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Introduction

Relaxor ferroelectrics constitute a class of disordered crystals possessing peculiar structure and properties. They were discovered more than 50 years ago among the complex oxides with perovskite structure, and so far, in spite of numerous investigations, the microscopic origin of the peculiar behavior of relaxor ferroelectrics remains unsettled.

In these materials, the disorder and frustration stemming from spatial heterogeneities are an integral part of their characteristics. Several theoretical formulations have been conducted

in the attempt of elucidating the origin of the relaxor behavior, mainly either involving phenomenological approaches or resorting to statistical spin models. However, the understanding remains scattered and a unifying approach is still lacking. The work is organized as follows. * Chapter 1 constitutes an overview of relaxor ferroelectrics. Since the parent compounds of ABO 3 perovskite relaxors are prototypical ferroelectrics, it is worthwhile starting the chapter by a brief review of the phenomoneological, soft-mode and first-principles theories of ferroelectrics. This will be followed by a discussion of the properties of relaxor ferroelectrics and the contrast between these properties and those of normal ferroelectrics. We then give a detailed presentation of both the accumulated and current knowledge about relaxors. Finally, a section is devoted to PLZT family of relaxors, as these compounds will later serve as a case of study in the assessment of our model. * Chapter 2 is concerned with providing the conceptual foundations and framework for a gauge theory for relaxors, and is subdivided into two main parts. The first part introduces the common concepts and methods underlying various related gauge approaches, emphasizing their lattice formulation and they reliability in describing defects and disorder-induced frustration. The second part is methodological and provides a detailed description of the implementation of local symmetry and related gauge concepts to the case of relaxor ferroelectrics. * Chapter 3 collects the main results that were obtained from Monte Carlo simulations and also presents an attempt to characterize the underlying role of topological defects in the relaxor behavior.

Finally, concluding remarks and future directions are gathered in the conclusion.

Chapter 1

General background

The most studied and most technologically [32][START_REF] Uchino | Ferroelectric Devices[END_REF][START_REF] Gruverman | [END_REF] important relaxor ferroelectrics are mixed ABO 3 perovskite oxides (Fig. 1.1). Since the parent compounds of ABO 3 perovskite relaxors are prototypical ferroelectrics (FE), it is worthwhile reviewing the phenomenological, soft-mode and first-principles theories of ferroelectrics. This will be addressed in section 1.1. In order to appreciate the properties of relaxor ferroelectrics, some of their properties are contrasted with those of normal ferroelectrics in section1.2. Section 1.3 surveys both the accumulated and current knowledge about relaxors, and is subdivided into three parts, referring to the three main categories of models. The subdivision is indicative and aims only into highlighting the conceptual analogies invoked to understand the relaxor behavior. Whereas the first category has made wide use of the random exchange mechanism, the second one envisioned disorder as a source of random fields, and the third one has combined both, in a random-bond random-field model. Finally, section 1.4 reviews the main features of the PLZT family of relaxors, as these compounds will later serve as a case of study to assess our model. In the linear approximation, a dielectric sample placed in an external electric field E acquires a macroscopic polarization that is proportional to the strength of the applied field:

P i = ε 0 χ ik E k (1.1)
1 Ferroelectricity is accompanied by the appearance of new components in the pyroelectric tensor [START_REF] Tagantsev | Domains in Ferroic Crystals and Thin Films[END_REF].

where χ ik is the tensor of the dielectric susceptibility of the material and where ε 0 = 8.854 × 10 -12 F.m -1 is the dielectric permittivity of the vacuum. If the dielectric is isotropic and uniform, χ is a scalar and Eq.(1.1) is reduced to:

P = ε 0 χE (1.2)
The electric flux density, or electric displacement, D is defined as

2 D = ε 0 E + P = εE (1.3)
where ε = ε 0 (1+χ) is the dielectric response of the medium. When the dielectric is subjected to a time dependent electric field, D and P do not follow instantaneously, but rather over a period of time due to inertial and dissipation effects. A relaxation time τ is thus needed to reach equilibrium values. Therefore, if

E = E 0 exp (iωt), then D = D 0 exp (iωt -δ),
where ω is the frequency of the applied field and δ the loss angle. In the presence of dielectric losses and relaxation effects, ε is a complex quantity ε = ε ′ + iε ′′ , where the real part, ε ′ , is called the dielectric response and the imaginary part, ε ′′ , is the so-called loss. Both are related, at any given frequency, by the Kramers-Kronig dispersions relation, and define the loss angle

tan δ = ε ′′ /ε ′ [4, 36].
Although ferroelectric crystals are a widely varied group, they exhibit general characteristic properties among which [4]:

⋄ The hysteresis loop disappears at a certain temperature, the Curie point T C , above which the crystal behaves as a normal dielectric.

⋄ Above T C a ferroelectric crystal loses its intrinsic polarization and transforms to a phase of higher symmetry. This higher temperature phase is usually nonpolar, or paraelectric.

⋄ The polar crystal structure of a ferroelectric can be derived from the high temperature paraelectric structure by a slight distortion of the crystal lattice. This is the main reason behind the success of the phenomenological theory of ferroelectricity which assumes that the same free energy function is applicable for both the ferroelectric and paraelectric phases.

⋄ Ferroelectrics generally have a ε (or χ) larger than in normal dielectrics, which rises to a peak value at T C .

⋄ Above T C , ε of a ferroelectric (measured along the polar axis) usually obeys the Curie-

Weiss law ε = C/(T -T 0 )
, where C and T C , are the Curie-Weiss constant and Curie-Weiss temperature, respectively, and where T 0 coincides with T C in the case of a second order transition.

Landau-Ginzburg-Devonshire phenomenological theory

Based solely on symmetry considerations, Landau theory can provide a reliable description of a system's equilibrium behavior near a phase transition. This phenomenological approach 3

relates measurable quantities to one another using a minimum set of input parameters that can be determined either by comparison to experiment or from first-principles approaches.

Because it assumes spatial averaging of all local fluctuations, this theory is particularly wellsuited to systems with long-range interactions such as ferroelectrics [START_REF] Ghosez | American Scientific Publisher 2006[END_REF][START_REF] Chandra | The Physics of Ferroelectrics: A Modern Perspective[END_REF].

The fundamental idea of the Landau approach is that the free energy can be represented as a series expansion of the order parameter in the vicinity of the transition. Although it is suspicious that singular behavior associated with a transition can emerge from such a regular expansion, this assumption is to a certain extent justified because the value of the order parameter that minimizes the free energy is itself a singular function of the expansion coefficients which are temperature-dependent. However, the power-law form of the free-energy may not be valid very close to the transition. Furthermore Landau theory is based on the presumption that local fluctuations in the order parameter are small, whereas in the immediate vicinity of the transition, critical fluctuations occur. Given those limitations, Levanyuk and Ginzburg [START_REF] Levanyuk | [END_REF]52] developed a criterion to assess the validity of Landau theory. Qualitatively [START_REF] Chandra | The Physics of Ferroelectrics: A Modern Perspective[END_REF] their criterion suggests that Landau Theory works well 4 when the coordination number is high, condition that can be achieved either by large dimensionality or by long-range interactions (such as dipole-dipole interactions).

The first step in the development of a thermodynamic theory is the identification of the relevant degrees of freedom of the problem under consideration. Three independent variables have to be chosen among the conjugate pairs temperature-entropy, stress-strain, and electric field-electric displacement (or polarization). Different combinations yield different thermodynamic potentials related by the proper Legendre transformations between the independent variables [START_REF] Ghosez | American Scientific Publisher 2006[END_REF]. The next step is the choice of a prototype state. For perovskite oxides this state usually corresponds to a non-polar phase. Then, a polynomial expansion of the thermodynamic potential as a function of the independent variables is done and is assumed to remain valid before and after the phase transition. Coupling terms between the independent variables are also considered 5 . Finally, the thermodynamic potential is minimized to find the equilibrium thermodynamic states, and specific thermodynamic functions 3 Let us note that the Landau theory of phase transitions is a mean self-consistent theory. 4 i.e. the critical exponents are mean-field-like 5 The major difference between Landau theory treatments of ferroelectricity and ferromagnetism arises from the strong coupling between the polarization and the lattice, feature which is usually insignificant in the magnetic case. Ferroelectric dipoles are generated by the displacement of atoms, and thus on a local scale there is strong spatial anisotropy. In general the development of a macroscopic polarization in a ferroelectric will be accompanied by a macroscopic strain, and thus ferroelectricity and ferroelasticity are closely related phenomena. Elastic degrees of freedom thus must be represented in a Landau theory for most ferroelectrics.

are subsequently computed by differentiating it accordingly. The effect of the temperature arises from a temperature dependence of some parameters assumed a priori.

Let us exemplify the approach considering polarization and strains as independent degrees of freedom. The expression for the thermodynamic potential around the unpolarized cubic crystal takes the following form, as first suggested by Ginzburg [53][54][55] and further developed by Devonshire [56,57]: to the Cartesian directions. The expansion has been cut at 6th order in P for simplicity, and it does not contain odd terms in polarization since the prototype state is centrosymmetric.

F (T, η, P ) = 1 2 C 11 (η
The last three terms in the expansion couple the strain and the polarization6 .

For simplicity, let us ignore the strain fields and suppose that the polarization is directed along one of the Cartesian directions. Under these conditions, the expression for the thermodynamic potential reduces to F (T, η, P ) = a 1 P 2 + a 11 P 4 + a 111 P 6

(1.5)

The signs and magnitudes of the coefficients determine the nature of the transition and the behavior of the dielectric properties in the immediate vicinity of T c . As previously mentioned, the coefficients of the expansion should be temperature dependent. However, for practical Depending on the sign of a 11 two cases are to be considered:

⊲ If a 11 > 0, then a second order phase transition occurs at T = T 0 : For T > T 0 the quadratic term is positive and the thermodynamic functional is a single well with its minimum corresponding to the non-polar P = 0 phase. For T < T 0 the quadratic coefficient is negative, and the thermodynamic potential displays the typical double well shape. There are two minima for P = 0. In this case the change in temperature of P is continuous and T 0 corresponds to the Curie point T c (Fig. 1.3).

⊲ If a 11 < 0, even if T > T 0 (such that the quadratic coefficient is positive) the free energy may have a subsidiary minimum at non-zero P . As T is reduced, this minimum will drop in energy below that of the unpolarized state, and thus will correspond to the thermodynamically favored configuration. The temperature at which this happens is, by definition, the Curie temperature T c which however in this case exceeds T 0 . At any temperature between T c and T 0 the unpolarized phase exists as a local minimum of the free energy. The most important feature of this phase transition is that the order parameter jumps discontinuously to zero at T c . This type of phase transition is usually called a first-order or discontinuous transition (Fig. 1.4).

Landau theory offers a simple and coherent framework to classify and describe structural phase transitions at a phenomenological level. For this reason it was widely used in the past to study ferroelectric systems and still remain a valuable approach. We emphasize that Landau theory is strictly a macroscopic approach and thus it cannot describe any microscopic physics (e.g. atomic displacements etc.) associated with the phase transition. 

Soft-mode microscopical theory

One of the most significant theoretical development in ferroelectricity was reported by

Cochran [58,59], within a dynamical phenomenological description of the ferroelectric transition. He realized that the theory describing the instability should be cast within the framework of lattice dynamics, considering one of the lattice mode as the basic variable. The notion of soft-mode was introduced and provided the link whereby the static phenomenology of Landau-Ginzburg-Devonshire could be interconnected with atomistic descriptions through the elementary excitations, phonons, of the crystal lattice.

From a lattice dynamics point of view, the condition for stability implies that the crystal is stable with respect to three distinct types of deformations: long wavelength homogeneous deformations or displacements (zone-center acoustic modes, k = 0 at the Γ point in the Brillouin zone), long wavelength inhomogeneous deformations associated with an opposite motion between positive and negative ions (zone-center transverse optical mode), and short wavelength deformations (zone-boundary optical modes of vibrations, at points such as X or R). Hence, the general condition of lattice stability is that all normal modes of vibration have real finite frequencies. The limit of stability against a particular mode of vibration is approached as the corresponding frequency approaches zero.

The soft-mode theory has been successful in understanding many displacive ferroelectrics, especially ABO 3 perovskites. On approaching T c , the restoring forces to the original equilibrium positions in the high-symmetry phase are weakened, ultimately vanishing and resulting in a new set of equilibrium positions associated to a distorted crystalline structure, whose symmetry is dictated by the symmetry of the mode driving the instability. The decrease and ultimate vanishing of the soft-mode frequency as the transition is approached, is caused by cancellation between competing forces, namely, short-range covalent repulsions that favor centrosymmetric structure, and long-range dipole-dipole interactions that stabilize long-range order. This cancellation can be induced by changes in composition, temperature, or other external fields. In particular, the application of pressure can significantly influence the balance between competing forces and thereby strongly influence, or induce, soft-mode behavior [93].

In perovskites, it is the softening of the transverse optical zone-center mode that drives the ferroelectric instability ω T O (T → T c ) → 0. The spontaneous displacements associated to the soft phonon can be regarded as the order parameter of the transition, since they are directly related to the the spontaneous polarization.

Experimentally, the square of the soft-mode frequency is found to vary linearly with temperature:

ω 2 T O = K(T -T c ) (1.7)
where K is a positive constant and T c is the second order transition temperature. According to the Lyddane-Sachs-Teller relation which connects the macroscopic dielectric constants to the microscopic optical phonon frequencies,

ε s (T ) ε ∞ = ω 2 LO ω 2 T O (T ) . (1.8) 
Here ε s and ε ∞ are the static and the high frequency dielectric constants, and ω LO and ω T O are the frequencies of the longitudinal and transverse optical phonon modes, respectively. It is generally found that the frequency of the higher optical mode ω LO exhibit no considerable variation with temperature. The decrease in the soft-mode frequency as the temperature approaches T c , will thus cause a dramatic increase of ε s , ultimately resulting in the dielectric anomaly ascribed to the soft-mode condensation. Combining Eqs. (1.7) and (1.8) yields the observed Curie-Weiss temperature dependence of the static dielectric constant, namely

ε s = C/(T -T c ) (1.9)

First-principles theory

Although Landau and soft-mode theories have been very successful in the analysis and interpretation of FE properties and in identifying the mechanism for the FE transition in soft-mode systems, the atomic-level origin of ferroelectricity, particularly in the ABO 3 perovskites, remained unclear. The remaining questions pertained to the underlying cause of the ferroelectric instability, and to the vastly different FE behavior in seemingly similar compounds.

In 1990, Boyer et al. [44] anticipated that first-principles theory could lead to a deeper understanding of FE properties. The reason to use first-principles methods is that (i) one is not reliant on parametrized theories or (ii) on fitting possible inaccurate experiments, (iii) one has access to the underlying potential surfaces, (iv) can clearly see the origin of observed behavior, and (v) they can be applied to hypothetical or not yet synthesized materials, or (vi) for temperature, pressure or compositions for which data are not available [45]. Firstprinciples methods refer to the exclusive use of parameters obtained from the fundamental interactions among electrons and nuclei rather then constrained by experimental data.

Among the advances made have been the understanding of the role of covalency and hybridization in driving ferroelectricity in perovskites. Carrying first-principles calculations based on the density functional theory (DFT) within the local density approximation, Cohen et al. [46,137] elucidated the difference between BaTiO 3 7 and PbTiO 3 8 . Performing lattice dynamics and electronic structure calculations for the two materials, the calculated potential as a function of soft-mode distortion for the two crystals featured much deeper well for PbTiO 3 than for BaTiO 3 , when accounting for the tetragonal strain. Thus the tetragonal strain stabilizes the tetragonal phase in PbTiO 3 but not in BaTiO 3 , where the rhombohedral phase remains more stable.

Analysis of the charge densities and densities of states further showed that the ferroelectric instability is due to hybridization between the oxygen 2p states and the titanium 3d states. If this hybridization is inhibited, the FE instability is suppressed and the cubic phase is stable.

Additionally, in BaTiO 3 the Ba is ionic and spherical, whereas the Pb in PbTiO 3 is highly nonspherical in the FE phase, and its polarization helps stabilize the tetragonal ground state.

More generally, the above calculations [45] have shown that (i) all Coulomb lattices are unstable with respect to off-center ferroelectric ionic displacements, and (ii) the short-range repulsive forces tend to stabilize the lattice against such displacements. In particular, in the perovskites the hybridization of oxygen 2p states and the d states of the transition-metal ion reduces the short range repulsions thus allowing off-center displacements.

These recent theoretical developments made possible the microscopic and first-principles modeling of ferroelectrics. DFT was successfully applied to various ABO 3 compounds. However, it has also its limitations. The most important one is the limited number of atoms that can be handled considering explicitly the electronic degrees of freedom (few hundreds atoms for basic ground-state calculations). This imposes serious restrictions to the applicability of pure DFT calculations for the study of complex ferroelectrics. Second, ferroelectrics exhibit structural phase transitions and their properties strongly evolve with temperature. Meaningful predictions and direct comparison with the experiment requires therefore to estimate the properties at finite temperature, unaffordable within DFT, mainly because random thermal vibrations cannot be described properly with too small simulation box.

The advent of an effective Hamiltonian approach allowed to overcome these limitations and treat finite temperature effects [12,149]. In this approach the soft mode is considered as the driving force for the phase transitions. The Hamiltonian is constructed from a Taylor expansion of the energy around the paraelectric phase in terms of the soft mode ionic degree of freedom and the strains (and can be generalized to mixed crystals by including compositional degrees of freedom to account for the alloy nature of the compounds). All parameters that appear in the expansion are determined from DFT total energy. The total energy based on this Hamiltonian is then used in Monte Carlo simulations enabling the study of the structural phase transitions of ferroelectrics [149,150] and the temperature dependence of their dielectric, piezoelectric and optical properties.

Since the local polarization is directly related to the local mode, the effective Hamiltonian can be viewed has an expansion of the energy in terms of local polarization and strains (also including their coupling). In this regard, its form strongly resembles that of the Landau-Ginzburg-Devonshire theory with polarization and strain as primary and secondary order parameters. This provides a connection between the first-principles approach and phenomenological models [START_REF] Ghosez | American Scientific Publisher 2006[END_REF]. However, it is worthwhile emphasizing that the effective Hamiltonian approach remains a microscopic theory in which the polarization can fluctuate locally. It is also a truly first-principles approach with parameters directly fitted on DFT simulations and not adjusted to reproduce the experiment.

Now the challenge is to address problems in more complex mixed perovskites, that are structurally and/or chemically heterogeneous with possibly frequency dependent properties, such as relaxors [47,48].

Relaxors vs Ferroelectrics

Compositional disorder, i.e., the disorder in the arrangement of different ions on the crystallographically equivalent sites, is the common feature of relaxors [2]. The relaxor behavior was first observed in the perovskites with disorder of non-isovalent ions, including the stoichiometric complex perovskite compounds, e.g. Pb(Mg 1/3 Nb 2/3 )O 3 (PMN) [63] or Pb(Sc 1/2 Ta 1/2 )O 3 (PST) [83] (in which Mg 2+ , Sc 3+ ,Ta 5+ and Nb 5+ ions are fully or partially disordered in the B-sublattice of the perovskite ABO 3 structure) and non-stoichiometric solid solutions, e.g.

Pb 1-x La x (Zr 1-y Ti y ) 1-x/4 O 3 (PLZT) [74,157] where the substitution of La 3+ for Pb 2+ ions necessarily leads to vacancies on the A-sites. Recently an increasing amount of reported data has shown that many homovalent solid solutions, e.g. Ba(Ti 1-x Zr x )O 3 (BTZ) [75,76] and Ba(Ti The diversity in interpretations of the relaxor properties is due to the fact that so far, a general microscopic model capable of describing the generic behavior of all relaxors is still lacking. One difficulty in unifying the descriptions is related to the fact that in the case of some compounds like PST [83] and PLZT [4], in contrast to the canonical PMN for example, in addition to the relaxor behavior, a relaxor-to-ferroelectric transition occurs at low temperatures.

The general qualitative understanding, beyond points of disagreement among authors, could be summarized in the following [4]. Chemical substitution and accompanying lattice defects can introduce dipolar entities in mixed ABO 3 perovskites. At very high temperatures, thermal fluctuations are large and there are no well-defined dipole moments. Upon cooling, the presence of these dipolar entities manifests itself at a temperature T d (the so-called Burns or dipolar temperature), higher than the temperature at which the dielectric response peaks T m .

At and below T d each dipolar entity induces polarization (or dipoles) in its vicinity within a correlation length, forming polar regions whose extent is determined by the polarizability of the medium. With decreasing temperature, the size of these regions increases, ultimately either percolating the whole sample and yielding a cooperative FE phase transition at T C , or exhibiting a dynamic slowing down of their fluctuations at T < T m , leading to an isotropic relaxor state with random orientation of the polar regions.

Despite the wide variety of the relaxor group, it is possible to gather some common points.

In the perspective of appreciating and understanding their properties, it is useful to contrast some of their characteristic features with those of normal ferroelectrics [4] :

⋄ The P-E hysteresis loop (Fig. 1.5(a)) is the signature of an FE in the low temperature FE phase. The large remanent polarization, P R , is a manifestation of the cooperative nature of the FE phenomenon. A relaxor, on the other hand, exhibits a so-called slimloop as shown on the right-hand side. For sufficiently high electric fields, the polar regions of the relaxor can be oriented with the field leading to large polarization; however, on removing the field most of these re-acquire their random orientations resulting in a small P R .

⋄ The saturation and remanent polarizations of a ferroelectric decrease with increasing temperature and vanish at the FE transition temperature (T c ). The vanishing of P at T c is continuous for a second-order phase transition (Fig. 1.5(b)) and discontinuous for a first-order transition. No polar domains exist above T c . By contrast, the field-induced polarization of a relaxor decreases smoothly through the dynamic dielectric maximum ⋄ The static dielectric susceptibility, or dielectric constant ε ′ , of an FE exhibits a sharp, narrow peak at T c (Fig. 1.5(c)). For a single crystal, the peak is very sharp and the width at half max is ∼10-20 K. For a mixed oxide FE, e.g., a PZT, the peak is somewhat rounded due to compositional fluctuations, and the width at half max is typically ∼20-40 K. The FE response is frequency independent in the audio frequency range. By contrast, a relaxor exhibits a very broad ε ′ (T ) peak, and strong frequency dispersion in the peak temperature, T m , and in the magnitude of ε ′ below T m .

⋄ The temperature dependence of ε ′ of an FE obeys a Curie-Weiss law, ε ′ = C/(T -T 0 ), above T c as shown by the linear 1/ε ′ versus T response in Fig. 1.5(c). By contrast ε ′ (T ) of a relaxor exhibits strong deviation from this law for temperatures well above T m . It is only at very high temperatures that a linear 1/ε ′ versus T response is recovered.

⋄ The FE transition can be thermodynamically first or second order and involves a macroscopic symmetry change at T c . By contrast, there is no structural phase transition across T m in a relaxor.

Theoretical approaches to Relaxors

In many solid materials, where intrinsic quenched randomness exists in form of defects, impurities or as a general structural property, the disorder stemming from spatial heterogeneities is an integral part of their characteristics. In certain circumstances, even a weak disorder can have a crucial effect on their critical behavior, by altering the stability of the low-temperature ordered phase, and inducing non-trivial properties governed by rare regions. As it will be later pointed out, one of the essential requirements for the occurrence of the relaxor behavior in ferroelectric perovskites, is lattice disorder. In order to describe disordered systems and to explore their thermodynamic behavior, simple spin systems are frequently invoked. The model Hamiltonian

H = - ij J ij S i S j - i h i S i (1.10)
accounts for random interactions (or random bonds RBs), J ij , between nearest neighbor spins S i and S j , and for quenched random fields (RFs), h i acting on the spins S i . While the RBs are at the origin of spin glass behavior, RFs may give rise to disordered domain states provided that the order parameter has continuous symmetry [5]. In the two next subsections, we examine the different models that have been resorted to in order to explain the relaxor behavior and that conceptually belong to either one (RBs models) or the other (RFs models) of the categories. In the third subsection, we review the spherical random bond random field model (SRBRF model), which combined both sources of disorder. The second ingredient for the relaxor behavior seems to be the existence of polar areas, at temperature higher than T m , that are either referred to as polar nanoregions (PNR), when regarded as the result of local phase transitions embedded in a cubic matrix within the RBs models, or as polar nanodomains separated by domain walls in random-field models [2].

As it will be later seen, although the existence of polar regions seems doubtless to many, the mechanisms of their formation, and thus their nature itself, are not conclusively understood.

The picture that has emerged from numerous investigations, using local structural probes, clearly indicates the necessity of distinguishing the short-range effects from the long-range ones. At short range and at low temperatures the local symmetry is polar and the atomic shifts [7][8][9] from their ideal cubic symmetry positions are correlated. At long range however, the global symmetry is cubic due to the statistical atomic disorder that results in a spatially variable polarization, yielding zero net global polarization. Thus, the crystal does not behave as a polar homogeneous crystal, because the coherence length of the polar zones is spatially limited, nor does it behave as a perfectly cubic crystal, because of the strong deviations from the cubic symmetry; in this sense, it is neither polar nor cubic. This picture meets the experimental observations. For example, de Mathan et al. studied the low temperature phase of PMN at 5 K [7]. The widenings observed at the basis of some X-ray and neutron diffraction lines were interpreted as scattering induced by atomic shift correlations, leading to a locally polar structure, characterized by antiparallel shifts of the cations against oxygen atoms inducing a dipolar moment (Fig. 1.6). The local symmetry was assumed to be rhombohedral, with atomic shifts along the 111 rhombohedral axis. The correlation length of the polar regions was found to increase as the temperature is lowered, reaching a value of 10 nm at 5 K. Additionally, a rough estimate suggested that the polar nanoregions occupy only 20% of the volume of the crystal (polar phase amount), clearly indicating the coexistence of two phases at 5 K.

As stated above, the presence of two local phases has led to two main theoretical approaches i) one approach has been to consider polar nano-regions as resulting from local phase transitions, so that the system is regarded as consisting of nanosized polar regions embedded into a cubic matrix. The relaxor behavior is attributed to a dipolar glass state with randomly interacting polar regions in presence of random fields. ii) in the second approach the charge disorder is considered to be at the origin of the occurrence of polar nanoregions and the relaxor behavior is attributed to a ferroelectric state broken up into polar nanodomains under the constraint of those quenched random fields. In the two cases the crystal is not of a single-nature 9 .

As it will be further developed, it has been considered that randomly polarized nanoregions, that are the precursors of the polar clusters, start to form at the so-called Burns temperature T d , i.e., the temperature at which mean-field fit deviates from experimental points. A matter of dispute is still the physical significance of this temperature. Recently, Bobnar et al. reported high-temperature dielectric investigations of PMN, revealing that the dielectric 9 These two situations can hardly be distinguished experimentally by structural examinations because the thickness of domain walls (i.e. the interdomain regions where polarization is not well defined) is comparable with the size of nanodomains and thus can not be neglected [7].

dispersion that appears around 600K might be due to the Maxwell-Wagner-type contributions of interface layers between sample and contacts [60]. Even more recently, Hlinka [61] questioned the necessity of the convenient but speculative concept of polar nanoregions. Specifically, he demonstrated the possibility of analyzing the experimental signatures of the so-called PNRs in a alternative way, namely by referring to a matrix-free scenario involving ferroelectric nanodomains.

Moreover, many of the existing models interpret the dielectric relaxation as stemming from the thermally activated reorientation of dipole moments of polar nanoregions, which are considered as interacting (directly or via the surrounding matrix) entities constituting a glassy system. However, another type of contribution from the polar regions to the dielectric permittivity has been formulated in terms of vibration of their boundaries within the breathing model proposed by Glazounov and Tagantsev [79] . The idea of the model lies in the use of the theory of randomly pinned interface, earlier developed for magnetic materials, and can be formulated as follows. The relaxor is considered as an ensemble of polar regions, elongated along the direction of the local spontaneous polarization P S , the boundaries of which are initially pinned by the spatial fluctuations of internal random electric fields induced by the charge disorder. In this picture, the interface of a polar region is effectively free on a characteristic length scale L c , smaller than the size of the polar region and determined by both the distribution of the pinning centers (i.e. the internal random local fields) and the elastic properties of the interface. The application of an external field E will exert pressure E.P S on the interphase boundary, leading to its bending and a modification ∆p E of the dipole moment associated to the polar region : ∆p E ∝ P S L 2 c (E.P S ). The contribution from the polar region to the dielectric permittivity is proportional to ∆p E .E/ε 0 E 2 . Therefore, the polarization response of the system is believed to occur as a consequence of the motion of the boundaries of the polar regions under applied ac field, without any change in the orientation of P S .

Before addressing the dipole-glass class of models in detail, lets us briefly consider the following atomistic model, developed by Egami and aiming at getting atomistic insight to the relaxor behavior. Based on pulsed neutron atomic pair-density function (PDF) analysis of PMN, Egami observed that the prerequired atomic disorder for the onset of relaxor behavior mainly affects the Pb polarization, making its direction random, resulting in a non-collinear structure. In this picture, in PMN, the Pb ions cannot form covalent bonds with O ions which are bonded to Nb. On the other hand, Mg ions create purely ionic bonds and do not prevent the Pb-O bonding. As a result, the direction towards Mg is an easy direction for Pb displacement. Egami addressed the atomistic mechanisms within the so-called random anisotropy model [11], described by the following Hamiltonian H = H dip + H aniso

H dip = - ij J ij P i P j , H aniso = i lm D m l O m l (P i ) (1.11)
where P i is the local polarization caused by the displacement of the i -th Pb ion, J ij describes the interaction between local polarization mediated by oxygen and B-site ions, D m l describes the anisotropy energy to rotate the Pb polarization, and O m l are the operators equivalent of the spherical harmonics. Since Mg is randomly distributed around Pb, the preferred direction of displacement of Pb varies from site to site. It is the anisotropy term that accounts for the directional dependence of the energy of Pb displacements in the compositionally disordered crystal. Consequently, the random anisotropy model analyzes the relaxor behavior within the idea of competing ordering (H dip , favoring collinear structure) and disordering (H aniso , favoring random non collinear structure) interactions, and leads to the concept of critical level of disorder associated to a threshold value of the D/J ratio between regular and relaxor ferroelectric behaviors. Although this model was established to account for the relaxor properties, the appearance of polar regions was not derived.

Compositional fluctuations and glassy like approaches to relaxors

The early model by Smolensky et al. [62,64,65] attributed the diffuse phase transition in mixed perovskites to compositional heterogeneity in the materials and thereby to the existence of wide distributions in transition, or Curie, temperatures. It it in this context that first appeared the notion of polar regions. Cross then extended this first approach and proposed a superparaelectric model for relaxors in analogy with the superparamagnetic state [1]. Central to this proposal is the hypothesis that the polar nanodomains that exist above T m , are in dynamic disorder undergoing random reorientation of their polarization along one of the eight 111 equivalent directions in the cubic paraelectric phase of ABO 3 perovskites. In support of this model, Viehland et al. [127] have given evidence for the dipolar glass-like character of PMN. Specifically, they showed that the polarization fluctuations have a freezing temperature analogous to that of spin glasses and that the correlations among polar regions control the kinetics of the fluctuations as well as the freezing process. Subsequently, these correlations were held responsible for the large deviation of the dielectric response from Curie-Weiss behavior above T m .

Because there are similarities between spin glasses and dielectric dipolar glasses, and because of the wealth of available knowledge on the former, it is useful to start this section by summarizing briefly some of the characteristics of spin glasses.

Spin glasses : an overview

Spin glasses are disordered magnetic alloys, widely regarded as paradigmatic complex systems. As an emergent state from the random magnetic system, the spin glass state differs from other statistical systems in several ways. In particular the competitive interactions give rise to non-trivial degeneracies of the ground states. The simplest definition of spin glass is that of a spin system whose low temperature state appears as a disordered one. In order to produce such a state, two requirements are necessary: the Hamiltonian must contain randomness, and there must be frustration. Randomness means that the Hamiltonian depends on some random parameters, such as the couplings among the elementary degrees of freedom, whose probability distribution is supposed to be known. These random couplings are collectively denoted as spatially quenched disorder, physically meaning that the dynamics of the impurities in the disordered system is by many orders of magnitude slower than the dynamics of the spin degrees of freedom. Therefore, the disorder does not thermalize, it can be considered as fixed. Frustration refers to the presence of competing interactions which can not be simultaneously satisfied, such that the Hamiltonian can not be reduced to a sum of many terms, all of which can be minimized by a single ground state configuration, but rather gives rise to low-lying metastable configurations, as shown by zero-field and field cooled susceptibilities measures (Fig. 1.7). Upon cooling in the absence of an applied field, the magnetic moments do not achieve neither ferromagnetic nor antiferromagnetic long-range order, rather, they exhibit a freezing temperature, T f , below which the moments are randomly frozen over macroscopic times. T f is manifested by a relatively sharp but rounded peak in the frequency-dependent susceptibility χ(ω, T ), as shown for example in Fig. 1.8. This is a universal feature of a spin glass, among history-dependence, observation-time dependence, etc. In this short overview, we present some of their characteristic features [4,85]:

⋄ A broad spectrum of relaxation times just above T f , with the spatial extent of the spin correlations (i.e., the correlation length, r c ) increasing as T → T f from above, indicating that collective behavior of the spins is coming into play. Thus on a local scale strong magnetic correlations develop far above the freezing temperature. It is these collective effects that presumably give rise to the long relaxation times. For a system of Ising spins, the spin-spin correlation function for spins i and j averaged over time, τ , is S i S j . Its sign for a spin glass is random, and thus there is no net magnetization. However, the quantity S i S j 2 is not random but decays exponentially to zero as the separation between spins |r i -r j | becomes comparable to r c , i.e.,

S i S j 2 ∝ exp [-|r i -r j |/r c ] (1.12)
⋄ At sufficiently high temperature, χ(T ) follows a Curie-Weiss law. However, deviations from this law set in and grow at temperatures much higher than T f as T → T f from above. These deviations are attributed to spin-spin correlations.

⋄ Cooling in the presence of an applied magnetic field (field cooling) the spins tend to align with the field, leading to magnetic hysteresis and remanence below T f . At sufficiently high fields, the spin-glass state is destroyed.

⋄ A prototype model for the description of cooperative phenomena in disordered magnets was formulated by Edwards and Anderson [81], who considered that the site randomness of the spin-carrying atoms is less relevant to the properties of spin glasses compared to the randomness in interactions or bond randomness. The Hamiltonian of the random bond Ising model (RBIM) in the absence of an external field is then expressed as The free energy of the spin glass state is considered to have many minima and the barriers between them are expected to grow indefinitely as the system size increases. Within a limited time scale, the physical properties of the system are determined by one of the valleys. After a an extremely long time, the observed behavior would reflect the properties of all the valleys (After Nishimori [START_REF] Nishimori | Statistical Physiscs of Spin Glasses and Information Processing An Introduction[END_REF]).

H EA = - (i, j) J ij S i S j (1.13)
The spin variables are assumed to be of the Ising type S i = ±1, placed on a regular Z d lattice, where d is the spatial dimension. Each interaction J ij between a neighboring spin pair (ij) is considered to be distributed independently according to a probability distribution P (J ij ). As typical examples of the distribution of exchange bonds, one often uses

⊲ Gaussian model : P (J ij ) = (2πJ 2 ) -1/2 exp -J 2 ij /2J 2
, with zero mean and J 2 variance.

⊲ ± J model or frustration model : P (J ij ) = p δ(J ij -J) + (1 -p) δ(J ij + J) , where J ij is either J(> 0) (with probability p) or -J (with probability 1 -p).

⋄ There exist in spin glasses a large number of thermodynamic states with the same macroscopic properties, but with different microscopic configurations, separated by large energy barriers in phase space. The free energy landscape is then expected to exhibit many minima (Fig. 1.9).

⋄ A long-standing question for spin glasses is whether or not the χ(T ) peak at T f represents a true equilibrium phase transition. For a phase transition, both τ and r c should diverge at T f , otherwise both quantities become large and finite. To assess the spin ordering in a single valley, it is necessary to take the thermodynamic limit to separate the valley from the others by increasing the barriers indefinitely so as to ignore transitions between valleys and observe the long-time behavior of the system in one valley. Under these conditions, the Edwards-Anderson order parameter for one valley q EA is defined as follows:

q EA = lim t→∞ lim N →∞ [ S i (t 0 )S i (t 0 + t) ] (1.14)
where . denotes statistical mechanics average over thermal fluctuations and [ . ] denotes the configurational average over the random interactions. q EA 10 measures the similarity (overlap) of a spin state at site i at t 0 + t to its initial state at t 0 11 .

⋄ The multivalley structure in phase space leads to a breakdown of ergodicity. Whereas symmetry considerations relate every thermodynamic state to another one of the same free energy with spins inverted (note that this symmetry can be broken in any nonzero field conjugated to the order parameter), mean-field theory 12 predicts additional states, unrelated by symmetry, with virtually the same free energy. This phenomenon corresponds to "ergodicity breaking." and is associated to accidental degeneracy, which in turn occurs because of randomness and frustration in the system.

⋄ There is evidence that ferromagnetic clusters are the building blocks out of which the spin-glass state is formed. This points to some degree of correlations and distinguishes the spin-glass state from the superparamagnetic state where the magnetic particles are dilute (or free) and non-interacting.

⋄ Measurements of the frequency and temperature dependencies of the real and imaginary parts of the susceptibility reveal a broad spectrum of relaxation times even well above T f . The temperature dependence of the maximum relaxation time, τ max , is generally found to be non-Arrhenius, i.e.. not compatible with simple thermally activated hopping over barriers: rather τ max (T ) can be well fit by the Vogel-Fulcher equation

τ max = τ 0 exp [E/k B (T -T 0 )
] where T 0 is a characteristic temperature.

As we have seen above, spin glass behavior results if disorder is introduced into magnets with competing interactions. Thus it is immediately plausible to expect that similar behavior may occur for other ordering phenomena, if there is competition between various interactions in presence of disorder. Candidates for such behavior are systems associated with structural transitions as they occur in ferroelectrics or antiferroelectrics. In this case, the local ordering is due to electric dipoles, and hence one is talking about "dipolar glasses" [121,124]. From a theoretical point of view, the spin representing a magnetic moment turns into a "pseudospin" representing the electric moment; dielectric rather than magnetic susceptibilities need to be considered, while otherwise the situation is similar to that for magnetic spin glasses. 10 One can rewrite this quantity using the square of the local magnetization m a i = Si a, where a labels the restriction of the system to a specific valley a, and the probability Pa = e -βFa /Z that the system is located in a valley a. qEA = a Pa(m a i ) 2 = a Pa 1 N i (m a i ) 2 . In this second equality, it is assumed that the averaged square magnetization does not depend on the location 11 In addition to qEA that probes the single valley ordering, it is possible to define q EA that represents the average over all valleys corresponding in the long-time observation. It can be expressed explicitly as q EA = ( a Pam a i ) 2 = 1 N ab PaP b i m a i m b i which can be rewritten using mi = a Pam a i as q EA = Si 2 , that accounts for the average overlaps between valleys for time scales longer than transition times between valleys [START_REF] Nishimori | Statistical Physiscs of Spin Glasses and Information Processing An Introduction[END_REF].

Compositional fluctuation model

In this early phenomenological model developed by Smolenskii, Kirillov and Isupov [62,64,65], the diffuse nature of the phase transition in perovskites was attributed to the disordered distribution of hetero-valent cations over equivalent cristallographic sites. Due to the dependence of the Curie temperature on the concentration of the components, the resulting spatial micro-inhomogeneities consequently lead to a statistical distribution of local ferroelectric transition temperatures T C,loc , causing the broad temperature dependence of dielectric properties and the diffuseness of the transition. In this model, the relaxor ferroelectric is considered as an ensemble of randomly oriented non-interacting polar regions in paraelectric environment, whose number increase upon cooling. Thus PNRs correspond to regions with enhanced local T C . It was suggested that the total number of polar regions contributing to the dielectric response in the vicinity of the permittivity peak is given by a Gaussian distribution characterized by a mean value corresponding to the temperature of permittivity maximum T m , and by a standard deviation δ, also regarded as the diffuseness coefficient.

