Chapter 1

Introduction

Carried by the impressive development of new communication technologies, business processes (BPs) are becoming more and more central to the operation of modern information systems. On one hand, the success of most organisations hinges on the quality and efficiency of services provided to customers. On the other hand, organizations have to cope with the new economic model that requires the ability to adopt to changes of the market. A continuous business process improvement is essential for companies to keep up with the market needs. The nineties were the decade of the revolution of "Processes": implementation of information systems around process automation has begun to revolutionize the enterprises architectures. The focus of the process improvement was on automation [START_REF] Casati | A generic solution for warehousing business process data[END_REF][START_REF] Wil | Business process management: a survey[END_REF][START_REF] Georgakopoulos | An overview of workflow management: from process modeling to workflow automation infrastructure[END_REF], in other words human involvement was reduced by using workflow management systems (WFMS) and other middleware technologies. Moreover, using such technologies provides a good system integration and automated enactment of operational business processes. In addition, automated support provides the ability to observe and collect events related to process execution. As a result, it enables an opportunity to build a data source for analysis.

Recently, process analysis has received a wide attention for the purpose of process improvement. Hence, understanding information system behaviour and the processes and services they support become a priority in large-scale companies. This is illustrated by the increased number of process execution analysing tools and techniques available today [START_REF] Van Der Aalst | Workflow mining: a survey of issues and approaches[END_REF][START_REF] Cook | Discovering models of software processes from event-based data[END_REF][START_REF] Motahari | Protocol discovery from web service interaction logs[END_REF]. The aim of such tools and techniques is to extract value from recorded data sources [START_REF] Van Der Aalst | Process mining: Discovery, conformance and enhancement of business processes[END_REF]. Nowadays, the wide-scale automation has led the business processes to be implemented over several (heterogeneous) systems. By consequent, the information related to the process execution may be scattered across multiple data sources, and in many cases, the knowledge about how this informations is related to each other and to the overall business process of the enterprise, is missing. In this case, the issue of identifying such a kind of relationship arise, in other words how to correlate informations (events related to process execution) in order to extract a knowledge about Chapter 1. Introduction the operational processes. The problem of correlation discovery can be defined as the problem of finding out rules (informations) that allow to group together recorded events that belong to the same process execution (process instance).

Due to its importance correlation discovery has received a wide attention from researchers and practitioners [START_REF] Brown | Bhunt: automatic discovery of fuzzy algebraic constraints in relational data[END_REF][START_REF] Ihab | Cords: automatic discovery of correlations and soft functional dependencies[END_REF][START_REF] Ihab | Cords: automatic generation of correlation statistics in db2[END_REF][START_REF] De Pauw | Discovering conversations in web services using semantic correlation analysis[END_REF][START_REF] Rozsnyai | Event cloud -searching for correlated business events[END_REF][START_REF] Rozsnyai | Discovering event correlation rules for semi-structured business processes[END_REF][START_REF] Hamid | Event correlation for process discovery from web service interaction logs[END_REF][START_REF] Hamid | Discovery and Adaptation of Process Views[END_REF][START_REF] Barga | Event correlation and pattern detection in cedr[END_REF], from several application domains such as: process discovery, monitoring, analysis and browsing and querying.

Correlation discovery consists of analysing a repository of event logs in order to find out the set of events that belong to the same business process execution instance. However, this is a computationally-intensive task [START_REF] Hamid | Event correlation for process discovery from web service interaction logs[END_REF] as it involves the exploration of a huge space of possible relationships among events over very large and continuously growing event repositories. In particular, this task is challenging for two main reasons:

• Correlation discovery is in essence a computation-intensive task. It consists of various repetitive data-intensive computations (e.g., aggregation of events, intersection and join, computing transitive closures, and so on) on a sheer large amount of data.

• Big data is a fact of the modern world. Modern infrastructures supporting large scale enterprise applications record more and more information about the history of business processes. Usually, the recorded data may not fit in one machine.

According to a recent Gartner survey1 , the volume of digital business data to be stored is growing at a rate of 40 percent to 60 percent each year.

Applications with a large and unstructured data set usually employ parallel algorithms over a cluster of nodes in order to efficiently split the workload. When dealing with a very large amount of data, detecting relationships between events and identifying correlation rules become a challenging problem, even if a large computational cluster is available. Parallel data processing relies on data distribution and replication for efficient query execution. Partitioning event logs to identify correlation rules, used to determine relationships over events in order to isolate end-to-end process instances, is a challenging task due to the large size of datasets and the high number of candidate correlation rules (also called correlation conditions).

In this thesis, we investigate the application of modern large scale data analysis techniques, and in particular MapReduce [START_REF] Dean | Mapreduce: simplified data processing on large clusters[END_REF] framework, to support efficient event correlation 3 discovery in process mining activities. MapReduce has emerged recently as a promising approach for processing huge amounts of data on a multitude of machines in a cluster.

It provides a simple programming framework that enables harnessing the power of very large data centers, while hiding low level programming details related to parallelization, fault tolerance, and load balancing. It should be noted that distributed parallel computing is however not a trademark of the MapReduce approach but can indeed be realized using other techniques e.g., general purpose parallel DBMS or specific parallel algorithms [START_REF] Pavlo | A comparison of approaches to largescale data analysis[END_REF]. The arguments in favor of using MapReduce for event correlation discovery are:

• MapReduce provides a simple way to implement massive parallelism on a large number of commodity low-end servers (i.e., the scaling out approach), while freeing the programmers from the task of tackling the difficulty of traditional parallel programming,

• "Component failures are endemic to very large clusters of distributed computers" [START_REF] Hellerstein | The declarative imperative: experiences and conjectures in distributed logic[END_REF]. The event correlation discovery task can be very time consuming and therefore failure recovery solutions that require restarting the discovery process from scratch are indeed inadequate. MapReduce handles failures at a fine-grained level by reexecuting only the failed job on some other nodes in the network,

• Log files are usually heterogeneous in the sense that they come in a variety of forms. The heterogeneity issue is more easily handled using MapReduce since no predefined schema is imposed on the input data.

In this thesis, we rest on the event correlation discovery approach proposed by Motahari et al. in [START_REF] Hamid | Event correlation for process discovery from web service interaction logs[END_REF] to propose a two-stages approach for discovering correlation rules and their entailed process instances from event logs using MapReduce. The first stage is devoted to the computation of simple correlation rules (called atomic conditions) and their associated process instances. The second stage is devoted to composite correlation conditions (conjunctive and disjunctive conditions) and associated process instances.

Composite correlation conditions are built by combining atomic conditions using {∧, ∨} operators. For each stage, we provide a variety of algorithms. the lattice by levels and processes each level in a MapReduce job. The main difficulties encountered when designing our approach are related to log partitioning and redistribution in order to generate efficient parallel computations. The main contributions of the thesis are:

• We introduce efficient methods to partition an events log across map-reduce cluster nodes in order to balance the workload related to atomic condition computations while reducing data transfers.

• We introduce an efficient solution to compute process instances corresponding to correlation conditions in a scalable parallel shared-nothing data processing platform. Our approach relies on a vertical partitioning of the space of candidate conditions in a way that each partition can be processed autonomously without need of synchronization.

• We develop one/multi-pass algorithms to perform condition discovery computations at the reducer nodes. Such algorithms are optimal w.r.t. I/O cost and hence are very effective in situations where the size of data to be processed is much larger than the size of the memory available at the processing node.

• We introduce two strategies to perform a MapReduce-based level-wise-like algorithms to explore the space of candidate composite conditions.

-Single-pass strategy, we use the notion of partitioning conditions for partition vertically the lattice of candidate composite conditions.

-Multi-pass strategy, we partition the lattice horizontally and process each level in a distinct MapReduce job.

• We present experimental results that show the scale-up and speed-up of the algorithms with regard to variation of both data sizes and number of nodes. The experiments show that the overhead introduced by MapReduce is negligible compared to the global gain in performance and scalability.

The rest of the thesis is organized as follows: In Chapter 2 we describe the event correlation discovery problem statement and we discuss related works. Also, we describe the shared-nothing parallel data processing framework MapReduce and we provide a cost model to measure MapReduce Programs. Then, in Chapter 3 we detail the approach of event correlation discovery proposed by Motahari et al, this approach is considered as the basis of our work. Next, In Chapter 4 we present the algorithms dedicated to discover atomic correlation conditions. In Chapter 5 we present algorithms devoted to discover composite candidate correlation conditions. Finally we conclude in Chapter 6.

Introduction

In this chapter we describe the background of our work. First, in Section 2.2, we present an overview of business process management. Next, Section 2.3 focuses on one particular process mining task: process discovery. We present the process of extraction/collecting event logs from heterogeneous data sources, and we give an example on discovering business model using the so called α-algorithm [START_REF] Wil Van Der Aalst | Workflow mining: Discovering process models from event logs[END_REF]. In Section 2.4, we describe the problem of event correlation discovery. Then, in section 2.5 we discuss few existing application scenarios for event correlation discovery. Finally, in Section 2.6 we present the largescale data processing framework MapReduce and we propose a cost model for estimating

MapReduce-based algorithms.

Business Process Management

A business process is defined as a set of coordinated tasks and activities more/less related, collectively realizing a business objective. A business process can be entirely executed within a single organization or may span multiple organizations [START_REF] Georgakopoulos | An overview of workflow management: from process modeling to workflow automation infrastructure[END_REF][START_REF] Leymann | Production workflow: concepts and techniques[END_REF][START_REF] Wil | Business process management: a survey[END_REF][START_REF]Workflow management: models, methods, and systems[END_REF]. A business process can combine automatic and manual activities.

Example 1 Figure 2.1 represents a simple ordering business process using BPMN [START_REF]Business Process Model Object Management Group and Notation[END_REF].

The process is made of two 'roles', namely a buyer and a sender, and several activities that work as follows:

1. The buyer sends an order request (message) with ordering information to the seller by executing the activity Place Order.

2. On receiving the message, the seller process starts. It extracts information about the buyer from the request message. Then, it checks the order by executing Check Order activity. After that, it sends the invoice.

3. Then buyer settle the received invoice.

4. When the seller receives the payment it ships the products.

5. Finally, the buyer receives the products, and the process is completed.

Usually, a business process is associated with a data-flow, that defines how data evolves between process activities, and a control-flow, that defines the business logic of the process. The control-flow guides the execution of the activities, i.e, shows the order in which activities should be executed.

Business process management (BPM) covers concepts, methods, techniques and software to support activities such as design, administration, configuration, enactment and analysis of operational processes involving humans, organizations, applications, documents and other sources of information [START_REF] Weske | Business process management: Concepts, languages, architectures[END_REF][START_REF] Wil | Business process management: a survey[END_REF]. Once the business process is explicitly defined as well as its activities and the constraints between them, it can be a subject to enactment, analysis and improvements. • Design phase: This phase is interested by the design of the business process and its logic. It identifies the activities to be synchronised, and their logical order. Also, it defines the roles to be assigned to these activities. A graphical representation of the business process is provided in order to facilitate communication between different stockholders. The business process management notation standard (BPMN) can be used to describe the processes in this phase [START_REF]Business Process Model Object Management Group and Notation[END_REF].

• Configuration phase: Once the design phase is completed, the business process needs to be implemented. To do so, the abstract descriptions of the activities are implemented on a dedicated business process management system (BPMS) or workflow management system (WFMS), using software and procedures like filing a form, JAVA or SQL programmes.

• Enactment phase: During this phase, the (BPMS) controls the execution of the activities according to the flow previously established. It provides accurate informations on the status of an execution of the business process (process instance).

Usually, the history of the execution of the process are recorded into log files.

• Diagnosis phase: This phase aims at analysing qualitative and quantitative effec-tiveness of the business process model already deployed. Techniques and methods such as process mining are used to improve the process model and its implementation.

To support the business process lifecycle, BPMS were introduced as an extension of workflow management systems(WFMS). BPMSs focus more on the diagnosis phase of the BPM lifecycle, i.e., monitoring, tracking, analysing and prediction of business processes [START_REF] Grigori | Business process intelligence[END_REF][START_REF] Wil | Business process management: a survey[END_REF]. A BPMS is defined as:"a system that defines, creates and manages the execution of workflows through the use of software, running on one or more workflow engines, which is able to interpret the process definition, interact with workflow participants, and where required, invoke the use of IT tools and applications" [START_REF] Hollingsworth | Workflow management coalition -the workflow reference model[END_REF][START_REF]WFMC. Workflow Management Coalition Terminology and Glossary (WFMC-TC-1011)[END_REF]. In modern enterprise, business processes are rarely supported by a single centralized workflow management system. Indeed, many existing processes span over multiple heterogeneous systems. Thereby, an accurate specification (formal description) of the process is not always available or may change to adapt the new enterprise requirements and services. Therefore, understanding, analysing and improving business processes become a Chapter 2. Background challenging task. As a business process management technique, process mining allows to deal with this issue. Process mining is a relatively new research discipline that combines machine learning and data mining on one hand and process modelling and analysis on the other hand [START_REF] Wil | Conformance checking of service behavior[END_REF]. The process mining aims to support the evolution of the re-engineering process [START_REF] Godart | Les processus métiers: Concepts, modèles et systèmes[END_REF].

Process Mining

The main goals of process mining technique is to extract knowledge from historical log files already recorded at the enactment phase by most of today's WFMS. This knowledge is used for various gaols such as process discovery, improving the quality of the process by detecting deviations in the process model. Figure 2.3 shows the position of process mining in the business process lifecycle. Note that any step of the three steps of process mining cannot be performed without a presence of a correct historical data. In the sequel we describe how data are gathered from multiple data sources to be analyzed from a process-oriented perspective i.e., for the purpose of process discovery.

Getting Data

In Figure 2.4, we present three layers (steps) that enables to understand the process of collecting process related event-data [START_REF] Rozsnyai | Discovering event correlation rules for semi-structured business processes[END_REF][START_REF] Hamid | Event correlation for process discovery from web service interaction logs[END_REF].

Data sources Layer. The first layer represents event processing source systems such as BPMS, documents management system, ERP systems that capture and maintain information related to process executions. Such systems produce a wide range of process information items (e.g., a raw in a database, an event in a log file, a SOAP message exchanged between services, an email).

Data integration Layer. At this step, activities and resources associated to process execution are captured by tapping of message exchanges [START_REF] Dustdar | Discovering web service workflows using web services interaction mining[END_REF] (e.g. SOAP message) and recording read and write actions [START_REF] Wil | Conformance checking of service behavior[END_REF]. Such event-data come in different format (columns in relational databases, XML, CSV files, . . .) and with various structures (relational schema, XSD, . . .). Therefore, additional efforts are needed to collect, unify and store relevant data in a single data storage. ETL techniques [START_REF] Rahm | Data cleaning: Problems and current approaches[END_REF][START_REF] Schiefer | Event data warehousing for complex event processing[END_REF] are used to extract data from existing sources, and transform it to fit operational need and finally load it into a data warehouse or a relational database. Data storage layer. Events extracted in previous layer are used to populate data storage (eg. data warehouse, relational database) for further analysis following the store every thing, discover later paradigm. Indeed, many analysis techniques depend on the analyser interest viewpoint. Consider for example data in a hospital. One may be interested by the discovery of patient flows. However, another one may also be interested in optimizing the workflow within the radiology department. Answering both questions requires the availability of informations related to both processes executions. Therefore, it is important to store as much data as possible.

In the following, we describe the process discovery and we give an example of process discovery algorithms. Table 2.1: A fragment of an event log: each line corresponds to an event.

Process Discovery

Business process discovery, also known as process mining, allows for extracting information from event logs, e.g. from the audit trails of a workflow management system or the transaction logs of an enterprise application, to infer an explicit representation of intra-and/or inter-organizational business processes [START_REF] Van Der Aalst | Workflow mining: a survey of issues and approaches[END_REF][START_REF] Hamid | Event correlation for process discovery from web service interaction logs[END_REF][START_REF] Van Der Aalst | Process mining: Discovery, conformance and enhancement of business processes[END_REF]. There are several attractive application areas for business process discovery in a wide variety of domains, e.g., healthcare, governments, banking, insurance, education, transport, etc. Process discovery allows organizations to gain insights into their operational processes, ensure compliance with standard processes, and improve processes in general. The so called α-algorithm [START_REF] Wil Van Der Aalst | Workflow mining: Discovering process models from event logs[END_REF], is an example of a naive process mining algorithm able to handle such a task. This algorithm is based on the following assumption:

• Safety: Any event presented in the log should refer to both a process execution (case) and an activity. Event within a process execution are ordered. Generally events are ordered by timestamps.

• Completeness: The process instances should cover all the possible executions of the process, i.e, each activity in the initial process model should appear at least one time on an event in the log. This is the minimum requirement for any process mining algorithm to transform the information presented in the log into a process model (see Example 2 Taking the event log presented in Table 2.1, the α-algorithm will generate the process model described in Petri-nets [START_REF]Lectures on Concurrency and Petri Nets[END_REF] as shown in Figure 2.5 (cf, [START_REF] Wil Van Der Aalst | Workflow mining: Discovering process models from event logs[END_REF][START_REF] Van Der Aalst | Process mining: Discovery, conformance and enhancement of business processes[END_REF]) .

Correlation Discovery, a Key Step For Process Discovery

Due to its importance, business process discovery has recently received a wide attention from practitioners and researchers [START_REF] Van Der Aalst | Workflow mining: a survey of issues and approaches[END_REF][START_REF] Motahari | Protocol discovery from web service interaction logs[END_REF][START_REF] Hamid | Event correlation for process discovery from web service interaction logs[END_REF][START_REF] Van Der Aalst | Process mining: Discovery, conformance and enhancement of business processes[END_REF]. As a key-step in process discovery, event correlation discovery consists in analysing event logs or interactions among processes entities in order to find out relationships between events that belong to the same Chapter 2. Background business process execution instance [START_REF] Barros | Correlation patterns in service-oriented architectures[END_REF][START_REF] Motahari | Protocol discovery from web service interaction logs[END_REF][START_REF] Hamid | Event correlation for process discovery from web service interaction logs[END_REF]. Correlation discovery involves the exploration of a huge space of possible relationships among events over very large and continuously growing event repositories.

Figure 2.6 depicts where the event correlation discovery step is incorporated with respect to an end-to-end system devoted to different business process management applications such as process discovery, analysis, monitoring and querying. In general, such a system consists of the following parts (represented as layers):

Correlation Discovery Layer: as defined previously, a correlation discovery algorithm (i) takes events presented in the storage system as input, (ii) deduces correlation between events by computing statistics on attribute combination (correlation conditions),

(iii) groups together events correlated by the already correlation conditions discovered in the previous step to form process instances (e.g, a purchase order process).

Process Discovery Layer: historical traces of process instances discovered in the Correlation Discovery step are provided as input for mining algorithms (e.g the α-algorithms).

Process discovery algorithms require process instances executions from which they derive the process model.

Application fields Layer: this layer represents the various fields of application of correlated events. Events correlated during execution-time might be used in monitoring applications, or earlier alert-system to detect exceptional situations. Another application is querying and browsing the historical traces, a correlation rule may induce graphs of relationships that can be used to speed up querying and browsing events. Correlations are particularly useful for features that require interaction, analysis and exploration of events.

In this thesis we focus on the problem of identifying event-attributes that correlate events presented in the log files and, by consequent, lead to isolate process execution traces.

Event Correlation Discovery Problem

The First challenging step to achieve a process mining and/or process analysis approaches involves correlation of event generated by heterogeneous and distributed systems. In other words, identifying the set of events that belong to the same process or service execution (also called case).

