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Abstract

This thesis aims at Multi-Objective Optimization under Uncertainty in structural design. We investigate
Polynomial Chaos Expansion (PCE) surrogates which require extensive training sets. We then face two
issues: high computational costs of an individual Finite Element simulation and its limited precision.
From numerical point of view and in order to limit the computational expense of the PCE construction
we particularly focus on sparse PCE schemes. We also develop a custom Latin Hypercube Sampling
scheme taking into account the finite precision of the simulation. From the modeling point of view,
we propose a multifidelity approach involving a hierarchy of models ranging from full scale simulations
through reduced order physics up to response surfaces. Finally, we investigate multiobjective optimization
of structures under uncertainty. We extend the PCE model of design objectives by taking into account
the design variables. We illustrate our work with examples in sheet metal forming and optimal design of
truss structures.
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Introduction
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1.1. Introduction

1.1 Introduction

Numerical models are extensively used in science disciplines such as physics, chemistry, computational
engineering, biological and social sciences, etc. These are aimed at providing a better understanding of
real world phenomena. In mechanical engineering, they are devoted to play a central role in the analysis
and design of structures and processes. They provide an invaluable tool to the engineer to the search
for the best performing structures and processes. In most of real-life applications, the performances are
assessed simultaneously by multiple criteria (cost, environmental impact, safety, robustness). It has been
now commonly admitted that uncertainties are inherent of this process and may have a non-negligible
influence on the design performances.

In this thesis work we explore two issues the engineer has to face: the quantification of the impact
of uncertainties on the design (Uncertainty quantification), and its incorporation into an optimization
process with multiple criteria (Multiobjective Optimization under Uncertainty).

Uncertainty Quantification (UQ) Along the elaboration process of the numerical models, approxi-
mations are made. They result from the implementation into a computer code of an imperfect abstrac-
tion (the mathematical model) of the reality (the real experiment). Figure 1.1 proposes to identify three
sources of approximations involved in the construction of a numerical model.
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Figure 1.1: A possible illustration for uncertainty sources

One of them is issued from the elaboration of the mathematical model of real experiment. It describes
the underlying physics of the observed phenomenon. The induced errors are due to simplifications or
lack of knowledge that the mathematical abstraction of the physical system may suffer from (simplified
physics error) but also to the choice of the underlying mathematical formulation (Galerkin formulation
instead of strong FEM formulation, etc). The implementation of the mathematical model into a computer
code also generates its own type of errors. It encompasses the necessary approximation/discretization
errors as well as the numerical and round-off errors, and programming errors. Finally, a third source of
errors may be emphasized by repeatedly performing the real experiment under the same configuration:
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1.1. Introduction

different results may though be observed as a result of errors in measurements, of the evolution in time
and space of material properties, the environmental conditions, etc.

All these errors laid end to end, may lead simulation results to represent the underlying physics with a
low level of fidelity. The question of the accuracy of the simulation results must be inevitably confronted.
This topic is addressed in the literature by the Verification1 and Validation domain2 (V&V) [OTH04] as
well as Uncertainties Quantification (UQ). This thesis work is concerned with the latter domain where
the errors are preferentially referred to “uncertainties”. Different theories to represent uncertainties are
provided in the literature (fuzzy logic, confidence theory, probabilistic,... ). This thesis focuses on
the probabilistic viewpoint: uncertainty sources are described by random variables characterized by a
probability density function3.

UQ provides the engineer with valuable tools to assess the impact of the designed process design and
sensitivity analysis, reliability based design and variability analysis:

• Robust design and Sensitivity analysis are aimed at quantifying the contribution of each random
input variable to the variability of the response [SAA+10]. One may distinguish between two
types of approaches addressing the sensitivity analysis from two different points of view. The local
sensitivity analysis focuses on small variations of the input parameters around a nominal value and
studies how the model response is affected; the global sensitivity analysis focuses on quantifying the
output uncertainty due to changes of input parameters (taken either separately or in combination)
in their entire range of variation.

• The reliability of a system is defined as the assessment of its failure probability, that is the non-
satisfaction of its expected performance [LCM09]. As a system is usually composed of subsystems,
the failure of the system may be caused by different scenarii caused by the failure of one or more
components to be identified.

• Finally, the variability study aims at completely characterizing the output probability density func-
tion.

Achieving these tasks firstly requires the definition of the probabilistic model. It consists in identifying
the uncertain input data and to model them according to their respective (joint) probability density
function (Identification). Then, to assess their impact onto the model output, one has to transform
the modeled uncertainties on the input variables to output statistical (e.g. statistical moments) or
probabilistic quantities of interest (e.g. probability density function). This process forms the propagation
of uncertainties. Two approaches may then be distinguished: intrusive methods consist in adapting the
governing equations of the deterministic model to uncertainty propagation; and non-intrusive methods,
which make use of a series of calls to the deterministic model to propagate the uncertainties. In this thesis,
we consider the non-intrusive uncertainty propagation scheme enabling the use of complex in-house or
commercial simulation codes. In this context, the UQ process is illustrated in Fig1.2.

1Verification aims at assessing the accuracy of the solution in the context of the study by comparing in some useful
sense the consistency of the numerically obtained results with some trustworthy experimental results at hand (Do we solve
right the equations?)

2Validation consists in providing a quantitative description of the distance between the real experiment, the numerical
model or the real-life system it is aimed to represent (Do we solve the right equation?).

3The notions of random variables and probability density function are described in more details in Chapter 2
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1.1. Introduction
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Figure 1.2: Steps for non-intrusive uncertainty quantification

Once the stochastic model has been identified, a Design Of Experiment (DoE) is built on the stochastic
variables with respect to their probability density function. For each point in the DoE, deterministic
calls to the numerical model are performed. A post-treatment phase allows to retrieve the statistical
(histogram, mean, variance, etc.) and/or the probabilistic (quantiles, probability of failure, etc.) data
of interest. The uncertainty propagation phase is computationally expensive as a single call to the
numerical model may already be costly and numerous calls may be necessary to assess the stochastic
and/or probabilistic quantities of interest.

Optimization Under Uncertainty (OUU) The second issue addressed in this thesis concerns the
multiplicity of pontentially competing criteria required to assess the performances of a structure.

The incorporation of uncertainties [EGWJT02] transposes the concepts of robustness, and reliability
into the optimization context.

• Robust design optimization is aimed at identifying the most performing responses with a particular
insight on their sensitivity to random perturbation of design variables or parameters.

• Reliability-based design optimization incorporates the failure probability as a constraint of the op-
timization problem.

Figure 1.3 plots a straightforward manner to perform optimization under uncertainty in a non intrusive
context.
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Figure 1.3: Double-Loop optimization process under uncertainty

The assessment of robustness and reliability measure usually require the computation of statistical
data (mean/variance) and or probabilistic data such quantiles and probability of failure. The robustness
and the reliability enters the optimization problems either as objective of constraints and may then
be assessed each time a new solution is provided by the optimizer. The optimization and uncertainty
quantification loops may then be nested which leads to high computational costs. Strategies to overcome
this limitation have ben developed. One way to circumvent it consists in multifidelity approaches whose
numerical challenges are addressed in more details in the next section.

1.2 Numerical challenges

As in practice both OUU and UQ are performed by repeated calls to the (deterministic) numerical model,
the computational expense may rapidly become unaffordable. Multifidelity approaches address this issue
by combining in a hierarchical manner two levels of numerical models: a “high-fidelity” model which is
characterized by a high accuracy but also a high computational cost is combined with “low-fidelity” model
less accurate but also less computationally costly.

1.2.1 On the development of metamodel in multifidelity approaches

Categorization of surrogate models Non-intrusive schemes based on surrogate-based approaches
have been proposed in optimization and uncertainty propagation domains:

• on the UQ side, the Chapter 2 provides an overview of computational methods and shows that
the Polynomial Chaos Expansion (PCE) has been widely extended and adapted to deal with com-
putationally costly and high-dimensional black-box functions;

• on the optimization side, optimization strategies for computationally costly and high-dimensional
black-box simulations [SW10] as well as metamodeling techniques for optimization [WS07] are
proposed.

In the following the original computational model will be referred as the “high-fidelity” model, and
the surrogate model as the “low-fidelity” model as it is less accurate than the original numerical model.
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1.2. Numerical challenges

One may classify these approaches as “multi-fidelity” or “variable-fidelity” when physics-based and
non-physics surrogates are considered:

• physics-based surrogates built from partial convergence of the “high -fidelity” model [BBM+00],
those based on simplified physics [dSR08], those based on a coarse discretization [ALG+99, VHS02,
SLZ+11];

• interpolating or regression-based response surface from a Design of Experiment (DoE) evaluated
with “high-fidelity” simulations. When the derivatives are available, one may build a first order
consistent approximation [WG95]. When only the function evaluation is available, general ap-
proaches, such as general least square, polynomial response surface[MAC09], kriging [Ste99, Cre90],
moving least squares [LS81, NTV92], radial basis function [B+00] may be used to build a global
approximation from the available set of points.

The non-physics based approaches do not perform well in high dimensions (“curse of dimensionality”).
Their accuracy depends on the underlying “high-fidelity” model and may be sensitive to the type and to
the size of the DoE used. Moreover, the computational expense related to the training phase depends on
the cost of the underlying “high-fidelity model”. Finally tuning such metamodel is not straightforward
(e.g. excessive smoothing, overfiting). Physics-based approaches do not suffer from these issues but have
to be specifically built for one application, thus may not be always available.

In the UQ domain, during the last two decades, the Polynomial Chaos Expansion (PCE) has been
widely used to propagate uncertainties (Chapter 2). Broadly speaking, the PCE [Gha91] is a metamodel
that is intended to give an approximation of the stochastic behavior of a function y (scalar random
process). When a single random variable ξ is considered, the P th-order PCE of y is defined as:

y =
P−1∑

i=0

γiΨi(ξ) (1.1)

where ξS are standardized random variables, and γ = {γ}P−1
i=0 the set of PCE coefficients which have to

be computed during the training phase.

On the validation of surrogate based approaches Twofold challenge has to be tackled:

• ensuring the convergence of the multifidelity surrogates,

• ensuring the accuracy/stability of the underlying “high-fidelity” model.

Convergence of hierarchical approaches In the optimization field, the key point is to guarantee
that the surrogate-based optimization process converges to an optimum of the original model. In the
UQ field, the key point is to guarantee that the surrogate-based UQ approach converges in terms of
statistical measures of the system responses (e.g. the output variances, sensitivities, robustness measures,
probability measures)

In the optimization field, rigorous approaches combining in a hierarchical way a “low-” and “high-’’ fi-
delity model are referred to surrogate-based optimization and/or model management framework [ALG+01].
The premise of this methodology is to claim that a surrogate based on a physics-based low-fidelity model

6



1.2. Numerical challenges

and an interpolant of the discrepancy may provide a more cost-effective approximation of the high fidelity
model. A proof of convergence is ensured provided that one employs a sufficiently rigorous verification
(e.g. trust region methodology) and that the surrogate model satisfies first-order [AL01] and sometimes
even second order [EGC+04] consistency conditions with the underlying high-fidelity model. In the trust
region methodology, the “low-fidelity” model values are corrected to fit the “high-fidelity” model values
(up to the second order if necessary) using either additive, multiplicative, or combined multiplicative-
additive correction functions on a set of collocation points. In addition, to guarantee that the progress
made with the “lower-fidelity” model also leads to an improvement with the “higher-fidelity” model, the
“lower-fidelity” model is regularly updated using systematical calls to the “high-fidelity” model.

In the UQ field, the use of non-physics based metamodel is usually not discussed or is highlighted
a posteriori by assessing error measures on the statistical or probability data of interest. Moreover, in
some cases, adaptive sampling is used in order to update the metamodels and control its accuracy in a
particular space region [DSB11b, WCS+13]. It is only recently that [NE12] investigates the extension of
the classic multi-fidelity optimization concepts to the uncertainty quantification fields. The “low-fidelity”
model values are corrected using combined additive-multiplicative correction function to match the high-
fidelity values on some collocation points, and the non-intrusive PCE is trained on the low-fidelity model
to propagate the uncertainty.

On the accuracy/stability of the “high-fidelity model”. In the optimization field, ensuring
the accuracy and/or the stability of the “high-fidelity” model and of the gradients in the whole domain
of interest belongs to the “good practice rules” (e.g. the minimum step size of the finite difference
scheme is assessed a priori). In UQ, these instabilities may be treated as epistemic uncertainties through
diverse approaches such as interval analysis, possibility theory, evidence theory or probability theory
[HJOS10, HD03].

When considering the high-fidelity model as a black-box, no direct mapping is provided from the
input variables ξ = [ξ1, ξ2, . . . , ξM ] to the derivatives of a selected output function y, except in seldom
cases where the black-box itself provides it. Thus a numerical scheme has to be used in order to compute
the sensitivities (i.e the derivatives) of the model. In this thesis, we are interested in the model output
stability with respect to the variation of the variable ξi, i ∈ {1, . . . ,M} assessed by the following non
dimensional finite difference scheme :

µi =
∆y(ξi)

∆ξi
× ξinom

y(ξnom
i )

(1.2)

where ξnom
i , i ∈ {1, . . . ,M} is a nominal value.

∆y(ξi) = y

(
ξnom
i +

∆ξi
2

)
− y

(
ξnom
i − ∆ξi

2

)
. (1.3)

When decreasing the order of magnitude of the perturbation (−log(∆ξ) increasing), the non-dimensional
sensitivity µi computed for the “high-fidelity” model exhibits subsequent behaviors illustrated in a qual-
itative manner4 on Fig.1.4:

4For a quantitative illustration see Fig.7 in Chapter 3 or Fig.13 in Chapter 4
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1.2. Numerical challenges

1. firstly, for “large” variation of ∆ξi, the variation µi reveals the non-linear behavior of the model.
No brutal variation of µi is observed and the model is considered as trustworthy.

2. secondly, µi stabilizes around a constant value µ̄i where the model may be considered as linear.

3. thirdly, on reaching the threshold � , µi becomes unstable.

4. finally, the threshold � shows the model sensitivity limit: for this range of variation, the model is
not sensitive anymore.
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Figure 1.4: Typical sensitivity results issued from actual computation

In both optimization and UQ domains, comparing the model error with the variation magnitude of
the output function is of paramount importance to ensure the validity of the approach. To do so, one may
arbitrarily define a resolution threshold δ∗i on ξi determined from an acceptable value of µi arbitrarily
defined. δ∗i is then defined as.

δ∗i = argmin
∆ξi

µi(∆ξi) > µ∗
i , i ∈ {1, . . . ,M}. (1.4)

When evaluating two sample points ξ(1)i and ξ(2)i one considers model response trustworthy when ∆ξ =

|ξ(1)i − ξ(2)i | ≥ δ∗i and erroneous otherwise.
In this work, we focus on the observation that the resolution threshold and the variation range of

the training data may be close. The number of achievable simulations by the “high-fidelity” model is not
only limited by the cost of an individual simulation but also by its intrinsic resolution. Thus one has to
face two issues: firstly, an insufficient number of “high-fidelity” simulations may harm the accuracy of the
response surface, secondly, a too high number of simulations may introduce numerical noise which also
directly leads to an inaccurate surrogate model.

1.2.2 MultiObjective Optimization under Uncertainty (MOOU)

In real-life applications the solution of the optimization problem involving possibly competing criteria is
not unique: a set of best compromise solutions (called Pareto set) is sought rather than a single solution.

8



1.3. Contributions of the thesis

The Pareto set P ∗ is then defined as the set of all non-dominated solutions in the design variable space Ω:
P ∗ = {x∗ ∈ Ω | !x ∈ Ω; y(x) ≽ y(x∗)} and the Pareto front defines its representation in the objective
function space. The symbol “≽” defines the dominance concept between the vectors y(x) and y(x∗)

such as ∀i ∈ {1, ...,m}, yi(x) ≤ yi(x∗) and ∃i ∈ {1, ...,m} | yi(x) < yi(x∗). The Fig.1.5 illustrates Pareto
fronts for two different values of α. The best performing solutions are obtained for a minimization of the
functions y1 and y2.
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Figure 1.5: Illustration of dominated and non dominated solutions. The red vector of objectives is
dominated by 3 green vectors. The green vectors are not dominated and form the Pareto front.

Extending the classical concepts for single objective robust design optimization and reliability based
optimization to multiobjective optimization is not straightforward. Notably, [DG05, HGB07] extends the
concept of reliability and robustness in the multi-objective space by defining y robustness frontiers of the
Pareto front and [RFC10] defines stochastic Pareto front ruled by a probability of dominance.

Moreover, in most of the studies (e.g. [YCL+11]), the influence of uncertainties is rarely considered
using a metamodel approach. The formulation of the optimization problem has to be adapted and the
notion of robustness and reliability has to be defined in conjunction with the dominance notion. Thus, the
development of a non-intrusive stochastic metamodel strategy, specially when a complete probabilistic
description might be useful to compute the probability of failure (e.g. in Reliability Based Optimization)
is a challenged we address in this thesis work.

1.3 Contributions of the thesis

The contribution of this thesis is twofold.

• The issue of Uncertainty Quantification with high fidelity model characterized by inadequate res-
olution for uncertainty propagation is illustrated in Chapter 3 and in Chapter 4. It highlights
that a careful attention has to be given to the validation of the high-fidelity model to perform
uncertainty quantification. In fact the variation range of the stochastic variables may be smaller
than the resolution to the model.

• The incorporation of uncertainty into a multi-objective optimization in a non intrusive framework
is addressed in Chapter 5, based on the hierarchical combination of two metamodels: one for

9
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the deterministic variation of design variables and the other to assess the variability of the model
response for each set of design variables.

In the following sections we discuss both issues.

1.3.1 A multifidelity approach for springback variability assessment

In this section we illustrate the first contribution of this thesis using an example of deep drawing of metal
parts. The deep drawing process is a manufacturing process which aims at permanently changing the
shape of a metal sheet through the action of a moving punch forming the metal against a motionless die
(Fig.1.6(a)). When the loading is removed, additional deformations appear and the so called springback
phenomenon occurs (Fig.1.6(b)).
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(a) Geometrical configuration of the modeled Numisheet’93
benchmark

(b) Illustration of springback shape [Car09]

Figure 1.6: Springback phenomenon for a 2D deep drawn U-shaped metal sheet

To perform a variability study of the post springback shape, we propose a two-pronged approach .
A first ingredient consists in defining a physics-based “low-fidelity” model with a finer resolution to

replace the “high-fidelity” model for small variation of parameters. A custom sparse stochastic surrogate
(Sparse PCE, where only the most relevant term of the PCE are retained) is then used to perform the
variability study onto the newly “low-fidelity” “high-resolution” model.

The simulation of the springback process provides a noisy numerical behavior against small thickness
variations. The FEM model may be considered as trustworthy for a resolution which represents a tolerance
on the thickness around 1

20 of its nominal value. The resolution of the numerical model is thus clearly
insufficient to perform a variability study on the tolerance range. Three aspects of the FE implementation
of the deep drawing process may be responsible for these numerical instabilities: the coarsity of the mesh,
the incorrect stress integration through the thickness and the contact algorithm. Improving the FE model
needs (among other) to refine the discretization of the model in every direction preserving the same aspect
ratio which leads to excessive computational cost. We choose to combine both models: the FE “high-
fidelity” model by a “lower-fidelity” physics-based metamodel with both features: a lower computational
cost and a higher resolution.

Such a metamodel has been recently proposed by [LQBRJ12]. It describes the deep drawing process

10
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of a 2D metal sheet as a 2D plain strain Bending-Under-Tension process (B-U-T) in a semi-analytical
framework combining an analytical approach with a FE model (assuming negligible shear stress).

The contact occurring during the deep drawing process is modeled here using an analytical approach
inducing consequently no numerical instabilities. Up to 200 integrations points are considered. In this
configuration, the impact the numerical noise on the springback shape parameters is drastically reduced.

We have trained the PCE model on the B-U-T physics-based surrogate in order to perform a variability
study of the springback shape parameters. The coefficients of the PCE are computed using a regression
based approach from a Design of Experiment (DoE) defined by a standard Latin-Hypercube Sampling.
We propose a stochastic model representing up to 8 independent random variables for the springback
shape parameter study.

A well known limitation of the PCE lies in the computational cost to compute the full set of coefficients
when the number of variables or the degree increases. We here choose to apply the Least Angle Regression
Stagewise (LARS) method [BS08c] on an 7th order PCE and the empirical error estimate as the stopping
criterion.

The savings in computational cost is significant since in each case only a fourth of the coefficients are
needed to reach the convergence on each of the function representative of the springback shape with a
preserved accuracy.

This approach demonstrates that the use of simplified physics-based model allows for accurate UQ
and acceptable computational costs.This approach is not limited to 2D and opens the way to the use of
other types of physics-based metamodels such as one-step or PGD/POD.

1.3.2 Adapting the sampling to the model resolution: Fat-Latin Hypercube
sampling

To train the stochastic metamodel, a compromise has to be found in the distribution and the size of the
set of training points. In fact, a too small number of simulations leads to an excessive smoothing of the
response surface while a too high number of simulations may introduce numerical noise leading by the
way to the same lack of accuracy of the stochastic metamodel.

In Chapter 3, the compromise is addressed. A modified LHS scheme is proposed in order to take
into account the resolution of the model. It provides an upper bound on the sampling density. A coherent
metamodel scheme based on the PCE is built taking into account this upper bound on sampling density,
and the lower bound given by the regression approach to compute the PCE coefficients.

The main idea is to build around each sampling point a restricted area free from other samples
while preserving the LHS property. The characteristic size of each area is parameterized by the a priori
identified model resolution δ∗i , {i = 1, . . . ,M} in each of the M dimensions.

Depending on the chosen norm, different shapes of the restricted area are considered. Here, an
illustration is given for the L∞ and the L2 norms.
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(b) Fat-LHSL2

Figure 1.7: Sensitivity restricted area shape around two sampling points for L∞ and L2 in 2D

The “Fat-LHS” scheme provides a dense sampling along with a maximum number Sub of samples
respecting the model resolution. With this limited number of samplings, we train a sparse version of
PCE where only the most significant terms are kept.

The efficiency of the Fat-LHS is illustrated on the variability assessment of springback of a 2D deep
drawn metal sheet. It exhibits a higher convergence rate to the two first statistical moments than a
similar size LHS (without taking into account the model resolution). On a higher dimension test case
(8D), the convergence results for the different truncation strategies are compared. The sampling is then
coupled with an adapted metamodel strategy in order to efficiently propagate the uncertainties at low
computational costs.

1.3.3 Towards Multi-objective Optimization Under Uncertainty

In this section, we address the incorporation of uncertainty treatment into a multi-objective optimization
process using surrogate-models in a non-intrusive framework. After a brief recall on the basics of the
multi-objective optimization under uncertainty, we present the following original contributions:

• the development of a non-intrusive hierarchical stochastic metamodels based on Moving-Least
Squares (MLS) and PCE;

• its application to multi-objective reliability based optimization of space truss structures.

Evolutionary population-based algorithms are designed to efficiently address multi-objective opti-
mization problems these optimization problems due to their ability to possibly provide many of the
Pareto-optimal solutions in a single algorithm iteration [Fog97, And02]. We use Non Sorted Genetic Al-
gorithm II [Deb02] for 3 reasons: low computational complexity, elitist approach and ability to preserve
diversity in the population.

ξ = [ξ1, . . . , ξM ] are the M independent stochastic variables described by their probability density
function. x represent the set deterministic design variables. y(x, ξ) = [y1(x, ξ), . . . , ym(x, ξ)] is the
vector of the m stochastic objective functions
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Instead of comparing each objective function separately, one may take into account of the intrinsic
multi-objective nature of the problem by checking the probabilistic non-dominance ([Tei01]) Pnon-dominance ≡
P [y(x, ξ) ≻ ζ] ≥ α assessing that the vector of the objective functions y(x, ξ) = [y1(x, ξ), y2(x, ξ)] should
dominate the set of quantiles ζ with a minimum probability level (user defined) α while satisfying con-
straints (such as reliability for example). The Fig.1.8 illustrates Pareto fronts for two different values of
α. The best performing solutions are obtained for a minimization of the functions y1 and y2. When the
values of α increases, the stochastic Pareto front represented by the non dominated quantiles ζ moves
farther from the deterministic one being more and more conservative.
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Figure 1.8: Stochastic Pareto fronts

The proposed formulation is implemented into the Non Sorted Genetic Algorithm II [Deb02] without
any modification.

The challenge consists in the computation of the non-dominance probability for each set of solution
produced by the algorithm. A straightforward approach would consist in building a polynomial chaos
expansion of each provided solution. The statistical quantities and non-dominance probability needed
are then computed exclusively using this approximation.