Assuming that the phase transition of the polar regions is of the first order, the following expression for ε ′ was obtained:

ε ′ (T ) = ε ′ m exp - (T -T m ) 2 2δ 2 (1.15)
Taking the limit of high diffuseness δ ≫ T -T m and expanding Eq.(1.15) into a truncated power series, the following expression, known as the square Curie-Weiss law, was then derived:

ε ′ m ε ′ = 1 + (T -T m ) 2 2δ 2 m (1.16)
Deviation to the quadratic dependence (Eq.(1.16)) incited many authors [67][68][69][70] to search for a new formula describing the diffuse phase transition. In order to characterize the dielectric diffuseness an empirical power law was proposed:

ε ′ m ε ′ = 1 + (T -T m ) γ 2δ 2 γ , (1 γ 2) (1.17)
The limiting values γ = 1 and γ = 2 reduce the expression, in the first case to the Curie-Weiss law valid in the case of a normal ferroelectric (and in the case of relaxors [71,72] for temperatures above the characteristic Burns T d ), and in the second case to the quadratic dependence corresponding to Eq.(1.16). The exponent γ, determining the degree of the diffuseness of the phase transition, is usually obtained from the slope of the log -log plot of

(1/ε ′ -1/ε ′ m ) versus (T -T m ).
By introducing the notion of polar regions, this model has initiated the conceptual foundation for subsequent models. However, this static model fails in describing the dispersive nature of the transition. Moreover, the effect of pressure in tuning the relaxor behavior in ferroelectrics compounds of fixed compositions can not be recovered.

Following the idea of Smolenskii et al., Nambu et al. proposed a mean field theory of the diffuse phase transition [66]. In this phenomenological model, the existence of clusters is postulated a priori and the diffuseness is ascribed to the gradual condensation of local polarizations in these clusters. Specifically, the free energy is expanded in terms of a uniform polarization P , and a local polarization P i , yielding where α i = (T -T 0 )/ǫ 0 C, N is the total number of lattice sites, α 11 and α 111 are constants (α 11 < 0). From symmetry considerations, the coupling term between the two polarizations is of the form γP 2 P 2 i . The interaction a ij between local polarization is assumed to be of the form a ij = (T -J ij )/ǫ 0 c ′ where J ij is a random variable with zero mean value.

F = 1 2 N α 1 P 2 +
All the parameters were determined so as to fit to the measured dielectric susceptibility.

Using this free energy, numerical calculations were carried out for PMN and ordered PST (Pb(Sc 1/2 Ta 1/2 )O 3 ), yielding ε ′ (T ) behaviors in close agreement with experimental observations.

Superparaelectric model

An extension of the compositional fluctuation model was made by Cross [1] who, in the spirit of superparamagnetism [78], proposed the superparaelectric model. This model ackowledge the existence of polarized regions within the relaxor ferroelectrics similarly to the singledomain spin clusters in the super-paramagnetics, and consequently regard them as noninteracting dynamical entities, flipping between alternative orientational states under thermal activation. The multiwell stucture of the potential is ascribed to the compositional fluctuation that locally breaks the global symmetry and creates favorable directions. In this case of dynamic polar regions each of which contributes independently to the dielectric response in a Debye-like fashion, the relaxation time τ follows the Arrhenius law:

τ = τ 0 exp(E b /k B T ) (1.19)
where E b is the volume dependent energy barrier between orientational states. Given the nanometric scale of the polarized regions and under sufficient thermal fluctuation, the polarization can overcome the energy barrier, leading to the frequency dependence of the dielectric response. The superparaelectric model emphasizes the dynamic behavior of the polarized regions, which enables reasonable explanation to aging, electrostriction and the nonlinear behavior of the thermoelastic and optical properties. However, as reported by Isupov [80],

whereas superparamagnetic particules are embedded in a non magnetic host, thereby justifying the concept of paraelectric gas, in relaxor ferroelectrics, polar regions are surrounded by polarizable para-electric (rather than dielectric) regions. Moreover, although the frequency dependence reflects a slowdown in the dynamics at low temperatures, Debye relaxation is insufficient in reproducing the frequency dependence of T m . It is this shortcoming, together with the inability of the assumption of independent cluster in predicting the appearance of long-range order with the change of the composition or due to an applied external field, that have motivated the consideration of interactions among polar regions.

Dipole glass models

At high temperature, relaxors exhibit a non-polar paraelectric phase, which is in many aspects similar to the paraelectric phase of normal ferroelectrics. Upon cooling they transform into the ergodic relaxor state in which polar regions of nanometer scale with randomly distributed directions of dipole moments appear. This transformation which occurs at the Burns temperature, T d , can not be considered a structural phase transition because it is not accompanied by any change of crystal structure on the macroscopic or mesoscopic scale. Nevertheless, the polar nanoregions affect the behavior of the crystal drastically, giving rise to unique physical properties. For this reason the state of crystal at T < T d is often considered as a new phase different from the paraelectric one. At temperatures close to T d the polar nanoregions are mobile and their behavior is ergodic [2]. Upon cooling, their dynamics slows down and at a low enough temperature, T f13 (typically hundreds degrees below T d ), the polar nanoregions in the canonical relaxors become frozen into a nonergodic state, while the average symmetry of the crystal still remains cubic. Similar kind of nonergodicity is characteristic of a dipole glass (or spin glass) phase [2]. It is precisely the identification of the two characteristic temperatures, i) the Burns temperature14 , T d (greater than T m ), below which the condensation of local polarization occurs, marking an onset of deviation from a simple extrapolation of higher temperature properties, and ii) the freezing temperature, T f , below which thermal energy is insufficient for reorientational activation, heralding the onset of non-ergodic behavior, that led to a glassy interpretation of the relaxor behavior.

Evidence for the existence of polarized regions above T m Since the average value of the dipole polarization P d reduces to zero under thermal fluctuation, it is P 2 d -dependent

properties, such as the quadratic electro-optic effect and electrostiction, that were best expected to reveal the existence of polarized regions. Measurement of the temperature dependence of the refractive index n(T ) by Burns and Dacol [82], led to the observations that relaxors, unlike normal ferroelectrics, exhibit a deviation to linear behavior occurring at a temperature higher than T C , the so-called Burns temperature T d associated to the onset of randomly polarized regions. Moreover, the absence of anomaly in n(T ) near T m reflects the absence of a phase transition at T m (Fig. 1.10). Assuming that the polarized regions develop randomly along one of the eight 111 directions in the cubic paraelectric phase of ABO 3 perovskites, the long wavelength of the light averages n over the crystal, so that the deviation can be quantitatively described by :

∆n = ∆n + ∆n ⊥ 3 = - n 3 0 2 g 33 + 2g 13 3 P 2 d (1.20)
where ∆n and ∆n ⊥ are the changes in the parallel and perpendicular components of n, n 0 is the index in the absence of polarization, and the g ij are the quadratic electrooptic coefficients. Another evidence for the onset of polarized regions above T m is reflected in the measured thermal expansion [1]. In contrast to the normal linear dependence of the length of a sample with respect to temperature as given by l T = l 0 [1 + α(T -T * 0 )], where l T is the length at temperature T , l 0 is the reference length at the reference temperature T ⋆ 0 , and α is the linear coefficient of thermal expansion, or equivalently by x = ∆l/l 0 = α(T -T * 0 ) where x is the thermal strain, an anomalous deviation to linearity, occurring at T d is reported in relaxors. This deviation can be explained in terms of electrostriction, and it can be shown [1,4] using the Landau expansion of the free energy in terms of stress and polarization, that for a cubic perovskite the axial thermal strain x 11 is given by:

x 11 = α(T -T * 0 ) + (Q 11 + 2Q 12 )P 2 d (1.21)
where Q 11 and Q 12 are electrostrictive coefficients. Consequently, a deviation from linearity is also measured in the lattice parameter (Fig. 1.10) [84].

Evidence for the existence of polarized regions in relaxors well above T m has also been deduced from the temperature dependence of the susceptibility (Fig. 1.10). As noted earlier, deviations to the Curie-Weiss behavior were modeled using the compositional heterogeneity model predicting a power-law (Eq.(1.17)) relationship, where γ was approximately equal to 2 [64,87]. Although this expression gives a reasonable fit of the data for some relaxors, it has been generally observed [73] that no single value of γ is found that uniquely describes the 1/ε ′ dependence of relaxors. Rather, different γ's can be found for given relaxors, depending on the width of the temperature range analyzed above T m and on the measurement frequency. In spin glasses, the Curie-Weiss law is obeyed at temperatures much greater than T f (T > 5T f ), but at lower temperatures strong deviations occur [85,86]. Sherrington and Kirpatrick [START_REF] Sherrington | [END_REF] developed an infinite range model for a spin glass which related the temperature dependence of the magnetic susceptibility χ below T f to the onset of a local (spin glass) order parameter q in the following way:

χ = C [1 -q(T )] T -θ [1 -q(T )] (1.22)
Whereas the ideal (non-interacting) superparamagnetic is known to exhibit Curie-Weiss behavior, in spin glasses, the deviation to it is ascribed to the development of strong magnetic correlations on the local scale when approaching T f and the onset of local spin glass order below T f . Similarly, Viehland et al. [72] proposed that the deviation to Curie-Weiss in PMN and other relaxors, arises due to short-range correlations among polar regions, and that these correlations at high temperature are the precursor to a freezing of the polarization fluctuations into a glassy state at lower temperatures. Invoking Eq. (1.22), and considering that the local order parameter due to to correlation between neighboring polar regions of polarization P i and P j is q = P i P j 1/2 , Viehland et al. phenomenologically modeled the susceptibility data of PMN using the values of C and θ determined from high temperatures, and calculated the temperature dependence of q (Fig. 1.11). In this picture, at T d , local ferroelectric transitions start to occur, leading to the condensation of the polar nano-regions.

In the temperature interval between 400 and 600 K, the disordering effect of temperature is large enough to prevent most polar regions from coupling, i.e. P i P j 1/2 = 0. As the temperature decreases, correlations develop as the volume fraction of polar regions increases and the thermal disordering effect decreases, ultimately leading to a freezing of the polarization fluctuation. 

τ -1 = ω 0 exp [-E b /k B (T m -T f )] (1.23)
where ω 0 is the attempt frequency related to the cut-off frequency of the distribution of relaxation times, E b is the energy barrier between equivalent dipole directions and T f is the freezing temperature (i.e. where all relaxations times diverge) which can be viewed as the static dipolar freezing temperature for the relaxation process.

Validity of the Vogel-Fulsher Equation Although the V-F equation is often considered to be a sign of freezing in the system, no microscopic prescription for it has clearly emerged.

Moreover, it is not unanimously accepted and other equations have been proposed. For example, it was shown in by Cheng et al. [94], that the temperature dependence of the relaxation time τ should be replaced by a super exponential function given by:

τ = 1 ω 0 exp [(E b /k B T m ) p ] (1.24)
where p (> 1) is a constant that characterizes the degree of dielectric relaxation. Furthermore, the V-F relation can be directly derived from different assumptions and alternative mechanisms. For instance, based on experiments performed by neutron scattering [95,96] indicating that the average size of polar nanoregions increases with decreasing temperature (Fig. 1.13), and saturates below T f , Pirc et al. suggested the possibility of a percolation-type transition into a frozen relaxor state [97]. The proposed mesoscopic mechanism for the V-F relaxation process is based on the qualitative picture of a network of polar nanoregions embedded in a highly polarizable medium. Each polar nanoregion polarizes the medium within a space region bounded by the correlation radius r c . As the temperature is lowered, r c is expected to increase; ultimately, freezing will occur due to the growth of both the size of the polar regions and the correlations among them. The basic idea is that thermodynamic stability of the polarization density with a power-law distribution P (r) ∼ r -3 implies a temperature dependence of the correlation radius r c ∼ T -1/3 . Thus the mean volume v of the polar regions increases until the percolation limit is reached. Using the mean field theory of continuum percolation, they showed that v ∼ (1 -T f /T ) -1 , and since the reorientational activation energy is proportional to v, the V-F relation follows immediately. According to this model, the two physical pictures, namely that of cluster growth and of the freezing of the local modes, are essentially two parts emerging from the same considerations.

Tagantsev [109] showed that the V-F relation can be obtained in the framework of a simple phenomenological model, all the parameters of which manifest analytical and gradual temperature and frequency dependencies. Within this model, the dielectric response is considered as a sum of relaxators having an exponentially wide and smooth spectrum of relaxation times.

Following this approach, the V-F relation can be obtained as a direct consequence of gradual broadening of the spectrum with decreasing temperature. In doing so, it was demonstrated that the V-F behavior for the maximum of the dielectric permittivity can be observed in systems that manifest a regular temperature dependence of the spectrum at any temperature, i.e. without any assumption of freezing in the system.

To conclude this section, at early stages, local phase transitions models owing to chemical heterogeneity, and cluster-glassiness owing to dipolar disorder and frustrated interaction, allowed a number of achievements to be made based on a extension of spin-glass results to relaxors. However, the underlying abstraction from the very nature of the dipoles in the cluster-glassiness interpretation grid has proven to be insufficient, and accounting for the real nature of dipoles has become necessary [80]. In order to assess the effect of the compositional variation on the extent of the relaxor behavior, the parameter ∆T disp was introduced to evaluate the strength of the dielectric dispersion:

∆T disp = T ǫ,max (10 2 Hz) -T ǫ,max (10 6 Hz) (1.25)
where T ǫ,max (10 2 Hz) and T ǫ,max (10 6 Hz) are the temperatures at which the dielectric constant ǫ is maximal for ω = 100 Hz and ω = 1 MHz respectively. The magnitude of ∆T disp is related to the Vogel-Fulcher [97] activation barrier U a :

ω = ω 0 e -Ua/k B (Tǫ,max-T f ) (1.26)
where ω is the frequency of applied field, ω 0 is an attempt frequency and T f is the freezing temperature at which the relaxation frequency vanishes. ∆T disp is thus equal to zero for normal ferroelectrics. Furthermore, in solid solutions mixing relaxors with normal ferroelectrics, ∆T disp exhibits a smooth monotonic trend from high values (on the relaxor side of the phase diagram) to zero (on the ferroelectric side), making it suitable to serve as an order parameter for compositional phase transitions between relaxor and ferroelectric phases (Fig. 1.14).

To understand the origin of the large dispersion in such solid solutions, the correlations be- As a measure of these variations, the second moment of the valence of the two B-cation nearest neighbors of each oxygen atom V 2 was chosen as a local structural parameter. It is defined as:

V 2 = 1 N O i (V B i,1 + V B i,2 -2V B ) 2 (1.27)
where avg . This leads to an alteration of interatomic interactions that in turn affects the balance between long range Coulomb forces (which favor the ferroelectric state) and short-range repulsions (which favour the nonpolar cubic structure). The decay of the correlation radius results in a enhanced relaxor behavior and in a increased frequency dispersion [104], i.e. a higher ∆T disp (Fig. 1.15). The V 2 values and the average values of B-cation displacements

V B i,1 and V B i,
D B
avg were obtained by DFT calculations using the local density approximation. 15 Setter and Cross studied that the role of B-site cation disorder in diffuse phase transition behavior of perovskite ferroelectrics [138]. In particular, they showed that ordered cationic arrangements on the B-site of Pb(Sc0.5Ta0.5)O3 give rise to a normal first-order ferroelectric phase transition (long annealing), whereas B-site disorder leads to a diffuse phase transition with broad Curie range and strong low-frequency dielectric dispersion (rapid quenching). 16 Burton et al. compared first-principles calculations for Ba(B, B ′ )O3 and Pb(B, B ′ )O3 perovskites in order to elucidate why the latter disorder at lower temperatures than their Ba counterparts. This tendency was attributed to an enhanced Pb-O hybridization between Pb 6s and O 2p states of underbonded oxygens, yielding more competitive short-range interactions. 17 Grinberg et al. connect these B-disorder induced variations in the local potential energy surface, to that of the value of h in random field spin models, which is known to hinder ferroelectricty and bring about the relaxor phase [91,141]. The dependence of ∆T disp on V 2 being found similar to that of the order parameter on temperature in standard Landau theory of a second order phase transition (Fig. 

G = G 0 - 1 2 A( V 2 , D B avg )(∆T disp ) 2 + 1 4 (∆T disp ) 4 (1.28) A( V 2 , D B avg ) = a 0 + a v V 2 + a d e -κD B avg (1.29)
where G is the free energy of the relaxor phase, G 0 is the energy of the parent ferroelectric phase, and the Landau coefficient A is function of V 2 and D B avg (a 0 ,a v ,a d and κ are constants). The exponential dependence of A( V 2 , D B avg ) on D B avg (Eq.1.29) is chosen for its providing the best fit to experimental ∆T disp data 18 . The values of the coefficients in Eq.1.28 were obtained by the use of experimental ∆T disp values for different compositions for which full long-range B-cation ordering enables precise V 2 evaluation. The good agreement between the fit and the experimental values (Fig. 1.17) validates the Landau theory of ferroelectric-to-relaxor compositional phase transition and supports the idea that the interactions that give rise to the characteristic dispersion of relaxors are of short range type and that they are governed by the variations in the local chemical bonding in perovskites.

To further assess the model and investigate in greater depth the connections between composition, local structure and dynamics in lead-based relaxor ferroelectrics, the authors performed molecular dynamics study of the dielectric response in GHz frequencies [133]. The obtained results show that some essential features of the dielectric response in relaxors can be driven 

Random Fields in Relaxors

The second canonical class of disordered systems relies on the random fields theory. Since in relaxors, inherent charge disorder due to the random distribution of heterovalent cations on the B-site of the perovskites naturally leads to quenched random fields, it wasn't long before Westphal et al. and others asserted that random fields (RF) were in fact at the origin of the observed slowing down of the dynamics of relaxors and their eventual freezing into a domain state on a nanometric length scale. Before considering random fields models in detail, it is worthwhile to briefly review the canonical random field Ising model (RFIM) since it captures the competing mechanisms for order and disorder. The local spin couplings favor ferromagnetic ordering, whereas variations in the random fields favor disorder.

Random Field Ising Model : An overview

The Ising model in a random field is a prominent example of a lattice spin model with quenched disorder, representative of a large number of impure materials. The RFIM model is defined on a lattice in the following way:

H = -J ij S i S j - i h i S i (1.30)
The spins variables can only point up or down, so that the order parameter falls in the discrete symmetry framework. This models describes the competition between random ordering fields and long range order. The probability distribution for the disorder average is typically a Gaussian or a bimodal one, where the latter one is given by h i = ±h with equal probability and h being some constant value of the field. The following assumptions about h i are generally made:

h i = 0 , h i h j = h 2 δ ij , h ≪ J (1.31)
The RFIM was first discussed in 1975 by Imry and Ma [116] and is currently under strong theoretical and experimental investigation. The important question that was first addressed is whether or not there a tendency due to disorder to suppress the ordering in lower dimensions, and hence to shift the lower critical dimension d l , above which long range order occurs, to higher values. The situation of interest is h ≪ J, since it is clear that in the opposite case the system will be disordered. Regarding this question, the two main conflicting arguments were Imry and Ma domain argument [116] and the dimensional reduction argument proposed by Parisi [118].

(i) Imry and Ma domain argument 19 In one of the earliest studies of the random field Ising model, Imry and Ma [116] argued that quenched random fields in a system may cause a uniform ferromagnetic state to break into domains, i.e. , that the ferromagnetically ordered state becomes unstable with respect to the formation of ill oriented domains in all dimensions d ≤ 2, so that d l = 2. The intuitive argument that was given goes is the . However, the associated bulk energy gain due to the interaction with the random fields scales as -hL d/2 . Obviously, for h ≪ J, i.e., there will be a characteristic length over which the bulk energy gain will overcome the cost of the surface energy. In other words, even for arbitrary week random fields, domains will spontaneously form and field fluctuations should prevent any long-range order in d ≤ 2, yielding d l = 2 (rather than d l = 1 for pure Ising model).

(ii) Dimensional reduction Other arguments were subsequently put forward for d l = 3 rather than d l = 2. Among these is the correspondence between a random system in d The debate was finally resolved by two papers in mathematical physics proving ferromagnetic ordering in 3 or more dimensions at low temperature [114], and absence of ferromagnetic ordering in 2 dimensions at any temperature [115], thereby confirming the domain argument and infirming the dimensional reduction. The breakdown of the perturbation theory is mainly due to a large number of local minima in the energy landscape 20 .

The domain argument of Imry and Ma can be generalized to the case where the order parameter is of continuous symmetry. The random-field instability of the ordered state of continuous symmetry sets in at d l = 4. So that in d < 4, the ordered state is unstable against an arbitrarily weak random field, i.e., a field much weaker than the interactions that favor the ordered state. Instead of a long-range ordered state, it becomes energetically favorable for such a system to break up on cooling into sufficiently large domains to form a so-called low-temperature domain state. The size of the domains is determined by a balance between the domain wall energy and the statistics of the random field. We now turn to the random fields models as they were formulated for describing the relaxor behavior.

Random fields in relaxors

Shortly after the work of Imry and Ma [116] on the effect of forzen-in random fields in ferromagnets, Halperin and Varma [117] advanced the possibility that similar ideas could be extended to understand the effect of atomic disorder in ferroelectric perovskites. In particular, they showed that atomic impurities couple linearly to the ferroelectric order parameter, in a equivalent manner to the random fields in ferromagnets, leading to the smearing of the transition. Although disregarded for a while, this idea resurfaced after that it had been realized that the random-bond concept was insufficient in accounting for all of the observed effects featured by relaxors.

Westphal, Kleemann and Glinchuk [122] applied the results of the theoretical work by Imry and Ma to relaxors. They considered that the applicability was legitimate for PMN for instance, despite its (only) eight-fold dipolar degeneracy. In this view, the quasi-continuous symmetry of the order parameter was held responsible for a disordered ground state on macroscopical scales, consisting of low-symmetry nanodomains separated by domain walls.

The disordered substitution of the heterovalent ions inherent to the compositionally disordered structure, provides the source for quenched random electric fields. Moreover, the lattice strains associated with these substituents also couple to the polarization setting up additional random fields or enhancing their presence. The authors have argued that random fields are responsible for the observed strong slowing down of the dynamics of PMN, and for its eventual freezing into a domain state. Within this framework, the frequency dispersion of the dielectric response is explained via a complex domain-wall motion. studying the role of lead vacancies in impeding the spontaneous relaxor-to-ferroelectric phase transition in incipient relaxor ferroelectrics such as PSN and PST, supports the interrelation between random fields and the relaxor behavior. In the same stream, the vanishing of the relaxor-to-ferroelectric transition induced by the application of hydrostatic pressure [104] at a critical point, can be understood by assessing the relative strength of the interactions that favor ferroelectricity and that are pressure-sensitive on the one hand, and the practically 22pressure-independent spatial average strength of quenched local fields | h i | , which disrupt long range ordering and favor the relaxor state on the other hand. Thus, both pressureinduced and polar-defects-induced vanishing of the relaxor-to-ferroelectric phase transition in incipient RFE emphasize the role of random fields in contributing to the relaxor behavior.

Polar nanoregions whose existence is supported by neutron scattering [145], are believed to originate from the coupling between the random fields h i and the ferroelectric degrees of freedom [146]. Within the paradigmatic view of polar nanoregions embedded in a non polar matrix and deemed to be at the origin of the relaxor behavior below T d , Burton et al.

developed molecular dynamics simulations of a first-principles effective Hamiltonian model, where random local field terms were combined with an effective Hamiltonian for a normal FE, in order to elucidate the correlations between chemical and polar short range orders, [146][147][148].

The effective Hamiltonian H eff is obtained from a Taylor expansion of the total energy around a high-symmetry perovskite reference structure in terms of a chosen set of relevant degrees of freedom:

H eff = H({ ξ i }) + H(e αβ ) + H({ ξ i }, e αβ ) + H({ ξ i }, σ l , v Pb-O , • • • ) (1.32)
where { ξ i } represent local polar distortion variables, or local vibrational modes, centered on Pb sites, {e αβ } the homogeneous strain variables and H({ ξ i }, e αβ ) a coupling term between polar and strain variables. The first four terms give a valid H eff for modeling normal FE perovskites without local fields [12,149,150]. The term 

H({ ξ i }, σ l , v Pb-O , • • • ) is a random local field term [151], proportional to i h i . ξ i ,
ξ ij = S i (t). S j (t) -S i (t) S j (t) , S i : cluster moment (1.33)
the authors find the following hierarchy ξ CDR-CDR < ξ COR-CDR < ξ COR-COR , from which they infer the identification of PNRs to the built-in CORs.

In addition to some obvious redundancy among the assumptions and inferences of the model, 

Spherical Random bond-Random Field model

In spite of intensive investigations, the nature of the diffuse phase transition in relaxors has remained the subject of some controversy. As noted earlier, the basic open question is whether the relaxor state in PMN and related systems in zero field is either (i) a ferroelectric state broken up into nanodomains under the constraint of quenched random electric fields, 

Uncoupled Pseudospin Model

The picture adopted in this model is that of reorientable interacting polar clusters, each consisting of n dipolar unit cells of dipole moment m. The dipole moment of the i th cluster is thus M i = n i m i . A dimensionless order parameter field is then introduced:

S i = ( M i /n i ) (m 2 i ) av /3 -1/2 (1.34)
where (m 2 i ) av = (1/N ) i m 2 i with N the total number of reorientable clusters. The Edwards-Anderson order parameter for a crystal with average cubic symmetry (PMN in zero field) is defined as:

q EA = 1 N N i S i 2 = S i 2 av (1.35)
The average probability distribution of local polarization p i ≡ S i is defined as:

W ( p) = 1 N i δ( p -p i ) (1.36)
where the first moment of W ( p) is the total polarization P , which for a relaxor in the glass phase is zero in the absence of an external electric field, while the second moment is q EA .

The measured 93 N b NMR spectrum consists of two lines, one of which is relatively broad and temperature independent, attributed to pinned nanodomains, the second being relatively with the cluster size n i in the i th cluster (i = 1 • • • N , the total number of clusters). Going over the continuous limit, it is assumed [98] that each component S i µ , where µ = x, y, z, varies continuously in the range -∞ < S i µ < +∞, and that the set of all the fields is subject to the spherical constraint given by the following closure relation:

N i S i 2 = 3N (1.37)
The model Hamiltonian of a system of interacting polar clusters is then formally written as:

H S = - 1 2 ij J ij S i . S j - i h i . S i -g i E i . S i (1.38)
Here J ij are random frustrated interactions, or bonds. These random bonds are infinitely ranged 23 with a Gaussian probability distribution characterized by the following mean value and variance:

[J ij ] c av = J 0 /N , (J ij ) 2 c av = J 2 /N (1.39)
In Eq.(1.38), the random local electric fields h i similarly obey an independent Gaussian distribution such that:

[h iµ ] c av = 0 , [h iµ h jν ] c av = ∆δ ij δ µν (1.40)
The last term in Eq.(1.38) describes the influence of an external field E, where g is an effective dipole moment corrected by the appropriate local field factor. Two order parameters characterize the model, the polarization,

P µ = 1 N N i S iµ (1.41)
and the dipolar glass order parameter, written here in its Cartesian components,

q µ = 1 N N i S iµ 2 (1.42)
For a pseudocubic or isotropic system, both order parameters are independent of µ. After applying the replica method to the average free energy derived from Eq.(1.38), the usual saddle point condition leads to coupled equations for the order parameters and two sets of solutions, that in the case of zero external field can be expressed as: (i ) For J 0 < (J 2 + ∆) 1/2 , a spherical glass (SG) state q = 0 is obtained without long range order P = 0 below a dynamic glass transition temperature J/k, (ii ) for J 0 > (J 2 + ∆) 1/2 on the other hand, an inhomogeneous ferroelectric phase (FE) is obtained, with P = 0 and q = 0 below a transition temperature given by J 0 /k. (The generalized temperature-coupling parameter J 0 phase diagram is shown in Fig. 1.27). In this latter case of FE phase, the Edwards-Anderson order parameter is given by q EA = 1 -T /J 0 and the spontaneous polarization by:

P 2 = 1 - J J 0 2 1 - T J 0 - ∆ J 2 (1.43)
The SRBRF model for relaxor behavior applied to PMN gives good agreement between model predictions and experiment. In and spherical glassy behavior, the third-order dielectric nonlinearity a 3 = χ 3 /χ 4 1 [100], where χ 3 is the third order susceptibility, discriminates between a glassy state and a ferroelectric state broken up into nanodomains due to the presence of random fields. In the case of no long range order, the SRBRF glass model yields the following expression for a 3 24

a 3 = T (1 -q 2 ) [1 -β 2 J 2 (1 -q)(1 -3q -2∆/J 2 )]
(1.44) For a random-field frustrated ferroelectric J 0 ≫ J without random bonds (J = 0), i.e. the Westphal et al. model, a 3 is found to be a monotonically increasing function of temperature.

On the other hand, for a random-bond glass J 0 ≪ J without random fields (∆ = 0), i.e. the dipolar-glass model, a 3 diverges at a freezing temperature J/k, according to

a 3 ∼ |T -T f | -1 .
In the presence of weak random fields, i.e., for ∆/J 2 ≪ 1, a 3 does not diverge, but shows a sharp peak near T ≈ J/k (Fig. 1.30(a)). This last behavior was found in PMN [101] and PLZT [102], supporting the assumption that these systems can be described as a special 24 In a system with average cubic symmetry, the phenomenological relation between polarization Pµ and electric field Eµ (µ = 1, 2, 3) can be written as a power series

P1 = χ1E1 -χ122E1(E 2 2 + E 2 3 ) -χ111E 3 1 + • • • , or inversely, E1 = a1P1 + a122P1(P 2 2 + P 2 3 ) + a111P 3 1 + • • • .
Comparing these two relations thus yields : a1 = χ1, a122 = χ122/χ 4 1 , a111 = χ111/χ 4 1 , where χ1 is the linear susceptibility, and χ122, χ111 the third order non-linear susceptibilities. For a field E in the [111] direction and P1 = P2 = P3, the following simplifications are obtained: P = χ1E -χ3E 3 + • • • and E = a1P + a3P 3 + • • • where χ3 = 2χ122 + χ111 and a3 = χ3/χ 4 1 . Even though one of the unique features of relaxors is their positive dynamic dielectric non-linearity, it won't be addressed in the third chapter due to the required time-consuming calculations.

kind of dipolar glasses, namely, the spherical glasses. Good agreement was found between calculated a 3 (T ) from susceptibility data and calculations based on Eq.(1.44) (Fig. 1.28). In the presence of an external field E, the crossover from a glassy phase to a ferroelectric one (Fig. 1.29) can occur since J 0 is expected to be field dependent,

J 0 (E) = J 0 (E = 0) + αE 2 .
This dependence can be explained by the field induced polarization-strain coupling. Thus, a critical field E c may exist such that for E > E c , J 0 (E) > (J 2 + ∆) 1/2 . In this case the a 3 peak vanishes as it is found experimentally and in agreement with the SRBRF model (Fig. 1.30(b)).

However, it is worthwhile noting that although the SRBRF can accurately reproduce [91] the aforementioned crossovers from paraelectric to glassy state (upon cooling in zero electric field) and from a glassy state to an inhomogeneous random-field-modulated ferroelectric state (in the presence of an external field exceeding the critical value E c ), since it is based on the reorientable polar cluster picture, it doesn't account for the underlying perovskite structure (directional anisotropy) of the system.

Coupled spherical pseudospin-phonon model

Motivated by recent investigations demonstrating the pressure induced crossover from ferroelectric to relaxor behavior [104,105], occurring in PLZT for example, Blinc et al. [103],

extended the SRBRF model so as to account for the coupling to the lattice. The physical explanation for this crossover is to be found in the pressure dependence of the soft-mode frequency ω s , or equivalently, the pressure dependence of the polarizability of the host lattice ε ′ , since both quantities are related by the relation ω 2 s (T )ε ′ (T ) =constant. Since r c ∝ 1/ω s , the increase of ω s with pressure causes a decrease in the correlation length r c , upsetting the balance between long and short range forces.

Since the nanoregions are dispersed in a deformable lattice, Blinc et al. added the lattice (phonon) contribution H L and the pseudospin-polar phonon coulping term H SL to the Hamiltonian given by Eq. (1.38). The total Hamiltonian of the coupled SRBRF-phonon system is formally written as:

H = H S + H L + H SL (1.45)
where

H L = 1 2 kp ω 2 kp Q kp Q -kp + P kp P -kp and H SL = kp Q -kp γ kp . S k (1.46)
in which Q kp and P kp are respectively the normal coordinates and momenta of polar optic phonons with branch index p, wave vector k and frequency ω kp . γ kp is the coupling constant,

and

S k = N -1/2 i S i exp(i k. R i )
is the Fourier transform of the order parameter field. The main result is that the lattice coupling modifies the uncoupled interaction parameters J 0 and J to J * 0 and J * , as follows:

J * 0 = J 0 + p | γ 0p | 2 ω 2 0p - 1 N kp | γ kp | 2 ω 2 kp (1.47)
and

(J * ) 2 = J 2 + 1 N k p | γ kp | 2 ω 2 kp 2 -   1 N kp | γ kp | 2 ω 2 kp   2 (1.48)
where ω 0 is the k = 0 optic phonon frequency. Blinc et al. then introduced the pressure dependencies of J * 0 and J * via that of ω kp = ω kp (P ). Since the main contribution is given by the k = 0 term in Eq.(1.47), and since in perovskites ω 2 0p linearly increases with pressure [106], the decrease in pressure of J * 0 (P ) is expressed as follows:

J * 0 (P ) = J * 0 (0) -α 1 P + • • • (1.49)
In contrast to J * 0 , the phonon contribution to (J * ) 2 is determined by the fluctuation of the averages over the optic-phonon branches. Because these branches are relatively flat, their weak dispersion leads to a weaker pressure dependence of J * (P ) in comparison to that of J * 0 (P ). As in the case of the uncoupled SRBRF model, two limiting cases are reported. (i): For J * 0 < ((J * ) 2 + ∆) 1/2 , a long range order can not exist and the system is in a spherical-glass phase (SG) with non-zero order parameter q(T ). For ∆ = 0, a transition from a high temperature PE phase to a SG phase occurs at J * /k. For ∆ = 0 and ∆ ≪ (J * ) 2 on the other hand, the sharp transition vanishes giving way to a mximum in the nonlinear

susceptibility at T f ≈ ((J * ) 2 + ∆) 1/2 . (ii): For J * 0 > ((J * ) 2 + ∆) 1/2 ,
long range order is possible and a phase transition to an inhomogeneous FE state occurs below a critical temperature Since J * 0 depends on pressure P , T c is also a function of P . Thus the relative stability of the different phases is strongly affected by the application of an hydrostatic pressure. The model suggest that a critical pressure, P c , given by J * 0 (P c ) = ((J * ) 2 + ∆) 1/2 , exists for which the FE order becomes unstable at any temperature, i.e. a ferroelectric-to-relaxor crossover occurs.

T c = (J * 0 /k)[1 -∆/((J * 0 ) 2 -(J * ) 2 )].
The calculated pressure dependence of T c in the range 0 < P < P c is shown as a solid line representing the phase boundary T c (P ) separating the ferroelectric from the ergodic relaxor phase in Fig. 1.31. This line terminates at a critical point defined by P c and the associated T c .

It is interesting to note that Samara himself assessed the results of the coupled spherical pseudospin-phonon model contrasting its predictions with the experimental data he had gathered :

"It is significant that the model reproduces very well the qualitative features of the experimental data, including the vanishing of the T c (P ) phase boundary at a critical point. The quantitative agreement is also very good, but perhaps a bit fortuitous given the approximations in the model and in estimating the model parameters and their dependences on pressure." [4] 1.4 Case of study : PLZT Solid solutions of lead zirconate PbZrO 3 and lead titanate PbTiO 3 , i.e., PbZr 1-y Ti y O 3 or PZT, represent a technologically important family of ferroelectrics and antiferroelectrics whose properties and phase transitions have been studied extensively [START_REF] Lines | Principles and Applications of Ferroelectrics and Related Materials[END_REF]. At high temperatures these materials have the cubic perovskite ABO 3 structure, and on cooling they undergo FE and antiferroelectric (AFE) transitions to lower symmetry phases. Because the isovalent Zr 4+ and Ti 4+ are randomly distributed over the B lattice sites, local compositional fluctuations and strain inhomogeneities lead to some broadening of the transitions compared to the pure end members; however, there are generally no polar relaxational effects (i.e., frequency dispersion) in the audio frequency range, and PZT exhibit normal, long-range FE and AFE order; the substitution of Ti 4+ for Zr 4+ , or vice versa, does not lead to the randomly oriented dipolar entities needed to induce relaxor behavior [4].

For practical purposes, aliovalent cations are substituted in PZT at both the A and B cationic sites. For example, La 3+ is substituted for Pb 2+ on the A sites to form a well-known family of ceramics referred to as PLZT that have unusual dielectric and electro-optic properties [155]. Relaxor behavior has been observed in several PLZT compositions. These materials have the chemical formula (Pb 1-3x/2 La x )(Zr 1-y Ti y )O 3 , where the substitution of La 3+ for Pb 2+ introduces one A-site-vacancy for every two La 3+ ions, thus preserving charge neutrality. The role of La 3+ in the development of the relaxational character is to break the translational symmetry of the polarization, either by heterogeneities in the composition or the electric field associated with the defect structure. The net effect is that the polar behavior is localized on a scale where relaxational processes can contribute to the dielectric response [158]. Lanthanum substitution thus represents a type of disorder that can significantly modify the properties of these materials. One manifestation of this disorder is the condensation of local dipolar nanodomains leading to local, randomly oriented polarization at a temperature much higher than the ferroelectric transition temperature T C [82]. These polar nanodomains increase in size with decreasing temperature and, for relatively low La concentration, ultimately result in the formation of macroscopic ferroelectric domains with long-range FE order. For higher La concentrations, the disorder hinders the onset of long-range order, and the polar nanodomains condense below the freezing temperature T f of the polarization fluctuations [158] into a glasslike, or relaxor, state with no macroscopic phase (symmetry) change [4]. Thus depending on the La content, the system either exhibits a non-ergodic behaviour below a freezing temperature T f (as in canonical relaxors such as PMN, PMT and PLZT with large x) or experiences a spontaneous structural phase transition into the FE phase (PLZT with small

x) [2]. These two different paths of temperature evolution are shown schematically in Fig. 1.32. The phase diagram as a function of temperature for various levels of La (Fig. 1.34) illustrates the systematic change in Curie points for the complete system as the La content is increased.

The extension of the AFE phase at the expense of the FE phase is evident, as well as the extension of the transition region to higher temperatures for varying Zr/Ti ratios [155].

Detailed studies have mainly been carried on two La-substituted PZT families: peak. This change in behavior between 8 and 9 at.% La may indicate that mixed FE/cubic phases are present on a microscopic or macroscopic scale [155]. and 8 % La is shown to have all the fluctuations, polarization, strain, and tilt, frozen [4,158].

The physics of the relaxor behavior and the spontaneous relaxor to FE (R-to-FE) transition is not well understood. Whereas the usual manner of studying these properties has been to vary the composition and degree of disorder in order to induce relaxor behavior, Samara [104] has suggested the use of hydrostatic pressure as a probing tool of the underlying physics.

He considered that, in contrast to composition variation that introduce complications such as added randomness, compositional fluctuations, lattice defects, and changed interatomic forces leading to vagueness in interpretation, hydostratic pressure stands a cleaner variable, in the sense that the application of pressure to a sample of fixed composition only varies the interatomic interactions and balance between long and short range interactions.

The left panel of Fig. 1.39 shows the temperature evolution of the dielectric constant and the boundary terminates in a critical point (CP), a point that should thermodynamically be equivalent to the liquid-gas critical point in fluids. For a solid, a CP can exist only if the two phases separated by the phase boundary have the same internal symmetry. In PLZT, the R phase, as determined by X rays, is macroscopically cubic, whereas the FE phase is rhombohedral. Thus the likely explanation is that whereas the macroscopic symmetry of the R phase is cubic, at the polar nanodomain level the symmetry is rhombohedral making a CP possible [4,104].

