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LAGIS, USTL
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CINDY CAPPELLE Co-encadrante Maı̂tre de Conférences à l’IRTES-
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1

INTRODUCTION

1.1/ BACKGROUND

Over the past three decades, intelligent vehicle systems or advanced driver assistance

systems (ADAS) have continued to be an important research topic in transportation area.

They can promise to reduce road accidents and eliminate traffic congestions. Intelligent

vehicle systems are composed of two parts : onboard sensors are used to observe the

environments around ; and then, the captured sensor data can be processed to interpret

the environments and to make appropriate driving decisions. Some sensors have already

been widely used in existing driver-assistance systems, e.g., camera systems are used in

lane-keeping systems to recognize lanes on road ; radars (Radio Detection And Ranging)

are used in adaptive cruise systems to measure distance to the vehicle ahead such that a

safe distance can be guaranteed ; lidar (Light Detection And Ranging) sensors are used in

the autonomous emergency braking system Volvo City Safety 1, to detect other vehicles or

pedestrians in the vehicle’s path to avoid collision ; accelerometers are used to measure

vehicle speed changes which are especially useful for airbags ; wheel encoder sensors

are used to measure wheel rotations in vehicle anti-lock brake system ; and GPS sensors

are embedded on vehicles to provide the vehicle’s global positions for path navigation.

In order to promote the development of autonomous vehicles, American Department of

Defense has organized an off-road autonomous vehicle competition respectively in 2004 2

and 2005 3, called DARPA (Defense Advanced Research Projects Agency) Grand

Challenge. In this competition, vehicles have to pass through three narrow tunnels and

navigate in more than 100 sharp left and right turns. No vehicle finished the whole tra-

jectory in 2004. Then in 2005, Stanley vehicle from the Stanford Racing Team won the

prize. After that, DARPA Urban Challenge 4 was held in 2007. This competition requires

teams to build autonomous vehicles capable of self-driving in real urban traffic. The vehi-

cles have to perform complex maneuvers such as merging into the traffic flow, overtaking

other vehicles, parking and negotiating without human intervention. BOSS vehicle from

the Tartan Racing team 5 of Carnegie Mellon University was the winner of this competi-

tion.

China has also organized this kind of competition for autonomous vehicles since 2009

1. http://www.euroncap.com/rewards/volvo city safety.aspx

2. http://archive.darpa.mil/grandchallenge04/

3. http://archive.darpa.mil/grandchallenge05/

4. http://archive.darpa.mil/grandchallenge/

5. http://www.tartanracing.org/



- Future Challenge. In 2011, the competition area was first time changed from closed

road to real urban road. In November 2012, this competition was first held on both real

urban and rural roads. In order to test the “4S” characteristics of vehicles, i.e., Safety,

Smartness, Smoothness and Speed, all the self-driving vehicles have to pass through

nearly 7km urban road and 16km rural road with tasks like traffic sign recognition, obstacle

avoidance (static/moving vehicles and pedestrians), traffic merging, U-style turning, and

decision making ability in area with simulated foggy weather, etc. 14 teams from different

Chinese universities and research institutes have participated in this event.

Recently, companies like Google already made driverless cars onto the road. The Nevada

Department of Motor Vehicles issued the first license for a Google self-driven car in May

2012. Up to September 2012, three U.S. states have passed laws permitting driverless

cars : Nevada, Florida and California. Besides Google, a lot of traditional auto companies

are developing their own self-driving vehicles. In 2011, a BMW vehicle drove itself from

Munich to Ingolstadt in Germany, an Audi autonomous vehicle went up to Pikes Peak.

GM’s Alan Taub optimistically predicts that self-driving cars will be on road by the end of

this decade 6.

1.2/ PROBLEM STATEMENT

In order to improve the accuracy of assisted navigation systems or autonomous vehicles

so as to guarantee the driving security on road, it is essential to know absolute or rel-

ative vehicle positions and orientations at all times. From map provider’s point of view,

localization is also one of the key points in geo-referencing process for mobile mapping

systems.

Different types of sensors have been used to ensure vehicle localization accuracy. Global

sensors like GPS (Global Positioning System) receiver can provide absolute position of

the vehicle. It has been considered as a basic sensor for vehicle localization in outdoor

environments for its advantage of high localization precision in long term. However, GPS

signals are affected by atmospheric conditions, satellites distribution, radio signal noises,

etc., localization accuracy of GPS receivers in short term is only to a few meters. In some

specific locations of urban environments (e.g., streets with tall buildings around, tunnels),

information provided by the GPS receivers might not be accurate or even unavailable

due to signal reflection or poor satellite visibility. In the case of GPS reflection, pseudo-

ranges provided by the received reflected signals would be longer than the real ranges. If

these contaminated ranges are used for position estimation, localization results would be

erroneous. Another type of sensors is dead-reckoning sensor (DR), like gyro, inertial nav-

igation system (INS), wheel encoder odometer, which can estimate the relative motion of

a vehicle. The vehicle motion estimated by the dead-reckoning sensors is mostly accurate

in short term, though vehicle trajectory might drift in long term due to error accumulation.

Therefore, the global GPS measurements are usually integrated with other information

sources to provide accurate, reliable and continuous localization services in urban envi-

ronments, which is also the main problem to be addressed in this thesis. This thesis is

part of project CPER “Intelligence du Véhicule Terrestre” (Intelligence of ground vehicle),

developed within Systems and Transports Laboratory (SET) of Institute for Transportation

Research, Energy and Society (IRTES), UTBM, France. Three main objects of the thesis

6. http://www.wired.com/magazine/2012/01/ff autonomouscars/



are explained as follows :

– The first object is to explore the use of multi-sensor fusion for vehicle localization, us-

ing GPS sensor to provide absolute location, and stereoscopic system and laser range

finder (LRF) to provide vehicle motion information as dead-reckoning sensors. Coher-

ence between different observations is also taken into account, and only the validated

sensor measurements are integrated for vehicle pose estimation.

– Since dead-reckoning methods are suitable only in short period, if GPS receiver cannot

provide vehicle position for long time, especially within urban areas where satellite

signals might be blocked or reflected, vehicle trajectory would gradually drift and the

localization error cannot be bounded. In order to compensate for the problem of GPS

outages in long term, the second object of this thesis is to explore the use of horizontal

and vertical LRFs with a road network map and a building footprint map from a GIS

database for correcting the predicted vehicle pose.

– The third object is to explore the use of vertical LRF for updating building map layer

information. Since the environment information from different data sources might be

inconsistent with each other, a new map layer of building facades can be generated

from the vertical LRF perceptions and be reused for vehicle pose correction. If a vehicle

is supposed to be driven in the same area, the error between LRF perception and the

initial GIS map (which are produced with aerial image, or digital maps transformed from

paper maps, etc.) can also be handled.

1.3/ CONTRIBUTION

In this work, two methods are proposed to improve the accuracy of vehicle localization

process. The main contributions of this work are in twofold :

− 1) Implementation of a vehicle localization system with a GPS receiver, an on-

board stereoscopic system (visual odometry), and a laser range finder (scan align-

ment) considering their coherence with each other.

At first, stereoscopic system based visual odometry method is used to predict vehicle

displacement and orientation change. Stereovision based visual odometry is not limited

to flat ground assumption, which means that it can provide vehicle pose with 6DOF (de-

gree of freedom). This method is then complemented by adding a LRF sensor. Vehicle

displacement and orientation change can be estimated by scan alignment between two

consecutive LRF scans. Instead of directly using all sensor observations for vehicle pose

correction, a sensor selection step is applied before the fusion step to validate the coher-

ence of different observations. Then, information provided by the validated sensors are

combined under a loosely coupled probabilistic framework with an information filter.

Since visual odometry and laser scan alignment are independent research subjects, there

are a lot of existing problems and research results in each subject, such as detection of

moving objects, strategy of poses estimation, solution of lateral drift and longitudinal scale

problems. Classic algorithms are carefully chosen from those existing methods in the

robotic research area, plus several modifications to improve the pose estimation accuracy.

The proposed method in this work is tested with real data and evaluated by RTK-GPS

data.



− 2) A geographical information system (GIS) aided vehicle localization method is

used to bound the localization error of dead-reckoning methods if GPS receiver

fails for long time.

If GPS receiver cannot provide vehicle positions for long time, vehicle trajectory based on

only relative localization methods might gradually drift and the error cannot be bounded.

In order to compensate for this problem, a priori environmental information provided by

digital maps is added into the localization system. Two GIS map layers have been used :

the road networks map and building footprints map. The road network map is used to

estimate vehicle position by road map-matching method. Then, the vehicle pose is refined

by registration between real observation from the two onboard LRFs (one horizontal and

one vertical) and a priori observation provided by the building footprint map.

Experiments are implemented with two real data sequences : one in an industrial area

and another one in the old town center of Belfort. Experimental results show that GIS

maps can help to bound the localization error effectively : the road map can help to obtain

an approximate estimation of vehicle position (by projecting vehicle position onto the cor-

responding road segment), while the integration of building information can help to refine

this pose estimation.

1.4/ STRUCTURE OF THE MANUSCRIPT

In Chapter 2, existing approaches for vehicle localization are reviewed, including relative

localization methods, absolute localization methods, and different sensor fusion strategies

for multi-sensor based localization.

In Chapter 3, stereovision based visual odometry and horizontal LRF based scan align-

ment methods are respectively presented. The proposed methods are tested with real

data and evaluated by using RTK-GPS data as ground truth.

In Chapter 4, a localization method is presented by integrating a stereoscopic system

(odometry), a horizontal LRF (scan alignment), and a GPS receiver. For taking advan-

tages of their complementarity and redundancy, coherence checking between the differ-

ent measurements is performed before pose update.

In Chapter 5, a geographical information system (GIS) aided vehicle localization method

is proposed to bound localization error when GPS receivers encounter long term outages.

Two GIS layers are used : the road network map layer and the building map layer. This

proposed method has been tested with two real data sequences.

Finally, conclusions and some research perspectives for this thesis are presented in

Chapter 6.



2

RELATED WORK OF VEHICLE

LOCALIZATION

2.1/ OVERVIEW

During the past years, ADAS (Advanced Driver Assistance Systems) and autonomous

vehicle navigation (e.g., localization, path planning, obstacle avoidance, etc.) have be-

came important research areas for constructing innovative transportation methods. An

autonomous vehicle consists of a vehicle (moving robot), several sensing and processing

devices, and mechanical actuators to implement commands like braking or steering. By

perceiving environment around the vehicle (e.g., road lane, traffic signs, road crossing,

dynamic and static objects in the driving area) with vision sensors, together with the vehi-

cle’s pose information (position and orientation), the vehicle can autonomously make local

and global path planning, and send commands to drive itself to a desired destination.

To ensure the above function, it is essential to accurately localize the vehicle at all times.

A lot of methods have been proposed in the literature, as presented in Fig. 2.1. These

methods will be explained in the following sections.

FIGURE 2.1 – Different localization methods based on the figure in [26]

In this chapter, we make a review of existing vehicle localization approaches. According



to measurement types, these methods are classified as relative localization approaches

(dead-reckoning methods, DR) and global localization methods (global navigation satellite

system, landmarks based localization, map matching, cellular localization and VANET

localization). These two categories of localization methods are respectively presented in

sections 2.2 and 2.3. Then, several multi-sensor fusion based localization methods are

presented in section 2.4.

2.2/ RELATIVE LOCALIZATION APPROACHES

Relative localization approaches with proprioceptive sensors like gyro, inertial navigation

system, wheel encoder odometer or with exteroceptive sensors like camera or laser range

finder, are based on the estimation of vehicle motion in a period of δt. When initial state of

a vehicle is known (initial position and orientation in the global reference system), its cur-

rent position and orientation can be estimated by integrating the relative translation and

rotation with the previous vehicle state. Proprioceptive sensors based relative localization

methods are self-contained and no external information is needed.

2.2.1/ WHEEL ENCODER BASED ODOMETRY

Wheel encoder is a device which allows to measure the distance traveled by a wheel in a

period of time. It is mounted on vehicle wheel to measure the elementary rotation of the

wheel. When the wheel radius is known, the traveling distance can be deduced from the

elementary rotation 1.

Optical and digital encoders are now widely used on mobile robots for their high frequency

and low cost. As seen in Fig. 2.2(a), an optical encoder consists of a light source, a light

detecting sensor, and a rotating disk coded with opaque and transparent patterns. When

the disk rotates with the shaft, the patterns on the disk will interrupt the light emitted into

the light sensor, and generate a pulse signal output. By counting the number of output

pulses, the angular motion of the wheel can be measured.

(a) An optical wheel encoder (b) Vehicle motion model

FIGURE 2.2 – Wheel encoder and vehicle motion model

1. http://geology.heroy.smu.edu/∼dpa-www/robo/Encoder/imu odo/index IE.htm#sec2



As shown in Fig. 2.2 (b), a vehicle can be represented by a kinematic model with two

rear wheels, and a single point in the center of the front wheel axle. Vehicle center is

represented by a point in the center of the rear wheel axle. If two wheel encoders are

respectively mounted on the two rear wheels with known wheel radius, the traveling dis-

tances of the left and right wheels during period δt can be respectively measured, as ∆dt,l

and ∆dt,r. Then, the translation ∆dt and rotation ∆θt of the vehicle center can be estimated

by the distance ∆dt,l and ∆dt,r : 
∆dt =

∆dt,l+∆dt,r

2

∆θt =
∆dt,r−∆dt,l

L

(2.1)

where L is the axle length of the vehicle (see Fig. 2.2 (b)), i.e., the distance between the

left and right rear wheels.

Assume that the ground is flat, let Xt = [xt, yt, θt] denote the vehicle pose vector at time

t, where (xt, yt) and θt are vehicle position and orientation (yaw angle) in the global nav-

igation system. The current vehicle pose at time t can be predicted with previous vehicle

state [xt−1, yt−1, θt−1] and current motion vector ut = (∆dt,∆θt). The transition vehicle model

at time t is Xt = f (Xt−1, ut, δt) + αt, written as :



xt = xt−1 + ∆dtcos(θt−1 + ∆θt/2) + α1t

yt = yt−1 + ∆dt sin(θt−1 + ∆θt/2) + α2t

θt = θt−1 + ∆θt + α3t

(2.2)

where αt = [α1t, α2t, α3t]
T is the process noise.

Due to bad estimation of the wheel radius or wheel deformation in bad soil conditions,

like rock or muddy areas, the estimated vehicle motion from wheel encoders might be

erroneous. The localization error will accumulate gradually in long term due to motion

integration.

2.2.2/ INERTIAL NAVIGATION

Inertia is the resistance of a physical object body to maintain constant transla-

tion/rotational velocities if any force is applied on it. Inertial navigation system (INS), also

named as inertial measurement unit (IMU), is composed of three orthogonal rate-gyros

and three orthogonal accelerometers, respectively measuring the 3D angular rates (yaw,

pitch and roll, see Fig. 2.3) and 3D linear accelerations (in direction XM, YM and ZM) of

the object on which the system is mounted.

INS has high sampling frequency and it is able to accurately measure the rapid changes

of angular rotation rates and linear accelerations in short term. If the system is well initial-

ized, we can estimate the current vehicle orientation and position by integration (Fig. 2.4).

Vehicle orientations can be derived by integrating the vehicle angular velocity over time.

And vehicle linear velocity and position can be respectively derived by single and double

integration of the acceleration in a period of time. INS systems have been used on ground

vehicles, spacecrafts, ships, and submarine vehicles [168], etc.

There are two types of inertial systems : stable platform systems and strap-down systems.

• Stable platform system (mechanical system) : stable platform is an inertial platform

which uses gyros to maintain the accelerometers in a fixed attitude. Inertial sensors are

mounted on the platform which is aligned with the global frame. The gyros mounted on



FIGURE 2.3 – 3D orientations of vehicle movement : yaw, pitch, roll

FIGURE 2.4 – Localization algorithm of INS system



the platform can detect any platform rotations. Then, these rotation signals are sent back

to torque motors to rotate the gimbals (frames) of the platform in all three axes, in order

to remove the rotations and keep the platform aligned with the global frame.

• Strap-down system (electrical system) : there is no gimbals or inertial platform in

a strap-down system. gyros and accelerometers are rigidly mounted on a device (e.g.,

vehicle). The inertial sensors move with the device, thus movements of the device are

measured in the sensors’ body frame instead of the global frame. Therefore, the mea-

sured acceleration should be transformed into the global frame for navigation application.

Gyrometer : gyrometer (gyro) measures the angular velocity of a system in one direction.

The three gyros of an INS can measure angular velocities of the system in three directions

of the inertial reference frame, then 3D orientations can be derived (see Fig. 2.3). There

are various types of gyros, like mechanical gyro, fibre optic gyro (FOG), and light-weight

MEMS (Micro-machined electromechanical systems).

Accelerometer : accelerometer measures the linear acceleration of a system in one di-

rection. The three accelerometers of an INS can measure the linear accelerations of a

system in three directions (left - right, up - down and forward - back) with respect to the

moving system. The outputs of an accelerometer should minus the gravitational accel-

eration : a = f − g, where f is the vehicle acceleration with respect to the inertial frame

(in m/s2), g is the acceleration produced by gravity, and a is the acceleration produced

without gravitational forces.

Though effects of gyro drift and accelerometer bias are relatively small in short term,

as the angular and linear velocities must be integrated once and twice to provide the

orientation and position, small errors in short term might result in unbounded error of

integrated measurements. Furthermore, if the sensor navigation frame and body frame is

not well calibrated, the localization results might be not accurate.

2.2.3/ VISION SENSORS BASED RELATIVE LOCALIZATION

During recent years, computer vision based odometry (visual odometry) was proposed

as a kind of relative localization method. Without any prior knowledge of the environment

nor a predefined motion model of the vehicle, visual odometry can estimate the path of a

camera-equipped vehicle by calculating the ego-motion between consecutive images in

a video flow. Structure from motion (SFM) methods also use camera system to provide

both the environment structure and the camera motion information. The principles of the

two methods are almost the same except that the former focuses more on camera motion

estimation, while the latter focuses more on structure reconstruction.

Visual odometry has been studied and used in a lot of indoor and outdoor localization

projects [87] [133] [72] [167] [41], even on Mars [37] (see Fig. 2.5).

Compared with wheel encoder based odometry, the estimation from visual odometry are

not influenced by wheel deformation or slippage caused by bad soil condition, but much

more related to the environment around the camera and the illumination condition.



FIGURE 2.5 – (Left) NASA’s Mars Exploration Rovers (MER). (Right) Estimated trajec-

tories of the rover : green trajectory shows the rover locations estimated by the visual

odometry, while the blue trajectory shows the path estimated by the IMU and wheel en-

coders [37]

2.2.3.1/ TYPES OF VISION SYSTEMS

Different types of cameras have been used for vision based localization, such as monoc-

ular perspective cameras used in [115] [137], perspective stereoscopic systems used in

[119] [79] [107], and omnidirectional cameras used in [152] [140]. The most often used

camera systems are perspective camera systems (see Fig. 2.6(a) 2 and Fig. 2.6(b) 3)

for their simple geometric configuration and low-cost. Recently, omnidirectional camera

systems have also been used for their larger fields of view (FOV), e.g., the 360o spheri-

cal camera system with multi-camera in Fig. 2.6(c) 4 and the omnidirectional camera with

mirror in Fig. 2.6(d) 5. Omnidirectional camera systems have the advantage that the same

object can stay longer in the camera’s FOV which is important for object tracking, but the

geometric configurations of these camera systems are more complex than the perspec-

tive camera systems.

(a) Perspective camera (b) Stereoscopic system (c) Multi-camera system (d) Omnidirectional camera

FIGURE 2.6 – Some camera systems used for vision based localization

After choosing a camera type, there are different system configurations : monocular sys-

tem with only one camera, like in Fig. 2.6 (a, d) ; or multi-camera system, like in Fig. 2.6 (b,

2. www.adept.net.au

3. www.ptgrey.com

4. www.ptgrey.com/products/ladybug5

5. www.itr-store.com



c). For a multi-camera system, since the relative pose (relative position and orientation)

between all the cameras can be known by calibration before the experiments, the system

can directly reconstruct the corresponding image pixels into 3D Euclidean space.

2.2.3.2/ VISION BASED RELATIVE LOCALIZATION METHODS

After obtaining an image sequence from a camera system, corresponding image pixels

(dense method for all the pixels in the image, or sparse method for only image features)

are searched in consecutive image frames through matching or tracking methods. With

corresponding pixels, the rigid transformation of the camera system between time t and

time t+1 can be estimated using 2D/2D [115], 3D/2D [115] or 3D/3D [52] methods. These

motion estimation methods are summarized and concluded as follows.

in Tab 2.1 to Tab 2.3, Qi is a 3D point in reference system, (qi
1
, qi

2
, qi

3
) are its correspond-

ing image points in three consecutive image frames, (qi
1,l
, qi

1,r
) are corresponding image

points viewed by left and right cameras at time t, (qi
2,l
, qi

2,r
) are corresponding image points

viewed by left and right cameras at time t + 1.

1. 2D/2D method by minimizing 2D position error between corresponding image

pixels.

Method 2D-2D position error

Camera type Monocular Monocular Stereo

Constraint Epipolar constraint Trifocal tensor Quadrifocal tensor

(a) (b) (c)

Cost function arg min
N∑

i=1

d(qi
1
↔ qi

2
, F)2

(b) : arg min
N∑

i=1

d(qi
1
↔ qi

2
↔ qi

3
, T F)2

(c) : arg min
N∑

i=1

d(qi
1,l
↔ qi

1,r
↔ qi

2,l
↔ qi

2,r
,QF)2

Possible

solutions

5 or 8 points algorithms RANSAC or M-estimator with 6 points

For monocular method, a scale factor should be provided from

other sensor like GPS or object with known size

TABLE 2.1 – Motion estimation by 2D/2D method

• Epipolar geometry : as shown in Tab 2.1(a), camera motion parameters are estimated

with two corresponding image point sets {qi
1
} and {qi

2
}, i = 1, ..., n between two consecutive

image frames at time t and t+1. The calculation is based on epipolar geometry constraint :

point {qi
1
} can be transformed to {qi′

1
} on image frame It+1 by the fundamental matrix F,



which describes the geometric relation between two camera poses (see section 3.2.1.2

for more details). By minimizing the position error between {qi′

1
} and {qi

2
}, the fundamental

matrix can be solved with Nistér’s 5-point algorithm [114], or Longuet’s 8-point algorithm

[93], etc. Then, the translation vector and rotation matrix between two poses can be de-

composed from the fundamental matrix F.

• Trifocal tensor : trifocal tensor T F in Tab 2.1(b) plays the same role in three views as

the fundamental matrix in two views. It is a 3 × 3 × 3 matrix which incorporates geometric

relations between three views. The corresponding image point sets {qi
1
, qi

2
, qi

3
} can be

found across three views, between three consecutive frames It−1, It, It+1 as shown in

Tab 2.1(b), or between two simultaneous frames It,l, It,r plus one consecutive frame It+1,l

(or It+1,r) in the case of using a stereoscopic system as shown in Tab 2.1(c). Then, the

trifocal tensor [70] can be estimated by minimizing the differences between the three

point sets using RANSAC or M-estimator based linear/nonlinear minimization methods.

With the estimated trifocal tensor, the transformation matrix between every two camera

poses can be derived.

• Quadrifocal tensor : quadrifocal tensor QF in Tab 2.1(c) describes the geometric re-

lations across four camera poses. For example, when a stereoscopic camera system is

used [41], the quadrifocal tensor between four images (two consecutive image pairs) can

be estimated by minimizing the differences between the four corresponding image point

sets {qi
1,l
, qi

1,r
, qi

2,l
, qi

2,r
} using linear or nonlinear minimization methods. Then, the transfor-

mation matrix between every two camera poses can be derived. Since the calculation of

quadrifocal tensor is complicated, it is always replaced by trifocal tensor and fundamental

matrices.

2. 3D/2D method by minimizing reprojection error of reconstructed 3D points and

corresponding 2D image pixels.

Method 3D-2D re-projection error

Camera type Monocular Stereo

(a) (b)

Cost function arg min
N∑

i=1

d(Qi ↔ qi
3
,K[Rt,t+1|Tt,t+1])2

Solution
DLT (Direct linear transformation)

Nonlinear minimization, e.g., Levenberg-marquardt

TABLE 2.2 – Motion estimation by 3D/2D method



• Monocular method : as seen in Tab 2.2(a), corresponding image pixels qi
1

in It−1 and

qi
2

in It are reconstructed into a 3D point Qi ; then, Qi is reprojected onto another image

frame It+1 with camera matrix K[Rt,t+1|Tt,t+1], which contains camera intrinsic parameters

and camera motion from time t to t + 1 (see section 3.2.1.1 for more details about cam-

era parameters). Camera motion parameters can then be estimated by minimizing the

error between the reprojected point set {K[Rt,t+1|Tt,t+1]Qi} and the corresponding image

point set {qi
3
} on image frame It+1 [115][137]. Since the baseline between two camera

poses is unknown, the estimated translation vector is up to a scale factor which should

be calculated with other sensors (like wheel encoder, GPS) or an object with known size.

• Stereo method : in a stereoscopic system, the relative pose between left and right

camera centers is generally fixed and can be known before the localization process by

calibration, therefore the scale problem of monocular method can be avoided [87]. As

seen in Tab 2.2(b), the corresponding image points {qi
1,l
, qi

1,r
} at time t are directly recon-

structed into 3D point {Qi} in the 3D space. Then, the camera motion from time t to t + 1

can be estimated by reprojecting the reconstructed point {Qi} onto the left or right image

frames at time t + 1, and minimizing the reprojection error like in the monocular method.

3. 3D/3D method by minimizing 3D position error between corresponding recon-

structed 3D points.

This method is used with a stereoscopic system. As seen in Tab 2.3, image pixels are

firstly matched between the left and right images at time t ; then, the corresponding image

points of qi
1,l

and qi
1,r

on the current left and right images at time t + 1 are respectively

searched by matching (or tracking) methods. The image point pairs {qi
1,l
, qi

1,r
} at time t and

pairs {qi
2,l
, qi

2,r
} at time t + 1 are respectively reconstructed into 3D points {Qi

t} and {Qi
t+1
}.

The camera pose is then estimated by minimizing the 3D position error between two sets

of reconstructed 3D points at time t and time t + 1, with least square method or maximum

likelihood estimation (MLE) with a weight factor wi in the cost function (in Tab 2.3) [52] [3]

[71] [160] [151].

As the above three methods are all based on corresponding image point sets, some

efforts have been employed to reject outliers during the matching and tracking steps [133]

[50].

2.2.4/ RANGE SENSORS BASED RELATIVE LOCALIZATION

Range finder (RF) is a device which uses an electromagnetic wave beam (e.g., laser,

infrared light) or ultrasonic sound to determine the distance between signal emitter and

objects. RF sensors have been largely used in transportation area for object detection

and tracking, such as ultrasonic sensors are embedded in the rear bumper of vehicles

to assist vehicle parking, radar systems are installed in urban environments to detect the

speed of vehicles, etc.

A basic LIDAR (Light Detection And Ranging) system, or LRF (Laser Range Finder) sys-

tem, consists of a laser emitter and a reflected rotating mirror. The laser emitter can obtain

the distances between objects and the emitter by measuring the traveling time of emitted



Method 3D-3D position error

Cost function arg min
N∑

i=1

d(Qi
t ↔ Qi

t+1
, [Rt,t+1|Tt,t+1])2

MLE : arg min
N∑

i=1

wid(Qi
t ↔ Qi

t+1
, [Rt,t+1|Tt,t+1])2

Solution SVD or nonlinear minimization (e.g., Levenberg-marquardt)

TABLE 2.3 – Motion estimation by 3D/3D method

pulse (time of flight (TOF)). The distance is calculated through :

d = c · ∆t

2
(2.3)

where d is the distance between an object and the emitter, c is the speed of light in

vacuum c = 299792458m/s, ∆t is the light pulse traveling time of round-trip between the

object and the emitter.

With the rotating mirror, LRF systems can quickly scan around and gather range mea-

surements with a specified angle interval. They have been installed on ground and aerial

vehicles for environment mapping and survey 6. Meanwhile, they can be used for relative

self-localization by estimating the translation and rotation between two consecutive poses

[54] [13] (see more details in section 3.3).

Compared to ultrasonic sensors, LRF systems have narrower beam width, higher resolu-

tion and response rate. The benefit of sonar sensors is that they have large FOV, which

is interesting for obstacle detection [92], especially in poor visibility areas like underwater

area. Infrared devices [88] can calculate the distance of an object by the angle of returned

infrared radiation beam. However, their FOV is narrow and the maximum measured range

is limited. In outdoor environments, the observation of infrared sensors might be affected

by other lights like sunshine.

6. http://www.lidarmap.org/ELMF/vehicles/Default.aspx



2.3/ ABSOLUTE LOCALIZATION APPROACHES

Absolute localization systems are based on multiple beacons with precisely known po-

sitions in the environment. These beacons can be active beacons, which transmit their

identity periodically using light (infrared, laser) or RFID (radio-frequency identification)

tags [67]. The receiver mounted on the mobile robot can receive the signal and calculate

its distance (or angle) to the corresponding beacon. The beacons can also be passive

beacons to reflect the light.

Beacon based localization and navigation is common for navigation of ships and air-

planes, and also for localization in indoor environments (e.g., inside buildings, ware-

houses, etc.). Estimation of the absolute 2D position of a vehicle (mobile robot) requires

its distances (or angles) information from at least three beacons. When at least three an-

gles are known, the vehicle position can be obtained by triangulation (see section 2.3.1) ;

when the distance information is known, the vehicle position can be deduced by trilatera-

tion (see section 2.3.2).

2.3.1/ LOCALIZATION BY TRIANGULATION

Localization by triangulation is to determine a vehicle’s 2D position (xt, yt) based on at

least three angle measurements to position-known beacons.

FIGURE 2.7 – Localization by triangulation with three beacons

As seen in Fig. 2.7 (left), if a sensor mounted on the vehicle can observe angles α1, α2, α3

between at least three beacons and the vehicle’s longitudinal axis, the vehicle pose

(xt, yt, θt) can be estimated with these three angles.

In Fig. 2.7 (right), we consider the case of three collinear beacons. Let beacon B2 the

origin of the local beacon frame L, and

{
β1 = α2 − α1

β2 = α3 − α2
(2.4)

Then,

tan(θ2) =
(d1 + d2)tanβ2tanβ1

d1tanβ2 − d2tanβ1

(2.5)



where d1, d2 are respectively the distance from beacon B1 and beacon B3 to beacon B2.

Then, the vehicle pose in the current beacon frame L is calculated by :


xL =
d1

tanβ1

tanθ2−tanβ1

1+tan2θ2

yL =
d1

tanβ1

tanθ2−tanβ1

1+tan2θ2
tanθ2

θL = 2π − α2 − θ2

(2.6)

2.3.2/ LOCALIZATION BY TRILATERATION

Trilateration is to determine a vehicle’s position with distances to the beacons of known

positions. Three beacons are required for determining a 2D position and 4 beacons are

required for a 3D position.

FIGURE 2.8 – 2D position estimation by trilateration with three beacons

As seen in Fig. 2.8, if the vehicle can observe three beacons B1(x1, y1), B2(x2, y2), B3(x3, y3)

respectively with distances d1, d2 and d3, the vehicle position (xt, yt) can be calculated by

solving the simultaneous equations in Eq. 2.7 :


√
(xt − x1)2 + (yt − y1) = d1√
(xt − x2)2 + (yt − y2) = d2√
(xt − x3)2 + (yt − y3) = d3

(2.7)

When more beacons are observed, the vehicle location can be estimated by solving

the overdetermined system with linear least squares method or nonlinear minimization

method to reduce the ambiguity. Global navigation satellite system (GNSS) localization

method is also one kind of beacons based global localization methods, as seen in Fig. 2.9.

2.3.3/ GLOBAL NAVIGATION SATELLITE SYSTEM (GNSS)

Global navigation satellite system (GNSS) is the most popular tool for vehicle global lo-

calization and navigation in outdoor environments. It is a kind of absolute localization



FIGURE 2.9 – Localization based on GPS trilateration

strategies, which calculates the traveling distances of satellite signals from at least four

visible satellites to on-board receiver, then uses the trilateration method to compute the

position of the receiver. This method can provide accurate positions in long term, but as

the GNSS signals are affected by atmospheric conditions, satellite positions, radio signal

noises, etc., the localization accuracy in short term is only to a few meters.

2.3.3.1/ GLOBAL POSITIONING SYSTEM (GPS)

Global Positioning System 7 (GPS) [53] is a satellite navigation system owned by USA to

provide positioning, navigation, and timing services. It was at first used only by American

Defense Department for military purpose. It has been open to the public since 1985.

This system is composed of three parts : spatial part, control part, and user part.

- Spatial part : as seen in Fig. 2.10, GPS constellation consists of 24 solar-powered satel-

lites equally-spaced on 6 earth orbit plans above the earth, with altitude about 20, 000km.

Each satellite circles the Earth twice a day. The 24 satellites can ensure that there are

at least four satellites in view from any point on the earth planet. In June 2011, U.S. Air

Force completed a GPS constellation expansion configuration. Now, the GPS constel-

lation consists of 27-satellites with improved coverage in most area of the world. Each

satellite transmits a periodic pseudo-random code to users on earth with two different fre-

quencies (designated L1 and L2) in the internationally assigned navigational frequency

band.

- Control part : GPS control part is a global network of ground control stations on earth.

These stations continually track the GPS satellites positions and analyze their transmis-

sions, then send commands and data to the constellation to adjust the errors of GPS

ephemeris and satellite atomic clock. Current operational control part includes a master

control station, an alternate master control station, 4 dedicated ground antennas, 12 com-

mand and control antennas, and 16 monitoring sites (six from the Air Force and 10 from

7. http ://www.gps.gov/



FIGURE 2.10 – GPS satellites in space

the National Geospatial-Intelligence Agency).

- GPS user part : user part of GPS is a set of civilian and military GPS receivers capable

of receiving the GNSS signals and estimating the positions of themselves.

• GPS localization procedure : each GPS satellite can send long digital patterns called

pseudo-random code. The transmit time of each signal is known since each GPS satellite

is equipped with an accurate atomic clock. Meanwhile, as the GPS receiver is equipped

with an ordinary quartz clock, the receive time of the satellite’s signal arriving at the re-

ceiver can also be known.

FIGURE 2.11 – GPS pseudo-range is related to the satellite and receiver clocks [17]

With the difference of transmit and receive times of the signal pattern (see Fig. 2.11), the



distance observation ρi to the ith satellite can be calculated by multiplying the traveling

time with the speed of light :

ρi = (Ti − T S
i )c (2.8)

where Ti is the known reading of the receiver clock when the signal is received, T S
i

is the

reading of the satellite clock when the signal is transmitted, and c is the speed of light. If

the clock time Ti equals the true receive time ti plus a receiver clock bias τ, T S
i

equals the

true transmit time tS
i

plus the satellite clock bias τS
i
, as :

Ti = ti + τ

T S
i
= tS

i
+ τS

i

(2.9)

Replacing Eq. 2.8 by Eq. 2.9, the range ρi from the GPS receiver (at receive time) to the

ith satellite (at transmit time) can be written as :

ρi = (ti − tS
i )c + (τ − τS

i )c = di + (τ − τS
i )c (2.10)

where

di =

√
(x − S i,x)2 + (y − S i,y)2 + (z − S i,z)2 (2.11)

thus, ρi is called pseudo-range and di is the true range. Since GPS messages allow

knowing the ith satellite 3D position (S i,x, S i,y, S i,z) in space and the satellite clock bias τS
i
,

there are 4 unknowns in Eq 2.10 and Eq 2.11 that we need to solve : the receiver position

(x, y, z) and the receiver clock bias τ. Therefore, at least four satellites are needed for

estimating the 3D position of a GPS receiver.

