
HAL Id: tel-01002623
https://theses.hal.science/tel-01002623

Submitted on 6 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using MapReduce to scale event correlation discovery
for process mining

Hicham Reguieg

To cite this version:
Hicham Reguieg. Using MapReduce to scale event correlation discovery for process mining. Other
[cs.OH]. Université Blaise Pascal - Clermont-Ferrand II, 2014. English. �NNT : 2014CLF22438�. �tel-
01002623�

https://theses.hal.science/tel-01002623
https://hal.archives-ouvertes.fr

E D S P I C: 644
N◦ d’ordre: D. U : 2438

UNIVERSITÉ Blaise Pascal Clermont-Ferrand II

ÉCOLE DOCTORALE
SCIENCES POUR L’INGENIEUR DE CLERMONT

FERRAND

T H È S E
Présentée par

M. Hicham REGUIEG

soutenue le

19 Fèvrier 2014

en vue de l’obtention du grade de

DOCTEUR de l’UNIVERSITÉ BLAISE PASCAL

Spécialité : Informatique

Arrêté du 07 août 2006

Titre :

Using MapReduce To Scale Event Correlation

Discovery For Process Mining.

MEMBRES du JURY :

Mme Daniela Grigori Professeur Université Paris Dauphine (Rapporteur)

M. Samir Tata Professeur TELECOM SudParis (Rapporteur)

Mme Vargas-Solar Genoveva CR CNRS

M. Laurent D’orazio Maître de conférence Université Blaise Pascal

M. Farouk Toumani Professeur Université Blaise Pascal (Directeur de thèse)

N◦ d’ordre: D. U : 2438

E D S P I C: 644

UNIVERSITÉ Blaise Pascal Clermont-Ferrand II

U.F.R. de Sciences

ÉCOLE DOCTORALE
SCIENENCES POUR L’INGENIEUR DE CLERMONT

FERRAND

T H È S E

Présentée par

M. Hicham REGUIEG

soutenue le

19 Fèvrier 2014

en vue de l’obtention du grade de

DOCTEUR de l’UNIVERSITÉ BLAISE PASCAL

Spécialité : Base des données et Systems d’informations

Titre :

Using MapReduce To Scale Event Correlation

Discovery For Process Mining.

MEMBRES du JURY :

Mme Daniela Grigori Professeur Université Paris Dauphine (Rapporteur)

M. Samir Tata Professeur TELECOM SudParis (Rapporteur)

Mme Vargas-Solar Genoveva CR CNRS

M. Laurent D’orazio Maître de conférence Université Blaise Pascal

M. Farouk Toumani Professeur Université Blaise Pascal (Directeur de thèse)

Contents

1 Introduction 1

2 Background 7

2.1 Introduction . 8

2.2 Business Process Management . 8

2.3 Process Mining . 10

2.3.1 Getting Data . 12

2.3.2 Process Discovery . 13

2.3.3 Correlation Discovery, a Key Step For Process Discovery 14

2.4 Event Correlation Discovery Problem . 15

2.4.1 Event logs . 16

2.4.2 Correlation Condition . 17

2.5 Related Works . 18

2.5.1 BHUNT . 18

2.5.2 CORDS . 20

2.5.3 DePauw et al. 21

2.5.4 Event Cloud . 22

2.5.5 Rozsnyai et al. 23

2.5.6 Barros et al. 23

2.5.7 Discussion . 24

2.6 MapReduce Programming Model . 24

2.6.1 MapReduce Execution Overview 25

2.6.2 Cost Model for MapReduce Programs 26

2.6.3 Disucussion . 30

3 Process Space 33

3.1 Introduction . 34

3.2 Correlation Condition Patterns . 34

3.2.1 Key-Based Correlation. 34

3.2.2 Reference-Based Correlation . 35

3.3 Semi-Automated Discovery of Correlation Conditions 36

2 Contents

3.3.1 Partitioning the log . 37

3.4 Candidate Attributes Selection . 39

3.4.1 Characteristics of Correlator attributes 39

3.4.2 Attributes Pruning . 40

3.4.3 Atomic Condition Discovery . 40

3.4.4 Candidate Atomic Condition Generation 40

3.4.5 Atomic Condition Pruning . 40

3.4.6 Composite Condition Discovery 42

3.5 Summary . 47

4 Discovering Atomic Conditions 49

4.1 Introduction . 50

4.2 Atomic Condition Discovery Algorithms 51

4.2.1 The Correlated Message Buffer (CMB) 52

4.2.2 Sorted Values Centric Algorithm 53

4.2.3 Hashed Values Centric Algorithm 60

4.2.4 Per-Split Correlated Messages Algorithm 64

4.3 Handling Reducers Insufficient Memory 64

4.3.1 Disk-Based Extension . 65

4.3.2 Multi-Pass Process Instances Discovery Algorithm 67

4.4 Evaluation Of The Proposed Algorithms 68

4.4.1 Complexity Analysis . 70

4.4.2 Cost-Model-Based Analysis . 70

4.5 Experimental Evaluation . 72

4.5.1 Environment . 72

4.5.2 DataSets . 72

4.5.3 Experiments . 74

4.6 Discussion . 78

5 Discovering Composite Conditions 81

5.1 Introduction . 82

5.2 Single-Pass Composite Condition Discovery algorithms 83

5.2.1 Discovering Conjunctive Conditions 83

5.2.2 Discovering Disjunctive Conditions 91

5.3 Muti-Pass composite Conditions Discovering algorithms 97

Contents 3

5.4 Experimental Evaluation . 101

5.4.1 Experiments. 101

5.5 Discussion . 104

6 Conclusions and Future Work 107

List of figures 120

List of tables 123

Chapter 1

Introduction

Carried by the impressive development of new communication technologies, business

processes (BPs) are becoming more and more central to the operation of modern

information systems. On one hand, the success of most organisations hinges on the

quality and efficiency of services provided to customers. On the other hand, organizations

have to cope with the new economic model that requires the ability to adopt to changes

of the market. A continuous business process improvement is essential for companies to

keep up with the market needs. The nineties were the decade of the revolution of "Pro-

cesses": implementation of information systems around process automation has begun

to revolutionize the enterprises architectures. The focus of the process improvement was

on automation [29, 101, 44], in other words human involvement was reduced by using

workflow management systems (WFMS) and other middleware technologies. Moreover,

using such technologies provides a good system integration and automated enactment

of operational business processes. In addition, automated support provides the ability

to observe and collect events related to process execution. As a result, it enables an

opportunity to build a data source for analysis.

Recently, process analysis has received a wide attention for the purpose of process

improvement. Hence, understanding information system behaviour and the processes

and services they support become a priority in large-scale companies. This is illustrated

by the increased number of process execution analysing tools and techniques available

today [99, 31, 72]. The aim of such tools and techniques is to extract value from

recorded data sources [98]. Nowadays, the wide-scale automation has led the business

processes to be implemented over several (heterogeneous) systems. By consequent, the

information related to the process execution may be scattered across multiple data

sources, and in many cases, the knowledge about how this informations is related to

each other and to the overall business process of the enterprise, is missing. In this case,

the issue of identifying such a kind of relationship arise, in other words how to correlate

informations (events related to process execution) in order to extract a knowledge about

2 Chapter 1. Introduction

the operational processes. The problem of correlation discovery can be defined as the

problem of finding out rules (informations) that allow to group together recorded events

that belong to the same process execution (process instance).

Due to its importance correlation discovery has received a wide attention from re-

searchers and practitioners [27, 54, 55, 79, 87, 86, 74, 73, 20], from several application

domains such as: process discovery, monitoring, analysis and browsing and querying.

Correlation discovery consists of analysing a repository of event logs in order to find out

the set of events that belong to the same business process execution instance. However,

this is a computationally-intensive task [74] as it involves the exploration of a huge space

of possible relationships among events over very large and continuously growing event

repositories. In particular, this task is challenging for two main reasons:

• Correlation discovery is in essence a computation-intensive task. It consists of vari-

ous repetitive data-intensive computations (e.g., aggregation of events, intersection

and join, computing transitive closures, and so on) on a sheer large amount of data.

• Big data is a fact of the modern world. Modern infrastructures supporting large

scale enterprise applications record more and more information about the history

of business processes. Usually, the recorded data may not fit in one machine.

According to a recent Gartner survey1, the volume of digital business data to be

stored is growing at a rate of 40 percent to 60 percent each year.

Applications with a large and unstructured data set usually employ parallel algorithms

over a cluster of nodes in order to efficiently split the workload. When dealing with

a very large amount of data, detecting relationships between events and identifying

correlation rules become a challenging problem, even if a large computational cluster is

available. Parallel data processing relies on data distribution and replication for efficient

query execution. Partitioning event logs to identify correlation rules, used to determine

relationships over events in order to isolate end-to-end process instances, is a challenging

task due to the large size of datasets and the high number of candidate correlation rules

(also called correlation conditions).

In this thesis, we investigate the application of modern large scale data analysis tech-

niques, and in particular MapReduce [33] framework, to support efficient event correlation

1http://www.gartner.com/it/page.jsp?id=1460213.

3

discovery in process mining activities. MapReduce has emerged recently as a promising

approach for processing huge amounts of data on a multitude of machines in a cluster.

It provides a simple programming framework that enables harnessing the power of very

large data centers, while hiding low level programming details related to parallelization,

fault tolerance, and load balancing. It should be noted that distributed parallel comput-

ing is however not a trademark of the MapReduce approach but can indeed be realized

using other techniques e.g., general purpose parallel DBMS or specific parallel algorithms

[80]. The arguments in favor of using MapReduce for event correlation discovery are:

• MapReduce provides a simple way to implement massive parallelism on a large

number of commodity low-end servers (i.e., the scaling out approach), while free-

ing the programmers from the task of tackling the difficulty of traditional parallel

programming,

• “Component failures are endemic to very large clusters of distributed computers”

[50]. The event correlation discovery task can be very time consuming and therefore

failure recovery solutions that require restarting the discovery process from scratch

are indeed inadequate. MapReduce handles failures at a fine-grained level by re-

executing only the failed job on some other nodes in the network,

• Log files are usually heterogeneous in the sense that they come in a variety of forms.

The heterogeneity issue is more easily handled using MapReduce since no predefined

schema is imposed on the input data.

In this thesis, we rest on the event correlation discovery approach proposed by Mo-

tahari et al. in [74] to propose a two-stages approach for discovering correlation rules

and their entailed process instances from event logs using MapReduce. The first stage

is devoted to the computation of simple correlation rules (called atomic conditions) and

their associated process instances. The second stage is devoted to composite correla-

tion conditions (conjunctive and disjunctive conditions) and associated process instances.

Composite correlation conditions are built by combining atomic conditions using {∧, ∨}

operators. For each stage, we provide a variety of algorithms. First, for discovering atomic

correlation conditions, we propose Sorted Values Centric (SVC), Hashed Values Centric

(HVC) and Per-split Correlated Messages (PSCM) algorithms. However, each algorithm

has distinct properties. SVC relies on one MapReduce step, it sorts the intermediate

values to efficiently compute the correlated message buffer denoted by CMB. However,

4 Chapter 1. Introduction

it involves a large intermediate data size, because it uses the value-to-key pattern to im-

pose an order on the values2. HVC relies on one MapReduce step, has a low intermediate

data size, but requires several iterations to compute correlated messages. Finally, PSCM

relies on two MapReduce steps. The first step computes the correlated message buffer

in parallel, where the second step groups together the correlated messages and deduces

the process instances. Secondly, Single and Multi-pass Composite Condition Discovery

algorithms aim to build the composite candidate correlation condition space (lattice) and

retains only significant ones. The two algorithms devoted to compute candidate com-

posite correlation conditions, adopt different partitioning strategies, where (i) single-pass

algorithm partitions the lattice vertically based on partitioning conditions and it performs

the computation in one MapReduce job. (ii) multi-pass algorithm horizontally partitions

the lattice by levels and processes each level in a MapReduce job. The main difficulties

encountered when designing our approach are related to log partitioning and redistribu-

tion in order to generate efficient parallel computations. The main contributions of the

thesis are:

• We introduce efficient methods to partition an events log across map-reduce cluster

nodes in order to balance the workload related to atomic condition computations

while reducing data transfers.

• We introduce an efficient solution to compute process instances corresponding to

correlation conditions in a scalable parallel shared-nothing data processing plat-

form. Our approach relies on a vertical partitioning of the space of candidate

conditions in a way that each partition can be processed autonomously without

need of synchronization.

• We develop one/multi-pass algorithms to perform condition discovery computations

at the reducer nodes. Such algorithms are optimal w.r.t. I/O cost and hence are

very effective in situations where the size of data to be processed is much larger

than the size of the memory available at the processing node.

• We introduce two strategies to perform a MapReduce-based level-wise-like algo-

rithms to explore the space of candidate composite conditions.

2The MapReduce framework sorts the records by key before they reach the reducers. The order that

the values appear is not even stable from one run to the next, since they come from different map tasks,

which may finish at different times from run to run.

5

– Single-pass strategy, we use the notion of partitioning conditions for partition

vertically the lattice of candidate composite conditions.

– Multi-pass strategy, we partition the lattice horizontally and process each level

in a distinct MapReduce job.

• We present experimental results that show the scale-up and speed-up of the al-

gorithms with regard to variation of both data sizes and number of nodes. The

experiments show that the overhead introduced by MapReduce is negligible com-

pared to the global gain in performance and scalability.

The rest of the thesis is organized as follows: In Chapter 2 we describe the event

correlation discovery problem statement and we discuss related works. Also, we describe

the shared-nothing parallel data processing framework MapReduce and we provide a cost

model to measure MapReduce Programs. Then, in Chapter 3 we detail the approach of

event correlation discovery proposed by Motahari et al, this approach is considered as the

basis of our work. Next, In Chapter 4 we present the algorithms dedicated to discover

atomic correlation conditions. In Chapter 5 we present algorithms devoted to discover

composite candidate correlation conditions. Finally we conclude in Chapter 6.

Chapter 2

Background

Contents
2.1 Introduction . 8

2.2 Business Process Management . 8

2.3 Process Mining . 10

2.3.1 Getting Data . 12

2.3.2 Process Discovery . 13

2.3.3 Correlation Discovery, a Key Step For Process Discovery 14

2.4 Event Correlation Discovery Problem 15

2.4.1 Event logs . 16

2.4.2 Correlation Condition . 17

2.5 Related Works . 18

2.5.1 BHUNT . 18

2.5.2 CORDS . 20

2.5.3 DePauw et al. 21

2.5.4 Event Cloud . 22

2.5.5 Rozsnyai et al. 23

2.5.6 Barros et al. 23

2.5.7 Discussion . 24

2.6 MapReduce Programming Model 24

2.6.1 MapReduce Execution Overview . 25

2.6.2 Cost Model for MapReduce Programs 26

2.6.3 Disucussion . 30

8 Chapter 2. Background

2.1 Introduction

In this chapter we describe the background of our work. First, in Section 2.2, we present

an overview of business process management. Next, Section 2.3 focuses on one particular

process mining task: process discovery. We present the process of extraction/collecting

event logs from heterogeneous data sources, and we give an example on discovering busi-

ness model using the so called α-algorithm [100]. In Section 2.4, we describe the problem

of event correlation discovery. Then, in section 2.5 we discuss few existing application

scenarios for event correlation discovery. Finally, in Section 2.6 we present the large-

scale data processing framework MapReduce and we propose a cost model for estimating

MapReduce-based algorithms.

2.2 Business Process Management

A business process is defined as a set of coordinated tasks and activities more/less related,

collectively realizing a business objective. A business process can be entirely executed

within a single organization or may span multiple organizations [44, 62, 101, 1]. A

business process can combine automatic and manual activities.

Example 1 Figure 2.1 represents a simple ordering business process using BPMN [76].

The process is made of two ’roles’, namely a buyer and a sender, and several activities

that work as follows:

1. The buyer sends an order request (message) with ordering information to the seller

by executing the activity Place Order.

2. On receiving the message, the seller process starts. It extracts information about

the buyer from the request message. Then, it checks the order by executing Check

Order activity. After that, it sends the invoice.

3. Then buyer settle the received invoice.

4. When the seller receives the payment it ships the products.

5. Finally, the buyer receives the products, and the process is completed.

Usually, a business process is associated with a data-flow, that defines how data

evolves between process activities, and a control-flow, that defines the business logic of

2.2. Business Process Management 9

B
u

ye
r

S
e

ll
e

r

Check

Order

Send

Invoice

Ship

Products

Receive

Payment

Place

Order

Receive

Invoice

Receive

Products

Settle

Invoice

+ +

PO request

Activity

Receive order

Figure 2.1: Simple ordering business process.

the process. The control-flow guides the execution of the activities, i.e, shows the order

in which activities should be executed.

Business process management (BPM) covers concepts, methods, techniques and soft-

ware to support activities such as design, administration, configuration, enactment and

analysis of operational processes involving humans, organizations, applications, docu-

ments and other sources of information [104, 101]. Once the business process is explicitly

defined as well as its activities and the constraints between them, it can be a subject to

enactment, analysis and improvements.

Figure 2.2 shows a business process lifecycle. It consists of 4 phases: design phase,

configuration phase, enactment phase and evaluation phase. These phases, organized in

circular structure showing their logical relationship, are explained below.

• Design phase: This phase is interested by the design of the business process and its

logic. It identifies the activities to be synchronised, and their logical order. Also, it

10 Chapter 2. Background

• System selection

• Implementation

• Test and
deployement

• Execution

• Monitoring

• Maintenance

• Design

• Identification

• Modeling

• Evaluation

• Improvement

• Analysis

Diagnosis Design

Configuration Enactment

Figure 2.2: Business process lifecycle.

defines the roles to be assigned to these activities. A graphical representation of the

business process is provided in order to facilitate communication between different

stockholders. The business process management notation standard (BPMN) can

be used to describe the processes in this phase [76].

• Configuration phase: Once the design phase is completed, the business process

needs to be implemented. To do so, the abstract descriptions of the activities

are implemented on a dedicated business process management system (BPMS) or

workflow management system (WFMS), using software and procedures like filing a

form, JAVA or SQL programmes.

• Enactment phase: During this phase, the (BPMS) controls the execution of the

activities according to the flow previously established. It provides accurate infor-

mations on the status of an execution of the business process (process instance).

Usually, the history of the execution of the process are recorded into log files.

• Diagnosis phase: This phase aims at analysing qualitative and quantitative effec-

2.3. Process Mining 11

tiveness of the business process model already deployed. Techniques and methods

such as process mining are used to improve the process model and its implementa-

tion.

To support the business process lifecycle, BPMS were introduced as an extension of

workflow management systems(WFMS). BPMSs focus more on the diagnosis phase of the

BPM lifecycle, i.e., monitoring, tracking, analysing and prediction of business processes

[46, 101]. A BPMS is defined as:"a system that defines, creates and manages the execution

of workflows through the use of software, running on one or more workflow engines, which

is able to interpret the process definition, interact with workflow participants, and where

required, invoke the use of IT tools and applications" [53, 105].

2.3 Process Mining

Software
System

Historical data

(Log files)

Historical data

(Log files)

Process

Model

Process

Model

discovery

conformance

enhancement

Supports / controls Supports / controls

Models

analyzes

« World » Business processes

software
people

organizations

components

Records

events

Process mining

Figure 2.3: Positioning of the process mining in the business process lifecycle [8].

In modern enterprise, business processes are rarely supported by a single centralized

workflow management system. Indeed, many existing processes span over multiple het-

erogeneous systems. Thereby, an accurate specification (formal description) of the process

is not always available or may change to adapt the new enterprise requirements and ser-

vices. Therefore, understanding, analysing and improving business processes become a

12 Chapter 2. Background

challenging task. As a business process management technique, process mining allows to

deal with this issue. Process mining is a relatively new research discipline that combines

machine learning and data mining on one hand and process modelling and analysis on the

other hand [8]. The process mining aims to support the evolution of the re-engineering

process [45].

The main goals of process mining technique is to extract knowledge from historical log

files already recorded at the enactment phase by most of today’s WFMS. This knowledge

is used for various gaols such as process discovery, improving the quality of the process

by detecting deviations in the process model. Figure 2.3 shows the position of process

mining in the business process lifecycle. Note that any step of the three steps of process

mining cannot be performed without a presence of a correct historical data. In the sequel

we describe how data are gathered from multiple data sources to be analyzed from a

process-oriented perspective i.e., for the purpose of process discovery.

2.3.1 Getting Data

In Figure 2.4, we present three layers (steps) that enables to understand the process of

collecting process related event-data [86, 74].

Data sources Layer. The first layer represents event processing source systems such

as BPMS, documents management system, ERP systems that capture and maintain

information related to process executions. Such systems produce a wide range of process

information items (e.g., a raw in a database, an event in a log file, a SOAP message

exchanged between services, an email).

Data integration Layer. At this step, activities and resources associated to process

execution are captured by tapping of message exchanges [39] (e.g. SOAP message) and

recording read and write actions [8]. Such event-data come in different format (columns

in relational databases, XML, CSV files, . . .) and with various structures (relational

schema, XSD, . . .). Therefore, additional efforts are needed to collect, unify and store

relevant data in a single data storage. ETL techniques [82, 91] are used to extract data

from existing sources, and transform it to fit operational need and finally load it into a

data warehouse or a relational database.

2.3. Process Mining 13

BPMs

Emails & Web

applica1ons

transporta1ons and

shipping Produc1on Systems

DATA STORAGE

Extract, Transform, Load

D
a
ta

S
o
u
rc
e
s
La
y
e
r

D
a
ta

S
to
ra
g
e
 L
a
y
e
r

D
a
ta

In
te
g
ra
1
o
n
 L
a
y
e
r

Event

typing

A,ribute

unifica3on

Figure 2.4: Getting data from heterogeneous data sources.

Data storage layer. Events extracted in previous layer are used to populate data

storage (eg. data warehouse, relational database) for further analysis following the store

every thing, discover later paradigm. Indeed, many analysis techniques depend on the

analyser interest viewpoint. Consider for example data in a hospital. One may be in-

terested by the discovery of patient flows. However, another one may also be interested

in optimizing the workflow within the radiology department. Answering both questions

requires the availability of informations related to both processes executions. Therefore,

it is important to store as much data as possible.

In the following, we describe the process discovery and we give an example of process

discovery algorithms.

14 Chapter 2. Background

Caseid eventid properties

timestamp activity resource cost . . .

1 35654423 30-12-2010:11.02 Register request Pete 50 a

35654424 31-12-2010:10.06 Examine thoroughly Sue 400 b

35654425 05-01-2011:15.12 Check ticket Mike 100 d

35654426 06-01-2011:11.18 Decide Sara 200 e

35654427 07-01-2011:14.24 Reject request Pete 200 h

2 35654483 30-12-2010:11.32 Register request Mike 50 a

35654485 30-12-2010:12.12 Check ticket Mike 100 d

35654487 30-12-2010:14.16 Examine casually Pete 400 c

35654488 05-01-2011:11.22 Decide Sara 200 e

35654489 08-01-2011:12.05 Pay compensation Ellen 200 g

3 35654521 30-12-2010:14.32 Register request Pete 50 a

35654522 30-12-2010:15.06 Examine casually Mike 400 c

35654524 30-12-2010:16.34 Check ticket Ellen 100 d

35654525 06-01-2011:09.18 Decide Sara 200 e

35654526 06-01-2011:12.18 Reinitiate request Sara 200 f

35654527 06-01-2011:13.06 Examine thoroughly Sean 400 b

35654530 08-01-2011:11.43 Check ticket Pete 100 d

35654531 09-01-2011:09.55 Decide Sara 200 e

35654533 15-01-2011:10.45 Pay compensation Ellen 200 g

Table 2.1: A fragment of an event log: each line corresponds to an event.

2.3.2 Process Discovery

Business process discovery, also known as process mining, allows for extracting informa-

tion from event logs, e.g. from the audit trails of a workflow management system or

the transaction logs of an enterprise application, to infer an explicit representation of

intra- and/or inter-organizational business processes [99, 74, 98]. There are several at-

tractive application areas for business process discovery in a wide variety of domains, e.g.,

healthcare, governments, banking, insurance, education, transport, etc. Process discovery

allows organizations to gain insights into their operational processes, ensure compliance

with standard processes, and improve processes in general. The so called α-algorithm

[100], is an example of a naive process mining algorithm able to handle such a task. This

2.3. Process Mining 15

algorithm is based on the following assumption:

• Safety: Any event presented in the log should refer to both a process execution

(case) and an activity. Event within a process execution are ordered. Generally

events are ordered by timestamps.

• Completeness: The process instances should cover all the possible executions of the

process, i.e, each activity in the initial process model should appear at least one

time on an event in the log.

This is the minimum requirement for any process mining algorithm to transform the

information presented in the log into a process model (see Table 2.1).

a

b

c

d

e

g

h

f

Register request

Examine thoroughly

Examine casually

Check ticket

Reinitiate request

Decide

Reject request

Register request

Figure 2.5: Process model discovered by α−algorithm based on the process instances pre-

sented in the log depicted in Table 2.1.

Example 2 Taking the event log presented in Table 2.1, the α− algorithm will generate

the process model described in Petri-nets [35] as shown in Figure 2.5 (cf, [100, 98]) .

2.3.3 Correlation Discovery, a Key Step For Process Discovery

Due to its importance, business process discovery has recently received a wide attention

from practitioners and researchers [99, 72, 74, 98]. As a key-step in process discovery,

event correlation discovery consists in analysing event logs or interactions among pro-

cesses entities in order to find out relationships between events that belong to the same

16 Chapter 2. Background

Figure 2.6: Event Correlation, Process discovery and its fields of application.

business process execution instance [21, 72, 74]. Correlation discovery involves the ex-

ploration of a huge space of possible relationships among events over very large and

continuously growing event repositories.

Figure 2.6 depicts where the event correlation discovery step is incorporated with

respect to an end-to-end system devoted to different business process management appli-

cations such as process discovery, analysis, monitoring and querying. In general, such a

system consists of the following parts (represented as layers):

Correlation Discovery Layer: as defined previously, a correlation discovery algo-

rithm (i) takes events presented in the storage system as input, (ii) deduces correlation

between events by computing statistics on attribute combination (correlation conditions),

(iii) groups together events correlated by the already correlation conditions discovered in

the previous step to form process instances (e.g, a purchase order process).

2.4. Event Correlation Discovery Problem 17

Process Discovery Layer: historical traces of process instances discovered in the Cor-

relation Discovery step are provided as input for mining algorithms (e.g the α−algorithms).