The physics underlying this pressure induced FE-to-R crossover can be understood in terms of soft mode theory. The decrease of ω s with decreasing T in the PE phase causes the polarizability of the lattice, and thereby the correlation length (or radius r c ) for polar fluctuations, which is inversely related to ω s , to increase rapidly as T → T C . Because ω s is determined by a delicate balance between long range and short range interactions, it is very strongly pressure (or volume V) dependent. A measure of this dependence is the soft mode Grüneisen 

parameter γ = -(∂ ln ω s /∂ ln V ) T = 1/2(∂ ln ε/∂ ln V ) T . γ is

PLZT x/40/60

The dielectric studies performed on PLZT x/40/60 cover the range 0 < x < 21 % La [156]. There is a remarkable similarity between the results in Fig. 1.41 and those in Fig. 1.39 for PLZT 6/65/35. In Fig. 1.41 the FE-to-R crossover is induced by changing La content at 1 bar. Near the crossover concentration a spontaneous, first-order FE-R transition occurs. The transition vanishes for higher x. In Fig. 1.39, on the other hand, the FE-to-R crossover is induced by hydrostatic pressure for a fixed La composition. At intermediate pressures a spontaneous, first-order FE-R transition occurs. This transition vanishes at higher pressures. This analogy between increasing La content and increasing pressure is significant for the mechanisms of the FE-to-R crossover in the FE ABO 3 oxides. Pressure studies have been performed on PLZT 12/40/60 [104]. This composition was chosen because it is near that at which the FE-R crossover occurs at 1 bar, making it possible to observe the pressure-induced crossover at a readily accessible hydrostatic pressure (Fig. 1.42).

As for PLZT 6/65/35 described earlier, among the most interesting pressure effects on PLZT 12/40/60 are the following: i) a FE-to-R crossover and stabilization of the R phase, ii) continuous evolution of the energetics and dynamics of the relaxation process, and iii) the suppression of the spontaneous FE-R transition with indications that it might vanish at a pressure somewhat higher than the 20 kbar achieved in the study [4]. The dielectric response in Fig. 1.42 shows the pressure-induced FE-to-R crossover. Only ZFH results are shown. At 1 bar the response is characteristic of a normal FE with a first-order FE-PE phase transition.

The finite width of the transition at T C , and the rounding of the ε ′ (T ) peak normally are features of ceramic samples, but in the present case the rounding also points to the early onset of some relaxor character. Pressure strengthens the relaxor character at a pressure higher than 10 kbar, and at 20 kbar and higher pressures, the sample exhibits classic relaxor character [104]. Chapter 2

Left panel of

Gauge approach for relaxors

This chapter is concerned with providing the conceptual foundations and framework for a gauge theory for relaxors, and is subdivided into two main parts. The first part serves the purpose of introducing the common concepts and methods underlying various related gauge approaches. The second part leverages on the first one and proceeds to applying and implementing the concepts related to gauge theories to the case of relaxor ferroelectrics. In order for a theory to be a field theory, the dynamical degrees of freedom taking values in some internal space at each point φ(x) need to be coupled through nonlocal terms (of the form φ(x)φ(x + δx)), without which each point would have dynamic independent of its neighbors, and any symmetry, global φ(x) → e α φ(x) or local φ(x) → e α(x) φ(x), operating in the internal space would yield trivial consequences. These internal symmetries can be thought of as a change in the internal space basis [START_REF] Polonyi | Basic equations of general relativity[END_REF]. Whereas the nonlocality of interactions is immune to global internal symmetry affecting all points in an equivalent manner, thus corresponding to a global redefinition of basis, the consideration of local symmetry on another hand, allowing independent choices of basis at each point, requires the introduction of a compensating external field, the gauge field, needed to compensate out the contributions of the inhomogeneous conventions at different points. Since two internal space variables residing at two different locations can not be compared in their natural bases, the gauge field acquires an intrinsic geometrical role enabling the comparison by means of parallel transportation, a generalization of the construction of the covariant derivative (Fig. 2.1). Measurable quantities are independent of the choice of basis for the field variable, therefore they must be gauge invariant and in their most general form, gauge theories consist of a matter-field φ coupled to a gauge field A which mediates interactions [START_REF] Moriyasu | An elementary primer for Gauge Theory[END_REF].

A few landmarks on gauge theories

The principle of gauge invariance is strongly associated with general relativity as it was derived as an extension of the general covariance under continuous reparametrizations of space-time. It was first introduced by Weyl [START_REF] Weyl | Gravitation and electricity[END_REF] in field theory, in an attempt to describe gravitation and electromagnetism within a unifying geometrical framework. In particular, considering scale of length a local property of the metric, he proposed a so-called purely infinitesimal geometry, which stands as a generalization of Riemannian geometry. He required a twofold invariance, supplementing the general covariance with gauge scale invariance. Scale invariance refers to invariance under a scale change of the metric tensor and is encoded by the substitution g µν (x) → λ(x)g µν (x), where the conformal 1 factor λ(x) is an arbitrary, positive smooth function of position. Although this theory is generally deemed to have failed in its original form, it nevertheless defined the anchoring points for later success in the context of field theory. In particular, London [START_REF] London | Quantenmechanische Deutung der Theorie von Weyl[END_REF] proposed a quantum mechanical interpretation of Weyl's proposal, by noticing its equivalency to the invariance of the wave equation, provided that λ(x) was made imaginary. Weyl himself reinterpreted his original theory [START_REF] Weyl | Elektron und Gravitation[END_REF], this latter time emphasizing the role of gauge invariance as a constructive principle from which electromagnetism can be derived [162][163][164]. The gauge principle was later extended beyond the scope of quantum electrodynamics (QED of Abelian gauge group U( 1)) to non-Abelian symmetries (Yang-Mills theories) and gauge theories have been proposed as fundamental theories of the so-called weak and strong interactions, with non-Abelian gauge group SU (2) and SU(3), respectively. The latter is quantum chromodynamics (QCD) which describes the strong interactions between the quarks (the constituents of hadronic matter) which are mediated by gluons [163,164].

The concept of a gauge field in general has been extensively discussed in condensed matter physics, especially, in relation with modeling different types of topological defects, phase transitions, and properties of glasses. As pointed out in the previous chapter, in spite of numerous experimental investigations and theoretical formulations, the microscopic origin of the relaxor behavior remains a matter of fruitful debate. In many solid materials, where intrinsic quenched randomness exists in form of defects, impurities or as a general structural property, the disorder stemming from spatial heterogeneities is an integral part of their characteristics. Indeed, and since the discovery of relaxors [165], recurrent emphasis have been made on the role of disorder in inducing complex nanostructure [2,5,99,152,[166][167][168][169],

altering the stability of the low-temperature phase and driving their characteristic behavior.

It is generally accepted that intrinsic inhomogeneity and hierarchical organization of relaxors strongly affect translational and rotational symmetries at a local scale, whereas global symmetries hardly change [170]. Therefore, the relaxor state is robust to local environment variations. As we shall later explicit, the non-trivial interplay between local and global scales can be captured within the framework of the local gauge symmetry [START_REF] Moriyasu | An elementary primer for Gauge Theory[END_REF][START_REF] Creutz | [END_REF], which is known to provide a solid basis for describing defects and their interactions [START_REF] Kadic | A Gauge Theory of Dislocations and Disclinations[END_REF].

For the sake of sustaining the intuition of a gauge model for relaxors and establishing connections with related successful gauge descriptions, we will briefly review the occurrence of gauge symmetries in physics and geometry, such in:

1 A conformal map is a function which preserves angles.

⋄ scalar electrodynamics, where gauge theory finds its root and where the local phase symmetry gives rise to the electromagnetic interaction [171]. This part focuses on continuum gauge theories, as a preliminary step in dealing with the lattice case.

⋄ lattice gauge theories, originally developed by Wegner [START_REF] Wegner | [END_REF] for the study of phase transitions without a local order parameter2 , and later used by [186] in their modern form, as a non perturbative regularization of a gauge theory, in connection with the problem of quark confinement in quantum chromodynamics (QCD). The lattice formulation revives the geometrical implications of gauge theories, for which it provides a natural framework. Indeed, remembering that the geometric role of the gauge potential is to specify the rotation of the reference frame in some internal symmetry space as one moves between nearby points in space, the continuum of points is replaced by the sites of a lattice, and the elementary displacements become those between neighboring sites, i.e., along the links of the lattice itself [START_REF] Creutz | [END_REF].

⋄ spin-glasses (RBs models), where local gauge symmetry leads to the concept of gaugeinvariant frustration, which in turn leads to a substantial analysis of disorder, in that it topologically discriminates between two types of disorder, namely, the so-called serious, or relevant disorder in contrast with the deceptive, trivial one [START_REF] Toulouse | [END_REF]190,201,204].

⋄ gauge theoretical formulation of the defect theory in an elastic continuum [START_REF] Kadic | A Gauge Theory of Dislocations and Disclinations[END_REF], where This section does not pretend to be a review of the topic, and aims only at introducing some coherence among various related ideas, as they form the conceptual ground on which our approach stands.

Continuum gauge theories

Global symmetries (e.g. space groups) are not the most general form of invariance. The invariance principle would be stronger if it was possible to extend global symmetries to local, so-called gauge symmetries, where the transformation parameter would be dependent on spacetime. Symmetry transformations which are spacetime dependent are called local gauge transformations. Local gauge symmetry imposes constraints on the action, determining the interaction. In order to exemplify how local symmetry dictates the form of the interaction, it is instructive to examine the gauge invariance in electromagnetism, where local symmetry finds its root.

From a symmetry principle to a Lagrangian

Let us begin for simplicity with a complex scalar field φ(x). Let L {φ, ∂φ} be its Lagrangian density, which is a functional of the fields {φ} and their derivatives {∂φ}. A fundamental quantity common to any quantum field theory is the action, given by the time integral of the Lagrangian L, which is in turn given by the space integral of the Lagrangian density

L S = +∞ -∞ Ldt = d 4 xL {φ, ∂φ} (2.1) 
The equations of motion are derived by means of Hamilton's principle of stationary action:

δ t 2 t 1 Ldt = 0 (2.2) Equation (2.
2) implies that the Lagrange density must obey Euler's equations

δL δφ = ∂ µ δL δ(∂ µ φ) (2.3) 
As an example let us construct a field theory which is invariant under local phase transformations. Our starting point is the Lagrange density of a non-interacting complex scalar field given by:

L {φ, ∂φ} = 1 2 (∂ µ φ ⋆ )(∂ µ φ) -m 2 φ ⋆ φ (2.4)
where m is the mass of the spinless particles associated to the quanta of the field. The Euler equation of motion for the field φ is the Klein-Gordon equation 4 , which describes the quantum wave mechanics of spinless particles of mass m. of the fields φ under:

(∂ µ ∂ µ + m 2 )φ ≡ ( + m 2 )φ = 0 (2.
φ(x) → e -iqθ φ(x) φ ⋆ (x) → e +iqθ φ ⋆ (x) (2.6)
where q is to be associated with the charge of the φ field and θ parameterizes the transformations. Since θ is independent of x, the Lagrangian density equation (2.5) is invariant under this set of rigid, or global, internal transformations, which form the group of unitary transformations U(1) 5 . In this case the U(1) symmetry expresses a redefinition of the phase factor convention for the φ field. The invariance under rigid transformations is ascribed to a degeneracy of certain degrees of freedom. Since the phase of the field φ is not an observable quantity, adding a constant θ to it merely redefines the phase convention, without affecting the predictions made by the theory. However, there is a priori no reason to require a transformation equivalently affecting all points in space, and a "rigid" transformation of the form φ(x) → e iθ φ(x) is certainly not the most general. The question then arises as to how one can extend the global symmetry to a local one6 .

Local U(1) symmetry and interaction law

To that end, one is thus led to consider theories which are invariant under symmetry operations performed locally, by allowing θ to vary over space, becoming θ(x). The extension of the invariance principle from global to local means that the Lagrangian (2.4), which was conserved under the global transformation (2.6), should also be invariant under the local transformation7 :

φ(x) → φ(x)e -iqθ(x) (2.7)
By insisting on the freedom to change fields by an arbitrary group transformation at each space-time point separately, it turns out that one needs a quantity that can carry information regarding these transformations from one space-time point to another. This quantity is the gauge field, whose existence can be regarded as a prime consequence of choosing a framework based on local gauge invariance. Explicitly, whereas the local aspect of the transformation does not alter the mass term which only involves fields taken at the same point in spacetime,

m 2 φ ⋆ (x)φ(x) → m 2 φ ⋆ (x)φ(x) , (2.8) 
terms involving the gradients ∂ µ φ of the φ fields on the other hand, are not invariant since under (2.7) their transformation yields:

∂ µ φ → [∂ µ φ(x) -iq∂ µ θ(x).φ(x)] e -iqθ(x) (2.9)
Clearly, ∂ µ φ does not have the same transformation rule as φ itself. For these terms the local character of the transformation is crucial, gradients which intrinsically compare fields at different points in spacetime will be subject to transformations at neighboring spacetime points. To compensate this lack of invariance, one can resort to the introduction of a compensating gauge field A µ (which is later to be identified with the electromagnetic potential), whose variation will compensate for the supplemental ∂ µ θ(x) terms in (2.9), that are induced by the transformations at neighboring spacetime points and proportional to the derivative of the transformation parameter. The usual procedure, referred to as minimal gauge coupling, consists in the replacement of the gradient operator ∂ µ in the Lagrangian density with a so-called covariant derivative D µ :

D µ ≡ ∂ µ -iqA µ (x) (2.10)
where A µ is still to be defined by its transformation properties. The prescription of a covariant8 transformation of D µ operating on the field φ, i.e., the requirement that this new quantity exhibits the same transformation law as that of equation (2.7) in order to ensure local invariance yields:

D µ φ(x) → e -iqθ(x) D µ φ(x) (2.11)
which in turn requires the following local gauge transformation rule for the newly introduced

gauge field A µ A µ (x) → ∂ µ θ(x) + A µ (x) (2.12)
Therefore the modified Lagrangian takes the form 1 2 (D µ φ) ⋆ (D µ φ) -m 2 φ ⋆ φ , and remains invariant under the local gauge transformation given by equations (2.11) and (2.12). One should also account for the pure gauge field contribution by including terms in the Lagrangian density which couple A µ only to itself. One quantity involving only the A µ is the antisymmetrical field strength second rank tensor

F µν = ∂ µ A ν -∂ ν A µ (2.13)
which is invariant 9 under the gauge transformation in equations (2.11) and (2.12). Consequently, the complete expression for the gauge invariant Lagrangian density is:

L local = 1 2 (D µ φ) ⋆ (D µ φ) -m 2 φ ⋆ φ - 1 4 F µν F µν (2.14)
where the last term is recognizable as that of pure electromagnetism -

1 4 F µν F µν = 1 2 (E 2 -B 2 )
. Thus L local is the standard form of the Lagrange density of scalar electrodynamics, and equations (2.11) and (2.12) are the canonical gauge transformation of electrodynamics. The sole requirement of local gauge invariance on the free Lagrangian (2.4) leads to the formulation of scalar electrodynamics, a field theory that couples the φ(x) field to the gauge field A µ which is nothing but the vector potential of electromagnetism. The original Lagrangian is also modified by an additional self-energetical contribution from the compensating gauge fields.

To conclude, let us stress that the prescription of a local symmetry affecting φ(x) by an arbitrary group transformation at each point separately, leads to the necessary introduction of a quantity that can carry information regarding these transformations from one point to another. This quantity is the gauge field, or connection, whose existence can be viewed as a prime consequence of choosing a framework based on local gauge invariance [START_REF] Moriyasu | An elementary primer for Gauge Theory[END_REF].

Lattice gauge theories

In 1971, Wegner studied a class of Ising models [START_REF] Wegner | [END_REF], where the global Z(2) symmetry of the Hamiltonian was promoted to a local one. Although the models did not possess a local order parameter, they did exhibit a phase transition 10 . In constructing the models, Wegner introduced a number of concepts which turned out to play a fundamental role in the lattice formulation of gauge field theories 11 , suwh as the concept of a nonlocal gauge invariant order parameter 12 . 9 The gauge invariance of F µν does not hold when the current analysis is extended to gauge groups other than U(1), rather it is a coincidence related to the fact that U(1) transformations are Abelian. The generalization of U(1) to non-Abelian groups as SU(N) or SO(3) is straightforward, the main modification arises in the definition of the field strength (Eq.(2.13)) that becomes

F µν = ∂ µ A ν -∂ ν A µ + [A µ , A ν ].
10 Among familar examples of models whose possible phases cannot be characterized by an order parameter is the XY-model, where du to Mermin-Wagner's theorem [START_REF] Mermin | [END_REF], the continuous O(2) symmetry cannot be spontaneously broken. In this case, it is the (non-local in nature) correlation function that encodes the phase change. Whereas in the disordered phase, it decays exponentially, below TKT, the temperature at which the Kosterlitz-Thouless transition (KT) [184] takes place, it decays as a power law. Let us recall that this transition is of a topological nature, since it is associated to an unbinding of pairs of point defects carrying opposite topological charges for T > TKT. 11 Let us note that lattice gauge theories are not entirely discrete constructions, as they involve continuous ingredients; gauge groups are Lie groups and involve internal symmetries (they do not relate to the lattice symmetries) [185].

12 This follows from Elitzur's theorem [172], which rigorously demonstrates that a local symmetry cannot be spontaneously broken, and hence, gauge non-invariant observables vanish. This means that the equilibrium state of the theory is gauge invariant at all temperatures. There can certainly be phase transitions in the theory, but one needs to resort to different arguments than spontaneous symmetry breaking to explain them. For example, in the confinement transition of gauge field theories topological properties of the theory are expected to play an important role [173][174][175][176][177].

Geometrical approach

Before addressing the lattice implementation of a gauge theory, it is worthwhile pointing out some of its geometrical implications. We here only briefly sketch some general ideas of the geometrical picture, as it can provide a unifying ground for discussing different gauge theories. The concepts of gauge fields and covariant derivatives can be translated into the language of differential geometry, based on differential forms. In general, the gauge field A µ has a mathematical interpretation as a Lie-valued connection (1-form) 13 . It is used to construct covariant derivatives acting on fields and it generates parallel transport of the geometric objects under gauge transformations (Fig. 2.1).

The field tensor F µν is a 2-form given by the commutator of two covariant derivatives

[D µ , D ν ].
It is an element of the Lie algebra associated to the gauge group. As the tensor F µν measures the lack of commutativity, its effect is analogous to that of curvature 14 [START_REF] Moriyasu | An elementary primer for Gauge Theory[END_REF].

Sites, links, plaquettes

The first step in constructing a discretized version of gauge theory is to approximate the continuous spaceby a discrete set of points, that is, a lattice. The lattice is then defined as a set of points of the d-dimensional Euclidean space with the coordinates:

x µ = n µ a (2.15)
where a is the lattice spacing and where the components of the vector

n µ = (n 1 , n 2 , • • • , n d ) (2.16)
are integer numbers. The points are called the lattice sites, or nodes. The next concept relates to the links of the lattice. A link is a line which connects two neighboring sites, and is usually denoted by the letter l. It is characterized by the coordinate x of its starting point

and its direction µ = 1, • • • , d l = {x, µ} (2.17) 
The link l connects sites with the coordinates x and x + aμ, where μ is a unit vector along the µ-direction (Fig. 2.2). 13 The geometrical picture enables a strong parallelism between gauge theory and general relativity. The latter can be interpreted as a gauge theory, where gauge invariance is the invariance under diffeomorphisms (local smooth changes of coordinates) in the space-time manifold, and where gauge transformation corresponds to a change of local frame. The role of the gauge fields is played by the Christoffel symbols defining the connection which generates parallel transport [START_REF] Polonyi | Basic equations of general relativity[END_REF]. 14 One encounters the same situation when considering translations on a curved surface, which do not commute for finite curvature. 

N s = L d , N l = dL d , N p = d(d -1) 2 L d , (2.19) 
respectively [179].

Lattice formulation

Consider a theory which involves a matter field φ(x), endowed with a local internal symmetry group G. In the following, we will consider the case of a group G of n×n orthogonal matrices with determinant 1. In its lattice formulation [START_REF] Moriyasu | An elementary primer for Gauge Theory[END_REF]179], matter field is assigned to the lattice sites. A continuous field is thus approximated by its value at the lattice sites

φ(x) =⇒ φ x .
(2.20) A transformation by an independent element g ∈ G at each site yields

φ x → φ ′ x = g x φ x . (2.21)
If it is a symmetry, then one should observe the invariance of the theory under such transformations. As it is for the continuum case, gradient terms of the form (φ x -φ y ) 2 spoil the invariance. Indeed, Since the gauge field A µ (x) has the geometrical role of a connection (Section 2.1.3.1, Section A), a natural manner to encode the gauge variables in a discrete setting is by considering parallel transporters. To parallel as closely as possible the steps in the continuum formulation, we observe that, since φ x φ y → φ x g -1

φ x φ y → φ x g -1 x g y φ y = φ x φ y . ( 2 
x g y φ y , one must include a factor depending on the gauge potential which compensates the gauge variation [START_REF] Creutz | [END_REF]179,[START_REF] Rothe | Lattice Gauge Theories. An Introduction[END_REF]. This factor, known as the Schwinger line integral 15 [181], is given by: U (x, y) = e y x dz µ Aµ(z) (2.23) where the integral is carried out along a path connecting x and y. We note that U (x, y) is element of the gauge group G, and under a gauge transformation (Eq.(2.12)) it transforms as:

U (x, y) → g x U (x, y)g -1 y . (2.24) 
Taking y = x+aμ, the gauge variables acquire the meaning of elementary parallel transporters between neighboring lattice points and are thus assigned to the links of the lattice,

A µ (x) =⇒ U x,µ . (2.25) 
where U x,µ ≈ e aAµ(x) [179,[START_REF] Rothe | Lattice Gauge Theories. An Introduction[END_REF]. Link variables, which are elements (i.e., matrices) of the gauge group, thus obey the following transformation rule:

U x,µ → U ′ x,µ = g x U x,µ g -1 x+aμ . (2.26)
From the above considerations, we conclude that φ x φ x+aμ must be modified as follows:

φ x φ x+aμ =⇒ φ x U x,µ φ x+aμ , (2.27) 
The implementation of the parallel transport between neighboring points guarantees the sought invariance under gauge transformation. Indeed, simultaneous transformations operating on sites (Eq.(2.21)) and on links (Eq.(2.26)) leave the inner gauge product φ x U x,µ φ x+aμ unaltered:

φ ′ x U ′ x,µ φ ′ x+aμ = φ x g -1 x g x U x,µ g -1 x+aμ (g x+aμ φ x+aμ ) = φ x U x,µ φ x+aμ (2.28)
Finally, let us not that the same link connecting x and x + aμ can be regarded as a forward one, {x; µ}, or as a backward one, {x + aμ; -µ}. They are related through U x+aμ,-µ = U -1

x,µ in the case of an orthogonal gauge group, since the backward link is simply the reversed forward one (Fig. 2.6). of contiguous link variables around an elementary plaquette p (Fig. 2.7)

U ∂p = U x,µ U x+aμ,µ U -1 x+aν,µ U -1 x,ν , (2.29) 
where U ∂p denotes the plaquette variable (also denoted by U ). Under the lattice gauge transformation (Eq.(2.26)), U ∂p transforms as:

U ∂p → U ′ ∂p = g x U ∂p g -1 x (2.30)
Therefore, its trace is gauge invariant. Indeed, by virtue of the cyclicity of the trace, one has

tr(U ′ ∂p ) = tr(g x U ∂p g -1 x ) = tr(g -1 x g x U ∂p ) = tr(U ∂p ). (2.31)
The invariance of the trace under the gauge transformation is used in constructing the socalled Wilson action [START_REF] Wegner | [END_REF]186] of a lattice gauge theory:

E G = k p 1 - 1 n Re tr(U ∂p ) (2.32)
where k is the lattice gauge self-coupling parameter, and where n refers to the dimension of the representation of the gauge group G. The integration measure for the gauge variables over the local symmetry group must be invariant under gauge transformations, it is thus performed over the Haar measure 16 which is an invariant group measure [179, 187,189].

Before ending this section, let us note that the pure gauge term could have been introduce

equivalently from geometrical considerations. One way is to mimic the continuum construction, in which the second term in Eq.(2.14) involves F µν , which is related to the lack of commutativity of the covariant derivatives,

[D µ D ν ] = [∂ µ + A µ , ∂ ν + A ν ] = ∂ µ A ν -∂ ν A µ + [A µ , A ν ] = F µν (2.33)
Since in the discrete setting, the gauge variables (links) are used to parallel transport the matter field between neighboring sites, one can formulate a discrete analog of the covariant derivative, the covariant finite difference [START_REF] Creutz | [END_REF]:

∆ µ φ x = U x,µ φ x+aμ -φ x , (2.34) 
where U x,µ has served the purpose of transporting the matter field from site x + aμ to site x.

Computing [∆ µ , ∆ ν ] leads to the lattice analog of F µν and enables recovering the previous result (Eq.(2.32)) [187]. The second way is to recall that F µν is a curvature 2-form. A very natural way to define curvature is to measure the change in some arbitrary orientation due 16 The partition function of a pure lattice gauge theory (i.e. without matter field) is defined by

Z = D [U ] e -E G [U ]
, where EG denotes the gauge field action (Eq.(2.32)). As for any integral, the result of a path integral should be invariant under a change of variables, in particular under the gauge transformation (Eq. (2.26)). This requirement reads

D [U ] = D [U ′ ].
Using the fact that the integration measure for the link variables is the product measure D [U ] =

x,µ dUx,µ, the condition dUx,µ = dU ′ x,µ = d(gxUx,µg -1 x+a μ) for the integration over the individual link variables is derived. Since gx and g x+a μ can be chosen independently, the measure dU for a group element must be invariant under left and right multiplication by another arbitrary group element V ∈ G , dU = d(V U ) = d(U V ), which is a defining property of the Haar measure [179,189].

to parallel transportation around a closed path, and this is exactly what the Wilson action measures. In this sense, the 1 -1 n tr (U ∂p ) term appearing in equation (2.32) can be seen as a measure of deviation from flatness. Indeed, in the case of trivial identity link matrices, the traced plaquette variable amounts to n, yielding vanishing energy term.

Gauge invariance and frustration in spin glasses

In order to provide some conceptual foundation for a gauge model for relaxor ferroelectrics, we now turn to the gauge description of frustrated systems. Gauge glasses [23,200], that is, gauge theories with quenched random couplings stand as geometrical extensions of the spin-glass models, emphasizing the relevance of local symmetries in describing the disorderinduced frustration.

For a given realization of all the couplings or bonds, the Hamiltonian of a spin-glass model is clearly not invariant under neither translational nor rotational symmetries. However, some sort of subtler symmetry remains: since the probability distribution of the bonds corresponding to a certain realization of disorder is unchanged by lattice translation, i.e. the corresponding couplings are independently chosen from the same distribution, one can recover a certain notion of symmetry for a disordered system, that is, a statistical symmetry [196]. In this sense, although the randomness of glasses leads to a lack of generic rotational or translational symmetry, one can nevertheless regard them as globally homogeneous such that each of the constitutive points is equally suitable as a reference point as any other, despite different local surroundings 17 . The free energy of a glass is thus invariant under transforming the local surroundings of an atom into those of another (mainly by performing local rotation of the attached frame) provided that the connection with the remaining system is adjusted in a covariant way. The local rotation is then a gauge transformation and the glass homogeneity can be written in terms of a gauge invariance parametrized by the rotation group.

By virtue of statistical global invariance, one can convert the translational probing of global homogeneity into a local modification of environment under gauge transformation [194].

To be more explicit, let us consider the symmetry of the Edwards-Anderson model [81] of an Ising spin system in an arbitrary configuration of bonds, to show that a simple transformation of variables using the local symmetry leads to non-trivial conclusions. The Hamiltonian of this model is expressed in the following manner:

H EA = - (i, j) J ij S i S j (2.35)
The spin variables are assumed to be of the Ising type σ i = ±1, placed on the sites of a regular Z d lattice. The sum over (ij) is in this case limited to nearest neighbors, so that the variables J ij specify the distribution of the bonds and reside at the links ij joining the sites of the lattice (Fig. 2.8). Each of the J ij is considered to be distributed independently according to a probability distribution P (J ij ). In the ±J model, the distribution P (J ij ) of exchange bonds takes the form:

P (J ij ) = p δ(J ij -J) + (1 -p) δ(J ij + J) (2.36)
where J ij is either J(> 0) (with probability p) or -J (with probability 1 -p). In this model, disorder is thus expressed in terms of a competition between random ferromagnetic and antiferromagnetic interactions. 

Gauge transformation

A gauge transformation of the system (2.35) at site i is defined as the following change of variables [START_REF] Toulouse | [END_REF]:

   S i → -S i J ij → -J ij (for all j adjacent to i ) (2.37)
The most important feature of the transformation (2.37) is its locality (see Fig. 2.9 for an illustration). The transformation is performed independently at all sites. A more general expression of this transformation is possible [23]:

   S i → T i S i J ij → T i J ij T j (2.38)
where T is some suitable transformation, T ∈ {+1, -1} in this case 18 . The above transformation leaves the Hamiltonian invariant and does not change the partition function, i.e., Relevant disorder and the concept of frustration The necessity of probing the phase structure using exclusively gauge-invariant functions leads to a substantial analysis of disorder in spin glasses. Namely, once the existence of a local symmetry is recognized [START_REF] Toulouse | [END_REF]204], it becomes apparent that two types of disorder have to be distinguished one from the other, that is, the so-called serious disorder, or relevant disorder, in contrast with the non-serious disorder, i.e., the irrelevant one. Only serious disorder, which stems from frustration, is gauge-invariant, whereas trivial or irrelevant disorder can be eliminated by a transformation of the type (2.38).

Mattis model or trivial disorder Let us consider the spin glass model of Mattis [205] in which disorder is only deceptive. The model is of the form (2.35), but instead of equation (2.36) for the random exchange J ij , one chooses the form J ij = Jτ i τ j , where J is a nonrandom exchange and τ i = ±1. Defining a new set of spins ξ i = τ i S i , one recovers an Ising ferromagnet, devoid of disorder [85]. Hence the randomness within this model is trivial since it can be eliminated, or gauged away, by a suitable redefinition of the spin variables.

The Mattis model is thus frustration-free and can be seen as a gauge transformation of the pure Ising model.

Frustration function

In order to filter out relevant from irrelevant disorder 19 Toulouse defined the frustration function [START_REF] Toulouse | [END_REF]:

Φ = (C) J ij (2.39)
defined on any closed contour (C) along connected bonds of the lattice. Φ is a geometrical property, independent of the "matter" field S i [195], that provides a measure of the frustration within the contour. If Φ = +1, it is possible to orient the spins along (C) without frustration;

if Φ = -1, it is not (see Fig. 2.10). If the lattice under consideration is a regular one, as it is the case for (2.35), then frustration of a plaquette (elementary square l i k j whose corners are labeled by i, j, k, l) is the most fundamental notion since any larger loops can be expressed as a product of the plaquettes enclosed by the contour. The fundamental gauge-invariant frustration function is thus:

Φ = J ij J jk J kl J li (2.40)
From the topological standpoint, the plaquette variable Φ is reminiscent of the path dependent parallel transport of a tangent vector on a curved surface [START_REF] Toulouse | [END_REF]204] (see Fig. 2.11 for an illustration). It is the analog of the field strength or gauge curvature of conventional gauge theories [START_REF] Toulouse | [END_REF]204]. The misfit between the various lines of transport can thus interchangeably signal frustration, curvature or disclination (see Fig. 2.12). In this sense, frustrated plaquettes are curved whereas unfrustrated are flat. In this sense, all the plaquettes of the aforementioned Mattis model are flat, Φ = 1.

Fig. 2.11: Frustration on a sphere. The parallel transport of a vector on a sphere is defined by minimizing the energy locally as one moves around a path. When the path crosses itself forming a loop, there will in general be a change in the direction of the vector, and for small loops this change will be proportional to the area enclosed.

The frustration represented by this change is described by the curvature tensor R of the sphere (after Sethna [203]).

As already pointed out, only gauge-invariant disorder (frustration) can change the nature of the phase transition, and thus the resort to gauge-invariant quantities is necessary to the probing of the transition. In order to isolate the effects of gauge-invariant disorder (i.e., frustration), Fradkin et al.

[204] have defined a gauge-invariant analog of the correlation function S i S j by inserting a string of J's between S i and S j . The gauge-invariant correlation function thus takes the form S i ( J) S j , where J stands for the product of all the J variables along the links of an arbitrary path Γ(i, j) connecting sites i and j. The difference between the correlation function evaluated along two different paths connecting the same end points i and j is given by (-1) f P , where f P is the number of frustrated plaquettes enclosed by the loop defined by the two considered paths, explicitly showing that it is the frustration content, rather than the detailed distribution of the individual bonds, that characterizes the system.

We have so far investigated the gauge invariance of the Ising spin-glass model under (2.37).

This treatment is not exclusive to Ising-like variables and can be extended to the XY model [204,[START_REF] Fischer | Spin Glasses[END_REF], for which the degrees of freedom are fixed-length two dimensional vectors, subject to planar rotations. The introduction of disorder into the standard model can either be made via the randomness of the bonds or via random difference angles ψ ij , such that in the latter case the interaction takes the form J 0 cos(θ i -θ j -ψ ij ). Defining a link-gauge degree of freedom U ij = exp(iψ ij ), the interaction can be rewritten as

J 0 /2(S i U ⋆ ij S ⋆ j + h.c
), with S i ≡ exp(iθ i ), and remains invariant under the local gauge transformation

S i → V i S i and U ij → V i U ij V ⋆ j
, where V i = exp(iχ i ) (analog of equations (2.37) and (2.38)). Hence, to a local rotation of a spin by an angle χ i is associated a rotation of the connecting link by the difference χ i -χ j . The frustration angle at plaquette ijkl is now defined as exp(i2πΦ ijkl ) = U ij U jk U kl U li , where 2πΦ ijkl = ψ ij +ψ jk +ψ kl +ψ li mod(2π). Thus only fractional values of Φ signal frustration, and in the continuum limit, the sum over the [21,197,198].

Frustration and ground-state degeneracy In order to appreciate the relevance of a gauge theoretical approach to spin glasses, it is worthwhile recalling that a defining characteristic of spin glasses is the existence, for a given realization of the couplings, of many configurations of spins which are locally stable minima of the energy. This large degeneracy of the ground state introduces non-trivial multiplicity since the minima are not all related by standard global symmetry of the action. Now the cause behind this large degeneracy resides in the frustration, i.e., in the existence of competing interactions (see Fig. 2.13 for an illustration). As a consequence of frustration, typically, there is no ideal low-lying ground state, and instead many metastable states of similar energies [190]. The notion of local invariance thus leads to that of gauge-invariant frustration, which in turn captures an essential feature of spin-glasses, that is the large degeneracy of their ground-state. On the connection between spin glasses and gauge field theories To conclude this section it remains to be pointed out that the local transformation as defined in equation (2.37) or equivalently in equation (2.38), is quite similar20 to the local transformation under which the Lagrangian of electrodynamics is invariant (equations (2.7) and (2.12)), the bond interactions J ij playing a role somewhat similar to that of the electromagnetic potential A µ [START_REF] Toulouse | [END_REF]. In the present case the lattice gauge group is the discrete Abelian group with two elements, Z 2 , whereas in the former case of electrodynamics, the gauge group is the one dimensional Abelian continuous group U (1). However, the analogy is not complete since in electrodynamics the gauge field A µ is dynamical, whereas in the case of gauge glasses, the bond interactions J ij are quenched [85,199]. The analogy would thus be complete if the analogs of the vector potential, i.e., the exchange variables J ij were annealed variables.

Nonetheless, as we shall now see, there have been attempts to reexpress the spin glass problem as a genuine gauge theory in which both spins and gauge variables are treated on the same footing. Toulouse et al. examined the connection between spin glasses and gauge field theories [199]. They noticed that in the case of the annealed models of spin glasses, in which the S i 's and the J ij 's are statistical variables to be averaged over at the same time, the thermal average of the frustration function Φ is nonzero Φ T = 0, reflecting the low frustration content of the annealed system. Indeed, the non-vanishing of the frustration function in the annealed model stems from the fact that at low temperature, non-frustrated configurations of the J ij 's are energetically favored and thus dominate the annealed free energy. In contrast, when considering the realistic ±J quenched models of spin glasses, before performing the average over distributions of the gauge degrees of freedom or bonds, one has to first perform the thermal average over the S i 's in a given distribution of the bonds. In this latter case of a quenched system with equal probabilities of positive and negative bonds,

[Φ] av = [J ij J jk J kl J li ] av = 0, because the contour is equally likely to be frustrated (Φ < 0)

or non-frustrated (Φ > 0). Toulouse and Vannimenus argued that an annealed description of the gauge-glass could in principle yield satisfactory results, provided that the error due to the annealed approximation, i.e., basically the underestimate of frustration, is compensated by imposing a suitable constraint on the J ij 's so as to restore an appropriate statistical account for frustration. The constraint naturally corresponds to the vanishing of the global frustration function:

J ij J jk J kl J li T = 0 (2.41)
To ensure that equation (2.41) is satisfied, they defined the so-called "gauge annealing" scheme consisting in the introduction of a Lagrange multiplier β P , the so-called plaquette temperature, for the frustration function into the Hamiltonian.

-βH GA = β

(ij) J ij S i S j + β P JJJJ (2.42)
where the last term runs over plaquettes, and

β ∂F G ∂β P = JJJJ G = 0 (2.43)
In this gauge annealing scheme, the phase transition lines are determined by the equation (2.42), and the frustration constraint (equation (2.43)), that can only be satisfied for negative β P , defines a trajectory in the (β, β P ) plane. Thus, a spin glass transition would correspond to this trajectory crossing a phase transition line [85,199]. Note that the equation (2.42) does describe a gauge theory since it is invariant under the gauge transformation (2.37). Monte-Carlo simulations aiming for the assessment of this approach [206,207] and the predictions of this annealed approximation for quenched systems (no intersection of the transition lines with the trajectory (2.43) was observed), thereby indicating the limited applicability of this latter approach in that it introduces correlations among the plaquettes that are absent in the quenched system where the J ij 's are independent random variables.

However, as stated by Toulouse and Vannimenus [85,199], this gauge annealing scheme can be further improved by the introduction of more constraints which would make the annealed system increasingly imitating the quenched one.

Continuum gauge glasses models

Gauge theories for spin glasses have been developed in two directions. Our discussion on frustration in spin-glass so far has been based on spin models on discrete lattices, let us now briefly consider the continuum counterpart.

Hertz suggested a description of a spin-glass based on the concept of frustration within a continuum Landau-Ginzburg model [197]. For a planar spin, the effective Hamiltonian has a form analogous to that of the Ginzburg-Landau functional for a superconductor in a magnetic field,

H eff = 1 2 d d x r 0 |φ(x)| 2 + 1 4 u|φ(x)| 4 + | (∇ -iQ(x)) φ(x)| 2 (2.44)
except that the role of the vector potential is taken by a quenched random variable Q(x) which represents the wave vector of the lowest-energy spin-density wave, into which the spins condense below the Néel temperature. Thus Q = 0 represents a ferromagnet and Q = 0 an antiferromagnet. Since the model is based on the notion of randomly competing antiferromagnetic and ferromagnetic interactions, the probability distribution P [Q] of this random quenched variable is chosen not to depend directly on Q(x), in order not to privilege any value over any other. Rather, P [Q] is taken as a Gaussian distribution in the gauge invariant quantity :

F µν (x) = ∂ µ Q ν (x) -∂ ν Q µ (x) (2.45)
involving the curl of Q(x).

