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INTRODUCTION 1.1/ BACKGROUND

Over the past three decades, intelligent vehicle systems or advanced driver assistance systems (ADAS) have continued to be an important research topic in transportation area. They can promise to reduce road accidents and eliminate traffic congestions. Intelligent vehicle systems are composed of two parts : onboard sensors are used to observe the environments around ; and then, the captured sensor data can be processed to interpret the environments and to make appropriate driving decisions. Some sensors have already been widely used in existing driver-assistance systems, e.g., camera systems are used in lane-keeping systems to recognize lanes on road ; radars (Radio Detection And Ranging) are used in adaptive cruise systems to measure distance to the vehicle ahead such that a safe distance can be guaranteed ; lidar (Light Detection And Ranging) sensors are used in the autonomous emergency braking system Volvo City Safety 1 , to detect other vehicles or pedestrians in the vehicle's path to avoid collision ; accelerometers are used to measure vehicle speed changes which are especially useful for airbags ; wheel encoder sensors are used to measure wheel rotations in vehicle anti-lock brake system ; and GPS sensors are embedded on vehicles to provide the vehicle's global positions for path navigation.

In order to promote the development of autonomous vehicles, American Department of Defense has organized an off-road autonomous vehicle competition respectively in 2004 2 and 2005 3 , called DARPA (Defense Advanced Research Projects Agency) Grand Challenge. In this competition, vehicles have to pass through three narrow tunnels and navigate in more than 100 sharp left and right turns. No vehicle finished the whole trajectory in 2004. Then in 2005, Stanley vehicle from the Stanford Racing Team won the prize. After that, DARPA Urban Challenge 4 was held in 2007. This competition requires teams to build autonomous vehicles capable of self-driving in real urban traffic. The vehicles have to perform complex maneuvers such as merging into the traffic flow, overtaking other vehicles, parking and negotiating without human intervention. BOSS vehicle from the Tartan Racing team 5 of Carnegie Mellon University was the winner of this competition.

China has also organized this kind of competition for autonomous vehicles since 2009 Different types of sensors have been used to ensure vehicle localization accuracy. Global sensors like GPS (Global Positioning System) receiver can provide absolute position of the vehicle. It has been considered as a basic sensor for vehicle localization in outdoor environments for its advantage of high localization precision in long term. However, GPS signals are affected by atmospheric conditions, satellites distribution, radio signal noises, etc., localization accuracy of GPS receivers in short term is only to a few meters. In some specific locations of urban environments (e.g., streets with tall buildings around, tunnels), information provided by the GPS receivers might not be accurate or even unavailable due to signal reflection or poor satellite visibility. In the case of GPS reflection, pseudoranges provided by the received reflected signals would be longer than the real ranges. If these contaminated ranges are used for position estimation, localization results would be erroneous. Another type of sensors is dead-reckoning sensor (DR), like gyro, inertial navigation system (INS), wheel encoder odometer, which can estimate the relative motion of a vehicle. The vehicle motion estimated by the dead-reckoning sensors is mostly accurate in short term, though vehicle trajectory might drift in long term due to error accumulation. Therefore, the global GPS measurements are usually integrated with other information sources to provide accurate, reliable and continuous localization services in urban environments, which is also the main problem to be addressed in this thesis. This thesis is part of project CPER "Intelligence du V éhicule Terrestre" (Intelligence of ground vehicle), developed within Systems and Transports Laboratory (SET) of Institute for Transportation Research, Energy and Society (IRTES), UTBM, France. Three main objects of the thesis 6. http://www.wired.com/magazine/2012/01/ff autonomouscars/ are explained as follows :

-The first object is to explore the use of multi-sensor fusion for vehicle localization, using GPS sensor to provide absolute location, and stereoscopic system and laser range finder (LRF) to provide vehicle motion information as dead-reckoning sensors. Coherence between different observations is also taken into account, and only the validated sensor measurements are integrated for vehicle pose estimation. -Since dead-reckoning methods are suitable only in short period, if GPS receiver cannot provide vehicle position for long time, especially within urban areas where satellite signals might be blocked or reflected, vehicle trajectory would gradually drift and the localization error cannot be bounded. In order to compensate for the problem of GPS outages in long term, the second object of this thesis is to explore the use of horizontal and vertical LRFs with a road network map and a building footprint map from a GIS database for correcting the predicted vehicle pose. -The third object is to explore the use of vertical LRF for updating building map layer information. Since the environment information from different data sources might be inconsistent with each other, a new map layer of building facades can be generated from the vertical LRF perceptions and be reused for vehicle pose correction. If a vehicle is supposed to be driven in the same area, the error between LRF perception and the initial GIS map (which are produced with aerial image, or digital maps transformed from paper maps, etc.) can also be handled.

1.3/ CONTRIBUTION

In this work, two methods are proposed to improve the accuracy of vehicle localization process. The main contributions of this work are in twofold :

-1) Implementation of a vehicle localization system with a GPS receiver, an onboard stereoscopic system (visual odometry), and a laser range finder (scan alignment) considering their coherence with each other.

At first, stereoscopic system based visual odometry method is used to predict vehicle displacement and orientation change. Stereovision based visual odometry is not limited to flat ground assumption, which means that it can provide vehicle pose with 6DOF (degree of freedom). This method is then complemented by adding a LRF sensor. Vehicle displacement and orientation change can be estimated by scan alignment between two consecutive LRF scans. Instead of directly using all sensor observations for vehicle pose correction, a sensor selection step is applied before the fusion step to validate the coherence of different observations. Then, information provided by the validated sensors are combined under a loosely coupled probabilistic framework with an information filter.

Since visual odometry and laser scan alignment are independent research subjects, there are a lot of existing problems and research results in each subject, such as detection of moving objects, strategy of poses estimation, solution of lateral drift and longitudinal scale problems. Classic algorithms are carefully chosen from those existing methods in the robotic research area, plus several modifications to improve the pose estimation accuracy. The proposed method in this work is tested with real data and evaluated by RTK-GPS data.

-2) A geographical information system (GIS) aided vehicle localization method is used to bound the localization error of dead-reckoning methods if GPS receiver fails for long time.

If GPS receiver cannot provide vehicle positions for long time, vehicle trajectory based on only relative localization methods might gradually drift and the error cannot be bounded.

In order to compensate for this problem, a priori environmental information provided by digital maps is added into the localization system. Two GIS map layers have been used : the road networks map and building footprints map. The road network map is used to estimate vehicle position by road map-matching method. Then, the vehicle pose is refined by registration between real observation from the two onboard LRFs (one horizontal and one vertical) and a priori observation provided by the building footprint map.

Experiments are implemented with two real data sequences : one in an industrial area and another one in the old town center of Belfort. Experimental results show that GIS maps can help to bound the localization error effectively : the road map can help to obtain an approximate estimation of vehicle position (by projecting vehicle position onto the corresponding road segment), while the integration of building information can help to refine this pose estimation.

1.4/ STRUCTURE OF THE MANUSCRIPT

In Chapter 2, existing approaches for vehicle localization are reviewed, including relative localization methods, absolute localization methods, and different sensor fusion strategies for multi-sensor based localization.

In Chapter 3, stereovision based visual odometry and horizontal LRF based scan alignment methods are respectively presented. The proposed methods are tested with real data and evaluated by using RTK-GPS data as ground truth.

In Chapter 4, a localization method is presented by integrating a stereoscopic system (odometry), a horizontal LRF (scan alignment), and a GPS receiver. For taking advantages of their complementarity and redundancy, coherence checking between the different measurements is performed before pose update.

In Chapter 5, a geographical information system (GIS) aided vehicle localization method is proposed to bound localization error when GPS receivers encounter long term outages. Two GIS layers are used : the road network map layer and the building map layer. This proposed method has been tested with two real data sequences.

Finally, conclusions and some research perspectives for this thesis are presented in Chapter 6.

FIGURE 2.1 -Different localization methods based on the figure in [START_REF] Boukerche | Vehicular ad hoc networks : A new challenge for localization-based systems[END_REF] In this chapter, we make a review of existing vehicle localization approaches. According to measurement types, these methods are classified as relative localization approaches (dead-reckoning methods, DR) and global localization methods (global navigation satellite system, landmarks based localization, map matching, cellular localization and VANET localization). These two categories of localization methods are respectively presented in sections 2.2 and 2.3. Then, several multi-sensor fusion based localization methods are presented in section 2.4.

2.2/ RELATIVE LOCALIZATION APPROACHES

Relative localization approaches with proprioceptive sensors like gyro, inertial navigation system, wheel encoder odometer or with exteroceptive sensors like camera or laser range finder, are based on the estimation of vehicle motion in a period of δt. When initial state of a vehicle is known (initial position and orientation in the global reference system), its current position and orientation can be estimated by integrating the relative translation and rotation with the previous vehicle state. Proprioceptive sensors based relative localization methods are self-contained and no external information is needed.

2.2.1/ WHEEL ENCODER BASED ODOMETRY

Wheel encoder is a device which allows to measure the distance traveled by a wheel in a period of time. It is mounted on vehicle wheel to measure the elementary rotation of the wheel. When the wheel radius is known, the traveling distance can be deduced from the elementary rotation 1 .

Optical and digital encoders are now widely used on mobile robots for their high frequency and low cost. As seen in Fig. 2.2(a), an optical encoder consists of a light source, a light detecting sensor, and a rotating disk coded with opaque and transparent patterns. When the disk rotates with the shaft, the patterns on the disk will interrupt the light emitted into the light sensor, and generate a pulse signal output. By counting the number of output pulses, the angular motion of the wheel can be measured.

As shown in Fig. 2.2 (b), a vehicle can be represented by a kinematic model with two rear wheels, and a single point in the center of the front wheel axle. Vehicle center is represented by a point in the center of the rear wheel axle. If two wheel encoders are respectively mounted on the two rear wheels with known wheel radius, the traveling distances of the left and right wheels during period δt can be respectively measured, as ∆d t,l and ∆d t,r . Then, the translation ∆d t and rotation ∆θ t of the vehicle center can be estimated by the distance ∆d t,l and ∆d t,r :        ∆d t = ∆d t,l +∆d t,r 2 ∆θ t = ∆d t,r -∆d t,l L

(2.1)

where L is the axle length of the vehicle (see Fig. 2.2 (b)), i.e., the distance between the left and right rear wheels.

Assume that the ground is flat, let X t = [x t , y t , θ t ] denote the vehicle pose vector at time t, where (x t , y t ) and θ t are vehicle position and orientation (yaw angle) in the global navigation system. The current vehicle pose at time t can be predicted with previous vehicle state [x t-1 , y t-1 , θ t-1 ] and current motion vector u t = (∆d t , ∆θ t ). The transition vehicle model at time t is X t = f (X t-1 , u t , δt) + α t , written as :

        
x t = x t-1 + ∆d t cos(θ t-1 + ∆θ t /2) + α 1t y t = y t-1 + ∆d t sin(θ t-1

+ ∆θ t /2) + α 2t θ t = θ t-1 + ∆θ t + α 3t (2.2) 
where α t = [α 1t , α 2t , α 3t ] T is the process noise.

Due to bad estimation of the wheel radius or wheel deformation in bad soil conditions, like rock or muddy areas, the estimated vehicle motion from wheel encoders might be erroneous. The localization error will accumulate gradually in long term due to motion integration.

2.2.2/ INERTIAL NAVIGATION

Inertia is the resistance of a physical object body to maintain constant translation/rotational velocities if any force is applied on it. Inertial navigation system (INS), also named as inertial measurement unit (IMU), is composed of three orthogonal rate-gyros and three orthogonal accelerometers, respectively measuring the 3D angular rates (yaw, pitch and roll, see Fig. 2.3) and 3D linear accelerations (in direction X M , Y M and Z M ) of the object on which the system is mounted.

INS has high sampling frequency and it is able to accurately measure the rapid changes of angular rotation rates and linear accelerations in short term. If the system is well initialized, we can estimate the current vehicle orientation and position by integration (Fig. 2.4).

Vehicle orientations can be derived by integrating the vehicle angular velocity over time.

And vehicle linear velocity and position can be respectively derived by single and double integration of the acceleration in a period of time. INS systems have been used on ground vehicles, spacecrafts, ships, and submarine vehicles [START_REF] Woodman | An introduction to inertial navigation[END_REF], etc.

There are two types of inertial systems : stable platform systems and strap-down systems.

• Stable platform system (mechanical system) : stable platform is an inertial platform which uses gyros to maintain the accelerometers in a fixed attitude. Inertial sensors are mounted on the platform which is aligned with the global frame. The gyros mounted on the platform can detect any platform rotations. Then, these rotation signals are sent back to torque motors to rotate the gimbals (frames) of the platform in all three axes, in order to remove the rotations and keep the platform aligned with the global frame.

• Strap-down system (electrical system) : there is no gimbals or inertial platform in a strap-down system. gyros and accelerometers are rigidly mounted on a device (e.g., vehicle). The inertial sensors move with the device, thus movements of the device are measured in the sensors' body frame instead of the global frame. Therefore, the measured acceleration should be transformed into the global frame for navigation application.

Gyrometer : gyrometer (gyro) measures the angular velocity of a system in one direction.

The three gyros of an INS can measure angular velocities of the system in three directions of the inertial reference frame, then 3D orientations can be derived (see Fig. 2.3). There are various types of gyros, like mechanical gyro, fibre optic gyro (FOG), and light-weight MEMS (Micro-machined electromechanical systems).

Accelerometer : accelerometer measures the linear acceleration of a system in one direction. The three accelerometers of an INS can measure the linear accelerations of a system in three directions (left -right, up -down and forward -back) with respect to the moving system. The outputs of an accelerometer should minus the gravitational acceleration : a = fg, where f is the vehicle acceleration with respect to the inertial frame (in m/s 2 ), g is the acceleration produced by gravity, and a is the acceleration produced without gravitational forces.

Though effects of gyro drift and accelerometer bias are relatively small in short term, as the angular and linear velocities must be integrated once and twice to provide the orientation and position, small errors in short term might result in unbounded error of integrated measurements. Furthermore, if the sensor navigation frame and body frame is not well calibrated, the localization results might be not accurate.

2.2.3/ VISION SENSORS BASED RELATIVE LOCALIZATION

During recent years, computer vision based odometry (visual odometry) was proposed as a kind of relative localization method. Without any prior knowledge of the environment nor a predefined motion model of the vehicle, visual odometry can estimate the path of a camera-equipped vehicle by calculating the ego-motion between consecutive images in a video flow. Structure from motion (SFM) methods also use camera system to provide both the environment structure and the camera motion information. The principles of the two methods are almost the same except that the former focuses more on camera motion estimation, while the latter focuses more on structure reconstruction.

Visual odometry has been studied and used in a lot of indoor and outdoor localization projects [START_REF] Konolige | Large scale visual odometry for rough terrain[END_REF] [133] [START_REF] Howard | Real-Time Stereo Visual Odometry for Autonomous Ground Vehicles[END_REF] [167] [START_REF] Comport | Real-time quadrifocal visual odometry[END_REF], even on Mars [START_REF] Cheng | Visual odometry on the mars exploration rovers[END_REF] (see Fig. 2.5).

Compared with wheel encoder based odometry, the estimation from visual odometry are not influenced by wheel deformation or slippage caused by bad soil condition, but much more related to the environment around the camera and the illumination condition. Different types of cameras have been used for vision based localization, such as monocular perspective cameras used in [START_REF] Nist Ér | Visual odometry[END_REF] [START_REF] Royer | Monocular vision for mobile robot localization and autonomous navigation[END_REF], perspective stereoscopic systems used in [START_REF] Olson | Rover navigation using stereo ego-motion[END_REF] [79] [START_REF] Moreno | An efficient closed-form solution to probabilistic 6d visual odometry for a stereo camera[END_REF], and omnidirectional cameras used in [START_REF] Tardif | Monocular visual odometry in urban environments using an omnidirectional camera[END_REF] [START_REF] Scaramuzza | Performance evaluation of 1-point-ransac visual odometry[END_REF]. The most often used camera systems are perspective camera systems (see Fig. 2.6(a) 2 and Fig. 2.6(b) 3 ) for their simple geometric configuration and low-cost. Recently, omnidirectional camera systems have also been used for their larger fields of view (FOV), e.g., the 360 o spherical camera system with multi-camera in Fig. 2.6(c) 4 and the omnidirectional camera with mirror in Fig. 2.6(d) 5 . Omnidirectional camera systems have the advantage that the same object can stay longer in the camera's FOV which is important for object tracking, but the geometric configurations of these camera systems are more complex than the perspective camera systems. After choosing a camera type, there are different system configurations : monocular system with only one camera, like in Fig. 2.6 (a, d) ; or multi-camera system, like in Fig. 2.6 (b, 2. www.adept.net.au 3. www.ptgrey.com 4. www.ptgrey.com/products/ladybug5 5. www.itr-store.com c). For a multi-camera system, since the relative pose (relative position and orientation) between all the cameras can be known by calibration before the experiments, the system can directly reconstruct the corresponding image pixels into 3D Euclidean space.

2.2.3.2/ VISION BASED RELATIVE LOCALIZATION METHODS

After obtaining an image sequence from a camera system, corresponding image pixels (dense method for all the pixels in the image, or sparse method for only image features) are searched in consecutive image frames through matching or tracking methods. With corresponding pixels, the rigid transformation of the camera system between time t and time t + 1 can be estimated using 2D/2D [START_REF] Nist Ér | Visual odometry[END_REF], 3D/2D [START_REF] Nist Ér | Visual odometry[END_REF] or 3D/3D [START_REF] Eggert | Estimating 3-d rigid body transformations : a comparison of four major algorithms[END_REF] methods. These motion estimation methods are summarized and concluded as follows.

in Tab 2.1 to Tab 2.3, Q i is a 3D point in reference system, (q i 1 , q i 2 , q i 3 ) are its corresponding image points in three consecutive image frames, (q i 1,l , q i 1,r ) are corresponding image points viewed by left and right cameras at time t, (q i 2,l , q i 2,r ) are corresponding image points viewed by left and right cameras at time t + 1. d(q i 1 ↔ q i 2 ↔ q i 3 , T F) 2 (c) : arg min N i=1 d(q i 1,l ↔ q i 1,r ↔ q i 2,l ↔ q i 2,r , QF) 2 Possible solutions 5 or 8 points algorithms RANSAC or M-estimator with 6 points For monocular method, a scale factor should be provided from other sensor like GPS or object with known size TABLE 2.1 -Motion estimation by 2D/2D method

2D/2D method by minimizing 2D position error between corresponding image pixels.

Method 2D-2D position error

• Epipolar geometry : as shown in Tab 2.1(a), camera motion parameters are estimated with two corresponding image point sets {q i 1 } and {q i 2 }, i = 1, ..., n between two consecutive image frames at time t and t+1. The calculation is based on epipolar geometry constraint : point {q i 1 } can be transformed to {q i ′ 1 } on image frame I t+1 by the fundamental matrix F, which describes the geometric relation between two camera poses (see section 3.2.1.2 for more details). By minimizing the position error between {q i ′ 1 } and {q i 2 }, the fundamental matrix can be solved with Nist ér's 5-point algorithm [START_REF] Nist Ér | An efficient solution to the five-point relative pose problem[END_REF], or Longuet's 8-point algorithm [START_REF] Longuet-Higgins | A computer algorithm for reconstructing a scene from two projections[END_REF], etc. Then, the translation vector and rotation matrix between two poses can be decomposed from the fundamental matrix F.

• Trifocal tensor : trifocal tensor T F in Tab 2.1(b) plays the same role in three views as the fundamental matrix in two views. It is a 3 × 3 × 3 matrix which incorporates geometric relations between three views. The corresponding image point sets {q i 1 , q i 2 , q i 3 } can be found across three views, between three consecutive frames I t-1 , I t , I t+1 as shown in Tab 2. 1(b), or between two simultaneous frames I t,l , I t,r plus one consecutive frame I t+1,l (or I t+1,r ) in the case of using a stereoscopic system as shown in Tab 2.1(c). Then, the trifocal tensor [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF] can be estimated by minimizing the differences between the three point sets using RANSAC or M-estimator based linear/nonlinear minimization methods. With the estimated trifocal tensor, the transformation matrix between every two camera poses can be derived.

• Quadrifocal tensor : quadrifocal tensor QF in Tab 2.1(c) describes the geometric relations across four camera poses. For example, when a stereoscopic camera system is used [START_REF] Comport | Real-time quadrifocal visual odometry[END_REF], the quadrifocal tensor between four images (two consecutive image pairs) can be estimated by minimizing the differences between the four corresponding image point sets {q i 1,l , q i 1,r , q i 2,l , q i 2,r } using linear or nonlinear minimization methods. Then, the transformation matrix between every two camera poses can be derived. Since the calculation of quadrifocal tensor is complicated, it is always replaced by trifocal tensor and fundamental matrices. 

3D/2D

Q i ↔ q i 3 , K[R t,t+1 |T t,t+1 ]) 2
Solution DLT (Direct linear transformation) Nonlinear minimization, e.g., Levenberg-marquardt [115][137]. Since the baseline between two camera poses is unknown, the estimated translation vector is up to a scale factor which should be calculated with other sensors (like wheel encoder, GPS) or an object with known size.

• Stereo method : in a stereoscopic system, the relative pose between left and right camera centers is generally fixed and can be known before the localization process by calibration, therefore the scale problem of monocular method can be avoided [START_REF] Konolige | Large scale visual odometry for rough terrain[END_REF]. As seen in Tab 2.2(b), the corresponding image points {q i 1,l , q i 1,r } at time t are directly reconstructed into 3D point {Q i } in the 3D space. Then, the camera motion from time t to t + 1 can be estimated by reprojecting the reconstructed point {Q i } onto the left or right image frames at time t + 1, and minimizing the reprojection error like in the monocular method.

3D/3D method by minimizing 3D position error between corresponding reconstructed 3D points.

This method is used with a stereoscopic system. As seen in Tab 2.3, image pixels are firstly matched between the left and right images at time t ; then, the corresponding image points of q i 1,l and q i 1,r on the current left and right images at time t + 1 are respectively searched by matching (or tracking) methods. The image point pairs {q i 1,l , q i 1,r } at time t and pairs {q i 2,l , q i 2,r } at time t + 1 are respectively reconstructed into 3D points {Q i t } and {Q i t+1 }. The camera pose is then estimated by minimizing the 3D position error between two sets of reconstructed 3D points at time t and time t + 1, with least square method or maximum likelihood estimation (MLE) with a weight factor w i in the cost function (in Tab 2.3) [START_REF] Eggert | Estimating 3-d rigid body transformations : a comparison of four major algorithms[END_REF] 

[3] [71] [160] [151].
As the above three methods are all based on corresponding image point sets, some efforts have been employed to reject outliers during the matching and tracking steps [START_REF] Rodriguez | An experiment of a 3d real-time robust visual odometry for intelligent vehicles[END_REF] [50].

2.2.4/ RANGE SENSORS BASED RELATIVE LOCALIZATION

Range finder (RF) is a device which uses an electromagnetic wave beam (e.g., laser, infrared light) or ultrasonic sound to determine the distance between signal emitter and objects. RF sensors have been largely used in transportation area for object detection and tracking, such as ultrasonic sensors are embedded in the rear bumper of vehicles to assist vehicle parking, radar systems are installed in urban environments to detect the speed of vehicles, etc.

A basic LIDAR (Light Detection And Ranging) system, or LRF (Laser Range Finder) system, consists of a laser emitter and a reflected rotating mirror. The laser emitter can obtain the distances between objects and the emitter by measuring the traveling time of emitted

Method

3D-3D position error

Cost function

arg min

N i=1 d(Q i t ↔ Q i t+1 , [R t,t+1 |T t,t+1 ]) 2 MLE : arg min N i=1 w i d(Q i t ↔ Q i t+1 , [R t,t+1 |T t,t+1 ]) 2 Solution
SVD or nonlinear minimization (e.g., Levenberg-marquardt) 

d = c • ∆t 2 (2.3)
where d is the distance between an object and the emitter, c is the speed of light in vacuum c = 299792458m/s, ∆t is the light pulse traveling time of round-trip between the object and the emitter.

With the rotating mirror, LRF systems can quickly scan around and gather range measurements with a specified angle interval. They have been installed on ground and aerial vehicles for environment mapping and survey 6 . Meanwhile, they can be used for relative self-localization by estimating the translation and rotation between two consecutive poses [START_REF] Favrot | Laser scanner based slam in real road and traffic environment[END_REF] [13] (see more details in section 3.3).

Compared to ultrasonic sensors, LRF systems have narrower beam width, higher resolution and response rate. The benefit of sonar sensors is that they have large FOV, which is interesting for obstacle detection [START_REF] Leonard | Mobile robot localization by tracking geometric beacons[END_REF], especially in poor visibility areas like underwater area. Infrared devices [START_REF] Kruse | Remote sensing for the earth sciences : manual of remote sensing (3rd edition), chapter Visible-infrared sensors and case studies[END_REF] can calculate the distance of an object by the angle of returned infrared radiation beam. However, their FOV is narrow and the maximum measured range is limited. In outdoor environments, the observation of infrared sensors might be affected by other lights like sunshine.

6. http://www.lidarmap.org/ELMF/vehicles/Default.aspx

2.3/ ABSOLUTE LOCALIZATION APPROACHES

Absolute localization systems are based on multiple beacons with precisely known positions in the environment. These beacons can be active beacons, which transmit their identity periodically using light (infrared, laser) or RFID (radio-frequency identification) tags [START_REF] Hahnel | Mapping and localization with rfid technology[END_REF]. The receiver mounted on the mobile robot can receive the signal and calculate its distance (or angle) to the corresponding beacon. The beacons can also be passive beacons to reflect the light.

Beacon based localization and navigation is common for navigation of ships and airplanes, and also for localization in indoor environments (e.g., inside buildings, warehouses, etc.). Estimation of the absolute 2D position of a vehicle (mobile robot) requires its distances (or angles) information from at least three beacons. When at least three angles are known, the vehicle position can be obtained by triangulation (see section 2.3.1) ; when the distance information is known, the vehicle position can be deduced by trilateration (see section 2.3.2).

2.3.1/ LOCALIZATION BY TRIANGULATION

Localization by triangulation is to determine a vehicle's 2D position (x t , y t ) based on at least three angle measurements to position-known beacons.

FIGURE 2.7 -Localization by triangulation with three beacons

As seen in Fig. 2.7 (left), if a sensor mounted on the vehicle can observe angles α 1 , α 2 , α 3 between at least three beacons and the vehicle's longitudinal axis, the vehicle pose (x t , y t , θ t ) can be estimated with these three angles.

In Fig. 2.7 (right), we consider the case of three collinear beacons. Let beacon B 2 the origin of the local beacon frame L, and

β 1 = α 2 -α 1 β 2 = α 3 -α 2 (2.4) Then, tan(θ 2 ) = (d 1 + d 2 )tanβ 2 tanβ 1 d 1 tanβ 2 -d 2 tanβ 1 (2.5)
where d 1 , d 2 are respectively the distance from beacon B 1 and beacon B 3 to beacon B 2 .

Then, the vehicle pose in the current beacon frame L is calculated by :

           x L = d 1 tanβ 1 tanθ 2 -tanβ 1 1+tan 2 θ 2 y L = d 1 tanβ 1 tanθ 2 -tanβ 1 1+tan 2 θ 2 tanθ 2 θ L = 2π -α 2 -θ 2 (2.6)

2.3.2/ LOCALIZATION BY TRILATERATION

Trilateration is to determine a vehicle's position with distances to the beacons of known positions. Three beacons are required for determining a 2D position and 4 beacons are required for a 3D position.

FIGURE 2.8 -2D position estimation by trilateration with three beacons

As seen in Fig. 2.8, if the vehicle can observe three beacons B 1 (x 1 , y 1 ), B 2 (x 2 , y 2 ), B 3 (x 3 , y 3 ) respectively with distances d 1 , d 2 and d 3 , the vehicle position (x t , y t ) can be calculated by solving the simultaneous equations in Eq. 2.7 :

           (x t -x 1 ) 2 + (y t -y 1 ) = d 1 (x t -x 2 ) 2 + (y t -y 2 ) = d 2 (x t -x 3 ) 2 + (y t -y 3 ) = d 3 (2.7)
When more beacons are observed, the vehicle location can be estimated by solving the overdetermined system with linear least squares method or nonlinear minimization method to reduce the ambiguity. Global navigation satellite system (GNSS) localization method is also one kind of beacons based global localization methods, as seen in Fig. 2.9.

2.3.3/ GLOBAL NAVIGATION SATELLITE SYSTEM (GNSS)

Global navigation satellite system (GNSS) is the most popular tool for vehicle global localization and navigation in outdoor environments. It is a kind of absolute localization This system is composed of three parts : spatial part, control part, and user part.

-Spatial part : as seen in Fig. 2.10, GPS constellation consists of 24 solar-powered satellites equally-spaced on 6 earth orbit plans above the earth, with altitude about 20, 000km.

Each satellite circles the Earth twice a day. The 24 satellites can ensure that there are at least four satellites in view from any point on the earth planet. In June 2011, U.S. Air Force completed a GPS constellation expansion configuration. Now, the GPS constellation consists of 27-satellites with improved coverage in most area of the world. Each satellite transmits a periodic pseudo-random code to users on earth with two different frequencies (designated L1 and L2) in the internationally assigned navigational frequency band.

-Control part : GPS control part is a global network of ground control stations on earth. These stations continually track the GPS satellites positions and analyze their transmissions, then send commands and data to the constellation to adjust the errors of GPS ephemeris and satellite atomic clock. Current operational control part includes a master control station, an alternate master control station, 4 dedicated ground antennas, 12 command and control antennas, and 16 monitoring sites (six from the Air Force and 10 from -GPS user part : user part of GPS is a set of civilian and military GPS receivers capable of receiving the GNSS signals and estimating the positions of themselves.

• GPS localization procedure : each GPS satellite can send long digital patterns called pseudo-random code. The transmit time of each signal is known since each GPS satellite is equipped with an accurate atomic clock. Meanwhile, as the GPS receiver is equipped with an ordinary quartz clock, the receive time of the satellite's signal arriving at the receiver can also be known.