• Errors in GPS localization process. Though GPS is reliable and precise for global

localization, several errors exist in GPS localization procedure [53].

- Satellite errors : GPS satellites might send bad almanac data or report false positions

of themselves. The ephemeris errors (or orbital error) and satellite clock error can be

periodically corrected by GPS control stations.

- Signal propagation errors : as described above, a GPS receiver calculates its distance

to the satellites by assuming that signals pass through the atmosphere at the speed

of light in vacuum. However, the earth’s atmosphere slows the propagation of signals,

especially when they go through the ionosphere and troposphere layers. This delay will

add errors into the distance measurements.

- Geometry arrangements of the satellites seen by the GPS receiver : as shown in

Fig. 2.12 (left), if two satellites seen by the GPS receiver are far apart in the sky, localiza-

tion uncertainty area will be small ; as shown in Fig. 2.12 (right), if two satellites are close

to each other, the size of uncertainty area will be large. The ideal geometry arrangement

of the satellites requires that the satellites in the receiver’s FOV are separated with large

relative angles.

Influence of the satellite relative geometry to the accuracy of the GPS receiver position is

measured by a parameter called PDOP (position dilution of precision) [39] :

PDOP = HDOP2
+ VDOP2 (2.12)

where HDOP is the Horizontal Dilution of Precision on horizontal plane, and VDOP is

the Vertical Dilution of Precision for altitude. A higher PDOP represents a poor satellite

configuration.



FIGURE 2.12 – Uncertainty areas of GPS localization under different satellites distribu-

tions

- Multi-path error : when a GPS receiver-equipped vehicle is driven along a street with tall

buildings around, GPS signals might be reflected by objects around the antenna before

being received by the GPS receiver, as shown in Fig. 2.13. The distance between the

satellite and the receiver measured by the GPS receiver might be longer than the actual

distance. If these contaminated distances are used for position estimation, the localization

result would be erroneous.

FIGURE 2.13 – Multi-path problem of GPS signal

2.3.3.2/ DGPS

Differential GPS (DGPS) can help to correct GPS errors during signal propagation pro-

cess. The principle is to measure the range inaccuracy with a fixed GPS reference station

(see in Fig. 2.14).

Since position of the reference station is known before experiments, we can easily deduce

the difference between the measured satellite pseudo-ranges and the actual pseudo-

ranges to the reference station. As the GPS satellites are far away from the earth, when

a second GPS receiver can observe the same satellite like the reference station, we can

assume that this receiver have the same pseudo-range error as the reference station.

The reference station then broadcasts the range correction information to all DGPS-

equipped GPS receivers by radio signals. The DGPS receivers then correct their pseudo-



FIGURE 2.14 – Differential GPS : reference station is tens of kilometers away from a GPS

receiver

ranges with these signal correction information in real-time or by post-processing. The

accuracy of commercial DGPS receivers could be around 10 meters.

2.3.3.3/ RTK-GPS

Real time kinematic (RTK) satellite navigation is a GPS augmenting technique using

both the DGPS reference station corrections and carrier phase measurements from GPS,

GLONASS or Galileo systems. Compared with the DGPS station, a RTK-GPS reference

base station can be installed by the user in a place much closer to the GPS rovers,

mostly about hundreds of meters away (see in Fig. 2.15). The correction information can

be transmitted from the base station to GPS rover by radio signals and used for position

correction.

FIGURE 2.15 – Real time kinematic (RTK) satellite navigation : reference station is hun-

dreds of meters away from a GPS receiver



Although RTK-GPS can achieve centimeter localization accuracy, it is challenged in some

particular dense urban environments (e.g., urban canyons), as the satellite signals might

be blocked or reflected by tall buildings around the receiver. The multi-path problem can-

not be avoided by RTK-GPS.

2.3.3.4/ OTHER GNSS SYSTEMS

Besides GPS systems, there are some other global navigation satellite systems al-

ready launched in the world, including Global Orbiting Navigation Satellite System

(GLONASS) 8 of Russia, Galileo navigation system jointly funded by members of Eu-

ropean Union 9, and Compass (Beidou) navigation system 10 of China. Japan’s Quasi-

Zenith Satellite System 11 and India’s IRNSS 12 system are also being constructed.

2.3.4/ VISUAL LANDMARKS BASED LOCALIZATION SYSTEM

Landmarks are distinguishable features that can be repeatedly and reliably recognized

from sensory data, like geometric shapes (e.g., points, lines, circles). The landmarks

should be invariant to changes of orientation, scales and resolution. In outdoor environ-

ments, a visual landmarks-based positioning systems are generally composed of three

parts [19] :

1. Onboard vision sensors (like camera, laser) for reliably recognizing 2D or 3D

landmarks in data sequences when the vehicle moves [130]. Before using landmarks

for navigation, the characteristics of different landmarks should be known. There are two

kinds of landmarks : artificial landmarks and natural landmarks.

i Localization with artificial landmarks : artificial landmarks are special objects placed

at known positions in the environment. These landmarks are designed to be easily

and repeatedly detected by visual sensors [5], e.g., known visual patterns or other

distinctive characteristics (e.g., unique retro-reflective bar-codes). However, the artifi-

cial landmarks require modifications of the environment and landmarks maintenance

in long term.

ii Localization with natural landmarks : instead of modifying the environment, natural

landmarks based localization method takes use of natural landmarks [154] existing

in the environment. For example, corners, doors or walls in indoor environment. This

method becomes more and more popular in outdoor environments since natural land-

marks are abundant, such as roof of buildings, edges of windows, skylines, side-

walks, lines connecting two building facades, road signs, tree trunks, traffic signs [153],

ground planes ; or invariant geometric features like reliable visual points, curvature ex-

trema of laser range scan [99], etc. But the data association problem (matching) of

natural landmarks are more complcated than the artificial landmarks.

8. http://www.glonass-ianc.rsa.ru/en/GLONASS/

9. http://www.esa.int/esaNA/galileo.html

10. http://www.beidou.gov.cn

11. http://qzss.jaxa.jp/index e.html

12. http://www.navipedia.net/index.php/IRNSS



2. Method for matching or associating the observed features from sensors with

world model/map of position-known landmarks [9]. Regarding sources of world model

(or map), mobile robot/vehicle navigation can be divided into two approaches [42] :

i the first approach is based on exteroceptive sensors with a priori world model, e.g.,

cartography map : 2D map, DEM (Digital elevation map), aerial image provided map,

or CAD model (Computer Aided Design), etc.

ii the second one is based on exteroceptive sensors and a visual feature model from the

same type of sensor [153]. The feature model is typically constructed with the same

type of sensor system during learning stage before the localization process, or during

the localization stage, known as simultaneous localization and map building (SLAM).

For vision sensors, the photometric information of landmarks are usually used for land-

marks matching ; for range sensors, the data association problem is more changellend,

methods like nearest-neighbor filter, joint-compatibility filter have been proposed to re-

duce the matching ambiguities. 3. Method for computing vehicle location and uncer-

tainty from the corresponding features to improve both longitudinal and lateral posi-

tioning precisions. Localization accuracy depends on the accuracy of landmarks detec-

tion, and accuracy of relative position of the landmarks to the vehicle.

The methods using exteroceptive sensors with 2D model, 3D model, or visual feature

model are presented in the following sections.

2.3.4.1/ EXTEROCEPTIVE SENSORS WITH 2D/3D MODEL

A priori information of the environment can be given in the form of a two-dimensional map,

three-dimensional model of the environment structure, or digital elevation map (DEM).

The visual features are first extracted from the sensor observation, then matched with

the model under a set of constraints to estimate the vehicle poses. The main problem

of this method is that sensor observation and world model are in different forms since

they are generally from different data sources. In order to use the map information for

vehicle localization, visual observations from the on-board exteroceptive sensors should

be features that can be matched with the pre-defined map or model.

Different features and map/model matching methods have been proposed in the literature

as follows.

Feature - 2D map matching

DEM (Digital Elevation Models) have been used for aircraft localization and navigation for

long time, as a complementary system to INS navigation for Unmanned Aerial Vehicles

(UAV) when GPS was not yet available [31]. tThe digital elevation recovered from real-

time data of LIDAR is matched with the reference DEM to determine the position of the

sensor platform.

For ground vehicle localization, 2D digital maps can provide global environment infor-

mation, such as trees and street lamps (point-style landmarks), shapes of urban roads

(line-style landmarks), building footprints (polygon-style landmarks), as well as attributes

of these objects (e.g., width of a road, height of a building). The map information can also

contribute to constrain the vehicle positioning error with different features.



• Point-style landmarks. Point-style landmarks (such as trees and street lamps) in urban

environments can be detected by perception sensors (e.g., laser, camera), then associ-

ated with independent objects in GIS map [141]. The measurement model can be the

distance and orientation between the landmarks and vehicle.

• Line-style landmarks. In urban environments, there are a lot of line-style landmarks

that can be detected by perception sensors, for example, lane marking on the ground. The

current vehicle position on map can be determined by matching the detected vehicle lane

marking features in front of the vehicle [159] with a geo-referenced road lane map. The

geo-referenced road lane map can be built in advance with a geographically referenced

aerial/satellite images [123], or represented by a priori GIS road network [127] [126], or

a road ITN layer (Integrated Transportation Network) consisting of a set of connected

arcs [7] (see Fig. 2.16). Mueller et al. [110] proposed to detect crossroad features from

an equipped LIDAR system, then matched these observation with crossroad features

extracted from a raw GIS road network map. The crossroad hypotheses from LIDAR data

are then utilized within a particle filter to estimate robot’s position within the extracted road

network.

FIGURE 2.16 – Road geometry features respectively extracted from image and road net-

work [7]

• Vertical plane landmarks. Vertical planes in the environment are also used as land-

marks and compared with a priori building outline map. Bioret et al. [15] used on-board

monocular camera to extract the vertical building facades, and applied a global pose

searching strategy (see Fig. 2.17) for vehicle localization by comparing the building fa-

cade angle and width ratio with a building footprint map [16]. Cham et al. [34] also pro-

posed to identify the vertical corner edges and neighboring plane normals of buildings

from omnidirectional image, then associate the planes with a 2D building outline map

without using any appearance data.

Feature - 3D GIS/CAD model matching

In addition to representing the environment with 2D digital maps, three-dimensional mod-

els like 3D CAD model or 3D virtual model can also be used. A 3D virtual city model

(also called geographical 3D model, textured geo-referenced 3D database or 3D map)

is a database of geographical and textured 3D data managed by a 3D Geographical In-

formation System. 3D model of city scenes can be automatically generated from aerial

images, 2D digital map, human surveys, or from camera data, laser data, etc., and tagged

with global locations from high-precision GPS/INS systems.

Cappelle et al. [28][29][30] proposed to estimate the absolute position of a vehicle by



FIGURE 2.17 – Vertical planes extracted from an image with a building outline map [16]

FIGURE 2.18 – Localization by a monocular camera and a 3D virtual model [28]



matching the acquired 2D image with a 3D virtual city model with Harris corners [69]

(see Fig 2.18). Zhang et al. [171] proposed to extract SURF features on building facades

from the acquired image and estimate the homography between the query view and the

closest reference views in a 3D image database. P. Lothe et al. [94][95] proposed to use a

3D CAD model to align a deformed map (reconstructed 3D points and vehicle positions)

reconstructed from the monocular SLAM.

2.3.4.2/ EXTEROCEPTIVE SENSORS WITH VISUAL FEATURE MODEL

In order to take use of the existing natural landmarks for localization, another approach is

to use on-board exteroceptive sensor with a visual feature model, which is typically con-

structed with the same type of sensor system. Depending on whether the visual feature

model is known or not before the localization process, there are two different methods :

learning constructed map - localization method, and simultaneous localization and map

building (SLAM) method.

Learning constructed map - Localization

This approach is composed of a learning stage and a localization stage. A predefined

visual feature model is constructed by firstly manually driving the sensor-equipped vehicle

(or mobile robot) along a desired path and recording a sequence of sensor data. Robust

visual features are extracted from the data sequence to build an accurate feature model

of the environment including landmarks and their corresponding sensor poses. After that,

this model is used to locate and navigate the vehicle with sensor data in real-time.

Learning : such as the work of [36] and [136][137], a single forward-looking camera is

used to capture image sequence, then features (e.g., Harris, SIFT, MSER) are extracted

from the images and a feature model is built by structure from motion method. The associ-

ated camera poses and landmarks positions are stored in the model (as seen in Fig. 2.19

(left)). As discussed in section 2.2.3.2, the ambiguous scale factor problem during the

monocular vision based reconstruction process can be solved by entering the path length

of GPS trajectory as the last step. If more than one camera are provided, the scale and

scene geometry of the environment can be recovered by triangulation of 3D points with

stereovision methods [85][117][142] (see in Fig. 2.19(right)).

The reconstructed landmarks and camera poses can be then refined by hierarchical local

[109] or global [135] bundle adjustment using Levenberg-Marquardt algorithm. The fea-

ture model can also be built by laser data with extracted landmarks like curvature extrema

in a laser scan [99], sidewalk landmarks from a vertical laser scan [74] [75] [76], etc.

Localization : during the localization process, a coarse localization is firstly applied with

inertial sensors and GPS data (if available) ; meanwhile, the vehicle observes its sur-

roundings with on-board sensors and detects features in the captured data (one image,

one image pair, or a laser scan) ; then, a set of landmarks which should be visible in

the sensor’s FOV are extracted from the learned map with the coarse pose, and the ob-

served features are associated with the extracted landmarks from map ; finally, the vehicle

pose can be refined with enough corresponding features by nonlinear optimization [136]

[117]. During the localization step, if a coarse vehicle pose can not be available from

other sensors, searching for the corresponding key frames in the global model might be



FIGURE 2.19 – Left : reconstructed model from a monocular city sequence [137] ; right :

reconstructed model from a simulated stereo image sequence [116]

time-consuming.

Simultaneous localization and mapping

Besides the “learning - localization” pipeline, another approach is the well known Simul-

taneous Localization and Mapping method (SLAM). It exploits duality between the local-

ization and the mapping, and addresses both issues in the same process in order to build

a new map or to update an existing map and localize the vehicle simultaneously [8][132].

– Classic SLAM is based on a vehicle motion model and probabilistic method with filters :

the vehicle motion is firstly predicted by vehicle dynamic motion model, then the state

vector (composed of vehicle pose and landmarks positions) can be updated by the

observed natural or man-made landmarks [156] with range sensors (section 2.2.4) like

laser range finder, sonars, etc.

– Vision based SLAM estimates the vehicle trajectory by matching features between a

live map of the scene structure and the current image [60] [91] [167] using monocular,

stereoscopic or trinocular camera systems [143].

2.3.5/ CELLULAR LOCALIZATION

Instead of using GNSS satellites, cellular localization [26] uses existing cellular communi-

cation infrastructure (distributed cellular base stations) to estimate the real-time position

of a wireless mobile user.

When a mobile phone moves around in an area, the base stations that serve for this

area can provide communications to the mobile phone. The distance between the base

stations and the user can be measured by several characteristics of the signal : 1) Time of

Arrival (TOA, or TOF - Time of Fly) of the signal traveled between the emission source and

the destination ; 2) Time Difference of Arrival (TDOA) that uses synchronization of cellular



network of users to compute the time difference of arrivals between different users ; 3)

Angle of Arrival (AOA) based on the angle of signal from cellular stations to the mobile

user ; and 4) Received Signal Strength (RSS) based on mathematical models, which

describe the path loss of signals as a function of the traveling distance [48].

When enough distances or angles to the base stations are known, the location of user

can be calculated by trilateration or triangulation as presented in section 2.3.1 and sec-

tion 2.3.2. In most cases, the average localization accuracy of cellular localization is be-

tween 90m and 250m [149]. Cellular localization is less precise than GPS, but the signals

from cellular infrastructure are more available in urban environments than the signals from

satellites, especially for indoor environments like parking lots or tunnels.

2.3.6/ AD-HOC LOCALIZATION (OR VANET)

Ad-hoc (or VANET) based localization method [139] was introduced for localizing vehicles

or enhancing the localization estimation, especially for vehicles without GPS receivers, or

vehicles whose GPS receivers cannot receive GPS signals in a specific location (e.g.,

urban canyon). Communication between the position unknown vehicle and other mobile

nodes (position known) can be used to compute its relative locations with other vehicles

and then calculate its global position [47].

2.4/ MULTI-SENSOR FUSION BASED LOCALIZATION

After respectively presenting relative and absolute localization methods in the previous

sections, their characteristics (accuracy in long and short terms, localization robustness

and frequency) are compared in the following Tab 2.4.

Methods Outputs Advantage Shortcomings

Relative

method

Relative motion :

translation and

rotation

(∆x,∆y,∆θ)

High precision in

short term, high

sampling frequency

Unbounded error

due to error

accumulation

Absolute

Method

Global pose :

(x, y, θ)

Accurate in

long term

GPS : Multi-path,

visibility of satellites,

sampling frequency is low ;

World model method :

uncertainty in construction and

landmarks association process

TABLE 2.4 – Comparison of relative and absolute localization methods

Relative localization methods can provide good accuracy in short term. However, as there

is no global optimization for dead-reckoning methods, the predicted vehicle trajectory

might drift in long term due to errors accumulation from point to point. Though error in

global localization method does not accumulate like in relative methods, sampling rate of

global methods is often slower than relative methods. For GNSS based approach, only if

at least four satellites with good distribution geometry are visible in the sky by the GPS



receiver, an accurate positioning result might be provided. In addition to this, satellite

signals might be blocked or reflected by tall buildings in urban environments. For world

model based method, the localization accuracy is influenced by the noises of sensor

observation and environment model.

Considering the advantages and shortcomings of different methods, information from

multiple data sources can be combined together to take advantage of their redundancy

and complementarity, to provide accurate and robust vehicle localization results. Relative

localization methods can be used as backup for GPS-denied situations, such as in dense

urban areas. Meanwhile, world map/model can be used as another global reference to

adjust the vehicle pose drift aroused by error accumulation.

2.4.1/ LOOSELY-COUPLED AND TIGHTLY-COUPLED FUSION

For integrating information from multiple sensors, there are essentially two fusion ap-

proaches : loosely coupled and tightly coupled approachs.

• Loosely-coupled multi-sensor fusion method uses a decentralized filter with sev-

eral sub-filters to independently process the information in different sub-systems of the

localization system [35] [78]. Independent localization solutions from all the sub-systems

are synchronously combined in an overall filter to provide an integrated navigation solu-

tion. If one of the sensors fails, a solution can still be given by other sensors. Loosely-

coupled fusion methods have been widely used for its simplicity of integration. For exam-

ple, Sukkarieh and al. [150] combine GPS position with INS estimation for localization,

Grimes and al. [64] augment wheel odometry with visual orientation to yield better local-

ization accuracy, Ignacio et al. [73] integrate visual odometry, map-matching and GPS

methods for navigation assistance.

• Tightly-coupled multi-sensor fusion method uses a single main filter to process

output of all sensors. Without using the processed solution of each sensor system, the

raw sensor observations are used as measurements. For example, in a tightly-coupled

GPS/INS integration system, GPS pseudo-ranges are directly fused with INS readings

[164] or odometer readings [22] : if the available satellite signals are not sufficient for cal-

culating a GPS position (< 4), the limited GPS pseudo-range and carrier phase measure-

ments can still be possible to be fused with INS readouts or odometer/map information.

2.4.2/ DIFFERENT FUSION STRATEGIES FOR VEHICLE LOCALIZATION

By using different sensor combination or different coupling methods, several fusion strate-

gies used for vehicle localization in the literature are summarized as follows :

• 1. GPS + Dead-reckoning solution (DR) : a lot of solutions have been proposed to

augment GPS localization with dead-reckoning solutions. Dead-reckoning sensors could

be used to compensate GPS outages in dense urban environments by continuously esti-

mating relative movements, then GPS positions are periodically used to reduce the accu-

mulated error of dead-reckoning sensors when a GPS position is available, e.g. GPS/INS

[150], GPS/INS/encoder odometer [113], GPS/visual odometry [163].

• 2. GPS/DR + Landmarks localization : in order to overcome the drift of GPS/DR



method if GPS receivers encounter long term outages, another global information source

is needed for vehicle localization :

– GPS/DR + Digital road map based map matching : a road network map captures the

road topology with road links and road nodes. Map-matching method is to find a corre-

spondence between a vehicle/personal trajectory position (e.g., from a GPS receiver or

GPS/DR system) and a path in the road network (provided by a GIS map) for naviga-

tion assistance [63] [77]. There are a lot of research work concerning the map-matching

ambiguity problem in changellend conditions like road intersections [165] [125]. Obser-

vations from the road map matching method can be used as a measurement of the

vehicle pose, and integrated with GPS/DR method to restrict the vehicle pose on road

[21] [128] [157].

– GPS/DR + Vision + Landmarks model or world model : landmarks based localiza-

tion methods (in section 2.3.4) are on the basis of a coarse vehicle pose estimation

from GPS/DR system, the landmarks stored in a model, and several onboard percep-

tion sensors [29][76]. Regions of Interest (ROI) are extracted from the world model

with the coarse vehicle pose ; features detected in the current sensor observation are

matched with landmarks in the ROI of the world model ; after that, the vehicle pose can

be refined by the corresponding landmarks. Or, like in the work of Lanerit et al. [89],

GPS/DR system can also be coupled with a vision algorithm (lane detection) and a

precise numerical map for vehicle pose correction.

• 3. GPS/DR + Camera based satellite visibility detection : as seen in Fig. 2.13, the

accuracy of GNSS localization might be degraded by multi-path problem around the re-

ceiver antenna. Several methods have been proposed to detect the multi-path problem

by placing a camera near the GPS antenna and detecting the invisible satellites in the

camera’s FOV. Then, the signals from satellites which are “seen” by the GPS receiver

but without line of sight (LOS) are excluded, only the raw pesudo-ranges of satellites with

LOS are used to estimate the vehicle position. For example, Meguro et al. [103] used an

omnidirectional infrared (IR) camera on the vehicle roof to detect the borderline between

the sky and surrounding buildings. For the same purpose, Attia et al. [4] used an upward

fish-eye camera to detect the visible sky by autonomous image segmentation and classi-

fication. Instead of using real camera, Peyraud et al. [121] proposed to use a 3D urban

model to predict the satellite LOS visibility in urban contexts.

2.5/ CONCLUSION

In this chapter, different localization approaches are presented and discussed, including

relative localization methods like wheel encoder odometry, inertial navigation method, vi-

sual odometry and range scan alignment ; and absolute localization methods like GNSS,

cellular localization, ad-hoc localization and world map/model based localization. Con-

sidering advantages and shortcomings of the different methods, a set of sensor sources

are usually proposed to be combined together to provide more accurate and more robust

localization results. In our work, stereovision based visual odometry or LRF based scan

alignment method is used to provide the odometry information of vehicle (chapter 3).

Then, the odometry informations are integrated with GPS measurements together with

a sensor coherence validation step (chapter 4). In order to compensate for the accumu-

lated localization error of DR-only method when GPS encounters long term outages, a 2D

GIS road network map is used to provide a coarse pose estimation, and a GIS building



map layer is associated with the building facades detected by two onboard LRF systems

(horizontal and vertical LRFs) to correct the vehicle pose error (chapter 5).





3

STEREOVISION/LASER RANGE FINDER

BASED VEHICLE LOCALIZATION

3.1/ OVERVIEW

As we presented in section 2.2.3, onboard vision systems can be used to estimate motion

parameters of a moving platform, especially in outdoor urban environments rich in visual

landmarks.

In this chapter, stereovision based visual odometry method is presented. Compared with

wheel encoder based odometry, visual odometry (VO) can provide the vehicle motion

with six degree of freedom (X,Y,Z, yaw, pitch, roll). This estimation is not influenced by

wheel deformation or slippage caused by bad soil condition, but more related to the en-

vironment around the camera and the illumination conditions. VO is then completed by a

horizontal LRF sensor based scan alignment method. Different laser range finder based

motion estimation methods are presented and compared in order to obtain an accurate

and robust LRF based vehicle motion estimation. An outlier-rejection ICP (OR-ICP) and

two image-aided ICP methods (ICP-Color, ICP-Descriptor) are proposed to reduce the

matching ambiguities of scan alignment in outdoor environment. For the purpose to be

integrated with other sensor measurements, the uncertainty of the two relative visual lo-

calization methods (stereovision based odometry, and LRF based scan alignment) are

discussed. These methods are tested with real data and evaluated by using RTK-GPS

data as ground truth.

This chapter is organized as follows : the procedure of stereovision based visual odometry

is detailed in section 3.2 ; then, laser range finder based vehicle ego-motion estimation

method is described in section 3.3 ; finally, some experimental results obtained with real

data acquired by our experimental vehicle are given in section 3.4.

3.2/ VISUAL ODOMETRY BASED VEHICLE MOTION ESTIMATION

The word “visual odometry” was firstly used by Nistér [115] in 2004. Camera based visual

odometry can estimate camera motion by matching (or tracking) corresponding image

points between two consecutive frames. This approach has been studied and used in a

lot of indoor and outdoor localization projects [41] [72] [87] [133] [167], even on Mars [37].

With image sequences provided by the camera system (such as monocular camera or



stereoscopic system), corresponding image pixels (dense method for all image pixels, or

sparse method for only image features) are searched between consecutive image frames

or between corresponding left and right images for stereoscopic system. Then, these

corresponding pixels are used to estimate the camera motion (see section 2.2.3.2).

In this section, the basic concepts of stereoscopic camera system are introduced in sec-

tion 3.2.1 ; then, the process of stereovision based visual odometry is presented in sec-

tion 3.2.2 ; finally, error modeling of visual odometry based pose estimation is discussed

in section 3.2.3.

3.2.1/ CAMERA SYSTEM MODELING AND CALIBRATION

A preliminary and prerequisite step of visual odometry approach is to calibrate the camera

system to find its intrinsic and extrinsic parameters.

3.2.1.1/ PERSPECTIVE CAMERA MODELING AND CALIBRATION

Pinhole model

Pinhole model is the mostly used model to represent a camera projection process.

FIGURE 3.1 – A point Q with coordinates QC
= (XC , YC , ZC) in the camera frame is pro-

jected onto image plane by the ray passing through the projection center C ; the resulting

point is an image point q with coordinates qc
= (x, y, f )

Three coordinate systems are considered (Fig. 3.1) :

– World system : world reference system is denoted as RW {W, XW ,YW ,ZW}, where W is

the system origin and XW ,YW ,ZW are the three orthogonal axes. Coordinates of a point

Q in this system are written as : QW
= (XW , YW , ZW).

– Camera frame : the coordinate system attached to the camera is denoted as

RC{C, XC ,YC ,ZC}. The origin of the camera frame is camera center C, also called pro-

jection center. The XCYC plan is parallel to the image plane. The axis ZC is pointing

to the viewing direction, called optical axis. Coordinates of a point Q in this system is

written as : QC
= (XC ,YC ,ZC).



– Image frame : image frame is denoted as : RI{Io, v, u,w}. The image plane is on ZC
= f

in the camera frame, where f is the focal length of the camera. The origin point Io of

the image frame is the upper left corner of the image. O is the intersection of the optical

axis and the image plane, called principal point. In this system, coordinates of a point

q are expressed by pixels, and written as : qI
= (v, u,w).

Extrinsic and intrinsic parameters

A camera has intrinsic and extrinsic parameters [70]. The intrinsic parameters are related

to its intrinsic characteristics, including focal length, position of the principle point on im-

age plane, image pixel size, scaling factors of row and column pixels, skew factor, and

lens distortion. The extrinsic parameters are related to its position and orientation with

respect to a fixed world system. The process to map a point Q(XW , YW , ZW) in the world

system to a point q with coordinates (v, u, 0) on the image plane is called a projective

transform.

• 1) Extrinsic parameters. With the extrinsic parameters of a camera, the coordinates of

Q in the world frame QW
= (XW ,YW , ZW) can be transformed to coordinates in the camera

frame, as QC
= (XC ,YC ,ZC). The extrinsic parameters are represented by a translation

vector T and a rotation matrix R (see in Fig. 3.1).

- Rotation matrix : orientation matrix of a camera in the world system is related to its

rotation from the world frame to the camera frame. The rotation matrix R in 3-dimensional

space can be decomposed into three rotation matrices : RX with angle α around XC axis,

RY with angle β around YC axis, and RZ with angle γ around ZC axis. They are respectively

written as :

RX =


1 0 0

0 cosα −sinα

0 sinα cosα

 (3.1)

RY =


cosβ 0 sinβ

0 1 0

−sinβ 0 cosβ

 (3.2)

RZ =


cosγ −sinγ 0

sinγ cosγ 0

0 0 1

 (3.3)

Then, the full rotation matrix R is given by the product of these three matrices, as :

R = RZRYRX =


cosβcosγ sinαsinβcosγ − cosαsinγ cosαsinβcosγ + sinαsinγ

cosβsinγ sinαsinβsinγ + cosαcosγ cosαsinβsinγ − sinαcosγ

−sinβ sinαcosβ cosαcosβ

 (3.4)

- Translation vector : translation vector T = (tX , tY , tZ) describes the position of camera

center C in the world frame.

- Full extrinsic model : with the rotation matrix R and translation vector T , the world

coordinates QW of point Q can be transformed to coordinates QC in the camera frame

through :

QC
= RQW

+ T (3.5)



As the homogeneous coordinates of a n-d point in projective space can be expressed by

a (n + 1) dimensions vector, the homogeneous coordinates of QC(XC , YC , ZC) are written

as : 

XC

YC

ZC

1


= M



XW

YW

ZW

1


(3.6)

where M is the camera extrinsic model containing the extrinsic parameters of the camera :

M =

[
R T

0 1

]
(3.7)

• 2) Intrinsic parameters. In central projection, the point Q with coordinates QC
=

(XC ,YC ,ZC) in the camera frame can be projected onto the image plane by a ray passing

through both the point Q and the projection center C (Fig. 3.1). The resulting point on

image is q with coordinates qC
= (xC , yC , zC) in the camera frame, as :



xC
= f XC

ZC

yC
= f YC

ZC

zC
= f

(3.8)

All the image points in the camera frame can be represented by 4−dimensional homoge-

neous coordinates and a constant s, as :



sxC

syC

szC

s


= P



XC

YC

ZC

1


(3.9)

where P is the projection matrix :

P =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 1/ f 0


(3.10)

- Transformation from camera frame to image frame : image points are measured by

pixels in the image frame. Let qI
= (u, v,w) the pixel coordinates of a point q in image

frame. The transformation of its coordinates from camera frame to image frame is based

on image principal point O = (u0, v0) (pixels), horizontal scaling factor ku and vertical

scaling factor kv, written as : 

u = −kuxC
+ u0

v = −kvyC
+ v0

w = 0

(3.11)

The homogeneous coordinates of q in the image frame are represented by a 3-

dimensional vector :


u

v

1

 = K0



xC

yC

zC

1


(3.12)



where :

K0 =


−ku 0 0 u0

0 −kv 0 v0

0 0 0 1

 (3.13)

- Full intrinsic model : with Eq. 3.9 to Eq. 3.13, the full intrinsic model is used to trans-

form the point coordinates QC in the camera frame to coordinates qI in the image frame,

written as :


su

sv

s

 = K0P



XC

YC

ZC

1


=


−ku 0 u0/ f 0

0 −kv v0/ f 0

0 0 1/ f 0





XC

YC

ZC

1


= K



XC

YC

ZC

1


(3.14)

where K = K0P is the camera intrinsic model containing the intrinsic parameters of the

camera. Since the point q is in homogeneous coordinates, we need to divide q by s to

recover its image coordinates, as : (u = su/s, v = sv/s).

• 3) Full camera model. With the extrinsic model M of the camera (Eq 3.7), the point

coordinates QW in the world reference system can be transformed to point coordinates

QC in the camera frame ; then, with the intrinsic model K of the camera (Eq 3.14), QC can

be transformed to coordinates qI in the image frame. The full camera model can then be

written as :


su

sv

s

 = KM



XW

YW

ZW

1


=


−ku 0 u0/ f 0

0 −kv v0/ f 0

0 0 1/ f 0



[
R T

0 1

]


XW

YW

ZW

1


(3.15)

Calibration of a camera

Calibrating a camera is to know the value of its intrinsic/extrinsic parameters and distor-

tion coefficients, especially for the intrinsic parameters since they are constant at different

camera poses. Precision of the calibration process is important because the intrinsic pa-

rameters will be used during the visual odometry process and might affect the robustness

of the whole procedure.

The principle of camera calibration is to target the camera on a known structure with a

set of identifiable features. By viewing this structure from different poses, it is possible to

compute the intrinsic parameters of the camera and its relative locations and orientations

with respect to the calibration structure.

We use the planar calibration method proposed by Zhang [172] to calibrate our camera

system. The calibration target used is a plane with printed chessboard pattern (Fig. 3.2).

There are 23 × 16 squares (30mm × 30mm) on the chessboard. The camera is calibrated

through the following steps :

i) At first, the chessboard is hold at different positions and orientations in the field of

view of the camera, to provide a set of chessboard images ;

ii) Then, internal corners of the chessboard are extracted from each image ;

iii) Since the actual size of chessboard squares is already known, the third step is to

calculate the intrinsic parameters of the camera, and the extrinsic parameters R and

T with respect to each chessboard plane ;



FIGURE 3.2 – Chessboard images used for camera calibration

iv) Finally, the initial estimated camera parameters are optimized with the global Leven-

berg - Marquardt optimization algorithm by minimizing the re-projection error.

There are many toolboxes for camera calibration, we have tested Matlab Toolbox 1 de-

veloped by Jean-Yves Bouguet [25], and open source library OpenCV 2. Both the two

toolboxes implement the calibration method proposed by Zhang [172]. Bouguet’s tool-

box is used in our work to estimate the focal length on u and v directions in pixels,

fu = ku f , fv = kv f , the coordinates of the principle point O, the angle of pixel axes, and a

5-dimensional vector containing the radial and tangential distortion parameters of camera

[27].

3.2.1.2/ STEREOSCOPIC SYSTEM MODELING AND CALIBRATION

Geometric model of a stereoscopic system

Just as human binocular vision system, a stereoscopic system can perceive the 3D struc-

ture of an object in the environment. A binocular stereoscopic system is composed of two

digital cameras, respectively with projection centers Cl and Cr as shown in Fig. 3.3. The

stereoscopic system permits to simultaneously obtain two projections of the same scene

from two different points of view [56].

Given a 3D scene point Q with coordinate QW
= {XW , YW , ZW } in the world coordinate

system, it can be respectively projected onto the left and right image planes as points

ql(ul, vl) and qr(ur, vr). ql and qr are defined from their own image coordinate systems

associated with the left and right images.

- Epipolar line and epipole. As seen in Fig. 3.3, the projection of the right projection

center Cr (resp. Cl) on the left (resp. right) image plane Πl (resp. Πr) is called the left

(resp. right) epipole el (resp. er). The plane through the two epipoles el, er and 3D point Q

is called an epipolar plane. Lines qlel and qrer (between the epipoles and the image points)

are called epipolar lines. Given a point ql (resp. qr) in one image, its corresponding point

viewed in the other image must lie on its corresponding epipolar line qrer (resp. qlel). This

constraint is called the epipolar geometry constraint.

