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Dépendances non-linéaires en nance Résumé: La thèse est composée de trois parties. La partie I introduit les outils mathématiques et statistiques appropriés pour l'étude des dépendances, ainsi que des tests statistiques d'adéquation pour des distributions de probabilité empiriques. Je propose deux extensions des tests usuels lorsque de la dépendance est présente dans les données, et lorsque la distribution des observations a des queues larges. Le contenu nancier de la thèse commence à la partie II. J'y présente mes travaux concernant les dépendances transversales entre les séries chronologiques de rendements journaliers d'actions, c'est à dire les forces instantanées qui relient plusieurs actions entre elles et les fait se comporter collectivement plutôt qu'individuellement. Une calibration d'un nouveau modèle à facteurs est présentée ici, avec une comparaison à des mesures sur des données réelles. Finalement, la partie III étudie les dépendances temporelles dans des séries chronologiques individuelles, en utilisant les mêmes outils et mesures de corrélations. Nous proposons ici deux contributions à l'étude du volatility clustering, de son origine et de sa description: l'une est une généralisation du mécanisme de rétro-action ARCH dans lequel les rendements sont auto-excitants, et l'autre est une description plus originale des auto-dépendances en termes de copule. Cette dernière peut être formulée sans modèle et n'est pas spécique aux données nancières. En fait, je montre ici aussi comment les concepts de récurrences, records, répliques et temps d'attente, qui caractérisent la dynamique dans les séries chronologiques, peuvent être écrits dans la cadre unié des copules.

L'économie présente des traits caractéristiques des systèmes complexes: un grand nombre de variables (individus, entreprises, contrats, maturités, etc.), des agents hétérogènes (d'où une diculté à isoler des groupes), de l'information partielle et de l'aléa, de l'auto-organisation et des phénomènes spontanés (interactions fortes, non-perturbativité), une dynamique de réseau (entres banques, pays, contreparties, entreprises, etc.) et des interactions à longue portée, un quasi-continuum d'échelles de temps, de la non-stationnarité, des trajectoires avec mémoire et de l'exposition à des forces extérieures (régulations, catastrophes, etc.).

Cette réalité contraste fortement avec les hypothèses des théories économique et nancière classiques, comme l'homogénéité (l'existence d'un agent représentatif ), une rationalité parfaite, une capacité de prévision à horizon inni, un monde à l'équilibre dont les perturbations sont instantanément ajustées, l'absence de mémoire (toute l'information passée est reétée dans l'état actuel du monde), . . .

Pour traiter ces enjeux sous un angle plus empirique, des communautés de chercheurs avec des points de vue diérents ont progressivement investi le champ des sciences économiques et sociales. Parmi elles, on trouve des sociologues quantitatifs, des éconophysiciens, des statisticiens (physiciens statistiques ou biostatisticiens), des mathématiciens appliqués. En eet, beaucoup des traits listés ci-dessus ont déjà été étudiés en divers champs des sciences naturelles, où des méthodes ont été mises au point pour prendre en compte l'aléa, les interactions de réseaux, les comportements collectifs, la persistance et la réversion, etc. [Anderson 1988[START_REF] Arthur | [END_REF], Blume 2006, Challet 2005, Galam 2008, Kirman 2010, Abergel 2013, Bouchaud 2013] Parmi tous les champs de l'activité socio-économique, la nance de marché pourrait bien être le plus proche de ce que l'on peut raisonnablement étudier comme un système physique:

du point de vue théorique, le nombre de degrés de liberté est quelque peu réduit par les règles des places de marché (mécanismes d'actions, carnets d'ordres, régulations, contrats standards, divulgation de l'information) alors que le nombre d'acteurs et d'actions reste assez large pour autoriser des moyennages dans des ensembles statistiques; et du point de vue empirique, la nance de marché génère des quantités astronomiques de données rendant possible la répétition d'expériences sous hypothèses, et le traitement des mesures avec des outils de statistique appropriés. En fait, il est établi que certaines propriétés des marchés nanciers ressemblent à celles de systèmes étudiés en physique statistique: intermittence dans les écoulements turbulents, bruit de craquement de matériaux en réponse à un changement de conditions extérieures, lignes de fracture dans les solides, interactions à longue portée ou de champ moyen dans les systèmes de spins sur réseau, transitions de phases et criticalité spontanée, pour en citer quelques-unes.

Champ d'application de cette thèse

Cette thèse étudie les dépendances statistiques au sens général, aussi bien transversalement (entre variables aléatoires) que temporellement (réalisations successives d'une variable). Tous les résultats théoriques s'appliquent donc en principe à tout champ où plusieurs variables interagissent, ou où des processus stationnaires ont de la mémoire. Plus spéciquement, 1.1. Introduction en français 3 l'étude est restreinte à des processus discrets avec des intervalles de temps équidistants, ce qui signie que les séries chronologiques correspondantes sont échantillonnées et n'ont pas besoin d'être marquées temporellement.

En ce qui concerne le contenu appliqué, le focus est sur les données nancières, plus précisément les séries chronologiques de prix (ou rendements) d'actions à la fréquence relativement basse du jour. Il s'agit principalement des prix des actions les plus liquides négociées sur les marchés états-uniens, et dont les historiques peuvent être téléchargés librement de plusieurs sources.

Propriétés statistiques, dépendances et dynamique

Les caractéristiques statistiques d'un ensemble de variables aléatoires sont de plusieurs ordres:

propriétés distributionnelles, corrélations, et dynamique.

En certains endroits de cette thèse, les propriétés distributionnelles sont à l'étude: la distribution de probabilité empirique de mesures répétées est typiquement la première chose qu'un modèle doit reproduire. Concrètement, les quatre premiers moments d'une distribution sont très informatifs quant au phénomène à l'÷uvre, mais une perspective d'ensemble précise n'est atteignable que si des outils puissants sont disponibles pour comparer les fonctions de répartition. Développer de tels outils est un des buts de ce travail de doctorat.

Les corrélations et la dynamique peuvent être étudiées comme deux faces d'une même pièce, comme des dépendances spatiales et temporelles. Elles peuvent être vues respectivement comme une manifestation de propagation horizontale d'information, ou d'incorporation de l'information passée dans les réalisations présentes. Ces dépendances sont le sujet principal de cette thèse, avec des applications en nance qui pourraient avoir d'importantes conséquences en gestion du risque.

Non-linéarités

Pour des raisons historiques et de commodité mathématique, les corrélations linéaires sont souvent considérées par les professionnels (et quelques fois aussi dans le monde académique et l'enseignement) comme l'alpha et l'oméga des dépendances. Cette description est satisfaisante tant que l'on se trouve dans un régime où de petites perturbations ont de petites conséquences, mais l'expérience enseigne que ce n'est pas toujours le cas. Souvent, des eets de seuil, de la latence et de la mémoire (hystérèse), des eects collectifs (avalanches), du chaos (sensibilité extrême aux conditions initiales), etc. peuvent générer des comportements anormaux, et il est alors nécessaire de faire attention aux non-linéarités dans les dépendances, en étudiant par exemple les probabilités d'évènements de queue joints, les corrélations conditionnelles, corrélations quadratiques, etc. Dans des situations extrêmes, les corrélations linéaires peuvent même être trompeuses pour la compréhension des interactions sous-jacentes, et comme l'a écrit D. Helbing, un modèle non-linéaire simple peut être capable d'expliquer des phénomènes, que même des modèles linéaires compliqués peuvent échouer à reproduire.

Les modèles non-linéaires pourraient apporter un éclairage nouveau sur les phénomènes sociaux. Ils pourraient même conduire à un changement de paradigme dans la manière dont nous interprétons la société. [Helbing 2012] 1.1.3 Plan général de la thèse, et principales contributions originales La thèse est composée de trois parties. La partie I introduit les outils mathématiques et statistiques appropriés pour l'étude des dépendances. La plupart de ce qui y est présenté est connu, mais je passe en revue les dénitions et propriétés principales. C'est aussi dans cette partie que j'introduis les notations que j'ai essayé de maintenir cohérentes tout au long de la thèse. J'ai passé beaucoup de temps à travailler sur des tests statistiques d'adéquation (Goodness of Fit, en anglais) pour des distributions de probabilité empiriques. Cela était originellement motivé par le besoin de tester les modèles bivariés naux contre des hypothèses nulles. Ce side project initial s'est avéré être lié à un problème non-résolu et connu pour être dicile. Je n'apporte pas de solution dénitive, mais discute en annexe de possibles directions pour des travaux futurs, qui ont émergé au cours de sessions de remue-méninges avec Jean-Philippe Bouchaud et Alexandre Richard. Pour autant, le sujet est fascinant, étant à la frontière de la théorie des probabilités (processus stochastiques) et la physique (particules quantiques dans des potentiels), et j'ai été intéressé de travailler sur d'autres extensions des tests d'adéquation usuels. Ce qui était censé n'être que le développement d'une boîte à outils pour un usage immédiat a nalement donné lieu à de très intéressants projets théoriques qui se sont concrétisés par la publication de deux articles et d'un chapitre de livre.

Le contenu nancier de la thèse commence à la partie II. J'y présente mes travaux concernant les dépendances transversales entre les séries chronologiques de rendements journaliers d'actions, c'est à dire les forces instantanées qui relient plusieurs actions entre elles et les fait se comporter collectivement plutôt qu'individuellement. Ce vaste sujet avait déjà été approché dans mon travail de master [START_REF] Chicheportiche | Dépendances entre actions US: une modélisation en arbre[END_REF]], où j'ai eectué une étude empirique des dépendances non-linéaires, et ai décrit une construction hiérarchique pour les modéliser.

Une partie de ce travail a été publiée avec des développements consécutifs dans un journal de nance, et a servi de prémisse pour le modèle à facteur sur lequel j'ai nalement abouti au cours du doctorat. Une calibration de ce modèle est présentée ici, avec une comparaison aux données réelles.

Finalement, la partie III étudie les dépendances temporelles dans des séries chronologiques individuelles, en utilisant les mêmes outils et mesures de corrélations. Il est bien connu que les rendements d'actions ont une très faible auto-corrélation linéaire, ce qui se manifeste dans les alternances aléatoires de signes (rendements positifs ou négatifs), mais leurs amplitudes ont une longue mémoire. L'eet résultant de volatility clustering est une des plus anciennes énigmes en nance, et nous proposons ici deux contributions à l'étude de son origine et de sa description: l'une est une généralisation du mécanisme de rétro-action ARCH dans lequel les rendements sont auto-excitants, et l'autre est une description plus originale des autodépendances en termes de copule. Cette dernière peut être formulée sans modèle et n'est pas spécique aux données nancières. En fait, je montre ici aussi, après une longue collaboration avec Anirban Chakraborti, comment les concepts de récurrences, records, répliques et temps d'attente, qui caractérisent la dynamique dans les séries chronologiques, peuvent être écrits dans la cadre unié des copules.

La thèse est rédigée au pluriel, car la plupart de son contenu est le fruit de collaborations (à tout le moins avec mes directeurs), et parce que j'y inclus beaucoup de matériel publié. Je renvoie aux articles listés en page v et aux remerciements qu'ils contiennent pour l'identité de mes co-auteurs et collaborateurs sur chaque sujet.

Introduction in English

1.2.1 The nancial markets as complex systems

The economy presents features that are characteristic of complex systems: a large number of variables (agents, rms, contracts, maturities, etc.), heterogeneous agents (diculty to isolate groups), partial information and randomness, self-organization and emergent phenomena (strong interactions, non-perturbativity), network dynamics (among banks, countries, counter-parties, companies, etc.) and long-ranged interactions, quasi-continuum of time scales, non-stationarity, history dependence and sensitivity to external forces (regulations, catastrophes, etc.).

This reality is in sharp contrast with the hypotheses of classical economic and nancial theory, like homogeneity (representative agent), perfect rationality, innite horizon forecasting capabilities, steady-state world where perturbations of the equilibrium are instantaneously adjusted, absence of memory (all past information is reected in the current state of the world), . . .

To address these issues with a more empirical perspective, dierent communities with diverse point of views have progressively invested the social and economic sciences. These include quantitative sociologists, econophysicists, statisticians (statistical physicists, biostatisticians), applied mathematicians and others. Indeed, many of the features listed above have already been encountered in various areas of natural sciences, where methods have been designed to account for randomness, network interactions, collective behaviors, persistence and reversion, etc. [Anderson 1988[START_REF] Arthur | [END_REF], Blume 2006, Challet 2005, Galam 2008, Kirman 2010, Abergel 2013, Bouchaud 2013] Among all the elds of socio-economic activity, market nance may however be the closest to what can be reasonably studied like a physical system: on the theoretical side, the number of degrees of freedom is somewhat reduced by the rules of the exchanges (auctions, order books, regulations, standard contracts, information disclosure) while the number of players and actions is still very large allowing for averaging in statistical ensembles; and on the empirical side, it produces huge amounts of data making it possible to repeat experiments under assumptions, and treat the measurements with appropriate statistical tools. In fact there are evidences that some properties of nancial markets resemble those of systems studied in statistical physics: intermittency in turbulent ows, crackling noise of materials responding to changing external conditions, lines of fractures in solids, long-ranged or meaneld interactions in Ising spins systems, phase transitions and self-organized criticality, to name a few.

Field covered in the thesis

This thesis studies statistical dependences in a general sense, both cross-sectionally (between random variables) and temporally (successive realizations of one variable). All theoretical results thus apply in principle to any eld where many variables are interacting or where stationary processes have memory. More specically, the study is restricted to discrete processes with equidistant intervals, meaning that the corresponding series are sampled and need not be time-stamped.

As of the applied content, the focus is on nancial data, more precisely time series of stock prices (or returns) at the rather low frequency of the day. Mainly, the prices of the most liquid stocks traded in US markets are used, whose histories can be downloaded freely from dierent sources.

Statistical properties, dependences and dynamics

The statistical characteristics of a set of random variables are of many kinds: distributional properties, correlations and dynamics.

In some places of this thesis, distributional properties are under the spotlights. As a matter of principle, the empirical probability distribution function of repeated measurement of a variable is the rst thing a model should reproduce. Concretely, the rst four moments of a distribution are much informative about the underlying phenomenon, but a precise global picture is only achieved if powerful tools are available to compare distribution functions.

Developing such tools is one of the goals of this PhD work.

Correlations and dynamics can be studied as two faces of the same coin: they are spatial (or cross-sectional) dependences and temporal dependences, and can be regarded as a manifestation of horizontal information propagation, or incorporation of past information into current realizations, respectively. These dependences are the main subject of the present thesis, with applications in nance that could have important consequences in risk management.

Non-linearities

For historical reasons and mathematical convenience, linear correlations are often seen by practitioners (and sometimes also in academia and teaching) as the be-all and end-all of dependences. This works ne as long as small perturbations have small eects, but experience teaches that this is not always the case. Often, threshold eects, latency and memory (hysteresis), collective eects (avalanches), chaos (sensitivity to initial conditions) generate abnormal behavior, and it is necessary to care for non-linearities in dependences by studying, for example, tail joint probabilities, conditional correlations, quadratic correlations, etc.

In extreme situations, linear correlations may even be misleading the understanding of the underlying interactions, and, as D. Helbing wrote, a simple nonlinear model may explain phenomena, which even complicated linear models may fail to reproduce. Nonlinear models are expected to shed new light on [...] social phenomena. They may even lead to a paradigm shift in the way we interpret society. [Helbing 2012] 1.2.3 Detailed outline of the thesis and main original contributions

The thesis is composed of three parts. Part I introduces the mathematical and statistical tools that are relevant for the study of dependences. Most of what is presented there is common knowledge, but I review the main denitions and properties for completeness and later usage.

It is also the place where I introduce the notations, which I tried (but probably not succeeded completely) to keep coherent along the thesis. I have spent quite some time working on statistical tests of Goodness-of-t for empirical probability distributions. This was originally motivated by the need to test the nal multivariate models, or at least the bivariate marginals, against null hypotheses. This initial side project turned out to be a tough one and no denite solution is provided here I still give in appendix an account of the literature and of some possible directions for future endeavor, that came out during brainstorming sessions with Jean-Philippe Bouchaud and Alexandre Richard. Yet the subject was fascinating, being at the frontier of probability theory (stochastic processes) and plain physics (quantum particles in potentials), and I was interested in working on other extensions of the usual GoF tests.

What was supposed to be only the development of a toolkit for immediate use gave rise to very interesting theoretical projects and in fact led to the publication of two articles and a textbook chapter.

The nancial content of the thesis starts in Part II. I present there my studies regarding the cross-sectional dependences among the time series of daily stock returns, i.e. the instantaneous forces that link several stocks together and make them behave somewhat collectively rather than purely independently. Some work was already done in my Master's thesis [START_REF] Chicheportiche | Dépendances entre actions US: une modélisation en arbre[END_REF], where I performed an empirical study of non-linear dependences, and described a hierarchical construction to model them. Part of that work was published with subsequent developments in a nancial journal, and served as a premise for the nal factor model that I have come with. A calibration of this model is presented here, together with a comparison to measurements on real data.

Finally, Part III investigates the temporal dependences of single time series, using the same tools and measures of correlation. As is well known, stock returns have a vanishing linear autocorrelation that manifests itself in random sign alternations, but their magnitudes have a long memory. The resulting volatility clustering eect is one of the oldest puzzles in nance, and we propose here two contributions to the study of its origin and description:

one is a generalization of the ARCH-like feedback construction where the returns are selfexciting, and the other one is a more original description of self-dependences in terms of copulas. The latter can be formulated model-free and is not specic to nancial time series.

In fact, I also show here, after a longstanding collaboration with Anirban Chakraborti and undergrad students at Ecole Centrale, how concepts like recurrences, records, aftershocks and waiting times, that characterize the dynamics in a time series can be written in the unifying framework of the copula.

After this brief non-technical overview of the landscape, I give below a more detailed outline with an abstract of each chapter. I quit now the rst person and switch to the `we'

as most of what follows is the result of collaborations (at the very least with my advisors), and because I include much material of published work. I refer to the articles listed in page v and acknowledgments therein for the identity of my co-authors on each topic.

Part I I.2. There exist many measures of dependence between random variables, some related to joint amplitudes, others related to joint occurrence probabilities. We recall the denition and properties of some of them, and introduce the unifying framework of the copula, an object that embeds all the linear and non-linear dependences that are invariant under a rescaling of the marginals, i.e. those that count joint occurrences. We then rewrite the important measures of dependences in terms of the copula, and suggest ways to eciently visualize and compare them. An interesting point of comparison is Chapter 1. Introduction the elliptical copula, that includes the Gaussian and Student cases. We dene this class of multivariate distributions, and summarize its main features.

The content of this chapter needs not be read straight from the beginning, but can be accessed on demand when referred to, later in the text. The original material is limited to one theorem characterizing the asymptotic tail dependence coecient of a Student pair.

I.3. Usual goodness-of-t (GoF) tests are designed for independent samples, and are not suited to investigate tail regions, because of the universal limit properties of the cumulative distribution functions. We extend the range of applicability of the GoF tests to these two cases. Section 3.1: Accurate tests for the extreme tails of empirical distributions is a very important issue, relevant in many contexts, including geophysics, insurance, and nance. We have derived exact asymptotic results for a generalization of the large-sample Kolmogorov-Smirnov test, well suited to testing a distribution with constant weight at any point of the domain, and in particular provide an improved resolution in the tail regions. In passing, we have rederived and made more precise the approximate limit solutions found originally in unrelated elds. Section 3.2: We revisit the Kolmogorov-Smirnov and Cramér-von Mises goodness-of-t tests and propose a generalization to identically distributed, but dependent univariate random variables.

We show that the dependence leads to a reduction of the eective number of independent observations. The generalized GoF tests are not distribution-free but rather depend on all the lagged bivariate copulas. Hence, a precise formulation of the test must rely on a modeled or estimated copula.

Part II II.4. Using a large set of daily US and Japanese stock returns, we test in detail the relevance of Student models, and of more general elliptical models, for describing the joint distribution of returns. We nd that while Student copulas provide a good approximation for strongly correlated pairs of stocks, systematic discrepancies appear as the linear correlation between stocks decreases, that rule out all elliptical models. Intuitively, the failure of elliptical models can be traced to the inadequacy of the assumption of a single volatility mode for all stocks. We suggest several ideas of methodological interest to eciently visualize and compare dierent copulas. We identify the rescaled dierence with the Gaussian copula and the central value of the copula as strongly discriminating observables. We insist on the need to shun away from formal choices of copulas with no nancial interpretation. II.5. We propose a non-hierarchical multi-factor model for the joint description of daily stock returns. The model intends to better reproduce linear and non-linear dependences of empirical time series. The non-Gaussianity of the factors is an important ingredient of the model, that allows for the empirically observed anomalous copula at the medial point and other stylized facts (quadratic covariances, copula diagonals). A spectral analysis of the factor series suggests that a structure is present in the volatilities, with a dominant mode clearly aecting all linear factors and residuals. The model embedding this feature is calibrated on US stocks over several periods, and reproduces qualitatively all the non-trivial empirical observations. A systematic out-of-sample prediction over a long period conrms quantitatively the power of the model and of the proposed estimation methodology, both for linear and non-linear properties.

Part III III.7. We attempt to unveil the ne structure of volatility feedback eects in the context of general quadratic autoregressive (QARCH) models, which assume that today's volatility can be expressed as a general quadratic form of the past daily returns. The standard ARCH or GARCH framework is recovered when the quadratic kernel is diagonal. The calibration of these models on US stock returns reveals several unexpected features. The o-diagonal (non ARCH) coecients of the quadratic kernel are found to be highly signicant both In-Sample and Out-of-Sample, but all these coecients turn out to be one order of magnitude smaller than the diagonal elements. This conrms that daily returns play a special role in the volatility feedback mechanism, as postulated by ARCH models. The feedback kernel exhibits a surprisingly complex structure, incompatible with models proposed so far in the literature. Its spectral properties suggest the existence of volatility-neutral patterns of past returns. The diagonal part of the quadratic kernel is found to decay as a power-law of the lag, in line with the long-memory of volatility. Finally, QARCH models suggest some violations of Time Reversal Symmetry in nancial time series, which are indeed observed empirically, although of much smaller amplitude than predicted. We speculate that a faithful volatility model should include both ARCH feedback eects and a stochastic component.

III.8. A discrete time series is a collection of successive realizations of a random variable, every realization being conditional on the previous state. Seen collectively and ex ante, it can also be seen as one realization of a random vector with (directed) dependence. We show how the copula introduced in Part I in the context of cross-sectional dependences can also describe appropriately the non-linear temporal dependences in time series: in this context, we call them self-copulas.

III.9. We introduce a specic, log-normal model for these self-copulas, for which a number of analytical results are derived. An application to nancial time series is provided.

As is well known, the dependence is to be long-ranged in this case, a nding that we conrm using self-copulas. As a consequence, the acceptance rates for GoF tests are substantially higher than if the returns were iid random variables.

Appendices

A. Empirical counterparts of the copula (estimated together with the marginals on a sample of size T ) have good properties only on discrete values in [0, 1]: for nite T , the naive copula estimates are biased. We provide an approximate bias-correction mechanism.

B. Gaussian sheets (the generalization of Gaussian process indexed by two times) arise as limits of empirical multivariate cumulative distribution functions, when the sample size tends to innity. Some properties of such sheets are of importance for distribution testing, since the Kolmogorov-Smirnov test statistic is related to the law of the supremum of their absolute value. We study some time changes and discretization schemes that may allow to reach a better knowledge of this law.

C. Two contributions of methodological interest are made for models with a single common linear factor. In C.1 the estimator of optimal weights is found perturbatively in the limit of large dimension. In C.2 we reverse-engineer the constitution of the common factor, and embed the one-factor model in a hierarchical nested structure.

D. We provide here technical details for the perturbative expansion of the pseudo-elliptical copula with log-normal scale around the independence copula, when all dependence parameters are small.

E. Two appendices related to the continuous-time limit of the QARCH construction studied in Chapter III.6. In E.1 we compute the exact spectrum of the Borland-Bouchaud model of Ref. [Borland 2011], for three dierent kernel functions. In E.2 we relate the power-law behavior in the volatility correlation function, to the coecient of the power-law decay in the kernel function of the FIGARCH model.
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Chapter 2. Characterizing the statistical dependence

Bivariate measures of dependence

In this rst section, we recall several bivariate measures of statistical dependence between two random variables. Of course, as we discuss in the next section, many-points dependences among N variables do not reduce to the pairwise dependences in the general case. But in the perspective of empirically measuring the dependences on a dataset, at least four issues motivate the present restriction to 2-points coecients: (i) the number of triplets, quadruplets, etc. that should be considered when measuring coecients of dependence involving 3-points, 4-points, etc. gets rapidly huge when considering even as few as some dozens of variables, whereas the number of undirected 2-points dependence coecients is only N (N -1)/2; (ii) error estimates on many-points coecients are typically larger than on 2-points measures; (iii) in some classes of usual multivariate probability distributions, some information about the full structure can be inferred (or excluded) from the knowledge of the bivariate marginals; (iv) collective behavior and eective many-points dependences can be uncovered by collecting 2-points coecients into a matrix or tensor and performing algebraic and spectral analysis.

Let X = (X 1 , X 2 , . . . , X N ) † be a random vector with joint probability distribution function (pdf ) P X (x) and joint cumulative distribution function (cdf ) P <,X (x) = P X (z)1 {z ≤ x} dz. Each component X i is a random variable with marginal pdf P i (x i ) and cdf P <,i (x i ). Throughout the text (unless otherwise stated), we assume P <,X is continuous and P -1 <,i are well-dened inverse marginal cdfs. As the coecients dened in this section are all measures of pairwise dependence, we dene the pair X ij = (X i , X j ) † . Similarly, all the transformations of X dened later in the text can be restricted to the 2-dimensional space describing the pair.

Usual correlation coecients

Bravais-Pearson's correlation coecient

The Bravais-Pearson's correlation coecient of X ij is the usual normalized linear covariance

ρ (2) [X ij ] = E[X i X j ] -E[X i ]E[X j ] V[X i ]V[X j ] (2.1)
Often in what follows, it will be simply denoted ρ ij . This correlation measure involves the probabilities and amplitudes of the possible realizations of X ij . It can also be understood as a measure of asymmetry between the sum and the dierence of the normalized variables:

ρ (2) [X ij ] = V X i √ V[X i ] + X j √ V[X j ] -V X i √ V[X i ] - X j √ V[X j ] V X i √ V[X i ] + X j √ V[X j ] + V X i √ V[X i ] - X j √ V[X j ] (2.1 ′ )
(the expression at the denominator is just an explicit way of writing the number 2).

Spearman's rho

Let X (i) L = (0, . . . , X i , . . . , 0) be distributed like the i-th marginal and independent of X.Then the vector N i=1 X (i) has independent components with the same marginals as X. The dier-

ence X = X - N i=1
X (i) is centered and has symmetric univariate marginals by construction.

It allows to characterize the dependence in X by counting how often both components of X ij are simultaneously below the realizations of the independent couple with same marginals. Spearman's rho is dened as

ρ (S) [X ij ] = 3 P X i X j > 0 -P X i X j < 0 (2.2)
and thus involves only the signs of X:

ρ (S) [X ij ] = 3 ρ (P) [sign( X ij )] (2.2 ′ ) Kendall's tau
Let X ′ L = X be a random vector with same joint distribution as X: compared to the previous case, X ′ has not only the same univariate marginals as X, but also its dependence structure. Then X = X -X ′ is the dierence between two independent and identically distributed random vectors. It is centered and symmetric by construction. Kendall's tau is dened as

τ (K) [X ij ] = P X i X j > 0 -P X i X j < 0 = ρ (P) [sign( X ij )]
(2.3) and it measures concordances between realizations of identically distributed couples.

Blomqvist's beta

Denote now X = Xmed X. Blomqvist's beta coecient of dependence is dened as

β (B) [X ij ] = P X i X j > 0 -P X i X j < 0 = ρ (P) [sign( X ij )].
(2.4) If all X i 's are centered around their median value (in particular if symmetric), then Blomqvist's beta is equal to the Pearson's correlation of the signs:

β (B) ij = ρ (P) [sign(X ij )].

Non-linear correlation coecients

Beyond the standard correlation coecient, one can characterize the dependence structure through the correlation between functions g(X ij ) = (g i (X i ), g j (X j )) of the random variables.

In particular, we dene the following coecients:

ρ (d) ij = ρ (P) [g(X ij )], when g i (x) = g j (x) = sign(x)|x| d (2.5) ζ (d) ij = ρ (P) [g(X ij )], when g i (x) = g j (x) = |x| d (2.6)
provided the variances in the denominators are nite. The case ρ (1) corresponds to the usual linear correlation coecient, for which we will use the standard notation ρ, whereas ζ (2) is the correlation of the squared returns, that would appear in the Gamma-risk of a ∆-hedged option portfolio. However, high values of d are expected to be very noisy in the presence of power-law tails (as is the case for nancial returns) and one should seek for lower order moments, such as ζ (1) which also captures the correlation between the amplitudes (or the volatility) of price moves, or even ρ (I) ≡ ρ (0) that measures the correlation of the signs. Note that when g i (x) = P <,i (x), one recovers Spearman's rho:

ρ (5) ij = ρ (2) [g(X ij )], when g i (x) = P <,i (x).
(2.7)

Proof of Eq. (2.7). The LHS is decomposed onto four contributions:

P[X i > X (i) i , X j > X (j) j ] = P[U i > U (i) i , U j > U (j) j ] = 1 0 P[u i > U (i) i , u j > U (j) j ] dC X ij (u i , u j ) = 1 0 u i u j dC X ij (u i , u j ) since U (i) i ⊥ U (j) j P[X i < X (i) i , X j < X (j) j ] = 1 0 (1-u i )(1-u j ) dC X ij (u i , u j ) P[X i > X (i) i , X j < X (j) j ] = 1 0 u i (1-u j ) dC X ij (u i , u j ) P[X i < X (i) i , X j > X (j) j ] = 1 0 (1-u i ) u j dC X ij (u i , u j ).
Dene then

U i = P <,i (X i ) ∼ U[0, 1]; since E[U i ] = 1 2 , the RHS is ρ (2) [U ij ] = 1 0 (u i -1 2 )(u j -1 2 ) dC X ij (u i , u j ).
The result follows, noting that

u i u j + (1-u i )(1-u j ) -u i (1-u j ) -(1-u i )u j = 4(u i -1 2 )(u j -1 2 ) and V[U i ] = V[U j ] = 1 0 (u -1 2 ) 2 du = 1
12 . Although the motivation of the denition (2.2) is quite intuitive (compare dependent and independent couples with same distributions), the denition of Spearman's rho as Pearson's correlation of the ranks U i = P <,i (X i ) makes it clear that it is invariant under any continuous stretching or shrinking of the axis, and that it involves the dependence structure regardless of the marginals.

Tail dependence

Another characterization of dependence, of great importance for risk management purposes, is the so-called coecient of tail dependence which measures the joint probability of extreme events. More precisely, the upper tail dependence is dened as [Embrechts 2002b[START_REF] Malevergne | Extreme nancial risks: From dependence to risk management[END_REF]]:

τ 77 ij (p) = P X i > P -1 <,i (p) X j > P -1 <,j (p) ,
(2.8)

where P <,k is the cumulative distribution function (cdf) of X k , and p a certain probability level. In spite of its seemingly asymmetric denition, it is easy to show that τ 77 is in fact symmetric in X i ↔ X j . When p → 1, τ UU * ≡ τ UU (1) measures the probability that X i takes a very large positive value knowing that X j is also very large, and denes the asymptotic tail dependence. Random variables can be strongly dependent from the point of view of linear correlations, while being nearly independent in the extremes. For example, bivariate Gaussian variables are such that τ UU * = 0 for any value of ρ < 1. The lower tail dependence τ LL is dened similarly:

τ LL ij (p) = P X i < P -1 <,i (1 -p) X j < P -1 <,j (1 -p) ,
(2.9)

and is equal to τ UU (p) for symmetric bivariate distributions. One can also dene mixed tail dependences:

τ LU ij (p) = P X i < P -1 <,i (1 -p) X j > P -1 <,j (p) ,
(2.10)

τ UL ij (p) = P X i > P -1 <,i (p) X j < P -1 <,j (1 -p) ,
(2.11) with obvious interpretations.

1. From the very denition, by explicitly specifying a function C(u) satisfying all required properties. Examples include

• the independence (product) copula: Π(u) = u 1 u 2 . . . u N ;

• the upper Fréchet-Hoeding bound copula M (u) = min{u 1 , . . . , u N };

• the lower Fréchet-Hoeding bound W (u) = max{u 1 + . . .

+ u N -(N -1), 0}
which is a copula only for N = 2;

• Archimedean copulas: C(u) = φ -1 (φ(u 1 ) + . . . + φ(u N )),
where φ (the generator function) is N -2 times continuously dierentiable, and such that φ(1) = 0, lim u→0 φ(u) = ∞ and φ (N-2) is decreasing convex (more on this is Sect. 2.2.4, page 21).

2. Applying Sklar's theorem to usual classes of parametric multivariate distributions. Examples include the Gaussian copula

C / (u) = Φ Σ (Φ -1 (u 1 ), . . . , Φ -1 (u N ))
where Σ is a symmetric positive denite matrix. And the more general Elliptically Contoured copulas, that we introduce in the coming Sect. 2.4.

3. Implicitly dened as the dependence function of a random vector described through a structural model. Example: factor models.
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Fréchet-Hoeding bounds Copulas are multivariate cumulative distribution functions, and hence take values between 0 and 1, but there are in fact stronger constraints accounting for the properties of probability distributions. It is obvious that a univariate cdf tends to 0 at the extreme low values of its domain, and to 1 at the extreme high values, reecting roughly the facts that the probability of an empty set is 0 and the probability of the whole universe is 1. Much in this spirit, the extreme values of the copulas are pinned to C(0, . . . , 0) = 0 and C(1, . . . , 1) = 1. More precisely, if any component is 0, then the copula is 0, too. Furthermore, by reduction to the univariate marginals, if all but one components are 1, then the copula takes the value of the remaining component. Beyond these properties related to the marginals, the copula is subject to bounds imposed by the dependence structure: in short, a random pair cannot be more positively correlated than if it was built of twice the same variable, and similarly it cannot be more negatively correlated than if it was composed of a variable and its own opposite. This is more precisely stated by the following inequalities, for a copula of arbitrary dimension:

W (u) ≤ C(u) ≤ M (u), (2.13)
where the denitions of the upper and lower bounds were given in the previous page. We show in Fig. 2.1 how these bounds look like on the diagonal and anti-diagonal of a bivariate copula.

Dependence coecients and the copula

The copula can be restricted to subsets of the studied random vector. For example, the bivariate copula of any random pair (X i , X j ) is C(u i , u j ) = P[P <,i (X i ) ≤ u i and P <,j (X j ) ≤ u j ] .

(2.14)

It is then natural to ask if and how all the coecients of bivariate dependence introduced earlier are related to the description in terms of copula. It turns out that, whereas the ρ (d) 's and ζ (d) 's depend on the marginal distributions, Spearman's rho, Kendall's tau and Blomqvist's beta can be expressed in terms of the copula only:

ρ (S) = 12 [0,1] 2 u i u j dC(u i , u j ) -3 τ (K) = 4 [0,1] 2 C(u i , u j ) dC(u i , u j ) -1 β (B) = 4C( 1 2 , 1 2 ) -1.
Similarly, the tail dependence coecients can be expressed, for u 1, as:

τ UU (u) = 1 -2u + C(u, u) 1 -u τ LL (u) = C(1-u, 1-u) 1 -u (2.15a) τ UL (u) = 1 -u -C(u, 1-u) 1 -u τ LU (u) = 1 -u -C(1-u, u) 1 -u .
(2.15b) 

(b) Anti-diagonal
Figure 2.1: Fréchet-Hoeding bounds for the bivariate copula. The allowed space is the triangle delimited by dashed and dash-dotted lines, corresponding to the upper bound M (u) (maximal dependence) and the lower bound W (u) (maximal opposition), respectively. The product copula for independent variables is shown as a dotted line.

Visual representations

Copulas are not easy to visualize, rst because they need to be represented as 3D plots of a surface in two dimensions and second because the bounds (2.13), within which C(u, v) is constrained to live, compress the dierence between two arbitrary copulas the situation is even worse in higher dimensions. Estimating copula densities, on the other hand, is even more dicult than estimating univariate densities, especially in the tails. We therefore propose to focus on the diagonal of the copula, C(u, u) and the anti-diagonal, C(u, 1u), that capture part of the information contained in the full copula, and can be represented as 1-dimensional plots. Furthermore, in order to emphasize the dierence with the case of independent variables, it is expedient to consider the following quantities:

C(u, u) -u 2 u (1-u) = τ UU (u) + τ LL (1 -u) -1 (2.16a) C(u, 1-u) -u (1-u) u (1-u) = 1 -τ UL (u) -τ LU (1 -u),
(2.16b) where the normalization is chosen such that the tail correlations appear naturally. Another important reference point is the Gaussian copula C / (u, v), and we will consider below the normalized dierences along the diagonal and the anti-diagonal:

∆ d (u) = C(u, u) -C / (u, u) u (1-u) ; ∆ a (u) = C(u, 1-u) -C / (u, 1-u) u (1-u) .
(2.17) The incentive to focus on the diagonals of the copula is motivated in the rst place by the above argument that the whole copula is a particularly complex object that is hard to manipulate, estimate and visualize, and that some means have to be found in order to investigate its subtleties while reducing the number of parameters. But it also has a profound meaning in terms of physical observables that can be empirically measured. In particular, the diagonal quantity (2.16a) tends to the asymptotic tail dependence coecients τ UU * when u → 1 (τ LL * when u → 0). Similarly, the anti-diagonal quantity (2.16b) tends to -τ UL * as u → 1 and to -τ LU * as u → 0. This still holds for the alternative denition in Eq. (2.17): ∆ d,a (u) tend to the asymptotic tail dependence coecients in the limits u → 1 and u → 0, owing to the fact that these coecients are all zero in the Gaussian case. As we show in Chapter III.7, the diagonal copula plays also an important role in the characterization of temporal dependences in time series: observables such as recurrence times, sequences lengths, waiting times, etc. are fundamentally many-points objects, and their statistics are characterized by the diagonal n-points copulas.

The center-point of the copula, C( 1 2 , 1 2 ), is particularly interesting: it is the probability that both variables are simultaneously below their respective median. For bivariate Gaussian variables, one can show that:

C / ( 1 2 , 1 2 ) = 1 4 + 1 2π arcsin ρ ≡ 1 4 1 + ρ (s) ,
(2.18) where ρ (s) is the sign correlation coecient dened on page 16. The trivial but remarkable fact is that the above expression holds for any elliptical models, that we dene and discuss in the next section. This will provide a powerful test to discriminate between empirical data and a large class of copulas that have been proposed in the literature.

Generalized Blomqvist's beta

We report for completeness a possible multivariate generalization of the bivariate Blomqvist's beta, proposed in Ref. [Schmid 2007]:

β X (u, v) = C X (u) -Π(u) + C X (v) -Π(v) M (u) -Π(u) + M (v) -Π(v) , (2.19)
where C X is the survival copula dened similarly to Eq. (2.12) as

C X (u 1 , . . . , u N ) = P >,X P -1 >,1 (1 -u 1 ), . . . , P -1 >,N (1 -u N ) .
(2.20)

β X has an immediate interpretation as a normalized distance between C X and Π: it measures the eective global departure from independence normalized by the maximum departure from independence. When N = 2 and the copula is symmetric, it also nicely interpolates between several of the coecients dened above, for example

u = v = ( 1 2 , 1 2 ) =⇒ β X (u, v) = 4C X ( 1 2 , 1 2 ) -1 = β (B) X u = (u, u), v = (1, 1) =⇒ β X (u, v) = C X (u, u) -u 2 u (1 -u) = τ UU (u) + τ LL (1 -u) -1.

A word on Archimedean copulas

In the universe of all possible copulas, a particular family has become increasingly popular in nance: that of Archimedean copulas. These copulas are dened as follows [Wu 2007]:

C φ (u, v) ≡ φ -1 [φ(u) + φ(v)] , u, v ∈ [0, 1] (2.21)
where φ(u) : [0, 1] → [0, 1] is a function such that φ(1) = 0 and φ -1 is decreasing and completely monotone. For example, Frank copulas are such that φ .

(u) = ln[e θ -1] -ln[e θu -1]
where θ is a real parameter, or Gumbel copulas, such that φ / (u) = (-ln u) θ , 0 < θ ≤ 1. The asymptotic coecient of tail dependence are all zero for Frank copulas, whereas τ 77 * = 2 -2 θ (and all other zero) for the Gumbel copulas. The case of general multivariate copulas is obtained as natural generalization of the above denition.

One can of course attempt to t empirical copulas with a specic Archimedean copula. By playing enough with the function φ, it is obvious that one will eventually reach a reasonable quality of t. What we take issue with is the complete lack of intuitive interpretation or plausible mechanisms to justify why the returns of two correlated assets should be described with Archimedean copulas. This is particularly clear after recalling how two Archimedean random variables are generated: rst, take two

U[0, 1] random variables s, w. Set w ′ = K -1 (w) with K(x) = x -φ(x)/φ ′ (x). Now, set: u = φ -1 s φ(w ′ ) ; v = φ -1 (1-s) φ(w ′ ) , (2.22)
and nally write X 1 = P -1 <,1 (u) and X 2 = P -1 <,2 (v) to obtain the two Archimedean returns with the required marginals P 1 and P 2 [Genest 1993, Wu 2007]. Unless one nds a natural economic or micro-structural interpretation for such a labyrinthine construction, we content that such models should be discarded a priori, for lack of plausibility. In the same spirit, one should really wonder why the nancial industry has put so much faith in Gaussian copulas models to describe correlation between positive default times, that were then used to price CDO's and other credit derivatives. We strongly advocate the need to build models bottomup: mechanisms should come before any mathematical representation (see also [START_REF] Mikosch | Copulas: Tales and facts[END_REF]] and references therein for a critical view on the use of copulas).

Assessing temporal dependences

In the context of discrete time series, where i is a time index and j = i + ℓ (ℓ > 0, say), the realization of the random variable X j occurs after that of X i . Nevertheless, before X i is realized, the a priori probability distribution of X j is not conditional but joint to that of X j , and it is possible to use all the measures of dependence dened above in this context.