Process discovery algorithms require process instances executions from which they derive

the process model.

Application fields Layer: this layer represents the various fields of application of

correlated events. Events correlated during execution-time might be used in monitoring

applications, or earlier alert-system to detect exceptional situations. Another application

is querying and browsing the historical traces, a correlation rule may induce graphs of

relationships that can be used to speed up querying and browsing events. Correlations

are particularly useful for features that require interaction, analysis and exploration of

events.

In this thesis we focus on the problem of identifying event-attributes that correlate

events presented in the log files and, by consequent, lead to isolate process execution

traces.

2.4 Event Correlation Discovery Problem

The First challenging step to achieve a process mining and/or process analysis approaches

involves correlation of event generated by heterogeneous and distributed systems. In other

words, identifying the set of events that belong to the same process or service execution

(also called case).

In large-scale modern enterprise, event data are widely scattered over several tables or

even a set of heterogeneous systems. Therefore, identifiers that relates event to process

instance or to each other become extremely hard to track [86, 38, 42]. Answering questions

such: how events and their instances could be grouped ?. how to relate a response to the

original request, in case of message exchange ? becomes harder compared to a centralized

business process, where all process are implemented using a single central WFMS [46].

In this thesis, we consider that all processes related data are stored in a centralized

storage such as data warehouse, relational database. We call such document as event

logs. In the sequel we introduce a formal definition of an event log document.

18 Chapter 2. Background

2.4.1 Event logs

An event log can be extracted from data warehouse (as seen in section 2.3.1), captured

from web-service interaction or generated by WFMS or BPMS during process execution

enactment phase. Various ways are used to log [39] and capture [8] messages exchanged

between interacting services.

In the case of services based business processes, services exchange messages to achieve

an objective, e.g, register a client request, booking a hotel and/or a flight, on-line pay-

ment, sending invoice, archiving the request. The order in which these messages appear

form a conversation that achieve a single business goal. Taking an example of booking a

hotel and flight service, several, conversation may be running, at any given time, corre-

sponding to multiple customers interacting with a given service. In the spirit of [74, 85],

we define in this thesis web service interaction log as follows:

Process message log. A process message log L, can be viewed as a relation over a

relational schema L (id, A1, A2, . . . , An), where U = {A1, A2, . . . , An} is a set of

attributes used in messages parameters and id is a special attribute denoting message

identifier. Let X ⊆ U, we note by πX(L) the relation corresponding to the projection of

L on the attributes of X. Elements of L are called messages1. For a message m ∈ L, we

denote by m.Ai the value of the attribute Ai in the message m and by m.id the message

id.

In the case of web services interactions, messages are structured (XML) documents

(of different types, and therefore with different schema) organized in sections. A prepro-

cessing ETL-like is required to extract items from the XML documents and load them as

event tuples in a relation L over the schema L. The set of attributes A1 ×A2 × . . .×An

represent different message attributes that belong to the XML document. Since typically

a message m ∈ L contains only a subset of attributes of U , therefore, m may have several

undefined attributes in L (i.e., null values). In addition, some of these attributes are

supposed to determine if two given messages belong to the same conversation. This at-

tributes are called correlator attributes, and the functions defined over them as correlation

conditions or correlation rules.

1We use message and event interchangeably.

2.5. Related Works 19

2.4.2 Correlation Condition

Correlated messages are identified using a correlation conditions (also called rules). A

correlation condition (correlation rule) is defined below.

Correlation condition. A correlation condition, denoted by ψ(ml.Ai,mp.Aj), is a

boolean predicate over attributes Ai and Aj of respectively the two messages ml and

mp. The condition ψ(ml.Ai,mp.Aj) returns true if ml and mp are correlated through the

attributes Ai and Aj and return false otherwise.

The condition form depends on the specific domain in which this condition is defined.

For example, a condition of the form ml.Ai = mp.Aj specifies the equality relationship

between attributes Ai and Aj in (ml,mp). A condition having this form is an atomic

condition or atomic rule. A conjunctive (respectively, disjunctive) condition consists of

conjunction (respectively, disjunction) of atomic conditions.

A correlation condition groups messages in the service interaction logs L into a collec-

tion of conversations2 c1, c2, . . . ,. Each ci is a sequence of messages (events). Henceforth

we use the term process instance to express a conversation. A process instance is defined

as follows:

Process Instance. A process instance ’pi’ (instance for short) is a sequence of mes-

sages 〈m1,m2, . . . ,mk〉 corresponding to a subset of messages of the log L. For a given

message mx ∈ pi, it exist at least one message my ∈ pi and x 6= y. where mx is directly

correlated with my, i.e, ψ(mx,my) holds [73, 74].

2.5 Related Works

In this section, we present some existing works used correlation discovery from either

relational data or process event log files for various objectives such as, speed up queries

processing by providing an optimal query plan, discovering hard and/or soft functional

dependencies, discovering events related to a process execution instance for process dis-

covery purpose, . . . , etc. Despite the fact that each of the presented works has a differ-

ent purpose, they share some steps as generating candidates and pruning non-relevant

2conversation, instance and trace all these terms have the same meaning which is a complete process

execution.

20 Chapter 2. Background

candidate using heuristics and measures. At the end of the section, we discuss these

approaches.

2.5.1 BHUNT [27]

In [27], the authors present a data-driven technique called BHUNT that uses a "Bump

Hunting" techniques for automatically discovering fuzzy (soft) hidden relationships be-

tween pairs of numerical attributes in relational databases, and incorporates this knowl-

edge (the relationship between attributes) into an optimizer in the form of algebraic

constraints. Such constraints can be exploited in various ways as data mining and for

improving query processing performance.

OrderID Shipdate

A1 1990-01-01

A2 1990-03-05

A3 1990-09-26

A4 1991-06-13

A5 1992-05-30

A6 1993-01-11

A7 1993-02-04

OrderID deleverydate

A1 1990-01-03

A2 1990-03-07

A3 1990-10-10

A4 1991-06-15

A5 1992-06-30

A6 1993-02-13

A7 1993-02-19

orders deleveries

Figure 2.7: Two tables in sales database.

First, BHUNT detects the set of candidates column value pairs that might satisfy

an algebraic constraint. Then, pruning heuristics obtained by exploiting the system

catalogue and data samples are used to eliminate useless candidates. To specify the

relationship between column value pairs the authors define the algebraic constraint as

5-tuple

AC = (a1, a2, P,⊕, I)

where a1, a2 are two numerical attributes satisfying a1 ⊕ a2 ∈ I, and ⊕ is an algebraic

operator such as {+, −, ×, ÷}, I represents a subset of the real numbers, P is the pairing

rule or the predicate. As example, consider a sales database containing two relational

tables orders and deliveries as shown in Figure 2.7. An example of an algebraic constraint,

that BHUNT can identify and may not be revealed in a casual inspection, is specified by

taking a1 as deliveries.deliverydate, a2 as orders.shipdate, ⊕ is the subtraction operator

and P is the predicate

orders.OrderID = deliveries.OrderID

2.5. Related Works 21

and

I = {2, 3, 4} ∪ {14, 15} ∪ {30, 31}

This latter represents the delivery time of three different shipping methods. It can be

obtained by applying statistical histogramming technique to the data in the two tables,

i.e, by computing the subtraction between the deliverydate and shipdate of each order

and plot a histogram of the resulting data points. In this example, the data may qualify

the following predicate.

(deliverydate BETWEEN shipdate + 2 days AND shipdate + 4 days)

OR (deliverydate BETWEEN shipdate + 14 days AND shipdate + 15 days)

OR (deliverydate BETWEEN shipdate + 30 days AND shipdate + 31 days)

The three clauses in the predicate represents the three "bumps" in the histogram 2.8.

0

2

4

6

8

10

12

14

1 5 9 13 17 21 25 29

#
 o

f
o

r
d

e
r
s

Delivery_date – ship_date (days)

Figure 2.8: Histogram of shipping delays

BHUNT finds and exploits hidden fuzzy algebraic constraints. It proceeds as follow:

• Generating candidates C = (a1, a2, P,⊕). This is achieved by searching for the

key columns and then finding columns related to the key columns via inclusion

dependency.

• For each generated candidate, it builds the algebraic constraint (i.e., construct the

intervals I1, I2, . . . , Ik) by employing statistical histograming, segmentation, or

clustering techniques to a sample of data values. Since most of the constraints are

fuzzy, some "exception" records may not satisfy the constraints.

22 Chapter 2. Background

• Identifiying the most effective set of constraincts, and create "exception tables"

that holds exception records.

• Finally, the query plan is modified to incorporta the constraints. The RDBMS

optimizer uses the constraints to speed up the query processing by finding new

more effective access paths. The results are combined with results of executing the

original query on the (small) exception tables.

In addition, BHUNT uses some heuristics to prune non-interesting candidate gener-

ated in step one, e.g., P is of the form R.a=S.b, and the number of rows in either R or S

does not satisfy the following measure:

#rows(a)

#distinctV alues(a)
≤ 1− ε

where ε a user pre-specified parameter.

2.5.2 CORDS [54, 55]

In [54], the authors introduce CORDS (CORrelation Detection via Sampling), a data-

driven technique for automatically discovering correlations and soft functional dependen-

cies between database columns. It provides a dependency graph to improve the perfor-

mance of query optimizer. This tool is built upon BHUNT [27], previously presented.

CORDS enumerates candidate column pairs searching for interesting and useful corre-

lations, and pruning unpromising candidate using a set of heuristics. CORDS applies a

chi-squared analysis to a sample of column values in order to identify correlation between

attributes (categorical and numerical) and an analysis of the number of distinct values

to detect functional dependencies. A correlation rule in the context in this work is rela-

tion ship between two columns such as for instance a join between two tables over two

attributes.

CORDS exploits column pairs to identify functional dependencies and statistical cor-

relations. It proceeds as follows:

• Generating candidate of the form C = (a1, a2, P), where a1, a2 are attributes and

P is the pairing rule that specifies how a1 values get paired with which a2 values

to form correlated values.

– First, it generates all candidates having a trivial pairing rule (when the columns

lie on the same table).

2.5. Related Works 23

– Then, it searches for non-trivial pairing rule (when the columns are in separate

tables.).

• Pruning unpromising candidates using a set of heuristics to reduce the search space.

• Finally, detecting correlations by applying a chi-squared analysis on data samples.

2.5.3 DePauw et al. [79]

The problem of discovering conversation in web services is raised in [79]. DePauw et al.

proposed an approach to discover the correlation between message pairs (e.g., Purchase

Order and Shipping message pair) from the log of service interactions. Their approach is

based on identifying the conversation identifiers within exchanged messages. They used

the term semantic correlation to describe how theses identifiers correlate messages across

different activities execution.

Starting from a set of all exchanged messages, DePauw et al. propose the following

steps to discover conversation identifiers:

• From XML to value tables: First, messages are grouped by their full message

name and for each group a schema is derived based on the content of the messages.

A value table is created for each schema, where each row represent one message.

The term path is used to refer to the location of an element or attribute.

• Finding candidate correlation identifiers: At this step, path pairs used as

correlation identifiers are determined based on the following criteria. (i) The first

path should have unique values and (ii) the second path should have either unique

values or a large number of distinct values. To catch this criteria, the authors define

the indexability αp of a path as

αp =
Cardp
Popp

where Cardp represents the number of distinct values in message type p and Popp
is the number of data element presented in p. Next, highly indexable paths,

these are paths with an index higher then αp >95%, and Mappable paths, these

are paths having an interesting number of matching values with highly indexable

paths, are identified.

24 Chapter 2. Background

• Finding correlation between correlation identifiers: At this step, correlation

identifiers identified in the previous step are classified as highly indexable and map-

pable paths. Then, pairs from different schemas are tested to find those produce

an important match between their values. Hence, A pair of paths is considered as

interesting semantic correlation if a significant overlap exists between the values

set of the first and the second paths. Next, a causal relationship based on times-

tamps is assigned to each two matched values to determine the origin path and the

destination paths.

• Finding correlation between schemas: finally, two schemas are correlated if at

least a path from one schema is correlated with a paths from the second schema.

As conclusion the proposed approach [79] can reveal correlation between pairs of

messages. However, it does not provide information on how messages are related at the

instance and process level.

2.5.4 Event Cloud [87]

For the purpose of exploring and searching for event within a repositories for historical

events, the authors in [87] introduced Event cloud. Event cloud is an approach for

searching business event captured by event-based system. This approach uses correlation

sets, a defined relationships between events, to extend the search scope. Where, this

correlation set is based on the conformance between elements of events. The key focus on

this work is on the index based ranking system which support three different searching

scopes. Each ranking level, presented in the following, reflects the type and the depth of

relationships between events.

• Rank 1 search: The first rank search considers events autonomous, in other words

it does not consider any correlation between events.

• Rank 2 search: The second rank extends the searching scope by considering direct

correlation between events.

• Rank 3 search: The last rank goes deeper and allows for searching for indirect

correlated events.

To manage the search (rank 1, 2 and 3) the authors developed full-text indexes on

event and their correlations and proposed an architecture for preparing them (c.f, [87]).

2.5. Related Works 25

2.5.5 Rozsnyai et al. [86]

In [86], the authors addressed the problem of automatically discovering correlation rules

from various data sources. The discovered correlation rules are used to determine relation-

ship between events and isolate end-to-end process instances. The algorithm presented

is similar to previous work of DePauw et al. [79], where the focus is on determining

correlation between two type of attributes highly indexable and mappable. However, the

authors propose new measures to identify such attributes and to prune non-interesting

candidate. The proposed algorithms consists of the, following, three main stages:

• Data Pre-Processing. The first step of the correlation discovery algorithm consists

of loading and integrating data from sources (XML files) into data store (e.g;, data

warehouse, cloud storage etc.).

• Statistics Calculation. Inverted indexes are created for each event attribute, and

various statistics are calculated such as cardinality, attribute data type, number of

instance in which the attribute is involved and the average attributes length. These

statistics are stored persistently as map tables.

• Determining Correlation Candidates. At this stage, candidate correlation pairs are

determined with a certain confidence score based on the following three parameters:

1. Difference set. A difference set determines the difference between all attribute

pairs (A, B), where A is a indexable attribute set and B is Mappable attribute

set. It is assigned a weight of 60%.

2. Difference between average attribute length. If the difference between attribute

lengths is important this may lead to a poor relationship (weight of 20%).

3. Levenshtein Distance. The authors assume that a good candidate pairs may

have a similar or, at least, comparable names (weight of 20%).

An additional feature proposed by the authors is the Aggregation nodes. This consist

of combining correlation rules to represent certain aspect of an application or the interest

viewpoint of the user.

2.5.6 Barros et al. [21]

In this paper, Barros et al. studied a set of correlation patterns in Web service workflows

where three classes of correlation patterns are identified as function-based, chain-based

26 Chapter 2. Background

and aggregation functions. The proposed correlation patterns are used as means to group

atomic message events into conversations and processes. However, the authors did not

provide an (semi)automated approach for event correlation.

2.5.7 Discussion

The works presented above can be classified according to their objectives into two

categories. The first category includes, BHUNT [27] and CORDS [54]. In these works,

correlation is used for the purpose of query optimization; by providing constraints to

improve the performance of the query optimizer. Both of these works are based on

sampling techniques to discover correlation between pairs of column tables in relational

databases. The second category comprises the remaining works. In these works,

correlation is used in the context of business process discovery. These works, initially,

focus on identifying correlation over the message pairs only. So, they discover the

correlation between message pairs, and not conversations (the entire business process

execution). Later on, these approaches have been extended to find a chain of messages.

So, a conversation (a collection of messages that are connected using a reference-based

model or a mix of all modes) cannot be discovered. In addition, these approaches focus

on message-level connections, which can be misleading. Indeed a lot of messages may

have the same values on some attribute but may not be forming any conversation.

Motahari et al. introduced in [74], an approach that focuses on the judgement of

whether correlation is relevant at the conversation level (whether it makes a good set of

conversations). This approach is used as the basis of our works. A detailed description

of this approach is presented in the next chapter.

2.6 MapReduce Programming Model

Recently, data-intensive computing frameworks have been received a great attention from

both industry [48, 24, 40, 32, 34, 43, 95] and the academia [22, 23, 26, 28, 30, 37, 57, 60,

75, 108, 113]. Recently, a powerful trend introduced by google [34] has gained a significant

popularity. This trend relies around the MapReduce framework. Furthermore, in hadoop

[48], the popular open-source implementation of MapReduce, the parallel computation is

expressed by implementing two interfaces Map and Reduce. A high-level query language

are built on top of hadoop for solving a complex problems [24, 77, 95].

2.6. MapReduce Programming Model 27

MapReduce is a new programming model used to facilitate the development of scalable

parallel computations on large server clusters [33]. MapReduce framework provides a

simple programming constructs to perform a computation over an input file f through

two primitives: a map and a reduce functions. It operates exclusively on 〈key, value〉

pairs and produces as output a set of 〈key, value〉 pairs. A map function takes as input a

data set in form of a set of key-value pairs, and for every pair 〈k, v〉 of the input returns

zero or more intermediate key-value pairs 〈k′, v′〉. The map outputs are then processed

by reduce function. A reduce function takes as input a key-list as pair 〈k′, list(v′)〉,

where k′ is an intermediate key and list(v′) is the list of all the intermediate values to be

associated with k′, and returns as final result zero or more key-value pairs 〈k′′, v′′〉. Several

instantiations of the map and reduce functions can operate simultaneously. Note that

while map executions do not need any coordination, a given reduce execution requires

all the intermediate values associated with a same intermediate key k′ (i.e., for a given

intermediate key k′, all the pairs 〈k′, v′〉 produced by the different map tasks must be

processed by the same reduce task). Map and reduce functions can be implemented

using any general-purpose programming language. Typically, MapReduce programs are

executed on clusters of several nodes and both their inputs and outputs are files in a

distributed file system (e.g., Hadoop Distributed File System (HDFS)).

2.6.1 MapReduce Execution Overview

Figure 2.9: MapReduce execution Overview

28 Chapter 2. Background

Figure 2.9 shows an execution workflow of a MapReduce program. The different

tasks in Figure 2.9 are numbered as a means of identifying the tasks in the following

description. The execution workflow is made of two main phases:

• Map phase, which contain the following steps:

(1) the input file is splitted into several pieces of, typically, 16 to 64 MegaBytes

per pieces. Each such piece is called a split or chunk.

(2) each node hosting a map task, called a mapper, reads the content of the

corresponding input split from the distributed file system.

(3) each mapper converts the content of its input split into a sequence of key-

value pairs and calls the user-defined Map function for each 〈k, v〉 pair. The

produced intermediate pairs 〈k′, v′〉 are buffered in memory.

(4) periodically, the buffered intermediate key-value pairs are written to r local

intermediate files, called segment files, where r is the number of reducer nodes.

The partitioning of data into r regions is achieved by a partitioning function

which ensures that pairs with the same key are always allocated to the same

segment file. In each partition, the data items are sorted by keys. The sorted

chunks are written to (persistent) local storage.

• The reduce phase, made of the following steps:

(5) on the completion of a map task, the reducers (i.e., nodes executing the reduce

function), will pull over their corresponding segments.

(6) when a reducer has read all intermediate data, it sorts it by the intermediate

keys so that all occurrences of the same key are grouped together. If the

amount of intermediate data is too large to fit in memory, an external sort is

used. The reducer then merges the data to produce for each intermediate key

k′ a single pair 〈k′, list(v′)〉.

(7) each reducer iterates over the sorted intermediate data and passes each pair

〈k′, list(v′)〉 to the user’s reduce function.

(8) each reducer writes its final results to the distributed file system.

As mentioned previously, our goal is to exploit such a framework to implement effi-

ciently event correlation discovery approach.

2.6. MapReduce Programming Model 29

2.6.2 Cost Model for MapReduce Programs

Bases on previous works [75, 51], we introduce a cost model that incorporates two metrics:

(i) time complexity: represents the time complexity of algorithms used in both Map and

Reduce functions, (ii) estimation of the overheads provided by MapReduce framework

during job execution.

We consider the following measures to estimate the performance of MapReduce pro-

grams:

• I/O cost: time required to read/write data from local disks.

• Network transfer cost.

• CPU cost. We include here main-memory and cache access times as well as operation

execution time.

It is worth noting that while it is usual to consider I/O and network transfer costs

in (distributed) query optimization area, estimation of CPU cost is less usual and more

problematic. Some works, e.g., in the area of main-memory databases, have addressed

this problem. With the emergence of hierarchical memory system (small but fast cache

memories organized in cascading between CPU and the main memory make such cost

estimation problem more complex), access latency varies significantly and the assumption

of main memory access is uniform (or covered by CPU) does not hold any more . The

main approach to estimate such cost is to estimate the cache misses between each cache

level and the level higher [67]. Table 2.3 given below shows the costs associated with

each task of the workflow of Figure 2.9. We will show later how to compute for each

proposed algorithm the cost associated with each task as well as the global cost of the

algorithm.

We use the following parameters. We consider MapReduce Job J processed using m

map tasks and r reduce tasks. Let |M | be the average number of map-output records, and

|R| be the average number of a reduce-input records. The total number of intermediate

records |D| = |M | ∗ m = |R| ∗ r. The sort buffer size is B3. The threshold for the

accounting and serialization buffers is Q4.

3io.sort.mb: The cumulative size of the serialization and accounting buffers storing records emitted

from the map, in megabytes.
4io.sort.spill.percent: When this percentage of either buffer has filled, their contents will be spilled to

disk in the background.

30 Chapter 2. Background

Task (Figure 2.9) Description Cost

2 Reading chunks from HDFS (I/O

cost)

Tread

3 Execution of the map function

(CPU cost)

Tmap

4 Partitioning and sorting data lo-

cally (I/O + CPU costs)

Tsort_map

Table 2.2: Map phase.

Task (Figure 2.9) Description Cost

5 Reading data from mappers node

(data transfer cost)

Ttr

6 Merge (I/O + CPU costs) Tsort_reduce

7 Reduce execution (I/O + CPU

cost)

Treduce

8 Writing the final results to HDFS

(I/O cost)

Table 2.3: Reduce phase.

The total cost of executing a job is the sum of the cost Tread to read the data, the

cost Tmap to execute the map function, the cost Tsort to do the sorting and copying at

the map and reduce nodes, the cost Ttr of transferring data between nodes, and the cost

Treduce to execute reduce function.

T (J) = Tread(J) + Tmap(J) + Tsort(J) + Ttr(J) + Treduce(J)

where:

Tread(J) = Cr ∗ |Split|

- Cr is the cost of reading/writing a record remotely (from HDFS).

- |Split| is the number of records in the split (input file).

2.6. MapReduce Programming Model 31

A record emitted from a map will be serialized into a buffer and meta-data will be

stored into accounting buffers. When either the serialization buffer or the metadata

exceed a threshold, the contents of the buffers will be sorted and written (spilled) to

disk. When the map is finished, any remaining records are written to disk and all on-disk

segments are merged into a single file. The cost of the map task execution is:

Tmap(J) = Cu ∗Om ∗ |Split|

- Cu is the cost to execute one operation in the map function.

- Om the complexity of the map function (number of operations)

- |Split| is The number of records (messages) in a Split.

Tsort_map(J) = Cl ∗ (spillsize ∗ 2(|spills|+MergeSpillsPasses(|Spills|, Factor))).

MergeSpillsPasses(|Spills|, Factor) =

0 ,if |Spills| = 1.

1 ,if |Spills| ≤ Factor.

2 + |Spills|−|SpillsF irstPass|
Factor

,if |Spills| ≤ Factor2.

SpillsFirstPass =

|Spills| ,if |Spills| < Factor.

Factor ,if (|Spills| − 1) mod (Factor − 1).

(|Spills| − 1) mod (Factor − 1) + 1 ,otherwise.

Tsort(J) = Tsort_map(J) + Tsort_reduce(J).

- |Spills| is the number of spill to disk and it equals to:

|Spills| =
|M|

B ∗Q ∗ P ∗ 216

- spillSize is the size the spilled file.

- Factor : specifies the number of segments on disk to be merged at the same time. If

the number of files exceeds this limit, the merge will proceed in several passes. - Cl is

the cost of reading/writing data locally.

- MergeSpillsPasses(Spills, Factor) is the number passes to sort |M | records.

32 Chapter 2. Background

- P : The ratio of serialization to accounting space can be adjusted. Each serialized record

requires 16 bytes of accounting information in addition to its serialized size to effect the

sort. This percentage of space allocated from B affects the probability of a spill to disk

being caused by either exhaustion of the serialization buffer or the accounting space.

Each reduce fetches the output assigned to it by the partitioner via HTTP into mem-

ory and periodically merges these outputs to disk.

Tsort_reduce(J) = Cl ∗ (|R|(⌈2 logFactorm⌉)).

- At the reduce side, it starts with m sorted runs. ⌈logFactorm⌉ is the number of passes

to merge the m runs.

Ttr(J) = Ctr ∗D.

- Ctr is the cost of transferring data between nodes.

Treduce(J) = Cu ∗Or.

- Cu is the cost to execute one operation in the reduce function (the same as in the map

task)

- Or the complexity of the reduce function (number of operations).

Cu depends on the cpu capacity of the computing node. As example, Amazon web

services (AWS) [2] provide a flexibility to choose from a number of different node types

to meet the computing power needs. Each instance provides a predictable amount of

dedicated computing capacity and is charged per instance-hour consumed. (for more in-

formation see [3]). Furthermore, a monetary cost model can be introduced to complement

this latter. Such cost model might be effectively used to analyse running algorithms on

cloud resources w.r.t economical dimension.

2.6.3 Disucussion

MapReduce was originally proposed to execute very large matrix-vector and matrix-

matrix multiplications as are needed in the calculation of PageRank [78]. However,

MapReduce model has been shown suitable for performing large scale data analysis in-

cluding:

2.6. MapReduce Programming Model 33

• Query processing: join algorithms and algebra operations [25, 83], set-similarity

and fuzzy joins [102], Transitive Closure and Recursive queries [11, 10] ,

• Data-mining: Social Network Analysis [92], frequent itemset mining [65].