1. http://www.vision.caltech.edu/bouguetj/calib doc

2. http://opencv.itseez.com/trunk/doc/tutorials/calib3d/camera calibration/camera calibration.html



FIGURE 3.3 – Epipolar geometry of a stereoscopic system

- Essential matrix. Essential matrix E describes the location of a camera with respect to

the other camera in the system attached to the first camera. It contains the information

which relates the coordinates of two projections ql and qr of the point Q on the left and

right image planes. This relation is written as :

(qCr
r )T Eq

Cl

l
= 0 (3.16)

where q
Cl

l
(x

Cl

l
, y

Cl

l
, z

Cl

l
) and q

Cr
r (x

Cr
r , y

Cr
r , z

Cr
r ) are respectively the coordinates of two projec-

tions ql and qr in the left and right camera frames.

- Fundamental matrix. Just as the essential matrix, fundamental matrix F also builds

links between the two cameras. F is defined in terms of pixel coordinates with the intrin-

sic information of both cameras, while essential matrix E is defined in terms of camera

coordinates.

The coordinates of a point in image frame can be obtained with its coordinates in the

camera frame and the camera intrinsic parameters, q
Il

l
= Klq

Cl

l
, q

Ir
r = Krq

Cr
r , where q

Il

l
and

q
Ir
r are respectively the coordinates of image points ql and qr in the left and right image

frames ; Kl, Kr are respectively the intrinsic models of the left and right cameras.

Replacing q
Cr
r = K−1

r q
Ir
r and q

Cl

l
= K−1

l
q

Il

l
, Eq.3.16 can then be written as :

(qIr
r )T (K−1

r )T EK−1
l (q

Il

l
) = 0 (3.17)

Note :

F = (K−1
r )T EK−1

l (3.18)

we can obtain :

(qIr
r )T Fq

Il

l
= 0 (3.19)

In Eq. 3.19, F directly establishes a mapping from pixels on an image to the corresponding

epipolar lines on the other image, without any prior knowledge of the geometric relation

between the two cameras.

Remarks : the coordinates of image points ql and qr respectively in the left and right

images frames are abbreviated as {ql(ul, vl), qr(ur, vr)} in the following texts.



Calibration of a stereoscopic system

Stereo calibration is the process of recovering the geometric relation (relative position

and orientation) between two cameras in a stereoscopic system [70]. As seen in Fig. 3.3,

for a point Q in 3D space, its two coordinate vectors QCl and QCr respectively observed

by the left and right cameras are related to each other by a rigid transformation : QCr =

RlrQCl + Tlr, where Rlr is a 3 × 3 rotation matrix, Tlr is a 3 × 1 translation vector. Rlr and Tlr

describe the relative location of the left camera with respect to the right one.

-Implementation. Several methods [59] [70] have been proposed to find the parameters

Rlr and Tlr of a stereoscopic system. Hartley [70] proposed to use the fundamental matrix

with uncalibrated cameras : corresponding image points {ql(ul, vl), qr(ur, vr)} are used to

estimate the fundamental matrix F [93][114] through Eq.3.19, then recover the rotation

matrix Rlr and translation vector Tlr by factorization of the fundamental matrix with SVD

(Singular Value Decomposition). Bouguet [25] proposed to separately calibrate the two

cameras at first, then estimate the rotation and translation parameters by minimizing the

reprojection errors of all the corresponding corners. The second method is used in our

work to calibrate the stereoscopic system with the toolbox developed by Bouguet.

-Stereo rectification. Rectification is a process to correct an image pair (Fig. 3.3) such

that the images taken by the two cameras are row-aligned, as shown in Fig. 3.4. In such

configuration, the optical axes of the two cameras are parallel and the baseline B(ClCr) is

perpendicular to the optical axes.

FIGURE 3.4 – Ideal stereoscopic configuration after stereo rectification

After rectification, all the epipolar lines are collinear and parallel to the horizontal image

lines. We can then search the correspondence of an image point on the same row of

another image. As shown in Fig. 3.4, d = ul − ur is the horizontal-disparity between the

two corresponding points. In such a configuration, the depth Z of point Q can be derived

by the disparity information with Z =
f B

d
(see section 3.2.2.3).

We use Bouguet’s algorithm to rectify the stereo images with the rotation and translation

parameters between the two calibrated cameras. After image rectification, the stereo-

scopic system is calibrated again to obtain new parameters of the two cameras and

new relationship between them. These parameters are used for stereovision based vi-



sual odometry in the next section.

3.2.2/ STEREOVISION BASED VISUAL ODOMETRY

Since the baseline between the left and right cameras can be known by calibration, the

scale of Euclidean reconstruction can be directly provided. Therefore, stereovision based

visual odometry method is adopted in our system.

FIGURE 3.5 – Working flow of stereovision based visual odometry method

As shown in Fig.3.5, when an image pair is acquired :

1) If it is the first image pair of a reference, features (e.g., Harris, SURF, CenSurE) are

extracted from the image pair (section 3.2.2.1), and corresponding features are found



between the left and right images (section 3.2.2.2) ; then, the corresponding features are

reconstructed into 3D space by triangulation (section 3.2.2.3) ;

2) If it is not a reference image pair, the detected features in the reference image pair

are tracked from frame to frame (section 3.2.2.4) till the reference stereo pair updates

(section 3.2.2.4).

3) Then, the camera motion of current image pair can be estimated with RANSAC by

incorporating several 2D and 3D outlier rejection strategies (section 3.2.2.5).

3.2.2.1/ FEATURE EXTRACTION

In order to track image features in multiple views, the extracted features and descrip-

tors have to be robust and distinctive under various conditions (e.g., different illumination

conditions, positions, angles of view and image scales). For real-time application, feature

tracking also requires that the features and descriptors could be quickly extracted.

A lot of feature types have been proposed in the computer vision community, such as

point, line, or region features. For example, the widely used Harris corners [69] with good

detection rate. But as Harris corners rely on image gradient information, it is sensitive

to the change of image scales and viewpoints. Several other detectors have also been

proposed, e.g., Shi and Tomasi corners [144], Scale Invariant Feature Transform (SIFT)

[96], FAST feature [134], MSERs feature (Maximally Stable Extremal Regions) [44], SURF

(Speeded Up Robust Features) [12] and CenSurE (Center Surround Extremas) [1].

Characteristics of these features are compared in Tab 3.1 based on the work of Fraun-

dorfer et al. [58] and Mikolajczyk et al. [105].

❳
❳

❳
❳
❳
❳

❳
❳
❳❳

Feature

Criteria
C1 C2 C3 C4 C5 C6 C7 C8 C9

Harris × × ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗∗
Shi-Tomasi × × ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗∗

SIFT × × × × ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗
FAST × × × ∗∗ ∗∗ ∗∗ ∗ ∗ ∗∗

MSERs × × × × ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗
SURF × × × × ∗ ∗ ∗ ∗∗ ∗∗ ∗∗

CenSurE × × × × ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗

TABLE 3.1 – Comparison of feature detectors (based on [58]) for different criteria. C1 :

corner detector ; C2 : blob detector ; C3 : rotation invariant ; C4 : scale invariant ; C5 :

affine invariant ; C6 : repeatability ; C7 : localization accuracy ; C8 : robustness ; C9 :

efficiency

We have tested Harris, Shi-Tomasi, SIFT, SURF and CenSurE features listed in Tab 3.1

with a set of images to choose a feature with better repeatability and robustness for our

work. Results show that most SURF features can be repeatedly detected and matched in

multiple images for motion estimation. But it should mention that this experiment was im-

plemented in indoor environments with manually designed camera displacements. If we

want to compare the robustness, efficiency and accuracy of different features for localiza-

tion in long sequences, we need to test these features with more image sequences (under



different illumination and weather conditions, and different environment structures, obsta-

cles, etc.), then evaluate the results of estimated camera trajectory with accurate ground

truth like RTK-GPS.

In this work, SURF features 3 (Fig 3.6) and descriptors are respectively extracted from the

left and right images in three steps :

FIGURE 3.6 – Left) detected SURF points in a sunflower field image ; right) an oriented

quadratic grid with 4 × 4 square sub-regions is placed around the interest point, and the

wavelet responses for each square are computed to build the feature descriptor [12]

1. Scale spaces are implemented as image pyramids. Taking into account the discrete

nature of integral images and the specific structure of image filters, layers Iδ are

obtained by filtering the image with gradually bigger masks.

2. Then, given a point q = (u, v) in an image I, the determinant of approximated Hes-

sian matrix H(u, Iδ) in u at scale Iδ is calculated ; then a non-maximum suppression

is applied in a 3 × 3 × 3 neighborhood to localize interest points on the image over

all scales.

3. After that, the descriptor D of each SURF feature is estimated based on pixel prop-

erties. Instead of computing the image gradients, first order Haar-wavelet responses

are calculated in u and v directions based on integral images for fast filtering. Thus,

the descriptor can describe the distribution of Haar-wavelet responses within the

neighborhood of the interest point.

3.2.2.2/ FEATURE MATCHING

After extracting the features from two images, image feature matching is to measure the

similarity of two features using pixel information or descriptors, then to find corresponding

feature couples between two images. Two types of matching methods are discussed in

the following part : area similarity based (window-based) matching method and feature

descriptor based matching method.

• Area similarity based matching. Area based matching algorithms solve the corre-

spondence problem by taking a window area around the considered pixels. With the as-

sumption that all the pixels inside a matching window belong to the same object and their

3. http://www.vision.ee.ethz.ch/∼surf/index.html



intensities (and disparity variation) are constant and continuous, the similarity of two ex-

tracted intensity windows is computed to represent the similarity of the considered central

pixels.

Let I1 be a local window around an image feature in one view, and I2 one window around

an image feature in another view. The similarity of the two areas can be measured by

different metrics, as summarized in Tab 3.2.

Similarity metrics Definitions

Sum of absolute differences S AD =
∑

u,v∈W
|I1(u, v) − I2(u, v)|

Zero-mean sum of ZS AD =
∑

u,v∈W

∣∣∣∣
(
I1(u, v) − Ī1

)
−

(
I2(u, v) − Ī2

)∣∣∣∣
absolute differences

Sum of squared differences S S D =
∑

u,v∈W
(I1(u, v) − I2(u, v))2

Zero-mean sum of ZS S D =
∑

u,v∈W
(
(
I1(u, v) − Ī1

)
−

(
I2(u, v) − Ī2

)
)2

squared differences

Normalized cross correlation NCC =

∑

u,v∈W
I1(u, v)I2(u, v)

√√√ ∑

u,v∈W
I1(u, v)2

∑

u,v∈W
I2(u, v)2

Zero-mean normalized

cross correlation
ZNCC =

∑

u,v∈W

(
I1(u, v) − Ī1

) (
I2(u, v) − Ī2

)

√√√√ ∑

u,v∈W

(
I1(u, v) − Ī1

)2 ∑

u,v∈W

(
I2(u, v) − Ī2

)2

TABLE 3.2 – Area similarity based matching metrics

In Tab 3.2, W is the matching window centered around an image feature point, I1(u, v) (and

I2(u, v)) is the intensity of a pixel within the window, Ī1 (and Ī2) is the average intensity of

pixels inside the window. The limitation of SSD and SAD is their high sensitivity to changes

of illumination conditions. NCC and ZNCC improve the matching performance by dividing

the measuring result with intensity variance in matching window. ZNCC further improves

NCC by removing the changes of intensity between two images.

Remarks : in order to improve the matching accuracy and to reduce the computation cost,

size and shape of the matching window should be appropriately chosen : the window size

should be large enough to incorporate enough intensity variations for matching, but also

small enough to avoid the effects of projective distortion. Various methods have been

proposed to adaptively choose the window size or window shape [84] [161].

• Feature descriptor matching. Matching two sets of descriptors (e.g., SIFT descriptor

or SURF descriptor) between two images is to evaluate the similarity of features in their

descriptor space. Different distances can be used to measure the difference of two de-

scriptor vectors, e.g., Euclidean distance, Mahalanobis distance [100]. Then, after mea-

suring the similarity between two descriptors, two approaches can be used to fix the

corresponding feature for a feature point q(ul, vl) :

1) the nearest method finds the corresponding feature which has the closest distance to

the descriptor vector of q ;



2) the nearest distance ratio method compares the distances between the closest and

the second closest descriptor vectors to q. Then, the closest correspondence is accepted

only if the ratio between these two distances is less than a defined threshold.

In our work, SURF descriptors with smallest Euclidean distance are considered to find the

corresponding features. Though the descriptors based feature matching is reliable, some

false correspondences are still unavoidable. So, after finding the closest corresponding

features by SURF descriptors, ZNCC with 13× 13 window size (window size is empirically

chosen) under several geometric constraints is used to check the similarity between the

two corresponding features.

• Feature matching constraints. In order to improve the matching precision and com-

putation time, some geometric constraints are considered to reduce the search space or

to refine the matching result :

i) Epipolar constraint : for one image feature, its corresponding feature in the other

image must lie on the relative epipolar line (Fig. 3.3). For rectified image pairs, a

simplification of the general epipolar geometry is shown in Fig. 3.4 (right). The two

cameras are arranged in parallel with identical focal length, and all the epipolar line

are parallel to the horizontal scan-lines. Considering image noises, we define the

epipolar constraint for features as |vl − vr | <= 2 ;

ii) Maximum and minimum disparity constraint : according to the length of baseline and

the maximum and minimum depth of the 3D objects in the environment, the minimum

and maximum disparity ranges are defined ;

iii) Threshold of correlation score : for ZNCC, larger value indicates a closer relationship,

thus, only the feature couples with the largest value of ZNCC > 0.9 are chosen as the

potential corresponding features ;

iv) Uniqueness constraint : one feature can only be matched with another one ;

v) Ordering constraint : for two corresponding feature couples q1,l ↔ q1,r and q2,l ↔ q2,r,

if q1,l lies on the left (or right) side of q2,l, q1,r should be on the same side of q2,r ;

vi) Inverse matching (mutual checking) : after obtaining a potential feature correspon-

dence (ql ↔ qr), taking the corresponding feature qr in the right image as reference,

we can look for its corresponding feature in the left image. If the same left image fea-

ture ql is found to be the correspondence, this matching result (ql ↔ qr) is considered

as an inlier.

3.2.2.3/ 3D LANDMARK RECONSTRUCTION

When the geometric arrangement of a stereoscopic system is known, local 3D position

QC(XC , YC , ZC) of a point Q relative to the camera center can be recovered based on

its corresponding image points [56]. But, due to the influence of various noises, the left

and right rays passing through the camera centers and the corresponding features might

not intersect at the same 3D point, as shown in Fig. 3.7. An alternative method is to

respectively obtain the left and right rays with left and right image features, then find the

shortest segment that connects these two rays, and take the middle point of this segment

as the 3D position of Q.

Taking the left camera system as the reference system, the left and right camera centers

are respectively Cl(0, 0, 0) and Cr(−B, 0, 0)). Let r1 be a 3 × 1 unit vector of the ray that



FIGURE 3.7 – Triangulation by intersecting rays passing through corresponding image

points and camera centers

connects the left camera center and the left image feature q
Cl

l
(xl, yl, f ), r2 be a 3 × 1

unit vector of the ray that connects the right camera center and the right image feature

q
Cr
r (xr, yr, f ), Ql and Qr be the endpoints of the shortest line segment connecting the two

rays [37]. B is the baseline between Cl and Cr, rl and rr are calculated with the coordinates

of image features through :
rl = [xl, yl, f ]T/‖Clql‖
rr = [xr, yr, f ]T/‖Crqr‖

(3.20)

then, the coordinates of the 3D points Ql and Qr can be written as :

Ql = Cl + rlm1,Qr = Cr + rrm2 (3.21)

where m1 = ‖QlCl‖ and m2 = ‖QrCr‖. In order to find the parameters m1 and m2, we need

to minimize :

‖Ql − Qr‖2 = ‖(Cl + rlm1) − (Cr + rrm2)‖2 (3.22)

this function can be written in the matrix format, as :

[
rl −rr

] [ m1

m2

]
= Cr −Cl (3.23)

with the least-square approach, we can obtain :

[
m1

m2

]
=

([
rl −rr

]T [
rl −rr

])−1 [
rl −rr

]T
(Cr −Cl) (3.24)

Since B0 = Cr −Cl = [ −B 0 0 ]T , rT
l

rl = 1 and rT
r rr = 1, we can have :

m1 =
B0 · rl − (B0 · rr)(rl·rr)

1 − (rl·rr)2
,m2 =

(B0 · rl)(rl · rr)) − B0 · rr

1 − (rl·rr)2
= (rl · rr)m1 − B0 · rr (3.25)

As seen in Fig. 3.7, the midpoint of the line segment QlQr is supposed to be the coordi-

nates of the 3D point Q :

Q = (Ql + Qr)/2 (3.26)



For a given stereo system with fixed intrinsic and extrinsic parameters, if the depth Z of a

point is estimated by direct triangulation model Z = f B/d, the derivative of Z to horizontal-

disparity d is ∂Z
∂d
=
− f B

d2 . Replacing d by d =
f B

Z
, the relationship of depth and disparity can

be written as : ∂Z
∂d
= − Z2

f B
, ∂Z = −Z2

f B
× ∂d. Though the variance of depth in triangulation

process is not a simple scalar function of distance to the point [148], we can note that

the influence becomes greater when the depth increases, and the accuracy of the depth

estimation will decrease. Therefore, in our experiments, reconstructed 3D points with

negative depth or with depth more than 50 meters are eliminated.

3.2.2.4/ 2D FEATURE TRACKING AND REFERENCE PAIR UPDATING

In order to estimate the camera motion with image sequences, corresponding image

features in continuous frames can be found by two alternative methods : the first one

is to detect features in every image frame, then match them between two frames ; the

second method is to track previously detected features in current frame with techniques

like optical flow. As the geometric relationship between consecutive frames is unknown,

both the computation of epipolar line and the use of area based matching method are

time-consuming, thus we choose Kanade-Lucas-Tomasi (KLT) feature tracker [98] to track

key features.

2D feature tracking

When a new stereo pair is acquired, the previous matched key features between left and

right images are separately tracked in the current image pair by KLT feature tracker [98].

KLT feature tracker uses local information in a small window around the image points with

three assumptions :

– Brightness constancy between corresponding pixels in two frames ;

– Pixel intensities constancy in a local window around the pixel ;

– Small movement between two consecutive frames.

A pixel located at (u, v) in image frame at time t with intensity I(u, v) will move to (u+∆u, v+

∆v) in image frame at time t + ∆t with intensity I(u + ∆u, v + ∆v). The pixel intensity at time

t + ∆t can be approximated by first-order Taylor series as :

I(u + ∆u, v + ∆v, t + ∆t) = I(u, v, t) +
∂I

∂u
∆u +

∂I

∂v
∆v +

∂I

∂t
∆t (3.27)

where ∂I
∂u
, ∂I
∂v
, ∂I
∂t

are derivatives of image intensity at (u, v, t). With the brightness constancy

assumption, we can have :

∂I

∂u
∆u +

∂I

∂v
∆v +

∂I

∂t
∆t =

∂I

∂u
Vu +

∂I

∂v
Vv +

∂I

∂t
= 0 (3.28)

where Vu and Vv are respectively image velocities on u and v directions. With multiple pix-

els in a window, an optimal (Vv,Vu) can be found by solving the over-constrained function

(Eq.3.28) with least square method.

During the tracking process, several constraints are applied to remove outliers of tracked

features :

i) Intensity constraint : the intensity difference between patches (13 × 13 pixels) around

the image features in two consecutive frames should be less than 500 ;



ii) Search space constraint : a tracked feature should not move out of the tracked image

plane ;

After obtaining the tracked features in the left and right frames, the tracked image features

in the current camera coordinate system are triangulated into 3D space. The distribution

of features in the current stereo frame is calculated as distributtracking by dividing the left

image plane into a series of 20×20 (pixels) squares and calculating the number of squares

which contain the extracted features.

Reference stereo pair updating

When the camera moves, some features will move out of FOV of the camera, as in

Fig. 3.8(a). Therefore, only features that can be tracked in the previous frame will be

tracked sequentially until the number or distribution conditions cannot be satisfied.

(a) (b)

FIGURE 3.8 – (a) Vehicle model (left camera center is considered to be the vehicle refer-

ence system center) ; (b) selection and re-initialization of reference image pair

The reference stereo pair selection and updating mechanism is illustrated in Fig. 3.8(b).

The first stereo pair is selected as initial reference image pair. After reconstructing the

features into 3D space, the distribution of image features in the reference pair is calculated

as distributre f erence, like distributtracking. For our experiments, the thresholds of reference re-

initialization is empirically set : if the number of matched features in the reference stereo

pair is nm, the number threshold is set as Tnumber = nm ∗ 60% ; the distribution threshold is

set as Tdistribut = (distributre f erence ∗60%). If the number or distribution value is less than the

defined threshold, the previous stereo pair is selected as the new reference stereo pair,

then new features are detected for matching and tracking.

3.2.2.5/ MOVING FEATURE ELIMINATION AND RIGID MOTION ESTIMATION

Taking the first left camera position as the origin of the global coordinate system W, the

global positions of every camera pose and 3D landmarks can be obtained with the posi-

tions and orientations of their reference stereo pairs.

Vision based relative motion estimation

Let {Qt
i
} and {Qr

i
} (i = 1 · · ·N) be two corresponding point sets respectively obtained by the

camera system at time t and reference frame. These two point sets can be related by :

Qt
i = Rr→tQ

r
i + Tr→t + Vi (3.29)



where Rr→t is a 3 × 3 rotation matrix composed of three rotation angles : yaw, pitch and

roll (θ, ψ, φ), Tr→t is a 3D translation vector (Tx, Ty,Tz), and Vi is a noise vector. In order

to find the optimal transformation [R,T ]r→t between the reference set and current set, we

need to minimize the residual error :

ε2
=

N∑

i=1

‖Qt
i − Rr→tQ

r
i − Tr→t‖2 (3.30)

With the assumption that the environment is rigid, the centroids Q̄t and Q̄r of two point

sets should be the same :

Q̄t
=

1

N

N∑

i=1

Qt
i (3.31)

Q̄r
=

1

N

N∑

i=1

Qr
i (3.32)

We note {Qt
ci
} = {Qt

i
}−Q̄t and {Qr

ci
} = {Qr

i
}−Q̄r as the two centered point sets corresponding

to {Qt
i
} and {Qr

i
}. Then,

ε2
=

∑N
i=1 ‖Q

t
ci
− Rr→tQ

r
ci
‖2

=
∑N

i=1 (Qt
ci

T
Qt

ci
+ Qr

ci
T Qr

ci
− 2Qt

ci

T
Rr→tQ

r
ci

)
(3.33)

This equation is minimized when the last term is maximized. It is equivalent to maximizing

the trace (RH) of this term, the cost expression is written as :

H =

N∑

i=1

Qr
ciQ

t
ci

T
(3.34)

The optimal rotation matrix can be found by SVD (singular value decomposition) of matrix

H = US DT with Arun’s solution [3], together with Umeyama’s complements [160] for some

degenerated cases :

S =

{
I3×3, i f det(D) × det(U) = 1

diag(1, 1,−1), i f det(D) × det(U) = −1
(3.35)

Then the rotation matrix can be obtained by Rr→t = DS UT . Since the optimal translation

vector can align the centroid of the point set {Qt
i
} with the rotated centroid of the point set

{Qr
i
}, translation vector Tr→t is estimated by : Tr→t = Q̄t − Rr→tQ̄

r.

Elimination of moving features

Some 3D points with large depth noises have already been rejected before motion es-

timation. In outdoor environments, the dynamic nature of vehicle motion and scenery

modeling make the use of vision methods challenged to apply. Natural landmarks in ar-

eas with amount of repeating textures (e.g., trees, fences) might make feature detection

and matching complicated. During the procedure of vehicle motion estimation, the use of

features on non-stationary or non-rigid objects may arouse unreal vehicle motion, such as

suddenly appeared pedestrians or moving vehicles (Fig. 3.9). It is important to eliminate

the false tracking features and features belonging to moving obstacles. Here, outlier re-

jection mechanisms with RANSAC and 3D/2D optical flow are applied to remove features



FIGURE 3.9 – Urban environment with moving vehicles or strong sunlight

belonging to the non-static or non-rigid objects. Only static features are used to estimate

vehicle ego-motion.

• Iterative motion estimation with RANSAC. RANdom SAmple Consensus (RANSAC)

is a robust estimator proposed by Fischler et al. [55]. Instead of using all data for model

estimation, RANSAC statistically uses as small initial data set as necessary and enlarges

this set with consistent data when possible. The steps of RANSAC algorithm [70] are

listed in Algorithm 1.

Algorithme 1: RANSAC

Input : A data set S , the smallest sample size n, error distance threshold l, number

Nsample of sampling times, threshold N of an acceptable consensus set

Output : Fitted model

1 Randomly select a sample of n data from the data set S , and estimate the model based

on this subset;

2 Determine which data in S are within the distance threshold l of the model. Data within

the distance are considered to be inliers and form a consensus set S i of the sample;

3 If the number of inliers in S i is greater than the threshold of an acceptable consensus set

N, the model is estimated again using all data in this consensus set;

4 After Nsample trials, the largest consensus set S i is used to re-estimate the model.

In our experiments, iterative motion estimation with RANSAC is to iteratively select a ran-

dom subset of 3 tracked image points in the current left image frame ; then, generate one

camera motion hypothesis R and T with the point correspondences between consecutive

images. The reconstructed points are transformed from the reference coordinate system

to the current camera system with the new motion hypothesis. The Euclidean differences

between each two 3D positions are calculated, and the corresponding points within the

threshold are considered to be inliers. The best motion hypothesis is the one with the

largest number of inliers. Then, the final solution is estimated with the largest inlier sub-

set.

To ensure that the randomly selected three points are well distributed in the image, every

two image features must have a distance larger than the square size 24× 24 (pixels). The

other parameters are dynamically chosen [70] :



1. For probability of 95% that a point correspondence is an inlier, the distance threshold

l used is set to 5.99 × δ2, where δ is the standard deviation of Euclidean differences

between the two 3D point sets ;

2. The number Nsample of sampling times is dynamically estimated by Nsample =

log(1−p)

log(1−(1−ǫ)n)
to ensure a probability p that at least one of the random samples is

free from outliers, where n is the smallest sample size, p is set to 0.99, and ǫ is the

percentage of outliers, ǫ = 1 − (numberinliers)/(numberpoints).

• 3D/3D method to remove outlier. When the vehicle moves in rigid and static environ-

ments, all static objects (which are considered as the background) should have similar

3D motion relative to the moving vehicle. For the corresponding local 3D positions {Qt
i
}

and {Qr
i
} (i = 1 : N) at time t and re f erence instant, the velocity of 3D displacement can be

obtained by [145] :

∆̃Qi =



X̃r
i

Ỹr
i

Z̃r
i

 =


τx

τy

τz

 +


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0




Xr

i

Yr
i

Zr
i

 (3.36)

where ω = [ωx, ωy, ωz]
T is the angular velocity and τ = [τx, τy, τz]

T is the translational

velocity. 2D projection of the point Qr
i

on the left image plane can be approximately written

as {xi = f Xr
i
/Zr

i
, yi = f Yr

i
/Zr

i
}. Then, the 2D optical flow can be obtained by computing the

derivation of {xi, yi} to time and represented by 3D object position Qr
i
, 3D motion ∆̃Qi and

disparity di = xi,l − xi,r as :

[
Vx,i

Vy,i

]
=


di

B
0 − di∗xi

f ∗B − yi∗xi

f

f 2
+x2

i

f
−yi

0
di

B
− di∗yi

f ∗B − f 2
+y2

i

f

yi∗xi

f
xi





τx

τy

τz

ωx

ωy

ωz



(3.37)

For every three couples of tracked features, Eq.3.37 is solved to obtain a motion parame-

ter vector. The points fit the initial motion parameters are measured by Euclidean distance

(suppose that every variables are independent), the mean error ǭ and standard deviation

σ of errors are used to remove the tracked features whose deviation is more than 2σ.

Global pose estimation based on incremental procedures

Taking the first camera position as the origin of global coordinate system, the camera

pose and position of the 3D landmarks in the global system can be obtained with the

pose of its reference stereo pair :

R
global
t = RrRr→t

T
global
t = RrTr→t + Tr

{Qglobal

i,t
} = R

global
t {Qt

i
} + T

global
t

(3.38)

where :

− Rr, Tr : the rotation matrix and translation vector of the reference stereo pair in the

global system ;

− Rr→t, Tr→t : the rotation matrix and translation vector of camera at time t with respect to



the reference stereo pair ;

− R
global
t , T

global
t : the current camera rotation matrix and translation vector in the global

system ;

− {Qt
i
} : the set of coordinates of 3D points {Qi} relative with the local stereo pair at time t ;

− {Qglobal

i,t
} : the set of coordinates of 3D points {Qi} in the world coordinate system.

3.2.3/ ERROR MODELING OF STEREO VISUAL ODOMETRY

For the procedure of a vision algorithm, it is important to know how the random pertur-

bation is propagated to the estimated quantity through the vision algorithm [68] [108].

Precision of the estimation is essential when we want to integrate the vision based esti-

mation with other measurements. For example, the error propagation problem of stereo

reconstruction and motion estimation is discussed in the following part.

3.2.3.1/ OVERVIEW OF UNCERTAINTY MODELING AND PROPAGATION

• Covariance : considering a random variable x with density P, expectation of x is defined

as :

E{x} =
∫
+∞

−∞
xp(x)dx (3.39)

and the variance of x is :

Var{x} = E{(x − E{x})2} (3.40)

The variance describes the quality (error) around the expected value E{x}. If we consider

another random variable y, the covariance between these two random variables x and y

is defined as :

Cov(x, y) = E{(x − E{x})(y − E{y})} (3.41)

The covariance describes how much the two random variables are correlated with each

other.

• Properties of expectation and variance :

- operation of the expected value E is linear, written as : E{ax} = aE{x} ;
- if all values of x are scaled by a constant a, the variance of ax is scaled by the square

of constant a, as : Var{ax} = a2Var{x} ;
- the expectation and variance of the sum of two random variables x and y are given by :

E{ax + by} = aE{x} + bE{y}
Var{ax + by} = a2Var{x} + b2Var{y} + 2abCov(x, y)

(3.42)

More generally, denote the n variables related to a variable f by a vector s(s1, s2, · · · , sn),

the variance of f can be written as :

Var{ f } =
n∑

i=1

(
∂ f

∂si

)Var{si} +
n∑

i

n∑

j, j,i

(
∂ f

∂si

)(
∂ f

∂s j

)2Cov(si, s j) (3.43)

When f is a multi-dimension vector, Var{ f } becomes the covariance of f , as :

Cov{ f } = JCov(s)JT (3.44)



where J is the Jacobian matrix (first partial derivative) of f to s, Cov(s) is the covariance

of the random variables {s1, s2, · · · , sn}.

If f is nonlinear to the variables s, the covariance of f can be approximated by first-order

error propagation of the true value with first-order Taylor series expansion at point si, as :

Y ≈ f (si) +
∂ f

∂s

∣∣∣∣∣
s=si

(s − si) (3.45)

Since we suppose that the error of s is small, higher orders in Taylor series expansion

are neglected. When f is too nonlinear, the probability distribution of f might not be well

approximated.

3.2.3.2/ UNCERTAINTY OF STEREO RECONSTRUCTION

Sources of 3D landmark errors vary from inaccurate camera calibration parameters, phys-

ical image noises, illumination conditions to feature detection and matching errors, these

errors will lead to some 3D points that do not really exist [32]. In this work, we consider

only the covariance of stereo reconstruction propagated from the image feature position

noise through the 3D reconstruction function.

FIGURE 3.10 – Uncertainty region of a reconstructed 3D point [70]

• Covariance of image feature position. Due to the noise of image points caused by

image quantization [102], the estimated coordinates of a 3D point Q might lie anywhere

inside the shaded region, as shown in Fig. 3.10. Assume that the normally distributed

error of image coordinates are uncorrelated on horizontal and vertical directions, the zero-

mean Gaussian position error of image feature ql(xl, yr) and qr(xr, yr) can be respectively

written as 2 × 2 covariance matrices :

Hle f t =

[
δ2

xl
0

0 δ2
yl

]
,Hright =

[
δ2

xr
0

0 δ2
yr

]
(3.46)

where δ2
xl

, δ2
xr

, δ2
yl

, and δ2
yr

are the standard deviations of pixel coordinates xl, xr, yl, and yr.

As the two corresponding points are uncorrelated, covariance matrix Hpair of the image

points pair can be written as a 4 × 4 diagonal matrix :

Hpair =



δ2
xl

0 0 0

0 δ2
yl

0 0

0 0 δ2
xr

0

0 0 0 δ2
yr


(3.47)



The covariance of a scale invariant feature (e.g., SURF feature used in our work) can

also be estimated from the detector response map in the neighborhood of feature point

[169]. Covariance of the tracked 2D feature position is supposed to be proportional to the

distance between the reference and tracked image frames (though the 2D locations of

features are not independent from each other when features are tracked from one frame

to another ; considering the computation time for independently detecting new features

in every image frame, feature tracking is used here and the cross-correlation between

features is not considered).

• Covariance of the triangulated 3D point propagating from the image feature lo-

cation covariance. Covariance of the reconstructed 3D points is propagated from the

covariance Hpair of 2D image positions through the nonlinear triangulation model (see

Eq.3.20 to Eq.3.26). According to Eq.3.44, the Jacobian matrix Q′ of a 3D point Q with

respect to 2D image coordinates {xl, yl, xr, yr} can be estimated by [37] :

Q′ = (r′
l
m1 + rlm

′
1
+ r′rm2 + rrm

′
2
)/2 (3.48)

with :
m′

1
=

[B0·r′l−(B0·r′r)(rl·rr)−(B0·rr)(r′
l
·rr+rl·r′r)][1−(rl·rr)2]+2[B0·rl−(B0·rr)(rl·rr)][(rl·rr)(r′

l
·rr+rl·r′r)]

[1−(rl·rr)2]2

m′
2
= (rl · rr)m

′
1
+ (r′

l
rr + rlr

′
r)m1 − B0 · r′r

where r′
l
and r′r are respectively the first derivatives of rl and rr with respect to {xl, yl, xr, yr}.

Then, the covariance matrix of the reconstructed 3D point can be approximately mea-

sured by :

p = Q′HpairQ′T (3.49)

3.2.3.3/ UNCERTAINTY OF STEREO VISUAL ODOMETRY

Covariance of the estimated transformation between two camera poses depends on many

factors, including the number, the accuracy and geometric distribution of point correspon-

dences, etc. In this section, the covariance of the estimated pose transformation is prop-

agated from the covariance of the used 3D points sets.

Error of relative motion

Let (Rr→t, Tr→t) denote the motion parameters from re f erence frame to frame t. The posi-

tion of a landmark Qt
i

at time t can be estimated by its position Qr
i

at the reference time

and the motion parameters

Qt
i
= g(Rr→t,Tr→t,Q

r
i
) (3.50)

i = 1, ...,N, where N is the number of point pairs used for motion estimation. Assume

that every landmark Qr
i

follows a Gaussian distribution with mean Qr
i

and covariance

matrix pr
i
, Qr

i
∼ N(Qr

i
, pr

i
) ; and coordinates Qt

i
follow a Gaussian distribution with mean Qt

i

and covariance matrix pt
i
, Qt

i
∼ N(Qt

i
, pt

i
). If the estimated camera motion parameters are

optimal, covariance matrix
∑

r→t of the motion parameters can be approximated through

error propagation [70][107] as :

(
∑

r→t)
−1
= S T P−1S =

N∑

i=1

(S T
i pi
−1S i) (3.51)



where S is the Jacobian matrix of {Qt} with respect to the motion parameters (Eq. 3.50),

P is the covariance of landmarks positions. S i is the Jacobian matrix of the i− th point {Qt
i
}

with respect to the motion parameters, and pi is the covariance of the landmarks i at the

re f erence frame and frame t, pi = pt
i
+ pr

i
.

