
HAL Id: tel-01005886
https://theses.hal.science/tel-01005886v1

Submitted on 13 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The maximum clique problems with applications to
graph coloring

Qinghua Wu

To cite this version:
Qinghua Wu. The maximum clique problems with applications to graph coloring. Artificial Intelligence
[cs.AI]. Université d’Angers, 2013. English. �NNT : �. �tel-01005886�

https://theses.hal.science/tel-01005886v1
https://hal.archives-ouvertes.fr

Thèse de Doctorat

Qinghua WU
Mémoire présenté en vue de l’obtention du
grade de Docteur de l’Université d’Angers
sous le label de l’Université de Nantes Angers Le Mans

Discipline : Informatique
Spécialité : Informatique
Laboratoire : Laboratoire d’Étude et de Recherche en Informatique d’Angers (LERIA)

Soutenue le fevrier 2013

École doctorale : 503 (STIM)
Thèse n° : 1307

The maximum clique problems with applications to
graph coloring

Problèmes de clique maximum avec applications à la coloration de
graphe

JURY

Rapporteurs : M. Philippe GALINIER, Professeur, l’École Polytechnique de Montréal
Mme Christine SOLNON, Professor, l’INSA de Lyon

Examinateurs : M. Claude JARD, Professeur, l’Université de Nantes
M. Zhipeng LU, Professeur, l’Université de Science et de Technologie Huazhong

Directeur de thèse : M. Jin-Kao HAO, Professeur, Université d’Angers

Acknowledgments

First of all, I would like to thank Professor Jin-Kao Hao, who has been a great super-
visor and mentor throughout my three years at the University of Angers. His inspiring
enthusiasm and energy have been contagious, and his advice and constant support have
been extremely helpful. I am also thankful for the excellent example he has set for me as
a successful professor with very nice personality.

I am also extremely grateful to Professor Zhipeng Lu, who has given me invaluable
helps during these years. His advice and patience helped me a lot in the early stage of my
Ph.D. His guidance has served me well and I owe him my heartfelt appreciation.

I am very grateful to Dr. Philippe Galinier of l’École Polytechnique de Montréal and
Dr. Christine Solnon of l’INSA de Lyon, who contributed their efforts to advancing this
thesis and writing thoughtful review reports. I’d like also to thank Dr. Claude Jard
of Université de Nantes, the president in my jury, for handwriting the defense report
accompanied with other reviewers and providing me a recommendation letter.

I would also like to acknowledge the financial support of the four-year scholarship
provided by the China Scholarship Council. I also would like to show my gratitude to
the LERIA, University of Angers. I also would like to acknowledge the whole technical
team of LIRIA to guarantee the stable experimental environment. I am also thankful to
the secretaries Christine Bardaine and Catherine Pawlonski for kindly providing me many
helps.

I am thankful to my colleges at LERIA. They are: Nadarajen Veerapen, Wang Yang,
Zhanghua Fu, Una Benlic, Rongqiang Zeng, Xiujun Zhang, Sami Laroum, Keqin Liu,
Chhel Fabien, Yan Jin and Yuning Cheng. Their friendship and assistance has meant
more to me than I could ever express. I am also thankful to my friends Jing Lu and
LinLin Gao. I am very happy that, in many cases, my friendships with you have extended
well beyond our shared time in Angers.

I wish to thank my parents, my brother and my sister. Their love provided my in-
spiration and was my driving force. I owe them everything and wish I could show them
just how much I love and appreciate them. Finally, I would like to dedicate this work
to my lost relatives including my Paternal Grandfather, my Paternal Grandmother, my
Maternal Grandfather and my Maternal Grandmother, who left us too soon. I hope that
this work makes you proud.

Dedication

v

Contents

General Introduction 1

1 Introduction 7
1.1 The maximum clique and related problems 8
1.2 Complexity Results . 9
1.3 Exact Algorithms for MCP . 9
1.4 Heuristic methods for the MCP . 11

1.4.1 Greedy algorithms . 12
1.4.2 Local search heuristics . 12
1.4.3 Evolutionary algorithms and their hybrids 17
1.4.4 Heuristics based on continuous optimization 18
1.4.5 Other popular heuristics . 19

1.5 Applications . 20
1.6 Benchmarks instances . 23

2 An Adaptive Multistart Tabu Search Approach for Maximum Clique 27
2.1 Adaptive multistart tabu search (AMTS) for MCP 28

2.1.1 Solution strategy and general procedure 28
2.1.2 The tabu search procedure . 29
2.1.3 A frequency-based strategy for new solution generation 34

2.2 Experimental results . 34
2.2.1 Experimental settings . 35
2.2.2 Computational results . 35
2.2.3 Comparative results . 37

2.3 Analysis of critical components of AMTS 41
2.3.1 Influence of restart . 41
2.3.2 The tabu list . 43

2.4 Conclusions . 44

3 Multi-neighborhood tabu search for the maximum vertex weight clique
problem 45
3.1 Introduction . 47
3.2 Multi-neighborhood tabu search for the MVWCP 48

3.2.1 Search space and evaluation function 48

vii

3.2.2 Randomized procedure for initial solutions 48
3.2.3 Basic move operators and neighborhoods 48
3.2.4 Combined neighborhood and neighbor selection strategy 50
3.2.5 Tabu list and tabu tenure management 51
3.2.6 Multistart strategy and stop criteria 52

3.3 Discussion . 54
3.4 Experimental results . 54

3.4.1 Benchmark instances and experimental settings 54
3.4.2 Experimental results for the maximum vertex weight clique problem 55
3.4.3 Comparative results for the maximum vertex weight clique problem 57
3.4.4 Computational results on structured instances from set packing . . . 59
3.4.5 Experimental results for the unweighted maximum clique problem . 61

3.5 Influence of neighborhood combination . 63
3.6 Conclusion . 66

4 A hybrid metaheuristic method for the maximum edge weight clique
Problem 69
4.1 Introduction . 71
4.2 A hybrid metaheuristic algorithm for MEWCP 72

4.2.1 Outline of the Memetic Algorithm 72
4.2.2 Search space and evaluation function 73
4.2.3 Generation of initial solutions . 74
4.2.4 The constrained neighborhood tabu search procedure 74
4.2.5 Crossover operator . 78
4.2.6 Population updating rule . 79

4.3 Computational experiments . 80
4.3.1 Benchmark instances and Parameter settings 80
4.3.2 Reference Algorithms and Experimental Protocol 81
4.3.3 Computational results . 82
4.3.4 Comparison with other algorithms 86

4.4 Analysis of MAMEP . 87
4.4.1 Influence of crossover . 87
4.4.2 Structural similarity analysis and motivation for the proposed crossover

operator . 88
4.4.3 Population Updating Strategy . 88

4.5 Conclusions . 90

5 Applications in graph coloring: A heuristic approach for coloring large
graphs based on independent set extraction 93
5.1 Introduction . 95
5.2 Review of graph coloring based on maximum independent set 96
5.3 EXTRACOL: an algorithm for large graph coloring 97

5.3.1 General procedure . 97
5.3.2 Finding maximal pairwise disjoint independent sets 99

5.3.3 Coloring the residual graph . 101
5.4 Experimental Results . 102

5.4.1 Experimental settings . 102
5.4.2 Computational results . 102

5.5 Analysis and insights . 105
5.5.1 Influence of preprocessing . 105
5.5.2 Limitation of preprocessing . 107

5.6 Conclusion . 108

6 Advanced applications in graph coloring: An extraction and expansion
approach for coloring large graphs 111
6.1 Introduction . 113
6.2 Improved extraction and expansion coloring (IE2COL) 114

6.2.1 General IE2COL procedure . 114
6.2.2 Initial and intermediate graph coloring 115
6.2.3 Expansion strategies for backward coloring 115

6.3 Experimental Results . 117
6.3.1 Experimental settings . 117
6.3.2 Computational Results . 118
6.3.3 Comparing IE2COL with MACOL, EXTRACOL and E2COL 120
6.3.4 Comparison with other state of the art algorithms 120

6.4 Analysis of IE2COL . 121
6.4.1 Effect of the size of residual graph 121

6.5 Conclusion . 123

7 Applications in sum coloring: An Effective Heuristic Algorithm for Sum
Coloring of Graphs 125
7.1 Introduction . 127
7.2 EXSCOL: an algorithm for the MSCP . 128

7.2.1 Rationale and general procedure . 128
7.2.2 The EXSCOL algorithm . 129

7.3 Lower bounds for the MSCP based on clique decomposition 129
7.4 Experimental results . 131

7.4.1 Problem instances and experimental protocol 132
7.4.2 Experimental results for computing upper bounds 132
7.4.3 Comparison with other algorithms for computing upper bounds . . . 134
7.4.4 Improved lower bounds for the MSCP 136

7.5 Discussion and analysis . 139
7.5.1 Influence of the method to extract independent sets 139
7.5.2 Sum coloring v.s. graph coloring . 140

7.6 Conclusion . 142

Contents

General Conclusion 143

List of figures 147

List of tables 149

List of algorithms 151

List of publications 153

References 155

Abstract / Résumé 176

x

Contents

xi

General Introduction

Context

Optimization has been expanding in all directions at an astonishing rate during the last
few decades and nowadays it is a basic research tool which has been successfully applied
in a wide range of practical problems arising in virtually any sphere of human activi-
ties, including biomedicine, energy management, aerospace research, telecommunications,
transportation and finance.

Heuristic and metaheuristic can be considered as a special case of a broad optimization
area called combinatorial optimization, in which the feasible region is a finite, but usually
very large, set. All of the problems studied in this work are combinatorial optimization
problems, which arise in diverse areas of research and development. However, combina-
torial optimization problems are known to be difficult to solve in general. Most of them,
in particular those of practical interest, belong to the class of NP-hard problems, and
thus cannot be efficiently solved to optimality. For these hard large-scale optimization
problems, a variety of optimization approaches, called heuristics, have been proposed for
finding high quality sub-optimal solutions in reasonable computing time, thus constituting
a natural and useful framework to approximate hard combinatorial optimization problems.

The maximum clique problem is an important combinatorial optimization problem
with applications in numerous fields, including information retrieval, signal transmission
analysis, classification theory, economics, scheduling, and biomedical engineering. In ad-
dition to its practical applications in real-world areas, the maximum clique problem is
tightly related to a number of important combinatorial problems such as graph coloring,
sum coloring, set packing, clique partitioning and community detection in complex net-
works. This thesis is devoted to developing effective heuristic approaches for the maximum
clique problem and its generalizations, and applying the developed heuristic approaches to
solve these hard combinatorial problems which are tightly related to the maximum clique
problem.

Objectives

Given the importance of the maximum clique problem and its wide range of applications
in numerous fields, the first objective of this thesis is to propose highly effective heuristic
approaches for the maximum clique problem as well as its two generalizations (i.e., the
maximum vertex weight clique problem and the maximum edge weight clique problem).
As a result, we developed an adaptive multistart tabu search algorithm for the maximum
clique problem, a multi-neighborhood tabu search algorithm for the maximum vertex
weight clique problem and a hybrid metaheuristic approach for the maximum edge weight
clique problem. These methods are highly competitive when compared with the current

1

General Introduction

state-of-art algorithms from the literature, some of them are even able to improve the
best-known solutions for a number of popular benchmark instances.

In addition to its practical applications in numerous fields, the maximum clique prob-
lem is tightly related to a number of important well-known problems such as the set
packing problem, the graph coloring problem and the minimum sum coloring problem.
For instance, for the graph coloring problem, large independent sets are generally pre-
ferred in the final legal coloring solutions and effective approaches are needed to identify
large independent sets from the graph. The second objective of this thesis is to apply the
developed heuristic approaches for the MCP to solving these hard related problems. As
a result, we successfully applied the multi-neighborhood tabu search for the MVWCP to
the sect packing problem, and the adaptive multistart tabu search for the MCP to the
graph coloring problem and the minimum sum coloring problem. Remarkable results are
achieved for these 3 classical problems.

Contributions

The main contribution of this thesis are given below:

1. An adaptive multistart tabu search approach for the maximum clique problem;

2. A multi-neighborhood tabu search approach for the maximum vertex weight clique
problem;

3. A hybrid metaheuristic approach for the maximum edge weight clique problem;

4. A heuristic approach based on independent set extraction for coloring large graphs;

5. An improved extraction and expansion approach for graph coloring;

6. An effective heuristic algorithm based on independent set extraction for sum coloring
of graphs.

An adaptive multistart tabu search algorithm: For the maximum clique prob-
lem, we proposed an adaptive multistart tabu search algorithm (denoted by AMTS), which
integrates some distinguishing features such as a constrained neighborhood, a dynamic
tabu tenure mechanism and a long term memory based restart strategy. The proposed
algorithm is evaluated on the whole set of 80 DIMACS challenge benchmarks and com-
pared with five state-of-the art algorithms. Computational results show that the proposed
algorithm attains the largest known clique for 79 benchmarks. A paper describing the
proposed algorithm is accepted in Journal of Combinatorial Optimization [Wu and Hao,
2011a].

A multi-neighborhood tabu search algorithm: For the maximum vertex weight
clique problem, we proposed a multi-neighborhood tabu search algorithm. In order to ef-
fectively explore the search space, the proposed multi-neighborhood tabu search combines
three neighborhoods induced by three types of moves. The particularity of the combined

2

General Introduction

neighborhood relies on the union of the underlying neighborhoods instead of the conven-
tional sequential exploration of basic neighborhoods. At each iteration of the algorithm,
the proposed tabu search approach explores the union of these three neighborhoods and
selects the overall best admissible neighboring solution. The proposed algorithm is evalu-
ated on a total of 136 benchmark instances from different sources (DIMACS, BHOSLIB
and set packing). Computational results disclose that the proposed new tabu search algo-
rithm outperforms the leading algorithm for the maximum vertex weight clique problem,
and in addition rivals the performance of the best methods for the unweighted version of
the problem without being specialized to exploit this problem class. A paper describing
this work [Wu and Hao, 2012f] is published in Annals of Operations Research.

A hybrid metaheuristic approach: For the maximum edge weight clique problem,
we proposed a hybrid metaheuristic approach. The proposed algorithm uses a dedicated
crossover operator to generate new solutions and a constrained neighborhood tabu search
procedure for local optimization. The proposed algorithm applies also a distance-and-
quality based replacement strategy to maintain population diversity. Extensive evaluations
on a large set of 120 benchmark instances show that the proposed approach competes very
favorably with the current state-of-art methods for the maximum edge weight clique prob-
lem. In particular, it consistently and easily attains all the best known results. Moreover,
it yields improved results for 6 large random instances. The key components of proposed
hybrid metaheuristic approach are also analyzed to shed light on their functioning of the
algorithm. A paper describing the proposed hybrid metaheuristic algorithm is submitted
to European Journal of Operational Research [Wu and Hao, 2012c].

Application of the AMTS algorithm for MCP to the graph coloring prob-
lem: We applied the proposed AMTS for MCP to the graph coloring problem, and
presented an effective heuristic approach based on independent set extraction (denoted
by EXTRACOL) to coloring large graphs. The proposed approach uses a preprocessing
method to extract large independent sets from the graph and a memetic algorithm to
color the residual graph. At each preproceesing step, we identify with AMTS a number of
pairwise disjoint independent sets of a given size in order to maximize the vertices removed
from the graph. EXTRACOL is evaluated on the 11 largest graphs of the DIMACS chal-
lenge benchmarks and it is able to improve the current best known results for 4 instances.
The advantage and the limitation of the proposed algorithm is also analyzed in order to
shed light on ways to further improvement. The results of this study are published in
Computers & Operations Research [Wu and Hao, 2012a]. To overcome the limitations of
the proposed EXTRACOL algorithm, a further study of our work is presented in [Hao
and Wu, 2012], in which we proposed an extraction and expansion approach (denoted by
IE2COL) to improve EXTRACOL. The basic idea of IE2COL is to reconsider the extracted
independent sets and allow some vertices of these extracted sets to change their colors.
Excellent results are achieved by IE2COL, it is able to improve the current best known
results for 4 instances and matches consistently the current best-known results for the
other graphs. This further study on the graph coloring problem is published in Discrete
Applied Mathematics.

Application of the AMTS algorithm for the MCP to the minimum sum col-
oring problem: We applied the same idea of the proposed EXTRACOL algorithm for

3

General Introduction

graph coloring to the minimum sum coloring problem, and proposed an effective heuristic
algorithm based on independent set extraction (denoted by EXSCOL) for sum coloring of
graphs. Basically, the proposed EXSCOL algorithm iteratively extracts from the graph
as many large disjoint independent sets of equal size as possible. For each extracted inde-
pendent set, we assign to it the smallest available color (colors are represented by natural
numbers 1, 2...). This process is repeated until the graph becomes empty. The rationale
behind this approach is that by extracting many large disjoint independent sets, we nat-
urally favor the construction of large color classes and reduce the number of needed color
classes, leading to a reduced total sum of colors. Experimental evaluations on a collec-
tion of 56 DIMACS and COLOR2 benchmark graphs show that the proposed approach
achieves highly competitive results. For nearly half of the graphs used in the literature,
our approach improves the current best known upper bounds. The study is reported in a
full paper published in Computers & Operations Research.

Organization

The manuscript is organized in the following way:

• In the first chapter, we first formally introduce the definitions of the maximum clique
and related problems. Then we provide an overview of the most representative exact
and heuristic approaches proposed in the literature for the maximum clique problem.
Moreover, we recall some practical applications of the MCP in different fields.

• In the second chapter, we present the first contribution of this thesis, i.e., an adap-
tive multistart tabu search algorithm for the maximum clique problem. We also
perform extensive computational studies and comparisons with the best performing
approaches from the literature to evaluate the performance of the proposed algo-
rithm, using the whole set of DIMACS benchmark instances.

• In the third chapter, we consider the maximum vertex weight clique problem and
present a multi-neighborhood tabu search algorithm. After a short introduction of
the maximum vertex weight clique problem, we present in detail the components
of the proposed multi-neighborhood tabu search algorithm. Finally, we evaluate
the performance of the proposed algorithm on the whole sets of DIMACS-W and
BOSHLIB-W benchmark instances.

• In the fourth chapter, we consider the maximum edge weight clique problem which
is another generalization of the maximum clique problem and present a memetic
algorithm for the maximum edge weight clique problem. The proposed memetic
algorithm integrates a dedicated crossover operator which tries to preserve common
vertices that are shared by parent solutions with a constrained neighborhood tabu
search procedure for local optimization. In the end of this chapter, we show ex-
perimental results obtained by the proposed memetic algorithm and compare these
results with those obtained by the current best-performing algorithms for the max-
imum edge weight clique problem from the literature.

4

General Introduction

• In the fifth chapter, we apply the AMTS algorithm proposed in Chapter 2 for the
maximum clique problem to deal with the graph coloring problem, and present the
heuristic approach based on independent set extraction (EXTRACOL) to color-
ing large graphs. After a short overview of current state-of-art graph coloring ap-
proaches, we detail the components of the proposed EXTRACOL algorithm. Then,
we present computational results and comparisons with the current best performing
approaches for the graph coloring problem on 11 largest DIMACS benchmark in-
stances. We analyse the limitation of the proposed EXTRACOL algorithm for the
purpose of further improvement.

• Chapter 6 presents the extraction and expansion approach to further improve the
EXTRACOL algorithm by proposing additional strategies to remedy the limitation
of EXTRACOL. The proposed algorithm integrates an expansion and backward
coloring phase which allows the subsequent coloring algorithm to reconsider the ex-
tracted independent sets and allows some vertices of these extracted sets to change
their colors. Extensive computational experiments are carried out to show the in-
terest of the enhancements implemented in the proposed algorithm.

• In the last chapter, we apply the same idea of the EXTRACOL algorithm for graph
coloring to the minimum sum coloring problem, and present the heuristic algorithm
based on independent set extraction (EXSCOL) for sum coloring of graphs. The
chapter begins with a short introduction of the minimum sum coloring problem.
We then present the basic idea and the main components of the proposed algorithm.
Finally, we present computational results and comparisons with the current best per-
forming approaches for the minimum sum coloring problem on the sets of DIMACS
and COLOR02 benchmark instances

5

Chapter 1

Introduction

The maximum clique problem (MCP) is an important combinatorial optimization prob-
lem with a wide range of practical applications in numerous fields, including information
retrieval, signal transmission analysis, classification theory, economics, scheduling, and
biomedical engineering. Moreover, a number of combinatorial optimization problems are
tightly related to the MCP, such as graph coloring, sum coloring, set packing and optimal
winner determination. In this chapter, we first formally introduce the maximum clique
problem and some related problems. Then we provide a brief overview of some popular
exact and heuristic approaches proposed in the literature for the MCP. Finally, we give
some examples of practical application of the MCP.

Contents

1.1 The maximum clique and related problems 8

1.2 Complexity Results . 9

1.3 Exact Algorithms for MCP . 9

1.4 Heuristic methods for the MCP 11

1.4.1 Greedy algorithms . 12
1.4.2 Local search heuristics . 12
1.4.3 Evolutionary algorithms and their hybrids 17
1.4.4 Heuristics based on continuous optimization 18
1.4.5 Other popular heuristics . 19

1.5 Applications . 20

1.6 Benchmarks instances . 23

7

Chapter 1. Introduction

1.1 The maximum clique and related problems

Let G = (V,E) be an undirected graph with vertex set V = {1, . . . , n} and edge set
E ⊂ V × V . A clique C of G is a subset of V such that every two vertices in C are
adjacent, i.e., ∀u, v ∈ C, {u, v} ∈ E. A clique is maximal if it is not contained in any other
clique, a clique is maximum if its cardinality is the largest among all the cliques of the
graph. The maximum clique problem (MCP) is to determine a maximum clique.

The maximum clique problem is equivalent to two other well-known combinatorial
optimization problems: maximum independent set problem (MIS) and minimum vertex
cover problem (MVC). Given an undirected graph G = (V,E), an independent set I of
G is a subset of V such that every two vertices in I are not connected by an edge, i.e.,
∀u, v ∈ I, {u, v} /∈ E. The maximum independent set problem is to find an independent
set of maximum cardinality. A vertex cover V ′ of G is a subset of V , such that every edge
(i, j) ∈ E has at least one endpoint in V ′. The minimum vertex cover problem is to find
a vertex cover of minimum cardinality.

A

B

C

D

E

F

A

B

C

D

E

F

A

B

C

D

E

F

Figure 1.1: An illustration of the relationship between maximum clique (left), maximum
independent set (middle) and minimum vertex cover (right).

It is easy to see that C is a maximum clique of G if and only if I is a maximum
independent set of G, where G is the complementary graph of G, and if and only if V \C
is a minimum vertex cover of G. An illustration of the relationship between maximum
clique , maximum independent set and minimum vertex cover is given in Fig. 1.1. Due to
the close relation between the maximum clique and maximum independent set problems,
we will operate with both problems while describing the properties and algorithms for the
maximum clique problem. In this case, it is clear that a result holding for the maximum
clique problem in G will also be true for the maximum independent set problem in G.

An important generalization of the MCP which is receiving increasing attention arises
when positive weights are associated to the vertices of the graph. In this case, the problem
is known as the maximum vertex weight clique problem (MVWCP). Let w : V → Z+ be
a weighting function that assigns to each vertex i ∈ V a positive value. For a clique C of
G, define its weight as W (C) =

∑
i∈C wi. The MVWCP is to determine a clique C∗ of

maximum weight, i.e., ∀C ∈ Ω, W (C∗) ≥W (C) where Ω is the set of all possible cliques of
the graph. Note that the maximum weight clique is not necessarily a clique of the highest
cardinality. However, the classical unweighted version can be viewed as a special case of

8

1.2 Complexity Results

MVWCP when the weight of each vertex is set equal to 1.
Another important generalization of the MCP is the maximum edge weight clique

problem (MEWCP) [Alidaee et al., 2007] and can be formally defined as follows: Given an
integer m and a complete graph G = (V, E), each edge {i, j} ∈ E being associated with
a positive weight dij . The MEWCP is to determine a clique of G with exactly m vertices
such that the sum of the weights of the edges in the clique is maximized. During the past
three decades, the MEWCP has appeared in previous studies under many different names
such as maximum diversity, maxisum dispersion, MAX-AVG dispersion, remote-clique,
maximum edge-weighted subgraph, and dense k-subgraph.

The graph coloring problem, which is one of the most studied combinatorial optimiza-
tion problems, is tightly related to the maximum independent set problem. Given an
undirected graph G = (V,E), a legal k-coloring of G is a partition of V into k independent
sets (color classes). The graph k-coloring problem is to find a legal k-coloring of G for a
given k. The graph coloring problem is to determine the smallest integer k (its chromatic
number χ(G)) such that there exists a legal k-coloring of G.

1.2 Complexity Results

The maximum clique and the graph coloring problems are NP-hard [Garey and John-
son, 1979]. Moreover, they are associated with a series of recent results about hardness
of approximations. The discovery of a remarkable connection between probabilistically
checkable proofs and approximability of combinatorial optimization problems [Arora and
Safra, 1992; Arora et al., 1998; Feige et al., 1996] yielded new hardness of approximation
results for many problems. Arora and Safra [Arora et al., 1998] proved that for some
positive ϵ, the approximation of the maximum clique within a factor of nϵ is NP-hard. In
[Hästad, 1999], Hästad has shown that in fact for any δ > 0, the maximum clique is hard
to approximate in polynomial time within a factor n1−δ.

Similar approximation complexity results hold for the graph coloring problem as well.
Garey and Johnson [Garey and Johnson, 1976] have shown that obtaining colorings using
s ∗ χ(G) colors, where s < 2, is NP-hard. It has been shown by Lund and Yannakakis
[Lund and Yannakakis, 1994] that χ(G) is hard to approximate within nϵ for positive ϵ,
and following Hästad [Hästad, 1999], Feige and Kilian [Feige and Kilian, 1998] have shown
that for any δ > 0, the chromatic number is hard to approximate within a factor of n1−δ,
unless NP ⊆ ZPP .

All of the above facts together with practical evidence [Johnson and Trick, 1996] sug-
gest that the maximum clique and coloring problems are hard to solve even in graphs of
moderate sizes.

1.3 Exact Algorithms for MCP

Due to the interest and importance of the MCP, considerable efforts have been devoted to
developing both exact and heuristic algorithms for tackling the maximum clique problem.
Exact approaches (e.g., branch and bound, Lagrangian relaxation, column generation,

9

Chapter 1. Introduction

cutting planes, etc) are algorithms which guarantee at finding an optimal solution, but
with a runtime that often grows forbiddingly large with instance size in case of hard
problem instances. Still, highly effective exact algorithms have been proposed in the
literature for tackling the maximum clique problem. With the increased speed of modern
computers, some of these algorithms are even able to solve large instances with up to 1500
vertices and 568960 edges. In the following, we provide a brief overview of some of the
best and most important exact algorithms for the MCP.

There are many exact algorithms for the maximum clique and related problems avail-
able in the literature. Most of them are variations of the branch and bound method,
which can be defined by different techniques for determining lower and upper bounds
and by proper branching strategies. Tarjan and Trojanowski [Tarjan and Trojanowski,
1977] proposed a recursive algorithm for the maximum independent set problem with the
time complexity of O(2

n
3). Later, this result was improved by Robson [Robson, 1986],

who modified the algorithm of Tarjan and Trojanowski to obtain the time complexity of
O(20.276n). Another important implicit enumerative algorithm for the MCP was developed
by Balas and Yu [Balas and Yu, 1986] in 1986. Using an interesting new implementation
of the implicit enumeration, they were able to compute maximum cliques in graphs with
up to 400 vertices and 30,000 edges.

In 1990, Carraghan and Pardalos [Carraghan and Pardalos, 1990] proposed yet an-
other important branch and bound algorithm for the maximum clique problem based on
examining vertices in the order corresponding to the nondecreasing order of their degrees.
It is an important exact algorithm for the MCP, since many exact algorithms are based
on such a basic and simple branch and bound solver. Despite its simplicity, the approach
proved to be very efficient, especially for sparse graphs. Since then, a lot of efforts have
been devoted to improving its performance, most attempts to improve on this straight-
forward algorithm are based on methods for calculating upper bounds (other than from
the size of the induced subgraph) during the search for the purpose of more efficiently
pruning subtrees. Almost without exceptions, such upper bounds are obtained from the
graph coloring problem, based on the following property.

In a graph coloring, adjacent vertices must be assigned different colors. If a graph, or
an induced subgraph G, can be colored with, say, k colors, then the subgraph G, cannot
contain a clique of size k + 1, i.e., ω(G) ≤ k where ω(G) denotes the cardinality of a
maximum clique of the induced subgraph G.

The algorithm of Carraghan and Pardalos [Carraghan and Pardalos, 1990] was further
improved by Algorithm Cliquer [Österg̊ard, 2002], a branch-and-bound algorithm which
analyzes vertices in order defined by their coloring and employs a new pruning strategy.
In [Österg̊ard, 2002], the author compared the performance of this algorithm with several
other approaches on random graphs and DIMACS benchmark instances and claimed that
his algorithm is superior in many cases.

Fahle [Fahle, 2002] also improves the algorithm of Carraghan and Pardalos [Carraghan
and Pardalos, 1990], by using the constructive heuristic DSATUR to color vertices one by
one, and by partitioning in parallel the graph into independent sets. As vertices are
colored or inserted into an independent set in decreasing and increasing order of their
degree respectively, four heuristic solutions of graph coloring are obtained, and the best

10

1.4 Heuristic methods for the MCP

one is used as the upper bound.
Regin [J.C.Regin, 2003] uses an upper bound based on a matching algorithm. A

matching, which corresponds to a set of independent sets of size 2 here, is computed by
traversing the vertices of a graph and considering that an edge exists if two vertices are
not connected.

MCQ [Tomita and Seki, 2003] colors vertices in a predetermined order. Suppose that
the current independent sets are S1, S2, ..., Sk (in this order, k is 0 at the beginning of the
coloring process), MCQ inserts the current first vertex v into the first Si such that v is non-
connected to all vertices already in Si. If such a Si does not exist, a new independent set
Sk+1 is opened and v is inserted here. After all vertices are partitioned into independent
sets, they are reordered according to their independent set, vertices in Si coming before
vertices in Sj if i < j. This coloring process is executed for Gv after each branching on the
vertex v. The predetermined order of vertices in Gv is inherited from G. MCR [Tomita
and Kameda, 2007] improves MCQ with a better initial order of vertices in the initial
input graph, but uses the same coloring process to compute the upper bound.

MaxCliqueDyn [Konc and Janezic, 2007] is also improved from MCQ. While MCQ (as
well as MCR) only computes the degree of vertices at the root of the search tree for the
initial input graph, MaxCliqueDyn dynamically recomputes the degree of vertices at some
nodes near the root of the search tree chosen using a parameter, and re-orders the vertices
in the decreasing order of their degree before coloring these vertices. The dynamic degree
computation near the root of the search tree makes MaxCliqueDyn faster than MCQ for
random graphs when their density is between 0.7-0.95, but slower than MCQ when the
graph density is smaller than 0.7.

In [Li and Quan, 2010], Li and Quan proposed a new encoding from MCP into MaxSAT
and used MaxSAT technology to improve the upper bound based on a partition P of a
graph into independent sets for a maximum clique of the graph, which cannot be very
tight for imperfect graphs. In this way, the strength of specific algorithms for MCP in
partitioning a graph and the strength of MaxSAT technology in propositional reasoning
are naturally combined to solve the MCP. The authors compared the performance of this
algorithm with several other approaches and claimed that their approach is very effective
on hard random graphs and on DIMACS benchmarks.

Though exact methods have been frequently used to solve the MCP and these meth-
ods have the theoretical advantage of finding optimal solutions to a given problem, their
applications are generally limited to instances of moderate sizes. To handle the maximum
clique problem on very large graphs, we have to resort to heuristic methods to find sub-
optimal solutions within reasonable time. In the following section, we briefly review some
representative heuristics for the MCP.

1.4 Heuristic methods for the MCP

The inherent computational complexity of the MCP has led many researches to reassess
their strategy for attacking these problems. Using heuristic techniques is a popular al-
ternative which is less bleak than attempting to solve the MCP exactly. Any approach

11

Chapter 1. Introduction

without a formal guarantee of performance can be considered as a “heuristic”. Although
such methods are not satisfying mathematically, they have shown to be very useful in
practical situations since they are able to provide solutions of acceptable quality with rea-
sonable computing efforts. Essentially, heuristic algorithms for the MCP mainly belong to
four main solution approaches including sequential greedy algorithms, local search meth-
ods, evolutionary population-based hybrid or distributed approaches and heuristics based
on continuous optimization.

1.4.1 Greedy algorithms

Greedy heuristics are simple and intuitive algorithms which make greedy choices to find a
solution to an optimization problem. Greedy algorithms construct feasible solutions from
scratch by making, in each step, the most favorable choice for a decision variable. Each
choice depends on the decisions made in the previous steps, but the effects that this choice
will have in the following steps are unknown. Such choices can thus be viewed as local
decision rules that generally lead to sub-optimal solutions, since the resulting solution at
the end of construction is not known, and future decisions may have a large impact on the
resulting quality of the solution.

The majority of greedy algorithms in the literature for the maximum clique problem are
called “sequential greedy heuristics”. These heuristics generate a maximal clique through
the repeated addition of a vertex into a partial clique, or the repeated deletion of a vertex
from a set that is not a clique.

Kopf and Ruhe [Kopf and Ruhe, 1987] named these two classes of heuristics the Best in
and the Worst out heuristics. Decisions on which vertex to be added in or moved out next
are based on some particular indicators associated with candidate vertices. For example,
a possible Best in heuristic constructs a maximal clique by repeatedly adding in a vertex
that has the largest degree among candidate vertices. In this case, the indicator is the
degree of a vertex. On the other hand, a possible Worst out heuristic can start with the
whole vertex set V . It will repeatedly remove a vertex out of V until V becomes a clique.

Kopf and Ruhe [Kopf and Ruhe, 1987] further divided the above two classes of heuris-
tics into New and Old (Best in or Worst out) heuristics. Namely, if the indicators asso-
ciated with candidate vertices are updated every time a vertex is added in or moved out,
then the heuristic is called a New heuristic. Otherwise it is called an Old heuristic. We can
find in the literature that most heuristics for the maximum clique problem fall in one or
the other classes. See for example, the greedy algorithm of Johnson [Johnson, 1974], and
the greedy algorithm of Tomita et al [Tomita et al., 1988]. The differences among these
heuristics are their choice of indicators and how indicators are updated. These sequential
greedy heuristics are very fast by nature but their quality is generally unsatisfactory.

1.4.2 Local search heuristics

1.4.2.1 Local search strategies for the MCP

When designing a local search algorithm for solving a particular problem, one has to
define the search space to be explored, the evaluation function to be minimized, and the

12

1.4 Heuristic methods for the MCP

neighborhood function. This triplet is what we call a search strategy. We propose to
classify the search strategies for the MCP into two categories. The first one solves the
MCP, while the second one consider the size k of cliques as fixed, and tries to find a clique
of a fixed size k.

• The legal strategy: the search space Ω contains all legal cliques and the goal is to
find a solution c ∈ Ω whose size is as large as possible.

• The k-fixed penalty strategy: the size k of the clique is fixed, the search space Ω
contains all (not necessarily legal cliques) the vertex subsets of fixed size k (k-subsets)
including both feasible and infeasible cliques, and the goal is to determine a legal
clique c ∈ Ω.

For the k-fixed penalty strategy, as noted in [Friden et al., 1989], the maximum clique
problem can be approximated by finding a series of k-cliques for increasing values of k
(a k-clique is a clique of size k). Each time a k-clique is found, k is incremented by
one and a new (larger) k-clique is sought. This process is repeated until no k-clique can
be found. The last k-clique constitutes an approximation of the maximum clique of the
graph. Consequently, the maximum clique problem comes down to the problem of finding
k-cliques.

In the k-fixed penalty strategy, a solution can be represented as a subset c of vertices
of size k. The evaluation function f(c) counts the number of edges induced by c, and the
objective can simply be to maximize the number of edges contained in c such that f(c)
reaches its maximal value f(c) = k ∗ (k − 1)/2, which means any two vertices of c are
connected by an edge and c is a legal k-clique. Neighbor solutions can be obtained by
swapping a vertex in c with another vertex in V \ c. The k-fixed penalty strategy was
explored in [Friden et al., 1989; Fleurent and Ferland, 1996; Geng et al., 2007; Wu and
Hao, 2011a].

For the legal strategy [Katayama et al., 2005; Battiti and Protasi, 2001; Pullan and
Hoos, 2006; Pullan, 2006; Wu and Hao, 2012f], the admissible search space Ω is the set
of all legal cliques. The function to be maximized is the clique size f(c) = |c|, and
the neighborhood N(c) consists of all cliques that can be obtained from c by adding or
dropping a single vertex. For the legal strategy, there exists three basic move operators in
the literature: the add move which consists in adding a vertex in V \ c to c, the drop move
defined by dropping a vertex from c, and the swap move which consisting in swapping
a vertex in c with another vertex in V \ c. Note that the swap move can be trivially
decomposed into two separate moves, i.e., a drop move followed by an add move. In
previous studies, most local search methods based on the legal strategy use two or three of
these move operators. For instances, algorithms like PLS [Pullan, 2006], DLS [Pullan and
Hoos, 2006] and KLS [Katayama et al., 2005] employ only the add and swap moves, while
the MN/TS algorithm [Wu and Hao, 2012f] and the RLS algorithm [Battiti and Protasi,
2001] use all of these move operators.

13

Chapter 1. Introduction

1.4.2.2 Tabu search heuristics for the MCP

Tabu search (TS) is a local search metaheuristic whose essential feature is the usage of
memory. This history-based heuristic was proposed independently by Glover [Glover,
1989], and by Hansen and Jaumard [Hansen and Jaumard, 1990] who used the term
steepest ascent mildest descent (SAMD). In general, TS aims at maximizing a function
f by using an iterative modified local search (assume that here we consider a standard
maximization problem). At each step of the iterative process, the selected move is the one
that produces the highest f value in the neighborhood. This move is executed even if f
decreases with respect to the value at the current point, to exit from local optima. As
soon as a move is applied, the inverse move is prohibited (i.e., not considered during the
neighborhood evaluation) for the next T iterations (called the tabu tenure). Prohibitions
can be realized by using a first-in first-out list of length T (the “tabu list”), where the
inverse of moves enter immediately after their execution, are shifted at each iteration, and
therefore exit after T steps. A move is prohibited at a given iteration if and only if it is
located in the “tabu list”. The tabu tenure controls the degree of diversification introduced
into the search. The longer the tabu list the stronger the introduced diversification.

Various versions of tabu search have been successfully applied to the maximum inde-
pendent set and maximum clique problems. The first tabu search heuristic for the max-
imum stable set problem (or maximum independent set problem) is STABULUS, which
was proposed by Friden et al. in 1989 [Friden et al., 1989]. STABULUS is based on the
k-fixed penalty strategy and aims at finding a legal independent set of size k. The algo-
rithm tries to minimize the number of edges contained in the current subset of k vertices,
while aiming at reducing this number to zero. The basic move of STABULUS consists
in swapping a vertex in the current subset with another vertex out of the current subset.
For determining whether a move is tabu or not, STABULUS first uses one tabu list T1

containing the |T1| last solutions. In addition, STABULUS uses two other lists T2 and T3

containing the last vertices which were removed from (or introduced into) the indepen-
dent set for the purpose of preselection. STABULUS was later improved by Fleurent and
Ferland [Fleurent and Ferland, 1996].

In [Gendreau et al., 1993], Gendreau et al. considered the legal strategy. They proposed
three different versions of TS for the MCP, and successfully compared them with an
iterated version of STABULUS. Two of the newly introduced TS versions are deterministic,
one (ST) based on a single tabu list of the last |T1| solutions visited, the other (DT) adding
a second list of the last |T2| vertices deleted. Only additions of vertices to the current clique
can be restricted (deletions are always possible). The third version (PT) is stochastic: let
St be the set of the vertices that can be added to the current clique c, if |St > 0|, a
random sample of St is considered for a possible (non-tabu) addition, otherwise, if the
current solution c is a local optimum and no vertices can be added, a number of randomly
extracted vertices in St are removed from it.

In [Battiti and Protasi, 2001], Battiti and Protasi proposed a Reactive Local Search
(RLS) algorithm for the MCP. RLS considered also the legal strategy and has been derived
from Reactive Tabu Search [Battiti and Tecchiolli, 1994], which is an advanced and general
tabu search method that automatically adapts the tabu tenure parameter for determining

14

1.4 Heuristic methods for the MCP

the appropriate amount of diversification. The amount of diversification with RLS is
controlled by the prohibition parameter T which is determined by a feedback from the
search history, and an explicit memory-influenced restart which is activated periodically
as a long-term diversification tool assuring that each vertex is eventually tried as part of
the current clique. RLS shows competitive performance on the set of DIMACS maximum
clique instances both in terms of solution quality and computing time.

Very recently, Wu and Hao proposed an adaptive multistart tabu search approach
(AMTS) to solve the MCP [Wu and Hao, 2011a]. AMTS is based on the k-fixed penalty
strategy and integrates several distinguished features such as a constrained neighborhood
for more efficiently exploring the search space, a dynamic tabu tenure mechanism to pre-
vent the algorithm from revisiting previous encountered solutions, and a frequency-based
restart strategy to escape from local optima. This algorithm will be presented in Chapter
2 of this thesis.

In [Wu and Hao, 2012f], the authors porpose a multi-neighborhood tabu search (MN/TS)
for the maximum vertex weight clique problem. MN/TS is based on the legal strategy and
combines three neighborhoods induced by three basic move operators (the add, swap and
drop move) for the purpose of effectively exploring the search space. The particularity of
the combined neighborhood relies on the union of the underlying neighborhoods instead
of the conventional sequential exploration of basic neighborhoods. At each iteration of
the algorithm, MN/TS explores the union of these three neighborhoods and selects the
overall best admissible neighboring solution. In addition, MN/TS integrates a dedicated
tabu mechanism and a randomized restart strategy.

1.4.2.3 Simulated annealing heuristics for the MCP

Simulated annealing [Kirkpatrick et al., 1983] proceeds in the same way as ordinary local
search but incorporates some randomization in the move selection to avoid getting trapped
in a local optimum by means of non-improving moves. These moves are accepted according
to probabilities taken from the analogy with the annealing process.

Geng [Geng et al., 2007] presented a simulated annealing algorithm (SAA) for the
MCP. In a given iteration, the SAA method, which was based on the k-fixed penalty
strategy, generates a random move (an exchange between a vertex in the current subset
and a vertex outside the current subset). If it is an improving move, it is automatically
performed; otherwise, it may still be made with a certain probability (according to the
Boltzmann distribution) using a parameter called temperature. The algorithm starts with
an initial temperature TI = 100.0 which is reduced progressively according to the factor
α2 = 0.9995. For each temperature value, L = 8 ∗ |V | moves are generated, evaluated and
performed if the acceptation condition is verified. The SAA method terminates when the
current temperature t < TS , where TS is the end temperature which is set equal to 0.001.

1.4.2.4 Variable neighborhood search for the MCP

Variable neighborhood search (VNS) [Hansen and Mladenović, 2003] is based on a simple
idea: a systematic change of the neighborhood within a local search algorithm.

15

Chapter 1. Introduction

In [Hansen et al., 2004], the authors propose a VNS for the MCP. In their implemen-
tation, the minimum transversal or minimum vertex cover problem is considered. For
VNS, the distance metric between two solutions T and T ′ is the difference in cardinali-
ties of vertex sets T and T ′. Then the neighborhood Nk(T) consists of all solutions at
distance k from T . Three types of moves are considered for the sets of selected neigh-
borhood structures Nk, k = 1, ..., kmax of VNS: drop, add, and interchange. An initial
solution is obtained by a variable neighborhood descent (VND) heuristic, which is later
used as the local search procedure of the proposed VNS approach. It combines a greedy
selection rule with a simplicial vertex test, and uses add moves in its descent phase and
exchange moves in a plateau phase. Upon reaching a local optimum with respect to both
the add and 1-interchange neighborhoods, a new solution is randomly generated from the
kth neighborhood by dropping k vertices from the current clique.

1.4.2.5 Phased local search for the MCP

Phased local search (PLS) is a stochastic local search algorithm which interleaves different
sub-algorithms designed for different types of problem instances. During each phase of
the PLS, a sub-algorithm is selected to run.

In [Pullan, 2006], the authors propose a PLS for the MCP. The proposed approach
was motivated by the observation that, on the whole set of DIMACS maximum clique
instances, “any elevated performance of an algorithm over one class of problems is exactly
paid for in performance over another class” [Wolpert and Macready, 1997]. PLS, based
on based on the legal strategy, interleaves 3 sub-algorithms which alternate between se-
quences of iterative improvement, during which suitable vertices are added to the current
clique, and plateau search, where vertices of the current clique are swapped with vertices
not contained in the current clique. The sub-algorithms differ in their vertex selection
techniques in that selection can be solely based on randomly selecting a vertex, randomly
selecting within highest vertex degree or randomly selecting within vertex penalties that
are dynamically adjusted during the search. In addition, the perturbation mechanism
used to overcome search stagnation differs between the sub-algorithms. PLS has no in-
stance dependent parameters and achieves state-of-art performance over on a range of
widely studied DIMACS benchmark instances. Moreover, Pullan extends PLS to handle
the maximum vertex weight clique problem and the maximum edge weight clique problem
[Pullan, 2008].

1.4.2.6 Dynamic local search for the MCP

In [Pullan and Hoos, 2006], Pullan and Hoos introduce DLS-MC, a new stochastic local
search algorithm for the MCP. DLS-MC, based on the legal strategy, alternates between
a clique expansion phase and a plateau search phase. During the expansion phase, one
seeks to expand a clique of size k to a new clique of size k +1 by adding a vertex which
is adjacent to all the vertices of the current clique. When the current clique cannot be
expended, one switches to plateau search during which vertices of the current partial clique
are swapped with vertices outside the partial clique. Once the current clique can be further

16

1.4 Heuristic methods for the MCP

expanded, one switches back to the expansion phase and so on. The selection of vertices
is solely based on vertex penalties that are dynamically adjusted during the search, and a
perturbation mechanism is used to overcome search stagnation. The behaviour of DLS-MC
is controlled by a single parameter, penalty delay, which controls the frequency at which
vertex penalties are reduced. DLS-MC is evaluated on a wide range of commonly used
benchmark instances from DIMACS library. Experiments show that DLS-MC archives
highly competitive results compared with a number of state-of-the-art algorithms for the
MCP.

1.4.2.7 Cooperating local search for the MCP

A recent cooperating local search (CLS) has shown excellent performance for the maximum
clique problem on both DIMACS and BOSHLIB benchmarks [Pullan et al., 2011]. CLS is
a hyper-heuristic algorithm [Burke et al., 2003], where the term hyper-heuristic defines a
heuristic approach that seeks to automate the process of selecting, combining, generating
or adapting a number of low level heuristic for a more effective search. CLS is also a parallel
method intended to be run on desktop multi-core computers which have dramatically
improved the usability of parallel algorithms.

Following the idea of PLS, CLS incorporates four low level heuristics which alternate
between sequences of iterated improvement and plateau search. The difference between
these low level heuristics lies in their vertex selection techniques and the way they deal with
plateaus. CLS controls copies of these low level heuristics, which are allocated to available
processor cores. The performance of CLS is improved by passing relevant information
between low level heuristics in order to guide the search to particular areas of the search
domain. CLS requires no run-time parameters and shows excellent performance for the
MCP on both DIMACS and BOSHLIB benchmarks.

1.4.3 Evolutionary algorithms and their hybrids

Inspired by the principles and nature of evolution, several evolutionary algorithms (EAs)
have been proposed since the early 1960s, including genetic algorithms [Holland, 1975],
evolutionary strategies [Rechenberg, 1973], evolutionary programming [Fogel et al., 1966],
distribution estimation algorithms [Larran̂aga and Lozano, 2001], scatter search [Laguna
and Martŕı, 2003] and memetic algorithms [Moscato, 1989; Hao, 2011]. Although each of
these constitutes a different approach, they all operate on a population of candidate solu-
tions applying the principle of survival of the fittest to produce a sequence of increasingly
better quality individuals (i.e., solutions).

Early attempts to apply genetic algorithms to the maximum independent set and
maximum clique problems were made in the beginning of 1990s. Many implementations
have appeared in the literature ever since [Murthy et al., 1994; Foster and Soule, 1995;
Sakamoto et al., 1997; Thierens, 1999]. Most of the genetic algorithms can be easily
parallelized. However, the work of Cater and Park [Carter and Park, 1993; Park and
Carter, 1994] shows that a pure genetic algorithm is not effective for the MCP. It is now
acknowledged that in order to improve their performances for the MCP, genetic algorithms

17

Chapter 1. Introduction

need to be customized or to incorporate other techniques. Several attempts have been
made to combine genetic algorithms with local searches for solving the MCP [Fleurent
and Ferland, 1996; Marchiori, 1998; Singh and Gupta, 2006].

In [Marchiori, 2002], the author proposed GENE, a genetic local search method for the
MCP. GENE employs roulette wheel selection, uniform crossover and swap mutation, and
generates subgraphs, which are then transformed into maximal clique by the local search
heuristic. The local search heuristic consists of three steps: perturb, repair and extend.
The perturb step modifies the subgraph obtained by the genetic algorithm through remov-
ing and adding some vertices quasi randomly. The repair step then transforms this graph
into a clique. The extend step extends this clique into a maximal clique. The GENE algo-
rithm outperforms other existing genetic algorithms on the DIMACS benchmark graphs
in terms of quality of solutions and speed.

The results of GENE is further improved by EA/G [Zhang et al., 2005], a hybrid
evolutionary algorithm with guided mutation for the MCP. In EA/G, guided mutation
is first used to generate offsprings, which are then subjected to Marchiori’s local search
heuristic [Marchiori, 2002] for further improvement. The guided mutation in EA/G can
be regarded as a combination of the conventional mutation operator and the offspring
generating scheme of the estimation of distribution algorithms (EDAs). The basic idea
behind the proposed guided mutation is to combine the global statistical information and
location information of the solutions found so far to overcome the shortcoming of GAs
and EDAs. Besides guided mutation, EA/G adopts a search strategy which divides the
whole search space into several search areas, and in each phase the algorithm focus on a
single search area. Experimental results of EA/G on DIMACS graphs indicate that this
new algorithm outperforms the GENE algorithm.

Starting from the same evolutionary framework of EA/G, Brunato and Battiti pro-
pose a reactive evolutionary algorithm (R-EVO) for the MCP [Brunato and Battiti, 2011].
R-EVO uses an evolutionary scheme in the framework of estimation of distribution al-
gorithms to generate new individuals, which are then subjected to memetic evolution
through a simplified Reactive Search Optimization (RSO) method [Battiti and Brunato,
2008]. In this manner, each individual in the population executes a short local search
with prohibition. The prohibition period is determined in a simple reactive manner on a
specific instance based on the estimated size of the maximum clique. The results obtained
by R-EVO demonstrate that R-EVO is competitive with respect to EA/G.

1.4.4 Heuristics based on continuous optimization

As opposite to the combinatorial approaches, various continuous nonconvex formulations
of the clique problem are studied in order to develop and apply continuous optimization
methods. Massaro et al. [Massaro et al., 2001] presented a PBH algorithm which is
based on a linear complementarity formulation of the clique problem. The algorithms,
described in [Bomze et al., 2012], and [Kuznetsova and Strekalovsky, 2001] are based
on the continuous formulation of MCP given by Bomze [Bomze, 1997]. The Max-AO
algorithm by Burer et al. [Burer et al., 2002] employ a low-rank restriction upon the
primal semidefinite program computing the Lovász number of a graph. The QUALEX-

18

1.4 Heuristic methods for the MCP

MS algorithm of Busygin [Busygin, 2006] follows the idea of finding stationary points
of a quadratic function over a sphere. It is based on the new generalized version of
the Motzkin-Straus [Motzkin and Straus, 1965] quadratic programming formulation for
the MCP. Furthermore, the Motzkin–Straus theorem and its extension were successfully
employed in solving the maximum vertex weight clique problem [Bomze et al., 2000] and
the maximum edge weight clique problem [Pavan and Pelillo, 2007].