P [Q] ∝ exp - 1 2f d d x µν F 2 µν (x) (2.46)
The parameter f corresponds to the mean-square vorticity in Q(x) and measures the degree of frustration in the model. In order to study the effects induced by the introduction of a small amount of frustration, Hertz performed renormalization near the f = 0 fixed point 21 . He found that the fixed point is unstable below d < 4, discarding the occurrence of conventional second order ferro or antiferromagnetic phase transitions and indicating that in the presence of frustration, there is no uniquely favored spin configuration, but an infinite number of nearly equally favorable ones, i.e., frustration implies degeneracy. After having investigated the usual kind of order where the order parameter is characterized by the spin field, and proved its instability against the introduction of any frustration, Hertz considered a mean-field analysis of a transition to a state characterized by an Edwards-Anderson order parameter, q EA = S 2 c (where the inner brackets indicate a thermal average, and those followed by the subscript c indicate a configuration average). This second investigation yields the main qualitative features of mean-field theories for other models for spin glasses.

As already pointed out, frustration loops induce topological defects such as disclinations [START_REF] Toulouse | [END_REF][21][START_REF] Dzyaloshinskii | Modern Trends in the Theory of Condensed Matter[END_REF] (see Fig. 2.12). Leveraging on this genuine inhomogeneity in the spin orientation arising from frustration, Dzyaloshinskii and Volovik suggested that at a semi-macroscopic level, the gauge variables associated with the SO(n) group 22 and describing disclinations, should be introduced for a proper description of spin glass properties. Their theory consists in a reappraisal of concepts related to distortions in elasticity theory while formally it is based on Yang-Mills gauge theories [START_REF] Moriyasu | An elementary primer for Gauge Theory[END_REF].

There is a limited similarity between the work of Herzt [197] and Dzyaloshinskii and Volovik The gauge field is written as Q(r) = q(r) + η(r), where the first part represents the random component and the second part the non-random component. The free energy also contains a term which is function of η only and representing the energetics of the thermally produced disclinations. The functional integral in the partition function involves integration over the S field as well as the η(r) gauge field, resulting in a free energy depending on the random component q(r) only. The free energy is then averaged with the probability distribution for q.

Gauge theory of defects

A second conceptual ground for a gauge model for relaxor ferroelectrics is provided by the modern trends in theoretical description of defects in condensed matter, which include geometrical and gauge theoretical methods (see, e.g., [17-19, 212, 217]). The theory of defects [START_REF] Kroner | Continuum theory of defects in Les Houches[END_REF]211] deals with bodies that are subjected to internal stresses even if there are no external forces acting on them. These stresses are caused by the presence of defects, which are alterations of the ideal and ordered structure of the medium that rearrange its structure to reach internal equilibrium.

Gauge theoretical approaches

The ordinary theory of elasticity requires that the displacement at any point of a body should be a single valued function of the coordinates of that point. This requirement ceases to be fulfilled when considering the theory of defects [START_REF] Kadic | A Gauge Theory of Dislocations and Disclinations[END_REF]. Indeed, dislocations and disclinations can be viewed as topological defects, in that their presence changes a simply connected region in a multiply connected one 23 . This implies that the components of displacement are not single-valued functions whenever a defect line or surface is crossed (see Fig. There is only a difference in the discriptions which amounts to a difference in the assignment of the equilibrium positions from where to count the displacement field u i (x) (After Kleinert [START_REF] Kleinert | Gauge fields in condensed matter[END_REF]).

This is best illustrated by considering a doubly-connected body as exemplified by a torus (Fig. 2.15). This hollow ring has the property that a closed circuit in the medium cannot shrink to a point while always remaining inside of the medium. The body may be dislocated by performing cuts along the radial lines OAA ′ , OBB ′ , and removing the wedge AA ′ BB ′ of angle φ. If the cut edges are now joined, the ring is in a state of self-strain. The coordinates of a point P in the strained ring may be expressed in polar coordinates r=OP, θ = AOP (Fig. 2.15 (b)). The displacement u θ of the point P is given by u θ = rθφ/2π. For the point Q 1 the displacement is zero, whereas for the point Q 2 the displacement is rφ. Thus for these two neighboring points lying on either side of the cut, the reference coordinates differ only infinitesimally, while their displacements differ significantly. The relative displacement

δu i (Q) = u i (Q 2 ) -u i (Q 1 )
of neighboring points on either side of the cut is given by [211]: that also includes the compensating gauge fields together with a coupling constant. The new field equations are obtained as customary, via appeal to the Euler-Lagrange equations, and are supplemented by an appropriate choice of gauge to render a unique solution. For a simple illustrative example, one can refer to [START_REF] Valsakumar | Gauge theory of defects in elastic continua I-II, Proceedings of Science[END_REF].

δu i (Q) = b i + d ij x j (Q) (2.

Geometrical approaches

Unlike Kadic and Osipov who consider the problem in the framework of the gauge theory of defects in an elastic continuum, the geometric approach [START_REF] Katanaev | [END_REF][START_REF] Kleinert | Gauge fields in condensed matter[END_REF][START_REF] Kroner | Continuum theory of defects in Les Houches[END_REF] translates the theory of defects in solids to the language of three-dimensional gravity, involving nontrivial metric and torsion.

Topological defects, formed during phase transitions involving continuous symmetry breaking, can be conceptually generated by a "cut and glue" process, when layers or sections of matter are cut from a crystal with a subsequent smooth rejoining of the cutting surfaces [START_REF] De Padua | [END_REF].

This process, known as the Volterra process [START_REF] Kleman | Points, Lignes, Parois: dans les fluides anisotropes et les solides cristallins (Edition de Physique[END_REF] (see Fig. They arise by removing an entire wedge from the crystal and re-gluing the free surfaces. Geometrically, the former transformation introduces torsion, the latter curvature (After Kleinert [START_REF] Kleinert | Gauge fields in condensed matter[END_REF]).

In the continuum approximation the core of such line defects is associated to a geometrical singularity, hence the formal analogy with gravity theory, in which singularities are sources of gravitational field, described by a deformation of the space-time from the flat Minkowsky geometry [START_REF] Katanaev | [END_REF][START_REF] De Padua | [END_REF]. A defect is thus treated as a source of a "gravitational" distortion field, and the metric describing the medium surrounding the defect is then a solution to the threedimensional Einstein-Cartan equation.

In this gravitational approach, crystals are considered as continuous elastic media endowed with a spin structure, and both dislocations (defects in elastic media) and disclinations (defects in the spin structure) are described within the framework of Riemann-Cartan geometry, the torsion and curvature tensors being identified with the surface density of dislocations and disclinations, respectively (Fig. 2.17).

Existence of defects

R ij µν T i µν
Elastic deformations 0 0 Dislocations 0 = 0 Disclinations = 0 0 Dislocations and disclinations = 0 = 0 Fig. 2.17: Relation between physical and geometrical notions in the geometric theory of defects (after Katanaev [START_REF] Katanaev | [END_REF]).

Whereas a smooth displacement vector field only indicates elastic deformations corresponding to diffeomorphisms of the Euclidean space 24 , discontinuities arising from cutting surfaces indicate the existence of defects in the elastic structure, and lead to the appearance of nontrivial geometry. Those discontinuities in the displacement vector field, or dislocations, correspond to a nonzero torsion tensor T i µν , equal to the surface density of the Burgers vector 25 . Setting the criterion for the presence of dislocations to nonzero torsion tensor allows accounting for punctual defects such as vacancies and impurities. In the first case a ball is cut from the Euclidean space and the boundary sphere is shrunk to a point (Fig.

2.18

). In the case of impurity, a point of the Euclidean space is blown up to a sphere and the produced cavity is filled with the medium [START_REF] Katanaev | [END_REF].

Disclinations on another hand, arise from discontinuities in the order parameter field (see Fig. 2.19), have already been accounted for within gauge approaches based on the rotational 24 The elastic solid without defects is assumed to be a continuous, infinite medium, whose undeformed state is characterized by a flat Euclidean metric δij. Ordinary elasticity theory [START_REF] Landau | Theory of Elasticty[END_REF] attaches a Cartesian reference x i to the undistorted medium and describes its deformations locally by the displacement vector field u i (x), which is a smooth function. This way, after the deformation, the point x i will have the coordinates y i = x i + u i (x) in the initial Cartesian frame, and from the mathematical standpoint this map x i → y i by itself is the diffeomorphism of the Euclidean space R 3 .

25 Indeed, the lack of a preferred Cartesian coordinate frame stemming from the lack of symmetry associated to the presence of a defect implies an invariance of the Burgers vector, expressed as the integral of the displacement vector along a closed contour surrounding the dislocation axis, under arbitrary coordinate transformations. This invariance requires the consideration of the components of the displacement vector field with respect to the orthonormal basis in the tangent space. Resorting to Cartan formalism, the torsion tensor acquires the physical interpretation of the surface density of the Burgers vector b i = dx µ ∧ dx ν T i µν Fig. 2.18: Point defect: a vacancy appears when a ball is cut out from the medium, and the boundary sphere is shrunk to a point (after Katanaev [START_REF] Katanaev | [END_REF]).

group SO(3) in spin glass models [21,194,197] (Section 2.1.4.3). Geometrically, the surface density of the Frank vector of a disclination is associated to the curvature tensor26 R ij µν [START_REF] Katanaev | [END_REF]. 

Methodology

Postulate of a gauge theoretical approach for relaxors

The phase structure of relaxor ferroelectrics is obviously not captured by the notion of local order parameter, such as the polarization, on account of the existence of at least two different phases in the paraelectric region. Whereas at short range, the local symmetry is polar, and the atomic shifts [7][8][9] from their ideal cubic symmetry positions are correlated, at long range, the global symmetry is cubic due to the statistical atomic disorder that results in a spatially variable polarization, yielding zero net global polarization. The relaxor behavior is thus contained within the paraelectric phase. Deviations from mean field expectations have been associated with the onset of the relaxor behavior at T d [82], and several propositions have been made in an attempt to define characteristic temperatures, invoking for instance random bonds or/and random fields models [64,99,122,219,220], or conceptually resorting to spatially modulated phases [62][63][64][65] or Griffiths phase [5,153]. It was indeed very early realized that in relaxors, where intrinsic quenched randomness exists in form of defects, impurities or as a general structural property, the disorder stemming from spatial heterogeneities is substantial, in that it is an integral part of their characteristics. In certain circumstances, even a weak disorder can have a crucial effect on their critical behavior, by altering the stability of the low-temperature ordered phase, and inducing non-trivial properties governed by rare regions [2,5,166]. A local order parameter does not lead to any information, since by construction it averages over local fluctuations and overlooks the scale inhomogeneities. As well appreciated, both the physical dimension of a system and the symmetry of its degrees of freedom condition its propensity to undergo a phase transition. For example, continuous symmetries for two-dimensional theories with finite range interactions [184] and local symmetry based theories [START_REF] Wegner | [END_REF]186] cannot exhibit spontaneous symmetry breaking [172,[START_REF] Mermin | [END_REF], yet it is possible to account for the different encountered phases at the expense of introducing nonlocal quantities. Whereas in the first case, the Kosterlitz-Thouless transition (KT) is captured by the correlation function whose dependence on distance changes from an exponential decay at high temperatures, to a power law decay below T KT [184], in the case of gauge theories, it is the Wegner-Wilson loop that encodes the non-local features of the theory [START_REF] Wegner | [END_REF]186]. Let us note that in both cases nontrivial topological properties are crucially involved 27 (binding-unbinding of vortex-antivortex pairs [184], 't Hooft-Polyakov monopole [173][174][175][176][177]). Revealing the relaxor behavior might thus necessitate the consideration of more complex symmetries, whose inability to be described by local order parameter would nevertheless capture the encountered phases.

Driven by these fundamental considerations, we argue that the disorder-induced nontrivial interplay between local and global scales in relaxors can be captured within the framework of the local gauge symmetry. Our proposition is further motivated by the large success of the concept of a gauge field in condensed matter physics, beyond its original formulation by Wegner as a probing tool of phase transitions without local order parameter [START_REF] Wegner | [END_REF], as a mean to account for glassy behavior and various kinds of topological defects.

We consequently propose a new scheme based upon the first-principles-derived effective Hamiltonian approach, local symmetry, and lattice gauge theory to describe and analyze relaxor behavior, emphasizing the role of disorder and the importance of local gauge invariance. This theoretical framework is then applied to a specific relaxor, namely, disordered (Pb 1-3/2x La x )(Zr y Ti 1-y )O 3 solid solutions.

In this section, we will start by reviewing the theoretical background related to the microscopic modeling of ferroelectrics, namely, the first-principle based effective Hamiltonian construction. We will then present the gauge-modified effective Hamiltonian for relaxors.

Density functional theory

Ab initio methods (also referred to as first-principles methods) are used to predict the properties of materials by resolving quantum mechanics equations without any adjustable variables.

Among ab initio methods, the density-functional theory (DFT) in its earliest formulation by Hohenberg, Khon and Sham [221,222], consists in a reformulation of the many-body quantum problem in a problem solely depending on the electronic density. This reduction of the problem enables the access by calculations to the ground state of a system involving a large number of electrons. Thus DFT offers both conceptual simplicity and computational efficiency (see Appendix B). However, let us stress that first-principles methods are essentially restricted to the study of the zero-temperature electronic and structural properties.

Effective Hamiltonian for ferroelectrics

First-principles approaches, based upon a full solution for the quantum mechanical ground state of the electron system within the framework of density functional theory, have shown to yield highly accurate material-specific microscopic information, enabling the investigation of the origin of the behavior of a wide variety of system at the atomic-scale. These methods are free of empirically adjustable parameters, as they take as their only inputs the atomic numbers of the constituent atoms, thereby overcoming the oversimplifications related to inherent limitations of phenomenological models that are usually constrained by the availability of experimental data. However, first-principles methods are essentially restricted to the study of the zero-temperature electronic and structural properties, while phase transitions for instance require finite-temperature treatment. Despite this temperature limitation, first-principles methods constitute a foundation to a computational scheme combining the advantages of density functional theory predictions together with temperature dependent expansion within the so-called first-principles effective Hamiltonian approach.

In order to overcome the lack of temperature dependency in DFT predictions, a first-principles effective Hamiltonian approach had been proposed by K. Rabe and J.D. Joannopoulos in order to study the displacive phase transition of GeTe [225,226].

Their approach consisted in (i) identifying the relevant degrees of freedom for describing the transition though the local mode approximation of Lines [START_REF] Lines | Principles and Applications of Ferroelectrics and Related Materials[END_REF] that incorporates lattice instabilities, and (ii) performing a low-order expansion of the energy in terms of these degrees of freedom, with coefficients directly determined from total energy DFT calculations within a well-established procedure [230]. This model was then successfully generalized to ferroelectric perovskite oxides by W. Zhong, K. Rabe and D. Vanderbilt [12,227,228]. In what follows, we briefly summarize the effective Hamiltonian approach as it was developed for ferroelectric bulk simple perovskites. 

General framework

Perovskite structure oxides (Fig. 2.20) exhibit a wide range of low temperature structural distortions associated with lattice instabilities of the prototype cubic structure. This class of materials includes a large number of ferroelectrics, characterized by uniform polar distortions and associated lattice relaxation.

Both experiments and first-principles calculations suggest that ferroelectricity involves only small atomic displacements and strain deformations from the equilibrium cubic structure.

The first fundamental approximation is thus to represent the energy surface, i.e. the total potential energy, by a Taylor expansion around the high-symmetry cubic perovskite structure, including fourth-order anharmonic terms, required to stabilize the low-symmetry ferroelectric phase.

The second approximation follows the soft-mode theory [59] and thereby allow the identification of the relevant degrees of freedom as the unstable phonons of the high-symmetry reference structure, which freeze in to produce the low temperature distorted structure. This approximation simplify the expansion by reducing the number of degrees of freedom per cell from 15 (3 acoustic and 12 optical normal-mode coordinates per k points) to 6, that is the lowest transverse-optical TO modes (soft-modes) and the long-wavelength acoustic phonons (strain variables η). Since the contribution to the partition function decreases exponentially with increasing energy, these low-energy phonon excitations enable the obtainment of a simple effective Hamiltonian yielding accurate partition function for studying equilibrium properties at low temperatures.

The effective Hamiltonian therefore acts in the restricted subspace defined by the branches containing the unstable phonons, and consists in a low-order Taylor expansion of the bulk energy around the cubic phase 28 in terms of these relevant degrees of freedom, expansion which coefficients are determined from first-principles calculations. The lowest transverse optical phonon, or soft-mode, denoted u, characterizes the collective displacements inside a given primitive cell and can be written as:

u j α = τ ξ τ α (j, α)v τ α (2.48)
where ξ τ α is the eigenvector of the soft mode phonon and v τ α are components of the displacement vector. α goes over x, y, z respectively, τ runs over the different atoms in the unit cell and j is the cell index.

Construction of the effective Hamiltonian

With these two fundamental approximations, the effective Hamiltonian consists of five parts [12,227,228]: a local mode self energy, a long-range dipole-dipole interaction, a shortrange interaction between soft modes, an elastic energy, and an interaction between the local mode and the local strain:

E tot = E self ({u}) + E dip ({u}) + E short ({u}) + E elas ({η l }) + E int ({u}, {η l }) (2.49)
where u is the soft mode local amplitude and η l is the six-component local strain tensor in Voigt notation (η 1 = e 11 ,η 4 = 2e 23 ).

Local mode self energy The first term corresponds to the local mode self energy:

E self ({u}) = i E(u i ) (2.50)
where E(u i ) is the energy of an isolated local mode at cell R i with amplitude u i , relative to that of the perfect cubic structure. Since ferroelectrcity is intrinsically an anharmonic phenomenon, the expansion contains harmonic and anharmonic contributions up to the fourth order at least: 

E(u i ) = κ 2 u 2 i + αu 4 i + γ(u 2 ix u 2 iy + u 2 iy u 2 iz + u 2 iz u 2 ix ) (2.
Z * = ξ A Z * A + ξ B Z * B + ξ O Z * O + 2ξ O⊥ Z * O⊥ (2.52)
The dipole-dipole energy is written as:

E dip ({u}) = Z * 2 ǫ ∞ i<j u i u j -3( Rij .u i )( Rij .u j ) R 3 ij (2.53)
where ǫ ∞ is the optical dielectric constant,

R ij = |R ij |, R ij = R i -R j and Rij = R ij /R ij .
In practice, for three-dimensional systems with periodic boundary conditions, an Ewald construction is used to evaluate E dip . It can then be written as:

E dip = ij,αβ Q ij,αβ u i,α u j,β (2.54) 
with Q being a matrix:

Q ij,αβ = 2Z * 2 ǫ ∞   π Ω c G =0 1 |G| 2 exp - |G| 2 4λ 2 cos(G.R ij )G α G β - λ 3 3 √ π δ αβ δ ij   (2.55)
where G are the reciprocal lattice vectors, R ij are the lattice vectors joining sites i and j, Ω c is the volume of the unit cell and λ denotes the decay of the Gaussian function, or Ewald parameter. Another approximation increasing the computational efficiency is performed by fixing G and R i , the atomic position vectors, that is by neglecting the strain dependency of R ij . Thus Q is treated as a constant. α and β denote Cartesian components, i and j run over the cells. and z respectively, i and j run over the cells.

Short-range interaction

For the short-range interaction between neighboring local modes, quadratic interactions up to third nearest neighbors with the most general form allowed by the space group symmetry are considered. This contribution yields

E short ({u}) = 1 2 i =j αβ J ij,αβ u iα u jβ (2.56)
where J ij,αβ is the coupling matrix which can be simplified by symmetry consideration. It is a function of R ij and decays quickly with increasing |R ij |. For a cubic lattice, there are only seven interaction parameters j 1 , • • • , j 7 determined from first-principles calculations and schematically depicted in Fig. 2.21. The couplings matrices for 1 st , 2 nd and 3 rd nearest neighbors (NN) are given by:

1 st NN : J ij,αβ = (j 1 + (j 2 -j 1 )| Rij,α |)δ αβ (2.57) 2 nd NN : J ij,αβ = (j 4 + √ 2(j 3 -j 4 )| Rij,α |)δ αβ + 2j 5 Rij,α Rij,β (1 -δ αβ ) (2.58) 3 rd NN : J ij,αβ = j 6 δ αβ + 3j 7 Rij,α Rij,β (1 -δ αβ ) (2.59)
where Rij,α is the

α component of R ij /R ij .
Fig. 2.21: Independent intersite interactions corresponding to the parameters j 1 , j 2 (first neighbor), j 3 , j 4 , j 5 (second neighbor), and j 6 , j 7 (third neighbor). (After Zhong et al. [226]).

Elastic energy

The fourth term in the energy sum is the elastic energy which accounts for both the homogeneous η H and inhomogeneous η I strains:

E elas ({η}) = E elas I ({η I }) + E elas H ({η H }) (2.60)
Using the Voigt convention, η 1 = η xx , η 2 = η yy , η 3 = η zz , η 4 = η xz , η 5 = η yz and η 6 = η xy , the homogeneous strain can be written as:

E elas H ({η H }) = N 2 B 11 (η 2 H,1 + η 2 H,2 + η 2 H,3 ) + N B 12 (η H,1 η H,2 + η H,2 η H,3 + η H,3 η H,1 ) + N 2 B 44 (η 2 H,4 + η 2 H,5 + η 2 H,6 ) (2.61)
where B 11 , B 12 and B 44 are elastic constants determined from first-principles calculations, and N the number of primitive cells composing the supercell. The inhomogeneous term is better expressed in terms of dimensionless local displacements v(R i ). Translation and rotation invariances require the expansion of the energy in terms of differences between the v(R i ): 

E elas I = i {γ 11 [v x (R i ) -v x (R i ± x)] 2 + γ 12 [v x (R i ) -v x (R i ± x)][v y (R i ) -v y (R i ± y)] + γ 44 [v x (R i ) -v x (R i ± y) + v y (R i ) -v y (R i ± x)] 2 + cyclic permutations} (2.

Elastic-mode interaction

The last term in the energy form is the contribution stemming from on-site elastic strains and local modes interaction 29 :

E int ({u}, {η l }) = 1 2 i lαβ B lαβ η l (R i ) u α (R i ) u β (R i ) (2.63)
Cubic symmetry considerations yield three independent coupling constants B lαβ :

B 1xx = B 2yy = B 3zz B 1yy = B 1zz = B 2xx = B 2zz = B 3xx = B 3yy B 4yz = B 4zy = B 5xz = B 5zx = B 6xy = B 6yx (2.64)

Generalization of H eff to mixed compounds

The effective Hamiltonian approach is not restricted to pure ABO 3 compounds and can be generalized to solid solutions, such as PbZr 1-x Ti x O 3 (PZT) [233,234] or to the relaxor PbSc 1-x Nb x O 3 (PSN) [47,232,235].

For such A(B ′ B ′′ )O 3 compounds, the generalization consists in (i) considering an averaged Hamiltonian within the virtual crystal approximation [236, 237] accounting for the energy of a hypothetical Pb B O 3 system in which B is a virtual atom averaging between B ′ and B ′′ and (ii) including first-order correction terms that take into account the real nature of atom on the B-site, i.e., B ′ or B ′′ . The total energy is thus written as a sum of two energies and has the form

E({u i }, {v i }, η H , {σ i }) = E ave ({u i }, {v i }, η H ) + E loc ({u i }, {v i }, {σ i }) (2.65)
where u i is the local soft mode in cell i, {v i } are the dimensionless local displacements which are related to the inhomogeneous strain variables inside each cell, η H is the homogeneous strain tensor, and {σ i } is the set of variables characterizing the atomic configuration of the alloy (σ i = 1 for B ′ and -1 for B ′′ ).

The average term E ave depends only on the soft mode and strain variables, and has the same analytical expression as Eq.(2.49). It thus consists of five parts: a local-mode selfenergy, a long-range dipole-dipole interaction, a short-range interaction between soft modes, an elastic energy, and an interaction between the local modes and local strain. E ave is fitted as previously described for simple compounds only from DFT calculations performed on a uniform virtual system Pb B O 3 that compositionally averages the potentials of the pure parent compounds

V VCA = (1 -x) V PbB ′ O 3 + x V PbB ′′ O 3 (2.66)
The local corrections term E loc involves the {σ i } parameters and includes (i) on-site effect of alloying on the self-energy up to the fourth order in the local-mode vector u i , and (ii) intersite contributions linear in u i and in v i :

E loc ({u i }, {v i }, {σ i }) = i ∆α(σ i )u 4 i + ∆γ(σ i )(u 2 ix u 2 iy + u 2 iy u 2 iz + u 2 iz u 2 ix ) + ij [Q ji (σ j )e ji .u i + R ji (σ j )f ji .v i ] (2.67)
where e ji and f ji are unit vectors joining site j to the center of u i and v i . The parameters ∆α(σ i ), ∆γ(σ i ), Q ji (σ j ) and R ji (σ j ) are derived by performing first-principles calculations on small supercells in which a true atom is surrounded by virtual atoms.

Physical properties

Once the effective Hamiltonian is fully determined, it can be subjected to classical Monte Carlo [12,227,238,240] or molecular dynamics [241] simulations in order to access finitetemperature properties of the considered materials 30 .

Such calculations are usually performed with periodic boundary conditions and typically require 12×12×12 supercell. As an output, one can access the mean values u and η in terms of temperature, external pressure and electric field. The macroscopic polarization is also accessible since it is directly proportional to the amplitude of the local mode

P i = (1/Ω c )Z ⋆ u i
where Z ⋆ is the Born effective charge of the mode and Ω c is the unit cell volume. In addition to the phase transition sequences and transitions temperatures, simulations also give direct access to the temperature dependence of various functional properties such as dielectric and piezoelectric responses (through the correlation function approach [245]).

Among the achievements enabled by the first-principles-based effective Hamiltonian approach has been the quantitative assessment of the ferroelectric instability. Following the initial idea of Cochran [59], the ferroelectric instability of ABO 3 compounds can be regarded as a collective phenomenon arising from the competition between short-range covalent repulsions clusions of this study are the following: unlike in PZT, it was found that PSN exhibits a broad dielectric response and a high-temperature polarization tail (Fig. 2.

23). The results

show that the static simulations of PSN reproduce the broad dielectric peak measured in relaxors, which implies that the relaxor behavior is not a purely dynamic effect, as it exhibits a static component. Moreover, oscillations across T m in the case of PSN (Fig. 2.23) are put in relation with complicated multiminima free energy landscape. Such features are attributed to the breaking of the macroscopic symmetry at the nanoscale due to the large internal electric fields associated with the heterovalent PSN alloy. It was concluded that the broad peak has also a static component, i.e., it is not only due to dynamical effects. The picture of a macroscopic sample as a collection of noninteracting nanometric regions, each associated with its own locally large anisotropic internal field, was found to be sufficient to yield typical static relaxor features.

A recent study [169] aiming at gaining microscopic insight into the properties of Ba(Zr 50 , Ti 50 )O 3 relaxor ferroelectric, showed that, in this particular system, turning off random fields and random strains does not significantly affect the results. On the other hand, the computations revealed that it is the difference in polarizability between Ti and Zr ions that leads to the relaxor behavior in BZT. It was found that the average magnitude of the local modes centered on Zr are much smaller than those centered on Ti, and while the temperature behavior of the former shows a continuous shrinking of the magnitude with decreasing temperature, that of Ti on the opposite reveals an enlargement of the magnitude.

Moreover, it was shown that large chemically ordered regions were not necessary to reproduce the relaxor behavior.

Gauge modified effective Hamiltonian for relaxors

We now provide the methodology pertaining to the gauge-implementation in the effective Hamiltonian so as to recover the relaxor behavior. The gauge-modified effective Hamiltonian is then applied to a specific relaxor, namely, disordered (Pb 1-3/2x La x )(Zr y Ti 1-y )O 3 solid solutions, extensively studied for their promising characteristics for various applications [155].

These compounds have substitutional disorder on both the A and B sites of the perovskite structure. The B-site disorder (the replacement of Zr 4+ with Ti 4+ ) alone leads to the well known ferroelectric PZT [233,244], whereas the additional A-site disorder (the additional La 3+ substitution for Pb 2+ ) can induce the relaxor behavior within a certain concentration range of lanthanum [166,246]. Substitution of La 3+ for Pb 2+ and accompanying Aand B-vacancies, i.e., 2La 3+ →1V P b and 4La 3+ →1V Zr/T i , can substantially affect the involved energetics by disrupting the balance between competing short and long ranged interactions [247][248][249].

As already pointed out (chapter 1), in complex structures such as relaxor ferroelectrics, the condition of balance between competing ordering and disordering interactions has to be assessed on a local scale rather than on a global one, since the only consideration of the global scale may conceal the underlying local effects [START_REF] Egami | Underneath the Bragg peaks: structural analysis of complex materials[END_REF]. Indeed, relaxor ferroelectrics exhibit significant structural distortions occurring at the local scale that are not reflected in the average global structure which remains cubic [7][8][9][10][11]. While the average structure determined by crystallography presents a global view of the structure (point or space groups), the relevance of the local, short-range point of view to the properties of relaxors has a direct implication for the method of theoretical analysis.

We thus adopt the local point of view since our approach essentially consists in accounting for continuous local symmetry, and stands on a generalization of the first-principles-derived effective Hamiltonian of Ref. [12], so as to incorporate gauge fields, in addition to ferroelectric and elastic degrees of freedom. Constructed in a manifestly gauge-invariant manner, this new theoretical framework encompasses the local signature of relaxors and aims at getting deeper insight into underlying mechanisms. In the following, we will explicit the two main steps involved in the construction of this model.

Gauge-invariant short-range interaction

A crucial feature in our construction thus revolves around the observation that short-range interactions and local structure play the major role in driving relaxor behavior [7][8][9][10][11].

We are then motivated to restrict the gauge-implementation to the short-range interaction (Eq.(2.56)) in the effective Hamiltonian.

x y z q 2 q 3 q 1 Fig. 2.24: Schematic illustration of the global directional SO(2) symmetry of the first nearest neighbors short-range interaction. Local modes vectors attached to the vertices are omitted. Cylinders, each of which axes coincide with either the x, y or z direction, represent rotations by angles θ 1 , θ 2 and θ 3 respectively (three different colors). These rotation angles affect all points in the lattice equivalently, i.e., they are independent of the lattice point i. E short is thus invariant under global directional SO(2) rotations acting in the internal space of the dipole moments u i in the plane perpendicular to the linking direction Rij .

The short-range interaction among first nearest neighbors features directional anisotropy (Eq.(2.57)) with respect to which it is readily seen that E short displays a global directional SO(2) symmetry. This is schematically depicted in Fig. 2.24, where depending on the direction ( Rij along x, y or z) linking two first nearest neighbors local modes, cylindrical SO (2) rotation operations (by angles θ 1 , θ 2 and θ 3 , respectively) such that the axes around which the rotation is performed coincides with the linking direction Rij , leave E short invariant. In this case the invariance is global, i.e., the rotation angles θ 1 , θ 2 and θ 3 exhibit no spatial dependence.

The postulate we make resides in the extension of this global symmetry to the local scale, thus allowing independent transformations of individual u i while the remaining system stays unaffected. In such a construction, the angles θ 1 , θ 2 and θ 3 now acquire a spatial dependence on the lattice points i, i.e., θ 1 (i), θ 2 (i) and θ 3 (i) (Fig. 2.25). This requires the introduction of compensating gauge fields, needed to ensure the postulated invariance under the action of the local directional SO(2) group G. The gauge degrees of freedom are then positiondependent rotational matrices U ij taking values in the gauge group G and assigned to every link between neighboring sites i and j. They satisfy the condition U ij = U -1 ji and act as parallel transporters between adjacent sites. Simultaneous transformations operating on local modes u i → g i u i and links From each lattice site i stem three cylinders, each of which axes coincide with either the x, y or z direction. These cylinders represent space-dependent rotations (as many colors as there are rotations) by angles θ 1 (i), θ 2 (i) and θ 3 (i) respectively, and are associated with the compensating gauge fields that have been introduced so as to guarantee the invariance of E short under local directional SO(2) rotations acting in the internal space of the dipole moments u i in the plane perpendicular to the linking direction Rij .

U ij → g i U ij g -1 j with g i ∈ G leave the product u i U ij u j unaltered (Eq.(2.28)).
The presence of the additional local gauge symmetry thus implies the form of the coupling between local modes and gauge fields, the gauge-invariant form of the short-range interaction yields:

E FE-G ({u i }, {U ij }) = 1 2 i =j α,β J ij,αβ u iα U ij,αβ u jβ , (2.68) 
with

U ij = exp -iθ k (i)T k δ | Rij |,k ∈ G (2.69)
Here T k are the three SO(3) generators. U ij are elements of the local directional SO(2) group and can be expressed as 3 × 3 matrices, i.e., U ij are embedded in SO(3). The parameters

θ(i) = (θ 1 (i), θ 2 (i), θ 3 (i)) are specific to each lattice points i with θ k (i) ∈ [-π, π).
The requirement of local gauge invariance for E short has thus resulted in the introduction of a rotation U ij with each bond ij 31 . The effect of the gauged interaction is to favor, energetically, a certain relative orientation for each pair of interacting local modes, rather than merely ferroelectric alignment.

The energy of the gauge degrees of freedom can be written as a sum over elementary squares (plaquettes, Eq.(2.29), Fig. 2.7) of links in the lattice [START_REF] Wegner | [END_REF]186]:

E G ({U ij }) = k E = k 1 - 1 3 Tr[U ] , (2.70) 
where

U = U ij U jk U kl U li ∈ SO(3)
is the product of transporters around a plaquette, and k is the coupling parameter, which governs the strength of the gauge field self-interaction.

We note that since U ij matrices need to be chosen with respect to the directional anisotropy (i.e., the axis of rotations Rij are different for these matrices) the product belongs to SO(3).

The gauge-field energy then is a scalar obtained by taking the trace of the product.

The extension of the global directional SO(2) symmetry as featured by the short-range interaction among first nearest neighbors to the local scale consequently leads to a gauge-modified effective Hamiltonian Ẽtot that can be formally cast into the form: 31 The effective Hamiltonian respects the cubic symmetry. However some terms in it such as E short , possess a higher symmetry. If all the terms entering in the Hamiltonian were to be made gauge invariant, then the corresponding gauge group would have been m 3m ⊲ T(3) where T(3) is the 3-parameter translation group, with at least two different gauge fields [START_REF] Kadic | A Gauge Theory of Dislocations and Disclinations[END_REF]. In such a case the resulting gauge group would have been discrete. This approach is used, for example, to treat disclinations and dislocations in continuum approximation [START_REF] Kadic | A Gauge Theory of Dislocations and Disclinations[END_REF] (section 2.1.5). The restriction of the gauge-implementation to E short is an approximation motivated by the observation that short-range interaction plays a major role in driving relaxor behavior. Unlike the Heisenberg Hamiltonian, the short-range interaction E short in perovskites features directional anisotropy, with respect to which there is a global and continuous intrinsic symmetry. This is the reason why rendering it local involves the introduction of matrices (the gauge field) from SO(2) rather than from SO (3).

Ẽtot = E FE ({u i }, {η}) + E G ({U ij }) + E FE-G ({u i }, {U ij }) (2.71)
with E FE being the energy of the parent PZT system provided in Eq.(2.65) [233,234], where {u i } are the local modes, directly proportional to the electrical dipole moments and {η} are the homogeneous and inhomogeneous strain tensors. E G and E FE-G on the other hand are the additional terms gathering gauge degrees of freedom {U ij }, and their couplings with ferroelectricity. The first-principles obtained coefficients involved in this effective Hamiltonian are listed in Table 2.26. We note that additional parameters are introduced by the gaugeimplementation, namely, the self-coupling parameter of the gauge field, k, and the angles parameters θ(i) = (θ 1 (i), θ 2 (i), θ 3 (i)) of the rotational matrices U ij , they will be addressed in the following section. 

Quenched and dynamic contributions to disorder

It is widely believed that both dynamic and quenched defects associated with compositional inhomogeneities play a major role in the behavior of relaxors. In this second step, we are therefore led to study an intermediate situation where there is inherent quenched as well as dynamic disorder. On another hand, local symmetry has proven to be reliable in describing defects (section 2.1.5) and in probing disorder-induced frustration (section 2.1.4). Specifically, gauge approaches have been resorted to in order to account for the twofold nature of disorder, i.e., for its randomly quenched component and its thermally fluctuating dynamical one (section 2.1.4.3). We here leverage on this ability of gauge approaches to handle such features. Within our model, disorder and frustration are provided by a random gauge-field type of interaction.

Expressly, quenched disorder is introduced via fixing links on the lattice and can be thought of as arising due to an explicit breaking of the local symmetry. To mimic random La 3+ -disorder, we thus fix the rotation angles of adjacent links U ij defining the edges of cubes enclosing randomly selected A-sites (upper panel of Fig. 2.27 and Fig. 2.28). These quenched links 32 are drawn independently and uniformly from G, so as to introduce genuine frustration 33 . An elementary plaquette U in Eq. (2.70) determines the frustration-induced local curvature 34 of the gauge fields, i.e., it measures the difference in orientation of a vector being transported along the two paths on a plaquette, as depicted in Fig. 2.27(c,f). Each elementary quenched cube (La 3+ -containing) consisting of six randomly frustrated plaquettes (Fig. 2.27(b,c)) thus introduces non-trivial constraints on the gauge field 35 which force the system to locally deviate from energetically optimizing configurations. There is here a mechanism analogous to that in spin glasses which produces complicated behavior leading to ground state degeneracy.

32 By fixing the links around La 3+ ions we also assume that the dynamics of the corresponding quenched defects is much slower then the dynamics of the local modes. 33 By frustration of a plaquette, we mean that the angles associated to the four links making up the plaquette cannot simultaneously minimize all the bond energies for the neighboring local modes in EFE-G (Eq.(2.68)).

34 Indeed, in the continuum limit a → 0, the link variable Ui,µ, assigned to the link stemming from the lattice site i to its nearest neighbor i + aμ in direction µ, can be viewed as exp[aAµ(i)] and the plaquette variable, U as exp[a 2 Fµν (i) + O(a 3 )], where Fµν is the curvature tensor. The link product is then nothing but a parallel transporter around a closed loop which determines curvature. In this sense, the 1 -1

3 Tr[U ] term appearing in the Wilson action of Eq.(2.70) can be seen as a measure of deviation from flatness. Indeed, in the case of trivial identity link matrices, the traced plaquette variable amounts to three, yielding vanishing energy term. 35 As a matter of fact, each set of links assigned to the edges of a quenched cube is in violation of the Bianchi identity [23]. Other links (defining the edges of Pb 2+ -containing unit cells, lower panel of Fig. 2.27) are initially set to identity and treated as fluctuating quantities, i.e., on the same footing as local modes and the strain 36 .

We now address that additional parameters introduced by the gauge-implementation, namely, the self-coupling parameter of the gauge field, k, and the angles θ(i) = (θ 1 (i), θ 2 (i), θ 3 (i)) of the rotational matrices U ij . Since disorder originates from the randomly quenched gauge field which are coupled through the k parameter, the gauge term E G can be seen as the energy of disorder, while the term E FE-G represents the short-range interaction between local dipole moments in the presence of disorder. Relaxor behavior is thought to precisely arise from the synergy of competing yet balanced interactions [START_REF] Egami | Underneath the Bragg peaks: structural analysis of complex materials[END_REF]. Asymptotically, a very weak disorder will leave the system unaffected and the order intact, while a very strong one will preclude any form of ordering. The two parameters of the model, namely the coupling parameter k and the angular interval, effectively control the degree of frustration and the strength of quenched disorder in the system.

Insight into the evolution of disorder is gained by considering Eq. (2.70) as a function of βk while disregarding all other terms in the effective Hamiltonian, i.e., by pure-gauge considerations. In this case, the probability of a gauge configuration is proportional to exp(-βE G ).

