'art sur les graphes de terrain et la di usion dans ce contexte. Dans le chapitre 2, nous décrivons notre jeu de données et discutons sa pertinence dans le contexte du premier chapitre. Nous présentons la procédure de reconstruction du graphe sous-jacent (où se passe la di usion) et des cascades de di usion. Ensuite, dans le chapitre 3, nous évaluons la pertinence d'un des modèles classiques de di usion sur les réseaux : le modèle SIR. Nous examinons aussi quelques extensions de ce modèle qui prennent en compte des hétérogénéités de notre jeu de données, ainsi qu'un ra nement du processus de reconstruction du graphe d'intérêt. Dans le chapitre 4, nous explorons la prise en compte du temps dans l'évolution du réseau sous-jacent et dans le modèle de di usion. Dans le chapitre 5, nous évaluons l'impacte de la structure du graphe sous-jacent sur la structure des cascades de di usion générées avec les modèles étudiés dans les chapitres précédents. Nous terminons la thèse par un bilan des résultats (que nous résumons dans la suite) et des perspectives ouvertes par les travaux menés dans cette thèse.

A.1.1 Méthodologie et caractérisation empirique des cascades de di usion

Notre première contribution a été d'identi er un ensemble de données riche pour l'étude de la di usion et de proposer une méthodologie d'analyse. Les modèles de di usion classiques sont basés sur les règles de transmission locales, qui prennent en compte la structure du graphe sous-jacent. Par conséquent, a n de calibrer les paramètres du modèle de di usion nous avions besoin à la fois du graphe sous-jacent et des cascades de di usion. Nous avons ainsi construit -dans un premier temps -des graphes acycliques orientés représentant les cascades de di usion à partir de la trace. Pour obtenir le graphe d'intérêt des pairs, nous avons proposé une méthodologie pour le reconstruire à partir du graphe biparti des pairs et des chiers partagés.

En termes d'exploration empirique, nous avons caractérisé les cascades de di usion en termes de trois propriétés structurelles -taille, profondeur et nombre de liens. En analysant des propriétés topologiques standards du graphe d'intérêt des pairs, nous avons observé que le graphe a un petit diamètre, une distribution de degrés hétérogène, une faible densité globale et un ort clustering local. Ainsi, nous avons montré que les propriétés topologiques du graphe d'intérêt sont compatibles avec la littérature empirique sur les graphes de terrain, et donc adaptés à notre analyse, qui se focalise sur la di usion dans les grands graphes de terrain.

A.1.2 Pertinence du modèle SIR simple et de ses extensions

Quant à la question de l'évaluation du modèle, nous avons décidé de concentrer notre analyse sur la famille la plus populaire de modèles de di usion inspiré de l'épidémiologie : les modèles SIR. Nous avons comparé les données réelles avec des simulations du modèle SIR simple, calibré en supposant que ce modèle capture bien la dynamique de propagation. En e et, nous avons inféré les paramètres les plus vraisemblables, en accord avec le cadre discuté dans [START_REF] Goyal | Learning in uence probabilities in social networks[END_REF]. Nous avons également identi é les fournisseurs originaux ou graines de la di usion dans notre jeu de données pour les utiliser comme une entrée de simulation. Malgré les nombreux articles traitant de l'analyse formelle de ces modèles ou de leurs applications, il y a étonnamment peu d'articles consacrés à l'étalonnage de ces modèles de di usion de réseau avec des données réelles. En outre, la question des limites de temps dans les données mesurées en pratique et de ses impacts potentiels est à peine abordé, même si la collecte de données est souvent limitée dans le temps.

