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1.4 and Section 2.1-Section 2.3 is included in the preprint [Che14b] titled "Sub-gaussian heat kernel estimates and quasi Riesz transforms for 1 ≤ p ≤ 2".

Chapter 3 is included in the preprint [Che14a] titled "Hardy spaces on metric measure spaces with generalized heat kernel estimates".

type (1, 1) if the manifold satisfies the doubling volume property and the sub-Gaussian heat kernel estimate. Similarly, we show in Chapter 4 the same results on graphs.

In Chapter 3, we develop a Hardy space theory on metric measure spaces satisfying the doubling volume property and different local and global heat kernel estimates. Firstly we define Hardy spaces via molecules and square functions which are adapted to the heat kernel estimates. Then we show that the two H 1 spaces via molecules and viasquare functions are the same. Also, we compare the H p space defined via square functions with L p . The corresponding H p (p > 1) space defined via square functions is equivalent to the Lebesgue space L p . However, it is shown that in this situation, the H p space corresponding to Gaussian estimates does not coincide with L p any more. Finally, as an application of this Hardy space theory, we proved the H 1 -L 1 boundedness of quasi Riesz transforms on fractal manifolds.

In Chapter 5, we consider Vicsek graphs. We prove generalised Poincaré inequalities and Sobolev inequalities on Vicsek graphs and we show that they are optimal. Keywords: Riesz transforms, Hardy spaces, metric measure spaces, graphs, heat kernel estimates. 

Introduction en franc ¸ais

Dans cette thèse nous étudions les transformées de Riesz et les espaces de Hardy associés à un opérateur sur un espace métrique mesuré. Ces deux sujets sont en lien avec des estimations du noyau de la chaleur associé à cet opérateur. Nos buts majeurs sont: le comportement des transformées de Riesz sur L p (M) où M est une variété satisfaisant la propriété de doublement du volume et l'estimation sous-gaussienne du noyau de la chaleur; la théorie des espaces de Hardy sur les espaces métriques mesurés avec des estimations différentes localement et globalement du noyau de la chaleur.

Nous commencerons par introduire nos différents cadres de travail: variétés riemanniennes, graphes, espaces métriques mesurés de Dirichlet. Puis nous décrirons des estimations du noyau de la chaleur dans tous les cadres que nous considérons. Et après, nous introduirons les problèmes de transformée de Riesz et la théorie des espaces de Hardy. Finalement, nous présenterons nos résultats principaux.

Cadre

Soit (M, d, µ) un espace métrique mesuré. Pour tout x ∈ M et tout r > 0, on désigne par B(x, r) la boule de centre x et de rayon r, et par V (x, r) sa mesure. Notation 0.1. On note x ≃ y pour signifier qu'il existe deux constantes c,C > 0 avec c < C telles que cx ≤ y ≤ Cx (uniformément en x et y).

Soit B la boule B(x, r). Nous notons λ B la boule de centre x et de rayon λ r. Nous notons 

C 1 (B) = 4B et C j (B) = 2 j+1 B/2 j B pour j = 2, 3, • • • .
∇ f • ∇gdµ = (∆ f , g) = M (∆ 1/2 f )(∆ 1/2 g)dµ, ∀ f , g ∈ C ∞ 0 (M).
Soit e -t∆ le semi-groupe de la chaleur, et soit p t (x, y) le noyau de la chaleur associé. Alors (e -t∆ ) t>0 est une famille de contractions linéaires sur L 2 (M). En fait, on a le théorème suivant Théorème 0.3 ( [START_REF] Grigor'yan | Heat kernel and analysis on manifolds[END_REF][START_REF] Strichartz | Analysis of the Laplacian on the complete Riemannian manifold[END_REF]). Le semi-groupe de la chaleur (e -t∆ ) t>0 sur L 2 (M) admet un noyau unique p t (x, y) satisfaisant 1. p t (x, y) > 0 est une fonction C ∞ sur R + × M × M.

2. p t (x, y) = p t (y, x) pour tous x, y ∈ M et t > 0.

3. Pour toute f ∈ L 2 (M), e -t∆ s'écrit sous la forme de l'intégrale suivante: e -t∆ f (x) = M p t (x, y) f (y)dµ(y).

4. Le semi-groupe est sous-markovien. Si f ∈ L 2 (M), alors 0 ≤ f ≤ 1 ⇒ 0 ≤ e -t∆ f ≤ 1.

5. e -t∆ f p ≤ f p pour tout t > 0 et f ∈ L 2 L p , 1 ≤ p ≤ ∞, avec e -t∆ ff p → 0 pour 1 ≤ p < ∞.

6. Pour tout f ∈ L 2 (M), on a d dt e -t∆ f = -∆e -t∆ f . Cette égalité a lieu aussi pour f ∈ L p , 1 ≤ p ≤ ∞, si on définit e -t∆ f comme dans 3.

Graphes Soit Γ un graphe infini connexe localement uniformément fini. On suppose Γ muni de xii On suppose que Γ satisfait la condition ∆(α). C'est-à-dire, il existe c > 0 tel que pour tous x, y ∈ Γ

x ∼ y implique p(x, y) ≥ c, et x ∼ x.

On définit les noyaux itérés de p par p 0 (x, y) := δ (x, y) = 1, x = y, 0, x = y; p k (x, y) = ∑ z∈Γ p k-1 (x, z)p(z, y), k ≥ 1.

L'opérateur associé à p est défini par

P f (x) = ∑ y∈Γ p(x, y) f (y).
Alors pour tout k ∈ N, on a

P k f (x) = ∑ y∈Γ p k (x, y) f (y).
On dit que I -P est le laplacien sur Γ.

On définit la longueur du gradient de f en x ∈ Γ par

|∇ f (x)| = 1 2 ∑ y p(x, y)| f (x) -f (y)| 2 1/2
. et on considère p k+1 (y, x)p k (x, y) comme la dérivée discrète en temps de p k (y, x).

Par un simple calcul, on obtient ∇ f 2 2 =< (I -P) f , f >= (I -P)

1 2 f 2 2 ,
où (I -P) 1 2 est défini par la théorie spectrale. L'hypothèse △(α) implique -1 / ∈ Spec (P) (voir [START_REF] Russ | Riesz transforms on graphs for 1 ≤ p ≤ 2[END_REF]). Par conséquent,

P = 1 a λ dE λ , où a > -1.
On a aussi l'analyticité P sur L 2 (voir [CSC90, Proposition 3]). C'est-à-dire, il existe C > 0 tel que pour tout n ∈ N,

P n -P n+1 2→2 ≤ Cn -1 .
Pour tout y ∈ Γ, p • (•, y) satisfait l'équation de la chaleur µ(x)(u(n + 1, x)u(n, x)) = ∑ y µ xy (u(n, y) -u(n, x)), xiii ou µ(x)u(n + 1, x) = ∑ y µ xy u(n, y).

Espaces métriques mesurés Soit (M, µ) un espace localement compact avec µ une mesure de Radon positive. Soit E une forme de Dirichlet régulière et fortement locale sur D ⊂ L 2 (M, dµ). C'est-à-dire,

• Soit C 0 (M) l'ensemble des fonctions continues à support compact sur M. Alors D ∩ C 0 (M) est dense dans C 0 (M) sous la norme uniforme et est dense dans D sous la norme ( f 2 2 + E ( f , f )) 1/2 .

• Soit f 1 , f 2 deux fonctions à support compact. Si f 2 est constante sur un ensemble U 1 contenant supp f , alors E ( f 1 , f 2 ) = 0.

On désigne par L l'opérateur positif auto-adjoint associé à E . Alors

E ( f , g) =< L f , g >=< f , Lg >= M dΓ( f , g).
Le semi-groupe engendré e -tL est une contraction sur L 2 (M). De plus, e -tL est sous-markovien et on peut le considérer comme un opérateur contractant sur L p (M), 1 ≤ p ≤ ∞.

E admet une "mesure d'énergie" Γ:

E ( f , g) = M dΓ( f , g), ∀ f , g ∈ D.
Pour x, y ∈ M, la distance est définie par

d(x, y) = sup{ f (x) -f (y) : dΓ( f , f ) ≤ dµ, f ∈ C },
où dΓ( f , f ) ≤ dµ signifie que Γ( f , f ) est absolument continue par rapport à µ avec la dérivée de Radon-Nikodym bornée par 1. On doit supposer que d est une distance qui redonne la topologie initiale et pour laquelle M est complet. Nous dirons que (M, d, µ, E ) est un espace métrique mesuré de Dirichlet. Si dΓ est absolument continue par rapport à µ, nous dirons que E admet un carré du champ. C'est-à-dire, il existe une unique forme bilinéaire symétrique positive continue de D × D dans L 1 (qu'on désigne encore par Γ) telle que

E ( f h, g) + E (gh, f ) -E (h, f g) = M hΓ( f , g)dµ, ∀ f , g, h ∈ D ∩ L ∞ .
Voici quelques exemples d'espaces métriques mesurés munis d'une forme de Dirichlet: Exemple 0.4. Variétés riemanniennes.

xiv Soit (M, d, µ) une variété riemannienne et ∆ l'opérateur de Laplace-Beltrami. Alors

E ( f , f ) := M (∆ f ) f dµ, ∀ f ∈ C ∞ 0 (M).
Exemple 0.5. Espaces euclidiens avec un opérateur elliptique sous forme divergence.

Soit a = (a i j (x)) n×n une matrice bornée et mesurée. On definit

E ( f , f ) := R n ∇ f • a∇ f , ∀ f ∈ C ∞ 0 (R n ).
Exemple 0.6. Fractals.

Par exemple, les tapis de Sierpiński, les triangles de Sierpiński, les fractals de Vicsek etc (voir [BB92, BB99a, BCG01, Bar13]).

Sur un tapis de Sierpiński F, soit F n une série d'approximations de F et E n la forme convenable de Dirichlet sur F n . Alors on peut construire une forme de Dirichlet E sur F. Voir [START_REF] Barlow | Analysis on the Sierpinski carpet[END_REF] pour les détails.

Exemple 0.7. Systèmes de câbles (voir [START_REF] Th | Long range estimates for Markov chains[END_REF][START_REF] Barlow | Stability of parabolic Harnack inequalities[END_REF]).

Soit (G, d, ν) un graphe. On definit le système de câbles G C en remplac ¸ant chaque arête de G par une copie de (0, 1). La mesure µ sur G C est définie par dµ(t) = ν xy dt, où t parcourt le câble reliant deux sommets x et y. Notons C les fonctions à support compact sur C(G C ) et qui sont C 1 sur chaque câble. On définit

E ( f , f ) := G C f ′ (t)
2 dµ(t), ∀ f ∈ C .

Estimations du noyau de la chaleur

Soit (M, d, µ) un espace métrique mesuré complet. Soit L un opérateur positif auto-adjoint sur L 2 (M, µ) qui engendre un semi-groupe analytique (e -tL ) t>0 . Notons que (e -tL ) t>0 n'est pas nécessairement uniformément borné sur L 1 (M, µ). On connaît des exemples de semi-groupes qui ne sont pas bornés sur L 1 , mais seulement sur L p où p ∈ [p 0 , p ′ 0 ] pour un p 0 > 1 (voir par exemple, [START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF]).

Soit 1 < β 1 ≤ β 2 . Dans cette thèse, nous considérons les estimations du noyau de la chaleur suivantes. L'hypothèse (A1): L'estimation L 2 -L 2 non-classique de Davies-Gaffney: ∀ j ≥ 1, il existe C, c > 0 xv tels que pour tous x, y ⊂ M, ✶ B(x,t) e -ρ(t)L ✶ B(y,t)

2→2 ≤                C exp   -c d(x, y) t β 1 β 1 -1   0 < t < 1, C exp   -c d(x, y) t β 2 β 2 -1   , t ≥ 1. (DG β 1 ,β 2 ) où ρ(t) = t β 1 , 0 < t < 1, t β 2 , t ≥ 1;
L'hypothèse (A2): Soit 1 ≤ p 0 < 2 et ρ comme dans (A1). L'estimation L p 0 -L p ′ 0 non-classique hors-diagonale: pour tout x, y ∈ M and t > 0, et ∀ j ≥ 1,

✶ B(x,t) e -ρ(t)L ✶ B(y,t) p 0 →p ′ 0 ≤                  C V 1 p 0 -1 p ′ 0 (x,t) exp   -c d(x, y) t β 1 β 1 -1   0 < t < 1, C V 1 p 0 -1 p ′ 0 (x,t) exp   -c d(x, y) t β 2 β 2 -1   , t ≥ 1.
(DG

p 0 ,p ′ 0 β 1 ,β 2 )
Remark 0.8. Une estimation équivalente à (A2) est l'estimation L p 0 -L 2 hors-diagonale

✶ B(x,t) e -ρ(t)L ✶ B(y,t) p 0 →2 ≤                C V 1 p 0 -1 2 (x,t) exp   -c d(x, y) t β 1 β 1 -1   0 < t < 1, C V 1 p 0 -1 2 (x,t) exp   -c d(x, y) t β 2 β 2 -1   , t ≥ 1.
On renvoie à [BK05, Blu07, CS08] pour les démonstrations.

L'hypothèse (A3): Soit ρ comme dans (A1). L'estimation ponctuelle généralisée du noyau de la chaleur: pour tout x, y ∈ M and t > 0,

p t (x, y) ≤ C 2 V (y, ρ -1 (t)) exp (-c 2 G(t, d(x, y))), (UE β 1 ,β 2 ) xvi où G(r,t) ≃              r β 1 t 1/(β 1 -1)
, t ≤ r, r β 2 t 1/(β 2 -1)

, t ≥ r.

Remarque 0.9. Notons que β 1 ≤ β 2 . Alors pour d(x, y) ≤ t, on a

d β 1 (x, y) t 1/(β 1 -1) ≤ d β 2 (x, y) t 1/(β 2 -1)
.

Et pour t ≤ d(x, y), on a d β 1 (x,y)

t 1/(β 1 -1) ≥ d β 2 (x,y) t 1/(β 2 -1)
. Donc (UE β 1 ,β 2 ) implique l'estimation suivante:

p t (x, y) ≤                C V (x,t 1/β 1 ) exp   -c d β 1 (x, y) t 1/(β 1 -1)   , 0 < t < 1, C V (x,t 1/β 2 ) exp   -c d β 2 (x, y) t 1/(β 2 -1)   , t ≥ 1.
Remarque 0.10. On a (A3) ⇒ (A2) ⇒ (A1). En fait, Lemme 0.11. Soit M vérifiant (D) et (UE β 1 ,β 2 ), β 1 ≤ β 2 . Alors, pour tous x ∈ M et j ≥ 1, on a

∀K ∈ N et 1 ≤ p ≤ 2 (ρ(t)L) K e -ρ(t)L f L 2 (C j (B(x,t))) V 1/2 (2 j+1 B(x,t)) ≤                  C exp -c2 jβ 1 β 1 -1 V 1/p (x,t) f L p (B) , 0 < t < 1, C exp -c2 jβ 2 β 2 -1 V 1/p (x,t) f L p (B) , t ≥ 1.
Comme dans [START_REF] Blunck | Generalized Gaussian estimates and the Legendre transform[END_REF], on obtient Lemme 0.12. Soit M vérifiant (D) et (DG β 1 ,β 2 ) avec β 1 ≤ β 2 . Soit B une boule de centre x ∈ M et de rayon r > 0. Alors pour tous k, l ∈ N avec 0 ≤ l ≤ k -2 et pour tout t ∈ (0, 2 k+1 r), on a

✶ C k (B) (ρ(t)L) K e -ρ(t)L ✶ C l (B) 2→2 ≤        C exp -c2 kβ 1 β 1 -1 , 0 < t < 1, C exp -c2 kβ 2 β 2 -1 , t ≥ 1.
Exemple 0.13. Toutes les variétés riemanniennes vérifient (DG 2,2 ), voir [START_REF] Davies | Heat kernel bounds, conservation of probability and the Feller property[END_REF].

xvii Les variétés riemanniennes à courbure de Ricci positive vérifient (UE 2,2 ), voir [START_REF] Li | On the parabolic kernel of the Schrödinger operator[END_REF].

Exemple 0.14. Certaines variétés fractales vérifient (UE 2,m ), m > 2.

Soit (G, F, ν) un graphe infini connexe satisfaisant la croissance polynomiale du volume:

V (x, r) ≃ r D et l'estimation sous-gaussienne du noyau de la chaleur:

p k (x, y) ≤ Cµ(y) k D/m exp -c d m (x, y) k 1/(m-1) , (1) 
où D ≥ 1 et 2 ≤ m ≤ D + 1. En fait, pour tout D ≥ 1 et tous m satisfaisant 2 ≤ m ≤ D + 1, il existe un graphe qui satisfait (1). On construit une variété riemannienne M à partir de G en remplac ¸ant toutes les arêtes par les tubes de longueur 1 et puis en les collant de fac ¸on lisse aux sommets (voir [START_REF] Barlow | Manifolds and graphs with slow heat kernel decay[END_REF] pour la variété de Vicsek). On note ∆ l'opérateur Laplace-Beltrami sur M et e -t∆ le noyau de la chaleur associé. Alors le noyau de la chaleur p t (x, y) satisfait (UE β 1 ,β 2 ) avec β 1 = 2 and β 2 = m > 2.

Exemple 0.15. Espace euclidien avec des opérateurs elliptiques sous forme divergence.

Soit L un opérateur homogène elliptique sur L 2 (R n ) d'order 2m (m ≥ 1) sous forme divergence:

L := (-1) m ∑ |α|=|β |=m ∂ α a α,β ∂ β ,
où a α,β est borné pour tous α, β . Alors (UE 2m,2m ) a lieu si n ≤ 2m. Si n > 2m, Alors (DG

p 0 ,p ′ 0 β 1 ,β 2
) a lieu pour p 0 = 2n n+2m . Voir par exemple, [Aus07, Dav95, Dav97a] etc. Exemple 0.16. Systèmes de câbles. Par exemple, pour la système de câbles associé au triangle de Sierpinski (sur Z 2 ), p t (x, y) satisfait (UE β 1 ,β 2 ) avec β 1 = 2 and β 2 = log 5/ log 2 (voir [START_REF] Jones | Transition probabilities for the simple random walk on the Sierpiński graph[END_REF][START_REF] Barlow | Stability of parabolic Harnack inequalities[END_REF]).

Plus généralement, Hebisch and Saloff-Coste [START_REF] Hebisch | On the relation between elliptic and parabolic Harnack inequalities[END_REF] considèrent un espace métrique mesuré complet non-compact de Dirichlet, sur lequel le noyau de la chaleur vérifie l'estimation supérieure ρ-Gaussienne 

p t (x, y) ≃ C 2 V (y, ρ -1 (t)) exp (-c 2 G(t, d(x, y))),
c ∆ 1/2 f p ≤ |∇ f | p ≤ C ∆ 1/2 f p , ∀ f ∈ C ∞ 0 (M)? (E p ) Plus précisément, on dit que M satisfait (R p ) si |∇ f | p ≤ C ∆ 1/2 f p (R p ) et que M satisfait (RR p ) si ∆ 1/2 f p ≤ C ∇ f p . (RR p )
La propriété (R p ) revient à dire que la transformée de Riesz est continue sur L p (M); elle se dualise en (RR p ′ ) (voir [START_REF] Coulhon | Riesz transform and related inequalities on noncompact Riemannian manifolds[END_REF]). Si (R p ) et (RR p ) ont lieu, cela signifie que les deux définitions concurrentes des espaces de Sobolev homogène d'ordre un dans L p coïncident sur M. Clairement, (R 2 ) et (RR 2 ) sont vraies, mais pour p = 2, il s'agit d'un problème d'intégrales singulières, où les méthodes classiques de Calderón-Zygmund amenaient à des hypothèses trop coûteuses. Beaucoup de travaux ont été faits pour résoudre ce problème, voir par exemple [Bak87, CD99, CD03, ACDH04, AC05, CCH06, Car07, CS10, Devar] et leurs références.

Des estimations du noyau de la chaleur jouent un rôle très important dans ces problèmes. Voici des estimations du noyau de la chaleur qu'on connaît bien.

L'estimation supérieure diagonale:

p t (x, x) ≤ c V (x, √ t) , ∀x ∈ M,t > 0. (DUE)
L'estimation supérieure gaussienne:

p t (x, y) ≤ C V (x, √ t) exp - d 2 (x, y) Ct , ∀x, y ∈ M,t > 0. (UE)
En fait, sous l'hypothèse (D), les estimations (DUE) et (UE) sont équivalentes (voir [CS08], [START_REF] Grigor'yan | Heat kernel and analysis on manifolds[END_REF]).

L'estimation de Li-Yau: pour tous x, y ∈ M et pour tout t > 0,

c V (x, √ t) exp - d 2 (x, y) ct ≤ p t (x, y) ≤ C V (x, √ t) exp - d 2 (x, y) Ct . (LY )
L'estimation du gradient du noyau de la chaleur: Si M satisfait (D) et (DUE), on sait que (R p ) peut être en défaut si p > 2, mais on ne sait pas si (RR p ) peut être en défaut pour 1 < p < 2. Si M satisfait seulement (D), alors (RR p ) peut être en défaut pour 1 < p < 2. On a les deux exemples suivants:

|∇p t (x, y)| ≤ C √ tV (y, √ t) , ∀x, y ∈ M,t > 0. (G)
Variété somme connexe de deux espaces euclidiens On note M n une variété obtenue comme somme connexe de deux espaces euclidiens R n .

Soit n ≥ 2. Si en outre M satisfait l'estimation gaussienne inférieure du noyau de la chaleur, c'est-à-dire, l'estimation de Li-Yau, ou bien également, des inégalités de Poincaré à l'échelle, Auscher et Coulhon [START_REF] Auscher | Riesz transform on manifolds and Poincaré inequalities[END_REF] ont montré que Théorème 0.19 ( [START_REF] Auscher | Riesz transform on manifolds and Poincaré inequalities[END_REF]). Soit M une variété riemannienne complète non-compacte satisfaisant la propriété de doublement du volume et les inégalités de Poincaré à l'échelle, c'est-à-dire, il existe 2. a 2 ≤ µ -1/2 (B);

C > 0 tel que ∀B, ∀ f ∈ C ∞ 0 (B) B | f -f B | 2 dµ ≤ Cr 2 B B |∇ f | 2 dµ,
3. M a(x)dx = 0. Une fonction f sur M appartient à H 1 (M) si et seulement s'il existe une suite (λ n ) n∈N ∈ l 1 et une suite de H 1 -atomes (a n ) n∈N tels que f = ∞ ∑ j=0 λ j a j ,
et la convergence a lieu dans L 1 (M).

On peut aussi définir des espaces H 1 moléculaires. Contrairement à un atome, la molécule n'est pas à support compact, mais elle décroît très vite.

Dans R n , Coifman, Meyer and Stein ont développé la théorie des espaces de tentes ([CMS85], et voir [START_REF] Russ | The atomic decomposition for tent spaces on spaces of homogeneous type[END_REF] sur des espaces de type homogène) qui connecte les espaces de Hardy à des fonctions quadratiques. On dit qu'une fonction mesurable F sur R n × (0, ∞) appartient à l'espace de tentes

T p 2 (R n ) si F T p 2 := |y-x|<t |F(y,t)| 2 dy dt t n+1 1/2 L p < ∞.
xxi En fait, pour toute fonction convenable f sur R n , la fonction quadratique conique est définie sur R n par

S f (x) = |y-x|<t t √ ∆e -t √ ∆ f (y) 2 dy dt t n+1 1/2 , où ∆ = ∑ n i=1 ∂ 2 ∂ x 2 i et e -t √
∆ est le semi-groupe de Poisson.

On dit que f ∈ H p S , p ≥ 1 si S f ∈ L p , ou également, t √ ∆e -t √ ∆ f ∈ T p 2 . En effet, H 1 S et H 1 moléculaire sont équivalents. D'un côté, pour f ∈ H 1 (R n ), on a S f L 1 ≤ C f H 1 (voir [FS72]).
De l'autre côté, par la formule reproduisante de Calderón, on a

f = ∞ 0 t √ ∆e -t √ ∆ F t dt t , (2) 
où 

F t := t √ ∆e -t √ ∆ f
p ∈ (1, ∞), H p (R n ) = L p (R n ) a lieu.
Les espaces de tentes sont intensivement utilisés dans la théorie des espaces de Hardy associés aux opérateurs, voir [START_REF] Auscher | Hardy spaces of differential forms on Riemannian manifolds[END_REF] 

• Pour tout 1 ≤ p ≤ 2, H p (ΛT * M) ⊂ R(D) ∩ L p (ΛT * M) L p (ΛT * M) . • Pour tout 2 ≤ p < ∞, R(D) ∩ L p (ΛT * M) L p (ΛT * M) ⊂ H p (ΛT * M).
De plus, si le noyau de la chaleur associé à l'opérateur laplacien de Hodge vérifie l'estimation gaussienne supérieure, c'est-à-dire, pour tout 0 ≤ k ≤ n,

|p k t (x, y)| ≤ C V (x, √ t) exp - d 2 (x, y) Ct , ∀x, y ∈ M,t > 0, (G k )
où p k t est le noyau de e -t∆ k et ∆ k est l'opérateur laplacien de Hodge sur les k-formes, alors 

H p (ΛT * M) = R(D) ∩ L p (ΛT * M) L p (ΛT * M) pour tout 1 < p < ∞.
(ΛT * M) dans L 1 (ΛT * M).
Plus précisément, si on considère les fonctions (0-formes), on a les affirmations suivantes:

• Soit (D) et (G 0 ). Alors pour tout 1 < p < ∞, H p (Λ 0 T * M) = R(D) ∩ L p (Λ 0 T * M) L p (Λ 0 T * M) .
• Soit (D), (G 0 ) et (G 1 ). Alors la transformée de Riesz d∆ -1/2 sur les fonctions est bornée de

L p (Λ 0 T * M) dans L p (Λ 1 T * M) pour tout 1 < p < ∞.
Dans [HLM + 11], Hofmann, Lu, Mitrea, Mitrea and Yan ont considéré des espaces de Hardy définis par les fonctions quadratiques sur les espaces métriques mesurés de type homogène. Soit X un espace métrique mesuré avec le doublement du volume et soit L un opérateur positif auto-adjoint qui engendre un semi-groupe analytique (e -tL ) t>0 sur L 2 (X) vérifiant l'estimation de Davies-Gaffney. C'est-à-dire, il existe deux constantes C, c > 0 telles que pour tous ensembles ouverts

U 1 ,U 2 ⊂ X, | < e -tL f 1 , f 2 > | ≤ C exp - dist 2 (U 1 ,U 2 ) ct f 1 2 f 2 2 , ∀t > 0, pour toutes f i ∈ L 2 (X) à support compact et supp f i ⊂ U i , i = 1, 2, où dist (U 1 ,U 2 ) := inf x∈U 1 ,y∈U 2 d(x, y).
Ils ont étendu les résultats dans [START_REF] Auscher | Hardy spaces of differential forms on Riemannian manifolds[END_REF] par obtenir une decomposition atomique de H 1 L et par développer la théorie des espaces H 1 et BMO adaptés à L.

Plus généralement, Kunstmann and Uhl [Uhl11, KU12] ont étudié des opérateurs positifs autoadjoints sur L 2 vérifiant l'estimation d'ordre m (m ≥ 2) de Davies-Gaffney (DG m ): 

| < e -tL f 1 , f 2 > | ≤ C exp -c d(x, y) t m m-1 f 1 2 f 2 2 , ∀t > 0, pour tous x, y ∈ M et f 1 , f 2 ∈ L 2 (X) avec supp f 1 ⊂ B(y,t 1/m ) et supp f 2 ⊂ B(x,t 1/m
✶ B(x,t 1/m ) e -tL ✶ B(y,t 1/m ) p 0 →p ′ 0 ≤ CV -1 p 0 -1 p ′ 0 (x,t 1/m ) exp -c d(x, y) t m m-1
, alors pour tout p ∈ (p 0 , 2), ils ont montré que l'espace de Hardy H p défini par les fonctions quadratiques coïncide avec L p .

0.5 Résultats de la thèse 

≤ C √ t , (G p ) et également |∇ f | 2 p ≤ C f p ∆ f p . (MI p )
Comme application, on obtient une version faible de (R p ) pour 1 < p ≤ 2.

Théorème 0.25. Soit M une variété riemannienne complète. Alors, pour 0 < α < 1/2, la quasi transformée de Riesz ∇e -∆ ∆ -α est borné sur L p pour 1 < p ≤ 2.

Proposition 0.26. Soit M une variété riemannienne complète satisfaisant (D loc ) et (DUE loc ). Alors Si oui, on améliore le résultat dans Théorème 0.17. Sinon, on trouve des contre-exemples intéressants. Pour le moment, on ne sait pas résoudre ce problème. Cependant, sous l'hypothèse (UE 2,m ) ou plus faible, on considère le cas p = 1 dans Théorème 0.25. Théorème 0.28. Soit M une variété complète non-compacte vérifiant (D) et (UE 2,m ). Alors pour tout 0 < α < 1/2, l'opérateur ∇e -∆ ∆ -α est de type (1, 1). xxiv En plus, sous des hypothèses plus fortes, on peut obtenir Théorème 0.29. Soit M une variété complète non-compacte vérifiant (D) et (HK 2,m ), m ≥ 2, c'est à dire, (UE 2,m ) et l'estimation inférieure correspondante. Supposons (G p 0 ), p 0 ∈ (2, ∞], et l'estimation L 2 Davies-Gaffney (DG 1 2 ):

∇(I + ∆) -1/2 + ∇e -∆ ∆ -α avec α ∈ (0, 1/2) est bornée sur L p pour 1 < p ≤ 2.

Sur les variétés riemanniennes vérifiant (D) et (UE

∇e -t∆ f L 2 (B) ≤        C t 1/2 e -c d 2 (B,C i (B)) t f L 2 (C i (B)) , 0 < t < 1, C t 1/2 e -c d m (B,C i (B)) t 1/(m-1) f L 2 (C i (B)) , 1 ≤ t < ∞.
Alors la transformée de Riesz à l'infini ∇e -∆ ∆ -1/2 est bornée sur L p pour p ∈ (2, p 0 ).

Contre-exemples pour p > 2 On améliore le résultat de la Proposition 0.18. En fait, il existe des variétés telles que la transformée de Riesz inverse n'est pas bornée sur L p pour 1 < p < 2 et donc (R p ) est faux pour 2 < p < ∞.

Théorème 0.30. Soit M une variété de Vicsek à croissance polynomiale du volume:

V (x, r) ≃ r D pour r ≥ 1. Alors l'inégalité ∆ β f p ≤ C p |∇ f | p est fausse pour tout β < β (p) := 1 D+1 D p + 1 p ′ , où 1 < p < ∞.
En particulier, (RR p ) est faux pour tout 1 < p < 2. Par conséquent, (R p ) est fausse pour tout p > 2.

Sur les graphes Considérons maintenant le cas discret (les graphes). On a les résultats suivants qui sont similaires à la Proposition 0.26 et au Théorème 0.28. Proposition 0.31. Soit Γ un graphe infini connexe vérifiant le doublement du volume local, c'està-dire, il existe une constante c > 1 telle que

µ(B(x, 1) ≤ cµ(x), ∀x ∈ Γ, Soit α ∈ (0, 1/2) fixé. Alors, pour 1 < p ≤ 2, il existe C > 0 tel que |∇(I -P) -α f | p ≤ C f p .
Théorème 0.32. Soit Γ un graphe infini connexe vérifiant le doublement du volume et la condition △(α). Supposons aussi l'estimation sous-gaussienne supérieure du noyau de la chaleur: ∀x, y ∈ M, ∀k ∈ N,

p k (x, y) ≤ Cµ(y) V (x, k 1/m ) exp -c d m (x, y) k 1/(m-1)
.

xxv Alors pour tout β ∈ (0, 1/2), l'opérateur ∇(I -P) -β est de type faible (1, 1). 

Espaces de Hardy

β 1 ,β 2 ), β 1 ≤ β 2 . Alors H 1 L,ρ, mol (M) = H 1 L,S ρ h (M). De plus, on a f H 1 L,ρ, mol (M) ≃ f H 1 L,S ρ h (M) . En comparant H p L,S ρ h (M) et L p for 1 < p < ∞,
p 0 ,p ′ 0 β 1 ,β 2 ). Alors H p L,S ρ h (M) = R(L) ∩ L p (M) L p (M) a lieu pour tout p 0 < p < p ′ 0 .
Comme une corollaire, l'estimation ponctuelle du noyau de la chaleur nous donne Corollaire 0.35. Soit M un espace métrique mesuré non-compact vérifiant la propriété de doublement du volume (D) et l'estimation supérieure du noyau de la chaleur (UE β 1 ,β 2 ). Alors

H 1 L,ρ,mol (M) = H 1 L,S ρ h (M), et H p L,S ρ h (M) = L p (M) pour tout 1 < p < ∞.
Cependant, pour 1 < p < 2, l'équivalence entre L p et H p défini par les fonctions quadratiques avec le scaling t 2 n'est pas nécessairement vraie. En effet, on a le résultat suivant. Théorème 0.36. Soit M une variété riemannienne complète non-compacte. Supposons la croissance polynômiale du volume: 

V (x, r) ≃ r d ,
f -f n (x) L p (B(x,n)) ≤ CV (x, n) 1 D(p) |∇ f | L p (B(x,2n)) , où f n (x) = 1 V (x,n) ∑ z∈B(x,n) f (z)µ(z) et 1 D(p) = 1 p + 1 p ′ D .
On a aussi une inégalité généralisée de Sobolev.

Théorème 0.39. Soit Γ un graphe de Vicsek à croissance polynomiale du volume:

V (x, n) ≃ n D .
Alors, pour p ≥ 1, In the following, we first introduce different settings: Riemannian manifolds, graphs and metric measure Dirichlet spaces. Then we enumerate several heat kernel estimates which we consider later. After that, we briefly recall the background and previous work about Riesz transforms and Hardy spaces. Finally we present our results and the structure of this thesis.

f p µ(Ω) 1 D(p) |∇ f | p , ∀Ω ⊂ Γ, ∀ f ∈ c 0 (Ω)

Setting

Let (M, d, µ) be a metric measure space. We write B(x, r) = {y : d(y, x) < r} for the ball of centre x ∈ M and radius r > 0. Denote V (x, r) = µ(B(x, r)). Notation 0.40. In the sequel, the letters c,C denote positive constants, which always change in different places. For two positive quantities x and y, we say x y if there exists a constant C > 0 such that x ≤ Cy and x ≃ y if there exist two constants c,C with 0 < c ≤ C such that cx ≤ y ≤ Cx (uniformly in the parameters on which x, y depend).

