
HAL Id: tel-01002190
https://theses.hal.science/tel-01002190v1

Submitted on 5 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generic decision procedures for axiomatic first-order
theories

Claire Dross

To cite this version:
Claire Dross. Generic decision procedures for axiomatic first-order theories. Other [cs.OH]. Université
Paris Sud - Paris XI, 2014. English. �NNT : 2014PA112059�. �tel-01002190�

https://theses.hal.science/tel-01002190v1
https://hal.archives-ouvertes.fr

UNIVERSITÉ PARIS-SUD

ECOLE DOCTORALE : EDIPS
LABORATOIRE DE RECHERCHE EN INFORMATIQUE

DISCIPLINE : INFORMATIQUE

THÈSE DE DOCTORAT

Soutenue le 1 avril 2014 par

Claire DROSS

Procédures de Décision Génériques pour

des Théories Axiomatiques du Premier Ordre

Directeur de thèse : M. Claude MARCHÉ Directeur de Recherche (Inria Saclay–Île-de-France)

Co-directeur de thèse : M. Andrei PASKEVICH Maitre de Conférences (Université Paris-Sud)

Composition du jury :

Président du jury : M. Joffroy BEAUQUIER Professeur (Université Paris-Sud)

Rapporteurs : M. Nikolaj BJØRNER Principal Researcher (Microsoft Research)

M. Albert RUBIO Professeur (Universitat Politècnica de Catalunya)

Examinateur : M. Stephan MERZ Directeur de Recherche (Inria Nancy)

Invités : M. Johannes KANIG Ingénieur de Recherche (AdaCore)

M. Yannick MOY Ingénieur de Recherche (AdaCore)

Tout d’abord, je souhaite remercier Andrei, pour le temps qu’il m’a consacré au jour le jour,
en particulier en période de rédaction, pour me conseiller, corriger mes erreurs et relire toutes
mes preuves, même les plus mal écrites. J’ai surtout beaucoup apprécié nos discussion, à la fois
professionnellement et personnellement. Je souhaite également remercier Claude, pour son aide
et ses conseils, ainsi que pour ses encouragements jusqu’à la soutenance. Son tact, son calme
et sa vision positive m’ont beaucoup aidée à appréhender sereinement les dernières étapes du
parcours. Merci aussi à Sylvain, qui a orienté mes recherches et m’a encadrée durant toute ma
première année. Ses conseils techniques m’ont été très utiles tout au long de ma thèse.

Cette thèse ayant été faite en convention CIFRE, j’ai également passé une grande partie de
mon temps en entreprise. Je souhaite donc remercier Yannick et Johannes, qui m’ont accom-
pagnée et encouragée pendant ces 3 ans. Ils m’ont laissée libre de choisir l’organisation de
mon temps tout en m’intégrant comme membre à part entière de l’équipe. Nous avons eu de
nombreuses discussions enrichissantes (techniques ou non), en particulier devant la machine à
café.

Merci également à mes rapporteurs, Nikolaj Bjørner et Albert Rubio, et ainsi qu’aux autres
membres de mon jury, Stephan Merz et Joffroy Beauquier, pour leurs remarques et leurs conseils
qui à la fois m’ont permis d’améliorer la qualité de mon mémoire et m’ont donné de nouvelles
pistes pour aller plus loin.

Je tiens aussi à remercier tous ceux avec qui j’ai travaillé et discuté ces trois dernières années,
à la fois au laboratoire et en entreprise. Que ce soit d’un coté ou de l’autre, la bonne ambiance
m’a toujours aidée à venir travailler, même dans les moments de fatigue ou de baisse de moral.
En particulier, je souhaite remercier mes collègues de bureau, Raphaël et Jérôme, et Asma,
Catherine et Stéfania pour nos conversations. Une dédicace spéciale à Elie, avec qui j’ai partagé
de nombreuses discussions sur les mérites d’une thèse en CIFRE.

Finalement, pour le soutien moral qu’ils m’ont apporté tout au long de ma thèse, je souhaite
remercier ma famille, en particulier mes parents, Fred, Camille et François, qui m’ont encoura-
gée pendant la soutenance et aidée pour le pot. Merci aussi à Emmanuel, mon petit ange, qui
a égayé la dernière année de ma thèse et m’a aidée à toujours bien séparer vie professionnelle
et vie privée. Le mot de la fin est pour Xavier, mon mari, qui m’a toujours soutenue, a gardé
Emmanuel quand je faisais des heures sup le soir avec Andrei et a relu maintes fois mes écrits à
la recherche des nombreuses fautes d’orthographe. Nos longues discussions m’ont très souvent
aidée à faire la part des choses et à continuer à avancer.

Résumé

Les solveurs SMT sont des outils dédiés à la vérifications d’un ensemble de formules mathéma-
tiques, en général sans quantificateurs, utilisant un certain nombre de théories prédéfinies, telles
que la congruence, l’arithmétique linéaire sur les entiers, les rationnels ou les réels, les tableaux
de bits ou les tableaux. Ajouter une nouvelle théorie à un solveur SMT nécessite en général
une connaissance assez profonde du fonctionnement interne du solveur, et, de ce fait, ne peut en
général être exécutée que par ses développeurs.

Pour de nombreuses théories, il est également possible de fournir une axiomatisation finie en
logique du premier ordre. Toutefois, si les solveurs SMT sont généralement complets et efficaces
sur des problèmes sans quantificateurs, ils deviennent imprévisibles en logique du premier ordre.
Par conséquent, cette approche ne peut pas être utilisée pour fournir une procédure de décision
pour ces théories.

Dans cette thèse, nous proposons un cadre d’application permettant de résoudre ce problème
en utilisant des déclencheurs. Les déclencheurs sont des annotations permettant de spécifier la
forme des termes avec lesquels un quantificateur doit être instancié pour obtenir des instances
utiles pour la preuve. Ces annotations sont utilisées par la majorité des solveurs SMT supportant
les quantificateurs et font partie du format SMT-LIB v2.

Dans notre cadre d’application, l’utilisateur fournit une axiomatisation en logique du premier
ordre de sa théorie, ainsi qu’une démonstration de sa correction, de sa complétude et de sa
terminaison, et obtient en retour un solveur correct, complet et qui termine pour sa théorie. Dans
cette thèse, nous décrivons comment un solveur SMT peut être étendu à notre cadre nous basant
sur l’algorithme DPLL modulo théories, utilisé traditionnellement pour modéliser ls solveurs
SMT. Nous prouvons également que notre extension a bien les propriétés attendues.

L’effort à fournir pour implémenter cette extension dans un solveur SMT existant ne doit être
effectué qu’une fois et le mécanisme peut ensuite être utilisé sur de multiple théories axioma-
tisées. De plus, nous pensons que, en général, cette implémentation n’est pas plus compliquée
que l’ajout d’une unique théorie au solveur. Nous avons fait ce travail pour le solveur SMT
Alt-Ergo, nous en présentons certains détails dans la thèse.

Pour valider l’utilisabilité de notre cadre d’application, nous avons prouvé la complétude
et la terminaison de plusieurs axiomatizations, dont une pour les listes impératives doublement
chaînée, une pour les ensembles applicatifs et une pour les vecteurs de Ada. Nous avons ensuite
utilisé notre implémentation dans Alt-Ergo pour discuter de l’efficacité de notre système dans
différents cas.

Generic Decision Procedures

for Axiomatic First-Order Theories

Abstract

SMT solvers are efficient tools to decide the satisfiability of ground formulas, including a num-
ber of built-in theories such as congruence, linear arithmetic, arrays, and bit-vectors. Adding a
theory to that list requires delving into the implementation details of a given SMT solver, and
is done mainly by the developers of the solver itself. For many useful theories, one can alterna-
tively provide a first-order axiomatization. However, in the presence of quantifiers, SMT solvers
are incomplete and exhibit unpredictable behavior. Consequently, this approach can not provide
us with a complete and terminating treatment of the theory of interest.

In this thesis, we propose a framework to solve this problem, based on the notion of instanti-
ation patterns, also known as triggers. Triggers are annotations that suggest instances which are
more likely to be useful in proof search. They are implemented in all SMT solvers that handle
first-order logic and are included in the SMT-LIB format.

In our framework, the user provides a theory axiomatization with triggers, along with a
proof of completeness and termination properties of this axiomatization, and obtains a sound,
complete, and terminating solver for her theory in return. We describe and prove a correspond-
ing extension of the traditional Abstract DPLL Modulo Theory framework. Implementing this
mechanism in a given SMT solver requires a one-time development effort. We believe that this
effort is not greater than that of adding a single decision procedure to the same SMT solver. We
have implemented the proposed extension in the Alt-Ergo prover and we discuss some imple-
mentation details in this thesis.

To show that our framework can handle complex theories, we prove completeness and termi-
nation of three axiomatization, one for doubly-linked lists, one for applicative sets, and one for
Ada’s vectors. Our tests show that, when the theory is heavily used, our approach results in a bet-
ter performance of the solver on goals that stem from the verification of programs manipulating
these data-structures.

Contents

1 Introduction 1

1.1 Context: Deductive Verification of Programs 1
1.1.1 The Ada 2012 and SPARK 2014 Languages 2
1.1.2 Deductive Verification in SPARK 2014 3
1.1.3 Challenges in Deductive Verification of Programs 5

1.2 Landscape in Deductive Verification of Programs 6
1.2.1 Deductive Verification Tools for Mainstream Languages 6
1.2.2 Verification Condition Generation . 7
1.2.3 Automatic Theorem Provers and SMT Solvers 8

1.3 Problem and Contributions . 10
1.3.1 First Order Axiomatizations as Decision Procedures 10
1.3.2 Overview of the Contributions . 11

2 First-Order Logic with Triggers 15

2.1 Formalization . 15
2.1.1 Preliminary Notions . 16
2.1.2 Logic with Triggers (Syntax and Semantics) 17
2.1.3 Relation with Traditional First-Order Logic 18
2.1.4 Soundness and Completeness . 21
2.1.5 Termination . 22

2.2 Case Study: Imperative Doubly-Linked Lists 26
2.2.1 Presentation of the Theory . 27
2.2.2 Description of the Axiomatization . 28
2.2.3 Proofs of Soundness, Completeness, and Termination 30
2.2.4 Assessment of Adequacy with Respect to Existing Trigger Heuristics . 33

2.3 Designing Terminating and Complete Axiomatizations 35
2.3.1 Proving Termination of an Axiomatization 35
2.3.2 Designing a Complete Axiomatization 40
2.3.3 An Automatable Debugger for Completeness 42

2.4 Conclusion . 43

i

Contents Contents

3 A Black-Box Decision Procedure 45

3.1 Description . 45
3.1.1 Preliminaries . 45
3.1.2 Deduction Rules for First-Order Logic with Triggers 47
3.1.3 Soundness, Completeness, and Termination 48

3.2 Implementation . 53
3.2.1 Description . 53
3.2.2 Benchmarks . 54

3.3 Conclusion . 56

4 A White-Box Decision Procedure 57

4.1 Description . 58
4.1.1 Preliminaries . 58
4.1.2 Description of DPLL(T) with triggers 63
4.1.3 Termination Related Constraints . 66
4.1.4 Soundness and Completeness . 68
4.1.5 Progress and Termination . 70

4.2 Implementation . 80
4.2.1 E-Matching on Uninterpreted Sub-Terms 80
4.2.2 Different Notions of Termination . 82
4.2.3 Inclusion into the Theory Combination Mechanism 83
4.2.4 Comparison with Alt-Ergo’s Built-In Quantifier Handling 83

4.3 Conclusion . 85

5 Case Study: Set Theory of Why3 87

5.1 Context: the B Method . 87
5.2 A Decision Procedure for Why3’s Sets . 88

5.2.1 Presentation of the Theory . 88
5.2.2 Description of the Axiomatization . 89
5.2.3 Proofs of Soundness, Completeness, and Termination 90

5.3 Benchmarks . 92
5.3.1 Assessment of the Adequacy Between our Framework and Usual E-

matching Techniques . 93
5.3.2 Comparison Between our Implementation and the Built-in Quantifiers

Handling of Alt-Ergo . 96
5.4 Conclusion . 96

6 Case Study: Formal Bounded Vectors of SPARK 2014 97

6.1 Context: the SPARK 2014 Tool . 97
6.2 Ada’s Formal Vectors Package . 99

6.2.1 Description of the Ada Package . 99
6.2.2 Translation into WhyML . 101

6.3 A Decision Procedure for Formal Vectors . 101
6.3.1 Presentation of the Theory . 102

ii

Contents Contents

6.3.2 Description of the Axiomatization . 103
6.3.3 Proofs of Soundness, Completeness, and Termination 107

6.4 Benchmarks . 111
6.4.1 Assessment of the Adequacy Between our Framework and Usual E-

Matching Techniques . 112
6.4.2 Comparison Between our Implementation and the Built-in Quantifiers

Handling of Alt-Ergo . 112
6.5 Conclusion . 112

7 Conclusion 117

7.1 Summary of the Contributions . 117
7.2 Related Work . 118
7.3 Perspectives . 120

Bibliography 123

Index 129

Glossary 131

Appendix 133

A Imperative Doubly-Linked Lists 133

A.1 Axiomatization . 133
A.2 Tests in WhyML . 139

A.2.1 API of program functions . 139
A.2.2 Tests using this API . 140

B Why3 Sets 145

B.1 Axiomatization for Sets . 145

C SPARK 2014 Vectors 147

C.1 Axiomatization for Formal Vectors . 147
C.2 Tests in SPARK 2014 . 156

C.2.1 Two_Way_Sort . 156
C.2.2 N_Queens . 157
C.2.3 Ring_Buffer . 160
C.2.4 Amortized_Queue . 163

iii

List of Figures

1.1 Deductive verification in SPARK 2014 . 3

1.2 Formal verification of the Max_Array function 4

1.3 Formal verification of the Max_Array function with a loop invariant 5

2.1 Comparison of solvers’ efficiency with and without explicit triggers on doubly-
linked lists . 34

3.1 Deduction rules for the black-box implementation of our framework. 47

3.2 Execution time of the black-box implementation on the theory of arrays. 54

3.3 Execution time of the black-box implementation on doubly-linked lists. 56

4.1 Transition rules of DPLL�(T) on guarded clauses 64

4.2 Additional transition rules for DPLL�(T) . 64

4.3 Comparison between our theory mechanism’s implementation in Alt-Ergo and
Alt-Ergo’s built-in quantifiers handling on doubly-linked lists 84

5.1 Number of goals discharged by solvers with our theory mechanism’s implemen-
tation and with solvers’ built-in quantifier handling with and without triggers on
Why3 Set case study . 93

5.2 Comparison of solvers’ efficiency with our theory mechanism’s implementation
and with solvers’ built-in quantifier handling with and without triggers on Why3
Set case study without additional lemmas . 94

5.3 Comparison of solvers’ efficiency with our theory mechanism’s implementation
and with solvers’ built-in quantifier handling with and without triggers on Why3
Set case study with additional lemmas . 95

5.4 Number of goals discharged by our theory mechanism’s implementation in Alt-
Ergo and Alt-Ergo’s built-in quantifiers handling on Why3 Set case study . . . 96

6.1 Comparison of SMT solvers’ efficiency with and without explicit triggers on
SPARK Vectors case study . 113

6.2 Comparison between our theory mechanism’s implementation in Alt-Ergo and
Alt-Ergo’s built-in quantifiers handling on SPARK Vectors case study 114

v

List of Figures List of Figures

6.3 Comparison between our theory mechanism’s implementation in Alt-Ergo and
Alt-Ergo’s built-in quantifiers handling with an additional axiom on SPARK
Vectors case study . 115

vi

1 Introduction

Contents

1.1 Context: Deductive Verification of Programs 1

1.1.1 The Ada 2012 and SPARK 2014 Languages 2

1.1.2 Deductive Verification in SPARK 2014 3

1.1.3 Challenges in Deductive Verification of Programs 5

1.2 Landscape in Deductive Verification of Programs 6

1.2.1 Deductive Verification Tools for Mainstream Languages 6

1.2.2 Verification Condition Generation 7

1.2.3 Automatic Theorem Provers and SMT Solvers 8

1.3 Problem and Contributions . 10

1.3.1 First Order Axiomatizations as Decision Procedures 10

1.3.2 Overview of the Contributions . 11

1.1 Context: Deductive Verification of Programs

Software often replaces or helps humans in critical domains such as transportation, avionics,
space, or medical areas. Since its failure may cost a lot, both materially and in terms of human
lives, this software is thoroughly verified so that it offers sufficient levels of confidence that it
operates correctly. Historically, this verification is mostly done by testing. Still, since testing
is expensive, there is a trend to replace or to complement it by methods based on automated
mathematical analysis on source code, called formal verification.

Ada is a programming language targeted at real-time embedded software which requires a
high level of safety, security, and reliability. In particular, it provides a wide range of run-time
checks, for example for buffer overflows, and has a verbose syntax that makes it easy to read and
debug. For these reasons, Ada is nowadays used in domains where software cannot be allowed
to fail.

SPARK [6], co-developed by Altran and AdaCore, is a subset of Ada targeted at formal
verification. Its restrictions ensure that the behavior of a SPARK program is unambiguously
defined (unlike Ada). It excludes constructions that cannot easily be verified by automatic tools.
The SPARK language and toolset for static verification has been applied for many years in on-
board aircraft systems, control systems, cryptographic systems, and rail systems [62].

1

Chapter 1. Introduction 1.1. Context: Deductive Verification of Programs

1.1.1 The Ada 2012 and SPARK 2014 Languages

Ada 2012 [5] is the latest version of the Ada language. It contains new features for specifying
the behavior of programs, such as subprogram contracts and type invariants. When given a
specific compilation switch, the Ada compiler can turn these constructs into assertions to check
at run time. Thanks to this switch, the conformance of the implementation of a program to its
specification can be checked dynamically during the process of unit testing.

Complex contracts can be expressed thanks to the new constructs that have been introduced
in Ada 2012. They include in particular conditional expressions and universally and existentially
quantified expressions over finite ranges of integers.

Here is the specification of an Ada 2012 function, named Max_Array:

function Max_Array (A : Elt_Array;

EMin : Element) return Element with

Post => Max_Array’Result >= EMin and

(for all J in A’Range => Max_Array’Result >= A (J)) and

(if Max_Array’Result /= EMin then

(for some J in A’Range => Max_Array’Result = A (J)));

It takes as input an array A and a minimal bound EMin and returns the maximum of EMin and
the elements stored in A. It has a postcondition that uses a universally quantified expression,
an existentially quantified expression, and a conditional expression. It states that the result of
Max_Array is bigger than both EMin and the elements of A and that, if Max_Array does not return
EMin then it returns an element of A.

Here is a possible implementation of this function. It uses a loop to go through the array A

and stores in Result the biggest element encountered so far:

function Max_Array (A : Elt_Array;

EMin : Element) return Element

is

Result : Element := EMin;

begin

for J in A’Range loop

if A (J) > Result then

Result := A (J) ;

end if ;

end loop;

return Result;

end Max_Array;

Testing is the most common way to verify that a program is safe, that is, that it does not
fail at run-time, and that it behaves as is required by its contract. Still, formal verification can
also be used to increase confidence in a program, in particular since it gives guarantees for every
execution of the program.

The SPARK 2014 language is a subset of Ada 2012, augmented with features specific to
formal verification. It comprises most of the Ada 2012 language excluding constructs which are

2

Chapter 1. Introduction 1.1. Context: Deductive Verification of Programs

not easily amenable to sound static verification. Features such as pointers, side effects in ex-
pressions, aliasing, goto statements, controlled types (e.g. types with finalization) and exception
handling are excluded.

The SPARK 2014 language is designed so that both the flow analysis – checking that there
is no access to uninitialized variables and that global variables and subprogram parameters are
accessed appropriately – and the proof of program – checking the absence of run-time errors
and the conformance to the contract – can be checked. It provides dedicated features that are not
part of Ada 2012. In particular, contracts can also contain information about data dependencies,
information flows, state abstraction, and data and behavior refinement that can be checked by
the SPARK 2014 tools. Essential constructs for formal verification such as loop variants and
invariants have also been introduced.

1.1.2 Deductive Verification in SPARK 2014

As an alternative to testing, deductive verification, also called proof of programs, can be used
to check that a program is run-time error free and that it complies with its specifications. As
described in Figure 1.1, the SPARK 2014 tool for proof of program, named GNATprove, uses a
specialized intermediate language named WhyML [15]. It is an ML-like programming language
with support for proof-only features such as abstract types and functions with no definition,
non executable contracts and assertions, as well as lemmas and axioms. The Why3 tool can be
used to extract logical statements out of WhyML code, whose validity implies the soundness of
the WhyML program. It can then be used as a frontend for a large set of both automatic and
interactive provers.

SPARK 2014
source code

and
contracts

Gnat2Why WhyML
files

Why3
+

Alt-Ergo

Proof
results

GNATprove

Figure 1.1: Deductive verification in SPARK 2014

We can use GNATprove to verify our implementation of the Max_Array function. It first
checks that there is no flow error in the design of the program, for example, no use of uninitial-
ized variable and no unintended flow of information. Then, it formally verifies both the absence
of run-time errors and the validity of assertions and contracts. We see in Figure 1.2 that the
postcondition of Max_Array cannot be verified by GNATprove. Indeed, deductive verification
techniques used inside the SPARK 2014 tool sometimes require additional annotations. For the
proof of the postcondition of Max_Array to go through, we need to specify a loop invariant, that
is, a property that is true at every iteration of the loop. It allows one to describe how variables

3

Chapter 1. Introduction 1.1. Context: Deductive Verification of Programs

Figure 1.2: Formal verification of the Max_Array function

have been modified since the beginning of the loop. Here, the invariant simply states that the
postcondition holds for the iterations up to index J:

function Max_Array (A : Elt_Array;

EMin : Element) return Element

is

Result : Element := EMin;

begin

for J in A’Range loop

pragma Loop_Invariant

(Result >= EMin and

(for all K in A’First .. J - 1 => Result >= A (K)) and

(Result = EMin or

(for some K in A’First .. J - 1 => Result = A (K))));

if A (J) > Result then

Result := A (J) ;

end if ;

end loop;

return Result;

end Max_Array;

4

Chapter 1. Introduction 1.1. Context: Deductive Verification of Programs

Thanks to this loop invariant, the SPARK 2014 tool can verify Max_Array. We see in Fig-
ure 1.3 that absence of run-time errors and conformance of Max_Array to its contract are suc-
cessfully verified by GNATprove.

Figure 1.3: Formal verification of the Max_Array function with a loop invariant

1.1.3 Challenges in Deductive Verification of Programs

As critical software becomes more and more complex, it becomes difficult to gain enough confi-
dence on an industrial software by testing only without prohibitively increasing the development
costs. Formal methods are a possible alternative to tests for verification of critical software:
instead of executing the source code, they proceed to mathematical analyses that establish guar-
antees about every possible execution of the software. These techniques have already been used
successfully in the industry for example by Airbus [70] and Siemens [11]. Thanks to the sup-
port of corresponding certification authorities, formal methods, and in particular the B-method,
are widely used in the railway domain. As formal methods were recently adopted by avionic
certification authorities as an alternative to testing (see DO-333), a new market is open for them.

Deductive verification raises several scientific challenges. First, the specification language
must be defined so that it is expressive enough to allow the specification of complex programs

5

Chapter 1. Introduction 1.2. Landscape in Deductive Verification of Programs

while remaining amenable to static verification. Ease of use can also be improved by automat-
ically generating annotations, for example loop invariants [13, 41, 48, 49, 57]. Then, there is
ongoing work on efficiently extracting the logical propositions that express the soundness of the
program, in particular in presence of aliasing as it is subject to combinatorial explosion [50]. A
survey of what has been done for aliasing can be found for example in either of Asma Tafat’s
thesis [72] (in French) or Romain Bardou’s thesis [4] (in English). Finally, efficient deductive
verification requires efficient solvers to prove the validity of the logical propositions extracted
from programs. Not all these formulas can be proved automatically as they are usually expressed
in a combination of first-order logic and non-trivial theories such as integer arithmetic which is
undecidable. It is still worthwhile to improve the solvers so that more can be proved. My thesis
works toward this last goal.

1.2 Landscape in Deductive Verification of Programs

Popular techniques for formal verification of programs include bounded model checking, ab-
stract interpretation, and deductive verification. The idea behind abstract interpretation [25] is to
model every possible execution of a program using abstract domains that only describe the part
of program states in which we are interested. The abstract interpreter uses this abstraction to
compute an over-approximation of the values that a variable may take at a given program point.
This over-approximation can then be used to verify that a safety property holds during every ex-
ecution of the program. These abstract domains can be more or less precise depending on which
property we want to check, precision being at the expense of efficiency and sometimes termina-
tion. For example, the values that can be taken by an integer variable can be modeled by a sign,
an interval, or more complex structures like convex polyhedron used to model dependencies
between several integer variables.

Bounded model checking [20] consists in systematic exploration of all possible executions of
a program up to a predefined bound. The program is not executed but its execution is simulated
so that the state of the program at each program point is determined for every input within the
bounds. The model checker can then verify that a safety property holds for every execution
of the program up to the bound. Since it needs to simulate every program execution, model
checking techniques may become unpractical for large bounds on its input.

Deductive verification is based on the generation of mathematical formulas, called verifica-
tion conditions or proof obligations, which express the correctness of the program.

1.2.1 Deductive Verification Tools for Mainstream Languages

There are several tools for deductive verification of C programs. The verifier VCC [21], de-
veloped at Microsoft Research, can be used to prove correctness of a concurrent C program
annotated with contracts, such as pre- and postconditions and type invariants. The HAVOC [63]
verifier, also developed at Microsoft Research, is specialized in the verification of systems soft-
ware. In particular, it provides an accurate memory model for C accounting for low-level oper-
ations such as pointer arithmetic, address-of operations, and casts. The Frama-C [26] tool-suite,
developed jointly by the LSL laboratory at CEA and the Toccata team at Inria Saclay, provides

6

Chapter 1. Introduction 1.2. Landscape in Deductive Verification of Programs

several static analysis tools to verify a C program’s correctness. In particular, it includes tools
based on abstract interpretation and on deductive verification of C programs annotated using
a formal specification language named ACSL. Both VCC and Frama-C are based on classical
first-order logic. Verifast [43] is a verifier for single-threaded and multi-threaded C and Java
programs annotated with contracts written in separation logic [64].

Apart from Verifast, there are several other tools for deductive verification of Java code.
The Extended Static Checker for Java version 2 (ESC/Java2) [22], developed at IT University
of Copenhagen, applies deductive verification to Java programs annotated with the Java Model-
ing Language (JML). The KeY system [1] allows formal verification of Java code specified in
dynamic logic. An additional layer allows to alternatively specify programs using JML or the
object constraint language that is part of the UML standard. The proof obligations generated
for this verification are discharged by a theorem prover for first-order dynamic logic. The KIV
tool [3], developed at University of Ulm, also verifies formal requirements specifications writ-
ten in a higher-order algebraic specification language. In particular, it supports specifications
coming from UML for Java. Deduction is based on a sequent calculus.

The language Spec# [7] is a formal language for contract-based specification of C# programs
developed at Microsoft Research. It supports specification of object invariants in multi-threaded
programs.

Some programming languages have been designed specifically to facilitate formal verifica-
tion. For example, Dafny [52], developed at Microsoft Research, is an imperative object-based
language designed for formal verification. It supports generic classes and dynamic allocation,
but it also provides built-in specification constructs. These constructs include pre- and postcon-
ditions as well as some additional constructs to facilitate program annotation such as updatable
ghost variables that are ignored by the compiler. As another example, F� [71], is a higher order,
effectful programming language based on F�, that was designed with program verification in
mind.

1.2.2 Verification Condition Generation

Tools for deductive verification of programs work by transforming program properties into logi-
cal formulas called verification conditions or proof obligations. The validity of those logical for-
mulas, which implies the correctness of the program, can then be checked by automatic provers.
One of the most common ways to extract verification conditions is the Weakest Precondition
(WP) calculus [35, 59, 50] .

The WP calculus is based on Hoare logic [42] which associates both a precondition P and
a postcondition Q to every statement S of the program. It infers a preconditionWP(S,Q) for a
statement S of a program, its postcondition Q being given. The WP calculus generates the weak-
est precondition strong enough to enforce the validity of Q after the execution of S. Verifying a
program S with a precondition P and postconditionQ then amounts to verifying thatWP(S,Q) is
implied by the user-supplied precondition P. Sometimes, it is impossible to compute the weak-
est precondition for a statement. It is the case in particular for loop statements. In this case, it
can be necessary to manually supply additional information to the calculus. Loop invariants are
properties that can be used as the postcondition for a loop body. The WP calculus then simply
checks that the loop invariant is inductive – if it holds at an iteration then it also holds at the next

7

Chapter 1. Introduction 1.2. Landscape in Deductive Verification of Programs

iteration – and that it is true before the first iteration.
Generating verification conditions for mainstream languages is a complex task that can be

alleviated by splitting it into two steps. The program and its annotations are translated into an
intermediate language on which the verification conditions are generated. The transformation
into the intermediate language is made easier by the fact that there are still primitive program
constructs and, since the intermediate language is simpler than a classical language, verification
condition generation is facilitated. What is more, the verification condition generator can then
easily be shared between different tools.

Boogie [51], developed at Microsoft Research, is a non executable verification language. It
mixes imperative components with pure, mathematical ones, such as logical quantification. It
is used as a back-end for several verifiers such as Dafny, VCC, HAVOC, and Spec#. Boogie is
also the name of the tool that generates verification conditions from Boogie programs. This tool
can also infer some loop invariants.

The Why3 platform [15], developed in Toccata team, can be used as a front-end for provers
and a middle-end for analysis of realistic programming languages. Its language WhyML is used
as intermediate language by Frama-C and GNATprove. It is made of two parts. The logical
part can be used to express mathematical properties. It includes type polymorphism, recursive
algebraic data types, recursive function symbols, inductive predicates, and pattern matching. It
is used to express the verification conditions that can be given to the provers. The program part
is an ML-like programming language with annotations such as loop-variant and invariant and
pre- and postconditions. The tool that generates verification conditions from WhyML programs
is also called Why3.

1.2.3 Automatic Theorem Provers and SMT Solvers

Verification conditions coming from program verification can be discharged using either in-
teractive theorem provers, automatic theorem provers, or Satisfiability Modulo Theory (SMT)
solvers. Since we are interested in automated program verification, we only consider the latter
two.

Automatic theorem provers are able to decide in a semi-complete way the satisfiability of a
set of first-order formulas. Vampire [65] is an automatic theorem prover developed at Manch-
ester University. It uses resolution and superposition calculus to decide the satisfiability of first-
order propositional calculus with equality. The E theorem prover [68], developed at Technishe
Universität München, also decides first-order logic with equality using resolution and superposi-
tion calculus. We can also cite iProver [46], based on an instantiation calculus, also developed at
Manchester University, and SPASS [73], an automatic theorem prover for first-order logic with
equality developed at Max Planck Institute for Computer Science that combines superposition
calculus and splitting for explicit case analysis.

SMT solvers [9, 33] try to decide satisfiability of a set of, usually ground, formulas modulo
a background theory. Most classical theories include:

• Equality with Uninterpreted Functions, also known as free functions, which is congruence
closure over uninterpreted function symbols,

8

Chapter 1. Introduction 1.2. Landscape in Deductive Verification of Programs

• Linear Arithmetic, that is, arithmetic with only +, −, and multiplication with a constant,
over integers, rationals, or reals,

• Difference Arithmetic, where predicates must be of the form x− y≤ c,

• Non-Linear Arithmetics, with both + and ×,

• Bit-Vectors, that is, arithmetics over machine integers, and

• Arrays, that are functional maps with an access function get and an update function set.

Solving an SMT problem amounts to combining an algorithm for resolution of satisfiability
over propositional logic (SAT) with solvers for the various background theories. Most SMT
solvers are based on the Davis-Putnam-Logemann-Loveland (DPLL) algorithm for solving the
SAT problem [28].

This algorithm works on a set of formulas including only logical variables combined using
conjunction, disjunction, and negation operators. It tries to assign each logical variable to either
true or false in a way that sets every formula in the input set to true. If there is such a truth
assignment, the input set of formulas is said to be satisfiable. For example, the set of formulas
{a1∨a2, ¬a1∨a2} is satisfiable as it is true whenever a2 is assigned to true. To determine that
a formula is valid, that is, it is true for every value of its logical variables, a SAT solver checks
that the negation of the formula is unsatisfiable. For example, ¬(¬a1∨a2)∨¬a1∨a2 is valid as
there is no truth values of a1 and a2 that satisfy its negation (¬a1∨a2)∧a1∧¬a2.

The search for the appropriate truth values of the logical variables is done by systematic
exploration. The algorithm chooses arbitrarily a truth value for a logical variable. Then it propa-
gates this information in the propositional formulas from the input problem. If it finds a formula
that is set to false by the chosen truth values of logical variables, it undoes the last choice and
starts over. There are several improvements [61] to this naive search strategy. For example,
when a conflict is found, it can be analyzed to determine which decisions were responsible for
it so that the algorithm can go back at once to the last decision that is involved in the conflict.

Most SMT solvers provide multiple built-in background theories and it is often the case
that the problem we want to solve includes elements coming from several of them. The solvers
for these theories need therefore to be combined, and so, without losing termination nor com-
pleteness of procedures that decide satisfiability in these theories. There are several methods
that can be used to combine theories. The most common one is the Nelson-Oppen combination
method [60]. For example, assume we want to decide the satisfiability of the set of formulas
L = { f (a) �≈ f (b+ c), b ≈ a− c} modulo the theories of linear integer arithmetics and unin-
terpreted functions. The idea is to separate the problem into smaller problems containing only
function symbols coming from one of the theories. If one of the smaller problems is unsatisfi-
able then the original problem is unsatisfiable. Otherwise, the solvers for the smaller problems
must find an agreement on a set of equivalence classes for the variables that are shared among
theories. If there is such a set of equivalence classes then the problem is satisfiable, other-
wise, it is unsatisfiable. On our example, we split L into two sets L1 = { f (a) �≈ f (d)} and
L2 = {d ≈ b+ c, b≈ a− c}. Both L1 and L2 are satisfiable. As a consequence, the two solvers
must agree on a set of equivalence classes for the set {a, d}. This is impossible. Indeed, if we

9

Chapter 1. Introduction 1.3. Problem and Contributions

choose a ≈ d then L1 is unsatisfiable in the theory of uninterpreted functions and if we choose
a �≈ d then L2 is unsatisfiable in the theory of linear integer arithmetics. As a consequence, L is
unsatisfiable in the combination of uninterpreted functions and linear integer arithmetics.

The SMT solver Z3 [31], developed at Microsoft Research, is the default solver used by
Boogie. It includes, among others, theories for linear real and integer arithmetic, fixed-sized
bit-vectors, uninterpreted functions, and extensional arrays. It supports quantifiers and model
generation. The open-source SMT solver CVC4 [8], the successor of CVC3 [38], is a joint
project of New York University and University of Iowa. It includes theories for rational and inte-
ger linear arithmetic, arrays, tuples, records, inductive data types, bit-vectors, and uninterpreted
functions. Like Z3, it supports quantifiers and model generation. VeriT [16] is an open-source
SMT solver developed by University of Nancy, Inria and Federal University of Rio Grande do
Norte. It supports uninterpreted functions and difference logic on real numbers and integers. It
also includes quantifier reasoning capabilities through the integration of a first-order prover.

The verification conditions generated from SPARK 2014 programs are discharged by an
open-source SMT solver named Alt-Ergo [14]. Alt-Ergo, developed in Toccata team, is dedi-
cated to the proof of theorems coming from the verification of programs. It provides a built-in
support for linear arithmetic over integers and rationals, non-linear arithmetic, functional arrays,
enumerated data-types, record data-types, associative and commutative symbols, and fixed-size
bit-vectors. It also supports first-order logic which is essential for program verification, as well
as type polymorphism. In Alt-Ergo, theory combination is not done using the Nelson-Oppen
method but rather using a variant of Shostak combination mechanism [27, 69] called CC(X) [24].

1.3 Problem and Contributions

1.3.1 First Order Axiomatizations as Decision Procedures

Verification conditions generated in program verification use a number of theories. Some of
them are supported specifically by the prover used, we call them background theories of the
prover. SMT solvers usually decide in a terminating and complete way the satisfiability of
quantifier-free formulas in the theories they support. We say that they are decision procedures
for the satisfiability of such formulas. Of course, not every useful theory is supported by every
SMT solver and many theories can be designed that are not supported by any solver. Adding a
background theory to an SMT solver is a complex and time-consuming task that requires internal
knowledge of the solver and often access to its source code.

For many useful theories, one can alternatively provide a first-order axiomatization to the
SMT solver, provided it handles quantifiers. To give some examples, Simplify [34], CVC3,
CVC4, Z3, and Alt-Ergo support first-order logic. Since it is undecidable, any automated prover
is at best semi-complete on first-order problems and even semi-completeness is unattainable
when non-trivial background theories, like integer arithmetic, are involved. To improve the
chance of finding a proof, most SMT solvers give the user some control over instantiation of
quantified formulas, by allowing to annotate quantifiers with so-called instantiation patterns
also known as triggers.

The basic idea behind triggers is that the solver maintains a set of “known” terms (which

10

Chapter 1. Introduction 1.3. Problem and Contributions

usually are simply the terms occurring in assumed facts) and for instantiation to take place, a
known term must match the pattern. Pattern matching modulo equality was introduced in the
Stanford Pascal Verifier [58] and is now used in most SMT solvers supporting quantifiers. It
has been demonstrated that by careful restriction of instance generation in a first-order theory—
in a way that can be expressed via instantiation patterns—one can both preserve completeness
and ensure termination, thus obtaining a decision procedure for the theory. The most prominent
example is the decision procedure for the theory of functional arrays by Greg Nelson [58],
which we will consider in greater detail below. More recently, the same work has been done for
specification of more complex data-structures [55, 19].

Example 1.1. Here is an axiomatization for the theory of non-extensional arrays as defined by
Greg Nelson. This axiomatization uses two function symbols, one, named get, to model access
in an array and another, named set, to model update of an array. It contains two axioms that
describe how an array is modified by an update. The first one states that an access to the updated
index returns the updated element and the second one, given with two different triggers, states
that an access to any other index returns the element that was previously stored at this index.

Warray =

∀a, i, e.[set(a, i,e)] (get(set(a, i,e), i)≈ e)
∀a, i, j, e.[get(set(a, i,e), j)] (i �≈ j→ get(set(a, i,e), j)≈ get(a, j))
∀a, i, j, e.[set(a, i,e), get(a, j)] (i �≈ j→ get(set(a, i,e), j)≈ get(a, j))

The trigger of the first axiom expresses that it need only be instantiated with three terms a, i,
and e if the term set(a, i,e) appears in the problem. For the second axiom, there are two differ-
ent cases where it should be instantiated: if the term get(set(a, i,e), j) appears in the problem
or if both set(a, i,e) and get(a, j) appear in the problem. These two cases allow the equality
get(set(a, i,e), j)≈ get(a, j) to be rewritten both ways.

Unfortunately, the user cannot hope to prove that a given first-order SMT solver is complete
and terminating on a particular set of axioms with triggers for her theory of interest. Triggers
are not and were never meant to change the satisfiability of a first-order formula. Instantiation
patterns are rather considered as hints to what instances are more likely to be useful, and an
SMT solver can base its decisions on the triggers given by the user as well as on the triggers that
it infers itself using some heuristic. In pursuit of completeness, a solver has the right to use any
instantiation strategy it deems useful, and it may even ignore the triggers altogether.

And yet if we want our axiomatization to give us a decision procedure, we must be able to
control instantiation of axioms in a precise and reliable manner.

1.3.2 Overview of the Contributions

We propose in Chapter 2 a framework to add a new background theory to an SMT solver by
providing a first-order axiomatization with triggers. In order to restrict instantiation in a deter-
ministic way, we give a formal semantics to formulas with triggers, which promotes triggers to
the status of guards, forbidding all instances but the ones described by the pattern. Using this se-
mantics, we define, independently from a specific solver’s implementation but modulo its back-
ground theory, three properties of a set of first-order axioms with triggers—namely, soundness,
completeness, and termination—that are required for a solver to behave as a decision procedure

11

Chapter 1. Introduction 1.3. Problem and Contributions

for this axiomatization. We give a fairly exhaustive axiomatization for imperative doubly-linked
lists as an example and we provide completeness and termination proofs of this axiomatization
in our framework.

In Chapter 3 we describe how a solver for first-order formulas with triggers can be built
on top of a ground SMT solver. We show that, when given an axiomatization that meets the
three conditions of soundness, completeness, and termination, such a solver yields a decision
procedure for this axiomatization. Although good in theory, in practice, we show on some simple
examples that this black-box extension mechanism results in poor performances and therefore
does not yet give a practical way for adding a new theory to an SMT solver, calling for a better
integrated approach.

We consider in Chapter 4 the well-known Abstract DPLLModulo Theory framework [61], a
standard theoretic model of modern SMT solvers. We describe a variation of this framework that
handles first-order formulas with triggers. We show that for any axiomatization that meets the
three conditions of soundness, completeness, and termination, a compliant SMT solver behaves
as a decision procedure for this axiomatization.

More precisely, consider an SMT solver which effectively decides quantifier-free problems
in some background theory T . In the simplest case, T can be the theory of equality and un-
interpreted function symbols (EUF). It can also be the theory of linear arithmetic, bit vectors,
associative arrays, or any combination of the above. A user of that prover wants to extend T with
some new theory—for example, that of mutable container data structures—and obtain a decision
procedure for the ground problems in this extended theory which we denote T �. To this purpose,
the user writes down a set of first-order axioms with triggers and proves that this axiomatiza-
tion is a sound, complete, and terminating representation of T � in T . Since the three conditions
are formulated in purely logical terms, no specific knowledge of inner prover mechanisms is re-
quired to do that proof. Now, provided that the solver implements our extension of DPLL(T)—or
any other method that treats axioms with triggers in accordance with our semantics—the solver
is guaranteed to decide any quantifier-free problem in T � in a finite amount of time.

The method is not intended to extend ground SMT solvers to first-order logic. Neither
do we strive to give some ultimate semantics for triggers, on which all first-order SMT solvers
should converge. Our restrictive and rigorous treatment of quantifiers and triggers should be only
applied to the axioms of the theory we wish to decide, and not to first-order formulas coming
with a particular problem. Indeed, while we must restrict instantiation in the former case to
guarantee termination, we would gain nothing by applying the same restrictions to ordinary first-
order formulas. On the contrary, we are likely to prevent the solver from finding proofs which
otherwise would be discovered, and, moreover, the additional checks needed to implement the
restrictions will hinder the solver’s performance.

We have implemented our extension of DPLL(T) in the first-order SMT solver Alt-Ergo.
To validate our approach, we compare, on several case studies, the efficiency of a first-order
axiomatization with and without hand-written triggers, using the built-in quantifier handling in
SMT solvers. In Chapter 5, we describe a theory for mathematical sets. We then use it for the
verification of mathematical formulas coming from the development of programs using the B
method [67] through Atelier B. In Chapter 6, we describe a theory that models some aspects of
vectors in SPARK 2014. We design an axiomatization for this theory and prove that it is sound,

12

Chapter 1. Introduction 1.3. Problem and Contributions

complete, and terminating on SPARK programs.

13

2 First-Order Logic with Triggers

Contents

2.1 Formalization . 15

2.1.1 Preliminary Notions . 16

2.1.2 Logic with Triggers (Syntax and Semantics) 17

2.1.3 Relation with Traditional First-Order Logic 18

2.1.4 Soundness and Completeness . 21

2.1.5 Termination . 22

2.2 Case Study: Imperative Doubly-Linked Lists 26

2.2.1 Presentation of the Theory . 27

2.2.2 Description of the Axiomatization 28

2.2.3 Proofs of Soundness, Completeness, and Termination 30

2.2.4 Assessment of Adequacy with Respect to Existing Trigger Heuristics 33

2.3 Designing Terminating and Complete Axiomatizations 35

2.3.1 Proving Termination of an Axiomatization 35

2.3.2 Designing a Complete Axiomatization 40

2.3.3 An Automatable Debugger for Completeness 42

2.4 Conclusion . 43

In this chapter, we introduce a formalization for a first-order logic with a notation for triggers
that restrict instantiation. In this logic, we then define properties – soundness, completeness, and
termination – that a set of formulas with triggers should guarantee in order to provide a decision
procedure for a theory T � that extends a background theory T . We assess in Section 2.2 the
usability of these definitions on an axiomatization for imperative doubly-linked lists. We show
that this axiomatization is sound, complete, and terminating following our definitions. Finally,
in Section 2.3, we give some advices for designing a complete and terminating axiomatization.

2.1 Formalization

In first-order SMT solvers, triggers are used to favor instantiation of universally quantified for-
mulas with “known” terms that have a given form. Intuitively, a term is said to be known when
it appears in a ground fact assumed by the solver. Here is an example of a formula with a trigger
in SMT-LIB version 2 [10] notation:

15

Chapter 2. FOL with Triggers 2.1. Formalization

(forall ((x Int)) (! (= (f x) c) :pattern ((g x))))

The bang symbol under the universal quantifier marks an annotated sub-formula and the trigger
(g x) appears after the keyword :pattern. The commonly agreed meaning of the above formula
is:

(= (f t) c) holds for all terms t of type Int such that (g t) is known.

The concept of triggers can be extended to literals. If an axiom can only deduce new facts
when instantiated with terms having a given property P, it may be unnecessary to instantiate
it with a term t without knowing a priori that P(t) is true. In other words, we can restrict
instantiation not just by the shape of known terms but also by what is known about them. For
example, in the theory of extensional arrays, it is enough to apply the extensionality axiom on
arrays that are known to be different [40]:

∀a1, a2 : array.[a1 �≈ a2] (a1 �≈ a2 → (∃i : index. get(a1, i) �≈ get(a2, i))

In this section, we extend the standard first-order logic with constructions for triggers. For
the sake of simplicity, our formalization is unsorted even if all our examples use sorts. We define
what it means for a formula with triggers to be true in the context of a given set of known facts
and terms. Finally, we introduce the properties of soundness, completeness, and termination for
sets of first-order formulas with triggers.

2.1.1 Preliminary Notions

We work in classical untyped first-order logic and assume the standard notation for first-order
formulas and terms. We denote formulas with letters ϕ and ψ , literals with l, terms with s and
t, and substitutions with σ and µ . Other notational conventions will be introduced in the course
of the text.

To simplify our definitions, we work on formulas in negative normal form. The syntax of
formulas and literals can be described as follows, A being an atom:

ϕ ::= l | ϕ1∨ϕ2 | ϕ1∧ϕ2 | ∀x.ϕ | ∃x.ϕ

l ::= A | ¬A

The transformation into negative normal form uses the following, usual, definitions:

¬(ϕ1∨ϕ2) =⇒¬ϕ1∧¬ϕ2

¬(ϕ1∧ϕ2) =⇒¬ϕ1∨¬ϕ2

¬(∀x.ϕ) =⇒∃x.¬ϕ

¬(∃x.ϕ) =⇒∀x.¬ϕ

We say that a formula is closed if it has no free variables, and that a term, literal, or formula
is ground if it has no free variables and no quantifiers. We use T (t), T (l), T (S) to denote the
set of all terms that occur in, respectively, a term t, a literal l, or a set of terms or literals S.

16

Chapter 2. FOL with Triggers 2.1. Formalization

We reason modulo some background theory T , which we assume to be fixed for the rest of
this section. In the simplest case, T can be the theory of Equality With Uninterpreted Functions
(EUF). We assume that the signature of T contains at least one constant symbol to allow con-
structing the Herbrand universe and can be extended at will with uninterpreted function symbols
to allow Skolemization. We use the following definition for atoms, were ≈ is the symbol for
equality:

A ::= � | t1 ≈ t2 | . . .

The dots stand for other forms of predicates specific to background theories, e.g. comparison for
linear arithmetic.

We use Herbrand models in our formalization, that is, we call model a set of literals L
containing every valid literal l. Note that a first-order formula is satisfiable if and only if it has
an Herbrand model.

We use the standard notation L � ϕ to state that a closed first-order formula ϕ is valid in a
Herbrand model L. Let T be a theory, that is, a possibly infinite set of closed first-order formulas.

Definition 2.1 (T -satisfiability). We say that a first-order formula ϕ is valid in a model Lmodulo
T , written L �T ϕ if ϕ is valid in L and L is also a model of T . If a first-order formula ϕ has a
model modulo T then we say that it is T -satisfiable or, equivalently, that is is satisfiable modulo
T .

We sometimes use clauses, that are disjunctive sets of literals. We say that a clause is a unit
clause, if it contains only one literal. The empty clause is assumed to be equivalent to false, that
is, ¬�.

2.1.2 Logic with Triggers (Syntax and Semantics)

We introduce two new kinds of formulas. A formula ϕ under a trigger l is written [l]ϕ . It can
read as if the literal l is true and all its sub-terms are known then assume ϕ . A dual construct
for [l]ϕ , which we call a witness, is written �l�ϕ . It can be read as assume that the literal l is
true and all its sub-terms are known and assume ϕ . Notice that neither triggers nor witnesses
are required to be tied to a quantifier. The extended syntax of formulas can be summarized as
follows:

ϕ ::= l | ϕ1∨ϕ2 | ϕ1∧ϕ2 | ∀x.ϕ | ∃x.ϕ | [l]ϕ | �l�ϕ

On the new constructs, transformation into negative normal form is done using the additional
equivalences ¬�l�ϕ =⇒ [l]¬ϕ and ¬[l]ϕ =⇒ �l�¬ϕ .

We write [t]ϕ for [t ≈ t]ϕ , �t�ϕ for �t ≈ t�ϕ , ⊥ for ¬�, t1 �≈ t2 for ¬(t1 ≈ t2), ϕ1 → ϕ2 for
¬ϕ1∨ϕ2, and ϕ1 ↔ ϕ2 for (ϕ1 → ϕ2)∧ (ϕ2 → ϕ1). If there are several triggers or witnesses in
a row, we write [l1, . . . , ln]ϕ for [l1] . . . [ln]ϕ and �l1, . . . , ln�ϕ for �l1� . . .�ln�ϕ .

A first-order formula with triggers must be evaluated in the context of a particular set of
assumed facts and known terms:

17

Chapter 2. FOL with Triggers 2.1. Formalization

Definition 2.2 (World modulo T). We call world a T -satisfiable set of ground literals. A world
L is inhabited if there is at least one term occurring in it, i.e. T (L) is non-empty. A world L is
complete if for any ground literal l in the signature of T , either l ∈ L or ¬l ∈ L.

Definition 2.3 (Known term modulo T). A term t is known in a world L if and only if there is a
term t � ∈ T (L) such that L �T t ≈ t �

The key intuition about worlds is that a ground literal l can only be evaluated in a world
L if every term t in T (l) is known in the world. If, on the contrary, some term occurring in
l is unknown in L, we “refuse” to evaluate the literal, that is neither l nor ¬l is true in L. To
express this constraint easily, we use a unary predicate symbol known which we assume to be
new and not to appear anywhere else in the problem. Using this symbol, the fact that a term t is
known in L, can be equivalently stated as L∪

�

s∈T (L) known(s) �T known(t). We abbreviate the
conjunction

�

t∈S known(t) as known(S), where S is any set of ground terms.