Un dé méthodologique important dans la comparaison des traces réelles et simulées concerne l'étalement de la durée des simulations : l'évolution du modèle SIR simple est donnée en termes d'un temps intrinsèque (à savoir, le nombre d'étapes dans l'algorithme de simulation), ce qui n'est pas comparable aux données temporels sur la trace réelle de di usion (mesuré en secondes). Ainsi, a n de comparer les cascades de di usion simulées et réelles, nous avons décidé de tenir une propriété constante, disons taille (ou profondeur) et, pour chaque chier, générer une cascade simulé avec la même taille (ou profondeur) que la cascade réelle correspondante et comparer les autres propriétés. Autrement dit, étant donnés le modèle SIR calibré et un ensemble de graines de di usion identi é pour chaque chier : si nous générons, pour chaque chier, des cascades de di usion de même taille (ou profondeur) que la cascade réelle correspondante, comment la distribution des autres propriétés de l'ensemble de cascades générées se compare avec les propriétés des vrais cascades ? Les résultats de la simulation ont montré que les cascades simulées sont qualitativement di érentes des cascades réelles. En e et, elles sont généralement plus "allongées" et ont un plus grand nombre de liens par rapport aux cascades simulées. Cette constatation suggère de la précaution vis-à-vis de l'hypothèse courante selon laquelle les phénomènes de di usion réelles ont une dynamique très proche de celle des modèles épidémiques simples.

En toute justice, le fait que le modèle SIR simple a été incapable de générer des cascades réalistes dans le cadre considéré n'implique pas que ce modèle est inintéressant. Au contraire, il est capable de produire une dynamique de contagion non-triviale avec très peu d'hypothèses de base. Cela dit, avant de mener l'expérience nous pensions que ce modèle serait probablement trop simple pour décrire la structure du phénomène de di usion observé et, dans ce sens, les résultats divergents étaient attendus. Toutefois, nous nous attendions aussi à ce que les extensions du modèle SIR qui prennent en compte la popularité des chiers et le comportement des pairs pourraient générer des cascades beaucoup plus réalistes que le modèle de base. Contrairement à nos attentes, les expériences avec ces extensions du modèle ont généré des cascades toujours sensiblement divergentes des cascades réelles (et des cascades générées avec le modèle SIR simples). En somme, le modèle SIR simple et les deux extensions qui tiennent compte des hétérogénéités trouvés dans nos données étaient insu santes pour générer des cascades de di usion structurellement réalistes.

Ainsi, pour améliorer le modèle, nous avons dû explorer d'autres possibilités. Pour en revenir aux données, nous avons observé qu'il y a un nombre important de noeuds avec un petit degré, qui ont fait peu d'échanges de chier, typiquement avec des noeuds ayant un haut degré. Par ailleurs, du point de vue d'un noeud infectant (i.e., un noeud qui vient d'être infecté et est sur le point d'infecter ses voisins) la probabilité d'infecter l'un de ses voisins est homogène dans tous les modèles considérés jusque-là. Par conséquent, les noeuds en forme d'étoile dans le graphe -c'est à dire, les noeuds fortement connectés à des noeuds "satellites" avec petit degré -pourraient contribuer à la génération de cascades avec un plus grand rapport taille-profondeur. Autrement dit, l'interaction des modèles étudiés et le graphe sous-jacent des pairs peut générer des cascades moins allongées que celles que nous observons dans les données. Nous avons soupçonné ainsi que l'ingrédient manquant dans les modèles de di usion examinés pouvais être une notion d'a nité entre les noeuds, qui in uencerait la probabilité d'infection.