If B is a ball, we shall denote by x B its centre and by r B its radius. For any given λ > 0, we will write λ B for the λ dilated ball, which is the ball with the same center as B and with radius

r λ B = λ r B . We denote C 1 (B) = 4B, and C j (B) = 2 j+1 B\2 j B for j = 2, 3, • • • .
Definition 0.41. We say that (M, d, µ) satisfies the doubling volume property if there exists a constant C > 0 such that for any x ∈ M and r > 0, V (x, 2r) ≤ CV (x, r).

(D)

A simple consequence of (D) is that there exist ν > 0 and C > 0 such that

V (x, r) V (x, s) ≤ C r s ν , ∀x ∈ M, r ≥ s > 0. (3) 
It follows that, for any x, y ∈ M and r > 0, we have

V (x, r) ≤ C 1 + d(x, y) r ν V (y, r).
Therefore,

d(x,y)<r 1 V (x, r) dµ(x) ≃ C, ∀y ∈ M, r > 0. ( 4 
)
If M is non-compact and connected, we also have a reverse inequality of (3), that is, there exists

ν ′ > 0 such that V (x, r) V (x, s) ≥ C r s ν ′
, ∀x ∈ M, r ≥ s > 0.

(5)

Riemannian manifolds

Let (M, d, µ) be a complete non-compact weighted Riemannian manifold, where d is the geodesic distance and µ is a measure with a smooth positive density with respect to the Riemannian measure.

Let ∇ be the Riemannian gradient. The Laplace-Beltrami operator ∆ µ on (M, g, µ) is defined by

(∆ µ f , g) = M ∇ f • ∇g dµ, ∀ f , g ∈ C ∞ 0 (M).
A nontrivial theorem says that, since M is complete, one can extend ∆ µ to a self-adjoint operator on L 2 (M, dµ) (see [START_REF] Davies | Heat kernels and spectral theory[END_REF][START_REF] Grigor'yan | Heat kernel and analysis on manifolds[END_REF]). In the sequel, we denote ∆ µ by ∆. The spectral theory yields for all

f ∈ C ∞ 0 (M) (∆ f , f ) = M |∆ 1/2 f | 2 dµ.
Moreover, the associated heat semigroup e -t∆ t>0 is a family of linear contractions on L 2 (M). Indeed, the following theorem holds: Theorem 0.42 ( [START_REF] Grigor'yan | Heat kernel and analysis on manifolds[END_REF][START_REF] Strichartz | Analysis of the Laplacian on the complete Riemannian manifold[END_REF]). The heat semigroup e -t∆ on L 2 (M) admits a unique heat kernel p t (x, y) satisfying

1. Smoothness: p t (x, y) is a C ∞ function on R + × M × M.
2. Positivity: p t (x, y) > 0 for all x, y ∈ M and t > 0.

3. Symmetry: p t (x, y) = p t (y, x) for all x, y ∈ M and t > 0.

4. For any f ∈ L 2 (M), and for all x ∈ M and t > 0, e -t∆ f (x) = M p t (x, y) f (y)dµ(y).

(6)

Sub-Markovian property: For

f ∈ L 2 (M), 0 ≤ f ≤ 1 ⇒ 0 ≤ e -t∆ f ≤ 1.
In other words, M p t (x, y)dµ(y) ≤ 1.

6. L p boundedness and strongly continuity: e -t∆ f p ≤ f p for all t > 0 and f

∈ L 2 L p , 1 ≤ p ≤ ∞, with e -t∆ f -f p → 0 if 1 ≤ p < ∞.
7. For all f ∈ L 2 (M), we have d dt e -t∆ f = -∆e -t∆ f . This still holds for all f ∈ L p , 1 ≤ p ≤ ∞, if we define e -t∆ f as in (6).

Graphs

Let Γ be an infinite graph endowed with a symmetric weight µ on Γ × Γ. For any x, y ∈ Γ, then µ xy = µ yx ≥ 0. We say that x and y are neighbors (they are connected by an edge), denoted by x ∼ y, if and only if µ xy > 0.

Define µ(x) = ∑ y∼x µ xy , then it extends a measure on Γ by

µ(Ω) = ∑ x∈Ω µ(x),
where Ω is a finite subset in Γ.

For x, y ∈ Γ, a path of length n between x and y in Γ is a sequence x i , 0 = 1, • • • , n such that

x 0 = x, x n = y and x i ∼ x i+1 , i = 0, • • • , n -1.
Assume that Γ is connected, that is, there exists a path between any two vertices of Γ. The induced graph distance d(x, y) is the minimal number of edges in any path connecting x and y. Let B(x, r) = {y ∈ Γ : d(x, y) ≤ r} be the closed ball with center

x ∈ Γ and radius r > 0, while V (x, r) = µ(B(x, r)) denotes its mesure. Define p(x, y) = µ xy µ(x) , for any x, y ∈ Γ. Then p is a reversible Markov kernel satisfying

µ(x)p(x, y) = µ xy = µ(y)p(y, x); (7) ∑ y∈Γ p(x, y) = 1; (8) p(x, y) = 0, if d(x, y) ≥ 2. ( 9 
)
The third property is the so-called finite range property of Γ.

We always assume

• Γ is locally uniformly finite, which means that for any x ∈ Γ, there exists N ∈ N such that x has at most N neighbours;

• Γ satisfies the condition △(α), that is, there exists c > 0 such that for all x, y ∈ Γ

x ∼ y implies p(x, y) ≥ c, and x ∼ x.

(10)

Denote by p k the iterated kernel given by

p 0 (x, y) := δ (x, y) = 1, x = y, 0, x = y; p k (x, y) = ∑ z∈Γ p k-1 (x, z)p(z, y), k ≥ 1.
The L p norm of a function f on Γ is given by

f p = ∑ x | f (x)| p µ(x) 1/p
, and one denotes by c 0 (Γ) the set of functions with finite support on Γ.

The linear operator associated with the kernel p is defined by

P f (x) = ∑ y p(x, y) f (y),
then P is self-adjoint on L 2 (Γ) and we have

P k f (x) = ∑ y p k (x, y) f (y).
We call the operator L = I -P the discrete Laplacian on Γ.

The value of discrete gradient on Γ is defined by

|∇ f (x)| = 1 2 ∑ y p(x, y)| f (x) -f (y)| 2 1/2
, while p k+1 (y, x)p k (y, x) is regarded as the discrete time derivative of p k (y, x).

A simple calculation shows that

∇ f 2 2 =< (I -P) f , f >= (I -P) 1 2 f 2 2 ,
where (I -P) 1/2 is defined by spectral theory. As is pointed out in [START_REF] Russ | Riesz transforms on graphs for 1 ≤ p ≤ 2[END_REF], the assumption △(α) in (10) implies -1 / ∈ Spec (P), and as a consequence

P = 1 a λ dE λ , where a > -1. (11) 
This implies the analyticity of P on L 2 , see [CSC90, Proposition 3]. That is, there exists C > 0such that for all n ∈ N,

P n -P n+1 2→2 ≤ Cn -1 .
For any y ∈ Γ, p • (•, y) satisfies the discrete-time heat equation

µ(x)(u(n + 1, x) -u(n, x)) = ∑ y µ xy (u(n, y) -u(n, x)),
or equivalently 

µ(x)u(n + 1, x) = ∑ y µ xy u(n, y
+ E ( f , f )) 1/2 . We also assume E is strongly local: f 1 , f 2 with compact support and f 1 is constant on an open set U 1 containing sup f 2 , then E ( f 1 , f 2 ) = 0. E admit an "energy measure" Γ: E ( f , g) = M dΓ( f , g),
for f , g ∈ D.

For any x, y ∈ M, define

d(x, y) = sup{ f (x) -f (y) : dΓ( f , f ) ≤ dµ, f ∈ C }.
Here dΓ( f , f ) ≤ dµ means that Γ( f , f ) is absolutely continuous with respect to µ with Radon-Nikodym derivative bounded by 1. Assume that d is actually a true metric that generates the original topology on M and that (M, d) is complete. Then we say that (M, d, µ, E ) is a metric measure Dirichlet space. We say that E admits a "carré du champ" if dΓ is absolutely continuous with respect to µ. That is, there exists a unique positive symmetric and continuous bilinear form from D × D into L 1 , still denoted by Γ, such that

E ( f h, g) + E (gh, f ) -E (h, f g) = M hΓ( f , g)dµ, ∀ f , g, h ∈ D ∩ L ∞ .
Note that in general dΓ needs not to be absolutely continuous with respect to µ. For more informa-tion, we refer to [B É85, BH91].

Denote by L the non-negative self-adjoint operator associated with E . Then

E ( f , g) =< L f , g >=< f , Lg >= M dΓ( f , g).
The generated semigroup e -tL t>0 is a contraction on L 2 (M, µ). Moreover, e -tL is Markovian and can be extended as a contraction operator on L p (M, µ), 1 ≤ p ≤ ∞.

The following are some examples:

Example 0.43. Manifolds. Let (M, d, µ) be a Riemannian manifold and ∆ be the Laplace-Beltrami operator. We take the core to be the C ∞ functions on M with compact support, and set

E ( f , f ) := M (∆ f )gdµ, ∀ f ∈ C ∞ 0 (M).
Example 0.44. Euclidean spaces with divergence form operators.

Let (a i j (x)) n×n be a bounded and measurable matrix, and set

E ( f , f ) := R n ∇ f • a∇g, ∀ f ∈ C ∞ 0 (R n ).
Example 0.45. Fractals.

For example, Sierpinski carpets, Sierpinski gaskets, Vicsek sets, etc. See for references [BB92, BB99a, BCG01, Bar13].

On a Sierpinski carpet F, let F n be a sequence of approximations to F and E n be an appropriate Dirichlet form on F n . Then one can construct a limiting Dirichlet form E on F. See [START_REF] Barlow | Analysis on the Sierpinski carpet[END_REF] for the construction.

Example 0.46. Cable systems (Quantum graphs) (see [START_REF] Th | Long range estimates for Markov chains[END_REF], [BB04, Section 2]).

Given a weighted graph (G, d, ν) (see Section 0.6.2), we define the cable system G C by replacing each edge of G by a copy of (0, 1) joined together at the vertices. The measure µ on G C is given by dµ(t) = ν xy dt for t in the cable connecting x and y; and µ assigns no mass to any vertex. The distance between two points x and y is given as follows: if x and y are on the same cable, the length is just the usual Euclidean distance |x -y|. If they are on different cables, then the distance is min{|xz x | + d(z x , z y ) + |z y -y|} (d is the usual graph distance), where the minimum is taken over all vertices z x and z y such that x is on a cable with one end at z x and y is on a cable with one end at z y . One takes as the core C the functions in C(G C ) which have compact support and are C 1 on each cable, and sets

E ( f , f ) := G C f ′ (t) 2 dµ(t).

Heat kernel estimates

Let (M, d, µ) be a complete metric measure space. Let L be a non-negative self-adjoint operator on L 2 (M, µ), which generates an analytic semigroup (e -tL ) t>0 . Note that (e -tL ) t>0 is not necessarily uniformly bounded on L 1 (M, µ). There are interesting semigroups that do not act on L 1 , but only on a range of L p spaces, where p ∈ [p 0 , p ′ 0 ] for some p 0 > 1. See for example, [START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF]. Let 1 < β 1 ≤ β 2 . In this paper, we will assume following heat kernel estimate: Definition 0.47. Let 1 ≤ p 0 < 2. We say that M satisfies the generalised L p 0 -L p ′ 0 off-diagonal estimate if for x, y ∈ M and t > 0,

✶ B(x,t) e -ρ(t)L ✶ B(y,t) p 0 →p ′ 0 ≤                  C V 1 p 0 -1 p ′ 0 (x,t) exp   -c d(x, y) t β 1 β 1 -1   0 < t < 1, C V 1 p 0 -1 p ′ 0 (x,t) exp   -c d(x, y) t β 2 β 2 -1   , t ≥ 1, (DG p 0 ,p ′ 0 β 1 ,β 2 )
where

ρ(t) = t β 1 , 0 < t < 1, t β 2 , t ≥ 1; (12) 
Remark 0.48. In particular, if p 0 = 2, we say that M satisfies the generalised L 2 -L 2 Davies-Gaffney estimate and denote it by (DG β 1 ,β 2 ). That is,

✶ B(x,t) e -ρ(t)L ✶ B(y,t) 2→2 ≤                C exp   -c d(x, y) t β 1 β 1 -1   0 < t < 1, C exp   -c d(x, y) t β 2 β 2 -1   , t ≥ 1. (DG β 1 ,β 2 ) If p 0 = 1, then (DG p 0 ,p ′ 0 β 1 ,β 2
) is equivalent to the following pointwise estimate of the heat kernel (see [BK05, Proposition 3.6]):

p ρ(t) (x, y) ≤                C V (x,t) exp   -c d(x, y) t β 1 β 1 -1   0 < t < 1, C V (x,t) exp   -c d(x, y) t β 2 β 2 -1   , t ≥ 1. (UE β 1 ,β 2 )
In the following, we will given some examples that satisfy (DG

p 0 ,p ′ 0 β 1 ,β 2
).

Example 0.49. Euclidean spaces with higher order divergence form operators.

Let L be a homogeneous elliptic operator on L 2 (R n ) of order 2m (m ≥ 1) in divergence form:

L := (-1) m ∑ |α|=|β |=m ∂ α a α,β ∂ β ,
where we assume a α,β is bounded for all α, β . Then

(UE 2m,2m ) holds if n ≤ 2m. If n > 2m, then (DG p 0 ,p ′ 0 β 1 ,β 2
) holds for p 0 = 2n n+2m . See for example [START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF][START_REF] Davies | Uniformly elliptic operators with measurable coefficients[END_REF][START_REF] Davies | L p spectral theory of higher-order elliptic differential operators[END_REF] etc.

Example 0.50. Riemannian manifolds.

Any Riemannian manifold with non-negative Ricci curvature satisfies (UE 2,2 ), which is the most familiar Gaussian heat kernel upper estimates. See [START_REF] Li | On the parabolic kernel of the Schrödinger operator[END_REF][START_REF] Grigor'yan | Heat kernel and analysis on manifolds[END_REF] for more information.

In general, any complete Riemannian manifold satisfies the classical Davies-Gaffney estimate (DG 2,2 ) (see [START_REF] Davies | Heat kernel bounds, conservation of probability and the Feller property[END_REF]).

Example 0.51. Fractals.

For example, Sierpinski carpets, Sierpinski gaskets, Vicsek sets, etc, satisfy (UE m,m ) with m > 2. We refer to [START_REF] Barlow | Transition densities for Brownian motion on the Sierpiński carpet[END_REF][START_REF] Barlow | Brownian motion and harmonic analysis on Sierpinski carpets[END_REF][START_REF] Barlow | Manifolds and graphs with slow heat kernel decay[END_REF][START_REF] Barlow | Analysis on the Sierpinski carpet[END_REF]. On a Sierpinski carpet F, let X t be a Brownian motion on F which is constructed as the limit of time-changed reflecting Brownian motions on approximations to F. Let L be the infinitesimal generator of the limiting process X t . The transition density of X t is the heat kernel.

Example 0.52. Some fractal manifolds.

Let (G, E, ν) be a infinite connected graph satisfying polynomial volume growth V (x, r) ≃ r D and sub-Gaussian heat kernel estimate

p k (x, y) ≤ Cµ(y) k D/m exp -c d m (x, y) k 1/(m-1)
, where D ≥ 1 and 2 ≤ m ≤ D + 1. In fact, one can choose any D ≥ 1 and any 2 ≤ m ≤ D + 1 such that the above conditions hold (see [START_REF] Barlow | Which values of the volume growth and escape time exponent are possible for a graph?[END_REF]). Let M be a manifold constructed from G by replacing the edges of the graph by tubes of length 1 and then gluing the tubes together smoothly at the vertices (see [START_REF] Barlow | Manifolds and graphs with slow heat kernel decay[END_REF] for a concrete example). Let d be the geodesic distance, µ be the Riemannian measure and ∆ be the non-negative Laplace-Beltrami operator on M. Denote by e -t∆ the heat semigroup associated with ∆. Then the heat kernel p t (x, y) satisfies (UE β 1 ,β 2 ) with β 1 = 2 and β 2 = m > 2. That is, the small time behaviour of the heat kernel is Gaussian as in Euclidean spaces while the heat kernel has a sub-Gaussian decay for large time.

Example 0.53. Some cable systems (Quantum graphs).

Let G C be the cable system as in Example 0.53. Let L be the associated non-negative self-adjoint operator associated with E and e -tL be the generated semigroup. Then the associated kernel may satisfies (UE β 1 ,β 2 ). For example, the cable graph associated with the Sierpinski gasket graph (in Z 2 ) satisfies (UE 2,log 5/ log 2 ) (see [START_REF] Jones | Transition probabilities for the simple random walk on the Sierpiński graph[END_REF][START_REF] Barlow | Stability of parabolic Harnack inequalities[END_REF]).

More generally, Hebisch and Saloff-Coste [START_REF] Hebisch | On the relation between elliptic and parabolic Harnack inequalities[END_REF] consider a non-compact complete metric space with regular and strongly local Dirichlet form, on which the related heat kernel satisfies the ρ-Gaussian heat kernel upper estimate

p t (x, y) ≤ C V (y, ρ -1 (t)) exp (-cG(t, d(x, y))), ( 13 
)
where ρ -1 is the inverse function of ρ, ρ and G satisfy certain conditions which we omit here. If the matching lower bound also holds, we say that M satisfies two-sided ρ-Gaussian heat kernel estimate. We refer to [HSC01] (Section 5) for a detailed introduction of this kind of non-classical heat kernel estimates and related parabolic Harnack inequalities. See also [START_REF] Grigor'yan | Two-sided estimates of heat kernels on metric measure spaces[END_REF]. Indeed, Examples 0.52 and 0.53 satisfy two-sided ρ-Gaussian heat kernel estimate with

ρ(t) = t β 1 , 0 < t < 1, t β 2 , t ≥ 1, and 
G(R,t) =              R β 1 t 1/(β 1 -1) , t ≤ R, R β 2 t 1/(β 2 -1) , t ≥ R.
Note that in this case the upper bound here implies (UE β 1 ,β 2 ). In fact, since β 1 ≤ β 2 . Then for

d(x, y) ≤ t, one has d β 1 (x,y) t 1/(β 1 -1) ≤ d β 2 (x,y) t 1/(β 2 -1)
. And for t ≤ d(x, y), one has

d β 1 (x, y) t 1/(β 1 -1) ≥ d β 2 (x, y) t 1/(β 2 -1)
.

Thus the upper bound of (13) implies the following estimate:

p t (x, y) ≤                C V (x,t 1/β 1 ) exp   -c d β 1 (x, y) t 1/(β 1 -1)   , 0 < t < 1, C V (x,t 1/β 2 ) exp   -c d β 2 (x, y) t 1/(β 2 -1)   , t ≥ 1,
which is exactly (UE β 1 ,β 2 ). In the sequel, we also denote ( 13) by (UE β 1 ,β 2 ).

Riesz transforms on Riemannian manifolds

It was asked by Strichartz [Str83] in 1983 on which non-compact Riemannian manifold M, and for which p, 1 < p < +∞, the two semi-norms |∇ f | p and ∆ 1/2 f p were equivalent on C ∞ 0 (M). That is, when do there exist two constants c p ,C p such that

c p ∆ 1/2 f p ≤ |∇ f | p ≤ C p ∆ 1/2 f p , ∀ f ∈ C ∞ 0 (M)? (E p )
One says that the Riesz transform

∇∆ -1/2 is L p bounded on M, or that M satisfies (R p ), if |∇ f | p ≤ C ∆ 1/2 f p , ∀ f ∈ C ∞ 0 (M), (R p ) and M satisfies (RR p ) if ∆ 1/2 f p ≤ C |∇ f | p , ∀ f ∈ C ∞ 0 (M). (RR p )
It is well-known (see for example [START_REF] Coulhon | Riesz transform and related inequalities on noncompact Riemannian manifolds[END_REF]) that by duality (R p ) implies (RR p ′ ), where p ′ is the conjugate of p. The converse is false. Obviously, (R 2 ) and (RR 2 ) are always true. The real issue is the case p = 2 and a lot of work has addressed this problem. For a complete introduction about the background of this problem, we refer to [START_REF] Auscher | Riesz transform on manifolds and heat kernel regularity[END_REF] and the references therein.

Estimates of the heat kernel and its derivative happen to be a key ingredient for the boundedness of the Riesz transform. We list some Gaussian heat kernel estimates as follows:

The on-diagonal upper estimate

p t (x, x) ≤ c V (x, √ t) , ∀x ∈ M,t > 0. (DUE)
The off-diagonal Gaussian upper estimate

p t (x, y) ≤ C V (x, √ t) exp - d 2 (x, y) Ct , ∀x, y ∈ M,t > 0. (UE)
In fact, assuming the doubling volume property, (DUE) self-improves into the Gaussian heat kernel estimate (UE) (See for example [START_REF] Coulhon | Gaussian heat kernel upper bounds via the Phragmén-Lindelöf theorem[END_REF], [START_REF] Grigor'yan | Heat kernel and analysis on manifolds[END_REF]).

The Li-Yau type estimate, i. e., ∀x, y ∈ M,t > 0,

c V (x, √ t) exp - d 2 (x, y) ct ≤ p t (x, y) ≤ C V (x, √ t) exp - d 2 (x, y) Ct . (LY )
The gradient upper estimate

|∇p t (x, y)| ≤ C √ tV (y, √ t) , ∀x, y ∈ M,t > 0. (G)
Let us first recall a result of Coulhon and Duong in [START_REF] Coulhon | Riesz transforms for 1 ≤ p ≤ 2[END_REF].

Theorem 0.54. Let M be a complete non-compact manifold satisfying the doubling volume property (D) and the heat kernel estimate (DUE). Then (R p ) holds for 1 < p < 2.

Note that (R p ) may be false under (D) and (DUE) for p > 2, even (RR p ) for 1 < p < 2. The following are two counterexamples.

Connected sum of R n Let M n be a manifold consisting in two copies of R n \B(0, 1), with the Euclidean metric, glued smoothly along the unit circles.

For n ≥ 2, Coulhon and Duong ([CD99, Section 5]) showed that the Riesz transform on M n is not L p bounded for p > n. Note that M n satisfies (D) and (UE) (the assumptions in Theorem 0.54), but (LY ) fails.

For n ≥ 3, the result can be improved to the point that the Riesz transform on M n is not L p bounded for p ≥ n (see [START_REF] Carron | Riesz transform and L p -cohomology for manifolds with Euclidean ends[END_REF]). While for 1 < p < n, the Riesz transform is L p bounded (see [START_REF] Carron | Riesz transforms on connected sums[END_REF][START_REF] Carron | Riesz transform and L p -cohomology for manifolds with Euclidean ends[END_REF]).

Vicsek manifold (see [BCG01, Section 6]) Let M be a Vicsek manifold with polynomial growth of exponent D > 1 (D can be arbitrarily large) for large radius, that is,

V (x, r) ≃ r D , r ≥ 1. It satisfies the heat kernel estimate sup x∈M p t (x, x) ≃ t -D D+1 , t ≥ 1. Proposition 0.55 ([CD03]
). Let M be a Vicsek manifold with polynomial growth of exponent D > 1.

Then (RR p ) is false for 1 < p < 2D D+1 . Consequently, (R p ) is false for p > 2D D-1 .
If we further assume the lower Gaussian bound on the heat kernel, that is the Li-Yau type estimates, or equivalently (D) and the Poincaré inequality (P) below (see [START_REF] Saloff-Coste | Aspects of Sobolev-type inequalities[END_REF]), then Theorem 0.54 can be improved.

Theorem 0.56 ([AC05]). Let M be a complete non-compact Riemannian manifold satisfying (D) and the Poincaré inequality, that is, there exists

C > 0 such that ∀B, ∀ f ∈ C ∞ 0 (B) B | f -f B | 2 dµ ≤ Cr 2 B B |∇ f | 2 dµ, (P)
where r B is the radius of B. Then there exists ε > 0 such that (R p ) holds for 2 < p < 2 + ε.

Results for p not necessarily close to 2 are obtained under stronger conditions:

Theorem 0.57 ([ACDH04]
). Let M be a complete non-compact Riemannian manifold satisfying (LY ). If for some p 0 ∈ (2, ∞] there exists C > 0 such that for all t > 0, ∇e -t∆

p 0 →p 0 ≤ C √ t , (G p 0 )
then the Riesz transform is bounded on L p for 2 < p < p 0 .

Theorem 0.58 ]). Let M be a complete non-compact Riemannian manifold satisfying the doubling volume property (D). If (G) holds, then the Riesz transform is bounded on L p and (E p ) holds for 1 < p < ∞.

([ACDH04], [ CS08 

Hardy spaces associated with operators

The study of Hardy spaces originated in the 1910's and at the very beginning was confined to Fourier series and complex analysis in one variable. Since 1960's, it has been transferred to real analysis in several variables, or more generally to analysis on spaces of homogeneous type (see [START_REF] Coifman | Extensions of Hardy spaces and their use in analysis[END_REF]). Hardy spaces H p are defined for p > 0 and for p > 1 they usually coincide with L p spaces. Here we mainly focus on the case p ≥ 1, and in particular p = 1. There are many different equivalent definitions of Hardy spaces. They involve suitable maximal functions, the atomic decomposition, the molecule decomposition, singular integrals, etc (see [START_REF] Fefferman | H p spaces of several variables[END_REF][START_REF] Coifman | Extensions of Hardy spaces and their use in analysis[END_REF], ...).

Let us first recall the H 1 space defined on a general homogeneous space M in terms of atoms (see [START_REF] Coifman | Extensions of Hardy spaces and their use in analysis[END_REF]

). A function a ∈ L 2 (M) is an H 1 -atom if there exists a ball B ∈ M such that 1. supp a ⊂ B, 2. a 2 ≤ V (B) -1/2 , 3. M a(x)dx = 0. A complex-valued function f defined on M belongs to H 1 (M) if and only if f has a decompo- sition f = ∞ ∑ j=0 λ j a j ,
where ∑ ∞ j=0 |λ j | < +∞ and a j 's are H 1 -atoms. A similar definition can be devised for all p > 0. The molecular Hardy spaces are defined similarly. Compared with atoms, molecules don't have compact supports but decay sufficiently fast. They can be used as an alternative to atoms for many purposes.

In the Euclidean space, Coifman, Meyer and Stein later introduced tent spaces in [START_REF] Coifman | Some new function spaces and their applications to harmonic analysis[END_REF] (see [START_REF] Russ | The atomic decomposition for tent spaces on spaces of homogeneous type[END_REF] for homogeneous spaces), which connect atomic Hardy spaces and square functions. A measurable function

F on R n × (0, ∞) belongs to the tent space T p 2 (R n ) if F T p 2 := |y-x|<t |F(y,t)| 2 dy dt t n+1 1/2 L p < ∞.
For more details about the tent spaces, see Section 4.2.3 below. Let us clarify the connection among tent spaces, square functions and Hardy spaces (see [START_REF] Fefferman | H p spaces of several variables[END_REF][START_REF] Auscher | Hardy spaces of differential forms on Riemannian manifolds[END_REF]). Let f be a suitable function on R n . For all x ∈ R n , we define the so-called conical square function as follows

S f (x) = |y-x|<t t √ ∆e -t √ ∆ f (y) 2 dy dt t n+1 1/2 , where ∆ = ∑ n i=1 ∂ 2 ∂ x 2 i and e -t √ ∆ is the Poisson semigroup.
One can define Hardy spaces

H p via this square function. That is, f ∈ H p , p ≥ 1, if S f ∈ L p , i.e. t √ ∆e -t √ ∆ f ∈ T p 2 .
Indeed, the H 1 space defined in this way is equivalent to the definition via molecules. On the one hand, it was shown in [START_REF] Fefferman | H p spaces of several variables[END_REF] 

that if f ∈ H 1 (R n ), then S f L 1 ≤ C f H 1 .
On the other hand, by the Calderón reproducing formula, f can be written as

f = ∞ 0 t √ ∆e -t √ ∆ F t dt t , (14) 
where

F t := t √ ∆e -t √ ∆ f belongs to the tent space T 1 2 . It is proved in [CMS85] that F t admits a T 1
2 -atomic decomposition. One can plug this into (14) and obtain a molecular decomposition for f . For

p ∈ (1, ∞), it holds that H p (R n ) = L p (R n ).
In [START_REF] Auscher | Hardy spaces of differential forms on Riemannian manifolds[END_REF], Auscher, McIntosh and Russ went beyond the Euclidean setting and considered a complete Riemannian manifold M satisfying the doubling volume property and defined Hardy spaces of differential forms of all degrees (see [START_REF] Auscher | Calderon reproducing formulas and applications to Hardy spaces[END_REF] for Hardy spaces of vector bundles on doubling metric measure spaces). Let L 2 (ΛT * M) be the Hilbert space of square-integrable differential forms of every order on M. Denote by d and d * , the exterior derivative and its adjoint on L 2 (ΛT * M). The Hodge-Dirac operator is D = d + d * and the Hodge-Laplacian is ∆ = D 2 . The Riesz transform D∆ -1/2 is bounded on L 2 (ΛT * M) by definition. The authors then construct Hardy spaces H p D of differential forms by means of suitable square functions such that the Riesz transform

D∆ -1/2 is bounded on H p D (ΛT * M) for 1 ≤ p ≤ 2. A molecular characterisation of H 1 D (ΛT * M) is also given. Theorem 0.59 ([AMR08]
). Let M be a complete Riemannian manifold satisfying the doubling volume property. Then,

• For all 1 ≤ p ≤ 2, H p (ΛT * M) ⊂ R(D) ∩ L p (ΛT * M) L p (ΛT * M) . • For all 2 ≤ p < ∞, R(D) ∩ L p (ΛT * M) L p (ΛT * M) ⊂ H p (ΛT * M).
Furthermore, if we assume the Gaussian upper bounds for the heat kernel of the Hodge Laplacian, that is, for all 0 ≤ k ≤ n,

|p k t (x, y)| ≤ C V (x, √ t) exp - d 2 (x, y) Ct , ∀x, y ∈ M,t > 0, (G k )
where p k t is the kernel of e -t∆ k and ∆ k is the Hodge Laplacian restricted to k-forms, then

H p (ΛT * M) = R(D) ∩ L p (ΛT * M) L p (ΛT * M) for 1 < p < ∞.
As a result of functional calculus on H p (ΛT * M), we obtain

Theorem 0.60 ([AMR08]
). Let M be a complete Riemannian manifold satisfying the doubling volume property. Then, for all

1 ≤ p ≤ ∞, the Riesz transform D∆ -1/2 is H p (ΛT * M) bounded. Consequently, it is H 1 (ΛT * M) -L 1 (ΛT * M) bounded.
More specifically, focusing on the case of functions (0-forms), it holds

• Assume (D) and (G 0 ). Then it holds for 1 < p < ∞,

H p (Λ 0 T * M) = R(D) ∩ L p (Λ 0 T * M) L p (Λ 0 T * M) .
• Assume (D), (G 0 ) and (G 1 ). Then the Riesz transform on functions d∆ -1/2 is L p (Λ 0 T * M) -

L p (Λ 1 T * M) bounded for 1 < p < ∞.
In [HLM + 11], Hofmann, Lu, Mitrea, Mitrea and Yan developed the theory of H 1 and BMO spaces on a space of homogeneous type M with a non-negative self-adjoint operator L, which generates an analytic semigroup (e -tL ) t>0 satisfying the following Davies-Gaffney estimate. That is, there exist C, c > 0 such that for any open sets

U 1 ,U 2 ⊂ M, | < e -tL f 1 , f 2 > | ≤ C exp - dist 2 (U 1 ,U 2 ) ct f 1 2 f 2 2 , ∀t > 0, (15) 
for every

f i ∈ L 2 (M) with supp f i ⊂ U i , i = 1, 2, where dist (U 1 ,U 2 ) := inf x∈U 1 ,y∈U 2 d(x, y).
The authors extended results of [START_REF] Auscher | Hardy spaces of differential forms on Riemannian manifolds[END_REF] by obtaining an atomic decomposition of the H 1 space. More generally, Kunstmann and Uhl [Uhl11, KU12] considered a non-negative self-adjoint operator L on L 2 which satisfies the Davies-Gaffney estimate (DG m ) (of order m), m ≥ 2: ∀t > 0, ∀x, y ∈ M,

✶ B(x,t 1/m ) e -tL ✶ B(y,t 1/m ) 2→2 ≤ C exp -c d(x, y) t 1/m m m-1 . ( 16 
)
They defined Hardy spaces via square functions and via molecules which are adapted to (DG m ). They proved that the two H 1 spaces are equivalent. Moreover, if the so-called generalised Gaussian (p 0 , p ′ 0 )-estimates (of order m) holds: ∀t > 0, ∀x, y ∈ M,

✶ B(x,t 1/m ) e -tL ✶ B(y,t 1/m ) p 0 →p ′ 0 ≤ C V 1 p 0 -1 p ′ 0 (x,t 1/m ) exp -c d(x, y) t 1/m m m-1 , (17) 
(which implies that (e -tL ) t>0 acts on L p for p ∈ (p 0 , p ′ 0 )), they prove that the Hardy space H p defined via square functions coincides with L p for p ∈ (p 0 , 2).

Presentation of results

In this thesis, we mainly consider two subjects: the L p boundedness of (quasi) Riesz transforms and the Hardy space theory. Besides, we also consider some inequalities on Vicsek graphs. In the following, we first present our results on different subjects respectively, and then give the plan of this thesis.

About (quasi) Riesz transforms

We study the (quasi) Riesz transform in different settings: the general complete Riemannian manifold, the Riemannian manifold satisfying (D) and (UE 2,m ), the graph satisfying (D) and (UE m ). See Chapter 2, 3, 5 and Section 4.4.

On complete Riemannian manifolds Consider an arbitrary complete Riemannian manifold without any volume and heat kernel assumptions. Proposition 0.61. Let M be a complete Riemannian manifold. Then for 1 < p ≤ 2, we have

∇e -t∆ p→p ≤ C √ t ,
and equivalently

|∇ f | 2 p ≤ C f p ∆ f p .
As an application, one can obtain a weak version of (R p ) for 1 < p ≤ 2.

Theorem 0.62. Let M be a complete manifold. Then, for any fixed α ∈ (0, 1/2), the operator ∇e -∆ ∆ -α is bounded on L p for all 1 < p ≤ 2.