When the ground is flat, the camera motion parameters are the translation vector (∆x,∆y)

and rotation θ, as (∆x,∆y, θ), Equation 3.50 can be written as Qt
i
= [cosθXr

i
− sinθYr

i
+

∆x, sinθXr
i
+ cosθYr

i
+ ∆y]T .

Error of current vehicle pose

As described in Eq.3.38, the current vehicle pose (R
global
t , T

global
t ) is obtained by integrat-

ing the pose at the reference frame (Rr, Tr) (with covariance
∑

r) and the relative motion

(Rr→t, Tr→t) (with covariance
∑

r→t) between the reference and current frames.

FIGURE 3.11 – Error propagation of stereovision based odometry

Supposing that the relative motion errors are small and independent with the reference

pose error [147], the covariance
∑

t of current vehicle pose Pt
global

can be propagated from

the reference frame and the relative motion error by first-order Taylor approximation, the

higher orders in Taylor series expansion are neglected :

∑

t

= J(r,r→t)

[ ∑
r 0

0
∑

r→t

]
JT

(r,r→t) (3.52)

where J(r,r→t) is the Jacobian matrix of the global vehicle pose with respect to (Rr,Tr) and

(Rr→t, Tr→t) (see Eq.3.38).
∑

t can be written as :

∑

t

= J(Rr ,Tr)(
∑

r)(J(Rr ,Tr))
T
+ J(Rr→t ,Tr→t)(

∑
r→t)(J(Rr→t ,Tr→t))

T (3.53)

As shown in Fig. 3.11, the yellow ellipse centered at each pose estimation represents

the covariance of the relative vehicle motion. The ellipse in light blue color represents the

vehicle pose covariance in the global frame. The covariance of the vehicle pose in the

global frame grows gradually if no other measurements are applied.



3.2.4/ CONCLUSION

In this section, stereovision based visual odometry is presented. Stereoscopic system

is used to capture the stereo video flow, recover the Euclidean 3D environments and

estimate the vehicle motion on the basis of image feature detection and tracking. Sev-

eral frames are selected as references and the optimal rotation and translation between

the current and reference frames are computed using a RANSAC based minimization

method. Covariance of the visual odometry estimation is also measured in this section.

Noises of the landmarks are propagated from the image points through triangulation pro-

cess. Accuracy of the estimated transformation parameters is dependent on the particular

landmarks used for pose estimation. In the future works, other factors like precision of the

camera calibration and stereo calibration process might also be incorporated for measur-

ing the VO accuracy [120]. Besides, the precision of visual odometry is still challenged

in outdoor environments, especially when the light condition changes, e.g., if the camera

looks directly to the sun, light spots might appear and a large part of the images might be

totally white (Fig. 3.9(right)). In these situations, it is difficult to detect enough features for

accurate motion estimation.

3.3/ LASER RANGE FINDER BASED VEHICLE MOTION ESTIMATION

The basic principles of laser range finder (LRF) systems were introduced in 2.2.4. A laser

range finder system measures the distance of an object by sending a laser pulse and

calculating the traveling time of the pulse. Classified by the range of FOV, some LRF

systems are listed in Fig. 3.12.

FIGURE 3.12 – Some LRF systems used in autonomous vehicle research

• The most often used LRF system in robotics area is 2D LRFs with a single layer, such

as SICK LMS211 in Fig. 3.12 (a) and SICK LMS221 in Fig. 3.12 (b). These two systems

scan their surroundings in two dimensions respectively with a scanning angle of 100o and

180o. In the radial field, a light impulse can be emitted every 0.25o, 0.5o or 1o, the maximum

range can be measured is 80m.



• Multi-layer LRF is used to scan more planes. For example, IBEO Alasca XT 4 in

(Fig. 3.12(c) scans 4 individual planes with a vertical angle of 3.2o. 3D LRF systems with

multiple lasers have also been used, like Velodyne HDL-32E and Velodyne HDL-64E 5 in

Fig 3.12 (d), which is used on Google self-driving car [66] and some other autonomous

vehicles. Velodyne HDL-64E uses an array of 64 lasers to scan the environment around

the vehicle, with 360o horizontal field of view and 26.8o vertical field of view, the maximum

range can be measured is 120m.

In this section, a single layer LRF is used for vehicle motion estimation. Several LRF

based motion estimation methods (i.e., laser scan alignment methods) are introduced in

section 3.3.1 ; then, covariance of ICP process is discussed in section 3.3.2.

3.3.1/ LASER SCAN ALIGNMENT METHODS

A LRF measurement is represented by a point (di, φi) (Fig. 3.13) in polar coordinates sys-

tem. It can be converted to coordinates in Cartesian coordinates system (xi, yi) through :

(xi, yi) = (dicosφi, disinφi) (3.54)

where di is the measured range and φi is the incident angle of a laser beam. Coordinates

used in the following alignment process are all in Cartesian coordinate system.

FIGURE 3.13 – A point with coordinates (di, φi) in polar coordinates system can be con-

verted into Cartesian coordinates (xi, yi)

Scan alignment is the process to align a LRF scan data (2D or 3D) set with another LRF

scan data set, which is considered to be the reference model. ICP (Iterative Closest Point)

method [13] is one of the most used alignment methods to find the rigid transformation

between a model point set and a reference point set. If a LRF sensor is rigidly installed

on a moving platform, the movement of this platform can then be obtained by LRF scan

alignment [54].

3.3.1.1/ CLASSIC ITERATIVE CLOSEST POINT (ICP) METHOD

Let Model = {q1, q2, . . . , qnm
} denote a model points set, let Data = {p1, p2, . . . , pnd

} denote

a data set (nm and nd are respectively the number of points in the Model set and in the

4. http://www.ibeo-as.com/

5. http://velodynelidar.com/lidar/hdlproducts/hdl64e.aspx



Data set). ICP tries to find the optimal 2D transformation T between two point sets by

iterative data association of corresponding points with nearest neighbor algorithm and

least square minimization.

Algorithm of ICP method is shown in Algorithm 2. Let T0 denote the initial transformation

between two data sets, each point pi in Data set is transformed by T0, then the closest

point of the transformed pi in the Model set is searched. For a set of n matched couples,

the optimal transformation is estimated by minimizing the sum of point difference squares

in Eq 3.55 through least mean square method :

T̂ = arg min
1

n

n∑

i=1

‖T0 pi − qi‖ (3.55)

Then, the transformation T0 is replaced by T̂ and the previous steps are repeated till the

number of iterations reaches the maximum threshold, or the difference of minimization

errors between two iterations is below a predefined threshold.

Algorithme 2: ICP (Iterative Closest Point)

Input : Model = {q1, q2, . . . , qnm
}, Data = {p1, p2, . . . , pnd

}, initial transformation T0,

threshold ξ

Output : The best transformation T̂ between two data sets

1 do

2 Apply the transformation T0 to points pi in Data set, then find the closest point qi of

each transformed pi in Model set by their Euclidean distance

ei(pi, qi, T0) = ‖ T0 pi − qi ‖;
3 For a set of n matched couples, the optimal transformation is estimated by

minimizing the following equation through least square method :

T̂ = arg min ǫ = arg min 1
n

∑n
i=1 ‖T0 pi − qi‖;

4 Replace the transformation T0 with T̂ : T0 ← T̂

5 while ǫ > ξ;

In our case, the Model and Data sets are 2 LRF scans, the transformation T is the rel-

ative 2D translation and rotation angle, T = {∆x,∆y,∆θ}. However, as the 2D LRF scans

are sparse and uncertain in outdoor applications, the estimated motion and correspond-

ing couples from ICP algorithm are not always reliable. Thus several modifications are

integrated into the classic ICP algorithm to enhance motion estimation accuracy. A com-

parison of several ICP variants can be found in [138]. We evaluate an outlier-rejection

ICP, and two image aided scan alignment methods in the two following parts.

3.3.1.2/ OUTLIER-REJECTION-ICP (OR-ICP)

During the matching procedure of ICP, an outlier reduction strategy with an adaptive dis-

tance error threshold during each iteration step is added before applying line 3 in Algo-

rithm 2.

For every new estimated transformation T0, the standard deviation σ of errors between

the transformed data set and model set is calculated. n couples of point correspondences

between the previous and current laser scans {(p1, q1); ...(pi, qi)...; (pn, qn)} are used for the



distance calculation as follows :

ei(pi, qi, T0) = ‖ T0 pi − qi ‖, i = 1, 2, · · · , n
e = 1

n

∑n
i=1 ei

σ =

√
1
n

∑n
i=1(ei − e)2

(3.56)

Data points which satisfy the following threshold relation are considered to be outlier and

eliminated before the next iteration :

|ei − e| > 3σ (3.57)

Then, the ICP process continues with the rest points. As seen in Fig. 3.14, when there

are a lot of unstructured objects in the environment, the data set transformed by the

outlier-rejection ICP (right image) can fit the model set better than with the classic ICP

(left image). Comparison of the estimation accuracy of ICP and OR-ICP in long trajectory

will be shown in the experiments part of this chapter (section 3.4.3).
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FIGURE 3.14 – Two LRF scans are taken at consecutive positions, data sets are respec-

tively transformed with the pose estimation from classic ICP (left) and OR-ICP (right)

If the initial transformation T0 is not close enough to the truth, this algorithm might con-

verge to a local minimum. In order to avoid the local convergence of the minimization

process, the optimal transformation of the previous scan is used as the initial transfor-

mation of the current scan alignment as the vehicle is supposed to move with constant

speed.

3.3.1.3/ IMAGE-AIDED SCAN ALIGNMENT

Compared with camera, LRF has the advantage that it can directly measure the detected

environment in Euclidean space. However, using only the geometric information for scan

alignment might fail in some areas with few structures. Considering the photometric in-

formation provided by images (color, intensity, etc.), onboard cameras can be adopted to

assist the performance of LRF scan alignment.

With corresponding laser - image points, the depth information of laser points can be

given to their corresponding 2D image coordinates to avoid 3D reconstruction of the im-



age points, then 3D/2D method (in section 2.2.3.2) can be used to estimate the ego-

motion of camera in the framework of visual odometry [18]. Or, the photometric attributes

of image points can be given to their corresponding LRF points to augment the measured

distance ei(pi, qi, T0).

In order to find the corresponding image pixel of a LRF point, the extrinsic calibration be-

tween a LRF system and a camera system is required. In the following part, the extrinsic

calibration method between a LRF system and a camera system is introduced ; then, two

variants of image-aided ICP methods are respectively.

Extrinsic calibration between a LRF and a camera

The objective of extrinsic calibration between a LRF system and a camera system is to

find their relative position and orientation. The coordinates QC of a 3D point Q in the

camera frame can be transformed to coordinates QL in the LRF frame by :

QL
= RC,LQC

+ TC,L (3.58)

where RC,L is a 3 × 3 rotation matrix corresponding to the camera orientation with respect

to the LRF system, TC,L is a 3-dimensional vector corresponding to the camera position

in the LRF system.

FIGURE 3.15 – A chessboard is placed in front of the camera and laser range finder, we

need to find the rotation RC,L and translation TC,L to transform the point coordinates from

camera frame to LRF frame

The calibration method proposed in [170] is used in our work to determine the rigid trans-

formation from the camera system to LRF system. In this method, a chessboard (planar

calibration pattern) is placed with different poses in front of the camera and LRF systems.

The chessboard should be visible for both systems, as shown in Fig. 3.15. The calibration

process is in three steps :

1) For each chessboard pose, the laser points on the chessboard are extracted from the

laser scan ; meanwhile, the chessboard grid points are detected in the image.

2) Then, assume that the chessboard is on the plane ZW
= 0 in the chessboard coordinate

system, the chessboard plane can be represented by a 3-dimension vector Nc in the



camera coordinate system. Nc is parallel to the normal of the chessboard plane and ‖Nc‖
equals the distance from the camera center to the chessboard plane. This vector can be

estimated by the camera extrinsic parameters in the world coordinate frame by :

Nc = −R3(RT
3 T ) (3.59)

where R3 is the third column of the camera rotation matrix R, T is the camera translation

vector with respect to the world frame. The extrinsic parameters of the camera (the rota-

tion matrix R and translation vector T ) can be known by camera calibration (details can

be found in section 3.2.1.1).

3) With the coordinates QL of a point Q in the laser coordinate system, its coordinates QC

in the camera reference frame can be derived from Eq.3.58, as :

QC
= R−1

C,L(QL − TC,L) (3.60)

Since point Q is on the calibration plane defined by the vector Nc, the dot product of QC

and Nc is :

Nc · QC
= ‖Nc‖

∥∥∥QC
∥∥∥ cosθQ

= ‖Nc‖2 (3.61)

where θQ is the angle between the point vector and the normal vector (see Fig. 3.15).

Replacing QC by Eq. 3.60, this geometric constraint can be written as :

Nc · R−1
C,L(QL − TC,L) = ‖Nc‖2 (3.62)

Then, Eq. 3.62 is applied to find the relative rotation RC,L and translation TC,L between

the camera and laser range finder, using both linear solution and nonlinear Levenberg-

marquardt method.

FIGURE 3.16 – One laser scan and its corresponding camera image frame. (Left) LRF

scan : the points are in red if they are in the FOV of the camera, the other points are in

blue ; (Right) Laser points (red) in the FOV of the camera are transformed into the image

frame using LRF/camera extrinsic parameters

With the estimated extrinsic parameters between these two sensors, LRF points which

are in the FOV of the camera can be transformed into the corresponding camera frame,

then to the image frame with camera intrinsic parameters, as shown in Fig. 3.16. We



know then the corresponding image pixel of each LRF scan point. For a LRF scan point,

we have then both its geometric information (from LRF measurement) and photometric

information (from image pixel).

ICP - Color

Based on the color information provided by images, ICP can be improved by directly

removing the outlier laser points or reducing the searching area of corresponding laser

points with their color information. For example, [49] proposed to classify the laser points

by color information before applying ICP association and apply the classic ICP with some

selected sub clouds. [45] proposed to use the classic ICP at first, then apply a color dis-

tance threshold to remove the outliers in color space. [61] proposed to use the additional

viewpoint-invariant attributes (e.g., visibility, reflected intensities) to reduce the search

space of the ICP association.

FIGURE 3.17 – ICP with corresponding image color constraint : instead of only searching

for the closest point, color information of the image points is also taken into account [81]

Another approach is to use color information together with the coordinates of LRF points

[80] (Fig. 3.17). Distance defined by the LRF coordinates in Eq.3.56 can be augmented

by image color information through :

ei = ‖T0 pi − qi‖ + a

√
a1(c1pi

− c1qi
)2 + a2(c2pi

− c2qi
)2 + a3(c3pi

− c3qi
)2 (3.63)

where c1, c2 and c3 are color components of an image pixel according to a specific color

model ; a1, a2 and a3 are weights for the different color components ; and a is the weight

for color component.

Implementation. In order to use color information, we need to find a proper color space to

represent it. In our work, we tested several color models (RGB, HSV, YIQ, and gray scale)

with different coefficients for each color model component. Since HSV color model can

separate the illumination and true color value of color information 6, HSV information of

image points is added into the Euclidean distance ei (in Eq 3.63) to measure the similarity

of points in ICP data association step. In outdoor environment, since the shadow might

affect the color value or the color saturation component, while the hue component which

indicates the intrinsic color is not affected, the weight coefficient a1 for hue is set to 100,

a2 for saturation and a3 for the value (brightness) are both set to 0 to reduce the influence

of brightness changes.

6. In the HSV color space, H stands for hue (intrinsic color such as red, yellow, green), S is for saturation

(strength of the color), and V for value (or brightness)



Remarks : generally, we consider that laser points in one LRF scan are acquired instantly.

But actually, the raw laser scan provided by a LRF system are acquired during a period

(depending on the LRF frequency), and the camera system captures one image at one

instant. If we want to integrate the LRF points and image pixel information in this way

above (ICP - color), the time latency between two sensors cannot be neglected. We have

tested this method with two LRF data sets of different frequencies. The first data set is

only with 5Hz frequency, the laser points on the left part of the scan cannot be directly well

associated with the image pixels, we have tried to compensate the coordinates of LRF

scan points with incident angles, LRF frequency and the predicted vehicle speed, but the

precision is still limited. The second LRF data set tested is with about 75Hz frequency, the

time latency problem between the two system are much better solved than the first data

set.

ICP - Descriptor

Considering the attribute information of image, the descriptor of an image point can be

used to describe the point by its neighborhood, e.g., SIFT descriptor, SURF descriptor.

For a laser point, the descriptor of its corresponding image point can also be used to

constrain the ICP association process. As detailed in section 3.2.2.1, the SURF descriptor

D of each laser-corresponding image point is extracted from the image, then added into

the distance measuring function, as :

ei = ‖T0 pi − qi‖ + αD

∥∥∥Dpi
− Dqi

∥∥∥ (3.64)

where Dpi
and Dqi

are respectively the SURF descriptors of image points corresponding

to the LRF scan points pi and qi, αD is the weight of image descriptor. We tested different

values for αD and set it to 0.05 in our work after comparing the localization results with

RTK-GPS.

For example, in Fig. 3.18, LRF scans in the FOV of the camera are respectively projected

onto their corresponding image planes at time t − 1 and t. Then, SURF descriptors with

64 dimensions are extracted from the image. Green circles in the figures represent the

extracted descriptors, the green segments inside the circles indicate the orientation of the

descriptor. After that, the laser points are associated by both their geometric coordinates

and descriptor attributes. The corresponding laser points are connected by red lines in

Fig. 3.18. Comparison of OR-ICP, ICP-Color and ICP-Descriptor for vehicle localization

in long sequence will be presented in experiment section 3.4.3.

3.3.2/ ERROR MODELING OF ICP PROCESS

3.3.2.1/ UNCERTAINTY OF LASER POINTS

As shown in Fig. 3.13, the coordinates of a LRF scan point (xi, yi) are related to the

incidence angle φi of the laser beam and the distance di between the emitter and the

object. Therefore, the uncertainty of every laser point can be measured by the range and

orientation of the laser beam. The noise of a LRF range measurement is assumed to

be a zero-mean Gaussian error with variance δd2
i
, the noise of a LRF incidence angle

measurement is assumed to be a zero-mean Gaussian error with variance δφi
2.



FIGURE 3.18 – LRF points in the FOV of the camera are projected onto the image ; and

SURF descriptors are extracted from the image ; then, the laser points are associated by

both their geometric coordinates and descriptor attributes

According to the sensor construction data, the systematic error of LMS221 is about ± 5cm

for range 1m ∼ 20m when choosing cm-mode, the standard deviation of range di is as-

sumed to be proportional to the distance and measured by δdi = di/400. The stan-

dard deviation of orientation φi is measured by δφi = 0.01 rad (in the existing robotics

implementations, the angle errors are usually not considered to be proportional to the

angle. More detailed discussion about laser range and angle error can be found in

[43]). With the variance of range and incidence angle, the covariance of a laser point

pi = (xi, yi) = (dicosφi, disinφi) = fi(di, φi) in Euclidean space can be propagated from δ2di

and δ2φi with the Jacobian matrix of function f :

cov(xi, yi) = Hp

[
δdi

2 0

0 δφi
2

]
Hp

T (3.65)

where Hp is the Jacobian matrix, as Hp =


∂xi

∂di

∂xi

∂φi
∂yi

∂di

∂yi

∂φi

 =
[

cosφi −disinφi

sinφi dicosφi

]
.



3.3.2.2/ UNCERTAINTY OF OR-ICP ESTIMATION

Here, covariance of the predicted vehicle pose from OR-ICP method is estimated with

the covariances of the LRF points and the minimization process. If T̂ is the solution of a

minimization process with a cost function ǫ and variable A, the covariance of T̂ could be

estimated in closed form with the covariance of variable A [33] :

T̂ = T̂ (A) = arg minA ǫ(A,T ) (3.66)

cov(T̂ ) =

(
∂2ǫ

∂T 2

)−1
∂2ǫ

∂T∂A
cov(A)

(
∂2ǫ

∂T∂A

)T (
∂2ǫ

∂T 2

)−1

(3.67)

For OR-ICP minimization process, the solution T̂ is the relative translation and rotation

estimated by the OR-ICP method, written as T̂ = (∆x̂,∆ŷ,∆θ̂) ; A is the point vector com-

posed of k couples of corresponding LRF scan points in the previous and current LRF

scans : A = ((p1, q1), ..., (pk, qk)), where pi = (x
p

i
, y

p

i
) and qi = (x

q

i
, y

q

i
). The error function ǫ is

written as :

ǫ(Model,Data, T̂ ) =

k∑

i=1

‖ m(T̂ , pi) − qi ‖ =
k∑

i=1

{(mx
i )2
+ (m

y

i
)2} (3.68)

where k is the number of the point correspondences after OR-ICP convergence, m(T̂ , pi)

is the transformed location of pi with the estimated solution T̂ , and
mx

i
= cos(∆θ̂)x

p

i
− sin(∆θ̂)y

p

i
+ ∆x̂ − x

q

i
,

m
y

i
= sin(∆θ̂)x

p

i
+ cos(∆θ̂)y

p

i
+ ∆ŷ − y

q

i
,

nx
i
= −sin(∆θ̂)x

p

i
− cos(∆θ̂)y

p

i
,

n
y

i
= cos(∆θ̂)x

p

i
− sin(∆θ̂)y

p

i
.

The partial derivative of ǫ with respect to T at T̂ is :

∂ǫ

∂T |T=T̂
= 2

[ ∑k
i=1(mx

i
)

∑k
i=1(m

y

i
)

∑k
i=1{mx

i
nx

i
+ m

y

i
n

y

i
}

]
(3.69)

Then, the second-order partial derivative is :

∂2ǫ

∂T 2

∣∣∣∣∣∣
T=T̂

= 2



∑k
i=11 0

∑k
i=1(nx

i
)

0
∑k

i=11
∑k

i=1(n
y

i
)∑k

i=1(nx
i
)

∑k
i=1(n

y

i
) J33

 (3.70)

where J33 =
∑k

i=1{nx
i
n1

x + mx
i
(−n

y

i
) + n

y

i
n

y

i
+ m

y

i
nx

i
}. Then, the second-order mixed derivative

is a 3 × 4k matrix, written as :

∂2ǫ

∂T∂A

∣∣∣∣∣∣
T=T̂

= 2


ǫT A(1) · · · ǫT A(1)

ǫT A(2) · · · ǫT A(2)

ǫT A(3)1 ǫT A(3)i ǫT A(3)k


3×4k

, i = 1, 2, · · · , k (3.71)

where :
ǫT A(1) = [cos(∆θ̂), −sin(∆θ̂), −1, 0],

ǫT A(2) = [sin(∆θ̂), cos(∆θ̂), 0, −1],

ǫT A(3)i
= [cos(∆θ̂)(nx

i
) + (mx

i
)(−sin(∆θ̂)) + sin(∆θ̂)(n

y

i
) + (m

y

i
)(cos(∆θ̂)),

−sin(∆θ̂)(nx
i
) + mx

i
(−cos(∆θ̂)) + cos(∆θ̂)(n

y

i
) + m

y

i
(−sin(∆θ̂)), −nx

i
, −n

y

i
].

Assume that all the laser points are independent from each other, the covariance matrix

cov(A) of k point correspondences are obtained by :

cov(A)4k×4k = diag{cov(x
p

1
, y

p

1
); cov(x

q

1
, y

q

1
); ...; cov(x

p

k
, y

p

k
); cov(x

q

k
, y

q

k
)}.



3.3.3/ CONCLUSION

In this section, several laser range finder based motion estimation methods were pre-

sented in order to provide a robust LRF based vehicle motion estimation. An outlier-

rejection ICP (OR-ICP) and two image-aided ICP methods (ICP-Color, ICP-Descriptor)

are proposed to reduce the matching ambiguities of scan alignment in outdoor environ-

ment. For the purpose to be integrated with other sensor measurements, the uncertainty

of the alignment was also discussed. These methods are compared with real experimen-

tal data in section 3.4.3. But it should be mentioned that as the LRF system used is two

dimensional and the vehicle cannot move on absolutely flat ground in real experiments,

the precision of 2D LRF system based outdoor vehicle ego-motion estimation is still lim-

ited.

3.4/ IMPLEMENTATION AND EXPERIMENTAL RESULTS

3.4.1/ EXPERIMENTAL PLATFORM

The proposed method is tested with real data obtained by an experimental vehicle SeT-

Car developed within Laboratoire Systèmes et Transports of IRTES (IRTES- SET) at

UTBM 7. SeTCar is based on an electric GEM car 8 with speed between 24km/h and

40km/h. It (Fig. 3.19) is equipped with a GPS receiver, a RTK-GPS receiver, two laser

range finders and a stereoscopic system, together with an embedded hard disk and a

computer system (PC) to log the acquired data and to implement autonomous navigation

task.

GPS receiver. The GPS receiver used on SetCar is a ProFlex 500 Magellan RTK-GPS

receiver 9 with frequency 10Hz. This receiver permits to use both GPS and GLONASS

networks for quick position initialization. When the RTK-GPS mode is chosen, a fixed

RTK-GPS base should be settled nearby to send corrections to the mobile GPS receiver

by UHF radio antenna (Fig. 3.20). The RTK-GPS receiver can provide a position up to

centimeter precision on horizontal plane, it is used as ground-truth to evaluate the pro-

posed localization method. Another GPS receiver of the same type is also mounted to

provide normal precision GPS positions without choosing the RTK-GPS mode.

Stereoscopic system. The stereoscopic system used in the experiment is a Bumblebee

XB3 system 10. It captures 16 images pairs every second, respectively with size of 1280×
960 pixels. The baseline of the stereoscopic system is 0.24m, with a FOV (Field of View)

of 66o for each camera.

Laser range finder. A horizontal SICK LMS221 laser range finder is mounted on the

bottom front of the vehicle. This LRF provides about 5 scans every second and each LRF

scan provides 361 laser points in a 180o arc with 0.5o angular resolution and maximum

range of 80 meters.

Two experimental data sets were respectively captured in March, 2011 and September,

7. http://epan.fr/Accueil

8. http://www.gemcar.com/

9. http://www.magellangps.com/

10. www.ptgrey.com



(a) The experimental GEM vehicle equipped with

multiple sensors

(b) Position of sensors on the GEM vehicle : side

view and top view of the sensor configuration in the

2nd experiment

FIGURE 3.19 – Configuration of the experimental vehicle

FIGURE 3.20 – Fixed GPS base used for sending corrections to the mobile GPS receiver



2012 with this experimental vehicle. For the two experiments, the positions of the GPS

receiver and the LRF sensor are fixed on the vehicle, while the position of the stereo-

scopic system was changed during the second experiment. The intrinsic and extrinsic

parameters of the stereoscopic system were obtained by calibration as presented in sec-

tion 3.2.1.1 and section 3.2.1.2. The relative poses between the stereoscopic system and

the LRF system were obtained by chessboard based calibration as presented in previous

section.

3.4.2/ EXPERIMENTAL RESULTS OF STEREOVISION ODOMETRY AND LRF
ODOMETRY

For the experimental data set captured in March 2011, the vehicle was driven in an in-

dustrial area with buildings around (Fig. 3.21). Recorded GPS positions of the vehicle

were transformed from WGS84 system to Extended Lambert II system which covers the

experimental area (see Appendix A). The whole trajectory length measured by RTK-GPS

receiver is 603.73 meters. Landmarks reconstructed from the stereovision odometry and

2D LRF scan alignment are overlaid on satellite image with the vehicle positions provided

by the RTK-GPS receiver, as shown in Fig. 3.21.

In this part, we compare the localization results obtained using : the stereoscopic system

(visual odometry approach described in section 3.2), and the LRF system (comparison of

classic ICP and OR-ICP based scan alignment described in section 3.3).

FIGURE 3.21 – Landmarks from the stereoscopic system and from the LRF are over-

lapped on Google aerial image

In Fig. 3.22(a), the vehicle positions are respectively estimated by the stereoscopic sys-

tem with 2D visual odometry and 3D visual odometry after camera calibration and images

rectification. The stereovision based vehicle yaw angles are compared with the ground

truth provided by RTK-GPS receiver in Fig. 3.22(b).

It is noted that the vehicle localization error of stereovision based visual odometry is small

till the second big turning of the vehicle. When the vehicle encounters sharp turns where



the movement of the vehicle is large and the illumination condition changes quickly, it

is difficult to detect enough image features and apply feature matching. During these

situations, the inaccurate translation and roll angle estimations lead to unreal vehicle

motion, and the vehicle trajectory gradually drifts due to error accumulation.
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(a) Vehicle trajectory obtained by the stereo-
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(b) Vehicle yaw angles obtained from the stereo-

scopic system and from the RTK-GPS

FIGURE 3.22 – Comparison of the vehicle trajectories and yaw angles obtained from the

stereoscopic system and the RTK-GPS receiver

When the ground truth is available, the covariance estimation algorithm is consistent if

the predicted covariance matrix can accurately represent the estimation error within its

3σ bound. From Fig. 3.4.2, the estimated position error is mostly inside the bounds. In the

future works, other factors like precision of the camera calibration and stereo calibration

process might also be incorporated for measuring the VO accuracy.

Then, the vehicle positions are respectively estimated by the classic ICP and the pro-

posed outlier-rejection ICP (OR-ICP).

The localization results in Fig. 3.24(a) show that for this data set, the OR-ICP approach

can better estimate the vehicle moving distance than the classic ICP method, and can

improve the localization precision of LRF subsystem. The vehicle orientations estimated

by the LRF OR-ICP are compared with the ground truth given by the RTK-GPS in

Fig. 3.24(b). It is noted that from the starting point to the second turning, the vehicle ori-

entation is almost consistent with the ground truth, but the trajectory begins to drift from

the second turning. As the LRF used in this experiment is installed on the bottom front of

the vehicle and is close to the ground, when the vehicle moves in the field with a certain

slope, it might scan on the ground and the consecutive scans could not be associated.

3.4.3/ COMPARISON OF DIFFERENT LRF BASED ICP METHODS

The second data sequence was acquired in the old town center of Belfort, in September,

2012. The whole trajectory measured by RTK-GPS is about 800m, as shown in Fig. 3.25.

After associating different sensor data by their logged time, the estimated vehicle trans-

lation and rotation from the visual odometry method and from the different ICP methods
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FIGURE 3.23 – Position error of stereoscopic system based estimation

(a) Vehicle trajectory obtained by the LRF using classic

ICP and OR-ICP algorithms

(b) Vehicle yaw angles obtained from the LRF with

OR-ICP and from the RTK-GPS

FIGURE 3.24 – Comparison of the vehicle trajectories and yaw angles obtained from the

LRF and the RTK-GPS receiver



FIGURE 3.25 – Vehicle trajectory overlapped on aerial image (Google)

are compared with the ground truth.

For ICP-Color and ICP-Descriptor methods, the left camera of the stereoscopic system

is used together with the LRF sensor. Extrinsic parameters from the left camera to the

LRF sensor are obtained by calibration before the experiment. The rotation matrix and

translation vector are respectively :

RC,L =


0.9980 0.0574 −0.0274

−0.0539 0.9922 0.1124

0.0336 −0.1107 0.9933

, TC,L =

[
−0.1438 −1.4329 −1.1094

]
meter.

Then, the vehicle translation and rotation parameters between every two instants are re-

spectively estimated by different sensors : laser range finder using ICP and OR-ICP, LRF

and left camera using ICP-Color and ICP-Descriptor methods, and also the stereovision

based visual odometry. The vehicle trajectories are respectively obtained by the different

methods and compared with the RTK-GPS trajectory, as shown in Fig. 3.26.

With the assumption that the time interval δt is small, we can obtain the average speed

and angular velocity of the vehicle during each period by dividing the estimated rotation

and translation by δt. The mean and standard deviation of the speed difference (εv, σεv),

mean and standard deviation of the angular velocity difference (εω, σεω) during the whole

trajectory, and the estimated trajectory length are shown in Tab 3.3. The vehicle angu-

lar velocity and speed are respectively calculated and compared with the ground truth

provided by the gyro and the RTK-GPS receiver (Fig 3.27 and Fig 3.28).

From the comparison shown in Tab 3.3 and Fig 3.27, Fig. 3.28, neither the LRF nor

the stereoscopic system based approaches could provide accurate absolute localization

results in long term due to the error accumulation. There is no big difference between the

different ICP methods for the average speed error. ICP-Color has smaller angular velocity

error than the classic ICP, while ICP-Descriptor has smaller angular velocity standard

deviation than the classic ICP. OR-ICP has the smallest average angular velocity error

among the four ICP methods. For the total length of trajectory, ICP-Descriptor has the



FIGURE 3.26 – Vehicle trajectories obtained by LRF with ICP, OR-ICP, ICP-Color (with

HSV color model), ICP-descriptor (SURF descriptor), stereovision odometry, commercial

GPS and RTK-GPS

εv(m/s) σεv(m/s) εω(degree/s) σεω(degree/s) Total length(m)

ICP 3.47 3.56 2.90 7.23 735.52

OR-ICP 3.47 3.56 2.80 5.97 742.30

ICP-Color 3.60 5.06 2.87 5.69 746.90

ICP-Descriptor 3.46 3.58 3.79 6.98 769.98

Visual odometry 3.90 4.00 2.21 4.31 865.35

RTK-GPS - - - - 805.00

TABLE 3.3 – Comparison of vehicle speed with RTK-GPS based ground truth, and angular

velocity with gyro based ground truth

closest estimation.

Image-aided ICP alignment methods only show small improvements over the classic ICP

method, this might due to the precision of extrinsic calibration of the LRF and camera

systems, to the parameters chosen to represent the weights of image color attributes

in the distance measurement function, or to the limited FOV of the camera (66o in our

experiment, it is probable that some important geometric or structure information in the

LRF scan might be neglected).



3.5/ CONCLUSION

In this chapter, stereovision based visual odometry and laser range finder (LRF) based

motion estimation methods are presented. Stereovision based visual odometry can es-

timate the vehicle motion based on corresponding image features. The error of wheel

encoder odometry due to wheel slippage in bad soil conditions can be avoided by visual

odometry. LRF scans based outlier-rejection ICP (OR-ICP) and two image-aided ICP

methods (ICP-Color, ICP-Descriptor) are presented and compared with the classic ICP

method, in order to obtain an accurate and robust LRF based vehicle motion estimation

in outdoor environment. The two methods were tested with real data and evaluated by

RTK-GPS as ground truth.

Several research perspectives are summarized for the localization methods in this chap-

ter :

– The precision of visual odometry method could be improved by improving camera cal-

ibration results, or using more precise and robust features. The precision and robust-

ness of different features can be tested with more data sequences under different illumi-

nation and weather conditions, and in more complex environments with different types

of obstacles, etc. Detection of dynamic obstacles and feature detection and matching

time should also be measured and improved.

– For the image aided ICP methods, the work on how to dynamically choose appropri-

ate coefficients for the image attributes needs to be continued in the future work ; the

incorporation of camera with larger FOV (e.g. fish eye) can also be considered.

– Due to the error accumulated from point to point, vehicle trajectory estimated by the rel-

ative methods might gradually drift. Therefore, apart from improving the performance of

every sensor, we can take use of redundancy and complementarity of multiple sensors

to provide a more accurate and robust vehicle pose estimation.