.11 -GPS pseudo-range is related to the satellite and receiver clocks [START_REF] Blewitt | Basics of the gps technique : Observation equations[END_REF] With the difference of transmit and receive times of the signal pattern (see Fig. 2.11), the distance observation ρ i to the i th satellite can be calculated by multiplying the traveling time with the speed of light :

ρ i = (T i -T S i )c (2.8)
where T i is the known reading of the receiver clock when the signal is received, T S i is the reading of the satellite clock when the signal is transmitted, and c is the speed of light. If the clock time T i equals the true receive time t i plus a receiver clock bias τ, T S i equals the true transmit time t S i plus the satellite clock bias τ S i , as :

T i = t i + τ T S i = t S i + τ S i (2.9)
Replacing Eq. 2.8 by Eq. 2.9, the range ρ i from the GPS receiver (at receive time) to the i th satellite (at transmit time) can be written as :

ρ i = (t i -t S i )c + (τ -τ S i )c = d i + (τ -τ S i )c (2.10)
where

d i = (x -S i,x ) 2 + (y -S i,y ) 2 + (z -S i,z ) 2 (2.11)
thus, ρ i is called pseudo-range and d i is the true range. Since GPS messages allow knowing the i th satellite 3D position (S i,x , S i,y , S i,z ) in space and the satellite clock bias τ S i , there are 4 unknowns in Eq 2.10 and Eq 2.11 that we need to solve : the receiver position (x, y, z) and the receiver clock bias τ. Therefore, at least four satellites are needed for estimating the 3D position of a GPS receiver.

• Errors in GPS localization process. Though GPS is reliable and precise for global localization, several errors exist in GPS localization procedure [START_REF] El-Rabbany | Introduction to GPS : the Global Positioning System[END_REF].

-Satellite errors : GPS satellites might send bad almanac data or report false positions of themselves. The ephemeris errors (or orbital error) and satellite clock error can be periodically corrected by GPS control stations.

-Signal propagation errors : as described above, a GPS receiver calculates its distance to the satellites by assuming that signals pass through the atmosphere at the speed of light in vacuum. However, the earth's atmosphere slows the propagation of signals, especially when they go through the ionosphere and troposphere layers. This delay will add errors into the distance measurements.

-Geometry arrangements of the satellites seen by the GPS receiver : as shown in Fig. 2.12 (left), if two satellites seen by the GPS receiver are far apart in the sky, localization uncertainty area will be small ; as shown in Fig. 2.12 (right), if two satellites are close to each other, the size of uncertainty area will be large. The ideal geometry arrangement of the satellites requires that the satellites in the receiver's FOV are separated with large relative angles.

Influence of the satellite relative geometry to the accuracy of the GPS receiver position is measured by a parameter called PDOP (position dilution of precision) [START_REF] Choy | Global Positioning System theory and design : geometric dilution of precision[END_REF] :

PDOP = HDOP 2 + V DOP 2 (2.12)
where HDOP is the Horizontal Dilution of Precision on horizontal plane, and V DOP is the Vertical Dilution of Precision for altitude. A higher PDOP represents a poor satellite configuration. Since position of the reference station is known before experiments, we can easily deduce the difference between the measured satellite pseudo-ranges and the actual pseudoranges to the reference station. As the GPS satellites are far away from the earth, when a second GPS receiver can observe the same satellite like the reference station, we can assume that this receiver have the same pseudo-range error as the reference station.

The reference station then broadcasts the range correction information to all DGPSequipped GPS receivers by radio signals. The DGPS receivers then correct their pseudo- Although RTK-GPS can achieve centimeter localization accuracy, it is challenged in some particular dense urban environments (e.g., urban canyons), as the satellite signals might be blocked or reflected by tall buildings around the receiver. The multi-path problem cannot be avoided by RTK-GPS.

2.3.3.4/ OTHER GNSS SYSTEMS

Besides GPS systems, there are some other global navigation satellite systems already launched in the world, including Global Orbiting Navigation Satellite System (GLONASS) 8 of Russia, Galileo navigation system jointly funded by members of European Union 9 , and Compass (Beidou) navigation system 10 of China. Japan's Quasi-Zenith Satellite System 11 and India's IRNSS 12 system are also being constructed.

2.3.4/ VISUAL LANDMARKS BASED LOCALIZATION SYSTEM

Landmarks are distinguishable features that can be repeatedly and reliably recognized from sensory data, like geometric shapes (e.g., points, lines, circles). The landmarks should be invariant to changes of orientation, scales and resolution. In outdoor environments, a visual landmarks-based positioning systems are generally composed of three parts [START_REF] Borenstein | Mobile robot positioning sensors and techniques[END_REF] :

1. Onboard vision sensors (like camera, laser) for reliably recognizing 2D or 3D landmarks in data sequences when the vehicle moves [START_REF] Remazeilles | Robot motion control from a visual memory[END_REF]. Before using landmarks for navigation, the characteristics of different landmarks should be known. There are two kinds of landmarks : artificial landmarks and natural landmarks.

i Localization with artificial landmarks : artificial landmarks are special objects placed at known positions in the environment. These landmarks are designed to be easily and repeatedly detected by visual sensors [5], e.g., known visual patterns or other distinctive characteristics (e.g., unique retro-reflective bar-codes). However, the artificial landmarks require modifications of the environment and landmarks maintenance in long term.

ii Localization with natural landmarks : instead of modifying the environment, natural landmarks based localization method takes use of natural landmarks [START_REF] Thrun | Finding landmarks for mobile robot navigation[END_REF] existing in the environment. For example, corners, doors or walls in indoor environment. This method becomes more and more popular in outdoor environments since natural landmarks are abundant, such as roof of buildings, edges of windows, skylines, sidewalks, lines connecting two building facades, road signs, tree trunks, traffic signs [START_REF] Thorsten | Precise ego-localization in urban areas using laserscanner and high accuracy feature maps[END_REF], ground planes ; or invariant geometric features like reliable visual points, curvature extrema of laser range scan [START_REF] Madhavan | Natural landmark-based autonomous vehicle navigation[END_REF], etc. But the data association problem (matching) of natural landmarks are more complcated than the artificial landmarks. [START_REF] Bailey | Data association for mobile robot navigation : a graph theoretic approach[END_REF]. Regarding sources of world model (or map), mobile robot/vehicle navigation can be divided into two approaches [START_REF] Desouza | Vision for mobile robot navigation : A survey[END_REF] : i the first approach is based on exteroceptive sensors with a priori world model, e.g., cartography map : 2D map, DEM (Digital elevation map), aerial image provided map, or CAD model (Computer Aided Design), etc.

Method for matching or associating the observed features from sensors with world model/map of position-known landmarks

ii the second one is based on exteroceptive sensors and a visual feature model from the same type of sensor [START_REF] Thorsten | Precise ego-localization in urban areas using laserscanner and high accuracy feature maps[END_REF]. The feature model is typically constructed with the same type of sensor system during learning stage before the localization process, or during the localization stage, known as simultaneous localization and map building (SLAM).

For vision sensors, the photometric information of landmarks are usually used for landmarks matching ; for range sensors, the data association problem is more changellend, methods like nearest-neighbor filter, joint-compatibility filter have been proposed to reduce the matching ambiguities. 3. Method for computing vehicle location and uncertainty from the corresponding features to improve both longitudinal and lateral positioning precisions. Localization accuracy depends on the accuracy of landmarks detection, and accuracy of relative position of the landmarks to the vehicle.

The methods using exteroceptive sensors with 2D model, 3D model, or visual feature model are presented in the following sections.

2.3.4.1/ EXTEROCEPTIVE SENSORS WITH 2D/3D MODEL

A priori information of the environment can be given in the form of a two-dimensional map, three-dimensional model of the environment structure, or digital elevation map (DEM). The visual features are first extracted from the sensor observation, then matched with the model under a set of constraints to estimate the vehicle poses. The main problem of this method is that sensor observation and world model are in different forms since they are generally from different data sources. In order to use the map information for vehicle localization, visual observations from the on-board exteroceptive sensors should be features that can be matched with the pre-defined map or model.

Different features and map/model matching methods have been proposed in the literature as follows.

Feature -2D map matching

DEM (Digital Elevation Models) have been used for aircraft localization and navigation for long time, as a complementary system to INS navigation for Unmanned Aerial Vehicles (UAV) when GPS was not yet available [START_REF] Carreno | A survey on terrain based navigation for auvs[END_REF]. tThe digital elevation recovered from realtime data of LIDAR is matched with the reference DEM to determine the position of the sensor platform.

For ground vehicle localization, 2D digital maps can provide global environment information, such as trees and street lamps (point-style landmarks), shapes of urban roads (line-style landmarks), building footprints (polygon-style landmarks), as well as attributes of these objects (e.g., width of a road, height of a building). The map information can also contribute to constrain the vehicle positioning error with different features.

• Point-style landmarks. Point-style landmarks (such as trees and street lamps) in urban environments can be detected by perception sensors (e.g., laser, camera), then associated with independent objects in GIS map [START_REF] Scheunert | Precise vehicle localization using multiple sensors and natural landmarks[END_REF]. The measurement model can be the distance and orientation between the landmarks and vehicle.

• Line-style landmarks. In urban environments, there are a lot of line-style landmarks that can be detected by perception sensors, for example, lane marking on the ground. The current vehicle position on map can be determined by matching the detected vehicle lane marking features in front of the vehicle [START_REF] Tsogas | Combined lane and road attributes extraction by fusing data from digital map, laser scanner and camera[END_REF] with a geo-referenced road lane map. The geo-referenced road lane map can be built in advance with a geographically referenced aerial/satellite images [START_REF] Pink | Visual map matching and localization using a global feature map[END_REF], or represented by a priori GIS road network [START_REF] Rae | Fusion of gps and machine vision for absolute vehicle positioning[END_REF] [126], or a road ITN layer (Integrated Transportation Network) consisting of a set of connected arcs [START_REF] Bai | Fusing image, gps and gis for road tracking using multiple condensation particle filters[END_REF] (see Fig. 2.16). Mueller et al. [START_REF] Mueller | GIS-Based Topological Robot Localization through LIDAR Crossroad Detection[END_REF] proposed to detect crossroad features from an equipped LIDAR system, then matched these observation with crossroad features extracted from a raw GIS road network map. The crossroad hypotheses from LIDAR data are then utilized within a particle filter to estimate robot's position within the extracted road network. • Vertical plane landmarks. Vertical planes in the environment are also used as landmarks and compared with a priori building outline map. Bioret et al. [START_REF] Bioret | Urban localization based on correspondences between street photographs and 2d building gis layer[END_REF] used on-board monocular camera to extract the vertical building facades, and applied a global pose searching strategy (see Fig. 2.17) for vehicle localization by comparing the building facade angle and width ratio with a building footprint map [START_REF] Bioret | Towards outdoor localization from gis data and 3d content extracted from videos[END_REF]. Cham et al. [START_REF] Cham | Estimating camera pose from a single urban ground-view omnidirectional image and a 2d building outline map[END_REF] also proposed to identify the vertical corner edges and neighboring plane normals of buildings from omnidirectional image, then associate the planes with a 2D building outline map without using any appearance data.

Feature -3D GIS/CAD model matching

In addition to representing the environment with 2D digital maps, three-dimensional models like 3D CAD model or 3D virtual model can also be used. A 3D virtual city model (also called geographical 3D model, textured geo-referenced 3D database or 3D map) is a database of geographical and textured 3D data managed by a 3D Geographical Information System. 3D model of city scenes can be automatically generated from aerial images, 2D digital map, human surveys, or from camera data, laser data, etc., and tagged with global locations from high-precision GPS/INS systems.

Cappelle et al. [START_REF] Cappelle | Localisation de v éhicules et d étection dobstacles apport dun mod èle virtuel 3D urbain[END_REF][29] [START_REF] Cappelle | Intelligent geolocalisation in urban areas using gps, 3d-gis and vision[END_REF] proposed to estimate the absolute position of a vehicle by FIGURE 2.17 -Vertical planes extracted from an image with a building outline map [START_REF] Bioret | Towards outdoor localization from gis data and 3d content extracted from videos[END_REF] FIGURE 2.18 -Localization by a monocular camera and a 3D virtual model [START_REF] Cappelle | Localisation de v éhicules et d étection dobstacles apport dun mod èle virtuel 3D urbain[END_REF] matching the acquired 2D image with a 3D virtual city model with Harris corners [START_REF] Harris | A combined corner and edge detector[END_REF] (see Fig 2.18). Zhang et al. [START_REF] Zhang | Image based localization in urban environments[END_REF] proposed to extract SURF features on building facades from the acquired image and estimate the homography between the query view and the closest reference views in a 3D image database. P. Lothe et al. [94][95] proposed to use a 3D CAD model to align a deformed map (reconstructed 3D points and vehicle positions) reconstructed from the monocular SLAM.

2.3.4.2/ EXTEROCEPTIVE SENSORS WITH VISUAL FEATURE MODEL

In order to take use of the existing natural landmarks for localization, another approach is to use on-board exteroceptive sensor with a visual feature model, which is typically constructed with the same type of sensor system. Depending on whether the visual feature model is known or not before the localization process, there are two different methods : learning constructed map -localization method, and simultaneous localization and map building (SLAM) method.

Learning constructed map -Localization

This approach is composed of a learning stage and a localization stage. A predefined visual feature model is constructed by firstly manually driving the sensor-equipped vehicle (or mobile robot) along a desired path and recording a sequence of sensor data. Robust visual features are extracted from the data sequence to build an accurate feature model of the environment including landmarks and their corresponding sensor poses. After that, this model is used to locate and navigate the vehicle with sensor data in real-time.

Learning : such as the work of [START_REF] Chen | Qualitative vision-based mobile robot navigation[END_REF] and [START_REF] Royer | Monocular vision for mobile robot localization and autonomous navigation[END_REF][137], a single forward-looking camera is used to capture image sequence, then features (e.g., Harris, SIFT, MSER) are extracted from the images and a feature model is built by structure from motion method. The associated camera poses and landmarks positions are stored in the model (as seen in Fig. 2.19 (left)). As discussed in section 2.2.3.2, the ambiguous scale factor problem during the monocular vision based reconstruction process can be solved by entering the path length of GPS trajectory as the last step. If more than one camera are provided, the scale and scene geometry of the environment can be recovered by triangulation of 3D points with stereovision methods [START_REF] Kidono | Autonomous visual navigation of a mobile robot using a human-guided experience[END_REF][117] [START_REF] Se | Stereo-vision based 3d modeling for unmanned ground vehicles[END_REF] (see in Fig. 2.19(right)).

The reconstructed landmarks and camera poses can be then refined by hierarchical local [START_REF] Mouragnon | Generic and real-time structure from motion using local bundle adjustment[END_REF] or global [START_REF] Royer | Towards an alternative gps sensor in dense urban environment from visual memory[END_REF] bundle adjustment using Levenberg-Marquardt algorithm. The feature model can also be built by laser data with extracted landmarks like curvature extrema in a laser scan [START_REF] Madhavan | Natural landmark-based autonomous vehicle navigation[END_REF], sidewalk landmarks from a vertical laser scan [START_REF] Jabbour | Enhanced local maps in a gis for a precise localisation in urban areas[END_REF] [START_REF] Royer | Monocular vision for mobile robot localization and autonomous navigation[END_REF] ; right : reconstructed model from a simulated stereo image sequence [START_REF] Nogueira | Localisation de mobiles par construction de mod èle 3D en utilisant la st ér éovision[END_REF] time-consuming.

Simultaneous localization and mapping

Besides the "learning -localization" pipeline, another approach is the well known Simultaneous Localization and Mapping method (SLAM). It exploits duality between the localization and the mapping, and addresses both issues in the same process in order to build a new map or to update an existing map and localize the vehicle simultaneously [8][132].

-Classic SLAM is based on a vehicle motion model and probabilistic method with filters : the vehicle motion is firstly predicted by vehicle dynamic motion model, then the state vector (composed of vehicle pose and landmarks positions) can be updated by the observed natural or man-made landmarks [START_REF] Thrun | Probabilistic Robotics (Intelligent Robotics and Autonomous Agents series). Intelligent robotics and autonomous agents[END_REF] with range sensors (section 2.2.4) like laser range finder, sonars, etc. -Vision based SLAM estimates the vehicle trajectory by matching features between a live map of the scene structure and the current image [START_REF] Georgiev | Localization methods for a mobile robot in urban environments[END_REF] [91] [167] using monocular, stereoscopic or trinocular camera systems [START_REF] Se | Mobile robot localization and mapping with uncertainty using scale-invariant visual landmarks[END_REF].

2.3.5/ CELLULAR LOCALIZATION

Instead of using GNSS satellites, cellular localization [START_REF] Boukerche | Vehicular ad hoc networks : A new challenge for localization-based systems[END_REF] uses existing cellular communication infrastructure (distributed cellular base stations) to estimate the real-time position of a wireless mobile user.

When a mobile phone moves around in an area, the base stations that serve for this area can provide communications to the mobile phone. The distance between the base stations and the user can be measured by several characteristics of the signal : 1) Time of Arrival (TOA, or TOF -Time of Fly) of the signal traveled between the emission source and the destination ; 2) Time Difference of Arrival (TDOA) that uses synchronization of cellular network of users to compute the time difference of arrivals between different users ; 3) Angle of Arrival (AOA) based on the angle of signal from cellular stations to the mobile user ; and 4) Received Signal Strength (RSS) based on mathematical models, which describe the path loss of signals as a function of the traveling distance [START_REF] Drawil | In Global Navigation Satellite Systems : Signal, Theory and Applications[END_REF].

When enough distances or angles to the base stations are known, the location of user can be calculated by trilateration or triangulation as presented in section 2. Relative localization methods can provide good accuracy in short term. However, as there is no global optimization for dead-reckoning methods, the predicted vehicle trajectory might drift in long term due to errors accumulation from point to point. Though error in global localization method does not accumulate like in relative methods, sampling rate of global methods is often slower than relative methods. For GNSS based approach, only if at least four satellites with good distribution geometry are visible in the sky by the GPS receiver, an accurate positioning result might be provided. In addition to this, satellite signals might be blocked or reflected by tall buildings in urban environments. For world model based method, the localization accuracy is influenced by the noises of sensor observation and environment model.

Considering the advantages and shortcomings of different methods, information from multiple data sources can be combined together to take advantage of their redundancy and complementarity, to provide accurate and robust vehicle localization results. Relative localization methods can be used as backup for GPS-denied situations, such as in dense urban areas. Meanwhile, world map/model can be used as another global reference to adjust the vehicle pose drift aroused by error accumulation.

2.4.1/ LOOSELY-COUPLED AND TIGHTLY-COUPLED FUSION

For integrating information from multiple sensors, there are essentially two fusion approaches : loosely coupled and tightly coupled approachs.

• Loosely-coupled multi-sensor fusion method uses a decentralized filter with several sub-filters to independently process the information in different sub-systems of the localization system [START_REF] Chen | Pattern recognition for looselycoupled gps/odometer fusion[END_REF] [START_REF] Jekeli | Inertial Navigation Systems With Geodetic Applications[END_REF]. Independent localization solutions from all the sub-systems are synchronously combined in an overall filter to provide an integrated navigation solution. If one of the sensors fails, a solution can still be given by other sensors. Looselycoupled fusion methods have been widely used for its simplicity of integration. For example, Sukkarieh and al. [START_REF] Sukkarieh | A high integrity imu/gps navigation loop for autonomous land vehicle applications[END_REF] combine GPS position with INS estimation for localization, Grimes and al. [START_REF] Grimes | Efficient off-road localization using visually corrected odometry[END_REF] augment wheel odometry with visual orientation to yield better localization accuracy, Ignacio et al. [START_REF] Ignacio | Visual odometry and map fusion for GPS navigation assistance[END_REF] integrate visual odometry, map-matching and GPS methods for navigation assistance.

• Tightly-coupled multi-sensor fusion method uses a single main filter to process output of all sensors. Without using the processed solution of each sensor system, the raw sensor observations are used as measurements. For example, in a tightly-coupled GPS/INS integration system, GPS pseudo-ranges are directly fused with INS readings [START_REF] Wendel | Tightly coupled gps/ins integration for missle application[END_REF] or odometer readings [START_REF] Boucher | A hybrid particle approach for gnss applications with partial gps outages[END_REF] : if the available satellite signals are not sufficient for calculating a GPS position (< 4), the limited GPS pseudo-range and carrier phase measurements can still be possible to be fused with INS readouts or odometer/map information.

2.4.2/ DIFFERENT FUSION STRATEGIES FOR VEHICLE LOCALIZATION

By using different sensor combination or different coupling methods, several fusion strategies used for vehicle localization in the literature are summarized as follows :

• 1. GPS + Dead-reckoning solution (DR) : a lot of solutions have been proposed to augment GPS localization with dead-reckoning solutions. Dead-reckoning sensors could be used to compensate GPS outages in dense urban environments by continuously estimating relative movements, then GPS positions are periodically used to reduce the accumulated error of dead-reckoning sensors when a GPS position is available, e.g. GPS/INS [START_REF] Sukkarieh | A high integrity imu/gps navigation loop for autonomous land vehicle applications[END_REF], GPS/INS/encoder odometer [START_REF] Ndjeng Ndjeng | Low cost imu-odometergps ego localization for unusual maneuvers[END_REF], GPS/visual odometry [START_REF] Wei | Intelligent vehicle localization in urban environments using ekf-based visual odometry and gps fusion[END_REF].

• 2. GPS/DR + Landmarks localization : in order to overcome the drift of GPS/DR method if GPS receivers encounter long term outages, another global information source is needed for vehicle localization : -GPS/DR + Digital road map based map matching : a road network map captures the road topology with road links and road nodes. Map-matching method is to find a correspondence between a vehicle/personal trajectory position (e.g., from a GPS receiver or GPS/DR system) and a path in the road network (provided by a GIS map) for navigation assistance [63] [77]. There are a lot of research work concerning the map-matching ambiguity problem in changellend conditions like road intersections [165] [125]. Observations from the road map matching method can be used as a measurement of the vehicle pose, and integrated with GPS/DR method to restrict the vehicle pose on road [START_REF] Boucher | Multisensor unscented filtering for gpsbased navigation systems[END_REF] [START_REF] Laneurit | Accurate vehicle positioning onto a numerical map[END_REF], GPS/DR system can also be coupled with a vision algorithm (lane detection) and a precise numerical map for vehicle pose correction.

• 3. GPS/DR + Camera based satellite visibility detection : as seen in Fig. 2.13, the accuracy of GNSS localization might be degraded by multi-path problem around the receiver antenna. Several methods have been proposed to detect the multi-path problem by placing a camera near the GPS antenna and detecting the invisible satellites in the camera's FOV. Then, the signals from satellites which are "seen" by the GPS receiver but without line of sight (LOS) are excluded, only the raw pesudo-ranges of satellites with LOS are used to estimate the vehicle position. For example, Meguro et al. [START_REF] Meguro | Gps multipath mitigation for urban area using omnidirectional infrared camera[END_REF] used an omnidirectional infrared (IR) camera on the vehicle roof to detect the borderline between the sky and surrounding buildings. For the same purpose, Attia et al. [4] used an upward fish-eye camera to detect the visible sky by autonomous image segmentation and classification. Instead of using real camera, Peyraud et al. [START_REF] Peyraud | About non-line-of-sight satellite detection and exclusion in a 3d map-aided localization algorithm[END_REF] proposed to use a 3D urban model to predict the satellite LOS visibility in urban contexts. This chapter is organized as follows : the procedure of stereovision based visual odometry is detailed in section 3.2 ; then, laser range finder based vehicle ego-motion estimation method is described in section 3.3 ; finally, some experimental results obtained with real data acquired by our experimental vehicle are given in section 3.4.

2.5/ CONCLUSION

3.2/ VISUAL ODOMETRY BASED VEHICLE MOTION ESTIMATION

The word "visual odometry" was firstly used by Nist ér [START_REF] Nist Ér | Visual odometry[END_REF] in 2004. Camera based visual odometry can estimate camera motion by matching (or tracking) corresponding image points between two consecutive frames. This approach has been studied and used in a lot of indoor and outdoor localization projects [START_REF] Comport | Real-time quadrifocal visual odometry[END_REF] [72] [87] [START_REF] Rodriguez | An experiment of a 3d real-time robust visual odometry for intelligent vehicles[END_REF] [167], even on Mars [START_REF] Cheng | Visual odometry on the mars exploration rovers[END_REF]. With image sequences provided by the camera system (such as monocular camera or stereoscopic system), corresponding image pixels (dense method for all image pixels, or sparse method for only image features) are searched between consecutive image frames or between corresponding left and right images for stereoscopic system. Then, these corresponding pixels are used to estimate the camera motion (see section 2.2.3.2).

In this section, the basic concepts of stereoscopic camera system are introduced in section 3.2.1 ; then, the process of stereovision based visual odometry is presented in section 3.2.2 ; finally, error modeling of visual odometry based pose estimation is discussed in section 3.2.3.

3.2.1/ CAMERA SYSTEM MODELING AND CALIBRATION

A preliminary and prerequisite step of visual odometry approach is to calibrate the camera system to find its intrinsic and extrinsic parameters.

3.2.1.1/ PERSPECTIVE CAMERA MODELING AND CALIBRATION

Pinhole model

Pinhole model is the mostly used model to represent a camera projection process.

FIGURE 3.1 -A point Q with coordinates Q C = (X C , Y C , Z C
) in the camera frame is projected onto image plane by the ray passing through the projection center C ; the resulting point is an image point q with coordinates q c = (x, y, f ) Three coordinate systems are considered (Fig. 3.1) :

-World system : world reference system is denoted as R W {W, X W , Y W , Z W }, where W is the system origin and X W , Y W , Z W are the three orthogonal axes. Coordinates of a point Q in this system are written as :

Q W = (X W , Y W , Z W ).
-Camera frame : the coordinate system attached to the camera is denoted as

R C {C, X C , Y C , Z C }.
The origin of the camera frame is camera center C, also called projection center. The X C Y C plan is parallel to the image plane. The axis Z C is pointing to the viewing direction, called optical axis. Coordinates of a point Q in this system is written as :

Q C = (X C , Y C , Z C ).
-Image frame : image frame is denoted as : R I {I o , v, u, w}. The image plane is on Z C = f in the camera frame, where f is the focal length of the camera. The origin point I o of the image frame is the upper left corner of the image. O is the intersection of the optical axis and the image plane, called principal point. In this system, coordinates of a point q are expressed by pixels, and written as : q I = (v, u, w).

Extrinsic and intrinsic parameters

A camera has intrinsic and extrinsic parameters [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF]. The intrinsic parameters are related to its intrinsic characteristics, including focal length, position of the principle point on image plane, image pixel size, scaling factors of row and column pixels, skew factor, and lens distortion. The extrinsic parameters are related to its position and orientation with respect to a fixed world system. The process to map a point Q(X W , Y W , Z W ) in the world system to a point q with coordinates (v, u, 0) on the image plane is called a projective transform.

• 1) Extrinsic parameters. With the extrinsic parameters of a camera, the coordinates of Q in the world frame Q W = (X W , Y W , Z W ) can be transformed to coordinates in the camera frame, as

Q C = (X C , Y C , Z C ).
The extrinsic parameters are represented by a translation vector T and a rotation matrix R (see in Fig. 3.1).

-Rotation matrix : orientation matrix of a camera in the world system is related to its rotation from the world frame to the camera frame. The rotation matrix R in 3-dimensional space can be decomposed into three rotation matrices : R X with angle α around X C axis, R Y with angle β around Y C axis, and R Z with angle γ around Z C axis. They are respectively written as :

R X =           1 0 0 0 cosα -sinα 0 sinα cosα           (3.1) R Y =           cosβ 0 sinβ 0 1 0 -sinβ 0 cosβ           (3.2) R Z =           cosγ -sinγ 0 sinγ cosγ 0 0 0 1           (3.3)
Then, the full rotation matrix R is given by the product of these three matrices, as :

R = R Z R Y R X =           cosβcosγ sinαsinβcosγ -cosαsinγ cosαsinβcosγ + sinαsinγ cosβsinγ sinαsinβsinγ + cosαcosγ cosαsinβsinγ -sinαcosγ -sinβ sinαcosβ cosαcosβ           (3.4)
-Translation vector : translation vector T = (t X , t Y , t Z ) describes the position of camera center C in the world frame.

-Full extrinsic model : with the rotation matrix R and translation vector T , the world coordinates Q W of point Q can be transformed to coordinates Q C in the camera frame through :

Q C = RQ W + T (3.5)
As the homogeneous coordinates of a n-d point in projective space can be expressed by a (n + 1) dimensions vector, the homogeneous coordinates of Q C (X C , Y C , Z C ) are written as :

               X C Y C Z C 1                = M                X W Y W Z W 1                (3.6)
where M is the camera extrinsic model containing the extrinsic parameters of the camera :

M = R T 0 1 (3.7)
• 2) Intrinsic parameters. In central projection, the point

Q with coordinates Q C = (X C , Y C , Z C
) in the camera frame can be projected onto the image plane by a ray passing through both the point Q and the projection center C (Fig. 3.1). The resulting point on image is q with coordinates q C = (x C , y C , z C ) in the camera frame, as :

           x C = f X C Z C y C = f Y C Z C z C = f (3.8)
All the image points in the camera frame can be represented by 4-dimensional homogeneous coordinates and a constant s, as :

               sx C sy C sz C s                = P                X C Y C Z C 1                (3.9)
where P is the projection matrix :

P =                1 0 0 0 0 1 0 0 0 0 1 0 0 0 1/ f 0                (3.10) 
-Transformation from camera frame to image frame : image points are measured by pixels in the image frame. Let q I = (u, v, w) the pixel coordinates of a point q in image frame. The transformation of its coordinates from camera frame to image frame is based on image principal point O = (u 0 , v 0 ) (pixels), horizontal scaling factor k u and vertical scaling factor k v , written as :

         u = -k u x C + u 0 v = -k v y C + v 0 w = 0 (3.11)
The homogeneous coordinates of q in the image frame are represented by a 3dimensional vector :

          u v 1           = K 0                x C y C z C 1                (3.12)
where :

K 0 =           -k u 0 0 u 0 0 -k v 0 v 0 0 0 0 1           (3.13)
-Full intrinsic model : with Eq. 3.9 to Eq. 3.13, the full intrinsic model is used to transform the point coordinates Q C in the camera frame to coordinates q I in the image frame, written as :

          su sv s           = K 0 P                X C Y C Z C 1                =           -k u 0 u 0 / f 0 0 -k v v 0 / f 0 0 0 1/ f 0                          X C Y C Z C 1                = K                X C Y C Z C 1                (3.14)
where K = K 0 P is the camera intrinsic model containing the intrinsic parameters of the camera. Since the point q is in homogeneous coordinates, we need to divide q by s to recover its image coordinates, as : (u = su/s, v = sv/s).