1.4.5 Other popular heuristics

1.4.5.1 Ant colony optimization (ACO)

Ant colony optimization (ACO) [Dorigo et al., 1996; Dorigo and Caro, 1999] is inspired
by the effective cooperation of ants in finding, with limited cognitive abilities, the shortest
way from their nest to a food source. The first ant algorithm applied to the maximum
clique problem is Ant-Clique [Fenet and Solnon., 2003]. Basically, Ant-Clique successively
generates maximal cliques through the repeated addition of vertices into partial cliques.
ACO is introduced as a heuristic for choosing, at each step, the vertex to enter the clique:
this vertex is chosen with respect to a probability that depends on pheromone trails laying
between it and the clique under construction, while pheromone trails are deposited by ants
proportionally to the quality of the previously computed cliques. The results obtained by
Ant-Clique demonstrate that Ant-Clique is able to find larger cliques on a majority of
the DIMACS benchmark instances with respect to GENE [Marchiori, 2002]. Later, Ant-
Clique is extended and further improved by the authors in another paper [Solnon and
Fenet, 2006] in which different strategies for laying pheromone are exploited.

Another version of ant colony optimization for the maximum clique problem (ASMC)
was proposed in [Bui and Rizzo, 2004]. ASMC is rather different from Ant-Clique as ants
are distributed, i.e., each ant only has local knowledge of the graph, so that the algorithm
can be implemented in a distributed system. As a counterpart, performance of ASMC by
means of solutions’ quality are rather far from performance of Ant-Clique and other non
distributed algorithms.

1.4.5.2 Neural Network

Introduced by Hopfield and Tank in 1985 [Hopfield and Tank, 1985], the Neural Network
is widely utilized to solve a number of classic combinatorial optimization problems such
as the traveling salesman problem. As far as the MCP is concerned, early attempts at
encoding the maximum clique and related problems in terms of a neural network were
already done in the late 1980’s [Ramanujam and Sadayappanv, 1988]. However, little or
no experimental results were presented, thereby making it difficult to evaluate the merits
of these algorithms. In [Lin and Lee, 1993], Lin and Lee used the quadratic zero-one
formulation as the basis for their neural network heuristic. On random graphs with up
to 300 vertices, they found their algorithm to be faster than the implicit enumerative
algorithm in [Carraghan and Pardalos, 1990], while obtaining slightly worse results in
terms of clique size.

19

Chapter 1. Introduction

Grossman [Grossman, 1993] proposed a discrete, deterministic version of the Hopfield
model for the MCP, originally designed for an all-optical implementation. The model has
a threshold parameter which determines the character of the stable states of the network.
The author suggests an annealing strategy on this parameter, and an adaptive procedure
to choose the network’s initial state and threshold. On DIMACS graphs the algorithm
performs satisfactorily but it does not compare well with more powerful heuristics such as
simulated annealing.

Gu and Yu proposed a Chaotic Neural Network for the MCP [Gu and Yu, 2004].
From analyzing the chaotic states of the neuron output and computational energy, the
authors reach the conclusion that, unlike the conventional Hopfield neural networks for
the MCP, Chaotic Neural Network can avoid getting stuck in local minima and thus
yields competitive solutions. Extensive experiments are carried out by the authors to
demonstrate that Chaotic Neural Network provides a more effective and efficient approach
than conventional Hopfield neural networks to solve the MCP.

1.5 Applications

In practical terms, the maximum clique and related problems have widespread applications
in numerous areas [Pardalos and Xue, 1994], as for example:

• project selection [Christofides, 1975].

• classification theory [Barahona et al., 1992].

• fault tolerance [Berman and Pelc, 1990; Lovász, 1979].

• coding theory [Deo, 1974; MacWilliams and Sloane, 1979; Sloane, 1998].

• computer vision [Ballard and Brown, 1982].

• economics [Avondo-Bodeno, 1962].

• information retrieval [Reigold et al., 1977].

• signal transmission theory [Reigold et al., 1977].

• aligning DNA [Miller, 1993; Vingron and Pevzner, 1992; Vingron and Argos, 1991].

• protein sequences [Lecky et al., 1989; Vingron and Pevzner, 1992; Strickland et al.,
2005].

In fact, an exhaustive list of (direct or implicit) applications would perhaps contain dozens
or hundreds of references, simply because the clique model is very general. The above
list comprises only the most representative applications. Next, we provide some relevant
practical applications of the MCP. In addition, some problems arising in these applications
can be used as test problems for algorithm comparison.

We start with an application in computing the maximum number of codewords in a
binary constant-weight code with length n, Hamming distance at least d, and weight w.

20

1.5 Applications

This number is called A(n, d, w). Also let A(n, d) be the maximum number of binary
codewords of length n and Hamming distance at least d without consideration on weight.
To compute A(n, d), one forms the graph with 2n vertices, corresponding to all possible
code-words, joins two vertices by an edge if their Hamming distance is at least d, and
finds the maximum clique. Similarly, finding the largest code invariant under a given
permutation group, requires finding the maximum clique in a graph with weights attached
to the vertices. More details on computing the maximum number of constant weight codes
are found in [Brouwer et al., 1990].

The next application occurs in bioinformatics. Computing the similarity between two
protein structures is a crucial task in molecular biology, and has been extensively investi-
gated. In [Malod-Dognin et al., 2010], the authors propose a protein structure comparison
method based on internal distances which is posed as a maximum clique problem in an
alignment graph.

In graph-theoretic language, two proteins P1 and P2 can be represented by two undi-
rected graphs G1 = (V1, E1) and G2 = (V2, E2) where the sets of vertices V1 and V2 stand
for residues/SSE, while edges depict contacts/relationships between them. The similarity
between P1 and P2 can be estimated by finding the longest alignment between the ele-
ments of V1 and V2. In [Malod-Dognin et al., 2010], this is modeled by an alignment graph
G = (V, E) of size |V1| × |V2|, where each row corresponds to an element of V1 and each
column corresponds to an element of V2. A vertex i × k is in V (i.e. matching i ←→ k
is possible), only if elements i ∈ V1 and k ∈ V2 are compatible. An edge (i × k, j × l) is
in E if and only if : (1) i < j and k < l, for order preserving, and (2) matching i × k is
compatible with matching j × l. A feasible alignment of P1 and P2 is then a clique in G,
and the longest alignment corresponds to a maximum clique in G.

In addition to its practical applications in real-life problems, the MCP is tightly related
to a quite number of important combinatorial optimization problems such as graph col-
oring, clique partitioning and community detection in complex networks. Moreover, some
of them can be directly transformed into the maximum clique problem, such as the set
packing problem, the optimal winner determination problem, the set partitioning problem
and the double subgraph isomorphism problem. Given the simplicity of the MCP, all these
problems can be first mapped onto the MCP and then be modeled by some effective MCP
based approaches. In the following, we provide some interesting examples.

The first application occurs in graph coloring. Recall that a legal k-coloring of a given
graph G = (V, E) is a partition of V into k independent sets (color classes). Approaches
based on independent sets extraction were proposed as early as 1987 in [Chams et al., 1987]
and it is now used for coloring large graphs [Chams et al., 1987; Fleurent and Ferland, 1996;
Hertz and de Werra, 1987; Johnson et al., 1991; Wu and Hao, 2012a]. As observed in
many studies, it is difficult, if not impossible, to find a proper k-coloring of a large graph
G = (V, E) (e.g., with 1000 vertices or more) with k close to χ(G) by applying directly
a given coloring algorithm on G. A basic approach to deal with large graphs is to apply
the general principle of “reduce-and-solve”. This approach is composed of a preprocessing
phase followed by a coloring phase.

The preprocessing phase typically identifies and removes some (large) independent
sets from the original graph to obtain a reduced subgraph (called “residual” graph). The

21

Chapter 1. Introduction

subsequent coloring phase determines a proper coloring for the residual graph. Given
the residual graph is of reduced size, it is expected to be easier to color than the initial
graph. Now it suffices to consider each extracted independent set as a new color class
(i.e., by assigning a new color to all the vertices of each of these sets). The coloring of the
residual graph and all the extracted independent sets give a proper coloring of the initial
graph. This approach were explored with success in early studies like [Chams et al., 1987;
Fleurent and Ferland, 1996; Hertz and de Werra, 1987; Johnson et al., 1991].

Algorithms based on this approach can use different methods to find a large indepen-
dent set in the graph. In [Chams et al., 1987], this was achieved with a simple greedy
heuristic while in [Fleurent and Ferland, 1996; Hertz and de Werra, 1987], large indepen-
dent sets were identified by a dedicated tabu search algorithm. In [Johnson et al., 1991],
the authors introduced the XRLF heuristic which operates in two steps. First, a number
of independent sets are collected using Leighton’s Recursive Largest First (RLF) heuristic
[Leighton, 1979]. Then, an independent set is iteratively selected and extracted from the
graph such that its removal minimizes the density of the reduced graph. This process
continues until the residual graph reaches a given threshold.

Another problem which is equivalent to the MCP is the max-min diversity problem. In
[Croce et al., 2009], the authors proposed an effective MCP based heuristic approach for
the max-min diversity problem. Basically, their approach relies on the equivalence between
the max-min diversity problem and the MCP, it solves different decision problems about
the existence of cliques with a given size. The idea is rather simple but, according to
the experiments and the comparison with the existing literature, appears as particularly
promising. In fact, it outperforms, both in quality and CPU time, the existing state of
the art algorithms dedicated for the max-min diversity problem.

Given a set of elements N = {s1, s2, ..., sn} and an n × n upper-triangular matrix D
whose components dij , 1 ≤ i < j ≤ n, measures the diversity of the two elements si and
sj , and an integer m such that 1 ≤ m ≤ n. The max-min diversity problem consisting in
selecting a subset S ⊆ N such that |S| = m and the objective function

f(S) = min{dij : si, sj ∈ S} (1.1)

is as large as possible.
As noted in [Croce et al., 2009], the max-min diversity problem can be approximated

by solving a series of decision problems about the existence of the subsets of elements.
First, the distinct diversity values in the D matrix are sorted according to the increasing
sequence such that:

δ1 < δ2 < ... < δh (1.2)

Their approach begins with the smallest δi(i = 1) and then tries to find a subset S ⊆ N
such that |S| = m and its objective function value f(S) ≥ δi, each time such subset is
found, i is increased by 1 and a new subset with larger objective function value is sought.
The last δi constitutes an approximation of the max-min diversity value. Consequently,
the max-min diversity problem comes down to a series of decision problems about the
existence of the subsets of elements for the given objective function values.

22

1.6 Benchmarks instances

Thus, the decision version of the max-min diversity problem asks whether there exists
an m-tuple S with f(S) ≥ δi for a given δi. This decision problem is in fact equivalent to
the k-clique problem (see Section 1.4.2.1). Given δi, an instance of the k-clique problem
is constructed as follows: we first set k = m and define a graph G = (V, E) where V =
{1, 2, ..., n} and edge {i, j} ∈ E (i, j ∈ V) if and only if dij ≥ δi. Now it is straightforward
to see that if S = {si1 , ..., sim} is a m-tuple with f(S) ≥ δi, then {i1, ..., im} is a k-clique
in the graph G = (V, E). Consequently, to obtain an m-tuple S with f(S) ≥ δi, we can
determine a k-clique in the corresponding graph G = (V, E).

In addition to the graph coloring problem and the max-min diversity problem, MCP
based approaches have been successfully applied to solve several other important combi-
natorial problems such as graph clustering [Schaeffer, 2007], minimum sum coloring [Wu
and Hao, 2012b], mandatory coverage [Brotcorne et al., 2002] and integration of genome
mapping data [Harley et al., 2001].

1.6 Benchmarks instances

In this thesis, we are interesting in the maximum clique and related problems, including
the maximum vertex weight clique problem, the maximum edge weight clique problem,
the graph coloring problem, the minimum sum coloring problem and the set packing
problem. For each of these problems, we first developed heuristic approaches and then
conducted extensive experimental evaluations and comparisons with the current state-of-
art approaches on commonly used benchmark instances.

For the maximum clique problem, we conduct experiments on the following two sets of
benchmark instances which are frequently used to assess MCP algorithms in the literature
[Wu and Hao, 2011a; Wu and Hao, 2012f; Pullan, 2006; Pullan and Hoos, 2006; Pullan,
2008; Pullan et al., 2011; Battiti and Protasi, 2001; Katayama et al., 2005; Hansen et al.,
2004; Marchiori, 1998; Singh and Gupta, 2006; Zhang et al., 2005; Brunato and Battiti,
2011]:

DIMACS benchmark: These instances1, presented at the Second DIMACS Implemen-
tation Challenge, are the most frequently used for comparison and evaluation of MCP
algorithms. More specifically, we use the following popular families:

• Brock - instances where the optimal clique is “hidden” by incorporating low-degree
vertices.

• pHat - random instances having a wider range of vertex degrees. The generator for
these instances is a generalization of the classical uniform random graph generator.

• MANN - clique formulation of the Steiner Triple Problem. These instances are
created using Mannino’s code to convert the set covering formulation of the Steiner
Triple Problem to clique problems.

• Kel - instances based on Keller’s conjecture on tilings using hypercubes.
1http://cs.hbg.psu.edu/txn131/clique.html

23

Chapter 1. Introduction

• Ham and Joh - graphs steaming from the coding theory.

• Gen - random instances with a unique known optimal solution.

• Other families such as C, San, SanR which are randomly generated using different
methods.

The size of the DIMACS instances ranges from less than 50 vertices and 1,000 edges
up to more than 3,300 vertices and 5,000,000 edges.

BOSHLIB benchmark: We also consider the more recent frb test instances2 arising
from the SAT’04 Competition. BOSHLIB instances are randomly generated graphs with
hidden optimal solutions and appear to be more difficult than most of the instances from
the DIMACS suite. The instance size ranges from 450 vertices and 17,794 edges up to
1,534 vertices and 12,7011 edges.

For the maximum vertex weight clique problem, we use the DIMACS-W and BOSHLIB-
W benchmarks which are easily converted from the DIMACS and BOSHLIB instances by
allocating weights to vertices in the following way. For vertex i, wi is set equal to i
mod 200 + 1. This method for constructing weighted instances was initially proposed in
[Pullan, 2008]. On the other hand, other maximum weight clique algorithms from the
literature [Babel, 2008; Macambira and de Souza, 2000] use randomly generated graphs
with randomly generated vertex weights, which makes it impossible to replicate exactly
the benchmark experiments for comparisons.

For the maximum edge weight clique problem, which is also known as the maximum
diversity problem (MDP), we carry out extensive experiments on the same sets of 120
test instances as in [Palubeckis, 2007], which are frequently used to assess algorithms for
MDP. The details of the instance sets are described as follows [Duarte and Mart́ı, 2007;
Gallego et al., 2009; Mart́ı et al., 2011]:

• Silva instances 3: This data set consists of 20 instances, which were generated by
Silva et al [Silva et al., 2004]. The instance sizes are such that for n = 100, m = 10,
20, 30 and 40; for n = 200, m = 20, 40, 60 and 80; for n = 300, m = 30, 60, 90 and
120; for n = 400, m = 40, 80, 120, and 160; and for n = 500, m = 50, 100, 150 and
200.

• Random Type I instances (Type1 55, Type1 22 and Type1 52) 4: These instances
(60 in total) are based on matrices with real numbers generated from a (0, 10)
uniform distribution. Random Type I was introduced by Duarte and Mart́ı [Duarte
and Mart́ı, 2007] and includes 3 sets of instances. The first set (Type1 55) consists
of 20 instances with n = 500 and m = 50, the second set (Type1 52) includes 20
instances with n = 500 and m = 200, and the third set contains 20 instances with
n = 2000 and m = 200.

2http://www.nlsde.buaa.edu.cn/∼kexu/benchmarks/graph-benchmarks.htm
3http://www.optsicom.es/mdp/
4http://www.uv.es/∼rmarti/paper/mdp.html

24

1.6 Benchmarks instances

• Random Type II instances (Type2): These instances (20 in total) are based on
matrices with real numbers generated from a (0, 1000) uniform distribution. This
data set was introduced by Duarte and Mart́ı [Duarte and Mart́ı, 2007] and have
size of n = 500 and m = 50.

• Beasely instances (b2500): This data set consists of 10 instances, which were taken
from the OR-Library [Beasley, 1996]. All the instances have 10% density with m =
2500 and n = 1000. These instances were used in [Palubeckis, 2007; Brimberg et al.,
2009; Lozano et al., 2011; Wang et al., 2012] to assess the MDP algorithms.

• Random larger instances (p3000 and p5000): These instances (10 in total) are based
on matrices with integer numbers generated from a [0, 100] uniform distribution.
The density of the matrix is 10%, 30%, 50%, 80%, 100% respectively. There are five
instances with n = 3000 and m = 1500, and five instances with n = 5000 and m =
2500. These instances were tested in [Palubeckis, 2007; Brimberg et al., 2009; Lozano
et al., 2011; Wang et al., 2012]. See http://www.soften.ktu.lt/∼gintaras/max div.html
for the sources of the generator and input files to replicate these instances.

For the graph coloring problem as well as the minimum sum coloring problem, two sets
of benchmark graphs from the literature are considered in the experiments. The first set
is composed of 32 DIMACS instances 5, which are frequently used to test graph coloring
algorithms as well as sum coloring algorithms [Wu and Hao, 2012a; Wu and Hao, 2012b]
and can be summarized as follows:

• 12 random graphs (DSJCx.y). The first and second number in the name of each
graph represent respectively the number of vertices and the edge density in the
graph. The chromatic numbers of these graphs are unknown.

• 6 flat graphs (flat300 20 0, flat300 26 0, flat300 28 0, flat1000 50 0, flat1000 60 0
and flat1000 7 0). They are structured graphs with known chromatic number (re-
spectively 20, 26, 28, 50, 60 and 76).

• 2 large random geometric graphs (R1000.1c, R1000.5). These graphs are gener-
ated by picking random points (vertices) in a plane and by linking two points situ-
ated within a certain geometrical distance. The chromatic number is unknown for
R1000.1c and is equal to 234 for R1000.5.

• 3 very large random graphs (C2000.5, C2000.9, C4000.5). The chromatic numbers
of these graphs are unknown. Due to the size and difficulty of these graphs, they are
not always used in computational experiments in the literature.

• 1 latin square graph (latin sqr 10) with unknown chromatic number.

• 8 Leighton graphs (leX.Y) with X = 450 vertices and with known chromatic number
Y (they have a clique of size Y).

5http://www.optsicom.es/mdp/

25

Chapter 1. Introduction

The second set of benchmarks is composed of 27 graphs from the COLOR02 website6

. Like the first set, these graphs are initially collected for the purpose of the COLOR02
competition.

For the set packing problem (SPP), we use the same 16 large, random SPP instances
as in [Alidaee et al., 2008], the size of the SPP instances ranges from 1000 elements to
2000 elements.

6http://mat.gsia.cmu.edu/COLOR02/

26

Chapter 2

An Adaptive Multistart Tabu
Search Approach for Maximum
Clique

In this chapter, we present an effective adaptive multistart tabu search algorithm (AMTS)
for the maximum clique problem. The proposed AMTS algorithm employs the k-fixed
penalty strategy, and integrates two complementary neighborhoods, a dynamic tabu tenure
mechanism and a guided diversification strategy. To better overcome local optima, the
basic TS engine is reinforced with a long term memory based restart strategy. Extensive
experimental evaluations on the whole set of 80 DIMACS challenge benchmarks show that
the proposed approach competes favorably with the current state-of-art approaches for the
MCP. It is able to attain consistently the largest known clique for 79 benchmarks out of
the 80 instances. The content of this chapter is published in [Wu and Hao, 2011a].

Contents

2.1 Adaptive multistart tabu search (AMTS) for MCP 28

2.1.1 Solution strategy and general procedure 28

2.1.2 The tabu search procedure . 29

2.1.3 A frequency-based strategy for new solution generation 34

2.2 Experimental results . 34

2.2.1 Experimental settings . 35

2.2.2 Computational results . 35

2.2.3 Comparative results . 37

2.3 Analysis of critical components of AMTS 41

2.3.1 Influence of restart . 41

2.3.2 The tabu list . 43

2.4 Conclusions . 44

27

Chapter 2. An Adaptive Multistart Tabu Search Approach for Maximum Clique

2.1 Adaptive multistart tabu search (AMTS) for MCP

In this chapter, we follow the basic idea of [Friden et al., 1989] and develop an effective
heuristic algorithm based on tabu search [Glover, 1989]. Like STABULUS (see Section
1.4.2.2), the proposed adaptive multistart tabu search approach is based on the k-fixed
penalty strategy, and searches a legal k-clique within a space of subsets S of size k. Yet,
the main components of our AMTS algorithm are different from those of STABULUS. In
particular, to allow the algorithm to explore more efficiently the search space, the swap
operations of AMTS are limited to vertices from two critical subsets A (a constrained
subset of the candidate solution S) and B (a constrained subset of V \S) (Section 2.1.2.2).
To escape from local optima, AMTS applies both a deterministic selection rule (Section
2.1.2.3) and a probabilistic selection rule to occasionally accept deteriorating solutions
(Section 2.1.2.4). AMTS uses a dedicated tabu list to prevent the algorithm from re-
visiting previous encountered solutions (Section 2.1.2.5). Finally, to allow the algorithm
to explore more new search regions, AMTS employs a frequency-based restart strategy
(Section 2.1.3).

2.1.1 Solution strategy and general procedure

Our adaptive multistart tabu search algorithm follows the k-fixed penalty strategy (see
Section 1.4.2.1), and is designed for finding a clique of fixed size k (denoted by k-clique)
in a graph G = (V, E). In this section, we describe the general procedure of AMTS while
its components are detailed in Section 2.1.2.

For this purpose, we first define the search space Ω that is explored by AMTS. It is
composed of all the vertex subsets S of fixed size k (k-subsets) including both feasible and
infeasible cliques, i.e.,

Ω = {S ⊂ V : |S| = k} (2.1)

For any candidate solution S ∈ Ω, its quality is assessed by the evaluation function
f(S) that counts the number of edges induced by S:

f(S) =
∑

u,v∈S

euv (2.2)

where euv = 1 if {u, v} ∈ E, euv = 0 otherwise.
Obviously, if a candidate solution S reaches the maximal value of this function, i.e.,

f(S) = k ∗ (k − 1)/2, any two vertices of S are connected by an edge and the candidate
solution S is a legal k-clique. If f(S) < k ∗ (k − 1)/2, there must be at least two vertices
in S which are not adjacent, consequently S is not a legal k-clique.

The objective of our AMTS algorithm is then to find in Ω a solution S that reaches
the maximal value of f such that f(S) = k ∗ (k−1)/2. The pseudo-code of AMTS is given
in Algorithm 2.1.

AMTS explores the space Ω by employing an optimization procedure based on tabu
search (we denote this procedure by TS0). More specifically, AMTS generates first an
initial solution (k-subset) in Ω which is built greedily in k steps from an empty set S. At

28

2.1 Adaptive multistart tabu search (AMTS) for MCP

Algorithm 2.1: Adaptive multistart tabu search for the MCP
Require: Graph G, Integer k (clique size), Integer L (search depth), Integer Itermax (maximum

allowed iterations)
Ensure: k-clique if found
1: Begin
2: S ← Initialize(k) {Initial solution}
3: Iter ← 0 {Iteration counter}
4: while (Iter < Itermax) do
5: S∗ ← TS0(S, k, L, Iter) {Apply the tabu search procedure TS0 to improve S, §2.1.2}
6: if S∗ is a legal k-clique then
7: Return(S∗) and Stop
8: else
9: S ← FrequencyBasedInitialize(k) {Construction of a new solution S, §2.1.3}

10: end if
11: end while
12: End
13: Return(Failure)

each step, a vertex v ∈ V \S is added to S such that v has the maximum number of edges
that are connected to the vertices of S (ties are broken randomly).

From this initial solution S (a k-subset), AMTS runs TS0 (Section 2.1.2) to improve S
by maximizing the function f (Formula 2). During a round of TS0, the search continues
whenever TS0 finds improved solutions. If the search is judged to be stagnating (the
parameter L at line 5 is used for this purpose, see Section 2.1.2.1), the current round of
TS0 is stopped and a new starting solution is constructed whereupon a new round of TS0

is launched. So a AMTS run is composed of multiple rounds of the TS0 procedure. While
each round of TS0 examines in detail a region of the search space, each restart displaces
the search to a new region.

The AMTS algorithm stops when a legal k-clique is found by TS0, in which case the
found k-clique is returned. AMTS may also stop when the total number Iter of iterations
attains a prefixed maximum number (Itermax) without finding a legal k-clique. In this
case, a failure is reported. Itermax is a user-defined parameter which specifies the maximal
search effort allowed to solve a given instance. Next we present in detail the tabu search
procedure TS0.

2.1.2 The tabu search procedure

2.1.2.1 Main idea

Our tabu search procedure TS0 is based on the well-known tabu search method ([Glover,
1989]) and its main scheme can be summarized in Algorithm 2.2. TS0 operates on can-
didate solutions represented by k-subsets. S and S∗ designate respectively the current
solution and the best solution found so far (according to the evaluation function f defined
in Section 2.1.1). I is an iteration counter used for the restart of TS0 while Iter is the
global iteration counter used by AMTS in its stop test (see Algorithm 2.1).

29

Chapter 2. An Adaptive Multistart Tabu Search Approach for Maximum Clique

Algorithm 2.2: The tabu search procedure TS0 for k-clique finding
Require: Graph G, Initial solution S, Integer k (clique size), Integer L (depth of tabu search),

Integer Iter (iteration counter)
Ensure: The best solution S∗ found by the tabu search
1: Begin
2: I ← 0 {I is the consecutive iterations during which f(S) is not improved}
3: S∗ ← S {S∗ records the best solution found so far}
4: while (I < L) do
5: if There exist improving moves in neighborhood CN then
6: Choose a best allowed swap(u, v) {§2.1.2.2 and 2.1.2.3}
7: else
8: Choose swap(u, v) according to the Prob. Move Select. Rule {§2.1.2.4}
9: end if

10: S ← S\{u} ∪ {v} {Move to the new solution}
11: Undate the tabu list {§2.1.2.5}
12: if S is a legal k-clique then
13: Return S and Stop
14: end if
15: Iter ← Iter + 1
16: if f(S) > f(S∗) then
17: S∗ ← S
18: I ← 0
19: else
20: I ← I + 1
21: end if
22: end while
23: End
24: Return (Clique S∗)

30

2.1 Adaptive multistart tabu search (AMTS) for MCP

For each while loop of Algorithm 2.2 (lines 4-23), TS0 moves from the current solution
S (a k-subset in Ω) to a new neighbor solution (another k-subset in Ω). For this, TS0

uses two different rules to select a dedicated vertex u in S and a specific vertex v outside
S (lines 5-6 and 7-8, see Sections 2.1.2.2-2.1.2.4), and then swaps u and v to obtain a
new current solution (line 10). These swapped vertices are finally added in the tabu list
preventing them from being selected again for the next iterations (line 11, see Section
2.1.2.5). If the new solution is a legal k-clique (i.e., f(S) = k ∗ (k − 1)/2), the algorithm
stops and returns the k-clique found (lines 12-14). Otherwise, if the new solution S is
better than the best solution S∗ found so far (f(S) > f(S∗)), TS0 updates S∗ by S and
continues to its next iteration (lines 16-21).

The while loop ends if no improved solution is found for L consecutive iterations (L is
called the depth of search). In this case, the search is judged to be trapped in a deep local
optimum. To escape from this local optimum, AMTS restarts TS0 from a new starting
point (see Section 2.1.3).

In the rest of this section, we provide a detailed description of the main ingredients of
the TS0 procedure while in Section 2.1.3, we explain the solution construction procedure
for each restart of the TS0 procedure.

2.1.2.2 Constrained swap move and neighborhood

To explore the search space Ω of k-subsets (Formula (2.1)), one naive way is to start with
any k-subset S ∈ Ω and subsequently swap a vertex of S with another vertex of V \S.
Clearly, such a unconstrained swap (used in [Friden et al., 1989]) induces a neighborhood
of size k ∗ (|V | − k) which may be quite large. More importantly such a unconstrained
neighborhood is not sufficiently focused and will not enable an efficient exploration of the
search space. For this reason, we introduce below the constrained neighborhood which is
both more focused and smaller-sized.

Let S ∈ Ω be a candidate solution (k-subset). For each vertex v ∈ V , let d(v) denote
the degree of v relative to the subset S:

d(v) = |{i ∈ S | {i, v} ∈ E}|
Let tabu list be the tabu list containing the vertices that are currently forbidden for

migration (see Section 2.1.2.5).
Let MinInS = min{d(u)| u ∈ S, u /∈ tabu list} and
Let MaxOutS = max{d(v)| v ∈ V \S, v /∈ tabu list}
Define:
A = {u ∈ S | u /∈ tabu list, d(u) = MinInS}
B = {v ∈ V \S | v /∈ tabu list, d(v) = MaxOutS}
Now, to obtain a neighbor solution S′ from S, we swap one vertex u ∈ A against

a vertex v ∈ B. This transition (from S to S′) can conveniently be characterized by a
move denoted by swap(u, v) and written formally as: S′ = S ⊕ swap(u, v) or equivalently
S′ = S\{u} ∪ {v}. All possible swap moves induced by A and B define our constrained
neighborhood CN(S), i.e.,

CN(S) = {S′ : S′ = S\{u} ∪ {v}, u ∈ A, v ∈ B} (2.3)

31

Chapter 2. An Adaptive Multistart Tabu Search Approach for Maximum Clique

Given the definition of d(v), it is easy to see that function f(S) (Formula (2.2)) can
be rewritten as:

f(S) =
1
2
∗

∑
i∈S

d(i) (2.4)

For a given swap(u, v), the move gain ∆uv, i.e., the variation in the function value f
induced by the swap move, can be conveniently computed by:

∆uv = f(S′)− f(S) = d(v)− d(u)− euv (2.5)

where euv = 1 if {u, v} ∈ E, euv = 0 otherwise.
Consequently, for any u ∈ A and v ∈ B, the following formulation can be concluded:

∆uv =
{

MaxOutS −MinInS − 1, if {u, v} ∈ E
MaxOutS −MinInS, otherwise.

2.1.2.3 Move selection strategy

Obviously, the moves with ∆uv = MaxOutS −MinInS are preferable since they give
improvement of the evaluation function f mostly. Let T denote those swap moves with
the increment value equal to MaxOutS −MinInS.

T = {(u, v) : u ∈ A, v ∈ B, {u, v} /∈ E, ∆uv = MaxOutS −MinInS}

We apply the following strategy to determine the best neighbor solution. If T is not
empty, then one pair (u, v) from T is randomly selected for swap. If T is empty, vertex u
is randomly selected from A and v is randomly selected from B. Notice that in this latter
case, u and v must be two adjacent vertices.

It can be easily showed that the solution S′ = S\{u}∪{v} obtained by swapping such
a pair of vertices (u, v) is one of the best non-tabu neighbor solutions in the neighborhood
CN(S), i.e., for any solution S′′ ∈ CN(S), f(S′) ≥ f(S′′). In fact, if T = ∅, then
for each S′′ ∈ CN(S), f(S′′) = f(S) + MaxOutS −MinInS − 1, i.e., any solution in
CN(S) has the same f value and S′ is among the best non-tabu solutions. If T ̸= ∅, then
f(S′) = f(S) + MaxOutS −MinInS. For any other solution S′′ ∈ CN(S) (assume that
S′′ = S ⊕ swap(x, y)), f(S′′) = f(S) + MaxOutS −MinInS − exy ≤ f(S) + MaxOutS −
MinInS = f(S′). Once again, we can see that S′ is one of the best solutions in CN(S).

Finally, to prepare the next iteration of the algorithm, d, A, B, MinInS and MaxOutS
are updated accordingly after each swap(u, v) move.

2.1.2.4 Probabilistic diversifying move selection rule

The above move selection rule assures an exhaustive exploration of the constrained neigh-
borhood. To encourage the search to visit new regions in the search space, we additionally
employ a strategy that disables the usual move selection rule and prefers occasionally
some deteriorating moves. Such an alternative strategy is triggered only in a controlled
and probabilistic manner when the current solution S corresponds to a local optimum,

32

2.1 Adaptive multistart tabu search (AMTS) for MCP

i.e., for each allowed swap(u, v), the new solution S′ = S\{u}∪ {v} is not better than the
current solution S (f(S′) ≤ f(S)). In this case, we apply the following Probabilistic Move
Selection Rule (PMSR).

• With a low probability P = min{ l+2
|V | , 0.1} where |V | is the order of the graph and

l = k ∗ (k − 1)/2 − f(S), select a (much worse) swap(u, v) as follows. Pick u at
random from S and pick v in V \S such that d(v) < ⌊k ∗ ρ⌋, where ρ is the density
of the graph.

• With probability 1-P , select one best allowed swap(u, v) according to the usual
selection strategy defined in Section 2.1.2.3.

This strategy provides a way to allow the search to occasionally go to another region
when no better solution can be found around the current solution.

2.1.2.5 Tabu list and tenure management

To define our tabu list, first recall that a neighbor solution of S is characterized by a pair
of (u, v) where u is a specific vertex in A ⊂ S and v outside S. To prevent the search from
revisiting S, when a swap(u, v) move is performed, vertex u is added in a data structure
called tabu list and remains in the list for the next Tu iterations (called tabu tenure). We
call vertex u tabu and forbid the search to add u back to a solution during the period
fixed by Tu. Similarly, vertex v is marked tabu for the next Tv iterations, during which v
cannot be removed from the solution. We call a swap(u, v) move tabu if at least one of
the two implied vertices is marked tabu.

Inspired by the tabu mechanism proposed in [Galinier and Hao, 1999], the tabu tenures
Tu and Tv are dynamically adjusted by a function depending on the evaluation function
f(S). More precisely, let l1 = k ∗ (k − 1)/2− f(S), l = min{l1, 10}. Then, Tu and Tv are
defined respectively as follows.

Tu = l + Random(C) and
Tv = 0.6 ∗ l + Random(0.6 ∗ C)

where C = max{⌊k/40⌋, 6} are two parameters and the function Random(X) returns
randomly an integer number in {0, . . . , X − 1}. It is clear that Tu > Tv holds. (As noted
in [Glover, 1989], a tabu tenure to prevent elements from being dropped should typically
be smaller than one to prevent elements from being added.)

The first part of the tabu tenure of Tu can be explained by the fact that a solution
with a small evaluation function value should have a longer tabu tenure to escape from
the local optimum trap. Since the exact value of the tabu tenure is unknown, the second
part of Tu and Tu provides a random adjustment.

The reason for Tu > Tv is that preventing vertices in the current solution S from being
removed is much more restrictive than preventing vertices outside S from being added to
S, since in general there are much fewer vertices contained in S than those outside S. In
addition, preventing vertices added to S from being removed for a relatively long time can
significantly inhibit available choices. Hence the tenure for the added vertex v should be
made smaller by comparison to the removed vertex u.

33

Chapter 2. An Adaptive Multistart Tabu Search Approach for Maximum Clique

In order to implement the tabu list, a vector tabu list of |V | elements is used. As
suggested in [Glover, 1989], each element tabu list(i) (1 ≤ i ≤ |V |) records Ti + Iter,
where Iter is the current number of iterations and Ti is the tabu tenure for vertex i. In
this way, it is very easy to know if a vertex i is tabu or not at iteration j : if tabu list(i) > j,
vertex i is forbidden to move; otherwise, i can be moved without restriction.

Finally, at each iteration, the tabu status of a move is canceled if the move leads to a
better solution than the best solution S∗ encountered so far.

2.1.3 A frequency-based strategy for new solution generation

To encourage the AMTS algorithm to explore new regions in the search space, we repeat
the tabu search procedure TS0 from different starting points. Recall that a restart is
triggered when TS0 cannot find an improved solution during L consecutive iterations
(Section 2.1.2.1).

To build a new initial solution for each TS0 restart, we devise an informed procedure
guided by a long-term frequency memory. In this memory, we keep track of the number of
times a vertex has been moved during the search. To maintain the frequency gi of vertex
i, we use the following rules.

1. Initially, set gi = 0 for each vertex i ∈ V .

2. Subsequently, during the search, each time vertex i is removed from or put into the
current solution S, the frequency counter gi of vertex i is incremented, gi = gi + 1.

3. If for all i ∈ V , gi > k, then we reset gi = 0 for all i ∈ V . This mechanism
refreshes the memory over time and avoids the situation where a vertex is definitively
prevented from being selected by the solution construction procedure (see below).

Given this frequency information, we create the new initial solution S for a restart as
follows. Initialize S by randomly adding a vertex having the smallest frequency value in
V and then repeat the above step until S contains exactly k vertices. For each step, select
a vertex v ∈ V \S such that v has the maximum number of edges that connect to S. If
several vertices satisfy the above criterion, select the vertex with the smallest frequency
value (less moved). If there are still several vertices that satisfy the two criteria, select
one of these vertices randomly.

Notice that if ATMS is given a maximum of allowed Itermax iterations, ATMS may
perform at most Itermax/L restarts during its run. A small (respectively large) L value
implies more (respectively less) restart of the TS0 procedure. We show a study of the
influence of L on the performance of the AMTS algorithm.

2.2 Experimental results

To evaluate the efficiency of our AMTS algorithm, we carry out extensive experiments on
the whole set of 80 DIMACS challenge benchmarks (see Section 1.6) and compare AMTS
with five state-of-the-art maximum clique algorithms from the literature. Our AMTS

34

2.2 Experimental results

algorithm is programmed in C, and compiled using GNU GCC on a PC with 2.83 GHz
CPU and 8G RAM.

2.2.1 Experimental settings

We report our computational results based on the parameters values given here, even
though fine-tuning the parameters would lead to improved results.

Parameter setting. The two main parameters for AMTS are the number of allowed
iterations (Itermax) for each run and the search depth L of TS0 (see Section 2.1.3). Since
AMTS stops when a legal k-clique is found, Itermax can safely given a very large value.
In this paper, we use Itermax = 108 as in [Pullan and Hoos, 2006] for their DLS-MC
algorithm which is our main reference algorithm. Notice that for many graphs, AMTS
attains a legal k-clique with much fewer iterations and stops long before reaching 108

iterations.
As to the search depth L, it is set equal to |V | ∗ k except for the structured brock and

san graphs for which smaller values 4 ∗ k are used. As a general rule, it is preferable to
restart more frequently AMTS for structured graphs (by using a small L) in contrast to
random graphs for which L should be set to a larger value.

Finally, since a maximum clique in a graph G is a maximum independent set in the
complementary graph G, when the density of G is greater than 0.5, it is transformed to
its complement and AMTS is employed to solve the related maximum independent set
problem.

2.2.2 Computational results

Given the stochastic nature of our AMTS algorithm, we run the algorithm 100 times
on each DIMACS benchmark instance with different random seeds. To run AMTS on a
graph, we set k to be the largest known clique size reported in the literature. During an
AMTS run, legal cliques of size k − 1 and k − 2 are also recorded. These k − 1 and k − 2
cliques are reported if no k-clique is found for at least one of the 100 AMTS runs.

Table 2.1: The results obtained by AMTS on the set of 80 DIMACS bench-
marks.

Instance Node ω Quality AvgSize AvgTime Iter/sec TotalTime

brock200 1 200 21* 100-0-0 21 0.0136 280013 13.6
brock200 2 200 12* 100-0-0 12 0.3625 270770 36.25
brock200 3 200 15* 100-0-0 15 0.0105 272734 1.05
brock200 4 200 17* 100-0-0 17 1.7582 272728 175.82
brock400 1 400 27* 100-0-0 27 37.7739 187507 3777.39
brock400 2 400 29* 100-0-0 29 1.1818 187515 118.18
brock400 3 400 31* 100-0-0 31 1.7909 157902 179.09
brock400 4 400 33* 100-0-0 33 0.5956 146373 59.56
brock800 1 800 23* 98-0-2 22.96 234.6277 85714 25326.85
brock800 2 800 24* 100-0-0 24 33.1439 85649 3314.39
brock800 3 800 25* 100-0-0 25 52.3981 78950 5239.81
brock800 4 800 26* 100-0-0 26 15.2340 70768 1523.40
C125.9 125 34* 100-0-0 34 0.0018 400214 0.18
C250.9 250 44* 100-0-0 44 0.0058 336700 0.58
C500.9 500 57 100-0-0 57 0.1263 206611 12.63
C1000.9 1000 68 100-0-0 68 1.1471 181180 114.71

35

Chapter 2. An Adaptive Multistart Tabu Search Approach for Maximum Clique

Table 2.1 – continued from previous page

Instance
Node ω Quality AvgSize AvgTime Iter/sec TotalTime

C2000.5 2000 16 100-0-0 16 0.6611 31685 66.11
C2000.9 2000 80 1-93-6 78.95 450.0996 86199 115300.62
C4000.5 4000 18 100-0-0 18 126.6315 15422 12663.15
DSJC500.5 500 13* 100-0-0 13 0.0071 106723 0.71
DSJC1000.5 1000 15* 100-0-0 15 0.3113 59241 31.13
keller4 171 11* 100-0-0 11 < 0.0001 212000 0.01
keller5 776 27 100-0-0 27 0.0565 120772 5.65
keller6 3361 59 100-0-0 59 10.8103 47755 1081.03
MANN a9 45 16* 100-0-0 16 0.0161 835681 1.61
MANN a27 378 126* 100-0-0 126 0.0707 715188 7.07
MANN a45 1035 345* 4-96-0 344.04 112.8498 436381 22450.52
MANN a81 3321 1100 0-0-100 1098 27.5524 332219 2755.24
hamming6-2 64 32* 100-0-0 32 < 0.0001 581395 0.01
hamming6-4 64 4* 100-0-0 4 < 0.0001 245700 0.01
hamming8-2 256 128* 100-0-0 128 0.0005 236966 0.05
hamming8-4 256 16* 100-0-0 16 < 0.0001 177935 0.01
hamming10-2 1024 512* 100-0-0 512 0.3116 71123 31.16
hamming10-4 1024 40 100-0-0 40 0.9167 130548 91.67
gen200 p0.9 44 200 44* 100-0-0 44 0.0074 375939 0.74
gen200 p0.9 55 200 55* 100-0-0 55 0.0006 531914 0.06
gen400 p0.9 55 400 55 100-0-0 55 0.5476 211914 54.76
gen400 p0.9 65 400 65 100-0-0 65 0.0123 355871 1.23
gen400 p0.9 75 400 75 100-0-0 75 0.0415 200512 4.15
c-fat200-1 200 12* 100-0-0 12 0.0014 108675 0.14
c-fat200-2 200 24* 100-0-0 24 0.1742 91407 17.42
c-fat200-5 200 58* 100-0-0 58 0.1102 87719 11.02
c-fat500-1 500 14* 100-0-0 14 0.1354 47755 13.54
c-fat500-2 500 26* 100-0-0 26 0.2253 44150 22.53
c-fat500-5 500 64* 100-0-0 64 0.1009 39510 10.09
c-fat500-10 500 126* 100-0-0 126 2.6587 29629 265.87
johnson8-2-4 28 4* 100-0-0 4 < 0.0001 375939 0.01
johnson8-4-4 70 14* 100-0-0 14 < 0.0001 425531 0.01
johnson16-2-4 120 8* 100-0-0 8 < 0.0001 96993 0.01
johnson32-2-4 496 16* 100-0-0 16 < 0.0001 22857 0.01
p hat300-1 300 8* 100-0-0 8 0.0008 130548 0.08
p hat300-2 300 25* 100-0-0 25 0.0007 220750 0.07
p hat300-3 300 36* 100-0-0 36 0.0016 255754 0.16
p hat500-1 500 9* 100-0-0 9 0.0011 84175 0.11
p hat500-2 500 36* 100-0-0 36 0.0008 165213 0.08
p hat500-3 500 50 100-0-0 50 0.0053 284419 0.53
p hat700-1 700 11* 100-0-0 11 0.0098 60518 0.98
p hat700-2 700 44* 100-0-0 44 0.0012 155470 0.12
p hat700-3 700 62 100-0-0 62 0.0053 233798 0.53
p hat1000-1 1000 10 100-0-0 10 0.0008 45202 0.08
p hat1000-2 1000 46 100-0-0 46 0.0009 105470 0.09
p hat1000-3 1000 68 100-0-0 68 0.0813 200348 8.13
p hat1500-1 1500 12* 100-0-0 12 2.1815 31628 218.15
p hat1500-2 1500 65 100-0-0 65 0.3284 80123 32.84
p hat1500-3 1500 94 100-0-0 94 0.3153 139885 31.53
san200 0.7 1 200 30* 100-0-0 30 0.2074 100102 20.74
san200 0.7 2 200 18* 100-0-0 18 0.2420 88909 24.20
san200 0.9 1 200 70* 100-0-0 70 0.1676 170024 16.76
san200 0.9 2 200 60* 100-0-0 60 0.1322 300293 13.22
san200 0.9 3 200 44* 100-0-0 44 0.0757 300263 7.57
san400 0.5 1 400 13* 100-0-0 13 11.4577 33336 1145.77
san400 0.7 1 400 40* 100-0-0 40 8.7633 40032 876.33
san400 0.7 2 400 30* 100-0-0 30 29.9791 42873 2997.91
san400 0.7 3 400 22* 100-0-0 22 56.2885 45024 5628.85
san400 0.9 1 400 100* 100-0-0 100 1.8674 42888 186.74

36

2.2 Experimental results

Table 2.1 – continued from previous page

Instance
Node ω Quality AvgSize AvgTime Iter/sec TotalTime

san1000 1000 15* 100-0-0 15 315.1698 37273 31516.98
sanr200-0.7 200 18* 100-0-0 18 0.0009 290697 0.09
sanr200-0.9 200 42* 100-0-0 42 0.0047 336700 0.47
sanr400-0.5 400 13* 100-0-0 13 0.0137 130548 1.37
sanr400-0.7 400 21 100-0-0 21 0.0048 182815 0.48

To report our results, we follow the common practice of the literature on the maximum
clique problem such as ([Pullan, 2006; Katayama et al., 2005; Singh and Gupta, 2006;
Battiti and Protasi, 2001]). Table 2.1 gives the computational statistics.

For each instance, we show in column 4 the solution quality by a triple a − b − c,
where a is the number of runs (out of the 100 runs) in which a clique size of ω (ω is the
maximum known clique size reported in the literature) is found, b is the number of runs
in which the algorithm fails to find a clique size of ω, but attains a clique size of ω − 1, c
is the number of runs where only cliques of size ω − 2 or worse are found. The next three
columns provide other information: the averaged clique size over 100 runs, averaged CPU
time in seconds over the successful runs and the average iterations per second. The last
column indicates the total run time of the 100 runs of AMTS to solve an instance. Notice
that it is generally much shorter than the time needed to execute 100 × Itermax = 108

because very often AMTS finds a legal k-clique long before attaining Itermax iterations.
Table 2.1 discloses that AMTS can find cliques of the largest known size for 79 out

of the 80 benchmarks. The only instance for which AMTS fails to find the best known
solution (ω = 1100) is MANN a81. For this instance, AMTS obtains consistently cliques
of size 1098 in 100 of all the 100 runs. (The average time provided in Table 2.1 for the
instance MANN a81 is the average time to find cliques size of 1098.)

Of the 79 instances where AMTS attains the best known solutions, in 76 cases it finds
such a solution with a success rate of 100%. For only three instances (brock800 1, C2000.9,
MANN a45), the success rate is less than 100%. For C2000.9 which has a largest known
clique size of ω = 80, the success rate is only 1%, but AMTS obtains consistently cliques
of size 79 in 93 of 100 runs, while the remaining 6 runs finds cliques of size 78 (see Table
2.2). To the best of our knowledge, cliques of size 80 for C2000.9 have only been reported
recently in [Grosso et al., 2008]. Not only AMTS attains this result, but also it can easily
attain cliques of size 79 in reasonable time. Table 2.2 displays additionnal results of AMTS
on C2000.9, statistics are based on 100 independent runs. Table 2.1 shows that for 58 out
of the 80 DIMACS instances, the average CPU time for attaining the best known solution
is within 1 CPU second. An average CPU time of 10 or more CPU seconds are required
for 15 of the 22 remaining instances.

2.2.3 Comparative results

In this section, we attempt to compare AMTS with 5 representative state-of-the-art meth-
ods from the literature. The main comparison criterion is the quality of the solutions found.

37

Chapter 2. An Adaptive Multistart Tabu Search Approach for Maximum Clique

Table 2.2: The performance of AMTS on the C2000.9 instance.
clique size(k) AvgTime AvgIter success rate

80 450.09 38797622 1
79 338.39 29169205 93
78 33.52 2890191 100

Due to the differences among the programming languages, data structures, compiler op-
tions and computers, computing times are provided only for indicative purposes.

First, we recall the hardware and basic experimental conditions used by these reference
methods.

• DLS-MC (Stochastic local search ([Pullan, 2006])). The results of DLS-MC were
based on a dedicated 2.2 GHz Pentium IV machine with 512KB L2 cache and 512MB
RAM. For each instance, DLS-MC was run 100 times, each run being allowed 108

iterations like in our case.

• KLS (k-opt variable depth search algorithm ([Katayama et al., 2005])). The results
of of KLS were based on a Sun Blade 1000 Workstation (UltraSPARC-III 900 MHz,
2 GB memory). For each instance, KLS was run 100 trials. For each trial, KLS was
repeatedly executed n times, where n was the number of nodes of a given graph.

• HSSGA (Heuristic based steady-state genetic algorithm ([Singh and Gupta, 2006])).
HSSGA was run on a Pentium-III 1GHz Linux based system with 384 MB RAM.
HSSGA was run 10 times on each graph instance. For each run, HSSGA was run until
either the optimum solution value was found or a maximum of 20 000 generations
was reached.

• RLS (Reactive local search ([Battiti and Protasi, 2001])). RLS was run on a Pentium-
II (450MHz CPU, 384MB RAM) machine. For each instance, 100 runs were per-
formed, for each run, the number of iterations was fixed to 20000× n.

• QUALEX-MS (Quick Almost Exact Motzkin-Straus-based search ([Busygin, 2006])).
QUALEX-MS was run on a Pentium IV 1.4GHz computer under Red Hat Linux.

In Table 2.3, we first compare our AMTS method with DLS-MC which is the current
best maximum clique algorithm. The comparison mainly focuses on solution quality, i.e.,
the largest clique size found (averaged size is given in parenthesis if it is different from the
largest one). As explained above, computing times are provided only as complementary
information. Notice moreover that the results of DLS-MC were obtained after fine-tuning
its parameter ([Pullan, 2006]) on an instance-by-instance basis.