In large-scale modern enterprise, event data are widely scattered over several tables or even a set of heterogeneous systems. Therefore, identifiers that relates event to process instance or to each other become extremely hard to track [START_REF] Rozsnyai | Discovering event correlation rules for semi-structured business processes[END_REF][START_REF] Dong | A platform for personal information management and integration[END_REF][START_REF] Franklin | From databases to dataspaces: a new abstraction for information management[END_REF]. Answering questions such: how events and their instances could be grouped ?. how to relate a response to the original request, in case of message exchange ? becomes harder compared to a centralized business process, where all process are implemented using a single central WFMS [START_REF] Grigori | Business process intelligence[END_REF].

In this thesis, we consider that all processes related data are stored in a centralized storage such as data warehouse, relational database. We call such document as event logs. In the sequel we introduce a formal definition of an event log document.

Event logs

An event log can be extracted from data warehouse (as seen in section 2.3.1), captured from web-service interaction or generated by WFMS or BPMS during process execution enactment phase. Various ways are used to log [START_REF] Dustdar | Discovering web service workflows using web services interaction mining[END_REF] and capture [START_REF] Wil | Conformance checking of service behavior[END_REF] messages exchanged between interacting services.

In the case of services based business processes, services exchange messages to achieve an objective, e.g, register a client request, booking a hotel and/or a flight, on-line payment, sending invoice, archiving the request. The order in which these messages appear form a conversation that achieve a single business goal. Taking an example of booking a hotel and flight service, several, conversation may be running, at any given time, corresponding to multiple customers interacting with a given service. In the spirit of [START_REF] Hamid | Event correlation for process discovery from web service interaction logs[END_REF][START_REF] Reguieg | Using mapreduce to scale events correlation discovery for business processes mining[END_REF],

we define in this thesis web service interaction log as follows:

Process message log. A process message log L, can be viewed as a relation over a relational schema L (id, A 1 , A 2 , . . . , A n), where U = {A 1 , A 2 , . . . , A n } is a set of attributes used in messages parameters and id is a special attribute denoting message identifier. Let X ⊆ U, we note by π X (L) the relation corresponding to the projection of L on the attributes of X. Elements of L are called messages1 . For a message m ∈ L, we denote by m.A i the value of the attribute A i in the message m and by m.id the message id.

In the case of web services interactions, messages are structured (XML) documents (of different types, and therefore with different schema) organized in sections. A preprocessing ETL-like is required to extract items from the XML documents and load them as event tuples in a relation L over the schema L. The set of attributes

A 1 × A 2 × . . . × A n
represent different message attributes that belong to the XML document. Since typically a message m ∈ L contains only a subset of attributes of U , therefore, m may have several undefined attributes in L (i.e., null values). In addition, some of these attributes are supposed to determine if two given messages belong to the same conversation. This attributes are called correlator attributes, and the functions defined over them as correlation conditions or correlation rules.

Correlation Condition

Correlated messages are identified using a correlation conditions (also called rules). A correlation condition (correlation rule) is defined below.

Correlation condition. A correlation condition, denoted by ψ(m l .A i , m p .A j), is a boolean predicate over attributes A i and A j of respectively the two messages m l and m p . The condition ψ(m l .A i , m p .A j) returns true if m l and m p are correlated through the attributes A i and A j and return false otherwise.

The condition form depends on the specific domain in which this condition is defined.

For example, a condition of the form m l .A i = m p .A j specifies the equality relationship between attributes A i and A j in (m l , m p). A condition having this form is an atomic condition or atomic rule. A conjunctive (respectively, disjunctive) condition consists of conjunction (respectively, disjunction) of atomic conditions.

A correlation condition groups messages in the service interaction logs L into a collection of conversations2 c 1 , c 2 , . . . ,. Each c i is a sequence of messages (events). Henceforth we use the term process instance to express a conversation. A process instance is defined as follows:

Process Instance. A process instance 'pi' (instance for short) is a sequence of messages m 1 , m 2 , . . . , m k corresponding to a subset of messages of the log L. For a given message m x ∈ pi, it exist at least one message m y ∈ pi and x = y. where m x is directly correlated with m y , i.e, ψ(m x , m y) holds [START_REF] Hamid | Discovery and Adaptation of Process Views[END_REF][START_REF] Hamid | Event correlation for process discovery from web service interaction logs[END_REF].

Related Works

In this section, we present some existing works used correlation discovery from either relational data or process event log files for various objectives such as, speed up queries processing by providing an optimal query plan, discovering hard and/or soft functional dependencies, discovering events related to a process execution instance for process discovery purpose, . . . , etc. Despite the fact that each of the presented works has a different purpose, they share some steps as generating candidates and pruning non-relevant candidate using heuristics and measures. At the end of the section, we discuss these approaches.

BHUNT [27]

In [START_REF] Brown | Bhunt: automatic discovery of fuzzy algebraic constraints in relational data[END_REF], the authors present a data-driven technique called BHUNT that uses a "Bump

Hunting" techniques for automatically discovering fuzzy (soft) hidden relationships between pairs of numerical attributes in relational databases, and incorporates this knowledge (the relationship between attributes) into an optimizer in the form of algebraic constraints. Such constraints can be exploited in various ways as data mining and for improving query processing performance. The three clauses in the predicate represents the three "bumps" in the histogram 2.8.

of orders

Delivery_date -ship_date (days) BHUNT finds and exploits hidden fuzzy algebraic constraints. It proceeds as follow:

• Generating candidates C = (a 1 , a 2 , P, ⊕). This is achieved by searching for the key columns and then finding columns related to the key columns via inclusion dependency.

• For each generated candidate, it builds the algebraic constraint (i.e., construct the intervals I 1 , I 2 , . . . , I k) by employing statistical histograming, segmentation, or clustering techniques to a sample of data values. Since most of the constraints are fuzzy, some "exception" records may not satisfy the constraints.

• Identifiying the most effective set of constraincts, and create "exception tables" that holds exception records.

• Finally, the query plan is modified to incorporta the constraints. The RDBMS optimizer uses the constraints to speed up the query processing by finding new more effective access paths. The results are combined with results of executing the original query on the (small) exception tables.

In addition, BHUNT uses some heuristics to prune non-interesting candidate generated in step one, e.g., P is of the form R.a=S.b, and the number of rows in either R or S does not satisfy the following measure:

#rows(a) #distinctV alues(a) ≤ 1 -ε
where ε a user pre-specified parameter.

CORDS [54, 55]

In [START_REF] Ihab | Cords: automatic discovery of correlations and soft functional dependencies[END_REF], the authors introduce CORDS (CORrelation Detection via Sampling), a datadriven technique for automatically discovering correlations and soft functional dependencies between database columns. It provides a dependency graph to improve the performance of query optimizer. This tool is built upon BHUNT [START_REF] Brown | Bhunt: automatic discovery of fuzzy algebraic constraints in relational data[END_REF], previously presented.

CORDS enumerates candidate column pairs searching for interesting and useful correlations, and pruning unpromising candidate using a set of heuristics. CORDS applies a chi-squared analysis to a sample of column values in order to identify correlation between attributes (categorical and numerical) and an analysis of the number of distinct values to detect functional dependencies. A correlation rule in the context in this work is relation ship between two columns such as for instance a join between two tables over two attributes.

CORDS exploits column pairs to identify functional dependencies and statistical correlations. It proceeds as follows:

• Generating candidate of the form C = (a 1 , a 2 , P), where a 1 , a 2 are attributes and P is the pairing rule that specifies how a 1 values get paired with which a 2 values to form correlated values.

-First, it generates all candidates having a trivial pairing rule (when the columns lie on the same table).

-Then, it searches for non-trivial pairing rule (when the columns are in separate tables.).

• Pruning unpromising candidates using a set of heuristics to reduce the search space.

• Finally, detecting correlations by applying a chi-squared analysis on data samples.

DePauw et al. [79]

The problem of discovering conversation in web services is raised in [START_REF] De Pauw | Discovering conversations in web services using semantic correlation analysis[END_REF]. DePauw et al.

proposed an approach to discover the correlation between message pairs (e.g., Purchase

Order and Shipping message pair) from the log of service interactions. Their approach is based on identifying the conversation identifiers within exchanged messages. They used the term semantic correlation to describe how theses identifiers correlate messages across different activities execution.

Starting from a set of all exchanged messages, DePauw et al. propose the following steps to discover conversation identifiers:

• From XML to value tables: First, messages are grouped by their full message name and for each group a schema is derived based on the content of the messages.

A value table is created for each schema, where each row represent one message.

The term path is used to refer to the location of an element or attribute. is the number of data element presented in p. Next, highly indexable paths, these are paths with an index higher then α p >95%, and Mappable paths, these are paths having an interesting number of matching values with highly indexable paths, are identified.

• Finding correlation between correlation identifiers: At this step, correlation identifiers identified in the previous step are classified as highly indexable and mappable paths. Then, pairs from different schemas are tested to find those produce an important match between their values. Hence, A pair of paths is considered as interesting semantic correlation if a significant overlap exists between the values set of the first and the second paths. Next, a causal relationship based on timestamps is assigned to each two matched values to determine the origin path and the destination paths.

• Finding correlation between schemas: finally, two schemas are correlated if at least a path from one schema is correlated with a paths from the second schema.

As conclusion the proposed approach [START_REF] De Pauw | Discovering conversations in web services using semantic correlation analysis[END_REF] can reveal correlation between pairs of messages. However, it does not provide information on how messages are related at the instance and process level.

Event Cloud [87]

For the purpose of exploring and searching for event within a repositories for historical events, the authors in [START_REF] Rozsnyai | Event cloud -searching for correlated business events[END_REF] introduced Event cloud. Event cloud is an approach for searching business event captured by event-based system. This approach uses correlation sets, a defined relationships between events, to extend the search scope. Where, this correlation set is based on the conformance between elements of events. The key focus on this work is on the index based ranking system which support three different searching scopes. Each ranking level, presented in the following, reflects the type and the depth of relationships between events.

• Rank 1 search: The first rank search considers events autonomous, in other words it does not consider any correlation between events.

• Rank 2 search: The second rank extends the searching scope by considering direct correlation between events.

• Rank 3 search: The last rank goes deeper and allows for searching for indirect correlated events.

To manage the search (rank 1, 2 and 3) the authors developed full-text indexes on event and their correlations and proposed an architecture for preparing them (c.f, [START_REF] Rozsnyai | Event cloud -searching for correlated business events[END_REF]).

Rozsnyai et al. [86]

In [START_REF] Rozsnyai | Discovering event correlation rules for semi-structured business processes[END_REF], the authors addressed the problem of automatically discovering correlation rules from various data sources. The discovered correlation rules are used to determine relationship between events and isolate end-to-end process instances. The algorithm presented is similar to previous work of DePauw et al. [START_REF] De Pauw | Discovering conversations in web services using semantic correlation analysis[END_REF], where the focus is on determining correlation between two type of attributes highly indexable and mappable. However, the authors propose new measures to identify such attributes and to prune non-interesting candidate. The proposed algorithms consists of the, following, three main stages:

• Data Pre-Processing. The first step of the correlation discovery algorithm consists of loading and integrating data from sources (XML files) into data store (e.g;, data warehouse, cloud storage etc.).

• Statistics Calculation. Inverted indexes are created for each event attribute, and various statistics are calculated such as cardinality, attribute data type, number of instance in which the attribute is involved and the average attributes length. These statistics are stored persistently as map tables.

• Determining Correlation Candidates. At this stage, candidate correlation pairs are determined with a certain confidence score based on the following three parameters:

1. Difference set. A difference set determines the difference between all attribute pairs (A, B), where A is a indexable attribute set and B is Mappable attribute set. It is assigned a weight of 60%.

Difference between average attribute length. If the difference between attribute

lengths is important this may lead to a poor relationship (weight of 20%).

3. Levenshtein Distance. The authors assume that a good candidate pairs may have a similar or, at least, comparable names (weight of 20%).

An additional feature proposed by the authors is the Aggregation nodes. This consist of combining correlation rules to represent certain aspect of an application or the interest viewpoint of the user.

Barros et al. [21]

In this paper, Barros et atomic message events into conversations and processes. However, the authors did not provide an (semi)automated approach for event correlation.

Discussion

The works presented above can be classified according to their objectives into two categories. The first category includes, BHUNT [START_REF] Brown | Bhunt: automatic discovery of fuzzy algebraic constraints in relational data[END_REF] and CORDS [START_REF] Ihab | Cords: automatic discovery of correlations and soft functional dependencies[END_REF]. In these works, correlation is used for the purpose of query optimization; by providing constraints to improve the performance of the query optimizer. Both of these works are based on sampling techniques to discover correlation between pairs of column tables in relational databases. The second category comprises the remaining works. In these works, correlation is used in the context of business process discovery. These works, initially, focus on identifying correlation over the message pairs only. So, they discover the correlation between message pairs, and not conversations (the entire business process execution). Later on, these approaches have been extended to find a chain of messages.

So, a conversation (a collection of messages that are connected using a reference-based model or a mix of all modes) cannot be discovered. In addition, these approaches focus on message-level connections, which can be misleading. Indeed a lot of messages may have the same values on some attribute but may not be forming any conversation.

Motahari et al. introduced in [74]

, an approach that focuses on the judgement of whether correlation is relevant at the conversation level (whether it makes a good set of conversations). This approach is used as the basis of our works. A detailed description of this approach is presented in the next chapter.

MapReduce Programming Model

Recently, data-intensive computing frameworks have been received a great attention from both industry [START_REF]Apache Hadoop[END_REF][START_REF] Beyer | Jaql: A scripting language for large scale semistructured data analysis[END_REF][START_REF] Elghandour | Restore: reusing results of mapreduce jobs[END_REF][START_REF] Cooper | Building a cloud for yahoo![END_REF][START_REF] Dean | Mapreduce: a flexible data processing tool[END_REF][START_REF] Gates | Building a high-level dataflow system on top of map-reduce: the pig experience[END_REF][START_REF] Thusoo | Hive -a petabyte scale data warehouse using hadoop[END_REF] and the academia [START_REF] Battré | Nephele/pacts: a programming model and execution framework for web-scale analytical processing[END_REF][START_REF] Behm | Asterix: towards a scalable, semistructured data platform for evolving-world models[END_REF][START_REF] Borkar | Hyracks: A flexible and extensible foundation for data-intensive computing[END_REF][START_REF] Bu | Haloop: efficient iterative data processing on large clusters[END_REF][START_REF] Condie | Mapreduce online[END_REF][START_REF] Dittrich | Hadoop++: making a yellow elephant run like a cheetah (without it even noticing)[END_REF][START_REF] Isard | Dryad: distributed data-parallel programs from sequential building blocks[END_REF][START_REF] Jiang | The performance of mapreduce: an in-depth study[END_REF][START_REF] Nykiel | Mrshare: sharing across multiple queries in mapreduce[END_REF][START_REF] Zaharia | Spark: cluster computing with working sets[END_REF][START_REF] Zhou | Incorporating partitioning and parallel plans into the scope optimizer[END_REF]. Recently, a powerful trend introduced by google [START_REF] Dean | Mapreduce: a flexible data processing tool[END_REF] has gained a significant popularity. This trend relies around the MapReduce framework. Furthermore, in hadoop [START_REF]Apache Hadoop[END_REF], the popular open-source implementation of MapReduce, the parallel computation is expressed by implementing two interfaces Map and Reduce. A high-level query language are built on top of hadoop for solving a complex problems [START_REF] Beyer | Jaql: A scripting language for large scale semistructured data analysis[END_REF][START_REF] Olston | Automatic optimization of parallel dataflow programs[END_REF][START_REF] Thusoo | Hive -a petabyte scale data warehouse using hadoop[END_REF].

MapReduce is a new programming model used to facilitate the development of scalable parallel computations on large server clusters [START_REF] Dean | Mapreduce: simplified data processing on large clusters[END_REF]. MapReduce framework provides a simple programming constructs to perform a computation over an input file f through • Map phase, which contain the following steps:

MapReduce Execution Overview

(1) the input file is splitted into several pieces of, typically, 16 to 64 MegaBytes per pieces. Each such piece is called a split or chunk.

(2) each node hosting a map task, called a mapper, reads the content of the corresponding input split from the distributed file system.

(3) each mapper converts the content of its input split into a sequence of keyvalue pairs and calls the user-defined Map function for each k, v pair. The produced intermediate pairs k ′ , v ′ are buffered in memory.

(4) periodically, the buffered intermediate key-value pairs are written to r local intermediate files, called segment files, where r is the number of reducer nodes.

The partitioning of data into r regions is achieved by a partitioning function which ensures that pairs with the same key are always allocated to the same segment file. In each partition, the data items are sorted by keys. The sorted chunks are written to (persistent) local storage.

• The reduce phase, made of the following steps:

(5) on the completion of a map task, the reducers (i.e., nodes executing the reduce function), will pull over their corresponding segments. (8) each reducer writes its final results to the distributed file system.

As mentioned previously, our goal is to exploit such a framework to implement efficiently event correlation discovery approach.

2.6. MapReduce Programming Model 29

Cost Model for MapReduce Programs

Bases on previous works [START_REF] Nykiel | Mrshare: sharing across multiple queries in mapreduce[END_REF][START_REF] Herodotou | A what-if engine for cost-based mapreduce optimization[END_REF], we introduce a cost model that incorporates two metrics:

(i) time complexity: represents the time complexity of algorithms used in both Map and

Reduce functions, (ii) estimation of the overheads provided by MapReduce framework during job execution.

We consider the following measures to estimate the performance of MapReduce programs:

• I/O cost: time required to read/write data from local disks.

• Network transfer cost.

• CPU cost. We include here main-memory and cache access times as well as operation execution time.

It is worth noting that while it is usual to consider I/O and network transfer costs in (distributed) query optimization area, estimation of CPU cost is less usual and more problematic. Some works, e.g., in the area of main-memory databases, have addressed this problem. With the emergence of hierarchical memory system (small but fast cache memories organized in cascading between CPU and the main memory make such cost estimation problem more complex), access latency varies significantly and the assumption of main memory access is uniform (or covered by CPU) does not hold any more . The main approach to estimate such cost is to estimate the cache misses between each cache level and the level higher [START_REF] Manegold | Generic database cost models for hierarchical memory systems[END_REF]. Table 2.3 given below shows the costs associated with each task of the workflow of Figure 2.9. We will show later how to compute for each proposed algorithm the cost associated with each task as well as the global cost of the algorithm.

We use the following parameters. We consider MapReduce Job J processed using m map tasks and r reduce tasks. Let |M | be the average number of map-output records, and The total cost of executing a job is the sum of the cost T read to read the data, the cost T map to execute the map function, the cost T sort to do the sorting and copying at the map and reduce nodes, the cost T tr of transferring data between nodes, and the cost T reduce to execute reduce function.

|R|
T (J) = T read (J) + T map (J) + T sort (J) + T tr (J) + T reduce (J)
where:

T read (J) = C r * |Split|
-C r is the cost of reading/writing a record remotely (from HDFS).

-|Split| is the number of records in the split (input file).

A record emitted from a map will be serialized into a buffer and meta-data will be stored into accounting buffers. When either the serialization buffer or the metadata exceed a threshold, the contents of the buffers will be sorted and written (spilled) to disk. When the map is finished, any remaining records are written to disk and all on-disk segments are merged into a single file. The cost of the map task execution is:

T map (J) = C u * O m * |Split|
-C u is the cost to execute one operation in the map function.

-O m the complexity of the map function (number of operations)

-|Split| is The number of records (messages) in a Split.

T sort_map (J) = C l * (spillsize * 2(|spills| + M ergeSpillsP asses(|Spills|, F actor))). MergeSpillsPasses(|Spills|, Factor) =      0 ,if |Spills| = 1. 1 ,if |Spills| ≤ F actor. 2 + |Spills|-|SpillsF irstP ass| F actor ,if |Spills| ≤ F actor 2 . SpillsFirstPass =      |Spills| ,if |Spills| < F actor.
Factor ,if (|Spills| -1) mod (F actor -1).

