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Context

Le développement de techniques de microscopie quantitatives tridimensionnelles et résolues en temps est fondamental dans de nombreux domaines : dans le secteur biomédical (comptage et suivi de cellules, de globules, ..), en géophysique (turbulence atmosphérique, transport de sédiments,. . . ), dans l'industrie automobile (sprays, injection de carburant, . . . ), dans l'industrie chimique (écoulements multiphasiques réactifs,. . . ) et dans le domaine environnemental (détection de polluant, granulométrie de particules, . . . ). Parmi les techniques existantes, l'holographie numérique en ligne recèle un fort potentiel, en raison de sa relative simplicité de mise en oeuvre, de son caractère tridimensionnel et de sa résolution temporelle. Ce type d'imagerie est parfois appelé imagerie sans lentille et présente l'avantage d'être un système de microscopie bas coût. Elle permet de suivre avec une précision micrométrique des objets en mouvement rapide dans un volume, pouvant atteindre plusieurs centimètres cubes. Cette technique permet également de mesurer la vitesse et la taille de ces objets avec une très grande précision.

Cette thèse financée par le Ministère de l'Enseignement Supérieur et de la Recherche, a été réalisée au sein du Laboratoire Hubert Curien (LaHC), unité mixte du Centre National de la Recherche Scientifique et de l'Université Jean Monnet de Saint-Etienne. L'activité de ce laboratoire est déclinée en deux axes principaux (i) Optique et Photonique et (ii) Informatique Télécom et Image. Au sein de ce dernier axe, les travaux de la thématique "méthodes et techniques de reconstruction d'images" animée par Rolf Clackdoyle portent en particulier sur la reconstruction en tomographie, l'imagerie radar et l'holographie numérique. C'est dans cette thématique que s'inscrit ce travail. L'imagerie pour la métrologie et la visualisation d'écoulement a été une des activités importante du laboratoire Hubert Curien par le biais de nombreuses contributions en vélocimétrie par image de particules (PIV). Au cours de la dernière décennie, sous l'impulsion de Thierry Fournel, quatre thèses (Corinne Fournier (2003), Loïc Denis (2006), Ferréol Soulez (2008) et Jérôme Gire ( 2009)) ont permis de développer une expertise en holographie numérique pour la reconstruction de micro-objets au travers notamment de la collaboration avec le Laboratoire de Mécanique des Fluides et d'Acoustique (LMFA) pour les aspects expérimentaux. Depuis 2005, une collaboration avec Eric Thiébaut du Centre de Recherche d'Astrophysique de Lyon (CRAL) a permis d'appliquer une approche de type ≪ problèmes inverses ≫ , nouvelle dans ce domaine. Ceci a permis à notre équipe d'être l'une des premières ayant publiés des algorithmes de reconstruction de ce type en holographie numérique ([Denis, 2006, Soulez et al., 2007a,b]). Actuellement ces approches (dont font partie les approches : maximum a posteriori estimation, fitting method, compressive sensing holography, . . . ), sont de plus en plus utilisées. En effet, elles se démarquent des approches ≪ optiques ≫ en traitant directement l'hologramme avec un point de vue ≪ traitement du signal ≫ . Elles permettent d'approcher des limites ultimes de précision données par les bornes de Cramer Rao ce qui en fait de très bons outils dans le cadre d'une imagerie quantitative. Cette thèse a permis d'aller plus loin dans ce cadre. Elle s'est attachée à résoudre le problème des temps de calcul inhérent aux approches inverses, par le développement de nouveaux algorithmes basés sur une approche ≪ traitement du signal ≫ , tout en conservant une bonne précision de mesure. Les algorithmes développés ont été testés sur des expériences de mécanique des fluides grâce à la collaboration avec le LMFA. Cependant, il est à noter que les développements proposés peuvent être utilisés pour des applications dans le domaine de l'imagerie biomédicale, du génie des procédés, . . . Une boite à outils Matlab (mise en ligne début 2013) a été développée dans le cadre de cette thèse.

Background

Techniques for fast and 3D quantitative microscopy are of great interest in many fields such as biology (e.g., counting and monitoring blood cells), geophysics (e.g., atmospheric turbulence, sediment transport), the automotive industry (e.g., sprays, fuel injection), the chemical industry (e.g., multiphase reacting flows) and environmental fields (e.g., detection and size measurement of particle pollutants). Among the existing techniques, in-line digital holography has a high potential due to its relative simplicity of implementation, its three-dimensional character and its temporal resolution. This type of imaging is sometimes called lensless imaging and has the advantage of being a low-cost microscopy system. It tracks fast moving objects in a volume of up to several cubic centimeters with micrometric precision. This technique can also measure the speed and size of these objects with great precision.

Funded by the French Ministry of Higher Education and Research, this thesis was conducted in the Hubert Curien laboratory (LAHC), a joint research unit of the National Center for Scientific Research (CNRS) and Jean Monnet University of Saint-Etienne. This laboratory is active in two main areas: (i) optics and photonics and (ii) computer science, electrical engineering and image processing. In the image processing group, the project team of "methods and techniques of image reconstruction" directed by Rolf Clackdoyle is focused in particular on reconstruction tomography, radar imagery and digital holography. This thesis was in the last area. Imaging for metrology and flow visualization has been among the major activities in the Hubert Curien laboratory through many contributions in particle image velocimetry (PIV). During the last decade, four theses (Corinne Fournier (2003), Loïc Denis (2006), Ferréol Soulez (2008) et Jérôme Gire ( 2009)) initiated by Thierry Fournel were conducted to develop an expertise in micro-object reconstruction using digital holography, in collaboration with the Laboratory of Fluid Mechanics and Acoustics of Lyon (LMFA) for experimental aspects.

Since 2005, an "inverse problems" approach has been applied in digital holography at LaHC in collaboration with Eric Thiébaut from Research Center of Lyon for Astrophysics (SARC). Our team is one of the first to apply such reconstruction techniques in digital holography and to publish their findings ([Denis, 2006, Soulez et al., 2007a,b]). Currently these approaches (including maximum a posteriori estimation, model fitting, and compressive sensing holography) are being increasingly used in digital hologra-phy. They stand out against optical reconstruction approaches by treating holograms from a signal processing point of view. It has been shown that by using such techniques theoretical accuracy limits (calculated using Cramer-Rao lower bounds) can be reached. These approaches are therefore interesting in a quantitative imagery context.

This thesis goes further in this context and is concerned with solving the problem of computational costs inherent to the inverse problems approaches and with development of new unsupervised algorithms based on a "signal processing" approach, all while maintaining the accuracy of the reconstruction high. The developed algorithms were tested on fluid mechanics experiments through collaboration with LMFA. It should be noted that the proposed developments can be used for applications in the field of biomedical imaging, process engineering, etc. A free Matlab ® toolbox (which has been released on-line in early 2013) has been developed within the framework of this thesis.

The five chapters of this manuscript report on the achievements of this thesis in the mentioned framework. The first chapter consists of a brief introduction to digital holography, imaging setups, optical reconstruction methods and their drawbacks. The first chapter ends with a brief review of the state of art in signal processing approaches to the reconstruction problem in digital holography.

The second chapter introduces a global framework based on maximum a posteriori estimation and contains two main sections that discuss the general cases of volume reconstruction, and the special cases where the objects have parametric shapes. For the parametric object case, a greedy model-fitting method is introduced that results in faster and more accurate reconstructions compared to the general framework. In this chapter, the Cramer-Rao lower bounds are introduced to measure the reconstruction accuracy in the case of parametric objects. It should be noted that the focus of this thesis is on applications containing spherical objects, although the generalization of the tools to other parametric objects is straightforward.

A major contribution of this thesis is introduced in chapter 3, where a multi-scale framework is proposed to perform the task of volume reconstruction faster using a pyramid of down-sampled holograms of parametric objects. This chapter is based on a recent publication by the author [Seifi et al., 2012b] where it has been shown that the accuracy of reconstruction is the same as the single scale approach but obtained with lower computational costs.

Chapter 4 introduces a second major contribution of this thesis which performs the task of object detection and classification in a more general context than the model fitting approach of chapters 2 and 3. This approach detects the objects using a dictionary of diffraction patterns. It has been shown in this chapter that an efficient object recognition task can be performed in a low dimensional sub-space of the searching dictionary without sacrificing the accuracy of reconstruction. This chapter is based on an article that has been accepted for publication in the journal of Optical Society of America A.

The goal of the fifth chapter is to present the final contribution of this thesis which is the results obtained from the inverse problems approach in an application of digital holography in fluid mechanics. The dynamic phenomenon of fast ether evaporation was studied using digital holographic videos. It was shown in this chapter that by exploiting the signal processing approach, very accurate reconstruction of the evolution of volume and evaporating droplets can be obtained. The size measurement accuracies are comparable to the best works in the state of art. The physical phenomenon of evaporation speed was estimated using these results and this estimation was shown to be within the bounds given by theory. This chapter is based on a recently submitted article to the journal of Optics Express.
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Volume reconstruction using digital holography Résumé L'étude dynamique d'objets distribués dans un volume a de nombreuses applications dans différents domaines tels que la mécanique des fluides (par exemple, étude de la turbulence, l'évaporation des gouttelettes) et la biologie (par exemple, l'étude de la locomotion des micro-organismes). Pour ces applications, il est essentiel d'utiliser des outils d'imagerie pour réaliser un suivi 3D de ces micro-objets et /ou pour observer les changements de leurs formes dans une vidéo. Ces systèmes d'imagerie doivent permettre d'obtenir une grande précision, une bonne résolution temporelle, et être associés à des outils de traitement d'image simples pouvant être utilisés par des non spécialistes. Depuis son développement, holographie numérique en ligne est de plus en plus utilisée comme outils d'analyse d'écoulement 3D en raison de ces avantages. L'objectif de cette thèse est la reconstruction 3D d'objets distribués dans un volume. Nous commenc ¸ons ce chapitre par de brefs rappels concernant l'histoire de l'holographie numérique, ses applications pour le suivi des micro-objets et les différents montages d'holographie numérique. Nous détaillons ensuite le montage en ligne qui a été utilisé pendant cette thèse. Le problème de la reconstruction est ensuite formulé et permet de présenter les notations mathématiques de cette thèse. Nous classons les techniques de reconstruction les plus fréquemment utilisées en deux grandes catégories : celles basées sur une approche calquée sur l'optique et celles basées sur une approche traitement du signal. Pour conclure, nous discutons des avantages et des inconvénients de ces méthodes pour la reconstruction d'hologrammes numériques.

Summary

The study of objects that are distributed in a volume has many applications in different fields of science such as fluid mechanics (e.g., study of turbulence, droplet evaporation) and biology (e.g., study of locomotion of micro-organisms). For these applications it is 1. VOLUME RECONSTRUCTION USING DIGITAL HOLOGRAPHY essential to use imaging tools to track 3D positions of these micro-objects and/or to observe the changes in their shapes using a sequence of measurements. The requirements of such methods are mainly high accuracy, fast imaging techniques, and simplicity of the image processing tools for users. Since its early development, in-line digital holography (DH) has increasingly been used in studies of 3D flows because of its following advantages: high-speed imaging technique, very simple setup, accurate measurements. The focus of this thesis is on 3D reconstruction of objects that are distributed in a volume. We begin this chapter with a brief historical review on digital holography, the applications of digital holography in micro-object tracking and the most salient imaging setups in § 1.1. We detail in § 1.2 the in-line imaging setup that is the focus of this thesis. The volume reconstruction problem is formulated next in § 1.3 which provides the background notation for the rest of this thesis. We classify the most frequently used reconstruction techniques in two main categories of methods driven from optics and signal processing methods in § 1.4 and we discuss the advantages and disadvantages of using such methods in digital hologram reconstruction.

Digital holography : a 3D imaging technique

Digital holography is a 3D imaging technique which is used in several metrological fields. The imaging setup provides enough information to obtain 3D reconstruction of a volume using only one 2D image. On this image the interferences between a reference wave and the diffracted wave by the volume are captured. This imaging technique consists in two main steps: i Recording: During the recording step, the object volume is illuminated by a coherent light source. The diffraction of light caused by the objects interfere on the holographic sensor with a reference beam and the interferences are captured by the sensor. If the sensor is a holographic plate, the method is called optical holography. In optical holography, the holographic plate needs to be chemically processed after being exposed to the optical field to obtain the final hologram. If the sensor is a digital camera, the method is called digital holography. In digital holography, the captured data is sampled, quantized and saved in computer memory, and a 2D representation of the captured data shows the hologram.

ii Reconstruction: The goal of the reconstruction step is to recover the imaged volume from the captured hologram. In the case of optical holography, this reconstruction consists in re-illuminating the hologram with the same reference beam as used in the recording step to visualize the reconstructed object volume (see [Kreis, 2005] for more details on optical holography). In digital holography, several methods of signal processing are applicable to solve the reconstruction problem. The straightforward approach processes the captured data numerically to mimic the reillumination of the hologram (similar to what is done in optical holography). Other

1.1 Digital holography : a 3D imaging technique signal processing approaches extract information directly from the analysis of the signal captured as the hologram.

History 1

In 1948, Denis Gabor invented optical holography as a side kick of his studies on the improvement of electron microscopy and won the Nobel prize of physics for this invention in 1971invention in [Nobelprize.org, 2013]]. The word holography is synthesized from the Greek words 'holos ' and 'graphein' meaning "writing the whole". This technique was not practically used until 1962 after the invention of laser. The so called in-line setup that Gabor proposed (See § 1.1.3 for detail) had the intrinsic problem of overlapping out-of-focus images and in-focus images; a problem which was solved in 1963 by Leith and Upatnieks with the introduction of off-axis setups.

In the beginning of 1990s the first hologram was captured using a CCD camera and was numerically reconstructed. Since then, several applications of holography are introduced naming computer holography and holographic metrology which employs digital holography as a non-invasive measurement tool. The focus of this thesis is on metrological applications of digital holography and the signal processing tools which improve the accuracy of measurements.

Applications of digital holography

Digital holography as a measurement tool was first introduced by [Schnars, 1994] (see [Kreis, 2005]). Soon several application fields started to use digital holography. Two main research fields which employ holography as a measurement tool are biology (e.g., in micro-fluids, cell biology and marine biology [Garcia-Sucerquia et al., 2006], detection and localization of bacteria [Allier et al., 2010], sperm counting applications [Zhang et al., 2011], tracking influenza A viruses [Mudanyali et al., 2013]) and fluid mechanics ( e.g., special issues on holography [Coupland & Lobera, 2008, Hinsch & Herrmann, 2004] and the review of [Katz & Sheng, 2010]). In biology, microorganisms are tracked and studied through time using videos of captured holograms (e.g., [Malkiel et al., 2003]). In other applications cells are tracked using nano-particles as tracers (e.g., [El-Sayed et al., 2005]). In fluid mechanics applications, usually a fluid is seeded by sufficiently small particles and speed and direction of the flow are indirectly measured through the motion of these tracer particles. Some of the examples of active areas are the study of turbulence [Gopalan et al., 2008] and fluid-fluid phase separation [Lamadie et al., 2012]. In some other applications, the goal is to study the optical properties of the particles. Some examples are study of particle interactions at interfaces [Kaz et al., 2012] and study of optical characteristics of particles/droplets [Chareyron et al., 2012, Nguyen et al., 2010].

VOLUME RECONSTRUCTION USING DIGITAL HOLOGRAPHY

In this thesis, we focus on the hologram reconstruction step of the process. Providing accurate reconstructions of digital holograms, fast phenomena in dynamic scenes can be studied through videos of holograms. We show that this problem can be solved employing signal processing approaches. In the next chapters, we present reconstruction results of real object-tracking applications to validate our claim on the issue of accuracy of the signal processing approaches. It should be noted that the applications of surface reconstruction using digital holography is not addressed in this thesis.

Imaging setups

In the alternatively short history of digital holography, several recording setups are proposed for different applications. Some of the most famous setups are as follows (see [Kreis, 2005] for a comprehensive introduction of setups):

1. in-line : In-line setup was the original form of Gabor's proposal. In this setup (see Fig. 1.1), all the parts of the imaging setup (i.e., the laser, optics and the camera) are aligned, and the objects are illuminated by a planar or spherical beam.

Objects are basically either small and opaque, or extended and transparent. The waves diffracted by objects are captured on the sensor. One disadvantage of this method is that there is not much control over the dynamic range of the signal. For small particles, the amplitude of the signal can be very small compared to the intensity of the reference wave which results in low signal-to-noise ratio (SNR i.e., the amplitude of the signal divided by the standard deviation of noise). In other words, there is no way to increase the intensity of object beam and keep the reference beam unchanged. Another disadvantage of this setup is that after reconstruction using light back-propagation methods, an out-of-focus image of the object placed at the opposite side of the sensor (also called the twin image), a zero-frequency term and the real image of the object are superimposed, which make the task of volume segmentation difficult. It should be noted that this artifact is not produced using inverse problems approaches (detailed in Chapter 2) and therefore it does not represent a definitive limitation of in-line setup. One advantage of this setup is that it is very robust to vibrations compared to other setups.

2. Off-axis : In off-axis holography proposed by Leith and Upatnieks, the illuminating beam is split by optical components, one part is redirected to serve as the reference beam, and the other part is redirected to illuminate the object. The angle between the object's wave propagation direction and the reference beam is not the same. If this difference is sufficient, there won't be any overlap between the real image, the zero frequency term and the twin image (see Fig. 1.2) [Kreis, 2005]. The drawbacks of off-axis setup is first that only a fraction of the spacebandwidth product of the sensor is used to reconstruct the 3D image which results in low resolution reconstructions of the imaged volume [Javidi et al., 2005]. In addition, a larger angle between the reference and object beam results in smaller fringes of the carrier wave which are to be sampled by a low resolution sensor. Therefore, a trade-off on angle must be found between reducing the amount of overlap, and keeping the size of fringes reasonable regrading the sensor parameters. The order of magnitude of maximum angle which can be used in an off-axis setup using a CCD camera is 3 • .

3. Phase shifting: Phase-shifting holography requires multiple recordings with phase shifts in the reference beam. The multiple exposures are used to recover the phase which can be used to invert the Fresnel transform and obtain the volume without having the twin-images. Therefore, the advantage of this setup is high SNR. The drawbacks of such a setup is first that since several shots of the scene are required for one reconstruction of the volume, this setup is not useful in the case of moving objects (e.g., study of turbulence in fluid mechanics). In addition, this setup is sensitive to vibrations.

In this thesis, we are mainly interested in object tracking applications of fast phenomena which require high-frame rate holographic videos of volumes that are hardly obtained in a phase-shifting setup. High frame-rate cameras have relatively big pixel size and are not desirable for off-axis setups. Besides, a dynamic scene or an industrial application is best studied using a setup which is not too sensitive to vibrations. Therefore in the rest of this thesis, we use an in-line setup. Most of the methods intro- duced in this thesis can be tailored for other setups with some modifications in image formation model.

In-line digital holography

Digital holography is used in microscopy due to its larger depth of field compared with classical microscopy. To sum up, in-line holography exploits the whole frequency bandwidth of the sensor to encode the depth of objects with high accuracy. Because it does not involve beam splitters, mirrors and lenses, the in-line setup (i.e., the Gabor setup) is less sensitive to vibrations. This imaging technique is also called "lensless imaging" ([Allier et al., 2010, Faulkner & Rodenburg, 2004, Fienup, 2010, Repetto et al., 2004]) as it involves no lens between the object and the sensor. Using a spherical reference beam, this setup can serve as a low cost microscope for specific applications because of the magnification factor that is introduced by the spherical wave (see chapter 2 for more detail). The disadvantage of in-line setups comes from the superimposition of a background offset to the hologram signal, thereby reducing the dynamic range of the signal of interest. Nevertheless in-line digital holography is being increasingly used in metrological applications. The remaining challenge is the improvement of hologram image processing in order to reach the best achievable accuracy with acceptable processing time of reconstructing videos.

As explained in § 1.1.3, in-line setup is the simplest and the least sensitive one to vibrations. This setup consists in a laser source, a recording media and the optical components required for obtaining desired illumination. In this section, we briefly introduce these components and their characteristics. Laser is used in digital holography as a source of powerful coherent light. The most common continuous wave lasers used in digital holography are the red He-Ne laser with the wavelength of 633 nm and the ND:YAG. Among them, ND:YAG lasers are preferred among the practitioners due to the possibility of having pulsed operation in addition to continuous wave operation [Kreis, 2005].

The recording media is expected to be spectrally sensitive to the illuminating laser beam and have linear response to the illumination, have high resolution and generates low noise. In optical holography, the media consists in a glass plate covered by photosensitive chemicals. After being exposed to the laser beam and depending on the technology, some of these plates are required to be chemically processed in wet-lab. The advantage of the holographic plates is their very high resolution (i.e., 1000 lines per millimeter to 10000 lines per millimeter) and big physical dimensions. In digital holography, the holographic plates are replaced by CCD cameras with much lower resolutions ( 75 lines per millimeter) and smaller size. The captured intensity of the complex optical field is saved numerically as 2D images and transfered to computer memory for reconstruction. Despite the resolution limits, digital holography is being more frequently used in metrological applications than the optical alternative setup. The main reason is that cameras can be easily used to obtain high frame-rate videos of a dynamic scene. The possibility of numerically processing the captured data on computers is another reason behind the popularity of digital holography over its optical alternative.

Hologram formation model

To obtain the hologram formation model, the Fresnel-Kirchhoff diffraction formula for light diffraction of open apertures is considered. It is assumed that an open aperture noted as ϑ is being illuminated by a source of coherent light [Kreis, 2005]. Let us consider a sensor placed at distance z from the aperture (see Fig. 1.3) that is several times bigger than the laser wavelength λ i.e., z >> λ 2π . In the Fresnel-Kirchhoff diffrac-
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tion model, we consider the aperture as an infinite number of point sources distributed across the aperture on plane (ζ, η) and producing spherical waves. Representing complex quantities by " ˇ" , the wavefront of a spherical wave Ě at any oblique distance ρ can be written as Ě(ρ) = E e (ι2πρ)/λ ρ .

(1.1)

The diffraction field Ǎ on any (x, y) position on the surface of the sensor located at distance z can be calculated as the summation of all spherical wavelets emitted from all point sources on the sensor plane. With the assumption of having the obliquity factor ≈ 1 (see [Goodman, 2005] for detail)

Ǎ(x, y, z) = 1 ιλ ∞ -∞ ∞ -∞ Ǎre f (ζ, η)T(ζ, η) e (ι2πρ)/λ ρ ∂ζ∂η (1.2)
where Ǎre f (ζ, η) is defined as the complex field amplitude of the reference beam in the aperture plane (i.e., (ζ, η)-plane), T(ζ, η) represents the transmittance of the aperture plane, ι represents the imaginary unit, and the oblique distance ρ is defined as

ρ = (x -ζ) 2 + (y -η) 2 + z 2 (1.3)
Fresnel approximation assumes that the numerical aperture (NA) of this optical system is small compared to the distance (i.e., z 2 >> (ζx) 2 + (ηy) 2 ). Therefore ρ in the denominator of Eq. 1.2 can be approximated by z. It should be noted that the ρ in the exponential can not be approximated by z since it is multiplied by 2π λ in the phase term with λ an order of µm. A more precise approximation of ρ for the exponential can be found according to the binomial expansion:

ρ ≈ z 1 + 1 2 x -ζ z 2 + 1 2 y -η z 2 (1.4) which results in the Fresnel diffraction formula Ǎz (x, y) = e 2πιz λ ιλz ∞ -∞ ∞ -∞ Ǎre f (ζ, η)T(ζ, η)e ιπ λz [(x-ζ) 2 +(y-η) 2 ] ∂ζ∂η (1.5)
This formulation of the diffraction field is a convolution:

Ǎz (x, y) = Ǎre f T * ȟz (x, y) (1.6)
where * represents the 2D convolution operator and ȟz is the impulse response (or the point spread function PSF) of free-space propagation called Fresnel Function (Appendix A details some important properties of the Fresnel function) : The above problem formulation contains a chirp function. Chirp functions are also well-known in remote sensing like Radar and Sonar imaging that are based on wave propagation. In this context, the Fresnel function is a chirp function, with a frequency that increases linearly with the distance to the center of the chirp.