Table 2.3 shows that AMTS compares favorably with DLS-MC in terms of the best
clique size. Indeed, AMTS can find the largest clique sizes for all the 80 instances except
MANN a81 while DLS-MC can find the best known solutions for all the instances except
MANN a81, MANN a45 and C2000.9. The difference between AMTS and DLS-MC can

38

2.2 Experimental results

Table 2.3: Comparative results between AMTS and DLS-MC.
AMTS DLS-MC AMTS DLS-MC

Instance Clique

size

CPU(s) Clique

size

CPU(s) Instance Clique size CPU(s) Clique size CPU(s)

brock200 1 21 0.0136 21 0.0182 johnson32 2 4 16 < ϵ 16 < ϵ

brock200 2 12 0.3625 12 0.0242 johnson8 2 4 4 < ϵ 4 < ϵ

brock200 3 15 0.0105 15 0.0367 johnson8 4 4 14 < ϵ 14 < ϵ

brock200 4 17 1.7582 17 0.0468 keller4 11 < ϵ 11 < ϵ

brock400 1 27 37.774 27 2.2299 keller5 27 0.0565 27 0.0201

brock400 2 29 1.1818 29 0.4774 keller6 59 10.810 59 170.483

brock400 3 31 1.7909 31 0.1758 MANN a9 16 0.0161 16 < ϵ

brock400 4 33 0.5956 33 0.0673 MANN a27 126 0.0707 126 0.0476

brock800 1 23(22.96) 234.628 23 56.497 MANN a45 345(344.04) 112.850 344 51.960

brock800 2 24 33.144 24 15.734 MANN a81 1098 27.552 1098(1097.96) 264.009

brock800 3 25 52.398 25 21.920 p hat300 1 8 0.0008 8 0.0007

brock800 4 26 15.234 26 8.8807 p hat300 2 25 0.0007 25 0.0002

C125.9 34 0.0018 34 < ϵ p hat300 3 36 0.0016 36 0.0007

C250.9 44 0.0058 44 0.0009 p hat500 1 9 0.0011 9 0.0010

C500.9 57 0.1263 57 0.1272 p hat500 2 36 0.0008 36 0.0005

C1000.9 68 17.547 68 4.440 p hat500 3 50 0.0053 50 0.0023

C2000.5 16 0.6611 16 0.9697 p hat700 1 11 0.0098 11 0.0194

C2000.9 80(78.95) 450.100 78(77.93) 193.224 p hat700 2 44 0.0012 44 0.0010

C4000.5 18 126.632 18 181.234 p hat700 3 62 0.0053 62 0.0015

DSJC500.5 13 0.0071 13 0.0138 p hat1000 1 10 0.0008 10 0.0034

DSJC1000.5 15 0.3113 15 0.7990 p hat1000 2 46 0.0009 46 0.0024

c-fat200-1 12 0.0014 12 0.0002 p hat1000 3 68 0.0813 68 0.0062

c-fat200-2 24 0.1742 24 0.0010 p hat1500 1 12 2.1815 12 2.7064

c-fat200-5 58 0.1102 58 0.0002 p hat1500 2 65 0.3284 65 0.0061

c-fat500-1 14 0.1354 14 0.0004 p hat1500 3 94 0.3153 94 0.0103

c-fat500-2 26 0.2253 26 0.0004 san200 0.7 1 30 0.2074 30 0.0029

c-fat500-5 64 0.1009 64 0.0020 san200 0.7 2 18 0.2420 18 0.0684

c-fat500-10 126 2.6587 126 0.0015 san200 0.9 1 70 0.1676 70 0.0003

gen200-P0.9-44 44 0.0074 44 0.0010 san200 0.9 2 60 0.1322 60 0.0002

gen200-P0.9-55 55 0.0006 55 0.0003 san200 0.9 3 44 0.0757 44 0.0015

gen400-P0.9-55 55 0.5476 55 0.0268 san400 0.5 1 13 11.458 13 0.1641

gen400-P0.9-65 65 0.0123 65 0.0010 san400 0.7 1 40 8.7366 40 0.1088

gen400-P0.9-75 75 0.0415 75 0.0005 san400 0.7 2 30 29.979 30 0.2111

hamming6-2 32 < ϵ 32 < ϵ san400 0.7 3 22 56.289 22 0.4249

hamming6-4 4 < ϵ 4 < ϵ san400 0.9 1 100 1.8674 100 0.0029

hamming8-2 128 0.0005 128 0.0003 san1000 15 315.170 15 8.3636

hamming8-4 16 < ϵ 16 < ϵ sanr200 0.7 18 0.0009 18 0.0020

hamming10-2 512 0.3116 512 0.0008 sanr200 0.9 42 0.0047 42 0.0127

hamming10-4 40 0.9167 40 0.0089 sanr400 0.5 13 0.0137 13 0.0393

johnson16-2-4 8 < ϵ 8 < ϵ sanr400 0.7 21 0.0048 21 0.0230

39

Chapter 2. An Adaptive Multistart Tabu Search Approach for Maximum Clique

Table 2.4: Comparative results of AMTS with four other leading clique algorithms.
Instance Node Best Max-Clique Algorithm

AMTS KLS HSSGA RLS QUALEX-MS
size time size time size time size time size time

brock200 2 200 12* 12 0.3625 11 0.0035 12 0.29 12 9.605 12 < 1
brock200 4 200 17* 17 1.7582 16 0.0066 17(16.7) 1.14 17 19.491 17 < 1
brock400 2 400 29* 29 1.1818 25(24.84) 0.1334 29(25.1) 2.35 29(26.063) 42.091 29 3
brock400 4 400 33* 33 0.5956 25 0.0174 33(27.0) 2.76 33(32.423) 108.638 33 2
brock800 2 800 24* 24 33.144 21(20.86) 0.4993 21(20.7) 10.72 21 4.739 24 18
brock800 4 800 26* 26 15.234 21(20.67) 1.2160 21(20.1) 3.04 21 6.696 26 18
C125.9 125 34* 34 0.0018 34 0.0011 34 0.06 34 0.004 34 < 1
C250.9 250 44* 44 0.0058 44 0.0278 44(43.8) 0.34 44 0.029 44 1
C500.9 500 57 57 0.1263 57(56.15) 0.2699 56(54.2) 4.17 57 3.124 55 4
C1000.9 1000 68 68 1.1471 68(66.38) 2.0049 66(64.1) 14.27 68 41.660 64 27
C2000.5 2000 16 16 0.6611 16 2.8971 16(15.4) 27.52 16 9.976 16 278
C2000.9 2000 80 80(78.95) 450.10 77(74.90) 14.715 74(71.0) 117.66 78(77.575) 823.358 72 215
C4000.5 4000 18 18 126.63 18(17.02) 23.802 17(16.8) 158.42 18 2183.089 17 2345
DSJC500.5 500 13* 13 0.0071 13 0.0256 13 0.71 13 0.194 13 5
DSJC1000.5 1000 15* 15 0.3113 15(14.93) 0.6711 15(14.7) 7.38 15 6.453 14 36
keller4 171 11* 11 0.0001 11 0.0003 11 0.01 11 0.002 11 1
keller5 776 27 27 0.0565 27 0.0399 27(26.9) 4.04 27 0.171 26 16
keller6 3361 59 59 10.810 57(55.59) 52.364 57(54.2) 314.65 59 189.814 53 1291
MANN a27 378 126* 126 0.0707 126 0.0178 126(125.5) 3.17 126 3.116 125 1
MANN a45 1035 345* 345(344.04)112.85 345(343.88) 6.2014 343(342.6) 65.25 345(343.602)398.770 342 17
MANN a81 3321 1100 1098 27.552 1100(1098.07)39.484 1095(1094.2)3996.65 1098 2830.820 1096 477
hamming8-4 256 16* 16 0.0001 16 0.0004 16 0.01 16 0.003 16 1
hamming10-4 1024 40 40 0.9167 40 0.2209 40(39.0) 10.21 40 0.078 40 45
gen200 p0.9 44 200 44* 44 0.0074 44 0.0317 44(43.1) 1.07 44 0.037 42 < 1
gen200 p0.9 55 200 55* 55 0.0006 55 0.0065 55 0.29 55 0.016 55 1
gen400 p0.9 55 400 55 55 0.5476 53(52.21) 0.2089 53(51.4) 1.83 55 1.204 51 2
gen400 p0.9 65 400 65 65 0.0123 65 0.0647 65(63.8) 1.71 65 0.050 65 2
gen400 p0.9 75 400 75 75 0.0415 75 0.0425 75 1.93 75 0.051 75 2
p hat300-1 300 8* 8 0.0008 8 0.0021 8 0.02 8 0.018 8 1
p hat300-2 300 25* 25 0.0007 25 0.0012 25 0.02 25 0.006 25 1
p hat300-3 300 36* 36 0.0016 36 0.0118 36(35.9) 0.18 36 0.021 35 1
p hat700-1 700 11* 11 0.0098 11 0.1245 11 1.02 11 0.186 11 10
p hat700-2 700 44* 44 0.0012 44 0.0077 44 0.19 44 0.028 44 12
p hat700-3 700 62 62 0.0053 62 0.0158 62(61.7) 2.01 62 0.035 62 11
p hat1500-1 1500 12* 12 2.1815 12 2.6054 12(11.5) 14.62 12 30.274 12 95
p hat1500-2 1500 65 65 0.3284 65 0.0625 65(64.9) 2.03 65 0.158 64 111
p hat1500-3 1500 94 94 0.3153 94 0.4286 94(93.1) 2.91 94 0.192 91 108

also be observed in terms of the average clique size obtained by the two algorithms; AMTS
finds larger average clique size on three large and hard instances (C2000.9, MANN a45
and MANN a81) while the result of DLS-MC is better for one instance (brook800 1).

In terms of solution speed, DLS-MC shows better performance than AMTS on the
brock and san graphs. Indeed, for all the instances of these two families, both algorithms
can attain the best known solutions, but DLS-MC needs much less computing time.

In Table 2.4, we report the best and the average clique size obtained by AMTS in
comparison with the other four algorithms (KLS, HSSGA, RLS and QUALEX-MS) on 37
DIMACS benchmark instances which are used by these reference algorithms. Table 2.5
summarizes the comparative results in terms of the number of instances on which these
algorithms performs better or worse than AMTS.

Tables 2.4 and 2.5 show that AMTS finds larger cliques than KLS for 9 graphs, while

40

2.3 Analysis of critical components of AMTS

Table 2.5: Comparison result of AMTS with KLS, HSSGA, RLS and QUALEX-MS.
Best clique size Average clique size

Better than AMTS Worse than AMTS Better than AMTS Worse than AMTS
KLS 1 9 1 14
HSSGA 0 10 0 26
RLS 0 3 0 6
QUALEX-MS 0 14 - -

Table 2.5: Comparison result of AMTS with KLS, HSSGA, RLS and QUALEX-MS in terms of number of
instances on which AMTS found better (or worse) results out of the 37 DIMACS benchmark instances. The
symbol ’-’ used for QUALEX-MS indicates that the average clique size is not available.

the reverse is true only for one graph. Moreover, the average clique size found by AMTS is
better than that of KLS on 14 instances whereas KLS outperforms AMTS on one instance.
Regarding the other three algorithms (HSSGA, RLS and QUALEX-MS), AMTS can find
an equal or better solution than these reference algorithms on each of the 37 benchmark
instances.

2.3 Analysis of critical components of AMTS

2.3.1 Influence of restart

Recall that for each run of the algorithm, ATMS restarts from a new solution if the current
solution is not improved for L consecutive iterations. So a small (large) value of L leads
to more (less) frequent restart. To analyze the influence of the restart strategy on the
performance of the AMTS algorithm, we focus on the effect of L and study the running
profile of the evaluation function f (Formula 2.2, Section 2.1.2.1) by varying the value of
L.

Experiments in this study are performed on a structured instance (brock800 2) and a
random instance (C2000.9). To solve these instances, we consider 3 different values L =
100, 1000 and 10000. For each of these values, we perform 100 runs of AMTS, each run
being given a maximum of Itermax = 107 iterations.

The running profile is defined by the function i 7−→ f∗(i) where i is the number of
iterations (counter Iter) and f∗(i) is the best evaluation function value known at iteration
i, averaged over 100 runs. More precisely, let j denote the jth run of AMTS (j = 1...100),
f j

i (S∗) the value of the evaluation function f (defined by Formula 2.2 in Section 2.1.2.1)
of the best solution S∗ known at iteration i of AMTS jth run. For each plotted iteration
i in the running profile, f∗(i) is equal to

∑100
j=1 f j

i (S∗)/100. Such a profile gives a natural
way to observe the evolution of the best values of the objective function during a search
([Galinier and Hao, 1999]).

41

Chapter 2. An Adaptive Multistart Tabu Search Approach for Maximum Clique

Figure 2.1 shows the running profiles of AMTS on the graph brock800 2 with k = 24.
The figure shows also the running profile of AMTS without restart, i.e., with L = Itermax

(we call this version basic TS). From Figure 2.1, we observe that AMTS with L = 100
dominates AMTS with L = 1000 and L = 10000. Since smaller L implies more restarts,
this experiment suggests a frequent restart is quite useful for the instance brock800 2 (in
fact for other special structured instances). One also notices that AMTS without restart
performs the worst.

Figure 2.2 shows the running profiles of AMTS on C2000.9 with k = 79. It is interesting
to observe that for this graph, AMTS performs better with large values L = 1000 or
L = 10000 than with L = 100. AMTS without restart performs here quite well. This
suggests that for C2000.9 (in fact for many random instances) a long search with the basic
TS0 engine is more effective than a search with frequent restarts.

The above observations are confirmed by the results reported in Table 2.6. In this

250

251

252

253

254

255

256

257

258

259

260

ev
al

u
at

io
n

fu
n
ct

io
n

f

0 10 20 30 40 50 60 70 80 90 100
number of iterations (×105) for brock800 2

L = 100
L = 1000
L = 10000
Basic TS

Figure 2.1: Running profile of AMTS with L = 100, 1000 and 10000 as well as AMTS
without restart (basic TS) on brock800 2.

3070

3072

3074

3076

3078

3080

3082

3084

3086

3088

3090

ev
al

u
at

io
n

fu
n
ct

io
n

f

0 10 20 30 40 50 60 70 80 90 100
number of iterations (×105) for C2000.9

L = 100
L = 1000
L = 10000
Basic TS

Figure 2.2: Running profile of AMTS with L = 100, 1000 and 10000 as well as AMTS
without restart (basic TS) on C2000.9.

42

2.3 Analysis of critical components of AMTS

Table 2.6: Success rate of ATMS with different values of L and AMTS without restart
(basic TS) for brock800 2 and C2000.9.

Graph L=100 L=1000 L=10000 Basic TS
brock800 2 99 87 18 0
C2000.9 0 6 19 17

table, we show the number of runs (out of the 100 runs) where a clique size of k is found
successfully by AMTS with these L values and ATMS without restart. For brock800 2,
search with frequent restarts makes ATMS more effective and robust whereas the reverse
is true for C2000.9.

More generally, various experiments suggest that for some structured graphs, relatively
smaller L values are preferable whereas for random graphs, it is advantageous to use
relatively larger L values. This experiment also explains the choice of the L values used
in Section 5.4.2. In sum, compared to the Itermax parameter, L is more sensitive to the
structure of the graph and should be tuned with more care.

2.3.2 The tabu list

As explained in Section 2.1.2.5, each time a swap(u, v) move is performed, both the
dropped vertex u and the added vertex v are marked tabu for respectively Tu and Tv

iterations. We experiment here two additional tabu strategies which are summarized to-
gether with the previous one as follows.

3070

3072

3074

3076

3078

3080

3082

3084

3086

3088

3090

ev
al

u
at

io
n

fu
n
ct

io
n

f

0 10 20 30 40 50 60 70 80 90 100
number of iterations (×105) for C2000.9

u tabu

v tabu

u, v tabu

Figure 2.3: The basic TS with three tabu strategies.

• Strategy 1: Only preventing the dropped vertex u from being put back into S in
the next Tu iterations.

• Strategy 2: Only preventing the added vertex v from being removed from S in the
next Tv iterations.

43

Chapter 2. An Adaptive Multistart Tabu Search Approach for Maximum Clique

• Strategy 3: Preventing u from being put back into S in the next Tu iterations while
preventing v from being removed from S in the next Tv iterations. This strategy is
used in this paper.

We test these three strategies on C2000.9 with k = 79. Figure 2.3 shows the running
profiles. From the figure, we can observe that strategy 3, which is used by our proposed
AMTS algorithm, largely dominates strategy 1 and strategy 2 throughout the search.

2.4 Conclusions

In this chapter, we have presented AMTS, an adaptive multistart tabu search for approx-
imating the maximum clique problem. AMTS seeks a clique of fixed size k by effectively
exploring subsets of vertices of size k. For this purpose, AMTS combines a TS procedure
with a guided restart strategy. The TS engine is based a constrained neighborhood and an
adaptive technique for tuning the double tabu tenures. To enable an effective exploration
of the search space, AMTS uses an informed multistart strategy which relies on a long
term memory (move frequencies) to regenerate new initial starting solutions.

AMTS shows an excellent performance on the complete set of 80 standard DIMACS
benchmark instances. AMTS finds the current best known solutions for all the instances
except one case (MANN a81 for which cliques of size 1098 are found easily). The com-
petitiveness of AMTS is further confirmed when it is compared with five state-of-the-art
maximum clique procedures.

Most of the current top-performing algorithms for the maximum clique problem are
based on an expansion and plateau search model. The proposed method constitutes an
interesting alternative approach that probably merits more attention and research efforts.

Finally, the AMTS algorithm has been applied very recently with success to solve two
combinatorial problems: graph coloring [Wu and Hao, 2012a] and graph sum coloring [Wu
and Hao, 2012b] (see also Chapter 5 and Chapter 7). In the next chapter, we will discuss
one important generalization of the classic MCP when a positive weight is associated to
each vertex in the graph: the maximum vertex weight clique problem.

44

Chapter 3

Multi-neighborhood tabu search
for the maximum vertex weight
clique problem

In this chapter, we consider the maximum vertex weight clique problem (MVWCP) which
is one important generalization of the MCP. Given an undirected graph G = (V, E) with
vertex set V = {1, ..., n} and edge set E ⊆ V ×V . Let w : V → Z+ be a weighting function
that assigns to each vertex i ∈ V a positive integer. The MVWCP is to determine a clique
of maximum weight. This chapter introduces a tabu search heuristic whose key features
include a combined neighborhood, a dedicated tabu mechanism and a randomized restart
strategy. The proposed algorithm is evaluated on a total of 136 benchmark instances from
different sources (DIMACS, BHOSLIB and set packing). Computational results disclose
that our tabu search algorithm outperforms the leading algorithm for the MVWCP, and
in addition rivals the performance of the best methods for the unweighted version of
the problem without being specialized to exploit this problem class. The content of this
chapter is published in [Wu and Hao, 2012f].

Contents

3.1 Introduction . 47

3.2 Multi-neighborhood tabu search for the MVWCP 48

3.2.1 Search space and evaluation function 48

3.2.2 Randomized procedure for initial solutions 48

3.2.3 Basic move operators and neighborhoods 48

3.2.4 Combined neighborhood and neighbor selection strategy 50

3.2.5 Tabu list and tabu tenure management 51

3.2.6 Multistart strategy and stop criteria 52

3.3 Discussion . 54

3.4 Experimental results . 54

3.4.1 Benchmark instances and experimental settings 54

45

Chapter 3. Multi-neighborhood tabu search for the maximum vertex weight clique
problem

3.4.2 Experimental results for the maximum vertex weight clique problem 55
3.4.3 Comparative results for the maximum vertex weight clique problem 57
3.4.4 Computational results on structured instances from set packing . 59
3.4.5 Experimental results for the unweighted maximum clique problem 61

3.5 Influence of neighborhood combination 63

3.6 Conclusion . 66

46

3.1 Introduction

3.1 Introduction

An important generalization of MCP is the maximum vertex weight clique problem (MVWCP)
where a positive weight is associated to each vertex. A formal definition of MVWCP is
provided in Section 1.1. It is clear that the classical unweighted version (MCP) turns out
to be a special case of MVWCP when the weight of each vertex is set equal to 1. For
this reason, the MVWCP has at least the same computational complexity as the MCP.
Applications of the MVWCP arise in a number of domains like computer vision, pattern
recognition and robotics [Ballard and Brown, 1982].

To solve the MVWCP, a number of exact algorithms have been reported in the litera-
ture (see e.g., [Babel, 2008; Österg̊ard, 2001]) which can be applied to instances of small
sizes. For large problems, various heuristic methods have been proposed to find approx-
imative solutions. For instance, in [Pullan, 2008], an efficient local search algorithm is
presented which is based on the PLS algorithm (see Section 1.4.2.5) developed for the
unweighted case [Pullan, 2006]. Along with the proposed algorithm, a set of MVWCP
benchmark instances using the DIMACS graphs are also introduced (see Section 1.6, we
use these instances in our experiments). In [Mannino and Stefanutti, 1999], an augmenta-
tion algorithm is described which is based on edge projections for the equivalent maximum
weight stable set problem. Other representative studies include a deterministic iterated
greedy construction algorithm using a nonlinear programming formulation [Busygin, 2006],
and a distributed computational network algorithm [Bomze et al., 2000].

In this chapter, we present a multi-neighborhood tabu search approach (denoted by
MN/TS) for the MVWCP. In order to effectively explore the search space, the proposed
algorithm combines three neighborhoods induced by three types of moves. The particu-
larity of the combined neighborhood relies on the union of the underlying neighborhoods
instead of the conventional sequential exploration of basic neighborhoods (Sections 3.2.3
and 3.2.4). At each iteration of the algorithm, our tabu search approach explores the union
of these three neighborhoods and selects the overall best admissible neighboring solution.
The algorithm integrates a dedicated tabu mechanism (Section 3.2.5) and a randomized
restart strategy (Section 3.2.6).

The performance of the proposed MN/TS algorithm is assessed on a large set of bench-
marks from the well-known DIMACS and BHOSLIB libraries and the set packing problem
(Section 3.4). Extensive experimental tests disclose that the proposed approach finds new
best solutions for 26 DIMACS instances of the MVWCP, while matching the best known
solution on all but one of the others. For the unweighted case, MN/TS is able to attain
the best known solutions for the 120 tested instances except for only two cases, rivaling
the performance of the best algorithms for the MCP problem without specializing our
method to exploit the unweighted class. For an additional set of 16 instances derived from
the set packing problem, MN/TS is able to attain the current best-known results while
discovering 2 improved results, again without being designed to exploit the set packing
structure (in contrast to the methods that have produced the previous best results). An
analysis is also provided to show the relevance of the union exploration of the underlying
neighborhoods (Section 3.5).

47

Chapter 3. Multi-neighborhood tabu search for the maximum vertex weight clique
problem

3.2 Multi-neighborhood tabu search for the MVWCP

In this section, we present our multi-neighborhood tabu search (MN/TS) approach for the
general MVWCP. Based on the legal strategy, MN/TS integrates several features which
are responsible for its effectiveness, including three complementary neighborhoods defined
by three basic move operators. These neighborhoods are explored in a combined manner
employing a rule that selects the most favorable neighboring solution that is admissible
subject to the tabu conditions. The method is driven by a dedicated tabu list strategy
employing a restart mechanism for diversification.

3.2.1 Search space and evaluation function

For a given MVWCP instance G = (V, E,w), our MN/TS algorithm considers the legal
strategy (see Section 1.4.2.1), and explores a search space Ω composed of all possible
cliques of G, i.e., Ω = {C : C ⊂ V such that ∀i, j ∈ C, i ̸= j, {i, j} ∈ E}. For any solution
C ∈ Ω, its quality is evaluated by its weight W (C) =

∑
i∈C wi. Given two solutions C

and C ′, C ′ is better than C if and only if W (C ′) > W (C). Our objective function (to be
maximized) is thus given by: W : Ω→ Z+.

3.2.2 Randomized procedure for initial solutions

Our algorithm starts from an initial clique C ∈ Ω and then uses the tabu search procedure
(Sections 3.2.3-3.2.5) to improve C by maximizing its weights. The initial solution C is
constructed as follows. We first select randomly a seeding vertex i from the graph and set
the current clique C to the set consisting of this single vertex. We then randomly pick
another vertex v /∈ C subject to the stipulation that v is connected to all the vertices of C
(i.e., v is taken from the set {v : v ∈ V \C, {v, i} ∈ E, ∀i ∈ C}). This process is repeated
until no such vertex v exists. This procedure is also used to initialize each restart during
a run of the MN/TS algorithm (see Section 3.2.6). This procedure has the advantage of
being simple and fast, leading to diversified initial solutions for each round of the tabu
search procedure.

3.2.3 Basic move operators and neighborhoods

In local search, a neighborhood is typically defined by a move operator mv, which trans-
forms a given solution C to generate a neighboring solution C ′, denoted by C ′ = C ⊕mv.
Let M(C) be the set of all possible moves which can be applied to C, then the neighbor-
hood N of C is defined by: N(C) = {C ′ : C ′ = C ⊕mv, mv ∈M(C)}.

Our MN/TS algorithm explores jointly three neighborhoods which are defined by three
basic move operators (denoted by ADD, SWAP and DROP). These move operators are
based on the definition of two vertex subsets: PA and OM relative to a given clique C.

PA is composed of the vertices that are excluded from the clique C and connected to
all the vertices of C: PA = {v : v ∈ V \C, {v, i} ∈ E, ∀i ∈ C}.

48

3.2 Multi-neighborhood tabu search for the MVWCP

OM contains the vertices that are excluded from the clique C and connected to all
but one vertex of C: OM = {v : v ∈ V \C, |A(v)

∩
C| = |C| − 1} where A(v) = {j : j ∈

V, {j, v} ∈ E} is the set of vertices adjacent to v.
The relationship between a clique C and the associated subsets PA and OM is illus-

trated in Fig. 3.1.

A

B

C

D

E

F

G

C = {A, B, C, D}

PA = {E}

OM = {F, G}

Figure 3.1: A clique and its two associated subsets: C = {1, 2, 3, 4}, PA = {5} and
OM = {6, 7}.

The two subsets PA and OM just described form the basis for defining the ADD and
SWAP move operators while the DROP move operator is defined independently of these
subsets, as follows.

• ADD(i): This move operator (which applies when PA is not empty) consists in
adding a vertex i from the set PA to the current clique C. The neighborhood
defined by this move operator is given by N1 = {C ′ : C ⊕ADD(i), i ∈ PA}.
After a ADD(i) move, the change in the clique weight (i.e., the move gain denoted
by ∆i) is given by the following expression:

∆i = wi (3.1)

where wi is the weight associated to vertex i. Since the move gain is always positive
for a ADD move, such a move always leads to an improved neighboring solution.
The size of this neighborhood is clearly bounded by O(n).

• SWAP(i,j): This move operator (which applies when OM is not empty) consists in
exchanging a vertex i from the set OM with the only vertex j of C which is not
connected to i in C. The neighborhood defined by this move operator is given by
N2 = {C ′ : C ⊕ SWAP (i, j), i ∈ OM, j ∈ C, {i, j} /∈ E}.

For a given SWAP(i,j) move, the move gain ∆ij can be conveniently computed by:

∆ij = wi − wj (3.2)

49

Chapter 3. Multi-neighborhood tabu search for the maximum vertex weight clique
problem

Since ∆ij can be either positive or negative, a SWAP move can improve or deteri-
orate the quality of the current solution. The size of this neighborhood is bounded
by O(n).

• DROP(i): This move operator removes a vertex i from the current clique C. The
neighborhood induced by the DROP move can be formally defined by N3 = {C ′ :
C\{i}, i ∈ C}.
The move gain ∆i of dropping vertex i can be calculated by:

∆i = −wi (3.3)

We can see that a DROP move always leads to a decrease to the objective function.

1

23

4

5

6

7

w1 = 2

w2 = 3

w3 = 4

w4 = 1

w5 = 2

w6 = 6

w7 = 7

C = {1, 3, 4}

C = {1, 3, 4}

PA = {2}

OM = {5, 6}

∆2 = 3

∆6,1 = 4

∆5,3 = −2

Figure 3.2: The relationship between the add move and the swap move
(From clique C = {1, 3, 4}, the SWAP move between vertices 6 and 1

(SWAP (6, 1)) leads to a solution C1 = {3, 4, 6}, which is better than the
solution C2 = {1, 2, 3, 4} obtained by the ADD move (ADD(2)).)

3.2.4 Combined neighborhood and neighbor selection strategy

In the case of the unweighted maximum clique problem, ADD moves are always preferable
to other moves (in a local sense) since they invariably increase the clique weight. However,
for the case of MVWCP, a SWAP move may lead to a solution better than any solution
that can be obtained by a ADD move. Fig. 3.2 shows an illustrative example where the
current clique C contains three vertices. From Fig. 3.2, we can see that swapping vertices
6 and 1 (∆6,1 = w6 − w1 = 4) leads to the solution C1 = {3, 4, 6}, which is better than
the solution C2 = {1, 2, 3, 4} obtained by adding vertex 2 (∆2 = 3) to C.

50

3.2 Multi-neighborhood tabu search for the MVWCP

Moreover, when no ADD move is possible (PA = ∅), a DROP move may lead to a
solution which is better than any solution that can be obtained by a SWAP move (see
Fig. 3.3 for an illustrative example). To summarize, for the MVWCP, there is no absolute
dominance of one move operator (and its neighborhood) over another move operator. The
best move operator to be applied depends on the current search context and should be
determined according to the context.

1

23

4

5

6

7

w1 = 2

w2 = 3

w3 = 4

w4 = 1

w5 = 2

w6 = 6

w7 = 7

C = {3, 4, 6}

C = {3, 4, 6}

PA = ∅

OM = {1, 2, 5}

∆3 = −4

∆4 = −1

∆6 = −6

∆1,6 = −4

∆2,6 = −3

∆5,3 = −2

Figure 3.3: The relationship between the drop move and the swap move
(From clique C = {3, 4, 6}, the DROP move of dropping vertex 4 leads to a
neighbor solution ({3, 6}) better than any other neighbor solution obtained

by the SWAP moves.)

These observations lead us to create a combined neighborhood N which corresponds
to the union of the three neighborhoods N1, N2 and N3, denoted by N = N1

∪
N2

∪
N3.

Using this union neighborhood, our tabu search algorithm selects at each iteration the
most favorable move (i.e., with the largest ∆ value) among all the ADD, SWAP and
DROP moves to generate the next solution. Ties are broken at random.

3.2.5 Tabu list and tabu tenure management

Tabu search characteristically introduces a tabu list to forbid recently visited solutions
from being revisited. In our MN/TS algorithm, we adopt the following general prohibition
rule: a vertex that leaves the current clique C (by a SWAP or DROP move) is forbidden
to move back to C for the next tt iterations (tabu tenure). A vertex that joins the clique
C (by an ADD or SWAP move) is free to be removed from C without restriction.

With this prohibition rule, no tabu list is needed for the ADD moves. This choice can

51

Chapter 3. Multi-neighborhood tabu search for the maximum vertex weight clique
problem

be intuitively explained by the fact that due to the objective of maximizing the clique
weight, an added vertex has little chance to be removed anyway. (As noted in [Glover,
1989], a tabu tenure to prevent elements from being dropped should typically be smaller
than one to prevent elements from being added. We have simply elected to make the
smaller tenure 0.)

For the SWAP move, when a vertex i ∈ OM is swapped with the only node j ∈ C not
connected to i, j is prohibited to be moved back to C for the next Tswap iterations while
no tabu status is assigned to i. Tswap is tuned dynamically according to the cardinality of
OM :

Tswap = random(|OM |) + T1 (3.4)

where T1 is set equal to 7 and random(|OM |) takes a random integer in the range
[1, ..., |OM |].

For the DROP move, each time a vertex i is removed from C, moving i back to C is
declared tabu for the next T1 iterations where T1 = 7.

Our tabu restrictions (like most of those employed by tabu search) apply to attributes
of solutions that are affected by the moves - in this case, the vertices affected by the moves.
We call a move tabu if one of its attributes is tabu (hence in this case the vertex that
would be added to C), and employ the common aspiration criterion that permits a move
to be accepted in spite of being tabu if it produces a solution better than any found so
far. A move that is not tabu or that satisfies the aspiration criterion is called admissible.

3.2.6 Multistart strategy and stop criteria

Our MN/TS algorithm examines at each iteration the three neighborhoods and selects an
admissible move that produces the most favorable neighboring solution. The inclusion of
all three neighborhoods allows the algorithm to make a more thorough examination of the
solutions around each solution. On the other hand, the tabu restrictions provide a form
of local diversification by forcing the search to leave the regions already examined. To
establish a more global form of diversification, and thereby reinforce the capacity of the
algorithm to visit unexplored areas in the search space, we employ a multistart strategy
to restart the search from new starting points. A restart is triggered each time the current
search is judged to be trapped in a deep local optimum, a condition that is deemed to occur
upon exceeding a maximum allowable number of consecutive iterations without improving
the clique weight. We call this number the depth of the search (denoted by L).

Basically, our multistart tabu search algorithm iterates the following two steps until
the stop criterion is satisfied:

1. Generate a new start point C (see Section 3.2.2).

2. Apply the tabu search procedure to improve the solution C until the fixed depth L
is reached.

The algorithm stops when it attains a predetermined maximum number of iterations
(Itermax). The complete MN/TS algorithm is described as Algorithm 3.1. Each outside
while loop triggers a restart of the tabu search procedure which is realized in the inner

52

3.2 Multi-neighborhood tabu search for the MVWCP

Algorithm 3.1: The multi-neighborhood tabu search approach for MVWCP
Require: A weighted graph G = (V,E, w), integer L (search depth), Itermax (max. allowed

iterations)
Ensure: A clique C∗ with its weight W (C∗)
1: Begin
2: Iter = 0 {Iteration counter}
3: C∗ = ∅
{Each loop triggers a restart of the tabu search procedure}

4: while (Iter < Itermax) do
5: C = Initialize() {Section 3.2.2}
6: Initiate tabu list {Section 3.2.5}
7: NI = 0 {NI is the consecutive iterations during which W (C) is not improved}
8: Clocal best = C {Clocal best is the best solution during the inner while loop}

{The inner while loop corresponds to a round of the tabu search procedure}
9: while (NI < L) do

10: Construct neighborhoods N1, N2 and N3 from C {Section 3.2.3}
11: Choose an overall best allowed neighbor C ′ ∈ N1

∪
N2

∪
N3 according to max gain

criterion {Section 3.2.4}
12: C = C ′ {Move to the new solution}
13: NI = NI + 1
14: Iter = Iter + 1
15: Update tabu list {Section 3.2.5}
16: if (W (C) > W (Clocal best)) then
17: NI = 0
18: Clocal best = C
19: end if
20: end while
21: if (W (Clocal best) > W (C∗)) then
22: C∗ = Clocal best

23: end if
24: end while
25: End
26: Return (Clique C∗))

53

Chapter 3. Multi-neighborhood tabu search for the maximum vertex weight clique
problem

while loop. The variables C and C ′ designate respectively the current solution and one of
its neighboring solution. Clocal best is the best solution found during one inner while loop
while C∗ is the overall best solution found by the algorithm.

3.3 Discussion

The move operators ADD, SWAP and DROP (and particularly ADD and SWAP, see
Section 1.4.2.1) have been widely used in previous studies for both the MVWCP and MCP.
However, previous studies have applied these operators independently and sequentially
rather than making reference to their union as done here.

For instance, the PLS approach for the MVWCP ([Pullan, 2008]) alternates between
a greedy expansion phase during which suitable vertices are added to the current clique
followed by a plateau phase where vertices of the current clique are swapped with some
vertices out of the clique. This strategy implicitly causes PLS to give a higher priority to
ADD moves even if a SWAP move may lead to a solution better than any ADD move (see
Fig. 2 for an example). Such a sequential application of ADD and SWAP moves can miss
favorable neighboring solutions. In short, the union neighborhood explored by MN/TS
ensures a more aggressive and intensified examination of the search space, increasing the
chance to find solutions of better quality. In Section 3.5, we give computational evidence
of this assertion. Another difference between our method and PLS is that MN/TS picks
the two vertices for a SWAP(i,j), according to the move gain, while PLS selects a vertex
i with the largest weight wi in OM to exchange with the only vertex not connected to i
in C.

Finally, for the unweighted MCP, most local search methods (such as [Battiti and Pro-
tasi, 2001; Gendreau et al., 1993; Grosso et al., 2004; Katayama et al., 2005; Pullan, 2006])
use these moves in manner similar to the way they are employed in PLS. These algorithms
differ from each other chiefly in: (1) the strategies for exploring the neighborhoods, (2) the
scheme of vertex selection and (3) the prohibition mechanism applied to the performed
moves.

3.4 Experimental results

This section is dedicated to an intensive evaluation of the proposed algorithm.1 For this
purpose, we present computational results on a large panel of benchmark instances and
show comparisons with state of the art algorithms when such comparisons are possible.

3.4.1 Benchmark instances and experimental settings

Our MN/TS algorithm is programmed in C and compiled using GNU GCC on a PC
with 2.83 GHz CPU and 8G RAM. Like [Pullan, 2008] and given the stochastic nature of
the MN/TS algorithm, each instance is solved 100 times independently by MN/TS with

1The source code of our MN/TS algorithm is publically available at: http://www.info.univ-
angers.fr/pub/hao/clique.html.

54

3.4 Experimental results

different random seeds. The maximum allowed iterations Itermax (see Algorithm 3.1) per
run and per instance is set equal to 108. For the search depth L (see Section 3.2.6), we
use L = 4000 for the instances of the weighted case (MVWCP). For the unweighted case
(MCP), we use L = 104 except for the brock and san families (DIMACS) for which L is
equal to 100.

To evaluate the performance of the proposed MN/TS algorithm, three sets of test
problems are considered in the experiments, in total constituting 136 instances. The
first set of benchmarks is composed of 80 DIMACS-W benchmarks. The second set of
benchmarks consists of a set of 40 BHOSLIB-W instances. The third set of benchmarks
include 16 instances derived from the set packing problem [18] with sizes ranging from
1000 to 2000. A detailed description for these three sets of benchmarks can be found in
Section 1.6.

3.4.2 Experimental results for the maximum vertex weight clique prob-
lem

In Tables 3.1 and 3.2, we show respectively the computational results of our algorithm
on the set of 80 DIMACS-W instances and on the set of 40 BHOSLIB-W benchmarks.
Columns 2–3 give the features of each tested instance: the number of vertices (Node) and
the largest known clique size for the graph. In columns 4–9, we give the same computa-
tional statistics as in [Pullan, 2008] (our main reference algorithm): the maximum weight
obtained by MN/TS over the 100 independent trials (Wbest), the cardinality of the ob-
tained maximum weighted clique (|C|), the average weight over the 100 trials (Wavg), the
number of successful trials in which MN/TS reached Wbest (Success), the average time
(AvgT ime) and the average iterations (Iteration) over these successful trials.

Table 3.1: Results obtained by MN/TS on the 80 DIMACS-W benchmarks.

Instance Node ω Wbest |C| Wavg Success AvgTime Iteration
brock200 1 200 21* 2821 19 2821 100 < 0.01 2341
brock200 2 200 12* 1428 9 1428 100 < 0.01 2120
brock200 3 200 15* 2062 13 2062 100 < 0.01 2025
brock200 4 200 17* 2107 13 2107 100 < 0.01 2482
brock400 1 400 27* 3422 21 3422 100 0.03 7283
brock400 2 400 29* 3350 21 3350 100 0.03 7601
brock400 3 400 31* 3471 23 3471 100 0.03 7887
brock400 4 400 33* 3626 33 3626 100 4.70 1955245
brock800 1 800 23* 3121 20 3121 100 0.05 7658
brock800 2 800 24* 3043 18 3043 100 0.20 28159
brock800 3 800 25* 3076 20 3076 100 0.08 14002
brock800 4 800 26* 2971 26 2971 100 49.70 9033704
C125.9 125 34* 2529 30 2529 100 0.02 15579
C250.9 250 44* 5092 40 5092 100 0.06 23974
C500.9 500 57 6955 48 6955 100 0.07 21806
C1000.9 1000 68 9254 61 9254 100 8.9 3378709
C2000.5 2000 16 2466 14 2466 100 1.84 62469
C2000.9 2000 80 10999 72 10971.92 22 168.11 36667727
C4000.5 4000 18 2792 16 2792 100 80.56 1344781
DSJC500.5 500 13* 1725 12 1725 100 0.04 5471
DSJC1000.5 1000 15* 2186 13 2186 100 0.20 14184
keller4 171 11* 1153 11 1153 100 0.03 10257
keller5 776 27 3317 27 3317 100 3.17 445956
keller6 3361 59 8062 56 7939.49 5 606.15 53687525
MANN a9 45 16* 372 16 372 100 < 0.01 2813
MANN a27 378 126* 12281 126 12273.28 1 88.28 15724873
MANN a45 1035 345* 34192 340 34172.9 1 390.58 25104191
MANN a81 3321 1100 111128 1094 111108.31 1 832.24 18550423

55

Chapter 3. Multi-neighborhood tabu search for the maximum vertex weight clique
problem

Table 3.1 – continued from previous page
Instance Node ω Wbest |C| Wavg Success AvgTime Iteration
hamming6-2 64 32* 1072 32 1072 100 < 0.01 2305
hamming6-4 64 4* 134 4 134 100 < 0.01 2011
hamming8-2 256 128* 10976 128 10976 100 < 0.01 10742
hamming8-4 256 16* 1472 16 1472 100 < 0.01 2086
hamming10-2 1024 512* 50512 512 50512 100 0.92 118180
hamming10-4 1024 40 5129 35 5129 100 2.21 407528
gen200 p0.9 44 200 44* 5043 37 5043 100 < 0.01 3203
gen200 p0.9 55 200 55* 5416 52 5416 100 0.33 146200
gen400 p0.9 55 400 55 6718 47 6718 100 0.15 47748
gen400 p0.9 65 400 65 6940 48 6940 100 0.04 12861
gen400 p0.9 75 400 75 8006 75 8006 100 0.88 264342
c-fat200-1 200 12* 1284 12 1284 100 0.14 74106
c-fat200-2 200 24* 2411 23 2411 100 0.06 33207
c-fat200-5 200 58* 5887 58 5887 100 0.02 13569
c-fat500-1 500 14* 1354 12 1354 100 0.73 162912
c-fat500-2 500 26* 2628 24 2628 100 0.33 71620
c-fat500-5 500 64* 5841 62 5841 100 0.14 34146
c-fat500-10 500 126* 11586 124 11586 100 0.06 18163
johnson8-2-4 28 4* 66 4 66 100 < 0.01 3762
johnson8-4-4 70 14* 511 14 511 100 < 0.01 2038
johnson16-2-4 120 8* 548 8 548 100 0.23 101807
johnson32-2-4 496 16* 2033 16 2033 100 0.53 113880
p hat300-1 300 8* 1057 7 1057 100 0.02 2986
p hat300-2 300 25* 2487 20 2487 100 < 0.01 3141
p hat300-3 300 36* 3774 29 3774 100 0.02 6862
p hat500-1 500 9* 1231 8 1231 100 0.03 2707
p hat500-2 500 36* 3920 31 3920 100 < 0.01 732
p hat500-3 500 50 5375 42 5375 100 0.10 28840
p hat700-1 700 11* 1441 9 1441 100 0.03 2446
p hat700-2 700 44* 5290 40 5290 100 0.02 3542
p hat700-3 700 62 7565 58 7565 100 0.38 90841
p hat1000-1 1000 10 1514 9 1514 100 0.08 6153
p hat1000-2 1000 46 5777 40 5777 100 0.11 13405
p hat1000-3 1000 68 8111 58 8111 100 1.23 235604
p hat1500-1 1500 12* 1619 10 1619 100 0.06 3271
p hat1500-2 1500 65 7360 58 7360 100 0.82 75206
p hat1500-3 1500 94 10321 84 10319.92 96 188.38 18432419
san200 0.7 1 200 30* 3370 30 3370 100 0.17 44988
san200 0.7 2 200 18* 2422 14 2422 100 0.02 4127
san200 0.9 1 200 70* 6825 70 6825 100 0.13 57024
san200 0.9 2 200 60* 6082 60 6082 100 0.21 79785
san200 0.9 3 200 44* 4748 34 4748 100 < 0.01 5745
san400 0.5 1 400 13* 1455 8 1455 100 0.06 5685
san400 0.7 1 400 40* 3941 40 3941 100 13.68 1688081
san400 0.7 2 400 30* 3110 30 3110 100 43.34 5330560
san400 0.7 3 400 22* 2771 18 2771 100 0.05 9267
san400 0.9 1 400 100* 9776 100 9776 100 1.29 306069
san1000 1000 15* 1716 9 1716 100 13.01 471338
sanr200-0.7 200 18* 2325 15 2325 100 < 0.01 2049
sanr200-0.9 200 42* 5126 36 5126 100 < 0.01 2168
sanr400-0.5 400 13* 1835 11 1835 100 0.02 2941
sanr400-0.7 400 21 2992 18 2992 100 < 0.01 2745

For problems in the MVWCP class, studies in the literature are often based on
DIMACS-W instances (different weighting functions may be used). We are unaware of
studies reporting computational results on the BHOSLIB-W benchmarks. For this reason,
our comparisons reported in the next section are based on DIMACS-W benchmarks (as well
as a set of instances from the set packing problem) while our results on the BHOSLIB-W
benchmarks can serve as a basis for performance assessment of other MVWCP algorithms.

Table 3.2: Results obtained by MN/TS on the 40 BHOSLIB-W benchmarks.

Instance Node ω Wbest |C| Wavg Success AvgTime Iteration
frb30-15-1 450 30* 2990 27 2990 100 0.35 162927
frb30-15-2 450 30* 3006 28 3006 100 3.45 1628915
frb30-15-3 450 30* 2995 27 2995 100 4.72 2147505
frb30-15-4 450 30* 3032 28 3032 100 0.12 53148
frb30-15-5 450 30* 3011 27 3011 100 3.01 1404617

56

3.4 Experimental results

Table 3.2 – continued from previous page
Instance Node ω Wbest |C| Wavg Success AvgTime Iteration
frb35-17-1 595 35* 3650 33 3650 100 25.80 10949043
frb35-17-2 595 35* 3738 33 3736.84 96 72.09 36780076
frb35-17-3 595 35* 3716 33 3716 100 7.72 3208297
frb35-17-4 595 35* 3683 35 3678.31 77 94.03 46627497
frb35-17-5 595 35* 3686 33 3686 100 8.09 3306241
frb40-19-1 760 40* 4063 37 4062.15 83 85.57 12557557
frb40-19-2 760 40* 4112 36 4111.16 87 134.58 29716520
frb40-19-3 760 40* 4115 36 4108.30 19 215.98 44792105
frb40-19-4 760 40* 4136 37 4135.56 89 96.65 13321879
frb40-19-5 760 40* 4118 36 4117.6 90 178.89 31692738
frb45-21-1 945 45* 4760 41 4748.66 44 126.26 41702954
frb45-21-2 945 45* 4784 42 4775.86 47 228.03 42332553
frb45-21-3 945 45* 4765 43 4756.90 26 125.35 42132692
frb45-21-4 945 45* 4799 42 4772.41 43 174.73 34953953
frb45-21-5 945 45* 4779 43 4777.38 82 193.82 35802284
frb50-23-1 1150 50* 5494 47 5484.74 6 186.62 52803333
frb50-23-2 1150 50* 5462 47 5434.14 3 149.66 45053333
frb50-23-3 1150 50* 5486 47 5480.29 53 158.71 45289811
frb50-23-4 1150 50* 5454 46 5451.69 9 176.41 49915555
frb50-23-5 1150 50* 5498 47 5495.70 89 110.85 36065699
frb53-24-1 1272 53* 5670 50 5637.94 5 233.22 54638030
frb53-24-2 1272 53* 5707 48 5676.56 6 145.22 40515069
frb53-24-3 1272 53* 5640 49 5610.79 15 215.79 62672666
frb53-24-4 1272 53* 5714 50 5645.61 7 449.39 73105032
frb53-24-5 1272 53* 5659 49 5628.77 5 294.00 47012340
frb56-25-1 1400 56* 5916 53 5836.85 3 308.90 49212581
frb56-25-2 1400 56* 5872 52 5807.70 1 73.25 17174823
frb56-25-3 1400 56* 5859 51 5799.38 1 181.93 47664235
frb56-25-4 1400 56* 5892 51 5839.16 3 104.58 28605284
frb56-25-5 1400 56* 5839 52 5768.39 1 322.70 91502378
frb59-26-1 1534 59* 6591 55 6547.53 3 166.20 42284765
frb59-26-2 1534 59* 6645 56 6567.07 3 212.49 54746666
frb59-26-3 1534 59* 6608 55 6514.18 1 232.77 60188544
frb59-26-4 1534 59* 6592 54 6498.37 1 318.39 47624522
frb59-26-5 1534 59* 6584 53 6522.57 1 161.47 30820580

3.4.3 Comparative results for the maximum vertex weight clique prob-
lem

In order to show the relative effectiveness of our MN/TS for the MVWCP, we first compare
MN/TS with two state of the art algorithms from the literature [Pullan, 2008; Mannino and
Stefanutti, 1999]. The main comparison criterion is the quality of the solutions found. Due
to the differences among the programming languages, data structures, compiler options
and computers, computing times are provided only for indicative purposes. Since the
reference algorithms report results only for DIMCAS-W benchmarks, our first comparisons
are based on this set of instances.

Table 3.3: Comparative results between MNTS and PLS on the set of 80
DIMACS-W benchmarks.

Instance TS PLS ∆(TS − PLS)

Wbest Success CPU(s) Wbest Success CPU(s)
brock200 1 2821 100 < 0.01 2821 100 0.19 0
brock200 2 1428 100 < 0.01 1428 100 0.02 0
brock200 3 2062 100 < 0.01 2062 100 0.01 0
brock200 4 2107 100 < 0.01 2107 100 0.70 0
brock400 1 3422 100 0.03 3422 32 437.19 0
brock400 2 3350 100 0.03 3350 61 415.95 0
brock400 3 3471 100 0.03 3471 100 12.04 0
brock400 4 3626 100 4.70 3626 100 0.05 0
brock800 1 3121 100 0.05 3121 100 31.46 0
brock800 2 3043 100 0.20 3043 69 893.42 0
brock800 3 3076 100 0.08 3076 100 3.35 0
brock800 4 2971 100 49.70 2971 100 3.77 0

57

Chapter 3. Multi-neighborhood tabu search for the maximum vertex weight clique
problem

Table 3.3 – continued from previous page
Instance TS PLS ∆(TS − PLS)

Wbest Success CPU(s) Wbest Success CPU(s)
C125.9 2529 100 0.02 2529 100 8.08 0
C250.9 5092 100 0.06 5092 17 247.69 0
C500.9 6955 100 0.07 6822 - - 133
C1000.9 9254 100 8.90 8965 5 344.74 289
C2000.5 2466 100 1.84 2466 18 711.27 0
C2000.9 10999 22 168.11 10028 - - 971
C4000.5 2792 100 80.56 2792 - - 0
DSJC500.5 1725 100 0.04 1725 100 0.95 0
DSJC1000.5 2186 100 0.20 2186 100 47.76 0
keller4 1153 100 0.03 1153 100 0.02 0
keller5 3317 100 3.17 3317 100 119.24 0
keller6 8062 5 606.15 7382 - - 680
MANN a9 372 100 < 0.01 372 100 < ϵ 0
MANN a27 12281 1 88.28 12264 - - 17
MANN a45 34192 1 390.58 34129 - - 63
MANN a81 111128 1 832.24 110564 - - 564
hamming6-2 1072 100 < 0.01 1072 100 < ϵ 0
hamming6-4 134 100 < 0.01 134 100 < ϵ 0
hamming8-2 10976 100 < 0.01 10976 100 < ϵ 0
hamming8-4 1472 100 < 0.01 1472 100 < ϵ 0
hamming10-2 50512 100 0.92 50512 100 < ϵ 0
hamming10-4 5129 100 2.21 5086 1 1433.07 43
gen200 p0.9 44 5043 100 < 0.01 5043 100 4.44 0
gen200 p0.9 55 5416 100 0.33 5416 100 0.05 0
gen400 p0.9 55 6718 100 0.15 6718 2 340.11 0
gen400 p0.9 65 6940 100 0.04 6935 4 200.79 5
gen400 p0.9 75 8006 100 0.88 8006 100 < ϵ 0
c-fat200-1 1284 100 0.14 1284 100 < ϵ 0
c-fat200-2 2411 100 0.06 2411 100 < ϵ 0
c-fat200-5 5887 100 0.02 5887 100 < ϵ 0
c-fat500-1 1354 100 0.73 1354 100 < ϵ 0
c-fat500-2 2628 100 0.33 2628 100 0.01 0
c-fat500-5 5841 100 0.14 5841 100 < ϵ 0
c-fat500-10 11586 100 0.06 11586 100 < ϵ 0
johnson8-2-4 66 100 < 0.01 66 100 < ϵ 0
johnson8-4-4 511 100 < 0.01 511 100 < ϵ 0
johnson16-2-4 548 100 0.23 548 100 < ϵ 0
johnson32-2-4 2033 100 0.53 2033 100 44.68 0
p hat300-1 1057 100 0.02 1057 100 0.01 0
p hat300-2 2487 100 < 0.01 2487 100 19.36 0
p hat300-3 3774 100 0.02 3774 47 418.11 0
p hat500-1 1231 100 0.03 1231 100 0.42 0
p hat500-2 3920 100 < 0.01 3925 - - -5
p hat500-3 5375 100 0.10 5361 - - 14
p hat700-1 1441 100 0.03 1441 100 0.20 0
p hat700-2 5290 100 0.02 5290 100 78.51 0
p hat700-3 7565 100 0.38 7565 12 718.40 0
p hat1000-1 1514 100 0.08 1514 100 7.61 0
p hat1000-2 5777 100 0.11 5777 87 940.62 0
p hat1000-3 8111 100 1.23 7986 - - 125
p hat1500-1 1619 100 0.06 1619 100 48.91 0
p hat1500-2 7360 100 0.82 7328 4 1056.19 32
p hat1500-3 10321 96 188.38 10014 - - 307
san200 0.7 1 3370 100 0.17 3370 100 < ϵ 0
san200 0.7 2 2422 100 0.02 2422 66 397.38 0
san200 0.9 1 6825 100 0.13 6825 100 < ϵ 0
san200 0.9 2 6082 100 0.21 6082 100 < ϵ 0
san200 0.9 3 4748 100 < 0.01 4748 72 219.68 0
san400 0.5 1 1455 100 0.06 1455 100 200.44 0
san400 0.7 1 3941 100 13.68 3941 100 0.03 0
san400 0.7 2 3110 100 43.34 3110 100 0.05 0
san400 0.7 3 2771 100 0.05 2771 100 4.41 0
san400 0.9 1 9776 100 1.29 9776 100 < ϵ 0
san1000 1716 100 13.01 1716 - - 0
sanr200-0.7 2325 100 < 0.01 2325 100 0.62 0
sanr200-0.9 5126 100 < 0.01 5126 5 182.54 0
sanr400-0.5 1835 100 0.02 1835 100 0.67 0
sanr400-0.7 2992 100 < 0.01 2992 100 141.50 0

The weight of each vertex i is set equal to (i mod 200) + 1. Statistics are based on 100 trials of each algorithm.
An entry with ”-” for PLS means that PLS was terminated because of excessive CPU time. An entry with ”< ϵ”
signifies that the average CPU time required by PLS was less than 0.01 seconds. MNTS finds improved solutions
for 13 instances (in bold).