(|Spills| -1) mod (F actor -1) + 1 ,otherwise.

T sort (J) = T sort_map (J) + T sort_reduce (J).
-|Spills| is the number of spill to disk and it equals to:

|Spills| = |M| B * Q * P * 2 16
-spillSize is the size the spilled file.

-Factor : specifies the number of segments on disk to be merged at the same time. If the number of files exceeds this limit, the merge will proceed in several passes. -C l is the cost of reading/writing data locally.

-M ergeSpillsP asses(Spills, F actor) is the number passes to sort |M | records. Chapter 2. Background -P : The ratio of serialization to accounting space can be adjusted. Each serialized record requires 16 bytes of accounting information in addition to its serialized size to effect the sort. This percentage of space allocated from B affects the probability of a spill to disk being caused by either exhaustion of the serialization buffer or the accounting space.

Each reduce fetches the output assigned to it by the partitioner via HTTP into memory and periodically merges these outputs to disk.

T sort_reduce (J) = C l * (|R|(⌈2 log F actor m⌉)).
-At the reduce side, it starts with m sorted runs. ⌈log F actor m⌉ is the number of passes to merge the m runs.

T tr (J) = C tr * D.
-C tr is the cost of transferring data between nodes.

T reduce (J) = C u * O r .
-C u is the cost to execute one operation in the reduce function (the same as in the map task)

-O r the complexity of the reduce function (number of operations).

C u depends on the cpu capacity of the computing node. As example, Amazon web services (AWS) [2] provide a flexibility to choose from a number of different node types to meet the computing power needs. Each instance provides a predictable amount of dedicated computing capacity and is charged per instance-hour consumed. (for more information see [3]). Furthermore, a monetary cost model can be introduced to complement this latter. Such cost model might be effectively used to analyse running algorithms on cloud resources w.r.t economical dimension.

Disucussion

MapReduce was originally proposed to execute very large matrix-vector and matrixmatrix multiplications as are needed in the calculation of PageRank [START_REF] Page | The pagerank citation ranking: Bringing order to the web[END_REF]. However, MapReduce model has been shown suitable for performing large scale data analysis including:

• Query processing: join algorithms and algebra operations [START_REF] Blanas | A comparison of join algorithms for log processing in mapreduce[END_REF][START_REF] Rajaraman | Mining of massive datasets[END_REF], set-similarity and fuzzy joins [START_REF] Vernica | Efficient parallel set-similarity joins using mapreduce[END_REF], Transitive Closure and Recursive queries [START_REF] Foto | Transitive closure and recursive datalog implemented on clusters[END_REF][START_REF] Foto | Map-reduce extensions and recursive queries[END_REF] ,

• Data-mining: Social Network Analysis [START_REF] Shang | Mapreduce as a general framework to support research in mining software repositories[END_REF], frequent itemset mining [START_REF] Lin | Apriori-based frequent itemset mining algorithms on mapreduce[END_REF].

• Analytic processing: Social Network Analysis [START_REF] Liu | Large-scale social network analysis based on mapreduce[END_REF],

To the present day, MapReduce has only been exploited to perform scalable analysis on large size of data from data-oriented perspective. Although there is a plethora of approaches and tools devoted to process mining analysis, to the best of our knowledge, none of these approaches exploited MapReduce framework to analyse (event) data from a process-oriented perspective. Indeed, the continuous growth of the process related data makes existing process analysis approaches face the scalability issue. Therefore, the need for scalable algorithms for process analysis become a requirement and a subject of our researches. Hence, in this thesis we propose a scalable/distributed MapReducebased approach for event correlation discovery, a key step for business process discovery approach.

Chapter 3

Process Space

Introduction

In this chapter we describe in details the approach of correlation discovery Process Space introduced by Motahari et al. in [START_REF] Hamid | Event correlation for process discovery from web service interaction logs[END_REF]. This approach is used as a basis of our work for developing MapReduce algorithms for event correlation discovery. The chapter is organized as follows: in section 3.2 we present the correlation patterns investigated in this approach. Next, in section 3.3 we present an overview of the approach. Then, in section 3.4 we present the heuristics used to select relevant candidates. Finally, we discuss the approach in the summary

Correlation Condition Patterns

In this section we present the correlation condition patterns used in [START_REF] Hamid | Event correlation for process discovery from web service interaction logs[END_REF][START_REF] Hamid | Discovery and Adaptation of Process Views[END_REF] for event correlation in web services.

(a) UserID uSessionID

m 1 u100 m 2 u200 m 3 u300 u100 m 4 u400 u200 m 5 u500 u300 m 6 u600 u400 m 7 u700 u500 m 8 u800 u600 (b) LoginID GameID m 1 C1 P1 m 2 C2 P2 m 3 C2 P1 m 4 C1 P2 m 5 C2 P2 m 6 C1 P2 m 7 C2 P1 m 8 C1 P1
Table 3.1: a snapshot of example log.

Key-Based Correlation.

Process-related standard proposals for web services such as BPEL, WS-conversation, WS-coordination, WS-CDL [START_REF] Alonso | Web Services: Concepts, Architectures and Applications[END_REF], or industrial software such as IBM WebSphere Process

Manager [START_REF]Ibm websphere business process management software[END_REF] use methods to correlate events related to the execution of a business process. These methods are characterized by the fact that all messages in a single process instance share the same value for one or more attribute(s). These attributes are called

Correlation Condition Patterns

the correlator attribute(s). Indeed, a correlator attribute could be present even if these standards are not used. For example, in RoboStrike1 game process, the events could be correlated by the loginID, or by the pair UserID, LoginID . On this basis Key-Based Correlation pattern is defined as follows:

Key-Based Correlation. "One or a set of unique identifiers are assigned to an event and all events with at least one common identifier are grouped together. A process instance identifier or a conversation identifier is attached to each event. Identifiers can be single values or compositions of several values." [START_REF] Barros | Correlation patterns in service-oriented architectures[END_REF]. The Key-Based correlation condition has the following form ψ(m

x .A i , m y .A j) : m x .A i = m y .A i .
The identifier(s)2 is called the key attribute. Contrary to the concept of key in relational databases, the value of the key is not unique per tuple but unique per process instance. Furthermore, there is no prior information about which events form the same process instance in the log.

Example 3 Considering the condition ψ: m x .LoginID = m y .LoginID in Table 3.1(b) the process instances entailed by this condition are

P I ψ = { m 1 , m 4 , m 6 , m 8 , m 2 , m 3 , m 5 , m 7 }.

Reference-Based Correlation

Similar to the concept of foreign-key in traditional relational databases, an attribute event in the log may share the same value with a different attribute in another event. For example, a response message is mostly correlated with the request message. As a second example, messages related to a purchase activity (service) may contain the LoginID attribute which references the customers registered at the registration activity (service).

Furthermore, the shared value used for reference correlation between pair of messages may not be the same for the entire process instance. Then, the reference-based correlation can be defined as follows:

(Reference-Based Correlation). "Two events are correlated, if the second event (in chronological order) contains a reference to the first event. This means that if Chapter 3. Process Space there is some way of extracting a datum from the second event (by applying a function) that is equal to another datum contained in the first event. This datum therefore acts as a message identifier, and the second message refers to this message identifier in some way" [START_REF] Barros | Correlation patterns in service-oriented architectures[END_REF]. The reference-based correlation condition has the following form:

ψ(m x .A i , m y .A j) : m x .A i = m y .A j and i = j.
Example 4 For the Condition ψ: m x .U serID = m y .uSessionID in Table 3.1(a), the process instances entailed by this condition are

P I ψ = { m 1 , m 3 , m 5 , m 7 , m 2 , m 4 , m 6 , m 8 }.
Each of key-based and reference-based correlation methods express equality of attribute value to pair of events. Hence, both of them belong to the same correlation condition family, which is referred as atomic correlation condition. It is defined as follows:

Definition 3.2.1 (Atomic correlation conditin). Two messages (events) (m x , m y) are correlated using an atomic correlation condition ψ if and only if they share the same value on two attributes A i and A j , in other words ψ(m x .A i , m y .A j) : m x .A i = m y .A j . If i = j the ψ is a key-based condition, otherwise it is a reference-base condition.

In the following we present in details the correlation discovery approach introduced by Motahari et al. in [START_REF] Hamid | Event correlation for process discovery from web service interaction logs[END_REF]. (ii) Atomic condition discovery. Attributes selected in the last step are combined, in pairs, to form atomic conditions. (iii) Composite condition discovery. Conjunction (respectively. Disjunction) of atomic condition is considered to build composite conditions. A level-wise [START_REF] Mannila | Levelwise search and borders of theories in knowledgediscovery[END_REF] technique is adopted to explore the space of correlation conditions.

Semi-Automated Discovery of Correlation Condi-

The proposed algorithm for correlation discovery follows the same steps as Apriori algorithm [START_REF] Agrawal | Fast algorithms for mining association rules in large databases[END_REF]. The first step, computing atomic conditions, is similar to computing first order itemsets (of size 1), and the second step, computing composite conditions, is similar to computing itemsets of larger sizes. Besides this, each step of the algorithm has two phases: (i) generating candidate correlation, (ii) pruning candidate conditions.

A set of properties and heuristics defined based on general statistical characteristics of conversations in the logs, are used to prune the search space of non-relevant conditions.

More details of these properties and criteria are discussed in next sections. The output of the algorithm is the set of interesting conditions. Interesting conditions are considered as the conditions that partition the log L into a set of interesting process instances. Next section will explain how the correlation condition partition the log.

Partitioning the log

is defined as E = {(m x , m y) ∈ L 2 |ψ(m x , m y) is true}, i.e,
R ψ = { m 1 , m 4 , m 4 , m 6 , m 6 , m 8 , m 2 , m 3 , m 3 , m 5 , m 5 , m 7 } of the condition ψ : m x .LoginID = m y .LoginID in Table 3.1(b).
A correlation condition (reference-based, key-based or composite) is used to partition the log into a set of process instances P I ψ (L) = {pi 1 , pi 2 , . . .} such that:

• For a given message m x in a process instance that belong to an instance entailed by a correlation condition ψ, then it should exist, at least, another message m y such that the pair (m x , m y) belongs to R ψ .

• A given message m x cannot be part of more than one process instance. More formally:

∀pi ∈ P I ψ (L), m x ∈ pi ⇔ ∃m y , (m x , m y) ∈ R ψ ∨ (m y , m x) ∈ R ψ ∀pi i , pi j ∈ P I ψ (L), i = j ⇔ pi i ∩ pi j = ∅
Hence, discovering process instances P I ψ can be formulated as finding the set of connected components3 in an undirected graph (G ψ). For example, the set of process instances of the graph (a) in Figure 3.

2 are P I ψ = { m 1 , m 4 , m 6 , m 8 , m 2 , m 3 , m 5 , m 7 }.
Several existing algorithms [START_REF] Aho | Data Structures and Algorithms[END_REF][START_REF] Ioannidis | Transitive closure algorithms based on graph traversal[END_REF] deal with the problem of finding the connected components such as depth-first search and breadth-first search. Such algorithms take a graph as input and returns the maximal set of connected components in the graph. The connected components represent the set of process instances.

To summarize the partition P I ψ , the author defined a set of metrics as follows:

• AvgLen(P I ψ), shortInst(P I ψ) and LongInst(P I ψ) represent the average, the shortest instance and the longest instance length.

• |P I ψ | represents the cardinality of P I ψ , i.e, the number of instances.

Candidate Attributes Selection

Obviously not all attributes present in the log can be considered as correlator attributes.

For instance, a timestamp attribute will not partition the log into relevant instances.

Attributes selection techniques and heuristics are discussed in the next section.

Characteristics of Correlator attributes

Similar to primary key (respectively, foreign key) in relational databases, attributes used in key-based pattern (respectively, reference-based pattern) correlation play the role of identifiers attributes4 . Based on these similarities a correlator attribute can be characterized as follows:

• Nominal domain: a correlator attribute does not contain a floating point value or a long free text.

• Distinct values: a correlator attribute value should not have a small domain w.r.t to the dataset size (e.g., boolean).

• The correlator should have repeated values in the log, where the same value should appear at least in two messages.

Attributes Pruning

From the previous characteristics, an attribute may not be considered if it has the following characteristics:

• Attributes having a float type or either a long free text are excluded,

• Attributes with a small domain such as boolean, color or sex are eliminated.

Atomic Condition Discovery

In this section, we present the approach for discovering candidate atomic correlation condition proposed by Motahari et al. in [START_REF] Hamid | Event correlation for process discovery from web service interaction logs[END_REF].

Candidate Atomic Condition Generation

In the first step, candidate atomic conditions (key-based and reference-based) of form

ψ : m x .A i = m y .A j , 1 1 j k 5
are generated based on equality relationship between pairs of attributes for each message pair (m x , m y) ∈ L 2 . Then, for a given pair of attributes, if the candidate correlation condition holds for a large subset of the data set then it is considered as interesting and is selected, otherwise this condition is pruned.

Interesting conditions are defined as the conditions that lead to an interesting partitioning of the log, i.e, an interesting condition should enable to rebuild a set of process instances from the log. Criteria and measures are defined based on (i) the properties of the attributes forming the conditions, and (ii) the statistics about the resulting process instances.

Atomic Condition Pruning

The main idea to identify interesting correlation conditions is based on eliminating what is not interesting [START_REF] Sahar | Interestingness via what is not interesting[END_REF]. The following criteria and measures have been proposed to select relevant conditions:

• Globally unique keys are not correlators. Two main observations can be made at this stage: (i) an attribute is a possible correlator only if it contains values that are not globally unique (i.e., they can be found in other messages), and (ii) attributes 5 k is the number of attributes present in the log L.

having unique values or attributes with very small domains (e.g. Boolean) are not interesting. The following measures are proposed to capture these properties:

• distinct_ratio(A i):
for key-based conditions on attribute A i , this ratio represents the number of distinct values of an attribute A i with regard to the number of non-null values in A i ,

distinct_ratio(A i) = distinct(A i) nonN ull(A i)
• shared_ratio(A i , A j): for reference-based conditions over two attributes A i and A j , this ratio corresponds to the number of common distinct values between attribute A i and A j , with regard to the maximum number of non-null values

of A i or A j , shared_ratio(ψ) = |distinct(A i) ∩ distinct(A j)| max|distinct(A i), distinct(A j)|
Given a threshold α, the distinct_ratio is used to prune conditions defined over the same attribute A i (i.e., conditions having distinct_ratio(A i) < α) while the shared_ratio is used to prune conditions over two distinct attributes A i and A j (i.e., conditions with shared_ratio(ψ) < α). The threshold α6 can be user provided or computed using information categorical attributes [START_REF] Hamid | Event correlation for process discovery from web service interaction logs[END_REF].

• A correlation condition ψ is considered not interesting if it partition the log into a high number of small instances or a few number of long instances. To capture this property, the following measure is defined and used:

P I_ratio(ψ) = |P I ψ | nonN ull(ψ)
where |P I ψ | denotes the number of process instances identified by the condition ψ and nonN ull(ψ) denotes the number of messages for which attributes A i and A j of condition ψ are not null. The ratio P I_ratio(ψ) enables to reason about the number of instances. A threshold β is then used to select interesting conditions as the ones having a P I_ratio < β. For example, to select instances that have at least a length of 2, the threshold β should be set to 0.5. This criterion is referred to as imbalancedPI. Correlation conditions may not be only atomic, a higher level of conditions can be built using conjunctive (∧) or disjunctive (∨) operators. These conditions are called composite conditions, where the conjunctive (∧) operator is used when multiple attributes are defined together as correlators, and disjunctive (∨) operator is used to correlate messages that are not correlated with the same correlation condition.

Composite Condition Discovery

The following steps are used to discover candidate composite correlation conditions:

1. First, the set of candidate conjunctive conditions are built. This is performed by generating all the possible combinations of atomic conditions and prune evident non-candidate conditions (line 2 of algorithm 1). This is similar to the steps of generating and pruning itemsets of more than two items in Apriori algorithm.

2. Similar to the previous step, candidate disjunctive conditions are generated by a disjunction of both atomic and conjunctive conditions already discovered in the last steps (line 3 of algorithm 1).

Conjunctive Conditions

As in relational databases, where multiple keys are used to identify the same tuple, a conjunction of several attributes may also identify a conversation (process instance), in other words, more than one attribute is used to correlate messages of the same instance. For example, conditions ψ 1 : m x .LoginID = m y .LoginID and ψ 2 : m x .GameID = m y .GameID can be combined using (∧) operator to form:

R ψ 1 ∧ψ 2 = R ψ 1∧2 = { m 1 , m 8 , m 2 , m 5 , m 3 , m 7 , m 4 , m 6 }.
A conjunction is performed to define intersection relation defined by two or more atomic conditions. For ψ 1 and ψ 2 two atomic conditions, the conjunctive condition ψ 1∧2 = ψ 1 ∧ ψ 2 is defined as follows:

(m x , m y) ∈ ψ 1∧2 ⇔ (m x , m y) ∈ R ψ 1 ∧ (m x , m y) ∈ R ψ 2 ⇔ (m x , m y) ∈ R ψ 1 ∩ R ψ 2
This means that m x and m y share the same values for attributes of the conditions ψ 1 and ψ 2 . Hence, the pair (m x ,m y) belongs to the intersection of the set of correlated message pairs R ψ 1 with R ψ 2 . However,

P I ψ 1∧2 = P I ψ 1 ∩ P I ψ 2 .
To generate all the possible candidate conjunctive conditions, a level-wise approach is adopted [START_REF] Mannila | Levelwise search and borders of theories in knowledgediscovery[END_REF]. Assuming that a is the number of atomic conditions inferred from the last step, then, the number of possible conjunction is 2 a -(a + 1). For example, let AC = Minimal conjunctive condition. "A conjunctive condition ψ is minimal if no other conjunctive condition formed using fewer conjunction of atomic conditions partition the log into the same set of instances" [START_REF] Hamid | Event correlation for process discovery from web service interaction logs[END_REF].

{ψ 1 , ψ 2 , ψ 3 }, then the set of conjunctive condition is CC = {(ψ 1 ∧ ψ 2), (ψ 1 ∧ ψ 3), (ψ 2 ∧ ψ 3), (ψ 1 ∧ψ 2 ∧ψ 3)}.
In the following we present the criteria and measures proposed by Motahari et al. to eliminate non-interesting candidate conjunctive conditions.

Eliminating non-interesting conjunctive conditions in generation phase It is preferred to anticipate obvious non-interesting candidate conditions and eliminate them to reduce the exploration space. Thus, the following criteria are introduced to deal with this issue.

• Attribute definition constraints: given two atomic conditions ψ 1 and ψ 2 defined on attributes (A i 1 , A j 1) and (A i 2 , A j 2) respectively, the conjunctive condition formed by ψ 1 and ψ 2 has the form:

ψ 1∧2 : m x .A i 1 = m y .A j 1 ∧m x .A i 2 = m y .A j 2 .
Here, attributes of ψ 2 should be defined whenever the attributes of ψ 1 are defined. This implies that

A i 1 (respect. A j 1) is defined if only if A i 2 (respect. A j 2
) is defined. Thus, conjunctive conditions are applied only for attributes that satisfy this constraint. Otherwise, the conjunctive condition can be safely eliminated.

• Inclusion property: in case of R ψ 1 ⊆ R ψ 2 , this means that the set of correlated message pairs of ψ 1 are included in (or equal to) the set of correlated message pairs of ψ 2 then R ψ 1∧2 = R ψ 1 . Therefore,ψ 1∧2 is not minimal and then discarded.

Eliminating non-interesting conjunctive conditions in pruning phase At this step, non-interesting conjunctive conditions are identified and pruned based on the following criteria:

• ImblancedPI criterion: the P I ratio (ψ 1∧2) is computed, and compared to threshold β. If, P I ratio (ψ 1∧2) < β is satisfied then the condition is interesting, otherwise it is pruned.