Nous avons, alors, proposé une mesure d'a nité simple entre chaque couple de pairs dans le contexte des échanges de chiers P2P, à savoir l'a nité en termes des intérêts en commun, donnée par le nombre de chiers que deux pairs possèdent en commun. Avec cette information supplémentaire le graphe d'intérêt initial devient un graphe pondéré. Ensuite, nous avons adapté la dynamique de di usion au graphe d'intérêt pondéré, en supposant que les chiers se di usent plus facilement entre les noeuds avec une plus grande a nité, comme proposé dans [START_REF] Onnela | Structure and tie strengths in mobile communication networks[END_REF]. Par conséquent, la probabilité d'infection du processus de di usion calibré devient une fonction non seulement du noeud infectée, mais également de sa cible en fonction de la mesure d'a nité. En d'autres termes, il dépend du poids de l'arête reliant les deux noeuds. Une fois ces modi cations apportées, nous avons calibré le nouveau modèle et généré un ensemble de cascades simulées. Ces nouvelles cascades ont révélé une divergence persistante : elles sont aussi généralement beaucoup moins profondes et plus larges que les cascades réelles. Étant donné que l'impact de l'introduction de la mesure d'a nité a été qualitativement négligeable, nous avons conclu que l'absence de ce paramètre n'a pas été le principal handicap de la modélisation de base.

Pour résumer, nous nous sommes intéressés à évaluer la capacité des modèles de contagion populaires à reproduire les propriétés structurelles des cascades de di usion réelles. Nous avons commencé par l'évaluation du modèle le plus populaire dans la littérature et établi son incapacité à générer des cascades de di usion structurellement réalistes, comparé aux cascades de di usion de chiers observées sur les systèmes P2P. Compte tenu de la multitude de facteurs qui peuvent avoir un impact sur la dynamique de di usion, nous avons décidé d'évaluer des extensions naturelles du modèle SIR, qui explorent les propriétés clés trouvées dans notre jeu de données. Nous avons examiné les améliorations à la fois en termes de la dynamique de propagation (modèles hétérogènes selon le comportement des pairs ou la popularité des chiers) et en termes de la structure du réseau sous-jacent (mesure d'a nité) et constaté qu'elles n'ont pas apporté des changements majeurs dans la forme des cascades simulées. Ces résultats combinés découragent le choix du modèle SIR pour modéliser la dynamique de di usion réelle, particulièrement dans le contexte des systèmes de P2P.

A.1.3 Patterns temporaux et son intégration dans le modèle

Bien que l'introduction de la mesure d'a nité n'a pas amélioré sensiblement le modèle SIR simple, nous étions persuadés que distinguer l'interaction des utilisateurs occasionnels des utilisateurs plus présents était un élément clé manquante dans le modèle. Ainsi nous avons décidé d'intégrer le temps de présence directement dans la modélisation, en transformant le graphe sous-jacent en un graphe dynamique. De cette manière, l'impact des noeuds peu présents serait diminuée de façon signi cative par rapport à l'impact des noeuds présents plus régulièrement dans le réseau. Évidemment, cette modi cation importante dans le graphe sous-jecent nécessite, d'une part, des temps de connexion de chaque noeud et d'un modèle de di usion adapté qui évolue en secondes -i.e., en "temps réel", par opposition à un temps de simulation intrinsèque. En e et, le processus de di usion est supposé interagir avec le graphe, en tenant compte des noeuds et des liens présents dans le système à tout instant de temps donné (mesuré en secondes).

Notre jeu de données contient des données temporelles (en termes de horodatage) des événements de requête, mais pas des événements de connexion des pairs, donc nous avons dû reconstruire ces temps de connexion à partir des données des requêtes. En utilisant des méthodes statistiques, nous avons inféré les temps de connexion et de déconnexion de chaque pair que nous avons utilisé pour reconstruire le graphe d'intérêt dynamique.

En termes de processus de di usion, nous avons décidé d'abandonner le modèle SIR simple et d'utiliser à la place un modèle SI avec une latence entre le moment où un noeud devient infecté et le temps qu'il infecte chacun de ses voisins, à savoir le "temps inter-contagion" (TIC). En faisant l'hypothèse que ces temps sont exponentiellement distribués, nous avons pu calibrer ces TICs individuels en utilisant les données disponibles. En outre, nous avons décidé d'examiner deux variantes de ce modèle : l'une dans laquelle le TIC suit la même distribution pour tous les noeuds (comportement homogène) et une autre dans laquelle chaque noeud a sa propre distribution exponentielle, pour tenir compte du comportement hétérogène des pairs. En n, nous avons adapté les méthodes de calibrage utilisées jusqu'à présent à ce nouveau modèle.