(a) Vehicle speed estimated by the different methods

(b) Error of vehicle speed compared with RTK-GPS based ground truth

FIGURE 3.27 – Comparison of the vehicle speed with the ground truth



(a) Angular velocity estimated by the different methods

(b) Error of vehicle angular velocity compared with gyro based ground truth

FIGURE 3.28 – Comparison of the angular velocity with the ground truth





4

GPS-STEREOVISION-LRF BASED

DATA FUSION FOR VEHICLE

LOCALIZATION

4.1/ OVERVIEW

As discussed in chapter 2, GPS (Global Positioning System) has been the most used ve-

hicle localization system in outdoor environments. If a vehicle onboard GPS receiver can

receive direct signals from (at least) four well distributed satellites in the sky, it can provide

current vehicle position by trilateration. Although localization errors due to atmospheric

conditions and radio signal noises can be corrected by equipments like Differential GPS

(DGPS), the error due to satellite visibility or multi-path problems cannot be corrected by

these methods, especially in dense urban environments. Relative localization methods,

like dead-reckoning sensors based wheel-encoder odometry, inertial navigation or vision

based ego-motion estimation, have been applied to provide odometry and orientation in-

formation of vehicle by integration. Small errors in short term might result in unbounded

error of integrated measurements.

By considering advantages and drawbacks of each localization system, apart from im-

proving the performance of every sensor, the redundant measurement information can

be used to evaluate the coherence of different systems and to continuously provide pose

measurement if any system fails to work, while the complementary information can be

used to provide a complete state estimation (e.g., a gyro can provide the vehicle yaw

angle information and a GPS receiver can provide the absolute vehicle position).

In this chapter, the vehicle motion information estimated from stereoscopic system (see

section 3.2) and laser range finder system (see section 3.3), and vehicle global position

from a GPS receiver are integrated within a probabilistic framework. This chapter is orga-

nized as follows : an introduction of data fusion approaches is presented in section 4.2 ;

the sensor coherence validation method is introduced in section 4.3 ; after that, vehicle

state are estimated from the process model and observations from three sensors (GPS,

stereoscopic system and LRF) in section 4.4 ; finally, the proposed method is tested with

real experimental data in section 4.5.



4.2/ DATA FUSION APPROACHES

Based on Bayesian theory, Kalman filter and its derivations (e.g., EKF, UKF, interacting-

multiple-model (IMM) system) [11][82][38] have been used for data fusion under the as-

sumption that both the process and the observation noises obey white Gaussian dis-

tribution. The vehicle state is predicted with its previous state and a new input vector

according to a vehicle process model. The observations from different sensors are used

to correct this prediction by taking into account their uncertainties. These observations

are supposed to be independent to each other.

Let Xt denote the state of a system at time t, st denote a measurement at time t, the

transition model ft of the system and the measurement model ht can be written as :

Xt = ft(Xt−1, ut) + αt

st = ht(Xt) + qt
(4.1)

where ut is the input data, αt is the noise of transition process and qt is the noise of

measurement.

In the following section, four Gaussian probabilistic based data fusion approaches are

briefly introduced : Kalman filter (section 4.2.1), extended Kalman Filter (section 4.2.2),

unscented Kalman Filter (section 4.2.3) and information filter (section 4.2.4). Some other

filters are also presented in section 4.2.5.

4.2.1/ KALMAN FILTER

For a linear discrete-time dynamic system of which the transition model ft in Eq. 4.1 is

linear at Xt−1 and ut and αt is Gaussian distributed, and the measurement model ht is

linear at Xt with a Gaussian noise qt, Kalman filter [83] can be used to provide a closed

form recursive solution for the system state. The linear transition model ft−1 and the mea-

surement model ht can be written as :

Xt = FtXt−1 + Utut +Gtrt

st = HtXt + qt
(4.2)

where Ft is the state transition matrix, Ut is the input transition matrix, αt = Gtrt, Gt is the

transition model of process noise ((n×m)-dimensional noise matrix, where n is the size of

the state, m is the size of the noise), rt is the Gaussian process noise with rt ∼ N(0,Rt), Ht

is the measurement matrix, qt is the measurement noise at time t with qt ∼ N(0,Qt).

At time t = 0, the initial system state X0 is assumed to be Gaussian distributed with known

mean X0 and covariance P0, X0 ∼ N(X0, P0). Let (Xt−1, Pt−1) the updated vehicle state and

noise at time t − 1, the system state and covariance (Xt, Pt) at time t can be estimated by

Kalman filter with a prediction step and an update step :

– Prediction : the predicted mean X̂t|t−1 and covariance P̂t|t−1 of the state at time t are :

X̂t|t−1 = FtXt−1 + Utut

P̂t|t−1 = FtPt−1FT
t +GtRtG

T
t

(4.3)

– Update : then, the innovation vt between a measurement and the prediction is calcu-

lated by :

vt = st − HtX̂t|t−1 (4.4)



Covariance of the innovation is :

S t = HtP̂t|t−1HT
t + Qt (4.5)

Kalman gain is then defined by :

Kt = P̂t|t−1HT
t S −1

t (4.6)

Then, the predicted system state is updated with the Kalman gain Kt and innovation vt

as :
Xt = X̂t|t−1 + Ktvt

Pt = P̂t|t−1 − KtS tK
T
t

(4.7)

4.2.2/ EXTENDED KALMAN FILTER

If the transition model ft or the measurement model ht is nonlinear, or αt, qt are not Gaus-

sian noises, extended Kalman filter (EKF) have been proposed to estimate the state of

such system. EKF extends the scope of Kalman filter to nonlinear optimal filtering prob-

lems by forming a Gaussian approximation to the joint distribution of the state Xt and the

measurements st using a Taylor series based transformation. The first-order approxima-

tion based extended Kalman filter is as follows :

– Prediction :

X̂t|t−1 = F̂tXt−1 + Utut

P̂t|t−1 = F̂tPt−1F̂T
t +GtRtG

T
t

(4.8)

where F̂t is the Jacobian matrix of the nonlinear transition model ft with respect to Xt−1 :

F̂t−1 =
∂ ft

∂Xt

∣∣∣∣∣
Xt=Xt−1

(4.9)

– Update :

the difference between a measurement observation and the predicted observation is :

vt = st − ĤtX̂t|t−1 (4.10)

where Ĥt is the Jacobian matrix of ht with respect to X̂t|t−1 :

Ĥt =
∂ht

∂Xt

∣∣∣∣∣
Xt=X̂t|t−1

(4.11)

The covariance of the innovation at time t is :

S t = ĤtP̂t|t−1ĤT
t + Qt (4.12)

The Kalman gain is defined by :

Kt = P̂t|t−1ĤT
t S −1

t (4.13)

Then, the system state is updated by :

Xt = X̂t|t−1 + Ktvt

Pt = P̂t|t−1 − KtS tK
T
t

(4.14)



4.2.3/ UNSCENTED KALMAN FILTER

In many cases, the nonlinear system cannot produce reliable results if the process are not

well approximated by linear approximation, the estimation of the filter might diverge. In-

stead of using linear approximation of the system, unscented transform (UT) [82] chooses

a fixed number of sigma points to represent the desired moment of the original distribution

of Xt−1. The sigma points are then propagated through the non-linear function ft and used

to estimate the moment of the transformed variable Xt. The advantage of UT over Taylor

series based approximation is that UT is better at capturing the higher order moments

caused by the non-linear transform. Based on the unscented transform of the system

state Xt−1 at time t − 1, steps of unscented Kalman filter are as follows :

• Calculate the approximation points : for a variable Xt−1 with dimension n, its mean

and covariance at time t are augmented by mean and covariance of the process noise

rt ∼ N(0,Rt) through :

mt−1 =

[
Xt−1

0

]
, P0,t−1 =

[
Pt−1 0

0 Rt

]
(4.15)

then, the distribution of Xt−1 is approximated by a set of (2n+1) sigma points X
(i)

t−1
through :

X
(0)

t−1
= mt−1

X
(i)

t−1
= mt−1 + [

√
(n + λ)P0,t−1]i, i = 1, . . . , n

X
(i)

t−1
= mt−1 − [

√
(n + λ)P0,t−1]i−n, i = n + 1, . . . , 2n

(4.16)

where
√

(n + λ)P0,t−1 could be calculated by Cholesky decomposition [82], and

[
√

(n + λ)P0,t−1]i is the ith column of the matrix square root.

Associated weights W
(i)
m of the state, and weights W

(i)
c of the covariance are respectively

estimated by :

W
(0)
m = λ/(n + λ)

W
(0)
c = λ/(n + λ) + (1 − α2

+ β)

W
(i)
m = W

(i)
c = 1/(2(n + λ)), i = 1, . . . , 2n

(4.17)

where β is a positive constant related to the distribution of the state vector, λ is a scaling

factor defined by : λ = α2(n + κ) − n, α and κ are positive constants controlling the spread

of sigma points.

• Prediction : the current state vector X
(i)

t|t−1
is predicted by propagating the sigma points

X
(i)

t−1
through the nonlinear function ft :

X
(i)

t|t−1
= ft(X

(i)

t−1
, ut), i = 0, . . . , 2n (4.18)

The mean and covariance of prediction are :

X̂t|t−1 =

2n∑

i=0

W
(i)
m X

(i)

t|t−1
(4.19)

P̂t|t−1 =

2n∑

i=0

W
(i)
c [X

(i)

t|t−1
− X̂t|t−1][X

(i)

t|t−1
X̂t|t−1]T (4.20)



• Update : the measurement is augmented by mean and covariance of the measurement

noise ∼ N(0,Qt) and approximated by a set of sigma points X̂
(i)

t|t−1
as in the prediction

stage. Then, these sigma points are propagated to predict the measurement through :

y
(i)
t = ht(X̂

(i)

t|t−1
), i = 0, . . . , 2n (4.21)

the predicted measurement mean ỹt is obtained by :

ỹt =

2n∑

i=0

W
(i)
m y

(i)
t (4.22)

the covariance of the measurement is :

S t =

2n∑

i=0

W
(i)
c [y

(i)
t − ỹt][y

(i)
t − ỹt]

T (4.23)

the cross-covariance of the predicted state and the measurement is :

Ct =

2n∑

i=0

W
(i)
c [X

(i)

t|t−1
− X̂t|t−1][y

(i)
t − ỹt]

T (4.24)

where the associated weights W
(i)
m for the mean and W

(i)
c for the covariance are defined

by the actual dimension of the measurement. The filter gain Kt is :

Kt = CtS
−1
t (4.25)

and the state and covariance of the system are updated by :

Xt = X̂t|t−1 + Kt(st − ỹt)

Pt = P̂t|t−1 − KtS tK
T
t

(4.26)

4.2.4/ INFORMATION FILTER BASED SENSOR FUSION

Kalman filter represents the belief of Gaussian with mean and covariance, while informa-

tion filter (IF) [146] deals with the information state vector and information matrix (inverse

of the covariance matrix) associated with the Fisher information. Both representations are

duals of each other, and each of them can be recovered from the other by matrix inver-

sion [156]. Since the information state is related to the underlying likelihood of the vehicle

state, it is able to update the predicted state by directly integrating the information state

vectors and information matrices from multiple observations.

Although the prediction stage of information filter is more complex than Kalman filter,

information filter has the advantage that the update stage is computationally easier since

no gain or innovation covariance matrices need to be calculated. The maximum size of

the matrix to be inverted in information filter is the dimension of the state vector. When the

number or size of the observations largely increases, the update stage of information filter

is simpler than the usually used multi-filter approach [51]. For nonlinear systems, first-

order approximation based extended information filter (EIF) [158][2][155] or unscented

transformation (UT) based unscented Kalman filter (UIF) [90][6] can be used.



4.2.4.1/ INFORMATION FILTER FOR LINEAR PROCESS MODEL

For a linear state transition model Xt = FtXt−1 + Utut + Gtrt with the previous informa-

tion vector it−1 and information matrix It−1, the current information vector can be directly

predicted.

• Information state/matrix prediction. The current information vector ĩt and the infor-

mation matrix Ĩt are predicted by :

At = (F−1
t )T (It−1)F−1

t

Et = GT
t AtGt + R−1

t

Bt = AtGtE
−1
t

Ĩt = At − BtEtB
T
t

ĩt = [I − BtG
T
t ](F−1

t )T (it−1) + (Ĩt)Utut

(4.27)

The predicted vehicle state X̂t|t−1 and covariance P̂t|t−1 can be derived from the information

vector and information matrix by :

X̂t|t−1 = (Ĩt)
−1 ĩt, P̂t|t−1 = (Ĩt)

−1 (4.28)

• Information state/matrix update. For a sensor measurement with a linear measure-

ment model st = HtXt + qt = s̃t + qt, its information state vector it and information matrix It

at instant t can be obtained by :

it = HT
t Q−1

t st, It = HT
t Q−1

t Ht (4.29)

where Ht is the linear observation model matrix, Qt is the observation uncertainty. The

information state vector and information matrix can be obtained by combination of the

prediction and the contribution from the observation :

it = ĩt + it, It = Ĩt + It (4.30)

The vehicle state Xt and covariance Pt can be derived from the information vector and

information matrix through :

Xt = it(It)
−1, Pt = (It)

−1 (4.31)

4.2.4.2/ UNSCENTED INFORMATION FILTER FOR NONLINEAR PROCESS MODEL

For a nonlinear system, instead of approximating the process and observation models

by Taylor series, unscented transform is embedded to approximate the prediction and

observation by a set of sigma points.

• Information state/matrix prediction. Unscented transform chooses a fixed number

of sigma points from the original distribution of the state, propagates the sigma points

through the non-linear process model, and estimates the mean and covariance of the

current state on the basis of the sigma points (Eq.4.15 to Eq.4.20). Then, the predicted

information state vector ĩt and information matrix Ĩt can be recovered from the predicted

mean and covariance of the state [51] :

Ĩt = (P̂t|t−1)−1, ĩt = (Ĩt)X̂t|t−1 (4.32)



• Information state/matrix update. The observation vector can be approximated by the

predicted sigma points X
(i)

t|t−1
with error propagation. Then, the observation vector is used

to approximate the measurement ỹt. The information matrix It in Eq.4.29 can be written

as :

It = HT
t Q−1

t Ht = (P̂t|t−1)−1P̂t|t−1HT
t Q−1

t Ht(P̂t|t−1)T (P̂T
t|t−1

)−1 (4.33)

Replacing P̂t|t−1HT
t by Ct, the information matrix becomes :

It = P̂−1
t|t−1

CtQt
−1Ct

T (P̂−1
t|t−1

)T (4.34)

where Ct is the cross covariance of the state vector and the measurement vector. It is

approximated by :

Ct =
∑2n

i=0 W
(i)
c [X

(i)

t|t−1
− X̃t|t−1][y

(i)
t − ỹt]

T (4.35)

Then, the information state vector is written as :

it = HT
t Q−1

t st

= HT
t Q−1

t [vt + HtX̂t|t−1]

= P̂−1
t|t−1

P̂t|t−1HT
t Q−1

t [vt + HtP̂
T
t|t−1

(P̂T
t|t−1

)−1X̂t|t−1]

= P̂−1
t|t−1

CtQ
−1
t [vt +CT

t (P̂T
t|t−1

)−1X̂t|t−1]

(4.36)

where st is the observation, vt is the innovation vector. A pseudo-measurement matrix H̃t

can be defined as [90] :

H̃t ≡ (P̂−1
t|t−1Ct)

T (4.37)

The information contribution it in Eq.4.36 and It in Eq.4.34, can be respectively expressed

by :

it = H̃t
T

Q−1
t [vt + H̃tX̂t|t−1], It = H̃t

T
Q−1

t H̃t (4.38)

• With N observation sensors. Local information from different sensors are directly

combined to obtain the information state vector it and the information matrix It of the

system :

it = ĩt +


N∑

sen=1

isen
t

 , It = Ĩt +


N∑

sen=1

I sen
t

 (4.39)

where isen
t and I sen

t are respectively the information state and information matrix of the

(sen)th sensor.

The vehicle state Xt and covariance Pt can be derived from the information vector and

information matrix through : Xt = it(It)
−1, Pt = (It)

−1.

4.2.5/ OTHER FUSION METHODS FOR VEHICLE LOCALIZATION

Besides the fusion methods presented above, a large number of methods also exist in

the literature especially for handling he tnon-Gaussian distributed noises, such as :

• Particle filter [46][65][129]. Instead of linearizing and representing the noise distribu-

tion by an exponential function (Gaussian noise), particle filter approximates the prior

distribution of the state in state space by a set of random state samples, called parti-

cles, denoted as {x̃i
t}, i = 1, · · · ,M [156]. Each particle has an importance factor {wi

t} to



incorporate the measurement st into the particle set. These weighted particles are inde-

pendently propagated through the transition model to represent the posterior of xt, then

replaced in an importance re-sampling process with their important factors {wi
t}. Particles

in low-probability regions will be filtered out gradually.

• Interval method. An alternative solution to estimate the state of dynamic processes is

the set-membership estimation approach [86][104][106] . In this method, the inaccuracy

of the measurements is not expressed by mean and covariance, but in terms of bounds

on the possible errors.

4.2.6/ CONCLUSION

The classic Kalman filter permits to predict and update the system state of a linear sys-

tem. When the transition model or the measurement model are nonlinear, EKF forms a

Gaussian approximation to the joint distribution of the state and the measurement using a

Taylor series based transformation. However, the calculation of Jacobian matrix might be

difficult or not accurate for approximating the system. Unscented transform (UT) chooses

a fixed number of sigma points to represent the desired moments of the original distribu-

tion of state. The advantage of UT over the first-order Taylor series based approximation

is that UT is better for capturing the higher order moments caused by the non-linear

transform. When more than two measurements are provided, information filter has the

advantage that the update stage is computationally easy : the inverse-covariance form of

the information filter is able to update the prediction by directly integrating the informa-

tion state vectors and the information matrices from multiple observations. Therefore, in

the following section, UT is chosen to approximate the nonlinear system, and information

filter is chosen to integrate the observation from different sensors.

4.3/ SENSOR COHERENCE VALIDATION BY EXTENDED NIS

During the multi-sensor fusion process, measurements might be contaminated by distur-

bances. Erroneous measurements would result in unreliable data. Therefore, measuring

the coherence of different localization measurements is important for reliable location de-

mands. The coherence and integrity of multiple sensor measurements are validated for

checking and removing the biased measurements [101].

4.3.1/ NORMALIZED INNOVATION SQUARED (NIS)

• Chi-squared distribution : if x1, x2, ..., xk are k independent standard normal random

variables, the sum of their squares dx =
∑k

i=1 x2
i

is supposed to be Chi-squared distributed

with k degrees of freedom, denoted as dx ∼ χ2(k). For a k-dimensional Gaussian random

vector s with mean s̃ and covariance Ps, s ∼ N(s̃, Ps), the variable :

ds = (s − s̃)T P−1
s (s − s̃) (4.40)

can be considered as the squared sum of k Gaussian random variables with mean 0 and

variance 1, thus the variable ds is considered to be Chi-squared distributed with k degrees

of freedom.



• Normalized innovation squared (NIS) test : based on Chi-squared distribution, the

normalized estimation error squared test (NEES) and the normalized innovation squared

test (NIS) [10] are popular for testing the consistency of two statistical distributions. When

a sensor measurement is available, as the true state is not known, the innovation between

the observation data and predicted state is supposed to be Gaussian distributed with

covariance Pv. Let vt denote the difference between the observed measurement st and

the predicted state s̃t at time t :

vt = st − s̃t (4.41)

The covariance matrix of vt is :

Pv = Ht(P̃t|t−1)−1Ht
−1
+ Qt (4.42)

The normalized innovation squared (NIS) dM between the predicted state s̃t and the mea-

surement is :

dM = vT
t (Pv)−1vt (4.43)

dM follows a Chi-squared distribution dM ∼ χ2(m), where m is the dimension of the mea-

surement vector (degrees of freedom). A measurement will be rejected if dM is outside

(greater than a threshold) the confidence region defined by the χ2 table. Vice versa, if dM

is smaller than the threshold, this measurement is considered to be reliable and coherent

with the prediction.

4.3.2/ EXTENDED NIS FOR MULTIPLE MEASUREMENTS VALIDATION

When multiple sensors are used to provide the measurements (e.g., GPS, wheel encoder,

gyro), besides the coherence between each sensor measurement and the process pre-

diction, the coherence between different measurements also needs to be validated in

case the process model prediction is not correct. Therefore, an extended NIS measure-

ments validation method is used to verify the coherence of the sensors.

For N sensors {S i}, i = 1, · · · ,N respectively with measurement si
t and covariance Qi

t, a

set of parity relations are calculated for every two sensors. This method is under the

assumption that only one fault happens at a time and the different sensor measurements

are uncorrelated with each other. The fault in any one of the sensors will cause a unique

subset of these relations to increase ; then, the fault sensor can be detected [97].

As shown in Fig.4.1, di j is the Mahalanobis distance between sensors S i and S j for se-

lected measurement elements at instant t (by Eq.4.44 to Eq.4.46). In each column di j,

number 1 means the Mahalanobis distance di j is corresponding to sensor i and j, while

0 in the table means di j is not correlated with these sensors. For example, in (row S 1,

column d12) and (row S 2, column d12), 1 means that d12 is correlated with sensors S 1 and

S 2. Let v
i j
t denote the difference between the measurements si

t and s
j
t at time t :

v
i j
t = fis

i
t − f js

j
t (4.44)

where the matrices fi and f j are defined by the two sensor measurements to find their

observation for the same element. For example, if S i is a gyro sensor, it can provide an

orientation measurement s
gyro
t = [θt] at instant t ; if S j is an inertial navigation sensor, it can

provide a measurement sins
t = [xt, yt, θt]

T . The two sensors provide redundant information

for the vehicle orientation, thus the distance di j is calculated based on this orientation



FIGURE 4.1 – Extended NIS between multiple sensors

element θ. By setting fi = [1] and f j = [0 0 1], the covariance matrix Pt
v of v

i j
t and the

distance di j are written as :

Pt
v = fiQ

i
t f T

i + f jQ
j
t f T

j (4.45)

di j = (v
i j
t )T (Pt

v)−1(v
i j
t ) (4.46)

Then, a parity checking step is applied to detect sensor fault : the change of a special

subset of {di j} should be aroused by a sensor fault. For example, if the distances d12,

d1 j, ... and d1N increase simultaneously, the fault should correspond to the first sensor ;

else if d21, d2, j, ... and d2N increase simultaneously, the fault sensor is the second one,

etc. If two sensors do not provide any redundant information, no measuring distance is

calculated. After the validation process, the information contributions of the sensors which

are consistent with each other, are integrated together to provide a final estimation.

4.4/ INTEGRATION OF GPS-STEREOVISION-LRF FOR VEHICLE

LOCALIZATION

In this work, a GPS receiver, a stereoscopic system and a LRF are integrated for vehicle

localization. Stereovision based visual odometry can be integrated with GPS measure-

ments by using direct registration method, EKF or UKF (as presented in section 4.2.2

and section 4.2.3). The rotation angle and translation information provided by the visual

odometry method is used to predict the vehicle state. GPS positions are used as mea-

surements to update the state prediction. If the GPS signals could not be received or the

GPS measured position is only available with low precision, the vision based method is

used alone.

However, it is difficult to decide which sensor is correct if only two sensors are used in

the system. In this section, the vehicle state information provided by a GPS receiver, an

on-board stereoscopic system, and an on-board horizontal laser range finder are inte-

grated for vehicle localization with an unscented information filter (UIF). Other localization

information, such as wheel encoder, or gyro can also be used.



FIGURE 4.2 – Overview of the proposed UIF based vehicle localization method

As shown in Fig. 4.2, a constant-speed process model is considered as a “virtual sensor”

and used to predict the vehicle motion at first ; the vehicle motion data estimated by the

LRF system and the stereoscopic system are validated to provide a vehicle motion ; after

that, this motion vector is used to predict the vehicle state ; finally, GPS data is used as

measurement to update the prediction if it can pass the NIS checking test.

4.4.1/ COORDINATE FRAMES FOR VEHICLE LOCALIZATION

For a multi-sensor based vehicle localization system, there are three types of coordinate

frames : global reference frame, vehicle body frame, and sensor frames. In our system,

the frames are defined as shown in Fig.4.3.

-Global reference frame. The global system is denoted as RW(W0, XW ,YW ,ZW). We take

the initial vehicle position W0 as the origin of the global system, and the initial forward

orientation YW of the vehicle as the positive direction, the axis ZW is pointing upward,

Xw direction obeys the right hand rule. At time t, the vehicle position is represented by

(xt, yt, zt) in the world frame W with heading orientation θt.

FIGURE 4.3 – Different coordinate frames of the vehicle system

-Vehicle body frame. Origin M0 of the mobile frame M is attached to the center of the rear



axle of vehicle, as shown in Fig. 4.3, and denoted as (M0, XM ,YM, ZM). YM is determined

by the moving direction of the vehicle, ZM is pointing upward and XM direction obeys the

right hand rule.

-Sensor coordinate frames. There are three sensors on the experimental vehicle. The

GPS receiver and camera system are mounted on the roof of the vehicle, the LRF is

mounted in front of the vehicle (see Fig. 3.15). The sensor frames are :

1. GPS frame RG. The outputs of GPS receiver are vehicle longitude and latitude in

the World Geodetic System (WGS84). In order to be integrated with other mea-

surements, GPS longitude and latitude information are converted from the WGS84

system to local Cartesian space (e.g., Lambert II). Origin of the GPS frame is a

fixed local point. The plane XG − YG is parallel to the local earth surface. Details of

GPS coordinates transformation can be found in Appendix A.

2. Stereoscopic system frame RC. Coordinate frame of the (rectified) stereoscopic

system is defined by the left camera. Its origin C0 is at the projection center of the

left camera, XC axis points to the direction of the right camera center (parallel to the

baseline), ZC axis points upwards and YC axis points along the camera optical axis.

3. Laser range finder frame RL. The origin L0 of LRF frame is at the center of the

LRF sensor, the plane XL − YL is on the laser scanning plane.

-Position coordination and time synchronization. In order to obtain the vehicle motion

by different sensors, the relative position and orientation between sensor frames and

the vehicle body frame should be known before the experiments. In our work, during

the procedure of vehicle position fusion, this transformation is not taken into account

since all the sensors are mounted close to the central line of the vehicle. However, for

higher-level sensor fusion (e.g., image-aided ICP methods in section 3.3.1.3), accurate

extrinsic calibration between the different sensor systems is essential. Furthermore, as

the frequencies of different sensors are not the same, the measurements from different

sensors are synchronized according to their logged time into the system. Then, there are

two strategies available for information fusion :

1) Fusion when at least one sensor observation is available. In this case, the vehicle state

information is updated when at least one measurement is provided ;

2) Fusion when all the sensors’ observations are available. In this case, when the slowest

sensor provides an observation, the vehicle state information can be updated with all

the sensor measurements.

In order to have more redundant information and to check the coherence between differ-

ent measurements, the second fusion strategy is applied in the following work.

4.4.2/ VEHICLE MOTION PREDICTION

Assume that the ground is flat, the vehicle pose can be represented by x − y coordinates

and yaw angle θ. Let Xt = [xt, yt, θt] denote the vehicle state vector at time t, where (xt, yt)

and θt are respectively the vehicle position and orientation in the reference navigation sys-

tem. The current vehicle pose can be predicted by a nonlinear transition model. A simple

kinematic model of the vehicle has two rear wheels, and two front wheels represented by

a single point in the center of the front wheel axle. This transition vehicle model is given



by Xt = f (Xt−1, δt) + αt, and written as :

xt = xt−1 + ∆dtcos(θt−1 + ∆θt/2) + α1t

yt = yt−1 + ∆dt sin(θt−1 + ∆θt/2) + α2t

θt = θt−1 + ∆θt + α3t

(4.47)

where Xt−1 = [xt−1, yt−1, θt−1]T is the vehicle state at time t − 1, ∆dt and ∆θt are respectively

the vehicle movement and rotation from time t−1 to t, and αt = [α1t, α2t, α3t]
T is the process

noise.

For a constant speed model, vx,t−1, vz,t−1 and ωt−1 are respectively vehicle linear velocities

on x and z directions and vehicle angular velocity at time t − 1, calculated by the previous

vehicle positions and headings at time t-1 and t-2. The previous vehicle speed is used to

predict the current state with time interval δt :

∆dt =

√
v2

x,t−1
+ v2

y,t−1
δt, ∆θt = ωt−1δt (4.48)

Thus, the vehicle relative movement from t − 1 to t is denoted as :

s
p
t = {∆dtcos(∆θt),∆dt sin(∆θt),∆θt} = {∆x

p
t ,∆y

p
t ,∆θ

p
t } (4.49)

Then, the information vector ˜i f t and information matrix ˜IFt are predicted according to

Eq.4.32.

4.4.3/ SUBSYSTEM ESTIMATIONS

• Laser range finder subsystem based observation : as shown in section 3.3.1.2, the

direct output of LRF alignment at time t is the relative vehicle motion :

sl
t = T̂ = [∆x̂,∆ŷ,∆θ̂]T

= [∆xl
t,∆yl

t,∆θ
l
t]

T (4.50)

and the motion covariance matrix cov(T̂ ) (section 3.3.2).

The information contribution ilt and Il
t of the LRF system can be calculated using Eq.4.29 :

ilt = (Hl
t)

T (Ql
t)
−1sl

t and Il
t = (Hl

t)
T (Ql

t)
−1Hl

t , with Hl
t =


1 0 0

0 1 0

0 0 1

.

• Stereoscopic subsystem based observation : as described in section 3.2.2, the output

of stereovision based odometry at time t is the relative vehicle motion with respect to the

previous vehicle local frame :

sc
t = [∆xc

t ,∆yc
t ,∆θ

c
t ]T (4.51)

and the motion covariance matrix Pt (section 3.2.3.3).

The information contribution ict and Ic
t of the stereoscopic sensor can be calculated using

Eq.4.29 :

ict = (Hc
t )T (Qc

t )−1sc
t and Ic

t = (Hc
t )T (Qc

t )−1Hc
t , with Hc

t =


1 0 0

0 1 0

0 0 1

.



• GPS subsystem based observation : position provided by the GPS receiver is in latitude

and longitude (φ, λ), the coordinates are converted to local Cartesian coordinates (x
g
t , y

g
t )

through Algorithm 5 in Appendix A. If the vehicle moves only with rotation, the movement

of the vehicle body could not be detected by GPS sensor. But when the vehicle moves with

translation, the change of the vehicle orientation could be obtained by two consecutive

GPS positions through θ
g
t = arctan(

x
g
t −x

g

t−1

y
g
t −y

g

t−1

). Thus, the GPS observation is written in the

form :

s
g
t = [x

g
t , y

g
t , θ

g
t ]T (4.52)

In this work, we use the NMEA GST sentence from roving GPS receivers to represent

the confidence level of a GPS position (though it might not be reliable in some special

cases [14]). The covariance matrix Q
g
t of the GPS position is estimated with GPS NMEA

sentence “GST” by :

Q
g
t =

(
δ2

x ρδxδy

ρδxδy δ2
y

)
(4.53)

where δx and δy are the standard deviations of the longitude error and the latitude er-

ror provided by the GPS NMEA sentence “GST”, ρ is the spatial correlation coefficient

calculated according to the method in [111] :

ρ =



tan(2ϕ)(δ2
x−δ2

y )

2δxδy
0 < ϕ < π

2

tan(2ϕ)(δ2
y−δ2

x)

2δxδy
−π

2
< ϕ < 0

(4.54)

where ϕ is the orientation of the semi-major axis of the error ellipse in degrees from

true North in GPS NMEA sentence “GST”. The noise of the GPS orientation θ
g
t can be

approximated by unscented transform with the known noise of {xg
t , y

g
t , x

g

t−1
, y

g

t−1
}.

The information contribution i
g
t and I

g
t of GPS observation can be calculated using

Eq.4.29 : i
g
t = (H

g
t )T (Q

g
t )−1s

g
t and I

g
t = (H

g
t )T (Q

g
t )−1H

g
t , with H

g
t =


1 0 0

0 1 0

0 0 1

.

4.4.4/ VALIDATION OF DIFFERENT SENSOR MEASUREMENTS

For the four sensors in our system (laser range finder, stereoscopic system, a GPS re-

ceiver, and process model which is considered as a virtual sensor), there are two strate-

gies to validate their coherence :

1. the first strategy is in two steps : the coherence between relative measurements are

validated and applied to predict the global pose ; then, the coherence between the

prediction and other absolute measurements are validated.

2. the second strategy is to directly compare the absolute vehicle poses from different

sensors after pose integration.

The parity relations between different sensors are calculated considering the uncertain-

ties of their observations with Eq. 4.44 to Eq. 4.46.

Relative measurements validation : parity relations between the relative measurements

from process model, LRF and stereoscopic system are shown in Tab 4.1. di j is the dis-

tance between the vehicle motion measurements. The value of a special subset of {di j}



should be aroused by a unique sensor fault, then this detected sensor measurement is

rejected and not fused.

Sensor measurements which are validated by the test above are integrated through :

it = ĩt +


N∑

sen=1

isen
t

 , It = Ĩt +


N∑

sen=1

I sen
t

 (4.55)

where N is the number of validated relative measurements.

Then, the vehicle relative movement and its covariance matrix Pa can be recovered from

the information vector it and information matrix It through :

[∆x̃t,∆ỹt,∆θ̃t] = (It)
−1it

Pa = (It)
−1 (4.56)

On the basis of the vehicle movement [∆x̃t,∆ỹt,∆θ̃t] and the previous vehicle pose

[xt−1, yt−1, θt−1], the current vehicle absolute pose s̃ = [x̃t, ỹt, θ̃t] can be predicted with the

vehicle motion model in Eq.4.47, the covariance P̃ is approximated by unscented trans-

form according to Eq.4.16 to Eq.4.20. The information contribution (ĩ f , Ĩ f ) is calculated

using Eq. 4.32 : ĩ f = P̃−1 s̃ and Ĩ f = (P̃)−1.

Absolute measurements validation : then, the absolute measurements are validated.

Here, we have two absolute measurements, one is s̃ = [x̃t, ỹt, θ̃t]
T predicted above, another

one is the GPS measurement sg
= [x

g
t , y

g
t , θ

g
t ]T . Other absolute measurements could also

be added. In Table 4.2, d f 4 is the distance between the relative measurement based

estimation and the GPS measurement.

As there are only two measurements, the validation test is like the classic NIS test : if d f 4

meets the test condition, the information contribution of the relative measurement based

estimation and the GPS measurement are integrated to provide a final vehicle pose and

covariance ; otherwise, the GPS measurements is not used to update the prediction.

P
P
P
P
P

P
P
PP

Sensor

di j
d12 d13 d23

S1-Process model 1 1 0

S2-LRF 1 0 1

S3-VO (Stereovision) 0 1 1

TABLE 4.1 – Parity relations between every two motion measurements

P
P
P
P
P

P
P
PP

Sensor

di j
d f 4

S f -vehicle pose prediction 1

S4-GPS 1

TABLE 4.2 – NIS relation between every two sensors (1)



4.5/ IMPLEMENTATION AND EXPERIMENTAL RESULTS

The proposed UIF based fusion method is tested with the same data sequences obtained

by our experimental vehicle SeTCar (section 3.4.1), as presented in section 3.4.2 and

section 3.4.3. The initial orientation and speed of the vehicle are set by GPS observation.

The initial state covariance matrix is set by the covariance matrix of the first GPS position.