• Monotonic property: An important property is the monotonicity w.r.t to the conjunctive operator. Using conjunction operator will reduce the length of the instances (number of messages in each instance) but increased their total number. To consider a conjunctive condition ψ 1∧2 as interesting the following properties must be satisfied.

shortInst(P I ψ 1∧2) ≤ min(shortInst(P I ψ 1), shortInst(P I ψ 2))

|P I ψ 1∧2 | ≥ max(|P I ψ 1 |, |P I ψ 2)|
In other words, the number of instances discovered by conjunctive condition ψ 1∧2 is expected to be greater than those of ψ 1 and ψ 2 , and the length of instances decreases.

The candidate conjunctive conditions that satisfy all the above criteria are retained and used with initial atomic conditions as input for the second type of composite conditions (disjunctive conditions). One should note that for any non-interesting conjunctive condition ψ, higher (or larger) conditions built on ψ are also considered as non-interesting. As we said previously, not all messages are correlated within the same correlation condition. Indeed, a message m x in a conversation may refer to another message m y . For instance, when a payment message refers to an invoice number, and shipping message refers to a payment number (see Table 3.2). So, to correlate this messages a disjunction between ψ 1 : m x .InvID = m y .InvID and ψ 2 : m x .P ayID = m y .P ayID should be performed. Here, the disjunctive condition ψ 1∨2 = ψ 1 ∨ ψ 2 is defined as follows:

(m x , m y) ∈ ψ 1∨2 ⇔ (m x , m y) ∈ R ψ 1 ∨ (m x , m y) ∈ R ψ 2 ⇔ (m x , m y) ∈ R ψ 1 ∪ R ψ 2
Where ψ 1 and ψ 2 are either atomic or conjunctive conditions.

Similar to conjunctive conditions, case like P I ψ 1∨2∨3 = P I ψ 1∨2 may occur at this step also. Therefore, only minimal disjunctive conditions are considered.

Minimal disjunctive condition. "A disjunctive condition ψ is minimal if no other disjunctive condition using fewer disjunction of atomic conditions partitions the log into the same set of instances" [START_REF] Hamid | Event correlation for process discovery from web service interaction logs[END_REF].

Discovery of disjunctive conditions is also carried out by a level-wise approach. Each level consists of two phases: candidate generation and candidate pruning. Criteria are introduced to evaluate the interestingness of candidate disjunctive condition. Eliminating non-interesting disjunctive conditions in generation phase Noninteresting candidate disjunctive conditions are identified based on the following criteria:

• Associativity of conjunction and disjunction: conditions that associate conjunction and disjunction of the same atomic conditions are identified as not needed to be computed, since it can be simplified into a condition that has already been considered. For example, ψ 1∧3 ∨ ψ 3 is equivalent to the condition ψ 3 (see Figure 3.4).

• Inclusion property: Same as inclusion property in conjunctive conditions, if a condition ψ 1 is included in ψ 2 , in other words the set of correlated message pairs

R ψ 1 is included in R ψ 2 , then, ψ 1∨2 is equivalent to ψ 2 .
Hence, this condition is discarded.

Summary 49

Eliminating non-interesting disjunctive conditions in pruning phase The following criteria are used to prune non-interesting disjunctive conditions after the computation operation:

• ImblancedPI criterion: the number of process instances entailed by a disjunctive condition is compared to the threshold α. This criterion refers to check whether the condition partition the log into a small number of long instances. if, P I ratio (ψ) ≥ α is not satisfied the condition is eliminated.

• Trivial union: given a disjunctive condition ψ 1∨2 , if any process instance from ψ 1 does not connect with another instance from ψ 2 then the disjunction results a trivial union of instances in ψ 1 and ψ 2 . To catch this property we use the following measure:

|ψ 1∨2 | = |ψ 1 | + |ψ 2 |
, if this measure returns true, then this condition is pruned.

• Monotonic property: unlike conjunctive condition, we expect that the number of resulted process instances of the disjunctive condition to be less than those of the condition built on, and their length increases. The following measures catch this property:

shortInst(P I ψ 1∨2) ≥ max(LongInst(P I ψ 1), LongInst(P I ψ 2)) |P I ψ 1∨2 | ≤ |P I ψ 1 | + |P I ψ 2 |
Theoretically, if the number of inferred atomic conditions is ac, then there is cc = 2 ac -(ac + 1) possible conjunctive conditions. As, we use conjunctive conditions with atomic condition as input for disjunctive condition discovery process, the number of possible disjunctive conditions is then equal to dc = 2 ac+cc -(ac + cc + 1).

Summary

In this chapter we presented the approach of event correlation discovery proposed by Motahari et al in [START_REF] Hamid | Event correlation for process discovery from web service interaction logs[END_REF]. This approach covers a large number of correlation patterns that may occur in interactions of web services and provides a set of heuristics to identify relevant correlation conditions that lead to interesting process instances. Moreover, this approach takes into account the process instance characteristics to improve the result

Introduction

In this chapter, we focus on candidate atomic condition discovery problem. We use

MapReduce framework as the parallel data processing paradigm. The main contributions of this chapter are as follows:

• We describe efficient solutions for discovering candidate atomic conditions by exploiting MapReduce framework. We show how to efficiently deal with problems such as partitioning, replication, and multiple inputs by manipulating the keys used to route the data between nodes of MapReduce cluster.

• We provide an adequate data structure similar to inverted index in order to decrease the memory usage.

• We introduce techniques to compute the set of correlated messages by optimizing memory space.

• We provide both one-pass and multi-pass algorithms for conditions discovery computations. Such algorithms are optimal w.r.t. I/O cost and hence are very effective in situations where the size of data to be processed is much larger than the size of the memory available at the processing node.

• We introduce an efficient solution to compute process instances based on depth-firstsearch-like algorithm corresponding to correlation conditions in a scalable parallel shared-nothing data processing platform. Our approach relies on a vertical partitioning of the space of candidate conditions in a way that each partition can be processed autonomously without need of synchronization.

The rest of the chapter is structured as follows. In section 4.2 we present a family of MapReduce event correlation discovery algorithms as well as the data structure they use, while in section 4.3 we discuss extensions of the proposed algorithms to handle limited memory case in MapReduce. A complexity and cost-model based analysis are presented in section 4.4. Finally, a performance evaluation is presented in section 5.4 and we summarize the chapter in section 5.5.

Atomic Condition Discovery Algorithms 53

Atomic Condition Discovery Algorithms

One should recall that the fundamentals of parallelizing any algorithm in the MapReduce framework is to design Map and Reduce functions.

Given an events log L, the aim of our algorithms is to discover the interesting atomic correlation conditions and compute the process instances entailed by these conditions.

One of the main issues to cope with, is to decide how data and computations should be partitioned, replicated and distributed, in order to efficiently execute the operations entailed by this task. The main idea of our approach is the following. First, we generate all possible candidate conditions and partition the data across the network by hashing on the candidate name (e.g., A i = A j). Then, we process each candidate condition ψ A i ,A j by a single Reduce function and, thus, each candidate can be handled separately and in parallel with the others. Then, interesting correlation conditions are retained and written into files to be fed to the next step (candidate composite conditions discovery). where the second step groups the correlated messages and deduces the process instances.

On the other hand, the algorithms have some shared parts, as the inputs, the data structure used, some pieces of functionalities and the outputs. In the remaining sections we present the data structure as well as the algorithms devoted to deal with the problem of atomic correlation condition discovery.

The Correlated Message Buffer (CMB)

To facilitate correlation computation we define two types of data structures. The first data structure is similar to inverted index in relational databases [START_REF] Salton | Introduction to Modern Information Retrieval[END_REF][START_REF] Zhang | On supporting containment queries in relational database management systems[END_REF][START_REF] Zhang | On supporting containment queries in relational database management systems[END_REF], used to index values of the same column (for key-based condition). The second, data structure can be obtained by performing a join between two inverted index on the value part (for reference-based condition). The description of this data structure is as follows:

• The first data structure we introduce is devoted to key-based conditions. This data structure is defined as

T 1 : [val, {IdSet}],
where val is a given value of the attribute forming the condition (e.g.,A i) and {IdSet} represents the set of messages having val as value in A i i.e, {{m x .id}|m x .A i = val}. T 1 is an array used to store all the distinct values of a given attribute A i . This data structure is used to calculate statistics such as: number of distinct values of an attribute, number of correlated messages with a given value. The previous metrics are needed in the pruning phase (see section 3.4.5). Table 4 Example 5 shows the effectiveness of the use of data structure T 1 in saving memory and computation of transitive closure to find process instances. Below, we explain each algorithm in more details.

A i A j m 1 C 2 C 1 m 2 C 2 C 2 m 3 C 1 C 1 m 4 C 1 C 2 m 5 C 3 C 4 (a) attribute A 1 V al IdSet C1 {m 3 , m 4 } C2 {m 1 , m 2 } C3 {m 5 } (b) attribute A 2 V al IdSet C1 {m 1 , m 3 } C2 {m 2 , m 4 } C4 {m 5 } (c) attributes A 1 -A 2 V al IdSet1 IdSet2 C1 {m 3 , m 4 } {m 1 , m 3 } C2 {m 1 , m 2 } {m 2 , m 4 }

Sorted Values Centric Algorithm

The first algorithm devoted to compute atomic conditions is Sorted Values Centric (SVC) algorithm depicted in algorithms 2 (Map) and 3(Reduce). It relies on one MapReduce job. The sorted values centric algorithm, as input, requires a log L over the relational schema L (A 1 , A 2 , . . . , A n , id) and the user provided thresholds α and β. The Map reads a split of the log and, from the set of attributes in L, generates the set of all possible candidate atomic correlation conditions ψ A i ,A j for two attribute A i and A j . This is achieved by computing the cross product L × L (line 2 to 6 of algorithm 2). For each message, it extracts the values corresponding to A i and A j (attributes forming the condition ψ A i ,A j). In order, to keep track of the origin of each value, the Map tags the values by their original attribute name and message-id (line 5 and 6 of algorithm 2).

Then, it outputs the conditions name and the tagged values as (key + value, value) pairs (lines 7 and 8 of algorithm 2).

The Map function ensures that : (i) a given pair of attributes A i and A j is allocated Chapter 4. Discovering Atomic Conditions to only one reducer, and (ii) a given reducer, in charge of the attributes A i and A j , will receive all the values of these attributes appearing in L (i.e., the values of the projections π A i (L) and π A j (L) are tagged and sent to the same reducer).

Algorithm 2: Sorted Values Centric map function.

Input: K : unused, V : a record from the log file

Output:

K : ψ A i ,A j , V : π A i ,A j (L) 1 begin 2 foreach A i ∈ V do 3 foreach A j ∈ V do 4 condition ← "A i = A j " ; 5 V alue i ← {V.A i -A i -V.id} ; 6 V alue j ← {V.A j -A j -V.id} ; 7 output ({condition -V alue i }, V alue i);
8 output ({condition -V alue j }, V alue j); Note that, during the shuffle and sort phase, MapReduce sorts and groups intermediate key-value pairs by their keys. However, it is very convenient for our purposes to also sort the intermediated values since, as detailed below, the computations inside the reducer will take benefits from such operations. Therefore, instead of implementing an additional secondary sorting within the reducer, we used the value-to-key conversion design pattern [START_REF] Lin | Data-intensive text processing with mapreduce[END_REF], which is known to provide a scalable solution for secondary sorting. This is achieved by moving intermediate values into the intermediate keys, during the map phase, to form composite keys (line 7 and 8 of algorithm 2), then we let the execution framework handle the sorting [START_REF] White | Hadoop: The Definitive Guide[END_REF]. In addition, the partitioning function is customized, to take into account only the origin key-part for hashing and partitioning data. Hence, values with the same key are still assigned to the same reducer. The merging function at the reduce is also customized to group data w.r.t the original key. The reduce-input are sorted in ascending order and grouped by value, tag and id.

Log L message-id A i A j m 1 C 3 C 4 m 2 C 2 C 2 m 3 C 1 C 2 m 4 C 1 C 1 m 5 C 2 C 1 m 6 C 3 C 3 m 7 C 4 C 3 m 8 C 3 C 4 m 9 C 4 C 3 m 10 C 1 C 2
Mapper 1 outputs key val tag Id

A j =A j C 1 A i m 3 A j =A j C 1 A i m 4 A j =A j C 1 A j m 4 A j =A j C 1 A j m 5 A j =A j C 2 A i m 2 A j =A j C 2 A i m 5 A j =A j C 2 A j m 2 A j =A j C 2 A j m 3 A j =A j C 3 A i m 1 A j =A j C 4 A j m 1
Mapper 2 outputs key val tag Id by two mappers that have processed respectively a split made of the first five messages (respectively, the last five messages) of the log L. Once the Reduce (algorithm 3) collects all the data, it proceeds as follows:

A j =A j C 1 A i m 10 A j =A j C 2 A j m 10 A j =A j C 3 A i m 6 A j =A j C 3 A i m 8 A j =A j C 3 A j m 6 A j =A j C 3 A j m 7 A j =A j C 3 A j m 9 A j =A j C 4 A i m 7 A j =A j C 4 A i m 9 A j =A j C 4 A j m 8
1. Building the correlated message buffer (line 6 of algorithm 3).

Pruning non-interesting conditions based on non-repeating value criterion (line 7

to 8 of algorithm 3).

3. Computing/finding the process instances entailed by the condition (line 9 of algorithm 3).

This steps are explained bellow.

Building Correlated Message Buffer : Case of (reference-base conditions). Recall that, correlated messages denoted by R ψ are defined as R ψ = {({x, y})/∀x ∈ A i , ∀y ∈ A j :

x.val = y.val}. Since the input of the Reduce are sorted and grouped, only one iteration is needed to build CMB. Moreover, message's-ids from A i appear before those of A j (suppose that i < j). So, for each new distinct value V which appears in the reduceinput, the Reduce creates a temporary entry in CMB, with V as val. Then, it buffers ids from A i into IdSet1 then those from A j into IdSet2. In case of values having empty IdSet

(1 or 2), i.e., none pair of messages (x, y) ∈ (A i , A j) satisfies x.val = y.val = V, then V is discarded. For key-based conditions, a new entry of CMB is created for each new distinct value V in the input of the reduce, and all messages satisfying x ∈ A i , and x.val = V are buffered to the corresponding IdSet. (respectively, m.A j = v). Then, the computation achieved by compute-instances is based on the observation that two messages m1 and m2 that appear in CMB are correlated by We can observe that there are two connected components of this graph. The associated discovered process instances are the following:

val idset 1 idset 2 C 1 { m 3 , m 4 , m 10 } { m 4 , m 5 } C 2 { m 2 , m 5 } { m 2 , m 3 , m 10 } C 3 { m 1 , m 6 , m 8 } { m 6 , m 7 , m 9 } C 4 { m 7 , m 9 } { m 1 , m 8 }
• Instance 1 = {m 2 , m 3 , m 4 , m 5 , m 10 } • Instance 2 = {m 1 , m 6 , m 7 , m 8 , m 9 }
Finally, using user provided threshold β, the non interesting instances are pruned (line 10 of algorithm 3). By computing the P I_ratio of each discovered atomic condition ψ, i.e., the ratio of the number of instances entailed by ψ to the number of messages for which the attributes A i and A 2 of condition ψ are defined. The P I_ratio is compared with β and the conditions that do not satisfy the criteria are pruned.

A j =A j C 3 i m 1 A j =A j C 1 i m 3 A j =A j C 4 j m 1 A j =A j C 2 j m 2 A j =A j C 2 j m 3 A j =A j C 2 i m 2 A j =A j C 1 i m 4 A j =A j C 2 i m 5 A j =A j C 1 j m 5 A j =A j C 1 j m 4
Mapper 2 outputs key val tag Id Pruning Non-interesting Candidates : Candidate conditions non-satisfy the criterion shared_ratio(ψ) < α are pruned.

k2 C 3 i m 6 k2 C 2 j m 10 k2 C 3 j m 6 k2 C 3 i m 8 k2 C 4 j m 8 k2 C 3 j m 7 k2 C 4 i m 7 k2 C 3 j m 9 k2 C 4 i m 9 k2 C 1 i m 10
Compute Instances : A DFS-like algorithm is applied to compute the transitive closure of the CMB and deduces the process instances entailed by each candidate conditions. The same algorithm is used to compute discovered instances as in algorithm 3

with few critical changes. The main modification is applied to getNextUnvisitedNeighbor(). Since data are not sorted, checking for the intersection requires, in worst case, 2 × |idSet1| × |idSet2| operations. In order to avoid a such high number of operations, a hash function is used as following:

• Read all element in IdSet1 and store them by their hash code in temporary hash set T.

• For each element id in Idset2 computes its hash code and proceed as follow :

-Stores (id) and return false, If hash(id) doest not exist, -Return true, otherwise.

Using this property we reduce the number of operation to 2 × (|idSet1| + |idSet2|).

Finally, conditions that partition the log into a few number of long instances or a high number of long instances are pruned using the Imbalanced_PI criterion.

Discussion In this section we present the Hashed Value Centric algorithm used for discovering candidate atomic correlation conditions. The algorithm relies on one MapReduce job. It avoid using key-to-value pattern for sorting map-output data. Therefore, it reduces the overheads involved by duplicating values in the SVC algorithm during the transferring data. However, it requires several iterations to build the correlated message buffer and an additional step to clean it.

One problem with Sorted Values Centric or Hashed Values Centric algorithms is due to the existence of non-correlating values. Therefore, not every message from A i will be correlated with one or many messages from A j for a given condition ψ A i ,A j . Such noncorrelating values are identified only after building CMB which involves a wasted time to eliminate such values. To cope with this problem, we propose the per-split correlated messages algorithm which distributes the computation of the CMB over processing nodes and anticipates such non-correlating values before constructing the process instances.

Per-Split Correlated Messages Algorithm

The per-split correlated message (PSCM) algorithm has two phases, each corresponding to a separate MapReduce jobs. This algorithm is introduced to parallelize the computation of the CMB presented in the two previous algorithms. In case of referenced-based conditions, not all values are included into the intersection of the distinct values of A i and A j . This property is stated more formally as { ∃V, V ∈ distinct(A i) ∪ distinct(A j) and V ∈ distinct(A i) ∩ distinct(A j)} . In this case, V should be ignored and all messages having this value should be eliminated. This is done by the phase one of the algorithm, which can be seen as a pre-processing step. We describe below the two phases.

Phase 1: The Map function adds the attribute values to the outputted key (the key refers to the condition name) (line 5 and 6 of algorithm 9). Therefore, it ensures that all messages from the same condition having the same value will be allocated into a single Reduce. The Reduce will receive the sets of message-ids having the same value. Each

Reduce will produce a single row of the CMB for each condition. It fills the row buffer by putting message-ids from A i into IdSet1 (resp. A j into IdSet2). Rows with empty IdSet1 or empty IdSet2 are ignored. This step is similar to the standard SQL query (self-join of Log L) where the join is computed for each pair of attributes A i , A j .

Phase 2: The Map function is the function identity, the output-key is the condition name and the output-value is a row of CMB. The Reduce function receives all rows of the same condition. First, it groups them in single buffer CMB, then it applies the compute_instance() function as in HVC to compute the set of instances entailed by each condition. Finally, it prunes non-interesting condition based on Imbalanced_PI criterion.

Handling Reducers Insufficient Memory

As seen previously to evaluate a condition, the reducer in the SV C, HV C and P SCM algorithms receives as input a list of tuples corresponding to a projection of two column (A i and A j) on the log L i.e, it receives all values present in two attributes (for referencebased condition). To proceed with computing the correlated message buffer, the entire input data must be loaded in the main memory. It is worth noting that we already eliminate duplicated messages from the correlated messages set using the data structure T 1 and T 2 (see example 5). However, it may happen that either Reducer-input data or the produced (CMB) does not fit entirety in main memory. So if this is the case, then we can use, as alternative, a disk-based solution to cope with this issue. In the following we present an extension to our algorithms for the case where data do not fit in main-memory.