Definition 2.4 (Truth value modulo T). Given a world L and a closed formula ϕ , we define what
it means for ϕ to be true in L, written L�T ϕ , by induction on ϕ as follows:

L�T l L �T l and L∪ known(T (L)) �T known(T (l))

L�T ϕ1∨ϕ2 L�T ϕ1 or L�T ϕ2

L�T ϕ1∧ϕ2 L�T ϕ1 and L�T ϕ2

L�T ∀x.ϕ for every term t in T (L), L�T ϕ[x← t]

L�T ∃x.ϕ there is a term t in T (L) such that L�T ϕ[x← t]

L�T [l]ϕ if L�T l then L�T ϕ

L�T �l�ϕ L�T l and L�T ϕ

We say that a closed formula ϕ is false in L whenever L�T ¬ϕ . We call ϕ feasible if there exists
a world in which ϕ is true.

As we have noted, a formula that contains a term unknown in a world may be neither true
nor false in that world. On the other hand, it is impossible for a formula to be both true and false
in the same world. In other words, there is no closed formula ϕ and world L such that L �T ϕ

and L�T ¬ϕ . This is easily proved by induction on the structure of ϕ .
According to the rules, a formula with a witness �l�ϕ is handled just as the conjunction l∧ϕ .

Yet a formula with a trigger [l]ϕ is not the same as the disjunction ¬l ∨ϕ . Indeed, consider a
literal l that contains a term unknown in L, so that neither l nor ¬l is true in L. Then we have
L �T [l]⊥ but not L �T ¬l ∨⊥. However, if L is a complete world, then any ground literal is
either true or false in L, and we can replace all triggers with implications.

Definition 2.5 (Model modulo T). A world L is said to be a model of a closed formula ϕ

whenever L is complete and L�T ϕ . We call ϕ satisfiable if it has a model.

2.1.3 Relation with Traditional First-Order Logic

Let ϕ be a closed formula and ϕ � be ϕ where all triggers are replaced with implications and all
witnesses with conjunctions. As noted above, in any complete world L, L �T ϕ if and only if

18

Chapter 2. FOL with Triggers 2.1. Formalization

L�T ϕ �. Moreover, L�T ϕ � if and only if L �T ϕ �. Indeed, since every ground term is known in
a complete world, the truth value of quantified formulas and ground literals in our logic coincides
with that in the usual first-order logic. Thus, L is a model of ϕ if and only if it is a Herbrand
model of ϕ � in T . Consequently, ϕ is satisfiable in the sense of Definition 2.5 if and only if ϕ � is
T -satisfiable, which justifies our reuse of the term.

For ground literals or conjunctions thereof, the properties of feasibility and satisfiability are
equivalent. A non-literal formula, however, can be true in some world yet have no model. For
example, the formula [a]a �≈ a (which is an abbreviation for [a ≈ a]a �≈ a) is true in any world
where a is unknown, but is false in any complete world.

Feasibility does not imply the existence of a model even in the case where the formula in
question contains no triggers or witnesses. Assume T to be the theory of linear arithmetic. Then
the formula ∃y.∀x.x ≤ y is true in the world {0 ≤ 0}. Indeed, this world “knows” only one
distinct term modulo T and there is no possible instantiation to refute ∀x.x ≤ 0. Of course, the
formula ∃y.∀x.x≤ y has no model, since the only complete world for T is, by definition, the set
of all ground literal facts of linear arithmetic.

It is thus all the more remarkable that the following implication holds in the background
theory EUF (Equality with Uninterpreted Functions):

Theorem 2.1. Let ϕ be a closed first-order formula without triggers and witnesses. Let L be an

inhabited world such that L�EUF ϕ . Then ϕ is satisfiable in first-order logic with equality (and

therefore has a model in the sense of Definition 2.5).

Proof. We start with some preliminaries. From now on and until the end of this section, we write
� for �EUF and � for �EUF. We define an encoding � � that explicitly restricts instantiation of
first-order formulas in negative normal form to known terms.

�ϕ1∧ϕ2� � �ϕ1�∧�ϕ2� �ϕ1∨ϕ2� � �ϕ1�∨�ϕ2�

�∀x.ϕ� � ∀x.known(x)→�ϕ� �∃x.ϕ� � ∃x.known(x)∧�ϕ�

�l� � known(T (l))∧ l

Lemma 2.1. Let ϕ be a closed first-order formula without triggers and witnesses. If there is an

inhabited world L such that L � ϕ , then there is a Herbrand model L� of �ϕ� such that, for at
least one ground term ω , L� � known(ω).

Proof. Let us consider the following set of literals L�:

L∪ known(T (L))∪{¬known(t) | L∪ known(T (L)) � known(t)}

Since L is inhabited, for at least one ground term ω , L� � known(ω). We show that the set of
literals L� is satisfiable. By contradiction, assume L� is unsatisfiable. This can only be the case if
there is a set of equalities t1 ≈ t �1 . . . with ti ∈ T (L) and t �i ∈ {¬known(t) | L∪ known(T (L)) �
known(t)} such that L � t1 ≈ t �1∨ In the theory EUF, if a set of literals implies a disjunction
of equalities then it implies one of them. As a consequence, there must be an equality t ≈ t � such
that t ∈ T (L) and t � ∈ {¬known(t) | L∪ known(T (L)) � known(t)}, which is impossible.

We show by structural induction on ϕ that, for every formula ϕ such that L � ϕ , we have
L� � �ϕ�.

19

Chapter 2. FOL with Triggers 2.1. Formalization

• l: We have L � l and, by construction of L�, L� � l.

• ϕ1∨ϕ2: Either L� ϕ1 or L� ϕ2. By induction hypothesis, L� � �ϕ1� or L� � �ϕ2�. Thus,
L� � �ϕ1�∨�ϕ2�= �ϕ1∨ϕ2�.

• ϕ1 ∧ϕ2: Both L � ϕ1 and L � ϕ2. By induction hypothesis, L� � �ϕ1� and L� � �ϕ2�.
Thus, L� � �ϕ1�∧�ϕ2�= �ϕ1∧ϕ2�.

• ∀x.ϕ: Let t be a term. If L∪ known(T (L)) � known(t) then there is t � ∈ T (L) such that
L � t ≈ t �. By definition of �, we have L � ϕ[x ← t �] and hence L� � �ϕ[x← t �]� by
induction hypothesis. Therefore L� � ∀x.known(x)→�ϕ�.

• ∃x.ϕ: There is a term t in T (L) such that L � ϕ[x ← t]. By construction of L�, L� �
known(t). Furthermore, by induction hypothesis, L� � �ϕ[x← t]�. As a consequence,
L� � ∃x.known(x)∧�ϕ�.

Using Lemma 2.1, we can reformulate our theorem:

Lemma 2.2. Let ϕ be a closed first-order formula without triggers and witnesses. Let L be a

Herbrand model of �ϕ� such that at least for one ground term ω , L � known(ω). Then ϕ is

EUF-satisfiable.

We can assume that for every non-constant term t, L contains an equality t ≈ c, where c is a
constant (such equalities can always be added to a model if needed). We can also assume that ω

is a constant.
We define a set of literals L1 = {l | known does not occur in l and L � �l�} and another

L2 = L1 ∪{t ≈ ω | L1 ∪ known(T (L1)) � known(t) and, for every proper subterm t � of t, L1 ∪
known(T (L1)) � known(t

�)}. We show that:

(i) L2 is satisfiable,

(ii) for every ground term t, there is t � ∈ T (L1) such that L2 � t ≈ t �, and

(iii) L2 � ϕ .

Proof of (i): Since L is satisfiable, so is L1. In EUF, for every set of literals L and every pair
of terms t1 and t2, if L � t1 �≈ t2 then L∪ known(T (L)) � known(t1)∧ known(t2). Indeed, if t1
is not known in L modulo EUF then we can choose any value for it and, in particular, the value
associated to t2. Thus, adding an equality between a known term and an unknown term to a set
of literals cannot lead to inconsistency. Let t1 and t2 be two terms such that L1 � t1 ≈ t2, L1 ∪
known(T (L1)) � known(ti), and, for every proper subterm t � of t1 or t2, L1∪ known(T (L1)) �
known(t �). Since t1 cannot be equal modulo L1 to a subterm of t2, we have that L1 ∪ {t1 ≈
ω}∪known(T (L1))∪known(t1) � known(t2). Thus, no matter the order in which the equalities
are added to L1, they always involve a previously unknown term. As a consequence, L2 is
satisfiable.

20

Chapter 2. FOL with Triggers 2.1. Formalization

Proof of (ii): We show that, for every ground term t, there is t � ∈ T (L1) such that L2 � t ≈ t �

by structural induction over t. We write t as f (t1 . . . tn) where n can be zero for constants.
By induction hypothesis, for every i in 1..n, there is t �i ∈ T (L1) such that L2 � ti ≈ t �i . If
L1 ∪ known(T (L1)) � known(t), there is t � ∈ T (L1) such that L1 � t ≈ t �. Otherwise, con-
sider f (t �1 . . . t

�
n). By construction, L2 � f (t �1 . . . t

�
n) ≈ t. If there is t � ∈ T (L1) such that L1 �

f (t �1 . . . t
�
n)≈ t �, then the proof is over. Otherwise, L1∪known(T (L1)) � known(f (t �1 . . . t

�
n)) and,

for every i in 1..n, L1∪known(T (L1)) � known(t
�
i). By construction of L2, f (t

�
1 . . . t

�
n)≈ ω ∈ L2.

Since L2 � f (t �1 . . . t
�
n)≈ t, we have L2 � t ≈ ω which concludes the proof.

Proof of (iii): We show that, for every ground formula ψ without triggers and witnesses such
that L � �ψ�, L2 � ψ by structural induction over ψ .

• L � �l�. By definition of L1, l ∈ L1 and L2 � l.

• L � �ψ1∧ψ2�= �ψ1�∧�ψ2�. By induction hypothesis, L2 � ψ1∧ψ2.

• L � �ψ1∨ψ2� = �ψ1�∨�ψ2�. Since L is a model, L � �ψ1� or L � �ψ2�. By induction
hypothesis, L2 � ψ1 or L2 � ψ2. Thus L2 � ψ1∨ψ2.

• L � �∀x.ψ� = ∀x.known(x)→ �ψ�. Let t be a ground term. By (ii), there is t � ∈ T (L1)
such that L2 � t ≈ t �. By construction of L1, L� known(T (t �)). We then have L� �ψ� [x←
t �] and, by immediate induction over ψ , L � �ψ[x← t �]�. By induction hypothesis, we
have L2 � ψ[x← t �]. Therefore, L2 � ψ[x← t] and L2 � ∀x.ψ .

• L � �∃x.ψ� = ∃x.known(x)∧�ψ�. Since every ground term is equal to a constant in L,
there is a constant c ∈ T (L) such that L � known(c) and L � �ψ� [x← c]. By immediate
induction over ψ , L � �ψ[x← c]�. By induction hypothesis, L2 �ψ[x← c] and L2 � ∃x.ψ .

2.1.4 Soundness and Completeness

Whenever a user wants to extend the solver’s background theory T and provides for that purpose
a set of axioms with triggers, she must prove that this axiomatization is an adequate representa-
tion of the extended theory T � modulo T .

Definition 2.6 (Soundness modulo T). An axiomatizationW is sound with respect to T � if, for
every T �-satisfiable set of ground literals L,W ∪L is T -satisfiable.

Definition 2.7 (Completeness modulo T). An axiomatizationW is complete with respect to T �

if, for every set of ground literals L such thatW ∪L is feasible, L is T �-satisfiable.

Remark 2.1. Note that the two definitions of soundness and completeness are not symmetrical.
Indeed, we want a solver to be allowed to stop whenever it has found a world L in which the
axiomatization is true while returning satisfiable. In particular, we want the solver to instantiate
universal quantifiers using only terms of L and to ignore formulas protected by a trigger l if l is
not true in L.

21

Chapter 2. FOL with Triggers 2.1. Formalization

Quite often, T � is the theory defined by the same set of axioms W where all triggers and
witnesses are erased. More precisely, we start with a usual first-order axiomatization of the
theory of interest, and then annotate axioms with triggers and witnesses in order to restrict
instantiation and guarantee the termination of proof search. In this case, to prove soundness, we
must show that the added witnesses do not allow us to deduce statements beyond the initial set of
first-order axioms. As for completeness, we must show that the added triggers and the restricted
semantics of quantifiers do not prevent us from proving every ground statement deducible in the
initial axiomatization.

Example 2.1. The proof that the set of axiomsWarray shown in Example 1.1 is complete modulo
EUF closely resembles the proof by Greg Nelson in [58]. We do not give this proof here but
show that simpler or more “intuitive” variants of that axiomatization are incomplete.

• Let W 1
array be Warray where the trigger in the first axiom is replaced by get(set(a, i,e), i).

Consider the set of literals L1 = {set(a, i,e1)≈ set(a, i,e2), e1 �≈ e2}. It is unsatisfiable in
the theory of arrays since we have both get(set(a, i,e1), i)≈ e1 and get(set(a, i,e2), i)≈ e2.
Still,W 1

array∪L1 is true in the world L1, since we have no term in L1 to match the trigger.

• Let W 2
array be Warray without the second axiom. Consider the set of ground literals L2 =

{get(set(a, i1,e), j) �≈ get(set(a, i2,e), j), i1 �≈ j, i2 �≈ j}. It is unsatisfiable in the theory of
arrays since get(set(a, i1,e), j)≈ get(a, j) and get(set(a, i2,e), j)≈ get(a, j). Yet,W 2

array∪
L2 is true in the world L2∪{get(set(a, i1,e), i1)≈ e, get(set(a, i2,e), i2)≈ e}.

• Let W 3
array be Warray without the third axiom. Consider the set of ground literals L3 =

{set(a1, i,e) ≈ set(a2, i,e), i �≈ j, get(a1, j) �≈ get(a2, j)}. It is unsatisfiable in the theory
of arrays since get(set(a1, i,e), j) ≈ get(a1, j) and get(set(a2, i,e), j) ≈ get(a2, j). Still
W 3
array∪L3 is true in the world L3∪{get(set(a1, i,e), i)≈ e, get(set(a2, i,e), i)≈ e}.

2.1.5 Termination

Once it has been established that a given set of axioms with triggers is sound and complete
for our theory, we must show that the solver equipped with this axiomatization terminates on
any ground satisfiability problem. We call such axiomatizations terminating and the rest of this
section is dedicated to the definition of this property.

There can be no single “true” definition of a terminating axiomatization. Different variations
of the solver algorithm may terminate on different classes of problems, which may be more or
less difficult to describe and to reason about. We should rather strive for a “good” definition,
which, on one hand, leaves room for an efficient implementation, and on the other hand, is
simple enough to make it feasible to prove that a given set of axioms is terminating.

Below we present what we consider a reasonably good definition. It serves as the basis for
the DPLL-based procedure described in Chapter 4. In Section 2.2, we prove that a non-trivial ax-
iomatization of imperative doubly-linked lists is terminating according to this definition. Finally,
in Section 4.2.2, we discuss possible variations of the termination property and their implications
for the solver algorithm.

To bring ourselves closer to the implementation, we start by eliminating the existential quan-
tifiers and converting axioms into a clausal form.

22

Chapter 2. FOL with Triggers 2.1. Formalization

Skolemization: The Skolemization transformation, denoted SKO, traverses a formula in top-
down order and replaces existential quantifiers with witnesses of Skolem terms as follows:

SKO(∃x.ϕ) � �c(y)�SKO(ϕ[x← c(y)]),

where y is the set of free variables of ∃x.ϕ and c is a fresh function symbol.

Lemma 2.3. Skolemization preserves feasibility and satisfiability.

Proof. It can be done by induction over ϕ . We construct a world for SKO(ϕ) by giving the
Skolem terms the same interpretation as for the corresponding ground terms in the original
world for ϕ . In the opposite sense, if SKO(ϕ) is feasible, then ϕ is true in the same world.

The use of the witness is crucial here. Indeed, SKO(∃x.[x]⊥) is �c�[c]⊥ which preserves
infeasibility, whereas the formula [c]⊥ is true in any world where c is unknown.

Skolemization may not preserve the soundness and completeness of a set of axioms. For
example, if T � is the theory ∃x.P(x), then the Skolemized axiom �c�P(c) is not a sound repre-
sentation of T �. Indeed, the ground literal ¬P(c) is T �-satisfiable, but the union �c�P(c)∪¬P(c)
has no model. This does not present a problem for us: the soundness and completeness theorems
in Chapters 3 and 4 do not require Skolemized axiomatizations.

Clausification:

Definition 2.8 (Pseudo-clause). We say that a formula is a pseudo-literal if it is a literal l, a
trigger [l]C, a witness �l�C, or a universally quantified formula ∀x.C, whereC is a disjunction of
pseudo-literals, called pseudo-clause.

In what follows, we treat pseudo-clauses (and other kinds of clauses) as disjunctive sets,
that is, we ignore the order of their elements and suppose that there are no duplicates. As for
traditional logic, any Skolemized formula can be transformed into a clausal form, the case of
triggers and witnesses being handled using the equivalences between the formulas [l](ϕ1∧ϕ2)
and [l]ϕ1∧ [l]ϕ2, and the formulas �l�(ϕ1∧ϕ2) and �l�ϕ1∧�l�ϕ2.

Before we proceed to definition of the termination property, let us give some informal ex-
planation of it. To reason about termination, we need an abstract representation of the evolution
of the solver’s state. It is convenient to see this evolution as a game where we choose universal
formulas to instantiate and our adversary decides how to interpret the result of instantiation, that
is, what new facts can be assumed. Whenever we arrive at a set of facts that is inconsistent or
saturated so that no new instantiations can be made, the game terminates and we win. If, on the
other hand, whatever instantiations we do, the adversary can find new universal formulas for us
to instantiate, the game continues indefinitely. An axiomatization is terminating if we have a
winning strategy for it. In other words, no matter what partial model we explore, there is a se-
quence of instantiations—which our solver will eventually make due to fairness—leading either
to a contradiction or to a saturated partial model.

The adversary’s moves are represented by so-called truth assignments. Intuitively, given a
current set of assumed facts, a truth assignment is any set of further facts that the solver may
assume using only propositional reasoning, without instantiation. Once this completion is done,

23

Chapter 2. FOL with Triggers 2.1. Formalization

we may choose an assumed universal formula and a known term to perform instantiation, allow-
ing for the next stage of completion and so on. A tree that inspects all possible truth assignments
for certain instantiation choices (i.e. all possible adversary’s responses to a particular strategy of
ours) is called instantiation tree. An axiomatization is terminating if for any ground satisfiability
problem we can construct a finite instantiation tree.

To avoid applying substitutions, we use closures. A closure is a pair ϕ ·σ made of a pseudo-
literal ϕ and a substitution σ mapping every free variable of ϕ to a ground term. We write ϕσ

for the application of σ to ϕ , and ∅ for the empty substitution. If two substitutions σ and σ �

have the same domain D, we write σ ≈̇σ � for the formula
�

x∈D xσ ≈ xσ �. If C is a pseudo-
clause, we write C ·σ for the disjunctive set of closures {ϕ ·σ � | ϕ ∈ C and σ � is σ restricted
to the free variables of ϕ}. Disjunctive sets of closures are sometimes called theory clauses, as
they come from the axiomatization of our theory of interest.

We define the facts that are readily available from a set of theory clauses V , without the
need to eliminate triggers or witnesses, to instantiate a variable, or to decide which part of a
disjunction to assume:

Definition 2.9. Given a set of theory clauses V, we define the set of literals �V� � {lσ | l ·
σ is a unit clause in V}.

Definition 2.10 (Truth assignment modulo T). A truth assignment of a set of theory clauses V
is any set of theory clauses A that can be constructed starting from V by exhaustive application
of the following rules:

• if (ϕ1∨. . .∨ϕn) ·σ ∈ A then add some subset of the closures ϕ1 ·σ , . . . ,ϕn ·σ to A,

• if [l]C ·σ ∈ A and �A��T lσ then addC ·σ to A,

• if �l�C ·σ ∈ A, then add l ·σ and C ·σ to A.

We say that a truth assignment A is T-satisfiable if the set of literals �A� is T -satisfiable. A T -
satisfiable truth assignment A is said to be final if every possible instantiation is redundant in A,
that is for every closure ∀x.C ·σ in A and every term t ∈ T (�A�), there is a ground substitution
σ � such that C ·σ � ∈ A and �A� �T (σ ∪ [x �→ t]) ≈̇σ �. In what follows, we write T (A) for
T (�A�) and A �T l for �A� �T l.

Since truth assignments only decomposes formula and do not introduce new terms, any finite
set of theory clauses has a finite number of possible truth assignments.

Remark that, in terms of solver implementation, this definition means that, while we require
the solver to eliminate triggers and witnesses eagerly, it is permitted to postpone the decision
over disjunctions. Such postponing corresponds to adding no closures at all in the first case of
the definition above. In this way, the solver is not urged to make choices which it will have to
backtrack later, and can instead wait until subsequent instantiations reduce the choice space.

Definition 2.11 (Instantiation tree modulo T). An instantiation tree of a set of pseudo-clauses
W is any tree where the root is labeled byW ·∅, every node is labeled by a set of theory clauses,
and every edge is labeled by a non-final truth assignment such that:

24

Chapter 2. FOL with Triggers 2.1. Formalization

• a node labeled by V has leaving edges labeled by all T -satisfiable non-final truth assign-
ments of V,

• an edge labeled by A leads to a node labeled by A∪C · (σ ∪ [x �→ t]), where ∀x.C ·σ ∈ A

and t ∈ T (A).

We have two notions of termination; the strongest one can be applied to less axiomatizations
of theories but leads to easier proof of termination of solvers’ implementation:

Definition 2.12 (Strong Termination modulo T). A set of pseudo-clausesW is strongly termi-
nating if, for every finite set of ground literals L, every instantiation tree ofW ∪L is finite.

Definition 2.13 (Weak Termination modulo T). A set of pseudo-clausesW isweakly terminating
or simply terminating if, for every finite set of ground literals L,W ∪L admits at least one finite
instantiation tree.

Remark 2.2. In the definition of weak termination, we only require thatW has one finite instan-
tiation tree and not that every instantiation tree of W is finite. Indeed, we rely on the solver’s
implementation to be fair and to do all the instances required by one particular finite instantiation
tree. That it may also do other instances is not a problem as, in a finite amount of time, it will
either reach an unsatisfiable state or all these unaccounted instances will be redundant.

The process of truth assignment leaves the solver a choice over what parts of a disjunction to
assume. It may seem that assuming more formulas will always bring us more known terms and
more universal sub-formulas to instantiate, so that it is sufficient to only consider the maximal
truth assignments in an instantiation tree. However, this is not true: an assumed formula might
be an equality that, instead of expanding the set of known terms, reduces it. Thus it may happen
that an infinite branch in an instantiation tree passes through non-maximal truth assignments.

Example 2.2. The proof of termination of the theory of arrays described in Examples 1.1 and 2.1
is straightforward. It suffices to demonstrate that the axioms ofWarray cannot create new terms.
Indeed, let L be a set of ground literals and A a truth assignment of Warray ∪ L. Assume that
there are three terms a, i, and e in T (�A�) such that set(a, i,e) is known in A, that is �A� ∪
known(T (A)) �T known(set(a, i,e)). Then, for every term t in T (get(set(a, i,e), i)≈ e), �A�∪
{get(set(a, i,e), i)≈ e}∪ known(T (�A�)) �T known(t). Indeed, since set(a, i,e) is known in A,
it must be the case for set(a, i,e) and all it subterms, and, since get(set(a, i,e), i) ≈ e, it is also
the case for get(set(a, i,e), i). Thus, no instance of the first axiom can lead to the creation of new
known terms. The same reasoning can be done for the second and the third axioms. Therefore,
every instantiation tree ofWarray∪L is finite.

Example 2.3. Let us look at a more interesting proof of termination. Consider the following
axiomatization. We want to model conversion between two domains E and e such that every
element of e can be converted to an element of E but there may be elements of E that cannot
be converted to e. For example, this could be used to model conversion between mathematical
integers and machine 32 bit integers. The axiomatization contains five function symbols. If
validE(x) (resp. valide(x)) returns t (for ’true“) then x is an element of E (resp. an element of
e). The conversion function convE→e(x) (resp. conve→E(x)) may return either an element of e

25

Chapter 2. FOL with Triggers 2.1. Case Study: Doubly-Linked Lists

(resp. an element of E) or some unspecified “invalid” value, if x is not fit for conversion. If x is
an element of E, the function unfitE→e(x) returns t when x cannot be converted to e.

Wconv =

∀x.[validE(x)≈ t] valide(convE→e(x))≈ t∨unfitE→e(x)≈ t

∀x.[valide(x)≈ t] validE(conve→E(x))≈ t

∀x.[validE(x)≈ t, valide(convE→e(x))≈ t] conve→E(convE→e(x))≈ x

∀x.[valide(x)≈ t, conve→E(x)] convE→e(conve→E(x))≈ x

The axiomatizationWconv is not strongly terminating. Indeed, if we start from a set of literals
L= {validE(c)}, we can create an infinite instantiation tree by applying in priority the first two
axioms. We start by instantiating the first axiom with c. In branches labeled by truth assignments
containing valide(convE→e(x)) ≈ t · [x �→ c], we instantiate the second axiom with convE→e(c)
and so on. As there is an infinite branch in which we can always apply one of the first two
axioms,Wconv is not strongly terminating.

Still, the axiomatization Wconv is weakly terminating. Let L be a finite set of literals. We
show how a finite instantiation tree can be constructed forWconv∪L. For any truth assignment A,
add an instance of one of the two first axioms with a term of L if there is one that is not redundant
in A. If there are no more of them, add an instance of one of the two last axioms ofWconv if there
is one that is not redundant in A. The repeated application of these two steps can only construct
finite trees. Indeed, the first one constructs at most two instances per term of L. The second step
never adds new terms to A. Indeed, for the last axiom ofWconv for example, once the triggers are
removed, the only new term is convE→e(conve→E(t)) which is equal to t. As a consequence, it
constructs at most two instances per term present after the last time the first step was applied.

If neither the first nor the second step can be applied on a satisfiable truth assignment A,
every non-redundant instance of the first two axioms in A can only produce new terms of the
form unfitE→e(t) with t already in T (A). By contradiction, assume that there is a non-redundant
instance of the first axiom with a term t such that A �T validE(t) ≈ t. By construction of A,
t cannot occur in L, otherwise, the instance has been already produced in the first step. As
a consequence, validE(t) ≈ t was deduced using the second axiom and there is t � ∈ T (A)
such that A �T valide(t

�) ≈ t and A �T t ≈ conve→E(t
�). Therefore, the last axiom of Wconv

has been instantiated with t � in the second step and A �T convE→e(conve→E(t
�)) ≈ t � and thus

A �T valide(convE→e(t)). Consequently, the result of an instance of the first axiom with t can
only produce new terms of the form unfitE→e(t) with t already in T (A). Since such terms can-
not trigger new instances, we conclude the construction of the instantiation tree by making all
non-redundant instances of the four axioms with terms in A, and there is only a finite number of
them.

2.2 Case Study: Imperative Doubly-Linked Lists

In this section, we give a rather large axiomatization as an example (more than 50 axioms). We
assume that the background theory T is the combination of integer linear arithmetic and booleans
or any conservative extension of it. The axiomatized theory T � contains a definition of imperative
doubly-linked lists with a definition for iterators (named cursors), an equality function, several

26

Chapter 2. FOL with Triggers 2.2. Case Study: Doubly-Linked Lists

modification functions and so on. We prove that this axiomatization is sound, complete and
strongly terminating. It is inspired by the API of lists in the Ada standard library [36].

2.2.1 Presentation of the Theory

Lists are ordered containers of elements on which an equivalence is defined using the function
equal_elements(e1 : element_type,e2 : element_type) : bool. We represent imperative lists of
elements as pairs of:

• an iterative part: a finite sequence of distinct cursors (used to iterate through the list),

• a content part: a partial mapping from cursors to elements, only defined on cursors that
are in the sequence.

The iterative part of an imperative list co is modeled by an integer length(co : list) : int represent-
ing the length of the sequence together with a total function position(co : list,cu : cursor) : int
so that, for every cursor cu, position(co,cu) returns the position of cu in co if it appears in the
sequence and 0 otherwise. The content part of co is modeled by a function element(co : list,cu :
cursor) : element_type so that element(co,cu) returns the element associated to cu in co if any:

elements : � � �
↑ ↑ . . . ↑

cursors : • • •
positions : 1 2 length

Thanks to this description, we can define several other functions. has_element(co : list,cu :
cursor) : bool returns true if and only if cu appears in the iterative part of co and is_empty(co :
list) : bool returns true if co is an empty list. The functions last(co : list) : cursor, f irst(co :
list) : cursor, previous(co : list,cu : cursor) : cursor and next(co : list,cu : cursor) : cursor are
used to iterate through the iterative part of co. If co is empty, last(co) and f irst(co) return a
special cursor named no_element that never appears in any list. no_element is also added at
both ends of the iterative part of co so that previous(co, f irst(co)), previous(co,no_element),
next(co, last(co)) and next(co,no_element) are no_element:

� ◦← •� • · · · •� • → ◦�
no_element sequence no_element

We define two functions left(co : list,cu : cursor) : list and right(co : list,cu : cursor) : list,
that are used to split the list. If cu appears in the iterative part of co or is no_element, left(co,cu)
(resp. right(co,cu)) returns the prefix (resp. suffix) of co that stops before (resp. starts at) cu:

� �
↑ . . . ↑
• •

� �
↑ . . . ↑
cu •

left(co,cu) right(co,cu)

27

Chapter 2. FOL with Triggers 2.2. Case Study: Doubly-Linked Lists

A special empty list empty is returned by left(co,cu) (resp. right(co,cu)) if the cursor cu is
f irst(co) (resp. no_element). On no_element, left(co,cu) returns co.

To search the content part of co for the first occurrence of an element e modulo equivalence,
we use the function f ind(co : list,e : element_type,cu : cursor) : cursor. If cu appears in the
iterative part of co, f ind(co,e,cu) returns the first cursor of co following cu which is mapped
to an element equivalent to e. If there is no such element, no_element is returned. To search
the whole list co, the cursor no_element can be used instead of f irst(co). contains(co : list,e :
element_type) : bool is true if and only if co contains an element equivalent to e.

We add a notion of equality on list: equal_lists(co1 : list,co2 : list) is true if and only if both
parts of co1 and co2 are equal.

The last three functions are designed to describe how a list co is modified when an element
is either inserted, deleted or replaced in co. They are represented as predicates relating the value
of the list before and after the modification as there may be several possible results for the modi-
fication. insert(co : list,cu : cursor,e : element_type,r : list) : bool is true then r can be obtained
by inserting a cursor before cu in the list co (or at the end if cu is no_element) and mapping it to
e. If delete(co : list,cu : cursor,r : list) : bool is true then r can be obtained by deleting the cursor
cu from the list co. If replace_element(co : list,cu : cursor,e : element_type,r : list) : bool is
true then r can be obtained by replacing the element associated to cu in co by e.

2.2.2 Description of the Axiomatization

In this section, we formalize the theory of lists by translating it into a first-order axiomatization.
We also add triggers and witnesses to make it adequate for integration in our framework. We
only give a few axioms. The whole axiomatization is available in Appendix A.1.

The functions length and position are constrained by the axiomatization so that they effec-
tively give a representation of the iterative part of the list. The three following axioms express
that a list contains a finite sequence of distinct cursors:

LENGTH_GTE_ZERO:
∀co : list.[length(co)]length(co)≥ 0

POSITION_GTE_ZERO:

∀co : list,cu : cursor.[position(co,cu)]
length(co)≥ position(co,cu)∧ position(co,cu)≥ 0

POSITION_EQ:

∀co : list,cu1cu2 : cursor.[position(co,cu1), position(co,cu2)]
position(co,cu1)> 0→ position(co,cu1)≈ position(co,cu2)→ cu1 ≈ cu2

Functions on lists such as right, previous, f irst or f ind are only described on their domain
of definition. We only present f ind. The function f ind_ f irst(co : list,e : element_type) : cursor
returns the result of f ind(co,e,no_element), that is to say the first cursor of co that is mapped
to an element equivalent to e. The result f ind(co,e,cu) can then be defined to be the result of
f ind_ f irst on the cursors following cu in co that is to say right(co,cu).

28

Chapter 2. FOL with Triggers 2.2. Case Study: Doubly-Linked Lists

FIND_FIRST_RANGE:

∀co : list,e : element_type.[f ind_ f irst(co,e)]
f ind_ f irst(co,e)≈ no_element ∨ position(co, f ind_ f irst(co,e))> 0

FIND_FIRST_NOT:

∀co : list,e : element_type,cu : cursor.[f ind_ f irst(co,e),element(co,cu)]
f ind_ f irst(co,e)≈ no_element → position(co,cu)> 0→

equal_elements(element(co,cu),e) �≈ t

FIND_FIRST_FIRST:

∀co : list,e : element_type,cu : cursor.[f ind_ f irst(co,e),element(co,cu)]
0< position(co,cu)< position(co, f ind_ f irst(co,e))→

equal_elements(element(co,cu),e) �≈ t

FIND_FIRST_ELEMENT:

∀co : list,e : element_type.[f ind_ f irst(co,e)]0< position(co, f ind_ f irst(co,e))→
equal_elements(element(co, f ind_ f irst(co,e)),e)≈ t

FIND_FIRST:
∀co : list,e : element_type.[f ind(co,e,no_element)]

f ind(co,e,no_element)≈ f ind_ f irst(co,e)

FIND_OTHERS:

∀co : list,e : element_type,cu : cursor.[f ind(co,e,cu)]
position(co,cu)> 0→ f ind(co,e,cu)≈ f ind_ f irst(right(co,cu),e)

The predicates describing a modification of the list are only relevant if they are known to be
true. Here are axioms describing how the result of a deletion is related to the initial state of the
list. They express the links between the two lists using functions length, position and element.

DELETE_RANGE:
∀co1,co2 : list,cu : cursor.[delete(co1,cu,co2)]

delete(co1,cu,co2)≈ t→ position(co1,cu)> 0

DELETE_LENGTH:

∀co1,co2 : list,cu : cursor.[delete(co1,cu,co2)]
delete(co1,cu,co2)≈ t→ length(co2)+1≈ length(co1)

DELETE_POSITION_BEFORE:

∀co1,co2 : list,cu1cu2 : cursor.[delete(co1,cu1,co2), position(co1,cu2)]
(delete(co1,cu1,co2)≈ t∧ position(co1,cu2)< position(co1,cu1))→

position(co1,cu2)≈ position(co2,cu2)
∀co1,co2 : list,cu1cu2 : cursor.[delete(co1,cu1,co2), position(co2,cu2)]

(delete(co1,cu1,co2)≈ t∧0< position(co2,cu2)< position(co1,cu1))→
position(co1,cu2)≈ position(co2,cu2)

29

Chapter 2. FOL with Triggers 2.2. Case Study: Doubly-Linked Lists

DELETE_POSITION_AFTER:

∀co1,co2 : list,cu1cu2 : cursor.[delete(co1,cu1,co2), position(co1,cu2)]
(delete(co1,cu1,co2)≈ t∧ position(co1,cu2)> position(co1,cu1))→

position(co1,cu2)≈ position(co2,cu2)+1
∀co1,co2 : list,cu1cu2 : cursor.[delete(co1,cu1,co2), position(co2,cu2)]

(delete(co1,cu1,co2)≈ t∧ position(co2,cu2)≥ position(co1,cu1))→
position(co1,cu2)≈ position(co2,cu2)+1

DELETE_POSITION_NEXT:

∀co1,co2 : list,cu : cursor.[delete(co1,cu,co2)]
delete(co1,cu,co2)≈ t→ �next(co1,cu)��

DELETE_ELEMENT:

∀co1,co2 : list,cu1cu2 : cursor.[delete(co1,cu1,co2),element(co1,cu2)]
(delete(co1,cu,co2)≈ t∧ position(co2,cu2)> 0)→

element(co1,cu2) = element(co2,cu2)

Note that the axiom DELETE_POSITION_NEXT only introduces a new known term. This
term is needed so that the axiomatization is complete. Indeed, consider the following set of
ground formulas G:

�

length(l1)> 1, insert(l1, f irst(l1),e, l2), delete(l2, f irst(l1), l3),
le f t(l4, previous(l2, f irst(l1)))≈ l1, right(l4, previous(l2, f irst(l1)))≈ l3

�

It is unsatisfiable in the theory of doubly-linked lists. Indeed, here is the situation it describes:

l1 :
� � �
↑ ↑ . . . ↑
∗ • •

l2 :
e � � �
↑ ↑ ↑ . . . ↑
◦ ∗ • •

l3 :
e � �
↑ ↑ . . . ↑
◦ • •

l4 :
� � � e � �
↑ ↑ . . . ↑ ↑ ↑ . . . ↑
∗ • • ◦ • •

Since the length of l1 is strictly greater than 1, there are cursors that appear twice in l4 (those
represented by a •) which is forbidden. Still, without this additional axiom, G∪W is feasible in
our logic. DELETE_POSITION_NEXT introduces a known term for the first cursor of this slice,
allowing the axiomatization to deduce that it appears twice in l4.

2.2.3 Proofs of Soundness, Completeness, and Termination

In this section, we illustrate how a proof of termination, soundness and completeness can be
conducted on the axiomatization of doubly-linked lists.

Theorem 2.2. The axiomatization in Section 2.2.2 is strongly terminating, sound, and complete

with respect to thesame axiomatization without the triggers and witnesses.

30

Chapter 2. FOL with Triggers 2.2. Case Study: Doubly-Linked Lists

2.2.3.1 Proof of Strong Termination

Every universal quantification is done on lists, cursors or elements. As a consequence, if we
show that only a finite number of terms of type list, cursor and element_type can be created, we
can deduce that the axiomatization is strongly terminating.

Let us first look at terms of type list. There is only one formula containing a literal in which
there is a sub-term t of type list that does not appear in the trigger, namely FIND_OTHERS. The
trigger of this formula is f ind(co,e,cu). Such a term cannot be created by the axiomatization.
Since the symbol f ind is not interpreted, known(f ind(co,e,cu)) can only be deduced if we have
known(f ind(co�,e�,cu�)) and equalities between all arguments. These equalities are enough to
ensure that the new term right(co,cu) is equal to the already known term right(co�,cu�). As a
consequence, there can only be one new term of type list per terms of the form f ind(co,e,cu)
in the initial problem.

Then we concentrate on terms of type cursor. The axioms FIND_FIRST, FIND_OTHERS,
CONTAINS_DEF, INSERT_NEW, INSERT_NEW_NO_ELEMENT and DELETE_POSITION_NEXT

all contain a literal in which there is a sub-term t of type cursor that does not appear in the
trigger. Also, there is an existentially quantified cursor variable in EQUAL_LISTS_INV, which
amounts to a term of type cursor after Skolemization. All these cases can be solved with the same
arguments as for the terms of type list. Indeed, the symbols contains(co,e), f ind(co,e,cu),
insert(co1,cu,e,co2), delete(co1,cu,co2), and equal_lists(co1,co2) are all uninterpreted and
cannot be created by the axiomatization.

Finally, let us look at terms of type element. There are a great deal of those because the
function element is often used. However, most of the time, new terms of type element appear
in an equality with an already known term (a sub-term of the trigger). For these terms to be
deduced, the equality has to be assumed. Since the equality is with an already known term,
the term is not new. The remaining axioms FIND_FIRST_ELEMENT and EQUAL_LISTS_INV

can both be solved with the same reasoning we did for terms of type list and cursor. Indeed,
f ind_ f irst(co,e) is uninterpreted and can only be created once per contains(co,e) and twice
per f ind(co�,e,cu) which themselves cannot be created.

2.2.3.2 Proof of Soundness

We show that, if a set of literals G has a model in the axiomatization without triggers and
witnesses then there is a total model of G and the axiomatization. If I is a model of a set of
literals G in the axiomatization without triggers, we define L = {l | I(l) = �}. By construction
of L, L is a total model of G. Since L is complete, for every axiom ϕ of the axiomatization,
L�T ϕ .

2.2.3.3 Proof of Completeness

We first need a lemma that states that equalities between integers can safely be added to partial
models of the axiomatization:

Lemma 2.4. Let L be a world in which the axiomatization is true and t1 and t2 ∈ T (L) be two
terms of type integer. If L �T t1 �≈ t2 then the axiomatization is also true in L∪ t1 ≈ t2.

31

Chapter 2. FOL with Triggers 2.2. Case Study: Doubly-Linked Lists

Proof. Triggers of the axiomatization either have no (non-variable) sub-term of type integer or
can be written t ≈ t where t is of type integer and has no proper (non-variable) sub-term of
this type. In both cases, assuming an equality between two known integer terms cannot make
any new sub-term of a trigger become known nor make a trigger itself become true. As a
consequence, for every literal l appearing as a trigger in the axiomatization, if L ��T l, t1, t2 ∈
T (L) have type integer and L �T t1 �≈ t2 then L∪ t1 ≈ t2 ��T l. This is enough to show that,
if the axiomatization is true in L, t1, t2 ∈ T (L) have type integer and L �T t1 �≈ t2 then the
axiomatization is true in L∪ t1 ≈ t2.

Let G be a set of literals and L a world in which G and the axiomatization are true. We
construct a model from Lfor the axiomatization without triggers and witnesses. Since L �T G,
it is also a model of G.

Since L is T -satisfiable, let IT be a model of L. No integer constant appears in a trigger of
the axiomatization. As a consequence, the axiomatization is true in L∪{i ≈ i | i is an integer
constant}. For every term t ∈T (L) of the form length(co) or position(co,cu), we add t ≈ IT (t)
to L. By Lemma 2.4, the axiomatization is still true in L.

For every term co of type list in L, if the term length(co) is not in T (L) modulo T , we add
length(co)≈ 0 to L and, for every term cu of type cursor, if position(co,cu) is not in L, we add
position(co,cu)≈ 0. This amounts to deciding that lists that are not forced to be non-empty are
empty and cursors that are not forced to be valid in a list l are not valid in l. The axiomatization
is still true in L. Indeed, thanks to POSITION_GTE_ZERO, length(co) is in T (L) whenever there
is a cursor cu such that position(co,cu) is in T (L).

We now need to associate a cursor to every position of every non-empty list. For this, we
consider zones of lists. We define a zone of a term co of type list in L to be a sublist co[i, j], with
0 ≤ i < j ≤ length(co) such that either i = 0 or there is a term cu of type cursor in T (L) such
that L �T position(co,cu)≈ i and, for all k such that i< k≤ j, there is no term cu of type cursor
in L such that L �T position(co,cu) ≈ k. Remark that elements that are inserted and deleted
are, by construction, in a zone of size 1 only containing them (see DELETE_POSITION_NEXT).
In the same way, for right and left, cuts are always done at the junction between two different
zones.

For every zone z of a list, we define the equivalence class of z, written eq(z), to be the set of
the zones that are bound to contain the same cursors as z by literals in L. This computation is
straightforward. For example, here are the rules for deletion.
For every co[i, j] ∈ eq(z):

L �T delete(co,cu,co
�)≈ t and L �T j < position(co,cu) → co�[i, j] ∈ eq(z)

L �T delete(co,cu,co
�)≈ t and L �T j > position(co,cu) → co�[i−1, j−1] ∈ eq(z)

L �T delete(co
�,cu,co)≈ t and L �T j < position(co�,cu)→ co�[i, j] ∈ eq(z)

L �T delete(co
�,cu,co)≈ t and L �T j ≥ position(co�,cu)→ co�[i+1, j+1] ∈ eq(z)

The set eq(z) has some good properties:

1. Every element of eq(z) is a zone.

2. Every zone in eq(z) has the same length.

32

Chapter 2. FOL with Triggers 2.2. Case Study: Doubly-Linked Lists

3. If a zone in eq(z) starts with 0 then they all start with 0.

4. If we have both L �T position(co,cu) > 0 and co[position(co,cu),_] ∈ eq(z) then, for
every zone co�[i,_] ∈ eq(z), L �T position(co

�,cu)≈ i.

From the last two properties, we deduce that each list co appears at-most once in eq(z). As a
consequence, we can associate a free cursor variable to each position in the equivalent zone of a
list without creating lists that may contain the same cursor twice:
While there is a zone co[i, j], with co known and i< j:

• We compute the set of zones eq(co[i, j]).

• To each k such that i< k ≤ j, we associate a fresh cursor cuk.

• For each co�[i�, j�]∈ eq(co[i, j]) and each k� such that i� < k� ≤ j�, position(co�,cuk�−i�+i)≈
k� is added to L.

Once there is no more zone co[i, j], with co ∈ T (L) and i< j, for every term co of type list and
every term of type cursor cu of L for which position(co,cu) is not yet known in L, we can add
position(co,cu)≈ 0 to L. We can check straight-forwardly that the axiomatization is still true in
L. We now have a model in the axiomatization without triggers of the iterative part of every list
that appears in L.

Let us now consider the content part. Let e be a fresh term of type element. We map
element(co,cu) to e for any term co of type list and any term cu of type cursor in L such that
element(co,cu) is not in L modulo T . Each axiom with element(co,cu) as a trigger either de-
duces an equality or an equivalence between new terms, or a non-equivalence between a known
term and a new term. As a consequence, the axiomatization is still true in L.

Remark 2.3. Here we are axiomatizing lists of an abstract infinite type. This proof works for
any element type with an infinite number of equivalence classes. If the element type has a
finite number of equivalence classes, let us call it n, then the axiomatization is not complete
anymore. For example, consider the finite set of literals L with n constants of type element
e1 . . .en containing position(co, f ind_ f irst(co,ei))> n for every i ∈ 1..n.

We have constructed a model for L the axiomatization described in Section 2.2.2 without the
triggers. As a consequence, the axiomatization from Section 2.2.2 is complete for this theory.

2.2.4 Assessment of Adequacy with Respect to Existing Trigger Heuristics

In this section we assess the concordance between our semantics for formulas with triggers
and the heuristics used for trigger instantiation in off-the-shelf SMT solvers. We define some
program functions for a program API of lists, using contracts. For example, an element can only
be accessed on a valid cursor and, after an application of the modification function insert, the
new version of the list is related to the old one by the predicate insert. The examples have been
written in WhyML so that several provers can be used to discharge the logical formulas arising
from their verification using the Why3 tool.

33

Chapter 2. FOL with Triggers 2.2. Case Study: Doubly-Linked Lists

Alt-Ergo 0.95.2 Z3 3.2 CVC4 1.2
With Triggers Yes No Yes No Yes No

test_false 0.00 135.06 TO TO TO TO
test_delete 3.04 145.60 0.03 0.06 0.86 TO
test_insert 34.31 TO 0.07 0.08 3.9 TO
double_size 13.67 TO 11.17 TO 13.3 TO
filter 12.24 TO 0.56 TO 27.05 TO
my_contain 0.76 TO 0.11 880.05 0.65 449.31
my_find 7.46 TO TO TO 9.33 TO
map_f 5.68 TO 10.42 TO Error TO

Figure 2.1: Time (in seconds) needed to answer correctly on all tests with a timeout of 1000s
with and without triggers in the axiomatization. Bold figures point to notably better results for
each prover. We do the tests with Alt-Ergo 0.95.2, Z3 3.2, and CVC4 1.2.

val element (co:list) (cu:cursor) : element_type

requires { has_element co cu }

ensures { result = element co cu }

val insert (co:ref list) (cu:cursor) (e:element_type) : unit

requires { has_element !co cu \/ cu = no_element }

reads { co }

writes { co }

ensures { insert (old !co) cu e !co }

The tests for using the theory of doubly-linked lists are given in Appendix A.2. Here is
only one of them. The function double_size iterates through the list li, inserting the element
e before each existing element of the list. If the list li is not empty at the beginning of the
function, then li should be twice as long at the end of the function. Since there is a loop, we
need to come up with a loop invariant powerful enough to deduce both that the postcondition is
true and that the iteration can be resumed after the insertion. The loop invariant states that:

• the current cursor is valid in li and used to be valid in li at the beginning of the function
or no_element was reached,

• the length of the visited part was doubled, and

• the unvisited part of the list li has not been modified yet.

let double_size (li : ref list) (e : element_type) =

requires { not (is_empty !li) }

ensures { length !li = 2 * (length (old !li)) }

let c = ref (first !li) in

’Loop_Entry:

34

Chapter 2. FOL with Triggers 2.2. Designing Axiomatizations

while has_element !li !c do

invariant {

(((has_element (at !li ’Loop_Entry) !c /\ has_element !li !c)

\/ !c = no_element) /\

length (left !li !c) = 2 * (length (left (at !li ’Loop_Entry) !c)) /\

equal_lists (right !li !c) (right (at !li ’Loop_Entry) !c))

}

insert li !c e;

c := next !li !c

done

We see on results from Figure 2.1 that, in general, SMT solvers are far less efficient when
triggers are removed from the axiomatization. This shows that, even if triggers can be inferred
by SMT solvers, efficient handling of first-order formulas usually requires user guidance in this
choice. This also validates the fact that our semantics is rather consistent with the way triggers
are handled in first-order SMT solvers.

Remark that the test (named test_false) attempts to prove⊥. The results on this line are the
time needed for each solver to stop returning that it cannot discharge the proof. Out of the three
solvers we tried, Alt-Ergo is the only one to terminate on this test in less than 1000s. Indeed,
trigger driven instantiation is the only quantifier instantiation heuristics in Alt-Ergo, which is not
the case for Z3 and CVC4.

2.3 Designing Terminating and Complete Axiomatizations

There is no universal recipe for designing an axiomatization nor for proving its termination or
its completeness. Like for designing any decision procedure, the axiomatization and the proofs
strongly depend on the theory they decide. In this section, we give good practices, tips, and
debugging techniques for designing terminating and complete axiomatizations. We also give
several techniques that can be computer assisted using a decision procedure for the background
theory T .

2.3.1 Proving Termination of an Axiomatization

Here we list several techniques that can be attempted to do a proof of termination of a given ax-
iomatizationW . First, we can define a property stronger than termination which can be checked
in an automatable way. The idea is to over-approximate the set of terms that can be created by
the axiomatization. For this definition, we need to compute, for any set of ground literals L,
the literals that will eventually be entailed in every truth assignment of an instantiation tree of
W ∪ L. More precisely, we consider the set of all literals l for which there is an instantiation
tree Z of W ∪L such that l is entailed by every truth assignment at a certain depth in Z. This
set is not computable and can be infinite, but we can take some finite under-approximation of
it, for example, by fixing the depth, i.e., the number of consecutive instances on a branch. The
greater the chosen depth, the more precise our approximation of the set of generated terms and
the costlier the computation. In what follows, we assume some fixed depth n:

35

Chapter 2. FOL with Triggers 2.3. Designing Axiomatizations

Definition 2.14. Let L be a set of ground literals. Let F1, . . . ,Fm be the sets of theory clauses
that can be constructed from (W ∪L) ·∅ in the following way:

• if [l]C ·σ ∈ F and �F��T l then addC ·σ to F ,

• if �l�C ·σ ∈ F then add l ·σ and C ·σ to F , and

• if ∀x.C ·σ ∈ F , t ∈ T (�F�), and there are less than n instances that have already been
added to F then addC · (σ ∪ [x �→ t]) to F .

We define the set of literals reachable with n instances from L written RCHnW (L) to be �F1∪·· ·∪
Fm�.