4.5.1/ EXPERIMENTAL RESULTS OF THE INDUSTRIAL PARK SEQUENCE

(a) Frame 1, all the four estimations are considered

to be reliable

(b) Frame 6, GPS is considered as an outlier, the

other three sensors are used for current estimation

(c) Frame 19, LRF observation is considered as an

outlier, the other three sensors are used for current

estimation

(d) Since frame 151, GPS observations jumped to

the left side with large errors, they are treated as out-

liers and not used for estimation.

FIGURE 4.4 – Some results of vehicle state and covariance estimation with UIF method

Unscented transform is used in several parts of this method and the parameters of the

filter are empirically chosen as detailed in the following parts. Some examples of state

and covariance estimation (using the different sensors) at different instants are shown in

Fig. 4.4(a) to Fig. 4.4(d).

In Fig. 4.4(a), all the sensor measurements are accepted as their observation differences

are small. In Fig. 4.4(b), the distances between GPS and all the other sensors increase at

the same time, thus the GPS measurement is considered to be an outlier, only the other

three sensors are used for the current estimation. In Fig. 4.4(c), as the LRF measure-



ment is not coherent with the other observations, and the error distances in the subset

(d12, d23, d24) of LRF increase, the LRF is not used for the estimation. In Fig. 4.4(d), the

trajectory in yellow is the ground truth provided by the RTK-GPS. When the low cost GPS

receiver fails to provide accurate observations, the fusion results without GPS are more

accurate than the GPS observations.

Vehicle position and orientation errors with the different fusion methods are shown in

Fig. 4.5(c) and Fig. 4.5(d). As shown in Fig. 4.5(b), GPS positions jump to the left side with

an error of about 10m. This GPS failure lasts about 70 meters during the period between

frame 100 and frame 200 (see Fig. 4.5(a) and Fig. 4.5(b)). It is noted that neither the

LRF nor the stereoscopic system based approaches could provide an accurate absolute

localization results alone in long term due to the error accumulation. GPS works in long

term, with an error of 1.83% for the whole trajectory.

(a) Comparison of vehicle trajectories estimated

by EIF, UKF, UIF and UIF (rejection) based multi-

sensor fusion
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(b) Zoom of the estimated trajectories
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(c) Vehicle position errors observed by the different

sensors (compared with RTK-GPS)

(d) Vehicle orientation errors observed by the differ-

ent sensors (compared with RTK-GPS)

FIGURE 4.5 – Estimated vehicle trajectories and comparison of the fusion based vehicle

position and orientation with the ground truth

The performance of the proposed UIF based localization method is also compared with

the multiple updates UKF methods. The comparison is implemented using the estimated

trajectory length error (trajectory length is calculated by the integration of movement be-

tween consecutive frames), mean and standard deviation of the error between corre-

sponding estimated positions and ground truth. The results are shown in Tab 4.3.



In order to quantify the performance gain of the unscented approach than extended trans-

formation, the proposed UIF method is compared with extended information filter (EIF)

method. Results are shown in Table 4.3 (the 5th row) and Fig. 4.5(a). By comparing the

whole trajectory with the ground truth, it is noted that the unscented transformation can

provide better localization results in long term. Nevertheless, if the sampling frequency of

the system is high enough, the extended transformation should be efficient.

And secondly, in order to quantify the performance gain of the information formulation, a

classical unscented Kalman filter (UKF) with multiple updates is implemented and com-

pared with the results of UIF. The prediction is firstly updated by GPS observation, then

the corrected result is updated by LRF estimation, and finally by stereo visual odometry.

In order to compare the information formulation and the covariance matrix formulation,

no outlier rejection step is used when comparing the two methods. Results are shown in

Table 4.3 (the 6th row) and Fig. 4.5(a).

Sensors Traveling distance (m) Mean (m) Std.(m)

LRF scan alignment 621.67 1.74 1.52

Stereovision odometry 685.43 1.69 1.38

GPS 614.78 1.08 1.90

EIF fusion 662.11 3.73 6.89

UKF fusion (three updates) 603.07 1.38 1.87

UIF fusion 601.20 1.11 1.17

UIF fusion (with rejections) 603.88 1.18 1.08

TABLE 4.3 – Localization results with the different sensors and UKF, EIF, UIF

It can be seen that for the whole length of trajectory, there is no big difference between

UKF and UIF. However, the performance of UIF is better than UKF when comparing the

standard deviation and mean error. Besides, the information form has the advantage that

the update stage is computationally easier because no gain or innovation covariance

matrices need to be calculated. Even though this advantage is not significant for our

experiment (because we only have three sensor observations), other sensors can be

easily added into the same framework in the future.

Without the error rejection step, information from all the subsystems are integrated to-

gether to provide a final estimation. After applying the error rejection step in the fusion

process, the GPS failure is detected by the validation test. Nevertheless, without reliable

GPS information, the localization system can continue to correctly estimate the vehicle

positions by integrating the process model, stereoscopic system and LRF. The error re-

jection step makes the estimated trajectory more accurate in long term.

4.5.2/ EXPERIMENTAL RESULTS OF THE OLD TOWN CENTER SEQUENCE

The UIF based fusion method is tested with the same data set acquired in the old town

center of Belfort (as in section 3.4.3) by integrating the GPS positions, LRF based OR-

ICP, stereoscopic system based visual odometry and constant speed model. Stereovision

based visual odometry is used to provide an initial transformation for OR-ICP to reduce

the searching area of scan correspondences.



4.5.2.1/ WITH SIMULATED GPS MASKS

We added 11 GPS masks into different parts of the vehicle trajectory to simulate the

problem of GPS signal blockage in urban environment. In order to find which extended

NIS check method is more effective for the vehicle localization, we have tested the two

methods : 1) if distances of a subset {di j}, i, j = 1 · · ·N, j , i increase simultaneously, the

fault should correspond to the sensor i ; 2) if all distances of a subset {di j}, i j = 1 · · ·N, j ,

i meet the condition di j > threshold, the measurement i is considered to be an outlier,

where N is the number of measurements. The threshold is defined by the Chi-square

table, as 7.8 in our tests.

FIGURE 4.6 – Vehicle trajectory during the GPS masks : extended NIS increasing method

As seen in Fig. 4.6 and Fig. 4.7, red points represent the GPS positions without GPS

masks, green crosses represent the true GPS positions where GPS masks are added,

and blue lines represent the vehicle trajectories estimated by the UIF based methods. Per-

formance of the proposed UIF based localization methods is compared with the ground

truth, results are shown in Fig. 4.8 (in order to see the difference more clearly, the error

on x and y directions are respectively shown) and Tab 4.4.

Average error(m) standard deviation(m)

Sensor fusion (NIS-increase) 4.47 4.16

Sensor fusion (NIS-threshold) 2.53 3.57

TABLE 4.4 – Localization results of the fusion methods in the area with GPS masks

As seen in Tab 4.4 and Fig. 4.8, for the same sensor measurements and the same GPS

masks, the second NIS method with a defined threshold (if all distances of a subset are

larger than the threshold, the measurement i is considered to be an outlier) can provide



FIGURE 4.7 – Vehicle trajectory during the GPS masks : extended NIS threshold method

FIGURE 4.8 – Comparison of position error after adding GPS masks



more accurate result for this sequence. It can be noted that in the GPS masked areas,

visual odometry and OR-ICP can continue to estimate the vehicle trajectory though the

error increases gradually after long term.

4.5.2.2/ WITH SIMULATED GPS JUMPS

In order to test if the erroneous sensor measurements could be detected by other mea-

surements, white noises are simulated and randomly added to 36 GPS positions. The

position error on x-direction is between 0 ∼ 10m, and the position error on y-direction is

between 0 ∼ 2m. As seen in Fig. 4.9, the erroneous GPS positions are shown in green

crosses, the positions estimated by the UIF based method is shown in red circles. It can

be seen that the other sensors can continue to estimate vehicle positions.

FIGURE 4.9 – Vehicle trajectory with simulated erroneous GPS positions

As described in Table 4.1, the parity checking constraint is applied for information fusion.

Firstly, the normalized innovation squared between the three relative measurements (pro-

cess model, OR-ICP and VO) are shown in Fig. 4.10. The prediction from the relative

sensors are compared with the absolute GPS measurements to provide a final vehicle

position. It can be seen that most of the time LRF and stereovision based estimations are

coherent with each other.

During the whole trajectory, different sensors are accepted for fusion. As seen in Fig. 4.11,

the points above the black line represent the sensors used for estimation at every time

instant, while the points below the line represent the measurements which are rejected

for fusion. Most of the GPS positions with the simulated jumps are rejected for fusion.
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FIGURE 4.10 – NIS changes of the relative measurements

The position error of the fusion method is compared with the simulated GPS error in

Fig. 4.12. When GPS observations are rejected in short term, the other relative sensors

can continue to provide accurate positions.

FIGURE 4.11 – Sensors validated for sensor fusion after adding simulated GPS jumps
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FIGURE 4.12 – Comparison of position error after adding random GPS position errors

4.6/ CONCLUSION

In this chapter, a vehicle localization method is presented by integrating vehicle global

information from onboard GPS receiver and vehicle odometry information respectively

from a stereoscopic system (visual odometry) and a LRF system (scan alignment). The

coherence of different sensor measurements are validated with extended NIS method

before being integrated by an unscented information filter. Information from other sensors

could also be easily incorporated into the system if needed. The proposed method was

tested with real data and evaluated by RTK-GPS as ground truth. Results show that the

coherence validation step makes the estimated trajectory more accurate in long term as

GPS failures can be detected by the validation test. Fusion of the stereoscopic system and

LRF can continue to localize the vehicle during GPS outages, while GPS measurements

permit to avoid the trajectory drift when only the stereoscopic system or the LRF is used.

For the proposed vehicle localization method in this chapter, several research perspec-

tives are summarized :

– In future works, more sensors like IMU or odometry can also be directly integrated

thanks to the convenience of information filter. And tight coupling approach between

LRF and image data is also envisaged instead of loose coupling of their estimated

motions.

– If the GPS signals are lost for long period, the trajectory might gradually drift if only

using the relative sensors. Therefore, another kind of global information should also be

incorporated into the system to adjust the vehicle pose, we will discuss about the use

of maps in the next chapter.





5

HORIZONTAL/VERTICAL LRFS AND

GIS MAPS AIDED VEHICLE

LOCALIZATION

5.1/ OVERVIEW

In order to solve the problem of blockage/reflection of GPS signals within urban areas,

dead-reckoning methods like inertial navigation, wheel encoder odometry or camera/laser

based visual odometry have been used to compensate GPS outages by continuously es-

timating the vehicle motion. After these steps, the predicted vehicle pose can be corrected

when the GPS receiver returns to work. However, dead-reckoning methods can provide

accurate relative vehicle movements only in short period. If GPS receiver cannot provide

any absolute vehicle positions for long time, the vehicle trajectory might gradually drift and

the localization error cannot be bounded. Therefore, other global information sources are

needed to correct the accumulated localization error.

Nowadays, a lot of vehicles have been equipped with GPS navigation systems : a GPS re-

ceiver, an itinerary planning software and a series of digital maps which can be displayed

in human readable format, as shown in Fig. 5.1. Digital maps are provided by cartog-

raphers like professional companies NAVTEQ 1, TeleAtlas 2, or Chinese companies like

NavInfo 3, AutoNavi 4, etc.

The digital maps (like 2D/3D/DEM maps) can provide static global environment informa-

tion, such as shapes of urban roads (line-style landmarks), positions of building footprint

(polygon-style landmarks), trees and street lamps (point-style landmarks), as well as at-

tributes of these objects (e.g., width of a road, height of a building). If the environment

information around the vehicle can be observed by on-board exteroceptive sensors like

cameras or laser range finder, and be well associated with the information provided by

the initial maps, the vehicle pose can be corrected.

Different features have been proposed to make use of the information from maps together

with a laser range finder. Scheunert et al. [141] proposed to use a horizontal laser scanner

to detect point style landmarks in the environment and use GIS map as measurements

1. http://www.navteq.com

2. http://www.tomtom.com/en gb/licensing/

3. http://www.navinfo.com/en/

4. http://www.autonavi.com/en/index



FIGURE 5.1 – In-car GPS navigation system and digital map provided by NAVTEQ

(Fig. 5.2(a)). Like the sensor installation of LRF sensor in [118], Jabbour et al. [74] [75] [76]

proposed to mount a laser range finder at the bottom front of the vehicle, then extract the

sidewalk edges from the vertical LRF scan (Fig. 5.2(b)). The detected sidewalk landmarks

are grouped into road boarder segments and stored in an enhanced map layer for vehicle

pose correction and landmark updating in a SLAM-like strategy. Qin et al. [124] also

proposed to use a tilt-down lidar to scan the road in front of the vehicle and extract the

curb features on the left and right sides.

(a) (b) (c)

FIGURE 5.2 – (a) Use horizontal LRF to detect point features in GIS map [141] ; (b)(c) use

tilt-down LRF to scan the sidewalk edges [74] [124]

Considering that in urban environments, a lot of vehicles are parked by the roadside of the

streets, it is very likely that some sidewalk edges might be blinded by vehicles and cannot

be detected by LRF scan. Thus, we propose to use building facades as landmarks since

there are less obstacles in the air than on the ground. Top part of the building facades

which is higher than the vehicle can still be scanned by the vertical LRF (with long enough

detecting range) even though there are obstacles around. Besides, as the footprints of

buildings have already been marked in a digital map layer, this a priori information can be

directly used for initial vehicle pose correction.



5.1.1/ PROPOSED METHOD

In the proposed method, two LRF systems are respectively horizontally and vertically

installed on the roof of an experimental vehicle (see Fig. 5.3 and Fig. 5.34) to provide

comprehensive representation of the environment around the vehicle :

FIGURE 5.3 – Two LRF systems are mounted on the roof of the vehicle : the vertical LRF

scan is in blue and the horizontal LRF scan is in red

• One LRF (LRF-H) looks forward and scans horizontally the environment in front of the

vehicle. The use of LRF-H scans is in twofold : it can be used to provide vehicle odometry

information as presented in section 3.3, and also be used to detect the building facades.

If there is few obstacles or no obstacle in front of the vehicle, lines corresponding to the

building facades can be extracted from the LRF-H scans and associated with the GIS

building map. If there are a lot of obstacles in the view of the LRF-H, the LRF-H cannot

provide the structure information around the vehicle.

• Another LRF (LRF-V) scans vertically and looks upward. Even though LRF-H cannot

observe the building facades due to obstacles around, top part of the building facades

which is higher than the vehicle can still be scanned by the LRF-V. The intersection lines

of the building facades and the LRF-V scan plane can be extracted from the vertical LRF

scan, and associated with the building map to correct the vehicle lateral position.

The proposed approach is in three steps, as shown in Fig. 5.4.

The first vehicle position is initialized by GPS position for global positioning. Then, the

vehicle position is estimated with the relative localization measurements from a gyro sen-

sor and LRF-H alignment through vehicle transition model, and updated by the absolute

location provided by the GPS receiver (if available), together with road map-matching re-

sult from GIS road map layer (section 5.2). After that, the vehicle pose is refined with

observations from the two LRFs and the (original) GIS building map layer (section 5.3).

Considering the inherent noises of maps during surveying and map producing processes,

the proposed LRF and building map based pose correction method is used only if GPS

readings are not provided. Furthermore, in order that the landmarks observed by the LRF-

V can be reused for vehicle localization in the future, two new map layers are generated

to store these landmarks data (section 5.4) : the building facade landmarks detected by

the LRF-V at every instant are grouped into building segments and stored in a facade



FIGURE 5.4 – The proposed GIS aided localization method

map layer on the basis of the original building map ; another map layer is used to store

the independent objects.

The structure of this chapter is organized as follows : section 5.1.2 introduces the princi-

ple of data organization and main applications of GIS ; section 5.2 details the method of

vehicle pose estimation with GIS road map layer ; section 5.3 presents the vehicle pose

refining method with horizontal/vertical LRFs and the original GIS building map layer ; sec-

tion 5.4 introduces the new map layer generating method ; section 5.5 presents some ex-

perimental results ; and finally, conclusions and perspectives are presented in section 5.6.

5.1.2/ GEOGRAPHICAL INFORMATION SYSTEM (GIS)

For a geographical information system (GIS), there are several GIS organizational

schemes in which all data of a particular class, such as roads, buildings, woodland or

water types, are grouped into a same layer (or coverages), as shown in Fig. 5.5 5. In this

spatial database, the geometry and attribute information of the spatial features are stored

in table files, with unique identifiers (ID) linking the corresponding spatial object and its

attribute data.

The geometry data model treats environment objects as a set of primitives and spatial

entities, such as point, lines and areas in 2D models. As seen in Tab. 5.1, the geometry of

a primitive entity is stored in a shape comprising a set of vector coordinates. The location

of a point is described by a set of coordinates. A line is defined by an ordered sequence

of two or more sets of point coordinates. An area is defined by a boundary of one or more

lines which form a closed, non-self-intersecting loop. If the area has holes in it, more than

one such loop might be used to describe it.

As the range of information which can be placed in the geographical context is large,

5. http://resources.arcgis.com/en/help/getting-started/articles/026n0000000q000000.htm



FIGURE 5.5 – Organization of GIS layers

Type Graphic representation Digital representation

Point Coordinates : (x, y) in 2D

Line Ordered list of coordinates

Area
a) One line : if the first point equals the last one ;

b) A set of lines : if an area has wholes

TABLE 5.1 – Types of GIS objects

there is continuing growth of GIS usage across many disciplines. It has been widely used

for earth survey and monitoring, such as land survey, hydrology and marine survey, soil

surveys, geological surveys ; it has also been used for public administration, logistics or

transportation management, etc. The possible use of GIS for vehicle localization can be

summarized as follows :

– Displaying the vehicle position and trajectory information.

– Providing structure information and attribute information of the environment.

– Spatial analysis and real-time road traffic analysis for vehicle navigation assistance

[166], like path-planning.

– Storing and managing sensor data with GIS, such as the vehicle positions provided by

global positioning system (GPS) receivers, and visual landmarks observed by visual

sensors in the urban environments [131] [74], etc.

Generally, digital maps used for vehicle navigation focus on providing detailed road net-

work information and road attributes (length, surface materials, driving directions, obsta-

cles, vehicle speed, etc.) in various map formats, such as GDF (Geographical Data File)

which are used to describe the transportation network in Europe, standard KIWI pro-

posed by Japan KIWI-W Consortium for vehicle navigation, standard SDAL (Shared data

access library) and NAVSTREET defined by NavTeQ. Digital maps in different formats

can be transformed to SDAL format and used for navigation application development with

toolbox NAVTOOLS. In this thesis, GIS maps in general format : shapefile 6 are used.

This format is defined by ESRI and each layer includes three data files : shp/shx/dbf. The

road network map and building footprint map provided by IGN (BD TOPO map - Pays of

Territoire de Belfort, IGN, 2002) are used to provide a priori environmental information for

6. http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf



vehicle localization.

5.2/ VEHICLE POSE ESTIMATION WITH GIS ROAD MAP

The process of vehicle pose estimation with GIS road map layer are briefly described in

Fig. 5.6. Vehicle pose is at first predicted by LRF-H based scan alignment and a gyro

through vehicle motion model, then corrected by observations from a GPS receiver (if

available) and a road map based map-matching method (section 5.2.1) within an infor-

mation filter (IF, EIF, UIF, etc.) framework (section 5.2.2).

FIGURE 5.6 – Vehicle pose estimation with GIS road map layer

• Pose prediction with LRF-H based scan alignment and gyro. The vehicle model

used for pose prediction is the same as in Chapter 4. The odometry information dt of the

vehicle is provided by LRF-H scan alignment (detailed in section 3.3). Vehicle yaw angle

θt is estimated with the angular velocity ωgyro from gyro sensor :

θt = θt−1 + ω
gyro
t δt (5.1)

Variance of the gyro rate is set to 0.012 rad, according to the construction datasheet of

the sensor. With the assumption that the road ground is flat and the vehicle moves with

constant speed, the vehicle state [x̃t, ỹt, θ̃t] and state covariance Qt are approximated with

the vehicle transition model Xt = f (Xt−1, dt, θt, δt) + αt by unscented transform.

• Observation from GPS sensor. The observation from GPS receiver was detailed in

section 4.4.3 with observation vector s
g
t = [x

gps
t , y

gps
t ] and covariance matrix Q

g
t of the GPS

position.

5.2.1/ OBSERVATION FROM ROAD MAP-MATCHING METHOD

Road map is an ITN layer (Integrated Transportation Network) which describes the road

topology using two types of features : road link and road node. Road map-matching is to

find the correspondence between a vehicle trajectory position (e.g., from a GPS receiver,

or a GPS receiver integrated with dead-reckoning sensors) and a position in the road

network (provided by a GIS map).

An example of map-matching is shown in Fig. 5.7. Numerous approaches have been

proposed to solve the road map matching problem in ambiguous situations (e.g., road



FIGURE 5.7 – An example of road map based map-matching method. In this figure, the

red points are the road nodes, the blue line segments are the road links with node feature

at each end of the segment. The green line indicates a vehicle trajectory provided by the

GPS receiver, and the yellow points are the correspondences of vehicle positions on road

network obtained by map-matching method.

intersections, parallel close roads), such as the multi-hypothesis map-matching algorithm

[63][112][125][165].

Though vehicles might not remain on the road central line represented by the road net-

work map, the map-matching method can provide a relatively accurate position by re-

localizing the vehicle on road, especially when the GPS encounters large errors or the

predicted position is off the road. Then, the map-matching result can be integrated with

other vehicle pose measurements from an INS, a wheel encoder or other sensors [73] to

restrict the vehicle position around the road.

5.2.1.1/ ROAD MAP-MATCHING OBSERVATION

Measurement provided by the map-matching method is the corresponding position of the

vehicle on the road map, as :

sm
t = [x

map
t , y

map
t ] (5.2)

In this work, the classic nearest road map-matching method is used under a speed con-

straint and an orientation constraint. The distances between the predicted vehicle position

and all the road segments in the neighborhood of the vehicle are calculated (for a prede-

fined zone with size 50m × 50m) at first. E.g., in Fig. 5.8, the distance between the current

vehicle position and the road segment [ba] is calculated in two steps :

• At first, the perpendicular distance between the vehicle position and each road segment

is calculated. Then,

a) if the perpendicular foot p(px, py) (see Fig. 5.8) is on the road segment, this distance

is considered as the closest distance between the vehicle and the road segment. The

corresponding position of the vehicle on road is the point p, written as : (x
map
t , y

map
t ) =

(px, py) ;



FIGURE 5.8 – Choosing the corresponding road segment

b) if the perpendicular foot p lies outside of the road segment (see Fig. 5.8), the dis-

tances [da] and [db] between the vehicle and the two endpoints a(ax, ay) and b(bx, by)

are calculated. The point a (or b) with smaller distance [da] (or [db]) is selected as the

corresponding position of the vehicle, written as : (x
map
t , y

map
t ) = (ax, ay) or (bx, by).

• After that, the road segment which is closest to the vehicle is chosen as the correspond-

ing road segment.

The slope of the corresponding road segment θ
map
t (direction of the road segment is cho-

sen according to the previous vehicle moving orientation) can also be calculated.

In order to guarantee the accuracy of the map-matching method, the vehicle is firstly

tracked on the previous corresponding road segment till it moves out of this segment,

with the following equations :

rx = x̃t − bx

ry = ỹt − by

λx = ax − bx

λy = ay − by

λu = (λxrx + λyry)/((λx)2
+ (λy)2)

(5.3)

where a and b are the endpoints of a road segment shown in Fig. 5.9.

– If 0 ≤ λu ≤ 1, the vehicle is on the same segment as the previous position, as in

Fig. 5.9(a) ;

– If λu < 0 or λu > 1, it indicates that the vehicle moves outside of the current road

segment, we need to search for the vehicle position on a new road segment, as in

Fig. 5.9(b). When the vehicle is tracked on another road segment, the tracked segment

should be close to or connected with the previous segment by considering the vehicle

velocity.

In our experiments, the map-matching method is based on GPS position if a GPS reading

is available ; if not, it is based on the predicted position from the transition model.



(a) Track the vehicle on the same segment (b) Move outside of the previous segment

FIGURE 5.9 – Track vehicle position on the previous road segment

5.2.1.2/ UNCERTAINTY OF MAP-MATCHING POSITION

For the corresponding map matching position (x
map
t , y

map
t ) of the vehicle, it is essential

to estimate its covariance matrix before being integrated with other measurements. In

the local frame attached to a road segment, let xl-axis be collinear to the road direction

(Fig. 5.10), yl be perpendicular to xl, the error ellipse of a map-matching position is along

the direction of road segment with center (x
map
t , y

map
t ).

FIGURE 5.10 – Representation of the error ellipse of a map-matching observation (3σ)

Covariance matrix Q
m,l
t of the map-matching observation in the local frame is approxi-

mated by a large longitudinal error and a lateral error, which is represented by the the



width attribute of the road segment, written as [111] :

Q
m,l
t =

[
(σl

x)2 0

0 (σl
y)2

]
(5.4)

where σl
x and σl

y are respectively the longitudinal and lateral standard deviations of map

observation. Since the vehicle is not always driven on the segment corresponding to the

road central line, the road width is taken into account to represent the lateral standard

deviation σl
y, as :

σl
y = wr/2k + em (5.5)

where wr is the width attribute of the road segment stored in the attribute table of the

GIS road layer ; k is a constant associated with the Gaussian probability error ellipse with

P = 0.9, k =
√
−2ln(1 − P), em is the map error provided by the map cartographer. It is set

to 0.5m in this work. The longitudinal error σl
x is set big enough compared to the error in

yl-axis (it is set to 10m for our map database in this work).

Then, the covariance Qm
t of the map observation in the global reference frame is obtained

with the local covariance matrix Q
m,l
t , and the orientation of road segment with respect to

the global reference frame, i.e., θ
map
t . Qm

t is written as :

Qm
t =

[
σ2

x σ2
xy

σ2
xy σ2

y

]
(5.6)

where :
σ2

x = (σl
x)2cos2(θ

map
t ) + (σl

y)2sin2(θ
map
t )

σ2
y = (σl

x)2sin2(θ
map
t ) + (σl

y)2cos2(θ
map
t )

σ2
xy = ((σl

x)2 − (σl
y)2)cos(θ

map
t )sin(θ

map
t )

(5.7)

As shown in Fig. 5.10, the corresponding point of vehicle position is on a road segment

with 4m width, and the ellipse covariance (95%) corresponding to the map-matching posi-

tion observation is along the road segment.

5.2.2/ POSE UPDATE AND COVARIANCE ESTIMATION WITH UIF FUSION

As described in section 4.2, different fusion strategies could be used to update the vehicle

pose with the prediction and observations from the GPS sensor and the map-matching

method. Since the inverse-covariance form of information filter is able to update the pre-

diction by directly integrating the information state vectors and information matrices of

multiple observations, the information filter based fusion (section 4.2.4) is applied in this

section to integrate the prediction from LRF-H scan alignment/gyro, and the observations

from GPS receiver and road map-matching method. Procedure of the vehicle pose up-

dating is in five steps :

1. The vehicle state [x̃t, ỹt, θ̃t] is predicted with the process model. The information vector
˜i f t and information matrix ˜IFt are predicted according to Equation 4.32.

2. Together with the GPS observation s
g
t = [x

gps
t , y

gps
t ], the information contribution i

g
t and

I
g
t of GPS can be calculated using Equation 4.29.

3. With the map-matching observation sm
t = [x

map
t , y

map
t ] in Equation 5.2 and its covariance

matrix Qm
t in Equation 5.6, the information contribution imt and Im

t of the road map observa-



tion can be calculated using Equation 4.29 : imt = (Hm
t )T (Qm

t )−1sm
t and Im

t = (Hm
t )T (Qm

t )−1Hm
t ,

with Hm
t =

[
1 0 0

0 1 0

]
.

4. Validation of different sensor observations. The vehicle process model is considered as

a virtual sensor. Thus, three observations need to be validated : the process prediction,

the GPS observation, and the map-matching observation.

5. With N validated observations, the information state vector and information matrix are

obtained by linear combination of the local information contributions from the considered

sensors :

i f t =

N∑

s=1

is
t , IFt =

N∑

s=1

I s
t (5.8)

where is
t and I s

t are respectively the information state and information matrix of the sth

validated observation (here, N = 3 if all sensors are used and i f t =
˜i f t + i

g
t + imt , IFt =

˜IFt + I
g
t + Im

t ). Then, the vehicle pose X̂t = (x̂t, ŷt, θ̂t) can be recovered by : X̂t = (IFt)
−1i f t,

P
X̂t
= (IFt)

−1.
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FIGURE 5.11 – Representation of the uncertainty ellipse of the vehicle positions obtained

by different methods

Fig. 5.11 shows the covariances of vehicle positions respectively estimated by the vehi-

cle motion model, the GPS sensor, and the road map based map-matching. It can be

seen that the covariance is reduced after fusion of multiple measurements (shown in pink

color).

This work assumes that a road map-matching observation exists if it is coherent with

other observations ; otherwise, this observation is rejected. But the vehicle might be on

a new road not existing in the road map, it is also possible to update the road network

map like in the work of [23] [24], especially for the missing highway since GPS delivers

accurate positions in these open areas.



5.3/ VEHICLE POSE REFINEMENT WITH LRFS AND ORIGINAL GIS

BUILDING MAP

As presented in section 5.2.1, if GPS subsystem cannot provide vehicle positions for

long time, map-matching method with road map layer can help to re-localize the vehicle

on road. However, due to the width of road, this vehicle pose is still coarse. If we want

to control the vehicle action on road (e.g., lane-changing), more accurate estimation of

vehicle position on road is needed. Therefore, with the vehicle pose initially estimated in

section 5.2, we propose to use two laser range finders (LRFs) and a priori GIS building

map layer to make the localization from coarse-to-fine, especially in structured urban

environments. This step would be useful for a more accurate vehicle lateral position.

FIGURE 5.12 – Method of vehicle pose refining with LRFs and original GIS building map

The vehicle pose refinement method with LRFs and original building map layer is shown in

Fig. 5.12. At first, line features are respectively extracted from the horizontal and vertical

LRF scans from the onboard LRFs systems (section 5.3.1.1). Then, the environment

around the vehicle is analyzed (section 5.3.1.2). After that, the detected lines in the LRF-

H scan are associated with the GIS building map. If the lines are well associated, the

vehicle longitudinal/lateral/orientation pose is corrected (section 5.3.2.3) ; if the vehicle is

in a narrow street with one/two parallel building facades, the orientation of the vehicle

might be corrected (section 5.3.2.4) ; if the non-parallel lines solution (section 5.3.2) fails

to work, the lateral position of the vehicle is corrected with the vertical LRF (section 5.3.3).

5.3.1/ ENVIRONMENT ANALYSIS WITH HORIZONTAL AND VERTICAL LRFS

In order to analyze the environment configuration, we first have to extract the line features

from LRF scans in section 5.3.1.1.

5.3.1.1/ LINE FEATURE EXTRACTION FROM LRF SCANS

In order to extract lines from a LRF scan, a lot of line extraction algorithms using 2D

range data have been proposed [162], such as the point distance based method using



distance between every two consecutive points [9], Split-and-Merge algorithm [20], line

segmentation based invariant parameters (SIP) [57]. Line extraction algorithm used in our

work is shown in Algorithm 3.

Algorithme 3: Line extraction

Input : a set of laser points : {(xk, yk)}, k = 1, ..., n, interval of radial distance rth, interval of

polar angle αth, number threshold of a line nth

Output : fitted line uncertainty PL, fitted lines L(R, α), points on every fitted line Nupx,

uncertainty Qx of every point

1 Extract lines using Hough transform based line extraction method;

2 Delete points far away from each other in each line cluster;

3 Merge co-planar line segments according to R and α;

4 Weighted line fitting based on selected line segments from Hough transform.

Hough transform (HT) for line extraction

Polar coordinate system is a two-dimensional coordinate system, in which each point is

represented by the distance dk from a fixed point O (called pole), and the angle φk from a

fixed direction Ox (see Fig. 5.13).

FIGURE 5.13 – Line parameters in polar coordinates

The polar coordinates dk and φk of a point can be converted from its Cartesian coordinates

(xk, yk) by :

dk =

√
x2

k
+ y2

k
, φk = atan(yk/xk) (5.9)

As seen in Fig. 5.13, a straight line L in the polar coordinate system is represented by its

perpendicular distance R (called the radial distance) from the origin (pole) to the line, and

by the angle α (called the polar angle) from the Ox direction to the perpendicular line of

the line L. The points on a line can be written as :

R = xcosα + ysinα (5.10)

Hough transform is firstly used to detect and locate straight lines L(R, α) in the polar

coordinate system. Since Hough transform fits lines in parameter space without using



local information of the points, the points belonging to the same parameter combination

(Rk, αk) might be far away from each other (see Fig. 5.14(a)). A distance constraint is

added to delete those points far away from the adjacent points (line 2 in Algorithm 3,

see Fig. 5.14(b)). Besides, in order to avoid the problem due to discretization of R and

α, co-planar lines for which |∆R| < 0.2m and |∆α| < 0.5o are grouped as a new line (line 3

in Algorithm 3, see Fig. 5.14(c)). Finally, the point number threshold nth is used again to

guarantee the number of points on every extracted line (see Fig. 5.14(d)).
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after line merging and point number constraint, nth =
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FIGURE 5.14 – Lines extracted from a horizontal LRF scan with constrained Hough trans-

form

Weighted line fitting with HT results

As show in Fig. 5.13, ek is the distance from the kth laser point to the fitted line L, written

as :

ek = dkcos(α − φk) − R (5.11)

The line fitting problem to estimate the line L(R, α) can be solved by minimizing the error

ek for a set of laser points. Least-square method fits the line under the assumption that

each data point carries the equal weight. Due to the noise inherent to the laser system

and the uncertainties caused by the environmental effects, the uncertainties of different



laser range measurements are not the same. This inherent noise can be considered using

weighted line fitting method [122] with maximum likelihood based line fitting approach by

taking into account the covariance of each ek. Thus, the contribution of every point for

the line fitting is not uniform, but linked to the covariance matrix Pk of each ek. The cost

function is written as :

ǫ =

n∑

k=1

rk(ek)2 (5.12)

where n is the number of laser points used for line fitting, rk is the weight for each ek,

rk = (Pk)−1. Pk is approximated by first-order propagation of the laser measurement error

with the function ek in Equation 5.11 :

Pk = He

[
δdk

2 0

0 δφk
2

]
He

T (5.13)

where He =

[
cos(α − φk) dk sin(α − φk)

]
. (δdk, δφk) are the standard deviations of the

laser measurement (as discussed in section 3.3.2.1). As the true position (dk, φk) of a

laser point is unknown, the estimated position of laser point observed by the LRF sensor

is used in the above equation. Therefore, the covariance of ek is approximated by :

Pk = cos2(α − φk)δdk
2
+ d2

kδφk
2sin2(α − φk) (5.14)

In order to estimate the line parameters L(R, α), we have to minimize the cost function of

Eq. 5.12, written as :

ǫ =

n∑

k=1

(dkcos(α − φk) − R)2

cos2(α − φk)δdk
2
+ d2

k
δφk

2sin2(α − φk)
(5.15)

Given an initial estimate of the orientation α̂ of the line L by the Hough transform method

(in section 4), the radial distance R of the line L can be estimated by Eq. 5.16.

R = PRR


n∑

k=1

dkcos(α̂ − φk)

Pk

 (5.16)

where PRR is the variance of the radial distance, calculated by PRR = (
n∑

k=1

P−1
k

)−1, Pk is

calculated by setting α = α̂ in Eq. 5.14.