Handling Reducers Insufficient Memory 67

Algorithm 9: Per-Split Correlated Messages Algorithm phase1

Input: K : unused, V : a record from the log file Output:

K : A i = A j , V : {IdSet1}, {IdSet2} 1 Map (K : unused, V : {A 1 , A 2 , . . . , A n , id}) 2 begin 3 foreach A i ∈ V do 4 foreach A j ∈ V do 5 OutputKey1 ← A i , A j + V .A i ; 6 OutputKey2 ← A i , A j + V .A j ; 7 OutputV alue i ← {A i -V. id} ; 8
OutputV alue j ← {A j -V. id} ; Input: K : ψ A i ,A j , V : a set of message-ids having same value

Output: K

: ψ A i ,A j , V : a row of CMB 11 Reduce (K : ψ A i ,A j , V : list(A x -m.id))

Disk-Based Extension

A disk-based extension is used to handle insufficient memory at the reduce stage, this may require a large number of I/O operations. A critical change are performed to the compute_correlated_messages_buf f er (presented in algorithm 4) function. Instead of storing each row of the buffer into main memory, the function will store it in a separate file into a disk with the index position as a name. Figure 4.3 shows an example of how CMB rows are stored and processed. In the case of key-based condition, if the condition is interesting, all rows are streamed directly to HDFS, since there is no need to compute transitive closure to find instances. Otherwise in case of reference-based condition, and at the compute instances step, all rows are stored into local disk except, for instance, the first one. Then, the reduce reload rows later to check whether two rows (rows) belong to the same process instance. If the intersection holds between two rows, saying row 1 with Algorithm 10: Per-Split Correlated Messages Algorithm phase2 row 3, then row 3 is marked as visited and rows 1 is removed from main memory and stored into disk. The index of rows 1 is pushed into the stack and next row is loaded to check intersection with row 3, and so on. When there is no rows to load or no intersection, the index in the tail of the stack is pulled and the corresponding row is merged with the row present in memory. As presented in the Figure 4.3 (find process instance step), a stack is used to keep track of all connected rows that form a single process instance.

Input: K : ψ A i ,A j , V : a row of CMB Output: K : ψ A i ,A j , V : a row of CMB /*

Multi-Pass Process Instances Discovery Algorithm

Various data analysis techniques requires iterative computations, like PageRank [START_REF] Page | The pagerank citation ranking: Bringing order to the web[END_REF],

HyperText-induced topic Search [START_REF] Kleinberg | Authoritative sources in a hyperlinked environment[END_REF], clustering [START_REF] Jain | Data clustering: a review[END_REF], neural network analysis [START_REF] Hagan | Neural network design[END_REF], social network analysis [START_REF] Wasserman | Social network analysis: Methods and applications[END_REF], recursive relational queries [START_REF] Bancilhon | An amateur's introduction to recursive query processing strategies[END_REF][START_REF] Bancilhon | An amateur's introduction to recursive query processing strategies[END_REF][START_REF] Foto | Transitive closure and recursive datalog implemented on clusters[END_REF][START_REF] Foto | Map-reduce extensions and recursive queries[END_REF], internet traffic analysis [START_REF] Moore | Internet traffic classification using bayesian analysis techniques[END_REF][START_REF] Moore | Internet traffic classification using bayesian analysis techniques[END_REF] and Apriori-based algorithms [START_REF] Lin | Apriori-based frequent itemset mining algorithms on mapreduce[END_REF]. These techniques have a common particularity: data are processed iteratively until the computations satisfies a convergence or terminating condition. We propose an iterative algorithm, illustrated in algorithm 11, to deal ----------- This algorithm is dedicated to reference-based conditions, where the computation of the transitive closure is needed to construct process instances. Furthermore, the algorithm scales well with regard to the size of the log and the number of distinct values that appear on each attribute in the input log files. Moreover, the workload can be, evenly, balanced over the cluster nodes. As its name indicates the algorithm is iterative and consists of, at most, O(log 2 (r))1 passes and stops when intersection between all rows is empty, meaning that rows can not be merged together. Each pass is a MapReduce job, it merges at least two rows of the CMB. The input of the algorithm is CMB based on T 2 data structure and we expect that there is intersection between idSets, in other words there is transitivity and the process instances are correlated using reference-based condition. The multi-pass algorithm, in spirit, is similar to a self-join algorithms performed on CMB.

Where, each Map function, outlined in algorithm 12, works on a part of the CMB. First,

Cost-Model-Based Analysis

In this section we evaluate the algorithms based on the cost model introduced in section 2.6.2. MapReduce framework introduces some overheads that should be taken into account to estimate the runtime of algorithms. Almost all of its operations are done in background and transparent to the user. These overheads are mostly affected by the amount of data, read, sorted or transferred. Assume that the number of messages in L is |L| and k is the number of attributes in L. Table 4.6 shows the estimated cost of each step of the three algorithms.

Discussion: As shown at Table 4.6, the estimated performances differences of the proposed algorithms differs significantly. Each algorithm has a strength and weakness. Consider SVC algorithm, it has the best complexity for computing correlated messages and the process instances, but it is less effective during map_sort, transferring data and reduce_sort phases because of the large size of intermediate data. Unlike SVC, HVC is less efficient for computing correlated messages, but it outperforms SVC during the transferring data phase. The third algorithm uses two steps and, hence, involves more overheads by the framework and affects the algorithm's performance. However, this overheads may be negligible and the PSCM outperforms the other algorithms in many cases, as we will see in the experimental evaluations. As a result of this analysis, we can notice the following observation:

• SVC is best in computing correlated messages and process instances.

• HVC has the lowest overheads during sorting, transferring and merging intermediate data.

• PSCM uses more parallelism to compute correlated messages and can use more resources as input data gets larger.

These analysis are validated by the experimental evaluation of the proposed algorithms in the next section.

steps SVC HVC PSCM-p1 PSCM-p2

T read C r × |L| m C r × CMB m MOR 2 |L| m × k 2 |CMB| m kv_width 2 × (val + id + tag) + key val + id + tag + key val + id + tag + key row of CMB MOS 3 M OR × kv_width CMB m # Spills mor B × Q × P × 2 16 SpillSize mos |Spills| T map_sort C l × spillSize × 2[|spills| + P asses] 4 T tr C r × m × mos T sort_reduce C l × kv_width × |L| ×2⌈(log F actor (m))⌉ T reduce_write C r × CMB ψ

Experimental Evaluation

In this section, we describe the performance evaluation of the proposed algorithms for candidate atomic correlation conditions. To better understand the performance of parallel algorithms we measured their absolute time as well as their speed up and scale up [START_REF] Dewitt | Parallel database systems: the future of high performance database systems[END_REF].

Environment

We ran experiments on a cluster of 5 virtual machines. Each machine has one AMD Opteron processor 6234 2.40GHz with four cores, 4 GB of RAM, and 50 GB of Hard disks. Thus the cluster consists of 20 cores and 5 disks. However, one of the five nodes is used to run the master daemon (JobTracker) to manage the Hadoop jobs and the Hadoop Distributed Files System (NameNode) to manage the input and output files. Each node is configured with Ubuntu 12.04 LTS 64-bits operating system, Java 1.7 with a 64-bits server JVM, and Hadoop 0.20.2. Each node run four Maps and four Reduces task. We run our algorithms over the following datasets.

DataSets

We run our algorithms on 3 different datasets:

• SCM. This dataset is the interaction log of SCM [4] business service, developed based on the supply chain management scenario provided by WS-I (the Web Service Interoperability organization). There are eight Web services realizing this business service. The interaction log of Web services with clients was collected using a real-world commercial logging system for Web services, HP SOA Manager. The services in SCM scenario are implemented in Java and use Apache Axis as SOAP implementation engine and Apache Tomcat as Web application server [START_REF] Hamid | Event correlation for process discovery from web service interaction logs[END_REF].

This dataset has 19 attributes and 4050 messages, each corresponding to an activity invocation. This dataset mainly provides an example of a system, whose its instances are correlated in a chain-based form.

• Robostrike. One month collected datasets from a multi-player on-line game service named Robostrike 5 . Players exchange XML messages with game server con-taining several activities that can be performed during a game session. This dataset has 18 attributes and more than 1.8 million messages.

Increasing dataset size To evaluate our event correlation algorithms devoted to compute candidate atomic correlation conditions on large datasets, we increase the size of the SCM dataset size while maintaining its data behaviour and distribution. We maintain the number of interesting candidate atomic correlation conditions discovered in the original size, and we wanted the number of discovered process instances for each correlation conditions to increase linearly with regard to the size of the increased data. Increasing the dataset size by replicating the original data would only preserve the cardinality of the discovered instances, and may blow-up their sizes. In addition, the original interesting conditions may not satisfy interestingness criteria. Therefore, we scan the whole dataset and for each new record we generates a clone records by adding a suffix to each value presented within and associate for each clone a unique identifier (that we can identify the record latter).

We increase the data by factor of 100, 500 and 1000, we refer to the data set as "SCM " × n where n ∈ {100, 500, 1000} represents the increase factor. Before starting experiments we extract attributes and their values from XML documents using ETL-like preprocessing and represent them as event tuples in csv files. This files are then grouped into buckets with different size (e.g. RS10K contains one millions events of RobotStrike dataset). Next, we upload them into the hadoop distributed file system.

For all the experiments, we tokenize the data by values and we use the attribute names to represent the correlation condition (e.g. A 1 = A 2), the lower bound threshold and upper bound threshold used in non-repeating values criterion are 0.01 and 0.8 respectively. We define, also, 0.5 as a threshold to prune correlation conditions based on Imbalanced_P I criterion.

Experiments

As a first experiment, we study the main differences between the 3 algorithms (Sorted Values Centric, Hashed Values and Per-Split Correlated messages algorithms). We run the algorithms for three different size of data SCM× n (where n ∈ {100, 500, 1000}), we breakdown the total execution time into two main steps (Map and reduce). Furthermore, the reduce is, also, subdivided into 3 steps (shuffle, sort and CMB+CI). CMB and CI denote respectively computing correlated message buffer and compute instances. Messages consists of two MR jobs, the first phase is denoted as PSCM-p1 and the second as PSCM-p2.

Starting with the map phase, we observe that SVC is always the most expensive algorithm. This is because the SVC' s map-outputs size is equivalent to twice as those of HVC and PSCM. This fact implies moving a large amount of data over network during the shuffle phase. A significant difference between HVC 's map and PSCM-p1 'map can be observed in Figure 4.6. This is caused by the difference in the map-selectivity in each algorithm. In other words, The PSCM-p1 's map produces a large number of keys than HVC' map. This difference may not be seen in case of small data size. Moving to the reduce phase, the shuffle and sort phases are directly affected by the map-output data. Therefore, we do not observe significant changes in performance (SVC is always the worst). On the other hand, and during CMB+CI phases SVC shows better performance than HVC and PSCM in In order to evaluate the scale up and speed up of the algorithms, we performed two different experiments. First we fix the number of nodes and we vary the size of the input data (Robostrike), then we fix the input data (Robostrike and SCM×500) size and we vary the number of processing nodes. In other words, we plot the ratio between the running time of the current cluster size and the smallest size of the cluster. For example, for the 4-node cluster, we plot the ratio between the running time on the 1-node cluster and the running time on the 4-node cluster. We can see that the fastest algorithm was HVC. Also we can see that PSCM-p1

surpassed HVC in 2-node cluster then decrease. This fact is due to cost of scheduling tasks and partitioning large number of groups. However, all the three algorithms have approximately the same speed up curves and scales well.

SCM×500 dataset: Similar to Robostrike dataset, we performed the same experiments on SCM×500 dataset. Figure 4.12 shows the running time of the three algorithms on SCM×500 data set on different cluster sizes. The three curves follow the same pattern as in Figure 4.10. HVC was always the best. We observe, also, that the SVC running time decrease linearly as the cluster size increased. PSCM-p1 running time was the worst for all cluster sizes. However, its speed up scales faster than HVC and SVC as shown in Figure 4.13. We can observe in Figure 4.13 that HVC was the slowest and outperformed by SVC and PSCM-p1 which scales faster as the cluster size increases.

Discussion

In this chapter we have studied the problem of discovering candidate atomic conditions in parallel using the MapReduce framework. We proposed one, two and multi-pass approaches and we explored two solutions for the one stage approach (SVC and HVC algorithms). We showed how to efficiently partition the log across several nodes in the cluster in order to process each candidate independently from others. We also provided an adequate data structure which clearly decrease both the computation time and the size of correlated messages sets. We describe two ways to perform a transitive closure computation using a depth-first-search-like algorithm in order to discover the process instances entailed by interesting reference-based candidate conditions while we eliminate such computations for key-based candidate conditions. We addressed an extension to deal with some extreme cases when the nodes are overloaded. Given our proposed algorithms, we implemented them in Hadoop and analysed their performance characteristics on real and synthetic datasets. Besides this, and as a final experiment, we run the approach on SCM data set synthetically replicated to 10000 times (more than 40 million messages) and the number of attributes is, also, duplicated. However, the running time to process

Introduction

In this Chapter we introduce two MapReduce-Based algorithms to compute composite conditions (i.e., Conjunctive and Disjunctive). Such correlation conditions are computed from the set of atomic correlation condition discovered in the previous step (c.f., section 4.2), using conjunction operator (respectively disjunction operator). The main contributions of this chapter are as follows:

• We introduce two strategies to partition the space of computation vertically in order to process each (sub)-partition in parallel.

• We introduce the correlation condition-based partitioning to partition the computation space in parallel and achieve the processing in a single MapReduce pass. We refer to this concept as the set of partitioning conditions.

• We describe technique to avoid unnecessary computation to compute process instances entailed by composite correlation conditions.

• We describe a second approach based on a horizontal partitioning of the computation space. Each level of the lattice is processed by a single MapReduce job.

The rest of the chapter is organized as follows: in section 5.2, we present a singlepass approach to achieve the composite correlation condition discovery task. Then, in section 5.3 we present a multi-pass approach to discover composite correlation conditions.

Next, in section 5.4 we present evaluation experiments of the two approaches. Finally, we summarize the chapter in section 5.5.

Single-Pass Composite Condition Discovery algorithms

Unlike atomic correlation condition discovery, this step is more complex and challenging in terms of space of computations and the high number of candidate composite conditions (as shown in Figure 5.1). Therefore, performance strategies should be adopted in order to deal with this issue. Figure 5.1 shows an example of a lattice (space) of computation of composite conjunctive conditions generated by four atomic correlation conditions (ψ 1 , ψ 2 , ψ 3 and ψ 4). In this section we present a single-pass MapReduce-based approach to discover conjunctive and disjunctive correlation conditions.

CustomerId OrderId

m 1 C1 P1 m 2 C2 P2 m 3 C2 P1 m 4 C1 P2 m 5 C2 P2 m 6 C1 P2 m 7 C2 P1 m 8 C1 P1
Table 5.1: a snapshot of example log.

Discovering Conjunctive Conditions

Usually messages in logs are not only correlated by a single atomic condition. Indeed, several conditions (i.e., several attributes) can also correlate messages and partition the logs into relevant instances. This case can be viewed as composite keys in relational databases, where multiple attributes are used to identify rows. For instance, messages in Table 5.1 can be correlated using values of attributes CustomerID (ψ 1 : Conjunctive conditions are computed using conjunctive operator on atomic conditions: let ψ 1 and ψ 2 be two atomic conditions elicited during the previous step, then the goal is to compute the process instances entailed by the condition ψ 1 ∧ ψ 2 , noted ψ 1∧2 .

m i .CustomerID = m j .CustomerID
More generally, given a set AC of atomic conditions, the goal is to identify the set of minimal conjunctive conditions that partition the log into interesting process instances. As explained in [START_REF] Hamid | Event correlation for process discovery from web service interaction logs[END_REF], such a task can be achieved using a levelwise-like approach [START_REF] Mannila | Levelwise search and borders of theories in knowledgediscovery[END_REF][START_REF] Javeed | Parallel sequence mining on shared-memory machines[END_REF] where, roughly speaking, each level is determined by the length, in terms of number of conjuncts, of the considered conditions. Starting from atomic conditions (level 1), the discovery process consists in two main parts: (i) generating candidate conditions of level l from candidates of level l -1, and (ii) pruning non interesting conditions. At each level, the process instances associated with each generated candidate condition are computed and used to prune, if any, the considered candidate condition.

Example 9 Consider as an example a set of atomic condition AC = {ψ 1 , ψ 2 , ψ 3 , ψ 4 , ψ 5 }.

The candidate conditions at each level are shown at Table 5.2. Figure 5.2 illustrates the space of computations.

Level 1 ψ 1 , ψ 2 , ψ 3 , ψ 4 , ψ 5 Level 2 ψ 1∧2 , ψ 1∧3 , ψ 1∧4 , ψ 1∧5 , ψ 2∧3 , ψ 2∧4 , ψ 2∧5 , ψ 3∧4 , ψ 3∧5 , ψ 4∧5 Level 3 ψ 1∧2∧3 , ψ 1∧2∧4 , ψ 1∧2∧5 , ψ 1∧3∧4 , ψ 1∧3∧5 , ψ 1∧4∧5 , ψ 2∧3∧4 , ψ 2∧3∧5 , ψ 2∧4∧5 , ψ 3∧4∧5 Level 4 ψ 1∧2∧3∧4 , ψ 1∧2∧3∧5 , ψ 1∧2∧4∧5 , ψ 1,3∧4∧5 , ψ 2∧3∧4∧5
Level 6 ψ 1∧2∧3∧4∧5 Table 5.2: Candidates space.

To cast the algorithm Level-wise into a MapReduce framework, the main issue to deal with is how to distribute the candidates among reducers such that the generation and pruning computations are effectively parallelized. We propose to partition the space of candidates (see Figure 5.2) in such a way that an element of the partition can be handled by a unique reducer. This enables to avoid multiple MapReduce steps in order to compute conjunctive conditions. Henceforth, each element of the partition is called a chunk.

We proceed as follows to compute the partitions. Let AC be a set of n atomic conditions and let P C = {ψ 1 , . . . , ψ l } ⊆ AC be a subset of AC containing l atomic conditions, hereafter called the partitioning conditions. The main idea is to define partition of the space of candidate conditions with respect to the presence or absence of partitioning conditions. We annotate a chunk with a condition ψ i to indicate that this chunk is made of candidates that contain the subscript i and with ψi to indicate that the chunk is made of candidates that do not contain such a subscript. Consequently, given AC and P C defined as previously, the partition of the space of candidates (P) using P C is obtained as follows:

P = {ψ 1 , ψ1 } × . . . × {ψ l , ψl }. Each element (φ 1 , . . . , φ n) ∈ P, with φ 1 ∈ {ψ 1 , ψ1 }, for i ∈ [1, l]
, forms a partition of the space of candidate conditions.

Example 10 Continuing with the previous example with AC = {ψ 1 , ψ 2 , ψ 3 , ψ 4 , ψ 5 } and assuming that P C = {ψ 1 , ψ 2 }, we obtain four possible chunks:

• (ψ 1 , ψ 2): contains the candidates with subscripts 1 and 2,

• (ψ 1 , ψ2): contains the candidates with subscript 1 but without 2, • (ψ1 , ψ 2): contains the candidates with subscript 2 but without 1,

• (ψ1 , ψ2): contains the candidates without the subscripts 1 and 2, Table 5.3 and Figure 5.2 represent the obtained partition of the space of candidate conditions presented at Table 5.2 using P C = {ψ 1 , ψ 2 }. Each column in Table 5.3 contains a chunk of the space of candidates that can be processed separately by a given reducer.