Indeed, we shall see in Section 2.1 below that ∇e -∆ ∆ -1/2 is to be seen as Riesz transform at infinity. The above property is weaker than the L p boundedness of ∇e -∆ ∆ -1/2 . Together with local results, this yields:

Proposition 0.63. Let M be a complete Riemannian manifold satisfying (D loc ) and (DUE loc ), then the quasi Riesz transform

∇(I + ∆) -1/2 + ∇e -∆ ∆ -α with α ∈ (0, 1/2) is L p bounded for 1 < p ≤ 2.
Then one can try to replace (DUE) with other natural heat kernel upper bounds. For instance, the sub-Gaussian heat kernel upper bound (UE 2,m ), m ≥ 2 (see Section 1.2).

On Riemannian manifolds satisfying (D) and (UE 2,m ) It is not known whether (DUE) is necessary for the L p boundedness of Riesz transform for 1 < p < 2. A natural question would be to ask whether (R p ) holds if we replace (DUE) with some other natural heat kernel estimates, for instance, (UE 2,m ). That is, Question 0.64. Are the Riesz transforms L p bounded for 1 < p < 2 on manifolds with the doubling volume property as well as (UE 2,m )?

If the Riesz transform is not bounded on such kind of manifolds, then they are interesting counter-examples. If the Riesz transform is bounded, then the result in Theorem 0.54 is improved.

So far, we are not able to answer this question. However, under (UE 2,m ) or a weaker condition to be introduced below (see Remark 3.12), we are able to treat the endpoint case p = 1 of Theorem 1.8. Indeed, we have Theorem 0.65. Let M be a complete Riemannian manifold satisfying (D) and (UE 2,m ). Then for any 0 < α < 1/2, the quasi Riesz transform ∇e -∆ ∆ -α is of weak type (1, 1).

If we have some additional assumptions, we can get the following positive result for p > 2.

Theorem 0.66. Let M be a complete non-compact Riemannian manifold satisfying (D) and the two-sided sub-Gaussian heat kernel bound (HK 2,m ) with m ≥ 2, i.e. (UE 2,m ) and a similar lower bound. Assume that (G p 0 ) holds for some p 0 ∈ (2, ∞] and also the L 2 Davies-Gaffney estimate (DG1

2 ): ∇e -t∆ f L 2 (B) ≤        C t 1/2 e -c d 2 (B,C i (B)) t f L 2 (C i (B)) , 0 < t < 1, C t 1/2 e -c d m (B,C i (B)) t 1/(m-1) f L 2 (C i (B)) , 1 ≤ t < ∞.

Then the Riesz transform at infinity ∇e

-∆ ∆ -1/2 is L p bounded for p ∈ (2, p 0 ).
Counterexamples for p > 2 We improve the negative result of Proposition 0.55. That is, there exist manifolds such that the reverse Riesz transform is not L p bounded for 1 < p < 2 and thus (R p ) doesn't hold for 2 < p < ∞.

Theorem 0.67. Consider the Vicsek manifold M with the polynomial volume growth V (x, r) ≃ r D for r ≥ 1. Then the inequality

∆ β f p ≤ C p |∇ f | p is false for any β < β (p) := 1 D+1 D p + 1 p ′ , where 1 < p < ∞.
In particular, (RR p ) is false for any 1 < p < 2. Consequently, (R p ) doesn't hold for all p > 2.

On graphs Consider also the discrete case (graphs). We have the following results, which are similar to Proposition 0.63 and Theorem 0.65. Proposition 0.68. Let Γ be a infinite connected graph satisfying the local doubling property, that is, for some constant c > 1, µ(B(x, 1) ≤ cµ(x), ∀x ∈ Γ.

Then for any fixed β ∈ (0, 1/2) and 1 < p ≤ 2, there exists C > 0 such that

|∇(I -P) -β f | p ≤ C f p , for all f ∈ L p .
Theorem 0.69. Let Γ be a infinite connected graph as above. Suppose that Γ satisfies the condition △(α) and the sub-Gaussian upper heat kernel estimate (UE m ). Then for any β ∈ (0, 1/2), the quasi Riesz transform ∇(I -P) -β is weak type (1, 1).

About Hardy spaces

Similarly as in [AMR08, HLM + 11], we define two classes of Hardy spaces on metric measure space (M, d, µ) with different local and global heat kernel estimates for e -tL where L is nonnegative self-adjoint operator. The first class is the H 1 space defined via molecules, denoted by

H 1 L,ρ, mol (M). The second class is H p L,S
ρ h (M), p ≥ 1, defined via conical square function (or tent spaces). Note that here ρ is related to the heat kernel estimates. As in [HLM + 11], we will show that the two definitions of H 1 space are equivalent. That is Theorem 0.70. Let M be a metric measure space satisfying the doubling volume property (D) and the heat kernel estimate (DG

β 1 ,β 2 ), β 1 ≤ β 2 . Then H 1 L,ρ, mol (M) = H 1 L,S ρ h (M). Moreover, f H 1 L,ρ, mol (M) ≃ f H 1 L,S ρ h (M) .

Comparing H p L,S

ρ h (M) and L p for 1 < p < ∞, we get the following generalisation of [START_REF] Kunstmann | Spectral multiplier theorems of hörmander type on hardy and lebesgue spaces[END_REF][START_REF] Uhl | Spectral multiplier theorems of hörmander type via generalized gaussian estimates[END_REF].

Theorem 0.71. Let M be a non-compact metric measure space satisfying the doubling volume property (D) and the heat kernel estimate (DG

p 0 ,p ′ 0 β 1 ,β 2 ). Then H p L,S ρ h (M) = R(L) ∩ L p (M) L p (M) for p 0 < p < p ′ 0 .
Remark 0.72. Compared with ( 16) and ( 17), the two assumptions (DG

p 0 ,p ′ 0 β 1 ,β 2
) and (DG β 1 ,β 2 ) admit different local and global behaviours.

As a corollary, the pointwise heat kernel estimate gives Corollary 0.73. Let M be a non-compact metric measure space satisfying the doubling volume property (D) and the following pointwise heat kernel estimate

(UE β 1 ,β 2 ). Then H 1 L,ρ, mol (M) = H 1 L,S ρ h (M), and H p L,S ρ h (M) = L p (M) for 1 < p < ∞.
In particular, we are interested in the case β 1 = 2. Indeed, fractal manifolds do satisfy (UE 2,β 2 ) with β 2 > 2 because locally they are like Euclidean spaces and globally they are like fractals (see Example 3). For convenience, we shall call β 2 = m from now on. In that case, let ∆ be the Laplace-Beltrami operator, we denote for simplicity by H 1 ∆,m,mol the H 1 space defined via molecules

H 1 L,ρ,mol , H p ∆,S m h the H p space defined via square functions H p L,S ρ h
. In this notation, Theorem 1.1 states that we denote by H 1 ∆,m the H 1 space. In the following theorem, we show that for 1 < p < 2, the equivalence may not hold between L p and H p defined via conical square function S h with scaling t 2 . That is, Theorem 0.74. Let M be a Riemannian manifold with polynomial volume growth

V (x, r) ≃ r d , r ≥ 1, ( 18 
)
as well as two-sided sub-Gaussian heat kernel estimate (HK 2,m ) with 2 < m < d/2, that is, (UE 2,m ) and the matching lower bound.

Then L p (M) ⊂ H p ∆,S h (M) doesn't hold for p ∈ d d-m , 2 .
As an application of this Hardy space theory, we have Theorem 0.75. Let M be a manifold satisfying the doubling volume property (D) and the heat kernel estimate (UE 2,m ), m > 2. Then for any fixed α ∈ (0, 1/2), the operator ∇e

-∆ ∆ -α is H 1 ∆,m -L 1 bounded.
Of course, this gives back Theorem 0.62 by interpolation in this particular case.

Other results

Consider the Vicsek graph, we have the following generalised Poincaré inequalities and Sobolev inequalities, which are all optimal. Theorem 0.76. Let Γ be a Vicsek graph with polynomial volume growth

V (x, n) ≃ n D . Then for p ≥ 1, it holds f -f n (x) L p (B(x,n)) ≤ CV (x, n) 1 D(p) |∇ f | L p (B(x,2n))
,

where f n (x) = 1 V (x,n) ∑ z∈B(x,n) f (z)µ(z) and 1 D(p) = 1 p + 1 p ′ D .
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Theorem 0.77. Let Γ be a Vicsek graph with polynomial volume growth

V (x, n) ≃ n D . Then for p ≥ 1, it holds f p µ(Ω) 1 D(p) |∇ f | p , ∀Ω ⊂ Γ, ∀ f ∈ c 0 (Ω), (S p D(p) )
where D(p) is the same as in Theorem 0.76.

The plan of the thesis In Chapter 1, we explain the relation of Riesz transform, local Riesz transform, Riesz transform at infinity and the quasi Riesz transform. Our main result in this section is Theorem 0.62. We also get a negative result Theorem 1.12.

In Chapter 2, we concentrate on Riemannian manifolds satisfying (D) and (UE 2,m ). We consider the endpoint case p = 1 for the quasi Riesz transform in two different ways. To be precise, we show that quasi Riesz transforms are weak (1, 1) bounded (Theorem 0.65). Moreover, we consider the case p > 2. Indeed, with additional assumptions on the gradient of the heat semigroup, the Riesz transform at infinity is L p bounded.

In and L p for p 0 < p < p ′ 0 . We also find some counterexamples such that H p S h = L p , where H p S h is the Hardy space defined via the square function with the scaling t 2 . Finally, as an application of this Hardy space theory, we proved the H 1 -L 1 boundedness of quasi Riesz transforms on some fractal manifolds.

In Chapter 4, we work on the discrete case (graphs). In Section 4.1, we obtain the L p boundedness of the discrete quasi Riesz transforms for 1 < p ≤ 2. In Section 4.2, we prove the weak (1, 1) boundedness of the quasi Riesz transform.

In Chapter 5, we consider Vicsek graphs. We prove the generalised Poincaré inequalities and Sobolev inequalities on Vicsek graphs which are all optimal.

Chapter 1

L p boundedness of quasi Riesz transforms on Riemannian manifolds

In this chapter, we study the (quasi) Riesz transform on an arbitrary complete Riemannian manifold M without any other assumptions.

We first describe the relations between Riesz transform, local Riesz transform, Riesz transform at infinity and quasi Riesz transform. Then we prove the L p boundedness of the gradient of the heat semigroup (G p ) for 1 < p ≤ 2, which implies the L p boundedness of the quasi Riesz transform (Proposition 1.9). At last we give a counterexample on which (R p ) doesn't hold for p > 2.

We could as well consider a metric measure space setting associated with a regular and strongly local Dirichlet form, which admits a "carré du champ" (see Section 0.6.3, or see [B É85, GSC11] for more information).

Localisation of Riesz transforms

Write the Riesz transform

∇∆ -1/2 = ∞ 0 ∇e -t∆ dt t 1/2 . Alexpoulos [Ale02]
separated the integral into local and global parts and considered the integrals respectively to show the L p boundedness of Riesz transform.

An alternative and equivalent method given in [START_REF] Dungey | Analysis on Lie groups with polynomial growth[END_REF] is to consider the following two local Riesz transform and Riesz transform at infinity: For 1 < p < ∞, we say that the local Riesz transform is L p bounded if

|∇ f | p ≤ C (I + ∆) 1/2 f p , ∀ f ∈ C ∞ 0 (M). (R loc p )
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L p bounded if |∇e -∆ f | p ≤ C ∆ 1/2 f p , ∀ f ∈ C ∞ 0 (M). (R ∞ p )
Remark 1.1. Note that at high frequencies, (I + ∆) -1/2 ≃ ∆ -1/2 . Thus locally ∇(I + ∆) -1/2 is the Riesz transform. Similarly, since e -∆ ∆ -1/2 ≃ ∆ -1/2 when ∆ ≪ ε (i.e. at low frequencies), we can regard the operator ∇e -∆ ∆ -1/2 as the localisation of Riesz transform at infinity.

Let recall several results related to the local Riesz transform.

Theorem 1.2 ([Bak87]

). Let M be a Riemannian manifold. If the Ricci curvature is bounded from below. Then (R loc p ) holds for 1 < p < ∞.

In the case 1 < p < 2, a local version of Theorem 0.54 says:

Theorem 1.3 ([CD99]
). Let M be a complete Riemannian manifold satisfying the local doubling volume property (D loc )

∀r 0 > 0, ∃C r 0 such that V (x, 2r) ≤ C r 0 V (x, r), ∀x ∈ M, r ∈ (0, r 0 ),
and whose volume growth at infinity is at most exponential in the sense that

V (x, λ r) ≤ Ce cλ V (x, r), ∀x ∈ M, λ > 1, r ≤ 1. (E) Suppose (DUE loc ) p t (x, x) ≤ C ′ V (x, √ t) , ∀x ∈ M,t ∈ (0, 1].
Then (R loc p ) holds for 1 < p ≤ 2.

Examples that satisfy the above assumptions include Riemannian manifolds with Ricci curvature bounded from below, fractal manifolds, etc.

Similarly, for p > 2, a local version of Theorem 0.57 is as follows:

Theorem 1.4 ([ACDH04]
). Let M be a complete Riemannian manifold satisfying the local doubling volume property (E) and (P loc ), i. e., for all r 0 > 0 there exists a constant C r 0 such that for any ball B with radius r ≤ r 0 ,

B | f -f B | 2 dµ ≤ C r 0 r 2 B |∇ f | 2 dµ.
If for some p 0 ∈ (2, ∞], a 0 ≥ 0 and for all t > 0, ∇e -t∆

p 0 →p 0 ≤ Ce a 0 t √ t . (G loc p 0 )
Then the local Riesz transform ∇(∆ + a) -1/2 is L p bounded for 2 < p < p 0 and a > a 0 .
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We can characterise the L p boundedness of Riesz transform by the combination of (R loc p ) and (R ∞ p ). That is, Theorem 1.5. Let M be a complete Riemannian manifold. Then, for 1 < p < ∞, the Riesz transform ∇∆ -1/2 is L p bounded on M if and only if (R loc p ) and (R ∞ p ) hold.

The proof relies on the following multiplier theorem due to Cowling: [START_REF] Cowling | Harmonic analysis on semigroups[END_REF]). Let (M, ρ, µ) be a metric measure space. Let L be the generator of a bounded analytic semigroup on L p (M) for 1 < p < ∞ such that e -tL is positive, contractive and sub-Markovian for t > 0. Suppose that F is a bounded holomorphic function in the sectorial

Theorem 1.6 ([
Σ π/2 = {z ∈ C\{0} : | arg(z)| < π/2}. Then F(L) f p ≤ C f p , ∀ f ∈ L p (M),
where C depends on p, σ and F.

Proof of Theorem 1.5: First assume (R p ). For any f ∈ C ∞ 0 (M), on the one hand, we have

∇(I + ∆) -1/2 f p = ∇∆ -1/2 ∆ 1/2 (I + ∆) -1/2 f p ≤ C ∆ 1/2 (I + ∆) -1/2 f p ≤ C f p .
Here the last inequality follows from the above theorem. This proves (R loc p ). On the other hand, (R ∞ p ) holds obviously due to the L p boundedness of heat semigroup. In fact,

∇e -∆ ∆ -1/2 f p ≤ C e -∆ f p ≤ C f p .
Conversely, assume (R loc p ) and (R ∞ p ), then

|∇ f | p ≤ ∇e -∆ f p + ∇(I -e -∆ ) f p ∆ 1/2 f p + ∇(I + ∆) -1/2 (I + ∆) 1/2 (I -e -∆ )∆ -1/2 ∆ 1/2 f p ∆ 1/2 f p + (I + ∆) 1/2 (I -e -∆ )∆ -1/2 ∆ 1/2 f p ∆ 1/2 f p .
Here the last inequality is due to Theorem 1.6. This proves (R p ).

We shall now introduce a variation of the Riesz transform at infinity. Let 0 < α < 1/2. We say

that M satisfies (R ∞,α p ) if ∇e -∆ f p ≤ C ∆ α f p , ∀ f ∈ C ∞ 0 (M). (R ∞,α p )
Together with the local Riesz transform, it will give us a notion of quasi Riesz transform. Note that (R ∞ p ) implies (R ∞,α p ) for all α ∈ (0, 1/2). Indeed,

∇e -∆ ∆ -α f p ≤ ∇e -∆/2 ∆ -1/2 e -∆/2 ∆ 1/2-α f p ≤ C e -∆/2 ∆ 1/2-α f p ≤ C f p .
1.2 Equivalence of (G p ) and (MI p )

For any 1 < p < ∞, we say that M satisfies the multiplicative inequality if

∀ f ∈ D(∆), |∇ f | 2 p ≤ C ∆ f p f p , (MI p )
and M satisfies the gradient of the heat semigroup on M is L p bounded if

∇e -t∆ p→p ≤ C p √ t , ∀t > 0. (G p )
Recall that (R p ) implies (G p ) and (MI p ). In fact, (G p ) and (MI p ) are equivalent for any 1 < p < ∞, which was shown in [START_REF] Coulhon | Riesz meets Sobolev[END_REF].

Proposition 1.7 ([CS10]

). Let M be a complete Riemannian manifold. Then, for any 1 < p < ∞,

(G p ) is equivalent to (MI p ).

See also [START_REF] Dungey | A Littlewood-Paley-Stein estimate on graphs and groups[END_REF] for the proof and [START_REF] Coulhon | Riesz meets Sobolev[END_REF] for more information about the relations of (MI p ), the Riesz transforms, and estimates of the derivative of heat kernel. For the sake of completeness, we give a proof here.

Proof. First assume (MI p ). We substitute f by e -t∆ f in (MI p ), then

∇e -t∆ f 2 p ≤ C ∆e -t∆ f p e -t∆ f p .
Recall that the heat semigroup is analytic on L p (M) for 1 < p < ∞, that is, there exist C > 0 such that for all t > 0,
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Conversely assume (G p ). For any f ∈ C ∞ 0 (M), write the identity

f = e -t∆ f + t 0 ∆e -s∆ f ds, ∀t > 0.
Then (G p ) yields

|∇ f | p ≤ C ∇e -t∆ f p + t 0 ∇∆e -s∆ f ds p ≤ Ct -1/2 f p + t 0 ∇e -s∆ ∆ f p ds ≤ Ct -1/2 f p +Ct 1/2 ∆ f p . Take t = f p ∆ f -1 p , we get (MI p ).
Under (G p ) (or (MI p )), the quasi Riesz transform at infinity is L p bounded:

Proposition 1.8. Let M be a complete Riemannian manifold satisfying (G p ) for some p ∈ (1, ∞).

Then for any α ∈ (0, 1/2), (R ∞,α p ) holds.

Proof.

For any f ∈ C ∞ 0 (M), write ∇e -∆ ∆ -α f = ∞ 0 ∇e -(1+t)∆ f dt t 1-α .
Since (G p ) holds, then we have

∇e -∆ ∆ -α f p ≤ ∞ 0 ∇e -(1+t)∆ f p dt t 1-α ≤ C p f p ∞ 0 dt (t + 1) 1/2 t 1-α ,
which obviously converges for α ∈ (0, 1/2). Therefore we have (R ∞,α p ) for any α ∈ (0, 1/2).

L p boundedness of quasi Riesz transform for 1 < p ≤ 2

This part is inspired by [START_REF] Coulhon | Riesz transform and related inequalities on noncompact Riemannian manifolds[END_REF] and [START_REF] Dungey | A Littlewood-Paley-Stein estimate on graphs and groups[END_REF], where (MI p ) and (G p ) for 1 < p ≤ 2 were shown on manifolds and graphs respectively.

In the following, we will give a different proof of (MI p ) and (G p ) on Riemannian manifolds. More precisely, we directly show (MI p ) and (G p ) by using the method to prove the L p boundedness of the Littlewood-Paley-Stein function in [START_REF] Stein | Topics in harmonic analysis related to the Littlewood-Paley theory[END_REF] (see also [CDL03, Theorem 1.2]). While in [Dun08, Theorem 1.3], an analogue proof was given in the discrete case.

Proposition 1.9. Let M be a complete Riemannian manifold. Then (MI p ) and (G p ) hold for 1 <

p ≤ 2. CHAPTER 1. L p BOUNDEDNESS OF QUASI RIESZ TRANSFORMS Proof. Assume that f ∈ C ∞ 0 (M)
is non-negative and not identically zero. Set u(x,t) = e -t∆ f (x). Then u is smooth and positive everywhere. For any 1 < p ≤ 2, we have

J(x,t) := ∂ ∂t + ∆ u p (x,t) = pu p-1 (x,t) ∂ ∂t + ∆ u(x,t) -p(p -1)u p-2 (x,t)|∇u(x,t)| 2 = -p(p -1)u p-2 (x,t)|∇u(x,t)| 2 , which yields |∇u(x,t)| 2 = - 1 p(p -1) u 2-p (x,t)J(x,t).
Also note that J(x,t) is non-positive and M ∆u p (x,t)dµ(x) = 0. With these preparations, we get by Hölder inequality that

∇u(•,t) p p ≤ C p M u p(2-p)/2 (-J(x,t)) p/2 dµ(x) ≤ C p M u p dµ(x) (2-p)/2 - M J(x,t)dµ(x) p/2 . (1.1) Note that (1.1) uses the fact that 1 < p ≤ 2. Next, since M ∆u p (x,t)dµ(x) = 0, - M J(x,t)dµ(x) = - M ∂ ∂t u p (x,t)dµ(x) = M pu p-1 (x,t)∆u(x,t)dµ(x) ≤ C p M u p (x,t)dµ(x) 1/p ′ M (∆u(x,t)) p dµ(x) 1/p
, where the inequality is again due to Hölder inequality and p ′ is the conjugate of p.

Combining the above two estimates, then

|∇u(•,t)| p p ≤ C u(•,t) p/2 p ∆u(•,t) p/2 p . (1.2)
On the one hand, as t goes to zero, we get the multiplicative inequality from (1.2)

|∇ f | p p ≤ C f p/2 p ∆ f p/2 p .
On the other hand, by the analyticity of the heat semigroup, (1.2) yields

|∇u(•,t)| p p ≤ Ct -p/2 f p p ,
which is exactly (G p ).

CONCLUSION

Remark 1.10. Note that the above argument only works for 1 < p ≤ 2. Indeed (G p ) for p > 2 has consequences that are not always true, see [START_REF] Auscher | Riesz transform on manifolds and heat kernel regularity[END_REF].

Combining Proposition 1.8 and Proposition 1.9, we get Corollary 1.11. Let M be a complete Riemannian manifold. Then for any fixed α ∈ (0, 1/2), the

operator ∇e -∆ ∆ -α is L p bounded for 1 < p ≤ 2.
This corollary, together with the local result Theorem 1.3, gives us Proposition 1.12. Let M be a complete Riemannian manifold satisfying (D loc ) and (DUE loc ), then the quasi Riesz transform

∇(I + ∆) -1/2 + ∇e -∆ ∆ -α with α ∈ (0, 1/2) is L p bounded for 1 < p ≤ 2.

Conclusion

To summarise, we have proved until now that:

• For an arbitrary complete Riemannian manifold M and an arbitrary number

p ∈ (1, ∞), (R p ) is equivalent to (R loc p ) and (R ∞ p ).
• For an arbitrary complete Riemannian manifold M and an arbitrary number

p ∈ (1, ∞), (MI p ) is equivalent to (G p ). Furthermore, if M satisfies (G p ) (or (MI p ))
, then the quasi Riesz transform ∇e -∆ ∆ -α is L p bounded with α ∈ (0, 1/2).

• For an arbitrary complete Riemannian manifold M and an arbitrary number p ∈ (1, 2], (MI p ) and (G p ) are true. Consequently, the quasi Riesz transform ∇e -∆ ∆ -α is L p bounded with α ∈ (0, 1/2)

In particular, this yields Proposition 0.63.

A counterexample for p > 2

A negative result for the L p boundedness of (reverse) Riesz transform with p > 2:

Theorem 1.13. Consider the Vicsek manifold M with the polynomial volume growth V (x, r) ≃ r D for r ≥ 1. Then the inequality

∆ β f p ≤ C p |∇ f | p (1.3) is false for any β < β (p) := 1 D+1 D p + 1 p ′ , where 1 < p < ∞.
In particular, the reverse Riesz transform (RR p )
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is false for any p ∈ (1, 2). Consequently, the L p boundedness of the Riesz transform doesn't hold for any p > 2.

Remark 1.14. The argument of the proof is taken from [CD03] and we give another example to improve the result therein. We rewrite it for the sake of completeness.

Proof. It is well known [START_REF] Barlow | Manifolds and graphs with slow heat kernel decay[END_REF] that M satisfies the heat kernel estimate

sup x∈M p t (x, x) ≃ t -D D+1 , t ≥ 1. Let D ′ = 2D D+1 . Therefore, we have for p > 1 e -t∆ 1→p ≤ t -D ′ 2 (1-1/p) , t ≥ 1.
This implies the following Nash inequality (see [START_REF] Coulhon | Inégalités de Gagliardo-Nirenberg pour les semi-groupes d'opérateurs et applications[END_REF])

f 1+ 2β p (p-1)D ′ p ≤ C p f 2β p (p-1)D ′ 1 ∆ β f p , ∀ f ∈ C ∞ 0 (M) such that f p f 1 ≤ 1.
Assume that (1.3) holds. It follows

f 1+ 2β p (p-1)D ′ p ≤ C p f 2β p (p-1)D ′ 1 |∇ f | p , ∀ f ∈ C ∞ 0 (M) such that f p f 1 ≤ 1. (1.4)
Consider the Vicsek graph Γ, out of which M is constructed by replacing the edges with tubes. We have the discrete version of (1.4) on Γ (see [START_REF] Coulhon | Variétés riemanniennes isométriques à l'infini[END_REF]):

f 1+ 2β p (p-1)D ′ p ≤ C p f 2β p (p-1)D ′ 1 |∇ Γ f | p . (1.5) Note that |∇ Γ f | p p ≃ ∑ x,y∈Γ | f (x) -f (y)| p µ xy .
We will show that there exists a function such that (1.5) doesn't hold. In fact, take the same Ω n and f as in [START_REF] Barlow | Manifolds and graphs with slow heat kernel decay[END_REF], Section 4 (see Figure 5.2 in Chapter 5). That is:

Ω n = Γ [0, 3 n ] N , where q = 2 N + 1 = 3 D . Hence |Ω n | ≃ q n .
Denote by z 0 the centre of Ω n and by z i , i ≤ 1 its corners. Define f as follows: f (z 0 ) = 1, f (z i ) = 0, i ≤ 1, and extend f as a harmonic function in the rest of Ω n . Then f is linear on each of the paths of length 3 n , which connects z 0 with the corners z i , and is constant elsewhere. More exactly, if z belongs to some

γ z 0 ,z i , then f (z) = 3 -n d(z i , z). If not, then f (z) = f (z ′ )
, where z ′ is the nearest vertex in certain line of z 0 and z i .

On the one hand, we have

∑ x∈Γ | f (x)| p µ(x) ≤ |Ω n |. 1.5. A COUNTEREXAMPLE FOR p > 2 29
On the other hand, for any x in the n -1 block with centre z 0 , we have f (x) ≥ 2 3 . Therefore

∑ x∈Γ | f (x)| p µ(x) ≥ (2/3) p |Ω n-1 | ≃ q n ≃ |Ω n |.
Also, since | f (x)f (y)| = 3 -n for any two neighbours x, y on each of the diagonals connecting z 0 and z i , and otherwise f (x)f (y) = 0, we obtain

∇ f p L p ≃ ∑ x,y | f (x) -f (y)| p µ xy ≤ 2 N ∑ i=1 3 -np d(z 0 , z i ) = 2 N 3 -n(p-1) ≃ |Ω n | -p-1 D .
Thus (1.5) yields

|Ω n | 1 p 1+ 2β p (p-1)D ′ |Ω n | 2β p (p-1)D ′ -1 p ′ D .
(1.6)

Now we compare the exponents of |Ω n | on both sides and get

2β p (p -1)D ′ - 1 p ′ D - 1 p 1 + 2β p (p -1)D ′ = 1 - 1 p 2β p (p -1)D ′ - 1 p - 1 p ′ D = β D + 1 D - 1 p - 1 p ′ D < 0, if β < β (p) := 1 D+1 D p + 1 p ′ . Let n → ∞, then |Ω n |
tends to infinity. Obviously, (1.6) is false for β < β (p), 1 ≤ p < ∞, which contradicts our assumption (1.3).

In addition, it is easy to see that β (p) > 1/2 for any 1 < p < 2. Thus (RR p ) is false for 1 < p < 2, which also means that the Riesz transform isn't bounded on L p for 2 < p < ∞. Indeed, by duality (see for example [START_REF] Coulhon | Riesz transform and related inequalities on noncompact Riemannian manifolds[END_REF]), the L p boundedness of Riesz transform indicates (RR p ) for p ′ , where p and p ′ are conjugates and p ∈ (1, ∞).

Remark 1.15. Recall that Theorem 1.5 ([AC05, Theorem 0.4]) says for a complete non-compact manifold satisfying the doubling volume property and the L 2 Poincaré inequality, or equivalently, the two-sided Gaussian estimate of the heat kernel, there exists a constant ε > 0 such that the Riesz transform is L p bounded for p ∈ (2, 2 + ε). While Theorem 0.67 shows that the result may be false if the L 2 Poincaré inequality doesn't hold.

Indeed, on a Vicsek graph (also Vicsek manifold) with volume growth V (x, n) ≃ n D , we don't have the L 2 Poincaré inequality. Moreover, we have no L p Poincaré inequality. A weaker inequality holds (we will prove it later):

f -f n (x) L 2 (B(x,n)) ≤ Cn D+1 2 |∇ f | L 2 (B(x,2n)) ,
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Chapter 2

Sub-Gaussian heat kernel estimates and quasi Riesz transforms on Riemannian manifolds

Remember that assuming only local doubling volume property and local Gaussian heat kernel upper bound, we get the L p (1 < p ≤ 2) boundedness of quasi Riesz transforms ∇(I + ∆) -1/2 + ∇e -∆ ∆ -α , where 0 < α < 1/2. If we assume in addition a global Gaussian heat kernel upper bound, the Riesz transform is L p bounded for 1 < p ≤ 2 and weak (1, 1) bounded. What happens if we suppose globally another heat kernel upper bound, the so-called sub-Gaussian upper bound (UE 2,m ), m > 2?

In this chapter, we study the (quasi) Riesz transform on a Riemannian manifold M satisfying (D) and (UE 2,m ).

In Section 2.3, we prove that the quasi Riesz transform is also of weak type (1, 1), which gives back Proposition 0.63. Yet we don't know whether the Riesz transform, which corresponds to α = 1/2, is L p bounded or not for 1 < p ≤ 2. Moreover, we consider the L p boundedness of the Riesz transform for p > 2 in Section 2.4. If, in addition, we have the matching lower estimate for the heat kernel and further assumptions for the gradient of the heat kernel, we obtain the L p boundedness of the Riesz transform for p > 2.

More about sub-Gaussian heat kernel estimates

Let M be a complete non-compact Riemannian manifold. Recall the sub-Gaussian heat kernel estimate (UE 2,m ), m > 2, on M:

p t (x, y) ≤ C V (x, ρ -1 (t)) exp (-cG(d(x, y),t)), (UE 2,m ) 32 CHAPTER 2. QUASI RIESZ TRANSFORMS where ρ(t) = t 2 , 0 < t < 1, t m , t ≥ 1;
and

G(r,t) =          r 2 t , t ≤ r, r m t 1/(m-1)
, t ≥ r.

Note that for d(x, y) ≤ t, one has

d 2 (x, y) t ≤ d m (x, y) t 1/(m-1)
.

And for t ≤ d(x, y), one has

d 2 (x, y) t ≥ d m (x, y) t 1/(m-1)
.

Thus (UE 2,m ) implies the following estimate:

p t (x, y) ≤            C V (x,t 1/2 ) exp -c d 2 (x, y) t , 0 < t < 1, C V (x,t 1/m ) exp -c d m (x, y) t 1/(m-1) , t ≥ 1.
(2.1) That is, the small time behaviour of the heat kernel is Gaussian as in Euclidean spaces while the heat kernel has a sub-Gaussian decay for large time. There exist such manifolds for all m ≥ 2. One can choose any D ≥ 1 and any 2 ≤ m ≤ D + 1 such that V (x, r) ≃ r D for r ≥ 1 and (UE 2,m ) holds, see Example 0.52. The matching lower bound can also be considered, that is

p t (x, y) ≥ C V (x, ρ -1 (t)) exp (-cG(d(x, y),t)). (LE 2,m )
If M satisfies both (UE 2,m ) and (LE 2,m ), we say that M has two-sided sub-Gaussian heat kernel estimate, denoted by (HK 2,m ). Comparing (UE 2,m ) with the Gaussian heat kernel estimate (UE):

p t (x, y) ≤ C V (x, √ t) exp -c d 2 (x, y) t , ∀x, y ∈ M,t > 0.
For t > 1, we have V (x,t 1/2 ) > V (x,t 1/m ). That means p t (x, x) decays with t more slowly in the sub-Gaussian case than in the Gaussian case. Also for t ≥ max{1, d(x, y)}, clearly

d m (x, y) t 1/(m-1) ≥ d 2 (x, y) t ,
then p t (x, y) decays with d(x, y) faster in the sub-Gaussian case than in the Gaussian case. But on the whole, the two kinds of pointwise estimates are incomparable.

As a simple consequence of (UE 2,m ), for any f ∈ L 1 (M) with compact support and any x such that dist (x, supp f ) ≥ r (r ≥ 0), we have

|e -ρ(t)∆ f (x)| = M p ρ(t) (x, y) f (y)dµ(y) ≤ C V (x,t) M exp -c d(x, y) t γ(t) | f (y)|dµ(y) ≤ C V (x,t) exp -c r t τ(t) f L 1 , (2.2) 
where

τ(t) = 2, 0 < t < 1, m/(m -1), t ≥ 1.
(2.3)

Weighted estimates of the heat kernel

Let (M, d, µ) be a non-compact complete manifold satisfying the doubling volume property (D) and the sub-Gaussian estimate (UE 2,m ). In the following, we aim to get the integral estimates for the heat kernel and its derivative, which furthermore imply the L 1 -L 2 off-diagonal estimates. The method we use here is similar to the one in [CD99, Section 2.3]. First, we have the pointwise estimate of the time derivative of heat kernel:

Lemma 2.1. Let M be as above, then we have for any k ≥ 1 and for any x, y ∈ M,

∂ k ∂t k p t (x, y) ≤            C t k V y,t 1/2 exp -c d 2 (x, y) t , t < 1, C t k V y,t 1/m exp -c d m (x, y) t 1/(m-1)
, t ≥ 1.

(2.4) .