For example, ρ ij is the coecient of linear auto-correlation at lag ℓ = ji: it says in essence how much of X i is expected to be reproduced, ℓ time steps later, in the realization of X j . When positive, it indicates persistence, while reversion is revealed by negative autocorrelation.

Blomqvist's beta (dened in Eq. (2.4), page 15) is somehow more intuitive, as it quanties directly the dierence in probability that the signs will persist or alternate.

When one wants to be more specic in the characterization of temporal dependences and study for example the persistence and reversion probabilities of one realization of arbitrary magnitude, one needs to resort to the copula. Typically, persistence of extreme events (p-th quantile, where p is close to 1) separated by a time lag ℓ is measured by the tail dependence coecients τ UU ℓ (p) and τ LL ℓ (p), while reversion of extreme events is measured by τ UL ℓ (p) and τ LU ℓ (p). We will elaborate on the topic of copulas in time series in Chapter 7 of Part III. All these coecients will typically be of decreasing amplitude as ℓ gets larger, reecting the loss of memory as time goes on and randomness comes in. There nevertheless exist systems where the ℓ-dependence is not monotonous but rather exhibits oscillations due to periodic activity (see for example the rising interest in electroencephalogram data analysis).

Chapter 2. Characterizing the statistical dependence Ellipticity of a random variable is a property of its characteristic function, as explicited in the following denition.

Denition.

X ∼ E N (µ, Σ, φ) ⇐⇒ E exp it † (X -µ) = φ(t † Σ -1 t)
(2.23)

The quadratic form in the argument of φ means that the points of constant characteristic function draw an ellipsoid in the Fourier space, whence the name (see [START_REF] Cambanis | [END_REF]] for the construction and properties of elliptically contoured multivariate distributions). This denition in Fourier space is neither very convenient to build such variables, nor comfortable for its interpretation. The following theorem decomposes the elliptical random vector in terms of a uniformly distributed N -dimensional sphere and a random radial scale.

Theorem [START_REF] Cambanis | [END_REF]

]). If A is a (N × k) matrix with k ≤ N , and U ∼ U(S k ), then X = µ + σAU =⇒ ∃φ s.t. X ∼ E N (µ, AA † , φ) (2.24a)
The converse holds true and calls, for a positive denite Σ of rank k,

X ∼ E N (µ, Σ, φ) =⇒ ∃σ and A s.t. AA † = Σ and X = µ + σAU (2.24b)
The class of elliptical distributions comprises the Gaussian and Student distributions:

1. The Gaussian distribution: If the scaling variable has a chi-2 distribution with k = rank Σ degrees of freedom, i.e. σ ∼ χ 2 (k) then the resulting X is normally distributed:

σ ∼ χ 2 (k) =⇒ σAU ∼ N (0, Σ)
2. The Student distribution: As is well known, the quotient of a Gaussian variable over a chi-2 variable is Student-distributed. Hence,

σ = ν 2 σ k σ ν and σ ν ∼ χ 2 (ν) =⇒ σAU ∼ t ν (0, Σ)
As a consequence of the theorem above and the of the example 1, all elliptical random variables X i can be simply generated by multiplying standardized Gaussian random variables i with a common random (strictly positive) factor σ, drawn independently from the 's from an arbitrary distribution: [Embrechts 2002b]

X = µ + σ (2.25)
where µ is a location parameter, and ∼ N (0, Σ).
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Property (stability). Let X ∼ E N (µ X , Σ, φ X ) and Y ∼ E N (µ Y , cΣ, φ Y ) be independent random vectors. Their sum is elliptical, too:

aX + bY ∼ E N (aµ X + bµ Y , Σ, φ) with φ(•) = φ X (a 2 •)φ Y (b 2 c•)
As an example, consider the dierence of two independent and elliptical random vectors: X -X ′ ∼ E N (0, Σ, φ 2 ) Remark that the stability also holds whenever the random vectors X and Y are dependent only through their radial part σ, see [START_REF] Hult | Multivariate extremes, aggregation and dependence in elliptical distributions[END_REF]].

Property (bivariate marginals). Let X ∼ E N (µ, Σ, φ). Then, for all pair (i, j),

X ij ∼ E 2 (µ ij , Σ (ij) , φ), with Σ (ij) = Σ ii Σ ij Σ ij Σ jj
In words, the bivariate marginals of a multivariate elliptical random variable are also elliptical, and inherit the parameters of the joint distribution. This is clear from either representations (2.24) or (2.25). This property has an important converse: if the bivariate marginals are not elliptical with the same radial characteristic function, then the joint probability density is not elliptical. We will make use of this corollary in our empirical study of multivariate distribution for stock returns in Chapter 4 of Part II.

Predicted dependence coecients

The measures of dependence dened in Section 2.1 can be explicitly computed for elliptical models. Let X ∼ E N (µ, Σ, φ) and

r ij = Σ ij / Σ ii Σ jj . Then ρ (1) ij = r ij (2.26a) ζ (1) ij = f (1) • D(r ij ) -1 π 2 f (1) -1 (2.26b) ζ (2) ij = f (2) • (1 + 2r 2 ij ) -1 3f (2) -1 (2.26c) β (B) ij = ρ (0) ij = 2 π arcsin r ij (2.26d) τ (K) ij = 2 π arcsin r ij proof in [Lindskog 2001], (2.26e)
where

f (d) = E[σ 2d ]/E[σ d ] 2 and D(r) = √ 1 -r 2 + r arcsin r.
Some remarks regarding these equations are of importance:

• ρ (1) ij , β (B) ij and τ (K) ij
do not depend on φ (i.e. on σ): they are invariant in the class of elliptical distributions with continuous marginals and given dispersion matrix Σ.

• No such invariance exists for Spearman's rho ρ (S) ( [START_REF] Hult | Multivariate extremes, aggregation and dependence in elliptical distributions[END_REF]) and for ρ (d) and ζ (1) !

• For conclusions (2.26e) and (2.26d), X ∼ E N (µ, Σ, φ) is a sucient condition but not a necessary one ! Every random vector X with elliptical copula (see below) veries (2.26e) and (2.26d), and is hence said to follow a multivariate meta-elliptical distribution.

• Relations (2.26e) and (2.26d) can be used to dene alternative ways of measuring the correlation matrix elements r ij . Indeed,

ρ (K) ≡ sin π 2 τ (K)
and ρ (B) ≡ sin π 2 β (B) provide very low-moments (though slightly negatively biased) estimators see [Lindskog 2001] for a study of ρ (K) . Said dierently, it is always possible to dene the eective correlation ρ (B) which, according to Eq. (2.18) and the subsequent discussion on page 21, can also be written as

ρ (B) = cos 2πC( 1 2 , 1 2 ) .
(2.27) Now Eq. (2.26d) states together with Eq. (2.26a) that for all elliptical models, this eective correlation is just equal to the usual linear correlation ρ (1) ! This property provides a very convenient and simple testable prediction to check whether a given copula is compatible with an elliptical model or not, and will be at the heart of our empirical study in Chapters 4 and 5 of part II.

• f (2) is related to the kurtosis of the X's through the relation κ = 3(f (2) -1). The calculation of the tail correlation coecients depends on the specic form of the function φ or, said dierently, on the distribution P σ of σ in Eq. (2.25), for which several choices are possible. We will focus in the following on two of them, corresponding to the Student model and the log-normal model.

The Gaussian ensemble

In the case of bivariate Gaussian variables of variance σ 2 0 , i.e. when

P σ (σ) = δ(σ -σ 0 ),
all f (d) = 1 and all the coecients of dependence depend on ρ only ! For example, the quadratic correlation ζ (2) is given by:

ζ (2) = ρ 2 ;
(2.28) whereas the correlation of absolute values ζ (1) is given by:

ζ (1) = D(ρ) -1 π 2 -1 , (2.29)
For some other classes of distributions, the higher-order coecients ρ (d) and ζ (d) are explicit functions of the coecient of linear correlation. This is for example the case of Student variables (see Fig. 2.2) and more generally for all elliptical distributions.

The Student ensemble

When the distribution of the square volatility is inverse Gamma, i.e. when

P σ 2 (u) = 1 Γ( ν 2 ) u -ν 2 -1 e -1 u ,
the joint pdf of the returns turns out to have an explicit form [START_REF] Demarta | [END_REF], Embrechts 2002b[START_REF] Malevergne | Extreme nancial risks: From dependence to risk management[END_REF]]:

t ν (x) = 1 (νπ) N det Σ Γ( ν+N 2 ) Γ( ν 2 ) 1 + x † Σ -1 x ν -ν+N 2 (2.30)
This is the multivariate Student distribution with ν degrees of freedom for N random variables with dispersion matrix Σ. Clearly, the marginal distribution of t ν (x) is itself a Student distribution with a tail exponent equal to ν, which is well known to describe satisfactorily the univariate pdf of high-frequency returns (from a few minutes to a day or so), with an exponent in the range [3,5] (see e.g. Refs. [Bouchaud 2003[START_REF] Cont | Empirical properties of asset returns: stylized facts and statistical issues[END_REF][START_REF] Fuentes | [END_REF], Plerou 1999]).

The multivariate Student model is therefore a rather natural choice; its corresponding copula denes the Student copula. For N = 2, it is entirely parameterized by ν and the correlation coecient ρ = Σ 12 (Σ 11 = Σ 22 = 1).

The moments of σ are easily computed and lead to the following expressions for the coecients f (d) :

f (1) = 2 ν -2 Γ( ν 2 ) Γ( ν-1 2 ) 2 f (2) = ν -2 ν -4
(2.31a) when ν > 2 (resp. ν > 4). Note that in the limit ν → ∞ at xed N , the multivariate Student distribution boils down to a multivariate Gaussian. The shape of ζ (1) (ρ) and ζ (2) (ρ) for ν = 5 is given in Fig. 2.2. One can explicitly compute the coecient of tail dependence for Student variables, which only depends on ν and on the linear correlation coecient ρ. By symmetry, one has

τ UU (p; ν, ρ) = τ LL (p; ν, ρ) = τ UL (p; ν, -ρ) = τ LU (p; ν, -ρ). When p = 1 -with → 0,
the result is given by the following theorem:

Theorem ([Chicheportiche 2012b]). Let (X 1 , X 2 ) follow a bivariate student distribution with ν degrees of freedom and correlation ρ, and denote by T ν (x) the univariate Student cdf with ν degrees of freedom. The pre-asymptotic behavior of its tail dependence when p → 1 is approximated by the following expansion in (rational) powers of (1p):

τ UU (p; ν, ρ) = τ UU * (ν, ρ) + β(ν, ρ) • 2 ν + O( 4 ν ),
(2.32)

Chapter 2. Characterizing the statistical dependence with

τ 77 * (ν, ρ) = 2 -2 T ν+1 (k(1)) β(ν, ρ) = ν 2 ν +1 2 ν + 1 k(1) t ν+1 k(1) L -2 ν ν where k(1) = (ν + 1)(1 -ρ)/ √ 1 + ρ and L ν = π -1 2 ν ν 2 Γ( ν+1 2 )/Γ( ν 2 ).
The following Lemma, is needed for the proof of the Theorem:

Lemma. Let (X 1 , X 2 ) and T ν (x) be like in the Theorem above, and

x p ≡ T -1 ν (p). Dene K = ν + 1 1 -ρ 2 X 1 -ρx p ν + X 2 2 k(p) = √ ν + 1 √ 1 -ρ √ 1 + ρ ν • x -2 p + 1 -1 2 = k(1) 1 + ν x 2 p .
Then,

P[K ≤ k(p) | X 2 = x p ] = T ν+1 k(p)
(2.33)

Proof of the Lemma. The proof proceeds straightforwardly by showing that t ν+1 (k) =

P X 1 |X 2 (x 1 |x 2 ) ∂x 1
∂k when x 2 = x p . The particular result for the limit case p = 1 is stated in [Embrechts 2002b].

Proof of the Theorem. Recall from Eq. (2.15) that

τ 77 (p) = 2 - C(p, p) -C(1, 1) p -1 = 2 - 1 1 -p 1 p dC(p, p) dp dp
(2.34)

One easily shows that

dC(p, p) = 2 P[X 1 ≤ x p | X 2 = x p ] dp = 2 T ν+1 k(p) dp
where the second equality holds in virtue of the aforementioned lemma. Now, for p close to 1,

k(p) = k(1) 1 -1 2 ν x 2 p + O(x -4
p ), and

dC(p, p) dp = 2 T ν+1 k(p) ≈ 2 T ν+1 k(1) -2 k(1) -k(p) • t ν+1 k(1)
But since the Student distribution behaves as a power-law precisely in the region p 1, we write t ν (x) ≈ L ν /x ν+1 and immediately get 1-p = x -ν p L ν /ν. The result follows by collecting all the terms and performing the integration in (2.34).

The notable features of the above results are:

• For large ν, the exponent is almost zero and the correction term is of order O(1), and the expansion ceases to hold. This is particularly true for the Gaussian distribution (ν = ∞) for which the behavior is radically dierent at the limit p → 1 (where there's strictly no tail correlation) and at p < 1 where a dependence subsists, see Fig. 2.3(a). • The asymptotic tail dependence τ UU * (ν, ρ) is strictly positive for all ρ > -1 and nite ν, and tends to zero in the Gaussian limit ν → ∞ (see Fig. 2.3(a)). The intuitive interpretation is quite clear: large events are caused by large occasional bursts in volatility. Since the volatility is common to all assets, the fact that one return is positive extremely large is enough to infer that the volatility is itself large. Therefore that there is a non-zero probability τ UU * (ν, ρ) that another asset also has a large positive return (except if ρ = -1 since in that case the return can only be large and negative!). It is useful to note that the value of τ UU * (ν, ρ) does not depend on the explicit shape of P σ provided the asymptotic tail of P σ decays as L(σ)/σ 1+ν , where L(σ) is a slow function.

• The coecient β(ν, ρ) is also positive, indicating that estimates of τ UU * (ν, ρ) based on measures of τ UU (p; ν, ρ) at nite quantiles (e.g. p = 0.99) are biased upwards. Note that the correction term is rapidly large because is raised to the power 2/ν. For example, when ν = 4 and ρ = 0.3, β ≈ 0.263 and one expects a rst-order correction 0.026 for p = 0.99. This is illustrated in Figs. 2.3(a),2.3(b). The form of the correction term (in 2/ν ) is again valid as soon as P σ decays asymptotically as L(σ)/σ 1+ν . • Not only is the correction large, but the accuracy of the rst order expansion is very bad, since the ratio of the neglected term to the rst correction is itself ∼ 2/ν . The region where the rst term is accurate is therefore exponentially small in ν see Fig. 2.3(b). Finally, we plot in Fig. 2.4 the rescaled dierence between the Student copula and the Gaussian copula both on the diagonal and on the anti-diagonal, for several values of the linear correlation coecient ρ and for ν = 5. One notices that the dierence is zero for p = 1 2 , as expected from the expression of C * (ρ) for general elliptical models. Away from p = 1 2 on the diagonal, the rescaled dierence has a positive convexity and non-zero limits when p → 0 and p → 1, corresponding to τ LL * and τ UU * .

(a) τ 77 vs ν at several thresholds p for bivariate Student variables with ρ = 0.3. Note that τ 77 * → 0 when ν → ∞, but rapidly grows when p = 1.

(b) τ 77 vs p for bivariate Student variables with ρ = 0.3 and ν = 5: exact curve (plain), rst order power-law expansion (dashed) and simulated series with dierent lengths T (symbols)

Figure 2.3:

The log-normal ensemble

If we now choose σ = σ 0 e ξ with ξ ∼ N (0, s), the resulting multivariate model denes the log-normal ensemble and the log-normal copula. The factors f (d) are immediately found to be: f (d) = e d 2 s 2 with no restrictions on d. The Gaussian case now corresponds to the limit s ≡ 0.

Although the inverse Gamma and the log-normal distributions are very dierent, it is well known that the tail region of the log-normal is in practice very hard to distinguish from a power-law. In fact, one may rewrite the pdf of the log-normal distribution as:

σ -1 e -ln 2 b σ 2s 2 = σ -(1+ν e ) with ν e = ln σ 2s 2 , (2.35)
where we have introduced σ = σ/σ 0 . The above equation means that for large σ a log-normal is like a power-law with a slowly varying exponent. If the tail region corresponds to σ ∈ [4, 8] (say), the eective exponent ν lies in the range [0.7/s 2 , 1.05/s 2 ]. Another way to obtain an approximate dictionary between the Student model and the log-normal model is to x ν e (s) such that the coecient f (2) (say) of the two models coincide. Numerically, this leads to ν e (s) ≈ 2 + 0.5/s 2 , leading to s ≈ 0.4 for ν = 5. In any case, our main point here is that from an empirical point of view, one does not expect striking dierences between a Student model and a log-normal model even though from a strict mathematical point of view, the models are very dierent. In particular, the asymptotic tail dependence coecients τ UU * or τ LL * are always zero for the log-normal model (but τ LL (p) or τ UU (p) converge exceedingly slowly towards zero as p → 1). 

Pseudo-elliptical generalization

In the previous elliptical description of the returns, all stocks are subject to the exact same stochastic volatility, what leads to non-linear dependences like tail eects and residual higherorder correlations even for ρ = 0 (see Fig. 2.2). In order to be able to ne-tune somewhat this dependence due to the common volatility, a simple generalization is to let each stock be inuenced by an idiosyncratic volatility, thus allowing for a more subtle structure of dependence. More specically, we write : 2.36) where the Gaussian residuals i have the same joint distribution as before (in particular with linear correlations E[ i j ] = r ij ), and are independent of the σ i , but we now generalize the denition of the ratios f (d) . The random vector σ has a non trivial dependence structure which is partly described by the mixed d-moments

X i = σ i • i i = 1 . . . N ( 
f (d) ij = E[σ d i σ d j ] E[σ d i ] E[σ d j ]
.

(2.37)

When the σ i 's are dependent but identically distributed, the diagonal elements f (d) ii do not depend on i. Within this setting, the generalization of coecients (2.26b) can be straightfor-In vectorial form, we collect the individual (yet dependent) stochastic volatilities σi on the diagonal of a matrix D, and X = D can be decomposed as X = RDAU where U is a random vector uniformly distributed on the unit hypersphere, the radial component R is a chi-2 random variable independent of U with rank(A) degrees of freedom, and A is a matrix with appropriate dimensions such that AA † = Σ. This description can be contrasted with the one proposed in Ref. [Kring 2009] under the term Multi-tail Generalized Elliptical Distribution: X = R(u)AU with R now depending on the unit vector u = AU /||AU ||. In other words, the description in (2.36) provides a dierent radial amplitude for each component, whereas [Kring 2009] characterizes a direction-dependent radial part identical for every component. The latter allows for a richer phenomenology than the former, but lacks nancial intuition.

Chapter 2. Characterizing the statistical dependence wardly calculated:

ρ (1) ij = r ij f (1) ij f (1) ii (2.38a) ζ (1) ij = f (1) ij • D(r ij ) -1 π 2 f (1)
ii -1

(2.38b) ζ (2) ij = f (2) ij • (1 + 2r 2 ij ) -1 3 f (2)
ii -1

(2.38c)
Importantly, Kendall's tau and Blomqvist's beta remain invariant in this class of Pseudoelliptical distributions !

As an explicit example, we consider the natural generalization of the log-normal model and write σ i = σ 0i e ξ i , with ! ξ i id ∼ N (0, s), and some correlation structure of the ξ's:

E[ξ i ξ j ] = s 2 c ij . One then nds: f (d) ij ≡ f (d) (c ij ) = e d 2 s 2 c ij .
(2.39)

Using the generic notation c for the correlation of the log-volatilities, and r for the correlation of the residuals (now dierent from ρ) we nd:

ρ(r, c) = f (1) (c) f (1) (1) • r (2.40a) ζ (2) (r, c) = f (2) (c) (1 + 2r 2 ) -1 3f (2) (1) -1 (2.40b) ζ (1) (r, c) = f (1) (c) D(r) -1 π 2 f (1) (1) -1 (2.40c)
When c is xed (e.g. for the elliptical case c = 1), ρ and r are proportional, and all measures of non-linear dependences can be expressed as a function of ρ. But this ceases to be true as soon as there exists some non trivial structure c in the volatilities. In that case, c and r are hidden underlying variables, that can only be reconstructed from the knowledge of ρ, ζ (2) , C( 1 2 , 1 2 ), assuming of course that the model is accurate. Notice that the result on C( 1 2 , 1 2 ) is totally independent of the structure of the volatilities " .

Indeed, what is relevant for the copula at the central point is not the amplitude of the returns, but rather the number of +/events, which is unaected by any multiplicative scale factor as long as the median of the univariate marginals is nil. An important consequence of this result is that for all elliptical or pseudo-elliptical model, ρ = 0 implies that C * (ρ = 0) = 1 4 .

Conclusion

We have suggested several ideas of methodological interest to eciently visualize and compare dierent copulas. We recommend in particular the rescaled dierence with the Gaussian copula along the diagonal ∆ d,a (p) and the central value of the copula C( 1 2 , 1 2 ) as strongly discriminating observables. We have studied the dependence of these quantities, as well as other non-linear correlation coecients like the higher-order correlations ζ (d) , with the linear correlation coecient ρ.

The case of elliptical copulas is emphasized, with the lognormal and Student models as examples. We provide an original characterization of the pre-asymptotic tail dependence coecient when p → 1 as a development in rational powers of (1-p).

An explicit prediction of elliptical models is empirically tested on multivariate nancial data in Chapter 4 of part II. The problem of testing whether a null-hypothesis theoretical probability distribution is compatible with the empirical probability distribution of a sample of observations is known as goodness-of-t (GoF) testing and is ubiquitous in all elds of science and engineering. Goodness-of-Fit tests are designed to assess quantitatively whether a sample of N observations can statistically be seen as a collection of N realizations of a given probability law, or whether two such samples are drawn from the same hypothetical distribution.

The best known theoretical result is due to Kolmogorov and Smirnov (KS) [START_REF] Kolmogorov | [END_REF], Smirnov 1948], and has led to the eponymous statistical test for an univariate sample of independent draws. The major strength of this test lies in the fact that the asymptotic distribution of its test statistic is completely independent of the null-hypothesis cdf.

Several specic extensions have been studied (and/or are still under scrutiny), including: dierent choices of distance measures [Darling 1957], multivariate samples [Fasano 1987[START_REF] Cabaña | [END_REF], Cabaña 1997, Fermanian 2005a], investigation of dierent parts of the distribution domain [Anderson 1952, Deheuvels 2005[START_REF] Noé | [END_REF], Chicheportiche 2012c], dependence in the successive draws [Chicheportiche 2011], etc. This class of problems has a particular appeal for physicists since the works of Doob [START_REF] Doob | [END_REF]] and Khmaladze [Khmaladze 1982], who showed how GoF testing is related to stochastic processes. Finding the law of a test amounts to computing a survival probability in a dissipative system. In a Markovian setting, this is often achieved by treating a Fokker-Planck problem, which in turn maps into a Schrödinger equation for a particle in a certain potential conned by walls.

Empirical cumulative distribution and its uctuations

Let X be a random vector of N independent and identically distributed variables, with marginal cumulative distribution function (cdf) F . One realization of X consists of a time series {x 1 , . . . , x n , . . . , x N } that exhibits no persistence (see Sect. 3.2 when some non trivial dependence is present). The empirical cumulative distribution function

F N (x) = 1 N N n=1 1 {Xn≤x} (3.1)
converges to the true CDF F as the sample size N tends to innity. For nite N , the expected value and uctuations of

F N (x) are E[F N (x)] = F (x), Cov(F N (x), F N (x ′ )) = 1 N F (min(x, x ′ )) -F (x)F (x ′ ) .
The rescaled empirical CDF

Y N (u) = √ N F N (F -1 (u)) -u (3.2)
measures, for a given u ∈ [0, 1], the dierence between the empirically determined cdf of the X's and the theoretical one, evaluated at the u-th quantile. It does not shrink to zero as N → ∞, and is therefore the quantity on which any statistic for GoF testing is built.

Limit properties

One now denes the process Y (u) as the limit of Y N (u) when N → ∞. According to the Central Limit Theorem (CLT), it is Gaussian and its covariance function is given by:

I(u, v) = min(u, v) -uv, (3.3) 
which characterizes the so-called Brownian bridge, i.e. a Brownian motion Y (u) such that

Y (u = 0) = Y (u = 1) = 0.
Interestingly, F does not appear in Eq. (3.3) anymore, so the law of any functional of the limit process Y is independent of the law of the underlying nite size sample. This property is important for the design of universal GoF tests.

Norms over processes

In order to measure a limit distance between distributions, a norm ||.|| over the space of continuous bridges needs to be chosen. Typical such norms are the norm-2 (or `Cramérvon Mises' distance)

||Y || 2 = 1 0 Y (u) 2 du,
as the bridge is always integrable, or the norm-sup (also called the Kolmogorov distance)

||Y || ∞ = sup u∈[0,1] |Y (u)|,
as the bridge always reaches an extremal value.

Unfortunately, both these norms mechanically overweight the core values u ≈ 1/2 and disfavor the tails u ≈ 0, 1: since the variance of Y (u) is zero at both extremes and maximal in the central value, the major contribution to ||Y || indeed comes from the central region.

To alleviate this eect, in particular when the GoF test is intended to investigate a specic region of the domain, it is preferable to introduce additional weights and study ||Y √ ψ|| rather than ||Y || itself. Anderson and Darling show in Ref. [Anderson 1952] that the solution to the problem with the Cramér-von Mises norm and arbitrary weights ψ is obtained by spectral decomposition of the covariance kernel, and use of Mercer's theorem. They design an eponymous test [Darling 1957] with the specic choice of weights ψ(u) = 1/I(u, u) equal to the inverse variance, which equi-weights all quantiles of the distribution to be tested. We analyze here the case of the same weights, but with the Kolmogorov distance.

Chapter 3. Goodness-of-t testing (u, v) given in Eq. (3.3). In particular, Y (0) = Y (1) = 0 with probability equal to 1, no matter how distant F is from the sample cdf around the core values. In order to put more emphasis on specic regions of the domain, we weight the Brownian bridge as follows: for given a ∈]0, 1[ and b ∈ [a, 1[, we dene

Ỹ (u) = Y (u) • ψ(u) , a ≤ u ≤ b 0 , otherwise.
(3.4)

We will characterize the law of the supremum K(a, b) ≡ sup u∈[a,b] Ỹ (u) :

P < (k|a, b) ≡ P[K(a, b) ≤ k] = P | Ỹ (u)| ≤ k, ∀u ∈ [a, b] .
3.1.1 The equi-weighted Brownian bridge: Kolmogorov-Smirnov

In the case of a constant weight, corresponding to the classical KS test, the probability P < (k; 0, 1) is well dened and has the well known KS form [Kolmogorov 1933]:

P < (k; 0, 1) = 1 -2 ∞ n=1 (-1) n-1 e -2n 2 k 2 , (3.5) 
which, as expected, grows from 0 to 1 as k increases, see Fig. 3.5(a) on page 48. The value k * such that this probability is 95% is k * ≈ 1.358 [Smirnov 1948]. This can be interpreted as follows: if, for a data set of size N , the maximum value of |Y N (u)| is larger than ≈ 1.358, then the hypothesis that the proposed distribution is a good t can be rejected with 95%

condence.

Diusion in a cage with xed walls

The Brownian bridge Y is nothing else than a Brownian motion with imposed terminal condition, and can be written as Y (u) = X(u)u X(1) where X is a Brownian motion. The test law

P < (k|a, b) = P[-k ≤ Y (u) ≤ k, ∀u ∈ [a, b]
] is in fact the survival probability of Y in a cage with absorbing walls, and can be determined by counting the number of Brownian paths X(u) that go from 0 to 0 without ever hitting the barriers. More precisely, the survival probability of the Brownian bridge in the stripe [-k, k] can be computed as f 1 (0; k)/f 1 (0; ∞), where f u (y; k) is the transition kernel of the Brownian motion within the allowed region, and it satises the simple Fokker-Planck equation

∂ u f u (y; k) = 1 2 ∂ 2 y f u (y; k) f u (±k; k) = 0 , ∀u ∈ [0, 1].
By spectral decomposition of the Laplace operator, the solution is found to be

f u (y; k) = 1 k n∈Z e -Enu cos 2E n y , where E n = 1 2 (2n-1)π 2k
and the free propagator in the limit k → ∞ is the usual

f u (y; ∞) = 1 √ 2πu e -y 2 2u ,
so that the survival probability of the constrained Brownian bridge is

P < (k; 0, 1) = f 1 (0; k) f 1 (0; ∞) = √ 2π k n∈Z exp - (2n-1) 2 π 2 8k 2 .
(3.6)

Although it looks dierent from the historical solution Eq. (3.5), the two expressions can be shown to be exactly identical. First write the summand in Eq. (3.6) as the Fourier transform of e -2k 2 x 2 . Then, adding a small imaginary part to x allows to perform the summation of the series over n, what makes poles [1e ±iπx ] -1 appear in the integrand. Finally use Cauchy's residue theorem to perform the integral, obtaining a sum over all residues evaluated at integer values of x.

The computation of Kolmogorov's distribution P < (k; 0, 1) performed above is way easier than the canonical ones [Anderson 1952].

Diusion in a cage with moving walls

An appropriate change of variable and time

W (t) = (1 + t) Y t 1 + t , t ∈ [0, ∞[
leads to the problem of a Brownian diusion inside a box with walls moving at constant velocity. Since the walls expand as ∼ t faster than the diusive particle can move (∼ √ t), the survival probability converges to a positive value, which turns out to be given by the usual Kolmogorov distribution (3.5) [Krapivsky 1996].

A way of addressing this problem of a diusing particle in an expanding cage was suggested in Refs. [Bray 2007a, Bray 2007b]. The time-dependent boundary conditions of the usual (forward) Fokker-Planck equation make it dicult to solve as such, and a nice way out is to consider instead the backward Fokker-Planck equation for the transition density, with the initial position of the absorbing wall as an additional independent variable ! This eliminates the time dependence in the boundary condition at the cost of introducing the initial wall parameter.

The variance-weighted Brownian bridge: accounting for the tails

The classical KS test suers from an important aw: the test is only weakly sensitive to the quality of the t in the tails of the tested distribution [START_REF] Mason | A Modied Kolmogorov-Smirnov Test Sensitive to Tail Alternatives[END_REF][START_REF] Mason | Correction: A Modied Kolmogorov-Smirnov Test Sensitive to Tail Alternatives[END_REF]], when it is often these tail events (corresponding to centennial oods, devastating earthquakes, nancial crashes, etc.) that one is most concerned with (see, e.g., Ref. [Clauset 2009]).

A simple and elegant GoF test for the tails only can be designed starting with digital weights in the form ψ(u; a) = 1 {u≥a} or ψ(u; b) = 1 {u≤b} for upper and lower tail, respectively. 

ψ(u) + k -k t w(t) = (1 + t) y    t 1 + t    + k (1 + t) -k (1 + t) 0 0 ∞ Figure 3.1:
The equi-weighted Brownian bridge, ψ(u) = 1. The time-changed rescaled process lives in a geometry with boundaries receding at constant speed.

The corresponding test laws can be read o Eq. ( 5.9) in Ref. [Anderson 1952]. Investigation of both tails is attained with ψ(u; q) = 1 {u≤1-q} + 1 {u≥q} (where q > 1 2 ).

Here we rather focus on a GoF test for a univariate sample of size N 1, with the Kolmogorov distance but equi-weighted quantiles, which is equally sensitive to all regions of the distribution. We unify two earlier attempts at nding asymptotic solutions, one by Anderson and[START_REF] Anderson | Asymptotic Theory of Certain Goodness of Fit" Criteria Based on Stochastic Processes[END_REF]] and a more recent, seemingly unrelated one that deals with life and death of a particle in an expanding cage by Krapivsky and

Redner [Krapivsky 1996, Redner 2001]. We present here the exact asymptotic solution of the corresponding stochastic problem, and deduce from it the precise formulation of the GoF test, which is of a fundamentally dierent nature than the KS test.

So in order to zoom on the tiny dierences in the tails of the Brownian bridge, we weight it as explained in the introduction, with its variance

ψ(u) = 1 u(1 -u)
.

Solutions for the distributions of such variance-weighted Kolmogorov-Smirnov statistics were studied by Noé, leading to the laws of the one-sided [START_REF] Noé | [END_REF]] and two-sided [Noé 1972] nite sample tests. They were later generalized and tabulated numerically by Niederhausen [Niederhausen 1981a, Niederhausen 1981b, Wilcox 1989]. However, although exact and appropriate for small samples, these solutions rely on recursive relations and are not in closed form. We instead come up with an analytic closed-form solution for large samples that relies on an elegant analogy from statistical physics.

The quantity M appearing there is the volume under the normal bivariate surface between specic bounds, and it takes a very convenient form in the unilateral cases 1 2 ≤ a ≤ u ≤ 1 and 0 ≤ u ≤ b ≤ 1 2 . Mind the missing j exponentiating the alternating (-1) factor.

Other choices of ψ generally result in much harder problems. Cov W (t), W (t ′ ) = min(t, t ′ ). P < (k|a, b) can be now written as

P < (k|a, b) = P |W (t)| ≤ k √ t, ∀t ∈ [ a 1-a , b 1-b ] .
The problem with initial time a 1-a = 0 and horizon time b 1-b = T has been treated by Krapivsky and Redner in Ref. [Krapivsky 1996] as the survival probability S(T ; k = A 2D ) of a Brownian particle diusing with constant D in a cage with walls expanding as √ At. Their result is that for large T ,

S(T ; k) ≡ P < (k|0, T 1+T ) ∝ T -θ(k) .
They obtain analytical expressions for θ(k) in both limits k → 0 and k → ∞. The limit solutions of the very same dierential problem were found earlier by Turban for the critical behavior of the directed self-avoiding walk in parabolic geometries [START_REF] Turban | Anisotropic critical phenomena in parabolic geometries: the directed self-avoiding walk[END_REF]].

We take here a slightly dierent route, suggested by Anderson and Darling in Ref. [Anderson 1952] but where the authors did not come to a conclusion. Our contributions are: (i) we treat the general case a > 0 for any k; (ii) we explicitly compute the k-dependence of both the exponent and the prefactor of the power-law decay; and (iii) we provide the link with the theory of GoF tests and compute the pre-asymptotic distribution of the weighted Kolmogorov-Smirnov test statistic for large sample sizes N → ∞, i.e. when ]a, b[→]0, 1[ .

Mean-reversion in a cage with xed walls

Introducing now the new time change τ = ln 1-a a t, the variable Z(τ ) = W (t)/ √ t is a stationary Ornstein-Uhlenbeck (OU) process on [0, T ] where

T = ln b (1 -a) a (1 -b) , (3.7) 
and

Cov Z(τ ), Z(τ ′ ) = e -|τ -τ ′ | .
Its dynamics is described by the stochastic dierential equation (SDE) 

dZ(T ) = -Z(T )dT + √ 2 dB(T ),
ψ(u) + k -k t w(t) = (1 + t) y    t 1 + t    + k t -k t 0 0 ∞ Figure 3.2: The variance-weighted Brownian bridge, ψ(u) = 1/[u(1 -u)].
The time-changed rescaled process lives in a geometry with boundaries receding as ∼ √ t.

variance. The distribution P < (k|a, b) can now be understood as the unconditional survival probability of a mean-reverting particle in a cage with xed absorbing walls, see Fig. 3.2:

P < (k|T ) = P[-k ≤ Z(τ ) ≤ k, ∀τ ∈ [0, T ]] = k -k f T (z; k) dz,
where

f T (z; k) dz = P Z(T ) ∈ [z, z + dz[|{Z(τ )} τ <T
is the density probability of the particle being at z at time T , when walls are in ±k. Its dependence on k, although not explicit on the right hand side, is due to the boundary condition associated with the absorbing walls (it will be dropped in the following for the sake of readability) ! . The Fokker-Planck equation governing the evolution of the density f T (z) reads

∂ τ f τ (z) = ∂ z [z f τ (z)] + ∂ 2 z [f τ (z)] , 0 < τ ≤ T.
Calling H .2 the second order dierential operator -1 + z∂ z + ∂ 2 z , the full problem thus amounts to nding the general solution of

-∂ τ f τ (z) = H .2 (z)f τ (z) f τ (±k) = 0, ∀τ ∈ [0, T ] .
We have explicitly introduced a minus sign since we expect that the density decays with time in an absorption problem. Because of the term z∂ z , H .2 is not hermitian and thus

! In particular, P<(k|0) = erf " k √ 2

"

. cannot be diagonalized. However, as is well known, one can dene f τ (z) = e -z 2 4 φ τ (z) and the Fokker-Planck equation becomes

-∂ τ φ τ (z) = -∂ 2 z + 1 4 z 2 -1 2 1 φ τ (z) φ τ (±k) = 0, ∀τ ∈ [0, T ] ,
and its Green's function, i.e. the (separable) solution conditionally on the initial position (z E , T E ), is the superposition of all modes

G φ (z, T | z E , T E ) = ν e -θν (T -T E ) ϕ ν (z) ϕ ν (z E ),
where ϕ ν are the normalized solutions of the stationary Schrödinger equation

-∂ 2 z + 1 4 z 2 ϕ ν (z) = θ ν + 1 2 ϕ ν (z) ϕ ν (±k) = 0 ,
each decaying with its own energy θ ν , where ν labels the dierent solutions with increasing eigenvalues, and the set of eigenfunctions { ϕ ν } denes an orthonormal basis of the Hilbert space on which

H 5 (z) = -∂ 2 z + 1 4 z 2 acts. In particular, ν ϕ ν (z) ϕ ν (z ′ ) = δ(z -z ′ ), (3.9) so that indeed G φ (z, T E | z E , T E ) = δ(z -z E )
, and the general solution writes

f T (z T ; k) = k -k e z 2 E -z 2 T 4 G φ (z T , T | z E , T E ) f 0 (z E ) dz E ,
where T E = 0, which corresponds to the case b = a in Eq. (3.4), and f 0 is the distribution of the initial value z E which is here, as noted above, Gaussian with unit variance.

H 5 gures out an harmonic oscillator of mass 1 2 and frequency ω = 1 √ 2 within an innitely deep well of width 2k: its eigenfunctions are parabolic cylinder functions [Mei 1983[START_REF] Gradshteyn | [END_REF] 

y + (θ; z) = e -z 2 4 1 F 1 -θ 2 , 1 2 , z 2 2 y -(θ; z) = z e -z 2 4 1 F 1 1-θ 2 , 3 2 , z 2 2
properly normalized. The only acceptable solutions for a given problem are the linear combinations of y + and y -which satisfy orthonormality (3.9) and the boundary conditions: for periodic boundary conditions, only the integer values of θ would be allowed, whereas with our Dirichlet boundaries | ϕ ν (k)| = -| ϕ ν (-k)| = 0, real non-integer eigenvalues θ are allowed. " For instance, the fundamental level ν = 0 is expected to be the symmetric solution ϕ 0 (z) ∝ y + (θ 0 ; z) with θ 0 the smallest possible value compatible with the boundary condition:

θ 0 (k) = inf θ>0 θ : y + (θ; k) = 0 .
(3.10)

" A similar problem with a one-sided barrier leads to a continuous spectrum; this case has been studied originally in Ref. [Mei 1983] and more recently in Ref. [Lladser 2000] (it is shown that there exists a quasistationary distribution for any θ) and generalized in Ref. [START_REF] Aalen | [END_REF].

In what follows, it will be more convenient to make the k-dependence explicit, and a hat will denote the solution with the normalization relevant to our problem, namely ϕ 0 (z; k) = y + (θ 0 (k); z)/||y + || k , with the norm

||y + || 2 k ≡ k -k y + (θ 0 (k); z) 2 dz, so that k -k ϕ ν (z; k) 2 dz = 1.

Asymptotic survival rate

Denoting by

∆ ν (k) ≡ [θ ν (k) -θ 0 (k)]
the gap between the excited levels and the fundamental, the higher energy modes ϕ ν cease to contribute to the Green's function when ∆ ν T 1, and their contributions to the above sum die out exponentially as T grows. Eventually, only the lowest energy mode θ 0 (k) remains, and the solution tends to

f T (z; k) = A(k) e -z 2 4 ϕ 0 (z; k) e -θ 0 (k)T , when T (∆ 1 ) -1 , with A(k) = k -k e z 2 E 4 ϕ 0 (z E ; k)f 0 (z E ) dz E .
(3.11)

Let us come back to the initial problem of the weighted Brownian bridge reaching its extremal value in [a, b]. If we are interested in the limit case where a is arbitrarily close to 0 and b close to 1, then T → ∞ and the solution is thus given by

P < (k|T ) = A(k) e -θ 0 (k)T k -k e -z 2 4 ϕ 0 (z; k) dz = A(k) e -θ 0 (k)T ,
with A(k) ≡ √ 2πA(k) 2 . We now compute explicitly the limit behavior of both θ 0 (k) and A(k). k → ∞ As k goes to innity, the absorption rate θ 0 (k) is expected to converge toward 0: intuitively, an innitely far barrier will not absorb anything. At the same time, P < (k|T ) must tend to 1 in that limit. So A(k) necessarily tends to unity. Indeed,

θ 0 (k) k→∞ ---→ 2 π k e -k 2 2 → 0,
(3.12)

A(k) k→∞ ---→ ∞ -∞ ϕ 0 (z; ∞) 2 dz 2 = 1.
In principle, we see from Eq. (3.11) that corrections to the latter arise both (and jointly) from the functional relative dierence of the solution (z; k) = y + (θ 0 (k); z)/y + (0; z) -1, and from the nite integration limits (±k instead of ±∞). However, it turns out that the correction of the rst kind is of second order in . # The correction to A(k) is thus dominated by the nite integration limits ±k, so that

A(k → ∞) ≈ erf k √ 2 2 .
(3.13) k → 0 For small k, the system behaves like a free particle in a sharp and innitely deep well, since the quadratic potential is almost at around 0. The fundamental mode becomes then

ϕ 0 (z; k → 0) = 1 √ k cos πz 2k ,
and consequently

θ 0 (k) k→0 ---→ π 2 4k 2 - 1 2 , (3.14) A(k) k→0 ---→   k -k e -z 2 4 (2π) 1 4 1 √ k cos πz 2k dz   2 ≈ 1 √ 2π k 4k π 2 = 16 π 2 √ 2π k.
(3.15)

We show in Fig. 3.3 the functions θ 0 (k) and A(k) computed numerically from the exact solution, together with their asymptotic analytic expressions. In intermediate values of k (roughly between 0.5 and 3) these limit expressions fail to reproduce the exact solution.