Une fois la méthodologie adaptée, nous avons simulé le modèle SI temporel sur le graphe d'intérêt dynamique : en termes de taille de cascade, les résultats ont été remarquablement améliorées par rapport aux simulations précédentes. En e et, nous avons généré un ensemble de cascades avec une taille similaire à celle de la distribution réelle. La distribution du nombre de liens a été également améliorée, dans une moindre mesure. La seule propriété que nous ne n'avons pas pu améliorer qualitativement est la profondeur des cascades simulées, qui reste faible par rapport à celle des cascades réelles. Puis que nous avons changé deux facteurs majeurs par rapport à la modélisation précédente (réseau sous-jacent et processus de di usion), nous avons décidé d'évaluer l'impact individuel de chaque amélioration. Comme le graphe dynamique suppose un processus de di usion temporelle, mais pas l'inverse, nous avons décidé de simuler le même modèle sur le graphe d'intérêt original et le comparer avec la simulation du même modèle dans le graphe dynamique. En comparant les deux simulations, nous concluons que le changement au niveau du modèle exclusivement n'a pas apporté l'amélioration des propriétés de cascade simulées trouvées précédemment. Nous avons conclu, alors, que l'amélioration est causé par le graphique dynamique ou par la combinaison du graphe dynamique associé au modèle de SI temporel. niveau des cascades (l'impacte des autres propriétés a été mineur). Étant donné que ce modèle SI temporel a été le modèle le plus réaliste dans nos expériences, cela souligne l'importance de la distribution des degrés des graines à la structures des cascades simulées avec un temps borné.
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  (a) Size of cascades with xed depth. (b) Number of links of cascades with xed depth. (c) Depth of cascades with xed size. (d) Number of links of cascades with xed size.
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 31 Figure 3.1 -Complementary cumulative distribution of key cascade properties for real and simple SIR-generated cascades.

  Figure 3.2 -Heterogeneous spreading parameter distributions

( a )

 a Size of cascades with xed depth. Curves corresponding to the simulations are superposed. (b) Number of links of cascades with xed depth. Curves corresponding to the simulations are superposed. (c) Depth of cascades with xed size. (d) Number of links of cascades with xed size. Curves corresponding to the simulations are superposed.
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 33 Figure 3.3 -Simulation of le spreading on the interest graph with heterogeneous SIR extensions: complementary cumulative distribution of cascade properties.
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 34 Figure 3.4 -Weighted interest graph reconstructed from the simple trace given in Table 2.1.

  Figure3.5 -The interest graph connects peers who share common interests and attributes a weight between this connection proportionally to the the overlap among their interests. Some peers have several common interests with others, but most peers have few shared interests. Contagion spreads best among peers with stronger connection.
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 36 Figure3.6 -Spreading cascades pro le in terms of depth, size and number of links respectively. Both models yielded the same cascades pro le (simulation curves superposed), contrasting with real spreading cascades in terms of depth.
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 44 Figure 4.4 -Complementary cumulative distributions of individual average inter-contagion time estimates for nodes in the static and dynamic interest graphs. Free riders (> 95%) have null inter-contagion time rate and are not shown.
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 45 Figure 4.5 -Spreading cascades pro le in terms of size, number of links and depth, respectively. Plots feature the complementary cumulative distribution of these properties in lin-log and log-log (inset) scales. Simulations on the dynamic graph remain closer to real cascades (trace), with the homogeneous model reproducing well real cascades' size and the heterogeneous one, their number of links; no model was able to reproduce the observed depth distribution.
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 51 Figure 5.1 -Increasingly realistic random graphs derived from the data, which replicate properties found in the interest interest graph. The random graphs were generated uniformly.