• Analytic processing: Social Network Analysis [66],

To the present day, MapReduce has only been exploited to perform scalable analysis

on large size of data from data-oriented perspective. Although there is a plethora of

approaches and tools devoted to process mining analysis, to the best of our knowledge,

none of these approaches exploited MapReduce framework to analyse (event) data from

a process-oriented perspective. Indeed, the continuous growth of the process related

data makes existing process analysis approaches face the scalability issue. Therefore, the

need for scalable algorithms for process analysis become a requirement and a subject

of our researches. Hence, in this thesis we propose a scalable/distributed MapReduce-

based approach for event correlation discovery, a key step for business process discovery

approach.

Chapter 3

Process Space

Contents
3.1 Introduction . 34

3.2 Correlation Condition Patterns . 34

3.2.1 Key-Based Correlation. 34

3.2.2 Reference-Based Correlation . 35

3.3 Semi-Automated Discovery of Correlation Conditions 36

3.3.1 Partitioning the log . 37

3.4 Candidate Attributes Selection . 39

3.4.1 Characteristics of Correlator attributes 39

3.4.2 Attributes Pruning . 40

3.4.3 Atomic Condition Discovery . 40

3.4.4 Candidate Atomic Condition Generation 40

3.4.5 Atomic Condition Pruning . 40

3.4.6 Composite Condition Discovery . 42

3.5 Summary . 47

36 Chapter 3. Process Space

3.1 Introduction

In this chapter we describe in details the approach of correlation discovery Process Space

introduced by Motahari et al. in [74]. This approach is used as a basis of our work

for developing MapReduce algorithms for event correlation discovery. The chapter is

organized as follows: in section 3.2 we present the correlation patterns investigated in

this approach. Next, in section 3.3 we present an overview of the approach. Then, in

section 3.4 we present the heuristics used to select relevant candidates. Finally, we discuss

the approach in the summary

3.2 Correlation Condition Patterns

In this section we present the correlation condition patterns used in [74, 73] for event

correlation in web services.

(a)
UserID uSessionID

m1 u100

m2 u200

m3 u300 u100

m4 u400 u200

m5 u500 u300

m6 u600 u400

m7 u700 u500

m8 u800 u600

(b)
LoginID GameID

m1 C1 P1

m2 C2 P2

m3 C2 P1

m4 C1 P2

m5 C2 P2

m6 C1 P2

m7 C2 P1

m8 C1 P1

Table 3.1: a snapshot of example log.

3.2.1 Key-Based Correlation.

Process-related standard proposals for web services such as BPEL, WS-conversation,

WS-coordination, WS-CDL [16], or industrial software such as IBM WebSphere Process

Manager [6] use methods to correlate events related to the execution of a business pro-

cess. These methods are characterized by the fact that all messages in a single process

instance share the same value for one or more attribute(s). These attributes are called

3.2. Correlation Condition Patterns 37

the correlator attribute(s). Indeed, a correlator attribute could be present even if these

standards are not used. For example, in RoboStrike1 game process, the events could be

correlated by the loginID, or by the pair 〈UserID,LoginID〉. On this basis Key-Based

Correlation pattern is defined as follows:

Key-Based Correlation. "One or a set of unique identifiers are assigned to an event

and all events with at least one common identifier are grouped together. A process instance

identifier or a conversation identifier is attached to each event. Identifiers can be single

values or compositions of several values." [21]. The Key-Based correlation condition has

the following form ψ(mx.Ai,my.Aj) : mx.Ai = my.Ai.

The identifier(s)2 is called the key attribute. Contrary to the concept of key in re-

lational databases, the value of the key is not unique per tuple but unique per process

instance. Furthermore, there is no prior information about which events form the same

process instance in the log.

Example 3 Considering the condition ψ: mx.LoginID = my.LoginID in Table

3.1(b) the process instances entailed by this condition are PIψ = {〈m1,m4,m6,m8〉,

〈m2,m3,m5,m7〉}.

3.2.2 Reference-Based Correlation

Similar to the concept of foreign-key in traditional relational databases, an attribute

event in the log may share the same value with a different attribute in another event. For

example, a response message is mostly correlated with the request message. As a second

example, messages related to a purchase activity (service) may contain the LoginID

attribute which references the customers registered at the registration activity (service).

Furthermore, the shared value used for reference correlation between pair of messages may

not be the same for the entire process instance. Then, the reference-based correlation

can be defined as follows:

(Reference-Based Correlation). "Two events are correlated, if the second event

(in chronological order) contains a reference to the first event. This means that if

1http://www.robostrike.com/
2These identifiers are different from those defined in 2.4.1. The former defines the process instance

and the latter is similar to the key in relational databases which defines the tuple (event).

38 Chapter 3. Process Space

there is some way of extracting a datum from the second event (by applying a func-

tion) that is equal to another datum contained in the first event. This datum therefore

acts as a message identifier, and the second message refers to this message identifier in

some way" [21]. The reference-based correlation condition has the following form:

ψ(mx.Ai,my.Aj) : mx.Ai = my.Aj and i 6= j.

Example 4 For the Condition ψ: mx.UserID = my.uSessionID in Table 3.1(a),

the process instances entailed by this condition are PIψ = {〈m1,m3,m5,m7〉,

〈m2,m4,m6,m8〉}.

Each of key-based and reference-based correlation methods express equality of

attribute value to pair of events. Hence, both of them belong to the same correlation

condition family, which is referred as atomic correlation condition. It is defined as follows:

Definition 3.2.1 (Atomic correlation conditin). Two messages (events) (mx,my) are

correlated using an atomic correlation condition ψ if and only if they share the same

value on two attributes Ai and Aj, in other words ψ(mx.Ai,my.Aj) : mx.Ai = my.Aj. If

i = j the ψ is a key-based condition, otherwise it is a reference-base condition.

In the following we present in details the correlation discovery approach introduced

by Motahari et al. in [74].

3.3 Semi-Automated Discovery of Correlation Condi-

tions

Figure 3.1 depicts the correlation condition discovery process. The main steps of this

approach are given below:

(i) Candidate attribute selection. This step is also called attribute profiling step.

It consists in removing non relevant attributes (e.g., attributes having Boolean

values).

(ii) Atomic condition discovery. Attributes selected in the last step are combined,

in pairs, to form atomic conditions.

3.3. Semi-Automated Discovery of Correlation Conditions 39

Figure 3.1: Event Correlation Discovery Process

(iii) Composite condition discovery. Conjunction (respectively. Disjunction) of

atomic condition is considered to build composite conditions. A level-wise [68]

technique is adopted to explore the space of correlation conditions.

The proposed algorithm for correlation discovery follows the same steps as Apriori

algorithm [13]. The first step, computing atomic conditions, is similar to computing

first order itemsets (of size 1), and the second step, computing composite conditions, is

similar to computing itemsets of larger sizes. Besides this, each step of the algorithm

has two phases: (i) generating candidate correlation, (ii) pruning candidate conditions.

A set of properties and heuristics defined based on general statistical characteristics of

conversations in the logs, are used to prune the search space of non-relevant conditions.

More details of these properties and criteria are discussed in next sections. The output

of the algorithm is the set of interesting conditions. Interesting conditions are considered

as the conditions that partition the log L into a set of interesting process instances. Next

section will explain how the correlation condition partition the log.

3.3.1 Partitioning the log

Motahari et al. represented the relationship between messages in the log as an undi-

rected graph Gψ = (V , E). Where V is the set of messages in the log L, and E

40 Chapter 3. Process Space

m1

m2

m3

m4

m5

m6

m7

m8

m1

m2

m3

m4

m5

m6

m7

m8

(b) (a)

Figure 3.2: Correlated message Graph.

is defined as E = {(mx,my) ∈ L2|ψ(mx,my) is true}, i.e, there is an edge between

mx and my if and only if ψ(mx,my) holds. E is called the set of correlated mes-

sage pairs based on condition ψ. Henceforth, Rψ is used to express a set of corre-

lated message pairs. Figure 3.2(a) shows the graph representing the set of corre-

lated message pairs Rψ = {〈m1,m3〉, 〈m3,m5〉, 〈m5,m7〉, 〈m2,m4〉, 〈m4,m6〉, 〈m6,m8〉}

of the condition ψ : mx.UserID = my.uSessionID presented in Table 3.1(a). and

Figure 3.2(b) depicts a second graph representing the set of correlated message pairs

Rψ = {〈m1,m4〉, 〈m4,m6〉, 〈m6,m8〉, 〈m2,m3〉, 〈m3,m5〉, 〈m5,m7〉} of the condition ψ :

mx.LoginID = my.LoginID in Table 3.1(b).

A correlation condition (reference-based, key-based or composite) is used to partition

the log into a set of process instances PIψ(L) = {pi1, pi2, . . .} such that:

• For a given message mx in a process instance that belong to an instance entailed by

a correlation condition ψ, then it should exist, at least, another message my such

that the pair (mx,my) belongs to Rψ.

• A given message mx cannot be part of more than one process instance. More

formally:
{

∀pi ∈ PIψ(L), mx ∈ pi⇔ ∃my, (mx,my) ∈ Rψ ∨ (my,mx) ∈ Rψ

∀pii, pij ∈ PIψ(L), i 6= j ⇔ pii ∩ pij = ∅

3.4. Candidate Attributes Selection 41

Hence, discovering process instances PIψ can be formulated as finding the set of

connected components3 in an undirected graph (Gψ). For example, the set of process

instances of the graph (a) in Figure 3.2 are PIψ = {〈m1,m4,m6,m8〉, 〈m2,m3,m5,m7〉}.

Several existing algorithms [14, 56] deal with the problem of finding the connected compo-

nents such as depth-first search and breadth-first search. Such algorithms take a graph as

input and returns the maximal set of connected components in the graph. The connected

components represent the set of process instances.

To summarize the partition PIψ, the author defined a set of metrics as follows:

• AvgLen(PIψ), shortInst(PIψ) and LongInst(PIψ) represent the average, the

shortest instance and the longest instance length.

• |PIψ| represents the cardinality of PIψ, i.e, the number of instances.

3.4 Candidate Attributes Selection

Obviously not all attributes present in the log can be considered as correlator attributes.

For instance, a timestamp attribute will not partition the log into relevant instances.

Attributes selection techniques and heuristics are discussed in the next section.

3.4.1 Characteristics of Correlator attributes

Similar to primary key (respectively, foreign key) in relational databases, attributes used

in key-based pattern (respectively, reference-based pattern) correlation play the role of

identifiers attributes4. Based on these similarities a correlator attribute can be charac-

terized as follows:

• Nominal domain: a correlator attribute does not contain a floating point value or

a long free text.

• Distinct values: a correlator attribute value should not have a small domain w.r.t

to the dataset size (e.g., boolean).

• The correlator should have repeated values in the log, where the same value should

appear at least in two messages.

3In databases, this problem is called also computing the transitive closure of a query [12, 96].
4Porcess instance identifier and not tuple identifier

42 Chapter 3. Process Space

3.4.2 Attributes Pruning

From the previous characteristics, an attribute may not be considered if it has the fol-

lowing characteristics:

• Attributes having a float type or either a long free text are excluded,

• Attributes with a small domain such as boolean, color or sex are eliminated.

3.4.3 Atomic Condition Discovery

In this section, we present the approach for discovering candidate atomic correlation

condition proposed by Motahari et al. in [74].

3.4.4 Candidate Atomic Condition Generation

In the first step, candidate atomic conditions (key-based and reference-based) of form

ψ : mx.Ai = my.Aj, 1 6 1 6 j 6 k5 are generated based on equality relationship

between pairs of attributes for each message pair (mx,my) ∈ L
2. Then, for a given pair

of attributes, if the candidate correlation condition holds for a large subset of the data

set then it is considered as interesting and is selected, otherwise this condition is pruned.

Interesting conditions are defined as the conditions that lead to an interesting parti-

tioning of the log, i.e, an interesting condition should enable to rebuild a set of process

instances from the log. Criteria and measures are defined based on (i) the properties of

the attributes forming the conditions, and (ii) the statistics about the resulting process

instances.

3.4.5 Atomic Condition Pruning

The main idea to identify interesting correlation conditions is based on eliminating what

is not interesting [88]. The following criteria and measures have been proposed to select

relevant conditions:

• Globally unique keys are not correlators. Two main observations can be made at

this stage: (i) an attribute is a possible correlator only if it contains values that are

not globally unique (i.e., they can be found in other messages), and (ii) attributes

5k is the number of attributes present in the log L.

3.4. Candidate Attributes Selection 43

having unique values or attributes with very small domains (e.g. Boolean) are not

interesting. The following measures are proposed to capture these properties:

• distinct_ratio(Ai): for key-based conditions on attribute Ai, this ratio rep-

resents the number of distinct values of an attribute Ai with regard to the

number of non-null values in Ai,

distinct_ratio(Ai) =
distinct(Ai)

nonNull(Ai)

• shared_ratio(Ai, Aj): for reference-based conditions over two attributes Ai and

Aj, this ratio corresponds to the number of common distinct values between

attribute Ai and Aj, with regard to the maximum number of non-null values

of Ai or Aj,

shared_ratio(ψ) =
|distinct(Ai) ∩ distinct(Aj)|

max|distinct(Ai), distinct(Aj)|

Given a threshold α, the distinct_ratio is used to prune conditions defined over

the same attribute Ai (i.e., conditions having distinct_ratio(Ai) < α) while the

shared_ratio is used to prune conditions over two distinct attributes Ai and Aj (i.e.,

conditions with shared_ratio(ψ) < α). The threshold α6 can be user provided or

computed using information categorical attributes [74].

• A correlation condition ψ is considered not interesting if it partition the log into a

high number of small instances or a few number of long instances. To capture this

property, the following measure is defined and used:

PI_ratio(ψ) =
|PIψ|

nonNull(ψ)

where |PIψ| denotes the number of process instances identified by the condition ψ

and nonNull(ψ) denotes the number of messages for which attributes Ai and Aj

of condition ψ are not null. The ratio PI_ratio(ψ) enables to reason about the

number of instances. A threshold β is then used to select interesting conditions as

the ones having a PI_ratio < β. For example, to select instances that have at

least a length of 2, the threshold β should be set to 0.5. This criterion is referred

to as imbalancedPI.
6usually α ≤ 0.01

44 Chapter 3. Process Space

3.4.6 Composite Condition Discovery

Algorithm 1: Composite Correlation Condition Discovery Algorithm
Input: AC: Atomic Conditions.

Output: CC: Conjunctive conditions, DC: Disjunctive conditions.

1 begin

2 CC ← computeConjunctiveConditions(AC) ;

3 DC ← computeDisjunctiveConditions(AC,CC) ;

4 return {CC ∪DC} ;

Correlation conditions may not be only atomic, a higher level of conditions can be

built using conjunctive (∧) or disjunctive (∨) operators. These conditions are called

composite conditions, where the conjunctive (∧) operator is used when multiple attributes

are defined together as correlators, and disjunctive (∨) operator is used to correlate

messages that are not correlated with the same correlation condition.

The following steps are used to discover candidate composite correlation conditions:

1. First, the set of candidate conjunctive conditions are built. This is performed by

generating all the possible combinations of atomic conditions and prune evident

non-candidate conditions (line 2 of algorithm 1). This is similar to the steps of

generating and pruning itemsets of more than two items in Apriori algorithm.

2. Similar to the previous step, candidate disjunctive conditions are generated by a

disjunction of both atomic and conjunctive conditions already discovered in the last

steps (line 3 of algorithm 1).

3.4.6.1 Conjunctive Conditions

As in relational databases, where multiple keys are used to identify the same tu-

ple, a conjunction of several attributes may also identify a conversation (process in-

stance), in other words, more than one attribute is used to correlate messages of

the same instance. For example, conditions ψ1 : mx.LoginID = my.LoginID and

ψ2 : mx.GameID = my.GameID can be combined using (∧) operator to form:

Rψ1∧ψ2
= Rψ1∧2

= {〈m1,m8〉, 〈m2,m5〉, 〈m3,m7〉, 〈m4,m6〉}.

A conjunction is performed to define intersection relation defined by two or more

atomic conditions. For ψ1 and ψ2 two atomic conditions, the conjunctive condition ψ1∧2 =

3.4. Candidate Attributes Selection 45

ψ1 ∧ ψ2 is defined as follows:

(mx,my) ∈ ψ1∧2 ⇔ (mx,my) ∈ Rψ1
∧ (mx,my) ∈ Rψ2

⇔ (mx,my) ∈ Rψ1
∩Rψ2

This means that mx and my share the same values for attributes of the conditions ψ1 and

ψ2. Hence, the pair (mx,my) belongs to the intersection of the set of correlated message

pairs Rψ1
with Rψ2

. However, PIψ1∧2
6= PIψ1

∩ PIψ2
.

To generate all the possible candidate conjunctive conditions, a level-wise approach is

adopted [68]. Assuming that a is the number of atomic conditions inferred from the last

step, then, the number of possible conjunction is 2a − (a + 1). For example, let AC =

{ψ1, ψ2, ψ3}, then the set of conjunctive condition is CC = {(ψ1 ∧ ψ2), (ψ1 ∧ ψ3), (ψ2 ∧

ψ3), (ψ1∧ψ2∧ψ3)}. Figure 3.3 shows a lattice generated by 3 atomic conditions, we observe

that the number of candidate conjunctive conditions equals to 23 − (3 + 1) = 8− 4 = 4.

Figure 3.3: Lattice generated by 3 atomic conditions.

Situation like, PIψ1∧2∧3
= PIψ1∧2

, signifies that ψ1∧2 and ψ1∧2∧3 partition the log into

the same process instances. In this case, it suffices to compute the minimal conjunctive

condition, which is defined as follows:

Minimal conjunctive condition. "A conjunctive condition ψ is minimal if no other

conjunctive condition formed using fewer conjunction of atomic conditions partition the

46 Chapter 3. Process Space

log into the same set of instances" [74].

In the following we present the criteria and measures proposed by Motahari et al. to

eliminate non-interesting candidate conjunctive conditions.

Eliminating non-interesting conjunctive conditions in generation phase It is

preferred to anticipate obvious non-interesting candidate conditions and eliminate them

to reduce the exploration space. Thus, the following criteria are introduced to deal with

this issue.

• Attribute definition constraints: given two atomic conditions ψ1 and ψ2 defined on

attributes (Ai1 , Aj1) and (Ai2 , Aj2) respectively, the conjunctive condition formed by

ψ1 and ψ2 has the form: ψ1∧2: mx.Ai1 = my.Aj1∧mx.Ai2 = my.Aj2 . Here, attributes

of ψ2 should be defined whenever the attributes of ψ1 are defined. This implies that

Ai1 (respect. Aj1) is defined if only if Ai2 (respect. Aj2) is defined. Thus, conjunctive

conditions are applied only for attributes that satisfy this constraint. Otherwise,

the conjunctive condition can be safely eliminated.

• Inclusion property: in case of Rψ1
⊆ Rψ2

, this means that the set of correlated

message pairs of ψ1 are included in (or equal to) the set of correlated message pairs

of ψ2 then Rψ1∧2
= Rψ1

. Therefore,ψ1∧2 is not minimal and then discarded.

Eliminating non-interesting conjunctive conditions in pruning phase At this

step, non-interesting conjunctive conditions are identified and pruned based on the fol-

lowing criteria:

• ImblancedPI criterion: the PIratio(ψ1∧2) is computed, and compared to threshold

β. If, PIratio(ψ1∧2) < β is satisfied then the condition is interesting, otherwise it is

pruned.

• Monotonic property: An important property is the monotonicity w.r.t to the con-

junctive operator. Using conjunction operator will reduce the length of the instances

(number of messages in each instance) but increased their total number. To con-

sider a conjunctive condition ψ1∧2 as interesting the following properties must be

satisfied.
{

shortInst(PIψ1∧2
) ≤ min(shortInst(PIψ1

), shortInst(PIψ2
))

|PIψ1∧2
| ≥ max(|PIψ1

|, |PIψ2
)|

3.4. Candidate Attributes Selection 47

In other words, the number of instances discovered by conjunctive condition ψ1∧2

is expected to be greater than those of ψ1 and ψ2, and the length of instances

decreases.

The candidate conjunctive conditions that satisfy all the above criteria are retained

and used with initial atomic conditions as input for the second type of composite condi-

tions (disjunctive conditions). One should note that for any non-interesting conjunctive

condition ψ, higher (or larger) conditions built on ψ are also considered as non-interesting.

3.4.6.2 Disjunctive Conditions

Messages Service InvId PayId

m1 invoice i1

m2 invoice i2

m3 Pay i1 P1

m4 Pay i2 P2

m5 Ship P2

m6 Ship P1

Table 3.2: a snapshot of example log.

As we said previously, not all messages are correlated within the same correlation

condition. Indeed, a message mx in a conversation may refer to another message my. For

instance, when a payment message refers to an invoice number, and shipping message

refers to a payment number (see Table 3.2). So, to correlate this messages a disjunction

between ψ1 : mx.InvID = my.InvID and ψ2 : mx.PayID = my.PayID should be

performed. Here, the disjunctive condition ψ1∨2 = ψ1 ∨ ψ2 is defined as follows:

(mx,my) ∈ ψ1∨2 ⇔ (mx,my) ∈ Rψ1
∨ (mx,my) ∈ Rψ2

⇔ (mx,my) ∈ Rψ1
∪Rψ2

Where ψ1 and ψ2 are either atomic or conjunctive conditions.

Similar to conjunctive conditions, case like PIψ1∨2∨3
= PIψ1∨2

may occur at this step

also. Therefore, only minimal disjunctive conditions are considered.

48 Chapter 3. Process Space

Minimal disjunctive condition. "A disjunctive condition ψ is minimal if no other

disjunctive condition using fewer disjunction of atomic conditions partitions the log into

the same set of instances" [74].

Discovery of disjunctive conditions is also carried out by a level-wise approach. Each

level consists of two phases: candidate generation and candidate pruning. Criteria are

introduced to evaluate the interestingness of candidate disjunctive condition.

ψ1 ψ2 ψ3 ψ(1ᴧ 3)

ψ ᴠ ψ ᴠ

ψ ᴠ 1 ᴠ 3

ψ1 ᴠ 2 ᴠ 3 ᴠ (1ᴧ 3)

ψ 1 ᴠ (1ᴧ 3) ψ 2 ᴠ (1ᴧ 3) ψ 3 ᴠ (1ᴧ 3)

ψ 1 ᴠ ᴠ (1ᴧ 3) ψ 1 ᴠ ᴠ (1ᴧ 3) ψ 2 ᴠ ᴠ (1ᴧ 3)

Figure 3.4: Lattice generated by 3 atomic conditions and one conjunctive condition.

Eliminating non-interesting disjunctive conditions in generation phase Non-

interesting candidate disjunctive conditions are identified based on the following criteria:

• Associativity of conjunction and disjunction: conditions that associate conjunction

and disjunction of the same atomic conditions are identified as not needed to be

computed, since it can be simplified into a condition that has already been consid-

ered. For example, ψ1∧3 ∨ ψ3 is equivalent to the condition ψ3 (see Figure 3.4).

• Inclusion property: Same as inclusion property in conjunctive conditions, if a con-

dition ψ1 is included in ψ2, in other words the set of correlated message pairs Rψ1
is

included in Rψ2
, then, ψ1∨2 is equivalent to ψ2. Hence, this condition is discarded.

3.5. Summary 49

Eliminating non-interesting disjunctive conditions in pruning phase The fol-

lowing criteria are used to prune non-interesting disjunctive conditions after the compu-

tation operation:

• ImblancedPI criterion: the number of process instances entailed by a disjunctive

condition is compared to the threshold α. This criterion refers to check whether the

condition partition the log into a small number of long instances. if, PIratio(ψ) ≥ α

is not satisfied the condition is eliminated.

• Trivial union: given a disjunctive condition ψ1∨2, if any process instance from

ψ1 does not connect with another instance from ψ2 then the disjunction results a

trivial union of instances in ψ1 and ψ2. To catch this property we use the following

measure: |ψ1∨2| = |ψ1| + |ψ2|, if this measure returns true, then this condition is

pruned.

• Monotonic property: unlike conjunctive condition, we expect that the number of

resulted process instances of the disjunctive condition to be less than those of the

condition built on, and their length increases. The following measures catch this

property:
{

shortInst(PIψ1∨2
) ≥ max(LongInst(PIψ1

), LongInst(PIψ2
))

|PIψ1∨2
| ≤ |PIψ1

|+ |PIψ2
|

Theoretically, if the number of inferred atomic conditions is ac, then there is cc =

2ac − (ac + 1) possible conjunctive conditions. As, we use conjunctive conditions with

atomic condition as input for disjunctive condition discovery process, the number of

possible disjunctive conditions is then equal to dc = 2ac+cc − (ac+ cc+ 1).

3.5 Summary

In this chapter we presented the approach of event correlation discovery proposed by

Motahari et al in [74]. This approach covers a large number of correlation patterns that

may occur in interactions of web services and provides a set of heuristics to identify rel-

evant correlation conditions that lead to interesting process instances. Moreover, this

approach takes into account the process instance characteristics to improve the result

50 Chapter 3. Process Space

quality. However, it requires correlating relatively a large number of messages. For ex-

ample, long instances correlated with key-based conditions, the set of correlated messages

Rψ becomes large since it includes all correlated message pairs (if smax is the size of

the longest instance, then the size of the correlated message pair only for this instance

is (smax)
2). Moreover, it requires exploring and processing a very large number of can-

didates (if the number of the discovered atomic conditions is ‘a’ then the theoretical

number of composite correlation conditions is 2a). Based on these issues, we present

MapReduce-based algorithms for event correlation discovery in the upcoming chapters.

Chapter 4

Discovering Atomic Conditions

Contents
4.1 Introduction . 50

4.2 Atomic Condition Discovery Algorithms 51

4.2.1 The Correlated Message Buffer (CMB) 52

4.2.2 Sorted Values Centric Algorithm . 53

4.2.3 Hashed Values Centric Algorithm . 60

4.2.4 Per-Split Correlated Messages Algorithm 64

4.3 Handling Reducers Insufficient Memory 64

4.3.1 Disk-Based Extension . 65

4.3.2 Multi-Pass Process Instances Discovery Algorithm 67

4.4 Evaluation Of The Proposed Algorithms 68

4.4.1 Complexity Analysis . 70

4.4.2 Cost-Model-Based Analysis . 70

4.5 Experimental Evaluation . 72

4.5.1 Environment . 72

4.5.2 DataSets . 72

4.5.3 Experiments . 74

4.6 Discussion . 78

52 Chapter 4. Discovering Atomic Conditions

4.1 Introduction

In this chapter, we focus on candidate atomic condition discovery problem. We use

MapReduce framework as the parallel data processing paradigm. The main contributions

of this chapter are as follows:

• We describe efficient solutions for discovering candidate atomic conditions by ex-

ploiting MapReduce framework. We show how to efficiently deal with problems such

as partitioning, replication, and multiple inputs by manipulating the keys used to

route the data between nodes of MapReduce cluster.

