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Abstract

The fractal geometry is a relatively new branch of mathematics that stud-
ies complex objects of non-integer dimensions. It finds applications in many
branches of science as objects of such complex structure often poses interest-
ing properties. In [Bar88] Barnsley presented the Iterative Function System
(IFS) model that allows modelling complex fractal shapes with only a limited
set of contractive transformations. Later many other models were based on the
IFS model such as Language-Restricted IFS, Projective IFS, Controlled IFS and
Boundary Controlled IFS. The last to allow modelling complex shapes with con-
trol points and specific topology. These models cover classical geometric models
such as B-splines and subdivision surfaces as well as fractal shapes.

This thesis focuses on the analysis of the differential behaviour of the shapes
described with Controlled IFS and Boundary Controlled IFS. We derive the
necessary and sufficient conditions for differentiability for everywhere dense set
of points. Our study is based on the study of the eigenvalues and eigenvectors
of the transformations composing the IFS.

We apply the obtained conditions to modelling curves in surfaces. We de-
scribe different examples of differential behaviour presented in shapes modelled
with Controlled IFS and Boundary Controlled IFS. We also use the Boundary
Controlled IFS to solve the problem of connecting different subdivision schemes.
We construct a junction between Doo-Sabin and Catmull-Clark subdivision sur-
faces and analyse the differential behaviour of the intermediate surface.

Keywords: fractal curve, fractal surface, IFS, tangent, subdivision
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Chapter 1

Introduction

Iterative ways of modelling shapes are widely spread in modern Computer Aided Design
(CAD) systems. They allow us to model complex shapes as algorithms that are iteratively
applied to an initial small set of data points. Many subdivision techniques are well known
such as Doo-Sabin [DS78], Catmull-Clark [CC78] and Loop [Loo87].

Most iterative models used in CAD can only describe smooth shapes such as piecewise-
polynomial curves or surfaces. However, nature is full of objects that are not smooth and
are thus difficult to model with modern CAD systems. Most natural forms tend to have
irregular and chaotic patterns. Over the years, different mathematical objects that possess
such properties have been studied.

B. Mandelbrot introduced the notion of fractal geometry, a new theory about complex
objects that possess features on any level of detail [Man82]. While studying coastal lines he
observed that they possess the same irregular structure at all levels of scale and that their
length increases with more precise measurements. The same properties are shared by fractal
curves — objects of non-integer dimensions, that is called the fractal dimension. Fractal
geometry is a relatively new branch of mathematics that provides a way of modelling natural
phenomena while respecting their irregular structure.

The global objective of our work is to develop a geometric modeller based on the
paradigm of fractal geometry. More precisely, we aim to model shapes by means of it-
erative processes. Our formalism covers traditional models like NURBS1 and subdivision
surfaces and also a new world of shapes, not accessible by the polynomial models and having
a particular aesthetic. Our study is based on the Iterated Function System model intro-
duced by M. Barnsley in [Bar88]. This model provides a way to model complex irregular
objects by iterative modelling, utilising the properties of self-similarity.

Self-similar shapes possess not only a particular aesthetic, but a variety of physical qual-
ities. They may exhibit extreme surface-to-volume ratios, which is an important property
in many physical and chemical processes. Fractal-shaped antennae have long been used in
electronics because of their ability to receive signals at different frequencies. Integrating
tools to model fractal shapes into wide-spread CAD systems will allow for the easy design
and manufacturing of such shapes.

1Non-Uniform Rational B-Splines

1



2 CHAPTER 1. INTRODUCTION

There are many models based on the concept of Iterative Function System (or IFS for
short) that add various features to the model. Among them is Projective IFS that allows for
the modelling of fractal shapes with control points. Projective Iterative Function Systems
were introduced by C.E. Zair and E. Tosan [ZT96]. In [ZT97] they also show that this
model can be used to describe both smooth and rugged shapes. S. Schaefer, D. Levin,
and R. Goldman in [SLG05] showed that subdivision curves and surfaces can be viewed as
attractors of Iterative Function Systems. Thus the Projective IFS model incorporates the
ability to model both classical polynomial and fractal shapes.

The classic differential analysis of subdivision surfaces is based on the notion of a char-
acteristic map proposed by U. Reif and in [Rei95] and expanded by H. Prautzsch in [Pra98].
According to their work, a subdivision schemes with injective and regular characteristic
maps produce tangent continuous surfaces at the extraordinary points. However, verifying
whether the characteristic map is injective requires calculation for each type of extraordinary
point. Later, D. Zorin showed that for a general class of subdivision schemes, regularity can
be inferred from the properties of a sufficiently close linear approximation, and injectivity
can be verified by computing the index of a curve in [Zor00].

Nevertheless, the injectivity and regularity conditions are too strict to be useful for mod-
elling rough fractal shapes, since shapes without injective characteristic maps and tangents
exist (see section 2.1). Also, the characteristic map is linked to the specific vertex of the
control mesh, whereas control points of the Projective IFS are not necessarily a part of the
mesh.

This thesis examines the differential properties of self-similar objects in the context of
geometric modelling. The objective is to study, from the geometric point of view, different
ways a self-similar set may behave and to derive the necessary and sufficient conditions for
differentiability. We search for a way to establish the differential behaviour of shapes that
does not involve their explicit parametrisation, because searching for a parametrisation that
does not possess vanishing derivatives can be a arduous task and parametrisation is shape
specific. Developing strict criteria will allow us to quickly analyse newly constructed objects.
In particular, our method could be applied to the analysis of new subdivision schemes. Our
approach also allows us to directly control the topological subdivision of the shapes. Hence
it is not limited to subdivisions of the control meshes of a specific type.

1.1 Organisation and contributions

This thesis consists of 5 chapters, in addition the current one.

In chapter 2 we discuss previous studies of fractal shape differentiability. We also discuss
various studies of subdivision scheme differentiability.

In chapter 3 we recall the definition of the IFS model as well as its more generalised
counterparts such as Controlled Iterated Function Systems (CIFS) and Boundary Controlled
Function Systems (BCIFS).

Chapter 4 is dedicated to the main findings of this work. In this chapter we define the
notion of tangent subspace and study various cases of differential behaviour of the shapes
designed with iterative modelling. We present the necessary and sufficient conditions for
differentiability for the class of points that is everywhere dense within the modelled shape.
We also provide numerous examples of calculation of the tangent subspaces for different
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kinds of attractors.
In chapter 5 we discuss the problem of connecting different shapes within the BCIFS

model. We propose a way to construct a junction between two curves or two surfaces.
Using the BCIFS formalism, we describe the subdivision of the junction’s topology and
define it as the attractor of BCIFS. Then we use the results obtained in chapter 4 to
analyse the differential properties of the junction. Results presented in this chapter have
been published in two articles: [PGSL13a] covers the construction of the intermediate curve,
while [PGSL13b] discusses junction between surfaces.

Finally, in chapter 6 we provide a summary of our work and discuss some open problems.
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Chapter 2

State of the art

In this chapter we discuss developments in the differential analysis of self-similar and fractal
shapes. First we discuss the use of the characteristic map in the analysis of subdivision
surfaces. We also give an example of a subdivision with a non-injective characteristic map
and a tangent. Then we discuss various studies of the differential properties of fractal and
self-similar shapes.

2.1 Subdivision curves and surfaces

Since 1978 subdivision surfaces has become a major staple in geometric modelling. They
allow a coarse mesh of control points to represent a refined and smooth surface of arbitrary
topology with known degrees of continuity. Subdivision schemes started from simultaneous
developments by Catmull and Clark [CC78] and by Doo and Sabin [DS78].

Differential properties of subdivision surfaces are the subject of many studies. In [Pra98]
Prautzsch studies the differentiability of subdivision schemes at the extraordinary vertices.
His study exploits the following idea: for every extraordinary vertex at every step of the
subdivision, its neighbouring control points define a ring of m irregular patches, where m
is the valence of that vertex. After one step of the subdivision, m irregular patches are
subdivided into m smaller irregular patches and 3m regular patches. These 3m regular
patches form a ring on a surface that can be parametrised over [0, 1]2 ×{1, 2, . . . , 3m}. The
next subdivision step produces a smaller ring that also consists of 3m regular patches. A
certain parametrisation used by Prautzsch is derived from the notion of characteristic map
introduced by Reif and Peters in [Rei95].

Each ring rm, can be parametrized in terms of control points for each regular patch
B3

m ∈ R3, and basis functions N l:

rm : (u, v, j) ∈ [0, 1]2 × {1, 2, . . . , 3m} 7→
L∑

l=0

N l(u, v, j)Bl
m.

Let S be a row stochastic subdivision matrix such that control points for the next ring are
obtained from the previous one:

Bm+1 = SBm, Bm = SmB0.

5
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Figure 2.1: A curve with half-tangent at the endpoints and a non-injective characteristic
map.

Definition 1 (Characteristic map). Let λ0, . . . , λL be the eigenvalues of S ordered by their
absolute value:

|λ0| ≥ |λ2| ≥ . . . ≥ |λL|,
and ~v0, . . . , ~vL be the corresponding generalized real eigenvectors. If |λ0| > |λ1| = |λ2| > |λ3|
then the characteristic map of the subdivision is defined as

ψ : [0, 1]2 × {1, 2, . . . , 3m} 7→ N [~v1, ~v2],

where [~v1, ~v2] is the matrix whose columns are sub-dominant eigenvectors of S.

Here rows of [~v1, ~v2] serve as control points for the ring placed into R2. In [Rei95], Reif
and Peters proved that if the characteristic map is regular and invertible then the resulting
surface is C1-continuous. Prautzsch showed that under certain conditions on eigenvalues
and eigenvectors of the subdivision matrices the subdivision schemes with a regular and
invertible characteristic map produce Gk-continuous surfaces at the extraordinary points.

However the characteristic map is often not injective for fractal shapes. As an example
we consider the curve presented in figure 2.1. The end points of the curve are obtained
with the following subdivision mask:

S =




5
4 − 1

4 0
1
2

1
2 0

0 5
4 − 1

4


 .

Like any other curve obtained with subdivision, such a curve is self-similar. The corre-
sponding IFS is described in section 3.6. According to [Ben09] the half-tangents exist at the
vertices; however, as we will show, the characteristic map is not injective.

If we calculate the eigenvectors of S and associated eigenvalues we obtain the following:

λ0 = 1, λ1 = 3/4, λ2 = −1/4,
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Figure 2.2: Graph of the characteristic map as a projection from R2.

~v0 =



1
1
1


 , ~v1 =




1
2

5/2


 , ~v2 =



0
0
1


 .

The characteristic map is a natural parametrisation of such curve placed in R using compo-
nents of ~v1 as control points. This parametrisation is not injective as we can demonstrate.
Consider a vector p = (p1, p2, p3) of three control points from R2 such that their first coordi-
nates are equal to the components of ~v1 (see figure 2.2). The following is a parametrisation
of the curve with such control points:

f(x) =

3∑

i=1

N i(x)pi,

where N i are basis function. If we denote the projection onto Ox as Pr the characteristic
map φ(x) can be written as follows:

φ(x) =

3∑

i=1

N i(x)Pr(pi) = Pr(f(x)).

Thus φ(x) is not injective since Pr does not map the graph of f to the graph of φ injectivly.
Verifying the injectivity of the characteristic map is therefore not only difficult, but such a
condition is too strict to be used for rough non-polynomial shapes.

In [MG01], Morin and Goldman study the convergence of discrete derivatives of arbitrary
degree of Bézier curve approximations. Given a parametrisation, control polygons produced
by subdivision algorithms can serve as approximations for the limit curve. A specific way
to parametrize the control polygons is chosen to show that as the approximations converge
to the limit curve, their respective derivatives converge to the continuous derivative of the
original Bézier curve.
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Boier-Martin and Zorin also study the differentiability of Catmull-Clark subdivision
scheme. In [BMZ04] they present a parametrisation that possesses non vanishing derivatives
at the extraordinary points.

2.1.1 Joining subdivision schemes

Different subdivision schemes operate on different types of meshes and the visual properties
of the final surface depend on the subdivision scheme. So for modelling complex objects an
amalgamation of different subdivision schemes is often necessary.

Quad-triangle schemes

Two of the most popular subdivision schemes operate on different type of meshes. Cat-
mull and Clark [CC78] scheme operates on quads, while Loop [Loo87] scheme operates on
triangles. The visual properties of a limit surfaces vary according the method used, so in
modelling complex shapes there is often a need to use both quad and triangle schemes. A
number of studies have been performed on schemes that combine two subdivision schemes
to develop a way to work with quad-triangle meshes.

Different biregular subdivision schemes have been studied for primal schemes. Stam and
Loop propose a generalization of the Catmull-Clark and Loop subdivisions that operates
on quad/triangle meshes [SL03]. While mimicking Loop subdivision on triangle regions and
Catmull-Clark on quadrilateral, the border between the two regions is subdivided with the
averaging mask of Catmull-Clark and Loop. That generalisation produces a C2 surface with
the exception of extraordinary points and a quad-triangle border which is C1.

Levin and Levin proposed a new set of rules along the quad-triangle border [LL03]. For
schemes that are Cm-continuous at each side of the border, they derive a sufficient condition
for Cm-continuity of the limit function. This condition requires that the value of the joint
spectral radius of a certain pair of matrices is less than 2−m.

Schaefer and Warren [SW05] modify the scheme proposed by Stam and Loop [SL03] by
introducing an additional step called unzipping pass. This improves the smoothness along
the regular quad-triangle border from C1 to C2. Using the approach developed in [LL03]
they prove that their schemes is indeed C2-continuous along the quad-triangle border.

Primal/dual schemes

While many studies have been performed to unify the quad/triangle subdivision scheme, to
our knowledge, no biregular subdivision has been performed on primal/dual schemes. The
problem lies in the fact that the subdivision process is based on mesh subdivision. The
study [KSD12] which proposes a way to transform a primal scheme into a dual scheme may
open up new perspectives on this problem.

2.2 FIF development and differentiability analysis

In the context of fractal geometry, many studies have developed the Iterated Function Sys-
tem model. In [Bar86], Barnsley introduced a model called Fractal Interpolation Function
(FIF) that allows us to generate a function which interpolates a given set of points and



2.2. FIF DEVELOPMENT AND DIFFERENTIABILITY ANALYSIS 9

whose graph is an attractor of an IFS. Given a data set {(xi, yi) ∈ I × R|i = 0, 1, . . . , N}
where I = [x0, xN ] ⊂ R, an Iterated Function System is defined in such a way that its
attractor is a graph of the function f : I → R such that ∀i = 0, 1, . . .N f(xi) = yi.

Let x0 < x1 < . . . < xN . Let Lj be affine maps satisfying

Lj(x0) = xj−1, Lj(xN ) = xj , j = 1, 2, . . . , N. (2.1)

Let y0, y1, . . . , yN ∈ R. Let −1 < αj < 1, j = 1, 2, . . . , N. Let X = [x0, xN ]. Let Fj :
X × R → R such that it satisfies

|Fj(x, y1)− Fj(x, y2)| ≤ |αj ||y1 − y2|, x ∈ X, y1, y2 ∈ R, (2.2)

Fj(x0, y0) = yj−1, Fj(xN , yN ) = yj , y = 1, 2, . . . , N. (2.3)

The fractal interpolation function associated with {(Lj(x), Fj(x, y))}Nj=1 is the unique func-
tion f : X → R such that:

f(Lj(x)) = Fj(x, f(x)), y = 1, 2, . . . , N, x ∈ X.

The continuity of the function f is guaranteed by conditions 2.3. The graph of the function
f is the attractor of the iterated function system on X×R composed of the following maps:

{Tj|Tj(x, y) = (Lj(x), Fj(x, y))}Nj=1.

In [BH89], Barnsley and Harrington presented a method to construct FIF that are Ck

differentiable. They show that derivatives of f are also fractal interpolation functions. The
following theorem demonstrates that it is possible to define the fractal interpolation function
that is Ck differentiable.

Theorem 1 (Barnsley and Harrington, [BH89]). Let x0 < x1 < . . . < xN and let the affine
functions Lj(x) = ajx + bj that verify 2.1, where aj = L′

j(x) =
xj−xj−1

xN−x0
. Let Fj(x, y) =

αjy + qj(x), j = 1, 2, . . . , N − 1 such that Fj verify 2.2 and 2.3. Suppose that for some
integer n ≥ 0, |αn| < anj , qj ∈ Cn[x0, xN ], j = 1, 2, . . . , N. Let

Fj,k(x, y) =
αjy + q

(k)
j (x)

akj
,

y0,k =
q
(k)
1 (x0)

ak1 − α1
, yN,k =

q
(k)
N (xN )

akN − αN
, k = 1, 2, . . . , n.

If Fj−1,k(xN , yN,k) = Fj,k(x0, y0,k), j = 2, 3, . . . , N and k = 1, 2, . . . , n, then {(Lj(x), Fj(x, y))}Nj=1

determines a fractal interpolation function f ∈ Cn[x0, xN ] and f (k) is the fractal interpola-
tion function associated with {(Lj(x), F(j,k)(x, y))}Nj=1, k − 1, 2, . . . , n.

Later, in [Mas91], Massopust expands the notion of the fractal interpolation function into
a vector valued fractal interpolation function. This notion allow us to define the functions
interpolating data points in Rn.

Using on the FIF model, Cochran et al. [CLH01] discovered a class of fractal surfaces
that are differentiable. They used the fact that an integral of a fractal interpolation function
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remains a fractal interpolation function, and this new function is everywhere differentiable.
The corresponding derivative f ′ is of course a solution of the differential equation:

f(x) = y0 +

∫ x

x0

f ′(t)dt.

They study surfaces obtained as tensor product of fractal interpolation functions and show
that such surfaces are both fractal and have well-defined surface normals. Given two differ-
entiable fractal interpolation functions f(x) and g(y) a height map h(x, y) is defined:

h(x, y) = f(x)g(y), x0 ≤ x ≤ xN , y0 ≤ y ≤ yM .

Then the partial derivatives are used to calculate the tangent plane and normal at (x, y):

hx(x, y) = f ′(x)g(y),

hy(x, y) = f(x)g′(y).

So the tangent plane at (x, y) is spanned by vectors ~v1 = (1, 0, hx(x, y)) and ~v2 = (0, 1, hy(x, y)).
The normal vector N(x, y) can be computed as the cross product of ~v1 and ~v2:

N(x, y) = ~v1 × ~v2 = (−hx(x, y),−hy(x, y), 1) = (−f ′(x)g(y),−f(x)g′(y), 1).

2.3 Previous results for IFS on R2

Hicham Bensoudane [Ben09] focuses on applying IFS to geometric modelling. He developed
a method of studying the differential properties of fractal curves in R2. Bensoudane used
the notion of local fraction derivative and exploits the self-similar nature of shapes modelled
with the Iterative Function System model.

For a curve modelled as an attractor of an IFS in R2 a general expression of the local
fractional derivative is given in terms of operators composing the corresponding IFS. It is
shown that under a certain condition on eigenvalues of the linear part of the affine operators
composing the IFS, this expression is well defined and for an everywhere dense set of points:
points with periodic addresses.

Definition 2 (Local fractional derivative). If for a function f the following limit exists:

Dqf(y) = lim
x→y

dq(f(x)− f(y))

[d(x − y)q]

and is bounded for some q ∈ (0, 1) then it is called the local fractional derivative of order q.

Considering x < y or y < x gives the definition for left and right fractional derivatives
at y. Left and right local fractional derivatives of the function f are denoted by Dq

+f and
Dq

−f respectively.
For a given self-similar curve A a parametrisation is defined in the form of a transport

function denoted by H . A supplementary IFS has a parameter domain as an attractor (for
example unit segment [0, 1] for a curve). If this supplementary IFS has the same number
of transformations, then the transport function H maps a point on the parameter domain
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t ∈ [0, 1] with address σ to the corresponding point t̄ ∈ A that corresponds to the same
address σ. Under certain conditions on the supplementary IFS function H is continuous.

Given an IFS and a transport function, necessary conditions for the existence of Dq
+H

and Dq
−H are deduced for points t that have a periodic address without any finite prefix

(addresses like iω). Then existence of local fractional derivative at points that have periodic
addresses with some finite prefix (σiω) is studied. It is shown that its existence depends
on the local fractional derivative at the point with address iω. A way to calculate the local
fractional derivative for periodic points with a finite prefix (σiω) from the local fractional
derivative of periodic point with an empty prefix(iω) is given. Finally, sufficient conditions
for the existence of local fractional derivatives for IFS defined in R2 are given at the points
with periodic addresses σiω.

The relation between the critical order of derivation, the local Hölder coefficient and
the fractal dimension of curves is also studied. The author shows that the critical order of
derivation and the local Hölder coefficient can be used as a measure of roughness as well as
fractal dimension.
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Chapter 3

Background on IFS, CIFS and
BCIFS

In this chapter we recall the concepts of the Iterated Function Systems, Projective Iterated
Function Systems, Controlled Iterated Function Systems and Boundary Controlled Function
Systems. We also review some facts about eigenvectors and eigenvalues of the operators
acting on barycentric spaces.

3.1 Iterated Function Systems

Iterated Function Systems (or IFS for short) were first introduced by Hutchinson in [Hut81].
The notion of Iterated Function Systems is based on the fact that a contractive operator
acting on a space of compacts has a unique fixed point, and therefore each contractive
operator corresponds to a compact set called an attractor of the IFS. Attractors are always
self-similar, i.e. they consist of smaller copies of themselves.

Definition 3 (Contractive operator). An operator T acting on a metric space (X , d) is
called contractive if:

∃0 < s < 1, ∀x, y ∈ X, d(T (x), T (y)) ≤ sd(x, y).

The value s is called the contractive factor of the operator T .

Example 1 (Contractive operator). The function f(x) = 1
2x acting on R is contractive in

respect to the Euclidean distance. The corresponding contractive factor is 1
2 .

If T is a contractive operator on a complete metric space (X , d), then
∃!p ∈ X : T (p) = p.

The point p is called a fixed point of the operator T .

Example 2 (Fixed point). For the contractive operator f(x) = 1
2x from example 1 the

origin is a fixed point. However for the operator f ′(x) = 1
2x + 1

2 acting on the same space
1 is the fixed point.

13
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3.1.1 Hutchinson operator

Consider the complete metric space (X , d).We denote the set of non-empty compacts subsets
of (X , d) as H(X ). H(X ) can be equipped with the Hausdorff distance.

Definition 4 (Hausdorff distance). Let X,Y ∈ H(X ). The following metric is thus called
a Hausdorff distance:

dH(X,Y ) = max{max
x∈X

min
y∈Y

d(x, y),max
y∈Y

min
x∈X

d(x, y)}.

As shown in [Bar88] if (X , d) is a complete metric space then (H(X ), dH) is also complete.

Given a set of operators on X we can define a so-called Hutchinson operator on H(X ).

Definition 5 (Hutchinson operator). Consider a set of operators on X , {Ti}N−1
i=0 . We can

define a new operator T as follows:

T(X) = ∪N−1
i=0 Ti(X).

If ∀i Ti is a contractive operator on (X , d), then T is also contractive on (H(X ), dH)
[Bar88].

Definition 6 (Iterated Function System). Given a complete metric space (X , d) an Iterated
Function System is a finite set of contractive operators {Ti}N−1

i=0 on (X , d).

The set of contractive operators defines a Hutchinson operator on (H(X ), dH), which is
also contractive and has a unique fixed point that we denote as A. The compact A is called
an attractor of the IFS. Note that A is a self-similar set since

A = T(A) =

N−1⋃

i=0

Ti(A).

Example 3 (Sierpiński Triangle). The Sierpiński triangle is an attractor of an IFS composed
of three transformations on R2

T0 =

(
0.5 0
0 0.5

)
, T1 =

(
0.5 0
0 0.5

)
+

(
0.5
0

)
, T2 =

(
0.5 0
0 0.5

)
+

(
0.25
0.5

)

Its approximation is presented in figure 3.1

3.1.2 Algorithm for IFS attractor approximation

Two algorithms for computing an attractor of an Iterated Function System are presented
by Barnsley [Bar88]. The algorithms are the Deterministic Algorithm and the Random
Iteration Algorithms also known as Chaos Game.
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Figure 3.1: Sierpiński triangle.

Figure 3.2: A sequence of compact sets approximating the Sierpiński triangle.

Deterministic Algorithm

The Deterministic Algorithm directly computes a sequence of approximation using the
Hutchinson operator. For a given IFS {Ti}N−1

i=0 acting on metric space (X , d) we start
by choosing any compact set K0 in X and computing Kn = Tn(K0). Since T is a contrac-
tive map on H(X ) there exists a limit limn→∞ Tn(K) = A. Thus we have constructed a
sequence of compact sets that converge to the attractor of the IFS. Note that the limit is in-
dependent of K. Therefore we can start computing the approximation with any non-empty
compact set in X . Four iterations of approximation of the Sierpiński triangle are presented
in figure 3.2. This example uses a single triangle as a starting point.

Random walk

For a given IFS {Ti}N−1
i=0 acting on metric space (X , d) assign a non-zero probability pi for

each i = 0, . . . , n − 1 such that
∑n−1

i=0 pi = 1. Choose any x0 ∈ X and then chose xn from
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{Ti(xn−1)}n−1
i=0 with respective probabilities pi. For any n ∈ N xn ∈ A. As n increases xn

fills out the shape of the attractor. For more details, refer to [Bar88].

3.2 Address function

The address function [Bar88] allows us to associate any point belonging to the attractor of
an IFS with an infinite string of symbols from the finite alphabet. Each symbol corresponds
to an operator of the IFS. Here is the underlying idea: when we apply one of the operators to
the attractor we obtain its smaller part. We can repeat the process, obtaining a sequence of
nested sets. These sets have only one common point. In this way we can set a correspondence
between an infinite string (address) and a point of the attractor.

Definition 7 (Address function). Let us consider an IFS T = {T0, . . . , TN−1}. We can
denote the alphabet associated with it as Σ = {0, . . . , N − 1}. We also denote the set of
infinite length words on Σ as Σω. The address function is defined as follows:

φ : Σω → A

σ → φ(σ) = lim
i→∞

Tσ1Tσ2 · · ·Tσip,

for any point p. The limit is independent of p as shown in [Bar88].