Proof. It is enough to show the case k = 1. For k > 1,
(Observe that d(x, y) > t ≥ 1 implies d m (x,y) t 1/(m-1) < d 2 (x,y)
t with m > 2.) For t ∈ (a, 1), according to [START_REF] Davies | Non-Gaussian aspects of heat kernel behaviour[END_REF], Cor.5, it suffices to show that there exists a constant δ ∈ (0, 1) such that for all s ∈ [(1 -δ )t, (1 + δ )t]

p s (x, y) ≤ C V y, s 1/2 exp -c d 2 (x, y) s .
This is obvious since

V (x, s 1/2 ) ≃ V (x, s 1/m ). The case t ∈ [1, a -1
) is a little complicated. It is enough to show that there exists a constant δ ∈ (0, 1) such that for all s ∈ [(1 -δ )t, (1 + δ )t],

p s (x, y) ≤ C V y, s 1/m exp -c d m (x, y) s 1/(m-1)
.

As it is pointed out, this is true when d(x, y) > s ≥ 1.

For s < 1, if d(x, y) is small, then 1 V y, s 1/2 exp -c d 2 (x, y) s ≤ C ′ V y, s 1/m ≤ C ′′ V y, s 1/m exp -c d m (x, y) s 1/(m-1) If d(x, y) is large, the control is easy to see. Remark 2.2. Since ∆ k e -t∆ f (x) = ∂ k ∂t k e -t∆ f (x) = M ∂ k ∂t k p t (x, y) f (y)dµ(y) ,
it follows from (2.4) that for any f ∈ L 1 (M) with compact support and any x such that 2.2. WEIGHTED ESTIMATES OF THE HEAT KERNEL

35 dist (x, supp f ) ≥ r ≥ 0, |(ρ(t)∆) k e -ρ(t)∆ f (x)| ≤ C V (x,t) exp -c r t τ(t) f L 1 , (2.5)
here τ is as in (2.3).

Now we intend to estimate B(x,r) c |∇p t (x, y)|dµ(x) for any t > 0 and r ≥ 0.

Lemma 2.3. For any α ∈ (1/m, 1/2), we have for any y ∈ M and r ≥ 0, M\B(y,r)

|∇p t (x, y)|dµ(x) ≤      Ct -1 2 e -c r 2 t , 0 < t < 1, Ct -α e -c r m t 1 m-1 , t ≥ 1.
(2.6)

Remark 2.4. Note that the estimate (2.6) holds for any 0 < α < 1/2. But in the proof below, α can not achieve 1/2 unless m = 2. This allows us to obtain the weak (1, 1) boundedness of ∇e -∆ ∆ -α , not the Riesz transform. If one could get (2.6) with α = 1/2, the proof in Section 2.4 below would yield the boundedness of the Riesz transform.

Proof. For 0 < t < 1, the above estimate is proved in [START_REF] Coulhon | Riesz transforms for 1 ≤ p ≤ 2[END_REF]. Now for t ≥ 1. Comparing with the proof of the Gaussian case in [START_REF] Coulhon | Riesz transforms for 1 ≤ p ≤ 2[END_REF], we need to replace the weight exp -c d 2 (x,y)

t by exp -c d m (x,y) t 1/(m-1)
(c is chosen appropriately).

Step 1: For any c > 0,

M\B(y,r) exp -c d m (x, y) t 1/(m-1) dµ(x) e -c 2 r m t 1/(m-1) V y,t 1/m . (2.7) Indeed, M\B(y,r) exp -c d m (x, y) t 1/(m-1) dµ(x) ≤ e -c 2 r m t 1/(m-1) M exp - c 2 d m (x, y) t 1/(m-1) dµ(x) ≤ e -c 2 r m t 1/(m-1) ∞ ∑ i=0 B(y,(i+1)t 1/m )/B(y,it 1/m ) exp - c 2 d m (x, y) t 1/(m-1) dµ(x) ≤ e -c 2 r m t 1/(m-1) V y,t 1/m ∞ ∑ i=0 (i + 1) ν e -c 2 i 1/(m-1) ≤ Ce -c 2 r m t 1/(m-1) V y,t 1/m .
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Step 2: For 0 < γ < 2c (c is the constant in (UE 2,m )), we have

M p t (x, y) 2 exp γ d m (x, y) t 1/(m-1) dµ(x) ≤ C V 2 y,t 1/m M exp (γ -2c) d m (x, y) t 1/(m-1) dµ(x) ≤ C γ V y,t 1/m .
This is a consequence of (UE 2,m ) and Step 1 with r = 0.

Step 3: Denote

I(t, y) = M |∇ x p t (x, y)| 2 exp γ d m (x, y) t 1/(m-1) dµ(x),
with γ small enough. Using integration by parts,

I(t, y) = M p t (x, y)∆p t (x, y) exp γ d m (x, y) t 1/(m-1) dµ(x) - M p t (x, y)∇ x p t (x, y) • ∇ x exp γ d m (x, y) t 1/(m-1) dµ(x) = - M p t (x, y) ∂ ∂t p t (x, y) exp γ d m (x, y) t 1/(m-1) dµ(x) - γm m -1 M p t (x, y)∇ x p t (x, y) d(x, y) t 1/(m-1) •∇ x d(x, y) exp γ d m (x, y) t 1/(m-1)

dµ(x)

= I 1 (t, y) + I 2 (t, y).

According to Lemma 2.1 and Step 1,

|I 1 (t, y)| ≤ C ′ γ tV y,t 1/m . For I 2 , since |∇ x d(x, y)| ≤ 1 and d(x,y) t 1/(m-1) = d m (x,y) t 1/m(m-1)
t -1/m , then from Step 2 and Cauchy-Schwarz inequality,

|I 2 (t, y)| ≤ C ′′ γ t -1/m (I(t, y)) 1/2 C γ V y,t 1/m 1/2 .
We get

I(t, y) ≤ C ′ γ tV y,t 1/m + t -1/m (I(t, y)) 1 2 C ′′ γ V y,t 1/m 1/2 ≤ C ′ γ t 2/m V y,t 1/m + (I(t, y)) 1/2 C ′′ γ t 2/m V y,t 1/m 1/2 . Therefore I(t, y) ≤ C t 2/m V y,t 1/m .
(2.8)

Step 4: We divide the integral M\B(y,r) |∇p t (x, y)|dµ(x) as follows

M\B(y,r) |∇p t (x, y)|dµ(x) = ∞ ∑ i=0 2 i r<d(x,y)≤2 i+1 r |∇p t (x, y)|dµ(x) ≤ ∞ ∑ i=0 V 1/2 y, 2 i+1 r 2 i r<d(x,y)≤2 i+1 r |∇p t (x, y)| 2 dµ(x) 1/2
.

For each i ≥ 0, it follows from (2.8) that

2 i r<d(x,y)≤2 i+1 r |∇p t (x, y)| 2 dµ(x) 1/2 ≤ 2 i r<d(x,y)≤2 i+1 r |∇p t (x, y)| 2 exp c d m (x, y) t 1/(m-1) dµ(x) 1/2 • e -c 2 im r m t 1/(m-1) ≤ C t 1/m V 1/2 (y,t 1/m ) e -c 2 im r m t 1/(m-1)
.

(2.9)

On the other hand, applying (2.7) with r = 0 (as well as the corresponding estimate for t/2 < 1),

2 i r<d(x,y)≤2 i+1 r |∇p t (x, y)| 2 dµ(x) 1/2 ≤ ∇e -t 2 ∆ 2→2 p t 2 (•, y) 2 ≤ C t 1/2 V (y, ρ -1 (t/2)) M exp (-cG(t/2, d(y, z)))dµ(z) 1/2 ≤ C t 1/2 V 1/2 y,t 1/m . (2.10) CHAPTER 2. QUASI RIESZ TRANSFORMS Thus taking θ = 1 2 -α 1 2 -1 m
, we get from (2.9) and (2.10) that

2 i r<d(x,y)≤2 i+1 r |∇p t (x, y)| 2 dµ(x) 1/2 ≤ C t 1/m V 1/2 (y,t 1/m ) e -c 2 im r m t 1/(m-1) θ C t 1/2 V 1/2 y,t 1/m 1-θ ≤ C t α V 1/2 y,t 1/m e -c 2 im r m t 1/(m-1) , (2.11)
where c depends on α.

Finally (3) and (2.11) yield

M\B(y,r) |∇p t (x, y)|dµ(x) ≤ ∞ ∑ i=0 V 1/2 y, 2 i+1 r C t α V 1/2 y,t 1/m e -c 2 im r m t 1/(m-1) ≤ Ct -α e -c r m t 1/(m-1)
.

Notice the pointwise estimate of the time derivative of the heat kernel in Lemma 2.1. Then we can use the same method as in Lemma 2.3 and get Lemma 2.5. For any 0 < α < 1/2 and k ≥ 1, there exist two constants c,C > 0 such that for any y ∈ M and r ≥ 0,

B(y,r) c ∇ ∂ k ∂t k p t (x, y) dµ(x) ≤        C 1 t k+ 1 2 e -c r 2 t , t < 1, C 1 t k+α e -c r m t 1 m-1 , t ≥ 1.
(2.12)

We also have the following Davies-Gaffney estimates for the heat kernel.

Corollary 2.6. Let M satisfy (D) and (UE 2,m ). Then for any ball B with radius r B > 0, we have for

1 ≤ p ≤ 2 and j ≥ 2, 1 µ 1/2 (2 j+1 B) e -t∆ f L 2 (C j (B)) ≤                Ce -c 4 j r 2 B t µ(B) f L 1 (B) , 0 < t < 1, Ce -c 2 jm r m B t 1/(m-1) µ(B) f L 1 (B) , t ≥ 1.
(2.13)

The proof depends on the estimate in Step 2 of the previous lemma, which we omit here.
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Now we give the Davies-Gaffney estimates for the derivatives of the heat semigroup. In fact, we adopt a similar proof as in [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. IV. Riesz transforms on manifolds and weights[END_REF].

Corollary 2.7. Let M be a complete non-compact Riemannian manifold satisfying (D) and (UE 2,m ).

Fix any α ∈ (1/m, 1/2). Then for any ball B with radius r B and centre x B , it holds for t > 1 and j ≥ 2 that

∇e -t∆ f L 2 (C j (B)) ≤                C α e -c 4 j r 2 B t t 1/2 V 1/2 (x B ,t 1/2 ) f L 1 (B) , 0 < t < 1, C α e -c 2 jm r m B t 1/(m-1) t α V 1/2 (x B ,t 1/m ) f L 1 (B) , t ≥ 1;
(2.14)

and

∇∆ k e -t∆ f L 2 (C j (B)) ≤                C α e -c 4 j r 2 B t t k+1/2 V 1/2 (x B ,t 1/2 ) f L 1 (B) , 0 < t < 1, C α e -c 2 jm r m B t 1/(m-1) t k+α V 1/2 (x B ,t 1/m ) f L 1 (B) , t ≥ 1.
(2.15)

Proof. We focus on proving the case t ≥ 1 in (2.14).

On the one hand, we claim

∇e -t∆ f L 2 (C j (B)) ≤ C t 1/m V 1/2 (x B ,t 1/m ) e -c 2 jm r m B t 1/(m-1) f L 1 (B) .
(2.16) Indeed, it has been shown in Step 3 of Lemma 2.3 that for t ≥ 1,

M |∇p t (x, y)| 2 exp c d m (x, y) t 1/(m-1) dµ(x) 1/2 ≤ C t 1/m V 1/2 y,t 1/m .
Thus for all y ∈ B, j ≥ 2 and t ≥ 1, it holds that

C j (B) |∇p t (x, y)| 2 dµ(x) 1/2 ≤ M |∇p t (x, y)| 2 exp c d m (x, y) t 1/(m-1) dµ(x) 1/2 • e -c 2 jm r m B t 1/(m-1) ≤ C t 1/m V 1/2 y,t 1/m e -c 2 jm r m B t 1/(m-1)
.

(2.17) Now for f ∈ C ∞ 0 (B), by using Minkowski inequality and (D), we get

∇e -t∆ f L 2 (C j (B)) 40 CHAPTER 2. QUASI RIESZ TRANSFORMS ≤ B | f (y)| C j (B) |∇p t (x, y)| 2 dµ(x) 1/2 dµ(y) ≤ C t 1/m e -c 2 jm r m B t 1/(m-1) B | f (y)| V 1/2 y,t 1/m dµ(y) ≤ C t 1/m V 1/2 y,t 1/m e -c 2 jm r m B t 1/(m-1) B | f (y)| V 1/2 y, r B + t 1/m V 1/2 y,t 1/m dµ(y) ≤ C t 1/m V 1/2 (x B ,t 1/m ) e -c 2 jm r m B t 1/(m-1) f L 1 (B) .
On the other hand, since |∇ f | 2 = ∆ 1/2 f 2 always holds, it follows from spectral theory that

∇e -t∆ 2→2 ≤ Ct -1/2 . For any function f ∈ C ∞ 0 (B), we have for t ≥ 1 ∇e -t∆ f L 2 ≤ ∇e -t 2 ∆ 2→2 e -t 2 ∆ f L 2 (M) ≤ C 1 + r B /σ t 2 ν/2 t 1/2 V 1/2 (x B , σ t 2 ) f L 1 (B) ≤ C(1 + r B /t 1/m ) ν/2 t 1/2 V 1/2 (x B ,t 1/m ) f L 1 (B) , (2.18) 
where the last inequality is due to the doubling volume property and the pointwise heat kernel estimate.

Combining the two estimates above (2.16) and (2.18), for any fixed θ ∈ (0, 1), we obtain

∇e -t∆ f L 2 (C j (B)) ≤ C(1 + r B /t 1/m ) ν/2 t 1/2 V 1/2 (x B ,t 1/m ) f L 1 (B) θ     Ce -c 2 jm r m B t 1/(m-1) t 1/m V 1/2 (x B ,t 1/m ) f L 1 (B)     1-θ ≤ Ce -c 2 jm r m B t 1/(m-1) t θ 2 + 1-θ m V 1/2 (x B ,t 1/m ) f L 1 (B) ,
that is, (2.14) holds.

In a similar way, we can get the other estimates.

Remark 2.8. Note that the estimate (2.14) holds for any α < 1/2, but in the above proof, α can not achieve 1/2 unless m = 2. See Remark 2.4. We will see that (2.14) is the crucial ingredient in the later proofs. While (2.15) is only used in Section 3.5. Besides, (2.14) is stronger than the L 2 Davies-Gaffney estimate for the gradient of the heat semigroup (DG α ) (see Section 2.4 below) because of the L 1 norm instead of the L 2 norm in the right hand side. We do need to use the stronger version (2.14) in Section 2.3 and Section 3.5.

Weak (1, 1) boundedness of quasi Riesz transforms

In order to show the weak (1, 1) boundedness of quasi Riesz transform, we will use the Calderon-Zygmund decomposition, which we now recall: Theorem 2.9. Let (M, d, µ) be a metric measured space satisfying the doubling volume property.

Let 1 ≤ q ≤ ∞ and f ∈ L q . Let λ > 0. Then there exists a decomposition of f , f = g + b = g + ∑ i b i so that

|g(x)| ≤ Cλ for almost all x ∈ M;

2. There exists a sequence of balls B i = B(x i , r i ) so that each b i is supported in B i ,

|b i (x)| p dµ(x) ≤ Cλ p µ(B i ) 3. ∑ i µ(B i ) ≤ C λ q | f (x)| q dµ(x);
4. b q ≤ C f q and g q ≤ C f q ;

5. There exists k ∈ N * such that each x ∈ M is contained in at most k balls B i .

We refer to [START_REF] Coifman | Analyse harmonique non-commutative sur certains espaces homogènes[END_REF] and [START_REF] Stein | Singular integrals and differentiability properties of functions[END_REF] for the proof.

Remark 2.10. In this section, we use Theorem 2.9 for q = 1. In the proof of Theorem 3.16, we use the L q version for q ∈ (1, 2) to prove the equivalence of Hardy spaces and Lebesgue spaces.

Our result is

Theorem 2.11. Let M be a complete Riemannian manifold satisfying (D) and (UE 2,m ). Then for any 0 < α < 1/2, the quasi Riesz transform ∇e -∆ ∆ -α is of weak type (1, 1) and thus L p bound for 1 < p ≤ 2.

Remark 2.12. If we replace the assumption (UE 2,m ) by the weaker assumptions (2.13) for j ≥ 1 and (2.14) for j ≥ 2, the above theorem also holds. Indeed, we can prove this by using functional calculus, in the same way as the proof of Theorem 3.16 (or Theorem 2.15). The above statement is enough to beat the main example we have in mind, namely the Vicsek manifold.

CHAPTER 2. QUASI RIESZ TRANSFORMS Remark 2.13. The following proof is essentially taken from [START_REF] Coulhon | Riesz transforms for 1 ≤ p ≤ 2[END_REF]. More precisely, we use the singular integral technique which was first developed [START_REF] Duong | Singular integral operators with non-smooth kernels on irregular domains[END_REF].

Proof. Denote T = ∇e -∆ ∆ -α , it suffices to show that

µ({x : |T f (x)| > λ }) ≤ C f 1 λ . Fix f ∈ L 1 (M) ∩ L 2 (M)
, we take the Calderón-Zygmund decomposition of f at the level of λ for q = 1, i. e., f = g

+ b = g + ∑ i b i , then µ({x : |T f (x)| > λ }) ≤ µ({x : |T g(x)| > λ /2}) + µ({x : |T b(x)| > λ /2}).
Since T is L 2 bounded, by using the property of the Calderón-Zygmund decomposition we get

µ({x : |T g(x)| > λ /2}) ≤ Cλ -2 g 2 2 ≤ Cλ -1 g 1 ≤ Cλ -1 f 1 .
As for the second term, we divide {B i } into two classes: the one in which the balls have radius no less than 1 and the one in which the balls have radius smaller than 1. Denote by

C 1 = {i : B i = B(x i , r i ) with r i ≥ 1}; C 2 = {i : B i = B(x i , r i ) with r i < 1}.
Then we have

µ({x : |T ∑ i b i (x)| > λ /2}) ≤ µ({x : |T ∑ i∈C 1 b i (x)| > λ /4}) +µ({x : |T ∑ i∈C 2 b i (x)| > λ /4}). Write T b i = Te -t i ∆ b i + T I -e -t i ∆ b i , (2.19) 
where t i = ρ(r i ) with ρ defined in (12). In the following, we will consider the two cases of balls separately.

Case 1: For balls with radius no less than 1, our aim here is to prove

µ({x : |T ∑ i∈C 1 b i (x)| > λ /4}) ≤ Cλ -1 f 1 .
Then from (2.19), we have

µ({x : |T ∑ i∈C 1 b i (x)| > λ /4}) ≤ µ({x : |T ∑ i∈C 1 e -t i ∆ b i (x)| > λ /8}) 2.3. WEAK (1, 1) BOUNDEDNESS OF QUASI RIESZ TRANSFORMS 43 +µ({x : |T ∑ i∈C 1 (I -e -t i ∆ )b i (x)| > λ /8}).
We begin to estimate the first term. Since T is L 2 bounded, then

µ({x : |T ∑ i∈C 1 e -t i ∆ b i (x)| > λ /8}) ≤ C λ 2 ∑ i∈C 1 e -t i ∆ b i 2 2 .
Note that for any j ≥ 1, it holds

e -t i ∆ b i L 2 (C j (B i )) ≤ C µ 1/2 (2 j+1 B i ) µ(B i ) e -c2 jm/(m-1) b i 1 ≤ Cλ µ 1/2 (2 j+1 B i )e -c2 jm/(m-1) .
(2.20) Indeed, for j ≥ 2, the first inequality follows from Corollary 2.6. For j = 1, we have

e -t i ∆ b i L 2 (4B i ) = 4B i B i p t i (x, y)b i (y)dµ(y) 2 dµ(x) 1/2 ≤ C b i 1 4B i V -2 (x, r i )dµ(x) 1/2 ≤ C µ 1/2 (4B i ) µ(B i ) b i 2 1 ≤ Cλ µ 1/2 (4B i ).
By a duality argument,

∑ i∈C 1 e -t i ∆ b i 2 = sup φ 2 =1 M ∑ i∈C 1 e -t i ∆ b i |φ |dµ ≤ sup φ 2 =1 ∑ i∈C 1 ∞ ∑ j=1 C j (B i ) e -t i ∆ b i |φ |dµ := sup φ 2 =1 ∑ i∈C 1 ∞ ∑ j=1 A i j .
Applying Cauchy-Schwarz inequality and (2.20), we get

A i j ≤ e -t i ∆ b i L 2 (C j (B i )) φ L 2 (C j (B i )) ≤ Cλ µ(2 j+1 B i )e -c2 jm/(m-1) ess inf y∈B i M |φ | 2 (y) 1/2 ≤ Cλ 2 jD e -c2 jm/(m-1) µ(B i ) ess inf y∈B i M |φ | 2 (y) 1/2 .
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Here M denotes the Littlewood-Paley maximal operator:

M f (x) = sup B∋x 1 µ(B) B | f (y)|dµ(y). (2.21) Then ∑ i∈C 1 e -t i ∆ b i 2 ≤ Cλ sup φ 2 =1 ∑ i∈C 1 ∞ ∑ j=1
2 jD e -c2 jm/(m-1) µ(B i ) ess inf

y∈B i M |φ | 2 (y) 1/2 ≤ Cλ sup φ 2 =1 ∑ i∈C 1 χ B i (y) M |φ | 2 (y) 1/2 dµ(y) ≤ Cλ sup φ 2 =1 ∪ i∈C 1 B i M |φ | 2 (y) 1/2 dµ(y) ≤ Cλ µ 1/2 ∪ i∈C 1 B i ≤ Cλ 1/2 f 1/2 1 .
Here the third inequality is due to the finite overlapping of the Calderón-Zygmund decomposition.

In the fourth inequality, we use Kolmogorov's inequality (see for example [Gra08, page 91]). Therefore, we obtain

µ({x : |T ∑ i∈C 1 e -t i ∆ b i (x)| > λ /8}) ≤ Cλ -1 f 1 .

It remains to show µ({x

: |T ∑ i∈C 1 (I -e -t i ∆ )b i (x)| > λ /8}) ≤ Cλ f 1 . We have µ({x : |T ∑ i∈C 1 (I -e -t i ∆ )b i (x)| > λ /8}) ≤ µ({x ∈ i∈C 1 2B i : |T ∑ i∈C 1 (I -e -t i ∆ )b i (x)| > λ /8}) +µ({x ∈ M\ i∈C 1 2B i : |T ∑ i∈C 1 (I -e -t i ∆ )b i (x)| > λ /8}) ≤ ∑ i∈C 1 µ(2B i ) + λ /8 ∑ i∈C 1 M\2B i |T (I -e -t i ∆ )b i (x)|dµ(x).
We claim: ∀t ≥ 1, ∀b with support in B, then It is enough to show that d(x,y)≥t 1/m |k t (x, y)|dµ(x) is uniformly bounded for t ≥ 1. The identity ∆ -α = ∞ 0 e -s∆ ds s 1-α (we ignore the constant here) gives us

T (I -e -t∆ ) = ∞ 0 ∇e -(s+1)∆ (I -e -t∆ ) ds s 1-α , that is, k t (x, y) = ∞ 0 (∇p s+1 (x, y) -∇p s+t+1 (x, y)) ds s 1-α = ∞ 0 1 s 1-α - 1 {s>t} (s -t) 1-α ∇p s+1 (x, y)ds.
Thus from Lemma 2.3, we have

d(x,y)≥t 1/m |k t (x, y)| dµ(x) = d(x,y)≥t 1/m ∞ 0 1 s 1-α - 1 {s>t} (s -t) 1-α ∇p s+1 (x, y)ds dµ(x) ≤ ∞ 0 1 s 1-α - 1 {s>t} (s -t) 1-α • d(x,y)≥t 1/m |∇p s+1 (x, y)| dµ(x)ds ∞ 0 1 s 1-α - 1 {s>t} (s -t) 1-α (s + 1) -α e -c( t s+1 ) 1/(m-1) ds = 1 0 + t 1 1 s 1-α (s + 1) α e -c( t s+1 ) 1/(m-1) ds + ∞ t 1 s 1-α - 1 (s -t) 1-α (s + 1) -α e -c( t s+1 ) 1/(m-1) ds = K 1 + K 2 + K 3 .
In fact, K 1 , K 2 , K 3 are uniformly bounded:

K 1 ≤ 1 0 s α-1 ds < ∞;
Since s + 1 ≃ s for s > 1 and we can dominate the e -x by Cx -c for any fixed c > 0, we have

K 2 ≤ t 1 e -c ′ ( t s ) 1/(m-1) ds s ≤ C t 1 s t c ds s < ∞; For K 3 , K 3 ≤ ∞ t 1 s 1-α - 1 (s -t) 1-α s -α ds CHAPTER 2. QUASI RIESZ TRANSFORMS = ∞ 0 1 (u + 1) 1-α - 1 u 1-α (u + 1) -α du ≤ 1 0 1 (u + 1) + 1 u 1-α (u + 1) -α du + ∞ 1 1 (u + 1)u 1-α du ≤ 1 0 2 u 1-α du + ∞ 1 1 u 2-α du < ∞.
Note that we get the second line by changing variable with u = s t -1. Case 2: It remains to show

µ x : |T ∑ i∈C 2 b i (x)| > λ /4 ≤ Cλ -1 f 1 .
We repeat the arguement as Case 1. Still from (2.19), we have

µ({x : |T ∑ i∈C 2 b i (x)| > λ /4}) ≤ µ({x : |T ∑ i∈C 2 e -t i ∆ b i (x)| > λ /8}) +µ({x : |T ∑ i∈C 2 (I -e -t i ∆ )b i (x)| > λ /8}).
By using the L 2 boundedness of T and Corollary 2.6, the same duality argument in Case 1 yields

µ({x : |T ∑ i∈C 2 e -t i ∆ b i (x)| > λ /8}) ≤ Cλ -1 f 1 .
For the estimate of µ({x

: |T ∑ i∈C 2 (I -e -t i ∆ )b i (x)| > λ /8}), it suffices to show that d(x,y)≥t 1/2 |k t (x, y)| dµ(x)
is finite and does not depend on t < 1. In fact, Lemma 2.3 yields

d(x,y)≥t 1/2 |k t (x, y)| dµ(x) ≤ ∞ 0 1 s 1-α - 1 {s>t} (s -t) 1-α • d(x,y)≥t 1/2 |∇p s+1 (x, y)| dµ(x)ds ∞ 0 1 s 1-α - 1 {s>t} (s -t) 1-α (s + 1) -α e -c t m/2 s+1 1/(m-1) ds = t 0 1 s 1-α (s + 1) α e -c t m/2 s+1 1/(m-1) ds + ∞ t 1 s 1-α - 1 (s -t) 1-α (s + 1) -α e -c t m/2 s+1 1/(m-1) ds 2.4. THE L p BOUNDEDNESS OF RIESZ TRANSFORM FOR p > 2 47 := K ′ 1 + K ′ 2 .
Because t < 1, thus K ′ 1 < K 1 converges. We can estimate K ′ 2 in the same way as for K 3 and get an bound that does not depend on t.

2.4 Remarks on the L p boundedness of Riesz transform for p > 2 Under assumptions of (D) and (UE 2,m ), we have already seen that there exist Riemnnian manifolds such that the Riesz transform is not L p bounded for p > 2 (see Section 2.5). However, we will show in the following that under some additional assumptions on M, the Riesz transform (at infinity) is

L p bounded for p > 2.
Definition 2.14. Let 0 < α < 1. We say that M satisfies the Davies-Gaffney estimate

(DG α ) if for all i ≥ 1, ∇e -t∆ f L 2 (B) ≤        C t 1/2 e -c d 2 (B,C i (B)) t f L 2 (C i (B)) , 0 < t < 1, C t α e -c d m (B,C i (B)) t 1/(m-1) f L 2 (C i (B)) , 1 ≤ t < ∞.
Theorem 2.15. Let M be a complete non-compact Riemannian manifold satisfying (D) and the two-sided sub-Gaussian heat kernel bound (HK 2,m ). Let p 0 ∈ (2, ∞], assume that ∇e -t∆

p 0 →p 0 ≤ C t 1/2 , ∀t > 0. (G p 0 )
and also the L 2 Davies-Gaffney estimate (DG 1 2

). Then the Riesz transform at infinity ∇e -∆ ∆ -1/2 is L p bounded for p ∈ (2, p 0 ).

We have two observations here:

1. (G p 0 ) is almost necessary in the sense that (R ∞ p ) implies (G p ) for all 2 < p < p 0 and t ≥ 1.

2. If in addition, M has Ricci curvature bounded from below, then the Riesz transform itself is L p bounded under the above assumptions. In fact, this follows from the above theorem and Bakry's result about the local Riesz transform (see [START_REF] Bakry | Étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée[END_REF] and more generally [START_REF] Auscher | Riesz transform on manifolds and heat kernel regularity[END_REF]). That is, for a complete noncompact Riemannian manifold with Ricci curvature bounded from below, the local Riesz transform is L p bounded for 1 < p < ∞.

3. We don't know so far how to obtain (DG 1 2 ).

Our main tool is: ]). Let (M, d, µ) satisfy (D) and let T be a sublinear operator which is bounded on L 2 (M, µ). Let p 0 ∈ (2, ∞]. Let A r , r > 0, be a family of linear operators acting on L 2 (M, µ). Assume Consider more generally T α = ∇e -∆ ∆ -α , 0 < α < 1/2. We define the regularising operator A r , r > 0 by
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1 µ(B) B T (I -A r(B) ) f 2 dµ 1/2 ≤ C M | f | 2 1/2 (x), (2.22) and 1 µ(B) B TA r(B) f p 0 dµ 1/p 0 ≤ C M |T f | 2 1/2 (x
I -A r = I -e -ρ(r)∆ N ,
where the integer N > 0 will be chosen later.

Lemma 2.17. Let M be a complete non-compact Riemannian manifold satisfying the doubling volume property and (DG α ), where α ∈ (0, 1/2] is fixed. Then for some N large enough (depending on the doubling volume property), for every ball B and all x ∈ B,

1 µ(B) B T α I -e -ρ(r)∆ N f 2 dµ 1/2 ≤ C M | f | 2 1/2 (x).
(2.24)

Remark 2.18. If we assume that M satisfies (UE 2,m ) instead of (DG α ), then (2.24) holds for T α with any 0 < α < 1/2. Indeed, Corollary 2.7 shows that (D) and (UE 2,m ) imply (DG α ) for any 0 < α < 1/2.

Proof. We decompose

f as f = ∑ ∞ i=1 f i = ∑ ∞ i=1 f χ C i .
By Minkowski inequality we have

T α I -e -ρ(r)∆ N f L 2 (B) ≤ ∞ ∑ i=1 T α I -e -ρ(r)∆ N f i L 2 (B)
.

In order to obtain (2.24), it suffices to show for every i ≥ 1, it holds

T α I -e -ρ(r)∆ N f i L 2 (B) ≤ C2 -ci µ 1/2 (2 i+1 B) M | f | 2 1/2 (x), (2.25) 
where c > D.

For i = 1, using the L 2 boundedness of T α Ie -ρ(r)∆ N , we get

T α I -e -ρ(r)∆ N f 1 L 2 (B) ≤ f L 2 (4B) ≤ µ 1/2 (4B) M | f | 2 1/2 (x).
For i ≥ 2, write

T α I -e -ρ(r)∆ N = ∞ 0 t α ∇e -(t+1)∆ I -e -ρ(r)∆ N dt t . Let Φ t,r (ζ ) = e -(t+1)ζ (1 -e -ρ(r)ζ ) N .
Then

T α I -e -ρ(r)∆ N f i L 2 (B) ≤ ∞ 0 t α |∇Φ t,r (∆) f i | L 2 (B) dt t .
(2.26)

We will estimate Φ t,r (∆) f i L 2 (B) by functional calculus. The notation mainly comes from [Aus07, Section 2.2].

For any fixed t and r, then Φ t,r is a holomorphic function satisfying

|Φ t,r (ζ )| ≤ C|ζ | N (1 + |ζ |) -2N , for all ζ ∈ Σ = {z ∈ C * : | arg z| < ξ } with any ξ ∈ (0, π/2
) and for some constant C. Since ∆ is a nonnegative self-adjoint operator, or equivalently ∆ is a sectorial operator of type 0, we can express Φ t,r (∆) by functional calculus. Let 0 < θ < ω < ξ < π/2, we have

Φ t,r (∆) = Γ + e -z∆ η + (z)dz + Γ - e -z∆ η -(z)dz, and η ± (z) = γ ± e ζ z Φ t,r (ζ )dζ .
Here Γ ± is the half-ray R + e ±i(π/2-θ ) and γ ± is the half-ray R + e ±iω .

Then for any z ∈ Γ ± ,

|η ± (z)| = γ ± e ζ z e -(t+1)ζ (1 -e -ρ(r)ζ ) N dζ ≤ γ ± |e ζ z-(t+1)ζ ||1 -e -ρ(r)ζ | N |dζ | ≤ γ ± e -c|ζ |(|z|+t+1) |1 -e -ρ(r)ζ | N |dζ | ≤ C ∞ 0 e -cs(|z|+t+1) ρ N (r)s N ds ≤ Cρ N (r) (|z| + t + 1) N+1 .
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In the second inequality, the constant c > 0 depends on θ and ω. Indeed, ℜ(ζ z) = |ζ ||z|ℜe ±i(π/2-θ +ω) . Since θ < ω, then π/2 < π/2 -θ + ω < π and |e ζ z | = e -c 1 |ζ ||z| with c 1 = -cos(π/2 -θ + ω). Also it is obvious to see that |e ρ(t)ζ | = e -c 2 ρ(t)|ζ | . Thus the second inequality follows. In the third inequality, let ζ = se ±iω , we have |dζ | = ds. In addition, we dominate |1e -ρ(r)ζ | N by (ρ(r)ζ ) N .

We choose θ appropriately such that |z| ∼ ℜz for z ∈ Γ ± , then for any j ≥ 2 fixed,

|∇Φ t,r (∆) f i | L 2 (B) ≤ C Γ + + Γ - ∇e -ℜz∆ f i L 2 (B) ρ N (r i ) (|z| + t + 1) N+1 |dz| ≤ C ∞ 0 ∇e -s∆ f i L 2 (B) ρ N (r i ) (s + t + 1) N+1 ds.
In the following, we estimate |∇Φ t,r (∆) f i | L 2 (B) for t small and large separately by applying (2.14) with p = 2.