• 3) Full camera model. With the extrinsic model M of the camera (Eq 3.7), the point coordinates Q W in the world reference system can be transformed to point coordinates Q C in the camera frame ; then, with the intrinsic model K of the camera (Eq 3.14), Q C can be transformed to coordinates q I in the image frame. The full camera model can then be written as :

          su sv s           = K M                X W Y W Z W 1                =           -k u 0 u 0 / f 0 0 -k v v 0 / f 0 0 0 1/ f 0           R T 0 1                X W Y W Z W 1                (3.15)

Calibration of a camera

Calibrating a camera is to know the value of its intrinsic/extrinsic parameters and distortion coefficients, especially for the intrinsic parameters since they are constant at different camera poses. Precision of the calibration process is important because the intrinsic parameters will be used during the visual odometry process and might affect the robustness of the whole procedure.

The principle of camera calibration is to target the camera on a known structure with a set of identifiable features. By viewing this structure from different poses, it is possible to compute the intrinsic parameters of the camera and its relative locations and orientations with respect to the calibration structure.

We use the planar calibration method proposed by Zhang [START_REF] Zhang | A flexible new technique for camera calibration[END_REF] to calibrate our camera system. The calibration target used is a plane with printed chessboard pattern (Fig. 3

.2).

There are 23 × 16 squares (30mm × 30mm) on the chessboard. The camera is calibrated through the following steps : i) At first, the chessboard is hold at different positions and orientations in the field of view of the camera, to provide a set of chessboard images ;

ii) Then, internal corners of the chessboard are extracted from each image ;

iii) Since the actual size of chessboard squares is already known, the third step is to calculate the intrinsic parameters of the camera, and the extrinsic parameters R and T with respect to each chessboard plane ; There are many toolboxes for camera calibration, we have tested Matlab Toolbox 1 developed by Jean-Yves Bouguet [START_REF] Bouguet | Camera calibration toolbox for matlab[END_REF], and open source library OpenCV 2 . Both the two toolboxes implement the calibration method proposed by Zhang [START_REF] Zhang | A flexible new technique for camera calibration[END_REF]. Bouguet's toolbox is used in our work to estimate the focal length on u and v directions in pixels,

f u = k u f , f v = k v f
, the coordinates of the principle point O, the angle of pixel axes, and a 5-dimensional vector containing the radial and tangential distortion parameters of camera [START_REF] Brown | Close-range camera calibration[END_REF].

3.2.1.2/ STEREOSCOPIC SYSTEM MODELING AND CALIBRATION

Geometric model of a stereoscopic system

Just as human binocular vision system, a stereoscopic system can perceive the 3D structure of an object in the environment. A binocular stereoscopic system is composed of two digital cameras, respectively with projection centers C l and C r as shown in Fig. 3.3. The stereoscopic system permits to simultaneously obtain two projections of the same scene from two different points of view [START_REF] Forsyth | Computer vision. a modern approach[END_REF].

Given a 3D scene point Q with coordinate Q W = {X W , Y W , Z W }
in the world coordinate system, it can be respectively projected onto the left and right image planes as points q l (u l , v l ) and q r (u r , v r ). q l and q r are defined from their own image coordinate systems associated with the left and right images.

-Epipolar line and epipole. As seen in Fig. 3.3, the projection of the right projection center C r (resp. C l ) on the left (resp. right) image plane Π l (resp. Π r ) is called the left (resp. right) epipole e l (resp. e r ). The plane through the two epipoles e l , e r and 3D point Q is called an epipolar plane. Lines q l e l and q r e r (between the epipoles and the image points) are called epipolar lines. Given a point q l (resp. q r ) in one image, its corresponding point viewed in the other image must lie on its corresponding epipolar line q r e r (resp. q l e l ). This constraint is called the epipolar geometry constraint. Essential matrix E describes the location of a camera with respect to the other camera in the system attached to the first camera. It contains the information which relates the coordinates of two projections q l and q r of the point Q on the left and right image planes. This relation is written as :

(q C r r ) T Eq C l l = 0 (3.16) 
where q C l l (x C l l , y C l l , z C l l ) and q C r r (x C r r , y C r r , z C r r ) are respectively the coordinates of two projections q l and q r in the left and right camera frames.

-Fundamental matrix. Just as the essential matrix, fundamental matrix F also builds links between the two cameras. F is defined in terms of pixel coordinates with the intrinsic information of both cameras, while essential matrix E is defined in terms of camera coordinates.

The coordinates of a point in image frame can be obtained with its coordinates in the camera frame and the camera intrinsic parameters, q I l l = K l q C l l , q I r r = K r q C r r , where q I l l and q I r r are respectively the coordinates of image points q l and q r in the left and right image frames ; K l , K r are respectively the intrinsic models of the left and right cameras.

Replacing q C r r = K -1 r q I r r and q C l l = K -1 l q I l l , Eq.3.16 can then be written as :

(q I r r ) T (K -1 r ) T EK -1 l (q I l l ) = 0 (3.17) Note : F = (K -1 r ) T EK -1 l (3.18)
we can obtain :

(q I r r ) T Fq I l l = 0 (3.19)
In Eq. 3.19, F directly establishes a mapping from pixels on an image to the corresponding epipolar lines on the other image, without any prior knowledge of the geometric relation between the two cameras.

Remarks : the coordinates of image points q l and q r respectively in the left and right images frames are abbreviated as {q l (u l , v l ), q r (u r , v r )} in the following texts.

Calibration of a stereoscopic system

Stereo calibration is the process of recovering the geometric relation (relative position and orientation) between two cameras in a stereoscopic system [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF]. As seen in Fig. 3.3, for a point Q in 3D space, its two coordinate vectors Q C l and Q C r respectively observed by the left and right cameras are related to each other by a rigid transformation :

Q C r = R lr Q C l + T lr
, where R lr is a 3 × 3 rotation matrix, T lr is a 3 × 1 translation vector. R lr and T lr describe the relative location of the left camera with respect to the right one.

-Implementation. Several methods [59] [70] have been proposed to find the parameters R lr and T lr of a stereoscopic system. Hartley [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF] proposed to use the fundamental matrix with uncalibrated cameras : corresponding image points {q l (u l , v l ), q r (u r , v r )} are used to estimate the fundamental matrix F [93] [START_REF] Nist Ér | An efficient solution to the five-point relative pose problem[END_REF] through Eq.3.19, then recover the rotation matrix R lr and translation vector T lr by factorization of the fundamental matrix with SVD (Singular Value Decomposition). Bouguet [START_REF] Bouguet | Camera calibration toolbox for matlab[END_REF] proposed to separately calibrate the two cameras at first, then estimate the rotation and translation parameters by minimizing the reprojection errors of all the corresponding corners. The second method is used in our work to calibrate the stereoscopic system with the toolbox developed by Bouguet.

-Stereo rectification. Rectification is a process to correct an image pair (Fig. 3. We use Bouguet's algorithm to rectify the stereo images with the rotation and translation parameters between the two calibrated cameras. After image rectification, the stereoscopic system is calibrated again to obtain new parameters of the two cameras and new relationship between them. These parameters are used for stereovision based vi-sual odometry in the next section.

3.2.2/ STEREOVISION BASED VISUAL ODOMETRY

Since the baseline between the left and right cameras can be known by calibration, the scale of Euclidean reconstruction can be directly provided. Therefore, stereovision based visual odometry method is adopted in our system.

FIGURE 3.5 -Working flow of stereovision based visual odometry method

As shown in Fig. 3.5, when an image pair is acquired :

1) If it is the first image pair of a reference, features (e.g., Harris, SURF, CenSurE) are extracted from the image pair (section 3.2.2.1), and corresponding features are found between the left and right images (section 3.2.2.2) ; then, the corresponding features are reconstructed into 3D space by triangulation (section 3.2.2.3) ;

2) If it is not a reference image pair, the detected features in the reference image pair are tracked from frame to frame (section 3.2.2.4) till the reference stereo pair updates (section 3.2.2.4).

3) Then, the camera motion of current image pair can be estimated with RANSAC by incorporating several 2D and 3D outlier rejection strategies (section 3.2.2.5).

3.2.2.1/ FEATURE EXTRACTION

In order to track image features in multiple views, the extracted features and descriptors have to be robust and distinctive under various conditions (e.g., different illumination conditions, positions, angles of view and image scales). For real-time application, feature tracking also requires that the features and descriptors could be quickly extracted.

A lot of feature types have been proposed in the computer vision community, such as point, line, or region features. For example, the widely used Harris corners [START_REF] Harris | A combined corner and edge detector[END_REF] with good detection rate. But as Harris corners rely on image gradient information, it is sensitive to the change of image scales and viewpoints. Several other detectors have also been proposed, e.g., Shi and Tomasi corners [START_REF] Shi | Good features to track[END_REF], Scale Invariant Feature Transform (SIFT) [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF], FAST feature [START_REF] Rosten | Machine learning for high-speed corner detection[END_REF], MSERs feature (Maximally Stable Extremal Regions) [START_REF] Donoser | Efficient maximally stable extremal region (mser) tracking[END_REF], SURF (Speeded Up Robust Features) [START_REF] Bay | Surf : Speeded up robust features[END_REF] and CenSurE (Center Surround Extremas) [START_REF] They' | Censure : Center surround extremas for realtime feature detection and matching[END_REF].

Characteristics of these features are compared in Tab 3.1 based on the work of Fraundorfer et al. [START_REF] Fraundorfer | Visual odometry : Part ii -matching, robustness, and applications[END_REF] and Mikolajczyk et al. [START_REF] Mikolajczyk | A comparison of affine region detectors[END_REF]. 2. Then, given a point q = (u, v) in an image I, the determinant of approximated Hessian matrix H(u, I δ ) in u at scale I δ is calculated ; then a non-maximum suppression is applied in a 3 × 3 × 3 neighborhood to localize interest points on the image over all scales.

❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ Feature Criteria C1 C2 C3 C4 C5 C6 C7 C8 C9
3. After that, the descriptor D of each SURF feature is estimated based on pixel properties. Instead of computing the image gradients, first order Haar-wavelet responses are calculated in u and v directions based on integral images for fast filtering. Thus, the descriptor can describe the distribution of Haar-wavelet responses within the neighborhood of the interest point.

3.2.2.2/ FEATURE MATCHING

After extracting the features from two images, image feature matching is to measure the similarity of two features using pixel information or descriptors, then to find corresponding feature couples between two images. Two types of matching methods are discussed in the following part : area similarity based (window-based) matching method and feature descriptor based matching method.

• Area similarity based matching. Area based matching algorithms solve the correspondence problem by taking a window area around the considered pixels. With the assumption that all the pixels inside a matching window belong to the same object and their 3. http://www.vision.ee.ethz.ch/ ∼ surf/index.html intensities (and disparity variation) are constant and continuous, the similarity of two extracted intensity windows is computed to represent the similarity of the considered central pixels.

Let I 1 be a local window around an image feature in one view, and I 2 one window around an image feature in another view. The similarity of the two areas can be measured by different metrics, as summarized in Tab 3.2.

Similarity metrics Definitions

Sum of absolute differences

S AD = u,v∈W |I 1 (u, v) -I 2 (u, v)| Zero-mean sum of ZS AD = u,v∈W I 1 (u, v) -Ī1 -I 2 (u, v) -Ī2 absolute differences Sum of squared differences S S D = u,v∈W (I 1 (u, v) -I 2 (u, v)) 2
Zero-mean sum of ZS S D = u,v∈W

( I 1 (u, v) -Ī1 -I 2 (u, v) -Ī2 ) 2 squared differences Normalized cross correlation NCC = u,v∈W I 1 (u, v)I 2 (u, v) u,v∈W I 1 (u, v) 2 u,v∈W I 2 (u, v) 2 Zero-mean normalized cross correlation ZNCC = u,v∈W I 1 (u, v) -Ī1 I 2 (u, v) -Ī2 u,v∈W I 1 (u, v) -Ī1 2 u,v∈W I 2 (u, v) -Ī2 2 TABLE 3.

-Area similarity based matching metrics

In Tab 3.2, W is the matching window centered around an image feature point, I 1 (u, v) (and

I 2 (u, v))
is the intensity of a pixel within the window, Ī1 (and Ī2 ) is the average intensity of pixels inside the window. The limitation of SSD and SAD is their high sensitivity to changes of illumination conditions. NCC and ZNCC improve the matching performance by dividing the measuring result with intensity variance in matching window. ZNCC further improves NCC by removing the changes of intensity between two images.

Remarks : in order to improve the matching accuracy and to reduce the computation cost, size and shape of the matching window should be appropriately chosen : the window size should be large enough to incorporate enough intensity variations for matching, but also small enough to avoid the effects of projective distortion. Various methods have been proposed to adaptively choose the window size or window shape [START_REF] Kanade | A stereo matching algorithm with an adaptive window : Theory and experiment[END_REF] [161].

• Feature descriptor matching. Matching two sets of descriptors (e.g., SIFT descriptor or SURF descriptor) between two images is to evaluate the similarity of features in their descriptor space. Different distances can be used to measure the difference of two descriptor vectors, e.g., Euclidean distance, Mahalanobis distance [START_REF] Mahalanobis | On the generalised distance in statistics[END_REF]. Then, after measuring the similarity between two descriptors, two approaches can be used to fix the corresponding feature for a feature point q(u l , v l ) :

1) the nearest method finds the corresponding feature which has the closest distance to the descriptor vector of q ;

2) the nearest distance ratio method compares the distances between the closest and the second closest descriptor vectors to q. Then, the closest correspondence is accepted only if the ratio between these two distances is less than a defined threshold.

In our work, SURF descriptors with smallest Euclidean distance are considered to find the corresponding features. Though the descriptors based feature matching is reliable, some false correspondences are still unavoidable. So, after finding the closest corresponding features by SURF descriptors, ZNCC with 13 × 13 window size (window size is empirically chosen) under several geometric constraints is used to check the similarity between the two corresponding features.

• Feature matching constraints. In order to improve the matching precision and computation time, some geometric constraints are considered to reduce the search space or to refine the matching result : i) Epipolar constraint : for one image feature, its corresponding feature in the other image must lie on the relative epipolar line (Fig. 3.3). For rectified image pairs, a simplification of the general epipolar geometry is shown in Fig. 3.4 (right). The two cameras are arranged in parallel with identical focal length, and all the epipolar line are parallel to the horizontal scan-lines. Considering image noises, we define the epipolar constraint for features as |v lv r | <= 2 ;

ii) Maximum and minimum disparity constraint : according to the length of baseline and the maximum and minimum depth of the 3D objects in the environment, the minimum and maximum disparity ranges are defined ;

iii) Threshold of correlation score : for ZNCC, larger value indicates a closer relationship, thus, only the feature couples with the largest value of ZNCC > 0.9 are chosen as the potential corresponding features ; iv) Uniqueness constraint : one feature can only be matched with another one ; v) Ordering constraint : for two corresponding feature couples q 1,l ↔ q 1,r and q 2,l ↔ q 2,r , if q 1,l lies on the left (or right) side of q 2,l , q 1,r should be on the same side of q 2,r ; vi) Inverse matching (mutual checking) : after obtaining a potential feature correspondence (q l ↔ q r ), taking the corresponding feature q r in the right image as reference, we can look for its corresponding feature in the left image. If the same left image feature q l is found to be the correspondence, this matching result (q l ↔ q r ) is considered as an inlier.

3.2.2.3/ 3D LANDMARK RECONSTRUCTION

When the geometric arrangement of a stereoscopic system is known, local 3D position

Q C (X C , Y C , Z C
) of a point Q relative to the camera center can be recovered based on its corresponding image points [START_REF] Forsyth | Computer vision. a modern approach[END_REF]. But, due to the influence of various noises, the left and right rays passing through the camera centers and the corresponding features might not intersect at the same 3D point, as shown in Fig. 3.7. An alternative method is to respectively obtain the left and right rays with left and right image features, then find the shortest segment that connects these two rays, and take the middle point of this segment as the 3D position of Q.

Taking the left camera system as the reference system, the left and right camera centers are respectively C l (0, 0, 0) and C r (-B, 0, 0)). Let r 1 be a 3 × 1 unit vector of the ray that FIGURE 3.7 -Triangulation by intersecting rays passing through corresponding image points and camera centers connects the left camera center and the left image feature q C l l (x l , y l , f ), r 2 be a 3 × 1 unit vector of the ray that connects the right camera center and the right image feature q C r r (x r , y r , f ), Q l and Q r be the endpoints of the shortest line segment connecting the two rays [START_REF] Cheng | Visual odometry on the mars exploration rovers[END_REF]. B is the baseline between C l and C r , r l and r r are calculated with the coordinates of image features through :

r l = [x l , y l , f ] T / C l q l r r = [x r , y r , f ] T / C r q r (3.20)
then, the coordinates of the 3D points Q l and Q r can be written as :

Q l = C l + r l m 1 , Q r = C r + r r m 2 (3.21)
where m 1 = Q l C l and m 2 = Q r C r . In order to find the parameters m 1 and m 2 , we need to minimize :

Q l -Q r 2 = (C l + r l m 1 ) -(C r + r r m 2 ) 2 (3.22)
this function can be written in the matrix format, as :

r l -r r m 1 m 2 = C r -C l (3.23)
with the least-square approach, we can obtain :

m 1 m 2 = r l -r r T r l -r r -1 r l -r r T (C r -C l ) (3.24) Since B 0 = C r -C l = [ -B 0 
0 ] T , r T l r l = 1 and r T r r r = 1, we can have :

m 1 = B 0 • r l -(B 0 • r r )(r l •r r ) 1 -(r l •r r ) 2 , m 2 = (B 0 • r l )(r l • r r )) -B 0 • r r 1 -(r l •r r ) 2 = (r l • r r )m 1 -B 0 • r r (3.25)
As seen in Fig. 3.7, the midpoint of the line segment Q l Q r is supposed to be the coordinates of the 3D point Q :

Q = (Q l + Q r )/2 (3.26)
For a given stereo system with fixed intrinsic and extrinsic parameters, if the depth Z of a point is estimated by direct triangulation model

Z = f B/d, the derivative of Z to horizontal- disparity d is ∂Z ∂d = -f B d 2 . Replacing d by d = f B
Z , the relationship of depth and disparity can be written as :

∂Z ∂d = -Z 2 f B , ∂Z = -Z 2 f B × ∂d.
Though the variance of depth in triangulation process is not a simple scalar function of distance to the point [START_REF] Solina | Errors in Stereo Due to Quantization[END_REF], we can note that the influence becomes greater when the depth increases, and the accuracy of the depth estimation will decrease. Therefore, in our experiments, reconstructed 3D points with negative depth or with depth more than 50 meters are eliminated.

3.2.2.4/ 2D FEATURE TRACKING AND REFERENCE PAIR UPDATING

In order to estimate the camera motion with image sequences, corresponding image features in continuous frames can be found by two alternative methods : the first one is to detect features in every image frame, then match them between two frames ; the second method is to track previously detected features in current frame with techniques like optical flow. As the geometric relationship between consecutive frames is unknown, both the computation of epipolar line and the use of area based matching method are time-consuming, thus we choose Kanade-Lucas-Tomasi (KLT) feature tracker [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF] to track key features.

2D feature tracking

When a new stereo pair is acquired, the previous matched key features between left and right images are separately tracked in the current image pair by KLT feature tracker [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF]. KLT feature tracker uses local information in a small window around the image points with three assumptions : -Brightness constancy between corresponding pixels in two frames ; -Pixel intensities constancy in a local window around the pixel ; -Small movement between two consecutive frames.

A pixel located at (u, v) in image frame at time t with intensity I(u, v) will move to (u + ∆u, v + ∆v) in image frame at time t + ∆t with intensity I(u + ∆u, v + ∆v). The pixel intensity at time t + ∆t can be approximated by first-order Taylor series as :

I(u + ∆u, v + ∆v, t + ∆t) = I(u, v, t) + ∂I ∂u ∆u + ∂I ∂v ∆v + ∂I ∂t ∆t (3.27)
where ∂I ∂u , ∂I ∂v , ∂I ∂t are derivatives of image intensity at (u, v, t). With the brightness constancy assumption, we can have :

∂I ∂u ∆u + ∂I ∂v ∆v + ∂I ∂t ∆t = ∂I ∂u V u + ∂I ∂v V v + ∂I ∂t = 0 (3.28)
where V u and V v are respectively image velocities on u and v directions. With multiple pixels in a window, an optimal (V v , V u ) can be found by solving the over-constrained function (Eq.3.28) with least square method.

During the tracking process, several constraints are applied to remove outliers of tracked features :

i) Intensity constraint : the intensity difference between patches (13 × 13 pixels) around the image features in two consecutive frames should be less than 500 ;

ii) Search space constraint : a tracked feature should not move out of the tracked image plane ; After obtaining the tracked features in the left and right frames, the tracked image features in the current camera coordinate system are triangulated into 3D space. The distribution of features in the current stereo frame is calculated as distribut tracking by dividing the left image plane into a series of 20×20 (pixels) squares and calculating the number of squares which contain the extracted features.

Reference stereo pair updating

When the camera moves, some features will move out of FOV of the camera, as in Fig. 3.8(a). Therefore, only features that can be tracked in the previous frame will be tracked sequentially until the number or distribution conditions cannot be satisfied. The first stereo pair is selected as initial reference image pair. After reconstructing the features into 3D space, the distribution of image features in the reference pair is calculated as distribut re f erence , like distribut tracking . For our experiments, the thresholds of reference reinitialization is empirically set : if the number of matched features in the reference stereo pair is n m , the number threshold is set as T number = n m * 60% ; the distribution threshold is set as T distribut = (distribut re f erence * 60%). If the number or distribution value is less than the defined threshold, the previous stereo pair is selected as the new reference stereo pair, then new features are detected for matching and tracking.

3.2.2.5/ MOVING FEATURE ELIMINATION AND RIGID MOTION ESTIMATION

Taking the first left camera position as the origin of the global coordinate system W, the global positions of every camera pose and 3D landmarks can be obtained with the positions and orientations of their reference stereo pairs.

Vision based relative motion estimation

Let {Q t i } and {Q r i } (i = 1 • • • N) be two corresponding point sets respectively obtained by the camera system at time t and reference frame. These two point sets can be related by :

Q t i = R r→t Q r i + T r→t + V i (3.29)
where R r→t is a 3 × 3 rotation matrix composed of three rotation angles : yaw, pitch and roll (θ, ψ, φ), T r→t is a 3D translation vector (T x , T y , T z ), and V i is a noise vector. In order to find the optimal transformation [R, T ] r→t between the reference set and current set, we need to minimize the residual error :

ε 2 = N i=1 Q t i -R r→t Q r i -T r→t 2 (3.30)
With the assumption that the environment is rigid, the centroids Qt and Qr of two point sets should be the same :

Qt = 1 N N i=1 Q t i (3.31) Qr = 1 N N i=1 Q r i (3.32)
We note {Q t ci } = {Q t i }-Qt and {Q r ci } = {Q r i }-Qr as the two centered point sets corresponding to {Q t i } and {Q r i }. Then,

ε 2 = N i=1 Q t ci -R r→t Q r ci 2 = N i=1 (Q t ci T Q t ci + Q r ci T Q r ci -2Q t ci T R r→t Q r ci ) (3.33) 
This equation is minimized when the last term is maximized. It is equivalent to maximizing the trace (RH) of this term, the cost expression is written as :

H = N i=1 Q r ci Q t ci T (3.34)
The optimal rotation matrix can be found by SVD (singular value decomposition) of matrix H = US D T with Arun's solution [3], together with Umeyama's complements [START_REF] Umeyama | Least-squares estimation of transformation parameters between two point patterns[END_REF] for some degenerated cases :

S = I 3×3 , i f det(D) × det(U) = 1 diag(1, 1, -1), i f det(D) × det(U) = -1 (3.35)
Then the rotation matrix can be obtained by R r→t = DS U T . Since the optimal translation vector can align the centroid of the point set {Q t i } with the rotated centroid of the point set {Q r i }, translation vector T r→t is estimated by : T r→t = Qt -R r→t Qr .

Elimination of moving features

Some 3D points with large depth noises have already been rejected before motion estimation. In outdoor environments, the dynamic nature of vehicle motion and scenery modeling make the use of vision methods challenged to apply. Natural landmarks in areas with amount of repeating textures (e.g., trees, fences) might make feature detection and matching complicated. During the procedure of vehicle motion estimation, the use of features on non-stationary or non-rigid objects may arouse unreal vehicle motion, such as suddenly appeared pedestrians or moving vehicles (Fig. 3.9). It is important to eliminate the false tracking features and features belonging to moving obstacles. Here, outlier rejection mechanisms with RANSAC and 3D/2D optical flow are applied to remove features • Iterative motion estimation with RANSAC. RANdom SAmple Consensus (RANSAC) is a robust estimator proposed by Fischler et al. [START_REF] Fischler | Random sample consensus : a paradigm for model fitting with applications to image analysis and automated cartography[END_REF]. Instead of using all data for model estimation, RANSAC statistically uses as small initial data set as necessary and enlarges this set with consistent data when possible. The steps of RANSAC algorithm [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF] are listed in Algorithm 1.

Algorithme 1: RANSAC Input : A data set S , the smallest sample size n, error distance threshold l, number N sample of sampling times, threshold N of an acceptable consensus set Output : Fitted model Randomly select a sample of n data from the data set S , and estimate the model based on this subset; Determine which data in S are within the distance threshold l of the model. Data within the distance are considered to be inliers and form a consensus set S i of the sample; If the number of inliers in S i is greater than the threshold of an acceptable consensus set N, the model is estimated again using all data in this consensus set; After N sample trials, the largest consensus set S i is used to re-estimate the model.

In our experiments, iterative motion estimation with RANSAC is to iteratively select a random subset of 3 tracked image points in the current left image frame ; then, generate one camera motion hypothesis R and T with the point correspondences between consecutive images. The reconstructed points are transformed from the reference coordinate system to the current camera system with the new motion hypothesis. The Euclidean differences between each two 3D positions are calculated, and the corresponding points within the threshold are considered to be inliers. The best motion hypothesis is the one with the largest number of inliers. Then, the final solution is estimated with the largest inlier subset.

To ensure that the randomly selected three points are well distributed in the image, every two image features must have a distance larger than the square size 24 × 24 (pixels). The other parameters are dynamically chosen [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF] :

1. For probability of 95% that a point correspondence is an inlier, the distance threshold l used is set to 5.99 × δ 2 , where δ is the standard deviation of Euclidean differences between the two 3D point sets ;

2. The number N sample of sampling times is dynamically estimated by

N sample = log(1-p) log(1-(1-ǫ) n )
to ensure a probability p that at least one of the random samples is free from outliers, where n is the smallest sample size, p is set to 0.99, and ǫ is the percentage of outliers, ǫ = 1 -(number inliers )/(number points ).

• 3D/3D method to remove outlier. When the vehicle moves in rigid and static environments, all static objects (which are considered as the background) should have similar 3D motion relative to the moving vehicle. For the corresponding local 3D positions {Q t i } and {Q r i } (i = 1 : N) at time t and re f erence instant, the velocity of 3D displacement can be obtained by [START_REF] Shih | Robust moving object detection on moving platforms[END_REF] :

∆Q i =            X r i Y r i Z r i            =           τ x τ y τ z           +           0 -ω z ω y ω z 0 -ω x -ω y ω x 0                     X r i Y r i Z r i           (3.36)
where ω = [ω x , ω y , ω z ] T is the angular velocity and τ = [τ x , τ y , τ z ] T is the translational velocity. 2D projection of the point Q r i on the left image plane can be approximately written as

{x i = f X r i /Z r i , y i = f Y r i /Z r i }.
Then, the 2D optical flow can be obtained by computing the derivation of {x i , y i } to time and represented by 3D object position Q r i , 3D motion ∆Q i and disparity d i = x i,lx i,r as :

V x,i V y,i =          d i B 0 -d i * x i f * B -y i * x i f f 2 +x 2 i f -y i 0 d i B -d i * y i f * B - f 2 +y 2 i f y i * x i f x i                                    τ x τ y τ z ω x ω y ω z                           (3.37)
For every three couples of tracked features, Eq.3.37 is solved to obtain a motion parameter vector. The points fit the initial motion parameters are measured by Euclidean distance (suppose that every variables are independent), the mean error ǭ and standard deviation σ of errors are used to remove the tracked features whose deviation is more than 2σ.

Global pose estimation based on incremental procedures

Taking the first camera position as the origin of global coordinate system, the camera pose and position of the 3D landmarks in the global system can be obtained with the pose of its reference stereo pair :

R global t = R r R r→t T global t = R r T r→t + T r {Q global i,t } = R global t {Q t i } + T global t (3.38)
where :

-R r , T r : the rotation matrix and translation vector of the reference stereo pair in the global system ; -R r→t , T r→t : the rotation matrix and translation vector of camera at time t with respect to } : the set of coordinates of 3D points {Q i } in the world coordinate system.

3.2.3/ ERROR MODELING OF STEREO VISUAL ODOMETRY

For the procedure of a vision algorithm, it is important to know how the random perturbation is propagated to the estimated quantity through the vision algorithm [START_REF] Haralick | Propagating covariance in computer vision[END_REF] [START_REF] Moreno | A probabilistic observation model for stereo vision systems : Application to particle filter-based mapping and localization[END_REF]. Precision of the estimation is essential when we want to integrate the vision based estimation with other measurements. For example, the error propagation problem of stereo reconstruction and motion estimation is discussed in the following part.

3.2.3.1/ OVERVIEW OF UNCERTAINTY MODELING AND PROPAGATION

• Covariance : considering a random variable x with density P, expectation of x is defined as :

E{x} = +∞ -∞ xp(x)dx (3.39)
and the variance of x is :

Var{x} = E{(x -E{x}) 2 } (3.40)
The variance describes the quality (error) around the expected value E{x}. If we consider another random variable y, the covariance between these two random variables x and y is defined as :

Cov(x, y) = E{(x -E{x})(y -E{y})} (3.41)
The covariance describes how much the two random variables are correlated with each other.

• Properties of expectation and variance :

-operation of the expected value E is linear, written as : E{ax} = aE{x} ;

-if all values of x are scaled by a constant a, the variance of ax is scaled by the square of constant a, as : Var{ax} = a 2 Var{x} ;

-the expectation and variance of the sum of two random variables x and y are given by :

E{ax + by} = aE{x} + bE{y} Var{ax + by} = a 2 Var{x} + b 2 Var{y} + 2abCov(x, y) (3.42)
More generally, denote the n variables related to a variable f by a vector s(s 1 , s 2 , • • • , s n ), the variance of f can be written as :

Var{ f } = n i=1 ( ∂ f ∂s i )Var{s i } + n i n j, j i ( ∂ f ∂s i )( ∂ f ∂s j )2Cov(s i , s j ) (3.43)
When f is a multi-dimension vector, Var{ f } becomes the covariance of f , as :

Cov{ f } = JCov(s)J T (3.44)
where J is the Jacobian matrix (first partial derivative) of f to s, Cov(s) is the covariance of the random variables

{s 1 , s 2 , • • • , s n }.
If f is nonlinear to the variables s, the covariance of f can be approximated by first-order error propagation of the true value with first-order Taylor series expansion at point s i , as :

Y ≈ f (s i ) + ∂ f ∂s s=s i (s -s i ) (3.45)
Since we suppose that the error of s is small, higher orders in Taylor series expansion are neglected. When f is too nonlinear, the probability distribution of f might not be well approximated.