Figure 2.29 shows the plaquette energy E as a function of βk. Let us mention that in a pure gauge theory, the k parameter entering in Eq. (2.70) can be seen as an inverse temperature with the plaquette energy playing the role of internal energy of the system in analogy with statistical mechanics [START_REF] Creutz | [END_REF]. A regime of weak coupling (small k) corresponds to high 36 Let us note again that this approach can be put in conceptual relation with that of the gauge glass model of Dzyaloshinskii and Volovik [21], who endowed the gauge field with both static and dynamic contributions, the former being associated to the quenched defects while the latter is ascribed to thermal fluctuations, and thus to thermally produced defects. This crossover is thought to be reminiscent of phase transitions occurring in higher dimensions [START_REF] Creutz | [END_REF]250]. Clearly, in the asymptotic k → ∞ limit, a starting configuration is frozen-in, effectively breaking the gauge symmetry and suppressing fluctuations of the link angles θ k (i).

This limit thus corresponds to vanishing gauge-disorder.We numerically found that the interplay between ferroelectricity and gauge fields is most pronounced when the angular interval for quenched links 37 is [-π/2, π/2] and k is in the crossover region. Technically, since the energy of a gauge configuration is given by Eq. (2.70), and the probability with which the thermal fluctuations can generate that configuration is proportional to exp(-βE G ), with β being the inverse temperature, k was chosen such that the product βk is within the crossover 37 Three extreme cases for the choice of quenched {Uij} can be pointed out. Indeed, (1) by setting the links to unity, one recovers the usual ferroelectric model, (2) for G = Z2 the model can be seen as the one of ferroelectrics with local frustration arising from competing ferroelectric and antiferroelectric interactions, and (3) we expect that our model with fully quenched random link variables and the corresponding angles, uniformly distributed between -π and π, is similar to the gauge glass model [200,251]. region (see Fig. 2.29) at high temperatures, we found k = 0.05. This value is obtained by taking kβ = 6.35× T/(3.18 × 10 5 ) where T=2500 K corresponds to the non-rescaled fixed temperature.

As for the distribution of the random gauge rotations associated with the remaining fluctuating links, those angles to be independent and identically distributed with the Haar measure (see footnote [START_REF] Creutz | [END_REF]. This describes the case in which all twists are equally possible.

Let us stress that knowing the exact relation between La 3+ induced vacancies at A/B-sites and gauge fields would allow us to calculate the value of k in Eq. (2.70) from first-principles.

Instead, we mimic the presence of defects in the way it is done in the gauge theory of defects (i.e., by introducing frustration in the gauge field) and check the entire range for the parameter. We then numerically found the range of values (the crossover region in Fig. 2.29) which leads to relaxor behavior. Calculating the parameter from first-principles and thus describing the exact relation between La 3+ and gauge fields is a challenge and beyond the scope of this work. Let us also mention that pure-gauge investigations has hinted a value for the k parameter that is not as fortuitous as it might seem. Indeed, the range of k which yields competing and balanced interactions is very narrow, and any precise determination of k would merely result in relatively small corrections.

We would like to stress that the purpose of this work is not to prove a relation between defects and gauge theories, but rather to answer the question of whether the postulate of a local symmetry on the leading short-range interaction term in a system where disorder-induced frustration is provided by a random gauge-field type of interaction, enables to retrieve the relaxor behavior. Behind this postulate lies the strong belief that such a model would meet the physics of relaxor ferroelectrics on length scales in which frustration effects dominate.

Monte-Carlo simulations

In order to access finite-temperature properties, we use Monte-Carlo simulations, which main features we here review [253].

Meaningful quantities of a physical system in thermal equilibrium usually involve thermal expectation value of some observable A(X) which depends on the systems configuration:

A = 1 Z Ω d k X A(X) exp [-βE(X)] (2.72)
where Z is the partition function

Z = Ω d k X exp [-βH(X)] (2.73)
Ω denoting the (k-dimensional) volume of phase space {X} over which is integrated, E(X)

being the Hamiltonian, and β = 1/k B T , where k B is the Boltzmann factor. In the present case, the partition function is expressed in terms of the dynamical variables u, η, and U and takes the following form:

Z = du dη dU exp -β Ẽtot (u, η, U ) (2.74)
where du and dη denote the integration over ferroelectric and elastic degrees of freedom respectively, and dU is the integration measure (gauge invariant Haar measure, see footnote 16) over individual link variables taking values in a Lie group. Ẽtot refers to the gaugemodified effective Hamiltonian given by Eq.(2.71).

This expression is analytically intractable, except for very small lattices 38 . The probability distribution p(X) = 1 Z exp [-βE(X)] has a very sharp peak in phase space where all extensive variables A(X) are close to their average values A . Hence, when summing over the configurations it is more important to consider the configurations with larger weight than those with smaller weight, i.e., the configurations X n in the vicinity of the peak of this probability distribution. This goal is achieved by the so-called importance sampling Monte Carlo method, whose central idea is to approximate the very large sum by a comparatively small subset of configurations {X n } of finite number N , sampled according to the weight factor

∝ exp [-βE(X n )].
The average of an observable A(X) can then be approximated by the mean value taken by the observable over the N configurations in this sequence:

A = lim N →∞ 1 N N n=1 A(X n ) (2.75)
The statistical error of the result will be proportional to 1/ √ N , and the exact value will be reached in the limit N → ∞.

Starting from some initial configuration X 1 , one constructs a stochastic sequence of configurations that eventually follows the equilibrium distribution p(X). This is done with the so-called Markov chain or Markov process

X 1 → X 2 → X 3 → • • • (2.76)
In this Markov chain configurations X n are generated subsequently 39 , with the property that the next state depend on the present state, and does not depend on any other past state. The change of a field configuration to a new one is called an update, or a Monte-Carlo step. The Markov chain is constructed such that it visits configurations with larger probability more often (see Fig. 2.30). The convergence of this Markov process towards thermal equilibrium is ensured by imposing the condition of detailed balance, which requires that the probability to reach a given state is the same as that to leave a given state

W (X → X ′ )p(X ′ ) = W (X → X ′ )p(X) (2.77)
where W (X → X ′ ) is the transition probability to change from state X to state X ′ , and p(X) is the weight of state X. The transition probability W (X → X ′ ) still needs to be specified. The widely used Metropolis algorithm accomplishes both tasks of importance sampling and detailed balance. It proposes a change in the system state X → X ′ and evaluates the energy change ∆E = E X ′ -E X . If ∆E < 0 the proposed change is accepted, otherwise it is only accepted with a probability exp (-β∆E), i.e.

W (X → X ′ ) = 1 if ∆E < 0 exp (-β∆E) if ∆E > 0 (2.78)
In this latter case, a pseudo-random number r, selected in the interval between 0 and 1 with uniform probability distribution, is generated and if r exp (-β∆E) the change is accepted, otherwise, it is rejected. Let us sum up the steps involved in the Metropolis algorithm:

start Generate an arbitrary initial configuration for all the dynamical variables at all sites. In the present case, the initial state for the matter field (u,η) is taken to be zero at high temperature, while that of the dynamical gauge field U is taken to be identity (cold start).

update & accept/reject Proceeding site by site through the lattice, propose a random change to each of the dynamical variables and apply for each of the variables the acceptance/rejection procedure. The local mode is updated according to u i → u ′ i = u i + du i . The three components of du i are updated at once, the energy difference between u' i and u i is then computed and submitted to the accept/reject test. The inhomogeneous strain is updated in terms of the local displacement vector v i → v ′ i = v i +dv i , in same fashion as for the local mode. For each of the three links stemming for the considered lattice site and pointing in the x, ŷ and ẑ directions, the involved angle is updated from the angular interval [-π, π], and the energy difference between the old and new configurations is computed and evaluated according to the accept/reject test.

sweep Once all the dynamical variables have been updated and all the sites have been considered, a final update of the homogeneous strain (the six components of the tensor at once) is performed, which completes one sweep of the lattice.

Let us note that the acceptance ratio, defined within one sweep for each of the dynamical variables as the number of accepted updates over the number of sites, allows to adjust the range of the updates in a next sweep so as to efficiently probe the phase space. Expectation values are approximated by average values of observables taken over 50000 sweeps after 50000 initial configurations have been discarded to allow for the onset of statistical equilibrium. We use 12 × 12 × 12 supercells with periodic boundary conditions. This procedure effectively eliminates boundary effects. However, finite size effects are to be expected since the system is still characterized by a finite lattice size, as it yields an upper bound for the maximum value of correlation length. The resulting properties of the system differ from those of the corresponding infinite lattice. In general all singularities that can occur only in the thermodynamic limit will be rounded, in particular this means that response functions expected to diverge at the critical point, like the dielectric susceptibility or the specific heat, will instead reach finite values. Moreover functions which should be vanishing above T C will generally exhibit a finite tail, as the polarization for instance. And finally, discontinuous jumps occurring across first-order transitions will instead appear continuous with large slopes over narrow regions.

Chapter 3

Numerical results

We investigate the influence of lanthanum-mimicking quenched spatial disorder on gaugemodified lead zirconate titanate effective Hamiltonian. Disorder is achieved by the quenching of gauge variables along edges of randomly chosen unit cells, whose percentage can be seen as that of the lanthanum substitution for lead, x, effectively yielding PLZT systems. In this chapter we report the results obtained for PL x Z 60 T 40 1 compositions, with 0% ≤ x ≤ 20%, whose parent compound, PZ 60 T 40 , is a prototypical soft-mode ferroelectric with a rhombohedral FE phase. PL x Z 60 T 40 systems exhibit relaxor behavior arising from compositionally induced disorder for x ≥ 5%, and upon cooling in the absence of an electric field, a spontaneous relaxor-to-ferroelectric transition occurs [155].

Macroscopic observables

In order to probe the characteristics of PL x Z 60 T 40 systems, the expectation value of observables (Eq.2.72) is estimated within the Monte Carlo simulations as a simple arithmetic mean over the Markov chain, or number of sweeps (Eq.2.75). The commonly used order parameter for dipolar systems is polarization. To compute this quantity, one takes the sum of all the local modes vectors in the lattice, divided by the number of lattice sites and averaged over the sweeps

u = 1 N N i=1 u i (3.1)
where i runs over the lattice sites and where N is their total number (N = 12 3 ). The statistical average over sweeps is denoted by . Since u i is directly proportional to the local electric dipole moment, u is proportional to the polarization. 

Polarization and specific heat

C = 1 k B T 2 ( E 2 -E 2 ) (3.
| u | = ( u x 2 + u y 2 + u z 2 ) 1/2 (3.3)
where ( u x , u y , u z ) are the Cartesian components of u , and where denotes the average over sweeps performed on the average over the supercell of the local modes. Regarding the temperature scale, since the effective Hamiltonian does not include antiferrodistortive (AFD) motions (associated with the oxygen octahedra rotation [244]), the transition temperatures are shifted upwards with respect to the true ones [155]. In order to provide a better comparison of our simulation results to experiment, we have linearly rescaled the temperature (as in Ref [233]), so that the theoretical Curie temperature in disordered PZ 60 T 40 (960 K) coincides with the experimental value of 652 K [155]. of the supercell at T = 34 K.
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Integral curves are a very simple way of conveying the structure of vector fields. By following the vector field path, they convey this information in an intuitive manner with enhanced visibility. Let us briefly recall that integral curves require solving differential equations determined by vector fields [START_REF] Arnold | Ordinary Differential Equations[END_REF]. Let U be a domain of the Euclidean space, and let v be a vector field in U . The differential equation determined by v corresponds to :
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ẋ = v(x), x ∈ U (3.4)
while its solution involves a differential mapping γ : I → U of the interval

I = {t ∈ R, a < t < b} of the real t-axis into U , such that d dt t=τ γ(t) = v(γ(τ )), ∀ τ ∈ I (3.5)
In other words, the tangent vector to γ at each point is equal to the value of v at that point.

If the value of a solution γ : I → U at the point t 0 , a < t 0 < b equals x 0 , then γ is said to satisfy the initial condition

γ(t 0 ) = x 0 , t 0 ∈ R, x 0 ∈ U. (3.6)
Comparing these integral curves reveals that turning on the gauge degrees of freedom has drastic effects on the behavior of the system even in the ferroelectric phase. PZ 60 T 40 shows the uniform configuration that is reached by the pure system, whereas a remarkably high deviation from perfect ordering exists in PL x Z 60 T 40 systems over a wide temperature range, even far below the transition point. These non-perfectly ordered regions can be seen as nonordered nanodomains in the ordered matrix, which are formed as a consequence of gauge fields and their fluctuations. Interestingly, the microdomain distribution due to quenched random-fields and their spatial fluctuations appears to have a rather similar structure [152].

It is then possible that the gauge-induced local ferroelectric disorder gives rise to similar macroscopic characteristics as the disorder in random fields. This point will further be addressed in section 3.1.6. We then define the mean angular deviation between the direction of the local modes u i and that of the ground-state spontaneous polarization P s in the following way

Effects of quenched disorder on the dipoles pattern

1 8N QC N QC j=1 8 i∈QC j Arccos [u i .P s ] (3.7) 
and

1 8N nonQC N nonQC j=1 8 i∈nonQC j Arccos [u i .P s ] (3.8) 
for local modes attached to the nodes of quenched cubes (Eq.3.7), and to those attached to the nodes of non-quenched cubes (Eq.3.8), respectively. N QC refers the total number of quenched cubes and N nonQC to that of non-quenched cubes. Fig. 3.9 enables the following observations. nonQC QC Fig. 3.8: Schematic view of two unit cubes. Left cube has edges corresponding to quenched links (solid lines) and will be referred to as quenched cube (lanthanum containing) QC. Right cube has edges associated with relaxing link variables (dotted lines) and will be reffered to as non-quenched cube (lead containing) nonQC. Each of QC and nonQC have relaxing local modes attached to their nodes.

For the pure system PZT devoid of disorder, and thus of quenched cubes, the mean angular deviation from the ground state direction tends to zero with decreasing temperature, thereby signaling that local modes achieve perfect low temperature ordering. For each of the PLZT systems on another hand, depending on whether local modes are attached to QC or to nonQC, their deviation from the ground state direction is more or less pronounced at low temperatures. Increasing the amount of quenched disorder enhances theses deviations. The underlying quenched gauge disorder thus affects the local modes by hindering their ordering process below T C (signaled by vertical dotted lines). The extension of its effect beyond the local modes directly attached to QC, is due to the correlations developed by the gauge field and to those developed by the local modes (section 3.1.4). As it will be later shown, it is also a signature of quenched-disorder-induced non-vanishing density of topological defects associated to the local modes (section 3.4).

The disordering effect of the partially quenched gauge field on the dipoles pattern is further illustrated in Fig. 3.10. Both the integral curves associated to the local modes at T = 34 K, and the location of quenched cubes are shown within a given (x, y) plane of the supercell.

One observes that the propensity to achieving order is more pronounced in regions devoid of quenched disorder.

Dielectric response and departure from Curie-Weiss behavior

We now turn to the study of the dielectric susceptibility. The dimensionless dielectric susceptibility χ αβ is defined by [256]: In the case of PZ 60 T 40 system, the reduced temperature corresponds to T/T C (where T C is the temperature at which the specific heat peaks), whereas in the cases of PL x Z 60 T 40 systems, it corresponds to T/T m (where T m is the temperature at which the dielectric susceptibility peaks). For each of the considered systems, we show both the specific heat and the inverse susceptibility to demonstrate the disorder-induced shift between T C and T m . In the case of PZ 60 T 40 system (Fig. 3.11), T C and T m nearly coincide. Moreover, the inverse dielectric susceptibility at T > T C can be well approximated to a Curie-Weiss form

χ αβ = 1 V ε 0 ∂u α ∂E β T = (N Z * ) 2 V ε 0 k B T [ u α u β -u α u β ] (3.9) Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ 0% 0 
χ -1 = C (T/Θ -1) γ , with γ ≃ 1 and Θ ≃ T C , indicative of a typical ferroelectric behavior.
We then investigate the origin of the rounding of the inverse susceptibility near T C in PZ 60 T 40 by increasing the simulation box size L (Fig. 3.12). We approximate the behavior of χ -1 to a Curie-Weiss form χ -1 = C(T -T 0 ), and collect the parameters of the fits (Curie temperature T 0 , Curie constant C) above and below the transition [256]. The values of the Curie constants above and below the transition are predicted from mean field arguments [START_REF] Landau | Electrodynamics of Continuous Media[END_REF] to satisfy C below = -2C above for second-order transitions, whereas for first-order transitions, the values of C below and 2C above are not related in a simple way, generally yielding a ratio larger than one [256]. Results indicate that the extracted Curie temperature T 0 are close but not identical to T C , moreover, the |C below |/ -2C above ratio is close to (and slightly smaller than) 1. In view of this results and of the absence of a jump in the polarization (Fig. 3.1), we conclude that the rounding can be ascribed to finite-size effects, and that the ferroelectric transition is close to a second order one. 
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χ -1 -χ -1 max = C ′ (T/T m -1) γ (3.10) 
with γ ≃ 1.45, 1.69, 1.91, for x = 5, 10 and 15% respectively. The fits were performed on Ln(χ -1 -χ -1 max ) versus Ln (T /T m -1), from which the parameter γ corresponding to the slope and indicative of the diffuseness of the transition was extracted.

The significant broadening of the minima of the inverse dielectric susceptibility with increasing La 3+ content as well as the monotonically increasing deviation from the normal Curie-Weiss behavior quantified by a value of γ > 1 below T d , differing from that associated with the mean-field approach, are indicative of diffuseness in the phase transition, in agreement with Ref. [START_REF] Shukla | [END_REF]. Static simulations of PL x Z 60 T 40 thus reproduce the broad dielectric 
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Reduced T C Harb. peak measured in relaxors in low frequency experiments, which implies the existence of a static component in the smeared peak [169]. 

Correlation length

We now analyze the temperature evolution of the correlation length, which corresponds to the length scale over which the fluctuations of the microscopic degrees of freedom are significantly correlated with each other [259].

Figures 3.16 and 3.17 display the correlation length's evolution with temperature of the gauge field, ξ g.f. , and the local modes, ξ l.m. , respectively. In the case of the gauge field, ξ g.f. is extracted from the asymptotical decay of the spatial plaquette-plaquette correlation function

C(d) = TrU TrU ′ -TrU 2 (3.11) 
where U and U ′ stand for two plaquette variables facing each other and separated by d lattice links [260]. In practice ξ g.f. is averaged over the three spatial directions x, ŷ and ẑ:

ξ g.f. = 1 3 (ξ x g.f. + ξ ŷ g.f. + ξ ẑ g.f. ) (3.12) 
where for example ξ x g.f. corresponds to the correlation length extracted from the correlation function computed for plaquettes facing each other and lying in the (y, z) planes. Let us note that the obtaining of values for ξ g.f. lower than 1 is due to the considered continuum approximation. Results indicate a short-range correlated gauge field, with a global drop of the correlation length with increasing % La content. One also observes a quasi linear decrease of ξ g.f. with temperature, with a slope tending to zero as the disorder content is increased (Fig. 3. [START_REF] Creutz | [END_REF]).
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Thus the underlying gauge field is not sensitive to structural phase transitions, and does not display one of its own. Increasing the amount of quenched cubes (i.e. the lanthanum content) reduces both the correlation length and its range of temperature variation.

The ordering process of the local modes (the matter field), and the eventual crossover from local, short-ranged correlations to long-ranged ones, can be assessed by the two-points correlation function defined by

G(r i -r j ) = G(r ij ) = u i .u j -u i u j (3.13) 
with r i = (x i , y i , z i ) the coordinate of the lattice site i, r ij = |r ij | the distance between local modes on sites i and j, and where the first equality reflects the translational invariance due to periodic boundary conditions. The range in which the direction of one local mode influences other local modes is given by the correlation length ξ l.m. , extracted from the asymptotic behavior of the correlation function at large separations between the local observables:

G(r ij ) ∝ exp(-r ij /ξ l.m. ) (3.14) 
Since a direct estimation of the correlation length from the correlation function is inefficiently costly, one can alternatively resort to the computation of the second-momentum correlation length [261], defined by:

ξ l.m. = µ 2 zµ 0 1/2 (3.15) 
where

µ 2 = N i,j=1 r 2 ij G(r ij ) (3.16)
is the second moment of the correlation function and µ 0 its zero-th moment

µ 0 = N i,j=1 G(r ij ). (3.17)
z is the number of nearest neighbors, which for a hypercubic lattice equals 2d, with d the space dimension. For a cubic lattice of size V = L 3 , the coordination number thus equals 6.

In practice, the moments of the correlation function µ 0 and µ 2 are computed in the reciprocal space. Using the decomposition of the correlation function into Fourier modes

G(r i -r j ) = 1 V L-1 n 1 ,n 2 ,n 3 =0 Ĝ(k)e ik.(r i -r j ) (3.18) 
with k = 2π L (n 1 , n 2 , n 3 ), the integration of the correlation function over the lattices sites yields µ 0 = Ĝ(0) = V ( u 2 -u 2 ). Numerically, ξ l.m. is averaged over the three spatial directions x, ŷ and ẑ:

ξ l.m. = 1 3 (ξ x l.m. + ξ ŷ l.m. + ξ ẑ l.m. ). (3.19) 
To compute each of those three terms ξ x l.m. , ξ x l.m. and ξ x l.m. , the Fourier transform of µ 2 is taken at minimal non zero momentum, respectively, k x m = (2π/L, 0, 0), k ŷ m = (0, 2π/L, 0) and k ẑ m = (0, 0, 2π/L). For example, in the case of ξ x l.m. , equation 3.15 yields

ξ x l.m. = 1 |k x m | Ĝ(0) Ĝ(k x m ) -1 1/2 (3.20) 
Since simulations were performed on finite L 3 (with L = 12) systems with periodic boundary conditions, the maximum value of the correlation length is limited to ≈ L/2, and thus the resultant properties differ from those of the corresponding infinite lattices. Although finite size effects smooth the thermodynamic behavior of finite systems whether they pass through a first order phase transition or through a second order one, it is possible to assess their strength by examining the maximal value of ξ l.m. . Whereas in the pure PZT system, ξ l.m. is found to peak at a value ≈ L/2, thus indicating a finite or bounded signature of divergence, thereby signaling a second order phase transition together with strong finite size effects, in the case of PLZT systems, ξ l.m. remains lower than L/2, thus signaling smaller finite size effects together with a probable first-order like thermodynamic behavior (Fig. 3.17).

This latter observation is somewhat in contradiction with the continuous behavior of of the polarization (Fig. 3.2,3.3 and 3.4), suggesting that disorder gradually turns the transition into a crossover. We note that with increasing lanthanum content, the maximal value of ξ l.m. decreases, thus supporting the idea of a hindered long-range order owing to disorder introduction and thereby explaining the decrease in magnitude of the polarization.

Whether quenched disorder affects the critical behavior of an ideal system or not has been a matter of many experimental and theoretical investigations. Under certain circumstances, quenched disorder can lead to the destruction of any critical point. In this case, due to the presence of defects, different parts of the system independently undergo the phase transition at different temperatures, resulting in a global phase transition smeared by disorder. At such a smeared phase transition, a unique critical temperature for the entire system does not exist, as a consequence of which a rounding of the singularities in the thermodynamic quantities is obtained [262,[START_REF] Grinstein | Fundamental Problems in Statistical Mechanics VI[END_REF]. The origins of the disorder-induced smearing of the phase transition and of Griffiths phenomena [153] are very similar, both are caused by rare large spatial regions which are locally in the ordered phase. The difference lies in the dynamics of the rare regions. Disorder in general decreases the critical temperature T C from its clean (pure counterpart) value T 0 C . In the Griffiths phase corresponding to the temperature interval T C < T < T 0 C , the system does not exhibit global order, however, in the limit of an infinitely large system, the probability of finding an arbitrarily large region devoid of disorder, although exponentially small, is nevertheless non-zero [153,262]. Such rare regions can consequently develop local order, with a true phase transition independently from the bulk. Griffiths has shown that these rare regions result in a singular free energy in the interval T C < T < T 0 C . They are endowed with slow dynamics owing to the requirement of a coherent change of the order parameter over a large volume. Consequently, the long-time dynamics is dominated by these rare regions [START_REF] Huether | [END_REF]. In contrast, disorder-induced smearing occurs if the rare regions actually develop true static order [262]. However, generically, the effect of disorder on a phase transition is encoded by its spatial correlation. Subsequently it is possible that a phase transition retains its sharpness even in presence of quenched disorder, provided that this latter is only short-range correlated. This is assessed by the Harris criterion [265], which provides a condition enabling the discrimination between relevant and irrelevant disorder for the critical behavior of the pure system. Specifically, it states that any d-dimensional pure system undergoing a second order phase transition with a correlation length exponent ν > 2/d is stable against weak disorder.
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In order to gain some insight about the relative effects of quenched disorder on the sharpness of the phase transition, we investigated the correlation length exponent of the PZ 60 T 40 system. We should keep in mind that although PZ 60 T 40 stands as the pure counterpart of PLZ 60 T 40 systems, replacing Zr with Ti already introduces disorder, so that PZ 60 T 40 is already disordered though exhibiting a sharp ferroelectric transition.In a study pertaining to the critical behavior in ferroelectrics from first principles, a finite-size scaling analysis was conducted on bulk PZ 50 T 50 , whose critical behavior revealed to be (1) strongly deviating from that given by the mean-field model (ν(PZ 50 T 50 ) was reported to be different from 0.5, ν(PZ 50 T 50 ) = 0.6723), and (2) instead consistent with that associated with the 3D random Ising model universality class (RIM). Independently, it was shown that the critical behavior (ν(RIM) = 0.6832) of such random systems appears to be approximately independent of the impurity concentration, thereby supporting the existence of random Ising universality class which differs from the one of pure Ising systems [267]. and γ for PLZT 9/65/35 [28]). Most importantly, it is negative. According to Fisher [24][25][26],
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a negative η as the one also yielded by Kleemann et al.'s [27] critical exponents β and γ for strontium barium niobate (SBN61) is unphysical. Interestingly, in gauge theories the proof of a non-negative η is not applicable due to the non-gauge invariant form of the correlation function [29][30][31]. This is in remarkable contrast to the canonical models of relaxors and also suggests that SBN61 may be described within our gauge model with a suitable gauge symmetry.

Phase Sequence

We now discuss the structural phase sequence displayed by PL x Z 60 T 40 with increasing lanthanum content x = 0, 5, 10, 15, 20% (Fig. 
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Lattice axes @ÅD 
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Lattice angles @°D Lattice axes @ÅD with x = 5, 10, 15 and 20% are tetragonal in the close vicinity of the transition (as exemplified in Fig. 3.24 for PL 5 Z 60 T 40 at T = 461K), in agreement with Ref. [270]. 
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Lattice axes @ÅD Moreover, the unit cell is becoming increasingly metrically cubic in the ground states, with the maximal angles being approximately 90.75 In order to enquire whether PL x Z 60 T 40 systems exhibit such features, namely if some local order can be retrieved within our simulations, we have investigated the temperature dependence of the Edwards-Anderson parameter [81], q EA , that we calculated as in Ref. [169],

according to

q EA = u i 2 t i (3.21)
where the inner averaging is performed on the t Monte Carlo sweeps while the outer one is made over the i lattice sites. Fig. 3.26 depicts the temperature evolution of both the squared polarization u 2 and the Edwards-Anderson parameter q EA for PZT, PL 5 ZT, PL 10 ZT, PL 15 ZT and PL 20 ZT systems. The choice of contrasting q EA and the squared polarization is motivated by the need to compare the local order, encoded by the quadratic in polarization q EA parameter, to the global one. Moreover, we have rescaled the magnitude of both u 2 and q EA for all compositions with the maximal magnitude of u 2 displayed by the pure P Z 60 T 40 system.

In contrast with PZT and PL 5 ZT (threshold composition) systems, for which q EA and u 2 coincide, the cases of PL x ZT systems with x > 5% reveal that the q EA parameters are higher than u 2 and retain a non-vanishing tail above T C , thus signaling the onset of local order.

This trend is enhanced with increasing lanthanum content, the subsisting tail extends to higher temperatures while the inflection point shifts to lower temperatures. Moreover, q EA for x > 5% bears strong similarity with that experimentally measured and theoretically predicted within the spherical random-bond random-field model for PMN relaxor [268]. One also observes that the glass transition is not sharp, i.e., it is not possible to define a temperature above which q EA = 0 and below which q EA = 0. Within the SRBRF model that accounts for the effects of both random fields and bonds, therefore displaying a conceptual link and a continuous interpolation between the two main interpretations of the nature of the diffuse phase transition in relaxors, i.e., between a ferroelectric state broken up into nanodomains due to the presence of random fields, and a glassy state, Blinc et al. have attributed the lack of sharp glass transition in relaxors to the presence of random fields [99].

We are thus led to the examination of the local fields and their properties. The analysis can take two possible paths. Whereas the first relies on the electrical nature of the fields, the second is an attempt of redefinition of the gauge-modified effective Hamiltonian with the intention of paralleling random-field Ising model.

In the first case, the local electric fields are extracted from the long-range dipole-dipole interactions between local modes with Q being a matrix treated as a constant. The components of the local electric field on site i takes the following form

E dip = ij,αβ Q ij,αβ u i,α u j,β (3 
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E i,α = j,β Q ij,αβ u j,β (3.23) 
and thus E i is stemming from the contribution of all the local modes on a given site. Fig. 3.27 shows the temperature evolution of the mean angular deviation between the local modes u i and the local electric fields E i . The mean angular deviation is defined by

1 N i Arccos [u i .E i ] (3.24)
with N the number of sites, and corresponds to the supercell average of the angle between u i and E i . Whereas in the pure system PZT, u i and E i tend towards collinearity at low temperatures, in PLZT systems, a more pronounced deviation from collinearity sets in at low temperatures with increasing lanthanum disorder. This is further illustrated by the inset of Fig. 

Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ 0% ô 5% ò 10% ì 15% ð 20%
5% 15% We now turn to the second case, where we abandon the idea of the electrical nature of the fields, instead relying on their formal definition, that is, a vector field linearly coupled to the order parameter (local modes) field such as in the i h i S i term appearing in the random-field

Ising model Hamiltonian:

H = -J ij S i S j - i h i S i (3.25)
In order to get more insight into the underlying mechanism and draw parallels with our approach, we write the gauge-modified short-range interaction term in the following form

E FE-G = 1 2 i =j α,β J ij,αβ u iα U ij,αβ u jβ (3.26) = 1 2 i =j α,β J ij,αβ u iα u jβ + 1 2 j,β    i,α J ij,αβ u iα { ∞ k=1 1 k! A k ij,αβ }    E RF jβ u jβ
where we have used the exponential representation of the link matrices and performed its Taylor series expansion in powers of

A ij U ij,αβ = e A ij,αβ = 1 + ∞ k=1 1 k! A k ij,αβ (3.27) 
where depending on the linking direction between coupled nearest neighbors, A ij,αβ takes one of the following forms

A x =     0 0 0 0 0 -θ 0 θ 0     A ŷ =     0 0 φ 0 0 0 -φ 0 0     A ẑ =     0 -δ 0 δ 0 0 0 0 0     (3.28)
The latter matrices are the three generators of SO(3) group, multiplied by the corresponding rotation angles. E RF iα is constructed according to: Let us stress that, despite the formal analogy, since the gauge field is only partially quenched, the constructed E RF iα fields are not quenched random fields per se. Indeed, they involve local modes which are variables quantities, and angles θ, φ and δ, which are quenched only when associated to the links defining the edges of quenched (lanthanum containing) unit cells. However, since the links are self-coupled and short-range correlated, E RF iα has the fingerprint of quenched local disorder. Fig. 3.29 shows the temperature evolution of the mean angular deviation between the local modes u i and the local fields E RF i . The mean angular deviation is defined by Eq.3.24. As in the first case, one observes that the deviation from collinearity at low temperatures increases with increasing quenched local disorder. However, in the present second case, the deviation is much stronger than the one obtained in the first case. This can be ascribed to both the derivation of E RF i in a manner directly involving link matrices which encode disorder, and the short-range nature of the coupling to local modes. 
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Clustering of the local modes

We now turn to the investigation of local order, its morphology and its temperature evolution.

To achieve this purpose, we adopt a two-step procedure, consisting in the spatial clustering of orientational subsets of local modes.

The first step amounts to an orientational partitioning of the local modes population in orientational subsets. To achieve this partitioning, one needs to define a uniform tiling of the sphere according to which the local modes will be segregated. A triangulation of the sphere based on the spherical projection of a regular polygon fulfills such a need. Indeed, it is circumscribed by a sphere, and the spherical projection of its faces splits the maximal solid angle into equal parts. Here we choose a twenty-fold tiling, thereby involving the icosahedron In order to evaluate whether or not local modes belonging to the same orientational subset that local order has developed around T m (section 3.1.6). Moreover, this local order is comprised within clusters exhibiting rugged boundaries, as attested by their fractal dimension that we computed using the box counting method [277,[START_REF] Mandelbrot | The Fractal Geometry of Nature[END_REF] (Eq.3.33). We found that the fractal dimension all the more deviates from the physical dimension with increasing quenched disorder. Cl and V tot Cl for all faces. Thus spatial correlations are very weak, and all directions are equivalent. This is merely indicative of full disorder. (ii) While approaching T C (indicated by a vertical line) from above, one observes signatures of critical fluctuations, such as emergence of preferred orientations (some directions are no longer represented while large spatial clusters corresponding to certain equivalent rhombohedral orientations appear) and scale invariance (indicated by the fact that differently populated directions acquire equal number of clusters). (iii) Below T C , up to ∼ 440K, one observes the condensation of only several clusters oriented in [1, -1, 1] and [1, -1, -1] directions (faces 4, 14 and 16). Whereas the single cluster corresponding to [1, -1, 1] (major phase) direction stands out in terms of large volume, the clusters with [1, -1, -1] (minor phase) orientation are numerous and, in contrast, relatively much smaller in volume. This latter observation shows that below T C the percolation of [1, -1, 1] clusters has been achieved, however the volume corresponding to the major phase is not simply connected. This situation is not persistent since a further decrease of the temperature drives this minor phase to gradually shrink, ultimately disappearing at 440K. (iv) At temperatures below ∼ 440K the ground state is achieved. It is important to mention that what could appear as a switching of direction is, in fact, only an artifact of Metropolis Monte-Carlo method. ) and their total volume (V tot Cl ) per face. The y axis refers to the face label, the x axis denotes temperature.(i) Qualitatively, the high temperature region features the same full-disorder characteristics as those featured by the pure system PZ 60 T 40 . (ii) However, on approaching T C from above, a slight difference emerges in comparison with PZ 60 T 40 . The proloferation of clusters is enhanced, as attested by the increase of both the N Cl and V tot Cl , while V av Cl stays the same for the two systems. This indicates the emergence of a somewhat shy, shortrange correlated order above T C (iii) Just below T C , the main difference between PL 5 Z 60 T 40 and PZ 60 T 40 concerns the dispersion of the major phase around its rhombohedral direction. Indeed, while the ground state corresponds to [1, 1, -1] direction (contained in face 8), V av Cl of faces 7, 15 and 18 stays comparable to that of face 8 on a wide temperature range, thereby indicating a dispersion around the ground state direction.(iv) At low temperatures, the aforementioned dispersion subsists, explaining the drop in magnitude of PL 5 Z 60 T 40 relatively to PZ 60 T 40 . ) and their total volume (V tot Cl ) per face. The y axis refers to the face label, the x axis denotes temperature.(i) The high temperature range exhibits full-disorder characteristics. (ii) Above T C and up to ∼500 K, one observes that for faces labeled by 1, 2 and 3, both N Cl and V tot Cl gradually increase, while V av Cl stays the same. This trend seems of the same nature as that described for PL 5 Z 60 T 40 , yet monotonical and more pronounced.(iii) Below T C , faces 1, 13 and 20 experience a weak depopulation of their clusters, as attested by the decay of V tot Cl . This trend is similar to that described for PL 5 Z 60 T 40 , but weaker.(iv) The ground state is thus populated by clusters belonging to faces dispersed around two rhombohedral directions (a main one, [-1, -1, 1] associated with face 3, and [-1, 1, 1] associated with face 1), making the average symmetry monoclinic (section 3.1.5). 
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Under Pressure

The application of hydrostatic pressure on a system with fixed composition has been advocated as a suitable probe of the interatomic interactions and thusly of the mechanisms underlying the relaxor behavior. Indeed, pressure has been shown to be a "clean" relaxorinducing variable. In contrast to the usual approach relying on the change of compositions in order to drive the onset of the relaxor behavior, pressure on the other hand, without altering the disorder content, rather enhances its effects by disrupting the balance between long and short range interactions, favoring the latter and weakening the former [104]. In PL x Z 60 T 40 systems, relaxor behavior becomes discernible above x>%5 [155,269]. We thus investigate the influence of pressure on the properties of PL 5 Z 60 T 40 system. For this composition of disorder, the system is on the verge of the relaxor behavior [269] and hence constitutes a good candidate to test whether our model reproduces the expected ferroelectric-to-relaxor crossover. 

Strengthened disorder
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Temperature-Pressure phase diagram

The results displayed in Fig. 3.41 show the influence of pressure on the specific heat and on the inverse susceptibility. The temperature at which the specific heat peaks is used for the determination of T C while that at which the dielectric response peaks corresponds to T m .

Both T C and T m feature a shift towards lower temperatures with increasing pressure, in a manner somewhat analogous to the effect of an increasing disorder content. These characteristic temperatures are collected in Fig. 3.42, which provides the Temperature-Pressure phase diagram of PL 5 Z 60 T 40 . We find that the shifts of T C and T m with pressure are characterized by similar slopes, namely, dT C /dP = -4.85 K/kbar and dT m /dP = -4.66 K/kbar. These results are fully consistent with those experimentally found by Samara [104] who reports dT C,m /dP = -5 K/kbar for PL 6 Z 65 T 35 . However, we find no evidence of a relaxor/ferroelectric phase boundary terminating in a critical point [104]. Let us note that in contrast with Ref. [148], our results are in both qualitative and quantitative agreement with those reported by Samara [104], specifically the pressure range that we investigate is identical to the experimental one. 

Pressure-induced diffuseness

The decrease of both T C and T m with increasing pressure points to a manifest similarity between pressure and quenched disorder content. The analogy is further supported by the rounding of the inverse susceptibility as pressure is increased. Ln@ T T m -1D

Ln @ c -1 -c m -1 D Fig. 3.43: Plots of Ln(χ -1 -χ -1 m )
versus Ln (T /T m -1) in the paraelectric regions for PL 5 Z 60 T 40 under 1 bar and 30 kbar. Linearly fitting the data yields γ ≃ 1 in both cases for high enough temperatures. As the temperature is lowered slopes increase, γ ≃ 1.66 and γ ≃ 2.31 for 1 bar and 30 kbar respectively. and 30 kbar, from which γ (Eq.3.10) are extracted. As temperature is lowered, a departure from the Curie-Weiss behavior occurs, all the more pronounced with increasing pressure. Extracted slopes yield γ ≃ 1.66 and γ ≃ 2.31 for 1 bar and 30 kbar respectively, thus signaling a pressure-induced diffuseness.

Correlation length reduction

As already discussed (section 1.4.1), the analogy between the pressure induced ferroelectric to relaxor crossover, and the compositionally mediated one is not fortuitous, and has been ascribed to the decrease of the correlation length ξ l.m. in both cases [104]. Increasing the La content increases the degree of disorder, and effectively reduces ξ l.m. (Fig. 3.17). Above a certain amount of quenched disorder, ξ l.m. is sufficiently short, ordered regions do not percolate and relaxor behavior sets in for T <T m . The effect of pressure is also to reduce ξ l.m. , as a consequence of the pressure dependence of the soft-mode frequency which controls the polarizability of the system [104]. This interpretation is recovered within our model, as shown in Fig. 3.44 whose left panel provides the dependence of the correlation length of the local modes ξ l.m. on pressure. The right panel also indicates a reduction of the correlation length associated to the gauge field ξ g.f. when subjected to pressure, similarly to its reduction with increasing quenched disorder (Fig. 3.16). (Both ξ l.m. and ξ g.f. are computed according to the method provided in section 3.1.4).

We end this section by reporting the pressure dependence of the density of pairs of topological defects n p (Fig. 3.45). The obtention of topological defects will be later exposed in 
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Topological defects

In this section, we enquire whether topological defects play a role in the relaxor behavior.