Now, we can construct a single partial instantiation tree where all the literals from RCHnW (L)�
are entailed in every branch after a certain number of instances. Here and below, a partial
instantiation tree is an instantiation tree in which no instance has been chosen yet for some truth
assignments.:

Lemma 2.5. For every set V of theory clauses such that W ·∅ ⊆ V and �V� �T L, there is a

finite partial instantiation tree Z of V such that, for every truth assignment A that labels a orphan

edge of Z, �A��T RCHnW (L).

Proof. Let F1, . . . ,Fm be the sets of theory clauses that were used for the construction of RCHnW (L).
We show by induction over the construction of a set Fi that, for every set V � of theory clauses
such thatV ⊆ V �, there is a finite partial instantiation tree Zi(V �) of V � such that, for every truth
assignment A that labels a orphan edge of Zi(V �) and every theory clauseC ·σ in Fi \ (L ·∅), we
have �A�∪ known(T (�A�)) �T known(T (σ)) and there is C ·σ � ∈ A such that �A��T σ ≈̇σ �.
This is enough to conclude as we can construct Z iteratively starting from Z0 =V and, for i<m,
extending every orphan edge of Zi labeled by a truth assignment A with Zi+1(A).

Let us now do the proof. By hypothesis,W ·∅⊆ A.

• IfC ·σ or l ·σ was added to F using �l�C ·σ ∈ F then, by induction hypothesis, for every
satisfiable truth assignment A at a leaf in Z, �A�∪known(T (�A�)) �T known(T (σ)) and
there is σ � such that �l�C ·σ � ∈ A and �A� �T σ ≈̇σ �. As a consequence, by definition of
a truth assignment, l ·σ � andC ·σ � are in A. Thus, the property holds for the tree Z.

• IfC ·σ was added to F using [l]C ·σ ∈F then �F��T l. By induction hypothesis, for every
satisfiable truth assignment A at a leaf in Z, �A�∪known(T (�A�)) �T known(T (σ)) and
there is σ � such that [l]C ·σ � ∈ A and �A� �T σ ≈̇σ �. What is more, for every l� ·σ � ∈ F ,
�A��T l

�σ � by induction hypothesis. As a consequence, �A��T l and, by definition of a
truth assignment,C ·σ � is in A. Thus, the property holds for the tree Z.

• If C · (σ ∪ [x �→ t]) was added to F using ∀x.C ·σ ∈ F and t ∈ T (�F�) then, by induc-
tion hypothesis, for every satisfiable truth assignment A at a leaf in Z, we have �A� ∪
known(T (�A�)) �T known(T (σ)) and there is σ � such that ∀x.C ·σ � ∈ A and �A� �T
σ ≈̇σ �. What is more, by induction hypothesis, for every l� ·σ � ∈ F , �A� �T l

�σ �. Thus,
�A�∪known(T (�A�)) �T known(T (t)) and there is t � in T (�A�) such that �A� �T t ≈ t �.

36

Chapter 2. FOL with Triggers 2.3. Designing Axiomatizations

We construct a new tree Z� starting from Z by adding a new instance ϕ · (σ � ∪ [x �→ t �])
for every satisfiable truth assignment A at a leaf in Z such that ϕ · (σ � ∪ [x �→ t �]) is not
redundant in A. By construction, the property holds for the tree Z�.

We can then define an over-approximation of all the terms that can be learned by instantiating
axioms and removing triggers fromW . The idea is to use fresh constant symbols to model terms
that have been used to instantiate a universal quantifier:

Definition 2.15. For every pseudo-clause C and every set of literals G, we define an over-
approximation NW (C,G) of the set of new terms that can be deduced from C assuming that
the elements of G are true and all their subterms are known:

NW (l,G) = {t ∈ T (l) |

RCHnW (G∪ l)∪ known(T (RCH0
W (G))) �T known(t)}

NW (�l�C,G) = NW (l,G)∪NW (C,G∪ l)

NW ([l]C,G) = NW (C,G∪ l)

NW (∀x.C,G) = NW (C[x �→ a],G∪a≈ a) a is a fresh constant symbol

NW (C,G) =
�

ϕ∈C

NW (ϕ,G)

We then define the set of new terms ofW to be
�

C∈W NW (C,∅).

Remark 2.4. We do not consider terms that have allowed us to instantiate universal quantifiers
and to remove triggers as they must already be known to reach the current sub-formula nor for
terms that can be equated to one of those in every truth assignment in less than n instances.

Theorem 2.3. If
�

ϕ∈W NW (ϕ,∅) does not contain any newly introduced constant then W is

terminating.

Proof. Let L be a set of literals. We show that (W ∪L) ·∅ has a finite instantiation tree. Let S be
T (L)∪{t | t is a ground term ofW}. We define the set S of the ground terms that appear in an
instance of a sub-formula ofW with terms of S. More precisely, S is the smallest set of ground
terms such that, for every literal l or every witness �l�_ that appears as a sub-formula ofW and
every substitution σ from free variables of l to terms of S, T (lσ)⊆ S. Let N be the set of pairs
(C,G) of a pseudo-clause and a set of literals on which NW is called during the computation of
�

ϕ∈W NW (ϕ,∅).
We construct a finite instantiation tree of (W ∪L) ·∅ in the following way. For a satisfiable,

non-final truth assignment A, if we have �A�∪ known(S) �T known(T (�A�)), then we add any
non-redundant instance to A. Otherwise, we show that there is a term t ∈ S such that �A� ∪
known(S) �T known(t) and there is a finite partial instantiation tree Z starting from A such that,
for every truth assignment A� at a orphan edge of Z, �A��∪ known(S) �T known(t). We attach Z
to A and continue.

This method terminates and gives a finite instantiation tree. Indeed, at each step, one of the
following conditions holds:

37

Chapter 2. FOL with Triggers 2.3. Designing Axiomatizations

• There is one new non-redundant instance of a universally quantified sub-formula of W
with a term from S. There is only a finite number of such instances.

• There are more terms of S that are equal to a term of S modulo A� than modulo A. Of
course the number of terms in S is also finite.

In the rest of the proof, we show that, if �A� ∪ known(S) �T known(T (�A�)), there is a
term t ∈ S such that �A�∪ known(S) �T known(t) and there is a finite partial instantiation tree Z
starting from A such that, for every truth assignment A� at a orphan edge of Z, �A��∪known(S)�T
known(t). We need an intermediate lemma:

Lemma 2.6. Let A be a truth assignment in an instantiation tree Z of (W ∪ L) ·∅. If �A� ∪
known(S) �T known(T (�A�)), then there is a pair (l,G)∈N and a substitution µ from constant

symbols introduced during the computation of NW to terms of S such that �A�∪ known(S) �T
known(T (lµ)), �A�∪ known(S) �T known(T (Gµ)), and �A� �T Gµ ∪ lµ .

Proof. We show by induction over the construction of A that, for every elementC ·σ /∈ L ·∅ that
is added to a truth assignment A� above A in Z, there is (Cτ,G) ∈ N where τ maps free variables
to constant symbols and a substitution µ from constant symbols to terms such that τµ|vars(C) is
σ and �A�� �T Gµ . For simplicity, we divide handling of a witness �l�C ·σ in the construction
of a truth assignment into two parts: we first add l ·σ and thenC ·σ .

IfC ∈W then (C,∅) ∈ N. Otherwise, one of the following holds:

• ϕ ·σ was added to a truth assignment A� in Z such that ϕ ·σ ∨C� ·σ � ∈ A�. By induction
hypothesis, there is ((ϕ ∨C�)τ,G) ∈ N where τ maps free variables to constant symbols
and a substitution µ from constant symbols to terms such that τµ|vars(ϕ∨C�) is σ ∪σ � and
�A���T Gµ . By definition of NW , we have (ϕτ,G) ∈ N.

• l ·σ was added to a truth assignment A� in Z such that �l�C ·σ ∈ A�. By induction hy-
pothesis, there is (�l�Cτ,G) ∈ N where τ maps free variables to constant symbols and a
substitution µ from constant symbols to terms such that τµ|vars(�l�C) is σ and �A���T Gµ .
By definition of NW , (lτ,G) ∈ N.

• C ·σ was added to a truth assignment A� in Z such that �l�C ·σ ∈ A�. By induction hy-
pothesis, there is (�l�Cτ,G) ∈ N where τ maps free variables to constant symbols and a
substitution µ from constant symbols to terms such that τµ|vars(�l�C) is σ and �A���T Gµ .
By definition ofNW , (Cτ,G∪ lτ)∈N. What is more, since �l�C ·σ ∈A�, we have l ·σ ∈A�

and, thus, �A���T (G∪ lτ)µ .

• C · σ was added to a truth assignment A� in Z such that [l]C · σ ∈ A� and �A�� �T lσ .
By induction hypothesis, there is ([l]Cτ,G) ∈ N where τ maps free variables to constant
symbols and a substitution µ from constant symbols to terms such that τµ|vars([l]C) is σ

and �A�� �T Gµ . By definition of NW , (Cτ,G∪ lτ) ∈ N. Since �A�� �T lσ , we have
�A���T (G∪ lτ)µ .

• the new instanceC · (σ ∪ [x �→ t]) was added to a truth assignment A� in Z such that ∀x.C ·
σ ∈ A� and t ∈ T (�A��). By induction hypothesis, there is (∀x.Cτ,G) ∈ N where τ maps

38

Chapter 2. FOL with Triggers 2.3. Designing Axiomatizations

free variables to constant symbols and a substitution µ from constant symbols to terms
such that τµ|vars(∀x.C) is σ and �A�� �T Gµ . By definition of N, there is a new constant
symbol a such that (C(τ ∪ [x �→ a]),G∪ a ≈ a) ∈ N. Since a is fresh in Cτ and G, we
extend µ with [a �→ t]. Since t ∈ T (�A��), we have �A���T (G∪a≈ a)(µ ∪ [a �→ t]).

Now, we only need to find a closure (l ·σ) ∈ A with an associated pair (lτ,G) ∈ N and a
substitution µ from constant symbols to terms of S such that �A�∪known(S) �T known(T (lσ))
and �A�∪ known(S) �T known(T (Gµ)). Let us consider the first time we add a closure l ·σ

such that �A� ∪ known(S) �T known(T (lσ)) to a truth assignment A� above A in Z. Since
T (L) ⊆ S, l ·σ /∈ L ·∅ and, as we have just shown, there is (Cτ,G) ∈ N where τ maps free
variables to constant symbols and a substitution µ � from constant symbols to terms such that
τµ �|vars(C) is σ and �A���T Gµ �. What is more, by definition of l ·σ , we have �A�∪known(S)�T
known(T (�A��)) and, since �A���T Gµ �, we have �A�∪ known(S) �T known(T (Gµ �)).

Finally, we take a substitution µ from constant symbols to terms of S that is equal to µ �

modulo �A�. Since �A�∪ known(S) �T known(T (µ �)), there is one. By definition of µ , �A�∪
known(S) �T known(T (Gµ)) and �A� �T Gµ ∪ lµ .

As �A� ∪ known(S) �T known(T (�A�)), there are a pair (l,G) ∈ N and a substitution σ

such that �A�∪ known(S) �T known(T (lσ)), �A�∪ known(S) �T known(T (Gσ)), and �A� �T
Gσ ∪ lσ by Lemma 2.6. Let t be a term of l such that �A� ∪ known(S) �T known(tσ), since
every element of σ appears in T (Gσ), there must be such a term. Notice that, by definition of
NW , every variable of I freely occurs in G. Also notice that, by definition of S and σ , tσ ∈ S.
It now remains to show that there is a finite partial instantiation tree Z starting from A such that,
for every truth assignment A� at a orphan edge of Z, �A��∪ known(S) �T known(tσ).

Since W has a finite set of new terms
�

ϕ∈W NW (ϕ,∅), no term of T (l) that contains a
constant introduced by NW can appear in the set of new terms ofW . Since �A�∪ known(S) �T
known(tσ), the term t contains at least a constant introduced by NW . As a consequence, we
have that RCHnW (G∪ l)∪known(T (RCH0

W (G))) �T known(t). Replacing constant symbols with
terms using σ , we get RCHnW (G∪ l)σ ∪known(T (RCH0

W (G)))σ �T known(t)σ . By immediate
induction on the construction of RCHnW (G∪ l), we have both RCHnW (G∪ l)σ ⊆ RCHnW (Gσ ∪ lσ)
andT (RCH0

W (G))σ ⊆T (RCH0
W (G)σ)⊆T (Gσ)∪S. Since �A�∪known(S)�T known(T (Gσ)),

we have RCHnW (Gσ ∪ lσ)∪�A�∪ known(S) �T known(tσ).

By Lemma 2.5, since �A� �T Gσ ∪ lσ , we can continue the instantiation tree Z after A so
that, for every satisfiable truth assignment A� labeling a orphan edge after A, we have �A�� �T
RCHnW (Gσ ∪ lσ) and, thus, �A��∪ known(S) �T known(tσ).

Example 2.4. Let us consider the theoryWarray of non-extensional arrays defined in Example 1.1.
For any natural n in the definition of RCH, we have that

�

ϕ∈Warray
NWarray

(ϕ,∅). For example, if

39

Chapter 2. FOL with Triggers 2.3. Designing Axiomatizations

n= 0 then, for the first axiom, we have:

NWarray
(∀a, i, e.[set(a, i,e)] (get(set(a, i,e), i)≈ e),∅)

= NWarray
([set(a, i,e)] (get(set(a, i,e), i)≈ e),{a≈ a, i≈ i, e≈ e})

= NWarray
((get(set(a, i,e), i)≈ e),{set(a, i,e)≈ set(a, i,e), a≈ a, i≈ i, e≈ e})

= T

��

t ⊆ T (get(set(a, i,e), i)≈ e)) |
get(set(a, i,e), i)≈ e∪T ({set(a, i,e), a, i, e}) �T known(t)

��

= ∅

If we remove the trigger from this axiom, then it can produce a new term set(a, i,e) as we have:

NWarray
(∀a, i, e. (get(set(a, i,e), i)≈ e),∅)

= T

��

t ⊆ T (get(set(a, i,e), i)≈ e)) |
get(set(a, i,e), i)≈ e∪T ({a, i, e}) �T known(t)

��

= {set(a, i,e)}

Example 2.5. The axiomatization Wconv presented in Example 2.3 does not have finitely many
new terms. Indeed, there are terms that can be created byWconv and that will not be equated to
already existing terms.

Even if an axiomatizationW does not have the above stated property, it is sometimes enough
to go through the set of new terms from W that contain free variables to justify that only a
finite number of them can be created. This is what we do for the proof of termination of the
axiomatization for doubly-linked lists: We go through the new terms of the axiomatization that
can be used to instantiate universally quantified formulas ofW and we justify that there can only
be a finite number of those.

Such a proof can be complex, in particular if quantification is done on interpreted sorts –
which is not the case for doubly-linked lists. It can be simplified further if the triggers of the
axiomatization only contain uninterpreted function symbols. Indeed, in this case, it is enough
to show that there can only be a finite number of new terms starting with function symbols that
appear in a trigger. Such a proof can sometimes be done modularly. The idea is to find a partition
S0 . . .Sn of the set of function symbols that appear in triggers in an axiomatizationW such that,
if Wi is the subset of formulas of W using symbols of Si in triggers, Wi can only create new
terms starting with symbols from S0∪·· ·∪Si. We can then show separately that, for each set Si,
formulas ofWi cannot create an infinite number of new terms starting with function symbols in
Si.

Note that this reasoning can be strengthened to only check for new terms that actually match
triggers in the axiomatization. Still, in this case, reasoning must be done modulo equality. This
is even more difficult if triggers contain terms of an interpreted sort, since equality between such
terms can be deduced by theory reasoning.

2.3.2 Designing a Complete Axiomatization

The natural way to prove the completeness of an axiomatizationW is to give a general method
for completing a world L in whichW is true into a model of the theory. This implies that terms

40

Chapter 2. FOL with Triggers 2.3. Designing Axiomatizations

of L that are interpreted must be given a value in this world which may create new equalities
between them. The reasoning is much easier if these equalities cannot unlock new triggers
in W . In multi-sorted logic, it is enough to restrict triggers so that, for every trigger l in the
axiomatization and every subterm t of l of an interpreted sort, either t is a variable or t is top-
level in l. Indeed, the only triggers that can be unlocked are then those where l becomes true
because of the new equalities, which are generally much easier to reason about. For example,
we use this technique in the proof of completeness of the theory of doubly-linked lists to show
that adding an equality between known integer terms cannot unlock new deductions. Constants
of interpreted types can be allowed in triggers without losing this property if they are known in
every world in which the axiomatization is true.

Another important point is that, when a trigger is guarding a disjunction, triggers should
generally not prevent us from deducing an element of the disjunction when the others are false.
In the same way, if an element of the disjunction is an equality, then the rewriting should be
possible both ways. For example, in the theory of non-extensional arrays, we duplicated the
second axiom so that there is a trigger coming from each side of the equality:

∀a, i, j, e.[get(set(a, i,e), j)] (i �≈ j→ get(set(a, i,e), j)≈ get(a, j))
∀a, i, j, e.[set(a, i,e), get(a, j)] (i �≈ j→ get(set(a, i,e), j)≈ get(a, j))

In some cases, there are good reasons not to apply this rule. It allows to orient deduction and
rewriting. Still, if such a choice is made, then there can be predicates that cannot be deduced to
be true and terms that cannot be deduced to be known even if they are entailed by the theory.
Literals that are entailed by the axiomatized theory, yet cannot be deduced in the axiomatization,
should not appear in triggers.

Example 2.6. Consider triggers containing the function symbol equal_lists in the theory of
doubly-linked lists. We cannot deduce that equal_lists(co1,co2)≈ t is true for two lists co1 and
co2 if the term equal_lists(co1,co2) does not appear in the context, since every axiom involving
a term starting with equal_lists has this term as a trigger.

In general, equal_lists should not be used as a trigger if we want a complete axiomatization.
Adding the following axiom for prefix of a list would be at the cost of the completeness of our
theory:

IS_PREFIX_INV:

∀co1,co2 : list.[is_pre f ix(co1,co2)] is_pre f ix(co1,co2) �≈ t→
(∀cu : cursor.[equal_lists(co1, le f t(co2,cu))]

(has_element(co2,cu)≈ t∨ cu≈ no_element)→
equal_lists(co1, le f t(co2,cu)) �≈ t)

For example, consider the unsatisfiable set of literals L = {is_pre f ix(empty,co) �≈ t}. We
cannot deduce that L is unsatisfiable in our theory using our axiom as we do not generate the
term equal_lists(empty, le f t(co, f irst(co))).

A notable exception to this principle are defining axioms. Axioms used to provide an unin-
terpreted symbol f with its meaning can generally use f in their triggers even though we cannot
deduce the value of a term starting with f in the axiomatization every time we can deduce it

41

Chapter 2. FOL with Triggers 2.3. Designing Axiomatizations

in the theory. For example, the axiom EQUAL_LISTS_LENGTH has equal_lists(co1,co2) as a
trigger and yet the axiomatization is complete. Indeed, in the theory of doubly-linked lists,
we cannot deduce that two lists are equal if we do not know a priori that they have the same
length. Thus, every world in which the axiomatization is true can be completed by assuming
equal_lists(co1,co2) �≈ t whenever we do not have length(co1)≈ length(co2).

EQUAL_LISTS_LENGTH:

∀co1,co2 : list.[equal_lists(co1,co2)]
equal_lists(co1,co2)≈ t→ length(co1)≈ length(co2)

2.3.3 An Automatable Debugger for Completeness

When designing an axiomatization W , it may be useful to have an automatable way to search
for counter-examples to the completeness ofW with respect to the first-order axiomatizationW �

which isW where triggers are translated into implications. More precisely, we look for sets of
literals L such that L∪W � is unsatisfiable in first-order logic but there is a world in which L∪W
is true. The algorithm below searches systematically for sets of literals L such that L∪W � is
unsatisfiable in first-order logic. An implementation of the solver can then be used to decide if
there is a world in which L∪W is true (see Definition 2.7).

The idea is to paramodulate between axioms of W , seen as clauses with free variables, to
deduce new clauses. Every new clause can then be negated to produce a potential counter-
example. Let G be a set of clauses with free variables. We use lazy paramodulation: for C1 ∨
f (t1, . . . , tn)≈ s andC2∨A[f (t

�
1, . . . , t

�
n)] ∈ G, we produceC1∨C2∨ t1 �≈ t �1∨·· ·∨ tn �≈ t �n∨A[s].

Example 2.7. The two first-order axioms of the theory of arrays are converted into the two
clauses get(set(a, i,e), i)≈ e and i≈ j∨get(a, j)≈ get(set(a, i,e), j) where a, i, j, and e are free
variables. We can then use the above algorithm to infer the counter-examples that we produced
in Example 2.1. The first axiom coupled with itself gives:

set(a1, i1,e1) �≈ set(a2, i2,e2)∨ i1 �≈ i2∨ e1 ≈ e2

So we deduce a potential counter-example {set(a1, i,e1)≈ set(a2, i,e2), e1 �≈ e2}which is indeed
a counter-example for the axiom with a bad trigger in Example 2.1:

∀a, i,e.[get(set(a, i,e), i)] get(set(a, i,e), i)≈ e

The second axiom contains two occurrences of get. Rewriting the equality both ways in each
occurrence of get gives the four following clauses. The first and the fourth give the counter-
examples for the other two cases in Example 2.1:

i1 ≈ j∨ i2 ≈ j∨ set(a1, i1,e1) �≈ set(a2, i2,e2)∨get(a1, j)≈ get(a2, j)
i1 ≈ j∨ i2 ≈ j∨get(a, j)≈ get(set(set(a, i1,e1), i2,e2), j)
i1 ≈ j∨ i2 ≈ j∨get(set(set(a, i2,e2), i1,e1), j)≈ get(a, j)
i1 ≈ j∨ i2 ≈ j∨get(set(a1, i1,e1), j)≈ get(set(a2, i2,e2), j)

We see that this automatable approach manages to find all the counter-examples we used in
Example 2.1.

42

Chapter 2. FOL with Triggers 2.4. Conclusion

2.4 Conclusion

We have given a framework for reasoning about soundness, completeness, and termination of a
first-order axiomatization with triggers. We have seen in Section 2.2 that our semantics is close,
but not identical, to the behavior of existing solvers. We should now implement an SMT solver
that supports first-order logic with triggers and transforms a sound, complete, and terminating
axiomatization of a theory T � into a decision procedure for satisfiability modulo T �.

43

3 A Black-Box Decision Procedure

Contents

3.1 Description . 45

3.1.1 Preliminaries . 45

3.1.2 Deduction Rules for First-Order Logic with Triggers 47

3.1.3 Soundness, Completeness, and Termination 48

3.2 Implementation . 53

3.2.1 Description . 53

3.2.2 Benchmarks . 54

3.3 Conclusion . 56

In Chapter 2 we introduced a semantics for first-order logic with triggers as well as notions
of soundness, completeness, and termination of axiomatizations in this logic.

In this chapter, we present a theoretical way of extending a generic ground SMT solver
so that it can turn an axiomatization with triggers into a decision procedure. It requires that
the axiomatization is sound and complete in the framework defined in Chapter 2, and that it is
strongly terminating as defined in 2.12.

3.1 Description

In this section, we define a wrapper over a generic SMT solver for ground formulas that accepts
a theory written as a set of formulas with triggers. This solver is a theoretical model and it is not
meant to be efficient. We prove it sound with respect to our framework.

3.1.1 Preliminaries

We extend an existing solver S that decides satisfiability of ground formulas modulo T . To be
able to reason about it, we make a few assumptions about the interface of the ground solver S:

• S returns Unsat(U) when called on an unsatisfiable set of ground formulas G where U is
an unsatisfiable core of G, that is, a subset of G such thatU �T ⊥.

• S returns Sat(L) when called on a satisfiable set of ground formulas G. We assume that
there is a model I of G in T such that L is exactly the set of literals of G that are true in I.

45

Chapter 3. A Black-Box Decision Procedure 3.1. Description

We describe a solver L ift(S) that takes a set of first-order axioms with triggers and wit-
nesses, denoted Ax, and a set of ground clauses, denoted G. Before starting the procedure, we
Skolemize and clausify the axioms in Ax, producing a set of pseudo-clausesW .

To use S to reason about formulas with triggers and witnesses, we need to encode theory
clauses coming from the axiomatization into regular clauses.

Definition 3.1. To each pseudo-literal ϕ inW ∪G, we associate an atomic formula Bϕ = Pϕ(x),
where Pϕ is a fresh predicate symbol and x are the free variables of ϕ . We define an encoding of
closures into literals in the following way:

�l ·σ� � lσ

�ϕ ·σ� � Bϕσ if ϕ is not a literal

A literal Bϕσ is called an opaque literal.

To model the trigger mechanism, we need a way to protect a theory clause so that its elements
are not available until a certain condition is fulfilled. We define a guarded clause as a pair
H →C, where the guard H is a conjunctive set of closures and C is a theory clause. We extend
our encoding to guarded clauses: �H →C� �

�

ϕ·σ∈H ¬�ϕ ·σ�∨
�

ϕ·σ∈C �ϕ ·σ�.
The solver L ift(S) for the theory T � maintains a set of guarded clauses R. It starts with

R = (G∪W) ·∅. It repeatedly launches the solver S on �R� and then, if S returns Sat(L), it
uses the set of literals L to augment R with new guarded clauses by reasoning on formulas with
triggers and witnesses. If S returns Unsat(U), L ift(S) returns Unsat.

To deduce new guarded clauses that should be added to R, L ift(S) interprets ground models
of �R� returned by S as sets of closures. L ift(S) must prune the set of ground literals L returned
by S in Sat(L) to only consider relevant ones:

Definition 3.2. Let L be a world and R be a set of guarded clauses. We define the set of closures
that are relevant in L, written L|R, to be the limit of a sequence of sets of closures {Mi} such that
M0 =∅ and Mn+1 is the biggest superset ofMn such that, for every closure ϕ ·σ ∈Mn+1:

• �ϕ ·σ� ∈ L, and

• there is a guarded clause H →C ∈ R such that ϕ ·σ ∈C and H ⊆Mn.

We say that a guarded clause H →C is relevant in L if H ⊆ L|R.

To comply with the semantics of triggers, when the solver S returns Sat(L) on a set of ground
clauses �R�, we need to be able to decide whether L|R should allow to deduceC ·σ from a trigger
[l]C ·σ . We use S to compute a subsetM� of L|R such that �M��� l if any. First, we launch S on
known(T (�L|R�))∪�L|R�∪{¬l∨¬known(T (l))}. Since �L|R� is a subset of L and therefore is
satisfiable, S can either return Sat(L�) orUnsat(U∪{¬l∨¬known(T (l))}). If it returns Sat(L�),
then �L|R� �� l. Otherwise, we compute a subset M� of L|R such that, for every literal known(t)
inU , there is a closure l ·σ ∈M� such that t ∈ T (lσ), and, for every other literal l inU , there is
a closure l� ·σ ∈M� such that l = l�σ .

46

Chapter 3. A Black-Box Decision Procedure 3.1. Description

POS UNFOLD

�l�C ·σ ∈ L|R

�l�C ·σ →C ·σ �l�C ·σ → l ·σ

NEG UNFOLD

[l]C ·σ ∈ L|R M� ⊆ L|R �M��� lσ

[l]C ·σ ∧
�

M� →C ·σ

INST

∀x.C ·σ ∈ L|R l ·σ � ∈ L|R
t ∈ T (lσ �) �L|R�∪{Bϕσ | ϕ ·σ ∈ L|R}∪{¬Bϕ(σ ∪ [x �→ t]) | ϕ ∈C} �T ⊥

∀x.C ·σ ∧ l ·σ � →C · (σ ∪ [x �→ t])

Figure 3.1: Deduction rules used to compute new guarded clauses from the set of relevant
closures L|R in a model L of �R�.

3.1.2 Deduction Rules for First-Order Logic with Triggers

The algorithm for L ift(S) is as follows:

1. Initialize R to (W ∪G) ·∅.

2. Call S on �R�.

3. If S returns Unsat(U) then return Unsat.

4. If S returns Sat(L):

• If no new guarded clause can be inferred from L using deduction rules from Fig-
ure 3.1 then return Sat.

• If at least one new clause can be inferred from L using POS UNFOLD or NEG UN-
FOLD, let R� be a non-empty set of new clause inferred from L using these rules.

• Otherwise, let R� be a non-empty set of new clauses inferred from L using INST.

• Go to step 2 with R := R∪R�.

Deduction rules in Figure 3.1 are used to add to the set of closures L|R elements that can
only be deduced from it using first-order logic with triggers. Still, since elements of L|R are not
implied by R, every deduced formula needs to be guarded so that it is a tautology in first-order
logic with triggers, and the satisfiability of R does not change.

The rule POS UNFOLD states that a witness �l�C implies both the literal l and the pseudo-
clauseC.

In the rule NEG UNFOLD, we remove the trigger blocking a pseudo-clause. For this rule to
produce a tautology, we need to guard it with a set of closures M� that imply the validity of the
trigger in first-order logic with triggers, namely �M�� � l. The set M� is computed using S as
explained in the previous section.

The rule INST instantiates a universally quantified formula with a term of �L|R�. To ensure
termination, we need to be careful not to produce redundant instances, following the Defini-
tion 2.10 of the previous chapter. For this check we also use S. We only produce an instance of

47

Chapter 3. A Black-Box Decision Procedure 3.1. Description

∀x.C ·σ with a term t if �L|R�∪{Bϕσ | ϕ ·σ ∈ L|R} is not a model of
�

ϕ∈CBϕ(σ ∪ [x �→ t]). In
particular, if R contains a guarded clause H →C · µ relevant in L such that �L|R� �T σ ∪ [x �→
t] ≈̇ µ then L|R contains ϕ · µ for some ϕ ∈ C and �L|R� ∪ {Bϕσ | ϕ ·σ ∈ L|R} is a model of
�

ϕ∈CBϕ(σ ∪ [x �→ t]). Notice that we convert every closure in L|R and C · (σ ∪ [x �→ t]), even
closures of literals, into an opaque literal. Indeed, to ensure completeness, our redundancy check
must not block instantiations that may bring in new terms even if they are redundant from the
logical point of view.

Example 3.1. Here is a possible execution of the solver L ift(S) on the set of ground formulas G
and an axiomatizationW . We assume that S is a decision procedure for the background theory
T combining linear integer arithmetic and Equality with Uninterpreted Functions:

G= { f (0)≈ 0, f (1) �≈ 1}

W = {∀x.[f (x+1)] f (x+1)≈ f (x)+1}

Let us show how the solver L ift(S) can deduce that

R0 =

�

f (0)≈ 0 ·∅, f (1) �≈ 1 ·∅,
∀x.[f (x+1)] f (x+1)≈ f (x)+1 ·∅

�

is unsatisfiable.

1. The ground solver returns Sat(L0) on �R0�, where L0 is �R0� itself. Thus, we compute
L0|R0 to be (G∪W) ·∅. We have f (0) ≈ 0 ·∅ ∈ L0|R0 and 0 ∈ T (f (0) ≈ 0). As a
consequence, the rule INST can instantiate x with 0 in the universal formula:

R1 = R0∪

∀x. [f (x+1)] f (x+1)≈ f (x)+1 ·∅∧
f (0)≈ 0 ·∅→

[f (x+1)] f (x+1)≈ f (x)+1 · [x �→ 0]

2. S returns Sat(L1) on �R1� with L1 = L0∪{�[f (x+1)] f (x+1)≈ f (x)+1 · [x �→ 0]�}. We
compute L1|R1 to be L0|R0 ∪ {[f (x+ 1)] f (x+ 1) ≈ f (x) + 1 · [x �→ 0]}. Based on re-
sults from the theory of arithmetics, the ground solver can deduce that we have { f (0) ≈
0, f (1) �≈ 1}� f (0+1)≈ f (0+1). Thus, the rule NEG UNFOLD can add another formula
to R1:

R2 = R1∪

[f (x+1)] f (x+1)≈ f (x)+1 · [x �→ 0]∧
f (0)≈ 0 ·∅∧ f (1) �≈ 1 ·∅→

f (x+1)≈ f (x)+1 · [x �→ 0]

3. The ground solver returns Unsat on �R2�. Indeed, any model of �R2� would satisfy f (0+
1)≈ f (0)+1, f (0)≈ 0 and f (1) �≈ 1. Thus, the initial set G is unsatisfiable moduloW .

3.1.3 Soundness, Completeness, and Termination

In this section, we prove that our solver can turn a sound, complete, and strongly terminating
axiomatization Ax of a theory T � into a decision procedure for T �.

48

Chapter 3. A Black-Box Decision Procedure 3.1. Description

3.1.3.1 Soundness and Completeness

Lemma 3.1. Let H→C be a new guarded clause that can appear as the conclusion of a deduc-

tion rule in Figure 3.1. For world L, if L�
�

ϕ·σ∈H ϕσ then L�
�

ϕ·σ∈C ϕσ .

Proof. The guarded clauses �l�C ·σ →C ·σ and �l�C ·σ → l ·σ can be deduced by POS UN-
FOLD. If L� �l�Cσ then L�Cσ and L� lσ .

The ground clause [l]C ·σ ∧
�

M� →C ·σ can be deduced by NEG UNFOLD if �M�� � lσ .
If L � {ϕσ � | ϕ ·σ � ∈ M�} then L � lσ . Thus, if L � [l]Cσ and L � {ϕσ � | ϕ ·σ � ∈ M�} then
L�Cσ .

The clause ∀x.C ·σ ∧ l ·σ � → C · (σ ∪ [x �→ t]) can be deduced by INST if t ∈ T (lσ �). If
L� lσ � then L∪ known(T (L)) �T known(T (t)). Thus, if L� ∀x.Cσ and L� lσ � then there is
t � ∈ known(T (L)) such that L�C(σ ∪ [x �→ t �]) and L �T t ≈ t �. By immediate induction on the
structure of elements ofC, L�C(σ ∪ [x �→ t]).

Lemma 3.2. Let W ∪G a set of pseudo-clauses. Let R be the set of theory clauses that have

been computed by our algorithm after some steps starting from (W ∪G) ·∅ and let L be a set of

ground literals returned by S on �R� in Sat(L). For every closure ϕ ·σ ∈ L|R,T (σ)⊆T (�L|R�).

Proof. We do the proof by induction over the construction of the set of relevant literals. For
every ϕ ·σ ∈ L|R there is a guarded clause H →C ∈ R such that ϕ ·σ ∈C and, for every closure
ϕ � ·σ � ∈ H, ϕ � ·σ � was added to L|R before ϕ ·σ . As a consequence, it is enough to show that,
for every clause H→C ∈ R, if, for every closure ϕ � ·σ � ∈H, T (σ �)⊆T (�L|R�) then, for every
positive closure ϕ ·σ ∈C, T (σ)⊆T (�L|R�). Since we start with (W ∪G) ·∅, guarded clauses
with non-empty substitutions in closures may only be added via deduction rules in Figure 3.1.

The only interesting rule is INST, since it introduces a new term t in the substitution σ of
its positive literals. Since t has to be in T (�L|R�) for INST to be applied, we have T (σ ∪ [x �→
t])⊆ T (�L|R�).

Theorem 3.1 (Soundness). IfL ift(S) returns Unsat on a set of ground formulas G and a sound

axiomatization Ax of T � then G is unsatisfiable modulo T �.

Proof. We define W to be the result of the Skolemization and the clausification of Ax. Every
model of Ax can be extended to a model of W by adding the interpretations of the Skolem
functions. As a consequence, since Ax is sound, for every T �-satisfiable set of literals G� that
only contains literals of G, there is a model ofW ∪G�.

If L ift(S) returns Unsat on G, then there is a set of guarded clauses R that have been
produced by the deduction rules such that �(G∪W) ·∅∪R� is T -unsatisfiable. By contradiction,
assume that G is T �-satisfiable. Then there is a subset G� of literals of G such that G� is T �-
satisfiable and G� �T G. Since Ax is sound, there is a model L of W ∪G�. Consider L� = L∪
{�ϕ ·σ� |ϕ ·σ ∈ (G∪W) ·∅∪R and L�ϕσ}∪{¬�ϕ ·σ� |ϕ ·σ ∈ (G∪W) ·∅∪R and L ��ϕσ}.
Since L is complete, for every closure l ·σ , if L �� lσ then L �T lσ and, for every closure ϕ ·σ
and every substitution σ � such that L �T σ ≈̇σ �, if L �T ϕσ then L �T ϕσ �. Therefore, L� is
satisfiable. By construction, L� �T �(G∪W) ·∅�. By Lemma 3.1, we also have L� �T �R�. Since
�(G∪W) ·∅∪R� is unsatisfiable, we reach a contradiction.

49

Chapter 3. A Black-Box Decision Procedure 3.1. Description

Theorem 3.2 (Completeness). If L ift(S) returns Sat on a set of ground formulas G and a

complete axiomatization Ax of T � then G has a model modulo T �.

Proof. We defineW to be the result of the Skolemization and the clausification of Ax. IfW is
feasible then so is Ax. As a consequence, since Ax is complete, every set of literals L such that
W ∪L is feasible is T �-satisfiable.

We say that a world L propositionally satisfies a set of ground clauses G whenever, for every
clauseC in G, there is a literal l ∈C such that l ∈ L.

If L ift(S) returns Sat on G, then there is a set of guarded clauses R that have been produced
by the deduction rules and a set of literals L that propositionally satisfies �R� and such that
nothing more can be deduced from L|R. By definition of L|R, for every guarded clauseH→C∈R
such that H ⊆ L|R, the set of ground literals �L|R� propositionally satisfies �C�. In particular, it
propositionally satisfies �(G∪W) ·∅�. Consider the set of literals �L|R�. We show that �L|R��
W ∪G. Since Ax is complete and L|R��W ∪L|R�, �L|R� is T �-satisfiable. Since �L|R� �T G so
is G.

We show that, for every closure ϕ ·σ ∈ L|R, �L|R� � ϕσ by structural induction over ϕ .
Since �L|R� propositionally satisfies �(G∪W) ·∅�, it is enough to conclude.

• l ·σ ∈ L|R. By definition of �L|R�, we have lσ ∈ �L|R�.

• �l�C ·σ ∈ L|R. Since nothing new can be deduced from L, then the two guarded clauses
�l�C ·σ → l ·σ and �l�C ·σ → C ·σ are in R. Since �l�C ·σ ∈ L|R, �L|R� satisfies the
encoding of these two formulas. Thus, l ·σ ∈ L|R and there is ϕ ∈C such that ϕ ·σ ∈ L|R.
By induction hypothesis, �L|R�� lσ and �L|R�� ϕ ·σ , and, therefore, �L|R�� �l�Cσ .

• [l]C ·σ ∈ L|R. If �L|R�� lσ , since nothing new can be deduced from L, there is U ⊆ L|R
such that [l]C ·σ ∧

�

U →C ·σ ∈ R. Since [l]C ·σ ∈ L|R and U ⊆ L|R, �L|R� satisfies the
encoding of this formula. Thus, there is ϕ ∈ C such that ϕ ·σ ∈ L|R and, by induction
hypothesis, �L|R�� ϕσ . As a consequence, �L|R�� [l]Cσ .

• ∀x.C ·σ ∈ L|R. Let t be a term of T (�L|R�). Since nothing new can be deduced from L,
we have �L|R�∪{Bϕσ | ϕ ·σ ∈ L|R}∪{¬Bϕ(σ ∪ [x �→ t]) | ϕ ∈C} �T ⊥. Thus, there is
ϕ ∈ C and a substitution µ such that ϕ · µ ∈ L|R and �L|R� �T µ ≈̇σ ∪ [x← t]. What is
more, by Lemma 3.2, T (σ)⊆ T (�L|R�). Thus, by immediate induction over ϕ , �L|R��
ϕ(σ ∪ [x �→ t]) and �L|R��C(σ ∪ [x �→ t]). Therefore, �L|R�� ∀x.Cσ .

3.1.3.2 Motivating Example

To ensure termination, on a weakly terminating axiomatization, we need to ensure fairness in
the choice of instances. Unfortunately, this cannot be done easily. We show on an example that
restricting instantiation based on a notion of instantiation level is not enough to ensure fairness.

We define the instantiation level of a formula to be the minimal number of instances needed
to obtain the term used for the instance. We consider the following axiomatizationW :

W =

�

∀x.c≈ c, ∀x.¬P(x), ∀x.[x≈ c]P(f (x)),
∀x.Q(f (x)), ∀x.x≈ c∨�

�

50

Chapter 3. A Black-Box Decision Procedure 3.1. Description

The axiomatizationW is weakly terminating. Indeed, the first line can produce an unsatisfiable
set of literals in every truth assignment. It is enough to instantiate the first formula with any
known term ω to produce the term c, then to use c to instantiate the third formula and get
P(f (c)), and finally to instantiate the second formula with f (c) and thus obtain ¬P(f (c)).

The second line of axioms is designed to induce L ift(S) to loop on this example. The
first formula, ∀x.Q(f (x)), has the potential to create an infinite sequence of new terms f (ω),
f (f (ω))... The last formula, ∀x.x ≈ c∨�, can prevent the instantiation of ∀x.[x ≈ c]P(f (x))
with c by equating it with a previously available term.

The solverL ift(S) can run forever onW ∪{ω ≈ω}, and so, even if we require that instances
are only done if there is no other possible instance of a smaller instantiation level and that all the
possible instances of the smallest instantiation level are done at once.

1. L ift(S) launches the ground solver S on �R0� = �(W ∪{ω ≈ ω}) ·∅�. It returns Sat(L0)
with L0 = �R0�. The rules NEG UNFOLD and POS UNFOLD cannot be applied. Thus,
L ift(S) generates every possible instance of level 1 in L0|R0 :

R1 = R0∪

∀x.c≈ c ·∅∧ω ≈ ω ·∅→ c≈ c ·∅,

∀x.¬P(x) ·∅∧ω ≈ ω ·∅→¬P(x) · [x �→ ω],

∀x.[x≈ c]P(f (x)) ·∅∧ω ≈ ω ·∅→ [x≈ c]P(f (x)) · [x �→ ω],

∀x.Q(f (x)) ·∅∧ω ≈ ω ·∅→ Q(f (x)) · [x �→ ω],

∀x.x≈ c∨�·∅∧ω ≈ ω ·∅→ x≈ c∨�· [x �→ ω]

2. The ground solver S returns Sat(L1) on �R1� with L1 such that L1|R1 contains x≈ c · [x �→
ω]. L ift(S) applies NEG UNFOLD to unfold the trigger on [x≈ c] P(f (x)) · [x �→ ω]:

R2 = R1∪{[x≈ c] P(f (x)) · [x �→ ω]∧ x≈ c · [x �→ ω]→ P(f (x)) · [x �→ ω]}

3. The ground solver S returns Sat(L2) on �R2� with L2 = L1 ∪P(f (ω)). Since �L2|R2� �T
ω ≈ c, every instance with the term c is redundant. L ift(S) generates every possible
instance of level 2 in L2|R2 :

R3 = R2∪

∀x.¬P(x) ·∅∧Q(f (x)) · [x �→ ω]→¬P(x) · [x �→ f (ω)],

∀x.[x≈ c]P(f (x)) ·∅∧Q(f (x)) · [x �→ ω]→ [x≈ c]P(f (x)) · [x �→ f (ω)],

∀x.Q(f (x)) ·∅∧Q(f (x)) · [x �→ ω]→ Q(f (x)) · [x �→ f (ω)],

∀x.x≈ c∨�·∅∧Q(f (x)) · [x �→ ω]→ x≈ c∨�· [x �→ f (ω)]

4. The ground solver S returns Sat(L3) on �R3� with L3 such that L3|R3 does not contain
x ≈ c · [x �→ ω] nor P(f (x)) · [x �→ ω] anymore, but contains x ≈ c · [x �→ f (ω)]. Like in
step 2, L ift(S) applies NEG UNFOLD:

R4 = R3∪{[x≈ c] P(f (x)) · [x �→ f (ω)]∧ x≈ c · [x �→ ω]→ P(f (x)) · [x �→ f (ω)]}

51

Chapter 3. A Black-Box Decision Procedure 3.1. Description

5. The ground solver S returns Sat(L4) on �R4�with L4 = L3∪P(f (f (ω))). Since �L4|R4��T
f (ω)≈ c, every instance with the term c is still redundant. We can generate every possible
instance of level 3.

During this run, the solverL ift(S)will instantiate the third axiom with the terms ω , f (ω),
f (f (ω))... and never with c that would have allowed it to terminate.

3.1.3.3 Termination

As we have seen on the preceding example, enforcing fairness in application of INST is not
enough to ensure the termination of L ift(S) on a weakly terminating axiomatization. Thus, we
concentrate here on strongly terminating axiomatizations:

Theorem 3.3 (Termination). Let W be the Skolemization of an axiomatization Ax. If W is

strongly terminating then the solver L ift(S) will terminate on any set of ground clauses G
along with the axiomatization W.

Proof. Let R be a set of guarded clauses deduced from (W ∪G) ·∅. Let M be a set of closures.
We define the set of available theory clauses of R from M, written VM, to be the set of theory
clauses {C | H →C ∈ R and, for every ϕ ·σ ∈ H, ϕ ·σ ∈M}.

We say that a truth assignment A is coherent if, for every closure ϕ ·σ ∈ A, for every theory
clauseC ∈ A, and for every closure ϕ ·σ � ∈C, if �A� �T σ ≈̇σ � then ϕ ·σ � ∈ A.

We define a truth assignment of R to be the limit of the sequence Ai of truth assignments
such that A0 =∅ and An+1 is a truth assignment of VAn ∪An. Such a limit exists since An ⊆ An+1

and there is only a finite number of truth assignments of R since A only contains sub-formulas
of elements of R.

We then consider the maximal depth dA of any instantiation tree of A for every truth assign-
ment A of R. We call SR the multi-set {dA | A is a coherent truth assignment of R}. Theoretically,
SR may contain ∞ if there is a coherent truth assignment A of R that has an infinite instantiation
tree. In practice, we start with a set of natural numbers since, by definition of strong termination,
every truth assignment of (W ∪G) ·∅ only admits finite instantiation trees and then we show that
SR decreases throughout the derivation according to the standard order on multisets.

LetV be a set of theory clauses and letC ·σ be a theory clause andH ⊆V be a set of closures
such that H→C ·σ can appear as the conclusion of POS UNFOLD, NEG UNFOLD, or INST. We
show that {dA | A is a coherent truth assignment ofV ∪C ·σ} is smaller than {dA | A is a coherent
truth assignment of V}.

If the clause H → C ·σ can be deduced by POS UNFOLD or NEG UNFOLD then the truth
assignments of V ∪C ·σ are exactly the truth assignments of V . Indeed, since the guards H are
in V , the rules of Definition 2.10 are applicable. Thus {dA | A is a coherent truth assignment of
V ∪C ·σ} is equal to {dA | A is a coherent truth assignment of V}.

If the clause H → C ·σ can be deduced by INST then there is exactly one coherent truth
assignment A� of A∪C ·σ per coherent truth assignment A of V such thatC ·σ is redundant in A
for which we have dA = dA� plus a bunch of coherent truth assignments A� of A∪C ·σ for each
coherent truth assignment A of V such thatC ·σ is not redundant in A. For these additional truth
assignments, we have dA > dA� . Indeed every instantiation tree for A� can be inserted in a strictly

52

Chapter 3. A Black-Box Decision Procedure 3.2. Implementation

greater instantiation tree for A that starts with the instance C ·σ . Thus, {dA | A is a coherent
truth assignment of V ∪C ·σ} is smaller or equal to {dA | A is a coherent truth assignment of
V}. What is more, if there is a truth assignment A of V such thatC ·σ is not redundant in A then
{dA | A is a coherent truth assignment of V ∪C ·σ} is strictly smaller than {dA | A is a coherent
truth assignment of V}.

Let us consider a deduction step from R to R� and let us compare SR and SR� . The set of
coherent truth assignments of R� can be constructed by taking every truth assignment A of R and
then adding iteratively the clauses of the set of available clauses of R� from A. As we have just
shown, this can only decrease SR.

What is more, if the deduction step from R to R� involves INST steps then no other deduction
rule can be applied on L|R. Thus L|R∪VL|R is a truth assignment of R. Moreover, it is coherent
since, by hypothesis on the ground solver S, the model L returned by S in Sat(L) contains every
literal of �R� that is implied by L. Since �L|R�∪{Bϕσ | ϕ ·σ ∈ L|R} �T

�

ϕ∈CBϕ(σ ∪ [x �→ t]),
the theory clause C · (σ ∪ [x �→ t]) is not redundant in L|R∪VL|R . Indeed, since L propositionally
satisfies �R�, L|R propositionally satisfiesVL|R and, ifC ·(σ ∪ [x �→ t])was redundant in L|R∪VL|R ,
�

ϕ∈CBϕ(σ ∪ [x �→ t]) would be satisfied by �L|R� ∪ {Bϕσ | ϕ ·σ ∈ L|R}. Thus, SR� must be
strictly smaller than SR.

Thus, if L ift(S) can run forever onW ∪G then there is an infinite sequence of applications
of POS UNFOLD and NEG UNFOLD on a finite set of clauses R. It is impossible because these
three rules only deduce sub-formulas of R.

3.2 Implementation

The implementation was done in OCaml using the OCaml API of Z3 3.2. It represents approxi-
matively 1800 lines of code.

3.2.1 Description

The solver’s interface uses a simplified version of SMT-LIB v2 syntax. Sorts as well as functions
can be declared. Booleans and integers are built-in, along with some usual operations on them
(conjunction, disjunction, and negation for booleans and addition, subtraction, multiplication,
and comparison for integers). Boolean formulas may also contain universally quantified formu-
las with triggers with a positive polarity, that is, universal quantifiers that appear under an even
number of negations. Existentially quantified formulas (or universally quantified formulas with
a negative polarity) have to be Skolemized. Once a set of boolean formulas has been asserted,
the solver L ift(S) can be launched. It either returns Sat or Unsat.

The core of the solver is made of two parts. The first part, that we call the wrapper, is in
charge of interacting with the ground solver S (here Z3 3.2) using the SMT-LIB v2 syntax. The
second part, called the generator, applies the deduction rules.

The wrapper uses an instance of Z3. It contains the set of ground formulas that is iteratively
incremented by the generator. It is also used to assume the model returned by the first solver
and use it during the application of the deduction rules. The wrapper takes care of the encoding

53

Chapter 3. A Black-Box Decision Procedure 3.2. Implementation

of pseudo-literals into opaque literals. It also translates back the relevant closures of the ground
models.

The generator repeatedly uses the wrapper to check the validity of the current set R of ground
formulas. If the wrapper returns Sat with a model L, it goes through the relevant closures of L
to apply the deduction rules. For every trigger [l]C ·σ , no matter if it has already been unfolded
before, the generator checks whether �L|R� � lσ . Indeed, it is faster than going through the
previous deductions �[l]C ·σ ∧

�

M� →C ·σ� of NEG UNFOLD to check whether M� ⊆ L|R. In
the same way, for every universally quantified formula ∀x.C ·σ ∈ L|R and every term t ∈T (L|R),
we check whether �L|R�∪�L|R� �T C ·σ whenever there is l ·σ � ∈ L|R such that t ∈ T (l ·σ �)
and the ground formula �∀x.C ·σ ∧ l ·σ � →C · (σ ∪ [x �→ t])� has not been deduced yet.

3.2.2 Benchmarks

We test our implementation on several examples using either the theory of arrays or our theory
of imperative doubly-linked lists.