We propose a hierarchical metamodeling approach. It consists in a surrogate model providing an
original mapping from the mixed deterministic-stochastic variable space to the response function space.
The first step consists in building a metamodel of the PCE coefficients:

x +→ γ̃i(x), i = 0, . . . , P − 1 (1.5)

and then to reconstruct the PCE for each design variable provided by the algorithm:

(x, ξ) +→ y(x, ξ) =
P−1∑

i=0

γ̃i(x)Ψi(ξ) (1.6)

resulting in an increased computational efficiency.
We validate the proposed approach by comparing the obtained stochastic Pareto set with a Monte

Carlo sampling under different probability levels. An explicit two-variable test case allows to analytically
compute the response surface and to compare it with those obtained by an MLS approximation of the
PCE coefficients. A perfect agreement is observed. A second test case deals with the multi-objective
sizing optimization of three 3D linear elastic truss structures. In most of the situations the combination
of second order MLS interpolation of the PCE coefficients provides the best results. The influence of the
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PCE order is investigated. In most of the cases the second order approximation is better, highlighting a
possible overfiting phenomenon when the approximation order increases or a sampling size is too small.
Finally, the sizing optimization of trusses is verified using Monte Carlo Simulations.

1.4 Thesis outline

The original contributions of this thesis are organized in the following manner:

• Chapter 2 presents a literature review with a special insight firstly on general UQ methodologies
and then a focus on the spectral methods for uncertainty propagation. For the latter approach the
numerous challenges are put into evidence as well as the concepts proposed in the literature.

• Chapters 3, 4 and 5 refer either to our published articles (Chapter 4, Chapter 5) or to papers
under review (Chapter 3). Chapter 3 and Chapter 4 rise the question of the trust to give
to the nominal model in the context of uncertainty propagation for variability study. Answers
are proposed in the field of metal forming where highly non linear phenomena such as material
non linearities, contact friction, springback, . . . occur, and which makes in practice the stability
of the numerical model difficult to control. In fact, when considering the springback prediciton
of the 2D U-shaped deep drawn metal sheet, a large variety of results is observed [MNOW93]
when modifying the experiment parameters or when changing the software used to predict the
springback values. However the stochastic analysis of metal forming processes requires both a high
precision and low cost numerical models in order to take into account very small perturbations on
inputs (physical as well as process parameters) and to allow for numerous repeated analysis in a
reasonable time. Chapter 3 addresses this issue by presenting an original two-pronged approach
based on the combination of a semi-analytical model dedicated to plain strain deep drawing based
on a Bending-Under-Tension numerical model (B-U-T model) to accurately predict the influence of
small random perturbations around a nominal solution estimated with a full scale Finite Element
Model (FEM). A custom sparse variant of the Polynomial Chaos Expansion (PCE) is used to model
the propagation of uncertainties through this model at low computational cost. In Chapter 4, a
particular attention is given to the definition of an adapted Design of Experiment (DoE) taking the
model sensitivity into account which limits the number of sampling points. The construction of an
adaptive sparse PCE based on the limited set of data is investigated.

Chapter 5 proposes a metamodel based Multi-Objective Optimization under uncertainty based on
a hierarchical metamodel approach with respect to the deterministic and random input parameters.

• Finally, Chapter 6 gives the general conclusions and discussions/perspectives of the presented
work.
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2.1. Introduction and general concepts

2.1 Introduction and general concepts

In the past decades a copious amount of work has been devoted to the characterization of the impact
of uncertainties on the behavior of a mechanical system described by numerical models. A first step
in their quantification may consists in the categorization of the uncertainties. This topic is subjected
to many discussions by statisticians and engineers, but two concepts are clearly distinguished and com-
monly admitted : epistemic uncertainties are reducible uncertainties by means of gathering more data
or by refining the model; on the opposite, random or aleatory uncertainties are irreducible uncertainties,
intrinsic to the components or to the environment of the real experiment. However, the classification of
uncertainties into one of these two categories may depend on the context of the study but is of paramount
importance. [KD09] highlights that a correct a priori identification of the types of uncertainties allows
to identify (hence to elaborate) reasonable strategies in order to a priori reduce the uncertainties at the
end of the line: a wrong categorization may influence the results from several orders of magnitude.

To quantitatively assess their influence, one may classify the methodologies into two groups: intrusive
and non-intrusive methodologies. The formers require mathematical developments of the governing
equations to produce, most of the time, semi-analytical solutions for the stochastic analysis. This class
of methods present a major drawback: their implementation tends to become complex and analytically
cumbersome in case of highly non linear physical systems. One may then prefer the use non-intrusive
techniques which consider the numerical simulation process as a black-box. This section only deals with
the latter class of methodologies described on a probabilistic framework.

First and foremost, a brief recall on the probabilistic description of uncertainties is provided together
with a classification and a short review of the non-intrusive approaches for UQ. It essentially aims at
pointing out the notations and to provide the reader with an overview of non intrusive UQ.

The second section forms the heart of this chapter. It is dedicated to the class of spectral methodologies
taking their roots in functional evaluation of the stochastic data of interest. A special focus is provided on
the use of the Polynomial Chaos Expansion (PCE) in a non-intrusive context. Since the groundbreaking
work of [Gha91], this methodology has encountered a growing interest and has been used in many different
fields. This section highlights the evolution of the Polynomial Chaos Expansion from its initial formulation
as Hermite-Homogeneous Polynomial Chaos to the most recent advances. The goal of this section is not
to systematically provide a deep insight into each theoretical advances but more to guide the interesting
reader by providing him in an organized manner some fundamental references to the field.

2.1.1 Mathematical framework

2.1.1.1 Probabilistic space

The observation of a random phenomenon provides uncertain outcomes which nevertheless may follow
a regular distribution for a large number of trials. The set of all possible outcomes, denoted Ω is called
the “elementary sample space”. The result of one trial, is a subset ω ∈ Ω called “elementary event”. The
set of all admissible events associated to aprobability measure pF forms a σ-algebra associated with Ω

denoted by F . Finally, the triplet (Ω,F , pF ) forms the “probability space”.
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2.1.1.2 Random variable, Stochastic process, Random field

Random Variable A random variable ξ is a measurable function defined on the σ-algebra F with
values in a Borel set B(R)

ξ : F → B(R)

ω +→ ξ(ω).
(2.1)

In this thesis we assume that the uncertainties can be modeled using a finite number random variables
gathered into a M -sized random vector ξ = {ξ1, . . . , ξM}. We thus define the random vector ξ as a
measurable function defined on the σ-algebra F with values in a Borel set of RM denoted B(RM ).

ξ : F → B(RM )

ω +→ ξ(ω).
(2.2)

The dimensions of the random vector ξ are denoted using subscript, while their realizations are
denoted by superscripts: ξ(j)i denotes the jth realization of the ith component of the random vector
ξ = {ξ1, . . . , ξM}.

Let ξ be any of the components of ξ and τ one realization of ξ. In this thesis work, we consider that ξ
is completely characterized by a continuous probability density function (pdf) pξ(ξ) whose integral over
the sample space R is called the cumulative probability density function (cdf). The mean value of the
random variable ξ is given by:

µ = E[ξ] =

∫

R
τdpξ(τ) (2.3)

where {ξ = τ} = {ω ∈ Ω|ξ(ω) = {τ}} and dp(ξ = τ) = pξ(τ) = pF ({ξ = τ}).
The variance V of the random variable is given by:

V =

∫

R
(τ − µ)2dpξ(τ) (2.4)

The n-th order moment is given by

E[ξn] =

∫

R
τndpξ(τ) (2.5)

In this thesis work, we only consider real random variables with finite second order moment (E[ξ2] < ∞).
We denote the corresponding vectorial space by L2(B(R), T , Pξ).

Considering now two random variables ξ = {ξ1, ξ2}, the joint probability density function is naturally
denoted pξ1,ξ2 or more concisely pξ. The covariance between these two random variables is denoted

C(ξ) = E [(ξ1 − µξ1)× (ξ2 − µξ2)] . (2.6)

The correlation factor ρξ1,ξ2 is given by:

ρξ1,ξ2 =
C(ξ)

σξ1σξ2

. (2.7)

21



2.1. Introduction and general concepts

A random field A random field y(x,ω) [Adl81] may be defined as a collection of random variables
indexed by a continuous parameter x defined on a bounded set D ∈ Rd with value in R (Eq. 2.8). A
one-dimensional random field (D ∈ R) is usually called a stochastic process.

y :Rd × Ω → R

(x,ω) +→ y(x,ω).
(2.8)

For a chosen x0 ∈ D, y(x0, .) is a random variable. One denotes by y(x0) = {y(x0,ω1), . . . , y(x0,ωS)}
the set of S realizations of the random field. Its mean is then defined as:

µ(x0) =

∫

Ω
y(x0,ω)dpy(x0,ω) (2.9)

The continuity of a random field is often characterized by its mean-square continuity:

E[∥y(x, .)∥2] < ∞, ∀x ∈ D

lim
x→x0

E[∥y(x, .)− y(x0, .)∥2] = 0
(2.10)

The matrix-valued covariance function of the random field taken as the covariance function between
two distinct x1,x2:

C(x1,x2) = E [(y(x1, .)− µ(x1))× (y(x2, .)− µ(x2))] (2.11)

The correlation factor ρξ1,ξ2 is given by:

ρy(x1,.),y(x2,.) =
C(x1,x2)

σy(x1,.)σy(x1,.)
(2.12)

2.1.2 Common concepts for probabilistic approaches

Building a stochastic model usually consists in two steps. The first one is concerned with the proper
identification of the random inputs by a finite number M of random variables (such as parameters of
the system, material properties, etc.) or processes (random time dependent loading,etc.) [Fra65]. For
Gaussian random variables and processes, the identification is straightforward as they are completely
determined by the two first statistical moments (mean and covariance). This is however not the case
in general for non Gaussian processes and their identification still remains an open research area [YS88,
WC94, SG02a, PPS02, LCS07]

The second one consists in identifying the (joint) probability distribution of the random variables,
fields of interest. Two approaches may be distinguished:

• A direct approach consists in directly constructing the probability function pξ based on information
theory (i.e using only the information at hand on ξ).

• An indirect approach consists in introducing a measurable mapping h between the random vector
y(ξ) of unknown probability density function (p.d.f) py to the random vector ξ whose p.d.f pξ is
known: y(ξ) = h(ξ). Then, py(y) is the transformation of pξ(ξ) by h. This method is advantageous
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2.1. Introduction and general concepts

when experiments are available. It also allows to develop non-intrusive approaches by defining the
mapping function h independently from the physical model.

2.1.2.1 An overview of direct approaches

Maximum Entropy Principle The Maximum Entropy Principle [Jay82, Gif08] is based on the defini-
tion of a unique measure which quantifies the amount of uncertainties represented by a discrete probability
density function, namely the entropy measure. It follows the natural intuition that a “broad” probability
distribution represents more uncertainty than a “sharp” one. Let ξ be any component of the random vec-
tor ξ = {ξ1, . . . , ξM}. Let us assume now that ξ has been evaluated in S samples denoted ξ(1), . . . , ξ(S)

each sample associated with the probability pξ(ξ(i)), i = 1, . . . , S such as
∑S

i=1 pξ(ξ
(i)) = 1. The entropy

measure is given by:

T (pξ(ξ
(1), . . . , ξ(S))) = −K

S∑

i

pξ(ξ
(i))ln(pξ(ξ(i))) (2.13)

where K is a positive constant. To solve the inference problem stated in the direct approach, the
only possible unbiased assignment consists in searching the probability distribution which maximizes the
entropy with regards to the information at hand. The classical optimization problem to solve may then
be stated as:

max
pξ

T (pξ(ξ(1), . . . , ξ(S)))

s.t E[y(ξ)] =
∑S

i=1 y(ξ
(i))

∑S
i=1 pξ(ξ

(i)) = 1.

(2.14)

The use of Lagrange multipliers λ0 and λ1 leads to the following optimal solution:

pξ(ξ) = e−λ0−λ1ξ (2.15)

In the multi-variate case where ξ = {ξ1, . . . , ξM} the maximum entropy probability distribution general-
izes to [Jay57]:

pξ(ξ) =
n∑

i=1

exp(−[λ0 + λ1ξ
(i)
1 + . . .+ λMξ(i)M ) (2.16)

The set of Lagrangian coefficients, may be retrieved by solving the set of equation obtained by replacing
the expression of pξ(ξ) in the expressed constraints.

Maximum likelihood Let us consider the following problem (also referred as “forward problem”)
[Mil11]

y ≈ f(ξ) + ϵ (2.17)

where ξ = {ξ1, . . . , ξM} represents here a vector of model parameters, y = {y1, . . . , yr} is a vector of
output of interests seen as realizations of random variables, f is a (non-linear) function RM → Rr and
ϵ ∈ Rr a random vector encompassing all possible kind of uncertainties.

Let us assume that a set of observed output is available. The goal of Maximum Likelihood estimation
is to retrieve the input parameters which has most likely generated the observed sample. To do so, one
has to maximize the following probability pξ(y|ξ), which is called the Likelihood.
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2.1. Introduction and general concepts

A trivial (and common) assumption consists in assuming that the random vector ϵ ∈ Rr representing
the components of the error produced are independent and identically distributed characterized by a
normal probability density function ( E[ϵi] = 0, i = 1, . . . , r, the covariance matrix of the error is
C = σ2Ir×r where Ir×r is the r × r identity matrix). In this case pξ(y|ξ) ∈ N (f(ξ)) and the likelihood
function becomes

L(ξ) =
r∏

i=1

pϵi(ϵi))

L(ξ) =
r∏

i=1

pϵi(yi − fi(ξ))

=
r∏

i=1

exp
(
− (yi − fi(ξ))2

2σ2

)

= exp

(
−

r∑

i=1

(yi − fi(ξ))2

2σ2

)

(2.18)

Searching for the maximum of this function is equivalent to finding the minimum of
r∑

i=1

(yi−fi(ξ))
2 which

may be done by any appropriate optimization algorithm or by considering a classical minimum distance
leasts square problem. In the general case ϵ is not supposed to be Gaussian, the Likelihood function
may be computed using Monte Carlo Simulations which may be too expensive. Another more efficient
consists in using a kernel approximation method.

Bayesian Inference This approach allows to determine the prior probability distribution of input
parameters ξ = {ξ1, . . . , ξM} when the only information at hand concerns the output of the model
y = {y1(ξ), . . . , yJ(ξ)}. This process is called inference. In the context of the Bayes’ framework, the
knowledge about the true values of the parameters before and after having observed the data are described
using probability. In the general case one may use inference only in order to refine the probability
distribution of the input knowing the outputs, but we present here this approach in the general case
where the whole probability density function of the input parameters are searched.

The Bayes’ theorem states that:

p(ξ|y) = p(y|ξ)pξ(ξ)∫
p(y|ξ)pξ(ξ)dξ

(2.19)

where p(ξ|y) is the posterior distribution of the parameters values (obtained after having observed the
data), p(y|ξ) = L(ξ) is the likelihood function and pξ(ξ) is the prior probability density function (ob-
tained before having observed the data) of the parameters values and

∫
p(y|ξ)pξ(ξ)dξ is a constant (as

p(ξ|y) is a distribution on ξ, y is a constant)
Thus a more concise form of the Bayes theorem may be obtained by:

p(ξ|y) ∝ (y|ξ)pξ(ξ) (2.20)

In the general case, the described inference process consists in refining an a priori given set of prob-
abilities (prior models) in the light of the observed outputs.
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2.1. Introduction and general concepts

In the case where the input probabilities are unknown, the Bayes’ inference approach methodology
may often be used in conjunction with the Maximum Entropy Principle. In general, the Bayes theorem
offers a robust mean for inference, however vague prior information on the parameter value the posterior
remains improper, which may cause serious problems for the verification of complex models [Gey92].
However, if a sufficient amount of information on the prior is available, the Bayes’ inference has been
successfully use in the literature to assess the confidence in model prediction by comparing the model
output with experimental data.

A first direct approach in order to compute the posterior distribution consists in using Monte Carlo
Sampling on the prior distribution. The sample produced is thus non optimal with regards to the posterior
distribution (many sample points may located in the tail of the posterior probability) and thus the chosen
set of parameters with higher posterior probability may not be relevant. The use of Markov Chain Monte
Carlo (MCMC) [Ahm08] based on the Metropolis-Hasting’s algorithm [CG95] may allow to increase the
computational efficiency. MCMC are used to directly sampling the posterior distribution, to build an
optimal sample with regards to the posterior distribution. Moreover, it eliminates the need of computing
the constant

∫
p(y|ξ)pξ(ξ)dξ.

2.1.2.2 A classification of indirect approaches

Simulation based methodology Monte Carlo Samplings (MCS) is the most direct approach for
uncertainty quantification. In the literature, the Monte Carlo simulation is widely used in order to
assess the two first statistical moment of a multi-dimensional random variable. These quantities are
extracted from S independent realizations of random inputs. These are generated from their a priori
prescribed probability density function. For each realization, the data are fixed and the problem becomes
deterministic: the is obtained from a set of deterministic calls to the considered model. From this set
of deterministic evaluations, statistical information are extracted (mean, variance, histograms). MCS is
then straightforward to apply but a large number of realizations are needed e.g. the mean value typically
converges in 1/

√
S. Slow convergence rates may incur excessive computational costs, specially when

one deterministic simulation is already computationally costly. To accelerate this computational cost,
different techniques have been developed in the literature. Among them, Quasi Monte Carlo Simulation,
Stratified Sampling and the Latin Hypercube Sampling.

Moment equations In this approach, the objective functional is replaced by its Taylor series expansion
around the mean value (of the input random variable). The mean and the variance of the output
function of interest are computed using the moments of the input variables. This leads to a more efficient
integration of the first and second order moment. The proof is done below only for the 2 first statistical
moments using a first order (yFO) and a second order (ySO) Taylor series expansion of the output function.
Let y the output function of interest where ξ = {ξ1, . . . , ξM} with mean ξ̄ = {ξ̄1, . . . , ξ̄M} and let us
define its first and second order Taylor series approximation by yFO and by ySO [PNTIG01, MD10]. It is
respectively assumed that y ∈ C1 and y ∈ C2.

yFO(ξ) = y(ξ̄) +
M∑

i=1

∂y

∂ξi
(ξi − ξ̄i) (2.21)
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ySO(ξ) = y(ξ̄) +
M∑

i=1

∂y

∂ξi
(ξi − ξ̄i) +

1

2!

M∑

j=1

M∑

i=1

∂2y

∂ξi∂ξj
(ξi − ξ̄i)(ξj − ξ̄j). (2.22)

After some algebra, the expected value from the mean (unbiased) and from the variance of the output y
are approximated by:

ȳFO = yFO(ξ̄) (2.23)

σ2(yFO) =
M∑

i=1

(
∂yFO

∂ξi
σ(ξi)

)2

(2.24)

and by

ȳSO = ySO(ξ̄) +
1

2!

M∑

j=1

M∑

i=1

∂2y

∂ξi∂ξj
σ(ξi)σ(ξj) (2.25)

σ2(ySO) =
M∑

i=1

(
∂ySO

∂ξi
σ(ξi)

)2

+
1

2!

M∑

j=1

M∑

i=1

(
∂2y

∂ξi∂ξj
σ(ξi)σ(ξj)

)2

(2.26)

In some special cases, where the first and second order derivatives are available, the integration
of the first and second order moment may be realized analytically as shown in equations Eq.2.23,2.25
and Eq.2.24, 2.26. However, in most of the case, finite difference schemes are required which leads to
unaffordable computational costs when M increases. Moreover, the issue of the truncation the Taylor
series expansion is still an open issue as in general no fundamental result proves the monotonic convergence
of the Taylor series expansion.

Methods dedicated to reliability studies Performing reliability analysis of a mechanical system
or process results in determining the probability of a particular event ξfailure leading to the failure of
the structure (the “failure event”). This failure event may usually be expressed as the negative value
(by convention) of a criterion G(ξfailure). The probability of failure Pfailure of the system is then the
probability that G(ξfailure) < 0. The set Df = {ξfailure|G(ξfailure) < 0} defines the failure domain. The
function Ξ → ∂Df = {ξfailure|G(ξfailure) = 0} defines the border of the failure domain also called limit
state function.

First and Second Order Reliability Method These methods consist in approximating the
failure domain G by a simpler domain whose probability may be computed analytically. A preliminary
step to the construction of the simpler domain consists in transforming the observed random variable ξ

into a vector of independent centered normalized Gaussian random variables. In this particular space,
the most probable failure point ξ∗ also called “conception point” has to be identified. In the transformed
space the conception point is the nearest point to the origin (this is due to the “bell symmetric” shape of
the Gaussian probability density function.) Computing this point may be done by solving the following
optimization problem

min(∥ξ∥2)

s.t G(ξfailure) ≤ 0
. (2.27)
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2.1. Introduction and general concepts

Many algorithms have been proposed in the literature to solve this problem and find the ξ∗ which may
be referred in the literature as the conception point, the beta point of most probable point (MPP).

Once the MPP has been identified, the FORM consists in building a linear approximation of the limit
state function points by defining a hyperplane passing through the design point and orthogonal to the
vector ξ∗. The probability of failure is then simply approximated by:

Pfailure ≈ Φ(−β), (2.28)

where Φ is the standard Gaussian cumulative distribution function and β is the signed distance between
the origin and the conception point. The SORM improves the FORM methodology by proposing a second
order approximation of the limit state function defined by a paraboloid tangent to the limit state at the
conception point. The curvatures of the paraboloid at the design point are computed as the eigenvalues
of the Hessian matrix of the limit state function. In this context, the failure probability may then be
approximated by :

Pfailure ≈ Φ(−β)
M∏

i=1

(1− αiβ)
−1/2 (2.29)

where the αi are the principal curvatures of the paraboloid.

�

�
�

�

���

��	
�������	�
���

�

�
�

�
�
�

�

�

�
�

��

��

� ��

Figure 2.1: Illustration of FORM/SORM methodologies

For relatively small stochastic dimensions and smooth continuous limit state these methodologies
provide relatively accurate results with reasonable computational time. However, they are not adapted to
discontinuous or multi-modal limit state functions and may lead in these cases to an erroneous estimation
of the probability of failure. Moreover, they do not intrinsically provide an error estimator on the
probability of failure. Finally, these methodologies require the need of derivatives which are not always
available when the function of interest is given in an implicit way (as it is the case in non intrusive
approaches). Moreover, in high dimension the computation of the Hessian matrix for the SORM may
be prohibitively costly [ZO99]. [KS91] proposes a more efficient iterative algorithm to compute the
curvatures at the design point without the need of the Hessian matrix.

Sampling based approach To keep the control on the error committed on the estimated prob-
ability of failure, direct integration techniques to assess the reliability of the system may also be used.
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The probability of failure is then written in its integral form as:

Pfailure =

∫

G
ξdPξ(ξ) = E[1G(ξ)], (2.30)

where 1G is the indicator function on G.
The computation of the above integral using brute Monte Carlo simulation becomes rapidly prohibitive

in the transformed variable space as most of the sampling will concentrate around the origin of the domain.
It may be shown that for low Pfailure, the coefficient of variation CV of the MCS estimator converges in
1√
S
. For example, for Pfailure = 10−4, and a targeted CV = 10−1, 106 samples may be needed.
The Importance Sampling methodologies[AB99][ER93] allow to improve the efficiency of the crude

MCS by centering the samples around the conception point following a translated probability density
function ptranslated = pξ(ξ − ξ∗). Directional sampling [Bje88], [Mel94, NE00], line sampling [KPS04],
subset simulation [AB01]. These advanced methodologies are extended by [SPK04] to be efficient in high
dimensions.

Metamodel based approaches A metamodel is a response surface coupled with a sampling strat-
egy which is aimed at describing the behavior of a complex computational model while being less expensive
to evaluate. In the context of structural reliability a number of them has been developed in the last decade
in order to circumvent the costs and accuracy issues of the proposed FORM and SORM methodologies.
In the early 90’s, [BB90, Far89, Won85] proposes an adaptive second order polynomial response surface
to interpolate the limit state function. To increase the efficiency and the accuracy of the metamodel,
statistical information on the basic variables are used in order to update the obtained metamodel. Monte
Carlo simulations are then used in conjunction of the metamodel in order to assess the desired reliability
estimates. An obvious limitation of this methodology lies in the fact the limit state function has to be
smooth enough and continuous. In some practical problems this is clearly not the case: the performance
function may highlight multiple design points, and multiple regions that make significant contributions
to the failure probability. This question is addressed by [GM04] who proposes an algorithm to identify
the multiple points and regions and to interpolate these points using a second-order polynomial response
surface whose coefficients are determined using a least square analysis. A measure of the sensitivity of the
reliability index is also provided. However, for non-smooth limit state function, the use of second order
polynomial response surface may show insufficient accuracy in approximating the limit state function,
and large errors may be observed in the computation of the sensitivity of the reliability index, partic-
ularly. [YC04a], [KKC10] used Moving Least Squares giving higher weight to the experimental points
closer to the design point and allowing the response surface function (RSF) to be closer to the limit state
function. The authors in [DSB11b] take advantage of the kriging intrinsic features in order to propagate
the approximation error on the limit-state surfaces to the failure probabilities estimates providing thus
an empirical error measure. In [LX10] the authors argue that the straightforward sampling on surrogates
models may lead to biased results and thus proposes a hybrid approach based on a large sampling of the
metamodel in the probability space and refining this sampling using the numerical model in some region
of interest. In [Sud12, DSD13] the author proposed an efficient scheme to solve the problem of the poten-
tial biasedness in the estimation of a probability of failure due to a direct substitution. It combines the
use of an importance sampling strategy guided by a kriging metamodel replacing the indicator function
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2.2. Spectral representation of stochastic field through Polynomial Chaos Expansion

of the failure domain by a probabilistic function.