Topologically stable defects are localized excitations that overcome the finite creation energy associated with them by carrying large configurational entropy. They are known to induce phase transitions in two-dimensional systems [START_REF] Nelson | Phase transitions and critical phenomena[END_REF], including the superfluid transition in thin 4 He films, the superconducting transition in thin metallic films and the melting transition in two dimensions. They appear as points, lines, surfaces, etc., depending on the models and dimensionality. Several canonical examples illustrate the role of topological excitations in bringing about phase transitions. Among them is the Berezinsky-Kosterlitz-Thouless in the two-dimensional XY model [184]. The role of topological defects has also been investigated in the three-dimensional Heisenberg transition [276].

Intuitively, since quasi-ordered clusters (section 3.2) exhibit fractal geometry associated with the strong irregularities of their boundaries, we are led to expect that topological defects should occur at the contact points between rugged interfaces of differently ordered clusters (Fig. 3.46). By resorting to such a description, we are somehow adopting the dual view to that attributing the polarization response to interphase boundaries vibration [79]. 

Finding hedgehogs

These contact points merely correspond to singularities in the order parameter field. They are topological defects, or hedgehogs, generated by strong directional fluctuations and thus positioned at the junctions of differently ordered regions, at isolated points, where the order changes discontinuously and is thus ill-defined. At low enough temperatures, they can be seen as reminiscent of the disordered symmetric phase trapped within the lower symmetry phase. Topological defects carry an integer topological charge referred to as the winding number, which indicates how many times one meets all possible orientations of the vector field while moving along an oriented closed surface enclosing the defect core [271]. Adopting this topological approach, we thus exchange order for disorder as a probe of the relaxor behavior. We believe that by doing so, at least part of the current complexity is reducible while the gained information is not.

In order to assign a topological charge within each of the unit cells composing the supercell, we follow Ref. [272][273][274] and first introduce an auxiliary variable, the gauge potential A ij between any pair of neighboring sites with normalized local modes u i , u j . This is defined by introducing an arbitrary reference unit vector u ⋆ and forming the spherical triangle (u ⋆ , u i , u j ). The edges of the spherical triangle are segments of great circles, and if the solid angle subtended by this spherical triangle is denoted by Ω [u ⋆ , u i , u j ], then the explicit expression for half its area, A ij is

e iA ij = e (i/2)Ω[u⋆,u i ,u j ] = 1 + u ⋆ .u i + u ⋆ .u j + u i .u j + iu ⋆ .(u i × u j ) 2(1 + u ⋆ .u i )(1 + u ⋆ .u j )(1 + u i .u j ) (3.30) 
In practice u ⋆ = (0, 0, 1), but a different choice of the reference vector u ′ ⋆ merely amounts to a gauge transformation of A:

A ij → A ij + χ i -χ j , where χ i = (1/2)Ω [u ⋆ , u ′ ⋆ , u j ].
Thus gauge invariant quantities are independent of the choice of the reference vector. A flux F ∈ (-π, π] is then defined on every face bounded by the sites (i, j, k, l, i):

e iF = e i(A ij +A jk +A kl +A li ) (3.31)
F is gauge invariant and hence independent of the choice of the reference unit vector u ⋆ .

The hedgehog topological charge Q enclosed by the unit cube corresponds to the flux out of its volume:

6 =1 = 2πQ (3.32)
and is guaranteed to be an integer from the previous definitions. Moreover, this definition of Q ensures that the net topological charge (the supercell sum of topological charges associated to units cells) is always equal to zero in the considered system with periodic boundary conditions.

Dipoles pattern and hedgehogs network

Following this prescription, we determined the topological charge associated with each unit cube of the lattice for different local modes configurations. Generally, we found that the magnitude of the non-zero charges is almost always equal to unity, only a few topological defects with Q = ±2 (mostly appearing at high temperatures), and none with |Q| > 2 were found. Fig. 3.48 shows integral curves associated with the local modes within a (x, y) plane for PL 5 ZT, PL 10 ZT, PL 15 ZT and PL 20 ZT systems at T T m , together with the topological defects computed from the considered local modes configurations and projected onto the (x, y) plane. One observes that while quasi-ordered regions are indeed devoid from topological defects, the latter coincide with the vector field singularities, at the junction between different quasi-ordered regions. hand, in the temperature region below p c , the density of pairs of hedgehogs is such that long-range ferroelectric order is possible. The case of PL 20 ZT is of special interest. The significant value of n p as T → 0, and its non-intersection with the p c line totally precludes the onset of a long-ranged ferroelectric order. Percolation is a purely geometric process which, when applied to the topological defects population, enables a qualitative understanding of the destabilizing effect of quenched disorder.

Density of hedgehogs

At low temperature the defect pair density is expected to be proportional to exp(-E a /T ), where E a is the minimum energy required to create a pair of oppositely charged defects [276].

Plotting Ln( n p ) versus T -1 (Fig. 3.50), and fitting it linearly reproduces the expected form.

The activation energy is found to exponentially decrease with increasing disorder, in agreement with the observed increasing defects proliferation with increasing disorder (Fig. 3 
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Mobility of hedgehogs • • •

We now investigate the role of topological defects in the relaxor behavior. We are specifically interested in inquiring whether the relaxor behavior is defect driven or not. As to the influence of quenched disorder on singularities in the dipole moments field, Fig. 3.52

indicates that the spatial distribution of singularities does not necessarily coincide with that of the quenched cubes. Fig. 3.53 provides the evolution with temperature of the fraction of quenched cubes QC carrying a non-zero topological charge N QC Q =0 , for PL 5 ZT, PL 10 ZT, PL 15 ZT and PL 20 ZT. At high temperature the spatial overlap between these two entities is significant, nearly 30% of the quenched cubes are found to carry a non-zero topological charge for all the four systems, i.e., regardless of the amount of QC. This observation can be attributed to the occurrence of strong thermal fluctuations, which effectively uncouple the dipole moments from the gauge field. At lower temperatures however, the overlap-ratio N QC Q =0 /N QC more or less decreases dependently on the amount of quenched disorder. This is closely related to the exponential decay of the activation energy of topological defects with increasing lanthanum content (Fig. 3.50). Indeed, the number of topological defects induced by quenched disorder scales exponentially with respect to the latter at low temperatures, thereby enhancing the probability for a quenched cube to carry a non-zero topological charge. 

• • • in a free background

As the temperature is lowered, the mobility of hedgehogs is associated to a decrease of their density. Hedgehogs hence evolve in a smooth background, whose volume can be obtained from the ratio of topologically free cells (i.e. those cells with zero topological charge Q = 0)

to the total number of cells 12 3 . This background is denominated by free volume, and since it the extent and compactness of the maximal ordered region is hindered by low temperature persisting topological defects. Moreover, these findings contradict models within which PNRs are described as compact [99] spherical entities [146]. Let us however stress that in our model, polar regions are free to appear rather than constrained to exist.

From an hydrodynamic approach • • •

According to Fig. 3.52, the sinks (Q < 0) and sources (Q > 0) in the dipoles field are not stationary. They not only constantly dissolve and emerge, but generically propagate through the system and interact with one another. Defects of opposite topological charge can readily annihilate one another, reminiscent of the dynamics in nematic liquid crystals [280]. The lessening of hedgehogs (Fig. 3.49) and their mobility within a smooth and expanding free volume most likely emanates from an annihilation mechanism. To evaluate the temperature dependence of the characteristic relaxation times, we resorted to a simple hydrodynamic description, according to which defects diffuse freely and annihilate instantaneously upon contact [START_REF] Krapivsky | A Kinetic View of Statistical Physics[END_REF]. The hedgehog density decays with time according to the rate equation

d n dt = -2K n 2 (3.34)
where K is the reaction rate that describes the propensity of two diffusing defects to interact, which is nothing but the characteristic Vogel-Fulcher (VF) relaxation kinetics law [41,42].

Thus, within our model, the VF law can be immediately derived from a microscopical annihilation mechanism among defects of opposite topological charge which are associated to strong directional fluctuations in the dipole moments field.

Polarization and deformation

We now investigate whether the topologically charged cells corresponding to singularities of and of topologically defective cells (with Q=1 and Q=-1) for PL 10 ZT.

Binding-unbinding mechanism

An important question pertaining to the role of topological defects is whether the observed proliferation of defects as T increases is accompanied by unbinding of defect pairs. Since topological charges are additive [271], a hedgehog/anti-hedgehog bound state between opposite charges yields a vanishing far field distortion. Indeed, the flux out of any surface enclosing their core amounts to zero. An unbound state on the other hand can strongly distort the vector field within a correlation length which depends on the interaction among hedgehogs and its screening. It is thus important to develop criteria by which one may determine whether a given system is in a bound or unbound hedgehog state. We investigate this question according to the following procedure.

The hedgehog content of each unit cell is determined by means of the aforementioned method (Eq.3.32). For each field realization, we thus dispose of the associated hedgehog network of the supercell. Applying the Hoshen-Kopelman clustering algorithm [283], we conduct a comparative study between two different clustering decompositions. In the first case, the cluster decomposition of the hedgehog population is performed without charge differentiation, meaning that two adjacent oppositely charged unit cells were considered to belong to the same cluster. In the second case, each hedgehog subpopulation is clustered on its own, meaning that only identically charged adjacent unit cells are agglomerated. The gradual pairs dissociation is further corroborated by Fig. 3.59, which provides the temperature evolution of the average charge of {|Q| = 1}-obtained clusters. For each temperature, the average charge of clusters is quantified according to

1 N cl cl i | h∈cl i Q h | (3.39)
with N cl the total number of clusters, cl i the i th -cluster, and where h runs over the unit cells belonging to cl i , and carrying a charge Q h . The charge of a cluster i consisting solely of hedgehog/antihedgehog pairs, h∈cl i Q h , is zero. Deviations from zero thus signal unbound isolated topological charges whose absolute value contributes to the average charge of clusters.

As the temperature is increased, one observes that the average charge of clusters increases, thus confirming the unbinding mechanism of pairs (Fig. 3.60).

T Fig. 3.60: Two-dimensional schematic representation of the unbinding mechanism of hedgehog/antihedgehog pairs with increasing temperature. While at low temperatures, pairs of oppositely charged defects are bound yielding a phase akin to a gas of (hedgehog/antihedgehog) dipoles, the higher temperature phase constitutes a plasma of unbound hedgehogs.

The underlying gauge

We wish to conclude this section by stressing that topological defects are controlled by the gauge. More specifically, for a certain fixed amount of quenched disorder, the temperature evolution of the number of disorder-induced topological defects is dictated by the gauge self-coupling parameter k. As k is decreased, deviations of the link variables from identity becomes less energetically unfavorable, consequently affecting the order parameter field via the gauge-modified short-range interaction term. The more k is reduced, the more the disorder is empowered, ultimately preventing the onset of an ordered state by an induced proliferation of topological defects. This is illustrated in Fig. 3.61 which shows the temperature evolution of the density of pairs of hedgehogs n p in PL 15 ZT for k=0.01 and k=0.05. In contrast to the case k=0.05 where n p drops around T C thus signaling the existence of an interplay between local modes variable and gauge variables, the case k=0.01 is typical of a situation where the disorder-mediating gauge has taken over ferroelectricity. Symmetrically, a further increase of k (>0.05) depresses the strength of disorder, leading to a defect suppression [276]. Integral curves are also shown in the lower panel of Fig. 3.61. For a same quenched disorder realization (whose spatial distribution is indicated by squares), decreasing k yields a lattice of hedgehogs, somewhat similar to Abrikosov's vortex lattice [284]. 

Conclusion

To summarize, we have formulated the disorder-induced discrepancy between local and global scales in terms of local symmetry. This formulation has led to the introduction of a gauge field endowed with both a quenched component and a fluctuating one. Whereas the former encodes disorder as it subjects the field of dipole moments to frustration, the latter gives dipoles leeway to achieving order. As a result, a non-trivial interplay subtended by local symmetry constraints arises between competing ordering and disordering interactions.

The use of this approach and its combination with the first-principles based effective Hamiltonian enables to reproduce many generic features of PLZT such as the characteristic temperatures and their dependence on the La content and the effect of pressure in reducing the correlation length and driving the relaxor behavior. Within our model, local order is free to appear rather than constrained to exist, and is found to spontaneously emerge from the gauge field relaxation in the shape of polar regions. In this sense, the recovered departure from the Curie-Weiss behavior can be ascribed to local symmetry constraints to which the system is subjected. Moreover, the gauged disorder impacts the field of dipole moments by inducing stable topological defects, whose non-vanishing density at low temperatures weakens the ordered state. Our calculations additionally indicate that the dynamical behavior in relaxor ferroelectrics seems to be related to that of the topological defects. This question needs to be further addressed.

Note that we focused on the static aspects, since obtaining low-frequency dynamical quantities from first-principles-based effective Hamiltonian is not currently feasible. A further development could thus relate to the time implementation on the lattice, i.e., in a 4-dimensional Euclidean spacetime that would account for the dynamics of both the gauge and the matter (dipole moments and strain) fields.

Another development pertains to elucidating the exact algebraic structure of the local symmetry. Indeed, due to the underlying perovskite structure and associated directional anisotropy, the local symmetry does not constitute a full rotational group but rather hints a groupoid type of structure. The second Hohemberg-Kohn theorem [221] generalises the variational principle from wave functions to electron densities in that it states that the functional for the ground state energy is minimized by the ground state electron density. If n 0 is the ground state density corresponding to an external potential v 0 and ñ an arbitrary other ground state density satisfying ñ(r) 0 and ñ(r)dr = N then

E v 0 [n 0 ] E v 0 [ñ] ψ[n 0 ]| T + Û + V0 |ψ[n 0 ] ψ[ñ]| T + Û + V0 |ψ[ñ] (B.12)
This second Hohenberg-Kohn theorem thus states that E[n] has an extremum in correspondence to the ground state electron density. It demonstrated the existence of such a functional but did not provide any explicit instructions as how to build or find this functional.

The Kohn-Sham ansatz

The central assertion of Kohn and Sham's reformulation of DFT [222] stands in the mapping of the intractable system of interacting electrons in a external potential v ext onto a fictitious system of independent electrons, chosen to have the same density as the physical system and evolving in a effective potential v s . In this approach, the exact kinetic energy functional can be written as

T [n] = T s [n] + T c [n] (B.13)
1 Lieb [223] was the first to point out the connection between density-functional theory and Legendre transforms. In this approach, potential and density are conjugate variables, and the first Hohenberg-Kohn theorem simply trades one set of variational parameters for another via a Legendre transform: writing the ground state energy as a functional of the external potential E0[v] and taking its functional derivative yield the following expression for the density n(r) = δE[v]/δv(r). The one-to-one correspondence between v and n is thus due to the fact that the Legendre transform FHK[n(r)] = E0[v(r)] -n(r)v(r)dr of the ground state energy E0[v] is the FHK[n] functional. yields orbitals that reproduce the density n(r) of the original system:

n(r) = N i f i |φ i (r)| 2 (B.20)
where f i is the occupation of the i th orbital.

Given a practical approximation for E xc [n], one obtains v xc (r), and can thus find v s (r) from n(r) for a given v ext (r). The set of coupled non linear equations (B.18), (B. [START_REF] Kleinert | Gauge fields in condensed matter[END_REF]) and (B.20)

are the Khon-Sham equations, and should hold simultaneously. In particular, the density must be self-consistent. The computational procedure usually starts with an initial guess for the input density n(r), leading to a potential v s (r) which in turn gives rise to a set of orbitals φ i from which a new density is constructed. This procedure is reiterated until reaching a convergence criteria (equality of the input and output densities to required precision) within this self-consistency cycle. Again, this scheme only holds for an explicit form of E xc [n] that is a priori unknown but can be efficiently approximated.

The local density approximation

As stated previously, the quality of the results using DFT depends on the ability of the universal exchange-correlation functional E xc [n] to model the many-body electronic interactions.

The first, and most widely used approach is the Local Density Approximation (LDA) [222],

which treats the inhomogeneous system locally as an homogeneous electron gas. It assumes (i) that the exchange-correlation energy per particle at point r, ǫ xc (r), only depends on the density at this point, and (ii) that it is equal to the exchange-correlation energy per particle of a homogeneous electron gas of density n(r) in a neutralizing background. For the correlation part, that describes the propensity for two electrons of unequal spin to choose different orbitals and to mutually avoid along their motion in space, one may rely on accurate values obtained by Ceperley-Alder [224] from Monte-Carlo simulations of the energy of the homogeneous electron gas. By its very construction, the LDA is expected to be a good approximation for spatially slowly varying densities. Although this condition is hardly ever met for real electronic systems, LDA has proved to be remarkably accurate for a wide variety of systems2 providing access to the ground state energy and thereby to structural and dynamical properties of solids such as equilibrium structures, elastic, dielectric and vibrational properties. Atomic positions and lattice constants reproduce the experiment within 1% whereas phonon frequencies are usually obtained within 5%. Although an accuracy of 1% on the lattice constant might be considered as successful for a method without any adjustable parameter, it can constitute a limitation in some cases. In perovskite oxides for example, the ferroelectric instability is very sensitive to pressure, and thus to the lattice constant. In this context, in order to avoid this problem, it appeared convenient in some circumstances to fix the lattice parameters to their experimental values, or to apply a negative pressure [227] in the calculation that compensates for the typical LDA underestimate of the lattice constant.
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  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.27 Schematic view of two unit cells (cubes) centered around La 3+ (a) and Pb 2+ (d). Solid lines indicate quenched links, whereas dotted lines signal relaxing ones. The boundaries of each cube consists of six (b) curved (frustrated) or (e) flat (unfrustrated) plaquettes. Panels (c) and (f) show the parallel transport of a vector around a curved and flat plaquette, respectively. . . . . . . . . . . 2.28 Schematic view of the random La 3+ -disorder in the supercell. La 3+ -containing unit cells are the elementary blue cubes whose edges are associated to quenched links. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.29 The plaquette energy E as a function of βk, with k the gauge coupling parameter and β the inverse temperature, on a 123 cubic lattice with cold start configuration (i.e. all links are initially set to unit matrices). The temperature is kept fixed at high values in the course of this simulation. Right and left insets show snapshots of plaquettes U that deviate from unity for high and low values of βk, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.30 Schematic sketch of a Markov chain in the space of all configurations. The boundary delimits the space of all configurations. The dots represent configurations visited by a Markov chain and are connected with straight lines to indicate that they are visited subsequently. The Markov chain starts in the upper left corner and then evolves towards the center, where the density of dots is larger. This corresponds to a region where the Boltzmann factor exp [-βH(X)] is large, and thus with large probability (After C. Gattringer et al. [189]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Temperature evolutions of the specific heat (filled symbols) and the scaled polarization (open symbols) in PZ 60 T 40 system. Dotted vertical line corresponds to T C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 3.2 Temperature evolutions of the specific heat (filled symbols) and the scaled polarization (open symbols) in PL 5 Z 60 T 40 system. The inset shows the distribution of the quenched (lanthanum containing) unit cells inside the supercell.Dotted vertical line corresponds to T C . . . . . . . . . . . . . . . . . . . . . . 117 3.3 Temperature evolutions of the specific heat (filled symbols) and the scaled polarization (open symbols) in PL 10 Z 60 T 40 system. The inset shows the distribution of the quenched (lanthanum containing) unit cells inside the supercell. Dotted vertical line corresponds to T C . . . . . . . . . . . . . . . . . . . . . . 118 3.4 Temperature evolutions of the specific heat (filled symbols) and the scaled polarization (open symbols) in PL 15 Z 60 T 40 system. The inset shows the distribution of the quenched (lanthanum containing) unit cells inside the supercell. Dotted vertical line corresponds to T C . . . . . . . . . . . . . . . . . . . . . . 118 3.5 Temperature evolutions of the specific heat (filled symbols) and the scaled polarization (open symbols) in PL 20 Z 60 T 40 system. The inset shows the distribution of the quenched (lanthanum containing) unit cells inside the supercell. Dotted vertical line corresponds to T C . . . . . . . . . . . . . . . . . . . . . . 119 3.6 Temperature evolution of | u | for PZ 60 T 40 and PL x Z 60 T 40 with x = 5%, 10%, 15% and 20%. The inset shows the variation of the transition temperature T C with different concentration of lanthanum. Filled symbols refer to the experimental results of Ref. [155], whereas empty symbols correspond to the results of our simulations, dashed lines are guide to the eye. . . . . . . . . . . . . . . . . . . 119 3.7 Integral curves of the local modes (∝ the dipole moments) within a given (x, y) plane of the supercell at T = 34 K for PZ 60 T 40 , PL 5 Z 60 T 40 , PL 10 Z 60 T 40 , PL 15 Z 60 T 40 and PL 20 Z 60 T 40 systems. The integral curves are obtained from the local Cartesian components ( u x , u y ) averaged over sweeps. . . . . . . 120 3.8 Schematic view of two unit cubes. Left cube has edges corresponding to quenched links (solid lines) and will be referred to as quenched cube (lanthanum containing) QC. Right cube has edges associated with relaxing link variables (dotted lines) and will be reffered to as non-quenched cube (lead containing) nonQC. Each of QC and nonQC have relaxing local modes attached to their nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 3.9 Temperature evolution of the mean angular deviation between the local modes u i and the ground-state spontaneous polarization P s for PZT, PL 5 ZT, PL 10 ZT, PL 15 ZT and PL 20 ZT systems. Open symbols denote the deviation as experienced by local modes attached to non-quenched cubes nonQC, whereas filled symbols denote the deviation of the local modes when attached to quench cubes QC. Dotted vertical lines correspond to T C . Insets show the distribution of the quenched cubes (lanthanum containing unit cells) inside the supercell.123 3.10 Integral curves of the local modes (∝ the dipole moments) within a given (x, y) plane of the supercell at T = 34 K for PL 5 Z 60 T 40 , PL 10 Z 60 T 40 , PL 15 Z 60 T 40 and PL 20 Z 60 T 40 systems. The integral curves are obtained from the local Cartesian components ( u x , u y ) averaged over sweeps. Straight lined squares refer to in plane quenched cubes and dotted ones stand for those contained in the upper and lower parallel planes. . . . . . . . . . . . . . . . . . . . . . . . 124 xviii 3.11 Temperature evolution of the inverse dielectric susceptibility and the specific heat for PZ 60 T 40 . T C = 652 K corresponds to the maximum of the specific heat and the reduced temperature refers to T/T C . The inverse dielectric susceptibility at T > T C can be well approximated to a Curie-Weiss form χ -1 = C (T/Θ -1) γ with γ ≃ 1 and Θ ≃ T C . . . . . . . . . . . . . . . . . . 3.12 Inverse susceptibility of PZ 60 T 40 with varying box size L = 12, 14, 16, 18. Table indicates the parameters of the fitted values of the inverse susceptibility to the Curie-Weiss law χ -1 = C(T -T 0 ). . . . . . . . . . . . . . . . . . . . . . 3.13 Temperature evolution of the inverse dielectric susceptibility and the specific heat for PL 5 Z 60 T 40 . T C ≃ 408 K corresponding to the maximum of the specific heat and T m ≃ 442 K corresponding to that of the dielectric susceptibility, are indicated by vertical dashed lines. The reduced temperature refers to T/T m . The onset of deviation from the Curie-Weiss law at T d ≃ 754 K is indicated by a vertical dashed line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.14 Temperature evolution of the inverse dielectric susceptibility and the specific heat for PL 10 Z 60 T 40 . T C ≃ 292 K corresponding to the maximum of the specific heat and T m ≃ 326 K corresponding to that of the dielectric susceptibility, are indicated by vertical dashed lines. The reduced temperature refers to T/T m . The onset of deviation from the Curie-Weiss law at T d ≃ 455 K is indicated by a vertical dashed line. . . . . . . . . . . . . . . . . . . . . . . . 3.15 Temperature evolution of the inverse dielectric susceptibility and the specific heat for PL 15 Z 60 T 40 . T C ≃ 156 K corresponding to the maximum of the specific heat and T m ≃ 176 K corresponding to that of the dielectric susceptibility, are indicated by vertical dashed lines. The reduced temperature refers to T/T m . The onset of deviation from the Curie-Weiss law at T d ≃ 469 K is indicated by a vertical dashed line. . . . . . . . . . . . . . . . . . . . . . . . 3.16 Temperature evolution of the correlation length of the gauge field ξ g.f. for PL 5 Z 60 T 40 , PL 10 Z 60 T 40 , PL 15 Z 60 T 40 and PL 20 Z 60 T 40 systems. . . . . . . . . 3.17 Temperature evolution of the correlation length of the the local modes ξ l.m. for PZ 60 T 40 , PL 5 Z 60 T 40 , PL 10 Z 60 T 40 , PL 15 Z 60 T 40 and PL 20 Z 60 T 40 systems. Dotted vertical lines refer to the temperatures at which the correlation lengths peak. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.18 Temperature evolution of the correlention length of PZ 60 T 40 (cross symbols). Solid line corresponds to the result of the fit yielding ν(PZ 60 T 40 )= 0.664 and red squares correspond to the Harris threshold critical exponent ν(H)= 0.667. Dashed line corresponds to the mean field expectations ν(mean field) = 0.5. . 3.19 Cartesian components ( u x , u y and u z ) of u in PZ 60 T 40 as a function of rescaled temperature [155]. T C corresponds to the maximum of the specific heat and is signaled by a vertical dotted line. Left side inset shows that all the Cartesian components are zero within the error bars in the close vicinity of T C . Right side insets correspond to the temperature evolution of the lattice axes and the lattice angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.20 Cartesian components ( u x , u y and u z ) of u in PL 5 Z 60 T 40 as a function of rescaled temperature [155]. T C corresponds to the maximum of the specific heat and is signaled by a vertical dotted line. Left side inset shows that two of the Cartesian components are zero within the error bars near T C . Right side insets correspond to the temperature evolution of the lattice axes and the lattice angles, and indicate a transition from a high temperature cubic phase to a low temperature monoclinic (M A ) ferroelectric phase. . . . . . . . . . . . xix 3.21 Cartesian components ( u x , u y and u z ) of u in PL 10 Z 60 T 40 as a function of rescaled temperature
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 323 Cartesian components ( u x , u y and u z ) of u in PL 20 Z 60 T 40 as a function of rescaled temperature[155]. T C corresponds to the maximum of the specific heat and is signaled by a vertical dotted line.Left side inset shows that two of the Cartesian components are zero within the error bars near T C . Right side insets correspond to the temperature evolution of the lattice axes and the lattice angles, and indicate a transition from a high temperature cubic phase to a low temperature triclinic phase. . . . . . . . . . . . . . . . . . . . . . . . 3.24 Probability histograms for the averaged over sweeps unit cell local mode components of PL 5 Z 60 T 40 in the tetragonal phase (T= 461K) in the close vicinity of the transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.25 Schematic representation of the influence of the lanthanum substitution on the low temperature structural properties of PL x Z 60 T 40 for increasing lanthanum content x = 0, 5, 10, 15%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.26 Temperature evolutions of the Edwards-Anderson parameter q EA and squared polarization u 2 , for PZT, PL 5 ZT, PL 10 ZT, PL 15 ZT and PL 20 ZT systems. Dotted vertical lines correspond to T C (i.e., the temperature at which the specific heat peaks). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.27 Temperature evolution of the mean angular deviation between the local modes u i and the local electric fields E i , for PZT, PL 5 ZT, PL 10 ZT, PL 15 ZT and PL 20 ZT systems.Insets show snapshots of the local modes (in blue) and fields (in light purple) configurations for P L 5 ZT and P L 15 ZT at T = 34 K in (x, y) plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.28 Temperature evolution of the mean magnitude of the local electric fields (upper panel) and of their standard deviation (lower panel) for PZ 60 T 40 and PL x Z 60 T 40 with x = 5%, 10%, 15% and 20%. Dotted vertical lines refer to T C , obtained from the maximum of the specific heat. . . . . . . . . . . . . . . . . 3.29 Temperature evolution of the mean angular deviation between the local modes u i and the local fields E RF i , for PL 10 ZT, PL 15 ZT and PL 20 ZT systems. . . . . 3.30 Integral curves within a (x, y) plane associated with the local modes (LM) and with the derived E RF iα local field (LF) for PL 10 ZT. The upper and lower panels show the configurations for T= 34K and T= 1358K, respectively. At low temperatures, encircled regions illustrate the bending effect of the LF on the LM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . List of Figures xx 3.31 Icosahedron and its associated planar graph representation. The icosahedron is a regular polygon of twelve nodes and twenty triangular faces. Its spherical projection defines a regular tiling of the circumscribing sphere, therefore splitting the maximal solid angle into twenty equal parts. The numbers appearing in the planar graph representation of the icosehdraon correspond to a labeling of the faces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.32 Theta-Phi diagram of the considered regular triangulation. Each region of the diagram represents the theta-phi extension of the solid angle associated to the face. The blue dots correspond to the eight equivalent rhombohedral ground-state directions. In the chosen labeling, one can see that the [1, 1, 1] direction for example is assigned to the fifth face. . . . . . . . . . . . . . . . . 3.33 PZ 60 T 40 : Temperature evolution of the number of clusters (N Cl ), their average volume (V av Cl ) and their total volume (V tot Cl ) per face. The y axis refers to the face label, the x axis denotes temperature. Let's first put our attention on the high-temperature region. (i) High temperatures are characterized by small values of N Cl , V av

  5 Z 60 T 40 relatively to PZ 60 T 40 . . . . . . . . . . . . . . . . . . xxi 3.35 PL 10 Z 60 T 40 : Temperature evolution of the number of clusters (N Cl ), their

5 Z 171 A. 1

 51711 60 T 40 , but weaker.(iv) The ground state is thus populated by clusters belonging to faces dispersed around two rhombohedral directions (a main one, [-1, -1, 1] associated with face 3, and [-1, 1, 1] associated with face 1), making the average symmetry monoclinic (section 3.1.5). . . . . . . . . . . . . . . . 3.36 PL 15 Z 60 T 40 : Temperature evolution of the number of clusters (N Cl ), their average volume (V av Cl ) and their total volume (V tot Cl ) per face. The y axis refers to the face label, the x axis denotes temperature.(i) The high temperature range exhibits full-disorder characteristics.(ii) Above T C , faces 6, 14 and 16 exhibit a monotonical increase of V tot Cl and of V av Cl . The fact that V av Cl also increases in the case of PL 15 Z 60 T 40 is an indication of a more developed local order.(iii) Below T C , large volumes of differently ordered regions make the ground state direction mixed between different directions, mainly composed of the directions [1, -1, -1] (faces 6, 7, 14 and 16) and -[1, -1, -1] (faces 10, 20), making the average symmetry monoclinc on the verge of being triclinic (section 3.1.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.37 PL 20 Z 60 T 40 : Temperature evolution of the number of clusters (N Cl ), their average volume (V av Cl ) and their total volume (V tot Cl ) per face. The y axis refers to the face label, the x axis denotes temperature.(i) In this case, disorder extends over a wide temperature range.(ii) The ground state is strongly mixed, resulting in a triclinic average symmetry (section 3.1.5). . . . . . . . . . . . . 3.38 Biggest clusters of local modes for PZ 60 T 40 system, just above T C , and for PL 5 Z 60 T 40 , PL 10 Z 60 T 40 , PL 15 Z 60 T 40 and PL 20 Z 60 T 40 systems, for temperatures just above their T m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.39 Influence of pressure on the temperature evolution of | u | in P L 5 Z 60 T 40 systems. Plot of the polarization as a function of T for various pressures in the range 0 ≤ P ≤ 100 kbar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.40 Integral curves of the local dipole moments within a given (x, y) plane for PL 5 Z 60 T 40 at T = 34K under 1 bar, 10 kbar, 30 kbar and 40 kbar for the same realization of random disorder. . . . . . . . . . . . . . . . . . . . . . . . 3.41 Evolution with temperature of the specific heat (left) and the inverse dielectric response (right) for PL 5 Z 60 T 40 under 1 bar, 10 kbar, 20 kbar, 30 kbar and 50 kbar. The temperature at which the specific heat peaks is used for the determination of T C while that at which the dielectric response peaks corresponds to T m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.42 Temperature-Pressure phase diagram for PL 5 Z 60 T 40 . Dotted lines delimit the relaxor region and their slopes are exctracted from linear fits of the T C and T m data, dT C /dP = -4.85 K/kbar and dT m /dP = -4.66 K/kbar respectively. 3.43 Plots of Ln(χ -1 -χ -1m ) versus Ln (T /T m -1) in the paraelectric regions for PL 5 Z 60 T 40 under 1 bar and 30 kbar. Linearly fitting the data yields γ ≃ 1 in both cases for high enough temperatures. As the temperature is lowered slopes increase, γ ≃ 1.66 and γ ≃ 2.31 for 1 bar and 30 kbar respectively. . . 3.44 Variation of the correlation length for local modes ξ l.m. (left panel) and gauge field ξ g.f. (right panel) fluctuations for PL 5 Z 60 T 40 showing the influence of pressure. (Both ξ l.m. and ξ g.f. are computed according to the method provided in section 3.1.4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.45 Temperature evolution of the density of pairs of hedgehogs n p for PL 5 ZT under increasing pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.46 Schematic view of the ordered clusters pattern within a plane. Jaggerred perimeters cross at contact points, depicted by red points and representing hedgehogs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.47 Schematic view of dipoles configurations showing ideal hedgehogs of charges Q = +1 (source-like) and Q = -1 (sink-like). . . . . . . . . . . . . . . . . . . 3.48 Integral curves associated to the local modes vector fields within a (x, y) plane and projection onto the plane of topological defects (represented by points) for PL 5 ZT, PL 10 ZT, PL 15 ZT and PL 20 ZT. Results correspond to T T m , specifically, T = 441K, T = 340K, T = 203K and T = 170K for 5%, 10%, 15% and 20%, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.49 Temperature evolution of the density of pairs of hedgehogs n p (averaged over MC sweeps) for PZT, PL 5 ZT, PL 10 ZT, PL 15 ZT and PL 20 ZT (left figure). The horizontal dashed line indicates the site percolation threshold p c for pairs for Rubik neighborhood. Right figure shows the temperature dependence of the derivative d n p /dT of the density of pairs. Dotted vertical lines in both left and right figures correspond to the temperature at which the derivative peaks. 3.50 Plot of the logarithm of the defect pair density versus the inverse temperature for PZ 60 T 40 , PL 5 Z 60 T 40 , PL 10 Z 60 T 40 , PL 15 Z 60 T 40 and PL 20 Z 60 T 40 . Dotted lines are linear fits to the data for T < T C . The right figure collects the extracted slopes of the fit, yielding the evolution of the activation energy (arb. units) with the percentage of quenched disorder. . . . . . . . . . . . . . . . . 3.51 Supercell snapshots of PL 5 Z 60 T 40 , as obtained for three consecutive MC sweeps at T = 407K. Dark blue cubes are associated to the topologically defective unit cells whose variable location in the supercell over the sweeps is indicative of a dynamical nature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.52 Supercell snapshots of PL 5 Z 60 T 40 , as obtained for six consecutive MC sweeps at T = 271K. Pale cubes are associated to the quenched (i.e. lanthanum containing) unit cells and thus display a fixed spatial distribution in the supercell over the sweeps. Red cubes correspond to quenched unit cells which are also topologically defective while dark blue cubes are associated to topologically defective unit cells whose location is different from that of the quenched unit cells. Topological defects are hence hopping dynamical entities, whose location in the supercell is not necessarily in correspondence with that of the quenched cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.53 Evolution with temperature of the fraction N QC Q =0 /N QC of quenched cubes QC carrying a non-zero topological charge Q = 0, for PL 5 ZT, PL 10 ZT, PL 15 ZT and PL 20 ZT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.54 Temperature evolution of the free volume d f.v (left figure) and of its fractal dimension (right figure) for the pure system PZT and different PL x ZT systems.164 3.55 Evolution with temperature of the density of topological defects n . Solid lines correspond to the n = a + n 0 exp[-b/(T -T 0 )] fits, where T 0 are signaled by dotted vertical lines . . . . . . . . . . . . . . . . . . . . . . . . . . 3.56 Evolution with temperature of the average volume of zero-charged unit cells (Q=0) and of topologically defective cells (with Q=1 and Q=-1) for PL 10 ZT. xxiii 3.57 Temperature evolution of the number of clusters (left panels) and their average volume (right panels) for PZ 60 T 40 and PL 5 Z 60 T 40 systems. Curves associated to |Q| = 1 correspond to the clustering procedure performed on the hedgehogs population regardless of the sign of the charge they carry, while curves associated to Q = 1 and Q = -1 correspond to the charge-specific clustering carried out on each of the subpopualtions of hedgehogs independently, i.e., on that of the positively charged hedgehogs and on that of the antihedgehogs, respectively.167 3.58 Temperature evolution of the number of clusters (left panels) and their average volume (right panels) for PL 10 Z 60 T 40 , PL 15 Z 60 T 40 and PL 20 Z 60 T 40 systems. Curves associated to |Q| = 1 correspond to the clustering procedure performed on the hedgehogs population regardless of the sign of the charge they carry, while curves associated to Q = 1 and Q = -1 correspond to the chargespecific clustering carried out on each of the subpopualtions of hedgehogs independently, i.e., on that of the positively charged hedgehogs and on that of the antihedgehogs, respectively. The inset of the figure depicting the number of clusters for PL 10 Z 60 T 40 shows that clusters corresponding to {|Q| = 1}clustering procedure increase in number in the 0 < T < 200 K temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 3.59 Temperature evolution of the average charge of {|Q| = 1}-obtained clusters for PL 5 Z 60 T 40 , PL 10 Z 60 T 40 , PL 15 Z 60 T 40 and PL 20 Z 60 T 40 systems. . . . . . . 169 3.60 Two-dimensional schematic representation of the unbinding mechanism of hedgehog/antihedgehog pairs with increasing temperature. While at low temperatures, pairs of oppositely charged defects are bound yielding a phase akin to a gas of (hedgehog/antihedgehog) dipoles, the higher temperature phase constitutes a plasma of unbound hedgehogs. . . . . . . . . . . . . . . . . . . . 170 3.61 Temperature evolution of the density of pairs of hedgehogs n p in PL 15 ZT for k=0.01 and k=0.05. Lower panels depict the integral curves of the order parameter field within a (x, y) plane for T=17 K. Squares indicate the spatial distribution of the quenched cells. . . . . . . . . . . . . . . . . . . . . . . . . Rotation of the internal space direction of a moving test particle. The internal angles change from θ(x) to θ(x + dx) as the test charge moves from x to x + dx (after Moriyasu, [15]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

  The experimental picture that has emerged from local structural probing yet clearly indicates the necessity of distinguishing the short-range effects from the long-range ones. At short range and at relatively low temperatures the local symmetry is polar and the atomic shifts from their ideal cubic symmetry positions are correlated. At long range however, the global symmetry is cubic due to the statistical atomic disorder that results in a spatially varying polarization, yielding zero net global polarization. In this respect, these materials have a structure that locally deviates from the average global one, giving rise to remarkable dielectric, electrostrictive, and electrooptic properties, making them of both a technological and fundamental interest.It is the purpose of this work to account for the relevance of the local scale and of the shortrange interactions to the properties of relaxors by proposing a microscopical model based on local symmetry, within the lattice gauge theoretical framework. This postulate is mainly motivated by the manifest lack of generalized rigidity, i.e., by the inability of correlations to fully develop so as to achieve homogeneous order. In another words, the competition between ordering and disordering interactions has to be assessed on a local scale rather than on a global one, since the mere consideration of the global scale may conceal the underlying local effects from which the global properties originate. Essentially, our approach revolves around the postulate of a local gauge symmetry and stands as a generalization of the first-principlesderived effective Hamiltonian so as to incorporate gauge fields taking values in a Lie group, in addition to ferroelectric and elastic degrees of freedom. It is then applied to a specific relaxor, namely, disordered (Pb 1-3/2x La x )(Zr y Ti 1-y )O 3 (PLZT) solid solutions.
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 11 Fig. 1.1: Schematic view of the cubic prototype perovskite-type structure with the formula A 2+ B 4+ O 2-. The space group is P m 3m with a lattice constant a ∼ 4 Å.
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 1 Fig.1.2 [4, 36].

Fig. 1 . 2 :

 12 Fig. 1.2: Hysteresis dependence of the polarization of a typical ferroelectric crystal on electric field, P S is the spontaneous polarization, P r the remanent polarization and E c is the coercive field (figure after [37]).

  purposes, it usually sufficient to consider the quadratic coefficient as T-dependent, of the form a 1 = a(T -T 0 ), with a a positive constant and where the temperature T 0 signals the sign change of a 1 . a 111 is fixed to positive constant values. F (T, η, P ) = a(T -T 0 )P 2 + a 11 P 4 + a 111 P 6(1.6)
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 13 Fig. 1.3: Second order phase transition. (a) Free energy as a function of the polarization at T > T 0 , T = T 0 , and T < T 0 ; (b) Spontaneous polarization as a function of temperature; (c) The susceptibility and its inverse. (After Chandra et al. [50])
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 14 Fig. 1.4: First order phase transition. a) Free energy as a function of the polarization at T > T c , T = T c , and T = T 0 < T c ; (b) Spontaneous polarization as a function of temperature; (c) Susceptibility χ. (After Chandra et al. [50])
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 15 Fig. 1.5: Contrast between the properties of normal ferroelectrics and relaxors ferroelectrics (After Samara [4])
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 16 Fig. 1.6: Rhombohedral distortion and ionic displacements along the 111 direction in PMN at 5 K. (After Mathan et al. [7])

Fig. 1 . 7 :

 17 Fig. 1.7: Zero-field cooled ((b),(d)) and field-cooled ((a),(c)) static susceptibilities of spin glass CuMn for 1.08% Mn and 2.02% Mn, demonstrating preparation-dependence and implying metastability. After zero-field cooling (H < 0.05 Oe), initial susceptibilities (b) and (d) were taken for increasing temperature in a field of H = 5.9 Oe. The susceptibilities (a) and (c) were obtained in the field H = 5.9 Oe, which was applied above T f before cooling the samples.(After Nagata et al. [126])

Fig. 1 . 8 :

 18 Fig. 1.8: Temperature dependence of the real part of the magnetic susceptibility of spin glass CuMn (0.94% Mn). Inset is an expanded view revealing the rounding ad the frequency dispersion at and below the peak. (After Mulder et al. [125])
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 19 Fig. 1.9: (a) Simple free energy: In a ferromagnet the free energy as a function of the state of the system has a simple structure (b) Multivalley structure:The free energy of the spin glass state is considered to have many minima and the barriers between them are expected to grow indefinitely as the system size increases. Within a limited time scale, the physical properties of the system are determined by one of the valleys. After a an extremely long time, the observed behavior would reflect the properties of all the valleys (After Nishimori[START_REF] Nishimori | Statistical Physiscs of Spin Glasses and Information Processing An Introduction[END_REF]).
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 110 Fig. 1.10: Schematic temperature dependencies of the refractive index n, the unit cell volume V , and the reciprocal dielectric permittivity 1/ε ′ in the canonical relaxor (After Bokov et al. [2])

Fig. 1 .

 1 Fig. 1.11: (a) Schematic representation of the deviation of ε ′ from the hypothetical Curie and Curie-Weiss behaviors calculated from the values of C and θ obtained by extrapolation from temperatures above that of the onset of local polarization. (b) The inverse susceptibility as function of temperature. The dashed line is the Curie-Weiss behavior determined from high temperature and the inset shows the temperature dependence of the local order parameter q obtained using Eq.(1.22). (After Viehland et al. [72])
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 113 Fig. 1.13: Average size of polar nanoregions in the PMN crystal (determined from diffuse neutron scattering) as function of temperature. The vertical dashed line corresponds to T f . (After Xu et al. [96])
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 315 From local structure to global propertiesSince the works of Burns and Dacol[82], the dielectric and structural properties of relaxors have been ascribed to the appearance of polar nanoregions within the cubic matrix at the Burns temperature T d , and their ensuing growth as the temperature is lowered. The formation of these polar nonregions have been attributed to the presence of nanoscale compositional inhomogeneities. Such inhomogeneities would lead to strong random electric fields and a smearing out of the ferroelectric phase transition. However, the structure and dynamics of the polar nanoregions on a atomistic level is not fully understood and reports on relaxor behavior in perovskites with long range B-cation ordering call into question the polar nanoregions based models[132]. While it is known that heterovalency on the B-site is necessary for relaxor behavior in some lead-based relaxors, quantitative relations between local structure and relaxor dispersion are still lacking. With this in mind, Grinberg et al.suggested that a local-structure-based approach could result in a deepened understanding of the relaxor behavior.Leveraging the availability of local structural information from density functional theory studies (within the local density approximation[128][129][130] for the exchange and correlations between electrons) and molecular dynamics simulations (performed with the bond valence model for the atomistic potential[131]),Grinberg et al. examined the connections between composition, local structure and dynamics in lead-based relaxor ferroelectrics, showing that the interactions behind the relaxor behavior are of short range type and are controlled by the variations in the local chemical bounding in perovskites.

Fig. 1 .

 1 Fig. 1.14: Measure of the dependency of the dispersion ∆T disp on the fraction x of the ferroelectric end members in (1-x )PSW-x PT, (1-x )PSW-x PZ, (1-x )PMN-x PT, (1-x )PMN-x PZ and (1-x )PMN-x PSN solid solutions. ∆T disp exhibits a smooth monotonic trend as the fraction x of the ferroelectric end members increases, making it suitable to serve as an order parameter for the compositional phase transitions between the relaxor and ferroelectric phases. (After Grinberg et al. [134])

  tween the experimentally observed ∆T disp values and crystal chemical parameters, such as the ionic valence and the ionic displacement, are then investigated. The choice of these local parameters is achieved by the inspection of previous works which indicate (i) that compositional phase transitions in lead-based solid solutions are driven by changes in the local potential energy surface of the Pb cations [130, 136], (ii) that Pb off-centering, which give rise to ferroelectricty in PbTiO 3 (and related Pb(B)O 3 materials), is due to the energetically favorable formation of short Pb -O bonds of Pb with a subset of its oxygen neighbors [137], (iii) that B-site disorder 15 in Pb(B, B ′ )O 3 solid solutions produces overbonded and underbonded oxygen atoms depending on the valence of their B-cation neighbors [138-140], leading to a preferential displacement of Pb towards underbonded oxygens 16 thereby inducing variations in the local potential energy surface 17 .

2

 2 are the valences of the two nearest B-cation neighbors of the i-th O atom. The first moment of the oxygen atom B-cation neighbor valence V B is equal to four in all Pb-based perovskites. The other crystal chemical parameter of relevance is the average off-center displacement D B avg of the B-cations. This choice stems from the observation by the means of DFT calculations [129, 130], of a correlation between a low average B-cation displacement D B avg and a large ∆T disp . The relevance of ionic displacement can also be inferred from the effect of pressure on the relaxor behavior. The application of pressure shortens interatomic distances and decreases off-centering displacements [137] i.e. it lowers D B

Fig. 1 .

 1 Fig. 1.15: ∆T disp evolution with pressure in PLZT from the experimental results of Samara [104]. ∆T disp increases with increasing pressure. Since off-center displacements are smaller at reduced volumes of perovskites [137], ∆T disp is increased by lower off-centering displacements. (After Grinberg et al. [134])

  1.16), the authors combined the two local criteria in a Landau theory equation [132] for describing ferroelectric-to-relaxor compositional phase transition, with ∆T disp as the order parameter

Fig. 1 . 16 :

 116 Fig. 1.16: Dependence of ∆T disp on V 2 in PMN-PSN solid solution, revealing a strong resemblance to the behavior of of the order-parameter in a second-order phase transition. (After Grinberg et al. [134])

Fig. 1 .

 1 Fig. 1.18: Droplet of overturned spins in a supposed ferromagnetic (up) ground state. A quenched random field acts at each site of the system; the field points up on the blue sites and down on the green sites. The configuration with the overturned droplet, or domain, can have a lower energy than that consisting of all-pointing up spins. This can happen because the droplet occurs in a region in which the random fields points predominantly down. Imry and Ma estimated the probability of occurrence of such droplets and concluded that the ferromagnetic state is unstable with respect to the formation of large droplets in fewer than 2 dimensions. (Adapted from Fisher et al. [120])

  dimensions and its pure counterpart in d -2 dimensions. This corresponds to the socalled dimensional reduction and was first suggested in the context of the perturbation theoretical formulation of the critical behavior of the Ising model in a quenched random magnetic field [118]. In particular, since the lower critical dimension of the ordinary pure Ising model is d l = 1, this should imply that the 3-dimensional random field Ising model has no phase transition, i.e. d l = 3 in the random version.

Fig. 1 .

 1 Fig. 1.19: Linear birefringence measured subsequently as a function of temperature on zerofield cooling (ZFC), field heating with E = 1.2kV/cm, E < E cr (FH), field cooling (FC) and zero-field heating (ZFH), illustrating the nonergodic behaviour of PMN crystal. (After Kleemann et al. [123])

20 Fig. 1 . 20 :

 20120 Fig. 1.20: Projection of the Pb-site local fields (in arbitrary units) on a (110) plane through the simulation box of Pb(Sc 1/2 Nb 1/2 )O 3 . Chemically ordered regions have relatively small homogeneous fields whereas chemically disordered regions have larger, more varied disordered local fields. (After Burton et al. [146])

Fig. 1 .Fig. 1 . 23 :

 1123 Fig. 1.22: Simulated PSN polarization as a function of temperature at hydrostatic pressure in the range 0 < P < 22 GPa. The first-order character of the transition, signaled by the jumps, is accentuated as the pressure increases. (After Burton et al. [148])

Fig. 1 . 24 :

 124 Fig. 1.24: Predicted pressure vs temperature phase diagram for PSN, indicating the ferroelectric to relaxor transition and the estimated Burns temperature (After Burton et al. [148]).

Fig. 1 . 25 :

 125 Fig. 1.25: Experimental temperature vs pressure phase diagram for the PSN crystal at 10 4 Hz. The T FE (P ) phase boundary terminates at a finite temperature and pressure, as depicted by the star. Such termination represent a critical point which, from a thermodynamic point of view, would be somewhat akin to the vapor-liquid critical point. (After Samara et al. [154]).

  narrow and temperature dependent, attributed to reorientable clusters. The temperature dependence of the second moment M 2 of the inhomogeneous frequency distribution corresponding to the narrow line is shown in Fig. 1.26. It is seen that the Edwards-Anderson order parameter q EA , which is proportional to M 2 , is nonzero in the whole investigated temperature range between 400 and 30 K. It is rather small and weakly T-dependent above 300 K. Below 260 K it increases nearly linearly with decreasing temperature down to 100 K.

Fig. 1 . 26 :

 126 Fig. 1.26: Temperature dependence of the Edwards-Anderson order parameter q EA of the reorientable part of the inhomogeneous frequency distribution in PMN (q EA ∝ M 2 ). The inset shows the Gaussian shape of the probability distribution of local polarization. (After Blinc et al. [99])

Fig. 1 . 27 :

 127 Fig. 1.27: Generalized temperature-coupling parameter J 0 phase diagram of the spherical random bond-random field model of a relaxor in zero field. (After Pirc et al. [98])

Fig. 1 .

 1 26, the open circles representing the evolution with temperature of the second moment of W ( p) are from data, and the solid line is the theoretical fit. Whereas the local polarization distribution function W ( p) discriminates between dipolar

Fig. 1 . 28 :

 128 Fig. 1.28: Temperature dependence of the quasistatic non linear susceptibility a 3 = χ 3 /χ 4 1in PMN for E = 0; a 3 (T ) is found to increase sharply on lowering the temperature between 320 and 220 K. This is incompatible with the case of a random-field frustrated ferroelectric, but quantitatively agrees with the SRBRF model's predictions (solid line is obtained using Eq.(1.44)). The dashed line represents the temperature dependence of a 3 evaluated for E/J = 0.01. Note that with increasing field strength the peak in a 3 (T ) disappears, i.e., for a large enough field a crossover from a glass phase to ferroelectric one occurs. (After Blinc et al.[99])

Fig. 1 .

 1 Fig. 1.29: Schematic electric field-temperature (E-T) phase diagram. For E < E c and J < J 0 , the dipolar freezing temperature (J 2 + ∆) 1/2 /k is independent of E and a vertical phase boundary is found in the E-T phase diagram between the ergodic and non-ergodic relaxor phases, indicating the braking of ergodicity associated to the divergence of the longest relaxation time.(After Kutnjak et al. [102])

Fig. 1 .

 1 Fig. 1.30: (a): Scaled third-order nonlinear response a 3 in the spherical-glass (SG) phase (J 0 = 0) as a function of temperature, plotted for various values of the randomfield strength ∆. Top to bottom: ∆/J 2 = 0, 0.001, 0.01, 0.1. If ∆ = 0, corresponding to a pure SG, a 3 diverges at the freezing temperature J/k. For ∆ = 0 the denominator in Eq.(1.44) never vanishes, the divergence is suppressed. For ∆/J 2 ≪ 1, a 3 shows a sharp peak around J/k. This peak broadens at ∆/J 2 ≥ 0.1 and ultimately disappears for larger ∆/J 2 . (b): Temperature and field dependence of the nonlinear response a 3 (E) in the SG phase (J 0 = 0) and for fixed value of ∆/J 2 = 0.01. Top to bottom E/J = 0, 0.01, 0.1, 0.2, 0.5. With increasing field strength the peak in a 3 gradually disappears. (This effect is similar to that occurring when the value of ∆ is increased) (c): Temperature and field dependence of the nonlinear response in the FE in random fields phase (J = 0)and for fixed ∆/J 2 0 = 0.01. Top to bottom E/J 0 = 0, 0.01, 0.1, 0.2, 0.5.a 3 remains finite as T → T c , but makes a jump at T c in accordance with mean-field theory. In contrast to the SG case, a 3 in a random-field frustrated ferroelectric does not show any anomalous peak.(After Pirc et al. [98])

Fig. 1 .

 1 Fig. 1.31: Temperature-pressure phase diagram of the relaxor ferroelectric PLZT 6/65/35. The solid and dashed lines are evaluated from the static and dynamic coupled SRBRF-phonon models respectively, whereas the solid triangles and solid circles are experimental points obtained by Samara [104]. The horizontal line is determined by J * 0 (P c ) and separates the FE phase from the nonergodic relaxor phase where the longest relaxation time diverges. The vertical dotted line corresponds to the freezing temperature T f , where the static nonlinear permittivity has a peak. (After Blinc et al. [103])

Fig. 1 .

 1 Fig. 1.32: Schematic temperature dependence of the dielectric permittivity and spontaneous polarisation, after Hirota et al. [3]: (a) relaxors with a diffuse relaxorto-ferroelectric phase transition. T C is below T m (f ) and spontaneous polarisation occurs already above T C . (b) canonical relaxors. At the Burns temperature T d , polar regions nucleate and after growing with decreasing temperature, they freeze to a non-ergodic state at T f . Polarisation appears only under an external electric field.

Fig. 1 .

 1 Fig.1.33 shows the room temperature phase diagram for the PLZT solution. Several features are noticeable: i ) small variations in La content produce rather large changes in areas of phase stability, ii ) increasing La content extends the antiferroelectric phase (AFE) over the ferroelectric (FE) phase, and iii ) increasing La content favors the tetragonal ferroelectic phase over the rhombohedral one [155].

Fig. 1 .

 1 Fig. 1.33: Room-temperature phase diagram for the PLZT solution. The relaxor range is indicated by dashed lines (After Haertling et al. [155]).

Fig. 1 .

 1 Fig. 1.34: Phase diagram of PLZT system showing constant La concentration levels (After Haertling et al. [155]).

Fig. 1 .

 1 Fig.1.35 illustrates the Curie point lowering for increasing La concentration in the two series of compositions; the effect is essentially linear[155].

Fig. 1 .

 1 Fig. 1.35: Curie point lowering with incresing La content (After Haertling et al. [155]).

Fig. 1 . 36 :

 136 Fig. 1.36: Dielectric constant as a function of temperature (After Haertling et al. [155]).

1. 4

 4 .1 PLZT x/65/35 On the basis of dielectric and internal friction measurements with and without bias on different compositions in the PLZT x/65/35 family, Viehland et al. [158] proposed the phase diagram shown in Fig.1.37. It shows that the relaxational character of the response becomes noticeable between 4 and 5 % La, as illustrated by the vertical dashed line in the diagram.

Fig. 1 .

 1 Fig. 1.37: Dielectric constant as a function of temperature (After Viehland et al. [158]).

Fig. 1 . 39 :

 139 Fig. 1.39: Left panel : Temperature and frequency dependences of the dielectric constant and the dissipation for PLZT 6/65/35 at 1 bar (0 kbar). Right panel : Temperature and frequency dependences of the dielectric constant and the dissipation for PLZT 6/65/35 at 15 kbar. The inset shows the increase in the frequency dispersion in T m with pressure (After Samara [104]).

Fig. 1 .

 1 Fig.1.40 shows the shifts in T m and T x with pressure measured at 10 5 Hz. Within experimental uncertainty, T m and T x have the same slope, namely, dT m,x /dP = -5.2 ± 0.2 K /kbar, a value comparable to that for many perovskite ferroelectrics. Note that Fig.1.40 shows the pressure dependence of T m at one frequency, T m is, of course, frequency dependent, but its pressure derivative is only weakly dependent on frequency[4]. Moreover, the R-FE phase

Fig. 1 .

 1 Fig. 1.40: Temperature-Pressure phase diagram of PLZT 6/65/35 (After Samara [104]).

  thus the ratio of the fractional change in ω s to the fractional change in volume. For odinary dielctrics γ for TO phonons is of the order of 1-2 and very weakly temperature dependent. However, for soft TO mode systems, such as PLZT x/65/35 and PLZT x/40/60, γ is very large and strongly temperature dependent, approaching values of several hundred near T C[104].

Fig. 1 .

 1 Fig.1.41 shows the dielectric response as function of temperature in zero field for three compositions of La. The PLZT 8/40/60 response is characteristic of that of a FE ceramic. There is essentially no frequency dispersion in T C or in ε ′ and the rounding of the ε ′ (T ) peak is due to compositional heterogeneities. The 15/40/60 composition, on the other hand, exhibits classic relaxor response. The intermediate composition 12/40/60 displays the following features.On ZFC the sample first enters a relaxor state with strong dispersion and then undergoes a spontaneous R-to-FE transition at T x with weak dispersion. The transition is reversible on ZFH but exhibits a large thermal hysteresis signifying its first-order character[156]. This transition in the absence of bias also occurs in PLZT 6/65/35 under zero bias and in PMN and other relaxors under bias[4].

Fig. 1 .

 1 Fig. 1.41: The dielectric response of PLZT x/40/60 for x = 8, 12 and 15 % La, showing the composition-induced crossover from normal ferroelectric to relaxor behavior. (After Dai et al. [156]).

Fig. 1 .

 1 Fig. 1.42: Dielectric response of PLZT 12/40/60 showing the pressure induced FE-R crossover (After Samara [4]).

Fig. 1 .

 1 43 shows the deviation from Curie-Weiss (1/ε ′ (T ) ∼ (T -T C )) behavior above T m in the PE phase. The onset of the deviation occurs at T d temperature at which polar regions form and grow[4,82]. The right panel of Fig.1.43 illustrates the strong influence of pressure on the r c . The results were deduced from the pressure and temperature dependencies of the dielectric response, thus the absolute value of r c cannot be accessed, but only relative changes in this quantity. The 1-bar results show the large increase in r c with decreasing temperature, a remarkable feature of the soft mode response of the system. The decrease of r c with pressure is nonlinear and explains the FE-to-R crossover[4,104].

Fig. 1 . 43 :

 143 Fig. 1.43: Left panel : Temperature dependence of the reciprocal of ε ′ (T ) of PLZT 12/40/60 measured at 10 5 Hz and different pressures. The location of the structural phase transition is denoted by T C for the 1-bar response. Right panel : Variation of the correaltion radius (in arbitrary units) for polarization fluctuations with temperature for PLZT 12/40/60 (After Samara [104]).
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 11 Introduction: Local symmetry and Gauge fieldsModern theories of fundamental interactions are gauge theories[179]. Roughly speaking, these field theories promote global symmetries to local ones and as will be seen further, express a central hypothesis of physics, namely that there is a flexibility in the local representation of nonlocal aspects of interactions. This flexibility denotes nothing but the robustness of a physical phenomenon, which should be the same independently of any choice of convention.

Fig. 2 . 1 :

 21 Fig. 2.1: An internal symmetry space is attached to each point x in space. In the case of the U(1) local symmetry group, the internal symmetry space consists of all possible values of the phase of φ, and can be represented by the unit circle, points of which are the phase value. A particular field configuration φ(x) means a choice of one point on each circle attached to each point in space. For instance, in Figures (a) and (b) the phase values taken by φ at points x and x + δx are indicated by dots on the unit circle. There is a rule to take a point φ(x) and parallel transport it to an infinitesimally neighboring point φ(x + δx). The gauge connection exactly specifies how a certain point φ(x) is mapped into another point φ(x + δx). The gauge connection is illustrated by the arrow between Figures (a) and (b). Local symmetry thus turns the phase into a local variable. The invariance under local transformations, i.e. the freedom to choose any value or convention for the phase (i.e., any point on the circle), is ensured by a compensating change in the connection. Thus, if one phase is rotated, such as Figure (c) with respect to Figure (a), the rotated point, φ ′ (x), should still map the same neighboring point φ(x + δx), which demands a change in the connection, as represented by a new arrow between Figures (c) and (d) (after Moore [178]).

  nonintegrable deformations are incorporated by demanding invariance of the elastic Lagrangian under the local action of the Euclidean group SO(3)⊲ T(3) 3 . Within this picture, dislocations arise from the inhomogeneous action of the group of translations, T(3), while the disclinations owe their origin to the action of the rotation group, SO(3).

5 )

 5 Global U(1) symmetry In order to assess the implications of symmetries of the Lagrangian, let us first see the case of a global U(1) symmetry. Consider the transformations4 In component form, the Klein-Gordon equation is expressed as ( ∂ 2 ∂t 2 -∇ 2 + m 2 )φ = 0 which, for m = 0, reduces to the standard wave equation. Performing the usual identifications i ∂ ∂t → E and -i∇ → p, the Klein-Gordon equation follows from the relativistic kinematic conservation requirement E 2p 2 = m 2 .

Fig. 2 .

 2 Fig. 2.2: A link of the lattice. The links connects the sites x and x + aμ.

Fig. 2 . 4 :

 24 Fig. 2.4: Illustration of a 2-dimensional lattice compactified to a torus by periodic boundary conditions.

. 22 )

 22 Parallel transporters A term of the form (φ x -φ y )2 , which only measures the change in the components from point to point, would have been suitable if the basis, or frame, didn't change. The problem is essentially that under a local gauge transformation, the meaning of comparing two vectors at different points in these terms is lost.Since two internal vectors residing at two different locations can not be compared in their natural bases (or local frames), one needs a definition of what would physically equivalent internal vectors mean at different points. This is achieved by the parallel transport, which specifies the rotation of the frame in some intrinsic internal symmetry space upon transport between neighboring points. One could refer to Fig.2.5 for an simple illustrative example and to the Appendix A for a formal derivation of the relation between gauge fields, connection and parallel transport[START_REF] Moriyasu | An elementary primer for Gauge Theory[END_REF]. The essential point of gauge theories is that by allowing local symmetry, parallel transport acquires the status of a new degree of freedom. Therefore, for each point on the lattice and each possible direction for parallel transport, there is a new dynamical variable, element of the symmetry group G. Building a theory with a local symmetry is thus achieved at the expense of introducing many new degrees of freedom, the gauge fields[START_REF] Rothe | Lattice Gauge Theories. An Introduction[END_REF].

Fig. 2 . 5 :

 25 Fig. 2.5: Parallel transport: consider an ordinary vector in the plane, expressed in polar coordinates. Consider the unit basis vectors e r and e θ at the point P . Parallel transport of e r to the point P ′ (i.e. the transport keeping e r parallel to what it was) yields the vector labeled ge r , different from the unit radial vector e ′ r at point P ′ .
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 26 Fig. 2.6: Left: Link U x,µ from site x in direction µ. Right: Link U -1x,µ in the reverse direction, from site x + aμ in direction -µ.

Fig. 2 . 7 :

 27 Fig. 2.7: A contour in the form of an oriented boundary of a plaquette p.

Fig. 2 . 8 :

 28 Fig. 2.8: Location of the degrees of freedom of the spin-glass system. The dots represent the spin (site) variables S, and the crosses represent the gauge (link) variables J (after Fradkin et al. [204]).

Fig. 2 . 9 :

 29 Fig. 2.9: Gauge transformation on the central site. Dark circles are spins pointing up and white circles are spins pointing down. All bonds stemming from the central site have been made negative; the gauge-modified configuration yields the same energy, with the central spin flipped (after Fradkin et al. [204]).

Fig. 2 . 10 :

 210 Fig. 2.10: Illustration of the concept of frustration, one of the key ingredients of a spin glass system. Dark circles represent spins pointing up. " + " denotes the ferromagnetic interaction, where parallel spins have the lowest energy, and " -" denotes the antiferromagnetic interaction, where the lowest energy is for anti-parallel spins. If there is an odd number of " -" interactions or bonds around the square, no spin configuration will simultaneously minimize each contribution to the energy. The configuration shown minimizes the energy of the upper and lower bonds, as well as the right hand bond, leaving the left hand bond in a high-energy state, the plaquette is frustrated, Φ = 1 (after Fradkin et al. [204]).

ψ

  ij gives rise to the connection over a closed path, equivalent to the net change of curvature measured through the Berry phase [202].

Fig. 2 . 12 :

 212 Fig.2.12: Left: In the two-dimensional case, the elementary curved unit is one plaquette.It is thus possible to isolate a single frustrated plaquette at the expense of a dual string of flipped antiferromagnetic bonds starting from the frustration center to the boundary of the system. In the upper figure, the isolated frustrated plaquette is signaled by a cross, the antiferromagnetic bonds are shown in bold and the dual string crossing non-frustrated plaquettes is indicated by a dashed line. A ground state configuration is obtained by pairing the frustrated plaquettes, with minimal total length of the strings (going through adjacent non-frustrated plaquette centers), as shown is the lower figure. Right: In the three-dimensional case, a frustrated plaquette cannot be isolated. This follows from the conservation law of curvature, which is the strict analogue of the conservation of magnetic flux in electromagnetism[START_REF] Toulouse | [END_REF]. The elementary unit is thus a loop of frustrated plaquettes, as shown in the upper figure. A ground state configuration involves loops of minimal area, enclosing non-frustrated plaquettes as shown in the lower figure. The spin direction across this area changes discontinuously, i.e., one has disclinations. These disclinations induced by frustration have non-trivial topological properties and have been associated to the gauge fields in the continuous version of gauge theory for glasses as formulated by[21, 197, 198].

Fig. 2 . 13 :

 213 Fig. 2.13: Illustration of the degeneracy introduced by frustration. Dark circles are spins pointing up and white circles are spins pointing down. Represented is the 8-fold degenerate ground state of a frustrated plaquette composed of an odd (here one) number of antiferromagnetic bonds on its perimeter, i.e., Φ = -1.Competing interactions render impossible the accommodation of all bonds. There exist a bond at which the lowest state is not achieved, such a bond is frustrated and indicated by the wavy line. This simple investigation shows that competing interactions raise the ground state energy and the ground state degeneracy.

  revealed a discrepancy between what would be physically expected in quenched systems (e.g. a transition in d = 3)

[ 21 ]

 21 . Hertz assumes that the field Q is induced by the frustration network which is produced by competing interactions and hence it is randomly quenched. He does not give a dynamical status to this field. Hence he averages the free energy expression with respect to the probability distribution P [Q]. Dzyaloshinskii and Volovik on another hand argue that the field Q has two components, i ) one random and static arising from the disclinations in the spin field produced by frustrations and ii ) the other non-random, ascribed to thermal fluctuations, and thus of a dynamical nature. Hence a complete thermodynamical analysis of the gauge theory as introduced by Dzyaloshinskii and Volovik will involve the two following steps[193].

  2.14).

Fig. 2 . 14 :

 214 Fig. 2.14: Multivaluedness of displacement field: In the presence of a dislocation, the displacement field is intrinsically non-unique. The figure shows the ambiguity in the assignment of the displacement u i (x) to the nearest equilibrium position. When removing a layer of atoms, S, the result is a dislocation line along the boundary of the layer. Across the layer, the positions u i (x) jump by a lattice spacing. The same dislocation line could have been constructed by removing a different layer of atoms, S ′ , just as long it has the same boundary line. Physically there is no difference.There is only a difference in the discriptions which amounts to a difference in the assignment of the equilibrium positions from where to count the displacement field u i (x) (After Kleinert[START_REF] Kleinert | Gauge fields in condensed matter[END_REF]).

  Fig. 2.15: Left Dislocation of a hollow ring. The ring is cut along the radial lines AA ′ and BB ′ , the wedge AA ′ BB ′ is removed, and AA ′ is joined to BB ′ . The same dislocation could be made by cutting along CC ′ and DD ′ . Right The dislocated ring. The neighbouring points Q 1 and Q 2 lie on opposite sides of the cut (after Nabarro [211])

  2.16), gives a unifying view of the topological line defects in crystals. Displacement of the surfaces of the cut with respect to each other and subsequent gluing will generate a line defect whose core coincides with the axis. A topological defect thus consists in a core region, characterized by the absence of order, and a smooth far field region.

Fig. 2 . 16 :

 216 Fig. 2.16: Crystalline defects may be generated via so called Volterra process, when layers or sections of matter are cut from a crystal with a subsequent smooth rejoining of the cutting surfaces. A crystal can have two different types of topological defects, which are line-like defects in the 3-dimensional space. A first type of topological defects are translational defects called dislocations: a single-atom layer is removed from the crystal and the remaining atoms relax to equilibrium under the elastic forces. A second type of defects are of the rotation type and called disclinations.They arise by removing an entire wedge from the crystal and re-gluing the free surfaces. Geometrically, the former transformation introduces torsion, the latter curvature (After Kleinert[START_REF] Kleinert | Gauge fields in condensed matter[END_REF]).

Fig. 2 . 19 :

 219 Fig. 2.19: Vector field distributions on the plane x 1 ,x 2 for linear disclinations parallel to the x 3 axis. The length of the Frank vector |Θ| is equal to the total angle of rotation (multiple of 2π) of the field as it goes around the disclination. In the left panel |Θ| = 2π, whereas in the right panel |Θ| = 4π (after Katanaev [217]).

Fig. 2 . 20 :

 220 Fig. 2.20: Perovskite cubic structure ABO 3 , where A and B atoms are respectively located at the corners and in the center of the cube. The octahedra connect O atoms.

  [START_REF] Levanyuk | [END_REF] where u i are local soft-mode vectors in each 5-atom cell i (directly proportional to the local electric dipole moment centered in cell i), u i = |u i | and κ 2 , α, and γ are expansion parameters obtained by fitting first-principles results.Dipole-dipole interactionThe second term represents long-range interactions between local modes. The dipole moment associated with the local mode in cell i is d i = Z * |u i |, where Z * is the Born effective charge for the soft mode. Z * is calculated from the eigenvector of the soft-mode [231]:
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 62 corresponding to bond stretching, bond correlation and bond bending, respectively, with x = ax, y = aŷ and z = aẑ. The γ coefficients are related to the elastic constants by γ 11 = B 11 /4, γ 12 = B 12 /8 and γ 44 = B 44 /8.

  which favor the cubic phase, and long-range Coulomb interactions which favor the ferroelectric state. Beyond the qualitative picture, first-principles effective Hamiltonian simulations allowed to reinvestigate this model and to enhance the microscopical understanding of the interplay between electronic and dynamical properties in generating the ferroelectric instability. ABO 3 perovskite structures can be subject to competing structural instabilities. The two most common instabilities result from the softening of either a polar zone-center phonon mode, leading to a FE phase, or the softening of a non-polar zone-boundary mode involving rotations of oxygen octahedra, leading to an antiferrodistortive (AFD) phase. When different kinds of instabilities are present and compete with each other, the effective Hamiltonian model can be extended in order to include properly all the relevant ionic degrees of freedom, such as antiferrodistortive degrees of freedom[238, 239]. Polar and non-polar instabilities compete in a delicate way and tend to suppress one another, yielding rich phase diagrams showing a large variety of different structures (see for example PbZr 1-x T x O 3 phase diagram near its morphotropic phase boundary in Fig.2.22[233, 244]).First-principles-based approach within the effective Hamiltonian framework have also been used to address the relaxor behavior. Let us report the comparative study of PbSc 1/2 Nb 1/2 O 3 , a ferroelectric with relaxor-like characteristics, and PbZr 60 Ti 40 O 3 ,a normal ferroelectric, by means of the generalized effective Hamiltonian for mixed compounds[48]. The main con-30 Quantum Monte Carlo simulations have also been reported[242,243], allowing to assess the effects of quantum fluctuations on structural phase transitions

Fig. 2 .

 2 Fig. 2.22: Phase diagram of PbZr 1-x T x O 3 near the MPB, as predicted by a first-principlesderived scheme that incorporates ferroelectric and antiferrodistortive degrees of freedom. In addition to recovering five of the well-known expected phases (namely, the paraelectric P m 3m, FE rhombohedral R3m, FE tetragonal P 4mm, FE monoclinic Cm, and the rhombohedral R3c phases), accounting for both FE and AFD motions leads to the prediction of a sixth phase, a monoclinic Cc ground state at intermediate T i compositions, thereby resolving controversies about its nature. Moreover, a seventh phase I4cm emerges as a discovery for the largest displayed T i compositions. (After Kornev et al. [244]).

Fig. 2 . 23 :

 223 Fig. 2.23: Properties of PZT (open dots), and PSN (filled dots), as a function of T /T m . Panel (a) shows one third of the trace of the dielectric susceptibility tensor directly obtained from MC simulations. Dots in panel (b) show the supercell averaged mean component of the local modes. The arrow in panel (b) emphasizes the highest temperature at which the polarization begins to develop in PSN (After Iniguez et al. [48]).

Fig. 2 . 25 :

 225 Fig. 2.25: Schematic illustration of the local directional SO(2) symmetry of the first nearest neighbors short-range interaction. Local modes vectors attached to the vertices are omitted.From each lattice site i stem three cylinders, each of which axes coincide with either the x, y or z direction. These cylinders represent space-dependent rotations (as many colors as there are rotations) by angles θ 1 (i), θ 2 (i) and θ 3 (i) respectively, and are associated with the compensating gauge fields that have been introduced so as to guarantee the invariance of E short under local directional SO(2) rotations acting in the internal space of the dipole moments u i in the plane perpendicular to the linking direction Rij .

Fig. 2 .

 2 Fig. 2.26: First-principles derived coefficients in the case of PZT with 60% of Zr and 40%of Ti[233, 244].

Fig. 2 . 27 :

 227 Fig. 2.27: Schematic view of two unit cells (cubes) centered around La 3+ (a) and Pb 2+ (d). Solid lines indicate quenched links, whereas dotted lines signal relaxing ones. The boundaries of each cube consists of six (b) curved (frustrated) or (e) flat (unfrustrated) plaquettes. Panels (c) and (f) show the parallel transport of a vector around a curved and flat plaquette, respectively.

Fig. 2 . 28 :

 228 Fig. 2.28: Schematic view of the random La 3+ -disorder in the supercell. La 3+ -containing unit cells are the elementary blue cubes whose edges are associated to quenched links.

Fig. 2 . 29 :

 229 Fig. 2.29: The plaquette energy E as a function of βk, with k the gauge coupling parameter and β the inverse temperature, on a 12 3 cubic lattice with cold start configuration (i.e. all links are initially set to unit matrices). The temperature is kept fixed at high values in the course of this simulation. Right and left insets show snapshots of plaquettes U that deviate from unity for high and low values of βk, respectively.

Fig. 2 .

 2 Fig. 2.30: Schematic sketch of a Markov chain in the space of all configurations. The boundary delimits the space of all configurations. The dots represent configurations visited by a Markov chain and are connected with straight lines to indicate that they are visited subsequently. The Markov chain starts in the upper left corner and then evolves towards the center, where the density of dots is larger. This corresponds to a region where the Boltzmann factor exp [-βH(X)] is large, and thus with large probability (After C. Gattringer et al. [189]).

Figures 3 .

 3 Figures 3.1 to 3.5 depict the temperature evolutions of the specific heat C and the norm of the statistical average of the local modes, | u |, for PZ 60 T 40 and PL x Z 60 T 40 , with x = 5, 10, 15 and 20%. The specific heat is estimated from energy fluctuations

2 )

 2 where E corresponds to the average over Monte Carlo sweeps of the internal energy E and E 2 to that of its square, and where k B is the Boltzmann constant. The peak in the specific heat reflects the onset of a long-range collective behavior and is thus used for the determination of T C . The norm of the statistical average of the local modes, | u |, directly proportional to the norm of the polarization, corresponds to

  From figures 3.1 to 3.5, one sees that T C (the temperature at which the specific heat peaks) coincides with the inflection point of | u |. Moreover, with increasing lanthanum content, the specific heat C broadens while | u | exhibits a quasi-linear behavior.

Figure 3 .

 3 Figure 3.6 is recapitulative of the temperature behavior of | u | with increasing lanthanum content. Error bars clearly indicate that whereas the subsisting tail practically reduces to zero within the error bars above T C for PZ 60 T 40 , thus indicating its finite-size effects origin, itretains a substantial non-vanishing value for PL x Z 60 T 40 systems with x = 5%, 10%, 15% and 20%, that can be ascribed to the nucleation of local order (this is further evidenced by the temperature evolution of the correlation length shown in Fig.3.17.). T C lowers monotonically with the substitution of La, which is in remarkable agreement with the available experimental data[155]. The account for lanthanum by means of the randomly quenched gauge variables thus reproduces both the linear Curie point lowering and the drop in magnitude of the polarization (proportional to | u |) for increasing lanthanum concentrations.

Figure 3 .

 3 Figure 3.7 depicts the integral curves for PZ 60 T 40 and PL x Z 60 T 40 with x = 5%, 10%, 15% and 20% associated to the corresponding local modes vector fields within a given (x, y) plane

Fig. 3 . 1 :

 31 Fig. 3.1: Temperature evolutions of the specific heat (filled symbols) and the scaled polarization (open symbols) in PZ 60 T 40 system. Dotted vertical line corresponds to T C .

Fig. 3 . 2 :

 32 Fig. 3.2: Temperature evolutions of the specific heat (filled symbols) and the scaled polarization (open symbols) in PL 5 Z 60 T 40 system. The inset shows the distribution of the quenched (lanthanum containing) unit cells inside the supercell. Dotted vertical line corresponds to T C .

Fig. 3 . 3 :Fig. 3 . 4 :

 3334 Fig. 3.3: Temperature evolutions of the specific heat (filled symbols) and the scaled polarization (open symbols) in PL 10 Z 60 T 40 system. The inset shows the distribution of the quenched (lanthanum containing) unit cells inside the supercell. Dotted vertical line corresponds to T C .
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 3536404037 Fig. 3.5: Temperature evolutions of the specific heat (filled symbols) and the scaled polarization (open symbols) in PL 20 Z 60 T 40 system. The inset shows the distribution of the quenched (lanthanum containing) unit cells inside the supercell. Dotted vertical line corresponds to T C .

A

  spontaneous question regarding the account of quenched disorder by means of the quenching of the links concerns the influence of the latter on the local modes. We investigate this matter by first subdividing the local modes population according to whether they are attached to quenched links defining quenched cubes QC (left panel of Fig. 3.8), or to relaxing links attached to non-quenched cubes nonQC (right panel of Fig. 3.8).
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Fig. 3 . 9 :

 39 Fig. 3.9: Temperature evolution of the mean angular deviation between the local modes u i and the ground-state spontaneous polarization P s for PZT, PL 5 ZT, PL 10 ZT, PL 15 ZT and PL 20 ZT systems. Open symbols denote the deviation as experienced by local modes attached to non-quenched cubes nonQC, whereas filled symbols denote the deviation of the local modes when attached to quench cubes QC. Dotted vertical lines correspond to T C . Insets show the distribution of the quenched cubes (lanthanum containing unit cells) inside the supercell.