In addition, the term e 2πιz λ which introduces a shift proportional to z in the phase, is usually omitted in literature by considering the origin of the phase on the sensor. In the rest of this thesis, the Fresnel function is defined as ȟz (x, y) := 1 ιλz e ιπ λz (x 2 +y 2 ) (1.8) Fig. 1.4 shows the real and imaginary part of the complex Fresnel function for z = 0.5 m. The convolution form of Eq. 1.6 can be performed in Fourier domain as

Ǎz (x, y) = F -1 F( Ǎre f T) • hz (x, y) (1.9)
where F represents the Fourier operator, F -1 is the inverse Fourier transform, " • " represents multiplication and hz represents the transfer function of free-space propagation in Fresnel approximation as

1. VOLUME RECONSTRUCTION USING DIGITAL HOLOGRAPHY hz (ν, µ) = e ιπλz(ν 2 +µ 2 )
where (ν, µ) represent horizontal and vertical frequency coordinates.

In presence of objects with opaque apertures, the deduced diffraction formulas can be used to obtain the complex wave on the sensor consisting in the diffraction wave of the transmittance of the illuminated volume. In this case, the transmittance of every parallel plane to the sensor is considered to be zero on the surface of an object which is sliced by that plane, and one elsewhere. More precisely, considering an object with an aperture ϑ n placed at (x n , y n , z n ), the transmittance T in Eq. 1.6 is defined as 1ϑ n . The complex amplitude of the signal arriving on every (x, y) pixel of the camera Ǎholo (x, y) can be written as

Ǎholo (x, y) = Ǎz n re f .(1 -ϑ n ) * ȟz n (x, y) (1.10) = Ǎre f (x, y) f ootnote 1 -               Ǎre f (x n , y n ) f ootnote 2 .ϑ n               * ȟz n (x, y) (1.11)
The captured intensity on sensor I holo (x, y) is calculated as

I holo (x, y) = Ǎholo (x, y) 2 = I re f (x, y) -Ǎre f (x, y). Ǎ * re f (x n , y n ).ϑ n * ȟ * z n (x, y) - Ǎ * re f (x, y). Ǎre f (x n , y n ).ϑ n * ȟz n (x, y) + β(x, y) (1.12)
In this formulation β refers to the second order term of object wave which can be considered to be negligible for small particles r 2 n << λz n . Under this assumption, Eq. 1.12 is simplified to

I holo (x, y) ≈ I re f (x, y) -2ℜ Ǎ * re f (x, y). Ǎre f (x n , y n ).ϑ n * ȟz n (x, y) (1.13)
In the case of planar reference beam, the phase of Ǎre f (x, y) is constant and can be considered as 0 on the hologram plane. We investigate the case of diverging spherical laser beam in detail in Appendix D. The result of such study indicates that the phase of the reference wave in the case of spherical reference wave (that is produced by a 1 The phase of reference beam is assumed to be zero on hologram plane. 2 Considering the origin of the phase of reference beam as zero on hologram plane, the phase of reference beam on object plane has a phase of e 2πι(-z) λ which is canceled out by e 2πιz λ through the first definition of the Fresnel function Eq. 1.7.

Hologram formation model

point source at distance z s ) is not uniform and the PSF is not shift-invariant anymore. However, In literature such illuminating wave is commonly considered as a planar wave changing the Fresnel function's depth parameter z e = mz n where m = z s z s -z n is called the magnification of the system. Deducing a closer shift-invariant approximation of the shift-variant PSF is an open question. The object aperture is defined with the new parameter set θ e = mθ n .

As a result of the above discussion, the phase of the reference beam can be considered as uniform across the aperture of an object (i.e., Ǎre f (x n , y n ) = I re f (x e , y e )) which results in the following approximation of I holo (x, y)

I holo (x, y) = I re f (x, y) -2 I re f (x, y) I re f (x e , y e ). ℜ(ϑ e * ȟz e ) (x, y) (1.14)
To generalize the hologram formation model (Eq. 1.14) of one object to the case of the captured diffraction patterns of several objects on the sensor, Eq. 1.10 can be formulated as

Ǎholo (x, y) =         Ǎre f .(1 - t j=1 ϑ j * ȟz j )         (x, y) = Ǎre f (x, y)- t j=1
Ǎre f (x j , y j ).ϑ j * ȟz j (x, y) (1.15) which consequently results in the captured intensity of I holo (x, y) as

I holo (x, y) = I re f (x, y) - t j=1 2 I re f (x, y) I re f (x j , y j ). ℜ(ϑ j * ȟz j ) (x, y) + β ′ (x, y) = I re f (x, y) -I re f (x, y) t j=1 α j . ℜ(ϑ j * ȟz j ) (x, y) + β ′ (x, y) (1.16)
In this formulation α j = 2 I re f (x j , y j ) is a proportionality factor and β ′ represents all the second orders terms consisting in the inter-and intra object second order terms. According to the Royer criterion, the rate of total surface of objects over the surface of the sensor should be kept as small as 1% in a digital holographic setup to obtain good quality holograms [Royer, 1974]; the fact which is exploited to remove β ′ from consideration.

All we have mentioned until here is in continuous form. To address the reconstruction as an inversion problem, we write the image formation formula of Eq. 1.16 in discrete form (which is the actual form of the captured signal) using matrix notation that is borrowed from linear algebra

i = i 0 -diag(i 0 √
)Hϑ (1.17) where 1. VOLUME RECONSTRUCTION USING DIGITAL HOLOGRAPHY 1. i ∈ R N is the vectorized form of I holo (x, y) and represents the captured hologram, 2. i 0 ∈ R N stands for the background intensity I re f (x, y) in vector notation, 3. diag(t) creates the diagonal matrix T ∈ R N×N from the elements of vector t ∈ R N , 4. i 0 √ contains the square root of the elements of i 0 , 5. H ∈ C N×∞ in Eq. 1.17 represents a linear transformation of the convolution with the Fresnel functions including all the x-y translated versions of the Fresnel functions. In other words, each column j of matrix H corresponds to the Fresnel function with depth variable of z j that is translated to the position (x j , y j ) and slices one of the objects. When applied to a complex-valued vector, this matrix extracts the real part of the convolution with the Fresnel functions.

6. ϑ ∈ C ∞ represents the collection of the object apertures multiplied by the corresponding α values. ϑ can be either real (e.g., opaque objects or empty objects like bubbles) or complex (e.g., biological cells with refractive indexes bigger than the containing flow). Big differences between the object refractive index and the containing flow introduces a shift in the phase of diffraction wave which should be taken into account in the image formation model.

It should be noted that several assumptions have been made to deduce the linear image formation model of the hologram as in Eq. 1.17. The first assumption considers recording parameters which satisfy the Fresnel approximation. Second, we assume that the Royer criterion is satisfied: the total area of mapped objects' surfaces is less than 1% of the sensor area. Such a condition on the object field gives reasonable arguments for the third assumption of ignoring the second order terms β in Eq. 1.12. In addition, the Royer criterion can imply that the incident reference beam across the aperture of each object can be assumed as uniform. This assumption results in the simplification of image formation model as in Eq. 1.17. Finally, it shall be mentioned that the discrete form of the signal takes into account the sampling performed by the sensor, but the pixel quantization that is also performed by the sensor is not considered in this formulation and can be addressed in future work.

Hologram reconstruction

Hologram reconstruction aims at obtaining the imaged volume from the recorded intensities on the hologram. The main categories of approaches that are used in literature for this task are (i) optics-based approaches, including light back-propagation methods, which use Fresnel diffraction formula to reconstruct an optical field, and then aim to extract the objects' information from the reconstructed optical field (i.e., using segmentation in light back-propagation methods), (ii) non-conventional methods which employ signal processing tools to obtain the objects' information directly from This image is taken from [Cheong et al., 2010] the hologram and not from the reconstructed optical field. Most of these approaches basically try to maximize the likelihood of data with respect to a certain "holographic model" . The approaches which belong to this category use different terminologies based on the goals of the application and the signal processing tools they employ.

To obtain accurate reconstruction of a hologram, it is mandatory to remove the terms that don't depend on the object patterns (also called the background) from the hologram. In § 1.4.1, we propose a background removal method that aims to prevent the effect of non-uniform background from degrading the holographic patterns of objects. In § 1.4.2, we introduce the first category of optical reconstruction methods i.e., the light back-propagation methods. In § 1.4.3 we introduce two main categories of non-conventional hologram reconstruction methods. First we briefly introduce the approaches that aim to do the task of object detection and parameter extraction from a transformation field of the captured hologram (Wigner transformation-based methods and wavelet-based methods). We then move on to the statistical signal processing tools as the second and main category of non-conventional methods, we introduce the main approaches in this category and specify the category of methods which is the main focus of this thesis. To remove the terms in Eq. 1.17 which don't depend on the object patterns (e.g., the background i 0 ), a background image is usually calculated either by taking an image of an empty volume, or recording a video of holograms and calculating the mean image of this video. Common background removal methods then either subtract the calculated background image from the hologram, or divide every hologram by the mean image. To more efficiently remove the effect of background, we consider the effect of i 0 in Eq. 1.16. This term appears as an incoherent superposition term and its square root appears as a multiplicative factor. To effectively remove this term, we propose to perform an element-wise subtraction of i 0 k from i k and then an element-wise division of the result by i 0 k :

i c k = i k -i 0 k i 0 k = -Hϑ k (1.18)
To avoid mathematical complications through the rest of this chapter, we reformulate our problem to consider zero-mean hologram and diffraction patterns. In practice, the intensity of laser beam is high to obtain good contrast of fringes which can result in saturation of some pixels of the sensor. To remove some part of the signal from consideration, we introduce a weighting mask W (e.g., an exclusion mask) and we formulate the zero-mean hologram with respect to the weighting mask as

¯ic = -Hϑ (1.19) where ¯ic = i c -1, I c W (1.

20) and h

j = h j -1, h j W
(1.21) where all the elements of 1 ∈ R N are equal to "one". The W-scalar product of two vectors u, v W is defined as

u, v W = u t Wv 1 t W1 (1.22) ( = l m w(l, m)u(l, m)v(l, m) l m w(l, m) for a diagonal W: W= diag(w)) (1.23)
and the W-norm u 2 W as

u 2 W = u, u W = u t Wu 1 t W1 (1.24) ( = l m w(l, m)u 2 (l, m) l m w(l, m)
for a diagonal W: W= diag(w)).

(1.25) In practice, captured data on the hologram contain noise. We only consider the additive noise in our formulation. The captured data on sensor in presence of additive noise ǫ can be finally formulated as d = -Hϑ + ǫ

(1.26)

Light back-propagation reconstruction approaches

Reconstruction of a hologram recorded on a holographic plate corresponds to reilluminating the hologram by the same reference beam that is used in the recording step. Then the optical field is probed to find the in-focus plane of the objects. Similarly, several researchers obtain the reconstruction of a digital hologram simulating the re-illumination of the hologram by a reference beam. The simulation of the reillumination of the hologram consist in calculating the diffraction of the hologram and corresponds to convolving the digital hologram with a sequence of Fresnel functions dependent on the objects' depth position (z j ). Fig. 1.5 shows the optical field reconstructed by the light back-propagation method. Defining the direction of propagation during the recording step as positive and considering the hologram to be at z = 0, the light back-propagation corresponds to refocusing the propagated diffraction patterns to the object planes with negative depth value (see Fig. 1.6). It shall be noted that capturing only the intensity of the diffraction wave results in the loss of phase (and therefore the direction of propagation) i.e., the hologram reconstruction can be either performed convolving by Fresnel function with -z j or z j (see Fig. 1.6). The definition of the positive sign for propagation and negative sign for back-propagation is only used to present the concept of back-propagation. The dictionary of Eq. 1.27 is calculated from the corresponding three Fresnel functions and their N lateral translations. This dictionary is used in the matrix notation to replace the corresponding convolution formula.

Hologram reconstruction

As mentioned above, hologram reconstruction corresponds to employing the Fresnel functions with a set of depth parameters (to see the validation of using the positive z to cancel the propagation effect, we refer to the properties of Fresnel function detailed in Appendix A). Considering the fact that the object depths are not usually known before doing the reconstruction and the goal of the whole recording process is to estimate the objects parameters after the reconstruction, the researchers (who use the light back-propagation method) use a pipeline of tasks to obtain the reconstructed volume. This image processing pipeline consists in 6 steps which are presented from a signal processing point of view in the following: i first, the opacity of the object volume is sampled in voxels (these voxels can be defined to have any shapes and arrangements, however they are commonly defined as cubic creating "thick" parallel planes to the sensor for sakes of simplicity). This sampled volume is represented in vector form as ť ∈ C NN z where N corresponds to the lateral samples of the planes and is usually taken equal to the number of pixels of sensor for simplicity. In this formulation, N z corresponds to the number of depth samples (i.e., number of planes). Non-zero values of this vector correspond to the voxels which represent a part of the volume that is fully or partially occupied by objects and zero values correspond to empty voxels. This vector can be seen as a collection of 2D images at different depth distances from the sensor. The goal of the reconstruction is to obtain ť from data. Fig. 1.7 shows the sampling of the volume in three planes of voxels parallel to the sensor.

ii The second step consists in forming a discrete complex-valued dictionary Ȟs ∈ C N×N.N z which contains the zero-mean sampled complex-valued Fresnel functions corresponding to the elements of ť. In this arrangement, the direct problem of Eq. 1.26 can be formulated as d = -ℜ Ȟs ť + ǫ, .

(1.27) with ǫ representing additive noise. The parameters of these Fresnel functions are the 3D position (i.e., (x j , y j , z j )) of the voxels in the volume. Zero values of ť discard the contribution of the corresponding part of the Fresnel dictionary (i.e., Ȟs ) to data d. Fig. 1.7 shows the formation of the dictionary from three geometrically centered Fresnel functions. The convolution form is changed into matrix notation considering all N lateral translations of the centered Fresnel functions.

iii Considering the properties of Fresnel function (see in Appendix A. Eq. 5.4 and Eq. 5.5), the back-projection operator (similar to the back-projection operator in computed tomography) is calculated as the conjugate transpose of the dictionary ( Ȟt s ) and contains the Fresnel functions with parameters (x j , y j , -z j ). This change of parameters simulate the back-propagation of light to refocus the light field at the objects positions as

1. VOLUME RECONSTRUCTION USING DIGITAL HOLOGRAPHY v = Ȟt s d (1.28)
In this formulation, v ∈ C N.N z corresponds to the reconstructed complex-valued optical field of the volume. Fig. 1.8 and Fig. 1.9 show two holograms and the real part of their reconstruction using the light back-propagation approach. In Fig. 1.8b the in-focus plane of the reticle is shown.Fig. 1.9-b shows the real part of the reconstruction with some of the droplets placed at the reconstructed depth which are marked in red. It shall be noted that the back-projection operator is not the inverse operator of the real part of the Fresnel function. If an infinite sensor had captured the complex wave without quantization of the values, the back-projection operator could have been used to invert the Frensel diffraction. The artifacts that are visible in these figures, illustrate the discrepancies between the back-projection operator and a true inversion operator.

iv v is segmented to find the voxels corresponding to the objects. To segment this optical field, several approaches are introduced in literature some examples of which are methods based on the real part [Malek et al., 2004, Murata, 2000] or imaginary part [Pan & Meng, 2003] of v or integrated amplitude modulus [Dubois et al., 2006]). There are also works which have used statistical approaches based on joint probability distribution of magnitude and phase information [Moon et al., 2009].

v After the segmentation step, the found objects should be recognized from a predefined set of object shapes/classes. Apart from the methods counting on humaninteraction for object classification, some works have been done to automatically find the object shape/class using for example statistical approaches based on Gabor wavelet transformation [Moon et al., 2009]. The objects parameters (in the case of parametric objects) are estimated from the segmented volume (e.g., for spherical objects, their 3D position and their radii are estimated). The information about objects' position (and possibly shape/class) can be used next to reconstruct the 3D volume of objects for every hologram. Using a video of holograms, the evolution of objects shape and position can be tracked in 3D + dimensions (i.e., 3D positions and more considering the evolution of object shape parameters).

The mentioned light back-propagation method is the most commonly and intuitively used approach in the literature. We shall mention that in literature, the light back-propagation corresponds simply to a sequence of convolutions with Fresnel functions of varying depth values to obtain the sampled optical field i.e., the first three steps of the method introduced above are synthesized by the author to introduce a coherent signal processing framework to address several drawbacks that are associated with this approach. In the next section, we give a brief insight into the produced artifacts by light back-propagation method. A comprehensive study of this method and its drawbacks has been previously done [Fournier et al., 2011, Gire et al., 2008]. Advantages and disadvantages of the classical approach

Although the light back-propagation approach (also called in this thesis as the classical approach) is fast, it has several intrinsic artifacts which degrade the signal, and result in (i) reduced accuracy close to the sensor borders, (ii) presence of out-of-focus images of other objects.

The first issue arises due to signal truncation,so that the reconstructed field around the borders of images is of low quality which result in less accurate object parameter estimation (see an example in Fig. 1.8-b).

The second issue which is the main drawback of the in-line setup, corresponds to the twin images (out-of-focus patterns) that degrade the in-focus signal (see an example in Fig. 1.9-b).

The third artifact that degrades the signal severely happens for overlapping patterns of objects placed at different depths but similar lateral positions. The out-of-focus patterns of those objects are present on the in-focus image of each of them which can result in faulty segmentation of the reconstructed volume. For an example, consider the hologram of Fig. 1.10 simulated to contain digits placed at different depth positions. Fig. 1.11 shows the reconstructed in-focus images of all the particles. As visible in this figure, the out-of-focus image of overlapping patterns (i.e., patterns of digits "8" and "6") degrade the reconstructed object field (for pattern "1") which makes the task of segmentation and object recognition sensitive to noise variations.

To give an intuition about these artifacts, we recall the properties of the Fresnel function. Using the light back-propagation method, we are trying to refocus (or "inverse filter") the captured data using a dictionary of Fresnel functions (note that this task is not exactly inverse filtering due to the fact that the complex filtered wave is not captured by the sensor, and the light back-propagation can not invert the effect of filtering with Fresnel function ). This dictionary contains the Fresnel functions of the forward model with negative depth i.e., ȟ * z = ȟ-z (see Appendix A for proofs). In that sense, applying the back-projection operator on the captured hologram is equivalent to calculating a stack of back-propagated data for different depth values, i.e., for a back-propagated image at z i , the pattern of the jth object, which is placed at z j , is back propagated to a plane at z i . It is shown in Appendix B that this back propagation results, for each of the patterns, in a hologram of the object as if the sensor was placed at z jz i , plus the far-propagated patterns as if the sensor was placed at z j + z i . In the in-focus plane (i.e., z i = z j ) of each object, the aperture of the object is retrieved in addition to the twin image at 2z i and the out-of-focus patterns of all the other objects (i.e., ∀k i) with the propagation depth of z kz i . Fig. 1.6 shows the concept of propagation and back-propagation in an in-line setup. The out-of-focus images are produced for back-propagation with z i z j . The twin image of in-focus image is produced at 2z j .
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Instantaneous frequency wigner distribution

The last challenge of the classical reconstruction is associated with the sampling of the depth parameter. A good choice of sampling is always tailored in an ad hoc manner for every application which increases the effect of human interaction factor in the reconstruction. This section aims to introduce those approaches to digital hologram reconstruction which employ signal processing tools to obtain the information of the imaged volume directly from the hologram without the need to calculate the optical field. The common assumption of these approaches is that the hologram formation model can be approximated as a linear superposition of the object holographic signatures (i.e., the interferences between objects waves are assumed to be negligible). Two main categories of approaches can be found in literature, (i) methods which calculate a transformation of the hologram and try to estimate the object parameters in such transformed spaces (e.g., Wigner transform, Fresnelets), (ii) methods which use statistical signal processing tools to reconstruct the hologram solving an ill-posed inversion problem.

In the next section, we present two most salient methods of the first category, based on Wigner transform and Fresnelets which estimate the objects' position in a transformed search space.

Object detection in a transformed space: analysis methods

To obtain the imaged object volume, a set of approaches are introduced in the literature which perform a transformation of the captured hologram, and aim to estimate the object properties in such search spaces. The two most famous approaches of this category can be named as (i) the approaches based on the Wigner transform and (ii) the approaches based on wavelet theory.

The first group of approaches in this category employ Wigner transform of the hologram, a transformation based on discrete Fourier transform of the captured hologram. Wigner transform represents the space-frequency information of the signal and is shown to be useful in particle holography applications [Moon et al., 2009, Oh & Barbastathis, 2009, Onural & Özgen, 1992, Widjaja & Chuamchaitrakool, 2013]. Considering the fact that the 2D Wigner transform of a 2D signal is represented in a 4D space-frequency space, usually the columns of the hologram are treated as a set of 1D signals which result in a set of 2D Wigner transforms. This method considers a linear image formation model. Considering the fact that the Wigner transform of a complex chirp is a line with the slope being proportional only to the laser wavelength and z, the Wigner transform of an intensity hologram consists in a number of cross-shaped patterns, due to the fact that only the real part of the impulse response is present. The center of each cross corresponds to the lateral position of the particle (centered on that column) and the slope of the lines is inversely proportional to the depth position of the object (see Fig. 1.12 for the Wigner transform of a column of a real hologram). For every column of the hologram, the task of object location is therefore reduced to (i) finding the cross intersection with the temporal axis to find lateral position of the objects , (ii) line fitting to obtain the depth position of objects.

In practice however, this relatively expensive approach is limited because this approach processes the columns of the hologram independently. Therefore (i) the accu-1.4 Hologram reconstruction racy of line fitting for objects placed close to each other (degraded by the second order term signal) is low, (ii) the accuracy of lateral position for big objects which produce thick crosses is low. This approach doesn't result in accurate object size estimates, either.

The second salient approach of this group employs the wavelet theory to define a discrete wavelet basis tuned for Fresnel holography [Liebling et al., 2003a,b]. This approach defines the Fresnelets in a multi-resolution framework (see Fig. 1.13). The hologram reconstruction is reduced to calculate the transformation field, and do the segmentation and object parameter estimation the same way as in the light backpropagation methods. Although fast, object estimation has an accuracy of an order of magnitude of sensor pixel size.

In the next section, we introduce the methods based on statistical signal processing which try to deal with the problem of hologram reconstruction from another point of view; In these methods, hologram reconstruction is seen as solving an ill-posed inversion problem and the goal of most of these approaches is to increase the accuracy of reconstruction.

The category of inverse problems approaches

The hologram reconstruction can be considered as an inversion problem. Considering the hologram as a linear combination of independent patterns, this inversion problem is linear. It has been well established in literature that this inversion problem is though severely ill-posed and obtaining a stable solution requires extensive care (see chapter 2 for detail).