• We provide an adequate data structure similar to inverted index in order to decrease

the memory usage.

• We introduce techniques to compute the set of correlated messages by optimizing

memory space.

• We provide both one-pass and multi-pass algorithms for conditions discovery com-

putations. Such algorithms are optimal w.r.t. I/O cost and hence are very effective

in situations where the size of data to be processed is much larger than the size of

the memory available at the processing node.

• We introduce an efficient solution to compute process instances based on depth-first-

search-like algorithm corresponding to correlation conditions in a scalable parallel

shared-nothing data processing platform. Our approach relies on a vertical parti-

tioning of the space of candidate conditions in a way that each partition can be

processed autonomously without need of synchronization.

The rest of the chapter is structured as follows. In section 4.2 we present a family

of MapReduce event correlation discovery algorithms as well as the data structure they

use, while in section 4.3 we discuss extensions of the proposed algorithms to handle

limited memory case in MapReduce. A complexity and cost-model based analysis are

presented in section 4.4. Finally, a performance evaluation is presented in section 5.4 and

we summarize the chapter in section 5.5.

4.2. Atomic Condition Discovery Algorithms 53

4.2 Atomic Condition Discovery Algorithms

One should recall that the fundamentals of parallelizing any algorithm in the MapReduce

framework is to design Map and Reduce functions.

Given an events log L, the aim of our algorithms is to discover the interesting atomic

correlation conditions and compute the process instances entailed by these conditions.

One of the main issues to cope with, is to decide how data and computations should

be partitioned, replicated and distributed, in order to efficiently execute the operations

entailed by this task. The main idea of our approach is the following. First, we generate

all possible candidate conditions and partition the data across the network by hashing on

the candidate name (e.g., Ai = Aj). Then, we process each candidate condition ψAi,Aj

by a single Reduce function and, thus, each candidate can be handled separately and

in parallel with the others. Then, interesting correlation conditions are retained and

written into files to be fed to the next step (candidate composite conditions discovery).

Table 4.1 shows a general description of the proposed algorithms: Sorted Values Centric,

Hashed Values Centric and Per-Split Correlated Messages denoted respectively by SVC,

HVC and PSCM. Based on this distinct features, we can distinguish suitable situations

for each algorithm. SVC can be suitable for situations where the discovered process

instances are numerous and short (having a low number of messages). Where, HVC is

suitable when the discovered process instances are less numerous and long. Finally, PSCM

is suitable for larger datasets and the case of events correlated by key based conditions.

On one hand, each algorithm has a distinct features that make it suitable in specific

situations. SVC relies on one MapReduce job, it sorts the intermediate data to efficiently

compute the correlated message buffer denoted by CMB. However, it involves a large

intermediate data size. HVC relies on one MapReduce job, has a low intermediate data

size, but requires several iterations to compute correlated messages. Finally, PSCM relies

on two MapReduce jobs. The first step computes the correlated message buffer in parallel,

where the second step groups the correlated messages and deduces the process instances.

On the other hand, the algorithms have some shared parts, as the inputs, the data

structure used, some pieces of functionalities and the outputs. In the remaining sections

we present the data structure as well as the algorithms devoted to deal with the problem

of atomic correlation condition discovery.

54 Chapter 4. Discovering Atomic Conditions

Algorithm # MR steps Map output Reduce input Computing CMB

SVC one job (ψ+(val+tag+id), val+tag+id) sorted one iteration

HVC one job (ψ, val+tag+id) non sorted several iterations

PSCM two jobs
1st job: (ψ+val, tag+id) non sorted single row

2nd job: (ψ, single row) non sorted one iteration

Table 4.1: A general description of the proposed algorithms.

4.2.1 The Correlated Message Buffer (CMB)

To facilitate correlation computation we define two types of data structures. The first

data structure is similar to inverted index in relational databases [89, 111, 112], used to

index values of the same column (for key-based condition). The second, data structure

can be obtained by performing a join between two inverted index on the value part (for

reference-based condition). The description of this data structure is as follows:

• The first data structure we introduce is devoted to key-based conditions. This data

structure is defined as T1 : [val, {IdSet}], where val is a given value of the attribute

forming the condition (e.g.,Ai) and {IdSet} represents the set of messages having

val as value in Ai i.e, {{mx.id}|mx.Ai = val}. T1 is an array used to store all

the distinct values of a given attribute Ai. This data structure is used to calculate

statistics such as: number of distinct values of an attribute, number of correlated

messages with a given value. The previous metrics are needed in the pruning phase

(see section 3.4.5). Table 4.2(a) (respect, 4.2(b)) shows the indexed values of A1

(respect, A2). We refer to this table as CMB (Correlated Message Buffer). Similar

data structure are used in [90, 86].

• The second data structure is devoted to reference-based condition. It is defined as

T2:[val, {IdSet1}, {IdSet2}]. It is obtained by joining two CMBs on the value part.

Values that does not appear in both indexes are discarded. Table 4.2(c) shows a

shared index of attributes A1 and A2, where values C3 and C4 are discarded.

Example 5 Taking the log present in Table 3.1, the messages correlated by the condi-

tion ψ:mx.LoginID = my.LoginID are Rψ = {〈m1,m4〉, 〈m1,m6〉, 〈m1,m8〉, 〈m4,m6〉,

〈m4,m8〉, 〈m6,m8〉, 〈m2,m3〉, 〈m2,m5〉, 〈m2,m7〉, 〈m3,m5〉, 〈m3,m7〉, 〈m5,m7〉}. Such a

set is represented in a condensed form using the CMB data structure as, T1 :

4.2. Atomic Condition Discovery Algorithms 55

Log L

message-id Ai Aj

m1 C2 C1

m2 C2 C2

m3 C1 C1

m4 C1 C2

m5 C3 C4

(a) attribute A1

V al IdSet

C1 {m3,m4}

C2 {m1,m2}

C3 {m5}

(b) attribute A2

V al IdSet

C1 {m1,m3}

C2 {m2,m4}

C4 {m5}

(c) attributes A1-A2

V al IdSet1 IdSet2

C1 {m3,m4} {m1,m3}

C2 {m1,m2} {m2,m4}

Table 4.2: Example of CMB data structures

[C1|〈m1,m4,m6,m8〉], [C2|〈m2,m3,m5,m7〉]. It is worth noting that process instances

can be directly deduced from T1, i.e, computing transitivity is not needed. Noting that,

[C1|〈m1,m4,m6,m8〉] represents a CMB row.

Example 5 shows the effectiveness of the use of data structure T1 in saving memory

and computation of transitive closure to find process instances. Below, we explain each

algorithm in more details.

4.2.2 Sorted Values Centric Algorithm

The first algorithm devoted to compute atomic conditions is Sorted Values Centric (SVC)

algorithm depicted in algorithms 2 (Map) and 3(Reduce). It relies on one MapReduce

job. The sorted values centric algorithm, as input, requires a log L over the relational

schema L (A1, A2, . . . , An, id) and the user provided thresholds α and β. The Map reads

a split of the log and, from the set of attributes in L, generates the set of all possible

candidate atomic correlation conditions ψAi,Aj
for two attribute Ai and Aj. This is

achieved by computing the cross product L × L (line 2 to 6 of algorithm 2). For

each message, it extracts the values corresponding to Ai and Aj (attributes forming the

condition ψAi,Aj
). In order, to keep track of the origin of each value, the Map tags the

values by their original attribute name and message-id (line 5 and 6 of algorithm 2).

Then, it outputs the conditions name and the tagged values as (key+ value, value) pairs

(lines 7 and 8 of algorithm 2).

The Map function ensures that : (i) a given pair of attributes Ai and Aj is allocated

56 Chapter 4. Discovering Atomic Conditions

to only one reducer, and (ii) a given reducer, in charge of the attributes Ai and Aj, will

receive all the values of these attributes appearing in L (i.e., the values of the projections

πAi
(L) and πAj

(L) are tagged and sent to the same reducer).

Algorithm 2: Sorted Values Centric map function.
Input: K : unused, V : a record from the log file

Output: K : ψAi,Aj
, V : πAi,Aj

(L)

1 begin

2 foreach Ai ∈ V do

3 foreach Aj ∈ V do

4 condition← ”Ai = Aj” ;

5 V aluei ← {V.Ai −Ai − V .id} ;

6 V aluej ← {V.Aj −Aj − V .id} ;

7 output ({condition - V aluei }, V aluei);

8 output ({condition - V aluej }, V aluej);

9 Partitioner (K : MapOutputKey, V : MapOutputValue, N : numPartitions)

10 begin

11 /** We Hash Partition only the Outputed Key part **/

12 return Hash(MapOutputKey.OutputKey) % numPartitions ;

Note that, during the shuffle and sort phase, MapReduce sorts and groups interme-

diate key-value pairs by their keys. However, it is very convenient for our purposes to

also sort the intermediated values since, as detailed below, the computations inside the

reducer will take benefits from such operations. Therefore, instead of implementing an ad-

ditional secondary sorting within the reducer, we used the value-to-key conversion design

pattern [64], which is known to provide a scalable solution for secondary sorting. This

is achieved by moving intermediate values into the intermediate keys, during the map

phase, to form composite keys (line 7 and 8 of algorithm 2), then we let the execution

framework handle the sorting [106]. In addition, the partitioning function is customized,

to take into account only the origin key-part for hashing and partitioning data. Hence,

values with the same key are still assigned to the same reducer. The merging function at

the reduce is also customized to group data w.r.t the original key. The reduce-input are

sorted in ascending order and grouped by value, tag and id. Table 4.3 shows an example

of a log file L and the outputs corresponding to the pair of attributes Ai, Aj produced

4.2. Atomic Condition Discovery Algorithms 57

Algorithm 3: Sorted Values Centric reduce function.
Input: K : ψAi,Aj

, V : a Sorted list of Map-Output Values

Output: K : ψAi,Aj
, V : PI set Of discovered instances

1 Reduce_Configure

2 |L| ← count_rows_log();

3 α← getUserThreshold();

4 β ← getUserThreshold();

5 begin

6 CMB ← build_correlated_message_buffer(V) ;

7 shared_ratio(K)← |CMB|
|L| ;

8 if shared_ratio(K) < α then

9 PIψ ← compute_instances(CMB);

10 if ψ has ImbalancedPI(PI, β) then

11 output(K, PI) ;

Log L

message-id Ai Aj

m1 C3 C4

m2 C2 C2

m3 C1 C2

m4 C1 C1

m5 C2 C1

m6 C3 C3

m7 C4 C3

m8 C3 C4

m9 C4 C3

m10 C1 C2

Mapper 1 outputs

key val tag Id

Aj=Aj C1 Ai m3

Aj=Aj C1 Ai m4

Aj=Aj C1 Aj m4

Aj=Aj C1 Aj m5

Aj=Aj C2 Ai m2

Aj=Aj C2 Ai m5

Aj=Aj C2 Aj m2

Aj=Aj C2 Aj m3

Aj=Aj C3 Ai m1

Aj=Aj C4 Aj m1

Mapper 2 outputs

key val tag Id

Aj=Aj C1 Ai m10

Aj=Aj C2 Aj m10

Aj=Aj C3 Ai m6

Aj=Aj C3 Ai m8

Aj=Aj C3 Aj m6

Aj=Aj C3 Aj m7

Aj=Aj C3 Aj m9

Aj=Aj C4 Ai m7

Aj=Aj C4 Ai m9

Aj=Aj C4 Aj m8

Table 4.3: Example of a log and the outputs, w.r.t. to (Ai, Aj), of two mappers.

by two mappers that have processed respectively a split made of the first five messages

(respectively, the last five messages) of the log L. Once the Reduce (algorithm 3) collects

all the data, it proceeds as follows:

1. Building the correlated message buffer (line 6 of algorithm 3).

2. Pruning non-interesting conditions based on non-repeating value criterion (line 7

58 Chapter 4. Discovering Atomic Conditions

to 8 of algorithm 3).

3. Computing/finding the process instances entailed by the condition (line 9 of algo-

rithm 3).

This steps are explained bellow.

Building Correlated Message Buffer : Case of (reference-base conditions). Recall

that, correlated messages denoted by Rψ are defined as Rψ = {({x, y})/∀x ∈ Ai, ∀y ∈ Aj:

x.val = y.val}. Since the input of the Reduce are sorted and grouped, only one iteration

is needed to build CMB. Moreover, message’s-ids from Ai appear before those of Aj
(suppose that i < j). So, for each new distinct value V which appears in the reduce-

input, the Reduce creates a temporary entry in CMB, with V as val. Then, it buffers ids

from Ai into IdSet1 then those from Aj into IdSet2. In case of values having empty IdSet

(1 or 2), i.e., none pair of messages (x, y) ∈ (Ai, Aj) satisfies x.val = y.val = V, then V is

discarded. For key-based conditions, a new entry of CMB is created for each new distinct

value V in the input of the reduce, and all messages satisfying x ∈ Ai, and x.val = V

are buffered to the corresponding IdSet.

val idset1 idset2

C1 { m3, m4, m10} { m4,m5}

C2 { m2, m5} { m2,m3,m10}

C3 { m1, m6, m8} { m6,m7,m9}

C4 { m7, m9} { m1, m8}

Table 4.4: Buffer CMB.

Example 6 Using as input the buffer in Table 4.3, the buffer CMB produced by the

function Build Correlated Message Buffer is depicted in Table 4.4. Since, the input of the

Reduce are sorted, then values in column val and messages in IdSets are also sorted.

In the first row, C1 is a value which appear in both column Ai and Aj, where messages

having C1 as value in Ai are {m3, m4,m10} and those having C1 in Aj are {m4, m5}.

Pruning non-interesting conditions based on non-repeating values criterion:

After the CMB is created, the shared_ratio can be computed as the ratio of the

number of distinct values (number of rows in CMB) with regard to the size of L,

shared_ratio(ψij) =
|CMB|

|L|
. In case of key-based conditions, |CMB| represents the

4.2. Atomic Condition Discovery Algorithms 59

number of distinct values present in the corresponding attribute. On the other case

(reference-based) conditions, |CMB| represents the number of shared distinct values be-

tween Ai and Aj. Next, candidates that do not satisfy shared_ratio(ψij) < α are pruned

(line 8 of algorithm 3).

Algorithm 4: build_correlated_message_buffer

1 build_correlated_message_buffer (V : list(m.Ax −Ax −m.id))

2 begin

3 tmpVal← null ;

4 tmpBuffer← ∅ ;

5 while (V.hasNext()) do

6 if tmpVal = V.Ax then

7 tmpBuffer.add(V .id, V.Ax);

8 /** if x = i put id in seti else put it in setj **/ ;

9 else

10 if tmpBuffer 6= ∅ then

11 CMB.add(tmpBuffer);

12 else

13 tmpBuffer← ∅ ;

14 tmpVal← V .Ax ;

15 tmpBuffer.add(V .id, V.Ax);

16 return CMB

Computing/Finding Instances: The compute-instances function, depicted in algo-

rithm 5, applies a DFS-like algorithm to explore the CMB. It is called only in the case of

reference-based conditions. It is in charge of grouping together the messages correlated

by a condition ψAi,Aj
in order to form individual process instances. It takes as input a

buffer CMB associated with a couple of attributes Ai, Aj. We recall that a buffer CMB

produced by the function Build Correlated Message Buffer contains in its column val the set

of values v common to the attributes Ai and Aj, and for each such value v, records in the

cell idset1 (respectively, idset2), the set of message identifiers m.id such that m.Ai = v

(respectively, m.Aj = v). Then, the computation achieved by compute-instances is based

on the observation that two messages m1 and m2 that appear in CMB are correlated by

60 Chapter 4. Discovering Atomic Conditions

Algorithm 5: Compute Instances

1 Compute_intances (CMB)

2 begin

3 Stack s; for c ∈ CMB and c is not visited do

4 s.push(c);

5 c.visited← true ;

6 n← getNextUnvisitedNeighbor(c);

7 if n 6= null then

8 n.visited← true ;

9 s.push(n);

10 else

11 instances.add(s.pull());

12 return instances;

the condition ψAi,Aj
if and only if one of the following conditions is satisfied:

(i) the messages m1 and m2 appear in a same row of CMB. We state this condition

more precisely as follows: m1 and m2 are correlated by ψAi,Aj
if there exist an

integer i such that m1 ∈ CMB [i].idset1 and m2 ∈ CMB [i].idset2. Indeed, in

this case we have by construction of CMB that m1.Ai = m2.Aj = CMB[i].val.

Therefore, we can extend this observation to deduce that the elements of each CMB

[i].idset1∪CMB [i].idset2, for i ∈ [1, |CMB |], are correlated by the condition ψAi,Aj

and hence belong to the same process instance.

(ii) the messages m1 and m2 appear in two sets of CMB that have a non empty in-

tersection. More formally: there exists i, j ∈ [1, |CMB |] such that m1 ∈ CMB

[i].idset1, m2 ∈ CMB [j].idset2 and CMB [i].idset1 ∩ CMB [j].idset2 6= ∅. Indeed,

let m be in such an intersection than m is correlated with m1 (because both m

and m1 belongs to CMB [i].idset1) and m is correlated with m2 (because both m

and m2 belongs to CMB [j].idset2). Hence, by using transitivity of the correlation

relation we conclude that m, m1 and m2 belong the same process instance. getNex-

tUnvisitedNeighbor() function is in charge to check this property. Since, message-ids

are sorted, a one pass algorithm is applied to check for intersection by performing

2× (|idset1|+ |idset2|) opertaions

4.2. Atomic Condition Discovery Algorithms 61

(iii) (m1,m2) belongs to the transitive closure of the correlation relation computed using

(i) and (ii).

Figure 4.1: Bipartite graph of CMB with two connected components.

The function compute-instances can be better viewed as a computation of the con-

nected components [15] of an undirected bipartite graph. The vertices of such a graph

are the sets appearing in the columns idset1 and idset2 of CMB and the edges are con-

structed as follows: let i, j ∈ [1, |CMB |], then there is an edge between CMB [i].idset1

and CMB [j].idset2 if: i = j (condition (i) above) , or CMB [i].idset1∩CMB [j].idset2 6= ∅

(condition (ii) above). The condition (iii) is achieved by the computation of the connected

components of this graph. Each connected component corresponds to a discovered process

instance.

However, in the case of key-based conditions, each set of correlated messages corre-

sponding to a distinct value forms a process instance. In other words, each vertex in the

graph forms a connected component.

Example 7 Figure 4.1 depicts the graph corresponding to the buffer CMB of Table 4.4.

We can observe that there are two connected components of this graph. The associated

discovered process instances are the following:

• Instance 1 = {m2,m3,m4,m5,m10}

• Instance 2 = {m1,m6,m7,m8,m9}

Finally, using user provided threshold β, the non interesting instances are pruned

(line 10 of algorithm 3). By computing the PI_ratio of each discovered atomic

condition ψ, i.e., the ratio of the number of instances entailed by ψ to the number of

messages for which the attributes Ai and A2 of condition ψ are defined. The PI_ratio

is compared with β and the conditions that do not satisfy the criteria are pruned.

62 Chapter 4. Discovering Atomic Conditions

Discussion In this section we presented our first algorithm called sorted values centric

algorithm devoted to discover candidate atomic correlation conditions. The algorithm

relies on one MapReduce job, hence a less overheads involved by the framework to schedule

tasks. In addition, It sorts the intermediate data to build the correlated message buffer in

one iteration and efficiently computes the process instances. In fact, sorting data requires

the use of value to key pattern (values are appended to the key to form a composite key)

which make the map-outputs size twice larger. Therefore, this fact causes an important

overhead while the data are transferred between Map and Reduce nodes and may affect

the algorithm’s performance. To fix such problem we introduce Hashed values centric

algorithm in the following.

4.2.3 Hashed Values Centric Algorithm

In order to avoid generating and transferring intermediate data with duplicated values,

we propose the Hashed Values Centric (HVC) algorithm. HVC, depicted at algorithm 6

and 7, processes each candidate atomic correlation condition independently. Also, it can

be implemented in a single MapReduce job. The Map generates the set of all possible

candidate atomic conditions from the set of attributes in L. It ensures that each pair

will be allocated to the corresponding Reduce by assigning a single key to each pair. The

main difference w.r.t SVC lies in the keys used to distinguish the target Reducers. Unlike

SVC algorithm, in HVC composite keys are not used. Therefore, the map-output data

size is not duplicated and, also, not sorted. Table 4.5 shows an example of the outputs

of log L in 4.3 processed by two mappers executed the map in algorithm 6. Once the

Reduce, depicted in algorithm 7, receives it corresponding data, it proceeds as follow :

1. Build the correlated message hash buffer (line 3 of algorithm 7).

2. Pruning non-interesting candidates (line 5 of algorithm 7).

3. Computing process instances (line 6 of algorithm 7).

These steps are described below.

Build Correlated Message hash Buffer : The function is depicted in algorithm

8. It aims at grouping together message-ids having same values, and separate those

coming from Ai from those coming from Aj in different sets (IdSet1 to Ai and IdSet2

to Aj). Since, the input of the Reduce are not sorted, a hash table is used to store the

4.2. Atomic Condition Discovery Algorithms 63

Algorithm 6: Hashed Values Centric Map_function.

1 Map (K : unused, V : {A1, A2, . . . , An, id})

2 begin

3 foreach Ai ∈ V do

4 foreach Aj ∈ V do

5 OutputKey← Ai, Aj ;

6 OutputV aluei ← {V.Ai −Ai − V.id} ;

7 OutputV aluej ← {V.Aj −Aj − V .id} ;

8 output ({OutputKey }, OutputV aluei);

9 output ({OutputKey }, OutputV aluej);

Algorithm 7: Hashed Values Centric Reduce_function

1 Reduce (K : ψAi,Aj
, V : list(m.Ax −Ax −m.id))

2 begin

3 CMB ← build_correlated_message_hash_buffer(V) ;

4 shared_ratio(K)← |CMB|
|L| ;

5 if shared_ratio(K) < α then

6 PIψ ← compute_instances(CMB);

7 if ψ has ImbalancedPI(PI, β) then

8 output(K, PI) ;

Algorithm 8: build correlated message hash buffer

1 build_correlated_message_hash_buffer (V : list(m.Ax −Ax −m.id))

2 begin

3 hashtable CMB ;

4 while (V.hasNext()) do

5 tmpBuffer← CMB.lookup(V.Ax);

6 tmpBuffer.add(V .id, V.Ax);

7 CMB.add(tmpBuffer);

8 tmpBuffer← ∅

9 return CMB

64 Chapter 4. Discovering Atomic Conditions

correlated messages and, by consequent, several iterations are required to achieve this

task. Moreover, an additional step is needed to clean the buffer by deleting entries with

empty IdSets. This stage is less performance then that of SVC algorithm.

Mapper 1 outputs

key val tag Id

Aj=Aj C3 i m1

Aj=Aj C1 i m3

Aj=Aj C4 j m1

Aj=Aj C2 j m2

Aj=Aj C2 j m3

Aj=Aj C2 i m2

Aj=Aj C1 i m4

Aj=Aj C2 i m5

Aj=Aj C1 j m5

Aj=Aj C1 j m4

Mapper 2 outputs

key val tag Id

k2 C3 i m6

k2 C2 j m10

k2 C3 j m6

k2 C3 i m8

k2 C4 j m8

k2 C3 j m7

k2 C4 i m7

k2 C3 j m9

k2 C4 i m9

k2 C1 i m10

Table 4.5: Example of a log and the outputs, w.r.t. to (A1, A2), of two mappers.

C3

C1

C4

C2

{m6, m1, m8} {m7, m9, m6}

{m3, m10 m4} {m4, m5}

{m9, m7}

{m5, m2}

{m1, m8}

{m10, m3, m2}

Figure 4.2: Correlated Messages Hash Buffer

Example 8 Using as input the buffer at Table 4.5, the buffer CMB produced by the

function Build Correlated Message hash Buffer is depicted at Figure 4.2. Many iterations

are required to fill the buffer.

Pruning Non-interesting Candidates : Candidate conditions non-satisfy the crite-

rion shared_ratio(ψ) < α are pruned.

Compute Instances : A DFS-like algorithm is applied to compute the transitive clo-

sure of the CMB and deduces the process instances entailed by each candidate condi-

tions. The same algorithm is used to compute discovered instances as in algorithm 3

4.2. Atomic Condition Discovery Algorithms 65

with few critical changes. The main modification is applied to getNextUnvisitedNeigh-

bor(). Since data are not sorted, checking for the intersection requires, in worst case,

2× |idSet1| × |idSet2| operations. In order to avoid a such high number of operations, a

hash function is used as following:

• Read all element in IdSet1 and store them by their hash code in temporary hash

set T.

• For each element id in Idset2 computes its hash code and proceed as follow :

– Stores (id) and return false, If hash(id) doest not exist,

– Return true, otherwise.

Using this property we reduce the number of operation to 2× (|idSet1|+ |idSet2|).

Finally, conditions that partition the log into a few number of long instances or a high

number of long instances are pruned using the Imbalanced_PI criterion.

Discussion In this section we present the Hashed Value Centric algorithm used for dis-

covering candidate atomic correlation conditions. The algorithm relies on one MapReduce

job. It avoid using key-to-value pattern for sorting map-output data. Therefore, it re-

duces the overheads involved by duplicating values in the SVC algorithm during the

transferring data. However, it requires several iterations to build the correlated message

buffer and an additional step to clean it.

One problem with Sorted Values Centric or Hashed Values Centric algorithms is due

to the existence of non-correlating values. Therefore, not every message from Ai will be

correlated with one or many messages from Aj for a given condition ψAi,Aj
. Such non-

correlating values are identified only after building CMB which involves a wasted time

to eliminate such values. To cope with this problem, we propose the per-split correlated

messages algorithm which distributes the computation of the CMB over processing nodes

and anticipates such non-correlating values before constructing the process instances.

4.2.4 Per-Split Correlated Messages Algorithm

The per-split correlated message (PSCM) algorithm has two phases, each corresponding

to a separate MapReduce jobs. This algorithm is introduced to parallelize the computa-

tion of the CMB presented in the two previous algorithms. In case of referenced-based

66 Chapter 4. Discovering Atomic Conditions

conditions, not all values are included into the intersection of the distinct values of Ai
and Aj. This property is stated more formally as { ∃V , V ∈ distinct(Ai) ∪ distinct(Aj)

and V 6∈ distinct(Ai)∩distinct(Aj)} . In this case, V should be ignored and all messages

having this value should be eliminated. This is done by the phase one of the algorithm,

which can be seen as a pre-processing step. We describe below the two phases.