On the theory of arrays, we use two families of tests parametrized by a natural n. The first
family, named scoped_updates, expresses that the value stored in an array at a position j is
preserved through n updates at positions different from j:

∀a, i1, . . . , in, j,v.(i1 �≈ j∧·· ·∧ in �≈ j)→ get(set(. . .set(a, i1,v) . . . , in,v), j)≈ get(a, j)

The second family, named equal_updates, expresses that the values stored at an index j in a1
and an+1 are equal if there are indexes i1...in different from j such that ak updated at the index
ik is ak+1 updated at the index ik:

∀a1, . . . ,an+1, i1, . . . , in, j,v.

(i1 �≈ j∧·· ·∧ in �≈ j∧

set(a1, i1,v)≈ set(a2, i1,v)∧·· ·∧ set(an, in,v)≈ set(an+1, in,v))→

get(a1, j)≈ get(an+1, j)

The results of these tests are presented in Figure 3.2. The errors come from the fact that Z3 stops
after some time returning Unknown.

scoped_updates: n= 1 0.89
n= 2 6.47
n= 3 27.71
n= 4 Error

equal_updates: n= 1 3.14
n= 2 34.60
n= 3 Error

Figure 3.2: Time (in seconds) needed to solve tests for arrays with our implementation

54

Chapter 3. A Black-Box Decision Procedure 3.2. Implementation

On the theory of list, we have launched a specific test and two families. The specific test,
called replace, replaces an element in the list and then checks that the elements and the cursors
are as expected:

∀co1,co2 : list,cu1,cu2 : cursor,e : element_type.

(has_element(co1,cu1)≈ t∧has_element(co1,cu2)≈ t∧ cu1 �≈ c2∧

replace_element(co1,cu1,e,co2)≈ t)→

position(co2,cu1)≈ position(co1,cu1)∧ position(co2,cu2)≈ position(co1,cu2)∧

element(co2,cu1)≈ e∧ element(co2,cu2)≈ element(co1,cu2)

The first test family, called delete_length, deletes n cursors in a list and checks that the
length is decreased by n:

∀co0,co1, . . . ,con : list,cu1, . . . ,cun : cursor.

(has_element(co0,cu1)≈ t∧·· ·∧has_element(co0,cun)≈ t∧
�

1≤i< j≤n

cui �≈ cu j ∧

delete(co0,cu1,co1)≈ t∧·· ·∧delete(con−1,cun,con)≈ t)→

length(co0)≈ length(con)+n

The second test family, called delete_last, inserts an element at the beginning of a list
of length 4 and then deletes the n last elements (n < 4). It checks that the inserted cursor is
preserved:

∀co0,co1, . . . ,con+1 : list,e : element_type.

(length(co0)≈ 4∧ insert(co0, f irst(co0),e,co1)≈ t∧

delete(co1, last(co1),co2)∧·· ·∧delete(con, last(con),con+1)→

has_element(con+1, f irst(co1))

The results of these tests are presented in Figure 3.3.
Like previously, error denote the fact that Z3 stops after some time returning Unknown.
All these tests should be trivial (Z3 solves all of them in less than 0.1 second). The black-box

approach gives poor benchmarks because:

• We need to call the solver S on every universally quantified formula in L|R and every term
of T (�L|R�) for which we want to do an instance and every trigger in L|R that we want to
unfold.

• We do not use E-matching instantiation techniques so we generate an instance per couple
of a term and a universally quantified formula (and maybe more if there are several literals
with the same term).

55

Chapter 3. A Black-Box Decision Procedure 3.3. Conclusion

replace: 13.97
delete_length: n= 0 0.20

n= 1 0.80
n= 2 3.10
n= 3 11.24
n= 4 35.94
n= 5 Error

delete_last: n= 0 2.06
n= 1 27.69
n= 2 Error

Figure 3.3: Time (in seconds) needed to solve tests for lists with our implementation

• Instances and unfolding of triggers have to be done several times because they need to be
prefixed by the literals that have caused the unfolding.

• The ground solver S has to handle a great deal of formulas as well as numerous push and
pop operations in the environment.

3.3 Conclusion

This implementation that relies on a black-box SMT solver conforms with our framework as it
yields a decision procedure for every sound, complete, and strongly terminating axiomatization
of a theory T �. Still, we have seen that it is not usable in practice as it requires too costly
communication with the underlying SMT solver. Alleviating this problem requires a tighter
integration of the handling of first-order axioms into an SMT solver’s main loop. This is the
subject of the next chapter.

56

4 A White-Box Decision Procedure

Contents

4.1 Description . 58

4.1.1 Preliminaries . 58

4.1.2 Description of DPLL(T) with triggers 63

4.1.3 Termination Related Constraints . 66

4.1.4 Soundness and Completeness . 68

4.1.5 Progress and Termination . 70

4.2 Implementation . 80

4.2.1 E-Matching on Uninterpreted Sub-Terms 80

4.2.2 Different Notions of Termination 82

4.2.3 Inclusion into the Theory Combination Mechanism 83

4.2.4 Comparison with Alt-Ergo’s Built-In Quantifier Handling 83

4.3 Conclusion . 85

In Chapter 2, we have introduced a semantics for first-order logic with triggers as well of
some notions of soundness, completeness, and termination in this logic. We have presented in
Chapter 3 a theoretical way to extend a generic ground SMT solver to our logic. We have seen
that its implementation results in poor performances so that this impementation does not give a
pratical way of extending a ground SMT solver with a new theory.

In this chapter, we try to come up with a more efficient implementation by tightly integrating
our mechanism with the solver’s ground reasoning. We choose to extend the well-known Ab-
stract DPLL Modulo Theory framework, on which most of the state of the art SMT solvers are
based. We then demonstrate that our version of DPLL can effectively decide the satisfiability
of ground formulas in an extension of the solver’s background theory, whenever this extension
is defined by a sound, complete, and terminating axiomatization. In Section 4.2, we present
an implementation of our framework inside the first-order SMT solver Alt-Ergo. We use it to
show that, for our example theory of doubly-linked lists described in Section 2.2, not only we
obtain completeness and termination, but the eager instantiation allowed by the termination of
quantifier handling on this axiomatization results in improved overall performance of the prover.

57

Chapter 4. A White-Box Decision Procedure 4.1. Description

4.1 Description

In this section, we introduce an extension of abstract DPLL modulo theories [61] that handles
formulas with triggers and witnesses. We show that if a set of axioms is sound and complete
with respect to a theory T � which extends the solver’s background theory T , then our procedure
is sound and complete on any ground satisfiability problem in T �. Moreover, we show that under
certain fairness restrictions on derivations, our procedure terminates on any ground satisfiability
problem if the axiomatization is terminating. For all this section, the background theory T is
fixed.

4.1.1 Preliminaries

We describe a solver that takes a set of first-order axioms with triggers and witnesses, denoted
Ax, and a set of ground clauses, denoted G. Before starting the DPLL procedure, we Skolem-
ize and clausify the axioms in Ax, producing a set of pseudo-clauses W , as described in Sec-
tion 2.1.4. Then we convertW into a set of theory clauses (disjunctions of closures) by coupling
it with the empty substitution: W ·∅. We run the procedure on W ·∅ and G, with one of the
three possible outcomes:

• the solver returns Unsat, meaning that the union Ax∪G is unsatisfiable—therefore, if Ax
is sound with respect to T �, set G is T �-unsatisfiable;

• the solver returns Sat, meaning that there exists a ground formula G� such that G� �T G

and the union Ax∪G� is feasible—therefore, if Ax is complete with respect to T �, then G�

is T �-satisfiable, and consequently, G is T �-satisfiable;

• the solver runs indefinitely—ifW is terminating, this cannot happen.

When we do not have the soundness and completeness properties for Ax, the union Ax∪G may
be both feasible (true in some world) and unsatisfiable (false in every complete world). In this
case, the solver is nondeterministic. For example, let Ax be the single axiom [a]⊥ and G the
single clause a ≈ a∨�. Then the solver may drop � from G, learn constant a, remove the
trigger and let the contradiction out, producing Unsat. Alternatively, the solver may discard the
whole clause G as redundant and return Sat: the union Ax∪G is true in the empty world.

Note the slightly complicated explanation of the Sat case: instead of finding a world directly
for Ax∪G, the solver only ensures the feasibility of Ax joined with some ground antecedent
of G modulo T , which is not at all guaranteed to contain the same terms and to behave the
same as G with respect to the �T relation. This is an important feature of our approach: the
input problem G is considered modulo theory T and the solver is free to make simplifications as
long as they are permitted by T , without regard to known and unknown terms. In that way, we
stay consistent with the traditional semantics of DPLL. On the other hand, axiomatization Ax is
treated according to the semantics in Section 2.1.2.

To maintain this distinction, the solver works with two distinct kinds of clauses. The clauses
coming from Ax are theory clauses: disjunctions of closures that accumulate ground substitu-
tions into free variables. The clauses coming fromG are the usual disjunctions of ground literals;

58

Chapter 4. A White-Box Decision Procedure 4.1. Description

we call them user clauses to distinguish them from the clauses of the first kind. The empty clause
⊥ is considered to be a user clause. A super-clause is either a theory clause or a user clause.

Besides the current set of clauses (which can be modified by learning and forgetting), DPLL-
based procedures maintain a set of currently assumed facts. In our procedure, these facts, which
we collectively call super-literals, may be of three different kinds:

• a literal l;

• a closure ϕ ·σ ;

• an anti-closure ¬(ϕ ·σ).

The latter kind appears when we backtrack a decision step over a closure. We extend the T

operation (set of subterms) to closures and anti-closures as follows:

T (l ·σ) � T (lσ)

T (ϕ ·σ) � T (σ) if ϕ is not a literal

T (¬(ϕ ·σ)) � ∅

Non-literal closures ϕ ·σ , where ϕ is a formula under a trigger, a witness, or a universal quan-
tifier, are treated as opaque boxes so that the only terms we can learn from them are the ones
brought by substitution σ . An anti-closure ¬(ϕ ·σ) does not give us any new terms at all (and
thus should not be confused with (¬ϕ) ·σ). Indeed, if the solver at some moment decides to
assume a given closure and later reverts this decision, it should not retain the terms learned from
that closure.

Given a set of super-literalsM, we define LIT(M) to be the set of literals inM, and CLO(M)
to be the set of closures in M. Given a set of super-clauses F , we define LIT(F) to be the set of
unit user clauses in F , and CLO(F) to be the set of unit theory clauses in F .

To model the trigger mechanism, we need a way to protect a super-clause so that its elements
are not available until a certain condition is fulfilled. We define a guarded clause as a pairH→C,
where the guard H is a conjunctive set of closures andC is a super-clause. IfM is a set of super-
literals and F a set of guarded clauses, we define the set of available super-clauses to be the set
of super-clauses of F whose guard is directly in M:

AVB(F,M) � LIT(M)∪CLO(M)∪{C | H →C ∈ F and H ⊆M}

Any more complex reasoning on guards is left to DPLL. We also use the set of guards of F ,
defined as GRD(F) � {H | H →C ∈ F}.

We now extend Definitions 2.4 and 2.5 onto super-literals and guarded clauses.

Definition 4.1 (Truth value). Given a world L, we define what it means for a super-literal, a

59

Chapter 4. A White-Box Decision Procedure 4.1. Description

super-clause, a guard, or a guarded clause to be true is L, written L�T F , as follows:

L�T l L �T l

L�T ϕ ·σ L∪ known(T (L)) �T known(T (σ)) and L�T ϕσ

L�T ¬(ϕ ·σ) if L∪ known(T (L)) �T known(T (σ)) then L ��T ϕσ

L�T C C is a user clause and L �T C

L�T C C is a theory clause and for some ϕ ·σ ∈C, L�T ϕ ·σ

L�T H H is a guard and for each ϕ ·σ ∈ H, L�T ϕ ·σ

L�T H →C if L�T H then L�T C

We say that a super-literal is false in L when its negation is true in L. We call a super-literal,
a super-clause, a guard, or a guarded clause feasible if there exists a world in which it is true.
We call a super-literal, a super-clause, a guard, or a guarded clause satisfiable if there exists a
complete world— which we then call its model—in which it is true.

On normal literals (not closures) and user clauses, �T coincides with �T : a user clause C is
true in a world L if and only if it is true in every model of L. On closures and theory clauses,
�T refers to �T : a theory clause is true in L if and only if one of its closures is true in L. By
a slight abuse of terminology, we reuse the terms of Definitions 2.4 and 2.5, even though they
have different meanings for ordinary literals; in this section, we follow Definition 4.1.

We define a version of implication that treats closures as opaque “atoms” whose arguments
are given by the accumulated substitution. This is the implication used in the DPLL solver, the
semantics of closures being taken care of by specific additional rules.

Definition 4.2. We define an encoding � � of super-literals and guarded clauses into literals and
clauses. In the rules below, Pϕ is a fresh predicate symbol that we associate to every pseudo-
literal ϕ . The arity of Pϕ is the number of free variables in ϕ .

�l� � l

�l ·σ� � lσ

�ϕ ·σ� � Pϕ(vars(ϕ))σ if ϕ is not a literal

�¬(ϕ ·σ)� � ¬�ϕ ·σ�

�e1∨·· ·∨ em� � �e1�∨·· ·∨ �em�

�(g1∧·· ·∧gn)→ (e1∨·· ·∨ em)� � ¬�g1�∨·· ·∨¬�gn�∨ �e1�∨·· ·∨ �em�

Let S be a conjunctive set of super-literals and/or guarded clauses. Let E be a super-literal, a
super-clause, or a guarded clause. We define S ��

T E to be �S� �T �E�.

��
T is a conservative extension of the usual first-order implication �T onto super-literals and

guarded clauses. More generally, we have:

Lemma 4.1. Let S be a conjunctive set of super-literals and/or guarded clauses and let E be a

super-literal, a super-clause, or a guarded clause such that S ��
T E. Then every model of S is a

model of E.

60

Chapter 4. A White-Box Decision Procedure 4.1. Description

Proof. Let L be a model of S. We define L� = L∪{�e� | e is a super-literal such that L �T e}.
The set L� is satisfiable and complete. Indeed, for every closure ϕ ·σ and every substitution σ �

such that L �T σ ≈̇σ �, L �T ϕ ·σ if and only if L ��T ¬(ϕ ·σ �) and L �T ¬ϕ ·σ if and only if
L ��T ϕ ·σ �.

We show that L� �T �S�. Since L�T S, for every super-literal e in S, �e�∈ L�. LetH→C be a
guarded clause of S. If L ��T H then there is e∈H such that L�T ¬e. By construction, �¬e�∈ L�

and L� �T �H →C�. Otherwise, there is e ∈C such that L�T e, �e� ∈ L� and L� �T �H →C�.
Since S ��

T E, L
� is a model of �E�. Thus, if E is a super-literal then �E� ∈ L� and, by

construction of L�, L �T E. If E is a guarded clause (g1∧ ·· · ∧ gn)→ (e1∨ ·· · ∨ em) then there
is e ∈ {¬g1 . . .¬gn,e1 . . .em} such that L �T e and therefore either L ��T g1 ∧ ·· · ∧ gn or L �T

e1∨·· ·∨ em. The case where E is a super-clause is handled in the same way.

We also need a weaker version of implication that preserves feasibility as well as satisfia-
bility. We want this implication to be as close as possible to the usual implication �T on user
clauses while remaining computable by a working solver on theory clauses. We use the set �V�
of ground literals readily available from a set of theory clauses V as defined in Definition 2.9:

Definition 4.3. Let F be a set of super-clauses and C a super-clause. We write F ��
T C if and

only if one of the following conditions holds:

• C is a unit user clause and LIT(F)∪�CLO(F)� �T C;

• C is a non-unit user clause and {C� |C� is a user clause of F}∪�CLO(F)� �T C;

• C is a theory clause D · σ and there is l ∈ D such that F ∪ known(T (CLO(F))) ��
T

known(T (lσ)) and F ��
T lσ ;

• C is a theory clause D ·σ and there is a theory clause C� ·σ � ∈ F such that C� ⊆ D, F ��
T

σ |Dom(σ �) ≈̇σ �, and F ∪ known(T (CLO(F))) ��
T known(T (σ |Dom(σ �))).

Remark that ��
T does not coincide with implication modulo T on unit user clauses. Indeed,

��
T is used in particular to decide that a clause is unnecessary for the proof and therefore can

be forgotten or not generated. In the definition of truth assignment, we state that the solver
should assume unit clauses eagerly while it is allowed to postpone deciding on the literals of
non-unit clauses. Thus, even if a set of non-unit clauses implies a unit clause C, the solver
cannot be allowed to forgetC without compromising termination. For example, consider the set
of axioms:

F = {c≈ c, f (c)≈ f (c), f (c)≈ c,∀x[f (c)≈ c]. f (x)≈ x,∀x. f (x)≈ f (x)}

The set F is terminating (every term introduced by the last axiom can be equated to an already
known term by the previous one). Still, consider the set G = { f (c) ≈ c, f (c) ≈ c∨ c �≈ c}. We
have F \ { f (c) ≈ c} ·∅∪G ��

T f (c) ≈ c ·∅, and thus f (c) ≈ c can be removed from F . We
have f (c) ≈ c∨ c �≈ c �T f (c) ≈ c. Assume we can remove f (c) ≈ c from G. Then, the solver
can produce an infinite number of terms from F \ { f (c) ≈ c}. It may never choose to deduce
f (c)≈ c from f (c)≈ c∨ c �≈ c which would allow all these terms to collapse.

61

Chapter 4. A White-Box Decision Procedure 4.1. Description

In the last two cases of Definition 4.3, known terms are only provided by the closures (that
is, unit theory clauses) of F and not by the user clauses. Indeed, as we said earlier, we treat
user clauses according to the usual first-order semantics, where a literal may be replaced by an
equivalent one regardless of its subterms.

Lemma 4.2. Let C be a super-clause and F be a set of super-clauses such that F ��
T C. For

every world L such that L� F, L�C.

Proof. We have four cases to consider. Assume that C is a unit user clause and LIT(F)∪
�CLO(F)� �T C. Since L � F , L �T LIT(F) and L �T �CLO(F)�. As a consequence, L �T C.
The case whereC is a non-unit user clause is handled in the same way.

Otherwise, C is a theory clause D ·σ . Assume that there is l ∈ D such that F ��
T lσ and

F ∪ known(T (CLO(F))) ��
T known(T (lσ)). Since L � F , L �T LIT(F)∪�CLO(F)� and L∪

known(T (L)) �T known(T (CLO(F))). As a consequence, L� l ·σ |vars(l) and L�C.
Otherwise, there is a theory clause C� ·σ � ∈ F such that C� ⊆ D, F ��

T σ |Dom(σ �) ≈̇σ �, and
F ∪ known(T (CLO(F))) ��

T known(T (σ |Dom(σ �))). Since L � F , L �T σ |Dom(σ �) ≈̇σ � and L∪
known(T (L)) �T known(T (σ |Dom(σ �))), as per the previous case. Furthermore, there is an
element ϕ ·σ �|vars(ϕ) of C

� ·σ � such that L � ϕ ·σ �|vars(ϕ) and thus L � ϕσ �. Since every term
substituted by σ into a free variable of ϕ is known from L, and since σ and σ � substitute the
same terms modulo L and T into every free variable of ϕ , we have L� ϕσ . As a consequence,
L� ϕ ·σ |vars(ϕ) and L�C.

Lemma 4.3. Let C be a super-clause and F be a set of super-clauses such that F ��
T C. We have

F ��
T C.

Proof. Let L be a model of �F�. We have four cases to consider. Assume that C is a unit user
clause and LIT(F)∪�CLO(F)� �T C. Since L �T �F�, L �T LIT(F) and L �T �CLO(F)�. As a
consequence, L �T C. The case whereC is a non-unit user clause is handled similarly.

Otherwise, C is a theory clause D ·σ . Assume that there is l ∈ D such that F ��
T lσ and

F ∪ known(T (CLO(F))) ��
T known(T (lσ)). Since L �T �F�, L �T LIT(F)∪�CLO(F)�. As a

consequence, L �T lσ and L �T �C�.
Otherwise, there is a theory clause C� ·σ � ∈ F such that C� ⊆ D, F ��

T σ |Dom(σ �) ≈̇σ �, and
F ∪known(T (CLO(F))) ��

T known(T (σ |Dom(σ �))). Since L �T �F�, L �T σ |Dom(σ �) ≈̇σ � as per
the previous case. Since L �T �C� ·σ ��, we have L �T �C� ·σ�. Thus, L �T �D ·σ�.

Lemma 4.4. Let C be a super-clause and F1 and F2 be two sets of super-clauses. If F1 �
�
T F2

and F2 �
�
T C, then F1 �

�
T C.

Proof. Assume that C is a unit user clause l and LIT(F2)∪�CLO(F2)� �T C. Since F1 ��
T F2,

we have F1 ��
T LIT(F2) and F1 ��

T �CLO(F2)�. By definition of ��
T on user clauses, LIT(F1)∪

�CLO(F1)� �T LIT(F2)∪�CLO(F2)�. Thus, F1 ��
T C. The case whereC is a non-unit user clause

is handled in the same way, except that instead of LIT(F1) and LIT(F2) we consider the sets of
all user clauses in F1 and F2, respectively.

62

Chapter 4. A White-Box Decision Procedure 4.1. Description

Otherwise,C is a theory clause D ·σ . Assume that there is a literal l ∈ D such that F2 ��
T lσ

and F2 ∪ known(T (CLO(F2))) �
�
T known(T (lσ)). Like in the previous case, F1 ��

T lσ . Since
F1 �

�
T F2, F1 ∪ known(T (CLO(F1))) �

�
T known(T (ϕ ·σ)) for every closure ϕ ·σ ∈ CLO(F2).

As a consequence, LIT(F1) ∪ �CLO(F1)� ∪ known(T (CLO(F1))) �T LIT(F2) ∪ �CLO(F2)� ∪
known(T (CLO(F2))) and F1 ��

T C.
Otherwise, there is a theory clause C� · σ � ∈ F2 such that C� ⊆ D, F2 ��

T σ |Dom(σ �) ≈̇ σ �,
and F2 ∪ known(T (CLO(F2))) �

�
T known(T (σ |Dom(σ �))). Like in the previous case, we have

F1 �
�
T σ |Dom(σ �) ≈̇σ � and F1∪ known(T (CLO(F1))) �

�
T known(T (σ |Dom(σ �))).

Assume that there is a literal l ∈ C� such that F1 ��
T lσ

� and F1 ∪ known(T (CLO(F1))) �
�
T

known(T (lσ �)). Since F1 ��
T σ |Dom(σ �) ≈̇ σ �, F1 ��

T lσ . With F1 ∪ known(T (CLO(F1))) �
�
T

known(T (σ |Dom(σ �))), we deduce F1 ∪ known(T (CLO(F1))) �
�
T known(T (lσ)). Therefore,

F1 �
�
T C.
Otherwise, there is a theory clause C�� ·σ �� ∈ F1 such that C�� ⊆ C�, F1 ��

T σ �|Dom(σ ��) ≈̇σ ��,
and F1∪known(T (CLO(F1))) �

�
T known(T (σ �|Dom(σ ��))). Since F1 �

�
T σ |Dom(σ �) ≈̇σ �, we have

F1 �
�
T σ |Dom(σ ��) ≈̇σ ��. Hence, F1 ��

T C.

Given a set of super-literalsM, we writeM ��
T C as an abbreviation for LIT(M)∪CLO(M)��

T

C. In other words, we treat literals and closures in M as unit user clauses and theory clauses,
respectively, and we ignore the anti-closures. According to this definition, M ��

T ⊥ whenever
the set LIT(M)∪�CLO(M)� is unsatisfiable.

In our algorithm, we use terms coming from the user clauses to instantiate universally quan-
tified formulas and to unfold triggers. To make these terms usable for the ��

T relation, we need
to convert the literals in the set of assumed facts to closures, as follows. Given a set of super-
literals M, we define �M� to be M ∪ {l ·∅ | l ∈ LIT(M)}. Thus, for every term t ∈ T (M),
t ∈ T (CLO(�M�)).

Lemma 4.5. Let M be a set of super-literals and e a super-literal. If �M� ��
T e then M ��

T e.

Proof. If L is a model of �M� then L is also a model of ��M��.

4.1.2 Description of DPLL(T) with triggers

The method introduced below adapts the principles of abstract DPLL modulo theories (follow-
ing [61]) to super-literals and guarded clauses. We call this adaptation DPLL�(T) or DPLL�

since T is fixed.

4.1.2.1 Deduction Rules of DPLL�(T)

The rules are given in Figures 4.1 and 4.2. They attempt to construct a model of a set of guarded
clauses F . The partial model is represented as a set of super-literals M that are assumed to be
true. We call state of the procedure the pair M � F and we say that a super-literal e is defined in
M if either e or ¬e is in M.

The elements of an available clause can be given an arbitrary truth value using the rule
Decide. Super-literals of M whose truth value was chosen arbitrarily are labeled with a letter d

63

UnitPropagate:

M � F,H →C∨ e =⇒ Me � F,H →C∨ e if

�

H ∧¬C ⊆M

e is undefined in M

Decide:

M � F =⇒ Med � F if

�

e or ¬e occurs in AVB(F,M)

e is undefined in M

Fail:

M � F,H →C =⇒ fail if

�

H ∧¬C ⊆M

M contains no decision literals

Restart:

M � F =⇒ ∅ � F

T-Propagate:

M � F =⇒ Me � F if

e /∈M and either:

M ��
T e and e or ¬e occurs in AVB(F,M), or

�M� ��
T e and e occurs in GRD(F)

T-Learn:

M � F =⇒ M � F,H →C if

every atom of H occurs in GRD(F)∪�M�

every atom ofC occurs in AVB(F,H)∪LIT(M)

F,H ��
T C

T-Forget:

M � F,H →C =⇒ M � F if

�

each closure ofC defined in M occurs in AVB(F,H)

AVB(F,H) ��
T C

T-Backjump:

MedN � F =⇒ Me� � F if

there is H →C ∈ F such that H ∧¬C ⊆MedN

there is D⊆M such that:

F,D ��
T e

�,

e� is undefined in M, and

e� or ¬e� occurs in AVB(F,M)∪LIT(MedN)

Figure 4.1: Transition rules of DPLL�(T) on guarded clauses

Instantiate:

M � F =⇒ M � F,(∀x.C ·σ)∧ x≈ x · [x �→ t]→C · (σ ∪ [x �→ t]) if

∀x.C ·σ is in M

t ∈ T (M)

AVB(F,M) ���
T C · (σ ∪ [x �→ t])

Witness-Unfold:

M � F =⇒ M � F, �l�C ·σ → l ·σ ,�l�C ·σ →C ·σ if
�

�l�C ·σ is in M

Trigger-Unfold:

M � F =⇒ M � F, [l]C ·σ ∧ l ·σ →C ·σ if

�

[l]C ·σ is in M

�M� ��
T l ·σ

Figure 4.2: Additional transition rules for Abstract DPLL�(T) on guarded clauses

Chapter 4. A White-Box Decision Procedure 4.1. Description

and called decision super-literals. If every element of a clause is false but one, the remaining
element has to be true for the clause to be verified. It can be propagated using UnitPropagate.
If every element of an available clause is false then the corresponding guarded clause is called
a conflict clause. If there is a conflict clause in F and there is no arbitrary choice in M, then a
special state, named fail, can be reached through Fail. It means that no model could be found
for F . The rule Restart can be used to restart the search from scratch. If there is a super-literal
e that appears in available clauses or guards of F whose negation leads to a contradiction in M,
it can be propagated using T-Propagate.

The set of guarded clauses F can be modified during the search using the rules T-Learn and
T-Forget. Unlike the classical DPLL, we impose different conditions on the clauses that can be
learned and the clauses that can be forgotten. We allow to learn any clause H →C if F,H ��

T C,
and thus every model of �F� is also a model of �H →C�. However, we are more restrictive with
respect to what clauses can be forgotten. Namely, we require that for a guarded clause H→C to
be forgotten, AVB(F,H) ��

T C. We show below that this distinction is necessary for termination.
Finally, if every element of an available clause of F is false and there is at least a decision

literal inM, the rule T-Backjump can be applied. It allows to remove one or several decisions of
M as long as there is a new element that can be added to M. An element can be added to M if it
is implied by M and F .

Specific rules are needed to retrieve information from closures that are described in Fig. 4.2.
The formulas added by these rules to the set of guarded clauses F are tautologies in the seman-
tics of formulas with triggers. The rule Instantiate creates a new instance of a universally
quantified formula ofM with a sub-term ofM. The rule Witness-Unfold handles a witness �l�C
as a conjunction l∧C. The rule Trigger-Unfold uses the guard mechanism to protect elements
of trigger so that they cannot be decided upon or propagated until the guard is unfolded. An
application of one of these three rules is said to be redundant in F , if the added guarded clauses
are redundant in F , and a guarded clause H→C is said to be redundant in F if AVB(F,H) ��

T C.

4.1.2.2 Termination Criteria of DPLL�(T)

A solver implementing DPLL�(T) attempts to construct a model of a set of guarded clauses by
using the rules described in Figures 4.1 and 4.2 in an arbitrary way. We finally define when such
a solver is allowed to stop, that is, to deduce the satisfiability or unsatisfiability of a set of ground
clauses G modulo an extension of the background theory T described as an axiomatizationW :

Property 4.1. The solver can return Unsat on G if ∅ �W ·∅∪G=⇒� _ � fail.

Property 4.2. The solver can return Sat on G if ∅ �W ·∅∪G=⇒� M � F where:

(i) M ��
T AVB(F,M),

(ii) M ���
T ⊥, and

(iii) if H →C can be added by either Instantiate, Witness-Unfold, or Trigger-Unfold then
AVB(F,M) ��

T C.

65

Chapter 4. A White-Box Decision Procedure 4.1. Description

Remark 4.1. When there are no closures involved, the calculus above coincides with classical
abstract DPLL modulo theories as long as unit clauses are only forgotten if they are implied
by unit clauses. As a consequence, the changes in abstract DPLL can be implemented as an
extension outside an existing DPLL implementation.

Remark 4.2. The relation ��
T on guarded clauses cannot be computed inside the solver, but it is

not needed to implement DPLL�. Indeed, like in classical abstract DPLL(T), conflict analysis
allows to deduce enough applications of T-Backjump and T-Learn to ensure progress. This is
explained below in Lemma 4.11 and Corollary 4.2.

Remark 4.3. In classical abstract DPLL modulo theories, conflict driven lemmas, namely for-
mulas allowing to deduce the added element e� inM after an applicationMedN � F =⇒Me� � F
of T-Backjump, can be added to F using T-Learn. In our framework, this is not the case if
e� is an anti-closure since super-clauses cannot contain anti-closures. This restriction can be
removed by allowing to deduce guarded clauses H → C such that F,H ��

T C where C may
contain super-literals of all three kinds: literals, closures, and anti-closures. With this modi-
fication, if there is D⊆M such that F,D ��

T e
� and e� or ¬e� occurs in AVB(F,M)∪LIT(MedN),

CLO(M)→{¬e | e is an anti-closure or a literal of D}∨ e� can be added to F using T-Learn.

4.1.3 Termination Related Constraints

In this section, we motivate the constraints on the rules T-Propagate, T-Backjump, T-Learn,
T-Forget, and Instantiate using examples. These constraints are closely related to the defini-
tion of termination in Section 2.1.4. They aim at forbidding:

• The addition into M of a super-literal that should be protected by a trigger. It requires
keeping track of guards that should be protecting a new clause when learning it. This idea
motivates the constraints on T-Propagate, T-Backjump, and T-Learn.

• The loss of a unit clause that is implied by non-unit clauses. In the definition of the
termination property, we only require that an element of a unit clause is added to truth
assignments. Indeed, we do not want to ask for an application of Decide if there is another
rule, for example, Instantiate, that can be applied. This motivates the constraints on
T-Forget.

• The generation of an instance that is redundant as far as truth assignments are concerned.
Indeed, the construction of instantiation trees stops as soon as a final truth assignment is
reached. This motivates the constraints on Instantiate.

In the rule T-Propagate, we only allow e ∈ GRD(F) to be added toM if �M� ��
T e. Indeed,

a trigger [l]C ·σ is supposed to protect elements ofC until l is true inM and all its sub-terms are
known in M. This is exactly what we get by requesting �M� ��

T lσ , namely LIT(M)∪{l�σ � | l� ·
σ � ∈ M} �T lσ and LIT(M)∪ {l�σ � | l� ·σ � ∈ M} ∪ known(T (M)) �T known(T (lσ)). Only
requesting thatM ��

T lσ would not have been enough. For example, consider the axiomatization
W1 = {∀x.[f (x)]p(f (x)) ≈ t}. We can easily check thatW1 is terminating. Indeed, every sub-
term of the form f (t �) of every truth assignment of [f (x)]p(f (x))≈ t · [x �→ t]∪L ·∅ is either a
sub-term of L or a sub-term of t. Still, M ��

T (f (x) ≈ f (x)) · [x �→ t] for every term t ∈ T (M).

66

Chapter 4. A White-Box Decision Procedure 4.1. Description

As a consequence, for any term t in M, p(f (x)) ≈ t · [x �→ t] and then p(f (x)) ≈ t · [x �→ f (t)],
p(f (x))≈ t · [x �→ f (f (t))]... can be added to M.

In the rule T-Backjump, we require that e� or ¬e� occurs in AVB(F,M)∪ LIT(MedN). As-
sume that e� or ¬e� is allowed to appear in MedN and consider the axiomatization:

W2 = {∀y.[p(y)≈ t]∀x. f (x,y)≈ x, ∀y.[p(y)≈ t]∀x. f (x,y)≈ f (x,y), c≈ c}

This axiomatization is terminating because as long as we have some p(t) ≈ t to generate new
terms f (t �, t) using the second axiom, we can also use the first axiom to collapse them to t �.
Assume we launch the solver on a set of user clauses G2 = {p(a) ≈ t, p(a) �≈ t∨ p(b) ≈
t, p(c) ≈ t∨ a ≈ a, p(a) �≈ t∨ a ≈ c}. We can add p(a) ≈ t to M using UnitPropagate.
We instantiate the first formula ofW2 with a ∈ T (M) and apply T-Propagate, UnitPropagate,
and Trigger-Unfold so that (∀x. f (x,y) ≈ f (x,y)) · [y �→ a] is in M. Then we can make a bad
choice and decide p(b) �≈ t. We now add p(c) ≈ t to M using Decide, instantiate the first for-
mula of W2 with c ∈ T (M) and apply T-Propagate, UnitPropagate, and Trigger-Unfold

so that (∀x. f (x,y) ≈ f (x,y)) · [y �→ c] is in M. Since we have a conflict clause in M, we
can use T-Backjump but, instead of adding p(b) ≈ t, we make another bad choice and add
(∀x. f (x,y)≈ f (x,y)) · [y �→ c]. Indeed, since (∀x. f (x,y)≈ f (x,y)) · [y �→ a]∈M andG2 �T a≈ c,
G2 ∪M ��

T (∀x. f (x,y) ≈ f (x,y)) · [y �→ c]. Because of this closure, we can produce an infinite
number of terms f (t,c), f (f (t,c),c) . . . Since we do not have M �T p(c) ≈ t, they are not all
equal to t inM. Indeed, we are not bound to add a≈ c toM until there is nothing else to do even
if it is implied by G2.

In the rule T-Learn, for a new guarded clause H →C to be learned, every atom of C must
occur in AVB(F,H)∪ LIT(M). Even asking that AVB(F,H) ��

T C is not enough to prevent el-
ements that are protected by a trigger in F from occurring in C without their trigger. When
they are in C, they can be added to M, through Decide for example, and prevent the solver
from terminating. The following example closely resembles the previous one. Assume that
closures of C are allowed to occur in M and consider the axiomatization W2 and the set of
user clauses G2 from the previous paragraph. We can add p(a) ≈ t and p(c) ≈ t to M us-
ing UnitPropagate and Decide. We instantiate the first formula of W2 with a and c ∈ T (M)
and apply T-Propagate, UnitPropagate, and Trigger-Unfold so that ([p(y) ≈ t]∀x. f (x,y) ≈
f (x,y)) · [y �→ a]∧(p(y)≈ t) · [y �→ a]→ (∀x. f (x,y)≈ f (x,y)) · [y �→ a] is in F and (∀x. f (x,y)≈
f (x,y)) · [y �→ c] is in M. If the condition of T-Learn were relaxed, the guarded clause ([p(y)≈
t]∀x. f (x,y) ≈ f (x,y)) · [y �→ a]∧ (p(y) ≈ t) · [y �→ a] → (∀x. f (x,y) ≈ f (x,y)) · [y �→ c] could
be added to F using T-Learn. Indeed, G3 ∪ {c ≈ c ·∅, (∀x. f (x,y) ≈ f (x,y)) · [y �→ a]} ⊆
AVB(F,{([p(y)≈ t]∀x. f (x,y)≈ f (x,y)) · [y �→ a], (p(y)≈ t) · [y �→ a]}) and, since G3 �T a≈ c,
G3∪{c≈ c ·∅, (∀x. f (x,y)≈ f (x,y)) · [y �→ a]} ��

T (∀x. f (x,y)≈ f (x,y)) · [y �→ c]. Now, we re-
move everything from M using Restart. Using T-Propagate and UnitPropagate, we can add
p(a)≈ t, ([p(y)≈ t]∀x. f (x,y)≈ f (x,y)) · [y �→ a], (p(y)≈ t) · [y �→ a] and finally (∀x. f (x,y)≈
f (x,y)) · [y �→ c] to M. Because of this closure, we can produce an infinite number of terms
f (t,c), f (f (t,c),c) . . . Since we do not have p(c) ≈ t, they are not all equal to t in M. Indeed,
we are not bound to add a≈ c to M until there is nothing else to do even if it is implied by G3.

In the rule T-Forget, we forbid the deletion of a guarded clause H → C ∈ F if, after the
deletion, there is a closure defined in M that no longer appears in AVB(F,H). This is needed

67

Chapter 4. A White-Box Decision Procedure 4.1. Description

so that we have a progress property in spite of the additional constraints on T-Backjump and
T-Learn. For example, assume F contains a redundant guarded clause H →C such that H ⊆M

and there is a tautology ϕ ·σ ∈C such that ϕ ·σ does not appear in F \{H→C}. The anti-closure
¬(ϕ ·σ) can be added to M using Decide. If H →C is then erased from F with T-Forget, the
rule T-Backjump can no longer be applied to revert ϕ ·σ .

We also require that AVB(F,H) ��
T C. Assume that we can forget H→C as soon as we have

F,H ��
T C. Consider the axiomatization:

W4 = {[p(a)≈ t]∀x. f (x,a)≈ x, [p(c)≈ t]∀x. f (x,c)≈ f (x,c), a≈ c, a≈ a,c≈ c}

Like W2, W4 is terminating. We launch the solver on the set of user clauses G4 = {p(a) ≈
t, p(c) ≈ t, p(a) �≈ t∨ a ≈ c}. We can easily check that W4 ·∅ \ {a ≈ c ·∅} ∪G4 �

�
T a ≈

c ·∅, and therefore we forget it. We can add p(c) ≈ t and the second axiom ofW4 to M using
UnitPropagate. With Trigger-Unfold and then T-Propagate and UnitPropagate we can add
∀x. f (x,c) ≈ f (x,c) to M. Because of this closure, we can produce an infinite number of terms
f (t,c), f (f (t,c),c) . . . Since we do not have a≈ c, they are not all equal to t in M.

In the rule Instantiate, an instance of a formula ∀x.C ·σ with a term t cannot be added to
F if AVB(F,M) ��

T C · (σ ∪ [x �→ t]). This constraint is needed for termination so that redundant
instances are forbidden.

4.1.4 Soundness and Completeness

We show that DPLL�(T) is compliant with the semantics defined in Section 2.1.2.

Lemma 4.6. For every derivation M1 � F1 =⇒
� M2 � F2, every model L of F1 is a model of F2.

Proof. We proceed by case analysis over the rule applied for the stepM1 � F1 =⇒M2 � F2.

• In UnitPropagate, Decide, Restart, T-Propagate, and T-Backjump, F1 and F2 are equal.

• For T-Learn, we have F1,H ��
T C. Since L is complete, by Lemma 4.1, if L � F1 and

L� H, then L�C.

• For T-Forget, F2 ⊆ F1. Thus, if we have L� F1 then L� F2.

• For the rule Witness-Unfold, assume that L � �l�C ·σ . By definition of �, L � l ·σ and
L�C ·σ .

• For the rule Trigger-Unfold, assume that L� [l]C ·σ ∧ l ·σ . By definition of�, L�C ·σ .

• For the rule Instantiate, assume that L � ∀x.C ·σ ∧ x ≈ x · [x �→ t]. By definition of
�, L∪ known(T (L)) �T known(T (t)) and so there is t � ∈ T (L) such that L �T t ≈ t �.
Therefore, L�C · (σ ∪ [x �→ t]).

Lemma 4.7. For every derivation M1 � F1 =⇒
� M2 � F2, we have F2 �

�
T F1.

68

Chapter 4. A White-Box Decision Procedure 4.1. Description

Proof. Let L be a complete and satisfiable set of literals. We proceed by induction over the
number of applications of T-Forget M � F,H →C =⇒M � F . If there are none then F1 ⊆ F2.
Otherwise, consider the last applicationM � F,H →C =⇒M � F . We have that F ⊆ F2 and, by
induction hypothesis, F ∪H →C ��

T F1. Since F ��
T C, F ��

T C by Lemma 4.3.

Theorem 4.1 (T -Soundness). If the solver returns Unsat on a set of user clauses G with a sound

axiomatization Ax of an extension T � of T then G has no model in the theory T �.

Proof. We define W to be the result of the Skolemization and the clausification of Ax. Every
model of Ax can be extended to a model of W by adding the interpretations of the Skolem
functions. As a consequence, since Ax is sound, for every T �-satisfiable set of literals G� that
only contains literals of G, there is a model ofW ∪G�.

We first need an intermediate lemma. It states that every element of a set of super-literals
M constructed in a derivation is either a decision or implied by the input problem and previous
decisions:

Lemma 4.8. If ∅ � G∪W ·∅ =⇒� M0e
d
1M1 . . .e

d
nMn � F, L is a model of G∪W ·∅ and L �

e1, . . . ,ei then L�Mi for every i in 0 . . .n.

Proof. Let L be a model of G∪W ·∅, such that L�M. We show that, for every rule that adds a
new super-literal e to M from M � F (except Decide), L� e.

First note that, by Lemma 4.6, L � F . For the rule UnitPropagate, L � H → C∨ e and
L � H ∪¬C. By definition of �, L � e. For the rule T-Propagate, M ��

T e and, since L is
complete, L� e by Lemma 4.1. The only remaining rule is T-Backjump. There is a subset D of
M such that F ∪D ��

T e. Since L�M and L� F , since L is complete, L� e by Lemma 4.1.

Thanks to the previous lemma, we can perform the proof of Theorem 4.1. If the solver
returns Unsat on G withW then there is a derivation ∅ � G∪W ·∅=⇒� M � F,H →C =⇒ fail

such that M contains no decision literals and H ∧¬C ⊆ M. By contradiction, assume G has a
model in T �. There is a T �-satisfiable set of literals G� such that G� �T G. Since Ax is sound,
W ∧G� has a model L. By Lemma 4.8, L � M. What is more, by Lemma 4.6, L � F,H → C.
With H ∧¬C ⊆M, we get a contradiction.

Theorem 4.2 (T -Completeness). If the solver returns Sat on a set of clauses G with a complete

axiomatization Ax of T � then G is T �-satisfiable.

Proof. We defineW to be the result of the Skolemization and the clausification of Ax. IfW is
feasible then so is Ax. As a consequence, since Ax is complete, every set of literals L such that
W ∪L is feasible is T �-satisfiable.

We show that, if the solver returns Sat on a set of clauses G with the theoryW then there is
a T -satisfiable set of literals L such that L �T G andW ∪L is feasible. Since Ax is complete, L is
T �-satisfiable. Since L �T G, so is G.

Let F be a set of guarded clauses and M a set of literals and closures such that ∅ � G∪W ·
∅=⇒� M � F and:

(i) M ��
T AVB(F,M),

69

Chapter 4. A White-Box Decision Procedure 4.1. Description

(ii) M ���
T ⊥, and

(iii) if H →C can be added by either Instantiate, Witness-Unfold, or Trigger-Unfold then
AVB(F,M) ��

T C.

Consider L = LIT(M)∪{lσ | l ·σ ∈ M}∪ {t ≈ t | t ∈ T (M)}. By (ii), L is T -satisfiable.
We need to show that L �T G and L �W , which is the same as L � AVB(W ·∅∪G,∅). It is
sufficient to prove that L � AVB(F,∅). Indeed, the only rule that can remove an element of
W ·∅∪G is T-Forget and, if L� AVB(F,∅) and AVB(F,∅) ��

T C, by Lemma 4.2, L�C.
Now, we only need to show that L � CLO(M). Indeed, M ��

T AVB(F,M) is the same as
LIT(M)∪CLO(M)��

T AVB(F,M) and thus L� CLO(M) implies L�AVB(F,M) by Lemma 4.2.
For every closure ϕ ·σ ∈M, we prove that L� ϕσ by induction over the size of the formula ϕ .

• l ·σ ∈M. By definition of L, L� lσ .

• ∀x.C ·σ ∈M. Let t be a ground term of L. By definition of L, t is a ground term ofM. By
(iii), AVB(F,M)��

T C ·(σ ∪ [x �→ t]). SinceM ��
T AVB(F,M), by Lemma 4.4,M ��

T C ·(σ ∪
[x �→ t]). Therefore, there is ϕ ∈C such that either ϕ ·σ � ∈M and L �T (σ ∪ [x �→ t]) ≈̇σ �

or ϕ is a literal,M ��
T ϕσ , andM∪known(T (CLO(M))) ��

T known(T (ϕσ)). In the first
case, since ϕ is strictly smaller than ∀x.C, we have L� ϕσ � by induction hypothesis and,
hence, L � ϕσ . In the second case, L � ϕσ by definition of L. By definition of � on
universally quantified formulas, L� (∀x.C)σ .

• �l�C ·σ ∈M. By (iii), we have AVB(F,M) ��
T l ·σ and AVB(F,M) ��

T C ·σ . Since M ��
T

AVB(F,M), by Lemma 4.4, M ��
T l ·σ and M ��

T C ·σ . Hence, there is ϕ ∈ C such that
either there is a substitution σ � such that ϕ ·σ � ∈ M and M ��

T σ ≈̇σ � or ϕ is a literal,
M ��

T ϕσ and, M ∪ known(T (CLO(M))) ��
T known(T (ϕσ)). In both cases, L � ϕσ

with the same reasoning as for universal quantifiers. In the same way, L� lσ . Therefore,
L� (�l�C)σ .

• [l]C · σ ∈ M. Assume L � lσ . By definition of �, we have both M ��
T lσ and M ∪

known(T (M)) ��
T known(T (lσ)). Thus �M� ��

T l ·σ . By (iii), AVB(F,M) ��
T C ·σ . As a

consequence, L�Cσ like in the two previous cases and, by definition of �, L� ([l]C)σ .

4.1.5 Progress and Termination

We have shown that DPLL�(T) only allows derivations that are compliant with the semantics
of Section 2.1. In this section, we show that, if some restrictions are applied, there cannot be
infinite DPLL� derivations. We also show that, within the same restrictions, every derivation
that can not continue is terminal, i.e., the solver can return Sat or Unsat.

For termination, we require instantiation to be fair, that is to say that every possible instance
should be generated at some point in the search. To define fairness, we use a notion of instan-
tiation level. An instantiation level n for a term t indicates that t is the result of n rounds of
instantiation. More formally, ifM is a set of super-literals, the instantiation level levelM(t) (resp.

70

Chapter 4. A White-Box Decision Procedure 4.1. Description

levelM(e)) of a term t (resp. a super-literal e) is either a non-negative integer or a special element
∞. It is defined as the limit of the sequence leveliM computed in the following manner:

on a term t leveliM(t) � min{leveliM(e) | e ∈M and t ∈ T (e)}

on a literal l leveliM(l) � 0

on a closure or anti-closure level0M(e) � 0 if σ is empty and ∞ otherwise

ϕ ·σ or ¬(ϕ ·σ) leveli+1
M (e) � 1+max{leveliM(xσ) | x ∈ Dom(σ)}

Operations min, max and+ are so that, if S is a non-empty set, min(S∪∞) =min(S), min(∅) =
∞, max(S∪∞) = ∞, max(∅) = −1, and 1+∞ = ∞. This sequence always converges since the
level of every term or super-literal either stays infinite forever or becomes finite at some i and
does not change after that.

Using this definition, we define the current instantiation level of a set of super-literals M
as level(M) = max{levelM(e) | e ∈M}. We enforce fairness by requiring that new instances of
level strictly bigger than the current instantiation level are only possible when:

• a truth assignment, as defined in Section 2.1.4, has been reached, and

• every previously available instance of a smaller instantiation level has already been han-
dled.

These two requirements are obtained by a restriction on derivations:

Definition 4.4 (Fairness). We say that a derivation is fair if, for every step _ � F =⇒ Me � F
where levelM(e)> level(M), e has form x≈ x · [x �→ t] and Instantiate can be applied to some
universal formula ∀x.ϕ ·σ and the term t in M � F . For every such step, if M� is the minimal
prefix of M such that t ⊆ T (M�), then there is a prefix N of M containing M� and ∀x.ϕ ·σ such
that:

(a) N ���
T ⊥,

(b) for every unit super-clause e ∈ AVB(F,∅), we have �N� ��
T e,

(c) for every closure �l�C ·σ ∈ N, �N� ��
T l ·σ and, ifC is a unit clause, �N� ��

T C ·σ ,

(d) for every closure [l]ϕ · σ ∈ N such that ϕ is a unit clause, if �N� ��
T l · σ then we have

�N� ��
T ϕ ·σ ,

(e) for every closure ∀x.ϕ ·σ ∈ M� such that ϕ is a unit clause and for every term t ∈ T (M�)
such that levelM(ϕ · (σ ∪ [x �→ t]))≤ level(M), we have �N� ��

T ϕ · (σ ∪ [x �→ t]), and

(f) for every guarded clause H →C that can be added to the set F by applying Instantiate,
Witness-Unfold or Trigger-Unfold on a closure of M�, if levelM(H) ≤ level(M) then
AVB(F,M) ��

T C.

71

Chapter 4. A White-Box Decision Procedure 4.1. Description

Remark 4.4. Note that, in a fair derivation, the current instantiation level of every partial model
M is finite.

Remark 4.5. Dealing with instantiation levels is not mandatory. To ensure fairness, it suffices
to handle unit clauses, triggers and witnesses before generating new instances and to select
instances in the order in which they become possible.

Using this definition of fairness, we state some restrictions on derivation that enforce termi-
nation:

Theorem 4.3 (Termination). There is no infinite derivation Der from a state∅ �G∪W ·∅ where

W is terminating such that:

• Der has no infinite sub-derivation made only of T-Learn, T-Forget, and redundant

Witness-Unfold, Trigger-Unfold and Instantiate steps,

• the derivation is fair,

• for every sub-derivation of the form: Si−1 =⇒ Si =⇒ . . .=⇒ S j =⇒ . . .=⇒ Sk where the

only three Restart steps are the ones producing Si, S j and Sk, either:

– there are more DPLL� steps that are neither T-Learn or T-Forget steps nor redun-

dant applications of Witness-Unfold, Trigger-Unfold or Instantiate in S j =⇒
. . .=⇒ Sk than in Si =⇒ . . .=⇒ S j, or

– a guarded clause including only literals and closures with empty substitutions is

learned in S j =⇒ . . .=⇒ Sk and is not forgotten in Der.