Using the hologram, the goal of solving the inversion problem would be to find a set of weighted object signatures which results in the "closest fit" to data. The term "closest fit" is defined in different approaches based on assumptions on the object field and the statistical noise model. The state of art methods can be categorized based on the characteristics of the problems, namely (i) the estimation method used to solve the problem (e.g., maximum likelihood estimation (MLE), maximum a posteriori probability maximization (MAP) ), (ii) assumptions on the noise statistics (e.g., white and Gaussian or Poisson distribution noise), (iii) linear or non-linear model of data, (iv) parametric or non-parametric model of data,

The first criterion distinguishes the approaches based on the estimation problem they aim to solve (e.g., maximize the likelihood of data with respect to a model in presence of certain distribution of noise, or maximizing the a posteriori probability enforcing the a priori knowledge on the object field in a Bayesian framework). The second criterion separates approaches based on their assumption on noise distribution. The third criterion considers the linearity of data with respect to the model. This model can be parametric depending on the object field's properties. According to these criteria, the state of art methods are categorized in table 1.1.

According to this table, the MAP approach is the most frequently used frame- L : linear, NL: non-linear, TV : total variation method, ℓ 1 : ℓ 1 -norm penalty on the reconstructed object field,ℓ 2 : ℓ 2 -norm penalty on Laplacian of the reconstructed object field, roughness : roughness penalty that discourages edges in the reconstructed field, Corr : correlation, Mie: Lorenz-Mie scattering theory, Thomson : Thomson model of diffraction by opaque and transparent objects [Thompson, 1964], tMatrix: t-Matrix approach in low-energy-electron diffraction [Mishchenko et al., 1996]. Since the noise model is not always explicitly mentioned, the estimation algorithm is interrogated to obtain the underlying assumption on the noise characteristics of the problem. This assumption is mentioned in the table as "assumed" . In addition, the approaches that are used in our team is named after the laboratory as "LaHC" Fournier et al. 
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work found in the literature. [Choi et al., 2010, Denis et al., 2009, Lam et al., 2009] consider a linear non-parametric model of data and force a priori knowledge in the objective function to get a stable solution of the ill-posed inverse problem. They all consider the noise as white and Gaussian. [Zhang & Lam, 2010, Zhang et al., 2008] consider the same problem formulation without explicitly mentioning the noise statistics. [Bourquard et al., 2013] uses the framework of MAP approach, too, considering the noise as white and Gaussian. However, the model is non-linear and non-parametric. These approaches are general (in terms of target applications they can solve) with the drawback of huge computational costs.

Another work in the category of MAP approaches is [Sotthivirat & Fessler, 2004] which employs penalized likelihood estimation and puts a roughness prior on the object field to get a stable solution. The noise model is Poisson in this work. Their model is non-linear and non-parametric.

The maximum likelihood estimation (MLE) is the second most frequently used method in digital holography. All the approaches that use MLE assume the noise as white and Gaussian. Their model is non-linear and parametric and the problem is seen as a model fitting problem. For few parametric objects, greedy methods are introduced in [Fournier et al., 2011, Gire et al., 2008, Seifi et al., 2012b, Soulez et al., 2007a,b] that obtain the reconstruction faster and more accurately compared to the MAP solutions. They all use the Thomson model of light diffraction by opaque and transparent objects [Thompson, 1964]. Other model fitting approaches [Cheong et al., 2010, Fung et al., 2011, Lee et al., 2007] employ non-linear least squares fitting algorithms (e.g., Levenberg-Marquardt) to solve their non-linear parametric models. Among them, [Cheong et al., 2010, Lee et al., 2007] use the Lorenz-Mie theory to obtain their model, whereas [Fung et al., 2011] uses t-Matrix model [Mishchenko et al., 1996] as their model. Their assumption is having a volume of parametric objects. Although the parameter estimation is accurate, the user has to provide an initial guess of the parameters. Occasionally this initial guess is provided by classical reconstruction. Even so, these approaches lack the advantage that the MLE-based greedy algorithm has regarding a cleaning step to remove the signature of the found objects from the hologram. This cleaning step reduces the correlated noise of other patterns which results in more accurate estimation of the parameters.

A category of hologram processing approaches works in the framework of compressive sensing, to design a sampling scheme. These methods employ the a priori knowledge of field sparsity and solve the problem using the MAP approach. It should be however noted that the goal of these methods is not to achieve high accuracy of reconstruction, rather they aim to obtain a low-cost measurement scheme that provides acceptable reconstruction accuracy.

The main focus of this thesis will be on the maximum likelihood estimation approach due to the applications of parametric objects we address (e.g., study of evaporation -see Chapter 5). We assume the noise as white and Gaussian (and we give enough evidence for such an assumption in next chapter) and use a greedy approach to 1. VOLUME RECONSTRUCTION USING DIGITAL HOLOGRAPHY perform the task of data fitting and parameter estimation fast and accurately.

2

Inverse problems approaches to digital hologram reconstruction Résumé La raison de l'utilisation de l'holographie numérique comme technique d'imagerie est sa capacité à enregistrer l'évolution d'objets distribués dans un volume dans des vidéos d'hologrammes. Le traitement de ces vidéos permet d'obtenir l'évolution dynamique de la scène 3D dans le temps. Dans ce chapitre, nous formulons d'abord le problème de la reconstruction d'hologramme dans le cadre général d'une approche "problèmes inverses". Nous étudions les caractéristiques du bruit de notre problème et montrons que le bruit peut être considéré comme blanc et gaussien dans les applications que nous visons. Nous présentons le cas général de reconstruction d'un hologramme numérique. Ensuite, nous considérons que le volume contient des objets paramétriques (pouvant être décrit par quelques paramètres). Nous montrons que le modèle de diffraction est alors paramétrique et que le problème peut être réduit à une estimation des paramètres (ajustement du modèle). Les particules sphériques font partie des types d'objets les plus simples avec le plus faible nombre de paramètres de forme (i.e., un seul paramètre de forme : le rayon). Ces objets peuvent être des gouttelettes, des bulles ou des traceurs et sont très utilisés dans nombreux domaines d'application. Pour les volumes comprenant peu d'objets, le problème est formulé sous forme d'une combinaison linéaire de modèles paramétriques non linéaires, et l'objectif est réduit à estimer les paramètres de chaque objet. Pour atteindre ce but un algorithme glouton est utilisé. Il permet d'estimer le maximum de vraisemblance entre les données mesurées et les hologrammes simulés à partir des objets reconstruits. Dans cette thèse, nous considérons l'exemple d'objets sphériques pour illustrer les avantages et les inconvénients des méthodes proposées. Nous montrons aussi que, dans ce cas, les bornes de Cramer-Rao sur la précision des paramètres estimés peuvent être exprimées sous formes analytiques. Elles sont alors utiles comme outil théorique pour quantifier la précision de la reconstruction.

INVERSE PROBLEMS APPROACHES TO DIGITAL HOLOGRAM RECONSTRUCTION

Summary

The reason behind using digital holography as the imaging technique is its capability to record the volume evolution through high frame-rate videos of holograms. These videos are processed to obtain the evolution of the 3D dynamic scene through time.

In this chapter, we first formulate the hologram reconstruction problem in a general framework of "inverse problems" in § 2.1. We study the noise characteristics of our problem in § 2.2 and we show that noise can be considered as white and Gaussian in the applications we address. We introduce in § 2.3 the general case of digital hologram reconstruction. Next we consider the volume that contain few objects with parametric shapes in § 2.4. We show that the diffraction pattern model is then parametric and the problem can be reduced to a parameter estimation (model fitting) problem. Spherical particles are the simplest object types with the lowest number of shape parameters (i.e., radius as the only shape parameter). These objects can be droplets, bubbles or tracers and are used a many application fields. We consider the example of spherical objects in this thesis to illustrate the advantages and disadvantages of the theories and proposed methods. We also show that in such cases the Cramer-Rao lower bounds on the accuracy of estimated parameters are found in closed form which serve as a theoretical tool in quantifying the reconstruction accuracy.

A brief overview on inverse problems formulation of reconstruction in digital holography

In this section, we introduce the general problem formulation of hologram reconstruction as an inversion problem. In Gabor holography, occupied volume by objects should be kept negligible to obtain a good quality hologram. Royer [Royer, 1974] puts an experimentally found upper bound on the rate of projected surface of objects over the sensor size as 1%. Under this assumption, the volume of interest is considered to be sparse (which implies that the second order terms of the image formation model can be ignored). This assumption implies that the reference wave illuminating the objects placed farther from the laser source can be assumed to be the same as the reference wave illuminating the closer objects to the laser source i.e., diffraction of farther objects doesn't dramatically change the illumination wave of the closer objects to sensor. Under such assumptions, the hologram is assumed to be formed as a linear superposition of object signatures. Therefore the hologram formation model can be expressed in discrete form as

d = Ht + ǫ (2.1)
where H ∈ R N × R N.N z is a linear operator called the Fresnel dictionary in this thesis. This dictionary models diffraction by providing a negative summation of convolutions with Fresnel function. In this formulation N = N x × N y represents the total number of 2.1 A brief overview on inverse problems formulation of reconstruction in digital holography pixels of the sensor. The number of lateral samples of the volume is considered equal to sensor in this formulation (it shall be noted that to reconstruct out of the field of view of sensor, the number of lateral samples is equal to the number of sensor pixels multiplied to the field expansion factor). N z represents the axial number of samples (i.e., the number of depth samples). Therefore the voxel of such sampled volume is of size τ x × τ y × τ z , where τ z is the depth sample size. In Eq. 2.1 t contains the opacity weights of the voxels of the sampled volume and considered to be sparse.

Hologram reconstruction can be therefore interpreted as finding the solution to the inversion problem of Eq. 2.1. The likelihood of data having the object opacity t in presence of noise (characterized by the probability density function PDF ǫ ) can be formulated as

p( d; t) = PDF ǫ ( d -Ht) (2.2)
In presence of Gaussian noise with Σ as its covariance matrix, Eq. 2.2 is presented as

p( d; t) = 1 2π N/2 det 1 2 (Σ) exp - 1 2 ( d -Ht) t Σ -1 ( d -Ht) (2.3)
Generally noise is considered as white, which is defined by a diagonal Σ -1 . Considering the fact that the number of unknowns (elements of t ∈ R N.N z that are to be estimated) is bigger than the number of knowns (elements of d ∈ R N ), the underdetermined inversion problem of Eq. 2.1 is ill-posed and maximum likelihood estimation doesn't result in a stable solution. To have a stable solution, a priori knowledge of the object field can be introduced in a Bayesian framework.The likelihood function of data having the object field t in presence of noise is regularized introducing the cost function Φ(t) that acts as a penalty term to enforce the a priori knowledge of the object field in the problem formulation. The problem can be formulated as a minimization of the negative log-likelihood function either as

min {Φ(t ′ )} , s.t. ( d -Ht ′ ) t Σ -1 ( d -Ht ′ ) ≤ ν (2.4) or min ( d -Ht ′ ) t Σ -1 ( d -Ht ′ ) , s.t. Φ(t ′ ) ≤ s (2.5)
for some constant ν and s. Maximum a posteriori estimation (MAP) of t can be then derived as

t * = arg min t ′ ( d -Ht ′ ) t Σ -1 ( d -Ht ′ ) + µΦ(t ′ ) (2.6)
where µ represents a regularizing parameter. The a priori knowledge of the object field defines the cost function Φ(t).
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Similar concept is used in the literature of compressive sensing (CS) (see Appendix C for detail) and different cost functions Φ(t) are defined to cope with very different types of applications and therefore different priors. Some examples of such common priors between MAP and CS can be summarized as :

1. sparsity in the object field where the cost function calculates ℓ 1 -norm of the object field [Candes et al., 2006, Candès et al., 2006, Donoho & Elad, 2003],

2. sparsity in the gradient domain of the object field with the cost function calculating the norm of the gradient of the object field (i.e., total variation methods) [Osher et al., 2005, Rudin et al., 1992],

3. sparsity in the Fourier/wavelet coefficients of the object field with the cost function calculating the norm of the object field coefficients [Figueiredo & Nowak, 2003, Levy & Fullagar, 1981, Taylor et al., 1979] 4. or in a more general sense, sparsity of the coefficients of the object field in a predefined domain represented by a vector basis (e.g., [Donoho, 2006]).

Consequently, several iterative algorithms can be used to numerically solve the MAP problem of Eq. 2.6 with different time complexity and convergence rates depending on Φ(t). The most frequently used algorithms can be categorized in two main streams based on the level of volume sparsity: i the most general methods considering relatively dense volume including convex relaxation methods (see [Tropp, 2006]) like Basis Pursuit [Chen et al., 1998] with ν = 0 for problems formulating as Eq. 2.4 , Soft-thresholding [Daubechies et al., 2004] , IST [Daubechies et al., 2004] , TwIST [Bioucas-Dias & Figueiredo, 2007] , l1-ls [Koh et al., 2008] and gradient projection [Figueiredo et al., 2007] )

ii the greedy methods considering sparser volumes than the first group, some examples of which are (orthogonal)Matching Pursuit [Mallat & Zhang, 1993], gradient pursuits [Blumensath & Davies, 2008] and CoSaMP [Needell & Tropp, 2009] The time complexity of algorithms decrease moving from category (i) to category (ii). A trade-off between time costs and the generality/object density of the application shall be made to choose the appropriate category.

Assumption of white and Gaussian noise and the possibilities it brings on

The MAP formulation in Eq. 2.6 is based on the assumption of having Gaussian noise.

Here we show that this assumption is not far from the reality. We present an experimental hologram of an spherical water droplet. This hologram is shown in Fig. 2.1-a.

Having performed the reconstruction using MAP, we clean the signature of the object Regarding the fact that the maximum magnitude of this correlation signal is less than 10% of the peak, this periodic correlation can be considered negligible. The conclusion is that the noise can be assumed uncorrelated.

from the data and consider the residuals (see the residuals in Fig. 2.1-b). The residuals contain the experimental noise, the diffraction of setup parts (i.e., low magnitude periodic patterns), and the model noise that represents the discrepancies between the captured hologram and the diffraction of the estimated object. In this section, we show that (i) the histogram of the noise can be approximated by a Gaussian, (ii) the noise can be assumed uncorrelated.

Fig. 2.2-a shows the histogram of the residuals. As seen in this image, the noise shows statistics of a Gaussian function with the standard deviation of σ ǫ = 0.35e4 resulting in an SNR ≈ 7 (SNR is defined as the amplitude of signal divided by the standard deviation of noise).

In the case of having only white noise, the autocorrelation of the residuals should contain only a Dirac's delta function in the center. For discretized signals, the minimum width of Dirac's function is one pixel. Fig. 2.2-b shows the zoomed autocorrelation image of the noise which has the peak with one pixel width, and a periodic vertical pattern. Considering that the maximum magnitude of this pattern is 10% of the peak, this periodic pattern can be considered as negligible. The conclusion is that the noise can be assumed uncorrelated. Now that we have shown the feasibility of considering noise as white and Gaussian, let us go back to the problem formulation of Eq. 2.6. For white noise, the inverse covariance matrix Σ -1 is diagonal and for stationary noise the diagonal elements are equal to 1 σ 2 ǫ . In such cases, Σ -1 can be replaced by any weighting mask W where Σ -1 = 1 σ 2 ǫ W (let us note that Σ -1 doesn't need to be inverted in this formulation and therefore can be replaced by any weighting matrix). This replacement introduces a possibility to generalize the Mahalanobis distance of ( d -Ht ′ ) t Σ -1 ( d -Ht ′ ) in the MAP problem

t * = arg min t ′ 1 σ 2 ǫ ( d -Ht ′ ) t W( d -Ht ′ ) + µΦ(t ′ ) (2.7)
W can represent a binary mask that accounts for finite support of the sensor. Another use of such weighting mask is an exclusion mask with binary entries that can be used to exclude some parts of the signal from the analysis. In some applications, the intensity of the laser is increased to obtain good signal contrast. The results of such illumination is the saturation of some pixels. Thanks to the formulation of Eq. 2.7, W excludes pixel-regions from data and dictionary to obtain a more accurate reconstruction considering only the meaningful part of the signal. In the rest of this thesis, we use the problem formulation of Eq. 2.7 and we benefit from the possibilities that W provides.

Reconstruction method for non-parametric objects

Reconstruction method for non-parametric objects

The general approach of digital hologram reconstruction using the inverse problems formulation aims to minimize a cost function as in Eq. 2.7 based on a priori knowledge of the object field. One approach in this domain puts sparsity constraints on the object field [Denis et al., 2009]. The intuition behind this constraint comes from the sparsity of the object field forced by the Royer criteria. Considering the formulation of the problem as Eq. 2.7, the goal is to estimate the matrix t satisfying the a priori knowledge of the object field which produces the hologram with high fidelity to data. The number of unknowns to be estimated is equal to the total number of voxels of the volume. The computational costs of each iteration of the reconstruction algorithms is high. It has the same order of magnitude as the light back-propagation algorithms.

The benefit of using the MAP approaches lies however on the high accuracy of volume reconstruction. Considering the numerical effects of the sensor on signal, the MAP approaches avoid back-propagation of discrepancies between the (quantized) captured intensities of limited support and the complex optical field. The goal here is to consider the effects of recording (i.e,. pixel integration, sampling, truncation) on signal to find an estimation of t that satisfies the prior and produces the hologram with high fidelity to the captured data.

This approach also facilitates expanding the volume of interest beyond the limits of the camera. The intuition behind is that light propagation in free space spreads the signal of all objects that are illuminated by the laser beam (and not only the objects in the field of view of sensor) all over the sensor area. Therefore, in absence of noise and without sampling and quantization of signal, reconstruction of much larger volumes than what is seen by camera is intuitive. In practice, however, cameras have small number of relatively big pixels which act as low pass filters on signal. This filtered signal is also quantized. Besides, the limited size of the sensors truncate the signal. The signal to noise ratio of the holographic patterns gets lower for the out-of-field objects that are placed farther from the borders of the sensor. The reconstruction of out of field objects is achieved expanding the field by a small factor [Denis et al., 2009]. It should be noted that such expansions greatly increase the costs of the minimization problem.

To get a stable solution to the inversion problem of Eq. 2.1, sparsity constraints are formulated into the cost function (see § 2.1). The sparsity prior on the object field is considered as the ℓ 0 pseudo-norm which is defined as

ℓ 0 {t} = ||t|| 0 = N i=1,t i 0 1
In other words, ℓ 0 pseudo-norm is equal to the number of non-zero elements of the vector t. Considering the fact that ℓ 0 pseudo-norm is non-convex, convex relaxation is
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employed to define the sparsity constraint as the ℓ 1 -norm :

ℓ 1 {t} = ||t|| 1 = N i=1 |t i |
Therefore, the optimization objective of Eq. 2.7 is formulated as

t * = arg min t ′ 1 σ 2 ǫ ( d -Ht ′ ) t W( d -Ht ′ ) + µ||t ′ || 1 (2.8)
for a positive µ. Several algorithms aim to solve this optimization problem (see § 2.1 for references to such algorithms). [Denis et al., 2009] have employed softthresholding. Considering the fact that the transmittance values are always nonnegative, additional positivity constraint is added on the object field as ∀i; t i ≥ 0. It is then shown that such minimization of Eq. 2.7 can be performed using an iterative algorithm with iterations as

t (k+1) = S + µ t (k) + H * W( d -H t (k) )
where H * represents the complex conjugate of H and the soft-thresholding operator S + µ (t) i is defined as

S + µ (t) i =        t i -µ 2 , if t i > µ 2 0
, else Fig. 2.3 shows the results of the reconstruction of a cropped hologram for a volume containing a glass reticle with a linear scale (Edmunds Optics, #62-252). The left image shows the zero-padded zero-mean cropped hologram. The middle one shows the results of the back projection operator for the in-focus plane. The right image shows the result of inverse problems approach using the sparsity constraint on the object field (i.e., the ℓ 1 -norm of the object field). As shown in this image, the reconstruction of the reticle is accurate and the field expansion is achieved using MAP estimation.

It should be noted that since during the optimization step, all the field is updated in every iteration, the sampling of the volume as well as the factor of field expansion plays an important role in determination of the computational costs. The sampling of the field defines the voxel size which is equivalent to the resolution of the reconstructed volume. In general, the sampling period of the x-y directions is considered the same as the pixel size. However, since the accuracy on the z direction is lower than the accuracies on x-y, a bigger sampling period can be used for depth dimension (see § 2.4.4 for more detail) to compensate for the computational costs of field expansion.

The MAP method has been used, as well, in the case of volume reconstruction for transparent objects e.g., biological cells [Bourquard et al., 2013, Lam et al., 2009]. In these applications, the sparsity prior (i.e., the ℓ 1 -norm) is applied on the gradient of the object field to obtain a field with the minimum number of pixels belonging to edges of the reconstructed objects. Algorithms which solve such a problem include [Berg & Friedlander, 2008, Chambolle, 2004, Osher et al., 2005, Rudin et al., 1992]. It has been shown in [Cull et al., 2010, Lim et al., 2011, Rivenson et al., 2010] that in the field of digital holography, accurate reconstructions are obtained employing the total variation algorithms.

Reconstruction method for parametric objects

In many application fields, volume of interest contains only parametric-shape objects (e.g., spherical or ellipsoidal objects). All the mentioned methods can be used to reconstruct such a volume. However, the a priori knowledge of the parametric shape/class is not included in any of the above methods. In this section, we aim to use this a priori knowledge to tailor the problem so that the computational costs are decreased and the accuracy of reconstruction is increased. To do so, we replace the dictionary of Fresnel functions by a dictionary of diffraction patterns that are parametric and depend on the 3D position and parameters of object shape/class. It has been previously shown that the inversion problem can be solved by employing maximum likelihood estimation (MLE) of these parameters.

In § 2.4.1, we deduce the image formation model of parametric objects from the Fresnel formula in continuous and discrete form. We reformulate our problem from a linear problem solved by MAP to a non-linear parametric problem solved by maximum likelihood estimation. We present in § 2.4.2 a previsouly proposed (supervised) lowcost greedy reconstruction method which employs MLE and obtains faster and more
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accurate results than the methods explained in § 2.3. We shall highlight the main benefit of this method which is the sub-pixel accuracies of parameter estimation. In addition, the parametric image formation model can be used to deduce lower bounds on the accuracy of parameter estimation. Using the estimation theory, we remind the calculation of the Cramer-Rao lower bounds (CRLBs) of the parameter estimation in § 2.4.3. The contribution of this thesis is to introduce quantitative approaches to automatically tune the parameters of the greedy algorithm in § 2.4.4 and § 2.4.5. We conclude the discussion on the greedy algorithm mentioning the possibility of reaching the CRLBs in § 2.4.6.

Dictionary of parametric diffraction patterns

In the case of parametric objects, the object diffraction pattern can be analytically represented depending on the position and shape/class of objects. In this case, the hologram formation model can be reformulated to consider a dictionary of object diffraction patterns rather than a Fresnel dictionary. Therefore, the digital hologram reconstruction problem can be regarded as a non-linear parameter estimation/pattern recognition problem.