  Figure 5.2.

Figure 5 . 2 -

 52 Figure 5.2 -Degree distributions on the interest graph plotted in lin-log scale. Superposed curves: all peers and clients, providers and initial providers

( a )

 a Size of cascades with xed depth. Curves corresponding to the interest graph and CM superposed. (b) Number of links of cascades with xed depth. Curves corresponding to the interest graph and CM superposed.

( c )

 c Depth of cascades with xed size. (d) Number of links of cascades with xed size. Curves corresponding to the interest graph, RB and CM superposed.
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 53 Figure 5.3 -Simulation of le spreading on di erent underlying networks: complementary cumulative distribution of cascade properties

  (a) Size. (b) Number of links.(c) Depth.
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 54 Figure 5.4 -Complementary cumulative distribution of cascade properties in static random graphs and homogeneous node behavior. Plots shown in lin-log and log-log scale (inset).Spreading model is insensible to variations on network topology and initial providers. All curves superposed in the three graphs.
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 55 Figure 5.5 -Complementary cumulative distribution of cascade properties in dynamic random graphs and homogeneous node behavior. Plots shown in lin-log and log-log scale (inset). Spreading model is insensible to variations on network topology and initial providers, with minor variations. All curves in the inset graph are superposed.
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 56 Figure 5.6 -Complementary cumulative distribution of cascade properties in static random graphs and heterogeneous node behavior. Plots shown in lin-log and log-log scale (inset).Spreading model features the essentially same behavior on all graphs if the degree distribution of initial providers is shu ed and likewise a similar behavior on graphs with similar initial provider degree distribution.
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 57 Figure5.7 -Complementary cumulative distribution of cascade properties in dynamic random graphs and homogeneous node behavior. Plots shown in lin-log and log-log scale (inset). Spreading model features the essentially same behavior on all graphs if the degree distribution of initial providers is shu ed and likewise a similar behavior on graphs with similar initial provider degree distribution.
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Figure 2.3 -Spreading trace from Table

  Table 2.1: the set nodes of each spreading cascade corresponding to a le can be partitioned into a set of initial providers and another of clients:

	File Clients Seeds
	A 2, 3, 6, 8 1, 5
	B	2, 3	4
	C	1, 7, 9	4, 5
	D	4, 9, 12	1
	E	6	10
	F	7, 11	9

Table 2.2 -Spreading cascade nodes partitioned into seeds and clients: sample trace from Table 2.1.
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For the sake of readability the approximated interest graph will be henceforth denoted simply interest graph.

Recall that in the heterogeneous models examined in Chapter 3, the probability of infecting one's neighbors might change according to the infecting node itself or according to le being spread, but not according to the infected node's neighbor, as each infecting node does not distinguish its neighbors in its contagion attempts.

Nous avons commencé cette expérience analysant de le modèle SIR simple. En utilisant les mêmes paramètres (probabilité d'infection et ensembles de graines) calculés au chapitre 3 nous avons simulé ce modèle sur tous les graphes de la séquence. La structure des cascades simulées a été essentiellement la même pour tous les graphes sauf le graphique de base, qui n'a pas la même distribution de dégrées que les autres graphes. Ce résultat suggère que cette propriété a eu un impact majeur pour ce modèle et pour l'échèle de temps de simulation considérée. Ensuite, nous avons e ectué la même analyse avec les modèle SI temporel (i.e., comportant un temps inter-contagion). Avec les paramètres calculés précédemment, au chapitre 4, nous avons observé que le modèle de SI temporel avec comportement des pairs homogène est insensible à l'ajout des propriétés topologiques complexes. En d'autres termes, les cascades simulées présentent le même pro l, en dépit de l'ajout successif des propriétés topologiques complexes. En revanche, en simulant le modèle de SI temporel avec le comportement hétérogène des pairs nous avons constaté que ce modèle est très sensible à la distribution des degrés des graines. En e et, cette propriété a été responsable de la di érence de structure majeure au