Phase 1: The Map function adds the attribute values to the outputted key (the key

refers to the condition name) (line 5 and 6 of algorithm 9). Therefore, it ensures that all

messages from the same condition having the same value will be allocated into a single

Reduce. The Reduce will receive the sets of message-ids having the same value. Each

Reduce will produce a single row of the CMB for each condition. It fills the row buffer by

putting message-ids from Ai into IdSet1 (resp. Aj into IdSet2). Rows with empty IdSet1

or empty IdSet2 are ignored. This step is similar to the standard SQL query (self-join of

Log L) where the join is computed for each pair of attributes Ai, Aj.

Phase 2: The Map function is the function identity, the output-key is the condition

name and the output-value is a row of CMB. The Reduce function receives all rows

of the same condition. First, it groups them in single buffer CMB, then it applies the

compute_instance() function as in HVC to compute the set of instances entailed by each

condition. Finally, it prunes non-interesting condition based on Imbalanced_PI criterion.

4.3 Handling Reducers Insufficient Memory

As seen previously to evaluate a condition, the reducer in the SV C, HV C and PSCM

algorithms receives as input a list of tuples corresponding to a projection of two column

(Ai and Aj) on the log L i.e, it receives all values present in two attributes (for reference-

based condition). To proceed with computing the correlated message buffer, the entire

input data must be loaded in the main memory. It is worth noting that we already

eliminate duplicated messages from the correlated messages set using the data structure

T1 and T2 (see example 5). However, it may happen that either Reducer-input data or

the produced (CMB) does not fit entirety in main memory. So if this is the case, then we

can use, as alternative, a disk-based solution to cope with this issue. In the following we

present an extension to our algorithms for the case where data do not fit in main-memory.

4.3. Handling Reducers Insufficient Memory 67

Algorithm 9: Per-Split Correlated Messages Algorithm phase1
Input: K : unused, V : a record from the log file

Output: K : Ai = Aj , V : {IdSet1}, {IdSet2}

1 Map (K : unused, V : {A1, A2, . . . , An, id})

2 begin

3 foreach Ai ∈ V do

4 foreach Aj ∈ V do

5 OutputKey1← Ai, Aj+ V .Ai ;

6 OutputKey2← Ai, Aj+ V .Aj ;

7 OutputV aluei ← {Ai − V . id} ;

8 OutputV aluej ← {Aj − V . id} ;

9 output ({OutputKey1 }, OutputV aluei);

10 output ({OutputKey2 }, OutputV aluej);

Input: K : ψAi,Aj
, V : a set of message-ids having same value

Output: K : ψAi,Aj
, V : a row of CMB

11 Reduce (K : ψAi,Aj
, V : list(Ax-m.id))

12 begin

13 while (V.hasNext()) do

14 IdSetx ← V.Ax.id ;

15 B.setIdSets(IdSet1, IdSet2) ;

16 output(K, B) ;

4.3.1 Disk-Based Extension

A disk-based extension is used to handle insufficient memory at the reduce stage, this

may require a large number of I/O operations. A critical change are performed to the

compute_correlated_messages_buffer (presented in algorithm 4) function. Instead of

storing each row of the buffer into main memory, the function will store it in a separate

file into a disk with the index position as a name. Figure 4.3 shows an example of how

CMB rows are stored and processed. In the case of key-based condition, if the condition

is interesting, all rows are streamed directly to HDFS, since there is no need to compute

transitive closure to find instances. Otherwise in case of reference-based condition, and

at the compute instances step, all rows are stored into local disk except, for instance, the

first one. Then, the reduce reload rows later to check whether two rows (rows) belong to

the same process instance. If the intersection holds between two rows, saying row 1 with

68 Chapter 4. Discovering Atomic Conditions

Algorithm 10: Per-Split Correlated Messages Algorithm phase2
Input: K : ψAi,Aj

, V : a row of CMB

Output: K : ψAi,Aj
, V : a row of CMB

/* The Map Function is the Map Identity. */

1 Reduce_Function

Input: K : ψAi,Aj
, V : CMB

Output: K : ψAi,Aj
, V : PI set Of discovered instances

2 Reduce_Configure

3 |L| ← count_rows_log();

4 α← getUserThreshold();

5 β ← getUserThreshold();

6 Reduce (K : ψAi,Aj
, V : CMB)

7 begin

8 PI ← compute_instances(CMB);

9 PI_Ratio(K)← |PI|
max|Ai,Aj |

;

10 if PI_Ratio(K) ≤ beta then

11 output(K, PI) ;

12 else

13 write(K is not interesting condition based on Imbalanced_PI creterion) ;

row 3, then row 3 is marked as visited and rows 1 is removed from main memory and

stored into disk. The index of rows 1 is pushed into the stack and next row is loaded to

check intersection with row 3, and so on. When there is no rows to load or no intersection,

the index in the tail of the stack is pulled and the corresponding row is merged with the

row present in memory. As presented in the Figure 4.3 (find process instance step), a

stack is used to keep track of all connected rows that form a single process instance.

4.3.2 Multi-Pass Process Instances Discovery Algorithm

Various data analysis techniques requires iterative computations, like PageRank [78],

HyperText-induced topic Search [61], clustering [58], neural network analysis [49], social

network analysis [103], recursive relational queries [18, 19, 11, 10], internet traffic analysis

[70, 71] and Apriori-based algorithms [65]. These techniques have a common particularity:

data are processed iteratively until the computations satisfies a convergence or terminat-

ing condition. We propose an iterative algorithm, illustrated in algorithm 11, to deal

4.3. Handling Reducers Insufficient Memory 69

T12 T12

stack

T11

Ai, Aj

-- -- --

-- -- --

Input

T13
T13

Main memory

disk

Compute CMB

Stream rows 2

to n to disk

T11

T12

∩

intersection

T1n
T1n

T13

T13

T13

T13

Store

&

Load

Find Process

instance

disk

Output
HDFS

Execution at reduce side

Figure 4.3: Data-flow at the reduce side.

with the problem of computing process instances at the Reduce side in case of limited

memory. Indeed, the computation performed by algorithm 11 is similar to the standard

calculation of transitive closure on undirected bipartite graph. As mentioned previously,

we use a depth-first traversal algorithm to discover process instances for reference-based

conditions.

This algorithm is dedicated to reference-based conditions, where the computation of

the transitive closure is needed to construct process instances. Furthermore, the algorithm

scales well with regard to the size of the log and the number of distinct values that appear

on each attribute in the input log files. Moreover, the workload can be, evenly, balanced

over the cluster nodes. As its name indicates the algorithm is iterative and consists

of, at most, O(log2(r))
1 passes and stops when intersection between all rows is empty,

meaning that rows can not be merged together. Each pass is a MapReduce job, it merges

at least two rows of the CMB. The input of the algorithm is CMB based on T2 data

structure and we expect that there is intersection between idSets, in other words there is

transitivity and the process instances are correlated using reference-based condition. The

multi-pass algorithm, in spirit, is similar to a self-join algorithms performed on CMB.

Where, each Map function, outlined in algorithm 12, works on a part of the CMB. First,

1r corresponds to the number of rows in CMB and it refers to the number of shared distinct values

between two attributes Ai, Aj .

70 Chapter 4. Discovering Atomic Conditions

it loads the entire CMB into local storage. Then, reads, from the HDFS, a rowx from

the corresponding part and probes the CMB to perform a self-join-like operation. It

checks whether for each rowy the condition (ii) in 12 is satisfied (line 4 of algorithm 12).

Finally, the Map outputs the rowy as key while the rowx as value if the intersection is

not empty, otherwise rowx is discarded. At the Reduce side, associated with each key

(row) their will be a set values (rows). The Reduce joins all the rows in the values list

with that presented in the key and produces a new row (line 4 of algorithm 13). If none

of Reducer does not produce a new row the entire algorithm terminates. Otherwise, the

Reduce outputs are used as input for the next iteration and the CMB is broadcasted to

all nodes via DistributedCache (line 8 algorithm 11). A combiner function can be used

in conjunction with the Map to consolidate intermediate values to minimize the cost of

transferring data over the network.

Algorithm 11: multi-pass main algorithm.
Input: K : unused, V : a row from CMB

Output: K : index, V : row

1 while CMB 6= ∅ do

2 store CMB in distributedCache ;

3 Map() function ;

4 CMB ← Reduce() function ;

Algorithm 12: multi-pass map function.

1 Map_function

Input: K : unused, V : a row from CMB

Output: K : index, V : rowx

2 read CMB from distributedCache ;

3 foreach rowi ∈ CMB do

4 if (V.IdSet1 ∩ rowi.IdSet2) OR (V.IdSet2 ∩ rowi.IdSet1) then

5 output(rowi, V);

4.4. Evaluation Of The Proposed Algorithms 71

Algorithm 13: multi-pass reduce function.

1 reduce_function

Input: K : a row , {V } : a list of rows

Output: K : unused, V : a new row

2 outputrow.IdSet1← key.IdSet1 ;

3 outputrow.IdSet2← key.IdSet2 ;

4 foreach v ∈ V do

5 outputrow.IdSet1← outputrow.IdSet1 ∪ v.IdSet1 ;

6 outputrow.IdSet2← outputrow.IdSet2 ∪ v.IdSet2 ;

7 output(null, outputrow);

4.4 Evaluation Of The Proposed Algorithms

This section shows the evaluation of the proposed algorithms and estimates their cost

using the cost model introduced in section 2.6.2. The theoretical number of all possible

atomic correlation condition is N=
k(k + 1)

2
, where k is the number of attributes in L.

We assume that each condition is processed by a single node.

4.4.1 Complexity Analysis

Unlike the complexity mentioned in [74] which is O (N.|L|2), the algorithms presented

above are in parallel and each condition is processed independently from the others.

Therefore, the time complexity to explore all the space of correlation conditions is O

(p). Since, the main computation is done by reducers, we omit the map complexity. p is

different from one algorithm to another. It consists of the sum of (i) the time complexity

of computing correlated messages. (ii) The time complexity of computing instances.

• In the case of sorted data, The worst case time complexity of building correlated

message buffer (CMB) is O (|L|). The worst case of computing instances is in O

(d × s × 2) where d is the number of distinct values of Ai ∩Aj and s is size of the

largest IdSet.

• In the case of non sorted data, computing correlated messages takes O (L2), the

case of building the hash table, for each value we need to look for it at the hash

table. The worst case for computing instances has complexity of O (d ×s2).

72 Chapter 4. Discovering Atomic Conditions

4.4.2 Cost-Model-Based Analysis

In this section we evaluate the algorithms based on the cost model introduced in sec-

tion 2.6.2. MapReduce framework introduces some overheads that should be taken into

account to estimate the runtime of algorithms. Almost all of its operations are done in

background and transparent to the user. These overheads are mostly affected by the

amount of data, read, sorted or transferred. Assume that the number of messages in L

is |L| and k is the number of attributes in L. Table 4.6 shows the estimated cost of each

step of the three algorithms.

Discussion: As shown at Table 4.6, the estimated performances differences of the pro-

posed algorithms differs significantly. Each algorithm has a strength and weakness. Con-

sider SVC algorithm, it has the best complexity for computing correlated messages and

the process instances, but it is less effective during map_sort, transferring data and

reduce_sort phases because of the large size of intermediate data. Unlike SVC, HVC

is less efficient for computing correlated messages, but it outperforms SVC during the

transferring data phase. The third algorithm uses two steps and, hence, involves more

overheads by the framework and affects the algorithm’s performance. However, this over-

heads may be negligible and the PSCM outperforms the other algorithms in many cases,

as we will see in the experimental evaluations. As a result of this analysis, we can notice

the following observation:

• SVC is best in computing correlated messages and process instances.

• HVC has the lowest overheads during sorting, transferring and merging intermedi-

ate data.

• PSCM uses more parallelism to compute correlated messages and can use more

resources as input data gets larger.

These analysis are validated by the experimental evaluation of the proposed algorithms

in the next section.

2Map-output-record : the number of record outputted by the Map
3Map-output-size : the size of the Map outputted
4 Passes = MergeSpillsPass(Spills, Factor)

4.4.
E

valuation
O

f
T

he
P

roposed
A

lgorithm
s

73

steps SVC HVC PSCM-p1 PSCM-p2

Tread Cr ×
|L|

m
Cr ×

CMB

m

MOR2 |L|

m
× k2

|CMB|

m
kv_width 2× (val + id+ tag) + key val + id+ tag + key val + id+ tag + key row of CMB

MOS3 MOR× kv_width
CMB

m
Spills

mor

B ×Q× P × 216

SpillSize
mos

|Spills|

Tmap_sort Cl × spillSize× 2[|spills|+ Passes]4

Ttr Cr ×m×mos

Tsort_reduce Cl × kv_width× |L| ×2⌈(logFactor(m))⌉

Treduce_write Cr × CMBψ

T
able

4.6:
A

lgorithm
s

E
stim

ated
C

osts.

74 Chapter 4. Discovering Atomic Conditions

4.5 Experimental Evaluation

In this section, we describe the performance evaluation of the proposed algorithms for

candidate atomic correlation conditions. To better understand the performance of parallel

algorithms we measured their absolute time as well as their speed up and scale up [36].

4.5.1 Environment

We ran experiments on a cluster of 5 virtual machines. Each machine has one AMD

Opteron processor 6234 2.40GHz with four cores, 4 GB of RAM, and 50 GB of Hard

disks. Thus the cluster consists of 20 cores and 5 disks. However, one of the five nodes is

used to run the master daemon (JobTracker) to manage the Hadoop jobs and the Hadoop

Distributed Files System (NameNode) to manage the input and output files. Each node

is configured with Ubuntu 12.04 LTS 64-bits operating system, Java 1.7 with a 64-bits

server JVM, and Hadoop 0.20.2. Each node run four Maps and four Reduces task. We

run our algorithms over the following datasets.

4.5.2 DataSets

We run our algorithms on 3 different datasets:

• SCM. This dataset is the interaction log of SCM [4] business service, developed

based on the supply chain management scenario provided by WS-I (the Web Service

Interoperability organization). There are eight Web services realizing this business

service. The interaction log of Web services with clients was collected using a

real-world commercial logging system for Web services, HP SOA Manager. The

services in SCM scenario are implemented in Java and use Apache Axis as SOAP

implementation engine and Apache Tomcat as Web application server [74].

This dataset has 19 attributes and 4050 messages, each corresponding to an ac-

tivity invocation. This dataset mainly provides an example of a system, whose its

instances are correlated in a chain-based form.

• Robostrike. One month collected datasets from a multi-player on-line game ser-

vice named Robostrike5. Players exchange XML messages with game server con-

5http://www.Robostrike.com/

4.5. Experimental Evaluation 75

taining several activities that can be performed during a game session. This dataset

has 18 attributes and more than 1.8 million messages.

Increasing dataset size To evaluate our event correlation algorithms devoted to com-

pute candidate atomic correlation conditions on large datasets, we increase the size of the

SCM dataset size while maintaining its data behaviour and distribution. We maintain

the number of interesting candidate atomic correlation conditions discovered in the orig-

inal size, and we wanted the number of discovered process instances for each correlation

conditions to increase linearly with regard to the size of the increased data. Increasing

the dataset size by replicating the original data would only preserve the cardinality of the

discovered instances, and may blow-up their sizes. In addition, the original interesting

conditions may not satisfy interestingness criteria. Therefore, we scan the whole dataset

and for each new record we generates a clone records by adding a suffix to each value

presented within and associate for each clone a unique identifier (that we can identify the

record latter).

We increase the data by factor of 100, 500 and 1000, we refer to the data set as

”SCM” × n where n ∈ {100, 500, 1000} represents the increase factor. Before starting

experiments we extract attributes and their values from XML documents using ETL-like

preprocessing and represent them as event tuples in csv files. This files are then grouped

into buckets with different size (e.g. RS10K contains one millions events of RobotStrike

dataset). Next, we upload them into the hadoop distributed file system.

For all the experiments, we tokenize the data by values and we use the attribute

names to represent the correlation condition (e.g. A1 = A2), the lower bound threshold

and upper bound threshold used in non-repeating values criterion are 0.01 and 0.8 re-

spectively. We define, also, 0.5 as a threshold to prune correlation conditions based on

Imbalanced_PI criterion.

4.5.3 Experiments

As a first experiment, we study the main differences between the 3 algorithms (Sorted

Values Centric, Hashed Values and Per-Split Correlated messages algorithms). We run

the algorithms for three different size of data SCM× n (where n ∈ {100, 500, 1000}), we

breakdown the total execution time into two main steps (Map and reduce). Furthermore,

the reduce is, also, subdivided into 3 steps (shuffle, sort and CMB+CI). CMB and CI

denote respectively computing correlated message buffer and compute instances.

76 Chapter 4. Discovering Atomic Conditions

0

10

20

30

40

50

60

70

80

MapdTime shuffle Sort CI+CMB ReducedTime

Mapd-dsort Reduce

R
u

n
in

g
 t

im
e

 i
n

 (
se

co
n

d
)

SVC

HVC

PSCM-P1

PSCM-P2

Figure 4.4: Time breakdown SCM×100.

0

50

100

150

200

250

300

350

MapHTime shuffle Sort CI+CMB ReduceHTime

MapH&Hsort Reduce

R
u

n
in

g
 t

im
e

 i
n

 (
se

co
n

d
)

SVC

HVC

PSCM-P1

PSCM-P2

Figure 4.5: Time breakdown SCM×500.

4.5. Experimental Evaluation 77

0

200

400

600

800

1000

1200

MapVTime shuffle Sort CI+CMB ReduceVTime

MapV&Vsort Reduce

R
u

n
in

g
 t

im
e

 i
n

 (
se

co
n

d
)

SVC

HVC

PSCM-P1

PSCM-P2

Figure 4.6: Time breakdown SCM×1000.

0

200

400

600

800

1000

1200

1400

SCM100 SCM500 SCM1000

R
u

n
in

g
 t

im
e

 i
n

 (
se

co
n

d
)

SVC

HVC

PSCM-P1

PSCM-P2

Figure 4.7: Total Run time on SCM×n datasets.

78 Chapter 4. Discovering Atomic Conditions

Figures 4.4, 4.5 and 4.6 show the execution time proportion of each step on 5-

nodes cluster for different dataset size (represented by the factor n). Per-Split Correlated

Messages consists of two MR jobs, the first phase is denoted as PSCM-p1 and the second

as PSCM-p2.

Starting with the map phase, we observe that SVC is always the most expensive

algorithm. This is because the SVC’ s map-outputs size is equivalent to twice as those of

HVC and PSCM. This fact implies moving a large amount of data over network during

the shuffle phase. A significant difference between HVC ’s map and PSCM-p1 ’map can

be observed in Figure 4.6. This is caused by the difference in the map-selectivity in each

algorithm. In other words, The PSCM-p1 ’s map produces a large number of keys than

HVC’map. This difference may not be seen in case of small data size. Moving to the

reduce phase, the shuffle and sort phases are directly affected by the map-output data.

Therefore, we do not observe significant changes in performance (SVC is always the

worst). On the other hand, and during CMB+CI phases SVC shows better performance

than HVC and PSCM in Figure 4.4. This is because SVC ’Reducers handle a sorted

data. But in Figures 4.5 and 4.6, PSCM was the best because it divides this step on two

stages.

Finally, Figure 4.5.3 shows the total execution time of the three algorithms. For the

n equals 100 and 500, HVC was the best algorithm, this is because SVC is less efficient

due to the large size of intermediate data, and PSCM has an additional overheads due

to scheduling another MapReduce step. Whereas, for the largest dataset size PSCM was

the best. This means that the framework overheads became negligible when the size of

the workload increased.

In order to evaluate the scale up and speed up of the algorithms, we performed two

different experiments. First we fix the number of nodes and we vary the size of the input

data (Robostrike), then we fix the input data (Robostrike and SCM×500) size and we

vary the number of processing nodes.

Figure 4.9 presents the running time gathered from executing the 3 algorithms on

RobotStrike dataset. We start with 200k messages as input log size then we vary by

adding 200k for next steps until 1800k, as the data increased the running time of the

three algorithms increase linearly. The x-axis shows the size of input data in messages.

The y-axis shows the elapsed time in second, and in Figure 4.8 shows the amount of

intermediate-data transferred over the network between nodes in the shuffle phase (in

4.5. Experimental Evaluation 79

0

500

1000

1500

2000

2500

3000

3500

4000

0 20 40 60 80 100 120 140 160 180 200

S
iz

e
 (

in
 M

b
)

#Nodes

SVC

HVC

PSCM p-1

PSCM p-2

Figure 4.8: The evolution of the amount of data moved over the network.

0

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160 180

T
im

e
 (

in
 s

e
co

n
d

)

messages (x 10000)

SVC

HVC

PSCM

Figure 4.9: Running time of three algorithms on different data size (RobotStrike).

80 Chapter 4. Discovering Atomic Conditions

megabytes).

In Figure 4.9. Moving from left to right, we observe that as the data size get bigger

the time for the three algorithms increase linearly. The main observations seen in Figure

4.9 are: (1) Hashed Values Centric algorithm denoted as HVC was the best algorithm

for all the size of data. (2) Sorted Values Centric algorithm denoted as SVC has approx-

imately the same performance as HVC until 800 thousands messages where it increases

significantly. This is because the cost of sorting and shuffling data to nodes over network

started to dominate. SVC was the worst algorithm from 1000k to 1800k messages. Fi-

nally, (3) Per-Split Correlated Messages algorithm was the worst algorithm for small size

of data and this is mainly duo to the additional cost of overheads involved by writing and

reading into HDFS the result of the first stage and the cost of scheduling new tasks. But,

when the data size get bigger (> 1000 k messages) PSCM outperforms SVC because

dividing the work into two stages becomes an advantage and avoid processing a large

amount of data.

In Figure 4.8, we observe that the 3 algorithms have constant increased curves, where

SVC has the largest amount of data moved over network. This fact is caused by adding

the value to the key-part to sort the map-outputs. HVC and PSCM-p1 have the same

size, since they don’t replicate the value. PSCM-p2 has the smallest intermediate data

size, this is due to eliminating non used messages in PSCM-p2.

Robostrike dataset: In Figure 4.10 we plot the running time of the three algorithms

on the same Robostrike data size and we increase the size of the cluster from 1 to 5

nodes. We can see that the HVC was the best for all the settings from 1 to 5 nodes

(as in previous graphs). The PSCM-p1 scales faster, this is due to the balancing of the

high number of map-output groups (keys) over nodes. Unlike in SVC and HVC, the

routing keys in PSCM are numerous and therefore requires the same number of reduce

instances. In addition, the reducers in PSCM-p1 will receive only message ids of a single

condition and having same value. On the other hand, PSCM-p2 has the smallest speed

up. The main raison for the poor speed up of PSCM-p2 was due to: (1) the low size

of input data (already eliminated by PSCM-p1), (2) it only groups already computed

correlated messages and applies the pruning phase. The three algorithms time decreases

as the number of nodes increase.

Figure 4.11 shows the same result as in Figure 4.10 but plotted on "relative scale".

4.5. Experimental Evaluation 81

0

50

100

150

200

250

300

350

400

1 2 3 4 5

T
im

e
 (

in
 s

e
co

n
d

)

Number of nodes

svc

hvc

pscm-p1

pscm-p2

Figure 4.10: Running time of the algorithms for Robostrike data set on different cluster

sizes.

1

1,2

1,4

1,6

1,8

2

2,2

2,4

2,6

2,8

3

1 2 3 4 5

Number of nodes

svc

hvc

pscm-p1

pscm-p2

Figure 4.11: Relative running time of the algorithms for Robostrike data set on different

cluster sizes.

82 Chapter 4. Discovering Atomic Conditions

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2 3 4 5

T
im

e
 (

in
 s

e
co

n
d

)

Nodes

svc

hvc

pscm-p1

pscm-p2

Figure 4.12: Running time of the algorithms for SCM×500 data set on different cluster

sizes.

1

1,2

1,4

1,6

1,8

2

2,2

2,4

2,6

2 3 4 5

Nodes

svc

pscm-p1

pscm-p2

hvc

Figure 4.13: Relative running time of the algorithms for SCM×500 data set on different

cluster sizes.

4.6. Discussion 83

In other words, we plot the ratio between the running time of the current cluster size

and the smallest size of the cluster. For example, for the 4-node cluster, we plot the

ratio between the running time on the 1-node cluster and the running time on the 4-node

cluster. We can see that the fastest algorithm was HVC. Also we can see that PSCM-p1

surpassed HVC in 2-node cluster then decrease. This fact is due to cost of scheduling

tasks and partitioning large number of groups. However, all the three algorithms have

approximately the same speed up curves and scales well.

SCM×500 dataset: Similar to Robostrike dataset, we performed the same experi-

ments on SCM×500 dataset. Figure 4.12 shows the running time of the three algorithms

on SCM×500 data set on different cluster sizes. The three curves follow the same pattern

as in Figure 4.10. HVC was always the best. We observe, also, that the SVC running

time decrease linearly as the cluster size increased. PSCM-p1 running time was the worst

for all cluster sizes. However, its speed up scales faster than HVC and SVC as shown in

Figure 4.13. We can observe in Figure 4.13 that HVC was the slowest and outperformed

by SVC and PSCM-p1 which scales faster as the cluster size increases.

4.6 Discussion

In this chapter we have studied the problem of discovering candidate atomic conditions

in parallel using the MapReduce framework. We proposed one, two and multi-pass ap-

proaches and we explored two solutions for the one stage approach (SVC and HVC

algorithms). We showed how to efficiently partition the log across several nodes in the

cluster in order to process each candidate independently from others. We also provided

an adequate data structure which clearly decrease both the computation time and the

size of correlated messages sets. We describe two ways to perform a transitive closure

computation using a depth-first-search-like algorithm in order to discover the process in-

stances entailed by interesting reference-based candidate conditions while we eliminate

such computations for key-based candidate conditions. We addressed an extension to deal

with some extreme cases when the nodes are overloaded. Given our proposed algorithms,

we implemented them in Hadoop and analysed their performance characteristics on real

and synthetic datasets. Besides this, and as a final experiment, we run the approach on

SCM data set synthetically replicated to 10000 times (more than 40 million messages)

and the number of attributes is, also, duplicated. However, the running time to process

84 Chapter 4. Discovering Atomic Conditions

SCM2 × 10000, more than 12GB of, data using our approach on 10 nodes was 1 hour

and 11 minutes.