Note that the obtained chunks are balanced (i.e., they have the same number of candidate conditions1) and they form a partition of the initial space of candidates. It is also worth noting that each chunk can be treated separately from the others in order to compute the corresponding interesting conditions.

(ψ 1 , ψ 2) (ψ 1 , ψ2) (ψ1 , ψ 2) (ψ1 , ψ2) Level 1 ψ 1 ψ 2 ψ 3 , ψ 4 , ψ 5 Level 2 ψ 1∧2 ψ 1∧3 , ψ 1∧4 , ψ 1∧5 ψ 2∧3 , ψ 2∧4 , ψ 2∧5 ψ 3∧4 , ψ 3∧5 , ψ 4∧5 Level 3 ψ 1∧2∧3 , ψ 1∧2∧4 , ψ 1∧2∧5 ψ 1∧3∧4 , ψ 1∧3∧5 , ψ 1∧4∧5 ψ 2∧3∧4 , ψ 2∧3∧5 , ψ 2∧4∧5 ψ 3∧4∧5 Level 4 ψ 1∧2∧3∧4 , ψ 1∧2∧3∧5 , ψ 1∧2∧4∧5 ψ 1∧3∧4∧5 ψ 2∧3∧4∧5
Level 6 ψ 1∧2∧3∧4∧5 The high level structure of the algorithm that enables to compute conjunctive conditions, called Conjunctive-MR, is given at algorithm 14. The algorithm takes as input a set of atomic conditions (AC) and iteratively generates candidates of higher level based on candidates in lower level, then it prunes non interesting ones. A classical candidate generation procedure, e.g., see the Apriori algorithm [START_REF] Agrawal | Fast algorithms for mining association rules in large databases[END_REF], computes candidates at level l by a self-join on level l -1. For example, if both ψ 1∧2 and ψ 1∧3 appear at level 2, than the candidate ψ 1∧2∧3 will be generated at level 3. The Map function will be in charge of partitioning the space of computations. For a given condition ψ x , it proceeds as follows:

1. Checks the presence of ψ x in PC.

2. ψ x is sent to the corresponding reducers, i.e., sent to each reducer in charge of processing a chunk that contains ψ x (line 6 of algorithm 14), if ψ x ∈ P C.

ψ

x is sent to all reducers (line 9 of algorithm 14), otherwise.

At the Reduce side, (subset of) the partitioning conditions (PC) are buffered separately from the remainder conditions (RC2). Then, each reducer first computes the conjunction of the partitioning conditions presented in its corresponding chunk, i.e., it computes ψ P C , where ψ P C = ψ 1 ∧ ψ 2 ∧ . . . ∧ ψ l (line 15 of algorithm 14). After that, a level-wise algorithm, depicted in algorithms 16, is applied to explore the space of candidate conjunctive conditions built on ψ P C . For example, a given reducer in charge of a chunk with P C = {ψ 1 , ψ 2 , ψ 3 } and RC = {ψ 4 , ψ 5 }, then it computes ψ 123 , after that it applies the level-wise algorithm to compute ψ 123∧4 , ψ 123∧5 and ψ 123∧4∧5 . At each iteration of the level-wise the reducers proceed as follows:

(i) Computing process instances entailed by ψ P C and ψ x (where ψ x ∈ RC). The first step computes the messages correlated by ψ P C∧x . Indeed, this operation (line 6 algorithm 16) relies on the following property: two messages m and m ′ are correlated by the conjunctive condition ψ 12 if they are correlated by both ψ 1 and ψ 2 (i.e., <m, m'> ∈ CMB ψ 1 ∩ CMB ψ 2).

(ii) Pruning candidate conjunctive conditions. At this step, non interesting conditions are pruned using ImbalancedPI criterion (line 8 algorithm 16). We check if the condition P I_ratio(ψ P C∧x) < β is satisfied or not. Using conjunctive operator implies a new criteria that can be applied to prune non interesting conditions. The first criterion is referred as notMon(ψ), it is used to check the monotony of the number and the length of instances with respect to the conjunctive operator. It says that, conjunctive conditions that do not increase the number of instances w.r.t. the number of instances already discovered by their respective conjuncts and do not decrease the length of the discovered instances is considered as non interesting and therefore pruned. Secondly, if the set of correlated messages of psi x is included in that of ψ P C (or vice versa), then, the condition ψ P C∧x is discarded.

(iii) Generating candidate conditions. Candidate conjunctive condition of level l are formed using non-pruned from level l-1 . In algorithm 16 candidate conjunctive conditions in the first level are computed by conjunction of condition ψ P C with each condition from RC. From the second level to higher, conjunctive conditions are computed by joining conditions from the previous level with those from RC (e.g., level 1 = {ψ 13 , ψ 14 }, RC = {ψ 3 , ψ 4 } then level 2 = {ψ 134 }). Should recall that redundancy is eliminated, since ψ 123 = ψ 213 = ψ 231 only ψ 123 is computed. An exceptional case needs a different processing occurs when the reducer chunk does not contain any partitioning condition (i.e., P C = ∅, e.g., the fourth column in Table 5.3). The algorithm devoted to handle this special case is depicted in algorithm 15. The candidate conjunctive conditions in the first level are directly computed from RC and the algorithm follows the same behaviour of algorithm 16 from the step (ii). Business Processes in modern enterprises are, rarely, executed by a single centralized system. Indeed, several systems cooperate together to achieve the enterprise business objective. However, applications or web services interact together by sending and receiving messages. Such interactions are specified in a process choreography [START_REF] Weske | Business process management: Concepts, languages, architectures[END_REF][START_REF] Peltz | Web services orchestration and choreography[END_REF], that allows for multiple concrete implementations, in which traditional information systems cannot support. Therefore, their historical execution informations (log files) are dispersed across several systems and data sources. In such enterprises, the process spans many systems, and each system may have a different correlation method to correlate messages.

Algorithm 15: Level_wise

Input: RC Output: CC 1 begin 2 l ← 0 ; 3 Level 0 ← RC ; 4 repeat 5 l ← l + 1 ; 6 foreach ψ i ∈ Level l-1 do 7 foreach ψ j ∈ RC do 8 ψ cc ← ψ i ∧ ψ j ; 9 CMB ψcc ← CMB ψ i ∩ CMB ψ j ;

Discovering Disjunctive Conditions

A disjunction of conditions deals with this issue, where several conditions are used to correlate messages which are correlated differently [START_REF] Hamid | Event correlation for process discovery from web service interaction logs[END_REF]. For example, in the Table 5.

ψ 1∨2∨3 = ψ 1 ∨ ψ 2 ψ 3 = { m 1 , m 3 , m 6 , m 8 , m 2 , m 4 , m 5 , m 7 }.
Disjunctive Correlation Condition A Disjunctive correlation condition consists of a disjunction of at least two atomic or conjunctive conditions. It has the following form:

Φ = ψ 1 ∨ ψ 2 ∨ . . . ψ n .
Where, ψ i s, 1 ≤ i ≤ n are atomic conditions and/or conjunctive conditions. Given an atomic and a conjunctive conditions ψ i and ψ cc ∈ {AC} ∪ {CC}, the goal is to find interesting minimal disjunctive conditions of the form ψ dc = ψ i ∨ ψ cc . Discovering candidate disjunctive conditions is also performed by an iterative level-wise approach 5.2. Single-Pass Composite Condition Discovery algorithms 97 [START_REF] Mannila | Levelwise search and borders of theories in knowledgediscovery[END_REF][START_REF] Javeed | Parallel sequence mining on shared-memory machines[END_REF]. The correlation discovery process consists in three main parts: (i) generating candidate conditions of level l from candidates of level l -1, (ii) computing process instances of the new candidates and, finally, (iii) pruning non interesting conditions.

Example 12 Consider as an example a set of atomic and conjunctive conditions AC_CC = {ψ 1 , ψ 2 , ψ 3 , ψ 1∧3 }. The candidate conditions at each level are shown in the Table 5.5 and Figure 5.3 illustrates the space of computations. Note that as explained in the sequel, conditions in black are discarded. In order to explore the computation space of candidate disjunctive conditions, we adopt the same strategy for computing candidate conjunctive conditions (see section 5.2.1).

Level 1 ψ 1 , ψ 2 , ψ 3 , ψ 1∧3 Level 2 ψ 1∨2 , ψ 1∨3 , ψ 1∨(1∧3) , ψ 2,3 , ψ 2∨(1∧3) , ψ 3∨(1∧3) Level 3 ψ 1∨2∨3 , ψ 1∨2∨(1∧3) , ψ 1∨3∨(1∧3) , ψ 2∨3∨(1∧3) Level 4 ψ 1∨2∨3∨(1∧3)
Let AC set of atomic conditions and CC set of Conjunctive conditions. We define the partitioning conditions P C = {ψ 1 , . . . , ψ l } ⊂ AC ∪ CC a subset of AC ∪ CC. Then, we form P, the partitions of the space of candidates, as follows: P = {ψ 1 , ψ1 }×. . .×{ψ l , ψl }.

Each element (φ 1 , . . . , φ n) ∈ P, with φ 1 ∈ {ψ 1 , ψ1 }, for i ∈ [1, l], represents a chunk of the space of candidate conditions.

Example 13 Continuing with the previous example and assuming that P C = {ψ 1 , ψ 3 }, we obtain four possible chunks:

• (ψ 1 , ψ 3): contains the candidates with subscripts 1 and 3,

• (ψ 1 , ψ3): contains the candidates with subscript 1 but without 3,

• (ψ1 , ψ 3): contains the candidates with subscript 3 but without 1,

• (ψ1 , ψ3): contains the candidates without the subscripts 1 and 3, Table 5.6 shows the obtained chunks of the space of candidate conditions of Table 5.2 partitioned using P C = {ψ 1 , ψ 2 }. Each column of the table contains a chunk of the space of candidates that can be processed separately by a given reducer. (i) Computing process instances. This step is challenging and require an intensive computation. To find process instances of a disjunctive conditions ψ 1∨2 in [START_REF] Hamid | Event correlation for process discovery from web service interaction logs[END_REF] they, first, compute the set of correlated message pairs R ψ 1∨2 . R ψ 1∨2 is the union of correlated message pairs of ψ 1 and those of ψ 2 . After that, process instances are computed based on finding connected components from the set of correlated messages R ψ 1∨2 . In order to minimize computations, process instances entailed by disjunctive conditions can be computed directly from already discovered instances in previous steps (atomic and con-100 Chapter 5. Discovering Composite Conditions junctive) and avoid additional step of processing. Therefore, we need only to find a link between a process instance from ψ 1 with a process instance from ψ 2 to form a new process instance. Figure 5.4 illustrates an example of connected instances. In order to formalize this property we introduce the operator ⊗ as following:

(ψ 1 , ψ 3) (ψ 1 , ψ3) (ψ1 , ψ 3) (ψ1 , ψ3) Level 1 ψ 1 ψ 3 ψ 2 , ψ (1∧3) Level 2 ψ 1∨3 ψ 1∨2 , ψ 1∨(1∧3) ψ 3∨2 , ψ 3∨(1∧3) ψ 2∨(1∧3) Level 3 ψ 1∨3∨2 , ψ 1∨3∨(1∧3) ψ 1∨2∨(1∧3) ψ 3∨2∨(1∧3) Level 4 ψ 1∨2∨3∨(1∧3)
For each instance σ in P I ψ 1∨2 , it exists at least two instances σ 1 and σ 2 from P I ψ 1 and P I ψ 2 respectively, where intersection of σ 1 and σ 2 is not empty and σ = σ 1 ⊗ σ 2 . ⊗ is the joining of two instances and it is computed if and only if σ 1 ∩ σ 2 = ∅. More formally:

∀σ ∈ P I ψ 1∨2 then ∃(σ 1 , σ 2) ∈ P I ψ 1 × P I ψ 2 where σ 1 ∩ σ 2 = ∅ and σ 1 ⊗ σ 2 ⊆ σ
Example 14 As shown in Figure 5.4, we have:

• σ ∈ P I ψ 1∨2 , ∃(σ 1 , σ ′ 1) = { m 1 , m 3 , m 5 , m 7 , m 5 , m 7 , m 9 , m 11 } ∈ P I ψ 1 ×P I ψ 2 , where σ 1 ∩ σ 2 = {m 5 , m 7 } and σ = σ 1 ⊗ σ ′ 1 = { m 1 , m 3 , m 5 , m 7 , m 9 , m 11 }, • σ ′ ∈ P I ψ 1∨2 , ∃(σ 2 , σ ′ 2) = { m 2 , m 4 , m 6 , m 6 , m 8 , m 10 } ∈ P I ψ 1 × P I ψ 2 , where σ 2 ∩ σ ′ 2 = {m 6 } and σ ′ = σ 2 ⊗ σ ′ 2 = { m 2 , m 4 , m 6 , m 8 , m 10 }.
Finally, we find

P I ψ 1∨2 = {σ, σ ′ } = { m 1 , m 3 , m 5 , m 7 , m 9 , m 11 , m 2 , m 4 , m 6 , m 8 , m 10 }
(ii)Pruning Candidate disjunctive conditions. At this step, non-interesting conditions are pruned using the following criterion:

• ImblancedPI criterion is applied to check if P I_ratio > α since instances formed based on disjunction of ψ 1 and ψ 2 are less numerous than those of ψ 1 and ψ 2 .

• monotonic property, for a given disjunctive condition, if the number of instances does not decrease or the length of the instances does not increase, then such disjunctive condition is pruned.

• associativity and inclusion properties. Conditions that combine the disjunction and conjunction of the same atomic condition are not needed to be computed, this criterion is referred as not assoc. If P I ψ 1 is included in P I ψ 2 , then we have

P I ψ 1∨2 = P I ψ 2 .
Hence, the condition is discarded, this criterion is referred as not inc.

(iii) Generating candidate conditions. Candidate conjunctive condition of level l are formed using non-pruned candidates from level l-1 .

Chapter 5. Discovering Composite Conditions

Single-pass composite conditions discovery algorithm provides an efficient strategy to partition, evenly, the space of candidate composite conditions across nodes. In addition, it necessitates only a single MapReduce job. Therefore, the overhead due to the scheduling and reading data multiple time is reduced. Also, it can be easily implemented and tested. However, the algorithm may suffer from some problems. One potential problem with single-pass discovery algorithm is that nodes may be overloaded, especially at the Reduce side where the large part of computations reside. In some situations, nodes may not handle a large number of candidates having long process instances. To deal with this issue we propose a multi-pass algorithm for composite candidate condition discovery to overcome the problem of overloaded nodes.

Muti-Pass composite Conditions Discovering algorithms

To enhance the performance of the algorithm presented previously and minimize the workload of each node, we introduce a multi-pass algorithm to discover candidate composite The multi-pass algorithm, as its name indicates, relies on several passes (each pass is a MapReduce job). Taking the set of atomic conditions discovered in previous algorithms as input, every pass of the algorithm is devoted to carry out candidates composite conditions presented in a single level, in the lattice, independently from the others. Based on this strategy any node in the cluster may not be overloaded since it will process only a single candidate condition at each level. Besides that, candidate composite conditions retained in a step (except the last level) are combined to generate the set of candidate of high level and, thus, used as the inputs of the next pass.

Algorithm 19: multi-pass main algorithm. As illustrated in Figure 22, the multi-pass composite conditions discovery algorithm partitions the lattice horizontally, i.e by levels. It discovers relevant candidate composite conditions presented in level k in iteration k . Each level is distinguished by the number of atomic conditions merged together (e.g, ψ 1,2,3 is in level 3). Also, it is handled by a single MapReduce job. The first iteration (job) of the algorithm combines the set of candidate atomic conditions, discovered in the previous stage, to generate conditions of level 2 then select interesting candidates, based on criteria, to be fed to the next iteration. Afterwards, every iteration k generates the candidate of level k from the selected candidates, those that are not pruned, of iteration k-1 .

Input: K : unused, V : AC Output: K : unused, V : CC 1 begin 2 k ← 0 ; 3 level k ← AC ;
Algorithm 20: Multi-pass map function. Algorithm 21: multi-pass reduce function.

1

Reduce_function

Input:

K : ψ, V : CMB ψ , CMB ψ | Output: K : ψ, V : ψ c c 2 ψ cc ← ψ i ∧ ψ j ;
3 if not inc(ψ P , ψ i) then for all keys that has the condition name as part (lines from 10 to 13).

In the Reduce function, each reducer will receive a single candidate ψ as key, which corresponds to the candidate that will be processed by this reducer. Associated with that key the set of values are two conditions of level k-1 such as the combination of their name produces the key. Before, computing instances at line 4, the reducer checks whether the conditions satisfies the non Inclusion and Trivial Union criteria. If so, a DFS -like algorithm is applied to discover the process instances involved by the composite conditions. After that, the reducers verifies whether new candidate condition induces a new interesting process instances by carrying out the monotonicity and imbalanced_PI criteria. If the condition survives the criteria, then the reducer outputs the key-value pairs (ψ, CMB ψ). the candidates atomic conditions present in the input. 3 We store only the condition names which is composed by the attribute names (line 8 of algorithm [START_REF] Bancilhon | An amateur's introduction to recursive query processing strategies[END_REF]. For convenience, we use only ψ or ψ i to represent the condition name. 4 In case of candidate disjunctive conditions and for optimization reasons we load/store the process instances instead of CMB. the evolution of the relative running time w.r.t the number of nodes. The running time decreases as the number of nodes is increased. The breaking point can be observed moving from configuration with 1-node to configuration with 2-nodes, where the running time decreases, approximately, by half. This is because the two nodes receive the same workload. Adding more nodes decreases the running time with factor of 0.4. This is due two reasons: (i) nodes do not have the same workload (e.g., with 3-nodes configuration, two nodes receive three tasks and one receive two tasks), (ii)) some tasks take more time in execution than the others depending on the amount of candidates that are pruned before computing their process instances.

In the second experiment, we fixed the number of nodes to 5 than we varied the number of partitioning conditions from 1 to 5. Figure 5.8 shows the relative execution time of the different configuration. We start with partitioning conditions size (p) equal to 1 this implies 2 1 Reduce tasks. Therefore, only 2 nodes were working where the other 3 nodes are idle. We observe that the execution time increases than it decreases comparing to the first configuration.

• Configuration 2 and 3, the execution time increases because each node processes at 5.4. Experimental Evaluation 109 most two Reduce tasks. Also, all nodes receive a piece of workload (no idle nodes).

• configuration 4 and 5, increasing p spawns more Reduce tasks. However, it involves larger intermediate data size and scheduling a huge number of tasks. These overheads affect the performance of the algorithm and decrease the running time.

Based on this evaluation, we conclude that a good value of p w.r.t the number of nodes is in factor of two (e.g., if we have 10 nodes cluster size p should equal to 4). Single-pass disjunctive conditions algorithm. To evaluate the speed up of the single-pass disjunctive condition algorithm, we ran the algorithm on a fixed size of SCM×x (x=30) and we fixed the number of partitioning condition to 3 (2 3 Reduce tasks).

Figure 5.9 shows the evolution of the execution time. We observe that each time we add a node the running time speeds up by a factor of 0.5. Therefore, using 5-node cluster speeds up the running time by approximately a factor of 2.3. Even if the lattice is equally partitioned and the nodes receive the same workload (number of candidates) the experiments show a poor speed up of the algorithm. This fact is due to the computation of candidates in some nodes and the earlier pruning of candidates in the other nodes. For example, 2 nodes receive 2 candidates, the first prunes one candidate and computes the process instances for the second candidates, the second node computes both candidates.