3.2.3.2/ UNCERTAINTY OF STEREO RECONSTRUCTION

Sources of 3D landmark errors vary from inaccurate camera calibration parameters, physical image noises, illumination conditions to feature detection and matching errors, these errors will lead to some 3D points that do not really exist [START_REF] Cazorla | Large scale egomotion and error analysis with visual features[END_REF]. In this work, we consider only the covariance of stereo reconstruction propagated from the image feature position noise through the 3D reconstruction function. • Covariance of image feature position. Due to the noise of image points caused by image quantization [START_REF] Matthies | Error modeling in stereo navigation[END_REF], the estimated coordinates of a 3D point Q might lie anywhere inside the shaded region, as shown in Fig. 3.10. Assume that the normally distributed error of image coordinates are uncorrelated on horizontal and vertical directions, the zeromean Gaussian position error of image feature q l (x l , y r ) and q r (x r , y r ) can be respectively written as 2 × 2 covariance matrices :

H le f t = δ 2 x l 0 0 δ 2 y l , H right = δ 2 x r 0 0 δ 2 y r (3.46)
where δ 2

x l , δ 2 x r , δ 2 y l , and δ 2 y r are the standard deviations of pixel coordinates x l , x r , y l , and y r . As the two corresponding points are uncorrelated, covariance matrix H pair of the image points pair can be written as a 4 × 4 diagonal matrix :

H pair =                δ 2 x l 0 0 0 0 δ 2 y l 0 0 0 0 δ 2 x r 0 0 0 0 δ 2 y r                (3.47)
The covariance of a scale invariant feature (e.g., SURF feature used in our work) can also be estimated from the detector response map in the neighborhood of feature point [START_REF] Zeisl | Estimation of location uncertainty for scale invariant feature points[END_REF]. Covariance of the tracked 2D feature position is supposed to be proportional to the distance between the reference and tracked image frames (though the 2D locations of features are not independent from each other when features are tracked from one frame to another ; considering the computation time for independently detecting new features in every image frame, feature tracking is used here and the cross-correlation between features is not considered).

• Covariance of the triangulated 3D point propagating from the image feature location covariance. Covariance of the reconstructed 3D points is propagated from the covariance H pair of 2D image positions through the nonlinear triangulation model (see Eq.3.20 to Eq.3.26). According to Eq.3.44, the Jacobian matrix Q ′ of a 3D point Q with respect to 2D image coordinates {x l , y l , x r , y r } can be estimated by [START_REF] Cheng | Visual odometry on the mars exploration rovers[END_REF] :

Q ′ = (r ′ l m 1 + r l m ′ 1 + r ′ r m 2 + r r m ′ 2 )/2 (3.48)
with :

m ′ 1 = [B 0 •r ′ l -(B 0 •r ′ r )(r l •r r )-(B 0 •r r )(r ′ l •r r +r l •r ′ r )][1-(r l •r r ) 2 ]+2[B 0 •r l -(B 0 •r r )(r l •r r )][(r l •r r )(r ′ l •r r +r l •r ′ r )] [1-(r l •r r ) 2 ] 2 m ′ 2 = (r l • r r )m ′ 1 + (r ′ l r r + r l r ′ r )m 1 -B 0 • r ′ r
where r ′ l and r ′ r are respectively the first derivatives of r l and r r with respect to {x l , y l , x r , y r }. Then, the covariance matrix of the reconstructed 3D point can be approximately measured by :

p = Q ′ H pair Q ′T (3.49)

3.2.3.3/ UNCERTAINTY OF STEREO VISUAL ODOMETRY

Covariance of the estimated transformation between two camera poses depends on many factors, including the number, the accuracy and geometric distribution of point correspondences, etc. In this section, the covariance of the estimated pose transformation is propagated from the covariance of the used 3D points sets.

Error of relative motion

Let (R r→t , T r→t ) denote the motion parameters from re f erence frame to frame t. The position of a landmark Q t i at time t can be estimated by its position Q r i at the reference time and the motion parameters

Q t i = g(R r→t , T r→t , Q r i ) (3.50) i = 1, ..., N,
where N is the number of point pairs used for motion estimation. Assume that every landmark Q r i follows a Gaussian distribution with mean Q r i and covariance matrix p r i , Q r i ∼ N(Q r i , p r i ) ; and coordinates Q t i follow a Gaussian distribution with mean Q t i and covariance matrix

p t i , Q t i ∼ N(Q t i , p t i ).
If the estimated camera motion parameters are optimal, covariance matrix r→t of the motion parameters can be approximated through error propagation [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF][107] as :

( r→t ) -1 = S T P -1 S = N i=1 (S T i p i -1 S i ) (3.51)
where S is the Jacobian matrix of {Q t } with respect to the motion parameters (Eq. 3.50), P is the covariance of landmarks positions. S i is the Jacobian matrix of the ith point {Q t i } with respect to the motion parameters, and p i is the covariance of the landmarks i at the re f erence frame and frame t, p i = p t i + p r i . When the ground is flat, the camera motion parameters are the translation vector (∆x, ∆y) and rotation θ, as (∆x, ∆y, θ), Equation 3.50 can be written as

Q t i = [cosθX r i -sinθY r i + ∆x, sinθX r i + cosθY r i + ∆y] T .

Error of current vehicle pose

As described in Eq.3.38, the current vehicle pose (R

global t , T global t
) is obtained by integrating the pose at the reference frame (R r , T r ) (with covariance r ) and the relative motion (R r→t , T r→t ) (with covariance r→t ) between the reference and current frames.

FIGURE 3.11 -Error propagation of stereovision based odometry

Supposing that the relative motion errors are small and independent with the reference pose error [START_REF] Smith | On the representation and estimation of spatial uncertainly[END_REF], the covariance t of current vehicle pose P t global can be propagated from the reference frame and the relative motion error by first-order Taylor approximation, the higher orders in Taylor series expansion are neglected :

t = J (r,r→t) r 0 0 r→t J T (r,r→t) (3.52)
where J (r,r→t) is the Jacobian matrix of the global vehicle pose with respect to (R r , T r ) and (R r→t , T r→t ) (see Eq.3.38). t can be written as :

t = J (R r ,T r ) ( r )(J (R r ,T r ) ) T + J (R r→t ,T r→t ) ( r→t )(J (R r→t ,T r→t ) ) T (3.53)
As shown in Fig. 3.11, the yellow ellipse centered at each pose estimation represents the covariance of the relative vehicle motion. The ellipse in light blue color represents the vehicle pose covariance in the global frame. The covariance of the vehicle pose in the global frame grows gradually if no other measurements are applied.

3.2.4/ CONCLUSION

In this section, stereovision based visual odometry is presented. Stereoscopic system is used to capture the stereo video flow, recover the Euclidean 3D environments and estimate the vehicle motion on the basis of image feature detection and tracking. Several frames are selected as references and the optimal rotation and translation between the current and reference frames are computed using a RANSAC based minimization method. Covariance of the visual odometry estimation is also measured in this section.

Noises of the landmarks are propagated from the image points through triangulation process. Accuracy of the estimated transformation parameters is dependent on the particular landmarks used for pose estimation. In the future works, other factors like precision of the camera calibration and stereo calibration process might also be incorporated for measuring the VO accuracy [START_REF] Ozog | On the importance of modeling camera calibration uncertainty in visual slam[END_REF]. Besides, the precision of visual odometry is still challenged in outdoor environments, especially when the light condition changes, e.g., if the camera looks directly to the sun, light spots might appear and a large part of the images might be totally white (Fig. 3.9(right)). In these situations, it is difficult to detect enough features for accurate motion estimation.

3.3/ LASER RANGE FINDER BASED VEHICLE MOTION ESTIMATION

The basic principles of laser range finder (LRF) systems were introduced in 2.2.4. A laser range finder system measures the distance of an object by sending a laser pulse and calculating the traveling time of the pulse. Classified by the range of FOV, some LRF systems are listed in Fig. 3.12. FIGURE 3.12 -Some LRF systems used in autonomous vehicle research

• The most often used LRF system in robotics area is 2D LRFs with a single layer, such as SICK LMS211 in Fig. 3.12 (a) and SICK LMS221 in Fig. 3.12 (b). These two systems scan their surroundings in two dimensions respectively with a scanning angle of 100 o and 180 o . In the radial field, a light impulse can be emitted every 0.25 o , 0.5 o or 1 o , the maximum range can be measured is 80m.

• Multi-layer LRF is used to scan more planes. For example, IBEO Alasca XT4 in (Fig. 3.12(c) scans 4 individual planes with a vertical angle of 3.2 o . 3D LRF systems with multiple lasers have also been used, like Velodyne HDL-32E and Velodyne HDL-64E5 in Fig 3 .12 (d), which is used on Google self-driving car [START_REF] Hachman | eyes' of google's self-driving car may bust crooks[END_REF] and some other autonomous vehicles. Velodyne HDL-64E uses an array of 64 lasers to scan the environment around the vehicle, with 360 o horizontal field of view and 26.8 o vertical field of view, the maximum range can be measured is 120m.

In this section, a single layer LRF is used for vehicle motion estimation. Several LRF based motion estimation methods (i.e., laser scan alignment methods) are introduced in section 3.3.1 ; then, covariance of ICP process is discussed in section 3.3.2.

3.3.1/ LASER SCAN ALIGNMENT METHODS

A LRF measurement is represented by a point (d i , φ i ) (Fig. 3.13) in polar coordinates system. It can be converted to coordinates in Cartesian coordinates system (x i , y i ) through :

(x i , y i ) = (d i cosφ i , d i sinφ i ) (3.54)
where d i is the measured range and φ i is the incident angle of a laser beam. Coordinates used in the following alignment process are all in Cartesian coordinate system. FIGURE 3.13 -A point with coordinates (d i , φ i ) in polar coordinates system can be converted into Cartesian coordinates (x i , y i )

Scan alignment is the process to align a LRF scan data (2D or 3D) set with another LRF scan data set, which is considered to be the reference model. ICP (Iterative Closest Point) method [START_REF] Besl | A method for registration of 3-d shapes[END_REF] is one of the most used alignment methods to find the rigid transformation between a model point set and a reference point set. If a LRF sensor is rigidly installed on a moving platform, the movement of this platform can then be obtained by LRF scan alignment [START_REF] Favrot | Laser scanner based slam in real road and traffic environment[END_REF].

3.3.1.1/ CLASSIC ITERATIVE CLOSEST POINT (ICP) METHOD

Let Model = {q 1 , q 2 , . . . , q n m } denote a model points set, let Data = {p 1 , p 2 , . . . , p n d } denote a data set (n m and n d are respectively the number of points in the Model set and in the Data set). ICP tries to find the optimal 2D transformation T between two point sets by iterative data association of corresponding points with nearest neighbor algorithm and least square minimization.

Algorithm of ICP method is shown in Algorithm 2. Let T 0 denote the initial transformation between two data sets, each point p i in Data set is transformed by T 0 , then the closest point of the transformed p i in the Model set is searched. For a set of n matched couples, the optimal transformation is estimated by minimizing the sum of point difference squares in Eq 3.55 through least mean square method :

T = arg min 1 n n i=1 T 0 p i -q i (3.55)
Then, the transformation T 0 is replaced by T and the previous steps are repeated till the number of iterations reaches the maximum threshold, or the difference of minimization errors between two iterations is below a predefined threshold.

Algorithme 2: ICP (Iterative Closest Point)

Input : Model = {q 1 , q 2 , . . . , q n m }, Data = {p 1 , p 2 , . . . , p n d }, initial transformation T 0 , threshold ξ Output : The best transformation T between two data sets do Apply the transformation T 0 to points p i in Data set, then find the closest point q i of each transformed p i in Model set by their Euclidean distance e i (p i , q i , T 0 ) = T 0 p iq i ; For a set of n matched couples, the optimal transformation is estimated by minimizing the following equation through least square method :

T = arg min ǫ = arg min 1 n n i=1 T 0 p i -q i ;
Replace the transformation T 0 with T : T 0 ← T while ǫ > ξ;

In our case, the Model and Data sets are 2 LRF scans, the transformation T is the relative 2D translation and rotation angle, T = {∆x, ∆y, ∆θ}. However, as the 2D LRF scans are sparse and uncertain in outdoor applications, the estimated motion and corresponding couples from ICP algorithm are not always reliable. Thus several modifications are integrated into the classic ICP algorithm to enhance motion estimation accuracy. A comparison of several ICP variants can be found in [START_REF] Rusinkiewicz | Efficient variants of the icp algorithm[END_REF]. We evaluate an outlier-rejection ICP, and two image aided scan alignment methods in the two following parts.

3.3.1.2/ OUTLIER-REJECTION-ICP (OR-ICP)

During the matching procedure of ICP, an outlier reduction strategy with an adaptive distance error threshold during each iteration step is added before applying line 3 in Algorithm 2.

For every new estimated transformation T 0 , the standard deviation σ of errors between the transformed data set and model set is calculated. n couples of point correspondences between the previous and current laser scans {(p 1 , q 1 ); ...(p i , q i )...; (p n , q n )} are used for the distance calculation as follows :

e i (p i , q i , T 0 ) = T 0 p i -q i , i = 1, 2, • • • , n e = 1 n n i=1 e i σ = 1 n n i=1 (e i -e) 2 (3.56)
Data points which satisfy the following threshold relation are considered to be outlier and eliminated before the next iteration :

|e i -e| > 3σ (3.57)
Then, the ICP process continues with the rest points. As seen in Fig. 3 If the initial transformation T 0 is not close enough to the truth, this algorithm might converge to a local minimum. In order to avoid the local convergence of the minimization process, the optimal transformation of the previous scan is used as the initial transformation of the current scan alignment as the vehicle is supposed to move with constant speed.

3.3.1.3/ IMAGE-AIDED SCAN ALIGNMENT

Compared with camera, LRF has the advantage that it can directly measure the detected environment in Euclidean space. However, using only the geometric information for scan alignment might fail in some areas with few structures. Considering the photometric information provided by images (color, intensity, etc.), onboard cameras can be adopted to assist the performance of LRF scan alignment.

With corresponding laser -image points, the depth information of laser points can be given to their corresponding 2D image coordinates to avoid 3D reconstruction of the im-age points, then 3D/2D method (in section 2.2.3.2) can be used to estimate the egomotion of camera in the framework of visual odometry [START_REF] Bok | Accurate motion estimation and high-precision 3d reconstruction by sensor fusion[END_REF]. Or, the photometric attributes of image points can be given to their corresponding LRF points to augment the measured distance e i (p i , q i , T 0 ).

In order to find the corresponding image pixel of a LRF point, the extrinsic calibration between a LRF system and a camera system is required. In the following part, the extrinsic calibration method between a LRF system and a camera system is introduced ; then, two variants of image-aided ICP methods are respectively.

Extrinsic calibration between a LRF and a camera

The objective of extrinsic calibration between a LRF system and a camera system is to find their relative position and orientation. The coordinates Q C of a 3D point Q in the camera frame can be transformed to coordinates Q L in the LRF frame by :

Q L = R C,L Q C + T C,L (3.58) 
where R C,L is a 3 × 3 rotation matrix corresponding to the camera orientation with respect to the LRF system, T C,L is a 3-dimensional vector corresponding to the camera position in the LRF system. The calibration method proposed in [START_REF] Zhang | Extrinsic calibration of a camera and laser range finder (improves camera calibration[END_REF] is used in our work to determine the rigid transformation from the camera system to LRF system. In this method, a chessboard (planar calibration pattern) is placed with different poses in front of the camera and LRF systems. The chessboard should be visible for both systems, as shown in Fig. 3.15. The calibration process is in three steps :

1) For each chessboard pose, the laser points on the chessboard are extracted from the laser scan ; meanwhile, the chessboard grid points are detected in the image.

2) Then, assume that the chessboard is on the plane Z W = 0 in the chessboard coordinate system, the chessboard plane can be represented by a 3-dimension vector N c in the camera coordinate system. N c is parallel to the normal of the chessboard plane and N c equals the distance from the camera center to the chessboard plane. This vector can be estimated by the camera extrinsic parameters in the world coordinate frame by :

N c = -R 3 (R T 3 T ) (3.59)
where R 3 is the third column of the camera rotation matrix R, T is the camera translation vector with respect to the world frame. The extrinsic parameters of the camera (the rotation matrix R and translation vector T ) can be known by camera calibration (details can be found in section 3.2.1.1).

3) With the coordinates Q L of a point Q in the laser coordinate system, its coordinates Q C in the camera reference frame can be derived from Eq.3.58, as :

Q C = R -1 C,L (Q L -T C,L ) (3.60)
Since point Q is on the calibration plane defined by the vector N c , the dot product of Q C and N c is :

N c • Q C = N c Q C cosθ Q = N c 2 (3.61)
where θ Q is the angle between the point vector and the normal vector (see Fig. 3.15). Replacing Q C by Eq. 3.60, this geometric constraint can be written as :

N c • R -1 C,L (Q L -T C,L ) = N c 2 (3.62)
Then, Eq. 3.62 is applied to find the relative rotation R C,L and translation T C,L between the camera and laser range finder, using both linear solution and nonlinear Levenbergmarquardt method. With the estimated extrinsic parameters between these two sensors, LRF points which are in the FOV of the camera can be transformed into the corresponding camera frame, then to the image frame with camera intrinsic parameters, as shown in Fig. 3.16. We know then the corresponding image pixel of each LRF scan point. For a LRF scan point, we have then both its geometric information (from LRF measurement) and photometric information (from image pixel).

ICP -Color

Based on the color information provided by images, ICP can be improved by directly removing the outlier laser points or reducing the searching area of corresponding laser points with their color information. For example, [START_REF] Druon | Color constrained icp for registration of large unstructured 3d color data sets[END_REF] proposed to classify the laser points by color information before applying ICP association and apply the classic ICP with some selected sub clouds. [START_REF] Douadi | Pair-wise registration of 3d/color data sets with icp[END_REF] proposed to use the classic ICP at first, then apply a color distance threshold to remove the outliers in color space. [START_REF] Godin | A method for the registration of attributed range images[END_REF] proposed to use the additional viewpoint-invariant attributes (e.g., visibility, reflected intensities) to reduce the search space of the ICP association.

FIGURE 3.17 -ICP with corresponding image color constraint : instead of only searching for the closest point, color information of the image points is also taken into account [START_REF] Joung | 3d environment reconstruction using modified color icp algorithm by fusion of a camera and a 3d laser range finder[END_REF] Another approach is to use color information together with the coordinates of LRF points [START_REF] Johnson | Registration and integration of textured 3-d data[END_REF] (Fig. 3.17). Distance defined by the LRF coordinates in Eq.3.56 can be augmented by image color information through :

e i = T 0 p i -q i + a a 1 (c1 p i -c1 q i ) 2 + a 2 (c2 p i -c2 q i ) 2 + a 3 (c3 p i -c3 q i ) 2 (3.63)
where c1, c2 and c3 are color components of an image pixel according to a specific color model ; a 1 , a 2 and a 3 are weights for the different color components ; and a is the weight for color component.

Implementation.

In order to use color information, we need to find a proper color space to represent it. In our work, we tested several color models (RGB, HSV, YIQ, and gray scale) with different coefficients for each color model component. Since HSV color model can separate the illumination and true color value of color information 6 , HSV information of image points is added into the Euclidean distance e i (in Eq 3.63) to measure the similarity of points in ICP data association step. In outdoor environment, since the shadow might affect the color value or the color saturation component, while the hue component which indicates the intrinsic color is not affected, the weight coefficient a 1 for hue is set to 100, a 2 for saturation and a 3 for the value (brightness) are both set to 0 to reduce the influence of brightness changes.

6. In the HSV color space, H stands for hue (intrinsic color such as red, yellow, green), S is for saturation (strength of the color), and V for value (or brightness)

Remarks : generally, we consider that laser points in one LRF scan are acquired instantly. But actually, the raw laser scan provided by a LRF system are acquired during a period (depending on the LRF frequency), and the camera system captures one image at one instant. If we want to integrate the LRF points and image pixel information in this way above (ICP -color), the time latency between two sensors cannot be neglected. We have tested this method with two LRF data sets of different frequencies. The first data set is only with 5Hz frequency, the laser points on the left part of the scan cannot be directly well associated with the image pixels, we have tried to compensate the coordinates of LRF scan points with incident angles, LRF frequency and the predicted vehicle speed, but the precision is still limited. The second LRF data set tested is with about 75Hz frequency, the time latency problem between the two system are much better solved than the first data set.

ICP -Descriptor

Considering the attribute information of image, the descriptor of an image point can be used to describe the point by its neighborhood, e.g., SIFT descriptor, SURF descriptor. For a laser point, the descriptor of its corresponding image point can also be used to constrain the ICP association process. As detailed in section 3.2.2.1, the SURF descriptor D of each laser-corresponding image point is extracted from the image, then added into the distance measuring function, as :

e i = T 0 p i -q i + α D D p i -D q i (3.64)
where D p i and D q i are respectively the SURF descriptors of image points corresponding to the LRF scan points p i and q i , α D is the weight of image descriptor. We tested different values for α D and set it to 0.05 in our work after comparing the localization results with RTK-GPS.

For example, in Fig. 3.18, LRF scans in the FOV of the camera are respectively projected onto their corresponding image planes at time t -1 and t. Then, SURF descriptors with 64 dimensions are extracted from the image. Green circles in the figures represent the extracted descriptors, the green segments inside the circles indicate the orientation of the descriptor. After that, the laser points are associated by both their geometric coordinates and descriptor attributes. The corresponding laser points are connected by red lines in Fig. 3.18. Comparison of OR-ICP, ICP-Color and ICP-Descriptor for vehicle localization in long sequence will be presented in experiment section 3.4.3.

3.3.2/ ERROR MODELING OF ICP PROCESS

3.3.2.1/ UNCERTAINTY OF LASER POINTS

As shown in Fig. 3.13, the coordinates of a LRF scan point (x i , y i ) are related to the incidence angle φ i of the laser beam and the distance d i between the emitter and the object. Therefore, the uncertainty of every laser point can be measured by the range and orientation of the laser beam. The noise of a LRF range measurement is assumed to be a zero-mean Gaussian error with variance δd 2 i , the noise of a LRF incidence angle measurement is assumed to be a zero-mean Gaussian error with variance δφ i 2 . According to the sensor construction data, the systematic error of LMS221 is about ± 5cm for range 1m ∼ 20m when choosing cm-mode, the standard deviation of range d i is assumed to be proportional to the distance and measured by δd i = d i /400. The standard deviation of orientation φ i is measured by δφ i = 0.01 rad (in the existing robotics implementations, the angle errors are usually not considered to be proportional to the angle. More detailed discussion about laser range and angle error can be found in [43]). With the variance of range and incidence angle, the covariance of a laser point

p i = (x i , y i ) = (d i cosφ i , d i sinφ i ) = f i (d i , φ i )
in Euclidean space can be propagated from δ 2 d i and δ 2 φ i with the Jacobian matrix of function f :

cov(x i , y i ) = H p δd i 2 0 0 δφ i 2 H p T (3.65)
where H p is the Jacobian matrix, as

H p =        ∂x i ∂d i ∂x i ∂φ i ∂y i ∂d i ∂y i ∂φ i        = cosφ i -d i sinφ i sinφ i d i cosφ i .

3.3.2.2/ UNCERTAINTY OF OR-ICP ESTIMATION

Here, covariance of the predicted vehicle pose from OR-ICP method is estimated with the covariances of the LRF points and the minimization process. If T is the solution of a minimization process with a cost function ǫ and variable A, the covariance of T could be estimated in closed form with the covariance of variable A [33] :

T = T (A) = arg min A ǫ(A, T ) (3.66) cov( T ) = ∂ 2 ǫ ∂T 2 -1 ∂ 2 ǫ ∂T ∂A cov(A) ∂ 2 ǫ ∂T ∂A T ∂ 2 ǫ ∂T 2 -1 (3.67) 
For OR-ICP minimization process, the solution T is the relative translation and rotation estimated by the OR-ICP method, written as T = (∆ x, ∆ŷ, ∆ θ) ; A is the point vector composed of k couples of corresponding LRF scan points in the previous and current LRF scans : A = ((p 1 , q 1 ), ..., (p k , q k )), where p i = (x p i , y p i ) and q i = (x q i , y q i ). The error function ǫ is written as :

ǫ(Model, Data, T ) = k i=1 m( T , p i ) -q i = k i=1 {(m x i ) 2 + (m y i ) 2 } (3.68)
where k is the number of the point correspondences after OR-ICP convergence, m( T , p i ) is the transformed location of p i with the estimated solution T , and

m x i = cos(∆ θ)x p i -sin(∆ θ)y p i + ∆ x -x q i , m y i = sin(∆ θ)x p i + cos(∆ θ)y p i + ∆ŷ -y q i , n x i = -sin(∆ θ)x p i -cos(∆ θ)y p i , n y i = cos(∆ θ)x p i -sin(∆ θ)y p i .
The partial derivative of ǫ with respect to T at T is :

∂ǫ ∂T |T = T = 2 k i=1 (m x i ) k i=1 (m y i ) k i=1 {m x i n x i + m y i n y i } (3.69)
Then, the second-order partial derivative is :

∂ 2 ǫ ∂T 2 T = T = 2           k i=1 1 0 k i=1 (n x i ) 0 k i=1 1 k i=1 (n y i ) k i=1 (n x i ) k i=1 (n y i ) J 33           (3.70)
where

J 33 = k i=1 {n x i n 1 x + m x i (-n y i ) + n y i n y i + m y i n x i }.
Then, the second-order mixed derivative is a 3 × 4k matrix, written as :

∂ 2 ǫ ∂T ∂A T = T = 2           ǫ T A (1) • • • ǫ T A (1) ǫ T A (2) • • • ǫ T A (2) ǫ T A (3) 1 ǫ T A (3) i ǫ T A (3) k           3×4k , i = 1, 2, • • • , k (3.71) 
where :

ǫ T A (1) = [cos(∆ θ), -sin(∆ θ), -1, 0], ǫ T A (2) = [sin(∆ θ), cos(∆ θ), 0, -1], ǫ T A (3) i = [cos(∆ θ)(n x i ) + (m x i )(-sin(∆ θ)) + sin(∆ θ)(n y i ) + (m y i )(cos(∆ θ)), -sin(∆ θ)(n x i ) + m x i (-cos(∆ θ)) + cos(∆ θ)(n y i ) + m y i (-sin(∆ θ)), -n x i , -n y i ].
Assume that all the laser points are independent from each other, the covariance matrix cov(A) of k point correspondences are obtained by :

cov(A) 4k×4k = diag{cov(x p 1 , y p 1 ); cov(x q 1 , y q 1 ); ...; cov(x p k , y p k ); cov(x q k , y q k )}.

3.3.3/ CONCLUSION

In this section, several laser range finder based motion estimation methods were presented in order to provide a robust LRF based vehicle motion estimation. An outlierrejection ICP (OR-ICP) and two image-aided ICP methods (ICP-Color, ICP-Descriptor) are proposed to reduce the matching ambiguities of scan alignment in outdoor environment. For the purpose to be integrated with other sensor measurements, the uncertainty of the alignment was also discussed. These methods are compared with real experimental data in section 3.4.3. But it should be mentioned that as the LRF system used is two dimensional and the vehicle cannot move on absolutely flat ground in real experiments, the precision of 2D LRF system based outdoor vehicle ego-motion estimation is still limited.

3.4/ IMPLEMENTATION AND EXPERIMENTAL RESULTS

3.4.1/ EXPERIMENTAL PLATFORM

The proposed method is tested with real data obtained by an experimental vehicle SeT-Car developed within Laboratoire Syst èmes et Transports of IRTES (IRTES-SET) at UTBM 7 . SeTCar is based on an electric GEM car 8 with speed between 24km/h and 40km/h. It (Fig. 3. [START_REF] Borenstein | Mobile robot positioning sensors and techniques[END_REF]) is equipped with a GPS receiver, a RTK-GPS receiver, two laser range finders and a stereoscopic system, together with an embedded hard disk and a computer system (PC) to log the acquired data and to implement autonomous navigation task.

GPS receiver.

The GPS receiver used on SetCar is a ProFlex 500 Magellan RTK-GPS receiver 9 with frequency 10Hz. This receiver permits to use both GPS and GLONASS networks for quick position initialization. When the RTK-GPS mode is chosen, a fixed RTK-GPS base should be settled nearby to send corrections to the mobile GPS receiver by UHF radio antenna (Fig. 3.20). The RTK-GPS receiver can provide a position up to centimeter precision on horizontal plane, it is used as ground-truth to evaluate the proposed localization method. Another GPS receiver of the same type is also mounted to provide normal precision GPS positions without choosing the RTK-GPS mode.

Stereoscopic system. The stereoscopic system used in the experiment is a Bumblebee XB3 system 10 2012 with this experimental vehicle. For the two experiments, the positions of the GPS receiver and the LRF sensor are fixed on the vehicle, while the position of the stereoscopic system was changed during the second experiment. The intrinsic and extrinsic parameters of the stereoscopic system were obtained by calibration as presented in section 3.2.1.1 and section 3.2.1.2. The relative poses between the stereoscopic system and the LRF system were obtained by chessboard based calibration as presented in previous section.

3.4.2/ EXPERIMENTAL RESULTS OF STEREOVISION ODOMETRY AND LRF

ODOMETRY For the experimental data set captured in March 2011, the vehicle was driven in an industrial area with buildings around (Fig. 3.21). Recorded GPS positions of the vehicle were transformed from WGS84 system to Extended Lambert II system which covers the experimental area (see Appendix A). The whole trajectory length measured by RTK-GPS receiver is 603.73 meters. Landmarks reconstructed from the stereovision odometry and 2D LRF scan alignment are overlaid on satellite image with the vehicle positions provided by the RTK-GPS receiver, as shown in Fig. 3.21.

In this part, we compare the localization results obtained using : the stereoscopic system (visual odometry approach described in section 3.2), and the LRF system (comparison of classic ICP and OR-ICP based scan alignment described in section 3.3). It is noted that the vehicle localization error of stereovision based visual odometry is small till the second big turning of the vehicle. When the vehicle encounters sharp turns where the movement of the vehicle is large and the illumination condition changes quickly, it is difficult to detect enough image features and apply feature matching. During these situations, the inaccurate translation and roll angle estimations lead to unreal vehicle motion, and the vehicle trajectory gradually drifts due to error accumulation. When the ground truth is available, the covariance estimation algorithm is consistent if the predicted covariance matrix can accurately represent the estimation error within its 3σ bound. From Fig. 3.4.2, the estimated position error is mostly inside the bounds. In the future works, other factors like precision of the camera calibration and stereo calibration process might also be incorporated for measuring the VO accuracy.