A.1.4 Impact de la structure du réseau sous-jacent Dans notre quête pour identi er les facteurs pertinents pour le choix du modèle de di usion, nous avons proposé une expérience pour étudier l'impact de la structure du réseau sous-jacent sur la strucure des cascades de di usion simulées. Des résultats théoriques de la littérature reliant les propriétés des graphes et le comportement asymptotique des modèles de di usion épidémiologiques simples tels que la famille de modèle SIR. Dans ce sens, nous nous attendions a priori que les propriétés empiriques du réseau sous-jacent joueraient un rôle dans la propagation de la simulation, même si notre cadre de simulation ne satisfait pas les hypothèses de ces théorèmes. En e et, une contribution essentielle de notre travail est précisément d'analyser les modèles de di usion dans des conditions plus réalistes, en les comparant avec des données réelles, obtenues dans une fenêtre de temps bornée. Dans ce régime de temps borné, nous ne disposons pas d'outils théoriques qui relient les propriétés des graphes et la dynamique du modèle. Même

applied perspective.

A A

Abstract

Understanding information di usion on complex networks is a key issue from a theoretical and applied perspective. Epidemiology-inspired SIR models have long been proposed to model information di usion, including posts on online social network and les in P2P sharing networks. Recent papers have analyzed this question from a data-driven perspective and have reported being able to reproduce key properties information spreading cascades using such models, for certain choice of parameters (chosen exploring the parameter space extensively). We complement these ndings investigating if epidemic models calibrate with a systematic procedure are capable of reproducing key spreading cascade properties?

To answer this question, we rst identify a large-scale, rich dataset from which we can reconstruct the di usion trail and the underlying network. Secondly, we begin examining the simple SIR model as a baseline model and conclude that in this framework it was unable to generate realistic spreading cascades. We found the same result examining model extensions to which take into account heterogeneities observed in the data. In contrast, other epidemiology-inspired models which take into account time patterns available in the data generate qualitatively more similar cascades. Although a key property was not reproduced in any model, this result highlights the importance of taking time patterns into account in the model.

In addition to this empirical study we propose to analyze the impact of the underlying network structure on the models examined previously. In our study (and in other real-world applications) the observed cascades were constrained in time, so we could not rely on the theoretical predictions relating the asymptotic behavior of the epidemic and common topological features of complex networks. Performing simulations we assessed the impact of these common topological properties in time-bounded epidemic and identi ed that the distribution of neighbors of seed nodes had the most impact among the investigated properties in our context. We conclude discussing identifying perspectives opened by this work.

Keywords: information di usion, spreading cascade, SIR, complex networks. les quelques théorèmes asymptotiques disponibles ne portent pas sur des propriétés structurelles des cascades de di usion ; ils se concentrent sur la fraction globale de noeuds infectés et sur la probabilité d'extinction de la propagation. D'où l'intérêt de découvrir l'impact de ces propriétés dans notre cadre.

Le graphe d'intérêt a une structure topologique riche, qui a évolué organiquement par l'interaction des pairs partageant des chiers. Il détient des propriétés communes à d'autres graphes de terrain, particulièrement une faible densité globale/fort clustering local et une distribution des degrés hétérogène. Évidemment ces propriétés ne sont pas indépendantes les unes des autres, donc a n d'évaluer l'impact de ces propriétés individuellement, nous avons décidé de produire une séquence de graphes aléatoires, à commencer par un graphe de base (dérivé du graphe d'intérêt) et ajouter progressivement les propriétés en question. En surveillant le changement sur la structure des cascades simulées d'un graphe de la séquence à l'autre on peut identi er l'impact de chaque propriété. Nous avons utilisés des méthodes modernes pour générer des graphes aléatoires uniformes avec les propriétés cibles mentionnés.