In this case, it is obvious that the second node will spend more time than the first one. Multi-pass disjunctive conditions algorithm. In order to evaluate the multi-pass composite conditions algorithm, we fixed the dataset size at ×30 with a duplicated number of attributes and we varied the cluster size from 1 to 5. The number of the input atomic conditions is 14 therefore the number of candidate to be explored is equal to 2 14 . Figure 5.10 shows the details of running time of each pass of the algorithm as we varied the cluster size. For each configuration, on average, 44% of the time is spent on computing candidates in pass 1, 33% on processing pass 2, 14% on processing pass 0 and about 9% on processing the last pass. The reason that pass 1 and pass 2 have the important share in the execution time is due to the large number of candidates generated at this passes.

Indeed, a theoretical number of candidates in pass 1 starting with 14 atomic conditions is 4095 candidate conditions. In other hand, the last pass spent less time because the number of candidate conditions decreases (in the top of the lattice). Also, we observe that increasing the number of nodes decreases the execution time. To better understand the speed up characteristics of the multi-pass composite conditions algorithm,in Figure 5.11 we plotted the same results on relative scale. That is, the y-axis shows how much faster the running time becomes as we increase the cluster size. From this figure, we can observe that the execution time decreased by a factor of 3.7 which is better than the single-pass approach (by a factor of 2.4). The reason for this result is that, (i) in single-pass approach, nodes receive large workloads and may be overloaded or compute a large number of candidates where (ii) in multi-pass approach candidates conditions are redistributed over nodes for each pass. Moreover, nodes receive small workloads at each iteration.

Discussion

In this chapter we have studied the problem of discovering candidate composite conditions in parallel using the MapReduce framework. We proposed single and multi-pass 112 Chapter 5. Discovering Composite Conditions approaches and we provide two algorithms for the single stage approach to discover conjunctive and disjunctive candidate correlation conditions. We showed how to efficiently partition the space of computation across several nodes in the cluster in order to process each (sub)-partition independently from others. We also provided a useful property to eliminate unnecessary computation during computing process instance phase. We implement our approach on hadoop and we perform a set of experiments to evaluate both scalability and speed up of the algorithms. The experiments showed that the worst speed up was the single-pass disjunctive conditions algorithm with factor of 2.3 where the other algorithms exceeded the factor 3.2. In order to improve the speed up and scale up of these approach, a preprocessing step can be used to detect only interesting candidates by using pre pruning heuristics and measures. This idea is a subject of future works.

Chapter 6

Conclusions and Future Work

A challenging issue for business process monitoring/processing is event correlation which refers to grouping together event logs to identify end-to-end process instances.

Correlating message logs based on their content is a requirement in various application domains. However, this task represents a real challenge because of, (i) modern enterprise systems become increasingly federated, loosely coupled and continually growing in size and complexity, (ii) simultaneously they generate a large size of event-data representing business activities stored in log files. Therefore, in today's event-driven systems, it is necessary to perform such task on multiple processing nodes in order to handle a large recorded data sets. In this thesis we described and analysed how event correlation discovery task can be supported efficiently on data-intensive parallel platform namely

MapReduce.

We presented algorithms devoted to atomic correlation conditions discovery. We showed how to efficiently deal with problems such as partitioning, replication, and multiple inputs by manipulating the keys used to route the data between nodes of a MapReduce cluster. We also provided an adequate data structure used to store correlated messages in order to decrease memory usage. We proposed several alternatives consisting of one, two or many MapReduce jobs for discovering atomic correlation conditions. We also proposed a disk-based alternative to handle insufficient memory at Reduce side. We closed this chapter with an experimental evaluation of the proposed algorithms.

Also, we described algorithms devoted to discover composite candidate correlation conditions. We proposed two alternatives consisting on one and multi-pass MapReduce jobs. For the one-pass algorithm, we introduced the concept of partitioning conditions, a subset of the input conditions, in order to partition the space of computation vertically and perform the correlation discovery in a single MapReduce job. We also showed how to connect process instances to form new instances, in the case of disjunctive candidates, in order to reduce the computations. We proposed a multi-pass strategy based on a Chapter 6. Conclusions and Future Work horizontal partitioning of the lattice and process each level in a single MapReduce job.

Finally, we performed experimental evaluation of both strategies on 5-nodes cluster.

Finally, the experimental results showed that the proposed algorithms can process large data sets within a reasonable time and they scale well w.r.t to dataset sizes and cluster sizes.

Future Work

In this thesis we focused on the problem of event correlation discovery using MapReduce.

One possible future direction to improve our approach is to explore alternative data structures, for example, distributed non-relational database as Hbase [5] or HadoopDB [START_REF] Abouzeid | Hadoopdb: An architectural hybrid of mapreduce and dbms technologies for analytical workloads[END_REF] to integrate and store event related data. Such kind of data structure provides advantages in distributed cloud storage systems as tables are always sorted by their key and thus can be easily distributed horizontally over several machines. Besides this, it is interesting to suggest new statistic calculations, based on attributes values, to determine correlation among events. Using such storage gives the opportunity to provide a near to real-time incremental approach where events are processed as soon as they are received.

Also, it will be interesting to collaborate with data mining researchers to investigate well known data mining algorithms such as Apriori using MapReduce framework to improve the strategy of data partitioning.

This thesis addressed the problem of event correlation discovery from business event logs in parallel shared nothing framework, which is only the first step to achieve business process mining techniques. Another future research direction, is to extend the approach to construct (in parallel) the logical description of the business process. In this case, atomic conditions are used to discover sub models where disjunctive conditions are used to build the whole process model. This thesis is the starting step toward using MapReduce in business process management domain. Therefore, there are many issues to be studied.

We expect that this area to grow up as there are many application domains, including monitoring business process and querying historical business events, that require event correlation discovery.

 First, for discovering atomic correlation conditions, we propose Sorted Values Centric (SVC), Hashed Values Centric (HVC) and Per-split Correlated Messages (PSCM) algorithms. However, each algorithm has distinct properties. SVC relies on one MapReduce step, it sorts the intermediate values to efficiently compute the correlated message buffer denoted by CMB. However, it involves a large intermediate data size, because it uses the value-to-key pattern to impose an order on the values 2 . HVC relies on one MapReduce step, has a low intermediate data size, but requires several iterations to compute correlated messages. Finally, PSCM relies on two MapReduce steps. The first step computes the correlated message buffer in parallel, where the second step groups together the correlated messages and deduces the process instances. Secondly, Single and Multi-pass Composite Condition Discovery algorithms aim to build the composite candidate correlation condition space (lattice) and retains only significant ones. The two algorithms devoted to compute candidate composite correlation conditions, adopt different partitioning strategies, where (i) single-pass algorithm partitions the lattice vertically based on partitioning conditions and it performs the computation in one MapReduce job. (ii) multi-pass algorithm horizontally partitions

Figure 2 . 1 :

 21 Figure 2.1: Simple ordering business process.

Figure 2 .

 2 Figure 2.2 shows a business process lifecycle. It consists of 4 phases: design phase, configuration phase, enactment phase and evaluation phase. These phases, organized in circular structure showing their logical relationship, are explained below.

Figure 2 . 3 :

 23 Figure 2.3: Positioning of the process mining in the business process lifecycle [8].

Figure 2 . 4 :

 24 Figure 2.4: Getting data from heterogeneous data sources.

Figure 2 . 6 :

 26 Figure 2.6: Event Correlation, Process discovery and its fields of application.

Figure 2 . 8 :

 28 Figure 2.8: Histogram of shipping delays

 al. studied a set of correlation patterns in Web service workflows where three classes of correlation patterns are identified as function-based, chain-based Chapter 2. Background and aggregation functions. The proposed correlation patterns are used as means to group

 two primitives: a map and a reduce functions. It operates exclusively on key, value pairs and produces as output a set of key, value pairs. A map function takes as input a data set in form of a set of key-value pairs, and for every pair k, v of the input returns zero or more intermediate key-value pairs k ′ , v ′ . The map outputs are then processed by reduce function. A reduce function takes as input a key-list as pair k ′ , list(v ′) , where k ′ is an intermediate key and list(v ′) is the list of all the intermediate values to be associated with k ′ , and returns as final result zero or more key-value pairs k ′′ , v ′′ . Several instantiations of the map and reduce functions can operate simultaneously. Note that while map executions do not need any coordination, a given reduce execution requires all the intermediate values associated with a same intermediate key k ′ (i.e., for a given intermediate key k ′ , all the pairs k ′ , v ′ produced by the different map tasks must be processed by the same reduce task). Map and reduce functions can be implemented using any general-purpose programming language. Typically, MapReduce programs are executed on clusters of several nodes and both their inputs and outputs are files in a distributed file system (e.g., Hadoop Distributed File System (HDFS)).

Figure 2 . 9 :

 29 Figure 2.9: MapReduce execution Overview

Figure 2 .

 2 Figure 2.9 shows an execution workflow of a MapReduce program. The different tasks in Figure 2.9 are numbered as a means of identifying the tasks in the following description. The execution workflow is made of two main phases:

(6)

 6 when a reducer has read all intermediate data, it sorts it by the intermediate keys so that all occurrences of the same key are grouped together. If the amount of intermediate data is too large to fit in memory, an external sort is used. The reducer then merges the data to produce for each intermediate key k ′ a single pair k ′ , list(v ′) .

(7)

 7 each reducer iterates over the sorted intermediate data and passes each pair k ′ , list(v ′) to the user's reduce function.

 be the average number of a reduce-input records. The total number of intermediate records |D| = |M | * m = |R| * r. The sort buffer size is B 3 . The threshold for the accounting and serialization buffers is Q 4 .

Figure 3 .

 3 Figure 3.1 depicts the correlation condition discovery process. The main steps of this approach are given below:

Figure 3 . 1 :

 31 Figure 3.1: Event Correlation Discovery Process

Figure 3 . 2 :

 32 Figure 3.2: Correlated message Graph.

 there is an edge between m x and m y if and only if ψ(m x , m y) holds. E is called the set of correlated message pairs based on condition ψ. Henceforth, R ψ is used to express a set of correlated message pairs.

 Figure 3.2(a) shows the graph representing the set of correlated message pairs R ψ = { m 1 , m 3 , m 3 , m 5 , m 5 , m 7 , m 2 , m 4 , m 4 , m 6 , m 6 , m 8 } of the condition ψ : m x .U serID = m y .uSessionID presented in Table3.1(a). and

Figure 3 .

 3 Figure 3.2(b) depicts a second graph representing the set of correlated message pairs

Algorithm 1 :begin 2 CC 3 DC

 123 Composite Correlation Condition Discovery Algorithm Input: AC: Atomic Conditions. Output: CC: Conjunctive conditions, DC: Disjunctive conditions. 1 ← computeConjunctiveConditions(AC) ; ← computeDisjunctiveConditions(AC, CC) ; 4 return {CC ∪ DC} ;

Figure 3 .

 3 3 shows a lattice generated by 3 atomic conditions, we observe that the number of candidate conjunctive conditions equals to 2 3 -(3 + 1) = 8 -4 = 4.

Figure 3 . 3 :

 33 Figure 3.3: Lattice generated by 3 atomic conditions.

ψ ᴠ 1 ᴠ 3 ψ1 ᴠ 2 Figure 3 . 4 :

 3234 Figure 3.4: Lattice generated by 3 atomic conditions and one conjunctive condition.

9begin 11 / 12 return

 1112 Partitioner (K : MapOutputKey, V : MapOutputValue, N : numPartitions) 10 ** We Hash Partition only the Outputed Key part **/ Hash(MapOutputKey.OutputKey) % numPartitions ;

(

 iii) (m1, m2) belongs to the transitive closure of the correlation relation computed using (i) and (ii).

Figure 4 . 1 :Example 7

 417 Figure 4.1: Bipartite graph of CMB with two connected components.

9

 output ({OutputKey1 }, OutputV alue i); 10 output ({OutputKey2 }, OutputV alue j);

12 begin 13 while

 1213 (V.hasNext()) do 14 IdSet x ← V.A x .id ; 15 B.setIdSets(IdSet 1 , IdSet 2) ; 16 output(K, B) ;

Figure 4 . 3 :

 43 Figure 4.3: Data-flow at the reduce side.

Figure 4 . 4 :

 44 Figure 4.4: Time breakdown SCM×100.

Figure 4 . 5 :

 45 Figure 4.5: Time breakdown SCM×500.

Figure 4 . 6 :Figure 4 . 7 :

 4647 Figure 4.6: Time breakdown SCM×1000.

Figures 4 . 4 , 4 .

 444 Figures 4.4, 4.5 and 4.6 show the execution time proportion of each step on 5nodes cluster for different dataset size (represented by the factor n). Per-Split Correlated

Figure 4 . 4 .

 44 This is because SVC 'Reducers handle a sorted data. But in Figures 4.5

and 4. 6 ,

 6 PSCM was the best because it divides this step on two stages. Finally, Figure 4.5.3 shows the total execution time of the three algorithms. For the n equals 100 and 500, HVC was the best algorithm, this is because SVC is less efficient due to the large size of intermediate data, and PSCM has an additional overheads due to scheduling another MapReduce step. Whereas, for the largest dataset size PSCM was the best. This means that the framework overheads became negligible when the size of the workload increased.

Figure 4 . 2 Figure 4 . 8 :

 4248 Figure 4.9 presents the running time gathered from executing the 3 algorithms on RobotStrike dataset. We start with 200k messages as input log size then we vary by adding 200k for next steps until 1800k, as the data increased the running time of the three algorithms increase linearly. The x-axis shows the size of input data in messages. The y-axis shows the elapsed time in second, and in Figure 4.8 shows the amount of intermediate-data transferred over the network between nodes in the shuffle phase (in

Figure 4 . 9 :

 49 Figure 4.9: Running time of three algorithms on different data size (RobotStrike).

Figure 4 . 10 :

 410 Figure 4.10: Running time of the algorithms for Robostrike data set on different cluster sizes.

Figure 4 . 11 :

 411 Figure 4.11: Relative running time of the algorithms for Robostrike data set on different cluster sizes.

Figure 4 . 12 :

 412 Figure 4.12: Running time of the algorithms for SCM×500 data set on different cluster sizes.

Figure 4 . 13 :

 413 Figure 4.13: Relative running time of the algorithms for SCM×500 data set on different cluster sizes.

3 ᴧ 4 ᴧ 5 ψ2ᴧ 3 ᴧ 4 ᴧ 5 ψ1ᴧ 2ᴧ 3 ᴧ 4 ᴧ 5 ψ3ᴧ 4ᴧ 5 ψ2ᴧ 4 ᴧ 5 Figure 5 . 1 :

 55551 Figure 5.1: Lattice generated by 5 atomic conditions.

3 ᴧ 4 ᴧ 5 ψ2ᴧ 3 ᴧ 4 ᴧ 5 ψ1ᴧ 2ᴧ 3 ᴧ 4 ᴧ 5 ψ3ᴧ 4ᴧ 5 ψ2ᴧ 4 ᴧ 5 Figure 5 . 2 :

 55552 Figure 5.2: The lattice of generated candidate composite condition. Each partition is represented by a single color.

10 if 15 until

 1015 not inc(CMB ψcc) then 11 P I ψcc ← compute_instances(CMB ψcc) ; 12 if is_mon(ψ cc) and ψ cc has not ImbalancedPI(P I ψcc) then 13 Level l ← Level l ∪ ψ cc ; 14 CC ← CC ∪ Level l ; Level l = ∅; 16 return CC Example 11 Using the algorithm Conjunctive-MR with inputs as AC = {ψ 1 , ψ 2 , ψ 3 , ψ 4 , ψ 5 }, enables to generate the whole space of candidates described in Table 5.3.

96 Chapter 5 .

 965 4 a shipment message references a payment message while a payment message references an Discovering Composite Conditions invoice message. In this case, 3 conditions are needed to correlate those messages R ψ 1 : m x .InvID = m y .InvID = { m 1 , m 3 , m 2 , m 4 }, R ψ 2 : m x .P ayID = m y .P ayID = { m 3 , m 6 , m 4 , m 5 } and R ψ 3 : m x .ShipID = m y .ShipID = { m 5 , m 7 , m 6 , m 8 }. We note:

Figure 5 . 3 :

 53 Figure 5.3: Lattice generated by 3 atomic conditions and one conjunctive condition.

Figure 5 . 4 :

 54 Figure 5.4: Connected instances.

Figure 5 . 5 :

 55 Figure 5.5: Lattice generated by 4 atomic conditions. Each level of the lattice is processed by separate MapReduce job.

5. 3 .

 3 Muti-Pass composite Conditions Discovering algorithms 103 conditions (i.e., conjunctive or disjunctive). Besides generating and processing candidates, the aim of the algorithm is to minimize the workload allocated to each node by adopting a new strategy of partitioning and splitting the space of candidate exploration.

4 while level k = ∅ do 5 η ← ∅ ; 6 forall the ψ ∈ level k do 7 η ← η ∪ ψ ; 8 store η in distributedCache ; 9 k

 456789 ← k + 1 ; 10 Map() function ; 11 level k ← Reduce() function ;

4 P

 4 I ψcc ← compute_instances(CMB ψcc) ; 5 if is_mon(ψ dc) and ψ cc has not ImbalancedPI(P I ψcc) then 6 output(ψ, ψ c c); For a given iteration k and before the Map functions, outlined in the algorithm 20, start their execution, an initialization function is called to load from the DistributedCache the 5.3. Muti-Pass composite Conditions Discovering algorithms 105 non-pruned candidate conditions 3 from iteration k -1(line 3 of algorithm 20), excepting the first iteration which loads the candidates atomic conditions. Then, it combines these candidate to generates a set of new candidates (line 5 of algorithm 20). Thereafter, it applies the associativity criterion to clean the list from non-interesting candidate (line 6 of algorithm 20). The Map function then retrieves the correlated message buffers 4 (CMB ψ) from HDFS. Next, from each CMB ψ , it extracts the condition name and uses it to probes the list of keys built in the initialization function for testing whether any key contains the condition name. Hereafter, the Map function produces the key-value pair (key, CMB ψ)

Finally, selected candidate

 names, in iteration k, are stored into the DistributedCache and used to generate candidates for the next iteration and the computed process instances are stored into the HDFS. Example 15 Figure 5.6 illustrates an example of the algorithm execution. The algorithm has 4 candidate atomic conditions as input. Each iteration combines previous result to build current level candidates. The last iterations produces the candidate containing all

Figure 5 . 8 :

 58 Figure 5.8: Relative running time of the single-pass conjunctive conditions algorithm for RobotStrike dataset set on 5-nodes cluster with different partitioning conditions sizes.

Figure 5 . 9 :

 59 Figure 5.9: Relative running time of the single-pass disjunctive conditions algorithm for SCM×x dataset set on different cluster sizes.

Figure 5 . 10 :

 510 Figure 5.10: Running time of the multi-pass disjunctive conditions algorithm for SCM×x data set on different cluster sizes.

Figure 5 . 11 :

 511 Figure 5.11: Relative running time of the multi-pass disjunctive conditions algorithm for SCM×x dataset set on different cluster sizes.

 Introduction .6.1 MapReduce Execution Overview . 2.6.2 Cost Model for MapReduce Programs 2.6.3 Disucussion .

	Chapter 2
	Background
	Contents
	2.1

2.2 Business Process Management . 2.3 Process Mining . 2.3.1 Getting Data . 2.3.2 Process Discovery . 2.3.3 Correlation Discovery, a Key Step For Process Discovery 2.4 Event Correlation Discovery Problem

2.4.1 Event logs . 2.4.2 Correlation Condition . 2.5 Related Works . 2.5.1 BHUNT . 2.5.2 CORDS . 2.5.3 DePauw et al. 2.5.4 Event Cloud . 2.5.5 Rozsnyai et al. 2.5.6 Barros et al. 2.5.7 Discussion . 2.6 MapReduce Programming Model

2

BPMs Emails & Web applica1ons transporta1ons and shipping Produc1on Systems DATA STORAGE Extract, Transform, Load Data Sources Layer Data Storage Layer Data Integra1on Layer

	Event
	typing
	A,ribute
	unifica3on

Table 2

 2

	b	
		g
	c	
	a	e
	Register request	h
	d	
	f	

.1).