Higher modes and validity of the asymptotic (N

1) solution

Higher modes ν > 0 with energy gaps ∆ ν 1/T must in principle be kept in the preasymptotic computation. This, however, is irrelevant in practice since the gap θ 1θ 0 is never small. Indeed, ϕ 1 (z; k) is proportional to the asymmetric solution y -(θ 1 (k); z) and its energy

θ 1 (k) = inf θ>θ 0 (k) θ : y -(θ; k) = 0
is found numerically to be very close to 1 + 4θ 0 (k). In particular, ∆ 1 > 1 (as we illustrate in Fig. 3.4) and thus T ∆ 1 1 will always be satised in cases of interest.

# From Eq. (3.11) we have, when k → ∞,

A(k) = (2π) -1/2 R k -k e -z 2 /2 [1 + (z; k)]dz q R k -k e -z 2 /2 [1 + (z; k)] 2 dz .
The result follows by keeping only the dominant terms in the expansion in powers of (z; k). A similar computation for the asymptotic analysis by expanding the wave function in θ was performed in Ref. [Krapivsky 1996]. Alternatively, algebraic arguments allow to understand that, to rst order in the energy correction θ0(k) -θ0(∞), the perturbation of the wave function is orthogonal to b ϕ0(z; ∞). Ref. [Krapivsky 1996], but in lin-log scale; see in particular Eqs. ( 9b) and ( 12) there. Right:

Dependence of the prefactor A on k. The red solid lines illustrate the analytical behavior in the limiting cases k → 0 and k → ∞.

0 1 2 3 4 0.0 0.2 0.4 0.6 0.8 1.0 k 1 1 k Figure 3.4: 1/∆ 1 (k) saturates to 1, so that the condition N exp[1/∆ 1 (k)]
is virtually always satised. Let us now come back to GoF testing. In order to convert the above calculations into a meaningful test, one must specify values of a and b. The natural choice would be a = 1/N , corresponding to the min of the sample series since F (min 7) above motivates a slightly dierent value of a = 1/(N + 1) and b = 1a, such that the relevant value of T is given correspondingly by

x n ) ≈ F N (min x n ) = 1 N . Eq. (3.
T = ln b (1 -a) a (1 -b) = ln N.
This leads to our central result for the cdf of the weighted maximal Kolmogorov distance

K( 1 N+1 , N N+1
) under the hypothesis that the tested and the true distributions coincide:

S(N ; k) = P < (k| ln N ) = A(k)N -θ 0 (k) , (3.16)
which is valid whenever N 1 since, as we discussed above, the energy gap ∆ 1 is greater than unity.

The nal cumulative distribution function (the test law) is depicted in Fig. 3.5(b) for dierent values of the sample size N : As N grows toward innity, the curve is shifted to the right, and eventually S(∞; k) is zero for any k. The red solid lines illustrate the analytical behavior in the limiting cases k → 0 and k → ∞. Contrarily to the standard KS case (Fig. 3.5(a)), this distribution still depends on N . In particular, the threshold value k * corresponding to a 95% condence level increases with N . Since for large N , k * 1 one can use the asymptotic expansion above, which soon becomes quite accurate, as shown in Fig. 3.5(b). This leads to:

θ 0 (k * ) ≈ - ln 0.95 ln N ≈ 2 π k * e -k * 2 2 ,
which gives k * ≈ 3.439, 3.529, 3.597, 3.651 for, respectively, N = 10 3 , 10 4 , 10 5 , 10 6 . For exponentially large N and to logarithmic accuracy, one has: k * ∼ 2 ln(ln N ). This variation is very slow, but one sees that as a matter of principle, the acceptable maximal value of the weighted distance is much larger (for large N ) than in the KS case.

In conclusion, we believe that accurate GoF tests for the extreme tails of empirical distributions is a very important issue, relevant in many contexts. We have derived ex- 

Goodness-of-t tests for a sample of dependent draws

Usual GoF tests, and even the generalization that we just worked out in the previous section of this chapter, are designed for samples of identically distributed and independent draws. It however so happens that in certain elds (physics, nance, geology, etc.) the random variables under scrutiny have some dependence, be it spatial or temporal (in which case one speaks of memory). Applying naively GoF tests to such samples leads to a pessimistic evaluation of the null hypothesis of the test, and eventually causes a too high rejection rate, as will be made more precise below. It is thus natural to ask how these dependences eectively aect the law of the test statistic. A minimal departure from independence is to allow for homogeneous dependences between draws i and j, for which the two-points copula is translationally invariant. In this chapter, we adopt the point of view of temporal dependences because it has immediate applications in nancial time series (see later in Chapter III.8), but the theory applies as well to observables equally spaced on the line, and whose dependences rely on their respective distances.

Whereas the unconditional law of the variable may well be unique and independent of time, the conditional probability distribution of an observation following a previous observation exhibits specic patterns, and in particular long-memory, even when the linear correlation is short-ranged or trivial. Examples of such phenomena can be encountered in uid mechanics (the velocity of a turbulent uid) and nance (stock returns have small auto-correlations but exhibit strong volatility clustering, a form of heteroskedasticity). The long-memory nature of the underlying processes makes it inappropriate to use standard GoF tests in these cases. Still, the determination of the unconditional distribution of returns is a classic problem in quantitative nance, with obvious applications to risk control, portfolio optimization or derivative pricing. Correspondingly, the distribution of stock returns (in particular the behavior of its tails) has been the subject of numerous empirical and theoretical papers (see e.g. [Plerou 1999, Dr agulescu 2002] and for reviews [Bouchaud 2003[START_REF] Malevergne | Extreme nancial risks: From dependence to risk management[END_REF]] and references therein). Clearly, precise statements are only possible if meaningful GoF tests are available [Weiss 1978].

In the rest of this section, we study theoretically how to account for general dependence in GoF tests: we rst describe the statistical properties of the empirical cdf of a non-iid vector of observations of nite size, as well as measures of its dierence with an hypothesized cdf. We then study the limit properties of this dierence and the asymptotic distributions of two norms. Examples and nancial applications are relegated to Chapter 8 in part III.

Empirical cumulative distribution and its uctuations

Contrarily to section 3.0.1, we now consider X to be a random vector with N identically distributed but dependent variables, with marginal cdf F . One realization of X consists of a time series {x 1 , . . . , x n , . . . , x N } that exhibits some sort of persistence. Due to the persistence, the uctuations of the empirical CDF (3.1) depend on the joint distribution of all couples (X n , X m ), so that the covariance of the rescaled empirical CDF Y N (u) dened in Eq. (3.2) is now

Cov(Y N (u), Y N (v)) = min(u, v) -uv + 1 N N n,m =n C nm (u, v) -uv (3.17)
and makes the pairwise copulas C nm explicitly appear. It is more convenient to introduce

Ψ N (u, v) = 1 N N n,m =n ∆ nm (u, v), where ∆ nm (u, v) = C nm (u, v) -uv min(u, v) -uv , (3.18)
which measures the relative departure from the independent case Ψ N (u, v) ≡ 0, corresponding to the pairwise copula being independence C nm (u, v) = uv. Note that decorrelated but dependent variables may lead to a non zero value of Ψ N , since the whole pairwise copula enters the formula and not only the linear correlation coecients. When the denominator is zero, the fraction should be understood in a limit sense; we recall in particular that [Chicheportiche 2012b]

∆ nm (u, u) = C nm (u, u) -u 2 u (1 -u) = τ UU nm (u) + τ LL nm (1 -u) -1 (3.19)
tends to the upper/lower tail dependence coecients τ UU nm (1) when u tends to 1, and to

τ LL nm (1)
when u tends to 0. Intuitively, the presence of Ψ N (u, v) in the covariance of Y N above leads to a reduction of the number of eectively independent variables, but a more precise statement requires some further assumptions that we detail below.

In the following, we will restrict to the case of strong-stationary random vectors, for which the copula C nm only depends on the lag t = mn, i.e. C t ≡ C n,n+t . The average of ∆ nm over n, m can be turned into an average over t:

Ψ N (u, v) = N -1 t=1 (1 - t N ) ∆ t (u, v) + ∆ -t (u, v) (3.20) with ∆ t (u, v) = ∆ n,n+t (u, v) and ∆ -t (u, v) = ∆ n+t,n (u, v). Note that in general ∆ t (u, v) = ∆ -t (u, v), but clearly ∆ t (u, v) = ∆ -t (v, u), which implies that Ψ N (u, v) is symmetric in u ↔ v.
We will assume in the following that the dependence encoded by ∆ t (u, v) has a limited range in time, or at least that it decreases suciently fast for the above sum to converge when N → ∞. If the characteristic time scale for this dependence is T , we assume in eect that T N . In the example worked out in Section 8.1 below, one nds: r) decays faster than r -1 , one nds (in the limit T 1):

∆ t (u, v) = f t T A(u, v) I(u, v) , I(u, v) ≡ min(u, v) -uv where f (•) is a certain function. If f (
Ψ ∞ (u, v) = lim N →∞ Ψ N (u, v) = T A(u, v) + A(v, u) I(u, v) ∞ 0 drf (r),
with corrections at least of the order of T /N when N T .

Limit properties

We now dene the process ỹ(u) as the limit of Y N (u) when N → ∞. For a given u, it represents the asymptotics of the dierence between the empirically determined cdf of the 3.2. Goodness-of-t tests for a sample of dependent draws 51 underlying X's and the theoretical one, at the u-th quantile. According to the Central Limit Theorem under weak dependences, it is Gaussian as long as the strong mixing coecients,

α SM (t) = sup τ sup A,B P(A ∩ B) -P(A)P(B) : A ∈ σ({Z n (u)} n≤τ ), B ∈ σ({Z n (v)} n≥τ +t )
associated to the sequence {Z n (u)} = {1 {F (Xn)≤u} -u}, vanish at least as fast as O(t -5 ) 6 . We will assume this condition to hold in the following. For example, this condition is met if the function f (r) dened above decays exponentially, or if f (r ≥ 1) = 0.

The covariance of the process ỹ(u) is given by:

H(u, v) = I(u, v) [1 + Ψ ∞ (u, v)] (3.21)
and characterizes a Gaussian bridge since

V[ỹ(0)] = V[ỹ(1)] = 0, or equivalently P[ỹ(0) = y] = P[ỹ(1) = y] = δ(y). Indeed, I(u, v) = min(u, v) -uv
is the covariance function of the Brownian bridge, and Ψ ∞ (u, v) is a non-constant scaling term. By Mercer's theorem, the covariance H(u, v) can be decomposed on its eigenvectors and ỹ(u) can correspondingly be written as an innite sum of Gaussian variables:

ỹ(u) = ∞ j=1 U j (u) λ j z j (3.22)
where z j are independent centered, unit-variance Gaussian variables, and the functions U j and the numbers λ j are solutions to the eigenvalue problem:

1 0 H(u, v)U i (v) dv = λ i U i (u) with 1 0 U i (u)U j (u) du = δ ij .
(3.23)

In practice, for every given problem, the covariance function in Equation (3.21) has a specic shape, since Ψ ∞ (u, v) is copula-dependent. Therefore, contrarily to the case of independent random variables, the GoF tests will not be characterized by universal (problem independent) distributions.

Law of the norm-2 (Cramér-von Mises)

The norm-2 of the limit process is the integral of ỹ2 over the whole domain:

CM = 1 0 ỹ(u) 2 du.
(3.24a)

In the representation (3.22), it has a simple expression:

CM = ∞ j=1 λ j z 2 j .
(3.24b)

$ This condition means that the occurrence of any two realizations of the underlying variable can be seen as independent for suciently long time between the realizations. Since the copula induces a measure of probability on the Borel sets, it amounts in essence to checking that |Ct(u, v) -uv| converges quickly towards 0. See Refs. [Bradley 2007[START_REF][END_REF], Beare 2010] for denitions of α-, β-, ρ-mixing coecients and sucient conditions on copulas for geometric mixing (fast exponential decay) in the context of copula-based stationary Markov chains. and its law is thus the law of an innite sum of squared independent Gaussian variables weighted by the eigenvalues of the covariance function. Diagonalizing H is thus sucient to nd the distribution of CM , in the form of the Fourier transform of the characteristic function

φ(t) = E e it CM = j (1 -2itλ j ) -1 2 .
(3.25)

The hard task consists in nding the innite spectrum of H (or some approximations, if necessary).

Ordering the eigenvalues by decreasing amplitude, Equation (3.24b) makes explicit the decomposition of CM over contributions of decreasing importance so that, at a wanted level of precision, only the most relevant terms can be retained. In particular, if the top eigenvalue dominates all the others, we get the chi-square law with a single degree of freedom:

P[CM ≤ k] = erf k λ 0 .
(3.26)

Even if the spectrum cannot easily be determined but H(u, v) is known, all the moments of the distribution can be computed exactly. For example:

E[CM ] = Tr H = 1 0 H(u, u) du, (3.27a) V[CM ] ≡ 2 Tr H 2 = 2 1 0 H(u, v) 2 du dv.
(3.27b) 3.2.4 Law of the supremum (Kolmogorov-Smirnov) The supremum of the dierence between the empirical cdf of the sample and the target cdf under the null-hypothesis has been used originally by Kolmogorov and Smirnov as the measure of distance. The variable

KS = sup u∈[0,1] |ỹ(u)|
(3.28) describes the limit behavior of the GoF statistic. In the case where 1 + Ψ ∞ (u, v) can be factorized as ψ(u) ψ(v), the procedure for obtaining the limiting distribution was worked out in [Anderson 1952], and leads to a problem of a diusive particle in an expanding cage, for which some results are known. There is however no general method to obtain the distribution of KS for an arbitrary covariance function H.

Nevertheless, if H has a dominant mode, the relation (3.22) becomes approximately:

ỹ(u) = U 0 (u) √ λ 0 z 0 ≡ κ 0 (u)z 0 ,
and

KS = λ 0 |z 0 | sup u∈[0,1] |U 0 (u)| ≡ κ 0 (u * 0 )|z 0 |.
(3.29)

The cumulative distribution function is then simply

P[KS ≤ k] = erf k √ 2 κ 0 (u * 0 ) , k ≥ 0.
(3.30)
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This approximation is however not expected to work for small values of k, since in this case z 0 must be small, and the subsequent modes are not negligible compared to the rst one. A perturbative correction working also for large k only can be found when the second eigenvalue is small, or more precisely when ỹ(u) = κ 0 (u)z 0 + κ(u)z 1 with = κ/κ 0 1. The rst thing to do is nd the new supremum

u * = arg sup(ỹ(u) 2 ) = u * 0 + κ ′ (u * 0 ) |κ ′′ 0 (u * 0 )| z 1 z 0 .
(3.31) Notice that it is dependent upon z 0 , z 1 so that KS is no longer exactly the absolute value of a Gaussian. However it can be shown (after lengthy but straightforward calculation) that, to second order in , ỹ(u * ) remains Gaussian, albeit with a new width

κ * ≈ κ 2 0 + κ 2 > κ 0 ,
(3.32) where all the functions are evaluated at u * 0 . In fact, this approximation works also with more than two modes, provided

κ(u) 2 ≡ j =0 λ j U j (u) 2 κ 0 (u) 2 = λ 0 U 0 (u) 2 , (3.33)
in which case:

κ * ≈ j λ j U j (u * 0 ) 2 , (3.34) 
where the sum runs from 0 to the farthest mode still satisfying the inequality in Eq. (3.33).

Conclusion

We have introduced a framework for the study of statistical tests of Goodness-of-Fit with dependent samples, that heavily relies on the notion of bivariate copulas.

In summary, GoF testing on persistent series cannot be universal as is the case for i.i.d. variables, but requires a careful estimation of the self-copula at all lags. Correct asymptotic laws for the test statistics can be found as long as dependences are short ranged, i.e. T N . These laws depend on the spectral properties of the covariance kernel. The resulting distribution of the Cramér-von Mises statistic is given in Eq. (3.25) (in Fourier form), and the law of the Kolmogorov-Smirnov test can be read o Eq. (3.30) when a single eigenmode is dominant, or substituting Eq. (3.34) to take into account the contribution of subsequent modes.

An application of the modied Goodness-of-Fit tests developed in this chapter is provided in Chapter 8 of part II, where we test the distribution of stock returns.

We conclude with two remarks of methodological interest.

1) The method presented for dealing with self-dependences while using statistical tests of Goodness-of-Fit is computationally intensive in the sense that it requires to estimate empirically the self-copula for all lags over the entire unit square. In the non-parametric setup, discretization of the space must be chosen so as to provide a good approximation of the continuous distance measures while at the same time not cause too heavy computations. Considering that fact, it is often more appropriate to use the Cramér-von Mises-like test rather than the Kolmogorov-Smirnov-like, as numerical error on the evaluation of the integral will typically be much smaller than on the evaluation of the supremum on a grid, more so when the grid size is only about 1 M ≈ 1 100 .

2) The case with long-ranged dependence T N 1 cannot be treated in the framework presented here. First because the Central Limit Theorem does not hold in that case, and nding the limit law of the statistic may require more advanced mathematics. But even pre-asymptotically, summing the lags over the available data up to t ≈ N means that a lot of noise is included in the determination of Ψ N (u, v) (see Equation 3.18). This, in turn, is likely to cause the empirically determined kernel H(u, v) not to be positive denite. One way of addressing this issue is to follow a semi-parametric procedure: the copula C t is still estimated non-parametrically, but the kernel H sums the lagged copulas C t only up to a scale where the linear correlations and leverage correlations vanish, and only one long-ranged dependence mode remains. This last contribution can be tted by an analytical form, that can then be summed up to its own scale, or even to innity. 

Introduction

The most important input of portfolio risk analysis and portfolio optimization is the correlation matrix of the dierent assets.

In order to diversify away the risk, one must avoid allocating on bundles of correlated assets, an information in principle contained in the correlation matrix.

The seemingly simple mean-variance Markowitz program is however well known to be full of thorns. In particular, the empirical determination of large correlation matrices turns out to be dicult, and some astute cleaning schemes must be devised before using it for constructing optimal allocations [Ledoit 2004]. This topic has been the focus of intense research in the recent years, some inspired by Random Matrix Theory (for a review see [START_REF] Karoui | High-dimensionality eects in the Markowitz problem and other quadratic programs with linear equality constraints: risk underestimation[END_REF], Potters 2009]) or clustering ideas [Marsili 2002[START_REF] Tola | [END_REF], Tumminello 2007].

There are however many situations of practical interest where the (linear) correlation matrix is inadequate or insucient [Bouchaud 2003[START_REF] Malevergne | Extreme nancial risks: From dependence to risk management[END_REF], Mashal 2002]. For example, one could be more interested in minimizing the probability of large negative returns rather than the variance of the portfolio. Another example is the Gamma-risk of option portfolios, where the correlation of the squared-returns of the underlyings is needed. Credit derivatives are bets on the probability of simultaneous default of companies or of individuals;

again, an estimate of the correlation of tail events is required (but probably very hard to ascertain empirically) [Frey 2001], and for a recent interesting review [START_REF] Brigo | [END_REF]].

Apart from the case of multivariate Gaussian variables, the description of non-linear dependence is not reducible to the linear correlation matrix. The general problem of parameterizing the full joint probability distribution of N random variables can be factorized into the specication of all the marginals on the one hand, and of the dependence structure (called the `copula') of N standardized variables with uniform distribution in [0, 1], on the other hand. The nearly trivial statement that all multivariate distributions can be represented in that way is called Sklar's Theorem [Embrechts 2002b, Sklar 1959]. Following a typical pattern of mathematical nance, the introduction of copulas ten years ago has been followed by a calibration spree, with academics and nancial engineers frantically looking for copulas to best represent their pet multivariate problem. But instead of trying to understand the economic or nancial mechanisms that lead to some particular dependence between assets and construct copulas that encode these mechanisms, the methodology has been as

is sadly often the case to brute force calibrate on data copulas straight out from statistics handbooks [Durrleman 2000, Fermanian 2005b[START_REF] Fischer | [END_REF], Fortin 2002, Patton 2001].

The best copula is then decided from some quality-of-t criterion, irrespective of whether the copula makes any intuitive sense (some examples are given below). This is reminiscent of the `local volatility models' for option markets [Dupire 1994]: although the model makes no intuitive sense and cannot describe the actual dynamics of the underlying asset, it is versatile enough to allow the calibration of almost any option smile (see [Hagan 2002a]). This explains why this model is heavily used in the nancial industry. Unfortunately, a blind calibration of some unwarranted model (even when the t is perfect) is a recipe for disaster. If the underlying reality is not captured by the model, it will most likely derail in rough times a particularly bad feature for risk management! Another way to express our point is to use a Bayesian language: there are families of models for which the `prior' likelihood is clearly extremely small we discuss below the case of Archimedean copulas. Statistical tests are not enough intuition and plausibility are mandatory.

The aim of this chapter is to study in depth the family of elliptical copulas, in particular Student copulas, that have been much used in a nancial context and indeed have a simple intuitive interpretation [Embrechts 2002b, Frahm 2003[START_REF] Hult | Multivariate extremes, aggregation and dependence in elliptical distributions[END_REF], Luo 2010[START_REF] Malevergne | Extreme nancial risks: From dependence to risk management[END_REF], Shaw 2007]. We investigate in detail whether or not such copulas can faithfully represent the joint distribution of the returns of US stocks. (We have also studied other markets as well).

We unveil clear, systematic discrepancies between our empirical data and the corresponding predictions of elliptical models. These deviations are qualitatively the same for dierent tranches of market capitalizations, dierent time periods and dierent markets. Based on the nancial interpretation of elliptical copulas, we argue that such discrepancies are actually expected, and propose the ingredients of a generalization of elliptical copulas that should capture adequately non-linear dependences in stock markets. The full study of this generalized model, together with a calibration procedure and stability tests, is provided in the next chapter.

Empirical study of the dependence of stock pairs

We carefully compare our comprehensive empirical data on stock markets with the predictions of elliptical models, with special emphasis on Student copulas and log-normal copulas. We conclude that elliptical copulas fail to describe the full dependence structure of equity markets.

Methodology: what we do and what we do not do

As this chapter's title stresses, the object of this study is to dismiss the elliptical copula as description of the multivariate dependence structure of stock returns. Concretely, the nullhypothesis H 0 : the joint distribution is elliptical admits as corollary all pairwise bivariate marginal copulas are elliptical and dier only by their linear correlation coecient . In other words, all pairs with the same linear correlation ρ are supposed to have identical values of non-linear dependence measures, and this value is predicted by the elliptical model. Focusing the empirical study on the pairwise measures of dependence, we will reject H 0 by showing that their average value over all pairs with a given ρ is dierent from the value predicted by elliptical models.

Our methodology diers from usual hypothesis testing using statistical tools and goodness of t tests, as can be encountered for example in [Malevergne 2003] for testing the Gaussian copula hypothesis on nancial assets. Indeed, the results of such tests are often not valid because nancial time series are persistent (although almost not linearly autocorrelated), so that successive realizations cannot be seen as independent draws of an underlying distribution, see the recent discussion on this issue in [START_REF] Chicheportiche | Goodness-of-t tests with dependent observations[END_REF]].

Data set and time dependence

The dataset we considered is composed of daily returns of 1500 stocks labeled in USD in the period 19952009 (15 full years). We have cut the full period in three sub-periods (19951999, 20002004 and 20052009), and also the stock universe into three pools (large caps, mid-caps and small caps). We have furthermore extended our analysis to the Japanese stock markets.

Qualitatively, our main conclusions are robust and do not depend neither on the period, nor on the capitalization or the market. Some results, on the other hand, do depend on the time period, but we never found any strong dependence on the capitalization. All measures of dependence are calculated pairwise with non-parametric estimators, and using all trading dates shared by both equities in the pair.

We rst show the evolution of the linear correlation coecients (Fig. 4.1) and the upper and lower tail dependence coecients for p = 0.95 (Fig. 4.2) as a function of time for the large-cap stocks. One notes that (a) the average linear correlation ρ(t) uctuates quite a bit, from around 0.1 in the mid-nineties to around 0.5 during the 2008 crisis; (b) the distribution of correlation coecients shifts nearly rigidly around the moving average value ρ(t); (c) there is a marked, time dependent asymmetry between the average upper and lower tail dependence coecients; (d) overall, the tail dependence tracks the behavior of ρ(t). More precisely, we show the time behavior of the tail dependence assuming either a Gaussian underlying copula or a Student (ν = 5) copula with the same average correlation ρ(t). Note that the former model works quite well when ρ(t) is small, whereas the Student model fares better when ρ(t) is large. We will repeatedly come back to this point below.

We computed the quadratic ζ (2) and absolute ζ (1) correlation coecients for each pair in the pool, as well as the whole rescaled diagonal and anti-diagonal of the empirical copulas (this includes the coecients of tail dependence , see Part I). We then average these observables over all pairs with a given linear coecient ρ, within bins of varying width in order to take account of the frequency of observations in each bin. We show in Fig. 4.3 ζ (1) and τ UU (0.95), τ LL (0.95) as a function of ρ for all stocks in the period 20002004, together with the prediction of the Student copula model for various values of ν, including the Gaussian case ν = ∞. For both quantities, we see that the empirical curves systematically cross the Student predictions, looking more Gaussian for small ρ's and compatible with Student ν ≈ 6 for large ρ's, echoing the eect noticed in Fig. 4.2 above. The same eect would appear if one compared with the log-normal copula: elliptical models imply a residual dependence due to the common volatility, even when the linear correlation goes to zero. This property is not observed empirically, since we rather see that higher-order correlations almost vanish together with ρ. The assumption that a common volatility factor aects all stocks is therefore too strong, although it seems to make sense for pairs of stocks with a suciently large linear correlation. This result is in fact quite intuitive and we will expand on this idea in Sect. 4.2.5 below.

The above discrepancies with the predictions of elliptical models are qualitatively the same for all periods, market caps and is also found for the Japan data set. Besides, elliptical models predict a symmetry between upper and lower tails, whereas the data suggest that the tail dependence is asymmetric. Although most of the time the lower tail dependence is stronger, there are periods (such as 2002) when the asymmetry is reversed.

4.2.3

Copula diagonals

As argued in Chapter I.2 above, it is convenient to visualize the rescaled dierence ∆ d,a (p) between the empirical copula and the Gaussian copula, along the diagonal (p, p) and the anti-diagonal (p, 1-p), see Eqs. (2.17) page 20. The central point p = 1 2 is special:

∆ d,a ( 1 2 ) = β (B) -2 π arcsin ρ (1)
is zero for all pseudo-elliptical models.

We show in Fig. 4.5 the diagonal and anti-diagonal copulas for all pairs of stocks in the period 20002004, and for various values of ρ (similar plots for other periods are available in Ref. [START_REF] Chicheportiche | Dépendances entre actions US: une modélisation en arbre[END_REF]). We also show the prediction of the Student ν = 5 model and of a Frank copula model with Student ν = 5 marginals and the appropriate value of ρ.

What is very striking in the data is that ∆ d (p) is concave for small ρ's and becomes convex for large ρ's, whereas the Student copula diagonal is always convex. This trend is observed for all periods, and all caps, and is qualitatively very similar in Japan as well for all periods between 1991 and 2009. We again nd that the Student copula is a reasonable representation of the data only for large enough ρ. The Frank copula is always a very bad approximation see the wrong curvature along the diagonal and the inaccurate behavior along the anti-diagonal.

Let us now turn to the central point of the copula, C * = C( 1 2 , 1 2 ). We plot in Fig. 4.4 the quantitycos (2πC * )ρ as a function of ρ, which should be zero for all elliptical models, as discussed in pages 25 and 32. The data here include the 284 equities constantly member of the S&P500 index in the period 20002009.

We again nd a clear systematic discrepancy, that becomes stronger for smaller ρ's: the empirical value of C * is too large compared with the elliptical prediction. In particular, for stocks with zero linear correlation (ρ = 0), we nd C * > 1 4 , i.e. even when two stocks are uncorrelated, the probability that they move in the same direction is larger than 1 4 . The bias shown in Fig. 4.4 is again found for all periods and all market caps, and for Japanese stocks as well. Only the amplitude of the eect is seen to change across the dierent data 2 A more correct statement is that both stocks have returns below their median with probability larger than 1 4 . However, the median of the distributions are very close to zero, justifying our slight abuse of language.

sets.

Statistical errors in each bin are dicult to estimate since pairs containing the same asset are mechanically correlated. In order to ascertain the signicance of the previous nding, we have compared the empirical value of C * (ρ) with the result of a numerical simulation, where we generate time series of Student (ν = 5) returns using the empirical correlation matrix. In this case, the expected result is that all pairs with equal correlation have the same bivariate copula and thus the same C * so that the dispersion of the results gives an estimate of measurement noise. We nd that, as expected, C * (ρ) is compatible with the Student prediction, at variance with empirical results. We also nd that the dispersion of the empirical points is signicantly larger than that of the simulated elliptical pairs with identical linear correlations, suggesting that all pairs cannot be described by the same bivariate copula (and denitively not an elliptical copula, as argued above).

All these observations, and in particular the last one, clearly indicate that Student copulas, or any elliptical copulas, are inadequate to represent the full dependence structure in stock markets.Because this class of copulas has a transparent interpretation, we in fact know why this is the case: assuming a common random volatility factor for all stocks is oversimplied. This hypothesis is indeed only plausible for suciently correlated stocks, in agreement with the set of observations we made above. As a rst step to relax this hypothesis, we now turn to the pseudo-elliptical log-normal model, that allows further insights but still has unrecoverable failures.

Interpretation

The incentive to focus on bivariate measures comes from the theoretical property that all the marginals, including bivariate, of a multivariate elliptical distribution are themselves elliptical. In turn, a motivated statement that the pairwise distributions are not elliptical is enough to claim the non-ellipticity of the joint multivariate distribution. This is the basic line of argumentation of the present paper.

In a nancial context, elliptical models are basically stochastic volatility models with arbitrary dynamics such that the ergodic distribution is P σ (since we model only single-time distributions, the time ordering is irrelevant here). The important assumption, however, is that the random amplitude factor σ is equal for all stocks (or all assets in a more general context). In other words, one assumes that the mechanisms leading to increased levels of volatility aect all individual stocks identically. There is a unique market volatility factor. Of course, this is a very restrictive assumption since one should expect a priori other, sector specic, sources of volatility. This, we believe, is the main reason for the discrepancies between elliptical models and the empirical data reported below.

Pseudo-elliptical log-normal model

As we just showed, the fact that the central value of the copula C * does not obey the relation cos (2πC * ) = ρ rules out all elliptical models. One possible way out is to consider a model where random volatilities are stock dependent, as explained in Sect. 2.4.3. Choosing for simplicity a log-normal model of correlated volatilities and inserting (2.39) into (2.40), the The blue line depicts the behavior of Frank's copula. It is worth noticing that the tail dependence coecient is always measured empirically at some p < 1, for example p = 0.95. In this case, the disagreement between data and an elliptical model may be accidentally small. It is important to distinguish the interpretation of the limit coecient from that of a penultimate value [6].

new prediction is:

ρ = -e s 2 (c-1) cos (2πC * ) , (4.1)
where c is the correlation of the log-volatilities. This suggests to plot z = ln (ρ/| cos (2πC * ) |) as a function of ρ, as shown in Fig. 4.4(b). For a purely elliptical model, z should be identically zero, corresponding to perfectly correlated volatilities (c = 1). What we observe in Fig. 4.4(b), on the other hand, is that c is indeed close to unity for large enough ρ's, but systematically decreases as ρ decreases; in other words, the volatilities of weakly correlated stocks are themselves weakly correlated. This is, again, in line with the conclusion we reached above.

However, this pseudo-elliptical model still predicts that C * = 1 4 for stocks with zero linear correlations, in disagreement with the data shown in Fig. 4.4(a). This translates, in Fig. 4.4(b), into a negative divergence of z when ρ → 0. This nding means that we should look for other types of constructions. How can one have at the same time ρ = 0 and C * > 1 4 ? A toy-model, that serves as the basis for a much richer model that we will report elsewhere [Chicheportiche 2013b], is the following. Consider two independent, symmetrically distributed random factors ψ 1 and ψ 2 with equal volatilities, and construct the returns of assets 1 and 2 as:

X 1,2 = ψ 1 ± ψ 2 . (4.2)
Clearly, the linear correlation is zero. Using a cumulant expansion, one easily nds that to the kurtosis order, the central value of the copula is equal to:

C * = 1 4 + κ 2 -κ 1 24π + . . . (4.3)
Therefore, if the kurtosis κ 1 of the factor to which both stocks are positively exposed is smaller than the kurtosis κ 2 of the spread, one does indeed nd C * (ρ = 0) > 1 4 .

We will investigate in Chapter 5 an additive model such as the above one, with random volatilities aecting the factors ψ 1 and ψ 2 , that generalize elliptical models in a way to capture the presence of several volatility modes.

Conclusion

The object of this chapter was to discuss the adequacy of Student copulas, or more generally elliptical copulas, to describe the multivariate distribution of stock returns. We have shown, using a very large data set, with the daily returns of 1500 US stocks over 15 years, that elliptical models fail to capture the detailed structure of stock dependences.

In a nutshell, the main message elicited by our analysis is that Student copulas provide a good approximation to describe the joint distribution of strongly correlated pairs of stocks, but badly miss their target for weakly correlated stocks. We believe that the same results hold for a wider class of assets: it is plausible that highly correlated assets do indeed share the same risk factor. Intuitively, the failure of elliptical models to describe weakly correlated assets can be traced to the inadequacy of the assumption of a single market volatility mode. We expect that exactly as for returns, several factors are needed to capture sectorial volatility modes and idiosyncratic modes as well. The precise way to encode this idea into a workable model that faithfully captures the non-linear dependence in stock markets is reported in the next chapter. We strongly believe that such a quest cannot be based on a formal construction of mathematically convenient models (such as Archimedean copulas that, in our opinion, cannot be relevant to describe asset returns). The way forward is to rely on intuition and plausibility and come up with models that make nancial sense. This is, of course, not restricted to copula modeling, but applies to all quarters of quantitative nance. Introduction Dependences among nancial assets or asset classes stand at the heart of modern portfolio selection theories. Whatever the (concave) utility of an investor and its risk measure, diversication is protable but optimal diversication is only reached if the underlying dependence structure is well understood.

Financial risk and portfolio selection: the linear covariances

The standard Markowitz theory [Markowitz 1952, Markowitz 1959, Bouchaud 2003] of optimal portfolio design aims at nding the optimal weights w i to attribute to each stock of a pool. It assumes that stock returns are correlated random variables x i , and that the optimizing agent has a mean-variance quadratic utility function in the form

U (w) = E[x•w]-µV[x•w].
It hence relies on the linear covariance matrix ρ = E[xx † ] of the stock returns, and more importantly on its inverse ρ -1 . Indeed, with no further constraints (budget, transaction costs, operational risk constraint, prohibition of short selling, etc.), the optimal weights are given by

w * ρ ∝ ρ -1 g = g + V Λ -1 -1 V † g
where g is the vector of gain targets for the assets in the basket, and ρ = VΛV † is the spectral decomposition of the covariance matrix with V being the square matrix of eigenvectors and Λ the diagonal matrix of eigenvalues. Empirical estimates of ρ and its spectrum Λ are typically very noisy, and cleaning schemes need to be applied before inversion if one wants to avoid articially enhancing the weights of low-risk in-sample modes (i.e. with eigenvalue smaller than 1) that turn into high-risk realized out-of-sample modes.

All this is fairly standard practice now, and several cleaning schemes have been designed, in view of modeling either the signal (parametric models, factor models, Principal

Components Analysis), or the noise (RMT-based [Laloux 1999, Laloux 2000, Ledoit 2004, Potters 2005, Bartz 2012]).

Non-linear dependences and risk

However, it is now established that markets operate beyond the linear regime, that implicitly assumes gaussianity.

For one thing, individual stock returns are known to be non-Gaussian, and moments beyond the mean and variance have gained considerable interest (e.g. the excess kurtosis, or low-moment estimates thereof ). But more importantly, stock returns are jointly not Gaussian:

the structure of dependence between pairs of stocks is not compatible with the Gaussian copula, and as a consequence the penalty in the utility function should be more subtle than just the portfolio variance and include non-linear measures of risk (like tail events, quadratic correlations, etc.) in order to better t the agent's risk aversion prole. Only in a multivariate Gaussian setting do these non-linear dependences resume to the linear correlations.

Non-linear dependences are also very important in the pricing and risk management of structured products and portfolios of derivatives. For example, the payo of a hedged option has a V-shape with linear asymptotes and quadratic core, see Fig. The illustration is for a call option of strike x K = 10, price C = 1 on a stock of initial price x 0 = 8 following a Bachelier diusion with volatility σ. The thin line is the payo at expiry (σ ∆t = 0) and the thick curve is the expected value of the payo before expiry (σ ∆t = 3).

correlations of the underlying stocks (gamma risk). These correlations of amplitudes are noisier than linear correlations, whence the need for a reliable model of both linear and non-linear dependences.

In Chapter 4, we showed that the daily returns of stocks are not exposed to a unique mode of volatility aecting all individuals at once. We thus ruled out all models with a single stochastic volatility σ, of the form

x i = σ i , (5.1) 
with jointly Gaussian (and correlated) residuals i 's. This, we argued, was revealing a ner structure in the non-linear dependences, and opened the way for a description taking into account several modes of volatility. However, we also showed that any description in the form of individual volatilities

x i = σ i i , (5.2) 
with possible dependences between the σ i 's, would not be able to explain successfully the departure of C( 1 2 , 1 2 ) from the elliptic prediction either. We called models like Eq. ( 5.2) pseudo-elliptical, with one typical example being the multiplicative decomposition of σ i onto the market volatility σ, a sectorial volatility σs (where stock i belongs to sector s), and a residual volatility σ i :

σ i = σσ s σ i .
It hence turned out that tuning only the radial amplitudes of a Gaussian vector would not be enough to reproduce some non-linear dependences relying on the ranks of the realizations in the data. Instead, additive non-Gaussian factors are thought to be able to generate anomalous copula values, because of the interplay of factor kurtosis and residual kurtosis, as motivated by the toy model for C( 1 2 , 1 2 ) > 0 with uncorrelated variables, presented in the previous chapter, page 63.

All pseudo-empirical models have a simple prediction linking the medial copula to the coecient of linear correlation, see the discussion in page 32:

C( 1 2 , 1 2 ) = 1 4 + 1 2π arcsin ρ (5.3)
Said dierently, the eective correlation

ρ (*) ≡ cos 2πC( 1 2 , 1 2 ) (5.4)
is equal to ρ for these models, whereas in general it is not.

Summary of empirical stylized facts to be addressed by the model More generally, any model for a joint description of stock returns must address the stylized facts:

• Generate fat-tailed return series, and even non-Gaussian factors and residuals

• Reproduce the structure of linear correlations with a reduced number of factors. In particular exhibit a market mode of linear dependences.

• Allow for a dependence between the volatilities of the residuals and the volatilities of the factors [START_REF] Cizeau | [END_REF][START_REF] Allez | [END_REF]].

• Reproduce the anomalous copula structure (diagonals, and in particular medial point), see Fig. 5.2. It was already noted in chapter 4 that stock pairs with a high correlation are more elliptical, and that in periods of high turmoil like the nancial crisis (b) stock pairs are both more correlated and more elliptical, revealing a strong exposure to a common mode of volatility.

• Predict the structure of non-linear (typically quadratic) correlations with a reduced number of new parameters, in order to clean the empirically measured (and much noisy) corresponding dependence coecients.

We show below, that this can be achieved with a factor structure in the factor-volatilities themselves, with again a common mode and idiosyncratic volatility modes for the linear factors.

Data set

We study daily close-to-close log-returns of stock prices of companies that are present in the S&P500 index during the whole of the period studied. We will be considering three periods for the empirical study and the model calibration: before the nancial crisis (Jan,

The superscript (B) stands for Blomqvist, as ρ (*) is related to Blomqvist's beta coecient. The properties of ρ (*) were discussed in Chapter I.2, see in particular the denition (2.27) and the comments in page 26. | vs ρ for each stock pair, see Eq. (5.4). This gure quanties the departure of the medial point of the copula C( 1 2 , 1 2 ) from the elliptical benchmark, for which the prediction is a straight horizontal line at 0 (dashed red).

Bloomberg sector

Code , 2009, Dec, 2012)). A longer dataset is used for the sliding windows procedure of In-sample/Out-of-sample testing in the last section: there we consider the ten years period 20002009.

It is enlightening to group the companies according to their sector of activity, in order to see if patterns appear. When needed, we will make use of Bloomberg's classication as summarized in Tab. 5.1.

Outline

This chapter is made of four sections. In Section 2, we study the linear correlations of pairs of stocks and discuss the design and estimation of a factor model for their description. The factors and residuals generated by the calibration of the model are studied in Section 3, and motivate the specication of the volatility content of the model that we present in Sec-tion 4. The resulting non-Gaussian model is calibrated, and Section 5 is dedicated to an Out-of-sample stability analysis, validating its usefulness for the description of non-linear dependences.

Linear factors

We study a simple one-level (not hierarchical) model for the joint description of the stock returns x i of N rms, as a combination of M shared factors f k :

x i = M k=1 β ki f k + e i .
(5.5)

The weight β ki parameterize the linear exposure of stock i to factor k. At this stage, we do not yet specify the statistical properties of the factors f k and residuals e i , except that we impose their linear uncorrelatedness:

f k f l = δ kl (5.6a) e i e j = δ ij 1 - l β 2 li (5.6b)
f k e j = 0.

(5.6c)

This way, the residuals can be understood as idiosyncrasies and all the linear dependence is supposed to be taken into account ant the factors. This, as we will shortly see, is already not trivial, for statistical factor models usually rely on the Principal Components Analysis (PCA)decomposition which does not generate orthogonal residuals.

Linear correlations

The predictions of the model in terms of covariances of the returns x i do not need additional assumptions, and only depend on the matrix of linear weights β:

ρ ij = x i x j = (β † β) ij , i = j 1 , i = j (5.7)
When calibrating the model on real data, we want to nd the M most relevant uncorrelated and common unit-variance factors F (T × M ), and the exposures β (M × N ) of every stock to every factor, such that

X = Fβ + E, (5.5 ′ )
and at the same time, E be orthogonal T × (N -M ). Notice that the factors series F tk are not inputs of the estimation problem, but rather are obtained as a byproduct. This is at contrast with the usual econometric determination of elasticities β in linear regressions of the explanatory (thus known) variables F onto the explained variables X.