2.2 Spectral representation of stochastic field through Polyno-

mial Chaos Expansion

2.2.1 Introduction

This section reviews in more details the construction of the Polynomial Chaos Expansion (PCE). This
methodology has been widely used as an alternative to the Monte Carlo Simulation in order to propagate
the uncertainty through a deterministic numerical model. From its initial form, many obstacles have to be
circumvented for an efficient use. In this section we briefly review these obstacles and the circumventing
solutions.

2.2.2 Functional evaluation of a random variable by orthogonal polynomials

2.2.2.1 Functional evaluation of random variable

In practice, random variables of interest are seen as the output of a deterministic numerical model y(ξ).
They often belong to the set of square integrable functions denoted by L2(RM , dPξ) and defined by:

L2(RM , dPξ) = {y : ξ +→ y(ξ) ∈ R;

E[y2] :=

∫

RM

y(ξ)2dPξ(ξ) < ∞}
(2.31)

where Ξ ∈ RM since in practice one often deals with a finite number of second order (with finite second
order moment) random variables ξ = {ξ1, . . . , ξM}.

When this space is equipped with the following inner product, it becomes an Hilbert space:

< u, v >L2(RM ,dPξ)= E[uv] =

∫

RM

u(ξ)v(ξ)dPξ(ξ) (2.32)

An Hilbertian basis {Bi}i∈I of L2(RM , dPξ) is a complete set of orthonormal functions verifying the
following properties:

< Bi, Bj >L2(RM ,dPξ)= δij (2.33)

where δi, j is the Kronecker symbol and

∀u ∈ L2(RM , dPξ), < Bi, u >= 0, ∀i ∈ I ⇒ u = 0 (2.34)

Finally, each function y ∈ L2(RM , dPξ) admits an unique decomposition on this Hilbertian basis:

y(ξ) =
∑

i∈I
γiBi(ξ) (2.35)

where γi, i ∈ I are the coordinate of y projected on the orthonormal basis {Bi}i∈I :
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2.2. Spectral representation of stochastic field through Polynomial Chaos Expansion

γi =< γ, Bi >L2(RM ,dPξ)= E[y,Bi]

=

∫

RM

y(ξ)Bi(ξ)dPξ(ξ)
(2.36)

Several choices have been proposed in the literature in order to construct the Hilbertian basis. Among
the most popular, one may find the Karhunen Loève (KL) expansion and the polynomial expansion
methods.

2.2.2.2 Link between random variable and orthogonal polynomials

In probability theory, since the preliminary work of Wiener on Brownian motion, the relationship between
orthogonal polynomials and random variables has been widely studied [Sch00].

Let P = {HN (ξ), N ∈ N} be a set of monovariate polynomials whose maximal degree is N . Let Φ be
a real positive measure. P forms a set of orthogonal polynomials with respect to the measure Φ if:

∫

Ω
Hn(ξ)Hm(ξ)dΦ(ξ) = Kδnm, n,m ∈ N (2.37)

where δnm is the Kronecker product and K is a non zero constant (if K=1, P is orthonormal). A well
known property of real orthogonal polynomial lies in the fact that they all may be built using a three
terms recurrence relationship on the form:

− ξHn(ξ) = bnHn+1 + γnHn(ξ) + cnHn−1(ξ), n ∈ N (2.38)

where bn, cn ̸= 0 and cn/bn−1 > 0

In the space L2(R, dPξ) of continuous second order random variable, the following classical polynomials
form an orthogonal basis: they are referred in the literature to the classical orthogonal polynomials of
the Askey-scheme:

Pdf type Density Function Orthogonal polynomial Support
Uniform 1]−1,1[(ξ)/2 Legendre: Pk(ξ) [−1; 1]

Gaussian 1√
(2π)

e−ξ2/2 Hermite: Hk(ξ) [−∞;∞]

Gamma ξae−ξ1R+(ξ) Laguerre: Lk
a(ξ) [0;+∞]

Exponential e−x Gen. Laguerre L(α)
n (x) [0;+∞]

Beta 1]−1;1[(ξ)
(1−ξ)a(1+ξ)b

B(a)B(b) Jacobi: Jk(ξ) [−1; 1]

Table 2.1: Classical orthogonal polynomial of the Askey scheme with respect to their probability density
function

The resulting expansion of the random variable of interest is readily:

y(ω) =
∑

i∈J
γiHi(ξ) (2.39)

where J ⊂ N, {Hi}i∈J is an infinite series of one of the Askey-scheme polynomial, ξS the associated
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standard variable, {γi}i∈J the coordinate of the function on the orthogonal polynomial basis.

2.2.3 Construction of Wiener Polynomial Chaos Expansions (PCEs)

N. Wiener [Wie38] proposes for standard Gaussian variable the use of Hermitian polynomial as an Hilber-
tian basis to construct an approximation of the random variable y(ξ) ∈ L2(Ξ, dPξ). In the following we
describe the construction of the original PCE. It is usually named Hermite homogeneous PCE in the
literature.

2.2.3.1 Univariate case

Let ξ be any component of ξ supposed to be a Gaussian standardized random variable (which may
be obtained using an iso-probabilist transformation [LCM09]) the expansion is readily given by Eq.2.39
where {Hi}i∈N are the mono-variate Hermite polynomials. The first 5 Hermite’s polynomials are given
below:

H0(ξ) = 1

H1(ξ) = ξ2 − 1

H2(ξ) = ξ3 − 3ξ

H3(ξ) = ξ4 − 6ξ2 + 3

H4(ξ) = ξ5 − 10ξ3 + 15ξ

A fundamental result for the Hermite homogeneous PCE is established by the Cameron Martin theo-
rem [CM47]. It states that any second-order functional of the Brownian motion (Gaussian random field)
can be expanded as a mean-square convergent series in terms of infinite-dimensional Hermite polynomial
in Gaussian variables. Thus, the exact (in a mean square sense) PCE of the random variable y(ξ) is
readily:

y(ξ) =
∑

i∈N
γiHi(ξ) (2.40)

where Hi is the ith degree Hermite polynomial. Exploiting the polynomial orthogonality, the coefficients
of the expansion are defined as:

∀i ∈ N, γi =
< y(ξ), Hi(ξ) >

∥Hi∥2
(2.41)

2.2.3.2 Multi-variate case

In the multi-variate case ξ = {ξ1, ξ2, . . . , ξM} with M coordinates, according to the independence as-
sumption, the joint probability density function fξ(ξ) may be decomposed on a product of the marginal
probability density functions fξ(i) (Eq.2.42):

f(ξ) =
M∏

i=1

fξi(ξi) (2.42)

Given the natural inner product for arbitrary function φ with respect to each of the marginal proba-
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bility function fξ(ξ) defined on D

< φ1,φ2 >=

∫

D
φ1(ξ)φ2(ξ)fξ(ξ)dξ (2.43)

Using the tensor product on these mono-variate polynomials one may obtain an infinite set of
multi-variate polynomials (with a preserved orthogonality property) H = {Hα,α ∈ NM} where α =

{α1, . . . ,αM} ∈ NM is a multi-index set.

Hα(ξ) = ⊗M
i=1Hαi(ξi) (2.44)

According to the theorem of Cameron Martin [CM44], the exact polynomial expansion of the functional
y is readily

y(ξ) =
∑

α∈NM

γαHα(ξ), (2.45)

where {γα}, α ∈ NM are the coefficients of the PCE to be identified
For practical use, one may truncate the full set of tensor product polynomials in order to only retain

a finite set of polynomial terms.

Classical truncation scheme Among all {Hα,α ∈ NM} the classical truncation scheme [Gha91,
BSL06a, SDK00a] retains only the multi-variate polynomial terms whose degree does not exceed an
arbitrarily fixed N leading to the following multi-index set:

AM
q = {α ∈ NM , ||α||q ≤ p}, (2.46)

where ||α||q =

(
M∑

i=1

αq
i

)1/q

and q = 1. Then, the truncated model may be written as:

yA
M
q (ξ) ≈

∑

α∈AM
q

γαHα(ξ). (2.47)

Fig.2.2 gives an illustration of this scheme for a 2-variate 7th order PCE.
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Figure 2.2: Illustration of the classical truncation scheme for a 7th order PCE

The number P of coefficients in the PCE is given by

P =
N∑

k=0

Ck
M+k+1 =

(N +M)!

N !M !
(2.48)

and increases exponentially both with N and M .
A list of the multi-variate Hermitian monomials for M = 2 and N = 3 is provided below:

i α = {α1,α2} Hi

0 {0, 0} H0(ξ1)H0(ξ2) = 1
1 {1, 0} H1(ξ1)H0(ξ2) = ξ1
2 {0, 1} H0(ξ1)H1(ξ2) = ξ2
3 {2, 0} H2(ξ1)H0(ξ2) = ξ21 − 1
4 {1, 1} H1(ξ1)H1(ξ2) = ξ1ξ2
5 {0, 2} H0(ξ1)H2(ξ2) = ξ22 − 1
6 {3, 0} H3(ξ1)H0(ξ2) = ξ31 − 1ξ1
7 {2, 1} H2(ξ1)H1(ξ2) = (ξ21 − 1)ξ2
8 {1, 2} H1(ξ1)H2(ξ2) = ξ1(ξ22 − 1)
9 {0, 3} H0(ξ1)H3(ξ2) = ξ32 − 3ξ2

Table 2.2: Bi-variate Hermitian Polynomials Basis elements up to the order p = 3

Note: One may imagine different ways to classify the obtained multi-variate monomials. When a M

dimensional expansion of order N is searched, one may classify the multi-variate monomial by making the
value of the M -digits of α evolving according to the “rain drop” algorithm. The previous tabular provides
an example with M = 2 and N = 3.

2.2.3.3 PCE for stochastic field representation

PCE for random field The extension to the approximation of random process as may introduce an
additional non probabilistic variables such as design variable for example gives the following expression:
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y(x, ξ) ≈
∑

α∈NM

γα(x)Ψα(ξ) (2.49)

or alternatively
y(x, ξ) ≈

∑

α∈NM

γαΨα(x, ξ) (2.50)

where Ψ may be built over the tensor product of optimal orthogonal polynomials with regards to the
probability measure for each ξi, i = 1, . . . ,Mξ and by Legendre polynomial (orthogonal with respect to
the uniform distribution) for the xi, i = 1, . . . ,Mx variables [Eld09]. The cost of the latter expansion
may become rapidly prohibitive as it increases exponentially with the number Mξ +Mx of variables (see
Eq.2.48).

Let y(x,ω) : D × Ω → R be a mean-square continuous random field (i.e. with continuous covariance
function) where D denotes an open, bounded domain with values in Rd, and Ω is the set of elementary
events.

Let us give a set of points x1, . . . ,xN ∈ Rd and ω1, . . . ,ωS a set of S elementary events. Let y(i) =

y(ωi) = {y(x1,ωi), . . . , y(xN ,ωi))}⊤, i = 1, . . . , S be a real column vector in RN . Let {ȳ1, . . . , ȳN}⊤ the
vector of expectations:

∀i ∈ {1, . . . , N}, ȳi =
1

S

S∑

j=1

y(xi, wj). (2.51)

Karhunen-Loève decomposition The full Karhunen-Loève expansion [Loe63] is aimed at efficiently
reducing the statistical complexity of the random field by achieving its decomposition as a denumerable
sum of product functions of the form:

y(ω) = ȳ +
N∑

i=1

√
λiκi(ω)ϕi (2.52)

decoupling the stochastic Ω and deterministic D spaces.
The suited decomposition may be obtained by orthogonal projection of the stochastic field of interest

onto separable Hilbert spaces. The convenience of the Karhunen Loève (KL) expansion stays precisely
in the fact that KL expansion is toptimal with regards to the total mean square error. To construct,
the Hilbertian basis one performs an eigenvalue decomposition of the covariance operator which may be
defined as

C(xi,xj) =

∫

D
y(xi,ω)y(xj ,ω)dpω(ω), (i, j) ∈ {1, . . . , N}2. (2.53)

Replacing y by its collocation vector y, an unbiased estimator of the covariance operator may be
obtained by:

C(xi,xj) =
1

S − 1

S∑

i=1

(y(i) − ȳi)
⊤(y(j) − ȳj), (i, j) ∈ {1, . . . , N}2. (2.54)

By definition, the covariance kernel function (since D is bounded), symmetric and positive definite.
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2.2. Spectral representation of stochastic field through Polynomial Chaos Expansion

It admits a decomposition of the form:

C =
N∑

i=1

λiϕiϕi
⊤

=
N∑

i=1

φiφi
⊤

(2.55)

where {λi}Ni=1 are the eigenvalues, and {ϕi}Ni=1 the eigenfunctions. They constitute the elements of the
Hilbertian basis {φi}Ni=1 = {

√
λiϕi}Ni=1.

From 2.55, one obtained the following decomposition yKL of y(ω):

yKL(ω) = ȳ + φφ⊤ (y(ω)− ȳ)

= ȳ +
N∑

i=1

φiκi(ω)
(2.56)

where we have introduced {κi}Ni=1 = {φ⊤
i (y(ω) − ȳ)}Ni=1. Out of this definition one may deduce the

following properties:

• κi are second order random variables

• E[κi]= 0

• E[κiκj ]= 0 i ̸= j ∈ N

Consequently, the covariance matrix of κ is the identity matrix insuring the independence between the
vector components. Moreover, since the underlying random field y(ω) is generally not gaussian, the κ

variables are in general non Gaussian variables. Due to the symmetry and to the positiveness of the
covariance kernel, the eigenfunctions ϕi form a complete set and exhibit an orthogonality property

φφ⊤ = IN×N , (2.57)

where IN×N is the N ×N identity matrix.
Regarding the eigenvalues {λi}Ni=1 they form a decreasing sequence of positive values conventionally

ordered as follows: λ1 > λ2 > λ3 > . . . → 0. Moreover, with the additional assumption of mean-square
continuity of the random field, this sequence is convergent. From these assertion one may prove that the
Karhunen Loève expansion is unique.

In the following we show that the Karhunen Loève expansion is optimal in the mean square sense, i.e
increasing the truncation the order of the expansion reduces the total mean square error.

Let us first introduce the following additional notations:

- Let n < N and let us consider {φ}ni=1 the n first eigenvectors, we denote them φt,

- Let Y = {y(ω1), . . . ,y(ωS)} and

- C =
S∑

i=1

(y(i) − ȳ)(y(i) − ȳ)⊤ = Y Y ⊤.
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2.2. Spectral representation of stochastic field through Polynomial Chaos Expansion

A truncated expansion yKLt(ω) of y(ω) is readily

yKLt(ω) = ȳ + φtφ
⊤
t (y(ω)− ȳ) . (2.58)

The truncation error ϵ is given by:

ϵ =
S∑

i=1

∥y(ωi)− yKLt(ωi)∥2

=
(
y(i) − ȳ − φtφ

⊤
t (y

(i) − ȳ)
)⊤ (

y(i) − ȳ − φtφ
⊤
t (y

(i) − ȳ)
)

=
S∑

i=1

(y(i) − ȳ)(I − φtφ
⊤
t )

⊤(I − φtφ
⊤
t )(y

(i) − ȳ)

=
S∑

i=1

(y(i) − ȳ)(I − φtφ
⊤
t )(y

(i) − ȳ)

= tr
(
Y ⊤

(
I − φtφ

⊤
t

)
Y
)

= tr
(
C
(
I − φtφ

⊤
t

))

= tr (C)− tr
(
φ⊤

t Cφt

)

=
N∑

i=1

λi −
n∑

i=1

λi

=
N∑

i=n+1

λi

Thus when increasing the order of the expansion one automatically reduces the total mean square
error. In practice one truncates the expansion to a finite number of summands leading to :

y(ω) = ȳ(ω) +
n∑

i=1

φiκi(ω) (2.59)

The truncated order may be chosen such that for some n ≤ N ,
∑n

i=1 λi∑N
i=1 λi

is closed enough to one.

Reduced PCE expansion Let the random n variables κj be collected in to a random vector κ with
value in Rn and let us approximate them using a PCE of order P and dimension n:

κj(γ) =
P∑

α,|α|=1

γαHα(ξ) (2.60)

where |α| =
M∑

j=1

αj .

Injecting this reduced expansion into the KL decomposition of the field y, one obtains:
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2.2. Spectral representation of stochastic field through Polynomial Chaos Expansion

y(ω) = ȳ +
n∑

i=1

⎛

⎝
P∑

αi,|αi|=1

γαiHαi(ξ)

⎞

⎠φi. (2.61)

We note that ξ is valued in Rn where n is chosen sufficiently large in order to limit the accuracy loss
due to the dimension reduction process.

2.2.4 On the limitation of Wiener Hermite PCE for non Gaussian probability
measure

2.2.4.1 Convergence for non Gaussian random variable

According to the Cameron Martin theorem, the PCE converges in a mean square sense for L2 random
variables and stationary stochastic processes. However, as only a few terms of the PCE are retained
in many applications this statement is sometimes irrelevant. [KL00] particularly shows on analytical
random non Gaussian variables that when increasing the number of terms of the PCE, some metrics
are systematically improved: among them, the mean square accuracy, the relative error accuracy, the
probability of the PCE approximation of taking non physical values, the probability that the PCE is
equal in probability to the true function, the difference between the tails of the true function and the
PCE to the upper 1% fractile, the relative errors in variance and kurtosis. When increasing the number
of terms all the considered metrics are improved in a monotonic way with different convergence rate,
some of them being highlighting particularly slow convergence rates.

Considering the difference between the tails of the true function and the PCE to the upper 1% fractile,
in some cases non monotonic convergence are observed: for some non-gaussian random variables increasing
the number of terms may not improve the distribution tails making the use of the PCE approaches risky
for reliability analysis. Moreover, the authors in [FG07] provide mathematical proofs showing that higher-
order statistical moments (i.e., greater than two) computed using homogeneous hermitian PCE may not
always converge with the number of terms in the Hermite-PCE series. For example, it is shown that the
third absolute moment of the PC approximation for a lognormal random variable does converge, while
moments of order four and higher for uniform random variables do not converge. It has been previously
demonstrated through numerical study in [FJG04]) who proved that a lack of convergence in the higher-
order moments can have a profound effect on the rate of convergence of the tails of the distribution of
the PC approximation.

2.2.4.2 On the balance between computational costs and accuracy

The highest challenge consists then in the computation of the PCE coefficients. One may then have to
face many different problems:

• in high dimension, the number of terms to compute increases exponentially with the number of
variables and with the order of the PCE which may in some cases improve some metrics. This
problematic is called the “curse of dimensionality”. To tackle this issue, a special care has to be
simulatneously given to the reduction of the number of calls of the exact model in order to compute
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2.2. Spectral representation of stochastic field through Polynomial Chaos Expansion

a fixed number of coefficient, and to adapt the polynomial basis in order to only capture the basis
elements the most significant with regards to the stochastic function to be expanded.

• limited set of data or erroneous set of data introduces [RHB04] its own type of uncertainties. It is
then of paramount importance to build a PCE with regards to the data at hand and to be able to
evaluate the influence of missing and/or erroneous data on the PCE prediction capability.

2.2.5 PCE for independent non Gaussian probability measure

2.2.5.1 Variable transformation approach

It is possible to put into conformity a physical variable with a normal variable by an adequate transforma-
tion called Gaussian anamorphosis (or normal score transformation) [Wac96] or approximate parametric
transformation [DM96] but this usually decreases the convergence rate of the expansion [XK03a, XK02a].

2.2.5.2 Generalized PCE

The convergence rate (with the Wiener associated measure) is optimal (exponential) for gaussian process
only and degenerates when the probability density function describing the process goes away from the
Gaussian distribution. To address this limitation, the authors in [XK02b] and [XLSK02] propose a
generalization of the classical PCE. The generalized Polynomial Chaos Expansion (gPCE) has become
one of the mostly used metamodel in order to perform UQ. It extends the Wiener-Hermite PCE to a finite
set of non gaussian field replacing the Hermite polynomials by more appropriate orthogonal polynomials
(with respect of the corresponding measures, see table 2.2.2.2 for correspondence between orthogonal
polynomial and associated measures). In a set of papers the authors [XLSK03, XK03a, XK03b, Xiu04,
XH05, Xiu07a, Xiu09a, Xiu09b], showed (without providing mathematical proofs) that in many cases a
higher convergence rate may be obtained using the orthogonal polynomials of the Askey-scheme in lieu
of the Hermite polynomial.

However, for these generalized polynomial basis, despite the demonstration of their efficiency in many
cases no proof of convergence has been established until very recently. The authors in [EMSU12] notably
show that an arbitrary random variable with finite variance may be expanded in generalized polyno-
mial chaos expansions if the underlying probability measure is uniquely determined by its moment and
continuous giving by the way the missing theoretical insight to the gPC.

2.2.5.3 arbitrary PCE (aPCE)

Finally, arbitrary Polynomial Chaos expansion (aPC) [ON12, Rie23] proposed the construction of a PCE
basis using only the statistical moments of the random variable computed from the data at hand. It
shows that the construction of a polynomial basis of degree d needs the knowledge of a finite number
(2d) of the statistical moments of the continuous random variable to be expanded without requiring
any knowledge of a probability density function. The degree of the expansion is also required to be not
greater than the number of available sampling points. The stochastic analysis is handled using only
the data at hand, hence avoiding the subjective association of a parametric probability function to the
limited set of data. The complexity of the stochastic analysis is thus aligned with the reliability and
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2.2. Spectral representation of stochastic field through Polynomial Chaos Expansion

the detail level of the statistical information at hand. However, when limited or erroneous data sets are
available epistemic uncertainties are introduced in the model. The proposed methodology does not offer
any intrinsic property in order to assess the impact of these kind of uncertainties. External methods to
assess their impact are then proposed by the authors such as jacknife and bootstrap. Finally, the authors
highlight an improved convergence rate of this approach with regards to the gPC approach on the same
limited set of data, but no convergence proof of such an approach has been provided yet. At the current
state of the art, no work has been proposed yet in order to extend the aPC technique for correlated
random variable.

2.2.5.4 Multi-Element Generalized PCE

The previously proposed generalizations, the Hilbertian basis used for the projection of the random field
over the whole stochastic space is made of continuous polynomial functions: they do not allow to treat
non continuous probability density function. To address this limitation, the authors in [WK05, WK06a,
WK06c, WK06b] introduced Multi-Element generalized Polynomial Chaos Expansion (MEgPC) as an
extension of the gPC dedicated to the assessment of non continuous probability density function. It is
based on a decomposition of the random space into local elements, and subsequently implements gPC
locally within the individual elements. An error control has been developed for the ME-gPC in [WK09].

This methodology shows its limitation in high dimension when no other solution may exists in order
to build a partition of the stochastic space.

2.2.6 Computing the PCE coefficients in adequacy with computational ressources

Another well addressed limitation of the PCEs (Hermite, generalized, or arbitrary) appears when the
stochastic dimension increases. As shown by Eq. 2.48, when the dimension increases the number of
terms in the PCE increases exponentially and may rapidly lead to a situation where the construction of
the PCE metamodel itself may become too computationally expensive. This situation is often referred
to as an aspect of the “curse of dimensionality”. To circumvent this curse, a handfull of methodologies
are proposed in the literature proposing to retain only the number of polynomial in the expansion which
are significant to describe the response variability.

2.2.6.1 Low rank index set truncation

The most intuitive and direct approach relies on the “sparsity of effects principle”. It states that a
system is usually dominated by main effects and low-order interactions. Q-norm generalizes the classical
truncation scheme by varying 0 ≤ q ≤ 1 [BS08a]. Fig.2.3 illustrates a typical truncated index set different
for q = 0.6 and a 7th order 2-variate PCE.
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(a) q = 0.6

Figure 2.3: Illustration of Q−norm truncation with different values of the truncation parameter q for a
7th order PCE

The set of active polynomials in the PCE decomposition is decreased when q decreases. Fig.2.4(a)
illustrates the evolution of the number of 2-variate polynomial terms in linear scale against q values, and
Fig.2.4(b) shows it for an 8-variate polynomial in log scale.
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Figure 2.4: Number of polynomials terms in q-truncated PCE with regards to the q truncation parameter
for 2 and 8 variables

Having performed this a priori truncation scheme, the PCE coefficients may then be computed using
either a projection scheme exploiting the orthogonality of the PCE basis, or using a collocation scheme.
The cost reduction is done using so called “sparse approaches” were the sparsity either characterizes the
Design of Experiment (DoE) used to compute the projection coordinates of the random data on the
orthogonal polynomial basis (PCE coefficients), or the polynomial basis itself.