Then, the orientation α of the line L is updated by α = α̂ + δα, where δα is defined by :

δα = −
∑n

k=1(bk(0)a′
k
(0) − ak(0)b′

k
(0))/bk(0)2

∑n
k=1 G′′

T
(0)

(5.17)

where a′
k

and b′
k

are respectively the derivatives of ak and bk with respect to δα.

ck = cos(α̂ + δα − φk)

sk = sin(α̂ + δα − φk)

ak(δα) = (dkck − R)2

bk = δdk
2c2

k
+ δφk

2d2
k
s2

k

a′
k
(δα) = −2dk sk ∗ (dkck − R)

a′′
k

(δα) = 2d2
k
s2

k
− 2 ∗ dkck(dkck − R)

b′
k
(δα) = 2(d2

k
δφk

2 − δdk
2)ck sk

b′′
k

(δα) = 2(d2
k
δφk

2 − δdk
2)(c2

k
− s2

k
)

G′
T

(0) = (bk(0)a′
k
(0) − ak(0)b′

k
(0))/bk(0)2

G′′
T

(0) = (((a′′
k

(0)bk(0) − ak(0)b′′
k

(0))bk(0) − 2(a′
k
(0)bk(0) − ak(0)b′

k
(0))b′

k
(0))/(bk(0))3)

(5.18)



After that, R and α are iteratively calculated with Eq. 5.16 and Eq. 5.17 till δα < 1e−6o
.

The covariance PL of the extracted line L is approximated by :

PL =

[
PRR PRα

PRα Pαα

]
(5.19)

where :

PRα =
PRR

G′′
T

∑n
k=1(

2dk sin(α−φk)

bk(0)
)

Pαα =
1

(G′′
T

)2

∑n
k=1(

4d2
k

sin(α−φk)2

bk(0)
)

(5.20)

Finally, lines extracted from the current LRF scan are merged according to the differ-

ence between every two lines and their covariances. For a line Li = (Ri, αi) and a line

L j = (R j, α j) respectively with the line covariances PLi
and PL j

, the difference of their line

parameters is :

∆L = Li − L j

δL = ∆LT (PLi
+ PL j

)−1
∆L

(5.21)

If the normalized difference δL is less than a predefined threshold from chi-square table,

the two lines are merged as a new line L with covariance PL by :

PL = ((PLi
)−1
+ (PL j

)−1)−1

L = PL((PLi
)−1Li + (PL j

)−1L j)
(5.22)

Line detection in horizontal LRF scan Line features are extracted from every hori-

zontal LRF scan with the above line extraction method. In our work, the interval of radial

distance rth is set to 0.02m and the resolution of polar angle αth is set to 1o, the number

threshold of a line cluster nth is set to 5.

FIGURE 5.15 – Lines detected in a horizontal LRF scan

In Fig. 5.15, the red points are those points chosen to estimate the straight line by Hough

transform, the estimated lines are shown in blue. The green lines are obtained after taking

into account the uncertainties of each laser point with the weighted line fitting approach.

And the yellow zone represents the radial distance uncertainty of each fitted line. One

line is zoomed as shown in the left part of Fig. 5.15.
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FIGURE 5.16 – Lines extracted from a vertical LRF scan : two building lines are respec-

tively detected on the left and right sides of the vehicle, the line on the tree is eliminated

Line detection in vertical LRF scan

Straight lines in vertical LRF scan are also extracted, by setting the interval of radial

distance as 0.05m and the number threshold of line cluster as 5. Since we assume that

the building facades are vertical, the extracted lines from vertical LRF scan should be

perpendicular to the ground, with the polar angle α : |α| < 10o. Besides, the extracted

lines are merged as a new line L if the Mahalanobis distance δL between two lines is less

than a predefined threshold (Fig. 5.16).

5.3.1.2/ ENVIRONMENT ANALYSIS USING DETECTED FEATURES

As shown in Fig. 5.17, the horizontal LRF mounted on the roof of the vehicle scans on a

plane which is h meters above the ground, and another LRF scans vertically upward. The

ideal situation occurs when there is no dynamic obstacle around the vehicle, as shown in

Fig. 5.17(a) and Fig. 5.17(b).

The relative position between the horizontal and vertical LRFs can be known before the

experiment by calibration. After extracting the straight lines from the horizontal and vertical



(a) If more than 2 lines are de-

tected in LRF-H scan : apply ori-

entation and lateral/longitudinal

position correction

(b) If parallel lines or 1 line are detected in LRF-H scan : apply

orientation correction ; and lines detected in LRF-V scan : apply

lateral pose correction

(c) If vertical lines are detected in LRF-V

scan and no line is detected in LRF-H scan :

apply RF-V based lateral correction

(d) If no lines are detected in LRF-H or LRF-

V LRF-H scan and LRF-V scan : no pose

correction

FIGURE 5.17 – Environment analysis with horizontal and vertical LRFs

LRF scans, the selection of the pose correction method is described in Algorithm 4.

Algorithme 4: To analyze the environment

Input : LRF − H scan, LRF − V scan

1 if Non-parallel lines are detected in LRF-H then

2 Apply orientation/lateral/longitudinal error correction (case (a) of Fig. 5.17,

section 5.3.2);

3 else if Only one line or parallel lines are detected in LRF-H then

4 Apply orientation correction (section 5.3.2.4);

5 if Two building lines are detected in LRF-V then

6 Apply lateral correction (case (b) of Fig. 5.17, sections 5.3.2.4 and 5.3.3)

7 else if no line is detected in LRF-H then

8 if Two building lines are detected in LRF-V then

9 Apply lateral correction (case (c) of Fig. 5.17, section 5.3.3);

10 else

11 No correction (case (d) of Fig. 5.17);

12 end

13 end



• If few obstacles or small obstacle is around the vehicle (Fig. 5.17(a)), according to

the current sensor configuration of our LRFs, the horizontal LRF can scan the building

facades on the left and right sides and also in the front of the vehicle, the extracted

building facades can then be associated with the building map and used to correct the

vehicle longitudinal/lateral position and the orientation (see section 5.3.2).

• When there are a lot of obstacles in front of the vehicle, if only one line or parallel lines

are detected in the horizontal LRF scan (Fig. 5.17(b)) and no line can be detected in the

LRF-V scan, the orientation of the vehicle is corrected (section 5.3.2.4).

• After the previous step, if there are no high obstacles beside the vehicle, the build-

ing facades can be detected by the LRF-V scan and associated with the building map

(Fig. 5.17(c)), then the vehicle lateral position can be corrected (section 5.3.3).

• If the buildings on the left and right sides of the vehicle are detected in both the horizon-

tal and vertical scans, redundant information are provided to correct the vehicle lateral

position. We prefer to use the vertical scan because there are less obstacles in the air.

• If neither the horizontal LRF nor the vertical LRF can detect any building facade

(Fig. 5.17(d)), the vehicle is assumed to be in an open area. In this situation, the buildings

are supposed to be far away, the GPS signals can usually be well received and thus no

correction is needed.

5.3.2/ HORIZONTAL LRF BASED VEHICLE POSE CORRECTION

Steps of horizontal LRF based vehicle pose correction method are shown in Fig. 5.18.

FIGURE 5.18 – Method of vehicle pose correction with non-parallel lines

Assuming that the initially estimated vehicle pose X̂t = (x̂t, ŷt, θ̂t) is with small error, candi-

date building facades in the field of view (FOV) of the horizontal LRF are extracted from

the GIS building map (section 5.3.2.1), and transformed from the global coordinate sys-

tem to the current vehicle LRF frame. The accuracy of the extracted building facades is

provided by the GIS cartographer (the radial distance error is set to 0.5m).

Then, the extracted lines from the LRF-H scan and GIS map are associated by graph

matching and maximum clique searching method (section 5.3.2.2). If non-parallel lines

are associated, the correction step is to find the best rotation δθ and translation vector



(δx, δy) to transform the LRF features to the corresponding map features in the global

reference frame (section 5.3.2.3) ; if only one line or parallel lines are detected in the LRF-

H scan, the vehicle orientation can be corrected (section 5.3.2.4) ; if no line is detected

in the LRF-H scan, the pose might be corrected with the vertical LRF in the next step

(section 5.3.3).

5.3.2.1/ CANDIDATE BUILDING FACADES EXTRACTION

In order to extract the candidate building facades in the FOV of the horizontal LRF, two

constraints are used :

1. the maximum range constraint of the LRF system : the maximum range of a LRF

system (e.g. 180o and 80m range) is intersected with the building map to extract

candidate building facades in the FOV ;

2. the occlusion constraint : the candidate building facades should be in the LOS (line

of sight) of the laser beam.

Then, the lines extracted from the buildings map are transformed from the global map

system into the current vehicle LRF frame.

FIGURE 5.19 – Extraction of candidate building facades in the FOV of LRF-H scan

As seen in Fig. 5.19, for a horizontal LRF with maximum range of 80m, six candidate

building facades are in the field of view of the LRF-H. The extracted lines are marked in

red.

5.3.2.2/ ASSOCIATION OF LRF-H AND MAP OBSERVATIONS

Line features detected in the LRF-H scan are associated with the candidate lines from

the building map by graph matching and maximum clique searching method [9]. A graph

is an ordered pair G = (V, E) comprising a set of nodes V together with a set of edges E.

A complete subgraph is a part of graph G in which all the nodes are connected to each



other. A clique C of graph G is the maximal complete subgraph of G. A maximal clique is

a clique which includes the largest possible number of connected nodes [62].

At first, the feature graphs of the LRF-H observation and the map candidates are re-

spectively generated (section 5.3.2.2) ; then, a correspondence graph is generated on

the basis of the two feature graphs (section 5.3.2.2) ; after that, the maximum clique is

searched in the correspondence graph to find the clique with the largest number of line

correspondences between the LRF-H and the map observations (section 5.3.2.2).

The feature graphs

The feature graphs of LRF scan and map are respectively generated. For the two feature

graphs, the graph nodes are features (lines), graph edges are defined by the geometric

relationship between every two features (the difference of the radial distances of lines and

the difference of polar angles of lines).

FIGURE 5.20 – (a) four line features in a LRF scan ; (b) line feature graph GA1 defined by

the radial distances ; (c) line feature graph GA2 defined by the polar angles

Let {Li(Ri, αi)}, i = 1, ..., nL be the lines in the LRF-H scan, and {Lm
i

(Rm
i
, αm

i
)}, i = 1, ..., nm

L
be

the lines extracted from the map. For example, in Fig. 5.20(a), there are four line features

extracted from the LRF scan, two feature graphs are generated : GA1 (Fig. 5.20(b)) is the

radial distance graph with four nodes and six edges, where the edges ∆Ri j are defined by

the difference of radial distances between every two lines Li and L j, ∆Ri j = Ri − R j ; the

edges GA2 (Fig. 5.20(c)) is the polar angle graph with the same nodes as GA1, where the

six edges ∆αi j are defined by the difference of the polar angles between every two lines,

as ∆αi j = αi − α j.

Fig. 5.21(a) shows the eight lines extracted from the building map. Then feature graphs

GB1 and GB2 are generated as shown in Fig. 5.21(b)(c). The edges ∆Rm
i j

in GB1 are defined

by the difference of radial distances between two lines Lm
i

and Lm
j
, as ∆Rm

i j
= ∆Rm

i
− ∆Rm

j
;

∆αm
i j

in GB2 are defined by the difference of the polar angles, as ∆αm
i j
= ∆αm

i
− ∆αm

j
.



FIGURE 5.21 – (a) eight building lines are extracted from the GIS building map layer ; (b)

line feature graph GB1 defined by the radial distances ; (c) line feature graph GB2 defined

by the polar angles

The correspondence graph

The correspondence graph of LRF scan and building map observation is generated by

finding the edge matches in the feature graphs {GA1,GB1} and in the graphs {GA2,GB2}. If

GA1 and GA2 have na nodes, GB1 and GB2 have nb nodes, the correspondence graph GAB

is initialized as a zero array with (nanb) × (nanb) dimension. GAB is an undirected graph in

which edges have no directions and the adjacency matrix is symmetric.

If edge ∆Ri1 j1 in the feature graph GA1, and edge ∆Rm
i2 j2

in the feature graph GB1 obey the

following constraint : ∣∣∣∣∆Ri1 j1 − ∆Rm
i2 j2

∣∣∣∣ < 2.0m (5.23)

and edge ∆αi1 j1 in the feature graph GA2 and ∆αm
i2 j2

in the feature graph GB2 obey the

following constraint : ∣∣∣∣∆αi1 j1 − ∆αm
i2 j2

∣∣∣∣ < 0.1radians (5.24)

The above equations suggest that there is one edge that connects the node (Ai1 , Bi2) and

the node (A j1 , B j2), together with one edge that connects the node (Ai1 , B j2) and the node

(A j1 , Bi2). This information is added into the undirected correspondence graph GAB. The

correspondence graph of the graphs in Fig. 5.20 and Fig. 5.21 is shown in Fig. 5.22.

There are 16 nodes and 12 edges in the correspondence graph.

The maximum clique of the correspondence graph

The maximum clique of the correspondence graph is searched to find the maximum com-

mon subgraph. Given a graph’s Boolean adjacency matrix GAB, Bron−Kerbosch algorithm



FIGURE 5.22 – (a) observed building lines in the LRF-H scan ; (b) extracted building lines

in the FOV of LRF-H from GIS building map layer ; (c) the correspondence graph and the

maximum clique of the correspondence graph (red lines)

[40] is used to find all maximal cliques of the undirected graph. This algorithm applies a

recursive backtracking procedure to augment a candidate clique by considering one node

at a time. The considered node is either added to the candidate clique or to the excluded

nodes. Fig. 5.22 (c) shows the maximum clique of the correspondence graph in which all

the four nodes are connected with each other, this result indicates four line correspon-

dences between the LRF-H and map observations : {(L3, L
m
2

), (L2, L
m
6

), (L1, L
m
7

), (L4, L
m
3

)}.

5.3.2.3/ LONGITUDINAL/LATERAL POSITION AND ORIENTATION CORRECTION

Based on the initially estimated vehicle pose, the correction step is to find the best rotation

δθ and translation (δx, δy) to transform the LRF features to the corresponding map features

in the global reference frame. The maximum likelihood estimation method is used by con-

sidering both the precision of the lines detected in the LRF-H scan (see Equation 5.19)

and the precision of the line extracted from the map. The precision of the extracted build-

ing facades is provided by the GIS cartographer (as described in section 5.2.1.2, it is set

to 0.5m).

With N pairs of line correspondences : {Li(Ri, αi), L
m
i

(Rm
i
, αm

i
)}, i = 1, ...,N in the LRF scan

and in the map, the error ∆li between two lines is written as :

∆li =

[
Ri + δxcos(αi + δθ) + δysin(αi + δθ) − Rm

i

αi + δθ − αm
i

]
(5.25)

The cost function E to be minimized is written as :

E =

N∑

i=1

1

2
(∆li)

T wi(∆li) =

N∑

i=1

1

2
(∆li)

T (P∆l)
−1(∆li) (5.26)



where wi is the inverse of covariance matrix P∆l of ∆li, wi = (P∆l)
−1. As the radial distance

and the polar angle are not in the same scale, we separate this problem into two steps :

• 1) The cost function Eα is written as :

Eα =

N∑

i=1

1

2
wα

i (αi
+ δθ − αi

m)2 (5.27)

The local minimum of Equation 5.27 with respect to the rotation angle θ satisfies :

∂Eα

∂δθ
=

N∑

i=1

wα
i (αi
+ δθ − αi

m) = 0 (5.28)

where wα
i
= (Pαi + Pαi

m
)−1
=

1
P
αi+P

αi
m

. Thus,

δθ =

∑N
i=1 wα

i
(αi

m − αi)
∑N

i=1 wα
i

(5.29)

The variance of orientation is Pδθ = (
N∑

i=1

(Pαi + Pαi
m
)−1)−1.

• 2) After estimating the value of orientation δθ, the translation δx is estimated with cost

function Ex, as :

Ex =

N∑

i=1

1

2
wx

i (Ricos(αi
+ δθ) + δx − Ri

mcos(αi
m))2 (5.30)

then, the vehicle x-translation is estimated by :

δx =

∑N
i=1 wx

i
(Ri

mcos(αi
m) − Ricos(αi

+ δθ))
∑N

i=1 wx
i

(5.31)

where

ǫxi
= Ricos(αi

+ δθ) + δx − Ri
mcos(αi

m)

= (Ri
+ σR)cos(αi

+ σα + θ + σθ) + δx − (Ri
m + σRm

)cos(αi
m + σαm

)

= σRcos(αi
+ δθ) − Risin(αi

+ δθ)(σα + σθ) − σRm
cos(αi

m) + σαm
Ri

msin(αi
m)

(5.32)

Then,

P(ǫxi
) = PRRicos(ααi

+ δθ)2
+ Pαi(Ri)2sin(αi

+ δθ)2
+ Pδθ(R

i)2sin(αi
+ δθ)2

+PRi
m
cos(αi

m)2
+ Pαi

m
(Ri

m)2sin(αi
m)2 (5.33)

and wx
i
= 1/P(ǫxi

), Pδx =

N∑
i=1

(1/wx
i
).

• 3) The cost function Ey is written as :

Ey =

N∑

i=1

1

2
w

y

i
(Risin(αi

+ δθ) + δy − Ri
msin(αi

m))2 (5.34)

then, the vehicle y-translation is estimated by :

δy =

∑N
i=1 w

y

i
(Ri

msin(αi
m) − Risin(αi + δθ))

∑N
i=1 w

y

i

(5.35)



where

P(ǫyi
) = PRRi sin(αi

+ δθ)2
+ Pααi(Ri)2cos(αi

+ δθ)2
+ Pδθ(R

i)2cos(αi
+ δθ)2

+PRi
m

sin(αi
m)2
+ Pαi

m
(Ri

m)2cos(αi
m)2 (5.36)

and w
y

i
= 1/P(ǫyi

), Pδy =
N∑

i=1

(1/w
y

i
).

With the estimated rotation matrix and translation vector, the corrected vehicle pose is

written as : (x, y, θ) = (x̂ + δx, ŷ + δy, θ̂ + δθ).

5.3.2.4/ VEHICLE ORIENTATION CORRECTION

If only one straight line or more than two parallel lines are detected in the LRF-H scan,

and no line is detected in the LRF-V scan, the vehicle orientation θ̂ is corrected by the

following steps as shown in Fig. 5.23.

FIGURE 5.23 – Method of orientation correction with one line/parallel lines from LRF-H

scan

Virtual intersections estimation

This step is to estimate the virtual intersections of the vertical LRF scan with the building

map on the left and right sides. The vertical LRF scans are in a vertical plane determined

by the current vehicle position and orientation. Since we need to extract the building

facades in the FOV of the LRF-H, the intersections of the vertical laser scanning plane

and the buildings are two vertical lines on the building facades as seen in Fig. 5.24. The

candidate intersections are shown by two red points.

As seen in Fig. 5.25, let (xle f t, yle f t) and (xright, yright) respectively denote the virtual inter-

sections of the vertical LRF scan with the building map on the left and right sides.

With two building segments [AB] and [CD] (Fig. 5.25), the candidate intersections are

calculated by respectively setting the laser incident angle θ to (̂θ + 0) and (̂θ + π). The co-

ordinates of the intersection points (xle f t, yle f t) and (xright, yright) are respectively estimated



FIGURE 5.24 – Virtual intersections of the LRF-V scan with building facades

FIGURE 5.25 – Lateral position correction with parallel lines

by Equation 5.37. 

a = tan(̂θ) b = −(a2 x̂ − ŷ)

a0 =
Ay−By

Ax−Bx
b0 =

AxBy−BxAy

Ax−Bx

xright =
b−b0

a0−a
yright =

a0b−a2b
a0−a

a1 =
Cy−Dy

Cx−Dx
b1 =

CxDy−DxCy

Cx−Dx

xle f t =
b−b1

a1−a
yle f t =

a1b−ab1

a1−a

(5.37)

Vehicle orientation adjusting

After knowing the intersections, the vehicle orientation is adjusted by LRF-H based build-

ing facades and map based facades where the intersection points belong to. The Maha-



lanobis distance between the LRF-H based facades and map building facades are cal-

culated. Then, the polar angles of validated building facades and LRF-H based facades

whose Mahalanobis distance is less than a threshold are used for vehicle orientation

correction with Equation 5.38.

θ = θ̂ +

2∑
i=1

wα
i
(αi

m − αi)

2∑
i=1

wα
i

(5.38)

where Nv is the number of validated facades, wα
i
= (Pαi + Pαi

m
)−1
=

1
P
αi+P

αi
m

. If no corre-

sponding lines are found, the vehicle orientation remains the same.

5.3.3/ VERTICAL LRF BASED VEHICLE LATERAL POSITION CORRECTION

If two building facades are detected in the vertical LRF scan, the vehicle lateral position

can be corrected with the building map as shown in Fig. 5.26.

FIGURE 5.26 – Method of lateral position correction with vertical lines in LRF-V scan

• At first, the intersections of the vertical LRF scan with the building map are estimated

based on the vehicle position and the corrected orientation with Equation 5.37 (if the

vehicle orientation θ̂ is corrected in section 5.3.2.4). The two intersections are xle f t and

xright in Fig. 5.25, respectively with error 0.5m ;

• Then, with the extracted vertical lines Ll(Rl, αl) and Lr(Rr, αr) from the vertical LRF scan

(as shown in Fig. 5.16), the lateral positions of building facades in local frame and their

variances can be obtained by :

xle f t = Rlcosαl

xright = Rrcosαr (5.39)

Variance of the two positions σx2
le f t

and σx2
right

are propagated from the covariance of the

two extracted lines Pl
L

and Pr by first-order approximation ;



• After that, whether the detected LRF-V points are obstacles or not is verified by the

width of road Wr which is stored in the GIS attribute table :

∣∣∣∣∣
∣∣∣xright − xle f t

∣∣∣ −
√

(xright − xle f t)2 + (yright − yle f t)2

∣∣∣∣∣ ≤ Wr (5.40)

• If the above Eq. 5.40 is satisfied, the current estimated vehicle pose (x̂, ŷ, θ̂) is adjusted

by the ratio Ψ = 1/
∣∣∣xle f t/xright

∣∣∣ :

x = (xright + Ψxle f t)/(1 + Ψ)

y = tan(̂θ)(x − x̂) + ŷ
(5.41)

It should be noted that as shown in Fig. 5.25, only the lateral position of the vehicle can

be corrected (from the blue position to the red position), the longitudinal error cannot be

bounded by the vertical LRF lines.

• With Eq. 5.41, the covariance of the corrected pose (x, y) can be measured by the co-

variance of current vehicle pose Px,y,θ, variances of the LRF-V building points σx2
le f t
, σx2

right

and the error of map intersections with unscented transform (section 4.2.3), written as

diag(P
x̂,̂y,̂θ

, σx2
le f t
, σx2

right
, 0.52, 0.52).

FIGURE 5.27 – LRF-H in global reference before and after the map based pose correction

Fig. 5.27 shows one horizontal laser scan before and after the map based vehicle pose

correction step. The yellow polygons are buildings on the map, the blue line segments are

roads on the map. The green points are laser scans transformed into the global reference

system with the initial estimated vehicle pose. After the map based pose correction step,

the laser observation (red points) are more consistent to the map. The initial estimated

vehicle position is shown by blue circle, and the corrected vehicle position is shown by

triangle in magenta color.

5.4/ NEW MAP LAYER GENERATING WITH LRFS AND GIS

In the previous sections, the vehicle pose is corrected such that the local observation from

the LRF sensors can be matched with the building map. The above method can meet

most of our demands for continuous vehicle localization, especially in countries with well



surveyed maps or regions with small city infrastructure changes. However, sometimes

the information from different data sources might not be coherent with each other or the

environment changes.

A new map layer of building facades can be generated with the onboard LRF sensors.

Since there are less obstacles in the air (with LRF-V) than on the ground (with LRF-H), the

new map layer is generated with the onboard vertical LRF sensor. This method looks like

SLAM, which solves the problem of building a map of an unknown environment (or update

an existing map) by a mobile robot while at the same time navigating the robot using

the map [8]. For our work, since there is no common data between consecutive vertical

scans, the SLAM method cannot be directly used. Therefore, our work is implemented in

two steps as follows :

1. A new map layer of building facade landmarks is generated at first by extracting

features from the vertical scan (section 5.4.1) ;

2. Then, the reconstructed map is used as measurements to correct the vehicle pose

when the vehicle moves again around the same experimental area (section 5.4.2).

5.4.1/ NEW MAP LAYER OF BUILDING LANDMARKS

The vehicle is driven in an experimental area, and the vehicle poses are obtained by

vision based odometry information, gyro, RTK-GPS, and map-matching method. Then,

the building facade lines are detected in each vertical LRF scan, and transformed from

the vehicle attached frame into the global reference system with the vehicle pose (sec-

tion 5.4.1.1). These extracted landmarks are associated with the original building map

(section 5.4.1.2). Then, points which are considered to be on the building facades are

connected as building segments, and stored in a map layer as facade landmarks. If a

point is considered to be an independent object, it is stored in an independent object map

layer (section 5.4.1.3).

5.4.1.1/ UNCERTAINTY OF LRF-V OBSERVATION

The covariance of every building facade landmark extracted from the vertical LRF scan is

estimated in four steps :

1. Covariance of every laser scan measurement is related to the laser range and inci-

dence angle, the covariance matrix of kth point is written as {δdk
2, δφk

2}, as described

in section 3.3.2.1.

2. Covariance PL of every fitted vertical line L(Ri, αi) is related to the covariance ma-

trices of all the laser points used for line fitting {δdk
2, δφk

2}, k = 1...n, as described in

Equation 5.19 ;

3. Local covariance of the extracted facade landmark in the laser scan frame is related

to the covariance PL of the extracted line. As shown in Fig. 5.28, the projection of

the building line on 2D map is calculated by the parameters of the fitted line L with :

xv,i = Ricosαi (5.42)

The variance of this projection in local frame is propagated from the covariance PL

of the extracted line through :

σx2
v,i = [ cos(αi) −Risin(αi) ]PL[ cos(αi) −Risin(αi) ]T (5.43)



FIGURE 5.28 – Covariance of facade landmarks in ith LRF frame

FIGURE 5.29 – Covariance of facade landmarks in global frame

4. After that, this projection is transformed into the global reference system with the

current estimated vehicle pose (x̂, ŷ, θ̂), as shown in Fig. 5.29 :


x

g

v,i
= x̂ + xv,icos(̂θ)

y
g

v,i
= ŷ + xv,isin(̂θ)

(5.44)

Since the covariances P
x̂,̂y,̂θ

of the vehicle pose and the variance σx2
v,i

of the LRF ob-

servation are independent, the global covariance of the facade landmark is approx-

imated with the covariance P
x̂,̂y,̂θ

of vehicle pose and the LRF observation variance



σx2
v,i

through first-order propagation.

P
g

v,i
= Hv,i

[
P

x̂,̂y,̂θ
03×1

01×3 σx2
v,i

]
HT

v,i (5.45)

where Hv,i =

[
1 0 −xv,isin(̂θ) cos(̂θ)

0 1 xv,icos(̂θ) sin(̂θ)

]
.

5.4.1.2/ ASSOCIATION WITH THE ORIGINAL BUILDING MAP

The lines extracted from the vertical LRF are projected onto the 2D map as a set of points

(Fig. 5.28 and Fig. 5.29). All the projections of the vertical laser lines are associated with

a corresponding building facade in the GIS building map, as shown in Fig. 5.30. The

association step is implemented by finding the projection of LRF-V points on the nearest

building facade in the GIS map.

• Detection of independent objects. In order to separate the independent objects (like

trees, street lamp, traffic sign, etc.) from the building facade landmarks, a continuity con-

straint is used on the basis of the original building map. The points corresponding to the

same building facade should have the same distance from the building. Those landmarks

far from their neighbors are considered to be independent objects (Fig. 5.31). They are

stored in an “independent object” layer (Fig. 5.32).

FIGURE 5.30 – Nearest building point of LRF-V on GIS building map

5.4.1.3/ ORGANIZATION OF OBJECTS IN THE NEW MAP

After obtaining the points on building facades, they are grouped into several segments to

represent new building facades. Every two consecutive points are connected till :

– If an independent object is found, the previous building facade segment ends ;

– If the distance between two consecutive points is more than 4 meters, a new building

facade segment starts.

A map layer is created to store the new detected facade landmarks from LRF-V. Each

landmark is composed of a series of line segments as shown in Tab. 5.2 (left). The global

covariance matrices of all the facade points are stored. Another map is created to store

the independent objects, as in Tab 5.2 (right). Each object is represented by one point.



FIGURE 5.31 – Detected independent objects by LRF-V

 

 

LRF−V based building facades
Corresponding GIS building points

FIGURE 5.32 – Corresponding positions of LRF-V based features on GIS building map



5.4.2/ LOCALIZATION WITH NEW BUILDING FACADES MAP

Due to the appearance of obstacles, the changes in the environment, or the inherent error

of the original GIS map, the LRF observations might not be associated with the original

map in some area. The newly generated building facade map can better represents the

real environment observed by the vertical LRF, and can be used for more accurate local-

ization in the experimental area. In order to use the new map for localization, we update

both the vehicle pose and the facade landmark map.

An outline of the localization process is given in Fig. 5.33. When the vehicle arrives at a

new position, an expected observation is searched within the new building facades map :

if there exists building line segments, an intersection of the building facade segment is

calculated ; or an independent observation might be extracted. The localization process

is detailed in the following parts.

FIGURE 5.33 – Process of vehicle localization with the new generated building facade

map

• Pose prediction : when the vehicle moves, the vehicle pose (x̂, ŷ, θ̂) and its covariance

are predicted with the validated sensors as presented in section 5.2.

• Landmarks prediction : building facade landmarks are then extracted from the re-

Building facade landmarks

Geometry : Line ;

ID ;

X (X1, X2, ..., Xn,NaN) ;

Y (Y1,Y2, ..., Yn,NaN) ;

Height ;

Covariance matrices ;

Corresponding original facade ;

Independent objects

Geometry : Point ;

ID ;

X ;

Y ;

Height ;

Covariance matrix ;

TABLE 5.2 – Organization of landmarks : n is the number of points on a facade segment



constructed map with the vehicle’s new position, as described in section 5.3.2.4. The

intersections of the vertical beams with the reconstructed facade map are calculated.

One or two landmarks might be extracted, or no landmarks can be extracted if there is no

intersection, Nlandmark = 0, 1, 2.

The position of the intersection is not directly used, it is calculated with the end-

points of the facade segments {A(Ax, Ay), B(Bx, By)}, or {C(Cx,Cy), D(Dx,Dy)} as shown

in Fig. 5.25. The vehicle state is a (3 + 4 × Nlandmark) dimension vector, written as :

X = {x̂, ŷ, θ̂, Ax, Ay, Bx, By,Cx,Cy,Dx,Dy}. The covariances of the endpoints are extracted

from the reconstructed building map.

•Observation model : if a landmark is extracted from the segment AB, the measurement

used is the distance between the building facade and the vehicle, written as :

distance =

√
(x̂ − xright)2 + (̂y − yright)2 + Qm

=

√
1 + tan(̂θ)2 −(Ax−Bx )̂y+(AxBy−BxAy)+(Ay−By)x̂

(Ay−By)−(Ax−Bx)tan(̂θ)

(5.46)

where Qm is the observation noise. If a landmark is extracted from the segment CD, the

measurement model is the same as Eq. 5.46. Since the measurement model is nonlinear,

an UKF is used to update the vehicle pose and map uncertainty (the algorithm of UKF

can be found in section 4.2).

• Measurement : the measurements are the 2D projections of the building facade points

extracted from the current vertical LRF scan, xv,i (Equation 5.42). One or two building

points might be extracted, or no observation is available. Measurement variance σx2
v,i

is

obtained as presented in Equation 5.43.

• Update : then the landmarks on the left and right sides of the vehicle can be associated

with the current LRF observations of the building facades. They are used to update the

vehicle pose and map uncertainty in the UKF.

Landmarks which have not been seen before are added into the map such that they

can be re-observed later. All the new building facade points are stored without modifying

the initial facade points. When the number of facade points related to a building facade

reaches a specified density threshold, a new building facade segment is calculated with

respect to the covariances of the points. Methods like split-and-merge can also be used

to segment and merge the landmarks.

5.5/ IMPLEMENTATION AND EXPERIMENTAL RESULTS

5.5.1/ EXPERIMENTAL PLATFORM

Two experiments were implemented with the same vehicle SeTCar introduced in previous

section 3.4. A ProFlex 500 Magellan RTK-GPS receiver, a DSP 3000 Fibre optic gyro, and

two SICK LMS 291 laser range finders are mounted on the roof of the vehicle (Fig. 5.34).

An embedded hard disk is installed to acquire multi-sensor data. The measurements from

the different sensors are associated according to their logged time. Beside the sensors

presented in section 3.4, a gyro and two LRF as used in this experiment.

Gyro. A DSP 3000 Fibre optic gyro 7 (10Hz, Fig. 5.35) is mounted on the roof of the vehicle

7. http://www.kvh.com/dsp3000



FIGURE 5.34 – The experimental vehicle - SeTCar

beside the horizontal laser range finder. This gyro can sense the rotation of the vehicle

around an axis perpendicular to the base plane.

FIGURE 5.35 – DSP 3000 Fibre optic gyro

Laser range finders (Fig. 5.36). In our experiments, two SICK LMS 291 laser range find-

ers 8 are mounted on the roof of the vehicle : one looks forward and scans horizontally, the

other one looks upward and scans vertically. By setting the angular resolution of the two

LRF systems to 1o and the maximum range to 80 meters, the LRFs can send 75 scans

every second, with 181 range data (a LRF scan) in 180o field of view.

In order to evaluate the effectiveness of the proposed map-aided vehicle localization ap-

proach, two experiments were designed and implemented with data acquired by our ex-

perimental vehicle.

8. http://www.sick.com/



FIGURE 5.36 – SICK LMS 221 and LMS 291

5.5.2/ EXPERIMENTAL RESULTS OF THE OLD TOWN CENTER SEQUENCE

The first data sequence was acquired in the old town center of Belfort, in September,

2012 (Fig. 5.37). The whole trajectory measured by RTK-GPS is about 972.49m.

FIGURE 5.37 – Vehicle trajectory overlapped on the OpenStreetMap and Google aerial

image

The streets are narrow and the buildings are tall in the old town center. It is easily to note

that in several areas (Fig. 5.38), positions provided by the RTK-GPS are situated on the

buildings, though the HDOP (Horizontal dilution of precision) of all the GPS positions are

between 1 and 2 during this acquisition (provided by the NMEA GPGGA sentences), this

means that the distribution of the satellites are good enough to provide accurate position

measurements. Therefore, this error might due to the influence of the local environment.

As seen in Fig. 5.39, several RTK-GPS positions are with large noises, even overlapped

on the buildings. Thus, the RTK-GPS positions cannot be used as reference for evalua-

tion. Since no ground truth is provided in this area, we only show the corrected vehicle

positions and the local perception of the vertical LRF.

In Fig. 5.39, the red lines are the GPS positions provided by the RTK-GPS receiver. The

road and building maps are used to correct the vehicle pose with the local perception from

the laser range finders. In our experiments, the map-matching method is based on the



FIGURE 5.38 – Trajectory (in area 1) of RTK-GPS and low precision GPS shown in Google

Street View

FIGURE 5.39 – Vehicle trajectories estimated by different approaches : vehicle position

used for map-matching method is based on the GPS position if the GPS reading is avail-

able ; if not, it is based on the predicted position from the transition model

GPS position if the GPS reading is available ; if not, it is based on the predicted position

from the transition model. The vehicle positions corrected by the road map are shown in



blue points, the vehicle positions corrected by the road and building maps are shown in

magenta color. The local perception extracted from the vertical LRF are shown in green

crosses. After correcting the vehicle pose, the local LRF perception is more coherent with

the original building map.