Recalling the problem formulation of Eq. 1.14 of chapter 1 and considering an object with a real aperture ϑ e placed at (x e , y e , z e ), the intensity of the complex wave on every pixel with coordinates (x, y) ∈ R 2 of an extended field on hologram plane is formulated as (see § 1.3 and Appendix D for detail) I holo (x, y) = I re f (x, y) -2 I re f (x, y) I re f (x e , y e ). ϑ e * ℜ( ȟz e ) (x, y)

(2.9)

As previously mentioned in § 1.3, we consider α = 2 I re f (x e , y e ), g θ e = ϑ e * ℜ ȟz e (x, y) and we remove the background as mentioned in § 1.4.1:

I c holo (x, y) = α.g θ e (x, y).
(2.10)

It has been shown (see Appendix E) that for an object with an aperture satisfying r e << √ λz e , the convolution ϑ e * ℜ(h z e ) (x, y) can be simplified as

ϑ e * ℜ( ȟz e ) (x, y) ≈ F x λz , y
λz {ϑ e } .ℜ( ȟz e ) Defining the opacity or aperture of a spherical opaque object with radius r e on (x, y) ∈ R 2 of the extended reconstruction field as 

ϑ e (x, y) =        1, if (x -x e ) 2 + (y -y e ) 2 ≤
J 1c        2πr e (x -x e ) 2 + (y -y e ) 2 λz e        Γ θ e (x, y) (2.11)
where J 1c stands for the cardinal Bessel function of the first kind, and Γ θ e introduces the pixel integration performed by the sensor considering the width and the length of the active area of the sensor pixel as (κ x , κ y ). This effect is modeled as

Γ θ e (x, y) = sinc κ x πx λz e sinc κ y πy λz e
where sinc(x) = sin(x)

x . The discrete form of the diffraction pattern can be formulated using the image formation model of Eq. 2.1. let us consider S ∈ R N.N z ×N.N z .N r as a dictionary which contains N z depth samples and N r samples defining the parametric shape of objects in the field of view of sensor. A dictionary of diffraction patterns of parametric objects G can be formulated from the Fresnel dictionary H ∈ R N×N.N z as:

G = HS (2.12)
with G ∈ R N×N.N z .N r contains N.N z .N r diffraction patterns each of size N pixels (i.e., N z .N r geometrically centered diffraction patterns which vary according to depth and object parameters like shape and class, and N lateral x-y translations of each of these patterns). The forward problem can be reformulated in discrete form as

d = Gα + ǫ (2.13)
where α ∈ R N.N z .N r contains the magnitude of the extended parametric diffraction patterns present on data accounting for non-uniform illumination. According to Eq. 2.11, the parameters of the diffraction pattern model are the object coordinates (x e , y e , z e , r e ) . Therefore, the object recognition task can be treated as a non-linear parameter estimation problem. Fig. 2.4 shows four patterns of a dictionary for spherical particles (i.e., 2D presentations of g θ i for i = 1 : 4). It illustrates the differences in the pattern of particles depending on their radii and depth coordinates. Fig. 2.5 shows the radial profiles of the four holographic patterns of Fig. 2.4. The envelop profiles of the cardinal Bessel function of the first kind J 1c and the pixel integration operator Γ θ e are shown in these figures. Depending on the size of the particle, one of these amplitude modulations dominantly filter the real part of Fresnel Function. As illustrated in Fig. 2.5-a,b the pixel integration introduces additional amplitude modulation in the pattern for small particles. In Fig. 2.5-c,d the big size of object acts as a narrow low-pass filter and introduces the dominant envelope of J 1c .

Short-time Fourier transform can be employed to obtain spectrograms of the diffraction pattern. Spectrograms provide information about the short-time frequency components of the signal and can give an intuitive about the effects of depth and radius coordinates on the diffraction model. Fig. 2.6 shows the spectrograms of the mean radial profiles of four diffraction patterns with different depth and radius parameters. As mentioned before, the Fresnel function is a chirp with linear dependency of frequency on the radial distance from center. This fact is visible on the spectrograms as a line with the slope inversely proportional to depth. The aperture of the object acts as a lowpass filter which introduces amplitude modulation of the chirp. For spherical objects, this amplitude modulation is in the form of a cardinal Bessel function J 1c depending on the radius and position of object. Pixel integration adds another amplitude modulation by Γ θ e . It is implied from these figures that the effect of amplitude modulation caused by very small objects is not so important (i.e., the first zero of J 1c is placed far from the center of the pattern). However, for big particles the first zero of the envelop J 1c are visible on the spectrograms of Fig. 2.6-(c) and . The second zero of J 1c is visible on Fig. 2.6-(c). The small slop of line in Fig. 2.6-(d) caused by big depth value prevents the second zero of J 1c to be present on the spectrogram.

Greedy algorithm

In the case of parametric objects, the ill-posed inverse problem of Eq. 2.13 is solved as the following non-linear least squares data fitting problem: min

         d - i α i ḡθ i (x, y) 2 W          , s.t. ∀i : α i ≥ 0 (2.14)
Similar to Eq. 1.21, d is the zero-mean hologram with respect to a weighting mask

W d = d -1, d W .
(2.15)

We refer the reader to § 1.4.1 for the definition of operators u, v W and u 2 W . A greedy algorithm has been previously proposed [Soulez et al., 2007a,b] which divides the least squares data fitting problem of Eq. 2.14 into sub-problems of independently finding the diffraction pattern of each object of the volume. These sub-problems are solved to build a set of object parameters B which results in the closest simulated hologram to data. A scheme of this algorithm is shown in Fig. 2.7. The cost function of each sub-problem is formulated as

C W d, ḡθ j = d -α j ḡθ j (x, y) 2 W (2.16)
Therefore, the each the sub-problems is formulated as

θ * = arg min θ j ∈Ξ,α j C W d, ḡθ j , s.t. α j ≥ 0
(2.17) As mentioned before, the Fresnel function is a chirp function with linear dependency of frequency on the radial distance from center (that is visible on the spectrograms as a line with the slope inversely proportional to depth). The aperture of the object and the pixel integration act as lowpass filters which introduce amplitude modulation of the chirp. For spherical objects, this amplitude modulation is in the form of a cardinal Bessel function J 1c Γ θ e depending on the radius and position of object. It is implied from these figures that the effect of amplitude modulation caused by very small objects is not so important (i.e., the first zero of J 1c Γ θ e is placed far from the center of the pattern). However, the first zero of the envelop J 1c Γ θ e are visible on the spectrograms of (c) and (d).

The second zero of J 1c Γ θ e is visible on (c). The small depth value of (d) prevents the second zero of J 1c Γ θ e to be present on the spectrogram. where Ξ represents the feasible domain of object parameters (i.e., Ξ = (ξ x , ξ y , ξ z , ξ r ) ).
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To find the set B, the greedy algorithm finds the diffraction patterns that best fit data in terms of least squares error. These diffraction pattern are found one by one from a residual hologram r that does not contain the signature of the previously found patterns. The residuals are initialized as equal to data (r 0 = d) and the patterns are found through the following three steps starting with the first object (i.e., k = 1).

1. a coarse estimation step during which an exhaustive search in a discrete dictionary G of diffraction patterns (calculated from the sampled parameter search space) is performed to roughly estimate the parameters of the k th object. Every column j of this dictionary contains the discrete form of g θ j (x, y) in N pixels.

Considering the optimization problem in discrete form as 2.4 Reconstruction method for parametric objects arg min

j: 1≤ j≤N.N z .N r ,α j α j ḡ j -rk-1 2 W , s.t. α j ≥ 0 , (2.18)
partial minimization with respect to α changes Eq. 2.18 to the following optimization criterion (see appendix E-bis for details):

arg max j: 1≤ j≤N.N z .N r rk-1 , ḡ j W ḡ j 2 W (2.19)
It is previously shown [Gire, 2009] that this criterion is proportional to a normalized correlation between the masked data and the pattern with respect to the square root of the norm of the diffraction pattern. Considering the matrix notation of the problem (see Eq. 2.13), the found index j specifies the column entry of the dictionary G corresponding to the diffraction pattern of an object with the parameter set θ j . The pseudo-algorithm for this step is provided in appendix I.

2. a local optimization step searches in the continuous parameter search space to refine the estimated parameters found in the previous step solving

θ * k = arg min θ i ∈Ξ k ,α i rk-1 -α i ḡθ i (x, y) 2 W , s.t. α i ≥ 0 (2.20)
where Ξ k ⊂ Ξ is a small neighborhood of θ j (found from Eq. 2.19 in the coarse estimation step) in the feasible domain of parameter search space. Considering the different contribution of the parameter vector elements (x,y,z,r) in the model, this optimization problem is ill-conditioned. Efficient scaling is introduced in § 2.4.3 which employs estimation theory to scale the parameters of optimization and obtain a well-conditioned optimization problem using the Cramer-Rao lower bounds (CRLB) [Fournier et al., 2010]. In addition, a stopping criterion is proposed in § 2.4.3 based on the CRLB [Seifi et al., 2012b].

3. a cleaning step which removes the signature of the found object from data to increase the SNR of the remaining patterns. The magnitude of the found pattern (i.e., α * k ) is calculated from the weighted normalized correlation between the residuals and the found patterns (see Appendix E-bis for details):

α * k = rk-1 , ḡ j W ḡ j 2 W
The residuals are updated using α *

r k = r k-1 -α * k ḡθ * k .
The mean of the residuals is removed similar to Eq. 2.15

rk = r k -1, r k W .
The parameter quadruple found from the previous step is added to set B and the search is started for the next object:

B = B ∪ θ * k k = k + 1.
The decision of terminating the iterations of the greedy algorithm is made in the exhaustive search step, when a positive α j can not be found anymore. An additional step can be performed after the termination of the greedy algorithm iterations, to refine the estimated parameters. The goal is to perform the local optimization step another time for each object, on a hologram which has been cleaned from all the other objects. The estimated parameters of the remaining are refined with lower correlated noise that is produced by the signature of other objects. The cleaning of the other diffraction patterns reduces the correlated noise and results in higher SNR of the remaining object.

This approach belongs to Matching Pursuit algorithms [Mallat & Zhang, 1993] in signal processing or CLEAN algorithm [Hogbom, 1974] in radio-astronomy, with the distinctive feature of the local optimization step accounting for a continuous dictionary of models.

Compared to the general regularized data fitting solution (see § 2.3), the greedy algorithm results in faster estimations. To explain the reason behind getting faster reconstruction using the greedy algorithm, let us assume that n spherical particles are present in the object volume (n << N). The number of parameters which should be estimated using the greedy algorithm is therefore equal to 4 × n. However, the number of parameters in Eq. 2.1 (i.e., the number of elements of t) which should be estimated is equal to the total number of voxels of the object field which results is more computational costs.

In addition, the accuracy of radii measurements is higher using the greedy algorithm than the general case of non-parametric models (see § 2.3). Thanks to the local optimization step, the accuracy of the parameter estimation is sub-pixel. However, in the non-parametric solution, the exhaustive number of parameters makes it computationally infeasible to a search in a finer sampled search space. Therefore the accuracy of radii is limited by the voxel size.

The fact that G contains shift-invariant kernels (similar to H) can be exploited to calculate the correlation terms required in the exhaustive search step faster using FFTs. Therefore for every parameter pairs (z j , r j ) of the sampled search space, the geometrically centered diffraction patterns are calculated containing 2N pixels. The reason behind calculating diffraction patterns in 2N pixel is to keep the model accurate for x-y translations of the patterns. The correlation maps calculated between data and the geometrically centered patterns contain high intensities on pixel (x j , y j ) if the pattern of an spherical object with parameters θ j = (x j , y j , z j , r j ) is present in data.

To prevent border effects on the correlation maps, data is required to be zero-padded. Fig. 2.8 shows four correlation maps calculated for the cloud hologram of Fig. 1.9-a using four centered patterns. High peaks on every map show the presence of objects with approximately the same depth and radii of the model positioned at x-y coordinates of the peaks. The first step of the greedy algorithm is therefore reduced to find the maximum of the peaks of all the maps and use the coordinates of such peak as a rough estimation of the found object.

A free Matlab ® toolbox called "HoloRec3D" is prototyped by the author providing the implementation of the greedy algorithm for digital hologram reconstruction of spherical micro-particles. HoloRec3D, is available on-line in http://labh-curien.univst-etienne.fr/wiki-reconstruction [Seifi et al., 2013b]. The user manual of this toolbox is published in [Seifi et al., 2012a].

In the rest of this chapter, we show how the parameters of the greedy algorithm (e.g., the sampling of the search space, stopping criteria for optimizations) can be automatically chosen. We introduce the concept of resolution in § 2.4.3 from two points of view. First, the Rayleigh criteria on two-point resolution is briefly introduced. Second, we employ the estimation theory to deduce Cramer-Rao lower bounds (CRLBs) as the single point resolution of in-line digital holography and the lower bounds on the accuracy of parameter estimation of Eq. 2.14. We then propose two approaches (one based on Rayleigh criterion and one based on CRLBs) in § 2.4.4 to efficiently sample the parameter search space for a discrete dictionary. We use in this section the fact that CRLBs provide information about the curvature of the main basin of the cost function in the neighborhood of the global minimum. We use this knowledge to introduce a more reliable parameter sampling scheme. We introduce the use of CRLBs to convert our ill-conditioned local optimization problem to a well-conditioned problem which results in fast convergence and accurate estimations. We also use CRLBs as the stopping criteria to determine the convergence of the local optimization step in the greedy algorithm. We finally argue the asymptotic efficiency of our greedy approach to reach these lower bounds thanks to the large number of samples.

Resolution

Two definitions of resolution are discussed in literature (i) two-point resolution which defines the minimum distance between two point sources so that they are resolved in an imaging system (in this thesis, we discuss Rayleigh criteria), (ii) single point resolution, which addresses the standard deviation of estimating the position of one point source. We obtain the Cramer-Rao lower bounds (CRLBs) on the accuracy of position estimation. It should be noted that the CRLBs consider the noise characteristics, whereas Rayleigh Criteria ignores the noise. 
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Rayleigh criteria: two-point resolution

According to Rayleigh, two point sources are resolved if they are not placed closer to each other than the limit where the peak of one intensity coincides with the first zero of the other one intensity (see Fig. 2.9). The well known Rayleigh limits on the resolution of a square-aperture imaging setup with a numerical aperture (NA) of Ω are

δ x = δ y = λ Ω , δ z = λ Ω 2 Ω = L 2z (2.21)
Fig. 2.10-a illustrates the Rayleigh two point criteria on depth resolution. In this figure the ellipses show the non-resolved section of the volume for different depth positions in an arbitrary setup. The size of these ellipses (δ z ) is inversely proportional to Ω 2 . Besides,

δ z δ x = 1 Ω = δ z δ x = 2z L 2.
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Considering light back propagation methods, the same criteria can be calculated for the depth resolution in digital holography (see [Garcia-Sucerquia et al., 2006, Jacquot et al., 2001, Kelly, 2009, Stern & Javidi, 2008, Stern et al., 2004] for similar arguments on resolution in digital holography). According to Rayleigh formulas, the two point resolution on the optical axis of a digital holography setup can be presented as in Eq. 2.21 which indicates that the resolution on depth parameter is worse than the resolution on lateral position (under the Fresnel approximation condition z >> L). This fact is shown in Fig. 2.10 so that for each ellipse, the rate of the major axis over the minor axis is equal to 1 Ω .

Cramer-Rao lower Bounds: single-point resolution

In the case of parametric object applications, the diffraction pattern model depends on the object shape and position (see Eq. 2.11). It has been previously shown [Fournier et al., 2010] that using the parameter estimation theory, one can deduce the analytical formulas to calculate the Cramer-Rao lower bounds (CRLBs) on the single point resolution in in-line digital holograms. In this section the same reasoning is used to provide the variance of the parameter estimators in case of parametric objects (e.g., spherical particles).

CRLBs of parameter estimation in digital holography

According to the Cramer-Rao inequality, the lower bound on the variance of any unbiased parameter estimator var(θ) is calculated using the inverse of the Fisher information matrix I:

var(θ i ) ≥ [I -1 (θ * )] i,i (2.22)
where θ represents the parameter vector (e.g., θ = (x, y, z, r) for opaque spherical particles). The Fisher information matrix is calculated as a function of the probability p to observe data d having parameter vector θ

[I(θ)] i, j = -E ∂ 2 lnp(d; θ) ∂θ i ∂θ j = E ∂lnp(d; θ) ∂θ i ∂lnp(d; θ) ∂θ j (2.23)
(see [Kay, 1993] for the proof of the second equality in Eq. 2.23). The definition of I in Eq. 2.23 shows that its components are proportional to the curvatures of the log-likelihood function.

In our application and in presence of white and Gaussian noise of standard deviation σ ǫ ,

lnp(d; θ) = - 1 2 α ḡθ -d 2 W σǫ + Const (2.24)
In Eq. 2.24, Const is a constant term which doesn't depend on d or θ.

Reconstruction method for parametric objects

The discrete form of the Fisher information matrix (i.e., the second derivative of lnp(d; θ)) can be written as

[I(θ)] i, j = α 2 σ 2 ǫ ∂g θ ∂θ i , ∂ g θ ∂θ j W (2.25)
The analytical representation of the first derivatives of the model are presented in Appendix F. It should be noted that [Soulez et al., 2007a] have provided the analytical expressions for the first derivatives of the model ignoring the effect of pixel integration. Our formulation in Appendix F considers this effect which results in more accurate estimations of the CRLBs. Fig. 2.11 shows the gradient maps calculated versus different parameters for the diffraction model of a spherical object centered on the center of the hologram. As shown in this figure, the gradient map for y is the 90 • rotation of the map for x and it can be easily proven rotating the hologram 90 • . Fig. 2.12 shows the gradient maps for two different models with fixed depth value and different radii. A comparison between column 1 and column 2 of this figure can give an intuition about the achievable parameter estimation accuracies. This figure shows that the gradients are bigger in amplitude for bigger objects. It shall be noted that models of big objects have higher amplitudes than models with small radii due to the multiplicative term of πr 2 e λz e in Eq. 2.11. High magnitude models result in higher gradient magnitudes. Considering Eq. 2.22, it can be concluded that the accuracy of parameter estimation is higher for bigger objects.

In addition, a comparison between the magnitude of Fig. 2.11-c and Fig. 2.12-(b1,b2) shows that having high frequencies present on the hologram (i.e., small depth value) results in bigger gradients versus z, which implies that the accuracy of z estimation is higher for smaller depth values; a fact that is verified by the Rayleigh criterion.

It shall be noted that the correlation terms between the gradients versus different parameters affect the accuracy on each parameter i.e., the standard deviation of estimating x is not independent of the standard deviation of y,z,r. Therefore the gradient maps can only provide some intuition about the accuracy on parameters and more accurate results need to be calculated from the inversion of the Fisher information matrix.

The Rayleigh criteria does not correctly calculate the achievable resolutions in presence of noise. To consider the effect of noise, [Fournier et al., 2010] have calculated CRLBs (which give the one-point resolution) for points on the optical axis. The obtained resolution criteria are proportional to the inverse of the signal to noise ratio (i.e., SNR, that is defined as the amplitude of signal divided by the standard deviation of noise):

σ x = σ y = λ Ω 0.4 S NR , σ z = λ Ω 2 0.6 S NR (2.26)
These results are in good agreement with the Rayleigh criteria on the dependency of resolution on Ω. Using Eq. 2.22 the standard deviation can be calculated on every pixel of the sensor. Fig. 2.13 shows the accuracy maps of parameter estimation for spherical . A 1D profile of each gradient map is shown in blue. The green line on every map shows the corresponding 1D coordinates of the profile. (1) (2) shows the CRLB maps of parameter z and row (c) shows the CRLB maps of parameter r. The first column corresponds to the parameters of the spherical particle as z = 0.7m and r = 15 µm, and the second column accounts for a spherical particle with z = 0.7m and r = 100 µm i.e., the intensity of every pixel i, j on the x map of (a-1) shows the CRLB of the estimation of x parameter, for a spherical particle of radius 15 µm placed at depth of 0.7 m centered on i, j. These images are analyzed in detail in § 2.4.3. Other parameters of the test are pixel size: 20 µm, fill-factor: 0.8, laser wavelength: 0.532 µm, SNR=4. particles with radius 100 µm placed at distance 0.5 m. The SNR of the hologram is 4. These maps are read as following: the intensity of every pixel i, j on the x-parameter map of Fig. 2.13-a shows the standard deviation of the estimation of x parameter, for a spherical particle of radius 100 µm placed at depth of 0.5 m centered on pixel (i, j) using the image formation model of Eq. 2.11.
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Considering the fact that smaller CRLBs imply better accuracy, interesting properties of digital holography can be explained using these maps: i all the maps have central symmetry, and the maps for z and r are almost radially symmetric.

ii the accuracy maps of Fig. 2.13-a,b show that the accuracy map of parameter y is a rotated version of the one for x parameter. This fact can be easily proven rotating the hologram 90 • .

iii the accuracies of x and y are higher in the center of the hologram, which implies that the low frequencies play an important role in accurate estimations of the lateral position.

iv Fig. 2.13-c which gives the standard deviation of depth parameter shows that the accuracy of depth estimation is lower than the accuracies for x,y,r with an order of magnitude of 1000. This order of magnitude is verified by the Rayleigh criteria since in this example Ω = 0.0025.

v on these maps it is shown that the accuracy on r is better than x,y, however a closer look to Fig. 2.13-d reveals that in the center of the hologram, the accuracy on r is not as good as in its neighborhood. One explanation can be given considering the first zero of the cardinal Bessel function J 1c that is located on a circle centered on the pattern with the radius of ≈ 160 pixels which is involved in the image formation model. The presence of this zero results in accurate estimations of the radius, which results in lower CRLBs in the neighborhood of the center.

Fig. 2.14 is presented to illustrate the effect of radius on the CRLB maps for x,z and r parameters. In this figure, the CRLB maps are calculated for an application with r = 15 µm for the first column and r = 100 µm for the second column (two examples of the corresponding holograms are shown in Fig. 2.15-a,b respectively). A comparison between these maps reveals other interesting facts.

The first fact is shown in Fig. 2.14,a-(1,2) that for smaller values of radius, the accuracy on x is worse. The same result is obtained from Fig. 2.14,b and c.

The second fact is shown through the circular bands in Fig. 2.14,b-1 that the accuracy of depth estimation depends on the presence of the high frequency terms on the hologram. According to this figure, the CRLBs of z estimation increase getting far from the center. However, at some distance from the center, although an important part of the low SNR pattern is not captured on the hologram (see Fig. 2.15-a for a sample hologram), the low intensity high frequencies help in better estimation of z. These high frequency components are loosely enveloped by the J 1c Γ θ e , thanks to the small radius of the particle.

Third, the particle corresponding to Fig. 2.14,b-2 has big radius, which results in tight envelop of J 1c Γ θ e having the first zero present on the hologram which results in accurate r estimation that helps in having better estimation of z. Finally, Fig. 2.16 shows that out of field estimation can be relatively accurate.

It shall be noted that the image quantization is not considered in the formulation of the CRLBs. Considering the profiles of Fig. 2.5 it is clear that the envelope J 1c Γ θ e function reduces the magnitude of the signal's high frequencies dramatically. Therefore, at some point, the change in the model is removed by the image quantization process. On the other hand, the CRLBs are calculated from the closed form of the model gradients and the intensities of the high frequencies increase in the gradient image. If the quantization process is not considered, such values of gradient increase the Fisher information matrix and results in an underestimation of the standard deviations. A future work can be directed towards finding the distance to the center of the pattern from where the models variations are removed by image quantization. This distance can be then used to consider only the part of gradient image that is represented in data to obtain more realistic CRLBs.

Sampling of the parameter search space

Sampling of the search space is a common challenge in both light-back propagation (searching in x,y,z) and the inverse problems approaches (e.g., searching in x,y,z,r for spherical objects). Very fine sampling of search space results in infeasible computational costs and rough sampling results in very inaccurate estimations. Obtaining the best accuracy with minimum computational costs is the goal of this section. Employing the greedy algorithm presented in § 2.4.2 to estimate the object parameters, the cost function of Eq. 2.17 is noisy and contains several local minima. If the sampling of the exhaustive step is fine enough to sample the main basin of the cost function (i.e., the basin which contains the global minimum of the cost function), the local optimization step can converge to accurate estimations of the global minimum. In this section, we present two schema to sample the search space. The first approach considers two-point resolution Rayleigh criteria. The second approach gives a rigorous method to calculate the sampling steps according to the single point accuracy calculated from CRLBs. A closer look to the definition of CRLBs shows the proportionality of CRLBs to the curvature of the main basin of cost function which is also related to the size of the main basin. To this end, we present the contribution of our work on the calculation of the size of the main basin and aim to find a relationship between the size of the main basin of cost function (Eq. 2.14) and its relationship to the CRLBs (i.e., the curvature of the cost function in its global minimum) .