Remark 4.6. If the axiomatization W is empty, those are exactly the restrictions needed for
termination of classical abstract DPLL modulo theories.

Proof. Assume that there is an infinite derivation Der that satisfies these restrictions. Since
there is only a finite number of literals and closures with empty substitutions in G∪W ·∅, after
a finite number of steps, Restart steps in Der are separated by an increasing number of steps
that are neither T-Learn or T-Forget steps nor redundant applications of Witness-Unfold,
Trigger-Unfold or Instantiate. Since there is no infinite sub-derivation of Der made only of
applications of T-Learn and T-Forget as well as redundant applications of Witness-Unfold,
Trigger-Unfold, and Instantiate steps, for every integer n, there is a sub-derivation of Der
containing no Restart steps and more than n steps that are neither T-Learn or T-Forget steps
nor redundant applications of Witness-Unfold, Trigger-Unfold or Instantiate. With the two
following properties, we reach a contradiction:

(i) LetMW be a finite set of super-literals. There is an integer maxstep such that, for every sub-
derivation Der� of Der containing no Restart, if, for every state M � F in Der�, M ⊆MW ,
then Der� contains no more than maxstep steps that are neither T-Learn, or T-Forget steps
nor redundant applications of Witness-Unfold, Trigger-Unfold, or Instantiate.

(ii) IfW is terminating, then there is a finite set of super-literals MW such that, at every state
M � F in Der, M ⊆MW .

72

Chapter 4. A White-Box Decision Procedure 4.1. Description

Proof of (i): Let Der� be a sub-derivation of Der containing no Restart such that, for every
state M � F in Der�, M ⊆MW . We first need an order on partial models M. Every partial model
M can be written M1e

d
1M2 . . .Mne

d
nMn+1 where ed1 . . .e

d
n are the only decision super-literals in M.

The order is defined as the lexicographic order on sequences �M1 . . . �Mn+1 where �Mk is the
length of Mk.

An inspection of UnitPropagate, Decide, T-Propagate, and T-Backjump shows that they
produce a strictly greater partial model. The other rules do not change the partial model. Since
MW is finite and a partial model cannot contain the same super-literal twice, the size of strictly
increasing sequences of partial models is bounded.

As a consequence, we only have to consider sub-derivations that only consist of T-Learn,
T-Forget, Instantiate, Witness-Unfold, and Trigger-Unfold steps. Since MW is finite,
there can only be a finite number of distinct applications of Instantiate, Witness-Unfold, and
Trigger-Unfold in the derivation. Therefore, if �CLO(MW) is the number of closures in MW ,
there can only be �CLO(MW) non-redundant applications of Instantiate, Witness-Unfold, and
Trigger-Unfold in our sub-derivation.

As a conclusion, there is an integer maxstep such that every derivation Der� contains no more
than maxstep steps that are neither T-Learn or T-Forget steps nor redundant applications of
Witness-Unfold, Trigger-Unfold or Instantiate.

Proof of (ii): The idea of the proof is the following. During the search, the algorithm will go
through the instantiation trees of L∪W , where L is a set of literals from G. Fairness will prevent
it from generating too many instances before generating the one instance that will allow the tree
to grow. Note that, since the derivation is fair, every element ofM has a finite instantiation level.
Indeed, if Instantiate can be applied to some universal formula and some term t inM � F then
t ∈ T (M).

Let us first construct the sequence of sets of super-literals Zi that will be used to bound M
during the search. We call sub-formula ofW , an element of the smallest set containing {ϕ |ϕ ∈C
and C ∈W} and such that, if ∀x.C, �l�C or [l]C is a sub-formula ofW , l and every element of C
are sub-formulas ofW .

We define the sequence Zi such that Z0 = {l, l ·∅, ¬(l ·∅) | l or ¬l occurs in G} ∪ {ϕ ·
∅, ¬(ϕ ·∅) | ϕ is a closed sub-formula of W} and Zn+1 = Zn ∪{ϕ ·σ ,¬(ϕ ·σ) | ϕ is a sub-
formula ofW or the equality x≈ x and T (σ)⊆ T (Zn)}.

Remark 4.7. By construction of the sequence Zi, if an element e ∈M has an instantiation level
n in M then e ∈ Zn.

SinceW is terminating, for every subset L of the finite set of literals {l | l ·∅ ∈ Z0}, we can
choose a finite instantiation tree of W ∪L. We define what is the biggest truth assignment AM

occurring in these trees that is implied by the set M at some point in the search. If A is a set of
super-clauses, we define UNIT(A) to be the set of unit super-clauses of A.

For every set of super-literals M, we compute a sequence AMi of sets of theory clauses as
follows. AM0 is the biggest subset of {l ·∅ | l ·∅ ∈ Z0} such that �M� ��

T A
M
0 . A

M
1 is the biggest

truth assignment of AM0 ∪W ·∅ such that �M� ��
T UNIT(AM1). Such a truth assignment may not

exist, for instance, ifW contains a unit theory clause �l�C and �M� ���
T l ·∅. Let TM be the finite

instantiation tree of {l | l ·∅ ∈ AM0 }∪W . If ∀x.C ·σ , t is the new instance added to AMi in TM,

73

Chapter 4. A White-Box Decision Procedure 4.1. Description

then AMi+1 is the biggest truth assignment of AMi ∪C · (σ ∪ [x �→ t]) such that �M� ��
T UNIT(AMi+1),

if any. We call dM the maximal i for which AMi exists and we define AM as AM
dM
.

For i ∈ 0..dM, let nMi be the number of closures that are in AMi but not in AMi−1, if any. We
define nmax and dmax to be integers such that, for every subset L of {l | l ·∅ ∈ Z0}, the height of
the chosen finite instantiation tree T of L∪W is less than dmax and there is less than nmax closures
in every truth assignment of T. We have that dM < dmax and nMi < nmax for every M and every
i ∈ 0..dM. We call nM the integer ∑i∈0..dM(n

M
i + 1)× (nmax+ 1)(dmax−i). Note that nM models a

lexicographic order on the finite sequence nM0 . . .nM
dM
.

Remark 4.8. By definition, nM depends only on AM and, if AMe is different from AM, then
nMe > nM.

Let m be (nmax+2)dmax+1. We show that, for every state M � F in the derivation, the current
instantiation level inM is at most nM+1. Thus, if∅ �W ·∅∪G=⇒M � F , elements ofM have
an instantiation level of at most m+1 in M. By Remark 4.7, M ⊆ Zm+1.

Let us now do the proof. We show by induction over the derivation ofM � F that:

1. the current instantiation level in M is at most nM+1, and

2. there is a prefix M� of M such that elements of M� have an instantiation level smaller or
equal to nM in M and �M�� ��

T UNIT(AM).

If we remove elements fromM, we necessarily return to some previous state ofM in the deriva-
tion, where the two properties hold by induction hypothesis. In an application of T-Backjump
MedN � F =⇒Me� � F , e� ∈ AVB(F,M)∪LIT(MedN). Thus, the instantiation level of e� in M
is smaller than the current instantiation level in M. As a consequence, since the current instan-
tiation level in M is at most nM+ 1 by induction hypothesis, the current level in Me� is also at
most nM+1.

For a step M � F =⇒ Me � F , we show that e has an instantiation level of at most nM + 1
in M. The both properties then follow from remark 4.8. By contradiction, assume that e has an
instantiation level of nM+ 2 in M. Since the derivation if fair, e has form x ≈ x · [x �→ t], some
universal formula ∀x.C ·ϕ can be instantiated with t, and, if M� is the minimal prefix of M such
that t ⊆ T (M�), then there is a prefix N of M containing M� and ∀x.C ·ϕ such that:

(a) N ���
T ⊥,

(b) for every unit super-clause e ∈ AVB(F,∅), we have �N� ��
T e,

(c) for every closure �l�C ·σ ∈ N, �N� ��
T l ·σ and, ifC is a unit clause, �N� ��

T C ·σ ,

(d) for every closure [l]ϕ · σ ∈ N such that ϕ is a unit clause, if �N� ��
T l · σ then we have

�N� ��
T ϕ ·σ ,

(e) for every closure ∀x.ϕ ·σ ∈M� such that ϕ is a unit clause, and for every term t ∈ T (M�)
such that levelM(ϕ · (σ ∪ [x �→ t]))≤ level(M), we have �N� ��

T ϕ · (σ ∪ [x �→ t]), and

74

Chapter 4. A White-Box Decision Procedure 4.1. Description

(f) for every guarded clause H →C that can be added to the set F by applying Instantiate,
Witness-Unfold or Trigger-Unfold on a closure of M�, if levelM(H) ≤ level(M) then
AVB(F,M) ��

T C.

Since t ∈ T (M�), there must be an element of M� that has an instantiation level in M of nM+1
at least and, by induction hypothesis, of nM+1 exactly. As a consequence, by property 2, there
is a prefix M�� of M� such that �M��� ��

T UNIT(AM). We need two intermediate lemmas:

Lemma 4.9. N contains a truth assignment of AM0 ∪W ·∅.

Proof. By definition of AM0 , for every literal l ·∅ ∈ UNIT(AM0), we have that �N� �
�
T l ·∅. Since

UNIT(AVB(F,∅)) ��
T UNIT(W ·∅), by (b), if l ∈W then �N� ��

T l ·∅. Moreover, for every
closure ϕ ·∅ ∈ UNIT(W ·∅) such that ϕ is not a literal, ϕ ·∅ ∈ UNIT(AVB(F,∅)). By (b),
�N� ��

T UNIT(AVB(F,∅)). Therefore, for every closure ϕ ·∅ ∈ UNIT(W ·∅) such that ϕ is not
a literal, �N� ��

T ϕ ·∅ and ϕ ·∅ ∈ N. What is more, we have:

• For every �l�C such that N ��
T �l�C ·∅, �N� ��

T l ·∅ and, if C is a unit clause ϕ then
�N� ��

T ϕ ·∅ by (c).

• For every [l]ϕ ∈ UNIT(W) such that N ��
T [l]C ·∅ and N ��

T l ·∅, we have �N� ��
T ϕ ·∅

by (d).

As a consequence, dM is at least one and AM is a truth assignment.

Lemma 4.10. For every closure ϕ ·σ such that �N� ��
T ϕ ·σ , there is a truth assignment A of

AM ∪ϕ ·σ such that �N� ��
T UNIT(A).

Proof. We do the proof by structural induction over ϕ .
If ϕ is a universally quantified formula, a literal, or a trigger [l]C ·σ such that {l�σ � | l� ·σ � ∈

AM} ��T lσ , then AM ∪ϕ ·σ is a truth assignment of AM ∪ϕ ·σ .
If ϕ is a witness �l�C then �N� ��

T l ·σ by (c). IfC is not a unit clause, AM∪ϕ ·σ ∪ l ·σ ∪C ·σ
is a truth assignment of AM ∪ϕ ·σ . Otherwise, �N� ��

T C ·σ by (c). By induction hypothesis,
there is a truth assignment A of AM ∪C · σ such that �N� ��

T UNIT(A). As a consequence,
A∪ϕ ·σ ∪ l ·σ is a truth assignment of AM ∪ϕ ·σ and �N� ��

T UNIT(A)∪ϕ ·σ ∪ l ·σ .
If ϕ is a trigger [l]C and {lτ | l · τ ∈ AM}�T lσ then �N� ��

T l ·σ since �M�� ��
T UNIT(AM)

and M� ⊆ N. If C is not a unit clause, AM ∪ϕ ·σ ∪C ·σ is a truth assignment of AM ∪ϕ ·σ .
Otherwise, we deduce that �N� ��

T C ·σ by (d), and, by induction hypothesis, there is a truth
assignment A of AM ∪C ·σ such that �N� ��

T UNIT(A). As a consequence, A∪ϕ ·σ is a truth
assignment of AM ∪ϕ ·σ and �N� ��

T UNIT(A)∪ϕ ·σ .

Corollary 4.1. For every guarded clause H→C∨ϕ ·σ that can be obtained by applying either

Witness-Unfold or Trigger-Unfold such that ϕ ·σ ∈N, if UNIT(AM) ��
T H then UNIT(AM) ��

T

ϕ ·σ . If UNIT(AM) is final, then the same is true for any H →C∨ϕ ·σ that can be obtained by

applying Instantiate.

75

Chapter 4. A White-Box Decision Procedure 4.1. Description

Proof. We show that, in each case, there is σ � such that AM is a truth assignment of ϕ · σ �,
UNIT(AM) ��

T σ ≈̇σ � and UNIT(AM)∪T (UNIT(AM)) ��
T known(T (σ)).

If H → C∨ϕ ·σ can be obtained by Witness-Unfold, H is �l�(C∨ϕ) · µ such that σ is
µ|vars(ϕ). Thus, since UNIT(AM) ��

T H, there is �l�(C∨ϕ) · µ � ∈ AM, such that UNIT(AM) ��
T

µ ≈̇ µ � and UNIT(AM)∪T (UNIT(AM)) ��
T known(T (µ)). Since �N� ��

T UNIT(AM), we have
both �N� ��

T µ ≈̇ µ � and �N�∪T (N) ��
T known(T (µ)). Hence, �N� ��

T ϕ · µ �|vars(ϕ) and, by
Lemma 4.10, there is a truth assignment A of AM ∪ϕ ·µ �|vars(ϕ) such that �N� ��

T UNIT(A). By
construction, A is a truth assignment of AM and, by maximality of AM, A= AM.

If H →C∨ϕ ·σ can be obtained by Trigger-Unfold, there is [l](C∨ϕ) · µ and l · µ|vars(l)
in H such that σ = µ|vars(ϕ). Like for Witness-Unfold, there is [l](C∨ϕ) · µ � ∈ AM such that
UNIT(AM) ��

T µ ≈̇ µ �. Since UNIT(AM) ��
T l · µ|vars(l), UNIT(AM) ��

T l · µ �|vars(l) and there is
a truth assignment A of AM ∪ ϕ · µ �|vars(ϕ) such that �N� ��

T UNIT(A). Since UNIT(AM) ��
T

l ·µ �|vars(l), A is a truth assignment of AM and, by maximality of AM, A= AM.
If UNIT(AM) is final and H →C∨ϕ ·σ can be obtained by Instantiate, there is ∀x.(C∨

ϕ) · µ and x ≈ x · [x �→ t] ∈ H such that σ = (µ ∪ [x �→ t])|vars(ϕ). Since UNIT(AM) ��
T H, there

is ∀x.C∨ϕ ·µ � ∈ AM and t � ∈T (UNIT(AM)) such that UNIT(AM) ��
T (µ ∪ [x �→ t]) ≈̇ (µ �∪ [x �→

t �]) and UNIT(AM)∪T (UNIT(AM)) ��
T known(T (µ ∪ [x �→ t])). Since AM is final, there is

C�� ∨ϕ ·σ �� ∈ AM such that UNIT(AM) ��
T (µ � ∪ [x �→ t �]) ≈̇σ ��. Since �N� ��

T UNIT(AM), we
have both �N� ��

T (µ ∪ [x �→ t])|vars(ϕ) ≈̇σ �� and �N�∪T (N) ��
T known(T (µ ∪ [x �→ t])). Thus,

�N� ��
T ϕ · σ �� and, by Lemma 4.10, there is a truth assignment A of AM ∪ ϕ · σ �� such that

�N� ��
T UNIT(A). By construction, A is a truth assignment of AM and, by maximality of AM,

A= AM.

Since N ���
T ⊥ by (a), AM cannot be T -unsatisfiable. If AM is not final, let ∀x.C · σ , t be

the new instance added to AM in the instantiation tree TM. We have that ∀x.C ·σ ∈ AM and
t ∈ T (UNIT(AM)). If C is not a unit clause, AM ∪C · (σ ∪ [x �→ t]) is a truth assignment of
AM ∪C · (σ ∪ [x �→ t]) such that �N� ��

T UNIT(AM ∪C · (σ ∪ [x �→ t])) which contradicts the
definition of AM. Therefore,C is a unit clause. Since �M��� ��

T UNIT(AM), there is a substitution
σ � and a term t � ∈ T (M��) such that ∀x.C ·σ � ∈ M��, M�� ��

T σ ≈̇σ �, known(T (M��))∪M�� ��
T

known(T (σ))∪ known(T (t)) and M�� ��
T t ≈ t �. Since ∀x.C ·σ � and t � are in M��, this instance

has an instantiation level smaller or equal to nM + 1. By (e), �N� ��
T C · (σ � ∪ [x �→ t �]). Since

M�� ⊆ N, �N� ��
T C · (σ ∪ [x �→ t]). By Lemma 4.10, there is a truth assignment A of AM ∪C ·

(σ ∪ [x �→ t]) such that �N� ��
T UNIT(A) which contradicts the definition of AM.

Therefore AM is final and no new instance is possible in AM. Consider the universal formula
∀x.C ·σ ∈ N that we can instantiate with the term t ∈ T (M�) by fairness. Let us show that
we have AVB(F,M) ��

T C · (σ ∪ [x �→ t]), which contradicts the non-redundancy condition of
Instantiate.

We first show that, for every ϕ ·σ ∈ N, UNIT(AM) ��
T ϕ ·σ . By contradiction, let ϕ ·σ be

the first closure of N such that UNIT(AM) ���
T ϕ ·σ . Let M◦(ϕ ·σ) � F◦ be the state after ϕ ·σ

was added. If ϕ ·σ ∈ GRD(F◦) was added toM◦ using T-Propagate, then UNIT(AM) ��
T ϕ ·σ .

Indeed, UNIT(AM) implies every closure ϕ · σ in M◦ and also l ·∅ for every user literal in
l ∈ M. By construction, if ϕ ·σ was added by any other rule, ϕ ·σ occurs in AVB(F◦,M◦).
As a consequence, either ϕ ·σ ∈ C�, for some C� ∈W ·∅, or there is a guarded clause H → C

76

Chapter 4. A White-Box Decision Procedure 4.1. Description

that can be obtained by either Witness-Unfold, Trigger-Unfold, or Instantiate such that
ϕ ·σ ∈C and H ⊆M◦. If ϕ ·σ ∈C�, for some C� ∈W ·∅, then ϕ ·σ ∈ AM, by construction of
AM1 . Otherwise, there is a guarded clauseH→C that can be obtained by either Witness-Unfold,
Trigger-Unfold, or Instantiate such that ϕ ·σ ∈C and UNIT(AM) ��

T H. By Corollary 4.1,
UNIT(AM) ��

T ϕ ·σ .
As a consequence, for every closure ϕ ·σ ∈ N, UNIT(AM) ��

T ϕ ·σ . Since LIT(M) ⊆ AM

by construction, there is a term t � ∈ T (AM) and a substitution σ � such that ∀x.C · σ � ∈ AM,
UNIT(AM) ��

T σ ≈̇σ �, known(T (UNIT(AM)))∪UNIT(AM) ��
T known(T (σ))∪ known(T (t)),

and UNIT(AM) ��
T t ≈ t �. Since AM is final, there is a theory clause C · σ �� ∈ AM such that

UNIT(AM) ��
T σ �� ≈̇ (σ � ∪ [x �→ t �]). We only need to show that AVB(F,M) ��

T C ·σ ��. Indeed,
since �M��� ��

T UNIT(AM), we can deduce AVB(F,M) ��
T C · (σ ∪ [x �→ t]). By construction of

AM, we are in one of three cases:

• There is �l�C · σ �� ∈ AM. Since �M��� ��
T UNIT(AM), there is �l�C · τ ∈ M�� such that

M�� ��
T σ �� ≈̇ τ and M�� ∪ known(T (M��)) ��

T known(T (σ ��)). As a consequence, by (f),
AVB(F,M) ��

T C ·σ ��.

• There is [l]C ·σ �� ∈ AM such that UNIT(AM) ��
T lσ

��. Since �M��� ��
T UNIT(AM), there

is [l]C · τ ∈ M�� such that M�� ��
T σ �� ≈̇ τ , M�� ∪ known(T (M��)) ��

T known(T (σ ��)), and
M�� ��

T lσ
��. Therefore, by (f), AVB(F,M) ��

T C ·σ ��.

• There is ∀y.C · (σ �� \ [y �→ yσ ��]) ∈ AM and yσ �� ∈T (UNIT(AM)). Since we have �M��� ��
T

UNIT(AM), there is ∀y.C · τ ∈M�� and s ∈ T (M��) such that M�� ��
T (σ �� \ [y �→ yσ ��]) ≈̇ τ ,

M�� ��
T yσ

�� ≈ s, andM��∪known(T (M��)) ��
T known(T (σ ��)). As a consequence, by (f),

AVB(F,M) ��
T C ·σ ��.

Consequently, property 1 holds.

We finally need a progress property. Every derivation that does not allow the solver to
terminate can be extended without breaking the restrictions requested for termination. What
is more, we only require the rule T-Propagate to be applied when �M� ��

T e. We need an
intermediate lemma:

Lemma 4.11 (Conflict Analysis). If there is a conflict clause in the state M � F and M contains

at least a decision literal, then there is a possible application M �F =⇒M�e �F of T-Backjump.

Proof. Let H → C be a conflict clause in the state M � F . By definition, H ∧¬C ⊆ M and
H →C ∈ F . We define a sequence ei of literals and a sequence Mi of subsequences of M such
thatM can be writtenM1e

d
1 . . .Mne

d
nMn+1 andMi contain no decision super-literals. We writeMi

for the prefix . . .Mi of M.
Let us show that, for every D⊆M such that F ∪D ��

T ⊥, there is an application M � F =⇒
M j¬ei � F of T-Backjump. We do this proof by induction on position of the last and the before-
last element of D in M. In other words, we can use the induction hypothesis on a set of super-
literals D� if either there is an element of D that appears strictly after every element of D� in M
or if the last element e of D in M is in D� and the before-last element of D in M appears strictly
after every element of D� \ e in M.

77

Chapter 4. A White-Box Decision Procedure 4.1. Description

If every element ofD is inM1 then there is an application of T-BackjumpM �F =⇒M1¬e1 �
F .

If the element of D that occurs last inM is a decision literal ei, let j≤ i be the smallest index
such that D \ ei ⊆ M j and ei occurs in AVB(F,M j) (by definition of Decide such a j always
exists). If j = 1 or e j−1 ∈ D or ei does not occur in AVB(F,M j−1)

1 then F ∪ (D\ ei) �
�
T ¬ei and

ei is undefined in M j. As a consequence, there is a T-Backjump step M � F =⇒M j¬ei � F .
Otherwise, let e be the element of D that occurs last in M if it is not a decision super-literal

and the element of D that occurs before last in M otherwise. Let M� be such that M =M�e
By hypothesis, e is not a decision literal. Thus, the super-literal e must have been added to the
partial model by one of the rules UnitPropagate, T-Propagate, or T-Backjump. We show that,
in each case, there is a set of super-literals D� ⊆M� such that F ∪D� ��

T e . We then consider the
set D�� = (D\ e)∪D� on which we can apply the induction hypothesis.

• If e was added to M� using UnitPropagate, then there is a clause H → C∨ e such that
H ∪¬C ⊆M� and F ��

T H →C∨ e by Lemma 4.7. Thus, F ∪H ∪¬C ��
T e.

• If e was added toM� using T-Propagate, thenM� ��
T e by Lemma 4.5. Let S be a minimal

subset of M� such that S ��
T e. We have F ∪S ��

T e.

• If e was added toM� using T-Backjump, there is a set of super-literals D⊆M� and a set of
guarded clauses F � such that F �∪D ��

T e and F ��
T F

� by Lemma 4.7. Thus, F ∪D ��
T e.

Remark 4.9. Compared to usual DPLLmodulo theory, back-jumping is restricted by the require-
ment on T-Backjump that e� must appear in AVB(F,M). This restriction is needed in general but
it can be alleviated by allowing to add a subsequence of MedN to M using UnitPropagate and
T-Propagate before e� is added with T-Backjump.

Corollary 4.2. If here is a closure or a literal e such that ¬e ∈M and �M� ��
T e, then a conflict

clause can be learned so that either Fail or T-Backjump can be applied.

Proof. Since �M� ��
T e, there is a set of closures S ⊆ �M� such that S ��

T e. We construct a
guarded clause H → e that can be added to F using T-Learn. If e is a literal, let H be S itself.
Otherwise, since ¬e ∈ M is an anti-closure, e occurs in AVB(F,M). Indeed, a guarded clause
H → C of F cannot be forgotten if there is a closure of C defined in M that does not occur in
AVB(F \H → C,H). Let H ⊆ �M� be a superset of S such that e occurs in AVB(F,H). Now,
we can add H → e to F using T-Learn. By definition of �M�, closures of H either are already
in M or can be propagated using T-Propagate without breaking the fairness property. As a
consequence, H→ e is a conflict clause and either Fail or, by Lemma 4.11, T-Backjump can be
applied on M � F .

Theorem 4.4 (Progress). If the solver can not return after a fair derivation ∅ � G∪W ·∅ =⇒
M � F, then there is a fair derivation M � F =⇒+ S containing no Restart step and at least

1These three hypothesis are not needed to apply T-Backjump. Still, to implement conflict analysis, we want to
make j as small as possible.

78

Chapter 4. A White-Box Decision Procedure 4.1. Description

one step that is neither an application of T-Learn or T-Forget nor a redundant application of

Witness-Unfold, Trigger-Unfold or Instantiate.

Remark 4.10. This proof also shows that the definition of fairness does not constrain the choice
of instantiating eagerly or lazily, namely after or before deciding on literals of a disjunction. If
a decision is possible, then it is allowed and, if an instance is possible, then it will be allowed or
redundant after some steps that do not involve any decision.

Proof. If the solver cannot return onM � F then at least one of the following properties is false:

(i) M ��
T AVB(F,M),

(ii) M ���
T ⊥, and

(iii) if H →C can be added by either Instantiate, Witness-Unfold, or Trigger-Unfold then
AVB(F,M) ��

T C.

Assume (i) is false inM � F . If there is a guarded clause H →C ∈ F such that H∪¬C⊆M,
then H →C is a conflict clause in M � F , and, by Lemma 4.11, either Fail or T-Backjump can
be applied. Otherwise, there is an undefined super-literal e that occurs in AVB(F,M). Since
e ∈ AVB(F,M), levelM(e)≤ level(M) and Decide can be applied on e.

If (ii) is false, then LIT(M)∪{lσ | l ·σ ∈ M} �T ⊥. Like in the proof of Corollary 4.2, a
conflict clause can be learned so that either Fail or T-Backjump can be applied.

If (iii) is false inM � F , there is a guarded clause H→C that can be added to the set F using
either Instantiate, Witness-Unfold, or Trigger-Unfold on M such that either AVB(F,H) ���

T

C or we have AVB(F,H) ��
T C and H �M. If AVB(F,H) ���

T C, this application of Instantiate,
Witness-Unfold, or Trigger-Unfold is non-redundant in F . Otherwise, �M� ��

T H and, for
some l ·σ ∈H \M, l ·σ ∈GRD(F). If ¬(l ·σ)∈M, we conclude using Corollary 4.2. Otherwise,
T-Propagate can be applied to l ·σ if it is not forbidden by fairness.

Assume the application of T-Propagate is forbidden by fairness. The application adding
H →C to F must be an application of Instantiate and l ·σ must be of the form x≈ x · [x �→ t].
At least one of the following properties is false:

(a) M ���
T ⊥,

(b) for every unit super-clause e ∈ AVB(F,∅), �M� ��
T e,

(c) for every closure �l�C ·σ ∈M, �M� ��
T l ·σ and, ifC is a unit clause, �M� ��

T C ·σ ,

(d) for every closure [l]ϕ ·σ ∈ M such that ϕ is a unit clause, if �M� ��
T l ·σ then we have

�M� ��
T ϕ ·σ ,

(e) for every closure ∀x.ϕ ·σ ∈M such that ϕ is a unit clause and for every term t ∈T (M) such
that levelM(ϕ · (σ ∪ [x �→ t]))≤ level(M), we have �M� ��

T ϕ · (σ ∪ [x �→ t]), and

(f) for every guarded clause H →C that can be added to the set F using either Instantiate,
Witness-Unfold or Trigger-Unfold on M, if levelM(H)≤ level(M), AVB(F,M) ��

T C.

79

Chapter 4. A White-Box Decision Procedure 4.2. Implementation

Condition (a) can not be false if (i) is true.
If (b) is false then there is a unit super-clause e ∈ AVB(F,∅) such that e �∈ M. If ¬e ∈ M,

∅ → e is a conflict clause in F . Otherwise, by construction, e is of level 0 in M and e can be
added to M using UnitPropagate.

If (c) is false, there is a closure �l�C ·σ ∈M such that �M� ���
T l ·σ or C is a unit clause and

�M� ���
T C ·σ . Therefore, the rule Witness-Unfold can be applied with �l�C ·σ . If it is redundant,

AVB(F,M) ��
T l ·σ and AVB(F,M) ��

T C ·σ . Therefore, either ¬(l ·σ) or ¬(C ·σ) (if it is a unit
clause) is inM and there is a conflict clause in F after the application of Witness-Unfold or one
of l ·σ ,C ·σ can be added to M using UnitPropagate.

If (d) is false, there is a closure [l]ϕ ·σ ∈M such that �M� ��
T l ·σ and �M� ���

T ϕ ·σ . Hence
Trigger-Unfold can be be applied with [l]ϕ ·σ . If it is redundant, either l ·σ can be added toM
using T-Propagate, there is a conflict clause, or ϕ ·σ can be added toM using UnitPropagate.

If (e) is false, there is a closure ∀x.ϕ ·σ ∈M and a term t ∈T (M) such that ϕ · (σ ∪ [x �→ t])
has an instantiation level smaller than the current instantiation level in M and �M� ���

T ϕ · (σ ∪
[x �→ t]). First assume that AVB(F,M) ���

T ϕ · (σ ∪ [x �→ t]). Then, Instantiate can be applied
with ∀x.ϕ ·σ . If it is redundant then either x≈ x · [x �→ t] can be added toM using T-Propagate,
there is a conflict clause, or ϕ · (σ ∪ [x �→ t]) can be added to M using UnitPropagate.

If AVB(F,M) ��
T ϕ · (σ ∪ [x �→ t]) then we have UNIT(AVB(F,M)) ��

T ϕ · (σ ∪ [x �→ t]). By
Lemma 4.4, �M� ���

T UNIT(AVB(F,M)) (otherwise, �M� ��
T ϕ · (σ ∪ [x �→ t])). Then, there is a

guarded clauseH→ e∈F such thatH ⊆M andM ���
T e. SinceH ⊆M, e has an instantiation level

smaller than the current instantiation level in M and can be added to M using UnitPropagate.
Otherwise, the property (f) is false and Trigger-Unfold, Witness-Unfold, or Instantiate

can be applied with levelM(H) ≤ level(M) so that either AVB(F,H) ���
T C or AVB(F,H) ��

T C

and H � M. If AVB(F,H) ���
T C then the application of Trigger-Unfold, Witness-Unfold,

or Instantiate is non-redundant in F . Otherwise, �M� ��
T H and, for some l · σ ∈ H \M,

l ·σ ∈ GRD(F). If ¬(l ·σ) ∈M, we conclude using Corollary 4.2. Otherwise, T-Propagate can
be applied to l ·σ . Indeed, since levelM(H)≤ level(M), it is not forbidden by fairness.

4.2 Implementation

In this section, we present our implementation of the framework of Section 4.1.2 in the Alt-Ergo
theorem prover. We discuss various specificities of this implementation and finally give some
benchmarks using the theory of doubly-linked lists given in Section 2.2.1.

4.2.1 E-Matching on Uninterpreted Sub-Terms

Instantiating every universal quantifier with every known term is really inefficient. All the more
since some instances are not usable because there is a trigger directly behind the universal quan-
tifier. First-order SMT solvers commonly use a powerful technique, called E-matching [29],
to determine the set of instances for which we will be able to remove the trigger just behind
the universal quantifier. In our implementation, we would like to use this technique as much as
possible. However, we have a constraint that is not usually required in SMT solvers: we need

80

Chapter 4. A White-Box Decision Procedure 4.2. Implementation

the matching algorithm to be complete. Indeed, this is needed not only for completeness of our
solver but also for termination which is mandatory to allow an eager instantiation mechanism.

There are two possibilities to easily turn incomplete E-matching techniques into a complete
instantiation mechanism. The first one is to restrict the input language so that axiomatizations
can only use some restricted form of triggers on which E-matching is complete. The second
one, which we have chosen, is to apply E-matching on parts of triggers on which it is complete
and then to check the remaining ones.

More formally, assume that we have an E-matching implementation that is complete on
terms that only contain uninterpreted symbols. For every closure ϕ ·σ where ϕ is a universally
quantified formula ∀x.[l1, . . . , ln]ϕ � where ϕ � is not a trigger, we compute a triple made of a set
of literals lϕ and two sets of terms, pϕ and kϕ . It has the following properties:

(i) every free variable (that is not in the domain of σ) in lϕ or kϕ is also in pϕ ,

(ii) terms of pϕ only contain variables and uninterpreted symbols,

(iii) if τ is a mapping from free variables of pϕ to terms containing only variables that are in
the domain of σ , then, for i in 1..n:

known(T (σ)∪T (τσ)∪T (pϕτσ)∪ kϕτσ)∪ lϕτσ �T known(T (li))τσ

To instantiate the closure ϕ ·σ , we use the matching algorithm on pϕσ to get a substitution τ

from free variables of pϕ to known terms. We then wait for every term in kϕτσ to appear in M,
and every literal of lϕτσ ∪ liσ to be true in M to do the actual instantiation.

To compute the triple, we proceed in the following way. We associate a fresh variable xt
to every sub-term t of a literal li such that t begins with an interpreted function symbol. For
every sub-term t of a literal li such that t begins with a uninterpreted function symbol, and t does
not appear as an argument of a uninterpreted function symbol in li, we create a pattern pt by
replacing every sub-term t � of t that begins with an interpreted function symbol by the variable
xt � . We now define pϕ to be the set of all the patterns pt constructed above; kϕ to be the set of all
the sub-terms t of a literal li beginning with an interpreted function symbol such that xt does not
appear in pϕ ; and ls to be the set of all the equalities xt ≈ t where t is a sub-term of li beginning
with an interpreted function symbol and xt is not in kϕ .

Example 4.1. Assume that we have a trigger f (g(z,2× (y+h(z))))≈ f (y) where f , g, and h are
uninterpreted and z and y are universally quantified variables. We can compute the three sets:

p={ f (g(z,x2×(y+h(z)))), h(z), y, f (y)}

k ={y+h(z)}

l ={x2×(y+h(z)) ≈ 2× (y+h(z))}

Then, applying E-matching on p, we get substitutions [x2×(y+h(z)) �→ tx, y �→ ty, z �→ tz] such that
f (g(tz, tx)), h(tz), f (ty) and all their subterms are in T (M)moduloM. To finish the instance, we
only need to wait for ty+h(tz) to be known and tx ≈ 2× (ty+h(tz)) and f (g(tz, tx))≈ f (ty) to be
true.

81

Chapter 4. A White-Box Decision Procedure 4.2. Implementation

4.2.2 Different Notions of Termination

The notion of termination in Section 2.1.4 may turn out to be too constraining for some axioma-
tization. Let us start with an example. Assume that we want to add to our theory in Section 2.2.1
a predicate symbol that states that a list is a palindrome is_palindrome(co : list) : bool. In an
axiomatization of this concept, we could have:

IS_PALINDROME_DEF:

∀co : list.[is_palindrome(co)]is_palindrome(co)≈ t→
(∀cu1 : cursor.[element(co,cu1)]position(co,cu1)> 0→

∃cu2 : cursor.�position(co,cu2) = length(co)− position(co,cu1)+1�
equivalent_elements(element(co,cu1),element(co,cu2))≈ t)

Unfortunately, such an axiom would introduce a loop. If the input set of literals includes
the literal is_palindrome(co) ≈ t and the term element(co,cu) is known for some cu, there is
a branch deducing the term element(co,sko(co,cu)) which itself allows the deduction of the
term element(co,sko(co,sko(co,cu))) and so on. We can see that the term sko(co,sko(co,cu))
is in fact equal to cu, using POSITION_EQ. However, our definition of truth assignment is not
restrictive enough to enforce this deduction.

The definition of truth assignment given in Section 2.1.4 can easily be made more or less re-
strictive. This results in a more or less constraining notion of fairness in the proof of termination
of the solver Section 4.1.5. Here are a few examples of alternative choices:

1. Require that at least an element ϕi ·σi is added to assignments containing a disjunction
ϕ1 ·σ1∨·· ·∨ϕn ·σn (in the definition of Section 2.1.4, assignments are allowed to contain
none). In practice, this amounts to enforcing a lazy instantiation approach, that is to say
that new instances can only be generated when enough literals have been assigned a truth
value by the model to imply every clause.

2. Require that, if ϕ1σ1 . . .ϕn−1σn−1 are literals that are false in an assignment containing
a disjunction ϕ1 ·σ1 ∨ ·· · ∨ϕn ·σn then ϕn ·σn is added to the assignment. A compliant
implementation could be obtained by requiring an eager application of T-Propagate and
UnitPropagate in clauses.

3. Do not require that ϕ is added to assignments containing a witness �l�ϕ or a trigger [l]ϕ
with l true. The rules Witness-Unfold and Trigger-Unfold do no longer have to be
applied eagerly (before new instances are made).

The first two alternatives would allow the proof of termination of the is_palindrome example
to go through. The first one has the drawback of forbidding an eager instantiation of universal
quantifiers that can be profitable in practice. We have implemented the second alternative in
Alt-Ergo.

Another possibility that we have implemented is allowing the solver to add to truth assign-
ments negations of closures that occur in disjunctions. Termination becomes difficult to achieve
with this modification since any universal quantifier can be turned into an existential one and
then cause the creation of a new term. To alleviate it, we do not allow negations of closures to

82

Chapter 4. A White-Box Decision Procedure 4.2. Implementation

be added for the last, or the unique, element of a disjunction. This restriction is motivated by the
fact that axioms are often written as implications, the guards being in general simple enough to
avoid causing too many new instances.

In general, this gives a more constraining version of termination. Still, if every pseudo-
clause occurring in an axiomatization can be written l1 → . . . ln → ϕ , which is the case for the
theory of doubly-linked lists, then only anti-closures of literals can be added to truth assignment.
Such anti-closures can only shorten branches in which they are introduced and, therefore, can-
not compromise termination. As compensation for this generally more constraining version of
termination, new rules can be added to DPLL�(T) to handle anti-closures. They have to work
in a compatible way with the semantics of negations of closures defined for the proofs of Sec-
tion 4.1.4. Existential quantifiers arising from the negation of a universally quantified formula
can be handled by associating a priori a Skolem constant to every universal quantifier in the
axiomatization.

Using anti-closures, we have restrained termination further by requiring that, for an element
ϕi ·σi of a theory clause ϕ1 ·σ1 . . .ϕn ·σn or its negation to be added to a truth assignment A,
¬(ϕkσk)must also be added for every k strictly smaller than i. This amounts to requiring that, in
DPLL�(T), decision on a closure of a theory clauseC must only occur whenC is not already true
in the current model and must always decide on the first closure ofC that is not assigned to false.
Remark that we do not lose completeness since it does not depend on the order of decisions.

4.2.3 Inclusion into the Theory Combination Mechanism

The notion of satisfiability in Section 2.1.2 can also turn out to be too constraining. For example,
in the proof of completeness of Section 2.2.3, we need to show that adding equalities on known
terms of integer type does not break the partial model. This lemma is needed because we cannot
assume that, for a partial model L and two known terms t1 and t2 such that L �T t1 ≈ t2, we
can find an interpretation I of L such that, I(t1) �= I(t2). Indeed, linear integer arithmetic is not a
convex theory, which means that there can be a set of literals L and a set of terms t1,s1, . . . , tn,sn⊆
T (L) such that L �T t1 ≈ s1∨·· ·∨ tn ≈ sn and, for every i∈ 1..n, L �T ti ≈ si. As a consequence,
if an axiomatization does not have the above property, it will not be complete in our framework.

To have a less constraining notion of completeness, the definition of satisfiability can be
modified. Let F be an axiomatization. Instead of searching for any T -satisfiable set of literals
L such that L � F , we can restrict the definition of partial models so that we only search for T -
satisfiable sets of literals L such that, if L �T t1 ≈ s1∨·· ·∨tn≈ sn for t1,s1, . . . , tn,sn⊆T (L) then
L �T ti ≈ si for some i∈ 1..n. Note that we need to modify the notion of termination accordingly.
In the definition of truth assignment, we need to also consider the disjunctions coming from non-
convex theories. Our implementation in Alt-Ergo complies with this second definition by using
the disjunctions generated by the theory combination mechanism.

4.2.4 Comparison with Alt-Ergo’s Built-In Quantifier Handling

We use the Why3 VC generator version 0.80 and the Alt-Ergo theorem prover version 0.95.2.
The implementation instantiates every universally quantified formula of the theory before decid-
ing on literals.

83

Chapter 4. A White-Box Decision Procedure 4.2. Implementation

Separated Axioms Grouped Axioms
Alt-Ergo� Alt-Ergo Alt-Ergo� Alt-Ergo

test_delete 1.36 2.95 1.30 1.96
test_insert 47.25 175.73 41.39 500.20
double_size 22.79 13.85 16.02 47.30
filter 21.29 19.52 20.30 20.70
my_contain 0.65 2.66 0.36 1.70
my_find 12.29 104.06 8.64 189.76
map_f 15.53 13.49 9.90 25.14

Figure 4.3: Time (in seconds) needed to solve all tests with Alt-Ergo giving the first-order ax-
iomatization directly and Alt-Ergo through the theory mechanism (named Alt-Ergo�).

Figure 4.3 is a comparison between the results obtained by giving the axiomatization di-
rectly in input to Alt-Ergo and using it as a theory through the new mechanism. We use two
slightly different versions of the axiomatization. The first one, named Separate Axioms is the
one presented in Section 2.2. In the second one, we have grouped the axioms for each function
symbol into one axiom. For example, for delete, we now have only one axiom:

DELETE_DEF:

∀co1co2 : list,cu : cursor.[delete(co1,cu,co2)] delete(co1,cu,co2)≈ t→
position(co1,cu)> 0∧ length(co2)+1≈ length(co1)∧�next(co1,cu)�t∧
(∀cu2 : cursor.[position(co1,cu2)]

(position(co1,cu2)< position(co1,cu)→
position(co1,cu2)≈ position(co2,cu2))∧

(position(co1,cu2)> position(co1,cu)→
position(co1,cu2)≈ position(co2,cu2)+1))∧

(∀cu2 : cursor.[position(co2,cu2)]
(0< position(co2,cu2)< position(co1,cu)→

position(co1,cu2)≈ position(co2,cu2))∧
(position(co2,cu2)≥ position(co1,cu)→

position(co1,cu2)≈ position(co2,cu2)+1))∧
(∀cu2 : cursor.[element(co1,cu2)]

position(co2,cu2)> 0→ element(co1,cu2) = element(co2,cu2))

Indeed, Alt-Ergo, on these examples, works better with separated axioms. It uses a lazy
instantiation technique that matches every available trigger once in a while. With the separated
axioms, it is the case that it often can instantiate every needed axiom at once while, with the
grouped version, it need several matching rounds. On the other hand, the theory mechanism
works better with the grouped version as it has less triggers to match.

We see that, on average, our implementation gives better results than the usual instantiation
mechanism of Alt-Ergo. This is mainly due to the fact that instances are now generated in an
eager way. Note that this is also a drawback in some cases where a lot of work is done even

84

Chapter 4. A White-Box Decision Procedure 4.3. Conclusion

if it was not necessary. This is all the more the case when there are things to prove that do not
require theory handling and when the amount of work required by the theory is important.

4.3 Conclusion

The formalization of this white box implementation inside DPLL(T) is significantly more com-
plex than the formalization of the black box implementation in Chapter 3. It is also much more
satisfactory in practice as our implementation in the SMT solver Alt-Ergo needs a comparable
amount of time to discharge VCs on doubly-linked list as Alt-Ergo’s built-in quantifier handling.

Missing in the current implementation is the ability to handle literals as triggers. Like other
SMT solvers, Alt-Ergo only accepts triggers that are terms and it would require significant mod-
ifications throughout the source to enable literal triggers. Extending Alt-Ergo to literal triggers
would be interesting, for example, to handle the extensionality axiom of the theory of arrays. A
first approach to handle such triggers would be to match every subterm of such a trigger modulo
equality and then to check if the trigger holds in the current partial model. This implementation
would not be efficient, in particular for literals that do not have non-variable subterms like x �≈ y.
Coming up with an efficient handling of matching on these triggers would require a tight inte-
gration with the theory solvers in order to be able to compute efficiently the set of ground literals
true in the current partial model which correspond to a given pattern. This is one direction that
we consider for future work.

We are now ready to experiment on more complex case studies.

85

5 Case Study: Set Theory of Why3

Contents

5.1 Context: the B Method . 87

5.2 A Decision Procedure for Why3’s Sets . 88

5.2.1 Presentation of the Theory . 88

5.2.2 Description of the Axiomatization 89

5.2.3 Proofs of Soundness, Completeness, and Termination 90

5.3 Benchmarks . 92

5.3.1 Assessment of the Adequacy Between our Framework and Usual E-
matching Techniques . 93

5.3.2 Comparison Between our Implementation and the Built-in Quanti-
fiers Handling of Alt-Ergo . 96

5.4 Conclusion . 96

In Chapter 4, we explained how DPLL(T) can be extended to support first-order logic with
triggers. We have also shown that this extension yields a decision procedure when given a sound,
complete, and terminating axiomatization as defined in Chapter 4. In this chapter, we apply this
approach on the theory of sets provided in the Why3 standard library. This theory is a basis of a
larger library of Why3 theories used to formalize the set theory of the B method, which is used
in the ANR project BWare1. It is an industrial research project that aims to provide a frame-
work allowing to automatically discharge verification conditions coming from the verification
of safety critical industrial applications using the B method. A generic verification platform is
designed that uses several solvers as a back-end. As part of this project, verification conditions
coming from the B method are translated into the WhyML language using an axiomatization for
polymorphic sets. They can then be discharged by SMT solvers like Alt-Ergo. A benchmark of
more than 10,000 verification conditions is provided in this project.

5.1 Context: the B Method

The B method [18, 67] is a state-based method for designing formally verified software. It starts
from a very abstract model of the system that can then be refined until code generation. Proper-
ties over the models’ data are specified as a mathematical invariant using Zermelo-Fraenkel set

1http://bware.lri.fr/index.php/BWare_project

87

Chapter 5. Sets of Why3 5.2. A Decision Procedure for Why3’s Sets

theory with the axiom of choice. Mathematical formulas are then generated to ensure both the
consistency of the model and the preservation of the invariant through every operations of the
model. At each refinement, the invariant becomes more precise as it deals with a more concrete
model. This refinement mechanism allows to split the complexity of proof of the final, concrete
model, into smaller, simpler proofs.

Verification conditions generated by the B Method are expressed in first-order logic with
notations from the Zermelo-Fraenkel set theory with the axiom of choice. This theory includes:

• membership of an element into a set,

• usual set operators like union and intersection between sets,

• the power set of a set s, that is the set containing every subset of s,

• cartesian product of two sets s1 and s2, that is the set of all the pairs of an element of s1
and an element of s2,

• set comprehension, that is the set of the elements of a set that abide by a given property,

• relations between elements of two sets s1 and s2, represented as sets of pairs (x1,x2)where
x1 is an element of s1, x2 is an element of s2, and x1 and x2 are in relation,

• partial functions, that are relations such that there is at most one pair x1,_ in the relation
for each x1, and

• total functions, that are partial functions such that there is exactly a pair x1,_ in the relation
for each x1.

5.2 A Decision Procedure for Why3’s Sets

In this section, we present a minimal set theory which we then axiomatize using first-order logic
with triggers. This axiomatization is then used to verify verification conditions coming from the
BWare project.

5.2.1 Presentation of the Theory

The Why3 platform provides several theories for polymorphic sets. The simplest one, called
generic sets, is based on the notion of membership. Sets are described using the function symbol
mem(x : α,s : setα) : bool which returns true if and only if the element x is in the set s. The
function subset(s1 : setα,s2 : setα) : bool returns true if and only if the set s1 is the subset of a
set s2, that is, every element of s1 i a member of s2. Two sets are equal if and only if they contain
the same elements.

The theory describes several functions over sets. The function add(x : α,s : setα) : setα
returns the set containing both the element x and the elements of the set s, remove(x : α,s : setα :
setα) returns the set containing every element of s except x, and union(s1 : setα,s2 : setα) :
setα , inter(s1 : setα,s2 : setα) : setα , and diff (s1 : setα,s2 : setα) : setα return respectively
the union, the intersection, and the difference of two sets s1 and s2.

88

Chapter 5. Sets of Why3 5.2. A Decision Procedure for Why3’s Sets

The function is_empty(s : setα) : bool returns true if the set s is equal to the empty set empty.
An unspecified element contained in a non-empty set s can be retrieved using choose(s : setα) :
α .

5.2.2 Description of the Axiomatization

We only describe some axioms in this section. The whole axiomatization is available in Ap-
pendix B.1. Equality between sets is modeled by a the function symbol equal_sets(s1 : setα,s2 :
setα) : bool. For two sets s1 and s2, equal_sets(s1,s2) is true if and only if s1 and s2 contain
the same elements. The function equal_sets is then related to classical equality by an exten-
sionality axiom. It states that, if equal_sets(s1,s2) is true then s1 and s2 must be equal. Note
that since equal_sets(s1,s2) ≈ t can be implied by a set of ground literals L without the term
equal_sets(s1,s2) to appear in L, we do not put equal_sets(s1,s2) as a trigger for EXTENSION-
ALITY. We rather use s1 �≈ s2.

EQ_DEF :

∀s1,s2 : setα.[equal_sets(s1,s2)]equal_sets(s1,s2)≈ t→

(∀x : α.[mem(x,s1)]mem(x,s1)≈ t→ mem(x,s2)≈ t)∧

(∀x : α.[mem(x,s2)]mem(x,s2)≈ t→ mem(x,s1)≈ t)

EQ_INV :

∀s1,s2 : setα.[equal_sets(s1,s2)]equal_sets(s1,s2) �≈ t→

(∃x : α.mem(x,s1)≈ t∧mem(x,s2) �≈ t∨mem(x,s2)≈ t∧mem(x,s1) �≈ t))

EXTENSIONALITY :

∀s1,s2 : setα.[s1 �≈ s2]equal_sets(s1,s2)≈ t→ s1 ≈ s2

For union, inter, and diff , we describe the relationship between members of the set argu-
ments and members of the result. We put triggers so that the axioms can only be applied to
deduce new memberships, that is, positive literals starting with the function symbol mem. In-
deed, every element that is not known to be in a set can safely be assumed not to be in it.