Table 3.3 summarizes the comparative results between our MN/TS and the well-known

58

3.4 Experimental results

PLS algorithm [Pullan, 2008]. For both algorithms, the number of the trials devoted to
solving each instance was 100. In Table 3, we indicate the largest weights obtained by
the two algorithms for each graph over the 100 independent trials (Wbest), the number
of successful trials where an algorithm reached Wbest (Success), the average time (CPU)
over these successful trials. Finally, column 8 indicates the difference in the largest weights
obtained by MN/TS and PLS.

Table 3.3 discloses that, over the 80 instances tested, the quality of solutions obtained
by our MN/TS algorithm matches or exceeds that of solutions obtained by the PLS algo-
rithm except in one case (p hat500-2) where our method obtained a slightly worse solu-
tion. By contrast, the MN/TS method obtained strictly superior solutions on 13 out of
the 80 instances (C500.9, C1000.9, C2000.9, keller6, MANN a27, MANN a45, MANN a81,
hamming10-4, gen400 p0.9 65, p hat500-3, p hat1000-3, p hat1500-2, p hat1500-3). For
all of the remaining 66 instances on which the two algorithms attain the same largest
weight (Wbest), MN/TS has a success rate of 100%, while PLS has a 100% success rate on
52 of these instances.

According to [Pullan, 2008], the experiments of PLS were performed on a computer
that, when executing the DIMACS MC Machine Benchmark program (ftp://dimacs.rutgers.edu
in directory /pub/dsj/clique), required respectively 0.31, 1.93 and 7.35 CPU seconds for
the graphs r300.5, r400.5 and r500.5. Running this benchmark program on our computer
leads to respectively 0.46, 2.79 and 10.44 CPU seconds for these three graphs. In other
words, the computer used by PLS is slightly faster than the computer we used for our
experiments. Table 3.3 shows that our MN/TS algorithm required in most cases less
computing time to obtain solutions of the same or better quality.

To augment the above comparison, Table 3.4 contrasts the results of our MN/TS with
those of the AugSearch algorithm reported in [Mannino and Stefanutti, 1999]. The authors
of the AugSearch algorithm used a subset of 36 DIMACS graphs with weighting function
in which the weight wi of vertex i is set equal to (i mod 10)+1. We have run our algorithm
100 times to solve each of these instances and report the computational statistics in Table
3.4. As demonstrated, our MN/TS algorithm attains easily all the best objective values
Wbest reported in [Mannino and Stefanutti, 1999] with a short computing time ranging
from less than 1 second to 13 minutes. (The computing times of AugSearch are based
on an IBM-RISC SYSTEM 6000 POWER station 375.) In addition, MN/TS obtains
solutions better than those found by AugSearch in 11 cases out of the 36 instances.

3.4.4 Computational results on structured instances from set packing

In this section, we report the outcomes of testing the MN/TS algorithm on the set of 16
structured instances derived from the set packing problem [Alidaee et al., 2008; Delorme
et al., 2004], which have sizes ranging from 1000 to 2000. In [Alidaee et al., 2008], the set
packing problem is solved via a unconstrained quadratic formulation while in [Delorme
et al., 2004], a dedicated GRASP heuristic was used. For the approach to convert a set
packing problem into a maximum weight independent set problem, interested readers are
referred to [Kwon, 2005]. (A maximum weight independent set in a graph corresponds to
a maximum weight clique in the complement of the graph.)

59

Chapter 3. Multi-neighborhood tabu search for the maximum vertex weight clique
problem

Table 3.4: Comparative results between MN/TS and AugSearch on 36 DIMACS weighted
instances.

Instance MN/TS AugSearch ∆(MN/TS − AugSearch)

Wbest Time Wbest Time

C125.9 215 < 0.01 215 5.28 0

C250.9 304 0.01 304 12.93 0

C500.9 390 0.08 385 3363.74 5

C1000.9 491 6.08 470 553.53 21

C2000.9 585 15.21 531 2430.77 54

C2000.5 129 2.43 113 324.07 16

DSJC500.5 98 0.05 94 19.19 4

DSJC1000.5 114 0.87 102 732.74 12

MANN a27 867 0.50 867 0.01 0

MANN a45 2403 100.23 2403 0.01 0

MANN a81 7794 327.22 (18250) 0.01 -

brock200 2 77 < 0.01 76 0.19 1

brock200 4 114 < 0.01 114 114 0

brock400 2 178 < 0.01 178 1255.78 0

brock400 4 175 < 0.01 175 113.50 0

brock800 2 159 0.16 155 1841 4

brock800 4 158 0.13 153 803.11 5

gen200 p0.9 44 277 < 0.01 277 48.20 0

gen200 p0.9 55 293 0.57 293 37.26 0

gen400 p0.9 55 374 0.06 374 2220.10 0

gen400 p0.9 65 391 0.65 391 208.30 0

gen400 p0.9 75 401 88.88 401 2578.57 0

hamming8-4 106 < 0.01 106 0.1 0

hamming10-4 294 0.03 291 1499.09 3

keller4 87 < 0.01 87 2.48 0

keller5 201 0.21 195 1307.16 6

keller6 445 821.4 (1205) 922.18 -

p hat300-1 71 < 0.01 71 2.38 0

p hat300-2 180 < 0.01 180 0.40 0

p hat300-3 260 < 0.01 260 6.60 0

p hat700-1 77 0.02 77 36.17 0

p hat700-2 284 0.01 284 200.45 0

p hat700-3 418 < 0.01 418 42.95 0

p hat1500-1 89 < 0.01 89 1113.43 0

p hat1500-2 416 6.50 416 758.03 0

p hat1500-3 595 1.46 595 517.60 0

The weight of each vertex i is set equal to (i mod 10)+1 according to [Mannino and Stefanutti, 1999].
Notice that the results reported in [Mannino and Stefanutti, 1999] for two instances (MANN a81
and keller6) are wrong since their respective Wbest values are superior to their respective upper
bounds (11000 and 590). MN/TS finds improved solutions for 11 instances (in bold).

60

3.4 Experimental results

Table 3.5: Computational results on the 16 weighted maximum clique instances from the
set packing problem.

Instance n m BKR MN/TS

Wbest Wavg Success AvgTime Iteration

1 1000 5000 67 67 67 100 < 0.01 987
2 1000 5000 4 4 4 100 < 0.01 2466
3 1000 5000 661 661 661 100 0.05 14412
4 1000 5000 48 48 48 100 0.05 11367
5 1000 1000 222 222 222 100 0.02 2160
6 1000 1000 15 15 15 100 0.09 9794
7 1000 1000 2260 2260 2259.38 63 164.12 54803313
8 1000 1000 175 175 175 100 0.53 81249
9 2000 10000 40 40 40 100 < 0.01 40
10 2000 10000 2 2 2 100 < 0.01 4
11 2000 10000 478 478 478 100 2.02 116784
12 2000 10000 32 32 32 100 4.17 229540
13 2000 2000 140 140 140 100 0.07 3136
14 2000 2000 9 9 9 100 0.06 1333
15 2000 2000 1784 1811 1806.81 6 304.52 51346666
16 2000 2000 131 135 135 100 4.96 1111260

The results of this experiment are summarized in Table 3.5. Columns 1–3 give the
problem identification [Alidaee et al., 2008]. Column 4 gives the previous best known
results reported in [Alidaee et al., 2008] and [Delorme et al., 2004], and columns 5–9
show the computational statistics of the MN/TS algorithm. Table 3.5 shows that MN/TS
attains the previous best known results for all these 16 tested instances. Moreover, our
algorithm discovers new best results for two instances (ID15 and ID16). This performance
is surprising given that our MN/TS algorithm is not specifically designed for the set
packing problem.

3.4.5 Experimental results for the unweighted maximum clique problem

The results on the weighted instances have shown the efficacy of the MN/TS algorithm
for the maximum vertex weight clique problem. In this section, we additionally test the
MN/TS algorithm on the unweighted maximum clique problem, using the DIMACS and
BHOSLIB benchmark instances. For this experiment, the search depth L is set equal to
104 except for the brock and san graphs (DIMACS) for which L is set equal to 100.

Table 3.6: The computational results obtained by MN/TS on the 80 unweighted
DIMACS benchmarks.

Instance Node ω Wbest Wavg Success AvgTime Iteration
brock200 1 200 21* 21 21 100 < 0.01 3639
brock200 2 200 12* 12 12 100 0.06 27460
brock200 3 200 15* 15 15 100 0.07 37184
brock200 4 200 17* 17 17 100 0.09 53893
brock400 1 400 27* 27 27 100 10.27 2571929
brock400 2 400 29* 29 29 100 1.34 551643
brock400 3 400 31* 31 31 100 0.63 259892
brock400 4 400 33* 33 33 100 0.28 121510
brock800 1 800 23* 23 22.72 86 188.14 29580466
brock800 2 800 24* 24 23.88 96 156.47 26960764
brock800 3 800 25* 25 25 100 118.57 20949527
brock800 4 800 26* 26 26 100 62.38 10861330
C125.9 125 34* 34 34 100 < 0.01 114
C250.9 250 44* 44 44 100 < 0.01 706

61

Chapter 3. Multi-neighborhood tabu search for the maximum vertex weight clique
problem

Table 3.6 – continued from previous page
Instance Node ω Wbest Wavg Success AvgTime Iteration
C500.9 500 57 57 57 100 0.06 28868
C1000.9 1000 68 68 68 100 0.63 197084
C2000.5 2000 16 16 16 100 0.07 33553
C2000.9 2000 80 80 78.37 1 563.70 99176504
C4000.5 4000 18 18 18 100 144.37 3779319
DSJC500.5 500 13* 13 13 100 0.24 30471
DSJC1000.5 1000 15* 15 15 100 0.61 44184
keller4 171 11* 11 11 100 < 0.01 123
keller5 776 27 27 27 100 0.05 10431
keller6 3361 59 59 59 100 97.87 7407809
MANN a9 45 16* 16 16 100 < 0.01 1853
MANN a27 378 126* 126 126 100 3.42 564530
MANN a45 1035 345* 340 340 6 90.58 2510419
MANN a81 3321 1100 1090 1090 8 632.24 8550423
hamming6-2 64 32* 32 32 100 < 0.01 128
hamming6-4 64 4* 4 4 100 < 0.01 4
hamming8-2 256 128* 128 128 100 < 0.01 222
hamming8-4 256 16* 16 16 100 < 0.01 23
hamming10-2 1024 512* 512 512 100 < 0.01 1400
hamming10-4 1024 40 40 40 100 < 0.01 795
gen200 p0.9 44 200 44* 44 44 100 < 0.01 1116
gen200 p0.9 55 200 55* 55 55 100 < 0.01 396
gen400 p0.9 55 400 55 55 55 100 0.03 13285
gen400 p0.9 65 400 65 65 65 100 < 0.01 852
gen400 p0.9 75 400 75 75 75 100 < 0.01 511
c-fat200-1 200 12* 12 12 100 < 0.01 861
c-fat200-2 200 24* 24 24 100 0.07 35744
c-fat200-5 200 58* 58 58 100 < 0.01 2698
c-fat500-1 500 14* 14 14 100 0.02 4638
c-fat500-2 500 26* 26 26 100 < 0.01 1586
c-fat500-5 500 64* 64 64 100 0.02 6764
c-fat500-10 500 126* 126 126 100 < 0.01 3666
johnson8-2-4 28 4* 4 4 100 < 0.01 4
johnson8-4-4 70 14* 14 14 100 < 0.01 14
johnson16-2-4 120 8* 8 8 100 < 0.01 8
johnson32-2-4 496 16* 16 16 100 < 0.01 16
p hat300-1 300 8* 8 8 100 < 0.01 94
p hat300-2 300 25* 25 25 100 < 0.01 77
p hat300-3 300 36* 36 36 100 < 0.01 346
p hat500-1 500 9* 9 9 100 < 0.01 84
p hat500-2 500 36* 36 36 100 < 0.01 124
p hat500-3 500 50 50 50 100 < 0.01 616
p hat700-1 700 11* 11 11 100 < 0.01 1071
p hat700-2 700 44* 44 44 100 < 0.01 143
p hat700-3 700 62 62 62 100 < 0.01 249
p hat1000-1 1000 10 10 10 100 < 0.01 180
p hat1000-2 1000 46 46 46 100 < 0.01 216
p hat1000-3 1000 68 68 68 100 < 0.01 1630
p hat1500-1 1500 12* 12 12 100 1.42 75661
p hat1500-2 1500 65 65 65 100 < 0.01 998
p hat1500-3 1500 94 94 94 100 < 0.01 1029
san200 0.7 1 200 30* 30 30 100 < 0.01 2716
san200 0.7 2 200 18* 18 18 100 0.05 16594
san200 0.9 1 200 70* 70 70 100 < 0.01 838
san200 0.9 2 200 60* 60 60 100 < 0.01 731
san200 0.9 3 200 44* 44 44 100 < 0.01 1749
san400 0.5 1 400 13* 13 13 100 0.34 37789
san400 0.7 1 400 40* 40 40 100 0.21 37048
san400 0.7 2 400 30* 30 30 100 0.35 61817
san400 0.7 3 400 22* 22 22 100 0.17 39006
san400 0.9 1 400 100* 100 100 100 < 0.01 2728
san1000 1000 15* 15 15 100 54.30 2215110
sanr200-0.7 200 18* 18 18 100 < 0.01 292
sanr200-0.9 200 42* 42 42 100 < 0.01 1251
sanr400-0.5 400 13* 13 13 100 < 0.01 3351
sanr400-0.7 400 21 21 21 100 < 0.01 1609

Table 3.6 shows the performance of MN/TS on the 80 DIMACS benchmarks. The
different columns have the same interpretation as before. Wbest (column 4) identifies the
largest clique found by MN/TS. For 78 of the 80 instances, MN/TS finds the previous
best known results in less than seven minutes. This performance matches the current best

62

3.5 Influence of neighborhood combination

MCP algorithms like [Pullan et al., 2011; Pullan, 2006; Wu and Hao, 2011a] and dominates
other methods.

The outcomes of applying MN/TS to the BHOSLIB benchmark instances are displayed
in Table 3.7, reinforcing these findings. In particular, for all of these 40 instances, MN/TS
successfully obtains the known optimal solutions. In addition, for 23 instances, MN/TS
finds optimal solutions with a success rate of 100%.

In sum, Tables 3.1 to 3.7 together demonstrate that our MN/TS algorithm is not only
very effective for the maximum weight clique problem, but also very competitive for the
conventional unweighted case for which it was not specially designed.

3.5 Influence of neighborhood combination

One of the most important features of a local search algorithm is certainly the definition
of its neighborhood. When several neighborhoods are available, the issue of effective ways
for using these neighborhoods becomes relevant [Gaspero and Schaerf, 2006; Lü et al.,
2011]. As previously noted, the three neighborhoods N1, N2 and N3 induced respectively
by the ADD, SWAP and DROP moves are natural components to embody in an overall
choice strategy. In our case, at each iteration of our tabu search approach, we have elected
to employ the combined neighborhood N1

∪
N2

∪
N3, from which we select the admissible

move (non-tabu or globally improving) yielding the largest move gain.
For traditional approaches which have been previously applied to the unweighted max-

imum clique problem, the basic moves consist of the addition or removal of a single vertex
from the current clique. (Swap moves thus trivially decompose into two separate moves
[Battiti and Mascia, 2010]). Within this setting of traditional methods for the MCP, the
ADD moves are applied whenever possible as they are the only moves that augment the
current clique. DROP moves are considered only when no ADD or SWAP move exists.
In this section, we perform tests to apply this traditional way of combining neighborhoods
to the MVWCP: When admissible ADD moves are present, we select the one yielding the
largest move gain (i.e., drawing the move from N1). Otherwise, if admissible SWAP moves
are present, we similarly select one of these moves with the largest gain (drawing the move
from neighborhood N2). If none of these two types of moves is available, a DROP move
is applied to remove from C the vertex with the minimum weight (N3). In this approach,
the neighborhoods are explored sequentially, as denoted by N1 → N2 → N3.

We apply our MN/TS algorithm to 10 MVWCP instances from the DIMACS-W and
BHOSLIB-W benchmarks to compare our N1

∪
N2

∪
N3 neighborhood combination with

the N1 → N2 → N3 combination. Each version of the algorithm was run 100 times on
each instance with Itermax = 108. Table 7.2 shows that on all these 10 instances, MN/TS
with N1

∪
N2

∪
N3 matches or outperforms MN/TS with N1 → N2 → N3. For three

instances (C2000.9, Keller6 and frb59-26-4), MN/TS with N1
∪

N2
∪

N3 achieves a better
weight (Wbest) than MN/TS with N1 → N2 → N3. One also observes that MN/TS with
N1

∪
N2

∪
N3 requires significantly fewer iterations to reach the same Wbest.

To augment these observations, we show in Fig. 3.4 the running profiles of our algo-
rithms with N1

∪
N2

∪
N3 and N1 → N2 → N3 on the instances C1000.9 and brock800 1.

63

Chapter 3. Multi-neighborhood tabu search for the maximum vertex weight clique
problem

Table 3.7: The computational results obtained by MN/TS on the 40 unweighted BHOSLIB
benchmark instances.

Instance Node ω∗ Wbest Wavg Success AvgTime Iteration

frb30-15-1 450 30 30 30 100 0.04 11933
frb30-15-2 450 30 30 30 100 0.06 16148
frb30-15-3 450 30 30 30 100 0.57 157523
frb30-15-4 450 30 30 30 100 0.03 8366
frb30-15-5 450 30 30 30 100 0.37 103338

frb35-17-1 595 35 35 35 100 1.56 600704
frb35-17-2 595 35 35 35 100 0.55 215200
frb35-17-3 595 35 35 35 100 0.08 28925
frb35-17-4 595 35 35 35 100 2.08 821830
frb35-17-5 595 35 35 35 100 0.02 88714

frb40-19-1 760 40 40 40 100 0.32 111699
frb40-19-2 760 40 40 40 100 9.15 3146725
frb40-19-3 760 40 40 40 100 1.63 560773
frb40-19-4 760 40 40 40 100 6.72 2267514
frb40-19-5 760 40 40 40 100 45.17 14755785

frb45-21-1 945 45 45 45 100 7.89 2223000
frb45-21-2 945 45 45 45 100 21.71 5824014
frb45-21-3 945 45 45 45 100 53.67 15251125
frb45-21-4 945 45 45 45 100 10.40 2867683
frb45-21-5 945 45 45 45 100 37.22 10616570

frb50-23-1 1150 50 50 49.84 84 116.92 30626106
frb50-23-2 1150 50 50 49.47 47 161.77 43081194
frb50-23-3 1150 50 50 49.15 15 214.58 55481196
frb50-23-4 1150 50 50 50 100 11.91 3136579
frb50-23-5 1150 50 50 50 100 50.90 8056548

frb53-24-1 1272 53 53 52.03 3 240.36 56242252
frb53-24-2 1272 53 53 52.30 30 209.89 48183139
frb53-24-3 1272 53 53 52.91 91 253.96 33611417
frb53-24-4 1272 53 53 52.45 45 178.01 42556535
frb53-24-5 1272 53 53 52.90 90 278.31 39408553

frb56-25-1 1400 56 56 55.22 22 174.02 40273969
frb56-25-2 1400 56 56 55.12 12 127.16 30201302
frb56-25-3 1400 56 56 55.25 25 209.48 47435029
frb56-25-4 1400 56 56 55.85 85 158.14 36531402
frb56-25-5 1400 56 56 56 100 85.57 18921353

frb59-26-1 1534 59 59 58.05 5 242.75 53070428
frb59-26-2 1534 59 59 58.01 1 396.38 86144885
frb59-26-3 1534 59 59 58.23 23 197.36 43876938
frb59-26-4 1534 59 59 58.10 11 192.45 41319157
frb59-26-5 1534 59 59 58.99 99 96.09 20416819

64

3.5 Influence of neighborhood combination

2600

2800

3000

W
e
ig

h
t

0 100 200 300 400 500 600 700 800 900
Iterations × 100 (brock800 1)

N1

⋃
N2

⋃
N3

N1 → N2 → N3

8750

9000

9250

W
e
ig

h
t

0 100 200 300 400 500 600 700 800 900
Iterations × 100000 (C1000.9)

N1

⋃
N2

⋃
N3

N1 → N2 → N3

Figure 3.4: Running profile of the two algorithms base on N1
∪

N2
∪

N3 and N1 → N2 →
N3 on C1000.9 and brock800 1

65

Chapter 3. Multi-neighborhood tabu search for the maximum vertex weight clique
problem

Table 3.8: The comparative results between two neighborhood combinations
Instance N1

∪
N2

∪
N3 N1 → N2 → N3

Wbest Wavg Success Iteration Wbest Wavg Success Iteration

brock800 1 3121 3121 100 7658 3121 3121 100 28550

C1000.9 9254 9254 100 3378709 9254 9187.99 43 49203658

C2000.5 2466 2466 100 62469 2466 2466 100 324754

C2000.9 10999 10971.92 22 36667727 10891 10758.24 1 96090684

keller6 8062 7939.49 5 53687525 7706 7456.32 1 68412368

hamming10-4 5129 5129 100 407528 5129 5128.96 97 30752818

p hat500-2 3920 3920 100 732 3290 3290 100 10702

p hat1000-3 8111 8111 100 235604 8111 8111 100 8255957

frb59-26-1 6591 6547.53 3 42284765 6591 6556.92 9 53125555

frb59-26-4 6592 6498.37 1 47624522 6575 6534.39 18 35506666

A running profile is defined by the function i 7→ f∗(i) where i is the number of iterations
and f∗(i) is the best value of the objective function (averaged over 100 runs) known at
iteration i. Such a profile gives a natural way to observe the evolution of the best values
of the objective function during a search.

Fig. 3.4 shows that MN/TS with N1
∪

N2
∪

N3 strongly dominates MN/TS with
N1 → N2 → N3 on these two test instances by obtaining a faster and better convergence
to the best result.

3.6 Conclusion

A natural concern in local search is to identify how to exploit several different neigh-
borhoods so as to increase the ability of the algorithm to explore the search space more
effectively. In this chapter, we have presented a tabu search algorithm for the maximum
vertex weight clique problem based on a combined neighborhood induced by three types
of moves. The algorithm explores all these moves at each iteration and selects the best
admissible (non-tabu or globally improving) solution that yields the largest weight gain.
The tabu mechanism creates an effective local diversification and a multistart strategy is
employed to create a global diversification.

Our proposed algorithm is evaluated on a large number of MVWCP benchmarks from
the BHOSLIB-W and DIMACS-W test sets (containing 40 instances and 80 instances,
respectively) and and is also applied to 16 instances derived from the set partitioning
problem. Compared with leading reference algorithms from the literature, our MN/TS
algorithm finds new best solutions in 26 cases (24 DIMACS-W instances and 2 set pack-
ing instances). Moreover, our MN/TS approach exhibits an excellent performance when
applied to the classical maximum clique problem, obtaining the best-known solutions for
all the BHOSLIB instances and for 78 out of the 80 DIMACS instances. All these results
are achieved with a computing time ranging from less than one second to 15 minutes on
a standard laptop.

We also provided an analysis to show the relevance of the union combination of the

66

3.6 Conclusion

underlying neighborhoods by comparing it to the sequential exploration of these neighbor-
hoods. The outcomes suggest that the union combination of neighborhoods plays a key
role in contributing to the effectiveness of the proposed algorithm.

This chapter is dedicated to the maximum vertex weight clique problem. In the next
chapter, we will consider the maximum edge weight clique problem, which is another
important generalization of MCP, and develop an effective hybrid metaheuristic method
to solve the problem.

67

Chapter 4

A hybrid metaheuristic method
for the maximum edge weight
clique Problem

The maximum edge weight clique problem (MEWCP) is another important generalization
of MCP, which is also known as the maximum diversity problem in the literature. Given
an integer m and a complete graph G = (V,E) in which every pair of distinct vertices is
connected by a unique edge, each edge {i, j} ∈ E being associated with a positive weight
dij . The MEWCP is to determine a clique of G with exactly m vertices such that the sum
of the weights of the edges in the clique is maximized. We present a hybrid metaheuristic
algorithm (denoted by MAMEP) for MEWCP. The algorithm uses a dedicated crossover
operator to generate new solutions and a constrained neighborhood tabu search procedure
for local optimization. MAMEP applies also a distance-and-quality based replacement
strategy to maintain population diversity. Extensive evaluations on a large set of 120
benchmark instances show that the proposed approach competes very favorably with the
current state-of-art methods for MAMEP. In particular, it consistently and easily attains
all the best known results. Moreover, it yields improved results for 6 large MEWCP
instances. The key components of MAMEP are analyzed to shed light on their functioning.
The content of this chapter is presented in [Wu and Hao, 2012c] which is currently under
review.

Contents

4.1 Introduction . 71

4.2 A hybrid metaheuristic algorithm for MEWCP 72

4.2.1 Outline of the Memetic Algorithm 72
4.2.2 Search space and evaluation function 73
4.2.3 Generation of initial solutions . 74
4.2.4 The constrained neighborhood tabu search procedure 74
4.2.5 Crossover operator . 78
4.2.6 Population updating rule . 79

69

Chapter 4. A hybrid metaheuristic method for the maximum edge weight clique Problem

4.3 Computational experiments . 80

4.3.1 Benchmark instances and Parameter settings 80
4.3.2 Reference Algorithms and Experimental Protocol 81
4.3.3 Computational results . 82
4.3.4 Comparison with other algorithms 86

4.4 Analysis of MAMEP . 87

4.4.1 Influence of crossover . 87
4.4.2 Structural similarity analysis and motivation for the proposed

crossover operator . 88
4.4.3 Population Updating Strategy 88

4.5 Conclusions . 90

70

4.1 Introduction

4.1 Introduction

Given an integer m and a complete graph G = (V,E) in which every pair of distinct vertices
is connected by a unique edge, each edge {i, j} ∈ E being associated with a positive weight
dij . The maximum edge weight clique problem (MEWCP) [Macambira and de Souza, 2000;
Sorensen, 2004; Macambira, 2003; Alidaee et al., 2007] is to find a clique C in G such that
the sum of the weights of the edges in the clique C is maximized and the number of
vertices in C is equal to m. The maximum edge weight clique problem is also called the
maximum diversity problem (MDP) [Mart́ı et al., 2011; Palubeckis, 2007], which is more
frequently studied in the literature. More formally, the MEWCP may be stated as the
following quadratic zero-one integer program [Alidaee et al., 2007]:

Maximize f(x) =
1
2

n∑
i=1

n∑
j=1

dijxixj (4.1)

subject to
n∑

i=1

xi = m (4.2)

where n = |V | and xi is a binary variable indicating whether a vertex i is selected to be a
member of the clique C.

The decision version of the MEWCP problem is NP-complete (see [Ausiello et al.,
1999]), as far as it reduces to the maximum clique problem. In addition to its theoreti-
cal significance as a difficult combinatorial problem, MEWCP is notable for its ability to
formulate a number of practical applications: location of undesirable or mutually compet-
ing facilities [Hunting et al., 2001], decision analysis with multiple objectives [Palubeckis,
2007], composing jury panels [Lozano et al., 2011], genetic engineering [Mart́ı et al., 2011],
medical and social sciences [Kuo et al., 1993], and product design [Glover et al., 1998].
During the past three decades, MEWCP has been studied under many different names such
as maximum diversity [Mart́ı et al., 2011; Palubeckis, 2007], maxisum dispersion [Kuby,
1987], MAX-AVG dispersion [Ravi et al., 1994], remote-clique [Chandra and Halldórsson,
2001], maximum edge-weighted subgraph [Macambira, 2003], and dense k-subgraph [Brim-
berg et al., 2009; Feige et al., 2001].

The computational challenge of the MEWCP has motivated a variety of solution ap-
proaches including exact methods, approximation algorithms and metaheuristic meth-
ods. Examples of approximation algorithms are described in [Hunting et al., 2001; Feige
et al., 2001; Hassin et al., 1997]. These approaches provide a performance guarantee,
but do not compete well with other methods in computational testing. Two recent ex-
amples of exact methods are described in [Sorensen, 2004; Dijkhuizen and Faigle, 1993;
Park et al., 1996]. While these methods have the theoretical advantage of finding optimal
solutions to a given problem, their applications are generally limited to problems with no
more than 100 vertices.

For larger problem instances, heuristics and metaheuristics are often used to find ap-
proximate solutions of good quality with a reasonable computing time. This includes

71

Chapter 4. A hybrid metaheuristic method for the maximum edge weight clique Problem

tabu search [Alidaee et al., 2007; Macambira, 2003; Aringhieri et al., 2008; Aringhieri
and Cordone, 2011; Wang et al., 2012], iterated tabu search [Palubeckis, 2007], simulated
annealing [Kincaid, 1992], iterated greedy algorithm [Lozano et al., 2011], genetic algo-
rithms [Feng et al., 2010], variable neighborhood search [Brimberg et al., 2009], scatter
search [Gallego et al., 2009; Gortázar et al., 2010], path-relinking method [de Andrade
et al., 2005] and memetic search [Katayama and Narihisa, 2004]. Another approach that
has received considerable attention in the solution of the MEWCP is greedy randomized
adaptive search procedure (GRASP) [de Andrade et al., 2003; de Andrade et al., 2005;
Duarte and Mart́ı, 2007; Ghosh, 1996; Silva et al., 2004; Silva et al., 2007]. Finally, a com-
prehensive survey of the most significant heuristic and metaheuristic methods for MEWCP
can be found in [Aringhieri and Cordone, 2011; Mart́ı et al., 2011].

This paper presents MAMEP, a hybrid metaheuristic algorithm integrating a tabu
search procedure with a population-based evolutionary algorithm for solving the max-
imum diversity problem. The proposed algorithm integrates three complementary key
components to ensure the high efficiency of the search process. First, to generate promis-
ing new solutions, we introduce a dedicated crossover operator which tries to preserve
common vertices that are shared by parent solutions. The design of this crossover op-
erator is motivated by an experimental observation that high quality solutions share a
large number of common vertices. Second, to allow the algorithm to explore efficiently
the search space around each newly generated solution by crossover, we devise a tabu
search optimization procedure which relies on a constrained neighborhood and a dynamic
tabu list management strategy. Finally, to maintain the population diversity, we employ
a quality-and-distance replacement strategy for population updates.

To assess the performance and the competitiveness of our algorithm in terms of both
solution quality and computing efficiency, we provide computational results on a total of
120 MEWCP benchmark instances with up to 5000 vertices, showing that the proposed
algorithm achieves highly competitive results with respect to the best existing MEWCP
heuristics. Moreover, for 6 large MEWCP instances, the proposed algorithm is able to
provide new improved results.

4.2 A hybrid metaheuristic algorithm for MEWCP

4.2.1 Outline of the Memetic Algorithm

Memetic algorithms are known to be an effective approach in solving a number of hard
combinatorial optimization problems [Moscato and Cotta, 2003; Hao, 2011; Wu and Hao,
2012e; Wu and Hao, 2013]. Typically, a memetic approach repeatedly alternates between a
recombination (or crossover) operator to generate solutions located in promising regions in
the search space and a local optimization procedure to search around the newly generated
solutions. It is commonly admitted that the success of this approach depends critically on
the recombination operator. In order to be effective, the recombination operator must be
adapted to the problem being solved and should be able to transmit meaningful features
from parents to offspring.

The general procedure of our hybrid metaheuristic algorithm for MEWCP (called

72

4.2 A hybrid metaheuristic algorithm for MEWCP

MAMEP) is summarized in Algorithm 4.1. It is composed of four main basic components:
a population initialing procedure, a tabu search procedure, a crossover operator and a
population management strategy. Starting from an initial population of local optima
obtained by the tabu search procedure (Section 4.2.3), MAMEP performs a series of cycles
called generations. At each generation, two solutions S1 and S2 are randomly chosen in the
population to serve as parents. The crossover is then used to produce an offspring solution
S0 from S1 and S2 (Section 4.2.5). The tabu search procedure is applied to improve S0

for a fixed number of iterations (Section 4.2.4). Afterward, the population updating rule
decides whether the improved solution S0 should be inserted into the population and
which existing solution should be replaced (Section 4.2.6). This process repeats until a
stop condition is verified, such as a time limit or a fixed number of generation (Section
4.3.2). In the following, we describe the four main components of the proposed algorithm.

Algorithm 4.1: Memetic algorithm for the maximum edge weight clique problem
Require: An edge weighted graph G = (V, E), cardinality of the clique m (m < |V |), population size p
Ensure: The best solution S∗ found
1: Initialize population Pop = {S1, ..., Sp} /* Section 4.2.3 */
2: S∗ ← Best(Pop) /* S∗ records the best solution encountered until now */
3: while Stop condition is not verified do
4: Randomly select 2 parent solutions S1 and S2 from Pop = {S1, ..., Sp}
5: S0 = Cross Over(S1, S2) /* Section 4.2.5, generate a new solution from parents */
6: S0 ← Tabu Search(S0) /* Section 4.2.4, improve the offspring */
7: if f(S0) > f(S∗) then
8: S∗ ← S0 /* Update the best solution found so far */
9: end if

10: Pop← PopulationUpdate(S0, Pop) /* Section 4.2.6, update population using a
distance-and-quality rule */

11: end while

4.2.2 Search space and evaluation function

Before presenting the components of the MAMEP algorithm, we define first the search
space explored by the algorithm as well as the evaluation function to measure the quality
of a candidate solution.

Given that the objective of MEWCP is to determine a subset M ⊂ V of size m (called
m-subset) while maximizing the sum of the weights between every two vertices in M , we
define our search space Ω to be the collection of all possible subsets of V of cardinality m,
i.e., Ω = {S ⊂ V : |S| = m}. It is clear that Ω has a size of P (n,m) which may be very
large for reasonable values of n and m.

To evaluate the quality of a solution S ∈ Ω (i.e., a m-subset), we just sum up the
weights between every two vertices in S as follows:

f(S) =
∑

u,v∈S,u<v

duv (4.3)

It is easy to see that this function is strictly equivalent to the function defined in Formula
(4.1).

73

Chapter 4. A hybrid metaheuristic method for the maximum edge weight clique Problem

Finally, we mention that to represent each subset S of Ω, we use a binary vector S
of length n containing exactly m 1s: S[i] = 1 if vertex si ∈ N belongs to subset S,
S[i] = 0 otherwise. For simplicity reasons, hereafter we will use the set notion S, instead
of its vector representation S, to designate a solution of Ω even if both are semantically
equivalent.

4.2.3 Generation of initial solutions

Our algorithm begins with an initial population composed of p solutions (p is the popu-
lation size which is fixed by a parameter). There are different ways to obtain the initial
population. One basic technique is random generation which, though easy to apply, can
hardly lead to initial solutions of good quality. In this paper, we initialize the population
with locally optimal solutions as follows. Starting from a random m-subset S (S ∈ Ω), we
apply the tabu search procedure (see Section 4.2.4) to improve S until a local optimum is
reached. The local optimum is then added to the population. This procedure is repeated
until the population fills up with 3 × p solutions from which we finally retain the p best
ones with the largest objective values to form the initial population. This procedure allows
us to obtain an initial population of relatively high quality.

4.2.4 The constrained neighborhood tabu search procedure

One key element of our hybrid MAMEP algorithm is its tabu search procedure which
ensures the critical role of intensified search of a limited region. In addition to being applied
to generate the initial population as explained in the last section, the tabu procedure is
in particular used to improve the offspring solutions created by the crossover operator
(see Section 4.2.5). Adopting the general method of tabu search, our tabu procedure (see
Algorithm 4.2) is specifically adapted to the MEWCP problem by introducing a dedicated
constrained neighborhood and a dynamic tabu list management mechanism, which are
developed in this section.

4.2.4.1 Constrained swap move and neighborhood

As explained in Section 4.2.2, our search space Ω is composed of all possible m-subsets
from the given vertex set V . To explore this space, one simple and basic way is to start
with any initial m-subset S and subsequently swap an vertex of S with another vertex
of V \ S such that the objective value is improved. One advantage of this swap move is
that it maintains solution feasibility. Nevertheless, this unconstrained swap leads to a large
neighborhood of size m.(n−m). This unconstrained swap and its associated neighborhood
were used in [Ghosh, 1996] and further explored in [Duarte and Mart́ı, 2007]. As indicated
in [Duarte and Mart́ı, 2007], although this unconstrained swap is valuable for local search
algorithms, the evaluation of the neighborhood can be computationally expensive. This
is particularly the case with tabu search given that at each iteration of the algorithm, we
wish to select the best swap move among all m.(n−m) possible moves induced by S and
V \ S.

74

4.2 A hybrid metaheuristic algorithm for MEWCP

To reduce the computing time needed to examine neighboring solutions and improve
the computational efficiency of our tabu search procedure, we devise a constrained neigh-
borhood which is both more focused and smaller-sized. A similar constrained neighbor-
hood for MCP is explored in Chapter 1 and the basic idea of our constrained neighborhood
is to limit the swap move to two specifically identified subsets X ⊆ S and Y ⊆ V \S such
that |X| and |Y | are as small as possible, and the resulting neighborhood contains always
the best solutions of the unconstrained neighborhood induced by S and V \ S.

The constrained neighborhood is based on the notion of contribution defined for each
vertex of the current solution. Precisely, let S ∈ Ω be a solution (i.e., a m-subset of V),
we define, for each vertex i ∈ V , its contribution di to the objective value f(S) as follows:

di =
∑
j∈S

dij , for i ∈ V (4.4)

Let swap(u, v) designate the move which swaps u ∈ S and v ∈ V \ S. Then, when
swap(u, v) is applied, the objective variation ∆uv, also called the ‘move gain’, can be
conveniently computed by:

∆uv = f(S′)− f(S) = dv − du − duv (4.5)

where S′ = S\{u}∪{v} while dv and du are contributions of v and u according to Formula
(4.4).

From Formula 4.5, we observe that the move gain ∆uv of swap(u, v) depends on dv,
du and duv. For the purpose of maximizing the objective function f , we should prefer
a vertex v ∈ V \ S with a large contribution and inversely a vertex u ∈ S with a small
contribution. In addition, we also need to consider the weight duv between u and v. To
maximize f , we constraint u to belong to a specific subset X ⊆ S containing the vertices
in S with small contributions, and v to belong to a specific subset Y ⊆ V \ S including

Algorithm 4.2: Constrained neighborhood tabu search for MEWCP
Require: An edge weighted graph G = (V, E), initial solution S, number MaxIter of tabu search

iterations
Ensure: The best solution S∗ found and f(S∗)
1: S∗ ← S /* Records the best solution found so far */
2: Iter ← 0 /* Iteration counter */
3: Compute the contribution value dv according to Eq. 4.4 for each vertices v ∈ V .
4: Initiate the tabu list and tabu tenure
5: while Iter < MaxIter do
6: Identity the two critical subsets X ⊆ S and Y ⊆ V \ S
7: Choose a best allowed swap(u, v) from the constrained neighborhood CN(S) defined by X and Y
8: S = S\{u} ∪ {v} /* Move to the new solution */
9: Update the tabu list and the contribution value dv for each v ∈ V

10: if f(S) > f(S∗) then
11: S∗ ← S /* Update the best solution found so far */
12: end if
13: Iter ← Iter + 1
14: end while

75

Chapter 4. A hybrid metaheuristic method for the maximum edge weight clique Problem

the vertices in V \ S with large contributions. Formally, let tabu list be the tabu list
containing the vertices that are currently forbidden for swap (these vertices are excluded
for consideration, see Section 4.2.4.2).

1 2

3

4

56

7

8

1

1

1

14

21 33
3

2

1

1

4
2

21

2

3

3

2

1

1

2

2
3 1

2

d1 = 3, d2 = 7, d3 = 8, d4 = 8, d5 = 9, d6 = 11, d7 = 6, d8 = 5

S = {1, 2, 3, 4}, V \ S = {5, 6, 7, 8}, dmax = 4

dMinInS = 3, dMaxOutS = 11, X = {1, 2}, Y = {5, 6}

1 2

3

4

56

7

8

1

1

1

14

21 33
3

2

1

1

4
2

21

2

3

3

2

1

1

2

2
3 1

2

S

∆15 = 5, ∆16 = 4, ∆25 = −1, ∆26 = 2

swap(1, 5) is the best swap move

Figure 4.1: An example for the constrained neighborhood defined by swap move.

Let dMinInS = min{di | i ∈ S, i /∈ tabu list} and
Let dMaxOutS = max{di | i ∈ V \ S, i /∈ tabu list}.
Then we define subsets X and Y as follows:
X = {i ∈ S | i /∈ tabu list, di ≤ dMinInS + dmax} and
Y = {i ∈ N \ S, | i /∈ tabu list, di ≥ dMaxOutS − dmax}
where dmax is the maximum weight between two vertices in V , i.e., dmax = max{dij | 1 ≤

i < j ≤ |V | }.
To obtain a neighboring solution S′ from S, we swap one vertex u ∈ X with another

vertex v ∈ Y . All possible swap moves induced by X and Y define our constrained
neighborhood CN(S), i.e.,

CN(S) = {S′ | S′ = S\{u} ∪ {v}, u ∈ X, v ∈ Y }.
Fig. 4.1 shows an illustrative example where S has four possible neighboring solutions

and we assume that the tabu list is empty (i.e., no vertex is forbidden for swap).
Our tabu search procedure explores the search space Ω by following this constrained

neighborhood. At each iteration, instead of examining all the swap moves induced by S
and V \ S, our tabu search first identifies the two subsets X and Y associated to S and
then selects the best swap(u, v) (u ∈ X, v ∈ Y) with the highest move gain ∆uv (ties

76

4.2 A hybrid metaheuristic algorithm for MEWCP

broken randomly). The resulting solution replaces S to becomes the new current solution.
We can see that our constrained neighborhood is a strict subset of the unconstrained

neighborhood. Furthermore, assume that S′′ is a best non-tabu neighboring solution in
the unconstrained neighborhood, it is easy to verify that S′′ ∈ CN(S). In other words,
our constrained neighborhood CN(S) contains all the best (non-tabu) neighboring solu-
tions in the unconstrained neighborhood, while its size is generally much smaller than the
unconstrained neighborhood.

When a swap(u, v) move is performed to give a new solution, the contribution associ-
ated with each vertex i in V is updated using the following formula:

di =

di + div, if i = u,
di − diu, if i = v,
di + div − diu, if i ̸= u and i ̸= v.

Thus, the updating of the contribution values associated with the |V | vertices in V
can be performed in linear time O(n).

4.2.4.2 Tabu list and tenure management

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

1

2

3

4

5

6

7

8

number of iterations Iter

ta
b
u

te
n
u
re

T
u

(×
α
)

Figure 4.2: An illustration of the step function (one period) used for tuning the tabu
tenure Tu.

As previously explained, a neighboring solution of S is obtained by a swap(u, v) move.
To prevent the search from short-term cycling, when such a move is performed, vertex u
is marked tabu for the next Tu (called tabu tenure) iterations, during which u cannot be
put back into solution S. Similarly, vertex v is also marked tabu for the next Tv iterations
and v cannot be removed from S during this period.

It is well known that the performance of a tabu search algorithm depends on the way
the tabu tenure is determined [Glover, 1989]. A too short tabu tenure may leads the search
to revisit solutions previously encountered while a too long tabu tenure may exclude high

77

Chapter 4. A hybrid metaheuristic method for the maximum edge weight clique Problem

quality solutions during the search. In this chapter, for the MEWCP, we adopt a dynamic
tabu list management technique which was first proposed in [Galinier et al., 2011] and
recently explored in [Wu and Hao, 2013]. With this technique, the tabu tenure Tu are
dynamically adjusted by a periodic step function Tu(Iter) defined over the number of
iterations Iter: Iter → Tu(Iter) where Iter is the number of iterations and Tu(Iter) is
the tabu tenure for Tu at iteration Iter. Each period of the step function is composed of
1500 iterations divided into 15 steps.

Fig. 4.2 provides an illustration of this step function. As shown in Fig. 4.2, the tabu
tenure Tu is equal to α (α is a parameter) for the first 100 iterations [1..100], then 2× α
for iterations from [101..200], followed by α again for iterations [201..300] and 4 × α for
iterations [401..500] etc. After reaching the largest value 8×α for iterations [701..800], Tu

drops again to α for the next 100 iterations and so on. This function repeats periodically
this variation scheme every 1500 iterations. Similarly, we use the same strategy to tune
the tabu tenure Tv. At each iteration of the tabu search, Tv is set equal to 0.7 ∗ Tu.

One notices that the tabu tenure Tu for u (the vertex leaving S) is larger than the tabu
tenure Tv for v (the vertex joining S). This can be explained by the same fact provided
in Section 2.1.2.5

4.2.5 Crossover operator

Within the hybrid memetic framework, the crossover operator constitutes another impor-
tant search operator [Neri et al., 2012]. Its main goal is to create new promising candidate
solutions by blending existing parent solutions, a solution being promising if it can poten-
tially lead the search process to new search regions where better solutions may be found.
For this reason, crossover plays basically an exploratory role which comes to complement
the intensification role of the tabu search procedure. It is well known that even if random
crossover operators (uniform, one-point etc.) can be easily applied in the context of binary
representation, such a blind operator can rarely guide the search process to effectively ex-
plore the most promising search regions. To be effective, a meaningful crossover operator
is usually based on some pertinent properties (building blocks) of the given problem and
a recombination mechanism to preserve these properties from parents to offspring [Hao,
2011].

To identify “good properties” for MEWCP, we carried out a detailed analysis of samples
of locally optimal solutions (see Section 4.4.2). This analysis discloses that high quality
solutions share a large number of common vertices that have high chances to be part of
an optimal solution. Therefore, given two high quality solutions, it seems pertinent to
preserve the shared vertices (building blocks). Our proposed crossover operator follows
this idea and operates as follows.

Given 2 parent solutions S1 and S2 which are chosen randomly from the population,
one offspring solution S0 is constructed as follows. We build first a partial solution by
preserving the common vertices shared by the two selected parents, i.e., S0 = S1 ∩ S2.
Then we complete S0 to obtain a feasible solution with a greedy procedure based on the
contribution values defined in Section 4.2.4.1. The greedy procedure extends S0 in a step-
by-step way by adding at each step one vertex to S0 until S0 contains exactly m vertices.

78

4.2 A hybrid metaheuristic algorithm for MEWCP

At the first step, we examine all the vertices in S1 \ S0 to identify the vertex with the
highest contribution with respect to S0 and displace it from S1 \ S0 to S0. Afterward,
the vertices in S2 \S0 are considered, we identify the vertex with the largest contribution
in S2 \ S0 and add it to S0. Then at each step of this greedy procedure, the vertices in
S1 \ S0 and S2 \ S0 are considered in turn until S0 reaches the size of m. This offspring
solution is usually of relatively high quality and has approximatively the same distance to
its two parent solutions.

4.2.6 Population updating rule

The population updating rule decides whether an offspring solution, which is generated by
the crossover operator and further improved by the tabu search procedure, should become
a member of the population, and if affirmative, which existing solution of the population
should be replaced. Population management is an important issue since the population
updating rule impacts directly the population diversity which conditions the convergence
of the search algorithm.

In our case, we wish to maintain a healthy diversity of the population during the search.
For this purpose, we adopt a updating strategy which takes into account both quality and
the distance between the solutions of the population [Lü et al., 2010; Porumbel et al.,
2010a]. While the notion of quality can be easily understood with respect to the objective
function, we need to formally define the notion of distance between solutions.

Definition 1. Distance between two solutions: Given two solutions Sa and
Sb, the distance dis(Sa, Sb) between Sa and Sb is the minimum number of swap moves
necessary to transform Sb to Sa, i.e., dis(Sa, Sb) = m− |Sa ∩ Sb|.

Definition 2. Distance between one solution and a population: Given a
population Pop = {S1, ..., Sp} and the distance dis(Si, Sj) between any two solutions Si

and Sj (i, j ∈ {1, ..., p} and i ̸= j), the distance between a solution Si (i = 1, ..., p) and the
population Pop is defined as the minimum distance between Si and any other solution in
the population:

DSi,Pop = min{dis(Si, Sj)|Sj ∈ Pop, Sj ̸= Si} (4.6)

To update the population, we adopt the strategy which was originally proposed in [Lü
et al., 2010], and has shown to be very effective in maintaining the balance between
the diversity and quality of the population. This strategy uses a quality-and-distance
scoring function (denoted by H(Si, Pop′)) to rank the solutions of the population Pop′ =
Pop ∪ {S0}. Formally, H(Si, Pop′) is defined as follows:

H(Si, Pop′) = βÃ(f(Si)) + (1− β)Ã(DSi,Pop′) (4.7)

where β is a parameter set to 0.6 according to [Lü et al., 2010], f(Si) is the objective value
of Si, and Ã(.) is a normalized function defined as follows:

Ã(y) =
y − ymin

ymax − ymin + 1
(4.8)

where ymax and ymin are respectively the maximum and minimum of y in the population
Pop. “+1” is used for the purpose of avoiding the possibility of a 0 denominator.

79

Chapter 4. A hybrid metaheuristic method for the maximum edge weight clique Problem

Our population updating strategy is described in Algorithm 4.3. To update the popu-
lation, we first tentatively add S0 to the population Pop, then we use the scoring function
H to identify the solution Sw with the smallest goodness score H(Si, Pop′) in Pop′. If Sw

is not the offspring S0, then the population is updated by replacing Sw with S0.

4.3 Computational experiments

In this section, we present an extensive assessment of the proposed MAMEP. For this pur-
pose, we show experimental results obtained by MAMEP on a large collection of bench-
mark instances and make comparisons with the best performing MEWCP algorithms
published in the literature.

4.3.1 Benchmark instances and Parameter settings

To evaluate the efficiency of the proposed approach, we carry out extensive experiments
on the same sets of 120 test instances as in [Palubeckis, 2007], which are frequently used
to assess algorithms for MEWCP. The details of the instance sets are described in Section
1.6.

The settings of the parameters required by our MAMEP algorithm are given in Table
4.1. These parameter values have been determined by performing a preliminary experi-
ment on a set of 20 random Type I instances (Type1 22) with |V | = 2000 and m = 200
and another set of 20 random Type II instances (Type2) with |V | = 500 and m = 50.
To determine the parameter values, we first began with the parameters required by the
TS algorithm (MaxIter, α) and then determined the parameters used by the memetic
algorithm (p,β). For the TS algorithm, we tested values for α in the range [5..25] and β
in the range [5000..200000]. For each instance, we run the TS algorithm for 20 seconds.
Table 4.2 reports, for each set of instances and each parameter combination, the average
evaluation function value obtained with the TS algorithm.