For 0 < t < 1, we get

|∇Φ t,r (∆) f i | L 2 (B) ≤ C    1 0 e -c 4 i r 2 s s 1/2 ρ N (r) (s + t + 1) N+1 ds + ∞ 1 e -c 2 im r m s 1/(m-1) s α ρ N (r) (s + t + 1) N+1 ds    f i L 2 ≤ C e -c4 i r 2 ρ N (r) 1 0 1 s 1/2 ds + ∞ 1 s 2 im r m c ρ N (r) s N+α+1 ds µ 1/2 (2 i+1 B) M | f | 2 1/2 (x) ≤ C e -c4 i r 2 ρ N (r) + 4 -iN µ 1/2 (2 i+1 B) M | f | 2 1/2 (x) ≤ C4 -iN µ 1/2 (2 i+1 B) M | f | 2 1/2 (x).
For the second term in the third line, c equals to N if r ≥ 1 and 2N/m if 0 < r < 1. Indeeds, for any fixed c > 0, it holds e -t < Ct -c for all t > 0.

For t ≥ 1, then

|∇Φ t,r (∆) f i | L 2 (B) ≤ 1 0 f i L 2 s 1/2 e -c 4 i r 2 s ρ N (r) (s + t + 1) N+1 ds + t 1 + ∞ t f i L 2 s α e -c 2 im r m s 1/(m-1) ρ N (r) (s + t + 1) N+1 ds := (I 1 + I 2 + I 3 )µ 1/2 (2 i+1 B) M | f | 2 1/2 (x).
For I 1 , we have

I 1 ≤ e -c4 i r 2 ρ N (r)t -N-1 1 0 s -1/2 ds ≤ Ce -c4 i r 2 ρ N (r)t -N-1 .
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Estimating I 2 in a similar way, then

I 2 ≤ e -c 2 im r m t 1/(m-1) ρ N (r)t -N-1 t 1 s -α ds ≤ Ce -c 2 im r m t 1/(m-1)
ρ N (r)t -N-α .

(2.28)

For I 3 , we claim

I 3 ≤ Cρ N (r) inf (2 im r m ) -N-α ,t -N+α .
(2.29)

In fact, we change the variable s by u = 2 im r m s 1/(m-1)

, then

I 3 ≤ ρ N (r) ∞ t e -c 2 im r m s 1/(m-1) ds s N+α+1 = Cρ N (r) 2 im r m -N-α 2 im r m t 1/(m-1) 0 e -cu u (N+α)(m-1)-1 du.
On the one hand, the integral in the second line above is bounded, thus

I 3 ≤ Cρ N (r) 2 im r m -N-α .
(2.30)

On the other hand, the integral is also dominated by 2 im r m t N+α . Therefore

I 3 ≤ Cρ N (r)t -N-α .
(2.31)

Now we are ready to estimate

T α I -e -ρ(r)∆ N f i L 2 (B)
. The above estimates give us

T α I -e -ρ(r)∆ N f i L 2 (B) ≤ ∞ 0 t α Φ t,r (∆) f i L 2 (B) dt t ≤ C 2 -2iN/m 1 0 t α dt t + ∞ 1 t α (I 1 + I 2 + I 3 ) dt t µ 1/2 (2 i+1 B) M | f | 2 1/2 (x) ≤ C 2 -2iN/m + ∞ 1 (I 1 + I 2 + I 3 ) dt t 1-α µ 1/2 (2 i+1 B) M | f | 2 1/2 (x).
We claim: ∞ 1 (I 1 + I 2 + I 3 ) dt t 1-α ≤ C4 -Ni . Therefore, (2.25) holds as long as we choose N to be large enough and the lemma is proved.

Indeed, it is easy to see from (2.27) that

∞ 1 I 1 dt t 1-α ≤ Ce -c4 i r 2 ρ N (r) ∞ 1 t -N-2+α dt ≤ 4 -Ni . 52 CHAPTER 2. QUASI RIESZ TRANSFORMS It follows from (2.28) that ∞ 1 I 2 dt t 1-α ≤ Cρ N (r) ∞ 1 e -c 2 im r m t 1/(m-1) t -N-1 dt ≤ C4 -Ni . More specifically, if r ≥ 1, then ρ(r) = r m and ∞ 1 I 2 dt t 1-α ≤ Cr mN ∞ 1 e -c 2 im r m t 1/(m-1) t -N dt t ≤ C2 -imN ∞ 1 e -cu u N(m-1)-1 du ≤ C2 -imN . If 0 < r < 1, then ρ(r) = r 2 and ∞ 1 t α I 2 dt t ≤ Cr 2N ∞ 1 t 2 im r m 2N/m t -N dt t ≤ C4 -Ni . Now for ∞ 1 I 3 dt t 1-α . If r ≤ 2 -i
, using the estimate (2.31) and we get

∞ 1 I 3 dt t 1-α ≤ r 2N ∞ 1 t -N dt t ≤ C4 -Ni .
If r > 2 -i , we use (2.30) in the following way

∞ 1 I 3 dt t 1-α ≤ ρ N (r)(2 im r m ) -N 2 mi r m 1 t 2 mi r m α dt t +ρ N (r)(2 im r m ) -N ∞ 2 mi r m 2 im r m t N dt t ≤ ρ N (r)(2 im r m ) -N ≤ C4 -Ni .
If we assume (DG1 2 ), then the same proof gives us (2.24) for T1 ). Then, for every p ∈ (2, p 0 ), every ball B with radius r and all x ∈ B, we have for any arbitrary α ∈ (0, 1)

1 µ(B) B T α I -(I -e -ρ(r)∆ ) N f p dµ 1/p ≤ C M |T α f | 2 1/2 (x).
(2.32) Before verifying (2.32), we prove the following two lemmas as preparation.

Lemma 2.20. Let M satisfies the doubling volume property, (G p 0 ) as well as (DG1

2

). Then for every p ∈ (2, p 0 ), every ball B with radius r and every function f ∈ L 2 (M) supported in C i (B) and every integer 1 ≤ k ≤ N, we have

1 µ 1/p (B) ∇e -kρ(r)∆ f L p (B) ≤          Ce -c4 i rµ 1/2 (2 i+1 B) f L 2 (C i (B)) , 0 < r < 1, Ce -c2 im/(m-1) r m/2 µ 1/2 (2 i+1 B) f L 2 (C i (B)) , r ≥ 1.
(2.33)

Proof. Since (G p 0 ) and (DG 1 2 ), it follows by interpolation that for p ∈ (2, p 0 ) and i ≥ 2,

∇e -t∆ f L p (B) ≤        C t 1/2 e -c 4 i r 2 t f L p (C i (B)) , 0 < t < 1, C t 1/2 e -c 2 im r m t 1/(m-1) f L p (C i (B)) , 1 ≤ t < ∞.
(2.34) First consider any ball B with radius r ≥ 2. If supp f ⊂ 4B, we have

e -kρ(r)∆ f L p (B) ≤ ∇e -k 2 ρ(r)∆ p→p e -k 2 ρ(r)∆ f L p ≤ C ρ 1/2 (r) e -k 2 ρ(r)∆ f L p .
Note that from the heat kernel upper bound and the doubling volume property, we have

e -k 2 ρ(r)∆ f (y) = 4B p k 2 ρ(r) (y, z) f (z)dµ(z) ≤ C 4B | f (z)| V (z, k ′ r) dµ(z) ≤ C µ(4B) 4B µ(4B) V (z, k ′ r) | f (z)|dµ(z) ≤ C µ 1/2 (4B) f L 2 (4B) .
Here

k ′ = k 2 1/m . Therefore e -k 2 ρ(r)∆ f L p (B) ≤ C sup e -k 2 ρ(r)∆ f (y) p-2 1/p • M e -k 2 ρ(r)∆ f (y) 2 1/p ≤ C µ 1 2 -1 p (4B) f L 2 (4B) . And 1 µ(B) B ∇e -kρ(r)∆ f p dµ 1/p ≤ C r m/2 1 µ(4B) 4B | f | 2 dµ 1/2 . CHAPTER 2. QUASI RIESZ TRANSFORMS If supp f ⊂ C i (B) with i ≥ 2, ∇e -kρ(r)∆ f = ∞ ∑ l=1 h l := ∞ ∑ l=1 ∇e -k 2 ρ(r)∆ χ C l e -k 2 ρ(r)∆ f . Then 1 µ(B) B |h l | p dµ 1/p ≤ ∇e -k 2 ρ(r)∆ L p (C l (B))→L p (B) 1 µ(B) C l (B) |e -k 2 ρ(r)∆ f | p dµ 1/p ≤ µ(2 l+1 B) µ(B) 1/p Ce -c2 lm/(m-1) r m/2 1 µ(2 l+1 B) C l e -k 2 ρ(r)∆ f p dµ 1/p .
Similarly, for y ∈ C l (B), we have

e -k 2 ρ(r)∆ f (y) = 4B p k 2 ρ(r) (y, z) f (z)dµ(z) ≤ C C i (B) | f (z)| V (z, k ′ r) dµ(z) ≤ C µ(2 i+1 B) C i (B) µ(2 i+1 B) V (z, k ′ r) exp -c d m (C i ,C l ) r m 1/(m-1) | f (z)|dµ(z) ≤ C µ 1/2 (2 i+1 B) K il f L 2 (4B) ,
where

K il ≤          Ce -c2 im/(m-1) , l ≤ i -2, C2 iν , i -2 < l < i + 2, Ce -c2 lm/(m-1) , l ≥ i + 2.
At the same time, we have

1 µ(2 l+1 (B)) C l e -k 2 ρ(r)∆ f 2 dµ 1/2 ≤ CK il 1 µ(2 i+1 (B)) C i (B) | f | 2 dµ 1/2 .
The two estimates gives us

1 µ(2 l+1 B) C l e -k 2 ρ(r)∆ f p dµ 1/p ≤ CK il 1 µ(2 i+1 B) C i (B) | f | 2 dµ 1/2 .
Combining the above estimate, we obtain

1 µ(B) B ∇e -kρ(r)∆ f p dµ 1/p 2.4. THE L p BOUNDEDNESS OF RIESZ TRANSFORM FOR p > 2 55 ≤ C ∞ ∑ l=1 ∇e -k 2 ρ(r)∆ L p (C l (B))→L p (B) 1 µ(B) C i (B) e -k 2 ρ(r)∆ f p dµ 1/p ≤ C ∞ ∑ l=1 2 (l+1)ν/p e -c2 lm/(m-1) r m/2 K il 1 µ(2 i+1 B) C i (B) | f | 2 dµ 1/2 ≤ C e -c2 im/(m-1) r m/2 1 µ(2 i+1 B) C i (B) | f | 2 dµ 1/2
For r < N -1/2 , i.e. kr 2 < 1 for every k = 1, 2, • • • , N, repeating the above proof by using the estimate (2.34) for 0 < t < 1, we obtain

1 µ(B) B ∇e -kρ(r)∆ f p dµ 1/p ≤ C e -c4 i r 1 µ(2 i+1 B) C i (B) | f | 2 dµ 1/2 (2.35)
It remains to consider the case N -1/2 ≤ r ≤ 2. In that case, r ≃ 1 and the estimate is easy to obtain.

Lemma 2.21. Let M be a Riemannian manifold satisfying (HK 2,m ). Then for any i ≥ 1, we have

1 µ(2 i+1 B) C i (B) | f i | 2 dµ 1/2 ≤ C ρ(2 i+1 r) M |∇ f | 2 1/2 (x), ∀B ∈ M, ∀x ∈ B.
(2.36)

Proof. It is well known that (HK 2,m ) implies the following rescaled Poincaré inequality (see for example [START_REF] Barlow | Stability of parabolic Harnack inequalities[END_REF], [START_REF] Barlow | Stability of parabolic Harnack inequalities on metric measure spaces[END_REF]) on M:

B(x,r) ( f -f B(x,r) ) 2 ≤ Cρ(r) B(x,r) |∇ f | 2 dµ, ∀x ∈ M, ∀r > 0, (2.37)
which is a generalisation of the standard Poincaré inequality (P). However, unlike (P), there is no equivalence between (HK 2,m ) and (D)+(2.37).

For i = 1, (2.36) follows directly from (2.37). For i ≥ 2, observe that

f -f 4B = f -f 2 i+1 B + i ∑ l=2 ( f 2 l B -f 2 l+1 B ).
and Poincaré inequality gives us

| f 2 l B -f 2 l+1 B | 2 ≤ 1 µ(2 l+1 B) 2 l+1 B | f -f 2 l+1 B | 2 dµ ≤ Cρ(2 l+1 r)M |∇ f | 2 (x). CHAPTER 2. QUASI RIESZ TRANSFORMS Thus 1 µ(2 i+1 B) C i (B) | f i | 2 dµ 1/2 ≤ 1 µ(2 i+1 B) 2 i+1 B | f -f 4B | 2 dµ 1/2 ≤ 1 µ(2 i+1 B) 2 i+1 B | f -f 2 i+1 B | 2 dµ 1/2 + i ∑ l=2 1 µ(2 i+1 B) 2 i+1 B f 2 l (B) -f 2 l+1 B 2 dµ 1/2 ≤ C ρ(2 i+1 r) M |∇ f | 2 1/2 (x).
Proof of Lemma 2.19: Note that

A r = I -(I -e -ρ(r)∆ ) N = ∞ ∑ k=1 (-1) k+1 N k e -kρ(r)∆ .
In order to show (2.32), it is enough to prove that for

k = 1, 2, • • • , N, 1 µ(B) B ∇e -kρ(r)∆ f p dµ 1/p ≤ C M |∇ f | 2 1/2 (x).
(2.38)

We consider any ball B with radius r ≥ 1( r < 1 follows in the same way). Combining the estimates in Lemma 2.19 and Lemma 2.21, we obtain for i = 1,

1 µ(B) B ∇e -kρ(r)∆ f 1 p dµ 1/p ≤ C r m/2 1 µ(B) 4B | f -f 4B | 2 dµ 1/2 ≤ C 1 µ(B) 4B |∇ f | 2 dµ 1/2 ≤ C M |∇ f | 2 1/2 (x),
and for i ≥ 2, 1 µ(B) B ∇e -kρ(r)∆ f i p dµ 1/p ≤ Ce -c2 im/(m-1) r m/2 1 µ(2 i+1 B) C i | f i | 2 dµ 1/2 ≤ C2 im/2 e -c2 im/(m-1) 1 µ(2 i+1 B) 2 i+1 B |∇ f | 2 dµ 1/2 ≤ C2 im/2 e -c2 im/(m-1) M |∇ f | 2 1/2 (x). 2.4. THE L p BOUNDEDNESS OF RIESZ TRANSFORM FOR p > 2 57 Hence 1 µ(B) B ∇e -kρ(r)∆ f p dµ 1/p ≤ ∞ ∑ i=1 1 µ(B) B ∇e -kρ(r)∆ f i p dµ 1/p ≤ C 1 + ∞ ∑ i=2 2 im/2 e -c2 im/(m-1) M |∇ f | 2 1/2 (x) ≤ M |∇ f | 2 1/2 (x).
To summarise, let M be a complete non compact Riemannian manifold satisfying (D), we have shown that (DG α ) implies (2.22) with T α and (DG 1 2 ) implies (2.23) for any T α . Thus Theorem 2.15 holds. Notice also that (DG α ) follows from (HK 2,m ), but unfortunately we can't obtain (DG 1 2 ) from (HK 2,m ).

Chapter 3 Hardy spaces on metric measure spaces with generalised heat kernel estimates

In this Chapter, we develop a Hardy space theory on metric measure space (M, d, µ) with different local and global heat kernel estimates for e -tL where L is non-negative self-adjoint operator. This extends the work of Kunstmann and Uhl in [START_REF] Uhl | Spectral multiplier theorems of hörmander type via generalized gaussian estimates[END_REF][START_REF] Kunstmann | Spectral multiplier theorems of hörmander type on hardy and lebesgue spaces[END_REF].

In Section 3.2, we define two classes of Hardy spaces associated with operators on M satisfying (D) and (DG β 1 ,β 2 ). One is the H 1 space defined via molecules, denoted by H 1 L,ρ, mol (M). The other is H p L,S ρ h (M), p ≥ 1, defined via conical square function. Note that here ρ is related to the heat kernel estimates.

In Section 3.3, we prove that the two definitions of H 1 space are equivalent. In Section 3.4, we compare the H p space defined via square functions, denoted by H p and L p for p 0 < p < p ′ 0 (Theorem 3.16). However, for the Hardy space H p S h defined via the square function with the scaling t 2 under sub-Gaussian heat kernel estimates, the equivalence may not be true. Indeed, we find some counterexamples (Theorem 3.19).

In the last section, we apply this Hardy space theory to show the H 1 -L 1 boundedness of quasi Riesz transforms on Riemannian manifolds satisfying (D) and (UE 2,m ).

Throughout this chapter, unless otherwise stated, we always consider a metric measure spaces (M, d, µ) satisfying (D) and (DG β 1 ,β 2 ), where β 1 ≤ β 2 . If necessary we may smoothen ρ(t) as

ρ(t) =        t β 1 , if 0 < t ≤ 1/2, smooth part, if 1/2 < t < 2, t β 2 , if t ≥ 2;
with ρ ′ (t) ≃ 1 for 1/2 < t < 2, which we still denote by ρ(t). Since ρ ′ (t) 

ρ(t) = β 1 t for 0 < t ≤ 1/

More about assumptions on the heat kernel

Recall the heat kernel estimates on (M, d, µ) in Section 0.7:

The generalised L p 0 -L p ′ 0 off-diagonal estimate for p ∈ (1, 2): for x, y ∈ M and t > 0,

✶ B(x,t) e -ρ(t)L ✶ B(y,t) p 0 →p ′ 0 ≤                  C V 1 p 0 -1 p ′ 0 (x,t) exp   -c d(x, y) t β 1 β 1 -1   0 < t < 1, C V 1 p 0 -1 p ′ 0 (x,t) exp   -c d(x, y) t β 2 β 2 -1   , t ≥ 1.
(DG

p 0 ,p ′ 0 β 1 ,β 2 )
The generalised L 2 -L 2 Davies-Gaffney estimate: x, y ∈ M and t > 0

✶ B(x,t) e -ρ(t)L ✶ B(y,t) 2→2 ≤                C exp   -c d(x, y) t β 1 β 1 -1   0 < t < 1, C exp   -c d(x, y) t β 2 β 2 -1   , t ≥ 1. (DG β 1 ,β 2 )
The pointwise estimate of the heat kernel: x, y ∈ M and t > 0

p ρ(t) (x, y) ≤                C V (x,t) exp   -c d(x, y) t β 1 β 1 -1   0 < t < 1, C V (x,t) exp   -c d(x, y) t β 2 β 2 -1   , t ≥ 1. (UE β 1 ,β 2 )
In the following, we will give some lemmas from the heat kernel estimates. We first observe that (UE β 1 ,β 2 ) ⇒ (DG

p 0 ,p ′ 0 β 1 ,β 2 ) ⇒ (DG β 1 ,β 2 ). Indeed, Lemma 3.1 ([BK05]
). Let (M, d, µ) be a space of homogeneous type. Let L be a non-negative self-adjoint operator on L 2 (M, µ). Assume that (DG

p 0 ,p ′ 0 β 1 ,β 2 ) holds. Then for all p 0 ≤ u ≤ v ≤ p ′ 0 , we 3.1. MORE ABOUT ASSUMPTIONS ON THE HEAT KERNEL 61 have ✶ B(x,t) e -ρ(t)L ✶ B(y,t) u→v ≤                C V 1 u -1 v (x,t) exp   -c d(x, y) t β 1 β 1 -1   0 < t < 1, C V 1 u -1 v (x,t) exp   -c d(x, y) t β 2 β 2 -1   , t ≥ 1. (3.2)
Remark 3.2. The estimate (DG

p 0 ,p ′ 0 β 1 ,β 2 ) is equivalent to the L p 0 -L 2 off-diagonal estimate ✶ B(x,t) e -ρ(t)L ✶ B(y,t) p 0 →2 ≤                C V 1 p 0 -1 2 (x,t) exp   -c d(x, y) t β 1 β 1 -1   0 < t < 1, C V 1 p 0 -1 2 (x,t) exp   -c d(x, y) t β 2 β 2 -1   , t ≥ 1.
We refer to [START_REF] Blunck | Generalized Gaussian estimates and the Legendre transform[END_REF][START_REF] Coulhon | Gaussian heat kernel upper bounds via the Phragmén-Lindelöf theorem[END_REF] for the proof.

In fact, we also have 

✶ B (tL) k e -tL ✶ C i (B) u→v ≤              C2 iν µ 1 u -1 v (B) e -c 2 iβ 1 r β 1 t 1/(β 1 -1) 0 < t < 1, C2 iν µ 1 u -1 v (B) e -c 2 iβ 1 r β 2 t 1/(β 2 -1) , t ≥ 1. (3.3) 2. For all α, β ≥ 0 such that α + β = 1 u -1 v , V α (•,t)(ρ(t)L) k e -ρ(t)L V β (•,t) u→v ≤ C.
More generally, similarly as in [START_REF] Blunck | Generalized Gaussian estimates and the Legendre transform[END_REF][START_REF] Uhl | Spectral multiplier theorems of hörmander type via generalized gaussian estimates[END_REF], we can obtain Lemma 3.4. Let M satisfy (D) and (DG β 1 ,β 2 ) with β 1 ≤ β 2 . Let B be a ball with centre x ∈ M and CHAPTER 3. HARDY SPACES ON METRIC MEASURE SPACES radius r > 0. Then for all k, l ∈ N with 0 ≤ l ≤ k -2 and t ∈ (0, 2 k+1 r), it holds

✶ C k (B) (ρ(t)L) K e -ρ(t)L ✶ C l (B) 2→2 ≤        C exp -c2 kβ 1 β 1 -1 , 0 < t < 1, C exp -c2 kβ 2 β 2 -1 , t ≥ 1.
(3.4)

Note that here we can change the position of k and l.

Definitions of Hardy spaces

We present two definitions of Hardy space associated with L, that is, H 1 via molecules and H p , 1 ≤ p < ∞, via square function. In fact, the Hardy spaces we define here are modifications of these in [HLM + 11, Uhl11], which are adapted to the heat kernel estimates (DG β 1 ,β 2 ). Despite the fact that L is self-adjoint, we cannot use atoms as in [HLM + 11]. Indeed, atoms are related to a Gaussian behavior, not a sub-Gaussian one.

Hardy space via molecules

Definition 3.5. Let ε > 0 and K > ν 

2β 1 . A function a ∈ L 2 (M) is called a (1, 2, ε)-molecule asso- ciated to L if
(ρ(r B )L) k b L 2 (C i (B)) ≤ ρ K (r B )2 -iε V (2 i B) -1/2 . Definition 3.6. We say that f = ∑ ∞ n=0 λ n a n is a molecular (1, 2, ε)-representation of f if (λ n ) n∈N ∈ l 1 ,
each a n is a molecule as above, and the sum converges in the L 2 sense. We denote the collection of all the functions with a molecular representation by H 1 ∆,ρ,mol , where the norm of f ∈ H 1 ∆,ρ,mol is given by

f H 1 ∆,ρ,mol (M) = inf ∞ ∑ n=0 |λ n | : f = ∞ ∑ n=0 λ n a n is a molecular (1, 2, ε) -representation .
The Hardy space H 1 L,ρ, mol (M) is defined as the completion of H 1 L,ρ,mol (M) with respect to this norm.
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Hardy spaces via square function

Consider the quadratic operator associated with the heat kernel defined by the following conical square function

S ρ h f (x) = Γ(x) |ρ(t)Le -ρ(t)L f (y)| 2 dµ(y) V (x,t) dt t 1/2 , (3.5)
where the cone Γ(x) = {(y,t) ∈ M × (0, ∞) : d(y, x) < t}.

We define the L 2 (M) adapted Hardy space H 2 (M) as the closure of the range of L in

L 2 (M) norm, i.e., H 2 (M) := R(L). Due to the self-adjointness of L in L 2 (M), we get L 2 (M) = R(L) N(L)
, where the sum is orthogonal. Under the assumptions (D) and (UE β 1 ,β 2 ), we have

N(L) = 0 and thus H 2 (M) = L 2 (M). Indeed, since for any f ∈ L 2 (M), e -tL f -f = t 0 ∂ ∂ s e -sL f ds = - t 0 Le -sL f ds, then f ∈ N(L) implies f = e -tL f , ∀t ≥ 0.
Also, as a consequence of (UE β 1 ,β 2 ) and Hölder inequality, it holds ∀x ∈ M, ∀t ≥ 0,

| f (x)| = |e -ρ(t)L f (x)| = M p ρ(t) (x, y) f (y)dµ(y) ≤ C V (x,t) M exp -c d(x, y) t τ(t) | f (y)|dµ(y) ≤ C V (x,t) M exp -2c d(x, y) t τ(t)
dµ(y)

1/2 f 2 ≤ C V (x,t) 1/2 f 2 .
Here τ(t) = β 1 β 1 -1 for 0 < t < 1, and otherwise τ(t) = β 2 β 2 -1 . Now let t → ∞, we obtain that f = 0.

Definition 3.7. The Hardy space

H p L,S ρ h (M), p ≥ 1 is defined as the completion of the set { f ∈ H 2 (M) : S ρ h f L p < ∞} with respect to the norm S ρ h f L p . The H p L,S ρ h (M) norm is defined by f H p L,S ρ h (M) := S ρ h f L p (M) .
For p = 2, the operator

S ρ h is bounded on L 2 (M). Indeed, for every f ∈ L 2 (M), S ρ h f 2 L 2 (M) = M Γ(x) ρ(t)Le -ρ(t)L f (y) 2 dµ(y) V (x,t) dt t dµ(x) ≃ M×(0,∞) ρ(t)Le -ρ(t)L f (y) 2 dµ(y) dt t ≃ M×(0,∞) ρ(t)Le -ρ(t)L f (y) 2 dµ(y) ρ ′ (t)dt ρ(t) = ∞ 0 < (ρ(t)L) 2 e -2ρ(t)L f , f > ρ ′ (t)dt ρ(t) = C f 2 L 2 (M) .
(3.6)
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Next we review the atomic theory for tent spaces as originally developed in [START_REF] Coifman | Some new function spaces and their applications to harmonic analysis[END_REF], and extended to the setting of spaces of homogeneous type in [START_REF] Russ | The atomic decomposition for tent spaces on spaces of homogeneous type[END_REF].

Definition 3.10. A measurable function A on M × (0, ∞) is said to be a T 1 2 -atom if there exists a ball B ∈ M such that A is supported in B and

M×(0,∞) |A(x,t)| 2 dµ(x) dt t ≤ µ -1 (B).
Proposition 3.11 ([HLM + 11], [START_REF] Russ | The atomic decomposition for tent spaces on spaces of homogeneous type[END_REF]). For every element F ∈ T 1 2 (M) there exist a sequence of numbers {λ j } ∞ j=0 ∈ l 1 and a sequence of

T 1 2 -atoms {A j } ∞ j=0 such that F = ∞ ∑ j=0 λ j A j in T 1 2 (M) and a.e. in M × (0, ∞). (3.7) Moreover, ∑ ∞ j=0 λ j ≈ F T 1 2 (M)
, where the implicit constants depend only on the homogeneous space properties of M.

Finally, if F ∈ T 1 2 (M) ∩ T 2 2 (M), then the decomposition (3.7) also converges in T 2 2 (M).

H

1 L,ρ,mol (M) = H 1 L,S ρ h (M)
In this section, we will show that, under the assumptions of (D) and the Davies-Gaffney estimate (DG β 1 ,β 2 ), the two H 1 spaces: H 1 L,ρ, mol (M) and H 1

L,S

ρ h (M), are equivalent. We denote

H 1 L,ρ (M) := H 1 L,S ρ h (M) = H 1 L,ρ, mol (M).
Theorem 3.12. Let M be a metric measure space satisfying the doubling volume property (D) and the heat kernel estimate (DG

β 1 ,β 2 ). Then H 1 L,ρ, mol (M) = H 1 L,S ρ h (M). Moreover, f H 1 L,ρ, mol (M) ≃ f H 1 L,S ρ h (M) .
The outline of the proof is the same as in [HLM

+ 11]. Since H 1 L,ρ, mol (M) and H 1 L,S ρ h (M) are completions of H 1 L,ρ, mol (M) and H 1 L,S ρ h (M) ∩ H 2 (M), it is enough to show H 1 L,ρ, mol (M) = H 1 L,S ρ h (M) ∩ H 2 (M)
with equivalent norms. In the following, we will prove the two-sided inclusions separately. Before proceeding to the proof, we first note the following criterion to prove H 1 L,ρ, mol (M) -L 1 (M) boundedness of an operator, which is an analogue of Lemma 4.3 in [HLM + 11]. Lemma 3.13. Assume that T is a linear operator, or a nonnegative sublinear operator, satisfying
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and that for every (1, 2, ε)-molecule a, we have

Ta L 1 ≤ C, (3.9) with constant C independent of a. Then T is bounded from H 1 ∆,ρ,mol (M) to L 1 (M) with T f L 1 ≤ C f H 1 ∆,ρ,mol (M) .
Consequently, by density, T extends to be a bounded operator from H 1 ∆,ρ,mol (M) to L 1 (M).

The proof in [HLM + 11] is applicable in our case. For the sake of completeness, we rewrite it here.

Proof. Let f ∈ H 1 ∆,ρ,mol (M), where f = ∑ n λ n a n is a molecular (1, 2, ε)-representation such that f H 1 ∆,ρ,mol (M) ≈ ∑ n |λ n |.
Since the sum converges in L 2 from Definition 3.6 and T is of weak type (2, 2), we have at almost every point

|T f | ≤ ∑ n |λ n ||Ta n |.
(3.10) Indeed, denote f N = ∑ n>N λ n a n . Because T is linear or non-negative sub linear,we have

|T f | ≤ T f N + T N ∑ n=0 λ n a n ≤ T f N + ∞ ∑ n=0 |λ n ||T (a n )|.
Thus for every η > 0,

µ |T f | - ∞ ∑ n=0 |λ n ||T (a n )| > η ≤ lim sup N→∞ µ T f N > η ≤ Cη -2 lim sup N→∞ f N 2 2 = 0.
As a result, (3.10) follows. Combining (3.10) and (3.9), we get that T f is L 1 bounded. Finally, by a standard density argument, we conclude that T is bounded from

H 1 ∆,ρ,mol (M) to L 1 (M).
The inclusion

H 1 L,ρ, mol (M) ⊆ H 1 L,S ρ h (M) ∩ H 2 (M). 3.3. H 1 L,ρ,mol (M) = H 1 L,S ρ h (M) 67 
Theorem 3.14. Let M be a metric measure space satisfying the doubling volume property (D) and the heat kernel estimate (DG

β 1 ,β 2 ). Then H 1 L,ρ, mol (M) ⊆ H 1 L,S ρ h (M) ∩ H 2 (M) and f H 1 L,S ρ h (M) ≤ C f H 1 L,ρ, mol (M) .
Proof. First observe H 1 L,ρ, mol (M) ⊆ H 2 (M). Indeed, by Definition 3.5, any (1, 2, ε)-molecule belongs to R(L). Thus any finite linear combination of molecules belongs in R(L). Since

f ∈ H 1 L,ρ, mol (M) is the L 2 (M) limit of finite linear combination of molecules, we get f ∈ R(L) = H 2 (M). It remains to show H 1 L,ρ, mol (M) ⊆ H 1 L,S ρ h (M), that is, S ρ h is bounded from H 1 L,ρ, mol (M) to L 1 (M). Since S ρ h is L 2 bounded (see (3.6
)) and thus of weak type (2, 2), Lemma 3.13 tells us that it suffices to prove, for any (1, 2, ε)-molecule a, there exists a constant C such that S ρ h a L 1 (M) ≤ C. In other words, one needs to prove

A T 1 2 (M) ≤ C with A(y,t) = ρ(t)Le -ρ(t)L a(y).
Assume that a is related to a function b and a ball B with radius r, that is, a = L K b and for every

k = 0, 1, • • • , K and i = 0, 1, 2, • • • , it holds that (ρ(r)L) k b L 2 (C i (B)) ≤ ρ(r)2 -iε µ(2 i B) -1/2 .
Similarly as in [START_REF] Auscher | Hardy spaces of differential forms on Riemannian manifolds[END_REF], we divide A into four parts:

A = ✶ 2B×(0,2r) A + ∑ i≥1 ✶ C i (B)×(0,r) A + ∑ i≥1 ✶ C i (B)×(r,2 i+1 r) A + ∑ i≥1 ✶ 2 i B×(2 i r,2 i+1 r) A = A 0 + A 1 + A 2 + A 3 .
Here ✶ denotes the characteristic function and C i (B) = 2 i+1 B\2 i B, i ≥ 1. It suffices to show that for every j = 0, 1, 2, 3, we have

A j T 1 2 ≤ C.
Firstly consider A 0 . Observe that

A (A 0 )(x) = Γ(x) ✶ 2B×(0,2r) (y,t)A(y,t) 2 dµ(y) V (x,t) dt t 1/2
is supported on 4B. Indeed, let x B be the center of B, then

d(x, x B ) ≤ d(x, y) + d(y, x B ) ≤ 4r.
Therefore, we have

A 0 2 T 2 2 (M) = A (A 0 ) 2 2 ≤ 4B Γ(x) ✶ 2B×(0,2r) (y,t)A(y,t) 2 dµ(y) V (x,t) dt t dµ(x) ≤ ∞ 0 M ρ(t)Le -ρ(t)L a(y) 2 dµ(y) dt t ≤ C a 2 L 2 (M) = C ∞ ∑ i=0 a 2 L 2 (C i (B)) ≤ C ∞ ∑ i=0 2 -2iε µ -1 (2 i B) ≤ C ∞ ∑ i=0 2 -2iε µ -1 (B) ≤ Cµ -1 (B).
Similarly as in (3.6), applying the Fubini theorem, (4) and spectral theory, we obtain the second inequality and the third one. Combing this with Cauchy-Schwarz inequality, then

A 0 T 1 2 (M) ≤ A T 2 2 (M) µ(4B) 1/2 ≤ C. Now for A 1 . For each i ≥ 1, we have supp A (✶ C i (B)×(0,r) A) ⊂ 2 i+2 B. In fact, d(x, x B ) ≤ d(x, y) + d(y, x B ) ≤ t + 2 i+1 r < 2 i+2 r. Then ✶ C i (B)×(0,r) A T 2 2 = A (✶ C i (B)×(0,r) A) 2 ≤ 2 i+2 B Γ(x) ✶ C i (B)×(0,r B ) (y,t)ρ(t)Le -ρ(t)L a(y) 2 dµ(y) V (x,t) dt t dµ(x) 1/2 ≤ r 0 C i (B) ρ(t)Le -ρ(t)L a(y) 2 dµ(y) dt t 1/2 ≤ ∞ ∑ l=0 r 0 C i (B) ρ(t)Le -ρ(t)L ✶ C l (B) a(y) 2 dµ(y) dt t 1/2 := ∞ ∑ l=0 I l .
We estimate I l with |i -l| > 3 and |i -l| ≤ 3 respectively. Firstly assume that |i -l| ≤ 3, then by spectral theorem (see (3.6)), we have

I 2 l ≤ ∞ 0 M ρ(t)Le -ρ(t)L ✶ C l (B) a(y) 2 dµ(y) dt t ≤ C a 2 L 2 (C l (B)) ≤ C2 -2iε µ -1 (2 i B). Assume now |i -l| > 3. Note that dist (C l (B),C i (B)) ≥ c2 max{l,i} r B . First if i > l + 3, it follows 3.3. H 1 L,ρ,mol (M) = H 1 L,S ρ h (M) 69 
from Lemma 3.4

I 2 l ≤ r 0 exp -c 2 i r t τ(t) a 2 L 2 (C l (B)) dµ(y) dt t ≤ C2 -2lε µ -1 (2 l B) r 0 t 2 i r c+ν dt t ≤ C2 -ci 2 -2lε µ -1 (2 i B).
(3.11)

Here

τ(t) = β 1 β 1 -1 if 0 < t < 1, otherwise τ(t) = β 2 β 2 -1 . In the second inequality, we dominate exp -c 2 i r t τ(t)
by t 2 i r c+ν . The last inequality comes from (3).