Then, the vehicle positions are respectively estimated by the classic ICP and the proposed outlier-rejection ICP (OR-ICP).

The localization results in Fig. 3.24(a) show that for this data set, the OR-ICP approach can better estimate the vehicle moving distance than the classic ICP method, and can improve the localization precision of LRF subsystem. The vehicle orientations estimated by the LRF OR-ICP are compared with the ground truth given by the RTK-GPS in Fig. 3.24(b). It is noted that from the starting point to the second turning, the vehicle orientation is almost consistent with the ground truth, but the trajectory begins to drift from the second turning. As the LRF used in this experiment is installed on the bottom front of the vehicle and is close to the ground, when the vehicle moves in the field with a certain slope, it might scan on the ground and the consecutive scans could not be associated.

3.4.3/ COMPARISON OF DIFFERENT LRF BASED ICP METHODS

The second data sequence was acquired in the old town center of Belfort, in September, 2012. The whole trajectory measured by RTK-GPS is about 800m, as shown in Fig. 3.25.

After associating different sensor data by their logged time, the estimated vehicle translation and rotation from the visual odometry method and from the different ICP methods Image-aided ICP alignment methods only show small improvements over the classic ICP method, this might due to the precision of extrinsic calibration of the LRF and camera systems, to the parameters chosen to represent the weights of image color attributes in the distance measurement function, or to the limited FOV of the camera (66 o in our experiment, it is probable that some important geometric or structure information in the LRF scan might be neglected).

3.5/ CONCLUSION

In this chapter, stereovision based visual odometry and laser range finder (LRF) based motion estimation methods are presented. Stereovision based visual odometry can estimate the vehicle motion based on corresponding image features. The error of wheel encoder odometry due to wheel slippage in bad soil conditions can be avoided by visual odometry. LRF scans based outlier-rejection ICP (OR-ICP) and two image-aided ICP methods (ICP-Color, ICP-Descriptor) are presented and compared with the classic ICP method, in order to obtain an accurate and robust LRF based vehicle motion estimation in outdoor environment. The two methods were tested with real data and evaluated by RTK-GPS as ground truth.

Several research perspectives are summarized for the localization methods in this chapter :

-The precision of visual odometry method could be improved by improving camera calibration results, or using more precise and robust features. The precision and robustness of different features can be tested with more data sequences under different illumination and weather conditions, and in more complex environments with different types of obstacles, etc. Detection of dynamic obstacles and feature detection and matching time should also be measured and improved. -For the image aided ICP methods, the work on how to dynamically choose appropriate coefficients for the image attributes needs to be continued in the future work ; the incorporation of camera with larger FOV (e.g. fish eye) can also be considered. -Due to the error accumulated from point to point, vehicle trajectory estimated by the relative methods might gradually drift. Therefore, apart from improving the performance of every sensor, we can take use of redundancy and complementarity of multiple sensors to provide a more accurate and robust vehicle pose estimation. Although localization errors due to atmospheric conditions and radio signal noises can be corrected by equipments like Differential GPS (DGPS), the error due to satellite visibility or multi-path problems cannot be corrected by these methods, especially in dense urban environments. Relative localization methods, like dead-reckoning sensors based wheel-encoder odometry, inertial navigation or vision based ego-motion estimation, have been applied to provide odometry and orientation information of vehicle by integration. Small errors in short term might result in unbounded error of integrated measurements.

By considering advantages and drawbacks of each localization system, apart from improving the performance of every sensor, the redundant measurement information can be used to evaluate the coherence of different systems and to continuously provide pose measurement if any system fails to work, while the complementary information can be used to provide a complete state estimation (e.g., a gyro can provide the vehicle yaw angle information and a GPS receiver can provide the absolute vehicle position).

In this chapter, the vehicle motion information estimated from stereoscopic system (see section 3.2) and laser range finder system (see section 3.3), and vehicle global position from a GPS receiver are integrated within a probabilistic framework. This chapter is organized as follows : an introduction of data fusion approaches is presented in section 4.2 ; the sensor coherence validation method is introduced in section 4.3 ; after that, vehicle state are estimated from the process model and observations from three sensors (GPS, stereoscopic system and LRF) in section 4.4 ; finally, the proposed method is tested with real experimental data in section 4.5.

4.2/ DATA FUSION APPROACHES

Based on Bayesian theory, Kalman filter and its derivations (e.g., EKF, UKF, interactingmultiple-model (IMM) system) [START_REF] Barrios | Improving estimation of vehicles trajectory using the latest global positioning system with kalman filtering[END_REF][82] [START_REF] Cho | Robust positioning technique in low-cost dr/gps for land navigation[END_REF] have been used for data fusion under the assumption that both the process and the observation noises obey white Gaussian distribution. The vehicle state is predicted with its previous state and a new input vector according to a vehicle process model. The observations from different sensors are used to correct this prediction by taking into account their uncertainties. These observations are supposed to be independent to each other.

Let X t denote the state of a system at time t, s t denote a measurement at time t, the transition model f t of the system and the measurement model h t can be written as :

X t = f t (X t-1 , u t ) + α t s t = h t (X t ) + q t (4.1)
where u t is the input data, α t is the noise of transition process and q t is the noise of measurement.

In the following section, four Gaussian probabilistic based data fusion approaches are briefly introduced : Kalman filter (section 4.2.1), extended Kalman Filter (section 4.2.2), unscented Kalman Filter (section 4.2.3) and information filter (section 4.2.4). Some other filters are also presented in section 4.2.5.

4.2.1/ KALMAN FILTER

For a linear discrete-time dynamic system of which the transition model f t in Eq. 4.1 is linear at X t-1 and u t and α t is Gaussian distributed, and the measurement model h t is linear at X t with a Gaussian noise q t , Kalman filter [START_REF] Kalman | A New Approach to Linear Filtering and Prediction Problems[END_REF] can be used to provide a closed form recursive solution for the system state. The linear transition model f t-1 and the measurement model h t can be written as :

X t = F t X t-1 + U t u t + G t r t s t = H t X t + q t (4.2)
where F t is the state transition matrix, U t is the input transition matrix, α t = G t r t , G t is the transition model of process noise ((n × m)-dimensional noise matrix, where n is the size of the state, m is the size of the noise), r t is the Gaussian process noise with r t ∼ N(0, R t ), H t is the measurement matrix, q t is the measurement noise at time t with q t ∼ N(0, Q t ).

At time t = 0, the initial system state X 0 is assumed to be Gaussian distributed with known mean X 0 and covariance P 0 , X 0 ∼ N(X 0 , P 0 ). Let (X t-1 , P t-1 ) the updated vehicle state and noise at time t -1, the system state and covariance (X t , P t ) at time t can be estimated by Kalman filter with a prediction step and an update step :

-Prediction : the predicted mean X t|t-1 and covariance P t|t-1 of the state at time t are :

X t|t-1 = F t X t-1 + U t u t P t|t-1 = F t P t-1 F T t + G t R t G T t (4.3)
-Update : then, the innovation v t between a measurement and the prediction is calculated by :

v t = s t -H t X t|t-1 (4.4)
Covariance of the innovation is :

S t = H t P t|t-1 H T t + Q t (4.5)
Kalman gain is then defined by :

K t = P t|t-1 H T t S -1 t (4.6)
Then, the predicted system state is updated with the Kalman gain K t and innovation v t as :

X t = X t|t-1 + K t v t P t = P t|t-1 -K t S t K T t (4.7)

4.2.2/ EXTENDED KALMAN FILTER

If the transition model f t or the measurement model h t is nonlinear, or α t , q t are not Gaussian noises, extended Kalman filter (EKF) have been proposed to estimate the state of such system. EKF extends the scope of Kalman filter to nonlinear optimal filtering problems by forming a Gaussian approximation to the joint distribution of the state X t and the measurements s t using a Taylor series based transformation. The first-order approximation based extended Kalman filter is as follows :

-Prediction :

X t|t-1 = F t X t-1 + U t u t P t|t-1 = F t P t-1 F T t + G t R t G T t (4.8)
where F t is the Jacobian matrix of the nonlinear transition model f t with respect to X t-1 :

F t-1 = ∂ f t ∂X t X t =X t-1 (4.9) 
-Update : the difference between a measurement observation and the predicted observation is :

v t = s t -H t X t|t-1 (4.10)
where H t is the Jacobian matrix of h t with respect to X t|t-1 :

H t = ∂h t ∂X t X t = X t|t-1 (4.11)
The covariance of the innovation at time t is :

S t = H t P t|t-1 H T t + Q t (4.12)
The Kalman gain is defined by :

K t = P t|t-1 H T t S -1 t (4.13)
Then, the system state is updated by :

X t = X t|t-1 + K t v t P t = P t|t-1 -K t S t K T t (4.14)

4.2.3/ UNSCENTED KALMAN FILTER

In many cases, the nonlinear system cannot produce reliable results if the process are not well approximated by linear approximation, the estimation of the filter might diverge. Instead of using linear approximation of the system, unscented transform (UT) [START_REF] Julier | A new extension of the kalman filter to nonlinear systems[END_REF] chooses a fixed number of sigma points to represent the desired moment of the original distribution of X t-1 . The sigma points are then propagated through the non-linear function f t and used to estimate the moment of the transformed variable X t . The advantage of UT over Taylor series based approximation is that UT is better at capturing the higher order moments caused by the non-linear transform. Based on the unscented transform of the system state X t-1 at time t -1, steps of unscented Kalman filter are as follows :

• Calculate the approximation points : for a variable X t-1 with dimension n, its mean and covariance at time t are augmented by mean and covariance of the process noise r t ∼ N(0, R t ) through :

m t-1 = X t-1 0 , P 0,t-1 = P t-1 0 0 R t (4.15)
then, the distribution of X t-1 is approximated by a set of (2n+1) sigma points X (i) t-1 through :

X (0) t-1 = m t-1 X (i) t-1 = m t-1 + [ (n + λ)P 0,t-1 ] i , i = 1, . . . , n X (i) t-1 = m t-1 -[ (n + λ)P 0,t-1 ] i-n , i = n + 1, . . . , 2n (4.16) 
where (n + λ)P 0,t-1 could be calculated by Cholesky decomposition [START_REF] Julier | A new extension of the kalman filter to nonlinear systems[END_REF], and [ (n + λ)P 0,t-1 ] i is the i th column of the matrix square root.

Associated weights W (i) m of the state, and weights W (i) c of the covariance are respectively estimated by :

W (0) m = λ/(n + λ) W (0) c = λ/(n + λ) + (1 -α 2 + β) W (i) m = W (i) c = 1/(2(n + λ)), i = 1, . . . , 2n (4.17) 
where β is a positive constant related to the distribution of the state vector, λ is a scaling factor defined by : λ = α 2 (n + κ)n, α and κ are positive constants controlling the spread of sigma points.

• Prediction : the current state vector X (i) t|t-1 is predicted by propagating the sigma points X (i) t-1 through the nonlinear function f t :

X (i) t|t-1 = f t (X (i) t-1 , u t ), i = 0, . . . , 2n (4.18) 
The mean and covariance of prediction are :

X t|t-1 = 2n i=0 W (i) m X (i) t|t-1 (4.19) P t|t-1 = 2n i=0 W (i) c [X (i) t|t-1 -X t|t-1 ][X (i) t|t-1 X t|t-1 ] T (4.20)
• Update : the measurement is augmented by mean and covariance of the measurement noise ∼ N(0, Q t ) and approximated by a set of sigma points X (i) t|t-1 as in the prediction stage. Then, these sigma points are propagated to predict the measurement through :

y (i) t = h t ( X (i) t|t-1 ), i = 0, . . . , 2n (4.21) 
the predicted measurement mean ỹt is obtained by :

ỹt = 2n i=0 W (i) m y (i) t (4.22)
the covariance of the measurement is :

S t = 2n i=0 W (i) c [y (i) t -ỹt ][y (i) t -ỹt ] T (4.23)
the cross-covariance of the predicted state and the measurement is :

C t = 2n i=0 W (i) c [X (i) t|t-1 -X t|t-1 ][y (i) t -ỹt ] T (4.24) 
where the associated weights W (i) m for the mean and W (i) c for the covariance are defined by the actual dimension of the measurement. The filter gain K t is :

K t = C t S -1 t (4.25)
and the state and covariance of the system are updated by :

X t = X t|t-1 + K t (s t -ỹt ) P t = P t|t-1 -K t S t K T t (4.26)

4.2.4/ INFORMATION FILTER BASED SENSOR FUSION

Kalman filter represents the belief of Gaussian with mean and covariance, while information filter (IF) [START_REF] Siciliano | Springer Handbook of Robotics[END_REF] deals with the information state vector and information matrix (inverse of the covariance matrix) associated with the Fisher information. Both representations are duals of each other, and each of them can be recovered from the other by matrix inversion [START_REF] Thrun | Probabilistic Robotics (Intelligent Robotics and Autonomous Agents series). Intelligent robotics and autonomous agents[END_REF]. Since the information state is related to the underlying likelihood of the vehicle state, it is able to update the predicted state by directly integrating the information state vectors and information matrices from multiple observations.

Although the prediction stage of information filter is more complex than Kalman filter, information filter has the advantage that the update stage is computationally easier since no gain or innovation covariance matrices need to be calculated. The maximum size of the matrix to be inverted in information filter is the dimension of the state vector. When the number or size of the observations largely increases, the update stage of information filter is simpler than the usually used multi-filter approach [START_REF] Durrant-Whyte | Introduction to decentralised data fusion[END_REF]. For nonlinear systems, firstorder approximation based extended information filter (EIF) [START_REF] Tsalatsanis | Multiple sensor based ugv localization using fuzzy extended kalman filtering[END_REF][2] [START_REF] Thrun | Simultaneous Mapping and Localization with Sparse Extended Information Filters : Theory and Initial Results[END_REF] or unscented transformation (UT) based unscented Kalman filter (UIF) [START_REF] Lee | Nonlinear estimation and multiple sensor fusion using unscented information filtering[END_REF][6] can be used.

4.2.4.1/ INFORMATION FILTER FOR LINEAR PROCESS MODEL

For a linear state transition model X t = F t X t-1 + U t u t + G t r t with the previous information vector i t-1 and information matrix I t-1 , the current information vector can be directly predicted.

• Information state/matrix prediction. The current information vector ĩt and the information matrix Ĩt are predicted by :

A t = (F -1 t ) T (I t-1 )F -1 t E t = G T t A t G t + R -1 t B t = A t G t E -1 t Ĩt = A t -B t E t B T t ĩt = [I -B t G T t ](F -1 t ) T (i t-1 ) + ( Ĩt )U t u t (4.27)
The predicted vehicle state X t|t-1 and covariance P t|t-1 can be derived from the information vector and information matrix by :

X t|t-1 = ( Ĩt ) -1 ĩt , P t|t-1 = ( Ĩt ) -1 (4.28)
• Information state/matrix update. For a sensor measurement with a linear measurement model s t = H t X t + q t = st + q t , its information state vector i t and information matrix I t at instant t can be obtained by :

i t = H T t Q -1 t s t , I t = H T t Q -1 t H t (4.29)
where H t is the linear observation model matrix, Q t is the observation uncertainty. The information state vector and information matrix can be obtained by combination of the prediction and the contribution from the observation :

i t = ĩt + i t , I t = Ĩt + I t (4.30)
The vehicle state X t and covariance P t can be derived from the information vector and information matrix through :

X t = i t (I t ) -1 , P t = (I t ) -1 (4.31)

4.2.4.2/ UNSCENTED INFORMATION FILTER FOR NONLINEAR PROCESS MODEL

For a nonlinear system, instead of approximating the process and observation models by Taylor series, unscented transform is embedded to approximate the prediction and observation by a set of sigma points.

• Information state/matrix prediction. Unscented transform chooses a fixed number of sigma points from the original distribution of the state, propagates the sigma points through the non-linear process model, and estimates the mean and covariance of the current state on the basis of the sigma points (Eq.4.15 to Eq.4.20). Then, the predicted information state vector ĩt and information matrix Ĩt can be recovered from the predicted mean and covariance of the state [START_REF] Durrant-Whyte | Introduction to decentralised data fusion[END_REF] :

Ĩt = ( P t|t-1 ) -1 , ĩt = ( Ĩt ) X t|t-1 (4.32) 
• Information state/matrix update. The observation vector can be approximated by the predicted sigma points X (i) t|t-1 with error propagation. Then, the observation vector is used to approximate the measurement ỹt . The information matrix I t in Eq.4.29 can be written as :

I t = H T t Q -1 t H t = ( P t|t-1 ) -1 P t|t-1 H T t Q -1
t H t ( P t|t-1 ) T ( P T t|t-1 ) -1 (4.33)

Replacing P t|t-1 H T t by C t , the information matrix becomes :

I t = P -1 t|t-1 C t Q t -1 C t T ( P -1 t|t-1 ) T (4.34)
where C t is the cross covariance of the state vector and the measurement vector. It is approximated by :

C t = 2n i=0 W (i) c [X (i) t|t-1 -Xt|t-1 ][y (i) t -ỹt ] T (4.35)
Then, the information state vector is written as :

i t = H T t Q -1 t s t = H T t Q -1 t [v t + H t X t|t-1 ] = P -1 t|t-1 P t|t-1 H T t Q -1 t [v t + H t P T t|t-1 ( P T t|t-1 ) -1 X t|t-1 ] = P -1 t|t-1 C t Q -1 t [v t + C T t ( P T t|t-1 ) -1 X t|t-1 ] (4.36)
where s t is the observation, v t is the innovation vector. A pseudo-measurement matrix H t can be defined as [START_REF] Lee | Nonlinear estimation and multiple sensor fusion using unscented information filtering[END_REF] :

H t ≡ ( P -1 t|t-1 C t ) T (4.37) 
The information contribution i t in Eq.4.36 and I t in Eq.4.34, can be respectively expressed by :

i t = H t T Q -1 t [v t + H t X t|t-1 ], I t = H t T Q -1 t H t (4.38)
• With N observation sensors. Local information from different sensors are directly combined to obtain the information state vector i t and the information matrix I t of the system :

i t = ĩt +         N sen=1 i sen t         , I t = Ĩt +         N sen=1 I sen t         (4.39)
where i sen t and I sen t are respectively the information state and information matrix of the (sen) th sensor.

The vehicle state X t and covariance P t can be derived from the information vector and information matrix through :

X t = i t (I t ) -1 , P t = (I t ) -1 .

4.2.5/ OTHER FUSION METHODS FOR VEHICLE LOCALIZATION

Besides the fusion methods presented above, a large number of methods also exist in the literature especially for handling he tnon-Gaussian distributed noises, such as :

• Particle filter [START_REF] Doucet | On sequential monte carlo sampling methods for bayesian filtering[END_REF][65] [START_REF] Rekleitis | A particle filter tutorial for mobile robot localization[END_REF]. Instead of linearizing and representing the noise distribution by an exponential function (Gaussian noise), particle filter approximates the prior distribution of the state in state space by a set of random state samples, called particles, denoted as

{ xi t }, i = 1, • • • , M [156]
. Each particle has an importance factor {w i t } to incorporate the measurement s t into the particle set. These weighted particles are independently propagated through the transition model to represent the posterior of x t , then replaced in an importance re-sampling process with their important factors {w i t }. Particles in low-probability regions will be filtered out gradually.

• Interval method. An alternative solution to estimate the state of dynamic processes is the set-membership estimation approach [START_REF] Kieffer | Robust autonomous robot localization using interval analysis[END_REF][104] [START_REF] Milanese | Bounding approaches to system identification[END_REF] . In this method, the inaccuracy of the measurements is not expressed by mean and covariance, but in terms of bounds on the possible errors.

4.2.6/ CONCLUSION

The classic Kalman filter permits to predict and update the system state of a linear system. When the transition model or the measurement model are nonlinear, EKF forms a Gaussian approximation to the joint distribution of the state and the measurement using a Taylor series based transformation. However, the calculation of Jacobian matrix might be difficult or not accurate for approximating the system. Unscented transform (UT) chooses a fixed number of sigma points to represent the desired moments of the original distribution of state. The advantage of UT over the first-order Taylor series based approximation is that UT is better for capturing the higher order moments caused by the non-linear transform. When more than two measurements are provided, information filter has the advantage that the update stage is computationally easy : the inverse-covariance form of the information filter is able to update the prediction by directly integrating the information state vectors and the information matrices from multiple observations. Therefore, in the following section, UT is chosen to approximate the nonlinear system, and information filter is chosen to integrate the observation from different sensors.

4.3/ SENSOR COHERENCE VALIDATION BY EXTENDED NIS

During the multi-sensor fusion process, measurements might be contaminated by disturbances. Erroneous measurements would result in unreliable data. Therefore, measuring the coherence of different localization measurements is important for reliable location demands. The coherence and integrity of multiple sensor measurements are validated for checking and removing the biased measurements [START_REF] Marchand | Vehicle localization integrity based on trajectory monitoring[END_REF].

4.3.1/ NORMALIZED INNOVATION SQUARED (NIS)

• Chi-squared distribution : if x 1 , x 2 , ..., x k are k independent standard normal random variables, the sum of their squares d x = k i=1 x 2 i is supposed to be Chi-squared distributed with k degrees of freedom, denoted as d x ∼ χ 2 (k). For a k-dimensional Gaussian random vector s with mean s and covariance P s , s ∼ N( s, P s ), the variable :

d s = (s -s) T P -1 s (s -s) (4.40)
can be considered as the squared sum of k Gaussian random variables with mean 0 and variance 1, thus the variable d s is considered to be Chi-squared distributed with k degrees of freedom.

• Normalized innovation squared (NIS) test : based on Chi-squared distribution, the normalized estimation error squared test (NEES) and the normalized innovation squared test (NIS) [START_REF] Bar-Shalom | Estimation with Applications to Tracking and Navigation : Theory Algorithms and Software[END_REF] are popular for testing the consistency of two statistical distributions. When a sensor measurement is available, as the true state is not known, the innovation between the observation data and predicted state is supposed to be Gaussian distributed with covariance P v . Let v t denote the difference between the observed measurement s t and the predicted state st at time t :

v t = s t -st (4.41)
The covariance matrix of v t is :

P v = H t ( Pt|t-1 ) -1 H t -1 + Q t (4.42)
The normalized innovation squared (NIS) d M between the predicted state st and the measurement is :

d M = v T t (P v ) -1 v t (4.43) d M follows a Chi-squared distribution d M ∼ χ 2 (m)
, where m is the dimension of the measurement vector (degrees of freedom). A measurement will be rejected if d M is outside (greater than a threshold) the confidence region defined by the χ 2 table. Vice versa, if d M is smaller than the threshold, this measurement is considered to be reliable and coherent with the prediction.

4.3.2/ EXTENDED NIS FOR MULTIPLE MEASUREMENTS VALIDATION

When multiple sensors are used to provide the measurements (e.g., GPS, wheel encoder, gyro), besides the coherence between each sensor measurement and the process prediction, the coherence between different measurements also needs to be validated in case the process model prediction is not correct. Therefore, an extended NIS measurements validation method is used to verify the coherence of the sensors.

For N sensors {S i }, i = 1, • • • , N respectively with measurement s i t and covariance Q i t , a set of parity relations are calculated for every two sensors. This method is under the assumption that only one fault happens at a time and the different sensor measurements are uncorrelated with each other. The fault in any one of the sensors will cause a unique subset of these relations to increase ; then, the fault sensor can be detected [START_REF] Lu | Parity relation based fault detection, isolation and reconfiguration for autonomous ground vehicle localization sensors[END_REF].

As shown in Fig. 4.1, d i j is the Mahalanobis distance between sensors S i and S j for selected measurement elements at instant t (by Eq.4.44 to Eq.4.46). In each column d i j , number 1 means the Mahalanobis distance d i j is corresponding to sensor i and j, while 0 in the table means d i j is not correlated with these sensors. For example, in (row S 1 , column d 12 ) and (row S 2 , column d 12 ), 1 means that d 12 is correlated with sensors S 1 and S 2 . Let v i j t denote the difference between the measurements s i t and s j t at time t :

v i j t = f i s i t -f j s j t (4.44)
where the matrices f i and f j are defined by the two sensor measurements to find their observation for the same element. For example, if S i is a gyro sensor, it can provide an orientation measurement s gyro t = [θ t ] at instant t ; if S j is an inertial navigation sensor, it can provide a measurement s ins t = [x t , y t , θ t ] T . The two sensors provide redundant information for the vehicle orientation, thus the distance d i j is calculated based on this orientation 

P t v = f i Q i t f T i + f j Q j t f T j (4. 45 
)
d i j = (v i j t ) T (P t v ) -1 (v i j t ) (4.46)
Then, a parity checking step is applied to detect sensor fault : the change of a special subset of {d i j } should be aroused by a sensor fault. For example, if the distances d 12 , d 1 j , ... and d 1N increase simultaneously, the fault should correspond to the first sensor ; else if d 21 , d 2, j , ... and d 2N increase simultaneously, the fault sensor is the second one, etc. If two sensors do not provide any redundant information, no measuring distance is calculated. After the validation process, the information contributions of the sensors which are consistent with each other, are integrated together to provide a final estimation.

4.4/ INTEGRATION OF GPS-STEREOVISION-LRF FOR VEHICLE LOCALIZATION

In this work, a GPS receiver, a stereoscopic system and a LRF are integrated for vehicle localization. Stereovision based visual odometry can be integrated with GPS measurements by using direct registration method, EKF or UKF (as presented in section 4.2.2 and section 4.2.3). The rotation angle and translation information provided by the visual odometry method is used to predict the vehicle state. GPS positions are used as measurements to update the state prediction. If the GPS signals could not be received or the GPS measured position is only available with low precision, the vision based method is used alone.

However, it is difficult to decide which sensor is correct if only two sensors are used in the system. In this section, the vehicle state information provided by a GPS receiver, an on-board stereoscopic system, and an on-board horizontal laser range finder are integrated for vehicle localization with an unscented information filter (UIF). Other localization information, such as wheel encoder, or gyro can also be used. As shown in Fig. 4.2, a constant-speed process model is considered as a "virtual sensor" and used to predict the vehicle motion at first ; the vehicle motion data estimated by the LRF system and the stereoscopic system are validated to provide a vehicle motion ; after that, this motion vector is used to predict the vehicle state ; finally, GPS data is used as measurement to update the prediction if it can pass the NIS checking test.

4.4.1/ COORDINATE FRAMES FOR VEHICLE LOCALIZATION

For a multi-sensor based vehicle localization system, there are three types of coordinate frames : global reference frame, vehicle body frame, and sensor frames. In our system, the frames are defined as shown in Fig. 4.3.

-Global reference frame. The global system is denoted as R W (W 0 , X W , Y W , Z W ). We take the initial vehicle position W 0 as the origin of the global system, and the initial forward orientation Y W of the vehicle as the positive direction, the axis Z W is pointing upward, X w direction obeys the right hand rule. At time t, the vehicle position is represented by (x t , y t , z t ) in the world frame W with heading orientation θ t . -Sensor coordinate frames. There are three sensors on the experimental vehicle. The GPS receiver and camera system are mounted on the roof of the vehicle, the LRF is mounted in front of the vehicle (see Fig. 3.15). The sensor frames are :

1. GPS frame R G . The outputs of GPS receiver are vehicle longitude and latitude in the World Geodetic System (WGS84). In order to be integrated with other measurements, GPS longitude and latitude information are converted from the WGS84 system to local Cartesian space (e.g., Lambert II). Origin of the GPS frame is a fixed local point. The plane X G -Y G is parallel to the local earth surface. Details of GPS coordinates transformation can be found in Appendix A.

2.

Stereoscopic system frame R C . Coordinate frame of the (rectified) stereoscopic system is defined by the left camera. Its origin C 0 is at the projection center of the left camera, X C axis points to the direction of the right camera center (parallel to the baseline), Z C axis points upwards and Y C axis points along the camera optical axis.

3. Laser range finder frame R L . The origin L 0 of LRF frame is at the center of the LRF sensor, the plane X L -Y L is on the laser scanning plane.

-Position coordination and time synchronization. In order to obtain the vehicle motion by different sensors, the relative position and orientation between sensor frames and the vehicle body frame should be known before the experiments. In our work, during the procedure of vehicle position fusion, this transformation is not taken into account since all the sensors are mounted close to the central line of the vehicle. However, for higher-level sensor fusion (e.g., image-aided ICP methods in section 3.3.1.3), accurate extrinsic calibration between the different sensor systems is essential. Furthermore, as the frequencies of different sensors are not the same, the measurements from different sensors are synchronized according to their logged time into the system. Then, there are two strategies available for information fusion :

1) Fusion when at least one sensor observation is available. In this case, the vehicle state information is updated when at least one measurement is provided ;

2) Fusion when all the sensors' observations are available. In this case, when the slowest sensor provides an observation, the vehicle state information can be updated with all the sensor measurements.

In order to have more redundant information and to check the coherence between different measurements, the second fusion strategy is applied in the following work.

4.4.2/ VEHICLE MOTION PREDICTION

Assume that the ground is flat, the vehicle pose can be represented by xy coordinates and yaw angle θ. Let X t = [x t , y t , θ t ] denote the vehicle state vector at time t, where (x t , y t ) and θ t are respectively the vehicle position and orientation in the reference navigation system. The current vehicle pose can be predicted by a nonlinear transition model. A simple kinematic model of the vehicle has two rear wheels, and two front wheels represented by a single point in the center of the front wheel axle. This transition vehicle model is given by X t = f (X t-1 , δt) + α t , and written as : 

x t = x t
∆d t = v 2 x,t-1 + v 2 y,t-1 δt, ∆θ t = ω t-1 δt (4.48)
Thus, the vehicle relative movement from t -1 to t is denoted as : Then, the information vector ĩ f t and information matrix Ĩ F t are predicted according to Eq.4.32.

s p t =

4.4.3/ SUBSYSTEM ESTIMATIONS

• Laser range finder subsystem based observation : as shown in section 3.3.1.2, the direct output of LRF alignment at time t is the relative vehicle motion :

s l t = T = [∆ x, ∆ŷ, ∆ θ] T = [∆x l t , ∆y l t , ∆θ l t ] T (4.50)
and the motion covariance matrix cov( T ) (section 3.3.2).