From Table 4.2, we observe that the combination (MaxIter = 50000, α = 15) globally
leads to the best results, giving the evidence for the parameter settings of our TS algorithm

Algorithm 4.3: Population updating strategy
Require: Offspring solution S0 and Population Pop = {S1, ..., Sp}
Ensure: Updated population Pop = {S1, ..., Sp}
1: Tentatively add S0 to the population: Pop′ = Pop ∪ {S0}
2: for i = 0, ..., p do
3: Calculate the distance between Si and Pop′ according to Eq. (4.6)
4: Calculate the goodness score H(Si, Pop′) of Si according to Eq. (4.7)
5: end for
6: Identify the solution Sw with the smallest goodness score in Pop′:

Sw = arg min{H(Si, Pop′)|i = 0, ..., p}
7: if (Sw ̸= S0) then
8: Replace Sw with S0: Pop = Pop ∪ {S0}\{Sw}
9: end if

80

4.3 Computational experiments

Table 4.1: Settings of parameters
Parameters Section Description Values

p 4.2.1 size of population 10
α 4.2.4 tabu tenure management factor 15

MaxIter 4.2.4 number of TS iterations after recombination 50000
β 4.2.6 goodness score coefficient 0.6 [Lü et al., 2010]

Table 4.2: Parameter tuning
Experiment number Parameter combination Type1 22(AVG) Type2(AVG)

MaxIter α

1 5000 5 114238.75 777406.28
2 5000 10 114251.65 777406.28
3 5000 15 114253.25 777406.28
4 5000 20 114248.00 777406.28
5 5000 25 114242.00 777406.28
6 20000 5 114238.15 777406.28
7 20000 10 114251.40 777406.28
8 20000 15 114253.15 777406.28
9 20000 20 114248.30 777406.28
10 20000 25 114240.60 777406.28
11 50000 5 114228.70 777406.28
12 50000 10 114254.45 777406.28
13 50000 15 114255.65 777406.28
14 50000 20 114248.55 777406.28
15 50000 25 114243.25 777406.28
16 100000 5 114234.90 777406.28
17 100000 10 114255.40 777406.28
18 100000 15 114254.45 777406.28
19 100000 20 114248.30 777406.28
20 100000 25 114222.05 777406.28
21 200000 5 114239.50 777406.28
22 200000 10 114250.40 777406.28
23 200000 15 114250.10 777406.28
24 200000 20 114248.15 777406.28
25 200000 25 114233.30 777406.28

in Table 4.1. In addition to MaxIter and α, our algorithm requires two other parameters
p and β. We fixed p = 10 (small population are often used in memetic algorithms) while
β = 0.6 is chosen according to [Lü et al., 2010]. As we see below, the adopted parameter
settings are good and robust enough to allow our algorithm to yield very competitive
results for the sets of the tested instances compared with those reported in the literature.

4.3.2 Reference Algorithms and Experimental Protocol

Our MAMEP algorithm is programmed in C and compiled using GNU GCC. All the
experiments were carried out on a PC running Windows XP with an Intel Xeon E5440
processor (2.83 GHz and 8G RAM).

In order to evaluate the relative effectiveness and efficiency of our proposed algorithm,
we compared our MAMEP algorithm with 4 recent and best-performing MEWCP algo-
rithms in the literature:

• ITS: Iterated robust tabu search algorithm (2007) [Palubeckis, 2007].

• VNS: Variable neighborhood search algorithm (2009) [Brimberg et al., 2009].

• TIG: An fine-tuning iterated greedy algorithm (2011) [Lozano et al., 2011].

81

Chapter 4. A hybrid metaheuristic method for the maximum edge weight clique Problem

Table 4.3: Experimental Protocol
Instance Family Time limit(s) Independent runs

Silva 20 30
Type1 55 20 30
Type1 22 20 30
Type1 52 20 30
Type2 20 30
b2500 300 30
p3000 600 15
p5000 1800 15

• LTS-EDA: Robust learnable tabu search guided by estimation of distribution algo-
rithm (2012) [Wang et al., 2012].

As reviewed and compared in the most recent survey [Mart́ı et al., 2011], ITS and VNS
seem to be the most powerful algorithms for the MEWCP among 30 heuristic algorithms.
TIG and LTS-EDA are two recently proposed algorithms and thus not included in the
recent review [Mart́ı et al., 2011]. However, experimental results show that TIG and LTS-
EDA obtain better or competitive performance than VNS and ITS. Especially, LTS-EDA
is able to reach new best solutions [Wang et al., 2012] for some larger random instances.
Thus, these 4 reference algorithms are among the most successful approaches for solving
MEWCP actually available in the literature.

Moreover, these 4 reference algorithms are tested and compared very recently in [Wang
et al., 2012] under the same time limit on a Pentium(R) with 2.70 GHz CPU and 2.0
G RAM. For a fair comparison, we use for our MAMEP algorithm the same running
(stopping) conditions as described in [Wang et al., 2012], which are summarized in Table
4.3.

4.3.3 Computational results

Tables 4.4 to 4.10 respectively show the computational statistics of the MAMEP algorithm
on the 7 sets of 120 benchmark instances. In all tables, columns 1 and 2 respectively give
the name of the instance and the previous best objective values (fprev). Note that in
Tables 4.4 to 4.10, the previous best objective values (fprev) are compiled from Tables 1-7
from [Palubeckis, 2007] and Tables 6 and 11 from [Wang et al., 2012]. To the best of our
knowledge, they are the current best known results for these 120 problem instances.

Columns 3 to 6 give our results: the best objective value (fbest), the best solution gap
to the previous best known evaluation function values gbest(i.e., fprev − fbest), the average
solution gap to the previous best evaluation function values gavg (i.e., fprev− favg) (where
favg represents the average objective value), and the standard deviation over the tested
runs.

From Tables 4.4 to 4.10, we observe that for all these 120 instances, our MAMEP
algorithm can reach the previous best known results within the time limits given in Table
4.3. Specifically, for 101 out of 120 instances (84%), MAMEP has a successful rate of 100%,
attaining the best known objective value for each of its runs. For the 19 cases (16%)
where the successful rate is below 100%, the standard deviations remain small ranging
from 0.17 to 27.93. More importantly, for 6 random large and very challenging instances

82

4.3 Computational experiments

Table 4.4: Performance of MAMEP on the 20 Silva instances
Instance fprev MAMEP Algorithm

fbest gbest gavg standard deviation

Silva 100 10 333 333 0 0 0
Silva 100 20 1195 1195 0 0 0
Silva 100 30 2457 2457 0 0 0
Silva 100 40 4142 4142 0 0 0
Silva 200 20 1247 1247 0 0 0
Silva 200 40 4450 4450 0 0 0
Silva 200 60 9437 9437 0 0 0
Silva 200 80 16,225 16,225 0 0 0
Silva 300 30 2694 2694 0 0 0
Silva 300 60 9689 9689 0 0 0
Silva 300 90 20,743 20,743 0 0 0
Silva 300 120 35,881 35,881 0 0 0
Silva 400 40 4658 4658 0 0 0
Silva 400 80 16,956 16,956 0 0 0
Silva 400 120 36,317 36,317 0 0 0
Silva 400 160 62,487 62,487 0 0 0
Silva 500 50 7141 7141 0 0 0
Silva 500 100 26,258 26,258 0 0 0
Silva 500 150 56,572 56,572 0 0 0
Silva 500 200 97,344 97,344 0 0 0

Table 4.5: Performance of MAMEP on the 20 random Type1 55 instances (|V | = 500;m =
50)
Instance fprev MAMEP Algorithm

fbest gbest gavg standard deviation

Type1 55.1 7833.83 7833.83 0 0 0
Type1 55.2 7771.66 7771.66 0 0 0
Type1 55.3 7759.36 7759.36 0 0 0
Type1 55.4 7770.24 7770.24 0 0 0
Type1 55.5 7755.23 7755.23 0 0 0
Type1 55.6 7773.71 7773.71 0 0 0
Type1 55.7 7771.73 7771.73 0 0 0
Type1 55.8 7750.88 7750.88 0 0 0
Type1 55.9 7770.07 7770.07 0 0 0
Type1 55.10 7780.35 7780.35 0 0 0
Type1 55.11 7770.95 7770.95 0 0 0
Type1 55.12 7757.65 7757.65 0 0 0
Type1 55.13 7798.43 7798.43 0 0 0
Type1 55.14 7795.63 7795.63 0 0 0
Type1 55.15 7736.84 7736.84 0 0 0
Type1 55.16 7792.77 7792.77 0 0 0
Type1 55.17 7787.20 7787.20 0 0 0
Type1 55.18 7756.26 7756.26 0 0 0
Type1 55.19 7755.41 7755.41 0 0 0
Type1 55.20 7733.86 7733.86 0 0 0

83

Chapter 4. A hybrid metaheuristic method for the maximum edge weight clique Problem

Table 4.6: Performance of MAMEP on the 20 random Type1 52 instances (|V | = 500;m =
200)
Instance fprev MAMEP Algorithm

fbest gbest gavg standard deviation

Type1 52.1 107394.58 107394.58 0 0 0
Type1 52.2 107251.75 107251.75 0 0 0
Type1 52.3 107260.39 107260.39 0 0 0
Type1 52.4 107010.90 107010.90 0 0 0
Type1 52.5 106944.55 106944.55 0 0 0
Type1 52.6 107167.36 107167.36 0 0 0
Type1 52.7 107079.44 107079.44 0 0 0
Type1 52.8 107077.45 107077.45 0 0 0
Type1 52.9 107482.71 107482.71 0 0 0
Type1 52.10 107265.81 107265.81 0 0 0
Type1 52.11 107193.08 107193.08 0 0 0
Type1 52.12 106853.46 106853.46 0 0 0
Type1 52.13 107647.28 107647.28 0 0 0
Type1 52.14 107427.17 107427.17 0 0 0
Type1 52.15 107054.79 107054.79 0 0 0
Type1 52.16 107420.66 107420.66 0 0 0
Type1 52.17 107111.01 107111.01 0 0 0
Type1 52.18 107006.35 107006.35 0 0 0
Type1 52.19 107052.95 107052.95 0 0 0
Type1 52.20 106815.65 106815.65 0 0 0

Table 4.7: Performance of MAMEP on the 20 random Type1 22 instances (|V | =
2000; m = 200)
Instance fprev MAMEP Algorithm

fbest gbest gavg standard deviation

Type1 22.1 114,271 114,271 0 2.83 2.29
Type1 22.2 114,327 114,327 0 0 0
Type1 22.3 114,195 114,195 0 5.46 5.36
Type1 22.4 114,093 114,093 0 7.13 7.65
Type1 22.5 114,196 114,196 0 22.23 24.09
Type1 22.6 114,265 114,265 0 5.70 8.87
Type1 22.7 114,361 114,361 0 0.03 0.17
Type1 22.8 114,327 114,327 0 1.26 1.26
Type1 22.9 114,199 114,199 0 0 0
Type1 22.10 114,229 114,229 0 3.33 6.39
Type1 22.11 114,214 114,214 0 9.16 8.27
Type1 22.12 114,214 114,214 0 10.30 7.10
Type1 22.13 114,233 114,233 0 2.66 4.41
Type1 22.14 114,216 114,216 0 0.23 0.76
Type1 22.15 114,240 114,240 0 0.83 0.63
Type1 22.16 114,335 114,335 0 2.36 4.23
Type1 22.17 114,255 114,255 0 1.43 2.99
Type1 22.18 114,408 114,408 0 0.53 1.02
Type1 22.19 114,201 114,201 0 0 0
Type1 22.20 114,349 114,349 0 0.60 1.80

84

4.3 Computational experiments

Table 4.8: Performance of MAMEP on the 20 random Type II instances (|V | = 500;m =
50)
Instance fprev MAMEP Algorithm

fbest gbest gavg standard deviation

Type2.1 778030.57 778030.57 0 0 0
Type2.2 779963.54 779963.54 0 0 0
Type2.3 776768.17 776768.17 0 0 0
Type2.4 775394.47 775394.47 0 0 0
Type2.5 775610.96 775610.96 0 0 0
Type2.6 775153.58 775153.58 0 0 0
Type2.7 777232.88 777232.88 0 0 0
Type2.8 779168.62 779168.62 0 0 0
Type2.9 774802.05 774802.05 0 0 0
Type2.10 774961.12 774961.12 0 0 0
Type2.11 777468.78 777468.78 0 0 0
Type2.12 775492.89 775492.89 0 0 0
Type2.13 780191.78 780191.78 0 0 0
Type2.14 782232.68 782232.68 0 0 0
Type2.15 780300.33 780300.33 0 0 0
Type2.16 775436.19 775436.19 0 0 0
Type2.17 776618.99 776618.99 0 0 0
Type2.18 775850.64 775850.64 0 0 0
Type2.19 778802.82 778802.82 0 0 0
Type2.20 778644.65 778644.65 0 0 0

Table 4.9: Performance of MAMEP on the 10 Beasley instances (|V | = 2500; m = 1000)
Instance fprev MAMEP Algorithm

fbest gbest gavg standard deviation

b2500-1 1153,068 1153,068 0 0 0
b2500-2 1129,310 1129,310 0 7.46 27.93
b2500-3 1115,538 1115,538 0 0 0
b2500-4 1147,840 1147,840 0 0 0
b2500-5 1144,756 1144,756 0 0 0
b2500-6 1133,572 1133,572 0 0 0
b2500-7 1149,064 1149,064 0 0 0
b2500-8 1142,762 1142,762 0 0 0
b2500-9 1138,866 1138,866 0 0 0
b2500-10 1153,936 1153,936 0 0 0

Table 4.10: Performance of MAMEP on the 10 large random instances (m = 0.5 ∗ |V |)
Instance fprev MAMEP Algorithm

fbest gbest gavg standard deviation

p3000 1 6502,308 6502,330 -22 25.20 38.74
p3000 2 18272,568 18272,568 0 0 0
p3000 3 29867,138 29867,138 0 0 0
p3000 4 46915,044 46915,044 0 0 0
p3000 5 58095,467 58095,467 0 0 0
p5000 1 17509,215 17509,369 -154 -121.00 84.82
p5000 2 50102,729 50103,092 -363 -338.60 8.68
p5000 3 82039,686 82040,316 -630 -462.27 135.46
p5000 4 129413,112 129413,710 -598 -500.40 119.53
p5000 5 160597,781 160598,156 -375 -254.74 73.22

85

Chapter 4. A hybrid metaheuristic method for the maximum edge weight clique Problem

Table 4.11: Comparison of MAMEP with four best performing MEWCP algorithms in
the literature.

Instance fpre MAMEP ITS VNS TIG LTS-EDA

gbest gavg gbest gavg gbest gavg gbest gavg gbest gavg
Type1 22.1 114,271 0 2.83 65 209.87 48 150.60 48 101.57 5 60.73
Type1 22.2 114,327 0 0 29 262.27 0 168.87 0 69.90 0 89.87
Type1 22.3 114,195 0 5.46 69 201.40 19 110.83 5 117.77 0 98.97
Type1 22.4 114,093 0 7.13 22 200.53 70 188.13 58 141.93 0 79.87
Type1 22.5 114,196 0 22.23 95 273.27 87 184.10 99 194.70 51 134.47
Type1 22.6 114,265 0 5.70 41 168.17 30 99.30 9 96.20 0 40.17
Type1 22.7 114,361 0 0.03 12 167.47 0 56.30 0 71.27 0 18.20
Type1 22.8 114,327 0 1.26 25 256.40 0 163.33 0 193.60 0 159.10
Type1 22.9 114,199 0 0 9 139.83 16 78.47 16 80.37 0 70.97
Type1 22.10 114,229 0 3.33 24 204.93 7 139.33 35 121.43 0 56.20
Type1 22.11 114,214 0 9.16 74 237.77 42 145.13 59 139.57 3 69.87
Type1 22.12 114,214 0 10.30 55 249.53 95 143.30 88 156.00 15 84.93
Type1 22.13 114,233 0 2.66 93 279.87 22 168.07 42 167.40 6 85.30
Type1 22.14 114,216 0 0.23 92 248.50 117 194.30 64 202.80 0 81.00
Type1 22.15 114,240 0 0.83 11 117.50 1 62.87 6 80.53 0 22.03
Type1 22.16 114,335 0 2.36 11 225.40 42 215.43 35 167.90 0 36.47
Type1 22.17 114,255 0 1.43 56 217.53 0 170.00 18 144.53 6 57.07
Type1 22.18 114,408 0 0.53 46 169.97 0 57.10 2 117.37 2 22.83
Type1 22.19 114,201 0 0 34 243.20 0 124.60 0 144.37 0 35.87
Type1 22.20 114,349 0 0.60 151 270.67 65 159.43 45 187.23 0 95.40
b2500-1 1153,068 0 0 624 3677.33 96 1911.93 42 1960.20 0 369.20
b2500-2 1129,310 0 7.46 128 1855.33 88 1034.33 1096 1958.47 154 454.53
b2500-3 1115,538 0 0 316 3281.93 332 1503.67 34 2647.87 0 290.40
b2500-4 1147,840 0 0 870 2547.93 436 1521.07 910 1937.13 0 461.73
b2500-5 1144,756 0 0 356 1800.27 0 749.40 674 1655.87 0 286.07
b2500-6 1133,572 0 0 250 2173.47 0 1283.53 964 1807.60 80 218.00
b2500-7 1149,064 0 0 306 1512.60 116 775.47 76 1338.73 44 264.60
b2500-8 1142,762 0 0 0 2467.73 96 862.47 588 1421.53 22 146.47
b2500-9 1138,866 0 0 642 2944.67 54 837.07 658 1020.60 6 206.33
b2500-10 1153,936 0 0 598 2024.60 278 1069.40 448 1808.73 94 305.27
p3000 1 6502,308 -22 25.20 444 1465.53 251 887.80 114 692.67 74 345.93
p3000 2 18272,568 0 0 0 1321.60 0 924.20 0 991.07 140 387.00
p3000 3 29867,138 0 0 1442 2214.73 328 963.53 820 1166.13 0 304.33
p3000 4 46915,044 0 0 1311 2243.93 254 1068.47 426 2488.20 130 317.07
p3000 5 58095,467 0 0 423 1521.60 0 663.00 278 1353.27 0 370.40
p5000 1 17509,215 -154 -121.00 2046 3410.93 848 1817.27 1000 2391.80 37 417.00
p5000 2 50102,729 -363 -338.60 2568 4444.80 1136 2277.00 183 2172.73 184 550.80
p5000 3 82039,686 -630 -462.27 4822 7612.33 1284 3064.40 1526 5377.13 74 828.53
p5000 4 129413,112 -598 -500.40 1032 4478.90 915 2367.90 1098 3276.80 260 677.20
p5000 5 160597,781 -375 -254.74 1682 4058.90 816 1903.30 914 1753.90 204 642.90

(p3000 1, p5000 1, p5000 2, p5000 3, p5000 4 and p5000 5), our MAMEP algorithm is
able to improve on the previous best objective values.

4.3.4 Comparison with other algorithms

In order to further evaluate our MAMEP algorithm, in this section we compare our results
with four MEWCP algorithms in the literature: ITS [Palubeckis, 2007], VNS [Brimberg
et al., 2009], TIG [Lozano et al., 2011] and LTS-EDA [Wang et al., 2012]. As stated
previously in Section 4.3.2, these 4 reference algorithms are the best performing approaches
for MEWCP currently available.

Table 4.11 shows the best and average results of our MAMEP algorithm compared with
the reference algorithms. The results of these 4 reference algorithms are compiled from
Tables 6 and 11 from [Wang et al., 2012]. Note that the results of all these algorithms are
obtained under the same time limit (see Section 4.3.2). Table 4.11 summarizes the solution
difference between the best objective values and the average objective values obtained by
these 5 algorithms with the best known objective values on the 40 large size benchmark
instances with 2,000 to 5,000 vertices.

86

4.4 Analysis of MAMEP

Table 4.12: Comparative results of MAMEP and MTS on 10 instances for the maximum
diversity problem

Instance fpre MAMEP TS

gbest gavg gbest gavg
Type1 22.1 114,271 0 0 50 110.45
Type1 22.2 114,327 0 0 35 121.35

b2500-1 1153,068 0 278.50 43476 49295.30
b2500-3 1115,538 0 176.00 41840 48236.00
b2500-5 1144,756 0 7.90 40390 47986.70
b2500-7 1149,064 0 129.00 41860 47943.60
p3000 1 6502,308 -22 163.15 65751 71014.15
p3000 3 29867,138 0 253.70 126700 134585.60
p5000 2 50102,729 -285 1220.15 727769 757700.85
p5000 3 82039,686 -414 2293.95 848126 863409.20

From Table 4.11, it may be observed that the MAMEP algorithm outperforms the 4
reference algorithms, named ITS, VNS, TIG and LTS-EDA. In terms of the best solution,
MAMEP matches the best known values on 34 instances and finds new best solutions for
6 out of the 40 instances, while ITS, VNS , TIG and LTS-EDA matched the best known
solutions on 2, 10, 5, 19 instances respectively. Concerning the average solution value,
the results of our MAMEP algorithm remain competitive when compared with these 4
reference algorithms. Indeed, for each of these 40 instances, our MAMEP algorithm is
able to reach an average solution value better than each of those 4 reference algorithms.

4.4 Analysis of MAMEP

4.4.1 Influence of crossover

As indicated in Section 4.2.5, our proposed MAMEP algorithm employs a dedicated
crossover operator which tries to preserve common vertices that are shared by parent
solutions. In order to be sure this crossover operator is meaningful to the maximum edge
weight clique problem, we carried out additional experiments to examine the influence of
the crossover operator. For this purpose, we compare the performance of the MAMEP
algorithm with its underlining TS algorithm. Furthermore, in order to highlight the role
of the crossover operators, we weaken the underlining TS of MAMEP by reducing the
number of tabu search iterations to MaxIter = 500.

Experiments were carried out on a selection of 10 MEWCP instances (Type1 22.1,
Type1 22.2, b2500-1, b2500-3, b2500-5, b2500-7, p3000 1, p3000 3, p5000 2 and p5000 3).
To solve each instance, we run both methods 20 times under exactly the same timeout
limit, which was set to be 300 seconds for each run. In order not to penalize the TS
algorithm, we use a multi-start technique to restart it every 500 iterations whenever the
timeout limit is not reached.

Table 4.12 presents the comparative results between MAMEP and TS on the 10 in-
stances. For each instance, the following statistics are provided: the best solution gap to
the previous best known objective values gbest (i.e., fprev − fbest) and the average solution
gap to the previous best objective value gavg (i.e., fprev − favg). From Table 4.12, we ob-

87

Chapter 4. A hybrid metaheuristic method for the maximum edge weight clique Problem

serve that for each of these 10 instances, MAMEP performs far better than its underlining
TS in terms of both best and average solution values. Furthermore, we also note that al-
though the performance of its underlining TS algorithm is poor, the results of the hybrid
MAMEP algorithm remain competitive compared with the current best known results.
Indeed, for 3 instances, the MAMEP algorithm is able to improve on the current best
known results. This further confirms our conclusion that the crossover operator makes an
interesting contribution to the overall performance of the hybrid algorithm.

4.4.2 Structural similarity analysis and motivation for the proposed
crossover operator

In the last section, we demonstrated that our proposed crossover operator makes a mean-
ingful contribution to the overall performance of the hybrid algorithm. In this section, we
provide empirical motivations for this crossover operator. For this purpose, we show an
analysis on the structural similarity between local optima of various quality in terms of
the size of the commonly shared vertices. For two local optima St and Ss, we define their
similarity as sim(St, Ss) = |St∩Ss|

m . We can see that the larger the similarity between two
solutions, the more common vertices are shared by them.

To analyze structural similarity between local optima, we employ the 10 problem
instances used in the last section. For each instance, we collect 1000 local optima of
different quality using our memetic algorithm as well as its underlying tabu search. Among
these 1000 local optima, we select the top 10% (100) with the largest objective values and
call them ‘high-quality solutions’. Similarly, we take the bottom 10% (100) with the
smallest objective values and call them ‘low-quality solutions’.

Table 4.13 contains the data related to the similarity between our 1000 local optima.
Columns Shq, Sall and Slo report respectively the average degree of similarity between the
100 high-quality solutions, the average degree of similarity between all the 1000 sampled
local optima, and the average degree of similarity between the 100 low-quality solutions.
From Table 4.13, we observe that in most cases, the degree of similarity between high-
quality solutions is generally very large, from 0.52 to 0.89. High similarity indicates high
quality solutions share a large number of common vertices. Assume that high-quality
solutions are close to an optimal solution or could themselves be optimal solutions. As
a consequence, it is wise for a recombination operator to preserve the common vertices
shared by two (or more) high quality solutions. This is exactly what the proposed crossover
operator undertakes to do.

4.4.3 Population Updating Strategy

As stated in Section 4.2.6, our MAMEP algorithm relies on a quality-and-distance re-
placement strategy (denoted by DisQual) for population updates to maintain the popu-
lation diversity. In order to assess this strategy, we compare it with a traditional strategy
(denoted by PoolWorst) which simply replaces the worst solution of the population by
the new offspring solution. We show experimental evidences on a large random instance
p3000.1 (which proves to be one of the most difficult instances for most algorithms). The

88

4.4 Analysis of MAMEP

Table 4.13: Analysis of structural similarity between high-quality solutions for 10 MEWCP
instances

Instance Shq Sall Slo

Type1 22.1 0.63 0.20 0.14
Type1 22.2 0.52 0.19 0.14

b2500-1 0.81 0.62 0.44
b2500-3 0.77 0.63 0.44
b2500-5 0.79 0.63 0.44
b2500-7 0.82 0.64 0.44
p3000 1 0.86 0.68 0.53
p3000 3 0.89 0.69 0.53
p5000 2 0.86 0.59 0.51
p5000 3 0.84 0.59 0.52

0

200

400

600

800

1000

1200

1400

1600

1800

2000

av
er

ag
e

so
lu

ti
on

ga
p

to
th

e
b
es

t
va

lu
e

0 30 60 90 120 150 180 210 240 270 300
number of generations

DisQual Strategy

PoolWorst Strategy

0

30

60

90

120

150

180

210

240

270

300

d
iv

er
si

ty

0 30 60 90 120 150 180 210 240 270 300
number of generations

DisQual Strategy

PoolWorst Strategy

Figure 4.3: Comparison between two population updating strategies

89

Chapter 4. A hybrid metaheuristic method for the maximum edge weight clique Problem

stopping condition is the number of generations (i.e., the number of applications of the
crossover operation) which is limited to 300.

Keeping other ingredients unchanged in the MAMEP algorithm, we observe two evolu-
tion profiles of each population updating strategy: a) the best solution gap to the previous
best known objective value (over 20 runs) vs. the number of generations (Fig. 4.3, left); b)
the population diversity vs. the number of generations (Fig. 4.3, right). The population
diversity is defined as the average distance between each pair of solutions in the population
(see Section 4.2.6).

From Fig. 4.3 (left), we observe that MAMEP with our distance-and-quality based
population updating strategy converges more quickly towards high quality solutions than
with the traditional pool updating PoolWorst strategy. In addition, from Fig. 4.3 (right),
we can see that the DisQual strategy preserves better the population diversity during the
evolution process than the PoolWorst strategy, which is tightly correlated to the evolution
of the solution quality. We can conclude that considering the diversity of the population
as well as the quality for pool updating contributes favorably to the performance of our
algorithm.

4.5 Conclusions

This chapter deals with the maximum edge weight clique problem, which is another impor-
tant generalization of MCP. To approximate the MEWCP, we proposed a hybrid memetic
algorithm (MAMEP) mixing a dedicated crossover operator and a constrained neighbor-
hood tabu search procedure. The proposed crossover operator tries to preserve the vertices
shared by the parent solutions which hopefully belong to the optimal solution. Offspring
solutions are improved with the tabu search optimization procedure which relies on a
constrained neighborhood. To maintain a healthy population diversity, MAMEP applies
a pool updating strategy that considers both the quality of an offspring solution and its
distance to the solutions of the population.

Experimental evaluations on a large collection of 7 sets of 120 instances from the
literature showed that our MAMEP algorithm attains consistently the previous best known
results within a time limit ranging from 20 seconds (for problems with 100 to 500 vertices)
to 30 minutes (for instances with 5000 vertices). Specifically, for 101 out of 120 cases
(84%), MAMEP reaches the previous best known objective value for each of its runs (a
successful rate of 100%). More importantly, for 6 large and very challenging instances
(p3000 1, p5000 1, p5000 2, p5000 3, p5000 4 and p5000 5), our MAMEP algorithm is
able to yield improved solutions with respect to the current best known results. We also
compared MAMEP with 4 best performing MEWCP algorithms published recently (2007,
2009, 2011, 2012) and showed that MAMEP dominates these reference algorithms in terms
of solution quality under comparable experimental conditions.

We also investigated the impact of several essential components of MAMEP. We car-
ried out experiments to demonstrate the beneficial role of the proposed crossover operator
and showed an analysis of structural similarity between local optima which provides moti-
vations for the crossover. Moreover, we demonstrated the important role of the distance-

90

4.5 Conclusions

and-quality pool updating strategy which allows MAMEP to maintain a useful population
diversity.

In the previous three chapters, we dealt with the maximum clique problem and its
two important generalizations and developed highly effective heuristic approaches to ap-
proximate these problems. In the next chapters, we will apply these approaches to solve
some hard combinatorial optimization problems. As we will see in the these chapters,
approaches based on our methods for MCP as well as its generalizations are able to attain
highly competitive results for these hard combinatorial optimization problems.

91

Chapter 5

Applications in graph coloring: A
heuristic approach for coloring
large graphs based on independent
set extraction

In this chapter, we apply the proposed adaptive multistart tabu search approach (AMTS)
for the MCP (Chapter 2) to the graph coloring problem, and present an effective heuristic
approach (denoted by EXTRACOL) to coloring large graphs. The proposed approach
uses a preprocessing method to extract large independent sets from the graph and a
memetic algorithm to color the residual graph. Each preprocessing application identifies
with AMTS a number of pairwise disjoint independent sets of a given size in order to
maximize the vertices removed from the graph. We evaluate EXTRACOL on the 11
largest graphs (with 1000 to 4000 vertices) of the DIMACS challenge benchmarks and show
improved results for 4 very difficult graphs (DSJC1000.9, C2000.5, C2000.9, C4000.5). The
behavior of the proposed algorithm is also analyzed. The content of this chapter is detailed
in [Wu and Hao, 2012a].

Contents

5.1 Introduction . 95

5.2 Review of graph coloring based on maximum independent set 96

5.3 EXTRACOL: an algorithm for large graph coloring 97

5.3.1 General procedure . 97

5.3.2 Finding maximal pairwise disjoint independent sets 99

5.3.3 Coloring the residual graph . 101

5.4 Experimental Results . 102

5.4.1 Experimental settings . 102

5.4.2 Computational results . 102

5.5 Analysis and insights . 105

93

Chapter 5. Applications in graph coloring: A heuristic approach for coloring large graphs
based on independent set extraction

5.5.1 Influence of preprocessing . 105
5.5.2 Limitation of preprocessing . 107

5.6 Conclusion . 108

94

5.1 Introduction

5.1 Introduction

Let G = (V, E) be an undirected graph with vertex set V and edge set E. A legal k -
coloring of G corresponds to a partition of V into k independent sets. Graph coloring
aims at finding the smallest k for a given graph G (its chromatic number χ(G)) such
that G has a legal k -coloring. The graph coloring problem is a well-known NP-hard com-
binatorial optimization problem [Garey and Johnson, 1979]. Prominent applications of
graph coloring include crew scheduling [Gamache et al., 2007], computer register alloca-
tion [Werra et al., 1999], timetabling and scheduling [Burke et al., 2007], radio frequency
assignment [Smith et al., 1998], printed circuit board testing [Garey and Johnson, 1976],
manufacturing [Glass, 2002] and satellite range scheduling [Zufferey et al., 2008]. Exact
solution methods can solve problems of relatively small size, heuristics are preferred to
handle larger graphs. A comprehensive survey of the most significant heuristic methods
can be found in [Galinier and Hertz, 2006].

Local search has been repeatedly applied to graph coloring. Well-known examples in-
clude the seminal TabuCOL algorithm [Hertz and de Werra, 1987], Simulated Annealing
[Johnson et al., 1991], GRASP [Laguna and Mart́ı, 2001], Iterated Local Search [Chiaran-
dini and Stützle, 2002], Neighborhood Search [Avanthay et al., 2003], Reactive Partial
Tabu Search [Blöchliger and Zufferey, 2008], Variable Space Search [Hertz et al., 2008]
and Clustering-Guided Tabu Search [Porumbel et al., 2010c]. Local search coloring al-
gorithms are usually simple and have achieved satisfactory performance on the standard
DIMACS graphs. They are also often used as a key component of more sophisticated
hybrid algorithms.

Indeed, it was observed that some graphs, especially large random graphs, cannot be
colored efficiently by using pure local search algorithms. Several hybrid approaches have
been proposed as a very interesting alternative. Examples of classical hybrid algorithms
are presented in [Costa et al., 1995; Dorne and Hao, 1998; Fleurent and Ferland, 1996;
Galinier and Hao, 1999; Hamiez and Hao, 2002; Morgenstern, 1996]. More recent and
powerful algorithms can be found in [Galinier et al., 2008; Lü and Hao, 2010; Malaguti et
al., 2008; Porumbel et al., 2010b; Xie and Liu, 2009].

Another approach for dealing with large graphs is based on a general principle of
“reduce-and-solve”. This approach consists in applying, prior to the phase of graph color-
ing, a preprocessing procedure to extract large independent sets from the graph until the
remaining graph (called residual graph) becomes sufficiently small and then coloring the
residual graph with any coloring algorithm. Typically, large independent sets are extracted
and removed from G in an iterative manner by identifying one largest possible indepen-
dent set each time. This approach was used with success by some prominent classical
algorithms [Chams et al., 1987; Fleurent and Ferland, 1996; Hertz and de Werra, 1987;
Johnson et al., 1991; Morgenstern, 1996]. Yet surprisingly we observe that it is rarely
employed nowadays.

In this chapter, we revisit the graph coloring approach using independent set extraction
and apply our proposed adaptive multistart tabu search approach (AMTS) for the MCP
to the graph coloring problem. Furthermore, we develop an improved preprocessing proce-
dure which is able to pack more vertices than with the conventional one-by-one extraction

95

Chapter 5. Applications in graph coloring: A heuristic approach for coloring large graphs
based on independent set extraction

strategy with the same number of color classes. This generates smaller residual graphs
that tend to be easier to color. Basically, instead of extracting independent sets one by
one, Our improved preprocessing procedure tries to identify, at each preprocessing step, a
maximal set of pairwise disjoint independent sets. The rationale behind this approach is
that by extracting many pairwise disjoint independent sets each time, more vertices are
removed from the initial graph, making, hopefully, the residual graph easier to color. For
both tasks of identifying an individual independent set and pairwise disjoint independent
sets, we employ the AMTS algorithm proposed in Chapter 2 for the MCP.

Our large graph coloring algorithm (denoted by EXTRACOL) combines this improved
independent set extraction preprocessing with a recent memetic coloring algorithm (MA-
COL [Lü and Hao, 2010]). We evaluate the performance of EXTRACOL on the 11 largest
DIMACS benchmark graphs (with 1000, 2000 and 4000 vertices) and present new results
for four very hard instances (DSJC1000.9, C2000.5, C2000.9, C4000.5), with respectively
1, 2, 4 and 11 colors below the currently best colorings.

5.2 Review of graph coloring based on maximum indepen-
dent set

As observed in [Hertz and de Werra, 1987; Fleurent and Ferland, 1996; Johnson et al.,
1991], it is difficult, if not impossible, to find a k -coloring of a large graph G (e.g. |V | ≥
1000) with k close to χ(G) by applying directly a given algorithm α on G. To color large
and very large graphs, a possible approach is to apply a preprocessing to extract i large
independent sets from the graph to obtain a much smaller residual graph which is expected
to be easier than the initial graph. A coloring algorithm α is then invoked to color the
residual graph. Since each of the i independent sets forms a color class, i plus the number
of colors needed for the residual graph gives an upper bound on χ(G).

The conventional methods for the preprocessing phase operate greedily by extracting
one independent set each time from the graph G. For instance, in [Chams et al., 1987;
Hertz and de Werra, 1987], the authors uses a tabu search algorithm to identify a large
independent set and then remove the vertices of the independent set as well as their
incident edges from G. In [Fleurent and Ferland, 1996], the authors refine the choice of
the independent set to be removed and prefer an independent set that is connected to as
many vertices as possible in the remaining graph. The selected independent set can then
remove as many edges as possible with the vertices of the independent set, hence, tends
to make the residual graph easier to color.

In the context of graph coloring, several heuristics have been used to identify large
independent set in the literature. For instance, in [Chams et al., 1987], the authors apply
a simple greedy algorithm. In [Fleurent and Ferland, 1996; Hertz and de Werra, 1987],
the authors propose a dedicated tabu search algorithm. In [Johnson et al., 1991], the
authors introduce the XRLF method that combines a randomized greedy search with an
exhaustive search.

For the subsequent residual graph coloring, various methods have been used including
exhaustive search [Johnson et al., 1991], tabu search [Hertz and de Werra, 1987], simulated

96

5.3 EXTRACOL: an algorithm for large graph coloring

annealing [Chams et al., 1987] and hybrid genetic tabu search [Fleurent and Ferland, 1996].
The performance of this coloring approach depends on the method to find large inde-

pendent sets and the method to color the residual graph. It also depends significantly on
how independent sets are selected by the preprocessing phase.

In the next section, we present our preprocessing method which tries to extract a
large number of pairwise disjoint independent sets from the graph at each preprocessing
iteration.

5.3 EXTRACOL: an algorithm for large graph coloring

The proposed EXTRACOL algorithm follows the general schema presented in the previous
section and is composed of two sequential phases: a preprocessing phase and a coloring
phase. What distinguishes our work from the existing methods is the way in which the
preprocessing phase is carried out. In this section, we explain the basic rationale and
illustrate the main techniques implemented. The coloring algorithm applied to the residual
graph (MACOL [Lü and Hao, 2010]) is also briefly reviewed at the end of the section.

5.3.1 General procedure

As stated previously, a legal k -coloring of a given graph G = (V, E) corresponds to a
partition of V into k independent sets. Suppose that we want to color G with k colors.
Assume now that we extract t < k independent sets I1, ..., It from G. It is clear that if we
could maximize the number of vertices covered by the t independent sets (i.e. |I1∪...∪It| is
as large as possible), we would obtain a residual graph with fewer vertices when I1∪ ...∪It

are removed from G. This could in turn help to ease the coloring of the residual graph
using k − t colors because there are fewer vertices left in the residual graph.

For this reason, for a given graph G, each time a maximum (or large) independent
set is identified we try to maximize the number of pairwise disjoint independent sets of
that size and then remove all of them from the graph. Our preprocessing phase repeats
this process until there are no more than q vertices left in the residual graph, q being a
parameter fixed by the user. The value of q depends clearly on the coloring algorithm
applied to the residual graph. In our case, q is set to be equal to 800 for all the tested
graphs in this paper.

Our preprocessing phase is then described in Algorithm 5.1. Basically, our preprocess-
ing phase iterates the following 4 steps and stops when the residual graph contains no
more than q vertices.

1. Apply the Adaptive Multistart Tabu Search (AMTS) algorithm (see Chapter 2) to
identify a maximum independent set IM in G and set zmax = |IM |. Then use IM to
initialize set M which will collect other independent sets of the same size (lines 3-5
in Algorithm 5.1).

2. Apply repeatedly ATS to generate as many independent sets of size zmax as possible
and put them in set M (lines 7-15).

97

Chapter 5. Applications in graph coloring: A heuristic approach for coloring large graphs
based on independent set extraction

Algorithm 5.1: Preprocessing phase: Extraction of pairwise disjoint independent
sets

Require: Graph G = (V, E), the size of the residual graph q
Ensure: Residual graph of G
1: Begin
2: while (|V | > q) do
3: IM = AMTS(G, , Iter) {Use AMTS to find a maximum independent set in G}
4: zmax = |IM |
5: M = {IM}
6: reapt = 0
7: while (reapt ≤ pmax AND |M | ≤Mmax) do
8: I = AMTS(G, zmax, Iter) {Use AMTS to find an independent set of size zmax}
9: if I ∈M then

10: reapt = reapt + 1
11: else
12: M = M

∪
{I}

13: reapt = 0
14: end if
15: end while
16: Find a maximal number of pairwise disjoint independent sets in M :

{I1, ..., It} = arg max{|S| : S ⊆M, ∀Ix, Iy ∈ S, Ix

∩
Iy = ∅} {see Section 5.3.2}

17: if |V | − |I1 ∪ ... ∪ It| > q then
18: Remove I1, ..., It from G
19: else
20: p = ⌈ |V |−q

zmax
⌉

21: Remove I
′

1, ..., I
′

p randomly selected from {I1, ..., It} from G
22: end if
23: end while
24: End

98

5.3 EXTRACOL: an algorithm for large graph coloring

3. Find as many pairwise disjoint independent sets I1, ..., It as possible from M (line
16, see Section 5.3.2).

4. Remove all the vertices of I1 ∪ ... ∪ It from G if the removal leads to a residual
graph with at least q vertices. Otherwise, remove randomly independent sets from
{I1, ..., It} such that the residual graph contains at most q vertices (lines 17-23).

Notice first that this preprocessing procedure is different from conventional methods
since steps (2)-(3) are missing from these conventional methods. In our case, after a
maximum independent set is identified, we continue to identify as many independent sets
of that size as possible with the purpose of extracting a maximum number of pairwise
disjoint independent sets. As we will see in Section 5.5, our preprocessing procedure is
able to pack more vertices than with the conventional one-by-one extraction strategy with
the same number of color classes. This generates smaller residual graphs that tend to be
easier to color.

In Algorithm 5.1, step (1) identifies a first maximal independent set IM whose size
zmax is used at step (2) to build the pool M of independent sets of that size. The search
for a new independent set I of size zmax stops when the number of independent sets
contained in M reaches a desired threshold (Mmax) or when no new independent set of
that size is found after pmax consecutive tries. Obviously, both a larger value for Mmax or
pmax could include more independent sets in M, thus giving more chance of finding more
pairwise disjoint independent sets of size zmax in M in step (3). On the other hand, a
larger value for Mmax (or pmax) also implies longer computing time for the preprocessing
phase. According to our experiments we fix pmax equal to 100 and Mmax equal to |V | · ρ,
where ρ is the density of the graph. For the tested DIMACS graphs, Mmax varies from
100 to 2000.

Step (3) aims at finding a maximum number of pairwise disjoint independent sets
from the set of collected independent sets of size zmax. As we explain in Section 5.3.2,
this problem is in fact equivalent to the maximum set packing problem which itself can be
approximated by our Adaptive Tabu Search for the maximum independent set problem.

5.3.2 Finding maximal pairwise disjoint independent sets

As mentioned before, given the set of independent sets M = {I1, ..., In} of G which are
found by ATS, we want to determine from M as many pairwise disjoint sets as possible.
In fact, this is a typical maximum set packing problem (MSPP), which itself is equivalent
to the maximum clique (thus independent set) problem [Garey and Johnson, 1979].

Our approach exploits the strict relation between the MSPP and the maximum inde-
pendent set problem. More precisely, we transform the MSPP into the maximum inde-
pendent set problem and then determine a maximum independent set in the transformed
graph. Given n independent sets {I1, ..., In}, we define a new maximum independent set
instance G′ = (V ′, E′) as follows. Define V ′ by {1, ..., n} and define the edge matrix by:

eij =
{

0, if Ii ∩ Ij = ∅, i, j ∈ {1, ..., n}
1, otherwise.

99

Chapter 5. Applications in graph coloring: A heuristic approach for coloring large graphs
based on independent set extraction

Note that the order n of graph G′ is bounded by Mmax = |V | · ρ (see Section 5.3.1).
For the graphs used in this paper, n varies from several to 2000.

Now it is straightforward to see that if {i1, ..., ir} is an independent set in G′, {Ii1 , ..., Iir}
is a pairwise disjoint set in {I1, ..., In}. Consequently, to obtain a maximum pairwise dis-
joint set in {I1, ..., In}, we can determine a maximum independent set in G′.

To illustrate the idea, consider Fig. (left) which is the original graph and contains 8
maximum independent sets of size 3: I1 = {A,B, F}, I2 = {A,D,G}, I3 = {A,D, H},
I4 = {C, E,G}, I5 = {C,E, H}, I6 = {C, F, I}, I7 = {C,G, I}, I8 = {D,G, I}. Let
M = {I1, I2, . . . , I8}, the associated graph G′ = (V ′, E′) is shown in Fig. 5.1 (right). It
is clear that the maximum independent set {1, 5, 8} in Fig. (right) leads to the maximum
set of disjoint independent sets {I1, I5, I8} in M .

For this purpose, we can approximate the problem by applying directly our AMTS
algorithm described in Chapter 2 or use an exact algorithm. To make the decision, we
implement the exact algorithm described in [Österg̊ard, 2002]. Experiments with this
algorithm and comparisons with AMTS lead to two clear observations. First, if G′ is solved
optimally by the exact algorithm, then AMTS is able to find a solution (independent set)
of the same size (thus an optimal solution). Second, many G′ graphs cannot be solved by
the exact algorithm. In fact, for most of the 11 tested graphs, there is always at least one
G′ that cannot be solved by the exact algorithm. For these graphs, AMTS still provides
approximate solutions. Based on this experiment, we decide to use our AMTS to handle
the underlying MSPP.

A

BC

D

E

F

G

H

I

1

2

3

4

5

6

7

8

Figure 5.1: The original graph G = (V, E) (left) and the transformed maximum indepen-
dent set instance G′ = (V ′, E′) (right)

100

5.3 EXTRACOL: an algorithm for large graph coloring

5.3.3 Coloring the residual graph

To color the residual graph, one can apply any graph coloring algorithm. For instance, the
authors of [Hertz and de Werra, 1987] use a tabu search algorithm (TabuCOL). In [Fleurent
and Ferland, 1996], the residual graph is colored by a genetic local search procedure. In
[Johnson et al., 1991], independent sets are removed until the residual graph can be colored
by a branch-and-bound algorithm. In this work, we employ MACOL which is a recent
and effective Memetic Algorithm for graph coloring [Lü and Hao, 2010].

For a given graph G and a fixed number k of colors, MACOL explores a search space
Φ composed of all the k-colorings of the graph G = (V, E), i.e., Φ = {C : V → {1, . . . , k}}.
MACOL tries to find a legal k-coloring by optimizing (minimizing) a simple function
f(C) which counts the number of color conflicts in a k-coloring C. Formally, let C =
{c1, c2, ..., ck} be a (legal or illegal) k -coloring, the evaluation function f(C) is given by
the following formula:

f(C) =| {{u, v} ∈ E : ∃ci ∈ C, u ∈ ci, v ∈ ci} | (5.1)

C is a legal k-coloring if and only if f(C) = 0, i.e., each color class ci of C is an independent
set (conflict free)..

MACOL is composed of four basic components: a population of candidate solutions
(each solution being a k-coloring in Φ) to sample the search space, a dedicated recombina-
tion operator (crossover) to create new candidate solutions (offspring) by blending two or
more existing solutions, a tabu search based local optimization operator, and a population
management strategy.

MACOL starts with an initial population of illegal k-colorings whose individual k-
colorings are first improved by the tabu coloring algorithm which is a variant of the seminal
TabuCOL [Hertz and de Werra, 1987]. MACOL improves the solutions of its population
throughout a number of generations. At each generation, MACOL takes randomly m ≥ 2
parents and uses the adaptive multi-parent crossover operator (AMPaX) to generate an
offspring k-coloring. AMPaX builds one by one the color classes of the offspring solution
by taking at each step the largest color class among the parents. During the crossover
process, AMPaX takes care of using color classes from different parents in order to generate
diversified offspring solutions. Once the new offspring coloring is created, it is immediately
improved by the tabu coloring algorithm. The tabu coloring algorithm improves an illegal
k-coloring by minimizing the above evaluation function f (Formula 5.1). This is achieved
by iteratively changing the color of a vertex that shares the same color with at least one
adjacent vertex. To decide whether the improved offspring k-coloring can be added to the
population, MACOL implements a distance-and-quality based replacement strategy for
the pool updating.

As shown in [Lü and Hao, 2010], the performance of MACOL on the DIMACS graphs is
quite competitive compared to other state-of-art coloring algorithms. More details about
MACOL can be found in [Lü and Hao, 2010].

101

Chapter 5. Applications in graph coloring: A heuristic approach for coloring large graphs
based on independent set extraction

5.4 Experimental Results

In this section, we assess the performance of the proposed EXTRACOL algorithm. For this
purpose, we present computational results on the 11 largest benchmark graphs from the
well-known DIMACS graph coloring Challenge [Johnson and Trick, 1996]. Comparisons
are also reported with respect to the underlying MACOL algorithm and 7 other top-
performing coloring algorithms from the literature.

5.4.1 Experimental settings

Test instances. As EXTRACOL is designed to color large graphs, we only consider
graph instances with at least 1000 vertices. These graphs are known to be difficult and
represent a real challenge for coloring algorithms. These graphs belong to four fami-
lies1: three large random graphs (DSJC1000.1, DSJC1000.5, DSJC1000.9), three large flat
graphs (flat1000 50 0, flat1000 60 0, flat1000 76 0), two large random geometric graphs
(R1000.1c, R1000.5) and three very large random graphs (C2000.5, C2000.9, C4000.5).
The details of these 11 instances are described in Section 1.6.

Parameter. Our EXTRACOL algorithm is programmed in C and compiled using
GNU GCC on a PC with 2.83 GHz CPU and 8G RAM. To obtain our computational
results, each instance is solved 20 times independently with different random seeds (the
very large instances are solved 5 times). For each run, the time limit is set to 5 CPU hours
except for the three very large graphs C2000.5, C2000.9 and C4000.5, for which a time
limit of 120 hours (5 days) is allowed. Notice that these time conditions are comparable
with those used in the most recent works like [Galinier et al., 2008; Malaguti et al., 2008;
Porumbel et al., 2010b; Lü and Hao, 2010].

To run EXTRACOL, we need to fix q, the number of vertices left in the residual
graph. We tested different values and choose the value 800 for all of our experiments.
Let us notice that the choice of the value of q mainly depends on the performance of the
coloring algorithm applied to the residual graph. In addition to q, MACOL requires also
several parameters. In our case, we adopt those used in the original paper [Lü and Hao,
2010].

5.4.2 Computational results

5.4.2.1 Comparison with the current best results

Our first experiment aims to evaluate EXTRACOL with the current best results on our
benchmark graphs. Table 5.1 summarizes the computational statistics. Columns 2-3 give
the features of the graphs: the number of vertices (n) and the density of each graph
(dense). Column 4 shows the current best known result k∗ reported in the literature. In
columns 5-9, the computational statistics of our EXTRACOL algorithm are given, includ-
ing the number of colors obtained (kbest), the success rate (Succ), the average computation
time in minutes required by the preprocessing procedure (Textr), the average number of

1http://www.info.univ-angers.fr/pub/porumbel/graphs/index.html.

102

5.4 Experimental Results

Table 5.1: Computational results of EXTRACOL (and MACOL) on the set of 11 largest
DIMACS benchmark graphs. The four improved results are indicated in bold.

Instance n dense k∗ EXTRACOLa MACOL [Lü and Hao, 2010]
kbest Succ Textr(m) iter T (m) kmacol Succ iter

DSJC1000.1 1000 0.10 20 20 20/20 11 3.1×107 93 20 20/20 3.5×107

DSJC1000.5 1000 0.50 83 83 20/20 3 2.0×108 132 83 20/20 2.2×108

DSJC1000.9 1000 0.90 223 222 3/20 8 5.4×108 258 223 18/20 4.5×108

R1000.1c 1000 0.97 98 101 18/20 10 6.4×105 18 98 20/20 7.5×105

R1000.5 1000 0.48 234 250 11/20 12 8.8×108 183 245 13/20 1.2×109

flat1000 50 0 1000 0.49 50 50 20/20 8 2.9×105 12 50 20/20 3.2×105

flat1000 60 0 1000 0.49 60 60 20/20 7 5.1×105 15 60 20/20 6.3×105

flat1000 76 0 1000 0.49 82 82 20/20 3 6.7×107 79 82 20/20 7.2×107

C2000.5 2000 0.50 148 146 5/5 145 1.7×108 253 148 1/5 8.2×108

C2000.9 2000 0.90 413b 409 2/5 118 4.5×108 329 413b 2/5 7.5×108

C4000.5 4000 0.50 271 260 4/5 5186 1.8×108 5298 272 3/5 1.2×109

a. See http://www.info.univ-angers.fr/pub/hao/extracol.html for the coloring result of each graph.

b. This result, which is not reported in the original paper [Lü and Hao, 2010], is obtained by running MACOL

ourself.

iterations required by MACOL for coloring the residual graph (iter) and the total time
required in minutes (T). The results of MACOL are also reproduced in Table 5.1 (columns
10-12) and we discuss these results in the next section.

From Table 5.1, we observe that, except for the two R1000 graphs, the results obtained
by EXTRACOL are very competitive when compared to the current best known results
reported in the literature.

For two of the three large random graphs (DSJC1000.1 and DSJC1000.5) and the
three flat graphs (flat1000 x 0,x=50,60,76), EXTRACOL can easily reach the previous
best known result within no more than 2.5 hours and with a success rate of 100%. More
importantly, for DSJC1000.9, our EXTRACOL algorithm obtains for the first time a new
222-coloring, improving thus the previous best-known 223-coloring solution that has been
obtained very recently in [Malaguti et al., 2008; Xie and Liu, 2009; Porumbel et al., 2010b;
Lü and Hao, 2010].