2.2.6.2 Adressing the curse of dimensionality using sparse approaches

Non-intrusive spectral projection The projection method uses the orthogonality property of the
polynomial basis elements on the Hilbert space of finite variance random variables, {Hα(ξ)}|α|≤P to
compute the coefficients of the expansion {γα}|α|≤P :
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2.2. Spectral representation of stochastic field through Polynomial Chaos Expansion

γα =
< y,Hα(·) >

< Hα(·),Hα(·) >
=

∫
RM y(ξ)Hα(ξ)Φ(ξ)dξ∫
RM Hα(ξ)2Hα(ξ)dξ

=
E[y(.)Hα(·)]

E[H2
α]

(2.62)

Each tensor product involves the computation of a multi-dimensional integral over the support range
of the multivariate probability measure. Let us assume that the random variables ξ = {ξ1, . . . , ξM} are
all independent standard Gaussian random variables, hence with

∏M
i=1 φ(ξi) = Φ(ξ) is a M -multivariate

standardized Gaussian probability density function obtained from the product of the M one-dimensional
standardized Gaussian probability density function.

The integral equation on the denominator is known and easy to compute in the Hermitian case:

E[H2
α] = < Hα,Hα >

=

∫

R
H2

α(ξ)Hα(ξ)dξ

=

∫

Ξ1

. . .

∫

ΞM

Ψ2
j (ξ1, . . . , ξM )φ(ξ1) . . .φ(ξM )dξ1 . . . dξM

=

∫

Ξ1

. . .

∫

ΞM

M∏

j=1

H2
αj
(ξj))φ(ξ1) . . .φ(ξM )dξ1 . . . dξM

=
M∏

j=1

∫

Ξj

H2
αj
(ξj)φ(ξj)dξj

=
M∏

j=1

αj !

(2.63)

Only the integral equation on the numerator is still to be computed
∫

RM

y(ω)Hα(ξ)dξ (2.64)

The key point is to choose the collocation points. In one dimension the choice is straight forward. A
one dimensional quadrature rule is aimed at approximating an integrand of the form

∫

R
y(ξ)φ(ξ)dξ by a

finite summand number of S terms composed by the product of “weights” {w1, . . . , wS} and of evaluations
of the output function y(ξ) at some quadrature abscissas {ξ(1), . . . , ξ(S)} ∈ R.

U(y) =
S∑

i=1

y(ξ(i))wi (2.65)

For example the Gaussian Quadrature rule abscissas are composed of the zeros of the polynomials
which are orthogonal to the probability density weighting function and referred in the Wiener-Askey
scheme. Numerous studies show that the Gaussian quadrature rule is usually the best choice.

The tensor product of one dimensional quadrature rule generalizes this approach in higher dimension.
Let ξ = {ξ1, . . . , ξM}, be a M dimensional vector and i ∈ {1, . . . ,M} an index referring to the variables
dimensions. For each dimension i, let {ξ(1)i , . . . , ξ(mi)

i } be a sequence of abscissas for quadrature on R.
For f ∈ C0(R) and n = 1 let us introduce a sequence of one dimensional quadrature operators.

U i(y) =
mi∑

j=1

y(ξij)w
i
j (2.66)
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2.2. Spectral representation of stochastic field through Polynomial Chaos Expansion

with mi ∈ N. The Gauss quadrature method allows to compute multivariate integrals by transforming
it into a weighted sum. In the M -dimension case such a weighted sum is written:

∫

RM

y(ξ)Ψj(ξ)Φ(ξ)dξ =
K∑

k1

. . .
K∑

kM

wk1 . . . wkM y(ξk1 , . . . , ξkM ) (2.67)

where {wk1 . . . wkM } and {ξk1 , . . . , ξkM } are respectively the integration weights and integration points.
The integration order K in each direction is assessed by considering the following assertion: if the response
y(ξ) was polynomial of order p the terms to be integrated (yiξ)Ψj(ξ)) would be of maximal order 2p and
a K = p+ 1 order integration scheme would give the exact solution. The integration weights and points
are computed according to the probabilistic measure considered. In this context for each direction, the
integration weights are computed in the following way:

wk =
< Hk, Hk >

H ′
k(ξk)Hk−1(ξk)

with Hk the kth order mono-variate Hermitian polynomial.

(2.68)

Considering now the integration points, it is shown that they have to be taken as the roots of the
maximal possible order (2p) monomial Hermitian polynomial appearing in the terms to be integrated.

This approach has been used in a number of recent papers notably [GS93, MH03, MK05, XK03a] and
some investigations towards an error estimation has been analyzed in [BNT07].

The main limitation of this approach is the exponential growth of the computational cost with the
number of variables. If s collocation points are chosen in each of M -dimension, the number of total
calls to the exact model is S = sM . Realizing this number of simulations becomes rapidly unfeasible
particularly when high computational efforts are demanded for one evaluation of y(ξ) and thus limit the
use of the tensor product of integration rules to lower dimensions.

Sparse approaches based on Smolyak’s algorithm In projection based approaches, the chal-
lenge consists in computing at low computational costs the integral Eq.2.64 when the number of random
variables become moderately large. Smolyak [?] proposes to consider sparse tensor product of quadrature
rules.

The Smolyak sparse grid quadrature rule is aimed at drastically reducing the number of collocation
points while preserving a high level of accuracy. It consists in tensor product of quadrature rules retaining
only those where a small number of points are used by the following rules:

For U0 = 0 and for i ≥ 1, and |i| = i1 + . . . , in, the Smolyak quadrature formula is defined by:

A(w, n) =
∑

|i|≤w+n

(∆i1 ⊗ . . .⊗∆in) (2.69)

where
∆i = U i − U i−1 (2.70)
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which may be equivalently written as:

A(w, n) =
∑

w+1≤|i|≤w+n

(−1)w+n−|i|

(
n− 1

w + n− |i|

)
(U i1 ⊗ . . .⊗ U in) (2.71)

For each level index i, the number of points considered in the one dimensional quadrature is ruled by
a growth function which may be linear or non linear:

Clenshaw-Curtis rules m =

⎧
⎨

⎩
1i = 1

2i−1 + 1i > 1
(2.72)

Gauss-Patterson rules m = 2i − 1, (2.73)

Gausisan rules m = 2i− 1. (2.74)

As an extension of this idea, [CEP12] re-examine the Smolyak’s algorithm in order to reconstruct
the coefficients that naturally corresponds to the sparse grid integration rule. The number of terms
in the obtained expansion is consistent with the number of points in the sparse grid integration rule.
The key point of the proposed approach is to separately compute the coefficients of the tensor product
polynomial expansion for each tensor grid in the sparse grid. Then, the linear combination of the tensor
weight is used to linearly combine the coefficients of each tensor expansion. This method produces a
pointwise equivalent polynomial surrogate to the one constructed from a linear combination of tensor
product Lagrange polynomial.

Cubature rules Cubature rules are specifically adapted to the computation of integrand in high
dimension. As in Eq.2.66 they aim at transforming a multi-dimensional integral in a weighted sum,
without though using the tensor structure of the multivariate stochastic space. An extensive review of
cubature rules may be found in [Coo03, Hab70]. Cubature rules are characterized by a degree “d” for
which the equation 2.66 is exact if the integrand is any multi-variate polynomials of degree at most d but
not d+1. As an example, a set of d = 2 cubature rule discussed in [Xiu07b] are generalized for arbitrary
integration domain with arbitrary probability measures. Due to the excellent consistency between the
number of polynomials in the expansion and the number of required terms, these methods may be highly
efficient for smooth (the integration degree remains quite low) high dimensional problems. However these
cubature rules may only be built using homogeneous random variables. Moreover, the interpolation
accuracy can not systematically be reduced. These limiting assumptions make them superseded in the
literature and sparse grid integration rules are preferred.

Regression approach to compute PCE parameters

Classical Collocation Approach Another scheme referred as collocation (or regression scheme)
consists in performing least squares regression on the polynomial chaos coefficients. For each design point
x, a set of S scattered data in the standardized random variable space Ξ = {ξ(1), . . . , ξ(S)} are sampled.
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Then on each of these points the mechanical model (high fidelity simulations) PCE coefficients γ are
obtained by minimizing the least square residual ϵLS

ϵLS =

∥∥∥∥∥∥∥∥

⎧
⎪⎪⎨

⎪⎪⎩

y(ω1)
...

y(ωS)

⎫
⎪⎪⎬

⎪⎪⎭
−

⎡

⎢⎢⎣

H1(ξ(1)) · · · Hj(ξ
(1))

...
...

H1(ξ
(S)) · · · Hj(ξ

(S))

⎤

⎥⎥⎦

⎧
⎪⎪⎨

⎪⎪⎩

γ1
...
γj

⎫
⎪⎪⎬

⎪⎪⎭

∥∥∥∥∥∥∥∥

2

. (2.75)

It has to be noticed that the results issued from the collocation method is quite sensible to the samples
configuration of DOE points: for different sampling, different accuracies on the output can be obtained.
Moreover, the number of sampling points taken to solve the system, also influences the accuracy on the
outputs. An empirical rule shows that the number of numerical experiments Q giving the best accuracy
has to be chosen such as Q ≈ (M − 1)× P ([BSL06b]).

Improved Collocation method Collocation methods can be improved by performing a smarter
sampling of the collocation points [BSL06a]. Another alternative for the choice of the collocation points
consists in constructing them from the roots of the P + 1th order mono-variate Hermitian polynomial,
where P is the maximal order of the polynomial chaos. Having constructed the M -uplets formed by all
the possible combinations of the P + 1 roots for each stochastic variables ξ, only P of them are chosen
to solve the system. As ξ follows a multi-normal standardized gaussian distribution, the P M -uplets
retained are those with the smallest norm . The number of optimal roots to consider in each direction
is an open research issue, but the results by Berveiller and al. suggest that this collocation approach
provide a number of collocation point which is more consistent with the number of terms in the PCE
than the classical one.

Sparse approaches based on model selection techniques Another method proposed by the au-
thors in [BS08b, BS, BS11] uses model selection techniques (Least Angle Regressions schemes [EHJT04a,
EHJT04b, HTF09, HCMF08]) to efficiently select the most relevant polynomial basis elements of the full
polynomial chaos expansion. The combination of these methods are particularly interesting since they
may be use to build iteratively a sparse polynomial chaos metamodel using a small number approximation.
By “small”, the authors the authors mean not greater than the number of terms in the expansion, or even
possibly significantly smaller. The selection of the most "relevant" polynomials coefficients are performed
using statistical correlation measures between the current models and the exact models evaluated on a
reference population of small size. The authors also build an adaptive algorithm to stop adding terms in
the polynomial expansion when overfitting is detected. This algorithm is applied to a rigid frame with 21
stochastic variables. The LARS adaptive algorithm is used to build a sparse polynomial representation
of the displacement of the structure. [HCMF08]

2.2.6.3 Adressing the limited number and erroneous training data

An alternative approach to compute the PCE coefficients, is to characterize them as a random variables.
Some approaches have been developed in very recent years in the literature tackling this problem most
of the time in an intrusive manner. A very interesting feature of this proposed approach is that they set
the computation of the PCE coefficients as a stochastic inverse problem. The coefficients of the PCE are
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seen as random variables. Following the same idea as for aPC, classical direct methods for (maximum
likelihood, maximum entropy, Bayes’ theorem) are applied in order to assess the most probable values of
these coefficients with regards to the data at hand. This approach has been investigated in the framework
of stochastic inverse problem where the characteristics of random fields have to be identified using some
of their realizations. Most of the time the complexity of the random data of interest is reduced using the
KL decomposition:

y(ω) =
n∑

i=1

κ(i)(ω)φi. (2.76)

The random variables κ = {κ1, . . . ,κn} are then expanded onto a PCE leading to the following
approximation:

y(ω) = ȳ +
n∑

i=1

⎛

⎝
P∑

αi,|αi|=1

γαiΨαi(ξ)

⎞

⎠φi. (2.77)

The coefficients to be identified and seen as random variables are the Γ = {γ}ni=1. In a set of papers,
[DGS+05b, DGS06, DSG+06, DSG07] investigate the use of the maximum likelihood in order to identify
the coefficients Γ of the reduced PCE expansion . The likelihood function is then written as a function
of the coefficients:

L(Γ) =
N∏

i=1

pκ(κ
(i)|Γ) (2.78)

where Γ = {γα, |α| ≤ q}. Then identifying the γ set of coefficients lead to the maximization of L(γ):

Γ∗ = argmax
Γ

L(Γ). (2.79)

The authors in [DGS+05b] propose the use of the characteristic function to describe each probability
density function. Such a methodology may be costly in high dimension and is not always applicable. In
a general way, the computation of the probabilities involve Monte Carlo simulations, thus high computa-
tional costs. Moreover, another issue consists in performing efficiently the optimization problem on the
likelihood function. The authors in [PSBP07, PFS10, BSS07] specially address these issues.

To circumvent this issue, an alternative method has been proposed quite recently and encounter a
growing success. It consists in considering the Bayesian approach in order to estimate the posterior
probability of the coefficients knowing some evaluation of the κ variables. The Bayes’ rule is used:

p(γ|y) = p(y|γ)pγ(γ)∫
p(y|γ)pγ(γ)dγ

(2.80)

p(γ|y) ∝ p(y|γ)pγ(γ) (2.81)

where p(γ|y) is the posterior distribution of the parameters values (obtained after having observed
the data), p(y|γ) = L(γ) is the likelihood function and pγ(γ) is the prior probability density function
(obtained before having observed the data) of the parameters values.

The full characterization of the posterior probability density function allows to investigate the impact
of data limitations associated with the calibration of parameters on the overall predictive accuracy of the
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PCE. Moreover, the Gaussian variables of the PC basis may be seen as the part of the approximation
modeling the aleatory uncertainty, as the random PC coefficients represent the epistemic uncertainty.

If no information is available on the set of γ coefficients, the prior distribution pγ(γ) a non-informative
probability distribution [AGS10] may be arbitrary defined. As usual, the likelihood

L(γ) =
n∏

j=1

pκ(κ
(j)|γ) (2.82)

may be performed using Monte Carlo simulation or more efficiently using the kernel density method
[Sco09]. This framework has firstly been proposed in [GD06] and further developed in [AGS10, MDMV12,
BSS10].

2.2.6.4 Adressing simultaneously the two problematics

Finally, [Soi10b, SD10] proposes a general framework based on the stochastic identification of the PCE
coefficients of a reduced random field expansion aiming at extending the originally proposed approach
to high-dimension (several millions of coefficients) polynomial chaos expansions with random coefficients
for non-Gaussian tensor-valued random fields using partial and limited experimental data. The proposed
methodology consists in the following steps:

• introducing a family of prior probability models,

• identifying an optimal prior model in the constructed family using the experimental data,

• constructing a statistical reduced order optimal prior model,

• constructing the polynomial chaos expansion with deterministic vector-valued coefficients of the
reduced order optimal prior model and finally,

• constructing the probability distribution of random coefficients of the polynomial chaos expansion
and identifying the parameters using experimental data.

2.2.7 Why is PCE efficient to perform UQ analysis?

2.2.7.1 PCE for robust design

Having computed the set of PC coefficients, a number of convenient analytical features allows to make
the use of these techniques particularly attractive for global and local sensitivity analysis, and design
under uncertainty in a general way. In fact, the analytical moments of the responses may be obtained in
closed form:

E[y(ω)] =
∑

α,|α|≤P

E[γαHα(ξ)] = γ0

σ2[y(ω)] =
∑

α,|α|≤P

E[γαHα(ξ)]
2 − E[y(ω)]2 =

∑

α,|α|≤P

γ2
αE[H2]

(2.83)

Local sensitivity analysis Introducing non probabilistic variables such as design variable for example
gives the following expression:
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y(ξ) ≈
∑

α,|α|≤P

γα(x)Hα(ξ) (2.84)

The sensitivity of the mean and variance responses may be obtained:

dµ

dx
=

d

dx
γ0(x) (2.85)

dσ2

dx
=

∑

α,|α|≤P

d

dx
γα(x)

2 (2.86)

where d
dxγα is defined as (the theorem of uniform convergence being verified):

d

dx
γα =

< dy
dx ,Hα >

< H2
α >

(2.87)

Due to the independence property, the coefficients computed in the last equation may be interpreted
either as the nonprobabilistic sensitivities of the chaos coefficients for the response expansion, or as the
chaos coefficients of an expansion for the nonprobabilistic sensitivities of the response. The resulting
expansion are valid only for a particular set of nonprobabilistic variables and must be in a first approach
computed again each time the nonprobabilistic variable are modified.

Another alternative to compute local sensitivities consists in building the stochastic expansion over
both stochastic ξ and deterministic x variables. Considering a bounded domain xupper bound ≤ x ≤
xlower bound with no probabilistic content the PCE expansion then becomes:

y(x,ω) ≈
∑

α,|α|≤P

γαHα(x, ξ) (2.88)

where Ψ may be built over the tensor product of optimal orthogonal polynomials with regards to the
probability measure for each component of ξ and by Legendre polynomial (orthogonal with respect to
the uniform distribution) for each component of x. In this case, the statistical moment of interest are
computed using the scalar product only on the probabilistic variables:

E[y]ξ(x) =
∑

α,|α|≤P

γαEξ[Hα(ξ,x)]

σ2[y]ξ(x) =
∑

α,|α|≤P

Eξ[Ψi(ξ,x)γi]
2 − Eξ[y(ξ,x)]

2
(2.89)

Considering this approach one advantage is that the obtained expansion is valid for the full nonproba-
bilistic variable range and the sensitivity of the statistical moment does not need the sensitivity of the
response to be computed. However, by adding another type of variable, the dimension of the PCE is
increased which makes its construction more computationally expensive.

2.2.7.2 PCE for sensitivity study

Global sensitivity analysis Recent work from [Sud08] and [CLMM09] introduces the use of PCE to
perform global sensitivity analysis. Two types of methodologies are exposed in the literature.
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• The regression based methods based on a linear regression of the output random vector on the
output vector. Among these methodologies, one may count the Pearson correlation coefficient and
the Partial Correlation Coefficient. These are useful to quantify the effect of random input onto
the random output if the stochastic model is nearly linear, but fails when in most of the case when
the model is non linear.

• The variance based methodologies are more general. Broadly speaking they are based on a decom-
position of the variance of the output of interest into summands

First of all let us give an overview of the Sobol decomposition. We consider ξ = {ξ1, . . . , ξM} ∈
RM , M independent identically distributed random variables and y(ξ) an output function. The Sobol
decomposition of the y function is given by:

ySOBOL(ξ) =
∑

u⊆{1,2,...,M}

yu(ξu), (2.90)

where u is a set of integers, ξu = (ξu1
, . . . , ξus

) with s=card(u). This summand counts 2M ele-
ments. Each of the terms of this summand (except the mean value y0 = ȳ) verifies for any ξui

the
following property:

∫
Ω yu(ξu)p(ξi)dξi = 0 ∀u ∋ i which implies the orthogonality of the functions yu:

∫
ΩM yu(ξu)yv(ξv)p(ξ)dξ = 0, ∀u ̸= v and thus the uniqueness of the Sobol decomposition. Each Sobol

function yu may be computed according to:

yu(ξu) =

∫

RM−|u|
y(ξ)p(ξ∼u)dξ∼u −

∑

v⊂u
v ̸=u

yv(ξv) (2.91)

where ξ∼u denotes the ξ vector without the u components.
We denote y0 the mean of the output y, V the total variance of the output y,

V =

∫

RM

y2(ξ)p(ξ)dξ − ȳ2 (2.92)

and Vu the conditional variances of the Sobol functions yu.

Vu =

∫

Rs

y2u(ξu)p(ξu)dξu (2.93)

Thanks to the orthogonality of the decomposition, we have:

V =
∑

u⊆{1,2,...,M}
u ̸=∅

Vu (2.94)

The Sobol sensitivity indices are then defined as:

Su =
Vu

V
(2.95)
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with the following property: ∑

u⊆{1,2,...,M}
u ̸=∅

Vu = V. (2.96)

Su denotes the s-order sensitivity index where s=card(u) and measures the sensitivity of the variance
of y due only to the interactions of the variables ξu. One may count 2M − 1 sensitivity indices. As this
number may increase rapidly with the number of variable, one defined the total sensitivity indices STi

by:
STi =

∑

u∋i

Su. (2.97)

These express the total sensitivity of the variance of y due to the variable ξi alone, and all its interaction
with the other variables.

To compute the Sobol indices sampling methods may be used but rapidly become unaffordable.
Moreover one may exhibit a straightforward relationship between the polynomial chaos coefficients and
the Sobol indices [Sud08]. In fact, due to the orthogonality property of the {Ψ}P−1

i=0 the total variance D

may be approximated by:

V =

∫

RM

y2(ξ)p(ξ)dξ − ȳ2 =
∑

α,|α|≤P

γ2
αE[H2

α] (2.98)

The Sobol decomposition of y is approximated by the Sobol decomposition of yPCE. The elements
yPCE
u of the Sobol decomposition of yPCE may be simply obtained by:

yPCE
u (ξu) =

∑

β∈βu

γβHβ(ξu) (2.99)

where the selected indices are

βu = {β ∈ {1, . . . , P},Hβ(ξ) =
s∏

i=1

Hαβ
i
(ξui),α

β
i > 0} (2.100)

The approximated conditional variances may then be expressed as:

Ṽu =
∑

β∈βu

γ2
βE[H2

β ] (2.101)

and thus the sensitivity indices as:

Su ≈ S̃u =

∑
β∈βu

γ2
βE[H2

β ]
∑P

β=1 γ
2
βE[H2

β ]
(2.102)

2.2.7.3 PCE for reliability study

As mentioned earlier, the PCE is not of suitable used to approximate distribution tails and thus may
be adapted in order to compute low probability of failure. Different strategies have been adopted in
order to adapt the PCE to the computation of small probabilites. A first attempt has been proposed by
the authors in [Gha91, Gha99b] to sample the orthogonal residuals in order to improve the prediction
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accuracy of the distribution tails. As a first step [PW07] proposes the use of an adapted PCE to the
computation of the failure probability. It defines two methodologies: a “shifted” PCE and a “windowed”
PCE inspired from the space discretization in ME-gPC.

2.2.8 An open issue: Extension to correlated non Gaussian random variables

The polynomial chaos expansion extends the random process of interest on a set of polynomials depending
on standards random variables. However the observed random variables (denoted ξobs) are usually not
standards and may be correlated. One may then transform the random variable into standard non
correlated random variables and apply the stochastic expansion into the transformed probability space.
Two alternatives are briefly formulated.

One alternative consists in numerically generating optimal orthogonal polynomials and to compute
their Gauss points and weights using one of the approaches described in the literature. These approaches
produce optimal orthogonal polynomials for an arbitrary probability density function, but a gap in theo-
retical advances stays wide open concerning the assessment of joint probability distributions of correlated
random variables with arbitrary probability density functions.

Another alternative consists in using an non-linear transformation in order to transform non-normal
correlated distributions on normal independent distributions. These transformations are usually non
linear. Among them one may count, the Nataf transformation, the Rosenblatt transformation, and the
Box-Cox transformation.

The input of the Nataf transformation are the marginal density functions and the correlation matrix, it
does not need the knowledge of the joint probability density function. The traditional Nataf distribution
may be applied if and only if the copula relative to the random variables ξ1, . . . , ξM is normal. However,
a generalized Nataf transform has been defined and relax the condition on the copula to the elliptical
cases.

The Rosenblatt transformation does not require any condition on the copula type of the random
variables but requires the knowledge of the cumulative distribution of conditional random variables,
which is usually not provided. The (generalized-)Nataf transformation is more suitable for the common
case.

Finally a last alternative has been proposed by [SG04] to generalize the polynomial chaos expansion.
It proposes a theoretical insight to construct multivariate orthogonal basis when the ξ variables are
dependent. In this case, L2(RM , dpRM ) has no more a tensor product structure.

2.3 Conclusion

This chapter offered an overview of the different categories of approaches developed in the literature in
order to quantify the impact of uncertainties. A special focus has been provided on the efficient use of the
Polynomial Chaos Expansion in Uncertainty Quantification in a probabilistic and non-intrusive frame-
work. Since the preliminary work of Wiener on the homogenous Hermite PCE many developments have
been made in order to alleviate some of its initial limitations. (Multi-Element) generalized Polynomial
Chaos and arbitrary Polynomial Chaos Expansion mainly addresses the issue of the approximation of
non smooth stochastic behaviors exploiting the flexibility in the choice of the polynomial basis. Sparse
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approaches based on adaptive strategies investigates the computational cost of the construction of the
PCE in high dimensional space aiming at circumventing the curse of dimensionality. Based on the spar-
sity of effect principle, these strategies aimed at identifying in the expansion terms that are the most
significant with regards to the response variability. Finally, an emerging set of methodologies consists in
considering the coefficients of the PCE themselves as random variable and to identify them by solving
an inverse stochastic problem. These approaches notably allows to quantify the impact of missing data
on the accuracy of the produced expansion. Significant contributions within this approach also allows to
tackle high dimensional problems. This chapter also points out the limitations of these methodologies
opening the way to future work. An open issue has still to be addressed concerning the spectral repre-
sentation of correlated random variables. A way to deal with this limitation would be to consider the
tensor decomposition of high-dimensional stochastic fields [GNLC13].
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Chapter 3

A physics-based metamodel approach
for springback variability assessment

In this chapter, we address the stochastic analysis of the U-shaped deep drawing process of a metal sheet
using a regression based Polynomial Chaos approach. In this context, very small perturbations of the
input variables provide the regression points used to build the PCE. We show that a careful attention
has to be paid to the resolution 5 of the “high-fidelity” model used to produce those points. In the
following, the resolution of the model is of the same order of magnitude than the range of variation of the
stochastic variable. We show in this case, that one possible solution to perform the stochastic analysis,
consists in defining an intermediate surrogate model. We here consider a physics based metamodel which
highlights two advantages. The first one, is to improve the model resolution, and the second one, is to be
less computationally costly. This model may then be used in order to build a Polynomial Chaos of the
response.