The information contribution i l t and I l t of the LRF system can be calculated using Eq.4.29 :

i l t = (H l t ) T (Q l t ) -1 s l t and I l t = (H l t ) T (Q l t ) -1 H l t , with H l t =           1 0 0 0 1 0 0 0 1           .
• Stereoscopic subsystem based observation : as described in section 3.2.2, the output of stereovision based odometry at time t is the relative vehicle motion with respect to the previous vehicle local frame :

s c t = [∆x c t , ∆y c t , ∆θ c t ] T (4.51)
and the motion covariance matrix P t (section 3.2.3.3).

The information contribution i c t and I c t of the stereoscopic sensor can be calculated using Eq.4.29 :

i c t = (H c t ) T (Q c t ) -1 s c t and I c t = (H c t ) T (Q c t ) -1 H c t , with H c t =           1 0 0 0 1 0 0 0 1           .
• GPS subsystem based observation : position provided by the GPS receiver is in latitude and longitude (φ, λ), the coordinates are converted to local Cartesian coordinates (x ). Thus, the GPS observation is written in the form :

s g t = [x g t , y g t , θ g t ] T (4.52)
In this work, we use the NMEA GST sentence from roving GPS receivers to represent the confidence level of a GPS position (though it might not be reliable in some special cases [START_REF] Betaille | High integrity reference trajectory for benchmarking land navigation data fusion methods[END_REF]). The covariance matrix Q g t of the GPS position is estimated with GPS NMEA sentence "GST" by :

Q g t = δ 2 x ρδ x δ y ρδ x δ y δ 2 y (4.53)
where δ x and δ y are the standard deviations of the longitude error and the latitude error provided by the GPS NMEA sentence "GST", ρ is the spatial correlation coefficient calculated according to the method in [START_REF] El Najjar | A road-matching method for precise vehicle localization using belief theory and kalman filtering[END_REF] :

ρ =          tan(2ϕ)(δ 2 x -δ 2 y ) 2δ x δ y 0 < ϕ < π 2 tan(2ϕ)(δ 2 y -δ 2 x ) 2δ x δ y -π 2 < ϕ < 0 (4.54)
where ϕ is the orientation of the semi-major axis of the error ellipse in degrees from true North in GPS NMEA sentence "GST". The noise of the GPS orientation θ g t can be approximated by unscented transform with the known noise of {x 

i g t = (H g t ) T (Q g t ) -1 s g t and I g t = (H g t ) T (Q g t ) -1 H g t , with H g t =           1 0 0 0 1 0 0 0 1           .

4.4.4/ VALIDATION OF DIFFERENT SENSOR MEASUREMENTS

For the four sensors in our system (laser range finder, stereoscopic system, a GPS receiver, and process model which is considered as a virtual sensor), there are two strategies to validate their coherence :

1. the first strategy is in two steps : the coherence between relative measurements are validated and applied to predict the global pose ; then, the coherence between the prediction and other absolute measurements are validated.

2. the second strategy is to directly compare the absolute vehicle poses from different sensors after pose integration.

The parity relations between different sensors are calculated considering the uncertainties of their observations with Eq. 4.44 to Eq. 4.46.

Relative measurements validation : parity relations between the relative measurements from process model, LRF and stereoscopic system are shown in Tab 4.1. d i j is the distance between the vehicle motion measurements. The value of a special subset of {d i j } should be aroused by a unique sensor fault, then this detected sensor measurement is rejected and not fused.

Sensor measurements which are validated by the test above are integrated through :

i t = ĩt +         N sen=1 i sen t         , I t = Ĩt +         N sen=1 I sen t         (4.55)
where N is the number of validated relative measurements.

Then, the vehicle relative movement and its covariance matrix P a can be recovered from the information vector i t and information matrix I t through :

[∆ xt , ∆ ỹt , ∆ θt ] = (I t ) -1 i t P a = (I t ) -1 (4.56)
On the basis of the vehicle movement [∆ xt , ∆ ỹt , ∆ θt ] and the previous vehicle pose [x t-1 , y t-1 , θ t-1 ], the current vehicle absolute pose s = [ xt , ỹt , θt ] can be predicted with the vehicle motion model in Eq.4.47, the covariance P is approximated by unscented transform according to Eq.4.16 to Eq.4.20. The information contribution ( ĩ f , Ĩ f ) is calculated using Eq. 4.32 :

ĩ f = P-1 s and Ĩ f = ( P) -1 .
Absolute measurements validation : then, the absolute measurements are validated.

Here, we have two absolute measurements, one is s = [ xt , ỹt , θt ] T predicted above, another one is the GPS measurement s g = [x g t , y g t , θ

g t ] T . Other absolute measurements could also be added. In Table 4.2, d f 4 is the distance between the relative measurement based estimation and the GPS measurement.

As there are only two measurements, the validation test is like the classic NIS test : if d f 4 meets the test condition, the information contribution of the relative measurement based estimation and the GPS measurement are integrated to provide a final vehicle pose and covariance ; otherwise, the GPS measurements is not used to update the prediction. 

4.5/ IMPLEMENTATION AND EXPERIMENTAL RESULTS

The proposed UIF based fusion method is tested with the same data sequences obtained by our experimental vehicle SeTCar (section 3. In Fig. 4.4(a), all the sensor measurements are accepted as their observation differences are small. In Fig. 4.4(b), the distances between GPS and all the other sensors increase at the same time, thus the GPS measurement is considered to be an outlier, only the other three sensors are used for the current estimation. In Fig. 4.4(c), as the LRF measure-ment is not coherent with the other observations, and the error distances in the subset (d 12 , d 23 , d 24 ) of LRF increase, the LRF is not used for the estimation. In Fig. 4.4(d), the trajectory in yellow is the ground truth provided by the RTK-GPS. When the low cost GPS receiver fails to provide accurate observations, the fusion results without GPS are more accurate than the GPS observations. The performance of the proposed UIF based localization method is also compared with the multiple updates UKF methods. The comparison is implemented using the estimated trajectory length error (trajectory length is calculated by the integration of movement between consecutive frames), mean and standard deviation of the error between corresponding estimated positions and ground truth. The results are shown in Tab 4.3.

In order to quantify the performance gain of the unscented approach than extended transformation, the proposed UIF method is compared with extended information filter (EIF) method. Results are shown in Table 4.3 (the 5 th row) and Fig. 4.5(a). By comparing the whole trajectory with the ground truth, it is noted that the unscented transformation can provide better localization results in long term. Nevertheless, if the sampling frequency of the system is high enough, the extended transformation should be efficient.

And secondly, in order to quantify the performance gain of the information formulation, a classical unscented Kalman filter (UKF) with multiple updates is implemented and compared with the results of UIF. The prediction is firstly updated by GPS observation, then the corrected result is updated by LRF estimation, and finally by stereo visual odometry.

In order to compare the information formulation and the covariance matrix formulation, no outlier rejection step is used when comparing the two methods. Results are shown in Table 4.3 (the 6 th row) and Fig. It can be seen that for the whole length of trajectory, there is no big difference between UKF and UIF. However, the performance of UIF is better than UKF when comparing the standard deviation and mean error. Besides, the information form has the advantage that the update stage is computationally easier because no gain or innovation covariance matrices need to be calculated. Even though this advantage is not significant for our experiment (because we only have three sensor observations), other sensors can be easily added into the same framework in the future.

Without the error rejection step, information from all the subsystems are integrated together to provide a final estimation. After applying the error rejection step in the fusion process, the GPS failure is detected by the validation test. Nevertheless, without reliable GPS information, the localization system can continue to correctly estimate the vehicle positions by integrating the process model, stereoscopic system and LRF. The error rejection step makes the estimated trajectory more accurate in long term.

4.5.2/ EXPERIMENTAL RESULTS OF THE OLD TOWN CENTER SEQUENCE

The UIF based fusion method is tested with the same data set acquired in the old town center of Belfort (as in section 3.4.3) by integrating the GPS positions, LRF based OR-ICP, stereoscopic system based visual odometry and constant speed model. Stereovision based visual odometry is used to provide an initial transformation for OR-ICP to reduce the searching area of scan correspondences.

4.5.2.1/ WITH SIMULATED GPS MASKS

We added 11 GPS masks into different parts of the vehicle trajectory to simulate the problem of GPS signal blockage in urban environment. In order to find which extended NIS check method is more effective for the vehicle localization, we have tested the two methods : 1) if distances of a subset {d i j }, i, j = 1 • • • N, j i increase simultaneously, the fault should correspond to the sensor i ; 2) if all distances of a subset {d i j }, i j = 1 • • • N, j i meet the condition d i j > threshold, the measurement i is considered to be an outlier, where N is the number of measurements. The threshold is defined by the Chi-square table, as 7.8 in our tests. As seen in Tab 4.4 and Fig. 4.8, for the same sensor measurements and the same GPS masks, the second NIS method with a defined threshold (if all distances of a subset are larger than the threshold, the measurement i is considered to be an outlier) can provide During the whole trajectory, different sensors are accepted for fusion. As seen in Fig. 4.11, the points above the black line represent the sensors used for estimation at every time instant, while the points below the line represent the measurements which are rejected for fusion. Most of the GPS positions with the simulated jumps are rejected for fusion. The position error of the fusion method is compared with the simulated GPS error in Fig. 4.12. When GPS observations are rejected in short term, the other relative sensors can continue to provide accurate positions. In this chapter, a vehicle localization method is presented by integrating vehicle global information from onboard GPS receiver and vehicle odometry information respectively from a stereoscopic system (visual odometry) and a LRF system (scan alignment). The coherence of different sensor measurements are validated with extended NIS method before being integrated by an unscented information filter. Information from other sensors could also be easily incorporated into the system if needed. The proposed method was tested with real data and evaluated by RTK-GPS as ground truth. Results show that the coherence validation step makes the estimated trajectory more accurate in long term as GPS failures can be detected by the validation test. Fusion of the stereoscopic system and LRF can continue to localize the vehicle during GPS outages, while GPS measurements permit to avoid the trajectory drift when only the stereoscopic system or the LRF is used.

For the proposed vehicle localization method in this chapter, several research perspectives are summarized : -In future works, more sensors like IMU or odometry can also be directly integrated thanks to the convenience of information filter. And tight coupling approach between LRF and image data is also envisaged instead of loose coupling of their estimated motions. -If the GPS signals are lost for long period, the trajectory might gradually drift if only using the relative sensors. Therefore, another kind of global information should also be incorporated into the system to adjust the vehicle pose, we will discuss about the use of maps in the next chapter.

HORIZONTAL/VERTICAL LRFS AND GIS MAPS AIDED VEHICLE LOCALIZATION 5.1/ OVERVIEW

In order to solve the problem of blockage/reflection of GPS signals within urban areas, dead-reckoning methods like inertial navigation, wheel encoder odometry or camera/laser based visual odometry have been used to compensate GPS outages by continuously estimating the vehicle motion. After these steps, the predicted vehicle pose can be corrected when the GPS receiver returns to work. However, dead-reckoning methods can provide accurate relative vehicle movements only in short period. If GPS receiver cannot provide any absolute vehicle positions for long time, the vehicle trajectory might gradually drift and the localization error cannot be bounded. Therefore, other global information sources are needed to correct the accumulated localization error.

Nowadays, a lot of vehicles have been equipped with GPS navigation systems : a GPS receiver, an itinerary planning software and a series of digital maps which can be displayed in human readable format, as shown in Fig. 5.1. Digital maps are provided by cartographers like professional companies NAVTEQ 1 , TeleAtlas 2 , or Chinese companies like NavInfo 3 , AutoNavi 4 , etc.

The digital maps (like 2D/3D/DEM maps) can provide static global environment information, such as shapes of urban roads (line-style landmarks), positions of building footprint (polygon-style landmarks), trees and street lamps (point-style landmarks), as well as attributes of these objects (e.g., width of a road, height of a building). If the environment information around the vehicle can be observed by on-board exteroceptive sensors like cameras or laser range finder, and be well associated with the information provided by the initial maps, the vehicle pose can be corrected.

Different features have been proposed to make use of the information from maps together with a laser range finder. Scheunert et al. [START_REF] Scheunert | Precise vehicle localization using multiple sensors and natural landmarks[END_REF] proposed to use a horizontal laser scanner to detect point style landmarks in the environment and use GIS map as measurements Considering that in urban environments, a lot of vehicles are parked by the roadside of the streets, it is very likely that some sidewalk edges might be blinded by vehicles and cannot be detected by LRF scan. Thus, we propose to use building facades as landmarks since there are less obstacles in the air than on the ground. Top part of the building facades which is higher than the vehicle can still be scanned by the vertical LRF (with long enough detecting range) even though there are obstacles around. Besides, as the footprints of buildings have already been marked in a digital map layer, this a priori information can be directly used for initial vehicle pose correction.

5.1.1/ PROPOSED METHOD

In the proposed method, two LRF systems are respectively horizontally and vertically installed on the roof of an experimental vehicle (see Fig. • One LRF (LRF-H) looks forward and scans horizontally the environment in front of the vehicle. The use of LRF-H scans is in twofold : it can be used to provide vehicle odometry information as presented in section 3.3, and also be used to detect the building facades.

If there is few obstacles or no obstacle in front of the vehicle, lines corresponding to the building facades can be extracted from the LRF-H scans and associated with the GIS building map. If there are a lot of obstacles in the view of the LRF-H, the LRF-H cannot provide the structure information around the vehicle.

• Another LRF (LRF-V) scans vertically and looks upward. Even though LRF-H cannot observe the building facades due to obstacles around, top part of the building facades which is higher than the vehicle can still be scanned by the LRF-V. The intersection lines of the building facades and the LRF-V scan plane can be extracted from the vertical LRF scan, and associated with the building map to correct the vehicle lateral position.

The proposed approach is in three steps, as shown in Fig. 5.4.

The first vehicle position is initialized by GPS position for global positioning. Then, the vehicle position is estimated with the relative localization measurements from a gyro sensor and LRF-H alignment through vehicle transition model, and updated by the absolute location provided by the GPS receiver (if available), together with road map-matching result from GIS road map layer (section 5.2). After that, the vehicle pose is refined with observations from the two LRFs and the (original) GIS building map layer (section 5.3).

Considering the inherent noises of maps during surveying and map producing processes, the proposed LRF and building map based pose correction method is used only if GPS readings are not provided. Furthermore, in order that the landmarks observed by the LRF-V can be reused for vehicle localization in the future, two new map layers are generated to store these landmarks data (section 5.4) : the building facade landmarks detected by the LRF-V at every instant are grouped into building segments and stored in a facade The structure of this chapter is organized as follows : section 5.1.2 introduces the principle of data organization and main applications of GIS ; section 5.2 details the method of vehicle pose estimation with GIS road map layer ; section 5.3 presents the vehicle pose refining method with horizontal/vertical LRFs and the original GIS building map layer ; section 5.4 introduces the new map layer generating method ; section 5.5 presents some experimental results ; and finally, conclusions and perspectives are presented in section 5.6.

5.1.2/ GEOGRAPHICAL INFORMATION SYSTEM (GIS)

For a geographical information system (GIS), there are several GIS organizational schemes in which all data of a particular class, such as roads, buildings, woodland or water types, are grouped into a same layer (or coverages), as shown in Fig. 5.5 5 . In this spatial database, the geometry and attribute information of the spatial features are stored in table files, with unique identifiers (ID) linking the corresponding spatial object and its attribute data.

The geometry data model treats environment objects as a set of primitives and spatial entities, such as point, lines and areas in 2D models. As seen in Tab. 5.1, the geometry of a primitive entity is stored in a shape comprising a set of vector coordinates. The location of a point is described by a set of coordinates. A line is defined by an ordered sequence of two or more sets of point coordinates. An area is defined by a boundary of one or more lines which form a closed, non-self-intersecting loop. If the area has holes in it, more than one such loop might be used to describe it.

As the range of information which can be placed in the geographical context is large, 5. http://resources.arcgis.com/en/help/getting-started/articles/026n0000000q000000.htm -Providing structure information and attribute information of the environment.

-Spatial analysis and real-time road traffic analysis for vehicle navigation assistance [START_REF] Wilkie | Transforming gis data into functional road models for large-scale traffic simulation[END_REF], like path-planning. -Storing and managing sensor data with GIS, such as the vehicle positions provided by global positioning system (GPS) receivers, and visual landmarks observed by visual sensors in the urban environments [START_REF] Renault | Gps/gis localization for management of vision referenced navigation in urban environments[END_REF] [74], etc.

Generally, digital maps used for vehicle navigation focus on providing detailed road network information and road attributes (length, surface materials, driving directions, obstacles, vehicle speed, etc.) in various map formats, such as GDF (Geographical Data File) which are used to describe the transportation network in Europe, standard KIWI proposed by Japan KIWI-W Consortium for vehicle navigation, standard SDAL (Shared data access library) and NAVSTREET defined by NavTeQ. Digital maps in different formats can be transformed to SDAL format and used for navigation application development with toolbox NAVTOOLS. In this thesis, GIS maps in general format : shapefile 6 are used. This format is defined by ESRI and each layer includes three data files : shp/shx/dbf. The road network map and building footprint map provided by IGN (BD TOPO map -Pays of Territoire de Belfort, IGN, 2002) are used to provide a priori environmental information for 6. http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf vehicle localization.

5.2/ VEHICLE POSE ESTIMATION WITH GIS ROAD MAP

The process of vehicle pose estimation with GIS road map layer are briefly described in Fig. 5.6. Vehicle pose is at first predicted by LRF-H based scan alignment and a gyro through vehicle motion model, then corrected by observations from a GPS receiver (if available) and a road map based map-matching method (section 5.2.1) within an information filter (IF, EIF, UIF, etc.) framework (section 5.2.2). 

θ t = θ t-1 + ω gyro t δt (5.1) 
Variance of the gyro rate is set to 0.01 2 rad, according to the construction datasheet of the sensor. With the assumption that the road ground is flat and the vehicle moves with constant speed, the vehicle state [ xt , ỹt , θt ] and state covariance Q t are approximated with the vehicle transition model X t = f (X t-1 , d t , θ t , δt) + α t by unscented transform.

• Observation from GPS sensor. The observation from GPS receiver was detailed in section 4.4.3 with observation vector s g t = [x gps t , y gps t ] and covariance matrix Q g t of the GPS position.

5.2.1/ OBSERVATION FROM ROAD MAP-MATCHING METHOD

Road map is an ITN layer (Integrated Transportation Network) which describes the road topology using two types of features : road link and road node. Road map-matching is to find the correspondence between a vehicle trajectory position (e.g., from a GPS receiver, or a GPS receiver integrated with dead-reckoning sensors) and a position in the road network (provided by a GIS map).

An example of map-matching is shown in Fig. 5.7. Numerous approaches have been proposed to solve the road map matching problem in ambiguous situations (e.g., road FIGURE 5.7 -An example of road map based map-matching method. In this figure, the red points are the road nodes, the blue line segments are the road links with node feature at each end of the segment. The green line indicates a vehicle trajectory provided by the GPS receiver, and the yellow points are the correspondences of vehicle positions on road network obtained by map-matching method. intersections, parallel close roads), such as the multi-hypothesis map-matching algorithm [63][112][125] [START_REF] White | Some map matching algorithms for personal navigation assistants[END_REF].

Though vehicles might not remain on the road central line represented by the road network map, the map-matching method can provide a relatively accurate position by relocalizing the vehicle on road, especially when the GPS encounters large errors or the predicted position is off the road. Then, the map-matching result can be integrated with other vehicle pose measurements from an INS, a wheel encoder or other sensors [START_REF] Ignacio | Visual odometry and map fusion for GPS navigation assistance[END_REF] to restrict the vehicle position around the road.

5.2.1.1/ ROAD MAP-MATCHING OBSERVATION

Measurement provided by the map-matching method is the corresponding position of the vehicle on the road map, as :

s m t = [x map t , y map t ] (5.2) 
In this work, the classic nearest road map-matching method is used under a speed constraint and an orientation constraint. The distances between the predicted vehicle position and all the road segments in the neighborhood of the vehicle are calculated (for a predefined zone with size 50m × 50m) at first. E.g., in Fig. 5.8, the distance between the current vehicle position and the road segment [ba] is calculated in two steps :

• At first, the perpendicular distance between the vehicle position and each road segment is calculated. Then, a) if the perpendicular foot p(p x , p y ) (see Fig. • After that, the road segment which is closest to the vehicle is chosen as the corresponding road segment.

The slope of the corresponding road segment θ map t (direction of the road segment is chosen according to the previous vehicle moving orientation) can also be calculated.

In order to guarantee the accuracy of the map-matching method, the vehicle is firstly tracked on the previous corresponding road segment till it moves out of this segment, with the following equations :

r x = xt -b x r y = ỹt -b y λ x = a x -b x λ y = a y -b y λ u = (λ x r x + λ y r y )/((λ x ) 2 + (λ y ) 2 ) (5.3)
where a and b are the endpoints of a road segment shown in Fig. 5.9.

-If 0 ≤ λ u ≤ 1, the vehicle is on the same segment as the previous position, as in Fig. 5.9(a) ; -If λ u < 0 or λ u > 1, it indicates that the vehicle moves outside of the current road segment, we need to search for the vehicle position on a new road segment, as in Fig. 5.9(b). When the vehicle is tracked on another road segment, the tracked segment should be close to or connected with the previous segment by considering the vehicle velocity.

In our experiments, the map-matching method is based on GPS position if a GPS reading is available ; if not, it is based on the predicted position from the transition model. ) of the vehicle, it is essential to estimate its covariance matrix before being integrated with other measurements. In the local frame attached to a road segment, let x l -axis be collinear to the road direction (Fig. 5.10), y l be perpendicular to x l , the error ellipse of a map-matching position is along the direction of road segment with center (x Covariance matrix Q m,l t of the map-matching observation in the local frame is approximated by a large longitudinal error and a lateral error, which is represented by the the width attribute of the road segment, written as [START_REF] El Najjar | A road-matching method for precise vehicle localization using belief theory and kalman filtering[END_REF] :

Q m,l t = (σ l x ) 2 0 0 (σ l y ) 2
(5.4)

where σ l x and σ l y are respectively the longitudinal and lateral standard deviations of map observation. Since the vehicle is not always driven on the segment corresponding to the road central line, the road width is taken into account to represent the lateral standard deviation σ l y , as : σ l y = w r /2k + e m (5.5) where w r is the width attribute of the road segment stored in the attribute table of the GIS road layer ; k is a constant associated with the Gaussian probability error ellipse with P = 0.9, k = -2ln(1 -P), e m is the map error provided by the map cartographer. It is set to 0.5m in this work. The longitudinal error σ l x is set big enough compared to the error in y l -axis (it is set to 10m for our map database in this work).

Then, the covariance Q m t of the map observation in the global reference frame is obtained with the local covariance matrix Q m,l t , and the orientation of road segment with respect to the global reference frame, i.e., θ map t . Q m t is written as : As shown in Fig. 5.10, the corresponding point of vehicle position is on a road segment with 4m width, and the ellipse covariance (95%) corresponding to the map-matching position observation is along the road segment.

Q m t = σ 2 x σ 2 

5.2.2/ POSE UPDATE AND COVARIANCE ESTIMATION WITH UIF FUSION

As described in section 4.2, different fusion strategies could be used to update the vehicle pose with the prediction and observations from the GPS sensor and the map-matching method. Since the inverse-covariance form of information filter is able to update the prediction by directly integrating the information state vectors and information matrices of multiple observations, the information filter based fusion (section 4.2.4) is applied in this section to integrate the prediction from LRF-H scan alignment/gyro, and the observations from GPS receiver and road map-matching method. Procedure of the vehicle pose updating is in five steps : ] in Equation 5.2 and its covariance matrix Q m t in Equation 5.6, the information contribution i m t and I m t of the road map observa-tion can be calculated using Equation 4.29 :

i m t = (H m t ) T (Q m t ) -1 s m t and I m t = (H m t ) T (Q m t ) -1 H m t , with H m t =
1 0 0 0 1 0 .

4.

Validation of different sensor observations. The vehicle process model is considered as a virtual sensor. Thus, three observations need to be validated : the process prediction, the GPS observation, and the map-matching observation.

5.

With N validated observations, the information state vector and information matrix are obtained by linear combination of the local information contributions from the considered sensors : This work assumes that a road map-matching observation exists if it is coherent with other observations ; otherwise, this observation is rejected. But the vehicle might be on a new road not existing in the road map, it is also possible to update the road network map like in the work of [START_REF] Boucher | Gnss-based unscented filtering for road map databases management[END_REF] [START_REF] Boucher | Automatic detection of topological changes for digital road map updating[END_REF], especially for the missing highway since GPS delivers accurate positions in these open areas.

i f t = N s=1 i s

5.3/ VEHICLE POSE REFINEMENT WITH LRFS AND ORIGINAL GIS BUILDING MAP

As presented in section 5.2.1, if GPS subsystem cannot provide vehicle positions for long time, map-matching method with road map layer can help to re-localize the vehicle on road. However, due to the width of road, this vehicle pose is still coarse. If we want to control the vehicle action on road (e.g., lane-changing), more accurate estimation of vehicle position on road is needed. Therefore, with the vehicle pose initially estimated in section 5.2, we propose to use two laser range finders (LRFs) and a priori GIS building map layer to make the localization from coarse-to-fine, especially in structured urban environments. This step would be useful for a more accurate vehicle lateral position. The vehicle pose refinement method with LRFs and original building map layer is shown in Fig. 5.12. At first, line features are respectively extracted from the horizontal and vertical LRF scans from the onboard LRFs systems (section 5.3.1.1). Then, the environment around the vehicle is analyzed (section 5.3.1.2). After that, the detected lines in the LRF-H scan are associated with the GIS building map. If the lines are well associated, the vehicle longitudinal/lateral/orientation pose is corrected (section 5.3.2.3) ; if the vehicle is in a narrow street with one/two parallel building facades, the orientation of the vehicle might be corrected (section 5.3.2.4) ; if the non-parallel lines solution (section 5.3.2) fails to work, the lateral position of the vehicle is corrected with the vertical LRF (section 5.3.3).

5.3.1/ ENVIRONMENT ANALYSIS WITH HORIZONTAL AND VERTICAL LRFS

In order to analyze the environment configuration, we first have to extract the line features from LRF scans in section 5.3.1.1.

5.3.1.1/ LINE FEATURE EXTRACTION FROM LRF SCANS

In order to extract lines from a LRF scan, a lot of line extraction algorithms using 2D range data have been proposed [START_REF] Nguyen | A comparison of line extraction algorithms using 2d range data for indoor mobile robotics[END_REF], such as the point distance based method using distance between every two consecutive points [START_REF] Bailey | Data association for mobile robot navigation : a graph theoretic approach[END_REF], Split-and-Merge algorithm [START_REF] Borges | A split-and-merge segmentation algorithm for line extraction in 2-d range images[END_REF], line segmentation based invariant parameters (SIP) [START_REF] Fortin | Feature extraction in scanning laser range data using invariant parameters : Application to vehicle detection[END_REF]. Line extraction algorithm used in our work is shown in Algorithm 3. 

d k = x 2 k + y 2 k , φ k = atan(y k /x k ) (5.9)
As seen in Fig. 5.13, a straight line L in the polar coordinate system is represented by its perpendicular distance R (called the radial distance) from the origin (pole) to the line, and by the angle α (called the polar angle) from the Ox direction to the perpendicular line of the line L. The points on a line can be written as :

R = xcosα + ysinα (5.10)
Hough transform is firstly used to detect and locate straight lines L(R, α) in the polar coordinate system. Since Hough transform fits lines in parameter space without using local information of the points, the points belonging to the same parameter combination (R k , α k ) might be far away from each other (see Fig. 5.14(a)). A distance constraint is added to delete those points far away from the adjacent points (line 2 in Algorithm 3, see Fig. 

Weighted line fitting with HT results

As show in Fig. 5.13, e k is the distance from the k th laser point to the fitted line L, written as :

e k = d k cos(α -φ k ) -R (5.11)
The line fitting problem to estimate the line L(R, α) can be solved by minimizing the error e k for a set of laser points. Least-square method fits the line under the assumption that each data point carries the equal weight. Due to the noise inherent to the laser system and the uncertainties caused by the environmental effects, the uncertainties of different laser range measurements are not the same. This inherent noise can be considered using weighted line fitting method [START_REF] Pfister | Weighted line fitting algorithms for mobile robot map building and efficient data representation[END_REF] with maximum likelihood based line fitting approach by taking into account the covariance of each e k . Thus, the contribution of every point for the line fitting is not uniform, but linked to the covariance matrix P k of each e k . The cost function is written as :

ǫ = n k=1 r k (e k ) 2
(5.12)

where n is the number of laser points used for line fitting, r k is the weight for each e k , r k = (P k ) -1 . P k is approximated by first-order propagation of the laser measurement error with the function e k in Equation 5.11 :

P k = H e δd k 2 0 0 δφ k 2 H e T (5.13) 
where H e = cos(α -φ k ) d k sin(α -φ k ) . (δd k , δφ k ) are the standard deviations of the laser measurement (as discussed in section 3.3.2.1). As the true position (d k , φ k ) of a laser point is unknown, the estimated position of laser point observed by the LRF sensor is used in the above equation. Therefore, the covariance of e k is approximated by :

P k = cos 2 (α -φ k )δd k 2 + d 2 k δφ k 2 sin 2 (α -φ k ) (5.14) 
In order to estimate the line parameters L(R, α), we have to minimize the cost function of Eq. 5.12, written as :

ǫ = n k=1 (d k cos(α -φ k ) -R) 2 cos 2 (α -φ k )δd k 2 + d 2 k δφ k 2 sin 2 (α -φ k ) (5.15) 
Given an initial estimate of the orientation α of the line L by the Hough transform method (in section 4), the radial distance R of the line L can be estimated by Eq. 5.16.

R = P RR         n k=1 d k cos( α -φ k ) P k         (5.16)
where P RR is the variance of the radial distance, calculated by P RR = ( n k=1 P -1 k ) -1 , P k is calculated by setting α = α in Eq. 5.14.

Then, the orientation α of the line L is updated by α = α + δα, where δα is defined by :

δα = - n k=1 (b k (0)a ′ k (0) -a k (0)b ′ k (0))/b k (0) 2 n k=1 G ′′ T (0) (5.17)
where a ′ k and b ′ k are respectively the derivatives of a k and b k with respect to δα.

c k = cos( α + δα -φ k ) s k = sin( α + δα -φ k ) a k (δα) = (d k c k -R) 2 b k = δd k 2 c 2 k + δφ k 2 d 2 k s 2 k a ′ k (δα) = -2d k s k * (d k c k -R) a ′′ k (δα) = 2d 2 k s 2 k -2 * d k c k (d k c k -R) b ′ k (δα) = 2(d 2 k δφ k 2 -δd k 2 )c k s k b ′′ k (δα) = 2(d 2 k δφ k 2 -δd k 2 )(c 2 k -s 2 k ) G ′ T (0) = (b k (0)a ′ k (0) -a k (0)b ′ k (0))/b k (0) 2 G ′′ T (0) = (((a ′′ k (0)b k (0) -a k (0)b ′′ k (0))b k (0) -2(a ′ k (0)b k (0) -a k (0)b ′ k (0))b ′ k (0))/(b k (0)) 3 ) (5.18)
After that, R and α are iteratively calculated with Eq. 5.16 and Eq. 5.17 till δα < 1e -6 o .