For the three very large random graphs with 2000 and 4000 vertices, EXTRACOL
shows even better performance. Indeed, the previous best known coloring requires respec-
tively k∗ = 148, 413 and 271 for these graphs, which have been found very recently in
[Porumbel et al., 2010b; Lü and Hao, 2010]. It is interesting to observe that EXTRACOL
is able to color these graphs with k = 146, 409 and 260, leading to a gain of 2, 4 and 11
colors respectively. In Section 5.5.1, we show some elements to explain why EXTRACOL
performs so well on these graphs.

However, for the two random geometric graphs (R1000.1c and R1000.5), our algorithm
performs poorly. In Section 5.5.2, we show an analysis of EXTRACOL on these two graphs
to try to understand why this happens.

5.4.2.2 Comparison between EXTRACOL and MACOL

Since EXTRACOL uses MACOL in its coloring phase to color the residual graphs, it is
interesting to compare the results of EXTRACOL against those of MACOL. The results

103

Chapter 5. Applications in graph coloring: A heuristic approach for coloring large graphs
based on independent set extraction

Table 5.2: Detailed information of EXTRACOL and MACOL on C4000.5 and C2000.5
regarding the number of independent sets (color classes) of different sizes.

Size of inde-
pendent set

C2000.5 C4000.5

EXTRACOL MACOL EXTRACOL MACOL
18 0 0 63 1
17 0 0 57 29
16 53 11 42 79
15 18 43 21 67
14 14 36 15 42
13 14 26 22 20
12 16 10 12 16
11 10 8 10 9
10 15 8 6 3
9 4 3 5 4
8 2 1 6 1
7 0 2 1 1
Total 146 148 260 272

of MACOL without the preprocessing phase are listed in Table 5.1 (columns 10–12). Note
that for both algorithms, the time limit is set to be 5 CPU hours for graphs of 1000 vertices
and 5 days for graphs of 2000 and 4000 vertices.

As one can observe in Table 5.1, for the three very large graphs (C2000.5, C2000.9
and C4000.5), EXTRACOL is able to find much better solutions than MACOL with re-
spectively 2, 4 and 12 fewer colors. In order to get some insight about this difference, we
show in Table 5.2 more detailed information about the computational results on C2000.5
and C4000.5. For each graph, columns 2-3 and columns 4-5 show the number of indepen-
dent sets of size |S| for the results obtained by EXTRACOL and MACOL respectively
on these graphs. Now recall that to generate a new offspring solution, MACOL operates
by transmitting large color classes (independent sets in legal k-colorings) from parents
to offspring. However, from Table 5.2, we observe that for these two graphs, it is very
difficult for MACOL to generate very large color classes when it is directly applied to the
initial graphs. For instance, if we consider C4000.5, we see that EXTRACOL obtains 63
color classes of size 18 while MACOL obtains only one class of this size. We can make
the same remark on C2000.5 for which EXTRACOL and MACOL obtain respectively 53
and 11 color classes of size 16. More generally, for large graphs, it seems wise to use
a dedicated algorithm (as EXTRACOL’s preprocessing phase) to find large independent
sets and remove them from the graph.

For DSJC1000.9, EXTRACOL improves on the result of MACOL with one fewer color.
For the two random graphs (DSJC1000.x, x=1,5) and the three flat graphs (flat1000 x 0,
x=50, 60, 76), EXTRACOL and MACOL achieve the same results in terms of the number
of colors used. However, EXTRACOL requires less search effort and finds these solutions
more quickly in terms of the number of iterations. This observation remains in fact valid
for most of the tested graphs. This tends to show that EXTRACOL’s preprocessing makes
the residual graph easier to color.

Finally, for the two random geometric graphs (R1000.1c and R1000.5), the results of
EXTRACOL are inferior to those obtained with MACOL. We investigate this phenomenon
in Section 5.5.2.

104

5.5 Analysis and insights

Table 5.3: Comparison of EXTRACOL with 7 best performing coloring algorithms. Most
of them are population-based hybrid algorithms.

Instance n k∗ kbest 7 reference graph coloring algorithms
[Porumbel

et al.,
2010b]

[Xie and
Liu,
2009]

[Malaguti
et al.,
2008]

[Galinier
et al.,
2008]

[Funabiki and
Higashino,

2000]

[Morgen-
stern,
1996]

[Fleurent
and Ferland,

1996]
DSJC1000.1 1000 20 20 20 - 20 20 21 - -
DSJC1000.5 1000 83 83 83 84 83 84 88 89 84
DSJC1000.9 1000 223 222 223 223 225 224 228 - -
R1000.1c 1000 98 101 98 - 98 - 98 98 99
R1000.5 1000 234 249 238 - 234 - 237 241 268
flat1000 50 0 1000 50 50 50 50 50 50 50 50 84
flat1000 60 0 1000 60 60 60 60 60 60 60 60 84
flat1000 76 0 1000 82 82 82 83 82 84 87 89 84
C2000.5 2000 148 146 148 150 - - 162 165 153
C2000.9 2000 413 409 - - - - - - -
C4000.5 4000 271 260 271 - - - 301 - 280

5.4.2.3 Comparison with other algorithms

Now we compare EXTRACOL with 7 other state-of-art heuristics published in the litera-
ture [Porumbel et al., 2010b; Xie and Liu, 2009; Malaguti et al., 2008; Galinier et al., 2008;
Funabiki and Higashino, 2000; Morgenstern, 1996; Fleurent and Ferland, 1996]. One no-
tices that all of them but one [Funabiki and Higashino, 2000] are population-based hybrid
algorithms.

For this comparison, we are mainly interested in solution quality in terms of the number
of colors needed to color a graph. Table 5.3 presents the comparative results on the set
of the 11 graphs. Columns 3 and 4 recall the previous best known k∗ and the best results
obtained by EXTRACOL (kbest). Columns 5-11 present the best results obtained by these
reference algorithms.

From Table 5.3, we observe that recent hybrid algorithms like [Porumbel et al., 2010b;
Xie and Liu, 2009; Malaguti et al., 2008] show globally very good or excellent performance,
in particular on graphs with no more than 1000 vertices. However, none of them can
find a 222-coloring for DSJC1000.9 which is achieved by EXTRACOL. This difference
seems even more pronounced when the three very large graphs are considered. Indeed, to
color C2000.5 and C4000.5, the reference algorithms require at least 148 and 271 colors
respectively with the best results obtained recently by Evo Div [Porumbel et al., 2010b]
using a time limit of 5 and 30 days while EXTRACOL requires only 146 and 260 colors.
For C2000.9 which is very dense (and hard), few results are available in the literature. On
the other hand, we observe that EXTRACOL performs poorly on R1000.1c and R1000.5
with respect to most of the reference algorithms.

5.5 Analysis and insights

5.5.1 Influence of preprocessing

The EXTRACOL’s preprocessing phase uses a heuristic method to extract at each iteration
as many pairwise disjoint independent sets as possible. Compared to the conventional
preprocessing which extracts greedily independent sets one by one, our preprocessing is

105

Chapter 5. Applications in graph coloring: A heuristic approach for coloring large graphs
based on independent set extraction

Table 5.4: Effect of our preprocessing (EXTRACOL) and conventional preprocessing
(OBOCOL) on C2000.5.

EXTRACOL OBOCOL
|S|×No. of
sets of |S|

No. of col-
ored vertices

No. of col-
ors used

|S|×No. of
sets of |S|

No. of col-
ored vertices

No. of col-
ors used

Independent sets 16× 53 16× 36
obtained by 15× 18 1202 77 15× 27 1205 79
preprocessing 14× 6 14× 16

14× 8 14× 5
13× 14 13× 20

Independent sets 12× 16 12× 14
(color classes) 11× 10 798 69 11× 13 795 69
from MACOL 10× 15 10× 6

9× 4 9× 7
8× 2 8× 3
7× 0 7× 1

Total 2000 146 2000 148

Table 5.5: Effect of the preprocessing (EXTRACOL) and conventional greedy preprocess-
ing (OBOCOL) on C4000.5.

EXTRACOL OBOCOL
|S|×No. of
sets of |S|

No. of col-
ored vertices

No. of col-
ors used

|S|×No. of
sets of |S|

No. of col-
ored vertices

No. of col-
ors used

18× 63 18× 40
Independent sets 17× 57 17× 66
obtained by 16× 42 3202 191 16× 40 3200 195
preprocessing 15× 21 15× 32

14× 8 14× 17
14× 7 14× 7
13× 22 13× 20

Independent sets 12× 12 12× 11
(color classes) 11× 10 798 69 11× 16 800 69
from MACOL 10× 6 10× 5

9× 5 9× 5
8× 6 8× 4
7× 1 7× 1

Total 4000 260 4000 264

able to cover more vertices than the greedy extraction approach. In other words, in order
to cover the same number of vertices (nearly |V | − q), our preprocessing needs fewer
independent sets and thus fewer colors for these vertices.

To highlight the difference of these two preprocessing methods, we show a detailed
comparison by considering two large graphs (C2000.5 and C4000.5). We recall that these
two graphs are very difficult if they are directly colored without a preprocessing phase.
Indeed, even the most recent hybrid algorithms can only find 148-coloring for C2000.5 and
271-coloring for C4000.5.

To solve these two instances, we apply both the conventional greedy preprocessing
method and our preprocessing method to extract independent sets until there are at most
800 vertices left in the residual graph, which is then colored by MACOL. For both algo-
rithms, each instance is solved 5 times with a time limit of 5 days per run. The results are
summarized in Table 5.4 (C2000.5) and Table 5.5 (C4000.5). In the table, we show the

106

5.5 Analysis and insights

results obtained respectively with our preprocessing (EXTRACOL) and the conventional
greedy preprocessing method (OBOCOL). Columns 2 and 5 show, in the form of x × y,
the number y of independent sets of size x extracted by the preprocessing phase (upper
part of each table) or established by MACOL (lower part of each table). Columns 3 and
6 give the number of vertices covered by the independent sets. Columns 4 and 7 indicate
the number of these independent sets (color classes).

From Table 5.4, we observe that for C2000.5, our preprecessing identifies 77 indepen-
dent sets (of sizes 16, 15, 14) covering 1202 vertices while the conventional preprecessing
removes 1205 vertices, but using 79 colors. We notice also that our preprocessing extracts
more independent sets of the largest size than the conventional preprecessing (53 against
36). For both residual graphs, they are colored by MACOL with 69 colors. This leads to
a difference of 2 colors in favor of our preprocessing.

Similarly, from Table 5.5, we observe that for C4000.5, the maximal independent set
that is identified is of size 18. The conventional preprocessing can only extract 40 inde-
pendent sets of this size while our preprocessing extracts 63. Moreover, our preprocessing
removes 191 large independent sets which cover 3202 vertices, while the conventional pre-
processing extracts 4 more independent sets (i.e. 195) which cover only 3200 vertices. To
color both residual graphs, MACOL requires additional 69 colors. Once again, this leads
to a better solution with our preprocessing method with 4 colors in less with respect to
the conventional preprocessing.

Finally, if we compare the coloring results of Tables 5.4 and 5.5 with those reported in
Table 5.3, we observe that for these two very large random graphs, even the conventional
preprocessing method leads to better results than the direct coloring approach.

5.5.2 Limitation of preprocessing

As previously observed, EXTRACOL performs poorly on the two geometric graphs R1000.1c
and R1000.5 although it shows excellent performance on all the other large graphs. It is
then interesting to investigate what happens on these graphs. Clearly, it would be very
difficult to provide a formal justification. Still, empirical observations would contribute to
some extent to the understanding of EXTRACOL’s counter-performance on these graphs.

Notice first that the geometric graphs are constructed in a special way [Sewell, 1996].
For a graph RN.d, the set of N points (nodes) are randomly scattered in an 1 by 1
square. Two nodes are adjacent if their geometric distance is smaller than d. So contrary
to standard random graphs, geometric graphs have special structures in terms of node
degrees, independent sets and cliques. These structures may imply a particular relation
between the number of color classes of a given size in an optimal coloring (call this number
A) and the number of independent sets (potential color classes) of the same size existing
in a graph (call this number B). To illustrate this point, we sampled a set of optimal 65-
colorings for geometric graph r250.5. Inspecting these optimal solutions shows the number
of color classes of size 6 (the largest possible size for this graph) within a 65-coloring varies
between 2 and 6 while it is easy to extract 12 pairwise disjoint independent sets of this
size, i.e. A << B. In other words, more than half of the extracted independent sets of
size 6 are not part of an optimal coloring and using these independent sets as color classes

107

Chapter 5. Applications in graph coloring: A heuristic approach for coloring large graphs
based on independent set extraction

Table 5.6: Detailed results on R1000.5
size of indepen-
dent set

EXTRACOL OBOCOL

N1 N2 N3 N1 N2 N3

7 12 225 ≥ 237 8 229 ≥ 237
6 20 209 ≥ 241 24 211 ≥ 243

Table 5.6 shows the number of independent sets extracted (N1), the maximum clique size of the residual
graph (N2), and the lower bound on the needed colors after the extraction (N3 = N1 + N2).

would increase the number of needed colors with respect to the chromatic number.
To complement this explanation, we show in Table 5.6 some statistics obtained on

R1000.5 with the preprocessing phase.
R1000.5 has a known chromatic number of 234. For this graph, it is quite easy for our

ATS algorithm to find maximum cliques of size 234. Consequently, for the preprocessing
to be helpful, each time an independent set is removed from the graph, the maximum
clique size for the residual graph should decrease by 1. However, we observe from Table
5.6 that this is not always the case when the preprocessing is applied to this graph.

For instance, the first iteration of our preprocessing extracts 12 pairwise disjoint inde-
pendent sets of size 7. However, one observes that at least 3 out of these 12 independent
sets cannot be part of an optimal solution and are wrongly extracted. Indeed, the residual
graph after extracting these 12 independent sets contains cliques of size 225, implying
that we need at least 237 (12 plus 225) colors for the initial graph which is 3 colors above
the chromatic number. The situation becomes even worse when 20 pairwise disjoint inde-
pendent sets of size 6 are additionally extracted because the lower bound of the needed
colors becomes now 241. The same observation can be made with the conventional greedy
preprocessing which leads to even worse results (see OBOCOL results). We conclude that
for this graph, some large independent sets are not part of any optimal 234-coloring and
extracting such independent sets cannot help decrease the number of colors needed for the
whole graph. The analysis realized on R1000.1c leads to the same conclusion.

This analysis shows the limit of the preprocessing approach which is basically due
to its greedy nature. Indeed, if a mistake is made during the preprocessing phase, the
mistake cannot be repaired. To remedy this difficulty, one possibility would be to allow
the coloring procedure to integrate the extracted independent sets during its search.

5.6 Conclusion

In this chapter, we revisit the graph coloring approach using independent set extraction
and apply our proposed adaptive multistart tabu search approach (AMTS) for the MCP
to the graph coloring problem. Furthermore, we develop an improved preprocessing proce-
dure which is able to pack more vertices than with the conventional one-by-one extraction
strategy with the same number of color classes. This generates smaller residual graphs
that tend to be easier to color. Instead of extracting one independent set each time, the
proposed preprocessing method tries to extract many pairwise disjoint sets. Such a pre-

108

5.6 Conclusion

processing maximizes the number of vertices covered by the extracted independent sets,
hopefully making the residual graph easier to color.

The computational results obtained on the 11 largest DIMACS benchmark graphs
with 1000, 2000 and 4000 vertices show, except for the two geometric random graphs,
remarkable performance. In particular, for four very hard instances (DSJC1000.9, C2000.5,
C2000.9, C4000.5), EXTRACOL is able to improves on the previous best known results
reported in the literature by finding solutions with 222, 146, 409 and 260 colors respectively,
implying a gain of 1, 2, 4 and 11 colors with respect to the current best colorings for these
graphs.

However, EXTRACOL performs poorly on some large geometric graphs although its
performance is remarkable on all the other tested graphs. A further analysis on these
large geometric graphs disclose that the extracting independent sets as a preprocessing
technique suffers some inevitable limitations. Actually, if an independent set is wrongly
extracted such that it is not part of the optimal coloring, the mistake can never be repaired.
To remedy this difficulty, we will improve EXTRACOL by allowing the coloring algorithm
to reconsider the independent sets extracted during the preprocessing phase, and present
an extraction and expansion approach in the next chapter.

109

Chapter 6

Advanced applications in graph
coloring: An extraction and
expansion approach for coloring
large graphs

This chapter further extends EXTRACOL proposed in the last chapter by proposing
additional strategies to remedy the limitation of EXTRACOL, leading to the improved
extraction and expansion algorithm (IE2COL). Basically, IE2COL employs a forward in-
dependent set extraction strategy described in the last chapter to reduce the initial graph.
From the reduced graph, IE2COL triggers a backward coloring process which uses ex-
tracted independent sets as new color classes for intermediate subgraph coloring. The
proposed method is assessed on 11 large benchmark graphs with 1000 to 4000 vertices.
Computational results show that it provides new upper bounds for 4 graphs and matches
consistently the current best known results for 6 other graphs. The chapter is based on two
articles, one is published in Discrete Applied Mathematics [Hao and Wu, 2012] and the
other is accepted in Asia-Pacific Journal of Operational Research [Wu and Hao, 2011b].

Contents

6.1 Introduction . 113

6.2 Improved extraction and expansion coloring (IE2COL) 114

6.2.1 General IE2COL procedure . 114

6.2.2 Initial and intermediate graph coloring 115

6.2.3 Expansion strategies for backward coloring 115

6.3 Experimental Results . 117

6.3.1 Experimental settings . 117

6.3.2 Computational Results . 118

6.3.3 Comparing IE2COL with MACOL, EXTRACOL and E2COL . . 120

6.3.4 Comparison with other state of the art algorithms 120

111

Chapter 6. Advanced applications in graph coloring: An extraction and expansion
approach for coloring large graphs

6.4 Analysis of IE2COL . 121

6.4.1 Effect of the size of residual graph 121
6.5 Conclusion . 123

112

6.1 Introduction

6.1 Introduction

In the last chapter, we presented an extraction and coloring approach based on independent
set extraction (denoted by EXTRACOL) for coloring large graph. The extraction phase
of EXTRACOL tries to remove at each step a maximum collection of disjoint independent
sets of maximum size instead of a single independent set. As shown in the last chapter,
this extraction strategy is able to pack more vertices than with the conventional one-by-
one extraction strategy with the same number of color classes. This generates smaller
residual graphs that tend to be easier to color. Evaluation of EXTRACOL on the set of
the largest graphs (with 1 000 to 4 000 vertices) of the DIMACS challenge benchmarks
showed remarkable results.

Preprocessing a graph by extracting independent sets reduces the initial graph and
tends to ease the coloring task. Such a preprocessing strategy relies on the hypothesis that
each extracted independent set defines a color class of the final coloring. Unfortunately,
this may not be the case all the time. Indeed, as demonstrated in the last chapter,
EXTRACOL performs poorly on the two geometric graphs R1000.1c and R1000.5 although
it shows excellent performance on all the other large graphs. A further analysis on these
two geometric graphs shows that due to the particular structure of these graphs, many
largest (extracted) independent sets are not part of a final coloring. In this case, it
is harmful to remove definitively these independent sets from the graph since this will
prevent inevitably the subsequent coloring algorithm from reaching an optimal coloring.
To overcome the deficiency of the proposed EXTRACOL algorithm, one solution is to
allow the subsequent coloring algorithm to “reconsider” the extracted independent sets
and allow some vertices of these extracted sets to change their colors.

Based on the above idea, in this chapter, we propose an extraction and expansion
approach to further improve EXTRACOL. Basically, IE2COL employs a forward indepen-
dent set extraction strategy described in the last chapter to reduce the initial graph. From
the reduced graph, IE2COL triggers a backward coloring process which uses extracted in-
dependent sets as new color classes for intermediate subgraph coloring.

We report experimental studies of IE2COL on the set of 11 largest and most chal-
lenging benchmark graphs (with 1000 to 4000 vertices) from the DIMACS benchmarks.
These results show that the proposed algorithm obtains new upper bounds for 4 graphs
(flat1000 76 0, C2000.5, C4000.5, C2000.9) and matches consistently the current best-
known results for 6 other graphs.

The rest of this chapter is organized as follows. Section 6.2 presents the proposed algo-
rithm. Section 6.3 is dedicated to extensive computational evaluations and comparisons.
Section 6.4 investigates some key components of the proposed approach, followed by the
concluding section.

113

Chapter 6. Advanced applications in graph coloring: An extraction and expansion
approach for coloring large graphs

6.2 Improved extraction and expansion coloring (IE2COL)

6.2.1 General IE2COL procedure

The proposed IE2COL algorithm is based on and extends the basic extraction and expan-
sion method of [Wu and Hao, 2012a; Wu and Hao, 2011b] and can be summarized by the
following general procedure composed of three phases.

1. The extraction phase simplifies the initial graph G by removing iteratively large
independent sets (as well as the corresponding edges) from the original graph. To be
effective, each iteration removes a collection of disjoint independent sets of the same
size (the largest possible) according to the method developed in the last chapter.
This phase stops when the residual graph contains no more than a fixed number of
q vertices.

2. The initial coloring phase applies a graph coloring algorithm (the memetic algorithm
presented in [Lü and Hao, 2010]) to the residual graph Gz to determine a (k − t)-
coloring where t is the number of extracted independent sets. If a legal (k−t)-coloring
C = {c1, ..., ck−t} for Gz is found, then C plus the t independent sets extracted during
the phase 1 constitutes a legal k-coloring of the initial graph G, return this k-coloring
and stop. Otherwise, continue to phase 3 to trigger the expansion and backward
coloring phase. The memetic coloring algorithm applied to Gz and intermediate
subgraphs (phase 3) is discussed in Section 6.2.2.

3. The expansion and backward coloring phase extends the current subgraph G′ by
adding back some extracted independent sets S to obtain an extended subgraph G′′.
Then the coloring algorithm is run on G′′ by starting from the current coloring of
G′ extended with the independent sets of S as new color classes. Once again, if a
legal coloring is found for the subgraph G′′, this coloring plus the remaining inde-
pendent sets forms a legal k-coloring of the initial graph G and the whole procedure
stops. Otherwise, one repeats this expansion and backward coloring phase until no
more independent set is left or a legal coloring is found for the current subgraph
under consideration. Possible strategies to select independent sets for expansion are
discussed in Sections 6.2.3.

Notice that the EXTRACOL approach described in the last chapter corresponds to
phases 1 and 2 and consequently can be considered as a special case of the extraction and
expansion approach. The expansion and backward coloring phase (phase 3) is critical since
the extracted independent sets are re-examined by the coloring process. If some vertices
of an extracted independent set should not receive the same color, they have a chance to
be assigned the right color by the applied coloring algorithm.

Figures 6.1 and 6.2 illustrate how our proposed approach works. In this example,
we want to color the initial graph G0 with k = 4 colors. In Fig. 6.1, we obtain two
smaller graphs G1, G2 by successively extracting two independent sets I1 = {2, 5, 7, 9}
and I2 = {1, 8, 11} from G0. The smallest graph G2 is then colored with 2 colors and

114

6.2 Improved extraction and expansion coloring (IE2COL)

we get an initial (and illegal) 2-coloring solution s′2 of G2 (Fig. 6.2, G2). Using s′2, we
construct an initial (and illegal) 3-coloring solution s1 of G1. s1 is then improved by the
coloring algorithm and a legal 3-coloring s′1 of G1 is obtained (Fig. 6.2, from G1 to G

′
1).

At last, we use the legal 3-coloring s′1 to construct a legal 4-coloring of G0 (Fig. 6.2, from
G

′
1 to G0).

1 2

3 4

5

6

7

8 9

10

11

1

3 4

6

8

10

11

3 4

6

10

G0 G1 G2

Figure 6.1: The extraction phase

3 4

6

10

1

3 4

6

8

10

11

1

3 4

6

8

10

11

1 2

3 4

5
6

7

8 9

10

11

G2 G1 G
′

1
G0

Figure 6.2: The expansion phase

The proposed IE2COL algorithm, designed for the graph k-coloring problem, imple-
ments this general approach and is described in Alg. 6.1. In what follows, we show how
the main components of IE2COL are implemented.

6.2.2 Initial and intermediate graph coloring

The IE2COL algorithm needs an algorithm to color the residual graph Gz and some inter-
mediate subgraphs (Alg. 1, lines 12 and 23). For this purpose, we adopt MACOL [Lü and
Hao, 2010] once again. As shown in the last chapter, the performance of MACOL on the
DIMACS graphs is quite competitive compared to other state-of-art coloring algorithms.
This is why we employ MACOL once again as our underlying coloring algorithm in our
IE2COL algorithm.

6.2.3 Expansion strategies for backward coloring

The expansion and backward coloring phase takes as its input the current subgraph G′

of G and the colorings of G′ in the population P, extends G′ to another subgraph G′′ by
adding some extracted independent sets S and color G′′ with the colorings in P expanded

115

Chapter 6. Advanced applications in graph coloring: An extraction and expansion
approach for coloring large graphs

Algorithm 6.1: The IE2COL algorithm for large graph k-coloring
1: Input: An undirected graph G = (V, E); an integer k
2: Output: A legal k-coloring of G or report failure
3: {EXTRACTION }
4: {Each extraction iteration removes a maximal collection of disjoint independent sets of maximal size

in G.}
5: while (G has more than q vertices) do
6: Find in G a maximal collection I of pairwise disjoint independent sets of the largest size possible
7: Simplify G by removing from G all the independent sets of I and the associated edges
8: end while
9: Let Ω contains all the extracted disjoint independent sets; let t the total number of the extracted

independent sets (t = |Ω|); let Gz be the residual graph from the extraction phase
10: {INITIAL COLORING}
11: {A population of (k − t)-colorings is obtained by the MACOL coloring algorithm applied to the

residual graph Gz, see Sect. 6.2.2}
12: Generate a population P of (k − t)-colorings for graph Gz and run MACOL with the colorings of P

to color Gz

13: if (A legal (k − t)-coloring C ∈ P for Gz is found by MACOL) then
14: The coloring C, plus the t extracted independent sets, forms a legal k-coloring for the initial graph

G. Return this k-coloring and stop
15: end if
16: {EXPANSION AND BACKWARD COLORING}
17: {Backward coloring of intermediate subgraphs by reconsidering extracted independent sets of Ω}
18: Let G′ = (V ′, E′) be the current subgraph of G under consideration, P be the set of (illegal)

colorings of G′ produced by MACOL
19: while (Ω ̸= ∅) do
20: Select some independent sets S from Ω (S ⊂ Ω) and recover the corresponding subgraph G′′

induced by the vertices of V ′ ∪ S (see Sect. 6.2.3)
21: Ω← Ω \ S
22: Extend each coloring C ∈ P by including the independent sets of S as new color classes
23: Run MACOL with the extended colorings of P to color G′′ (see Sect. 6.2.2)
24: if (A legal coloring C ∈ P for G′′ is found by MACOL) then
25: The coloring C, plus the remaining extracted independent sets of Ω, forms a legal k-coloring for

the initial graph. Return this k-coloring and stop
26: end if
27: end while
28: Return (No legal k-coloring found)

116

6.3 Experimental Results

by S (see Alg. 6.1, lines 16-27). The key issues concern the way to select the independents
sets S and to rebuild the corresponding subgraph G′′. We consider in this section possible
strategies to determine the independent sets for expansion.

To determine the set S of independent sets, we can first consider how many independent
sets that we pick for expansion. Basically, this decision can be made according to one of two
rules: one independent set or several independent sets. This choice may have influences
on the subsequent coloring process. Indeed, adding back one independent set at a time
implies limited changes between subgraphs G′ and G′′ and limited extensions to the current
colorings (only one new color class is added). This leads thus to a more gradual coloring
optimization. On the other hand, using several independents sets to extend the current
subgraph and colorings offers more freedom for coloring optimization.

We can also consider which independent set(s) are to be selected. This decision can be
achieved following one of three (at least) rules: reverse of extraction order, extraction order
and random order. Given the way independent sets are extracted during the extraction
phase, applying the reverse of extraction order handles the independent sets from the
smallest to the largest while applying extraction order does the opposite.

It is clear that any combination of the above two decisions defines a strategy that can
be used to determine the independent set(s) for subgraph and coloring extensions. Based
on experimental observations, we have decided for this work to use the following simplified
strategy which proved to be effective for the set of graphs tested in the paper. After the
initial coloring phase of the residual graph Gz, we backtrack directly to the initial graph
G and add back all the extracted independent sets as new color classes of colorings of
G. Experiments showed that this strategy performs quite well for the graphs used in the
paper for a computational analysis. In the general case, (e.g., if still larger and harder
graphs are considered), it would be necessary to recover and color additional intermediate
subgraphs during the expansion and backward coloring phase.

6.3 Experimental Results

In this section, we assess the performance of the proposed IE2COL algorithm. For this
purpose, we present computational results on the same set of 11 largest benchmark graphs
as in Chapter 5. We also report comparisons with respect to 13 top-performing coloring
algorithms from the literature.

6.3.1 Experimental settings

Test instances. Since IE2COL is designed to color large graphs, we only consider graph
instances with at least 1000 vertices and use the same 11 benchmark instances as in the
last chapter.

Parameter. To run IE2COL, we need to fix the threshold q, the number of vertices
left in the smallest residual graph Gz. Based on preliminary experiments and as shown
in Section 6.4.1, we have fixed q equal to 500 for all our experiments. In addition to q,
MACOL (as well as its tabu coloring algorithm) requires also several parameters. In our
case, we adopt those used in the original paper [Lü and Hao, 2010].

117

Chapter 6. Advanced applications in graph coloring: An extraction and expansion
approach for coloring large graphs

Stop condition. All experiments for this study were performed on a computer
equipped with an Intel Xeon E5440 processor (2.83 GHz, 8GB RAM) running GNU/Linux.
Following the DIMACS machine benchmark1, our machine requires respectively 0.23, 1.42
and 5.42 CPU seconds for the graphs r300.5, r400.5 and r500.5. For all the tested graphs,
the same parameter values are used. To report our computational results, 20 independent
runs (5 runs for the three largest random graphs C2000.5, C2000.9 and C4000.5) of IE2COL
were performed on each graph with different random seeds. The IE2COL algorithm stops
if one of the following conditions is verified:

1. A legal (k − t)-coloring is found in the initial coloring phase by MACOL which is
limited to 300 generations.

2. A legal coloring is found during the expansion and backward coloring phase.

3. The processing time reaches its timeout limit. The timeout limit is set to be 5
CPU hours except for 3 large graphs C2000.5, C2000.9, C4000.5. For C2000.5,
C2000.9, C4000.5, a limit of 5 day is allowed. Notice that these timeout limits are
comparable with those reported in the latest papers on large graph coloring like [Lü
and Hao, 2010; Malaguti et al., 2008; Porumbel et al., 2010b; Xie and Liu, 2009;
Wu and Hao, 2012a; Wu and Hao, 2011b] to obtain state-of-the-art results.

6.3.2 Computational Results

Table 6.12 summarizes the computational statistics of our IE2COL algorithm on the set of
11 large benchmark instances. Columns 2–4 indicate the features of the tested instances:
the number of vertices (Node), the number of edges (Edge) and the density of the graph
(Density). Column 5 displays the current best known results k∗ reported in the litera-
ture, i.e., the smallest k for which a legal k∗−coloring has ever been found by a coloring
algorithm. In columns 6–9, the computational statistics of our IE2COL algorithm are
presented, including the smallest number of colors (k) for which IE2COL obtains a legal
k-coloring, the success rate (hit) and the average computation time in minutes over the
runs where a solution with k colors is found. The last column shows the average number
of iterations for the successful runs. If IE2COL has a success rate inferior to 100%, we
show additional results with larger k until a 100% success rate is reached.

From Table 6.1, we observe that the results obtained by IE2COL (column 6, k) are
highly competitive when compared to the current best known results reported in the liter-
ature (column 5, k∗). For the three huge random graphs C2000.5, C2000.9 and C4000.5,
colorings with respectively k = 146, 409 and 260 were obtained by EXTRACOL (Chapter
5) and reported recently in [Wu and Hao, 2012a]. It is noteworthy that IE2COL is able to
further improve these bounds and obtain colorings with k = 145, 408 and 259 respectively.

For the three flat graphs, IE2COL can reach the current best known results consistently
with a success rate of 20/20. More importantly, for flat1000 76 0, IE2COL obtains for the

1dmclique, ftp://dimacs.rutgers.edu in directory /pub/dsj/clique
2The results of IE2COL are available at http://www.info.univ-angers.fr/pub/hao/ie2col.html

118

6.3 Experimental Results

Table 6.1: Computational results of IE2COL on the set of 11 large and difficult benchmark
instances.

Instance Node Edge Density k∗ IE2COL

k hit time(m) Iterations
DSJC1000.1 1000 49629 0.1 20 20 20/20 65 3.2 × 107

DSJC1000.5 1000 249826 0.5 83 83 20/20 116 1.2 × 108

DSJC1000.9 1000 449449 0.9 222a 222 3/20 256 5.1 × 108

223 20/20 216 4.3 × 108

flat1000 50 0 1000 245000 0.49 50 50 20/20 25 1.2 × 106

flat1000 60 0 1000 245830 0.49 60 60 20/20 25 1.3 × 106

flat1000 76 0 1000 246708 0.49 82 81 3/20 281 5.8 × 108

82 20/20 26 5.3 × 107

R1000.1c 1000 485090 0.97 98 98 20/20 67 3.9 × 107

R1000.5 1000 238267 0.48 234 245 2/20 282 8.5 × 108

246 8/20 251 6.8 × 108

247 20/20 186 4.3 × 108

C2000.5 2000 999836 0.5 146c 145 1/5 1198 1.7 × 109

146 5/5 223 1.4 × 108

C2000.9 2000 1799532 0.9 409c 408 5/5 720 1.1 × 109

C4000.5 4000 4000268 0.5 260c 259 2/5 6987 6.8 × 108

260 5/5 5223 1.4 × 108

Note a: This bound was reported very recently in [Titiloye and Crispin, 2011; Titiloye and Crispin, 2013; Wu and Hao, 2012a].
Note c: These bounds were reported very recently in [Wu and Hao, 2012a].

first time a new 81-coloring, improving thus the current best-known result which requires
82 colors.

For the 3 random DSJC graphs which are known to be hard to color for many algo-
rithms, IE2COL can attain the current best known results for two of them (DSJC1000.1
DSJC1000.5) with a hit rate of 20/20. In particular, for DSJC1000.9, IE2COL is able to
find 222-colorings which were reported very recently for only three algorithms [Titiloye
and Crispin, 2011; Titiloye and Crispin, 2013; Wu and Hao, 2012a].

Table 6.2: Comparison of IE2COL with three related algorithms on the set of 11 large
DIMACS benchmark instances.

Instance k∗ IE2COL MACOL EXTRACOL E2COL

k hit Iter k hit Iter k hit Iter k hit Iter
DSJC1000.1 20 20 20/20 3.2×107 20 20/20 3.5×107 20 20/20 3.1×107 20 10/10 5.2×107

DSJC1000.5 83 20 20/20 1.2×108 20 20/20 2.2×108 20 20/20 2.0×108 20 4/10 7.2×108

DSJC1000.9 222 222 3/20 5.1×108 223 18/20 4.5×108 222 3/20 5.4×108 224 6/10 6.7×108

flat1000 50 0 50 50 20/20 1.2×106 50 20/20 3.2×105 50 20/20 3.2×105 50 10/10 1.2×106

flat1000 60 0 60 60 20/20 1.3×106 60 20/20 6.3×105 60 20/20 5.1×105 60 10/10 1.7×106

flat1000 76 0 82 81 3/20 5.8×108 82 20/20 7.2×107 82 20/20 6.7×107 82 10/10 3.5×108

R1000.1c 98 98 20/20 3.9×107 98 20/20 7.5×105 101 18/20 6.4×105 98 10/10 5.2×108

R1000.5 234 245 3/20 8.5×108 245 13/20 1.2×109 250 11/20 8.8×108 256 1/10 4.7×108

C2000.5 146 145 1/5 1.7×109 148 1/5 8.8×108 146 5/5 1.7×108 147 5/5 1.1×109

C2000.9 409 408 5/5 1.1×109 413 2/5 7.5×108 409 2/5 4.5×108 413 2/5 1.3×109

C4000.5 260 259 2/5 6.8×108 272 3/5 1.2×109 260 4/5 1.8×108 262 5/5 1.8×109

119

Chapter 6. Advanced applications in graph coloring: An extraction and expansion
approach for coloring large graphs

6.3.3 Comparing IE2COL with MACOL, EXTRACOL and E2COL

In this section, we compare IE2COL with three related approaches using the set of 11 DI-
MACS graphs: its underlying memetic coloring algorithm (MACOL [Lü and Hao, 2010]),
the approach using independent set extraction as a preprocessing method in the last chap-
ter (EXTRACOL) and the initial basic extraction and expansion algorithm (E2COL [Wu
and Hao, 2011b]). The purpose of this comparison is to know to which extend IE2COL
can improve on the results of these related approaches and show the added value of the
enhancements implemented in IE2COL. Table 6.2 summarizes the computational results
of these 4 algorithms.

When comparing IE2COL against MACOL, we notice that they reach the same mini-
mal k value for 6 graphs (DSJC1000.1, DSJC1000.5, flat1000 50 0, flat1000 60 0, R1000.1c
and R1000.5). For the other 5 graphs, IE2COL finds better solutions than MACOL. This
shows the added value of embedding the memetic coloring algorithm into the proposed
extraction and backward coloring approach.

When comparing IE2COL and EXTRACOL, one observes that even though EXTRA-
COL performs very well on these graphs (except on the two R1000.x graphs), IE2COL
delivers better results in 6 out of 11 cases. In particular, thanks to the backward coloring
strategy, IE2COL is able to further improve on the current best known results of 3 very
difficult graphs (C2000.5, C2000.9, C4000.5) which have been established by EXTRACOL.
This highlights the critical role of the expansion-coloring strategy employed by IE2COL.

Finally, when it comes to comparing IE2COL and E2COL, the results are once again
in favor of IE2COL because IE2COL improves on the results of E2COL in 6 out of 11
cases. This is possible thanks to the enhancements presented in Section 6.2, concerning
particularly the improved strategies for the backward coloring phase. This also under-
scores the importance of the underlying coloring algorithm (notice that E2COL employs
a perturbation-based tabu search coloring algorithm).

6.3.4 Comparison with other state of the art algorithms

In this section, we compare the results of our IE2COL algorithm with 13 state-of-art col-
oring algorithms, which are based on diverse approaches: reactive tabu search with partial
solutions (PCol) [Blöchliger and Zufferey, 2008], iterated local search (ILS) [Chiarandini
and Stützle, 2002], variable space search (VSS) [Hertz et al., 2008], quantum annealing
(QA) [Titiloye and Crispin, 2011], hybrid evolutionary algorithms (HEA [Galinier and
Hao, 1999], MMT [Malaguti et al., 2008], Evo [Porumbel et al., 2010b]), multiagent fu-
sion search (MFS) [Xie and Liu, 2009], mimimal-state processing search (MSP) [Funabiki
and Higashino, 2000], distributed coloration neighborhood search (DCNS) [Morgenstern,
1996], adaptive memory search (AmaCol) [Galinier et al., 2008] and ant local search (ALS)
[Plumettaz et al., 2010]. For this experiment, we focus on the quality criterion, i.e., the
lowest value of k for which a k-coloring can be found.

Table 6.3 presents the comparative results on the set of the DIMACS graphs (except
C2000.9 for which no results are reported for the reference algorithms). Columns 2 and 3
recall the best known results (k∗) and the best results found by IE2COL. Columns 4–13 give

120

6.4 Analysis of IE2COL

Table 6.3: Comparisons between IE2COL and 13 state-of-the-art coloring algorithms in
the literature.

Graph k∗ IE2COL state-of-the-art coloring algorithms

PCol ILS VSS QA Evo MMT MFS MSP HGA DCNS AmaCol HEA ALS
DSJC1000.1 20 20 20 - 20 20 20 20 - 21 - - 20 20 20
DSJC1000.5 83 83 89 89 86 83 83 83 84 88 84 89 84 83 84
DSJC1000.9 222 222 226 - 224 222 223 225 223 228 - 226 224 224 224
flat1000 50 0 50 50 50 - 50 - 50 50 50 50 84 50 50 - 50
flat1000 60 0 60 60 60 - 60 - 60 60 60 60 84 60 60 - 60
flat1000 76 0 82 81 87 - 85 82 82 82 83 87 84 89 84 83 83
R1000.1c 98 98 98 - - 98 98 98 - 98 99 98 - - -
R1000.5 234 245 248 - - 238 238 234 - 237 268 241 - - -
C2000.5 146 145 - - - - 148 - 150 162 153 151 - - -
C4000.5 260 259 - - - - 271 - - 301 280 - - - -

‘-’ means unavailability of a result. For 9 of the 10 large DIMACS benchmark graphs, IE2COL obtains the
same or improved results with respect to the reference algorithms.

the best results reported by these reference algorithms. From Table 6.3, one observes that
IE2COL competes very favorably with these top-performing coloring algorithms. Indeed,
if one compares IE2COL with each of the reference algorithm, one finds that over these
10 hard graphs, IE2COL can obtain one or more better solutions (smaller k) and at most
one worse result (larger k).

Notice that a completely fair comparison is impossible since the reference algorithms
are implemented by different authors and run under different conditions. This comparison
is thus presented only for indicative purposes and should be interpreted with caution. Nev-
ertheless, this experiment does show very positive indications about the competitiveness
of IE2COL when compared to these state-of-the-art algorithms.

6.4 Analysis of IE2COL

6.4.1 Effect of the size of residual graph

We now turn our attention to a study on the influence of the size of residual graph on the
performance of the IE2COL algorithm. Recall that the extraction phase of IE2COL stops
when no more than q vertices are left in the residual graph from which the initial coloring
and possibly backward coloring phases are launched. Different values of q may impact the
outcome of IE2COL. We carry out additional experiments on 4 instances (DSJC1000.5,
DSJC1000.9, R1000.1c, flat1000 76 0) and run IE2COL 10 times on each of these instances
with q ∈ {300, 500, 600} and show in Table 6.4 the computational results. In addition to
k and hit, we also indicate the average number of iterations needed to find a k-coloring.
For DSJC1000.9, we aim at finding a 223-coloring, for flat1000 76 0, we aim at finding a
82-coloring. For each run of the IE2COL, the timeout limit is set to be 5 CPU hours.

From Table 6.4, we observe that all these q values allow the algorithm to find a legal
k-coloring. Nevertheless, IE2COL with q = 500 and q = 600 reaches more stable results
(higher hits), but may require more iterations than with q = 300. Therefore, it seems
that a relatively larger q makes the algorithm more robust but also slower. This implies

121

Chapter 6. Advanced applications in graph coloring: An extraction and expansion
approach for coloring large graphs

Table 6.4: Influence of the size of residual graph (parameter q) on the performance of
IE2COL.

Graph k∗ q = 300 q = 500 q = 600

k hit Iterations k hit Iterations k hit Iterations
DSJC1000.5 83 83 6/10 8.4 × 107 83 10/10 1.2 × 108 83 10/10 1.5 × 108

DSJC1000.9 222 223 10/10 4.1 × 108 223 10/10 4.3 × 108 223 9/10 4.6 × 108

flat1000 76 0 81 82 9/10 5.0 × 107 82 10/10 5.3 × 107 82 10/10 5.7 × 107

R1000.1c 98 98 10/10 4.1 × 107 98 10/10 3.9 × 107 98 10/10 4.2 × 107

that there may not be an absolute best value for this parameter and that a compromise
between robustness and speed could be possible.

1

1.3

1.6

1.9

2.2

2.5

2.8

3.1

3.4

3.7

4

fu
n
ct

io
n

va
lu

e
f

200 250 300 350 400 450 500 550 600 650 700
size of residual graph q (DSJC1000.5)

k = 83

Figure 6.3: Influence of the size of residual graph on the evaluation function f

10

15

20

25

30

35

40

45

50

55

60

d
iv

er
si

ty
D

200 250 300 350 400 450 500 550 600 650 700
size of residual graph q (DSJC1000.5)

k = 83

Figure 6.4: Influence of the size of residual graph on the diversity D of the population

To complement this experiment and get more insight, we analyze the influence of q on

122

6.5 Conclusion

two other interesting points: (1) the evaluation function f (Eq. 1, Chapter 5) and (2) the
diversity of the population. For this purpose, we present below in detail the results on a
single graph, but the observations remain valid for several other tested graphs.

The considered instance is DSJC1000.5 with k = 83. We show in Fig. 6.3 the influence
of q on the evaluation function f using a running profile. The profile is defined by the
function q 7−→ f∗(q) where q is the size of residual graph and f∗(q) the best (smallest) f
value at the end of the initial coloring phase (averaged over 10 independent runs). From
Fig. 6.3, one can observe that a too large or too small q value can lead to worse (large)
results for f . q values ranging from 350 to 500 seem to give the best results.

For memetic algorithms, it is well known that population diversity has an important
influence on the performance [Hao, 2011]. A fast lost of the diversity in the population
leads to a premature convergence. We show in Fig. 6.4 influence of q on the diversity
D of the population. The population diversity is calculated according to the method
described in [Porumbel et al., 2010b; Porumbel et al., 2010a]. The plotted profile in Fig.
6.4 is defined by the function q 7−→ D∗(q) where q is the size of the residual graph and
D∗(q) the population diversity at the end of the initial coloring phase (averaged over 10
independent runs). From Fig. 6.4, one observes that a larger value for q can better preserve
the population diversity while a smaller value for q can lead to a fast lost of the diversity
in the population, thus leading to premature convergence of the memetic algorithm.

Considering jointly Fig. 6.3 and 6.4, we conclude q = 500 is an appropriate value,
which explains why this value was used for all the experiments reported in this paper.
More generally, it is reasonable to believe that q may depend on the effectiveness of the
underlying coloring algorithm and on the structure of the graphs to be colored.

6.5 Conclusion

In this chapter, we extended the EXTRACOL algorithm proposed in the previous chapter
and presented an extraction and expansion approach for the graph coloring problem able
to handle large graphs. This method combines an independent set extraction phase with
an expansion and backward coloring phase. The expansion-coloring phase provides a way
of reconsidering extracted independent sets as additional color classes for the purpose of
allowing some vertices of these extracted independent sets to change their colors.

The proposed IE2COL algorithm implementing this method has achieved noteworthy
performance on the set of 11 largest benchmark graphs with 1000 to 4000 vertices from DI-
MACS benchmarks. IE2COL improves on the current best colorings (new upper bounds)
for 4 graphs and matches the current best results for 6 other graphs, while its results are
worse in only one case. The improved upper bounds, combined with the new development
of lower bounds, constitute a step forward toward the goal of finding the chromatic number
of these graphs.

Even though it is believed that it becomes more and more difficult to obtain better
upper bounds for the tested benchmark graphs, this study shows that improvements are
still possible with new solution strategies, in particular combined method.

123

Chapter 7

Applications in sum coloring: An
Effective Heuristic Algorithm for
Sum Coloring of Graphs

Given an undirected graph G = (V, E), the minimum sum coloring problem (MSCP) is
to find a legal vertex coloring of G, using colors represented by natural numbers (1, 2, . . .)
such that the total sum of the colors assigned to the vertices is minimized. In this chapter,
we apply the proposed adaptive multistart tabu search approach (AMTS) for the MCP to
the minimum sum coloring problem, and present EXSCOL, a heuristic algorithm based
on independent set extraction for this NP-hard problem. EXSCOL identifies iteratively
collections of disjoint independent sets of same size and assign to each independent set
the smallest available color. Experimental evaluations on a collection of 52 DIMACS and
COLOR2 benchmark graphs show that the proposed approach achieves highly competitive
results. For more than one fourth of the graphs used in the literature, our approach
improves the current best known upper bounds. While for nearly one third of the tested
instances, our approach is able to to improve the current best lower bounds. Parts of this
chapter are detailed in one published paper [Wu and Hao, 2012b] and in one submitted
paper [Wu and Hao, 2012d].

Contents

7.1 Introduction . 127
7.2 EXSCOL: an algorithm for the MSCP 128

7.2.1 Rationale and general procedure 128
7.2.2 The EXSCOL algorithm . 129

7.3 Lower bounds for the MSCP based on clique decomposition . 129
7.4 Experimental results . 131

7.4.1 Problem instances and experimental protocol 132
7.4.2 Experimental results for computing upper bounds 132
7.4.3 Comparison with other algorithms for computing upper bounds . 134
7.4.4 Improved lower bounds for the MSCP 136

125

Chapter 7. Applications in sum coloring: An Effective Heuristic Algorithm for Sum
Coloring of Graphs

7.5 Discussion and analysis . 139

7.5.1 Influence of the method to extract independent sets 139
7.5.2 Sum coloring v.s. graph coloring 140

7.6 Conclusion . 142

126

7.1 Introduction

7.1 Introduction

Given an undirected graph G = (V,E) with vertex set V and edge set E, the minimum
sum coloring problem (MSCP) is to find a vertex coloring c = {I1, . . . , Ik} of G such that
the following total sum of the colors is minimized:

Sum(c) =
k∑

i=1

∑
v∈Ii

i (7.1)

The optimal (smallest) value of this sum is called the chromatic sum of G and denoted
by

∑
(G). The number k of the k-coloring leading to the chromatic sum is called the

strength of the graph and denoted by s(G). It is clear that s(G) is lower bounded by
χ(G), i.e. s(G) ≥ χ(G).

The minimum sum coloring problem is known to be NP-hard in the general case
[Kubicka and Schwenk, 1989]. In addition to its theoretical significance as a difficult
combinatorial problem, the MSCP is notable for its ability to formulate a number of
important problems, including those from VLSI design, scheduling and resource allocation
[Bar-Noy et al., 1998; Malafiejski, 2004].

During the past two decades, the MSCP has been studied essentially from a theoretical
point of view and special cases (e.g. tree, interval graphs, line graphs etc) have been iden-
tified which admit efficient approximation algorithms or polynomial algorithms [Bar-Noy
et al., 1998; Malafiejski, 2004]. For the purpose of practical solving of the general MSCP,
several heuristic algorithms have recently been proposed to find suboptimal solutions.

For instance, Kokosiński and Kawarciany proposed a parallel genetic algorithm [Kokosiński
and Kawarciany, 2007]. Li et al. presented MRLF [Li et al., 2009], an effective greedy al-
gorithm based on the well-known RLF graph coloring heuristic [Leighton, 1979]. Moukrim
et al. showed a technique for computing the lower bound for the MSCP based on extrac-
tion of specific partial graphs [Moukrim et al., 2010]. Bouziri and Jouini adapted a tabu
coloring algorithm to sum coloring [Bouziri and Jouini, 2010]. Douiri and Elbernoussi
illustrated a hybrid algorithm which combines a genetic algorithm with a local search
heuristic [Douiri and Elbernoussi, 2011]. Finally, in [Bar-Noy et al., 1998] Bar-Noy et
al. presented a theoretical study of a heuristic algorithm based on finding iteratively
maximum independent sets (MaxIS) and showed that the MaxIS is a 4-approximation to
the MSCP, which is a tight bound to within a factor of 2. Nevertheless, the practical
performance of this heuristic was not verified with computational experiments.

In this chapter, we apply the same idea of EXTRACOL proposed in Chapter 5 for the
graph coloring to the MSCP, and present an advanced heuristic algorithm called EXS-
COL for the MSCP based on independent set extraction. Basically, EXSCOL iteratively
extracts from the graph as many large disjoint independent sets of equal size as possible.
For each extracted independent set, we assign to it the smallest available color (colors are
represented by natural numbers 1, 2...). This process is repeated until the graph becomes
empty. The rationale behind this approach is that by extracting many large disjoint in-
dependent sets, we naturally favor the construction of large color classes and reduce the
number of needed color classes, leading to a reduced total sum of colors.

127

Chapter 7. Applications in sum coloring: An Effective Heuristic Algorithm for Sum
Coloring of Graphs

Experimental results are presented on a large set of 56 benchmark graphs in the lit-
erature, showing that the proposed algorithm achieves very competitive results. Indeed,
for more than one fourth of the instances used in the literature, the proposed approach
improves the current best known results. Furthermore, we assess the performance of two
other solution methods using respectively the conventional independent set extraction
strategy and graph vertex coloring algorithms.