5The resolution of a model has been defined on p.8.
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Abstract In this study, we show that stochastic analysis of
metal forming process requires both a high precision and
low cost numerical models in order to take into account very
small perturbations on inputs (physical as well as process
parameters) and to allow for numerous repeated analysis in
a reasonable time. To this end, an original semi-analytical
model dedicated to plain strain deep drawing based on a
Bending-Under-Tension numerical model (B-U-T model) is
used to accurately predict the influence of small random per-
turbations around a nominal solution estimated with a full
scale Finite Element Model (FEM). We introduce a custom
sparse variant of the Polynomial Chaos Expansion (PCE) to
model the propagation of uncertainties through this model
at low computational cost. Next, we apply this methodol-
ogy to the deep drawing process of U-shaped metal sheet
considering up to 8 random variables.

Keywords Springback variability assessment · Sparse
polynomial chaos expansion · Semi-analytical
bending-under-tension model

Introduction

In order to accurately assess the springback variability of
a formed metal sheet one has to take into account uncer-
tainties linked with the deep drawing process (blank-holder
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forces, tool radius tolerances, punch speed, etc.) as well as
those linked with the physical model parameters (material
properties, thickness of the metal sheet, etc.). The assess-
ment of the final springback shape variability relies on the
combination of two numerical tools: a numerical model
of the deep drawing process and a stochastic process to
propagate the uncertainties into this model.

In the context of variability study, the numerical model
has to be computed for very small variations of the input
parameters. Comparing the model error with the variation
magnitude of the output function is of paramount impor-
tance to ensure the validity of the variability study. The
Finite Element Method (FEM) is a standard tool to con-
struct the numerical model which is used consequently to
perform sensitivity analysis on springback of sheet metal
forming [1] or to perform reliability analysis (coupled to
classical reliability methodology) of the deep drawing pro-
cess [2]. However, the FEM shows important limitations
regarding the variability issues. First of all, to model the
highly non-linear phenomena involved (large strains, plas-
ticity, frictional contact, etc.) with a high sufficient accuracy
for small variations of the input parameters, the model has
to be refined in every direction (decreasing the mesh size
while preserving a good enough aspect ratio and increas-
ing the number of integration points). This rapidly leads
to unaffordable computational costs, specially when a high
number of calls is needed. To circumvent this cost issue,
alternative approaches have been proposed: in a sensibility
analysis context using an analytical model of the springback
[3]; in an optimization context using a “one step” inverse
approach for the analysis and optimum process design of
deep drawn industrial metal part [4], this model is also
used in [5] to train a Moving Least Square surrogate to
efficiently perform the optimization. A second limitation is
that FEM generates intrinsic errors such as a discretization
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error (due to mesh size) and computational errors (round-
off, quadrature, ...) [6] (page 93). Contact description and
through-thickness integration may play a leading role [7].

Common computational methods propagate the uncer-
tainties defined on the random parameters to the shape of the
formed metal sheet based on a sampling of the random input
parameters (Monte Carlo simulation, Importance Sampling,
etc.) and thus require a relatively high number of calls to
the underlying computational model. The authors in [3] use
Monte Carlo simulations to perform a sensitivity analysis
of the springback with regards to process parameters, [2]
and [8] use FORM methodology coupled with an enhanced
adaptive Monte Carlo methodology to assess the reliability
of the deep drawing process. The use of stochastic meta-
models combined with advanced sampling methods offers
an alternative to the crude sampling methods. The authors
in [9] proposes the use of linear and quadratic response sur-
faces combined with Monte Carlo Simulation to perform
the reliability assessment of sheet metal forming process. In
[10], a second order Polynomial Chaos Expansion (PCE) is
used as a stochastic response surface to assess the reliability
of the formed metal sheet with regards to tolerance criteria.
Howewer, in these studies, the number of random variables
taken into account by the stochastic response surface is
limited.

In this paper, we propose an original two-pronged
approach to accurately propagate the uncertainties into a
“high resolution” model at low computational cost. Our
approach is based on a combination of a stochastic surrogate
(PCE) and a physics-based Reduced Order Model (ROM).
We demonstrate, that in the case of variability study, as the
order of magnitude of the variation range decreases the full
scale model prediction becomes unstable. We investigate
then regularization features of a “high resolution” physics
based ROM, allowing us to reach numerical stability for
smaller variations of the input variables. Then, a stochastic
surrogate model is trained on the full parameter variation
range and it is then used to perform the variability study at
low computational cost.

In the second section, we introduce the Polynomial
Chaos Expansion (PCE) as a stochastic response surface
for the uncertainty propagation. We highlight the need of a
numerical model characterized by a high precision for small
perturbations of the input variables as well as low com-
putational cost. The third section quantifies the limitations
of the FEM modeling with regards to the variability prob-
lematic by considering “very” small variations of the input
parameters around a nominal value. The two following sec-
tions introduce the ingredients of the proposed approach: the
semi-analytical deep drawing model based on a plain strain
Bending-Under-Tension model (denoted semi-analytical B-
U-T in the sequel) and the sparse custom version of the
PCE (inspired from [11]) for an enhanced accuracy of the

variability study at low computational cost. The fourth sec-
tion introduces the semi-analytical B-U-T and shows how
it allows to alleviate the FEM limitations by side stepping
the main numerical noise sources (contact description and
through-thickness integration). The fifth section discusses
a custom sparse version of the PCE, putting into evidence
the need to create a sparse polynomial chaos expansion
when the number of random variables increases. Finally,
the sixth section of the paper illustrates the methodology
on the deep drawing process of U-shaped metal sheet with
8 random variables to assess the variability of the spring-
back shape parameters considering a relatively large number
of random variables chosen among the most influential
ones [1, 10].

Assessing the springback variability using polynomial
chaos expansion

The purpose of this paragraph is to provide the necessary
evidence for the following rather than giving a compre-
hensive introduction to the PCE which may be found in
[12, 13].

The PCE is a stochastic metamodel, that is intended to
give an intrinsic representation of the stochastic behavior of
a function y (scalar random variable) that is defined as a
function of an input random vector ξ = {ξ1, ξ2, . . . , ξM }
with M coordinates and with prescribed probability density
function fξ (ξ) [14]. Its accuracy to predict the variabil-
ity of the scalar output function y highly depends on the
underlying “high fidelity model”.

Building the multi-variate Hermitian PCE

Assuming that ξ has independent Gaussian components and
that y is a second order random variable (E[y2] < ∞), then
according to the Cameron Martin theorem, generalized in
M dimensions [15] an exact PCE of y is given by

y(ξ) =
∞∑

j=0

γj#j (ξ), (1)

where {#j (ξ), j = 0, 1, . . . , ∞} are the multivariate poly-
nomials orthogonal with respect to the natural inner product

< #k, #l >=
∫

#k(ξ)#l (ξ)

M∏

i=1

fξi (ξi )dξi (2)

with fξi (ξi ) the marginal distribution of the ith component
of the random vector ξ .

For M independent Gaussian random variables, multi-
variate Hermitian polynomials exhibit the orthogonality
property. Given a degree N , the multi-variate set of MN+1
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Hermitian polynomials are built using the tensor product
of mono-variate Hermitian polynomials. Practically, only a
finite P < MN+1 number of terms is retained yielding to
the reduced expansion

y(ξ) ≈
P−1∑

j=0

γj#j (ξ), (3)

where

P = (N + M)!
N !M! . (4)

In order to properly interpret the sparse PCE algorithm,
an appropriate scheme for numbering the multi-variate poly-
nomials of degree d ≤ N needs to be introduced. The
scheme used is illustrated in Table 1 on an example of a 3rd

order Hermitian multi-variate PCE with 2 random variables
ξ1 and ξ2.

Computing the coefficients of the multi-variate PCE

The PCE accuracy highly depends on the precise com-
putation of its P coefficients. An intrusive Galerkin type
approach has been first proposed by [14]. Projections based
non-intrusive methods take benefit from the orthogonal
properties of the multivariate polynomials of the expansion.
Equivalent stochastic collocation is based on a Lagrangian
interpolation in the stochastic space [16]. These methods are
the most accurate but also become rapidly unaffordable in
relatievly high dimensions.

The regression based approach (emphasized in this
paper) consists in finding the best set of PCE coefficients
γ = [γ0, . . . , γP−1] by minimizing the residual error in the
least square sense:

γ = argmin(∥y(ξ ) − #(ξ)γ ⊤∥2) (5)

yielding to

γ = (#(ξ)#(ξ)⊤)−1#(ξ)y(ξ) (6)

Table 1 Illustration of the numbering scheme used for a 3rd order
PCE with 2 random variables

Bi-variate monomials #(ξ1, ξ2)

1 ξ2 ξ2
2 − 1 ξ3

2 − 3ξ2

ξ1 ξ1ξ2 ξ1
(
ξ2

2 − 1
)

ξ2
1 − 1

(
ξ2

1 − 1
)
ξ2

ξ3
1 − 3ξ1

Corresponding number of #

0 2 3 6

1 4 7

5 8

9

where

y =
[
y(ξ (1)), . . . , y(ξ (Q))

]⊤
, (7)

# =

⎡

⎢⎣
#0(ξ

(1)) . . . #P−1(ξ
(1))

...
...

#0(ξ
(Q)) . . . #P−1(ξ

(Q))

⎤

⎥⎦ (8)

with ξ (i), i ∈ {1, ..., Q} representing Q > P samples of the
M dimensional random vector ξ . These samples are gener-
ated using a Q sized M dimensional standard normal LHS
sampling.

The optimal Q number of samples needed to assess the
coefficients with a good accuracy is still an open research
area, but an empirical rule proposes Q ≥ (M − 1) × P

[17]. Once the set of P coefficients {γ0, ..., γP −1} has been
determined, one may compute the statistical moments of y

analytically avoiding Monte Carlo simulations. The first two
moments are given by:

E(y) =γ0 (9)

σ 2(y) =
P−1∑

j=1

E
(
#2

j

)
γ 2
j (10)

For an accurate assessment of the statistical moments, a
special attention has to be given to the computations of the
P coefficients (9, 10). Thus, according to Eq. 6, the under-
lying model has to be as accurate as possible. Moreover,
computing the whole set of coefficients may require a high
number of calls Q = (M−1)×P to the underlying model as
P (4) increases exponentially with the number of variables
M and the degree N .

In the following section we introduce a test case and
we quantify the precision requirements for the simulation
model. We show that using typical FEM simulations may
lead to inaccurate results for a reasonable computational
cost when small perturbations are involved.

Inpact of through-thickness integration
on the springback prediction

Test case

To illustrate the issue of model variability with regards
to small perturbations, we choose to model a 2D deep
drawn U-shaped metal sheet. The example used here corre-
sponds to the B3 benchmark test proposed in the conference
Numisheet ’93 [18] (blank made of mild steel, blank holder
force = 2.45 kN). We propose here to use the legacy soft-
ware ABAQUS v6.10. The model we use is directly based
on the implemented example [19].

The Fig. 1 gives the overall geometrical configuration of
the deep drawing process.
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Fig. 1 Geometrical configuration of the modeled Numisheet’93
benchmark (values in mm)

The problem is symmetric (Fig. 1), thus only a half
structure is modeled using appropriate symmetry boundary
conditions. The blank is modeled using a single row of 175
first-order shell elements (S4R) with Simpson integration
rules (7 integration points across the thickness). As the prob-
lem is essentially in plane strain state (the width of the blank
is 35 mm and its thickness nominal value is 0.8 mm), cor-
responding boundary conditions are applied on each node.
The blank is made of mild steel modeled as an elastic-
plastic material. Isotropic elasticity and the Hill 48 [20]
anisotropic yield criterion for the plasticity are considered.
The following values are used:

– Young’s modulus: 206 GPa,
– Poisson’s ratio: 0.3,
– Yield strength: 167 MPa,
– Anisotropic yield criterion: r00 = 1.79, r45 = 1.51,

r90 = 2.27.

The tools (punch, blank holder and die) are modeled as
rigid body surfaces. The contact occurring during forming
phase is modeled using contact pairs.

The punch velocity is taken here as 15 m/s and its dis-
placement is s = 70 mm. The blank holder force is defined
as Fb = 2.45 kN and a mass of 5 kg is attached.

The whole deep drawing process is simulated in two
steps. The forming phase is modeled using the common
dynamic explicit approach to solve the problem in a rea-
sonable computational time. During this period, the blank
holder force is applied with a smooth ramp to minimize the
inertia effect and the punch velocity using a triangle step
definition starting and ending with 0 velocity and reaching
the 15 m/s with the half run.

To investigate the sensitivity limit of this model, we
choose to uniformly vary the thickness of the blank from
0.7 mm to 0.9 mm with an 0.002 mm increment size. For
each thickness value the springback shape parameters, the
curvature ρ, the angles β1 and β2 are measured as shown in
Fig. 2.

Fig. 2 Definition of springback parameters, ρ, β1 and β2

The results of the simulations are depicted in Fig. 3 for 7
integration points across the thickness.

The observed responses (Fig. 3(left)) highlight numer-
ical instabilities for small variations (0.04 mm) of the
thickness parameter. A deeper insight into the sensibilities
(Fig. 3(right)) shows that the model may be used for thick-
ness variations up to an order of 'x ≈ 10−5m which is
insufficient to perform a variability study. Moreover, to per-
form a variability study, an unaffordable number of calls to
the fine FEM model may be necessary.

Investigation on the numerical instability on FEM modeling

We model a section of the metal sheet submitted to a typical
2D deep drawing process undergoing bending-unbending
loading path and focus on the in-plane stress σt t distribution
across the thickness.

When increasing the number of integration points across
the thickness, the in-plane stress σt t profile through the
section reaches numerical convergence shown in figure
Fig. 4(left) when the number of integration points through
the section is increased from 2 to around 200 (Fig. 4(right)).
The convergence is assessed using the following mean
square error

Err =
∑I

i=1
(
σi − σ ref

i

)2

∑I
i=1

(
σ ref

i

)2 , (11)

where I is the number of integration points and σ ref
i cor-

responds to the stress profile obtained with 200 integration
points through the section.

This conclusion is in conformity with [7] where adap-
tive integration was investigated reducing the number of
integration points (from 50 to 11). Moreover, among other
numerical instability sources one may identify the coarsity
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Fig. 3 Numerical instability for
FEM simulations of the deep
drawing process of 2-D
U-shaped metal sheet under
small variations of the thickness
(m). On the left side, the
obtained responses are depicted,
as on the right side the
numerical sensitivities of the
model with regards to different
order of magnitude of thickness
variation is plotted

of the mesh. To reach a higher accuracy, the mesh of the
FEM model has to be refined in every direction (preserving
the same aspect ratio). Another limitation to FEM simu-
lations of deep drawing process is contact modeling, also
known to induce a non negligible numerical noise and low
convergence rates. This leads to the conclusion that using
a full scale refined FEM model to perform the variability
study becomes rapidly unaffordable.

In the following two sections we successively describe
the two ingredients of the proposed two-pronged approach:
the semi-analytical B-U-T model (introduced in [21]) to
alleviate the main FEM limitations for small variations
of input parameters, and the sparse PCE to propagate the
uncertainties at low computational cost.

A semi-analytical bending-under-tension model
for deep drawing applications

In this section, we describe the first ingredient of the two-
pronged approach, namely, the physics based reduced order
model. We choose a semi-analytical approach introduced
in [21] based on a B-U-T model, and highlight how it
decreases numerical instabilities while preserving a reason-
able precision and low computational costs.

Semi-analytical bending-under-tension model (B-U-T)

The semi-analytical B-U-T model considers the deep draw-
ing process of a 2D U-shaped metal sheet as a 2D plain

Fig. 4 Evolution of the stress
across the section for different
number of integration points
(thickness 0.8 mm)
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Fig. 5 Finite element description of one slice of the metal sheet

strain Bending-Under-Tension (B-U-T) forming process
with negligible shear stress (the width of the sheet being
sufficiently large). It is based on a semi-analytical numeri-
cal approach which combined an analytical approach with
finite element modeling taking benefit from material laws
independence and avoiding time consuming and low con-
vergence issues such as contact modeling and high number
of degrees of freedom. This model may be constructed in
three steps [21]:

1. The first step consists in identifying a finite (usually
small) number of regions of the metal sheet with an
homogeneous loading state in the length direction. For
the U-shaped sheet (as shown in the Fig. 5(left)) 5
regions are identified. Knowing the behavior of a single
typical section of one of these regions is sufficient to
deduce the behavior of the whole region as the loading
state is supposed homogeneous in each region. This sec-
tion (or slice) may be modeled by a handful of 2D/3D
solid element or even a single shell element as shown in
Fig. 5.

2. The second step consists in defining the loading path
that the region is subjected to and to divide it into a
sequence of loading states. For each sequence, particu-
lar boundary conditions are automatically applied (the
reader is invited to refer to [21] for more details on the
boundary conditions for each loading state.).

3. Finally, in the last step the whole model is integrated
and the springback shape is reconstructed.

Assessment of the numerical noise in the springback shape
parameters

Considering the semi-analytical B-U-T model, only very
few finite elements are needed to model the deep drawing
and springback phases. Moreover, the contact modeling of
metal sheet with the punch and/or with the die does not
induce numerical noise: the contact is modeled using an
analytical uniform pressure applied on the lower or upper
side of each slice. In this semi-analytical model no friction
is directly applied, but its main effect, the induced tensile
force, is taken into account [21]. To highlight the influ-
ence of the through-thickness integration, we use the B-U-T
model with the configuration described in Table 2 and com-
pare the springback shape parameters obtained for small
variations of the thickness.

The same range of thickness values as in Fig. 3 is
considered. Four nodes plate elements model each slice
of the B-U-T model. P10, P50, P400 plates use respec-
tively 10, 50, 400 integration points across the sections. As
shown in Fig. 6, the through-thickness integration noise is
non-negligible for the B-U-T model. For a large range of
variation, numerical instabilities may be observed using 10
integration points, and a smooth response may be observed

Table 2 Geometrical, material,
loading and contact parameter
of the U-shaped B-U-T model

Geometry Material Loading Contact

Ls 300 mm E 70.5 GPa Fb 300 kN µ 0.15

h0 0.8 mm ν 0.342 s 60 mm

Ws 1 mm ρ 2700 kg/m3

rp 10 mm H 1.5 GPa

Wd 62 mm

rd 10 mm
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Fig. 6 Evolution of ρ, β1 and β2 with regards to small thickness
variation for different numbers of through-thickness integration points
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Fig. 7 Evolution of 'ρ/'(x) with regards to different order of
magnitude of thickness variation 'x, around the nominal value of
0.8 mm

using 50 and 400 integration points. When focusing to
a smaller range of variation a smooth response is only
observed with 400 integration points.

As only one slice is considered at a time, considering
as many integrations points through the sections becomes
computationally affordable on the contrary to a full FEM.
Moreover a variability study is possible for a variation
range [10−4; 10−7] m uncovered by the refined FEM model
(Fig. 7). We thus retain the B-U-T model to construct the
custom PCE surrogate introduced in the next section.

Sparse polynomial chaos expansion approach
using least angle regression stagewise algorithm

In this section, the second ingredient of the two-pronged
approach, namely, the sparse PCE is described. When using
the regression scheme (6) in a high dimensional space,
the computational cost to compute the full PCE rapidly
becomes unaffordable. Strategies to truncate the PCE are
needed in order to reduce the number of terms by retaining
the most significant ones (Sparsity of effect principle).

Some methods inspired from model selection schemes
have been proposed to create a sparse approximation of
the PCE [11]. Among them l1 penalization methods are the
most popular. A review of these methods may be found in
[22] and also in [23]. These studies highlight that among the
great number of methods, Least Angle Regression Stage-
wise (LARS) is the most efficient method [24].

We build here a custom algorithm based on the Least
Angle Regression Stagewise.

Let us first define the J th-sparse approximation of the
output function y by:

ỹJ
A(ξ) =

∑

j∈A
γj#j (ξ) (12)

where A is a sparse index set with card(A) = J and J ≤
P . Then A only contains the set of J indices taken among
{#j , j ∈ {0, . . . , P − 1}}.

The J th residual vector is then defined as:

rJ = y − ỹJ
A (13)

and the corresponding J th correlation vector as

c̃J (ỹ) = #⊤
(

y − ỹJ
A

)
(14)

The proposed algorithm proceeds as follows:

Offline phase:

1 Build a stochastic design of experiments. Q samples
on the hypercube [0, 1]M are performed using a “space
filling” Latin Hypercube Sampling. The corresponding
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normal standard realizations are then retrieved using an
iso-probabilist transformation (using the invert multi-
variate Gaussian PDF):

ξ = {ξ (1), . . . , ξ (M)} =

⎛

⎜⎜⎝

ξ
(1)
1 ξ

(1)
2 ... ξ

(1)
M

ξ
(2)
1 ξ

(2)
2 ... ξ

(2)
M

...
...

. . .
...

ξ
(Q)
1 ξ

(Q)
2 ... ξ

(Q)
M

⎞

⎟⎟⎠

At this stage, ξ is a M-dimensional standard gaus-
sian random variable: ξ ∈ NM(0, 1) represented by
Q samples. Finally, the small random variations of the
parameters are modeled by scaling each random vari-
able to the desired means µ = [µ1, . . . , µM ] and
standard deviations σ = [σ1, . . . , σM ] according to the
probabilistic model (see Table 3 as an example). We
denote ξµ,σ , the set of random variables matching the
probabilistic models requirements.

2 For each Q − sized sample {ξ (1)
µ,σ , . . . , ξ (M)

µ,σ } the cor-
responding evaluations of the “high fidelity” model are
stored in y (7).

3 Choose an arbitrary N (high) degree PCE composed of
P orthogonal multivariate monomials {#0, #P−1}. In
the case where independent random Gaussian variables
are considered as, multivariate Hermitian polynomials
satisfy the orthogonality property (2) with regards to
the measures fξi (ξi ) = 1√

2π
e− 1

2 ξ2
i , i = 1, . . . , M .

Build the # matrix (8) by evaluating each orthogonal
multivariate monomial {#0, #P−1} on the Q − sized

sampling {ξ (1), . . . , ξ (M)}.

Online phase:

1 Initialize the coefficients γ0, ..., γP−1 = 0 which sets
the current residual r equals to y obtained in the offline
phase.

Table 3 Stochastic input normal random variables for the springback
shape parameter study

Parameters Mean Std dev

Blank thickness 0.8 mm 3 %

Young’s modulus 70.5 GPa 3 %

Yield Strength 0.180 GPa 3 %

Poisson’s ratio 0.342 3 %

Friction coefficient 1.50e-1 3 %

Radius of the punch 10 mm 3 %

Radius of the matrix 10 mm 3 %

Clamp force 600 kN 3 %

2 Compute the correlation vector c̃0 between each ele-
ment of # and y. Retain the predictor ψj∗ where j∗ =
arg max |̃c0|. The model then becomes y = γjψj =
γ ⊤

(1)ψ .
3 Update γj to γ ∗

j = γj + ϵ∗
(1), where ϵ∗

(1) is the LARS
step: at this step, another predictor ψl∗ has as much
correlation with the current residual as does ψj∗ (see
[24] for numerical computations of ϵ∗). Add ψ∗

l to the
current basis: y = γ ∗

j ψ∗ + γ ∗
l ψ∗

l = γ ⊤
(2)ψ .

4 Update jointly γ (2) = {γj∗ , γl∗} following the direction
u(2) (∥u(2)∥ = 1) defined by the joint least-square coef-
ficient on the current residual: γ ∗

(2) = γ (2) + ϵ∗
(2) × u(2).

At this step another predictor ψk is found to have much
correlation with the current residual and is added to the
model.

5 Repeat step 4 until m = min(P ; Q) predictors have
been entered or until the empirical error (15) has reached
the desired threshold.

Each step of the algorithm allows us to add one term to
the basis chosen according to its correlation with the current
residual. The best obtained model yA∗ is chosen to give a
low enough empirical error

Erremp =
E

[
(f̃A − f )2

]

σ (f )2 . (15)

Once the best model is obtained, the sparse coefficients
values are computed according to Eq. 6. If the number Q

of available simulations is too low to reach the condition
Q ≥ (M − 1) × P then the design of experiment may
be enriched and the previous algorithm run again. As all
computations are analytical, running the algorithm as many
times as necessary is considered to have a negligible cost.