Examine thoroughly Examine casually Check ticket Reinitiate request Decide Reject request Register request

Figure 2.5: Process model discovered by α-algorithm based on the process instances presented in the log depicted in Table 2.1.

Table 2 .

 2 2: Map phase.

	Task (Figure 2.9) Description	Cost
	5	Reading data from mappers node	T tr
		(data transfer cost)	
	6	Merge (I/O + CPU costs)	T sort_reduce
	7	Reduce execution (I/O + CPU	T reduce
		cost)	
	8	Writing the final results to HDFS	
		(I/O cost)	

Table 2 .

 2

3: Reduce phase.

 Contents 3.1 Introduction .

3.2 Correlation Condition Patterns . 3.2.1 Key-Based Correlation. 3.2.2 Reference-Based Correlation . 3.3 Semi-Automated Discovery of Correlation Conditions 3.3.1 Partitioning the log . 3.4 Candidate Attributes Selection . 3.4.1 Characteristics of Correlator attributes 3.4.2 Attributes Pruning . 3.4.3 Atomic Condition Discovery . 3.4.4 Candidate Atomic Condition Generation 3.4.5 Atomic Condition Pruning . 3.4.6 Composite Condition Discovery . 3.5 Summary .

Table 3 . 2

 32

	3.4.6.2 Disjunctive Conditions		
	Messages	Service	InvId	PayId
	m 1	invoice	i1	
	m 2	invoice	i2	
	m 3	Pay	i1	P1
	m 4	Pay	i2	P2
	m 5	Ship		P2
	m 6	Ship		P1

: a snapshot of example log.

Table 4 .

 4

1 shows a general description of the proposed algorithms: Sorted Values Centric, Hashed Values Centric and Per-Split Correlated Messages denoted respectively by SVC,

HVC and PSCM. Based on this distinct features, we can distinguish suitable situations for each algorithm. SVC can be suitable for situations where the discovered process instances are numerous and short (having a low number of messages). Where, HVC is suitable when the discovered process instances are less numerous and long. Finally, PSCM is suitable for larger datasets and the case of events correlated by key based conditions.

On one hand, each algorithm has a distinct features that make it suitable in specific situations. SVC relies on one MapReduce job, it sorts the intermediate data to efficiently compute the correlated message buffer denoted by CMB. However, it involves a large intermediate data size. HVC relies on one MapReduce job, has a low intermediate data size, but requires several iterations to compute correlated messages. Finally, PSCM relies on two MapReduce jobs. The first step computes the correlated message buffer in parallel,

Table 4 .

 4 1: A general description of the proposed algorithms.

	Algorithm # MR steps	Map output	Reduce input Computing CMB
	SVC	one job	(ψ+(val+tag+id), val+tag+id)	sorted	one iteration
	HVC	one job	(ψ, val+tag+id)	non sorted	several iterations
	PSCM	two jobs	1 st job: (ψ+val, tag+id) 2 nd job: (ψ, single row)	non sorted non sorted	single row one iteration

 It is obtained by joining two CMBs on the value part. Values that does not appear in both indexes are discarded. Table 4.2(c) shows a shared index of attributes A 1 and A 2 , where values C3 and C4 are discarded. Taking the log present in Table 3.1, the messages correlated by the condition ψ:m x .LoginID = m y .LoginID are R ψ = { m 1 , m 4 , m 1 , m 6 , m 1 , m 8 , m 4 , m 6 ,

	Log L Example 5 4.2. Atomic Condition Discovery Algorithms message-id	55

.2(a) (respect, 4.2(b)) shows the indexed values of A 1 (respect, A 2). We refer to this table as CMB (Correlated Message Buffer). Similar data structure are used in

[START_REF] Sarawagi | Efficient set joins on similarity predicates[END_REF][START_REF] Rozsnyai | Discovering event correlation rules for semi-structured business processes[END_REF]

.

• The second data structure is devoted to reference-based condition. It is defined as

T 2 :[val, {IdSet1}, {IdSet2}].

m 4 , m 8 , m 6 , m 8 , m 2 , m 3 , m 2 , m 5 , m 2 , m 7 , m 3 , m 5 , m 3 , m 7 , m 5 , m 7 }. Such a set is represented in a condensed form using the CMB data structure as, T 1 :

Table 4 . 2

 42

: Example of CMB data structures [C1| m 1 , m 4 , m 6 , m 8], [C2| m 2 , m 3 , m 5 , m 7]. It is worth noting that process instances can be directly deduced from T 1 , i.e, computing transitivity is not needed. Noting that, [C1| m 1 , m 4 , m 6 , m 8] represents a CMB row.

Table 4

 4 : ψ A i ,A j , V : a Sorted list of Map-Output Values Output: K : ψ A i ,A j , V : PI set Of discovered instances

	1 Reduce_Configure
	2 |L| ← count_rows_log();
	3 α ← getUserThreshold();
	4 β ← getUserThreshold();
	5 begin
	6	CMB ← build_correlated_message_buffer(V) ;
	7	shared_ratio(K) ← |CMB| |L| ;

.3 shows an example of a log file L and the outputs corresponding to the pair of attributes A i , A j produced 4.2. Atomic Condition Discovery Algorithms 57 Algorithm 3: Sorted Values Centric reduce function. Input: K 8 if shared_ratio(K) < α then 9 P I ψ ← compute_instances(CMB); 10 if ψ has ImbalancedPI(P I, β) then 11 output(K, PI) ;

Table 4 . 3

 43

: Example of a log and the outputs, w.r.t. to (A i , A j), of two mappers.

Table 4 .

 4 Using as input the buffer in Table4.3, the buffer CMB produced by the function Build Correlated Message Buffer is depicted in Table4.4. Since, the input of the Reduce are sorted, then values in column val and messages in IdSets are also sorted. In the first row, C1 is a value which appear in both column A i and A j , where messages having C1 as value in A i are {m 3 , m 4 , m 10 } and those having C1 in A j are {m 4 , m 5 }. |CMB| represents the number of distinct values present in the corresponding attribute. On the other case (reference-based) conditions, |CMB| represents the number of shared distinct values between A i and A j . Next, candidates that do not satisfy shared_ratio(ψ ij) < α are pruned (line 8 of algorithm 3). The compute-instances function, depicted in algorithm 5, applies a DFS-like algorithm to explore the CMB. It is called only in the case of reference-based conditions. It is in charge of grouping together the messages correlated by a condition ψ A i ,A j in order to form individual process instances. It takes as input a buffer CMB associated with a couple of attributes A i , A j . We recall that a buffer CMB produced by the function Build Correlated Message Buffer contains in its column val the set of values v common to the attributes A i and A j , and for each such value v, records in the cell idset 1 (respectively, idset 2), the set of message identifiers m.id such that m.A i = v

	Pruning non-interesting conditions based on non-repeating values criterion:
	After the CMB is created, the shared_ratio can be computed as the ratio of the
	number of distinct values (number of rows in CMB) with regard to the size of L,

4: Buffer CMB. Example 6 shared_ratio(ψ ij) = |CMB| |L| . In case of key-based conditions, 1 build_correlated_message_buffer (V : list(m.A x -A xm.id)) 5 while (V.hasNext()) do 6 if tmpVal = V.A x then 7 tmpBuffer.add(V.id, V.A x); 8 /** if x = i put id in set i else put it in set j **/ ; 9 else 10 if tmpBuffer = ∅ then 11 CMB.add(tmpBuffer); 12 else 13 tmpBuffer ← ∅ ; 14 tmpVal ← V.A x ; 15 tmpBuffer.add(V.id, V.A x); 16 return CMB Computing/Finding Instances:

 DiscussionIn this section we presented our first algorithm called sorted values centric algorithm devoted to discover candidate atomic correlation conditions. The algorithm relies on one MapReduce job, hence a less overheads involved by the framework to schedule tasks. In addition, It sorts the intermediate data to build the correlated message buffer in one iteration and efficiently computes the process instances. In fact, sorting data requires the use of value to key pattern (values are appended to the key to form a composite key) which make the map-outputs size twice larger. Therefore, this fact causes an important overhead while the data are transferred between Map and Reduce nodes and may affect the algorithm's performance. To fix such problem we introduce Hashed values centric algorithm in the following. {A 1 , A 2 , . . . , A n , id})OutputV alue i ← {V.A i -A i -V.id} ;OutputV alue j ← {V.A j -A j -V.id} ; , by consequent, several iterations are required to achieve this task. Moreover, an additional step is needed to clean the buffer by deleting entries with empty IdSets. This stage is less performance then that of SVC algorithm.

	64	Chapter 4. Discovering Atomic Conditions
	4.2.3 Hashed Values Centric Algorithm 2. Pruning non-interesting candidates (line 5 of algorithm 7). 3. Computing process instances (line 6 of algorithm 7). These steps are described below. Build Correlated Message hash Buffer : The function is depicted in algorithm 8. It aims at grouping together message-ids having same values, and separate those 8 output ({OutputKey }, OutputV alue i); 9 output ({OutputKey }, OutputV alue j); Algorithm 7: Hashed Values Centric Reduce_function 7 CMB.add(tmpBuffer); 8 tmpBuffer ← ∅ 9 return CMB coming from A 2 begin 3 foreach A i ∈ V do 4 correlated messages andMapper 1 outputs foreach A j ∈ V do key val tag Id

In order to avoid generating and transferring intermediate data with duplicated values, we propose the Hashed Values Centric (HVC) algorithm. HVC, depicted at algorithm 6 and 7, processes each candidate atomic correlation condition independently. Also, it can be implemented in a single MapReduce job. The Map generates the set of all possible candidate atomic conditions from the set of attributes in L. It ensures that each pair will be allocated to the corresponding Reduce by assigning a single key to each pair. The main difference w.r.t SVC lies in the keys used to distinguish the target Reducers. Unlike SVC algorithm, in HVC composite keys are not used. Therefore, the map-output data size is not duplicated and, also, not sorted. Table

4

.5 shows an example of the outputs of log L in 4.3 processed by two mappers executed the map in algorithm 6. Once the Reduce, depicted in algorithm 7, receives it corresponding data, it proceeds as follow :

1. Build the correlated message hash buffer (line 3 of algorithm 7). i from those coming from A j in different sets (IdSet1 to A i and IdSet2 to A j). Since, the input of the Reduce are not sorted, a hash table is used to store the 4.2. Atomic Condition Discovery Algorithms 63 Algorithm 6: Hashed Values Centric Map_function.

1 Map (K : unused, V :

5 OutputKey ← A i , A j ; 6 7 1 Reduce (K : ψ A i ,A j , V : list(m.A x -A xm.id)) 2 begin 3 CMB ← build_correlated_message_hash_buffer(V) ;

4 shared_ratio(K) ← |CMB| |L| ; 5 if shared_ratio(K) < α then 6 P I ψ ← compute_instances(CMB); 7 if ψ has ImbalancedPI(P I, β) then 8 output(K, PI) ; Algorithm 8: build correlated message hash buffer 1 build_correlated_message_hash_buffer (V : list(m.A x -A xm.id)) 2 begin 3 hashtable CMB ; 4 while (V.hasNext()) do 5 tmpBuffer ← CMB.lookup(V.A x); 6 tmpBuffer.add(V.id, V.A x);

Table 4 .

 4 Using as input the buffer at Table 4.5, the buffer CMB produced by the function Build Correlated Message hash Buffer is depicted at Figure 4.2. Many iterations are required to fill the buffer.

	C 3	{m6, m1, m8}	{m7, m9, m6}
	C 1	{m3, m10 m4}	{m4, m5}
	C 4	{m9, m7}	{m1, m8}
	C 2	{m5, m2}	{m10, m3, m2}
	Figure 4.2: Correlated Messages Hash Buffer
	Example 8		

5: Example of a log and the outputs, w.r.t. to (A 1 , A 2), of two mappers.

 The Map Function is the Map Identity.K : ψ A i ,A j , V : CMB Output: K : ψ A i ,A j , V : PI set Of discovered instances

	2 Reduce_Configure
	3 |L| ← count_rows_log();
	4 α ← getUserThreshold();

*/ 1 Reduce_Function Input:

5 β ← getUserThreshold(); 6 Reduce (K : ψ A i ,A j , V : CMB) 7 begin 8 PI ← compute_instances(CMB); 9 PI_Ratio(K) ← |P I| max|A i ,A j | ; 10 if PI_Ratio(K) ≤ beta then 11 output(K, PI) ;

12 else 13 write(K is not interesting condition based on Imbalanced_PI creterion) ;

Table 4 . 6

 46

: Algorithms Estimated Costs.

Table 5 .

 5 3: Partitioned candidates space. AC, P C = {ψ 1 , . . . , ψ l }

	Algorithm 14: Conjunctive-MR
		Output: set of interesting atomic conditions
	1 begin
	4	for p ∈ P do
	5	if ac ∈ p then
	6	output(p, ac) ;
	7	else
	8	for r ∈ Reducers do
	9	output(r, ac) ;
		/* (k ′ , V = list(v ′)) is an intermediate key-list of values pair	*/
	10	Reduce (k', V) ;
	11	P C ← ∅ ;
	12	RC ← ∅ ;
		/* P is the set of partitioning conditions, subset of AC.	*/
		/* RC =AC \ P	*/
	13	{P C, RC} ← BuildSets(V);
	14	if P C = ∅ then
	15	ψ P C ← Conjunctive_P artitioning_conditions(P C)
		CC ← Level_wise_p(ψ P , RC) ;
	16	else
	17	CC ← Level_wise(RC) ;

Input:

2 Map (key: null, c a : an atomic condition in AC) ; 3 P ← {ψ 1 , ψ1 } × . . . × {ψ l , ψl } ;

Table 5 . 4

 54

	Messages	Service	InvId	PayId	ShipId
	m 1	invoice	i1		
	m 2	invoice	i2		
	m 3	Pay	i1	P1	
	m 4	Pay	i2	P2	
	m 5	Ship		P2	S2
	m 6	Ship		P1	S1
	m 7	OrderFulfil			S2
	m 8	OrderFulfil			S1

: a snapshot of example log.

Table 5 .

 5 5: Candidates space.

Table 5 . 6

 56

: Partitioned candidates space.

http://www.gartner.com/it/page.jsp?id=1460213.

The MapReduce framework sorts the records by key before they reach the reducers. The order that the values appear is not even stable from one run to the next, since they come from different map tasks, which may finish at different times from run to run.

We use message and event interchangeably.

conversation, instance and trace all these terms have the same meaning which is a complete process execution.

io.sort.mb: The cumulative size of the serialization and accounting buffers storing records emitted from the map, in megabytes.

io.sort.spill.percent: When this percentage of either buffer has filled, their contents will be spilled to disk in the background.

http://www.robostrike.com/

These identifiers are different from those defined in 2.4.1. The former defines the process instance and the latter is similar to the key in relational databases which defines the tuple (event).

In databases, this problem is called also computing the transitive closure of a query[START_REF] Agrawal | Direct algorithms for computing the transitive closure of database relations[END_REF][START_REF] Toroslu | An efficient database transitive closure algorithm[END_REF].

Porcess instance identifier and not tuple identifier

usually α ≤ 0.01

r corresponds to the number of rows in CMB and it refers to the number of shared distinct values between two attributes A i , A j .

Map-output-record : the number of record outputted by the Map

Map-output-size : the size of the Map outputted

Passes = MergeSpillsPass(Spills, Factor)

http://www.Robostrike.com/

In Table5.3, if we also consider that ∅ ∈ (ψ1 , ψ2), then every chunk will have 8 candidates.

output(CC) ;

Atomic conditions that do not belong to partitioning condition set are referenced as RC, (i.e., RC=AC \ P C).

the condition ψ A i ,A j if and only if one of the following conditions is satisfied:

(i) the messages m1 and m2 appear in a same row of CMB. We state this condition more precisely as follows: m1 and m2 are correlated by ψ A i ,A j if there exist an integer i such that m1 ∈ CMB [i].idset 1 and m2 ∈ CMB [i].idset 2 . Indeed, in this case we have by construction of CMB that m1.A i = m2.A j = CM B[i].val.

Therefore, we can extend this observation to deduce that the elements of each CMB

are correlated by the condition ψ A i ,A j and hence belong to the same process instance.

(ii) the messages m1 and m2 appear in two sets of CMB that have a non empty intersection. More formally: there exists i, j ∈ [

Evaluation Of The Proposed Algorithms

This section shows the evaluation of the proposed algorithms and estimates their cost using the cost model introduced in section 2.6.2. The theoretical number of all possible

where k is the number of attributes in L.

We assume that each condition is processed by a single node.

Complexity Analysis

Unlike the complexity mentioned in [START_REF] Hamid | Event correlation for process discovery from web service interaction logs[END_REF] which is O (N.|L| 2), the algorithms presented above are in parallel and each condition is processed independently from the others.

Therefore, the time complexity to explore all the space of correlation conditions is O (p). Since, the main computation is done by reducers, we omit the map complexity. p is different from one algorithm to another. It consists of the sum of (i) the time complexity of computing correlated messages. (ii) The time complexity of computing instances.

• In the case of sorted data, The worst case time complexity of building correlated message buffer

where d is the number of distinct values of A i ∩ A j and s is size of the largest IdSet.

• In the case of non sorted data, computing correlated messages takes O (L 2), the case of building the hash table, for each value we need to look for it at the hash table. The worst case for computing instances has complexity of O (d ×s 2). The proposed algorithm devoted to compute disjunctive conditions, called Disjunctive-MR, is given at algorithm 17. The algorithm has the atomic conditions (AC) and conjunctive conditions (CC) as inputs and iteratively builds candidate of higher levels based on candidate in lower levels. Recall, that candidate in level l are computed by a self join on level l -1. The Map, in Disjunctive-MR will be in charge of partitioning the space of computations.

At the reduce side we apply the level-wise, with slight difference, to explore the space of candidate conditions. Each iteration consists of the following steps: foreach condition ψ i ∈ RC do

if not assoc(ψ P C) or not inc(ψ P C , ψ i) then

if is_mon(ψ dc) and ψ P C∨i has not ImbalancedPI(P I ψP C∨i) then

if not assoc(ψ dc) or not inc(ψ P , ψ i) then

if is_mon(ψ dc) and ψ dc has not ImbalancedPI(P I ψ dc) then

until Level l = ∅;

Experimental Evaluation

In this section, we present the performance evaluation of the proposed algorithms for candidate composite correlation conditions. The absolute time as well as speed up and scale up are measured and discussed.

Environment And Datasets. We ran all the experiments reported in this chapter on the same environment configuration described in Chapter 4. We used the same dataset namely SCM×x and RobotStrike. Single-pass conjunctive conditions algorithm. We ran the single-pass conjunctive conditions algorithm on a fixed size of RobotStrike dataset and we vary the number of nodes from 1 to 5. We fix the number of partitioning conditions to 3 and by consequent the number of Reduce tasks required to achieve the computations is 2 3 .

List of Tables

Using MapReduce To Scale Events Correlation Discovery For Process Mining Abstract:

The volume of data related to business process execution is increasing significantly in the enterprise. Many of data sources include events related to the execution of the same processes in various systems or applications. Event correlation is the task of analyzing a repository of event logs in order to find out the set of events that belong to the same business process execution instance. This is a key step in the discovery of business processes from event execution logs. Event correlation is a computationally-intensive task in the sense that it requires a deep analysis of very large and growing repositories of event logs, and exploration of various possible relationships among the events. In this dissertation, we present a scalable data analysis technique to support efficient event correlation for mining business processes. We propose a two-stages approach to compute correlation conditions and their entailed process instances from event logs using MapReduce framework. The experimental results show that the algorithm scales well to large datasets. Key words: MapReduce; Business Process; Process Mining; Process Discovery; Event Correlation.