7.2 EXSCOL: an algorithm for the MSCP

7.2.1 Rationale and general procedure

A

BC

D

E

F

G

H

I

A

1

B

1
C

2

D

3

E

2

F

1

G
3

H

2

I

3

Figure 7.1: An illustration of the proposed EXSCOL algorithm

Let c = {I1, . . . , Ik} be a legal coloring of graph G = (V, E), each independent set Ii is
a color class of c such that all the vertices v ∈ Ii receive color i. Given the coloring c, its
sum of colors Sum(c) according to Eq. (7.1) counts the total sum of the colors induced
by c. Suppose |I1| ≥ |I2| ≥ . . . ≥ |I1|, Eq. (7.1) can be rewritten as follows.

Sum(c) = 1 · |I1|+ 2 · |I2|+ . . . + k · |Ik| =
k∑

i=1

i · |Ii| (7.2)

It is clear that the sum depends on both the number k of the used colors and the size
of the color classes. To minimize this sum, one can try to construct large color classes and
assign to them small colors. For this purpose, one can remove iteratively the maximum
number of disjoint independent sets of the maximum size from the graph until the graph
becomes empty. Note that the same idea has been applied to the graph coloring problem
by EXTRACOL in Chapter 5. For both tasks of computing a maximum independent set
of a graph and finding a maximum set of disjoint sets (which is the maximum set packing
problem, see Section 5.3.2), we could use the AMTS algorithm for the MCP.

The proposed EXSCOL algorithms follows this basic idea and can be summarized by
the following procedure.

1. Identify an independent set of the largest size possible from the graph;

128

7.3 Lower bounds for the MSCP based on clique decomposition

2. Identify as many pairwise disjoint independent sets of that size as possible and
extract them from the graph;

3. Assign to each extracted independent set the smallest available color (the first color
used is 1);

4. Stop if the graph becomes empty, go to Step 1 otherwise.

Fig. 7.1 illustrates how this approach works on a graph with 9 vertices. At the
first step, we find a maximum independent set of size 3 (e.g. {A,D,H}). Then we try to
identify as many disjoint independent sets of size 3 as possible from the graph, leading to 3
disjoint independent sets {A,B, F}, {C, E, H}, {D, G, I}. We assign to these independent
sets the colors 1, 2, 3. Since the graph becomes empty after removing these independent
sets, the procedure stops. We obtain a coloring c = {{A,B, F}, {C, E, H}, {D, G, I}} with
Sum(c) = 18 for the graph.

7.2.2 The EXSCOL algorithm

The proposed EXSCOL algorithm (Alg. 7.1) implements the general procedure given in
section 7.2.1. EXSCOL starts by identifying a first largest possible independent set IM

(line 4) whose size |IM | is used later to build a pool M of independent sets of that size
(lines 5-15). The search for a new independent set of size |IM | stops when the number
of independent sets contained in M reaches a desired threshold (Mmax) or when no new
independent set of that size is found after pmax consecutive tries. From M , EXSCOL tries
to determine a maximum number of disjoint independent sets (line 16). As described in
Chapter 5, this task corresponds in fact to the maximum set packing problem, which is
equivalent to the maximum clique problem and thus can be solved by our AMTS algorithm.
Each identified independent set is then removed from the graph (line 17). This process is
repeated until the graph becomes empty.

7.3 Lower bounds for the MSCP based on clique decompo-
sition

Given G = (V, E), a partial graph of G = (V,E) is a graph G′ = (V, E′) such that E′ is
a subset of E. It is easy to observe that the chromatic sum of G′ is a lower bound for
the chromatic sum of G. Indeed, any legal coloring of G is a legal coloring of G′ while
the reverse does not hold. Thus, to calculate a lower bound for the chromatic sum of
the original graph G, one could try to find a partial graph of the original graph whose
chromatic sum can be efficiently computed and maximized.

This can be achieved by decomposing the vertex set of G into k pairwise disjoint cliques
C1, C2 ,..., Cp such that ∀i ̸= j, Ci

∩
Cj = ∅ and

∪
i Ci = V (see Fig.7.2 for an illustrative

example). For a given clique decomposition z = {C1, C2,..., Cp}, its chromatic sum value
can be easily computed by assigning to the vertices of each clique Ci of z with the first

129

Chapter 7. Applications in sum coloring: An Effective Heuristic Algorithm for Sum
Coloring of Graphs

Algorithm 7.1: Pseudo-code of the EXSCOL algorithm
Require: Graph G = (V, E)
Ensure: A coloring of G
1: Begin
2: k ← 1
3: while (|V | > 0) do
4: IM ← AMTS(G) {Apply AMTS to find an independent set as large as possible}
5: M ← {IM}
6: r ← 0
7: while (r ≤ pmax |M | ≤Mmax) do
8: I ← AMTS(G, |IM |) {Apply AMTS to find an independent set of size |I|}
9: if I ∈M then

10: r ← r + 1
11: else
12: M ←M

∪
{I}

13: r ← 0
14: end if
15: end while
16: Find in M as many pairwise disjoint independent sets as possible (see Section 5.3.2):

(I1, ..., Il)← arg max{|A| : A ⊆M, ∀Ia, Ib ∈ A, Ia
∩

Ib = ϕ}
17: Remove (I1, ..., Il) from G
18: for i = 1 to l do
19: Assign color k to Ii

20: k = k + 1
21: end for
22: end while
23: End

A

2

B

1
C

1

D

3

E

2

F

4

G

1

A

2

B

1
C

1

D

3

E

2

F

2

G

1

A

2

B

1
C

1

D

3

E

2

F

4

G

1

(a)
∑

(G) = 14 (b)
∑

(G′

1
) = 12 (c)

∑
(G′

2
) = 14

Figure 7.2: Partial graphs of G via clique decomposition

130

7.4 Experimental results

|Ci| colors of [1..|Ci|]. Thus, for a given clique decomposition z = {C1, C2,..., Cp}, its
chromatic sum is

∑p
i=1

|Ci|(|Ci|+1)
2 .

A clique decomposition z = {C1, C2,..., Cp} of G corresponds to a partial graph of
G and the chromatic sum of z is therefore a lower bound to the chromatic sum

∑
(G)

of G. The quality of this lower bound depends on the way to decompose the graph into
cliques. For instance, consider the graph G = (V, E) of Fig. 7.2(a), we decompose G
in two different ways (Fig. 7.2(b) and Fig. 7.2(c)), we obtain the following chromatic
sum

∑
(G′

1) = 12 and
∑

(G′
2) = 14. Thus, in order to obtain a lower bound as large as

possible, one could try to find a clique decomposition of G whose chromatic sum is as
large as possible. This can be considered as an optimization problem where we search for
a decomposition of G into cliques, such that the associated chromatic sum is maximized
over all the possible clique decompositions:

LB∗ = max{
∑

(z) | z is a clique decomposition of G } (7.3)

It should be noted that LB∗ might be strictly smaller than
∑

(G) because, a clique
decomposition, by ignoring some edges of the original graph G, is a less constrained
problem for coloring.

This clique decomposition method for computing lower bounds for the MSCP was
originally proposed in [Moukrim et al., 2010] and were further exploited in [Douiri and
Elbernoussi, 2012; Helmar and Chiarandini, 2011]. In these previous studies, clique de-
compositions are obtained by transforming the original graph G into its complement G
and applying then a vertex coloring algorithm to G. The color classes of G define a clique
decomposition of G.

Given a clique decomposition z = {C1, C2,..., Ck} of G = (V, E), there is one unique
coloring for z, i.e., for each clique Ci (1 ≤ i ≤ k) of z, we need exactly |Ci| colors to color
its vertices. Moreover, the larger the clique Ci is, the more the number of vertices in Ci

that need to be colored with large colors. Thus, a clique decomposition with more large
cliques tends to have a larger chromatic sum and therefore gives a better lower bound
to G. For instance, consider again the example of Fig. 7.2. Moving vertex A from the
clique of size 2 (Fig.7.2(b)) to a clique of size 4 (Fig.7.2(c)) increases the sum of colors by
2 because the color of vertex A goes from 2 to 4. For the purpose of obtaining a clique
decomposition with more large cliques, one could try to identify as many large cliques as
possible from the graph. To achieve this, we can first transform the original graph G into
its complement G and applying then the EXSCOL algorithms proposed in the last section
to G to determine a coloring of G, which corresponds to a clique decomposition of the
original G. In this way, we could obtain a lower bound of the original graph G.

7.4 Experimental results

To assess the practical efficiency of our proposed EXSCOL algorithm for computing the
upper and lower bounds for the MSCP, we carry out experiments on a total of 56 graphs in
the literature and compare EXSCOL with 4 state-of-the-art existing algorithms. We also
assess the interest of the conventional strategy of extracting independent set extractions

131

Chapter 7. Applications in sum coloring: An Effective Heuristic Algorithm for Sum
Coloring of Graphs

one by one and the pertinence of using graph coloring algorithms to solve the sum coloring
problem.

7.4.1 Problem instances and experimental protocol

Two sets of benchmark graphs from the literature are considered in the experiments. The
first set (Table 7.1) is composed of 29 well-known DIMACS graphs1. These graphs are very
popular for testing graph coloring algorithms [Galinier and Hertz, 2006; Johnson and Trick,
1996; Lü and Hao, 2010; Malaguti et al., 2008; Porumbel et al., 2010b]. However only the 12
DSJC random graphs have been recently used for sum coloring [Bouziri and Jouini, 2010;
Li et al., 2009].

The second set of benchmarks (see Table 7.2) is composed of 27 graphs from the
COLOR02 website2. Like the first set, these graphs are initially collected for the purpose of
the COLOR02 competition. Among these graphs, sum coloring results have been reported
in the literature for 16 graphs [Douiri and Elbernoussi, 2011; Kokosiński and Kawarciany,
2007; Moukrim et al., 2010].

Our EXSCOL algorithm is programmed in C and compiled using GNU GCC on a
PC with 2.83 GHz CPU and 8G RAM. To report computational statistics, we run our
EXSCOL algorithm on each graph 20 times (5 times for the two huge Cxxxx.5 instances)
and reports the following information: the minimum sum of colors, the number of used
colors, the average sum of colors over the multiple runs, and the average CPU time.

A desirable feature of EXSCOL is that it does not need any external stop condition
to terminate. In fact, it stops when the graph under consideration becomes empty. Nev-
ertheless, EXSCOL has two parameters to be fixed (see Alg. 7.1): pmax and Mmax. As
explained in Section 7.2.2, large values for pmax and Mmax could lead to more indepen-
dent sets collected in M and thus increase the chance of finding more disjoint independent
sets. On the other hand, large values for pmax or Mmax also imply long computing times.
Based on preliminary experiments we have fixed pmax = 100 and Mmax = 2000 for all our
experiments, although fine-tuning these parameters would lead to better results.

7.4.2 Experimental results for computing upper bounds

Table 7.1 and Table 7.2 summarize respectively the computational statistics of our EXS-
COL algorithm obtained on the two sets of benchmark instances3. Columns 2-4 give the
features of the tested instances: the number of vertices (|V |), the number of edges (|E|)
and the density of the graph (Den). Column 5 indicates the current best known sum values
(Sum∗) reported in the literature. Column 6 presents the smallest number of colors (k∗)
for which a solution (k-coloring) has ever been found by a graph coloring algorithm. In
columns 7-9, the computational statistics of our EXSCOL algorithm are given, including
the smallest sum of colors (Sum) with the number of required colors in brackets (k), the
average sum of colors (Avg.) with the standard deviation in brackets, the average CPU

1ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color/
2http://mat.gsia.cmu.edu/COLOR02/
3The results of EXSCOL are available at http://www.info.univ-angers.fr/pub/hao/exscol.html

132

7.4 Experimental results

Table 7.1: Computational results of the upper bounds on 27 DIMACS challenge bench-
marks.
Instance |V | |E| Den Sum∗ k∗ EXSCOL

Sum(k) Avg.(Std.) T [min.] Diff
DSJC125.1 125 736 0.09 326 5 326(7) 326.7(0.8) 1 0
DSJC125.5 125 3891 0.50 1015 17 1017(20) 1019.7(8.7) 1 2
DSJC125.9 125 6961 0.89 2511 44 2512(44) 2512.0(0.0) 1 1
DSJC250.1 250 3218 0.10 977 8 985(10) 985.0(0.0) 4 8
DSJC250.5 250 15668 0.50 3281 28 3246(31) 3253.9(6.7) 6 −35
DSJC250.9 250 27897 0.90 8412 72 8286(75) 8288.8(6.8) 7 −126
DSJC500.1 500 12458 0.10 2951 12 2850(14) 2857.4(141.0) 9 −101
DSJC500.5 500 62624 0.50 11717 48 10910(51) 10918.2(54.1) 11 −807
DSJC500.9 500 112437 0.90 30872 126 29912(132) 29936.2(630.4) 15 −960
DSJC1000.1 1000 49629 0.10 10123 20 9003(22) 9017.9(91.1) 28 −1120
DSJC1000.5 1000 249826 0.50 43614 83 37598(87) 37673.8(2288.0) 24 −6016
DSJC1000.9 1000 449449 0.90 112749 223 103464(231) 103531(5070) 27 −9285
flat300 20 0 300 21375 0.48 - 20 3150(20) 3150.0(0.0) 3 -
flat300 26 0 300 21633 0.48 - 26 3966(26) 3966.0(0.0) 3 -
flat300 28 0 300 21695 0.48 - 28 4282(34) 4286.1(30.0) 3 -
flat1000 50 0 1000 245000 0.49 - 50 25500(50) 25500.0(0.0) 9 -
flat1000 60 0 1000 245830 0.49 - 60 30100(60) 30100.0(0.0) 11 -
flat1000 76 0 1000 246708 0.49 - 82 37167(86) 37213.2(575.0) 19 -

le450 15a 450 8168 0.08 - 15 2632(18) 2641.9(29.0) 5 -
le450 15b 450 8169 0.08 - 15 2642(19) 2643.4(7.2) 7 -
le450 15c 450 16680 0.17 - 15 3866(24) 3868.9(9.8) 6 -
le450 15d 450 16750 0.17 - 15 3921(26) 3928.5(36.5) 5 -
le450 25a 450 8260 0.08 - 25 3153(26) 3159.4(12.4) 7 -
le450 25b 450 8263 0.08 - 25 3366(26) 3371.9(18.0) 6 -
le450 25c 450 17343 0.17 - 25 4515(31) 4525.4(161.8) 8 -
le450 25d 450 17425 0.17 - 25 4544(31) 4550.0(24.0) 7 -

latin sqr 10 900 307350 0.76 - 98 42223(109) 42392.7(4445) 4 -
C2000.5 2000 999836 0.50 - 148 132515(150) 132682(7342) 656 -
C4000.5 4000 4000268 0.50 - 271 473234(266) 473211(1027) 2588 -

time in minutes (T [min.]). The last column indicates the difference (gain) in sum of col-
ors between our best results (column Sum) and the current best known results (column
Sum∗).

Concerning the 29 DIMCAS graphs, one observes from Table 7.1 that our EXSCOL
algorithm obtains excellent results (columns 7) with respect to the current best known
results reported in the literature (column 5). Indeed, for 8 of the 12 random DSJC graphs
used in the literature, our EXSCOL algorithm significantly improves the best known results
by reducing largely the sum values (column 10). For the remaining 17 graphs, we report
for the first time computational results for the sum coloring problem. EXSCOL needs
from 1 to 27 minutes to achieve these results except for the two huge Cxxxx.5 graphs for
which much larger computing times are required. Finally Table 7.1 discloses that for this
set of instances, the results may vary with large standard deviation for several graphs.

Concerning the 27 COLOR02 graphs, one notices from Table 7.2 that EXSCOL im-
proves the current best known results for 2 graphs while equaling the best ones for 22
graphs. Only for 3 graphs, EXSCOL obtains a worse result. For the 20 graphs used in
the literature, EXSCOL achieves its results within less than 5 minutes and with small

133

Chapter 7. Applications in sum coloring: An Effective Heuristic Algorithm for Sum
Coloring of Graphs

Table 7.2: Computational results of the upper bounds on 23 COLOR02 benchmarks.
Instance |V | |e| Den Sum∗ k∗ EXSCOL

Sum(k) Avg.(Std.) T [min.] Diff
myciel3 11 20 0.40 21 4 21(4) 21.0(0.0) 1 0
myciel4 23 71 0.28 45 5 45(5) 45.0(0.0) 1 0
myciel5 47 236 0.22 93 6 93(6) 93.0(0.0) 1 0
myciel6 95 755 0.17 189 7 189(7) 189.0(0.0) 2 0
myciel7 191 2360 0.13 381 8 381(8) 381.0(0.0) 2 0
anna 138 493 0.05 276 11 283(11) 283.2(0.2) 2 7
david 87 406 0.11 237 11 237(11) 238.1(1.0) 1 0
huck 74 301 0.11 243 11 243(11) 243.8(1.0) 1 0
jean 80 254 0.08 217 10 217(10) 217.3(0.2) 1 0

queen5.5 25 160 0.53 75 5 75(5) 75.0(0.0) 1 0
queen6.6 36 290 0.46 138 7 150(10) 150.0(0.0) 1 12
queen7.7 49 476 0.40 196 7 196(7) 196.0(0.0) 1 0
queen8.8 64 728 0.36 291 9 291(9) 291.0(0.0) 1 0
games120 120 638 0.09 446 9 443(9) 447.9(3.2) 2 −3
miles250 128 387 0.05 325 8 328(9) 333.0(7.6) 2 3
miles500 128 1170 0.14 712 20 709(20) 714.5(26.8) 2 −3
wap05 905 43081 0.10 - 50 13680(51) 13718.4(1047.1) 21 -
wap06 947 43571 0.10 - 46 13778(48) 13830.9(905.4) 27 -
wap07 1809 103368 0.06 - 46 28629(51) 28663.8(721.8) 112 -
wap08 1870 104176 0.06 - 45 28896(51) 28946.0(1361.2) 127 -

qg.order30 900 26100 0.06 - 30 13950(30) 13950.0(0.0) 28 -
qg.order40 1600 62400 0.05 - 40 32800(40) 32800.0(0.0) 35 -
qg.order60 3600 212400 0.03 - 60 110925(74) 110993.0(7054.9) 87 -
zeroin.i.2 211 3541 0.16 1004 30 1004(30) 1004(0.0) 186 0
zeroin.i.3 206 3540 0.17 998 30 998(30) 998(0.0) 228 0
fpsol2.i.1 496 11654 0.09 3403 65 3403(65) 3403(0.0) 181 0
inithx.i.1 864 18707 0.05 3676 54 3676(54) 3676(0.0) 292 0

standard deviations. For the 7 additional (large) graphs, EXSCOL requires a computing
time ranging from 21 to 292 minutes.

7.4.3 Comparison with other algorithms for computing upper bounds

In this section, we compare our EXSCOL algorithm with 4 recent reference algorithms
in the literature for computing upper bounds of the MSCP: Hybrid Local Search (HLS)
[Douiri and Elbernoussi, 2011], MRLF [Li et al., 2009], Parallel Genetic Algorithm (PGA)
[Kokosiński and Kawarciany, 2007], Tabu Search (TS) [Bouziri and Jouini, 2010]. The
comparisons are based on the criterion of quality, i.e. the smallest sum of colors reached
by a given algorithm. Notice that information like computing time are not available for
the reference algorithms.

Table 7.3 and Table 7.4 show the best results of our EXSCOL algorithm compared with
these reference algorithms. Column 2 recall the current best known Sum∗. Columns 3-6
present the best results obtained by these reference algorithms. For indicative purposes,
the number of colors k required by the best sum coloring is given in brackets. Notice that
the same authors reported different results for some graphs for the MRLF heuristic in [Li
et al., 2009] and [Moukrim et al., 2010]. For these graphs, Table 7.3 and Table 7.4 show
the best of them.

134

7.4 Experimental results

Table 7.3: Comparison results of upper bounds on 12 graphs of the DIMACS challenge
benchmarks.
Instance Sum∗ sum coloring algorithms

EXSCOL MRLF TS
(2009,2010) (2010)

DSJC125.1 326 326(7) 352(6) 344(6)
DSJC125.5 1015 1017(20) 1141(21) 1103(18)
DSJC125.9 2511 2512(44) 2653(50) 2631(49)
DSJC250.1 977 985(10) 1068(10) 1046(10)
DSJC250.5 3281 3246(31) 3658 (34) 3779(33)
DSJC250.9 8412 8286(75) 8942(83) 9198(82)
DSJC500.1 2951 2850(14) 3229(15) 3205(15)
DSJC500.5 11717 10910(51) 12717(60) -
DSJC500.9 30872 29912(132) 32703(148) -
DSJC1000.1 10123 9003(22) 10276(25) -
DSJC1000.5 43614 37598(87) 45408(104) -
DSJC1000.9 112749 103464(231) 119111(265) -

The symbol ‘-’ means that the related statistics are not available. The best sum values are highlighted in
bold.

Table 7.4: Comparison results of upper bounds on 16 graphs of the COLOR02 benchmarks.
Instance Sum∗ sum coloring algorithms

EXSCOL HLS MRLF PGA
(2011) (2009,2010) (2007)

myciel3 21 21(4) 21(4) 21(-) 21(4)
myciel4 45 45(5) 45(5) 45(-) 45(5)
myciel5 93 93(6) 93(6) 93(-) 93(6)
myciel6 189 189(7) 189(7) 189(-) 189(7)
myciel7 381 381(8) 381(8) 381(-) 382(8)
anna 276 283(11) -(-) 277(-) 281(11)
david 237 237(11) -(-) 241(-) 243(11)
huck 243 243(11) 243(11) 244(-) 243(11)
jean 217 217(10) -(-) 217(-) 218(10)

queen5.5 75 75(5) -(-) 75(-) 75(5)
queen6.6 138 150(10) 138(8) 138(-) 138(8)
queen7.7 196 196(7) -(-) 196(-) 196(7)
queen8.8 291 291(9) -(-) 303(-) 302(10)
games120 446 443(9) 446(9) 446(-) 460(9)
miles250 325 328(9) 343(10) 334(-) 347(8)
miles500 712 709(20) 755(22) 715(-) 762(20)

The symbol ‘-’ means that the related statistics are not available. The best sum values are highlighted in
bold.

135

Chapter 7. Applications in sum coloring: An Effective Heuristic Algorithm for Sum
Coloring of Graphs

From Table 7.3, one observes that, for the 12 DIMACS random graphs, EXSCOL dom-
inates the TS and MRLF algorithms. For each of these graphs, our EXSCOL algorithm
obtains a better sum coloring compared with the reference algorithms. One notices that
in most cases, the colorings of EXSCOL require a smaller number of colors.

Table 7.4 discloses that EXSCOL competes favorably with the three reference algo-
rithms (HLS, MRLF, PGA) on the set of 16 COLOR02 instances. Indeed, for each of these
three algorithms, our EXSCOL algorithm obtains worse results for at most one instance
while better results for at least 4 instances.

7.4.4 Improved lower bounds for the MSCP

Tables 7.5 and 7.6 respectively show the computational statistics of the lower bounds ob-
tained by EXSCOL algorithm on the DIMACS benchmarks and the COLOR02 instances.
In both tables, columns 2–4 indicate the features of the tested graphs, including the
number of vertices (|V |), the number of edges (|E|) and the density of the graph (Den).
Columns 5 and 6 give respectively the current best upper and lower bounds reported in the
literature [Bouziri and Jouini, 2010; Douiri and Elbernoussi, 2011; Douiri and Elbernoussi,
2012; Helmar and Chiarandini, 2011; Kokosiński and Kawarciany, 2007; Li et al., 2009;
Moukrim et al., 2010; Wu and Hao, 2012b]. The results of our EXSCOL approach are
given in columns 7-9, including the best lower bounds found by our EXSCOL approach
over the 20 runs, the averaged lower bound value with the standard deviation between
parentheses and the average CPU time in seconds.

Concerning the 29 DIMACS instances, from Table 7.5, we observe that the results
obtained by EXSCOL are very competitive when compared to the current best lower
bounds reported in the literature. Indeed, for the 12 random DSJC graphs with a known
lower bound, we managed to improve on the current best bounds in all the cases. For
the remaining 17 DIMACS graphs, we report the computational statistics for the lower
bounds for the first time. Finally, Table 7.5, also discloses that for most of these DIMACS
instances, the gaps between the best known upper bounds and our best lower bounds are
still large.

Concerning the 27 COLOR02 instances, from Table 7.6, we observe that our EXSCOL
algorithm is able to improve the current best known lower bounds in the literature for
2 instances (fpsol2.i.1 and inithx.i.1) while equaling the best known lower bounds for 16
instances. Only for 2 instances (david and miles500), EXSCOL obtains a worse result.
For the other 7 COLOR02 instances, we report for the first time lower bounds. Table
7.6 also indicates that we are able to prove optimality for 10 instances. Among these 10
instances, the optimality of 4 instances (qg.order30, qg.order40, fpsol2.i.1 and inithx.i.1)
is proven for the first time.

136

7.4 Experimental results

Table 7.5: Computational results of the lower bounds obtained by EXCLIQUE on 29
DIMACS challenge benchmarks.
Instance |V | |E| Den UB∗ LB∗ EXCLIQUE

LB Avg.(Std.) T [second]
DSJC125.1 125 736 0.09 326 238 246 244.10(0.94) 80
DSJC125.5 125 3891 0.50 1015 504 536 522.40(5.46) 35
DSJC125.9 125 6961 0.89 2511 1621 1664 1592.50(26.61) 47
DSJC250.1 250 3218 0.10 977 537 567 561.95(1.96) 46
DSJC250.5 250 15668 0.50 3246 1150 1270 1258.80(5.44) 37
DSJC250.9 250 27897 0.90 8286 3972 4179 4082.40(51.66) 158
DSJC500.1 500 12458 0.10 2850 1163 1250 1246.55(1.37) 1269
DSJC500.5 500 62624 0.50 10910 2616 2921 2902.60(11.94) 60
DSJC500.9 500 112437 0.90 29912 10074 10881 10734.50(74.30) 276
DSJC1000.1 1000 49629 0.10 9003 2499 2762 2758.55(2.13) 5193
DSJC1000.5 1000 249826 0.50 37598 5787 6708 6665.90(14.49) 155
DSJC1000.9 1000 449449 0.90 103464 23863 26557 26300.25(84.04) 2741
flat300 20 0 300 21375 0.48 3150 - 1524 1505.65(6.78) 35
flat300 26 0 300 21633 0.48 3966 - 1525 1511.40(8.40) 34
flat300 28 0 300 21695 0.48 4282 - 1532 1515.25(7.81) 43
flat1000 50 0 1000 245000 0.49 25500 - 6601 6571.80(15.54) 118
flat1000 60 0 1000 245830 0.49 30100 - 6640 6600.50(18.01) 414
flat1000 76 0 1000 246708 0.49 37167 - 6632 6583.15(17.53) 98

le450 15a 450 8168 0.08 2632 - 2329 2313.65(15.32) 252
le450 15b 450 8169 0.08 2642 - 2343 2315.65(15.05) 600
le450 15c 450 16680 0.17 3866 - 2591 2545.30(24.67) 187
le450 15d 450 16750 0.17 3921 - 2610 2572.40(24.13) 175
le450 25a 450 8260 0.08 3153 - 2997 2964.40(28.08) 967
le450 25b 450 8263 0.08 3366 - 3305 3304.10(0.70) 1550
le450 25c 450 17343 0.17 4515 - 3619 3597.10(11.82) 689
le450 25d 450 17425 0.17 4544 - 3684 3627.35(45.33) 850

latin sqr 10 900 307350 0.76 42223 - 40950 40950(0.00) 15
C2000.5 2000 999836 0.50 132515 - 15091 15077.60(11.74) 3994
C4000.5 4000 4000268 0.50 473234 - 33033 33018.80(11.42) 14413

The symbol ‘-’ means that the related statistics are not available. The best sum values are highlighted in
bold.

137

Chapter 7. Applications in sum coloring: An Effective Heuristic Algorithm for Sum
Coloring of Graphs

Table 7.6: Computational results of the lower bounds obtained by EXCLIQUE on 27
COLOR02 challenge benchmarks.
Instance |V | |E| Den UB∗ LB∗ EXCLIQUE

LB Avg.(Std.) T [second]
myciel3 11 20 0.40 21 16 16 16(0.00) 25
myciel4 23 71 0.28 45 34 34 34(0.00) 42
myciel5 47 236 0.22 93 70 70 70(0.00) 73
myciel6 95 755 0.17 189 142 142 142(0.00) 93
myciel7 191 2360 0.13 381 286 286 286(0.00) 148
anna 138 493 0.05 277 273 273 273(0.00) 168
david 87 406 0.11 241 234 229 229(0.00) 73
huck 74 301 0.11 243 243 243 243(0.00) 58
jean 80 254 0.08 217 216 216 216(0.00) 67

queen5.5 25 160 0.53 75 75 75 75(0.00) 19
queen6.6 36 290 0.46 138 126 126 126(0.00) 28
queen7.7 49 476 0.40 196 196 196 196(0.00) 41
queen8.8 64 728 0.36 302 288 288 288(0.00) 66
games120 120 638 0.09 446 442 442 441.40(0.91) 105
miles250 128 387 0.05 334 318 318 316.15(0.35) 131
miles500 128 1170 0.14 715 686 677 671.35(3.27) 117
wap05 905 43081 0.10 13680 - 12428 12339.25(44.03) 6283
wap06 947 43571 0.10 13778 - 12393 12348.75(43.59) 5417
wap07 1809 103368 0.06 28629 - 24339 24263.82(52.18) 8359
wap08 1870 104176 0.06 28896 - 24791 24681.09(56.12) 9127

qg.order30 900 26100 0.06 13950 - 13950 13950(0.00) 474
qg.order40 1600 62400 0.05 32800 - 32800 32800(0.00) 1379
qg.order60 3600 212400 0.03 110925 - 109800 109800(0.00) 7507
fpsol2.i.1 496 11654 0.09 3403 3402 3403 3403(0.00) 2676
inithx.i.1 864 18707 0.05 3676 3581 3676 3676(0.00) 3689
zeroin.i.2 211 3541 0.16 1004 1004 1004 1004(0.00) 453
zeroin.i.3 206 3540 0.17 998 998 998 998(0.00) 442

The symbol ‘-’ means that the related statistics are not available. The best sum values are highlighted in
bold.

138

7.5 Discussion and analysis

Table 7.7: Comparisons between EXSCOL and MaxIS. EXSCOL dominates the conven-
tional independent set approach (extraction of one independent set each time).

Instance Sum∗ sum coloring algorithms

EXSCOL MaxIS EXSCOL−MaxIS
DSJC125.1 326 326(7) 335(7) -9(0)
DSJC125.5 1015 1017(20) 1047(21) -30(-1)
DSJC125.9 2511 2512(44) 2599(50) -87(-6)
DSJC250.1 977 985(10) 1001(11) -16(-1)
DSJC250.5 3281 3246(31) 3377 (34) -131(-3)
DSJC250.9 8412 8286(75) 8548(83) -262(-8)
DSJC500.1 2951 2850(14) 2932(16) -82(-2)
DSJC500.5 11717 10910(51) 11163(56) -253(-5)
DSJC500.9 30872 29912(132) 30957(145) -1045(-13)
DSJC1000.1 10123 9003(22) 9161(24) -158(-2)
DSJC1000.5 43614 37598(87) 38452(93) -854(-6)
DSJC1000.9 112749 103464(231) 108487(254) -5023(-23)

7.5 Discussion and analysis

7.5.1 Influence of the method to extract independent sets

Our EXSCOL algorithm uses a heuristic method to extract at each iteration as many
disjoint independent sets as possible. A conventional method like MaxIS [Bar-Noy et
al., 1998] extracts exactly one independent set each time. The MaxIS method can be
considered as a simplified version of our EXSCOL algorithm where lines 6–15 of Algorithm
1 (see Section 7.2.2) are disabled. Thus for MaxIS, each time a (large) independent set is
found in the graph, it is assigned the smallest available color and its vertices are removed
from the graph. This process is repeated until the graph becomes empty.

In order to highlight the difference between these two methods, we carry out additional
experiments on the 12 DIMACS random DSJC graphs and show a comparison between
EXSCOL and MaxIS. We run both methods 20 times and report in Table 7.7 the best
sum values together with the number of used colors in brackets. The results show a clear
dominance of EXSCOL over MaxIS. Indeed, EXSCOL finds a better sum coloring than
MaxIS for each graph. Now it is interesting to observe that even if MaxIS cannot compete
with EXSCOL, MaxIS does compete favorably with any of the existing sum coloring
algorithms in the literature (compare column 2 of Table 7.3 and column 4 of Table 7.7).
This observation highlights the interest of the general independent set extraction approach
for the sum coloring problem.

Finally, if one checks the number k of colors used in the solutions, one notices that
the solutions of EXSCOL need in general fewer colors compared to the solutions obtained
by MaxIS. This can be explained by the fact that by extracting at each iteration as
many disjoint independent sets as possible, EXSCOL is able to pack more vertices in the
extracted independent sets, reducing thus the needed color classes to pack the vertices of
the graph.

139

Chapter 7. Applications in sum coloring: An Effective Heuristic Algorithm for Sum
Coloring of Graphs

7.5.2 Sum coloring v.s. graph coloring

Given the relation between sum coloring and vertex coloring, one would wonder whether an
effective vertex coloring algorithm could remain effective to approximate the sum coloring
problem. Indeed, one can use a graph vertex coloring algorithm to find k-colorings with
k as small as possible. Since the sum value depends partially on k, this coloring approach
could help to solve the sum coloring problem. Yet, this approach does not necessarily
lead to a good sum coloring as shown in the example of Fig. 7.3. Indeed, while the
chromatic number χ(G) for this graph is 3, a 4-coloring is needed to obtain the chromatic
sum

∑
(G) = 15, i.e. the strength s(G) = 4.

In this section we provide computational evidence to show the limit of this graph
coloring based method with respect to the proposed EXSCOL method. For this purpose,
we once again adopt the Memetic Coloring Algorithm (MACOL) [Lü and Hao, 2010]. As
indicated in Section 5.3.3, MACOL is a recent and competitive graph coloring algorithm.
For this experiment, we consider again the set of 12 DSJC random instances. For each
graph, we apply MACOL to obtain a legal coloring with k∗ colors where k∗ is the smallest
number of colors for which a k∗-coloring has ever been found by a graph coloring algorithm.
For such a k∗-coloring, we assign color 1 to the largest color class, color 2 to the next
largest color class and so on. Table 7.8 shows the comparative results between EXSCOL
and MACOL for the chosen graphs. The differences of sum values obtained by the two
methods are given in the last column.

A
1

B
2

C

3

D
1

E
1

F
2

G
2

H
3

I
3

Sum(X) = 18

χ(G) = 3

A
2

B
3

C

4

D
1

E
1

F
1

G
1

H
1

I
1

Sum(X) = 18

χ(G) = 3

∑
(G) = 15

s(G) = 4

∑
(G) = 15

s(G) = 4

Figure 7.3: A coloring with a sum of colors equal to 18 using 3 colors (Left), and a coloring
with a sum of colors equal to 15 using 4 colors (Right).

Table 7.8 shows clearly that EXSCOL reaches smaller sum values than MACOL for
the tested graphs though EXSCOL may require more colors. In order to get some insights
about this difference, we show in Table 7.9 additional information about the computational
results for DSJC1000.5 reached by EXSCOL and MACOL.

Table 7.9 indicates the size of each independent set (column ’size |I|’) and the number
of extracted independent sets of size |I| (column ’No. of IS of |I|’) contained in the best
solutions found by EXSCOL and MACOL. From Table 7.9, one notices that compared to
the solution obtained by MACOL (a 83-coloring), the solution obtained by EXSCOL (a
87-coloring) contains much more independent sets of sizes 15 and 14 (which are the largest

140

7.5 Discussion and analysis

Table 7.8: Comparisons between EXSCOL and MACOL. EXSCOL performs always better
than the graph coloring approach.

Instance Sum∗ sum coloring algorithms

EXSCOL MACOL EXSCOL-MACOL
DSJC125.1 326 326(7) 355(5) -29(2)
DSJC125.5 1015 1017(20) 1058(17) -41(3)
DSJC125.9 2511 2512(44) 2581(44) -69(0)
DSJC250.1 977 985(10) 1071(8) -86(2)
DSJC250.5 3281 3246(31) 3344(28) -97(3)
DSJC250.9 8412 8286(75) 8372(72) -86(3)
DSJC500.1 2951 2850(14) 3127(12) -277(2)
DSJC500.5 11717 10910(51) 11176(48) -266(3)
DSJC500.9 30872 29912(132) 30073(126) -161(6)
DSJC1000.1 10123 9003(22) 9767(20) -764(2)
DSJC1000.5 43614 37598(87) 38636(83) -2038(4)
DSJC1000.9 112749 103464(231) 104203(223) -739(8)

Table 7.9: Detailed computational results on DSJC1000.5.
EXSCOL MACOL

size |I| No. of IS of |I| size |I| No. of IS of |I|
15 6 15 1
14 28 14 16
13 9 13 27
12 13 12 14
11 7 11 9
10 5 10 6
9 4 9 6
8 3 8 1
7 4 7 3
6 0 6 0
5 4 5 0
4 1 4 0
3 1 3 0
2 1 2 0
1 1 1 0

141

Chapter 7. Applications in sum coloring: An Effective Heuristic Algorithm for Sum
Coloring of Graphs

and second largest sizes). These independent sets cover a larger number of vertices and
receive smaller colors, reducing thus the sum of colors.

Finally, even if MACOL performs worse than EXSCOL, its results remain competitive
with other existing algorithms. This is the case because MACOL is a highly effective
coloring algorithm able to find k-colorings with k equaling or being close to χ(G).

7.6 Conclusion

In this chapter, we applied the same idea of EXTRACOL proposed in Chapter 5 for the
graph coloring to the MSCP, and presented EXSCOL, a heuristic algorithm based on in-
dependent set extraction for the minimum sum coloring problem. Instead of extracting
independent sets one by one, the proposed algorithm tries to extract as many disjoint inde-
pendent sets as possible each time. This strategy helps create more and large independent
sets in the solution such that a larger number of vertices can be colored with small colors,
thus leading to a smaller sum of colors.

We shown that with respect to the existing sum coloring heuristics, the proposed
EXSCOL algorithm obtains highly competitive results in terms of both the upper bounds
and lower bounds on a set of 56 DIMACS and COLOR02 benchmark graphs. In terms
of upper bounds, among the 28 graphs used in the literature, EXSCOL improves the best
known upper bounds for 10 graphs and equals the best known results for 11 graphs. In
seven cases, EXSCOL fails to attain the best known sum values. In terms of lower bounds,
our EXSCOL algorithm has improved on the current best lower bounds in 14 cases, proved
optimality for the first time for 4 instances and attained the previously best bounds for
22 other instances. Only in two cases, our lower bounds are slightly worse than the best
known lower bounds. The lower bounds obtained by EXSCOL on the set of 56 graphs
are useful to assess the performance of both exact and heuristic algorithms for the sum
coloring problem.

Finally, this study verified the (good) performance of the basic extraction method
which extracts maximum independent sets one by one and the interest of the method
based on applying directly powerful graph vertex coloring algorithms, even though these
two methods cannot compete with the proposed EXSCOL algorithm.

142

General Conclusion

Conclusions

This thesis is dedicated to developing effective heuristic approaches to solving computa-
tionally difficult combinatorial optimization problems on graphs, namely the maximum
clique problem and its two generalizations, graph coloring, minimum sum coloring, set
packing and related problems. The application areas of the considered problems include
information retrieval, classification theory, economics, scheduling, experimental design,
and computer vision among many others. For each of these problems, new methods
for finding good quality approximate solutions in reasonable computational times are in-
troduced. All the algorithms are implemented and thoroughly tested on a number of
benchmark instances from diverse application areas. The proposed methods are favorably
competitive with other stat-of-the-art approaches.

After an overview of the most representative exact and heuristic approaches proposed
in the literature for the maximum clique problem in Chapter 1, we presented an adaptive
multistart tabu search algorithm (AMTS) for the maximum clique problem in Chapter
2. The proposed AMTS algorithm integrates some distinguishing features such as a con-
strained neighborhood, a dynamic tabu tenure mechanism and a long term memory based
restart strategy. We extensively evaluated and compared the performance of AMTS with
the current best-performing approaches from the literature, using the graph instances from
DIMACS benchmarks. AMTS shows an excellent performance on the complete set of 80
standard DIMACS benchmark instances. Only for one instances (i.e., MANN a81), AMTS
failed to attain the best known results.

In Chapter 3, we presented a multi-neighbor tabu search algorithm (MN/TS) for the
maximum vertex weight clique problem (MVWCP) based on a combined neighborhood
induced by three types of moves. The MN/TS algorithm explores all these moves at
each iteration and selects the best admissible (non-tabu or globally improving) solution
that yields the largest weight gain. The tabu mechanism creates an effective local diver-
sification and a multistart strategy is employed to create a global diversification. The
proposed MN/TS algorithm is evaluated on a large number of MVWCP benchmarks from
the BHOSLIB-W and DIMACS-W test sets (containing 40 instances and 80 instances,
respectively) and is also applied to 16 instances derived from the set partitioning problem.
Compared with leading reference algorithms from the literature, our MN/TS algorithm
finds new best solutions in 26 cases (24 DIMACS-W instances and 2 set packing instances).
Moreover, we also provided an analysis to show the relevance of the union combination
of the underlying neighborhoods by comparing it to the sequential exploration of these
neighborhoods. The outcomes suggest that the union combination of neighborhoods plays
a key role in contributing to the effectiveness of the proposed algorithm.

In Chapter 4, we considered the maximum edge weight clique problem (MEWCP),
which is another important generalization of the MCP, and proposed a memetic algorithm

143

General Conclusion

(MAMEP) to tackle this problem. The proposed MAMEP algorithm integrates a ded-
icated crossover operator and a constrained neighborhood tabu search procedure. The
proposed crossover operator tries to preserve the vertices shared by the parent solutions
which hopefully belong to the optimal solution. Experimental evaluations on a large col-
lection of 7 sets of 120 instances from the literature showed that the proposed MAMEP
algorithm attains consistently the previous best known results within a time limit ranging
from 20 seconds to 30 minutes. Specifically, for 101 out of 120 cases (84%), MAMEP
reaches the previous best known objective value for each of its runs (a successful rate
of 100%). More importantly, for 6 large and very challenging instances, the proposed
MAMEP algorithm is able to yield improved solutions with respect to the current best
known results.

In Chapter 5, we applied the AMTS algorithm to the graph coloring problem and
proposed an effective heuristic approach based on independent set extraction (EXTRA-
COL) to coloring large graphs. The proposed EXTRACOL approach uses a preprocessing
method to extract large independent sets from the graph and a memetic algorithm to
color the residual graph. Each preprocessing application identifies with AMTS a number
of pairwise disjoint independent sets of a given size in order to maximize the vertices re-
moved from the graph. We evaluate EXTRACOL on the 11 largest graphs of the DIMACS
challenge benchmarks and show improved results for 4 very difficult graphs (DSJC1000.9,
C2000.5, C2000.9, C4000.5). The limitation of the proposed EXTRACOL algorithm is
also analyzed for the purpose of further improvement.

Chapter 6 presented an extraction and expansion method (IE2COL) to further im-
prove EXTRACOL. To remedy the limitation of the EXTRACOL algorithm, from the
reduced graph, IE2COL triggers a backward coloring process which uses extracted inde-
pendent sets as new color classes for intermediate subgraph coloring. We evaluated the
performance of IE2COL on the same set of 11 benchmark instances used by EXTRACOL.
Computational results showed that IE2COL provides new upper bounds for 4 graphs and
matches consistently the current best known results for 6 other graphs.

In the last chapter, we applied the same idea of the EXTRACOL algorithm for graph
coloring to the minimum sum coloring problem, and presented an effective heuristic algo-
rithm based on independent set extraction (EXSCOL) for sum coloring of graphs. Instead
of extracting independent sets one by one, the proposed algorithm tries to extract as many
disjoint independent sets as possible at each iteration. This strategy helps create more
and large independent sets in the solution such that a larger number of vertices can be
colored with small colors, thus leading to a smaller sum of colors. The proposed EXS-
COL algorithm obtains highly competitive results on a set of 56 DIMACS and COLOR02
benchmark graphs. For a large number of instances, EXTRACOL is able to improve the
previous best known results in both terms of lower and upper bounds.

Perspectives

The maximum clique problem is an important combinatorial optimization problem with a
wide range of important applications. There are a lot of real-world problems that can be

144

General Conclusion

directly modeled by the maximum clique problem. In future work, we would like to extend
our work to practical applications of these real-world problems. For instance, the protein
structure alignment problem in bioinformatics can be directly translated to a maximum
clique problem and a lot of exact algorithms based on the maximum clique problem have
been developed to solve the protein structure alignment problem. However, for large and
hard instances, heuristic approaches are required to find near-optimal solutions. We have
applied our AMTS algorithm to the protein structure alignment problem and remarkable
results have been achieved by our AMTS algorithm. For nearly all the tested instances
with known optimal solutions, our AMTS algorithm is able to reach the optimal solution
but requiring much less computing time than these exact approaches. Still, our AMTS al-
gorithm can be further improved to be adapted to the protein structure alignment problem
by taking into account the special structure information of the protein structure alignment
problem. In addition to the protein structure alignment problem, there are many other
real-world problems can be formulated as maximum clique problems. For these problems,
we can exploit properties of the problem and integrate the specialized information within
our AMTS algorithm to adapt AMTS to these applications.

In addition to practical applications in the real world, a variety of important com-
binatorial optimization problems are tightly related to the maximum clique problem. A
large part of this dissertation is devoted to applications of our clique based approaches to
these combinatorial optimization problems such as set packing, graph coloring and sum
coloring. Besides these 3 problems, our clique based approaches can find applications in
other combinatorial optimization problems. In particular, some of these problems can even
be directly transformed to a maximum clique problem and thus can be directly modeled
by our clique based approaches. For instance, the combinatorial auction problem can be
modeled as a set packing problem, for which our MN/TS algorithm shows excellent perfor-
mance. Thus we can apply our MN/TS algorithm to the combinatorial auction problem.
To further improve the performance of the basic clique based approaches on these prob-
lems, we still need to exploit properties of these problems and combine our clique based
approaches with some existing effective search strategies dedicated to these problems.

Finally, for the sum coloring problem, our proposed EXSCOL algorithm shows excel-
lent performance on large instances with more that 300 vertices. However, for some small
instances with less than 250 vertices, it is less effective than some local search sum coloring
algorithms (For instance, the MDS algorithm [Helmar and Chiarandini, 2011] and the BLS
algorithm [Benlic and Hao, 2012]). This may be explained by the fact that EXSCOL can
be viewed as a greedy algorithm. The EXSCOL algorithm could be improved by following
two directions. First, we can combine the EXSCOL algorithm with these effective local
search algorithms dedicated to sum coloring so as to take advantages from each other.
This can be achieved by first applying the main procedure of EXSCOL to reduce the
graph until the residual graph becomes sufficiently small and then coloring the residual
graph with these effective sum coloring algorithms. Second, the above approach could be
further improved by allowing the sum coloring algorithm to reconsider the independent
sets extracted by EXSCOL. Such an improvement can be for instance achieved within the
multi-level optimization paradigm.

145

List of figures

List of figures

1.1 An illustration of the relationship between maximum clique (left), maximum
independent set (middle) and minimum vertex cover (right). 8

2.1 Running profile of AMTS with L = 100, 1000 and 10000 as well as AMTS
without restart (basic TS) on brock800 2. 42

2.2 Running profile of AMTS with L = 100, 1000 and 10000 as well as AMTS
without restart (basic TS) on C2000.9. 42

2.3 The basic TS with three tabu strategies. 43

3.1 A clique and its two associated subsets: C = {1, 2, 3, 4}, PA = {5} and OM =
{6, 7}. 49

3.2 The relationship between the add move and the swap move 50
3.3 The relationship between the drop move and the swap move 51
3.4 Running profile of the two algorithms base on N1

∪
N2

∪
N3 and N1 → N2 →

N3 on C1000.9 and brock800 1 . 65

4.1 An example for the constrained neighborhood defined by swap move. 76
4.2 An illustration of the step function (one period) used for tuning the tabu tenure

Tu. 77
4.3 Comparison between two population updating strategies 89

5.1 The original graph G = (V, E) (left) and the transformed maximum indepen-
dent set instance G′ = (V ′, E′) (right) . 100

6.1 The extraction phase . 115
6.2 The expansion phase . 115
6.3 Influence of the size of residual graph on the evaluation function f 122
6.4 Influence of the size of residual graph on the diversity D of the population . . . 122

7.1 An illustration of the proposed EXSCOL algorithm 128
7.2 Partial graphs of G via clique decomposition 130
7.3 A coloring with a sum of colors equal to 18 using 3 colors (Left), and a coloring

with a sum of colors equal to 15 using 4 colors (Right). 140

147

List of figures

List of tables

2.1 The results obtained by AMTS on the set of 80 DIMACS benchmarks. 35
2.2 The performance of AMTS on the C2000.9 instance. 38
2.3 Comparative results between AMTS and DLS-MC. 39
2.4 Comparative results of AMTS with four other leading clique algorithms. 40
2.5 Comparison result of AMTS with KLS, HSSGA, RLS and QUALEX-MS. . . . 41
2.6 Success rate of ATMS with different values of L and AMTS without restart

(basic TS) for brock800 2 and C2000.9. 43

3.1 Results obtained by MN/TS on the 80 DIMACS-W benchmarks. 55
3.2 Results obtained by MN/TS on the 40 BHOSLIB-W benchmarks. 56
3.3 Comparative results between MNTS and PLS on the set of 80 DIMACS-W

benchmarks. 57
3.4 Comparative results between MN/TS and AugSearch on 36 DIMACS weighted

instances. 60
3.5 Computational results on the 16 weighted maximum clique instances from the

set packing problem. 61
3.6 The computational results obtained by MN/TS on the 80 unweighted DIMACS

benchmarks. 61
3.7 The computational results obtained by MN/TS on the 40 unweighted BHOSLIB

benchmark instances. 64
3.8 The comparative results between two neighborhood combinations 66

4.1 Settings of parameters . 81
4.2 Parameter tuning . 81
4.3 Experimental Protocol . 82
4.4 Performance of MAMEP on the 20 Silva instances 83
4.5 Performance of MAMEP on the 20 random Type1 55 instances (|V | = 500;m =

50) . 83
4.6 Performance of MAMEP on the 20 random Type1 52 instances (|V | = 500;m =

200) . 84
4.7 Performance of MAMEP on the 20 random Type1 22 instances (|V | = 2000; m =

200) . 84
4.8 Performance of MAMEP on the 20 random Type II instances (|V | = 500;m = 50) 85
4.9 Performance of MAMEP on the 10 Beasley instances (|V | = 2500; m = 1000) . 85
4.10 Performance of MAMEP on the 10 large random instances (m = 0.5 ∗ |V |) . . . 85
4.11 Comparison of MAMEP with four best performing MEWCP algorithms in the

literature. 86
4.12 Comparative results of MAMEP and MTS on 10 instances for the maximum

diversity problem . 87

149

List of tables

4.13 Analysis of structural similarity between high-quality solutions for 10 MEWCP
instances . 89

5.1 Computational results of EXTRACOL (and MACOL) on the set of 11 largest
DIMACS benchmark graphs. The four improved results are indicated in
bold. 103

5.2 Detailed information of EXTRACOL and MACOL on C4000.5 and C2000.5
regarding the number of independent sets (color classes) of different sizes. . 104

5.3 Comparison of EXTRACOL with 7 best performing coloring algorithms. Most
of them are population-based hybrid algorithms. 105

5.4 Effect of our preprocessing (EXTRACOL) and conventional preprocessing (OBO-
COL) on C2000.5. 106

5.5 Effect of the preprocessing (EXTRACOL) and conventional greedy preprocess-
ing (OBOCOL) on C4000.5. 106

5.6 Detailed results on R1000.5 . 108

6.1 Computational results of IE2COL on the set of 11 large and difficult benchmark
instances. 119

6.2 Comparison of IE2COL with three related algorithms on the set of 11 large
DIMACS benchmark instances. 119

6.3 Comparisons between IE2COL and 13 state-of-the-art coloring algorithms in
the literature. 121

6.4 Influence of the size of residual graph (parameter q) on the performance of
IE2COL. 122

7.1 Computational results of the upper bounds on 27 DIMACS challenge benchmarks.133
7.2 Computational results of the upper bounds on 23 COLOR02 benchmarks. . . 134
7.3 Comparison results of upper bounds on 12 graphs of the DIMACS challenge

benchmarks. 135
7.4 Comparison results of upper bounds on 16 graphs of the COLOR02 benchmarks.135
7.5 Computational results of the lower bounds obtained by EXCLIQUE on 29

DIMACS challenge benchmarks. 137
7.6 Computational results of the lower bounds obtained by EXCLIQUE on 27

COLOR02 challenge benchmarks. 138
7.7 Comparisons between EXSCOL and MaxIS. EXSCOL dominates the conven-

tional independent set approach (extraction of one independent set each
time). 139

7.8 Comparisons between EXSCOL and MACOL. EXSCOL performs always bet-
ter than the graph coloring approach. 141

7.9 Detailed computational results on DSJC1000.5. 141

150

List of algorithms

List of algorithms

2.1 Adaptive multistart tabu search for the MCP 29
2.2 The tabu search procedure TS0 for k-clique finding 30
3.1 The multi-neighborhood tabu search approach for MVWCP 53
4.1 Memetic algorithm for the maximum edge weight clique problem 73
4.2 Constrained neighborhood tabu search for MEWCP 75
4.3 Population updating strategy . 80
5.1 Preprocessing phase: Extraction of pairwise disjoint independent sets 98
6.1 The IE2COL algorithm for large graph k-coloring 116
7.1 Pseudo-code of the EXSCOL algorithm . 130

151

List of publications

List of publications

International journals

• Qinghua Wu and Jin-Kao Hao. Coloring large graphs based on independent set
extraction. Computers & Operations Research 39(2): 283-290, 2012.