P 0 L 5 Z 40 Fig. 3 . 10 :

 540310 Fig. 3.10: Integral curves of the local modes (∝ the dipole moments) within a given (x, y) plane of the supercell at T = 34 K for PL 5 Z 60 T 40 , PL 10 Z 60 T 40 , PL 15 Z 60 T 40 and PL 20 Z 60 T 40 systems. The integral curves are obtained from the local Cartesian components ( u x , u y ) averaged over sweeps. Straight lined squares refer to in plane quenched cubes and dotted ones stand for those contained in the upper and lower parallel planes.
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 1103311 Fig. 3.11: Temperature evolution of the inverse dielectric susceptibility and the specific heat for PZ 60 T 40 . T C = 652 K corresponds to the maximum of the specific heat and the reduced temperature refers to T/T C . The inverse dielectric susceptibility at T > T C can be well approximated to a Curie-Weiss form χ -1 = C (T/Θ -1) γ

Figures 3 .

 3 Figures 3.13 to 3.15 show the temperature evolution of the inverse dielectric susceptibility and the specific heat for PL x Z 60 T 40 systems, with x = 5, 10 and 15% of lanthanum. Inverse dielectric susceptibilities at T ≫ T C can be well approximated to a Curie-Weiss form χ -1 = C (T/Θ -1) γ with γ ≃ 1 and Θ > T C , indicating a departure from the typical ferroelectric behavior. Below T d , the data is better fitted with the modified Curie-Weiss law

Fig. 3 . 12 :

 312 Fig. 3.12: Inverse susceptibility of PZ 60 T 40 with varying box size L = 12, 14, 16, 18. Table indicates the parameters of the fitted values of the inverse susceptibility to the Curie-Weiss law χ -1 = C(T -T 0 ).
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 1103313 Fig. 3.13: Temperature evolution of the inverse dielectric susceptibility and the specific heat for PL 5 Z 60 T 40 . T C ≃ 408 K corresponding to the maximum of the specific heat and T m ≃ 442 K corresponding to that of the dielectric susceptibility, are indicated by vertical dashed lines. The reduced temperature refers to T/T m . The onset of deviation from the Curie-Weiss law at T d ≃ 754 K is indicated by a vertical dashed line.
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 11033141103315 Fig. 3.14: Temperature evolution of the inverse dielectric susceptibility and the specific heat for PL 10 Z 60 T 40 . T C ≃ 292 K corresponding to the maximum of the specific heat and T m ≃ 326 K corresponding to that of the dielectric susceptibility, are indicated by vertical dashed lines. The reduced temperature refers to T/T m . The onset of deviation from the Curie-Weiss law at T d ≃ 455 K is indicated by a vertical dashed line.
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 316 Fig. 3.16: Temperature evolution of the correlation length of the gauge field ξ g.f. for PL 5 Z 60 T 40 , PL 10 Z 60 T 40 , PL 15 Z 60 T 40 and PL 20 Z 60 T 40 systems.

Fig. 3 .

 3 Fig. 3.17: Temperature evolution of the correlation length of the the local modes ξ l.m. for PZ 60 T 40 , PL 5 Z 60 T 40 , PL 10 Z 60 T 40 , PL 15 Z 60 T 40 and PL 20 Z 60 T 40 systems. Dotted vertical lines refer to the temperatures at which the correlation lengths peak.
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 318 Fig. 3.18: Temperature evolution of the correlention length of PZ 60 T 40 (cross symbols). Solid line corresponds to the result of the fit yielding ν(PZ 60 T 40 )= 0.664 and red squares correspond to the Harris threshold critical exponent ν(H)= 0.667. Dashed line corresponds to the mean field expectations ν(mean field) = 0.5.

  3.19 to 3.23). For each of the systems, we analyze the temperature evolution of the Cartesian components u x , u y and u z of u , where denotes the average over sweeps performed on the average over the supercell of the local modes. We also report the temperature evolution of the lattice parameters |a 1 | , |a 2 | and |a 3 | , and that of the lattice angles α, β and γ.

Fig. 3 .

 3 Fig. 3.19 indicates a transition from a high temperature cubic phase to a low temperature rhombohedral ferroelectric phase, in agreement with experimental observations for PZ 60 T 40 [246]. Left insets of figures 3.20, 3.21, 3.22 and 3.23 show that two of the Cartesian components are zero within the error bars near T C , thus indicating that PL x Z 60 T 40 systems
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Fig. 3 .

 3 Fig. 3.19: Cartesian components ( u x , u y and u z ) of u in PZ 60 T 40 as a function of rescaled temperature [155]. T C corresponds to the maximum of the specific heat and is signaled by a vertical dotted line. Left side inset shows that all the Cartesian components are zero within the error bars in the close vicinity of T C . Right side insets correspond to the temperature evolution of the lattice axes and the lattice angles.
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Fig. 3 . 20 :

 320 Fig. 3.20: Cartesian components ( u x , u y and u z ) of u in PL 5 Z 60 T 40 as a function of rescaled temperature [155]. T C corresponds to the maximum of the specific heat and is signaled by a vertical dotted line. Left side inset shows that two of the Cartesian components are zero within the error bars near T C . Right side insets correspond to the temperature evolution of the lattice axes and the lattice angles, and indicate a transition from a high temperature cubic phase to a low temperature monoclinic (M A ) ferroelectric phase.
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Fig. 3 .

 3 Fig. 3.21: Cartesian components ( u x , u y and u z ) of u in PL 10 Z 60 T 40 as a function of rescaled temperature [155]. T C corresponds to the maximum of the specific heat and is signaled by a vertical dotted line. Left side inset shows that two of the Cartesian components are zero within the error bars near T C . Right side insets correspond to the temperature evolution of the lattice axes and the lattice angles, and indicate a transition from a high temperature cubic phase to a low temperature monoclinic (M A ) (close to triclinic) ferroelectric phase.
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Fig. 3 . 22 :

 322 Fig. 3.22: Cartesian components ( u x , u y and u z ) of u in PL 15 Z 60 T 40 as a function of rescaled temperature [155]. T C corresponds to the maximum of the specific heat and is signaled by a vertical dotted line. Left side inset shows that two of the Cartesian components are zero within the error bars near T C . Right side insets correspond to the temperature evolution of the lattice axes and the lattice angles, and indicate a transition from a high temperature cubic phase to a low temperature monoclinic (M B ) (close to triclinic) ferroelectric phase.
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 3324325 Fig. 3.23: Cartesian components ( u x , u y and u z ) of u in PL 20 Z 60 T 40 as a function of rescaled temperature [155]. T C corresponds to the maximum of the specific heat and is signaled by a vertical dotted line. Left side inset shows that two of the Cartesian components are zero within the error bars near T C . Right side insets correspond to the temperature evolution of the lattice axes and the lattice angles, and indicate a transition from a high temperature cubic phase to a low temperature triclinic phase.
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 16 Glassy-like signature and effects of local electric fieldsBurns and Dacol have attributed the drop in the temperature dependence of the refractive index in P L 8 Z 65 T 35 occurring at a temperature T d , much higher than T C , to the onset of regions of non-reversible local polarization P d[82]. They argued that the ferroelectric transition occurs first in lanthanum deficient regions, and as the temperature is lowered, P d and the standard remanent reversible polarization acquire the same magnitude. This view has motivated glassy-like interpretations of the relaxor behavior within a general picture according to which, for T C < T < T d and at short range, the local symmetry is polar and the atomic displacements from their cubic symmetry positions are correlated. The local regions are dispersed in the disordered host matrix. At long range, the atoms are statistically disordered and uncorrelated, so that the local polarizations are randomly oriented leading to a zero net polarization.
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 106040326 Fig. 3.26: Temperature evolutions of the Edwards-Anderson parameter q EA and squared polarization u 2 , for PZT, PL 5 ZT, PL 10 ZT, PL 15 ZT and PL 20 ZT systems. Dotted vertical lines correspond to T C (i.e., the temperature at which the specific heat peaks).

  3.27 that displays superposed low temperature snapshots of both the local electric fields and the local modes. One can see that the propensity to achieving collinearity is more pronounced in the ordered regions rather than in the disordered ones. Since the local electric fields are computed from the local modes, they cannot be put in one to one correspondence with quenched random fields. However, because of the quenched nature of the introduced disorder, local modes (directly coupled to the link variables) and local fields (emanating from the local modes and thus indirectly coupled to the link variables) freeze at low temperatures in configurations reflecting the disorder content.

Fig. 3 . 27 :

 327 Fig. 3.27: Temperature evolution of the mean angular deviation between the local modes u i and the local electric fields E i , for PZT, PL 5 ZT, PL 10 ZT, PL 15 ZT and PL 20 ZT systems.Insets show snapshots of the local modes (in blue) and fields (in light purple) configurations for P L 5 ZT and P L 15 ZT at T = 34 K in (x, y) plane.

Fig. 3 . 28 :

 328 Fig. 3.28: Temperature evolution of the mean magnitude of the local electric fields (upper panel) and of their standard deviation (lower panel) for PZ 60 T 40 and PL x Z 60 T 40 with x = 5%, 10%, 15% and 20%. Dotted vertical lines refer to T C , obtained from the maximum of the specific heat.
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 329330 Fig. 3.29: Temperature evolution of the mean angular deviation between the local modes u i and the local fields E RF i , for PL 10 ZT, PL 15 ZT and PL 20 ZT systems.
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 331 Fig. 3.31: Icosahedron and its associated planar graph representation. The icosahedron is a regular polygon of twelve nodes and twenty triangular faces. Its spherical projection defines a regular tiling of the circumscribing sphere, therefore splitting the maximal solid angle into twenty equal parts. The numbers appearing in the planar graph representation of the icosehdraon correspond to a labeling of the faces.
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 3 figure (Figures 3.31 and 3.32).

Fig. 3 .

 3 Fig. 3.32: Theta-Phi diagram of the considered regular triangulation. Each region of the diagram represents the theta-phi extension of the solid angle associated to the face. The blue dots correspond to the eight equivalent rhombohedral groundstate directions. In the chosen labeling, one can see that the [1, 1, 1] direction for example is assigned to the fifth face.

Fig. 3 .

 3 Fig. 3.33: PZ 60 T 40 : Temperature evolution of the number of clusters (N Cl ), their average volume (V av Cl ) and their total volume (V tot Cl ) per face. The y axis refers to the face label, the x axis denotes temperature. Let's first put our attention on the high-temperature region. (i) High temperatures are characterized by small values of N Cl , V avCl and V tot Cl for all faces. Thus spatial correlations are very weak, and all directions are equivalent. This is merely indicative of full disorder. (ii) While approaching T C (indicated by a vertical line) from above, one observes signatures of critical fluctuations, such as emergence of preferred orientations (some directions are no longer represented while large spatial clusters corresponding to certain equivalent rhombohedral orientations appear) and scale invariance (indicated by the fact that differently populated directions acquire equal number of clusters). (iii) Below T C , up to ∼ 440K, one observes the condensation of only several clusters oriented in [1, -1, 1] and [1, -1, -1] directions (faces 4, 14 and 16). Whereas the single cluster corresponding to [1, -1, 1] (major phase) direction stands out in terms of large volume, the clusters with [1, -1, -1] (minor phase) orientation are numerous and, in contrast, relatively much smaller in volume. This latter observation shows that below T C the percolation of [1, -1, 1] clusters has been achieved, however the volume corresponding to the major phase is not simply connected. This situation is not persistent since a further decrease of the temperature drives this minor phase to gradually shrink, ultimately disappearing at 440K. (iv) At temperatures below ∼ 440K the ground state is achieved. It is important to mention that what could appear as a switching of direction is, in fact, only an artifact of Metropolis Monte-Carlo method.

Fig. 3 .

 3 Fig. 3.34: PL 5 Z 60 T 40 : Temperature evolution of the number of clusters (N Cl ), their average volume (V av Cl) and their total volume (V tot Cl ) per face. The y axis refers to the face label, the x axis denotes temperature.(i) Qualitatively, the high temperature region features the same full-disorder characteristics as those featured by the pure system PZ 60 T 40 . (ii) However, on approaching T C from above, a slight difference emerges in comparison with PZ 60 T 40 . The proloferation of clusters is enhanced, as attested by the increase of both the N Cl and V tot Cl , while V av Cl stays the same for the two systems. This indicates the emergence of a somewhat shy, shortrange correlated order above T C (iii) Just below T C , the main difference between PL 5 Z 60 T 40 and PZ 60 T 40 concerns the dispersion of the major phase around its rhombohedral direction. Indeed, while the ground state corresponds to [1, 1, -1] direction (contained in face 8), V av Cl of faces 7, 15 and 18 stays comparable to that of face 8 on a wide temperature range, thereby indicating a dispersion around the ground state direction.(iv) At low temperatures, the aforementioned dispersion subsists, explaining the drop in magnitude of PL 5 Z 60 T 40 relatively to PZ 60 T 40 .

Fig. 3 .

 3 Fig. 3.35: PL 10 Z 60 T 40 : Temperature evolution of the number of clusters (N Cl ), their average volume (V av Cl) and their total volume (V tot Cl ) per face. The y axis refers to the face label, the x axis denotes temperature.(i) The high temperature range exhibits full-disorder characteristics. (ii) Above T C and up to ∼500 K, one observes that for faces labeled by 1, 2 and 3, both N Cl and V tot Cl gradually increase, while V av Cl stays the same. This trend seems of the same nature as that described for PL 5 Z 60 T 40 , yet monotonical and more pronounced.(iii) Below T C , faces 1, 13 and 20 experience a weak depopulation of their clusters, as attested by the decay of V tot Cl . This trend is similar to that described for PL 5 Z 60 T 40 , but weaker.(iv) The ground state is thus populated by clusters belonging to faces dispersed around two rhombohedral directions (a main one, [-1, -1, 1] associated with face 3, and [-1, 1, 1] associated with face 1), making the average symmetry monoclinic (section 3.1.5).

Fig. 3 .

 3 Fig. 3.36: PL 15 Z 60 T 40 : Temperature evolution of the number of clusters (N Cl ), their average volume (V av Cl ) and their total volume (V tot Cl ) per face. The y axis refers to the face label, the x axis denotes temperature.(i) The high temperature range exhibits full-disorder characteristics.(ii) Above T C , faces 6, 14 and 16 exhibit a monotonical increase of V tot Cl and of V av Cl . The fact that V av Cl also increases in the case of PL 15 Z 60 T 40 is an indication of a more developed local order.(iii) Below T C , large volumes of differently ordered regions make the ground state direction mixed between different directions, mainly composed of the directions [1, -1, -1] (faces 6, 7, 14 and 16) and -[1, -1, -1] (faces 10, 20), making the average symmetry monoclinc on the verge of being triclinic (section 3.1.5).

Fig. 3 .

 3 Fig. 3.37: PL 20 Z 60 T 40 : Temperature evolution of the number of clusters (N Cl ), their average volume (V av Cl ) and their total volume (V tot Cl ) per face. The y axis refers to the face label, the x axis denotes temperature.(i) In this case, disorder extends over a wide temperature range.(ii) The ground state is strongly mixed, resulting in a triclinic average symmetry (section 3.1.5).

Fig. 3 .

 3 Fig. 3.38: Biggest clusters of local modes for PZ 60 T 40 system, just above T C , and for PL 5 Z 60 T 40 , PL 10 Z 60 T 40 , PL 15 Z 60 T 40 and PL 20 Z 60 T 40 systems, for temperatures just above their T m .

Fig. 3 .

 3 Fig. 3.39 provides the effect of various pressures on the evolution with temperature of the norm of the statistical average of the local modes, | u | (Eq.3.3), directly proportional to polarization. The effect of pressure is investigated in the range 0 ≤ P≤ 100 kbar. Increasing pressure destabilizes the ferroelectric phase. It depresses T C and lowers the magnitude of the polarization at low temperatures, ultimately preventing the onset of a ferroelectric phase for high enough pressure (∼100 kbar).
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Fig. 3 .

 3 Fig. 3.39: Influence of pressure on the temperature evolution of | u | in P L 5 Z 60 T 40 systems.Plot of the polarization as a function of T for various pressures in the range 0 ≤ P ≤ 100 kbar.
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 3340 Fig.3.40 corroborates this observation by providing a microscopic insight of the effect of an increasing pressure on the integral curves associated to the dipole moments field in a (x, y) plane of PL 5 Z 60 T 40 system. For the same disorder realization (i.e., the same spatial distribution of quenched disorder), the increasing pressure reveals its substantial disordering effect in that it engenders gradual deviation from the low pressure quasi-ordered configuration.

Fig. 3 .Fig. 3 .

 33 Fig. 3.41: Evolution with temperature of the specific heat (left) and the inverse dielectric response (right) for PL 5 Z 60 T 40 under 1 bar, 10 kbar, 20 kbar, 30 kbar and 50 kbar.The temperature at which the specific heat peaks is used for the determination of T C while that at which the dielectric response peaks corresponds to T m .

Fig. 3 .

 3 43 shows plots of Ln(χ -1 -χ -1 m ) versus Ln (T /T m -1) in the paraelectric regions for PL 5 Z 60 T 40 under 1 bar

Fig. 3 . 44 :

 344 Fig. 3.44: Variation of the correlation length for local modes ξ l.m. (left panel) and gauge field ξ g.f. (right panel) fluctuations for PL 5 Z 60 T 40 showing the influence of pressure.(Both ξ l.m. and ξ g.f. are computed according to the method provided in section 3.1.4).

section 3 . 4 . 1 .

 341 Topological defects are associated to strong orientational fluctuations of the order parameter field and hence act as order-destabilizing agents. The main observation obtained from Fig. 3.45 relates to the shift of the inflection point to lower temperatures with increasing pressure, thereby supporting and elucidating both the lowering of T C and the magnitude reduction of the polarization, as experienced by PL 5 Z 60 T 40 when subjected to an increasing pressure (Fig. 3.39).

Fig. 3 . 45 :

 345 Fig. 3.45: Temperature evolution of the density of pairs of hedgehogs n p for PL 5 ZT under increasing pressure.

Fig. 3 . 46 :

 346 Fig. 3.46: Schematic view of the ordered clusters pattern within a plane. Jaggerred perimeters cross at contact points, depicted by red points and representing hedgehogs.

Q=+1 Q=- 1 Fig. 3 . 47 :

 1347 Fig. 3.47: Schematic view of dipoles configurations showing ideal hedgehogs of charges Q = +1 (source-like) and Q = -1 (sink-like).
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 3348 Fig. 3.49 shows the temperature evolution of the density of pairs of hedgehogs n p (averaged over MC sweeps) for PZT, PL 5 ZT, PL 10 ZT, PL 15 ZT and PL 20 ZT. The density of pairs corresponds to the ratio of half of topologically defective cells to the total number of cells 12 3 . The first observation relates to the non-vanishing values of n p for x = 10%, 15% and 10% at low temperatures. The horizontal dashed line indicates the site percolation threshold p c for pairs for Rubik neighborhood, i.e. for a regular lattice with NN+2NN+3NN neighborhood [275]. The rapid increase of n p near T C is clearly seen in the right figure, which shows the temperature dependence of the derivative d n p /dT of the density of pairs. As the lanthanum content is increased, the d n p /dT peak becomes broader. Dotted vertical lines in both left and right figures correspond to the temperature at which the derivative peaks, and are found to be in close vicinity of T C . The remarkable intersection of the p c line with n p at the temperature at which d n p /dT peaks enables the following interpretation.The percolation threshold p c denotes the critical probability above which a cluster spanning through the whole system appears. Thus in the temperature region above p c , the development of long-range order is hindered by percolating clusters of topological defects. On the other

4 LFig. 3 . 49 :

 4349 Fig. 3.49: Temperature evolution of the density of pairs of hedgehogs n p (averaged over MC sweeps) for PZT, PL 5 ZT, PL 10 ZT, PL 15 ZT and PL 20 ZT (left figure). The horizontal dashed line indicates the site percolation threshold p c for pairs for Rubik neighborhood. Right figure shows the temperature dependence of the derivative d n p /dT of the density of pairs. Dotted vertical lines in both left and right figures correspond to the temperature at which the derivative peaks.
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 350 Fig. 3.50: Plot of the logarithm of the defect pair density versus the inverse temperature for PZ 60 T 40 , PL 5 Z 60 T 40 , PL 10 Z 60 T 40 , PL 15 Z 60 T 40 and PL 20 Z 60 T 40 . Dotted lines are linear fits to the data for T < T C . The right figure collects the extracted slopes of the fit, yielding the evolution of the activation energy (arb. units) with the percentage of quenched disorder.

Fig. 3 .

 3 [START_REF] Levanyuk | [END_REF] indicates that the structure of the hedgehogs network is "loose" and that the location of defects varies in the course of calculations. Hedgehogs, or else singular contact points among differently quasi-ordered regions (Figures 3.46 and 3.48), are hence spatially fluctuating entities. Their mobility, indicative of a dynamical nature, dually reflects the fluctuations of boundaries between differently quasi-ordered regions. This observation can be put in correspondence with the breathing model proposed by Glazounov and Tagantsev[79], within which the polarization response of relaxors is ascribed to the vibration of interphase boundaries, rather than to the reorientation of dipole moments.

Fig. 3 .

 3 Fig. 3.51: Supercell snapshots of PL 5 Z 60 T 40 , as obtained for three consecutive MC sweeps at T = 407K. Dark blue cubes are associated to the topologically defective unit cells whose variable location in the supercell over the sweeps is indicative of a dynamical nature.

Fig. 3 . 52 :

 352 Fig. 3.52: Supercell snapshots of PL 5 Z 60 T 40 , as obtained for six consecutive MC sweeps at T = 271K. Pale cubes are associated to the quenched (i.e. lanthanum containing) unit cells and thus display a fixed spatial distribution in the supercell over the sweeps. Red cubes correspond to quenched unit cells which are also topologically defective while dark blue cubes are associated to topologically defective unit cells whose location is different from that of the quenched unit cells. Topological defects are hence hopping dynamical entities, whose location in the supercell is not necessarily in correspondence with that of the quenched cells.

5 Z 40 Fig. 3 . 53 :

 540353 Fig. 3.53: Evolution with temperature of the fraction N QC Q =0 /N QC of quenched cubes QC carrying a non-zero topological charge Q = 0, for PL 5 ZT, PL 10 ZT, PL 15 ZT and PL 20 ZT.

  is defined as the complementary to the density of topological defects, it is merely indicative of the maximal potentially ordered volume. The left panel of Fig.3.54 provides the temperature evolution of the free volume d f.v for different PL x ZT systems. Since d f.v increases with decreasing temperature, this suggests an annihilation mechanism among oppositely charged topologically defective cells. Moreover, a study of the fractal dimension d H was carried out on the basis of the box counting method[277,[START_REF] Mandelbrot | The Fractal Geometry of Nature[END_REF], that defines the Haussdorff dimension as a limitd H = lim ε→∞ LnN ε Ln(1/ε) (3.33)where N ε is the number of boxes needed to cover the free volume and ε is the side length of the box. For "loose" structures, the fractal dimension is different from the topological dimension of the physical space in that it measures the deviation from compactness [279]. The right panel of Fig. 3.54 shows the temperature evolution of the fractal dimension d H of the free volume d f.v . While at high temperatures d H is quasi independent of the lanthanum content with a value revolving around ∼2.6, quenched disorder content discriminates between different low temperature values. For the pure PZT system, the fractal dimension of the free volume reaches the physical dimension 3. Increasing lanthanum content on the other hand depresses d H , it is only of ∼2.82 for PL 20 ZT. These observations clearly indicate that

Fig. 3 .

 3 Fig. 3.54: Temperature evolution of the free volume d f.v (left figure) and of its fractal dimension (right figure) for the pure system PZT and different PL x ZT systems.

Fig. 3 . 55 :

 355 Fig. 3.55: Evolution with temperature of the density of topological defects n . Solid lines correspond to the n = a + n 0 exp[-b/(T -T 0 )] fits, where T 0 are signaled by dotted vertical lines .
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 47 • • to Vogel-Fulcher's kinetics law Consequently, fitting the density of hedgehogs n with n = a + n 0 exp[-b/(T -T 0 )] (3.36) valid for T>T 0 where T 0 <T C (Fig. 3.55) and using the relation of Eq.3.35 leads to the following relation between the relaxation time τ and T τ = τ 0 exp[U/k(T -T 0 )] (3.37)

v 0 = 1 + η 1 η 6 /2 η 5 / 2 η 6 /2 1 + η 2 η 4 / 2 η 5 /2 η 4 / 2 1 + η 3 ( 3 . 38 )

 126125423338 the dipole moments vector field exhibit elastic deformations. Extracting the unit cell volume v/v 0 from the inhomogeneous symmetric strain tensor η (expressed in Voigt notation 11≡1, 22≡2, 33≡3, 23≡4, 13≡5, 12≡6) according to v where v 0 is the reference volume of the cubic unit cell, we compared the average volume of topologically charged (with Q=1 and Q=-1) unit cells to the average volume of the zerocharged unit cells (Q=0). The results, shown in Fig. 3.56, indicate a systematic deviation of the average volume of topologically charged cell from that associated to topological defect-free cells. Interestingly, local structural distortions [82] are reflected in quasielastic diffuse scattering DS appearing below T d in the vicinity of the Bragg reflections [282]. Consequently, the local volume fluctuations subtended by topological defects which are computed from the local modes, can be put in qualitative correspondence with the mixing of polarization and elastic deformation from which diffuse scattering is thought to originate. ************** ********************** *** ** * * ** * ** ***** * ** * ***** ** * * *** ** * * ** ** * *** *** * * * * * * ** *

Fig. 3 .

 3 Fig. 3.56: Evolution with temperature of the average volume of zero-charged unit cells (Q=0) and of topologically defective cells (with Q=1 and Q=-1) for PL 10 ZT.
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 3357358 Figures 3.57 and 3.58 provide the outcome of this comparative study for PZ 60 T 40 and PL 5 Z 60 T 40 on one hand, and PL 10 Z 60 T 40 , PL 15 Z 60 T 40 and PL 20 Z 60 T 40 on the other hand, and show the temperature evolution of the number of clusters and their average volume. Left and right panels of Fig. 3.57 and Fig. 3.58 indicate that the clustering decomposition

Fig. 3 . 59 :

 359 Fig. 3.59: Temperature evolution of the average charge of {|Q| = 1}-obtained clusters for PL 5 Z 60 T 40 , PL 10 Z 60 T 40 , PL 15 Z 60 T 40 and PL 20 Z 60 T 40 systems.

Fig. 3 . 61 :

 361 Fig. 3.61: Temperature evolution of the density of pairs of hedgehogs n p in PL 15 ZT for k=0.01 and k=0.05. Lower panels depict the integral curves of the order parameter field within a (x, y) plane for T=17 K. Squares indicate the spatial distribution of the quenched cells.

  from which it is concluded that different ground states must yield different densities. The first Hohenberg-Kohn theorem 1 thus indicates that there is a unique invertible mapping between the external potential v and the ground state density n(r). This implies that the total energy is a functional of the density, E = E[n]. The universal Hohenberg-Kohn functional F HK [n] given by F HK [n] = ψ[n]| T + Û |ψ[n] (B.10) defines the energy functional E[n] as E[n] = n(r)v(r)dr + F HK [n] (B.11)

E

  LDA xc [n] = n(r) ǫ LDA xc (r) dr ǫ LDA xc (r) = ǫ hom xc [n(r)] (B.21)The quantity ǫ hom xc [n(r)] can be further split into exchange and correlation contributions:ǫ hom xc [n(r)] = ǫ hom x [n(r)] + ǫ hom c [n(r)] (B.22)The exchange part describes the energy lowering due to antisymmetrization (Pauli repulsion)and can be evaluated analytically by the method of Bloch and Dirac, and scales as
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For anisotropic dielectrics, χ as well as ε are tensors and Eq.(1.3) must be written as Di =

j=1 εijEj, i = 1, 2, 3.

As it will appear clearly later, this expression shows strong similitude with the effective Hamiltonian that also corresponds to an expansion in terms of polarization and strain with appropriate coupling terms.

BaTiO3 exhibits on cooling a sequence of three FE phase transitions, cubic to tetragonal to orthorhombic to rhombohedral.

PbTiO3 exhibits a single cubic-to-tetragonal FE transition.

The mean field theory of spin glasses was developed in Sherrington-Kirpatrick model[START_REF] Sherrington | [END_REF], the infiniterange version of the Edwards-Anderson model.

Let's note that Tm of relaxors corresponds to T f of spin glasses, while T f of relaxors corresponds to T0 of spin glasses.

The Burns temperature is not a usual phase transition temperature, rather, it can be associated[5] to the onset of a Griffiths phase[153], i.e., a phase in disordered systems where nonanalytic behavior above the critical point is ascribed to rare spatial regions that are in a different thermodynamic phase (ferro) from the bulk system (para).

The exponential dependence of A( V 2 , D B avg ) on D B avg derives its justification from the exponential variation of the bonding overlap with interatomic distances[132].

Imry and Ma actually extended Peierls proof [119] of the existence of a phase transition in the twodimensional Ising model to the situation with symmetry breaking randomness in RFIM.

This failure often arises from the difficulty encountered when applying formal perturbative methods to random systems, where the procedures of averaging over randomness typically neglect the effects of statistically unlikely regions of the random system; such regions can make essential contributions to physical quantities.

In reality, the local electric fields vary as the inverse of square of the lattice constant. However, the increase at 20 GPa is estimated to be less then 5% in PSN[148].

This assumption is supported by the long range nature of intercluster interactions mediated by the acoustic and optic phonons.

A local order parameter, e.g. magnetization M , is obtained by averaging the local variables mi over the volume.

The Euclidean group is the set of all distance-preserving transformations of the Euclidean space. It is isomorphic to a semidirect product of the T(3) group (which describes translations) and the group SO(3) of orthogonal 3 × 3 matrices (which describes rotations).

The family of transformations U (α) ≡ e iα , where α may assume any real value, constitutes the unitary Abelian group, called U(1). Unitary groups satisfy the condition U † = U -1 and Abelian groups have the property of commutativity under group multiplication U (α1)U (α2) = U (α2)U (α1). One can think of the group U(1) as the unit circle, with the multiplication rule on its points given by addition of angles. Let us note in passing that SO(2) is Abelian and isomorphic to U(1).

Note that in this example we are dealing with internal symmetries, since they do not involve any change in the space coordinate of the fields.

From a geometric point of view, defining the phase of φ(x) locally is equivalent to defining a local frame with respect to which the phase of the field is measured. The gauge group thus defines an internal space, and local invariance is then the statement that the physical properties of the system must be independent of the particular choice of frame[START_REF] Moriyasu | An elementary primer for Gauge Theory[END_REF].

The term covariant refers to covariance with respect to the introduction of the local transformation of equation (2.7), and not to covariant-contravariant indices.

According toRivier and Duffy [194], it is this kind of symmetry one is facing while being lost in a random forest. Every tree is then as good as another to be the reference point.

For instance if the transformation (2.37) is performed only at site i, then Ti = -1 (Ti = +1 otherwise) and Tj = +1 for all j = i, so that (2.38) reduces to (2.37).

Disorder and frustration often go together, but they refer to distinct concepts and neither implies the other. An example of frustration-free disorder has been given in the previous footnote while considering the Mattis model. The counterpart of frustration-free disorder is frustrated order. The most simple minded illustration of this concept is a triangle of Ising spins coupled with antiferromagnetic interactions. In such a case, one can not find a configuration where all interactions are satisfied. Such an ordered system is said to be geometrically frustrated.

For an introductory review on the relation between gauge theories on the lattice and spin systems, one may refer to the monograph of Kogut[201] 

The situation where f = 0 refers to the unfrustrated Mattis model, in which the disorder is trivial or irrelevant.

We say a domain D is simply connected if, whenever C ⊂ D is a simple closed contour, every point in the interior of C lies in D. One can think of a simply-connected domain as one without holes. In contrast, domains with holes are said to be multiply-connected.

Indeed, every linear disclination is characterized by the Frank vector Θi = ǫ ijk Ω jk , where ǫ ijk is the totally antisymmetric third-rank tensor and Ω jk the integral of the spin structure or displacement field along closed contour surrounding the disclination axis. By identifying the rotation matrices field (associated to that of the spin structure) with a SO(3) connection, Katanaev gives the physical interpretation of the curvature tensor as the surface density of the Frank vector Ω ij = dx µ ∧ dx ν R ij µν .

It was firstly observed byAnderson [13] that a second order phase transition is characterized by the breakdown of a generalized rigidity (i.e. the breakdown of the spatially uniform symmetry breaking), with a proliferation of defect structures, thus connecting critical behavior to geometrical properties of defects.

This term is particularly important in ferroelectrics and, for instance, at the origin of the piezoelectric response.

The number of configurations available for a system grows exponentially with its size (This is in relation with the fact that the entropy is an extensive quantity, proportional to the logarithm of the number of configuration).

The index n is often referred to as computer time, not to be mistaken with the Euclidean time of a 4D spacetime[189].

Throughout this chapter, we will be using the following PLxZ60T40 notation for lanthanum modified lead zirconate titanate for convenience.



This is due in part to the fact that the LDA fulfills the sum rule on the exchange-correlation hole, dr ′ nxc(r, r ′ ) = -1, ∀r, which must be obeyed by the real functional, and which describes how an electron at r completely depletes the total density of the other electron at r ′ . This gives rise to error compensation when computing the exchange-correlation energy (typically, the LDA overestimates Ex and underestimates Ec)
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Appendix A

Parallel transport

In order to formulate a gauge theory on a lattice, it is instructive to recall the geometrical role of the potentials A µ (x) in the continuum theory. Since two internal space vector residing at two different space-time locations can not be compared in their natural bases, one needs a definition of what would physically equivalent internal space vectors mean at different spacetime points. This is achieved by the parallel transport or connection; the potentials A µ (x) specify the rotation of the frame in some intrinsic internal symmetry space upon transport between neighboring space-time points x and x + dx [START_REF] Moriyasu | An elementary primer for Gauge Theory[END_REF][START_REF] Creutz | [END_REF].

The general form of a local symmetry transformation for an arbitrary (non-Abelian) group can be expressed as:

The local character of the transformation is indicated by the parameters θ k (x) which are continuous functions of x. The general transformation given by Eq.A.1 is to be identified with the usual form of an ordinary spatial rotation where the position dependent parameter θ k (x) designates rotation angles. The T k are the generators of the internal symmetry group and satisfy the usual commutation relations:

where c ijk are the structure constants of the group (of vanishing values in the case of Abelian groups).

To see how the transformation given by Eq.A. a new internal direction θ k (x + dx). For an infinitesimal distance dx, this change can be described by the effect of the transformation given by Eq.A.1 action on ψ(x) which produces a rotation of the internal direction equal to the difference dθ k = θ k (x + dx) -θ k (x).

In order to interpret the effect of the external potential field (the gauge field) on the particle as a precession of the internal basis, we explicitly decompose the particle's wavefunction ψ(x)

into external and internal parts:

where the {u α } denote the set of basis vectors in the internal space, and the {ψ α (x)} are the components of ψ(x) in the basis {u α }. Under an internal symmetry transformation, the components transform as usually:

where U βα is some matrix representation of the symmetry group. When the particle moves from x to x + dx through the external potential field, ψ(x) changes by an amount dψ given by:

The expansion of dψ to the first order in dx yields:

The second term in Eq.(A.6) contains the change du α in the internal space basis. It is given by the connection and describes the effect of the external potential field on the internal space direction of the particle. In order to access du α , we consider the infinitesimal internal rotation U (dx),

which rotates the internal basis u by an amount du,

The generators T k act as matrix operators on the column basis vectors u α , yielding:

Expanding U (dx) to the first order in dx, we obtain:

from which we infer the infinitesimal change in the internal basis,

The change du α gives the sought connection. We therefore introduce the connection operator:

The total change dψ can thus be finally written as follows:

where δ αβ enables the factoring of the basis vector u β . The change dψ can be expressed in terms of its own external and internal parts, yielding:

where the operator D µ is a generalized form of derivative, referred to as the gauge covariant derivative, already mentioned in a previous section, and describing the changes in both the external and internal parts of ψ(x). From Eq.(A.13), we can explicitly write:

Coming back to the case of the electromagnetic gauge group U(1), the internal space being one-dimensional, Eq.(A.15) reduces to:

From this geometrical derivation [START_REF] Moriyasu | An elementary primer for Gauge Theory[END_REF] of the covariant derivative, one concludes that the vector potential is both an external field and an internal space operator, since it acts as a connection in the internal symmetry space.

Appendix B

Density functional theory

When considering a system consisting of N electrons and M nuclei, a first simplification naturally arises from the large mass difference between electrons and nuclei, enabling the decoupling of their dynamics and degrees of freedom, within the so-called Born-Oppenheimer approximation. This leads to a first reduction of the many-body problem to the study of interacting electrons in a frozen-in configuration of the nuclei whose positions, r α , are regarded as parameters. Within this first approximation, the ground state of N electrons is determined by solving the following Hamiltonian of a stationary many-body system:

The constituent terms are explicitly given as

where latin subindices refer to the electrons whereas Greek subindices refer to the nuclei and where the operators denote the kinetic energy of the electrons, the two-particle Coulomb interaction and the external potential arising from the nuclei, respectively. For all N-electrons systems, T and Û are the same, they are said to be universal, or system-independent, so that the specificity of the system is encapsulated in the external potential v ext . The Hamiltonian Ĥv is thereby denoted with a subindex v indicating that the operator can be regarded as a functional of the external potential. This is in particular the case for the ground state wavefunction |ψ 0 [v] and the ground state energy E 0 [v], which are related by the Schrodinger equation

The ground state |ψ 0 [v] gives rise to a ground state electronic density n(r)

Hohenberg-Kohn theorems

The first Hohenberg-Kohn theorem demonstrates that the density may be used in place of the potential as the fundamental function uniquely characterizing the system, rather than the many electron wavefunction. It may be stated as: the ground-state density n(r) uniquely specifies the potential, to within a constant, and hence the ground state wavefunction, to within a phase factor. This means that the external potential is a well defined functional v[n] of the density. In the original Hohenberg-Kohn paper [221], this theorem is proven by reductio ad absurdum for densities with non-degenerate ground states. Assume that there exist two different external potentials V ext and V ′ ext which both give the same electron density n(r). Then the corresponding Hamiltonians H and H ′ have the same ground state density but different ground state wavefunctions |ψ 0 and |ψ ′ 0 respectively. Using the variational principle, and taking |ψ ′ 0 as a trial function for H yield the strict inequality

Whereas taking |ψ 0 as a trial function for H ′ gives

Adding these two equations results in the contradiction

where T s [n] is the kinetic energy of the auxilliary non interacting N-electron system, and where T c [n] is the remainder. The subscripts s and c stand for single-particle and correlation, respectively. Similarly, the exact Coulomb functional U [n] is written as

where the Hartree term E H [n] describes the electron-electron repulsion and where ∆U [n] is a contribution that accounts for the quantum nature of the interacting electrons. The exact energy functional is then rewritten as:

where the exchange-correlation function E xc [n] corresponds by definition to

and should account for the exchange effects (Pauli repulsion), the correction that compensates the self-interaction term in E H [n] and the correlations effects. The variational equation its Euler-Lagrange form for the exact functional is thus:

where µ is a Lagrange multiplier constraining the number of electrons to N . Kohn and Sham introduced an auxiliary non interacting system S of N particles with the property that it yields the same ground state density as the real interacting system in a given external potential v ext (r). This correspondence implies that the non interacting electrons must be subjected to another external potential v s (r), which must compensate the contributions arising from the electron-electron interactions. For the virtual system S, the variational equation writes: Consequently, one can calculate the density of the interacting (many-body) system in potential v ext (r), described by a many-body Schrodinger equation of the form given by Eq.B.5, by solving the equations of a noninteracting (single-body) system in potential v s (r). In particular, the Schrodinger equation of the auxiliary system