Positing that the model (5.5 ′ ) is a faithful representation of real returns, we are able to uncover the factor structure and calibrate the corresponding weights β. Then, the estimate of the correlations (5.7) is a cleaned version of the brute force and noisy sample covariances 1 T X † X.
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A proxy: the Principal Components Analysis (PCA) Diagonalization of the sample correlation matrix yields

1 T X † X = VΛV †
where Λ is the diagonal matrix of eigenvalues, and the columns of V are the corresponding eigenvectors. Hence, there always exist (linearly orthogonal) factor series F such that the return series X can be decomposed as

X = FΛ 1 2 V † where 1 T F † F = 1 N .
(5.8)

In order to reconciliate this decomposition in terms of statistical uncorrelated modes F with the factors F of the model, the PCA solution (5.8) needs to be identied with Eq. ( 5.5 ′ ).

The factors should explain as much as possible of the returns covariances (thus of the portfolio variance), leaving only idiosyncratic residual volatility to be explained by the e i 's.

Said dierently, only those eigenvalues having a signicant signal-to-noise ratio (compared f.ex. to an RMT benchmark) should be kept in the identication of the spectral decomposition with the factor model. This procedure is known as eigenvalue clipping, and typically the most relevant eigenvalues are the largest ones and the smallest ones, on the right and the left of the noise bulk in the empirical spectrum. Since the smallest eigenvalues do not contribute much to the portfolio variance despite being statistically signicant, we will focus on the modes with large eigenvalues. Ordering the eigenvalues in decreasing order, and splitting the rst

M (subscript M | ) from the last (N -M ) (subscript |N-M ), it is straightforward to obtain the identication β 2+) = Λ 1 2 M | V † M | .
(5.9)

At this stage, the series of factors can be formally identied as the rst M spectral modes 5.11) and thus cannot be understood as idiosyncrasies of the returns series.

F = F M | = (XVΛ -1 2 ) M | (5.10) such that indeed 1 T F † F = 1 M . But the residuals are not orthogonal: E = F |N-M Λ 1 2 |N-M V † |N-M s.t. 1 T E † E = V |N-M Λ |N-M V † |N-M ( 

Factor weights

The PCA can alternatively be thought of as the solution of

1 T X † X = β † β with ββ † diagonal
where importantly β is full rank, and the M modes with largest amplitude (ββ † ) kk are kept after the equation is solved. When one rather wants to optimize the contribution of only M In this case an exact solution does not exist as there are N M variables for N (N + 1)/2

equations, yet one does not throw away information of subsequent modes, so that in the end the information content of that solution is typically bigger than that of the rst M columns of β PCA . On the top of this, the estimation of the β's can be further improved if one knows the standard deviation of the series of returns X, and there only remains to estimate the correlations (rather than the covariances). After renormalization, the matrix 1 T X † X has only ones on the diagonal, and since this is also what the model predicts according to Eq. (5.7), the optimal estimation can be performed on the o-diagonal content only:

arg min 1 T X † X -β † β o-diag
.

(5.12)

By lowering the number of equations to N (N -1)/2 while keeping the same number of variables N M , one improves the identiability of the model parameters.

The underlying view of this estimation method as of the collective dynamics is that variances and correlations are better estimated separately than jointly through the covariance matrix. As soon as one claims having a good estimator of the variances, one is better o estimating the covariances of the normalized time series, rather than having estimated the covariances in the rst place. Notice that orthogonality of the lines of β obtained with this method is not granted, as opposed to the PCA, but what matters is rather uncorrelatedness of the factors.

Linear model calibration on nancial data

The linear weights β are calibrated on the three data sets by solving Eq. ( 5.12) with M = 10, corresponding to the number of Bloomberg sectors plus one. The resulting correlations (β † β) ij are shown as a scatter plot versus the sample correlation 1 T (X † X) ij on Fig. 5.3. Although the calibration seems to provide a good t (whatever this might mean), a precise characteriza-tion of the benet of using the method discussed above over the PCA is only achieved by a criterion of model selection, or by out-of-sample risk measurements.

We discuss this in detail in Sect. 5.5, where we use Markowitz' portfolio selection framework to compute the realized risk of optimal baskets of stocks. We show there that when using the proposed calibration method, the out-of-sample risk can be more than 25% lower than PCA , with an in-sample risk almost unchanged, see Fig. 5.19 below.

Orthogonal residuals

As already said, the byproduct of the PCA identication (5.10) is the matrix E of overlapping residuals given in Eq. (5.11). When the weights β are known, it is however possible to design a dierent identication scheme that generates orthogonal residuals. Consider indeed the date-by-date regression

X t• = F t• β + E t• (5.13)
where the explained variables are the input returns, the explanatory variables are the (freshly estimated) weights β and the regression parameters to be estimated are the factors. Then a GLS solution of the regression yields the wanted factors and residual series. It is only approximate in the sense that 1 T E † E is only as close as can be to a diagonal matrix, and

1 T F † F is only approximately 1 M .
In the next section, we discuss in details the properties of the factors series F t• and residual series E t• , obtained after calibration of the model on the datasets.

Properties of the reconstructed factors and residuals

After the calibration of the weights β, we are able to perform a statistical analysis on the reconstructed series of factors and residuals. Because we have designed a calibration procedure improving over the PCA, the obtained factors are not pure eigenmodes of the correlation matrix. Still, we can interpret them looking at their statistical signatures. In particular, the rst factor, f 1 is clearly a market mode (the index, a collective mode of uctuations). Indeed, introducing the average daily return X = 1 N X1, we nd that it has an almost perfect overlap with the rst factor: Cor(F t1 , X t ) = 99.9% ! The non-linear properties of the reconstructed factors and residuals can be investigated through the higher-order correlations

1 p 2 ln |F tk F tl | p |F tk | p |F tl | p (5.14a) 1 p 2 ln |E ti E tj | p |E ti | p |E tj | p (5.14b) 1 p 2 ln |F tk E tj | p |F tk | p |E tj | p (5.14c)
for any value of p > 0. As an example, we show in Fig. 5.4 the o-diagonal matrix elements of the factor-factor correlations (5.14a) for a value of M = 10 (again, the factors series are

The PCA method is also known as eigenvalue clipping in the context of cleaning schemes for matrix inversion, and is one of the best generic cleaning scheme known so far, see Ref. [Potters 2009] obtained from the procedure described in the previous section). On each gure corresponding to a value of k, the curves represent the values of Eq. ( 5.14a) for all l = k, as a function of p.

We observe that the curves depart from the Gaussian benchmark for which the correlation computed and shown would all be 0. Anticipating over the forthcoming theoretical description, we also see that the curves are not compatible with factors having a lognormal volatility, in which case all the curves would be exactly horizontal. The concavity of the curves is a signature of non-Gaussianity in log-volatilities, while their splitting (in particular as p → 0) reveals a complex structure that we will uncover using a model in Section 5.4 below.

This naked eye analysis cannot be reproduced for large matrices like the factors-residuals and residuals-residuals correlations, for which it turns much more convenient to use a spectral approach. Spectral decomposition of the corresponding matrices of coecients reveals eigenmodes of amplitude uctuations. This model-free description highlights the presence of few dominant modes of amplitude (not to be confused with the factors of linear correlations), in particular a common mode. This is conrmed by the study of the corresponding eigenvectors on Fig. 5.5(b): the rst eigenvector of both the factor-factor amplitudes and the residual-residual amplitudes has all components with same sign, revealing a collective mode driving the amplitudes of the factors and the residuals. The second eigenvector of res-res reveals nance against all behavior in the given period. The third eigenvector of res-res reveals energy against all behavior (energy + utilities). This mode is not observed on the fact-res correlations, thus indicating that the impact of energy on the volatility is only present in the residuals, and not shared by the linear factors.

Of course this structure is not stable over time, where it is expected and observed that the number and meaning of signicant modes varies according to the studied period. The spectral decomposition for the three sub-periods 20002004, 20052009, 20092012 is shown in Figs. 5.6, 5.7, 5.8, respectively. We represent the eigenvectors of the factor-factor (a), residual-residual (b), and the left/right singular vectors of the factor-residual (c). When applicable, we have averaged the components of the vectors over Bloomberg sector in order to see if a structure emerges (see Tab. 5.1 for the labels). As a general observation, the collective mode of amplitude uctuations is stable over time, and strongly dominant over any other mode. As can be seen in Fig. 5.7, it seems to be impacting/impacted by the nancial sector more strongly in the 20052009 period (containing the nancial crisis) whereas in other periods it is almost uniformly spread over sectors. This nancial sector is also a standalone mode of uctuations in the crisis period, as revealed by the structure of the second eigenvector in Figs. 5.7(b) and 5.7(c), where the stocks in that sector oscillate with opposing phase with respect to the other sectors. In the pre-crisis period, the second relevant mode is rather composed of commodities. Indeed, the second eigenvector features the opposition of utilities (# 14), energy (# 7) and communications (# 3) against the rest. This already illustrates that the structure is not stable over time, what is conrmed by the post-crisis period where there is not even a clear signature for the existence of a signicant second mode (the apparent structure in the second mode of Fig. 5.8(c) is not signicant because the sector # 6 is populated with a single individual).

5.4

Modeling the volatility content

The univariate and multivariate pseudo-empirical properties of the reconstructed factors series motivate the construction of a model that integrates the following characteristics:

• all factors amplitudes are driven by a common mode;

• all residuals amplitudes are driven by that same common mode;

• factors and residuals series are non-Gaussian, and their amplitudes are not lognormal either.

The spectral analysis suggests the presence of two volatility drivers σ 0 and σ 0 ′ in the fac- tors and the residuals. ! Concretely, we aggregate the volatility determinants multiplicatively as follows:

f k = k exp(A k0 ω 0 ) exp(A k0 ′ ω 0 ′ ) exp(A kk ω k ) (5.15a) e j = η j exp(B j0 ω 0 ) exp(B j0 ′ ω 0 ′ ) exp(B jj ω j ), (5.15b) 
where the ω's are stochastic log-volatilities (all independent of each other and independent of the 's and η's), and the parameters A's and B's weight the contribution of every volatility ! It is very easy to add a possible third driver σ 0 ′′ in the equation (5.15b) for the residuals, but its statistical signicance is not granted and the estimation of the associated parameters could turn quite noisy. In the next subsection, we estimate a restricted model where only a single volatility driver is active.

A dominant volatility mode

The simplest improvement over the independent factors assumption, while keeping uncorrelatedness, is to allow for a common uctuation of amplitudes. The multiplicative structure of Eqs. (5.15) is better rendered using the summation in exponential notation:

f k = k exp(A k0 ω 0 + A kk ω k ) (5.16a) e j = η j exp(B j0 ω 0 + B jj ω j ) (5.16b)
with k , η j Gaussian with variance such that Eqs. The model is completely characterized from a probabilistic point of view when the law of the log-volatilities is specied. Rather than using their Probability Distribution Functions, we resort to the Moment Generating Function (MGF) M ω (p) ≡ E[exp(pω)], as we nd it more appropriate to characterize the ω's by their moments, in the perspective of calibration.

The p-dependence of the curves in Fig. 5.4 suggests that the non-Gaussianity in the log- volatilities is approximately homogeneous across the factors, and thus possibly due to the common volatility driver ω 0 only, while the residual volatilities ω k and ω j can be taken as Gaussian. For those, the MGF is M / (p) = exp(p 2 /2). But in the general case, developing in cumulants, M ω 0 is the exponential of a polynomial. Typically, with

E[ω 0 ] = 0 E[ω 2 0 ] = 1 E[ω 3 0 ] = ζ 0 E[ω 4 0 ] = 3 + κ 0 one gets M ω 0 (p) = exp 1 2 p 2 + ζ 0 6 p 3 + κ 0 24 p 4 .
(5.17)

Parameters estimation

The model dened by Eqs. (5.5,5.16) contains the following parameters: M N linear weights β ki (previously estimated, see section 5.2), M coecients A k0 and N coecients B j0 of exposure to the common volatility mode, the standard-deviations A kk and B jj of the residual log-volatilities, and the skewness ζ 0 and kurtosis κ 0 of the volatility mode ω 0 . So there are overall N M + 2(N + M ) + 2 parameters, for a dataset of size N T . More importantly the number of parameters is only marginally enhanced with respect to a typical linear factor model (where only the N M linear weights enter into account): only 2(N + M + 1) new parameters intended to improve the description of all pairwise dependences coecients.

In order to estimate the latter we express the model predictions for the observables dened in Eq. (5.14). It is convenient to introduce the following ratio of MGF's:

Φ 0 (a, b) = M ω 0 (a+b) M ω 0 (a)M ω 0 (b) ,
( 5.18) as well as the Gaussian equivalent Φ / (a, b) = exp(ab). In logarithmic form, φ 0 (a, b; p) = 1 p 2 lnΦ 0 (pa, pb) is a polynomial in p when expanding in cumulants. Indeed, with Eq. ( 5.17),

φ 0 (a, b; p) = ab + p 2 ζ 0 (a 2 b + ab 2 ) + p 2 12 κ 0 (2a 3 b + 3a 2 b 2 + 2ab 3 )
and φ / (a, b; p) = ab is independent of p. Then the theoretical prediction for the matrix elements can be computed analytically: 5.19c) where

1 p 2 ln E[|f k | p |f l | p ] E[|f k | p ] E[|f l | p ] = φ 0 (A k0 , A l0 ; p) + γ(p) + A 2 kk δ kl (5.19a) 1 p 2 ln E[|f k | p |e i | p ] E[|f k | p ] E[|e i | p ] = φ 0 (A k0 , B i0 ; p) (5.19b) 1 p 2 ln E[|e i | p |e j | p ] E[|e i | p ] E[|e j | p ] = φ 0 (B i0 , B j0 ; p) + γ(p) + B 2 ii δ ij ( 
γ(p) = 1 p 2 ln E | | 2p E[| | p ] 2 = 1 p 2 ln √ π Γ( 1 2 + p) Γ( 1+p 2 ) 2
is the normalized 2p-moment of the absolute value of Gaussian variables.

Clearly, if even ω 0 was Gaussian, and the diagonal elements were regular, the matrices described in Eqs. (5.19a) and (5.19c) would be trivially of rank 1, and the identication of A •0 and B •0 with the rst eigenvectors of the corresponding matrices would be straightforward. Non-Gaussianity and specicities on the diagonal perturb this identication, but the overall picture is essentially the same story, as we will shortly show with the calibration results.

The model estimation procedure is as follows (the linear weights β are previously estimated). As discussed just above, there are 2(N + M + 1) parameters to be estimated. Because the equations (5.19) are coupled through (5.19b), all parameters should in principle be estimated jointly. The corresponding optimization program would however be computer intensive, and the stability of the solution would not be granted in such a large dimensional space. We proceed stepwise instead, by rst estimating the parameters A k0 , A kk , ζ 0 , κ 0 using the fac-fac predictions (5.19a), and then estimate the remaining parameters B i0 , B ii from the res-res and fac-res correlations for consistence. Note that there is an overall sign degeneracy, as well as a sign indetermination for the idiosyncratic parameters A kk , B ii (which we then arbitrarily take positive). 1. Estimate A k0 , A kk and the non-Gaussianity parameters from Eq. (5.19a):

min    p k,l 1 p 2 ln |F tk F tl | p |F tk | p |F tl | p - 1 p 2 ln E[|f k | p |f l | p ] E[|f k | p ] E[|f l | p ] 2    (5.20)
The sum on p runs over eight values between p = 0.2 and p = 2 (see x-axis of Fig. 5.5(a))

and is crucial here to the estimation of the non-Gaussianity parameters, since the loss function is independent of p for Gaussian variables. This amounts to performing a best (joint!) quadratic t of the curves similar to Fig. 5.4, for each period.

2. Estimate B i0 from Eq. (5.19b):

min    k,i 1 p 2 ln |F tk E ti | p |F tk | p |E ti | p - 1 p 2 ln E[|f k | p |e i | p ] E[|f k | p ] E[|e i | p ] 2    (5.21a)
or jointly with B ii from Eq. (5.19c), as the vector solution of min

   i,j 1 p 2 ln |E ti E tj | p |E ti | p |E tj | p - 1 p 2 ln E[|e i | p |e j | p ] E[|e i | p ] E[|e j | p ] 2    (5.21b)
(here it is too intensive to calculate the optimum in the N -dimensional space for all values of p so we take a single value, typically p = 1 if we intend to reproduce best absolute correlations, or p = 2 if we favor quadratic correlations).

The convergence is ensured by starting close to the solution, namely taking as prior the rst eigenvector of the corresponding matrices. The calibration results are given graphically on Figs. 5.9, 5.10, 5.11, where we show, separately for each sub-period, the estimated parameters A 0k and B 0j . As expected and discussed above, they are very close to the rst eigenvector of the corresponding matrix of log-abs correlations shown in Figs. 5.6, 5.7 and 5.8. We also show the resulting parameters A kk and B jj : notably, some factors k seem to have all their volatility explained by the common driver ω 0 so that there is no left residual volatility.

The estimated values of the non-gaussianity parameters of the log-volatilities are reported in Tab. 5.2. noticeably, the kurtosis of the common driver ω 0 is found to be negative in every period: the log-volatility is less kurtic than a Gaussian. This was already revealed by the concavity of the curves in Fig. 5 recover the series of linear factors, we perform here two date-by-date regressions motivated by the Eqs. (5.16):

ln |F tk | -ln |F tk | = ω t0 A k0 + A kk ω tk ln |E tj | -ln |E tj | = ω t0 B j0 + B jj ω tj
Whereas the rst regression is performed over only M variables A k0 , the second one is realized over the N variables B j0 and thus much less noisy (we will always use the second determination in the following). The overlap of the series of ω 0 estimated with the two regressions is good, with a correlation coecient between 0.55 and 0.75 depending on the period studied.

We show in Fig. 5.12 the series of rst factor straight from the linear program F t1 , and also reconstructed from the procedure above as exp (A 10 ω t0 ), after estimation of the parameters.

Predicted non-linear dependences

As a consistency check of the estimation procedure, we analyze the model prediction with estimated parameters and compare them with empirical measurements of the same quantities. Of particular interest are the quadratic correlations and the diagonal copulas, whose anomalies observed in a previous study [Chicheportiche 2012b] motivated the present model.

The quadratic correlations can be computed from the model denition and write

E[x 2 i x 2 j ] = kl β 2 ki β 2 lj + 2β ki β kj β li β lj Φ 0 (A k0 , A l0 ; 2) 1 3 • 3 • Φ / (A kk , A ll ; 2) δ kl + (1 + 2δ ij ) 1 - l β 2 li k β 2 kj Φ 0 (A k0 , B i0 ; 2) + (1 + 2δ ij ) 1 - l β 2 lj k β 2 ki Φ 0 (A k0 , B j0 ; 2) + 1 - l β 2 li 1 - l β 2 lj Φ 0 (B i0 , B j0 ; 2) 3Φ / (B ii , B jj ; 2) δ ij .
(5.22) When all parameters A, B are zero, the prediction for Gaussian factors and residuals is retrieved: plot of the left-hand side (calibrated) versus the right-hand side (empirical) of Eq. ( 5.22), for all periods. They show a good agreement of model and sample quadratic correlations. Furthermore, the middle and right panels of the same gure illustrate the fact that the pairs of stock returns cannot be described by a bivariate Student distribution, for which a regular curve should be observed instead of the scattered cloud in the plane of quadratic vs linear correlations, a conclusion already drawn in chapter II.4 but which the present model highlights. " The middle point

E[x 2 i x 2 j ] = 1 + 2E[x i x j ] 2 .
C( 1 2 , 1
2 ) of the copula, which was shown on Fig. 5.2 to be incompatible with any elliptical prediction, is also better explained by the model. Although an analytical expression linking C( 1 2 , 1 2 ) to the model parameters is out of reach, it is possible to reproduce its predicted value by simulating long time series according to the model with estimated parameters. # Fig. 5.13 shows the obtained coecients in the same form as the empirical measurements of Fig. 5.2, which they have to be compared with. The results are in very good agreement, and emphasize the capacity of our non-Gaussian factor model to cope with the non-trivial behavior of the medial point of the copula. This is conrmed and even generalized by the reproduction of the copula along the whole diagonals. Figs. 5.15, 5.16 and 5.17 compare empirically measured and model-predicted values of the quantities

∆ @ (p) = C(p, p) -C / (p, p) p (1 -p) and ∆ = (p) = C(p, 1 -p) -C / (p, 1 -p) p (1 -p)
versus p, for several values of the linear correlation and over the three periods. A direct visual comparison reveals that the main non-trivial qualitative features of the empirical diagonal " Notice that the choice of p in the estimation procedure of the parameters Bi0, B i0 ′ and Bii is important here. Although the model has identical predictions for any p, estimation biases and errors are in practice dierent for low moments p ≈ 0.2 or high moments p ≈ 2. Obviously, best ts for the quadratic correlations are obtained with p = 2 since in this case the same quantities appear in Eq. ( 5.22) and in the loss function (5.21).

# The non-Gaussian series of log-volatility ωt0 is generated as independent realizations of a Beta distribution whose coecients are determined so that the rst four moments match those of ω0. This class of distributions allows for negative kurtosis. It is known that the realizations of volatility exhibit strong persistence, a characteristic that our simulated series do not reproduce. This however does not generate a bias in the obtained coecients, but rather makes them too un-noisy.

= " > # '

? ' Before proceeding to the out-of-sample evaluation of the model in Sect. 5.5, we briey present how the model is improved (though marginally) by introducing a second volatility driver ω 0 ′ , as suggested by the spectral analysis of Sect. 5.3.

Another volatility driver

The spectral analysis of the factor and residual absolute correlations has revealed that there exists a small but signicant second mode of volatility. The model (5.16) can be improved accordingly in order to account for this additional source of collective amplitude uctuations: 5.24) and as a consequence the RHS of Eqs. (5.19) get an additional term each, namely

f k = k exp(A k0 ω 0 + A k0 ′ ω 0 ′ + A kk ω k ) (5.23) e j = η j exp(B j0 ω 0 + B j0 ′ ω 0 ′ + B jj ω j ), ( 
φ 0 ′ (A k0 ′ , A l0 ′ ; p), φ 0 ′ (A k0 ′ , B i0 ′ ; p) and φ 0 ′ (B i0 ′ , B j0 ′ ; p), respectively.
The whole estimation procedure runs identically. However, for the determination of the parameters A k0 and A k0 ′ , the reduced number of observations (M (M -1)/2 factor-factor correlations, times 8 values of p) provides only a low resolution, and the minimization program does not succeed in distinguishing the two volatility drivers: it outputs an hybrid where both ω 0 and ω 0 ′ contribute to the same mode (this issue is not relevant in the determination of the parameters B j0 , B j0 ′ thanks to the sucient number of observations). In order to break the degeneracy and orthogonalize the modes, we add an overlap term ( k A k0 A k0 ′ ) 2 in the cost function Eq. (5.20).

As an example, we report in Fig. 5.18 the results for the period 20002004. As expected, the parameters A k0 and A k0 ′ are very close to the rst two eigenvectors of the factor-factor log-abs correlation matrix (Fig. 5.6(a)), and the parameters B j0 , B j0 ′ look like the rst two eigenvectors of the residual-residual matrix (Fig. 5.6(b), averaged over sectors). Clearly, taking this additional second volatility driver into consideration improves the theoretical description of the returns. We illustrate this on Fig. 5.18(c) where we show how ω 0 et ω 0 ′ contribute respectively to the volatility of the market mode of linear correlation, f 1 .

Out-of-sample analysis

All the results presented above are in-sample, in the sense that we have shown the predicted dependence coecients with estimated parameters on a period and compared them to the realized coecients in that same period. The ultimate test for a model that aims at describing joint nancial returns (and more generally of any risk model), is to perform good out-ofsample, i.e. use a model calibrated on a period to predict a (average) behavior in a subsequent period. Refer to Ref. [Potters 2009]!

We consider a long period 20002009 on which we perform an In-sample/Out-of-sample analysis over sliding windows (N = 262 returns series are kept, see Tab. 5.1). We rely on the procedure used in Ref. [Potters 2009]. 1. The model is calibrated in windows of T IS = 2N = 524 days. An optimal portfolio is built and a corresponding risk measure is computed over the window used for estimation: this is the In-sample risk. We consider below two kinds of risks corresponding to two dierent portfolios: (i) the quadratic risk of a basket of returns, that will assess the quality of the linear elements of the model; and (ii) the quadratic risk of a basket of (centered and normalized) absolute returns, that will assess the quality of the volatility description of the model.

2. The same risk measures are computed Out-of-sample on a small period of T OS = 59 days (three months) following the estimation period.

3. The sliding lags are chosen so that the control samples are non-overlapping, i.e. at dates τ = T IS + n × T OS + 1, n = 0, 1, 2, . . .. Sliding windows will be indexed with parenthesis notation `(τ)', in order to avoid confusion with regular time stamps t of the running dates.

Linear correlations

For a given covariance matrix ρ, optimal portfolio weights can be computed in the sense of Markowitz:

w * (τ ) = ρ -1 g(τ ) g(τ ) † ρ -1 g(τ ) (5.25)
where we consider an omniscient stationary predictor of returns

g i (τ ) = X τ i 1 N j X 2 τ j
(5.26) and a unit total gain G ≡ g † w * = 1. This means that the in-sample/out-of-sample test procedure applied below is intended to measure only risk and not the risk-return tradeo (Sharp ratio) as is usual e.g. when back-testing nancial strategies. Indeed what we ultimately want to conclude is whether our model of stock returns allows to have a better view of dependences and thus to better diversify away the risk (since we work with normalized returns, we are not concerned with individual variances but only care for dependences). Quadratic risk, is essentially a measure of expected small uctuations of the portfolio value:

R 2 (τ ) = 1 T ′ t ′ 1 N N i=1 X t ′ i w * i (τ ) σ IS i (τ ) 2 (5.27)
where, for later convenience, the returns are normalized by a rolling in-sample estimate of their volatility σ IS (τ ) (although the returns have been normalized over the whole period, they may not be close to unit-variance in-sample because of low-frequency regime switches in the volatility). This risk is computed both in-sample (in which case T ′ = T IS and t ′ = τ -T ′ , . . . , τ -1) and out of sample (T ′ = T OS and t ′ = τ + 1, . . . , τ + T ′ ), for dierent input correlation matrices in Eq. ( 5.25):

• Empirical: the in-sample raw correlation matrix,

ρ (1) Emp (τ ) = 1 T IS τ -1 t ′ =τ -T IS X t ′ • • X t ′ • ;
• Clipped: the PCA solution of Eq. ( 5.9), ρ (1)

Clip (τ ) = β PCA (τ ) † β PCA (τ )
, for several values of the number of retained modes M with largest eigenvalues;

• MultiFactor: the improved solution of Eq. ( 5.12), ρ (1)

MF (τ ) = β(τ ) † β(τ ), for several
values of the number of factors M .

All these scenarios can furthermore be compared to the benchmark of a full-rank pure noise Wishart correlation matrix. In this case, Random Matrix Theory predicts the values of the average in-sample and out-of-sample risks, in the limit of large matrices with quality factor q = N/T 15 :

R 2 RMT IS = R 2 True • (1 -q) and R 2 RMT OS = R 2 True / (1 -q).
Moreover, the true risk (i.e. the value of R 2 when the optimal weights are determined using the correlation matrix of the process that generates the realized returns X •i /σ 15 i ) can be shown to be R 2 True = 1 with the denition (5.27).

We show graphically the results of the testing procedure on Fig. 5.19: In-sample and Out-of-sample average risks of every cleaning scheme are plotted versus the control parameter α = M/N , where averages are performed over the sliding windows (τ ).

When only a very reduced number of factors (M ≈ 1, 2, 3) is kept, eigenvalue clipping performs better (although quite bad), and similarly when keeping also the very last modes: this is because the linear factors are only good when the eigenmodes are statistically signicant, on the left and right of the RMT noise bulk. In the limit α → 1 (i.e. M = N ) all cleaning schemes collapse to the risk values associated with the raw sample correlation matrix (black solid level line). The RMT predictions are shown for reference as dashed grey lines.

In intermediate values instead (where the Out-of-sample risk is minimal because of marginal gain in signal being higher than marginal risk increase due to added false positive information), the procedure worked out in Sect. 5.2.1 to better estimate the linear correlations provides an improved determination of average Out-of-sample risk. In fact, Fig. 5.20

shows that the relative gain

[ R 2 Clip -R 2 MF ]/[ R 2 Clip -R 2 True ]
(5.28) can reach up to 25%, while not dramatically increasing over-tting (the In-sample risk is only slightly articially lowered).

Absolute correlations

We now turn to the core properties of the model: the non-linear dependences. We have already shown that the model is able to reproduce, after calibration, several empirically observed quantities like the copula, and want now to perform an out-of-sample assessment of the volatility-driven dependence in the absolute correlations Y ti Y tj t , where

Y t i = |X ti | -|X ti | t (|X ti | -|X ti | t ) 2
The denitions of the gain predictor g and the risk measure R 2 (τ ) are identical to Eqs. (5.26) and ( 5.27) respectively, with Y in place of X. The dierent cleaning schemes considered are: • Empirical: the in-sample raw correlation matrix,

ρ (=) Emp (τ ) = 1 T 15 τ -1 t ′ =τ -T 15 Y t ′ • • Y t ′ • ;
• Clipped: the PCA solution ρ (=)

Clip (τ ) = V M | Λ M | V † M | , keeping the M eigenmodes of ρ (=)
Emp with largest eigenvalues;

• Gaussian factors: the Gaussian prediction ρ (=) MFG (τ ) obtained as the sample absolute correlations of long time series simulated according to the M -factors model (5.23) where all volatility parameters A and B are set to 0.

• Multifactor (model): the model prediction ρ (=) MFnG (τ ) obtained as the sample absolute correlations of long time series simulated according to the M -factors model ( 5.23) cal- ibrated with the volatility parameters (for each of the two drivers) turned on.

Notice that the meaning of M is not comparable in all cleaning schemes: while for the clipped eigenvalues it corresponds to the number of relevant modes in the matrix of absolute correlations, for the multi-factor models it instead counts the the number of linear factors.

This can be seen immediately on Fig. 5.21, where the red curve corresponding to Clipping has the usual U-shape discussed above, while the blue curves corresponding to multi-factor saturate as α increases above ≈ 0.1, a threshold above which letting additional linear factors barely aects the volatility dependences.

More importantly, this gure shows that multi-factor models oer a better optimal Outof-sample risk together with less In-sample over-tting. (Notice that the RMT benchmark is not justied in the case of absolute returns, which are much skewed). The role of volatility dependences is put forward by the better performance of the nal non-Gaussian multi-factor level over the Gaussian multi-factor cleaning scheme: Fig. 5.22 shows that while the Gaussian model oers an Out-of-sample risk about 2025% lower than eigenvalue clipping, the non-Gaussian model performs up to 50% better, at the location of the minimal risk (α ≈ 0.1).

These gures are calculated using the risk dierence dened in Eq. (5.28), but with a reference R 2 ref = 1.5 (arbitrarily chosen between the highest average In-sample risk and the lowest Out- of-sample risk), since the true risk for absolute returns is not 1. The absolute numbers are not informative, but we also show in inset of Fig. 5.22 the relative over-performance of the non-Gaussian multi-factor model over the Gaussian multi-factor model:

[ R 2 MFnG -R 2 MFG ]/[ R 2 MFnG -R 2 ref ].
The improvement is maximal again around α ≈ 0.1. .22: Absolute correlations: Out-of-sample risk is lowered by more than 50% where the risk is minimal (α ≈ 0.1). The role of volatility dependences is put forward by the better performance of the non-Gaussian multi-factor level over the Gaussian multi-factor cleaning scheme: the relative risk dierence is shown in the inset.

the number of sectors can be regarded as a reasonable prior for M . In our calibration, we have retained M = 10 factors corresponding to the number of Bloomberg sectors plus one, with satisfactory results at reproducing the main empirical stylized facts.

A more justied determination of M is reached by considering the In-Sample / Outof-sample risk measurement described just above. The In-sample risk is always too good because it is measured using a model calibrated so as to match the particular realizations of the noise in the same period: this phenomenon is known as over-tting and is more pronounced the higher the number of parameters is. The Out-of-sample risk is always too bad because it is measured using a model that can never account completely for the reality, and unexplained noise remains. A too small number of parameters makes the model oversimplied and unrealistic, and leaves room for much uncertainty that manifests itself in a high risk. On the other hand, calibrating too many parameters will cause the model to over-t the data of the estimation period, and depart signicantly from a typical realization of noise; when applying this over-tted model out-of-sample, the realized risk can be very large as well. Therefore, there typically exists an optimal number of parameters, for which the model ts reasonably the data and is stable when applied out-of-sample.

Adjusting the trigger parameter α = M/N allowed us to nd an optimal conguration where the out-of-sample risk is minimized while the in-sample risk is not articially lowered.

A unique value of α ≈ 0.1 is found to be optimal both for the quadratic risk and for the risk associated with absolute returns, and thus suggests a number of M ≈ 24 factors to be kept.

Conclusions

We have presented a factor model for stock returns aiming at reproducing observed nonlinear dependences like the quadratic correlations and the copula diagonals, the latter being sensitive to the relative ranks of the joint realizations. Simple generalizations of elliptical model, with idiosyncratic radial parts, were still unable to explain important features like the medial copula departing from a standard value. Such properties can only be accounted for by an interplay of the kurtosis of factors and residual parts.

The main features of our model are the following: (i) A linear factor structure, that is able to generate very accurately the linear correlations, up to pair eects that are not to be explained by any factor model; (ii) independent residuals which allow for an interpretation in Precise predictions are formulated, and a calibration of all parameters is performed over dierent periods. An original calibration scheme is provided, with powerful results both in the linear sector and in the volatility parameters. The calibrated models exhibit dependences that show a very good overall t to empirical observations, even for the non-trivial observables like the copula medial point. The stability analysis performed in the last section illustrates the ability of the model not only to t the data in-sample but also to reproduce the typical behavior of out-of-sample realizations of the noise. It points toward an optimal number of factors M ≈ 24.

Introduction

One of the most striking universal stylized facts of nancial returns is the volatility clustering eect, which was rst reported by Mandelbrot as early as 1963 [Mandelbrot 1963]. He noted that . . . large changes tend to be followed by large changes, of either sign, and small changes tend to be followed by small changes. The rst quantitative description of this eect was the ARCH model proposed by Engle in 1982[Engle 1982]. It formalizes Mandelbrot's hunch in the simplest possible way, by postulating that returns r t are conditionally Gaussian random variables, with a time dependent volatility (RMS) σ t that evolves according to:

σ 2 t = s 2 + gr 2 t-1 . (6.1)
In words, this equation means that the (squared) volatility today is equal to a baseline level s 2 , plus a self-exciting term that describes the inuence of yesterday's perceived volatility r 2 t-1 on today's activity, through a feedback parameter g. Note that this ARCH model was primarily thought of as an econometric model that needs to be calibrated on data, while a more ambitious goal would be to derive such a model from a more fundamental theory for example, based on behavioural reactions to perceived risk.

It soon became apparent that the above model is far too simple to account for empirical data. For one thing, it is unable to account for the long memory nature of volatility uctuations. It is also arbitrary in at least two ways:

• First, there is no reason to limit the feedback eect to the previous day only. The Generalized ARCH model (GARCH) [Bollerslev 1986], which has become a classic in quantitative nance, replaces r 2 t-1 by an exponential moving average of past squared returns. Obviously, one can further replace the exponential moving average by any weighting kernel k(τ ) ≥ 0, leading to a large family of models such as:

σ 2 t = s 2 + ∞ τ =1 k(τ )r 2 t-τ , (6.2) 
which includes all ARCH and GARCH models. For example, ARCH(q) corresponds to a kernel k(τ ) that is strictly zero beyond τ = q. A slowly (power-law) decaying kernel k(τ ) is indeed able to account for the long memory of volatility this corresponds to the so-called FIGARCH model (for Fractionally Integrated GARCH) [Bollerslev 1994].

• Second, there is no a priori reason to single out the day as the only time scale to dene the returns. In principle, returns over dierent time scales could also feedback on the volatility today [START_REF] Müller | [END_REF], Borland 2011, Lynch 2003], leading to another natural extension of the GARCH model as:

σ 2 t = s 2 + ℓ ∞ τ =1 g ℓ (τ )R (ℓ)2 t-τ , (6.3)
where R

(ℓ) t is the cumulative, ℓ day return between tℓ and t. The rst model in that category is the HARCH model of the Olsen group [START_REF] Müller | [END_REF]], where the rst H stands for Heterogeneous. The authors had in mind that dierent traders are sensitive to and react to returns on dierent time scales. Although this behavioural interpretation was clearly expressed, there has been no real attempt to formalize such an intuition beyond the hand-waving arguments given in [Borland 2011]. The common point to the zoo of generalizations of the initial ARCH model is that the current level of volatility σ 2 t is expressed as a quadratic form of past realized returns. The most general model of this kind, called QARCH (for Quadratic ARCH), is due to Sentana [Sentana 1995], and reads:

σ 2 t = s 2 + ∞ τ =1 L(τ ) r t-τ + ∞ τ,τ ′ =1 K(τ, τ ′ ) r t-τ r t-τ ′ , (6.4)
where L(τ ) and K(τ, τ ′ ) = K(τ ′ , τ ) are some kernels that should satisfy technical conditions for σ 2 t to be always positive (see below and [Sentana 1995]). The QARCH can be seen as a general discrete-time model for the dependence of σ 2 t on all past returns {r t ′ } t ′ <t , truncated to second order. The linear contribution, which involves L(τ ), captures a possible dependence of the volatility on the sign of the past returns. For example, negative past returns tend to induce larger volatility in the future this is the well-known leverage eect [Black 1976, Bouchaud 2001a, Bekaert 2000], see also [START_REF] Reigneron | [END_REF]] and references therein. The quadratic contribution, on the other hand, contains through the matrix K(τ, τ ′ ) all ARCH models studied in the literature. For example, ARCH(q), GARCH and FIGARCH models all correspond to a purely diagonal kernel, K(τ, τ ′ ) = k(τ )δ τ,τ ′ where δ τ,τ ′ is Kronecker's delta.

In view of the importance of ARCH modelling in nance, it is somewhat surprising that the general framework provided by QARCH has not been fully explored. Only versions with very short memories, corresponding to at most 2 × 2 matrices for K, seem to have been considered in the literature. In fact, Sentana's contribution is usually considered to be the introduction of the linear contribution in the GARCH framework, rather than unveiling the versatility of the quadratic structure of the model. The aim of this chapter is to explore in detail the QARCH framework, both from a theoretical and empirical point of view. Of particular interest is the empirical determination of the structure of the feedback kernel K(τ, τ ′ ) for the daily returns of stocks, which we compare with several proposals in the literature, including the multi-scale model of [Borland 2011] and the trend-induced volatility model of [Zumbach 2010]. Quite surprisingly, we nd that while the o-diagonal elements of K(τ, τ ′ ) are signicant, they are at least an order of magnitude smaller than the diagonal elements k(τ ) := K(τ, τ ). The latter are found to decay very slowly with τ , in agreement with previous discussions. Therefore, in a rst approximation, the dominant feedback eect comes from the amplitude of daily returns only, with minor corrections coming from returns computed on large time spans, at variance with the assumption of the model put forward in [Borland 2011]. We believe that this nding is unexpected and far from trivial. It is a strong constraint on any attempt to justify the ARCH feedback mechanism from a more fundamental point of view.

See however the very recent stochastic volatility model with heterogeneous time scales of [Delpini 2012]. (G)QARCH and alternative names such as Asymmetric (G)ARCH, Nonlinear (G)ARCH, Augmented ARCH, etc. often refer to this additional leverage (asymmetry) contribution, whereas the important innovation of QARCH is in fact the possibility of o-diagonal terms in the kernel K.

In parallel with ARCH modelling, stochastic volatility models represent another strand of the literature that has vigorously grown in the last twenty years. Here again, a whole slew of models has emerged [Henry-Labordère 2008], with the Heston model [Heston 1993] and the SABR model [Hagan 2002b] as the best known examples. These models assume that the volatility itself is a random process, governed either by a stochastic dierential equation (in time) or an explicit cascade construction in the case of more recent multifractal models [Muzy 2000, Calvet 2008[START_REF] Lux | The Multi-Fractal Model of Asset Returns: Its Estimation via GMM and Its Use for Volatility Forecasting[END_REF] (again initiated by Mandelbrot as early as 1974! [Mandelbrot 1974]). There is however a fundamental dierence between most of these stochastic volatility models and the ARCH framework: while the former are time-reversal invariant (TRI), the latter is explicitly backward looking. This, as we shall discuss below, implies that certain correlation functions are not TRI within QARCH models, but are TRI within stochastic volatility models. This leads to an empirically testable prediction; we report below that TRI is indeed violated in stock markets, as also documented in [Zumbach 2009].

The outline of this chapter is as follows. We rst review in Section 6.2 some general analytical properties of QARCH models, in particular about the existence of low moments of the volatility. We then introduce in Section 6.3 several dierent sub-families of QARCH, that we try to motivate intuitively. The consideration of these sub-families follows from the necessity of reducing the dimensionality of the problem, but also from the hope of nding simple regularities that would suggest a plausible interpretation (behavioural or else) of the model, beyond merely best t criteria. In Section 6.4, we attempt to calibrate large QARCH models on individual stock returns, rst without trying to impose any a priori structure on the kernel K(τ, τ ′ ), and then specializing to the various sub-families mentioned above. The same analysis is done in Section 6.5 for the returns of the stock index. We isolate in Section 6.6 the discussion on the issue of TRI for stock returns, both from a theoretical/modeling and an empirical point of view. We give our conclusions in Section 6.7, and relegate to Appendices E.1 and E.2 more technical issues.

6.2

General properties of QARCH models Some general properties of QARCH models are discussed in Sentana's seminal paper [Sentana 1995]. We review them here and derive some new results. The QARCH model for the return at time t, r t , is such that:

ln p t -ln p t-1 = r t = σ t ξ t , (6.5)
where p t is the price at time t, σ t is given by the QARCH specication, Eq. (6.4) above, while the ξ's are i.i.d. random variables, of zero mean and variance equal to unity. While many papers take these ξ's to be Gaussian, it is preferable to be agnostic about their univariate distribution. In fact, several studies including our own (see below), suggest that the ξ's themselves have fat-tails: asset returns are not conditionally Gaussian and true jumps do occur. !