Sampling based on Rayleigh formulas

The depth resolution of an in-line setup dependent on depth value is illustrated in Fig. 2.10-b. The sampling scheme based on Rayleigh resolution limits gives therefore an analytical approach to calculate the sample step size.

Eq. 2.21 can be used to have an estimation of the resolution. We propose to iteratively calculate a sample set of depth positions as in Fig. 2.17. The resulting sample set Z can be used in both light back-propagation where the point source resolution is required (see Chapter 1) and the greedy algorithm where the standard deviation of parameters is sought. The benefit of using such sampling set in the light back-propagation methods is that the accuracy of the in-focus plane detection won't be limited by sampling of depth.

In the application of parametric objects, however, it should be noted that the cheap step of local optimization in the greedy algorithm refines the object parameters found by the exhaustive search. Therefore fine sampling of the exhaustive search using the Rayleigh sampling would result in unnecessary computational costs of calculating the criterion maps over a huge number of depth positions. Therefore, a tuning parameter should be introduced to down-sample Z, since for the local optimization step to converge, the exhaustive search is only required to estimate parameters which fall in the main basin of cost function. Introducing such a tuning parameter has the drawback of involving human interaction which does not lead into an unsupervised algorithm.
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Pseudo algorithm of depth sampling based on Rayleigh resolution limits Input: Depth range ξ z = [z min z max ], SNR ,parameters of the setup (laser wavelength, sensor size (L x ,L y )).

Output: sample set of Z depth parameter

Z = {z min } , c=1 , z c = z min , L m = min L x , L y ⊲ see § 2.4.4 repeat ⊲ Calculating depth samples Ω c = L m 2z c , ∆ c = 1 2 λ Ω 2 c ⊲ calculate the sampling step if z c + ∆ c ≤ z max z c+1 = z c + ∆ c , Z = Z ∪ {z c+1 } , c=c+1
⊲ add the new sample to the sample set Z else stop ⊲ return Z and finish end if end repeat

Figure 2.17: The proposed sampling algorithm Fig. 2.18 shows a 2D view of cost function vs. depth of a simulated hologram. For this example, the pseudo-algorithm of Fig. 2.17 results in a 200-element sample set. It is however clear the exhaustive search can be performed over much smaller number of samples thanks to the local optimization step. In this example, the number of samples can be reduced to three to ensure falling in the main basin. In the next section, we introduce another sampling scheme based on the CRLBs which aims to approximate the tunning parameter to reduce the dependency of sampling on human interaction.

Sampling based on the basin size

To ensure the convergence of the local optimization step of the greedy algorithm, the estimated parameters from the exhaustive search step should fall in the main basin of the cost function of Eq. 2.20. This criterion can be used in the sampling of parameter search space to avoid unnecessary costs.

Considering the definition of Fisher information matrix, it can be shown that CRLBs are proportional to the radius of curvature of the cost function. If the ratio between the basin size and the CRLBs is known, a tuning parameter can be estimated to select the sampling step sizes for all parameters (including the radius). A trivial method is introduced here to estimate the size of basin and to compare it to the CRLBs. The basin size of the cost function fixing all the parameters except one can be defined as the one dimensional distance between the inflection points of the cost function, as shown in Fig. 2.18 by black circles. It should be noted that the inflection points can not be calculated analytically. It is however clear that the accurate position of the inflection points are not required to be calculated, since any point close to the inflection points are strictly in the main basin and the optimization step can use such starting points to reach the global minimum. To estimate the inflection points, we used an optimization method to find the zeros of the second derivative of the cost function Eq. 2.17. More precisely, the absolute value of the second derivatives were minimized to reach zero using simplex search method [Lagarias et al., 1998] (in Matlab ® , the function "fminsearch" performs the task of unconstrained nonlinear optimization).

The cost function calculated from the diffraction pattern model ḡ j depending on object parameter quadruple θ j can be formulated as

C W d, ḡ j = N i=1 w i, j ( di -α j ḡi, j ) 2
The first and second partial derivatives of such cost function versus parameter dimensions (ν ∈ {x, y, z, r}) can be formulated

∂C W d, ḡ j ∂ν = -2α j N i=1 w i, j ∂ḡ j ∂ν i di -α j ḡi,j ∂ 2 C W d, ḡ j ∂ν 2 = -2α j N i=1 w i, j ∂ 2 ḡ j ∂ν 2 i di -α j ḡi, j + 2 α j 2 N i=1 w i, j ∂ḡ j ∂ν i 2
Finally, the optimization problem which is used to estimate one of the inflection points of C W d, ḡ j is formulated as

ν † = arg min ν          ∂ 2 C W d, ḡ j ∂ν 2          (2.27) = arg min ν        -2α j N i=1 w i, j ∂ 2 ḡ j ∂ν 2 i di -α j ḡi,j + 2 α j 2 N i=1 w i, j ∂ḡ j ∂ν i 2        (2.28)
Consequently, the basin size can be defined as 2|ν †ν * |, where ν * represents the object parameter used in the simulation. Several Monte-Carlo studies showed that although noise can introduce oscillations in the main basin and result in false detection of inflection points, the basin size is an order of magnitude of 10 times the CRLBs inside the field of view of camera. Having such knowledge, the sampling scheme can be introduced the same way as in Fig. 2.17 replacing ∆ c by Const× CRLBs calculated for the smallest objects at the minimum distance to the sensor and placed on the optical axis. It should be noted that although the sampling using this scheme still results in around 50 samples for the cost function of Fig. 2.18 selecting Const = 40, this sampling approach is robust to the 3D position of the objects.

Conditioning and stopping the optimization step using CRLBs

The optimization step of the greedy algorithm uses the roughly estimated parameters found from the exhaustive search to find the global minimum of the sub-problem of Eq. 2.17. This search is restricted to a close neighborhood of the roughly estimated parameters. In this section we address two issues of conditioning and stopping the optimization step of the greedy algorithm.

The first concern is regarding the conditioning of the cost function which arises due to the shape of the cost function around its global minimum. Considering the example of spherical particle application, the parameters to be estimated are x,y,z, and r. A closer look to the image formation model of Eq. 2.11 shows the different contributions of these parameters to the cost function which can result in an ill-conditioned optimization problem. Indeed, the cost function has an elongated shape along the z dimension which would imply lower accuracies on the z estimation or slow convergence of the optimization algorithm even when trust region algorithm is used in the optimization task. Fig. 2.19-a shows the cost function of a simulated hologram around its global minimum which is plotted versus x and z. It is clear that an optimization algorithm with limited number of iterations can't converge easily, due to the elongation of the cost function versus z dimension. To deduce a well-conditioned problem, first Eq. 2.21 is used to obtain a conditioning factor which provides information about the proportionality of accuracies of x,y and z parameters. According to Rayleigh δ x δ z = Ω, which means that formulating the cost function for the parameter set (x,y,Ωz,r) would result in a better-conditioned optimization problem. Considering the fact that Ω << 1, the conditioning is equivalent to shrinking the z dimension. The results of such conditioning is shown in Fig. 2.19-b. A yet better conditioning can be found from Eq. 2.26, and the parameter set is formed as (x,y, 2 3 Ωz,r) . The corresponding cost function is plotted in Fig. 2.19-c. The circular iso-contours of the cost function imply a well-conditioned cost function around its global minimum which can be minimized fast and accurately. The same reasoning can be employed to obtain a well-conditioned cost function versus all of the parameters of the diffraction model. Column (1) of Fig. 2.20 shows the cost function versus x,r for fixed y,z. Although the cost function is not very ill-conditioned, the CRLBs can be used to obtain the conditioning factor of δ x δ r ≈ 0.7. The value of 0.7 is experimentally found and column (2) of Fig. 2.20 shows the improvement of such conditioning on the cost function.

The second issue addresses the automatic calculation of the stopping criteria of the optimization process. The main issue is to stop the optimization when we are certain that the optimization has converged. This problem can be easily addressed having the knowledge of the CRLBs. Knowing the lower bounds on the achievable accuracy of parameter estimation, the stopping criterion of the optimization can be set to reaching steps smaller than the CRLBs. Since the optimization problem is well-conditioned, this criterion can be changed to having the norm of optimization step sizes in parameter search space smaller than the CRLB on x parameter. The validity of this criterion is checked through several Monte Carlo studies and it has been shown to result in efficient optimization tasks and accurate estimations of parameters.

The feasibility of reaching CRLBs

According to the estimation theory [Kay, 1993], the maximum likelihood estimators of parameters are asymptotically unbiased and reach CRLBs in the presence of white Gaussian noise. We have already shown in § 2.2 that the noise can be assumed white and Gaussian. In digital holography, the number of samples (i.e., samples) is an order of million, which justifies the asymptotic condition of maximum likelihood estimation in the greedy algorithm. Therefore, we can hope for reaching the CRLBs in high quality holograms that contain only white and Gaussian noise. It shall be noted that to improve the image model, the quantization of the signal shall be considered as well. This is considered as the future work. 
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Conclusion and discussion

In this chapter, the hologram formation model is presented in an inverse problems framework. The general maximum a posteriori frame work is introduced which employs the a priori knowledge of the object volume to obtain a stable solution to this ill-posed inversion problem. The general object volumes are shown to be reconstructed accurately.

In special cases where the objects have parametric shape, a greedy model fitting method is used that results in faster and more accurate reconstructions compared to the general framework. This greedy algorithm contains three main steps of (i) an exhaustive search step to obtain a rough estimation of the object parameters, (ii) a local optimization step to refine the estimations, and (iii) a cleaning step to increase the SNR of the remaining objects. This algorithm theoretically results in better estimations of the parameters compared to the light-back propagation methods and the estimation accuracy should be close to CRLBs.

Exploiting the Cramer-Rao lower bounds on the accuracy of object parameter estimation, a sampling scheme is proposed for the exhaustive search which considers the bounds on accuracy to obtain an efficient non-uniform sampling of the search space. It is next proposed to use these lower bounds on accuracy to obtain well-conditioned optimization problems in step (ii). Finally these lower bounds on accuracy are proposed to be used as the stopping criteria of the optimization process. These improvements lead in an unsupervised algorithm.

It shall be noted that in this work, the noise is considered as white and Gaussian. We showed that in our experimental cases, this assumption is valid. For correlated noise however it is possible to account for the noise covariance matrix in hologram reconstruction. Such a noise covariance matrix can be also employed to calculate more realistic Cramer-Rao lower bounds in presence of correlated noise. This approach can be considered as future work.

It shall also be mentioned that in the calculation of Cramer-Rao bounds, the quantization effect of sensor is not taken into account. Considering the fact that Cramer-Rao bounds are calculated from the gradients of the model, the quantization effect can be considered to remove the parts of the gradients which are not represented in data. The obtained values for Cramer-Rao bounds are then more realistic. This task is also considered as future work.

A free Matlab ® toolbox is prototyped which implements the greedy algorithm to reconstruct the volume of spherical micro-particles. This toolbox is available online [Seifi et al., 2013b].

We conclude this chapter by mentioning two last notes on the use of the greedy algorithm. First, it should be noted that increasing the number of object parameters dramatically increases the dimensions of G which may result in infeasible application of the greedy algorithm. To overcome such problems, we have proposed two methods to reduce the image sizes (see chapter 3) and reduce the number of required correlations (see chapter 4).

In addition, deduction of CRLBs introduces quantitative metrics for the task of setup design; the parameters of the setup (depth distances, camera selection, magnification factor, laser wavelength...) can be tuned to obtain holograms with acceptable quality for parameter estimation given the expected accuracies of the imaging technique.

3

Fast and accurate multi-scale approach of object parameter estimation in digital holography Résumé Il a été montré précédemment que des reconstructions très précises d'objets pouvaient être obtenues en résolvant le problème par une approche ≪ problèmes inverses ≫ . Ces approches souffrent cependant de temps de calcul plus élevés par rapport aux reconstructions conventionnelles basées sur une ≪ back-propagation ≫ . Pour surmonter ce problème, nous présentons dans ce chapitre une approche ≪ coarse to fine ≫ multiéchelle pour réduire fortement la complexité de l'algorithme. Nous illustrons qu'une précision comparable aux méthodes présentées dans l'état de l'art peut être atteinte tout en accélérant la reconstruction. Ce chapitre est basé sur la publication [Seifi et al., 2012b] du Journal of Optical Society of America A.

Summary

It has been previously shown that very accurate reconstructions of objects could be achieved by solving the problem in an inverse problems framework. Such approaches however suffer from higher computational times compared to less accurate conventional reconstructions based on hologram back-propagation. To overcome this computational issue, we present in this chapter a coarse-to-fine multi-scale approach to strongly reduce the algorithm complexity. We illustrate that an accuracy comparable to state-of-the-art methods can be reached while accelerating the parameter-space scanning. This chapter is based on the publication [Seifi et al., 2012b] in the journal of Optical Society of America A.

FAST AND ACCURATE MULTI-SCALE APPROACH OF OBJECT PARAMETER ESTIMATION IN DIGITAL HOLOGRAPHY

Time costs of the greedy parameter estimation method

As mentioned previously in chapter 2, the introduced greedy parameter estimation method is shown to accurately estimate the 3D position and size parameters of the objects from their signatures on the hologram. For experimenters who use sample holograms and their 3D reconstructions to configure the imaging setup, the time costs of this method (≈ 7 minutes per particle) is high compared to the light back-propagation methods of § 1.4.2. The most time consuming step of the greedy algorithm is the exhaustive search step, with the complexity of O(N z .N r . N log(N)). Acceleration of this step using hardware (graphical cards and multi-threading on multi-core CPUs) should improve the time costs of the algorithm. In this chapter, we aim to improve the algorithm itself to obtain fast results.

To reduce the costs of this search step, we introduce a multi-scale method (called FAST) which builds a pyramid of down-sampled holograms and performs the exhaustive search step on the down-sampled hologram placed on top of the pyramid. Next, the method employs a sequence of optimization steps descending on the pyramid to reach the full resolution hologram placed at the bottom. We show in this chapter how to configure the parameters to build this pyramid and how to choose the stopping criteria of the optimization steps. We finally show that the accuracy of object parameter estimation with FAST is the same as the greedy algorithm of § 2.4.2. The time costs of FAST is, however, much lower than the greedy algorithm.

This approach provides fast and rough estimations of the particle parameters and gradually refines these estimations. Such intermediate results can serve the user to visualize the preliminary results while the process of refinement is performed as a background task.

FAST is implemented in the Matlab ® toolbox HoloRec3D [Seifi et al., 2013b].

Introduction to multi-scale approach

The previous chapter presented the hologram formation model (particle diffraction, hologram sampling and finite support) for parametric objects (e.g., opaque spherical particles defined by their 3D coordinates and radius). This algorithm finds the maximum likelihood estimation of the parameters by minimizing the weighted difference between the model and the data. The cost function of such minimization problem has several local minima which make finding the global minimum a difficult task. To avoid implementing an intractable global optimization problem, the greedy method introduced in chapter 2 solves this problem in three steps: (i) an exhaustive search step to find a rough estimation of parameters that falls in the main basin of cost function, (ii) a non-linear least squares fitting step that performs a local optimization based on the parameters found from the exhaustive search to find the global minimum, (iii) a cleaning step that removes the signature of the found object to increase the SNR of the signal for the next objects. This algorithm leads to optimal detection and parameter estimation at 3.3 Overview of the method a large computational cost. The most expensive step of this algorithm is the exhaustive search step (i) that performs a pattern matching task to find the closest pattern from a big dictionary of diffraction patterns. This dictionary contains the diffraction patterns corresponding to a sampled parameter search space. To reduce the time costs of the exhaustive search step, the width of the diffraction pattern dictionary can be reduced by down-sampling the hologram. Performing the exhaustive search on the down-sampled hologram using a down-sampled dictionary leads to a rough estimation of the particle size and position that can further be refined by local optimization (i.e., model fitting) on increasingly higher-resolution versions of the hologram. We first give an overview of the method, then detail how the hologram multi-scale pyramid is built, and finally design adaptive stopping criteria.

Overview of the method

In the application of spherical objects, the hologram model is parameterized by the 3D coordinate and radius of the objects. The exhaustive-search step of the greedy algorithm of chapter 2 therefore requires exploring a sampled 4D parameter space. To assure finding the main basin of cost function which means having sufficient accuracy in the rough estimation of (x, y, z, r), hundreds of (z, r) pairs may need to be considered for each (x, y) location, leading to hundreds of millions or billions of quadruples (x, y, z, r) that should be tested. Shift-invariance of the PSF can be exploited using the Fast Fourier Transform (FFT). The search is thus reduced for each iteration of the greedy algorithm to find the maximum value of hundreds of weighted correlation maps in the exhaustive-search step (each weighted correlation map requires 7 FFTs for each (z, r) pair [Soulez et al., 2007b]). This is then repeated for each particle unless multiple particle detection is implemented [Needell & Tropp, 2009]. To further reduce computational complexity, we propose to carry out the exhaustive search on a down-sampled version of the hologram, as described in algorithm FAST (Fig. 3.1).

Before getting into the detail of each step, here is a sketch of the algorithm. Since exhaustive search is the computational bottleneck, we build a multi-resolution pyramid from the hologram (see Fig. 3.2(a)) and perform an exhaustive search only on the coarsest scale. Local optimization is then performed on increasingly fine scales, restarting numerical optimization each time from the parameters obtained at the previous (coarser) scale. The down-sampled hologram at level k is computed by low-pass filtering and down-sampling the full-resolution hologram d by a linear filter F (k) (see § 3.4.1) where T k corresponds to the period of down-sampling on the level k of a dyadic pyramid where we have T k = 2 k . We denote down-sampled holograms as d (k) in algorithm FAST (Fig. 3.1).

Performing the exhaustive search step on a coarse resolution hologram not only reduces the number of (x, y) samples by a factor T 2 k (and the size of images on which 2D FFTs are computed) but also makes the cost function C W smoother (see chapter 2 Eq. 2.16 for the definition of the cost function). Sampling of parameters z and r
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Algorithm FAST (Fast and Accurate multi-Scale esTimator of size and location of particles)

Input: hologram d, parameters of the setup (laser wavelength, pixel size, range of plausible particle locations and radii Ξ).

Output: estimated parameters of the N d detected particles:

{x i , y i , z i , r i } i=1,...,N d choose a down-sampling factor k max ⊲ see § 3.4.3 repeat ⊲ particle detection loop d k max = F (k max ) d ⊲ down-sample hologram d by the period T k max i ⋆ ← arg max i d k max , g k max i W 2 + g k max i 2 W ⊲ do exhaustive search on coarsest scale (x, y, z, r) ← (x i ⋆ , y i ⋆ , z i ⋆ , r i ⋆ ) ⊲ set obtained parameters as initial values k ← k max while k ≥ 1
⊲ for all resolution levels of the pyramid

d (k) = F (k) d ⊲ down-sample hologram d by the period T k (x, y, z, r) ← arg min x,y,z,r,α C W (d (k) , g (k) )
⊲ refine particle parameters, stop according to § 3.5

k ← k -1 ⊲ descend on pyramid T k ← ⌊T k+1 /2⌋
⊲ calculate T k for finer scales end while if α > α min and (x, y, z, r) ∈ Ξ ⊲ parameters fulfill conditions for being a particle store (x, y, z, r)

⊲ add parameters to the collection of detected particles else stop ⊲ return already detected particles and finish end if end repeat 3.1) with k max = 0 (single-scale approach). As shown here, this coarse detection should be found inside the main basin of the cost function whereas the coarse estimation using pyramidal multi-scale algorithm could be outside the basin.

(i.e., depth and radius of a particle) can also be made coarser in this way. Fig. 3.2(a) illustrates the widening of cost function C W when coarser resolution holograms are considered (a profile of C W along axis z is drawn). The risk of getting trapped in a local minimum is then much weaker, which relaxes sampling constraints that guarantee being within reach of the global minimum. We discuss convergence of our multiresolution algorithm to the global minimum in § 3.6.

We now detail how each step of the algorithm is performed in order to reach an accuracy comparable to that of the slower single-resolution approach. The diffractionpattern model g is previously introduced in chapter 2 Eq. 2.11. In the next section we describe down-sampling and filtering, which is followed by the description of the choice of the maximum down-sampling period in § 3.4. We detail the stopping criteria for each refinement step in § 3.5.

Construction of the multi-resolution pyramid

Filtering and down-sampling

The hologram at level k is obtained by application of linear filter F (k) on the original hologram d:

d (k) = F (k) d (3.1)
where F (k) is a (N/T 2 k ) × N matrix and contains convolution kernels transforming the N-pixels hologram d into a coarser scale hologram d (k) with T 2 k times less pixels. To prevent severe aliasing effects, F (k) must have low-pass behavior. In the next section, we propose the low-pass filter selection based on the time costs and efficiency of the possible choices.

Low-pass filter selection

To choose the low-pass filter, two facts should be kept in mind: (i) after downsampling, the noise should be left uncorrelated; (ii) the closed form of filters and their first derivatives in spatial domain and Fourier domain, that are required for the calculation of the hologram model and the CRLBs, should be simple and fast to compute.

To satisfy the first condition, the choices are limited to low-pass filters with spatial supports (in pixels) smaller than the sampling period. The mean filters and B-splines [Unser et al., 1993] are the common choices of such low-pass filters.

To decide between the average filter and B-splines, we deduce the image formation model of a filtered hologram with an object ϑ j placed at z j considering the filter as f

d f (x, y) = ( hz j * ϑ j ) * f (x, y) .
The constraints on the size of object (r j ) and the filter which is T T pixels (see Appendix E) is formulated as

3.4 Construction of the multi-resolution pyramid 10π(r j + T κ/2) 2 λz j < π (3.2)
where κ represents the pixel width. Under such conditions, the image formation model changes into

g f j (x, y) ≈ h z j • F(ϑ j * f ) (x, y) (3.3)
The goal is then to choose a filter which results in a fast convolution term F(ϑ * f )(x, y) and its derivatives.

For an average filter with the 2D support T 2 pixels, Eq. 3.3 is deduced as

g f j (x, y) ≈ h z j • F(ϑ j ) • F(Rect T ) (x, y) = h z j (x, y)F(ϑ j )(x, y) ≬ T (x, y)
where

Rect T (x, y) =        1 (T ) 2 , if x κT ≤ 1 & y κT ≤ 1 0, otherwise and 
≬ T (x, y) = F(Rect T )(x, y) = T 2 sinc( πκx λz j )sinc( πκy λz j ) g f j (x, y) ≈ T 2 h z j (x, y)F(ϑ j )(x, y)sinc( πκx λz j )sinc( πκy λz j ) (3.4)
Comparison between Eq. 3.4 and the same deduction of filtered model using Bspline filters (presented in Eq. 5.33 of Appendix G) shows that B-splines have smaller frequency support compared to the mean filters. However, the condition (ii) of having simple analytical expression of the filtered image and its gradient can not be easily satisfied, i.e., adequate changes should be made to the modeling (and consequently the calculation of CRLBs). In this study, we considered only average filters to build the multi-resolution pyramid to obtain lower cost results. A trade-off must be found between the noise reduction, the aliasing prevention, and the preservation of high frequency content (below Nyquist frequency) for an accurate estimation. Determination of an optimal filter for the pyramid construction is left as further work.