UNION_DEF :

∀s1,s2 : setα,x : α.[mem(x,union(s1,s2))]

mem(x,union(s1,s2))≈ t→ mem(x,s1)≈ t∨mem(x,s2)≈ t

UNION_INV1 :

∀s1,s2 : setα,x : α.[union(s1,s2),mem(x,s1)]mem(x,s1)≈ t→ mem(x,union(s1,s2))≈ t

UNION_INV2 :

∀s1,s2 : setα,x : α.[union(s1,s2),mem(x,s2)]mem(x,s2)≈ t→ mem(x,union(s1,s2))≈ t

89

Chapter 5. Sets of Why3 5.2. A Decision Procedure for Why3’s Sets

For add and remove, we also describe the result of the modification using the mem function
symbol. As for union, we choose triggers so that the axioms can only be used to deduce new
memberships. We also need a special case so that mem(y,add(y,s))≈ t can be deduced when-
ever add(y,s) is known. Indeed, otherwise, mem would become incompletely generated as we
need to deduce that mem(y,add(y,s))≈ t is true in the theory even if the term mem(y,add(y,s))
is not known. For example, to deduce that the set of literals {add(x,empty)≈ add(y,empty), x �≈
y} is unsatisfiable we need to know that mem(y,add(y,empty))≈ t.

ADD_DEF :

∀x,y : α,s : setα .[mem(x,add(y,s))]mem(x,add(y,s))≈ t→ x≈ y∨mem(x,s)≈ t

ADD_INV1:

∀x,y : α,s : setα.[add(y,s),mem(x,s)]mem(x,s)≈ t→ mem(x,add(y,s))≈ t

ADD_INV2 :

∀y : α ,s : setα.[add(y,s)]mem(y,add(y,s))≈ t

If a set is empty then it does not contains any element. The function choose returns an
element contained in a non-empty set. If a set s is non-empty then it contains choose(s).

IS_EMPTY_DEF :

∀s : setα.[is_empty(s)]is_empty(s)≈ t→ (∀x : α.[mem(x,s)]mem(x,s) �≈ t)

CHOOSE_DEF:

∀s : setα.[is_empty(s)]is_empty(s) �≈ t→ mem(choose(s),s)≈ t

∀s : setα.[choose(s)]is_empty(s) �≈ t→ mem(choose(s),s)≈ t

Remark that we use the version of CHOOSE_DEF with is_empty(s) as a trigger to express the
opposite direction of the implication in the definition of is_empty.

5.2.3 Proofs of Soundness, Completeness, and Termination

In this section, we show that we can use the white-box implementation defined in Chapter 4 on
the axiomatization of sets as a decision procedure for the axiomatization of sets where triggers
are replaced by implications.

Theorem 5.1. The axiomatization in Section 5.2.2 is terminating, sound and complete with

respect to the same axiomatization where triggers are replaced by implications.

5.2.3.1 Proof of Termination

In the axiomatization, quantified variables are either of type α or of type setα . The axiom-
atization does not create any term of type setα . The axioms EQ_INV, SUBSET_INV, and
CHOOSE_DEF can all create a new term of type α . These three axioms only quantify over
variables of type setα . Since this type is uninterpreted by the underlying theory T of the SMT
solver, no term of type setα can be created by T . As a consequence, the axiomatization can
create a finite number of new terms of type α .

90

Chapter 5. Sets of Why3 5.2. A Decision Procedure for Why3’s Sets

5.2.3.2 Proof of Soundness

We show that, if a set of literals G has a model in the axiomatization of sets where triggers are
replaced by implications then there is a total model of G and the axiomatization. If I is a model
of a set of literals G with the axiomatization of sets where triggers are replaced by implications,
we define L= {l | I(l) =�}. By construction of L, L is a total model of G. Since L is total, for
every axiom ϕ of the axiomatization, L�T ϕ .

5.2.3.3 Proof of Completeness

Let G be a set of literals and L a world in which G and the axiomatization are true. We construct
a model from L in the axiomatization of sets where triggers are replaced by implications. Since
L�T G, it is also a model of G.

First of all, we give a value to mem(x,s) for each known term s of type set and each known
term x of type α in L. For every s and x such that L �T mem(x,s) ≈ t, we add the literal
mem(x,s) �≈ t to L. Since mem is uninterpreted, the set of literals L is still satisfiable in T .

What is more, the axiomatization is still true in L. Indeed, every clause in the axiomatization
protected by a trigger containing mem(x,s) contains a negative occurrence of mem(x,s)≈ t. As
a consequence, they are all automatically satisfied when assuming mem(x,s) �≈ t.

Then, we need to handle extensionality. For every known terms s1 and s2 of type set in L
such that, for every known term x of type α , we have L �T mem(x,s1) ≈ t if and only if we
have L �T mem(x,s2) ≈ t, we add s1 ≈ s2 to L. The set of literals L is still satisfiable. Indeed,
since the type set is uninterpreted in the background theory T , if the set L implies a finite clause
s1 �≈ s�1∨·· ·∨sn �≈ s�n modulo T then there is i in 1..n such that si �≈ s�i. Thus by EXTENSIONALITY

and EQ_INV, there is a term x of type α such that L �T mem(x,si) �≈ mem(x,s�i).
What is more, the axiomatization is still true in L. There can be no trigger l[s1] such L �T

l[s1] and L �T l[s2] if, for every known term x of type α , L �T mem(x,s1) ≈ t if and only if
L �T mem(x,s2)≈ t. Indeed, such a case can only happen if either there is a trigger containing
twice the same set variable, in which case a new equality may allow this trigger to match, or
if there are two nested triggers with the same set variable. The first case never occurs in the
axiomatization. As stated previously, using mem(add(y,s),y) as a trigger for ADD_INV2 would
have cause such a case to occur and the axiomatization to be incomplete as it could not have
found the unsatisfiability in {x �≈ y, add(x,empty) ≈ add(y,empty)}. The second case though,
occurs in several axioms, but, each time, all the nested triggers but one are applications of mem.
Since every term mem(x,s) is known in L for s and x known in L, these instances are redundant.

Let us now handle choose and is_empty. For every known term s of type set in L, if s is
not equal to empty then add is_empty(s) �≈ t to L. If there is no term x in L such that L �T
mem(x,s) ≈ t then we already have L �T empty ≈ s. In every other case, if the term choose(s)
is not known in s, then pick a term x such that L �T mem(x,s) ≈ t and add choose(s) ≈ x to
L. The set L is still satisfiable. Since, when assuming a new term is_empty(s), we also ensure
mem(choose(s),s)≈ t, the axiomatization is still true in L.

Finally, we simply add appropriate values to membership of missing terms starting with
subset, add, remove, inter, union, and diff .

91

Chapter 5. Sets of Why3 5.3. Benchmarks

5.3 Benchmarks

In this section, we compare the efficiency of usual E-matching techniques of several SMT solvers
on our axiomatization with and without user provided triggers. We also compare Alt-Ergo built-
in, lazy, instantiation technique with our, eager, implementation.

From the axiomatization in Section 5.2.2, we remove the extensionality axiom and we leave
it as a first-order formula without triggers. Indeed, non-tautological triggers are neither handled
by off-the-shelf SMT solvers nor supported by our implementation in Alt-Ergo.

The set theory used by the B method supports constructs that are not part of the Why3 set
theory. They can be axiomatized with appropriate first order axioms. That is what was done for
power(s), that returns the power set of a set s, and for interval(i, j) that represents the set of
integers between i and j.

MEM_POWER:

∀s1,s2 : setα.[mem(s1, power(s2))] mem(s1, power(s2))≈ t↔ subset(s1,s2)≈ t

∀s1,s2 : setα.[power(s2),subset(s1,s2)] mem(s1, power(s2))≈ t↔ subset(s1,s2)≈ t

MEM_INTERVAL:

∀x, i, j : int.[mem(x, interval(i, j))] mem(x, interval(i, j))≈ t↔ i≤ x≤ j

These axioms are terminating and therefore can be added to the theory of sets without com-
promising termination of the solver. Indeed, none of these axioms can create any new term.
Remark that they are not complete though. The sets of literals {is_empty(interval(2,4)) ≈ t}
and {is_empty(power(s)) ≈ t} are unsatisfiable in the theory of sets extended with power and
interval but this cannot be deduced by our axiomatization. For these axioms, we have not tried
to achieve completeness. Indeed, it would have required generating too many instances, hinder-
ing efficiency (one per integer between i and j for interval(i, j) and one per term of type setα
for power.

Among the additional first-order axioms that are used by Why3 to model the set theory used
by the B method, are a couple of axioms that are specializations of the extensionality axiom:

ADD_REMOVE:

∀x : α ,s : setα.[add(x,remove(x,s))]mem(x,s)≈ t→ add(x,remove(x,s))≈ s

UNION_SINGLETON_ADD:

∀x : α,s : setα.[union(s,add(x,empty))]union(s,add(x,empty))≈ add(x,s)

Those axioms are theoretically redundant but not necessarily useless as properly choosing
when to apply the extensionality axiom is difficult. We have done two runs of the BWare bech-
marks containing a total of 10572 verification conditions with and without these axioms.

92

Chapter 5. Sets of Why3 5.3. Benchmarks

No lemma With lemmas
No trigger With triggers No trigger With triggers

Z3 4.3.1 8994 8586 8495 8649
CVC4 1.1 8763 8768 8774 8781
Alt-Ergo 9726 9761 9381 9662

Figure 5.1: Number of verification conditions from the BWare benchmarks discharged by Alt-
Ergo, Z3 4.3.2, and CVC4 1.1 with a timeout of 60s with and without the triggers.

5.3.1 Assessment of the Adequacy Between our Framework andUsual E-matching

Techniques

In Figure 5.1, we compare the number of verification conditions discharged by Alt-Ergo 0.95.2,
Z3 4.3.2, and CVC4 1.1 with and without user provided triggers in the axiomatization. There
are two versions of the benchmarks, one includes additional lemmas for extensionality and the
other does not. Figures 5.3 and 5.2 represents the time needed to solve the n fastest verification
conditions with each prover, depending on n.

We see that the effect of the additional lemmas depends on the solver. While they seem to
hinder Alt-Ergo a lot, they allow CVC4 to discharge a handful more of verification conditions.
We can also see that, when the additional lemmas are present, manually written triggers are
beneficial for both Alt-Ergo and Z3. Indeed, an SMT solver can make an unfortunate choice
for the triggers of additional lemmas for extensionality like ADD_REMOVE and use the term
mem(x,s). Such a choice leads to useless instances thus hindering the solver.

The manually written triggers for the set theory do not seem to have a major impact on the
efficiency of solvers. A notable exception to this remark is Z3. We can see on Figure 5.2 that
the two runs of Z3 on our axiomatization without the additional axioms are close enough until
a limit of 10s is reached. Then the curve without the triggers has a bend, as Z3 discharges
more verification conditions without the triggers than with them. This bend may be caused for
example by a change in the instantiation heuristic triggered by either a big number of instances
or a time limit.

To explain this feeble impact of user provided triggers without the lemmas for extensionality,
we need to consider the heuristics used inside SMT solvers for choosing instantiation patterns
for a quantified formula ∀x1. . . .∀xn.ϕ . The most usual one consists in picking a subterm of
ϕ whose free variables are exactly x1 . . .xn if any. We remark that, on our axiomatization, this
heuristic always hands out triggers that are restrictive enough to enforce termination even though
they do not ensure completeness.

The fact that we lose the completeness of our triggers will not necessarily lead to poorer
performances, especially for Z3 and CVC4 which have other heuristics for instantiating triggers
than E-matching. Indeed, while some instances are useful in general for completeness they may
very well be useless on our benchmarks and therefore slow down the solver.

Note that a possible reason for explaining why CVC4 and Z3 are less efficient than Alt-Ergo
on these verification conditions is that we use the SMT-LIB format for them which does not
support polymorphism. An instance of each lemma is therefore generated for each set type in

93

 0.01

 0.1

 1

 10

 0 2000 4000 6000 8000 10000

Ex
ec

ut
io

n
tim

e
fo

r o
ne

 v
er

ifi
ca

tio
n

co
nd

iti
on

 in
 s

ec
on

d

Number of discharged verification conditions

Alt-Ergo as a theory
Alt-Ergo no trigger

Alt-Ergo with trigger
Z3 (4.3.1) no trigger

Z3 (4.3.1) with trigger
CVC4 (1.1) no trigger

CVC4 (1.1) with trigger

Figure 5.2: Evolution of the number of verification conditions from the BWare benchmarks without additional extensionality lemmas
discharged by Alt-Ergo, Z3 4.3.2, and CVC4 1.1 with a timeout of 60s with and without the triggers and by Alt-Ergo through the theory
mechanism.

 0.01

 0.1

 1

 10

 0 2000 4000 6000 8000 10000

Ex
ec

ut
io

n
tim

e
fo

r o
ne

 v
er

ifi
ca

tio
n

co
nd

iti
on

 in
 s

ec
on

d

Number of discharged verification conditions

Alt-Ergo as a theory
Alt-Ergo no trigger

Alt-Ergo with trigger
Z3 (4.3.1) no trigger

Z3 (4.3.1) with trigger
CVC4 (1.1) no trigger

CVC4 (1.1) with trigger

Figure 5.3: Evolution of the number of verification conditions from the BWare benchmarks with additional extensionality lemmas
discharged by Alt-Ergo 0.95.2, Z3 4.3.2, and CVC4 1.1 with a timeout of 60s with and without the triggers and by Alt-Ergo through the
theory mechanism.

Chapter 5. Sets of Why3 5.4. Conclusion

❳
❳
❳
❳
❳
❳
❳

❳
❳

❳
❳

Alt-Ergo
Alt-Ergo�

Discharged Undischarged Total

Discharged 9690 71 9761

Undischarged 626 185 811
Total 10316 256 10572

Figure 5.4: Number of verification conditions from the BWare benchmarks discharged by
our theory mechanism’s implementation in Alt-Ergo, named Alt-Ergo�, and Alt-Ergo’s built-
in quantifiers handling.

the input problem, of which there may be many.

5.3.2 Comparison Between our Implementation and the Built-in Quantifiers Han-

dling of Alt-Ergo

The Figure 5.4 compares the time needed to discharge verification conditions with our theory
mechanism’s implementation in Alt-Ergo and with Alt-Ergo’s built-in quantifiers handling on
the BWare benchmarks without additional lemmas and with user provided triggers. We see that
eager instantiation ends up being rather efficient on these tests.

Remark that if MEM_POWER and MEM_INTERVAL are treated by the built-in quantifier han-
dling of Alt-Ergo, the performances of the theory mechanism are poorer as the solver will do
eagerly a lot of (unnecessary) set reasoning before instantiating these axioms. We see that choos-
ing a good subset of axioms for eager instantiation is crucial for efficiency. It is even more ap-
pearent when the theory handling is time consuming, in particular when its axiomatization leads
to numerous instances. Indeed, instances of axioms outside the theory will be sparser, delaying
reasoning that requires them.

The inclusion/exclusion of lemmas for extensionality in the theory does not impact our im-
plementation much. We do not even get the important slow-down when we do not put triggers
for them. Indeed, those are not eagerly instantiated while other useful axioms are and, therefore,
their ill effect is less noticeable.

Note that there are also several verification conditions that are discharged by Alt-Ergo’s
built-in quantifiers handling but not by our implementation. That can be because there are still
a great deal of axioms describing additional constructs such as relations, functions, restrictions,
finite sets... that we do not include in the theory.

5.4 Conclusion

On this case study, eager instantiation of universal quantifiers gives good results. Indeed, our
implementation in Alt-Ergo discharges more verification conditions than Alt-Ergo’s built-in han-
dling of quantifiers. We have also seen that, although manually provided triggers are not always
profitable to off-the-shelf SMT solvers, well-chosen triggers can prevent the slow-down due to
unnecessary quantifier instantiations.

96

6 Case Study: Formal Bounded Vectors of SPARK

2014

Contents

6.1 Context: the SPARK 2014 Tool . 97

6.2 Ada’s Formal Vectors Package . 99

6.2.1 Description of the Ada Package . 99

6.2.2 Translation into WhyML . 101

6.3 A Decision Procedure for Formal Vectors 101

6.3.1 Presentation of the Theory . 102

6.3.2 Description of the Axiomatization 103

6.3.3 Proofs of Soundness, Completeness, and Termination 107

6.4 Benchmarks . 111

6.4.1 Assessment of the Adequacy Between our Framework and Usual E-
Matching Techniques . 112

6.4.2 Comparison Between our Implementation and the Built-in Quanti-
fiers Handling of Alt-Ergo . 112

6.5 Conclusion . 112

In Chapter 4, we explained how DPLL(T) can be extended to support first-order logic with
triggers. We have also shown that this extension yields a decision procedure when given a sound,
complete, and terminating axiomatization as defined in Chapter 4.

In this chapter, we explain how the mechanism described in Chapter 4 can be used during
the verification of Ada programs dealing with vectors using the SPARK 2014 tool.

6.1 Context: the SPARK 2014 Tool

The translation from SPARK 2014 into WhyML does not preserve the structure of the SPARK
2014 code but rather the mathematical formulas that can be extracted from them. Entities in
SPARK 2014 are translated into modules in WhyML. For a type in Ada, this WhyML module
contains a type and elements needed to axiomatize it. For example, discrete types are modeled
using conversion functions into Why3 mathematical integers as well as some bounds.

Here is the WhyML translation of the Ada type for 8 bits integers:

97

Chapter 6. Vectors of SPARK 2014 6.1. Context: the SPARK 2014 Tool

module Standard__short_short_integer

use import "int".Int

type short_short_integer

function first : int = -128

function last : int = 127

predicate in_range (x : int) = first <= x <= last

function to_int short_short_integer : int

function of_int int : short_short_integer

axiom range_axiom:

forall x : short_short_integer. in_range (to_int x)

axiom inversion_axiom:

forall x : short_short_integer [to_int x].

of_int (to_int (x)) = x

...

end

For a subprogram, the WhyML module contains a logic function – that can be called in
assertions – a program function with contracts – that can be called in programs – and a procedure
used to verify absence of runtime errors and conformance to contracts.

Consider the function G that calls the function F. We assume that F_Pre and F_Post are
the precondition and postcondition of F and R_Inv is an invariant over elements of type R that
happens to be preserved by F:

function G (X : R) return R is

(F (X))

with Pre => R_Inv (X) and then F_Pre (X),

Post => R_Inv (X) and then F_Post (G’Result, X);

Here is the translation of G into WhyML, a bit simplified for readability:

(* Logic and program declarations for G *)

function g (x : r) : r

val g (x : r) : r

requires { r_inv x = True /\ f_pre x = True }

ensures { result = g x /\ r_inv x = True /\ f_post result x = True }

(* Defining axiom since G is an expression function *)

axiom def_axiom :

forall x : r [g x]. g x = f x

(* Global variables for the argument and the result of G *)

function x : r

val result : ref r

98

Chapter 6. Vectors of SPARK 2014 6.2. Ada’s Formal Vectors Package

(* Program function to check G’s body and contract *)

let def (void_param : unit)

ensures { r_inv x = True /\ f_post result x = True }

=

(* Execute G’s precondition to check there is no runtime error.

Forget all about it afterward. *)

abstract (_ignore (r_inv x && f_pre x));

(* Assume the precondition *)

any unit ensures { r_inv x = True /\ f_pre x = True };

(* Translate G’s body, use exception to handle return statement *)

try

(result := f x;

raise Return__exc)

with

Return__exc ->

(* Execute G’s postcondition to check there is no runtime error.

Forget all about it afterward. *)

abstract (_ignore (r_inv x && f_post !result x));

(* Return result *)

!result

end

The WhyML program def has no parameter. Indeed, all SPARK parameters and local variables
of the subprograms are declared as top-level global variables in WhyML. This is done to ac-
commodate cross references between SPARK declarations. def also has no precondition since
it needs to produce the mathematical formulas to check that the precondition of the subprogram
cannot raise errors at runtime and this cannot be done in the context of the precondition. The
precondition is assumed once these mathematical formulas are produced.

6.2 Ada’s Formal Vectors Package

SPARK 2014 excludes data structures based on pointers. To work around this restriction, the
content of a datastructure can be hidden using private types and ghost functions – functions that
are allowed only in annotations – can be used to express the model of the structure. Another
possibility is to use the library of formal containers provided with SPARK 2014. We have
specifically designed and annotated these generic containers (vectors, lists, maps, and sets) to
facilitate the proof of programs using them [36].

6.2.1 Description of the Ada Package

The Ada formal vectors package is a generic package. It can be instantiated with a type for in-
dexes, which must be a discrete type, a type for elements, and an equality function over elements
that will be used to search for elements in the vector:

generic

99

Chapter 6. Vectors of SPARK 2014 6.2. Ada’s Formal Vectors Package

type Index_Type is range <>;

type Element_Type is private;

with function "=" (Left, Right : Element_Type) return Boolean is <>;

Two private types are defined, one for vectors and one for cursors. Formal vectors are
resizable arrays which are bounded to avoid dynamic memory management, that is, their length
cannot be greater than a given bound, named capacity. They are implemented as arrays of
elements of size the capacity of the vector, along with an index to give the position of the last
valid element in the array. To iterate over vectors, the easiest way is to use indexes. Still,
for conformance with other containers’ packages, cursors are also provided. Even if they are
implemented using indexes, the Ada reference manual only requires two cursors to be equal if
they designate the same element in the same container. As a consequence, in the formalization,
we cannot assume in general that two cursors at the same index in different vectors are equal.

type Elements_Array is array (Count_Type range <>) of Element_Type;

type Vector (Capacity : Capacity_Range) is record

Elements : Elements_Array (1 .. Capacity);

Last : Extended_Index := No_Index;

end record;

type Cursor is record

Valid : Boolean := True;

Index : Index_Type := Index_Type’First;

end record;

Most of the subprograms defined over vectors are procedures that modify their vector ar-
gument. Among them, there are twelve subprograms for insertion, four for deletion, two to
swap elements and one to reverse the elements of the vector argument. According to the refer-
ence manual, these subprograms preserve cursors except when they are ambiguous, that is when
elements have been slided over it by insertion or deletion or when they have been reordered.

Among the four procedures for deletion, the most generic one takes a vector Container, an
index Index, and a natural Count:

procedure Delete (Container : in out Vector;

Index : in Extended_Index;

Count : in Count_Type := 1)

with

Pre => First_Index (Container) <= Index

and then Index <= Last_Index (Container) + 1;

If Index is not between First_Index (Container) and Last_Index (Container) + 1, Delete
propagates Constraint_Error. If Count is 0, Delete has no effect. Otherwise, Delete slides
the elements starting at position Index + Count down to Index. Any exception raised during
element assignment is propagated.

The formal vectors API also contains a few functions returning vectors. There are four
concatenation functions and a copy function for which the capacity of the copy can be specified:

100

Chapter 6. Vectors of SPARK 2014 6.3. A Decision Procedure for Formal Vectors

function Copy (Source : Vector; Capacity : Count_Type := 0) return Vector

with

Pre => Length (Source) <= Capacity and then

Capacity in Capacity_Range;

Copy returns a vector whose elements and cursors are initialized from the corresponding
elements and cursors of Source. If Capacity is 0, then the vector capacity is the length of
Source; if Capacity is equal to or greater than the length of Source, the vector capacity is at
least the specified value. Otherwise, the operation propagates Capacity_Error.

The API also contains other helpful subprograms, in particular equality over vectors, func-
tions for searching elements in a vector and subprograms for iterating over cursors:

function Previous (Container : Vector; Position : Cursor) return Cursor

with

Pre => Has_Element (Container, Position) or else

Position = No_Element;

If the cursor Position equals No_Element or designates the first element of Container, then
Previous returns the value No_Element. Otherwise, it returns a cursor that designates the ele-
ment with index To_Index (Position) - 1 in Container.

6.2.2 Translation into WhyML

Formal containers are translated through a special mechanism that we have implemented inside
the SPARK 2014 tool. It allows to directly provide a manually written Why3 translation for
potentially generic SPARK 2014 packages annotated with a dedicated pragma. This Why3 file
must mimic the result of the translation on the Ada package so that SPARK 2014 can use its
declarations.

This mechanism can be useful for several reasons. First of all, there are some SPARK
2014 subprograms that cannot be specified using only contracts. It is the case for example, for
subprograms that require higher order reasoning, like a function that sums the elements of an
array of integers, or programs that need to be linked to an existing WhyML library, like numeric
elementary functions – square-root, logarithm... This mechanism can also be used to customize
the translation of complex packages so that it allows the proof of user code to go through more
easily, for example by providing triggers and splitting defining axioms. Finally, this mechanism
can be used as a work-around for current SPARK 2014 limitations. It allows in particular to give
defining axioms to regular functions and to quantify over non-integer values, for example the
cursors of a container. For a mix of all these reasons, this mechanism is used in SPARK 2014
for formal containers, using manual translations that we have provided.

6.3 A Decision Procedure for Formal Vectors

In this section, we define a theory that models some of the Ada formal vectors package’s aspects.
This theory is then axiomatized so that it can be used to verify SPARK 2014 programs using
Formal Vectors.

101

Chapter 6. Vectors of SPARK 2014 6.3. A Decision Procedure for Formal Vectors

6.3.1 Presentation of the Theory

Vectors are resizable arrays of elements on which an equivalence is defined using the function
equal_elements(e1 : element_type,e2 : element_type) : bool. They are indexed by a range of
integers bounded by two integer constants index_type__ f irst and index_type__last. A third
constant, index_type__zero, is used to refer to index_type__ f irst− 1. The size of a vector co
can be retrieved using a function length(co : vector) : int. Vectors have a capacity, modeled by a
function capacity(co : vector) : int, which is the maximal size they can reach. The capacity of a
vector is such that the vector cannot exceed the index range. For every vector co, the first index
of co is index_type__ f irst and its last index is length(co)+ index_type__zero.

In a vector co, there is a cursor associated to each index i between the first and the last
index of co. It can be retrieved using a function to_cursor(co : vector, i : int) : cursor. A cur-
sor constant, named no_element, is associated to every integer between index_type__zero and
index_type__last that is not between the first and the last index of co. A cursor cu is valid
in a vector co if and only if there is an index i between the first and the last index of co such
that cu ≈ to_cursor(co, i). This property can be expressed using the function has_element(co :
vector,cu : cursor) : bool. A cursor can be valid in several vectors. However, it must always
refer to the same index in all vectors it is valid in. The index referred by a cursor cu can be
accessed using to_index(cu : cursor) : int. The cursor no_element cannot be valid in any vector.

Iteration over cursors is supported thanks to dedicated functions. The function f irst(co :
vector) : cursor (resp. last(co : vector) : cursor) yields the cursor associated to the first (resp.
the last) index of the vector co. In the same way, if cu is a valid cursor in the vector co,
previous(co : vector,cu : cursor) : cursor (resp. next(co : vector,cu : cursor) : cursor) yields the
cursor associated to to_index(cu)−1 (resp. to_index(cu)+1) in co. On no_element, previous
and next return no_element. In all other cases, previous and next are not specified.

The element stored in a vector co at an index i between the first and the last index of co can
be retrieved using element(co : vector, i : int). For every vector co, every element e, and every
integer i, f ind_index(co : vector,e : element_type, i : int) : int (resp. reverse_ f ind_index(co :
vector,e : element_type, i : int) : int) returns the first index j greater than i (resp. the last index
j less than i) such that equal_elements(element(co, j),e) returns true, if any. If there is no such
index between i and the last index of co (resp. between the first index of co and i), the function
f ind_index (resp. reverse_ f ind_index) returns index_type__zero.

The theory also includes several predicate symbols used to describe how results of proce-
dures that modify vectors in the API are related to their inputs:

• If replace_element(co : vector, i : int,e : element_type,r : vector) : bool is true then the
index i is between the first and the last index of the vector co and the vector r is co where
the element at index i was replaced by the element e. The cursors are preserved.

• If insert(co1 : vector, i : int,co2 : vector,r : vector) : bool is true then the index i is between
the first and the last index of the vector co1 plus one and the vector r is co1 where the vector
co2 has been inserted just before i. The cursors associated to indexes strictly smaller than
i in co1 are preserved.

• If swap(co : vector, i1 : int, i2 : int,r : vector) : bool is true then the indexes i1 and i2 are

102

Chapter 6. Vectors of SPARK 2014 6.3. A Decision Procedure for Formal Vectors

between the first and the last index of the vector co and r is co where the elements at index
i1 and i2 have been swapped. The cursors are preserved.

• If delete(co : vector, i : int, l : int,r : vector) : bool is true then the index i is between the
first and the last index of the vector co, the non-negative integer l is smaller than the length
of co, and the vector r is co where the elements at the l consecutive indexes starting at i
have been removed. The cursors associated to indexes strictly smaller than i in co are
preserved.

• If delete_end(co : vector, i : int,r : vector) : bool is true then the index i is between the first
and the last index of the vector co and the vector r is co where the last elements, starting
at index i, have been removed. The cursors associated to indexes strictly smaller than i in
co are preserved.

• If reverse_elements(co : vector,r : vector) : bool is true then the vector r contains the
elements of the vector co in reverse order and r and co have the same capacity. Cursors
are not preserved.

The function copy(co : vector,new_capacity : int) : vector returns a vector that has the same
length and contains the same elements and cursors as the vector co. If the natural new_capacity
is index_type__zero then the vectors copy(co,new_capacity) and co have the same capacity. If
new_capacity is between length(co) and index_type__last− index_type__zero then the capac-
ity of the vector returned by copy is new_capacity. Otherwise, it is not specified.

Like in Ada, there are four concatenation functions: one to concatenate two vectors, named
concat__1(co1 : vector,co2 : vector) : vector, two to concatenate a vector and an element, named
concat__2(co : vector,e : element_type) : vector and concat__3(e : element_type,co : vector) :
vector, and one to concatenate two elements, concat__4(e1 : element_type,e2 : element_type) :
vector. The capacity of the result of these functions is not specified. Neither are the values of its
cursors.

6.3.2 Description of the Axiomatization

We only describe some axioms in this section. The whole axiomatization is available in Ap-
pendix C.1. We first define a logic type for vectors, along with logic functions for element,
length, and capacity. We use two axioms to give bounds for the value returned by these func-
tions:

CAPACITY_RANGE:

∀co : vector.[capacity(co)]

0≤ capacity(co)≤ index_type__last− index_type__zero

LENGTH_RANGE:

∀co : vector.[length(co)] 0≤ length(co)≤ capacity(co)

103

Chapter 6. Vectors of SPARK 2014 6.3. A Decision Procedure for Formal Vectors

The functions used for translation between cursors and indexes are defined as expected.
We add a redundant axiom, HAS_ELEMENT__TO_CURSOR, which is not required for termina-
tion nor completeness of the axiomatization. It states that has_element(co, to_cursor(co, i)) is
true for i such that index_type__zero < i ≤ length(co)+ index_type__zero, which can be de-
duced from the axioms HAS_ELEMENT__DEF and TO_INDEX_TO_CURSOR as soon as the term
has_element(co, to_cursor(co, i)) is known. It is not required for completeness since the func-
tion symbol has_element does not appear in other triggers of the theory. Still, as verification
conditions arising from Ada programs usually contain quantifiers, we may need to deduce that
we have has_element(co, to_cursor(co, i))≈ t when only to_cursor(co, i) is known.

TO_INDEX_RANGE:

∀cu : cursor.[to_index(cu)]

index_type__zero≤ to_index(cu)≤ index_type__last

TO_INDEX_NO_ELEMENT:

to_index(no_element)≈ 0

TO_INDEX_TO_CURSOR:

∀i : int,co : vector.[to_cursor(co, i)]

(length(co)+ index_type__zero≥ i> index_type__zero →

to_index(to_cursor(co, i))≈ i)∧

(length(co)+ index_type__zero< i ∨ i≈ index_type__zero →

to_cursor(co, i)≈ no_element)

HAS_ELEMENT__DEF:

∀cu : cursor,co : vector.[has_element(co,cu)]

has_element(co,cu)≈ t↔

(to_index(cu)> 0 ∧ to_cursor(co, to_index(cu))≈ cu)

HAS_ELEMENT__TO_CURSOR:

∀i : int,co : vector.[to_cursor(co, i)]

length(co)+ index_type__zero≥ i> index_type__zero →

has_element(co, to_cursor(co, i))≈ t

To describe previous, next, first, and last, we use to_cursor. Note that these functions are
total but are only described on their domain of definition so that nothing can be deduced about
illegal applications.

104

Chapter 6. Vectors of SPARK 2014 6.3. A Decision Procedure for Formal Vectors

PREVIOUS_IN:

∀co : vector,cu : cursor.[previous(co,cu)]

(length(co)+ index_type__zero≥ to_index(cu)> index_type__ f irst∨

length(co)+ index_type__zero> to_index(previous(co,cu))> index_type__zero) →

to_cursor(co, to_index(cu)−1)≈ previous(co,cu)

PREVIOUS_EXT:

∀co : vector,cu : cursor.[previous(co,cu)]

(to_index(cu) = index_type__ f irst ∨ cu≈ no_element) →

previous(co,cu)≈ no_element

The predicates describing a modification of vectors are only relevant if they are known to
be true. Here are axioms describing how the value of a vector after a deletion is related to
its previous value. They express the links between vectors using functions length, element,
and to_cursor. We take care to only specify the value of partial functions such that element and
to_cursor on domains where they are defined. To allow the proof of completeness to go through,
we allow equalities between elements and cursors to be usable from both sides. It sometimes
requires some axioms to be split in two, like DELETE_ELEMENT_1 and DELETE_CURSORS.
Remark that, like in DELETE_ELEMENT_2, we avoid having interpreted symbols in our triggers,
element(co2, j− l) for example, since this makes both reasoning about the axiomatization more
complex and the implementation less efficient.

DELETE_RANGE:

∀co1,co2 : vector, i, l : int.[delete(co1, i, l,co2)]

delete(co1, i, l,co2)≈ t→ index_type__zero< i≤ length(co1)+ index_type__zero

DELETE_LENGTH:

∀co1,co2 : vector, i, l : int.[delete(co1, i, l,co2)]

delete(co1, i, l,co2)≈ t→ length(co1)+ index_type__zero≈ length(co2)+ index_type__zero+ l

DELETE_CAPACITY:

∀co1,co2 : vector, i, l : int.[delete(co1, i, l,co2)]

delete(co1, i, l,co2)≈ t→ capacity(co1)≈ capacity(co2)

DELETE_ELEMENT_1:

∀co1,co2 : vector, i, l, j : int.[delete(co1, i, l,co2),element(co1, j)]

delete(co1, i, l,co2)≈ t→ index_type__zero< j < i→

element(co1, j)≈ element(co2, j)

∀co1,co2 : vector, i, l, j : int.[delete(co1, i, l,co2),element(co2, j)]

delete(co1, i, l,co2)≈ t→ index_type__zero< j < i→

element(co1, j)≈ element(co2, j)

105

Chapter 6. Vectors of SPARK 2014 6.3. A Decision Procedure for Formal Vectors

DELETE_ELEMENT_2 :

∀co1,co2 : vector, i, l, j : int.[delete(co1, i, l,co2),element(co1, j)]

delete(co1, i, l,co2)≈ t→ i+ l ≤ j ≤ length(co1)+ index_type__zero→

�i+ l�element(co1, j)≈ element(co2, j− l)

∀co1,co2 : vector, i, l, j : int.[delete(co1, i, l,co2),element(co2, j)]

delete(co1, i, l,co2)≈ t→ i≤ j ≤ length(co2)+ index_type__zero→

element(co1, j+ l)≈ element(co2, j)

DELETE_CURSORS:

∀co1,co2 : vector, i, l, j : int.[delete(co1, i, l,co2), to_cursor(co1, j)]

delete(co1, i, l,co2)≈ t→ index_type__zero< j < i→

to_cursor(co1, j)≈ to_cursor(co2, j)

∀co1,co2 : vector, i, l, j : int.[delete(co1, i, l,co2), to_cursor(co2, j)]

delete(co1, i, l,co2)≈ t→ index_type__zero< j < i→

to_cursor(co1, j)≈ to_cursor(co2, j)

Remark 6.1. In DELETE_ELEMENT_2, we use a witness to make sure that, when the literal
element(co1, j)≈ element(co2, j− l) is assumed by the solver, the terms of the guard i+ l ≤ j≤
length(co1)+ index_type__zero are known in the current partial assignment. This is required so
that, whenever element(co1, j) ≈ element(co2, j− l) is assumed, we are sure that the guard i+
l ≤ j ≤ length(co1)+ index_type__zero is true. Indeed, in the variant of termination described
in the last paragraph of Section 4.2.2, for element(co1, j) ≈ element(co2, j− l) to appear in a
truth assignment A, ¬(i+ l ≤ j ≤ length(co1)+ index_type__zero) must be false in A. Using
the semantics of worlds, we can only deduce i+ l ≤ j ≤ length(co1)+ index_type__zero if the
terms of i+ l ≤ j ≤ length(co1)+ index_type__zero are known in A.

For copy, and concatenation functions, we introduce a predicate symbol to describe the result
of the call. For concatenation, concat(co1,co2,r) states that r is the result of the concatenation
of co1 and co2. The predicate symbol equal_vectors describes the result of copy:

EQUAL_VECTORS__DEF:

∀co1,co2 : vector.[equal_vectors(co1,co2)]

equal_vectors(co1,co2)≈ t→ (length(co1)≈ length(co2)∧

(∀i : int.[element(co1, i)]

index_type__zero< i≤ length(co1)+ index_type__zero→

element(co1, i)≈ element(co2, i))∧

(∀i : int.[element(co2, i)]

index_type__zero< i≤ length(co1)+ index_type__zero→

element(co1, i)≈ element(co2, i))∧

(∀i : int.[to_cursor(co1, i)] to_cursor(co1, i)≈ to_cursor(co2, i))∧

(∀i : int.[to_cursor(co2, i)] to_cursor(co1, i)≈ to_cursor(co2, i)))

106

Chapter 6. Vectors of SPARK 2014 6.3. A Decision Procedure for Formal Vectors

COPY__DEF:

∀co : vector,cap : int.[copy(co,cap)]equal_vectors(co,copy(co,cap))≈ t∧

(cap≈ 0→ capacity(co)≈ capacity(copy(co,cap)))∧

(length(co)≤ cap≤ index_type__last− index_type__zero→

capacity(copy(co,cap))≈ cap)

6.3.3 Proofs of Soundness, Completeness, and Termination

First, we can note that the axiomatization is not complete in general. Indeed, consider the
following set of ground literals:

G=

length(u)≈ 1, element(u, index_type__ f irst)≈ e,
insert(co1,1,u,co2)≈ t, delete(co2, length(co2),co1)≈ t,
index_type__zero< i≤ length(co1), element(co1, i) �≈ e

The setG is unsatisfiable in the axiomatization of vectors without triggers and witnesses. Indeed,
every element at index index_type__zero < i ≤ length(co1) in co1 is equal to the element at
index i in co2 since delete(co2, length(co2),co1)≈ t. But it is also equal to the element at index
i+1 in co2 since insert(co1,1,u,co2) ≈ t. As a consequence every element of co1 and co2 are
equal to e. Such a reasoning needs induction and, therefore, is not in the reach of an SMT solver.

Fortunately, this kind of example cannot arise from the verification of an Ada program.
Indeed, verification conditions coming from such a program cannot contain equalities between
vectors and modification predicates such as insert and delete only appear as the postcondition of
an Ada function on its result, which is a fresh vector variable.

Note that we would have liked to include an equivalence relation equivalent_vectors on
vectors in our theory to model Ada equality on vectors. Since this would have lead to incom-
pleteness and non termination, we are forced to leave axioms dealing with it to other quantifier
handling mechanisms:

EQUIVALENT_VECTORS__DEF:

∀co1,co2 : vector.[equivalent_vectors(co1,co2)] equivalent_vectors(co1,co2)≈ t ↔

length(co1)≈ length(co2)∧

(∀i : int.[element(co1, i)]

index_type__zero< i≤ length(co1)+ index_type__zero →

equal_elements(element(co1, i),element(co2, i))≈ t)∧

(∀i : int.[element(co2, i)]

index_type__zero< i≤ length(co1)+ index_type__zero →

equal_elements(element(co1, i),element(co2, i))≈ t)

Theorem 6.1. The axiomatization in Section 6.3.2 is terminating, sound and complete with

respect to the same axiomatization without triggers and witnesses on verification conditions

coming from Ada programs.

107

Chapter 6. Vectors of SPARK 2014 6.3. A Decision Procedure for Formal Vectors

6.3.3.1 Proof of Termination

We show that, on verification conditions coming from Ada programs using vectors, our axiom-
atization is terminating.

Since we have quantification over integers, we cannot, like for lists, show that there can only
be a finite number of new terms of each type. Instead, we use the fact that triggers only contain
uninterpreted function symbols. We only need to show that there can only be a finite number of
terms starting with every uninterpreted function symbol. Indeed, the underlying theory T cannot
create a new term starting with such a function symbol and, therefore, if there can only be a
finite number of terms starting with every uninterpreted function symbol, there can only be a
finite number of new instances.

We use modularity as much as possible. We first consider the axioms that use to_index
or capacity as a trigger. There is only one for each, and they do not create any new term ex-
cept constants. The function symbol length is used as a trigger for only one axiom, that is
LENGTH_RANGE. This axiom can create new terms, but only new terms starting with capacity.
We already know that such terms cannot lead to an infinite number of new terms.

Most of the remaining function symbols (find, concat, delete, insert...) cannot be created by
the axiomatization. Therefore, there can only be a finite number of terms starting with them. In
the same way, there can be one term starting with equal_vectors created for each copy term and
one concat term for each concat, concat__2, or concat__3 term.

The function symbol has_element can be used to create terms starting with to_index, which
cannot lead to an infinite number of new terms, as well as a term starting with to_cursor through
HAS_ELEMENT__DEF. The only way to create a term starting with has_element is with the
axiom HAS_ELEMENT__TO_CURSOR. It has the term to_cursor(co,i) as a trigger. Proving
that these two axioms cannot get into a loop requires a finer grain reasoning. For each term
has_element(co,cu), HAS_ELEMENT__DEF can create a term to_cursor(co,to_index(cu)) by as-
suming to_cursor(co,to_index(cu))≈cu. The axiom HAS_ELEMENT__TO_CURSOR can then
create a term has_element(co,to_cursor(co,to_index(cu)). This will not lead to any new instance
from HAS_ELEMENT__DEF since has_element(co,cu) is known and to_cursor (co, to_index

(cu)) ≈ cu.
Let us now consider the two remaining function symbols, element and to_cursor. They

appear in triggers all over the axiomatization but a quick survey of the axioms shows that they
either appear as triggers in the first level of quantifiers with a function symbol that can only
be created a finite number of times in the axiomatization or as unique trigger directly below
a quantifier with a trigger containing only a function symbol that can only be created a finite
number of times in the axiomatization. In both cases, we have that, from a given set of ground
literals, there can only be a finite number of distinct quantifier instantiations with terms starting
with either element or to_cursor as a trigger.

Quantifiers that have the term to_cursor(co,i) as a trigger can only create terms of the form
to_cursor(co’,i)where co� is a known term of type vector. Since there can only be a finite number
of those, the axiomatization cannot create an infinite number of terms starting with to_cursor.

Axioms for find cannot create an infinite number of terms starting with element. For the
other axioms, we use the fact that proof obligations are coming from Ada programs. As a
consequence, equivalence classes modulo L of known vector terms can be linked in a directed

108

Chapter 6. Vectors of SPARK 2014 6.3. A Decision Procedure for Formal Vectors

acyclic graph where there is an edge from r to co if r is the result of a vector modification
involving co.

We show that, from a set of ground literals L, the axiomatization can only create a finite
number a new terms starting with element. Let element(co, i) be a term of L. For every known
vector term co�, we define iteratively a set eqL(i,co)(co

�) of pairs of an integer index and a set of
literals guards such that L∪ guards �T element(co, i) ≈ element(co�, index). More precisely,
we start with eqL(i,co)(co) = {(i,∅)} and eqL(i,co)(co

�) = ∅ for every term co� different from co.

Then, for every node co�, we define eqL(i,co)(co
�) as the union of its previous value and the values

coming from its adjacent nodes. For example, if a node is labeled by co1 and there is an edge
from co2 to co1 labeled by delete(co1, j, l,co2) then eqL(i,co)(co2) is augmented by:

{(index,guards∪{index_type__zero< index< j} |

(index,guards) ∈ eqL(i,co)(co1) and L∪guards∪{index_type__zero< index< j} �T ⊥}∪

{(index− l,guards∪{ j+ l ≤ index≤ length(co1)+ index_type__zero} |

(index,guards) ∈ eq(co1) and

L∪guards∪{ j+ l ≤ index≤ length(co1)+ index_type__zero} �T ⊥}

This construction will terminate. We can do this proof by induction over the number of nodes
in the graph. If there is only one node then there is no propagation. Otherwise, let us choose a
node that has no entering edge. If it is the initial node co then it will down propagate its initial
information. From there, this node will interfere no more with the propagation in its subgraphs
as it can neither propagate back on the same edge what it has just received nor propagate what it
has received from one one edge onto the other as guards on leaving edges are exclusive.

Remark 6.2. If L� is a superset of L such that L� \L only contains inequalities between integers,
then, for every vector terms co1 and co2 known in L and every pair (index,guards)∈ eqL(i,co)(co1)

such that L �T guards, we have eqL
�

(index,co1)
(co2)⊆ eqL(i,co)(co2).

The sets of terms starting with element that can be created from a term element(co, i)∈T (L)
is bounded by the set {element(co�, index) | co� ∈T (L) and (index,guards)∈ eqL(i,co)(co

�)}. The
proof relies on the fact that, for every modification term in L, we can only produce a new term
element(co�, i�) if we already know that the guard is true. This comes from the fact that our
implementation uses a rather permissive notion of termination by requiring decisions to be done
on the first element of a clause, as explained in Section 4.2.2. Thanks to this property, we have
that we can only produce a term element(co�, i�) using our axiomatization if there is a set of
literals guards such that (i�,guards) ∈ eqL(i,co)(co

�) and L �T guards. The complete bound then
comes from Remark 6.2.

6.3.3.2 Proof of Soundness

We show that, if a set of literals G has a model in the axiomatization without triggers and
witnesses then there is a total model of G and the axiomatization. If I is a model of a set
of literals G in the axiomatization without triggers and witnesses, we define L = {l | I(l) =
�}. By construction of L, L is a total model of G. Since L is total, for every axiom ϕ of the
axiomatization, L�T ϕ .

109

Chapter 6. Vectors of SPARK 2014 6.3. A Decision Procedure for Formal Vectors

6.3.3.3 Proof of Completeness

We first need a lemma that states that equalities between integers can safely be added to partial
models of the axiomatization:

Lemma 6.1. If the axiomatization is true in a world L, t1, t2 ∈ T (L) have type integer and
L �T t1 �≈ t2 then the axiomatization is also true in L∪ t1 ≈ t2.

Proof. The proof is the same proof we did for Lemma 2.4

Let G be a set of literals and L a world in which G and the axiomatization are true. We
construct a model from L in the axiomatization without triggers and witnesses. Since L�T G, it
is also a model of G.

Since L is T -satisfiable, let IT be a model of L. No integer constant appears in a trigger of
the axiomatization. As a consequence, the axiomatization is true in L∪{i ≈ i | i is an integer
constant}. For every term t ∈ T (L) of the form length(co), to_index(cu), or capacity(co), we
add t ≈ IT (t) to L. By Lemma 6.1, the axiomatization is still true in L.

For every term co of type vector in L, if length(co) (resp. capacity(co)) is not in T (L)
modulo T , we add length(co) ≈ 0 (reps. capacity(co) ≈ 0 to L). This amounts to deciding
that vectors that are not forced to be non-empty are empty. The axiomatization is still true in L.
Indeed, the axiom LENGTH_RANGE creates a term capacity(co) for each term length(co) in L
and TO_INDEX_TO_CURSOR creates a term length(co) for each term to_cursor(co, i) that is
not no_element. In the same way, for each term cu of type cursor in L, if to_index(cu) is not in
T (L) we can add to_index(cu)≈ 0 to L.

We now need to associate a cursor to every position of every non-empty vector. For this, like
for doubly-linked lists, we consider zones of vectors. For vectors it is simpler since cursors are
not preserved when elements are shifted. We define a zone of a term co of type vector in L to be a
pair of a vector and an index (co, i), with i in index_type__zero..length(co)+ index_type__zero.

For every zone z of a vector, we define the equivalence class of z, written eq(z), to be the
set of the zones that are bound to contain the same cursors as z by literals in L. For every
(co, i) ∈ eq(z):

L �T insert(co1, j,co2,co)≈ t and L �T index_type__zero< i< j → (co1, i) ∈ eq(z)

L �T insert(co, j,co2,r)≈ t and L �T index_type__zero< i< j → (r, i) ∈ eq(z)

L �T delete(co1, j, l,co)≈ t and L �T index_type__zero< i< j → (co1, i) ∈ eq(z)

L �T delete(co, j, l,r)≈ t and L �T index_type__zero< i< j → (r, i) ∈ eq(z)

L �T delete_end(co1, j,co)≈ t and L �T index_type__zero< i< j→ (co1, i) ∈ eq(z)

L �T delete_end(co, j,r)≈ t and L �T index_type__zero< i< j → (r, i) ∈ eq(z)

L �T replace_element(co1, j,e,co)≈ t → (co1, i) ∈ eq(z)

L �T replace_element(co, j,e,r)≈ t → (r, i) ∈ eq(z)

L �T swap(co1, i1, i2,co)≈ t → (co1, i) ∈ eq(z)

L �T swap(co, i1, i2,r)≈ t → (r, i) ∈ eq(z)

L �T equal_vectors(co1,co)≈ t → (co1, i) ∈ eq(z)

L �T equal_vectors(co,r)≈ t → (r, i) ∈ eq(z)

110

Chapter 6. Vectors of SPARK 2014 6.4. Benchmarks

It is straightforward to check that, if to_cursor(co, i) is not known in L then, for every pair
(co�, i) ∈ eq(co, i), the term to_cursor(co�, i�) is not known in L. If, for a vector co and an index
index_type__zero< i≤ length(co)+ index_type__zero, the term to_cursor(co, i) is not known
in L, for each zone (co�, i) ∈ eq(co, i), we add the literals to_cursor(co, i) ≈ to_cursor(co�, i),
has_element(co�, to_cursor(co�, i)) ≈ t, and to_index(to_cursor(co, i)) ≈ i to L. This cannot
introduce an inconsistency since to_cursor(co�, i), and thus has_element(co�, to_cursor(co�, i)),
are not known in L. What is more, a quick survey of the axiomatization shows that the ax-
iomatization is still true in L. After this step, there is a cursor per index in every vector in L,
and the value of next, previous, first, and last can be set without introducing new terms nor
contradictions.

Let us now consider the elements contained by the vector. Let e be a fresh term of type
element. We map element(co,cu) to e for any term co of type vector and any term cu of type
cursor in L such that element(co,cu) is not in L modulo T . Each axiom with element(co,cu) as
a trigger either deduces an equality or an equivalence between new terms, or a non-equivalence
between a known term and a new term. As a consequence, the axiomatization is still true in
L.

6.4 Benchmarks

We have written solutions in SPARK 2014 for problems given in the verification competition
held at the VSTTE conference (Verified Software: Theories, Tools, and Experiments)1. We try
our mechanism on some of these solutions involving vectors:

• a two-way sorting algorithm for vectors of Booleans from VSTTE 2012. It is implemented
using swap. Our implementation only solves partially the problem as its postcondition
only states that the result of the function is sorted, not that it is a permutation of the input
vector.