Chapter 5

Discovering Composite Conditions

Contents
5.1 Introduction . 82

5.2 Single-Pass Composite Condition Discovery algorithms 83

5.2.1 Discovering Conjunctive Conditions 83

5.2.2 Discovering Disjunctive Conditions 91

5.3 Muti-Pass composite Conditions Discovering algorithms 97

5.4 Experimental Evaluation . 101

5.4.1 Experiments. 101

5.5 Discussion . 104

86 Chapter 5. Discovering Composite Conditions

5.1 Introduction

In this Chapter we introduce two MapReduce-Based algorithms to compute composite

conditions (i.e., Conjunctive and Disjunctive). Such correlation conditions are computed

from the set of atomic correlation condition discovered in the previous step (c.f., section

4.2), using conjunction operator (respectively disjunction operator). The main contribu-

tions of this chapter are as follows:

• We introduce two strategies to partition the space of computation vertically in order

to process each (sub)-partition in parallel.

• We introduce the correlation condition-based partitioning to partition the compu-

tation space in parallel and achieve the processing in a single MapReduce pass. We

refer to this concept as the set of partitioning conditions.

• We describe technique to avoid unnecessary computation to compute process in-

stances entailed by composite correlation conditions.

• We describe a second approach based on a horizontal partitioning of the computa-

tion space. Each level of the lattice is processed by a single MapReduce job.

The rest of the chapter is organized as follows: in section 5.2, we present a single-

pass approach to achieve the composite correlation condition discovery task. Then, in

section 5.3 we present a multi-pass approach to discover composite correlation conditions.

Next, in section 5.4 we present evaluation experiments of the two approaches. Finally,

we summarize the chapter in section 5.5.

5.2. Single-Pass Composite Condition Discovery algorithms 87

5.2 Single-Pass Composite Condition Discovery algo-

rithms

Unlike atomic correlation condition discovery, this step is more complex and challenging

in terms of space of computations and the high number of candidate composite conditions

(as shown in Figure 5.1). Therefore, performance strategies should be adopted in order

to deal with this issue. Figure 5.1 shows an example of a lattice (space) of computa-

tion of composite conjunctive conditions generated by four atomic correlation conditions

(ψ1, ψ2, ψ3 and ψ4). In this section we present a single-pass MapReduce-based approach

to discover conjunctive and disjunctive correlation conditions.

CustomerId OrderId

m1 C1 P1

m2 C2 P2

m3 C2 P1

m4 C1 P2

m5 C2 P2

m6 C1 P2

m7 C2 P1

m8 C1 P1

Table 5.1: a snapshot of example log.

5.2.1 Discovering Conjunctive Conditions

Usually messages in logs are not only correlated by a single atomic condition. In-

deed, several conditions (i.e., several attributes) can also correlate messages and par-

tition the logs into relevant instances. This case can be viewed as composite keys in

relational databases, where multiple attributes are used to identify rows. For instance,

messages in Table 5.1 can be correlated using values of attributes CustomerID (ψ1:

mi.CustomerID = mj.CustomerID) and OrderID (ψ2: mi.OrderID = mj.OrderID).

In this case, we note ψ = ψ1∧2 = ψ1 ∧ ψ2. In this example, ψ1∧2(L) = {< m1,m8 >,<

m2,m5 >,< m3,m7 >,< m4,m6 >}

88 Chapter 5. Discovering Composite Conditions

Conjunctive Correlation Condition A Conjunctive correlation condition consists

of conjunction of at least two atomic conditions. It has the following form: Φ = ψ1∧ψ2∧

. . . ψn. Where, ψis, 1 ≤ i ≤ n are atomic conditions.

ψ1 ψ2 ψ3 ψ4

ψ1ᴧ 4 ψ1ᴧ 3

ψ1ᴧ 2 ᴧ 3

ψ2ᴧ4 ψ3ᴧ 4 ψ1ᴧ 2

ψ1ᴧ 2 ᴧ 4 ψ1ᴧ 3 ᴧ 4 ψ2ᴧ 3 ᴧ 4

ψ1ᴧ 2 ᴧ 3 ᴧ 4

ψ2ᴧ 3

ψ5

ψ4ᴧ5 ψ3ᴧ5

ψ1ᴧ 3 ᴧ 4 ᴧ 5 ψ2ᴧ 3 ᴧ 4 ᴧ 5

ψ1ᴧ 2ᴧ 3 ᴧ 4 ᴧ 5

ψ3ᴧ 4ᴧ 5 ψ2ᴧ 4 ᴧ 5

Figure 5.1: Lattice generated by 5 atomic conditions.

Conjunctive conditions are computed using conjunctive operator on atomic condi-

tions: let ψ1 and ψ2 be two atomic conditions elicited during the previous step, then the

goal is to compute the process instances entailed by the condition ψ1 ∧ ψ2, noted ψ1∧2.

More generally, given a set AC of atomic conditions, the goal is to identify the set of

minimal conjunctive conditions that partition the log into interesting process instances.

As explained in [74], such a task can be achieved using a levelwise-like approach [68, 110]

where, roughly speaking, each level is determined by the length, in terms of number of

conjuncts, of the considered conditions. Starting from atomic conditions (level 1), the

discovery process consists in two main parts: (i) generating candidate conditions of level

l from candidates of level l− 1, and (ii) pruning non interesting conditions. At each level,

5.2. Single-Pass Composite Condition Discovery algorithms 89

the process instances associated with each generated candidate condition are computed

and used to prune, if any, the considered candidate condition.

Example 9 Consider as an example a set of atomic condition AC = {ψ1, ψ2, ψ3, ψ4, ψ5}.

The candidate conditions at each level are shown at Table 5.2. Figure 5.2 illustrates the

space of computations.

Level 1 ψ1, ψ2, ψ3, ψ4, ψ5

Level 2 ψ1∧2, ψ1∧3, ψ1∧4, ψ1∧5, ψ2∧3, ψ2∧4, ψ2∧5, ψ3∧4, ψ3∧5, ψ4∧5

Level 3 ψ1∧2∧3, ψ1∧2∧4, ψ1∧2∧5, ψ1∧3∧4, ψ1∧3∧5, ψ1∧4∧5, ψ2∧3∧4, ψ2∧3∧5, ψ2∧4∧5, ψ3∧4∧5

Level 4 ψ1∧2∧3∧4, ψ1∧2∧3∧5, ψ1∧2∧4∧5, ψ1,3∧4∧5, ψ2∧3∧4∧5

Level 6 ψ1∧2∧3∧4∧5

Table 5.2: Candidates space.

To cast the algorithm Level-wise into a MapReduce framework, the main issue to deal

with is how to distribute the candidates among reducers such that the generation and

pruning computations are effectively parallelized. We propose to partition the space of

candidates (see Figure 5.2) in such a way that an element of the partition can be handled

by a unique reducer. This enables to avoid multiple MapReduce steps in order to compute

conjunctive conditions. Henceforth, each element of the partition is called a chunk.

We proceed as follows to compute the partitions. Let AC be a set of n atomic condi-

tions and let PC = {ψ1, . . . , ψl} ⊆ AC be a subset of AC containing l atomic conditions,

hereafter called the partitioning conditions. The main idea is to define partition of the

space of candidate conditions with respect to the presence or absence of partitioning con-

ditions. We annotate a chunk with a condition ψi to indicate that this chunk is made of

candidates that contain the subscript i and with ψ̄i to indicate that the chunk is made of

candidates that do not contain such a subscript. Consequently, given AC and PC defined

as previously, the partition of the space of candidates (P) using PC is obtained as follows:

P = {ψ1, ψ̄1} × . . . × {ψl, ψ̄l}. Each element (φ1, . . . , φn) ∈ P , with φ1 ∈ {ψ1, ψ̄1}, for

i ∈ [1, l], forms a partition of the space of candidate conditions.

Example 10 Continuing with the previous example with AC = {ψ1, ψ2, ψ3, ψ4, ψ5} and

assuming that PC = {ψ1, ψ2}, we obtain four possible chunks:

• (ψ1, ψ2): contains the candidates with subscripts 1 and 2,

• (ψ1, ψ̄2): contains the candidates with subscript 1 but without 2,

90 Chapter 5. Discovering Composite Conditions

ψ1 ψ2 ψ3 ψ4

ψ1ᴧ 4 ψ1ᴧ 3

ψ1ᴧ 2 ᴧ 3

ψ2ᴧ4 ψ3ᴧ 4 ψ1ᴧ 2

ψ1ᴧ 2 ᴧ 4 ψ1ᴧ 3 ᴧ 4 ψ2ᴧ 3 ᴧ 4

ψ1ᴧ 2 ᴧ 3 ᴧ 4

ψ2ᴧ 3

ψ5

ψ4ᴧ5 ψ3ᴧ5

ψ1ᴧ 3 ᴧ 4 ᴧ 5 ψ2ᴧ 3 ᴧ 4 ᴧ 5

ψ1ᴧ 2ᴧ 3 ᴧ 4 ᴧ 5

ψ3ᴧ 4ᴧ 5 ψ2ᴧ 4 ᴧ 5

Figure 5.2: The lattice of generated candidate composite condition. Each partition is

represented by a single color.

• (ψ̄1, ψ2): contains the candidates with subscript 2 but without 1,

• (ψ̄1, ψ̄2): contains the candidates without the subscripts 1 and 2,

Table 5.3 and Figure 5.2 represent the obtained partition of the space of candidate con-

ditions presented at Table 5.2 using PC = {ψ1, ψ2}. Each column in Table 5.3 contains

a chunk of the space of candidates that can be processed separately by a given reducer.

Note that the obtained chunks are balanced (i.e., they have the same num-

ber of candidate conditions1) and they form a partition of the initial space of

candidates. It is also worth noting that each chunk can be treated separately

from the others in order to compute the corresponding interesting conditions.

1In Table 5.3, if we also consider that ∅ ∈ (ψ̄1, ψ̄2), then every chunk will have 8 candidates.

5.2. Single-Pass Composite Condition Discovery algorithms 91

(ψ1, ψ2) (ψ1, ψ̄2) (ψ̄1, ψ2) (ψ̄1, ψ̄2)

Level 1 ψ1 ψ2 ψ3, ψ4, ψ5

Level 2 ψ1∧2 ψ1∧3, ψ1∧4,

ψ1∧5

ψ2∧3, ψ2∧4,

ψ2∧5

ψ3∧4, ψ3∧5,

ψ4∧5

Level 3 ψ1∧2∧3,

ψ1∧2∧4,

ψ1∧2∧5

ψ1∧3∧4,

ψ1∧3∧5,

ψ1∧4∧5

ψ2∧3∧4,

ψ2∧3∧5,

ψ2∧4∧5

ψ3∧4∧5

Level 4 ψ1∧2∧3∧4,

ψ1∧2∧3∧5,

ψ1∧2∧4∧5

ψ1∧3∧4∧5 ψ2∧3∧4∧5

Level 6 ψ1∧2∧3∧4∧5

Table 5.3: Partitioned candidates space.

Algorithm 14: Conjunctive-MR
Input: AC, PC = {ψ1, . . . , ψl}

Output: set of interesting atomic conditions

1 begin

2 Map (key: null, ca: an atomic condition in AC) ;

3 P ← {ψ1, ψ̄1} × . . .× {ψl, ψ̄l} ;

4 for p ∈ P do

5 if ac ∈ p then

6 output(p, ac) ;

7 else

8 for r ∈ Reducers do

9 output(r, ac) ;

/* (k′, V = list(v′)) is an intermediate key-list of values pair */

10 Reduce (k’, V) ;

11 PC ← ∅ ;

12 RC ← ∅ ;

/* P is the set of partitioning conditions, subset of AC. */

/* RC =AC \ P */

13 {PC,RC} ← BuildSets(V);

14 if PC 6= ∅ then

15 ψPC ← Conjunctive_Partitioning_conditions(PC)

CC ← Level_wise_p(ψP , RC) ;

16 else

17 CC ← Level_wise(RC) ;

18 output(CC) ;

92 Chapter 5. Discovering Composite Conditions

The high level structure of the algorithm that enables to compute conjunctive con-

ditions, called Conjunctive-MR, is given at algorithm 14. The algorithm takes as input a

set of atomic conditions (AC) and iteratively generates candidates of higher level based

on candidates in lower level, then it prunes non interesting ones. A classical candidate

generation procedure, e.g., see the Apriori algorithm [13], computes candidates at level

l by a self-join on level l - 1. For example, if both ψ1∧2 and ψ1∧3 appear at level 2, than

the candidate ψ1∧2∧3 will be generated at level 3. The Map function will be in charge of

partitioning the space of computations. For a given condition ψx, it proceeds as follows:

1. Checks the presence of ψx in PC.

2. ψx is sent to the corresponding reducers, i.e., sent to each reducer in charge of

processing a chunk that contains ψx (line 6 of algorithm 14), if ψx ∈ PC.

3. ψx is sent to all reducers (line 9 of algorithm 14), otherwise.

At the Reduce side, (subset of) the partitioning conditions (PC) are buffered sep-

arately from the remainder conditions (RC 2). Then, each reducer first computes the

conjunction of the partitioning conditions presented in its corresponding chunk, i.e., it

computes ψPC , where ψPC = ψ1 ∧ ψ2 ∧ . . . ∧ ψl (line 15 of algorithm 14). After that, a

level-wise algorithm, depicted in algorithms 16, is applied to explore the space of candi-

date conjunctive conditions built on ψPC . For example, a given reducer in charge of a

chunk with PC = {ψ1, ψ2, ψ3} and RC = {ψ4, ψ5}, then it computes ψ123, after that it

applies the level-wise algorithm to compute ψ123∧4, ψ123∧5 and ψ123∧4∧5. At each iteration

of the level-wise the reducers proceed as follows:

(i) Computing process instances entailed by ψPC and ψx (where ψx ∈ RC). The

first step computes the messages correlated by ψPC∧x. Indeed, this operation (line 6

algorithm 16) relies on the following property: two messages m and m′ are correlated by

the conjunctive condition ψ12 if they are correlated by both ψ1 and ψ2 (i.e., <m, m’> ∈

CMBψ1
∩ CMBψ2

).

(ii) Pruning candidate conjunctive conditions. At this step, non interesting conditions

are pruned using ImbalancedPI criterion (line 8 algorithm 16). We check if the condition

PI_ratio(ψPC∧x) < β is satisfied or not. Using conjunctive operator implies a new

criteria that can be applied to prune non interesting conditions. The first criterion is

2Atomic conditions that do not belong to partitioning condition set are referenced as RC, (i.e.,

RC=AC \ PC).

5.2. Single-Pass Composite Condition Discovery algorithms 93

referred as notMon(ψ), it is used to check the monotony of the number and the length of

instances with respect to the conjunctive operator. It says that, conjunctive conditions

that do not increase the number of instances w.r.t. the number of instances already

discovered by their respective conjuncts and do not decrease the length of the discovered

instances is considered as non interesting and therefore pruned. Secondly, if the set of

correlated messages of psix is included in that of ψPC (or vice versa), then, the condition

ψPC∧x is discarded.

(iii) Generating candidate conditions. Candidate conjunctive condition of levell
are formed using non-pruned from levell−1. In algorithm 16 candidate conjunctive

conditions in the first level are computed by conjunction of condition ψPC with each

condition from RC. From the second level to higher, conjunctive conditions are

computed by joining conditions from the previous level with those from RC (e.g.,

level1= {ψ13, ψ14}, RC = {ψ3, ψ4} then level2 = {ψ134}). Should recall that redundancy

is eliminated, since ψ123 = ψ213 = ψ231 only ψ123 is computed.

Algorithm 15: Level_wise
Input: RC

Output: CC

1 begin

2 l← 0 ;

3 Level0 ← RC ;

4 repeat

5 l← l + 1 ;

6 foreach ψi ∈ Levell−1 do

7 foreach ψj ∈ RC do

8 ψcc ← ψi ∧ ψj ;

9 CMB ψcc
← CMB ψi

∩ CMB ψj
;

10 if not inc(CMB ψcc
) then

11 PIψcc
← compute_instances(CMB ψcc

) ;

12 if is_mon(ψcc) and ψcc has not ImbalancedPI(PIψcc
) then

13 Levell ← Levell ∪ ψcc ;

14 CC ← CC ∪ Levell ;

15 until Levell = ∅;

16 return CC

94 Chapter 5. Discovering Composite Conditions

Algorithm 16: Level_wise_p
Input: ψP , RC

Output: CC

1 begin

2 CC ← ψP ;

3 l← 0 ;

4 foreach condition ψi ∈ RC do

5 ψPC∧i ← ψPC ∧ ψi ;

6 CMB ψPC∧i
← CMB ψPC

∩ CMB ψi
;

7 if not inc(CMB ψcc
) then

8 PIψPC∧i ← compute_instances(CMB ψPC∧i
) ;

9 if is_mon(ψcc) and ψPC∧i has not ImbalancedPI(PIψPC∧i) then

10 Level0 ← ψPC∧i ;

11 CC ← CC ∪ Level0 ;

12 repeat

13 l← l + 1 ;

14 foreach ψi ∈ Levell−1 do

15 foreach ψj ∈ RC do

16 ψcc ← ψi ∧ ψj ;

17 CMB ψcc
← CMB ψi

∩ CMB ψj
;

18 if not inc(CMB ψcc
) then

19 PIψcc
← compute_instances(CMB ψcc) ;

20 if is_mon(ψcc) and ψcc has not ImbalancedPI(PIψcc
) then

21 Levell ← Levell ∪ ψcc ;

22 CC ← CC ∪ Levell ;

23 until Levell = ∅;

24 return CC

5.2. Single-Pass Composite Condition Discovery algorithms 95

Example 11 Using the algorithm Conjunctive-MR with inputs as AC =

{ψ1, ψ2, ψ3, ψ4, ψ5}, enables to generate the whole space of candidates described in

Table 5.3.

An exceptional case needs a different processing occurs when the reducer chunk does

not contain any partitioning condition (i.e., PC = ∅, e.g., the fourth column in Table

5.3). The algorithm devoted to handle this special case is depicted in algorithm 15. The

candidate conjunctive conditions in the first level are directly computed from RC and

the algorithm follows the same behaviour of algorithm 16 from the step (ii).

5.2.2 Discovering Disjunctive Conditions

Messages Service InvId PayId ShipId

m1 invoice i1

m2 invoice i2

m3 Pay i1 P1

m4 Pay i2 P2

m5 Ship P2 S2

m6 Ship P1 S1

m7 OrderFulfil S2

m8 OrderFulfil S1

Table 5.4: a snapshot of example log.

Business Processes in modern enterprises are, rarely, executed by a single centralized

system. Indeed, several systems cooperate together to achieve the enterprise business

objective. However, applications or web services interact together by sending and receiv-

ing messages. Such interactions are specified in a process choreography [104, 81], that

allows for multiple concrete implementations, in which traditional information systems

cannot support. Therefore, their historical execution informations (log files) are dispersed

across several systems and data sources. In such enterprises, the process spans many sys-

tems, and each system may have a different correlation method to correlate messages.

A disjunction of conditions deals with this issue, where several conditions are used to

correlate messages which are correlated differently [74]. For example, in the Table 5.4 a

shipment message references a payment message while a payment message references an

96 Chapter 5. Discovering Composite Conditions

invoice message. In this case, 3 conditions are needed to correlate those messages Rψ1
:

mx.InvID = my.InvID = {〈m1,m3〉, 〈m2,m4〉}, Rψ2
: mx.PayID = my.PayID =

{〈m3,m6〉, 〈m4,m5〉} and Rψ3
: mx.ShipID = my.ShipID = {〈m5,m7〉, 〈m6,m8〉}. We

note:

ψ1∨2∨3 = ψ1 ∨ ψ2ψ3 = {〈m1,m3,m6,m8〉, 〈m2,m4,m5,m7〉}.

Disjunctive Correlation Condition A Disjunctive correlation condition consists of

a disjunction of at least two atomic or conjunctive conditions. It has the following form:

Φ = ψ1 ∨ ψ2 ∨ . . . ψn. Where, ψis, 1 ≤ i ≤ n are atomic conditions and/or conjunctive

conditions.

ψ1 ψ2 ψ3 ψ(1ᴧ 3)

ψ ᴠ ψ ᴠ

ψ ᴠ 1 ᴠ 3

ψ1 ᴠ 2 ᴠ 3 ᴠ (1ᴧ 3)

ψ 1 ᴠ (1ᴧ 3) ψ 2 ᴠ (1ᴧ 3) ψ 3 ᴠ (1ᴧ 3)

ψ 1 ᴠ ᴠ (1ᴧ 3) ψ 1 ᴠ ᴠ (1ᴧ 3) ψ 2 ᴠ ᴠ (1ᴧ 3)

Figure 5.3: Lattice generated by 3 atomic conditions and one conjunctive condition.

Given an atomic and a conjunctive conditions ψi and ψcc ∈ {AC} ∪ {CC}, the goal

is to find interesting minimal disjunctive conditions of the form ψdc = ψi ∨ψcc. Discover-

ing candidate disjunctive conditions is also performed by an iterative level-wise approach

5.2. Single-Pass Composite Condition Discovery algorithms 97

[68, 110]. The correlation discovery process consists in three main parts: (i) generat-

ing candidate conditions of level l from candidates of level l − 1, (ii) computing process

instances of the new candidates and, finally, (iii) pruning non interesting conditions.

Example 12 Consider as an example a set of atomic and conjunctive conditions

AC_CC = {ψ1, ψ2, ψ3, ψ1∧3}. The candidate conditions at each level are shown in the

Table 5.5 and Figure 5.3 illustrates the space of computations. Note that as explained

in the sequel, conditions in black are discarded.

Level 1 ψ1, ψ2, ψ3, ψ1∧3

Level 2 ψ1∨2, ψ1∨3, ψ1∨(1∧3), ψ2,3, ψ2∨(1∧3), ψ3∨(1∧3)

Level 3 ψ1∨2∨3, ψ1∨2∨(1∧3), ψ1∨3∨(1∧3), ψ2∨3∨(1∧3)

Level 4 ψ1∨2∨3∨(1∧3)

Table 5.5: Candidates space.

In order to explore the computation space of candidate disjunctive conditions,

we adopt the same strategy for computing candidate conjunctive conditions (see sec-

tion 5.2.1).

Let AC set of atomic conditions and CC set of Conjunctive conditions. We define the

partitioning conditions PC = {ψ1, . . . , ψl} ⊂ AC ∪ CC a subset of AC ∪ CC. Then, we

form P , the partitions of the space of candidates, as follows: P = {ψ1, ψ̄1}× . . .×{ψl, ψ̄l}.

Each element (φ1, . . . , φn) ∈ P , with φ1 ∈ {ψ1, ψ̄1}, for i ∈ [1, l], represents a chunk of

the space of candidate conditions.

Example 13 Continuing with the previous example and assuming that PC = {ψ1, ψ3},

we obtain four possible chunks:

• (ψ1, ψ3): contains the candidates with subscripts 1 and 3,

• (ψ1, ψ̄3): contains the candidates with subscript 1 but without 3,

• (ψ̄1, ψ3): contains the candidates with subscript 3 but without 1,

• (ψ̄1, ψ̄3): contains the candidates without the subscripts 1 and 3,

Table 5.6 shows the obtained chunks of the space of candidate conditions of Table 5.2

partitioned using PC = {ψ1, ψ2}. Each column of the table contains a chunk of the space

of candidates that can be processed separately by a given reducer.

98 Chapter 5. Discovering Composite Conditions

Algorithm 17: Disjunctive-MR
Input: AC, CC, P = {ψ1, . . . , ψl}

Output: set of interesting atomic conditions

1 begin

2 Map (key: null, ca: an atomic condition in CA) ;

3 P ← {ψ1, ψ̄1} × . . .× {ψl, ψ̄l} ;

4 for p ∈ P do

5 if ac ∈ p then

6 output(p, ac) ;

7 else

8 for r ∈ Reducers do

9 output(r, ac) ;

/* (k′, V = list(v′)) is an intermediate key-list of values pair */

10 Reduce (k’, V) ;

11 PC ← ∅ ;

12 RC ← ∅ ;

/* PC is the set of partitioning conditions, subset of AC ∪ CC. */

/* RC = {AC ∪ CC} \ P */

13 {PC,RC} ← BuildSets(V);

14 if P 6= ∅ then

15 ψPC ← Conjunctive_Partitioning_conditions(PC)

DC ← Level_wise_p(ψPC,RC) ;

16 else

17 DC ← Level_wise(RC) ;

18 output(DC) ;

The proposed algorithm devoted to compute disjunctive conditions, called Disjunctive-

MR, is given at algorithm 17. The algorithm has the atomic conditions (AC) and

conjunctive conditions (CC) as inputs and iteratively builds candidate of higher levels

based on candidate in lower levels. Recall, that candidate in level l are computed by a

self join on level l -1. The Map, in Disjunctive-MR will be in charge of partitioning the

space of computations.

At the reduce side we apply the level-wise, with slight difference, to explore the space

of candidate conditions. Each iteration consists of the following steps:

5.2. Single-Pass Composite Condition Discovery algorithms 99

(ψ1, ψ3) (ψ1, ψ̄3) (ψ̄1, ψ3) (ψ̄1, ψ̄3)

Level 1 ψ1 ψ3 ψ2, ψ(1∧3)

Level 2 ψ1∨3 ψ1∨2, ψ1∨(1∧3) ψ3∨2,

ψ3∨(1∧3)

ψ2∨(1∧3)

Level 3 ψ1∨3∨2,

ψ1∨3∨(1∧3)

ψ1∨2∨(1∧3) ψ3∨2∨(1∧3)

Level 4 ψ1∨2∨3∨(1∧3)

Table 5.6: Partitioned candidates space.

M1 M3 M5 M7

M5 M7 M9 M11

T ∈ PI ψ

M2 M4 M6 T ∈ PI ψ

T' ∈ PI ψ

T' ∈ PI ψ M6 M8 M10

Figure 5.4: Connected instances.