• Qinghua Wu and Jin-Kao Hao. An effective heuristic algorithm for sum coloring of
graphs. Computers & Operations Research 39(7): 1593-1600, 2012.

• Qinghua Wu and Jin-Kao Hao. Memetic search for the max-bisection problem.
Computers & Operations Research 40(1): 166179, 2013.

• Qinghua Wu, Jin-Kao Hao, Fred Glover. Multi-neighborhood tabu search for the
maximum weight clique problem. Annals of Operations Research 196(1): 611–634,
2012.

• Qinghua Wu and Jin-Kao Hao. An adaptive multistart tabu search approach to solve
the maximum clique problem. Accepted to Journal of Combinatorial Optimization
Nov 2011 and to appear in 2013.

• Qinghua Wu and Jin-Kao Hao. An extraction and expansion approach for graph
coloring. Accepted to Asia-Pacific Journal of Operational Research May 2011 and
to appear in 2013.

• Jin-Kao Hao and Qinghua Wu. Improving the extraction and expansion method for
large graph coloring. Discrete Applied Mathematics 160(16-17): 2397-2407, 2012.

International conferences

• Qinghua Wu and Jin-Kao Hao. A Memetic Approach for the Max-Cut Problem.
In C. Coello Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, M. Pavone (Eds.):
PPSN 2012, Lecture Notes in Computer Science 7492: 297-306, 2012.

Submitted and revised papers

153

List of publications

• Qinghua Wu and Jin-Kao Hao. Improved lower bounds for sum coloring via clique
decomposition, submitted to Discrete Applied Mathematics. June 2012.

• Qinghua Wu and Jin-Kao Hao. A Hybrid Metaheuristic Method for the Maxi-
mum Diversity Problem, submitted to European Journal of Operational Research.
September 2012

154

References

[Alidaee et al., 2007] cited page 9, 71, 71, 71
B. Alidaee, G. Kochenberger F. Glover, and H. Wang. Solving the maximum edge
weight clique problem via unconstrained quadratic programming. European Journal of
Operational Research, 181(2):592–597, 2007.

[Alidaee et al., 2008] cited page 26, 59, 59, 59, 59
B. Alidaee, G. Kochenberger, K. Lewis, M. Lewis, and H. Wang. A new approach for
modeling and solving set packing problems. European Journal of Operational Research,
186:204–582, 2008.

[Aringhieri and Cordone, 2011] cited page 71, 71
R. Aringhieri and R. Cordone. Comparing local search metaheuristics for the maximum
diversity problem. Journal of the Operational Research Society, 62(2):266–280, 2011.

[Aringhieri et al., 2008] cited page 71
R. Aringhieri, R. Cordone, and Y. Melzani. Tabu search versus grasp for the maximum
diversity problem. 4OR-A Quarterly Journal of Operations Research, 6(1):45–60, 2008.

[Arora and Safra, 1992] cited page 9
S. Arora and S. Safra. Approximating clique is np-complete. In Proceedings of the 33rd
IEEE Symposium on Foundations of Computer Science, pages 2–13, Piscataway, NJ,
1992.

[Arora et al., 1998] cited page 9, 9
S. Arora, C. Lund, R. Motwani, and M. Szegedy. Proof verification and hardness of
approximation problems. Journal of the ACM, 18:501–555, 1998.

[Ausiello et al., 1999] cited page 71
G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A.M. Spaccamela, and M. Protasi.
Complexity and Approximation: Combinatorial Optimization Problems and Their Ap-
proximability Properties. Springer, Berlin, 1999.

[Avanthay et al., 2003] cited page 95
C. Avanthay, A. Hertz, and N. Zufferey. A variable neighborhood search for graph
coloring. European Journal of Operational Research, 151(2):379–388, 2003.

155

REFERENCES

[Avondo-Bodeno, 1962] cited page 20
G. Avondo-Bodeno. Economic Applications of the Theory of Graphs,Gordon and
Breach. Science Publishers, New York, 1962.

[Babel, 2008] cited page 24, 47
L. Babel. A fast algorithm for the maximum weight clique problem. Computing, 52:31–
38, 2008.

[Balas and Yu, 1986] cited page 10
E. Balas and C.S. Yu. Finding a maximum clique in an arbitrary graph. SIAM Journal
of Computing, 15:1054–1068, 1986.

[Ballard and Brown, 1982] cited page 20, 47
D.H. Ballard and M. Brown. Computer Vision. Prentice-Hall, Englewood Cliffs, N.J.,
1982.

[Bar-Noy et al., 1998] cited page 127, 127, 127, 136
A. Bar-Noy, M. Bellareb, M. M. Halldórsson, H. Shachnai, and T. Tamir. On chromatic
sums and distributed resource allocation. Information and Computation, 140(2):183–
202, 1998.

[Barahona et al., 1992] cited page 20
F. Barahona, A. Weintraub, and R. Epstein. Habitat dispersion in forest planning and
the stable set problem. Operations Research, 1:S14–S21, 1992.

[Battiti and Brunato, 2008] cited page 18
R. Battiti and M. Brunato. Reactive search and intelligent optimization. ser. Operations
Research/Computer Science Interfaces 45, 2008.

[Battiti and Mascia, 2010] cited page 63
R. Battiti and F. Mascia. Reactive and dynamic local search for the max-clique problem:
engineering effective building blocks. Computers and Operations Research, 37:534–542,
2010.

[Battiti and Protasi, 2001] cited page 13, 13, 14, 23, 37, 38, 54
R. Battiti and M. Protasi. Reactive local search for the maximum clique problem.
Algorithmica, 29(4):610–637, 2001.

[Battiti and Tecchiolli, 1994] cited page 14
R. Battiti and G. Tecchiolli. The reactive tabu search. ORSA Journal on Computing,
6(2):126–140, 1994.

[Beasley, 1996] cited page 25
J.E. Beasley. Obtaining test problems via internet. Journal of Global Optimization,
8:429–433, 1996.

[Benlic and Hao, 2012] cited page 145
U. Benlic and J.K. Hao. A study of breakout local search for the minimum sum coloring

156

REFERENCES

problem. In L. T. Bui et al. (Eds.) SEAL 2012, Lecture Notes in Computer Science,
pages 7673: 128–137, 2012.

[Berman and Pelc, 1990] cited page 20
P. Berman and A. Pelc. Distributed fault diagnosis for multiprocessor systems. In
Proceedings of the 15th Annual International Symposium on Fault-Tolerant Computing,
pages 340–346, Newcastle, UK, 1990.

[Blöchliger and Zufferey, 2008] cited page 95, 120
I. Blöchliger and N. Zufferey. A graph coloring heuristic using partial solutions and a
reactive tabu scheme. Computers and Operations Research, 35(3):960–975, 2008.

[Bomze et al., 2000] cited page 18, 47
I. M. Bomze, M. Pelillo, and V. Stix. Approximating the maximum weight clique using
replicator dynamics. IEEE Transactions on Neural Networks, 11(6):1228–1241, 2000.

[Bomze et al., 2012] cited page 18
I.M. Bomze, L. Grippo, and L. Palagi. Unconstrained formulation of standard quadratic
optimization problems. Top, 20:35–51, 2012.

[Bomze, 1997] cited page 18
I.M. Bomze. Evolution towards the maximum clique. Journal of Global Optimization,
10:143–164, 1997.

[Bouziri and Jouini, 2010] cited page 127, 132, 134, 136
H. Bouziri and M. Jouini. A tabu search approach for the sum coloring problem.
Electronic Notes in Discrete Mathematics, 36(1):915–922, 2010.

[Brimberg et al., 2009] cited page 25, 25, 71, 71, 81, 86
J. Brimberg, N. Mladenović, D. Uroŝević, and E. Ngai. Variable neighborhood search
for the heaviest k-subgraph. Computers and Operations Research, 36(11):2885–2891,
2009.

[Bringmann and Friedrich, 2009] K. Bringmann and T. Friedrich. Don’t be greedy when
calculating hypervolume contributions. In FOGA’09: Proceedings of the tenth ACM
SIGEVO workshop on Foundations of genetic algorithms, pages 103–112, New York,
NY, USA, 2009. ACM.

[Brotcorne et al., 2002] cited page 23
L. Brotcorne, G. Laporte, and F. Semet. Fast heuristic for large scale coveringlocation
problems. Computers & Operations Research, 29:651–665, 2002.

[Brouwer et al., 1990] cited page 20
A. E. Brouwer, J. B. Shearer, N. J. A. Sloane, and W. D. Smith. A new table of constant
weight codes. IEEE Transactions on information theory, 36:1334–1380, 1990.

[Brunato and Battiti, 2011] cited page 18, 23
M. Brunato and R. Battiti. R-evo: A reactive evolutionary algorithm for the maximum
clique problem. IEEE Transactions on Evolutionary Computation, 15(6):770–782, 2011.

157

REFERENCES

[Bui and Rizzo, 2004] cited page 19
T.N. Bui and J.R. Rizzo. Finding maximum cliques with distributed ants. In Genetic
and Evolutionary Computation - GECCO 2004, volume 3102 of LNCS, pages 24–35.
Springer-Verlag, 2004.

[Burer et al., 2002] cited page 18
S. Burer, R.D.C Monteiro, and Y. Zhang. Maximum stable set formulations and heuris-
tics based on continuous optimization. Mathematical Programming, 94(1):137–166, 2002.

[Burke et al., 2003] cited page 17
E. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, and S. Schulenburg. Hyper-heuristics:
An emerging direction in modern search technology. In Glover, F. (ed.) Handbook of
Meta-heuristics, pages 457–474, Norwell, 2003. Kluwer Academic.

[Burke et al., 2007] cited page 95
E.K. Burke, B. McCollum, A. Meisels, S. Petrovic, and R. Qu. A graph-based hyper
heuristic for timetabling problems. European Journal of Operational Research, 176:177–
192, 2007.

[Busygin, 2006] cited page 18, 38, 47
S. Busygin. A new trust region technique for the maximum weight clique problem.
Discrete Applied Mathematics, 154(15):2080–2096, 2006.

[Carraghan and Pardalos, 1990] cited page 10, 10, 10, 19
R. Carraghan and P.M. Pardalos. An exact algorithm for the maximum clique problem.
Operations Research Letters, 9:375–382, 1990.

[Carter and Park, 1993] cited page 17
B. Carter and K. Park. How good are genetic algorithms at finding large cliques: An
experimental study. Technical Report BU-CS-93-015, Department of Computer Science,
Boston University, 1993.

[Chams et al., 1987] cited page 21, 21, 21, 22, 95, 96, 96, 96
M. Chams, A. Hertz, and D. de Werra. Some experiments with simulated annealing for
coloring graphs. European Journal of Operational Research, 32(2):260–266, 1987.

[Chandra and Halldórsson, 2001] cited page 71
B. Chandra and M.M. Halldórsson. Approximation algorithms for dispersion problems.
Journal of Algorithms, 38:438–465, 2001.

[Chiarandini and Stützle, 2002] cited page 95, 120
M. Chiarandini and T. Stützle. An application of iterated local search to graph col-
oring. In: D.S. Johnson, A. Mehrotra, M. Trick, editors, Proc. of the Computational
Symposium on Graph Coloring and its Generalizations, Ithaca, New York, USA, pages
112–125, 2002.

[Christofides, 1975] cited page 20
N. Christofides. Graph theory, An algorithmic approach. Academic Press, 1975.

158

REFERENCES

[Coello Coello et al., 2006] Carlos A. Coello Coello, Gary B. Lamont, and David A. Van
Veldhuizen. Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and
Evolutionary Computation). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[Costa et al., 1995] cited page 95
D Costa, A Hertz, and O Dubuis. Embedding of a sequential procedure within an
evolutionary algorithm for coloring problem in graphs. Journal of Heuristics, 1:105–28,
1995.

[Croce et al., 2009] cited page 22, 22
F.D. Croce, A. Grosso, and M. Locatelli. A heuristic approach for the maxmin diversity
problem based on max-clique. Computers & Operations Research, 36:2429–2433, 2009.

[de Andrade et al., 2003] cited page 71
P.M.F. de Andrade, A. Plastino, L.S. Ochi, and S.L. Martins. Grasp for the maximum
diversity problem. In Proceedings of the Fifth Metaheuristics International Conference
(MIC 2003), pages CD–ROM Paper: MIC0315, Kyoto, Japan, 2003.

[de Andrade et al., 2005] cited page 71, 71
M.R.Q. de Andrade, P.M.F. de Andrade, S.L. Martins, and A. Plastino. Grasp with
path-relinking for the maximum diversity problem. In S.E. Nikoletseas (Ed.), Exper-
imental and Efficient Algorithms, 4th InternationalWorkshop, WEA 2005, pages 558–
569, Santorini Island, Greece, 2005. Springer, Berlin.

[Delorme et al., 2004] cited page 59, 59, 59
X. Delorme, X. Gandibleux, and J. Rodriguez. Grasp for set packing problems. European
Journal of Operational Research, 153:564–580, 2004.

[Deo, 1974] cited page 20
N. Deo. Graph Theory with Applications to Engineering and Computer Science.
Prentice-Hall, Englewwod Cliffs, 1974.

[Dijkhuizen and Faigle, 1993] cited page 71
G. Dijkhuizen and U. Faigle. A cutting-plane approach to the edge-weighted maximal
clique problem. European Journal of Operational Research, 69:121–130, 1993.

[Dorigo and Caro, 1999] cited page 19
M. Dorigo and G. Di Caro. The ant colony optimization meta-heuristic. McGraw-Hill
Ltd., Maidenhead, England, 1999.

[Dorigo et al., 1996] cited page 19
M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics - Part B,
26:29–41, 1996.

[Dorne and Hao, 1998] cited page 95
R. Dorne and J.K. Hao. A new genetic local search algorithm for graph coloring. Lecture
Notes in Computer Science, 1498:745–754, 1998.

159

REFERENCES

[Douiri and Elbernoussi, 2011] cited page 127, 132, 134, 136
S.M. Douiri and S. Elbernoussi. New algorithm for the sum coloring problem. Interna-
tional Journal of Contemporary Mathematical Sciences, 6(10):453–463, 2011.

[Douiri and Elbernoussi, 2012] cited page 131, 136
S.M. Douiri and S. Elbernoussi. A new ant colony optimization algorithm for the lower
bound of sum coloring problem. Journal of Mathematical Modelling and Algorithms,
11(2):181–192, 2012.

[Duarte and Mart́ı, 2007] cited page 24, 24, 24, 71, 74, 74
A. Duarte and R. Mart́ı. Tabu search and grasp for the maximum diversity problem.
European Journal of Operational Research, 178(1):71–84, 2007.

[Fahle, 2002] cited page 10
T. Fahle. Simple and fast: Improving a branch-and-bound algorithm for maximum
clique. In Proceedings of ESA-2002, pages 485–498, 2002.

[Feige and Kilian, 1998] cited page 9
U. Feige and J. Kilian. Zero knowledge and the chromatic number. Journal of Computer
and System Sciences, 57:187–199, 1998.

[Feige et al., 1996] cited page 9
U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Interactive proofs and
the hardness of approximating cliques. Journal of the ACM, 43:268–292, 1996.

[Feige et al., 2001] cited page 71, 71
U. Feige, G. Kortsarz, and D. Peleg. The dense k-subgraph problem. Algorithmica,
29(3):410–421, 2001.

[Fenet and Solnon., 2003] cited page 19
S. Fenet and C. Solnon. Searching for maximum cliques with ant colony optimization. In
S. Cagnoni, J. Gottlieb, E. Hart, M. Middendorf, and G.R. Raidl (eds.), Applications
of Evolutionary Computing, Proceedings of EvoWorkshops 2003: EvoCOP, EvoIASP,
EvoSTim, volume 2611 of LNCS, pages 236–245, Málaga, Spain, 2003. Springer-Verlag.

[Feng et al., 2010] cited page 71
B. Feng, Z.Z. Jiang, Z.P. Fan, and N. Fu. A method for member selection of crossfunc-
tional teams using the individual and collaborative performances. European Journal of
Operational Research, 203(3):652–661, 2010.

[Fleurent and Ferland, 1996] cited page 13, 14, 17, 21, 21, 22, 95, 95, 96, 96, 96, 96, 100, 104,
105
C. Fleurent and J. Ferland. Genetic and hybrid algorithms for graph coloring. Annals
of Operations Research, 63(3):437–461, 1996.

[Fogel et al., 1966] cited page 17
L.J. Fogel, A.J. Owens, and M.J. Walsh. Artiffcial Intelligence through Simulated Evo-
lution. John Wiley, New York, 1966.

160

REFERENCES

[Foster and Soule, 1995] cited page 17
J.A. Foster and T. Soule. Using genetic algorithms to find maximum cliques. Technical
Report TIK-Report CSM-450, Department of Computer Science, University of Idaho,
1995.

[Friden et al., 1989] cited page 13, 13, 14, 27, 31
C. Friden, A. Hertz, and D. de Werra. Stabulus: A technique for finding stable sets in
large graphs with tabu search. Computing, 42:35–44, 1989.

[Funabiki and Higashino, 2000] cited page 104, 104, 105, 120
N. Funabiki and T. Higashino. A minimal-state processing search algorithm for graph
coloring problems. IEICE Transaction Fundamentals, E83–A:1420–1430, 2000.

[Galinier and Hao, 1999] cited page 33, 41, 95, 120
P. Galinier and J.K. Hao. Hybrid evolutionary algorithms for graph coloring. Journal
of Combinatorial Optimization, 3(4):379–397, 1999.

[Galinier and Hertz, 2006] cited page 95, 132
P. Galinier and A. Hertz. A survey of local search methods for graph coloring. Computers
and Operations Research, 33(9):2547–2562, 2006.

[Galinier et al., 2008] cited page 95, 102, 104, 105, 120
P. Galinier, A. Hertz, and N. Zufferey. An adaptive memory algorithm for the k-
colouring problem. Discrete Applied Mathematics, 156(2):267–279, 2008.

[Galinier et al., 2011] cited page 77
P. Galinier, Z. Boujbel, and M.C. Fernandes. An efficient memetic algorithm for the
graph partitioning problem. Annals of Operations Research, 191(1):1–22, 2011.

[Gallego et al., 2009] cited page 24, 71
M. Gallego, A. Duarte, M. Laguna, and R. Mart́ı. Hybrid heuristics for the maximum
diversity problem. Computational Optimization and Applications, 44(3):411–426, 2009.

[Gamache et al., 2007] cited page 95
M. Gamache, A. Hertz, and J.O. Ouellet. A graph coloring model for a feasibility prob-
lem in monthly crew scheduling with preferential bidding. Computers and Operations
Research, 34(8):2384–2395, 2007.

[Garey and Johnson, 1976] cited page 9, 95
M.R. Garey and D.S. Johnson. The complexity of near-optimal coloring. Journal of the
ACM, 23:43–49, 1976.

[Garey and Johnson, 1979] cited page 9, 95, 99
M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-completeness. W.H. Freeman and Company, New York, 1979.

[Gaspero and Schaerf, 2006] cited page 63
L. Di Gaspero and A. Schaerf. Neighborhood portfolio approach for local search applied

161

REFERENCES

to timetabling problems. Journal of Mathematical Modelling and Algorithms, 5(1):65–
89, 2006.

[Gendreau et al., 1993] cited page 14, 54
A. Gendreau, L. Salvail, and P. Soriano. Solving the maximum clique problem using a
tabu search approach. Annals of Operations Research, 41:385–403, 1993.

[Geng et al., 2007] cited page 13, 15
X. Geng, J. Xu, J. Xiao, and L. Pan. A simple simulated annealing algorithm for the
maximum clique problem. Information Sciences, 177:5064–5071, 2007.

[Ghosh, 1996] cited page 71, 74
J.B. Ghosh. Computational aspects of the maximum diversity problem. Operations
Research Letters, 19(4):175–181, 1996.

[Glass, 2002] cited page 95
C. Glass. Bag rationalisation for a food manufacturer. Journal of the Operational
Research Society, 53:544–551, 2002.

[Glover et al., 1998] cited page 71
F. Glover, C.C. Kuo, and K.S. Dhir. Heuristic algorithms for the maximum diversity
problem. Journal of Information and Optimization Sciences, 19(1):109–132, 1998.

[Glover, 1989] cited page 13, 27, 29, 33, 33, 51, 77
F. Glover. Tabu search - part i. ORSA Journal onComputing, 1(3):190–260, 1989.

[Gortázar et al., 2010] cited page 71
F. Gortázar, A. Duarte, M. Laguna, and R. Mart́ı. Black box scatter search for
general classes of binary optimization problems. Computers & Operations Research,
37(11):1977–1986, 2010.

[Grossman, 1993] cited page 19
T. Grossman. Applying the inn model to the maxclique problem. in [Johnson and
Trick, 1996], 9(6):375–382, 1993.

[Grosso et al., 2004] cited page 54
A. Grosso, M. Locatelli, and F.D. Croce. Combining swaps and node weights in an
adaptive greedy approach for the maximum clique problem. Journal of Heuristics,
14:135–152, 2004.

[Grosso et al., 2008] cited page 37
A. Grosso, M. Locatelli, and W. Pullan. Simple ingredients leading to very efficient
heuristics for the maximum clique problem. Journal of Heuristics, 14(6):587–612, 2008.

[Gu and Yu, 2004] cited page 20
S. Gu and S. Yu. A chaotic neural network for the maximum clique problem. Advances
in Artificial Intelligence, Lecture Notes in Computer Science, 3060:391–405, 2004.

162

REFERENCES

[Hamiez and Hao, 2002] cited page 95
J.P. Hamiez and J.K. Hao. Scatter search for graph coloring. Lecture Notes in Computer
Science, 2310:168–179, 2002.

[Hansen and Jaumard, 1990] cited page 13
P. Hansen and B. Jaumard. Algorithms for the maximum satisfability problem. Com-
puting, 44(4):279–303, 1990.

[Hansen and Mladenović, 2003] cited page 15
P. Hansen and N. Mladenović. Handbook of Metaheuristics, chapter Variable neighbor-
hood search. Springer, 2003.

[Hansen et al., 2004] cited page 15, 23
P. Hansen, N. Mladenović, and D. Urovsević. Variable neighborhood search for the
maximum clique. Discrete Applied Mathematics, 145:117–125, 2004.

[Hao and Wu, 2012] cited page 3, 111
J.K. Hao and Q. Wu. Improving the extraction and expansion method for large graph
coloring. Discrete Applied Mathematics, 160(16–17):2397–2407, 2012.

[Hao, 2011] cited page 17, 72, 78, 123
J.K. Hao. Memetic algorithms in discrete optimization. In F. Neri, C. Cotta, P. Moscato
(Eds.) Handbook of Memetic Algorithms. Studies in Computational Intelligence 379,
Chapter 6, pages 73–94. Springer, 2011.

[Harley et al., 2001] cited page 23
E. Harley, A. Bonner, and N. Goodman. Uniform integration of genome mapping data
using intersection graphs. Bioinformatics, 17:487–494, 2001.

[Hassin et al., 1997] cited page 71
R. Hassin, S. Rubinstein, and A. Tamir. Approximation algorithms for maximum dis-
persion. Operations Research Letters, 21:133–137, 1997.

[Hästad, 1999] cited page 9, 9
J. Hästad. Clique is hard to approximate within n1−ϵ. Acta Mathematica, 182:105–142,
1999.

[Helmar and Chiarandini, 2011] cited page 131, 136, 145
A. Helmar and M. Chiarandini. A local search heuristic for chromatic sum. In L. D.
Gaspero, A. Schaerf, T. Stützle (Eds.), Proceedings of the 9th Metaheuristics Interna-
tional Conference, MIC:161–170, 2011.

[Hertz and de Werra, 1987] cited page 21, 21, 22, 95, 95, 96, 96, 96, 96, 100, 101
A. Hertz and D. de Werra. Using tabu search techniques for graph coloring. Computing,
39(4):344–351, 1987.

[Hertz et al., 2008] cited page 95, 120
A. Hertz, M. Plumettaz, and N. Zufferey. Variable space search for graph coloring.
Discrete Applied Mathematics, 156(13):2551–2560, 2008.

163

REFERENCES

[Holland, 1975] cited page 17
J.H. Holland. Adaptation in natural and artiffcial systems. The University of Michigan
Press, Ann Arbor, 1975.

[Hopfield and Tank, 1985] cited page 19
J. J. Hopfield and D. W. Tank. Neural computation of decisions in optimization prob-
lems. Biological Cybernetics, 52(3):141–152, 1985.

[Hunting et al., 2001] cited page 71, 71
M. Hunting, U. Faigle, and W. Kern. A lagrangian relaxation approach to the edge-
weighted clique problem. European Journal of Operational Research, 131:119–131, 2001.

[J.C.Regin, 2003] cited page 11
J.C.Regin. Solving the maximum clique problem with constraint programming. In
Proceedings of CPAIOR’03,Springer, LNCS2883, pages 634–648, 2003.

[Johnson and Trick, 1996] cited page 9, 101, 132, 162
D. S. Johnson and M. A. Trick. Cliques, Coloring, and Satisfiability: Second DIMACS
Implementation Challenge, volume 26 of DIMACS Series. American Mathematical
Society, Providence, RI, 1996.

[Johnson et al., 1991] cited page 21, 21, 22, 95, 95, 96, 96, 96, 100
D. Johnson, C. Aragon, L. McGeoch, and C. Schevon. Optimization by simulated
annealing: An experimental evaluation; part ii, graph coloring and number partitioning.
Operations Research, 39(3):378–401, 1991.

[Johnson, 1974] cited page 12
D.S. Johnson. Approximation algorithms for combinatorial problems. Journal of Com-
puter and System Sciences, 9:256–278, 1974.

[Katayama and Narihisa, 2004] cited page 71
K. Katayama and H. Narihisa. An evolutionary approach for the maximum diversity
problem. In W. Hart, N. Krasnogor, J.E. Smith (Eds.), Recent Advances in Memetic
Algorithms, Studies in Fuzziness and Soft Computing, pages 31–47. Springer, Berlin,
2004.

[Katayama et al., 2005] cited page 13, 13, 23, 37, 38, 54
K. Katayama, A. Hamamoto, and H.Narihisa. An effective local search for the maximum
clique problem. Information Processing Letters, 95(5):503–511, 2005.

[Kincaid, 1992] cited page 71
R.K. Kincaid. Good solutions to discrete noxious location problems via metaheuristics.
Annals of Operations Research, 40:265–281, 1992.

[Kirkpatrick et al., 1983] cited page 15
S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

164

REFERENCES

[Kokosiński and Kawarciany, 2007] cited page 127, 132, 134, 136
Z. Kokosiński and K. Kawarciany. On sum coloring of graphs with parallel genetic
algorithms. Lecture Notes In Computer Science, 4431:211–219, 2007.

[Konc and Janezic, 2007] cited page 11
J. Konc and D. Janezic. An improved branch and bound algorithm for the maximum
clique problem. Communications in Mathematical and in Computer Chemistry, 58:569–
590, 2007.

[Kopf and Ruhe, 1987] cited page 12, 12
R. Kopf and G. Ruhe. A computational study of the weighted independent set problem
for general graphs. Foundations of Control Engineering, 12(4):167–180, 1987.

[Kubicka and Schwenk, 1989] cited page 127
E. Kubicka and A. J. Schwenk. An introduction to chromatic sums. Proceedings of the
17th Annual ACM Computer Science Conference, pages 39–45, 1989.

[Kuby, 1987] cited page 71
M.J. Kuby. Programming models for facility dispersion: the p-dispersion and maxisum
dispersion problems. Geographical Analysis, 19(4):315–329, 1987.

[Kuo et al., 1993] cited page 71
C.C. Kuo, F. Glover, and K.S. Dhir. Analyzing and modeling the maximum diversity
problem by zero-one programming. Decision Sciences, 24(6):1171–1185, 1993.

[Kuznetsova and Strekalovsky, 2001] cited page 18
A.A. Kuznetsova and A.S. Strekalovsky. On solving the maximum clique problem.
Journal of Global Optimization, 21(3):265–288, 2001.

[Kwon, 2005] cited page 59
R.H. Kwon. Data dependent worst case bounds for weighted set packing. European
Journal of Operational Research, 167(1):68–76, 2005.

[Laguna and Mart́ı, 2001] cited page 95
M. Laguna and R. Mart́ı. A grasp for coloring sparse graphs. Computational optimiza-
tion and applications, 19(2):165–178, 2001.

[Laguna and Martŕı, 2003] cited page 17
M. Laguna and R. Martŕı. Scatter Search. Methodology and Implementations in C.
Kluwer Academic Publishers, Boston MA, 2003.

[Larran̂aga and Lozano, 2001] cited page 17
P. Larran̂aga and J.A. Lozano. Estimation of Distribution Algorithms. A New Tool for
Evolutionary Computation. Kluwer Academic Publishers, Boston MA, 2001.

[Lecky et al., 1989] cited page 20
J.E. Lecky, O.J. Murphy, and R.G. Absher. Graph theoretic algorithms for the pla
folding problem. IEEE transactions on computer-aided design of integrated circuits and
systems, 8(9):1014–1021, 1989.

165

REFERENCES

[Leighton, 1979] cited page 22, 127
F. Leighton. A graph coloring algorithm for large scheduling problems. Journal of
Research of the National Bureau of Standards, 84(6):489–506, 1979.

[Li and Quan, 2010] cited page 11
C.M. Li and Z. Quan. An efficient branch-and-bound algorithm based on maxsat for
the maximum clique problem. In Proceedings of the Twenty-Fourth AAAI Conference
on Artificial Intelligence (AAAI-10), pages 128–133, 2010.

[Li et al., 2009] cited page 127, 132, 134, 134, 136
Y. Li, C. Lucet, A. Moukrim, and K. Sghiouer. Greedy algorithms for minimum sum
coloring algorithm. In Proceedings LT2009 Conference, pages 619–652, Tunisia, 2009.

[Lin and Lee, 1993] cited page 19
F. Lin and K. Lee. A parallel computation network for the maximum clique problem.
IEEE International Symposium on Circuits and Systems, pages 2549–2552, 1993.

[Lovász, 1979] cited page 20
L. Lovász. On the shannon capacity of a graph. IEEE Transactions on Information
Theory, 25:1–7, 1979.

[Lozano et al., 2011] cited page 25, 25, 71, 71, 81, 86
M. Lozano, D. Molina, and C. Garćıa-Mart́ınez. Iterated greedy for the maximum
diversity problem. European Journal of Operational Research, 214(1):31–38, 2011.

[Lü and Hao, 2010] cited page 95, 96, 97, 100, 101, 101, 102, 102, 103, 103, 103, 103, 114, 115,
117, 118, 119, 132, 140
Z. Lü and J.K. Hao. A memetic algorithm for graph coloring. European Journal of
Operational Research, 200(1):235–244, 2010.

[Lü et al., 2010] cited page 79, 79, 79, 80, 81
Z. Lü, F. Glover, and J.K. Hao. A hybrid metaheuristic approach to solving the ubqp
problem. European Journal of Operational Research, 207(3):1254–1262, 2010.

[Lü et al., 2011] cited page 63
Z. Lü, J.K. Hao, and F. Glover. Neighborhood analysis: a case study on curriculumbased
course timetabling. Journal of Heuristics, 17(2):97–118, 2011.

[Lund and Yannakakis, 1994] cited page 9
C. Lund and M. Yannakakis. On the hardness of approximating minimization problems.
Journal of the ACM, 41:960–981, 1994.

[Macambira and de Souza, 2000] cited page 24, 71
E.M. Macambira and C.C. de Souza. The edge-weighted clique problem: valid inequal-
ities, facets and polyhedral computations. European Journal of Operational Research,
123:346–371, 2000.

166

REFERENCES

[Macambira, 2003] cited page 71, 71, 71
E.M. Macambira. An application of tabu search heuristic for the maximum edge-
weighted subgraph problem. Annals of Operational Research, 117:175–190, 2003.

[MacWilliams and Sloane, 1979] cited page 20
J. MacWilliams and N.J.A. Sloane. The Theory of Error Correcting Codes. Elsevier,
Amsterdam, North-Holland, 1979.

[Malafiejski, 2004] cited page 127, 127
M. Malafiejski. Sum coloring of graphs. Contemporary Mathematics, 352:55–65, 2004.

[Malaguti et al., 2008] cited page 95, 102, 103, 104, 105, 105, 118, 120, 132
E. Malaguti, M. Monaci, and P. Toth. A metaheuristic approach for the vertex coloring
problem. INFORMS Journal on Computing, 20(2):302–316, 2008.

[Malod-Dognin et al., 2010] cited page 21, 21
N. Malod-Dognin, R. Andonov, and N. Yanev. Maximum cliques in protein structure
comparison. Experimental Algorithms Lecture Notes in Computer Science, 6049:106–
117, 2010.

[Mannino and Stefanutti, 1999] cited page 47, 57, 59, 59, 59, 59
C. Mannino and E. Stefanutti. An augmentation algorithm for the maximum weighted
stable set problem. Computational Optimization and Applications, 14:367–381, 1999.

[Marchiori, 1998] cited page 17, 23
E. Marchiori. A simple heuristic based genetic algorithm for the maximum clique prob-
lem. In ACM Symposium on Applied Computing, pages 366–373, 1998.

[Marchiori, 2002] cited page 18, 18, 19
E. Marchiori. Genetic, iterated and multistart local search for the maximum clique
problem. In Applications of Evolutionary Computing (EvoCOP 2002), LNCS 2279,
pages 112–121, Verlag, 2002. Springer.

[Mart́ı et al., 2011] cited page 24, 71, 71, 71, 71, 82, 82
R. Mart́ı, M. Gallego, A. Duarte, and E.G. Pardo. Hybrid heuristics for the maximum
diversity problem. Computational Optimization and Applications, 2011.

[Massaro et al., 2001] cited page 18
A. Massaro, M. Pelillo, and I.M. Bomze. A complementary pivoting approach to the
maximum weight clique problem. SIAM: SIAM Journal on Optimization, 12(4):928–
948, 2001.

[Miller, 1993] cited page 20
W. Miller. Building multiple alignments from pairwise alignments. Computer Applica-
tions in the Biosciences, 9(2):169–176, 1993.

[Morgenstern, 1996] cited page 95, 95, 104, 105, 120
C. Morgenstern. Distributed coloration neighborhood search. In [Johnson and Trick,
1996], page Distributed coloration neighborhood search, 1996.

167

REFERENCES

[Moscato and Cotta, 2003] cited page 72
P. Moscato and C. Cotta. A Gentle Introduction to Memetic Algorithms. In F. Glover
and G. A. Kochenberger (Eds.), Handbook of Metaheuristic. Kluwer, Norwell, Mas-
sachusetts, USA,, 2003.

[Moscato, 1989] cited page 17
P. Moscato. On evolution, search, optimization algorithms and martial arts: Towards
memetic algorithms. Technical Report Report 826, Caltech Concurrent Computation
Program, California Institute of Technology, Pasadena, 1989.

[Motzkin and Straus, 1965] cited page 18
T.S. Motzkin and E.G. Straus. Maxima for graphs and a new proof of a theorem of
turán canad. Canadian Journal of Mathematics, 17:533–540, 1965.

[Moukrim et al., 2010] cited page 127, 131, 132, 134, 136
A. Moukrim, K. Sghiouer, C. Lucet, and Y. Li. Lower bounds for the minimal sum
coloring problem. Electronic Notes in Discrete Mathematics, 36:663–670, 2010.

[Murthy et al., 1994] cited page 17
A.S. Murthy, G. Parthasarathy, and V.U.K. Sastry. Clique finding - a genetic approach.
In Proceedings of the 1st IEEE Conference on Evolutionary Computation, pages 18–21.
IEEE Press, 1994.

[Neri et al., 2012] cited page 78
F. Neri, C. Cotta, and P. Moscato. Handbook of Memetic Algorithms. Studies in Com-
putational Intelligence 379. Springer, Berlin, 2012.

[Österg̊ard, 2001] cited page 47
P.J.R. Österg̊ard. A new algorithm for the maximum weight clique problem. Nordic
Journal of Computing, 8:424–436, 2001.

[Österg̊ard, 2002] cited page 10, 10, 100
P. R. J. Österg̊ard. A fast algorithm for the maximum clique problem. Discrete Applied
Mathematics, 120:197–207, 2002.

[Palubeckis, 2007] cited page 24, 25, 25, 71, 71, 71, 71, 80, 81, 82, 86
G. Palubeckis. Iterated tabu search for the maximum diversity problem. Applied Math-
ematics and Computation, 189(1):371–383, 2007.

[Pardalos and Xue, 1994] cited page 20
P.M. Pardalos and J. Xue. The maximum clique problem. Journal of Global Optimiza-
tion, 4:301–328, 1994.

[Park and Carter, 1994] cited page 17
K. Park and B. Carter. On the effectiveness of genetic search in combinatorial opti-
mization. Technical Report BU-CS-94-010, Department of Computer Science, Boston
University, 1994.

168

REFERENCES

[Park et al., 1996] cited page 71
K. Park, K. Lee, and S. Park. An extended formulation approach to the edge-weighted
maximal clique problem. European Journal of Operational Research, 95:671–682, 1996.

[Pavan and Pelillo, 2007] cited page 18
M. Pavan and M. Pelillo. Dominant sets and pairwise clustering. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 29(1):167–172, 2007.

[Plumettaz et al., 2010] cited page 120
Plumettaz, D. Schindl, and N. Zufferey. Ant local search and its efficient adaptation to
graph colouring. Journal of Operational Research Society, 61(5):819–826, 2010.

[Porumbel et al., 2010a] cited page 79, 123
D.C. Porumbel, J.K. Hao, and P. Kuntz. An evolutionary approach with diversity
guarantee and well-informed grouping recombination for graph coloring. Computers
and Operations Research, 37(10):1822–1832, 2010.

[Porumbel et al., 2010b] cited page 95, 102, 103, 103, 104, 105, 105, 105, 118, 120, 123, 132
D.C. Porumbel, J.K. Hao, and P. Kuntz. An evolutionary approach with diversity
guarantee and well-informed grouping recombination for graph coloring. Computers
and Operations Research, 37(10):1822–1832, 2010.

[Porumbel et al., 2010c] cited page 95
D.C. Porumbel, J.K. Hao, and P. Kuntz. A search space cartography for guiding graph
coloring heuristics. Computers and Operations Research, 37(4):769–778, 2010.

[Pullan and Hoos, 2006] cited page 13, 13, 16, 23, 35
W. Pullan and HH. Hoos. Dynamic local search for the maximum clique problem.
Journal of Artificial Intelligence Research, 25:159–185, 2006.

[Pullan et al., 2011] cited page 17, 23, 62
W. Pullan, F. Mascia, and M. Brunato. Cooperating local search for the maximum
clique problem. Journal of Heuristics, 17:181–199, 2011.

[Pullan, 2006] cited page 13, 13, 16, 23, 37, 38, 38, 47, 54, 62
W. Pullan. Phased local search for the maximum clique problem. Journal of Combina-
torial Optimization, 12(3):303–323, 2006.

[Pullan, 2008] cited page 16, 23, 24, 47, 54, 54, 55, 57, 58, 59
W. Pullan. Approximating the maximum vertex/edge weighted clique using local search.
Journal of Heuristics, 14:117–134, 2008.

[Ramanujam and Sadayappanv, 1988] cited page 19
J. Ramanujam and P. Sadayappanv. Optimization by neural networks. IEEE Interna-
tional Conf. on Nerual Networks, pages 325–332, 1988.

[Ravi et al., 1994] cited page 71
S.S. Ravi, D.J. Rosenkrantz, and G.K. Tayi. Heuristic and special case algorithms for
dispersion problems. Operations Research, 42(2):299–310, 1994.

169

REFERENCES

[Rechenberg, 1973] cited page 17
I. Rechenberg. Evolutionsstrategie - Optimierung technischer Systeme nach Prinzipien-
der biologischen Evolution. Frommann-Holzboog, Stuttgart, 1973.

[Reigold et al., 1977] cited page 20, 20
E.M. Reigold, J. Nievergelt, and N. Deo. Combinatorial Algorithms: Theory and Prac-
tice. Prentice-Hall, Englewwod Cliffs, 1977.

[Robson, 1986] cited page 10
J. M. Robson. Algorithms for maximum independent sets. Journal of Algorithms,
7:425–440, 1986.

[Sakamoto et al., 1997] cited page 17
A. Sakamoto, X. Liu, and T. Shimamoto. A genetic approach for maximum independent
set problems. IEICE Trans. Fundamentals, E80-A(3):551–556, 1997.

[Schaeffer, 2007] cited page 23
S.E. Schaeffer. Graph clustering. Computer Science Review, 1:27–64, 2007.

[Sewell, 1996] cited page 107
E.C. Sewell. An improved algorithm for exact graph coloring. In [Johnson and Trick,
1996], pages 359–376, 1996.

[Silva et al., 2004] cited page 24, 71
G.C. Silva, L.S. Ochi, and S.L. Martins. Experimental comparison of greedy randomized
adaptive search procedures for the maximum diversity problem. In Experimental and
Efficient Algorithms, Lecture Notes in Computer Science, pages 498–512, Berlin, 2004.
Springer.

[Silva et al., 2007] cited page 71
G.C. Silva, M.R.Q. De Andrade, L.S. Ochi, S.L. Martins, and A. Plastino. New heuris-
tics for the maximum diversity problem. Journal of Heuristics, 13(4):315–336, 2007.

[Singh and Gupta, 2006] cited page 17, 23, 37, 38
A. Singh and A. K. Gupta. A hybrid heuristic for the maximum clique problem. Journal
of Heuristics, 12:5–22, 2006.

[Sloane, 1998] cited page 20
N. J. A. Sloane. Unsolved problems in graph theory arising from the study of codes.
Graph Theory Notes of New York, 18:11–20, 1998.

[Smith et al., 1998] cited page 95
D.H. Smith, S. Hurley, and S.U. Thiel. Improving heuristics for the frequency assignment
problem. European Journal of Operational Research, 107(1):76–86, 1998.

[Solnon and Fenet, 2006] cited page 19
C. Solnon and S. Fenet. A study of aco capabilities for solving the maximum clique
problem. Journal of Heuristics, 12:158–180, 2006.

170

REFERENCES

[Sorensen, 2004] cited page 71, 71
M. Sorensen. New facets and a branch-and-cut algorithm for the weighted clique prob-
lem. European Journal of Operational Research, 157:54–70, 2004.

[Strickland et al., 2005] cited page 20
D.M. Strickland, E. Barnes, and J.S. Sokol. Optimal protein structure alignment using
maximum cliques. Operations Research, 53:389–402, 2005.

[Tarjan and Trojanowski, 1977] cited page 10
R. E. Tarjan and A. E. Trojanowski. Finding a maximum independent set. SIAM
Journal of Computing, 6:537–546, 1977.

[Thierens, 1999] cited page 17
D. Thierens. Scalability problem of simple genetic algorithms. Evolution Computing,
7:331–352, 1999.

[Titiloye and Crispin, 2011] cited page 118, 119, 120
O. Titiloye and A. Crispin. Quantum annealing of the graph coloring problem. Discrete
Optimization, 8(2):376–384, 2011.

[Titiloye and Crispin, 2013] cited page 118, 119
O. Titiloye and A. Crispin. Parameter tuning patterns for random graph coloring with
quantum annealing. Accepted to Plos One, 2013.

[Tomita and Kameda, 2007] cited page 11
E. Tomita and T. Kameda. An efficient branch-and-bound algorithm for finding a max-
imum clique with computational experiments. Journal of Global Optimization, 37:95–
111, 2007.

[Tomita and Seki, 2003] cited page 11
E. Tomita and T. Seki. An efficient branch-and-bound algorithm for finding a maximum
clique. In Proc. Discrete Mathematics and Theoretical Computer Science. LNCS 2731,
pages 278–289, 2003.

[Tomita et al., 1988] cited page 12
E. Tomita, S. Mitsuma, and H. Takahashi. Two algorithms for finding a nera-maximum
clique. Technical report, UEC-TR-C1, 1988.

[Vingron and Argos, 1991] cited page 20
M. Vingron and P. Argos. Motif recognition and alignment for many sequences by
comparison of dot-matrices. Journal of Molecular Biology, 218:33–43, 1991.

[Vingron and Pevzner, 1992] cited page 20, 20
M. Vingron and P.A. Pevzner. Multiple sequence comparison and n-dimensional image
reconstruction. Working paper, 1992.

[Wang et al., 2012] cited page 25, 25, 71, 81, 82, 82, 82, 82, 86, 86
J. Wang, Y. Zhou, Y. cai, and J. Yin. Learnable tabu search guided by estimation of
distribution for maximum diversity problems. Soft Computing, 16:711–728, 2012.

171

REFERENCES

[Werra et al., 1999] cited page 95
D. de Werra, C. Eisenbeis, S. Lelait, and B. Marmol. On a graph-theoretical model for
cyclic register allocation. Discrete Applied Mathematics, 92(2–3):191–203, 1999.

[Wimer et al., 1998] S. Wimer, R.Y. Pinter, and J. Feldman. Optimal chaining of cmos
transistors in a functional cell. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 6(5):795–801, 1998.

[Wolpert and Macready, 1997] cited page 16
D. Wolpert and G. Macready. No free lunch theorems for optimization. IEEE Trans-
actions on Evolutionary Computation, 1(1):67–82, 1997.

[Wu and Hao, 2011a] cited page 2, 13, 15, 23, 27, 62
Q. Wu and J.K. Hao. An adaptive multistart tabu search approach to solve the maxi-
mum clique problem. Accepted to Journal of Combinatorial Optimization, 2011.

[Wu and Hao, 2011b] cited page 111, 113, 118, 119
Q. Wu and J.K. Hao. An extraction and expansion approach for graph coloring. Accepted
to Asia-Pacific Journal of Operational Research, 2011.

[Wu and Hao, 2012a] cited page 3, 21, 25, 44, 93, 113, 118, 118, 118, 118, 119
Q. Wu and J.K. Hao. Coloring large graphs based on independent set extraction.
Computers & Operations Research, 39(2):283–290, 2012.

[Wu and Hao, 2012b] cited page 23, 25, 44, 125, 136
Q. Wu and J.K. Hao. An effective heuristic algorithm for sum coloring of graphs.
Computers & Operations Research, 39(7):1593–1600, 2012.

[Wu and Hao, 2012c] cited page 3, 69
Q. Wu and J.K. Hao. A hybrid metaheuristic method for the maximum diversity
problem. submitted European Journal of Operational Research, 2012.

[Wu and Hao, 2012d] cited page 125
Q. Wu and J.K. Hao. Improved lower bounds for sum coloring via clique decomposition.
submitted to Discrete Applied Mathematics, 2012.

[Wu and Hao, 2012e] cited page 72
Q. Wu and J.K. Hao. A memetic approach for the max-cut problem. In C. Coello
Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, M. Pavone (Eds.): 12th Interna-
tional Conference on Parallel Problem Solving From Nature, Lecture Notes in Computer
Science 7492, pages 297–306, Taormina, Italy, 2012. Springer.

[Wu and Hao, 2012f] cited page 2, 13, 13, 15, 23, 45
Q. Wu and J.K. Hao. Multi-neighborhood tabu search for the maximum weight clique
problem. Annals of Operations Research, 196(1):611–634, 2012.

[Wu and Hao, 2013] cited page 72, 77
Q. Wu and J.K. Hao. Memetic search for the max-bisection problem. Computers &
Operations Research, 40(1):166–179, 2013.

172

REFERENCES

[Xie and Liu, 2009] cited page 95, 103, 104, 105, 105, 118, 120
X.F. Xie and J. Liu. Graph coloring by multiagent fusion search. Journal of Combina-
torial Optimization, 18(2):99–123, 2009.

[Zhang et al., 2005] cited page 18, 23
Q. Zhang, J. Sun, and E. Tsang. An evolutionary algorithm with guided mutation
for the maximum clique problem. IEEE Transactions on Evolutionary Computation,
9(2):192–200, 2005.

[Zufferey et al., 2008] cited page 95
N. Zufferey, P. Amstutz, and P. Giaccari. Graph colouring approaches for a satellite
range scheduling problem. Journal of Scheduling, 11(4):263–277, 2008.

173

Thèse de Doctorat

Qinghua WU
The maximum clique problems with applications to graph coloring
Problèmes de clique maximum avec applications à la coloration de graphe

Résumé
Le problème de la clique maximum (MCP) est un
problème d’optimisation combinatoire important avec
un large éventail d’applications pratiques dans de
nombreux domaines, y compris la recherche
d’information, l’analyse de la transmission du signal, la
théorie de la classification, l’économie, la planification
et l’ingénierie biomédicale. En outre, un certain
nombre de problèmes d’optimisation combinatoire
sont étroitement liés au MCP, tels que la coloration de
graphe, la somme coloration, réglez détermination du
gagnant emballage et optimale. Cette thèse est
consacrée à l’élaboration d’approches heuristiques
efficaces pour s’attaquer au problème de la clique
maximum et ses généralisations. Pour atteindre cet
objectif, nous avons développé une approche de
recherche tabou adaptative multistart pour le
problème de clique maximum classique, un algorithme
recherche tabou multi-voisinage pour la clique
maximum de sommets pondérés, et une méthode
métaheuristique hybride pour le problème de la clique
maximum d’arêtes pondérés. En outre, nous
appliquons ces méthodes heuristiques développées
pour résoudre ces problèmes difficiles qui sont
étroitement liés au problème de la clique maximum.
Tous les algorithmes sont mis en œuvre et testés avec
succès sur un certain nombre de cas de référence
provenant de divers domaines d’application. Les
méthodes proposées concurrencent favorablement les
autres approches de l’état de l’art.

Abstract
The maximum clique problem (MCP) is an important
combinatorial optimization problem with a wide range
of practical applications in numerous fields, including
information retrieval, signal transmission analysis,
classification theory, economics, scheduling, and
biomedical engineering. Moreover, a number of
combinatorial optimization problems are tightly related
to MCP, such as graph coloring, sum coloring, set
packing and optimal winner determination. This thesis
is devoted to developing effective heuristic
approaches to tackle the maximum clique problem
and its generalizations. To achieve this, we developed
an adaptive multistart tabu search approach for the
classic maximum clique problem, a
multi-neighborhood tabu search algorithm for the
maximum vertex weight clique and a hybrid
metaheuristic method for the maximum edge weight
clique problem. Moreover, we apply these developed
heuristic approaches to solve these hard problems
which are tightly related to the maximum clique
problem. All algorithms are implemented and
successfully tested on a number of benchmark
instances from diverse application areas. The
proposed methods favorably compete with other
state-of-art approaches.

Mots clés
Problème de la clique maximum, Problème de
coloration de graphe, Problème de Somme coloration,
Recherche tabou, Contraint de voisinage.

Key Words
Maximum clique problem, Graph coloring problem,
Sum coloring problem, Tabu search, Constrained
neighborhood.

L’UNIVERSITÉ NANTES ANGERS LE MANS