In this section, we will focus on the following non-linear correlation functions (other ! There seems to be a slowly growing consensus on this point (see e.g. [Ait-Sahalia 2009]): Gaussian processes with stochastic volatility cannot alone account for the discontinuities observed in market prices.

6.2. General properties of QARCH models 107 correlations will be considered below, when we turn to empirical studies):

C (2) (τ ) ≡ r 2 t -r 2 t ′ t ′ r 2 t-τ t (6.6a) C (2) (τ ) ≡ σ 2 t -σ 2 t ′ t ′ r 2 t-τ t (6.6b) D(τ ′ , τ ′′ ) ≡ (r 2 t -r 2 t ′ t ′ r t-τ ′ r t-τ ′′ t (6.6c) D(τ ′ , τ ′′ ) ≡ (σ 2 t -σ 2 t ′ t ′ r t-τ ′ r t-τ ′′ t .
(6.6d)

Here and below, we assume stationarity and correspondingly . . . t refers to a sliding average over t. The following properties are worth noticing: by denition, τ ) by construction, the same is not true in general for C (2) (τ ). However, using the QARCH causal construction and the independence of the ξ's, one can easily convince oneself that when τ > 0,

D(τ, τ ) ≡ C (2) (τ ) and D(τ, τ ) ≡ C (2) (τ ). Furthermore, whereas C (2) (τ ) = C (2) (-
C (2) (τ ) ≡ C (2) (τ ). Similarly, for τ ′ > τ ′′ > 0, D(τ ′ , τ ′′ ) ≡ D(τ ′ , τ ′′ ), while in general, D(τ ′ , τ ′′ ) = D(-τ ′ , -τ ′′ ) ≡ 0.

6.2.1

Second moment of the volatility and stationarity QARCH models only make sense if the expected volatility does not diverge to innity. The criterion for stability is easy to establish if the ξ's are IID and of zero mean, and reads:

Tr K < 1.
(6.7)

In this case, the volatility is a stationary process such that σ 2 ≡ E[σ 2 ] = s 2 /(1 -Tr K): the feedback-induced increase of the volatility only involves the diagonal elements of K. Note also that the leverage kernel L(τ ) does not appear in this equation. As an interesting example, we consider kernels with a power-law decaying diagonal: K(τ, τ ) = g τ -α 1 {τ ≤q} . For a given decay parameter α, the amplitude g must be smaller than a certain value g c (α, q) for σ 2 to be nite. Fig. 6.1 shows the critical frontier g c (α, q) for q = 1, 32, 256 and q → ∞. The critical frontier in the limit case q = ∞ is given by g c = 1/ζ(α), where ζ(α) is Riemann's zeta function (solid red). Note in particular that the model is always unstable when α < 1, i.e. when the memory of past realized volatility decays too slowly. " At the other extreme, q = 1, the constraint is well known to be g = k(1) ≤ 1 (solid red). Within a strict interpretation of the QARCH model, there are additional constraints on the kernels K and L that arise from the fact that σ 2 t should be positive for any realization of price returns. This imposes that a) all the eigenvalues of K should be non-negative, and b) that the following inequality holds:

q τ,τ ′ =1 L(τ )K -1 (τ, τ ′ )L(τ ′ ) ≤ 4 s 2 , (6.8)
where K -1 is the matrix inverse of K. However, these constraints might be too strong if one interprets the QARCH model as a generic expansion of σ 2 t in powers of past returns, truncated to second order [Sentana 1995]. It could well be that higher order terms are stabilizing and lead to a meaningful, stable model beyond the limits quoted here. " In the context of fractionally integrated processes I(d) , the condition α ≤ 1 is equivalent to the `dierence parameter' d = α -1 being positive. .1: Allowed region in the parameter space for K(τ, τ ) = g τ -α 1 {τ ≤q} and L(τ ) = 0, according to the niteness of σ 2 and σ 4 . Divergence of σ 2 is depicted by 45 • (red) hatching, while divergence of σ 4 is depicted by -45 • (blue) hatching. In the wedge between the dashed blue and solid red lines, σ 2 < ∞ while σ 4 diverges.

6.2.2

Fourth moment of the volatility

The existence of higher moments of σ can also be analyzed, leading to more and more cumbersome algebra [START_REF] He | Fourth moment structure of the GARCH(p,q) process[END_REF][START_REF][END_REF][START_REF] Teyssière | [END_REF]. In view of its importance, we have studied in detail the conditions for the existence of the fourth moment of σ, which allows one to characterize the excess kurtosis κ of the returns, traditionally dened as:

κ = r 4 r 2 2 -3 ≡ σ 4 ξ 4 σ 2 2 -3.
(6.9)

In the general case, σ 4 , C (2) (τ ) and D(τ ′ , τ ′′ ) are related by the following set of self-consistent equations:

σ 4 -σ 2 2 = σ 2 2 Tr(K 2 ) -Tr(K •2 ) + τ >0 K(τ, τ )C (2) (τ ) (6.10a) +2 0<τ 2 <τ 1 K(τ 1 , τ 2 ) D(τ 1 , τ 2 ) - 0<τ <τ 2 K(τ, τ )D(τ 1 -τ, τ 2 -τ ) C (2) (τ > 0) =K(τ, τ ) σ 4 ξ 4 -σ 2 2 + τ ′ =τ K(τ ′ , τ ′ )C (2) (τ -τ ′ ) (6.10b) +2 q τ ′ >τ ′′ =τ +1 K(τ ′ , τ ′′ )D(τ ′ -τ, τ ′′ -τ ) D(τ 1 > 0, τ 2 > 0) =2K(τ 1 , τ 2 ) C (2) (τ 1 -τ 2 ) + σ 2 2
(6.10c)

+ 0<τ ′ <τ 2 K(τ ′ , τ ′ )D(τ 1 -τ ′ , τ 2 -τ ′ ) +2 τ ′ >τ 2 ,τ ′ =τ 1 K(τ ′ , τ 2 )D(τ ′ -τ 2 , |τ 1 -τ 2 |).
where we assume for simplicity here that the leverage eect is absent, i.e. L(τ ) ≡ 0, and K •2 means the square of K in the Hadamard sense (i.e. element by element). For a QARCH with maximum horizon q, we have thus a set of 1 + q + q(q -1)/2 linear equations for k(τ ≥ 0) that can be numerically solved for an arbitrary choice of the kernel K. These equations simplify somewhat in the case of a purely diagonal kernel K(τ, τ ′ ) = k(τ )δ τ,τ ′ . One nds:

σ 4 -σ 2 2 = τ ′ >0 k(τ ′ )C (2) (τ ′ ) (6.11a) C (2) (τ ) = τ ′ >0 k(τ ′ )C (2) (τ ′ -τ ) (6.11b)
By substituting σ 4 , it is easy to explicit the linear system in matrix form ∇ C (2) = S with

∇(τ, τ ′ ) = δ τ τ ′ -ξ 4 k(τ )k(τ ′ ) -k(τ -τ ′ ) + k(τ + τ ′ ) (6.12a) S(τ ) = k(τ ) σ 2 2 ξ 4 -1 (6.12b)
and the convention that k(τ ) = 0, ∀τ ≤ 0.

Let us examine this in more detail for ARCH(q). For simplicity, we assume here that ξ is Gaussian ( ξ 4 = 3) and s is chosen such that σ 2 = 1. The condition on k(τ ) for which σ 4 diverges is given by det ∇ = 0, where ∇ is the matrix whose entries are dened in Eq. 6.12a. For dierent q's, this reads:

• for q = 1, one recovers the well known result that ARCH(1) has a nite fourth moment only when k 1 < 1/ √ 3.

• for q = 2, the stability line is given by k 1 + k 2 = 1, while the existence of a nite fourth moment is given by the condition

k 2 1 < (1/3 -k 2 2 )(1 -k 2 )/(1 + k 2 ).
• for q → ∞, we again assume the τ dependence of k(τ ) to be a power-law, g τ -α (corresponding to the FIGARCH model). The critical line for which the fourth moment diverges is shown in dashed blue in Fig. 6.1. After a careful extrapolation to q = ∞, we nd that whenever 1 < α < α c ≈ 1.376, the fourth moment exists as soon as the model is stationary, i.e. when g <

1/ζ(α) < 1/ζ(α c ) ≈ 0.306.
The last result is quite interesting and can be understood from Eq. ( 6.11), which shows that to lowest order in g, one has:

σ 4 σ 2 2 -1 ≈ ( ξ 4 -1)g 2 τ >0 1 τ 2α .
(6.13)

The above expression only diverges if α < 1/2, but this is far in the forbidden region α < 1 where σ 2 itself diverges. Therefore, perhaps unexpectedly, a FIGARCH model with a long memory (i.e. α < 1.376) cannot lead to a large kurtosis of the returns, unless the ξ variables have themselves fat tails. We will come back to this important point below. By the way, FIGARCH models with long memory and 1 < α < 3/2 are able to generate power-law correlations of the volatility C (2) (τ ) ∝ τ -β , with a slow decay characterized by an exponent β = 3 -2α, as we demonstrate in Appendix E.2.

As we alluded to in the introduction, ARCH(q) models posit that today's volatility is only sensitive to past daily returns. This assumption can be relaxed in several natural ways, each of which leading to a specic structure of the feedback kernel K. We will present these extensions in increasing order of complexity.

Returns over dierent time scales

Let us dene the ℓ-day return between tℓ and t as R (ℓ) t , such that:

R (ℓ) t = ℓ τ =1 r t-τ ; R (1) t = r t-1 = ln p t-1 -ln p t-2 , (6.14)
where p t is the price at time t. The simplest extension of ARCH(q) is to allow all past 2-day returns to play a role as well, i.e.: where g 1 (τ ) and g 2 (τ ) are coecients, all together 2q -1 of them. Upon identication with the QARCH kernel, one nds:

σ 2 t = s 2 + q-1 τ =0 g 1 (τ )[R (1) t-τ ] 2 + q-2 τ =0 g 2 (τ )[R (2) t-τ ] 2 , (6.15) (a) (c) (b) (d)
K(τ, τ ) = g 1 (τ -1) + g 2 (τ -1) + g 2 (τ -2), K(τ, τ + 1) = g 2 (τ -1) (6.16) K(τ, τ + ℓ) = 0 for ℓ ≥ 2,
with the convention that g 2 (-1) = 0. The model can thus be re-interpreted in the following way: the square volatility is still a weighted sum of past daily squared returns, but there is an extra contribution that picks up the realized one-day covariance of returns. If g 2 (τ ) ≥ 0, the model means that the persistence of the same trend two days in a row leads to increased volatilities. A schematic representation of this model is given in Fig. 6.2(a).

One can naturally generalize again the above model to include 2-day, 3-day, ℓ-day returns, with more coecients g 1 (τ ), g 2 (τ ), . . . , g ℓ (τ ), with a total of ℓ(2q + 1ℓ)/2 parameters. Obviously, when ℓ = q, all possible time scales are exhausted, and the number of free parameters is q(q + 1)/2, i.e. exactly the number of independent entries of the symmetric q × q feedback kernel K.

6.3

Some special families of QARCH models

Multi-scale, cumulative returns

Another model, proposed in [START_REF] Müller | [END_REF], Borland 2011], is motivated by the idea that traders may be inuenced not only by yesterday's return, but also by the change of price between today and 5-days ago (for weekly traders), or today and 20-days ago (for monthly traders), etc. In this case, the natural extension of the ARCH framework is to write:

σ 2 t = s 2 + q ℓ=1 g BB (ℓ)[R (ℓ) t ] 2 ,
(6.17)

where the index BB refers to the model put forward in [Borland 2011]. The BB model requires a priori q dierent parameters. It is simple to see that in this case, the kernel matrix can be expressed as:

K BB (τ ′ , τ ′′ ) = G[max(τ ′ , τ ′′ )], with G[τ ] = q ℓ=τ g BB (ℓ).
(6.18)

The spectral properties of these matrices are investigated in detail in Appendix E.1. One can also consider a mixed model where both cumulative returns and daily returns play a role. This amounts to taking the o-diagonal elements of K as prescribed by the above equation, but to specify the diagonal elements

K(τ, τ ) completely independently from G[τ ].
This leads to a matrix structure schematically represented in Fig. 6.2(b), parameterized by 2q -1 independent coecients.

Zumbach's trend eect (ARTCH)

Zumbach's model [Zumbach 2010] is another particular case in the class of models described by Eq. (6.4). It involves returns over dierent lengths of time and characterizes the eect of past trending aggregated returns on future volatility. The quadratic part in the volatility prediction model is

ARCH + ⌊q/2⌋ ℓ=1 g Z (ℓ) R (ℓ) t R (ℓ) t-ℓ (6.19)
When relevant, only specic time scales like the day (ℓ = 1), the week (ℓ = 5), the month (ℓ = 20), etc. can be retained in the summation. The o-diagonal elements of the kernel K now take the following form:

K Z (τ ′ , τ ′′ > τ ′ ) = min(τ ′′ -1,⌊q/2⌋) ℓ=max(τ ′ , τ ′′ 2 ) g Z (ℓ) (6.20)
Since it is upper triangular by construction, we symmetrize it as 1 2 (K +K † ), and the diagonal is lled with the ARCH parameters. This model contains q + ⌊q/2⌋ independent coecients, and is schematically represented in Fig. 6.2(c).

A generalized trend eect

In Zumbach's model, the trend component is dened by comparing returns computed over the same horizon ℓ. This of course is not necessary. As an extreme alternative model, we consider a model where the volatility today is aected by the last return r t-1 conrmation (or the negation) of a long trend. In more formal terms, this writes: (6.21) where g LT (ℓ) is the sequence of weights that denes the past long trend (hence the index LT). This now corresponds to a kernel K with diagonal elements corresponding to the ARCH eects and a single non trivial row (and column) corresponding to the trend eect: K(1, τ > 1) = g LT (τ -1). This model has again 2q -1 free parameters.

ARCH + r t-1 × q-1 ℓ=1 g LT (ℓ)r t-1-ℓ ,
Of course, one can consider QARCH models that encode some, or all of the above mechanisms for example, a model that schematically reads ARCH + BB + LT would require 3q -2 parameters.

Spectral interpretation of the QARCH

Another illuminating way to interpret QARCH models is to work in the diagonal basis of the K matrix, where the quadratic term in Eq. ( 6.4) reads:

q τ ′ ,τ ′′ =1 n λ n v n (τ ′ )v n (τ ′′ ) r t-τ ′ r t-τ ′′ ≡ n λ n r|v n 2 t (6.22)
with (λ n , v n ) being, respectively, the n-th eigenvalue and eigenvector of K, and r|v n t = q τ =1 v n (τ ) r t-τ the projection of the pattern created by the last q returns on the n-th eigenvector. One can therefore say that the square volatility σ 2 t picks up contributions from various past returns eigenmodes. The modes associated to the largest eigenvalues λ are those which have the largest contribution to volatility spikes.

The ARCH(q) model corresponds to a diagonal matrix; in this case the modes are trivially individual daily returns. Another trivial case is when K is of rank one and its spectral decomposition is simply

K(τ ′ , τ ′′ ) = λv(τ ′ )v(τ ′′ ) (6.23)
where λ = Tr(K) is the only non-null eigenvalue, and v(τ ) = K(τ, τ )/ Tr(K) the eigenvector associated with this non-degenerate mode. The corresponding contribution to the increase in volatility (6.22) is therefore λ R 2 t , where (6.24) can be interpreted as an average return over the whole period, with a certain set of weights v(τ ).

R t = r|v t = q τ =1 v(τ ) r t-τ ,
The pure BB model (without extra ARCH contributions) can also be diagonalized analytically in the large q limit for certain choices of the function g BB (τ ). We detail these calculations (which are mostly of theoretical interest) in Appendix E.1.

6.4

Empirical study: single stocks

We now turn to the calibration on real data of large QARCH models, i.e. models that take into account q past returns with q large (20 or more). The diculty is that the full calibration of the matrix K requires the determination of q(q + 1)/2 parameters, which is already equal to 210 when q = 20! This is why the discussion of the previous section is important: imposing some a priori structure on the matrix K may help limiting the number of parameters, and gaining robustness and transparency. However, perhaps surprisingly, we will nd that none of the above model seem to have enough exibility to reproduce the subtle structure of the empirically determined K matrix.

Dataset and methodology

Equation (6.4) is a prediction model for the predicted variable σ t with explanatory variables past returns r at all lags. The dataset we will use to calibrate the model is composed of daily stock prices (Open, Close, High, Low) for N = 280 names present in the S&P-500 index from Jan. 2000 to Dec. 2009 (T = 2515 days), without interruption. The reference price for day t is dened to be the close of that day C t , and the return r t is given by r t = ln C tln C t-1 .

The true volatility is of course unobservable; we replace it by the standard Rogers-Satchell (RS) estimator [START_REF] Rogers | [END_REF], Floros 2009]:

σ 2 t = ln(H t /O t ) ln(H t /C t ) + ln(L t /O t ) ln(L t /C t ). (6.25)
As always in this kind of studies over extended periods of time, our dataset suers from a selection bias since we have retained only those stock names that have remained alive over the whole period.

There are several further methodological points that we need to discuss right away:

• Universality hypothesis. We assume that the feedback matrix K and the leverage kernel L are identical for all stocks, once returns are standardized to get rid of the idiosyncratic average level of the volatility. This will allow us to use the whole data set (of size N × T ) to calibrate the model. Some dependence of K and L on global properties of rms (such as market cap, liquidity, etc.) may be possible, and we leave this for a later study. However, we will see later that the universality hypothesis appears to be a reasonable rst approximation.

• Removal of the market-wide volatility. We anticipate that the volatility of a single stock has a market component that depends on the return of the index, and an idiosyncratic component that we attempt to account for with the returns of the stock itself. As a proxy for the instantaneous market volatility, we take the cross-sectional average of the squared returns of individual stocks, i.e. 6.26) and redene returns and volatilities as r t /Σ t and σ t /Σ t . Finally, as announced above, the return time series are centered and standardized, and the RS volatility time series are standardized such that σ 2 i,t = 1 for all is. (This also gets rid of the multiplicative bias of the Rogers-Satchell estimator when used with non-Gaussian returns.)

Σ t = 1 N N i=1 r 2 i,t ( 
• Calibration strategy. The standard procedure used to calibrate ARCH models is maximum-likelihood, which relies on the choice of a family of distributions for the noise component ξ, often taken to be Student-t distributions (which include, in a limit, the Gaussian distribution). However, this method cannot be used directly in our case because there are far too many parameters and the numerical optimization of the loglikelihood is both extremely demanding in computer time and unreliable, as many different optima are expected in general. An alternative method, the Generalized Method of Moments (GMM), is to determine the 1 + q + q(q + 1)/2 parameters of the model using empirically determined correlation functions that depend on s 2 , L(τ ) and K(τ, τ ′ ).

This latter method is however sensitive to tail events and can lead to biases. We will therefore use a hybrid strategy, where a rst estimate of these parameters, obtained using the GMM, serves as the starting point of a one-step likelihood maximization, which determines the set of most likely parameters in the vicinity of the GMM estimate (more details on this below).

• Choice of the horizon q. In principle, the value of the farthest relevant lag q is an additional free parameter of the model, and should be estimated jointly with all the others. However, this would lead to a huge computational eort and to questionable conclusions. In fact, we will nd that the diagonal elements K(τ, τ ) decay quite slowly with τ (in line with many previous studies) and can be accurately determined up to large lags using the GMM. O-diagonal elements, on the other hand, turn out to be much smaller and rather noisy. We will therefore restrict the horizon for these odiagonal elements to q = 10 (two weeks) or q = 20 (four weeks). Longer horizons, although possibly still signicant, lead to very small out-of-sample extra predictability (but note that longer horizons are needed for the diagonal elements of K).

GMM estimation based on correlation functions

On top of the already dened four-point correlation functions C (2) (τ ) and D(τ ′ , τ ′′ ) (and their corresponding tilde twins), we will introduce two-and three-point correlation functions that turn out to be useful (note that the r t s are assumed to have zero mean):

C (1) (τ ) ≡ r t r t-τ t (6.27a) C (a) (τ ) ≡ r 2 t -r 2 |r t-τ | t (6.27b) C (a) (τ ) ≡ σ 2 t -σ 2 |r t-τ | t (6.27c) L(τ ) ≡ r 2 t -r 2 r t-τ t (6.27d) L(τ ) ≡ σ 2 t -σ 2 r t-τ t (6.27e) L (a) (τ ) ≡ |r t |r t-τ t (6.27f ) D (a) (τ ′ , τ ′′ ) ≡ (|r t | -|r| ) r t-τ ′ r t-τ ′′ .
(6.27g)

The C (1) (τ ) correlation function is by denition equal to r 2 t t = 1 for τ = 0, and is usually considered to be zero for τ > 0. However, as is well known, there are small anti-correlations of stock returns. On our data set, we nd that these linear correlations are very noisy but signicant, and can be tted by: C (1) (τ ≥ 1) ≈ -0.04 e -0.39τ , (6.28) corresponding to a decay time of ≈ 2.5 days. The values of C (a) characterize volatility correlations and are similar in spirit to C (2) , but they only involve third order moments of r, instead of fourth order moments, and are thus more robust to extreme events. The L correlations, on the other hand, characterize the leverage eect, i.e. the inuence of the sign of past returns on future volatilities.

These correlation functions allow us to dene a well-posed problem of solving a system with 1 + q + q(q+1) 2 unknowns s 2 , L(τ ), K(τ ′ , τ ′′ ) using the following 1 + q + q + q(q-1) 2 equations that involve empirically measured correlation functions (in calligraphic letters), for 1 ≤ τ ≤ q and 1 ≤ τ 2 < τ 1 ≤ q:

σ 2 = s 2 + τ ′ ,τ ′′ K(τ ′ , τ ′′ )C (1) (τ ′ -τ ′′ ) (6.29a) L(τ ) = τ ′ L(τ ′ )C (1) (τ -τ ′ ) (6.29b) + τ ′ K(τ ′ , τ ′ )L(τ -τ ′ ) + 2 τ ′ =τ K(τ ′ , τ )L(τ ′ -τ ) (6.29c) C (a) (τ ) ≈ τ ′ L(τ ′ )L (a) (τ ′ -τ ) (6.29d) + τ ′ K(τ ′ , τ ′ )C (a) (τ -τ ′ ) + 2 τ ′ >τ ′′ >τ >0 K(τ ′ , τ ′′ )D (a) (τ ′ -τ, τ ′′ -τ ) D(τ 1 , τ 2 ) ≈ L(τ 2 )L(τ 1 -τ 2 ) + L(τ 1 )L(τ 2 -τ 1 ) (6.29e) +2 τ ′ >τ 2 K(τ ′ , τ 2 ) D(τ 1 -τ 2 , τ ′ -τ 2 ) + C (1) (τ 1 -τ ′ ) -C (1) (τ ′ -τ 2 )C (1) (τ 1 -τ 2 ) + τ ′ ≤min(τ 1 ,τ 2 ) K(τ ′ , τ ′ )D(τ 1 -τ ′ , τ 2 -τ ′ ),
where all the sums only involve positive τ s. These equations are exact if all 3-point and 4-point correlations that involve rs at 3 (resp. 4) distinct times are strictly zero. But since the linear correlations C (1) (τ > 0) are very small, it is a safe approximation to neglect these higher order correlations.

Note that the above equations still involve fourth order moments (the o-diagonal elements of D), that in turn lead to very noisy estimators of the o-diagonal of K. In order to improve the accuracy of these estimators, we have cut-o large events by transforming the returns r t into r ?KJ tanh(r t /r ?KJ ), which leaves small returns unchanged but caps large returns. We have chosen to truncate events beyond 3σ, i.e. r ?KJ = 3. In any case, we will use the above equations in conjunction with maximum likelihood (for which no cut-o is used) to obtain more robust estimates of these o-diagonal elements.

When solving the set of equations (6.29), we nd that the diagonal elements K(τ, τ ) are an order of magnitude larger than the corresponding o-diagonal elements K(τ, τ ′ = τ ). This was not expected a priori and is in fact one of the central result of this study, and conrms that daily returns indeed play a special role in the volatility feedback mechanism, as postulated by ARCH models. Returns on dierent time scales, while signicant, can be treated as a perturbation of the main ARCH eect.

6.4.3

The diagonal kernels

The above remark suggests to calibrate the model in two steps. We rst neglect o-diagonal eects altogether, and determine the 2q + 1 parameters s 2 , L(τ ) and k(τ ) = K(τ, τ ) through the following reduced set of equations:

σ 2 = 1 = s 2 + τ k(τ ) (6.30a) L(τ ) = L(τ ) + τ ′ =τ L(τ ′ )C (1) (τ -τ ′ ) + τ ′ k(τ ′ )L(τ -τ ′ ) (6.30b) C (a) (τ ) ≈ τ ′ L(τ ′ )L (a) (τ ′ -τ ) + τ ′ k(τ ′ )C (a) (τ -τ ′ ).
(6.30c)

The input empirical correlation functions L(τ ) and C (a) (τ ) are plotted in Fig. 6.3, together with, respectively, a double-exponential t and a truncated power-law t (see legend for parameters values). L and L (a) look very similar to L(τ ); note that all these functions are approximately zero for τ < 0. The above equations are then solved using these analytical ts, which leads to the kernels k(τ ) and L(τ ) that we report in bold in Fig. 6.4. Using the raw data instead of the ts for all the correlation functions results in more noisy L(τ ) and k(τ ) (thin lines), but still very close to the bold curves shown in Fig. 6.4. As expected, L(τ

)
is very close to L(τ ): there is a weak, but signicant leverage eect for individual stocks.

We then show in Fig. 6.5 a plot of s 2 (q) = 1 -q τ =1 k(τ ) as a function of q. Including the feedback of the far away past progressively decreases the value of the baseline level s 2 . In order to extrapolate to q → ∞, we have found that the following t is very accurate:

s 2 (q) = s 2 ∞ + g q 1-α α -1 e -q/q 0 , (6.31) 
with s 2 ∞ ≈ 0.21, α ≈ 1.11, g ≈ 0.081 and q 0 ≈ 53. Several comments are interesting at this stage:

• The asymptotic value s 2 ∞ is equal to 20% of the observed squared volatility, meaning that volatility feedback eects increase the volatility by a factor ≈ 2.25 (but remember that we have scaled out the market wide volatility). Such a strong amplication of the volatility resonates with Shiller's excess volatility puzzle and gives a quantitative estimate of the role of self-reexivity and feedback eects in nancial markets [Shiller 1981, Cutler 1989[START_REF] Ray | Events that shook the market[END_REF][START_REF] Soros | The alchemy of nance: Reading the mind of the market[END_REF], Bouchaud 2011[START_REF] Filimonov | [END_REF]].

• The above t corresponds to a power-law behavior, k(τ ) ≈ gτ -α for τ q 0 , and an exponential decay for larger lags. Therefore, a characteristic time scale of q 0 ≈ 3 months appears, beyond which volatility feedback eects decay more rapidly. • With a diagonal positive kernel K, the condition for positive deniteness (6.8) of the quadratic form reads τ L(τ ) 2 /k(τ ) ≤ 4s 2 . The estimated values of L and k yield a left-hand side equal to 0.595, while the right-hand side amounts to 0.823.

• Using the results of Sect. 6.2.2, one can compute the theoretical value of σ 4 that corresponds to the empirically determined k(τ ). As expected from the fact that g is small and α close to unity, one nds that the uctuations of volatility induced by the long-memory feedback are weak: σ 4 = 1.156 (see Eq. (6.13) above). Including the contribution of the leverage kernel L(τ ) to σ 4 does not change much the nal numerical value, that shifts from 1.156 to 1.161.

• The smallness of σ 4σ 2 2 shows that most of the kurtosis of the returns r t = σ t ξ t must come from the noise ξ t , which cannot be taken as Gaussian. Using the diagonal ARCH model with the kernels determined as above to predict σ t , one can study the distribution of ξ t = r t /σ t and nd the most likely Student-t distribution that accounts for it. We nd that the optimal number of degrees of freedom is ν ≈ 6.4, and the resulting t is shown in Fig. 6.6. Note that while the body and `near-tails' of the distribution are well reproduced by the Student-t, the far-tails are still fatter than expected. This is in agreement with the commonly accepted tail index of ν tail ≈ 4, signicantly smaller than 6.4.

Assuming ξ t to be a Student-t random variable with ν = 6.4 degrees of freedom, we have re-estimated k(τ ) and L(τ ) using maximum-likelihood (see below). The nal results are more noisy, but close to the above ones after tting. Our strategy is thus to x both k(τ ) and L(τ ), and only focus on the o-diagonal elements of K henceforth. Far tails suggest a fatter distribution with a smaller value of ν tail ≈ 4 (dashed).

The o-diagonal kernel, GMM & maximum likelihood estimation

We can now go back to Eq. (6.29e) that allows one to solve for K(τ ′ , τ ′′ > τ ′ ), once k(τ ) and L(τ ) are known. As announced above, we choose q = 20 for the time being. Because D involves the fourth moment of the returns, this procedure is not very stable, even with a lot of data pooled together, and even after the truncation of large returns. Maximum likelihood estimates would be more adapted here, but the dimensionality of the problem prevents a brute force determination of the q(q -1)/2 parameters. In order to gain some robustness, we use the following strategy. The Student log-likelihood per point I, with ν degrees of freedom, is given by: 5

I ν (L, K, {r t }) = 1 2T t ν ln a 2 t -(ν + 1) ln(a 2 t + r 2 t ) , a 2 t ≡ (ν -2) σ 2 t , (6.32) 
where r t ≡ σ t ξ t and σ 2 t is given by the QARCH model expression, Eq. (6.4), and in this section K is a notation for the o-diagonal content only. We x ν = 6.4 and determine numerically the gradient ∂I ν and the Hessian ∂∂I ν of I ν as a function of all the q(q -1)/2 o-diagonal coecients K(τ ′ , τ ′′ > τ ′ ), computed either around the GMM estimates of these parameters, or around the ARCH point where all these coecients are zero. Note that ∂I ν is a vector with q(q -1)/2 entries and ∂∂I ν is a q(q -1)/2 × q(q -1)/2 matrix. It so happens that the eigenvalues of the Hessian are all found to be negative, i.e. the starting point is in the vicinity of a local maximum. This allows one to nd easily the values of the q(q -1)/2 # In the following we do not truncate the large returns, but completely neglect the weak linear correlations C (1) (τ ) that are present for small lags, and that should in principle be taken into account in the likelihood estimator.

6.4. Empirical study: single stocks 121 parameters that maximize the value of I ν ; they are (symbolically) given by:

K * = K 0 -∂∂I ν -1 • ∂I ν ,
(6.33) where K 0 is the chosen starting point either the GMM estimate K 0 = K GMM based on Eq. (6.29e), or simply K 0 = 0 if one starts from a diagonal ARCH model and the overline on top of ∂∂I, ∂I indicates averaging over stocks. This one step procedure is only approximate but can be iterated; it however assumes that the maximum is close to the chosen initial point, and would not work if some eigenvalues of the Hessian become positive. In our case, both starting points (K 0 = 0 or K 0 = K GMM ) lead to nearly exactly the same solution; furthermore the Hessian recomputed at the solution point is very close to the initial Hessian, indicating that the likelihood is a locally quadratic function of the parameters, and the gradient evaluated at the solution point is very close to zero in all directions, conrming that a local maximum as been reached.

Before exposing our results, we briey go through a digression to discuss the bias and error on the estimated parameters K * as well as on the resulting maximal average likelihood I * . The likelihood I, its gradient ∂I and Hessian matrix ∂∂I are generic functions of the set of parameters K to be estimated, and of the dataset, of size n. As the number n of observations tends to innity, the covariance matrix of the ML estimator of the parameters is well known to be (nI) -1 , where I is the Fisher Information matrix

I = E[-∂∂I] ≈ -∂∂I(K * )
while the asymptotic bias scales as n -1 and is thus much smaller than the above error (∼ n -1/2 ). As a consequence, ML estimates of K exceeding ± diag(-n ∂∂I * ) -1/2 will be deemed signicant. The >E=I on the average in-sample (IS) value of the maximum likelihood itself can be computed to rst order in 1 n , and is very generally found to be +M/2n, where M is the number of parameters to be determined. Similarly, the bias on the average outof-sample value of the maximum likelihood is -M/2n. 6 Since each sampling of our data set will contain n = T • N/2 ≈ 350, 000 observations, dierences of likelihood smaller than M/2n ≈ 3 • 10 -4 are insignicant when M = 190 (corresponding to all o-diagonal elements when q = 20). This number is ≈ 5 times smaller when one considers the restricted models introduced above (which contain ≈ 40 parameters).

The most likely o-diagonal coecients of K * are found to be highly signicant (see Tab. 6.1): the IS increase of likelihood from the purely diagonal ARCH(q) model is ∆I ≈ 10 -3 per point. This is conrmed by an out-of-sample (OS) experiment, where we determine K * on half the pool of stocks and use it to predict the volatility on the other half (whence the above factor 1/2 in the numerical estimation of n). The experiment is performed over N samp = 150 random pool samplings. The average OS likelihood is very signicantly better for the full o-diagonal kernel K * than for the diagonal ARCH(q), itself being better than the GMM estimate K GMM based on Eq. (6.29e), and probably subject to biases due to the truncation procedure. Note that the full o-diagonal kernel K * has many more parameters than the $ These corrections to the likelihoods lead to the (per point) Akaike Information Criterion [Akaike 1974] AIC = -2(I -M/n), that trades o the log-likelihood and the number of parameters. AIC is used for model selection purposes mainly. When comparing parametric models with the same number of parameters, AIC is not more powerful than the likelihood. Red spots correspond to values larger than 0.01. Note the negative streaks at large lags, and the signicant o-diagonal entry for τ = 1, τ ′ = 2 days.

diagonal ARCH(q); it therefore starts with a handicap out-of-sample since the bias on the OS likelihood is, as recalled above, -M/2n. However, as announced above, the o-diagonal elements of K * are a factor ten smaller than the corresponding diagonal values. We give a heat-map representation of the matrix K * in Fig. 6.7. Various surprises are immediately apparent.

First, while the o-diagonal elements are mostly positive for small τ ′ , τ ′′ , clear negative streaks appear for intermediate and large τ s. This is unexpected, since one would have naively guessed that any trend (i.e. positive realized correlations between returns) should increase future volatilities. Here we see that some quadratic combinations of past returns contribute negatively to the volatility. This will show up in the spectral properties of K * (see Sect. 6.4.5 below).

The second surprise is that there does not seem to be any obvious structure of the matrix, that would be reminiscent of one of the simple models represented in Fig. 6.2. This means that the ne structure of volatility feedback eects is much more subtle than anticipated.

We have nevertheless implemented a restricted maximum-likelihood estimation that imposes the structure of one of the models considered in Sect. 6.3. We nd that all these models are equally bad although they lead to a signicant increase of likelihood compared to the pure ARCH case, both IS and OS, they are all superseded by the unconstrained model shown in Fig. 6.7, again both IS and OS (see Tab. 6.1). The best OS model is Long-trend, with a kernel g LT (ℓ) shown in Fig. 6.8, together with the functions g 2 (ℓ), g BB (ℓ), g Z (ℓ). While g LT (ℓ) looks roughly like an exponential with memory time 10 days, the two-day return kernel g 2 (ℓ) reveals intriguing oscillations. Two-day returns inuence the volatility quite dierently from one day returns! On the other hand, we do not nd any convincing sign of the multi-scale BB structure postulated in [Borland 2011].

Note that the structure shown in Fig. 6.8 is found to be stable when q is changed. It would be interesting to subdivide the pool of stocks in dierent categories (for example, small Figure 6.8: Plot of the empirically determined kernels g 2 (ℓ), g BB (ℓ), g Z (ℓ) and g LT (ℓ) for the restricted models of Sect. 6.3.

caps/large caps) or in dierent sub-periods, and study how the o-diagonal structure of K is aected. However, we note that the dispersion of likelihood over dierent samplings of the pool of stocks is only 50% larger than the true dispersion, due only to random samplings of a xed QARCH model with parameters calibrated to the data (see caption of Tab. 6.1).

This validates, at least as a rst approximation, the assumption of homogeneity among all the stock series that have been averaged over.

To conclude this empirical part, we have performed several ex-post checks to be sure that our assumptions and preliminary estimations are justied. First, we have revisited the most likely value of the Student parameter ν (tail index of the distribution of the residuals ξ(t) = r(t)/σ 3)4+0 (t)) with now the full matrix K * , plus diagonal terms up to q = 100, and found again ν = 6.4. This shows that our procedure is consistent from that point of view. Second, we have computed the quadratic correlation of the residuals ξ t , which are assumed in the model to be IID random variables with, in particular, no variance autocorrelation:

ξ 2 t ξ 2 t-τ -1 = 0 for τ = 0.
Empirically, we observe a negative correlation of weak magnitude exponentially decaying with time. This additional dependence of the amplitude of the residuals, together with the excess fat tails of their probability distribution, is probably a manifestation of the truly exogenous events occurring in nancial markets that have dierent statistical properties [START_REF] Joulin | [END_REF]] and not captured by the endogenous feedback mechanism.

Finally, about the universality hypothesis, we discuss in the caption of Tab. 6.1 how the assumption of homogeneous stocks is validated by comparing the cross-sectional dispersion of the likelihoods obtained empirically and on simulated series.

6.4.5

Spectral properties of the empirical kernel K

As discussed in Sect. 6.3.4, another way to decipher the structure of K is to look at its eigenvalues and eigenvectors. We show in Fig. 6.9 the eigenvalues of K * as a function of the eigenvalues of the purely diagonal ARCH model. We see that a) the largest eigenvalue is clearly shifted upwards by the o-diagonal elements; b) the structure of the top eigenvector is non-trivial, and has positive contributions at all lags (up to noise); c) the unconstrained estimations both GMM and ML lead to 6 very small eigenvalues (perhaps even slightly negative) that all constrained models fail to reproduce.

The positiveness of all eigenvalues is not granted a priori, because nothing in the calibration procedure imposes the positivity of the matrix K * . Although we would naively expect that past excitation could only lead to an amplication of future volatility (i.e. that only strictly positive modes should appear in the feedback kernel), we observe that quasi-neutral modes do occur. This is clearly related to the negative streaks noted above at large lags, but we have no intuitive interpretation for this eect at this stage.

Empirical study: stock index

We complete our analysis by a study of the returns of the S&P-500 index in the QARCH framework. We use a long series of more than 60 years, from Oct. 1948 to Sept. 2011 (15 837 days).

& Note that the true likelihood is not necessarily larger than the realized one under a misspecied model. Table 6.1: Log-likelihoods, according to Eq. (6.32). In-sample and out-of-sample likelihoods are computed as follows: for each of N samp = 150 iterations, half of the stock names are randomly chosen for the calibration of K, L and the likelihood is computed with the obtained K * , L * on each series of the same sample (`In-sample' likelihoods). Then, the likelihood is again computed with the same parameters but on the series of the other sample (`Out-ofsample' likelihoods). While the former quantify how much the estimated model succeeds in reproducing the given sample, the latter measure the reliability of the model on other similar datasets. In order to quantify the validity of the model in an absolute way, the likelihood can be compared with the true value, obtained with simulated data (since an analytical treatment is out of reach). The average likelihood per point I * (r t ) with r t simulated as a QARCH with parameters K * , L * , and ν = 6.4 is equal to -1.34019, which is 1.5% away from the empirical values 8 . The likelihoods reported in the table are averages over all samplings, and the corresponding 1-s.d. dispersion is found to be ≈ 3 • 10 -3 in all cases, to be compared to 2 • 10 -3 for random samplings of a xed QARCH model with the same parameters. The computation of the correlation functions and the GMM calibration of a long ARCH(512) yields a s 2 (q) that can be tted with the formula (6.31) and the following pa- rameters: s 2 ∞ ≈ 0.20, α ≈ 1.28, g ≈ 0.162 and q 0 ≈ 262. Contrarily to single stocks, the One-step Maximum Likelihood estimation failed with q = 20, as the gradient and Hessian matrix evaluated at the arrival point are, respectively, large and not negative denite. Although the starting point appears to be close to a local maximum (the Hessian matrix is negative denite), the one-step procedure does not lead to that maximum.

In order to control better the Maximum Likelihood estimation, we lower the dimensionality of the parameter space and estimate a QARCH(10), although still with a long memory diagonal (q = 50). Here the procedure turns out to be legitimate, and the resulting kernel K is depicted in Fig. 6.10 (right). Interestingly, the o-diagonal content in the QARCH model for index returns is mostly not signicant (again, white regions correspond to values not exceeding their theoretical uncertainty) apart from a handful of negative values around τ = 8 -10 and one row/column at τ = 5. The contribution of the latter to the QARCH feedback can be made explicit as

2 r t-5 τ <5 K(5, τ )r t-τ
and describes a trend eect between the daily return last week r t-5 and the (weighted) cumulated return since then τ <5 K(5, τ )r t-τ . It would be interesting to know whether this nding is supported by some intuitive feature of the trading activity on the S&P-500 index.

Note that, again, none of the simple structures discussed in Sect. 6.3 is able to account for the structure of K * (compare Fig. 6.10 with Fig. 6.2).

The spectral analysis reveals a large eigenvalue much above the ARCH prediction, and a couple of very small eigenvalues, similarly to what was found for the stock data. However, the eigenvectors associated with them exhibit dierent patterns: the rst eigenvector does not reveal the expected collective behavior, but rather a dominant τ = 1 component, with a GMM ARCH(10) ARCH+ML IS -1.16750 -1.16666 -1.16522 OS -1.16972 -1.16704 -1.17079 Table 6.2: Average log-likelihoods, according to Eq. (6.32), for the stock index. signicant τ = 2 component of opposite sign. The other modes do not show a clear signature and are hard to interpret.