The covariance P L of the extracted line L is approximated by : P L = P RR P Rα P Rα P αα (5.19) where :

P Rα = P RR G ′′ T n k=1 ( 2d k sin(α-φ k ) b k (0) 
)

P αα = 1 (G ′′ T ) 2 n k=1 ( 4d 2 k sin(α-φ k ) 2 b k (0) ) (5.20)
Finally, lines extracted from the current LRF scan are merged according to the difference between every two lines and their covariances. For a line L i = (R i , α i ) and a line L j = (R j , α j ) respectively with the line covariances P L i and P L j , the difference of their line parameters is :

∆L = L i -L j δ L = ∆L T (P L i + P L j ) -1 ∆L (5.21)
If the normalized difference δ L is less than a predefined threshold from chi-square table, the two lines are merged as a new line L with covariance P L by :

P L = ((P L i ) -1 + (P L j ) -1 ) -1 L = P L ((P L i ) -1 L i + (P L j ) -1 L j ) (5.22)
Line detection in horizontal LRF scan Line features are extracted from every horizontal LRF scan with the above line extraction method. In our work, the interval of radial distance r th is set to 0.02m and the resolution of polar angle α th is set to 1 o , the number threshold of a line cluster n th is set to 5. 

Line detection in vertical LRF scan

Straight lines in vertical LRF scan are also extracted, by setting the interval of radial distance as 0.05m and the number threshold of line cluster as 5. Since we assume that the building facades are vertical, the extracted lines from vertical LRF scan should be perpendicular to the ground, with the polar angle α : |α| < 10 o . Besides, the extracted lines are merged as a new line L if the Mahalanobis distance δ L between two lines is less than a predefined threshold (Fig. 5.16).

5.3.1.2/ ENVIRONMENT ANALYSIS USING DETECTED FEATURES

As shown in Fig. 5.17, the horizontal LRF mounted on the roof of the vehicle scans on a plane which is h meters above the ground, and another LRF scans vertically upward. The ideal situation occurs when there is no dynamic obstacle around the vehicle, as shown in Fig. 5.17(a) and Fig. 5.17(b).

The relative position between the horizontal and vertical LRFs can be known before the experiment by calibration. After extracting the straight lines from the horizontal and vertical • If few obstacles or small obstacle is around the vehicle (Fig. 5.17(a)), according to the current sensor configuration of our LRFs, the horizontal LRF can scan the building facades on the left and right sides and also in the front of the vehicle, the extracted building facades can then be associated with the building map and used to correct the vehicle longitudinal/lateral position and the orientation (see section 5.3.2).

• When there are a lot of obstacles in front of the vehicle, if only one line or parallel lines are detected in the horizontal LRF scan (Fig. 5.17(b)) and no line can be detected in the LRF-V scan, the orientation of the vehicle is corrected (section 5.3.2.4).

• After the previous step, if there are no high obstacles beside the vehicle, the building facades can be detected by the LRF-V scan and associated with the building map (Fig. 5.17(c)), then the vehicle lateral position can be corrected (section 5.3.3).

• If the buildings on the left and right sides of the vehicle are detected in both the horizontal and vertical scans, redundant information are provided to correct the vehicle lateral position. We prefer to use the vertical scan because there are less obstacles in the air.

• If neither the horizontal LRF nor the vertical LRF can detect any building facade (Fig. 5.17(d)), the vehicle is assumed to be in an open area. In this situation, the buildings are supposed to be far away, the GPS signals can usually be well received and thus no correction is needed. Assuming that the initially estimated vehicle pose X t = ( x t , y t , θ t ) is with small error, candidate building facades in the field of view (FOV) of the horizontal LRF are extracted from the GIS building map (section 5.3.2.1), and transformed from the global coordinate system to the current vehicle LRF frame. The accuracy of the extracted building facades is provided by the GIS cartographer (the radial distance error is set to 0.5m).

Then, the extracted lines from the LRF-H scan and GIS map are associated by graph matching and maximum clique searching method (section 5.3.2.2). If non-parallel lines are associated, the correction step is to find the best rotation δθ and translation vector (δx, δy) to transform the LRF features to the corresponding map features in the global reference frame (section 5.3.2.3) ; if only one line or parallel lines are detected in the LRF-H scan, the vehicle orientation can be corrected (section 5.3.2.4) ; if no line is detected in the LRF-H scan, the pose might be corrected with the vertical LRF in the next step (section 5.3.3).

5.3.2.1/ CANDIDATE BUILDING FACADES EXTRACTION

In order to extract the candidate building facades in the FOV of the horizontal LRF, two constraints are used :

1. the maximum range constraint of the LRF system : the maximum range of a LRF system (e.g. 180 o and 80m range) is intersected with the building map to extract candidate building facades in the FOV ;

2. the occlusion constraint : the candidate building facades should be in the LOS (line of sight) of the laser beam.

Then, the lines extracted from the buildings map are transformed from the global map system into the current vehicle LRF frame. 

5.3.2.2/ ASSOCIATION OF LRF-H AND MAP OBSERVATIONS

Line features detected in the LRF-H scan are associated with the candidate lines from the building map by graph matching and maximum clique searching method [START_REF] Bailey | Data association for mobile robot navigation : a graph theoretic approach[END_REF]. A graph is an ordered pair G = (V, E) comprising a set of nodes V together with a set of edges E.

A complete subgraph is a part of graph G in which all the nodes are connected to each other. A clique C of graph G is the maximal complete subgraph of G. A maximal clique is a clique which includes the largest possible number of connected nodes [START_REF] Golumbic | Algorithmic Graph Theory and Perfect Graphs[END_REF].

At first, the feature graphs of the LRF-H observation and the map candidates are respectively generated (section 5.3.2.2) ; then, a correspondence graph is generated on the basis of the two feature graphs (section 5.3.2.2) ; after that, the maximum clique is searched in the correspondence graph to find the clique with the largest number of line correspondences between the LRF-H and the map observations (section 5.3.2.2).

The feature graphs

The feature graphs of LRF scan and map are respectively generated. For the two feature graphs, the graph nodes are features (lines), graph edges are defined by the geometric relationship between every two features (the difference of the radial distances of lines and the difference of polar angles of lines). 

m i (R m i , α m i )}, i = 1, ..., n m
L be the lines extracted from the map. For example, in Fig. 5.20(a), there are four line features extracted from the LRF scan, two feature graphs are generated : G A1 (Fig. 5.20(b)) is the radial distance graph with four nodes and six edges, where the edges ∆R i j are defined by the difference of radial distances between every two lines L i and L j , ∆R i j = R i -R j ; the edges G A2 (Fig. 5.20(c)) is the polar angle graph with the same nodes as G A1 , where the six edges ∆α i j are defined by the difference of the polar angles between every two lines, as ∆α i j = α i -α j . If edge ∆R i 1 j 1 in the feature graph G A1 , and edge ∆R m i 2 j 2 in the feature graph G B1 obey the following constraint :

∆R i 1 j 1 -∆R m i 2 j 2 < 2.0m (5.23) 
and edge ∆α i 1 j 1 in the feature graph G A2 and ∆α m i 2 j 2 in the feature graph G B2 obey the following constraint :

∆α i 1 j 1 -∆α m i 2 j 2 < 0.1radians (5.24) 
The above equations suggest that there is one edge that connects the node (A i 1 , B i2 ) and the node (A j 1 , B j2 ), together with one edge that connects the node (A i 1 , B j2 ) and the node (A j 1 , B i2 ). This information is added into the undirected correspondence graph G AB . The correspondence graph of the graphs in Fig. 5.20 and Fig. 5.21 is shown in Fig. 5.22. There are 16 nodes and 12 edges in the correspondence graph.

The maximum clique of the correspondence graph

The maximum clique of the correspondence graph is searched to find the maximum common subgraph. Given a graph's Boolean adjacency matrix G AB , Bron -Kerbosch algorithm 

5.3.2.3/ LONGITUDINAL/LATERAL POSITION AND ORIENTATION CORRECTION

Based on the initially estimated vehicle pose, the correction step is to find the best rotation δθ and translation (δx, δy) to transform the LRF features to the corresponding map features in the global reference frame. The maximum likelihood estimation method is used by considering both the precision of the lines detected in the LRF-H scan (see Equation 5. [START_REF] Borenstein | Mobile robot positioning sensors and techniques[END_REF]) and the precision of the line extracted from the map. The precision of the extracted building facades is provided by the GIS cartographer (as described in section 5.2.1.2, it is set to 0.5m).

With N pairs of line correspondences :

{L i (R i , α i ), L m i (R m i , α m i )}, i = 1, .
.., N in the LRF scan and in the map, the error ∆l i between two lines is written as :

∆l i = R i + δxcos(α i + δθ) + δysin(α i + δθ) -R m i α i + δθ -α m i (5.25)
The cost function E to be minimized is written as :

E = N i=1 1 2 (∆l i ) T w i (∆l i ) = N i=1 1 2 (∆l i ) T (P ∆l ) -1 (∆l i ) (5.26)
where w i is the inverse of covariance matrix P ∆l of ∆l i , w i = (P ∆l ) -1 . As the radial distance and the polar angle are not in the same scale, we separate this problem into two steps :

• 1) The cost function E α is written as :

E α = N i=1 1 2 w α i (α i + δθ -α i m ) 2 (5.27)
The local minimum of Equation 5.27 with respect to the rotation angle θ satisfies :

∂E α ∂δθ = N i=1 w α i (α i + δθ -α i m ) = 0 (5.28)
where

w α i = (P α i + P α i m ) -1 = 1 P α i +P α i m . Thus, δθ = N i=1 w α i (α i m -α i ) N i=1 w α i (5.29)
The variance of orientation is

P δθ = ( N i=1 (P α i + P α i m ) -1 ) -1 .
• 2) After estimating the value of orientation δθ, the translation δx is estimated with cost function E x , as :

E x = N i=1 1 2 w x i (R i cos(α i + δθ) + δx -R i m cos(α i m )) 2 (5.30) 
then, the vehicle x-translation is estimated by :

δx = N i=1 w x i (R i m cos(α i m ) -R i cos(α i + δθ)) N i=1 w x i (5.31)
where

ǫ x i = R i cos(α i + δθ) + δx -R i m cos(α i m ) = (R i + σ R )cos(α i + σ α + θ + σ θ ) + δx -(R i m + σ R m )cos(α i m + σ α m ) = σ R cos(α i + δθ) -R i sin(α i + δθ)(σ α + σ θ ) -σ R m cos(α i m ) + σ α m R i m sin(α i m ) (5.32) 
Then,

P(ǫ x i ) = P RR i cos(αα i + δθ) 2 + P α i (R i ) 2 sin(α i + δθ) 2 + P δθ (R i ) 2 sin(α i + δθ) 2 +P R i m cos(α i m ) 2 + P α i m (R i m ) 2 sin(α i m ) 2
(5.33)

and

w x i = 1/P(ǫ x i ), P δx = N i=1
(1/w x i ).

• 3) The cost function E y is written as :

E y = N i=1 1 2 w y i (R i sin(α i + δθ) + δy -R i m sin(α i m )) 2 (5.34)
then, the vehicle y-translation is estimated by :

δy = N i=1 w y i (R i m sin(α i m ) -R i sin(α i + δθ)) N i=1 w y i (5.35) 
where With the estimated rotation matrix and translation vector, the corrected vehicle pose is written as : (x, y, θ) = ( x + δx, y + δy, θ + δθ). 

P(ǫ y i ) = P RR i sin(α i + δθ) 2 + P αα i (R i ) 2 cos(α i + δθ) 2 + P δθ (R i ) 2 cos(α i + δθ) 2 +P R i m sin(α i m ) 2 + P α i m (R i m ) 2 cos(α i m ) 2

Virtual intersections estimation

This step is to estimate the virtual intersections of the vertical LRF scan with the building map on the left and right sides. The vertical LRF scans are in a vertical plane determined by the current vehicle position and orientation. Since we need to extract the building facades in the FOV of the LRF-H, the intersections of the vertical laser scanning plane and the buildings are two vertical lines on the building facades as seen in Fig. 5.24. The candidate intersections are shown by two red points.

As seen in Fig. 5.25, let (x le f t , y le f t ) and (x right , y right ) respectively denote the virtual intersections of the vertical LRF scan with the building map on the left and right sides.

With two building segments [AB] and [CD] (Fig. 5.25), the candidate intersections are calculated by respectively setting the laser incident angle θ to ( θ + 0) and ( θ + π). The coordinates of the intersection points (x le f t , y le f t ) and (x right , y right ) are respectively estimated 

                         a = tan( θ) b = -(a 2 x -y) a 0 = A y -B y A x -B x b 0 = A x B y -B x A y A x -B x x right = b-b 0 a 0 -a y right = a 0 b-a 2 b a 0 -a a 1 = C y -D y C x -D x b 1 = C x D y -D x C y C x -D x x le f t = b-b 1 a 1 -a y le f t = a 1 b-ab 1 a 1 -a
(5.37)

Vehicle orientation adjusting

After knowing the intersections, the vehicle orientation is adjusted by LRF-H based building facades and map based facades where the intersection points belong to. The Maha-lanobis distance between the LRF-H based facades and map building facades are calculated. Then, the polar angles of validated building facades and LRF-H based facades whose Mahalanobis distance is less than a threshold are used for vehicle orientation correction with Equation 5.38.

θ = θ + 2 i=1 w α i (α i m -α i ) 2 i=1 w α i (5.38)
where N v is the number of validated facades,

w α i = (P α i + P α i m ) -1 = 1 P α i +P α i m
. If no corresponding lines are found, the vehicle orientation remains the same. 5.37 (if the vehicle orientation θ is corrected in section 5.3.2.4). The two intersections are x le f t and x right in Fig. 5.25, respectively with error 0.5m ;

• Then, with the extracted vertical lines L l (R l , α l ) and L r (R r , α r ) from the vertical LRF scan (as shown in Fig. 5.16), the lateral positions of building facades in local frame and their variances can be obtained by :

x le f t = R l cosα l x right = R r cosα r (5.39)
Variance of the two positions σx 2 le f t and σx 2 right are propagated from the covariance of the two extracted lines P l L and P r by first-order approximation ;

• After that, whether the detected LRF-V points are obstacles or not is verified by the width of road W r which is stored in the GIS attribute table :

x rightx le f t -(x rightx le f t ) 2 + (y righty le f t ) 2 ≤ W r (5.40)

• If the above Eq. 5.40 is satisfied, the current estimated vehicle pose ( x, y, θ) is adjusted by the ratio Ψ = 1/ x le f t /x right :

x = (x right + Ψx le f t )/(1 + Ψ) y = tan( θ)(x -x) + y (5.41)
It should be noted that as shown in Fig. 5.25, only the lateral position of the vehicle can be corrected (from the blue position to the red position), the longitudinal error cannot be bounded by the vertical LRF lines.

• With Eq. 5.41, the covariance of the corrected pose (x, y) can be measured by the covariance of current vehicle pose P x,y,θ , variances of the LRF-V building points σx 2 le f t , σx 2 right and the error of map intersections with unscented transform (section 4.2.3), written as diag(P x, y, θ , σx 2 le f t , σx 2 right , 0.5 2 , 0.5 2 ). 

5.4/ NEW MAP LAYER GENERATING WITH LRFS AND GIS

In the previous sections, the vehicle pose is corrected such that the local observation from the LRF sensors can be matched with the building map. The above method can meet most of our demands for continuous vehicle localization, especially in countries with well surveyed maps or regions with small city infrastructure changes. However, sometimes the information from different data sources might not be coherent with each other or the environment changes.

A new map layer of building facades can be generated with the onboard LRF sensors. Since there are less obstacles in the air (with LRF-V) than on the ground (with LRF-H), the new map layer is generated with the onboard vertical LRF sensor. This method looks like SLAM, which solves the problem of building a map of an unknown environment (or update an existing map) by a mobile robot while at the same time navigating the robot using the map [START_REF] Bailey | Simultaneous localization and mapping (slam) : Part ii[END_REF]. For our work, since there is no common data between consecutive vertical scans, the SLAM method cannot be directly used. Therefore, our work is implemented in two steps as follows :

1. A new map layer of building facade landmarks is generated at first by extracting features from the vertical scan (section 5.4.1) ; 2. Then, the reconstructed map is used as measurements to correct the vehicle pose when the vehicle moves again around the same experimental area (section 5.4.2).

5.4.1/ NEW MAP LAYER OF BUILDING LANDMARKS

The vehicle is driven in an experimental area, and the vehicle poses are obtained by vision based odometry information, gyro, RTK-GPS, and map-matching method. Then, the building facade lines are detected in each vertical LRF scan, and transformed from the vehicle attached frame into the global reference system with the vehicle pose (section 5.4.1.1). These extracted landmarks are associated with the original building map (section 5.4.1.2). Then, points which are considered to be on the building facades are connected as building segments, and stored in a map layer as facade landmarks. If a point is considered to be an independent object, it is stored in an independent object map layer (section 5.4.1.3).

5.4.1.1/ UNCERTAINTY OF LRF-V OBSERVATION

The covariance of every building facade landmark extracted from the vertical LRF scan is estimated in four steps :

1. Covariance of every laser scan measurement is related to the laser range and incidence angle, the covariance matrix of k th point is written as {δd k 2 , δφ k 2 }, as described in section 3.3.2.1. 2. Covariance P L of every fitted vertical line L(R i , α i ) is related to the covariance matrices of all the laser points used for line fitting {δd k 2 , δφ k 2 }, k = 1...n, as described in Equation 5.19 ; 3. Local covariance of the extracted facade landmark in the laser scan frame is related to the covariance P L of the extracted line. As shown in Fig. 5.28, the projection of the building line on 2D map is calculated by the parameters of the fitted line L with :

x v,i = R i cosα i (5.42)
The variance of this projection in local frame is propagated from the covariance P L of the extracted line through : 

σx 2 v,i = [ cos(α i ) -R i sin(α i ) ]P L [ cos(α i ) -R i sin(α i ) ] T ( 
       x g v,i = x + x v,i cos( θ) y g v,i = y + x v,i sin( θ) (5.44)
Since the covariances P x, y, θ of the vehicle pose and the variance σx 2 v,i of the LRF observation are independent, the global covariance of the facade landmark is approximated with the covariance P x, y, θ of vehicle pose and the LRF observation variance σx 2 v,i through first-order propagation.

P g v,i = H v,i P x, y, θ 0 3×1 0 1×3 σx 2 v,i H T v,i (5.45) 
where H v,i = 1 0 -x v,i sin( θ) cos( θ) 0 1 x v,i cos( θ) sin( θ) .

5.4.1.2/ ASSOCIATION WITH THE ORIGINAL BUILDING MAP

The lines extracted from the vertical LRF are projected onto the 2D map as a set of points (Fig. 5.28 and Fig. 5.29). All the projections of the vertical laser lines are associated with a corresponding building facade in the GIS building map, as shown in Fig. 5.30. The association step is implemented by finding the projection of LRF-V points on the nearest building facade in the GIS map.

• Detection of independent objects. In order to separate the independent objects (like trees, street lamp, traffic sign, etc.) from the building facade landmarks, a continuity constraint is used on the basis of the original building map. The points corresponding to the same building facade should have the same distance from the building. Those landmarks far from their neighbors are considered to be independent objects (Fig. 5.31). They are stored in an "independent object" layer (Fig. 5.32). A map layer is created to store the new detected facade landmarks from LRF-V. Each landmark is composed of a series of line segments as shown in Tab. 5.2 (left). The global covariance matrices of all the facade points are stored. Another map is created to store the independent objects, as in Tab 5.2 (right). Each object is represented by one point. An outline of the localization process is given in Fig. 5.33. When the vehicle arrives at a new position, an expected observation is searched within the new building facades map : if there exists building line segments, an intersection of the building facade segment is calculated ; or an independent observation might be extracted. The localization process is detailed in the following parts. • Pose prediction : when the vehicle moves, the vehicle pose ( x, y, θ) and its covariance are predicted with the validated sensors as presented in section 5.2.

• Landmarks prediction : building facade landmarks are then extracted from the re-Building facade landmarks Geometry : Line ; ID ; X (X The position of the intersection is not directly used, it is calculated with the endpoints of the facade segments {A(A x , A y ), B(B x , B y )}, or {C(C x , C y ), D(D x , D y )} as shown in Fig. 5.25. The vehicle state is a (3 + 4 × N landmark ) dimension vector, written as :

X = { x, y, θ, A x , A y , B x , B y , C x , C y , D x , D y }.
The covariances of the endpoints are extracted from the reconstructed building map.

• Observation model : if a landmark is extracted from the segment AB, the measurement used is the distance between the building facade and the vehicle, written as :

distance = ( x -x right ) 2 + ( y -y right ) 2 + Q m = 1 + tan( θ) 2 -(A x -B x ) y+(A x B y -B x A y )+(A y -B y ) x (A y -B y )-(A x -B x )tan( θ) (5.46)
where Q m is the observation noise. If a landmark is extracted from the segment CD, the measurement model is the same as Eq. 5.46. Since the measurement model is nonlinear, an UKF is used to update the vehicle pose and map uncertainty (the algorithm of UKF can be found in section 4.2).

• Measurement : the measurements are the 2D projections of the building facade points extracted from the current vertical LRF scan, x v,i (Equation 5.42). One or two building points might be extracted, or no observation is available. Measurement variance σx 2 v,i is obtained as presented in Equation 5.43.

• Update : then the landmarks on the left and right sides of the vehicle can be associated with the current LRF observations of the building facades. They are used to update the vehicle pose and map uncertainty in the UKF. Landmarks which have not been seen before are added into the map such that they can be re-observed later. All the new building facade points are stored without modifying the initial facade points. When the number of facade points related to a building facade reaches a specified density threshold, a new building facade segment is calculated with respect to the covariances of the points. Methods like split-and-merge can also be used to segment and merge the landmarks.

5.5/ IMPLEMENTATION AND EXPERIMENTAL RESULTS

5.5.1/ EXPERIMENTAL PLATFORM

Two experiments were implemented with the same vehicle SeTCar introduced in previous section 3.4. A ProFlex 500 Magellan RTK-GPS receiver, a DSP 3000 Fibre optic gyro, and two SICK LMS 291 laser range finders are mounted on the roof of the vehicle (Fig. 5.34). An embedded hard disk is installed to acquire multi-sensor data. The measurements from the different sensors are associated according to their logged time. Beside the sensors presented in section 3.4, a gyro and two LRF as used in this experiment. In order to evaluate the effectiveness of the proposed map-aided vehicle localization approach, two experiments were designed and implemented with data acquired by our experimental vehicle. The streets are narrow and the buildings are tall in the old town center. It is easily to note that in several areas (Fig. 5.38), positions provided by the RTK-GPS are situated on the buildings, though the HDOP (Horizontal dilution of precision) of all the GPS positions are between 1 and 2 during this acquisition (provided by the NMEA GPGGA sentences), this means that the distribution of the satellites are good enough to provide accurate position measurements. Therefore, this error might due to the influence of the local environment.

As seen in Fig. 5.39, several RTK-GPS positions are with large noises, even overlapped on the buildings. Thus, the RTK-GPS positions cannot be used as reference for evaluation. Since no ground truth is provided in this area, we only show the corrected vehicle positions and the local perception of the vertical LRF.

In Fig. 5.39, the red lines are the GPS positions provided by the RTK-GPS receiver. The road and building maps are used to correct the vehicle pose with the local perception from the laser range finders. In our experiments, the map-matching method is based on the • 2. Localization with the road map. Then, the road map layer is added to assist vehicle localization by map-matching method. The blue trajectory in Fig. 5.41 demonstrates that the erroneous vehicle positions are dragged back onto the road and the pose covariance is bounded around the road after adding the road map.

• 3. Localization with the original building map. After that, the building map layer is added to correct both the vehicle position and orientation with the horizontal and vertical LRFs. It is noted that when the observed building facades can be associated with the map, Taking RTK-GPS as the ground truth, the localization errors by different methods during the periods with simulated GPS masks are compared, as shown in Fig. 5.43 and Tab. 5.3. During the periods with simulated GPS mask, the average localization error can be reduced after using the road map. Since the vehicle trajectory is close to the road central line in this sequence, the advantage of adding building map is not significant over only using road map. However, if the road is much wider or the vehicle is not close to the road central line, the usefulness of building map for lateral position correction would be more important. As seen in Fig. 5.47, the object detected by the vertical LRF is the tree in front of the building in the orange ellipse.

Method

2) Localization with the reconstructed building map. This work is still in progress and some preliminary results are presented. We tested the proposed method in three steps : at first, with the known ground truth, noises are manually simulated and added into the GPS positions at several points to simulate GPS jumps ; then, a GPS mask during a period of time is added to simulate the blockage of GPS signals ; and finally, the vehicle is driven through the same experimental area, the map reconstructed at the first time is In order to simulate GPS jumps with large errors, we randomly degraded the precision of several GPS measurements. In order to simulate GPS signal blockage in urban environments, we added a GPS mask for about 30 seconds (the ground truth lasts about 101.36m). Fig. 5.50 show the localization results when a GPS mask is added. Without any map information, the trajectory gradually drifts to the right side. After incorporating the map information, the vehicle is closer to the ground truth.

As seen in Fig. 5.50 and Tab. 5.5, the localization accuracy is about 1m when using the 

5.6/ CONCLUSION AND PERSPECTIVES

In this chapter, we presented a geographical information system (GIS) aided vehicle localization method with a GPS receiver, a gyro, two LRF systems and 2D GIS maps (road network map, building map). Two types of map information are used : the first one is the original GIS maps, including the road network map and the building map ; in order that the landmarks can be reused for vehicle localization in the future, the building facade landmarks detected by the perception sensor are stored in a new building facade map The proposed approaches were tested with two real data sequences, one in an old town center and the other one in an industrial area. Both experimental results demonstrate that when GPS signals are blocked or with large jumps, the road map can help to bound the vehicle pose around the road ; and the building map can help to adjust the vehicle pose from coarse-to-fine such that the local perception of the two LRFs are consistent with the building facade ; and the newly reconstructed building map can help to keep the map up to date and to correct the vehicle pose.

Perspectives : based on the preliminary results in this chapter, several research perspectives are summarized as follows :

-When the vehicle goes through the same place, the problem becomes a SLAM problem to update both the vehicle pose and the map, together with their covariances. We can also pass the same area more times, 8 times, 10 times or even more, to obtain more laser points, and to extract the facades from this large set of points. -Our current work only takes use of the LRF-V for mapping and localization. The LRF-V provides only information of the buildings which are parallel to the vehicle trajectory, while the building facade perpendicular to the vehicle trajectory cannot be observed. Therefore, we can use the LRF-H and LRF-V for mapping within a probabilistic 3D occupancy grid framework. The same landmark can be seen at different consecutive poses and can be associated to update the predicted vehicle pose. -A LRF can also be installed at the bottom back of the vehicle to scan the ground behind the vehicle. In this work, we use a vertical LRF to test the feasibility of the method. Stereovision or the fusion of stereovision and LRF are also envisaged in the future. Plane features can also be extracted if we use the historical information of the left or right building scans. -Many methods have been proposed to solve the problem of road matching when crossroads appear. The local perception of the environment provided by the camera or LRF can help to solve the problem of road map-matching (road/building combination pattern) and to determine the position of the vehicle on road. -We can take use of the GIS map to dynamically manage the objects in urban environments, which are extracted from the horizontal and vertical LRFs, like static objects, and moving objects. -We can also take use of the other attribute information provided by the GIS database, such as the slope of ground.

CONCLUSIONS AND FUTURE WORKS The redundant measurement information are used to evaluate the coherence of different systems and to continuously provide pose measurement if any system fails to work. This method to integrate GPS with relative localization methods is with the assumption that GPS signals are lost in short term. If the GPS signals are lost for long period, the accumulated localization error of dead-reckoning method cannot be bounded and the trajectory might gradually drift if only using relative approaches.

Therefore, in Chapter 5, static environment information stored in digital maps of a geographical information system (GIS) is used to bound the localization error of deadreckoning methods if GPS receiver fails for long time. At first, GPS/DR (LRF-H based scan alignment and a gyro) measurements are fused with a 2D GIS road network map to provide a coarse pose estimation. This step is like the classic road map-matching method. Then, two complementary LRF systems (horizontal and vertical LRFs) mounted on the roof of the vehicle are used to detect building facades in urban environments. Building facade features in the vertical LRF scan are chosen for lateral pose correction since there are less obstacles in the air than on the ground. The detected vertical building facades are projected onto the 2D plane and associated with the GIS building map layer to correct the vehicle pose error, especially for the lateral pose error. The experimental results with real data show that the road map can help to obtain an approximate estimation of the vehicle position by projecting the vehicle position on the corresponding road segment, then the integration of the building information can help to refine this first pose estimation.

6.2/ PERSPECTIVES

A lot of perspectives are envisaged to improve and complete the vehicle localization system proposed in this thesis in future works :

• At first, real-time implementation of the localization system is being developed. As the time synchronization between different sensor systems is important for real-time fusion, the processing time of each subsystem (e.g., feature detection and matching, and vehicle motion estimation in visual odometry ; scan alignment in laser method ; map extraction and building feature association) and data transmission should be considered.

• The precision of visual odometry method might be improved by improving camera calibration results, or using more robust features. We can test and compare the precision and robustness of different kind of features with more data sequences under different illumination and weather conditions, or in more complex environments with different types of obstacles, etc. Since detection of dynamic obstacles and vision based relative motion estimation are dual-processes, the work on dynamic obstacles detection should be improved.

• Other uncertainty representation might also be considered in future works, like bounded intervals. In this thesis, covariance of the visual odometry based estimation is propagated from the image point noise, 3D point reconstruction process and pose estimation. Covariance of LRF-H scan alignment estimation is propagated from the laser point noise and minimization process. But the noise or error in point matching/association step is not yet well measured and this should be considered in future works. For the image aided ICP methods, the work on how to dynamically choose appropriate coefficients for the image attributes needs to be continued in the future ; the incorporation of camera with larger FOV (e.g. fish eye) can also be considered.

• In future works, sensors like IMU or odometry can also be directly integrated thanks to the convenience of information filter. Tight coupling approaches between LRF and image data, inertial sensor and image data, GPS pseudo-ranges with image data are also envisaged instead of loose coupling of their estimated motions.