If i < l -3, then Lemma 3.4 yields

I 2 l ≤ r 0 exp -c 2 l r t τ(t) a 2 L 2 (C l (B)) dµ(y) dt t ≤ C2 -2lε µ -1 (2 l B) r 0 t 2 i r c dt t ≤ C2 -ci 2 -2lε µ -1 (2 i B).
(3.12) It follows from above that

✶ C i (B)×(0,r) A T 2 2 ≤ C ∑ l:|l-i|≤3 2 -iε µ -1/2 (2 i B) +C ∑ l:|l-i|>3 2 -kc 2 -lε µ -1/2 (2 i B) ≤ C2 -ic µ -1/2 (2 i B),
where c depends on ε, M. Therefore

A 1 T 1 2 ≤ ∑ i≥1 ✶ C i (B)×(0,r) A T 2 2 µ 1/2 (2 i+2 B) ≤ C ∑ i≥1 2 -ic ≤ C.
We estimate A 2 in a similar way as before except that we replace a by L K b. Note that for each

i ≤ 1, we have supp A (✶ C i (B)×(r,2 i+1 r) A) ⊂ 2 i+2 B. Indeed, d(x, x B ) ≤ d(x, y) + d(y, x B ) ≤ t + 2 i+1 r B ≤ 2 i+2 r B .
Then

✶ C i (B)×(r B ,2 i+1 r) A T 2 2 = A (✶ C i (B)×(r,2 i+1 r B ) A) 2 ≤ 2 i+2 B Γ(x) ✶ C i (B)×(r B ,2 i r B ) (y,t)A(y,t) 2 dµ(y)dt V (x,t)t dµ(x) 1/2 ≤ 2 i+1 r r B C i (B) (ρ(t)L) K+1 e -ρ(t)L b(y) 2 dµ(y) dt tρ 2K (t) 1/2 70 CHAPTER 3. HARDY SPACES ON METRIC MEASURE SPACES ≤ ∞ ∑ l=0 2 i+1 r r B C i (B) (ρ(t)L) K+1 e -ρ(t)L ✶ C l (B) b(y) 2 dµ(y) dt tρ 2K (t) 1/2 := ∞ ∑ l=0 J l
When |i -l| ≤ 3, by spectral theorem we get J 2 l ≤ C2 -2iε V -1 (2 i B). And when |i -l| > 3, it holds dist (C l (B),C i (B)) ≥ c2 max{l,i} r B . If i > l + 3, by using Lemma 3.4, we get

J 2 l ≤ 2 i+1 r r exp -c 2 i r t τ(t) b 2 L 2 (C l (B)) dµ(y) dt tρ 2 (t) ≤ ρ 2K (r)2 -2lε µ -1 (2 l+1 B) 2 i+1 r r t 2 i r c dt tρ 2K (t) ≤ C2 -i(c-ν) 2 -l(2ε+ν) µ -1 (2 i B).
Here we take ν < c < 2β 1 K. The same estimate also holds for l > i + 3, in the same way as (3.12).

Hence

✶ C i (B)×(r,2 i r) A 2 T 2 2 ≤ C2 -ic µ -1 (2 i B),
and

A 2 T 1 2 ≤ ∑ i≥1 ✶ C i (B)×(r,2 i r B ) A T 2 2 µ 1/2 (2 i+2 B) ≤ C ∑ i≥1 2 -ic/2 ≤ C.
It remains to estimate the last term A 3 . For each i ≥ 1, we still have

supp A (✶ 2 i B×(2 i r,2 i+1 r B ) A) ⊂ 2 i+2 B.
Then we obtain as before that

✶ 2 i B×(2 i r,2 i+1 r) A T 2 2 = A (✶ 2 i B×(2 i r,2 i+1 r B ) A) 2 ≤ 2 i+2 B Γ(x) ✶ 2 i B×(2 i r B ,2 i+1 r) (y,t)A(y,t) 2 dµ(y)dt V (x,t)t dµ(x) 1/2 ≤ 2 i+1 r 2 i r 2 i B (ρ(t)L) K+1 e -ρ(t)L b(y) 2 dµ(y)dt tρ 2K (t) 1/2 ≤ ∞ ∑ l=0 2 i+1 r 2 i r 2 i B (ρ(t)L) K+1 e -ρ(t)L ✶ C l (B) b(y) 2 dµ(y)dt tρ 2K (t) 1/2 := K l .
In fact, due to the doubling volume property, the pointwise heat kernel estimate as well as the
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definition of molecules, we get

K 2 l ≤ 2 i+1 r 2 i r ✶ C l (B) b 2 L 2 dt tρ 2K (t) ≤ Cρ 2K (r)2 -2lε µ -1 (2 l B) 2 i+1 r 2 i r dt tρ 2K (t) ≤ C2 -2lε 2 -ic µ -1 (2 i B). Hence A 3 T 1 2 ≤ ∑ i≥1 ✶ 2 i B×(2 i r B ,2 i+1 r B ) A T 2 2 µ 1/2 (2 i+2 B) ≤ C ∑ i≥1 2 -2i ≤ C.
This finishes the proof.

The inclusion H

1 L,S ρ h ∩ H 2 (M) ⊆ H 1 L,ρ, mol .
We closely follow the proof of Theorem 4.13 in [HLM + 11] and get Theorem 3.15. Let M be a metric measure space satisfying the doubling volume property (D) and the heat kernel estimate (DG

β 1 ,β 2 ). If f ∈ H 1 L,S ρ h (M)∩H 2 (M)
, then there exist a sequence of numbers {λ j } ∞ j=0 ⊂ l 1 and a sequence of (1, 2, ε)-molecules {a j } ∞ j=0 such that f can be represented in the form f = ∑ ∞ j=0 λ j a j , with the sum converging in L 2 (M), and

f H 1 L,ρ, mol (M) ≤ C ∞ ∑ j=0 λ j ≤ C f H 1 L,S ρ h (M) ,
where C is independent of f . In particular, H 1

L,S ρ h (M) ∩ H 2 (M) ⊆ H 1 L,ρ, mol (M). Proof. For f ∈ H 1 L,S ρ h (M) ∩ H 2 (M), denote F(x,t) = ρ(t)Le -ρ(t)L f (x).
Then by the definition of

H 1 L,S ρ h (M), we have F ∈ T 1 2 (M) ∩ T 2 2 (M). From Theorem 3.11, we decompose F as F = ∑ ∞ j=0 λ j A j , where {λ j } ∞ j=0 ∈ l 1 , {A j } ∞ j=0 is a sequence of T 1 2 -atoms supported in a sequence of sets { B j } ∞ j=0
, and the sum converges in both

T 1 2 (M) and T 2 2 (M). Also ∞ ∑ j=0 λ j ≤ C F T 1 2 (X) = C f H 1 L,S ρ h (M) .
For f ∈ H 2 (M), by functional calculus, we have the following "Calderón reproducing formula"

f = C ∞ 0 (ρ(t)L) K+1 e -2ρ(t)L f ρ ′ (t)dt ρ(t) = C ∞ 0 (ρ(t)L) K e -ρ(t)L F(•,t) ρ ′ (t)dt ρ(t) := Cπ h,L (F). Denote a j = Cπ h,L (A j ), then f = ∑ ∞ j=0 λ j a j . Since for F ∈ T 2 2 (M), we have π h,L (F) L 2 (M) ≤ C F T 2 2 (M)
. Thus we learn from Lemma 4.12 in [HLM + 11] that the sum also converges in L 2 (M). We claim that a j , j = 0, 1, ..., are (1, 2, ε)-molecules up to multiplication to some uniform constant, which implies our conclusion. Indeed,

a j = L K b j for b j = C ∞ 0 ρ K (t)e -ρ(t)L A j (•,t) ρ ′ (t)dt ρ(t) .
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Now we estimate the norm (ρ(r

B j )L) k b j L 2 (C i (B))
. For simplicity we ignore the index j.

Consider any function

g ∈ L 2 (C i (B)) with g L 2 (C i (B)) = 1, then for k = 0, 1, • • • , K, M (ρ(r B )L) k b(x)g(x)dµ(x) ≤ C M ∞ 0 (ρ(r B )L) k ρ K (t)e -ρ(t)L (A j (•,t))(x) ρ ′ (t)dt ρ(t) g(x)dµ(x) = C B ρ(r B ) ρ(t) k ρ K (t)A j (x,t)(ρ(t)L) k e -ρ(t)L g(x)dµ(x) ρ ′ (t)dt ρ(t) ≤ C B A j (x,t) 2 dµ(x) dt t 1/2 •   B ρ(r B ) ρ(t) k ρ K (t)(ρ(t)L) k e -ρ(t)L g(x) 2 dµ(x) dt t   1/2 .
In the last inequality, we apply Hölder inequality as well as (3.1). We continue to estimate by using the definition of T 1 2 -atoms and the off-diagonal estimates of heat kernel.

For i = 0, 1, the above quantity is dominated by

Cµ -1/2 (B)ρ(r B ) B (ρ(t)L) k e -ρ(t)L g(x) 2 dµ(x) dt t 1/2 ≤ Cµ -1/2 (B)ρ(r B ).
Next for i ≥ 2, by using Lemma 3.3 ,the above quantity is controlled

Cµ -1/2 (B) r B 0 ρ(r B ) ρ(t) 2k ρ 2K (t) (ρ(t)L) k e -ρ(t)L g 2 L 2 (B) dt t 1/2 ≤ Cµ -1/2 (B) r B 0 ρ(r B ) ρ(t) 2k ρ 2K (t) exp -c 2 i r B t τ dt t 1/2 ≤ Cµ -1/2 (B) r B 0 ρ(r B ) ρ(t) 2k ρ 2K (t) t 2 i r B ε+ν dt t 1/2 ≤ Cµ -1/2 (2 i B)ρ K (r B )2 -iε .
Since k = 0, 1, • • • , K, the last inequality always holds for any ε > 0.

Therefore,

(ρ(r B )L) k b L 2 (C i (B)) = sup g L 2 (C i (B)) =1 M (ρ(r B )L) k b(x)g(x)dµ(x) ≤ Cµ -1/2 (2 i B)ρ K (r B )2 -iε .
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Comparison of Hardy spaces and Lebesgue spaces

For this topic, we refer to [AMR08, HLM + 11, Uhl11, Dev13]. Let (M, d, µ) be a metric measure space of homogeneous type and L be a non-negative selfadjoint operator satisfying the Davies-Gaffney estimate (3.2). We first recall the definition of the Hardy space H p L,S h (M), p ≥ 1, in [HLM + 11]. Consider the conical square function

S h f (x) = Γ(x) |t 2 Le -t 2 L f (y)| 2 dµ(y) V (x,t) dt t 1/2 . (3.13)
The Hardy space H p L,S h (M), p ≥ 1 is defined as the completion of the set

{ f ∈ H 2 (M) : S h f L p < ∞} with respect to the norm f H p L,S h = S h f L p , for f ∈ H 2 (M). Here H 2 (M) = R(L) L 2 , see Section 3.1.2.
It always holds that H p L,S h ⊂ L p , 1 < p < 2. Indeed, since the L p , 2 < p < ∞, norm of the conical square function is controlled by its vertical analogue (see [START_REF] Auscher | Vertical versus conical square functions[END_REF]). By an argument of duality (see [START_REF] Auscher | Hardy spaces of differential forms on Riemannian manifolds[END_REF]), we obtain H p L,S h ⊂ L p , 1 < p < 2. We also refer to [START_REF] Auscher | Calderon reproducing formulas and applications to Hardy spaces[END_REF] for the embedding

H p L,S h ⊂ L p , 1 ≤ p < 2.
If one assumes in addition the Gaussian upper bound for the heat kernel of the operator L, we have H p L,S h (M) = L p (M), 1 < p < ∞ (see for example [AMR08, Theorem 8.5] for Hardy spaces of 0-forms on Riemannian manifold). We are going to show that this equivalence does not hold in general.

Coming back to the setting of a metric measure space (M, d, µ) satisfying (D) and (DG

p 0 ,p ′ 0 β 1 ,β 2
), a natural question to ask is whether H p L,S ρ h (M) and L p (M) are equivalent.

In this section, we will study the relations between L p (M), H p L,S ρ h (M) and H p L,S h (M) under the assumptions of (D) and (DG

p 0 ,p ′ 0 β 1 ,β 2
). We first show in the following that L p (M) and H p L,S ρ h (M) are equivalent. Next we give some examples such that L p (M) and H p L,S h (M) are not equivalent. More precisely, the inclusion L p ⊂ H p L,S h may be false for 1 < p < 2.

Equivalence of L p (M) and H p L,S

ρ h (M) for 1 < p < ∞ Theorem 3.16. Let M be a non-compact metric measure space satisfying the doubling volume property (D) and (DG

p 0 ,p ′ 0 β 1 ,β 2 ). Then H p L,S ρ h (M) = R(L) ∩ L p (M) L p (M) for p 0 < p < p ′ 0 .
As explained in Section 3.1.2, if we assume (D) and (UE β 1 ,β 2 ), then it holds that R(L) = L 2 . Therefore we have CHAPTER 3. HARDY SPACES ON METRIC MEASURE SPACES Corollary 3.17. Let M be a metric measure space satisfying the doubling volume property (D) and

(UE β 1 ,β 2 ). Then H p L,S ρ h (M) = L p (M) for 1 < p < ∞.

Proof. It suffices to prove that for any

f ∈ R(L) ∩ L p (M) with p 0 < p < p ′ 0 , S ρ h f L p ≤ C f L p . (3.14)
With this fact at hand, we can obtain by duality that

f L p ≤ C S ρ h f L p for p 0 < p < p ′ 0 . Indeed, for f ∈ R(L), write the identity f = C ∞ 0 (ρ(t)L) 2 e -2ρ(t)L f ρ ′ (t)dt ρ(t) ,
where the integral

C 1/ε ε (ρ(t)L) 2 e -2ρ(t)L f ρ ′ (t)dt ρ(t) converges to f in L 2 (M) as ε → 0. Then for f ∈ R(L) ∩ L p (M), we have f L p = sup g L p ′ ≤1 | < f , g > | ≈ sup g L p ′ ≤1 M×(0,∞) F(y,t)G(y,t)dµ(y) ρ ′ (t)dt ρ(t) ≈ sup g L p ′ ≤1 M Γ(x) F(y,t)G(y,t) dµ(y) V (x,t) ρ ′ (t)dt ρ(t) dµ(x) ≤ C sup g L p ′ ≤1 F T p 2 G T p ′ 2 = C sup g L p ′ ≤1 S h f L p S h g L p ′ ≤ C sup g L p ′ ≤1 S h f L p g L p ′ = S h f L p .
Here F(y,t) = ρ(t)Le -ρ(t)L f (y) and G(y,t) = ρ(t)Le -ρ(t)L g(y). The second line's equivalence is due to the doubling volume property. By an approximating process, the above argument holds for f ∈ L p (M).

For p > 2, the L p norm of the conical square function is controlled by its vertical analogue (for a reference, see [START_REF] Auscher | Vertical versus conical square functions[END_REF], where the proof can be adapted to the homogenous setting), which is always L p bounded for p 0 < p < p ′ 0 by adapting the proofs in [START_REF] Blunck | Generalized Gaussian estimates and Riesz means of Schrödinger groups[END_REF] and [START_REF] Cowling | Banach space operators with a bounded H ∞ functional calculus[END_REF] (if (e -tL ) t>0 is a symmetric Markov semigroup, then it is L p bounded for 1 < p < ∞, according to [START_REF] Stein | Topics in harmonic analysis related to the Littlewood-Paley theory[END_REF]). Hence (3.14) holds.

It remains to show (3.14) for p 0 < p < 2.

In the following, we will prove the weak (p 0 , p 0 ) boundedness of S ρ h by using the L p 0 Calderón-Zygmund decomposition (see Theorem 2.9 in Chapter 2). Since S ρ h is also L 2 bounded as shown in (3.6), then by interpolation, (3.14) holds for every p 0 < p < 2. The proof is similar to [Aus07, Proposition 6.8] and [AHM12, Theorem 3.1].

We take the Calderón-Zygmund decomposition of f at the height λ , that is,

f = g + ∑ b i with supp b i ⊂ B i . Since S ρ h is a sublinear operator, write S ρ h ∑ i b i = S ρ h ∑ i I -I -e -ρ(r i ) N + I -e -ρ(r i )L N b i ≤ S ρ h ∑ i I -I -e -ρ(r i ) N b i + S ρ h ∑ i I -e -ρ(r i ) N b i .
Here N ∈ N is chosen to be larger than 2ν/β 1 where ν is as in (3). Then it is enough to prove that

µ x ∈ M : S ρ h ( f )(x) > λ ≤ µ x ∈ M : S ρ h (g)(x) > λ 3 + µ x ∈ M : S ρ h ∑ i I -I -e -ρ(r i ) N b i (x) > λ 3 + µ x ∈ M : S ρ h ∑ i I -e -ρ(r i )L N b i (x) > λ 3 ≤ C λ p 0 | f (x)| p 0 dµ(x).
We treat g in a routine way. Since S ρ h is L 2 bounded as shown in (3.6), then

µ x ∈ M : S ρ h (g)(x) > λ 3 ≤ Cλ -2 g 2 2 ≤ Cλ -p 0 g p 0 ≤ Cλ -p 0 f p 0 .
Now for the second term. Note that I -Ie -ρ(r i )L N = ∑ N k=1 (-1) k+1 N k e -kρ(r i )L . Since the sum has N terms, it is enough to show that for every 1 ≤ k ≤ N,

µ x ∈ M : S ρ h ∑ i e -kρ(r i )L b i (x) > λ 3N ≤ C k λ p 0 | f (x)| p 0 dµ(x). (3.15)
Note the following slight improvement of Assumption (DG

p 0 ,p ′ 0 β 1 ,β 2
) (or (3.3) for u = p 0 and v = 2): for every 1 ≤ k ≤ N and for every j ≥ 1, we have

e -kρ(r i )L b i L 2 (C j (B i )) ≤ C k µ 1/2 (2 j+1 B i ) µ 1/p 0 (B i ) e -c k 2 jτ(kρ(r i )) b i L p 0 (B i ) . (3.16) Here τ(r) = β 1 /(β 1 -1) if 0 < r < 1, otherwise τ(r) = β 2 /(β 2 -1). Indeed, if r i ≥ 1, it holds that e -kρ(r i )L b i L 2 (C j (B i )) ≤ e -kρ(r i )L b i L 2 (C j (k 1/β 2 B)) ≤ C k µ 1/2 (2 j+1 k 1/β 2 B) µ 1/p 0 (k 1/β 2 B) e -c k 2 jβ 2 /(β 2 -1) b i L p 0 (B i ) ≤ C k µ 1/2 (2 j B i ) µ 1/p 0 (B i ) e -c k 2 jβ 2 /(β 2 -1) b i L p 0 (B i ) .
The last inequality follows from (D). Now for 0

< r i < 1. Fixed k, if 0 < r i < k -1/β 1 , then e -kρ(r i )L b i L 2 (C j (B i )) ≤ e -kρ(r i )L b i L 2 (C j (k 1/β 1 B)) ≤ C k µ 1/2 (2 j+1 k 1/β 1 B) µ 1/p 0 (k 1/β 1 B) e -c k 2 jβ 1 /(β 1 -1) b i L p 0 (B i ) ≤ C k µ 1/2 (2 j B i ) µ 1/p 0 (B i ) e -c k 2 jβ 1 /(β 1 -1) b i L p 0 (B i ) .
Otherwise, note that k -1/β 1 ≤ r i < 1, that is, r i ≃ 1, then

e -kρ(r i )L b i L 2 (C j (B i )) ≤ e -kρ(r i )L b i L 2 (C j (k 1/β 2 B(x B ,k 1/β 2 r β 1 /β 2 ))) ≤ C k V 1/2 (2 j+1 B(x B , k 1/β 2 r β 1 /β 2 ))) V 1/p 0 (x B , k 1/β 2 r β 1 /β 2 )) e -c k 2 jβ 2 /(β 2 -1) b i L p 0 (B i ) ≤ C k µ 1/2 (2 j B i ) µ 1/p 0 (B i ) e -c k 2 jβ 2 /(β 2 -1) b i L p 0 (B i ) .
With the above preparations, we can show (3.15) now. Write

µ x : S ρ h ∑ i e -kρ(r i )L b i (x) > λ 3N ≤ C λ 2 ∑ i e -kρ(r i )L b i 2 2
By a duality argument,

∑ i e -kρ(r i )L b i 2 = sup φ 2 =1 M ∑ i e -kρ(r i )L b i |φ |dµ ≤ sup φ 2 =1 ∑ i ∞ ∑ j=1 C j (B i ) e -kρ(r i )L b i |φ |dµ := sup φ 2 =1 ∑ i ∞ ∑ j=1 A i j .
Applying Cauchy-Schwarz inequality, (3.16) and (3), we get

A i j ≤ e -kρ(r i )L b i L 2 (C j (B i )) φ L 2 (C j (B i ))
≤ Cλ µ(2 j+1 B i )e -c2 jτ(kρ(r i )) ess inf

y∈B i M |φ | 2 (y) 1/2
≤ Cλ 2 jD e -c2 jτ(kρ(r i )) µ(B i ) ess inf

y∈B i M |φ | 2 (y) 1/2 .
Here M denotes the Littlewood-Paley maximal operator. Then

∑ i e -kρ(r i )L b i 2 ≤ Cλ sup φ 2 =1 ∑ i ∞ ∑ j=1
2 jD e -c2 jτ(kρ(r i )) µ(B i ) ess inf

y∈B i M |φ | 2 (y) 1/2 ≤ Cλ sup φ 2 =1 ∑ i ✶ B i (y) M |φ | 2 (y)
1/2 dµ(y)

≤ Cλ sup φ 2 =1 ∪ i B i M |φ | 2 (y) 1/2 dµ(y) ≤ Cλ µ 1/2 (∪ i B i ) ≤ Cλ 1-p 0 /2 | f | p 0 dµ 1/2
.

The third inequality is due to the finite overlapping of the Calderón-Zygmund decomposition. In the last line, for the first inequality, we use Kolmogorov's inequality (see for example [START_REF] Grafakos | Classical Fourier analysis[END_REF]page 91]). Therefore, we obtain

µ x : S ρ h ∑ i e -kρ(r i )L b i (x) > λ 3N ≤ Cλ -p 0 | f | p 0 dµ. (3.17)
For the third term, we have

µ x ∈ M : S ρ h ∑ i I -e -ρ(r i )L N b i (x) > λ /3 ≤ µ ∪ j 4B j + µ x ∈ M \ ∪ j 4B j : S ρ h ∑ i I -e -ρ(r i )L N b i (x) > λ /3 .
From the Calderón-Zygmund decomposition and doubling volume property, we get

µ ∪ j 4B j ≤ ∑ j µ(4B j ) ≤ C ∑ j µ(B j ) ≤ C λ p 0 f p 0 .
It remains to show that

Λ := µ x ∈ M \ ∪ j 4B j : S ρ h ∑ i I -e -ρ(r i )L N b i (x) > λ 3 ≤ C λ p 0 | f (x)| p 0 dµ(x).
As a consequence of the Chebichev inequality, Λ is dominated by

9 λ 2 M\∪ j 4B j S ρ h ∑ i I -e -ρ(r i )L N b i (x) 2 dµ(x) ≤ 9 λ 2 M\ j 4B j Γ(x) ∑ i ρ(t)Le -ρ(t)L I -e -ρ(r i )L N b i (y) 2 dµ(y) V (x,t) dt t dµ(x) ≤ 18 λ 2 M\∪ j 4B j Γ(x) ∑ i ✶ 2B i (y)ρ(t)Le -ρ(t)L I -e -ρ(r i )L N b i (y) 2 dµ(y) V (x,t) dt t dµ(x) + 18 λ 2 M\∪ j 4B j Γ(x) ∑ i ✶ M\2B i (y)ρ(t)Le -ρ(t)L I -e -ρ(r i )L N b i (y) 2 dµ(y) V (x,t) dt t dµ(x) := 18 λ 2 (Λ loc + Λ glob ).
For the estimate of Λ loc . Thanks to the bounded overlapping of 2B i , we can put the sum of i out of the square up to a multiplicative constant. That is,

Λ loc ≤ C ∑ i M\∪ j 4B j ∞ 0 B(x,t) ✶ 2B i (y)ρ(t)Le -ρ(t)L I -e -ρ(r i )L N b i (y) 2 dµ(y) V (x,t) dt t dµ(x) ≤ C ∑ i M\∪ j 4B j ∞ 2r i B(x,t) ✶ 2B i (y)ρ(t)Le -ρ(t)L I -e -ρ(r i )L N b i (y) 2 dµ(y) V (x,t) dt t dµ(x) ≤ C ∑ i ∞ 2r i M B(y,t) dµ(x) V (x,t) ✶ 2B i (y)ρ(t)Le -ρ(t)L I -e -ρ(r i )L N b i (y) 2 dµ(y) dt t ≤ C ∑ i ∞ 2r i 2B i ρ(t)Le -ρ(t)L I -e -ρ(r i )L N b i (y) 2 dµ(y) dt t .
For the second inequality, note that for every i, x ∈ M \ ∪ j 4B j means x / ∈ 4B i . Then y ∈ 2B i and d(x, y) < t imply that t ≥ 2r i . Thus the integral is zero for every i. We obtain the third inequality by using the Fubini theorem and (4). Then by using (3.16), it follows

Λ loc ≤ C ∑ i ∞ 2r i 2B i   µ 1 p 0 -1 2 (B i ) V 1 p 0 -1 2 (y,t) V 1 p 0 -1 2 (y,t) µ 1 p 0 -1 2 (B i ) ρ(t)Le -ρ(t)L I -e -ρ(r i )L N b i (y)   2 dµ(y) dt t ≤ C ∑ i ∞ 2r i 2B i   V 1 p 0 -1 2 (y, 4r i ) V 1 p 0 -1 2 (y,t) V 1 p 0 -1 2 (y,t) µ 1 p 0 -1 2 (B i ) ρ(t)Le -ρ(t)L I -e -ρ(r i )L N b i (y)   2 dµ(y) dt t ≤ Cµ 1-2 p 0 (B i ) ∑ i ∞ 2r i 4r i t ν ′ 2 p 0 -1 V 1 p 0 -1 2 (•,t)ρ(t)Le -ρ(t)L I -e -ρ(r i )L N b i 2 2 dt t ≤ Cµ 1-2 p 0 (B i ) ∑ i I -e -ρ(r i )L N b i 2 p 0 ≤ Cµ 1-2 p 0 (B i ) ∑ i b i 2 p 0 ≤ Cλ 2 ∑ i µ(B i ) ≤ Cλ 2-p 0 | f | p 0 dµ.
For the second inequality, we use the reverse doubling property (5). The third inequality follows from the L p 0 -L 2 boundedness of the operator V 1 p 0 -1 2 (•,t)ρ(t)Le -ρ(t)L (see Lemma 3.3). Then by using the L p 0 boundedness of the heat semigroup, we get the fourth inequality. Now for the global part. We split the integral into annuli, that is,

Λ glob ≤ M Γ(x) ∑ i ✶ M\2B i (y)ρ(t)Le -ρ(t)L (I -e -ρ(r i )L ) N b i (y) 2 dµ(y) V (x,t) dt t dµ(x) ≤ ∞ 0 M B(y,t) ∑ i ✶ M\2B i (y)ρ(t)Le -ρ(t)L (I -e -ρ(r i )L ) N b i (y) 2 dµ(x) V (x,t) dµ(y) dt t ≤ ∞ 0 M ∑ i ✶ M\2B i (y)ρ(t)Le -ρ(t)L (I -e -ρ(r i )L ) N b i (y) 2 dµ(y) dt t .
In order to estimate the above L 2 norm, we use an argument of dualization. Take the supreme of all functions h(y,t) ∈ L 2 (M × (0, ∞), dµ(y)dt t ) with norm 1, then

Λ 1/2 glob ≤   ∞ 0 M ∑ i ✶ M\2B i (y)ρ(t)Le -ρ(t)L (I -e -ρ(r i )L ) N b i (y) 2 dµ(y) dt t   1/2 = sup h M×(0,∞) ∑ i ✶ M\2B i (y)ρ(t)Le -ρ(t)L (I -e -ρ(r i )L ) N b i (y) |h(y,t)| dµ(y)dt t ≤ sup h ∑ i ∑ j≥2 ∞ 0 C j (B i ) ρ(t)Le -ρ(t)L (I -e -ρ(r i )L ) N b i (y) |h(y,t)| dµ(y)dt t ≤ sup h ∑ i ∑ j≥2 ∞ 0 C j (B i ) ρ(t)Le -ρ(t)L (I -e -ρ(r i )L ) N b i (y) 2 dµ(y)dt t 1/2 × ∞ 0 C j (B i ) |h(y,t)| 2 dµ(y)dt t 1/2
.

Denote I i j = ∞ 0 C j (B i ) ρ(t)Le -ρ(t)L (I -e -ρ(r i )L ) N b i (y) 2 dµ(y)dt t 1/2 . CHAPTER 3. HARDY SPACES ON METRIC MEASURE SPACES Let H t,r (ζ ) = ρ(t)ζ e -ρ(t)ζ (1 -e -ρ(r)ζ ) N . Then I i j = ∞ 0 H t,r i (L)b i 2 L 2 (C j (B i )) dt t 1/2 . (3.18)
We will estimate H t,r i (L)b i L 2 (C j (B i )) by functional calculus. The notation mainly comes from [Aus07, Section 2.2].

For any fixed t and r, then H t,r is a holomorphic function satisfying

|H t,r (ζ )| ≤ C|ζ | N+1 (1 + |ζ |) -2(N+1) ,
for all ζ ∈ Σ = {z ∈ C * : | arg z| < ξ } with any ξ ∈ (0, π/2) and for some constant C.

Since L is a nonnegative self-adjoint operator, or equivalently L is a bisectorial operator of type 0, we can express H t,r (L) by functional calculus. Let 0 < θ < ω < ξ < π/2, we have

H t,r (L) = Γ + e -zL η + (z)dz + Γ - e -zL η -(z)dz, and η ± (z) = γ ± e ζ z H t,r (ζ )dζ .
Here Γ ± is the half-ray R + e ±i(π/2-θ ) and γ ± is the half-ray R ± e ±iω .

Then for any z ∈ Γ ± ,

|η ± (z)| = γ ± e ζ z ρ(t)ζ e -ρ(t)ζ (1 -e -ρ(r)ζ ) N dζ ≤ γ ± |e ζ z-ρ(t)ζ |ρ(t)|ζ ||1 -e -ρ(r)ζ | N |dζ | ≤ γ ± e -c|ζ |(|z|+ρ(t)) ρ(t)|ζ ||1 -e -ρ(r)ζ | N |dζ | ≤ C ∞ 0 e -cs(|z|+ρ(t)) ρ(t)ρ N (r)s N+1 ds ≤ Cρ(t)ρ N (r) (|z| + ρ(t)) N+2 .
In the second inequality, the constant c > 0 depends on θ and ω. Indeed,

ℜ(ζ z) = |ζ ||z|ℜe ±i(π/2-θ +ω) . Since θ < ω, then π/2 < π/2 -θ + ω < π and |e ζ z | = e -c 1 |ζ ||z| with c 1 = -cos(π/2 -θ + ω).
Also it is obvious to see that |e We choose θ appropriately such that |z| ∼ ℜz for z ∈ Γ ± , then for any j ≥ 2 fixed,

H t,r i (L)b i L 2 (C j (B i )) ≤ C Γ + + Γ - e -ℜzL b i L 2 (C j (B i )) ρ(t) (|z| + ρ(t)) 2 ρ N (r i ) (|z| + ρ(t)) N |dz| ≤ C ∞ 0 e -sL b i L 2 (C j (B i )) ρ(t)ρ N (r i ) (s + ρ(t)) N+2 ds.
Applying (3.3) with u = p 0 and v = 2, then

H t,r i (L)b i L 2 (C j (B i )) ≤ C2 jν b i p 0 µ 1 p 0 -1 2 (B i ) ∞ 0 e -c 2 j r i ρ -1 (s) τ(s) ρ(t)ρ N (r i ) (s + ρ(t)) N+2 ds ≤ C2 jν b i p 0 µ 1 p 0 -1 2 (B i ) ρ(t) 0 + ∞ ρ(t) e -c 2 j r i ρ -1 (s) τ(s) ρ(t)ρ N (r i ) (s + ρ(t)) N+2 ds := C2 jν b i p 0 µ 1 p 0 -1 2 (B i ) (H 1 (t, r i , j) + H 2 (t, r i , j)).
(3.19)

In the second and the third lines, τ(s) is originally defined in (3.16). In fact, it should be τ(ρ -1 (s)).

Since ρ -1 (s) and s are unanimously larger or smaller than one, we always have τ(s) = τ(ρ -1 (s)).

Hence, by Minkowski inequality, we get from (3.18) and (3.19) 

I i j ≤ C2 jν b i p 0 µ 1 p 0 -1 2 (B i ) ∞ 0 H 2 1 (t, r i , j) dt t 1/2 + ∞ 0 H 2 2 (t,
0 H 1 (t, r i , j) 2 dt t ≤ C2 -2β 1 N j . (3.21)
Estimate first H 1 (t, r i , j). We control ρ(t)ρ N (r i ) (s+ρ(t)) N+2 by ρ N (r i ) ρ(t) N+1 . Thus for 0 < t < 1, we have

H 1 (t, r i , j) ≤ t β 1 0 e -c 2 jβ 1 r β 1 i s 1/(β 1 -1) ρ N (r i ) t β 1 (N+1) ds ≤ Ce -c 2 j r i t β 1 /(β 1 -1) ρ N (r i ) t β 1 N , (3.22) For t ≥ 1, H 1 (t, r i , j) ≤ 1 0 e -c 2 jβ 1 r β 1 i s 1/(β 1 -1) ρ N (r i ) t β 1 (N+1) ds + t β 2 1 e -c 2 jβ 2 r β 2 i s 1/(β 2 -1) ρ N (r i ) t m(N+1) ds CHAPTER 3. HARDY SPACES ON METRIC MEASURE SPACES ≤ C     e -c2 jβ 1 r β 1 i + e -c 2 jβ 2 r β 2 i t β 2 1/(β 2 -1)     ρ N (r i ) t β 2 N . ≤ Ce -c 2 jβ 2 r β 2 i t β 2 1/(β 2 -1) ρ N (r i ) t β 2 N .
To summarise, we get

H 1 (t, r i , j) ≤              Ce -c 2 j r i t β 1 /(β 1 -1)
ρ N (r i )

t β 1 N , for t ∈ (0, 1), Ce -c 2 jβ 2 r β 2 i t β 2 1/(β 2 -1) ρ N (r i ) t β 2 N , for t ≥ 1. (3.23)
In order to get (3.21), we consider three cases separately. That is, r i < 2 -j , 2 -j ≤ r i < 1 and

r i ≥ 1.
Firstly for r i < 2 -j , then ρ(r i ) = r

β 1
i . We divide the integral from 0 to infinity into three parts as follows

∞ 0 H 2 1 (t, r i , j) dt t = 2 j r i 0 H 2 1 (t, r i , j) dt t + 1 2 j r i H 2 1 (t, r i , j) dt t + ∞ 1 H 2 1 (t, r i , j) dt t ≤ C 2 j r i 0 t 2 j r i c r 2β 1 N i t 2β 1 N dt t +C 1 2 j r i r 2β 1 N i t 2β 1 N dt t +C ∞ 1 r 2β 1 N i t 2β 2 N dt t ≤ C2 -c j r 2β 1 N-c i 2 j r i 0 t c-2β 1 N dt t +Cr 2β 1 N i ∞ 2 j r i t -2β 1 N dt t +Cr 2β 1 N i ∞ 1 t -2β 2 N dt t ≤ C2 -2β 1 j +C2 -2β 1 j +Cr 2β 1 N i ≤ C2 -2β 1 j .
In the first integral, we use the first estimate of H 1 (t, r i , j) in (3.23). We also dominate the exponential term by a polynomial one, where c in the second line is chosen to be larger than 2mN. In fact, for any fixed L > 0, x L e -cx is uniformly bounded for x > 0. In the second and the third integrals, we use the third bound in (3.23). Secondly for r i satisfying 2 -j ≤ r i < 1. Then ρ(r i ) = r β 1 i and 2 j r i ≥ 1. We divide the integral into three different parts compared with the first case. That is,

∞ 0 H 2 1 (t, r i , j) dt t = 1 0 H 2 1 (t, r i , j) dt t + 2 j r i 1 H 2 1 (t, r i , j) dt t + ∞ 2 j r i H 2 1 (t, r i , j) dt t ≤ C 1 0 t 2 j r i c r 2β 1 N i t 2β 1 N dt t +C 2 j r i 1 t 2 j r i c r 2β 1 N i t 2β 2 N dt t +C ∞ 2 j r i r 2β 1 N i t 2β 2 N dt t ≤ C2 -c j r 2β 1 N-c i 1 0 t c-2β 1 N dt t +C2 -c j r 2β 1 N-c i 2 j r i 0 t c-2β 2 N dt t +Cr 2β 1 N i ∞ 2 j r i t -2β 2 N dt t ≤ C2 -c j r 2β 1 N-c i +C2 -2β 2 N j r 2β 1 N-2β 2 N i +C2 -2β 2 N j r 2β 1 N-2β 2 N i ≤ C2 -c j 2 -(2β 1 N-c) j +C2 -2β 2 N j 2 -(2β 1 N-2β 2 N) j ≤ C2 -2β 1 N j .
In the first and the second integrals, we take the first and the seconds estimates of H 1 (t, r i , j) in (3.23) respectively. Then we use the same trick to control exponential terms. The constant c is the same as before. In the last integrals, we use the third bound in (3.23).

Finally for r i ≥ 1. Obviously 2 j r i ≥ 1. The estimate is similar to the second case. We make the same division of the integral and the same estimate for the same part. Then

∞ 0 H 2 1 (t, r i , j) dt t ≤ C 1 0 t 2 j r i c r 2β 2 N i t 2β 1 N dt t +C 2 j r i 1 t 2 j r i c r 2β 2 N i t 2β 2 N dt t +C ∞ 2 j r i r 2β 2 N i t 2β 2 N dt t ≤ C2 -c j r 2β 2 N-c i 1 0 t c-2β 1 N dt t +C2 -c j r 2β 2 N-c i 2 j r i 0 t c-2β 2 N dt t +Cr 2β 2 N i ∞ 2 j r i t -2β 2 N dt t ≤ C2 -c j r 2β 2 N-c i +C2 -2β 2 N j +C2 -2β 2 N j ≤ C2 -2β 1 N j .
Here c is chosen to be larger than 2β 2 N. So we get (3.21) for all cases. Claim 2:

∞ 0 H 2 2 (t, r i , j) dt t ≤ C2 -2β 1 N j . (3.24)
Now estimate H 2 (t, r i , j). Write ρ(t)ρ N (r i ) (s+ρ(t)) N+2 ≤ ρ(t)ρ N (r i ) s N+2 . On the one hand,

H 2 (t, r i , j) = ∞ ρ(t) e -c 2 j r i σ (s) τ(s) ρ(t)ρ N (r i ) (s + ρ(t)) N+2 ds ≤ ∞ ρ(t) ρ(t)ρ N (r i ) s N+2 ds = C ρ N (r i ) ρ N (t) . (3.25)
On the other hand, we also have

H 2 (t, r i , j) ≤      C2 -β (r i )N j t 2 j r i β 1 for 0 < t < 1, C2 -β (r i )N j t 2 j r i β 2 for t ≥ 1. (3.26)
where β is defined in (3.37). That is,

β (t) = β 1 if 0 < t < 1, or else β (t) = β 2 . Note that ρ(r i ) = r β (r i ) i
.
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In fact, for t ≥ 1, note that s -1-N ≤ s -(1+β (r i )N/β 2 ) for s ≥ 1, then

H 2 (t, r i , j) ≤ ∞ t β 2 e -c 2 jβ 2 r β 2 i s 1/(β 2 -1) t β 2 ρ N (r i ) s N+1 ds s ≤ ∞ t β 2 e -c 2 jβ 2 r β 2 i s 1/(β 2 -1) t β 2 ρ N (r i ) s 1+β (r i )N/β -2 ds s ≤ C t β 2 ρ N (r i ) (2 jβ 2 r β 2 i ) 1+β (r i )N/β 2 ∞ 0 e -cu u (β 2 -1)(1+β (r i )N/β 2 )-1 du ≤ C2 -β (r i )N j t 2 j r i β 2 . For t < 1, since s -1-N ≤ s -(1+β (r i )N/β 1 ) for s < 1 and s -1-N ≤ s -(β 1 +β (r i )N)/β 2 for s ≥ 1, then H 2 (t, r i , j) ≤ ∞ t β 1 e -c 2 j r i σ (s) τ(s) t β 1 ρ N (r i ) s N+1 ds s ≤ 1 t β 1 e -c 2 jβ 1 r β 1 i s 1/(β 1 -1) t β 1 ρ N (r i ) s 1+β (r i )N/β 1 ds s + ∞ 1 e -c 2 jβ 2 r β 2 i s 1/(β 2 -1) t β 1 ρ N (r i ) s (β 1 +β (r i )N)/m ds s ≤ C2 -β (r i )N j t 2 j r i β 1 ∞ 0 e -cu u β (r i )N/β 1 du + ∞ 0 e -cv v (β 2 -1)(β 1 +β (r i )N)/β 2 -1 dv ≤ C2 -β (r i )N j t 2 j r i β 1 .
Combining (3.25) and (3.26), we get

H 2 (t, r i , j) ≤ C inf ρ N (r i ) ρ N (t) , 2 -β (r i )N j t 2 j r i β (t)
.

(3.27)

Let us show the estimate (3.24). Similarly as the estimate for ∞ 0 H 2 1 (t, r i , j) dt t , we also consider three cases: r i < 2 -j , 2 -j ≤ r i < 1 and r i ≥ 1. Moreover, we split the integral in the same way as for H 1 (t, r i , j) to treat each case.

If r i < 2 -j , then ρ(r i ) = r

β 1 i and β (r i ) = β 1 . We get ∞ 0 H 2 2 (t, r i , j) dt t = 2 j r i 0 H 2 2 (t, r i , j) dt t + 1 2 j r i H 2 2 (t, r i , j) dt t + ∞ 1 H 2 2 (t, r i , j) dt t ≤ C2 -2β 1 N j 2 j r i 0 t 2 j r i β 1 dt t +C 1 2 j r i r 2β 1 N i t 2β 1 N dt t +C ∞ 1 r 2β 1 N i t 2β 2 N dt t ≤ C2 -2β 1 N j +C2 -2β 1 N j +Cr 42β 1 N i ≤ C2 -2β 1 N j . If 2 -j ≤ r i < 1, we have ρ(r i ) = r β 1 i , β (r i ) = β 1 and 2 j r i ≥ 1. Then ∞ 0 H 2 2 (t, r i , j) dt t = 1 0 H 2 2 (t, r i , j) dt t + 2 j r i 1 H 2 2 (t, r i , j) dt t + ∞ 2 j r i H 2 2 (t, r i , j) dt t ≤ C2 -2β 1 N j 1 0 t 2 j r i β 1 dt t +C2 -2β 1 N j 2 j r i 1 t 2 j r i β 2 dt t +C ∞ 2 j r i r 2β 1 N i t 2β 2 N dt t ≤ C2 -2β 1 N j +C2 -2β 1 N j +C2 -2β 2 N j r 2β 1 N-2β 2 N i ≤ C2 -2β 1 N j .
Here the last inequality holds since

r i ≥ 2 -j . If r i ≥ 1, we have ρ(r i ) = r m i , β (r i ) = m and 2 j r i ≥ 1. Then ∞ 0 H 2 2 (t, r i , j) dt t = 1 0 H 2 2 (t, r i , j) dt t + 2 j r i 1 H 2 2 (t, r i , j) dt t + ∞ 2 j r i H 2 2 (t, r i , j) dt t ≤ C2 -2β 2 N j 1 0 t 2 j r i β 1 dt t +C2 -2β 2 N j 2 j r i 1 t 2 j r i β 2 dt t +C ∞ 2 j r i r 2β 2 N i t 2β 2 N dt t ≤ C2 -2β 2 N j +C2 -2β 2 N j +C2 -2β 2 N j ≤ C2 -2β 1 N j .
Thus (3.24) is true for every case. Therefore, it follows from(3.20), (3.21) and (3.24)

I i j ≤ C2 jν b i p 0 µ 1 p 0 -1 2 (B i ) 2 -β 1 N j . (3.28) Now for the integral ∞ 0 C j (B i ) |h(y,t)| 2 dµ(y)dt t 1/2 . Take h(y) = ∞ 0 |h(y,t)| 2 dt t , then ∞ 0 C j (B i ) |h(y,t)| 2 dµ(y)dt t 1/2 ≤ µ 1/2 (2 j+1 B i ) ess inf z∈B i M 1/2 h(z), (3.29)
where M is the Hardy-Littlewood maximal function in (2.21).

Using the same strategy as the proof of (3.15), we get from (3.28) and (3.29) that

Λ 1/2 glob ≤ sup h ∑ i ∑ j≥2 C2 jν µ 1/2 (2 j B i ) b i p 0 µ 1 p 0 -1 2 (B i ) 2 -β 1 N j ess inf z∈B i M 1/2 h(z) ≤ Cλ sup h M ∑ i ✶ B i (y)M 1/2 h(y)dµ(y) 86 CHAPTER 3. HARDY SPACES ON METRIC MEASURE SPACES ≤ Cλ sup h ∪ i B i M 1/2 h(y)dµ(y) ≤ Cλ µ(∪ i B i ) 1/2 ≤ Cλ 1-p 0 /2 | f | p 0 dµ 1/2 .
Here the supreme is taken over all the functions h with h Theorem 3.20. Let M be be a Riemannian manifold as above. Then for any 0 < m ′ ≤ m and for

L 2 dµ(y)dt t = 1. Since N > 2ν/β 1 , the sum ∑ j≥2 2 -β 1 N j+3ν
any p ∈ d d-m , 2 , L p (M) = H p S m ′ h (M) if and only if m ′ = m.
Before moving forward to the proof of Theorem 3.19, let us recall the following two theorems about the Sobolev inequality and the Green operator.

Theorem 3.21 ([Cou90]

). Let (M, µ) be a σ -finite measure space. Let T t be a semigroup on L s , 1 ≤ s ≤ ∞, with infinitesimal generator -L. Assume that T t is equicontinuous on L 1 and L ∞ . Then the following two conditions are equivalent:

1. There exists C > 0 such that T t 1→∞ ≤ Ct -D/2 , ∀t ≥ 1.

T

1 is bounded from L 1 to L ∞ and for q > 1, ∃C such that f p ≤ C L α/2 f q + L α/2 f p , f ∈ D(L α/2 ), (3.31) 
where 0 < αq < D and 3.5 Application: the H 1 ∆,m (M) -L 1 (M) boundedness of quasi Riesz transforms on Riemannian manifolds This section is devoted to an application of the Hardy space theory we introduced above.

1 p = 1 q -α D . Assume D > 4, i.e. m < d/2, we have D D-2 < 2. Then for D D-2 < p < 2, since m > 2, n d( m 2 -1) 1 p -1 2 → ∞ as n → ∞.
Let (M, d, µ) be a Riemannian manifold satisfying the doubling volume property (D) and the sub-Gaussian estimate (UE 2,m ). Note that we could as well consider a metric measure space Dirichlet space which admits a "carré du champ".

It is known that the quasi Riesz transform ∇e -∆ ∆ -α with 0 < α < 1/2 is of weak type (1, 1) (see [START_REF] Chen | Sub-gaussian heat kernel estimates and quasi Riesz transforms[END_REF]). Our aim here is to prove that the quasi Riesz transform is

H 1 ∆,m,mol (M) -L 1 (M) bounded. Due to Theorem 3.12, it is H 1 ∆,m (M) -L 1 (M) bounded.
Theorem 3.24. Let M be a manifold satisfying the doubling volume property (D) and the heat kernel estimate (UE 2,m ), m ≥ 2. Then, for any 0 < α < 1/2, the operator T = ∇e -∆ ∆ -α is bounded from H 1 ∆,m, mol (M) into L 1 (M), i. e., there exists a constant C such that M) .

T f L 1 (M) ≤ C f H 1 ∆,m, mol ( 
Proof. It suffices to show that, for any (1, 2, ε)-molecule a associated to a function b and a ball B Corollary 2.7. Denote D i j

1 = ∇e -(t+1)∆ ✶ L 2 (C i (B)) a C j (2 i B)
, we get

D i j 1 ≤ C α (t + 1) α µ 1/2 (2 i+ j B) e -c 2 (i+ j)m r m t+1 1/(m-1) a L 1 (C i (B)) ≤ 2 -εi C (t + 1) α µ 1/2 (2 i+ j B) e -c 2 (i+ j)m r m t+1 1/(m-1)
.

Then we have

ρ(r B ) 0 D i j 1 dt t 1-α • µ 1/2 (2 i+ j B) = 2 -εi ρ(r B ) 0 (t + 1) -α exp   -c 2 (i+ j)m r m B t + 1 1/(m-1)   dt t 1-α ≤ C2 -εi ρ(r B ) 0 (t + 1) -α t + 1 2 (i+ j)m r m B αβ (r B )/m dt t 1-α ≤ C2 -εi (2 (i+ j) r B ) -αβ (r B ) ρ(r B ) 0 dt t 1-α ≤ C2 -εi 2 -αβ (i+ j) . (3.36)
Here β is defined by

β (r) = 2, 0 < r < 1, m, r ≥ 1; 
(3.37)

And the last inequality holds since αβ (r B )/m ≤ α, which indicates (t + 1) -α+αβ (r B )/m ≤ 1. Hence, from (3.35) and (3.36) we get

D 1 L 1 (M) ≤ C ∞ ∑ i=0 2 ∑ j=0 2 -εi +C ∞ ∑ i=0 ∞ ∑ j=3 2 -εi 2 -αβ (r B )(i+ j) ≤ C.
Now for D 2 , we use the same trick as before. we get at first

D 2 L 1 (M) ≤ ∞ ∑ i=0 ∞ ρ(r B ) ∇e -(t+1)∆ ∆ K ✶ C i (B) b dt t 1-α L 1 (M) ≤ ∞ ∑ i=0 ∞ ∑ j=0 ∞ ρ(r B ) ∇e -(t+1)∆ ∆ K ✶ C i (B) b dt t 1-α L 1 (C j (2 i B)) ≤ ∞ ∑ i=0 ∞ ∑ j=0 ∞ ρ(r B ) ∇∆ K e -(t+1)∆ ✶ C i (B) b L 2 (C j (2 i B)) µ 1/2 (2 i+ j B) dt t 1-α . CHAPTER 3. HARDY SPACES ON METRIC MEASURE SPACES Still for j = 0, 1, 2. Since ∇∆ K e -t∆ 2→2 ≤ Ct -K-1/2 . Then we have ∞ ρ(r B ) ∇∆e -(t+1)∆ ✶ C i (B) b L 2 (C j (2 i B)) µ 1/2 (2 i+ j B) dt t 1-α ≤ C ∞ ρ(r B ) (t + 1) -K-1/2 b L 2 (C i (B)) µ 1/2 (2 i+ j B) dt t 1-α ≤ C2 -εi ρ(r B ) ∞ ρ(r B ) (t + 1) -K-1/2 dt t 1-α ≤ C2 -εi . (3.38)
As in the estimate of D 1 , the last inequality always holds. Similarly, if r B < 1, then

∞ ρ(r B ) (t + 1) -K-1/2 dt t 1-α ≤ 1 r 2 B dt t 1-α + ∞ 1 dt t K+3/2-α ≤ C. If r B > 1, then ∞ ρ(r B ) (t + 1) -K-1/2 dt t 1-α ≤ ∞ r m B dt t K+3/2-α ≤ C. While for j ≥ 3, denote D i j 2 = ∇∆ K e -(t+1)∆ ✶ C i (B) b L 2 (C j (2 i B)) , we get from (2.15) in Corollary 2.7 that D i j 2 ≤ ∇∆ K e -(t+1)∆ ✶ C i (B) b L 2 (C j (2 i B)) ≤ C α (t + 1) K+α µ 1/2 (2 i+ j B) e -c 2 (i+ j)m r m t+1 1/(m-1) b L 1 (C i (B)) ≤ 2 -εi ρ K (r B ) C (t + 1) K+α µ 1/2 (2 i+ j B) e -c 2 (i+ j)m r m t+1 1/(m-1)
.

Thus ∞ ρ(r B ) D i j 2 dt t 1-α • µ 1/2 (2 i+ j B) = 2 -εi ρ K (r B ) ∞ ρ(r B ) (t + 1) -K-α exp   -c 2 (i+ j)m r m B t + 1 1/(m-1)   dt t 1-α ≤ C2 -εi ρ K (r B ) ∞ ρ(r B ) t -K (t + 1) -α t + 1 2 (i+ j)m r m B αβ (r B )/m dt t 1-α ≤ C2 -εi ρ K (r B )(2 (i+ j) r B ) αβ (r B ) ∞ ρ(r B ) dt t K+1-α ≤ C2 -εi ρ K (r B )(2 (i+ j) r B ) -αβ (r B ) ρ(r B ) (α-K) ≤ C2 -εi 2 -αβ (r B )(i+ j) .
(3.39)

The second inequality is also due to the fact αβ (r B )/m ≤ α, where β is defined in (3.37).
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As a result of (3.38) and (3.39), In fact, consider the operator T z = ∇e -∆ ∆ -α+(α-1/2)z , z ∈ C. Then for y ∈ R,

D 2 L 1 (M) ≤ C ∞ ∑ i=0 2 ∑ j=0 2 -εi +C ∞ ∑ i=0 ∞ ∑ j=3 2 -εi 2 -αβ (i+ j) ≤ C.
T iy f = ∇e -∆ ∆ -α+(α-1/2)iy f , T 1+iy f = ∇e -∆ ∆ -1/2+(α-1/2)iy f .
We have already shown in Theorem 3.24 that

T 0 = ∇e -∆ ∆ -α is H 1 ∆,m,mol (M) -L 1 (M) bounded, or equivalently H 1 ∆,S m h (M) -L 1 (M) bounded by Theorem 3.12. It is also true that T iy is H 1 ∆,S m h (M) - L 1 (M) bounded. In fact, T iy = ∞ 0 ∇e -(t+1)∆ dt t 1-α+(α-1/2)iy .
Besides, T 1+iy is bounded on L 2 (M). By Theorem 3.9, we conclude that T

α(p) = ∇e -∆ ∆ -α(p) is H p ∆,S m h (M) -L p (M) bounded, with p ∈ (1, 2) and α(p) = α -(α -1/2) 2 p ′ . Since H p ∆,S m h (M) =
L p (M) for 1 < p < ∞ from Corollary 3.17, it comes out that ∇e -∆ ∆ -α(p) is strong type (p, p) bounded.

Chapter 4

Quasi Riesz transforms on graphs

In this chapter, we consider the Riesz transform on graphs. Note that unlike fractal manifolds, we do not need to deal with local problems.

In the first section, we prove that on a general graph, the quasi Riesz transform is L p bounded for 1 < p ≤ 2 (Proposition 4.2). In the second section, we consider the endpoint case p = 1 for quasi Riesz transforms on graphs satisfying (D) and (UE m ). We show that quasi Riesz transforms are of weak type (1, 1) (Theorem 4.3). 

L p boundedness of quasi Riesz transforms on graphs

|∇ f | 2 p ≤ c p (I -P) f p f p , ∀ f ∈ L p (Γ). (4.1)
If, in addition, -1 / ∈ σ L 2 (P), then there exists c ′ p > 0 such that

|∇P k | p→p ≤ c ′ p k -1/2 , (4.2)
for k ∈ N.

Therefore, we have the analogue of Proposition 1.9 on graphs.
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CHAPTER 4. QUASI RIESZ TRANSFORMS ON GRAPHS Proposition 4.2. Let (Γ, d, µ) as before. Then for any fixed β ∈ (0, 1/2) and 1 < p ≤ 2, there exists

C > 0 such that |∇(I -P) -β f | p ≤ C f p , for all f ∈ L p .
Proof. For any f ∈ L p , the Taylor expansion of ∇(I -P) -β yields

∇(I -P) -β f = ∞ ∑ n=0 a n ∇P n f ,
where a n ≤ C α n β -1 . From Proposition 4.1, we have (4.2) for any p ∈ (1, 2]. Thus

|∇(I -P) -β f | p = | ∞ ∑ n=0 a n ∇P n f | p ≤ |∇ f | p + ∞ ∑ n=1 a n |∇P n f | p ≤ |∇ f | p +C ∞ ∑ n=1 a n n -1/2 f p ≤ c p |(I -P) f | 1/2 p f 1/2 p +C ∞ ∑ n=1 a n n -1/2 f p ≤ C f p .
4.2 Weak (1, 1) boundedness of quasi Riesz transforms on graphs with sub-Gaussian heat kernel estimates

Let (Γ, d, µ) be a graph as in Section 0.6.2 satisfying the doubling volume property (D). Assume that p k satisfies the sub-Gaussian heat kernel upper estimate

p k (x, y) ≤ Cµ(y) V (x, k 1/m ) exp -c d m (x, y) k 1/(m-1) . (UE m )
There are a lot of graphs that satisfy (UE m ). For example, Vicsek graphs (see for details in [START_REF] Barlow | Manifolds and graphs with slow heat kernel decay[END_REF]), graphical Sierpinski carpets ([BB99b]), graphical Sierpinski gaskets ([Jon96]), etc. For more examples, we refer to [START_REF] Barlow | Which values of the volume growth and escape time exponent are possible for a graph?[END_REF] (see Remark 0.52).

The aim here is to show the analogue of Theorem 2.11 on graphs. Our result is Theorem 4.3. Let Γ be a infinite connected graph satisfying the doubling volume property (D) and the condition △(α). Assume also the sub-Gaussian upper heat kernel estimate (UE m ). Then for any β ∈ (0, 1/2), the quasi Riesz transform ∇(I -P) -β is weak type (1, 1).

Remark 4.4. It is also interesting to develop the Hardy space theory in Chapter 3 on graphs. For recent work of this subject, we refer to [BDar], where the authors assume the doubling volume property and the Gaussian heat kernel estimate. However, so far we don't know how to generalise in the sub-Gaussian setting. One difficulty we meet is how to get a proper Calderón reproducing formula.

Sub-Gaussian heat kernel estimates on graphs

We will establish the L 1 -L 2 off-diagonal estimate for the gradient of the heat kernel, which is crucial tool to our proof. The following results are analogues of Lemma 2.1, Lemma 2.3 and Corollary 2.7 of the continuous case in Chapter 2. Let's recall the discrete "time derivative" estimate of p k which was initially given by M. Christ [START_REF] Christ | Temporal regularity for random walk on discrete nilpotent groups[END_REF], while in [START_REF] Blunck | Perturbation of analytic operators and temporal regularity of discrete heat kernels[END_REF], S. Blunck gave a much simpler proof. See also N. Dungey [START_REF] Dungey | A note on time regularity for discrete time heat kernels[END_REF].

Lemma 4.5. There exist C, c > 0 such that for any k ∈ N * and any x, y ∈ Γ,

|p k+1 (x, y) -p k (x, y)| ≤ Cµ(y) kV x, k 1/m exp -c d m (x, y) k 1/(m-1)
.

Lemma 4.6. For any x ∈ Γ, k ∈ N * and l ∈ N, there exist α > 0 such that

∑ y∈B(x,l 1/m ) c |∇ y p k (y, x)|µ(y) ≤ C l µ(x)e -α( l k ) 1/(m-1) k -1/m .
Proof. Similarly as in [START_REF] Coulhon | Riesz transforms for 1 ≤ p ≤ 2[END_REF], [START_REF] Russ | Riesz transforms on graphs for 1 ≤ p ≤ 2[END_REF], the proof is decomposed into several steps.

Step 1: For any l ∈ N,

∑ y∈B(x,l 1/m ) c exp -2β d m (x, y) k 1/(m-1) µ(y) e -β ( l k ) 1/(m-1) V (x, k 1/m ). (4.3)
Step 2: For 0 < γ < 2c (c is the constant in (UE m )), we have

∑ y [p k (y, x)] 2 exp γ d m (x, y) k 1/(m-1) µ(y) ≤ C γ µ 2 (x) V (x, k 1/m ) .
This is a consequence of (UE m ) and Step 1 with r = 0.

Step 3:

∑ y |∇ y p k (y, x)| 2 exp γ d m (x, y) k 1/(m-1) µ(y) ≤ C ′ γ µ 2 (x) k 2/m V (x, k 1/m ) . (4.4) Denote 2J(k, x) = ∑ y |∇ y p k (y, x)| 2 exp γ d m (x,y) k 1 m-1 µ(y), with γ small enough. Then we 98 CHAPTER 4. QUASI RIESZ TRANSFORMS ON GRAPHS have 2J(k, x) =2 ∑ y,z p k (y, x)[p k (y, x) -p k (z, x)]p(y, z) exp γ d m (x, y) k 1/(m-1) µ(y) + ∑ y,z p k (y, x)[p k (y, x) -p k (z, x)]p(y, z) • exp γ d m (x, z) k 1/(m-1) -exp γ d m (x, y) k 1/(m-1) µ(y) =2J 1 (t, x) + J 2 (t, x).
In fact,

J 1 (k, x) = ∑ y,z p k (y, x)[p k (y, x) -p k (z, x)]p(y, z) exp γ d m (x, y) k 1/(m-1) µ(y) = ∑ y p k (y, x) exp γ d m (x, y) k 1/(m-1) µ(y) ∑ z [p k (y, x) -p k (z, x)]p(y, z) = ∑ y p k (y, x) exp γ d m (x, y) k 1/(m-1) µ(y)[p k (y, x) -p k+1 (y, x)].
Now using the discrete "time derivative" estimate in Lemma 2.1, then

J 1 (k, x) ≤ Cµ(x) kV 1/2 x, k 1/m ∑ y p k (y, x)µ(y) V 1/2 y, k 1/m exp γ 1 d m (x, y) k 1/(m-1) ≤ Cµ 2 (x) kV 1/2 x, k 1/m ∑ y p k (x, y) V 1/2 y, k 1/m exp γ 1 d m (x, y) k 1/(m-1) ≤ Cµ 2 (x) kV 2 x, k 1/m ∑ y µ(y) exp (γ 1 -c) d m (x, y) k 1/(m-1) ≤ C γ 1 µ 2 (x) k 2/m V x, k 1/m .
The second inequality is due to (7) and the third one uses (D) and (UE m ).

For J 2 (k, x), by the mean value theorem, µ(y)

exp γ d m (x, z) k 1/(m-1) -exp γ d m (x, y) k 1/(m-1) ≤ mγ (m -1)k 1/(m-1) |d(x, z) -d(x, y)| max(d(x, y), d(x, z)) 1/(m-1) × exp γ max(d(x, y), d(x, z)) m k 1/(m-1) . ( 4 
1/2 ≤ C γ 2 µ(x) k 1/m V 1/2 x, k 1/m J(k, x) 1/2 .
The last inequality is obtained by (8) and the estimate in Step 2. Now we get .

J(k, x) ≤ C γ 1 µ 2 (x) k 2/m V x, k 1/m + C γ 2 µ(x) k 1/m V 1/2 x,
Corollary 4.7. Fix p ∈ [1, 2] and j ≥ 2. For any ball B with radius r, we have .

1 V 1/2 (2 j+1 B) P k f L 2 (C j (B)) ≤ e -c 2 jm r m k 1/m-1 V 1/p (B) f L p (B) , (4.6 
Therefore, similarly as in the continuous case, we get 

1 V 1/2 (2 j+1 B) |∇P k f | L 2 (C j (B)) = 1 V 1/2 (2 j+1 B)   1 2 ∑ x∈C j (B)
k 1/m V 1/p (B) f L p (B) .
In the same way, the first estimate (4.6) follows from the estimate in Step 2.

Corollary 4.8. Assume that Γ satisfies ∆(α), (D) and (UE m ). Fix β ∈ (1/m, 1/2). Then for any ball B with radius r, we have

1 V 1/2 (2 j+1 B) |∇P k f | L 2 (C j (B)) ≤ C k β V 1/p (B)
f L 1 (B) .

(4.8)

Proof. For k = 1, 2, it is obvious to see that (4.7) implies (4.8). Now consider k ≥ 3. For any f supported in B = B(x B , r B ), since

∇P k L 2 →L 2 ≤ Ck -1/2 ,
we get by using the (UE m )

∇P k f L 2 ≤ ∇P [k/2]+1 L 2 →L 2 P k-1-[k/2] f L 2 ≤ C(1 + r B /k 1/m ) ν/2 k 1/2 V 1/2 (x B , k 1/m ) f L 1 (B) .
Combining this with (4.7), we obtain (4.8).

Weak (1, 1) boundedness of quasi Riesz transforms

In order to show the weak (1, 1) boundedness of quasi Riesz transform, we will use the following criterion. Blunck and Kunstmann [START_REF] Blunck | Calderón-Zygmund theory for non-integral operators and the H ∞ functional calculus[END_REF] proved the original version on metric measure space.

See also [START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF] for a nice presentation in the Euclidean case.

Theorem 4.9. Let p 0 ∈ [1, 2). Assume that Γ satisfies the doubling property (D) and let T be a sublinear operator of strong type (2, 2). For any ball B, Let A B be a linear operator acting on L 2 (Γ). Assume that, for all j ≥ 1, there exists g( j) > 0 such that, for all ball B ⊂ Γ and all function f supported in B,

1 V 1/2 (2 j+1 B) T (I -A B ) f L 2 (C j (B)) ≤ g( j) 1 V 1/p 0 (B)
f L p 0 (4.9) for all j ≥ 2 and

1 V 1/2 (2 j+1 B) A B f L 2 (C j (B)) ≤ g( j) 1 V 1/p 0 (B)
f L p 0 (4.10) for all j ≥ 1. If ∑ j≥1 g( j)2 ν j < +∞ where ν is given by (3), then T is of weak type (p 0 , p 0 ), and is therefore of strong type (p, p) for all p 0 < p < 2.

Proof of Theorem 4.3 We apply Theorem 4.9 with T = ∇(I -P) -β and p 0 = 1. We first show that Let us first show (4.9). For any j ≥ 2 and any function f supported in B, the off-diagonal estimate in Lemma 4.8 as well as the Minkowshi inequality give us where C > 0 depends on N. Note that

T
1 V 1/2 (2 j+1 B) ∇(I -P) -β (I -A B ) f L 2 (C j (B)) ≤ 1 V 1/2 (2 j+1 B) ∞ ∑ n=0 g k (n)∇P n f L 2 (C j (B)) ≤ ∞ ∑ n=1 |g k (n)| 1 V 1/2 (2 j+1 B) |∇P n f | L 2 (C j (B)) = C f L 1 (B) V (B)
a n = β (β + 1) • • • (β + n -1) n! = 1 Γ(β )Γ(1 -β ) B(n + β , 1 -β ),
where B denotes the Beta function. Take ϕ(x) = 1 Γ(β )Γ(1-β ) B(x + β , 1 -β ), then a n = ϕ(n). We claim: for all x > 1,

∂ N ∂ x N ϕ(x) ≤ Cx -N-1+β .
(4.17)

The desired result then follows from (4.16).

It is enough to consider B(x + β , 1 -β ) = 1 0 t x+β -1 (1 -t) -β dt. Indeed, for any δ ∈ (0, 1) and any x > 1, 

∂ N ∂ x N B(x + β , 1 -β ) =

Poincaré inequalities on Vicsek graphs

In the following, we will prove a L p Poincaré inequality by using the idea in [START_REF] Diaconis | Geometric bounds for eigenvalues of Markov chains[END_REF], see also [START_REF] Coulhon | Isopérimétrie pour les groupes et les variétés[END_REF], where the L 2 case is considered. Proof. For any y, z ∈ B(x, n), we choose γ y,z as one of the shortest paths from y to z. Define Γ x,n := {γ y,z : y, z ∈ B(x, n)}. Let e be an oriented edge in a path from eto e + and µ(e) = µ e -e + . It is easy to see that K(x, n) ≤ (2n) p-1 V (x, n) 2 . In particular, for a Vicsek graph with the volume

V (x, n) ≃ n D , we have f -f n (x) p L p (B(x,n)) ≤ CV (x, n) 1+ p-1 D |∇ f | p L p (B(x,2n)) ≃ n D+p-1 |∇ f | p L p (B(x,2n)) .
It is well-known that under the assumption of Poincaré inequality and the doubling volume property, one can deduce the pseudo-Poincaré inequality (see for example [START_REF] Saloff-Coste | A note on Poincaré, Sobolev, and Harnack inequalities[END_REF], [START_REF] Saloff-Coste | Aspects of Sobolev-type inequalities[END_REF]). The same proof is also applicable here. ) is optimal. Indeed, we will show in the sequel that (PP p D(p) ) implies (S p D(p) ), which is optimal. If there existed a better exponent, it would follow from the proof below that (S p D(p) ) could also be improved, which contradicts its optimality.

General Sobolev inequalities

In this section, we consider a kind of Sobolev inequalities in the following form: for p ≥ 1 and a non-decreasing positive function φ

f p ≤ φ (|Ω|) |∇ f | p , ∀Ω ⊂ Γ, ∀ f ∈ c 0 (Ω).
For a detailed exploration of this kind of inequalities on weighted manifolds, see the survey [START_REF] Coulhon | Heat kernel and isoperimetry on non-compact Riemannian manifolds[END_REF].

By using the same method as in [Cou03, Proposition 2.6], we will prove ) is equivalent to the Nash inequality or the heat kernel upper estimates as follows: Besides, in the three cases, (S p D(p) ) is also optimal. We refer to [START_REF] Coulhon | Heat kernel and isoperimetry on non-compact Riemannian manifolds[END_REF], [START_REF] Barlow | Manifolds and graphs with slow heat kernel decay[END_REF] for more information.

f 1+ D+1 D 2 ≤ C f D+1 D 1 |∇ f | 2 ; p k (x, x) ≤ Ck -D D+1 , ∀k ∈ N.
Proof. We will show the result for p > 1. Note that for any f ∈ L 1 (Γ),

| f n (x)| = 1 V (x, n) ∑ y∈B(x,n) f (y)µ(y) ≤ C D n -D f L 1 .
(5.1)

GENERAL SOBOLEV INEQUALITIES

111 Take a finite set Ω ⊂ Γ and a non-negative function f ∈ c 0 (Ω). Write f p p = ( ff n , f p-1 ) + ( f n , f p-1 ).

It follows from Hölder inequalities, (PP p D(p) ), and (5.1) that

f p p ≤ f -f n p • f p-1 p + f n ∞ • f p-1 1 ≤ CV (n) 1 p + 1 p ′ D |∇ f | p • f p-1 p + C D µ(Ω) n D f p p .
Choosing n such that n D = 2C D µ(Ω), then

f p ≤ C ′ µ(Ω) 1 p + 1 p ′ D |∇ f | p .
The inequality also holds for any f ∈ C 0 (Ω).

Here is another proof without using the Poincaré inequality, which is inspired from [START_REF] Barlow | Manifolds and graphs with slow heat kernel decay[END_REF]. Obviously n ≤ r(Ω). Also, there exists a sequence of points

x 0 ∼ x 1 ∼ x 2 ∼ • • • ∼ x n ∼ x n+1
starting from x 0 and terminating at a point x n+1 / ∈ Ω.

Therefore, by Hölder inequality

∑ x∈Ω |∇ f (x)| p µ(x) ≃ ∑ x,y∈Ω | f (x) -f (y)| p µ xy ≥ c n p-1 n ∑ i=0 | f (x i ) -f (x i+1 )| p ≥ c n p-1 .
The last inequality is due to the fact 

n ∑ i=0 | f (x i ) -f (x i+1 )| ≥ | f (x 0 ) -f (x n+1 )| = 1.

Optimality of (S p D(p) ) for p > 2 on Vicsek graphs

In [BCG01, Section 4], the authors established the sharpness of the Faber-Krahn inequality (S 2 D(2) ) by constructing a family of sets Ω n and functions on them. In fact, with the same functions and subsets, we can also show the optimality of (S p D(p) ) for p > 2. The weight µ here is the standard weight. Let Ω n = Γ [0, 3 n ] N be the same subset as in [START_REF] Barlow | Manifolds and graphs with slow heat kernel decay[END_REF], where q = 2 N + 1 = 3 D . Hence µ(Ω n ) ≃ q n . Denote by z 0 the centre of Ω n and by z i , i ≤ 1 its corners. Define f as follows: f (z 0 ) = 1, f (z i ) = 0, i ≤ 1, and extend f as a harmonic function in the rest of Ω n . Then f is linear on each of the paths of length 3 n , which connects z 0 with the corners z i , and is constant elsewhere. More exactly, if z belongs to some γ z 0 ,z i , then f (z) = 3 -n d(z i , z). If not, then f (z) = f (z ′ ), where z ′ is the nearest vertex in certain line of z 0 and z i . See Figure 5.2 (from [START_REF] Barlow | Manifolds and graphs with slow heat kernel decay[END_REF]).

For any x in the n -1 block with centre z 0 , we have f (x) ≥ 2 3 . Therefore Finally combining the above two estimates, we have

∇ f p f p ≤ C p 3 -n p ′ q -n p = C p q -n p ′ D -n p ≃ µ(Ω n ) -1 p ′ D -1 p .
This finishes the proof.
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Définition 0. 2 .

 2 On dit que (M, d, µ) satisfait la propriété de doublement du volume s'il existe C > 0 tel que V (x, 2r) ≤ CV (x, r), ∀x ∈ M, ∀r > 0. (D) Variétés riemanniennes Soit M une variété riemannienne complète non-compacte. On note d la distance géodésique, µ la mesure riemannienne, ∇ le gradient riemannien et ∆ l'opérateur de xi Laplace-Beltrami positif. Par définition et par le théorème spectral, on a M

  sa distance naturelle d et muni d'un poids symétrique µ sur Γ × Γ. Deux points x et y de Γ sont voisins si et seulement si µ xy > 0. On note x ∼ y. On désigne µ(x) = ∑ y∼x µ xy . Alors pour Ω ⊂ Γ, on a une mesure définie par µ(Ω) = ∑ x∈Γ µ(x). Soit p un noyau de Markov réversible par rapport à µ. C'est-à-dire, p(x, y)µ(x) = µ xy = p(y, x)µ(y), ∀x, y ∈ Γ; ∑ y∈Γ p(x, y) = 1, ∀x ∈ Γ.

où ρ - 1

 1 est la fonction inverse de ρ. Notons que ρ et G vérifient certaines relations qu'on ignore ici (voir [HSC01, Section 5] pour les détails). En fait, cette estimation non-classique est équivalente à une inégalité de Harnack parabolique, voir aussi [GT12]. 0.3 Transformée de Riesz sur les variétés non-compactes Strichartz a posé en 1983 la question de savoir pour quelle variétés riemanniennes non-compactes M et pour quels p ∈ (1, +∞) les semi-normes |∇ f | p et ∆ 1/2 f p sont équivalentes, lorsque f xviii parcourt les fonctions lisses à support compact sur M. C'est à dire, quand il existe des constantes c,C > 0 telles que

  Variété de Vicsek (voir [BCG01, Section 6]) Soit M une variété de Vicsek à croissance polynômiale du volume: V (x, r) ≃ r D , r ≥ 1. Alors M vérifie l'estimation du noyau de la chaleur sup x∈M p t (x, x) ≃ t -D D+1 , t ≥ 1. Proposition 0.18 ([CD03]). Soit M une variété de Vicsek comme ci-dessus. Alors (RR p ) est fausse pour 1 < p < 2D D+1 . Par conséquence, (R p ) est fausse pour p > 2D D-1 .

  , [HLM + 11], [Uhl11, KU12] etc. Dans [AMR08], Auscher, McIntosh et Russ ont introduit des espaces de Hardy sur les variétés. Soit M une variété vérifiant le doublement du volume. Ils ont défini des espaces de Hardy sur les formes différentielles de tous les degrés (voir [AMM13] pour les espaces de Hardy de fibrés vectoriels sur les espaces métriques mesurés satisfaisant (D)). Notons D = d + d * l'opérateur de Hodge-Dirac et ∆ = D 2 l'opérateur de Hodge-Laplace. Par définition, la transformée de Riesz D∆ -1/2 est bornée sur L 2 (ΛT * M). Les espaces de Hardy H p D sont définis par les fonctions convenables quadratiques tels que la transformée de Riesz est bornée sur H p D (ΛT * M), pour tout 1 ≤ p ≤ 2. Il y a aussi une caractérisation par molécules. On a les comparaisons suivantes entre espaces H p et L p : Théorème 0.22 ([AMR08]). Soit M une variété riemannienne complète satisfaisant le doublement du volume (D). Alors,

M\2B

  |T (Ie -t∆ )b(x)|dµ(x) ≤ C b 1 . Denote by k t (x, y) the kernel of the operator T (Ie -t i ∆ ), then M\2B |T (Ie -t∆ )b(x)|dµ(x) ≤ M\2B B |k t (x, y)||b(y)|dµ(y)dµ(x) ≤ M |b(y)| d(x,y)≥t 1/m |k t (x, y)|dµ(x)dµ(y).

2 .

 2 Lemma 2.19. Let M satisfies the doubling volume property, (HK 2,m ), (G p 0 ) as well as (DG 1 2

  Lemma 3.3 ([BK05, Uhl11]). Let (M, d, µ) be a space of homogeneous type. Let L be a nonnegative self-adjoint operator on L 2 (M, µ). Assume that (DG p 0 ,p ′ 0 β 1 ,β 2 ) holds. Then for all p 0 ≤ u ≤ v ≤ p ′ 0 and k ∈ N, we have 1. For any ball B ∈ M with radius r > 0, and any i ≥ 2,

  there exist a function b ∈ D(L) and a ball B with radius r B such that 1. a = L K b; 2. It holds that for every k = 0, 1, • • • , K and i = 0, 1, 2, • • • , we have

  ρ(t)ζ | = e -c 2 ρ(t)|ζ | . Thus the second inequality follows. In the third inequality, let ζ = se ±iω , we have |dζ | = ds. In addition, we dominate |1e -ρ(r)ζ | N by (ρ(r)ζ ) N .

∞

  

Finally∆

  we get Ta L 1 (M) ≤ C and our proof is finished.Remark 3.25. We can recover again the L p boundedness of quasi Riesz transforms from the complex interpolation theorem over Hardy spaces H p

First

  recall the multiplicative inequality and the derivative estimate of the heat semigroup given in [Dun08, Corollary 1.2]: Proposition 4.1. Let (Γ, d, µ) satisfy the local doubling property, that is, for some constant c > 1, µ(B(x, 1) ≤ cµ(x), ∀x ∈ Γ, and let p ∈ (1, 2]. There exists c p > 0 such that

. 5 )

 5 Since p(y, z) > 0 implies y ∼ z. In this case, we haved(x, z) ≤ d(x, y) + 1, thus d(x, z) m/(m-1) ≤ (d(x, y) + 1) m/(m-1) ≤ C m d(x, y) m/(m-1) + 1 . Besides, d(x, y) + 1 k 1/(m-1) = d(x, y) + 1 k 1/m 1/(m-1) 1 k 1/mTherefore by Cauchy-Schwartz inequality,J 2 (k, x) y, x)[p k (y, x)p k (z, x)]p(y, z) d(x, y) + r 0 k 1/(m-1)• exp γ (d(x, y) + 1) y, x)[p k (y, x) -p k (z, x)]p(y, z) exp γ ′ (d(x, y) + 1) (y, x)p(y, z) exp γ 2 (d(x, y) + 1) (y, x) -p k (z, x)] 2 p(y, z) exp γ (d(x, y) + 1) m k 1/(m-1)

V

  k 1/m I(k, x) 1/2 , 100 CHAPTER 4. QUASI RIESZ TRANSFORMS ON GRAPHS which gives usJ(k, x) ≤ Cµ 2 (x) k 2/m V x, k 1/m .Step 4: By Cauchy-Schwartz inequality, we have∑ x∈B(y,l) c |∇ x p k (x, y)|µ(x) ≤ ∑ x |∇ x p k (x, y)| 2 exp 2α d m (x, (y, k 1/m ) = Cµ(y)k -1/m e

  2 (2 j+1 B)|∇P k f | L 2 (C j (B)) ≤ Ce -c 2 jm r m k 1/(m-1) k 1/m V 1/p (B) f L p (B) . (4.7)Proof. Let us prove (4.7) by using the derivative estimate of the heat kernel (4.4). For any z ∈ B, we have|∇p k (•, z)| L 2 (C j (B))

  , y)|P k f (x) -P k f (y)| 2 µ(x) , y)|p k (x, z)p k (y, z)| 2 µ(x) m V (2 j B) ∑ z∈B | f (z)| V (z, 2 jr ) V (z, k 1/m )

2 .β

 2 is L 2 bounded. In fact, for any f ∈ C 0 (Γ), we have already seen that |∇ f | 2 = (I -P) 1/2 f 2 always holds, thenT f 2 = ∇(I -P) -β f 2 ≤ ∇(I -P) -1/2 f 2→2 (I -P) 1/2-β f 2 ≤ (I -P) 1/2-β fThen by spectral theory we haveT f 2 2 ≤ (I -P) 1/2-β f E λ f , f >≤ C f 2 .Now for any ball B with radius k, takeA B = I -(I -P k m ) N = N ∑ l=1 (-1) l+1 N l P lk m ,where N ∈ N will be chosen later. Note thatI -A B = N ∑ l=0 (-1) l N l P lk m . Write the Taylor expansion of (1x) -β , i. e. (1x) -β = (β + 1) • • • (β + n -1) n! x n . (4.11)where the classical estimate says a n ≤ Cn β -1 . Therefore ∇(I -P) -β (I -A B ) =

≤

  k (n)|n -β e -c 2 jm k m n 1/(m-1).Note that in the third line, the term n = 0 vanishes. Indeed, since f is supported in B, we have|∇P 0 f (x)| = |∇ f (x)| = 0, for any x ∈ C j (B), j ≥ 2. It remains to estimate the sum g( j) := ∞ ∑ n=1 |g k (n)|n -β e -c 2 jm k m n 1/(m-1)in the last line. In fact, we have the following estimate for which we will prove later in Lemma 4.10:|g k (n)| ≤ C(nlk m ) β -1 , 0 ≤ lk m < n ≤ (l + 1)k m ≤ (N + 1)k m , Ck mN n -N-1+β , n > (N + 1)k m . 1 + G 2 .104 CHAPTER 4. QUASI RIESZ TRANSFORMS ON GRAPHSFor G 1 , using the estimate in (4.12) for n ≤ (N + 1)k m , we getG lk m ) β -1 n -β e lk m ) β -1 n -β e Ce -c2 jm/(m-1) . (4.13)Next for G 2 , this time applying the estimate in (4.12) for n> (N + 1)k m , G 2 = ∞ ∑ n=(N+1)k m +1 k mN n -N-1+β n -β e m-1)-1 e -cu du ≤ C2 -jmN . (4.14)Choosing any integer N > ν/m, we get from (4.13) and (4.14) that ∑ j≥1 g( j)2 ν j < ∞. Therefore (4.9) holds. Now let us verify (4.10). For any 1 ≤ l ≤ N + 1, if j ≥ 2, we apply (4.6) and get1 V 1/2 (2 j+1 B) P lk m f l 2 (C j (B)) ≤ Ce -c2 jm/(m-1) V (B) f L 1 (B) . If j = 1, then , l 1/m k) 2 µ(x) 1/2 ≤ C V (B) f L 1 (B) .4.2. WEAK (1, 1) BOUNDEDNESS OF QUASI RIESZ TRANSFORMS 105 Thus (4.10) holds. Lemma 4.10. For g k (n) = ∑ 0≤l≤N,lk m ≤n(-1) l a n-lk m N l , we have the following estimates:|g k (n)| ≤ C(nlk m ) β -1 , 0 ≤ lk m < n ≤ (l + 1)k m ≤ (N + 1)k m , Ck mN n -N-1+β , n > (N + 1)k m .(4.15) We will use similarly method as in [BR09, Lemma 4.1]. Proof. First for 0 ≤ lk m < n ≤ (l + 1)k m ≤ (N + 1)k m , the estimate follows from the fact that a n ≤ Cn β -1 . Now for n > (N + 1)k m , we will use the following inequality, as in [ACDH04, BR09]: for any positive integer N, any C N function ϕ on (0, ∞), any positive integer k and any t > (N + 1)k m ∑ 0≤l≤N,lk m ≤n (-1) l N l ϕ(tlk m ) ≤ C sup u≥ t n+1 ϕ (N) (u) k m , (4.16)

  N t x+β -1 (1t) -β dt = δ 0 |lnt| N t x+β -1 (1t) -β dt + 1 δ |lnt| N t x+β -1 (1t) -β dt := I N (x) + J N (x).

  Figure 5.1: A fragment of the Vicsek graph on the plane
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 1 Let Γ be a Vicsek graph with polynomial volume growth V (x, n) ≃ n D . Then for p ≥ 1, it holds on Γ that ff n (x) L p (B(x,n)) ≤ CV (x, n) 1 D(p) |∇ f | L p (B(x,2n)) , where f n (x) = 1 V (x,n) ∑ z∈B(x,n) f (z)µ(z) and 1 D(p) = 1 p + 1 p ′ D .

|≤

  f (y)f (z)| ≤ ∑ e∈γ y,z | f (e + )f (e -)|, for p = 1, we get V (x, n) ∑ y∈B(x,n) | f (y)f n (x)|µ(y) ≤ ∑ y,z∈B(x,n) | f (y)f (z)|µ(y)µ(z) ≤ ∑ y,z∈B(x,n) ∑ e∈γ y,z | f (e + )f (e -)|µ(e) µ(e) µ(y)µ(z)5.1. POINCAR É INEQUALITIES ON VICSEK GRAPHS 109 ≤ c α ∑ y,z∈B(x,n) ∑ e∈γ y,z | f (e + )f (e -)|µ(e) µ(y)µ(z).In the last inequality, c α depends on (∆(α)) in (10). For p > 1, Hölder inequality leads toV (x, n) ∑ y∈B(x,n) | f (y)f n (x)| p µ(y) ≤ V (x, n) 1-p ∑ y∈B(x,n) ∑ z∈B(x,n) [ f (y)f (z)]µ(z) V (x, n) 1-p ∑ y∈B(x,n) ∑ z∈B(x,n) | f (y)f (z)| p µ(z) (x,n) | f (y)f (z)| p µ(y)µ(z) ≤ ∑ y,z∈B(x,n) ∑ e∈γ y,z | f (e + )f (e -)| µ 1/p (e) µ 1/p (e) p µ(y)µ(z) ≤ ∑ y,z∈B(x,n) ∑ e∈γ y,z | f (e + )f (e -)| p µ(e) • ∑ e∈γ y,z µ(e) -1/(p-1) p-1 µ(y)µ(z).Due to the property (∆(α)) in (10), the last term is bounded from above by C ∑ e∈B(x,2n) | f (e + )f (e -)| p µ(e) • ∑ y,z∈B(x,n) |γ y,z | p-1 µ(y)µ(z). Take K(x, n) = ∑ y,z∈B(x,n) |γ y,z | p-1 µ(y)µ(z) for p ≥ 1, then ff n (x) p L p (B(x,n)) ≤ CK(x, n) |∇ f | p L p (B(x,2n)) , ∀p ≥ 1.

  Theorem 5.3. Let Γ be a Vicsek graph with polynomial volume growthV (x, n) ≃ n D . Then for p ≥ 1, it holds f p µ(Ω) 1 D(p) |∇ f | p , ∀Ω ⊂ Γ, ∀ f ∈ c 0 (Ω), (S p D(p) )where D(p) is the same as in Theorem 5.1.Remark 5.4. On Vicsek graphs, we already know the inequalities (S p D(p) ) for p = 1, 2, ∞. That is 1. If p = 1, then D(1) = 1. Indeed, (S 1 1 ) is equivalent to the isoperimetric inequality with the isoperimetric dimension 1, i.e. |∂ Ω| ≥ C, which can be seen from the structure of Vicsek graph.2. Ifp = 2, then D(2) = 2D D+1 . (S 2 2D D+1

3.

  If p = ∞, then D(∞) = D. (S ∞ D ) is equivalent to the lower volume bound: V (x, n) ≥ n D .

  For any function f ∈ c 0 (Ω), assume max x∈Ω | f (x)| = 1 (otherwise we can normalise f ). Then we have∑ x∈Ω | f (x)| p µ(x) ≤ µ(Ω).Consider a point x 0 such that | f (x 0 )| = 1 and the largest integer n such that the ball B(x 0 , n) ⊂ Ω. Define r(Ω) = max{r ∈ N : ∃x ∈ Ω such that B(x, r) ⊂ Ω}.

Figure 5

 5 Figure 5.2: the function f on the diagonal z 0 z i

|

  f (x)| p µ(x) ≥ (2/3) p µ(Ω n-1 ) ≃ q n .Also, since | f (x)f (y)| = 3 -n for any two neighbours x, y on each of the diagonals connecting 5.3. OPTIMALITY OF (S p D(p) ) FOR p > 2 ON VICSEK GRAPHS 113 z 0 and z i , and otherwise f (x)f (y) = 0, we obtain∇ f p p ≃ ∑ x,y∈Ω n | f (x)f (y)| p µ xy ≤ 2 N ∑ i=1 3 -np d(z 0 , z i ) = 2 N 3 -n(p-1) .
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  Coulhon et Duong ([CD99, Section 5]) ont démontré que la transformée de Riesz sur M n n'est pas bornée dans L p pour p > n. Notons que M n satisfait (D) et (DUE), mais (LY ) est fausse.

Soit n ≥ 3. Le résultat est amélioré dans [CCH06]. En fait, (R p ) est vraie pour 1 < p < n et est fausse pour p ≥ n, voir [CCH06, Car07].

  'étude des espaces de Hardy trouve son origine dans la théorie des séries de Fourier et de l'analyse complexe en une variable. Depuis les années 1960, elle a été transférée à l'analyse réelle en plusieurs variables, ou plus généralement sur des espaces de type homogène. Il y a beaucoup de caractérisations équivalentes pour les espaces de Hardy. Par exemple, par les fonctions maximales, par les décompositions atomiques ou moléculaires, par les intégrales singulières, etc.

	∇e -t∆	p→p	≤	C √ t	, ∀t > 0.

où r B est le rayon de B. Alors il existe ε > 0 tel que (R p ) est vrai pour 2 < p < 2 + ε. Enfin, Théorème 0.20 ([ACDH04]). Soit M une variété riemanniene complète non-compacte vérifiant (LY ). Soit p 0 ∈ (2, ∞]. Alors les affirmations suivantes sont équivalentes: 1. Pour tout p ∈ [2, p 0 ), on a 2. Pour tout p ∈ [2, p 0 ), la transformée de Riesz est bornée sur L p . Théorème 0.21 ([ACDH04, CS10]). Soit M une variété riemannienne complète non-compacte vérifiant (D) et (G). Alors la transformée de Riesz est bornée sur L p pour tout 1 < p < ∞.

0.4 Espaces de Hardy

LNous rappelons une description de H 1 en utilisant des atomes sur un espace de type homogène M (voir

[START_REF] Coifman | Extensions of Hardy spaces and their use in analysis[END_REF]

). On dit qu'une fonction a ∈ L 2 (M) est un atome de H 1 s'il existe une boule B ∈ M telle que 1. supp a ⊂ B;

  est dans l'espace de tentes T 1 2 . Il est été prouvé dans[START_REF] Coifman | Some new function spaces and their applications to harmonic analysis[END_REF] que F t admet une décomposition atomique de T 1 2 . On la substitue dans (2) et on obtient une décomposition moléculaire pour f . Pour

  Soit (M, d, µ) un espace métrique mesuré de type homogène satisfaisant une estimation différente en petit temps et en grand temps du noyau de la chaleur. Comme dans [AMR08, HLM + 11], on définit deux classes d'espace de Hardy sur M. La première classe est l'espace H 1 défini par les molécules. On le désigne H 1 L,ρ, mol (M). La deuxième classe est H p

	L,S

ρ h (M), 1 ≤ p ≤ ∞, défini par les fonctions quadratiques. On montre tout d'abord Théorème 0.33. Soit M un espace métrique mesuré vérifiant (D) et (DG

  Sur les graphes de Vicsek, on obtient une inégalité généralisée de Poincaré. Théorème 0.38. Soit Γ un graphe de Vicsek à croissance polynomiale du volume: V (x, n) ≃ n D .

	0.5.3 Les autres résultats
	Alors, pour p ≥ 1,
	r ≥ 1,
	et l'estimation sous-gaussienne du noyau de la chaleur (HK 2,m ), où 2 < m < d/2. Alors l'inclusion
	L p (M) ⊂ H p ∆,S h (M) est fausse pour p ∈ d d-m , 2 .
	Comme application des développements précédents sur les espaces de Hardy, on montre
	Théorème 0.37. Soit M une variété satisfaisant (D) et (UE 2,m ), m > 2. Alors, pour α ∈ (0, 1/2) fixé, l'opérator ∇e -∆ ∆ -α est borné de H 1 ∆,m dans L 1 .
	xxvi

  ).

	0.6.3 Metric measure Dirichlet spaces
	Some of the following presentation is taken from [HSC01, BBK06, Bar13]. Let (M, µ) be a locally
	compact separable space equipped with a positive Radon measure µ which is strictly positive on any
	non-empty open set. Denote by C 0 (M) the set of all continuous functions with compact support.
	Let E be a regular Dirichlet form on M with domain D ∈ L 2 (M, dµ) (see [Stu94, Stu95, GSC11]). That is, there exists a core C ∈ D ∩ C 0 (M) which is dense in C 0 (M) under the uniform norm and dense in D under the norm ( f 2 2

  Chapter 3, we develop a Hardy space theory on metric measure spaces satisfying (D) and (DG β 1 ,β 2 ). Firstly we define Hardy spaces via molecules H 1 L,ρ,mol and via square functions H p

	L,S

ρ h (p ≥ 1), which are adapted to the heat kernel estimates. The two H 1 spaces are shown to be equivalent. Then we compare the H p space defined via square functions with L p . Assuming (D) and (DG

p 0 ,p ′ 0 β 1 ,β 2

), we show the equivalence of H p S ρ h

  j/2 converges and we get the second inequality. The fourth one is a result of Kolmogorov's inequality.Thus we have shownΛ glob ≤ Cλ 2-p 0 | f | p 0 dµ.Remark 3.18. Note that in[START_REF] Uhl | Spectral multiplier theorems of hörmander type via generalized gaussian estimates[END_REF], Uhl considered the Littlewood-Paley-Stein g * λ ,ψ -function adapted to the operator instead of the square function S ψ . Indeed, the two functionals behave similarly due to the doubling volume property. More generally, a slight adaption of Theorem 3.19 plus Theorem 3.16 yields the following result.

	3.4.2 H p ∆,S

h (M) = L p (M)

Theorem 3.19. Let M be a Riemannian manifold with polynomial volume growth V (x, r) ≃ r d , r ≥ 1, (3.30) as well as two-sided sub-Gaussian heat kernel estimate (UE 2,m ) and (LE 2,m ) (see Section 2.1), where 2 < m < d/2. Then L p (M) ⊂ H p ∆,S h (M) doesn't hold for p ∈ d d-m , 2 .

  Thus (3.34) implies that L p ⊂ H p S h is not true for p ∈ D D-2 , 2 , i.e. p ∈ d d-m , 2 , where 2 < m < d/2. Proof of Theorem 3.20 If m ′ = m, Theorem 3.16 says that L p ⊂ H p

	d-m , 2 , according to (3.33) and (3.34), there exists a family of To conclude, for any fixed p ∈ d functions g n = f n n m+d/p n≥1 such that
	g n p ≤ C, g n 2 ≤ n	d 2 -d p → 0
	and	
	S h g n p ≥ n d( m 2 -1)( 1 p -1 2 ) → +∞
	as n goes to infinity.	
	Therefore S h is not L p bounded for p ∈ d d-m , 2 and the inclusion L p ⊂ H p S m ′ h d-m , 2 . p ∈ d S m . h Conversely, by doing a slight adjustment for the above proof, we can prove that L p ⊂ H p doesn't hold for S m ′

h is false for p ∈ d d-m , 2 , where 2 < m < d/2 and m ′ < m.
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CHAPTER 3. HARDY SPACES ON METRIC MEASURE SPACES

Note that the second step follows from Fubini theorem and (4). The third step is obtained by using the fact (3.1): ρ ′ (t)/ρ(t) ≃ 1/t. The last one is a consequence of spectral theory.

Tent spaces

We introduce the definition and properties of tent spaces over the homogeneous spaces M (satisfying the doubling volume property), following [START_REF] Coifman | Some new function spaces and their applications to harmonic analysis[END_REF], [START_REF] Russ | The atomic decomposition for tent spaces on spaces of homogeneous type[END_REF] (see also [HLM + 11]).

For any x ∈ M and for any closed subset F ⊂ M, a saw-tooth region is defined as R(F) := x∈F Γ(x). If O is an open subset of X, then the "tent" over O, denoted by O, is defined as

For a measurable function F on M × (0, ∞), consider

For simplicity, we denote T p 2 (M × (0, ∞)) by T p 2 (M) from now on. Therefore, for f ∈ H p ∆,S m h (M) and 0 < p < ∞, write F(y,t) = ρ(t)∆e -ρ(t)∆ f (y), we have

Consider another functional

Proposition 3.8. Suppose 1 < p < ∞, let p ′ be the conjugate of p. Then the pairing < F, G >-→ M×(0,∞) F(x,t)G(x,t)dµ(x)dt/t realizes T p ′ 2 (M) as the dual of T p 2 (M).

Denote by [ , ] θ the complex method of interpolation described in [START_REF] Bergh | Interpolation spaces. An introduction[END_REF]. Then we have the following result of interpolation of tent spaces. Proposition 3.9. Suppose 1 ≤ p 0 < p < p 1 ≤ ∞, with 1/p = (1 -θ )/p 0 + θ /p 1 and 0 < θ < 1.

Theorem 3.22 [START_REF] Li | Geometric analysis[END_REF]). Let M be a complete manifold without boundary. There exists a Green's function G(x, y) which is smooth on (M × M)\D satisfying

We also observe that Lemma 3.23. Let M be as above. Let B be an arbitrary ball with radius r ≥ 4. Then there exists a constant c > 0 depending on d and m such that for all t with r m /2

Proof. Note that for any x, y ∈ B, we have t ≥ r m /2 ≥ 2r ≥ d(x, y). Then we have

≥ c.

Proof of Theorem 3.19

Let φ n ∈ C ∞ 0 (M) be a cut-off function as follows: 0 ≤ φ n ≤ 1 and for some x 0 ∈ M,

For simplicity, we denote B(x 0 , n) by B n . Taking f n = Gφ n , Theorem 3.22 says that ∆ f n = φ n . On the one hand, we apply Theorem 3.21 by choosing T t = e -t∆ . Indeed, e -t∆ is Markov hence bounded on L p , equicontinuous on L 1 , L ∞ and satisfies

where D = 2d/m > 2. Then taking α = 2 and p > D D-2 , it follows that

CHAPTER 3. HARDY SPACES ON METRIC MEASURE SPACES

Using the fact that ∆ f n = φ n and φ n ≤ ✶ B(x 0 ,2n) , we get

≤ Cn m+d/p .

(3.33)

In particular, f n 2 ≤ Cn m+d/2 . On the other hand,

Since φ n ≥ ✶ B n ≥ 0, it follows from the Markovian property of the heat semigroup that Observe also that, for t > n m/2 2 and x ∈ B x 0 , n m/2 4 , we have B n ⊂ B(x,t) as long as n is large enough. Then the volume growth (3.30) gives us a lower bound in terms of n. That is,

Comparing the upper bound of f n p in (3.33) for p > D D-2 , we obtain

where p > D D-2 .
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with radius r B , there exists a constant C such that

We will estimate the L 1 norm of D 1 and D 2 separately. First for D 1 , we split the integral into annuli and use the Minkowski inequality as well as the Hölder inequality, then

Fix i ∈ N. For j small, i.e., j = 0, 1, 2, note the fact ∇e -t∆ 2→2 ≤ Ct -1/2 , then

(3.35)

Note that the last inequality holds for all r B . In fact, if r B ≥ 1, then

For j ≥ 3, we will use the L 1 -L 2 off-diagonal estimate for the gradient of the heat kernel, say 3.5. THE H 1 -L 1 BOUNDEDNESS OF QUASI RIESZ TRANSFORMS For J N (x). Since |lnt| ≃ 1t when t → 1 -, we fix δ ∈ (0, 1) such that |lnt| ≤ 1 4 (1t). Then Chapter 5

Poincaré inequalities and Sobolev inequalities on Vicsek graphs

In this chapter, we consider Poincaré inequalities and Sobolev inequalities. We prove in the first first section the generalised L p Poincaré inequality and in the second section the generalised L p Sobolev inequality. Finally we show the optimality of these inequalities, which connects to Section 2.5.

Recall the construction of a Vicsek graph Γ on R n . The following in taken from [START_REF] Coulhon | Pointwise estimates for transition probabilities of random walks on infinite graphs[END_REF].

Construct an increasing sequence {Γ k } of finite graphs as subsets of Q 3 k . Let Γ 1 be the set of 2 n + 1 points containing all vertices of Q 1 and the center of Q 1 . Define 2 n edges in Γ 1 as segments connecting the center with the corners. Assuming that Γ k is already constructed, define Γ k+1 as follows. The cube Q 3 k +1 is naturally divided into 3 n congruent copies of Q 3 k ; select 2 n + 1 of the copies of Q 3 k by taking the corner cubes and the center one. In each of the selected copies of Q 3 k construct a congruent copy of graph Γ k , and define Γ k+1 as the union of all 2 n + 1 copies of Γ k (merged at the corners). Then the Vicsek tree Γ is the union of all Γ k , k ≥ 1 (see Figure 5.1). Then for all x ∈ Γ, r ≥ 1 and k > 0, Γ satisfies V (x, r) ≃ r D and p k (x, x) ≤ Ck -D D+1 .

where D = log 3 (2 n + 1).