(i) Computing process instances. This step is challenging and require an intensive

computation. To find process instances of a disjunctive conditions ψ1∨2 in [74] they,

first, compute the set of correlated message pairs Rψ1∨2
. Rψ1∨2

is the union of correlated

message pairs of ψ1 and those of ψ2. After that, process instances are computed based

on finding connected components from the set of correlated messages Rψ1∨2
. In order

to minimize computations, process instances entailed by disjunctive conditions can be

computed directly from already discovered instances in previous steps (atomic and con-

100 Chapter 5. Discovering Composite Conditions

junctive) and avoid additional step of processing. Therefore, we need only to find a link

between a process instance from ψ1 with a process instance from ψ2 to form a new process

instance. Figure 5.4 illustrates an example of connected instances. In order to formalize

this property we introduce the operator ⊗ as following:

For each instance σ in PIψ1∨2
, it exists at least two instances σ1 and σ2 from PIψ1

and

PIψ2
respectively, where intersection of σ1 and σ2 is not empty and σ = σ1 ⊗ σ2. ⊗ is

the joining of two instances and it is computed if and only if σ1 ∩ σ2 6= ∅. More formally:

∀σ ∈ PIψ1∨2
then ∃(σ1, σ2) ∈ PIψ1

× PIψ2
where σ1 ∩ σ2 6= ∅ and σ1 ⊗ σ2 ⊆ σ

Example 14 As shown in Figure 5.4, we have:

• σ ∈ PIψ1∨2
, ∃(σ1, σ

′
1) = {〈m1,m3,m5,m7〉, 〈m5,m7,m9,m11〉} ∈ PIψ1

×PIψ2
, where

σ1 ∩ σ2 = {m5,m7} and σ = σ1 ⊗ σ
′
1 = {〈m1,m3,m5,m7,m9,m11〉},

• σ′ ∈ PIψ1∨2
, ∃(σ2, σ

′
2) = {〈m2,m4,m6〉, 〈m6,m8,m10〉} ∈ PIψ1

× PIψ2
, where σ2 ∩

σ′
2 = {m6} and σ′ = σ2 ⊗ σ

′
2 = {〈m2,m4,m6,m8,m10〉}.

Finally, we find PIψ1∨2
= {σ, σ′} = {〈m1,m3,m5,m7,m9,m11〉, 〈m2,m4,m6,m8,m10〉}

(ii)Pruning Candidate disjunctive conditions. At this step, non-interesting conditions

are pruned using the following criterion:

• ImblancedPI criterion is applied to check if PI_ratio > α since instances formed

based on disjunction of ψ1 and ψ2 are less numerous than those of ψ1 and ψ2.

• monotonic property, for a given disjunctive condition, if the number of instances

does not decrease or the length of the instances does not increase, then such dis-

junctive condition is pruned.

• associativity and inclusion properties. Conditions that combine the disjunction

and conjunction of the same atomic condition are not needed to be computed,

this criterion is referred as not assoc. If PIψ1
is included in PIψ2

, then we have

PIψ1∨2
= PIψ2

. Hence, the condition is discarded, this criterion is referred as not

inc.

(iii) Generating candidate conditions. Candidate conjunctive condition of levell are

formed using non-pruned candidates from levell−1.

5.2. Single-Pass Composite Condition Discovery algorithms 101

Algorithm 18: Level_wise_p
Input: ψP , RC

Output: DC

1 begin

2 DC ← ψP ;

3 l← 0 ;

4 foreach condition ψi ∈ RC do

5 ψPC∨i ← ψPC ∨ ψi ;

6 if not assoc(ψPC) or not inc(ψPC , ψi) then

7 PIψPC∨i
← compute_instances(CMB ψPC∨i

) ;

8 if is_mon(ψdc) and ψPC∨i has not ImbalancedPI(PIψPC∨i) then

9 Level0 ← ψPC∨i ;

10 DC ← DC ∪ Level0 ;

11 repeat

12 l← l + 1 ;

13 foreach ψi ∈ Levell−1 do

14 foreach ψj ∈ RC do

15 ψdc ← ψi ∨ ψj ;

16 if not assoc(ψdc) or not inc(ψP , ψi) then

17 PIψdc
← compute_instances(CMB ψcc) ;

18 if is_mon(ψdc) and ψdc has not ImbalancedPI(PIψdc
) then

19 Levell ← Levell ∪ ψdc ;

20 DC ← DC ∪ Levell ;

21 until Levell = ∅;

22 return DC

102 Chapter 5. Discovering Composite Conditions

Single-pass composite conditions discovery algorithm provides an efficient strategy to

partition, evenly, the space of candidate composite conditions across nodes. In addition, it

necessitates only a single MapReduce job. Therefore, the overhead due to the scheduling

and reading data multiple time is reduced. Also, it can be easily implemented and

tested. However, the algorithm may suffer from some problems. One potential problem

with single-pass discovery algorithm is that nodes may be overloaded, especially at the

Reduce side where the large part of computations reside. In some situations, nodes may

not handle a large number of candidates having long process instances. To deal with this

issue we propose a multi-pass algorithm for composite candidate condition discovery to

overcome the problem of overloaded nodes.

ψ1 ψ2 ψ3 ψ4

ψ1,4 ψ1,3

ψ1,2,3

ψ2,4 ψ3,4 ψ1,2

ψ1,2,4 ψ1,3,4 ψ2,3,4

ψ1,2,3,4

ψ2,3

Level 1

Level 2

Level 3

Level 4

Figure 5.5: Lattice generated by 4 atomic conditions. Each level of the lattice is processed

by separate MapReduce job.

5.3 Muti-Pass composite Conditions Discovering algo-

rithms

To enhance the performance of the algorithm presented previously and minimize the work-

load of each node, we introduce a multi-pass algorithm to discover candidate composite

5.3. Muti-Pass composite Conditions Discovering algorithms 103

conditions (i.e., conjunctive or disjunctive). Besides generating and processing candi-

dates, the aim of the algorithm is to minimize the workload allocated to each node by

adopting a new strategy of partitioning and splitting the space of candidate exploration.

The multi-pass algorithm, as its name indicates, relies on several passes (each pass is a

MapReduce job). Taking the set of atomic conditions discovered in previous algorithms as

input, every pass of the algorithm is devoted to carry out candidates composite conditions

presented in a single level, in the lattice, independently from the others. Based on this

strategy any node in the cluster may not be overloaded since it will process only a single

candidate condition at each level. Besides that, candidate composite conditions retained

in a step (except the last level) are combined to generate the set of candidate of high

level and, thus, used as the inputs of the next pass.

Algorithm 19: multi-pass main algorithm.
Input: K : unused, V : AC

Output: K : unused, V : CC

1 begin

2 k ← 0 ;

3 levelk ← AC ;

4 while levelk 6= ∅ do

5 η ← ∅ ;

6 forall the ψ ∈ levelk do

7 η ← η ∪ ψ ;

8 store η in distributedCache ;

9 k ← k + 1 ;

10 Map() function ;

11 levelk ← Reduce() function ;

As illustrated in Figure 22, the multi-pass composite conditions discovery algorithm

partitions the lattice horizontally, i.e by levels. It discovers relevant candidate composite

conditions presented in levelk in iterationk. Each level is distinguished by the number

of atomic conditions merged together (e.g, ψ1,2,3 is in level3). Also, it is handled by a

single MapReduce job. The first iteration (job) of the algorithm combines the set of

candidate atomic conditions, discovered in the previous stage, to generate conditions of

level2 then select interesting candidates, based on criteria, to be fed to the next itera-

tion. Afterwards, every iterationk generates the candidate of levelk from the selected

104 Chapter 5. Discovering Composite Conditions

candidates, those that are not pruned, of iterationk−1.

Algorithm 20: Multi-pass map function.

1 Map_Configure

2 begin

3 load η from distributedCache ;

4 foreach ψi, ψj ∈ η do

5 ψi⊙j ← ψi ⊙ ψj ;

/* ⊙ ∈ {∧,∨} */

6 if notAssoc(ψi⊙j) then

7 CC ← ψi⊙j ;

8 Map_function

Input: K : unused, V : ψi ∈ levelk

Output: K : ψ, V : CMBψ

9 begin

10 n← extract the condition name from ψi;

11 foreach ψ ∈ CC do

12 if ψ contains n then

13 output(ψ, ψi) ;

Algorithm 21: multi-pass reduce function.

1 Reduce_function

Input: K : ψ, V : CMBψ〉
, CMBψ|

Output: K : ψ, V : ψcc

2 ψcc ← ψi ∧ ψj ;

3 if not inc(ψP , ψi) then

4 PIψcc
← compute_instances(CMB ψcc) ;

5 if is_mon(ψdc) and ψcc has not ImbalancedPI(PIψcc
) then

6 output(ψ, ψcc);

For a given iteration k and before the Map functions, outlined in the algorithm 20, start

their execution, an initialization function is called to load from the DistributedCache the

5.3. Muti-Pass composite Conditions Discovering algorithms 105

non-pruned candidate conditions3 from iteration k− 1(line 3 of algorithm 20), excepting

the first iteration which loads the candidates atomic conditions. Then, it combines these

candidate to generates a set of new candidates (line 5 of algorithm 20). Thereafter, it

applies the associativity criterion to clean the list from non-interesting candidate (line 6 of

algorithm 20). The Map function then retrieves the correlated message buffers4 (CMBψ)

from HDFS. Next, from each CMBψ, it extracts the condition name and uses it to probes

the list of keys built in the initialization function for testing whether any key contains the

condition name. Hereafter, the Map function produces the key-value pair (key, CMBψ)

for all keys that has the condition name as part (lines from 10 to 13).

In the Reduce function, each reducer will receive a single candidate ψ as key, which

corresponds to the candidate that will be processed by this reducer. Associated with

that key the set of values are two conditions of levelk−1 such as the combination of

their name produces the key. Before, computing instances at line 4, the reducer checks

whether the conditions satisfies the non Inclusion and Trivial Union criteria. If so, a

DFS -like algorithm is applied to discover the process instances involved by the composite

conditions. After that, the reducers verifies whether new candidate condition induces a

new interesting process instances by carrying out the monotonicity and imbalanced_PI

criteria. If the condition survives the criteria, then the reducer outputs the key-value

pairs (ψ, CMBψ).

Finally, selected candidate names, in iteration k, are stored into the DistributedCache

and used to generate candidates for the next iteration and the computed process instances

are stored into the HDFS.

Example 15 Figure 5.6 illustrates an example of the algorithm execution. The algorithm

has 4 candidate atomic conditions as input. Each iteration combines previous result to

build current level candidates. The last iterations produces the candidate containing all

the candidates atomic conditions present in the input.

3We store only the condition names which is composed by the attribute names (line 8 of algorithm

19). For convenience, we use only ψ or ψi to represent the condition name.
4In case of candidate disjunctive conditions and for optimization reasons we load/store the process

instances instead of CMB.

106 Chapter 5. Discovering Composite Conditions

Input

CMBψ1

CMBψ2

CMBψ3

CMBψ4

L0

ψ1

ψ2

ψ3

ψ4

M

M

M

ψ1ᴠ2
ψ1ᴠ3

ψ2ᴠ4
ψ3ᴠ4

ψ1ᴠ4
ψ2ᴠ3

Output

PIψ1ᴠ2

PIψ1ᴠ3⋮
PIψ3ᴠ4

R

R

R

iteration 1.

M

M

M

ψ1ᴠ2ᴠ3
ψ1ᴠ2ᴠ4
ψ1ᴠ3ᴠ4
ψ2ᴠ3ᴠ4

Output

PIψ1ᴠ2ᴠ3

PIψ1ᴠ2ᴠ4

PIψ1ᴠ3ᴠ4

PIψ2ᴠ3ᴠ4

R

R

R

L1

ψ1ᴠ2

ψ1ᴠ3⋮
ψ3ᴠ4

Input

CMBψ1ᴠ2
CMBψ1ᴠ3⋮
CMBψ3ᴠ4

iteration 2.

M

M

M

ψ1ᴠ2ᴠ3ᴠ4 Output

PIψ1ᴠ2ᴠ3ᴠ4

R

R

R

L2

ψ1ᴠ2ᴠ3

ψ1ᴠ2ᴠ4

ψ1ᴠ3ᴠ4

ψ2ᴠ3ᴠ4

Input

CMBψ1ᴠ2ᴠ3

CMBψ1ᴠ2ᴠ4

CMBψ1ᴠ3ᴠ4

CMBψ2ᴠ3ᴠ4

iteration 3.

Figure 5.6: An execution example of the algorithm with 3 iterations.

5.4. Experimental Evaluation 107

5.4 Experimental Evaluation

In this section, we present the performance evaluation of the proposed algorithms for

candidate composite correlation conditions. The absolute time as well as speed up and

scale up are measured and discussed.

Environment And Datasets. We ran all the experiments reported in this chapter on

the same environment configuration described in Chapter 4. We used the same dataset

namely SCM×x and RobotStrike.

5.4.1 Experiments.

0

1

2

3

4

1 2 3 4 5

S
p

e
e

d
 u

p
 f

a
ct

o
r

Number of nodes

Figure 5.7: Relative running time of the single-pass conjunctive conditions algorithm for

RobotStrike dataset set on different cluster sizes.

Single-pass conjunctive conditions algorithm. We ran the single-pass conjunctive

conditions algorithm on a fixed size of RobotStrike dataset and we vary the number of

nodes from 1 to 5. We fix the number of partitioning conditions to 3 and by consequent

the number of Reduce tasks required to achieve the computations is 23. Figure 5.7 shows

108 Chapter 5. Discovering Composite Conditions

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

1 2 3 4 5

S
p

e
e

d
 u

p
 f

a
ct

o
r

Partitioing conditions size

Figure 5.8: Relative running time of the single-pass conjunctive conditions algorithm for

RobotStrike dataset set on 5-nodes cluster with different partitioning conditions sizes.

the evolution of the relative running time w.r.t the number of nodes. The running time

decreases as the number of nodes is increased. The breaking point can be observed

moving from configuration with 1-node to configuration with 2-nodes, where the running

time decreases, approximately, by half. This is because the two nodes receive the same

workload. Adding more nodes decreases the running time with factor of 0.4. This is due

two reasons: (i) nodes do not have the same workload (e.g., with 3-nodes configuration,

two nodes receive three tasks and one receive two tasks), (ii)) some tasks take more time

in execution than the others depending on the amount of candidates that are pruned

before computing their process instances.

In the second experiment, we fixed the number of nodes to 5 than we varied the

number of partitioning conditions from 1 to 5. Figure 5.8 shows the relative execution

time of the different configuration. We start with partitioning conditions size (p) equal to

1 this implies 21 Reduce tasks. Therefore, only 2 nodes were working where the other 3

nodes are idle. We observe that the execution time increases than it decreases comparing

to the first configuration.

• Configuration 2 and 3, the execution time increases because each node processes at

5.4. Experimental Evaluation 109

most two Reduce tasks. Also, all nodes receive a piece of workload (no idle nodes).

• configuration 4 and 5, increasing p spawns more Reduce tasks. However, it in-

volves larger intermediate data size and scheduling a huge number of tasks. These

overheads affect the performance of the algorithm and decrease the running time.

Based on this evaluation, we conclude that a good value of p w.r.t the number of

nodes is in factor of two (e.g., if we have 10 nodes cluster size p should equal to 4).

0

0,5

1

1,5

2

2,5

1 2 3 4 5

S
p

e
e

d
 u

p
 f

a
ct

o
r

Number of nodes

Figure 5.9: Relative running time of the single-pass disjunctive conditions algorithm for

SCM×x dataset set on different cluster sizes.

Single-pass disjunctive conditions algorithm. To evaluate the speed up of the

single-pass disjunctive condition algorithm, we ran the algorithm on a fixed size of

SCM×x (x=30) and we fixed the number of partitioning condition to 3 (23 Reduce tasks).

Figure 5.9 shows the evolution of the execution time. We observe that each time we add

a node the running time speeds up by a factor of 0.5. Therefore, using 5-node cluster

speeds up the running time by approximately a factor of 2.3. Even if the lattice is equally

partitioned and the nodes receive the same workload (number of candidates) the exper-

iments show a poor speed up of the algorithm. This fact is due to the computation of

110 Chapter 5. Discovering Composite Conditions

candidates in some nodes and the earlier pruning of candidates in the other nodes. For

example, 2 nodes receive 2 candidates, the first prunes one candidate and computes the

process instances for the second candidates, the second node computes both candidates.

In this case, it is obvious that the second node will spend more time than the first one.

0

500

1000

1500

2000

2500

3000

1 2 3 4 5

T
im

e
 i

n
 s

e
co

n
d

s

Number of nodes

pass 3

pass 2

pass 1

pass 0

Figure 5.10: Running time of the multi-pass disjunctive conditions algorithm for SCM×x

data set on different cluster sizes.

Multi-pass disjunctive conditions algorithm. In order to evaluate the multi-pass

composite conditions algorithm, we fixed the dataset size at×30 with a duplicated number

of attributes and we varied the cluster size from 1 to 5. The number of the input atomic

conditions is 14 therefore the number of candidate to be explored is equal to 214. Figure

5.10 shows the details of running time of each pass of the algorithm as we varied the

cluster size. For each configuration, on average, 44% of the time is spent on computing

candidates in pass 1, 33% on processing pass 2, 14% on processing pass 0 and about 9%

on processing the last pass. The reason that pass 1 and pass 2 have the important share

in the execution time is due to the large number of candidates generated at this passes.

Indeed, a theoretical number of candidates in pass 1 starting with 14 atomic conditions

is 4095 candidate conditions. In other hand, the last pass spent less time because the

5.5. Discussion 111

0

1

2

3

4

1 2 3 4 5

S
p

e
e

d
 u

p
 f

a
ct

o
r

Number of nodes

Figure 5.11: Relative running time of the multi-pass disjunctive conditions algorithm for

SCM×x dataset set on different cluster sizes.

number of candidate conditions decreases (in the top of the lattice). Also, we observe

that increasing the number of nodes decreases the execution time. To better understand

the speed up characteristics of the multi-pass composite conditions algorithm,in Figure

5.11 we plotted the same results on relative scale. That is, the y-axis shows how much

faster the running time becomes as we increase the cluster size. From this figure, we

can observe that the execution time decreased by a factor of 3.7 which is better than

the single-pass approach (by a factor of 2.4). The reason for this result is that, (i) in

single-pass approach, nodes receive large workloads and may be overloaded or compute

a large number of candidates where (ii) in multi-pass approach candidates conditions are

redistributed over nodes for each pass. Moreover, nodes receive small workloads at each

iteration.

5.5 Discussion

In this chapter we have studied the problem of discovering candidate composite condi-

tions in parallel using the MapReduce framework. We proposed single and multi-pass

112 Chapter 5. Discovering Composite Conditions

approaches and we provide two algorithms for the single stage approach to discover con-

junctive and disjunctive candidate correlation conditions. We showed how to efficiently

partition the space of computation across several nodes in the cluster in order to process

each (sub)-partition independently from others. We also provided a useful property to

eliminate unnecessary computation during computing process instance phase. We im-

plement our approach on hadoop and we perform a set of experiments to evaluate both

scalability and speed up of the algorithms. The experiments showed that the worst speed

up was the single-pass disjunctive conditions algorithm with factor of 2.3 where the other

algorithms exceeded the factor 3.2. In order to improve the speed up and scale up of

these approach, a preprocessing step can be used to detect only interesting candidates by

using pre pruning heuristics and measures. This idea is a subject of future works.

Chapter 6

Conclusions and Future Work

A challenging issue for business process monitoring/processing is event correlation

which refers to grouping together event logs to identify end-to-end process instances.

Correlating message logs based on their content is a requirement in various application

domains. However, this task represents a real challenge because of, (i) modern enterprise

systems become increasingly federated, loosely coupled and continually growing in size

and complexity, (ii) simultaneously they generate a large size of event-data representing

business activities stored in log files. Therefore, in today’s event-driven systems, it is

necessary to perform such task on multiple processing nodes in order to handle a large

recorded data sets. In this thesis we described and analysed how event correlation

discovery task can be supported efficiently on data-intensive parallel platform namely

MapReduce.

We presented algorithms devoted to atomic correlation conditions discovery. We

showed how to efficiently deal with problems such as partitioning, replication, and

multiple inputs by manipulating the keys used to route the data between nodes of a

MapReduce cluster. We also provided an adequate data structure used to store correlated

messages in order to decrease memory usage. We proposed several alternatives consisting

of one, two or many MapReduce jobs for discovering atomic correlation conditions. We

also proposed a disk-based alternative to handle insufficient memory at Reduce side. We

closed this chapter with an experimental evaluation of the proposed algorithms.

Also, we described algorithms devoted to discover composite candidate correlation

conditions. We proposed two alternatives consisting on one and multi-pass MapReduce

jobs. For the one-pass algorithm, we introduced the concept of partitioning conditions, a

subset of the input conditions, in order to partition the space of computation vertically

and perform the correlation discovery in a single MapReduce job. We also showed how

to connect process instances to form new instances, in the case of disjunctive candidates,

in order to reduce the computations. We proposed a multi-pass strategy based on a

114 Chapter 6. Conclusions and Future Work

horizontal partitioning of the lattice and process each level in a single MapReduce job.

Finally, we performed experimental evaluation of both strategies on 5-nodes cluster.

Finally, the experimental results showed that the proposed algorithms can process

large data sets within a reasonable time and they scale well w.r.t to dataset sizes and

cluster sizes.

Future Work

In this thesis we focused on the problem of event correlation discovery using MapReduce.

One possible future direction to improve our approach is to explore alternative data

structures, for example, distributed non-relational database as Hbase [5] or HadoopDB

[9] to integrate and store event related data. Such kind of data structure provides

advantages in distributed cloud storage systems as tables are always sorted by their key

and thus can be easily distributed horizontally over several machines. Besides this, it is

interesting to suggest new statistic calculations, based on attributes values, to determine

correlation among events. Using such storage gives the opportunity to provide a near

to real-time incremental approach where events are processed as soon as they are received.

Also, it will be interesting to collaborate with data mining researchers to investigate

well known data mining algorithms such as Apriori using MapReduce framework to

improve the strategy of data partitioning.

This thesis addressed the problem of event correlation discovery from business event

logs in parallel shared nothing framework, which is only the first step to achieve business

process mining techniques. Another future research direction, is to extend the approach

to construct (in parallel) the logical description of the business process. In this case,

atomic conditions are used to discover sub models where disjunctive conditions are used

to build the whole process model. This thesis is the starting step toward using MapReduce

in business process management domain. Therefore, there are many issues to be studied.

We expect that this area to grow up as there are many application domains, including

monitoring business process and querying historical business events, that require event

correlation discovery.

Bibliography

[1] Workflow management: models, methods, and systems. MIT Press, Cambridge,

MA, USA, 2002.

[2] 2011. http://aws.amazon.com/.

[3] 2011. http://aws.amazon.com/ec2/instance-types/.

[4] 2011. http://managementsoftware.hp.com/products/soa.

[5] 2013. http://hbase.apache.org/.

[6] Ibm websphere business process management software., 2013. http://www-01.

ibm.com/software/websphere/.

[7] Wil M. Aalst. Transactions on petri nets and other models of concurrency ii. chapter

Process-Aware Information Systems: Lessons to Be Learned from Process Mining,

pages 1–26. Springer-Verlag, Berlin, Heidelberg, 2009.

[8] Wil M. P. van der Aalst, Marlon Dumas, Chun Ouyang, Anne Rozinat, and Eric

Verbeek. Conformance checking of service behavior. ACM Trans. Internet Technol.,

8(3):13:1–13:30, May 2008.

[9] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi, Avi Silberschatz, and

Alexander Rasin. Hadoopdb: An architectural hybrid of mapreduce and dbms

technologies for analytical workloads. Proc. VLDB Endow., 2(1):922–933, August

2009.

[10] Foto N. Afrati, Vinayak Borkar, Michael Carey, Neoklis Polyzotis, and Jeffrey D.

Ullman. Map-reduce extensions and recursive queries. In Proceedings of the 14th In-

ternational Conference on Extending Database Technology, EDBT/ICDT ’11, pages

1–8, New York, NY, USA, 2011. ACM.

[11] Foto N. Afrati and Jeffrey D. Ullman. Transitive closure and recursive datalog

implemented on clusters. In Proceedings of the 15th International Conference on

Extending Database Technology, EDBT ’12, pages 132–143, New York, NY, USA,

2012. ACM.

http://aws.amazon.com/
http://aws.amazon.com/ec2/instance-types/
http://managementsoftware.hp.com/products/soa.
http://hbase.apache.org/
http://www-01.ibm.com/software/websphere/
http://www-01.ibm.com/software/websphere/

116 Bibliography

[12] Rakesh Agrawal and H. V. Jagadish. Direct algorithms for computing the transitive

closure of database relations. In Proceedings of the 13th International Conference

on Very Large Data Bases, VLDB ’87, pages 255–266, San Francisco, CA, USA,

1987. Morgan Kaufmann Publishers Inc.

[13] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association

rules in large databases. In VLDB’94, Chile, pages 487–499, 1994.

[14] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures and

Algorithms. Addison-Wesley, 1983.

[15] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data structures and

algorithms. Addison Wesley, 983.

[16] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Services:

Concepts, Architectures and Applications. Springer Publishing Company, Incorpo-

rated, 1st edition, 2010.

[17] Shivnath Babu. Towards automatic optimization of mapreduce programs. In Pro-

ceedings of the 1st ACM symposium on Cloud computing, SoCC ’10, pages 137–142,

New York, NY, USA, 2010. ACM.

[18] Francois Bancilhon and Raghu Ramakrishnan. An amateur’s introduction to re-

cursive query processing strategies. In Proceedings of the 1986 ACM SIGMOD

international conference on Management of data, SIGMOD ’86, pages 16–52, New

York, NY, USA, 1986. ACM.

[19] Francois Bancilhon and Raghu Ramakrishnan. An amateur’s introduction to re-

cursive query processing strategies. SIGMOD Rec., 15(2):16–52, June 1986.

[20] Roger S. Barga and Hillary Caituiro-Monge. Event correlation and pattern de-

tection in cedr. In Proceedings of the 2006 international conference on Current

Trends in Database Technology, EDBT’06, pages 919–930, Berlin, Heidelberg, 2006.

Springer-Verlag.

[21] Alistair Barros, Gero Decker, Marlon Dumas, and Franz Weber. Correlation pat-

terns in service-oriented architectures. In Proceedings of the 10th international

conference on Fundamental approaches to software engineering, FASE’07, pages

245–259, 2007.