The combination of LARS and PCE allows us to prop-
agate the uncertainties through the model at low computa-
tional costs. Nevertheless the accuracy of the results highly
depends on the accuracy of the “high fidelity” model which
has to be accurate for small random variations on the input
parameters.

Illustration of the two-pronged B-U-T/sparse PCE
approach

In this section, we combine the ingredients of the two-
pronged approach on the springback variability assessment
of a 2D deep drawn U-shaped metal sheet introduced in
section “Test case”. We demonstrate the validity of the pro-
posed approach firstly when a single random variable (blank
initial thickness) is considered (mono-variate case) and then
the whole probabilistic model is considered (multi-variate
case) in which the standard variation has been arbitrarily
fixed at 3 % of the mean value for each variable so that the
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variation of each variable implies a variation in the input
parameters with a comparable order of magnitude.

Mono-variate case using full PCE

As an introductory example, we consider the thickness as
the unique random normal variable (according to the first
line of Table 3) and use Hermitian PCE to assess the
stochastic behavior of the springback shape parameters ρ,
β1 and β2. As shown in Fig. 8, for each of these responses,
the convergence is reached for the mean and standard devi-
ation respectively for a PCE of order 5, 5 and 7. A 7th

order polynomial chaos expansion may be chosen for all
the responses. This expansion contains 8 terms and thus
Q = 56 calls to the model are needed to compute the whole
set of coefficients (6). Additionally, the Fig. 8 also com-
pares the values for the mean and the standard deviation
obtained using a post-treatment of the coefficients (circles)

(using the equations 9 and 10) and 104 Monte Carlo sim-
ulations (line) on the PCE surrogate. A good agreement
is observed.

The Fig. 9(left) compares the 7th order PCE surrogate to
simulations using the “high-fidelity” B-U-T model around
the nominal value of the thickness x = 8.10−4m. It shows
that the responses most affected by the thickness variation
are ρ and β1. For these responses, a good fit is observed.
Considering the response β2, a slight error may be observed
specially when comparing the responses values correspond-
ing to low probable values of the thickness. These localized
errors on non probable values have a limited influence on
the evaluation of the mean and standard deviation as noticed
in Fig. 8.

The right side of the Fig. 9 illustrates good agreement
of the probability density function obtained with 105 Monte
Carlo simulations on the PCE metamodel with the one
obtained by sampling the B-U-T model directly.

Fig. 8 Convergence in Mean and Standard deviation with regards to the polynomial degree for ρ, β1, β2
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Fig. 9 PCE approximation of ρ, β1, β2 and its corresponding p.d.f in comparison the B-U-T simulations

Multi-variate case using LARS based sparse PCE

In order to illustrate the performance of the approach for an
increasing number of variables, we consider now the full set
of normal random variables described in Table 3.

In this study, we choose an a priori N = 5th order PCE
with 8 variables yielding to P = 1287 polynomial terms.
Q = (M − 1) × P ≈ 9000 simulations would be necessary
to compute the whole set of coefficients using the collo-
cation scheme (6). We apply the LARS strategy proposed
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Fig. 10 Evolution of the empirical error when increasing the number
of PCE terms using LARS algorithm

in the previous section, with a stopping criterion on the
empirical error. We stop the algorithm when the criterion
error reaches 10−4.

The Fig. 10 exhibits the convergence rate of the empirical
error as the terms are added step by step during the LARS
procedure. The error threshold 10−4 is reached for the num-
ber of PCE terms given in the second column of the Table 4
for ρ, β1, β2.

Considering this empirical error, the Fig. 11 illustrates for
each response the retained polynomials (numbered accord-
ing to the procedure described in the first section.)

A more general insight is given in Table 5 which exhibits
the number of polynomial terms with regards to their degree
in the LARS PCE expansion. We show a posteriori that
considering this level on the empirical error, a 4th order
polynomial approximation is enough to assess the spring-
back variability of responses β1 and β2 while for ρ, only a
sparse 3rd PCE approximation is needed.

Considering the obtained histograms (using 1, 000
Monte Carlo simulations on the B-U-T model and the PCE
model) in Fig. 12 a good agreement for each response
is observed. Comparing with the obtained histograms in

Table 4 Empirical error and number of retained coefficients using
LARS procedure

Springback parameters Erremp Nb of terms

LARS Full PCE

ρ 1,042e-4 112 1287

β1 1,009e-4 381 1287

β2 1,05e-4 383 1287

1 200 400 600 800 1000 1287
PCE terms

β2

β1

ρ

Fig. 11 Representation of the sparsity of the polynomial basis after
the LARS algorithm (see section “Sparse polynomial chaos expansion
approach using least angle regression stagewise algorithm”) has been
applied for each response ρ, β1, β2. A point corresponds to the pres-
ence in the basis of one polynomial according to the numbering
scheme illustrated in Table 1

Fig. 9(left) (when only the thickness was considered as a
random variable), we note that according to our stochastic
model, the same variables ρ and β1 are the most affected by
randomness on the input parameters. Moreover, the mean
value has moved for the responses 1/ρ, β1, β2 respec-
tively from 4.36 mm−1, 100.83, 91.74 to 9.6 mm−1, 112.28,
91.11. Except for β2, whose variation range is small com-
pared to ρ and β1, considering the full stochastic model
highly affects the variability responses: the mean computed
in the mono-variate case corresponds to low probable val-
ues in the multi-variate case, and the type of the p.d.f for
these responses is highly modified. An exponential type
distribution is observed in the mono-variate case as with
the full stochastic probabilistic model, a nearly symmetric
distribution characterizes the responses variability.

Table 5 Proportion of terms sorted according to their degree in LARS
based PCE for each response ρ, β1, β2

Polynomial degree Number of terms in PCE

ρ β1 β2

0 1 1 1

1 8 6 8

2 33 28 31

3 69 92 97

4 0 254 245

5 0 0 0
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Fig. 12 Histograms of the springback shape responses obtained using the sparse PCE model

Conclusion and prospects

In this paper we combine a semi-analytical Bending-Under-
Tension model and a custom Polynomial Chaos Expansion
to accurately assess the springback parameters for small
variations on the input parameters. The B-U-T model allows
us to circumvent typical cost issues and numerical instabil-
ity from full FEM simulations (contact modeling, through
thickness integration). The use of such a model allows us to
reach a sufficient numerical stability for small variations of
the random parameters. Using these high resolution outputs,
we are able to accurately train a custom stochastic surro-
gate to efficiently propagate the uncertainties through the
model. Then, this approach allows us to accurately assess
the springback variability when multiple random variables
are taken into account with a limited budget.

In a more general way, our approach demonstrates that
the use of simplified physics based model for large strain
forming process allows to reduce the numerical instabil-
ity and makes possible an accurate and low cost variability
study. The approach is of course not limited to 2D plain

strain and sparse PCE could be combined with other types
of physics-based metamodels such as one-step or POD/PGD
approaches could possibly presenting similar smoothing
properties in 3D. In the current state of development we
have demonstrated the validity of our the approach from
numerical point of view using standard benchmarks. The
comparison with experiment requires an implementation of
the method within a specialized metal forming framework,
which is beyond the scope of the current study dedicated to
stochastic modeling. Moreover, further work is needed for
sensitivity analysis performed using the polynomial chaos
expansion to a priori identify the most influent input vari-
ables. Adaptive features may also be included in the sparse
construction algorithm to keep on reducing the number of
terms used, and increasing its prediction accuracy.
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Chapter 4

Adapting the sampling to the model
resolution: Fat Latin Hypercube

sampling.

In this section we propose an alternative methodology to solve the same problematic: the stochastic
analysis of the U-shaped deep drawing process of a metal sheet using a regression based Polynomial
Chaos approach.

In many cases, the model resolution is not of the same order of magnitude of the range of variation
of the random variable. In this case, the use of an intermediate non-physics based metamodel is not
mandatory. One may solve the problem by focusing on the design of experiment. We defined a custom
Latin Hypercube Sampling (LHS) taking the model resolution into account. A restricted area whose shape
is parameterized by the resolution of the model is defined around each sampling point. The resulting
LHS consists in sampling points, each characterized by a restricted area free of any other sampling points.
This limits the total number of available points. We then propose to build a consistent regression-based
PCE with the remaining number of samples points. This way this methodology aligns the stochastic
model complexity with the limited number of trustworthy data at hand.

This approach has been described into a paper submitted in july 2013 to the journal CMAME and is
currently under review.

The paper is given in its submitted version.
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Abstract

In the context of uncertainty propagation the random variable range of variation may be many
orders of magnitude lower than its nominal value. When evaluating the non-linear Finite Element
(FE) model involving contact/friction and material non linearity on such small perturbations of the
input data, a numerical noise alters the output data and consequently distorts the statistical quanti-
ties. In this paper, a particular attention is given to the definition of adapted Design of Experiment
(DoE) taking the model sensitivity into account and giving by consequence the maximum num-
ber of possible numerical experiments. In order to build acceptable Polynomial Chaos Expansion
(PCE) with such sparse data, we implement a hybrid LARS+Q-norm approach. We illustrate
our methodology using a deep drawing process of a 2D metal sheet, considering up to 8 random
variables.
Keywords: Uncertainty Quantification, Model Sensitivity, Springback Variability Assessment,
sensitivity-constrained Design of Experiment, Sparse Polynomial Chaos Expansion

1. Introduction

A profuse literature review reveals rigorous approaches to reduce the computational expense,
combining in a hierarchical way a ‘high-fidelity” (costly) model with a “lower-fidelity” model
(less accurate but also less expensive) to perform parametric studies dedicated either to the search
for optimal design [1, 2, 3] or to the characterization of system variability or finally to sensitivity
studies [4, 5, 6]. In an optimization context, rigorous convergence proofs may be established as
long as the “lower-fidelity” model is consistent (generally to the first [7] or second order [8]) with
the “higher-fidelity” model. With regards to the nature of the metamodel involved one may classify
these approaches as “multi-fidelity” or “variable-fidelity” when physical based surrogate model is
involved [9, 10, 11, 12, 13] or in surrogate-based approaches when non-physics interpolating or
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regression-based metamodels built from a Design of Experiment (DoE) are considered. [14, 15,
16].

These latter approaches are widely spread in stochastic analysis. For example, [17] uses a
combination of Kriging model and subset simulations in order to efficiently assess structural fail-
ure probability at low computational costs. [18] uses Monte Carlo simulation and linear response
surface to detect the most significant variable and to give an approximation of the probabilistic
response. [19] uses the moving least square instead of the classical quadratic order response sur-
face to better fit the limit state function and perform reliability analysis of the sheet metal forming
process. [20, 21, 22, 6] demonstrates the advantages of adaptive scheme for Polynomial Chaos
Expansion (PCE) to perform robust, reliability, and sensitivity analysis. A second order PCE is
used in [23] to assess the variability of the tolerance prediction of the formed metal sheet submit-
ted to random parameters. In the field of metal forming applications, a classical approach consists
of using Monte Carlo simulation on a quadratic polynomial response surface method to quantify
probabilistic characteristics (mean and standard deviation), e.g. [24] uses this classical approach
to estimate the variability of the shape and dimensional errors in net-shape metal forming. In this
approach, the exactness of the statistical quantity mainly depends on the capability of the meta-
model of picking up the relationship between the dependent explanatory random variables. The
training data may thus play a leading role.

In this work we focus our attention on the quality of the “high-fidelity” training data. We
claim that there may exist a threshold on the magnitude of variation of the input variables below
which the “high-fidelity” simulations may not be trustworthy. Thus, the number of achievable
simulations using “high-fidelity” model is not only limited by the cost of a single simulation but
more importantly by its intrinsic sensitivity to small perturbations. In this case, we face two
competing issues. On one hand, a too small number of “high-fidelity” simulations harms the
accuracy of the response surface. On the other hand, a too high number of simulations introduces
numerical noise which also directly leads to a noisy response surface.

In the present paper, we address both issues simultaneously in order to propose a coherent PCE
scheme taking into account the upper bound on sampling density given by sensitivity considera-
tion, and the lower bound given by the regression approach to compute PCE coefficients.

The rest of the paper is organized as follows. In section 2, we investigate a sampling strategy
taking into account the model precision leading to a non-noisy reduced set of sampling. Then,
in section 3 we compare three sparse methodologies applied to PCE to efficiently and accurately
propagate the uncertainty with the few number of remaining simulations. Finally, in section 4 we
demonstrate the efficiency of the proposed methodology considering the deep drawing process of
a 2D- U-shaped metal sheet as a test case.

2. Sampling schemes taking into account of model sensitivities

In the scope of this work, the FE model is referred to as the “high-fidelity” model and is
used to train the analytical “lower-fidelity” model, namely the PCE. Firstly, we show that “very”
small random perturbations on the input parameters ξ = [ξ(1), ξ(2), . . . , ξ(M)] around a nominal value
ξnom = [ξ(1)

nom, ξ(2)nom, . . . , ξ
(M)
nom] yield noisy training data set. We characterize the model output

stability by the non-dimensional sensitivity for each considered variable ξ(i), i ∈ {1, . . . ,M} using
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the finite difference scheme

µi =
∆y(ξ(i))
∆ξ(i) ×

ξ(i)
nom

y(ξ(i)
nom)

(1)

where
∆y(ξ(i)) = y

(
ξ(i)

nom +
∆ξ(i)

2

)
− y

(
ξ(i)

nom −
∆ξ(i)

2

)
. (2)

When decreasing the order of magnitude of the perturbation (−log(∆ξ) increasing), the non-
dimensional sensitivity µi computed for the “high-fidelity” model exhibits different behaviors:

1. Firstly, for “large” variation of ∆ξi, the variation µi reveals the non-linear behavior of the
model. No brutal variation of µi is observed and the model is considered as trustworthy.

2. Secondly, µi stabilizes around a constant value µ̄i where the model may be considered as
linear.

3. Thirdly, on reaching the threshold , µi becomes unstable. Within the corresponding range of
variation noisy data estranged from physical reality is generated. These data points have to
be discarded to train a metamodel.

4. Finally, the threshold shows the model sensitivity limit: for this range of variation, the
model is not sensitive anymore.

The model output is considered to be unstable when the following criterion is satisfied:

|µi − µ̄i| >
µ∗i
2
. (3)

The Fig.1 illustrates the tendencies obtained for µi against the order of magnitude of the varia-
tion range in ∆ξi. The results are issued from actual computations shown for a real case (section
4).
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Figure 1: Typical sensitivity results issued from actual computation
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We thus focus our attention on avoiding noisy training data which may lead to an inaccurate
response surface for small variation of the input parameters. We propose to modify the traditional
Latin Hypercube Sampling scheme in order to take into account model sensitivities.

2.1. A Fat-Latin Hypercube Sampling taking into account model sensitivities
Standard LHS. LHS ([25]) is an efficient technique to generate joint probability distributions by
distributing samples in equiprobable bins. Let

Ξ =
{
ξ(1), ξ(2), . . . , ξ(M)

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ξ1
ξ2
...
ξS

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ(1)
1 ξ(2)

1 . . . ξ(M)
1

ξ(1)
2 ξ(2)

2 . . . ξ(M)
2

...
...
. . .

...
ξ(1)

S ξ(2)
S . . . ξ(M)

s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

an S -sized and M-dimensional DoE and F j, j = 1, . . . ,M the joint cumulative distribution (as-
sumed to be known) of each of the random variables. Let ΞU, the special case where F is an
uniform joint distribution for all variables.

A possible 2D sampling for 2 independent uniform distributions laws is given in Fig.2(a) and
for 2 independent normal distributions in Fig.2(b). By construction there is exactly one observation
per row in each of the M directions.
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(a) Uniform distribution
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(b) Normal distribution

Figure 2: LHS sampling illustration for uniform distribution

The LHS advantages [26] are:

• as long as the number of samples S is large compared to the number of variables M, LHS
eventually provides estimators with lower variances for any function with finite variance,
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• in any case S -sized LHS does not perform worse than (S − 1)-sized crude Monte Carlo.

However, LHS shows also some limitations:

• The error estimates may not be improved by iteratively increasing the number of samples:
the resulting sampling is not a LHS anymore (see [27, 28, 29] for Nested LHS).

• When used for training response surfaces, a space-filling optimal design is interesting in
order to sample the design space with a minimum number of response evaluations. When
using LHS there is a risk that some of the random samples form a cluster to the detriment of
some unexplored part of the design space. To circumvent these issues, some strategies may
be found [30, 31, 32].

In the following we propose to alleviate another fundamental limitation: when performing
stochastic studies small variations of the random input parameters result in noisy responses.

Fat-LHS. In the present paper, we propose to build a restricted area (free of other sampling points)
around each sampling point is defined. The shape of this restricted area is parameterized by δ∗i
(Eq.3) and may be defined as follows:

δ∗i = argmin
∆ξ(i)

µi(∆ξ(i)) > µ∗i , i ∈ {1, . . . ,M}. (5)

Depending on the chosen norm, different shapes are obtained for the restricted area (Fig.3).
Fig.3(a) describes L∞ related restricted area, the lengths of the border of the hypercube being
δ∗i , i ∈ {1, . . . ,M}. Fig.3(b) defines an elliptic sensitivity region restricted area, where the δ∗i , i ∈
{1, . . . ,M} define the lengths of the axes.
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(b) Fat-LHSL2

Figure 3: Sensitivity restricted area shape around two sampling points for L∞ and L2 in 2D
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This approach coupled with LHS requirements permits us to filter the spacial sensitivity but
limits the maximum number of samples available for PCE determination. In the remainder of the
paper we denote this upper bound on the number of samples at hand by S ub.

2.2. Implementation of the Fat-LHS
We propose here an algorithm to identify the maximum number of points to be sampled for a

given µi, i ∈ {1, . . . ,M}. We assume that for small variations of the input random parameters the
shape and size of the restricted area stays identical for each sampling point. The general idea of
the procedure is to start with a given LHS with a prescribed density probability on each random
variable and then to:

1. identify the restricted area for each sampled point (Fig.4(a)),

2. iteratively remove the illegal neighbors (Fig.4(b))

3. re-adapt the bin’s size to recover the equiprobability property (this makes the sampling loos-
ing in empty bins and over-occupied bins (Fig.4(c))),

4. reconstruct an LHS sampling by randomly allocating the samples from over-occupied bins
to the empty bins (Fig.4(d)).
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(b) Deleting the illegal neighbors and rearrang-
ing the bins size
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(c) Moving the samples in over-occupied bins to
empty bins
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(d) Legal neighbors only

Figure 4: Illustration of the Fat Latin Hypercube Sampling procedure

The procedure is described in Algorithm 1.
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Algorithm 1 Fat-LHS algorithm
• Let M be the number of stochastic variables
• Let sset(1) = {1, . . . , S } be the initial set numbering the sampling points and sset(2) = ∅
• Let µ = [µ1, µ2, . . . , µM] be the given sensitivity for each parameter

Generate a first LHS sampling with the desired properties

- Generate an sset(iter1)−sized and M−dimensional LHS denoted Ξwith minimum correlation
or maximin distance between points.

Find and suppress the illegal neighbors

- Let i = 1
while card(sset(i)) > card(sset(i + 1)) do

for s = 1 : card(sset(i)) do

- Compute: Ds = sign

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∥ξ(1)
s − ξ(1)

1 ∥ − µ(1) . . . ∥ξ(M)
s − ξ(M)

1 ∥ − µ(M)

∥ξ(1)
s − ξ(2)

1 ∥ − µ(1) . . . ∥ξ(M)
s − ξ(M)

2 ∥ − µ(M)

...
. . .

...
∥ξ(1)

s − ξ(1)
S ∥ − µ(1) . . . ∥ξ(M)

s − ξ(M)
S ∥ − µ(M)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

if ∃ j|D(s)( j, :) = [1, 1, . . . , 1]︸!!!!!!!!︷︷!!!!!!!!︸
m times

then

- sset(i + 1) = sset(i) − { j}

- Ξ{−i} =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ(1)
1 ξ(2)

1 . . . ξ(M)
1

ξ(1)
2 ξ(2)

2 . . . ξ(M)
2

...
...
. . .

...
ξ(1)

i−1 ξ(2)
i−1 . . . ξ(M)

i−1
ξ(1)

i+1 ξ(2)
i+1 . . . ξ(M)

i+1
...

...
. . .

...
ξ(1)

S ξ(2)
S . . . ξ(M)

S

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

end if
end for
i=i+1

end while

Re-build an LHS sampling

- Considering the number of remaining points, adapt the ”bin” size to recover the equiproba-
bility property.
- Identify the bins with more than one sampling and the empty bins
- Randomly distribute the points from the over occupied bins to the empty bins
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3. Hybrid Q−norm+LARS Polynomial Chaos Expansion (PCE) scheme

In this section we introduce the theoretical aspects for the construction of a sparse PCE de-
creasing its computational cost and thus allowing us to consider only a limited number of sampling
points at hand.

3.1. Multivariate PCE
The PCE [33] is a stochastic metamodel, that is intended to give an approximation of the

stochastic behavior of a functional y (scalar random process) that is defined as a function of an
input random vector ξ = {ξ1, ξ2, . . . , ξM} with M coordinates. We assume that y is a second order
random variable (E(y2) < ∞) and that the probability density function fξ(ξ) may be decomposed
on a product of the marginal probability density functions fξ(i) (Eq.6):

f (ξ) =
M∏

i=1

fξi(ξi) (6)

Given the natural inner product for arbitrary function φ with respect to each of the marginal
probability function fξ(ξ) defined onD

< φ1, φ2 >=

∫

D
φ1(ξ)φ2(ξ) fξ(ξ)dξ (7)

one may define an infinite set of mono-variate orthogonal polynomials ϕ = {ϕk, k ∈ N} verifying
< ϕ j,ϕk >= δ jk. Hermitian polynomials respect this condition for Gaussian random variables.

For other types of random variables, different orthogonal polynomials may be retained (Table
1) leading to the generalized PCE or Wiener-Askey scheme [34].

Probabilistic measure Orthogonal Polynomial
Uniform: 1]−1,1[(ξ)/2 Legendre: Pk(ξ)
Gaussian: 1√

(2π)e
−ξ2/2 Hermite: Hek(ξ)

Gamma: ξae−ξ1R+(ξ) Laguerre: Lk
a(ξ)

Beta: 1]−1;1[(ξ) (1−ξ)a(1+ξ)b

B(a)B(b) Jacobi: Jk(ξ)

Table 1: Some orthogonal polynomial types with respect to different continuous probability density function types

Using the tensor product on these mono-variate polynomials one may obtain an infinite set
of multi-variate polynomials (with a preserved orthogonality property) ψ = {ψα,α ∈ NM} where
α ∈ NM is a multi-index set.

According to the theorem of Cameron Martin [35], the exact polynomial expansion of the
functional y is

y(ξ) =
∑

α∈NM

γαψα(ξ). (8)

where {γα}, α ∈ NM are the coefficients of the PCE to be identified
9



3.2. Truncating multi-variate polynomials expansion
For practical use, one may truncate the full set of tensor product polynomials in order to only

retain a finite set of polynomial terms. For Fat-LHS sampling scheme, we need an economical
PCE scheme requiring less than S lb ≤ S ub samples. In the following we revisit three classical
truncation schemes needed for the construction of our hybrid approach.

Classical truncation scheme. Among all {ψα,α ∈ NM} the classical truncation scheme [33, 21, 36]
retains only the multi-variate polynomial terms whose degree does not exceed an arbitrarily fixed
N leading to the following multi-index set:

AM
q = {α ∈ NM, ||α||q ≤ p}, (9)

where ||α||q =
⎛
⎜⎜⎜⎜⎜⎝

M∑

i=1

αq
i

⎞
⎟⎟⎟⎟⎟⎠

1/q

and q = 1. Then, the truncated model may be written as:

yA
M
q (ξ) ≈

∑

α∈AM
q

γαψα(ξ). (10)

Fig.5 gives an illustration of this scheme for a 2-variate 7th order PCE.
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Figure 5: Illustration of the classical truncation scheme for a 7th order PCE

The number P of coefficients in the PCE is given by

P =
N∑

k=0

Ck
M+k+1 =

(N + M)!
N!M!