3.3 Projective Iterated Function Systems

The idea of projective IFS was introduced by Zair and Tosan [ZT96]. By separating the
iterative space from the modelling space, it is possible to construct fractal shapes with control
points. Similar to splines determined by the basic functions defined in a barycentric space,
attractors are also defined in a barycentric space whose dimensions correspond to the number
of control points: A ⊂ BIn = {λ ∈ Rn|∑n−1

i=0 λi = 1}, where n is the number of control
points. Then the attractor is projected into the modelling space with the transformation
defined by control points PA = {∑n−1

i=0 Piλi|λi ∈ A}, where P = [P0 P1 · · ·Pn−1] is the
vector composed of control points.

The operators on the barycentric space can be written as linear operators on Rn, with
a specific constraint on its matrix representation: each column of the matrix must have the
sum of its elements equal to 1. The fixed point of such operator, as well as an attractor of
the IFS composed of such operators, always belong to the barycentric plane.

3.4 Controlled Iterated Function System

In this section we cover the notion of Controlled Iterated Function System. Attractors of
the plain IFS can be viewed as a union of parts, where each part is similar to the whole.
The CIFS model allows us to describe shapes where some of these parts are not the image
of the attractor itself, but of something else (usually an attractor of another IFS).

Definition 8 (Controlled Iterated Function System). The set of the following items is called
Controlled Iterated Function System:
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♮ T0,...,N−1

Figure 3.3: Simple IFS as a CIFS automaton.

• an automaton (E, Σ, δ, ♮), where E is a set of states, Σ is an alphabet and δ is a
transition function δ : E × Σ → E and ♮ ∈ E is a starting state.

• a set of metric spaces associated with each state {X e|e ∈ E}

• a set of transformations associated with each transition T e
i : Eδ(e,i) → Ee

We also denote as Σe the subset of Σ such that for all i ∈ Σe there exist δ(e, i).

Definition 9 (Attractor of the CIFS state). Each CIFS state e ∈ E is associated with an
attractor that is denoted as Ae:

Ae =
⋃

i∈Σe

T e
i (Aδ(e,i)).

In other wordsm an attractor associated with the state e is composed of attractors
associated with states ei such that there exists a transition from e to ei. If all outgoing
transitions from the state lead to the same state, then the attractor associated with the
state is an attractor of a normal IFS composed of the transformation corresponding to the
transitions (see figure 3.3).

Definition 10 (Attractor of the CIFS). The attractor associated with the initial state of
the CIFS is also considered the attractor of the CIFS as a whole.

Iterative algorithm for CIFS attractor approximation

For each state e ∈ E of the CIFS we can approximate the associated attractor Ae with a
sequence of compact sets, that we denote {Ke

n}n∈N. For each state e we choose a non-empty
compact set Ke

0 ∈ H(X e). Using Ke
0 we can compute the next iteration as follows:

Ke
i+1 =

⋃

i∈Σe

T e
i K

δ(e,i)n .

3.4.1 Projected IFS as CIFS

Within the CIFS framework the principle of Projective IFS can be implemented. Let us
consider a CIFS such that there is no incoming transition for the initial state ♮. Or in other
words:

∀e ∈ E, i ∈ Σe δ(e, i) 6= ♮.
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♮ S
P

T0,...,N−1

Figure 3.4: A projective IFS as a CIFS automaton.

As an example consider the automaton presented in figure 3.4. The metric space associated
with the initial state X ♮ can be treated as a modelling space, while space associated with
state S is the barycentric space of some dimension n. The operator associated with the
transition from P to S can be viewed as a vector of n control points.

3.5 Boundary Controlled IFS

Both IFS and CIFS models allows us to model a variety of different forms. However, they
provide little to no ability to control the topology of the objects. Since shapes are described
via a set of transformations, small changes in description lead to changes on both local and
global scales. The IFS and CIFS models cannot guarantee that the topology of the attractor
is conserved for even small changes in the transformations, for example when the continuous
curve will turn into a disconnected set of points. To remedy this issue the BCIFS model
was developed. Here we give a brief overview of the model, for more details please refer
to [Gou10].

3.5.1 Boundary Representation (B-rep)

In classical CAD-systems the B-rep model is used to control the topology of the geometric
model. The model is stored as a set of topological cells such as face, edge or vertex, and
their relations. There are two types of relations between the cells. First, there is incidence
based on the notion of inclusion: each face is bordered by a number of edges; edges are in
turn bordered by vertices. The second type of relation is adjacency. Two cells are said to
be adjacent if there exists a common cell incident to both of them, such as a common edge
between neighbouring faces, or a common vertex for two adjacent edges.

In classical B-rep, models edges are curves, while faces are surfaces. The BCIFS model
allows us to use B-rep notion with fractal objects such as faces or curves. For example,
neither Sierpiński triangle nor Mengers carpet has a topological dimension of a surfaces, but
one can easily identify that they both have a set of edges. Such an object may also be a
face of a higher dimensional shape. So the notion of the iterative cell is introduced instead
that of the topological cell. The iterative cell is an attractor of an IFS or a CIFS and is not
necessarily homeomorphic to a curve or a surface.

3.5.2 Definitions

The simplest topological cell is a vertex. In the BCIFS model, a vertex is represented as
a state with a single transition, which is associated with a transformation called vertex
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v T v

Figure 3.5: A BCIFS representation of a vertex.

e T e
0T e

1

Figure 3.6: A BCIFS representation of an edge with two subdivision operators.

subdivision (see figure 3.5).
The second type of topological cell is an edge. An edge is represented as a state with

two or more transitions, which are associated with a set of transformations called edge
subdivisions (see figure 3.6).

To describe the incidence relation between the vertex and an edge, a special transition
is introduced. The associated operator is called a boundary operator and is denoted as ∂.
The boundary operator projects the vertex from its iterative space into the iterative space
of the edge (see figure 3.6).

BCIFS and barycentric spaces

Iterative spaces and boundary operators can be chosen at whim, but it is convenient to use
barycentric spaces of the appropriate dimensions. Such choice also allows us to identify the
relation between control the points of topological cells.

For example, consider a curve with three control points. If the first vertex depends on
the first two control points and the second one depends on the last two, then their respective
boundary operators can be chosen as follows:

∂0 =



1 0
0 1
0 0


 , ∂1 =



0 0
1 0
0 1


 .

The operators ∂0 and ∂1 describe the embedding/nesting of the barycentric spaces of the
vertices in the barycentric space of the curve. The first operator maps the first dimension
of the vertex barycentric space is to the first dimension of the curve barycentric space.
Second dimension of the vertex space is mapped to the second dimension of the curve space.
Likewise, the second operator maps two dimensions of the vertex space to the second and
third dimensions of the curve space. For reference see figure 3.8.

The complete automaton for a simple edge is presented in figure 3.7. Note that this
automaton distinguishes between two vertices labelled as vl for the left vertex, and vr for
the right vertex.
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♮ e

vl

vr

P

∂0

∂1T e
1

T e
0 T vl

T vr

Figure 3.7: An automaton representing
a curve with two edge subdivisions T e

0,1

and two different vertex subdivisions T vl

,
T vr

.

Figure 3.8: Vertex spaces are embedded
into the higher dimension curve space.

evl vr

∂0 ∂1

Figure 3.9: The first level of the edge subdivision.

3.5.3 Topological constraints

Let us consider the B-rep structure during the iterative process. At the beginning we have
an edge state and two vertex states (see figure 3.9).

When we apply the respective subdivision operators we obtain the next iteration (see
figure 3.10).

Adjacency constraints

The edge is subdivided into two parts, so the “left” part has to be connected to the “right”
one through the intermediate vertices (see figure 3.11). First of all the states vl and vr have
to be identical, or in other words, the “left” and the “right” vertices need be of the same
“nature” and be subdivided by the same operator, otherwise continuity is not ensured. The

evl vr
∂0 ∂1

vl vr

T vl

T vr

evl vr

∂0 ∂1
evl vr

∂0 ∂1

T e
0 T e

1

Figure 3.10: The first and second levels of subdivision.



3.5. BOUNDARY CONTROLLED IFS 21

ev v
∂0 ∂1

ev v
∂0 ∂1

e v
∂0 ∂1

T e
0 T e

1T v T v

Figure 3.11: Unfolding of the automaton after applying the adjacency and incidence con-
straints.

condition T vl

= T vr

= T v is therefore necessary.
Another condition is deduced by writing the equivalence of paths in the graph: the left

vertex of the right subdivision has to correspond to the right vertex of the left subdivision:

T0∂1 = T1∂0.

Incidence constraints

In the same manner, incidence constraints express the fact that vertices must remain at
the ends of the edges during the subdivision process: subdivision of the left vertex of the
edge has to correspond to the left vertex of the left subdivision of the edge (see figure 3.11).
Writing down equivalences between paths gives the following equations:

∂0T
v = T0∂0,

∂1T
v = T1∂1.

Resolving the constraints, adjacency and incidence determine the structures in the subdi-
vision matrices in the form of equalities between columns and sub-matrices (see figure 3.12).
Two examples of curves that can be described by a BCIFS are presented in figure 3.13.

T0 = T1 = (n × (n − p))

((n − p) × p)

0

0

((n − p) × p)

(n × (n − p))
T s

(p × p)

T s

(p × p)

Figure 3.12: General structure of the subdivision matrices for a curve with n control points,
whose vertices are controlled by p control points.
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Figure 3.13: Left: a cubic spline with 4 control points. Right: a fractal curve with 3 control
points.

3.6 Subdivision schemes as BCIFS

It was shown in [SLG05] that subdivision surfaces as well as B-splines are self-similar (also
see [CE98] and [ZT96]). Thus they can be modelled as attractors of BCIFS. In this section
we present some examples. First, we start with a simple B-spline of degree n. We know
that a B-spline of degree n has n+ 1 control points. A single step of subdivision produces
n+ 2 points. These points can be viewed as two B-splines of degree n with n− 1 common
control points. The operators that map the initial n + 1 control points into the first and
last n+ 1 control points are the IFS operators that we are looking for.

So we have established that our curve is subdivided into two parts. Thus our edge-state
has two transformations associated with it. Let us denote them as T0 and T1.

We also recall that each vertex is controlled by n control points. With this knowledge,
we can write the boundary operators for each vertex. In matrix form, they can be written as
two matrices ∂0,1 ∈ R(n×n−1) such that any element ai,j = 1 if i = j and ai,j = 1 otherwise.
For example, for a B-spline of degree two we obtain:

∂0 =



1 0
0 1
0 0


 , ∂1 =



0 0
1 0
0 1


 .

Using them and the continuity conditions derived earlier we can derive the structure of the
operators. Using the example of n = 2 we obtain the following transformations:

T0 =



1− a b 0
a 1− b 1− a
0 0 a


 , T1 =




b 0 0
1− b 1− a b
0 a 1− b


 .

The differential behaviour of the curves obtained by means with such transformations was
studied in [SGB12].

Using the values a = 0.25, b = 0.25 we obtain the two subdivision operators for the
B-spline of degree 2:

T0 =



0.75 0.25 0
0.25 0.75 0.75
0 0 0.25


 , T1 =



0.25 0 0
0.75 0.75 0.25
0 0.25 0.75


 .
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3.6.1 Regular patch

♮ F E V
P ∂F1,2,3,4 ∂E1,2

TF
1,2,3,4 TE

1,2 T V

Figure 3.14: An automaton for the surface with four edges.

Next we present an example of a surface that is bi-cubic spline. The same principle can
be used to describe the subdivision process for any quadrangular surface. An automaton for
such a surface has three states: F for the face, E for the edges that border the face (in this
case all the edges have the same nature, i.e., are defined by the same iterative procedure)
and V for the vertices (see figure 3.14).

In general, a larger number of the incidence and adjacency constraints is required for
surfaces than for curves, but the underlying principle is the same. Subdividing an edge
should be equal to an edge of the patch subdivision, while neighbouring patches should
share common edges. All the constraints are illustrated in the figure 3.15. Here is the full
list of constraints for quadrangular subdivision:

Adjacency constraints:

∂F1 T
E
1 = TF

1 ∂
F
1 , ∂F1 T

E
2 = TF

2 ∂
F
1 ,

∂F2 T
E
1 = TF

2 ∂
F
2 , ∂F2 T

E
2 = TF

4 ∂
F
2 ,

∂F3 T
E
1 = TF

3 ∂
F
3 , ∂F3 T

E
2 = TF

4 ∂
F
3 ,

∂F4 T
E
2 = TF

1 ∂
F
4 , ∂F4 T

E
1 = TF

3 ∂
F
4 .

Incidence constraints:

TF
1 ∂

F
2 = TF

2 ∂
F
4 , TF

4 ∂
F
4 = TF

3 ∂
F
2 ,

TF
2 ∂

F
3 = TF

4 ∂
F
1 , TF

3 ∂
F
1 = TF

1 ∂
F
3 .

To be able to derive the subdivision matrices we need to choose our boundary operators.
The cubic B-spline patch has 16 control points and each edge depends on 12 of them (see
figure 3.16).

With this knowledge, we can write down our boundary operators:

∂F1 =




0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1




, ∂F2 =




0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1




,
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Figure 3.15: Incidence and adjacency constraints for quadrangular surface subdivision. Each
subdivided face has to be connected with neighbouring faces by sharing respective edges
(represented by solid-line ellipses), while edge subdivision must be an edge for one of the
subdivided faces (dotted-line ellipses).

∂F3 =




1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0




, ∂F4 =




1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0




.

Using the boundary operators ∂F1 , ∂
F
2 , ∂

F
3 , ∂

F
4 and the constraints derived above we can

deduce the matrix form of the operators TF
1,2,3,4 :

TF
1 =




a0 b0 0 0 b2 f0 0 0 0 0 0 0 0 0 0 0
a0 b1 a0 b0 b0 f1 b2 f0 0 0 0 0 0 0 0 0
0 b2 a0 b1 0 f0 b0 f1 0 0 0 0 0 0 0 0
0 0 0 b2 0 0 0 f0 0 0 0 0 0 0 0 0

a0 b2 0 0 b1 f1 0 0 a0 b0 0 0 b2 f0 0 0
a0 b1 a0 b2 b1 f5 b1 f1 a0 b1 a0 b0 b0 f1 b2 f0
0 b0 a0 b1 0 f1 b1 f5 0 b2 a0 b1 0 f0 b0 f1
0 0 0 b0 0 0 0 f1 0 0 0 b2 0 0 0 f0
0 0 0 0 b0 f0 0 0 a0 b2 0 0 b1 f1 0 0
0 0 0 0 b2 f1 b0 f0 a0 b1 a0 b2 b1 f5 b1 f1
0 0 0 0 0 f0 b2 f1 0 b0 a0 b1 0 f1 b1 f5
0 0 0 0 0 0 0 f0 0 0 0 b0 0 0 0 f1
0 0 0 0 0 0 0 0 0 0 0 0 b0 f0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 b2 f1 b0 f0
0 0 0 0 0 0 0 0 0 0 0 0 0 f0 b2 f1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 f0




,
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 3.16: Control mesh for a cubic B-spline patch.

TF
2 =




b2 f0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b0 f1 b2 f0 0 0 0 0 0 0 0 0 0 0 0 0
0 f0 b0 f1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 f0 0 0 0 0 0 0 0 0 0 0 0 0

b1 f1 0 0 a0 b0 0 0 b2 f0 0 0 0 0 0 0
b1 f5 b1 f1 a0 b1 a0 b0 b0 f1 b2 f0 0 0 0 0
0 f1 b1 f5 0 b2 a0 b1 0 f0 b0 f1 0 0 0 0
0 0 0 f1 0 0 0 b2 0 0 0 f0 0 0 0 0

b0 f0 0 0 a0 b2 0 0 b1 f1 0 0 a0 b0 0 0
b2 f1 b0 f0 a0 b1 a0 b2 b1 f5 b1 f1 a0 b1 a0 b0
0 f0 b2 f1 0 b0 a0 b1 0 f1 b1 f5 0 b2 a0 b1
0 0 0 f0 0 0 0 b0 0 0 0 f1 0 0 0 b2
0 0 0 0 0 0 0 0 b0 f0 0 0 a0 b2 0 0
0 0 0 0 0 0 0 0 b2 f1 b0 f0 a0 b1 a0 b2
0 0 0 0 0 0 0 0 0 f0 b2 f1 0 b0 a0 b1
0 0 0 0 0 0 0 0 0 0 0 f0 0 0 0 b0




,

TF
3 =




f0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
f1 b2 f0 0 0 0 0 0 0 0 0 0 0 0 0 0
f0 b0 f1 b2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 f0 b0 0 0 0 0 0 0 0 0 0 0 0 0

f1 0 0 0 b0 0 0 0 f0 0 0 0 0 0 0 0
f5 b1 f1 0 b1 a0 b0 0 f1 b2 f0 0 0 0 0 0
f1 b1 f5 b1 b2 a0 b1 a0 f0 b0 f1 b2 0 0 0 0
0 0 f1 b1 0 0 b2 a0 0 0 f0 b0 0 0 0 0

f0 0 0 0 b2 0 0 0 f1 0 0 0 b0 0 0 0
f1 b0 f0 0 b1 a0 b2 0 f5 b1 f1 0 b1 a0 b0 0
f0 b2 f1 b0 b0 a0 b1 a0 f1 b1 f5 b1 b2 a0 b1 a0
0 0 f0 b2 0 0 b0 a0 0 0 f1 b1 0 0 b2 a0
0 0 0 0 0 0 0 0 f0 0 0 0 b2 0 0 0
0 0 0 0 0 0 0 0 f1 b0 f0 0 b1 a0 b2 0
0 0 0 0 0 0 0 0 f0 b2 f1 b0 b0 a0 b1 a0
0 0 0 0 0 0 0 0 0 0 f0 b2 0 0 b0 a0




,

TF
4 =




b0 0 0 0 f0 0 0 0 0 0 0 0 0 0 0 0
b1 a0 b0 0 f1 b2 f0 0 0 0 0 0 0 0 0 0
b2 a0 b1 a0 f0 b0 f1 b2 0 0 0 0 0 0 0 0
0 0 b2 a0 0 0 f0 b0 0 0 0 0 0 0 0 0

b2 0 0 0 f1 0 0 0 b0 0 0 0 f0 0 0 0
b1 a0 b2 0 f5 b1 f1 0 b1 a0 b0 0 f1 b2 f0 0
b0 a0 b1 a0 f1 b1 f5 b1 b2 a0 b1 a0 f0 b0 f1 b2
0 0 b0 a0 0 0 f1 b1 0 0 b2 a0 0 0 f0 b0
0 0 0 0 f0 0 0 0 b2 0 0 0 f1 0 0 0
0 0 0 0 f1 b0 f0 0 b1 a0 b2 0 f5 b1 f1 0
0 0 0 0 f0 b2 f1 b0 b0 a0 b1 a0 f1 b1 f5 b1
0 0 0 0 0 0 f0 b2 0 0 b0 a0 0 0 f1 b1
0 0 0 0 0 0 0 0 0 0 0 0 f0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 f1 b0 f0 0
0 0 0 0 0 0 0 0 0 0 0 0 f0 b2 f1 b0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 f0 b2




.

Substituting a0 = 1/4, b0 = 1/16, b1 = 3/8, b2 = 1/16, f0 = 1/64, f1 = 3/32, f5 = 9/16
we obtain the subdivision for a bi-cubic spline surface.
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3.6.2 Irregular patch

Here we show how to modify the automaton to change the regular patch into a patch with
one irregular vertex. Consider a quadrangular patch with one irregular vertex. Such a
patch is subdivided into three regular patches and one irregular patch. The corresponding
automaton is presented in figure 3.17. Note that the irregular patch (F ir) has two irregular

edges (Eir) as well as two regular ones (E). The irregular edge is subdivided (TEir

1,2 ) into
a regular and an irregular edge. Conditions that guarantee the continuity of the irregular
patch can be deduced in the same manner as for its regular counterpart.

♮

F E V

∂F1,2,3,4 ∂E1,2

TF
1,2,3,4 TE

1,2 T V

F ir Eir V ir

P ∂F
ir

1,2 ∂E
ir

1

TF ir

1 TEir

1 T V ir

TF ir

2,3,4 TEir

2
F ir

F F

F F ir

Figure 3.17: Left: An automaton for the irregular patch. Right: a schematic subdivision of
the irregular patch.

A bi-quadratic spline patch with one irregular vertex would be an example of such a
surface (see figure 3.18). For such a patch, the regular face subdivisions would be regular
bi-quadratic subdivision matrices, while the matrix form of the irregular one can be deduced
from the continuity constraints.

1 2 3

4 5 6

7 8

Figure 3.18: Left: a control mesh for a bi-quadratic spline patch with one irregular vertex.
Green mesh represents the first step of the subdivision. Right: a control mesh for three
irregular bi-quadratic patches that share their irregular vertex and the limit surface.
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3.7 Generalised eigenvectors

In the later chapters, the notion of the generalised eigenvectors is used to work with the
operators that do not have a complete set of eigenvectors. In this section we recall the
definition of generalised eigenvectors and some of their properties. For a linear operator A
acting on a vector space X an eigenvalue λ is a non-zero number for which a vector ~v exists
such that A~v = λ~v. All eigenvectors corresponding to certain a eigenvalue λ lie within the
kernel of the linear map A−λI, where I is an identity map over X . Similarly the generalised
eigenvectors of order k lie in the kernel of (A − λI)k where k is a positive integer. Note
that for k = 1 we obtain the usual non-generalised eigenvectors. Also, since generalised
eigenvectors of order k are the solutions of the linear equation

(A− λI)k~x = 0,

they are also related to eigenvectors of order k − 1 with the following relation:

(A− λI)~vk = ~vk−1,

where ~vk is a generalised eigenvector of order k. When there are not enough linearly indepen-
dent eigenvectors to compose a basis of space, there are always enough linearly independent
generalised eigenvectors that can be used to complete the basis.

3.7.1 Eigenvalues and multiplicities

Consider a matrix A ∈ R(n×n). The characteristic polynomial

PA(λ) = |A− λI|,
where I is an identity matrix. PA(λ) has m roots:

λ0, λ1, . . . , λm−1,

where m ≤ n. The values λi are called eigenvalues of the matrix A. The characteristic
polynomial can be decomposed as:

m−1∏

i=0

(λ− λi)
ri .

ri is called the algebraic multiplicity of the eigenvalue λi. The sum of all algebraic multi-
plicities is equal to the degree of the characteristic polynomial:

m−1∑

i=0

ri = n.

Let Ei = {~v ∈ Rn such that Av = λiv}. Ei is called an eigenspace associated with an
eigenvalue λi. The dimension of Ei (denoted as dim(Ei)) is always less than or equal to
the algebraic multiplicity of λi. The dimension of Ei is also referred to as the geometric
multiplicity of λi. Generalised eigenvectors associated with different eigenvalues are linearly
independent.

If dim(Ei) = ri for all i = 0, . . . , n− 1 then a linearly independent set of n eigenvectors
can be found. This set forms a basis of Rn.
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3.7.2 Chains of generalised eigenvectors

Vectors ~v1, . . . , ~vk that are generalised eigenvectors of orders 1, . . . , k for an eigenvalue λ are
said to form a chain of generalised eigenvectors of length k. If we consider a linear operator
T on Rn with m eigenvalues λ0, λ1, . . . , λm−1 written with respect to their geometric mul-
tiplicity, i.e. such that for each λi exists an ~vi and all ~vi are linearly independent. Then
for each λi there exists a chain of generalised eigenvectors, possibly limited to only one
eigenvector.

~v00 , ~v01 , . . . , ~v0m−1

~v10 ~v11 . . . ~v1m−1
...

...
...

... ~vr11
...

~vr00 ~v
rm−1

m−1

Here ~v0i = ~vi, while ~v
i
j are linearly independent and

∑m−1
i=0 (ri − 1) = n. So for all ~a ∈ Rn

there exists ai,j ∈ R such that

~a =
∑

0≤i≤m−1
0≤j≤ri

ai,j~v
j
i .

3.8 Eigenvalues, eigenvectors and barycentric spaces

In this subsection we point out a few properties of the eigenvectors and eigenvalues of the
operators that act on barycentric spaces. Since a barycentric space is an invariant for such
operators, the sum of all elements in each column equals 1.

The highest eigenvalue is always equal to 1. The eigenvalue 1 does not have a multiplicity
greater than 1 because otherwise the operator is not contractive. Consider an operator with
two non-collinear eigenvectors associated with eigenvalue 1. Both of them are fixed points
and the distance between them does not diminish when we apply the operator, hence the
operator cannot be contractive and have two or more eigenvalues equal to 1.

The fixed point of the operator acting on the barycentric space is defined by the dom-
inant eigenvector, i.e. an eigenvector associated with greatest eigenvalues, in this case the
eigenvalue 1.

For an operator to be contractive, is is necessary for all the other eigenvalues to be
strictly less than 1 in absolute value. Consider the T operator with an eigenvalue λ that is
greater than 1. Take any two different eigenvectors ~v1 and ~v2:

d(T (~v1), T (~v2)) = |T (~v1 − ~v2)| = λ|~v1 − ~v2| > |~v1 − ~v2| = d(~v1, ~v2).

Hence the operator T is not contractive.

All sub-dominant eigenvectors have the sum of their components equal to 0, i.e. they
are parallel to the barycentric space. The contractive coefficient on the barycentric space
is equal to the absolute value of the sub-dominant eigenvalue, i.e. the eigenvalue with the
second largest absolute value.
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3.9 Conclusion

In this chapter we reviewed the basic notion of an Iterated Function System. We also
recalled different varieties of the basic IFS such as Projective IFS, Controlled IFS and
Boundary Controlled IFS. We showed how continuity constraints can be derived using the
BCIFS model and how they affect the structure of the transformations matrix form. Then
we detailed how classic subdivision schemes can be modelled with BCIFS. Finally we recall
some useful properties of the eigenvectors and eigenvalues that will come into use in the
following chapters.
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Chapter 4

Tangent space

This chapter is dedicated to the analysis of the differential properties of shapes defined as
CIFS or BCIFS attractors. We define a notion of the tangent subspace that generalises
the classic notions of tangent line and plane. Then we study the differential behaviour of
self-similar sets in both classic and generalised senses. We base our study on the notion of
the addresses function (see definition 7). Given the address of a point we can construct a
sequence of subsets that encompasses the point. Later, we refer to these subsets as rings.
Each symbol of the point’s address corresponds to a specific ring and the next ring can be
obtained by applying the respective transformation to the previous one. Together, the rings
completely cover the neighbourhood of the point. So by studying how rings are transformed,
we can obtain information on the differential behaviour of the attractor at the specified point.

We focus mainly on points with periodic addresses. Points with periodic addresses
compose an everywhere dense subsets of the attractor. We provide a detailed analysis of
the differential behaviour at the points with addresses (iω) and derive the necessary and
sufficient conditions for differentiability. We also show how these conditions can be applied
to other kinds of periodic points. Finally, we give several examples of different kinds of
differential behaviour.

4.1 Tangent definition

In this section, we would like to give a definition of a tangent subspace from a purely
geometrical standpoint. We also want to give such a definition that would generalise tangent
lines of curves, tangent planes of surfaces and possibly objects of higher dimensions. We want
to avoid defining the tangent depending on a parametrization, because given the complex
natures of self-similar shapes it may be troublesome to find the correct parametrisation.

Definition 11 (Tangent subspace). Let p be a point of some set A ⊂ Rm. We consider all
possible sequences {xn}n∈N such that ∀n xn ∈ A and xn → p ∈ A as n → ∞. A line that
passes though points p and xn is called a secant and is denoted by sxn. An affine subspace
E is called a tangent subspace if and only if

1. p ∈ E,

31
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2. dim(E) ≥ 1 and dim(E) is a minimum of all possible subspaces E that satisfy the
other conditions,

3. for all sequences xn described above

lim
n→∞

ŝnxE = 0,

where

ŝnxE = arctan

(‖q − qE‖)
‖p− qE‖

)
,

q ∈ sxn and qE is an orthogonal projection of q onto E.

Figure 4.1: Left: the curve is tangent to the plane Oxy. Right: the surface is tangent to
the z axis.

This definition generalises the classic notion of tangent line. Indeed, if we consider a
set A that is a smooth curve, then the tangent subspace at any point of A is equal to the
tangent line at the same point.

Figure 4.2: An angle between a secant and an affine subspace.

Our definition also includes the classic definition of a tangent plane. For any smooth
curve on a surface that passes through the tangent point, the angle between a tangent plane
and a secant converges to zero as we approach the tangent point. But our definition also
includes other cases. Figure 4.1 provides an illustration. For example, a 3D parametric
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curve (t cos t, t sin t, t2) does not possess a tangent line at the origin; however, the plane Oxy
satisfies the definition of a tangent subspace. Another example is a 3D parametric surface
(u, v, (u2 + v2)1/4) that is tangent to the z-axis at the point (u, v) = (0, 0).

4.2 Rings

In this section we give the definition of a sequence of rings around a point. The definition
of a sequence of rings depends on the address of the point, so we begin this section by
classifying points based on the number and type of their addresses. After that we give
the exact definitions and properties of a sequence of rings for a point and its address (see
section 4.2.2).

4.2.1 Points and addresses

Based on the notion of address function (see Chapter 3) the points of any attractor can be
placed into one of these three categories:

• points with dyadic addresses p = φ(σ), where σ = σ̄(i)ω and σ̄ is a finite prefix,

• points with periodic addresses p = φ(σ), where σ = σ̄(i0, . . . , in−1)
ω , σ̄ is a finite

prefix and (i0, . . . , in−1) is a period of length n,

• points with non-periodic addresses.

Example 4 (Double address point). Consider a simple IFS with two transformations over
(R, dE), where dE is the Euclidean metric. The two transformations are as follows:

T0(x) =
1

2
x,

T1(x) =
1

2
x+

1

2
.

The fixed points of the transformations T0 and T1 are points 0 and 1 respectively. The
unit segment [0, 1] is the attractor of this IFS. Both fixed points have a unique address. The
corresponding addresses are (0)ω and (1)ω respectively. However point 1

2 has two addresses.
Indeed:

T0(1) = T1(0) =
1

2
.

So

φ(1(0)ω) = φ(0(1)ω) =
1

2
,

where φ is an address function.
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φ(0ω)

φ(2ω)

φ(21ω) = φ(30ω)

φ(3ω)

φ(1ω)

φ(03ω) = φ(12ω)

=

=

Figure 4.3: An illustration of example 5.

Example 5 (Quadruple address point). Consider an IFS over (R2, dE) whose attractor is a
unit square. Four transformations that map the square into four equal parts are as follows:

T0(x) =

(
1/2 0
0 1/2

)
x,

T1(x) =

(
1/2 0
0 1/2

)
x+

(
1/2
0

)
,

T2(x) =

(
1/2 0
0 1/2

)
x+

(
0

1/2

)
,

T3(x) =

(
1/2 0
0 1/2

)
x+

(
1/2
1/2

)
.

A unit square [0, 1]2 is an attractor of such IFS. All four corners of the attractor have unique
addresses composed of single infinitely repeated symbol. Indeed, each corner is a fixed point
for one of the transformations. Similarly to the previous example, midpoints of the edges
have two addresses. But in the meantime, the point (1/2, 1/2) has four different addresses:

T0

(
1
1

)
= T1

(
0
1

)
= T2

(
1
0

)
= T3

(
0
0

)
=

(
1/2
1/2

)
.

Or in terms of address function:

φ(0(3)ω) = φ(1(2)ω) = φ(2(1)ω) = φ(3(0)ω) =

(
1/2
1/2

)
.

The four addresses of this point represent four different ways to approach it and four possibly
different quarter-tangent planes that may or may not exist.
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4.2.2 Sequence of rings definition

Previously we discussed the notion of rings that enclose the point, that is based on the
notion of the address function. In this subsection, we are going to give a formal definition
of a sequence of rings both for unique address points as well as for points with multiple
addresses.

The underlying idea is fairly straightforward. Given an attractor and a point on it,
we calculate a sequence of images of the attractor with operators that correspond to each
symbol of the address. The ring is then defined as a difference between two consecutive
images.

Definition 12 (A set of rings). Let A be an attractor of some IFS. Let p ∈ A be a point
with a corresponding address σ such that φ(σ) = p. Then the sequence of rings for point p
and its address σ is a sequence of subsets Ri ⊂ A such that:

∀i ≥ 1 Ri = Ai−1 \ Ai,

where
∀i ≥ 1,Ai = Tσi(Ai−1)

and A0 = A.

Since ∀i Tσi is contractive Ai ⊂ Ai−1, unless Tσi is degenerated. Hence ∀i Ri 6= ∅.

Property 1. Now consider a sequence of points xn ∈ A that converges to the point p, such
that ∀n ∈ N there exists j ∈ N such that xn ∈ Rj. Then for each i there exists N ∈ N such
that ∀n > N xn /∈ Ri.

Proof. Point p /∈ Ri and Ri is compact therefore exists yi ∈ Ri such that miny∈Ri ‖y− p‖ =
‖yi − p‖. For each i there exists N ∈ N such that ∀n > N |xn − p| < yi. Therefore xn /∈ Ri

for any n > N .

Now let us consider points with multiple addresses. Let A be an attractor of some IFS.
Let the point p ∈ A have multiple addresses σ1, σ2, . . . , σn such that φ(σ1) = φ(σ2) =

. . . = φ(σn) = p. For a such point p we can define a sequence of rings Rσj

= {Rσj

i } for
each address σj . Together these sets of rings completely encompass the point p. Any
neighbourhood V ⊂ A, p ∈ V of the point p can be split into n parts according to which
set of rings it intersects with:

V =
n⋃

j=1

V ∩
( ∞⋃

i=1

Rσj

i

)
.

Figure 4.4 presents two examples of rings around a unique address point as well as around
a dual address point.

For most of this chapter we will be focusing on points with unique uniform addresses
like iω. Without loss of generality, any point with a periodic address like (i1i2 . . . il)

ω can
be viewed as such if we consider the corresponding transformation Ti1Ti2 . . . Til . Later in
this chapter we generalise the results obtained for points with unique uniform addresses to
other kinds of periodic points.
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Figure 4.4: Left: one set of rings around the unique address point (0, 0). Right: two sets of
rings around the double address point (1/2, 0).

4.2.3 Tangents, sequences of secants and rings

One may think of differentiability in terms of whether for all sequences converging to a point
the corresponding secant sequence converges to the same limit.

Let us consider a point p ∈ A and the respective set of rings {Ri}∞i=1. For any sequence
of points {yn}∞n=0 such that limn→∞ yn = p there is only a finite number of elements that
belong to a certain ring Ri. Indeed, if there exists i ∈ N such that there is an infinite
number of elements of {yn} that belong to Ri than the sequence yn cannot converge to p
since p /∈ Ri and Ri is a closed set.

The set of rings can be studied more easily than arbitrary sequences that converge to
the point of interest, since we know that each ring can be obtained from the previous one
by means of an affine transformation. So by showing that the rings converge in a specific
way we can show that the tangent space exists at the specific point.

In the next section we are going to study the convergence of rings around fixed points
of transformation. We study two separate cases for transformations with a complete set of
eigenvectors and for transformations with one.

4.3 Tangents and eigenvectors

In this section we explain why we are going to use eigenanalysis to study the differential
properties of the attractor. Let us consider an arbitrary attractor A and some point p ∈ A.
The point p has at least one address σ = σ1σ2 . . . , such that σ has a period. Let us denote
that transformation that corresponds to the period of σ as T . If we start applying the
transformation T to the attractor A iteratively we obtain a set of its subsets Ai ⊂ A such
that:

A1 = T (A),

Ai = T n(Ai−1).
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All subsets Ai share the common point p, since p is a fixed point of T . So if there is a
tangent subspace to the attractor A at the point p, the same tangent subspace is also a
tangent subspace to all subsets Ai at the same point p. Therefore the tangent subspace
is invariant to all the transformations T . Let σ contain only one unique symbol i. So if
the tangent subspace exists at the point p it must be invariant of Ti, or in other words an
eigenspace of Ti.

4.4 Angular deviation

In this section we give a formal definition to an angular deviation of a set from an affine
subspace. This concept is later used to show the necessary and sufficient conditions for
differentiability. The angular deviation generalises the notion of a field of view: how far
does one need to turn one’s eyes from the given direction to see the given set. Here is the
more formal definition.

Definition 13 (Angular deviation). Let E be an affine subspace of Rm and p be a point in
E. For any point q such that q 6= p we denote the angle between line pq and E by α(E, q).
More precisely, if qE is an orthogonal projection of q onto E then

α(E, q) =

{
arctan

(
‖q−qE‖
‖p−qE‖

)
if p 6= qE ,

π
2 if p = qE

.

Then angular deviation of a compact set A from affine subspace E is denoted by αmax(E,A)
is

αmax(E,A) = max
q∈A

α(E, q).

Figure 4.5: Angular deviation is the biggest possible angle between pq and E such that
q ∈ A.

Property 2. 0 ≤ αmax(E,A) ≤ π
2

Knowing the angular deviation for a set gives us an idea of how far we would need to
expand our field of view if we were standing at the point p looking at the subspace E to
see the set A. Let us consider an angular deviation of a set of nested neighbourhoods of
a point p. If there exists a tangent line or plane to set A at point p then their respective
angular deviations from the tangent line converge to zero as we consider the consecutive
neighbourhoods.
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Figure 4.6: The maximum possible angular deviation is π
2 .

Proposition 1. Let A be an attractor of an IFS in Rm. Let p be a point in A and Ri be a
sequence of rings around the point p. If for some affine subspace E such that p ∈ E

αmax(E,Ri) −→
i→∞

0

and E is the smallest of all subspaces that satisfy the previous condition, then E is a tangent
subspace for attractor A at the point p.

Proof. The tangent depends on the convergence of secants. Any sequence of secants {sxn}n∈N

will pass through each ring Ri only a finite number of times. For each secant sxn such that
xn ∈ Ri we can write the following:

ŝxn E ≤ αmax(E,Ri).

Remark. So to show that any sequence of secants converge it is enough to show that
αmax(E,Ri) → 0 as i→ ∞.

Proposition 2. Let A be an attractor of an IFS in Rm. Let p be a periodic point in A,
such that T is the transformation corresponding to its period and Ri is a sequence of rings
around the point p. Let consider a point x0 ∈ R0 and a sequence of secants {sxn}n∈N that

pass through points p and xn, where xn = T (xn−1). So if ŝxnE → 0 for any x0 ∈ R0 then
αmax(E,Ri) −→

i→∞
0.

Proof. Obvious.

In the next two sections we are going to study the convergence of secants sxn, where
xn = T (xn−1). We are going to show that under specific conditions on T and x0 there

exists such a subspace E that ŝxn E converge to 0 as n→ ∞. Next section treats T with a
complete set of eigenvectors, while the subsequent section deals with T that lacks a complete
set of eigenvectors.
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4.5 Complete set of eigenvectors

In this section we study the behaviour of a sequence of secants that is obtained with iter-
ations of some transformation T . We give a series of lemmas, that describe this behaviour
depending on the eigenvalues and eigenvectors of T . Given a point p ∈ A, such that its
address is σ = (0)ω, we consider an arbitrary point x0 ∈ A such that x0 6= p. Then we
consider a sequence of points {xn}n∈N such that xn = T (xn−1). The sequence {xn} defines
a sequence of secants {sxn} such that each secant sxn passes through the points xn and p.

We have suggested above that if the tangent exists it is defined by eigenvectors of the
transformation T . We are going to assume that T has a complete set of eigenvectors and
show that sxn converges to the subspace spanned by the sub-dominant eigenvector of T

under certain conditions. We are going to denote this subspace as E. To show that ŝxn E
indeed converges to zero we are going to study the convergence rate of different components
of the vectors ~pxn. Since T is a contractive mapping and p is its fixed point | ~pxn| → 0 as
n→ ∞ we cannot simply calculate the limit of ~pxn to find the limit position of sxn.

Lemma 1. Let T be an operator on BIm with a complete set of real eigenvectors ~v0, ~v1, . . . , ~vm−1

along with their respective eigenvalues λ0 = 1 > λ1 > |λ2| ≥ . . . ≥ |λm−1|, ∀i λi ∈ R. We
denote the fixed point of T by p. Given a point x0 6= p, x0 ∈ BIm we consider a sequence of
secants sxn that pass through the points p and xn where xn = T n(x0). Let E be the subspace
spanned by ~v1. If

~px0 = x
(1)
0 ~v1 +

m−1∑

i=2

x
(i)
i ~vi

with x
(1)
0 6= 0, then

ŝxn E −→
n→∞

0.

Proof. The eigenvectors of T form a basis of Rm. So any vector from Rm including ~pxn can
be written as follows:

~pxn =
m−1∑

i=0

x(i)n ~vi.

In the previous chapter we demonstrated that all eigenvectors except the dominant one
are parallel to the barycentric space (see section3.8). So for any point xn of the barycentric
space the corresponding vector ~pxn in the basis of the eigenvectors has its first component
equal to 0 and we can omit the first term of the sum.

Since xn = T (xn−1) = T n(x0) we can write the following:

~pxn =

m−1∑

i=1

λni x
(i)
0 ~vi.

Now let us multiply each vector ~pxn by 1
λn
1
. We obtain:

~pxn
λn1

=

m−1∑

i=1

λni
λn1
x
(i)
0 ~vi.



40 CHAPTER 4. TANGENT SPACE

Note that since λ1 > 0 this multiplication does not change the direction of vector ~pxn. If
we recall that ∀i > 1 λ1 > |λi| we get that all the terms beside the first one converge to 0
as n→ ∞. In other words:

~pxn
λn1

−→
n→∞

x
(1)
0 ~v1.

Henceforth, it is easy to see, that ŝxn E indeed converges to 0.

Remark. Note that if λ1 is negative then ŝxn E also converges to zero, but as we are going
to show later, a positive sub-dominant eigenvalues is necessary to obtain a tangent at the
point p.

4.5.1 Complex eigenvalue

We are now going to study the case in which a pair of complex sub-dominant eigenvalues
is present. But first, le us review some facts about complex eigenvalues and eigenvectors.
If M ∈ R(m×m) and λ ∈ C is an eigenvalue of M then λ̄ is also an eigenvalue. The same
goes for eigenvectors: if ~v is an eigenvector corresponding to the eigenvalue λ ∈ C then ~̄v is
an eigenvector that corresponds to the eigenvalue λ̄. In addition, for every pair of complex
eigenvalues λ, λ̄ there exists a subspace of Rm that is invariant to T . Indeed let us consider
a complex eigenvalue λ = a+bi and the corresponding eigenvector ~v = ~x+~yi, where a, b ∈ R
and ~x, ~y ∈ Rm :

T (~v) = T (~x) + iT (~y) = (a+ bi)(~x+ ~yi) = a~x− b~y + i(a~y + b~x).

So if we consider T (α~x+ β~y) we obtain:

T (α~x+ β~y) = α(a~x − b~y) + β(a~y + b~x) = (aα+ bβ)~x + (aβ − bα)~y.

So this way:
T (span(~x, ~y)) = span(~x, ~y).

Note that ~x and ~y are also linearly independent from any real eigenvectors of T and from
real or imaginary parts of other complex eigenvectors. This means that a set of all real
eigenvectors of T can be completed with Re~vi, Im~vi for each pair of complex eigenvectors
~vi to form a complete basis of Rm. If we consider |T (α~x+ β~y)| we obtain:

|T (α~x+ β~y)| = |λ||α~x + β~y|.
Lemma 2. Let T be an operator on BIm with a set of eigenvectors ~v0, ~v1, . . . , ~vm−1 along
with their respective eigenvalues λ0 = 1 > |λ1| = |λ2| > |λ3| ≥ . . . ≥ |λm−1|, where λ1 = λ̄2,
λ1, λ2 ∈ C. We denote the fixed point of T by p. Given a point x0 6= p, x0 ∈ BIm we consider
a sequence of secants sxn that that pass through the points p and xn where xn = T n(x0).
Let E be a subspace spanned by Re~v1 and Im~v1. If

~px0 = x
(1)
0 Re~v1 + x

(2)
0 Im~v1 +

m−1∑

i=3

x
(i)
i ~vi

with x
(1)
0 6= 0 or x

(2)
0 6= 0, then

ŝxn E −→
n→∞

0.
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Proof. Real eigenvectors of T along with Re ~v1 and Im ~v1 form a complete basis of Rm. So
for vector ~px0 ∈ Rm we can write the following:

~px0 = x
(1)
0 Re~v1 + x

(2)
0 Im~v1 +

m−1∑

i=3

x
(i)
0 ~vi.

If we apply the operator T we obtain:

T ( ~px0) = T (x
(1)
0 Re~v1) + T (x

(2)
0 Im~v1) + T

(
m−1∑

i=3

x
(i)
0 ~vi

)
= (4.1)

= x
(1)
0 T (Re~v1) + x

(2)
0 T (Im~v1) +

m−1∑

i=3

x(i)λi~vi = (4.2)

= x
(1)
0 Re(λ1~v1) + x

(2)
0 Im(λ1~v1) +

m−1∑

i=3

x
(i)
0 λi~vi. (4.3)

So for ~pxn = T n( ~px) we get:

~pxn = x
(1)
0 Re(λn1~v1) + x

(2)
0 Im(λn1~v1) +

m−1∑

i=3

x
(i)
0 λni ~vi.

Now if we multiply each vector ~pxn by 1
|λn

1 |
, we obtain:

~pxn
|λn1 |

=
x
(1)
0

|λn1 |
Re(λn1~v1) +

x
(2)
0

|λn1 |
Im(λn1~v1) +

m−1∑

i=3

x(i)
λni
|λn1 |

~vi.

Now if we consider the angle between sxn and the plane spanned by Re~v1, Im~v1 we
obtain:

ŝxn E = arctan

(‖xn − xnE‖
‖p− xnE‖

)
,

where xnE is a projection of xn onto E. So:

p− xnE = x
(1)
0 Re(λn1~v1) + x

(2)
0 Im(λn1~v1)

and

xn − xnE =

m−1∑

i=3

x(i)λni ~vi.

Also since for any ~x ∈ span(Re~v1, Im~v2)

|T (~x)| = |λ1||~x|
we can write:

ŝxn E = arctan




∣∣∣
∑m−1

i=3 x
(i)
0 λni ~vi

∣∣∣
|λn1 ||x

(1)
0 Re~v1 + x

(2)
0 Im~v1|


 = (4.4)

= arctan




∣∣∣
∑m−1

i=3 x
(i)
0

λn
i

|λn
1 |
~vi

∣∣∣
|x(1)0 Re~v1 + x

(2)
0 Im~v1|


 . (4.5)
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Since ∀i > 2, |λ1| > |λi|, the sum in the nominator converges to 0 as n → ∞. However
the denominator remains constant. This way we obtain

ŝxn E −→
n→∞

0

if x
(1)
0 or x

(2)
0 are not both equal to 0.

4.5.2 Double sub-dominant eigenvalues

Lemma 3. Let T be an operator on BIm with a complete set of real eigenvectors ~v0, ~v1, . . . , ~vm−1

along with their respective eigenvalues λ0 = 1 > λ1 = λ2 ≥ |λ3| ≥ . . . ≥ |λm−1|. We denote
the fixed point of T by p. Given a point x0 6= p, x0 ∈ BIm we consider a sequence of secants
sxn that that pass through the points p and xn where xn = T n(x0). Let E be a subspace
spanned by ~v1 and ~v2. If

~px0 = x
(1)
0 ~v1 + x

(2)
0 ~v2 +

m−1∑

i=3

x
(i)
i ~vi

for some x
(1)
0 6= 0 or x

(2)
0 6= 0, then

ŝxn E −→
n→∞

0.

Proof. This proof is very similar to the proof of lemma 1. Since the eigenvectors of T form
a complete basis of Rm and xn = T n(x0) we can write the following:

~pxn =

m−1∑

i=1

λni x
(i)
0 ~vi.

By multiplying ~pxn by 1
λn
1
we get:

~pxn
λn1

=
m−1∑

i=1

λni
λn1
x
(i)
0 ~vi.

All but the first two terms of that sum always converge to 0 as n→ ∞. So

~pxn
λn1

−→
n→∞

x
(1)
0 ~v1 + x

(2)
0 ~v2.

Should we consider E a subspace spanned by ~v1, ~v2 we can see that:

ŝxn E −→
n→∞

0.

if x
(1)
0 and x

(2)
0 are not both equal to 0.



4.5. COMPLETE SET OF EIGENVECTORS 43

4.5.3 Null component problem

In the previous lemmas we assumed, that the vector ~px0 has non-zero component(s) corre-
sponding to the sub-dominants eigenvectors. Here we study the opposite case.

Lemma 4. Let T be an operator on BIm with a complete set of real eigenvectors ~v0, ~v1, . . . , ~vm−1

along with their respective eigenvalues λ0 = 1 > λ1 > λ2 > |λ3| ≥ . . . ≥ |λm−1|. We denote
the fixed point of T by p. Given a point x0 6= p, x0 ∈ BIm we consider a sequence of secants
sxn that that pass through the points p and xn where xn = T n(x0). Let E be a subspace
spanned by ~v2. If

~px0 = 0 · ~v1 + x
(2)
0 ~v2 +

m−1∑

i=3

x
(i)
i ~vi

for some x
(2)
0 6= 0, then

ŝxn E −→
n→∞

0.

Proof. As in the previous cases, we consider the basis decomposition of xn − p:

~pxn =

m−1∑

i=2

λni x
(i)
0 ~vi.

However this time we multiply the vectors ~pxn by 1
λn
2
instead of 1

λn
1
. By doing this we obtain:

~pxn
λ1n

=

m−1∑

i=2

λni
λn2
.

So if x
(2)
0 6= 0 we get:

~pxn
λ1n

−→
n→∞

x
(2)
0 ~v2.

Now if we consider E a subspace spanned by ~v2 we obtain:

ŝxn E −→
n→∞

0.

4.5.4 Mixed eigenvalues from R and C

The next lemma treats a slightly more sophisticated case of an operator T with a real
sub-dominant eigenvalue, but whose other eigenvalues are not necessarily real.

Lemma 5. Let T be a operator on BIm with a complete set of eigenvectors ~v0, ~v1, . . . , ~vm−1

along with their respective eigenvalues λ0 = 1 > λ1 > |λ2| ≥ . . . ≥ |λm−1|. We denote the
fixed point of T by p. Let us divide all the sub-dominant eigenvalues into three categories
A, B and B̄: λi ∈ A if λi ∈ R, λi ∈ B if λi ∈ C and λ̄i ∈ B̄ such that B ∩ B̄ = ∅. Given
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a point x0 6= p, x0 ∈ BIm we consider a sequence of secants sxn that that pass through the
points p and xn where xn = T n(x0). Let E is a subspace spanned by ~v1. If

~px0 = x
(1)
0 ~v1 +

∑

λi∈A

x
(i)
0 ~vi +

∑

λi∈B

(x
(i)
0 Re~vi + x

(i+1)
0 Im~vi)

for some x
(1)
0 6= 0, then

ŝxn E −→
n→∞

0.

Proof. Real eigenvectors of T along with the real and imaginary parts of complex eigenvec-
tors form a basis of Rm. So for any vector ~px0 we can write the following:

~px0 = x
(1)
0 ~v1 +

∑

λi∈A

x
(i)
0 ~vi +

∑

λi∈B

(x
(i)
0 Re~vi + x

(i+1)
0 Im~vi).

Should we apply T n we obtain:

~pxn = T n( ~px0) = λn1x
(1)
0 ~v1 +

∑

λi∈A

λni x
(i)
0 ~vi +

∑

λi∈B

(x
(i)
0 Re(λni ~vi) + x

(i+1)
0 Im(λni ~vi)).

Now let us consider the angle between sxn and E = span(~v1):

ŝxn E = arctan

(‖xn − xnE‖
‖p− xnE‖

)
,

where xnE is a projection of xn onto E, where

p− xnE = λn1x
(1)
0 ~v1

and
xn − xnE =

∑

λi∈A,i6=1

λni x
(i)
0 ~vi +

∑

λi∈B

(x
(i)
0 Re(λni ~vi) + x

(i+1)
0 Im(λni ~vi)).

Note that for any linear operator T

‖T (x)‖ ≤ |λmax|‖x‖,

where λmax is an eigenvalue of T with the greatest absolute value. Hence:

‖T n(x0 − x0E)‖
‖λn1x

(1)
0 ~v1‖

≤ |λn2 |‖x0 − x0E‖
‖λn1x

(1)
0 ~v1‖

because λ2 is the greatest absolute value of the restriction of T onto the orthogonal com-

plement of E. Also since |λ1| > |λ2| this fraction converges to 0 as long as x
(1)
0 6= 0 and

ŝxn E −→
n→∞

0

as well.
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4.5.5 Summary

Now we can formulate a more general statement about the convergence of secants defined
by iterations.

Theorem 2. Let T be an operator on BIm with a complete set of eigenvectors. Let p be a
fixed point of T . Given a point x0 6= p, x0 ∈ BIm we consider a sequence of secants sxn that
that pass through the points p and xn where xn = T n(x0). Let E is a subspace spanned by
~vi — eigenvectors of T corresponding to the first eigenvalue λi such that ~px0 has non-zero
components in the eigen-basis decomposition corresponding to the eigenvectors ~vi. Then

ŝxn E → 0.

Proof. For any point x0 there exists an eigenvalue λi such that ~px0 has non-zero components
at the corresponding positions of the eigen-basis decomposition, because if ~px0 has no non-
zero components then p = x0. To prove, this we apply lemma 4 i-times (1 for each zero
component) and then apply either lemma 1, lemma 2 or lemma 3 depending on whether λi
is real or complex and on its multiplicity.

4.6 Incomplete set of eigenvectors

In this section we consider the convergence rate of different components of T n(~v) using the
generalised eigenvectors as a basis. We show that the following affect the convergence rate
corresponding to a single generalised eigenvector: the absolute value of the eigenvalues, the
order of the generalised eigenvector and the length of the chain it is a part of. We also show
that the absolute value has the most significant effect on convergence rate.

At first we consider the convergence rate of different components T n(~v) in a subspace
spanned by generalised eigenvectors that form a single chain. We want to show that the com-
ponent corresponding to the generalised eigenvector of order 1 has the slowest convergence
rate within a chain.

Lemma 6. Let us consider a linear operator T on Rk. Let T be an eigenvalues λ with a ge-
ometric multiplicity 1 and an algebraic multiplicity k. We will denote one of its eigenvectors
as ~v0 :

T~v0 = λ~v0.

There exist k − 1 generalised eigenvectors ~v1, ~v2, . . . ~vk−1 such that:

T~vi = λ~vi + ~vi−1, 1 ≤ i ≤ k − 1,

and vectors ~v0, ~v1, . . . , ~vk−1 are linearly independent and therefore form a basis of Rk.
Let us denote

y
(n)
j =

k−j−1∑

i=0

Ci
nai+jλ

n−i,

where

Ci
n =

{
n!

i!(n−i)! if i ≤ n,

0 else.



46 CHAPTER 4. TANGENT SPACE

Then:

T n~a =

n∑

i=0

y
(n)
i ~vi.

Proof. So for any vector ~a ∈ Rk exists {ai}k−1
i=0 such that ~a =

∑k−1
i=0 ai~vi. Then for n = 1 we

get:

T~a =
k−1∑

i=0

aiT~vi = a0T~v0 +
k−1∑

i=1

aiT ~vi =

= a0λ~v0 +

k−1∑

i=1

ai(λ~vi + ~vi−1) =

=

k−2∑

i=0

(λai + ai+1)~vi + λak−1~vk−1.

Now we are going to show that if our hypothesis is true for some n than is it also true for
n+ 1. Consider

T n+1(~a) = T (T n(~a)) =

k−2∑

i=0

(λy
(n)
i + y

(n)
i+1)~vi + λy

(n)
k−1~vk−1 =

=
k−2∑

i=0


λ

k−i−1∑

j=0

Cj
nai+jλ

n−j +
k−i−2∑

j=0

Cj
nai+j+1λ

n−j


~vi+

+ λC0
nak−1λ

n~vk−1.

Note that the last term equals C0
n+1ak−1λ

n+1~vk−1 = y
(n+1)
k−1 ~vk−1. The coefficient at ~vi can

be rewritten with the substitution in the second term z = j + 1 as follows:

k−i−1∑

j=0

Cj
nai+jλ

n−j+1 +

k−i−1∑

z=1

Cz−1
n ai+zλ

n−z+1 =

=C0
naiλ

n+1 +

k−i+1∑

j=1

ai+j(C
j
nλ

n−j+1 + Cj−1
n λn−j+1) =

=C0
naiλ

n+1 +

k−i+1∑

j=1

ai+jλ
n−j+1(Cj

n + Cj−1
n ) =

=C0
naiλ

n+1 +

k−i+1∑

j=1

ai+jλ
n−j+1Cj

n+1 =

=
k−i+1∑

j=0

ai+jλ
n−j+1Cj

n+1.
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So this way:

T n+1(~a) =

k−1∑

j=0

(
k−j−1∑

i=0

Ci
n+1ai+jλ

n−i+1

)
~vj ,

which confirms the initial hypothesis.

Corollary 1.
1

Ck−1
n λn

T n(~a) −→
n→∞

(ak−1λ
−k+1, 0, . . . , 0)

if ak−1 6= 0.

Proof. Let us consider
y
(n)
j

Ck−1
n λn

and its limit at n→ ∞ at different values of j.

y
(n)
j

Ck−1
n λn

=
1

Ck−1
n λn

k−j−1∑

i=0

Ci
nai+jλ

n−i =

=

k−j−1∑

i=0

Ci
n

Ck−1
n

(ai+jλ
−i).

So the only n-dependent term here is
Ci

n

Ck−1
n

which equals:

n!

i!(n− i)!
· (k − 1)!(n− k + 1)!

n!
=

(k − 1)!(n− k + 1)!

i!(n− i)!
.

This expression converges to 0 for all i < k − 1 and to 1 for i = k − 1. So a term with a

non-zero limit only exists in
y
(n)
j

Ck−1
n λn

with j = 0 and if ak−1 6= 0. Therefore

1

Ck−1
n λn

T n(~a) −→
n→∞

(ak−1λ
−k+1, 0, . . . , 0).

So we have shown that of all the components of T n(~v) the first one, i.e. corresponding
to the eigenvector of order 1, has the slowest convergence rate.

Also note that if we consider the limit of

1

Ck2−1
n λn2

T n(~a)

for any k2 > k or for any λ2 > λ it would be equal to 0.
We can sum up the results as follows:

• component corresponding to the eigenvector of order 1 has the slowest convergence
rate of all the corresponding chain

• should we compare two components corresponding to the base of different chains that
correspond to the same eigenvalue, the one with the longer chain has the slowest rate
of convergence
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• if two components correspond to different eigenvalues, the one with the bigger eigen-
value converges more slowly, no matter the relative length of the chains.

If the initial vector has no zero component, then the component corresponding to the
sub-dominant eigenvector of order 1 has the slowest convergence rate. As was shown in the
previous section, the limit of the corresponding sequence of secants is then defined by the
sub-dominant eigenvector. But if the initial vector has one or more zero component it can
change the convergence rate of certain components. First, if the component corresponding
to the last generalised eigenvector is equal to zero, then for the intent and purpose of
calculating the rate of convergence we should treat it as a shorter chain. Second, if all the
components corresponding to a single chain are equal to zero, then the first eigenvector of
the chain cannot be the secants limit position.

Theorem 3. Let T be an operator on BIm with a positive sub-dominant eigenvalue λ. Let p
be a fixed point of T . Given a point x0 6= p, x0 ∈ BIm we consider a sequence of secants sxn
that that pass through the points p and xn where xn = T n(x0). If E is a subspace spanned by
~vi such that eigenvectors associated with the first eigenvalue of T such that ~px0 has non-zero
components corresponding to the last generalised eigenvectors of the chain starting with ~vi
in the Jordan basis decomposition, then

ŝxn E → 0.

Proof. Let us consider
~pxn

Ck−1
n λn

=
T n(x0)

Ck−1
n λn

,

where k is the length of chain of generalised eigenvectors that starts with ~vi and λ is the
corresponding eigenvalue. Consider the corresponding decomposition in the Jordan basis
of T . Previously we have shown that all components except the one corresponding to ~vi
converge to 0. Since λ > 0 the angle between 1

Ck−1
n λn

(p− xn) and E is equal to

ŝxn E.

Since all components of 1

Ck−1
n λn

(p−T n(x0)) except the one corresponding to ~vi converge to

0 and E = span(~vi) we obtain

ŝxn E → 0.

4.7 Convergence of the angular deviation.

In this section we consider the convergence of angular deviation for the sequence of rings. Let
us consider a point p ∈ A such that p is a periodic point. Let T be the transformation that
corresponds to the period of the point p. We denote the subspace spanned by sub-dominant
eigenvectors as E.

Function α(E, x) that was used in the definition of angular deviation (see definition 13)
is continuous because arctan and distance are continuous, and for any point such that the
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value of the denominator converges to zero the value of α(E, x) converges to its value π
2 .

Therefore for each ring Ri there exists xi ∈ Ri such that

α(xi) = max
x∈Ri

α(E, x),

since Ri is compact.

If ∄~x ∈ R0 such that x0 has a null component corresponding to ~v1 then we can prove
the following:

αmax(E,Ri) −→
i→∞

0.

To prove that it is sufficient to demonstrate that if α(E, xi) = maxx∈Ri α(E, xi) then
α(E, xi+1) = maxx∈Ri+1 α(E, x), because we have already shown in sections 4.5 and 4.6
that under stated conditions α(E, xi) → 0 when i→ ∞.

Lemma 7. Consider an attractor A of some IFS. Let p ∈ A with a periodic address, where
T is an affine transformation that corresponds to the period. Let us denote the set of rings
that encompasses the point p by {Ri} such that Ri = T (Ri−1). There exists a sequence {xi}
such that α(E, xi) = maxx∈Ri α(E, x) and xi = T i(x0) for some x0 ∈ R0.

Proof. Since R0 is a compact set and α(E, x) is continuous there exists x0 ∈ R0 such that
α(E, x0) = maxx∈R0 α(E, x).

Now let us consider the set of lines si such that each line s ∈ si passes through the point
p and some point from Ri. For each si there exists lines denoted by simin and simax such
that

ŝimin E = min
s∈si

ŝ E

and
̂simax E = max

s∈si
ŝ E

(see figure 4.7).

p

E

R1

s1
max

s1
min

s0
min

s0
max

R0

E

p

Figure 4.7: Two examples of lines si for rings Ri.
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Suppose xi ∈ Ri such that α(E, xi) = maxx∈Ri α(E, x) and xi+1 = T (xi) 6= maxx∈Ri+1 α(E, x).
Then T is not continuous because simax belongs to the border of si while s

i+1
max does not be-

long to the border of si+1. Therefore there exists a sequence {xi} such that α(E, xi) =
maxx∈Ri α(E, x) and xi = T i(x0) for some x0 ∈ R0.

4.8 Summary and points with non-uniform addresses

Now with the proof of lemma 7 we have a complete set of statements to derive the conditions
for existence of a tangent subspace. Results from sections 4.5 and 4.6 give us a set of
conditions that guarantee the convergence for a sequence of secants sxn obtained with
iterations of single transformation T (xn = T (x0), x0 ∈ R0). According to theorems 2
and 3 the limit of sxn is independent of x0 if all points of R0 have at least one non-zero
component corresponding to the sub-dominant eigenvectors or generalised eigenvectors. In
case R0 contains no such points we can consider the restriction of T onto the sub-space
spanned by all its (generalised) eigenvectors but the sub-dominant ones without any loss
of generality. If this limit is indeed independent from the choice of x0 ∈ R0 then lemma 7
guarantees the convergence of αmax(E,Ri) for some affine subspace E spanned either by
the sub-dominant eigenvector(s) of T (real sub-dominant eigenvalue) or by the pair of real
and imaginary parts of the sub-dominant eigenvector (complex sub-dominant eigenvalue).
Finally proposition 1 tells us that the convergence of αmax(Ri) for some affine subspace E
means that subspace E is indeed a tangent subspace.

Previously we were studied points with uniform addresses iω. The following two propo-
sitions show how these results can be applied to other kinds of periodic points.

Proposition 3. Let A ⊂ Rm be an attractor of some CIFS. Let p ∈ A be periodic address
iω. If E is a tangent subspace at the points p, then Tσ(E) is the tangent subspace for the
points p′ with address σiω , where σ = σ1, σ2, . . . , σn is a finite prefix and Tσ = Tσ1 , . . . , Tσn .

Proof. Given the self-similarity of A points p′ is can be obtained from point p by applying
the corresponding linear map Tσ. Any neighbourhood of p is also mapped into the neigh-
bourhood of p′. Hence the tangent subspace at p is mapped into the tangent subspace of
p′.

Proposition 4. Let A ⊂ Rm be an attractor of some CIFS. Let p′ ∈ A be multiple addresses
σ1i

ω
1 , σ2i

ω
2 , . . . , σni

ω
n . Let Ej be the tangent subspaces at the points pj with addresses ıωj . Then

the tangent space E at the point p′ exists if Ej exist for all j = 1, . . . , n and

Tσ1(E1) = Tσ2(E2) = . . . = Tσn(En).

Proof. As was shown in section 4.2 each address corresponds to a specific way of approaching
the point. Tangent subspace exists if the limit of secants is independent of the way the point
is approached. So it is necessary that the resulting tangent subspace is independent of the
choice of the address.

Now the last part of this chapter is dedicated to applying these technique to various
attractors of different IFS and CIFS.
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4.9 Examples and applications

In this section we are going to apply theorem 2 and theorem 3 along with lemma 7 to
attractors of different IFS and CIFS.

4.9.1 Curves

Throughout most of the following examples we are going to use the same technique to find
the tangent at the specific point. We illustrate the technique with a quadratic B-spline curve,
please refer to figure 4.8. Given an IFS {T1, . . . , Tn} we choose a point we are interested

v0

~v1

~v2

Figure 4.8: Study of the differential behaviour of a quadatic B-spline curve: the standard
basis of BI3 is shown in gray; the eigenbasis of T1 in black. The yellow line is the sub-space
of BI3 with coordinates (·, 0, ·) in the eigenbasis. Ring R0 of the point v0 is shown in red
and the hatched blue polygon is the convex set that contains ring R0.

in. In most of the examples we choose the fixed point of some transformation Ti. For the
quadratic B-spline curve the IFS consists of two transformations on BI3:

T1 =



3/4 1/4 0
1/4 3/4 3/4
0 0 1/4


 , T2 =



1/4 0 0
3/4 3/4 1/4
0 1/4 3/4


 .

We study the behaviour of the curve at the fixed point of T1. We calculate the eigenvectors
and eigenvalues of respective transformation. For the given example we obtain the following
eigenvectors:

~v0 =



1/2
1/2
0


 , ~v1 =



−1
1
0


 , ~v2 =




1
−2
1


 ,

and the corresponding eigenvalues:

λ0 = 1, λ1 = 1/2, λ2 = 1/4.
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After that we try to establish whether the outermost ring R0 contains any points with
zero components in the direction of the sub-dominant eigenvector(s). Lemma 1 (along with
theorem 2 and lemma 7) states that if it is not the case then the tangent direction is given
by the sub-dominant eigenvector(s).

For the quadratic b-spline example the ring R0 of the point v0 is shown in red in fig-
ure 4.8. The sub-dominant eigenvector is ~v1, thus the yellow line gives the set of points
with coordinates (·, 0, ·) in the eigenbasis. In general it is difficult to test whether R0 inter-
sects the set of points with 0 along the sub-dominant eigenvectors. So we will try to find a
polyhedron that includes our R0.

Throughout all our examples the IFS matrices have non-negative entries, therefore we
can conclude that our curveA is contained in the simplex BI3. In other words, the quadratic
b-spline lies within the control triangle shown in gray in figure 4.8. The coordinates of the
initial simplex that contains all the curve A is just the identity matrix I3×3. Next, we can
find a (set of) polyhedron containing ring R0. In our B-spline example there is one polygon
(hatched blue in figure 4.8) containing R0. Since here R0 = T2(A), the coordinates of the
polygon vertices in the standard bases are given by the matrix T2 × I3×3 . Now it is easy
to check if the (set of) polyhedron intersects the subspace with zero coordinates in the sub-
dominant components of the eigenbasis. The eigenmatrix S gives the change of basis from
the standard one to the eigenbasis.

S =



1/2 −1 1
1/2 1 −2
0 0 1


 .

Then the coordinates of the bounding polygon in the eigenbasis can be obtained as

S−1 × T2 =




1 1 1
1/4 3/4 5/4
0 1/4 3/4


 .

Note that the second row is of the matrix is the second coordinate of the bounding polygon
vertices in the eigenbasis. Since it is strictly positive the polygon is separated from the
subspace (·, 0, ·). Indeed, the hatched polygon does not intersect the yellow line in figure 4.8.

So we can conclude that the conditions of lemma 1 are satisfied and the tangent direction
is given by the vector ~v1.

Double address point

In this example we are going to study differential behaviour at a point with a double address.
Let us consider the following IFS:

T1 =



1 7/10 7/20
0 3/10 3/10
0 0 7/20


 , T2 =



7/20 0 0
3/10 3/10 0
7/20 7/10 1


 .

The corresponding attractor is presented in figure 4.9. The midpoint of the curve has two
addresses 1(2)ω and 2(1)ω. To compute the two half tangents we are going to compute the
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tangents at the endpoints of the curve (endpoints have (1)ω) and (2)ω as their respective
addresses) and apply T1 and T2 respectively.

First let us find the tangent at the fixed point of T1. Here are the eigenvectors and
eigenvalues of T1:

λ0 = 1, λ1 = 7/20, λ2 = 3/10,

~v0 =



1
0
0


 , ~v1 =




1
−6/7
−1/7


 , ~v2 =




1
−1
0


 .

So if the corresponding change of basis matrix is S then

S−1 =



1 1 1
0 0 −7
0 −1 6


 .

Since the IFS has only two transformations we can compute the polygon containing R0 as
follows:

S−1T2 =




1 1 1
−49/20 −49/10 −7
9/5 39/10 6


 .

So all vertices of the polygon have a negative coordinate that corresponds to the sub-
dominant eigenvector (second row of the above matrix). This means that there is no point
with a zero component corresponding to the sub-dominant eigenvector and sub-dominant
eigenvector gives the direction of the tangents. Let us denote this vector as ~t1:

~t1 =




1
−6/7
−1/7


 .

In a similar manner we can compute the tangent at the fixed point of T2 which is

~t2 =




1
6
−7


 .

Now to find the two half-tangents at the midpoint we calculate T1(~t2) and T2(~t1):

T1(~t2) =




11/4
−3/10
−49/20


 , T2(~t1) =




7/20
3/70

−11/28


 .

Now should we compute the cross product between the two we can see that two half-tangent
are not collinear:

T2(~t1)× T1(~t2) =



−39/175
−39/175
−39/175


 .

The curve and all computed tangent along with respective control points is presented in
figure 4.9.



54 CHAPTER 4. TANGENT SPACE

Figure 4.9: A curve with two different half-tangent at the double address point.

Spiral touching a tangent plane

In this section we study a curve which does not have a tangent line but a tangent plane.
The curve will be obtained by a modified Doo-Sabin scheme, refer to figure 4.10 for an
illustration. The control mesh consists of two faces: a triangle and a quad; subdivided mesh
converges to the limit curve. We express this subdivision in terms of CIFS, namely, the
limit curve is the attractor of a CIFS with control graph provided in figure 4.11.

1

3

4 5

2

1

3

4 5

2

Figure 4.10: Left-hand image shows the Doo-Sabin subdivision scheme applied on the control
mesh shown in black, the green mesh is obtained by one iteration and the red curve is the
limit curve. Right-hand image shows the subdivision with modified weights.

♮ I R
P

Ti

Tr
R1,2

Figure 4.11: A projective IFS as a CIFS automaton.

The barycentric space associated with the state I has 5 dimensions, whereas R has
6 dimensions. The matrices corresponding to the Doo-Sabin subdivision scheme can be
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expressed as follows:

Ti =




2/3 1/6 0 1/6 0
1/6 2/3 9/16 1/6 3/16
0 0 3/16 0 1/16
1/6 1/6 3/16 2/3 9/16
0 0 1/16 0 3/16



, Tr =




1/6 0 0 1/6 0 0
2/3 9/16 3/16 1/6 3/16 1/16
0 3/16 9/16 0 1/16 3/16
1/6 3/16 1/16 2/3 9/16 3/16
0 1/16 3/16 0 3/16 9/16




Matrices R1 and R2 are obtained as a tensor product of quadratic B-spline and quadratic
B-spline vertex. The left-hand image of figure 4.10 shows one subdivision. For example, the
green triangle is obtained from the black one with the weights defined in the 1st, 2nd and
4th columns of the matrix Ti.

For this section we modify the scheme, namely the green triangle is slightly rotated (refer
to the right-hand image of figure 4.10). The modified matrices are as follows:

Ti =




2/3 0 0 1/3 0
1/3 2/3 9/16 0 3/16
0 0 3/16 0 1/16
0 1/3 3/16 2/3 9/16
0 0 1/16 0 3/16



, Tr =




0 0 0 1/3 0 0
2/3 9/16 3/16 0 3/16 1/16
0 3/16 9/16 0 1/16 3/16
1/3 3/16 1/16 2/3 9/16 3/16
0 1/16 3/16 0 3/16 9/16




Let us study the differential behaviour of the curve at the fixed point of Ti. The operator
Ti has 5 eigenvalues:

λ0 = 1, λ1 = 1/2− i
√
3/6, λ2 = 1/2 + i

√
3/6, λ3 = 1/4, λ4 = 1/8

and the correspondig eigenmatrix is

(~v0, ~v1, ~v2, ~v3, ~v4) =




1 1 1 1 1

1 −1/2 + i
√
3/2 −1/2− i

√
3/2 −41/4 5/8

0 0 0 21/4 −43/24

1 −1/2− i
√
3/2 −1/2 + i

√
3/2 −5/4 −13/8

0 0 0 21/4 43/24




Lemma 2 tells us that the plane spanned on (Re~v1, Im~v2) is the tangent plane to our
curve if there is no point belonging to the ring R0 with zero coordinates along the vectors
Re~v1, Im~v2 in the basis

(~v0,Re~v1, Im~v2, ~v3, ~v4) =




1 1 1 1 1

1 −1/2 −
√
3/2 −41/4 5/8

0 0 0 21/4 −43/24

1 −1/2
√
3/2 −5/4 −13/8

0 0 0 21/4 43/24




We know that the curve belongs to the convex hull of its control points (black mesh
in figure 4.10). The coordinates of the control points in the standard basis are given by a
5 × 5 identity matrix I5×5. Therefore the ring R0 belongs to the convex hull of 6 control
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points with coordinates I5×5 × Tr in the standard basis (two green quads in figure 4.10).
The coordinates in the eigenbasis can be obtained as follows:

(~v0,Re~v1, Im~v2, ~v3, ~v4)
−1 × I5×5 × Tr =




1
3

1
3

1
3

1
3

1
3

1
3

− 1
3 − 97

301 − 271
903 0 − 118

301 − 460
903

−
√
3
9 − 67

√
3

301 − 302
√
3

903
2
√
3

9
24

√
3

301 − 85
√
3

903
0 1

42
1
14 0 1

42
1
14

0 − 3
86 − 9

86 0 3
86

9
86




Second and third rows give coordinates of 6 control points along the vectors (Re~v1, Im~v2).
We need to check if there is a point with coordinates (·, 0, 0, ·, ·) in the convex hull. Any point
of the convex hull can be expressed as a weighted sum of hull vertices. Thus our problem
can be restated as follows: find weights (α0, α1, α2, α3, α4, α5) and coordinates (β0, β3, β4)

subject to constraints
5∑

i=0

αi = 1, αi ≥ 0 such that




1
3

1
3

1
3

1
3

1
3

1
3

− 1
3 − 97

301 − 271
903 0 − 118

301 − 460
903

−
√
3
9 − 67

√
3

301 − 302
√
3

903
2
√
3

9
24

√
3

301 − 85
√
3

903
0 1

42
1
14 0 1

42
1
14

0 − 3
86 − 9

86 0 3
86

9
86




×




α0

α1

α2

α3

α4

α5




=




β0
0
0
β3
β4



.

The second row of the linear system implies α0 = α1 = α2 = α4 = α5 = 0 and therefore

from the third row we have α3
2
√
3

9 = 0 ⇒ α3 = 0. This is incompatible with the constraint
5∑

i=0

αi = 1 and thus the convex hull does not include points with coordinates (·, 0, 0, ·, ·).
So, the conditions of the lemma 2 are verified and the plane spanned by the vectors

(Re~v1, Im~v2) is indeed a tangent plane. To better illustrate the existence of such a plane,
the right-hand image of figure 4.12 shows the suitcase corner subdivision. The studied curve
(present 3 times) is highlighted in the limit surface. Any secant si will rotate infinitely
around the fixed point of Ti, converging to the plane.

Null component problem

Here we are going to study a pair of IFS that share a common transformation. We are going
to show that it is possible to obtain different tangents at the fixed point of the common
transformation to the different attractors.

Let us consider two IFS {T1, T2} and {T1, T ′
2} and their attractors A and A′. Let

T1 =



1/2 0 0
0 1/4 0
0 0 1


 , T2 =



1/2 0 0
0 3/4 1/4
0 0 1


 , T ′

2 =



1/2 0 ǫ/2
0 3/4 1/4
0 0 1


 .

Please note that here were express affine transformations on R2 as linear transformation in
R3 via homogeneous coordinates.

The respective attractors are presented in figure 4.13. Two attractors share a common
point — the fixed point of T1. However they have different tangents at this common point.
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Figure 4.12: Left-hand image: Doo-Sabin subdivision scheme applied on the suitcase corner
mesh; right-hand image: the subdivision with modified weights, the studied curves (patch
borders) are highlighted.

1

0

1

0

Figure 4.13: Left: attractor of the IFS {T1, T2}; right: attractor of {T1, T ′
2}. Even if both

IFS share the transformation T1, the tangents are different at the origin.

Previously we showed the possible tangent at the fixed point are eigenvectors of the re-
spective transformation. The eigenvalues of T1 are λ1 = 1/4 and λ2 = 1/2. The respective
eigenvectors are (1, 0) and (0, 1).

First let us study the tangent of A at the fixed point (0, 0). We are going to show
that there is no points x ∈ A such that is has a non-zero component corresponding to the
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sub-dominant eigenvector of T1. If we consider a set of points with addresses that end in
(1)ω or (2)ω we get a everywhere dense subset of the attractor [Bar88, Theorem 2.4]. Points
with addresses that end in (1)ω or (2)ω can be obtained from the fixed points of T1 and
T2 by applying some combination of transformations T1 and T2. So if we show that both
fixed points of T1 and T2 have a zero component for the sub-dominant eigenvector we could
prove that all the points in A have a zero component. Therefore all points in R0 have a zero
component and according to lemma 7 the tangent corresponds to the second sub-dominant
eigenvector (0, 1). The fixed point of T1 is (0, 0) while the fixed point T2 is (1, 0). Indeed:

T1(0, 0) = (0, 0), T2(1, 0) = (1, 0).

Since both for fixed points have first coordinate of their eigenbasis decomposition is equal
to zero, we can conclude that the tangent to A at the point (0, 0) is given by the second
sub-dominant eigenvector (0, 1).

Now we study the tangent of A′ at (0, 0). To show that the tangent for this attractor
at the fixed point of T1 is given by the respective sub-dominant eigenvector we are going
to show that no point of R0 has a zero component corresponding to the sub-dominant
eigenvector. For that we are going to calculate a rectangular box that contains R0. From
that is easy to demonstrate that no point of R0 has the undesired zero component. First
let us calculate fixed point of T2:

T2(fix2) = fix2, f ix2 = (ǫ, 1).

Note that all the eigenvalues of T1 and T2 are positive. This implies that A′ is bounded
by the rectangle with fixed points of T1 and T2 as two of the four vertices. So no point in
A′ has a strictly greater coordinates than the fixed point of T2. So since R0 = A′ \ T1(A′)
we can conclude that R0 is bounded by the rectangle with fix2 and T1(fix2). Since fix2
has a non-zero sub-dominant component in the eigenbasis decomposition so does T1(fix2).
Therefore so do all point in R0. So according to the theorem 2 the tangent corresponds to
the first sub-dominant eigenvector (1, 0).

We want to note that despite the fact that for both attractors, the rings around the point
(0, 0) are transformed with the same transformation T1, the resulting differential behaviour
is different because of the difference in the position of the outer rings.

Takagi curve

In this paragraph we are going to show how our theoretical results apply to such a well-
known attractor as the Takagi curve. The Takagi curve is an example of an IFS with an
operator that does not have a complete set of eigenvectors (see figure 4.14).

For Takagi curve we chose to use 4 control points (one for each vertex of the rectangle it
is projected into) (see figure 4.14). In BI4 the Takagi curve is an attractor of the following
IFS:

T1 =




1 1/2 0 1/4
0 1/2 1/2 1/4
0 0 1/2 1/4
0 0 0 1/4


 , T2 =




1/4 0 0 0
1/4 1/2 0 0
1/4 1/2 1/2 0
1/4 0 1/2 1


 .

Let us study the tangent at the fixed point of T1. Transformation T1 has three different
eigenvalues 1, 1/2, 1/4 with 1/2 being a double eigenvalue. Here are the corresponding
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Figure 4.14: The Takagi curve is an attractor of an IFS without a complete set of eigenvec-
tors.

eigenvectors:

~v0 =




1
0
0
0


 , ~v1 =




0.5
−0.5
0
0


 , ~v2 =




1
−1
1
−1


 .

We need one generalise eigenvector to obtain a complete basis:

~v11 =




1
0
−1
0


 .

To show that the sub-dominant eigenvector gives the tangent we need to verify, that R0

for the fixed point of T1 does not have any point with null components corresponding to the
generalised eigenvector ~v11 . To verify this we are going to calculate the control polygon for
R0.

Now we can calculate the control polygon for R0 using the same method as before.

S =




1 1 1/2 1
0 −1 −1/2 0
0 1 0 −1
0 −1 0 0


 , S−1 =




1 1 1 1
0 0 0 −1
0 −2 0 2
0 0 −1 −1


 .

So the vertices of the control polygon for R0 in the basis of generalised eigenvectors are as
follows:

S−1 × T2 =




1 1 1 1
−1/4 0 −1/2 −1
0 −1 1 2

−1/2 −1/2 −1 −1




. Note that the fourth component for all four vertices is negative. Therefore there is no
point in R0 with a zero component corresponding to the generalised eigenvector ~v11 . So
the tangent at the fixed point of T1 is given by the sub-dominant eigenvector ~v1. Thus
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the tangent passes through the first and second control points. If we project the attractor
from BI4 into the unit square using the vertices of the square as control points we obtain
a vertical tangent (see figure 4.14).

Since the curve is symmetric the half-tangent at the other endpoint is given by the third
and fourth control points.

4.9.2 Surfaces

Null components

In this section we consider an example of a surface where the null component problem
discussed before leads to a peculiar differential behaviour. Consider a quadrangular surface

Figure 4.15: One step of the pyramidal subdivision. One patch with 5 control points is
subdivided into 4 patches. Each pair of new patches share 2 edge control points.

subdivision with 5 control points. Let each of the 4 vertices depend only on 1 control point.
Let each edge depend on two control points corresponding to its vertices. Finally, let the
last control point influence the interior of the surface, but not the vertices or edges. This
subdivision is represented in figure 4.15. Here are the corresponding matrices:

T1 =




1 1/2 0 1/2 2/3
0 1/2 0 0 0
0 0 0 0 0
0 0 0 1/2 0
0 0 1 0 1/3



, T2 =




1/2 0 0 0 0
1/2 1 1/2 0 2/3
0 0 1/2 0 0
0 0 0 0 0
0 0 0 1 1/3



,

T3 =




0 0 0 0 0
0 1/2 0 0 0
0 1/2 1 1/2 2/3
0 0 0 1/2 0
1 0 0 0 1/3



, T4 =




1/2 0 0 0 0
0 0 0 0 0
0 0 1/2 0 0
1/2 0 1/2 1 2/3
0 1 0 0 1/3



.

Let us consider the differential behaviour at the fixed point of T1. If we compute the
eigenvalues and eigenvectors we obtain the following:

λ0 = 1, λ1 = 1/2, λ2 = 1/2, λ3 = 1/3, λ4 = 0
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and

~v0 =




1
0
0
0
0



, ~v1 =




1
0
0
−1
0



, ~v2 =




0
1
0
−1
0



, ~v3 =




1
0
0
0
−1



, ~v4 =




1
0

1/2
0

−3/2



.

Here we have two sub-dominant eigenvectors. However let us consider the fifth control point
that we denote as c5. The fixed point of T1 denoted as p obviously belongs to the attractor.
So does the c5 since

T3(p) = c5.

Should we consider the vector ~pc5 in the eigenbasis decomposition we obtain:

c5 − p = −~v3.

So we have found a point that has a null components that correspond to the sub-dominant
eigenspace (vector −~v3 is linearly independent from ~v1 and ~v2). This means that a sequence
of secants that pass through points p and T n(c5) does not converge to span(~v1, ~v2). In fact
it converges to span(~v3). So we obtain three geometrical “edges” on the surface: two of them
correspond to the sub-dominant eigenvectors ~v1, ~v2 and the third corresponds to the ~v3 (see
figure 4.16.)

Figure 4.16: Three different iterations of pyramidal surface.

Takagi tensor product

In this section we study an IFS obtained by tensor product of two Takagi curves. We take
two identical IFS from one of the previous sections:

T = {T1, T2}, T′ = {T1, T2},

where

T1 =




1 1/2 0 1/4
0 1/2 1/2 1/4
0 0 1/2 1/4
0 0 0 1/4


 , T2 =




1/4 0 0 0
1/4 1/2 0 0
1/4 1/2 1/2 0
1/4 0 1/2 1


 .
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Now we consider an IFS composed of the pairwise tensor product of T1 and T2:

T̄ = T⊗ T′ = {T11, T12, T21, T22},

where

T11 = T1 ⊗ T1,

T12 = T1 ⊗ T2,

T21 = T2 ⊗ T1,

T22 = T2 ⊗ T2.

We want to study the tangent behaviour at one for the four vertices, so let us consider the fixed point of T11. Should we
calculate its eigenvalues we obtain:

λ0 = 1, λ1 = 1/16, λ2 = 1/2, λ3 = 1/2, λ4 = 1/2, λ5 = 1/2, λ6 = 1/8, λ7 = 1/8,

λ8 = 1/8, λ9 = 1/8, λ10 = 1/4, λ11 = 1/4, λ12 = 1/4, λ13 = 1/4, λ14 = 1/4, λ15 = 1/14.

If we also calculate the matrix of corresponding eigenvectors and generalised eigenvectors we obtain the following matrix:

S =




1 1 1/2 1 0 0 1/4 1 1/8 0 1/8 1/2 1 1 0 0
0 −1 0 0 1/2 0 −1/4 0 −1/8 1 −1/8 −1/4 0 0 0 0
0 1 0 0 0 1 1/8 0 0 0 0 −1/4 0 0 1 0
0 −1 0 0 0 0 −1/8 −1 0 −1 0 0 0 0 0 1
0 −1 −1/2 0 −1/2 0 −1/4 0 −1/8 0 −1/8 −1/4 0 −1 1 0
0 1 0 0 0 0 1/4 −1 1/8 −1 1/8 0 0 0 −1 0
0 −1 0 0 0 0 −1/8 1 0 0 0 1/4 −1 0 −1 −1
0 1 0 0 0 0 1/8 0 0 1 0 0 0 0 0 0
0 1 0 −1 0 −1 1/8 −1 1/8 −1 0 −1/4 0 1 0 0
0 −1 0 0 0 0 −1/8 2 −1/8 2 0 1/4 0 0 1 1
0 1 0 0 0 0 0 −2 0 −1 0 0 1 0 0 0
0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 −1/8 0 −1/8 1 0 0 −1 −1 −1 −1
0 1 0 0 0 0 1/8 −1 1/8 −2 0 0 0 0 0 0
0 −1 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0




.

Here note that the third and fifth columns are eigenvectors corresponding to the sub-dominant eigenvalues 1/2. With it we
can calculate the three polygons which cover the whole R0:

S−1 × T12 =




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1/16 0 1/8 1/4
0 −1 1 2 −1 −2 0 1 −1 −2 0 1 0 −1 1 2

−1/2 −1/2 −1 −1 −1/2 −1/2 −1 −1 −1 −1 −3/2 −3/2 −1 −1 −3/2 −3/2
0 1 −1 −2 0 1 −1 −2 0 1 −1 −2 0 1 −1 −2

1/2 1/2 1 1 1/2 1/2 1 1 1/2 1/2 1 1 1/2 1/2 1 1
0 0 0 0 1 0 2 4 2 0 4 8 0 −1 0 2
0 0 0 0 0 0 0 0 1/8 0 1/4 1/2 1/8 0 1/4 1/2
0 0 0 0 −1 0 −2 −4 −3 0 −6 −12 1 4 1 −4
0 0 0 0 0 0 0 0 −1/8 0 −1/4 −1/2 0 1/8 0 −1/4

−2 0 −4 −8 −3 1 −8 −14 −4 1 −11 −18 −3 0 −7 −12
0 0 0 0 1/2 1/2 1 1 1 3/2 3/2 1 1/2 1 1/2 0
0 0 0 0 0 0 0 0 1/4 1/4 1/2 1/2 1/4 1/4 1/2 1/2
0 0 0 0 1/8 1/8 1/4 1/4 0 −1/8 1/8 1/4 −3/8 −1/2 −3/8 −1/4

−1/4 0 −1/2 −1 −3/8 −1/8 −3/4 −5/4 −1/2 −1/8 −9/8 −7/4 −3/8 0 −7/8 −3/2
1/4 0 1/2 1 1/4 0 1/2 1 1/4 0 1/2 1 1/4 0 1/2 1




,

S−1 × T21 =




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1/16 0 0 0 0 0 0 0 1/8 0 0 0 1/4
0 −1 −1 0 −1 −2 −2 −1 1 0 0 1 2 1 1 2

−1/2 −1/2 −1 −1 −1/2 −1/2 −1 −1 −1 −1 −3/2 −3/2 −1 −1 −3/2 −3/2
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
0 0 1/2 1/2 0 0 1/2 1/2 0 0 1/2 1/2 0 0 1/2 1/2
0 0 −1 0 0 0 0 2 0 0 −2 −1 0 0 −4 −4
0 0 0 1/8 0 0 0 1/8 0 0 0 1/4 0 0 0 1/4
0 1 4 1 0 0 0 −3 0 2 8 3 0 4 16 10
0 0 1/8 0 0 0 0 −1/8 0 0 1/4 0 0 0 1/2 1/4
0 1 0 −3 0 3 1 −4 0 0 −1 −3 0 −2 −2 −2
0 1/2 1 1/2 0 1/2 3/2 1 0 1 3/2 1/2 0 1 1 0
0 0 1/4 1/4 0 0 1/4 1/4 0 0 1/2 1/2 0 0 1/2 1/2

−1/4 −3/8 −1/2 −3/8 0 −1/8 −1/8 0 −1/2 −3/4 −9/8 −7/8 −1 −5/4 −7/4 −3/2
0 1/8 0 −3/8 0 1/8 −1/8 −1/2 0 1/4 1/8 −3/8 0 1/4 1/4 −1/4
0 0 0 1/4 0 0 0 1/4 0 0 0 1/4 0 0 0 1/4




,
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S−1 × T22 =




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1/16 0 1/8 1/4 0 0 0 0 1/8 0 1/4 1/2 1/4 0 1/2 1

0 −1 1 2 −1 −2 0 1 1 0 2 3 2 1 3 4
−1 −1 −3/2 −3/2 −1 −1 −3/2 −3/2 −3/2 −3/2 −2 −2 −3/2 −3/2 −2 −2
0 1 −1 −2 0 1 −1 −2 0 1 −1 −2 0 1 −1 −2

1/2 1/2 1 1 1/2 1/2 1 1 1/2 1/2 1 1 1/2 1/2 1 1
0 −1 0 2 2 0 4 8 −1 −2 −2 0 −4 −4 −8 −8

1/8 0 1/4 1/2 1/8 0 1/4 1/2 1/4 0 1/2 1 1/4 0 1/2 1
1 4 1 −4 −3 0 −6 −12 3 8 4 −4 10 16 16 8
0 1/8 0 −1/4 −1/8 0 −1/4 −1/2 0 1/4 0 −1/2 1/4 1/2 1/2 0

−3 0 −7 −12 −4 1 −11 −18 −3 −1 −6 −10 −2 −2 −2 −4
1/2 1 1/2 0 1 3/2 3/2 1 1/2 3/2 0 −1 0 1 −1 −2
1/4 1/4 1/2 1/2 1/4 1/4 1/2 1/2 1/2 1/2 1 1 1/2 1/2 1 1

−3/8 −1/2 −3/8 −1/4 0 −1/8 1/8 1/4 −7/8 −9/8 −1 −3/4 −3/2 −7/4 −7/4 −3/2
−3/8 0 −7/8 −3/2 −1/2 −1/8 −9/8 −7/4 −3/8 1/8 −1 −7/4 −1/4 1/4 −3/4 −3/2
1/4 0 1/2 1 1/4 0 1/2 1 1/4 0 1/2 1 1/4 0 1/2 1




.

Note that for all vertices of all the polygons among the components corresponding to the sub-dominant chains there is always
a non-zero component. Therefore we obtain a tangent plane spanned by two sub-dominant eigenvectors (see figure 4.17).
However if we project the attractor into a “cube” (by merging pairs of respective control points) then two sub-dominant
eigenvectors are projected onto the one edge of the cube. So the tangent plane collapses into a tangent line. This way we
obtain a surface commonly known as the Takagi surface (see figure 4.18).

Figure 4.17: Tensor product of Takagi curves defined in
the barycentric space BI16.

Figure 4.18: The tensor product of Takagi curves pro-
jected into the cube gives the same surface as the product
of two classical 2D curves. Note that the surface does
not have tangent planes but tangent lines at the corners.
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4.9.3 Surfaces as tensor product of curves

In the previous example we calculated the tangent plane at one of the corners of the surface
obtained as the tensor product of two Takagi curves. The computations were straightforward
but cumbersome. In this section we show how to use the fact that the surface is obtained
as the tensor product to find the same result more easily.

Generalised eigenvectors and tensor product of curves

Let us we consider two different curves defined by two different Barycentric IFS. From
the operators on the initial curve we can construct a set of operators that will define a
continuous surface in a barycentric space (its dimension is a product of the initial curves
dimension), such that the edges of the surface are initial curves. To obtain said set of
operators we take pairwise tensor products of the operators of initial curves. This was
described in details in [ZT96]. It was also shown that this method produces continuous
surfaces from continuous curves. The operators obtained by tensor product are contracting
on the barycentric space, since they can be expressed as a sum of sums of initial matrix
elements (which sums up to one) multiplied by a coefficient, which also sums up to one.
The IFS formed with the resulting operators will define a continuous surface. Using the
properties of the tensor product we can analyse the differential behaviour of the resulting
surface.

Property 3. The eigenvalues of the product are pairwise products of the operands eigen-
values.

Lets consider two subdivision operators A,B defined on two different barycentric spaces
of dimension n and m respectively. Since both operands have an eigenvalue equal to 1,
the eigenvalues of the product will include the eigenvalues 1, all the eigenvalues of both
operands that are smaller than 1 and all pairwise products of the eigenvalues with absolute
value that is less than 1. All the pairwise products have smaller absolute values than
individual eigenvalues of the operands. Hence the sub-dominant eigenvalue of the product
is equal to the sub-dominant eigenvalue of one of the operands. If the operands have equal
sub-dominant eigenvalues then the product will have a double sub-dominant eigenvalue.

Property 4. The tensor product of eigenvectors is an eigenvector of the product which
corresponds to the eigenvalue equal to the product of the initial eigenvalues.

Proof. Consider the following:

(A− λE)x = 0, (B − µE)y = 0.

Then
(A⊗B)(x ⊗ y) = Ax ⊗B = λx ⊗ µy = λµ(x ⊗ y)

Therefore x⊗ y is a eigenvector with an eigenvalue λµ.

This property however does not hold for generalised eigenvectors, except for the special
case of eigenvalue 1. Consider the following generalised eigenvectors:

(A− λE)x′ = x
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Then

(A⊗B)(x′ ⊗ y) = Ax‘ ⊗By = (x+ λx′)⊗ µy = x⊗ µy + λx′ ⊗ µy.

Now if µ = 1 then

(A⊗B)(x′ ⊗ y) = (x⊗ y + λx′ ⊗ y).

So we have a chain of eigenvectors x⊗ y, x′ ⊗ y corresponding to the eigenvalue λ. We can
generalise this to chains of any order since we started with the equation (A−λE)x′ = x, that
describes the relation between any two neighbouring eigenvectors of the chain. Therefore if
an operand has a chain of generalised eigenvectors corresponding to its eigenvalue, then the
product will have a chain of the same length corresponding to the respective eigenvalue.

Tensor product and null components

Let us consider two projected IFS T = {T1, T2} and T′ = {T ′
1, T

′
2}, where the transformations

operate on Rn and Rm respectively. We denote their attractors as A and A′ respectively.
Now we consider the tensor product of these IFS T ⊗ T′ and its attractor A⊗ = A ⊗ A′.
Any vector x⊗ y ∈ A⊗ corresponds to a pair (x, y) such that x ∈ A and y ∈ A′. Let x⊗ y
be a fixed point of T11 = T1 ⊗ T ′

1. Then x is the fixed point of T1 and y is the fixed point
of T ′

1. Consider the first ring around x⊗ y that we denote by R⊗
0 :

R⊗
0 := T12(A⊗) ∪ T21(A⊗) ∪ T22(A⊗).

Let us also consider the first rings around x and y in their respective attractors:

R0 = T2(A),

R′
0 = T ′

2(A′).

See figure 4.19.

Figure 4.19: A schematic representation of a ring on a tensor product of curves.
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From this figure we can deduce the following relation between R0, R
′
0 and R⊗

0 :

R⊗
0 = (R0 ⊗R′

0) ∪ (R0 ⊗ (A′ \R′
0)) ∪ (R′

0 ⊗ (A \R0)).

In other words x⊗ y belongs to R⊗
0 as long as either x ∈ R0 or y ∈ R′

0.
Suppose that (~e0, . . . , ~en) and (~u0, . . . , ~um) are the eigenvectors of T1 and T ′

1 ordered by
the absolute value of the corresponding eigenvalues.

Then x = ~e0 +
∑n

i=1 xi~ei, y = ~u0 +
∑n

i=1 yi~ui and

x⊗ y = ~e0 ⊗ ~u0 + x1(~e1 ⊗ ~u0) + y1(~e0 ⊗ ~u1) +

i,j≤n∑

i,j≥2

xiyj(~ei ⊗ ~uj).

Let us suppose the following:
∀x ∈ R0 x1 6= 0,

∀y ∈ R′
0 y1 6= 0.

Or in other words no point in either R0 or R
′
0 has a zero components along the corresponding

sub-dominant eigenvector. Then any point x⊗ y ∈ R⊗
0 has at least one non-zero coordinate

corresponding to the eigenvectors ~e0 ⊗ ~u1 or ~e1 ⊗ ~u0. If the sub-dominant eigenvalues of T1
and T ′

1 are equal, then the eigenvalues that correspond to ~e0⊗~u1 and ~e1⊗~u0 are also equal.
In that case the tangent sub-space at the fixed point of T11 is spanned by these vectors.

4.10 Conclusion

In this chapter we have given a definition of a tangent subspace that generalises the notion
of a tangent line and plane. We also have defined the notion of a rings: a set of nested
neighbourhoods of a point on an attractor using the notion of a point’s address. We have
derived the necessary and sufficient conditions for the existence of a tangent subspace at a
point with periodic addresses. These conditions show the relation between the eigenvector
and eigenvalues of a transformation and the differential behaviour of an attractor at the
fixed point of that transformation. In chapter 5 we are going to deal with the problem of
constructing a junction between different curves and surfaces and we will use these conditions
to analyse the differential behaviour of the constructed shapes.



Chapter 5

Joining shapes

In this chapter we consider the problem of constructing an intermediate shape between two
different shapes defined with iterative processes. In many aspects this problem is similar
to joining different subdivision schemes that arise quite often in subdivision modelling.
Subdivision schemes are tailored only to work on specific mesh configurations, such as quad
meshes for the Catmull-Clarck scheme or triangle meshes for the Loop scheme. But different
subdivision schemes produce surfaces with different visual properties. So it maybe beneficial
to be able to define different parts of the shape with different types of subdivisions. Thus
there arises the need to join shapes defined with different subdivision schemes.

The first part of this chapter is dedicated to constructing an intermediate curve between
two curves. We use the BCIFS formalism to define the intermediate curve as an attractor,
that has the same type of vertex subdivision as the initial curves. Such approach allows the
connection of the initial curves with the intermediate one. Then we study the differential
properties of the newly constructed curve. After that we provide modifications to the
basic automaton to provide a more direct and user-friendly control over the shape of the
intermediate curve. Finally we give some examples using the proposed method.

In the second part of this chapter we discuss the construction of the intermediate surface
between two surfaces. This study is limited to quad patches, but a similar approach can
be taken to deal with other types of surfaces. Please note that quad patches refers to the
surfaces patches with four edges and four vertices, and not to the surfaces defined as a
limit of a subdivision scheme on a quad mesh. Here we follow the same steps as for curves.
We describe a subdivision of the intermediate surface and derive the continuity constraints.
Then we analyse the differential properties of the new surface using the method described
in chapter 4. After that we modify the basic automaton in a specific way to provide a more
straightforward way of controlling the differential properties of the junction. Finally we give
some examples of connecting well-known subdivision schemes as well as fractal surfaces.

67
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5.1 Joining curves

5.1.1 Constructing the intermediate curve

In this section we are going to use the BCIFS formalism to describe a set of two curves and
construct a third curve between them. We start with a BCIFS for two disjoint curves (see
figure 5.1) and build a joining curve between the right endpoint of the left curve and the left
endpoint of the right curve. The initial BCIFS consists of 5 states: one state corresponding
to the modelling space ♮, two states corresponding respectively to the initial curves l and r
and two states for their respective vertices vl and vr. P l and P r are the vectors of control

♮

l r

vl vr

P rP
l

L0, L1 R0, R1

∂l0,1 ∂r0,1

V l V r

Figure 5.1: Top: initial BCIFS. Each branch of the automaton corresponds to an initial
curve. Bottom: Possible attractor of that BCIFS: two B-splines of different degrees.

points for the initial curves. L0, L1 and R0, R1 are the subdivision operators for their
respective curves and ∂l0,1 and ∂r0,1 are the boundary operators. We denote the barycentric

space for any state s as BIs and the dimensions of BIv
l

and BIv
l

as nl and nr respectively.

The intermediate curve

Now for the purpose of building a joining curve we add an intermediate state i and three
new transitions T l, T r, P i as well as vertex states vil, vir and their respective boundary
operators ∂i0, ∂

i
1(see figure 5.2). At this point our intermediate curve is not yet a curve,

but two disjoint images of the initial curves placed somewhere in the modelling space (by
applying T lP i and T rP i respectively), but we will introduce conditions on transitions T l, T i

and P i so that the new curves become a continuation of our initial curves. To do that we
need to determine the dimension of BIi (i.e. how many control points the intermediate
curve depends on) and therefore the dimensions of T l and T r. We know that the endpoints
of the initial curves respectively depend on nl and nr control points. As we seek the way to
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♮

l r

vl vr

vil vir

i

P rP l

L0, L1 R0, R1

∂l0,1 ∂r0,1

V l V r

P i

T l T r

∂i0 ∂i1

V il V ir

Figure 5.2: Top: modified BCIFS, with an intermediate state i and additional transitions
leading to and from it. Bottom: The attractor of this BCIFS: two initial curves and their
two copies.

connect those points with our intermediate curve, it has to be controlled by at least nl +nr

control points.
The necessity to join the intermediate curve to the initial curves means that the left

vertex of the intermediate curve must be equal to the right vertex of the left curve. It
provides the following equations:

vl = vil

V l = V il

Similar equations have to be held true for the right curve:

vr = vir

V r = V ir

To derive the other conditions we use the graph depicting the unfolding of the automaton.
It is presented in figure 5.3. Note that state vil is merged with vl as well as vir is merged
with vr. The constraints for the left-hand part of the curve can be written as follows:

P i∂i0 = P l∂l1 (5.1)

T l∂l0 = ∂i0V
l (5.2)

∂l1V
l = L1∂

l
1 (5.3)
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♮

l rivl vr

l rvl vrl r

P l P r

P i

∂i0 ∂i1

∂l1 ∂r0

L1 R0

∂l1 ∂r0∂l0 ∂r1

V l V rT l T r

Figure 5.3: Unfolding of the automaton from figure 5.2.

Analogous conditions can be written down for the right-hand part:

P i∂i1 = P r∂r0 (5.4)

T r∂r1 = ∂i1V
r (5.5)

∂r0V
r = R0∂

r
0 (5.6)

The equations (5.2),(5.3),(5.5) and (5.6) fixate nl leftmost columns for T l and nr right-
most columns for T r:

TL =

(
V l

X0

)
,

TR =

(

Y
0
V r

)
.

Here V l and V r are blocks equal to the respective vertex subdivisions, while X and Y
consists of arbitrary columns, such that the sum of the all elements for each column is equal
to 1.

Figure 5.4: Possible attractor of the automaton from figure 5.2 with adjacency and incidence
constraints in place. Two initial curves and two segment of the new intermediate curve are
connected pairwise.

At this point the BCIFS presented in figure 5.2 plus the aforementioned conditions still
yield us a disjoint curve (see figure 5.4). But if we keep the X and Y blocks of T l and T r
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within certain bounds, we can ensure that the gap between the curves is smaller than the
gap between the initial two. These bounds are derived after we introduce another transition
into our automaton.

We add one more transition, applying the approach described before to the newly ob-
tained curves. The new transformation acts on the image of the initial curves in BIi and its
effect is similar to what we had achieved before by adding T l, T r, P i. This transformation
leads from the state i to itself and is denoted as T i. The modified BCIFS is presented in
figure 5.5. To obtain the constraints on T i we use the graph depicting the unfolding of the

♮

l r

vl vr

i

P rP l

L0, L1 R0, R1

∂l0,1 ∂r0,1

V l V R

P i

T l T r

∂i0 ∂i1T i

Figure 5.5: Final BCIFS with an intermediate state and all required transitions.

new automaton (see figure 5.6.) And then we can deduce the following constraints on T i:

T r∂r0 = T i∂i1 (5.7)

T l∂l1 = T i∂i0 (5.8)

As we already know the form of T l, T r, ∂i0 and ∂i1, T
i can be described as follows: T i has nl

first columns equal to the last nl columns of T l and the nr last columns equal to the first
nr columns of T r.

i

i

vl vr

vl vrvl vrl r
∂l1 ∂i0 ∂i1 ∂r0

T i

∂i0 ∂i1

T l T r

∂l0 ∂r1

V l V r

Figure 5.6: Unfolding of the automaton from figure 5.5.
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5.1.2 Differential properties of the intermediate curve

In this subsection we study the differential properties of the intermediate curve that are
defined by the automaton we described in the previous section. Let us consider the inter-
mediate curve. For each state L, I and R let us denote the respective attractor as Al, Ai

or Ar respectively. According to the definition 9 of the CIFS state attractor:

Ai = T l(Al) ∪ T i(Ai) ∪ T r(Ar).

So the intermediate curve is composed of the initial curves images (T r(Ar) and T l(Al)
respectively) that get smaller and smaller (transformed by repetitive applications of T i)
toward the fixed point of T i. Hence the differential behaviour almost everywhere depends
on the nature of the initial curves, since for the most part of the curve a tangent can be
computed as an image of the tangent at the corresponding point to one of the initial curve.

However there are two kinds of points which are exceptions to this. First it is the junction
between two copies of the same kind of initial curve. Here the left and right half-tangents
exists only if the initial curves have the corresponding tangents at their respective endpoints.
Depending on the initial curves the half-tangents at this kind of junction may or may not
coincide. For example they will coincide for B-splines, but not for necessary Bézier curves.

The second kind of special points is the fixed point of T i. The differential behaviour at
that point depends on the nature of the initial curves, while the differential behaviour at
the fixed point of T i depends on its eigenvalues and eigenvectors.

Let us take two specific examples. Both examples present a junction between a cubic and
a quadratic splines, however we choose a different set of parameters values for each example.
Choosing a specific initial curve means that we choose the corresponding transformations. So
for the transformations L1, L2, R1, R2 we choose the standard cubic and quadratic B-spline
subdivisions respectively:

L1 =




1/2 1/8 0 0
1/2 3/4 1/2 1/8
0 1/8 1/2 3/4
0 0 0 1/8


 , L2 =




1/8 0 0 0
3/4 1/2 1/8 0
1/8 1/2 3/4 1/2
0 0 1/8 1/2


 ,

R1 =



3/4 1/4 0
1/4 3/4 3/4
0 0 1/4


 , R2 =



1/4 0 0
3/4 3/4 1/4
0 1/4 3/4


 .

Now we can use equations (5.2),(5.3),(5.5) and (5.6) to derive the matrix form of T l and
T r. Solving the equations we obtain:

T l =




1/2 1/8 0 a
1/2 3/4 1/2 b
0 1/8 1/2 c
0 0 0 d
0 0 0 e



, T r =




k 0 0
l 0 0
m 0 0
n 3/4 1/4
p 1/4 3/4



,

where a+ b + c+ d + e = 1 and k + l +m+ n + p = 1. After that we can solve equations
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(5.7) and (5.8) to derive T i:

T i =




1/8 0 a k 0
3/4 1/2 b l 0
1/8 1/2 c m 0
0 0 d n 3/4
0 0 e p 1/4



.

In the following example we study the differential behaviour of the intermediate curve
defined by the above matrices. Each time we choose some random values for parameters
and proceed to apply the results obtained in chapter 4 to the curve at hand.

Example 1

Let us choose the following values for the free variables: a = 0.131, b = 0.2, c = 0.38,
d = 0.289, k = 0.11, l = 0.12, m = 0.1, n = 0.12. With these values we can calculate the
eigenvalues of T i:

λ0 = 1, λ1 ≈ −0.4775, λ2 ≈ 0.696,

λ3 ≈ 0.0782− i0.2472, λ4 ≈ 0.0782 + i0.2472.

and the matrix composed of the respective eigenvectors:

(~v0, ~v1, ~v2, ~v3, ~v4) ≈

≈




1 1 1 1 1
3.8485 −0.1335 11.175 −0.7996 + 1.3368i −0.7996− 1.3368i
3.8489 0.6629 14.322 −0.5475− 1.6877i −0.5475 + 1.6877i
3.3707 −6.2671 −11.866 0.2271− 0.2377i 0.2271 + 0.2377i
2.4718 4.7377 −14.632 0.1199 + 0.5886i 0.1199− 0.5886i



.

with the λ2 being the sub-dominant eigenvalue. Since λ3,4 ∈ C we can choose vectors

Si = (~v0, ~v1, ~v2,Re(~v3), Im(~v3))

as a complete basis.

Figure 5.7: Control points for two splines that compose R0.

According to theorem 2 and lemma 1 the tangent at the fixed points is given by the
respective sub-dominant eigenvector ~v2 unless there exists a point in R0 that has a zero
coordinate along the sub-dominant eigenvector ~v2. Since

A = T r(A) ∪ T i(A) ∪ T l(A),
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we conclude that
R0 = T r(A) ∪ T l(A).

So R0 consists of two separate subsets, a quadratic and a cubic B-spline (our initial curves)
(for reference see figure 5.7). The position of these splines is dictated by transformations T r

and T l. Namely the columns of their matrix form are the control points for the respective
splines. Here we are going to consider a convex hull of control points for each spline. If we
can manage to show that none of these hulls has a point with coordinates (·, ·, 0, ·, ·) in the
basis (~v0, ~v1, ~v2,Re~v3, Im~v3), then R0 does not contain such points, since the convex hulls of
the control points contain the respective curves. Now we need to calculate the coordinates
of the control points in that basis. To do that we need to multiply the respective matrices
T r or T l by the inverse to the basis change matrix Si.

S−1
i × T r ≈




0.0687 0.0687 0.0687
0.0412 −0.0425 0.0452
−0.0122 −0.0206 −0.0266
0.0121 −0.0055 −0.0873
0.0057 −0.0331 −0.0230



,

S−1
i × T l ≈




0.0687 0.0687 0.0687 0.0687
−0.0012 −0.0063 0.0075 −0.0147
0.0235 0.0191 0.0136 0.0053
0.4089 0.0434 −0.0899 0.0715
0.2235 0.2285 0.0087 −0.0518



.

Note that the highlighted coordinates correspond to the sub-dominant eigenvector. For
the first convex hull the highlighted coordinates are strictly negative, while they are strictly
positive for the second one. Since the points within the hull are weighted sums of its vertices,
no points inside any of the hull has its third coordinate equal to 0. So according to lemma 1
the tangent is given by the sub-dominant eigenvector ~v2.

The resulting curve as well as the sub-dominant eigenvector of T i are presented in fig-
ure 5.8.

Figure 5.8: A connection between a cubic and a quadratic spline. Positive sub-dominant
eigenvalue yields G1-continuity. a = 0.131, b = 0.2, c = 0.38, d = 0.289, k = 0.11, l = 0.12,
m = 0.1, n = 0.12, sub-dominant eigenvalues λ1 ≈ 0.696.

Example 2

In this example we choose another set of parameters and proceed to study the differential
behaviour at the fixed point of T i. Let a = 0.065, b = 0.115, c = 0.115, d = 0.675, k = 0.6,
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l = 0.35, m = 0, n = 0.09. This way we obtain the following eigenvalues of T i:

λ0 = 1, λ1 ≈ −0.296, λ2 ≈ 0.211,

λ3 ≈ 0.082 + 0.602i, λ4 ≈ 0.082− 0.602i,

as well as the following eigenvectors:

(~v0, ~v1, ~v2, ~v3, ~v4) ≈

=




1 1 1 1 1
2.785 −0.684 −1.309 −0.124 + 1.009i −0.124− 1.009i
1.714 0.528 −5.484 −0.841 + 0.058i −0.841− 0.058i
1.272 −0.759 0.738 0.019− 1.010i 0.019 + 1.010i
0.0007 −0.084 5.056 −0.053− 0.058i −0.053 + 0.058i



,

where λ3,4 are the sub-dominant eigenvalues.
According to lemma 5 the plane spanned by (Re~v3, Im~v4) is the tangent plane to our

curve if there is no point in the ring R0 with zero coordinates along the vectors Re~v1, Im~v2
in the basis (~v0, ~v1, ~v2,Re~v3, Im~v4).

Figure 5.9: Top: new control points. Bottom: old control points. The control points
reposition used to obtain tighter convex hulls.

As in the previous example R0 consists of two spline curves. We can try to compute the
convex hulls of control points as we did in the previous example, but both hulls computed
this way contain points with coordinates (·, ·, ·, 0, 0). To alleviate this issue we need to choose
a set of points that has a smaller convex hull that still contains the splines. This can be done
by shifting the position of the control points relative to the curves. We choose to move the
first and last control points of our initial curves to the position of their respective endpoints.
For reference see figure 5.9. This corresponds to the basis change in the respective iterative
spaces BIL and BIR. To compose the basis change matrix one must write the coordinates
of the new basis vector in the old basis as columns of the new matrix. Since we wish to
use the fixed points of L1, L2 as new basis vectors we must find their coordinates in the
Euclidean basis. By definition the fixed point of an operator T is a solution to the following
equation:

T (x) = x.
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So by solving the corresponding equations we can find the fixed points of L1, L2, R1, R2.
Since we do not alter the remaining basis vectors, we can write down the basis change
matrices:

Sl =




1/6 0 0 0
2/3 1 0 1/6
1/6 0 1 2/3
0 0 0 1/6


 , Sr =



1/2 0 0
1/2 1 1/2
0 0 1/2


 .

In turn these changes also force a corresponding basis change in the iterative space of the
intermediate curve BII :

Si =




1 0 1/6 0 0
0 1 2/3 0 0
0 0 1/6 0 0
0 0 0 1/2 0
0 0 0 1/2 1



.

So the coordinates of the new control points for each spline can be computed as:

S−1
i × T r × Sr,

S−1
i × T l × Sl.

Now we can calculate the coordinates of these control points in the basis S = (~v0, ~v1, ~v2,Re~v3, Im~v4)
as

S−1 × S−1
i × T r × Sr ≈




0.147 0.147 0.147
−0.299 −0.621 −0.284
−0.067 −0.113 −0.0100
0.518 0.587 0.146
−0.459 −0.903 −0.594



,

S−1 × S−1
i × T l × Sl ≈




0.147 0.147 0.147 0.147
0.459 0.272 1.621 1.086
−0.000 −0.000 −0.009 −0.029
−0.606 −0.419 −2.259 −1.546
−0.171 −0.027 −1.084 −0.906



.

Here we highlighted components corresponding to the Re~v3, Im~v4. Since the points inside
the hulls are weighted sums of the vertices and each highlighted row is either strictly positive
or strictly negative, neither of the hull can contain the points with coordinates (·, ·, ·, 0, 0).
Therefore span(Re~v3, Im~v4) is the tangent plane at the fixed point of T i. The corresponding
curve is presented in figure 5.10.

It is worth noting that T i has 8 degrees of freedom, and all of them affect the eigenvalues
of the matrix, and therefore affect the shape and differential properties of the final curve.
In the next section we refine our automaton to create a more user-friendly configuration.

5.1.3 Refinement of the BCIFS

While the automaton described above solves the problem, it is not very convenient in prac-
tice. Although free parameters give a flexible control of the curve, the influence of each
separate parameter can not be singled out and described. Also establishing a parameter
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Figure 5.10: A connection between a cubic and a quadratic spline. The sub-dominant
eigenvalue is complex and both parts of the curve are spiralling towards the fixed point.
a = 0.065, b = 0.115, c = 0.115, d = 0.675, k = 0.6, l = 0.35, m = 0, n = 0.09, sub-
dominant eigenvalues λ3,4 ≈ 0.082± 0.602i.

domain that guarantees a smooth curve is difficult to provide as it requires symbolic evalu-
ation of the eigenvectors and eigenvalues. In the following section we describe modifications
to the automaton as well as additional constraints to eliminate these flaws.

Previously we have shown that the sub-dominant eigenvector usually gives the tangent
direction. Here we are going to change the automaton, so that the direction of the sub-
dominant eigenvector will depend on the position of two control points.

The intermediate curve consists of copies of the initial curves. We are going to split
the intermediate curve in two parts, such that each part will be composed of copies of one
initial curve. This will also give us a more direct form of control over the curve shape. We
replace the intermediate state i with two states il and ir. The new states have a shared
vertex denoted as vi. The modified automaton is presented in figure 5.11.

♮

l r

vl vr

P rP l

L0, L1 R0, R1

∂l0,1 ∂r0,1

V l V r

il irvi

V i

∂il1 ∂ir0

P il P ir

T l T r

∂il0 ∂ir1
T il T ir

Figure 5.11: Refined BCIFS with two intermediate states.

Here we are free to choose any dimension for BIv
i

. For the sake of simplicity we choose
to make it equal to 1. There is only one 1 × 1 matrix possible in an IFS — an identity
matrix. An identity matrix as a vertex subdivision essentially means that the vertex will
be located exactly at the control point position. It gives us a direct control of the curve,
as the curve always passes through the vertex and therefore will always pass through the
corresponding control point.

Now we can repeat the process seen in section 5.2 and deduce the form of T il, T ir, T l

and T r. We illustrate it with the cubic-quadratic splines from section 5.1.2.
Let us first consider transformations T l and T il. The left-hand curve is a cubic spline.

There are 3 control points for the vertex of the initial curve and 1 for the intermediate
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vertex. To better control the curve we can add another control point. We will later use it
to explicitly control the half-tangent at the intermediate vertex. This means that the final
dimension of BIil is 3 + 1 + 1 = 5.

We can write down the constraints and fix the form of T il:



1/8 0 a f 0
3/4 1/2 b g 0
1/8 1/2 c h 0
0 0 d j 0
0 0 e k 1



,

where a+ b + c+ d+ e = 1 and f + g + h+ j + k = 1.
Now we would like to set the tangent at the intermediate vertex in the direction of

the segment between the two rightmost control points. To achieve this the sub-dominant
eigenvector must have the given direction. For this we assign values to the parameters of
T il. We would also like to simplify the dependency between parameters and eigenvalues. So
we assign 0 to a, b, c, e, f, g, h and 1 to d and obtain the following structure:




1/8 0 0 0 0
3/4 1/2 0 0 0
1/8 1/2 0 0 0
0 0 1 j 0
0 0 0 1− j 1




The idea behind this is to create a 2 × 2 sub-matrix in the bottom left corner and to
restrict the free variables outside of it. This means that free variables only affect eigenvalues

of the sub-matrix. Sub-matrix

(
j 0

1− j 1

)
has two eigenvalues 1 and j. These eigenvalues

are also eigenvalues of T il. The eigenspace corresponding to the eigenvalue j is (t,−t),
where t ∈ R. So the original 5 × 5 matrix has the following eigenspace: (0, 0, 0, t,−t). Note
that ∀t ∈ R the corresponding eigenvector is collinear to ~e4 − ~e5 (where ~ei is a component
of the canonical basis) which is a desired tangent direction. Now we only have to ensure
that j is the sub-dominant eigenvalue. Because all other eigenvalues are constant it is easy
to establish a domain for j. In the provided example j ∈ (1/2, 1).

We can now apply the same ideas to the right half of the curve and obtain the following:

T ir =




1 1− r 0 0
0 r 1 0
0 0 0 3/4
0 0 0 1/4


 .

It is easy to deduct a domain for r which turns out to be (1/4, 1).
We have built an intermediate curve with 3 control points. It passes through one of

them, and we can use the other two to control the half-tangents at the first control point.
To verify that we indeed get the desired tangent behaviour, we need to check for the

existence of vectors with null components along the sub-dominant eigenvectors. As an
example we choose j = 3/4 and r = 3/4. Since each half of the intermediate curve is an
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attractor of either il or il we can treat each half separately. Let us denote the corresponding
attractors as Air and Ail. The structures of each attractor are quite similar:

Ail = T il(Ail) ∪ T l(Al),

Air = T ir(Air) ∪ T r(Ar),

where Al and Ar are the attractor of the states l and r respectively. Now we calculate the
tangents at the fixed points of T il and T ir.

First we consider Ail and the fixed points of T il. We are going to use the same method
as we used in section 4.9. Here is the matrix composed of the eigenvectors of T il:

Sl =




0 0 0 1 0
0 0 1 −2 0
0 0 1 −5 1
0 1 −4 8 −4/3
1 −1 2 −16/7 1/3



.

The corresponding eigenvectors are as follows:

λ0 = 1, λ1 = 3/4, λ2 = 1/2, λ3 = 1/8, λ4 = 0.

We denote the first ring around the fixed points of T il as Rl
0. The ring Rl

0 is composed of
of a single cubic b-spline since Rl

0 = T l(Al). We can use the control points of this B-spline
to construct a convex hull that contains the ring itself. The control points are columns of
the matrix T r, and we can calculate their coordinates in the basis of eigenvectors of T il if
we multiply T r by the inverse basis change matrix Sl:

S−1
l × Tl =




8/7 29/28 1 1
10/3 8/3 2 1
3/2 1 1/2 0
1/2 1/8 0 0
1 −1/4 0 0



.

The highlighted row, which corresponds to the component along the sub-dominant eigenvec-
tor, has strictly positive components. Since the points of the hull are weighted combination
of its vertices no point inside can have its second coordinate equal to 0. Therefore according
to lemma 1 the left half-tangent is indeed along the sub-dominant eigenvector.

Now we can repeat the same process for the right half of the curve. Let us calculate the
eigenvector and eigenvalues of T ir:

Sr =




1 1 1 1
0 −1 −3 −4
0 0 3/2 3
0 0 1/2 0


 ,

and

λ0 = 1, λ1 = 3/4, λ2 = 1/4, λ3 = 0.
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The first ring around the fixed point of T ir that we denote as Rr
0 is composed of a single

quadratic b-spline since Rr
0 = T r(Ar). So the control points give us a convex hull that con-

tains Rr
0. We can calculate the coordinates of these control points in the basis of eigenvectors

of T ir as

S−1
r × T r =




1 1 1
−1 −3/2 −11/6
0 1/2 3/2
0 0 −2/3


 .

As we can see here all components of the second row are negative. These are the coordinates
that correspond to the sub-dominant eigenvector ~v1. As in the previous case no point inside
the hull can have its second coordinate equal to 0 and according to lemma1 the right half-
tangent is indeed along the sub-dominant eigenvector ~v1.

5.1.4 Examples

Here are some examples demonstrating curves obtained with the modified automaton from
section 5.1.3. These examples illustrates an intermediate curve between the fractal curve
and a B-spline (figures 5.12, 5.13). The control points control the shape of the curve. The
curve passes through the second control points, while the half-tangents are defined by the
direction given by the first and third control point in relation to the second one. The first
two examples illustrate curves with collinear half-tangents as all three control points are
aligned. (figure 5.12). The third example illustrates the same curve, but with a different
control point configuration (figure 5.13). As the control point are not aligned, they define
two non-collinear half-tangents.

Figure 5.12: Two intermediate curves between the fractal curve and B-spline. Three control
point are used to control the shape of the curve.
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Figure 5.13: Intermediate curve between the fractal curve and B-spline. Such configuration
of control points defines different half-tangents.

5.2 Joining surfaces

In this section we study the problem of connecting two surfaces defined as attractors of
different BCIFS. Here our approach is similar to the one presented in the previous section.
Using the BCIFS formalism we describe the intermediate surface with the desired properties.
After deriving all the necessary conditions we proceed to refine the automaton to provide
a more user-friendly tool to design the intermediate surface. Finally we proceed to analyse
the differential behaviour of the final surface using tools the developed in chapter 4.

Initial problem

As in the previous section we consider the automaton that defines two initial shapes, in this
case they are surfaces. Here we restrict the topology of the initial surfaces to quadrangular
patches: four edges and four vertices, but the same method can be easily applied to surfaces
with more a complex configuration. The initial automaton is presented in figure 5.14. The
initial state is denoted by ♮, while L and R denote the states corresponding to the respective
initial surfaces.

Intermediate surface topology subdivision

Now we introduce a state I for the intermediate surface. For this surface we propose the
following subdivision. The intermediate surface is subdivided into six parts: two of them
have the same nature as the first initial surface, another are similar to the second initial
surface and the last two are similar to the intermediate surface itself. This subdivision
and the corresponding graph are shown in figure 5.15. In the next subsection we use the
BCIFS to deduce the condition on the transformations of the intermediate patch to ensure
its continuity. To do this we need to guarantee that the edges of the patch are continuous
curves and that the patches obtained after the subdivision are connected with one another,
as described below.

5.2.1 Continuity constraints

In this subsection we derive the C0-continuity constraints for the intermediate surface.
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♮

L R

eL eR

vL vR

P
R

P
L

L1,2,3,4 R1,2,3,4

∂L1,2,3,4 ∂R1,2,3,4

EL
1,2 ER

1,2

∂v
L

1,2 ∂v
R

1,2

Figure 5.14: Initial BCIFS. Each branch of the automaton corresponds to an initial surface.

♮

L R

P
R

P
L

L1,2,3,4 R1,2,3,4I

P I
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1,2 T IR

1,2

T I
1,2

I
I
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eItop

eL eR

eIbottom

eL

eL

eL

eL

eR

eR

eR

eR

eI

eI

Figure 5.15: Top: Automaton describing the subdivision of the intermediate patch. Note
that edge and vertex states are omitted to conserve space. Bottom: Schematic representation
of the same subdivision.

Outer edges

The intermediate surface has four edges: eL, eR (for the left and right edges respectively)
and eItop, eIbot (for the top and bottom edges) as can be seen in figure 5.15. Note that eL

(and eR) is actually subdivided into two smaller edges, while each of them is the edge of
an L-patch (or R-patch respectively). We can use the subdivision of the edges of the initial



5.2. JOINING SURFACES 83

patches for eL and eR to guarantee their continuity, as well as to provide with us an easy
way to connect the intermediate surface with the initial ones (see section 5.2.1).

♮

I

eIeL eR

P I

∂I1,3
T eIL T eIR

T eI T eR

1,2T eL

1,2

Figure 5.16: The automaton depicting top and bottom edges subdivision of the intermediate
patch.

Edges eItop, eIbot differ from eL and eR as they are subdivided into three different parts
instead of two uniform parts. Also note that after one iteration two intermediate patches are
produced and they share a common edge (see figure 5.15). This means that eItop, eIbot must
have the same subdivision, so that the surface is indeed continuous. Thus eItop = eIbot = eI .

Now we want to deduce the constraints on the subdivision of eI . It is presented in figure
5.16. Here ∂I1,3 are the boundary operators that selects the edges in question, eI is the state

which corresponds to them, T eIL, T eIR and T eI are the operators of the edge subdivision,

while T eR

1,2 and T eL

1,2 are the subdivision operators for the edges of respected initial surfaces.
To guarantee the continuity of the edge we use the same method as in section 3.5.3. We

can deduce both adjacency and incidence constraints from the graph representing one step
of the edge subdivision (see figure 5.17). Using the equivalent paths in this graph we can

eI

eIeL eRv1 v2

v1 v2

v1 v2

T e I
R

T
e
I L

T eI

∂e
L

2 ∂e
I

1 ∂e
I

2 ∂e
R

1

∂e
I

1 ∂e
I

2

T v
1 T v

2

∂L1 ∂R2

Figure 5.17: Part of the graph representing one iteration of the automaton.

deduce the following constraints:

T eIL∂e
L

2 = T eI∂e
I

1 ,

T eI∂e
I

2 = T eIR∂e
R

1 ,

∂e
I

1 T
v
1 = T eIL∂L1 ,

∂e
I

2 T
v
2 = T eIR∂R2 .
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Inner edges

There are 7 shared edges between the patches obtained after the first iteration (see fig-
ure 5.15). For each of them we need to write a constraint on the subdivision operators.

At first we consider two R-patches. One step of the subdivision that produces these two
patches is presented in figure 5.18. Note that nodes not related to the considered patches
or to the common edge are not presented. From the equivalent paths in this graph we can

I

R ReR

eI eI

eR eR

T
IR

1

T IR2

∂R3 ∂R1

∂I1 ∂I3

T eIR T eIR

∂R1 ∂R3

Figure 5.18: Part of the graph representing one step of the subdivision. This part shows
two R patches and the common edge between them.

deduce the following equations:
T IR
1 ∂R3 = T IR

2 ∂R1 ,

∂I1T
eIR = T IR

1 ∂R1 ,

∂I3T
eIR = T IR

2 ∂R3 .

In the same way we can deduce the condition on edges between the I-patches:

T I
1 ∂

I
3 = T I

2 ∂
I
1 ,

∂I1T
eI = T I

1 ∂
I
1 ,

∂I3T
eI = T I

2 ∂
I
3 .

And between the L-patches:
T IL
1 ∂L3 = T IL

2 ∂L1 ,

∂I1T
eIL = T IL

1 ∂L1 ,

∂I3T
eIL = T IL

2 ∂L3 .

Now we proceed to treat edges between two adjacent patches of different nature. At
first we consider the top row of the patches (see figure 5.15). The corresponding graph is
presented in figure 5.19. From that graph we deduce the following equations:

T IL
1 ∂L2 = T I

1 ∂
I
4 ,

T I
1 ∂

I
2 = T IR

1 ∂R4 .

Note that the top row of the intermediate patch is similar to the bottom one. This means
that to obtain the condition on the last two inner edges, we need to substitute T IL

1 , T I
1 and

T IR
1 with T IL

2 , T I
2 and T IR

2 respectively. This way we obtain the following equations:

T IL
2 ∂L2 = T I

2 ∂
I
4 ,

T I
2 ∂

I
2 = T IR

2 ∂R4 .
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I

IL ReL eR

T IR
1T IL

1

T I
1

∂L2 ∂I4 ∂I2 ∂R4

Figure 5.19: Part of the graph representing one step of the subdivision. This part shows
the top row of three patches and the edges between them.

Connection to the initial surfaces

Finally we need to ensure that the intermediate patch actually connects two initial surfaces.
Since we chose to use the subdivision of the initial surfaces edges for eL and eR, we can
connect the initial surface to the intermediate one by using the same control points for the
respective edges. This can be written as following:

P I∂I2 = PR∂R4 ,

P I∂I4 = PL∂L2 ,

where P I , PR, PL are vectors of control points for respective surfaces. From these condi-
tions we can also deduce the minimum dimension of BII . That is a sum of dimension for
initial surfaces respective edges. The said dimension can be increased, therefore introducing
additional control points to the intermediate patch.

5.2.2 Approximation of the limit surface

The adjacency and incidence condition described above only guarantee the continuity of
the limit shape. Hence approximations obtained with a finite number of iterations of an
arbitrary compact set as a starting point are not necessarily continuous. However with a
correct starting set, we can obtain a continuous surface that approximates the limit shape
for any number of iterations. For each face state a quad is chosen as compact set to be
transformed accordingly with the rules of the BCIFS. Said quads of course lie within the
corresponding barycentric space. The vertices of each quad must be chosen specifically so
that incidence and adjacency conditions are met for each level of approximation. This is
true if each vertex of the tetragon lies within the barycentric subspace which corresponds
to that vertex iterative subspace and has the same coordinates within the subspaces. One
way to satisfy that condition is to choose the fixed points of respective transformations as
quads vertices. Then after each iteration the corresponding quads will share the edges and
vertices that correspond to the specific continuity constraints.

Different iterations of approximation of the intermediate surface are presented in figure
5.20. The different quads are color coded to show their “origin” from different barycentric
spaces. Green is for an image of the quad from BII (barycentric space corresponding to
state I), red is for BIR and blue is for BIL.
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Figure 5.20: Continuous approximation of the limit surface.

5.2.3 Differential properties of the intermediate surface

The intermediate patch is subdivided into four regular patches and two intermediate ones.

AI = T IR
1 (AR) ∪ T IR

2 (AR) ∪ T IL
1 (AL) ∪ T IL

2 (AL) ∪ T I
1 (AI) ∪ T I

2 (AI).

The regular patches are copies of the respective initial surfaces (AR and AL). So the limit
surface consists of regular patches stitched together. The regular patches get smaller and
smaller as we approach the intermediate curve (see figure 5.21). So the differential behaviour
for most of the surface depends solely on the nature of the initial surfaces, that define the
subdivision of the regular patches. There exists a curve that separates two regions tiles with
regular patches. This curve is a sub-attractor of our automaton. Namely it is an attractor
of {T I

1 , T
I
2 }. So the differential behaviour of the surface at the points of that curve does

depend not on the initial surfaces nature, but on the sub-dominant eigenvectors of T I
1 and

T I
2 .

Unfortunately the degrees of freedom allowed by continuity constraints for T I
1 , T

I
2 do

not allow for a straight forward modelling of a smooth intermediate surface. So in the next
subsection we are going to improve the automaton the will become a more convenient tool
for modelling a smooth intermediate surface.

5.2.4 Refinement of the BCIFS

So far we have deduced a BCIFS that produces a variety of limit surfaces satisfying the
initial conditions. A specific surface can be chosen by specifying the parameter values for
the BCIFS operators. Unfortunately, specifying a parameter directly can have a somewhat
unpredictable effect on the final shape. In the previous section we have shown, that the
shape of the surface depends on the sub-dominant eigenvectors of the operators T I

1,2. Now
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Figure 5.21: A schematic representation of several subdivision steps of the intermediate
surface. Red and blue squares present the regular patches, green ones represent the irregular
patches.

we are going to show how control points can be added to provide more intuitive way of
designing the intermediate surface.

As was already noted before a special curve (an attractor of T I
1,2) runs across the inter-

mediate surface. We are going to reflect this in the BCIFS and assign new control points
to directly influence the shape of this curve and therefore the surface itself. Explicit speci-
fication of the special curve allows us to view the intermediate surface as two quadrangular
patches that share a common edge. This allows us to redefine its subdivision as presented
in figure 5.22. As these two patches are mirrored copies of each other we can use the same
automaton to resolve the adjacency and incidence constraints.

♮

L R

eL eR

PRPL

L1,2,3,4 R1,2,3,4

∂L1,2,3,4 ∂R1,2,3,4

EL
1,2 ER

1,2

IL IReI

eI1,2

∂IL2 ∂IR1

P IL P IR

TL
1,2 TR

1,2

∂IL1 ∂IR2
T IL
1,2 T IR

1,2

IL

IL

L

L

IR

IR

R

R

Figure 5.22: Top: Refined BCIFS with two intermediate states. Bottom: Corresponding
subdivision scheme.
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But before we can resolve the constraints we need to specify the subdivision of the
common edge. Virtually any subdivision may be chosen, but our goal is to build a smooth
surface, so some restrictions apply. First of all the curve needs to be C1 itself. For more
studies on the differentiability of self-similar curves please refer to [BGN09], [PGSL13a]
and [SGB12].

In the previous section we showed that the existence of the tangent quarter-planes depend
on the eigenvalues of T IL

1,2 or T IR
1,2 respectively. If two equal positive sub-dominant eigenvalues

exist then the tangent plane is collinear to the respective two dimensional eigenspace. In
turn, the tangent plane position in the modelling space depends on those control points
which correspond to the smallest subspace containing the tangent plane. So to be able to
guarantee C1-continuity between two patches the tangent planes must depend on the control
points shared by two patches - control points of the common edge.

These can be further exploited if we consider the structure of the subdivision matrices.
When we consider two matrices that are constrained by a boundary condition, e.g., a face
and an edge subdivision, the face subdivision will always have a block-triangular structure,
with one block equal to the edge subdivision. For example:

T IL
1 =

(
eI1 A1

0 B1

)
, T IL

2 =

(
eI2 A2

0 B2

)

where eI1, e
I
2 are matrices of the edge subdivision.

The eigenvalues of the edge subdivision are also eigenvalues of the face subdivision, while
the corresponding eigenvectors are embedded into the higher dimensional space. Note that if
two patches share the same edge and hence the same edge subdivision, their face subdivision
will have common blocks. In our case:

T IR
1 =

(
eI1 A3

0 B3

)
, T IR

2 =

(
eI2 A4

0 B4

)
.

So to guarantee the C1-continuity the edge subdivision block must provide two sub-
dominant eigenvalues, so that the same tangent plane can be obtained on both sides of the
special curve.

5.2.5 Example

Here we are going to provide a specific example and study its differential properties. For our
initial surfaces we are going to choose Doo-Sabin and Catmull-Clark regular patches. This
gives us the matrix form of the transformations L1,2,3,4 and R1,2,3,4. You can find these
matrices in appendix A.1.

For the intermediate curve we choose the curve obtained as the tensor product of cubic
B-spline subdivision and quadratic vertex:
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eI1 =

(
3
4

1
4

1
4

3
4

)
⊗




1
2

1
8 0 0

1
2

3
4

1
2

1
8

0 1
8

1
2

3
4

0 0 0 1
8


 =



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8
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16
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32 0 0 0 3

32




,

eI2 =

(
3
4

1
4

1
4

3
4

)
⊗




1
8 0 0 0
3
4

1
2

1
8 0

1
8

1
2

3
4

1
2

0 0 1
8

1
2


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Figure 5.23: Control meshes for two intermediate patches. Left: Doo-Sabin side. Right:
Catmull-Clark Side. Colored meshes represent different parts of the first step of the subdi-
vision. Please note that since the two intermediate patches are independent we treat them
separately, thus the mesh for the intermediate curve is presented twice.

After we choose the initial surface and the intermediate curve we can solve the constraints
and derive the subdivision matrices for the intermediate patches. The control meshes with
ordered control points are presented in figure 5.23. The first step of the subdivision is also



90 CHAPTER 5. JOINING SHAPES

presented in that picture. We use different colors to highlight different types of control
points. The brown mesh depends only on the control points of the intermediate curve, the
red one depends on the control points initial surfaces, while the green depends on both. The
configuration of the brown and red meshes is fixed once we chose our initial surfaces and
intermediate curve. The positions of the vertices of the green mesh change when we change
the values of the free parameters allowed by the degrees of freedom. The matrices satisfying
the continuity constraints can be found in appendix A.2. To ensure the continuity we must
ensure that the two sub-dominant eigenvectors are the eigenvectors of the intermediate edge
subdivision embedded into the higher dimension space. The parameter values that satisfy
that condition are listed in appendix A.2.

Next we consider the differential behaviour at fixed points of T IR
1,2 and T IL

1,2 . Let us study
the Catmull-Clark side first.

Catmull-Clark side

Figure 5.24: Catmull-Clark intermediate patch as tensor product of its edges.
.

Let us note that the Catmull-Clark intermediate patch is, in fact, a tensor product
of a cubic B-spline and a special curve that has a quadratic vertex and a cubic one (see
figure 5.24). It can be directly verified by computing the tensor products of the respective
edge’s subdivisions. So here to study the differential behaviour at the fixed points of T IR

1,2

we can use the properties of tensor product attractors described in section 4.9.3. Let us
consider the subdivision of the horizontal edge. This edge is an attractor of the BCIFS
presented in figure 5.25. It turns out that the edge subdivision is very similar to the curve
described in section 5.1.3. The edge is tiled with cubic B-splines that converge towards the
fixed point of ei. Here er1,2 are standard cubic b-spline subdivisions:
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♮ ei er

P

ei

er
er1,2

Figure 5.25: An automaton representing the subdivision of the irregular edge.

er1 =




1
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1
8 0 0

1
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2

1
8

0 1
8

1
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0 0 0 1
8


 , er2 =




1
8 0 0 0
3
4

1
2

1
8 0

1
8

1
2

3
4

1
2

0 0 1
8

1
2


 .

And

er =




1/2 1/8 0 0
1/2 3/4 1/2 0
0 1/8 1/2 3/4
0 0 0 1/4
0 0 0 0



, ei =




1/8 0 0 0 0
3/4 1/2 0 0 0
1/8 1/2 1/4 0 0
0 0 3/4 3/4 1/4
0 0 0 1/4 3/4



.

To show that there exists a tangent quarter-plane at the fixed points of T IR
1,2 we need to show

that the tangent to this curve at the fixed points of ei exists, depends on the sub-dominant
eigenvector and the corresponding eigenvalues is equal to the sub-dominant eigenvalues of
the cubic B-spline subdivision that is 1/2.

So let us compute the Jordan form J of ei and the corresponding Jordan basis matrix
P :

J =




1 0 0 0 0
0 1

4 0 0 0
0 0 1

8 0 0
0 0 0 1

2 1
0 0 0 0 1

2



, P =




0 0 1 0 0
0 0 −2 0 1
0 1 7 0 2
1 −2 −10 3

4 0
1 1 4 − 3

4 −3



.

The first ring R0 around the fixed points of ei is composed of a single B-spline whose control
points are columns of er. So R0 lies within the convex hull of these control points. Let us
calculate their coordinates in the basis P :

P−1 × er =




1
2

1
2

1
2

1
2

− 13
2 − 11

4 − 1
2

3
4

1
2

1
8 0 0

− 34
3 − 19

3 −2 5
3

3
2 1 1

2 0



.

The fourth and fifth rows correspond to the chain of eigenvector corresponding to sub-
dominant eigenvalue 1/2. The fifth row has non-negative components and only one zero
component. However a positive component on the fourth row corresponds to this zero
component. Since all the points inside the hull can be expressed as weighted sums of its
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vertices with non-negative weights, no point inside can have a zero as its fourth and fifth
coordinate. Therefore the tangent direction is given by the sub-dominant eigenvector of ei.

So according to section 4.9.3 the tensor product has a quarter plane at the fixed points
of T IR

1,2 . Also note that since the sub-dominant eigenvector of ei depends only on the last
two control points, the tangent plane in question depends only on the position of the control
points for the intermediate curve.

Doo-Sabin side

Unfortunately the other side of the intermediate surface is not a tensor product of two
curves. To study the differential behaviour at the fixed points of T IL

1,2 we need to compute
the corresponding eigenvectors and check the respected rings for points with zero components
along the sub-dominant eigenvectors. From the subdivision matrices it can be established
that the surface is symmetrical so we will only do the calculations for the fixed point of T IL

1 .
Let us calculate the Jordan form J and the corresponding Jordan basis of T IL

1 :

J =




1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1

16 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1

16 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1

2 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1
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0 0 0 0 0 0 1

2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

8 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

8 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

8 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1

4 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1

4 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1

4 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1

4




,

P =




0 0 1 0 0 0 0 1 0 0 0 1 0 0
0 0 −2 0 0 0 0 −1 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 7 0 0 1 0 3 0 0 0 0 0 1
0 −1 −6 0 0 1 0 −3 0 0 0 −3 0 0
0 0 −1 0 0 0 0 0 0 0 0 −3 0 −1
1 − 3

4 0 1 1
12 0 1 0 1 0 1

4 0 1
8 0

4 0 −20 −3 1
3 0 0 0 0 1 1

4 0 0 0
1 3

4
80
3 3 1

12
5
6 −1 −8 −3 −2 − 1

2 8 − 1
8 0

0 0 − 20
3 −1 0 0 0 8 2 1 0 0 0 0

1 1
4 −4 −1 − 1

12 − 5
6 1 −18 −5 −2 − 1

2 5 − 1
8 −1

4 0 20 3 − 1
3 −2 0 48 12 5 1

4 −12 0 0
1 − 1

4 − 68
3 −3 − 1

12 0 −1 −38 −9 −4 1
4 3 1

8 1
0 0 20

3 1 0 0 0 8 2 1 0 0 0 0




.

Since the intermediate patch is subdivided into 4 patches, the outermost ring R0 around
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the fixed point of T IL
1 consists of three patches:

R0 = TL
1 (AL) ∪ TL

2 (AL) ∪ T IL
2 (AIL).

All three patches lie within the convex hulls of their respective control points, since their
corresponding subdivision matrices have non-negative components. We can calculate the
coordinates of the respective control points in the basis P as follows by multiplying the
corresponding matrix by P−1. For two regular patches = TL

1 (AL) and TL
2 (AL) we obtain:

P−1 × TL
1 =




1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12
−1/2 1/2 1/2 0 0 0 0 0 0

0 0 3/16 0 0 1/16 0 0 0
0 0 −5/4 0 0 −5/12 0 0 0

−109/12 −109/12 −109/12 −17/4 −17/4 −17/4 −5/12 −5/12 −5/12
5/4 5/4 5/4 3/4 3/4 3/4 1/4 1/4 1/4

7/12 11/24 1/3 3/8 1/4 1/8 1/6 1/24 −1/12
3/16 −3/16 −9/16 1/16 −1/16 −3/16 0 0 0

−37/72 71/72 179/72 −5/24 7/24 19/24 −1/144 −1/144 −1/144
−17/36 −17/36 −17/36 −1/12 −1/12 −1/12 1/72 1/72 1/72

38/3 38/3 38/3 14/3 14/3 14/3 1/6 1/6 1/6
3/8 3/8 3/8 1/8 1/8 1/8 0 0 0

−47/2 −57/2 −59/2 −17/2 −23/2 −67/6 0 −1 0
−9/8 −9/8 −11/8 −3/8 −3/8 −5/8 0 0 −1/4




,

P−1 × TL
2 =




1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12
1/2 1/2 −1/2 0 0 0 0 0 0

0 3/16 9/16 0 1/16 3/16 0 0 0
0 −5/4 −15/4 0 −5/12 −5/4 0 0 −1/8

−109/12 −109/12 −109/12 −17/4 −17/4 −17/4 −5/12 −5/12 −5/12
5/4 5/4 5/4 3/4 3/4 3/4 1/4 1/4 1/4

11/24 1/3 5/24 1/4 1/8 0 1/24 −1/12 −5/24
−3/16 −9/16 −15/16 −1/16 −3/16 −5/16 0 0 0
71/72 179/72 287/72 7/24 19/24 31/24 −1/144 −1/144 17/144

−17/36 −17/36 −17/36 −1/12 −1/12 −1/12 1/72 1/72 −1/9
38/3 38/3 38/3 14/3 14/3 14/3 1/6 1/6 −11/6
3/8 3/8 3/8 1/8 1/8 1/8 0 0 0

−57/2 −59/2 −53/2 −23/2 −67/6 −15/2 −1 0 5
−9/8 −11/8 −15/8 −3/8 −5/8 −9/8 0 −1/4 −1/4




.

Here we have highlighted the rows corresponding to the sub-dominant eigenvectors. For both
matrices one of the highlighted rows has strictly positive components. Therefore any point
that is a weighted sum of the respective columns cannot have its coordinates corresponding
to the sub-dominant eigenvectors simultaneously equal to zero. However should we calculate
the coordinates of the control points for the third patch we would see that the convex hull
includes the points with zeros at all three sub-dominant components simultaneously. So we
need to compute a tighter hull. To achieve this we consider the next iteration. The third
patch T IL

2 (AIL) consists of four smaller patches:

AIL = TL
1 (AIL) ∪ TL

2 (AIL) ∪ T IL
1 (AIL) ∪ T IL

2 (AIL),

T IL
2 (AIL) = T IL

2 TL
1 (AIL) ∪ T IL

2 TL
2 (AIL) ∪ T IL

2 T IL
1 (AIL) ∪ T IL

2 T IL
2 (AIL), .

Each of these patches lies within the convex hulls of its respective control points, and the
patch T IL

2 (AIL) lies within the union of the four convex hulls. We calculate the coordinates
of those control points in the basis P as

P−1 × T IL
1 × TL

1 (AL),

P−1 × T IL
1 × TL

2 (AL),

P−1 × T IL
1 × T IL

1 (AIL),

P−1 × T IL
1 × T IL

2 (AIL).
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Here we provide only the rows that correspond to the sub-dominant eigenvectors. For the
first two patches we get the following rows:




−79/24 −79/24 −79/24 −11/8 −11/8 −11/8 1/24 1/24 1/24
5/8 5/8 5/8 3/8 3/8 3/8 1/8 1/8 1/8
1/6 5/48 1/24 1/16 0 −1/16 −1/24 −5/48 −1/6


 ,




−79/24 −79/24 −79/24 −11/8 −11/8 −11/8 1/24 1/24 1/24
5/8 5/8 5/8 3/8 3/8 3/8 1/8 1/8 1/8
5/48 1/24 −1/48 0 −1/16 −1/8 −5/48 −1/6 −11/48


 .

For both patches there is a strictly positive row, so they do not contain any points with
three zeros corresponding to the sub-dominant eigenvectors. For the last two patches we
obtain the following rows:

(
−11/8 −11/8 −11/8 1/24 1/24 1/24 1/4 1/4 1/4 1/4 −1/4 −1/4 −1/4 −1/4

3/8 3/8 3/8 1/8 1/8 1/8 0 0 0 0 0 0 0 0
1/16 0 −1/16 −1/24 −5/48 −1/6 −1/16 −1/8 −3/16 −1/4 −1/16 −1/8 −3/16 −1/4

)
,

(
−11/8 −11/8 −11/8 1/24 1/24 1/24 1/4 1/4 1/4 1/4 −1/4 −1/4 −1/4 −1/4

3/8 3/8 3/8 1/8 1/8 1/8 0 0 0 0 0 0 0 0
0 −1/16 −1/8 −5/48 −1/6 −11/48 −1/8 −3/16 −1/4 −5/16 −1/8 −3/16 −1/4 −5/16

)
.

For both of them the components of the second row are non-negative. However each that
has a 0 in a second component, also has a strictly negative component third component. So
we conclude that no point inside the corresponding convex hull has all three sub-dominant
components equal to 0 at the same time.

Final surface

The intermediate surface analysed above is presented in figure (see figure 5.26).
Our method can also be applied to fractal surfaces, and even spline patches can be

connected to fractal surfaces (see figure 5.27).

5.3 Conclusion

In this chapter we studied the problem of connecting shapes defined by different iterative
processes. Using the BCIFS formalism we defined an automaton that defines an intermediate
curve. We also analysed the differential properties of that curve and modified the basic
automaton to provide a more straightforward control over the shape of the intermediate
curve. Then we applied a similar approach to building an intermediate surface. With the
BCIFS formalism we described the topological subdivision of the intermediate surface and
derived the continuity constraints. After that we analysed the differential proprieties of the
constructed surface. We changed the basic automaton by introducing additional control
points for the intermediate patch. Because we describe the intermediate surface as an
attractor of a BCIFS and not as a subdivision scheme on a specific control mesh, we were
able to connect different types of surfaces such as Doo-Sabin and Catmull-Clark surfaces as
we demonstrated with our examples.
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Figure 5.26: An intermediate surface between the Doo-Sabin and Catmull-Clark surfaces
with control polygons for initial edges of initial surfaces and intermediate curve.

Figure 5.27: An intermediate surface between a fractal surface and a spline patch.
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Chapter 6

Conclusion and perspectives

6.1 Conclusion

In this thesis we have studied the differential properties of self-similar sets. These sets
are defined with Iterated Function Systems and its modification such as Controlled IFS
and Boundary Controlled IFS. We have studied the wide range of differential behaviours
that self-similar sets can exhibit and derived the necessary and sufficient conditions for
differentiability for an everywhere dense set of points.

Previous works studied a limited set of shapes. [Ben09] studied the differential behaviour
of curves in R2 and surfaces defined as the tensor product of curves. The studies of subdi-
vision surfaces are limited to subdivision schemes with injective and regular characteristic
maps. Our study deals with curves and surfaces in arbitrary dimensions and we utilise more
general conditions than injectivity and regularity of the characteristic map.

We propose a more general definition of a tangent subspace than the classical tangent
line or plane definitions. Our definition is based on the notion of the convergence of an angle
between a secant and an affine subspace. This definition allows us to classify the multiple
types of differential behaviour presented in attractors of the IFS such as “pinched” surface
with only one tangent line at a point instead of a tangent plane or a rotating curve that
touches the plane as well as classical cases of tangent line and a curve or a tangent plane
and a surface. Then we use the properties of self-similarity to the necessary and sufficient
conditions for existence of the tangent subspace.

The study of convergence is based on the notion of address. Each point of the IFS’s
attractor has an infinite string of symbols that identifies this point within the attractor.
Based on this notion we have defined a nested set of neighbourhoods of the point. Studying
the convergence of such nested sets allows us to study the differential behaviour of the at-
tractor at the point in question. Using this notion we have studied the differential behaviour
of a specific class of points. Namely points with periodic addresses. Such points form an
everywhere dense set within the attractor.

We have shown that differential behaviour at the periodic points depends primarily on
the eigenvalues and eigenvector of the transformation associated with the period found in its
address. The existence of a tangent subspace depends on the sub-dominant eigenvalue(s).
We have treated cases with different kinds of sub-dominant eigenvalue and its multiplicity.
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We have also studied the behaviour produced by complex eigenvalues. Studying these
different cases allowed us to derive the necessary and sufficient conditions.

Formulating these conditions enabled us to analyse the differential behaviour of various
shapes. We studied the problem of joining shapes built by different iterative procedures.
We suggested a method of constructing an intermediate curve between two curves and an
intermediate surface between two surfaces. The initial shapes as well as the intermediate one
is described as an attractor of BCIFS. Previously derived conditions allowed us to analyse
the differential behaviour of the newly constructed shapes.

We also propose a way to construct an intermediate surface between two surfaces. We
give a general topological subdivision of the intermediate surface between surfaces. Then
we apply the general scheme to the problem of connecting Doo-Sabin (dual scheme) and
Catmull-Clark (primal scheme) subdivision surfaces. Using the BCIFS formalism we derive
the conditions on the subdivision matrices that guarantee the continuity of the intermediate
surface. After that we use the necessary and sufficient conditions of the differentiability that
we obtained previously to show when the intermediate surface has a tangent plane almost
everywhere.

6.2 Perspectives and future work

Several problems are still open. First problem is the analysis of the differential behaviour
of non-periodic points. The particular difficulty with such a set of points is that its position
and immediate neighbourhood is dependent on the infinite non-periodic product of matrices.
The notion of the joint spectral radius and Daubechies work on the infinite products of
matrices [DL92] may be of interest for solving this problem.

Another unsolved problem is constructing shapes that belong to a certain continuity
class with BCIFS. BCIFS formalism guarantees only C0-continuity. The differential prop-
erties of the modelled shape depend on the eigenvector and eigenvalues of the subdivision
matrices. Generally C0-continuity constraints leave a certain number of degrees of freedom
that allow to modify the differential behaviour of the shape. However these degrees of free-
doms usually have a convoluted effect on the final shape. Hence a way to introduce higher
degree continuity constraints to BCIFS model is needed.

We have also discussed the problem of controlling the differential behaviour and proposed
some solutions for the particular cases in some of our examples (see chapter 5). However a
more general approach that can be implemented in CAD systems in needed. This problem is
closely related to the previous one. Solving these two problems will allow the development a
CAD-system that will fully support the BCIFS model. Such a system will greatly facilitate
the design and production process of complex shapes.
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A.1 Regular patches subdivision

Transformations that define the bi-quadratic patch subdivision:

L1 =




9/16 3/16 0 3/16 1/16 0 0 0 0
3/16 9/16 9/16 1/16 3/16 3/16 0 0 0

0 0 3/16 0 0 1/16 0 0 0
3/16 1/16 0 9/16 3/16 0 9/16 3/16 0
1/16 3/16 3/16 3/16 9/16 9/16 3/16 9/16 9/16

0 0 1/16 0 0 3/16 0 0 3/16
0 0 0 0 0 0 3/16 1/16 0
0 0 0 0 0 0 1/16 3/16 3/16
0 0 0 0 0 0 0 0 1/16


 , L2 =




3/16 1/16 0 0 0 0 0 0 0
1/16 3/16 3/16 0 0 0 0 0 0

0 0 1/16 0 0 0 0 0 0
9/16 3/16 0 9/16 3/16 0 3/16 1/16 0
3/16 9/16 9/16 3/16 9/16 9/16 1/16 3/16 3/16

0 0 3/16 0 0 3/16 0 0 1/16
0 0 0 3/16 1/16 0 9/16 3/16 0
0 0 0 1/16 3/16 3/16 3/16 9/16 9/16
0 0 0 0 0 1/16 0 0 3/16


 ,

L3 =




1/16 0 0 0 0 0 0 0 0
3/16 3/16 1/16 0 0 0 0 0 0

0 1/16 3/16 0 0 0 0 0 0
3/16 0 0 3/16 0 0 1/16 0 0
9/16 9/16 3/16 9/16 9/16 3/16 3/16 3/16 1/16

0 3/16 9/16 0 3/16 9/16 0 1/16 3/16
0 0 0 1/16 0 0 3/16 0 0
0 0 0 3/16 3/16 1/16 9/16 9/16 3/16
0 0 0 0 1/16 3/16 0 3/16 9/16


 , L4 =




3/16 0 0 1/16 0 0 0 0 0
9/16 9/16 3/16 3/16 3/16 1/16 0 0 0

0 3/16 9/16 0 1/16 3/16 0 0 0
1/16 0 0 3/16 0 0 3/16 0 0
3/16 3/16 1/16 9/16 9/16 3/16 9/16 9/16 3/16

0 1/16 3/16 0 3/16 9/16 0 3/16 9/16
0 0 0 0 0 0 1/16 0 0
0 0 0 0 0 0 3/16 3/16 1/16
0 0 0 0 0 0 0 1/16 3/16


 .

Transformations that define the bi-cubic patch subdivision:

R1 =




1/16 1/64 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1/16 3/32 1/16 1/64 0 0 0 0 0 0 0 0 0 0 0 0

0 1/64 1/16 3/32 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1/64 0 0 0 0 0 0 0 0 0 0 0 0

3/8 3/32 0 0 1/4 1/16 0 0 1/16 1/64 0 0 0 0 0 0
3/8 9/16 3/8 3/32 1/4 3/8 1/4 1/16 1/16 3/32 1/16 1/64 0 0 0 0
0 3/32 3/8 9/16 0 1/16 1/4 3/8 0 1/64 1/16 3/32 0 0 0 0
0 0 0 3/32 0 0 0 1/16 0 0 0 1/64 0 0 0 0

1/16 1/64 0 0 1/4 1/16 0 0 3/8 3/32 0 0 1/4 1/16 0 0
1/16 3/32 1/16 1/64 1/4 3/8 1/4 1/16 3/8 9/16 3/8 3/32 1/4 3/8 1/4 1/16

0 1/64 1/16 3/32 0 1/16 1/4 3/8 0 3/32 3/8 9/16 0 1/16 1/4 3/8
0 0 0 1/64 0 0 0 1/16 0 0 0 3/32 0 0 0 1/16
0 0 0 0 0 0 0 0 1/16 1/64 0 0 1/4 1/16 0 0
0 0 0 0 0 0 0 0 1/16 3/32 1/16 1/64 1/4 3/8 1/4 1/16
0 0 0 0 0 0 0 0 0 1/64 1/16 3/32 0 1/16 1/4 3/8
0 0 0 0 0 0 0 0 0 0 0 1/64 0 0 0 1/16




,

R2 =




1/16 1/64 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1/16 3/32 1/16 1/64 0 0 0 0 0 0 0 0 0 0 0 0

0 1/64 1/16 3/32 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1/64 0 0 0 0 0 0 0 0 0 0 0 0

3/8 3/32 0 0 1/4 1/16 0 0 1/16 1/64 0 0 0 0 0 0
3/8 9/16 3/8 3/32 1/4 3/8 1/4 1/16 1/16 3/32 1/16 1/64 0 0 0 0
0 3/32 3/8 9/16 0 1/16 1/4 3/8 0 1/64 1/16 3/32 0 0 0 0
0 0 0 3/32 0 0 0 1/16 0 0 0 1/64 0 0 0 0

1/16 1/64 0 0 1/4 1/16 0 0 3/8 3/32 0 0 1/4 1/16 0 0
1/16 3/32 1/16 1/64 1/4 3/8 1/4 1/16 3/8 9/16 3/8 3/32 1/4 3/8 1/4 1/16

0 1/64 1/16 3/32 0 1/16 1/4 3/8 0 3/32 3/8 9/16 0 1/16 1/4 3/8
0 0 0 1/64 0 0 0 1/16 0 0 0 3/32 0 0 0 1/16
0 0 0 0 0 0 0 0 1/16 1/64 0 0 1/4 1/16 0 0
0 0 0 0 0 0 0 0 1/16 3/32 1/16 1/64 1/4 3/8 1/4 1/16
0 0 0 0 0 0 0 0 0 1/64 1/16 3/32 0 1/16 1/4 3/8
0 0 0 0 0 0 0 0 0 0 0 1/64 0 0 0 1/16




,
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R3 =




1/64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3/32 1/16 1/64 0 0 0 0 0 0 0 0 0 0 0 0 0
1/64 1/16 3/32 1/16 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1/64 1/16 0 0 0 0 0 0 0 0 0 0 0 0
3/32 0 0 0 1/16 0 0 0 1/64 0 0 0 0 0 0 0
9/16 3/8 3/32 0 3/8 1/4 1/16 0 3/32 1/16 1/64 0 0 0 0 0
3/32 3/8 9/16 3/8 1/16 1/4 3/8 1/4 1/64 1/16 3/32 1/16 0 0 0 0

0 0 3/32 3/8 0 0 1/16 1/4 0 0 1/64 1/16 0 0 0 0
1/64 0 0 0 1/16 0 0 0 3/32 0 0 0 1/16 0 0 0
3/32 1/16 1/64 0 3/8 1/4 1/16 0 9/16 3/8 3/32 0 3/8 1/4 1/16 0
1/64 1/16 3/32 1/16 1/16 1/4 3/8 1/4 3/32 3/8 9/16 3/8 1/16 1/4 3/8 1/4

0 0 1/64 1/16 0 0 1/16 1/4 0 0 3/32 3/8 0 0 1/16 1/4
0 0 0 0 0 0 0 0 1/64 0 0 0 1/16 0 0 0
0 0 0 0 0 0 0 0 3/32 1/16 1/64 0 3/8 1/4 1/16 0
0 0 0 0 0 0 0 0 1/64 1/16 3/32 1/16 1/16 1/4 3/8 1/4
0 0 0 0 0 0 0 0 0 0 1/64 1/16 0 0 1/16 1/4




,

R4 =




1/16 0 0 0 1/64 0 0 0 0 0 0 0 0 0 0 0
3/8 1/4 1/16 0 3/32 1/16 1/64 0 0 0 0 0 0 0 0 0
1/16 1/4 3/8 1/4 1/64 1/16 3/32 1/16 0 0 0 0 0 0 0 0

0 0 1/16 1/4 0 0 1/64 1/16 0 0 0 0 0 0 0 0
1/16 0 0 0 3/32 0 0 0 1/16 0 0 0 1/64 0 0 0
3/8 1/4 1/16 0 9/16 3/8 3/32 0 3/8 1/4 1/16 0 3/32 1/16 1/64 0
1/16 1/4 3/8 1/4 3/32 3/8 9/16 3/8 1/16 1/4 3/8 1/4 1/64 1/16 3/32 1/16

0 0 1/16 1/4 0 0 3/32 3/8 0 0 1/16 1/4 0 0 1/64 1/16
0 0 0 0 1/64 0 0 0 1/16 0 0 0 3/32 0 0 0
0 0 0 0 3/32 1/16 1/64 0 3/8 1/4 1/16 0 9/16 3/8 3/32 0
0 0 0 0 1/64 1/16 3/32 1/16 1/16 1/4 3/8 1/4 3/32 3/8 9/16 3/8
0 0 0 0 0 0 1/64 1/16 0 0 1/16 1/4 0 0 3/32 3/8
0 0 0 0 0 0 0 0 0 0 0 0 1/64 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 3/32 1/16 1/64 0
0 0 0 0 0 0 0 0 0 0 0 0 1/64 1/16 3/32 1/16
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/64 1/16




.

A.2 Intermediate patches subdivision

Subdivision matrices for the Doo-Sabin side of intermediate surface.

TL
1 =




9/16 3/16 0 3/16 1/16 0 a b 0
3/16 9/16 9/16 1/16 3/16 3/16 b a a

0 0 3/16 0 0 1/16 0 0 b
3/16 1/16 0 9/16 3/16 0 d e 0
1/16 3/16 3/16 3/16 9/16 9/16 e d d

0 0 1/16 0 0 3/16 0 0 e
0 0 0 0 0 0 g i 0
0 0 0 0 0 0 h h g
0 0 0 0 0 0 i g h
0 0 0 0 0 0 0 0 i
0 0 0 0 0 0 k m 0
0 0 0 0 0 0 l l k
0 0 0 0 0 0 m k l
0 0 0 0 0 0 0 0 m




, TL
2 =




3/16 0 0 1/16 0 0 b 0 0
9/16 9/16 3/16 3/16 3/16 1/16 a a b

0 3/16 9/16 0 1/16 3/16 0 b a
1/16 0 0 3/16 0 0 e 0 0
3/16 3/16 1/16 9/16 9/16 3/16 d d e

0 1/16 3/16 0 3/16 9/16 0 e d
0 0 0 0 0 0 i 0 0
0 0 0 0 0 0 h g i
0 0 0 0 0 0 g h h
0 0 0 0 0 0 0 i g
0 0 0 0 0 0 m 0 0
0 0 0 0 0 0 l k m
0 0 0 0 0 0 k l l
0 0 0 0 0 0 0 m k




,

T IL
1 =




3/16 1/16 0 a b 0 0 0 0 0 0 0 0 0
1/16 3/16 3/16 b a a 0 0 0 0 0 0 0 0

0 0 1/16 0 0 b 0 0 0 0 0 0 0 0
9/16 3/16 0 d e 0 0 0 0 0 0 0 0 0
3/16 9/16 9/16 e d d 0 0 0 0 0 0 0 0

0 0 3/16 0 0 e 0 0 0 0 0 0 0 0
0 0 0 g i 0 3/8 3/32 0 0 1/8 1/32 0 0
0 0 0 h h g 3/8 9/16 3/8 3/32 1/8 3/16 1/8 1/32
0 0 0 i g h 0 3/32 3/8 9/16 0 1/32 1/8 3/16
0 0 0 0 0 i 0 0 0 3/32 0 0 0 1/32
0 0 0 k m 0 1/8 1/32 0 0 3/8 3/32 0 0
0 0 0 l l k 1/8 3/16 1/8 1/32 3/8 9/16 3/8 3/32
0 0 0 m k l 0 1/32 1/8 3/16 0 3/32 3/8 9/16
0 0 0 0 0 m 0 0 0 1/32 0 0 0 3/32




,

T IL
2 =




1/16 0 0 b 0 0 0 0 0 0 0 0 0 0
3/16 3/16 1/16 a a b 0 0 0 0 0 0 0 0

0 1/16 3/16 0 b a 0 0 0 0 0 0 0 0
3/16 0 0 e 0 0 0 0 0 0 0 0 0 0
9/16 9/16 3/16 d d e 0 0 0 0 0 0 0 0

0 3/16 9/16 0 e d 0 0 0 0 0 0 0 0
0 0 0 i 0 0 3/32 0 0 0 1/32 0 0 0
0 0 0 h g i 9/16 3/8 3/32 0 3/16 1/8 1/32 0
0 0 0 g h h 3/32 3/8 9/16 3/8 1/32 1/8 3/16 1/8
0 0 0 0 i g 0 0 3/32 3/8 0 0 1/32 1/8
0 0 0 m 0 0 1/32 0 0 0 3/32 0 0 0
0 0 0 l k m 3/16 1/8 1/32 0 9/16 3/8 3/32 0
0 0 0 k l l 1/32 1/8 3/16 1/8 3/32 3/8 9/16 3/8
0 0 0 0 m k 0 0 1/32 1/8 0 0 3/32 3/8




.
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Subdivision matrices for the Catmull Clark side of intermediate surface.

TR
1 =




1/4 1/16 0 0 1/16 1/64 0 0 0 0 0 0 ma na 0 0
1/4 3/8 1/4 1/16 1/16 3/32 1/16 1/64 0 0 0 0 mb nb ma na
0 1/16 1/4 3/8 0 1/64 1/16 3/32 0 0 0 0 0 nc mb nb
0 0 0 1/16 0 0 0 1/64 0 0 0 0 0 0 0 nc

1/4 1/16 0 0 3/8 3/32 0 0 1/4 1/16 0 0 me ne 0 0
1/4 3/8 1/4 1/16 3/8 9/16 3/8 3/32 1/4 3/8 1/4 1/16 mf nf me ne
0 1/16 1/4 3/8 0 3/32 3/8 9/16 0 1/16 1/4 3/8 0 ng mf nf
0 0 0 1/16 0 0 0 3/32 0 0 0 1/16 0 0 0 ng
0 0 0 0 1/16 1/64 0 0 1/4 1/16 0 0 mi ni 0 0
0 0 0 0 1/16 3/32 1/16 1/64 1/4 3/8 1/4 1/16 mj nj mi ni
0 0 0 0 0 1/64 1/16 3/32 0 1/16 1/4 3/8 0 nk mj nj
0 0 0 0 0 0 0 1/64 0 0 0 1/16 0 0 0 nk
0 0 0 0 0 0 0 0 0 0 0 0 mm nm 0 0
0 0 0 0 0 0 0 0 0 0 0 0 mn nn mm nm
0 0 0 0 0 0 0 0 0 0 0 0 0 no mn nn
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 no
0 0 0 0 0 0 0 0 0 0 0 0 mq nq 0 0
0 0 0 0 0 0 0 0 0 0 0 0 mr nr mq nq
0 0 0 0 0 0 0 0 0 0 0 0 0 ns mr nr
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ns




,

TR
2 =




1/16 0 0 0 1/64 0 0 0 0 0 0 0 na 0 0 0
3/8 1/4 1/16 0 3/32 1/16 1/64 0 0 0 0 0 nb ma na 0
1/16 1/4 3/8 1/4 1/64 1/16 3/32 1/16 0 0 0 0 nc mb nb ma

0 0 1/16 1/4 0 0 1/64 1/16 0 0 0 0 0 0 nc mb
1/16 0 0 0 3/32 0 0 0 1/16 0 0 0 ne 0 0 0
3/8 1/4 1/16 0 9/16 3/8 3/32 0 3/8 1/4 1/16 0 nf me ne 0
1/16 1/4 3/8 1/4 3/32 3/8 9/16 3/8 1/16 1/4 3/8 1/4 ng mf nf me

0 0 1/16 1/4 0 0 3/32 3/8 0 0 1/16 1/4 0 0 ng mf
0 0 0 0 1/64 0 0 0 1/16 0 0 0 ni 0 0 0
0 0 0 0 3/32 1/16 1/64 0 3/8 1/4 1/16 0 nj mi ni 0
0 0 0 0 1/64 1/16 3/32 1/16 1/16 1/4 3/8 1/4 nk mj nj mi
0 0 0 0 0 0 1/64 1/16 0 0 1/16 1/4 0 0 nk mj
0 0 0 0 0 0 0 0 0 0 0 0 nm 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 nn mm nm 0
0 0 0 0 0 0 0 0 0 0 0 0 no mn nn mm
0 0 0 0 0 0 0 0 0 0 0 0 0 0 no mn
0 0 0 0 0 0 0 0 0 0 0 0 nq 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 nr mq nq 0
0 0 0 0 0 0 0 0 0 0 0 0 ns mr nr mq
0 0 0 0 0 0 0 0 0 0 0 0 0 0 ns mr




,

T IR
1 =




1/16 1/64 0 0 0 0 0 0 ma na 0 0 0 0 0 0 0 0 0 0
1/16 3/32 1/16 1/64 0 0 0 0 mb nb ma na 0 0 0 0 0 0 0 0

0 1/64 1/16 3/32 0 0 0 0 0 nc mb nb 0 0 0 0 0 0 0 0
0 0 0 1/64 0 0 0 0 0 0 0 nc 0 0 0 0 0 0 0 0

3/8 3/32 0 0 1/4 1/16 0 0 me ne 0 0 0 0 0 0 0 0 0 0
3/8 9/16 3/8 3/32 1/4 3/8 1/4 1/16 mf nf me ne 0 0 0 0 0 0 0 0
0 3/32 3/8 9/16 0 1/16 1/4 3/8 0 ng mf nf 0 0 0 0 0 0 0 0
0 0 0 3/32 0 0 0 1/16 0 0 0 ng 0 0 0 0 0 0 0 0

1/16 1/64 0 0 1/4 1/16 0 0 mi ni 0 0 0 0 0 0 0 0 0 0
1/16 3/32 1/16 1/64 1/4 3/8 1/4 1/16 mj nj mi ni 0 0 0 0 0 0 0 0

0 1/64 1/16 3/32 0 1/16 1/4 3/8 0 nk mj nj 0 0 0 0 0 0 0 0
0 0 0 1/64 0 0 0 1/16 0 0 0 nk 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 mm nm 0 0 3/8 3/32 0 0 1/8 1/32 0 0
0 0 0 0 0 0 0 0 mn nn mm nm 3/8 9/16 3/8 3/32 1/8 3/16 1/8 1/32
0 0 0 0 0 0 0 0 0 no mn nn 0 3/32 3/8 9/16 0 1/32 1/8 3/16
0 0 0 0 0 0 0 0 0 0 0 no 0 0 0 3/32 0 0 0 1/32
0 0 0 0 0 0 0 0 mq nq 0 0 1/8 1/32 0 0 3/8 3/32 0 0
0 0 0 0 0 0 0 0 mr nr mq nq 1/8 3/16 1/8 1/32 3/8 9/16 3/8 3/32
0 0 0 0 0 0 0 0 0 ns mr nr 0 1/32 1/8 3/16 0 3/32 3/8 9/16
0 0 0 0 0 0 0 0 0 0 0 ns 0 0 0 1/32 0 0 0 3/32




,

T IR
2 =




1/64 0 0 0 0 0 0 0 na 0 0 0 0 0 0 0 0 0 0 0
3/32 1/16 1/64 0 0 0 0 0 nb ma na 0 0 0 0 0 0 0 0 0
1/64 1/16 3/32 1/16 0 0 0 0 nc mb nb ma 0 0 0 0 0 0 0 0

0 0 1/64 1/16 0 0 0 0 0 0 nc mb 0 0 0 0 0 0 0 0
3/32 0 0 0 1/16 0 0 0 ne 0 0 0 0 0 0 0 0 0 0 0
9/16 3/8 3/32 0 3/8 1/4 1/16 0 nf me ne 0 0 0 0 0 0 0 0 0
3/32 3/8 9/16 3/8 1/16 1/4 3/8 1/4 ng mf nf me 0 0 0 0 0 0 0 0

0 0 3/32 3/8 0 0 1/16 1/4 0 0 ng mf 0 0 0 0 0 0 0 0
1/64 0 0 0 1/16 0 0 0 ni 0 0 0 0 0 0 0 0 0 0 0
3/32 1/16 1/64 0 3/8 1/4 1/16 0 nj mi ni 0 0 0 0 0 0 0 0 0
1/64 1/16 3/32 1/16 1/16 1/4 3/8 1/4 nk mj nj mi 0 0 0 0 0 0 0 0

0 0 1/64 1/16 0 0 1/16 1/4 0 0 nk mj 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 nm 0 0 0 3/32 0 0 0 1/32 0 0 0
0 0 0 0 0 0 0 0 nn mm nm 0 9/16 3/8 3/32 0 3/16 1/8 1/32 0
0 0 0 0 0 0 0 0 no mn nn mm 3/32 3/8 9/16 3/8 1/32 1/8 3/16 1/8
0 0 0 0 0 0 0 0 0 0 no mn 0 0 3/32 3/8 0 0 1/32 1/8
0 0 0 0 0 0 0 0 nq 0 0 0 1/32 0 0 0 3/32 0 0 0
0 0 0 0 0 0 0 0 nr mq nq 0 3/16 1/8 1/32 0 9/16 3/8 3/32 0
0 0 0 0 0 0 0 0 ns mr nr mq 1/32 1/8 3/16 1/8 3/32 3/8 9/16 3/8
0 0 0 0 0 0 0 0 0 0 ns mr 0 0 1/32 1/8 0 0 3/32 3/8




.

The following values of parameters were used in the example presented in section 5.2.5. a = 0, b = 0, d = 1/4 , e = 1/4,
g = 1/4, h = 1/4, i = 0, k = 0, l = 0, m = 0., ma = 0, mb = 0, me = 0, mf = 0, mi = 1/8, mj = 1/8, mm = 3/8, mn = 3/8,
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mq = 0, mr = 0, na = 0, nb = 0, nc = 0, ne = 0, nf = 0, ng = 0, ni = 1/32, nj = 3/16, nk = 1/32, nm = 3/32, nn = 9/16,
no = 3/32, nq = 0, nr = 0, ns = 0.
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Résumé :

Nous nous intéressons à la modélisation de formes complexes de type structures arborescences,

formes lacunaires ou surfaces rugueuses. Ces formes sont intéressantes de par leurs propriétés phy-

siques particulières : objets légers, économie de matière, résistance mécanique, absorption acous-

tique importante. Les modèles basés sur le concept de la géométrie fractale permettent de générer

de telles formes et notamment les formes auto-similaires. A partir des travaux de Barnsley sur les

systèmes itérés de fonctions, Tosan et al, ont proposé une extension, Boundary Controled Iterated

Funcions Systems (BCIFS) pour contrôler plus facilement les formes et faciliter leur description. Nous

nous intéressons aux propriétés différentielles des formes décrites par BCIFS.

Nous proposons une définition plus générale d’espace tangent qui permet de caractériser le compor-

tement de cas non-classiquement différentiables. Nous montrons que l’étude du comportement diffé-

rentiel peut alors se faire simplement par analyse des valeurs propres et vecteurs propres généralisés

des opérateurs de subdivision. Il devient alors possible de contrôler ces propriétés différentielles.

Nous présentons une application de nos résultats, en proposant une méthode pour construire des

raccords entre deux structures définies par des processus de subdivision différents. Cette méthode

est appliquée pour la construction d’un raccord entre une surface de subdivision de Doo-Sabin

(schéma dual) et une surface de subdivision de Catmull-Clark (schéma primal).

Mots-clés : courbe fractale, surface fractale, IFS, espace tangent, subdivision

Abstract:

We are interested in modelling complex shapes such as tree-like structures, porous structures and

rough surfaces. Such structures possess particular physical properties: weight-to-volume ratio, me-

chanical resistance, acoustical absorption, etc. Fractal geometry is a relatively new branch of mathe-

matics that allows modelling such objects. Based on Barnsley’s work on Iterative Functions Systems

(IFS), Tosan et al proposed a model called Boundary Controlled IFS (BCIFS) that allows us to easily

describe and control such objects. In this thesis we focus on the differential properties of the shapes

described with BCIFS.

We propose a generalisation to the tangent space that allows us to characterise various cases of

differential behaviour, some of which are considered non-differentiable in classical sense. We derive

the necessary and sufficient conditions for existence of a tangent space based on the analysis of

the eigenvalues and generalised eigenvectors of the subdivision operators. We also show that it is

possible to control the differential behaviour.

As an application of our results, we propose a method of constructing the junction between dif-

ferent structures. This method is applied to construct a junction between Doo-Sabin subdivision (dual

scheme) and Catull-Clark subdivision (primal scheme).