In the rest of this section, we average T 2 k values in pixels together (in level k of the pyramid i.e., assuming T = T k ) before down-sampling to reduce aliasing while leaving noise uncorrelated (so that inverse covariance matrix of noise remains diagonal). In the following, F (k) is an averaging filter followed by a down-sampling operation.

FAST AND ACCURATE MULTI-SCALE APPROACH OF OBJECT PARAMETER ESTIMATION IN DIGITAL HOLOGRAPHY

Maximum down-sampling period selection

The maximum down-sampling period T k max defines the resolution for which exhaustive search is performed before successive refinements by local optimization are done (see algorithm FAST in Fig. 3.1). Two reasons for not selecting an arbitrarily large downsampling factor are:

1. using lower resolution holograms reduces the accuracy, especially on z and r, and may lead to initial estimates of the parameters (x, y, z, r) placed out of the main basin of the cost function (the basin which contains the actual 3D location and size of the particle).

2. down-sampled models are known in closed form for small down-sampling factors.

In the following sections, we aim to deduce the criteria on the maximum downsampling period satisfying the before-mentioned conditions.

(i) the criterion concerning the accuracy of parameter estimation

We address the first issue by requiring that the down-sampling period T (i) k max is such that a significant number q of diffraction fringes are still visible on coarse-scale hologram d (k) . The average filtering which is performed before down-sampling acts as an amplitude modulation multiplying the signal by two cardinal sine functions (on lateral dimensions X and Y). To keep q fringes on the down-sampled hologram, the first zero of these cardinal sine functions should appear after q maxima of the sine function of the model. The radial coordinate ρ q corresponding to the q th fringe is given by:

πρ 2 q λz = q2π + π/2
The x-coordinate x 0 of the first zero of the cardinal sine function of filtering in the x direction is given by:

πx 0 T k κ λz = π
where κ is the pixel size. Therefore to have more than q fringes at x 0 , ρ q should be less than x 0 :

(2q + 1/2)λz < λz κT k

Construction of the multi-resolution pyramid

We thus derive the maximum down-sampling period T k max and height of the pyramid k max as :

T (i) k max =            1 κ λz min 2q + 1/2            , k (i) max = log 2 (T (i) k max ) (3.5)
where the brackets represent the floor function and z min the a priori minimum depth of a particle. We discuss in § 3.6 and show on our experiments in § 5.5 that setting q equal to 10 is enough to obtain correct estimates of particle parameters.

(ii) the criterion concerning the closed form of the filtered pattern

The second issue relates to the ability to express the down-sampled models in closed form. This is essential for fast estimation of Mahalanobis distance (mean square error) between coarse holograms and down-sampled models during local optimization steps. According to Eq. 5.16 in Appendix E, hologram convolution with a kernel of limited size amounts to an amplitude modulation of the Fresnel function. The coarseresolution model g (k) i is then obtained by applying a window on the original model expression:

m (k) i (ℓ) = m i (ℓ ′ ) • f (ℓ ′ ) (3.6)
where m (k) i (ℓ) is the ℓ th pixel of coarse-resolution model g (k) i , ℓ ′ is the index of the corresponding pixel in full-resolution model, and f is the Fourier transform of the low-pass filter (an averaging filter in our case) used to build the pyramid. Computation of the coarse-resolution model g (k) i at level k (which contains N/T 2 k pixels) requires only N/T 2 k evaluations of model m i and frequency responses f (i.e., far less than N evaluations for the full-resolution hologram/model).

To derive Eq. 3.6 it is assumed that the filter and the aperture of the objects have a small support. This last assumption defines a second constraint T (ii) k max on the downsampling period (see Ineq.(3.2)). Considering a maximum a priori radius for particles r max , and sensor size L (hologram width), another upper bound on T (ii) k max ( and k max respectively) is calculated. This upper bound on the size of filter f can be reformulated considering maximum aperture of objects (maximum radius) as r max and width of filter as T . The resulting filter has the length r max + T κ/2 on each direction where κ is the pixel width (pixels are assumed to be square). To ensure the satisfaction of the inequality in Eq. 3.2, the following should stand :

10π(r max + T κ/2) 2 λz min < π (3.7)
To have an order of magnitude for z min we take minimum z such that the diffraction patterns obey the Nyquist theorem [Kreis, 2005]: Zoomed-in down-sampled hologram considering both Eq. 3.5 and Eq. 3.9 as the criteria (T k max = min(T (i) k max , T (ii) k max ) = 4), (c) Zoomed-in down-sampled hologram using only Eq. 3.9 for the downsampling factor (T k max = 9). Most of the high-frequencies are filtered out which makes it impossible for exhaustive search to find a relevant coarse estimation of parameters.

z min = z Nyquist = Lκ 2 λ (3.8)
where L is the width of the sensor in pixels. Finally using Eq. 3.7 and Eq. 3.8 an upper bound on the size of the filter in pixels could be found as:

T < 2( L 10 - r max κ ).
Thus the maximum down-sampling period T k max and height of the pyramid k max are :

T (ii) k max =          2        L 10 - r max κ                 , k (ii) max = log 2 (T (ii) k max ) (3.9)
where the brackets represent the floor function.

In order to satisfy both conditions of Eq. 3.5 and Eq. 3.9, we choose the downsampling factor as: min(T (i) k max , T (ii) k max ). Fig. 3.3 shows the effect of down-sampling using only Eq. 3.9 as well as considering both criteria in Eq. 3.5 and Eq. 3.9.

Stopping criteria for successive local optimizations

As already explained in § 2.4.3, the accuracy of parameter estimation could be estimated using the Cramer-Rao lower bounds (CRLBs). This approach can be extended

Convergence

to the evaluation of the accuracy of 3D particle location and size estimates of downsampled holograms. Fisher information matrix can be easily derived for resolution level k of the multi-resolution pyramid:

[I] (k) i, j = T 2 k 2σ 2 ∂g (k) (θ) ∂θ i , ∂g (k) Vθ) ∂θ j W (3.10)
where θ i , θ j ∈ {x, y, z, r}. Using Eq. 3.10 to obtain the Fisher information matrix, the standard deviation on parameter estimation can be simply calculated and used as the stopping criteria (see § 2.4.5) for consecutive local optimization steps i.e., the optimization on every level of pyramid is stopped if the changes in the parameters are less than the CRLBs calculated for that level of pyramid.

Convergence

In the greedy algorithm presented in § 2.4.2, maximum likelihood estimation of particle parameters requires minimization of the non-convex cost function C W (d, g). Local optimization starting from an initial guess θ 0 will lead to the global minimum θ ⋆ only if θ 0 is already in the convexity region (i.e., the main basin of the cost function) Θ(θ ⋆ ).

The exhaustive search step needs to perform a dense enough sampling of parameters space to ensure that region Θ(θ ⋆ ) is probed. As noted in § 3.3, low-pass filtering applied to the hologram to produce the coarseresolution levels of the multi-resolution pyramid gives better behaved cost-functions (i.e., with smoother and larger main basin). This effect is visible on profiles along the z axis of cost functions plotted in Fig. 3.2(a). Successive refinements are obtained by local optimization of the cost function on progressively finer resolutions. Such refinements also help to find the global minimum θ ⋆ even if the initial guess obtained on the coarsest scale θ 0 is not inside the basin Θ(θ ⋆ ): Fig. 3.2(b). The global convergence condition θ 0 ∈ Θ(θ ⋆ ) is relaxed into a sequence of convergence conditions at each scale:

                       θ 0 ∈ Θ(θ ⋆ (k max ) ) θ ⋆ (k max ) ∈ Θ(θ ⋆ (k max -1) ) . . . θ ⋆ (1) ∈ Θ(θ ⋆ ) (3.11)
We show in the next section that, with our choice of k max , these conditions are fulfilled in practice.

Experiments and results

To quantify the performance of the proposed multi-scale algorithm for particle detection and sizing in DH, simulated and real holograms were processed using the stan- dard inverse problems approach and our multi-scale algorithm. We used the Matlab as the programming environment. The reported time gain results are obtained using the FFTW library [Frigo & Johnson, 2012] and OpenMP [Board, 2013] to exploit multithreading on a 6-core CPU for the computation of the forward and backward Fourier transforms and the models required for the optimization steps. In addition, a close estimation of the models are calculated by interpolating the values of a precomputed table to reduce the calculation time. This section presents the results obtained from simulated and experimental holograms. Monte Carlo simulations are performed in two different test cases to study the speedup factor and the accuracy of FAST compared to the original greedy algorithm of § 2.4.2. The hologram processing method is then validated on experimental holograms from a recent study [Chareyron et al., 2012].

Simulations

To study the multi-scale approach on particles with different radii and different depth position, two sets of simulations were performed to estimate (i) the speedup brought by our multi-scale approach; (ii) the accuracy of our algorithm compared to the standard single-scale inverse problems approach.

For the first case, simulations are performed for 100 holograms each containing 5 particles with randomly chosen coordinates. The original model of Eq. 1.16 is used to have holograms with all first and second order terms. The application parameters are presented in Table . 4.1. The maximum down-sampling factor calculated from Eq. 3.5 and Eq. 3.9 for preserving 10 fringes (q = 10) corresponds to the criterion (ii) in § 3.4.3 T k max = min {9, 4} = 4 and so k max = 2.

The inverse problems approach was then used to process holograms with and with- 3.2: Accuracy and computational time when going from a single scale to a pyramid with 3 scales. Accuracies are computed based on numerical simulations and are thus higher than what would be achievable on real data with imperfect modeling of the setup (see § 4.4.2). Accuracies are comparable in both cases while the multi-scale method was about 4 times faster. We give the time required for the last (fine scale) parameter refinement compared to the first steps (either a single exhaustive search on the finest scale when k max = 0 or an exhaustive search on the coarsest scale followed by successive refinements on finer scales). out (i.e., k max = 0) the multi-scale approach. The results show accurate particle detection and parameter estimation for both configurations. The RMSE of the particle coordinate estimates as well as the computational time costs are shown in Table . 3.2. The accuracies indicated in this table are calculated for numerical simulations and are therefore better than achievable accuracies of the algorithm on real data. As indicated in this table, the multi-scale algorithm has virtually the same accuracy for k max = 2 as for the single-scale case (k max = 0). However the time cost of the first one is more than four times less than the second one, which justifies the interest in using the pyramidal multi-scale algorithm. According to our results shown in this table, the time costs of local optimization step of both algorithms is the same. The comparison between the exhaustive search step of single-scale approach with time cost of multi-scale algorithm excluding the last local optimization shows the time gain equal to a factor of 10. The overall time gain was on average equal to a factor of 4.2 .

The second set of the simulations was dedicated to the study of the possible limitations of multi-scale approach. Apart from the limitations on the number of the pyramid's levels (which is explained in § 3.4.3), we performed several simulations on 100 holograms decreasing the SNR to check the limitations of our multi-scale method. In all our experiments, the results indicate that where ever the one-scale approach succeeds in the detection and parameters estimation, so does the multi-scale approach. This result is not surprising since the filtering on the upper levels of multi-scale approach does not change the statistical distribution of noise of the global least squares fitting problem.We found a lower bound of 0.3 on the SNR for the previously used application parameters. 3.8 Discussion and conclusion

Experimental holograms

To ensure that the performance of the proposed algorithm remains the same for real data, it was also tested on experimental holograms of mono-dispersed water droplets [Chareyron et al., 2012]. One captured hologram is shown in Fig. 3.4:(a). The droplets were generated by a piezoelectric jetting device manufactured by MicroFab Technologies. This injector produces close to mono-dispersed droplets. The parameters of this experiment are presented in Table . 3.1.The qualitative assessment of results shows low residuals in the cleaned holograms (see Fig. 3.4) and the quantitative performance assessment was carried on to validate the pyramidal multi-scale algorithm. As for the simulated holograms, the accuracy of estimation for multi-scale algorithm was the same order of magnitude as for the single-scale inverse problems approach i.e., the discrepancy between estimation with single-scale and multi-scale was smaller than the achievable accuracy (10 -8 m for x and y, 10 -6 m for z and 10 -8 m for r). In this case, the time gain using multi-scale algorithm (Fig. 3.1) was a factor of 3.

Discussion and conclusion

To mitigate the time costs of the greedy algorithm presented in chapter 2 § 2.4.2, we have introduced a multi-scale algorithm which preserves the optimality of the inverse problems approach over classical approaches (e.g., hologram diffraction based methods). The main feature of this algorithm is to replace the computationally intensive exhaustive search by a coarse-to-fine processing. We analyzed the maximum downsampling that is possible while avoiding erroneous particle localization. We have validated our algorithm using a collection of 100 simulated holograms and real holograms.

The results indicate a speedup of a factor of four for a three layers multi-scale pyramid. This improvement makes it feasible to use inverse problems approaches to track parametric objects in videos of holograms (e.g., spherical particles time-resolved tracking in 3D with radius monitoring).

Choosing the sampling step sizes along z and r dimensions for the exhaustive search is often done in an over-conservative manner. The solution followed in this study was to use the shape of the cost function. Assuming that the size of the main basin of the cost function and its curvature change accordingly, one can estimate the minimum basin size from the value of parameters leading to the narrowest cost function (i.e., smallest CRLB). We chose the sampling step size such that the smallest basin gets 3 samples.

The time gain achieved by the multi-scale algorithm depends on the application. The algorithmic complexity of FAST is

O(N/T 2 k max (log 2 N -2log 2 (T k max )) • N z • N r + C • N), with N z , N r
as the number of samples in z and r dimensions respectively and C a constant of order log 2 (N). Computation of down-sampled versions of the hologram is negligible compared to the other steps of the algorithm (averaging followed by down-sampling is done in O(N)). Thus for a wide range of z and/or r (i.e., larger
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parameter search space), the time cost of exhaustive step is the most significant one resulting in higher time gain of algorithm FAST.

In addition, the time gain results of simulations are obtained using an implementation of fftw library which allows the parallel calculation of forward and backward Fourier transforms on six threads (using six CPU cores). Our local optimizations are performed on a single thread (using one CPU core), we thus expect to have a larger gain by parallelizing the local optimization steps as well.

The multi-scale algorithm results in faster particle detection and estimation only for particles located in the field of view of the camera, for the out-of-field particles' signatures contain only high frequencies which would be filtered out during the downsampling step. This limits the use of the multi-scale algorithm to in-the-field detection.

Thanks to the successive refinement steps, the proposed coarse-to-fine approach provides an early estimation of parameters with additional accuracy after each refinement step. These coarse results can provide a quick feedback for huge stacks of holograms generated by high-speed cameras while off-line processes can refine the estimations using the finer scales.

4

Dictionary redundancy reduction for fast pattern matching Résumé Le but de ce chapitre est de montrer que les méthodes de reconnaissance de formes peuvent être utilisées dans le cadre de l'holographie numérique pour effectuer la táche de détection, classification et estimation de position d'objets directement à partir de l'hologramme et non à partir du champ optique restitué. Pour surmonter les coûts de calcul de la recherche exhaustive de l'algorithme glouton, nous avons proposé dans un papier récemment accepté (à paraître dans le Journal of Optical Society of America A [seifi [b]]) une approximation du dictionnaire des figures de diffraction dans un espace de plus faibles dimensions en utilisant une décomposition en valeurs singulières tronquée. Il est démontré qu'une bonne reconnaissance et un positionnement d'objets précis peut être obtenu avec un coût de calcul réduit en utilisant un tel dictionnaire de faible dimension. La structure de ce chapitre est la suivante: dans le paragraphe 4.1 l'algorithme glouton pour l'ajustement de modèle est généralisé á un algorithme de classification d'objet, dans le paragraphe 4.2, nous donnons une interprétation de l'utilisation de la SVD pour de la reconnaissance d'objets et le positionnement. Dans le paragraphe 4.3, nous présentons une formulation du problème et donnons les avantages à utiliser la SVD dans un algorithme glouton pour réduire le nombre d'éléments du dictionnaire des figures de diffraction. Nous rapportons les résultats expérimentaux dans le paragraphe 4.4 et nous concluons ce chapitre au paragraphe 4.5.

Summary

We aim in this chapter to show that pattern recognition methods can be used in the context of digital holography to perform the task of object detection, classification and position estimation directly from the hologram rather than from the reconstructed optical field. To overcome the computational costs of the exhaustive search of the greedy algorithm, we have proposed in a recently accepted paper (to be published in 4.2 Lower dimensional dictionary of modes general classes of objects is restricted by the explosion of the size of the dictionary of all diffraction-patterns that must be matched with the hologram.

To reduce such computational costs, we show that using the dimensionality reduction method, dictionary approximation preserves enough variability between diffraction patterns to perform correct discrimination and accurate 3D localization. The dimensionality reduction is based on a singular value decomposition (SVD) of the dictionary to identify most significant modes. Good performance for object recognition and localization is demonstrated at a reduced computational cost using such a low dimensional dictionary.

In non-conventional imaging techniques like MRI, SVD is used as a sparsifying transform [Hong et al., 2011]. In tomography ([Gao et al., 2000, Markel et al., 2003, Süzen et al., 2010]) and diffuse optical imaging [Gibson et al., 2005], SVD is employed as a regularization/inversion tool. SVD has been used previously as a low rank approximator in vector-sensor signal processing [Le Bihan & Mars, 2004]. We show in this chapter that SVD can reduce the algorithm complexity of digital hologram reconstruction by a large factor. To the best of our knowledge, dimensionality reduction methods are not previously used in the field of digital holography.

Lower dimensional dictionary of modes

The idea of using dimensionality reduction methods for the task of object recognition is well practiced in the domain of conventional imaging. Let us consider a face recognition application. The goal of such application is to recognize the person from their face in a query photo provided a face dictionary of several people. The application of face recognition can be formulated as a classification task where every person defines one class. To perform an efficient face recognition, a famous work [Turk & Pentland, 1991] employs dimensionality reduction methods (e.g., singular value decomposition) on the face dictionary to calculate eigen-faces in the learning phase. The eigen-faces with largest singular values form a low dimensional sub-space that efficiently captures the variabilities between all the dictionary faces. Every face of the dictionary is projected on the eigen-face basis in the learning phase to obtain a set of projection vectors for every class. The average of these vectors results in a mean projection vector that represents that class in the reduced vector space. In the recognition phase, the query image is projected on to this sub-space of the eigen-faces obtaining the projection vector κ. The closest face class is determined in terms of the minimum Euclidean distance between κ and the class representatives. Basics of such method is illustrated in Fig. 4.1-a.

Inspired by this method, we propose to use singular value decomposition (SVD) to calculate a lower dimensional sub space which efficiently captures the variabilities between the dictionary columns. This sub-space is spanned by the first singular vectors of the dictionary and the collection of these singular vectors is called the mode dictionary. The difference between the dictionary patterns come from the 3D position and the object shape. Let us separate the effect of 2D lateral position of objects from the other parameters (i.e., depth and shape parameters). Considering the shift invariant PSF of the imaging technique, it is relevant to consider only the dictionary of the geometrically centered patterns O ∈ R N×N z .N r for the purpose of dimensionality reduction. The x-y translation of the patterns can be calculated using the correlation operator.

The SVD of the matrix O is a matrix factorization as

O = USQ t
where U ∈ R N×N is a unitary matrix containing the left singular vectors (i.e., mode dictionary), S ∈ R N×N z .N r is a rectangular diagonal matrix with non-negative values only on the diagonal containing the singular values and Q ∈ R N z .N r ×N z .N r contains the right singular vectors (see Fig. 4.2 for an illustration on SVD). According to the Eckart-Young theorem [Eckart & Young, 1936], the best rank-k approximation of O can be calculated using k of its left singular vectors corresponding to the k biggest singular values. The error of this approximation with respect to the induced norm (also known as the operator norm) of the matrix is equal to s k+1,k+1 which is the k+1 th element on the diagonal of S. Considering the approximation of the geometrically centered dictionary O accordingly as

O ≈ k i=1 u i s i q t i ,
where u i and q t i represent the singular vectors associated with the first k singular values s i of O, any diffraction pattern o j is approximated as

4. DICTIONARY REDUNDANCY REDUCTION FOR FAST PATTERN MATCHING o j ≈ k i=1 u i β i, j , (4.1) 
where

β i, j = o j , u i = s i • q j,i .
The collection of the first k left singular vectors

U (k) = [u i ] i=1.
.k (also called the mode dictionary) efficiently spans most of the variabilities between the diffraction patterns of O. This low dimensional orthonormal basis can be used to compute the closest rank k approximation of O. In this context, β ∈ R k×N z .N r is calculated once and corresponds to the projection of every pattern on the sub-space U (k) .

Let us recall the correlation terms that are to be calculated during the exhaustive search of the greedy algorithm:

d, ḡl W ḡl 2 W (4.2)
Using the same argument as in § 2.4.2, we first consider the geometrically centered diffraction patterns and then calculate the correlation maps with FFTs. The approximation of the geometrically centered dictionary results in an approximation of the nominator of the correlation term as

d, ōj W ≈ k i=1 β i, j κ i (4.3)
where

κ i = d, u i W ∀i = 1 : k (4.4)
This formulation implies that the correlation terms between the patterns and the data can be approximated using a linear combination of the few precomputed terms κ i = d, u i W as shown in Fig. 4.3-b. It should be noted that during every iteration of the introduced greedy algorithm, the exhaustive search calculates the correlation terms between the residuals and all the patterns present in the dictionary. We propose here to replace this big number of correlations with the proposed linear combination (i.e., Eq. 4.3) of a few correlation terms. For every object, the exhaustive search has a complexity of N z .N r N log(N) whereas using the proposed orthonormal basis the complexity is k N log(N) with k << N z .N r . Bigger parameter ranges increase N z .N r but they do not affect k accordingly, which shows the significance of the time gain in the applications with big ranges for parameters like depth and radii of the objects. The denominator of (Eq. 4.2) can either be precomputed, or can be approximated using SVD.

It should be noted that huge dimensionality of O makes it infeasible to calculate its full SVD. An alternative is to use the truncated SVD [Simon & Zha, 2000] Note that a magnification factor 1.42 is present in depth and radii of the droplets of column four.

The laser wavelength of all these applications is 0.532 µm.

only the first k singular values and singular vecgtors of the dictionary. This method uses Lanczos bi-diagonalization [Larsen, 1998] of O to simplify the problem to the calculation of the SVD of a large sparse matrix.

Experimental results

In this section we report the results of our method on both simulated and real holograms. The implemented method uses FFTW [Frigo & Johnson, 2012] library and OpenMP [Board, 2013] to exploit multi-threading on a six-core Xeon CPU for the calculation of the forward and backward Fourier transforms and the models. PROPACK [Larsen, 2012] is used to calculate the truncated SVD of the dictionary employing an iterative Lanczos method.

Object discrimination and location: illustration with holograms of digits

We illustrate, using simulations, the capability of the proposed method to correctly identify and locate several digits by matching diffraction patterns directly on digit holograms. We aim to find the minimum rank of dictionary resulting in correct recognition and location of all digits. First, we illustrate our reconstruction results of the hologram of Fig. 1.10 which contains overlapping and non-overlapping digit patterns. Inspired by the decay rate of the singular values of the dictionary (see the green curve in Fig. 4.5), we verified that a rank 5 approximation of the dictionary results in correct object recognition and depth estimation for non-overlapping objects (i.e., the digits 5 and 0 in Fig. 1.11 were recognized and located within pixel accuracy). However, the overlapping patterns (i.e., patterns of objects 1,8 and 6 in Fig. 1.11) are not completely recognizable using only the first 5 modes. Our experiment showed that at least 16 modes are necessary to obtain an approximation of the dictionary that provides enough information for all the digits to be recognized and located in the 3D volume. In this case, given the relatively small size of the dictionary, a time gain of a factor 3 was observed compared to matching the full dictionary. The setup parameters are presented in Table 4.1.