The procedure for computing in-sample/out-of-sample likelihoods is similar to the case of the stock data, but the denitions of the universes diers somewhat since we only have a single time series at our disposal. Instead of randomly selecting half of the series, we select half of the dates (in block, to avoid breaking the time dependences) to dene the in-sample universe Ω, on which the correlation functions are computed and both estimation methods (GMM, and one-step maximum likelihood) are applied. Then we evaluate the likelihoods of the calibrated kernels, rst on Ω to obtain the `in-sample' likelihoods, and then on the complement of Ω to get the `out-of-sample' likelihoods. We iterate N samp = 150 times and draw a random subset of dates every time, then average the likelihoods, that we report in the Table 6.2. The 1-s.d. systematic dispersion of the samplings is now ≈ 7 • 10 -3 . Because of the fewer number of observations in the index data compared to the stock data, corrections for the bias induced by the number of parameters M become relevant. Adjusting the out-ofsample likelihood by subtracting the bias -M/2n ≈ 3 • 10 -3 (with n ≈ T /2 = 7.5 • 10 3 and M = q(q -1)/2 = 45), brings the ARCH+ML result to a level competitive with ARCH (but not obviously better), and certainly better than the GMM estimate.

Time-reversal invariance

As noticed in the introduction, QARCH models violate, by construction, time-reversal invariance. Still, the correlation of the squared returns C (2) (τ ) is trivially invariant under time-reversal, i.e. C (2) (τ ) = C (2) (-τ ). However, the correlation of the true squared volatility with past squared returns C (2) (τ ) is in general not (see [Pomeau 1985, Zumbach 2009] for a general discussion). A measure of TRI violations is therefore provided by the integrated dierence ∆(τ ):

∆(τ ) = τ τ ′ =1 C (2) (τ ′ ) -C (2) (-τ ′ ) . (6.34)
The empirical determination of C (2) (τ ) and ∆(τ ) for stock returns is shown in Fig. 6.11. Although less strong than for simulated data (see Fig. 6.12), we indeed nd a clear signal of TRI violation for stock returns, in agreement with a related study by Zumbach [Zumbach 2009]. We compare in Fig. 6.12 the quantity ∆(τ ) obtained from a bona de numerical simulation of the model, with previously estimated parameters. Note that any measurement noise on the volatility σ 2 t tends to reduce the TRI violations, but we have performed the numerical simulation in a way to reproduce this measurement noise as faithfully as possible.

However, the alert reader should worry that the existence of asymmetric leverage correlations L(τ > 0) = 0 between past returns and future volatilities is in itself a TRI-violating mechanism, which has nothing to do with the ARCH feedback mechanism. In order to ascertain that the eect we observe is not a spurious consequence of the leverage eect, we have also computed the contribution of L(τ ) to ∆(τ ), which reads to lowest order and schematically:

∆(τ ) = τ τ ′ =1 L(τ ′ ) L(τ ′ -τ ) -L(τ ′ +τ ) + K contributions. (6.35)
The rst term on the right-hand side is plotted in the inset of Fig. 6.11, and is found to have a negative sign, and an amplitude much smaller than ∆(τ ) itself. It is therefore quite clear that the TRI-violation reported here is genuinely associated to the ARCH mechanism and not to the leverage eect, a conclusion that concurs with that of [Zumbach 2009].

Still, the smallness of the empirical asymmetry compared with the simulation results suggests that the ARCH mechanism is too deterministic. It indeed seems reasonable to think that the baseline volatility s 2 has no reason to be constant, but may contain an extra random contribution. Writing

σ 2 (t) = σ 2 ) (t) + ω(t); ω = 0; ω(t)ω(t -τ ) ≡ C ω (τ ) = C ω (-τ )
with ω t a noise contribution and σ ) the ARCH volatility ' (i.e. deterministic when conditioned on past returns), then the asymmetry is found to be given by:

∆(τ ) = ∆ ) (τ ) - τ τ ′′ =1 q τ ′ =1 k(τ ′ ) C ω (τ ′ -τ ′′ ) -C ω (τ ′ + τ ′′ ) .
If one assumes that the correlation function C ω is positive and decays with time, the extra contribution to the asymmetry is negative, and reduces the observed TRI. This conclusion speaks in favor of a mixed approach to volatility modeling, bringing together elements of autoregressive QARCH models with those of stochastic volatility models. It would in fact be quite surprising that (although unobservable) the volatility should be a purely deterministic function of past returns. Although the behavioral interpretation of the above construction is not clear at this stage, the uncertainty on the baseline volatility level s 2 could come, for example, from true exogenous factors that mix in with the volatility feedback component described by the QARCH framework.

Conclusion, extensions

We have revisited the QARCH model, which postulates that the volatility today can be expressed as a general quadratic form of the past daily returns r t . The standard ARCH or GARCH framework is recovered when the quadratic kernel is diagonal, which means that only past squared daily returns feedback on today's volatility. This is a very restrictive a priori assumption, and the aim of the present study was to unveil the possible inuence of other quadratic combinations of past returns, such as, for example, square weekly returns. We have dened and studied several sub-families of QARCH models that make intuitive sense, and with a restricted number of free parameters.

' For the sake of clarity we consider here a diagonal ARCH framework, but the argument is straightforwardly generalized for a complete QARCH. Inset:

The contribution to ∆(τ ) stemming from the leverage, i.e. the quantity

τ τ ′ =1 L(τ ′ ) [L(τ ′ -τ ) -L(τ ′ +τ )].
Note that this contribution is negative, and an order of magnitude smaller than ∆(τ ) itself. t given by the QARCH model. The volatility is then computed using Rogers-Satchell's estimator, exactly as for empirical data.

The calibration of these models on US stock returns has revealed several features that we did not anticipate. First, although the o-diagonal (non ARCH) coecients of the quadratic kernel are found to be highly signicant both in-sample and out-of-sample, they are one order of magnitude smaller than the diagonal elements. This conrms that daily returns indeed play a special role in the volatility feedback mechanism, as postulated by ARCH models. Returns on dierent time scales can be thought of as a perturbation of the main ARCH eect. The second surprise is that the structure of the quadratic kernel does not abide with any of the simpler QARCH models proposed so-far in the literature. The ne structure of volatility feedback is much more subtle than anticipated. In particular, neither the model proposed in [Borland 2011] (where returns over several horizons play a special role), nor the trend model of Zumbach in [Zumbach 2010] are supported by the data. The third surprise is that some odiagonal coecients of the kernel are found to be negative for large lags, meaning that some quadratic combinations of past returns contribute negatively to the volatility. This also shows up in the spectral properties of the kernel, which is found to have very small eigenvalues, suggesting the existence of unexpected volatility-neutral patterns of past returns.

As for the diagonal part of the quadratic kernel, our results are fully in line with all past studies: the inuence of the past squared-return r 2 t-τ on today's volatility σ 2 t decays as a power-law g τ -α with the lag τ , at least up to τ ≈ 2 months, with an exponent α close to unity (α ≈ 1.11), which is the critical value below which the volatility diverges and the model becomes non-stationary. As emphasized in [Borland 2011], markets seem to operate close to criticality (this was also noted in dierent contexts, see [START_REF] Bouchaud | [END_REF], Bouchaud 2006, Bacry 2012, Tóth 2011[START_REF] Filimonov | [END_REF], Parisi 2012] for example). The smallness of α -1 has several important consequences: rst, this leads to long-memory in the volatility; second, the average square volatility is a factor 5 higher than the baseline volatility, in line with the excess volatility story [Shiller 1981]: most of the market volatility appears to be endogenous and comes from self-reexive, feedback eects (see e.g. [START_REF] Soros | The alchemy of nance: Reading the mind of the market[END_REF], Bouchaud 2011[START_REF] Filimonov | [END_REF]] and references therein). Third, somewhat paradoxically, the long memory nature of the kernel leads to small uctuations of the volatility. This is due to a self-averaging mechanism occurring in the feedback sum, that kills fat tails. This means that the high kurtosis of the returns in ARCH models cannot be ascribed to volatility uctuations but rather to leptokurtic residuals, also known as unexpected price jumps.

Related to price jumps, we should add the following interesting remark that stresses the dierence between endogenous jumps and exogenous jumps within the ARCH framework. Several studies have revealed that the volatility relaxes after a jump as a power-law, akin to Omori's law for earthquake aftershocks: σ 2 τ ∼ σ 2 0 τ -θ , where t = 0 is the time of the jump. The value of the exponent θ seems to depend on the nature of the initial price jump. When the jump occurs because of an exogenous news, θ ≈ 1 [Lillo 2003[START_REF] Joulin | [END_REF], whereas when the jump appears to be of endogenous origin, the value of θ falls around θ ≈ 1 2 [Zawadowski 2006[START_REF] Joulin | [END_REF]. In other words, as noted in [START_REF] Joulin | [END_REF]], the volatility seems to resume its normal course faster after a news than when the jump seems to come from nowhere. A similar dierence in the response to exogenous and endogenous shocks was also reported in [Sornette 2004] for book sales. Now, if one simulates long histories of prices generated using an ARCH model with a diagonal kernel decaying as g τ -α , one can measure the exponent θ by conditioning on a large price jump (which can only be endogenous, by denition!). One nds that θ varies continuously with the amplitude of the initial jump, and saturates around θ ≈ 1 2 for large jumps (we have not found a way to show this analytically).

A similar behavior is found within multifractal models as well [Sornette 2003]. If on the other hand an exogenous jump is articially introduced in the time series by imposing a very large value of ξ t=0 , one expects the volatility to follow the decay of the kernel and decay as g τ -α ξ 2 0 , leading to θ = α ≈ 1. Therefore, the dichotomy between endogenous and exogenous shocks seem to be well reproduced within the ARCH framework. This study is, to the best of our knowledge, the rst attempt at unveiling the ne structure volatility feedback eects in autoregressive models. We believe that it is a step beyond the traditional econometric approach of postulating a convenient mathematical model, which is then brute-force calibrated on empirical data. What we really need is to identify the underlying mechanisms that would justify, at a deeper level, the use of a QARCH family of model rather than any another one, for example the multifractal random walk model.

From this point of view, we nd remarkable that the inuence of daily returns is so strongly singled out by our empirical results, when we expected that other time scales would emerge as well. The quandary lies in the unexpectedly complex structure of the o-diagonal feedback component, for which we have no interpretation.

A natural extension of our study that should shed further light on a possible behavioral interpretation of volatility feedback is to decompose daily returns into higher frequency components, for example overnight and intraday returns. Preliminary investigations in this direction point toward a clear distinction of the intraday and overnight mechanisms of volatility dynamics. In particular, the self-excitement at night is characterized by both a smaller baseline intensity and fatter-tailed residuals than during the day, indicating that there are extreme exogenous shocks occurring overnight, which however are not propagated since the dynamics results even more from the endogenous feedback at night than intraday.

The feedback mechanism of the volatility at the intraday scale (e.g. 5 minute returns) might be related to the self-excitement of order arrivals in the book [Bacry 2012]. Many other remaining questions should be addressed empirically, for example the dependence of the feedback eects on market capitalization, average volatility, etc. We have chosen to scale out the market-wide volatility, but other choices would be possible, such as a double regression on the past returns of stocks and of the index. Finally, other nancial assets, such as currencies or commodities, should be studied as well. Stocks, however, oer the advantage that the data is much more abundant, specially if one chooses to invoke some structural universality, and to treat all stocks as dierent realizations of the same underlying process. This discussion might be related to the interesting observation made by Virasoro in [Virasoro 2011]. A detailed study of intraday and overnight eects in the feedback mechanisms of volatility dynamics will be reported elsewhere [START_REF] Blanc | [END_REF] 

Introduction

As a tool to study the possibly highly non-linear correlations between returns, copulas have long been used in actuarial sciences and nance to describe and model cross-dependences of assets, often in a risk management perspective [START_REF] Embrechts | [END_REF], Embrechts 2002a[START_REF] Malevergne | Extreme nancial risks: From dependence to risk management[END_REF]]. Although the widespread use of simple analytical copulas to model multivariate dependences is more and more criticized [START_REF] Mikosch | Copulas: Tales and facts[END_REF], Chicheportiche 2012b],

copulas remain useful as a tool to investigate empirical properties of multivariate data [Chicheportiche 2012b].

More recently, copulas have also been studied in the context of self-dependent univariate time series, where they nd yet another application range: just as Pearson's ρ coecient is commonly used to measure both linear cross-dependences and temporal correlations, copulas are well-designed to assess non-linear dependences both across assets or in time [Beare 2010, Ibragimov 2008, Patton 2009] we will speak of self-copulas in the latter case.

Notations

We consider a time series of length T , that can be seen as one realization of a corresponding discrete stochastic process {X t } t=1...T . The joint cumulative distribution function (CDF) of n occurrences (1 ≤ t 1 < . . . < t n < T ) of the process is

F t 1 ,...,tn (x) = P[X t 1 < x t 1 , . . . , X tn < x tn ]. (7.1) 
We assume that the generating process {X t } of the series has a strong-stationary marginal CDF F , and let the joint distribution F have long-ranged dependences. Strictly speaking, most of the discussion that follows only relies on time-homogeneity of the copula, i.e. translational invariance of the dependence structure, and does not need stationarity of the marginal.

However, in this class of problems much related to empirical data, it is more convenient (although sometimes not justied) to assume at least a weak form of stationarity, in order to give sense to the notion of empirical CDF. In the following, we will always assume stationarity of the marginal and homogeneity of the copula.

A realization of X t at date t will be called an event when its value exceeds a threshold X (±) : negative event when X t < X (-) , and positive event when X t > X (+) . The probability p -of such a `negative event' is F (X (-) ), and similarly, the probability that X t is above a threshold X (+) is the tail probability p + = 1 -F (X (+) ).

If a unique threshold X (+) = X (-) is chosen, then obviously p + = 1p -. This is appropriate when the distribution is one-sided, typically for positive only signals, and one wishes to distinguish between two regimes: extreme events (above the unique threshold), and regular events (below the threshold). This case is illustrated schematically in Fig. 7.1(b).

When the distribution is two-sided, it is more convenient to dene, X (+) as the q-th quantile of F , and X (-) as the (1-q)-th quantile, for a given q ∈ [ 1 2 , 1], so that p + = p -= 1q.

This allows to investigate persistence and reversion eects in signed extreme events, while excluding a neutral zone of regular events between X (-) and X (+) , see Fig. 7.1(a)

When the threshold for the recurrence is dened in terms of quantiles like above (a relative threshold), stationarity is not needed theoretically but much wanted empirically as already said (otherwise the height of the threshold might change every time). In contrast, when the 

p + = 1 -q p -= 1 -q X (-) X (+) = F (X (+) ) = 1 -F (X (-) ) = q p + = 1 -q p -= q X (-) = X (+) > F (X (+) ) = F (X (-) ) = q Figure 7
.1: Two possible denitions of events: either p -and p + are probabilities of extremes (negative and positive, respectively), or only p + is a probability of extreme and p -= 1p + .

threshold is set as a number (an absolute threshold), there's no issue on the empirical side, but the theoretical discussion makes sense only under stationary marginal.

Discrete time

In this section, we consider the case where the discrete times t n in the denition (7.1) are equidistant (regularly sampled). A short discussion of the case with arbitrary (continuous) time stamps is provided in the next section.

Two-points dependence measures

Typical measures of dependences in stationary processes are two-points expectations that only involve one parameter: the lag ℓ separating the points in time. For example, the usefulness of the linear correlation function

ρ(ℓ) = E[X t X t+ℓ ] -E[X t ] E[X t+ℓ ] (7.2)
is rooted in the analysis of Gaussian processes, as those are completely characterized by their covariances, and multi-linear correlations are reducible to all combinations of 2-points expectations. Some non-linear dependences, like the tail-dependence for example (dened in part I), are however not expressed in terms of simple correlations, but involve the whole bivariate copula:

C ℓ (u, v) = F t,t+ℓ (F -1 (u), F -1 (v)), (7.3) 
where (u, v) ∈ [0, 1] 2 . C ℓ contains the full information on bivariate dependence that is invariant under increasing transformations of the marginal. For example, the conditional probability p (ℓ)

++ = P[X t+ℓ > X (+) |X t > X (+) ],
which is a measure of persistence of the positive events, can be written in terms of copulas, together with all three other cases of conditioning

p (ℓ) ++ = [2p + -1 + C ℓ (1-p + , 1-p + )]/p + , (7.4a) p (ℓ) --= C ℓ (p -, p -)/p -, (7.4b) p (ℓ) 
-+ = [p --C ℓ (p -, 1-p + )]/p -, (7.4c) p (ℓ) 
+-= [p --C ℓ (1-p + , p -)]/p + .

(7.4d)

When X (+) = X (-) = 0 and ℓ = 1, this is exactly the denition of Bogùna and Masoliver in Ref. [START_REF] Boguná | Conditional dynamics driving nancial markets[END_REF]], with accordingly p -= p + = F (0), see Fig. 7.1. Note also that p (ℓ)

±± and p (ℓ) ±∓ are straightforwardly related to the tail dependence coecients through the relations (2.16) of page 20.

In addition to caring for frequencies of conditional events, one can try to characterize their magnitude. For a single random variable with cdf F , this can be quantied for example by the Expected Shortfall (or Tail Conditional Expectation), i.e. the average loss when conditioning on large events:

ES(p -) = E[X t |X t < X (-) ] = 1 p - F -1 (p -) -∞ x dF (x) = 1 p - p - 0 F -1 (p) dp
In the same spirit, for bivariate distributions, the mean return conditionally on preceding return `sign' is dened: -) ].

X (ℓ) + = E[X t |X t-ℓ > X (+) ] (7.5a) X (ℓ) -= E[X t |X t-ℓ < X (
(7.5b)

As an example, consider the Gaussian bivariate copula of the pair (X t , X t+ℓ ), whose whole ℓ-dependence is in the linear correlation coecient ρ(ℓ). Fig. 7.2(a) illustrates the conditional probabilities (7.4) as a function of the threshold when p + = p -= 1q, and Fig. 7.3 shows the conditional Expected Shortfall that can be computed exactly from Eqs. (7.5), and is proportional to the inverse Mill ratio:

X ± = ±ρ(ℓ) Φ ′ (X (±) ) p ± ,
where Φ denotes the CDF of the univariate standard normal distribution.

Aftershocks

Omori's law characterizes the ℓ dependence of p (ℓ) ++ , i.e. the average frequency of events occurring ℓ time steps after a main event. It has been stated rst in the context of earthquakes occurrences [START_REF] Omori | On the aftershocks of earthquakes[END_REF], where this time dependence is power-law: ±± for dierent values of ρ(ℓ) with thresholds at p + = p -= 1q. The value at q = 0.5 is 1 2 + 1 π arcsin ρ(ℓ).

p (ℓ) ++ = λ • ℓ -α .
-0.5 0.0 0.5 q 1 0.8 0.6 0.6 0.8 1

ρ = 0 ρ = 0.05 ρ = 0.1 ρ = 0.2 ρ = 0.3 E [X l | X 0 > F -1 (q)] E [X l | X 0 < F -1 (1 -q)]
Figure 7.3: Conditional Expected Shortfall of a Gaussian pair (X 0 , X ℓ ) for dierent values of ρ(ℓ). The value at q = 0.5 is 2 π ρ(ℓ).

Notice that any dependence on the threshold must be hidden in λ according to this description. The average cumulated number N ℓ of these aftershocks until ℓ is thus

N ℓ + = λ • ℓ 1-α /(1-α),
with in fact λ ≡ p + since, when α → 0, N ℓ has no time-dependence i.e. it counts independent events (white noise), and p (ℓ) ++ must thus tend to the unconditional probability. In order to give a phenomenological grounding to this empirical law also later observed in nance [START_REF] Weber | [END_REF], Petersen 2010], the authors of Ref. [Lillo 2003] model the aftershock volatilities in nancial markets as a decaying scale σ(ℓ) times an independent stochastic amplitude r ℓ with CDF φ. As a consequence, p (ℓ) ++ ∼ 1φ(X (+) /σ(ℓ)) and the powerlaw behavior of Omori's law results from (i) power-law marginal φ(r) ∼ r -γ , and (ii) scale decaying as power-law σ(t) ∼ t -β , so that relation (7.6) is recovered with α = βγ. The nonstationarity described by σ is only introduced in a conditional sense, and might be appropriate for aging systems or nancial markets, but we believe that Omori's law can be accounted for in a stationary setting and without necessarily having power-law distributed amplitudes.

The scaling of p (ℓ) ++ with the magnitude of the main shock is encoded in the prefactor λ ≡ p + , which, for example, accounts for the exponentially distributed magnitudes of earthquakes (Gutenberg-Richter law [START_REF] Gutenberg | Magnitude and Energy of earthquakes[END_REF]). The linear dependence of p (ℓ) ++ on p + shall be reected in the diagonal of the underlying copula:

C ℓ (p, p) = p 2 ℓ -α ,
a prediction that can be tested empirically.

Note that Omori's law is a measure involving only the two-points probability. In the next subsection, we show what additional information many-points probability can reect.

Multi-points dependence measures

Although the n-points expectations of Gaussian processes reduce to all combinations of 2points expectations (7.2), their full dependence structure is not reducible to the bivariate distribution, unless the process is also Markovian (i.e. only in the particular case of exponential correlation). Furthermore, when the process is not Gaussian, even the multi-linear correlations are irreducible. In the general case, the whole multivariate CDF is needed, but many measures of dependence that we introduce below only involve the diagonal n-points copula: (7.7) which measures the joint probability that all n ≥ 1 consecutive variables X t+1 , . . . , X t+n are below the upper p-th quantile of the stationary distribution (p ∈ [0, 1], and t + [[1, n]] is a shorthand for {t+1, . . . , t+n}). Clearly, C 1 (p) = p and we set by convention C 0 (p) ≡ 1.

C n (p) = F t+[[1,n]] (F -1 (p), . . . , F -1 (p)),
As an example, the Gaussian diagonal copula is

C n (p) = Φ ρ Φ -1 (p), . . . , Φ -1 (p) (7.8)
We use a calligraphic C in order to make it clearly distinct from the bivariate copula discussed in the previous section.

where Φ -1 is the univariate inverse CDF, and Φ ρ denotes the multivariate CDF with (n × n) covariance matrix ρ, which is Toeplitz with symmetric entries

ρ tt ′ = ρ(|t -t ′ |), t, t ′ = 1, . . . , n.
The White Noise (WN) product copula C n (p) = p n is recovered in the limit of vanishing correlations ρ(ℓ) = 0 ∀ℓ, and other examples include the exponentially correlated Markovian Gaussian noise, the power-law correlated (thus scale-free) fractional Gaussian noise, and the logarithmically correlated multi-fractal Gaussian noise.

Empirically, the n-points probabilities are very hard to measure due to the large noise associated with such rare joint occurrences. However, there exist observables that embed many-points properties and are more easily measured, such as the length of sequences (clusters) of thresholded events, and the recurrence times of such events, that we study next.

Recurrence intervals

The probability π(τ ) of observing a recurrence interval τ between two events is the conditional probability of observing a sequence of τ -1 non-events bordered by two events: +) ].

π(τ ) = P[X τ > X (+) , X [[1;τ [[ < X (+) |X 0 > X (
(We focus on positive events, but the recurrence of negative events can be studied with the substitution X → -X, and the case of recurrence in amplitudes with the substitution X → |X|). After a simple algebraic transformation ipping all `>' signs to `<', it can be written in the language of copulas as:

π(τ ) = P[X τ > X (+) , X [[1;τ [[ < X (+) ; X 0 > X (+) ] P[X 0 > X (+) ] = P[X [[1;τ [[ < X (+) ] p + - P[X τ < X (+) , X [[1;τ [[ < X (+) ] p + - P[X [[1;τ [[ < X (+) ; X 0 < X (+) ] p + + P[X τ < X (+) , X [[1;τ [[ < X (+) ; X 0 < X (+) ] p + π(τ ) = C τ -1 (1-p + ) -2 C τ (1-p + ) + C τ +1 (1-p + ) p + .
(7.9)

The cumulative distribution

Π(τ ) = τ n=1 π(n) = 1 - C τ (1-p + ) -C τ +1 (1-p + ) p + (7.10)
is more appropriate for empirical purposes, being less sensitive to noise. These exact expressions make clear almost straight from the denition that (i) the distribution of recurrence times depends only on the copula of the underlying process and not on the stationary law, in particular its domain or its tails (this is because we take a relative denition of the threshold as a quantile); (ii) non-linear dependences are highly relevant in the statistics of recurrences, so that linear correlations can in the general case by no means explain alone the properties of π(τ ) [Altmann 2005]; and (iii) recurrence intervals have a long memory re- vealed by the (τ +1)-points copula being involved, so that only when the underlying process X t is Markovian will the recurrences themselves be memoryless. Hence, when the copula is known (Eq. ( 7.8) below for Gaussian processes), the distribution of recurrence times is exactly characterized by the analytical expression in Eq. ( 7.9). The average recurrence time is found straightforwardly by summing the series

µ π = τ = ∞ τ =1
τ π(τ ) = 1 p + , (7.11) and is universal whatever the dependence structure. This result was rst stated and proven by Kac in a similar fashion [Kac 1947]. It is intuitive as, for a given threshold, the whole time series is the succession of a xed number p + T of recurrences whose lengths τ i necessarily add up to the total size T , so that τ = i τ i /(p + T ) = 1/p + . Note that Eq. ( 7.11) assumes an innite range for the possible lags τ , which is achieved either by having an innitely long time series, or more practically when the translational-invariant copula is periodic at the boundaries of the time series, as is typically the case for articial data which are simulated using numerical Fourier Transform methods. Introducing the copula allows to emphasize the validity of the statement even in the presence of non-linear long-term dependences, as Eq. ( 7.11) means that the average recurrence interval is copula-independent.

More generally, the m-th moment can be computed as well by summing τ m π(τ ) over τ :

τ m = 1 p + 1 + ∞ τ =1 (|τ +1| m -2τ m + |τ -1| m ) C τ (1-p + ) .
(7.12)

In particular, the variance of the distribution is

σ 2 π ≡ τ 2 -µ 2 π = 2 p + ∞ τ =1 C τ (1-p + ) - 1-p + p 2 + , (7.13) 
It is not universal, in contrast with the mean, and can be related to the average unconditional waiting time, see below. Notice that in the independent case the variance σ 2 π = (1p + )/p 2 + is not equal to the mean µ π = 1/p + (as would be the case for a continuous-time Poisson process) because of discreteness eects.

Waiting times

The conditional mean residual time to next event, when sitting τ time steps after a (positive) event, is

w|τ = ∞ w=1 w π(τ +w) = 1 p + C τ (1-p + ).
(7.14)

One is often more concerned with unconditional waiting times, which is equivalent to asking what the size of a sequence of w `non-events' starting now will be, regardless of what happened previously. The distribution of these waiting times is

φ(w) = C w (1-p + ) -C w+1 (1-p + ),
It may be mentioned that in a non-stationary context, renewal processes are also able to produce independent consecutive recurrences [Santhanam 2008, Sazuka 2009]. and its expected value is

µ φ = w = ∞ w=1 C w (1-p + ),
consistently to what would be obtained by averaging w|τ over all possible elapsed times in Eq. (7.14). From Eq. ( 7.13), we have the following relationship between the variance of the distribution π of recurrence intervals, and the mean waiting time:

σ 2 π = µ π 2µ φ + 1 -µ 2 π (7.15) Sequences lengths
The dependence in the process is also revealed by the distribution of sequences sizes. The probability that a sequence of consecutive negative events ! , starting just after a `non-event', will have a size n is

ψ(n) = C n (p -) -2 C n+1 (p -) + C n+2 (p -) p -(1 -p -)
and the average length of a random sequence

µ ψ = n = ∞ n=1 n ψ(n) = 1 1 -p - (7.16)
is universal, just like the mean recurrence time. This property rules out the analysis of [START_REF] Boguná | Conditional dynamics driving nancial markets[END_REF]] who claim to be able to distinguish the dependence in processes according to the average sequence size.

Conditional recurrence intervals, clustering

The dynamics of recurrence times is as important as their statistical properties, and in fact impacts the empirical determination of the latter " . It is now clear, both from empirical evi- dences and analytically from the discussion on Eq. ( 7.9), that recurrence intervals have a long memory. In dynamic terms, this means that their occurrences show some clustering. The natural question is then: Conditionally on an observed recurrence time, what is the probability distribution of the next one? This probability of observing an interval τ ′ immediately following an observed recurrence time τ is +) , X 0 > X (+) ]. (7.17) Again, ipping the `>' to '<' allows to decompose it as

P[X τ +τ ′ > X (+) , X τ +[[1;τ ′ [[ < X (+) |X τ > X (+) , X [[1;τ [[ < X (
C τ -1;τ ′ -1 -C τ ;τ ′ -1 -C τ -1;τ ′ + C τ ;τ ′ C τ -1 -2C τ + C τ +1 - π(τ + τ ′ ) π(τ ) ,
! We consider the case of negative events, i.e. those with Xt < X (-) because it expresses simply in terms of diagonal copulas. The mirror case with positive events has the exact same expression but Cn must be inverted around the median. For a symmetric F , this distinction is irrelevant. " Distribution testing for π(τ ) involving Goodness-of-t tests [Ren 2010] should be discarded because those are not designed for dependent samples and rejection of the null cannot be relied upon. See Section 3.2 of Chapter II.3 for an extension of GoF tests when some dependence is present.

π + (τ ) τ + φ + (w) w + ψ -(n) n -R(t)
(1-q) q τ -1 1/(1-q) (1-q) q w q/(1-q) q (1-q) n-1 1/q 1/t Table 7.1: Dierent probabilities introduced, with thresholds dened as F (X (+) ) = q = 1 -F (X (-) ), for the White Noise process.

where the (τ +τ ′ )-points probability

C τ ;τ ′ (p) = F [[0;τ+τ ′ ]]\{τ } (F -1 (p), . . . , F -1 (p))
shows up. Of course, this exact expression has no practical use, again because there is no hope of empirically measuring any many-points probabilities of extreme events with a meaningful signal-to-noise ratio. We rather want to stress that non-linear correlations and multi-points dependences are relevant, and that a characterization of clustering based on the autocorrelation of recurrence intervals is an oversimplied view of reality.

Record statistic

We conclude this theoretical section on multi-points non-linear dependences by mentioning that the diagonal n-points copula C n can alternatively be understood as the distribution of the maximum of n realizations of X in a row, since

P max τ ≤n {X t+τ } < F -1 (p) = P X t+[[1,τ ]] < F -1 (p) = C n (p).
Studying the statistics of such local maximas in short sequences (see e.g. [START_REF] Eichner | [END_REF]]) can thus provide information on the multi-points properties of the underlying process. The CDF of the running maximum, or record, is C t (F (x)) and the probability that t > 1 will be a record-breaking time is the joint probability

R(t) = P max τ <t {X τ } < X t ,
which is irrespective of the marginal law ! 

Continuous time

The n-points copula of a continuous-time process X t is the counting associated with the corresponding arrival process, whose events are dened like Bernoulli variables with a latent condition 1 {F (Xt)≤ut} . Indeed,

E[1 {F (Xt 1 )≤ut 1 } , . . . , 1 {F (Xt n )≤ut n } ]
is a straightforward generalization of the discrete n-points copula

F [[1,n]] (F -1 (u t 1 ), . . . , F -1 (u tn )),
when the time-stamps t i are not equidistant. More generally, one can thus study either directly the arrivals times t i of events to be dened, or more fundamentally the latent physical process X t underlying the ring of the events. The latter description can be modeled by diusions or any kind of continuous processes (see Sect. 7.3.2 below), while the former is achieved using point processes and is studied next.

7.3.1

Arrival times: the duration process

In the context of arrivals of a point process, a recurrence interval R t is larger than τ if the number of events N t+τ has not increased since last event time t:

P[R t > τ ] = P[N t+τ -N t = 0].
When the arrivals are independent and occur with a deterministic intensity λ(t) per unit of time, then the process is Poisson When the underlying process is stationary, the intensity λ is constant and in fact equal to the unconditional probability of events. The usual exponential distribution of recurrence times for independent arrivals is retrieved, and one veries in particular that the average duration is equal to the inverse intensity:

P[N t+τ -N t = 0|λ] = e -
τ = 1/λ.
When λ(•) is a stochastic process, Eq. ( 7.18) must be understood conditionally, and the correct probabilities are found averaging over all possible Λ t,t+τ = t+τ t λ(s)ds. Such doubly stochastic Poisson processes were initially introduced by [START_REF] Cox | [END_REF]]. Of course, Λ being an arrival rate it must always remain positive, but for the sake of the example, let us examine the case of Gaussian processes, and in which limits this holds. As is know from exponentials of Gaussian variables, the correction to the probability (7.18) is

P[R t > τ ] = e -E[Λ t,t+τ ]+ 1 2 V[Λ t,t+τ ] .
For example, with the integrated intensity following an Ornstein-Uhlenbeck process 2t+τ ) . Since Λ must always remain positive, the Gaussian case can only be a valid approximation as long as

Λ t,t+τ = λτ + σ t+τ 0 e -θ(τ +t-s) dz s , (7.19) the drift is E[Λ t,t+τ ] = λτ and the variance V[Λ t,t+τ ] = σ 2 2θ 1 -e -θ(
E[Λ] V[λ],
i.e. τ σ 2 /(2θλ) in the stationary OU example. The intensity process (7.19) is Gaussian and Markovian, but can be generalized to incorporate long-memory by replacing the exponential integration kernel by one with a slow decay, and/or choosing positive-only innovations in place of the Wiener dz t [START_REF] Basu | [END_REF]]. The translational invariance is broken at short times t → ∞, if the intensity depends upon the past realizations of the counting process N t , but at long times, stationarity is able to settle down. Such so-called Hawkes processes are obtained replacing the independent innovation dz t by the counting process itself dN t , and are thus self-exciting. They have been recently the focus of intense research in earthquakes studies see also the related Epidemic-Type Aftershock Sequence (ETAS) model of triggered seismicity [Saichev 2007, Sornette 2008] and in nance [Muni Toke 2012, Bacry 2012[START_REF] Filimonov | [END_REF]. The latter studies point toward a strong self-exciting mechanism that brings the system close to criticality, what was also the conclusion of feedback QARCH model of Chapter 6.

Continuous processes

The recurrence times problem for a continuous process can be formulated as a rst-passage problem [Bray 2013]: indeed, the probability density

π(τ |t)dτ = dP[X τ = X (+) , X t ′ < X (+) ∀t ′ < τ |X t ≥ X (+) ]
can be simply written in terms of the transition probability f (X (+) , τ ; x, t) of a particle starting at X t = x at the initial time t and ending at X τ = X (+) without ever hitting the wall at X (+) inbetween. Of course, since there are no jumps in this continuous setting, the initial value must be conditioned to be X t = X (+) for all the subsequent values to be lower than X (+) , and thus

π(τ |t) = f (X (+) , τ ; X (+) , t).
Once the dynamics of the process is specied (by a Stochastic Dierential Equation, a Langevin equation or a non-Markovian generalization thereof), the transition density f can be found by path-integral methods, or solving Fokker-Planck-like equations with appropriate boundary conditions:

f (X (+) , t ′ |X (+) , t) = 0 ∀t ′ < τ .
Importantly, specic methods of non-Markovian Fokker-Planck equations need to be used in case the process has memory: f.ex. convolution of usual Fokker-Planck with a memory kernel [Sokolov 2002], fractional Fokker-Planck (see [Metzler 1999] and many later works of the same authors), continuous limits of Master equations, etc.

In the case of the Brownian Motion, the moments of the distribution f (x, τt; x 0 , 0) of rst passages satisfy a recursive relation [START_REF] Ebeling | [END_REF]]. log-normal volatility with log-decaying correlation, in agreement with multifractal volatility models. To anticipate over the discussion there, we give a preview of the results in Fig. 7.5, for the aggregated copula of all stocks in the S&P500 in 20002004. We are able to show precisely how every kind of dependence present in the underlying process materializes itself in p (ℓ) ++ for dierent q's: short ranged linear anti-correlation accounts for the central part (p ≈ 0.5) departing from the WN prediction, long-ranged amplitude clustering is responsible for the M and W shapes that reveal excess persistence and suppressed reversion, and the leverage eect can be observed in the asymmetric heights of the M and W. Fig. 7.6 displays the behavior of X ± versus q (we also show the median med(X) ± ) at lags corresponding to one day (ℓ = 1), one week (ℓ = 5) and one month (ℓ = 20). The conditional amplitudes X ± measure how large a realization will be on average after an event at a given threshold, whereas the conditional probabilities p ±± and p ±∓ quantify how often repeated such events occur. Mind the unconditional mean and median values, both above zero and distinct from each other. At ℓ = 1, the reversion of extreme events is revealed again by the change of monotonicity from q ≈ 0.8 on, and more strongly for q > 0.9 where X -has an opposite sign than the preceding return; this corroborates the observation made on conditional probabilities above. Beyond the next day, the general picture is that dependences tend to vanish and the empirical measurements get more concentrated around the WN prediction. However, tail eects are strongly present, with unexpectedly a typical behavior opposite to that of ℓ = 1: weekly monthly reversion of extreme positive jumps. See the caption for a detailed discussion of the specicities of each stock index at every lag ℓ. 
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(b) KOSPI Figure 7.6: Conditional extreme amplitudes, at lags ℓ = 1, 5, 20. The upper-right and lowerleft quadrants express persistence, while the upper-left and lower-right quadrants reveal reversion. For a scale-free dependence structure, one would expect the magnitudes to decrease with the lag ℓ but the global shape to be conserved. What we instead observe is important changes of conguration at dierent lags: For example, the strong reversion of negative tail events at ℓ = 1 vanishes at farther lags, and even turns into strong persistence for the CAC and DAX indices. That is to say that these indices tend to mean-revert after a negative event at the daily frequency, but to trend on the weekly scale. Similarly, the strong persistence of positive events at ℓ = 1 converts to a strong reversion in the tails at ℓ = 20 for the European indices (CAC, DAX, SMI); a weaker reversion is observed at intermediate scale (ℓ = 5) for most indices (including US and Korean). Even the simple, two-points measures of self-dependence studied up to now show that nonlinearities and multi-scaling are two ingredients that must be taken into account when attempting to describe nancial time series; we now examine their many-points properties. As an example, we compute the distribution of recurrence times of returns above a threshold
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X (+) = F -1 (1-p + ).
Fig. 7.7 shows the tail cumulative distribution 1-Π(τ ) of the recurrence intervals of DAX returns, at several thresholds p + = 1/ τ the distribution for other indices is very similar. In the log-log representation used, an exponential distribution (corresponding to independent returns) would be concave and rapidly decreasing, while a power-law would decay linearly. The empirical distributions t neither of those, and the authors of Ref. [Ludescher 2011] suggested a parametric t of the form

1 -Π(τ ) = [1 + b (a-1) τ ] (2-a)/(a-1) .
However, important deviations are present in the tail regions for thresholds at X (+) F -1 (0.9), i.e. τ 1/(1 -0.9) = 10: as a consequence, there is no hope that the curves for dierent threshold collapse onto a single curve after a proper rescaling [Chicheportiche 2013d], as is the case e.g. for seismic data. A more fundamental determination of the form of Π(τ ) should rely on Eq. ( 7.10) and a characterization of the τ -points copula.

Similarly to the statistic of the recurrence intervals, their dynamics must be studied carefully. We have shown that the conditional distribution of recurrence intervals after a previous recurrence is very complex and involves long-ranged non-linear dependences, so that a simple assessment of recurrence times auto-correlation may not be informative enough for a deep understanding of the mechanisms at stake.

Conclusion

We report several properties of recurrence times and the statistic of other observables (waiting times, cluster sizes, records, aftershocks) in light of their decription in terms of the diagonal copula, and hope that these studies can shed light on the n-points properties of the process by assessing the statistics of simple variables rather than positing an a priori dependence structure.

The exact universality of the mean recurrence interval imposes a natural scale in the system. A scaling relation in the distribution of such recurrences is only possible in absence of any other characteristic time. When such additional characteristic times are present (typically in the non-linear correlations), no such scaling is expected, in contrast with time series of earthquake magnitudes.

We also stress that recurrences are intrinsically multi-points objects related to the nonlinear dependences in the underlying time-series. As such, their autocorrelation is not a reliable measure of their dynamics, for their conditional occurence probability is much history dependent.

In a continuous-time setting, the role of the n-points copula is played by a counting process. The events to be counted can either be triggered by an underlying continuous process crossing a threshold, or more directly be modeled as a self-exciting point process, like a Hawkes process.

Ultimately, recurrences may be used to characterize risk in a new fashion. Instead of or in addition to caring for the amplitude and probability of adverse events at a given horizon, one should be able to characterize the risk in a dynamical point of view. In this sense, an asset A 1 could be said to be more risky than another asset A 2 if its distribution of recurrence of adverse events has such and such bad properties that A 1 does not share.

This amounts to characterizing the disutility by When ? shocks are expected to happen, in addition to the usual How often ? and How large ?.

The generalization of the n-points copula for continuous-time processes has been rapidly introduced, and it would be interesting to study many-points dependences in continuous processes, for example transaction times in a Limit Order Book.

The next chapter uses the copula approach to address the long-range nature of volatilitydependences and incorporate multi-scaling and non-linearities. The theory of Goodness-of-t tests for dependent observations developped in part I is put in practice to characterize the unconditional distribution of stock returns.
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The long-ranged nature of volatility dependences Contents In Section 8.1 we go through a detailed example when the dependences are described by a pseudo-elliptical copula exhibiting log-amplitudes correlations. We rst investigate the Markovian case of weak, short-range dependences, and then relax the second assumption to investigate long-memory; we also add linear correlations and leverage eect in order to be as close as possible to nancial copulas. Indeed, Section 8.2 is dedicated to an application of the theory to the case of nancial data: after dening our data set, we perform an empirical study of dependences in series of stock returns, and interpret the results in terms of the self-copula; implication of the dependences on GoF tests are illustrated for this special case using Monte-Carlo simulations. In our empirical study of nancial self-copulas, we rely on a non-parametric estimation rather than imposing, for example, a Markovian structure of the underlying process, as in e.g. [Darsow 1992, Ibragimov 2008].

An explicit example: the log-normal volatility

In order to illustrate the above general formalism, we focus on the specic example of the product random variable X = σξ, with i.i.d. Gaussian residuals ξ and log-normal stochastic amplitude σ = e ω (we denote generically by F the cdf of X). Such models are common in nance to describe stock returns, as will be discussed in the next section. For the time being, let us consider the case where the ω's are of zero mean, and covariance given by:

Cov(ω n ω n+t ) = Σ 2 f t T , (t > 0). (8.1)
where T is a typical cuto scale.

The pairwise copulas can be explicitly written in the limit of weak correlations, Σ 2 → 0.