• an implementation that solves the n queens problem from VSTTE 2010 using a vector.
The vector stores the positions of the queens on the board. We show both that, if a solution
is found then it is indeed a solution and that, if no solution is found then there is no
solution. This last property is expressed using an additional, unspecified vector argument
to the procedure to model universal quantification over vectors.

• a ring buffer implementation in a vector of fixed size, from VSTTE 2012. This imple-
mentation is specified thanks to a model of the content of the ring buffer represented as a
vector.

• a functional amortized queue implementation made of two vectors, from VSTTE 2010.
The elements are dequeued at the end of the first vector and enqueued at the end of the
second. If the second part becomes bigger than the first, then its elements are reversed and
inserted at the beginning of the first vector. This implementation is also specified thanks
to a model of the content of the queue represented as a vector.

1http://vscomp.org/

111

Chapter 6. Vectors of SPARK 2014 6.5. Conclusion

The SPARK 2014 code for these examples is given in Appendix C.2.

6.4.1 Assessment of the Adequacy Between our Framework andUsual E-Matching

Techniques

In Figure 6.1, we compare the results of the tests with and without the manually written triggers
using both Alt-Ergo 0.95, CVC4 1.2, and Z3 3.2. The results are heterogeneous. First, we can
see that, without the triggers, we are more incomplete. Alt-Ergo returns Unknown on several
tests. Some tests take a lot more time to complete without the triggers, like the postcondition of
the function returning the model of an amortized queue. We can also see that, in some cases, for
example the postconditions of the Push function on ring buffers, Alt-Ergo does better without
the triggers. It can be that it has less things to do because it is incomplete.

6.4.2 Comparison Between our Implementation and the Built-in Quantifiers Han-

dling of Alt-Ergo

As in Section 4.2, we have two versions of our axiomatization of bounded vectors, one with
separated and one with grouped axioms.

The theory mechanism is useful in particular when the vector API is used a lot. It is the case
for the ring buffer and the amortized queue. We can see this speedup in the postcondition of
the function returning the model of the structure in particular. For the postcondition of the API
function, this is less obvious since the results are polluted by the fact that the definition of the
function returning the model is always handled outside the theory.

There are always a great deal of axioms with quantifiers that do not belong to the theory
when verifying a SPARK program. Still, if these axioms do not break termination, which is the
case for the definition of the two model functions, they can be included in the theory. For the
last two axiomatizations, we redo the tests by adding a new axiom, specific to the use case, to
describe how to get a model for the content of the structure.

As we see in Figure 6.3, this new axiom is helpful both for Alt-Ergo and Alt-Ergo�. Indeed,
the manually added triggers are also useful for the general quantifier handling of Alt-Ergo. Still,
it appears that eager instantiation gives better results. Indeed, the proofs of the postconditions of
the API function now mostly use axioms from the theory.

6.5 Conclusion

Although eager instantiation results in a significant speedup for verification conditions requiring
a lot of theory reasoning, results are overall less impressive than for the BWare verification
conditions. Indeed, verification conditions coming from the verification of our SPARK 2014
programs involve a lot of first-order axioms that are not part of the theory, coming from the
translation of integer ranges like in Section 6.1 for example, and require relatively little vector
specific reasoning.

112

Alt-Ergo Z3 3.2 CVC4 1.2
With Triggers Yes No Yes No Yes No

two way sort:

loop-invariant 4.50 3.63 0.04 0.05 MO MO
postcondition 54.06 72.33 UK UK MO MO
n queens:

loop-invariant in Copy_Until 0.29 UK 0.03 0.03 TO TO
loop-invariant in Add_Next 0.32 UK 0.21 0.20 TO TO
Try_Row loop-invariant 2.13 1.79 0.03 0.03 TO TO
1st call to Add_Next in Try_Row 4.22 3.72 0.03 0.03 TO TO
2nd call to Add_Next in Try_Row 107.33 108.67 0.03 0.03 TO TO
call to Copy_Until in Try_Row 0.02 0.02 0.03 0.03 0.41 TO
post of Add_Next 6.37 7.52 0.04 0.03 0.92 0.92
post of Copy_Until 0.37 UK 1.13 1.12 TO TO
post of Try_Row 18.24 18.30 0.03 0.03 TO TO
ring buffer:

call to Append in Model 545.06 72.08 0.03 0.04 0.23 0.56
post of Model TO MO 0.04 0.04 MO TO
post of Push 762.44 364.29 0.03 0.05 TO TO
call to Is_Model in post of Push 0.04 0.11 0.03 0.03 0.69 TO
call to & in post of Push 0.06 202.72 0.03 0.03 0.50 0.75
post of Pop 6.18 4.66 0.23 0.48 TO TO
amortized queue:

call to & in Model 0.11 0.35 0.03 0.03 0.37 TO
call to Insert in Tail 1.71 3.71 0.04 0.04 0.60 TO
discr check in Tail 2.55 3.42 0.04 0.04 0.64 0.64
call to Append in Enqueue 0.20 0.11 0.03 0.03 0.49 TO
call to Insert in Enqueue 2.20 4.29 0.03 0.03 0.55 TO
discr check in Enqueue 1.05 4.72 0.03 0.03 0.57 0.56
post of Model 5.97 1664.58 0.04 0.10 TO TO
post of Is_Model 0.06 0.06 0.03 0.03 TO TO
post of Tail 865.03 TO 3.56 381.35 error error
call to & in post of Tail 1.06 4.77 0.04 0.04 0.24 336.56
post of Enqueue 2083.67 TO 2.04 40.32 error error
call to & in post of Enqueue 0.18 0.88 0.03 0.03 MO MO

Figure 6.1: Time (in seconds) needed to solve all the tests with Alt-Ergo, Z3 3.2, and CVC4 1.2
with a timeout of 3600s with and without the triggers. TO stands for timeout, UK for unknown
and MO for out of memory.

Separated Axioms Grouped Axioms
Alt-Ergo� Alt-Ergo Alt-Ergo� Alt-Ergo

two way sort:

loop-invariant 1.44 4.50 1.44 6.58
postcondition 125.77 54.06 25.34 85.26
n queens:

loop-invariant in Add_Next 1.95 0.90 1.27 2.66
loop-invariant in Try_Row 1.06 2.13 1.24 1.89
1st call to Add_Next in Try_Row 10.30 4.22 10.30 4.89
2nd call to Add_Next in Try_Row 53.01 107.33 53.11 128.15
post of Add_Next 7.40 6.37 7.36 7.42
post of Copy_Until 0.94 0.37 0.89 1.47
post of Try_Row 7.02 18.24 7.02 18.32
ring buffer:

call to Append in Model 2.26 545.06 2.27 7.09
post of Model 1090.18 TO 713.06 820.12
post of Push 1047.97 762.44 TO 716.32

post of Pop 342.23 6.18 23.56 16.40
amortized queue:

Range check in Is_Model 0.23 5.28 0.21 5.27
call to Insert in Tail 1.04 1.71 1.02 1.84
discr check in Tail 1.50 2.55 2.14 2.37
call to Insert in Enqueue 0.60 2.20 0.59 2.32
discr check in Enqueue 1.61 1.05 1.62 1.10

post of Model 0.49 5.97 0.44 26.94
post of Tail 201.28 865.03 200.23 3033.20
call to & in post of Tail 1.36 1.06 1.43 1.01

post of Enqueue 2801.83 2083.67 97.68 TO
call to & in post of Enqueue 1.57 0.18 1.57 0.16

Figure 6.2: Time (in seconds) needed to solve all tests with Alt-Ergo with a timeout of
3600s giving the first-order axiomatization directly and Alt-Ergo through the theory mecha-
nism (named Alt-Ergo�). Here we only list the verification conditions that are not immediately
discharged by both provers.

Separated Axioms Grouped Axioms
Alt-Ergo� Alt-Ergo Alt-Ergo� Alt-Ergo

ring buffer:

call to Append in Model 2.32 645.49 2.32 7.11
post of Model 848.04 TO 540.92 836.25
post of Push 6.55 1299.29 8.66 1437.05
post of Pop 5.18 3.14 6.50 8.64
amortized queue:

call to Insert in Tail 1.03 1.68 1.02 1.84
discr check in Tail 1.50 2.20 1.46 2.35
call to Insert in Enqueue 0.58 2.21 0.57 2.30
discr check in Enqueue 1.58 2.21 1.58 1.12
post of Model 0.27 8.47 0.24 42.86
post of Tail 160.03 226.44 132.02 674.79
call to & in post of Tail 0.34 0.97 0.33 0.89

post of Enqueue 95.64 217.53 110.67 1321.88
call to & in post of Enqueue 0.49 0.16 0.49 0.15

Figure 6.3: Time (in seconds) needed to solve the two last tests with Alt-Ergo with a timeout of
3600s giving the first-order axiomatization directly and Alt-Ergo through the theory mechanism
(named Alt-Ergo�) using an additional, test specific axiom. Here we only list the verification
conditions that are not immediately discharged by both provers.

7 Conclusion

7.1 Summary of the Contributions

We have introduced a semantics for first-order logic with triggers and witnesses. Thanks to this
semantics, we have defined three properties of soundness, completeness, and termination for
first-order axiomatizations with triggers. We have then presented two implementations of SMT
solvers that accept a first-order axiomatization of a theory T � and yield a decision procedure for
T � if the axiomatization is sound, complete, and terminating in our framework. The first one
uses a ground SMT solver as a black box (implemented in practice using Z3). Though the for-
malization is rather simple, it appears to be unpractical as it requires too costly communications
with the underlying solver. The second implementation is formalized using an extension of the
abstract DPLL(T) framework and is integrated into the SMT solver Alt-Ergo’s main algorithm.
Since we have demonstrated that, in this formalization, quantifier handling terminates for a ter-
minating axiomatization, we have designed our implementation to instantiate eagerly quantifiers
coming from the axiomatization of the theory, that is, create new instances as soon as they be-
come possible, without waiting for all the literals to be assigned in the current truth assignment
of DPLL(T).

We have tested the white-box implementation on several case studies: hand-written Why3
programs using a theory for imperative doubly-linked lists with iterators, large benchmarks us-
ing a theory of sets coming from the verification of B programs, and SPARK programs inspired
from the VSTTE competition using a library for bounded vectors. We have compared our im-
plementation with the built-in quantifier handling of Alt-Ergo, which treats quantifiers lazily. As
a result, it seems that eager instantiation can be really efficient when a lot of theory reasoning is
needed. On the other hand, when the axiomatization of the theory is big, this eager instantiation
becomes costly. It is all the more noticeable when the tests require a lot of instances of axioms
outside the theory and relatively few theory reasoning, which is the case for our programs using
SPARK vectors.

Since in off-the-shelf SMT solvers, triggers are a mere heuristic, they don’t have a proper
semantics and users are sometimes at a loss to find the proper triggers for their axiomatizations.
We have compared the behavior of off-the-shelf SMT solvers that handle quantifiers on the ax-
iomatizations used in our case studies with and without manually supplied triggers. The results
show that our semantics can indeed help in the choice of these triggers. In particular, it can help
understanding why an axiom may slow down a prover by inducing too many instances and what
are the triggers that should be used to prevent this explosion. Still, it is not in general worthwhile

117

Chapter 7. Conclusion 7.2. Related Work

to achieve completeness or termination of axiomatizations in this context as most SMT solvers
use other instantiation heuristics than triggers.

7.2 Related Work

Instantiation with Triggers: Triggers are a commonly used heuristic in SMT solvers that
handle quantifiers. User manuals of such solvers usually explain how they should be used to
achieve the best performance. Triggers can be automatically computed by the solvers but it is
commonly agreed that user guidance is useful in this domain [56]. We believe that our formal-
ization along with the methods and advice in Section 2.3 give valuable guidance for this choice.
A lot of work has also been done on defining an efficient mechanism for finding the instances
allowed by a trigger. These techniques, called E-matching, are described for Simplify [34, 58],
Z3 [29], and CVC3 [38].

Triggers can also be used in semi-complete first-order ATPs to guide the proof search and
improve the prover’s efficiency. For example, the Princess [66] prover that combines a complete
calculus for first-order logic with a decision procedure for linear arithmetic can use triggers.

Other generic techniques for quantifier handling in SMT solvers: Model-based quantifier
instantiation [39] is an other heuristics for generating instances. This instantiation mechanism
generates new instances when the solver is about to return Sat, that is, when it has computed
a candidate model. A candidate model is not always a model when the solver is not in its
domain of completeness. It is the case in particular when quantifiers are involved. Model-
based instantiation does not in general increase the solver’s performance. On the other hand,
it increases its accuracy since it allows to continue the search when otherwise the solver would
have stopped with only a partial model. It goes through the candidate modelM and searches for
an instance that is not already implied by M. If one such instance is found, the search goes on.

A saturation process, close to the superposition calculus, has also been integrated into ab-
stract DPLL(T) by de Moura and Bjørner [30]. The idea is to add elements to the set of clauses
that are handled by DPLL by using the superposition calculus. If superposition steps use the
current partial assignment of DPLL, the inferred clauses must be prefixed by a guard so that
they can be reversed when the current partial assignment is backtracked.

Specialized complete instantiation techniques: In SMT solvers, the idea that a set of first-
order formulas can be saturated with a finite set of ground instances has been explored previ-
ously.

For example, decision procedures for universally quantified properties of functional pro-
grams can be designed using local model reasoning [44]. This property states that, for every
input problem, it is enough to instantiate universal quantifiers with terms from the problem. Like
us, they work modulo an existing background theory and, like us, proofs of locality of axioma-
tizations are not in general automatic. They also describe some restricted forms of universally
quantified formulas for which locality is automatic.

In the same way, Ge and de Moura [39] describe fragments of first-order logic for which one
can automatically compute a finite set of ground instances that are enough to ensure complete-

118

Chapter 7. Conclusion 7.2. Related Work

ness. Like for [44], the automation of the termination checks are at the expense of the range of
application of these fragments which is much smaller than what we propose in our framework.

McPeak et al. also designed a procedure to decide a particular form of first-order formu-
las [55]. It is dedicated to descriptions of shape properties of data structures, involving pointers
and predicates on scalar fields. This procedure is always terminating but is only complete for
a more restricted form of formulas. Outside this restriction, they do not provide ways to check
that a particular axiomatization is complete.

Our work is in this respect closer to the work done on the axioms for the theory of arrays.
For this theory, a specialized instantiation technique achieves both termination and complete-
ness [17, 32]. The idea is to treat operations over arrays as uninterpreted functions but to supply
additional information about them, that is, instances of array axioms, at appropriate times. In a
more general way, some SMT solvers accept sets of rewriting rules as input. Such a set of rules
can also produce a decision procedure in specific cases [45].

Instantiation-based theorem prover such as I-prover [46] are semi-complete procedures for
first-order logic based on instantiation [47]. To choose appropriate instances, they use a heuristic
based on models. A ground solver is launched on the set of ground facts contains in the input
problem. If a model is found, they use it to generate instances of universally quantified formulas
from the problem that contradict this model. Unlike in our framework, no specific proof is
required to insure the completeness of this procedure. On the other hand, this procedure only
works modulo theories for which there is an “answer-complete” ground solver, that is, a solver
able to find a most general substitution for ground instances of a set of literals with free variables
to be unsatisfiable [37]. For example, there can be no answer-complete solver for arithmetics.

Demonstrating that a solver always terminates on a given first-order axiomatization of a the-
ory in order to obtain a decision procedure has been done by Armando et al. on a paramodulation-
based procedure [2]. In this work, the termination of the superposition calculus on the conjunc-
tion of the axiomatization and any input problem was demonstrated manually.

Lynch et al. then extended this work by introducing automatic procedures for deciding the
termination [53, 54]. In particular, Schematic Saturation is used to over-approximate the in-
ferences that paramodulation can generate while solving the satisfiability problem for a certain
theory. As opposed to our work, they do not reason modulo a background theory. To allow
combination with other decision procedures in a Nelson-Oppen framework, they explain how
schematic saturation can also be used to check stably-infiniteness and complete deduction in
some cases.

Other ways of integrating decision procedures in an SMT solver: Apart from first-order
axiomatizations, there are several ways that can be attempted to add a new decision procedure
into a SMT solver. Nikolaj Bjørner describes how several non-native theories where successfully
supported using the SMT solver Z3 [12]. A rather usual way to support a new theory is to
encode it in an already supported domain. This paper also presents an API that can be used
to add decision procedure to Z3 using callbacks. Both systems require a lot of thinking to get
an efficient design as well as manual proofs of completeness and termination, exactly like our
axiomatization framework. We believe that each of these different techniques can be better
suited than the others to specific theories.

119

Chapter 7. Conclusion 7.3. Perspectives

7.3 Perspectives

Try our Framework on Other Classical Theories: A lot of different theories have been
axiomatized in first-order logic to alleviate the lack of a specific decision procedure. It is the
case for example of algebraic data-types and monoïds. It would be interesting to see if it can be
decided using our approach.

Use Literals as Triggers: As discussed in Section 4.3, in our white-box implementation in
Alt-Ergo (like in most SMT solvers) we only handle terms as triggers. It would be worthwhile
to support literal triggers, as described in our theoretical framework, in particular to handle
extensionality axioms.

Automatic Checking for Completeness and Termination: In Section 2.3, we have presented
two automatable techniques for checking termination and completeness of an axiomatization
with triggers. It would be interesting to implement them and to improve their range of ap-
plication, as we believe they would be a valuable help for developers of new axiomatizations.
Such an implementation could also be used to check triggers automatically computed by SMT
solvers as part of the E-matching heuristic or even to automatically compute triggers for a given
axiomatization.

Automatic Generation of Complete Triggers: E-matching, that is, instantiation with triggers
is the most popular heuristic to handle first-order logic in SMT solvers. The manual annotation
of every universal quantifier with triggers is not usually required though. These solvers rather
use heuristics to automatically choose triggers for quantified formula. One of the most com-
mon heuristic consists in choosing one or several terms from the formula. We could use our
framework to characterize formulas for which a specific heuristic for choosing triggers always
succeeds in yielding a complete axiomatization.

Learn Conflict Clauses in DPLL�(T): The DPLL� framework described in Chapter 4 does
not allow learning of conflict clauses. As the ability to keep clauses that have lead to previous
conflicts is one of the keys for efficiency of modern SAT and SMT solvers, we would like to
extend our framework to allow it. In particular, as we notice in Remark 4.3, that would require
extending our logic of guarded clauses to allow negations of closures in theory clauses.

Adapt Triggers to Reasoning Modulo Theory: In our framework, to instantiate a formula
protected by a trigger l, we need l to be true and all its subterms to be known. When l contains
interpreted subterms, in particular integer constants or operations, this may not be the appropriate
behavior. For example, if l is x > 0, we may not want to ask for 0 to be known for l to be
unfolded. To improve our semantics, we could group some interpreted subterms together and
not require the presence of interpreted subterms of interpreted terms of l.

120

Chapter 7. Conclusion 7.3. Perspectives

Combine Axiomatized Theories: In the longer term, we would like to investigate the com-
bination of several theories defined as first-order axiomatizations. Indeed, if we want to add
several theories using our framework, then we cannot do the proofs of completeness and termi-
nation modularly. In particular, we will need to determine which requirements are needed to
preserve completeness and termination of axiomatizations. In a first approximation, we expect
that a combination of two terminating axiomatizationsW1 andW2 is terminating whenever trig-
gers fromW2 only contain uninterpreted function symbols that do not appear inW1. In the same
way, we expect that the combination of two complete axiomatizationsW1 andW2 is complete if
W2 can only deduce equalities between terms whose head symbol does not appear inW1. More
fine-grain combinations would require more thought.

Use Triggers in Other Automatic Theorem Provers: We could reuse our mechanism for
triggers in other solvers than SMT. We could for example extend resolution and paramodulation
with triggers to restrict the search space. An idea could be to consider triggers as guards and to
only allow resolution and paramodulation inside the clause if all the guards have been removed.
In other words, we would have to paramodulate away guards before accessing the content of a
clause. We could try to prove that this restriction preserves semi-completeness on a complete
axiomatization following Definition 2.7.

Consider Theories not Efficiently Axiomatized: There are theories on which our approach
cannot be used as they have no practical first-order axiomatization with triggers. First, too many
instances may be required to ensure completeness. It is the case for example of the interval(i, j)
function of the theory of sets that returns the set containing every integer between i and j. To
be complete, we need to produce mem(k, interval(i, j)) ≈ t for every integer k between i and
j. Then, for some theories, there can be no efficient decision procedure based on instantiation,
like for linear arithmetics. Finally, in some cases, triggers are not good hints to restrict instantia-
tion of a formula. For example, in axioms for associativity and commutativity, the only triggers
that ensure completeness are those that allow every equivalent form of an expression to be de-
duced. Efficient approaches for handling these axioms are based on normalization of terms via
flattening [23].

Improve Provability in the SPARK 2014 Tool: Our theory mechanism is not included in
the SPARK 2014 tool for now. Indeed, as we have seen in Chapter 6, it is rarely the case that
the verification of a SPARK 2014 program heavily relies on data-structure reasoning. Even
when a program requires several updates to a structure, they are generally done using a loop
and therefore only one update at a time is seen by the tool. Still, a user may benefit from our
mechanism to discharge only the verification conditions requiring a lot of theory reasoning, as
an alternative solver. We could also experiment on other theories to see if we have a better gain.

Unless explicitly specified otherwise, the SMT solver Alt-Ergo is the only solver used in the
SPARK 2014 tool. While using the tool we have witnessed several bottlenecks. First, linear
arithmetics in Alt-Ergo is handled by a Fourier-Motzkin based approach which is significantly
less efficient when there are a lot of inequalities in the problem. As Ada programs generally
use lots of specific integer types with a precise range, the SPARK 2014 tool often runs into this

121

Chapter 7. Conclusion 7.3. Perspectives

problem. Not surprisingly, the other big issue is quantifiers. Indeed, even verification condi-
tions coming from a simple SPARK 2014 program like the Max_Array function introduced in
Section 1.1.1 include more than one hundred universal quantifiers (170 for the postcondition of
Max_Array).

122

Bibliography

[1] W. Ahrendt, T. Baar, B. Beckert, M. Giese, E. Habermalz, R. Hähnle, W. Menzel,
W. Mostowski, and P. H. Schmitt. The KeY system: Integrating object-oriented design
and formal methods. In Fundamental Approaches to Software Engineering, pages 327–
330. Springer, 2002.

[2] A. Armando, S. Ranise, and M. Rusinowitch. A rewriting approach to satisfiability proce-
dures. Information and Computation, 183(2):140 – 164, 2003. 12th International Confer-
ence on Rewriting Techniques and Applications (RTA 2001).

[3] M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and A. Thums. Formal system development
with KIV. In Fundamental approaches to software engineering, pages 363–366. Springer,
2000.

[4] R. Bardou. Verification of Pointer Programs Using Regions and Permissions. Phd thesis,
Université Paris-Sud, 2011.

[5] J. Barnes. Rationale for Ada 2012: 1 contracts and aspects. ADA USER, 32(4):247, 2011.

[6] J. Barnes. SPARK: The Proven Approach to High Integrity Software. Altran Praxis, 2012.

[7] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An
overview. In Construction and analysis of safe, secure, and interoperable smart devices,
pages 49–69. Springer, 2005.

[8] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A. Reynolds,
and C. Tinelli. CVC4. In G. Gopalakrishnan and S. Qadeer, editors, Computer Aided
Verification, volume 6806 of Lecture Notes in Computer Science, pages 171–177. Springer
Berlin Heidelberg, 2011.

[9] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo theories. Hand-
book of satisfiability, 185:825–885, 2009.

[10] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB standard version 2.0. Technical report,
University of Iowa, december 2010.

[11] P. Behm, P. Benoit, A. Faivre, and J.-M. Meynadier. METEOR: A successful application
of B in a large project. In FM’99—Formal Methods, pages 369–387. Springer, 1999.

123

Bibliography Bibliography

[12] N. Bjørner. Engineering theories with Z3. Programming Languages and Systems, pages
4–16, 2011.

[13] N. Bjørner, A. Browne, and Z. Manna. Automatic generation of invariants and intermediate
assertions. Theoretical Computer Science, 173(1):49–87, 1997.

[14] F. Bobot, S. Conchon, E. Contejean, and S. Lescuyer. Implementing polymorphism in
SMT solvers. In SMT’08, volume 367 of ACM ICPS, pages 1–5. ACM, 2008.

[15] F. Bobot, J.-C. Filliâtre, C. Marché, A. Paskevich, et al. Why3: Shepherd your herd of
provers. In Boogie 2011: First International Workshop on Intermediate Verification Lan-
guages, pages 53–64, 2011.

[16] T. Bouton, D. C. B. De Oliveira, D. Déharbe, and P. Fontaine. veriT: an open, trustable
and efficient SMT-solver. In Automated Deduction–CADE-22, pages 151–156. Springer,
2009.

[17] A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about arrays? In Verification,
Model Checking, and Abstract Interpretation, pages 427–442. Springer, 2006.

[18] D. Cansell and D. Méry. Foundations of the B method. Computing and informatics, 22(3-
4):221–256, 2012.

[19] S. Chatterjee, S. K. Lahiri, S. Qadeer, and Z. Rakamarić. A low-level memory model
and an accompanying reachability predicate. International journal on software tools for
technology transfer, 11(2):105–116, 2009.

[20] E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT press, 1999.

[21] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen, W. Schulte,
and S. Tobies. VCC: A practical system for verifying concurrent C. In Theorem Proving

in Higher Order Logics, pages 23–42. Springer, 2009.

[22] D. R. Cok and J. R. Kiniry. Esc/Java2: Uniting Esc/Java and JML. In Construction and
Analysis of Safe, Secure, and Interoperable Smart Devices, pages 108–128. Springer, 2005.

[23] S. Conchon, E. Contejean, and M. Iguernelala. Canonized rewriting and ground AC com-
pletion modulo Shostak theories. In Tools and Algorithms for the Construction and Anal-
ysis of Systems, pages 45–59. Springer, 2011.

[24] S. Conchon, E. Contejean, J. Kanig, and S. Lescuyer. Cc(x): Semantic combination of con-
gruence closure with solvable theories. Electronic Notes in Theoretical Computer Science,
198(2):51–69, May 2008.

[25] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Proceedings of the 4th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, pages 238–252.
ACM, 1977.

124

Bibliography Bibliography

[26] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski. Frama-C.
In Software Engineering and Formal Methods, pages 233–247. Springer, 2012.

[27] D. Cyrluk, P. Lincoln, and N. Shankar. On Shostak’s decision procedure for combinations
of theories. In Automated Deduction—CADE-13, pages 463–477. Springer, 1996.

[28] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving.
Communications of the ACM, 5(7):394–397, 1962.

[29] L. de Moura and N. Bjørner. Efficient E-matching for SMT solvers. In CADE-21, volume
4603 of LNCS, pages 183–198. Springer, 2007.

[30] L. de Moura and N. Bjørner. Engineering DPLL(T) + saturation. In IJCAR 2008, volume
5195 of LNCS, pages 475–490. Springer, 2008.

[31] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, volume 4963 of
LNCS, pages 337–340. Springer, 2008.

[32] L. de Moura and N. Bjørner. Generalized, efficient array decision procedures. In Formal
Methods in Computer-Aided Design, 2009. FMCAD 2009, pages 45–52. IEEE, 2009.

[33] L. de Moura and N. Bjørner. Satisfiability modulo theories: An appetizer. In Formal
Methods: Foundations and Applications, pages 23–36. Springer, 2009.

[34] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program checking.
J. ACM, 52(3):365–473, 2005.

[35] E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.
Communications of the ACM, 18(8):453–457, 1975.

[36] C. Dross, J.-C. Filliâtre, and Y. Moy. Correct code containing containers. In Proceedings
of the 5th international conference on Tests and proofs, TAP’11, pages 102–118. Springer-
Verlag, 2011.

[37] H. Ganzinger and K. Korovin. Theory instantiation. In Logic for Programming, Artificial
Intelligence, and Reasoning, pages 497–511. Springer, 2006.

[38] Y. Ge, C. Barrett, and C. Tinelli. Solving quantified verification conditions using satisfi-
ability modulo theories. In CADE-21, volume 4603 of LNCS, pages 167–182. Springer,
2007.

[39] Y. Ge and L. De Moura. Complete instantiation for quantified formulas in satisfiabiliby
modulo theories. In Computer Aided Verification, volume 5643 of LNCS, pages 306–320.
Springer, 2009.

[40] A. Goel, S. Krstić, and A. Fuchs. Deciding array formulas with frugal axiom instantiation.
In Proceedings of the Joint Workshops of the 6th International Workshop on Satisfiability
Modulo Theories and 1st International Workshop on Bit-Precise Reasoning, ACM ICPS,
pages 12–17. ACM, 2008.

125

Bibliography Bibliography

[41] N. Halbwachs and M. Péron. Discovering properties about arrays in simple programs. In
ACM SIGPLAN Notices, volume 43, pages 339–348. ACM, 2008.

[42] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the
ACM, 12(10):576–580, 1969.

[43] B. Jacobs and F. Piessens. The VeriFast program verifier. CW Reports, 2008.

[44] S. Jacobs and V. Kuncak. Towards complete reasoning about axiomatic specifications. In
Proceedings of VMCAI-12, volume 6538 of LNCS, pages 278–293. Springer, 2011.

[45] D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In Automation
of Reasoning, pages 342–376. Springer, 1983.

[46] K. Korovin. iProver–an instantiation-based theorem prover for first-order logic (system
description). In Automated Reasoning, pages 292–298. Springer, 2008.

[47] K. Korovin. An invitation to instantiation-based reasoning: From theory to practice. Vol-
ume in memoriam of Harald Ganzinger, Lecture Notes in Computer Science. Springer,
2009.

[48] L. Kovács and A. Voronkov. Finding loop invariants for programs over arrays using a
theorem prover. In Fundamental Approaches to Software Engineering, pages 470–485.
Springer, 2009.

[49] D. Larraz, E. Rodríguez-Carbonell, and A. Rubio. SMT-based array invariant generation.
In R. Giacobazzi, J. Berdine, and I. Mastroeni, editors, VMCAI, volume 7737 of Lecture
Notes in Computer Science, pages 169–188. Springer, 2013.

[50] K. R. M. Leino. Efficient weakest preconditions. Inf. Process. Lett., 93(6):281–288, 2005.

[51] K. R. M. Leino. This is Boogie 2. Manuscript KRML, 178, 2008.

[52] K. R. M. Leino. Dafny: An automatic program verifier for functional correctness. In Logic
for Programming, Artificial Intelligence, and Reasoning, pages 348–370. Springer, 2010.

[53] C. Lynch and B. Morawska. Automatic decidability. In Logic in Computer Science, 2002.
Proceedings. 17th Annual IEEE Symposium on, pages 7–16. IEEE, 2002.

[54] C. Lynch, S. Ranise, C. Ringeissen, and D.-K. Tran. Automatic decidability and combin-
ability. volume 209, pages 1026–1047. Elsevier, 2011.

[55] S. McPeak and G. C. Necula. Data structure specifications via local equality axioms. In
Computer Aided Verification, pages 476–490. Springer, 2005.

[56] M. Moskal. Programming with triggers. In Proceedings of the 7th International Workshop
on Satisfiability Modulo Theories, ACM ICPS, pages 20–29. ACM, 2009.

[57] Y. Moy and C. Marché. Modular inference of subprogram contracts for safety checking.
Journal of Symbolic Computation, 45:1184–1211, 2010.

126

Bibliography Bibliography

[58] G. Nelson. Techniques for program verification. Technical Report CSL81-10, Xerox Palo
Alto Research Center, 1981.

[59] G. Nelson. A generalization of Dijkstra’s calculus. ACM Transactions on Programming

Languages and Systems (TOPLAS), 11(4):517–561, 1989.

[60] G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. ACM

Transactions on Programming Languages and Systems (TOPLAS), 1(2):245–257, 1979.

[61] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT modulo theories:
From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). Journal of
the ACM, 53(6):937–977, 2006.

[62] I. O’Neill. SPARK – a language and tool-set for high-integrity software development. In
J.-L. Boulanger, editor, Industrial Use of Formal Methods: Formal Verification. Wiley,
2012.

[63] S. Qadeer. Algorithmic verification of systems software using SMT solvers. In J. Pals-
berg and Z. Su, editors, SAS, volume 5673 of Lecture Notes in Computer Science, page 2.
Springer, 2009.

[64] J. C. Reynolds. Separation logic: a logic for shared mutable data structures. 2002.

[65] A. Riazanov and A. Voronkov. Vampire 1.1. In Automated Reasoning, pages 376–380.
Springer, 2001.

[66] P. Rümmer. E-matching with free variables. In Logic for Programming, Artificial Intelli-
gence, and Reasoning: 18th International Conference, LPAR-18, volume 7180 of LNCS,
pages 359–374. Springer, 2012.

[67] S. Schneider. The B-method: An introduction, volume 200. Palgrave Oxford, 2001.

[68] S. Schulz. E – A Brainiac Theorem Prover. Journal of AI Communications, 15(2/3):111–
126, 2002.

[69] R. E. Shostak. Deciding combinations of theories. In 6th Conference on Automated De-
duction, pages 209–222. Springer, 1982.

[70] J. Souyris, V. Wiels, D. Delmas, and H. Delseny. Formal verification of avionics software
products. In FM 2009: Formal Methods, pages 532–546. Springer, 2009.

[71] N. Swamy, J. Weinberger, C. Schlesinger, J. Chen, and B. Livshits. Verifying higher-order
programs with the Dijkstra monad. In H.-J. Boehm and C. Flanagan, editors, PLDI, pages
387–398. ACM, 2013.

[72] A. Tafat. Preuves par raffinement de programmes avec pointeurs. Phd thesis, Université
Paris-Sud, 2013.

[73] C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. Theobald, and D. Topić. Spass
version 2.0. In Automated Deduction—CADE-18, pages 275–279. Springer, 2002.

127

Index

A

Abstract interpretation . 6
Ada 2012 . 2
Alt-Ergo SMT solver . 10
Anti-closure . 59
Automatic theorem prover (ATP)8
Available super-clauses 59

B

B Method . 87
Boogie intermediate language 8
Bounded model checking.6
BWare project . 87

C

Closed formula. .16
Closure. .24
Complete world . 18
Completeness of an axiomatization 21
Conflict clause in DPLL� framework 65
CVC4 SMT solver . 10

D

Dafny programing language 7
Deductive verification . 7
Defined super-literal in DPLL� framework . 63
DPLL algorithm. 9
DPLL� algorithm. .64

E

E-matching . 118
ESC/Java verifier . 7

F

Fair DPLL� derivation 71
Feasibility of a formula with triggers 18

Feasibility of a guarded clause 60
Final truth assignment 24
Frama-C verifier .6

G

Ground term, literal, formula 16
Guard. .46, 59
Guarded clause . 46, 59

H

HAVOC verifier . 6
Hoare logic seeWP calculus

I

Inhabited world . 18
Instantiation level in DPLL� derivations . . . 71
Instantiation pattern see Trigger
Instantiation tree . 24
Iprover automatic theorem prover 8

K

KeY verifier . 7
KIV verifier . 7
Known term modulo T 18

L

Local model reasoning 118

M

Model based quantifier instantiation 118
Model of a formula with triggers 18
Model of a guarded clause 60

N

Nelson-Oppen combination procedure 9

O

Opaque literal . 46

129

Index Index

P

Pseudo-clause . 23
Pseudo-literal . 23

R

Redundant guarded clause 65
Redundant instantiation 24
Relevant closures . 46
Relevant guarded clause 46

S

Satisfiability modulo T 17
Satisfiability modulo theory (SMT) solver . . .8
Satisfiability of a formula with triggers 18
Satisfiability of a guarded clause 60
Simplify SMT solver . 10
Skolemization . 23
Soundness of an axiomatization 21
SPARK 2014 Language 2
SPARK 2014 Tool . 97
SPASS automatic theorem prover 8
Spec# specification language 7
State of DPLL� framework 63
Strong termination of an axiomatization . . . 25
Super-clause . 59
Super-literal . 59

T

Theory clause . 24
Trigger . 10, 17
Truth assignment . 24
Truth value of a formula with triggers 18
Truth value of a guarded clause 59

U

User clause . 58

V

Vampire automatic theorem prover 8
VCC verifier . 6
Verifast verifier . 7
Verification Condition . 7
VeriT SMT solver . 10

W

Weak termination of an axiomatization 25

Weakest Precondition (WP) calculus 7
Why3 intermediate language 8
Witness . 17
World modulo T . 18

Z

Z3 SMT solver . 10

130

Glossary

T (t) set of all the subterms of a term t. 16

L� ϕ the formula with triggers ϕ is true in the world L. 18

�ϕ� is the formula with triggers ϕ where triggers have been replaced with implications and
witnesses with conjunctions. 19

�V� is {lσ | l ·σ ∈V} for any set of theory clause V . 24

L� H →C the guarded formula H →C is true in the world L. 60

�H →C� is the encoding of the guarded formula H →C into a user clause, replacing triggers,
witnesses, and universally quantified formulas with fresh predicate symbols. 46, 60

�M� is M∪{l ·∅ | l ∈ LIT(M)} for any set of super-literals M. 63

F ��
T C the super-clauseC is redundant in the set of super-clauses F , that is, the behavior of the
solver will be the same with and without it.. 61

S ��
T E �S� entails �E�modulo the theory T , for any conjunctive set of super-literals and guarded

clauses S and any super-literal of guarded clause E. 60

Anti-closure the negation of a closure ¬(ϕ ·σ). 59

Closure pair of a pseudo-literal and a substitution ϕ ·σ . 24

Guarded clause a pair H →C of a conjunctive set of closures H and a super-clauseC. 46, 59

Instantiation tree representation of any possible run of the solver using a particular instantia-
tion strategy. 24

Pseudo-clause disjunctive set of pseudo-literals. 23

Pseudo-literal either a literal or a universally quantified formula, a trigger, or a witness over a
pseudo-clause. 23

Super-clause either a user clause or a theory clause. 59

131

Glossary Glossary

Super-literal either a literal, a closure, or an anti-closure. 59

Theory clause disjunctive set of closures. 24

Truth assignment set of further facts that a solver may assume from a set of theory clause using
only propositional reasoning. 24

User clause a disjunctive set of literals. 59

132

A Imperative Doubly-Linked Lists

A.1 Axiomatization

LENGTH_GTE_ZERO:
∀co : list.[length(co)]length(co)≥ 0

IS_EMPTY:
∀co : list.[is_empty(co)]is_empty(co)≈ t↔ length(co)≈ 0

EMPTY_IS_EMPTY:
is_empty(empty)

EQUAL_ELEMENTS_REFL:

∀e : element_type.[equal_elements(e,e)]equal_elements(e,e)≈ t

EQUAL_ELEMENTS_SYM:

∀e1e2 : element_type.[equal_elements(e1,e2)]
equal_elements(e1,e2)≈ equal_elements(e2,e1)

EQUAL_ELEMENTS_TRANS:

∀e1e2e3 : element_type.[equal_elements(e1,e2),equal_elements(e2,e3)]
equal_elements(e1,e2)≈ t→ equal_elements(e2,e3)≈ t→

equal_elements(e1,e3)≈ t

∀e1e2e3 : element_type.[equal_elements(e1,e2),equal_elements(e1,e3)]
equal_elements(e1,e2)≈ t→ equal_elements(e2,e3)≈ t→

equal_elements(e1,e3)≈ t

POSITION_GTE_ZERO:

∀co : list,cu : cursor.[position(co,cu)]
length(co)≥ position(co,cu)∧ position(co,cu)≥ 0

POSITIONNO_ELEMENT:

∀co : list.[position(co,no_element)]position(co,no_element)≈ 0

POSITION_EQ:

∀co : list,cu1cu2 : cursor.[position(co,cu1), position(co,cu2)]
position(co,cu1)> 0→ position(co,cu1)≈ position(co,cu2)→ cu1 ≈ cu2

133

Appendix A. Imperative Doubly-Linked Lists A.1. Axiomatization

PREVIOUS_IN:

∀co : list,cu : cursor.[previous(co,cu)]
(position(co,cu)> 1∨ position(co, previous(co,cu))> 0)→

position(co, previous(co,cu))≈ position(co,cu)−1

PREVIOUS_EXT:

∀co : list,cu : cursor.[previous(co,cu)]
(position(co,cu)≈ 1∨ cu≈ no_element)→ previous(co,cu)≈ no_element

NEXT_IN:

∀co : list,cu : cursor.[next(co,cu)]
(length(co)> position(co,cu)> 0∨ position(co,next(co,cu))> 0)→

position(co,next(co,cu))≈ position(co,cu)+1

NEXT_EXT:

∀co : list,cu : cursor.[next(co,cu)]
(position(co,cu)≈ length(co)∨ cu≈ no_element)→ next(co,cu)≈ no_element

LAST_EMPTY:
∀co : list.[last(co)]length(co)≈ 0↔ last(co)≈ no_element

LAST_GEN:
∀co : list.[last(co)]length(co)≈ position(co, last(co))

FIRST_EMPTY:
∀co : list.[f irst(co)]length(co)≈ 0↔ f irst(co)≈ no_element

FIRST_GEN:
∀co : list.[f irst(co)]length(co)> 0→ position(co, f irst(co))≈ 1

HAS_ELEMENT_DEF:

∀co : list,cu : cursor.[has_element(co,cu)]position(co,cu)> 0↔ has_element(co,cu)≈ t

LEFT_NO_ELEMENT:

∀co : list.[le f t(co,no_element)]le f t(co,no_element)≈ co

LEFT_LENGTH:

∀co : list,cu : cursor.[le f t(co,cu)]
position(co,cu)> 0→ length(le f t(co,cu))≈ position(co,cu)−1

LEFT_POSITION_IN:

∀co : list,cu1cu2 : cursor.[position(le f t(co,cu1),cu2)]
(position(le f t(co,cu1),cu2)> 0∨ position(co,cu2)< position(co,cu1))→

position(le f t(co,cu1),cu2)≈ position(co,cu2)
∀co : list,cu1cu2 : cursor.[le f t(co,cu1), position(co,cu2)]

(position(le f t(co,cu1),cu2)> 0∨ position(co,cu2)< position(co,cu1))→
position(le f t(co,cu1),cu2)≈ position(co,cu2)

134

Appendix A. Imperative Doubly-Linked Lists A.1. Axiomatization

LEFT_POSITION_EXT:

∀co : list,cu1cu2 : cursor.[position(le f t(co,cu1),cu2)]
position(co,cu2)≥ position(co,cu1))> 0→

position(le f t(co,cu1),cu2)≈ 0

LEFT_ELEMENT:

∀co : list,cu1cu2 : cursor.[element(le f t(co,cu1),cu2)]
(position(le f t(co,cu1),cu2)> 0∨0< position(co,cu2)< position(co,cu1))→

element(le f t(co,cu1),cu2)≈ element(co,cu2)
∀co : list,cu1cu2 : cursor.[le f t(co,cu1),element(co,cu2)]

(position(le f t(co,cu1),cu2)> 0∨0< position(co,cu2)< position(co,cu1))→
element(le f t(co,cu1),cu2)≈ element(co,cu2)

RIGHT_NO_ELEMENT:

∀co : list.[right(co,no_element)]right(co,no_element)≈ empty

RIGHT_LENGTH:

∀co : list,cu : cursor.[right(co,cu)]
position(co,cu)> 0→ length(right(co,cu))≈ length(co)− position(co,cu)+1

RIGHT_POSITION_IN:

∀co : list,cu1cu2 : cursor.[position(right(co,cu1),cu2)]
(position(right(co,cu1),cu2)> 0∨0< position(co,cu1)≤ position(co,cu2))→

position(right(co,cu1),cu2)≈ position(co,cu2)− position(co,cu1)+1
∀co : list,cu1cu2 : cursor.[right(co,cu1), position(co,cu2)]

(position(right(co,cu1),cu2)> 0∨0< position(co,cu1)≤ position(co,cu2))→
position(right(co,cu1),cu2)≈ position(co,cu2)− position(co,cu1)+1

RIGHT_POSITION_EXT:

∀co : list,cu1cu2 : cursor.[position(right(co,cu1),cu2)]
position(co,cu2)< position(co,cu1))→

position(right(co,cu1),cu2)≈ 0

RIGHT_ELEMENT:

∀co : list,cu1cu2 : cursor.[element(right(co,cu1),cu2)]
(position(right(co,cu1),cu2)> 0∨0< position(co,cu1)≤ position(co,cu2))→

element(right(co,cu1),cu2)≈ element(co,cu2)
∀co : list,cu1cu2 : cursor.[right(co,cu1),element(co,cu2)]

(position(right(co,cu1),cu2)> 0∨0< position(co,cu1)≤ position(co,cu2))→
element(right(co,cu1),cu2)≈ element(co,cu2)

FIND_FIRST_RANGE:

∀co : list,e : element_type.[f ind_ f irst(co,e)]
f ind_ f irst(co,e)≈ no_element ∨ position(co, f ind_ f irst(co,e))> 0

135

Appendix A. Imperative Doubly-Linked Lists A.1. Axiomatization

FIND_FIRST_NOT:

∀co : list,e : element_type,cu : cursor.[f ind_ f irst(co,e),element(co,cu)]
f ind_ f irst(co,e)≈ no_element → position(co,cu)> 0→

equal_elements(element(co,cu),e) �≈ t

FIND_FIRST_FIRST:

∀co : list,e : element_type,cu : cursor.[f ind_ f irst(co,e),element(co,cu)]
0< position(co,cu)< position(co, f ind_ f irst(co,e))→

equal_elements(element(co,cu),e) �≈ t

FIND_FIRST_ELEMENT:

∀co : list,e : element_type.[f ind_ f irst(co,e)]0< position(co, f ind_ f irst(co,e))→
equal_elements(element(co, f ind_ f irst(co,e)),e)≈ t

CONTAINS_DEF:
∀co : list,e : element_type.[contains(co,e)]

contains(co,e)↔ 0< position(co, f ind_ f irst(co,e))

FIND_FIRST:
∀co : list,e : element_type.[f ind(co,e,no_element)]

f ind(co,e,no_element)≈ f ind_ f irst(co,e)

FIND_OTHERS:

∀co : list,e : element_type,cu : cursor.[f ind(co,e,cu)]
position(co,cu)> 0→ f ind(co,e,cu)≈ f ind_ f irst(right(co,cu),e)

REPLACE_ELEMENT_RANGE:

∀co1,co2 : list,cu : cursor,e : element_type.[replace_element(co1,cu,e,co2)]
replace_element(co1,cu,e,co2)≈ t→ position(co1,cu)> 0

REPLACE_ELEMENT_LENGTH:

∀co1,co2 : list,cu : cursor,e : element_type.[replace_element(co1,cu,e,co2)]
replace_element(co1,cu,e,co2)≈ t→ length(co1)≈ length(co2)

REPLACE_ELEMENT_POSITION:

∀co1,co2 : list,cu1cu2 : cursor,e : element_type.
[replace_element(co1,cu1,e,co2), position(co1,cu2)]

replace_element(co1,cu1,e,co2)≈ t→ position(co1,cu2)≈ position(co2,cu2)
∀co1,co2 : list,cu1cu2 : cursor,e : element_type.