Next, we study the discrimination power of the method as a function of the noise level and the approximation rank. The goal is (i) to show the effect of noise magnitude on the required rank of dictionary for correct object recognition and location, and (ii) to estimate the minimum required rank for successful discrimination of every digit from the others. The time costs calculated in these experiments are finally used to evaluate an order of magnitude for the time gain of the proposed algorithm in this application.

For the first goal (i) our Monte Carlo simulations contain a set of 10000 holograms of digits. 10 noise level are selected and 100 holograms are simulated for each noise level and for every digit. Changing the rank of the approximation, object recognition is performed to calculate the rate of error of classification. One hologram and the results for one digit (a "2") are shown in Fig. 4.4. As shown in Fig. 4.4-(a-1), a rank 4 approximation of dictionary results in correct recognition of "2" for every level of noise. One of the holograms with noise of σ = 0.01 is shown in Fig. 4.4-(a-2). The setup parameters are presented in Table 4.1.

(ii) Using the same simulated holograms, the second goal is to illustrate the discrimination error of every digit as a function of approximation rank. One of the holograms containing a '2' is shown in shows the error rate of object recognition for all 10 digits for the noise with the standard deviation of 0.31. This plot shows that a rank 6 approximation of the dictionary can correctly classify all digits without error. This plot of error rates validates the choice of the approximation rank.

In practice, performing such a Monte Carlo study is excessive and the plot of singular values (see the green curve in Fig. 4.5) can be used as an alternative to obtain an initial guess of the approximation rank. It shall be noted that the goal of dictionary approximation is to obtain a dictionary which results in the correct object classification and therefore the plot of singular values does not directly give the final approximation rank. The minimum rank of dictionary that results in correct object classification shall be found in an ad hoc manner for every application.

Reconstruction of simulated spherical particle holograms

In this section, we show the results of our proposal on the reconstruction of spherical object holograms. A Monte Carlo experiment is performed to illustrate the accuracy of object sizing and location, and the time gain. This experiment is performed to check the biases and standard deviations of the estimated radii and 3D position using the low rank approximation of the dictionary. The results of using the first 50 modes show that the standard deviations on the estimated parameters are the same order as the Cramer-Rao lower bounds (CRLBs) and the biases of the estimations are negligible; a fact that validates the use of an approximated dictionary in the exhaustive search step of the greedy algorithm (see § 2.4.2). In this experiment, 50 holograms are simulated for a particle placed at the center of the hologram (see Fig. 4.6-a) and another set of 50 holograms are simulated for a particle at the bottom right corner of the sensor (see .The parameters of this experiment are presented in Table 4.1.The first 100 modes of the dictionary are calculated using the truncated SVD algorithm implemented in PROPACK. To find the bias, the search space is sampled by step sizes equal to CRLBs (i.e., δz =15 µm, δr =46 nm). Fig. 4.7 illustrates the evolution of the cost function increasing the number of modes. The cost function is calculated for a neighborhood of z and r parameters around the real particle's coordinates. According to this illustration, the curvature of the main basin with about 10 modes is accurate enough for a coarse detection of the object's coordinates.

The time costs of the mentioned experiment is secondly used to find the time gain of the proposed method. Considering the fact that the results of the rough estimation from the exhaustive search are refined in the local optimization step, the first 5 modes are showed to be enough for a relatively accurate estimation of parameters with a time gain of a factor of 8. The proper dimension of the orthonormal basis can be visually With an increased number of modes, the approximation of the dictionary improves and matching a reference diffraction pattern against the approximated dictionary produces a sharper correlation peak leading to more accurate 3D location. Plotted curves represent the mean square difference between diffraction patterns, i.e., the opposite of their correlation. Reddest curves correspond to the most accurate approximations of the dictionary (using up to 50 modes). The pattern of the dictionary minimizing the mean square difference is in best match with the reference diffraction-pattern and gives the 3D location and diameter of the detected particle.

assessed from the vanishing rate of the singular values as shown in Fig. 4.5.

It shall be noted that in the case of light back-propagation methods using the Fresnel dictionary [Kreis, 2005] (i.e., a dictionary which contains only the Fresnel functions and not the diffraction patterns), SVD does not necessarily speedup the reconstruction. The blue curve in Fig. 4.5 shows the singular values of the Fresnel dictionary in a descending order. As shown in this illustration, the vanishing rate of the singular values is very low, resulting in very inaccurate low rank approximations of the dictionary. Eckart-Young theorem states that the best rank-k approximation of the matrix is the one found by SVD. One can therefore conclude that it is not possible to have an accurate low rank approximation of the Fresnel dictionary. This is not surprising as the 3D capability of holography comes from the difference between diffraction patterns produced by point-like objects located at different depths (i.e., Fresnel function is close to invertible). Extended objects affect the Fresnel function as relative low-pass filters that decrease the significance of high frequencies. These filtering operations introduce correlations between the columns of the dictionary which result in faster vanishing singular values (see the red curve in Fig. 4.5). Accurate low-rank approximations can be obtained in these cases.

Experimental holograms of spherical particles

The last set of experiments contains the reconstruction of captured holograms, using an approximated dictionary. Our experiments show that a rank 5 dictionary is accurate enough to detect and successfully clean all the particles placed in the field of view of the camera (see Fig. 4.8 for a captured hologram and the cleaned one). The full dictionary had 410 centered diffraction patterns. The time gain of the proposed method is then a factor of 8. These holograms (see Fig. 4.8-a) of injected water droplets were captured at the Department of Fluid Mechanics and Acoustics of Lyon (LMFA). The droplets were generated by a piezoelectric jetting device manufactured by MicroFab Technologies. This injector produces mono-dispersed droplets with radii of 31 µm ± 0.5 µm. Other parameters of the test are presented in Table 4.1.

It should be noted that the detection of out the field particles [Soulez et al., 2007b] is very limited using the first modes of dictionary. The signatures of the out of the field objects contain only the highest frequencies and these high frequencies are represented in the later modes of the dictionary. A future work can be directed towards finding a rigorous method of mode selection for out of field detection.

Conclusion

Signal processing methods can perform the object recognition task directly from the digital holograms. To reduce the computational costs of such approaches, we have proposed to obtain a lower dimensional space which captures the inter-pattern variability of the objects' holographic signatures. The calculation of the algorithm complexity shows that the time gain of this approach depends on the application parameters, where the time gain is more notable with large search domains.

Our Monte Carlo studies on the application of spherical objects have shown that the parameter estimation using a low rank approximation of the dictionary is unbiased with a standard deviation comparable to the Cramer-Rao lower bounds. We have also shown that very low rank approximations give results which are accurate enough for the greedy pattern matching method to successfully find the accurate object parameters. To this end, we could achieve a speedup rate of 8 on our video of experimental holograms of water droplets.

To skip the exhaustive step of the greedy algorithm, machine learning approaches may be exploited to learn the non-linear correspondence between the projection vector of the parametric patterns and the pattern parameters. Our preliminary experiment (not included in this thesis) with neural networks has provided an evidence of the applicability of such approaches in digital holography. Expansion of this idea is regarded as a future work.
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Metrological application of in-line digital holography : accurate position and size estimation of evaporating ether droplets Résumé Nous montrons dans ce chapitre que l'holographie numérique en ligne peut être utilisée pour étudier un phénomène 3D dynamique rapide. L'exemple de l'évaporation de gouttelettes d'éther en chute libre est présenté. Nous utilisons l'algorithme glouton non supervisée basé sur une approche de type ≪ problèmes inverses ≫ pour reconstruire avec précision les trajectoires 3D et estimer la taille des gouttelettes dans une gamme de [10 26] µm dans un champ de vision de 7 × 11 × 20 mm 3 . Nous proposons une amélioration de l'algorithme glouton en remplac ¸ant l'étape de recherche exhaustive par une étape de prédiction. Une première expérience avec des gouttelettes non évaporantes nous permet de montrer que la précision de l'estimation des rayons est de 0.1 µm. Avec des gouttelettes s'évaporant, la vapeur autour de la gouttelette déforme les figures de diffraction. Nous utilisons un masque d'exclusion binaire (comme nous l'avons présenté dans le chapitre 2) qui exclut, de l'analyse, les zones pour lesquelles le modèle de formation d'hologrammes d'objet sphérique n'explique pas les données expérimentales. Dans le cas de gouttelettes évaporantes, la précision sur le rayon est de 0.5 µm. La vitesse d'évaporation estimée se trouve proche de la gamme prédite par le modèle théorique. Ce chapitre est basé sur un article récemment soumis à la revue Optics Express.

Summary

It is shown in this chapter that in-line digital holography can be used to study a fast dynamic 3D phenomenon. An example of the evaporation of free-falling diethyl ether
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droplets is presented in this chapter. We use the unsupervised greedy algorithm based on an "inverse problems" approach to accurately reconstruct 3D trajectories and to estimate the droplets' size in a range of [10 26] µm in a field of view of 7 × 11 × 20 mm 3 . We improve the greedy algorithm by using a prediction step that exploits the information on the trajectory to skip the exhaustive search step. A first experiment with non-evaporating droplets established that the radius estimates are accurate to better than 0.1µm. With evaporating droplets, the vapor around the droplet distorts the diffraction patterns in the holograms. We use a binary weighting mask (as discussed in § 2.2) that discards areas for which the model of spherical objects does not explain the signal. We achieve radius estimates better than 0.5µm accuracy for evaporating droplets. Our estimates of the evaporation rate fall within the range predicted by theoretical models. This chapter is based on a recently submitted paper to the journal of optics express [Seifi et al., 2013c].

Droplet size measurement techniques

The goal of this section is to give a brief introduction to the reference size measurement techniques for the studies which involve tracking the evolution of objects size. In fluid mechanics, the study of bubbles and droplets carried by flows essentially relies on velocity and size measurements. The most widely used measurement technique is Phase Doppler Anemometry (PDA) [Sommerfeld & Qiu, 1998]. PDA provides only single-point measurements, it is then incompatible with the tracking of individual particles (Lagrangian tracking). Interferometric Laser Imaging for Droplet Sizing (ILIDS) [Skippon & Tagaki, 1996] and Global Phase Doppler Anemometry [Damaschke et al., 2002] provide alternative solutions to measure droplet (or bubble) size and location in a whole flow section. In theory, these techniques can be extended to 3D particle location but in practice, their depth of field is limited to the small thickness of a laser sheet. Small displacements in depth, perpendicular to the lens, can be considered allowing for example the measurement of a third component of velocity [Sugimoto et al., 2006], but they remain essentially 2D as the measurement volumes are much more extended transversally. Lagrangian tracking of evaporating droplets requires a fast and real 3D imaging system with a full 3D measurement volume, large enough to contain a significant part of a droplet trajectory. To this purpose, digital holography is a very promising technique, allowing both 3D location and droplet size tracking with a good temporal resolution.

Digital holography is being increasingly used in applications that require microobjects tracking (e.g., [Dixon et al., 2011, Verpillat et al., 2011, Zhang et al., 2011]). Contrary to off-axis setups, the in-line setup (i.e., the Gabor setup) is less sensitive to vibrations because it does not involve beam splitters, mirrors and lenses. It also exploits the whole frequency bandwidth of the sensor to encode accurately the depth and the size of the objects on the holograms. To be able to compare our results to the state of art methods, let us detail the studies which use digital holography for particle 3D reconstruction and size estimation in § 5.7.

In this chapter, we introduce the application of evaporating diethyl ether droplets. We propose to use the inverse problems approach (the greedy algorithm for parametric objects) to reconstruct the object volume. We present the hologram recording setup and the calibration step that is used to identify the magnification factor of the setup all in § 5.2. We then benefit from an exclusion mask to increase the accuracy of reconstruction in § 5.3. We in addition replace the costly exhaustive search by a parameter prediction step that is inspired by the trajectory of free-falling droplets in § 5.4. In § 5.5, we present our results on non-evaporating and evaporating droplets and we show that accurate estimations of evaporation speed and droplet radii are obtained.We illustrate in § 5.6 that the assumption of having white and Gaussian noise is still relevant. In § 5.7 we compare our results with the state of art methods that use digital holography in particle size estimation and we show that our results are significant. We conclude this chapter in § 5.8.

Experiments

In this section the recording setup (parameters, topology, etc) and the calibration step which is used to account for the magnification introduced by the diverging illuminating laser beam are described.

Recording setup of lensless in-line digital holography

The diethyl ether droplets are generated by a piezoelectric jetting device manufactured by MicroFab Technologies (Fig. 5.1). This injector makes mono-dispersed droplets with radii of 31 µm ± 0.25 µm [Chareyron et al., 2012]. The droplets are produced at distances ranging from 45 cm to 52 cm of a 800 × 1280 pixel Phantom V611 camera with pixel size of 20 µm and fill-factor of 0.56 (i.e., active area over total area of pixel). The frame rate is set to 620 frames per second. The illuminating laser beam is produced using a Nd:YVO4 laser (Spectra-Physics, Millenia). The diverging laser beam introduces a magnification factor (see § 5.2.2) of approximately 2.6 in the system. The experimental holograms have a signal to noise ratio ranging from 5 to 9 (i.e., ratio of the magnitude of the signal to the standard deviation of noise). Given the magnification and in order to investigate the whole evaporation process, it proved necessary to capture three sets of holograms. The set zero captures the holograms of the droplets being injected into the air. The injector's diffraction pattern is visible on this set. The sets one and two capture the holograms from the setups with relative translations of 7.5 mm and 15 mm compared to the first setup (see Fig. (1)

(2) 
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Calibration

To perform the calibration step, holograms of a glass reticle with a linear scale (Edmunds Optics, #62-252) are captured moving axially the object. First, the reticle is placed at a distance of z 0 = 473.5mm from the sensor and its hologram is captured. Second, it is moved in a depth range of 10mm around the first position with steps of 1mm and the corresponding holograms are captured. Next, these holograms are processed to compute the in-focus images. Fig. 5.4-a shows the reconstruction of the calibration hologram in the reticle in-focus plane for z 0 distance. The reticle's grading is used to calculate the magnification with an estimated uncertainty of approximately 0.005. A regression routine is finally used to calculate the magnification formula as a function of depth as shown in Fig. 5.4-b. The regression results in the following magnification formula which is used later to transform the estimated parameters (x e , y e , z e , r e ) into the object reference frame coordinates (x n , y n , z n , r n ): m = 7(z n -473.5 × 10 -3 ) + 2.36 (5.1)

Use of an exclusion mask

We have already mentioned the advantage of the weighting mask W that is used in the exhaustive search step of the greedy algorithm in zero-padding of data to get accurate correlation maps from FFTs. Another advantage is to exclude pixel regions where the parametric model can't explain the data. A closer look to Eq. 2.11 reveals that the value of the diffraction pattern model for spherical particles on the center of every 
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els of non-evaporating droplets is given on Fig. 5.6. It compares the radial mean profile of the diffraction pattern of an evaporating droplet, with the radial mean profile of the closest fit for this droplet, and the radial mean profile of the residuals after cleaning. However, this visualization does not facilitate the comparison for radial distances more than 300 pixels (corresponding to high frequencies). We therefore show on As discussed later in the manuscript, the evaporation process stops when the droplets reacha certain radius. At this point all the ether has been evaporated and the vapor is not present around the droplet anymore. The high intensity signal is therefore not present anymore in the diffraction pattern of the droplet. Fig. 5.7-(a-1) contains the spectrogram of the radial mean profile of data on a non-evaporating droplet of Fig. 5.5-(a-1) (marked with a red cross). A close look to the colorbar values of Fig. 5.7-(a-2) shows perfect cleaning of the signal for non-evaporating particles in presence of non-Gaussian noise (the high intensity residuals of evaporating droplets) thanks to the binary mask. The magnitude of the residuals show that the chirp function is completely cleaned from the signal. shows the spectrogram of the radial mean of an evaporating droplet of Fig. 5.5-(a-1) (marked with a green cross). The spectrogram of the residuals of this cleaned droplet is presented in . As visible in this image, the high frequency components of the signal are removed from the residuals which implies a close fit of the model with data in high frequencies. However, some low frequency parts of the signal are not fitted well which suggests a discrepancy between the used diffraction pattern model and the real-life diffraction pattern of an evaporating droplet.

The exclusion mask is useful in the parameters estimation of evaporating diethyl ether droplets to prevent the estimation from being biased. However, a future work consists in modeling the hologram including the signature of the evaporated gas around the spherical droplet (A paper is going to be submitted soon to the journal of optical society of America A that addresses the new diffraction pattern model. The author of this thesis is a coauthor of that paper). It should provide further information on the evaporation phenomenon which is mainly coded in the low frequency part of the signal.

The option of using masks is available in the implemented Matlab ® toolbox.

Rough parameter prediction

The most costly step of the greedy algorithm described in § 2.4.2 is the exhaustive parameter estimation step (i) as it searches in the whole parameter space to find a rough 5.4 Rough parameter prediction estimation of the parameters (e.g., for (x, y) parameters, the search is carried at least on the whole sensor). This roughly estimated parameter set is next used as an initial guess for the local optimization step (ii). In this thesis, two algorithms have been proposed to reduce the time cost of the exhaustive search [Seifi et al., 2012b], [Seifi et al.2013a] based on multi-scale approach or using lower dimensional parameter space. In the case of videos of droplet holograms, a rough physical model of the trajectories can be used to coarsely anticipate the parameters of the objects at time t from the previous estimated parameters. An unsupervised heuristic anticipation routine is introduced in this section. Considering the object parameters as θ, the goal is to predict an initial guess of every object's position and size θ t using the previous estimated position and size θt-∆t from the previous holograms (∆t stands for the acquisition period). As diethyl ether droplets are in free fall, a rough estimation of the parameters of a droplet at time t is predicted by using a second degree polynomial model that describes their motion.

For radius parameter, the model is roughly a first degree polynomial model (for both evaporating and non evaporating droplets). The whole parameters vector prediction is thus modeled using:

θ t = θt-∆t + 1 2 a t-∆t ∆t 2 + v t-∆t ∆t
in which the "velocity" and "acceleration" vectors v t and a t have 4 components (3 coordinates and a radius), deduced from the previous accurate coordinates θt , θt-∆t and θt-2∆t estimated by the greedy algorithm.

a t = θt + θt-2∆t -2 θt-∆t ∆t 2 v t = θtθt-∆t ∆t The first two holograms of each set are processed using the method described in § 2.4.2 to provide the initial information for the prediction of the parameters for the next holograms. When the anticipation is not accurate enough to get an initial point in the main basin of the cost function (i.e., the optimization does not converge), this anticipation step is discarded and the exhaustive search (i) takes over to find the initial point for the optimization. Our results however showed that for 90% of the cases, the anticipation formula was accurate enough to perform a successful optimization step. This simple prediction method reduced the time costs of accurate parameter estimation from 6 minutes to 30 seconds.

The prediction formula can be also used for out-of-field reconstruction. It should be noted that since the droplets with smaller size have a stable shape and acceleration, the anticipation formula gives more accurate results for out of field detection. For big evaporating droplets, this prediction formula does not give accurate results . Therefore the exhaustive search should be used for the complete out of field reconstruction. Such computations are time consuming and won't result in much bigger trajectories, due to

Evaporating droplets

The three sets of holograms introduced in § 5.2 are processed using the greedy algorithm ( § 2.4.2). The droplets of set zero are just leaving the outlet of the injector and their velocity is high typically 0.23m.s -1 . As a consequence the reconstructed trajectories from set zero consist only in 5 or 6 droplets positions and are therefore not discussed here.

The trajectories containing more than 10 droplets are reconstructed from set 1 (17 trajectories with an average of 34 droplet positions) and set 2 (13 trajectories with an average of 16 droplet position). The reconstructed 3D volume of set 1 is shown in Fig. 5.9 from different views. In these images, the classical field of view is shown by the red cuboid. The transversal size of this field is defined as the sensor size and the axial size is defined as the depth range of droplets. The blue cuboid shows an extension of field twice of the sensor size. As visible in these illustrations, the field has been extended only on one side of the hologram due to the prediction method (see § 5.4). A 3D visualization of these trajectories is shown by mean of videos in Fig. 5.10 and some examples of the square radius evolution over time are presented in Fig. 5.11. We note that after some time, the radius stabilizes around a constant value, of the order of 10 micrometers for all the runs. (see . We suppose that evaporation stops at this stage, when all ether has evaporated. The remaining droplet would be then composed of water and would not evaporate anymore. The percentage of water given by the manufacturer, and home checked, is 0.2%, while based on the final radius estimation an amount of about 4% is expected. As experiments are performed in humid air (relative humidity 31.8%), it is reasonable to think that the fast evaporation of the diethyl ether cools the humid air around the droplet and causes its condensation at the surface, increasing the percentage of water. The existence of condensation was reported by Law, [Law et al., 1987] for alcohol droplet vaporizing in humid air. Let us notice the repeatability of the droplet size evolution over time for various 3D trajectories.

The droplets that contain only water (radius constant) can be seen in Fig. 5.5.(a-1). These are the four located at the bottom, whose patterns do not exhibit the high contrasted central disturbances created by the vapor film, confirming our belief that evaporation has stopped. The use of the mask is not necessary for such water drops and we note that they are well cleaned after the processing (Fig. 5.5.(b-1). Further investigation could be done to confirm this assumption, by measuring the refractive index of the droplets along their trajectories or by varying the humidity and temperature room conditions. Fig. 5.12 uses one trajectory to track the droplet's pattern on a video of holograms of set 1. In this video, a small circle centered on the pattern represents the radius parameter of the corresponding pattern in pixels (for sakes of visualization). A second circle shows the first zero of the cardinal Bessel function of first kind involved in the model of Eq. 2.11 of Chapter 2. The radius of this circle is inversely proportional to The size evolutions along the trajectories are then analyzed to check the agreement between our results and an evaporation model. When evaporation has reached stationary conditions (droplet temperature constant), the diameter square of the droplet generally decreases linearly with time. In term of squared radius, this so called "d 2 " law [Law, 1982] is expressed by

r(t) 2 = r(0) 2 + Kt (5.2)
where K < 0 is the evaporation rate. This linear decrease can be seen for big evaporating droplets in Fig. 5.11. A theoretical value of K can be calculated as a function of physical parameters of diethyl ether, temperature and pressure. As the temperature of droplets at the output of the injector is difficult to estimate, we can only give a range for K values: [-7.5 -6.2] µm 2 /ms (see Appendix H for detail of the calculation).

To estimate K from the results obtained from digital holography, a least squared linear fit was performed on the first part of the squared radius over time curves (that presents evaporation). Fig. 5.11 shows the regression lines which closely fit the data. The average K is found equal to -7.7, -6.2µm 2 /ms for set number 1 and 2 respectively.
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 1 Figure 1.1: In-line digital holography setup

  Figure 1.2: Reconstruction of an off-axis hologram results in spatial separation of the real image from the twin image and the zero-frequency term, for big recording angle between the reference and object beam.

Figure 1 . 3 :

 13 Figure 1.3: Mathematical notation of an in-line digital holography setup

Figure 1 . 4 :

 14 Figure 1.4: An illustration of the complex free space point spread function seen at the distance of 0.5 m captured by a 256 × 256-pixel sensor with the pixel size of 20 µm and a fill-factor of 0.56. Fill-factor is defined as the rate of the active area of the pixel over the total area of the pixel, (a) the real part, (b) the imaginary part.