The work on combining GIS for intelligent vehicle localization in this thesis is still very preliminary, some research perspectives are summarized as follows :

• In this work, we have tested the possibility of using building facade features for vehicle pose correction, especially for vehicle lateral pose. This method can be completed by combining other continuous features. For example, a LRF sensor can be installed at the bottom back of the vehicle to scan the ground and detect curbs beside the road (due to the special LRF configuration in our experiment, these features cannot be extracted) ; camera system can be used to detect lanes on the ground. Then, these three continuous line features : lanes, curbs and building footprints can be stored in three map layers and used for vehicle lateral pose correction in case that one of them might not be well detected.

• The idea of our current work is simple and easy to implement, we only take use of the vertical LRF scan for new map generation and localization. But LRF-V can provide only information of the buildings which are parallel to the vehicle trajectory, while the building facades perpendicular to the vehicle moving direction cannot be observed. Therefore, we can use the LRF-H and LRF-V for mapping within a probabilistic 3D occupancy grid framework. The same landmark can be seen at different consecutive poses and can be associated to update the predicted vehicle pose. Stereovision or the fusion of stereovision and LRF are also envisaged in the future. Building plane features can also be extracted if we use historical information of the left or right building scans.

• The map based method proposed in this thesis is based on the assumption that the facades of the buildings are vertical. Quality of GIS maps can largely affect the precision of pose correction step. In order to update the newly generated map, we can choose the SLAM strategy to update both the vehicle pose and the map when the vehicle goes through the same place. Or we can repeat the trajectory in the same area during different dates to extract the facades from this large set of points, then complete the newly generated building map like the road map update strategy used in OpenStreetMap project. So the work on how to manage the sensor observations and accurately update the map with new observation should be completed.

• Many methods have been proposed to solve the problem of road matching when crossroads appear. The local perception of the environment provided by the camera or LRF may help to reduce the ambiguity problem of road map-matching. For example, with the lane features and building facades extracted from the image, a road/building combination pattern can be obtained, this pattern can be compared with the existing road network/building footprint maps to reduce the ambiguity of vehicle position on road.

• Other attribute information provided by the GIS database might also be used, such as the slope of ground. If multiple vehicles are roving in the same area and each vehicle sends its own local map to the computation center (or to the other vehicles), the information should also be possible to be shared for making a more complete map. We can take use of the GIS map to dynamically manage the objects in urban environments, which are extracted from the horizontal and vertical LRFs, like static objects, and moving objects.
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 2324 FIGURE 2.3 -3D orientations of vehicle movement : yaw, pitch, roll
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 25 FIGURE 2.5 -(Left) NASA's Mars Exploration Rovers (MER).(Right) Estimated trajectories of the rover : green trajectory shows the rover locations estimated by the visual odometry, while the blue trajectory shows the path estimated by the IMU and wheel encoders[START_REF] Cheng | Visual odometry on the mars exploration rovers[END_REF] 

  (a) Perspective camera (b) Stereoscopic system (c) Multi-camera system (d) Omnidirectional camera
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 26 FIGURE 2.6 -Some camera systems used for vision based localization

  method by minimizing reprojection error of reconstructed 3D points and corresponding
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 29 FIGURE 2.9 -Localization based on GPS trilateration
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 2 FIGURE 2.10 -GPS satellites in space
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 212 FIGURE 2.12 -Uncertainty areas of GPS localization under different satellites distributions

FIGURE 2 .

 2 FIGURE 2.13 -Multi-path problem of GPS signal
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 2215 FIGURE 2.14 -Differential GPS : reference station is tens of kilometers away from a GPS receiver
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 216 FIGURE 2.16 -Road geometry features respectively extracted from image and road network[START_REF] Bai | Fusing image, gps and gis for road tracking using multiple condensation particle filters[END_REF] 
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 32 FIGURE 3.2 -Chessboard images used for camera calibration
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 33 FIGURE 3.3 -Epipolar geometry of a stereoscopic system

  3) such that the images taken by the two cameras are row-aligned, as shown in Fig.3.4. In such configuration, the optical axes of the two cameras are parallel and the baseline B(C l C r ) is perpendicular to the optical axes.

FIGURE 3 . 4 -

 34 FIGURE 3.4 -Ideal stereoscopic configuration after stereo rectification After rectification, all the epipolar lines are collinear and parallel to the horizontal image lines. We can then search the correspondence of an image point on the same row of another image. As shown in Fig. 3.4, d = u lu r is the horizontal-disparity between the two corresponding points. In such a configuration, the depth Z of point Q can be derived by the disparity information with Z = f B d (see section 3.2.2.3).

   detected SURF points in a sunflower field image ; right) an oriented quadratic grid with 4 × 4 square sub-regions is placed around the interest point, and the wavelet responses for each square are computed to build the feature descriptor[START_REF] Bay | Surf : Speeded up robust features[END_REF] 
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 38 FIGURE 3.8 -(a) Vehicle model (left camera center is considered to be the vehicle reference system center) ; (b) selection and re-initialization of reference image pair
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 39 FIGURE 3.9 -Urban environment with moving vehicles or strong sunlight
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 310 FIGURE 3.10 -Uncertainty region of a reconstructed 3D point[START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF] 
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 314 FIGURE 3.14 -Two LRF scans are taken at consecutive positions, data sets are respectively transformed with the pose estimation from classic ICP (left) and OR-ICP (right)
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 3 FIGURE 3.15 -A chessboard is placed in front of the camera and laser range finder, we need to find the rotation R C,L and translation T C,L to transform the point coordinates from camera frame to LRF frame

FIGURE 3 . 16 -

 316 FIGURE 3.16 -One laser scan and its corresponding camera image frame. (Left) LRF scan : the points are in red if they are in the FOV of the camera, the other points are in blue ; (Right) Laser points (red) in the FOV of the camera are transformed into the image frame using LRF/camera extrinsic parameters
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 3 FIGURE 3.18 -LRF points in the FOV of the camera are projected onto the image ; and SURF descriptors are extracted from the image ; then, the laser points are associated by both their geometric coordinates and descriptor attributes

  FIGURE 3.19 -Configuration of the experimental vehicle
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 321 FIGURE 3.21 -Landmarks from the stereoscopic system and from the LRF are overlapped on Google aerial image

  FIGURE 3.22 -Comparison of the vehicle trajectories and yaw angles obtained from the stereoscopic system and the RTK-GPS receiver

  Position errors on y direction with 3σ bound
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 323 FIGURE 3.23 -Position error of stereoscopic system based estimation
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 325326 FIGURE 3.25 -Vehicle trajectory overlapped on aerial image (Google)
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 327328 FIGURE 3.27 -Comparison of the vehicle speed with the ground truth
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 41 FIGURE 4.1 -Extended NIS between multiple sensors
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 42 FIGURE 4.2 -Overview of the proposed UIF based vehicle localization method
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 43 FIGURE 4.3 -Different coordinate frames of the vehicle system

  Appendix A. If the vehicle moves only with rotation, the movement of the vehicle body could not be detected by GPS sensor. But when the vehicle moves with translation, the change of the vehicle orientation could be obtained by two consecutive GPS positions through θ

  observation can be calculated using Eq.4.29 :

  4.1), as presented in section 3.4.2 and section 3.4.3. The initial orientation and speed of the vehicle are set by GPS observation. The initial state covariance matrix is set by the covariance matrix of the first GPS position. 4.5.1/ EXPERIMENTAL RESULTS OF THE INDUSTRIAL PARK SEQUENCE (a) Frame 1, all the four estimations are considered to be reliable (b) Frame 6, GPS is considered as an outlier, the other three sensors are used for current estimation (c) Frame 19, LRF observation is considered as an outlier, the other three sensors are used for current estimation (d) Since frame 151, GPS observations jumped to the left side with large errors, they are treated as outliers and not used for estimation.
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 44 FIGURE 4.4 -Some results of vehicle state and covariance estimation with UIF method

  Vehicle position and orientation errors with the different fusion methods are shown in Fig. 4.5(c) and Fig. 4.5(d). As shown in Fig. 4.5(b), GPS positions jump to the left side with an error of about 10m. This GPS failure lasts about 70 meters during the period between frame 100 and frame 200 (see Fig. 4.5(a) and Fig. 4.5(b)). It is noted that neither the LRF nor the stereoscopic system based approaches could provide an accurate absolute localization results alone in long term due to the error accumulation. GPS works in long term, with an error of 1.83% for the whole trajectory.

  (a) Comparison of vehicle trajectories estimated by EIF, UKF, UIF and UIF (rejection) based multisensor fusion Vehicle position errors observed by the different sensors (compared with RTK-GPS) (d) Vehicle orientation errors observed by the different sensors (compared with RTK-GPS)
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 45 FIGURE 4.5 -Estimated vehicle trajectories and comparison of the fusion based vehicle position and orientation with the ground truth
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 465744 FIGURE 4.6 -Vehicle trajectory during the GPS masks : extended NIS increasing method
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 47 FIGURE 4.7 -Vehicle trajectory during the GPS masks : extended NIS threshold method
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 49 FIGURE 4.9 -Vehicle trajectory with simulated erroneous GPS positions
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 410 FIGURE 4.10 -NIS changes of the relative measurements
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 411 FIGURE 4.11 -Sensors validated for sensor fusion after adding simulated GPS jumps
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 412 FIGURE 4.12 -Comparison of position error after adding random GPS position errors
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 51 FIGURE 5.1 -In-car GPS navigation system and digital map provided by NAVTEQ
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 52 FIGURE 5.2 -(a) Use horizontal LRF to detect point features in GIS map [141] ; (b)(c) use tilt-down LRF to scan the sidewalk edges [74] [124]
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 53 FIGURE 5.3 -Two LRF systems are mounted on the roof of the vehicle : the vertical LRF scan is in blue and the horizontal LRF scan is in red
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 54 FIGURE 5.4 -The proposed GIS aided localization method
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 55 FIGURE 5.5 -Organization of GIS layers
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 56 FIGURE 5.6 -Vehicle pose estimation with GIS road map layer

  5.8) is on the road segment, this distance is considered as the closest distance between the vehicle and the road segment. The corresponding position of the vehicle on road is the point p, written as : (x map t , y map t ) = (p x , p y ) ;
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 58 FIGURE 5.8 -Choosing the corresponding road segment

  FIGURE 5.9 -Track vehicle position on the previous road segment
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 510 FIGURE 5.10 -Representation of the error ellipse of a map-matching observation (3σ)

FIGURE 5 . 11 -

 511 FIGURE 5.11 -Representation of the uncertainty ellipse of the vehicle positions obtained by different methods
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 512 FIGURE 5.12 -Method of vehicle pose refining with LRFs and original GIS building map

Algorithme 3 :

 3 Line extraction Input : a set of laser points : {(x k , y k )}, k = 1, ..., n, interval of radial distance r th , interval of polar angle α th , number threshold of a line n th Output : fitted line uncertainty P L , fitted lines L(R, α), points on every fitted line Nupx, uncertainty Qx of every point Extract lines using Hough transform based line extraction method; Delete points far away from each other in each line cluster; Merge co-planar line segments according to R and α; Weighted line fitting based on selected line segments from Hough transform.Hough transform (HT) for line extractionPolar coordinate system is a two-dimensional coordinate system, in which each point is represented by the distance d k from a fixed point O (called pole), and the angle φ k from a fixed direction Ox (see Fig.5.13).

FIGURE 5 . 13 -

 513 FIGURE 5.13 -Line parameters in polar coordinates

  5.14(b)). Besides, in order to avoid the problem due to discretization of R and α, co-planar lines for which |∆R| < 0.2m and |∆α| < 0.5 o are grouped as a new line (line 3 in Algorithm 3, see Fig.5.14(c)). Finally, the point number threshold n th is used again to guarantee the number of points on every extracted line (see Fig.5.14(d)).
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 514 FIGURE 5.14 -Lines extracted from a horizontal LRF scan with constrained Hough transform
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 515 FIGURE 5.15 -Lines detected in a horizontal LRF scan In Fig. 5.15, the red points are those points chosen to estimate the straight line by Hough transform, the estimated lines are shown in blue. The green lines are obtained after taking into account the uncertainties of each laser point with the weighted line fitting approach. And the yellow zone represents the radial distance uncertainty of each fitted line. One line is zoomed as shown in the left part of Fig. 5.15.
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 516 FIGURE 5.16 -Lines extracted from a vertical LRF scan : two building lines are respectively detected on the left and right sides of the vehicle, the line on the tree is eliminated

Algorithme 4 :

 4 FIGURE 5.17 -Environment analysis with horizontal and vertical LRFs

5. 3 . 2 /

 32 HORIZONTAL LRF BASED VEHICLE POSE CORRECTION Steps of horizontal LRF based vehicle pose correction method are shown in Fig. 5.18.
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 518 FIGURE 5.18 -Method of vehicle pose correction with non-parallel lines
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 519 FIGURE 5.19 -Extraction of candidate building facades in the FOV of LRF-H scan

FIGURE 5 .

 5 FIGURE 5.20 -(a) four line features in a LRF scan ; (b) line feature graph G A1 defined by the radial distances ; (c) line feature graph G A2 defined by the polar angles Let {L i (R i , α i )}, i = 1, ..., n L be the lines in the LRF-H scan, and{L m i (R m i , α m i )}, i = 1, ..., n mL be the lines extracted from the map. For example, in Fig.5.20(a), there are four line features extracted from the LRF scan, two feature graphs are generated : G A1 (Fig.5.20(b)) is the radial distance graph with four nodes and six edges, where the edges ∆R i j are defined by the difference of radial distances between every two lines L i and L j , ∆R i j = R i -R j ; the edges G A2 (Fig.5.20(c)) is the polar angle graph with the same nodes as G A1 , where the six edges ∆α i j are defined by the difference of the polar angles between every two lines, as ∆α i j = α i -α j .

Fig. 5 .FIGURE 5 .

 55 Fig. 5.21(a) shows the eight lines extracted from the building map. Then feature graphs G B1 and G B2 are generated as shown in Fig. 5.21(b)(c). The edges ∆R m i j in G B1 are defined by the difference of radial distances between two lines L mi and L m j , as ∆R m i j = ∆R m i -∆R m j ; ∆α m i j in G B2 are defined by the difference of the polar angles, as ∆α m i j = ∆α m i -∆α m j .

FIGURE 5 .

 5 FIGURE 5.22 -(a) observed building lines in the LRF-H scan ; (b) extracted building lines in the FOV of LRF-H from GIS building map layer ; (c) the correspondence graph and the maximum clique of the correspondence graph (red lines)
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 324523 FIGURE 5.23 -Method of orientation correction with one line/parallel lines from LRF-H scan
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 524525 FIGURE 5.24 -Virtual intersections of the LRF-V scan with building facades

  5.3.3/ VERTICAL LRF BASED VEHICLE LATERAL POSITION CORRECTIONIf two building facades are detected in the vertical LRF scan, the vehicle lateral position can be corrected with the building map as shown in Fig.5.26.
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 526 FIGURE 5.26 -Method of lateral position correction with vertical lines in LRF-V scan

FIGURE 5 .Fig. 5 .

 55 FIGURE 5.27 -LRF-H in global reference before and after the map based pose correction Fig. 5.27 shows one horizontal laser scan before and after the map based vehicle pose correction step. The yellow polygons are buildings on the map, the blue line segments are roads on the map. The green points are laser scans transformed into the global reference system with the initial estimated vehicle pose. After the map based pose correction step, the laser observation (red points) are more consistent to the map. The initial estimated vehicle position is shown by blue circle, and the corrected vehicle position is shown by triangle in magenta color.
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 528529 FIGURE 5.28 -Covariance of facade landmarks in i th LRF frame
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 530 FIGURE 5.30 -Nearest building point of LRF-V on GIS building map
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 531 FIGURE 5.31 -Detected independent objects by LRF-V

FIGURE 5 .

 5 FIGURE 5.33 -Process of vehicle localization with the new generated building facade map

  Gyro.A DSP 3000 Fibre optic gyro 7 (10Hz, Fig.5.[START_REF] Chen | Pattern recognition for looselycoupled gps/odometer fusion[END_REF]) is mounted on the roof of the vehicle 7. http://www.kvh.com/dsp3000
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 534 FIGURE 5.34 -The experimental vehicle -SeTCar
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 5 FIGURE 5.35 -DSP 3000 Fibre optic gyro
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 5 FIGURE 5.36 -SICK LMS 221 and LMS 291
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 537 FIGURE 5.37 -Vehicle trajectory overlapped on the OpenStreetMap and Google aerial image

FIGURE 5 .

 5 FIGURE 5.38 -Trajectory (in area 1) of RTK-GPS and low precision GPS shown in Google Street View
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 540 FIGURE 5.40 -The second vehicle trajectory respectively overlapped on Google aerial image and OpenStreetMap
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 541 FIGURE 5.41 -Vehicle positions respectively obtained by RTK-GPS, LRF-H scan alignment/gyro prediction, road map based correction, and road/building maps based correction methods. The rectangle area is zoomed in Fig. 5.42
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 542 FIGURE 5.42 -Zoom of rectangle area in Fig. 5.41 (green points are LRF-H scans before the vehicle pose correction, and red points are LRF-H scans after the pose correction)

FIGURE 5 .FIGURE 5 . 44 -FIGURE 5 . 45 - 4 . Localization with the reconstructed map 1 )

 554454541 FIGURE 5.43 -Comparison of vehicle localization errors with different approaches
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 546 FIGURE 5.46 -New maps with extracted building facade landmarks and independent objects
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 547 FIGURE 5.47 -One tree in front of the building is treated as an independent object by the LRF-V (corresponding to the object in the yellow circle of Fig. 5.46)

Fig. 5 .

 5 [START_REF] Drawil | In Global Navigation Satellite Systems : Signal, Theory and Applications[END_REF] shows the localization results when GPS encounters large jumps. In Tab 5.4, the randomly added GPS position errors are listed. Some erroneous GPS positions are rejected during the initial fusion step with the process model/gyro and road map-matching. Then, the vehicle position is corrected by the new reconstructed building map. Tab 5.4 shows that the building map can help to correct the vehicle pose such that the vertical LRF observations are consistent with the reconstructed map.
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 548550 FIGURE 5.48 -Vehicle localization results by using the reconstructed building map (with simulated GPS jumps)

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

TABLE 2 .

 2 

2 -Motion estimation by 3D/2D

•

  Monocular method : as seen in Tab 2.2(a), corresponding image pixels q i 1 in I t-1 and q i 2 in I t are reconstructed into a 3D pointQ i ; then, Q i isreprojected onto another image frame I t+1 with camera matrix K[R t,t+1 |T t,t+1 ], which contains camera intrinsic parameters and camera motion from time t to t + 1 (see section 3.2.1.1 for more details about camera parameters). Camera motion parameters can then be estimated by minimizing the error between the reprojected point set {K[R t,t+1 |T t,t+1 ]Q i } and the corresponding image point set {q i 3 } on image frame I t+1

TABLE 2 .

 2 

3 -Motion estimation by 3D/3D method pulse (time of flight (TOF)). The distance is calculated through :

DR + Vision + Landmarks model or world model : landmarks

  

	[128] [157].
	-GPS/based localiza-
	tion methods (in section 2.3.4) are on the basis of a coarse vehicle pose estimation
	from GPS/DR system, the landmarks stored in a model, and several onboard percep-
	tion sensors [29][76]. Regions of Interest (ROI) are extracted from the world model
	with the coarse vehicle pose ; features detected in the current sensor observation are
	matched with landmarks in the ROI of the world model ; after that, the vehicle pose can
	be refined by the corresponding landmarks. Or, like in the work of Lanerit et al.

TABLE 3 .

 3 

	Harris Shi-Tomasi SIFT FAST MSERs SURF CenSurE	× × ×	× × × ×	× × × × × × ×	× × × × ×	× × × ×	* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

1 -Comparison of feature detectors (based on

[START_REF] Fraundorfer | Visual odometry : Part ii -matching, robustness, and applications[END_REF]

) for different criteria. C1 : corner detector ; C2 : blob detector ; C3 : rotation invariant ; C4 : scale invariant ; C5 : affine invariant ; C6 : repeatability ; C7 : localization accuracy ; C8 : robustness ; C9 : efficiency We have tested Harris, Shi-Tomasi, SIFT, SURF and CenSurE features listed in Tab 3.1 with a set of images to choose a feature with better repeatability and robustness for our work. Results show that most SURF features can be repeatedly detected and matched in multiple images for motion estimation. But it should mention that this experiment was implemented in indoor environments with manually designed camera displacements. If we want to compare the robustness, efficiency and accuracy of different features for localization in long sequences, we need to test these features with more image sequences (under

  . It captures 16 images pairs every second, respectively with size of 1280 × 960 pixels. The baseline of the stereoscopic system is 0.24m, with a FOV (Field of View) of 66 o for each camera.Laser range finder.A horizontal SICK LMS221 laser range finder is mounted on the bottom front of the vehicle. This LRF provides about 5 scans every second and each LRF scan provides 361 laser points in a 180 o arc with 0.5 o angular resolution and maximum range of 80 meters.

Two experimental data sets were respectively captured in March, 2011 and September, 7. http://epan.fr/Accueil 8. http://www.gemcar.com/ 9. http://www.magellangps.com/ 10. www.ptgrey.com

  -1 + ∆d t cos(θ t-1 + ∆θ t /2) + α 1t y t = y t-1 + ∆d t sin(θ t-1 + ∆θ t /2) + α 2t θ t = θ t-1 + ∆θ t + α 3t = [x t-1 , y t-1 , θ t-1 ] T is the vehicle state at time t -1, ∆d t and ∆θ t are respectively the vehicle movement and rotation from time t-1 to t, and α t = [α 1t , α 2t , α 3t ] T is the process noise.For a constant speed model, v x,t-1 , v z,t-1 and ω t-1 are respectively vehicle linear velocities on x and z directions and vehicle angular velocity at time t -1, calculated by the previous vehicle positions and headings at time t-1 and t-2. The previous vehicle speed is used to predict the current state with time interval δt :

	(4.47)
	where X t-1

TABLE 4 .

 4 

	P P P P P P P P P Sensor d i j	d 12 d 13 d 23
	S1-Process model	1	1	0
	S2-LRF	1	0	1
	S3-VO (Stereovision)	0	1	1
	TABLE 4.1 -Parity relations between every two motion measurements
	P P P P P P P P P Sensor d i j		d f 4	
	S f -vehicle pose prediction	1	
	S4-GPS		1	

2 -NIS relation between every two sensors (1)

TABLE 4 .

 4 4.5(a).

	Sensors	Traveling distance (m) Mean (m) Std.(m)
	LRF scan alignment	621.67	1.74	1.52
	Stereovision odometry	685.43	1.69	1.38
	GPS	614.78	1.08	1.90
	EIF fusion	662.11	3.73	6.89
	UKF fusion (three updates)	603.07	1.38	1.87
	UIF fusion	601.20	1.11	1.17
	UIF fusion (with rejections)	603.88	1.18	1.08

3 -Localization results with the different sensors and UKF, EIF, UIF

1 .

 1 The vehicle state [ xt , ỹt , θt ] is predicted with the process model. The information vector ĩ f t and information matrix Ĩ F t are predicted according to Equation 4.32.

	2. Together with the GPS observation s g t = [x I g t of GPS can be calculated using Equation 4.29. gps t , y gps t ], the information contribution i g t and
	3. With the map-matching observation s m t = [x t map	map , y t

  are respectively the information state and information matrix of the s th validated observation (here, N = 3 if all sensors are used and i f t = ĩ f t + i Then, the vehicle pose X t = ( x t , y t , θ t ) can be recovered by : X t = (IF t ) -1 i f t , P X t = (IF t ) -1 .

		N		
	t ,	IF t =	I s t	(5.8)
		s=1		
	where i s t and I s t g t + i m t , IF t = Ĩ F t + I g t + I m 9.3844 9.3844 9.3845 9.3846 9.3846 2.3034 2.3034 2.3034 2.3034 2.3034 2.3034 2.3034 x 10 6 Pink: fusion result Red: vehicle motion prediction Blue: map-matching observation Green: t ). 9.3843 GPS observation
			x 10 5	

TABLE 5 .

 5 1 , X 2 , ..., X n , NaN) ; Y (Y 1 , Y 2 , ..., Y n , NaN) ; 2 -Organization of landmarks : n is the number of points on a facade segment constructed map with the vehicle's new position, as described in section 5.3.2.4. The intersections of the vertical beams with the reconstructed facade map are calculated. One or two landmarks might be extracted, or no landmarks can be extracted if there is no intersection, N landmark = 0, 1, 2.

		Independent objects
		Geometry : Point ;
		ID ;
		X ;
	Height ; Covariance matrices ; Corresponding original facade ;	Y ; Height ; Covariance matrix ;

TABLE 5 .

 5 5 -Localization results with the different approaches (/meter) layer ; another map layer is used to store the independent objects.

		Min error Max error Average error/m
	Process/Gyro	0.0140	6.4698	4.8999
	Process/Gyro/Road map	0.0411	1.3361	0.8161
	Process/Gyro/Road map /LRFH-LRFV-New map	0.0411	2.7014	0.8504

  6.1/ CONCLUSIONSThe problem addressed in this thesis is how to provide precise and robust localization service in urban environments by integrating multi-source information. Accurate localization is one requirement for intelligent vehicles applications. From map provider's point of view, localization is also one of the key points in geo-referencing process for mobile mapping systems. After a detailed review of the existing relative and absolute vehicle localization approaches in Chapter 2, vehicle localization methods were proposed in this thesis to assist vehicle localization in urban environments.At first, stereovision based visual odometry and laser range finder based scan alignment methods are presented in Chapter 3. Stereovision based visual odometry predicts the vehicle movement on the basis of image feature detection and tracking. Compared with wheel encoder based odometry, it can provide vehicle motion in 6 degrees of freedom and avoid the wheel slippage problem in bad soil conditions. Nevertheless, especially during bad illumination condition like in the night, image based visual odometry method cannot be used. This method is then completed by adding the vehicle motion estimated by consecutive scans in horizontal LRF system. Experimental results show that these two relative localization methods can provide vehicle movement information in short term like other inertial sensors, but their localization accuracy decreases in long term due to error accumulation from frame to frame. Thus, we propose to integrate GPS and stereovision based visual odometry, and horizontal LRF based scan alignment together in Chapter 4.
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A TRANSFORMATION OF GPS COORDINATES

A.1/ COORDINATE SYSTEMS Geodetic coordinate system : WGS84. World Geodetic System (WGS84) is the reference coordinate system used by the Global Positioning System, as shown in Fig. A.1(a) 1 . The WGS84 datum (reference ellipsoid and origin) surface is an ellipsoid with major radius 6378.13m at the equator, and minor radius 6356.75m at the poles.

The position of a geographic location on the earth's surface is described by the longitude, latitude and elevation in the world geodetic system. These are measures of the angles (in degrees) from the center of the earth to the location on the earth's surface. Latitude angles φ are measured in a north-south direction from the equator to the measured point. Longitude measures λ are based on the Prime Meridian from the North Pole through Greenwich to the South Pole and they stand for the angular distance from this Reference Meridian to the measured point.

Earth-centered earth-fixed coordinate system. The position represented by the longitude, latitude and elevation can be transformed to coordinates (X, Y, Z) in an earthcentered and earth-fixed (ECEF) 3D Cartesian coordinates system, as shown in Fig. A.1(b). The origin of this system (0, 0, 0) is defined as the center of mass of the Earth. The X axis of this system passes through the equator at the prime meridian. The Z axis passes through the north pole. The X axis can be determined by the right-hand rule to pass through the equator at 90 o longitude.

Local North-East-Up coordinate system. In order to use these information on the local surface of the earth, we need to convert the coordinates into a local surface plane XY, which is tangent to the Earth's surface fixed to a specific local location, and the Z axis is upward (as shown in Fig. A.1(c)). In order to project the coordinates from earth's spherical surface onto a two-dimensional local Cartesian coordinate plane, different projections could be chosen according to the location of the measured point. For example, in Belfort, France where we did the experiments, the extended Lambert II projection model is generally chosen, as shown in Steps for converting the WGS84 coordinates to the extended Lambert II system 2 are A.2/ TRANSFORMATION FROM WGS84 TO EXTENDED LAMBERT II Data from GPS receiver are in the form of NMEA sentences, in which the longitude and the latitude are the most important information. These information are in the geodetic system of GPS : WGS84. In order to use these information on the local surface of the earth, we need to transform these data by the projection of the longitude and latitude information onto the earth surface. The WGS84 data are converted into the extended Lambert II system in several steps shown in Algorithm 5.

Algorithme 5: Transformation from WGS 84 to Extended Lambert II Input : Geographic latitude and longitude (φ w0 , λ w0 ) from GPS receiver Output : Coordinates in extended Lambert II system (x g , y g ) 0. Transform the default latitude and longitude (φ w0 , λ w0 ) from decimal degrees format to Degrees/radians format (φ w , λ w ) : , then :

with : a w = 6378137 and b w = 6356752.314.

2. Transform (x w , y w , z w ) to Cartesian coordinates NTF (Nouvelle Triangulation de la France) (x n , y n , z n ) by the translation vector (168, 60, -320), with :

x n = x w + 168, y n = y w + 60, z n = z w -320.

3. Transform (x n , y n , z n ) to geographic coordinates NTF (φ n , λ n ) :

Re-calculate p 1 with Eq.A.5 ; End 3.2 Then, φ n = p 1 and λ n = atan(y n /x n ).

4.Transform (φ n , λ n ) to the coordinates in the extended Lambert II system (x g , y g ) :

with : n = 0.7289686274, c = 11745793.39, x s = 600000, y s = 8199695.768, λ 0 = 0.04079234433198 and L = log(tan( pi

R ésum é :

Afin d'am éliorer la pr écision des syst èmes de navigation ainsi que de garantir la s écurit é et la continuit é du service, il est essentiel de connaître la position et l'orientation du v éhicule en tout temps. La localisation absolue utilisant des syst èmes satellitaires tels que le GPS est souvent utilis ée à cette fin. Cependant, en environnement urbain, la localisation à l'aide d'un r écepteur GPS peut s'av érer peu pr écise voire m ême indisponible à cause des ph énom ènes de r éflexion des signaux, de multi-trajet ou de la faible visibilit é satellitaire. 

Abstract:

In order to improve the accuracy of assisted navigation systems so as to guarantee driving security on road, it is essential to know the absolute/relative vehicle positions and orientations at all times. In some dense urban environments (e.g., a street with tall buildings around), vehicle localization results provided by Global Positioning System (GPS) receiver might not be Keywords: Vehicle localization, multi-sensor fusion, intelligent vehicle, laser range finder, stereovision, geographic information system