5.5.3/ EXPERIMENTAL RESULTS OF THE INDUSTRIAL PARK SEQUENCE

The second data sequence was captured in an industrial area - the Techn’hom at Belfort,

France in February, 2012. As seen in Fig. 5.40, the vehicle trajectory is with buildings

around and there are no big altitude changes on the road. The trajectory length measured

by the RTK-GPS sensor is about 720 meters. In order to test our proposed method in the

circumstances of GPS failure, four GPS masks were added into GPS data to simulate the

blockage of GPS signals (Fig. 5.41). Each GPS mask lasts about 25 seconds.

FIGURE 5.40 – The second vehicle trajectory respectively overlapped on Google aerial

image and OpenStreetMap

• 1. Localization without map-aiding. As shown in Fig. 5.41, when GPS readings are

not provided, the vehicle poses are estimated by LRF scan alignment information and the

orientation from gyro (green trajectory). It is noted that without any global information, the

vehicle trajectory drift gradually and the covariance of the vehicle position enlarges.

• 2. Localization with the road map. Then, the road map layer is added to assist vehicle

localization by map-matching method. The blue trajectory in Fig. 5.41 demonstrates that

the erroneous vehicle positions are dragged back onto the road and the pose covariance

is bounded around the road after adding the road map.

• 3. Localization with the original building map. After that, the building map layer is

added to correct both the vehicle position and orientation with the horizontal and vertical

LRFs. It is noted that when the observed building facades can be associated with the map,



FIGURE 5.41 – Vehicle positions respectively obtained by RTK-GPS, LRF-H scan align-

ment/gyro prediction, road map based correction, and road/building maps based correc-

tion methods. The rectangle area is zoomed in Fig. 5.42

the horizontal LRF observation can be used to correct the vehicle orientation. Then, if the

road width condition is met (Equation 5.40), the vehicle lateral position is also corrected.

The whole corrected trajectory is shown in magenta color in Fig. 5.41.

For example, as shown in Fig. 5.42, the green points are the horizontal LRF scans before



FIGURE 5.42 – Zoom of rectangle area in Fig. 5.41 (green points are LRF-H scans before

the vehicle pose correction, and red points are LRF-H scans after the pose correction)

the vehicle pose correction, and the red points are the LRF scans after pose correction.

It can be seen that after the pose correction step with the building map, the local LRF

observations are more consistent with the map and the vehicle position.

In Fig. 5.44 and Fig. 5.45, several experimental results are presented in different envi-

ronment conditions. In Fig. 5.44, the correspondences between the lines in the horizontal

LRF scan and the map are found by the graph matching as : {(L1 : Lm
7

), (L2 : Lm
2

), (L4 : Lm
4

)},
the vehicle pose is corrected by the three line correspondences. In Fig. 5.45, only parallel

lines are detected in the horizontal LRF scan, the observation from the vertical LRF is

used to correct the vehicle lateral position.

Taking RTK-GPS as the ground truth, the localization errors by different methods during

the periods with simulated GPS masks are compared, as shown in Fig. 5.43 and Tab. 5.3.

Method mean error standard deviation of error

LRF-H alignment/Gyro 7.3776 5.1813

LRF-H alignment/Gyro/Road map 3.8493 1.3807

LRF-H alignment/Gyro/Road map/

LRFH-LRFV-Building maps
3.0980 1.2649

TABLE 5.3 – Localization error during GPS mask (/meter)

During the periods with simulated GPS mask, the average localization error can be re-

duced after using the road map. Since the vehicle trajectory is close to the road central

line in this sequence, the advantage of adding building map is not significant over only

using road map. However, if the road is much wider or the vehicle is not close to the road

central line, the usefulness of building map for lateral position correction would be more

important.



FIGURE 5.43 – Comparison of vehicle localization errors with different approaches
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FIGURE 5.44 – Observation from LRFs and GIS map - result 1 (area with non-parallel

lines)
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rected vehicle pose ; green star : the predicted vehi-
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which is not coherent with the vertical LRF and the

map)

FIGURE 5.45 – Observation from LRFs and GIS map - result 2 (in narrow street with

parallel lines) : lines detected in the horizontal LRF scan are neither coherent with the

building map nor the vertical LRF scan



• 4. Localization with the reconstructed map

1) Reconstructed map. Fig. 5.46 (left) shows the reconstructed scene in this experiment

from the vertical LRF. The blue lines represent the grouped building facades along the ve-

hicle trajectory, the red crosses represent the detected independent objects. A rectangle

area is zoomed in and shown on the right side : the green points are the detected points

on the facades, and the red circles are the endpoints of the building facades.

FIGURE 5.46 – New maps with extracted building facade landmarks and independent

objects

LRF and camera data are associated by their logged time. In order to verify the correct-

ness of the detected lines in laser scan, we take an image around the position where the

independent object in the yellow circle of Fig. 5.46 (left) is observed by the vertical LRF.

As seen in Fig. 5.47, the object detected by the vertical LRF is the tree in front of the

building in the orange ellipse.

2) Localization with the reconstructed building map. This work is still in progress and

some preliminary results are presented. We tested the proposed method in three steps :

at first, with the known ground truth, noises are manually simulated and added into the

GPS positions at several points to simulate GPS jumps ; then, a GPS mask during a

period of time is added to simulate the blockage of GPS signals ; and finally, the vehicle

is driven through the same experimental area, the map reconstructed at the first time is



FIGURE 5.47 – One tree in front of the building is treated as an independent object by the

LRF-V (corresponding to the object in the yellow circle of Fig. 5.46)

used to correct the vehicle pose.

In order to simulate GPS jumps with large errors, we randomly degraded the precision

of several GPS measurements. Fig. 5.48 shows the localization results when GPS en-

counters large jumps. In Tab 5.4, the randomly added GPS position errors are listed.

Some erroneous GPS positions are rejected during the initial fusion step with the pro-

cess model/gyro and road map-matching. Then, the vehicle position is corrected by the

new reconstructed building map. Tab 5.4 shows that the building map can help to correct

the vehicle pose such that the vertical LRF observations are consistent with the recon-

structed map.

Position noise Rejected by fusion Corrected by new map Error on x Error on z

P1 19.2846 rejected corrected 0.4450 1.9051

P2 −0.4006 not rejected corrected −0.0506 0.9510

P3 −15.9633 rejected corrected 0.0482 0.5408

P4 7.3357 rejected not corrected −0.0704 0.9733

P5 27.0277 rejected corrected 0.0783 0.3970

P6 −11.7806 rejected corrected −0.1577 0.8420

P7 −16.9585 rejected corrected −0.1849 0.4077

P8 50.5200 rejected corrected −0.4135 0.8765

P9 6.1507 rejected corrected −0.2921 0.3524

TABLE 5.4 – Localization results with simulated GPS jumps (/meter)

In order to simulate GPS signal blockage in urban environments, we added a GPS mask

for about 30 seconds (the ground truth lasts about 101.36m). Fig. 5.50 show the local-

ization results when a GPS mask is added. Without any map information, the trajectory

gradually drifts to the right side. After incorporating the map information, the vehicle is

closer to the ground truth.

As seen in Fig. 5.50 and Tab. 5.5, the localization accuracy is about 1m when using the



FIGURE 5.48 – Vehicle localization results by using the reconstructed building map (with

simulated GPS jumps)

FIGURE 5.49 – Vehicle localization results with the reconstructed building map (with about

30s simulated GPS mask)



road map observation. Because both the vehicle position and orientation can affect the

predicted landmarks, the localization error changes when using the reconstructed building

map. However, in several areas, the reconstructed building map can help to reduce the

localization error of road map based estimation.
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FIGURE 5.50 – Comparison of vehicle position errors after adding GPS masks

All the LRF-V observations acquired at the current pose are stored with the initial facade

points. They are used to update the map when the number of facade points around a

facade segment reaches a specified density threshold. This work will be continued by

acquiring much more experimental data of the same area.

5.6/ CONCLUSION AND PERSPECTIVES

In this chapter, we presented a geographical information system (GIS) aided vehicle lo-

calization method with a GPS receiver, a gyro, two LRF systems and 2D GIS maps (road

network map, building map). Two types of map information are used : the first one is the

original GIS maps, including the road network map and the building map ; in order that

the landmarks can be reused for vehicle localization in the future, the building facade

landmarks detected by the perception sensor are stored in a new building facade map

Min error Max error Average error/m

Process/Gyro 0.0140 6.4698 4.8999

Process/Gyro/Road map 0.0411 1.3361 0.8161

Process/Gyro/Road map

/LRFH-LRFV-New map
0.0411 2.7014 0.8504

TABLE 5.5 – Localization results with the different approaches (/meter)



layer ; another map layer is used to store the independent objects.

The proposed approaches were tested with two real data sequences, one in an old town

center and the other one in an industrial area. Both experimental results demonstrate that

when GPS signals are blocked or with large jumps, the road map can help to bound the

vehicle pose around the road ; and the building map can help to adjust the vehicle pose

from coarse-to-fine such that the local perception of the two LRFs are consistent with the

building facade ; and the newly reconstructed building map can help to keep the map up

to date and to correct the vehicle pose.

Perspectives : based on the preliminary results in this chapter, several research per-

spectives are summarized as follows :

– When the vehicle goes through the same place, the problem becomes a SLAM problem

to update both the vehicle pose and the map, together with their covariances. We can

also pass the same area more times, 8 times, 10 times or even more, to obtain more

laser points, and to extract the facades from this large set of points.

– Our current work only takes use of the LRF-V for mapping and localization. The LRF-V

provides only information of the buildings which are parallel to the vehicle trajectory,

while the building facade perpendicular to the vehicle trajectory cannot be observed.

Therefore, we can use the LRF-H and LRF-V for mapping within a probabilistic 3D

occupancy grid framework. The same landmark can be seen at different consecutive

poses and can be associated to update the predicted vehicle pose.

– A LRF can also be installed at the bottom back of the vehicle to scan the ground behind

the vehicle. In this work, we use a vertical LRF to test the feasibility of the method.

Stereovision or the fusion of stereovision and LRF are also envisaged in the future.

Plane features can also be extracted if we use the historical information of the left or

right building scans.

– Many methods have been proposed to solve the problem of road matching when cross-

roads appear. The local perception of the environment provided by the camera or LRF

can help to solve the problem of road map-matching (road/building combination pat-

tern) and to determine the position of the vehicle on road.

– We can take use of the GIS map to dynamically manage the objects in urban environ-

ments, which are extracted from the horizontal and vertical LRFs, like static objects,

and moving objects.

– We can also take use of the other attribute information provided by the GIS database,

such as the slope of ground.



6

CONCLUSIONS AND FUTURE WORKS

6.1/ CONCLUSIONS

The problem addressed in this thesis is how to provide precise and robust localization ser-

vice in urban environments by integrating multi-source information. Accurate localization

is one requirement for intelligent vehicles applications. From map provider’s point of view,

localization is also one of the key points in geo-referencing process for mobile mapping

systems. After a detailed review of the existing relative and absolute vehicle localization

approaches in Chapter 2, vehicle localization methods were proposed in this thesis to

assist vehicle localization in urban environments.

At first, stereovision based visual odometry and laser range finder based scan alignment

methods are presented in Chapter 3. Stereovision based visual odometry predicts the

vehicle movement on the basis of image feature detection and tracking. Compared with

wheel encoder based odometry, it can provide vehicle motion in 6 degrees of freedom

and avoid the wheel slippage problem in bad soil conditions. Nevertheless, especially

during bad illumination condition like in the night, image based visual odometry method

cannot be used. This method is then completed by adding the vehicle motion estimated

by consecutive scans in horizontal LRF system. Experimental results show that these two

relative localization methods can provide vehicle movement information in short term like

other inertial sensors, but their localization accuracy decreases in long term due to error

accumulation from frame to frame. Thus, we propose to integrate GPS and stereovision

based visual odometry, and horizontal LRF based scan alignment together in Chapter 4.

The redundant measurement information are used to evaluate the coherence of differ-

ent systems and to continuously provide pose measurement if any system fails to work.

This method to integrate GPS with relative localization methods is with the assumption

that GPS signals are lost in short term. If the GPS signals are lost for long period, the

accumulated localization error of dead-reckoning method cannot be bounded and the

trajectory might gradually drift if only using relative approaches.

Therefore, in Chapter 5, static environment information stored in digital maps of a ge-

ographical information system (GIS) is used to bound the localization error of dead-

reckoning methods if GPS receiver fails for long time. At first, GPS/DR (LRF-H based

scan alignment and a gyro) measurements are fused with a 2D GIS road network map to

provide a coarse pose estimation. This step is like the classic road map-matching method.

Then, two complementary LRF systems (horizontal and vertical LRFs) mounted on the

roof of the vehicle are used to detect building facades in urban environments. Building

facade features in the vertical LRF scan are chosen for lateral pose correction since there



are less obstacles in the air than on the ground. The detected vertical building facades

are projected onto the 2D plane and associated with the GIS building map layer to correct

the vehicle pose error, especially for the lateral pose error. The experimental results with

real data show that the road map can help to obtain an approximate estimation of the ve-

hicle position by projecting the vehicle position on the corresponding road segment, then

the integration of the building information can help to refine this first pose estimation.

6.2/ PERSPECTIVES

A lot of perspectives are envisaged to improve and complete the vehicle localization sys-

tem proposed in this thesis in future works :

• At first, real-time implementation of the localization system is being developed. As the

time synchronization between different sensor systems is important for real-time fusion,

the processing time of each subsystem (e.g., feature detection and matching, and vehicle

motion estimation in visual odometry ; scan alignment in laser method ; map extraction

and building feature association) and data transmission should be considered.

• The precision of visual odometry method might be improved by improving camera cal-

ibration results, or using more robust features. We can test and compare the precision

and robustness of different kind of features with more data sequences under different il-

lumination and weather conditions, or in more complex environments with different types

of obstacles, etc. Since detection of dynamic obstacles and vision based relative mo-

tion estimation are dual-processes, the work on dynamic obstacles detection should be

improved.

• Other uncertainty representation might also be considered in future works, like

bounded intervals. In this thesis, covariance of the visual odometry based estimation is

propagated from the image point noise, 3D point reconstruction process and pose estima-

tion. Covariance of LRF-H scan alignment estimation is propagated from the laser point

noise and minimization process. But the noise or error in point matching/association step

is not yet well measured and this should be considered in future works. For the image

aided ICP methods, the work on how to dynamically choose appropriate coefficients for

the image attributes needs to be continued in the future ; the incorporation of camera with

larger FOV (e.g. fish eye) can also be considered.

• In future works, sensors like IMU or odometry can also be directly integrated thanks

to the convenience of information filter. Tight coupling approaches between LRF and

image data, inertial sensor and image data, GPS pseudo-ranges with image data are

also envisaged instead of loose coupling of their estimated motions.

The work on combining GIS for intelligent vehicle localization in this thesis is still very

preliminary, some research perspectives are summarized as follows :

• In this work, we have tested the possibility of using building facade features for vehicle

pose correction, especially for vehicle lateral pose. This method can be completed by

combining other continuous features. For example, a LRF sensor can be installed at the

bottom back of the vehicle to scan the ground and detect curbs beside the road (due

to the special LRF configuration in our experiment, these features cannot be extracted) ;

camera system can be used to detect lanes on the ground. Then, these three continuous



line features : lanes, curbs and building footprints can be stored in three map layers

and used for vehicle lateral pose correction in case that one of them might not be well

detected.

• The idea of our current work is simple and easy to implement, we only take use of the

vertical LRF scan for new map generation and localization. But LRF-V can provide only

information of the buildings which are parallel to the vehicle trajectory, while the building

facades perpendicular to the vehicle moving direction cannot be observed. Therefore,

we can use the LRF-H and LRF-V for mapping within a probabilistic 3D occupancy grid

framework. The same landmark can be seen at different consecutive poses and can be

associated to update the predicted vehicle pose. Stereovision or the fusion of stereovision

and LRF are also envisaged in the future. Building plane features can also be extracted if

we use historical information of the left or right building scans.

• The map based method proposed in this thesis is based on the assumption that the

facades of the buildings are vertical. Quality of GIS maps can largely affect the precision

of pose correction step. In order to update the newly generated map, we can choose

the SLAM strategy to update both the vehicle pose and the map when the vehicle goes

through the same place. Or we can repeat the trajectory in the same area during different

dates to extract the facades from this large set of points, then complete the newly gener-

ated building map like the road map update strategy used in OpenStreetMap project. So

the work on how to manage the sensor observations and accurately update the map with

new observation should be completed.

• Many methods have been proposed to solve the problem of road matching when cross-

roads appear. The local perception of the environment provided by the camera or LRF

may help to reduce the ambiguity problem of road map-matching. For example, with the

lane features and building facades extracted from the image, a road/building combina-

tion pattern can be obtained, this pattern can be compared with the existing road net-

work/building footprint maps to reduce the ambiguity of vehicle position on road.

• Other attribute information provided by the GIS database might also be used, such

as the slope of ground. If multiple vehicles are roving in the same area and each vehicle

sends its own local map to the computation center (or to the other vehicles), the informa-

tion should also be possible to be shared for making a more complete map. We can take

use of the GIS map to dynamically manage the objects in urban environments, which are

extracted from the horizontal and vertical LRFs, like static objects, and moving objects.
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virtuel 3D urbain. PhD thesis, Université des Sciences et Technologies de Lille,

2008. 34, 35

[29] C. Cappelle, M. E. El Najjar, F. Charpillet, and D. Pomorski. Virtual 3D City Model

for Navigation in Urban Areas. Journal of Intelligent and Robotic Systems, June

2011. vient d’etre accepté. 34, 40

[30] C. Cappelle, M. E. El Najjar, D. Pomorski, and F. Charpillet. Intelligent geo-

localisation in urban areas using gps, 3d-gis and vision. Journal of Intelligent Trans-

portation Systems, 14 :3–12, 2010. 34



[31] S. Carreno, P. Ridao, P. Wilson, and Y. Petillot. A survey on terrain based navigation

for auvs. In International Federation of Automatic Control Conference on Control

Systems in Marine Applications, pages 684–690, Rostock, Germany, 2010. 33

[32] M. Cazorla, D. Viejo, A. Hernandez, J. Nieto, and E. Nebot. Large scale egomotion

and error analysis with visual features. Journal of Physical Agents, 4 :19–24, 2010.

63

[33] A. Censi. An accurate closed-form estimate of icps covariance. In IEEE Interna-

tional Conference on Robotics and Automation, 2007. 75

[34] T. Cham, A. Ciptadi, W. Tan, M. Pham, and L. Chia. Estimating camera pose from

a single urban ground-view omnidirectional image and a 2d building outline map,

2010. 34

[35] C. Chen, J. Ibanez-Guzman, and O. Le-Marchant. Pattern recognition for loosely-

coupled gps/odometer fusion. In IEEE International Conference on Robotics and

Automation (ICRA), Sept 2008. 39

[36] Z. Chen and S. T. Birchfield. Qualitative vision-based mobile robot navigation. In

IEEE International Conference on Robotics and Automation, pages 2686–2692,

2006. 36

[37] Y. Cheng, M. Maimone, and L. Matthies. Visual odometry on the mars exploration

rovers. IEEE Robotics and Automation Magazine, 13 :54–62, 2006. 19, 20, 43, 56,

64

[38] S. Cho and W. Choi. Robust positioning technique in low-cost dr/gps for land nav-

igation. IEEE Transaction on Instrumentation and Measurements, 55 :1132–1142,

2006. 88

[39] A. K. Choy. Global Positioning System theory and design : geometric dilution of

precision. Cornell University, 1996. 29

[40] B. Coen and K. Joep. Algorithm 457 : finding all cliques of an undirected graph.

Communications of the ACM, 16(9) :575–577, 1973. 133

[41] A. I. Comport, E. Malis, and P. Rives. Real-time quadrifocal visual odometry. Inter-

national Journal of Robotics Research, 29(2-3) :245–266, February 2010. 19, 22,

43

[42] G. N. DeSouza and A. C. Kak. Vision for mobile robot navigation : A survey. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 24(2) :237–267, 2002.

33

[43] A. Diosi and L. Kleeman. Uncertainty of line segments extracted from static sick pls

laser scans. In Australiasian Conference on Robotics and Automation, 2003. 74

[44] M. Donoser and H. Bischof. Efficient maximally stable extremal region (mser) track-

ing. In IEEE Computer Society Conference on Computer Vision and Pattern Recog-

nition - Volume 1, CVPR ’06, pages 553–560, Washington, DC, USA, 2006. IEEE

Computer Society. 52

[45] L. Douadi, M.J. Aldon, and A. Crosnie. Pair-wise registration of 3d/color data sets

with icp. In IEEE International Conference on Intelligent Robots and Systems,

pages 663–668, 2006. 72

[46] Arnaud Doucet, Simon Godsill, and Christophe Andrieu. On sequential monte

carlo sampling methods for bayesian filtering. STATISTICS AND COMPUTING,

10(3) :197–208, 2000. 93



[47] N. M. Drawil and O. Basir. Intervehicle-communication-assisted localization. IEEE

Transactions on Intelligent Transportation Systems, 11(3) :678–691, September

2010. 38

[48] N. M. Drawil and O. Basir. In Global Navigation Satellite Systems : Signal, The-

ory and Applications, chapter Emerging New Trends in Hybrid Vehicle Localization

Systems, pages 279–298. InTech, 2012. 38

[49] S. Druon, M. J. Aldon, and A. Crosnier. Color constrained icp for registration of large

unstructured 3d color data sets. In IEEE International Conference on Information

Acquisition, volume 1-2, pages 249–255, 2006. 72

[50] G. Dubbelman and F. C. A. Groen. Bias reduction for stereo based motion esti-

mation with applications to large scale visual odometry. In IEEE Conference on

Computer Vision and Pattern Recognition, 2009. 23

[51] H. Durrant-Whyte. Introduction to decentralised data fusion, 2002. 91, 92

[52] D. W. Eggert, A. Lorusso, and R. B. Fisher. Estimating 3-d rigid body transforma-

tions : a comparison of four major algorithms. Mach. Vision Appl., 9(5-6) :272–290,

March 1997. 21, 23

[53] A. El-Rabbany. Introduction to GPS : the Global Positioning System. Artech House

mobile communications series. Artech House, 2006. 27, 29

[54] O. G. Favrot and M. Parent. Laser scanner based slam in real road and traffic

environment. In ICRA09 Workshop on Safe navigation in open and dynamic envi-

ronments Application to autonomous vehicles, 2009. 24, 67

[55] M. A. Fischler and R. C. Bolles. Random sample consensus : a paradigm for model

fitting with applications to image analysis and automated cartography. Commun.

ACM, 24(6) :381–395, June 1981. 60

[56] D. A. Forsyth and J. Ponce. Computer vision. a modern approach. Prentice Hall,

Pearson Education International, 2003. 48, 55

[57] B. Fortin, R. Lherbier, and J. C. Noyer. Feature extraction in scanning laser range

data using invariant parameters : Application to vehicle detection. IEEE Transac-

tions on Vehicular Technology, 61(9) :3838–3850, 2012. 123

[58] F. Fraundorfer and D. Scaramuzza. Visual odometry : Part ii - matching, robustness,

and applications. IEEE Robotics and Automation Magazine, 19(1), 2012. 52

[59] D. Garcia, J.J. Orteu, and M. Devy. Accurate calibration of a stereovision sensor :

Comparison of different approaches. In Conference on Vision Modeling and Visu-

alization, pages 25–32. Aka GmbH, 2000. 50

[60] A. Georgiev and P. K. Allen. Localization methods for a mobile robot in urban envi-

ronments. IEEE Transactions on Robotics, 20 :851–864, 2004. 37

[61] G. Godin, D. Laurendeau, and R. Bergevin. A method for the registration of at-

tributed range images. In Proceedings of Third Int. Conference on 3D Digital Imag-

ing and Modeling, pages 179–186, 2001. 72

[62] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,

New York, 1980. 131

[63] J. S. Greenfeld. Matching gps observations to locations on a digital map. In 81st

Annual Meeting of the Transportation Research Board, Washington D.C, January

2002. 40, 117



[64] M. Grimes and Y. LeCun. Efficient off-road localization using visually corrected

odometry. In IEEE International Conference on Robotics and Automation, pages

2649–2654, 2009. 39

[65] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson, R. Karlsson,

and P.J. Nordlund. Particle filters for positioning, navigation, and tracking. IEEE

Transactions on Signal Processing, 50(2) :425–437, 2002. 93

[66] M. Hachman. ’eyes’ of google’s self-driving car may bust crooks, April, 2012. 67

[67] D. Hahnel, W. Burgard, D. Fox, K. Fishkin, and M. Philipose. Mapping and local-

ization with rfid technology. In IEEE International Conference on Robotics and Au-

tomation, volume 1, pages 1015–1020, 2004. 25

[68] R.M. Haralick. Propagating covariance in computer vision. In Workshop on Perfor-

mance Characteristics of Vision Algorithms, pages 493–498, 1994. 62

[69] C. Harris and M. Stephens. A combined corner and edge detector. In The Fourth

Alvey Vision Conference, pages 147–151, 1988. 36, 52

[70] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-

bridge University Press, 2004. 22, 45, 50, 60, 63, 64

[71] B. K. P. Horn and J. G. Harris. Rigid body motion from range image sequences.

CVGIP : Image Underst., 53(1) :1–13, January 1991. 23

[72] A. Howard. Real-Time Stereo Visual Odometry for Autonomous Ground Vehicles.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008. 19,

43
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A

TRANSFORMATION OF GPS

COORDINATES

A.1/ COORDINATE SYSTEMS

Geodetic coordinate system : WGS84. World Geodetic System (WGS84) is the refer-

ence coordinate system used by the Global Positioning System, as shown in Fig. A.1(a) 1.

The WGS84 datum (reference ellipsoid and origin) surface is an ellipsoid with major ra-

dius 6378.13m at the equator, and minor radius 6356.75m at the poles.

The position of a geographic location on the earth’s surface is described by the longitude,

latitude and elevation in the world geodetic system. These are measures of the angles

(in degrees) from the center of the earth to the location on the earth’s surface. Latitude

angles φ are measured in a north-south direction from the equator to the measured point.

Longitude measures λ are based on the Prime Meridian from the North Pole through

Greenwich to the South Pole and they stand for the angular distance from this Reference

Meridian to the measured point.

Earth-centered earth-fixed coordinate system. The position represented by the lon-

gitude, latitude and elevation can be transformed to coordinates (X, Y, Z) in an earth-

centered and earth-fixed (ECEF) 3D Cartesian coordinates system, as shown in

Fig. A.1(b). The origin of this system (0, 0, 0) is defined as the center of mass of the

Earth. The X axis of this system passes through the equator at the prime meridian. The Z

axis passes through the north pole. The X axis can be determined by the right-hand rule

to pass through the equator at 90o longitude.

Local North-East-Up coordinate system. In order to use these information on the lo-

cal surface of the earth, we need to convert the coordinates into a local surface plane

XY, which is tangent to the Earth’s surface fixed to a specific local location, and the Z

axis is upward (as shown in Fig. A.1(c)). In order to project the coordinates from earth’s

spherical surface onto a two-dimensional local Cartesian coordinate plane, different pro-

jections could be chosen according to the location of the measured point. For example, in

Belfort, France where we did the experiments, the extended Lambert II projection model

is generally chosen, as shown in Fig. A.1(d).

Steps for converting the WGS84 coordinates to the extended Lambert II system 2 are

1. http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Georeferencing and coordinate

systems

2. http://geodesie.ign.fr/contenu/fichiers/documentation/pedagogiques/transfo.pdf



FIGURE A.1 – a) WGS-84 reference ellipsoid for GPS, a location is represented by Ge-

ographic latitude φ and longitude λ ; b) Earth-centered earth-fixed coordinate system

(ECEF) position : (x, y, z) ; c) Lambert projection from geographic coordinates to Cartesian

coordinates in France. Different projections could be chosen according to the location ; d)

Local North-East-Up coordinate system

detailed in the following part.

A.2/ TRANSFORMATION FROM WGS84 TO EXTENDED LAMBERT II

Data from GPS receiver are in the form of NMEA sentences, in which the longitude and

the latitude are the most important information. These information are in the geodetic

system of GPS : WGS84. In order to use these information on the local surface of the

earth, we need to transform these data by the projection of the longitude and latitude

information onto the earth surface. The WGS84 data are converted into the extended

Lambert II system in several steps shown in Algorithm 5.



Algorithme 5: Transformation from WGS 84 to Extended Lambert II

Input : Geographic latitude and longitude (φw0, λw0) from GPS receiver

Output : Coordinates in extended Lambert II system (xg, yg)

0. Transform the default latitude and longitude (φw0, λw0) from decimal degrees format to

Degrees/radians format (φw, λw) :

Latitude : ××︸︷︷︸
Degrees

× × . × × × ×︸          ︷︷          ︸
Minutes

N/S , Longitude : × × ×︸︷︷︸
Degrees

× × . × × × ×︸          ︷︷          ︸
Minutes

W/E (A.1)

for example, if (φw0, λw0) = (4235.5632,N, 00623.3453,W), then :

φw = (42 + 35.5632/60) × π/180, λw = (6 + 23.3453/60) × π/180

1. Transform (φw, λw) to Cartesian coordinates (xw, yw, zw) : ew =
a2

w−b2
w

a2
w
,N =

aw√
1−ew sin2(φw)

,

then : 

xw = Ncosφwcosλw

yw = Ncosφwsinλw

zw = N(1 − ew)sinφw

(A.2)

with : aw = 6378137 and bw = 6356752.314.

2. Transform (xw, yw, zw) to Cartesian coordinates NTF (Nouvelle Triangulation de la

France) (xn, yn, zn) by the translation vector (168, 60,−320), with :

xn = xw + 168, yn = yw + 60, zn = zw − 320.

3. Transform (xn, yn, zn) to geographic coordinates NTF (φn, λn) :

en =
a2

n − b2
n

a2
n

(A.3)

p0 = atan(dnzn(1 − (anen)/(

√
x2

n + y2
n + z2

n))) (A.4)

p1 = atan(dnzn/(1 − (anencos(p0))/(

√
(x2

n + y2
n)(1 − ensin2(p0))))) (A.5)

with : an = 6378249.2, bn = 6356515 and dn = 1/
√

x2
n + y2

n.

3.1 While |p1 − p0| > 1e−10, do

p0 = p1 ;

Re-calculate p1 with Eq.A.5 ;

End

3.2 Then, φn = p1 and λn = atan(yn/xn).

4.Transform (φn, λn) to the coordinates in the extended Lambert II system (xg, yg) :

{
xg
= xs + ce−nLsin(n(λn − λ0))

yg
= ys − ce−nLcos(n(λn − λ0))

(A.6)

with : n = 0.7289686274, c = 11745793.39, xs = 600000, ys = 8199695.768,

λ0 = 0.04079234433198 and L = log(tan(
pi

4
+

φn

2
))(

1−√en sinφn

1+
√

en sinφn
)
√

en/2.







Résumé :

Afin d’améliorer la précision des systèmes de navigation ainsi que de garantir la sécurité et la continuité du service, il est

essentiel de connaı̂tre la position et l’orientation du véhicule en tout temps. La localisation absolue utilisant des systèmes

satellitaires tels que le GPS est souvent utilisée à cette fin. Cependant, en environnement urbain, la localisation à l’aide

d’un récepteur GPS peut s’avérer peu précise voire même indisponible à cause des phénomènes de réflexion des signaux,

de multi-trajet ou de la faible visibilité satellitaire. Afin d’assurer une estimation précise et robuste du positionnement,

d’autres capteurs et méthodes doivent compléter la mesure. Dans cette thèse, des méthodes de localisation de véhicules

sont proposées afin d’améliorer l’estimation de la pose en prenant en compte la redondance et la complémentarité des

informations du système multi-capteurs utilisé. Tout d’abord, les mesures GPS sont fusionnées avec des estimations de

la localisation relative du véhicule obtenues à l’aide d’un capteur proprioceptif (gyromètre), d’un système stéréoscopique

(odométrie visuelle) et d’un télémètre laser (recalage de scans télémétriques). Une étape de sélection des capteurs est

intégrée pour valider la cohérence des observations provenant des différents capteurs. Seules les informations validées

sont combinées dans un formalisme de couplage lâche avec un filtre informationnel. Si l’information GPS est indisponible

pendant une longue période, la trajectoire estimée par uniquement les approches relatives tend à diverger, en raison de

l’accumulation de l’erreur. Pour ces raisons, les informations d’une carte numérique (route + bâtiment) ont été intégrées

et couplées aux mesures télémétriques de deux télémètres laser montés sur le toit du véhicule (l’un horizontalement,

l’autre verticalement). Les façades des immeubles détectées par les télémètres laser sont associées avec les informations
≪ bâtiment ≫ de la carte afin de corriger la position du véhicule.

Les approches proposées sont testées et évaluées sur des données réelles. Les résultats expérimentaux obtenus montrent

que la fusion du système stéréoscopique et du télémètre laser avec le GPS permet d’assurer le service de localisation

lors des courtes absences de mesures GPS et de corriger les erreurs GPS de type saut. Par ailleurs, la prise en compte

des informations de la carte numérique routière permet d’obtenir une approximation de la position du véhicule en projetant

la position du véhicule sur le tronçon de route correspondant et enfin l’intégration de la carte numérique des bâtiments

couplée aux données télémétriques permet d’affiner cette estimation, en particulier la position latérale.

Mots-clés : Localisation de véhicule, fusion multi-capteur, véhicule intelligent, télémètre laser, vision

stéréoscopique, système d’information géographique

Abstract:

In order to improve the accuracy of assisted navigation systems so as to guarantee driving security on road, it is essential to

know the absolute/relative vehicle positions and orientations at all times. In some dense urban environments (e.g., a street

with tall buildings around), vehicle localization results provided by Global Positioning System (GPS) receiver might not be

accurate or even unavailable due to signal reflection (multi-path) or poor satellite visibility. Two vehicle localization methods

were proposed in this thesis to assist vehicle localization in urban environments by taking use of the redundancy and

complementarity of multiple sources. 1) GPS localization method is complemented by a gyroscope, stereovision based

visual odometry, horizontal laser range finder (LRF) based scan alignment to provide a coarse vehicle pose estimation.

A sensor selection step is applied to validate the coherence of different observations: only information provided by the

validated sensors are combined under a loosely coupled probabilistic framework. 2) If GPS signals are lost for long period,

the accumulated localization error of DR-only method are bounded by a road network map and a building footprint map,

together with two LRF systems (a horizontal LRF and a vertical LRF) mounted on the roof of the vehicle. The extracted

facade landmarks from the vertical LRF scan are stored in a new GIS map layer. The proposed approach is tested and

evaluated with real data sequences. Experimental results with real data show that fusion of the stereoscopic system and

LRF can continue to localize the vehicle during GPS outages in short period and to correct the GPS positioning error such

as GPS jumps; the road map can help to obtain an approximate estimation of the vehicle position; and the integration of

the building information can help to refine the initial pose estimation when GPS signals are lost for long time, especially for

the lateral position.

Keywords: Vehicle localization, multi-sensor fusion, intelligent vehicle, laser range finder, stereovision, geo-

graphic information system