  Figure 1.5: An illustration of the optical field reconstructed by a light back-propagation method.This image is taken from[Cheong et al., 2010] 

Figure 1 . 6 :

 16 Figure 1.6: Illustration of the concept of propagation and back-propagation directions on an intensity hologram. Capturing only the intensity of the diffraction wave results in the loss of phase (and therefore the direction of propagation) i.e., the hologram reconstruction can be either performed convolving by Fresnel function with z j or -z j . An intuition of the drawback of light backpropagation methods is given showing the out-of-focus images.

Figure 1 . 7 :

 17 Figure 1.7: An illustration of the volume sampling in light back-propagation methods. The volume is sampled in voxels arranged in three parallel planes to the sensor with three distance parameters.The dictionary of Eq. 1.27 is calculated from the corresponding three Fresnel functions and their N lateral translations. This dictionary is used in the matrix notation to replace the corresponding convolution formula.

Figure 1 . 8 :

 18 Figure 1.8: An experimental hologram of a glass reticle with a linear scale (Edmunds Optics, #62-252) and the real part of the classical reconstruction at the in-focus plane. The sensor is 1024 × 1024-pixels and the reticle is placed at 295 mm (pixel size: 7 µm, fill-factor: 0.8, laser wavelength: 0.532 µm.

Figure 1 . 9 :

 19 Figure 1.9: Illustration of a captured hologram of a cloud of water droplets on a 1024 × 1024pixels sensor. The droplets are at different distances to the sensor and (b) shows the reconstruction at 84 mm. The in-focus objects are marked by the red circles. The twin image of one of the in-focus images is circled in blue. (pixel size: 7 µm, fill-factor: 0.8, laser wavelength: 0.532 µm.

  Figure 1.11: Illustration of a digit recognition task from a digital hologram. Fresnel reconstruction of a 400 × 400-pixels hologram of digits located at different distances (pixel size: 20 µm, fillfactor: 0.7, laser wavelength: 0.532 µm, depth range: [0.55 0.85] m); the volume displaying the real part of both in-focus and out-of-focus images of the digits which makes digit recognition from the reconstructed volume a difficult task. Direct recognition of the diffraction patterns using the approach described in Chapter 2 avoids dealing with these numerous image artifacts.

Figure 1 .

 1 Figure 1.12: An illustration of the Wigner transform of a 1D line of a particle hologram. This image is taken from [Onural & Özgen, 1992]. As visible, this hologram contains two particles positioned on the corresponding column. The particle on the left is closer to the hologram than the one on the right.

  Figure 1.13: An illustration of the reconstruction of the hologram based on Fresnelets. This image is taken from [Lieblinget al., 2003a]. The parameter j represents the level of multi-scale pyramid that is created using the Fresnelets. Thanks to the off-axis setup, the twin image and zero frequency term are separated from the real image. The reconstruction is therefore more accurate compared to the light back-propagation methods.

  [2011], Gire et al. [2008], Seifi et al. [2012b], Soulez et al. [2007a,b].
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 222 Figure 2.1: (a) a cropped experimental hologram of one water droplet, (b) the residuals of the hologram after performing the reconstruction and cleaning the signature of the found object from the hologram. The residuals of (b) can be used to study the noise characteristics of captured data and the noise introduced by the linear formulation of the problem

Figure 2 . 3 :

 23 Figure 2.3: Benefits of hologram reconstruction using the inverse problems formulation. The image on the left shows the captured holograms. The middle image shows the result of hologram reconstruction using the adjoint operator. Artifacts like border distortions and the hollows of the out of focus objects are visible on this image. The image on the right shows the result of reconstruction using the maximum a posteriori method with the a priori knowledge being the sparsity of the object field. As visible, the present artifacts in reconstruction using adjoint operator are not present on this image. In addition, field expansion provides accurate reconstruction. Images are taken from [Denis et al., 2009].
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 242526 Figure 2.4: Illustration of four holographic patterns of spherical objects on a 256 × 256-pixels sensor. The depth and radius of the objects are (a) radius = 15 µm and depth=30 cm, (b) radius = 15 µm and depth=70 cm, (c) radius = 100 µm and depth=30 cm, (d) radius = 100 µm and depth=70 cm. Other parameters of the application are pixel size: 7 µm, fill-factor: 0.8, laser wavelength: 0.532 µm. If Moire is visible in these images, it is an artifact of the image format and doesn't come from the actual data.

  Figure 2.7: The steps of the greedy algorithm which solves the hologram reconstruction inverse problem in the case of parametric objects.

Figure 2 . 8 :

 28 Figure 2.8: Illustration of the correlation maps of the cloud hologram of Fig. 1.9-a calculated by FFTs (the contrast of these images is inversed for sake of visualization). In the first step of the greedy algorithm, maximum of the peaks of all correlation maps calculated from the dictionary and data is found to obtain the coordinates of a found object. The parameters of the dictionary pattern involved in the correlation task are (a) radius = 35 µm and depth=7 cm, (b) radius = 70 µm and depth=7 cm, (c) radius = 35 µm and depth=8.4 cm, (d) radius = 70 µm and depth=8.4 cm. Other parameters of the application are pixel size: 7 µm, fill-factor: 0.8, laser wavelength: 0.532 µm.
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 210 Figure 2.9: An illustration to show the concept of the Rayleigh two-point resolution criteria. Rayleigh criteria define the distance between the peaks of two point sources that are resolved in an optical setup. This image is taken from [Nave, 2013].
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 211 Figure 2.11: An illustration of the gradient maps of model versus model parameters on a sensor of 256 × 256 pixels. Other parameters of the test are pixel size: 20 µm, fill-factor: 0.8, laser wavelength: 0.532 µm, SNR=4. (a) shows the gradient of the model versus parameter x (i.e., ∂g θ ∂x ) for z = 0.5m and r = 100 µm i.e., the intensity of every pixel i, j on x map of (a) shows the gradient of model versus x, for a spherical particle centered on the center of hologram. (b) shows the gradient of the model versus y (i.e., ∂g θ ∂y ) and the same z and r as in (a). The gradient map for y parameter is the 90 • rotation of the map for x parameter and it can be easily proven rotating the hologram 90 • ). (c) shows the gradient of the model versus z (i.e., ∂g θ ∂z ), (d) shows the gradient of the model versus r (i.e., ∂g θ ∂r ). A 1D profile of each gradient map is shown in blue. The green line on every map shows the corresponding 1D coordinates of the profile.
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 2213 Figure2.12: A comparison of the influence of object radii on gradient maps on a sensor of 256 × 256 pixels. Row (a) shows the gradient maps of model versus x , row (b) shows the gradient maps of model versus z and row (c) shows the gradient maps of model versus r. The first column corresponds to the parameters of the spherical particle as z = 0.7m and r = 15 µm, and the second column accounts for a spherical particle with z = 0.7m and r = 100 µm i.e., the intensity of every pixel i, j on the x map of (a-1) shows the gradient of the model versus x parameter, for a spherical particle of radius 15 µm placed at depth of 0.7 m centered on the center of hologram. These images are analyzed in detail in § 2.4.3. Other parameters of the test are pixel size: 20 µm, fill-factor: 0.8, laser wavelength: 0.532 µm, SNR=4. A 1D profile of each gradient map is shown in blue. The green line on every map shows the corresponding 1D coordinates of the profile.

Figure 2 .

 2 Figure 2.14: A comparison of the influence of object radii on CRLB maps for in-field estimation on a sensor of 256 × 256 pixels sensor. Row (a) shows the CRLB maps of parameter x , row (b)shows the CRLB maps of parameter z and row (c) shows the CRLB maps of parameter r. The first column corresponds to the parameters of the spherical particle as z = 0.7m and r = 15 µm, and the second column accounts for a spherical particle with z = 0.7m and r = 100 µm i.e., the intensity of every pixel i, j on the x map of (a-1) shows the CRLB of the estimation of x parameter, for a spherical particle of radius 15 µm placed at depth of 0.7 m centered on i, j. These images are analyzed in detail in § 2.4.3. Other parameters of the test are pixel size: 20 µm, fill-factor: 0.8, laser wavelength: 0.532 µm, SNR=4.

Figure 2

 2 Figure 2.15: Two example of 256 × 256-pixel holograms corresponding to the CRLB maps of Fig. 2.14. (a) corresponds to the hologram with parameters of the spherical particle as z = 0.7m and r = 15 µm, and (b)shows the hologram for a spherical particle with z = 0.7m and r = 100 µm both with the particle positioned at the center. Other parameters of the test are pixel size: 20 µm, fill-factor: 0.8, laser wavelength: 0.532 µm, SNR=4. Keeping the laser intensity constant, the SNR of the big particle is bigger than the SNR of the small particle by a factor proportional to the square of the radii rate.

Figure 2

 2 Figure2.16: CRLB maps for out-of-field estimation of (a) x parameter, (b) z parameter, (c) r parameter for a reconstruction field three times of the sensor of 256 × 256 pixels. The depth and radii of the particles are assumed as z = 0.5m and r = 15 µm. The square shows the limits of the sensor. These maps show that out of field parameter estimation can be performed with acceptable accuracy, compared to the accuracy of in-field parameter estimation. In these images, the quantization effect of the sensor is not considered. Such effect could degrade the accuracy of out of field detection. Other parameters of the test are pixel size: 20 µm, fill-factor: 0.8, laser wavelength: 0.532 µm.
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 2 Figure 2.18: A one dimensional plot of the cost function versus z. (a) shows the main basin of the cost function and the local minima around it, (b) shows a zoomed-in version of the main basin of cost function. Thanks to the local optimization step, only three samples of the main basin are required to obtain at least one estimation of z which falls in the main basin. The black circles in (b) show the inflection points of the cost function around the global minimum (see § 2.4.4)
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 219220 Figure 2.19: The cost functions of a simulated hologram around the global minimum considering two scaling of the input parameters. The first column shows the cost function in the neighborhood of its global minimum versus x and z. The second column shows the a 2D view of the cost function versus x and z. Row (a) shows the cost function versus x and z for fixed y,r without any conditioning.According to the figures of this row, the optimization problem is ill-conditioned and accurate estimations of z are improbable. Row (b) shows the same cost function which is conditioned using the Rayleigh formulas in Eq. 2.21. An optimization algorithm will converge fast finding the minimum with acceptable accuracy in both dimensions. Row (c) shows the cost function of (a) which is conditioned using the CRLB limits in Eq. 2.26. The circular shape of cost function in (c-2) assures fast convergence of the optimization algorithm treating both parameters the same which results in high accuracy over z.
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 313 Figure 3.1: The FAST multi-scale algorithm for particle detection and sizing from a digital hologram.

Figure 3

 3 Figure 3.3: (a) Zoomed-in captured hologram containing two spherical micro-particles, (b)Zoomed-in down-sampled hologram considering both Eq. 3.5 and Eq. 3.9 as the criteria (T k max = min(T(i) k max , T (ii) k max ) = 4), (c) Zoomed-in down-sampled hologram using only Eq. 3.9 for the downsampling factor (T k max = 9). Most of the high-frequencies are filtered out which makes it impossible for exhaustive search to find a relevant coarse estimation of parameters.

Figure 3

 3 Figure 3.4: (a) Experimental hologram of six spherical micro-particles in the field of view of sensor, (b) cleaned hologram with FAST (Fig. 3.1) for k max = 2, (c) cleaned hologram with FAST (Fig.3.1) for k max = 0 (single-scale approach). In the captured holograms, the magnitude of signal remains high after cleaning of in-the-field particles. This is due to the signature of out-of-field particles which are close to the borders.
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 42 Figure 4.2: An illustration of singular value decomposition. Every element O p, j is found as the summation of U p,i .S i,i .Q t i, j over i.

  Fig. 1.10. The second column presents the parameters of the study on the discrimination power of low rank dictionary versus the rank of approximation Fig. 4.4. The third column shows the parameters of the Monte Carlo study of spherical objects on accuracy of estimation Fig. 4.6. Column four presents the parameters of the experimental hologram of water droplets presented in Fig. 4.8.
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 46 Figure 4.6: The simulated holograms of § 4.4.2. (a) contains a particle with the depth position of 0.2 m and the radius of 80 µm, (b) contains the same particle placed at the corner of the sensor's field of view.

Figure

  Figure 4.7:With an increased number of modes, the approximation of the dictionary improves and matching a reference diffraction pattern against the approximated dictionary produces a sharper correlation peak leading to more accurate 3D location. Plotted curves represent the mean square difference between diffraction patterns, i.e., the opposite of their correlation. Reddest curves correspond to the most accurate approximations of the dictionary (using up to 50 modes). The pattern of the dictionary minimizing the mean square difference is in best match with the reference diffraction-pattern and gives the 3D location and diameter of the detected particle.

Figure 4

 4 Figure 4.8: (a): The experimental hologram of § 4.4.3 captured in LMFA, (b): same experimental hologram cleaned from the in-field particles using the 5 first modes. The residual's magnitude is high due to the signature of the out-of-field particles placed close to the borders.

  5.2). One hologram of each set after background removal introduced in § 1.4.1 is shown in Fig.5.2.

  Figure 5.1: A picture of the droplet jet
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 52 Figure 5.2: The setup for capturing three sets of holograms containing evaporating diethyl ether droplets. The droplets radii are scaled up for the sake of visualization.

Figure 5 . 3 :

 53 Figure 5.3: One hologram from (a) set 1, (b) set 2, (c) set 3, (1) before and (2) after removing the set's mean background.

Figure 5 . 4 :

 54 Figure 5.4: Magnification factor formula computation from a calibration process, (a) a sample of a reconstructed calibration hologram, (b) the fitted regression curve.
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 5557 Figure 5.5: Illustration of applying an exclusion mask on a hologram of set 1. (a-1) an experimental hologram, (a-2) the experimental hologram being masked, (b-1) cleaned hologram, (b-2) masked cleaned hologram. The colored pixels show the masked pixels which were not included in the parameter estimation. The small rectangle on (b-1) shows the window of noise that is studied in § 5.6.

  Fig. 5.7 the spectrogram of the radial mean profile of a non-evaporating droplet's diffraction pattern (in column a) and the spectrograms for an evaporating droplet calculated from the hologram of Fig. 5.5-(a-1) and the residuals of Fig. 5.5-(b-2). A spectrogram shows the space-frequency information of data by calculating the short-timed Fourier transforms. The first row in this figure contains the spectrogram of the original signal. The second row presents the spectrogram of the residuals.
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 510 Figure5.9: The reconstruction of the 3D volume consisting in the trajectories of set 1 from different view. The field of view is shown by the red cuboid. This field of view is defined from the sensor size and the depth range of droplets which in the field of view. The blue cuboid shows an extension of field twice of the sensor size. The size of particles are scaled for sakes of visualization.

  

  r 2

				2.4 Reconstruction method for parametric objects
	g θ e (x, y) ≈ -	πr 2 e λz e	sin	π((x -x e ) 2 + (y -y e ) 2 ) λz e

e 0, otherwise the diffraction pattern model in Eq. 2.10 for the extended field can be approximated as

Table 3 .

 3 1: This table provide the experimental parameters of this chapter. The first column represents the experimental parameters of the simulations for the study of speedup and accuracy. The second column presents the parameters of the reconstruction of the experimental hologram of Fig.3.4. Note that a magnification factor 1.42 is present in depth and radii of the droplets. The laser wavelength of all these applications is 0.532 µm.

Table

  

  Table 4.1: This table provides the experimental parameters of this chapter. The first column represents the experimental parameters of the hologram reconstruction for the digit hologram of

	4. DICTIONARY REDUNDANCY REDUCTION FOR FAST PATTERN MATCHING
		§ 4.4.1		§ 4.4.2	§ 4.4.3
		Hologram of digits on discrimination power	on accuracy	Hologram of LMFA
	Dimension of sensor (pixels) Pixel size of sensor ( µm)	400 × 400 20	400 × 400 20	512 × 512 7	1024 × 1280 21.7
	Fill factor of sensor	0.7	0.7	0.7	0.84
	Min depth (m)	0.55	0.15	0.1999	0.3 1.42
	Max depth (m)	0.85	0.2	0.2001	0.48 1.42
	Min shape	digit 0	digit 0	radius 79 µm	radius 30 1.42 µm
	Max shape	digit 9	digit 9	radius 81 µm	radius 32 1.42 µm
	Max amplitude of signal	2	1	0.2	60
	σ ǫ N z .N r	0.01 300	0.01 • • • 0.09 300	0.01 616	2.5 410
	Min rank	16	6	5	5
	Speed up factor	3	6	8	8
					to calculate

This historical review is mainly synthesized from the Handbook of holographic interferometry Kreis[2005].

DICTIONARY REDUNDANCY REDUCTION FOR FAST PATTERN MATCHING
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the journal of optical society of America A [Seifi et al., 2013a]) to approximate the dictionary of diffraction patterns in a low-dimensional space by employing singular value decomposition. Good performance for object recognition and localization is demonstrated at a reduced computational cost using such a low dimensional dictionary.

The structure of this chapter is as following: in § 4.1 the model fitting greedy algorithm is generalized to an object classification algorithm, in § 4.2 we give an interpretation of using SVD to perform the task of object recognition and localization. In § 4.3, we present the problem formulation and the benefit of using SVD in the greedy algorithm to reduce the number of columns of the dictionary of diffraction patterns. We report the experimental results in § 4.4 and we conclude this chapter in § 4.5.

Object recognition from a digital hologram

The majority of hologram reconstruction methods reconstruct the complex optical field using light back-propagation techniques (see chapter 1 § 1.4.2). To do the task of object tracking in volume using a video of holograms, these approaches require to find the in-focus plane of every object, segment the reconstructed optical field and use an object recognition method. Such object recognition methods are supervised i.e., many parameters should be tuned by the user (e.g., sampling of depth, segmentation thresholds, filters). However, the intrinsic artifacts of such hologram reconstruction methods result in a degraded reconstructed optical field which can introduce a bias in the reconstructed field (see chapter 1 § 1.4.2 for detail).

To generalize the model fitting task in the maximum likelihood estimation (MLE) method, it is shown in this chapter that it is possible to perform diffraction-pattern matching (for non-parametric objects from a few shape classes) to identify the class and 3D location of objects directly from holograms. Such an approach may exploit the differences between the holographic signatures of objects coming from distinct object classes and/or different depth positions. Our approach is inspired by the method for 3D object recognition based on hologram correlation suggested in [Javidi & Tajahuerce, 2000, Poon & Kim, 1999]. However, rather than matching two experimental holograms corresponding to the two objects to be compared, we consider matching a hologram with a whole dictionary of computed diffraction patterns corresponding to various objects and all their possible 3D location. Direct matching of diffraction patterns however becomes computationally intractable with increasing variability of objects due to the very high dimensionality of the dictionary of all reference diffraction patterns. For example, in the case of parametric objects, the introduced greedy algorithm detailed in § 2.4.2 builds incrementally a model of the hologram by estimating at each step the parametric diffraction-pattern model of a single (spherical) particle. When considering a large diversity of particle diameters and distances to the hologram, the collection of all diffraction patterns to be considered in the exhaustive step of the greedy algorithm becomes huge (with an order of magnitude of 1000 patterns) and the computational cost rises for reconstruction of hologram videos. The extension to more In the application of face recognition (a), the minimum euclidean distance between the query's projection vector κ and the average projection vector of every class is obtained to perform face classification. In digital holography (b) however κ is not linearly dependent on the object depth and shape parameters. A non-linear method should be used to obtain the object parameters from the weight vector κ.

case of face recognition, object parameters (depth and shape) in digital holography can not be found from the minimum distance between the projection vector κ and the average class vectors.

In this chapter, we exploit the projection κ of the query hologram in the mode space to approximate the correlation maps calculated in the exhaustive search step of the previously introduced greedy algorithm (see § 2 for detail of the greedy algorithm). In the next section, we propose a fast method which employs truncated SVD to calculate the sub-space from the discrete dictionary. We then show that the correlation maps can be approximated using this sub-space. The principle of the method is illustrated on a digit recognition problem and on a video of experimental holograms of spherical droplets.

The greedy algorithm : low-rank approximations of the correlation maps

To reduce the inter-pattern redundancy of the dictionary, we propose to use a close approximation of the dictionary calculated from its singular value decomposition (SVD). (2) Singular values of the dictionary in descending order. The dictionary of digits (in green) contains 300 centered patterns for digits placed at different depth positions with the application parameters in § 4.4.1. The dictionary of spherical particles (in red) consists of the diffraction models for spherical objects changing depth and radius with the application parameters in § 4.4.2. The Fresnel dictionary (in blue) corresponds to Fresnel functions with changing depth values. In the case of spherical objects, 5 first modes can approximate the dictionary accurately. The vanishing rate of the singular values of the Fresnel dictionary is very low which implies that it is not possible to deduce an accurate low rank approximation of Fresnel dictionary. particle (i.e., x = x e and y = y e ) is close to zero. However the diffraction patterns of the evaporating droplets contain high intensity values on the center of every evaporating droplet (see Fig. 5.5.(a-1)) which are caused by a film of diethyl ether vapour around the droplets generated by the evaporation. The contribution of the gas cloud to the diffraction pattern is not included in the diffraction model of spherical droplets. However as it is spatially well localized, it can be removed from consideration using a binary weighting mask. The binary mask contains the values "one" for the useful pixels, and "zero" for the pixels in a circular neighborhood of the center of evaporating patterns (see Fig. 5.5.(a-2) for a masked hologram). It therefore excludes the part of the signal which is not explained by the opaque sphere diffraction model. The fit of the model is thus performed on the high frequencies of the pattern. The best size for the circular neighborhood is the one that gives the highest weighted normalized correlation between the data and the fitted model.

METROLOGICAL APPLICATION OF IN-LINE DIGITAL HOLOGRAPHY : ACCURATE POSITION AND SIZE ESTIMATION OF EVAPORATING ETHER DROPLETS

To create the mask, a first rough estimation of the parameters is performed to obtain the centers of the masking areas (i.e., (x n , y n )). The size of the circular neighborhood is the same for all diffraction patterns. The best size is the one that gives the highest weighted normalized correlation value between a test hologram and the fitted model. The use of the mask can be visualized on the residuals after the greedy algorithm stops the iterations. These residuals show the discrepancies between the signal and the model. One residual hologram from which the estimated models have been subtracted (during the cleaning step), is shown in Fig. the fact that the velocity of droplets that are just injected into the air is much higher, which results in very few number of droplets being present out of the field.

Experimental Results

In this section the results of volume reconstruction using the greedy algorithm are presented. First, water droplet trajectories are reconstructed and size measurements are compared to Phase Doppler Anemometry (PDA) measurements. Next, the greedy algorithm is applied to evaporating ether droplets, showing that the technique provides results accurate enough to study evaporation phenomena, and to provide for example the evaporation rate. Finally, we estimate the accuracy of radii parameter.

Non-evaporating droplets

PDA, which is considered as a reference technique for spherical particle size measurement, is used here to validate the size estimation obtained by digital holography. PDA measurements have been performed at the outlet of the injector just before recording the holograms. The mean droplet diameter, measured on 3500 samples, is 31.07 µm ± 0.078 µm. These values are closed to those found in the same conditions in [Chareyron et al., 2012], showing that the injection is well reproducible. Using the setup described in § 5.2, 310 droplets are reconstructed. Their mean radius is estimated as 30.57 µm, and the standard deviation as 0.11 µm. This proves that the accuracy of digital holography is comparable to PDA, with a relative standard deviation of 0.3%. One of the holograms of this experiment is shown in Fig. 5.8.