One nds:

C t (u, v) -uv = Σ 2 f t T Ã(u) Ã(v) + O(Σ 4 ) (8.2) with Ã(u) = ∞ -∞ ϕ(ω)ϕ ′ ( F -1 (u) e ω )dω (8.3)
where here and in the following ϕ(•) denotes the univariate Gaussian pdf, and Φ(•) the Gaussian cdf. The spectrum of A(u, v) = Ã(u) Ã(v) consists in a single non-degenerate eigenvalue λ A = Tr A = 1 0 Ã(u) 2 du, and an innitely degenerate null eigenspace. Assuming f ∞ = ∞ r=1 f (r) < +∞ (the memory might be long-ranged, yet must decay suciently fast), the covariance kernel reads:

H(u, v) = I(u, v) + 2 T Σ 2 f ∞ A(u, v).
Depending on the value of the parameters, the rst term or the second term may be dominant.

Note that one can be in the case of weak correlations (Σ 2 → 0) but long range memory T 1, Insets: The eective reduction ratio

N N e (u) = ecdf -1 (u) cdf -1 L (u)
where L = KS,CM. The dashed vertical line is located at the 95-th centile and thus indicates the reduction ratio corresponding to the p-value p = 0.05 (as the test is unilateral). simulated data is indeed the same as the hypothesized distribution. In our case, when using the usual KS and CM distributions for independent data, the p-values are much too small and their histogram is statistically not compatible with the uniform distribution. Instead, when using the appropriate limit distribution found by Monte-Carlo and corresponding to the correlation kernel (8.6), the calculated p-values are uniformly distributed, as can be visually seen on Figure 8.2, and as revealed statistically by a KS test (on the KS test!), comparing the 350 p-values to H 0 : p ∼ U[0, 1].

Kolmogorov-Smirnov

Long-range memory

If, instead of the AR(1) (Markovian) prescription (8.4), the dynamics of the ω n is given by a Fractional Gaussian Noise (i.e. the increments of a fractional Brownian motion) [Mandelbrot 1968] with Hurst index 2-ν 2 > 1 2 , the log-volatility has a long ranged autocovariance

α t = Cov(ω n , ω n+t ) = Σ 2 2 |t + 1| 2-ν -2t 2-ν + |t -1| 2-ν , t ≥ 0 (8.7)
that decays as a power law ∝ (2 -3ν + ν 2 )t -ν as t → ∞, corresponding to long-memory, therefore violating the hypothesis under which the above theory is correct. Still, we want to illustrate that the above methodology leads to a meaningful improvement of the test, even in the case of long-ranged dependences. The corresponding covariance kernel of the Xs,

H(u, v) = I(u, v) + 2Σ 2 A(u, v) N t=1 1 - t N α t , (8.8)
is used in a Monte-Carlo simulation like in the previous case in order to nd the appropriate distribution of the test statistics KS and CM (shown in Figure 8.3, see caption for the choice of parameters). We again apply the GoF tests to simulated series, and compute the p-values according to the theory above. As stated above, our theory is designed for shortranged dependences whereas the fGn process is long-ranged. The p-values are therefore not expected to be uniformly distributed. Nevertheless, the distribution of the p-values is signicantly corrected toward the uniform distribution, see Figure 8.3(a): with the naive CM distribution (middle), the obtained p-values are localized around zero, suggesting that the test is strongly negative. If instead we use our prediction for short-range dependences (right), we nd a clear improvement, as the p-values are more widely spread on [0, 1] (but still not uniformly).

Accounting for linear correlation and time reversal asymmetry

It is interesting to generalize the above model to account for weak dependence between the residuals ξ and between the residual and the volatility, without spoiling the log-normal structure of the model. We therefore write: where all the variables are N (0, 1), so that in particular

X 0 = ξ 0 e ω 0 ; X t = ξ t e αtω 0 +βtξ 0 + √ 1-α 2 t -β 2 t ωt with E[ξ 0 ξ t ] = r t 0 
ρ t = Corr(X 0 , X t ) = r t (1 + β 2 t )e αt-1 Corr(X 2 0 , X 2 t ) = 1 + 2r 2 t (1 + 10β 2 t + 8β 4 t ) + 4β 2 t e 4αt -1 3e 4 -1 Corr(X 0 , X 2 t ) = 2β t 1 + 2r 2 t (1 + 2β 2 t ) e 2αt-1 2 √ e 4 -1
The univariate marginal distributions of X 0 and X t are identical and their cdf is given by the integral

F (x) = ∞ -∞ ϕ(ω)Φ( x e ω )dω.
(8.9)

Expanding the bivariate cdf (or the copula) in the small dependence parameters α t , β t , ρ t around (0, 0, 0), we get

C t (u, v) -uv ≈ α t A(u, v) -β t B(u, v) + ρ t R(u, v) (8.10) ≈ α t Ã(u) Ã(v) -β t R(u) Ã(v) + ρ t R(u) R(v)
where Ã(u) was dened above in Equation (8.3), and

R(u) = ∞ -∞ ϕ(ω)ϕ( F -1 (u) e ω )dω = R(1 -u).
(8.11)

The contributions of A(u, v), B(u, v) and R(u, v) on the diagonal are illustrated in Figure 8.4. Notice that the term B(u, v) (coming from cross-correlations between ξ 0 and ω t , i.e. the socalled leverage eect, see below) breaks the symmetry C t (u, v) = C t (v, u). One of the contexts where long-ranged persistence is present is time series of nancial asset returns. At the same time, the empirical determination of the distribution of these returns is of utmost importance, in particular for risk control and derivative pricing. As we will see, the volatility correlations are so long-ranged that the number of eectively independent observations is strongly reduced, in such a way that the GoF tests are not very tight, even with time series containing thousands of raw observations.

It is well-known that stock returns exhibit dependences of dierent kinds:

• at relatively high frequencies (up to a few days), returns show weak, but signicant negative linear auto-correlations (see e.g. [START_REF] Avramov | [END_REF]]);

• the absolute returns show persistence over very long periods, an eect called multi-scale volatility clustering and for which several interesting models have been proposed in the last ten years [START_REF] Pasquini | [END_REF], Calvet 2008, Muzy 2000[START_REF] Zumbach | Heterogeneous volatility cascade in nancial markets[END_REF], Lynch 2003[START_REF] Borland | [END_REF]];

• past negative returns favor increased future volatility , an eect that goes under the name of leverage correlations in the literature [Bouchaud 2001b[START_REF] Perelló | [END_REF], Pochart 2002, Eisler 2004, Ahlgren 2007[START_REF] Reigneron | [END_REF].

Our aim here is neither to investigate the origin of these eects and their possible expla- 

Empirical self-copulas

For each (u, v) on a lattice, we determine the lag dependent self-copula C t (u, v) by assuming stationarity, i.e. that the pairwise copula C nm (u, v) only depends on the time lag t = mn.

We also assume that all stocks are characterized by the same self-copula, and therefore an average over all the stock names in the universe is done in order to remove noise. Both these assumptions are questionable and we give at the end of this section an insight on how non-stationarities as well as systematic eects of market cap, liquidity, tick size, etc, can be accounted for.

The self-copulas are estimated non-parametrically with a bias correction , then tted to the parametric family of log-normal copulas introduced in the previous section. We assume Details on the copula estimator and the bias issue are given in appendix. an asymmetry is clearly present: the eect of large negative events on future amplitudes is stronger than the eect of previous positive events. This is an evidence for the leverage eect: negative returns cause a large volatility, which in turn makes future events (positive or negative) to be likely larger. This eect is captured by the coecient β t . The evolution of the coecients α t , β t and ρ t for dierent lags reveals the following properties: i) the linear auto-correlation ρ t is short-ranged (a few days), and negative; ii) the leverage parameter β t is short-ranged and, as is well known, negative, revealing the asymmetry discussed above; iii) the correlation of volatility is long-ranged and of relatively large positive amplitude (see Figure 8.6), in line with the known long range volatility clustering. More quantitatively, we nd that the parameter α t for lags ranging from 1 to 768 days is consistent with an eective relation well tted by the multifractal [Muzy 2001, Calvet 2008[START_REF] Lux | The Multi-Fractal Model of Asset Returns: Its Estimation via GMM and Its Use for Volatility Forecasting[END_REF], Muzy 2000] prediction for the volatility autocorrelations: α t = -Σ 2 ln t T , with an amplitude Σ 2 = 0.046 and a horizon T = 1467 days consistent, in order of magnitude, with previous determinations.

The remarkable point, already noticed in previous empirical works on multifractals [Muzy 2001, Duchon 2008], is that the horizon T , beyond which the volatility correlations vanish, is found to be extremely long. In fact, the extrapolated horizon T is larger than the number of points of our sample N ! This long correlation time has two consequences: rst, the parameter 2T Σ 2 f ∞ that appears in the kernel H(u, v) is large, ≈ 135. This means that the dependence part T Σ 2 f ∞ A(u, v) is dominant over the independent Brownian bridge part I(u, v). This is illustrated in Figure 8.7, where we show the rst eigenvector of H(u, v), which we compare to the non-zero eigenmode of A(u, v), and to the rst eigenvector of I(u, v). Sec- ond, the hypothesis of a stationary process, which requires that N T , is not met here, so we expect important pre-asymptotic corrections to the above theoretical results.

Monte-Carlo estimation of the limit distributions

Since H(u, v) is copula-dependent, and considering the poor analytical progress made about the limit distributions of KS and CM in cases other than independence, the asymptotic laws will be computed numerically by Monte-Carlo simulations (like in the example of Section 8.1)

with the empirically determined H(u, v).

The empirical cumulative distribution functions of the statistics for a large number of trials are shown in Figure 8.8 together with the usual Kolmogorov-Smirnov and Cramér-von-Mises limit distributions corresponding to the case of independent variables. One sees that the statistics adapted to account for dependences are stretched to the right, meaning that they accept higher values of KS or CM (i.e. measures of the dierence between the true and the empirical distributions). In other words, the outcome of a test based on the usual KS or CM distributions is much more likely to be negative, as it will consider high values (like 23) as extremely improbable, whereas a test that accounts for the strong dependence in the time series would still accept the null-hypothesis for such values.

As an illustration, we apply the test of Cramér-von Mises to our dataset, comparing the volatility, i.e. that the null-hypothesis cdf is similar to Eq. (8.9):

F (x) = ∞ -∞
ϕ(ω)Φ( x e sω-s 2 )dω.

(8.12)

The volatility of volatility parameter s can be calibrated from the time series {x t } t as

s 2 = ln 2 π x 2 t t
x t 2 t .

(8.13)

We want to test the hypothesis that the log-normal model with a unique value of s for all stocks is compatible with the data. In practice, for each stock i, s i is chosen as the average of (8.13) over all other stocks in order to avoid endogeneity issues and biases in the calculations of the p-values of the test. s i is found to be ≈ 0.5 and indeed almost identical for all stocks.

Then the GoF statistic CM is computed for each stock i and the corresponding p-value is calculated. 2 Figure 8.9 shows the distribution of the p-values, as obtained by using the usual asymptotic Cramér-von Mises distribution for independent samples (left) and the modied version allowing for dependence (right). We clearly observe that the standard Cramér-von Mises Another source of endogeneity is the estimated copula (either parametric or parameter-free) used in the asymptotic test law, and is similar to the bias induced when applying usual univariate GoF test with an estimated null. This issue can be dealt with by either estimating the copula on a subset and apply the test on another subset, or by using a parametric form for the copula, where the parameters are not estimated but scanned over given ranges. A p-value is obtained for each combination of parameters, and optimal parameters can be determined among the accepted tests. This of course can be very burdensome when the parameter space is large, and in addition it relies on a model for the copula. in fact exposed to a common volatility factor (the market mode), which makes the estimation of s somewhat endogenous and generates an important bias. Another reason is that the hypothesis that the size of the sample N is much larger than the correlation time T does not hold for our sample, and corrections to our theoretical results are expected in that case.

! It would be actually quite interesting to extend the above formalism to the long-memory case, where T N 1.

Beyond stationarity and universality

The assumption that nancial time series are stationary is far from granted. In fact, several observations suggest that nancial markets operate at the frontier between stationarity and non-stationarity. The multifractal model, for example, assumes that correlations are decaying marginally slowly (as a logarithm), which technically corresponds to the boundary between stationary models (when decay is faster) and non-stationary models. Furthermore, as stated above, the horizon T that appears in the model is empirically found to be very long (on the order of several years) and therefore very dicult to measure precisely. Other models, like the multi-scale GARCH [START_REF] Zumbach | Heterogeneous volatility cascade in nancial markets[END_REF], Borland 2011, Chicheportiche 2012a], point ! Note that in practice, we have estimated ΨN (u, v) by summing the empirically determined copulas up to tmax = 512, which clearly underestimates the contribution of large lags.

in the same direction: when these models are calibrated on nancial data, the parameters are always found to be very close to the limit of stability of the model (see [Borland 2011] for a discussion of this point). Several very recent studies on high-frequency data point in the same direction, and even consider non-stationary extensions of the critically stationary multifractal or self-exciting models [Morales 2012, Muzy 2013, Hardiman 2013].

Furthermore, what is relevant in the present context is strong stationarity, i.e. the stationarity of the full self-copula. Hence, testing for stationarity amounts to comparing copulas, which amounts to a GoF for two-dimensional variables . . . for which general statistical tools are missing, even in the absence of strong dependence! So in a sense this problem is like a snake chasing its own tail. A simple (and weak) argument is to perform the above study in dierent periods. When tting the multifractal model to the self-copulas, we nd the following values for (Σ [Muzy 2006, Bacry 2006] for a detailed discussion of the nite N properties of the model).

As of the universality of the self-copula across the stocks, it is indeed a reasonable assumption that allows one to average over the stock ensemble. We compared the averaged self-copula on two subsets of stocks obtained by randomly dividing the ensemble, and found the resulting copulas to be hardly distinguishable. This can be understood if we consider that all stocks are, to a rst approximation, driven by a common force the market and subject to idiosyncratic uctuations. We know that this picture is oversimplied, and that systematic eects of sector, market cap, etc. are expected and could in fact be treated separately inside the framework that we propose. Such issues are related to the cross-sectional non-linear dependence structure of stocks, and are far beyond the objectives of this article.

Conclusion

From the empirical estimation of the self-copula of US stock returns, long-ranged volatility clustering with multifractal properties is observed as the dominant contribution to selfdependence, in line with previous studies. However, sub-dominant modes are present as well and a precise understanding of those involves an in-depth study of the spectral properties of the correlation kernel H.

One of the remarkable consequences of the long-memory nature of the volatility is that the number of eectively independent observations is signicantly reduced, as both the Kolmogorov-Smirnov and Cramér-von Mises tests accept much larger values of the deviations (see Figure 8.8). As a consequence, it is much more dicult to reject the adequation between any reasonable statistical model and empirical data. We suspect that many GoF tests used in the literature to test models of nancial returns are fundamentally awed because of the long-ranged volatility correlations. In intuitive terms, the long-memory nature of the volatility can be thought of as a sequence of volatility regime shifts, each with a different lifetime, and with a broad distribution of these lifetimes. It is clear that in order to fully sample the unconditional distribution of returns, all the regimes must be encountered several times. In the presence of volatility persistence, therefore, the GoF tests are much less stringent, because there is always a possibility that one of these regimes was not, or only partially, sampled. The multifractal model is an explicit case where this scenario occurs.

In terms of nancial developments, we believe that an empirical exploration of the selfcopulas for series of diverse asset returns and at diverse frequencies is of primordial importance in order to grasp the complexity of the non-linear time-dependences. In particular, expanding the concept of the self-copula to pairs of assets is likely to reveal subtle dependence patterns. From a practitioner's point of view, a multivariate generalization of the self-copula could lead to important progresses on such issues as causality, lead-lag eects and the accuracy of multivariate prediction.
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General conclusion and outlooks

Partial conclusions were given at the end of every chapter, summarizing the latter's content, discussing its conclusions in light of recent developments in the literature, and suggesting directions for possible extensions.

Here I want to give a general overview of the topics studied during the last three years without reviewing in detail the original contributions in the thesis and situate them in the current state of the research.

Stochastic processes and applications

The link between the theory of Goodness-of-t tests and stochastic processes is a beautiful one, yet a poorly known one possibly due to the distance between the two concerned communities of statisticians and physicists. Understanding the law of the Kolmogorov-Smirnov statistics as the survival probability of a randomly walking particle in an expanding absorbing cage allows to use techniques from statistical physics to solve problems in probability theory, which otherwise necessitate lengthy proofs. More importantly, the analogy turns particularly useful in variants of the initial problem: weighting the Kolmogorov-Smirnov statistics in order to increase the test resolution in specic ranges of the domain in fact amounts to switching on a conning potential inside the cage. In higher dimensions (i.e. when designing tests for multivariate distributions), the link to random walkers is made nonintuitive by the trajectories being parameterized by more than one time index. The lack of an obvious meaning to Markovianity or even to `causality' in such settings, is responsible for seemingly simple associated problems to remain unsolved: for example, the propagator of the 2D Brownian sheet (pinned or not) constrained between oor and ceiling is still unknown. However, the discretization of one time direction suggests new perspectives to addressing the 2D GoF tests via the survival of a random walker in an innite-dimensional absorbing cage, see Appendix B.

Other properties of stochastic processes like rst-passage times can be encountered in nancial applications. Typically, problems related to optimal selling times of an asset, exercising of an American option, barriers and stop-loss criteria, etc. explicitly involve the statistics of rst-passages and/or recurrence intervals in threshold-crossing processes. Less obvious is the link between optimal control (e.g. in trading systems) and rst-passage problems: it turns out that the stationary solution of the Bellman equation can sometimes be addressed, in a continuous limit, as a Kolmogorov or Fokker-Planck equation with vanishing Dirichlet boundary conditions. [Chicheportiche 2013c] See, for this, the abstracts in the Introduction, pages 710. The study of multivariate data analysis typically begins with the structure of linear correlations. Disentangling signal and noise in estimated covariance matrices is an old yet always actual problem. Factor models, spectral analysis, and Random Matrix Theory are some of the tools that were used in this thesis to address the linear properties of transversal dependences.

There is a growing interest in the sparse symmetric matrices Σ = 1 T X † X, with the (T × N ) random entries X ti distributed according to an asymptotically power-law distribution, or even as Bernoulli variables with very low probability p not scaling with N . As opposed to the GOE and GUE ensembles, such matrices have localized eigenvectors with rich properties.

As a consequence of this non-invariance under rotations, methods relying on free matrices and R-transforms to nd the spectrum of Σ in the limit of large matrices are not applicable.

The replica trick provides partial results, but new methods from statistical condensed-matter physics like the `cavity approach' for interacting particles on graphs has proven successful in obtaining precise results [Rogers 2008]: yet another bridge between cutting edge research in probability theory and statistical physics. This thesis dissertation presented many more theoretical and applied topics in connection to multivariate time series modeling, including extreme value statistics and tail dependences, ellipticity, optimal portfolio design, non-linear dependences as measured by Blomqvist's, Kendall's or Spearman's coecients. In this context, the fashionable `copula' has proved a useful unifying theoretical framework, though issues remain on the estimation and interpretation of this somewhat complex object.

Other modern ways of addressing inter-dependences are attracting interest: graphs and complex networks are an alternative to simple undirected pairwise links. The higher and higher connectedness of the world has obvious illustrations in the Web 2.0 and the global nancial crisis, to name only two. Social networks, systemic risk, inter-bank lending structure, shareholding capital and voting rights webs, corporate client-contractor relationships, genetic and proteomic bipartite interactions, etc. can all be studied and modeled on graphs.

The emergence of huge databases and the trendy eld of Big Data will certainly allow to complement theoretical constructions by empirical evidences and help the global pictures rely on microscopical foundations, be it in the elds of nance, economics, sociology, medicine or others.

Finance

Beside the distributional properties of nancial returns, many of the most important research subjects of quantitative nance deal with dependences: the cross-sectional dependences must be well understood and modeled for optimal portfolio design and risk management, and the temporal dependences are exploited for signal prediction and optimal trading execution.

My rst attempt at describing cross-sectional non-linear correlations was with hierarchical models, where each stock name is the leaf of a tree sharing branches with other leaves.

The dependences between the leaves is hence caused by a common factor mechanism. Although such a construction allowed for a powerful interpretation of the dependence structure and reproduced many required properties of dependences among stock return series, the ne structure of dependences could not be well described. The alternative that was then nally %! chosen is a multi-factor model with a at structure. This construction, although less transparent from the point of view of economic interpretation, has several advantages: rst it builds upon the traditional Principal Components Analysis, what provides a convenient benchmark; then it does not involve such a hidden structures like a tree (although the statistical factors do not have an obvious meaning either); and more importantly it conveniently reproduces many linear and non-linear properties of nancial datasets, as studied at length in Part II.

As of the temporal dependence, all the studies in the literature point toward the same conclusion: nancial time series have a long memory despite their being linearly uncorrelated! In my own studies (Part III) this showed up in many places: (i) in the long-memory kernel of the auto-regressive mechanism of the volatility dynamics; (ii) in the waiting time and recurrence intervals statistics; and (iii) in the estimation of the self-copula in connection with the eective sample size diminution in GoF tests. These many dierent approaches can be complemented by at least two others: the multifractal volatility models and non-stationary recent extensions thereof, and the Hawkes self-exciting mechanism. A convergence of (some of ) these models is expected in the near future: rst, ARCH and Hawkes description are conceptually similar, and in fact are equally able to generate power-law correlations with a power-law decreasing feedback kernel, see Appendix E.2 and Refs. [Bacry 2012, Filimonov 2013]; and secondly auto-regressive deterministic constructions must be augmented by a stochastic volatility component à la multifractal in order to reconciliate the Time Reversal Asymmetry with empirical low (but nite) values.

Present and future developments in econophysics and nancial data analysis include understanding the same properties of temporal and cross-sectional dependences but at higher frequency. In this respect, I am involved in collaborations in view of assessing the ner structure of volatility dynamics at a scale lower than the day and develop intraday (Q)ARCH models [START_REF] Blanc | [END_REF]], and also apply GoF tests on high frequency data to address the distributional properties of order books [Gould 2013]. In fact, it is possible to calculate the distance from the center to every face. Looking for the vector w (n) such that 

Q nm w m + m,m ′ =n w ′ m Q m ′ m w m    = arg    m =n Q m ′ m w m = -k Q m ′ n , m ′ = n    , one nds w (n) j = k • j n , j ≤ n ≤ N 1 , n ≤ j ≤ N ,
meaning that the closest point to any face is on an edge, since w (n) j touches Nn + 1 faces. In particular, the closest exit in any direction is on the N -th face. We already know that B.2 2D Kolmogorov-smirnov test of Goodness-of-t

The strategy:

• Unweighted: Look for the time change that transforms any C-pBs into the standard pBs. This is achieved in Sect. B.2.1 just below. Then, the 2D-Kolmogorov-Smirnov test is essentially related to the law of the supabs of the pBs, Sect. B.1.

• Weighted: Change of time and variable to recover nice processes: 2D Brownian Motion (Brownian sheet) or 2D Ornstein-Uhlenbeck, or mixed Brownian Motion/Ornstein-Uhlenbeck.

B.2.1 Flattening an arbitrary copula

Let C(u, v) be a two-dimensional copula function. We consider the following problem: nd a parametrization s(u, v) increasing in u for all v, and t(u, v) increasing in v for all u, that brings the copula C(u, v) to the independence copula Π(s, t) = st. A solution to this problem in any dimension with no assumption but absolute continuity of the joint cdf is known as Rosenblatt's transform [Rosenblatt 1952], but it relies on an arbitrary ordering of the variables. We instead propose a solution for the 2D case with no particular order of the variables. This is better stated combining integral and dierential representations, and thus necessitates the appropriate dierentiability conditions: of xed C, increasing in C for a given u ′ > 0, and that lim C→1 v C (u ′ ) = 1, but the limit as C → 0 is degenerate since the copula is zero at any point on the edges (u, 0) and (0, v). Then, the solution of Eq. (B.14') along a given characteristic is found integrating (B.15a)

Since the density c(u, v) and the rst derivative ∂C/∂v are always positive, s C (u) is increasing in u at given C. Because the problem is symmetric in s ↔ t, one could as well eliminate s from the initial system of equations, and solve it to obtain

ln t C (v) -ln t C (v * ) = v v * c(u C (v ′ ), v ′ ) ∂C ∂u (u C (v ′ ), v ′ ) -1 dv ′ .
(B.15b)

The nal solution of Eq. (B.14) is

s(u, v) = s C(u,v) (u) (B.16a) t(u, v) = t C(u,v) (v) = C(u, v)/s(u, v), (B.16b)
and it is necessary to check that it satises the conditions set at the begining, namely that s(u, v) be increasing in u and t(u, v) be increasing in v. The integration constants s C (u * ) and t C (v * ) are determined as follows. Evaluating simultaneously Eq. (B.16a) at a point (u * , v C (u * )) and Eq. (B.16b) at a point (u C (v * ), v * ), both on the characteristic curve, and taking the product, one gets For the pseudo-elliptical copula with weak dependence, H has the following general form: and similarly:

1 ⊥ |2j -1 = U R 0 |2j -1 r j ≥ 2.
Using the denition of the coecients α t , β t and ρ t given in section 8.1 of chapter III.8 (page 159), we introduce the following notations:

α = 2 Tr A lim N →∞ N -1 t=1 1 - t N α t ρ = 2 Tr R lim N →∞ N -1 t=1 1 - t N ρ t β = 2 √ Tr A Tr R lim N →∞ N -1 t=1 1 - t N β t
so that H writes:

H = I + α |U A 0 U A 0 | + ρ |U R 0 U R 0 | - β ← -----→ |U R 0 U A 0 | = H 0 + a α a 2 ← ---→ |2 2 ⊥ | -β r 1 a ⊥ ← ---→ |1 2 ⊥ | + r ρ r 1 ← ---→ |1 ⊥ 1| -β a 2 ← ---→ |1 ⊥ 2| + α 2 a |2 ⊥ 2 ⊥ | + ρ 2 r |1 ⊥ 1 ⊥ | -β a r ← ----→ |2 ⊥ 1 ⊥ | ,
where

← ----→ |ψ 1 ψ 2 | = 1 2 |ψ 1 ψ 2 | + |ψ 2 ψ 1
| and H 0 is the unperturbed operator (0-th order in both s)

H 0 = j≥3 λ I j |j j| + (λ I 2 + α a 2 2 ) |2 2| + (λ I 1 + ρ r 2 1 ) |1 1| -β r 1 a 2 ←-→ |2 1|.
The spectrum of the latter is easy to determine as:

λ H 0 1 =λ - ρ, β→0
----→ λ I where λ ± = λ I 1 + ρ r2 1 + λ I 2 + α a 2 2 ± (λ I 1 + ρ r 2 1λ I 2α a 2 2 ) 2 + 4 ( β r 1 a 2 ) 2 2 ! and |± the corresponding eigenvectors, which are linear combination of |1 and |2 only. Therefore, 1 ⊥ |± = 2 ⊥ |± = 0, which implies that there is no corrections to the eigenvalues of H 0 to rst order in the s. At the next order, instead, some corrections appear. We call:

V i,j = ρ r 1 1|U H 0 i -1 2 β a 2 2|U H 0 i j|1 ⊥ r + α a 2 2|U H 0 i -1 2 β r 1 1|U H 0 i j|2 ⊥ a
the matrix elements of the rst order perturbation of H, whence

λ H 1 = λ H 0 1 + j≥3 V 2 1,j λ H 0 1 -λ H 0 j λ H 2 = λ H 0 2 + j≥3 V 2 2,j λ H 0 2 -λ H 0 j λ H j = λ H 0 j + i=1,2 V 2 i,j λ H 0 j -λ H 0 i + α 2 a j|2 ⊥ 2 + ρ 2 r j|1 ⊥ 2 -β a r j|1 ⊥ j|2 ⊥ .
As of the eigenvectors, it is enough to go to rst order in s to get a non-trivial perturbative correction:

|U H 1 = |U H 0 1 + j≥3 V 1,j λ H 0 1 -λ H 0 j |j |U H 2 = |U H 0 2 + j≥3 V 2,j λ H 0 2 -λ H 0 j |j |U H j = |j + i=1,2 V i,j λ H 0 j -λ H 0 i |U H 0 i .
The special case treated numerically in chapter III.8 corresponds to ρ = β = 0, such that the above expressions simplify considerably, since in that case V 1,j ≡ 0 and V 2,2j-1 = 0, while V 2,2j = α a 2 U A 0 |2j . To rst order in the s, the spectrum is not perturbed and calls

λ H i = λ H 0 i = λ I i + α a 2
2 δ i2 , so that the characteristic function of the modied CM distribution is, according to Eq. (3.25),

φ(t) = j 1 -2it/(jπ) 2 -1 2 × 1 -2itλ I 2 1 -2itλ H 0 2 .
Its pdf is thus the convolution of the Fourier transform of φ I (t) (characteristic function associated to the usual CM distribution P I [Anderson 1952]) and the Fourier transform (FT) of the correction φ c (t) = 1 -2itλ I

  marchés nanciers comme systèmes complexes

Figure 2

 2 Figure 2.2: For all elliptical distributions, the dierent measures of dependence are functions of ρ. Illustration for a pair with a bivariate Gaussian distribution (left), and a bivariate Student distribution with ν = 5 (right).

Figure 2

 2 Figure 2.4: Diagonal and anti-diagonal of the Student copula: the quantities ∆ @ (p) and ∆ = (p) dened in Eq. (2.17) are plotted versus p for several values of ρ and xed ν = 5. (The curves are identical in the range p ∈ [0, 0.5] due to the symmetry p ↔ 1-p).

  B(T ) an independent Wiener process. The initial condition forT = 0 (corresponding to b = a) is Z(0) = Y (a)/ V[Y (a)],a random Gaussian variable of zero mean and unit

  Figure 3.3: Left:

  act asymptotic results for a generalization of the Kolmogorov-Smirnov test, well suited to testing the whole domain up to these extreme tails. Our nal results are summarized in Eq. (3.16) andFig. 3.5(b). In passing, we have rederived and made more precise the result of Krapivsky and Redner[Krapivsky 1996] concerning the survival probability of a diusive particle in an expanding cage. It would be interesting to exhibit other choices of weight functions that lead to soluble survival probabilities. It would also be interesting to extend the present results to multivariate distributions, and to dependent observations, along the lines of Ref.[START_REF] Chicheportiche | Goodness-of-t tests with dependent observations[END_REF]]. Dependence of S(N ; k) on k for N = 10 3 , 10 4 , 10 5 , 10 6 (from left to right).

Figure 3 . 5 :

 35 Figure 3.5: The horizontal grey line corresponds to a 95% condence level.

Figure 4

 4 Figure 4.1: Time evolution of the coecient of linear correlation, computed for the stocks in the S&P500 index, with an exponentially moving average of 125 days from January 1990 to December 2009. Five quantiles of the ρ distribution are plotted according to the legend, showing that this distribution moves quasi-rigidly around its median value.

Figure 4

 4 Figure 4.2: Time evolution of the coecient of tail dependence at p = 0.95, computed for the stocks in the S&P500 index. A sliding at window of 250 days moves monthly (25 days) from January 1990 to December 2009. We depict in turquoise and red the predictions for Student pair with ν = 5 and ν = ∞ respectively, based on the evolution of the mean value ρ(t) of the cross-sectional linear correlation (dashed) or averaged over the full instantaneous distribution of ρ(t) (plain), with little dierence.

  Figure 4.3: Empirical (20002004) and elliptical. The fact that the empirical points cross the theoretical lines corresponding to elliptical models reveals that there is a dependence structure in the volatility, more complex than what is suggested by a single common stochastic scale factor.

  Figure 4.4: Left: -(cos (2πC * ) + ρ) versus the coecient ρ of linear correlation. The grey cloud is a scatter plot of all pairs of stocks. Black dots correspond to the average value of empirical measurements within a correlation bin, and red crosses correspond to the numerically generated elliptical (Student, ν = 5) data, compatible with the expected value zero. Statistical error are not shown, but their amplitudes is of the order of the uctuations of the red crosses, so that empirics and elliptical prediction don't overlap for ρ 0.4. This representation allows to visualize very clearly the systematic discrepancies for small values of ρ, beyond the average value. Inset: the 1 s.d. dispersion of the scattered points inside the bins. Right: z = ln (ρ/| cos (2πC * ) |) as a function of ρ, with the same data and the same conventions. This shows more directly that the volatility correlations of weakly correlated stocks is overestimated by elliptical models, whereas strongly correlated stocks are compatible with the elliptical assumption of a common volatility factor.
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 45 Figure 4.5: Diagonal (left) and anti-diagonal (right) of the copula vs p. Real data(2000- 2004) averaged in 10 bins of ρ. The vertical lines corresponds to 1-sigma dispersion of the results (i.e. not the statistical error bar). The turquoise line corresponds to an elliptical model (Student with ν = 5): it predicts too low a value at the center point and too large tail dependences (left and right limits). The blue line depicts the behavior of Frank's copula. It is worth noticing that the tail dependence coecient is always measured empirically at some p < 1, for example p = 0.95. In this case, the disagreement between data and an elliptical model may be accidentally small. It is important to distinguish the interpretation of the limit coecient from that of a penultimate value[6].
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 5 Figure 5.1: Expected payo of an option as a function of the current price of the underlying stock. Left: unhedged; Right: hedged by short selling φ = 1/2 shares of the underlying.The illustration is for a call option of strike x K = 10, price C = 1 on a stock of initial price x 0 = 8 following a Bachelier diusion with volatility σ. The thin line is the payo at expiry

Figure 5

 5 Figure 5.2: Empirics: scatter plot of ln |ρ/ρ (*) | vs ρ for each stock pair, see Eq.(5.4). This gure quanties the departure of the medial point of the copula C(12 , 1 2 ) from the elliptical benchmark, for which the prediction is a straight horizontal line at 0 (dashed red).
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 53 Figure 5.3: Linear correlations: calibrated (M = 10) vs sample correlations. Outliers that stand far from the identity line (in particular for the period (a)) are strongly correlated pairs, typically in the same sector. Such pair correlations are poorly taken into account by factor models.
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 54 Figure 5.4: Visual representation of the estimated factors-factors dependences, for M = 10, on the period 20002009. The correlation (5.14a) is shown for every factor k with all other factors l = k, as a function of the order p of the absolute moment considered.
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 5 5(a) illustrates the content of the spectra for the factor-factor coecients (top), the residual-residual coecients (middle), and the singular values of the rectangular matrix of the factors-residuals cross-correlations (bottom), for the period 20002009. The rst three values of each spectrum are shown in dark, while the others are represented as a grey bulk. Notice how the bulk widens for the res-res spectrum as the moment p increases: this is due to the high dimensionality of this matrix, and the large resulting noise.

  Singular values spectra (vertical axis), for several values of p (horizontal axis). The three largest values are in black, while the remaining values are shown as a grey bulk.

  eigenvectors: rst three, from top to bottom, averaged over p.
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 55 Figure 5.5: M = 10, 2000-2009. Spectral decomposition of the factor-factor, residual-residual, and factor-residual correlations.

  mode. In particular, we expect A k0 and B k0 to reect approximately the coordinates of the rst eigenvectors of the log-abs correlations on Fig.5.65.8(a) and Fig.5.65.8(b) respectively, and A k0 ′ and B k0 ′ the coordinates of the second eigenvectors. A kk and B jj are the standard-deviations of the remaining log-volatilities not explained by the common drivers (if any).

  (5.6) hold, and we have dropped the tildes and hats when no confusion was possible. It is important to keep the intuitive meaning of the log-volatility factors in mind: ω 0 = dominant and common driver of log-volatility across factors and residuals ω 1 = log-volatility of the index (market linear mode f 1 ), net of ω 0 contribution and the subsequent ω k , ω k , (k > 1) characterize the residual volatility not explained by the common driver ω 0 in the amplitude of the factors f k and residuals e j .

  M = 10. Estimated non-Gaussianity parameters.
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 5 Figure 5.9: M = 10, 2000-2004.

Figure 5 .

 5 Figure 5.13: Calibrated model. ln |ρ/ρ (*) | vs ρ, see Eq. (5.4).

Figure 5 .

 5 Figure 5.14: Left: calibrated vs sample quadratic correlations. Middle: sample quadratic correlations vs sample linear correlations; Right: calibrated quadratic correlations vs calibrated linear correlations. Two benchmark curves are added in red: the Gaussian case (solid) and the Student case with ν = 5 d.o.f. (dashed)
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 5 Figure 5.15: 20002004, diagonal (left) and anti-diagonal (right) 

Figure 5 .Figure 5 .

 55 Figure 5.19: Linear correlations: In-sample risk (lower curves) and out-of-sample risk (upper curves) dened in Eq. (5.27) and averaged over sliding windows in 20002009, for two cleaning schemes: eigenvalue clipping (red circles) and calibrated multi-factor model (blue crosses), both with M = αN linear factors.
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 55 Figure 5.21: Absolute correlations: In-sample risk (lower curves) and out-of-sample risk (upper curves) dened in Eq. (5.27) and averaged over sliding windows in 20002009, for three cleaning schemes: eigenvalue clipping of M = αN modes of quadratic correlation (red circles), Gaussian multi-factor (blue triangles) and calibrated multi-factor model (blue crosses), both with M = αN linear factors.

  terms of indiosyncracies; (iii) non-Gaussianity of the factors with specic kurtosis; (iv) non-Gaussianity of the residuals with specic kurtosis; (v) volatility correlations among the factors generated by common modes of log-volatilities, in particular a volatility market mode; (vi) volatility correlations between factors and residuals.

  Figure6.1: Allowed region in the parameter space for K(τ, τ ) = g τ -α 1 {τ ≤q} and L(τ ) = 0, according to the niteness of σ 2 and σ 4 . Divergence of σ 2 is depicted by 45 • (red) hatching, while divergence of σ 4 is depicted by -45 • (blue) hatching. In the wedge between the dashed blue and solid red lines, σ 2 < ∞ while σ 4 diverges.
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 62 Figure 6.2: Matrix structures. (a) Overlapping two-scales; (b) Borland-Bouchaud multiscale; (c) Zumbach; (d) Long-Trend.
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 636465 Figure 6.3: Two empirical correlation functions: the leverage L(τ ) and the correlation of amplitudes C (a) (τ ), together with their ts. L(τ ) is tted by the sum of two exponentials -a e -τ /bc e -τ /d , with a = 0.007, b = 327 days, c = 0.029, d = 17 days; whereas C (a) (τ )is tted by a power-law truncated by an exponential: Bτ -β e -τ /τ 0 , with β = 0.14, B = 0.106, τ 0 = 290 days.

Figure 6

 6 Figure6.6: Cumulative distribution function of the residuals ξ t = r t /σ t . The plain line is the Student distribution with best (maximum-likelihood) tting tail parameter ν = 6.4. Far tails suggest a fatter distribution with a smaller value of ν tail ≈ 4 (dashed).
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 67 Figure 6.7: Heatmap of the unconstrained model. Left:GMM estimation; Right: ML estimation (white spots correspond to values smaller than their corresponding error margin).

  The dierence between the ranked eigenvalues of the estimated kernels and those of K)4+0 as a function of the latter (again ranked). The dashed oblique line has slope -1 and separates positive eigenvalues from negative ones. Structure of the rst three and last three eigenvectors. Whatever the estimation method, the rst eigenvector has a non trivial structure, with mostly positive components, indicating a genuine departure from the diagonal ARCH benchmark, for which we would nd a single peak at τ = 1.
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 69 Figure6.9: Spectral decomposition of the feedback kernel K, for the GMM, ML and ML+LT estimates.

Figure 6

 6 Figure6.10: Heatmap of the q = 10 kernel for the index volatility. Left: the GMM estimation; Right: the ML estimation with GMM prior (again, we have checked that the ARCH prior leads to very close results).

  Figure 6.11:Measure of time-reversal asymmetry (Eq. 6.34) for the stock data.

Figure 6

 6 Figure 6.12: Measure of time-reversal asymmetry (Eq. 6.34) for a simulated ARCH model with Student (ν = 4) residuals on the 5 minute scale. The parameters of the simulation are the estimated kernel k * (τ ) and L * (τ ) for stocks, with q = 20. At each date, 100 intraday prices are simulated (corresponding to the number of 5-minutes bins inside 8 hours) with the same σ 2

Finally

  , we have emphasized the fact that QARCH models are by construction backward looking, and predict clear Time-Reversal Invariance (TRI) violations for the volatility/squarereturn correlation function. Such violations are indeed observed empirically, although the magnitude of the eect is quite a lot smaller than predicted. This suggests that QARCH models, which postulate a deterministic relation between volatility and past returns, discard another important source of uctuations. We postulate that the grand model should include both ARCH-like feedback eects and stochastic volatility eects, in such a way that TRI is only weakly broken. The stochastic volatility component could be the source of the extra kurtosis of the residuals noted above.
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 72 Figure 7.2: Conditional probabilities p (ℓ)±∓ and p (ℓ) ±± for dierent values of ρ(ℓ) with thresholds at p + = p -= 1q. The value at q = 0.5 is 1

  durations have a distribution π(τ |t) ≡ -dP[R t > τ ]/dτ equal to π(τ |t) = λ(t+τ ) e -
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 75 Figure 7.5: Diagonal (top) and anti-diagonal (bottom) of the self-copula for lags ℓ = 1 and ℓ = 128; the product copula has been subtracted. The copula determined empirically on stock returns is in bold black, and a t with the model of Chapter 8 is shown in thin red.
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 777 Figure 7.6: (continued) 
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 8 Figure 8.1: Markovian model. Left: Cumulative distribution function of the supremum of ỹ(u). Right: Cumulative distribution of the norm-2 of ỹ(u). The cases of independent draws (thin red) and dependent draws (bold black) are compared. The dependent observations are drawn according to the weak-dependence kernel (8.6) with parameters g = 0.88, Σ 2 = 0.05.
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 82 Figure 8.2: Histogram of the p-values in the GoF test on simulated data, according to Equation (8.4). Uniform distribution of the p-values of a test indicates that the correct law of the statistic is used.

  Fig. 8.1 for full caption.
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 83 Figure 8.3: Fractional Brownian Motion.

  nations in terms of behavioral economics, nor to propose a new family of models to describe them. We rather want to propose a new way to characterize and measure the full structure of the temporal dependences of returns based on copulas, and extract from this knowledge the quantities needed to apply GoF tests to nancial times series. Throughout this section, the empirical results are based on a data set consisting of the daily returns of the stock price of listed large cap US companies. More precisely we keep only the 376 names present in the S&P-500 index constantly over the ve years period 2000 2004, corresponding to N = 1256 days. The individual series are standardized, but this does not change the determination of copulas, that are invariant under increasing and continuous transformations of the marginals.