[replace_element(co1,cu1,e,co2), position(co2,cu2)]
replace_element(co1,cu1,e,co2)≈ t→ position(co1,cu2)≈ position(co2,cu2)

REPLACE_ELEMENT_ELEMENT_IN:

∀co1,co2 : list,cu : cursor,e : element_type.[replace_element(co1,cu,e,co2)]
replace_element(co1,cu,e,co2)≈ t→ element(co2,cu)≈ e

136

Appendix A. Imperative Doubly-Linked Lists A.1. Axiomatization

REPLACE_ELEMENT_ELEMENT_EXT:

∀co1,co2 : list,cu1,cu2 : cursor,e : element_type.
[replace_element(co1,cu1,e,co2),element(co1,cu2)]

(replace_element(co1,cu1,e,co2)≈ t∧ position(co1,cu2)> 0∧ cu1 �≈ cu2)→
element(co1,cu2)≈ element(co2,cu2)

∀co1,co2 : list,cu1,cu2 : cursor,e : element_type.
[replace_element(co1,cu1,e,co2),element(co2,cu2)]

(replace_element(co1,cu1,e,co2)≈ t∧ position(co1,cu2)> 0∧ cu1 �≈ cu2)→
element(co1,cu2)≈ element(co2,cu2)

INSERT_RANGE:

∀co1,co2 : list,cu : cursor,e : element_type.[insert(co1,cu,e,co2)]
insert(co1,cu,e,co2)≈ t→ cu≈ no_element ∨ position(co1,cu)> 0

INSERT_LENGTH:

∀co1,co2 : list,cu : cursor,e : element_type.[insert(co1,cu,e,co2)]
insert(co1,cu,e,co2)≈ t→ length(co2)≈ length(co1)+1

INSERT_NEW:

∀co1,co2 : list,cu : cursor,e : element_type.[insert(co1,cu,e,co2)]
(insert(co1,cu,e,co2)≈ t∧ position(co1,cu)> 0)→

position(co1, previous(co2,cu))≈ 0∧ element(co2, previous(co2,cu))≈ e

INSERT_NEW_NO_ELEMENT:

∀co1,co2 : list,cu : cursor,e : element_type.[insert(co1,no_element,e,co2)]
insert(co1,no_element,e,co2)≈ t→

position(co1, last(co2))≈ 0∧ element(co2, last(co2))≈ e

INSERT_POSITION_BEFORE:

∀co1,co2 : list,cu1cu2 : cursor,e : element_type.[insert(co1,cu1,e,co2), position(co1,cu2)]
(insert(co1,cu1,e,co2)≈ t∧0< position(co1,cu2)< position(co1,cu1))→

position(co1,cu2)≈ position(co2,cu2)
∀co1,co2 : list,cu1cu2 : cursor,e : element_type.[insert(co1,cu1,e,co2), position(co2,cu2)]

(insert(co1,cu1,e,co2)≈ t∧ position(co2,cu2)< position(co1,cu1))→
position(co1,cu2)≈ position(co2,cu2)

INSERT_POSITION_AFTER:

∀co1,co2 : list,cu1cu2 : cursor,e : element_type.[insert(co1,cu1,e,co2), position(co1,cu2)]
(insert(co1,cu1,e,co2)≈ t∧ position(co1,cu2)≥ position(co1,cu1)> 0)→

position(co1,cu2)+1≈ position(co2,cu2)
∀co1,co2 : list,cu1cu2 : cursor,e : element_type.[insert(co1,cu1,e,co2), position(co2,cu2)]

(insert(co1,cu1,e,co2)≈ t∧ position(co2,cu2)> position(co1,cu1)> 0)→
position(co1,cu2)+1≈ position(co2,cu2)

137

Appendix A. Imperative Doubly-Linked Lists A.1. Axiomatization

INSERT_POSITION_NO_ELEMENT:

∀co1,co2 : list,cu : cursor,e : element_type.[insert(co1,no_element,e,co2), position(co1,cu)]
(insert(co1,no_element,e,co2)≈ t∧ position(co1,cu)> 0)→

position(co1,cu)≈ position(co2,cu)
∀co1,co2 : list,cu : cursor,e : element_type.[insert(co1,no_element,e,co2), position(co2,cu)]

(insert(co1,no_element,e,co2)≈ t∧ position(co2,cu2)< length(co2))→
position(co1,cu)≈ position(co2,cu)

INSERT_ELEMENT:

∀co1,co2 : list,cu1cu2 : cursor,e : element_type.[insert(co1,cu1,e,co2),element(co1,cu2)]
(insert(co1,cu1,e,co2)≈ t∧ position(co1,cu2)> 0)→

element(co1,cu2)≈ element(co2,cu2)
∀co1,co2 : list,cu1cu2 : cursor,e : element_type.[insert(co1,cu1,e,co2),element(co2,cu2)]

(insert(co1,cu1,e,co2)≈ t∧ position(co1,cu2)> 0)→
element(co1,cu2)≈ element(co2,cu2)

DELETE_RANGE:
∀co1,co2 : list,cu : cursor.[delete(co1,cu,co2)]

delete(co1,cu,co2)≈ t→ position(co1,cu)> 0

DELETE_LENGTH:

∀co1,co2 : list,cu : cursor.[delete(co1,cu,co2)]
delete(co1,cu,co2)≈ t→ length(co2)+1≈ length(co1)

DELETE_POSITION_BEFORE:

∀co1,co2 : list,cu1cu2 : cursor.[delete(co1,cu1,co2), position(co1,cu2)]
(delete(co1,cu1,co2)≈ t∧ position(co1,cu2)< position(co1,cu1))→

position(co1,cu2)≈ position(co2,cu2)
∀co1,co2 : list,cu1cu2 : cursor.[delete(co1,cu1,co2), position(co2,cu2)]

(delete(co1,cu1,co2)≈ t∧0< position(co2,cu2)< position(co1,cu1))→
position(co1,cu2)≈ position(co2,cu2)

DELETE_POSITION_AFTER:

∀co1,co2 : list,cu1cu2 : cursor.[delete(co1,cu1,co2), position(co1,cu2)]
(delete(co1,cu1,co2)≈ t∧ position(co1,cu2)> position(co1,cu1))→

position(co1,cu2)≈ position(co2,cu2)+1
∀co1,co2 : list,cu1cu2 : cursor.[delete(co1,cu1,co2), position(co2,cu2)]

(delete(co1,cu1,co2)≈ t∧ position(co2,cu2)≥ position(co1,cu1))→
position(co1,cu2)≈ position(co2,cu2)+1

DELETE_POSITION_NEXT:

∀co1,co2 : list,cu : cursor.[delete(co1,cu,co2)]delete(co1,cu,co2)≈ t→ �next(co1,cu)��

DELETE_ELEMENT:

∀co1,co2 : list,cu1cu2 : cursor.[delete(co1,cu1,co2),element(co1,cu2)]
(delete(co1,cu,co2)≈ t∧ position(co2,cu2)> 0)→

element(co1,cu2) = element(co2,cu2)

138

Appendix A. Imperative Doubly-Linked Lists A.2. Tests in WhyML

EQUAL_LISTS_POSITION:

∀co1,co2 : list.[equal_lists(co1,co2)]equal_lists(co1,co2)≈ t→
(∀cu : cursor.[position(co1,cu)]position(co1,cu)≈ position(co2,cu))∧
(∀cu : cursor.[position(co2,cu)]position(co1,cu)≈ position(co2,cu))

EQUAL_LISTS_ELEMENT:

∀co1,co2 : list.[equal_lists(co1,co2)]equal_lists(co1,co2)≈ t→
(∀cu : cursor.[element(co1,cu)]position(co1,cu)> 0→

element(co1,cu)≈ element(co2,cu))∧
(∀cu : cursor.[element(co2,cu)]position(co1,cu)> 0→

element(co1,cu)≈ element(co2,cu))

EQUAL_LISTS_INV:

∀co1,co2 : list.[equal_lists(co1,co2)]equal_lists(co1,co2) �≈ t→
(∃cu : cursor.position(co1,cu)> 0∧

(position(co1,cu)≈ position(co2,cu)→ element(co1,cu) �≈ element(co2,cu)))

EQUAL_LISTS_LENGTH:

∀co1,co2 : list.[equal_lists(co1,co2)]equal_lists(co1,co2)≈ t→ length(co1)≈ length(co2)

A.2 Tests in WhyML

A.2.1 API of program functions

val element (co:list) (cu:cursor) : element_type

requires { has_element co cu }

ensures { result = element co cu }

val replace_element (co:ref list) (cu:cursor) (e:element_type) : unit

requires { has_element !co cu }

writes { co }

ensures { replace_element (old !co) cu e !co }

val insert (co:ref list) (cu:cursor) (e:element_type) : unit

requires { has_element !co cu \/ cu = no_element }

reads { co }

writes { co }

ensures { insert (old !co) cu e !co }

val prepend (co:ref list) (e:element_type) : unit

reads { co }

writes { co }

ensures { insert (old !co) (first (old !co)) e !co }

139

Appendix A. Imperative Doubly-Linked Lists A.2. Tests in WhyML

val append (co:ref list) (e:element_type) : unit

reads { co }

writes { co }

ensures { insert (old !co) no_element e !co }

val delete (co:ref list) (cu:cursor) : unit

requires { has_element !co cu }

reads { co }

writes { co }

ensures { delete (old !co) cu !co }

val previous (co:list) (cu:cursor) : cursor

requires { cu = no_element \/ has_element co cu }

ensures { result = previous co cu }

val next (co:list) (cu:cursor) : cursor

requires { cu = no_element \/ has_element co cu }

ensures { result = next co cu }

A.2.2 Tests using this API

(* take a list of 4 elements, prepend element e, remove all

initial 4 elements, take the last element of the list, it is e *)

let test_delete (li : ref list) (e : element_type) =

requires { length !li = 4 }

ensures { result = e }

prepend li e;

let c = ref (last !li) in

delete li !c;

c := first !li;

c := next !li (first !li);

delete li !c;

c := last !li;

delete li !c;

c := last !li;

delete li !c;

element !li (last !li)

(* adding elements to a list does not invalidate an existing cursor *)

let test_insert (li : ref list) (c d f g h : cursor) (e : element_type) =

requires { position !li c = 4 /\ has_element !li f /\ has_element !li h }

ensures { has_element !li c }

insert li c e;

append li e;

if has_element !li d then

insert li d e;

insert li f e;

if length !li > 5 then

140

Appendix A. Imperative Doubly-Linked Lists A.2. Tests in WhyML

if g = (next !li c) then

insert li g e

else

insert li h e

(* iterate through the list by adding element e at every position. This doubles

the size of the list *)

let double_size (li : ref list) (e : element_type) =

requires { not (is_empty !li) }

ensures { length !li = 2 * (length (old !li)) }

let c = ref (first !li) in

’Loop_Entry:

while has_element !li !c do

invariant {

(((has_element (at !li ’Loop_Entry) !c /\ has_element !li !c) \/

!c = no_element) /\

length (left !li !c) = 2 * (length (left (at !li ’Loop_Entry) !c)) /\

equal_lists (right !li !c) (right (at !li ’Loop_Entry) !c))

}

insert li !c e;

c := next !li !c

done

(* Removes some elements from li, stores them in removed *)

function fun_test element_type : bool

let filter_one (li:ref list) (removed:ref list) (c:ref cursor) =

requires { has_element !li !c }

ensures {

((has_element (old !li) !c /\ has_element !li !c) \/

!c = no_element) /\

(length (left !li !c)) + (length !removed) =

(length (left (old !li) !c)) + (length (old !removed)) /\

equal_lists (right !li !c) (right (old !li) !c) /\

!c = next (old !li) (old !c

}

let c_int = next !li !c in

append removed (element !li !c);

delete li !c;

c := c_int

let filter (li:ref list) (removed:ref list) =

requires { not (is_empty !li) /\ is_empty !removed }

ensures { (length !li) + (length !removed) = length (old !li) }

let c = ref (first !li) in

’Loop_Entry:

while has_element !li !c do

invariant {

(((has_element (at !li ’Loop_Entry) !c /\ has_element !li !c) \/

141

Appendix A. Imperative Doubly-Linked Lists A.2. Tests in WhyML

!c = no_element) /\

(length (left !li !c)) + (length !removed) =

length (left (at !li ’Loop_Entry) !c) /\

equal_lists (right !li !c) (right (at !li ’Loop_Entry) !c))

}

if fun_test(element !li !c) then

filter_one li removed c

done

(* the usual implementation of contains indeed computes the awaited result *)

let my_contain (s:list) (e:element_type) =

ensures { result = True <-> contains s e }

let c = ref (first s) in

let res = ref False in

try

while has_element s !c do

invariant {

((has_element s !c \/ !c = no_element) /\

(not contains (left s !c) e)) }

if equal_elements e (element s !c) then

raise Return

else c:=next s !c

done

with Return -> res := True end;

! res

(* the usual implementation of find indeed computes the awaited result *)

let my_find (s : list) (e : element_type) (f : cursor) =

requires { has_element s f }

ensures { result = find s e f }

let c = ref f in

try

while has_element s !c do

invariant {

(has_element (right s f) !c \/ !c = no_element) /\

find (left (right s f) !c) e no_element = no_element

}

if equal_elements e (element s !c) then

raise Return

else c := next s !c

done

with Return -> () end;

!c

{ result = find s e f }

(* after map l s, every element in s has been transformed through f *)

function f element_type : element_type

let map_f (s : ref list) (cu : cursor) =

142

Appendix A. Imperative Doubly-Linked Lists A.2. Tests in WhyML

ensures { forall cu : cursor. has_element !s cu ->

element !s cu = f (element (old !s) cu) }

’Loop_Entry :

let c = ref (first !s) in

while !c <> no_element do

invariant {

(has_element !s !c /\ has_element (at !s ’Loop_Entry) !c \/

!c = no_element) /\

(forall cu : cursor. has_element (left !s !c) cu ->

element !s cu = f (element (at !s ’Loop_Entry) cu)) /\

equal_lists (right (at !s ’Loop_Entry) !c) (right !s !c)

}

replace_element s !c (f(element !s !c));

c := next !s !c

done

143

B Why3 Sets

B.1 Axiomatization for Sets

EQ_DEF :

∀s1,s2 : setα.[equal_sets(s1,s2)]equal_sets(s1,s2)≈ t→

(∀x : α.[mem(x,s1)]mem(x,s1)≈ t→ mem(x,s2)≈ t)∧

(∀x : α.[mem(x,s2)]mem(x,s2)≈ t→ mem(x,s1)≈ t)

EQ_INV :

∀s1,s2 : setα.[equal_sets(s1,s2)]equal_sets(s1,s2) �≈ t→

(∃x : α.mem(x,s1)≈ t∧mem(x,s2) �≈ t∨mem(x,s2)≈ t∧mem(x,s1) �≈ t))

EXTENSIONALITY :

∀s1,s2 : setα.[s1 �≈ s2]equal_sets(s1,s2)≈ t→ s1 ≈ s2

SUBSET_DEF :

∀s1,s2 : setα.[subset(s1,s2))]

subset(s1,s2)≈ t→ (∀x : α.[mem(x,s1)]mem(x,s1)≈ t→ mem(x,s2)≈ t)

SUBSET_INV :

∀s1,s2 : setα.[subset(s1,s2))]

subset(s1,s2) �≈ t→ (∃x : α .mem(x,s1)≈ t∧mem(x,s2) �≈ t)

UNION_DEF :

∀s1,s2 : setα,x : α.[mem(x,union(s1,s2))]

mem(x,union(s1,s2))≈ t→ mem(x,s1)≈ t∨mem(x,s2)≈ t

UNION_INV1 :

∀s1,s2 : setα,x : α.[union(s1,s2),mem(x,s1)]mem(x,s1)≈ t→ mem(x,union(s1,s2))≈ t

UNION_INV2 :

∀s1,s2 : setα,x : α.[union(s1,s2),mem(x,s2)]mem(x,s2)≈ t→ mem(x,union(s1,s2))≈ t

145

Appendix B. Why3 Sets B.1. Axiomatization for Sets

INTER_DEF :

∀s1,s2 : setα,x : α.[mem(x, inter(s1,s2))]

mem(x, inter(s1,s2))≈ t→ mem(x,s1)≈ t∧mem(x,s2)≈ t

INTER_INV :

∀s1,s2 : setα,x : α.[inter(s1,s2),mem(x,s1)]

mem(x,s1)≈ t→ mem(x,s2)≈ t→ mem(x, inter(s1,s2))≈ t

∀s1,s2 : setα,x : α.[inter(s1,s2),mem(x,s2)]

mem(x,s1)≈ t→ mem(x,s2)≈ t→ mem(x, inter(s1,s2))≈ t

DIFF_DEF1 :

∀s1,s2 : setα,x : α.[mem(x,diff (s1,s2))]

mem(x,diff (s1,s2))≈ t→ mem(x,s1)≈ t∧mem(x,s2) �≈ t

DIFF_DEF2 :

∀s1,s2 : setα,x : α.[diff (s1,s2),mem(x,s2)]mem(x,s2)≈ t→ mem(x,diff (s1,s2)) �≈ t

DIFF_INV :

∀s1,s2 : setα,x : α.[diff (s1,s2),mem(x,s1)]

mem(x,s1)≈ t→ mem(x,s2) �≈ t→ mem(x,diff (s1,s2))≈ t

ADD_DEF :

∀x,y : α,s : setα .[mem(x,add(y,s))]mem(x,add(y,s))≈ t→ x≈ y∨mem(x,s)≈ t

ADD_INV1:

∀x,y : α,s : setα.[add(y,s),mem(x,s)]mem(x,s)≈ t→ mem(x,add(y,s))≈ t

ADD_INV2 :

∀y : α ,s : setα.[add(y,s)]mem(y,add(y,s))≈ t

REMOVE_DEF :

∀x,y : α,s : setα .[mem(x,remove(y,s))]mem(x,remove(y,s))≈ t→ x �≈ y∧mem(x,s)≈ t

REMOVE_INV:

∀x,y : α,s : setα .[remove(y,s),mem(x,s)]mem(x,s)≈ t→ x �≈ y→ mem(x,remove(y,s))≈ t

IS_EMPTY_DEF :

∀s : setα.[is_empty(s)]is_empty(s)≈ t→ (∀x : α.[mem(x,s)]mem(x,s) �≈ t)

CHOOSE_DEF:

∀s : setα.[is_empty(s)]is_empty(s) �≈ t→ mem(choose(s),s)≈ t

∀s : setα.[choose(s)]is_empty(s) �≈ t→ mem(choose(s),s)≈ t

146

C SPARK 2014 Vectors

C.1 Axiomatization for Formal Vectors

CAPACITY_RANGE:

∀co : vector.[capacity(co)]

0≤ capacity(co)≤ index_type__last− index_type__zero

LENGTH_RANGE:

∀co : vector.[length(co)] 0≤ length(co)≤ capacity(co)

TO_INDEX_RANGE:

∀cu : cursor.[to_index(cu)]

index_type__zero≤ to_index(cu)≤ index_type__last

TO_INDEX_NO_ELEMENT:

to_index(no_element)≈ 0

TO_INDEX_TO_CURSOR:

∀i : int,co : vector.[to_cursor(co, i)]

(length(co)+ index_type__zero≥ i> index_type__zero→

to_index(to_cursor(co, i))≈ i)∧

(length(co)+ index_type__zero< i ∨ i≈ index_type__zero→

to_cursor(co, i)≈ no_element)

HAS_ELEMENT__DEF:

∀cu : cursor,co : vector.[has_element(co,cu)]

has_element(co,cu)≈ t↔

(to_index(cu)> 0 ∧ to_cursor(co, to_index(cu))≈ cu)

147

Appendix C. SPARK 2014 Vectors C.1. Axiomatization for Formal Vectors

HAS_ELEMENT__TO_CURSOR:

∀i : int,co : vector.[to_cursor(co, i)]

length(co)+ index_type__zero≥ i> index_type__zero→

has_element(co, to_cursor(co, i))≈ t

PREVIOUS_IN:

∀co : vector,cu : cursor.[previous(co,cu)]

(length(co)+ index_type__zero≥ to_index(cu)> index_type__ f irst ∨

length(co)+ index_type__zero≥ to_index(previous(co,cu))> index_type__zero)→

to_cursor(co, to_index(cu)−1)≈ previous(co,cu)

PREVIOUS_EXT:

∀co : vector,cu : cursor.[previous(co,cu)]

(to_index(cu) = index_type__ f irst ∨ cu≈ no_element)→

previous(co,cu)≈ no_element

NEXT_IN:

∀co : vector,cu : cursor.[next(co,cu)]

(length(co)+ index_type__zero> to_index(cu)> index_type__zero∨

length(co)+ index_type__zero≥ to_index(next(co,cu))> index_type__zero)→

to_cursor(co, to_index(cu)+1)≈ next(co,cu)

NEXT_EXT:

∀co : vector,cu : cursor.[next(co,cu)]

(to_index(cu) = length(co)+ index_type__zero∨ cu≈ no_element)→

next(co,cu)≈ no_element

LAST_GEN:

∀co : vector.[last(co)]to_cursor(co, length(co)+ index_type__zero)≈ last(co)

FIRST_GEN:

∀co : vector.[f irst(co)]to_cursor(co, index_type__ f irst)≈ f irst(co)

REPLACE_ELEMENT_RANGE:

∀co1,co2 : vector, i : int,e : element_type.[replace_element(co1, i,e,co2)]

replace_element(co1, i,e,co2)≈ t→ index_type__zero< i≤ length(co1)+ index_type__zero

REPLACE_ELEMENT_LENGTH:

∀co1,co2 : vector, i : int,e : element_type.[replace_element(co1, i,e,co2)]

replace_element(co1,e, l,co2)≈ t→ length(co1)≈ length(co2)

148

Appendix C. SPARK 2014 Vectors C.1. Axiomatization for Formal Vectors

REPLACE_ELEMENT_CAPACITY:

∀co1,co2 : vector, i : int,e : element_type.[replace_element(co1, i,e,co2)]

replace_element(co1, i,e,co2)≈ t→ capacity(co1)≈ capacity(co2)

REPLACE_ELEMENT_ELEMENT_1:

∀co1,co2 : vector, i : int,e : element_type.[replace_element(co1, i,e,co2)]

replace_element(co1, i,e,co2)≈ t→ element(co2, i)≈ e

REPLACE_ELEMENT_ELEMENT_2 :

∀co1,co2 : vector, i, j : int,e : element_type.[replace_element(co1, i,e,co2),element(co1, j)]

replace_element(co1, i,e,co2)≈ t→

index_type__zero< j ≤ length(co1)+ index_type__zero ∧ i �≈ j→

element(co1, j)≈ element(co2, j)

∀co1,co2 : vector, i, j : int,e : element_type.[replace_element(co1, i,e,co2),element(co2, j)]

replace_element(co1, i,e,co2)≈ t→

index_type__zero< j ≤ length(co1)+ index_type__zero ∧ i �≈ j→

element(co1, j)≈ element(co2, j)

REPLACE_ELEMENT_CURSORS:

∀co1,co2 : vector, i, j : int,e : element_type.[replace_element(co1, i,e,co2), to_cursor(co1, j)]

replace_element(co1, i,e,co2)≈ t→

index_type__zero< j ≤ length(co1)+ index_type__zero→

to_cursor(co1, j)≈ to_cursor(co2, j)

∀co1,co2 : vector, i, j : int,e : element_type.[replace_element(co1, i,e,co2), to_cursor(co2, j)]

replace_element(co1, i,e,co2)≈ t→

index_type__zero< j ≤ length(co1)+ index_type__zero→

to_cursor(co1, j)≈ to_cursor(co2, j)

INSERT_RANGE:

∀co1,co2,r : vector, i : int.[insert(co1, i,co2,r)]

insert(co1, i,co2,r)≈ t→ index_type__zero< i≤ length(co1)+ index_type__ f irst

INSERT_LENGTH:

∀co1,co2,r : vector, i : int.[insert(co1, i,co2,r)]

insert(co1, i,co2,r)≈ t→ length(r)≈ length(co2)+ length(co1)

INSERT_CAPACITY:

∀co1,co2,r : vector, i : int.[insert(co1, i,co2,r)]

insert(co1, i,co2,r)≈ t→ capacity(co1)≈ capacity(r)

149

Appendix C. SPARK 2014 Vectors C.1. Axiomatization for Formal Vectors

INSERT_ELEMENT_1:

∀co1,co2,r : vector, i, j : int.[insert(co1, i,co2,r),element(co1, j)]

insert(co1, i,co2,r)≈ t→ index_type__zero< j < i→

element(co1, j)≈ element(r, j)

∀co1,co2,r : vector, i, j : int.[insert(co1, i,co2,r),element(r, j)]

insert(co1, i,co2,r)≈ t→ index_type__zero< j < i→

element(co1, j)≈ element(r, j)

INSERT_ELEMENT_2 :

∀co1,co2,r : vector, i, j : int.[insert(co1, i,co2,r),element(co2, j)]

insert(co1, i,co2,r)≈ t→ index_type__zero< j ≤ length(co2)+ index_type__zero→

element(r, j+ i− index_type__ f irst)≈ element(co2, j)

∀co1,co2,r : vector, i, j : int.[insert(co1, i,co2,r),element(r, j)]

insert(co1, i,co2,r)≈ t→ i≤ j < i+ length(co2)→

element(r, j)≈ element(co2, j− i+ index_type__ f irst)

INSERT_ELEMENT_3:

∀co1,co2,r : vector, i, j : int.[insert(co1, i,co2,r),element(co1, j)]

insert(co1, i,co2,r)≈ t→ i≤ j ≤ length(co1)+ index_type__zero→

element(co1, j)≈ element(r, j+ length(co2))

∀co1,co2,r : vector, i, j : int.[insert(co1, i,co2,r),element(r, j)]

insert(co1, i,co2,r)≈ t→ i+ length(co2)≤ j ≤ length(r)+ index_type__zero→

element(co1, j− length(co2))≈ element(r, j)

INSERT_CURSORS:

∀co1,co2,r : vector, i, j : int.[insert(co1, i,co2,r), to_cursor(co1, j)]

insert(co1, i,co2,r)≈ t→ index_type__zero< j < i→

to_cursor(co1, j)≈ to_cursor(r, j)

∀co1,co2,r : vector, i, j : int.[insert(co1, i,co2,r), to_cursor(r, j)]

insert(co1, i,co2,r)≈ t→ index_type__zero< j < i→

to_cursor(co1, j)≈ to_cursor(r, j)

SWAP_RANGE:

∀co1,co2 : vector, i1, i2 : int.[swap(co1, i1, i2,co2)]swap(co1, i1, i2,co2)≈ t→

index_type__zero< i1 ≤ length(co1)+ index_type__zero∧

index_type__zero< i2 ≤ length(co1)+ index_type__zero

SWAP_LENGTH:

∀co1,co2 : vector, i1, i2 : int.[swap(co1, i1, i2,co2)]

swap(co1, i1, i2,co2)≈ t→ length(co1)≈ length(co2)

150

Appendix C. SPARK 2014 Vectors C.1. Axiomatization for Formal Vectors

SWAP_CAPACITY:

∀co1,co2 : vector, i1, i2 : int.[swap(co1, i1, i2,co2)]

swap(co1, i1, i2,co2)≈ t→ capacity(co1)≈ capacity(co2)

SWAP_ELEMENT_1:

∀co1,co2 : vector, i1, i2 : int.[swap(co1, i1, i2,co2)]swap(co1, i1, i2,co2)≈ t→

element(co2, i1)≈ element(co1, i2)∧ element(co2, i2)≈ element(co1, i1)

SWAP_ELEMENT_2 :

∀co1,co2 : vector, i1, i2, j : int.[swap(co1, i1, i2,co2),element(co1, j)]

swap(co1, i1, i2,co2)≈ t→

index_type__zero< j ≤ length(co1)+ index_type__zero ∧ i1 �≈ j ∧ i2 �≈ j→

element(co1, j)≈ element(co2, j)

∀co1,co2 : vector, i1, i2, j : int.[swap(co1, i1, i2,co2),element(co2, j)]

swap(co1, i1, i2,co2)≈ t→

index_type__zero< j ≤ length(co1)+ index_type__zero ∧ i1 �≈ j ∧ i2 �≈ j→

element(co1, j)≈ element(co2, j)

SWAP_CURSORS:

∀co1,co2 : vector, i1, i2, j : int.[swap(co1, i1, i2,co2), to_cursor(co1, j)]

swap(co1, i1, i2,co2)≈ t→

index_type__zero< j ≤ length(co1)+ index_type__zero→

to_cursor(co1, j)≈ to_cursor(co2, j)

∀co1,co2 : vector, i1, i2, j : int.[swap(co1, i1, i2,co2), to_cursor(co2, j)]

swap(co1, i1, i2,co2)≈ t→

index_type__zero< j ≤ length(co1)+ index_type__zero→

to_cursor(co1, j)≈ to_cursor(co2, j)

DELETE_RANGE:

∀co1,co2 : vector, i, l : int.[delete(co1, i, l,co2)]

delete(co1, i, l,co2)≈ t→ index_type__zero< i≤ length(co1)+ index_type__zero

DELETE_LENGTH:

∀co1,co2 : vector, i, l : int.[delete(co1, i, l,co2)]

delete(co1, i, l,co2)≈ t→ length(co1)≈ length(co2)+ l

DELETE_CAPACITY:

∀co1,co2 : vector, i, l : int.[delete(co1, i, l,co2)]

delete(co1, i, l,co2)≈ t→ capacity(co1)≈ capacity(co2)

151

Appendix C. SPARK 2014 Vectors C.1. Axiomatization for Formal Vectors

DELETE_ELEMENT_1:

∀co1,co2 : vector, i, l, j : int.[delete(co1, i, l,co2),element(co1, j)]

delete(co1, i, l,co2)≈ t→ index_type__zero< j < i→

element(co1, j)≈ element(co2, j)

∀co1,co2 : vector, i, l, j : int.[delete(co1, i, l,co2),element(co2, j)]

delete(co1, i, l,co2)≈ t→ index_type__zero< j < i→

element(co1, j)≈ element(co2, j)

DELETE_ELEMENT_2 :

∀co1,co2 : vector, i, l, j : int.[delete(co1, i, l,co2),element(co1, j)]

delete(co1, i, l,co2)≈ t→ i+ l ≤ j ≤ length(co1)+ index_type__zero→

�i+ l�element(co1, j)≈ element(co2, j− l)

∀co1,co2 : vector, i, l, j : int.[delete(co1, i, l,co2),element(co2, j)]

delete(co1, i, l,co2)≈ t→ i≤ j ≤ length(co2)+ index_type__zero→

element(co1, j+ l)≈ element(co2, j)

DELETE_CURSORS:

∀co1,co2 : vector, i, l, j : int.[delete(co1, i, l,co2), to_cursor(co1, j)]

delete(co1, i, l,co2)≈ t→ index_type__zero< j < i→

to_cursor(co1, j)≈ to_cursor(co2, j)

∀co1,co2 : vector, i, l, j : int.[delete(co1, i, l,co2), to_cursor(co2, j)]

delete(co1, i, l,co2)≈ t→ index_type__zero< j < i→

to_cursor(co1, j)≈ to_cursor(co2, j)

DELETE_END_RANGE:

∀co1,co2 : vector, i : int.[delete_end(co1, i,co2)]

delete_end(co1, i,co2)≈ t→ index_type__zero< i≤ length(co1)+ index_type__zero

DELETE_END_LENGTH:

∀co1,co2 : vector, i : int.[delete_end(co1, i,co2)]

delete_end(co1, i,co2)≈ t→ length(co2)≈ i− index_type__ f irst

DELETE_END_CAPACITY:

∀co1,co2 : vector, i : int.[delete_end(co1, i,co2)]

delete_end(co1, i,co2)≈ t→ capacity(co1)≈ capacity(co2)

DELETE_END_ELEMENT:

∀co1,co2 : vector, i j : int.[delete_end(co1, i,co2),element(co1, j)]

delete_end(co1, i,co2)≈ t→ index_type__zero< j < i→ element(co1, j)≈ element(co2, j)

∀co1,co2 : vector, i j : int.[delete_end(co1, i,co2),element(co2, j)]

delete_end(co1, i,co2)≈ t→ index_type__zero< j < i→ element(co1, j)≈ element(co2, j)

152

Appendix C. SPARK 2014 Vectors C.1. Axiomatization for Formal Vectors

DELETE_END_CURS:

∀co1,co2 : vector, i j : int.[delete_end(co1, i,co2), to_cursor(co2, j)]

delete_end(co1, i,co2)≈ t→ index_type__zero< j < i→

to_cursor(co1, j)≈ to_cursor(co2, j)

∀co1,co2 : vector, i j : int.[delete_end(co1, i,co2), to_cursor(co1, j)]

delete_end(co1, i,co2)≈ t→ index_type__zero< j < i→

to_cursor(co1, j)≈ to_cursor(co2, j)

REVERSE_ELEMENTS_LENGTH:

∀co1,co2 : vector.[reverse_elements(co1,co2)]

reverse_elements(co1,co2)≈ t → length(co1)≈ length(co2)

REVERSE_ELEMENTS_CAPACITY:

∀co1,co2 : vector.[reverse_elements(co1,co2)]

reverse_elements(co1,co2)≈ t → capacity(co1)≈ capacity(co2)

REVERSE_ELEMENTS_ELEMENT:

∀co1,co2 : vector, i : int.[reverse_elements(co1,co2),element(co1, i)]

reverse_elements(co1,co2)≈ t → index_type__zero< i≤ length(co1)+ index_type__zero→

element(co2, length(co1)− i+ index_type__ f irst)≈ element(co1, i)

∀co1,co2,r : vector, i : int.[reverse_elements(co1,co2),element(co2, i)]

reverse_elements(co1,co2)≈ t → index_type__zero< i≤ length(co1)+ index_type__zero→

element(co2, i)≈ element(co1, length(co1)− i+ index_type__ f irst)

EQUAL_VECTORS__DEF:

∀co1,co2 : vector.[equal_vectors(co1,co2)]

equal_vectors(co1,co2)≈ t→ (length(co1)≈ length(co2)∧

(∀i : int.[element(co1, i)]

index_type__zero< i≤ length(co1)+ index_type__zero→

element(co1, i)≈ element(co2, i))∧

(∀i : int.[element(co2, i)]

index_type__zero< i≤ length(co1)+ index_type__zero→

element(co1, i)≈ element(co2, i))∧

(∀i : int.[to_cursor(co1, i)] to_cursor(co1, i)≈ to_cursor(co2, i))∧

(∀i : int.[to_cursor(co2, i)] to_cursor(co1, i)≈ to_cursor(co2, i)))

COPY__DEF:

∀co : vector,cap : int.[copy(co,cap)]equal_vectors(co,copy(co,cap))≈ t∧

(cap≈ 0−> capacity(co)≈ capacity(copy(co,cap)))∧

(length(co)≤ cap≤ index_type__last− index_type__zero→

capacity(copy(co,cap))≈ cap)

153

Appendix C. SPARK 2014 Vectors C.1. Axiomatization for Formal Vectors

CONCAT_LENGTH:

∀co1,co2,r : vector.[concat(co1,co2,r)]

concat(co1,co2,r)≈ t → length(r)≈ length(co1)+ length(co2)

CONCAT_ELEMENT_1:

∀co1,co2,r : vector, i : int.[concat(co1,co2,r),element(r, i)]

concat(co1,co2,r)≈ t → index_type__zero< i≤ length(co1)+ index_type__zero→

element(r, i)≈ element(co1, i)

∀co1,co2,r : vector, i : int.[concat(co1,co2,r),element(co1, i)]

concat(co1,co2,r)≈ t → index_type__zero< i≤ length(co1)+ index_type__zero→

element(r, i)≈ element(co1, i)

CONCAT_ELEMENT_2:

∀co1,co2,r : vector, i : int.[concat(co1,co2,r),element(co2, i)]

concat(co1,co2,r)≈ t → index_type__zero< i≤ length(co2)+ index_type__zero→

element(r, length(co1)+ i)≈ element(co2, i)

∀co1,co2,r : vector, i : int.[concat(co1,co2,r),element(r, i)]

concat(co1,co2,r)≈ t→

length(co1)+ index_type__zero< i≤ length(r)+ index_type__zero→

element(r, i)≈ element(co2, i− length(co1))

CONCAT__1__DEF:

∀co1,co2 : vector.[concat__1(co1,co2)]

length(co1)+ length(co2)≤ index_type__last− index_type__zero→

concat(co1,co2,concat__1(co1,co2))

CONCAT__2__DEF:

∀co1 : vector,e : element_type.[concat__2(co1,e)]

length(co1)< index_type__last− index_type__zero→

∃co2 : vector. length(co2)≈ 1∧ element(co2, index_type__ f irst)≈ e∧

concat(co1,co2,concat__2(co1,e))

CONCAT__3__DEF:

∀co2 : vector,e : element_type.[concat__3(e,co2)]

length(co2)< index_type__last− index_type__zero→

∃co1 : vector. length(co1)≈ 1∧ element(co1, index_type__ f irst)≈ e∧

concat(co1,co2,concat__3(e,co2))

154

Appendix C. SPARK 2014 Vectors C.1. Axiomatization for Formal Vectors

CONCAT__4__DEF:

∀e1,e2 : element_type.[concat__4(e1,e2)]

2≤ index_type__last− index_type__zero→ length(concat__4(e1,e2))≈ 2∧

element(concat__4(e1,e2), index_type__ f irst)≈ e1∧

element(concat__4(e1,e2), index_type__ f irst+1)≈ e2

FIND_RANGE:

∀v : vector,e : element_type,n : int.[f ind(v,e,n)]

n≤ f ind(v,e,n)≤ length(v)+ index_type__zero∨

f ind(v,e,n)≈ index_type__zero

FIND_NO :

∀v : vector,e : element_type,n : int.[f ind(v,e,n)]

f ind(v,e,n)≈ index_type__zero →

∀i : int.[element(v, i)]

n≤ i≤ length(v)+ index_type__zero ∧ i> index_type__zero→

equal_elements(element(v, i),e) �≈ t

FIND_EXACT:

∀v : vector,e : element_type,n : int.[f ind(v,e,n)]

f ind(v,e,n)> index_type__zero→

equal_elements(element(v, f ind(v,e,n)),e)≈ t

FIND_OTHERS:

∀v : vector,e : element_type,n : int.[f ind(v,e,n)]

f ind(v,e,n)> index_type__zero →

∀i : int.[element(v, i)] n≤ i< f ind(v,e,n) ∧ i> index_type__zero→

equal_elements(element(v, i),e) �≈ t

REVERSE_FIND_RANGE:

∀v : vector,e : element_type,n : int.[reverse_ f ind(v,e,n)]

index_type__zero≤ reverse_ f ind(v,e,n)≤ n ∧

reverse_ f ind(v,e,n)≤ length(v)+ index_type__zero

REVERSE_FIND_NO :

∀v : vector,e : element_type,n : int.[reverse_ f ind(v,e,n)]

reverse_ f ind(v,e,n)≈ index_type__zero →

∀i : int.[element(v, i)]

index_type__zero< i≤ n ∧ i≤ length(v)+ index_type__zero→

equal_elements(element(v, i),e) �≈ t

155

Appendix C. SPARK 2014 Vectors C.2. Tests in SPARK 2014

REVERSE_FIND_EXACT:

∀v : vector,e : element_type,n : int.[reverse_ f ind(v,e,n)]

reverse_ f ind(v,e,n)> index_type__zero→

equal_elements(element(v,reverse_ f ind(v,e,n)),e)≈ t

REVERSE_FIND_OTHERS:

∀v : vector,e : element_type,n : int.[reverse_ f ind(v,e,n)]

reverse_ f ind(v,e,n)> index_type__zero →

∀i : int.[element(v, i)] f ind(v,e,n)< i≤ n ∧ i≤ length(v)+ index_type__zero→

equal_elements(element(v, i),e) �≈ t

C.2 Tests in SPARK 2014

C.2.1 Two_Way_Sort

with Ada.Containers; use Ada.Containers;

with Ada.Containers.Formal_Vectors;

package Sort is

pragma SPARK_Mode (On);

subtype Index is Integer range 0 .. 1_000_000;

function Boolean_Equal (D1, D2 : Boolean) return Boolean is

(D1 = D2);

subtype My_Boolean is Boolean;

package Index_Vectors is new Ada.Containers.Formal_Vectors

(Index_Type => Index,

Element_Type => My_Boolean,

"=" => Boolean_Equal);

use Index_Vectors;

subtype Arr is Vector;

procedure Two_Way_Sort (A : in out Arr) with

Post => (if Length (A) > 0 then

(for some K in First_Index (A) .. Last_Index (A) =>

Element (A, K) = Element (A, K) and then

(for all J in First_Index (A) .. K - 1 =>

not Element (A, J))

and then (for all J in K+1 .. Last_Index (A) =>

156

Appendix C. SPARK 2014 Vectors C.2. Tests in SPARK 2014

Element (A, J))));

end Sort;

package body Sort is

pragma SPARK_Mode (On);

procedure Two_Way_Sort (A : in out Arr) is

I : Integer;

J : Integer;

begin

if Length (A) = 0 then

return;

end if;

I := First_Index (A);

J := Last_Index (A);

while I <= J loop

pragma Loop_Variant (Decreases => J - I);

pragma Loop_Invariant

(I in First_Index (A) .. Last_Index (A)

and then J in First_Index (A) .. Last_Index (A)

and then (for all K in First_Index (A) .. I-1 => not Element (A, K))

and then (for all K in J+1 .. Last_Index (A) => Element (A, K)));

if not Element (A, I) then

I := I+1;

elsif Element (A, J) then

J := J-1;

else

Swap (A, I, J);

I := I+1;

J := J-1;

end if;

end loop;

end Two_Way_Sort;

end Sort;

C.2.2 N_Queens

with Ada.Containers; use Ada.Containers;

with Ada.Containers.Formal_Vectors;

package Queen is

pragma SPARK_Mode (On);

N : constant Positive := 8;

subtype Index is Positive range 1 .. N;

function Index_Equal (I1, I2 : Index) return Boolean is

157

Appendix C. SPARK 2014 Vectors C.2. Tests in SPARK 2014

(I1 = I2);

package Index_Vectors is new Ada.Containers.Formal_Vectors

(Index_Type => Index,

Element_Type => Index,

"=" => Index_Equal);

use Index_Vectors;

subtype Board is Vector (Capacity => Count_Type (N));

function Consistent_Index (B : Board; I1 : Index; I2 : Index)

return Boolean is

(Integer (Length (B)) = N and then

(Element(B, I1) /= Element(B, I2) and then

I1 - I2 /= Element(B, I1) - Element(B, I2) and then

I1 - I2 /= Element(B, I2) - Element(B, I1)));

function Consistent (B : Board; K : Index) return Boolean is

(Integer (Length (B)) = N and then

(for all I in Index’First .. K =>

(for all J in Index’First .. I - 1 =>

(Element(B, I) /= Element(B, J) and then

I - J /= Element(B, I) - Element(B, J) and then

I - J /= Element(B, J) - Element(B, I)))));

procedure Add_next (B : in out Board; I : Index; Done : in out Boolean;

C : in Board)

with Pre => Integer (Length (B)) = N and then Integer (Length (C)) = N and then

((not Done) and

(for all J in Index’First .. I => Element(C, J) = Element(B, J)) and

(if I > 1 then Consistent (B, I - 1))),

Post => Integer (Length (B)) = N and

((if Done then Consistent (B, N) else not Consistent (C, N)) and

(for all J in Index’First .. I => Element(B, J) = Element(B’Old, J)));

function Copy_Until (B : in Board; I : Index; C : in Board) return Board

with Pre => Integer (Length (B)) = N and then Integer (Length (C)) = N,

Post => Integer (Length (Copy_Until’Result)) = N and

(for all J in Index’First .. I =>

Element(Copy_Until’Result, J) = Element(B, J));

procedure Try_Row (B : in out Board; I : Index; Done : in out Boolean;

C : in Board)

with Pre => Integer (Length (B)) = N and then Integer (Length (C)) = N and then

((not Done) and

(for all J in Index’First .. I-1 => Element(C, J) = Element(B, J)) and

(if I > 1 then Consistent (B, I - 1))),

Post => Integer (Length (B)) = N and

158

Appendix C. SPARK 2014 Vectors C.2. Tests in SPARK 2014

((if Done then Consistent (B, N) else not Consistent (C, N)) and

(for all J in Index’First .. I-1 => Element(B, J) = Element(B’Old, J)));

end Queen;

package body Queen is

pragma SPARK_Mode (On);

procedure Add_next (B : in out Board; I : Index;

Done : in out Boolean; C : in Board)

is

begin

if Consistent (B, I) then

if N = I then

Done := True;

else

Try_Row (B, I + 1, Done, C);

end if;

return;

else

pragma Assert (not Consistent (C, I));

pragma Assert (not (for all J in I .. N => Consistent (C, J)));

end if;

end Add_next;

function Copy_Until (B : in Board; I : Index; C : in Board) return Board is

R : Board;

begin

Clear (R);

pragma Assert (Integer (Capacity (R)) = N);

for J in Index’First .. I loop

pragma Loop_Invariant

(Capacity (R) = Capacity (R’Loop_Entry) and then

Integer (Length (R)) = J - 1 and then

(for all K in Index’First .. J - 1 =>

Element(R, K) = Element(B, K)));

Append (R, Element(B, J));

end loop;

for J in I + 1 .. Index’Last loop

pragma Loop_Invariant

(Capacity (R) = Capacity (R’Loop_Entry) and then

Integer (Length (R)) = J - 1 and then

(for all K in Index’First .. I =>

Element(R, K) = Element(B, K)));

Append (R, Element(C, J));

end loop;

return R;

end Copy_Until;

159

Appendix C. SPARK 2014 Vectors C.2. Tests in SPARK 2014

procedure Try_Row (B : in out Board; I : Index; Done : in out Boolean;

C : in Board)

is

begin

for R in Index’Range loop

pragma Loop_Invariant

(Length (B) = Length (B’Loop_Entry) and then

(not Done and

(for all J in 1 .. I - 1 =>

Element(B, J) = Element(B’Loop_Entry, J)) and

(if Element(C, I) < R then

not Consistent (C, N))));

Replace_Element (B, I, R);

if Element(C, I) = R then

Add_next (B, I, Done, C);

else

Add_next (B, I, Done, Copy_Until (B, I, C));

end if;

if Done then

exit;

end if;

end loop;

end Try_Row;

end Queen;

C.2.3 Ring_Buffer

with Ada.Containers; use Ada.Containers;

with Ada.Containers.Formal_Vectors;

package Ring_Buf is

pragma SPARK_Mode (On);

Buf_Size : constant := 10000;

subtype Ar_Index is Integer range 0 .. Buf_Size - 1;

subtype Length_Type is Integer range 0 .. Buf_Size;

function Eq (I1 : Integer; I2 : Integer) return Boolean is

(I1 = I2);

package My_Vectors is new Ada.Containers.Formal_Vectors

(Ar_Index, Integer, Eq);

use My_Vectors;

subtype Buf_Array is Vector (Buf_Size);

160

Appendix C. SPARK 2014 Vectors C.2. Tests in SPARK 2014

type Ring_Buffer is record

Data : Buf_Array;

First : Ar_Index;

Length : Length_Type;

end record;

function Inv (R : Ring_Buffer) return Boolean is

(Integer (Length (R.Data)) = Buf_Size);

function Is_Full (R : Ring_Buffer) return Boolean is (R.Length = Buf_Size);

function Is_Empty (R : Ring_Buffer) return Boolean is (R.Length = 0);

package P_Model is

function Is_Model (R : in Ring_Buffer; M : in Buf_Array) return Boolean

with Pre => Inv (R);

end P_Model;

use P_Model;

function Model (R : Ring_Buffer) return Buf_Array with

Pre => Inv (R),

Post => Is_Model (R, Model’Result);

procedure Clear (R : in out Ring_Buffer)

with Post => (Is_Empty (R));

function Head (R : in Ring_Buffer) return Integer

with Pre => Inv (R);

procedure Push (R : in out Ring_Buffer; X : Integer)

with Pre => (Inv (R) and then not Is_Full (R)),

Post => Inv (R) and

(if Is_Model (R, Model (R)) and Is_Model (R’Old, Model (R’Old)) then

Model (R) = Model (R’Old) & X);

procedure Pop (R : in out Ring_Buffer; Top : out Integer)

with Pre => (Inv (R) and then not Is_Empty (R)),

Post => Inv (R) and

(if Is_Model (R, Model (R)) and Is_Model (R’Old, Model (R’Old)) then

Head (R’Old) & Model (R) = Model (R’Old));

end Ring_Buf;

package body Ring_Buf is

pragma SPARK_Mode (On);

161

Appendix C. SPARK 2014 Vectors C.2. Tests in SPARK 2014

function Head (R : in Ring_Buffer) return Integer is

(Element (R.Data, R.First));

package body P_Model is

function Is_Model (R : in Ring_Buffer; M : in Buf_Array) return Boolean

is

(Length (M) = Count_Type (R.Length) and then

(if R.Length < Buf_Size - R.First then

((for all I in R.First .. R.First + R.Length - 1 =>

Element (R.Data, I) = Element (M, I - R.First)) and

(for all I in 0 .. R.Length - 1 =>

Element (R.Data, I + R.First) = Element (M, I)))

else

((for all I in R.First .. Buf_Size - 1 =>

Element (R.Data, I) = Element (M, I - R.First)) and

(for all I in 0 .. R.Length - (Buf_Size - R.First) - 1 =>

Element (R.Data, I) =

Element (M, I + Buf_Size - R.First)) and

(for all I in 0 .. Buf_Size - 1 - R.First =>

Element (R.Data, I + R.First) = Element (M, I)) and

(for all I in Buf_Size - R.First .. R.Length - 1 =>

Element (R.Data, I - (Buf_Size - R.First)) =

Element (M, I)))));

end P_Model;

use P_Model;

function Model (R : Ring_Buffer) return Buf_Array is

M : Buf_Array := Copy (R.Data);

Mt : Buf_Array := Copy (R.Data);

begin

if R.Length < Buf_Size - R.First then

Delete_First (M, Count_Type (R.First));

Delete_Last (M, Count_Type (Buf_Size - (R.First + R.Length)));

else

Delete_First (M, Count_Type (R.First));

Delete_Last (Mt, Count_Type (2 * Buf_Size - R.First - R.Length));

Append (M, Mt);

end if;

return M;

end;

procedure Clear (R : in out Ring_Buffer) is

begin

R.Length := 0;

end Clear;

162

Appendix C. SPARK 2014 Vectors C.2. Tests in SPARK 2014

procedure Push (R : in out Ring_Buffer; X : Integer)

is

begin

if R.Length < Buf_Size - R.First then

Replace_Element (R.Data, R.First + R.Length, X);

else

Replace_Element (R.Data, R.Length - (Buf_Size - R.First), X);

end if;

R.Length := R.Length + 1;

end Push;

procedure Pop (R : in out Ring_Buffer; Top : out Integer)

is

begin

Top := Element (R.Data, R.First);

if R.First < Buf_Size - 1 then

R.First := (R.First + 1);

else

R.First := 0;

end if;

R.Length := R.Length - 1;

end Pop;

end Ring_Buf;

C.2.4 Amortized_Queue

with Ada.Containers; use Ada.Containers;

with Ada.Containers.Formal_Vectors;

package Amortized_Queue is

pragma SPARK_Mode (On);

subtype Index is Integer range 1 .. 1_000;

subtype Val is Integer range -2 ** 31 .. 2 ** 31 - 1;

function Eq (I1 : Val; I2 : Val) return Boolean is

(I1 = I2);

package My_Vectors is new Ada.Containers.Formal_Vectors

(Index, Val, Eq);

use My_Vectors;

Capacity : constant Count_Type := Count_Type (Index’Last);

type Queue is record

Front : Vector (Capacity);

163

Appendix C. SPARK 2014 Vectors C.2. Tests in SPARK 2014

Rear : Vector (Capacity);

end record;

function Inv (Q : in Queue) return Boolean is

(Length (Q.Front) >= Length (Q.Rear) and then

Q.Front.Capacity - Length (Q.Front) >= Length (Q.Rear) and then

Q.Front.Capacity = Q.Rear.Capacity);

package P_Model is

function Is_Model (Q : in Queue; M : in Vector) return Boolean;

end P_Model;

use P_Model;

function Model (Q : in Queue) return Vector with

Pre => Inv (Q),

Post => Is_Model (Q, Model’Result);

function Front (Q : in Queue) return Val with

Pre => Inv (Q) and then Length (Q.Front) > 0,

Post => (if is_Model (Q, Model (Q)) then

Last_Element (Model (Q)) = Front’Result);

function Tail (Q : in Queue) return Queue with

Pre => Inv (Q) and then Length (Q.Front) > 0,

Post => Inv (Tail’Result) and then

(if is_Model (Q, Model (Q)) and

is_Model (Tail’Result, Model (Tail’Result)) then

Model (Q) = Model (Tail’Result) & Last_Element (Model (Q)));

function Enqueue (Q : in Queue; V : in Val) return Queue with

Pre => Inv (Q) and then

Q.Front.Capacity - Length (Q.Front) > Length (Q.Rear),

Post => Inv (Enqueue’Result) and then

(if is_Model (Q, Model (Q)) and

is_Model (Enqueue’Result, Model (Enqueue’Result)) then

V & Model (Q) = Model (Enqueue’Result));

end Amortized_Queue;

package body Amortized_Queue is

pragma SPARK_Mode (On);

package body P_Model is

function Is_Model (Q : in Queue; M : in Vector) return Boolean is

(Length (Q.Front) + Length (Q.Rear) = Length (M) and then

164

Appendix C. SPARK 2014 Vectors C.2. Tests in SPARK 2014

(for all I in Index range 1 .. Integer (Length (Q.Rear)) =>

Element (M, I) =

Element (Q.Rear, Integer (Length (Q.Rear)) - I + 1)) and then

(for all I in Index range 1 .. Integer (Length (Q.Front)) =>

Element (M, I + Integer (Length (Q.Rear))) =

Element (Q.Front, I)) and then

(for all I in Index range 1 .. Integer (Length (Q.Rear)) =>

Element (M, Integer (Length (Q.Rear)) - I + 1) =

Element (Q.Rear, I)) and then

(for all I in Index range

Integer (Length (Q.Rear)) + 1 .. Integer (Length (M)) =>

Element (M, I) =

Element (Q.Front, I - Integer (Length (Q.Rear)))));

end P_Model;

function Model (Q : in Queue) return Vector is

RevRear : Vector := Copy (Q.Rear);

begin

Reverse_Elements (RevRear);

return RevRear & Q.Front;

end Model;

function Tail (Q : Queue) return Queue is

Front : Vector := Copy (Q.Front);

Rear : Vector := Copy (Q.Rear);

begin

Delete_Last (Front);

if Length (Front) < Length (Rear) then

Reverse_Elements (Rear);

Insert (Front, 1, Rear);

Clear (Rear);

end if;

return Queue’(Front => Front, Rear => Rear);

end Tail;

function Enqueue (Q : in Queue; V : in Val) return Queue is

Front : Vector := Copy (Q.Front);

Rear : Vector := Copy (Q.Rear);

begin

Append (Rear, V);

if Length (Front) < Length (Rear) then

Reverse_Elements (Rear);

Insert (Front, 1, Rear);

Clear (Rear);

end if;

return Queue’(Front => Front, Rear => Rear);

end Enqueue;

165

Appendix C. SPARK 2014 Vectors C.2. Tests in SPARK 2014

function Front (Q : Queue) return Val is

begin

return Last_Element (Q.Front);

end Front;

end Amortized_Queue;

166