Bibliography 117

[22] Dominic Battré, Stephan Ewen, Fabian Hueske, Odej Kao, Volker Markl, and

Daniel Warneke. Nephele/pacts: a programming model and execution framework

for web-scale analytical processing. In Proceedings of the 1st ACM symposium on

Cloud computing, SoCC ’10, pages 119–130, New York, NY, USA, 2010. ACM.

[23] Alexander Behm, Vinayak R. Borkar, Michael J. Carey, Raman Grover, Chen Li,

Nicola Onose, Rares Vernica, Alin Deutsch, Yannis Papakonstantinou, and Vas-

silis J. Tsotras. Asterix: towards a scalable, semistructured data platform for

evolving-world models. Distrib. Parallel Databases, 29(3):185–216, June 2011.

[24] Kevin S. Beyer, Vuk Ercegovac, Rainer Gemulla, Andrey Balmin, Mohamed Y.

Eltabakh, Carl-Christian Kanne, Fatma Özcan, and Eugene J. Shekita. Jaql: A

scripting language for large scale semistructured data analysis. PVLDB, 4(12):1272–

1283, 2011.

[25] Spyros Blanas, Jignesh M. Patel, Vuk Ercegovac, Jun Rao, Eugene J. Shekita, and

Yuanyuan Tian. A comparison of join algorithms for log processing in mapreduce. In

Proceedings of the 2010 ACM SIGMOD International Conference on Management

of Data, SIGMOD ’10, pages 975–986, New York, NY, USA, 2010. ACM.

[26] Vinayak Borkar, Michael Carey, Raman Grover, Nicola Onose, and Rares Vernica.

Hyracks: A flexible and extensible foundation for data-intensive computing. In

Proceedings of the 2011 IEEE 27th International Conference on Data Engineering,

ICDE ’11, pages 1151–1162, Washington, DC, USA, 2011. IEEE Computer Society.

[27] Paul G. Brown and Peter J. Hass. Bhunt: automatic discovery of fuzzy algebraic

constraints in relational data. In Proceedings of the 29th international conference on

Very large data bases - Volume 29, VLDB ’03, pages 668–679. VLDB Endowment,

2003.

[28] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst. Haloop: effi-

cient iterative data processing on large clusters. Proc. VLDB Endow., 3(1-2):285–

296, September 2010.

[29] Fabio Casati, Malú Castellanos, Umeshwar Dayal, and Norman Salazar. A generic

solution for warehousing business process data. In Christoph Koch, Johannes

Gehrke, Minos N. Garofalakis, Divesh Srivastava, Karl Aberer, Anand Deshpande,

118 Bibliography

Daniela Florescu, Chee Yong Chan, Venkatesh Ganti, Carl-Christian Kanne, Wolf-

gang Klas, and Erich J. Neuhold, editors, VLDB, pages 1128–1137. ACM, 2007.

[30] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, Khaled Elmele-

egy, and Russell Sears. Mapreduce online. In Proceedings of the 7th USENIX con-

ference on Networked systems design and implementation, NSDI’10, pages 21–21,

Berkeley, CA, USA, 2010. USENIX Association.

[31] Jonathan E. Cook and Alexander L. Wolf. Discovering models of software processes

from event-based data. ACM Trans. Softw. Eng. Methodol., 7(3):215–249, July

1998.

[32] Brian F. Cooper, Eric Baldeschwieler, Rodrigo Fonseca, James J. Kistler, P. P. S.

Narayan, Chuck Neerdaels, Toby Negrin, Raghu Ramakrishnan, Adam Silberstein,

Utkarsh Srivastava, and Raymie Stata. Building a cloud for yahoo! IEEE Data

Eng. Bull., 32(1):36–43, 2009.

[33] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on

large clusters. In Proceedings of the 6th conference on Symposium on Opearting

Systems Design & Implementation - Volume 6, OSDI’04, pages 10–10, 2004.

[34] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a flexible data processing tool.

Commun. ACM, 53(1):72–77, January 2010.

[35] J. Desel, W. Reisig, and G. Rozenberg, editors. Lectures on Concurrency and Petri

Nets, volume 3098 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,

2004.

[36] David DeWitt and Jim Gray. Parallel database systems: the future of high perfor-

mance database systems. Commun. ACM, 35(6):85–98, June 1992.

[37] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Alekh Jindal, Yagiz Kargin, Vinay Setty,

and Jörg Schad. Hadoop++: making a yellow elephant run like a cheetah (without

it even noticing). Proc. VLDB Endow., 3(1-2):515–529, September 2010.

[38] Xin Dong and Alon Y. Halevy. A platform for personal information management

and integration. In CIDR, pages 119–130, 2005.

Bibliography 119

[39] Schahram Dustdar and Robert Gombotz. Discovering web service workflows using

web services interaction mining. International Journal of Business Process Integra-

tion and Management, 1:256–266(11), 27 February 2007.

[40] Iman Elghandour and Ashraf Aboulnaga. Restore: reusing results of mapreduce

jobs. Proc. VLDB Endow., 5(6):586–597, February 2012.

[41] Shimon Even. Graph Algorithms. Cambridge University Press, New York, NY,

USA, 2nd edition, 2011.

[42] Michael Franklin, Alon Halevy, and David Maier. From databases to dataspaces:

a new abstraction for information management. SIGMOD Rec., 34(4):27–33, De-

cember 2005.

[43] Alan F. Gates, Olga Natkovich, Shubham Chopra, Pradeep Kamath, Shravan M.

Narayanamurthy, Christopher Olston, Benjamin Reed, Santhosh Srinivasan, and

Utkarsh Srivastava. Building a high-level dataflow system on top of map-reduce:

the pig experience. Proc. VLDB Endow., 2(2):1414–1425, August 2009.

[44] Dimitrios Georgakopoulos, Mark Hornick, and Amit Sheth. An overview of work-

flow management: from process modeling to workflow automation infrastructure.

Distrib. Parallel Databases, 3(2):119–153, April 1995.

[45] Claude Godart and Olivier Perrin. Les processus métiers: Concepts, modèles et

systèmes. Traité Informatique et Systèmes d’Information, IC2. Hermes, May 2009.

[46] Daniela Grigori, Fabio Casati, Malu Castellanos, Umeshwar Dayal, Mehmet Sayal,

and Ming-Chien Shan. Business process intelligence. Comput. Ind., 53(3):321–343,

April 2004.

[47] Daniela Grigori, Fabio Casati, Umeshwar Dayal, and Ming-Chien Shan. Improving

business process quality through exception understanding, prediction, and preven-

tion. In Proceedings of the 27th International Conference on Very Large Data Bases,

VLDB ’01, pages 159–168, San Francisco, CA, USA, 2001. Morgan Kaufmann Pub-

lishers Inc.

[48] Apache Hadoop, 2013. http://hadoop.apache.org/.

http://hadoop.apache.org/

120 Bibliography

[49] Martin T. Hagan, Howard B. Demuth, and Mark Beale. Neural network design.

PWS Publishing Co., Boston, MA, USA, 1996.

[50] Joseph M. Hellerstein. The declarative imperative: experiences and conjectures in

distributed logic. SIGMOD Record, 39(1):5–19, 2010.

[51] Herodotos Herodotou and Shivnath Babu. A what-if engine for cost-based mapre-

duce optimization. IEEE Data Eng. Bull., 36(1):5–14, 2013.

[52] Apache hive, 2013. http://hive.apache.org/.

[53] D. Hollingsworth. Workflow management coalition - the workflow reference model.

Technical report, Workflow Management Coalition, January 1995.

[54] Ihab F. Ilyas, Volker Markl, Peter Haas, Paul Brown, and Ashraf Aboulnaga. Cords:

automatic discovery of correlations and soft functional dependencies. In Proceed-

ings of the 2004 ACM SIGMOD international conference on Management of data,

SIGMOD ’04, pages 647–658, New York, NY, USA, 2004. ACM.

[55] Ihab F. Ilyas, Volker Markl, Peter J. Haas, Paul G. Brown, and Ashraf Aboulnaga.

Cords: automatic generation of correlation statistics in db2. In Proceedings of the

Thirtieth international conference on Very large data bases - Volume 30, VLDB

’04, pages 1341–1344. VLDB Endowment, 2004.

[56] Yannis Ioannidis, Raghu Ramakrishnan, and Linda Winger. Transitive closure

algorithms based on graph traversal. ACM Trans. Database Syst., 18(3):512–576,

September 1993.

[57] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad:

distributed data-parallel programs from sequential building blocks. In Proceedings

of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems

2007, EuroSys ’07, pages 59–72, New York, NY, USA, 2007. ACM.

[58] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Comput.

Surv., 31(3):264–323, September 1999.

[59] Jaql, 2013. http://www.jaql.org/.

[60] Dawei Jiang, Beng Chin Ooi, Lei Shi, and Sai Wu. The performance of mapreduce:

an in-depth study. Proc. VLDB Endow., 3(1-2):472–483, September 2010.

http://hive.apache.org/
http://www.jaql.org/

Bibliography 121

[61] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM,

46(5):604–632, September 1999.

[62] Frank Leymann and Dieter Roller. Production workflow: concepts and techniques.

Prentice Hall PTR, Upper Saddle River, NJ, USA, 2000.

[63] Boduo Li, Edward Mazur, Yanlei Diao, Andrew McGregor, and Prashant Shenoy.

A platform for scalable one-pass analytics using mapreduce. In Proceedings of the

2011 ACM SIGMOD International Conference on Management of Data, SIGMOD

’11, pages 985–996, New York, NY, USA, 2011. ACM.

[64] Jimmy Lin and Chris Dyer. Data-intensive text processing with mapreduce. In

Proceedings of Human Language Technologies: The 2009 Annual Conference of the

North American Chapter of the Association for Computational Linguistics, Com-

panion Volume: Tutorial Abstracts, NAACL-Tutorials ’09, pages 1–2, Stroudsburg,

PA, USA, 2009. Association for Computational Linguistics.

[65] Ming-Yen Lin, Pei-Yu Lee, and Sue-Chen Hsueh. Apriori-based frequent itemset

mining algorithms on mapreduce. In Proceedings of the 6th International Conference

on Ubiquitous Information Management and Communication, ICUIMC ’12, pages

76:1–76:8, New York, NY, USA, 2012. ACM.

[66] Guojun Liu, Ming Zhang, and Fei Yan. Large-scale social network analysis based

on mapreduce. In CASoN, pages 487–490. IEEE Computer Society, 2010.

[67] Stefan Manegold, Peter Boncz, and Martin L. Kersten. Generic database cost

models for hierarchical memory systems. In Proceedings of the 28th international

conference on Very Large Data Bases, VLDB ’02, pages 191–202. VLDB Endow-

ment, 2002.

[68] Heikki Mannila and Hannu Toivonen. Levelwise search and borders of theories in

knowledgediscovery. Data Min. Knowl. Discov., 1(3):241–258, January 1997.

[69] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivaku-

mar, Matt Tolton, and Theo Vassilakis. Dremel: interactive analysis of web-scale

datasets. Proc. VLDB Endow., 3(1-2):330–339, September 2010.

[70] Andrew W. Moore and Denis Zuev. Internet traffic classification using bayesian

analysis techniques. In Proceedings of the 2005 ACM SIGMETRICS international

122 Bibliography

conference on Measurement and modeling of computer systems, SIGMETRICS ’05,

pages 50–60, New York, NY, USA, 2005. ACM.

[71] Andrew W. Moore and Denis Zuev. Internet traffic classification using bayesian

analysis techniques. SIGMETRICS Perform. Eval. Rev., 33(1):50–60, June 2005.

[72] Hamid Motahari, Regis Saint-Paul, Boualem Benatallah, and Fabio Casati. Proto-

col discovery from web service interaction logs. In IEEE ICDE 07, April 2007.

[73] Hamid R. Motahari Nezhad. Discovery and Adaptation of Process Views. PhD

thesis, THE UNIVERSITY OF NEW SOUTH WALES, 2008.

[74] Hamid R. Motahari Nezhad, Régis Saint-Paul, Fabio Casati, and Boualem Bena-

tallah. Event correlation for process discovery from web service interaction logs.

VLDB J., 20(3):417–444, 2011.

[75] Tomasz Nykiel, Michalis Potamias, Chaitanya Mishra, George Kollios, and Nick

Koudas. Mrshare: sharing across multiple queries in mapreduce. Proc. VLDB

Endow., 3(1-2):494–505, September 2010.

[76] Business Process Model Object Management Group and Notation, 2013. http:

//www.bpmn.org//.

[77] Christopher Olston, Benjamin Reed, Adam Silberstein, and Utkarsh Srivastava.

Automatic optimization of parallel dataflow programs. In USENIX 2008 Annual

Technical Conference on Annual Technical Conference, ATC’08, pages 267–273,

Berkeley, CA, USA, 2008. USENIX Association.

[78] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank

citation ranking: Bringing order to the web. Technical Report 1999-66, Stanford

InfoLab, November 1999. Previous number = SIDL-WP-1999-0120.

[79] Wim De Pauw, Robert Hoch, and Yi Huang. Discovering conversations in web ser-

vices using semantic correlation analysis. In ICWS, pages 639–646. IEEE Computer

Society, 2007.

[80] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt,

Samuel Madden, and Michael Stonebraker. A comparison of approaches to large-

scale data analysis. In Proceedings of the 35th SIGMOD international conference

on Management of data, SIGMOD ’09, pages 165–178, 2009.

http://www.bpmn.org//
http://www.bpmn.org//

Bibliography 123

[81] Chris Peltz. Web services orchestration and choreography. Computer, 36(10):46–52,

October 2003.

[82] Erhard Rahm and Hong H. Do. Data cleaning: Problems and current approaches.

IEEE Data Eng. Bull., 23(4):3–13, 2000.

[83] Anand Rajaraman and Jeffrey David Ullman. Mining of massive datasets. Cam-

bridge University Press, Cambridge, 2012.

[84] H. Reguieg, F. Toumani, H.R. Motahari-Nezhad, and B. Benatallah. Using mapre-

duce to scale events correlation discovery for business processes mining. Hewlett

Packard Laboratories Technical Report, 2012.

[85] Hicham Reguieg, Farouk Toumani, Hamid Reza Motahari-Nezhad, and Boualem

Benatallah. Using mapreduce to scale events correlation discovery for business

processes mining. In Proceedings of the 10th international conference on Business

Process Management, BPM’12, pages 279–284, Berlin, Heidelberg, 2012. Springer-

Verlag.

[86] Szabolcs Rozsnyai, Aleksander Slominski, and Geetika T. Lakshmanan. Discovering

event correlation rules for semi-structured business processes. In Proceedings of the

5th ACM international conference on Distributed event-based system, DEBS ’11,

pages 75–86, New York, NY, USA, 2011. ACM.

[87] Szabolcs Rozsnyai, Roland Vecera, Josef Schiefer, and Alexander Schatten. Event

cloud - searching for correlated business events. In CEC/EEE, pages 409–420. IEEE

Computer Society, 2007.

[88] Sigal Sahar. Interestingness via what is not interesting. In Proceedings of the fifth

ACM SIGKDD international conference on Knowledge discovery and data mining,

KDD ’99, pages 332–336, New York, NY, USA, 1999. ACM.

[89] Gerard Salton and Michael J. McGill. Introduction to Modern Information Re-

trieval. McGraw-Hill, Inc., New York, NY, USA, 1986.

[90] Sunita Sarawagi and Alok Kirpal. Efficient set joins on similarity predicates. In

Proceedings of the 2004 ACM SIGMOD international conference on Management

of data, SIGMOD ’04, pages 743–754, New York, NY, USA, 2004. ACM.

124 Bibliography

[91] Josef Schiefer, Heinz Roth, Hannes Obweger, and Szabolcs Rozsnyai. Event data

warehousing for complex event processing. In Pericles Loucopoulos and Jean-Louis

Cavarero, editors, RCIS, pages 203–212. IEEE, 2010.

[92] Weiyi Shang, Zhen Ming Jiang, Bram Adams, and Ahmed E. Hassan. Mapreduce

as a general framework to support research in mining software repositories (msr). In

Michael W. Godfrey and Jim Whitehead, editors, MSR, pages 21–30. IEEE, 2009.

[93] Mirko Steinle, Karl Aberer, Sarunas Girdzijauskas, and Christian Lovis. Mapping

moving landscapes by mining mountains of logs: novel techniques for dependency

model generation. In Proceedings of the 32nd international conference on Very large

data bases, VLDB ’06, pages 1093–1102. VLDB Endowment, 2006.

[94] Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J.

Comput., 1(2):146–160, 1972.

[95] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Ning

Zhang, Suresh Anthony, Hao Liu, and Raghotham Murthy. Hive - a petabyte scale

data warehouse using hadoop. In ICDE, pages 996–1005, 2010.

[96] I.H. Toroslu, G.Z. Qadah, and L. Henschen. An efficient database transitive closure

algorithm. Applied Intelligence, 1994.

[97] W Van Der Aalst. Configurable services in the cloud: supporting variability while

enabling cross-organizational process mining. On the Move to Meaningful Internet

Systems OTM 2010, pages 8–25, 2010.

[98] W M P Van Der Aalst. Process mining: Discovery, conformance and enhancement

of business processes. Media, 136(2):352, 2011.

[99] W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster, G. Schimm,

and A. J. M. M. Weijters. Workflow mining: a survey of issues and approaches.

Data Knowl. Eng., 47(2):237–267, November 2003.

[100] Wil van der Aalst, Ton Weijters, and Laura Maruster. Workflow mining: Dis-

covering process models from event logs. IEEE Trans. on Knowl. and Data Eng.,

16(9):1128–1142, September 2004.

Bibliography 125

[101] Wil M. P. Van Der Aalst, Arthur H. M. Ter Hofstede, and Mathias Weske. Business

process management: a survey. In Proceedings of the 2003 international conference

on Business process management, BPM’03, pages 1–12, Berlin, Heidelberg, 2003.

Springer-Verlag.

[102] Rares Vernica, Michael J. Carey, and Chen Li. Efficient parallel set-similarity

joins using mapreduce. In Proceedings of the 2010 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’10, pages 495–506, New York, NY,

USA, 2010. ACM.

[103] Stanley Wasserman and Katherine Faust. Social network analysis: Methods and

applications, volume 8. Cambridge university press, 1994.

[104] Mathias Weske. Business process management: Concepts, languages, architectures.

Media, 15(2):368, 2012.

[105] WFMC. Workflow Management Coalition Terminology and Glossary (WFMC-TC-

1011). Technical report, Workflow Management Coalition, Brussels, 1996.

[106] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st edition, 2009.

[107] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D. Stott Parker. Map-reduce-

merge: simplified relational data processing on large clusters. In Proceedings of the

2007 ACM SIGMOD international conference on Management of data, SIGMOD

’07, pages 1029–1040, New York, NY, USA, 2007. ACM.

[108] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion

Stoica. Spark: cluster computing with working sets. In Proceedings of the 2nd

USENIX conference on Hot topics in cloud computing, HotCloud’10, pages 10–10,

Berkeley, CA, USA, 2010. USENIX Association.

[109] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, and Ion Stoica.

Improving mapreduce performance in heterogeneous environments. In Proceedings

of the 8th USENIX conference on Operating systems design and implementation,

OSDI’08, pages 29–42, Berkeley, CA, USA, 2008. USENIX Association.

[110] Mohammed Javeed Zaki. Parallel sequence mining on shared-memory machines. In

Revised Papers from Large-Scale Parallel Data Mining, Workshop on Large-Scale

126 Bibliography

Parallel KDD Systems, SIGKDD, pages 161–189, London, UK, UK, 2000. Springer-

Verlag.

[111] Chun Zhang, Jeffrey Naughton, David DeWitt, Qiong Luo, and Guy Lohman.

On supporting containment queries in relational database management systems.

SIGMOD Rec., 30(2):425–436, May 2001.

[112] Chun Zhang, Jeffrey Naughton, David DeWitt, Qiong Luo, and Guy Lohman. On

supporting containment queries in relational database management systems. In

Proceedings of the 2001 ACM SIGMOD international conference on Management

of data, SIGMOD ’01, pages 425–436, New York, NY, USA, 2001. ACM.

[113] Jingren Zhou, Per-Åke Larson, and Ronnie Chaiken. Incorporating partitioning

and parallel plans into the scope optimizer. In ICDE, pages 1060–1071, 2010.

List of Figures

2.1 Simple ordering business process. 8

2.2 Business process lifecycle. 9

2.3 Positioning of the process mining in the business process lifecycle [8]. . . 11

2.4 Getting data from heterogeneous data sources. 12

2.5 Process model discovered by α−algorithm based on the process instances

presented in the log depicted in Table 2.1. 14

2.6 Event Correlation, Process discovery and its fields of application. 14

2.7 Two tables in sales database. 18

2.8 Histogram of shipping delays . 19

2.9 MapReduce execution Overview . 25

3.1 Event Correlation Discovery Process . 37

3.2 Correlated message Graph. 38

3.3 Lattice generated by 3 atomic conditions. 43

3.4 Lattice generated by 3 atomic conditions and one conjunctive condition. 46

4.1 Bipartite graph of CMB with two connected components. 59

4.2 Correlated Messages Hash Buffer . 62

4.3 Data-flow at the reduce side. 67

4.4 Time breakdown SCM×100. 74

4.5 Time breakdown SCM×500. 74

4.6 Time breakdown SCM×1000. 74

4.7 Total Run time on SCM×n datasets. 75

4.8 The evolution of the amount of data moved over the network. 75

4.9 Running time of three algorithms on different data size (RobotStrike). . . 76

4.10 Running time of the algorithms for Robostrike data set on different cluster

sizes. 77

4.11 Relative running time of the algorithms for Robostrike data set on different

cluster sizes. 77

4.12 Running time of the algorithms for SCM×500 data set on different cluster

sizes. 77

128 List of Figures

4.13 Relative running time of the algorithms for SCM×500 data set on different

cluster sizes. 78

5.1 Lattice generated by 5 atomic conditions. 84

5.2 The lattice of generated candidate composite condition. Each partition is

represented by a single color. 85

5.3 Lattice generated by 3 atomic conditions and one conjunctive condition. 92

5.4 Connected instances. 94

5.5 Lattice generated by 4 atomic conditions. Each level of the lattice is pro-

cessed by separate MapReduce job. 97

5.6 An execution example of the algorithm with 3 iterations. 100

5.7 Relative running time of the single-pass conjunctive conditions algorithm

for RobotStrike dataset set on different cluster sizes. 101

5.8 Relative running time of the single-pass conjunctive conditions algorithm

for RobotStrike dataset set on 5-nodes cluster with different partitioning

conditions sizes. 102

5.9 Relative running time of the single-pass disjunctive conditions algorithm

for SCM×x dataset set on different cluster sizes. 102

5.10 Running time of the multi-pass disjunctive conditions algorithm for

SCM×x data set on different cluster sizes. 103

5.11 Relative running time of the multi-pass disjunctive conditions algorithm

for SCM×x dataset set on different cluster sizes. 104

List of Tables

2.1 A fragment of an event log: each line corresponds to an event. 13

2.2 Map phase. 27

2.3 Reduce phase. 28

3.1 a snapshot of example log. 34

3.2 a snapshot of example log. 45

4.1 A general description of the proposed algorithms. 52

4.2 Example of CMB data structures . 53

4.3 Example of a log and the outputs, w.r.t. to (Ai, Aj), of two mappers. . . 55

4.4 Buffer CMB. 56

4.5 Example of a log and the outputs, w.r.t. to (A1, A2), of two mappers. . . 62

4.6 Algorithms Estimated Costs. 71

5.1 a snapshot of example log. 83

5.2 Candidates space. 84

5.3 Partitioned candidates space. 86

5.4 a snapshot of example log. 91

5.5 Candidates space. 92

5.6 Partitioned candidates space. 94

Using MapReduce To Scale Events Correlation Discovery For

Process Mining

Abstract:
The volume of data related to business process execution is increasing significantly in

the enterprise. Many of data sources include events related to the execution of the same

processes in various systems or applications. Event correlation is the task of analyzing a

repository of event logs in order to find out the set of events that belong to the same busi-

ness process execution instance. This is a key step in the discovery of business processes

from event execution logs. Event correlation is a computationally-intensive task in the

sense that it requires a deep analysis of very large and growing repositories of event logs,

and exploration of various possible relationships among the events. In this dissertation,

we present a scalable data analysis technique to support efficient event correlation for

mining business processes. We propose a two-stages approach to compute correlation

conditions and their entailed process instances from event logs using MapReduce frame-

work. The experimental results show that the algorithm scales well to large datasets.

Key words: MapReduce; Business Process; Process Mining; Process Dis-

covery; Event Correlation.

	Introduction
	Background
	Introduction
	Business Process Management
	Process Mining
	Getting Data
	Process Discovery
	Correlation Discovery, a Key Step For Process Discovery

	Event Correlation Discovery Problem
	Event logs
	Correlation Condition

	Related Works
	BHUNT
	CORDS
	DePauw et al.
	Event Cloud
	Rozsnyai et al.
	Barros et al.
	Discussion

	MapReduce Programming Model
	MapReduce Execution Overview
	Cost Model for MapReduce Programs
	Disucussion

	Process Space
	Introduction
	Correlation Condition Patterns
	Key-Based Correlation.
	Reference-Based Correlation

	Semi-Automated Discovery of Correlation Conditions
	Partitioning the log

	Candidate Attributes Selection
	Characteristics of Correlator attributes
	Attributes Pruning
	Atomic Condition Discovery
	Candidate Atomic Condition Generation
	Atomic Condition Pruning
	Composite Condition Discovery

	Summary

	Discovering Atomic Conditions
	Introduction
	Atomic Condition Discovery Algorithms
	The Correlated Message Buffer (CMB)
	Sorted Values Centric Algorithm
	Hashed Values Centric Algorithm
	Per-Split Correlated Messages Algorithm

	Handling Reducers Insufficient Memory
	Disk-Based Extension
	Multi-Pass Process Instances Discovery Algorithm

	Evaluation Of The Proposed Algorithms
	Complexity Analysis
	Cost-Model-Based Analysis

	Experimental Evaluation
	Environment
	DataSets
	Experiments

	Discussion

	Discovering Composite Conditions
	Introduction
	Single-Pass Composite Condition Discovery algorithms
	Discovering Conjunctive Conditions
	Discovering Disjunctive Conditions

	Muti-Pass composite Conditions Discovering algorithms
	Experimental Evaluation
	Experiments.

	Discussion

	Conclusions and Future Work
	List of figures
	List of tables