(11)

and increases exponentially both with N and M. So does the number of “high-fidelity” function
evaluations needed to compute the number of PCE coefficients: whatever the method used, at least
S = P + 1 samples are necessary.
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Q−norm based truncation. This approach relies on the “sparsity of effects principle”: a system
is usually dominated by main effects and low-order interactions. Q-norm generalizes the classical
truncation scheme by varying 0 ≤ q ≤ 1 [37]. Fig.6 illustrates a typical truncated index set
different for q = 0.6 and a 7th order 2-variate PCE.
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Figure 6: Illustration of Q−norm truncation with different values of the truncation parameter q for a 7th order PCE

The set of active polynomials in the PCE decomposition is decreased when q decreases.
Fig.7(a) illustrates the evolution of the number of 2-variate polynomial terms in linear scale against
q values, and Fig.7(b) shows it for an 8-variate polynomial in log scale.
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Figure 7: Number of polynomials terms in q-truncated PCE with regards to the q truncation parameter for 2 and 8
variables

LARS truncation scheme. The Least Angle Regression Stagewise algorithm [39, 37] is issued from
the variable selection community [38]. Roughly speaking, it iteratively adds to the current model
the polynomial terms which are the most correlated with the residual response (Algorithm 2).
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Fig.8 illustrates truncated index obtained after k = 24 iterations of the LARS algorithm applied
to a 2-variate 7th order polynomial chaos expansion.
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(a) k = 24

Figure 8: Illustration of Q−norm truncation with different values of the truncation parameter q for a 7th order PCE

At step k, k predictors have been added to the approximated model

yA
M
LARS(k) =

∑

α∈AM
LARS(k)

γαψ
AM

LARS(k)
α (12)

where AM
LARS(k) is the corresponding multi-index set whose cardinal is k. The current residual

response r(k) and correlation vector c̃(k)
0 are respectively defined by

r(k) = y − yAM
LARS(k) (13)

and

c̃(k)
0 =

(y − E[y])(r(k) − E[r(k)])
√

(y − E[y])2 × (r(k) − E[r(k)])2
. (14)
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Algorithm 2 Least Angle Regression Algorithm

Offline phase

• Build a stochastic S -sized and M-dimensional design of experiments according to the
stochastic model denoted Ξ.
For each S − sized sample {ξ1, . . . , ξM} store the corresponding evaluations of the “high-
fidelity” model in y.
• Build a (truncated) polynomial chaos basis ΨAM

q
and evaluate it at each sample.

Online phase

• Initialize the coefficients γα which sets the current residual r equals to y obtained in the
offline phase.
• Compute the correlation vector c̃(k)

0 . Retain the predictor ψα∗ where α∗ = argmax|c̃(k)
0 |. The

model becomes yAM
LARS(k).

• Update γα to γ∗α = γα + ϵ∗(1), where ϵ∗(1) is the LARS step where another predictor ψβ∗ has
as much correlation with the current residual as does ψα∗ (see Tibshirani and al. 2009 for
numerical computations of ϵ∗). Add β∗ to the current index set of retained polynomial and
update yAM

LARS(k).
• Update jointly {γα}α∈AM

LARS(k) following the direction u(k) (∥u(k)∥ = 1) defined by the joint
least-square coefficient on the current residual. At this step another predictor ψθ∗ is found to
have much correlation with the current residual and is added to the model.
• Repeat the previous step until m = min(P; Q) predictors have been entered or until a previ-
ously chosen error estimate has reached a minimal value.

3.3. Combining Q−norm and LARS
Considering the limited Fat-LHS sampling, we need to find the optimal sparse index set A∗

such that the error produced on the resulting approximation model yA∗ is as low as possible. To
perform this optimization task, we combine in an iterative manner the Q− norm and LARS trun-
cations. We index by AM

q the set of polynomials Ψq-truncated obtained by a Q−norm. From this
set, one may apply the LARS which selects the most correlated polynomial. We thus index by
AM

q+LARS the sparser set of polynomials Ψq+k obtained after a Q−norm and k steps using LARS.
Fig.9 illustrates this method by showing a sparse set of active polynomials obtained for q = 0.6

and k = 8.We note that card(AM
q+k) ≤ card(AM

q ).
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(a) LARS+Q−norm
(q = 0.6, k = 8)

Figure 9: Illustration of combined Q−norm + LARS truncation for a 7th PCE order

We thus face a combinatorial optimization problem:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

argmin
N,q,k

Error(AM
q+k)

s.t. S lb ≤ S ≤ S ub

(15)

where Error is an estimator of the PCE quality that we describe in the section 3.4, and S is the
available number of samples.

Eq. 15 may be solved using any appropriate algorithm (genetic approach, simulated annealing,
etc.). The strategy we adopt here is inspired by [22] and is shown in Algorithm 3.
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Algorithm 3 Optimization of Q−norm + LARS parameters
• Arbitrarily choose a set N = {N1, . . . ,Nn} of PCE orders, (Nn possibly high).
• Store the response obtained using an Fat-LHS sampling in a vector y = [y1, . . . , yN]
for idxn = 1 : n do
• Choose a set of significant q values
q ∈ {q(i)|i ∈ 1, . . . ,Q}
for idxq = 1 : Q do

- Compute the N th
idxn

order full polynomial basis Ψfull.
- Truncate the full polynomial basis using the q(idxq) norm giving Ψq-truncated

- Let Premain = card(AM
q ) be the number of remaining polynomials after truncation

- Perform a V-fold cross validation as follows, with K=2.
for idxP = 1 : min(Premain,N) do

- Divide the sampling in 2 populations of equal size ξtest and ξverif
for v = 1 : V do

- Compute the LARS Algorithm on the P1 population
- Verify the results on the P2 population by computing the chosen error estimate.

end for
- Retain the best LARS step k∗ according to the selected error criterion

end for
end for

end for
• Retain the best model with the best N∗, q∗, k∗ according to the selected error criterion

3.4. Error evaluation of the polynomial expansion
According to Cameron Martin’s theorem [35], when truncating the multi-index set, one may

not reach the convergence to the exact solution in the L2 sense. We assess the results for an
another classical error estimate called the corrected Leave-One-Out (LOO) error estimate taking
into account the overfitting phenomenon [37].

Global error estimate. An estimation of the exact L2 error is given by the empirical error:

Erremp =
1
N

N∑

i=1

(y(ξi) − yA
M
q+k(ξi))

2 (16)

However, this estimator is known to under-predict the exact L2 error: when increasing the
complexity of the PCE, the empirical error is systematically reduced, as the exact L2 error may
increase (overfitting phenomenon). By construction, the Leave-One-Out error (LOO error) [22]
may be less sensitive to the overfitting. It relies on the computation of the predicted residual

∆(i) = y(ξi) − y
AM

q+k
−i (ξi), (17)

for each evaluation ξi, i ∈ {1, . . . ,N}, where y
AM

q+k
−i (ξi) denotes the approximated model evaluated
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in ξi trained in Ξ/{ξi}. The LOO error is then computed as

ErrLOO =
1
N

N∑

i=1

∆(i)2
. (18)

In the general case, the computation of the predicted residuals is a greedy process. In our case,
these may be analytically computed

∆(i) =
y(ξi) − yA

M
q+k(ξi)

1 − hi
(19)

where hi is the ith diagonal term of the ΨA
M
q+k

(
ΨA

M
q+k
⊤
ΨA

M
q+k

)−1
ΨA

M
q+k
⊤

matrix.
Finally, we compute the absolute LOO as

ErrLOO =
1
N

N∑

i=1

⎛
⎜⎜⎜⎜⎜⎝

yA
M
q+k(ξi) − yA

M
q+k(ξi)

1 − hi

⎞
⎟⎟⎟⎟⎟⎠

2

. (20)

and its relative counterpart

ϵLOO =
ErrLOO

σ(y)2 . (21)

3.4.1. Computing the coefficients of the truncated multi-variate PCE
To compute the coefficients of the PCE, intrusive Galerkin type approach has been proposed by

[33]. Among non intrusive, projection based methods take advantage of the orthogonal properties
of the multivariate polynomials of the expansion. Stochastic collocation is based on a Lagrangian
interpolation in the stochastic space. It may be proved that this method is equivalent to the former
[40].

The regression based approach (on which we focus in this paper) consists in solving the overde-
termined system of equations, where each Ξ(i), i ∈ {1, ..., S } represent S > P samples of the random
vector Ξ = {ξ1, ..., ξM}. The optimal number of realizations needed to assess the coefficients with
a good accuracy is still an open research area, but [21] proposes an empirical rule (Eq.22). In the
following, we consider this empirical requirement as a lower bound in the simulation requirements
(S ≥ S lb) to build a PCE.

S lb = (M − 1) × P. (22)

The set of coefficients may be computed as

γ = argmin(∥y(ξ) −Ψ(ξ)γ⊤∥2) (23)

yielding
γ = (Ψ(ξ)Ψ(ξ)⊤)−1Ψ(ξ)y(ξ) (24)

with ξ(i), i ∈ {1, ..., S } representing S > P samples of the M dimensional random vector ξ. These
samples are generated using a S -sized M-dimensional Fat-LHS.

16



The overdetermined system of equations (Eq.24) may be solved using a singular value decom-
position of the ΨΨ⊤ matrix.

Once the set of P coefficients {γα}α∈A has been determined, one may compute the statistical
moments of y analytically avoiding Monte Carlo simulations. The first two moments are given by:

E(y) =γ0 (25)

σ2(y) =
∑

α∈A−{0}
E(Ψ2

α)γ2
α (26)

4. Results and discussions

4.1. Experiment description
We model the variability of the springback parameter of a 2D deep drawn U-shaped metal

sheet from the B3 Numisheet ’93 [41] benchmark.
The overall geometrical configuration of the deep drawing process is illustrated in Fig.10.
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Wp=50

55 655

Ls/2=175
x

z

rd=5

h0

Figure 10: Geometrical configuration of the modeled Numisheet’93 benchmark (values in mm).

The process is modeled using a legacy software [42] (Fig.10) using appropriate symmetry
boundary conditions. A single row of 175 first-order shell elements is used to model the blank
with Simpson integration rule with 10 integration points across the thickness. As the problem is
essentially in plane strain state (the width of the blank is 35 mm and its thickness nominal value is
0.8 mm), corresponding boundary conditions are applied on each node. The blank is made of mild
steel modeled as an elastic-plastic material. Isotropic elasticity and the Swift isotropic hardening
law are considered

σ = K0(ϵ0 + ϵp)n0 . (27)
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Figure 11: Representation of the Swift hardening law for the parameters described in Table 2

The value of the geometrical, material, loading and contact parameters are summarized in
Table 2.

Geometry Material Loading Contact
Ls : 300 mm E : 71 GPa Fb : 300 N µ : 0.15
h0 : 0.81 mm ν : 0.342 s : 60 mm
Ws : 1 mm ρ : 2700 kg/m3

rp : 10 mm K0 : 576.79 MPa
Wd : 62 mm ϵ0 : 0.3593
rd : 10 mm n0 : 0.01658

Table 2: Geometrical, material, loading and contact parameter of the U-shaped B-U-T model .

The tools (punch, blank holder and die) are modeled as rigid body surfaces. The punch velocity
is taken here as 15 m/s and its displacement is s = 70 mm. The blank holder force is defined as
Fb = 2.45 kN. The whole deep drawing process is simulated in two steps.

1. The forming phase is modeled using the explicit dynamic approach to solve the problem in
a reasonable computational time. During this period, the blank holder force is applied with
a smooth ramp to minimize the inertia effect and the punch velocity using a triangle step
definition starting and ending with 0 velocity and reaching the 15 m/s with the half run. The
contact occurring during forming phase is modeled using contact pairs.

2. The springback phase is modeled using an implicit approach. At the end at this phase, the
springback shape parameters (output functions of interest), the curvature ρ, the angles β1

and β2 are measured as shown in Fig.12.

4.2. Sensitivity analysis
Results of the sensitivity according to the method presented in section 2 are given in Table 3.

18



�

�

Figure 12: Definition of springback parameters, ρ, β1 and β2.

Variables Responses
ρ β1 β2

Thickness 1e-5 1e-5 1e-5
Young’s Modulus 1e6 1e6 1e6

K0 1e6 1e6 1e6
ϵ0 1e-2 1e-2 1e-2
ν0 1e-2 1e-2 1e-2

Poisson’s coefficient 1e-2 1e-2 1e-2
Friction coefficient 1e-2 1e-2 1e-2

Clamp force 1e1 1e1 1e1

Table 3: Sensitivity threshold obtained for µ∗i = 2

4.3. Stochastic model
In Table 4, we identify the set of independent random variables considered in the model. If the

variation range of the parameters may be considered as realistic, the Gaussian hypothesis is only
illustrative.

The mean values correspond to the nominal values, and the standard deviations are adjusted so
that ξmin = ξmean − 3σ and ξmax = ξmean + 3σ.

4.4. 2D validation test case
In this paragraph, we consider only 2 random variables: the thickness of the blank and the

Young modulus. If we consider the identified sensitivity in section 4.2, the sampling methodol-
ogy developed in section 2.1 allows us to consider S ub = 343 samples respecting the sensitivity
criterion Eq.3.
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Figure 13: Numerical instability for FEM simulations of the deep drawing process of 2-D U-shaped metal sheet
under small variations of the Thickness and Young modulus (MPa) for the ρ response. On the left side, the obtained
responses are depicted, as on the right side the numerical sensitivities of the model with regards to different order of
magnitude of thickness variation is plotted.

ξ min max E[ξ]

Thickness (h0) 0.805 0.815 0.8 mm

Young’s Modulus (Eb) 70.5 71.5 71 GPa

K0 575.79 577.79 576.79 MPa

ϵ0 0.3493 0.3693 0.3593 -

ν0 0.015 0.017 0.01658

Poisson’s Coefficients (ν) 0.325 0.335 0.33

Friction coefficients (µ) 0.155 0.170 0.162

Clamp force (F) 34.5e3 35.5e3 35e3 kN

Table 4: Full stochastic model under study for the deep drawing process application

4.4.1. Validation of Fat-LHS
In order to illustrate the efficiency of the Fat-LHS, we propose to compare the value of the two

first statistical moments of each response and illustrates for two different sampling methodologies:
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a classical LHS sampling and the proposed sensitivity constrained LHS sampling. We illustrate
the results only on the 1/ρ response, the interpretation remaining unchanged for the other outputs.
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(a) Fat-LHS with 343 samplings
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Figure 14: Illustration of LHS samplings obtained with taking (a) and not taking (b) into account the sensitivity
constraint for 343 samplings. In red appears the illegal neighbors.

The Fig.15 is obtained using the classical LHS and Fat-LHS. For the same number of samples
a non-negligible bias in the mean value is observed when the number of sampling becomes high,
the classical LHS mean and standard deviation converges to the values produced by the Fat-LHS
for a smaller number of sampled points.
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Figure 15: Comparison of the mean and the standard deviation evolution for different sampling size of classical LHS
with the Fat-LHS
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4.5. 8D example
4.5.1. Comparison of sparse PCE strategies

We here compare the convergence results of the different truncation strategies for different 2-
variate PCE of increasing order. We consider a limited number of 457 simulations issued from the
Fat-LHS previously described.

We choose a polynomial order N ∈ {1, . . . , n} for the PCE approximation. For each PCE order
N we apply 3 truncation strategies:

1. We select the Q-norm parameters such that S lb ≤ S ≤ S ub. For all the possible q parameters
we compute the approximate model yAM

q
, and retain the one with the lowest LOO error.

2. We use the LARS based algorithm on the classical truncation scheme and retain the best
model.

3. We combine the Q−norm and LARS approach and retain the best approximate model.

Fig.16 shows the evolution of the LOO corrected error with regards to the number of terms
contained in the best PCE approximation. Each point refers to the best model obtained during the
truncation for different PCE order. LARS alone provides the worst results, most of the time less
accurate and more costly than the two other methods. Comparing the Q−norm and the combined
LARS+Q−norm we observe similar results in terms of accuracy. However, a slight advantage may
be given to the Combined LARS+Q-norm as it gives similar accuracy for a sparse PCE expansion.
In addition, we note that due to smooth training data, we finally obtain the best results for truncated
low order PCE.

22



� �� �� ������

����

���

���

��	
����	 ����� ���

� �
��
��
���
���
�

������
����
������ � ����

(a) ρ,N = 3
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(b) ρ,N = 4
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(c) ρ,N = 5
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(d) ρ,N = 6
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(e) β1,N = 3
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(f) β1,N = 4
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(g) β1,N = 5
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(h) β1,N = 6
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(i) β2,N = 3
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(j) β2,N = 4

� �� �� ������

����

���

���

��	
����	 ����� ���

� �
��
��
���
���
�

������
����
������ � ����

(k) β2,N = 5
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(l) β2,N = 6

Figure 16: Comparison of the evolution of the LOO error corrected for different polynomial degree with regards to
springback parameter ρ (a), β1 (b), β2 (c). The parameters considered as random variable are depicted in table 4

The histograms (Fig.17) illustrate the variability obtained for the best retained model for each
response obtained using the Algorithm 3. A good agreement is observed with the exact “high-
fidelity” simulations as the relative error in mean is close to 0 and in standard deviation lower than
1% as depicted in table 5.
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H
∆E

Ehigh-fidelity

∆σ
σhigh-fidelity

ρ ≈ 10−9 3.7e − 3
β1 ≈ 10−7 4.5e − 3
β2 ≈ 10−12 8.5e − 3

Table 5: Relative error in mean and standard deviation obtained for each response
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(a) ρ, N = 3, ϵLOO = 9.5e−2, PϵLOO = 17,qϵLOO = 0.70
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(b) β1, N = 3, ϵLOO = 4.2e−2, PϵLOO = 15, qϵLOO = 0.70
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(c) β2, N=3, ϵLOO = 8.5e − 2, PϵLOO = 10, qϵLOO = 0.5

Figure 17: Histograms obtained for the modified cross validation strategy for the 8-variate case using the ϵLOO corrected

24



5. Conclusions and prospects

In this paper, we highlighted a fundamental limitation of the surrogate-based approach for
uncertainty propagation. We showed that when using non linear FE scheme as “high-fidelity”
simulation, small variations of the random input parameters may lead to noisy input training which
alters the accuracy of the training data set and may distort the statistical quantities of interest. We
illustrate this claim using the non-linear FEM simulation (involving contact/friction and material
non linearities) of the springback of a 2D deep drawing process of U shaped metal sheet. We
propose a sampling methodology called Fat-LHS allowing us to filter noisy data preserving their
LHS property. This heuristic strategy provides the maximum number of simulations available
considering the finite model sensitivity. We then use this limited number of non-noisy samples
to build a PCE in order to propagate the uncertainty. But, the low number of samples leads us to
consider sparse strategies to make affordable possible identification of the PCE terms. We compare
three different methodologies to build a sparse PCE (LARS, Q−norm and LARS+Q−norm) and
retain the best possible PCE for each of them. The comparison of the results shows that generally
the Q−norm+LARS hybrid is more efficient. We obtain the best results for truncated low order
sparse PCE leading to unbiased estimation. Further work is required to

• economically compute the model sensitivity threshold,

• generate more space–filling LHS design (in this paper, only the min-max strategy has been
tested)

Finally, to assess the PCE accuracy, we use a LOO corrected PCE error in order to

• assess the goodness of fit of the PCE

• and to limit the overfilling phenomenon simultaneously.

Thus it is difficult to separate which part of the inaccuracy comes from the model misspecification
and which part comes from the overfitting phenomenon. A formulation of an overfitting measure
for PCE approximation inspired from [43] may open a new way to efficiently select the most
significant polynomials terms in a sparse PCE expansion.
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Chapter 5

Towards multi-objective optimization
under uncertainty

As a natural step forward, incorporating the treatment of uncertainties into an optimization process may
provide the engineer with additional valuable information concerning for example, the robustness and
the reliability performances of the system to design. Most of the time such studies are made in a single
objective context. However, in many real-life cases, the performance of a system is defined by multiple
criteria, some of them competing.

In this section we thus propose an efficient metamodel-based strategy in order to tackle the issue
of multi-objective optimization under uncertainty. Most of the time, evolutionary algorithms offer a
reasonable way to solve this multiobjective optimization problem. However, these populations based
algorithms are known to require a large number of evaluation of the numerical models. Inserting the
treatment of uncertainties as an inner loop of the multiobjective optimization process may make the
process become unaffordable. Moreover, the concepts defined in single objective optimization are not
directly appliable in multiobjective optimization as they usually do not take into account the intrinsic
multiobjective nature of the problem.

Both issues are addressed in this section. An original hierarchical metamodel approach is provided in
order to perform a multiobjective optimization task at affordable computational costs. It is then applied
in an original formulation to take uncertainties into account in a multiobjective context as well as an
efficient approach to solve it based on a hierarchical approach.

The following paper has been published in the journal Structural Multidisciplinary Optimization.
As a second author in this paper, I particularly focus my attention on the definition of the hierarchical

metamodel strategy for uncertainty propagation.
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P×Q�@4GE<K 4A7 � =

[
#
 . . . $p

]
<F 4 [Q×(m+p)]�@4GE<K�

��� �<8E4E6;<64? FGB6;4FG<6 @8G4@B78?F

*;8 HF8 B9 &��� G;EBH:; 4 @8G;B7B?B:L F<@<?4E GB J;4G
<F 78F6E<587 45BI8� ;4F 4?E847L 588A 4CC?<87 GB EB5HFG



�
	 (� �<?B@8AB �B8?;B 8G 4?�

@H?G<B5=86G<I8 BCG<@<M4G<BA 5L &B?8F 4A7 "BI<FBA ��		���
5HG 5L 6BAF<78E<A: &�� B9 4?? HA68EG4<A 78F<:A I4E<45?8F
4A7 64?6H?4G<A: G;8 &�� 6B899<6<8AGF 4G 846; 9HA6G<BA 8I4?H�
4G<BA G;EBH:; 4 6B??B64G<BA @8G;B7� *;8 6B@CHG4G<BA4? 6BFG
64A 58 786E84F87 G;EBH:; G;<F 786B@CBF<G<BA� 5HG 4 9HEG;8E
:4<A 64A FG<?? 58 46;<8I87 G;EBH:; 4A ;<8E4E6;<64? E87H6G<BA
FGE4G8:L� 4F 47IB64G87 <A G;<F C4C8E�

�A G;8 :8A8E4? 64F8� G;8 E8FCBAF8F 78C8A7 BA E4A7B@
I4E<45?8F ξ � 5HG 4?FB BA 78G8E@<A<FG<6 I4E<45?8F 5� *;8
@H?G<I4E<4G8 &�� F;BH?7 G;HF 58 E8�JE<GG8A 4F 9B??BJF�

s(5, ξ) = γ s
	 (5) +

P−
∑

j=

γ s
j (5)ψ j (ξ). �
��

�BE 4AL F8G 5 B9 78F<:A I4E<45?8F� G;8 J;B?8 CEB68�
7HE8 78F6E<587 <A G;8 CE8I<BHF F86G<BA 64A 58 E8C84G87�
4A7 4FFH@<A: 4 6B@@BA F8G # B9 E4A7B@ F4@C?8F
{ξ (
), . . . , ξ (Q)} 9BE 4?? &�� 78I8?BC@8AGF� G;8 6B899<6<8AGF
4E8 7<E86G?L 6B@CHG45?8 4F 9B??BJF�

&(5) = � (#)�(5, #). �
��

*;8E89BE8� 4 @4CC<A: 64A 58 GE4687 BHG 58GJ88A G;8
78G8E@<A<FG<6 C4E4@8G8EF 5 �GB 58 BCG<@<M87�� 4A7 G;8
&�� 6B899<6<8AGF γ s

j E8CE8F8AG<A: G;8 7<998E8AG 6B@CBA8AGF
B9 G;8 E4A7B@ E8FCBAF8F CEB=86G87 <A G;8 &�� 54F<F� <A
BG;8E JBE7F� G;8 &�� 6B899<6<8AGF 6BAG4<A 4?? G;8 <A9BE�
@4G<BA 45BHG G;8 FGB6;4FG<6 58;4I<BE B9 G;8 B5=86G<I8F 4A7
6BAFGE4<AGF�

*;8E89BE8� G;8 <784 CEBCBF87 <A G;<F C4C8E <F GB 5H<?7 ;<8E�
4E6;<64? @8G4@B78?F B9 G;8 &�� 6B899<6<8AGF J<G; E8FC86G GB
G;8 78F<:A I4E<45?8F 5�

5 FGB6;4FG<6 @8G4@B78?F−−−−−−−−−−−−→ &(5) &�� E86BAFGEH6G<BA−−−−−−−−−−→ 0(5, ξ). �
��

*;<F ;4F F<@<?4E<G<8F GB J;4G ;4F 588A 466B@C?<F;87 9BE
@H?G<7<F6<C?<A4EL 78F<:A BCG<@<M4G<BA ��<?B@8AB �B8?;B
8G 4?� �		�� �		��� J;8E8 FHEEB:4G8 @B78?F J8E8 5H<?G 5L
>E<:<A: BE @BI<A: ?84FG FDH4E8F <AG8ECB?4G<BA B9 Proper
Orthogonal Decomposition �&%�� 6B899<6<8AGF� G;EBH:; 4
5<�?8I8? E87H6G<BA 4CCEB46;� (8?4G87 JBE> 6BA68EA87 J<G;
:8B@8GE<6 9<?GE4G<BA HF<A: &%� 9BE 48EB7LA4@<6 78F<:A
BCG<@<M4G<BA �*B4? 8G 4?� �	
	� 4?FB 7<F6HFF8F G;8 6B@C4E<�
FBA 58GJ88A 7<E86G 4CCEBK<@4G<BA 4A7 786B@CBF<G<BA�54F87
F6E88A<A: B9 :8B@8GE<6 I4E<45?8F�

)HEEB:4G8 @B78? 78I8?BC@8AG 9BE BCG<@<M4G<BA CHECBF8F
;4F 588A 8KG8AF<I8?L 7<F6HFF87 <A E868AG 6BAGE<5HG<BAF 5L
)6;HR??8E 4A7  8AF8A ��		�� 4F J8?? 4F �BEE8FG8E 4A7 !84A8
��		��� F;BJ<A: G;4G G;8 ABG<BA B9 FGB6;4FG<6<GL <A @8G4@B7�
8?<A: <F FG<?? 4A BC8A <FFH8� �A G;<F GBC<6� 4 984GHE8 JBEG;

CB<AG<A: BHG <F G;8 45<?<GL B9 >E<:<A: @8G4@B78?F GB CEB�
I<78 FG4G<FG<64? <A9BE@4G<BA BA G;8 BHGCHG CE87<6G<BAF� F<A68
G;8 E8FCBAF8 9HA6G<BAF 64A 58 F88A 4F G;8 E84?<M4G<BA B9 4
E4A7B@ CEB68FF � BA8F �		
��

�BJ8I8E� <A G;<F FGH7L� G;8 EB?8 B9 G;8 :8A8E4? @8G4@B7�
8?<A: G86;A<DH8 <F C?4L87 5L G;8moving least squares �#")�
@8G;B7 �"4A64FG8E 4A7 )4?>4HF>4F 
��
�� 4?FB 64??87 dif-
fuse approximation �$4LEB?8F 8G 4?� 
����� �G 6BAF<FGF <A 4
:8A8E4?<M4G<BA B9 G;8 ?84FG FDH4E8F G86;A<DH8�

�A HA<I4E<4G8 CEB5?8@F� G;8 @BI<A: ?84FG FDH4E8F 4CCEBK�
<@4G<BA B9 4 &�� 6B899<6<8AG γ (x) 64A 58 JE<GG8A 4F 9B??BJF
��E8<G>BC9 8G 4?� �		���

γ (x) ≈ γ#")(x) = -T(x)�(x), �
��

J;8E8�

-T(x) = [
 x x� . . . ]. ��	�

�(x) 4E8 G;8 @<A<@<M8EF B9 9HA6G<BA4? Jx (�) 789<A87 5L�

Jx (�) = 

�

∑

i

wi (x (i), x)
(
-T(x (i))� − γ (i)

)�
, ��
�

J;8E8�

Z -(x) <F G;8 CB?LAB@<4? �;8E8� 4 F86BA7�BE78E 54F<F ;4F
588A F8?86G87��

Z x (i) 4E8 G;8 F4@C?8 CB<AGF�
Z wi 4E8 G;8 J8<:;GF 78C8A7<A: G;8 �H6?<784A ABE@

58GJ88A x (i) 4A7 x �

wi = wE89

(∥∥x (i) − x)
∥∥

r

)

, ����

J;8E8 wE89 <F 6;BF8A ;8E8 4F 4 C<868J<F8 6H5<6 FC?<A8
8KCE8FF87 5L �����

wE89(s) =
{


 − �s� + �s� <9 	 ≤ s ≤ 
,
	 <9 s ≥ 
, ����

4A7 r <F 4 E47<HF 789<A<A: G;8 �?B64?� <A9?H8A68 MBA8�
�A G;<F FGH7L� r <F 789<A87 4G 846; 8I4?H4G<BA CB<AG x
FH6; G;4G G;8 <A9?H8A68 MBA8 6BI8EF G;8 k 6?BF8FG F4@C?8
CB<AGF x (i)� J<G; k = n p + d �n p <F AH@58E B9 G8E@F
<A G;8 CB?LAB@<4? 54F<F J;8E84F d <F G;8 7<@8AF<BA B9
G;8 <ACHGF��

*;8 FHEEB:4G8 FHE9468 8FG45?<F;87 5L G;<F G86;A<DH8 J<??
HFH4??L ABG C4FF G;EBH:; 4?? F4@C?8 CB<AGF� *;8E89BE8� GB





�
� (� �<?B@8AB �B8?;B 8G 4?�

��		��� J;8E8 G;8 E8?<45<?<GL�54F87 @H?G<B5=86G<I8 BCG<@<M4�
G<BA B9 4HGB@BG<I8 6E4F;�JBEG;<A8FF 4A7 B66HC4AG F498GL
J4F HA78EG4>8A 5L <@CBF<A: 4A 477<G<BA4? 6BAFGE4<AG BA
G;8 CEB545<?<GL B9 94<?HE8� BE !H@4E 8G 4?� ��		�� 6BA68EA�
<A: EB5HFG 78F<:A HF<A: �4L8F<4A #BAG8 �4E?B F<@H?4G<BAF
GB 4A4?LM8 G;8 GE478�B99 58GJ88A @84A C8E9BE@4A68 4A7
I4E<45<?<GL 9BE 6B@CE8FFBE 5?478F�

� F<@<?4E 4CCEB46; @8AG<BA87 <A �6;8A<8 4A7
%FGEBIF>L ��		�� <A G;8 64F8 B9 EB5HFG BCG<@<M4G<BA 6BA�
F<FGF <A 6BAF<78E<A: G;8 B5=86G<I8 9HA6G<BA @84AF �µ� 4A7
FG4A74E7 78I<4G<BAF �σ � 4F B5=86G<I8F GB 58 @<A<@<M87�

@<A
5

[
µ
[
f

]
, σ
[
f

]
, . . . , µ

[
fm
]
, σ
[
fm
]]T

. ����

�BE <AFG4A68� &4E4F;4E 4A7 �?B854H@ ��		�� 78I<F87 4
Robust Multi-Objective Genetic Algorithm Concurrent Sub-
space Optimization �(�#%���))%� 5L <AG8:E4G<A: @84AF
4A7 FG4A74E7 78I<4G<BAF <A G;8 @H?G<B5=86G<I8 9BE@H?4G<BA�
J<G;<A 4 @H?G<7<F6<C?<A4EL 4E6;<G86GHE8�

� G;8BE8G<64? <AF<:;G <AGB EB5HFG @H?G<B5=86G<I8 BCG<@<M4�
G<BA ;4F 588A 466B@C?<F;87 5L �85 4A7 �HCG4 ��		�� �		���
J;B FH::8FG 4 I4E<4AG B9 G;<F <784 <A G;8 6BAG8KG B9 @H?�
G<B5=86G<I8 8IB?HG<BA4EL BCG<@<M4G<BA� 4A7 47IB64G87 GJB
789<A<G<BAF B9 @H?G<B5=86G<I8 EB5HFGA8FF�

Z 5∗ <F 4 multiobjective robust solution of type I <9 <G <F
4 :?B54? 984F<5?8 &4E8GB�BCG<@4? FB?HG<BA GB G;8 9B??BJ�
<A: @H?G<B5=86G<I8 CEB5?8@ 789<A87 J<G; E8FC86G GB 4
δ�A8<:;5BE;BB7 B(5, δ) �B9 ;LC8EIB?H@8 |B(5, δ)|��
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

@<A5 f 899i (5) ≡ 

|B(5, δ)|

∫

5′∈B(5,δ)
fi (5′)d5′,

i = 
, . . . ,m

FH5=86G GB� 5 ∈ F (≡ 984F<5?8 7B@4<A);
����

Z 5∗ <F 4 multiobjective robust solution of type II <9 <G <F
4 :?B54? 984F<5?8 &4E8GB�BCG<@4? FB?HG<BA GB G;8 9B??BJ�
<A: @H?G<B5=86G<I8 CEB5?8@ 789<A87 J<G; E8FC86G GB 4
δ�A8<:;5BE;BB7 B(5, δ)�
⎧
⎪⎪⎨

⎪⎪⎩

@<A5 #(5) =
[
f
(5), . . . , fm(5)

]T

FH5=86G GB�
∥∥#(5) − #899(5)

∥∥

∥#(5)∥ , 5 ∈ F .

����

*;8 <AG8:E4G<BA B9 G;8F8 9BE@H?4G<BAF J<G;<A $)�����
�Nondominated Sorting Genetic Algorithm-II� �85 8G 4?�
�		��� 4A7 G;8<E 4CC?<64G<BA GB F8I8E4? 4A4?LG<64? G8FG 64F8F
F;BJ87 G;4G <G <F 4A 84FL�GB�<@C?8@8AG 4A7 899<6<8AG J4L GB
B5G4<A EB5HFG &4E8GB 9EBAGF ��85 4A7 �HCG4 �		��� �BJ8I8E�

G;8 AH@58E B9 9HA6G<BA 8I4?H4G<BAF A868FF4EL GB 8FG<@4G8 G;8
89986G<I8 9HA6G<BAF fi @4>8F G;<F @8G;B7 8KC8AF<I8 <9 9<A<G8
8?8@8AG @B78?F 4E8 HF87 GB E8GE<8I8 G;8 I4?H8F B9 G;8 9HA6�
G<BAF� *;8E89BE8� G;8 HF8 B9 4A 4E6;<I8 B9 CB<AGF 64?6H?4G87
<A G;8 9BE@8E :8A8E4G<BAF B9 G;8 8IB?HG<BA4EL 4?:BE<G;@ <F
47I<F87 GB 786E84F8 G;8 :?B54? �&+ G<@8� 4F CEBCBF87 5L
�HA4J4A 4A7 �M4E@ ��		���

�ABG;8E @8G;B7 F8G HC GB 786E84F8 G;8 6B@CHG4G<BA4?
899BEG 6BAF<FGF <A 5H<?7<A: FHEEB:4G8F 54F87 BA 4 ?<@<G87
AH@58E B9 \8K46G] 9<GA8FF 8I4?H4G<BAF� 4F C8E9BE@87 5L
&48A>8 8G 4?� ��		�� J<G; ?B64? ?<A84E 4A7 DH47E4G<6 E8:E8F�
F<BA @B78?F�

�A 6B@C4E<FBA J<G; G;8 49BE8@8AG<BA87 FGE4G8:<8F� 4 7<9�
98E8AG F68A4E<B <F 6BAF<78E87 <A �4FF8HE 4A7 0<GM?8E ��		���
J;8E8 G;8 B5=86G<I8 I86GBE <F <A;8E8AG?L 4FFB6<4G87 J<G; 4A
HA>ABJA CEB545<?<GL 7<FGE<5HG<BA� 4A7 J;8E8 G;8 BCG<@<M4�
G<BA :B4? <F FC86<9<87 5L 4 DH4?<GL <A7<64GBE �A4@8?L� G;8
ε�<A7<64GBE�� &E46G<64??L� G;8 9<GA8FF B9 4A <A7<I<7H4? 5 <F
789<A87 4F G;8 8FG<@4G87 8KC86G87 ?BFF <A DH4?<GL <9 5 JBH?7
58 E8@BI87 9EB@ G;8 CBCH?4G<BA�

�<A4??L� 4 CBFF<5?8 4K<F B9 E8F84E6; 9BE @H?G<B5=86�
G<I8 BCG<@<M4G<BA HA78E HA68EG4<AGL JBH?7 58 GB E8�789<A8
G;8 &4E8GB 7B@<A4A68 6E<G8E<BA� 4F <A G;8 fuzzy-Pareto-
dominance 78I8?BC87 <A G;8 6BAG8KG B9 ;<:; AH@58EF B9
B5=86G<I8F �!UCC8A 8G 4?� �		��� BE <A G;8 8C<FG8@<6 HA68E�
G4<AGL @4A4:8@8AG �"<@5BHE: �		���

��� �BE@H?4G<BA 4A7 <@C?8@8AG4G<BA

�F F>8G6;87 45BI8 <A G;8 ?<G8E4GHE8 E8I<8J� G;8 6HEE8AG
<AI8FG<:4G<BAF 4E8 :8A8E4??L 6BA68EA87 J<G; G;8 EB5HFGA8FF
B9 G;8 B5=86G<I8 9HA6G<BAF� 4A7 CE898E45?L 9BE HA68EG4<A�
G<8F 789<A87 5L <AG8EI4?F� �BJ8I8E� 4F G;8 HA68EG4<AG<8F
4E8 B9G8A 78F6E<587 5L CEB545<?<GL 7<FGE<5HG<BAF� EB5HFGA8FF
@84FHE8F 4E8 ABG 4?J4LF CEBA8 GB 9HEA<F; FH99<6<8AG <AF<:;G
BA CEB545<?<GL ?8I8?F �J;4G <F G;8 CEB545<?<GL B9 4GG4<A<A:
4 FC86<9<6 I4?H8 f ′� BE� 9BE 4 :<I8A CEB545<?<GL ?8I8? p′�
J;4G <F G;8 JBEFG�64F8 I4?H8 B9 f ��� �A G;BF8 F<GH4G<BAF�
4 E8?<45<?<GL�54F87 4CCEB46; @<:;G 58 4 @BE8 6BAI8A<8AG
BCG<BA�

� E8?<45<?<GL�54F87 CEB687HE8 <F CEBCBF87 <A �85 8G 4?�
��		�� �		��� HF<A: B5=86G<I8 @84AF 4A7 CEB545<?<GL�54F87
6BAFGE4<AGF�

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

@<Aµ5,!
(
µ f
(µ5), . . . , µ fm (µ5)

)
,

FH5=86G GB� P
[
g j (5, !, -) ≥ 	

]
≥ R j , j = 
, . . . , J,

hk(!) ≥ 	, k = 
, . . . , K ,

5(L) ≤ µ5 ≤ 5(U ),

!(L) ≤ ! ≤ !(U ),

��	�



�<8E4E6;<64? FGB6;4FG<6 @8G4@B78?F 54F87 BA #") 4A7 &�� �
�

J;8E8 !� - 4E8 E8FC86G<I8?L G;8 78G8E@<A<FG<6 78F<:A I4E<�
45?8F 4A7 C4E4@8G8EF� 4A7 5 4E8 G;8 E4A7B@ 78F<:A I4E<45?8F�

#<A<@H@�E<F> BCG<@4? FB?HG<BAF 4E8 4?FB 789<A87 <A "8I<
8G 4?� ��		�� 4A7 �454??8EB 8G 4?� ��		
� 5L @4K<@<M<A:
G;8 CEB545<?<GL B9 >88C<A: G;8 B5=86G<I8F 58?BJ 4 :<I8A
G;E8F;B?7 �<A 4 @<A<@<M4G<BA 6BAG8KG��

�BJ8I8E� <A CEB545<?<GL�54F87 9BE@H?4G<BAF� G;8 6B@CH�
G4G<BA B9 DH4AG<?8F <F 4A 8KC8AF<I8 G4F>� HFH4??L <AIB?I<A: 4A
<G8E4G<I8 CEB68FF� *;<F <FFH8 64A 58 84F<?L 6<E6H@I8AG87 5L
<AGEB7H6<A: F?46> I4E<45?8F ζi GB 466BHAG 9BE CEB545<?<GL ?8I�
8?F� #BE8 9HA74@8AG4??L� G;8 CE8F8A68 B9 @H?G<C?8 B5=86G<I8F
6BH?7 ?847 GB 4 7<998E8AG ;4A7?<A: B9 G;8 B5=86G<I8 CEB54�
5<?<G<8F� 466BHAG<A: 9BE G;8 <A;8E8AG @H?G<6E<G8E<4 A4GHE8 B9
G;8 CEB5?8@ GB 477E8FF� �AFG847 B9 6B@C4E<A: 846; B5=86G<I8
9HA6G<BA F8C4E4G8?L� G;8 >8L CB<AG JBH?7 E4G;8E 58 GB 6;86>
G;8 probabilistic nondominance �*8<6; �		
��

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

@<A5,ζ ζ = 1ζ
, . . . , ζm2T

FH5=86G GB� PABA7B@<A4A68 ≡ P
[
#(5, ξ) ≻ ζ

]
≥ α#,

PF498GL ≡ P
[
$(5, ξ) ≤ 	

]
≥ α$,

��
�

J;8E8 G;8 ABA7B@<A4A68 6BA7<G<BA @84AF G;4G G;8 B5=86�
G<I8 I86GBE #(5, ξ) F;BH?7 7B@<A4G8 �≻� ζ J<G; 4 @<A<@H@
CEB545<?<GL ?8I8? 8DH4? GB α#� *;8 6BAFGE4<AGF 64A 4?FB
58 8@5E4687 <AGB 4 F<A:?8 CEB545<?<FG<6 6BAFGE4<AG PF498GL
789<A87 5L 4 @<A<@H@ G;E8F;B?7 α$� �BG; C4E4@8G8EF α#

4A7 α$ 4E8 E8?<45<?<GL ?8I8?F 78G8E@<A87 5L G;8 HF8E�
*;8 CEB545<?<GL B9 &4E8GB ABA7B@<A4A68 J<G; E8FC86G GB

4 :<I8A I86GBE ζ <F G;HF 8DH4? GB�

PABA7B@<A4A68 =
∫

#(5,ξ)≻ζ
p(ξ)dξ , ����

J;8E8 p(ξ) <F G;8 =B<AG CEB545<?<GL 78AF<GL 9HA6G<BA B9 ξ �
J;<?8 G;8 CEB545<?<GL B9 F498GL <F :<I8A 5L�

PF498GL =
∫

$(5,ξ)≤	
p(ξ)dξ . ����

�BE@H?4G<BA ��
� 6BH?7 58 4CC?<87 7<E86G?L J<G;<A 4
@H?G<B5=86G<I8 8IB?HG<BA4EL 4?:BE<G;@ ��B8??B �B8??B 8G 4?�
�		��� <A G;4G 64F8� 846; <A7<I<7H4? G8FG87 7HE<A: G;8
BCG<@<M4G<BA CEB68FF <F E8CE8F8AG87 5L 4 chromosome 6BA�
G4<A<A: G;8 I4?H8F B9 4?? 78F<:A I4E<45?8F 9BE G;<F FC86<9<6
<A7<I<7H4?� G;EBH:; 4 6B7<A: 789<A87 <A G;8 8IB?HG<BA4EL
4?:BE<G;@ �8�:� 5<A4EL 6B7<A:� E84? 6B7<A:� 8G6��� �BAF8�
DH8AG?L� 846; 6;EB@BFB@8 6BAG4<AF 4G BA68 G;8 C4E4@8G8EF
xi � 4A7 G;8 :H8FF I4?H8F ζi 9BE G;8 6BEE8FCBA7<A: DH4AG<?8F
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@<A5,η ζ = 1ζ
, . . . , ζm2T

FH5=86G GB� PABA7B@<A4A68 ≡ P
[
#(5, ξ) ≻ ζ

]
≥ α#,

PF498GL ≡ P
[
$(5, ξ) ≤ 	

]
≥ α$,

4A7 J<G;� ζi = µ
[
fi (5, ξ)

]
+ ηi .σ

[
fi (5, ξ)

]
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J;8E8 µ
[
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4A7 σ

[
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*;8 CEB545<?<GL @84FHE8 PABA7B@<A4A68 64A 58 9HEG;8E
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f Aj < f Bj � *;8E89BE8� PABA7B@<A4A68 <F 8DH<I4?8AG GB�
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}
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]
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, . . . , p → g!)

= 

ρ

?A

⎡

⎣
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ρg j
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*;8 GJB�FG8C CEB687HE8 6BAF<FG<A: <A� �4� creating a
database of computer experiments 4A7 �5� training the
metamodels and use them for optimization @<:;G ABG 58
466HE4G8 8ABH:; 9BE ?4E:8 AH@58E B9 I4E<45?8F 4A7�BE ;<:;?L
ABA?<A84E E8FCBAF8F� �A G;BF8 F<GH4G<BAF� 4A HC74G<A: B9
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*;8 6BEE8FCBA7<A: @8G4@B78?F ỹ(5, ξ) 4E8 G;8A HF87
GB 8I4?H4G8 G;8 FG4G<FG<64? BHGCHGF �8�:� @84AF 4A7
FG4A74E7 78I<4G<BAF� 5L #BAG8 �4E?B F<@H?4G<BAF BA
ỹ(5, ξ)�

���� direct approximation of the statistical outputs� G;8
FG4G<FG<64? @84FHE8F B9 G;8 E8FCBAF8F �8�:� @84A E �
FG4A74E7 78I<4G<BA σ � 64A 58 4CCEBK<@4G87 J<G;
E8FC86G GB G;8 78G8E@<A<FG<6 4A7 E4A7B@ I4E<45?8F�
Ẽy(5, ξ)� σ̃y(5, ξ)� *;<F <F ABG FH<G45?8 ;8E8 F<A68
CEB545<?<G<8F B9 ABA7B@<A4A68 A887 8I8AGH4??L GB
58 64?6H?4G87 J<G;<A G;8 @H?G<B5=86G<I8 E8?<45<?<GL�
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Chapter 6

General conclusions and prospectives
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6.1. Conclusions

6.1 Conclusions

In this thesis we investigated the following question in the scope of variability studies when small variations
are concerned: how far may we trust the “high-fidelity” models? We have shown on a classical metal
forming test problem than when using the non-linear FE scheme as “high-fidelity” simulations, small
variations of the random input parameters lead to noisy training data and may distort the statistical
data of interest.

When using non linear FE scheme as “high-fidelity” simulation, small variations of the random input
parameters may lead to noisy input training data which alters the accuracy of the training data set
and may distort the statistical quantities of interest. We have illustrated this claim using the non-linear
FEM simulation (involving contact/friction and material non linearities) of the springback of a 2D deep
drawing process of U shaped metal sheet.

We have introduced two methodologies in order to bypass this limitation. The first methodology con-
sists in combining a physical reduced order metamodel (semi-analytical Bending-Under-Tension model)
and a custom Polynomial Chaos Expansion to accurately assess the springback parameters for small
variations on the input parameters. The B-U-T model allowed us to circumvent typical cost issues and
numerical instability from full FEM simulations (contact modeling, through thickness integration). The
use of such a model has allowed us to reach a sufficient numerical stability for small variations of the
random parameters. Using these high resolution outputs, we have been able to accurately train a custom
stochastic surrogate to efficiently propagate the uncertainties through the model. Then, this approach
allowed us to accurately assess the springback variability when multiple random variables are taken into
account with a limited budget.

However, physics-based metamodels with higher resolution are not always available. To circumvent
this issue, one opportunity is to take into account the model sensitivity in the sampling scheme. We
proposed a modified Latin Hypercube Sampling methodology called Fat-LHS allowing to filter noisy
data and to preserve their Latin Hypercube Sampling property. This heuristic strategy provides the
maximum number of simulations available considering the finite model sensitivity. We then used this
limited number of non-noisy samples to build a PCE in order to propagate the uncertainty. But, the low
number of samples has lead us to consider sparse strategies to make affordable possible identification of
the PCE terms. We have compared three different methodologies to build a sparse PCE (LARS, Q-norm
and LARS+Q-norm) and have retained the best possible PCE for each of them. The comparison of the
results has shown that generally the Q-norm+LARS hybrid is more efficient. We have obtained the best
results for truncated low order sparse PCE.

Moreover, the combination of optimization and uncertainty quantification has been addressed. In
most of the studies, these both fields have been combined when only one objective function is consid-
ered. However, most of real life problem involved the simultaneous optimization of possibly competing
objectives. Then two issues have to be tackled: the definition of a formulation of MOOU, and its res-
olution. In this thesis, we particularly focused on the resolution phase. Most of the time this task is
achieved using a nested combination of metamodels constructed separately either in the deterministic
design variables space or in the stochastic variables space. Here, we have proposed a computationally
efficient non-intrusive procedure to construct a metamodel in both deterministic and stochastic spaces. It
is based on a moving least squares interpolation of polynomial chaos coefficients. Those metamodels have
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been thoroughly validated and incorporated into an original multi-objective reliability-based formulation,
and successfully applied to the cost-effective structural design optimization of space trusses.

6.2 Prospects

To deal with real-life multi-objective optimization problem under uncertainty, one has to take into account
the eventually high dimensionality of the problem and to develop robust methodologies to this purpose.
The examples treated in this work are characterized by small numbers of variables and rather smooth
responses. For more complex problems, higher degrees of PCE and MLS bases might be required, which
would considerably increase the size of the training database, hence the overall CPU cost. In that case,
considering sparse PCE to discard from the PCE coefficient matrix the terms that bring no significant
contribution to the random response might be an option, in addition, to a finer updating process during the
optimization; Moreover, tackling wider design spaces, improving the adaptive strategy of the stochastic
metamodels should also be considered, for example by including a prediction error procedure to validate
the surrogate model accuracy during the optimization. Another approach could imply screening or space
reduction techniques in a MOOU framework.

Finally, focusing on the UQ part of the problem, our approach demonstrates that the use of simplified
physics based model for large strain forming process allows to reduce the numerical instability and
makes possible an accurate and low cost variability study. The approach is of course not limited to
2D plain strain and sparse PCE opens the way to a combination with other types of physics-based
metamodels such as one-step or POD/PGD approaches presenting similar smoothing properties in 3D.
The consistency between the different fidelities levels in the approach have not been addressed as [NE12]
recently investigates this issue. In the current state of development we have demonstrated the validity
of our the approach from numerical point of view using standard benchmarks. The comparison with
experiment requires an implementation of the method within a specialized metal forming framework,
which is beyond the scope of the current study dedicated to stochastic modeling, but may be done in
further studies.
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