Figure 8

 8 Figure8.6: Auto-correlation of the volatilities, for lags ranging from 1 to 768 days. Each point represents the value of α t extracted from a t of the empirical copula diagonal at a given lag to the relation (8.10). We also show the t to a multifractal model, α t = -Σ 2 ln t T ,

  Figure 8.7: Bold black: The rst eigenvector of the empirical kernel H(u, v) = I(u, v) [1 + Ψ N (u, v)]. Plain red: The function Ã(u) (normalized), corresponding to the pure eect of volatility clustering in a log-normal model, in the limit where the Brownian bridge contribution I(u, v) becomes negligible. Dashed blue: The largest eigenmode |1 = √ 2 sin(πu) of the independent kernel I(u, v).

Figure 8

 8 Figure 8.8: Left: Cumulative distribution function of the supremum of ỹ(u). Right: Cumulative distribution of the norm-2 of ỹ(u). The cases of independent draws (thin red) and dependent draws (bold black) are compared. The dependent observations are drawn according to the empirical average self-copula of US stock returns in 2000-2004. Insets: The eective reduction ratio N N e (u) = ecdf -1 (u) cdf -1 L (u) where L = KS,CM.

Figure 8

 8 Figure 8.9: Histogram of the p-values in a Cramér-von Mises-like test, see the text for the test design. Left: when using the standard Cramér-von Mises law, the obtained p-values are far from uniformly distributed and strongly localized under the threshold p = 0.05 (dashed vertical line) occasioning numerous spurious rejections. Right: when using the modied law taking dependences into account, the test rejects the hypothesis of an identical distribution for all stocks much less often.

Chapter 9 .

 9 General conclusion and outlooksMultivariate statistics and time series analysis

w

  (n) = arg min{ ŵ † ŵ s.t. w n = k} = arg min{w † ρ -1 w s.t. w n = k}

  s(u, v), t(u, v)) = s(u, v)t(u, v) c(u, v) dudv = π(s, t) dsdt = ∂(s, t) ∂(u, v) dudv (B.13)with c and π ≡ 1 the densities of C and Π respectively: we want to stretch the probability space in a particular fashion so that the copula density in that space is uniform. Eliminating t(u, v) from the system above, the solution satises the Monge-Ampère partial dierential equation ln s(u, v) ∧ ∇C(u, v)||.(B.14)This equation for ln s can be solved by the method of characteristics: rst, dene the parametric trajectory the characteristic curve U (γ)≡ (u(γ), v(γ)) z), v(z)) dv(z) =0 ∇C(U (γ)) • dU (γ) =0 so C(u(γ), v(γ)) = C = const, what denes the function v C (u ′ ) on u ′ ∈ [C, 1] as imposed by the Frechet bounds, see page 19. Notice that v C (u ′ ) is decreasing in u ′ along a characteristic

d

  ln s = c(u(γ), v(γ))dγ = c(u ′ , v C (u ′ )) dγ du ′ du ′ , yielding ln s C (u)ln s C (u * ) = u u * c(u ′ , v C (u ′ )) ∂C ∂v (u ′ , v C (u ′ ))

  s(u * , v C (u * )) t(u C (v * ), v * ) = C.But since one also has genericallys(u * , v * ) t(u * , v * ) = C, the identication yields u C (v * ) = u * and v C (u * ) = v * (B.17) For a symmetric copula, one nds that s C (u * ) = t C (v * ) = √ C for u * = v * solution of C(u * , u * ) = C.In this case, Eq. (B.16b) makes also clear that t(u, v) = s(v, u).

H

  = I + ρR + αA -β 2 (B + B † ).(D.1)The operator B + B † has two non zero eigenvalues ± √ λ R λ A , with eigenvectors [|U R In order to approximately diagonalize H, it is useful to notice that in the present context A and R are close to commuting with I. More precisely, it turns out that|U A 0 is very close to |2 , and |U R 0 even closer to |1 . Indeed, a 2 = U A 0 |2 ≈ 0.9934 and r 1 = U R 0 |1 ≈ 0.9998.Using the symmetry of A and R, we can therefore write:|U A 0 = a 2 |2 + a |2 ⊥ with 2|2 ⊥ = 2j -1|2 ⊥ = 0, ∀j ≥ 1 |U R 0 = r 1 |1 + r |1 ⊥ with 1|1 ⊥ = 2j|1 ⊥ = 0, ∀j ≥ 1where a = 1 -The components of |2 ⊥ on the even eigenvectors of I are determined as the projection: Traces of the operators appearing in the covariance functions (multiples of 10 -2 ). Traces of the powers of the rank-one operators A and R equal powers of their traces. The trace of B + B † is zero.

  An elliptical distribution is characterized by a location parameter µ, a positive denite dispersion matrix Σ and a function φ with positive support: let us denote this class by E
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			200004 200509 200912 200009
	Communications	# 3	33	25	29	18
	Consumer, Cyclical	# 4	60	49	33	40
	Consumer, Non-Cyclical	# 5	67	75	75	53
	Diversied	# 6	0	0	1	0
	Energy	# 7	19	21	34	15
	Financial	# 8	57	55	75	37
	Industrial	#11	51	50	50	42
	Technology	#13	38	43	35	33
	Utilities	#14	27	27	28	24
	Total number of rms (N )		352	345	360	262
	Total number of days (T )		1255	1258	755	2514

1: Economic sectors according to Bloomberg classication, with corresponding number of individuals for each period.

2000

Dec, 2004)

; during the nancial crisis

(Jan, 2005 Dec, 2009)

; after the nancial crisis (Aug

  8.1 An explicit example: the log-normal volatility . . . . . . . . . . . . . 154 8.1.1 Short-range memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 8.1.2 Long-range memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 8.1.3 Accounting for linear correlation and time reversal asymmetry . . . . . 157 8.2 Application to nancial time series . . . . . . . . . . . . . . . . . . . . 160 The long-ranged nature of volatility dependences When trying to extend GoF tests to dependent variables, self-copulas appear naturally, as we carefully showed in Section 3.2 of Chapter I.3. It is thus very important to estimate and/or model precisely the underlying dependence structure in order to apply the theory presented there. This chapter proposes two applications of the GoF tests with dependent observations.

8.2.1 Stylized facts of daily stock returns . . . . . . . . . . . . . . . . . . . . . 160 8.2.2 Empirical self-copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 8.2.3 Monte-Carlo estimation of the limit distributions . . . . . . . . . . . . . 163 8.2.4 Beyond stationarity and universality . . . . . . . . . . . . . . . . . . . . 165 8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 154 Chapter 8.

  Figure 8.4: Copula diagonal of the log-normal volatility model: linear corrections to independence. Left: correction R(u, u) due to correlation of the residuals (vertical axis in multiples of ρ) Middle: correction A(u, u) due to correlation of the log-vols (vertical axis in multiples of α) Right: correction B(u, u) due to leverage eect (vertical axis in multiples of -β)
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  2 , ln T ): (0.032, 6.39) in 1995-1999, (0.046, 7.29) in 2000-2004, (0.066, 8.12) in 2000-2009 and (0.078, 7.86) in 2005-2009. These numbers vary quite a bit, but this is exactly what is expected with the multifractal model itself when the size of the time series N is not much larger than the horizon T ! (see

This result was simultaneously found byManner and Segers [Manner 

2010] (in a somewhat more general context). We still sketch our proof because it follows a dierent route (uses the copula), and the nal expression looks quite dierent, although of course numerically identical.

A further generalization that allows for stock dependent vol of vol si is also possible.

This property holds even when σi depends on the sign of i, which might be useful to model the leverage eect that leads to some asymmetry between positive and negative tails, as the data suggests.

The empirical relative bias for p = 0.95 is 1% even for series with only 10 3 points typically daily returns over 4 years.

Chapter 5. Volatility dependences: a factor model 5.1

. Noting that (1 -2iσ 2 t) -1 2 is the characteristic function of the chi-2 distribution, it can be shown that for k > 0, and with µ ≡ λ H 0

To conclude this part about the cross-sectional dependences and provide a link to the next part dedicated to temporal dependences, notice that the model studied in this chapter has no temporal content. In particular, the description of the log-volatilities does not exhibit the time-dependence responsible for the so called volatiilty clustering eect that will be discussed in several places in the next part. This however was not crucial here for the characterization of dependences among stocks. In terms of inference and parameters estimation, it generates larger uncertainties, but no bias is expected as long as the time series still have a self-averaging property. . 02, 1970Dec. 23, 201110615 KOSPI-200 South Korea Jan. 03, 1990Dec. 26, 20115843 CAC-40 France Jul. 09, 1987Dec. 23, 20116182 DAX-30 Germany Jan. 02, 1970Dec. 23, 201110564 SMI-20 Switzerland Jan. 07, 1988Dec. 23, 2011 5902 Table 7.2: Description of the dataset used: time series of daily returns of international stock indices.

Financial self-copulas

We illustrate some of the quantities introduced above on series of daily index returns. The properties of the time series used are summarized in Tab. 7.2.

Conditional probabilities and 2-points dependences

We reproduce the study of Ref. [START_REF] Boguná | Conditional dynamics driving nancial markets[END_REF]] on the statistic of price changes conditionally on previous return sign, and extend the analysis to any threshold |X (±) | ≥ 0 and to remote lags. We rst illustrate on Fig. 7.4 the conditional probabilities p (ℓ) ±± (lled symbols) and

±∓ (empty symbols) with varying threshold q = F (X (+) ) = 1 -F (X (-) ), for ℓ = 1. To study the departure from the independent case, it is more convenient to subtract the White Noise contribution, to get the corresponding AN?AII probabilities. Several features can be immediately observed: positive events (upward triangles) trigger more subsequent positive (lled) than negative (empty) events; negative events (downward triangles) trigger more subsequent negative (lled) than positive (empty) events, except in the far tails q 0.9 where reversion is stronger than persistence after a negative event. Both these eects dominate the WN benchmark, but the latter eect is however much stronger. This overall behavior is similar for all time series.

The shapes of p ±± and p ±∓ versus q are not compatible with the Student copula benchmarks (correlation ρ = 0.05 and d.o.f. ν = 5) shown in dashed and dotted lines, respectively. Notice that, due to its non-trivial tail-correlations, see part I, the Student copula does generate increased persistence with respect to WN, lower reversion in the core and higher reversion in the tails. But empirically the reversion is asymmetric and typically stronger when conditioning on negative events rather than on positive events, a property reminiscent of the leverage eect which cannot be accounted for by a pure Student copulas. Some of the indices exhibit more pronounced reversion and persistence eects. Interestingly, the CAC-40 returns have a regime 0.5 ≤ q 0.9 close to a white noise (with in particular a value of p (1) ±± = p

(1) ±∓ very close to the 0 at q = 0.5, revealing an inecient conditioning, i.e. as many positive and negative returns immediately following positive or negative returns), but the extreme positive events q 0.9 show a very strong persistence, and the extreme negative events a very strong reversion.

In the next chapter, we study in detail the p and ℓ dependence of [C ℓ (p, p)p 2 ] and [C ℓ (p, 1-p) -p (1-p)] which are straightforwardly related to p (ℓ) ±± and p (ℓ) ±∓ , respectively and nd that the self-copula of stock returns can be modeled with a high accuracy by a such that the product T Σ 2 can be large (this is the case of nancial time series, see below). If T Σ 2 is small, one can use perturbation theory around the Brownian bridge limit (note that Tr I ≈ 10 Tr A, see Tab. D.1 in appendix), whereas if T Σ 2 is large, it is rather the Brownian term I(u, v) that can be treated as a perturbation. Elements of the algebra necessary to set up these perturbation theories are given in Appendix D.

We now turn to a numerical illustration of our theory, in this simple case where only volatility correlations are present.

Short-range memory

In order to remain in the framework of the theory exposed in Chapter I.3 and satisfy in particular the conditions for the validity of the CLT under weak dependences, we assume a Markovian dynamics for the log-volatilities:

where g < 1 and η n are i.i.d. Gaussian variables of zero mean and unit variance. In this case,

(8.5)

In the limit where Σ 2 1, the weak dependence expansion holds and one nds explicitly:

(8.6)

In order to nd the limit distribution of the test statistics, we proceed by Monte-Carlo simulations. The range [0, 1] 2 of the copula is discretized on a regular lattice of size (M × M ).

The limit process is described as a vector with M components and built from Equation (3.22), page 51, as ỹ = U Λ 1 2 z where the diagonal elements of Λ are the eigenvalues of H (in decreasing order), and the columns of U are the corresponding eigenvectors. Clearly, Cov(ỹ, ỹ) =

For each Monte-Carlo trial, M independent random values are drawn from a standard Gaussian distribution and collected in z. Then y is computed using the above representation. This allows one to determine the two relevant statistics:

The empirical cumulative distribution functions of the statistics for a large number of trials are shown in Figure 8.1 together with the usual Kolmogorov-Smirnov and Cramér-von-Mises limit distributions corresponding to the case of independent variables. In order to check the accuracy of the obtained limit distribution, we generate 350 series of N = 2500 dates according to Equation (8.4). For each such series, we perform two GoF tests, namely KS and CM, and calculate the corresponding p-values. By construction, the p-values of a test should be uniformly distributed if the underlying distribution of the 8.5: Diagonal (top) and anti-diagonal (bottom) of the self-copula for dierent lags; the product copula has been subtracted. A t with Equation (8.10) is shown in thin red. Note that the y scale is small, conrming that the weak dependence expansion is justied. The dependence is still signicant even for t ∼ 500 days! (and check a posteriori) that the weak dependence expansion holds, leaving us with three functions of time, α t , β t and ρ t , to be determined. We t for each t the copula diagonal C t (u, u) to Equation (8.10) above, determine α t , β t and ρ t , and test for consistency on the anti-diagonal C t (u, 1u). Alternatively, we could determine these coecients to best t C t (u, v) in the whole (u, v) plane, but the nal results are not very dierent. The results are shown in Figure 8.5 for lags t = 1, 8, 32, 256 days. Fits of similar quality are obtained up to t = 512.

Before discussing the time dependence of the tted coecients α t , β t and ρ t , let us describe how the dierent eects show up in the plots of the diagonal and anti-diagonal copulas. The contribution of the linear auto-correlation can be directly observed at the central point C t ( 1 2 , 1 2 ) of the copula. It is indeed known [Chicheportiche 2012b] that for any pseudo-elliptical model (including the present log-normal framework) one has:

Note that this relation holds beyond the weak dependence regime. If

this is in fact Blomqvist's beta coecient [Blomqvist 1950] the auto-correlation is measured by ρ t = sin(2πβ (*) t ).

The volatility clustering eect can be visualized in terms of the diagonals of the selfcopula; indeed, the excess (unconditional) probability of large events following previous large events of the same sign is C t (u, u)u 2 with u < 1 2 for negative returns, and u > 1 2 for positive ones. On the anti-diagonal, the excess (unconditional) probability of large positive events following large negative ones is, for small u < 1 2 , the upper-left volume

and similarly the excess probability of large negative events following large positive ones is the same expression for large u > 1 2 (lower-Non-parametric copula estimator

The copula C(u, v) of a random pair (X, Y ) is

If the univariate marginals F X , F Y are known, the usual empirical counterpart to the expectation operator can be used to dene the empirical copula over a sample of N i.d. realizations (X n , Y n ) of the random pair:

which is clearly unbiased for any N . But if the marginals are unknown, they have to be themselves estimated, for example by their usual empirical counterpart. Since

an unbiased ecdf is obtained as

is not C(u, v) anymore (only asymptotically is C(u, v) unbiased), but rather

where B X (x) = n<N 1 {Xn≤x} has a binomial distribution B(p, N -1) with p = F X (x) and is not independent of B Y (y). As an example, the expected value for the estimator of the independence (product) copula

may not be computable in the general case, we dene as

our non-parametric estimator of the copula with bias correction, even when C is not the independence copula. Therefore, our estimator is technically biased at nite N but with a good bias correction, and asymptotically unbiased. Notice that the copula estimator C as dened in Eq. (A.1) is a copula as long as F -1 X and F -1 Y are continuous, whereas C as dened in Eq. (A.2) is not a copula on [0, 1] 2 for Appendix A. Non-parametric copula estimator N < ∞. Only on the discrete grid { 1 N , 2 N , . . . , 1} 2 does Eq. (A.2) dene a copula, provided the empirical inverse marginals dene the ranks (or inverse order statistic) [Deheuvels 1979, Deheuvels 1980]; in this case the bias b(u, v) is zero. Continuous interpolations are not trivial, see Sect. 5.1 in [START_REF] Malevergne | Extreme nancial risks: From dependence to risk management[END_REF]]. In practice the copula is numerically estimated on a grid with a resolution typically coarser than Appendix B

Gaussian sheets and bivariate distributions testing

Goodness-of-t testing for univariate probability distributions has been addressed in Chapter 3 of Part I, both for independent and dependent samples. We address in this appendix the generalization to multivariate samples.

We assume that the marginals were previously tested, and can work on the ranks only.

Empirical cumulative distribution and its uctuations

Consider a bivariate sample of N joint observations (U n , V n ) with uniform marginals. The empirical estimate of its copula,

converges to the true copula C as the sample size N tends to innity, but is biased for nite N .

In the following, we only care for asymptotic and pre-asymptotic (large N 1) properties of C N so that the bias is not relevant, but the bias-corrected estimator discussed in Appendix A should be considered when turning to practical applications with nite samples, i.e. when the ranks U n and V n are estimated rather than known. In particular, the bias correction is exact for the product copula C = Π, what may be of practical interest for the independence test worked out in Section B.1 below.

The rescaled empirical copula

measures, for a given (u, v) ∈ [0, 1] 2 , the dierence between the empirically determined copula and the theoretical one, evaluated at the (u, v)-th quantiles. It does not shrink to zero as N → ∞, and is therefore an appropriate quantity on which to build a statistic for bivariate GoF testing.

Limit properties

One now denes the process Y (u, v) as the limit of Y N (u, v) when N → ∞. According to the Central Limit Theorem (CLT), it is Gaussian and its covariance function is given by:

and characterizes a pinned Gaussian sheet, i.e. a two-times Gaussian process

More precisely, H C is the covariance function of the so-called pinned C-Brownian sheet, and characterizes the statistical uctuations of the copula estimate C N on an innitely large sample. Importantly, Eq. (B.3) makes clear the fact that these asymptotic uctuations still depend on the null copula C as opposed to the univariate case, where GoF tests are universal.

A global, scalar measure of distance between C N and C is provided for example by the Cramér-von Mises statistic

(B.4b) where ψ(u, v) is a weight function accounting for possible inhomogeneities to be attened in the domain.

Finding the laws of the functionals (B.4a) and (B.4b) (and many others) of the pinned C-Brownian sheet has been the focus of intense research, but their exact distributions are still not known, even in the simplest cases when ψ(u, v) = 1 and/or C = Π.

To overcome the intrinsic diculty related in large part to the covariance (B.3) being not factorizable in u, v two main approaches have been followed:

• Either changing the functional of Y : computing other functionals [START_REF] Cabaña | [END_REF]] or investigating separate subdomains of [0, 1] 2 [Fasano 1987]. In this respect, there have been attemps at building single-time transformations, along a path (u, ϑ(u)), or introducing more complex processes like Kendall's process [Genest 1993, Fermanian 2012]; • Or alternatively use another specication of the test that leads not to the pinned Brownian sheets, but rather to more convenient processes. This means take into account not only the global spreads of the copula |C N -C| like above, but also integrate information of the marginals. This approach is used by Deheuvels in Ref. [Deheuvels 2005] to design a Cramer-von Misés test for bivariate copulas, and is in the spirit of what was done by Justel, Peña, Zamra [Justel 1997] who build upon the Probability Integral Transformation suggested by Rosenblatt [Rosenblatt 1952], see also [Genest 2006, Fermanian 2012].

&

We choose to remain in the traditional setup of the Brownian sheets (B.3), and to take advantage of the weighting possibilities oered by ψ(u, v) to compute the Kolmogorov-smirnov like statistic (B.4b). We focus on the KS case because of the link with rst-passages in stochastic processes, see Chapter I.3 and Ref. [Chicheportiche 2013c]. Indeed, the law of the KS statistic can be written as the survival probability of a constrained process

B.1 Test of independence

Consider rst the case where the null-hypothesis copula is the product copula C(u, v) = Π(u, v) = uv, which is appropriate when one wants to test for independence of the variables. As a particular case of Eq. (B.3), Y (u, v) has the covariance function of a standard pinned Brownian sheet (pBs):

The unweighted Kolmogorov-Smirnov-like statistic sup |Y (u, v)| has an unknown distribution

Still, there exist bounds and approximations [START_REF] Adler | [END_REF], Adler 1987], in particular:

and similarly, for the C-pBS only approximations and numeric solutions are available [Adler 1990, Aldous 1989[START_REF] Greenberg | [END_REF], Fermanian 2005a].

The pBs is not the simplest 2-times process one could imagine. Indeed, like any pinned C-Brownian sheet it has strong constraints at the borders

However, it can be simply written as

, where W (u, v) is a standard free Brownian sheet (two-times Wiener process) with covariance

and W (u, 0) = W (0, v) = 0. The possible trajectories (or surfaces) of Y (u, v) are thus a subset of all possible paths gone by W (u, v), whose free propagator is

But of course the survival probability (B.5) involves constrained rather than free processes:

where

Equation (B.9) means that the law S(k) of the supabs of the standard unweighted pinned Brownian sheet is equal, up to a constant √ 2π, to the propagator of the Brownian sheet constrained in a stripe [-k, k].

Unfortunately, we are not aware of a relevant Markov property that would make it possible to write (and eventually solve) a Fokker-Planck-like equation with two times. Instead, we present next an original way out, by discretizing one of the time directions. Discretizing the time in one of the dimensions, f.ex. forcing v to take values in the sequence (v j ) j≤N of length N , it is possible to write W (u, v j ) = W j (u), and collect all the components in a N -dimensional vector W whose dynamics is driven by the joint SDE

where W is a vector of independent Brownian motions, and ρ is the tensor of diusion, with elements

Then, the transition density f u (w; k) of the vector process W with all components constrained in [-k, k] is solution of the multivariate Fokker-Planck equation

with the condition that f u (w; k) vanishes at the borders of the square box

Finally, the constrained two-times propagator writes

The problem is thus equivalent to the survival of a particle diusing in an N -dimensional cage with absorbing walls at ±k, and anisotropic diusion tensor. It can alternatively be stated as an isotropic diusion toward the absorbing walls of an irregular box, by appropriately changing the system of coordinates.

Changing base: the isotropic problem.

We rst diagonalize ρ in order to obtain an isotropic and rescaled diusion, albeit in a cage with a new geometry. The corresponding eigenvalues are collected on the diagonal of Λ and the eigenvectors in the columns of U.

Changing base according to UΛ -1/2 , any point writes ŵ = (UΛ -1/2 ) † w in the new coordinates. When the discretized time stamps are equidistant (v j = j/N ), the diusion coecients are

N UΛ -1 U † turns out to be the tridiagonal matrix corresponding to the discrete N -dimensional second-order nite dierence operator: 2 on the main diagonal, -1 on both secondary diagonals, 1 at position (N, N ), and 0 elsewhere. The eigenvectors and eigenvalues of ρ are easily found to be

In this new basis, the diusion is isotropic

but the box has a new reshaped geometry

(B.12)

The point on the boundary hypersurface that is the closest to the center is found minimizing the distance d2 = ŵ • ŵ = w † ρ -1 w to the center, under the constraint that at least one of the |w j | is equal to k (or equivalently maximizing the eective directional diusion rate). This special proximal point is found to have coordinates w j = k j/N = k ρ iN and be at a distance d = k √ N proportional to the square root of the number of faces (but recall that the box expands as ∼ √ N too, see Eqs. (B.12) and (B.10b)).

Original box

Deformed geometry u, v; u, v) as dened in Eq. (B.3). The time-changed rescaled process

since one shows that the correlations are

and decay exponentially with the time lags, as expected for a stationary OU process with distribution N (0, 1) (as long as 0 < < 1).

Obviously, since the pBs Y is not Markovian, the description in terms of the Markovian process Z is only possible in a limit sense, where the corner (u, v) = (1, 1) is never reached, thanks to a singular change of time: (u, v) = ( , ) maps onto (s, t) = (0, 0), and (u, v) = (1 -, 1 -) maps onto (s, t) = (T , T ) where

The diagonal and anti-diagonal copula can be written in terms of tail dependence coecients:

and the whole space [0, 1] 2 tends to be covered only when T diverges to ∞.

In the notations of page 180, u = f (s, t), v = g(s, t) and the weights are

The law of the corresponding KS statistic (B.4b) writes now

and is the survival probability of the 2D mean-reverting process. Note that we have averaged over the initial position z 0 since Z(0) = Y ( , )/[ (1 -)] ∼ N (0, 1). Unfortunately, although the free propagator of the OU process Z(u, v) is known to be

the propagator of the constrained process is unknown. Again, there is no known Partial Derivatives Equation (PDE) of the Fokker-Planck type for two times, that would describe the solution with arbitrary boundary conditions, and whose free solution would be P (s,t) (z; ∞). represents a collection of (N + 1) OU processes with covariance matrix

The vectorial SDE writes dZ(t) = -Z(t) dt + ρ 1 2 dW (t) with the initial condition Z(0) ∼ N (0, ρ), and the FPE is

where z lives in the interior of the (N + 1)-dimensional square box

and the density f t (z; k) vanishes at the border ∂D N .

If the sequence (s n ) covers the entire interval [0, T ] as N → ∞, then

The order of the limits matters, because one is likely to be interested in the preasymptotic regime where > 0 ! B.2.3 Unpinning the C-pBs

We saw above that it is possible to perform a change of time and variable in order to write the unweighted pBs as a Brownian sheet that is eventually pinned at (1,1) (Section B.1.1), and that the variance-weighted pBs could as well be rewritten as an unpinned process, namely the 2D Ornstein-Uhlenbeck (Section B.2.2). Moreover, by discretizing one time direction, the problems reduced to those of a collection of N processes (Brownian or OU, respectively). We now intend to write the C-pBs as a collection of Brownian Motions by a change of time.

We consider a pinned C-Brownian sheet, and look for a mapping between the coordinates

We write this mapping as

and dene simultaneously X(s, t) = Y (f (s, t), g(s, t)). For every s, the covariance of X(s, t) is that of a Brownian motion E[X(s, t)X(s, t ′ )] = γ(s) min(t, t ′ ), (B.18) if there exist characteristic times τ (s) > 0 and increasing mappings f, g, such that 

where ρ(s, s ′ ) = τ max /τ min .

Example: By choosing γ(s) = 1 and τ (s) = τ 0 e -2s , the equal-time correlation has the exponential form ρ(s, s ′ ) = e -|s-s ′ | , so X(s, t) is a Gauss-Markov process in s at every t ! We get back a case similar to that treated in Sect. B.1.1: a Brownian motion in t and an Ornstein-Uhlenbeck in s, although there we considered a regular unpinned Brownian sheet on [0, 1] 2 , and we discretized one time direction uniformly. According to Eq. (B.19), we can also write inversely

Since the times s and t are of dierent nature (one is exponential, the other is linear), it is convenient to choose the horizon such that

where we simply impose s = t ≡ .

Example (a path in the plane): By choosing τ (s) = τ 0 , the equal-time correlation is simply ρ(s, s ′ ) = 1, meaning that all the X(s, •) are equal: this is a Gaussian front. We can take arbitrarily s = t, which is equivalent to considering the joint mappings (u, v) ≡ (u, ϑ(u)),

From Eq. (B.19), we can also write inversely

This is very similar to the unidimensional case, since we investigate only a path in the space [0, 1] 2 . We now look more carfully at the above example where v = ϑ(u), in the particular case where the copula is C(u, v) = Π(u, v) = uv. The weights are

and the time changes f, g are

We exhibit a sequence {α(n; N )} -N <n<N such that the whole space is covered in the limit N → ∞, and such that the functions f n , g n have the required properties:

One notices that there is no condition on τ 0 , and it is possible to take τ 0 = 1 for all n ! The time change specic to each n is performed through α n , and the characteristic time scale is not important (as long as the change of time remains singular). Finally we get ψ(n, t) = (1 + t) 2 , and

It is important to notice that the weights B.25 do not depend at all on the function ϑ(•) chosen to parameterize the second time. They dene a curve, and not a surface in [0, 1] 2 . Nevertheless, by following several curves ϑ(u) = u α (n; N ) (with -N < n < N ), it is possible to cover [0, 1] 2 in the limit N → ∞, but with dierent weights ψ for every n.

B.3 Perspectives

The diagram on Fig. B.2 summarizes the possible strategies outlined in this chapter to address the problem of nding the sup of a pinned C-Brownian bridge. Appropriate time changes allow to transform the problem and handle stochastic processes that are more common and whose properties are better known, like Brownian motions (BM), 1D or 2D Ornstein-Uhlenbeck (OU) processes, Brownian sheets (Bs). We have provided the explicit transformations needed (change of time and change of variable, weighting scheme) for every strategy.

The most important original contribution of this chapter is however to suggest a discretization of one time direction, that ultimately leads to the problem of nding the density of presence of a stochastic particle in an innite-dimensional cage with absorbing walls.

This opens a new way of addressing stochastic processes indexed by two times, and we hope that future eorts can lead to a better characterization of the law of the supremum. 

or in matrix form (and using Dirac's bra-ket notation):

where C is a given symmetric positive denite matrix. When = 1, this amounts to trying to explain the correlation structure of N random variables with only N parameters. This case is typically encountered in factor models with linear exposition of every individual to a common hidden variable.

Of course this problem does not have a solution in the general case, due to the number of variables being much lower than the number of constraints. It is then better stated in a best quadratic t (least-squares estimation) sense: minimize the loss function (Hamiltonian)

given by the Mean Squared Error (MSE)

Dierentiation yields the set of equations for the optimal solution (we drop the * ):

|β can be decomposed onto contributions longitudinal and orthogonal to the rst (normalized) eigenvector |V of C (corresponding to the largest eigenvalue λ):

The correction is explicitly written in multiples of , since to zero-th order one indeed recovers the eigenvalue equation C|β = β|β |β with solution |β = √ λ |V . At this order, β|β = λ ∼ N , so it dominates any -correction.

In fact any couple of eigenvalue/eigenvector of C is solution, but the pro jector λ|V V | associated to the largest eigenvalue has the largest information content in the class of rank-one operators.

In full generality, the squared norm of |β is

and, to rst order in /N , Eq. (C.3) writes

longitudinal and transverse components must satisfy

so that the nal solution is Let r be an S-variate random vector r, and C = E[rr † ] its correlation matrix everything is normalized. The linear correlation structure of the S random variables r s is fully determined by their exposure to a common factor r (0) of zero mean and unit variance:

(C.8)

The residuals are assumed uncorrelated with variances V[e s ] = 1β 2 s .

Estimating the model

We address in this section the question of the estimation of the parameters β. This simple setup is intended to be the building block of a more complex auto-similar description of hierarchically organized variables.

When the factor r (0) is known

In this case, Eq. (C.8) is seen as a regression, and the OLS estimates of β are βs = r s r (0) , (C.9)

where • means sample average over realizations of the random variables. The theoretical bias is (0) ], so that the OLS estimator is unbiased only when the correlation of the residual with the explanatory variable is nil. When the residuals are independent Gaussian, the OLS has optimal properties (minimal asymptotic variance).

When the factor r (0) is not known

In this case another set of model predictions should be used to estimate the exposure parameters, for example the correlation structure

(C.10)

With uncorrelated residuals, we can build an estimator which leaves (C.10) unbiased under the same conditions as (C.9):

where we have introduced the loss function L β (β|r) = Cββ † with an appropriate norm taking care of the peculiarities of the correlation matrix, f.ex. the RMS over odiagonal elements of a symmetric matrix:

In this case, the perturbative method of Sect. C.1 can be used, otherwise a numerical solution must be looked for.

They need not be independent. If they are, the whole non-linear dependence structure is fully determined by Eq. (C.8).

Appendix C. One-factor linear model

Reconstructing the factor For some applications, it might be necessary to have in hands the series of the residuals, or even that of the factor itself.

The factor has then to be reconstructed from the individual variables with some weights w s : r(0) (w). It is clear that any such attempt will unavoidably introduce correlations of the form that bias the estimates of β. But this in turn precisely provides an optimality criterion for the choice of the weights:

For consistency, the residual correlation L w ( ŵ|r, β) has to be very small ! A simple and intuitive expression for the factor variable is a linear combination of its constituents: r(0) (w) = r † w/(w † Cw)

1 2 . In this case, the loss function writes

For computational convenience, the normalization of the weights can even be performed ex post so that the minimization program (C.12) is quadratic in w.

Alternatively to the two-steps procedure exposed above, a single optimization program can be run to estimate both sets of parameters β and w in a self-consistent way: considering the system

Nested one-factor model

We now consider a model where two levels of the previous structure are nested:

In each branch s there are N s leaves, and the trunk/branch indices are constructed as linear combinations of their respective constituents: Upward estimation algorithm:

• In each sector s, apply the one-factor calibration procedure (either 2-steps or selfconsistent)

compute the leaves' correlation:

estimate γ and the weights z [s] dene the branch index r(1) s (ẑ [s] ) and compute the leaves' residuals

s , i ∈ s

• Apply the one-factor calibration procedure to the root (either 2-steps or self-consistent) compute the branches' correlation C (1) = r (1) r (1) † estimate β and the weights w dene the root index r(0) ( ŵ) and compute the branches' residuals

Pluses: auto-similar recursive procedure (appropriate for many levels); quadratic minimization problems very ecient and quick. Minuses: biases are propagated (and possibly amplied) from leaves to root; trouble with very small sectors (1 to 3 individuals).

Integrated estimation algorithm:

• compute all leaves' correlations C (2) = r (2) r (2) †

• the corresponding theoretical prediction is

• estimate all exposure parameters jointly: (γ, β) = arg min ||C (2) -Q||

• In each sector s, estimate the weights z [s] dene the branch index r(1) s (ẑ) and compute the leaves' residuals

estimate the weights w dene the root index r(0) ( ŵ) and compute the branches' residuals e (1) = r (1) -βr (0) Pluses: dissociation of the estimation of the exposure parameters and that of the weights; one single optimization program for all levels simultaneously; a posterior check of the correctness of intermediate correlations. Minuses: non-quadratic minimization with a large number of parameters !

Mixed estimation algorithm:

• compute all leaves' correlations C (2) = r (2) r (2) †

• In each sector s, apply the one-factor calibration procedure (either 2-steps or selfconsistent) estimate γ [s] and the weights z [s] , using intra-sector correlations:

dene the branch index r(1) s (ẑ [s] ) and compute the leaves' residuals

s , i ∈ s

• Use inter-sector correlations to calibrate β:

Semi-theoretical prediction:

• dene the root index r(0) ( ŵ) and compute the branches' residuals e (1) = r (1) -βr (0)

• compute the branches' correlation C (1) = r (1) r (1) † and check that C (1) -β β † ≈ 0

Pluses: only quadratic minimization problems; dissociation of the estimation of the exposure parameters and that of the weights; a posterior check of the correctness of intermediate correlations. Minuses: trouble with very small sectors (1 to 3 individuals).

Improving over the initial classication

Allocating each leave to its correct branch The correlation of a leave variable r (2) i with a sector residual e (1) s is

which means that, up to noise and the small bias introduced by endogenizing the factor variables, we should observe

Signicant departure from this prediction indicates a bad initial classication . . . and suggests the correct one.

Exposure to several factors It happens that projecting the leave i onto the residuals of every branch s reveals several non trivial correlations, ruling out the pure 1-factor model and the corresponding prediction (C.15). In particular, two distinct factors (according to the initial classication) can be simultaneously inuential over given variables. The relation (C.13b) needs to be corrected accordingly:

Nested single-factor linear model 199 and the corresponding prediction in terms of correlations updated: for i ∈ a ∩ b, j ∈ s,

Another norm: overlap distance

Starting from a prior Q 0 obtained e.g. by the previous estimation method, we want to nd the optimal corrections Q 1 that minimize the overlap distance of the eigenvectors

where G = Φ † Ψ and the subscript denotes the restriction to the rst M columns and lines.

Minimizing the distance over the parameters Q 1 necessitates, for a higher convergence rate, the gradient. We compute it explicitly to rst order in perturbation theory,

Appendix D

Pseudo-elliptical copula:

expansion around independence

We compute here the spectrum and eigenvectors of the kernel H(u, v) in the case of pseudoelliptical copula with weak dependences, starting from the expansion (8.10) on page 159. The situation is better understood in terms of operators acting in the Hilbert space of continuous functions on [0, 1] vanishing in the border. Using Dirac's bra-ket notations,

The sine functions |j = √ 2 sin(jπu) build a basis of this Hilbert space, and interestingly they are the eigenvectors of the independent kernel I(u, v) (I stands for `1 ndependence' and is the covariance matrix of the Brownian bridge, see page 37: I = M -Π where M denotes the bivariate upper Fréchet-Hoeding copula and Π the bivariate product copula dened in page 18).

It is then easy to nd the spectra: rank-one operators have at most one non-null eigenvalue. Using the parities of Ã(u) and R(u) with respect to 1 2 and imposing orthonormality of the eigenvectors, we can sketch the following table of the non zero eigenvalues and eigenvectors of the dierent operators:

for the sake of readability:

where χ 2 (k; σ 2 ) = (2πσ 2 k e k/σ 2 ) -1 2 is the pdf of the chi-2 distribution, I n are the modied Bessel functions of the rst kind, and * denotes the convolution operation. The approximation on the last line holds as long as α λ I 2 = (2π) -2 and in this regime we obtain nally the distribution of the CM statistic with asymptotic kernel H, P H (k) = dP[CM ≤ k]/dk:

The second term characterizes the perturbative correction due to the departure of H 0 from the independent kernel I.

Appendix E

Appendices to Chapter III.6

E.1 The exact spectrum of the Borland-Bouchaud model In this appendix to chapter 6 of part III, we compute the spectral properties of a continuous time kernel with the BB structure of Ref. [Borland 2011]:

The eigenvalue equation

is dierentiated to obtain a second order linear dierential equation with appropriate boundary conditions:

where V (q) ≡ q ε v(τ )dτ . The resolution of this dierential problem depends on the choice of k(τ ), and we investigate below three particular cases: a linearly, exponentially and power-law decreasing kernel.

For the problem in continuous time, ε can be taken as 0, but in case this dierential problem is seen as an approximation to a discrete time problem, it is important to keep ε = 1. For the sake of simplicity of the solutions, we set ε = 0 in the following, but more precise numerical results for the rst eigenmodes are obtained with ε = 1 (see Fig. E.1), although for higher modes and at large q the choice of ε is hardly relevant.

Linearly decreasing

When k(τ ) = g • (1τ /q)1 {τ ≤q} , the general solution is a superposition of the two linearly independent solutions:

The boundary condition V (0) = 0 disqualies V c , and V ′ (q) = 0 selects only those values of λ which satisfy

In fact, we see straight from Eq. (E.1) that when k ′ is constant, the problem for V amounts to that of a free quantum particle in a box with absorbing left wall and reecting right wall.

Exponentially decreasing

When k(τ ) = g e -ατ , the general solution is a superposition of the stretched Bessel functions Z 0 ±γ e -ατ /2 , where γ = 2 g(λα). Bessel functions with negative argument are complex, so we keep only +γ > 0. The Bessel functions J ν and Y ν of the rst and second kind respectively, are linearly independent, but the lower boundary condition imposes the coecients of the combination:

Using recursion formulas for Bessel functions [START_REF] Gradshteyn | [END_REF]], the upper boundary condition becomes

and the eigenvalues λ n are quantized according to the corresponding zeros.

Power-law decreasing

Taking k(τ ) = g τ -α , the solutions are given in terms of rescaled Bessel functions Z ν (formula 8.491.12 in [START_REF] Gradshteyn | [END_REF]):

gα/λ and ν = 1/(1α). Bessel functions with negative argument are complex, so we keep only +γ > 0. In the cases we consider, α > 1 (see discussion in page 107) so that ν < 0. Although the Bessel function of the rst kind J ν (x) with negative non-integer ν diverges at the origin (as ∼ x ν ), V (τ ) vanishes linearly in 0

The rst boundary condition is thus satised for Z ν = J ν . Using recursion formulas for Bessel functions, the boundary condition becomes

and the eigenvalues λ n are quantized according to the corresponding zeros. 

E.2 Power-law volatility correlations in FIGARCH

In Chapter 6 of Part III, we studied theoretical and empirical properties of Quadratic ARCH models. In particular, 2nd and 4th order stationarity conditions were summarized, for the power-law decreasing diagonal case, in the parameter space of Fig. 6.1, page 108, by numerically solving Eq. (6.11).

We want here to get a more precise insight on the behavior of the quadratic correlation C (2) (τ ) when the input kernel k(τ ) is long-ranged asymptotically power-law:

where the bound on ensures the integrability of the kernel ∞ 0 k(τ )dτ = 1s 2 . In order to address this question analytically, we assume that the feedback kernel is innitely-ranged, and consider the continuous-time approximation. The sum in Eq. (6.11) is approximated by an integral, and decomposed as follows

The behavior at large τ → ∞ is studied by taking the Laplace transform and investigating ω → 0 while keeping a non-diverging product ωτ : ---→ B/τ β , 0 < β < 1.

We hope to be able to reconciliate the fast decay of k (since integrable) with a very slow asymptotic decay of the solution, by nding a relationship between β and . In Laplace space, we have Collecting all the terms, we nally get

Very surprisingly, the functional dependence is perfectly equalized in the limit s 2 → 0: the dierent terms have compatible powers of ω. For the relationship to be an equality, it is necessary that s 2 → 0 (i.e. the model is at the critical limit of quadratic non-stationarity), and simultaneously the RHS term vanishes: For k(0) = 1s 2 → 1 to hold, must be close to 0, and in this case there is only one solution β = 1 -2 , 0 < < 1 2 .

Exponential resulting correlation

We now check whether there might exist a crossover to an exponentially vanishing asymptotic correlation:

τ →∞ ---→ B e -βτ , 0 < β.

Again, the Laplace transform are computed asymptotically: